
Collision Finding with Many
Classical or Quantum Processors

by

Stacey Jeffery

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2011

c© Stacey Jeffery 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we investigate the cost of finding collisions in a black-box function, a
problem that is of fundamental importance in cryptanalysis. Inspired by the excellent
performance of the heuristic rho method of collision finding, we define several new models
of complexity that take into account the cost of moving information across a large space,
and lay the groundwork for studying the performance of classical and quantum algorithms
in these models.

iii

Acknowledgements

I am deeply indebted to my supervisor, Dr. Michele Mosca, for introducing me to the
subject of quantum information processing, and for the years of support and encouragement
since. I’m also grateful to the reading committee, Dr. Ashwin Nayak and Dr. Ben Reichardt
for the useful feedback.

In addition, I would like to thank Dr. Anne Broadbent for patiently mentoring me since
I was an undergraduate student and teaching me most of what I know about research. I
would also like to thank Dr. Frédéric Magniez for his advice and guidance over the course
of my Masters study. I also thank and acknowledge Dr. Magniez for his collaboration on
the result of Chapter 6.

I’m grateful to Dr. Dan Brown and Dr. Edlyn Teske for useful discussions and feedback
on the results of Chapter 5.

I would like to thank my fellow students and officemates, in particular Jamie Sikora for
explaining how to write a thesis, Robin Kothari for helpful comments on Chapter 7, and
Sarvagya Upadhyay for pointing me in the direction of [5].

Finally, it’s with the utmost gratitude that I thank my family and friends for their
years of support, in particular my mother, Kelly macGregor, and my grandmothers, Helen
Jeffery and Carolyn Weeks, for two and a half decades of love, advice and inspiration, as
well as my partner, Moritz Ernst, for his love, undying support, and delicious cooking.

iv

Table of Contents

1 Introduction 1

2 Models of Computation 3

2.1 Quantum Computation . 6

2.2 Quantum Query Model . 7

2.3 Locality-Sensitive Models . 8

2.4 Distributed Grid Models . 10

2.5 Summary of Models . 13

3 Oracle Problems 14

4 A Survey of ED and Collision Algorithms 22

4.1 Search-Based Methods . 22

4.1.1 Deterministic Search . 22

4.1.2 Randomized Search . 23

4.1.3 Quantum Search . 23

4.1.4 Deterministic Grid Search . 26

4.1.5 Randomized Grid Search . 26

4.1.6 Quantum Grid Search . 26

4.1.7 Application to Element Distinctness and Collision Finding 27

4.2 Tabular Methods . 28

v

4.2.1 Deterministic Tabular Method . 28

4.2.2 Randomized Tabular Method . 29

4.2.3 Quantum Tabular Methods and the Algorithm of Brassard, Høyer
and Tapp . 30

4.2.4 Randomized Grid Tabular Method 32

4.2.5 Quantum Grid Tabular Method . 33

4.3 Markov Chains and Quantum Walks . 34

4.4 Summary . 40

5 The Rho Method 42

5.1 Basic Algorithm . 43

5.1.1 Probabilistic Analysis for COLN 47

5.1.2 Probabilistic Analysis for EDN . 50

5.2 The Cayley Rho Algorithm . 54

5.2.1 VGCD is False for some r . 59

5.3 Rho Methods and Quantum Computing 67

6 A New Deterministic Algorithm for the Hardest Instances of EDN 69

7 A Survey of Quantum Lower Bound Methods and their Application to
Collision Finding and Element Distinctness 74

7.1 The Polynomial Method . 77

7.1.1 Relation to Block Sensitivity . 80

7.1.2 Applications to Collision Finding and Element Distinctness 82

7.2 The Quantum Adversary Method . 85

7.2.1 The Negative Weights Adversary Method 95

7.2.2 An Adversary-Like Bound on Search with Parallel Queries 98

vi

8 Lower Bounds in the Grid Model 102

8.1 Some Trivial Lower Bounds . 102

8.2 Prospects for Applying the Polynomial Method 104

8.3 Prospects for Applying the Adversary Method 104

8.4 Relation to Communication Complexity 105

8.5 Final Remarks . 107

References 108

Appendix 114

A Birthday Paradox Arguments 114

vii

Chapter 1

Introduction

The problem of finding collisions arises in the area of cryptanalysis in relation to breaking
collision resistant hash functions. These functions are used in authentication schemes, and
the ability to find a collision in a hash function upon which an authentication scheme is
based is considered to compromise the security of the authentication scheme. It is thus
of great practical importance to understand the complexity of the general collision finding
problem, in order to, for instance, choose appropriate parameters.

