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Abstract

Software evolution refers to continuous change that a software system endures from incep-

tion to retirement. Each change must be efficiently and tractably propagated across models

representing the system at different levels of abstraction. Model synchronization activities

needed to support the systematic specification and analysis of evolution activities are still

not adequately identified and formally defined.

In our research, we first introduce a formal notation for the representation of domain

models and model instances to form the theoretical basis for the proposed model synchro-

nization framework. Besides conforming to a generic MOF metamodel, we consider that

each software model also relates to an application domain context (e.g., operating systems,

web services). Therefore, we are addressing the problems of model synchronization by

focusing on domain-specific contexts.

Secondly, we identify and formally define model dependencies that are needed to trace

and propagate changes across system models at different levels of abstraction, such as

from design to source code. The approach for extraction of these dependencies is based

on Formal Concept Analysis (FCA) algorithms. We further model identified dependencies

using Unified Modeling Language (UML) profiles and constraints, and utilize the extracted

dependency relations in the context of coarse-grained model synchronization.

Thirdly, we introduce modeling semantics that allow for more complex profile-based de-

pendencies using Triple Graph Grammar (TGG) rules with corresponding Object Constraint

Language (OCL) constraints. The TGG semantics provide for fine-grained model synchro-
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nization, and enable compliance with the Query/View/Transformation (QVT) standards.

The introduced framework is assessed on a large, industrial case study of the IBM Com-

merce system. The dependency extraction framework is applied to repositories of business

process models and related source code. The extracted dependencies were evaluated by

IBM developers, and the corresponding precision and recall values calculated with results

that match the scope and goals of the research. The grammar-based model synchronization

and dependency modelling using profiles has also been applied to the IBM Commerce sys-

tem, and evaluated by the developers and architects involved in development of the system.

The results of this experiment have been found to be valuable by stakeholders, and a patent

codifying the results has been filed by the IBM organization and has been granted. Finally,

the results of this experiment have been formalized as TGG rules, and used in the context of

fine-grained model synchronization.
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Chapter 1

Introduction

The beginning of knowledge is the discovery of something we do not understand.

— Frank Herbert

1.1 Motivation

From the Mariner 1 rocket disaster in 1962 and the Hartford Coliseum Collapse in 1978 to

the failure of EDS IT system in 2004 and the Los Angeles Airport scheduling system collapse

in 2007, all these disasters were caused by unpredictable behaviour of large and complex

software-intensive systems [Dev10]. However, software is complex by its nature [Bro87],

and it is not only the complexity of software that played a key part in these unfortunate

incidents, but also the change that software goes through from inception to retirement. These

factors increased the overall complexity and made the verification and validation of such

systems even more difficult. This change that software incurs at each stage of its lifecycle is
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referred to as software evolution [MBZR03]. The software entities in each evolution cycle are

non-transient and they may inherit properties from their ancestors. In Darwinian evolution,

change is manifested as natural selection that under the effect of time outcasts negative and

upholds positive mutations of species in a given environment. In a sense, we can apply this

principle to software and observe that natural selection of software systems is directed by

different evolutionary forces. These forces in the context of software systems are manifested

as different market conditions and changing business and technical requirements. Software

evolution is also marked by different evolution cycles. Some of these cycles are considered

major releases while others minor releases or even bug fixes. However, regardless of the

nature of the evolution cycle, for large systems there is a need for a systematic and traceable

management of the system’s software artifacts, such as its source code, its requirements

models, design models, and testing models, to name a few. Therefore, the main question

that arises is,

How do we manage software models in a way that allows us to respond to the

evolutionary forces in a systematic and traceable manner?

To answer this question, we view evolution in the context of software models that not only

are used to denote software artifacts, but also allow for Model Driven Development (MDD)

to commence. Model Driven Development, according to the Rational Corporation [Ois02],

is distilling business logic and design practice into a model or metadata that is used in ap-

plication development, integration, and maintenance. This paradigm, also referred to as

model-based software engineering (MBSE) [Jez03], has been hailed as a promising devel-

opment paradigm both from the software engineering point of view and from object-oriented

programming point of view. More specifically, modeling software takes the form of stan-

dardized processes (e.g., Rational Unified Process (RUP) [IBM04]) and formalisms such
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as Unified Modeling Language (UML) and Meta Object Facility (MOF). In MDD, modeling

at each stage of development is the core activity, and software evolution is represented as

continuous transformation of software models at different levels of abstraction. In such a

development environment, it is evident that various software artifacts and models co-exist to

form an integrated repository that has to be maintained in a consistent state. In this respect,

a change applied to one model, such as a class diagram, may affect other models, such as

sequence diagrams, state diagrams or test models. To achieve and maintain consistency

among related software artifacts and models, each software change or transformation that

is applied for development or evolution purposes must to be systematically applied, and its

effects must be traced, analyzed, and propagated consistently to all other affected models.

The main challenge, then, lies in systematically tracing and interpreting software transfor-

mations that are applied to specific models from one level of abstraction, such as design, to

another level of abstraction, such as source code. Auxiliary challenges are related to over-

coming different levels of expressiveness and semantics of models used at different stages

of the software lifecycle.

1.2 Overview of Thesis Research Challenges

To answer the challenge of systematically tracing and interpreting software transformations

from one level of abstraction to another, and maintaining consistency among all software

artifacts and models, we introduce the mSYNTRA model synchronization framework [IK04a]

[IK04b] [TML+04].

The framework is intended to complement and facilitate the activities of an iterative and

incremental process model, such as the Rational Unified Process (RUP) [IBM04], in the

3



sense of facilitating the consistent management of models throughout the development and

evolution phases.

As illustrated in Figure 1.1, the framework aims to assist software engineers on the fol-

lowing issues and challenges while developing or maintaining a software application.

Software Engineer

mSYNTRA Framework 
Model Synchronization for Software Evolution

Coarse-Grained Model

Synchronization using UML

Fine-Grained Model

Synchronization using UML

Interoperability with

QVT-Compliant CASE Tools

Figure 1.1: The mSYNTRA Framework Use Cases

Coarse-Grained Model Analysis for Model Dependency Extrac tion and Synchronization

In the context of this thesis, we consider coarse-grained model analysis as a collec-

tion of techniques that allow for the identification of dependencies between collections

of different models. We refer to this type of analysis as coarse because it does not

provide evidence of dependencies between individual model elements but rather be-

tween collections of model elements. Coarse-grained analysis is very useful as it can

be very efficient when large models are involved and dependencies can be localized
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only in smaller parts of the models instead of more accurate but computationally more

expensive techniques. Coarse-grained analysis yields a collection of dependencies

that can be used to build traceability links and thus facilitate tractable coarse-grained

model synchronization. For example, in a large industrial system composed of millions

of lines of code and hundreds or even thousands of models, coarse-grained analysis

can answer questions of the form, “If I change this source code class, which design

or business process models may be affected?”. Event though coarse-grained analysis

allows for dependencies and traceability links to be established, it does not provide

means to generate transformations that could be used to automatically synchronize

models at a finer-grained element level.

Fine-Grained Model Synchronization In the context of this thesis, we consider fine-grained

analysis and synchronization as a collection of techniques that allow for not only de-

noting model dependencies in a MOF-compliant formalism, but these also allow for

synchronization of individual elements between different models. In this thesis, fine-

grained synchronization takes the view of denoting model dependencies in a formalism

that can be applied in an automated and verifiable way. More specifically, for fine-

grained model synchronization, we take the view that of model dependencies denoted

as grammar rules that can be used to map individual elements of one model to indi-

vidual elements of the other model. The formation of the rules and the transformation

process guarantee that the consistency requirements and constraints are valid after

the synchronization process is applied.

Interoperability with QVT In the context of this thesis, we also consider that aforemen-

tioned issues have to be resolved by techniques that can be implemented in an auto-

mated tool and enacted as part of an algorithmic synchronization process. Over the
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past few years, Query/View/Transformation (QVT) Standard [OMG11b] has been pro-

posed as a standard collection of languages to facilitate model transformation. For this

thesis we aim for integrating the proposed model synchronization techniques in a way

that is compatible with QVT notation and process.

1.2.1 Introduction of Terms

We observe two repositories of MOF-compliant models, M and G, where concrete models

are instantiated from domain-specific models DMM and DMG respectively (as shown in Fig-

ure 1.2).

The models mi ∈ M and gj ∈ G are models for the same software system, but at different

levels of abstraction or different semantic detail. Each model mi is composed of model

elements mei
k ∈ mi, and each model gj is composed of model elements gej

l ∈ gj.

For a more specific synchronization scope, that is to synchronize two specific models

and not model repositories, one can view M and G as models composed of individual model

elements mi ∈ M and gj ∈ G.

A model-change dependency between model repositories M and G is a set of tuples (mi,

gj) of models mi ∈ M and gj ∈ G, or between their corresponding model elements, such that

mi and gj have associated attributes. We refer to this kind of model-change dependency

within the context of this thesis as model dependency, in short.

1.2.2 Use Case: Coarse-Grained Model Synchronization using UML

In a situation where the repositories M and G are related, but the specific relations between

individual models from M and G have either not been established, or have been lost over
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Figure 1.2: Thesis Overview
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time due to lack of systematic synchronization, we first need to create a coarse-grained syn-

chronization context. To provide such a coarse-grained model synchronization, we need to

establish dependency relations between the models mi ∈ M and gj ∈ G, or between their

corresponding model elements. Consequently, we should allow for manual or tool-assisted

tracing of such dependencies transformations that would assist on resolving any potential

inconsistencies between related artifacts. As an example of the coarse-grained model syn-

chronization, let us consider that there is a business process (e.g., Business Process Execu-

tion Language (BPEL) [OAS07] document) that is enacted by a run-time system (e.g., a web

service), and the goal is to establish bidirectional coarse dependencies between business

tasks and their implementation, either as a collection of run-time services or source-code

packages. We refer to this analysis as coarse grained because it aims to establish depen-

dencies and traceability links between models that have significant difference in the level of

abstraction of the artifacts they specify (i.e., business processes on one hand, and source

code on the other). The basic elements of this use case for coarse-grained synchronization

are presented below.

Apply Annotation Transformer

To establish the coarse-grained synchronization context for model alignment, we input the

domain-specific models DMM and DMG to an annotation transformer to semantically align

models. The transformer is discussed in detail in Chapter 4. It first annotates both domain

models with relevant attributes to resolve semantic differences between them, and conse-

quently establishes association rules, ARMG, based on compatible domain types and rela-

tions. Finally, it applies the annotation attributes to individual models from the repositories

M and G, thereby creating M′ and G′, that have their semantic differences resolved. An ex-

ample of a semantic difference between model elements is when one model element has an
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attribute a1 and the other has an attribute a2 that both refer to the same context or item. An

association rule can be used to make these two attribute names isomorphic.

Apply MDD-FCA Algorithm

The output from the annotation transformer, the annotated models M′ and G′ and associa-

tion rules ARMG, are used as input to an algorithm that establishes specific dependencies

between related models. The algorithm, named MDD-FCA, is also described in more detail

in Chapter 4. The algorithm uses the rules from ARMG and Formal Concept Analysis (FCA)

to establish dependencies between M′ and G′, and consequently between M and G. The

identified dependencies DMG are used to support coarse-grained model synchronization.

For example, let us assume that the consistent state between the repositories M and G is

disrupted when model mt is transformed into mt
′ by changing some elements of mt, such as

met
1 . . . met

k. To identify elements of G that are affected by change to mt, the tuples from

DMG are used to find all (mi, gj) that contain element mt, or at the model element level, the

tuples that contain met
m ∈ {met

1 . . . met
k}. For each identified tuple (mt, gj) or (met

m, gej
l )

from DMG, the model gj or element gej
l respectively is identified as one of the elements

that may need to altered to maintain the synchronization between M and G. Once all of the

affected elements are found through iteration, they can be set for manual or tool-assisted

updating. Since the analysis is focused on the identification of dependencies between sets,

we consider the analysis as coarse as compared to fine grained.

Utilization of Standardized Modeling Infrastructure

Let us assume that M and G represent related repositories of models at different levels of

abstraction, such as platform-independent and platform-specific models, specified in UML
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and within the context of Model-Driven Architecture (MDA) [OMG01], and the specific rela-

tions between them are known. We would like to enable synchronization between models

contained within M and G. For this purpose, we introduce a UML-based approach where

the dependencies DMG between models in M and G are encoded as UML stereotypes and

relations defined within DMM and DMG are identified and encoded as corresponding asso-

ciation rules, ARMG. More specifically, if model m ∈ M and g ∈ G are dependent, then m

as the source model can stereotype g (the target model). In this way, dependencies are

modeled and enacted at the UML / MOF level. The approach is described in more detail

in Chapter 4. The identified association rules, ARMG, are previously known (e.g., provided

by software developers who are tasked with maintaining them) or are created by applying

the annotation transformer. Similarly, specific dependencies between model elements DMG

are previously known or are created by applying the MDD-FCA algorithm. With ARMG and

DMG available, the algorithm establishes specific profile-based dependencies between UML

model elements, DPMG, where the left-hand side of an association rule ari ∈ ARMG is en-

coded as a UML stereotype or stereotype package that is applied to the right-hand side of

the same rule. The correspondence between individual models is then achieved by, first,

applying the stereotype mappings for types and relations, and then second, by applying

dependency relations from DMG for mapping model-specific attributes (e.g., class names).

1.2.3 Use Case: Fine-Grained Model Synchronization using UML

Let us assume that the repositories M and G represent related models at different levels of

abstraction, for which a corresponding set of profile-based dependencies, DPMG has been

established. In this context, we would like to establish a frameworks to support fine-grained

model synchronization. To fulfill this objective, we introduce a technique based on Triple
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Graph Grammars (TGG). The technique, named MDD-TGG, is described in more detail in

Chapter 5. The basic phases of this use case are discussed below.

Apply MDD-TGG Algorithm

The set of profile-based dependencies, DPMG, is either previously known or is created by

applying the approach described above. For each ti ∈ DPMG, a new triple graph grammar

rule, tggi is created with the source stereotype or stereotype package of ti representing the

left-hand side of the new rule and the the target package representing the right-hand side of

the new rule, with any other constraints of ti encoded as the correspondence node (i.e., the

node linking two related nodes) of tggi. The new set of grammar rules, TGGMG, is created as

the output. To perform fine-grained model synchronization, we assume that the consistent

state between the repositories M and G is disrupted when mt is transformed into mt
′ by

changing some elements of mt, such as met
1 . . . met

k. However, instead of just identifying

elements of G that are affected by change, we identify rules in TGGMG that pertain to met
m

∈ {met
1 . . . met

k}, and then, apply those rules to identify specific inconsistencies in models

and model elements of G. Before any changes are committed, the effect of each rule can

be investigated, and then, the rule can be applied; or it can be ignored if it is found to be

redundant (e.g., overlapping rules).

1.2.4 Use Case: Interoperability with QVT-Compliant CASE Tools

With the TGGMG set of rules available, one can utilize a TGG-to-QVT mapping, as described

in Chapter 5, to export the created transformations into the QVT format. The exported trans-

formations can then be utilized within many CASE tools that are compliant with the QVT

11



standard, to enable interoperability with other modelling frameworks and integration into dif-

ferent software lifecycle models.

1.3 Research Contributions

Model synchronization activities that are needed to achieve systematic and traceable change

propagation and interpretation across different levels of abstraction are still not adequately

identified and defined. In this context, the mSYNTRA framework aims to address the follow-

ing issues and challenges:

1. To provide a method for bridging the semantic gap between domain models at different

levels of abstraction;

2. To devise a method for identifying dependencies between model elements;

3. To enable coarse-grained model synchronization by utilizing identified dependency re-

lations between models or model elements;

4. To introduce a method for representing domain models as domain-specific context-free

grammars and their dependencies in terms of UML classifiers; and

5. To enable fine-grained model synchronization by utilizing identified triple graph gram-

mar rules.

1.4 Limitations

Limitations of the mSYNTRA framework include:
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• Handling circular dependencies, where we do not explicitly address possible circular

dependencies present within models (e.g., inheritance chain, where A is a superclass

of B, B is a superclass of C, and C is a superclass of A). Instead, if presence of

circular dependencies is detected, it can be addressed through additional user-defined

constraints, specifically aimed at preventing circular dependencies from occurring.

• Conflict resolution for conflicting synchronization actions, where we do not explicitly

address a scenario of two or more synchronization actions that occur at the same time

and have conflicting side effects. If such a scenario is detected, it can be resolved

through serialization of synchronization actions, or through additional user-defined

constraints, aimed at preventing conflicting synchronization actions from occurring.

• Pre-selection of applicable rules, where we do not explicitly specify which synchro-

nization rules need to be applied given a specific change (i.e., localized model syn-

chronization). Instead, our approach reapplies all of the available rules, and relies and

source pattern matching for rule selection (i.e., global model synchronization).

1.5 Thesis Scope

The systems targeted with this research are software-intensive applications that utilize mod-

els, and not just source code, as their primary artifacts. The models to be considered covered

include MOF-compliant models, in the form of UML, and include models that pertain to the

development of the software, from requirements to deployment to maintenance phases.
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1.6 Thesis Organization

This thesis is organized as follows:

• Chapter 2 describes previously conducted research that relates to the mSYNTRA

framework.

• Chapter 3 introduces formal notation for the representation of domain models and

model instances.

• Chapter 4 discusses the approach for establishing model dependencies using formal

concept analysis, and introduces the method for representing model dependencies

using UML profiles and constraints.

• Chapter 5 presents the theory for mapping profile-based dependencies as triple graph

grammar rules.

• Chapter 6 covers the case study results of applying the mSYNTRA framework to a

large and complex industrial case study of the IBM Commerce systems.

• Chapter 7 provides the final conclusions and directions for future research.
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Chapter 2

Related Research

How inappropriate to call this planet Earth when it is quite clearly Ocean.

— Arthur C. Clarke

2.1 Chapter Overview

In this chapter we present related research used as the basis for this thesis. We present

a detailed discussion on software models, model transformations, grammar-based model

transformations, model dependency extraction, and model synchronization.

2.2 Software Models

Due to the inherent complexity of software, even for a modest size system, we are inclined

to use various models as simplified versions of the system for purposes of understanding,
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planning, and evolution. From our viewpoint, a model is a model element that contains a

group of model elements representing an abstraction of a system or its parts from a specific

perspective and at a particular level of detail. For example, one system might be represented

by more than one model on the same level of abstraction, and different models might share

corresponding elements [Cor03].

Software engineering models can be categorized according to the stage of development

to which they relate: from requirements to source code to maintenance models. Relation-

ships between models and original entities that they represent can be classified as descrip-

tive, those that mimic an underlying original; prescriptive, those that specify something to be

created; and transient, those that first describe and then prescribe changes to an underly-

ing original. Making changes to a system represented through models is not done directly;

instead, it is done on an abstraction level of the model and then mapped to the underlying

system at hand [Lud03].

2.2.1 Architecture Models

When it comes to software architecture, several definitions exist including:

• “Software architecture [is a level of design that involves] the description of elements

from which systems are built, interactions among those elements, patterns that guide

their composition, and constraints on those patterns.” [SG96]

• “The software architecture of a program or computing system is the structure or struc-

tures of the system, which comprise software components, the externally visible prop-

erties of those components, and the relationships among them.” [BCK98]
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To model software architecture, various Architectural Description Languages (ADL) are

available, including UML [OMG10]. When modelling software architecture, different architec-

tural views are used to represent specific aspects of interest (e.g., 4+1 View Model [Kru95]),

such as concurrency or data flow. Architectural views in practice are geared towards key

stakeholders with the understanding of their concerns, and the understanding of how they

model and deal with those concerns. Different types of architectural views that exist include

[Bre98, CKK02]:

Conceptual/Logical View Major functional components are identified and responsibilities

of those components allocated. Concrete View identified in [BHB99] also shows the

logical decomposition but from the implementation perspective (i.e., it shows the logical

structure that resulted after the conceptual/logical view was implemented).

Concurrency/Execution/Process View Runtime component instances are assigned to pro-

cesses, threads, and address spaces. It demonstrates how the runtime components

communicate and coordinate, and how they share physical resources among them.

Code View Presents classes, objects, procedures, and functions along with their abstrac-

tions and compositions into subsystems, layers, and modules. Typical relationships

include function calls, method invocations, and containment such as is-a-sub-module-

of.

Development/Implementation View Shows a hierarchical structure of files and directories

in the implementation of a software system. It shows directories along with the source

and the header files contained in them.

Use Cases/Scenarios View Externally-visible interfaces are mapped onto system subcom-

ponents. It shows an interaction among elements of other views in the context of a
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particular functionality (i.e., a scenario for a particular use case).

Architectural concerns can also be modeled using architectural design patterns, as de-

scribed by Alencar et al. in [ADL96].

2.2.2 MOF and UML

With creation of the MOF specifications [OMG06], a four-level, layered architecture for model

engineering was introduced (see Figure 2.1). The architecture consists of the following layers

[PZB00]:

M3: Metametamodel (MOF)

Metamodel (MOF UML)M2:

Model (UML Diagrams)M1:

Instance (Object Diagrams)M0:

Figure 2.1: Four Level Architecture for MOF-Compliant Models
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• M3 — The metameta level, that is, a self-defined language used for defining other

languages at level M2. This level contains only one recommendation and that is MOF.

• M2 — The meta level, that is, a set of domain specific metamodels. From OMG’s

perspective, any metamodel is defined in terms of MOF. A domain specific metamodel

defines a language to write models at level M1. For example, a recognized metamodel

is the UML metamodel, but others exist including a Java metamodel.

• M1 — The model level. Any model is compliant with a specific metamodel. For exam-

ple, a specific UML diagram of a web browser describing its components would be one

of the M1-level models. Another example would be a Java implementation of one of

the web browser components.

• M0 — The instance level. This levels represents instances (objects) derived from the

specific M1 model. For example, an execution of the Java implementation of one of

the web browser components could be described using UML object diagrams.

In this architecture, all levels are considered to have instance relation with their parent

level. As an example, the M3 level enables a MOF model to define various metamodels

that can appear at M2 level. However, if by using the MOF model, one can express all

metamodels, then it is possible to transform a model based on one metamodel to another.

The Unified Modeling Language (UML) [OMG10] is a specification, visualization, con-

struction, and documentation language for software system artifacts and business modelling.

UML is meant to represent a standardized collection of proven engineering practices for mod-

elling of large and complex systems. One of the primary design goals of UML is to provide

users with an expressive visual modelling language for creation and exchange of software

models.
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UML 2.0 defines three main categories of diagrams [OMG11a].

Structure Diagrams These include the Class Diagram, Object Diagram, Component Di-

agram, Composite Structure Diagram, Package Diagram, and Deployment Diagram.

The emphasis is on modelling static aspects of the system.

Behavior Diagrams These include the Use Case Diagram, Activity Diagram, and State Ma-

chine Diagram. The emphasis is on modelling dynamic aspects of the system, at a

higher level of abstraction.

Interaction Diagrams These include the Sequence Diagram, Communication Diagram, Tim-

ing Diagram, and Interaction Overview Diagram. The emphasis is on modelling dy-

namic aspects of the system, at a lower level of abstraction.

All of the above diagrams are part of the UML 2.0 formal specifications as described in

[OMG10].

2.2.3 Source Code Models

Source code models provide structured techniques for representing source code information

at a higher level of abstraction than source code text. Various source code representation

formalisms exists [Mam00], and here we are list the ones that pertain to our research.

