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Abstract

Software evolution refers to continuous change that a software system endures from incep-
tion to retirement. Each change must be efficiently and tractably propagated across models
representing the system at different levels of abstraction. Model synchronization activities
needed to support the systematic specification and analysis of evolution activities are still

not adequately identified and formally defined.

In our research, we first introduce a formal notation for the representation of domain
models and model instances to form the theoretical basis for the proposed model synchro-
nization framework. Besides conforming to a generic MOF metamodel, we consider that
each software model also relates to an application domain context (e.g., operating systems,
web services). Therefore, we are addressing the problems of model synchronization by

focusing on domain-specific contexts.

Secondly, we identify and formally define model dependencies that are needed to trace
and propagate changes across system models at different levels of abstraction, such as
from design to source code. The approach for extraction of these dependencies is based
on Formal Concept Analysis (FCA) algorithms. We further model identified dependencies
using Unified Modeling Language (UML) profiles and constraints, and utilize the extracted

dependency relations in the context of coarse-grained model synchronization.

Thirdly, we introduce modeling semantics that allow for more complex profile-based de-
pendencies using Triple Graph Grammar (TGG) rules with corresponding Object Constraint

Language (OCL) constraints. The TGG semantics provide for fine-grained model synchro-



nization, and enable compliance with the Query/View/Transformation (QVT) standards.

The introduced framework is assessed on a large, industrial case study of the IBM Com-
merce system. The dependency extraction framework is applied to repositories of business
process models and related source code. The extracted dependencies were evaluated by
IBM developers, and the corresponding precision and recall values calculated with results
that match the scope and goals of the research. The grammar-based model synchronization
and dependency modelling using profiles has also been applied to the IBM Commerce sys-
tem, and evaluated by the developers and architects involved in development of the system.
The results of this experiment have been found to be valuable by stakeholders, and a patent
codifying the results has been filed by the IBM organization and has been granted. Finally,
the results of this experiment have been formalized as TGG rules, and used in the context of

fine-grained model synchronization.
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Chapter 1

Introduction

The beginning of knowledge is the discovery of something we do not understand.

— Frank Herbert

1.1 Motivation

From the Mariner 1 rocket disaster in 1962 and the Hartford Coliseum Collapse in 1978 to
the failure of EDS IT system in 2004 and the Los Angeles Airport scheduling system collapse
in 2007, all these disasters were caused by unpredictable behaviour of large and complex
software-intensive systems [Dev10]. However, software is complex by its nature [Bro87],
and it is not only the complexity of software that played a key part in these unfortunate
incidents, but also the change that software goes through from inception to retirement. These
factors increased the overall complexity and made the verification and validation of such

systems even more difficult. This change that software incurs at each stage of its lifecycle is



referred to as software evolution [MBZRO03]. The software entities in each evolution cycle are
non-transient and they may inherit properties from their ancestors. In Darwinian evolution,
change is manifested as natural selection that under the effect of time outcasts negative and
upholds positive mutations of species in a given environment. In a sense, we can apply this
principle to software and observe that natural selection of software systems is directed by
different evolutionary forces. These forces in the context of software systems are manifested
as different market conditions and changing business and technical requirements. Software
evolution is also marked by different evolution cycles. Some of these cycles are considered
major releases while others minor releases or even bug fixes. However, regardless of the
nature of the evolution cycle, for large systems there is a need for a systematic and traceable
management of the system’s software artifacts, such as its source code, its requirements
models, design models, and testing models, to name a few. Therefore, the main question

that arises is,

How do we manage software models in a way that allows us to respond to the

evolutionary forces in a systematic and traceable manner?

To answer this question, we view evolution in the context of software models that not only
are used to denote software artifacts, but also allow for Model Driven Development (MDD)
to commence. Model Driven Development, according to the Rational Corporation [Qis02],
is distilling business logic and design practice into a model or metadata that is used in ap-
plication development, integration, and maintenance. This paradigm, also referred to as
model-based software engineering (MBSE) [Jez03], has been hailed as a promising devel-
opment paradigm both from the software engineering point of view and from object-oriented
programming point of view. More specifically, modeling software takes the form of stan-

dardized processes (e.g., Rational Unified Process (RUP) [IBM04]) and formalisms such



as Unified Modeling Language (UML) and Meta Object Facility (MOF). In MDD, modeling
at each stage of development is the core activity, and software evolution is represented as
continuous transformation of software models at different levels of abstraction. In such a
development environment, it is evident that various software artifacts and models co-exist to
form an integrated repository that has to be maintained in a consistent state. In this respect,
a change applied to one model, such as a class diagram, may affect other models, such as
sequence diagrams, state diagrams or test models. To achieve and maintain consistency
among related software artifacts and models, each software change or transformation that
is applied for development or evolution purposes must to be systematically applied, and its
effects must be traced, analyzed, and propagated consistently to all other affected models.
The main challenge, then, lies in systematically tracing and interpreting software transfor-
mations that are applied to specific models from one level of abstraction, such as design, to
another level of abstraction, such as source code. Auxiliary challenges are related to over-
coming different levels of expressiveness and semantics of models used at different stages

of the software lifecycle.

1.2 Overview of Thesis Research Challenges

To answer the challenge of systematically tracing and interpreting software transformations
from one level of abstraction to another, and maintaining consistency among all software
artifacts and models, we introduce the mSYNTRA model synchronization framework
TMLT04].

The framework is intended to complement and facilitate the activities of an iterative and

incremental process model, such as the Rational Unified Process (RUP) [IBMO4], in the



sense of facilitating the consistent management of models throughout the development and

evolution phases.

As illustrated in Figure [1.1] the framework aims to assist software engineers on the fol-

lowing issues and challenges while developing or maintaining a software application.

mSYNTRA Framework
Model Synchronization for Software Evolution

Coarse-Grained Model
Synchronization using UML

Q

A

Software Engineer

Fine-Grained Model
Synchronization using UML

Interoperability with
QVT-Compliant CASE Tools

Figure 1.1: The mSYNTRA Framework Use Cases

Coarse-Grained Model Analysis for Model Dependency Extrac  tion and Synchronization
In the context of this thesis, we consider coarse-grained model analysis as a collec-
tion of techniques that allow for the identification of dependencies between collections
of different models. We refer to this type of analysis as coarse because it does not
provide evidence of dependencies between individual model elements but rather be-
tween collections of model elements. Coarse-grained analysis is very useful as it can

be very efficient when large models are involved and dependencies can be localized
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only in smaller parts of the models instead of more accurate but computationally more
expensive techniques. Coarse-grained analysis yields a collection of dependencies
that can be used to build traceability links and thus facilitate tractable coarse-grained
model synchronization. For example, in a large industrial system composed of millions
of lines of code and hundreds or even thousands of models, coarse-grained analysis
can answer questions of the form, “If | change this source code class, which design
or business process models may be affected?”. Event though coarse-grained analysis
allows for dependencies and traceability links to be established, it does not provide
means to generate transformations that could be used to automatically synchronize

models at a finer-grained element level.

Fine-Grained Model Synchronization  In the context of this thesis, we consider fine-grained
analysis and synchronization as a collection of techniques that allow for not only de-
noting model dependencies in a MOF-compliant formalism, but these also allow for
synchronization of individual elements between different models. In this thesis, fine-
grained synchronization takes the view of denoting model dependencies in a formalism
that can be applied in an automated and verifiable way. More specifically, for fine-
grained model synchronization, we take the view that of model dependencies denoted
as grammar rules that can be used to map individual elements of one model to indi-
vidual elements of the other model. The formation of the rules and the transformation
process guarantee that the consistency requirements and constraints are valid after

the synchronization process is applied.

Interoperability with QVT  In the context of this thesis, we also consider that aforemen-
tioned issues have to be resolved by techniques that can be implemented in an auto-

mated tool and enacted as part of an algorithmic synchronization process. Over the



past few years, Query/View/Transformation (QVT) Standard [OMG11b] has been pro-
posed as a standard collection of languages to facilitate model transformation. For this
thesis we aim for integrating the proposed model synchronization techniques in a way

that is compatible with QVT notation and process.

1.2.1 Introduction of Terms

We observe two repositories of MOF-compliant models, M and G, where concrete models

are instantiated from domain-specific models DM,, and DM, respectively (as shown in Fig-
ure[1.2).

The models m; € M and g; € G are models for the same software system, but at different
levels of abstraction or different semantic detail. Each model m; is composed of model

elements me;, € m;, and each model g; is composed of model elements ge{ € 9g;.

For a more specific synchronization scope, that is to synchronize two specific models
and not model repositories, one can view M and G as models composed of individual model

elements m; € Mand g; € G.

A model-change dependency between model repositories M and G is a set of tuples (m;,
g,) of models m; € M and g; € G, or between their corresponding model elements, such that
m; and g, have associated attributes. We refer to this kind of model-change dependency

within the context of this thesis as model dependency, in short.

1.2.2 Use Case: Coarse-Grained Model Synchronization using UML

In a situation where the repositories M and G are related, but the specific relations between

individual models from M and G have either not been established, or have been lost over

6
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Model Repository M :: DMu Model Repository G :: DMe

ﬁ*h
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Established Model
Dependencies Dwe

Coarse-Grained Synchronization using UML

Thesis Chapter 5

Fine-Grained Model Synchronization using UML

Triple-Graph Grammar
Rules TGGwmc

Interoperability with QVT-Compliant CASE Tools

Figure 1.2: Thesis Overview




time due to lack of systematic synchronization, we first need to create a coarse-grained syn-
chronization context. To provide such a coarse-grained model synchronization, we need to
establish dependency relations between the models m; € M and g; € G, or between their
corresponding model elements. Consequently, we should allow for manual or tool-assisted
tracing of such dependencies transformations that would assist on resolving any potential
inconsistencies between related artifacts. As an example of the coarse-grained model syn-
chronization, let us consider that there is a business process (e.g., Business Process Execu-
tion Language (BPEL) document) that is enacted by a run-time system (e.g., a web
service), and the goal is to establish bidirectional coarse dependencies between business
tasks and their implementation, either as a collection of run-time services or source-code
packages. We refer to this analysis as coarse grained because it aims to establish depen-
dencies and traceability links between models that have significant difference in the level of
abstraction of the artifacts they specify (i.e., business processes on one hand, and source
code on the other). The basic elements of this use case for coarse-grained synchronization

are presented below.

Apply Annotation Transformer

To establish the coarse-grained synchronization context for model alignment, we input the
domain-specific models DM,; and DM to an annotation transformer to semantically align
models. The transformer is discussed in detail in Chapter[4. It first annotates both domain
models with relevant attributes to resolve semantic differences between them, and conse-
quently establishes association rules, AR, based on compatible domain types and rela-
tions. Finally, it applies the annotation attributes to individual models from the repositories
M and G, thereby creating M’ and G’, that have their semantic differences resolved. An ex-

ample of a semantic difference between model elements is when one model element has an

8



attribute al and the other has an attribute a2 that both refer to the same context or item. An

association rule can be used to make these two attribute names isomorphic.