In a recent commentary, [16], Bernstein conjectures that for the problem of collision
finding, no quantum algorithm will ever beat the current classical methods in practice. We
lay the groundwork for investigating this question and, in the doing so, develop several
new models of computation that we hope will be of general interest.

The fastest method of collision finding in practice is the heuristic parallel rho method.
It uses a number of processors proportional to the problem size. Several factors make the
rho method achieve better performance in practice than other methods of collision finding
which have better query complexity, or even better complexity in the standard RAM
model. The first is that each processor is able to work with a very small amount of space.
In practice, accessing data stored in a large space is costly, and this can’t be avoided. The
finite speed of light, which bounds the speed of information, and the holographic principle,
which bounds the amount of information a physical region can store, mean that the cost of
accessing an array must grow with the amount of information in the array. This motivates
us to formally define a new model of complexity which counts the cost of information
movement: locality-sensitive complexity.

The second practical advantage that the parallel rho method has is that there is minimal
communication between processors throughout most of the computation. Communication

1

between many processors is costly for the same reason that information access in a large
space is costly. This motivates us to define the parallel counterpart to the locality-sensitive
model: the grid model, which contrasts other parallel models in that it counts the cost of
communication between two processors by their distance from one another.

These issues are not only of practical interest, but also of fundamental theoretical
interest. In the words of Aaronson and Ambainis:

[I]f we are interested in the fundamental limits imposed by physics, then we
should acknowledge that the speed of light is finite, and that a bounded region of
space can store only a finite amount of information, according to the holographic
principle [2].

Although we only consider collision finding and related problems in the new models, we
certainly believe there is future work in investigating the complexity of other problems in
these models.

This thesis is in three major parts. In Chapter 2 we will give necessary preliminaries
and outline various common models of computation, culminating in the introduction of two
new models, each available in three flavours: the locality-sensitive models (deterministic,
randomized, and quantum) and the grid models (deterministic, randomized, and quantum).
In Chapter 3, we will introduce the precise definitions of the problems we will be examining.

Chapters 4, 5, and 6 deal with algorithms. In Chapter 4, we will survey quantum and
classical algorithms for collision finding and element distinctness in well-studied models
and extend them, where applicable, to the new models. In Chapter 5, we will take a close
look at the best known classical heuristic for collision finding (on one or many processors),
Pollard’s rho method. We will show that the only known rigorous analysis of this algorithm
that does not require a random oracle assumption actually rests on a false assumption, and
thus, the rho method really is merely heuristic (though we note that it appears to be an
excellent heuristic in practice). Finally in Chapter 6, we will present a new algorithm that
deterministically solves a limited version of element distinctness.

In Chapters 7 and 8, we tell the other side of the story: lower bounds. We begin by
surveying the known techniques for quantum lower bounds in Chapter 7, before discussing
how future work may apply them to our models in Chapter 8. In Chapter 8, we derive
some trivial lower bounds for our new models and discuss the possibility of closing the
remaining gaps using known techniques.

2

Chapter 2

Models of Computation

Computation is essentially the process of manipulating the physical state of some small
subsystem of the universe in order to solve some mathematical problem. The state of
any physical system evolves over time, according to the laws of physics. Computation is
simply the process of taking control of this evolution so that a desired answer is, eventually,
encoded in the state of the system.

A finite physical system can be in one of a finite number of states, each of which we
consider as encoding some integer, represented by a binary string. We call the set of states
the state space, Ω, and label the states as Ω = {0, 1}n, for some n.

In this thesis, we will discuss algorithms to be carried out by some type of computer
in order to solve some particular problem. An algorithm is a finite set of mathematical
instructions comprised of certain operations of which the target computer is assumed to
be capable. For instance, an algorithm for any type of deterministic computer should not
include the instruction: “choose a uniform random integer from {0, . . . , N}”.

There is thus a need to define models of computation, so that when designing an
algorithm, we know which instructions we may use. Along with this notion is the idea of
efficiency: a basic operation in one model might be very costly in another. We therefore
have, in each model, an idea of the cost of operations. Though a classical computer can,
in theory, do everything a quantum computer can do, it may require exponentially greater
resources.

A deterministic algorithm is a set of logical instructions for definite evolutions from
one state in Ω to another. For every state, at every step of the algorithm, the state at any
subsequent step is well-defined.

3

A randomized algorithm is the same as a deterministic algorithm, except that we assume
the existence of an extra register, often called the coin register, which is reset to a random
bit string in {0, 1}r at every step. The next state of the computation register is a well-
defined function of the contents of the coin register and current computation register, but
the coin register’s next state is independent of these.