Abstract Syntax Tree (AST) The AST is a tree structure that represents the syntactic in-

formation contained in the source code [ASU86]. A node in a tree is an element of

the language, where non-leaf nodes represent operators and leaf nodes represent

operands. An AST does not include syntactic information of punctuation tokens that
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are implicit from the AST structure. The AST notation is commonly used by compilers

for internal representation of source code for analysis, optimization, and binary code

generation.

Abstract Semantic Graph (ASG) The ASG is defined as an AST with embedded semantic

information. To specifically distinguish between the two, a reference to an entity in an

AST is represented by an edge pointing to a leaf node that holds the name of the entity

reference. In an ASG, a reference is represented by an edge pointing to the root of the

subgraph in the ASG that represents the declaration of the entity.

Program Dependence Graph (PDG) The PDG combines control and data dependence in-

formation, where nodes represent statements, expressions, and regions of code, and

the edges represent control or data passed from one expression to another along with

control conditions that influence order of execution. Unlike the AST that directly rep-

resents source code information, the PDG represents information derived from the

source code. The information stored in a PDG is commonly used for software testing

purposes as well as developing code optimization algorithms.

The Control Flow Graph (CFG) is used for encoding control flow information [All70].

Within a CFG, the nodes represent statements and the edges represent transfer of

control between statements.

Construction of a PDG precludes extraction of control flow information, which can be

derived from a CFG.
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2.3 Model Transformations

Model transformations research spans research on propagating change across models on

the same level and on different levels of abstraction. Mapping elements from one model to

another is a crucial activity in this process, where entities affected by change in one model

reflect the change on entities of other models. The mappings are also a basic tool for MDA

model-based development [KWB03]. Techniques for the mapping description identify the

elements of the source model that are mapped and the destination model that correspond

to the source elements, along with conditions that must be fulfilled to apply this type of

transformation. In current research, the mapping process is put in practice in several different

ways including [MES02]:

1. Script Languages — Certain UML tools include imperative script languages with meta-

model navigation facilities similar to Object Constraint Language (OCL) [WK98] navi-

gation expressions. Such languages, which serve as support to implement mapping

scripts, are flexible but suffer from the deficiency of tool dependence.

2. XML and XMI-Based Mapping — Certain tools provide support for deriving XML and

XMI files. These files include the metadata of UML models, and are used to facilitate

mapping. The mapping is independent of the UML tool but is dependent on the specific

transformation technique supported by the tool that is used for file creation.

3. MOF Transformation Facilities — There are tools that include MOF transformation fa-

cilities based on rules. These rules enable identification of the elements in the source

model to which the rule applies, and the destination elements that can be generated

with the rule.
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When discussing model transformations, two main concepts are relevant: the modelling

languages used for source and destination modelling, and the mapping between modelling

languages [IK06]. MDA addresses these aspects particularly using UML extensions where

the matching UML transformations can be used for the following purposes [MES02]:

1. UML Model Transformation and Refinement — MDA proposes the refinement and

transformation of models as a basic technique to extend or specialize a model. To

avoid platform dependencies in models, Platform Independent Models (PIMs) can be

transformed into Platform Specific Models (PSMs) to introduce platform specific con-

cepts, where some concepts are automatically introduced in the generated model and

others are updated manually. Intra-level model refinements — PSMs to PSMs and

PIMs to PIMs — enable improvements of models in the same modelling language

space.

2. UML Model Evaluation — UML standards that address UML extensions and facilities

for the transformation of UML extended models into other types of modelling tech-

niques.

3. Implementation Generation — Code generators that develop platform specific imple-

mentations can be used to implement the PSM. These generators translate UML model

into a selected programming language and middleware constructors (e.g., Java and

CORBA interfaces along with Enterprise Java Beans (EJB) component descriptors).

2.4 Grammar-Based Model Transformations

The research related to grammar-based model transformations is divided into the following

categories: model transformation taxonomy, coordination theory, metamodels as grammars,
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and model transformation management.

2.4.1 Model Transformation Taxonomy

A classification of model transformation approaches is provided by Czarnecki and Helsen in

[CH03]. Following this classification, each transformation rule consists of two distinct parts:

a left-hand side (LHS), which refers to the source model, and a right-hand side (RHS), which

refers to the target model. To create both the LHS and RHS, one can use a combination of

1. patterns, such as string, term, and graph patterns;

2. logic, such as computations and constraints on model elements; and

3. variables, which hold model elements of source, target, or some intermediary model.

We also follow a taxonomy of model transformations provided in [MCG05] that classifies

transformations as

1. endogenous, if they transform models in the same language, or exogenous, if they

transform models between different languages; and

2. horizontal, if the transformed models are at the same, or vertical, if the transformed

models are at different levels of abstraction.

In this thesis, we view transformations as components of the model synchronization

framework. Our focus is on effects of exogenous, vertical transformations that we repre-

sent in pattern-like format using attributed context-free grammars.
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2.4.2 Coordination Theory

Our interpretation of the problem of synchronizing heterogenous entities is related to Coordi-

nation Theory originally published by Malone [Mal90]. In this work, coordination is defined as

the act of managing interdependencies (generally viewed as constraints) between activities

performed to achieve a goal.

We adopt this theory to define model synchronization as the process of managing con-

straints among software artifacts, which are based on established model interdependencies.

2.4.3 Metamodels as Grammars

The idea of representing software models as context-free grammars was previously de-

scribed by Metayer [Met96], where software architecture styles are formalized as n-ary rela-

tions and represented through context-free grammars by identifying a role as unary relation

and a link between entities as a binary relation. The representation of types as relations,

even though plausible for architectural styles, when extended to more specific metamodels

or domain models does not address the problem of ambiguity in the resulting formalisms.

Alanen and Porres [AP03] have derived a method for interpreting MOF metamodels directly

as Extended Backus-Naur Form (EBNF) grammars, and have also identified an inadequacy

of EBNF to handle attributed edges, a crucial feature of many object-oriented models (e.g.,

attributed and directed associations between classes).

We adopt Metayer’s view of models as n-ary relations, but we interpret a MOF-compliant

domain model uniquely as tuples of types, relations, connectors, and attributes. From the

tuples, we generate a context-free grammar that is capable of handling attributed edges, and

hence, is capable of representing specialized associations such as aggregation, composi-
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tion, and generalization.

2.4.4 Model Transformation Management

Akehurst [Ake00] attends to the problem of model translation by utilizing a combination of

UML and OCL to specify transformation relations between two object-oriented models. A

similar technique is proposed by Milicev [Mil02], which utilizes extended UML object dia-

grams to specify translation between source and target metamodels. The Fujaba approach

[Fuj05] is based on an extended-through-action stereotypes combination of UML activity and

collaboration diagrams as story diagrams [FNTZ98] for the specification of model transfor-

mations.

In [Tah04], Tahvildari focuses on legacy system re-engineering. In the proposed ap-

proach, the evolution is driven by both functional and non-functional software requirements.

To represent software qualities and software transformations that may affect them, the NFR

framework is used [CNYM00]. A soft-goal interdependency graph (SIG) is used to model

software architecture design, where the leaves of the SIG are design decisions that posi-

tively (++) or negatively (–) affect the soft-goals above them.

We also base our approach on adoptable UML/OCL representation for models. However,

we use context-free grammars as abstractions of models to create a generic approach that

can systematically be adopted for translation of any two related MOF-compliant software

models.
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2.5 Model Dependency Extraction

The research related to dependency extraction is divided into the following categories: soft-

ware reuse, hierarchical data management, and program flow analysis.

2.5.1 Software Reuse

In the approaches that focus on software reuse, Spanoudakis and Constantopoulos [SC94]

measure similarity through a distance metric in order to evaluate the reuse potential of soft-

ware artifacts. Engels et al. [EHSW99] discuss the transformations between Unified Model-

ing Language (UML) Class Diagrams and UML Collaboration Diagrams [OMG10] and Java

source code. The approach considers the structural and behavioral mappings using trans-

formation patterns. The patterns used are not trivial to extract and the pattern repository

needs to be updated as new transformations are introduced. The approach in this paper

uses formal concept analysis to establish the mappings at the level of model elements. For

objects that belong to more than one concept, conflict resolution is performed using a simi-

larity metric, represented for instance as a sum of weighted scores.

2.5.2 Program Flow Analysis

In [Sev87], Seviora describes the use of program flow analysis and understanding in knowledge-

based debugging systems. Two different program understanding approaches are recog-

nized. In the code-driven (bottom-up) approach, symbolic evaluation and recognition of

standard programming constructs are used to form an abstract representation of the program

and its individual parts. In the problem-driven (top-down) approach, using the existing pro-

gram specification the structure of the program is derived and refined until it can be verified
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against the code. Tilley et al. in [TSP96] follow this categorization of program understanding,

and also identify iterative hypothesis refinement and hybrid approaches (i.e., combinations

of top down and bottom up) as two additional categories. They also view reverse engineering

and program analysis in a canonical fashion as a three-step approach: (1) modelling, where

domain-specific models of the application are constructed; (2) extraction, where data is gath-

ered from the subject system using appropriate extraction techniques; and (3) abstraction,

where abstract representations are created that facilitate understanding and exploration of

the considered information structures.

In the research published by Rich and Wills, subgraphs are used to recognize program

design [RW90]. In their approach, several categories of problems related to establishing

model dependencies are recognized. These include non-contiguousness — adjacent ele-

ments from one flow may be separated in another related flow, implementation variation —

the same design under differing contexts may be represented by different implementations,

overlapping implementations — two or more implementations may overlap in implemented

functionality, and unrecognizable implementations — no relevant semantic information can

be extracted from an information flow. This view is extended through our research by con-

sidering challenges related to: n-ary relations — dependencies are not only one-to-one or

one-to-many, but also many-to-many mappings of model elements, partial dependencies —

only parts of model elements are related, and non-applicable dependencies — an element

from one model is not directly mapped to any element in a related model. These challenges

are addressed through the following:

• Non-contiguousness, overlapping implementations and partial dependencies are ad-

dressed through mappings of individual model elements instead of flow patterns.

• Implementation variation is addressed through mappings of interfaces and recognition
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of differing contexts for each mapping.

• N-ary relations are addressed through definition of model dependencies as tuples of

model elements.

• Unrecognizable implementations and non-applicable dependencies are addressed through

inclusion of user feedback.

In [RMJ06], Rayside et al. introduce an approach to program flow analysis where object

ownership is used to cluster related objects. The key aspect of this approach is control,

where one object (x) is said to own another object (y) if x is an immediate dominator of

y (i.e., the dominator relationship implies that every path from the root node to y passes

through x) in the corresponding program control graph.

2.5.3 Model Management

In the research area of hierarchical data management, an approach by Faid et al. [FMG99]

uses formal concept analysis to discover concepts and rules based on structured complex

objects. Gianolli and Mylopoulos [RGM01] perform semantic mapping of XML data stores

using a common DTD schema. In this paper, the semantics of hierarchical data structures

are mapped using intermediate models. However, the relations among individual model

elements are also inferred based on the mappings of related attributes.

In [SME08, SME09], Salay, Mylopoulos and Easterbrook propose a framework in which

formally defined model relationships are used to express relationships between models at

a high-level of abstraction by constructing a macromodel while maintaining comprehension

and consistency during evolution. The approach is limited in that it works with models within

a collection only.
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In view consistency management, Sabetzadeh and Easterbrook [SNEC06] address the

problem of incompleteness and inconsistency in graph-based view integration towards gain-

ing a unified perspective in conceptual modeling. The authors present a flexible and math-

ematically rigorous framework based on structure-preserving maps and a general algorithm

for merging views systematically and traceably. However, identifying potential interconnec-

tions between views is still a manual process, the merges do not function on a semantic axis,

and hierarchical structures are not supported.

2.6 Model Synchronization

Within the context of model synchronization related research, we identify three categories:

triple graph grammar (TGG) approaches, approaches based on other model transformation

languages, and software co-evolution approaches.

2.6.1 TGG-based Model Synchronization

In TGG-based model synchronization, triple graph grammar rules [SK08] are used to estab-

lish relations between source and target models. Each rule consists of the source pattern,

the correspondence nodes, and the target pattern. The synchronization is accomplished by

• Matching the source pattern in the source instance model,

• Using the correspondence nodes to check applicable constraints and to identify the

target pattern, and

• Applying the target pattern to the target instance model, to either generate missing

model elements or identify the ones that need to be altered or removed.
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The emphasis of related research in this area is on improving the run-time efficiency of

the application of the TGG rules. Many of the related approaches assume that the rules

have already been established, and focus on exploring various synchronization algorithms

[KLKS10].

In [GW06, GW09], Giese and Wagner have introduced an approach for incremental

model synchronization using triple graph grammars. The use of TGGs allows for the for-

mal and bidirectional synchronization of larger models as compared to the traditional batch

approaches. They use additional links between correspondence nodes to interpret the cor-

respondence model as a directed acyclic graph. Their approach does not declaratively ad-

dress node deletions. Instead, in their implementation, for unsatisfied transformation rules

the related correspondence node and all created elements are deleted. The drawback to

the approach seems to be that the expressiveness of the grammar variant does not include

non-local properties, and as such, operational or hybrid transformation languages may be

more expressive.

Giese and Hildebrandt in [GH08] present an improvement of batch processing of changes

for multiple updates. The original incremental algorithm’s performance is severely compro-

mised if many modifications are made because their algorithm synchronizes changes in the

order that they occur. Their improvement to the incremental algorithm accelerates synchro-

nization for a large number of changes in the models, and is comparable to the speed of the

batch algorithm. This is possible because their algorithm starts the synchronization at the

modified correspondence nodes by sorting the modifications by their depth and synchroniz-

ing at the correspondence node that is closest to the root.

In [GK07, GK10], Greenyer and Kindler compare and contrast the philosophy and the

concepts of the declarative languages of QVT and TGG, to enable tool-supported TGG-

based synchronization. They conclude that relational QVT-Core mappings can be converted
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to TGG rules and executed by a TGG transformation engine. They propose an initial ap-

proach for mapping QVT-Relations to TGGs. They also use the semantic foundation of TGG

to better understand the semantic gaps of QVT. We base our mapping of TGG rules to QVT

on this approach.

Dang and Gogolla in [DG08] propose a language for the integration of TGG rules and

OCL based on QVT using their USE tool. The approach is based on declarative OCL pre-

and post-conditions for operation contracts, and imperative command sequences for opera-

tional realization. This integration is demonstrated by discussing examples supporting model

co-evolution and consistency. The model does not handle large-scale syntax and semantics

translations, and cannot definitively comment on the correctness of correspondence models.

2.6.2 Synchronization based on Model Transformation Langu ages

Other approaches to model synchronization that do not utilize TGG instead employ other

model transformation languages, such as Atlas Transformation Language (ATL) [JK05], to

identify and synchronize corresponding model properties. The approaches in this area focus

on refining the transformation languages to more efficiently suit the needs of the model

synchronization (e.g., creation of synchronization rules from model transformation rules),

and where possible enable bidirectional synchronization.

Xiong, Liu, et al. in [XLH+07] discuss an automatic approach, that satisfies stability,

preservation and composability properties, to synchronizing models based on a unidirec-

tional transformation between the related metamodels in the Atlas Transformation Language

(ATL). While the algorithm produces clear synchronization semantics, the approach seems

rather limited in that it is based on the prerequisite that model transformations from one

model to another be given. The proposed algorithm is a promising start, but is also limited in
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that reflectable insertions on the target side cannot be handled.

Diskin in [Dis09] presents an algebraic framework for specification and design of model

synchronization tools based on the algebraic operations being diagrammatic and resulting

in compositions of tiles. Two approaches — abstract (or black box) and concrete (or white

box) — provide a formal notation for synchronization. One of the obvious limitations is that

the approach considers very simple constraints of single multiplicities, and does not handle

multi-layer mappings.

Eramo, Malavolta et al, in [Mal10], discuss that description of any software architecture

requires multiple Architecture Description Languages (ADL), which results in the need to

maintain consistency in the multiple notations. The authors propose a generic convergent

and scalable change propagation approach between multiple architectural languages. The

approach is implemented within Eclipse, and supports model mappings by using bidirectional

transformations. The authors are working towards a learning approach that deduces infor-

mation to be used for further mappings from user choices, and that is based in collaborative

modeling.

Mens in [Men05] postulates the representation of models as graphs and model transfor-

mations as graph transformations for model refactoring. This is implemented in the Attributed

Graph Grammar System (AGG) [Tae03] using critical pair analysis and Fujaba using round-

trip engineering for a simplified version of UML class diagrams and statecharts. Improve-

ments to this work include the expressiveness of the approach enhanced by a mix of graph

and tree representations, the ability to compose more complex and composite refactorings,

and the ability to maintain consistency between models as they evolve.

In another publication [Men], Mens addresses the issue of working with models that

have design defects in the context of graph-transformation based software evolution. A tool
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developed as a front-end of the AGG Engine is proposed, and is based on properties such

as critical pair analysis and reasoning about sequential dependencies. The approach does

not address the termination of the iterative and interactive defect introduction in the models,

or the order of resolving the defects, though it does comment on initial thoughts about both

issues.

2.6.3 Synchronization through Software Co-Evolution

Finally, there are related approaches that do not focus on model transformations as a change

apparatus, but instead focus on other aspects of co-evolution, such as interpreting intention

of change from one abstraction layer to another [Kön10], consideration of aspects in the

context of co-evolution [DT10], domain-specific synchronization using a custom-built syn-

chronization environment [RÖV10], and design patterns as facilitation of change [LLM09].

More specifically, Konemann in [Kön10] presents a discussion on capturing user’s inten-

tion of the atomic changes made to a model, specifically, MOF-compliant ones. The author

presents a framework for producing the semantic aspect of the atomic changes (i.e., capture

the user’s intention in making these changes). The goal is to abstract changes which may

be applicable to other models as well, and is achieved by identifying individual and flexible

matching strategies defined for each semantic change through two stages: (1) an automated

initial matching; and (2) an interactive refinement step that is optional. One obvious draw-

back is that this approach is not automated. Also, of the refactorings applied, less than 50%

were only applicable if the models are similar to the sample models, and about 65% of the

design patterns applied had to be adjusted by the user after application.

Dahanayake and Thalheim [DT10] discuss multi-model information systems modeling

from the point of view of ‘facets’ and ‘aspects’ where model synchronization is necessary for
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creating harmonized and coherent models needed for specifying these facets and aspects.

The authors introduce the theory of model suites as a set of models with explicit associ-

ations among the models, which include tracers and explicit controllers for coherence and

application schemata for harmonization during evolution. The experimentation is based in

MetaCASE to generate toolkits. The limitation of the approach seems to be that it is applica-

ble only to highly structured models, such as UML diagrams, extended ER models, and XML

models.

In [RÖV10], Ráth, Ökrös and Varró discuss the issue of the limitation of restrictions im-

posed on traceability links between abstract concrete syntax by most Domain-Specific Mod-

elling (DSM) frameworks and propose a syntax-driven domain-specific model which gen-

erates complex mappings under a novel DSM environment. Also, they demonstrate bidi-

rectional synchronization. While the approach is highly scalable, the approach is driven by

syntax only.

In [LLM09], Levendovszky, Lengyel and Mészáros propose the possibility of design pat-

terns as efficient solutions for recurring issues with the rapid development of domain-specific

modeling languages. On the basis of constructs that weaken instantiation rules, the authors

discuss the appropriateness and sufficiency of these rules to express patterns. The theory

does not handle non-relaxable metamodels for OCL-like constraints.

2.7 Chapter Summary

In this chapter we have presented topics in software models, model transformations, grammar-

based model transformations, model dependency extraction, and model synchronization, as

related to our research. In the next chapter, we introduce a formal notation for the repre-
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sentation of domain models and model instances. This notation is based on the previously

conducted research discussed in this chapter.
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Chapter 3

Model Synchronization Notation

The problems of language here are really serious. We wish to speak in some way

about the structure of the atoms. But we cannot speak about atoms in ordinary

language.

— Werner Heisenberg

3.1 Chapter Overview

In this chapter, we introduce formal notation for the representation of domain models, model

instances, and model stereotypes that will be used throughout the thesis to form the theoret-

ical basis for the proposed model synchronization framework (mSYNTRA).

Besides conforming to a generic MOF metamodel, we consider that each software model

also relates to an application domain context (e.g., operating systems, web services). In this
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respect, we are addressing the problems of model synchronization by focusing on domain-

specific contexts. Each such domain context consists of domain-specific types and relations

that are associated with corresponding attributes and values. A formally defined abstraction

of such a domain context is referred to as, a domain model. A domain model may be available

as part of the design documentation or may need to be extracted using domain analysis

techniques such as the Feature-Oriented Domain Analysis (FODA) technique [Kea97]. In

addition to domain types and relations, a domain model may also contain additional meta

information such as ontologies and feature maps [CK06]. Based on formally defined domain

models, concrete software model instances can be represented using these concepts that

are specific to a domain context. With model elements represented in terms of domain

types and relations and further contextualized with the meta information, the models become

more lucid and the ensuing evolution and maintenance activities are simplified. Examples

of domain models that conform to specific contexts are domain models that represent SOA

e-commerce systems, CORBA banking applications, and e-procurement web services, to

name a few.

In the proposed approach, we define a formal context for domain-specific model synchro-

nization by representing a domain model as a semantically-annotated context-free grammar

that we refer to as, domain-model grammar. In this respect, context-free grammars pro-

vide a flexible and extensible way of generating model instances in a formal manner and

consequently verifying the syntactic and semantic validity of these instances with respect

to their corresponding domain model or metadata constraints. More specifically, domain

types and relations are represented as grammar productions while additional semantic con-

tent is denoted by “semantic heads” (constraints specifying semantic properties) attached to

each of the production rules [SNPM90]. Dependencies between models that belong to dif-

ferent domains are viewed as associations between corresponding grammar rules and are
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formally represented through an association grammar. The semantic heads and the associ-

ation grammar are derived from a synchronization relation, which is established in reference

to specific domain models. The synchronization relation specifies properties and constraints

that must hold for two models from the corresponding domains to be synchronized. Using

the association grammar, the source model can be used to automatically generate a ver-

sion of the target model that is synchronized with the source (i.e., to translate a model from

one domain to another). In this context, an analogy the to the synchronization of two mod-

els is the synchronization of two sentences in two different languages such as English and

French. When one sentence changes, the other needs to be changed as well in order to pre-

serve structural and semantic properties. These properties can be defined as associations

between corresponding grammars.

The goal is to represent models as “sentences” that comply to corresponding grammars,

and then view model synchronization as grammar-based language translation, analogous to

translation of sentences between natural languages (e.g., translation between French and

English).

3.2 Motivation: Using Model Dependencies in

Grammar-Based Model Synchronization

Our research in the area of model synchronization uncovered the following research issues

and challenges:

1. Resolving model inconsistency through traceability consists of several types of manual

or, at best, semi-automated activities that include:

39



(a) identifying and maintaining dependency relations among models and their ele-

ments,

(b) tracing model transformations as they are performed,

(c) mapping transformations from one domain context to another, and

(d) ensuring that the source and target models are finally synchronized.

2. Automating the identification of model dependency relations requires the creation of

concept mapping rules.

3. Mapping of individual transformations across domain boundaries requires complex

syntax and semantic mappings and validation.

4. Validating the synchronization between the considered models requires the definition

of hierarchical synchronization relations.