Apply MDD-FCA Algorithm

The output from the annotation transformer, the annotated models M’ and G’ and associa-
tion rules AR, are used as input to an algorithm that establishes specific dependencies
between related models. The algorithm, named MDD-FCA, is also described in more detail
in Chapter 4l The algorithm uses the rules from AR, and Formal Concept Analysis (FCA)
to establish dependencies between M’ and G’, and consequently between M and G. The
identified dependencies D,,; are used to support coarse-grained model synchronization.
For example, let us assume that the consistent state between the repositories M and G is
disrupted when model m, is transformed into m;’ by changing some elements of m;, such as
me} ... mel. To identify elements of G that are affected by change to m;, the tuples from
Dy are used to find all (m;, g;) that contain element m;, or at the model element level, the
tuples that contain me’, € {me! ... me'}. For each identified tuple (m,, g;) or (me’,, ge})
from Dy, the model g; or element ge{ respectively is identified as one of the elements
that may need to altered to maintain the synchronization between M and G. Once all of the
affected elements are found through iteration, they can be set for manual or tool-assisted
updating. Since the analysis is focused on the identification of dependencies between sets,

we consider the analysis as coarse as compared to fine grained.

Utilization of Standardized Modeling Infrastructure

Let us assume that M and G represent related repositories of models at different levels of

abstraction, such as platform-independent and platform-specific models, specified in UML

9



and within the context of Model-Driven Architecture (MDA) [OMGO01], and the specific rela-
tions between them are known. We would like to enable synchronization between models
contained within M and G. For this purpose, we introduce a UML-based approach where
the dependencies D, between models in M and G are encoded as UML stereotypes and
relations defined within DM,, and DM, are identified and encoded as corresponding asso-
ciation rules, AR,,;. More specifically, if model m € M and g € G are dependent, then m
as the source model can stereotype g (the target model). In this way, dependencies are
modeled and enacted at the UML / MOF level. The approach is described in more detail
in Chapter[dl The identified association rules, AR, are previously known (e.g., provided
by software developers who are tasked with maintaining them) or are created by applying
the annotation transformer. Similarly, specific dependencies between model elements D¢
are previously known or are created by applying the MDD-FCA algorithm. With AR, and
Dy available, the algorithm establishes specific profile-based dependencies between UML
model elements, DP,;4, where the left-hand side of an association rule ar; € ARy, is en-
coded as a UML stereotype or stereotype package that is applied to the right-hand side of
the same rule. The correspondence between individual models is then achieved by, first,
applying the stereotype mappings for types and relations, and then second, by applying

dependency relations from D, for mapping model-specific attributes (e.g., class names).

1.2.3 Use Case: Fine-Grained Model Synchronization using UML

Let us assume that the repositories M and G represent related models at different levels of
abstraction, for which a corresponding set of profile-based dependencies, DP,,s has been
established. In this context, we would like to establish a frameworks to support fine-grained

model synchronization. To fulfill this objective, we introduce a technique based on Triple

10



Graph Grammars (TGG). The technique, named MDD-TGG, is described in more detail in

Chapter[Bl The basic phases of this use case are discussed below.

Apply MDD-TGG Algorithm

The set of profile-based dependencies, DP,,, is either previously known or is created by
applying the approach described above. For each t; € DP,,s, a new triple graph grammar
rule, tgg; is created with the source stereotype or stereotype package of t; representing the
left-hand side of the new rule and the the target package representing the right-hand side of
the new rule, with any other constraints of t; encoded as the correspondence node (i.e., the
node linking two related nodes) of tgg;. The new set of grammar rules, TGG,,, Is created as
the output. To perform fine-grained model synchronization, we assume that the consistent
state between the repositories M and G is disrupted when m; is transformed into m,” by
changing some elements of m;, such as me} ... mel. However, instead of just identifying
elements of G that are affected by change, we identify rules in TGG,, that pertain to me’
e {me} ... mel}, and then, apply those rules to identify specific inconsistencies in models
and model elements of G. Before any changes are committed, the effect of each rule can
be investigated, and then, the rule can be applied; or it can be ignored if it is found to be

redundant (e.g., overlapping rules).

1.2.4 Use Case: Interoperability with QVT-Compliant CASE Tools

With the TGG,,; set of rules available, one can utilize a TGG-to-QVT mapping, as described
in Chapter[5, to export the created transformations into the QVT format. The exported trans-

formations can then be utilized within many CASE tools that are compliant with the QVT
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standard, to enable interoperability with other modelling frameworks and integration into dif-

ferent software lifecycle models.

1.3 Research Contributions

Model synchronization activities that are needed to achieve systematic and traceable change
propagation and interpretation across different levels of abstraction are still not adequately
identified and defined. In this context, the mSYNTRA framework aims to address the follow-

ing issues and challenges:

1. To provide a method for bridging the semantic gap between domain models at different

levels of abstraction;
2. To devise a method for identifying dependencies between model elements;

3. To enable coarse-grained model synchronization by utilizing identified dependency re-

lations between models or model elements;

4. To introduce a method for representing domain models as domain-specific context-free

grammars and their dependencies in terms of UML classifiers; and

5. To enable fine-grained model synchronization by utilizing identified triple graph gram-

mar rules.

1.4 Limitations

Limitations of the mSYNTRA framework include:
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e Handling circular dependencies, where we do not explicitly address possible circular
dependencies present within models (e.g., inheritance chain, where A is a superclass
of B, B is a superclass of C, and C is a superclass of A). Instead, if presence of
circular dependencies is detected, it can be addressed through additional user-defined

constraints, specifically aimed at preventing circular dependencies from occurring.

e Conflict resolution for conflicting synchronization actions, where we do not explicitly
address a scenario of two or more synchronization actions that occur at the same time
and have conflicting side effects. If such a scenario is detected, it can be resolved
through serialization of synchronization actions, or through additional user-defined

constraints, aimed at preventing conflicting synchronization actions from occurring.

e Pre-selection of applicable rules, where we do not explicitly specify which synchro-
nization rules need to be applied given a specific change (i.e., localized model syn-
chronization). Instead, our approach reapplies all of the available rules, and relies and

source pattern matching for rule selection (i.e., global model synchronization).

1.5 Thesis Scope

The systems targeted with this research are software-intensive applications that utilize mod-
els, and not just source code, as their primary artifacts. The models to be considered covered
include MOF-compliant models, in the form of UML, and include models that pertain to the

development of the software, from requirements to deployment to maintenance phases.
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1.6 Thesis Organization

This thesis is organized as follows:

e Chapter 2 describes previously conducted research that relates to the mSYNTRA

framework.

e Chapter 3 introduces formal notation for the representation of domain models and

model instances.

e Chapter 4 discusses the approach for establishing model dependencies using formal
concept analysis, and introduces the method for representing model dependencies

using UML profiles and constraints.

e Chapter 5 presents the theory for mapping profile-based dependencies as triple graph

grammar rules.

e Chapter 6 covers the case study results of applying the mSYNTRA framework to a

large and complex industrial case study of the IBM Commerce systems.

e Chapter 7 provides the final conclusions and directions for future research.
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Chapter 2

Related Research

How inappropriate to call this planet Earth when it is quite clearly Ocean.

— Arthur C. Clarke

2.1 Chapter Overview

In this chapter we present related research used as the basis for this thesis. We present
a detailed discussion on software models, model transformations, grammar-based model

transformations, model dependency extraction, and model synchronization.

2.2 Software Models

Due to the inherent complexity of software, even for a modest size system, we are inclined

to use various models as simplified versions of the system for purposes of understanding,
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planning, and evolution. From our viewpoint, a model is a model element that contains a
group of model elements representing an abstraction of a system or its parts from a specific
perspective and at a particular level of detail. For example, one system might be represented
by more than one model on the same level of abstraction, and different models might share

corresponding elements :

Software engineering models can be categorized according to the stage of development
to which they relate: from requirements to source code to maintenance models. Relation-
ships between models and original entities that they represent can be classified as descrip-
tive, those that mimic an underlying original; prescriptive, those that specify something to be
created; and transient, those that first describe and then prescribe changes to an underly-
ing original. Making changes to a system represented through models is not done directly;
instead, it is done on an abstraction level of the model and then mapped to the underlying

system at hand :

2.2.1 Architecture Models

When it comes to software architecture, several definitions exist including:

e “Software architecture [is a level of design that involves] the description of elements
from which systems are built, interactions among those elements, patterns that guide

their composition, and constraints on those patterns.” [SG96

e “The software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software components, the externally visible prop-

erties of those components, and the relationships among them.” [BCK98
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To model software architecture, various Architectural Description Languages (ADL) are
available, including UML [OMG10]. When modelling software architecture, different architec-
tural views are used to represent specific aspects of interest (e.g., 4+1 View Model [Kru95]),
such as concurrency or data flow. Architectural views in practice are geared towards key
stakeholders with the understanding of their concerns, and the understanding of how they
model and deal with those concerns. Different types of architectural views that exist include

Bre98| ICKKO02]:

Conceptual/Logical View Major functional components are identified and responsibilities
of those components allocated. Concrete View identified in [BHB99] also shows the
logical decomposition but from the implementation perspective (i.e., it shows the logical

structure that resulted after the conceptual/logical view was implemented).

Concurrency/Execution/Process View Runtime component instances are assigned to pro-
cesses, threads, and address spaces. It demonstrates how the runtime components

communicate and coordinate, and how they share physical resources among them.

Code View Presents classes, objects, procedures, and functions along with their abstrac-
tions and compositions into subsystems, layers, and modules. Typical relationships
include function calls, method invocations, and containment such as is-a-sub-module-

of.

Development/Implementation View  Shows a hierarchical structure of files and directories
in the implementation of a software system. It shows directories along with the source

and the header files contained in them.

Use Cases/Scenarios View Externally-visible interfaces are mapped onto system subcom-

ponents. It shows an interaction among elements of other views in the context of a
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particular functionality (i.e., a scenario for a particular use case).

Architectural concerns can also be modeled using architectural design patterns, as de-

scribed by Alencar et al. in [ADL96].

2.2.2 MOF and UML

With creation of the MOF specifications [OMGO06], a four-level, layered architecture for model
engineering was introduced (see Figure[2.1). The architecture consists of the following layers

PZB00]:

M3: Metametamodel (MOF)
M2: Metamodel (MOF UML)
M1: Model (UML Diagrams)
MO: Instance (Object Diagrams)

Figure 2.1: Four Level Architecture for MOF-Compliant Models
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M3 — The metameta level, that is, a self-defined language used for defining other

languages at level M2. This level contains only one recommendation and that is MOF.