Neither of these types of algorithms gives any notion of cost. For example, a determin-
istic algorithm for sorting a list could consist of the single instruction: “sort the list”. This
is a deterministic instruction for evolving the state, but we would not say that sorting has
cost 1. We therefore have the notion of some basic set of operations, usually on a constant
number of operands, and we count each of these as 1.

A random access machine (RAM) is a model of computation that closely resembles a
standard computer. Operations are performed on values in an array of addressed memory.
The cost of a basic operation, such as adding two numbers, can be counted in one of two
ways. In the uniform cost model, basic operations are considered to have constant cost,
whereas in the logarithmic cost model, basic operations have cost that is logarithmic in the
size of the operands. In our case, we will be operating on things of size logN , and ignoring
logN factors, so there is little difference between these two models. Note however that
accessing an arbitrary memory location takes constant time in this model, independent
of the size of the memory. Another model of computation, the circuit model, counts the
number of gates used. In this model, a memory access cost is logarithmic in the size of the
memory.

In the problems we will be interested in, we can view the input as a black-box function
f : [N]→ [R]. We can think of f as being a very large table of N values from [R], indexed
by [N], so that f(x) (which we could also denote f [x] if we want to emphasize the tabular
nature of f) is the xth entry of f . In practice, f may be a more abstract function which we
have some unspecified means of computing, however, we make no assumption about the
structure of f .

One classic example is that f : X × C → {0, 1} is a verifier for some NP-complete
language L. We can efficiently compute f on any instance-certificate pair (x, c) ∈ X × C,
but given some x ∈ X , determining whether or not there exists c ∈ C such that f(x, c) = 1
is thought to be very difficult (unless P=NP). Thus, even though we may have an efficient
implementation of f , it can still take an exponential amount of time to establish certain
properties of f .

A second example, related to the main topic of this thesis, is finding hash collisions. A
hash function is a primitive that often comes up in cryptography (see [40] for a thorough
overview). A hash function h : X → Y is an efficiently computable function where |Y| <<

4

|X |, so naturally there are many pairs x, x′ ∈ X with x 6= x′ and h(x) = h(x′). However,
a necessary property of a hash function in many applications is collision resistance, that
is, finding such a pair x, x′ is difficult. This is another example of a situation where we
may have an efficiently computable function, but finding some property of that function,
in this case, a pair that collides under the function, is believed to be difficult.

In these examples, and all those we will consider, we generally require exponential
resources to solve a problem, so algorithms seek to minimize the growth constant (constant
in the exponent) but do not hope to reduce the required resources to polynomial (in the
input size, logN). We are therefore not particularly concerned with any poly-logarithmic
factors, such as the computation time of the input function f . We will use the notation Ω̃,
Õ, and Θ̃ to indicate asymptotic growth up to poly-logarithmic factors.

The dominating cost in the black-box problems we consider is the number of times we
must make use of the black-box f (each use is called a query), which we assume dwarfs the
cost of a query itself. This leads to a notion of complexity called query complexity. For a
deterministic algorithm A, we define the query complexity of A, D(A), as the maximum over
all f , number of queries made by A to to input f . Similarly, for a randomized algorithm A
that outputs F(f) with probability at least 2

3
on input f , we define R(A) as the maximum,

over all f , number of queries made to f .

We can then define the deterministic query complexity of a problem, D(F), as the
minimum, over all deterministic algorithms A that compute F, D(A), and the randomized
query complexity, R(F), as the minimum, over all randomized algorithms A that compute
F, R(A).

When the inputs to F are considered as Boolean functions, that is, a query returns
a single bit, then D(F) is sometimes called the decision tree complexity and R(F) the
randomized decision tree complexity. In general we can view the decision tree complexity
and query complexity as equivalent. An input f : [N] → [R] to a problem can be viewed
as a vector in [R]N or a binary string in {0, 1}N logR. A query f(x) returns the xth entry
in the vector, and a bit query f [i] returns the ith bit in the string. We can simulate a bit
query with a single query (by querying the vector entry containing that bit and discarding
all but the desired bit) and we can simulate a query with logR bit queries. Depending on
the setting, it may be more convenient to consider queries or bit queries.

5

2.1 Quantum Computation

In this section, we give a very brief introduction to quantum computation. For a more
thorough introduction, see [29].