5. Enabling pragmatic model synchronization requires significant manual overhead and

creates feasibility and scalability detriments.

To resolve some of these challenges and make our approach to model synchroniza-

tion more practical, we have opted to make use of context-free grammars for automated

generation of synchronized target models from source models [ASU86]. These grammars

can either be used directly or can be used to identify inconsistencies in existing target ab-

stractions. In this respect, by making use of context-free grammars, we aim to address the

following issues:

1. Generality and Completeness — unlike graph transformation-based approaches such

as [Fuj05], we intend on providing a generic mechanism for expressing model syntax
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formally as grammars. More specifically, we define an algorithm for mapping domain

models to domain model grammars, and provide automated creation of grammar pro-

ductions in contrast to graph transformation rules that are in general manually created.

2. Domain-Specific Model Generation and Model Synchronization — by using domain

contexts as the basis for the encompassing grammars, we aim to interpret each model

in terms of domain-specific concepts therefore allowing creation of more precise de-

pendency relations and in turn enabling automated generation of desired models and

domain-specific model synchronization.

3. Semantic Consistency and Relations – given that each of the grammar productions

is associated with a corresponding semantic head, which provides information with

respect to constraints and conditions that dictate whether a rule is applicable or not,

we are providing a method for encoding such semantic head information in the form

of metadata semantic properties that can be used to define the model synchronization

context. In this respect, establishing whether a synchronization rule is applicable in

a given context is performed not only by matching the left-hand side of the rule, but

also, by evaluating whether the semantic head metadata and constraints, hold in that

context.

4. Extensible and Adaptable Formalism — by choosing attributed context-free grammars

as the conceptual basis, the proposed framework can be extended with additional

properties encoded as attributes for the chosen production rules. Moreover, by select-

ing recognized MOF and UML metamodels as the base, we also address adaptability

in existing tools such as the Eclipse environment [Fou10].
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3.3 Domain Models as Grammars

The conceptual view of MOF-compliant models that is taken in this thesis is that of sentences

generated through the corresponding grammar. In this respect, we interpret domain models

as context-free grammars. Using the graph metamodel for synchronization (GMS), which we

have presented in [IK04b] and illustrated in Figure 3.1, we view domain models as collections

of attributed nodes (domain types) and attributed directed edges (ordered domain relations),

which represent types for instantiated concrete models. The domain model elements are

then viewed as nonterminals, and the concrete model elements are viewed as terminals in

the domain model grammar (DMG).

1 *

* 2

source

target

-label

-type

-value

GraphAttribute

-GUID

-label

-type

GraphElement

GraphNodeGraphEdge

-constraint

-explicitMappingTable

GraphDependency

Figure 3.1: Graph Metamodel for Synchronization (GMS)

As we stated above, domain models can be represented as context-free grammars that

allow for the generation of concrete model instances conforming to the corresponding do-

main model, that is, can be viewed as “sentences” belonging to the language generated by
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the corresponding grammar. However, in order to formally define domain models as context-

free grammars, we first have to formally define domain model elements. In this respect, we

consider that domain models are composed of domain model elements, which are defined

as follows.

As stated in Chapter 2, we adopt Metayer’s view [Met96] of models as n-ary relations,

but we propose to denote a MOF-compliant domain model as a collection of tuples of types,

relations (associations between types), connectors (edges of association relations), and at-

tributes.

Domain Model Elements : A domain model is defined as a tuple (DT, DR, DC,

DA, TNames, RNames, CNames, ANames, Values).

• Domain Types DT := { (<enum>, ti, {aj}, {rk}) |

– <enum> is the enumeration of tuples as an ordered sequence of types,

– type name ti ∈ TNames,

– type attributes aj ∈ DA, and

– type relations rk ∈ DR}.

• Domain Relations DR := {(<enum>, ri, {aj}, {ak
l}, {cm}) |

– <enum> is the enumeration of tuples as an ordered sequence of rela-

tions,

– relation name ri ∈ RNames,

– relation attributes aj ∈ DA,

– relation attributes ak
l for the relation type tl ∈ DT, and

– relation connectors cm ∈ DC}.
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• Domain Connectors DC := { (<enum>, ci, {aj}, {tk}) |

– <enum> is the enumeration of tuples as an ordered sequence of con-

nectors,

– connector name ci ∈ CNames,

– connector attributes aj ∈ DA, and

– domain type names tk ∈ TNames}.

• Domain Attributes DA := {(<enum>, ai, {vj}) |

– <enum> is the enumeration of tuples as an ordered sequence of at-

tributes,

– attribute name ai ∈ ANames, and

– attribute values vj ∈ Values with v1 as the initial value if defined }.

• Unique type names TNames,

• Relation names RNames,

• Connector names CNames,

• Attribute names ANames, and

• Values as an alphabet of domain values.

Object Model Elements : An object model that complies with a specified domain

model is defined as a tuple (DO, DR, DC, DA, ONames, TNames, RNames, CNames,

ANames, Values), where

• Domain Objects DO := { (<enum>, oi:ti, {aj}, {rk}) |

– <enum> is the enumeration of tuples as an ordered sequence of ob-

jects,
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– object name oi ∈ ONames,

– type name ti ∈ TNames,

– type attributes aj ∈ DA, and

– type relations rk ∈ DR}.

• Unique object names ONames.

The other elements, DR, DC, DA, TNames, RNames, CNames, ANames, and Values,

are defined in the same manner as discussed above for the domain model ele-

ments definition.

To represent the elements of a given domain model using this definition, a typical ap-

proach would be to:

1. Derive the elements of TNames, RNames, CNames, and ANames based on the UML meta-

model and their usage context;

2. Create in the following order tuples of attributes DA with consideration for uncon-

strained attributes, tuples of distinct connectors DC, tuples of distinct relations DR,

and tuples of distinct types DT; and

3. Eliminate redundant tuples.

To illustrate the DM formalization, we make use of the domain model example from Figure

3.2 and formally define it according to the domain model elements definition.

DM = (DT, DR, DC, DA, TNames, RNames, CNames, ANames, Values),

– TNames = {T1, T2, T3, T4, T5},
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Figure 3.2: Domain Model Example

– RNames= {Association, Generalization},

– CNames = {AssociationEnd, GeneralizationEnd},

– ANames = {Name, ta1, ta2, ta3, ta4, ta5, ta6, ra1, ra2, Aggregation, IsNavigable,

Visibility, Multiplicity, Role, Constraint}, and

– Values = an alphabet of domain values.

DT = {(<t1>, T1, {a1, a2, a3}, {r1, r4}), (<t2>, T2, {a1, a4, a5}, {r1, r2}), (<t3>, T3, {a1, a6},

{r2, r3}), (<t4>, T4, {a1, a7}, {r3, r4}), (<t5>, T5, {a1, a8, a9}, ∅)}

DR = {(<r1>, Association, {a1}, {a8, a9}, {c1, c2}), (<r2>, Association, {a1}, ∅, {c3, c4}),

(<r3>, Association, {a1}, ∅, {c5, c6}), (<r4>, Generalization, {a1}, ∅, {c7, c8})}

DC = {(<c1>, AssociationEnd, {a1, a10, a11, a12, a13}, {T1}), (<c2>, AssociationEnd, {a1,

a10, a11, a14, a13}, {T2}), (<c3>, AssociationEnd, {a1, a10, a15, a16, a13}, {T2}), (<c4>,

AssociationEnd, { a1, a10, a11, a16, a13}, {T3}), (<c5>, AssociationEnd, {a1, a10, a11,
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a16, a13}, {T1}), (<c6>, AssociationEnd, {a1, a17, a11, a16, a13}, {T3}), (<c7>, General-

izationEnd, {a1, a18, a19}, {T3}), (<c8>, GeneralizationEnd, {a1, a20, a19}, {T1})}

DA = {(<a1>, Name, Values), (<a2>, ta1, Values), (<a3>, ta2, Values), (<a4>, ta3, Val-

ues), (<a5>, ta4, Values), (<a6>, ta5, Values), (<a7>, ta6, Values), (<a8>, ra1, Val-

ues), (<a9>, ra2, Values), (<a10>, Aggregation, none), (<a11>, IsNavigable, false),

(<a12>, Multiplicity, 1), (<a13>, Visibility, public), (<a14>, Multiplicity, *) (<a15>, Is-

Navigable, true), (<a16>, Multiplicity, none), (<a17>, Aggregation, shared), (<a18>,

Role, child), (<a19>, Constraint, Values), (<a20>, Role, parent)}

As demonstrated through the previous example, the defined formalization is based on

cross-indexed tuples, where individual elements are uniquely identified through combina-

tions of tuple elements. For example, relations are uniquely identified through the combina-

tion of the relation name, relation attributes tuples, relation attribute tuples for the relation

type, and relation connector tuples. Constrained attributes are identified through the com-

bination of the attribute name and defined value while unconstrained attributes, which are

defined at the concrete model level, are identified through the combination of the attribute

name and Values set. Therefore, it follows that the defined formalism is a nonambiguous

representation of MOF-compliant domain models.

We have chosen this representation of domain models to allow for easier storage in a

relational or object-relational database, and querying using database-manipulation language

such as SQL. This representation is also comparable to eCore, but it is a more abstract

representation than eCore, and it can be processed outside of EMF.

The proposed formalism can also be used to represent model instances. As shown in

Figure 3.3, object instance o3 of type T3 was created and associated with object instance

47



ta1

ta2

ta5

o3 : T3

ta3

ta4

o2 : T2

ta6

o4 : T4

Figure 3.3: Object Model Example

o2 of type T2. Furthermore, object o4 of type T4 was created and associated with the object

o2 through directed association, and object o3 through aggregation association.

OM = (DO, DR, DC, DA, ONames, TNames, RNames, CNames, ANames, Values),

– ONames = {o2, o3, o4},

– RNames= {Association, Generalization},

– CNames = {AssociationEnd, GeneralizationEnd},

– ANames = {Name, ta1, ta2, ta3, ta4, ta5, ta6, ra1, ra2, Aggregation, IsNavigable,

Visibility, Multiplicity, Role, Constraint}, and

– Values = an alphabet of domain values.

DO = {(<o1>, o3:T3, {a1, a2, a3}, {r1, r4}), (<o2>, o2:T2, {a1, a4, a5}, {r1, r2}), (<o3>, o4:T4,

{a1, a6}, {r2, r3})}

DR = {(<r1>, Association, {a1}, {a8, a9}, {c1, c2}), (<r2>, Association, {a1}, ∅, {c3, c4}),

(<r3>, Association, {a1}, ∅, {c5, c6}), (<r4>, Generalization, {a1}, ∅, {c7, c8})}
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DC = {(<c1>, AssociationEnd, {a1, a10, a11, a12, a13}, {T1}), (<c2>, AssociationEnd, {a1,

a10, a11, a14, a13}, {T2}), (<c3>, AssociationEnd, {a1, a10, a15, a16, a13}, {T2}), (<c4>,

AssociationEnd, { a1, a10, a11, a16, a13}, {T3}), (<c5>, AssociationEnd, {a1, a10, a11,

a16, a13}, {T1}), (<c6>, AssociationEnd, {a1, a17, a11, a16, a13}, {T3}), (<c7>, General-

izationEnd, {a1, a18, a19}, {T3}), (<c8>, GeneralizationEnd, {a1, a20, a19}, {T1})}

DA = {(<a1>, Name, Values), (<a2>, ta1, Values), (<a3>, ta2, Values), (<a4>, ta3, Val-

ues), (<a5>, ta4, Values), (<a6>, ta5, Values), (<a7>, ta6, Values), (<a8>, ra1, Val-

ues), (<a9>, ra2, Values), (<a10>, Aggregation, none), (<a11>, IsNavigable, false),

(<a12>, Multiplicity, 1), (<a13>, Visibility, public), (<a14>, Multiplicity, *) (<a15>, Is-

Navigable, true), (<a16>, Multiplicity, none), (<a17>, Aggregation, shared), (<a18>,

Role, child), (<a19>, Constraint, Values), (<a20>, Role, parent)}

Based on this hierarchical definition of a DM, it is now possible to more directly represent

DM types and relations through a context-free grammar that uses grammar productions to

represent each of the domain model elements. In the following section, we discuss how we

represent a domain model and its elements as a context-free grammar.

3.4 Creating Domain-Model Grammars

In this section, we address the process of creating a domain-model grammar by propos-

ing the following DM2DMG algorithm. We also prove selected properties of domain-model

grammars that are necessary for their usage in the context of domain-specific model syn-

chronization.

Domain Model Grammar : A domain model grammar (DMG) for a domain model

DM := (DT, DR, DC, DA, TNames, RNames, CNames, ANames, Values) is a tuple (NT,
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T, P, AX), where a set of nonterminals NT := NTT ∪ NTR ∪ NTC ∪ NTA. NTT =

{F(TNames) | F 1 is a mapping of strings to nonterminals to generate enumeration

of nonterminals for type names}, NTR = {F(RNames)}, NTC = {F(CNames)}, and

NTA = {F(ANames)}. A set of terminals T := {t | t ∈ Values}, a finite set of production

rules P := {(LHS, RHS) | where LHS ∈ NT, RHS ∈ (NT ∪ T)*} inferred from DT,

DR, DC, and DA, and AX is the axiom that represents the origin for the derivation.

3.4.1 An Algorithm for Representing Domain Models as Domain

Model Grammars

Algorithm DM2DMG Representing DM as DMG

Input:

1. Domain Model DM

Output:

1. Domain Model Grammar DMG

Steps:

1F is a lexicographical “identity” mapping F:T→NT, that keeps the same lexicographical notation for all the

elements of the original field to the mapped elements of the target field. For instance, F(a:T) = a:NT, where a

in the origin is considered to be a type while in the target is considered to be a nonterminal.
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Step 1. Let NTT = {F(TNames) | F is a mapping of strings to non-

terminals} be enumerated set of nonterminals for type names, NTR

= {F(RNames)} be enumerated set of nonterminals for relation names,

NTC = {F(CNames)} be enumerated set of nonterminals for connector

names, NTA = {F(ANames)} be enumerated set of nonterminals for at-

tribute names.

Step 2. Let NT = NTT ∪ NTR ∪ NTC ∪ NTA, let T be a set of terminals

defined as elements from Values, and let AX be the starting symbol for

derivation.

Step 3. Create the start rule by placing the start symbol AX on the LHS

and iterate through the elements of nti ∈ NTT and nrj ∈ NTR to derive

the RHS by adding nti and AX nti and nrj and AX nrj as choices of the

start rule (e.g., AX → nt1 | nt1 AX | nt2 | nt2 AX . . . | nr1 | nr1 AX | nr2 |

nr2 AX . . .).

Step 4. Create type name production rules PT by iterating through the

elements of NTT :

Step 4.1 For each nti ∈ NTT , with the corresponding domain-model

tuple (<enum>, ti, {aj}, {rk}) ∈ DT where nti = F(ti), create a production

rule pi ∈ PT with nti on the LHS and elements from {aj} as a string on

the RHS (e.g., nti → a1 . . . an).
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Step 5. Create relation name production rules PR by iterating through

the elements of NTR:

Step 5.1 For each nri ∈ NTR, with the corresponding domain-model

tuple (<enum>, ri, {aj}, {ak
l}, {cm}) ∈ DR where nri = F(ri), create a

production rule pi ∈ PR with nri on the LHS and attributes from {aj}

as the starting string on the RHS followed by the attributes from {ak
l},

attributes of the type relation tl, and connector names cm (e.g., nri →

a1 . . . ap tl.a1
l
. . . tl.aq

l c1 . . . cr).

Step 6. Create connector name rules PC by iterating through the ele-

ments of NTC :

Step 6.1 For each nci ∈ NTC , with the corresponding domain-model

tuple (<enum>, ci, {aj}, {tk}) ∈ DC where nci = F(ci), create a produc-

tion rule pi ∈ PC with nci on the LHS and choices on the RHS for each

t ∈ {tk} where each choice is a string of attributes from {aj} followed by

the type name nonterminal, ntT = F(t) (e.g., nci → a1 . . . ap ntT1 | . . . |

a1 . . . ap ntTn).

Step 7. Create attribute name rules PA by iterating through the ele-

ments of NTA:

Step 7.1 For each nai ∈ NTA, with the corresponding domain-model

tuple (<enum>, ai, {vj}) ∈ DA where nai = F(ai), create a production

rule pi ∈ PA with nai on the LHS and lexicographically-sorted attribute

values from {vj} as choices on the RHS (e.g., nai → v1 | v2 . . .).

Step 8. Let P = {ordered set of production rules from PT , PR, PC , PA},

that is, the rules appear always in the same order by first listing the rules

PT then PR, PC , PA. Let the resulting grammar DMG = (NT, T, P, AX).

Step 9. Output DMG and terminate.
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3.4.2 Representing Standardized Modeling Infrastructure

To enable representation of entire domain models, we first define the representation of

atomic domain model relations as context-free grammar rules. The atomic or single re-

lations considered are the association (association), shareable aggregation (aggregation)

composite aggregation (composition) and generalization (inheritance). These relations are

illustrated in Figure 3.4 as R1, R2, R3, and R4, respectively.

1 *

Composition1

+target

*

+source

* Association1

Aggregation1

Generalization1

[R1]

[R3]

[R2]

[R4]

T1 T2

T3 T4

T5 T6

T7 T8

Figure 3.4: Domain Model Atomic Relations

Using a particular section of the UML metamodel as input [OMG10], a grammar required

to represent the elements and features of Ri is as follows:

Step 1-2 :

NTT := {Class}, NTR := {Association, Generalization}, NTC := {AssociationEnd, Generalizatio-

nEnd}, NTA := {Name, Role, Type, Constraint, isNavigable, isComposite, isDerived, Multiplici-

tyElement, isOrdered, isUnique, lower, upper, LiteralInteger, range, star, Visibility}, NT := NTT

∪ NTR ∪ NTC ∪ NTA, T := {alphabet of valid UML element names}, AX := M.
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Step 3. :

p1 : M → Class | Class M | Association | Association M | Generalization | Generalization M

Step 4. :

p2 : Class → Name Constraint | Name:Type Constraint

Step 5. :

p3 : Association → Name Constraint AssociationEnd AssociationEnd

p4 : Generalization → Name Constraint GeneralizationEnd GeneralizationEnd

Step 6. :

p5 : AssociationEnd → Role Constraint isNavigable isComposite isDerived MultiplicityElement

Visibility Member:Class

p6 : GeneralizationEnd → Constraint General:Class | Constraint Specific:Class

Step 7. :

p7 : Name → T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | Association1 | Aggregation1 | Composition1 |

Generalization1 | an element from the alphabet of other element names for the corresponding

Namespace

p8 : Role → an element from the alphabet of element roles for the corresponding Namespace

p9 : Type → an element from the alphabet of element types for the corresponding Namespace

p10 : Constraint → an element from the alphabet of constraints for the corresponding Namespace

p11 : isNavigable → true | false

p12 : isComposite → true | false
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p13 : isDerived → true | false

p14 : MultiplicityElement → isOrdered isUnique lower upper

p15 : isOrdered → true | false

p16 : isUnique → true | false

p17 : lower → none | LiteralInteger | range | star

p18 : upper {upper >= lower} → none | LiteralInteger | range | star

p19 : LiteralInteger → a constant Integer value

p20 : range → LiteralInteger..LiteralInteger

p21 : star → *

p22 : Visibility → public | protected | private | package

Step 8 :

P := {p1, p2, . . . p22} and DMG := {NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

We illustrate the validity of the grammar through derivation of individual relations as fol-

lows:

Association An association defines a semantic relationship between classes, and an in-

stance of an association is a set of tuples relating instances of the classes. R1 demon-

strates an association between nodes T1 and T2. Based on the derived grammar, a

derivation tree R1 is illustrated in Figure 3.5.
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Association

AssociationEndName

Member:ClassRole Constraint isNavigable isComposite isDerived

Association1

source none false falsefalse
Name
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Figure 3.5: A Derivation Tree for R1
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Aggregation An aggregation is a specialized form of association that represents a whole/part

relationship. The end symbol as shown in R2 of Figure 3.4 is attached to the whole

element (T1) and the other association ends (T2) are attached to its parts. A derivation

tree for R2 is analog to the one shown for R1.

Composition A composition is a specialized form of aggregation, where the relation be-

tween the whole, indicated by the end symbol as shown in R3 of Figure 3.4, and its

parts is exclusive. Each part can only belong to one whole and the parts cannot exist

without the whole. A derivation tree for R3 is analog to the one shown for R1.

Generalization1

p7

M

Generalization

p1

GeneralizationEndName

p4

Constraint General:Class

null

p10

Constraint

null

p10

Name

T7

p7

p2

Constraint

null

p10

p6

GeneralizationEnd

Constraint Specific:Class

null

p10

Name

T8

p7

p2

Constraint

null

p10

p6

Figure 3.6: A Derivation Tree for R4

Generalization A generalization is a taxonomic relationship between a more general, indi-

cated by the end symbol as shown in R4 of Figure 3.4, and a more specific element.

The more specific element is consistent with the more general element by having all of

its properties, members, and relationships, but it may contain additional attributes and

features. A derivation tree for R4 is illustrated in Figure 3.6.
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3.4.3 Illustrative Example

To illustrate the DMG creation algorithm, we use the following application scenario, derived

from work by Miller [ABMM07]. In this scenario, there are two related domain models as

shown in Figure 3.7. In the source domain model, each instance of “Person” type is related

through the “writes” relation to zero or more “Book” instances, and each “Book” instance is

related to one or more “Person” instances. Each “Book” instance is also related to zero or

more “Library” instances through the “heldAt” relation, and each “Library” instance is related

to one or more “Book” instances. In the target domain model, each instance of “Author” type

is related through the “hasBookAt” relation to zero or more “Library” instances, and each

“Library” instance is related to one or more “Author” instances.

-aname

Author

-libID

Library

0..*1..* writes
-pname

Person

-bname

Book

-libID

Library0..*1..* heldAt

0..*1..* hasBookAt

Source Domain Model:

Target Domain Model:

Figure 3.7: Illustrative Example Overview

Using the DM to DMG algorithm described above, the following domain model grammars

for the source and target domain models are created.
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Source Domain Model Grammar

Step 1-2 :

NTT := {Person, Book, Library}, NTR := {writes, heldAt}, NTC := {Connector1, Connector2},

NTA := {pname, bname, libID, star}, NT := NTT ∪ NTR ∪ NTC ∪ NTA, T := {alphabet of valid

attribute values}, AX := M.

Step 3. :

p1 : M → Person | Person M | Book | Book M | Library | Library M | writes | writes M | heldAt |

heldAt M

Step 4. :

p2 : Person → pname

p3 : Book → bname

p4 : Library → libID

Step 5. :

p5 : writes → Connector1 Connector2

p6 : heldAt → Connector1 Connector2

Step 6. :

p7 : Connector1 → 1..star

p8 : Connector2 → 0..star

Step 7. :

p9 : pname → an element from the alphabet of person names for the corresponding Namespace
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p10 : bname → an element from the alphabet of book names for the corresponding Namespace

p11 : libID → an element from the alphabet of library IDs for the corresponding Namespace

p12 : star → *

Step 8 :

P := {p1, p2, . . . p12} and DMG := {NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

Target Domain Model Grammar

Step 1-2 :

NTT := {Author, Library}, NTR := {hasBookAt}, NTC := {Connector1, Connector2}, NTA :=

{aname, libID, star}, NT := NTT ∪ NTR ∪ NTC ∪ NTA, T := {alphabet of valid attribute val-

ues}, AX := M.