M2 — The meta level, that is, a set of domain specific metamodels. From OMG'’s
perspective, any metamodel is defined in terms of MOF. A domain specific metamodel
defines a language to write models at level M1. For example, a recognized metamodel

is the UML metamodel, but others exist including a Java metamodel.

M1 — The model level. Any model is compliant with a specific metamodel. For exam-
ple, a specific UML diagram of a web browser describing its components would be one
of the M1-level models. Another example would be a Java implementation of one of

the web browser components.

MO — The instance level. This levels represents instances (objects) derived from the
specific M1 model. For example, an execution of the Java implementation of one of

the web browser components could be described using UML object diagrams.

In this architecture, all levels are considered to have instance relation with their parent

level. As an example, the M3 level enables a MOF model to define various metamodels

that can appear at M2 level. However, if by using the MOF model, one can express all

metamodels, then it is possible to transform a model based on one metamodel to another.

The Unified Modeling Language (UML) [OMG10] is a specification, visualization, con-

struction, and documentation language for software system artifacts and business modelling.

UML is meant to represent a standardized collection of proven engineering practices for mod-

elling of large and complex systems. One of the primary design goals of UML is to provide

users with an expressive visual modelling language for creation and exchange of software

models.
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UML 2.0 defines three main categories of diagrams [OMG11a].

Structure Diagrams These include the Class Diagram, Object Diagram, Component Di-
agram, Composite Structure Diagram, Package Diagram, and Deployment Diagram.

The emphasis is on modelling static aspects of the system.

Behavior Diagrams These include the Use Case Diagram, Activity Diagram, and State Ma-
chine Diagram. The emphasis is on modelling dynamic aspects of the system, at a

higher level of abstraction.

Interaction Diagrams  These include the Sequence Diagram, Communication Diagram, Tim-
ing Diagram, and Interaction Overview Diagram. The emphasis is on modelling dy-

namic aspects of the system, at a lower level of abstraction.

All of the above diagrams are part of the UML 2.0 formal specifications as described in
OMG1Q].

2.2.3 Source Code Models

Source code models provide structured techniques for representing source code information
at a higher level of abstraction than source code text. Various source code representation

formalisms exists , and here we are list the ones that pertain to our research.

Abstract Syntax Tree (AST) The AST is a tree structure that represents the syntactic in-
formation contained in the source code [ASU86]. A node in a tree is an element of
the language, where non-leaf nodes represent operators and leaf nodes represent

operands. An AST does not include syntactic information of punctuation tokens that
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are implicit from the AST structure. The AST notation is commonly used by compilers
for internal representation of source code for analysis, optimization, and binary code

generation.

Abstract Semantic Graph (ASG) The ASG is defined as an AST with embedded semantic
information. To specifically distinguish between the two, a reference to an entity in an
AST is represented by an edge pointing to a leaf node that holds the name of the entity
reference. In an ASG, a reference is represented by an edge pointing to the root of the

subgraph in the ASG that represents the declaration of the entity.

Program Dependence Graph (PDG) The PDG combines control and data dependence in-
formation, where nodes represent statements, expressions, and regions of code, and
the edges represent control or data passed from one expression to another along with
control conditions that influence order of execution. Unlike the AST that directly rep-
resents source code information, the PDG represents information derived from the
source code. The information stored in a PDG is commonly used for software testing

purposes as well as developing code optimization algorithms.

The Control Flow Graph (CFG) is used for encoding control flow information [All7Q].
Within a CFG, the nodes represent statements and the edges represent transfer of

control between statements.

Construction of a PDG precludes extraction of control flow information, which can be

derived from a CFG.
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2.3 Model Transformations

Model transformations research spans research on propagating change across models on
the same level and on different levels of abstraction. Mapping elements from one model to
another is a crucial activity in this process, where entities affected by change in one model
reflect the change on entities of other models. The mappings are also a basic tool for MDA
model-based development [KWBO03]. Techniques for the mapping description identify the
elements of the source model that are mapped and the destination model that correspond
to the source elements, along with conditions that must be fulfilled to apply this type of
transformation. In current research, the mapping process is put in practice in several different

ways including [MESQ2]:

1. Script Languages — Certain UML tools include imperative script languages with meta-
model navigation facilities similar to Object Constraint Language (OCL) [WK98] navi-
gation expressions. Such languages, which serve as support to implement mapping

scripts, are flexible but suffer from the deficiency of tool dependence.

2. XML and XMI-Based Mapping — Certain tools provide support for deriving XML and
XMl files. These files include the metadata of UML models, and are used to facilitate
mapping. The mapping is independent of the UML tool but is dependent on the specific

transformation technique supported by the tool that is used for file creation.

3. MOF Transformation Facilities — There are tools that include MOF transformation fa-
cilities based on rules. These rules enable identification of the elements in the source
model to which the rule applies, and the destination elements that can be generated

with the rule.
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When discussing model transformations, two main concepts are relevant: the modelling
languages used for source and destination modelling, and the mapping between modelling
languages [IK06]. MDA addresses these aspects particularly using UML extensions where
the matching UML transformations can be used for the following purposes [MES02]:

1. UML Model Transformation and Refinement — MDA proposes the refinement and
transformation of models as a basic technique to extend or specialize a model. To
avoid platform dependencies in models, Platform Independent Models (PIMs) can be
transformed into Platform Specific Models (PSMs) to introduce platform specific con-
cepts, where some concepts are automatically introduced in the generated model and
others are updated manually. Intra-level model refinements — PSMs to PSMs and
PIMs to PIMs — enable improvements of models in the same modelling language

space.

2. UML Model Evaluation — UML standards that address UML extensions and facilities
for the transformation of UML extended models into other types of modelling tech-

nigues.

3. Implementation Generation — Code generators that develop platform specific imple-
mentations can be used to implement the PSM. These generators translate UML model
into a selected programming language and middleware constructors (e.g., Java and

CORBA interfaces along with Enterprise Java Beans (EJB) component descriptors).

2.4 Grammar-Based Model Transformations

The research related to grammar-based model transformations is divided into the following

categories: model transformation taxonomy, coordination theory, metamodels as grammars,
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and model transformation management.

2.4.1 Model Transformation Taxonomy

A classification of model transformation approaches is provided by Czarnecki and Helsen in
CHO3]. Following this classification, each transformation rule consists of two distinct parts:
a left-hand side (LHS), which refers to the source model, and a right-hand side (RHS), which

refers to the target model. To create both the LHS and RHS, one can use a combination of

1. patterns, such as string, term, and graph patterns;
2. logic, such as computations and constraints on model elements; and

3. variables, which hold model elements of source, target, or some intermediary model.

We also follow a taxonomy of model transformations provided in [MCGO05] that classifies

transformations as

1. endogenous, if they transform models in the same language, or exogenous, if they

transform models between different languages; and

2. horizontal, if the transformed models are at the same, or vertical, if the transformed

models are at different levels of abstraction.

In this thesis, we view transformations as components of the model synchronization
framework. Our focus is on effects of exogenous, vertical transformations that we repre-

sent in pattern-like format using attributed context-free grammars.
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2.4.2 Coordination Theory

Our interpretation of the problem of synchronizing heterogenous entities is related to Coordi-
nation Theory originally published by Malone . In this work, coordination is defined as
the act of managing interdependencies (generally viewed as constraints) between activities

performed to achieve a goal.

We adopt this theory to define model synchronization as the process of managing con-

straints among software artifacts, which are based on established model interdependencies.

2.4.3 Metamodels as Grammars

The idea of representing software models as context-free grammars was previously de-
scribed by Metayer [Met96], where software architecture styles are formalized as n-ary rela-
tions and represented through context-free grammars by identifying a role as unary relation
and a link between entities as a binary relation. The representation of types as relations,
even though plausible for architectural styles, when extended to more specific metamodels
or domain models does not address the problem of ambiguity in the resulting formalisms.
Alanen and Porres have derived a method for interpreting MOF metamodels directly
as Extended Backus-Naur Form (EBNF) grammars, and have also identified an inadequacy
of EBNF to handle attributed edges, a crucial feature of many object-oriented models (e.g.,

attributed and directed associations between classes).

We adopt Metayer’s view of models as n-ary relations, but we interpret a MOF-compliant
domain model uniquely as tuples of types, relations, connectors, and attributes. From the
tuples, we generate a context-free grammar that is capable of handling attributed edges, and

hence, is capable of representing specialized associations such as aggregation, composi-
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tion, and generalization.

2.4.4 Model Transformation Management

Akehurst attends to the problem of model translation by utilizing a combination of
UML and OCL to specify transformation relations between two object-oriented models. A
similar technique is proposed by Milicev [Mil02], which utilizes extended UML object dia-
grams to specify translation between source and target metamodels. The Fujaba approach
is based on an extended-through-action stereotypes combination of UML activity and
collaboration diagrams as story diagrams for the specification of model transfor-

mations.

In [Tah04], Tahvildari focuses on legacy system re-engineering. In the proposed ap-
proach, the evolution is driven by both functional and non-functional software requirements.
To represent software qualities and software transformations that may affect them, the NFR
framework is used [CNYMOO]. A soft-goal interdependency graph (SIG) is used to model
software architecture design, where the leaves of the SIG are design decisions that posi-

tively (++) or negatively (—) affect the soft-goals above them.

We also base our approach on adoptable UML/OCL representation for models. However,
we use context-free grammars as abstractions of models to create a generic approach that
can systematically be adopted for translation of any two related MOF-compliant software

models.
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2.5 Model Dependency Extraction

The research related to dependency extraction is divided into the following categories: soft-

ware reuse, hierarchical data management, and program flow analysis.

2.5.1 Software Reuse

In the approaches that focus on software reuse, Spanoudakis and Constantopoulos
measure similarity through a distance metric in order to evaluate the reuse potential of soft-
ware artifacts. Engels et al. discuss the transformations between Unified Model-
ing Language (UML) Class Diagrams and UML Collaboration Diagrams and Java
source code. The approach considers the structural and behavioral mappings using trans-
formation patterns. The patterns used are not trivial to extract and the pattern repository
needs to be updated as new transformations are introduced. The approach in this paper
uses formal concept analysis to establish the mappings at the level of model elements. For
objects that belong to more than one concept, conflict resolution is performed using a simi-

larity metric, represented for instance as a sum of weighted scores.

2.5.2 Program Flow Analysis

In [Sev87], Seviora describes the use of program flow analysis and understanding in knowledge-
based debugging systems. Two different program understanding approaches are recog-
nized. In the code-driven (bottom-up) approach, symbolic evaluation and recognition of
standard programming constructs are used to form an abstract representation of the program
and its individual parts. In the problem-driven (top-down) approach, using the existing pro-

gram specification the structure of the program is derived and refined until it can be verified
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against the code. Tilley et al. in follow this categorization of program understanding,
and also identify iterative hypothesis refinement and hybrid approaches (i.e., combinations
of top down and bottom up) as two additional categories. They also view reverse engineering
and program analysis in a canonical fashion as a three-step approach: (1) modelling, where
domain-specific models of the application are constructed; (2) extraction, where data is gath-
ered from the subject system using appropriate extraction techniques; and (3) abstraction,
where abstract representations are created that facilitate understanding and exploration of

the considered information structures.