Whereas the state of a classical system can be represented as a binary string of some
finite length n, a quantum system of size n can be in any superposition of these states. That
is, the quantum state has some amplitude associated with each of the 2n classical states,
which we represent as a 2n-dimensional complex vector. We fix an orthonormal basis for C2n

and label its members with the 2n binary strings of length n, or equivalently, the integers
from 1 to N , where N = 2n: {|1〉, |2〉, . . . , |N〉}. We call this the computational basis. A
quantum state is therefore of the form

∑
x∈[N] αx|x〉 for αx ∈ C and [N] = {1, . . . , N}. If

we measure the state, we will get some outcome x ∈ [N]. The probability of observing the
outcome x is |αx|2. We therefore have ‖|ψ〉‖2 = 1 for all quantum states |ψ〉.

We can combine two systems H1 and H2 to get the system H1⊗H2. If the first system
is in the state |ψ1〉 and the second system is in the state |ψ2〉, then the joint system is in
the state |ψ1〉 ⊗ |ψ2〉, which we sometimes write as |ψ1〉|ψ2〉.

We may want to consider the state of a subsystem of the quantum system, which is
difficult to do when the state is given as a vector. We can therefore consider a general state
as a density operator, a positive semidefinite operator with trace 1. The density operator
of the complete system is ρ = |ψ〉〈ψ|, where 〈ψ| = |ψ〉†. Such a system is said to be in a
pure state. To consider some part of a system, say H1 in the system H1 ⊗H2, we use the
partial trace operator to trace out the subsystem on H2. Thus, if the joint system is in the
state ρ, the state on H1 is ρ1 = Tr2(ρ). It may not be possible, in general, to write ρ1 as
|φ〉〈φ| for some vector φ. In that case, we say that the state is mixed. If Tr1(ρ) and Tr2(ρ)
are mixed states (for some pure state ρ), then we say the two systems are entangled.

A quantum operator is a linear operation on the state space H. More generally, since
we need states to have norm 1, the operator must be unitary. A quantum circuit is a
sequence of unitary operations on some initial state: UTUT−1 . . . U1|ψinit〉.

To get classical information from a quantum state, we can perform a measurement. A
measurement can be described by a set of projections {Px : x ∈ Σ} such that

∑
x Px = I.

The set Σ is called the set of outcomes. The outcome of the measurement on a state |ψ〉
will be x ∈ Σ with probability 〈ψ|Px|ψ〉. If the outcome of a measurement is x, then the
state of the system after the measurement is the normalization of Px|ψ〉.

6

2.2 Quantum Query Model

In the quantum analogue of a query to f , we need the operation to be unitary, and thus
reversible. We could thus define a query operator with respect to a particular black-box,
f , as:

O′f |x, z〉 = |x, z ⊕ f(x)〉

However, in the case where f(x) is a single bit, it will usually be more convenient to
think of a query as encoding the queried value in the phase, as:

Of |x〉 = (−1)f(x)|x〉

(Note that Of is the same as O′f when the second register contains |−〉).

Clearly this operator is self-inverse.

Note that the query operator Of depends on the input f . Depending on the actual
application, we may be able to construct a unitary for each input, but it may be desirable
to think of the query operator as independent of the input. To this end, we extend our
Hilbert space as follows. Let HC be the computation space, spanned by vectors of the form
|x,w〉 where x is the next query input and w is the workspace. Non-query operators act
only on HC . Let HI be the input space, spanned by vectors of the form |f〉, where f is the
input function, which we can think of as being stored as a table (more generally, we may
have a quantum circuit for computing values of f , but thinking of f as a large table allows
us to abstract away from any of the details of this circuit). Non-query operators act as the
identity on HI . Generally the input space will start in a basis state |f〉 (we will input a
definite function), however in Section 7.2 we will see that it can be useful to consider the
input as being in a superposition.

We can now think of a query operator as acting on HI ⊗HC as follows:

O|f, x, w〉 = (−1)f(x)|f, x, w〉

Note that the action of O on HC is the same as that of Of (when f is in the input
register) so we can think of the query operator in either of these ways, depending on which
is most convenient.

7

To construct a general circuit in the quantum query model, we simply interleave some
number T of query operators with arbitrary unitaries, U0, . . . , UT . The initial state is some
arbitrary quantum state that is independent of the input, so we write:

|ψ0
f〉 := U0|0 . . . 0〉

Generally, we let |ψtf〉 denote the state of HC just before the t+ 1th query on input f ,
so:

|ψtf〉 = UtOf |ψt−1
f 〉

and final state:

|ψTf 〉 = UTOfUT−1 . . . U1OfU0|0 . . . 0〉

Measuring the (without loss of generality) rightmost bit of |ψTf 〉 produces the output.

We say the circuit computes F with bounded error ε, for ε ∈ [0, 1
2
), if the maximum

probability over all valid inputs f that the outcome is not F(f) is ε. More formally, let A
denote the circuit above. Then A computes F with bounded error if:

max
f

1−
∑

|c〉∈SF(f)

∣∣〈c|ψTf 〉∣∣2
 ≤ ε

where SF(f) is the set of all computational basis states of HC that have F(f) in the
answer register.