Step 3. :

p1 : M → Author | Author M | Library | Library M | hasBookAt | hasBookAt M

Step 4. :

p2 : Author → aname

p3 : Library → libID

Step 5. :

p4 : hasBookAt → Connector1 Connector2

Step 6. :
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p5 : Connector1 → 1..star

p6 : Connector2 → 0..star

Step 7. :

p7 : aname → an element from the alphabet of author names for the corresponding Namespace

p8 : libID → an element from the alphabet of library IDs for the corresponding Namespace

p9 : star → *

Step 8 :

P := {p1, p2, . . . p9} and DMG := {NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

3.4.4 Domain Model Instances

The described DMG formalism is intended to provide a set of grammar production rules that

can parse a specific domain model. To ensure that our notation is capable of parsing specific

model instances, that is models which are compliant with the corresponding domain models,

we introduce a specialized domain model grammar, DMG, that is capable of parsing specific

model instances.

Domain Model Grammar for Domain Model Instances DMG: For a domain

model DM := (DT, DR, DC, DA, TNames, RNames, CNames, ANames, Values) and

a set of domain objects DO, DMG is a tuple (NT, T, P, AX), where a set of

nonterminals NT := ONames:TNames ∪ RNames ∪ CNames ∪ ANames, where ONames
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∈ DO, a set of terminals T := {t | t ∈ Values}, a finite set of production rules P :=

{(LHS, RHS) | where LHS ∈ NT, RHS ∈ (NT ∪ T)*} inferred from DO, DT, DR,

DC, and DA, and AX is the axiom that represents the origin for the derivation.

To derive a DMG, one can make use of the algorithm from Section 3.4.1, with the excep-

tion that for Step 4, we create object production rules PO by iterating through the elements

of NTO. For each nti ∈ NTO, with the corresponding tuple (<enum>, oi : tj , {ak}, {rl}) ∈ DO

where nti = F(oi : tj), create a production rule pi ∈ PO with nti on the LHS and elements from

{aj} as a string on the RHS (e.g., nti → a1 . . . an).

To illustrate the change, we use the following generic example.

Step 1-2 :

NTO := {o:Class}, NTR := {Association, Generalization}, NTC := {AssociationEnd, Generaliza-

tionEnd}, NTA := {Name, Role, Type, Constraint, isNavigable, isComposite, isDerived, Multi-

plicityElement, isOrdered, isUnique, lower, upper, LiteralInteger, range, star, Visibility}, NT :=

NTO ∪ NTR ∪ NTC ∪ NTA, T := {alphabet of valid UML element names}, AX := M.

Step 3. :

p1 : M → o:Class | o:Class M | Association | Association M | Generalization | Generalization M

Step 4. :

p2 : o:Class → Name Constraint | Name:Type Constraint

Step 5. :

p3 : Association → Name Constraint AssociationEnd AssociationEnd

p4 : Generalization → Name Constraint GeneralizationEnd GeneralizationEnd
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Step 6. :

p5 : AssociationEnd → Role Constraint isNavigable isComposite isDerived MultiplicityElement

Visibility Member:Class

p6 : GeneralizationEnd → Constraint General:Class | Constraint Specific:Class

Step 7. :

p7 : Name → T1 | T2 | Association1 | Aggregation1 | Composition1 | Generalization1 | o1:T1 |

o2:T2 | o3:T2 | o4:T2 | an element from the alphabet of other element names for the corre-

sponding Namespace

p8 : Role → an element from the alphabet of element roles for the corresponding Namespace

p9 : Type → an element from the alphabet of element types for the corresponding Namespace

p10 : Constraint → an element from the alphabet of constraints for the corresponding Namespace

p11 : isNavigable → true | false

p12 : isComposite → true | false

p13 : isDerived → true | false

p14 : MultiplicityElement → isOrdered isUnique lower upper

p15 : isOrdered → true | false

p16 : isUnique → true | false

p17 : lower → none | LiteralInteger | range | star

p18 : upper {upper >= lower} → none | LiteralInteger | range | star

p19 : LiteralInteger → a constant Integer value
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p20 : range → LiteralInteger..LiteralInteger

p21 : star → *

p22 : Visibility → public | protected | private | package

Step 8 :

P := {p1, p2, . . . p22} and DMG := {NT, T, P, AX}.

Step 9 :

Output DMG and terminate.

o1:T1
o2:T2

o3:T2

o4:T2

+target

*

+source

* Association1
[DM]

T1 T2

[M]

Figure 3.8: A Domain Model Instance Example

The Figure 3.8 illustrates a domain model instance, where one instance of type T1 is

matched to three instances of type T2, following the many-to-many relation in the applicable

domain model. The corresponding derivation tree for the same model is shown in the Figure

3.9.
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Figure 3.9: A Domain Model Instance Derivation Tree
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3.4.5 DMG in the Context of Domain-Specific Model Synchronizati on

We evaluate the representation of domain models as domain-model grammars in two steps:

first, by evaluating the DMG construction, and second, by evaluating the DMG properties with

respect to “parsing“ or “generation“ of specific models. The criteria for evaluation are based

on the requirements for enabling grammar-based model synchronization. For example, hav-

ing a grammar representation that cannot be constructed in bounded time (i.e., intractable

grammar) or one that is not an adequate representation of a domain model (i.e., grammar

undergeneration or overgeneration) would be detrimental to the model synchronization pro-

cess.

DMG Construction Evaluation

To evaluate the grammar construction algorithm, we evaluate the following qualities: (1)

uniqueness, (2) determinism, (3) tractability, (4) incrementality, and (5) reverse incremental-

ity. We also evaluate the following qualities with respect to the grammar parsing capabilities:

(1) undergeneration, (2) overgeneration, (3) tractability, (4) completeness, and (5) sound-

ness.

Uniqueness For each set of DM elements and an enumeration algorithm, the production

rules are unique.

Proof: The proof is by construction, based on four cases: for DT domain type tuples, for DR

domain relation tuples, for DC domain connector tuples, and for DA domain attribute tuples.

For domain type tuples, each domain type is enumerated and related attributes are lex-

icographically sorted. Hence, each domain type ti from (<enum>, ti, {aj}, {rk}) is uniquely

mapped to a production rule nti → a1 . . . an in a ordered sequence based on the tuple enu-
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meration, where nti = F(ti) with F being a mapping of strings to nonterminals, and (a1 . . . an)

∈ {aj} being a lexicographical and unique ordering of attributes.

For domain relation tuples, each domain relation is enumerated, relation attributes and re-

lation type attributes are lexicographically sorted, relation type attributes are indexed based

on the relation type, and relation connectors follow their respective enumeration. Hence,

each domain relation ri from (<enum>, ri, {aj}, {ak
l}, {cm}) is uniquely mapped to a produc-

tion rule nti → a1 . . . ap tl.a1
l . . . tl.aq

l c1 . . . cr, where nti = F(ri), (a1 . . . ap) ∈ {aj} being a

lexicographical and unique ordering of attributes, (tl.a1
l . . . tl.aq

l) ∈ {ak
l} also being a lexico-

graphical and unique ordering of attributes, and (c1 . . . cr) ∈ {cm} being an enumeration of

related connectors.

For domain connector tuples, each domain connector is enumerated, connector attributes

are lexicographically sorted, and connector types follow their respective enumeration. There-

fore, each domain connector ci from (<enum>, ci, {aj}, {tk}) is uniquely mapped to a pro-

duction rule nti → a1 . . . ap ntT1 | . . . | a1 . . . ap ntTn, where nti = F(ci), (a1 . . . ap) ∈ {aj}

being a lexicographical and unique ordering of attributes, ntT1 . . . ntTn being an enumeration

of related connector types.

Finally, for domain attribute tuples, each domain attribute is enumerated, and attribute

values are lexicographically sorted. Therefore, each domain attribute ai from (<enum>, ai,

{vj}) is uniquely mapped to a production rule ntA → v1 | v2 . . ., where nti = F(ai), (v1, v2 . . .)

∈ {vj} being a lexicographical and unique ordering of values.

Based on the four cases above, which comprise the base construction blocks of a DMG,

it follows that for each set of DM elements, the resulting DMG production rules are unique

(please see the enumeration process in the DM2DMG algorithm and the unique ordering of

the rules).

67



Determinism For distinct domain models DM1 and DM2 and domain-model grammars DMG1

and DMG2 that are generated from DM1 and DM2 respectively, it holds that DMG1 6= DMG2

⇔ DM1 6= DM2, iff DM1 and DM2 are allowed to differ in one of the core elements, such as

different types, relations, or attributes.

Proof: Case 1 (DM1 6= DM2 ⇒ DMG1 6= DMG2). DM1 6= DM2 means that DM1 and DM2

differ either on their types or on their attributes or on the relations among the different types.

In this respect, any such difference will result in to generating different tuples for DM1 and

DM2 for all the elements that DM1 and DM2 differ. If there are tuples from DM1 and DM2 that

differ and because the rules that are generated are shown to be unique by the uniqueness

property, this means that the resulting grammar will be different. Any other possibility of the

grammars being equal would violate the uniqueness property.

Case 2 (DMG1 6= DMG2 ⇒ DM1 6= DM2). We use the proof by construction and consider

four sets of tuples that comprise the domain model elements.

For domain type production rules PT , if there is a difference in any of the elements of

nti → a1 . . . an, such as different types or different attributes, then the resulting DM tuples

are also different since the domain types are enumerated and attributes are lexicographically

sorted.

Similarly, for domain relation production rules PR, if there is a difference in any of the

elements of nti → a1 . . . ap tl.a1
l . . . tl.aq

l c1 . . . cr, such as different relations, different

attributes, different type attributes, or different connectors, then the resulting DM tuples rules

are different since the domain relations and domain connectors are enumerated, and all

domain attributes are lexicographically sorted.

Also, for domain connectors production rules PC , if there is a difference in any of the
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elements of nti → a1 . . . ap ntT1 | . . . | a1 . . . ap ntTn, such as different connectors, differ-

ent attributes, or different connector types, then the resulting DM tuples are different since

domain connectors and domain types are enumerated and attributes are lexicographically

sorted.

Finally, for domain attribute production rules PA, we distinguish two cases. The first case

is when attributes in the two domain models are allowed to have different values as choices,

and the second case is when attributes in the two domain models are allowed to have only

one value. In the first case, it is possible that the resulting DM tuples are the same even

though the related DMG rules are different if the specific values from the alphabet of domain

values do not apply to DMs in question. In this case, it may hold that even though DMG1

6= DMG2, the corresponding domain models DM1 and DM2 be still equal (DM1 = DM2). For

example, domain values of 0 or * for Multiplicity attribute could be left out as choices in

PA production rule. Domain models that do not have Multiplicity specified or that use other

values such as 1 could still be parsed by the changed DMG rules without changing any of

the DM element tuples.

In the second case, where the attributes in the two domain models are allowed to have

only one value then we can say that when DMG1 6= DMG2 ⇔ DM1 6= DM2

Therefore, we identify two cases of domain models with respect to the determinism prop-

erty: for domain models that differ in one of the core elements, such as different types,

relations, connectors, or attributes, it holds that DM1 6= DM2 ⇔ DMG1 6= DMG2; and for do-

main models that differ only in domain values but have the same core elements, it holds that

DM1 6= DM2 ⇒ DMG1 6= DMG2 only.

Tractability The creation of a domain-model grammar DMG from the given domain model

DM is tractable.

69



Proof: Using the DM2DMG algorithm, the creation of a DMG from the given DM involves

iterating through the tuples of domain types DT, domain relation DR, domain connectors DC,

and domain attributes DA. The algorithmic complexity of DMG creation is then O(|DT| + |DR|

+ |DC| + |DA|). Consequently, as the DMG can be created in bounded time, the presented

approach is tractable.

Incrementality For a domain model DM, a corresponding domain-model grammar DMG,

and a subset DM′ of DM, there exists a domain-model grammar DMG′ that corresponds to

DM′ such that DMG′ is a subset of DMG.

∀DM ′ ⊆ DM ⇒ ∃ DMG′ | DMG′ ⊆ DMG (3.1)

Proof The proof is by construction. Based on the uniqueness property, each of the tuples ti

in DM′ would represent a unique production rule in DMG′. Since DM′ is a subset of DM, DM

would contain all the tuples of DM′. That means, assuming the same enumeration process,

the rules in DMG will have all the rules stemming from the tuples of DM′ plus all the rules

that stem from the extra tuples of DM. Hence, DMG′ ⊆ DMG.

Reverse Incrementality For a domain-model grammar DMG and a corresponding domain

model DM, there exists a subset DMG′ of DMG generated from a domain model DM′ such

that DM′ is a subset of DM.

∃DMG′ ⊆ DMG | DM ′ ⊆ DM (3.2)

Proof It is possible to select a collection of rules from DMG yielding DMG′ such that DMG′

is a subset of DMG, in a way that the rules from DMG′ will correspond to types, relations,

connectors, and attributes from DM that form a subset DM′ of DM. Please note that not any
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subset DMG′ of DMG can correspond to a valid DM′ as a subset of DM. The valid subsets

DMG′ of DMG where the reverse incrementality property holds is when the rules are selected

in a way that the generated model DM′ is a valid MOF model.

Undergeneration All concrete models M that can be instantiated from a domain model DM

can also be parsed by the corresponding grammar DMG.

∀M :: DM →
gen

M ⊆ L(DMG) (3.3)

Proof: The proof is by contradiction. Let us assume that there exists a model M′ that can be

instantiated from a domain model DM but cannot be parsed by the corresponding domain-

model grammar DMG. This implies that M′ complies with all of the tuples from DM, but it

violates one of the rules from DMG. That means, M′ has a tuple in its representation that

has not been used to create a rule in DMG. However, since M′ is an instance of DM, all

tuples of M′ have to have a rule in DMG, which contradicts with the hypothesis.

Overgeneration All concrete models M that can be parsed by a domain-model grammar

DMG can also be instantiated from a domain model DM.

∀M ⊆ L(DMG) ⇒ M :: DM (3.4)

Proof: The proof is by contradiction. Let us assume that M can be parsed by DMG, but M

is not an instance of DM. That means there exists a type, relation, connector, or attribute,

that exists in M and does not exist in DM. In this case, since DMG is generated from DM,

it will contain rules from DM tuples that do not correspond to tuples representing M. In this

case, it will not possible to use the DMG rules to fully parse M, which is a contradiction.
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Tractability The parsing by a domain-model grammar DMG of all concrete models M that

can be instantiated from a domain model DM is tractable.

Proof: Since DMG and DMG are defined as context-free grammars, the asymptotic time

complexity for parsing sentences from both L(DMG) and L(DMG) is O(n3) (e.g., using the

CYK algorithm [Mar97]), where n is the size of the parsed string that represents a concrete

model instantiated from the DM. Each parsed string includes types followed by type attribute

tuples, relations followed by relation attribute tuples, and connectors followed by connector

attribute tuples. It follows that the asymptotic size complexity for sentences from L(DMG) is

O(|DO| + |DR| + |DC| + |DA|). Hence, the DMG parsing of concrete models M instantiated

from DM is tractable.

Completeness Any MOF-compliant DM can be represented as a DMG.

Proof: We consider that MOF-compliant domain models are composed of types, relations,

connectors, attributes, and values. Based on the construction algorithm 3.4.1, each one of

these elements yields a tuple which then is transformed into a rule.

Soundness A generated DMG is a sound representation of a MOF-compliant DM.

Proof: This property follows from the DMG construction algorithm and the tuple represen-

tation of DM. More specifically, for every element (type, relation, connector, and attribute) of

DM, a corresponding rule is generated for DMG. That means, every element of DM or an

instance of every element of DM can be parsed by a corresponding DMG rule. Parsing wise

and representational-equivalence wise, DMG is a sufficient representation of DM.
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3.5 Chapter Summary

This chapter presents the formal notation for the representation of domain models and model

instances in the context of domain-specific model synchronization. As part of the notation,

we have represented a domain model as a set of domain model elements, that is, enumer-

ated and sorted tuples of domain types, relations, connectors, and attributes. We have then

presented a method whereby domain model elements are represented as grammar pro-

ductions of the corresponding domain-model grammar, and where models are considered

as “sentences” generated by that grammar. We have then discussed how the generated

context-free grammar can be used to parse model instances that conform to a specific do-

main model. Finally, we have evaluated our approach by reflecting on specific properties

regarding domain grammar construction and domain grammar parsing capabilities.
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Chapter 4

Coarse-Grained Model Synchronization:

Establishing and Representing Model

Dependencies

Every word or concept, clear as it may seem to be, has only a limited range of

applicability.

— Werner Heisenberg

4.1 Chapter Overview

In model-driven development, software evolves iteratively and incrementally through modifi-

cations of artifact models, specified at different abstraction levels. These modifications are

performed independently, but the objects to which they are applied to, are in most cases
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mutually dependent. To avoid creation of evolution-induced inconsistencies and drift, among

related software models, the effects of each model transformation need to be systematically

and proactively identified, recorded, and propagated to other affected models. For large

software-intensive systems there may be a great number of model dependencies. Manual

extraction of a large number of dependencies would not be feasible, and some degree of

tool-supported automation would be required.

In this chapter, we address the problem of automating the extraction of model dependen-

cies among related software models and their elements. We utilize the extracted dependency

relations in the context of coarse-grained model synchronization.

4.2 Establishing Model Dependencies using Formal

Concept Analysis

The approach for establishing model dependencies using formal concept analysis was intro-

duced in our work presented in [IK05] and [IK06].

In our approach, each software model besides being denoted as a domain model gram-

mar (DMG), it is also viewed as a context in terms of objects and attributes. Formal Concept

Analysis (FCA) can be used as a formal method for identifying groups of objects that share

common attributes and are hence considered dependent. Given that the models are possi-

bly from different domains, we also introduce for that case, the notion of attribute association

rules for creating mappings among heterogeneous attributes. These rules can be defined

both at the domain model and, at the concrete model level. At the domain model level, the

rules represent mappings of types, attributes and associations between two models, while at

the model level, they represent mappings of object names, attribute values and annotations.
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Thesis Chapter 4

Model Repository M :: DMM Model Repository G :: DMG

Apply Annotation Transformer

Input Metamodels and Domain Models

Generate Annotated Intermediate Models
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Dependencies DMG
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Triple-Graph Grammar 

Rules TGGMG
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Fine-Grained Model Synchronization using UML

Interoperability with QVT-Compliant CASE Tools

Thesis Chapter 5

Figure 4.1: Establishing Model Dependencies using FCA
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In the proposed approach, we consider that one or more models conform to a specific

domain model that denotes relations and properties between model elements. Since models

may pertain to software artifacts at different levels of abstraction, they may have a significant

semantic gap when compared to each other. We propose that domain model information

can be used to generate a sequence of transformations that can alter these models to a

level where they can be compared and their dependencies can be extracted. These domain

model transformations can take the form of association rules or type mappings from one

domain model to another.

Schema mapping and the identification of association rules is out of the scope of the

thesis. This topic has been investigated extensively in the area of databases, such as the

work reported in Miller [ABMM07]. For this work, we consider that models are either from

the same domain or the association rules have already been defined. Nevertheless, for the

purpose of completeness, we provide some heuristic methods for defining association rules

as discussed in the Section 4.3.1.

Figure 4.1 illustrates this approach, where two repositories of models, M (source) and

G (target), contain models instantiated from domain models DMM and DMG respectively.

The corresponding association rules, ARMG, between the domains are established based

on compatible domain types and relations from models M and G. Using FCA, dependencies

DMG between models and model elements from M and G are identified.

To validate the approach and demonstrate its applicability in a practical scenario, we

make use of a case study where the goal is to synchronize business process models (BPM)

with the enacting Java and Enterprise Java Beans (EJB) [Ora08] source code. The busi-

ness models are represented as business workflows that include processes, tasks, deci-

sions, data, etc. Examples of such diverse domain models that represent EJB source code

and business workflows are depicted in Figure 4.2 and 4.3, respectively. Due to signifi-
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Figure 4.2: Business Process Domain Model

78



cant semantic gap between the two domains, before dependencies can be established, it is

necessary on one hand to augment the representation of the business workflows with imple-

mentation information, and, on the other hand, to abstract the code representation in terms

of related business functionality. Once models, domain models and, metamodels are repre-

sented in a MOF-compliant form [OMG06], they can then be represented as XML documents

and consequently their transformations can be encoded as XSLT transforms [Hol00]. The

details of this case study are presented in Chapter 6.
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Figure 4.3: Source Code Domain Model
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Figure 4.3 illustrates an example of an abstracted source code domain model. The

source code elements such as classes and methods are represented through abstraction

as ControllerCommand that are containers for other ControllerCommand and second-level

abstractions such as JavaBeans for invocation of Java Beans, TaskCommands for external

invocation, PseudoTaskCommands for clustered fragments of code, and Decisions. The

source code files are represented in XML, where this domain model is encoded as a DTD

schema [ZLK+04]. The mappings between source code and other models can thus be per-

formed as mappings of XML Document Object Model (DOM) trees.

4.3 Applying Annotation Transformer

Before FCA can be used, attribute associations need to be established for purposes of model

alignment. To establish relations between heterogeneous attributes, we make use of attribute

association rules to map attributes and values between models that relate and conform to

different domain models. The rules are established both at the domain model level and at

the concrete model level. The differences in levels of expressiveness and semantics are

augmented through generation of association models. Once the rules are established, FCA

is used for “clustering” objects based on shared attributes. A “clustered” group of objects

constitutes a concept and the objects are then said to be dependent.

The elements of domain models such as types, relations, and attributes, are extracted

through domain analysis and represented using MOF syntax. To bridge possible syntactic

and semantic gaps between domain models, the more abstract ones are iteratively anno-

tated and enhanced into more specific ones, while the more concrete ones are iteratively
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abstracted and refined into more abstract ones in an attempt to bridge the syntactic and

semantic gap between the models that need to be associated.

4.3.1 Defining and generating association metamodels

The models that need to be synchronized are based on domain model schemas. As pre-

sented in the previous chapter, the elements of such domain models are represented us-

ing MOF syntax, as types, relations, and attributes that are specific to a particular domain.

The domain models need to accurately represent their domain constituents in a format that

provides for easy access and manipulation. Domain models based on MOF could be for in-

stance represented in XML [W3C00], where the domain model elements are used to define

the corresponding DTD schema.

As an example, a domain model for business workflows, shown in Figure 4.2, is a schema

represented in UML that denotes Processes, Tasks, Decisions, Data, etc. as UML classes,

where process is a container class for itself and other classes.

A domain model can be instantiated to yield a concrete model that describes a specific

process or a source code segment. Relationships between one or more domain models

can be represented by the use of association metamodels. In this context, models, domain

models, and metamodels can be considered as typed, attributed, labeled, directed graphs. If

the domain models are not available, as part of the requirements or design documentation,

they may need to be extracted using a technique such as Feature-Oriented Domain Analysis

(FODA) [Kea97].

For two models that need to be synchronized, the relations between them can be es-

tablished first at the domain-model level, and then at the model-instance level. To establish

dependencies at the domain-model level, types, relations, and attributes that are dependent
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need to be derived and recorded as association rules. To establish relations at the concrete

model level, the rules established at one of the higher levels are used to identify tuples of

model elements that are related.

Since the approach is focused on heterogeneous models at different levels of abstraction,

establishing relations directly without refinement may be quite difficult. To overcome the

differences in model expressiveness and semantics, we propose to generate more closely

related association models. These models would be less syntactically and semantically

diverse and therefore, establishing relations among them would be easier.