In the research published by Rich and Wills, subgraphs are used to recognize program
design [RW90]. In their approach, several categories of problems related to establishing
model dependencies are recognized. These include non-contiguousness — adjacent ele-
ments from one flow may be separated in another related flow, implementation variation —
the same design under differing contexts may be represented by different implementations,
overlapping implementations — two or more implementations may overlap in implemented
functionality, and unrecognizable implementations — no relevant semantic information can
be extracted from an information flow. This view is extended through our research by con-
sidering challenges related to: n-ary relations — dependencies are not only one-to-one or
one-to-many, but also many-to-many mappings of model elements, partial dependencies —
only parts of model elements are related, and non-applicable dependencies — an element
from one model is not directly mapped to any element in a related model. These challenges

are addressed through the following:

e Non-contiguousness, overlapping implementations and partial dependencies are ad-
dressed through mappings of individual model elements instead of flow patterns.

e Implementation variation is addressed through mappings of interfaces and recognition
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of differing contexts for each mapping.

e N-ary relations are addressed through definition of model dependencies as tuples of

model elements.

e Unrecognizable implementations and non-applicable dependencies are addressed through

inclusion of user feedback.

In [RMJO6], Rayside et al. introduce an approach to program flow analysis where object

ownership is used to cluster related objects. The key aspect of this approach is control,

where one object (x) is said to own another object (y) if x is an immediate dominator of

y (i.e., the dominator relationship implies that every path from the root node to y passes

through x) in the corresponding program control graph.

2.5.3 Model Management

In the research area of hierarchical data management, an approach by Faid et al. [FMG99

uses formal concept analysis to discover concepts and rules based on structured complex

objects. Gianolli and Mylopoulos [RGMO1] perform semantic mapping of XML data stores

using a common DTD schema. In this paper, the semantics of hierarchical data structures

are mapped using intermediate models. However, the relations among individual model

elements are also inferred based on the mappings of related attributes.

In [SMEOQ8, ISMEQ9], Salay, Mylopoulos and Easterbrook propose a framework in which

formally defined model relationships are used to express relationships between models at

a high-level of abstraction by constructing a macromodel while maintaining comprehension

and consistency during evolution. The approach is limited in that it works with models within

a collection only.
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In view consistency management, Sabetzadeh and Easterbrook address the
problem of incompleteness and inconsistency in graph-based view integration towards gain-
ing a unified perspective in conceptual modeling. The authors present a flexible and math-
ematically rigorous framework based on structure-preserving maps and a general algorithm
for merging views systematically and traceably. However, identifying potential interconnec-
tions between views is still a manual process, the merges do not function on a semantic axis,

and hierarchical structures are not supported.

2.6 Model Synchronization

Within the context of model synchronization related research, we identify three categories:
triple graph grammar (TGG) approaches, approaches based on other model transformation

languages, and software co-evolution approaches.

2.6.1 TGG-based Model Synchronization

In TGG-based model synchronization, triple graph grammar rules [SKO8] are used to estab-
lish relations between source and target models. Each rule consists of the source pattern,

the correspondence nodes, and the target pattern. The synchronization is accomplished by

e Matching the source pattern in the source instance model,

e Using the correspondence nodes to check applicable constraints and to identify the

target pattern, and

e Applying the target pattern to the target instance model, to either generate missing

model elements or identify the ones that need to be altered or removed.
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The emphasis of related research in this area is on improving the run-time efficiency of
the application of the TGG rules. Many of the related approaches assume that the rules
have already been established, and focus on exploring various synchronization algorithms
[KLKS10].

In [GWO06, IGWQ09], Giese and Wagner have introduced an approach for incremental
model synchronization using triple graph grammars. The use of TGGs allows for the for-
mal and bidirectional synchronization of larger models as compared to the traditional batch
approaches. They use additional links between correspondence nodes to interpret the cor-
respondence model as a directed acyclic graph. Their approach does not declaratively ad-
dress node deletions. Instead, in their implementation, for unsatisfied transformation rules
the related correspondence node and all created elements are deleted. The drawback to
the approach seems to be that the expressiveness of the grammar variant does not include
non-local properties, and as such, operational or hybrid transformation languages may be

more expressive.

Giese and Hildebrandtin present an improvement of batch processing of changes
for multiple updates. The original incremental algorithm’s performance is severely compro-
mised if many modifications are made because their algorithm synchronizes changes in the
order that they occur. Their improvement to the incremental algorithm accelerates synchro-
nization for a large number of changes in the models, and is comparable to the speed of the
batch algorithm. This is possible because their algorithm starts the synchronization at the
modified correspondence nodes by sorting the modifications by their depth and synchroniz-

ing at the correspondence node that is closest to the root.

In [GKQ7|, IGK10], Greenyer and Kindler compare and contrast the philosophy and the
concepts of the declarative languages of QVT and TGG, to enable tool-supported TGG-

based synchronization. They conclude that relational QVT-Core mappings can be converted
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to TGG rules and executed by a TGG transformation engine. They propose an initial ap-
proach for mapping QVT-Relations to TGGs. They also use the semantic foundation of TGG
to better understand the semantic gaps of QVT. We base our mapping of TGG rules to QVT

on this approach.

Dang and Gogolla in propose a language for the integration of TGG rules and
OCL based on QVT using their USE tool. The approach is based on declarative OCL pre-
and post-conditions for operation contracts, and imperative command sequences for opera-
tional realization. This integration is demonstrated by discussing examples supporting model
co-evolution and consistency. The model does not handle large-scale syntax and semantics

translations, and cannot definitively comment on the correctness of correspondence models.

2.6.2 Synchronization based on Model Transformation Langu ages

Other approaches to model synchronization that do not utilize TGG instead employ other
model transformation languages, such as Atlas Transformation Language (ATL) [JKO5], to
identify and synchronize corresponding model properties. The approaches in this area focus
on refining the transformation languages to more efficiently suit the needs of the model
synchronization (e.g., creation of synchronization rules from model transformation rules),

and where possible enable bidirectional synchronization.

Xiong, Liu, et al. in discuss an automatic approach, that satisfies stability,
preservation and composability properties, to synchronizing models based on a unidirec-
tional transformation between the related metamodels in the Atlas Transformation Language
(ATL). While the algorithm produces clear synchronization semantics, the approach seems
rather limited in that it is based on the prerequisite that model transformations from one

model to another be given. The proposed algorithm is a promising start, but is also limited in
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that reflectable insertions on the target side cannot be handled.

Diskin in presents an algebraic framework for specification and design of model
synchronization tools based on the algebraic operations being diagrammatic and resulting
in compositions of tiles. Two approaches — abstract (or black box) and concrete (or white
box) — provide a formal notation for synchronization. One of the obvious limitations is that
the approach considers very simple constraints of single multiplicities, and does not handle

multi-layer mappings.

Eramo, Malavolta et al, in [Mal10], discuss that description of any software architecture
requires multiple Architecture Description Languages (ADL), which results in the need to
maintain consistency in the multiple notations. The authors propose a generic convergent
and scalable change propagation approach between multiple architectural languages. The
approach is implemented within Eclipse, and supports model mappings by using bidirectional
transformations. The authors are working towards a learning approach that deduces infor-
mation to be used for further mappings from user choices, and that is based in collaborative

modeling.

Mens in postulates the representation of models as graphs and model transfor-
mations as graph transformations for model refactoring. This is implemented in the Attributed
Graph Grammar System (AGG) using critical pair analysis and Fujaba using round-
trip engineering for a simplified version of UML class diagrams and statecharts. Improve-
ments to this work include the expressiveness of the approach enhanced by a mix of graph
and tree representations, the ability to compose more complex and composite refactorings,

and the ability to maintain consistency between models as they evolve.

In another publication [Men], Mens addresses the issue of working with models that

have design defects in the context of graph-transformation based software evolution. A tool
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developed as a front-end of the AGG Engine is proposed, and is based on properties such
as critical pair analysis and reasoning about sequential dependencies. The approach does
not address the termination of the iterative and interactive defect introduction in the models,
or the order of resolving the defects, though it does comment on initial thoughts about both

issues.

2.6.3 Synchronization through Software Co-Evolution

Finally, there are related approaches that do not focus on model transformations as a change
apparatus, but instead focus on other aspects of co-evolution, such as interpreting intention
of change from one abstraction layer to another [Kén10], consideration of aspects in the
context of co-evolution [DT10], domain-specific synchronization using a custom-built syn-

chronization environment [ROV10], and design patterns as facilitation of change [LLM09].

More specifically, Konemann in presents a discussion on capturing user’s inten-
tion of the atomic changes made to a model, specifically, MOF-compliant ones. The author
presents a framework for producing the semantic aspect of the atomic changes (i.e., capture
the user’s intention in making these changes). The goal is to abstract changes which may
be applicable to other models as well, and is achieved by identifying individual and flexible
matching strategies defined for each semantic change through two stages: (1) an automated
initial matching; and (2) an interactive refinement step that is optional. One obvious draw-
back is that this approach is not automated. Also, of the refactorings applied, less than 50%
were only applicable if the models are similar to the sample models, and about 65% of the

design patterns applied had to be adjusted by the user after application.

Dahanayake and Thalheim |[DT10] discuss multi-model information systems modeling

from the point of view of ‘facets’ and ‘aspects’ where model synchronization is necessary for
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creating harmonized and coherent models needed for specifying these facets and aspects.
The authors introduce the theory of model suites as a set of models with explicit associ-
ations among the models, which include tracers and explicit controllers for coherence and
application schemata for harmonization during evolution. The experimentation is based in
MetaCASE to generate toolkits. The limitation of the approach seems to be that it is applica-
ble only to highly structured models, such as UML diagrams, extended ER models, and XML

models.

In , Rath, Okros and Varro discuss the issue of the limitation of restrictions im-
posed on traceability links between abstract concrete syntax by most Domain-Specific Mod-
elling (DSM) frameworks and propose a syntax-driven domain-specific model which gen-
erates complex mappings under a novel DSM environment. Also, they demonstrate bidi-
rectional synchronization. While the approach is highly scalable, the approach is driven by

syntax only.

In [LLMOQ9], Levendovszky, Lengyel and Mészaros propose the possibility of design pat-
terns as efficient solutions for recurring issues with the rapid development of domain-specific
modeling languages. On the basis of constructs that weaken instantiation rules, the authors
discuss the appropriateness and sufficiency of these rules to express patterns. The theory

does not handle non-relaxable metamodels for OCL-like constraints.

2.7 Chapter Summary

In this chapter we have presented topics in software models, model transformations, grammar-
based model transformations, model dependency extraction, and model synchronization, as

related to our research. In the next chapter, we introduce a formal notation for the repre-
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sentation of domain models and model instances. This notation is based on the previously

conducted research discussed in this chapter.
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Chapter 3

Model Synchronization Notation

The problems of language here are really serious. We wish to speak in some way
about the structure of the atoms. But we cannot speak about atoms in ordinary

language.

— Werner Heisenberg

3.1 Chapter Overview

In this chapter, we introduce formal notation for the representation of domain models, model
instances, and model stereotypes that will be used throughout the thesis to form the theoret-

ical basis for the proposed model synchronization framework (NMSYNTRA).

Besides conforming to a generic MOF metamodel, we consider that each software model

also relates to an application domain context (e.g., operating systems, web services). In this
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respect, we are addressing the problems of model synchronization by focusing on domain-
specific contexts. Each such domain context consists of domain-specific types and relations
that are associated with corresponding attributes and values. A formally defined abstraction
of such a domain context is referred to as, a domain model. A domain model may be available
as part of the design documentation or may need to be extracted using domain analysis
techniques such as the Feature-Oriented Domain Analysis (FODA) technique [Kea97]. In
addition to domain types and relations, a domain model may also contain additional meta
information such as ontologies and feature maps [CK06]. Based on formally defined domain
models, concrete software model instances can be represented using these concepts that
are specific to a domain context. With model elements represented in terms of domain
types and relations and further contextualized with the meta information, the models become
more lucid and the ensuing evolution and maintenance activities are simplified. Examples
of domain models that conform to specific contexts are domain models that represent SOA
e-commerce systems, CORBA banking applications, and e-procurement web services, to

name a few.

In the proposed approach, we define a formal context for domain-specific model synchro-
nization by representing a domain model as a semantically-annotated context-free grammar
that we refer to as, domain-model grammar. In this respect, context-free grammars pro-
vide a flexible and extensible way of generating model instances in a formal manner and
consequently verifying the syntactic and semantic validity of these instances with respect
to their corresponding domain model or metadata constraints. More specifically, domain
types and relations are represented as grammar productions while additional semantic con-
tent is denoted by “semantic heads” (constraints specifying semantic properties) attached to
each of the production rules [SNPM90]. Dependencies between models that belong to dif-

ferent domains are viewed as associations between corresponding grammar rules and are

38



formally represented through an association grammar. The semantic heads and the associ-
ation grammar are derived from a synchronization relation, which is established in reference
to specific domain models. The synchronization relation specifies properties and constraints
that must hold for two models from the corresponding domains to be synchronized. Using
the association grammar, the source model can be used to automatically generate a ver-
sion of the target model that is synchronized with the source (i.e., to translate a model from
one domain to another). In this context, an analogy the to the synchronization of two mod-
els is the synchronization of two sentences in two different languages such as English and
French. When one sentence changes, the other needs to be changed as well in order to pre-
serve structural and semantic properties. These properties can be defined as associations

between corresponding grammars.

The goal is to represent models as “sentences” that comply to corresponding grammars,
and then view model synchronization as grammar-based language translation, analogous to
translation of sentences between natural languages (e.g., translation between French and

English).

3.2 Motivation: Using Model Dependencies in

Grammar-Based Model Synchronization

Our research in the area of model synchronization uncovered the following research issues

and challenges:

1. Resolving model inconsistency through traceability consists of several types of manual

or, at best, semi-automated activities that include:
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(a) identifying and maintaining dependency relations among models and their ele-

ments,
(b) tracing model transformations as they are performed,
(c) mapping transformations from one domain context to another, and
(d) ensuring that the source and target models are finally synchronized.

2. Automating the identification of model dependency relations requires the creation of

concept mapping rules.

3. Mapping of individual transformations across domain boundaries requires complex

syntax and semantic mappings and validation.

4. Validating the synchronization between the considered models requires the definition

of hierarchical synchronization relations.

5. Enabling pragmatic model synchronization requires significant manual overhead and

creates feasibility and scalability detriments.

To resolve some of these challenges and make our approach to model synchroniza-
tion more practical, we have opted to make use of context-free grammars for automated
generation of synchronized target models from source models [ASU86|]. These grammars
can either be used directly or can be used to identify inconsistencies in existing target ab-
stractions. In this respect, by making use of context-free grammars, we aim to address the

following issues:

1. Generality and Completeness — unlike graph transformation-based approaches such

as [Fuj05], we intend on providing a generic mechanism for expressing model syntax
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formally as grammars. More specifically, we define an algorithm for mapping domain
models to domain model grammars, and provide automated creation of grammar pro-

ductions in contrast to graph transformation rules that are in general manually created.

. Domain-Specific Model Generation and Model Synchronization — by using domain
contexts as the basis for the encompassing grammars, we aim to interpret each model
in terms of domain-specific concepts therefore allowing creation of more precise de-
pendency relations and in turn enabling automated generation of desired models and

domain-specific model synchronization.

. Semantic Consistency and Relations — given that each of the grammar productions
is associated with a corresponding semantic head, which provides information with
respect to constraints and conditions that dictate whether a rule is applicable or not,
we are providing a method for encoding such semantic head information in the form
of metadata semantic properties that can be used to define the model synchronization
context. In this respect, establishing whether a synchronization rule is applicable in
a given context is performed not only by matching the left-hand side of the rule, but
also, by evaluating whether the semantic head metadata and constraints, hold in that

context.

. Extensible and Adaptable Formalism — by choosing attributed context-free grammars
as the conceptual basis, the proposed framework can be extended with additional
properties encoded as attributes for the chosen production rules. Moreover, by select-
ing recognized MOF and UML metamodels as the base, we also address adaptability

in existing tools such as the Eclipse environment .

41



3.3 Domain Models as Grammars

The conceptual view of MOF-compliant models that is taken in this thesis is that of sentences
generated through the corresponding grammar. In this respect, we interpret domain models
as context-free grammars. Using the graph metamodel for synchronization (GMS), which we
have presented in and illustrated in Figure[3.], we view domain models as collections
of attributed nodes (domain types) and attributed directed edges (ordered domain relations),
which represent types for instantiated concrete models. The domain model elements are
then viewed as nonterminals, and the concrete model elements are viewed as terminals in

the domain model grammar (DMG).

GraphDependency
-constraint
-explicitMappingTable | . 2
GraphElement GraphAttribute
-GUID -label
-label -type
-type 1 * |-value
source I
GraphEdge GraphNode
target

Figure 3.1: Graph Metamodel for Synchronization (GMS)

As we stated above, domain models can be represented as context-free grammars that
allow for the generation of concrete model instances conforming to the corresponding do-

main model, that is, can be viewed as “sentences” belonging to the language generated by
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the corresponding grammar. However, in order to formally define domain models as context-
free grammars, we first have to formally define domain model elements. In this respect, we
consider that domain models are composed of domain model elements, which are defined

as follows.

As stated in Chapter 2, we adopt Metayer’s view [Met96] of models as n-ary relations,
but we propose to denote a MOF-compliant domain model as a collection of tuples of types,
relations (associations between types), connectors (edges of association relations), and at-

tributes.

Domain Model Elements : A domain model is defined as a tuple (DT, DR, DC,

DA, TNam631 RNamesa CNam631 ANamesa ValueS).

e Domain Types DT := { (<enum>, t;, {a;}, {r4}) |

<enum> is the enumeration of tuples as an ordered sequence of types,

type name t; € Tyames,

type attributes a; € DA, and

type relations r, € DR}.

e Domain Relations DR := {(<enum>, r;, {a;}, {a.'}, {c.n}) |

<enum> is the enumeration of tuples as an ordered sequence of rela-

tions,

relation name r; € Ryamess

relation attributes a; € DA,

relation attributes a,' for the relation type t, € DT, and

relation connectors c,, € DC}.
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e Domain Connectors DC := { (<enum>, c;, {a,}, {t:}) |
— <enum> is the enumeration of tuples as an ordered sequence of con-
nectors,
— connector name ¢; € Cyumes:
— connector attributes a; € DA, and

— domain type names t;, € T names)-
e Domain Attributes DA := {(<enum>, a;, {v,}) |

— <enum> is the enumeration of tuples as an ordered sequence of at-
tributes,
— attribute name a; € Axgmes, and

— attribute values v; € Values with v; as the initial value if defined }.

Unique type names T yames:

Relation names Ry gmes.

Connector names Cxgmes,

Attribute names Angmes, and

Values as an alphabet of domain values.

Object Model Elements : An object model that complies with a specified domain
model is defined as a tuple (DO, DR, DC, DA, Onames: T Namess Rnamess CNamess
Anames, Values), where
e Domain Objects DO := { (<enum>, o;:t;, {a;}, {rs}) |
— <enum> is the enumeration of tuples as an ordered sequence of ob-

jects,
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object name 0; € Ongmes»

type name t; € Tyames,

type attributes a; € DA, and

type relations r, € DR}.

e Unique object names Oy umes-

The other 8|ementS, DR; DC; DA1 TNamESa RNamESa CNGMES! ANameSa and Values,
are defined in the same manner as discussed above for the domain model ele-

ments definition.

To represent the elements of a given domain model using this definition, a typical ap-

proach would be to:

1. Derive the elements of T ygmes» RNames: CNames: aNd Anames Dased on the UML meta-

model and their usage context;

2. Create in the following order tuples of attributes DA with consideration for uncon-
strained attributes, tuples of distinct connectors DC, tuples of distinct relations DR,

and tuples of distinct types DT; and

3. Eliminate redundant tuples.

To illustrate the DM formalization, we make use of the domain model example from Figure

[3.2and formally define it according to the domain model elements definition.

DM = (DT, DR, DC’ DA’ TNamesa RNamESa CNamESa ANamesa VaIUES),
— TNnames ={T1, T2, T3, T4, T5},
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Figure 3.2: Domain Model Example

— Ryames= {Association, Generalization},
— CpNames = {AssociationEnd, GeneralizationEnd},

— Anames = {Name, tal, ta2, ta3, ta4, ta5, ta6, ral, ra2, Aggregation, IsNavigable,

Visibility, Multiplicity, Role, Constraint}, and

Values = an alphabet of domain values.