For example, in the problem of synchronizing business processes with source code, we

annotate and enhance business process models with concrete data flow and control flow

information, and at the same time, we abstract the source code to yield activity-like models.

In Figure 4.4, this convergence is illustrated, where Customer Business Workflow models

are annotated to yield Customer Workflow Detailed models, and Information System models

are abstracted to yield Information System Abstract models. This is a problem that falls in

the context of schema mapping, where the objective is to associate schema elements from

two different schemas, and to identify mappings between such elements. Work conducted

by Miller [ABMM07] falls in this category. Since schema mapping fall beyond the topic of

this thesis, we propose a simple heuristic process that can be semi automated in order to

establish associations between elements of domain models of different schemas. Of course,

this heuristic approach can be replaced by a more sophisticated schema approaches, such

as the one presented in [ABMM07]. We describe this heuristic process that is based on

attribute association rules, such as hierarchical association rules, type-based association

rules, spatial resolution rules, text-based association rules, more formally as follows:

1. Let M and G be two concrete models, instantiated from domain models DMM and
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DMG, respectively. Analyze DMM and DMG to establish compatible domain elements

such as domain types, relations, events, etc.

2. Create convergent DMM
′ and DMG′ from DMM and DMG respectively, so that DMM

′

and DMG′ are more closely related and relations among them can now be established.

3. From M and G, generate M′ and G′ based on DMM
′ and DMG

′, respectively.

The sections below will discuss this process in more detail.

Attribute association rules

The domain models for a particular domain at a particular level of abstraction based on

our assumption would have common properties such as consistent features maps, lexicons,

ontologies, etc. The attribute association rules can thus be viewed as mappings between

attributes of heterogeneous models based on the mappings of the domain-specific prop-

erties. The classification of the association rules, and the examples for each of the rules

based on the domain models for business workflows and source code (Figures 4.2 and 4.3

respectively), are discussed below.

• Hierarchical Association Rules — Models are parts of model hierarchies and feature

maps for the hierarchies are extracted. Based on the containment relations between

models and features, two association types are recognized:

– direct, where models M and G are associated directly since they implement re-

lated features FM and FG, or
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– indirect, where models M and G are associated indirectly since M contains a

model M′ that implements a feature FM that is related to a feature FG that G

implements. In this case, M′ and G are directly related.

To illustrate hierarchical association rules, let M be a process “Process order” and let M′

be process “Prepare inventory” that is contained within M and that implements a feature

FM “Inventory management”. Also, let G be a source code class “InventoryAllocation”

that implements a feature FG “Inventory management”, and let features FM and FG be

related. From the relation between FM and FG, it follows directly that M′ and G are

related, and indirectly that M and G are related since M contains M′.

• Type-Based Association Rules — Domain elements such as domain types, relations,

and attributes defined in different domain models are associated based on compatible

structural properties (e.g., equivalent domain model, metamodel, or even metameta-

model classification).

To illustrate type-based association rules, let us consider the types Process and Con-

trollerCommand of the respective domain models (Figure 4.2). The compatible prop-

erties are that they are both root types of each model, that they contain themselves

and other subtypes, and that they have related attributes (Name, Name) and (Notes,

Comments). As a result, Process and ControllerCommand are associated.

• Spatial Association Rules — A flow of data in a model is represented as order at-

tributes, such that object o1 precedes object o2. The associations are established

based on the order attributes.

To illustrate spatial association rules, let us consider a flow (m1, m2) for a model M

and a flow (g1, g2) for a model G. The attributes of the first flow would be for m1 “Pre-

ceded by null” and “Followed by m2”, and for m2 “Preceded by m1” and “Followed by

85



null”. The attributes for the second flow would be analogous, so m1 and g1 could be

matched since they are both preceded by null, and m2 and g2 could be matched since

they are both followed by null.

• Text-Based Association Rules — Informal information attributes (i.e., comments, de-

scriptions, variable names, types, etc. ) are viewed as strings of text. The difference in

syntax and semantics are resolved through:

– thesaurus replacements — related synonyms are mapped,

– stemming — each word is reduced to its root (e.g., resource, resources, resource-

ful to resource),

– abbreviation expansion — abbreviations that are recognized for a particular do-

main are expanded,

– stop-word elimination — words with no semantic meaning, locally or globally, are

eliminated,

– word-matrix matching — groups of attributes that share words with semantic

meaning are recognized, and

– n-gram matching — strings are divided into substrings of size n and matched

accordingly.

To illustrate text-based association rules, let ma := “Verify the order line item is still old”

and gb := “Verify that this order item still meets the criteria for being stale” be related

attributes for elements m ∈ M and g ∈ G. We perform text-based matching as follows:

1. Eliminate stop words and replace synonyms to obtain ma
′ := “verify order line item

stale” and gb
′ := “verify order item meets criteria stale”
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2. Use 3-gram matching and the match level of 0.6 on ma
′′ := “ver eri rif ify ord rde

der lin ine ite tem sta tal ale” and gb
′′ := “ver eri rif ify ord rde der ite tem mee

eet ets cri rit ite ter eri ria sta tal ale” to obtain average(3-gram-match(ma
′′, gb”′′),

3-gram-match(gb”′′, ma”′′)) = 0.744 for the successful match.

The attribute association rules are formally represented as OCL descriptions [WK98].

The following illustrates in OCL the preceding 3-gram matching rule at the match level of 0.6:

M− >iterate( m : ModelElement |

G− >iterate( g : ModelElement;

result : Boolean = NGramMatching.ApplyRule( m− >a, g− >b, 3, 0.6)))

Other than the proposed method for establishing relations, there are other techniques

such LSI [DDF+90].

Here we introduce a sample association rule, AR, which is defined as follows.

AR := {TypeMatching(SourceType, TargetType),

NGramMatching.ApplyRule(SourceType->ElementName,

TargetType->ElementName, 3, 0.6),

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)}

This rule denotes that there is a type matching between source type and target type,

and there is text-based association rule, where the 3-gram matching is applied for matching

source and target model element names with the threshold level of 0.6. The value of 0.6

here indicates that we would like the 3-gram matching to be performed at a relatively high

degree of text-matching precision. Please note the threshold values range from 0 to 1, 0

meaning anything matches and 1 meaning exact matching. Similarly, the third rule indicates
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the 3-gram matching is applied for matching source and target model element descriptions

with the threshold level of 0.4.

Unmatched objects

The unmatched objects may be recognized through association of their immediate neigh-

bors based on additional or refined attributes and rules. For instance, in the following two

flows (m1, m2, m3, m4) and (g1, g2, g3, g4), tuples (m1, g1), (m1, g2), (m3, g4) are found as

model dependencies. It may be possible to ascertain dependencies for unmatched objects

m2, g3, and m4 by performing additional clustering on these objects and their matched neigh-

bors with new or changed attributes and rules. If for instance m2 is now found to be related

to m1 and g1, a tuple (m2, g1) would be created.

Conflict resolution rules

For the objects that are a part of two or more clusters, it may be necessary for practical

reasons to decide to which cluster they more strongly belong. This conflict resolution may

be achieved by weighted scoring of individual rules, where some rules are assigned a higher

value through initial experiments for a particular domain. The best match is selected by max-

imizing the weighted score. In case that more than one cluster is found with the maximum

score, all of the tuples from such clusters would be encoded as model dependencies.

More formally, let AR be a set of applicable attribute association rules and let MG := M

x G be a set of tuples of model elements. For a tuple (mp, gq) ∈ MG, the weighted score

WSpq :=
∑

wi * ari(mp, gq) where ari : Boolean ∈ AR and wi are domain-specific weight

parameters. The maximum score for an element mp is WSpmax := max{WSp0, WSp1 . . .} and

the top matches for an element mp are tuples (mp, gi) for which the WSpi := WSpmax.
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4.4 Establishing Model Dependencies using FCA

After semantic gaps (i.e., schema mappings) are bridged manually or semi automatically

utilizing the heuristics as discussed above or by schema mapping techniques as the ones

proposed in [ABMM07], the association rules are defined based on compatible properties.

Using FCA and the association rules, clusters of objects that share common attributes are

identified, and represented as tuples of model dependencies.

This section describes the framework for automatically establishing model dependencies

using formal concept analysis (FCA), which was introduced in [IK05]. As a part of this view,

models are viewed as collections of objects and attributes.

The complexity and the accuracy of individual mappings between models depends on the

type and the amount of information that is available from each model. If we compare con-

current mapping of structural and temporal properties to mapping of only structural or only

temporal properties, it holds that the number of eligible elements available would increase

in the former case as would the complexity of the mapping. As a result, the accuracy of the

mapping in the latter case may be higher.

Our focus is on a set of specific domain model properties based on the corresponding

structural, temporal, spatial, and behavioral attributes. As part of the approach, all domain

models and all instantiated concrete models are viewed as objects and attributes. All model

properties are then viewed as labels and attribute-value pairs. With regards to semantic

homogeneity of considered domains, we assume that models belonging to a particular do-

main, such as database management, represented at a particular level of abstraction would

be based on consistent features and types, and would also contain specific lexicons and

ontologies. Based on this assumption, we create matches of models and model elements by

associating related lexical and ontological concepts as part of the attribute association rules.
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4.4.1 Introduction to FCA

Before using FCA to establish model dependencies, we first need to introduce related FCA

definitions [GW99].

Formal Context : A formal context K := (O, A, I) contains two sets O and A, and a

relation I between O and A. The elements of the first set O are called the objects,

and the elements of the second set A are called the attributes of the context.

If we need to express that an object o from O is in a relation I with an attribute a from A,

we would write this as oIa and read it as “the object o has the attribute a”. The relation I in

this case is called the incidence relation of the context M.

We apply this definition to the previously introduced definition of domain model elements

(see Section 3.3), to interpret domain models elements as domain-model contexts DMC :=

(ODM , ADM , IDM ), where ODM := { oi | domain types oi ∈ DT }, ADM := { ai | domain

attributes ai ∈ DA ∪ DC }, and IDM := { ii | domain relations ii ∈ DR }.

The models instantiated from respective domain models are also contexts M := (OM ,

AM , IM ), where OM := { oj | domain type names oj ∈ TNames }, AM := { aj | domain attribute

names aj ∈ ANames ∪ CNames }, and IM := { ij | domain relation names ij ∈ RNames }

It follows then that a domain-model context DMCM is a metacontext for a model M that is

instantiated from DMCM . Since FCA dictates binary contexts, we provide a mapping of n-ary

to binary relations through combinatorial scaling. For example, an object o and n possible

values v1, v2. . . are represented as binary relations (o, ∅), (o, v1), (o, (v1, v2)), . . . (o, (v1, v2,

. . . vn)).

For a set O1 ⊆ O of objects, let

A1 := {a ∈ A | oIa, ∀o ∈ O1} (4.1)
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be the set of attributes common to the objects in O1. Also, for a set A2 ⊆ A of attributes, let

O2 := {o ∈ O | oIa, ∀a ∈ A2} (4.2)

be the set of objects which have all the attributes in A2.

Formal Concept : A formal concept of the context (O, A, I) is a tuple (O1, A2)

with O1 ⊆ O, A2 ⊆ A, O1 = O2 and A2 = A1, where O1 is the extent and A2 is the

intent of the concept (O1, A2).

The relations between attributes in A are represented through a relation of format “Ai →

Aj”, where Ai and Aj are subsets of A utilizing the schema mapping heuristics presented in

the previous section. This statement implies that an object that has the attributes in Ai also

has the attributes in Aj. To visualize these relations, a concept lattice can be built.

In Figure 4.5, a context of five objects O := {o1, o2, o3, o4, o5} and five attributes A :=

{a1, a2, a3, a4, a5} is represented as a matrix. Each cell in the matrix represents a relation

between an object and an attribute, where a filled cell indicates that a particular object has

a particular attribute (e.g., o3Ia1 since the cell (3, 1) is filled). From the context, the attribute

associations can be inferred as shown in the figure (e.g., {} → a5 implies that all objects in

the context exhibit attribute a5). The concept lattice is built from the attribute associations,

and from the concept lattice concepts can be read by reading the objects from the bottom

and the attributes from the top (e.g., object o3 and attributes a1 and a5 are a concept, objects

o3, o4, o5 and attributes a1, a4, a5 are a concept).

We refer to the rules for defining associations between attributes of different contexts as

attribute association rules.
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4 < 0 > a1 a3 a5 ==> a2 a4;

a5
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Figure 4.5: FCA Example
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4.4.2 Defining Model Dependency

Before discussing the method for establishing dependencies, we first define model depen-

dency as follows.

Model Dependency : A model dependency between models M and G is a set of

tuples (mi, gj) of elements obtained from models M and G such that mi and gj

have associated attributes.

More formally, let M and G be two models at different levels of abstraction with corre-

sponding domain-model contexts DMCM and DMCG. Let OM and OG be the objects and let

AM and AG be the attributes for M and G. Also, let

AMG := {aM , aG | aM ⊆ AM , aG ⊆ AG, aM ⇒ aG} (4.3)

be related attributes from AM and AG. The attribute logic for attribute associations aM ⇒ aG

of attributes from different contexts is defined as a set AR of attribute association rules.

For nonempty sets OM
′ ⊆ OM and OG

′ ⊆ OG of objects, let

A′

MG := {a ∈ AMG | o1Ia, o2Ia, ∀o1 ∈ O′

M , ∀o2 ∈ O′

G} (4.4)

be the set of attributes common to the objects in OM
′ and OG

′. Also, for a nonempty set

AMG
′ ⊆ AMG, let

B′

MG := {o1 ∈ OM , o2 ∈ OG | o1Ia, o2Ia, ∀a ∈ A′

MG} (4.5)

be the set of objects which have all the attributes in AMG
′.

Model Dependency via FCA : An concept between two contexts M and G is a

set (OM
′, OG

′, AMG
′) with OM

′ ⊆ OM , OG
′ ⊆ OG, AMG

′ ⊆ AMG, and BMG = (OM
′

∪ OG
′).
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4.4.3 Algorithm MDD-FCA:

Establishing Model Dependencies Through FCA

The algorithm for establishing model dependencies then includes the following steps.

Algorithm MDD-FCA Establishing Model Dependencies Through FCA

Input:

1. Model M := (OM , AM , IM ), 2. Model G := (OG, AG, IG)

3. Domain-Model Context DMCM , 4. Domain-Model Context DMCG

Output:

1. Established Model Dependencies D

Steps:

Step 1. Identify a set AMG of related attributes from AM and AG based on

compatible properties such as matched types, associations, data flow, spatial

properties, informal information, etc. of DMCM and DMCG.

Step 2. Given AMG, derive a set AR of corresponding association rules based

on the matched properties of DMCM and DMCG. For example, for attributes

matched based on spatial properties, use the spatial-matching rules.

Step 3. Iterate through elements of M and G to identify an initial set of model

dependencies D that share the attributes from AMG using the rules from AR for

association of concrete attributes.

Step 4. Exclude from D all of its irrelevant (e.g., include only the objects from

one context) and redundant (e.g., equivalent association results based on dif-

ferent sets of attributes) elements.
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Step 5. For those elements of M and G that cannot be matched using attribute

associations, attempt matching using their already-matched neighbors.

Step 6. For those elements of M and G that are matched to more than one

cluster, select the matchings using a corresponding conflict resolution rule. For

example, each association rule could be assigned a weight and those elements

with a maximum weighted score are selected as the top results.

Step 7. Return D as the set of established model dependencies.

4.4.4 Illustrative Examples

To illustrate the algorithm, we apply it to the application scenario (see Figure 3.7) introduced

in the previous chapter. As shown in Figure 4.6, each instance of Person is matched to an

instance of Author, and each instance of Book is matched to an instance of Author using

type matching rules. An instance of Library from the source domain model is matched to

an instance of Library from the target domain model, also using type matching. Finally,

attribute pairs (Person->pname, Author->aname), (Book->person->pname, Author->aname),

and (Library->libID, Library->libID) are matched using lexicographical nGram matching rules.

To further clarify the algorithm, we also demonstrate its usage on a simple scenario of two

models, a workflow M and a source code class G, that were matched based on suitable prop-

erties. We focus on matching of their elements, so we apply the algorithm. For Step 1, we

identify a set of compatible attributes AMG := ((Process Name, Class Name), (Notes, Com-

ments), (Subsystem, Package), (Previous Element in the Process Flow, Previous Element in

the Information Flow), (Next Element in the Process Flow, Next Element in the Information

Flow)) from the workflow and abstracted source code domain models. For Step 2, based

on AMG we identify a set of association rules AR that includes: text-based matching using
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Library Library

TypeMatching(Person, Author) & 1

Author

TypeMatching(Library, Library) & 3

(1) NGramMatching.ApplyRule(Person->pname, Author->aname, 3, 0.8)

(3) NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8)

Book

Person

TypeMatching(Book, Author) & 2

(2) NGramMatching.ApplyRule(Book->person->pname, Author->aname, 3, 0.8)

Figure 4.6: FCA Illustrative Example 1
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a combination of techniques including stemming, abbreviation expansion, stop-word elimi-

nation, n-gram matching, etc. on attribute pairs (Process Name, Class Name) and (Notes,

Comments); type-based and hierarchical matching by extracting workflow and source code

hierarchies on attribute pair (Subsystem, Package), and type-based and spatial matching

using position and data flow on attribute pairs (Previous Element in the Process Flow, Previ-

ous Element in the Information Flow) and (Next Element in the Process Flow, Next Element

in the Information Flow). In Step 3, we iterate through elements of M and G to identify those

that cluster together. For example, we matched the following two model elements:

• oM := ((Process Name, “Find stale order line items”), (Notes, “Find order line items that

are stale”), (Subsystem, “Order”), (Previous Element in the Process Flow, “Time to exe-

cute” (Task)), (Next Element in the Process Flow, “Are there more order items”(Decision)))

and

• oG := ((Class Name, “abOrderJDBCHelper.findStaleOrderItems”), (Comments, “Call

the Order query to get the list of expired order items”), (Package, “Order”), (Previous

Element in the Information Flow, “startUse” (Task)), (Next Element in the Information

Flow, “hasMoreElements” (Decision))).

The matching of elements, if we consider text-based matching rules, is based on:

• n-gram distance between semantically relevant words using thesaurus replacements

of (Process Name, “Find stale order line items”) and (Class Name, “abOrderJDBCHelper.

findStaleOrderItems”),

• n-gram distance and hierarchical (i.e., Subsystem to Package) mapping of (Subsys-

tem, “Order”) and (Package, “Order”), and
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• n-gram distance, type-matching (i.e., Decision to Decision), and spatial matching of

(Previous Element in the Process Flow, “Time to execute” (Task)) and (Previous El-

ement in the Information Flow, “startUse” (Task)), and (Next Element in the Process

Flow, “Are there more order items” (Decision)) and (Next Element in the Information

Flow, “hasMoreElements” (Decision)).

Figure 4.7 illustrates attribute-value pairs used to match elements of M and G, and es-

tablish a model dependency between them.

M G

NGramMatching(Process Name, ``Find stale order line items'') ->

(Class Name, ``abOrderJDBCHelper.findStaleOrderItems'')

HierarchicalMatching(Subsystem, ``Order'')  -> (Package, ``Order''))

Figure 4.7: FCA Illustrative Example 2

4.5 Representing Model Dependencies using Profiles and

Code Templates

Once model dependencies have been identified using Formal Concept Analysis (FCA), the

problem becomes how to represent such dependencies in a MOF-compliant way so that

these dependencies can be used by a programmatically-automated model synchronization
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framework. More specifically, in this section, we aim to contribute to the development of a

generalized MDA-based framework that can be used for fine-grained model synchronization.

Namely, the framework first proposes a method for modeling structural and programmatic el-

ements of Platform-Independent Models (PIMs) (i.e., source models) and Platform-Specific

Models (PSMs) (i.e., target models) in an open and extensible manner. Second, the frame-

work provides a method for encoding source-to-target model associations using UML profiles

and stereotypes. Finally, the platform-specific models are automatically mapped to source

code for the specific domain using customizable code templates.

In this context, the following challenges need to be addressed:

• How to define a customizable and extensible model-driven process that is based on

iterative and incremental transformation of software artifacts and models.

• How to represent domain-specific models that can be customized for a given applica-

tion. The approach bridges the dichotomy between the MDA approaches that utilize

UML extensions (through profiling) and the approaches that utilize Domain Specific

Languages (DSL).

• How to represent associations between source models and arbitrary target model en-

tities in a way specific mapping languages or model weaving techniques are not re-

quired. The approach allows for constraints to be defined in terms of an open lan-

guage such as OCL so that different mappings can be possible by considering the

context these mappings are applied in.

• How to generate source code for the target application in a way that no restrictions are

placed with respect to the target language or programmatic paradigm to be used.
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4.5.1 Model Dependencies in the Context of MDA

Model Driven Architecture (MDA) is a methodology developed by the Object Management

Group (OMG) for streamlining the design and implementation of large software-intensive sys-

tems. In MDA, software artifacts of large software systems are represented as a collection of

Platform Independent Models (PIM) that can be transformed to a collection of Platform Spe-

cific Models (PSM). The collection of PSMs can finally be transformed into source code that

complies with specific programmatic patterns. A PIM represents the elements of a software

system in a way that is not bound or dependent to a specific implementation technology.

Moreover, a PSM represents the elements and components of a software system in a way

that directly relates to the implementation technology that will be used for implementing such

a system.

MDA as a methodology has made progress from a "guideline" towards "standardized

process" that is meant to improve productivity of software engineers and improve overall

system robustness. However, some important questions regarding MDA still remain. For

example, what specific types of models pertain to PIMs and PSMs, how to encode and

enact PIM-to-PSM transformations, how to denote constraints, and how to generate source

code, are some of the open questions today.

The existing CASE tools that support MDA process can be divided into two categories:

full MDA-capability tools that provide modeling, transformation, and code generation infras-

tructure; and limited MDA-capability tools that incorporate only code generation infrastruc-

ture using specific models such as UML as input.

The main drawbacks of existing MDA tools include the following:

1. Existing MDA tools [Tea10a, Tea10b] focus on generating systems that are dependent

on specific platforms such as J2EE [Ora10], Corba [OMG02], or .NET [Mic10].
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2. The tools have limited capability on defining higher level transformation models since

they utilize either specific model transformation languages such as QVT, or proprietary

transformation formats.

3. The tools do not address interoperability and integrate only with specific modeling

frameworks. And, they do not provide infrastructure to integrate with other tools and

environments.

To address some of the open questions related to the MDA methodology, we describe the

following approach for representing model dependencies using profiles and code templates,

as part of our overall mSYNTRA framework. The approach was first introduced in [HIK+08].

This approach is intended as a full MDA-capability framework, including modeling, transfor-

mation, and code generation as it pertains to the MDA process.

More specifically, by modeling PIMs (source models) and PSMs (target models) in an

open way as MOF models that can be extended incrementally through inheritance, associa-

tions, and aggregation to denote specific applications (e.g. Gift Registry) in a given domain

(IBM WebSphere Commerce), we allow for the decoupling of a core source model from any

model extensions that pertain to specific properties of the process or application (e.g. Gift

Registry) being specified. This provides greater flexibility on generating richer target models

and consequently, facilitates the generation of code and systems to several target platforms.