DT ={(<t;>, T1, {a;, ag, as}, {r1, r4}), (<>, T2, {ay, a4, as}, {r1, r2}), (<tz3>, T3, {ai, ag},
{ra, 13}), (<>, T4, {ay, ag}, {rs, r4}), (<ts>, T5, {ay, as, ag}, 0)}

DR = {(<r;>, Association, {a;}, {as, aq}, {c1, C2}), (<ry,>, Association, {a}, 0, {cs, c4}),

(<rs>, Association, {a;}, 0, {cs, cs}), (<r,>, Generalization, {a;}, 0, {c7, cs})}

DC ={(<c;>, AssociationEnd, {a;, a,o, a1, a2, a3}, {T1}), (<co>, AssociationEnd, {a;,
aio, a1, a4, a13}, {T2}), (<c3>, AssociationEnd, {a;, aig, as, aig, ais}, {T2}), (<Cs>,

AssociationEnd, { a;, ajo, a1, ais, ais}, {T3}), (<c5>, AssociationEnd, {a;, ag, a1,
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a6, a13}, {T1}), (<c¢>, AssociationEnd, {a;, a;7, a1, ag, ais}, {13}), (<c;>, General-

izationEnd, {a;, a;s, a9}, {T3}), (<cs>, GeneralizationEnd, {a, asg, aio}, {T1})}

DA = {(<a;>, Name, Values), (<ay>, tal, Values), (<az>, ta2, Values), (<a,>, ta3, Val-
ues), (<as>, ta4, Values), (<ag>, tab, Values), (<a;>, ta6, Values), (<ag>, ral, Val-
ues), (<ag>, ra2, Values), (<a;o>, Aggregation, none), (<a;;>, IsNavigable, false),
(<aje>, Multiplicity, 1), (<a;3>, Visibility, public), (<a;4>, Multiplicity, *) (<a5>, Is-
Navigable, true), (<a;s>, Multiplicity, none), (<a;7>, Aggregation, shared), (<a;s>,

Role, child), (<ai9>, Constraint, Values), (<as,>, Role, parent)}

As demonstrated through the previous example, the defined formalization is based on
cross-indexed tuples, where individual elements are uniquely identified through combina-
tions of tuple elements. For example, relations are uniquely identified through the combina-
tion of the relation name, relation attributes tuples, relation attribute tuples for the relation
type, and relation connector tuples. Constrained attributes are identified through the com-
bination of the attribute name and defined value while unconstrained attributes, which are
defined at the concrete model level, are identified through the combination of the attribute
name and Values set. Therefore, it follows that the defined formalism is a nonambiguous

representation of MOF-compliant domain models.

We have chosen this representation of domain models to allow for easier storage in a
relational or object-relational database, and querying using database-manipulation language
such as SQL. This representation is also comparable to eCore, but it is a more abstract

representation than eCore, and it can be processed outside of EMF.

The proposed formalism can also be used to represent model instances. As shown in

Figure [3.3, object instance 03 of type T3 was created and associated with object instance
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Figure 3.3: Object Model Example

02 of type T2. Furthermore, object 04 of type T4 was created and associated with the object

02 through directed association, and object 03 through aggregation association.

OM = (DO, DR! DC! DA, ONamesa TNam631 RNamesa CNamesa ANamesa ValueS),

- ONames = {02, 03, 04}1
— Ryames= {Association, Generalization},
— CxNames = {AssociationEnd, GeneralizationEnd},

— Anames = {Name, tal, ta2, ta3, ta4, ta5, ta6, ral, ra2, Aggregation, IsNavigable,

Visibility, Multiplicity, Role, Constraint}, and

Values = an alphabet of domain values.

DO = {(<01>1 03T31 {alv a2! a3}l {rll r4})l (<02>l 02T21 {all a4l a5}1 {rlv r2})1 (<O3>1 04T41

{a1, ag}, {ro, r3})}

DR = {(<r;>, Association, {a;}, {as, ag}, {c1, C3}), (<r>, Association, {a;}, 0, {c3, c4}),

(<rs>, Association, {a}, 0, {cs, cs}), (<r,>, Generalization, {a;}, 0, {c7, cs})}
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DC ={(<c;>, AssociationEnd, {a;, a,o, a1, a2, a3}, {T1}), (<co>, AssociationEnd, {a;,
aio, a1, a4, 13}, {T2}), (<c3>, AssociationEnd, {a;, a0, ais, a6, a1z}, {T2}), (<cs>,
AssociationEnd, { a;, aig, a1, aig, aig}, {T3}), (<cs5>, AssociationeEnd, {a;, ag, a1,
a6, a13}, {T1}), (<c¢>, AssociationEnd, {a;, a;7, a1, ag, ais}, {13}), (<c;>, General-

izationEnd, {a;, as, a9}, {T3}), (<cs>, GeneralizationEnd, {a;, asg, a9}, {T1})}

DA = {(<a;>, Name, Values), (<ay>, tal, Values), (<az>, ta2, Values), (<a,>, ta3, Val-
ues), (<as>, ta4, Values), (<ag>, tab, Values), (<a;>, ta6, Values), (<ag>, ral, Val-
ues), (<ag>, ra2, Values), (<a;o>, Aggregation, none), (<a;;>, IsNavigable, false),
(<a2>, Multiplicity, 1), (<ay3>, Visibility, public), (<a;4>, Multiplicity, *) (<ai5>, Is-
Navigable, true), (<a;s>, Multiplicity, none), (<a;7>, Aggregation, shared), (<a;s>,

Role, child), (<a;9>, Constraint, Values), (<as,>, Role, parent)}

Based on this hierarchical definition of a DM, it is now possible to more directly represent
DM types and relations through a context-free grammar that uses grammar productions to
represent each of the domain model elements. In the following section, we discuss how we

represent a domain model and its elements as a context-free grammar.

3.4 Creating Domain-Model Grammars

In this section, we address the process of creating a domain-model grammar by propos-
ing the following DM2DMG algorithm. We also prove selected properties of domain-model
grammars that are necessary for their usage in the context of domain-specific model syn-

chronization.

Domain Model Grammar : A domain model grammar (DMG) for a domain model

DM = (DT, DR; DC, DA! TNamESa RNamESa CNamesa ANamesa Values) is a tuple (NT’
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T, P, AX), where a set of nonterminals NT := NT7 UNTr U NTs U NT4. NTp =
{F(TNames) | FH is a mapping of strings to nonterminals to generate enumeration
of nonterminals for type names}, NTr = {F(Rnames)} NTo = {F(Cnames)}, and
NT 4 = {F(Anames)}- A setof terminals T :={t | t € Values}, a finite set of production
rules P := {(LHS, RHS) | where LHS € NT, RHS € (NT U T)*} inferred from DT,

DR, DC, and DA, and AX is the axiom that represents the origin for the derivation.

3.4.1 An Algorithm for Representing Domain Models as Domain

Model Grammars

Algorithm DM2DMG Representing DM as DMG

Input:

1. Domain Model DM

Output:

1. Domain Model Grammar DMG

Steps:

IF is a lexicographical “identity” mapping F:T—NT, that keeps the same lexicographical notation for all the
elements of the original field to the mapped elements of the target field. For instance, F(a:T) = a:NT, where a

in the origin is considered to be a type while in the target is considered to be a nonterminal.
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Step 1. Let NTr = {F(Tnames) | F is @ mapping of strings to non-
terminals} be enumerated set of nonterminals for type names, NTp
= {F(Ryames)} b€ enumerated set of nonterminals for relation names,
NTc = {F(Cnames)} be enumerated set of nonterminals for connector
names, NT4 = {F(Anames)} D€ enumerated set of nonterminals for at-
tribute names.
Step 2. Let NT =NT7 UNTr UNTo UNT 4, let T be a set of terminals
defined as elements from Values, and let AX be the starting symbol for
derivation.
Step 3. Create the start rule by placing the start symbol AX on the LHS
and iterate through the elements of nt; € NT7 and nr; € NTg to derive
the RHS by adding nt; and AX nt; and nr; and AX nr; as choices of the
start rule (e.g., AX — nty | nt; AX | nty | nty AX ... | nry | nry AX | nry |
nro AX...).
Step 4. Create type name production rules P by iterating through the
elements of NT:

Step 4.1 For each nt; € NTp, with the corresponding domain-model
tuple (<enum>, t;, {a;}, {rx}) € DT where nt; = F(t;), create a production
rule p; € Py with nt; on the LHS and elements from {a;} as a string on

the RHS (e.g., nt; — a; ... a,).
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Step 5. Create relation name production rules Py by iterating through
the elements of NTg:

Step 5.1 For each nr; € NTg, with the corresponding domain-model
tuple (<enum>, r;, {a;}, {a;'}, {cn}) € DR where nr; = F(r;), create a
production rule p; € Pr with nr; on the LHS and attributes from {a;}
as the starting string on the RHS followed by the attributes from {a'},
attributes of the type relation t;, and connector names c,, (e.g., nr; —
ar ...yl yaler ... c).

Step 6. Create connector name rules P¢ by iterating through the ele-
ments of NT¢:

Step 6.1 For each nc; € NT¢, with the corresponding domain-model
tuple (<enum>, c¢;, {a;}, {tx}) € DC where nc; = F(c;), create a produc-
tion rule p; € P¢ with nc; on the LHS and choices on the RHS for each
t € {t;} where each choice is a string of attributes from {a;} followed by
the type name nonterminal, nty = F(t) (e.9., nc; — a; ... a, ntyy | ... |
ap ...ap Nntyy,).

Step 7. Create attribute name rules P4 by iterating through the ele-
ments of NT 4:

Step 7.1 For each na; € NT 4, with the corresponding domain-model
tuple (<enum>, a;, {v,}) € DA where na; = F(a;), create a production
rule p; € P4 with na; on the LHS and lexicographically-sorted attribute
values from {v;} as choices on the RHS (e.g., na; — v | v ...).

Step 8. Let P = {ordered set of production rules from Py, Pr, Pc, P},
that is, the rules appear always in the same order by first listing the rules
Pr then PR, P, P 4. Let the resulting grammar DMG = (NT, T, P, AX).
Step 9. Output DMG and terminate.
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3.4.2 Representing Standardized Modeling Infrastructure

To enable representation of entire domain models, we first define the representation of
atomic domain model relations as context-free grammar rules. The atomic or single re-
lations considered are the association (association), shareable aggregation (aggregation)
composite aggregation (composition) and generalization (inheritance). These relations are

illustrated in Figure[3.4las R;, Ry, R3, and Ry, respectively.

T * Association1 " T2
[R1]
+source +target
T3 Aggregation1 T4
[R:] e
T5 Composition1 T6
[Rs]
1 *
T7 Generalization1 T8
[R4] K

Figure 3.4: Domain Model Atomic Relations

Using a particular section of the UML metamodel as input [OMG10], a grammar required

to represent the elements and features of R; is as follows:

Step 1-2 :
NTr :={Class}, NTy := {Association, Generalization}, NT¢ := {AssociationEnd, Generalizatio-
nEnd}, NT 4 := {Name, Role, Type, Constraint, isNavigable, isComposite, isDerived, Multiplici-
tyElement, isOrdered, isUnique, lower, upper, Literalinteger, range, star, Visibility}, NT := NTp

UNTgr UNTc UNT4, T := {alphabet of valid UML element names}, AX := M.
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Step 3. :
p1 : M — Class | Class M | Association | Association M | Generalization | Generalization M
Step 4. :
p2 : Class — Name Constraint | Name:Type Constraint
Step 5. :
ps : Association — Name Constraint AssociationEnd AssociationEnd
ps4 : Generalization — Name Constraint GeneralizationEnd GeneralizationEnd
Step 6. :

ps : AssociationEnd — Role Constraint isNavigable isComposite isDerived MultiplicityElement

Visibility Member:Class
ps : GeneralizationEnd — Constraint General:Class | Constraint Specific:Class
Step 7. :

p7 : Name — T1 | T2 |T3|T4|T5|T6 | T7 | T8 | Associationl | Aggregationl | Composition1 |
Generalizationl | an element from the alphabet of other element names for the corresponding

Namespace
ps : Role — an element from the alphabet of element roles for the corresponding Namespace
py : Type — an element from the alphabet of element types for the corresponding Namespace
p1o : Constraint — an element from the alphabet of constraints for the corresponding Namespace
p11 : isNavigable — true | false

p12 : isComposite — true | false
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piz : isDerived — true | false

p14 : MultiplicityElement — isOrdered isUnique lower upper

pi5 : isOrdered — true | false

P16 : isUnique — true | false

p17 : lower — none | Literalinteger | range | star

p1s : upper {upper >= lower} — none | Literallnteger | range | star
p19 : Literalinteger — a constant Integer value

p2o : range — Literallnteger..Literalinteger

p21 : star — *

p22 : Visibility — public | protected | private | package

Step 8 :
P :={p1, p2, - .. p22} and DMG :={NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

We illustrate the validity of the grammar through derivation of individual relations as fol-

lows:

Association An association defines a semantic relationship between classes, and an in-
stance of an association is a set of tuples relating instances of the classes. R; demon-
strates an association between nodes T, and T,. Based on the derived grammar, a

derivation tree R; is illustrated in Figure 3.5
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Figure 3.5: A Derivation Tree for Ry
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Aggregation An aggregation is a specialized form of association that represents a whole/part
relationship. The end symbol as shown in R, of Figure 3.4l is attached to the whole
element (T;) and the other association ends (T,) are attached to its parts. A derivation

tree for R, is analog to the one shown for R;.

Composition A composition is a specialized form of aggregation, where the relation be-
tween the whole, indicated by the end symbol as shown in R3 of Figure [3.4, and its
parts is exclusive. Each part can only belong to one whole and the parts cannot exist

without the whole. A derivation tree for Rs is analog to the one shown for R;.

| o
Generalization

Ps

Name C i izati GeneralizationEnd

I P7 I P1o
Po
Generalization1  null /\ /\

C i lass @© i Specific:Class
I P10 2 I P10 P2

null
Name Constraint (ol Name Constraint

I pPr IPw I p7 IPw
T7 null Ts null

Figure 3.6: A Derivation Tree for R,

Generalization A generalization is a taxonomic relationship between a more general, indi-
cated by the end symbol as shown in R, of Figure [3.4] and a more specific element.
The more specific element is consistent with the more general element by having all of
its properties, members, and relationships, but it may contain additional attributes and

features. A derivation tree for R, is illustrated in Figure[3.6]
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3.4.3 lllustrative Example

To illustrate the DMG creation algorithm, we use the following application scenario, derived
from work by Miller [ABMMO7]. In this scenario, there are two related domain models as
shown in Figure 3.7l In the source domain model, each instance of “Person” type is related
through the “writes” relation to zero or more “Book” instances, and each “Book” instance is
related to one or more “Person” instances. Each “Book” instance is also related to zero or
more “Library” instances through the “heldAt” relation, and each “Library” instance is related
to one or more “Book” instances. In the target domain model, each instance of “Author” type

is related through the “hasBookAt” relation to zero or more “Library” instances, and each

“Library” instance is related to one or more “Author” instances.

Source Domain Model:

Person

-pname

1. writes

0..*

Target Domain Model:

Author

-aname

Book 1% peldat 9+ Library
-bname -libID
hasBookaAt 0- | _Library
-libID

Using the DM to DMG algorithm described above, the following domain model grammars

Figure 3.7: lllustrative Example Overview

for the source and target domain models are created.
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Source Domain Model Grammar

Step 1-2 :
NTr := {Person, Book, Library}, NTr := {writes, heldAt}, NTo := {Connector{, Connectors},
NT 4 := {pname, bname, libID, star}, NT := NT7 U NTr U NT¢ U NT4, T := {alphabet of valid

attribute values}, AX := M.
Step 3. :

p1 : M — Person | Person M | Book | Book M | Library | Library M | writes | writes M | heldAt |
heldAt M

Step 4. :
p2 : Person — pname
ps : Book — bname
ps : Library — libID
Step 5.
ps : writes — Connector; Connector,
ps : heldAt — Connector; Connector,
Step 6. :
p7 : Connector; — 1..star
ps : Connector, — O..star
Step 7. :

pg : pname — an element from the alphabet of person names for the corresponding Namespace
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pip : bname — an element from the alphabet of book names for the corresponding Namespace
pi1 : libID — an element from the alphabet of library IDs for the corresponding Namespace
pi2 : star — *

Step 8 :
P :={p1, p2, - .. pi2} and DMG :={NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

Target Domain Model Grammar

Step 1-2 :
NT7 := {Author, Library}, NTy := {hasBookAt}, NT¢ := {Connector;, Connectors}, NT4 :=
{aname, libID, star}, NT := NTr U NTr U NT¢o U NT4, T := {alphabet of valid attribute val-
ues}, AX :=M.

Step 3. :

p1 : M — Author | Author M | Library | Library M | hasBookAt | hasBookAt M
Step 4. :

p2 : Author — aname

ps : Library — libID
Step 5. :

ps4 : hasBookAt — Connector; Connectors

Step 6. :

60



Ps

Pe

. Connector; — 1..star

. Connectory — O..star

Step 7. :

p7

Ps

Po

: aname — an element from the alphabet of author names for the corresponding Namespace
. libID — an element from the alphabet of library IDs for the corresponding Namespace

D star — *

Step 8 :

P :={p1, P2, . .. Po} and DMG := {NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

3.4.4 Domain Model Instances

The described DMG formalism is intended to provide a set of grammar production rules that

can parse a specific domain model. To ensure that our notation is capable of parsing specific

model instances, that is models which are compliant with the corresponding domain models,

we introduce a specialized domain model grammar, DM G, that is capable of parsing specific

model instances.

Domain Model Grammar for Domain Model Instances DMG: For a domain
model DM := (DT, DR; DC; DA, TNamesa RNamesa CNamesa ANamesa Values) and
a set of domain objects DO, DMG is a tuple (NT, T, P, AX), where a set of

nonterminals NT := ONames:TNames U RNames ) CNames U ANam631 where ONames
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€ DO, a set of terminals T :={t | t € Values}, a finite set of production rules P :=
{(LHS, RHS) | where LHS € NT, RHS € (NT U T)*} inferred from DO, DT, DR,

DC, and DA, and AX is the axiom that represents the origin for the derivation.

To derive a DM G, one can make use of the algorithm from Section [3.4.7], with the excep-
tion that for Step 4, we create object production rules Py, by iterating through the elements
of NTo. For each nt; € NTp, with the corresponding tuple (<enum>, o; : t;, {a;}, {r;}) € DO
where nt; = F(0; : t;), create a production rule p; € P with nt; on the LHS and elements from

{a;} as a string on the RHS (e.g., nt; — a; ... a,).
To illustrate the change, we use the following generic example.
Step 1-2 :
NTo = {0:Class}, NTy := {Association, Generalization}, NT~ := {AssociationEnd, Generaliza-
tionEnd}, NT 4 := {Name, Role, Type, Constraint, isNavigable, isComposite, isDerived, Multi-

plicityElement, isOrdered, isUnique, lower, upper, Literallnteger, range, star, Visibility}, NT :=

NTo UNTRr UNTo U NT4, T := {alphabet of valid UML element names}, AX := M.
Step 3. :
p1 : M — o:Class | 0:Class M | Association | Association M | Generalization | Generalization M
Step 4. :
p2 : 0:Class — Name Constraint | Name:Type Constraint
Step 5.
ps : Association — Name Constraint AssociationEnd AssociationEnd

ps : Generalization — Name Constraint GeneralizationEnd GeneralizationEnd
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Step 6. :

ps : AssociationEnd — Role Constraint isNavigable isComposite isDerived MultiplicityElement

Visibility Member:Class
ps : GeneralizationEnd — Constraint General:Class | Constraint Specific:Class
Step 7. :

p7 : Name — T1 | T2 | Associationl | Aggregationl | Compositionl | Generalizationl | 01:T1 |
02:T2 | 03:T2 | 04:T2 | an element from the alphabet of other element names for the corre-

sponding Namespace
ps : Role — an element from the alphabet of element roles for the corresponding Namespace
py : Type — an element from the alphabet of element types for the corresponding Namespace
p1o : Constraint — an element from the alphabet of constraints for the corresponding Namespace
p11 : isNavigable — true | false
pi2 : isComposite — true | false
pi3 : isDerived — true | false
p14 : MultiplicityElement — isOrdered isUnique lower upper
pis : isOrdered — true | false
P16 : isUnique — true | false
pi7 : lower — none | Literallnteger | range | star
p1s : upper {upper >= lower} — none | Literalinteger | range | star

p1g : Literalinteger — a constant Integer value
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p2o : range — Literallnteger..Literallnteger
po1 : star — *
p22 : Visibility — public | protected | private | package

Step 8 :
P :={p1, p2, - .. p22} and DMG :={NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

[DM] T * Association1 T2
+source +target
= 02:T2
o1l:
[M]
03:T2
04:T2

Figure 3.8: A Domain Model Instance Example

The Figure illustrates a domain model instance, where one instance of type T1 is
matched to three instances of type T2, following the many-to-many relation in the applicable
domain model. The corresponding derivation tree for the same model is shown in the Figure

3.9l
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Association

Name i

/ cgnstralnt

Association1 ¢
null /\ l\
Role .. Member:Class

Role ... Member:Class
Px 2
Ps 2

source Name:’ Type Constraint
P7
04Ty null

target Name: Type Constraint
P7 I P1o
0T, null

Association

Name i

/ cgnstralnt

Association1 ¢
null /\ l\
Role .. Member:Class

Role ... Member:Class
Px 2
Ps 2

source NameT e
U= Constioint target Name: Type Constraint

[
oty null i [ o
"‘ 04T, null M
b
Association
Name i

/ cgnstralnt

Association1 ¢
null /\ l\
Role .. Member:Class

Role ... Member:Class
Px 2
Ps 2

source Name: T e
):,p Eonstioint target Name: Type Constraint
7

P7 |P1n
0.:T 1
i nu 04T, null

Figure 3.9: A Domain Model Instance Derivation Tree
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3.4.5 DMG in the Context of Domain-Specific Model Synchronizati on

We evaluate the representation of domain models as domain-model grammars in two steps:
first, by evaluating the DMG construction, and second, by evaluating the DMG properties with
respect to “parsing” or “generation” of specific models. The criteria for evaluation are based
on the requirements for enabling grammar-based model synchronization. For example, hav-
ing a grammar representation that cannot be constructed in bounded time (i.e., intractable
grammar) or one that is not an adequate representation of a domain model (i.e., grammar
undergeneration or overgeneration) would be detrimental to the model synchronization pro-

Cess.