Furthermore, by encoding source and target models using UML profiles and stereotypes, we

provide a simple, yet expressive way of modeling source-to-target model associations at a

higher level than QVT or any other rule-based model transformation formalism. This novel

approach also allows for the transformation rules themselves to be modeled in a MOF com-

pliant way, and therefore the automatic generation of QVT or any other formalism for model

transformation rules is possible. This addresses the second MDA tool drawback pertaining
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to the limited capability MDA tools have on denoting model transformation rules in an open

and extensible way.

For example, a source model from a Commerce application can be represented by enti-

ties such as Service, Service Description, Binder, Invocation Protocol, while the correspond-

ing target model entities that relate to SOA as the selected underlying implementation tech-

nology will contain corresponding entities such as Web-Service, WSDL, UDDI and, SOAP

respectively.

Finally, by utilizing a template based approach for code generation combined with profile-

based source-to-target model associations, we allow for the framework to be portable and

usable by any modeling environment or IDE that accepts MOF compliant models. This aims

to address the third drawback of existing MDA tools pertaining to the integration of MDA tools

with other environments.

4.5.2 Representing FCA-Based Dependencies using Profiles

To model specific dependencies extracted using formal concept analysis, we make use of

the Model Driven Architecture (MDA) methodology. Namely, we represent specific associ-

ation rules as mappings between UML profiles, where individual types are represented as

matching stereotypes.

We consider four core mapping cases: one-to-one, one-to-many, many-to-one, and many-

to-many. For each mapping, we consider a set of attribute association rules, as described in

Section 4.3.1.

• Type-based association rule, where the corresponding source and target classification

types are matched.

102



• Text-based association rule, where the 3-gram matching is applied to model element

names at the match level of 0.6 (higher precision).

• Another text-based association rule, where the 3-gram matching is applied to model

element descriptions at the match level of 0.4 (higher recall).

In Figure 4.8, we demonstrate how a one-to-one type-matching rule and several text-

matching rules are represented as profiles. Namely, each type-matching rule is represented

as a profile mapping, where the source type represents the source stereotype and the target

type represent the target package. Other rules that do not pertain to types are denoted as

OCL constraints attached to the profile mapping.

In Figure 4.9, we demonstrate how a one-to-many type-matching rule and several text-

matching rules are represented as profiles. The main difference here is that each depen-

dency tuple is represented as an additional target element. Other rules that do not pertain

to types are still denoted as OCL constraints attached to the profile mapping.

In Figure 4.10, we demonstrate how a many-to-one type-matching rule and several text-

matching rules are represented as profiles. The main difference here is that each depen-

dency tuple is represented as an additional source stereotype. Other rules that do not pertain

to types are still denoted as OCL constraints attached to the profile mapping.

In Figure 4.11, we demonstrate how a many-to-many type-matching rule and several

text-matching rules are represented as profiles. The main difference here is that each de-

pendency tuple is represented as a corresponding additional source stereotype or additional

target element. Other rules that do not pertain to types are still denoted as OCL constraints

attached to the profile mapping.
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One-to-One Model Dependencies

Let us assume, as illustrated in Figure 4.8, that there are the following elements. Source

type represents a type from the source domain model DMM , target type represents a type

from the target domain model DMG, AR is a collection of association rules, and C is a col-

lection of constraints stemming from the association rules AR. Let us also assume that

the dependency between the source type element and the target type element is a one-

to-one dependency mapping. According to the theory presented in Section 4.4.2, the de-

pendency is then denoted as dMG = {oi ∈ OM , oj ∈ OG | oiIa, ojIa, ∀a ∈ AMG},

which represents all model elements oi from M and oj from G that have attributes a from

AMG, where AMG = {(SourceType, TargetType), (SourceType->ElementName, TargetType-

>ElementName), (SourceType->ElementDescription, TargetType->ElementDescription)}.

More specifically, the matching attributes from AMG are represented as association rules

AR := {TypeMatching(SourceType, TargetType), NGramMatching.ApplyRule(SourceType->

ElementName, TargetType->ElementName, 3, 0.6), NGramMatching.ApplyRule(SourceType-

> ElementDescription, TargetType->ElementDescription, 3, 0.4)} denotes that there is a type

matching between source type and target type, and there is text-based association rule,

where the 3-gram matching is applied for matching source and target model element names

with the threshold level of 0.6. The value of 0.6 here indicates that we would like the 3-gram

matching to be performed at a relatively high degree of text-matching precision. Please note

the threshold values range from 0 to 1, 0 meaning anything matches and 1 meaning ex-

act matching. Similarly, the third rule indicates the 3-gram matching is applied for matching

source and target model element descriptions with the threshold level of 0.4.

This dependency is then denoted by a denotational function δP (dMG) using profiles as

follows. SourceType becomes the stereotype profile for the TargetType element. The con-

straints C are attached to the profile, and the association rules AR provide the details of the
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possible mappings between elements of the source model to the target model (please see

Section 4.3.1). For example, in the case of one-to-one model dependencies the δP (dMG) is

equal to the model of Figure 4.8.

<<SourceType>>

Execute()

TargetType

AR := { TypeMatching(SourceType, TargetType),

NGramMatching.ApplyRule(SourceType->ElementName, TargetType->ElementName, 3, 0.6),   

NGramMatching.ApplyRule(SourceType->ElementDescription, TargetType->ElementDescription, 3, 0.4) }

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Attribute Association Rule:

SourceToTarget Profile Mapping:

Figure 4.8: The One-to-One Model Dependencies as Profiles

One-to-Many Model Dependencies

Let us assume, as illustrated in Figure 4.9, that there are the following elements. Source

type represents a type from the source domain model DMM , three target types represent

types from the target domain model DMG, AR is a collection of association rules, and C

is a collection of constraints stemming from the association rules AR. Let us also assume
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that the dependency between the source type element and the target type element is a

one-to-many dependency mapping. According to the theory presented in Section 4.4.2, the

dependency is then denoted as dMG = {oi ∈ OM , oj ∈ OG | oiIa, ojIa, ∀a ∈ AMG}, which

represents all model elements oi from M and oj from G that have attributes a from AMG,

where AMG = {(SourceType, TargetType1), (SourceType, TargetType2),(SourceType, Tar-

getType3), (SourceType->ElementName, TargetType->ElementName), (SourceType-> Ele-

mentDescription, TargetType->ElementDescription)}.

This dependency is then denoted by a denotational function δP (dMG) using profiles as

follows. SourceType becomes the stereotype profile for the TargetType1, TargetType2, and

TargetType3 elements. The constraints C are attached to the profile, and the association

rules AR provide the details of the possible mappings between elements of the source model

to the target model (please see Section 4.3.1).

Many-to-One Model Dependencies

Let us assume, as illustrated in Figure 4.10, that there are the following elements. Three

source types represent types from the source domain model DMM , the target type repre-

sent a type from the target domain model DMG, AR is a collection of association rules, and

C is a collection of constraints stemming from the association rules AR. Let us also as-

sume that the dependency between the source type element and the target type element is

a many-to-one dependency mapping. According to the theory presented in Section 4.4.2,

the dependency is then denoted as dMG = {oi ∈ OM , oj ∈ OG | oiIa, ojIa, ∀a ∈ AMG},

which represents all model elements oi from M and oj from G that have attributes a from

AMG, where AMG = {(SourceType1, TargetType), (SourceType2, TargetType),(SourceType3,

TargetType), (SourceType->ElementName, TargetType->ElementName), (SourceType-> El-

ementDescription, TargetType->ElementDescription)}.
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<<SourceType>>

Execute()

TargetType1

AR := { TypeMatching(SourceType, TargetType1),

TypeMatching(SourceType, TargetType2),

TypeMatching(SourceType, TargetType3),

NGramMatching.ApplyRule(SourceType->ElementName, TargetType->ElementName, 3, 0.6),   

NGramMatching.ApplyRule(SourceType->ElementDescription, TargetType->ElementDescription, 3, 0.4) }

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Attribute Association Rule:

SourceToTarget Profile Mapping:

Execute()

TargetType2

Execute()

TargetType3

Figure 4.9: The One-to-Many Model Dependencies as Profiles
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This dependency is then denoted by a denotational function δP (dMG) using profiles as

follows. SourceType1, SourceType2, and SourceType3 jointly become the stereotype profile

for the TargetType element. The constraints C are attached to the profile, and the association

rules AR provide the details of the possible mappings between elements of the source model

to the target model (please see Section 4.3.1).

<<SourceType1,

SourceType2,

SourceType3>>

AR := { TypeMatching(SourceType1, TargetType),

TypeMatching(SourceType2, TargetType),

TypeMatching(SourceType3, TargetType),

NGramMatching.ApplyRule(SourceType->ElementName, TargetType->ElementName, 3, 0.6),   

NGramMatching.ApplyRule(SourceType->ElementDescription, TargetType->ElementDescription, 3, 0.4) }

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Attribute Association Rule:

SourceToTarget Profile Mapping:

Execute()

TargetType

Figure 4.10: The Many-to-One Model Dependencies as Profiles

Many-to-Many Model Dependencies

Let us assume, as illustrated in Figure 4.11, that there are the following elements. Three
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source types represent types from the source domain model DMM , three target types rep-

resent types from the target domain model DMG, AR is a collection of association rules,

and C is a collection of constraints stemming from the association rules AR. Let us also as-

sume that the dependency between the source type element and the target type element is a

many-to-many dependency mapping. According to the theory presented in Section 4.4.2, the

dependency is then denoted as dMG = {oi ∈ OM , oj ∈ OG | oiIa, ojIa, ∀a ∈ AMG}, which

represents all model elements oi from M and oj from G that have attributes a from AMG,

where AMG = {(SourceType1, TargetType1), (SourceType1, TargetType2),(SourceType1, Tar-

getType3), (SourceType2, TargetType1), (SourceType2, TargetType2), (SourceType2, Tar-

getType3), (SourceType3, TargetType1), (SourceType3, TargetType2), (SourceType3, Tar-

getType3), (SourceType->ElementName, TargetType->ElementName), (SourceType-> Ele-

mentDescription, TargetType->ElementDescription)}.

This dependency is then denoted by a denotational function δP (dMG) using profiles as

follows. SourceType1, SourceType2, and SourceType3 jointly become the stereotype profile

for the TargetType1, TargetType2, and TargetType3 elements. The constraints C are attached

to the profile, and the association rules AR provide the details of the possible mappings

between elements of the source model to the target model (please see Section 4.3.1).

4.5.3 Illustrative Example

To clarify how the FCA-based dependencies are mapped to profiles, we apply the profile-

based representation to the illustrative example shown in Figure 4.6. The resulting stereo-

type mappings, which are based on the many-to-many model dependency mapping, are

shown in Figure 4.12.
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AR := { TypeMatching(SourceType1, TargetType1),

TypeMatching(SourceType1, TargetType2),

TypeMatching(SourceType1, TargetType3),

TypeMatching(SourceType2, TargetType1),

TypeMatching(SourceType2, TargetType2),

TypeMatching(SourceType2, TargetType3),

TypeMatching(SourceType3, TargetType1),

TypeMatching(SourceType3, TargetType2),

TypeMatching(SourceType3, TargetType3),

NGramMatching.ApplyRule(SourceType->ElementName, TargetType->ElementName, 3, 0.6),   

NGramMatching.ApplyRule(SourceType->ElementDescription, TargetType->ElementDescription, 3, 0.4) }

Attribute Association Rule:

SourceToTarget Profile Mapping:

<<SourceType1, 

SourceType2,

SourceType3>>

Execute()

TargetType1

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Execute()

TargetType2

Execute()

TargetType3

Figure 4.11: The Many-to-Many Model Dependencies as Profiles

110



<<Library>>

AR := { TypeMatching(Person, Author),

TypeMatching(Book, Author),

TypeMatching(Library, Library),

NGramMatching.ApplyRule(Person->pname, Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Book->person->pname, Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8) }

Attribute Association Rule:

SourceToTarget Profile Mapping:

<<Person,

Book>>

aname

Author

Constraints:

NGramMatching.ApplyRule(Person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Book->person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8)

libID

Library

Figure 4.12: FCA Model Dependencies as Profiles Example
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4.6 Validity of Profile-Based Model Dependency

Representations

For the representation of FCA-extracted dependencies using profiles, we have abstracted

model dependencies to provide more semantically precise representation (e.g., the use of

annotations and constraints). The notation provided in Chapter 3 serves as a formal foun-

dation for the framework, but the use of profiles enables structural adoption in practice with

more detailed semantic detail. The profile-based representation is then mapped to triple

graph grammars in Chapter 5, to provide model synchronization capabilities and compliance

with other related methodologies, such as QVT. Below, we outline the assessment of profile-

based model dependency representations with respect to the properties of completeness

and soundness.

Completeness All model dependencies D that are extracted using the proposed FCA-based

approach can also be represented using profiles.

Proof: The proof is by construction on structural properties and element associations.

Structural properties : A tuple d ∈ D has to be one of the following cardinality cases:

1-to-1, 1-to-many, many-to-1, and many-to-many. If d ∈ D, it has to follow one of these

cardinality rules. For any such rule, a profile model can be created as indicated in the

construction process above.

Element associations : For element associations, we can differentiate two cases: known

and unknown mappings. For known mappings, these are denoted by attribute association

rules, as illustrated in Figures 4.8 to 4.11. For unknown mappings, we create explicit match-

ing constraints as discussed in the heuristic process related to unmatched objects in the

Section 4.3.1.
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Soundness All model dependencies represented using profiles are sound representations

of the corresponding model dependency tuples D.

Proof: The proof is analogous to the previous one, by construction on structural properties

and element associations.

For structural properties, a profile mapping would denote any of the four cardinality rules.

Let us assume that a profile mapping denotes a cardinality rule. There must be by construc-

tion a corresponding dependency tuple of the same cardinality.

For element associations, we distinguish two cases: known and unknown mappings. For

known mappings, in the profile we must have explicit association rules that should appear

by construction in the schema associations between the source and target models. And for

unknown mappings, by construction constraint representations (Figures 4.8 to 4.11). Let us

assume that a dependency is modeled through profiles. By construction, there should be an

associated dependency tuple.

4.7 Chapter Summary

In this chapter, we have discussed a framework that first, makes use of Formal Concept

Analysis (FCA) to systematically establish dependency relations among models and their

elements, and second, denotes model dependency relations as UML Profiles. The steps for

establishing model dependency relations include (1) the definition and generation of asso-

ciation models to bridge possible representational and abstraction gaps between domains,

(2) the establishment of model dependencies based on attribute association rules using

FCA, and (3) the validation of established dependencies. The process of denoting model

dependencies as profiles is based on the constructing appropriate profiles for one-to-one,
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one-to-many, many-to-one, and many-to-many dependency relations.

In the following chapter, we make use of the extracted profile-based dependencies, and

represent them as triple graph grammar rules, for the purposes of fine-grained model syn-

chronization.
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Chapter 5

Fine-Grained Model Synchronization:

Mapping Profile-Based Dependencies as

Triple Graph Grammar Rules

Even if there is only one possible unified theory, it is just a set of rules and

equations. What is it that breathes fire into the equations and makes a universe

for them to describe?

— Stephen Hawking

5.1 Chapter Overview

In the previous chapter, we have introduced a process for representing dependencies be-

tween models by using UML profiles, as well as, mappings between profiles through UML
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stereotypes.

In this chapter, we introduce modeling semantics that allow for more complex profile-

based dependencies using Triple Graph Grammar (TGG) rules with corresponding OCL

constraints.

5.2 Mapping Profile-Based Dependencies

as Triple Graph Grammar Rules

In this section, we present how profile-based model dependencies can be represented as

triple graph grammars. The motivation behind this concept is to allow for fine-grained model

synchronization using a language-based approach, similar to the one used in natural lan-

guage translation. The basics of the approach are illustrated in Figure 5.1. The set of profile-

based model dependencies, DMG, is either previously available or is created by applying the

approach described in the previous chapter. For each di ∈ DMG, a new triple graph grammar

rule, tggi is created with the source stereotype or stereotype package of di representing the

left-hand side of the new rule and the the target package representing the right-hand side of

the new rule, with any other constraints of di encoded as the correspondence node of tggi.

The new set of grammar rules, TGGMG, is created as the output. Consequently, these rules

can be encoded as QVT rules and used for fine-grained model synchronization.

To perform fine-grained model synchronization, let us assume that the consistent state

between model repositories M and G is disrupted when a model mt ∈ M is transformed into

mt
′ by changing some elements of mt, such as met

1 . . . met
l . For all met

1 . . . met
l model

elements that are affected by change, we apply rules from TGGMG that pertain to met
m ∈

{met
1 . . . met

l} to transform them to generate gek
j element of gj so that mt and gj can be
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Thesis Chapter 5
Established Model 

Dependencies DMG

Triple-Graph Grammar 

Rules TGGMG

Apply MDD-TGG Algorithm
Fine-Grained Model Synchronization using UML

Interoperability with QVT-Compliant CASE Tools

Figure 5.1: MDD-TGG Overview

again synchronized.

Before representing model dependencies as TGG rules, we first need to specify how the

individual source and target metamodels are related using TGG [SK08].

In Figure 5.2, we specify the relation between the source metamodel, and the target

metamodel, related through a correspondence metamodel specified using TGG rules.

Each TGG rule consist of the left-hand side graph, derived from the source metamodel,

and the right-hand side graph, derived from the target metamodel, related through a middle

graph node (as shown in Figure 5.3). Optional precondition constraint, specified in OCL for

example, can be attached to the middle node, providing additional specification on when the

TGG rule can be applied. For example, multiplicity constraints between source and target

classes, role-based constraints, or domain-specific constraints such as the ones discussed

later in this chapter.

The nodes and arcs marked with ‘++’ symbols represent graph elements that can be
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Source Metamodel Target Metamodel

Target ModelSource Model

Correspondence 

Metamodel (TGG Rules)

Correspondence 

Model

Instance Instance

Reference Reference

Reference Reference

Instance

Figure 5.2: Mapping Profiles to TGG Rules Overview

created as part of the translation or synchronization. For forward translation, the right-hand

side of the rule is created when the presence of the left-hand side (source) is detected.

For backward translation, the left-hand side of the rule is created when the presence of the

right-hand side (target) is detected. This approach effectively is equivalent to yielding two

grammars, TGGf for forward and TGGb for backward translation. For synchronization, both

left and right-hand sides are compared against the source and target models.

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType : SourceToTargetRelation

++ ++

++++
++

: TargetType

[optional precondition

constraint]

Figure 5.3: TGG Rule Example 1

The rule in Figure 5.3 also has no context nodes, and represents one of the base mapping
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rules. If a TGG rule contains context nodes, it becomes a context-dependent rule, applied

only when the presence of context nodes is detected in both the source and target. The rule

in Figure 5.3 is used as a context rule for sub-elements of the SourceClass and TargetClass,

as shown in Figure 5.4.

: SourceType

: SourceSubType

: SourceToTargetRelation1

: SourceToTargetRelation2

++ ++++

++

++

++

++ ++

: TargetType

: TargetSubType

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE 

Figure 5.4: TGG Rule Example 2

Now, having a collection of model dependencies represented as profile mappings, we

proceed with the process of generating the TGG rules denoting these dependencies. To help

illustrate the corresponding algorithm, we shall use a sample mapping as shown in Figure

5.5. In this mapping, three stereotype mappings are included, (Source1, Target1), (Source2,

Target2), and (Source3, Target3). The (Source1, Target1) tuple is a container mapping while

the other two tuples depend on the (Source1, Target1) mapping as their base/context.

5.2.1 Structured Representation of

Profile-Based Dependencies using TGG

To provide a structured representation of profile-based dependencies as TGG rules, we con-

sider four core mapping cases: one-to-one, one-to-many, many-to-one, and many-to-many.
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Where applicable, we have chosen to use one correspondence node for each mapping to

allow encoding of type-specific mapping constraints (i.e., one constraint for one type-to-type

mapping), and to provide more consistent translation to other notations such as QVT. For

each core mapping, we consider a denotational function δp that encodes the meaning of

mapping dependencies DMG between M and G as source-to-target profiles (e.g., as illus-

trated in the top part of the Figure 5.6). We also consider a denotational function δtgg that

encodes the meaning of mapping profile-based mappings to TGG (e.g., as illustrated in the

bottom part of the Figure 5.6).

<<SourceType2, 

SourceType3>>

<<SourceType1>>

Execute()

<<interface>>

TargetType2

Execute()

<<interface>>

TargetType1

Figure 5.5: Simple Source-to-Target TGG Mapping

In Figure 5.6, we demonstrate how a one-to-one profile-based dependencies are repre-

sented as TGG rules. Namely, each profile-based dependency is represented as a TGG
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rule, where the source stereotype represents the left-hand side and the target stereotype

represent the right-hand side of the corresponding TGG rule. Other constraints, such as

applicable OCL constraints, are copied over and they apply to the entire TGG rule. The

function δp represents a denotational function that can be used to interpret the profile-based

dependency in terms of model element dependencies as these were defined in Section

4.4.2. For example, with respect to Figure 5.6, the δp represents the semantics of mapping

a model element s, which is an instance of SourceType, to a model element t, which is an

instance of TargetType, using profiles. Similarly, the function δtgg represents a denotational

function δp(DMG) that can be used to interpret how we represent profile-based dependencies

as TGG rules. For example, regarding the Figure 5.6, the δtgg represents the semantics of

the mapping of the structure of the top of the figure to the structure to the bottom of the fig-

ure. The SourceToTarget correspondence node in Figure 5.6 is empty, but can be annotated

with specific context-sensitive information that can be used to differentiate on the conditions

SourceType is mapped to TargetType. For example, context-sensitive condition may indicate

that an element o1 of SourceType will be mapped to an element o2 of TargetType while

another context-sensitive condition may dictate that a model element o1 of SourceType into

model element o3 of TargetType.

In Figure 5.7, we demonstrate how a one-to-many profile-based dependencies are repre-

sented as TGG rules. The main difference here is that each target stereotype is represented

as an additional correspondence mapping in the TGG rule. Other constraints, such as appli-

cable OCL constraints, are copied over and they still apply to the entire TGG rule.

In Figure 5.8, we demonstrate how a many-to-one profile-based dependencies are rep-

resented as TGG rules. The main difference here is that each source stereotype is repre-

sented as an additional correspondence mapping in the TGG rule. Other constraints, such

as applicable OCL constraints, are copied over and they still apply to the entire TGG rule.
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Execute()

: TargetType

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType : SourceToTarget

++ ++
++

++ ++

<<SourceType>>

Execute()

TargetType

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

SourceToTarget Profile Mapping:

SourceToTarget TGG Rules:

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Figure 5.6: The One-to-One Profile-Based Dependencies as TGG Rules
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Execute()

: TargetType1

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceToTarget2

: SourceToTarget3

++

++

++
++

++ ++

Execute()

: TargetType2

Execute()

: TargetType3

++

: SourceType : SourceToTarget1

++ ++
++

++ ++

SourceToTarget Profile Mapping:

SourceToTarget TGG Rules:

<<SourceType>>

Execute()

TargetType1

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Execute()

TargetType2

Execute()

TargetType3

++

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Figure 5.7: The One-to-Many Profile-Based Dependencies as TGG Rules
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Execute()

: TargetType

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType2

: SourceType3

: Source2ToTarget

: Source3ToTarget

++

++

++ ++

++

++ ++

++

: SourceType1 : Source1ToTarget

++ ++
++

++ ++

SourceToTarget Profile Mapping:

SourceToTarget TGG Rules:

<<SourceType1,

SourceType2,

SourceType3>>

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Execute()

TargetType

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Figure 5.8: The Many-to-One Profile-Based Dependencies as TGG Rules
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SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType2

: SourceType3

: Source2ToTarget2

: Source3ToTarget3

++

++

++ ++

++

++ ++

++

: SourceType1 : Source1ToTarget1

++ ++
++

++ ++

SourceToTarget Profile Mapping:

SourceToTarget TGG Rules:

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

<<SourceType1,

SourceType2,

SourceType3>>

Execute()

TargetType1

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Execute()

TargetType2

Execute()

TargetType3

Execute()

: TargetType1

Execute()

: TargetType2

Execute()

: TargetType3

++

++

Figure 5.9: The Many-to-Many Profile-Based Dependencies as TGG Rules
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In Figure 5.9, we demonstrate how a many-to-many profile-based dependencies are rep-

resented as TGG rules. The main difference here is that each source-to-target stereotype

mapping is represented as an additional base rule in the overall TGG rule. Other constraints,

such as applicable OCL constraints, are copied over and they still apply to the entire TGG

rule.