DMG Construction Evaluation

To evaluate the grammar construction algorithm, we evaluate the following qualities: (1)
uniqueness, (2) determinism, (3) tractability, (4) incrementality, and (5) reverse incremental-
ity. We also evaluate the following qualities with respect to the grammar parsing capabilities:
(1) undergeneration, (2) overgeneration, (3) tractability, (4) completeness, and (5) sound-

ness.

Unigueness For each set of DM elements and an enumeration algorithm, the production

rules are unique.

Proof: The proof is by construction, based on four cases: for DT domain type tuples, for DR

domain relation tuples, for DC domain connector tuples, and for DA domain attribute tuples.

For domain type tuples, each domain type is enumerated and related attributes are lex-
icographically sorted. Hence, each domain type t; from (<enum>, t;, {a;}, {rs}) is uniquely

mapped to a production rule nt; — a; ... a, in a ordered sequence based on the tuple enu-
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meration, where nt; = F(t;) with F being a mapping of strings to nonterminals, and (a; ... a,)

€ {a;} being a lexicographical and unique ordering of attributes.

For domain relation tuples, each domain relation is enumerated, relation attributes and re-
lation type attributes are lexicographically sorted, relation type attributes are indexed based
on the relation type, and relation connectors follow their respective enumeration. Hence,
each domain relation r; from (<enum>, r;, {a;}, {a;'}, {c,.}) is uniquely mapped to a produc-
tionrulent; — a; ... a, t.a, ... tl.aql Ci ... C,, where nt; = F(r;), (a1 ... a,) € {a;} being a
lexicographical and unique ordering of attributes, (t,.a,' ... t,.a,') € {a,'} also being a lexico-
graphical and unique ordering of attributes, and (c; ... c,) € {c,,} being an enumeration of

related connectors.

For domain connector tuples, each domain connector is enumerated, connector attributes
are lexicographically sorted, and connector types follow their respective enumeration. There-
fore, each domain connector c; from (<enum>, c;, {a;}, {t;}) is uniquely mapped to a pro-
ductionrulent; - a; ... a, ntyy | ... | a; ... &, nty,, where nt; = F(c;), (a1 ... &) € {a;}
being a lexicographical and unique ordering of attributes, nty; ... ntr,, being an enumeration

of related connector types.

Finally, for domain attribute tuples, each domain attribute is enumerated, and attribute
values are lexicographically sorted. Therefore, each domain attribute a; from (<enum>, a;,
{v;}) is uniquely mapped to a production rule nt4 — v; | v ..., where nt; = F(a;), (v1, V3 ...)

€ {v;} being a lexicographical and unique ordering of values.

Based on the four cases above, which comprise the base construction blocks of a DMG,
it follows that for each set of DM elements, the resulting DMG production rules are unique
(please see the enumeration process in the DM2DMG algorithm and the unique ordering of

the rules).
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Determinism _For distinct domain models DM; and DM, and domain-model grammars DMG;
and DMG, that are generated from DM; and DM, respectively, it holds that DMG; # DMG,
< DM; # DM,, iff DM; and DM, are allowed to differ in one of the core elements, such as

different types, relations, or attributes.

Proof: Case 1 (DM; # DMy = DMG; # DMG,). DM; # DM, means that DM; and DM,
differ either on their types or on their attributes or on the relations among the different types.
In this respect, any such difference will result in to generating different tuples for DM; and
DM, for all the elements that DM; and DM, differ. If there are tuples from DM; and DM, that
differ and because the rules that are generated are shown to be unique by the uniqueness
property, this means that the resulting grammar will be different. Any other possibility of the

grammars being equal would violate the uniqueness property.

Case 2 (DMG; # DMG; = DM; # DM,). We use the proof by construction and consider

four sets of tuples that comprise the domain model elements.

For domain type production rules P, if there is a difference in any of the elements of
nt; — a; ... a,, such as different types or different attributes, then the resulting DM tuples
are also different since the domain types are enumerated and attributes are lexicographically

sorted.

Similarly, for domain relation production rules Pg, if there is a difference in any of the
elements of nt; — a; ... a, t.a;' ... t.a,' ¢; ... ¢, such as different relations, different
attributes, different type attributes, or different connectors, then the resulting DM tuples rules
are different since the domain relations and domain connectors are enumerated, and all

domain attributes are lexicographically sorted.

Also, for domain connectors production rules P¢, if there is a difference in any of the
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elementsof nt; - a; ... a, ntyy | ... | & ... &, nty,, such as different connectors, differ-
ent attributes, or different connector types, then the resulting DM tuples are different since
domain connectors and domain types are enumerated and attributes are lexicographically

sorted.

Finally, for domain attribute production rules P 4, we distinguish two cases. The first case
is when attributes in the two domain models are allowed to have different values as choices,
and the second case is when attributes in the two domain models are allowed to have only
one value. In the first case, it is possible that the resulting DM tuples are the same even
though the related DMG rules are different if the specific values from the alphabet of domain
values do not apply to DMs in question. In this case, it may hold that even though DMG;
# DMG,, the corresponding domain models DM; and DM, be still equal (DM; = DM,). For
example, domain values of 0 or * for Multiplicity attribute could be left out as choices in
P4 production rule. Domain models that do not have Multiplicity specified or that use other
values such as 1 could still be parsed by the changed DMG rules without changing any of

the DM element tuples.

In the second case, where the attributes in the two domain models are allowed to have

only one value then we can say that when DMG; # DMG, < DM; # DM,

Therefore, we identify two cases of domain models with respect to the determinism prop-
erty: for domain models that differ in one of the core elements, such as different types,
relations, connectors, or attributes, it holds that DM; # DM, < DMG; # DMG,; and for do-
main models that differ only in domain values but have the same core elements, it holds that

DM; % DMy = DMG; % DMG, Only.

Tractability The creation of a domain-model grammar DMG from the given domain model

DM is tractable.
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Proof: Using the DM2DMG algorithm, the creation of a DMG from the given DM involves
iterating through the tuples of domain types DT, domain relation DR, domain connectors DC,
and domain attributes DA. The algorithmic complexity of DMG creation is then O(|DT| + |DR|
+ |DC| + |DA|). Consequently, as the DMG can be created in bounded time, the presented

approach is tractable.

Incrementality For a domain model DM, a corresponding domain-model grammar DMG,

and a subset DM’ of DM, there exists a domain-model grammar DMG’ that corresponds to

DM’ such that DMG’ is a subset of DMG.

VDM' C DM =3 DMG' | DMG' C DMG (3.1)

Proof The proof is by construction. Based on the uniqueness property, each of the tuples t;
in DM’ would represent a unique production rule in DMG'. Since DM’ is a subset of DM, DM
would contain all the tuples of DM’. That means, assuming the same enumeration process,
the rules in DMG will have all the rules stemming from the tuples of DM’ plus all the rules

that stem from the extra tuples of DM. Hence, DMG’ C DMG.

Reverse Incrementality For a domain-model grammar DMG and a corresponding domain

model DM, there exists a subset DMG’ of DMG generated from a domain model DM’ such

that DM’ is a subset of DM.

IDMG' € DMG | DM’ C DM (3.2)

Proof It is possible to select a collection of rules from DMG yielding DMG’ such that DMG’
is a subset of DMG, in a way that the rules from DMG’ will correspond to types, relations,

connectors, and attributes from DM that form a subset DM’ of DM. Please note that not any
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subset DMG’ of DMG can correspond to a valid DM’ as a subset of DM. The valid subsets
DMG’ of DMG where the reverse incrementality property holds is when the rules are selected

in a way that the generated model DM’ is a valid MOF model.

Undergeneration All concrete models M that can be instantiated from a domain model DM

can also be parsed by the corresponding grammar DMG.

VM :: DM — M C L(DMG) (3.3)

gen

Proof: The proofis by contradiction. Let us assume that there exists a model M’ that can be
instantiated from a domain model DM but cannot be parsed by the corresponding domain-
model grammar DMG. This implies that M’ complies with all of the tuples from DM, but it
violates one of the rules from DMG. That means, M’ has a tuple in its representation that
has not been used to create a rule in DMG. However, since M’ is an instance of DM, all

tuples of M’ have to have a rule in DM G, which contradicts with the hypothesis.

Overgeneration All concrete models M that can be parsed by a domain-model grammar

DM@ can also be instantiated from a domain model DM.

VM C L(DMG) = M :: DM (3.4)

Proof: The proof is by contradiction. Let us assume that M can be parsed by DM G, but M
Is not an instance of DM. That means there exists a type, relation, connector, or attribute,
that exists in M and does not exist in DM. In this case, since DMG is generated from DM,
it will contain rules from DM tuples that do not correspond to tuples representing M. In this

case, it will not possible to use the DM G rules to fully parse M, which is a contradiction.
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Tractability The parsing by a domain-model grammar DM G of all concrete models M that

can be instantiated from a domain model DM is tractable.

Proof: Since DMG and DMG are defined as context-free grammars, the asymptotic time
complexity for parsing sentences from both L(DMG) and L(DMG) is O(n?) (e.g., using the
CYK algorithm [Mar97]), where n is the size of the parsed string that represents a concrete
model instantiated from the DM. Each parsed string includes types followed by type attribute
tuples, relations followed by relation attribute tuples, and connectors followed by connector
attribute tuples. It follows that the asymptotic size complexity for sentences from L(DMG) is
O(|DO| + |DR| + |DC| + |DA|). Hence, the DM G parsing of concrete models M instantiated

from DM is tractable.

Completeness Any MOF-compliant DM can be represented as a DMG.

Proof: We consider that MOF-compliant domain models are composed of types, relations,
connectors, attributes, and values. Based on the construction algorithm [3.4.7], each one of

these elements yields a tuple which then is transformed into a rule.
Soundness A generated DMG is a sound representation of a MOF-compliant DM.

Proof: This property follows from the DMG construction algorithm and the tuple represen-
tation of DM. More specifically, for every element (type, relation, connector, and attribute) of
DM, a