To clarify how the profile-based dependencies are mapped to TGG rules, we apply the

TGG-based representation to the illustrative example shown in Figure 4.12. The resulting

TGG rules, which are based on the many-to-many profile-based dependencies as TGG rules

mapping, are shown in Figure 5.10.

5.2.2 Mapping Profile-Based Dependencies as Triple Graph

Grammars

In this section, we outline the algorithm that is used for mapping profile-based dependen-

cies as triple graph grammar rules. The algorithm is composed of five main steps and takes

as input the source domain model S, the target domain model T, profile-based model de-

pendencies DST , and produces as output a triple graph grammar TGGST . The algorithm is

presented in more detail below.

Algorithm MDD-TGG Mapping Profile-Based Dependencies as TGG

Input:

1. Source Domain Model, S

2. Target Domain Model, T

3. Model Dependencies, DST
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SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: BookToAuthor

: LibraryToLibrary

++

++

++

++

++

++ ++

++

: PersonToAuthor

++
++

++ ++

SourceToTarget Profile Mapping:

SourceToTarget TGG Rules:

Constraints:

NGramMatching.ApplyRule(Person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Book->person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8)

aname

: Author

libID

: Library

++

++

<<Library>>

<<Person, 

Book>>

aname

Author

Constraints:

NGramMatching.ApplyRule(Person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Book->person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8)

libID

Library

pname

: Person

bname

: Book

++

libID

: Library

Figure 5.10: Profile-Based Dependencies as TGG Rules Example
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Output:

1. Triple Graph Grammar, TGGST

Steps:

Step 1. Using the DM2DMG algorithm, as defined in Section 3.4.1, represent

domain models S and T as domain-model grammars DMGS and DMGT , respec-

tively.

Step 2. Using DMGS and DMGT as source, let NT be a set of nonterminals

defined as a union NTS ∪ NTT , let T be a set of terminals defined as a union TS

∪ TT , let AX be a starting symbol for derivation equal to AXS , and let PS and PT

be enumerated sets of source and target production rules respectively. Also, let

DST be a set of profile-based model dependencies.

Step 3. Iterate through the elements of PS and PT and create attributed pro-

ductions:

Step 3.1 For each rS ∈ PS, augment the rule by inserting (as its identifier)

a semantic head shS for the nonterminal on the LHS from a set of applicable

semantic heads SHS (e.g., shS rS).

Step 3.2 For each rT ∈ PT , augment the rule by inserting (as its identifier)

a semantic head shT for the nonterminal on the LHS from a set of applicable

semantic heads SHT (e.g., shT rT ).
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Step 4. Iterate through the elements of DST :

Step 4.1 For each di ∈ TST , create a new triple graph grammar rule, tggi:

Step 4.1.1 Represent the source stereotype or stereotype package as a

corresponding production rS ∈ PS , and set rS as the LHS production of the tggi

rule.

Step 4.1.2 Represent the target package as a corresponding production rT ∈

PT , and set rT as the RHS production of the tggi rule.

Step 4.1.3 Create a mapping of semantic heads (shS, shT ) for the two rules,

rS and rT , and set the mapping as a correspondence node of the tggi rule.

Step 4.1.4 Augment the correspondence node with constraint predicates if

the association only holds under certain conditions that cannot be specified via

attribute matches (e.g., (shS, shT , {predicates})).

Step 4.1.5 Add tggi to the set of TGG productions, TGGP.

Step 5. Output TGGST = (NT, T, TGGP, AX).

5.2.3 Illustrative Examples

To illustrate application of the algorithm, we utilize the mapping from Figure 5.5. For Step 1,

we apply the DM2DMG algorithm as defined in Section 3.4.1.

Input : DMS based on Figure 5.5.

Step 1-2 :

NTT := {SourceType1, SourceType2, SourceType3}, NTR := {Connector}, NTC := {Connector-

Source, ConnectorTarget}, NTA := {Name, Notes, Constraint}, NT := NTT ∪ NTR ∪ NTC ∪

NTA, T := {alphabet of valid BPM element names for the corresponding Namespace}, AX := M.
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Step 3. :

p1 : M → SourceType1 | SourceType1 M | SourceType2 | SourceType2 M | SourceType3 | Source-

Type3 M | Connector | Connector M

Step 4. :

p2 : SourceType1 → Name Notes

p3 : SourceType2 → Name Notes

p4 : SourceType3 → Name Notes

Step 5. :

p5 : Connector → Name null ConnectorSource ConnectorTarget

Step 6. :

p6 : ConnectorSource → Name Constraint SourceType1 | Name Constraint SourceType2 | Name

Constraint SourceType3

p7 : ConnectorTarget → Name Constraint SourceType1 | Name Constraint SourceType2 | Name

Constraint SourceType3

Step 7. :

p8 : Name → alphabet of valid element names (values)

p9 : Notes → alphabet of valid notes

p10 : Constraint → alphabet of valid constraints

Step 8 :

P := {p1, p2, . . . p10} and DMGS := (NT, T, P, AX).
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Step 9 :

Output DMG and terminate.

Input : DMT based on Figure 5.5.

Step 1-2 :

NTT := {TargetType1, TargetType2}, NTR := {Connector}, NTC := {ConnectorSource, Connec-

torTarget}, NTA := {Name, Comments}, NT := NTT ∪ NTR ∪ NTC ∪ NTA, T := {alphabet of

valid source code element names}, AX := M.

Step 3. :

p1 : M → TargetType1 | TargetType1 M | TargetType2 | TargetType2 M | Connector | Connector M

Step 4. :

p2 : TargetType1 → Name Comments

p3 : TargetType2 → Name Comments

Step 5. :

p4 : Connector → Name null ConnectorSource ConnectorTarget

Step 6. :

p5 : ConnectorSource → Name null TargetType1 | Name null TargetType2

p6 : ConnectorTarget → Name null TargetType1 | Name null TargetType2

Step 7. :

p7 : Name → alphabet of valid element names (values)

p8 : Comments → alphabet of valid comments
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Step 8 :

P := {p1, p2, . . . p8} and DMGT := (NT, T, P, AX).

Step 9 :

Output DMG and terminate.

With DMGS and DMGT derived, now we can apply the MDD-TGG algorithm.

Input : DMS , DMT , TST based on Figure 5.5.

Step 1. : Created domain-model grammars, DMGS and DMGT , as shown above.

Step 2. : NT := NTS ∪ NTT , T := TS ∪ TT , AX:= AXS.

Step 3.1. : (UML-Type=class)(SourceType1 → Name Notes), (UML-Type=class)(SourceType2 → Name

Notes), (UML-Type=class)(SourceType3 → Name Notes).

Step 3.2. : (UML-Type=class)(TargetType1→ Name Comments), (UML-Type=class)(TargetType2→ Name

Comments).

Step 4. :

tgg1 : LHS := SourceType1 → Name Notes, RHS := TargetType1 → Name Comments, Correspon-

dence := UML-Type=class (Rule 1 in Figure 5.11).

tgg2 : LHS := SourceType2 → Name Notes, RHS := TargetType2 → Name Comments, Correspon-

dence := UML-Type=class (Rule 2 in Figure 5.11).

tgg3 : LHS := SourceType3 → Name Notes, RHS := TargetType2 → Name Comments, Correspon-

dence := UML-Type=class (Rule 3 in Figure 5.11).

Step 5. : Output TGGST = (NT, T, TGGP, AX) (shown in Figure 5.11).
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Execute()

: TargetType1

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE 

: SourceType1

: SourceType2

: Source1ToTarget1

: Source2ToTarget2

++
++

++

++ ++
++

++ ++
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: TargetType1

Execute()

: TargetType2

: SourceType1

: SourceType3

: Source1ToTarget1

: Source3ToTarget2

++
++

++

++ ++
++

++ ++

Execute()

: TargetType1

Execute()
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: SourceType1 : Source1ToTarget1

++ ++
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++ ++

Figure 5.11: TGG Rule Example 3
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5.3 Representation of Model Dependencies using QVT

To address interoperability with QVT-compliant CASE Tools, we provide a structured map-

ping of the derived TGG rules to QVT-based representation. To this end, we address four

base mapping cases: one-to-one, one-to-many, many-to-one, and many-to-many.

Figure 5.12 demonstrates how a one-to-one dependency formulated as a TGG rule is

mapped to a QVT-compliant transformation. The correspondence node SourceToTarget is

represented as a QVT class SourceToTarget, with the left-hand side of the TGG rule repre-

senting the left-hand side of the QVT “map” method, and the right-hand side of the TGG rule

representing the right-hand side of the QVT “map” method. The applicable OCL constraints

are retained as additional constraints for the derived QVT transformations.

Figure 5.13 demonstrates how a one-to-many dependency formulated as a TGG rule is

mapped to a QVT-compliant transformation. Each correspondence node, such as Source-

ToTarget1, is represented as a QVT class with the same name, such as SourceToTarget1.

Within each class, the left-hand side of the applicable TGG rule represents the left-hand side

of the QVT “map” method, and the right-hand side of the TGG rule represents the right-hand

side of the QVT “map” method. The applicable OCL constraints are retained as additional

constraints for the derived QVT transformations.

Figure 5.14 demonstrates how a many-to-one dependency formulated as a TGG rule is

mapped to a QVT-compliant transformation. Each correspondence node, such as Source1To

Target, is represented as a QVT class with the same name, such as Source1ToTarget. Within

each class, the left-hand side of the applicable TGG rule represents the left-hand side of

the QVT “map” method, and the right-hand side of the TGG rule represents the right-hand

side of the QVT “map” method. The applicable OCL constraints are retained as additional

constraints for the derived QVT transformations.

134



Figure 5.15 demonstrates how a many-to-many dependency formulated as a TGG rule is

mapped to a QVT-compliant transformation. Each correspondence node, such as Source1To

Target1, is represented as a QVT class with the same name, such as Source1ToTarget.

Within each class, the left-hand side of the applicable TGG rule represents the left-hand

side of the QVT “map” method, and the right-hand side of the TGG rule represents the

right-hand side of the QVT “map” method. The applicable OCL constraints are retained as

additional constraints for the derived QVT transformations.

5.3.1 Illustrative Example

To demonstrate how TGG rules are mapped to QVT-compliant transformations, we make use

of the TGG rules shown in Figure 5.10. The resulting QVT transformations, which are based

on the many-to-many TGG rules as QVT transformations mapping, are shown in Figure 5.16.

5.4 Evaluation

In this chapter, we have mapped profile-based dependencies to triple graph grammars, to

provide model synchronization capabilities and to operationalize these capabilities with a

run-time enjoinment such as QVT. By extending the profile-based semantics of the profile-

based model dependencies, we have provided a more precise way of encoding model-to-

model dependencies. Furthermore, by making use of the TGG rules, which were shown

to be in correspondence with the QVT modeling syntax, we have extended the applicability

of the profile-based representation by making it QVT compliant. Now, it is possible for the

profile-based dependency mappings to be represented in QVT syntax, and used in a growing

number of CASE tools that support QVT modeling notation.
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Execute()

: TargetType

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType : SourceToTarget

++ ++
++

++ ++

SourceToTarget TGG Rules:

SourceToTarget QVT Transformations:

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

QVT Transformation:

class SourceToTarget {

theSourceType: SourceType;

theTargetType: TargetType;

}

map sourceToTarget {

check sourceType() {

sourceType: SourceType;

}

check targetType() {

targetType: TargetType;

}

where() {

sourceToTarget : SourceToTarget  |

sourceToTarget.theSourceType = sourceType;

sourceToTarget.theTargetType = targetType;

sourceType.name = targetType.name;

}

}

Figure 5.12: The One-to-One TGG Rules as QVT Transformations
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SourceToTarget TGG Rules:

SourceToTarget QVT Transformations:

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

QVT Transformation:

class SourceToTarget1 {

theSourceType: SourceType;

theTargetType1: TargetType1;

}

map sourceToTarget1 {

check sourceType() {

sourceType: SourceType;

}

check targetType1() {

targetType1: TargetType1;

}

where() {

sourceToTarget1 : SourceToTarget1  |

sourceToTarget1.theSourceType = sourceType;

sourceToTarget1.theTargetType1 = targetType1;

targetType1.name = sourceType.name;

}

}

Execute()

: TargetType1

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE 

: SourceToTarget2

: SourceToTarget3

++
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++ ++

Execute()

: TargetType2

Execute()

: TargetType3
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: SourceType : SourceToTarget1
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Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

class SourceToTarget2 {

theSourceType: SourceType;

theTargetType2: TargetType2;

}

map sourceToTarget2 {

check sourceType() {

sourceType: SourceType;

}

check targetType2() {

targetType2: TargetType2;

}

where() {

sourceToTarget2 : SourceToTarget2  |

sourceToTarget2.theSourceType = sourceType;

sourceToTarget2.theTargetType2 = targetType2;

targetType2.name = sourceType.name;

}

}

class SourceToTarget3 {

theSourceType: SourceType;

theTargetType3: TargetType3;

}

map sourceToTarget3 {

check sourceType() {

sourceType: SourceType;

}

check targetType3() {

targetType3: TargetType3;

}

where() {

sourceToTarget3 : SourceToTarget3  |

sourceToTarget3.theSourceType = sourceType;

sourceToTarget3.theTargetType3 = targetType3;

targetType3.name = sourceType.name;

}

}

Figure 5.13: The One-to-Many TGG Rules as QVT Transformations
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SourceToTarget TGG Rules:

SourceToTarget QVT Transformations:

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

QVT Transformation:

class Source1ToTarget {

theSourceType1: SourceType1;

theTargetType: TargetType;

}

map source1ToTarget {

check sourceType1() {

sourceType1: SourceType1;

}

check targetType() {

targetType: TargetType;

}

where() {

source1ToTarget : Source1ToTarget  |

source1ToTarget.theSourceType1 = sourceType1;

source1ToTarget.theTargetType = targetType;

sourceType1.name = targetType.name;

}

}

class Source2ToTarget {

theSourceType2: SourceType2;

theTargetType: TargetType;

}

map source2ToTarget {

check sourceType2() {

sourceType2: SourceType2;

}

check targetType() {

targetType: TargetType;

}

where() {

source2ToTarget : Source2ToTarget  |

source2ToTarget.theSourceType2 = sourceType2;

source2ToTarget.theTargetType = targetType;

sourceType2.name = targetType.name;

}

}

class Source3ToTarget {

theSourceType3: SourceType3;

theTargetType: TargetType;

}

map source3ToTarget {

check sourceType3() {

sourceType3: SourceType3;

}

check targetType() {

targetType: TargetType;

}

where() {

source3ToTarget : Source3ToTarget  |

source3ToTarget.theSourceType3 = sourceType3;

source3ToTarget.theTargetType = targetType;

sourceType3.name = targetType.name;

}

}

Execute()

: TargetType

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType2

: SourceType3

: Source2ToTarget

: Source3ToTarget

++

++

++ ++

++

++ ++

++

: SourceType1 : Source1ToTarget

++ ++
++

++ ++

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Figure 5.14: The Many-to-One TGG Rules as QVT Transformations
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SourceToTarget TGG Rules:

SourceToTarget QVT Transformations:

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

QVT Transformation:

class Source1ToTarget1 {

theSourceType1: SourceType1;

theTargetType1: TargetType1;

}

map source1ToTarget1 {

check sourceType1() {

sourceType1: SourceType1;

}

check targetType1() {

targetType1: TargetType1;

}

where() {

source1ToTarget1 : Source1ToTarget1  |

source1ToTarget1.theSourceType1 = sourceType1;

source1ToTarget1.theTargetType1 = targetType1;

sourceType1.name = targetType1.name;

}

}

class Source2ToTarget2 {

theSourceType2: SourceType2;

theTargetType2: TargetType2;

}

map source2ToTarget2 {

check sourceType2() {

sourceType2: SourceType2;

}

check targetType2() {

targetType2: TargetType2;

}

where() {

source2ToTarget2 : Source2ToTarget2  |

source2ToTarget2.theSourceType2 = sourceType2;

source2ToTarget2.theTargetType2 = targetType2;

sourceType2.name = targetType2.name;

}

}

class Source3ToTarget3 {

theSourceType3: SourceType3;

theTargetType3: TargetType3;

}

map source3ToTarget3 {

check sourceType3() {

sourceType3: SourceType3;

}

check targetType3() {

targetType3: TargetType3;

}

where() {

source3ToTarget3 : Source3ToTarget3  |

source3ToTarget3.theSourceType3 = sourceType3;

source3ToTarget3.theTargetType3 = targetType3;

sourceType3.name = targetType3.name;

}

}

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: SourceType2

: SourceType3

: Source2ToTarget2

: Source3ToTarget3

++

++

++ ++

++

++ ++

++

: SourceType1 : Source1ToTarget1

++ ++
++

++ ++

Constraints:

NGramMatching.ApplyRule(SourceType->ElementName, 

TargetType->ElementName, 3, 0.6)

NGramMatching.ApplyRule(SourceType->ElementDescription,

TargetType->ElementDescription, 3, 0.4)

Execute()

: TargetType1

Execute()

: TargetType2

Execute()

: TargetType3

++

++

Figure 5.15: The Many-to-Many TGG Rules as QVT Transformations
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SourceToTarget TGG Rules:

SourceToTarget QVT Transformations:

Constraints:

NGramMatching.ApplyRule(Person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Book->person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8)

QVT Transformation:

class PersonToAuthor {

thePerson: Person;

theAuthor: Author;

}

map personToAuthor {

check person() {

person: Person;

}

check author() {

author: Author;

}

where() {

personToAuthor : PersonToAuthor |

personToAuthor.thePerson = person;

personToAuthor.theAuthor = author;

}

}

class BookToAuthor {

theBook: Book;

theAuthor: Author;

}

map bookToAuthor {

check book() {

book: Book;

}

check author() {

author: Author;

}

where() {

bookToAuthor : BookToAuthor |

bookToAuthor.theBook = book;

bookToAuthor.theAuthor = author;

}

}

class LibraryToLibrary {

theLibraryS: Source.Library;

theLibraryT: Target.Library;

}

map libraryToLibrary {

check libraryS() {

libraryS: Source.Library;

}

check libraryT() {

libraryT: Target.Library;

}

where() {

libraryToLibrary : LibraryToLibrary |

libraryToLibrary.theLibraryS = libraryS;

libraryToLibrary.theLibraryT = libraryT;

}

}

SOURCE METAMODEL TARGET METAMODELCORRESPONDENCE

: BookToAuthor

: LibraryToLibrary

++

++

++

++

++

++ ++

++

: PersonToAuthor

++
++

++ ++

Constraints:

NGramMatching.ApplyRule(Person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Book->person->pname,

Author->aname, 3, 0.8),

NGramMatching.ApplyRule(Library->libID, Library->libID, 3, 0.8)

aname

: Author

libID

: Library

++

++

pname

: Person

bname

: Book

++

libID

: Library

Figure 5.16: TGG Rules as QVT Transformations Example
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We now examine the proposed approach with respect to the following properties: com-

pleteness and soundness, as part of the evaluation.

5.4.1 Completeness

Property All for types of model dependencies D that are represented using profiles can also

be represented using TGG rules

Proof: The proof is by construction. We consider that there exist four types of dependencies,

one-to-one, one-to-many, many-to-one, and many-to-many. By the construction algorithm,

any such type of dependency can be represented as a TGG rule. If we assume that there

exists a dependency d, where d ∈ D that cannot be represented using TGG rules, the de-

pendency d is then not compliant with any of the one-to-one, one-to-many, many-to-one,

and many-to-many base cardinality rules. According to the definition of a model dependency

tuple (see Section 4.4.2), one-element tuples such as zero-to-one or zero-to-many are not

allowed (i.e., they have no semantic meaning), so the dependency tuple has to comply with

one of the four base cardinality rules. This is a contradiction, so it follows that any depen-

dency tuple d that follows the definition from the Section 4.4.2 can be represented using

profiles.

5.4.2 Soundness

Property All model dependencies represented using TGG rules are sound representations

of the corresponding profile-based dependency mappings

Proof: Let us consider a denotational function δp that maps the source profile-based de-

pendency to target profile-based dependency (e.g., as shown in the top part of the Figure
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5.6). Let us also consider a denotational function δtgg that maps the source TGG rule to

target TGG rule (e.g., as shown in the bottom part of the Figure 5.6). The function δp(dST ,C),

where S is the collection of source types, T is the collection of target types, dST are the

corresponding model dependency tuples, and C is the collection of constraints, represents

the semantics of the profile-based representation of mappings between S and T under con-

straints C. More specifically, δp(dST ,C) = δ(S →
C

T ), where δ denotes the meaning of trans-

forming model S to model T under constraints C. That is, δ(S →
C

T ) = S →
C

T . On the other

hand, δtgg(TS,TT ,Corr,C) where TS is the rule representing the collection of source model

elements S, TT is the rule representing the collection of target model elements T, Corr is

the correspondence node in the TGG rule, and C is a collection of constraints, represents

the semantics of the triple graph grammar representation of mappings under constraints C.

More specifically, δtgg(TS,TT ,Corr,C) = δ(TS) →
C,Corr

δ(TT ) where δ is the denotional function

that provides the meaning of the representation of model S as a context-free grammar as

discussed in Chapter 3. That is, δ(TS) →
C,Corr

δ(TT ) = δ(S) →
C,Corr

δ(T ) = S →
C

T. The last

equality relation is based on the determinism property of representing domain models as

domain model grammars, and vice versa, as described in Section 3.4.5.

Therefore, it follows that the profile-based dependencies represented using a denota-

tional function δp can be soundly represented using TGG rules represented via a denota-

tional function δtgg.

5.5 Chapter Summary

In this chapter, we have introduced an approach for mapping profile-based dependencies

using Triple Graph Grammar (TGG) rules with corresponding OCL constraints. We have

shown an algorithm that given a source domain model S, target domain model T, and model
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dependencies D, outputs corresponding triple graph grammar (TGG) rules. Finally, we have

shown how to represent the TGG rules in a QVT-compliant notation. In the next chapter, we

will demonstrate application of this approach to experimentation scenarios.
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Chapter 6

Application Case Study

To attempt seeing Truth without knowing Falsehood. It is the attempt to see the

Light without knowing the Darkness. It cannot be.

— Frank Herbert

In this chapter, we present case study results used to assess the proposed theory. Namely,

we first discuss the case studies conducted to confirm the applicability of our formal concept

analysis approach, which was introduced in Chapter 4. Secondly, we discuss several appli-

cation scenarios for our TGG based approach, as discussed in Chapter 5, and demonstrate

the applicability of the approach. Finally, we present measurements such as the precision

and recall information for the FCA approach, and the corresponding memory and run-time

performance discussion.
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6.1 Dependency Extraction Case Study

We have implemented a prototype of our framework in Java, and we have integrated it with

the previously developed mSynTra plug-in for the Eclipse development environment [Fou10].

Figure 6.1 depicts the prototype as a Workflow Synchronization Plug-In (WSP) Perspec-

tive in Eclipse. The dependency view shows two model repositories, the BPMs on the left

and the source code models on the right. Clicking on one of the model elements on the

left will show the corresponding dependencies selected on the right, with the details of the

match including positively matched rules, the weighted score, and other possible matches

in the middle. Additional interface is provided for reparsing of model elements based on the

changed criteria such selecting or deselecting particular model attributes, and increasing or

decreasing the threshold level for the weighted score. Through these settings users can

change the size of the domain of matching, and hence, iteratively improve the accuracy of

the results.

The prototype is used in a case study of synchronizing business process models (BPM)

represented as business workflows with the enacting Java 2 Enterprise Edition (J2EE) plat-

form compliant source code [Ora10]. Based on the domain analysis and discussion with

different stakeholders, it was concluded that the business workflows are typically created

independently of source code. It was also noted that the mappings between the related

models are not consistently recorded, and as a result, they are incomplete and out of date.

Thus, developers and architects of the system would be required to validate the extracted

model dependencies.

The main target for the case study is to enable bidirectional change propagation, where

changes from a workflow are traced to underlying source code and changes from a source

code file are traced to related workflows. The first step in this process is to establish relations
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Figure 6.1: Prototype Implementation in Eclipse

among models and model elements, and the approach presented in this paper is used to

fulfill the requirements of this goal.

In the ensuing text, we describe how each of the steps of the approach is applied.

Namely, we discuss the process of recovery of intermediate models to bridge syntactic and

semantic gaps between the workflows and the source code. The derived intermediate mod-

els are used as a basis for extraction of inter-context concepts, derived as clusters of objects

that share related attributes. The extracted dependencies are validated based on the corre-

sponding feedback, from which the precision and recall levels are also measured.

6.1.1 Generating intermediate models

In this step, we transform the business workflows by enriching and annotating their repre-

sentations. We also transform the source code models through abstraction and annotation.
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The workflow transformation includes:

1. Analyzing the workflow models and deriving their simplified representation in relation

to source code artifacts. The workflow functionality that is not performed by a machine

along with elements that have no source code representation are excluded from the

analysis. However, the data flow and control flow information is preserved. The call

information for processes and run-time modules, which can be found in the source

code, is also preserved.

2. Adding annotations as attributes to workflow elements for which additional information

may be derived. The annotations may include attributes for context, role, hierarchical

relation, implemented features, etc.

3. Extracting content from workflows automatically into XML, with the domain model

schema as a DTD for the XML files.

The source code transformation includes:

1. Analyzing the source code models and deriving their simplified representations in re-

lation to business process artifacts. The source code functionality that has no relation

to business processes along with elements that have no workflow representation are

excluded. The data flow and control flow information is preserved. The call information

for task commands, pseudo task commands, and Java Beans is also preserved.

2. Adding annotations as attributes to source code elements for which additional infor-

mation may be derived. The annotations may include attributes for parameter passing,

informal text, hierarchical relation, implemented features, etc.

3. Extracting content from source code files automatically into XML, with the domain

model schema as an XML DTD.
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6.1.2 Establishing model dependencies

From the refined domain models, the attribute association rules may be created. For the BPM

domain model, type-based and hierarchical associations are created. The types are mapped

to the compatible source code types, while processes are recognized as parts of the overall

hierarchy and relations are established based on directly or indirectly implemented features.

For the source code domain model, hierarchical associations could not be established in

addition to the type-based ones since no meaningful hierarchy of source-code models could

be identified. For the concrete models, the compatible attributes are identified and spatial

and text-based association rules are defined. The settings for each rule are adjusted through

initial experimentation on a representative set of related workflow and source code models.

Using FCA and the association rules, dependency tuples are identified and the results are

stored in XML.

Figure 6.2 shows the mapping of the BPM and the source code attributes and properties.

Different levels of mapping, from Level 0 to Level 3, indicate different steps in the matching

process: at Level 0, hierarchical and type-based clustering of top-level elements (i.e., pro-

cesses and classes); at Level 1, clustering of top-level elements using specified attributes;

at Level 2, clustering of model elements using specified attributes; and at Level 3, matching

of unmatched elements using spatial information.

Figure 6.3 demonstrates a successful mapping between a workflow (at the top) and a cor-

responding source code model (at the bottom). As part of this figure, two spatial association

rules are presented in OCL.
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Figure 6.2: Attribute and Property Mappings

6.1.3 Validating established dependencies

Since the previously established model relations are not available, or are, at best, incom-

plete, the validation process is based on feedback from developers and architects. The

feedback is used to identify all relevant model dependencies, and to confirm the relevance

of the identified model dependencies. Several iterations are performed, each with the goal

of improving precision and recall levels through adjustment of corresponding settings (e.g.,

change of attribute associations, addition of new rules).

The estimated precision is measured as:

Estimated Precision = the number of relevant model dependencies that were

identified / the number of all model dependencies that were identified.
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Figure 6.3: Dependency Mapping Example
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The estimated recall is measured as:

Estimated Recall = the number of relevant model dependencies that were iden-

tified / the number of all known relevant model dependencies.

Based on the set of four queries, for the subsystems that were available to us, we have

measured and analyzed the precision and recall levels for the top-level matches derived

using our framework.

For the first and smallest data set, 9 out of 34 identified model dependencies were rele-

vant (26.47% estimated precision level) while 9 out of 15 of all known relevant model depen-

dencies were identified (60% estimated recall level). This data set also exhibited the highest

level of nonconformity between related workflows and source code flows.

For the second data set, 37 out of 140 identified model dependencies were relevant

(26.43% estimated precision level) while 37 out of 51 of all known relevant model dependen-

cies were identified (72.55% estimated recall level).

For the third and largest data set, on the first iteration 78 out of 300 identified model

dependencies were relevant (26% estimated precision level) while 78 out of 100 of all known

relevant model dependencies were identified (78% estimated recall level). On the second

iteration, after corresponding association rules adjustments, 82 out of 317 identified model

dependencies were relevant (25.9% estimated precision level) while 82 out of 100 of all

known relevant model dependencies were identified (82% estimated recall level).

Figure 6.4 illustrates the estimated precision (X axis) versus estimated recall levels (Y

axis). Based on the plotted data, there is a noticeable decline in recall levels from approxi-

mately 80% to approximately 60% with the precision slightly increasing but remaining close

to 26%.
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Figure 6.4: Estimated Precision and Recall

The decline in recall levels may depend on several factors including:

• attrition of information when considering source code elements that have indirect or

partial relations to their business workflow counterparts,

• nonconformity of certain related workflows and source code flows, and

• inconsistency and drift that may have occurred over time between related workflow and

source code models.
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6.2 TGG Generation Case Study

To evaluate the applicability of the TGG generation method presented in Chapter 5, we

provide a more complex profile mapping as shown in Figure 6.5. Here we identify the

following tuples (Service, (ComponentService, RegistryService, RegistryComponent Servi-

ceImpl, RegistryServiceBeanBase)), (Operation, (BusinessObjectDocumentCmd, Busines-

sObject DocumentCmdImpl, UpdateRegistryCmd, UpdateRegistryCmdImpl)), (Task, (BOD-

CmdRootInterface, ReportInvalidRegistryDataCmd, ReportInvalidRegistryDataCmdImpl, Val-

idateRegistry ValueCmd, ValidateRegistryValueCmdImpl)).

The first tuple, (Service, (. . . )) makes use of EJB-based target model to represent a

source Service element. We would like to encode this selection as a constraint, and make

that part of the matching TGG rule. In Figure 6.6, we demonstrate this more precise rule.

This constraint is also domain-specific, as it makes use of a domain-specific attribute, Ser-

vice.useEJB.

To further elaborate this constraint semantics, we also map the second tuple (Operation,

(. . . )) as a TGG rule, and add a multiplicity constraint. Namely, we dictate that an Operation

element can be mapped to a corresponding pattern shown in Figure 6.5 only once; that is,

only one instance of BusinessObjectDocumentCmd can be created. We illustrate this rule in

Figure 6.6. The first rule from that Figure serves as a base rule, representing the context for

the second rule.

Finally, we map the third tuple (Task, (. . . )) as a TGG rule. We illustrate this rule in Figure

6.6. The second rule from that Figure serves as a base rule, representing the context for the

third rule.

Now, we again consider a denotational function δp that denotes the mapping of the source

profile-based dependency to target profile-based dependency, and a denotational function
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Figure 6.5: TGG Generation Application Case Study: Source
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Figure 6.6: TGG Generation Application Case Study: Target
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δtgg that denotes the mapping of the source TGG rule to target TGG rule. From the first rule

of Figure 6.5, the function δp represents a mapping where for each s1, which is an instance

of Service, there exists tmap1, which is an instance of the (ComponentService, RegistrySer-

vice, RegistryComponent ServiceImpl, RegistryServiceBeanBase) pattern. Similarly, from

the first rule of Figure 6.6, the function δtgg represents a mapping where for each s2, which is

an instance of Service, there exists tmap2, which is an instance of the (ComponentService,

RegistryService, RegistryComponent ServiceImpl, RegistryServiceBeanBase) pattern.

From the second rule of Figure 6.5, the function δp represents a mapping where for

each o1, which is an instance of Operation, there exists tmap3, which is an instance of the

(BusinessObjectDocumentCmd, BusinessObject DocumentCmdImpl, UpdateRegistryCmd,

UpdateRegistryCmdImpl) pattern. Similarly, from the second rule of Figure 6.6, the func-

tion δtgg represents a mapping where for each o2, which is an instance of Operation, there

exists tmap4, which is an instance of the (BusinessObjectDocumentCmd, BusinessObject

DocumentCmdImpl, UpdateRegistryCmd, UpdateRegistryCmdImpl) pattern.

From the third rule of Figure 6.5, the function δp represents a mapping where for each t1,

which is an instance of Task, there exists tmap5, which is an instance of the (BODCmdRoot-

Interface, ReportInvalidRegistryDataCmd, ReportInvalidRegistryDataCmdImpl, ValidateReg-

istry ValueCmd, ValidateRegistryValueCmdImpl) pattern. Similarly, from the third rule of

Figure 6.6, the function δtgg represents a mapping where for each t2, which is an instance

of Task, there exists tmap6, which is an instance of the (BODCmdRootInterface, Report-

InvalidRegistryDataCmd, ReportInvalidRegistryDataCmdImpl, ValidateRegistry ValueCmd,

ValidateRegistryValueCmdImpl) pattern.

Therefore, based on these three equivalences, it follows that these two functions repre-

sent the equivalent semantics for the models represented in Figures 6.5 and 6.6.
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Through this case study, we have demonstrated the application of our TGG generation

approach to a complex practical case study. We have demonstrated the robustness of the

approach to handle a greater variety of mapping scenarios, and illustrated additional seman-

tic expressiveness through domain-specific and multiplicity-based constraints.

6.3 Fine-Grained Model Synchronization Case Study

To demonstrate and evaluate our approach to fine-grained model synchronization using TGG

rules, we study the problem of synchronizing business process models with the underlying

source code models. Specifically, we are interested to keep business process models and

source code synchronized when one of these models changes due to evolution and mainte-

nance activities.

Our case study is an industrial size system that consists of a hierarchy of business pro-

cesses, for which the functionality is enacted through Java and EJB source code compo-

nents. Element types of the business workflows that are related to source code include

process, subprocess, task, decision, choice, and data (see Figure 6.7).

These element types are mapped to the elements of the source code domain model

for controller commands, which include task command, task, and decision abstractions at

the source code level (see Figure 6.8). Controller commands represent the first point of

invocation and they, in turn, invoke task commands, tasks and decisions as needed.

To demonstrate how fine-grained model synchronization is applied to this case study, we

have created two TGG rules, as shown in Figure 6.9.

The first rule (tgg1) indicates that for each instance of type Process in the source model,

there should exist one instance of type ControllerCommand in the target model.
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: Process : ProcessToCC
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: ControllerCommand

BusinessProcess-to-SourceCode TGG Rules:

tgg1: 1 1

: Process : ProcessToCC : ControllerCommandtgg2: 1 1

: Task : TaskToTC

++ ++ ++

++ ++
: TaskCommand

1 1

++++++

Figure 6.9: BusinessProcess-to-SourceCode TGG Rules

The second rule (tgg2) indicates that for each instance of type Task that is connected to

an instance of type Process, there should exist one instance of type TaskCommand in the

target model that is connected to an instance of type ControllerCommand.

To illustratable the process of synchronization, we consider the following scenario (see

Figure 6.10):

Step1. An instance p1 of type Process is inserted into a source model source1.0. The tar-

get model target1.0 is empty at the start. Through pattern matching of the source, the

TGG rule tgg1 is identified as applicable, and applied to the source and target. The

target model is modified to reflect the rule, which enforces that for each instance of

type Process in the source model there should exist one instance of type Controller-

Command in the target model. The result of the synchronization is the target model

target1.1, which contains an instance cc1 of type ControllerCommand.

Step2. An instance t1 of type Task is inserted into the source model source1.0, and con-
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nected to the previously inserted instance p1 of type Process, thereby resulting in the

modified source model source1.1. Through pattern matching of the source, the TGG

rule tgg2 is identified as applicable, and applied to the source and target. The tar-

get model is modified to reflect the rule, which enforces that for each instance of type

Task that is connected to an instance of type Process, there should exist one instance

of type TaskCommand in the target model that is connected to an instance of type

ControllerCommand. The result of the synchronization is the target model target1.2,

which contains an instance tc1 of type TaskCommand connected to instance cc1 of

type ControllerCommand.

Step3. An instance t2 of type Task is inserted into the source model source1.1, and con-

nected to the previously inserted instance p1 of type Process, thereby resulting in the

modified source model source1.2. Through pattern matching of the source, the TGG

rule tgg2 is identified as applicable, and applied to the source and target. The target

model is modified to reflect the rule. The result of the synchronization is the target

model target1.3, which contains an instance tc2 of type TaskCommand connected to

instance cc1 of type ControllerCommand.

Step4. An instance tc3 of type TaskCommand is inserted into the target model target1.3,

and connected to the previously inserted instance cc1 of type ControllerCommand,

thereby resulting in the modified target model target1.4. Through pattern matching of

the source, the TGG rule tgg2 is identified as applicable, and applied to the source

and target. The source model is modified to reflect the rule. The result of the syn-

chronization is the source model source1.3, which contains an instance t3 of type Task

connected to instance p1 of type Process.
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Through this scenario, we have demonstrated the applicability of the proposed fine-

grained model synchronization approach to an example case study of synchronizing busi-

ness process models with the underlying source code. Even though the case study is small,

it is illustrative as it encompasses all cases of one-to-one, one-to-many, and many-to-many

synchronization using the corresponding TGG rules.

6.4 Computational Efficiency Discussion

In this section, we present the memory and run-time performance discussion, for each of the

experimentation sections.

6.4.1 Dependency Extraction: Computational Efficiency

To analyze run-time and memory performance of the framework, we have performed a set

of four subsystem queries, and we have included the results as Figure 6.11.

The run-time performance was measured in seconds (X axis) versus number of element

combinations per model (Y axis) that were parsed in the matching process.

• The first query required 8.01 seconds to process 3,740.43 element combinations per

model.

• The second query required 168.28 seconds to process 22,587.19 element combina-

tions per model.

• The third query required 212.18 seconds to process 45,220.03 element combinations

per model.
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Memory Performance Results
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Figure 6.11: Run-Time and Memory Performance Results
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• The fourth query, which included combined data set of models from all the available

subsystems, required 376.93 seconds to process 265,414.80 element combinations

per model.

The plotted results, as shown in Figure 6.11, indicate an approximately logarithmic O(log(n))

runtime performance.

The memory performance was measured in kilobytes of source code (X axis) versus

kilobytes of abstracted source code (Y axis).

• The first data set contained 15.95 kilobytes of source code versus 1.94 kilobytes of

abstracted source code.

• The second data set contained 574.60 kilobytes of source code versus 165.28 kilo-

bytes of abstracted source code.

• The third data set contained 1,695.85 kilobytes of source code versus 247.95 kilobytes

of abstracted source code.

• The fourth data set contained 3,091.95 kilobytes of source code versus 877.21 kilo-

bytes of abstracted source code.

The plotted results, as shown in Figure 6.11, indicate an approximately linear O(n) mem-

ory performance.
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6.4.2 Fine-Grained Model Synchronization using TGG:

Computational Efficiency

To generate TGG rules, we iterate through profile-based dependencies DPMG, and create a

new triple graph grammar rule, tggi, for each dependency ti ∈ DPMG. As such, we estimate

the average runtime and memory performance to generate the required TGG rules as O(n),

where n is the number of profile-based dependencies.

The proposed framework relies on TGG rules for synchronization. Within the defined

scope, we do not use Negative Application Conditions (NAC) [SK08], that is conditions that

forbid specific graph patterns to be present before or after applying a specific TGG rule.

However, such patterns can be specified within the framework as additional constraints.

Hence, we can utilize the runtime and memory performance of efficient TGG translator,

as discussed in [KLKS10]. That is, the proposed model synchronization framework will ex-

hibit polynomial O(m x nk) worst-case runtime and memory performance, where m is the

number of TGG rules, n is the size of input graph, and k is the maximum number of ele-

ments in each rule. This estimate is based on two assumptions: first, nk is the worst-case

estimate of the application pattern matching of a rule with k elements, and second, there is

an ordering of rule applications that prevents any one element from being processed more

than once.

6.5 Chapter Summary

In this chapter we have presented case studies used to support the proposed theory. We

have conducted the case studies in order to asses the applicability of our formal concept
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analysis approach. We have presented corresponding measurements such as the memory

and run-time performance, and precision and recall information. We have also discussed a

commerce-based reference architecture to which our model-drive synchronization approach

is applied. Finally, we have discussed several application scenarios for our TGG based

approach, to demonstrate the applicability of the approach.
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Chapter 7

Conclusions

I don’t pretend we have all the answers. But the questions are certainly worth

thinking about.

— Arthur C. Clarke

In this chapter, we summarize the major findings and contributions of the thesis, and we

discuss directions for future research.

7.1 Summary and Conclusions

In this thesis, we have focused on software model synchronization problem. The software

model synchronization problem is defined as the problem of maintaining consistency be-

tween software models that co-evolve due to iterative development or maintenance activities.

Model synchronization is a major issue in the context of model-driven software engineering

and automated code generation.
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The question that we are attempting to answer is how to manage software artifacts in

a way that allows software engineers to respond to the evolutionary forces in a systematic

and traceable manner. We have viewed this question within the context of model-driven

frameworks, and in particular, in the context of the Meta Object Facility (MOF) framework,

and identified the main challenge as the systematic tracing and interpretation of software

transformations that are applied to specific models at different levels of abstraction (e.g.,

design level, implementation level, and source code level).

To address these challenges, we have introduced the mSYNTRA model synchronization

framework. The major issues that the framework is aiming to address along with the solutions

that have been proposed are summarized below.

1. To provide a method for reducing the semantic gap between domain models at different

levels of abstraction.

For this challenge, we have introduced the concept of incremental transformations that

aim to annotate software models that pertain to different abstraction levels, in order to

bridge the semantic gap between them. In this respect, annotations provide implicit

semantic links between models, so that these can be easier compared and dependen-

cies between them can be established. For this thesis, we have experimented with

business process models, obtained from IBM’s WebSphere Commerce suite, and the

Java source code implementation models that enact these business models. Since

there is a significant abstraction difference between such models, we provided anno-

tations that allow for business tasks to be annotated with input and output data type

information that can be traced to code. We have also provided annotations that allow

for source code to annotated with higher level operations that can be traced to busi-

ness processes. Association rules have been used to facilitate schema mappings, so
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that model comparison can commence.

2. To devise a method for identifying dependencies between model elements and facili-

tating coarse-grained model synchronization.

For this challenge, we have introduced the use of Formal Concept Analysis (FCA) as

a possible solution for identifying coarse-level software model dependencies between

co-evolving models. The basic premise is that model elements that share common at-

tributes and features may relate to the same concept or cluster. Models that fall under

the same concept or cluster are considered dependent. In this thesis, we have exper-

imented with a number of WebSphere Commerce processes and the corresponding

Java implementation models, and the results indicated high level of recall for the iden-

tified dependencies. This result provides evidence that Formal Concept Analysis may

be a valid technique for establishing dependencies between different software models.

Once model dependencies have been established, coarse-grained model synchroniza-

tion can be achieved by tracing dependencies from one model to another.

3. To introduce a method for representing domain models as domain-specific grammars

and their dependencies in terms of UML classifiers.

For this challenge, we have first proposed a technique for representing domain mod-

els and instance models as collections of cross-referenced tuples. Second, we have

proposed a technique that allows for modeling these collections of tuples as context-

free grammars. And third, we have introduced a technique that allows for representing

model dependencies utilizing UML stereotypes. This dependency representation al-

lows for denoting one-to-one, one-to-many, many-to-one, and many-to-many software

model dependencies. In this respect model dependencies are encoded in the form of

MOF models and can be programmatically processed.
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4. To enable fine-grained model synchronization by utilizing identified triple graph gram-

mar rules.

For this challenge, we have proposed a technique for representing model dependen-

cies encoded in the form of MOF stereotypes as triple graph grammars and ultimately

as QVT rules. The objective here is to allow for extracted dependencies to be modeled

in a way that can be used from within a programmatic model transformation environ-

ment. The selection of triple graph grammars is based on the strength of this formal-

ism to represent contextual information that can be taken into consideration during the

mapping or synchronization process. For this thesis, we have experimented on map-

ping and synchronizing IBM WebSphere Commerce business process models with the

underlying run time Java code that enacts these business process models. In this re-

spect, when a business process is altered, the corresponding Java code is tagged for

editing, and similarly, when the Java code is evolved the business process that is likely

to be affected is also tagged for editing.

7.2 Future Research

In the context of this thesis, there are several avenues for future research. These include:

1. Extend the synchronization framework by integrating software quality metrics, thereby

enabling synchronization of quality-specific aspects, such as performance or modifia-

bility.

The objective here is to quantify the effect of synchronization on the quality of the

produced models. In this respect, when there are more that one alternative ways to
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re-synchronize models, to be able to select the synchronization path the maximizes

the quality of the produced models and minimizes model decay.

2. Expand the interoperability with other CASE tools that do not directly support the QVT

framework.

The objective here is to provide adapters, so that Triple Graph Grammar models can

be mapped to other formalisms (e.g., ATL [JK05]), and the required architecture to

integrate the proposed approach to Integrated Development Environments (IDEs) such

as the Rational Software Architect.

3. Further evaluate and refine the framework through additional case studies from do-

mains not considered within the scope of the thesis.

The objective of this avenue of research is to investigate how the proposed approach

can be generalized to other domains beyond software models, and assess its applica-

bility and generality so that models pertaining to the interest of other stakeholders can

also be taken into account. Examples of such non-software models may be regulatory

models and conformance constraint models.
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