We say that a quantum algorithm has query complexity Q(A) = T if it makes T uses
of O. The quantum query complexity of a problem is defined as Q(F) := minQ(A) where
the minimum is taken over all quantum algorithms A that compute F with bounded error.

2.3 Locality-Sensitive Models

For the problems we will be considering, we can reduce the time complexity by making use
of an amount of space that depends polynomially on N . In a standard model of classical or
quantum computation, accessing a position in this table would cost constant or logarithmic

8

time, which we consider negligible. We argue that this lack of cost is not well-motivated
physically. In order to perform a random access to a table of physical size k, information
must travel up to k units of distance, at a finite speed, due to the finite speed of light.
We cannot reduce k arbitrarily, due to the holographic principle. These two properties are
stated formally as:

Superluminal Signaling Assumption: Information cannot travel faster than the speed
of light, which is finite.

Holographic Principle: The information contained in a region of space is upper bounded
by 1 bit per Planck area of the surface area of the space [17].

The implication of these two physical limits is that a memory of size S has access time
that scales as

√
S. This is because, since the entropy (information content) of a region of

space is proportional to the surface area, the sum of the dimensions of a region of space
storing S bits of information must be in Ω(

√
S). The best we can do asymptotically is

to store information in two dimensions. Even if we consider a three-dimensional space of
volume S, the amount of information we can store in that space is actually limited by the
surface area of that space, by the holographic principle. The surface area is maximized
(asymptotically) by setting one of the dimensions of the space to 1 unit of memory (which
is minimal in this case). It is thus reasonable to consider information as being stored in
two dimensions. The girth of a two-dimensional space is minimized when that space is
arranged in a disc of radius

√
S/π, but is still asymptotically minimal (and simpler to

consider) when arranged in a
√
S ×
√
S grid. We thus always assume that information is

stored in a grid.

The bound on the speed of random access imposed by the finite speed of light and the
holographic principle was pointed out by [14, 2]. They point out that, even in a grid of S
qubits of memory, performing a single memory access on a superposition over all memory
locations costs O(

√
S), since amplitude must traverse the grid. This consideration has

come up in the classical world, in particularly in the study of very large scale integration
(VLSI), which concerns the design of complicated circuits on very small chips. Optimal
designs for such chips were studied in the 70s and 80s. These works have a similar spirit to
our models in that a two-dimensional space is considered and the cost of communication
across the space is taken into account. There are several area-time tradeoffs for particular
problems that are very much in the spirit of what we would like to achieve, for instance
[4, 50].

This stricter measure of complexity has also been discussed recently by Bernstein [16],
who points out that certain algorithms requiring large space fail to account for the cost
of access to that space. Until now, it has been practical to ignore this cost, since the

9

constants involved were relatively minuscule, however, as we move towards the physical
limits of computation, we cannot ignore these fundamental physical principles. We thus
define the following measures of complexity, in which random access to a table of size S
costs Θ(

√
S). We assume the memory is arranged in a grid.

The locality-sensitive complexity of an algorithm is a measure of complexity in which we
count all non-query operations as in the RAM model (or quantum circuit model), with the
exception that accessing a table of size S (or any other operation that necessarily requires
communication across a space of area S) costs Θ(

√
S). We assign each query operation a

cost of 1. This implicitly makes the assumption that the query can be made in efficient
(poly-logarithmic) resources (since we are ignoring poly-logarithmic factors).

The deterministic locality-sensitive complexity of a problem F, D(F), is the minimum
over all deterministic algorithms A that compute F, locality-sensitive complexity of A.

Similarly, the randomized locality-sensitive complexity of a problem F, R(F), is the
minimum over all randomized algorithms A that compute F, locality-sensitive complexity
of A.

The quantum locality-sensitive complexity of a problem F, Q(F), is the minimum over
all quantum algorithms A that compute F, locality-sensitive complexity of A.

Note that we immediately have D(F) ≤ D(F), R(F) ≤ R(F), and Q(F) ≤ Q(F).

2.4 Distributed Grid Models

We now discuss distributed locality-sensitive computation. We will consider many parallel
processors, each with its own poly-logarithmic memory, arranged in a grid. The cost of
communication between two processors will be proportional to the distance between them,
so we will suppose that each processor can only communicate directly with its neighbours,
which will cost Θ(1). The processors may be deterministic, randomized, or quantum.

This model is of fundamental physical interest, since it is similar to the way the universe
actually performs computations; in a very parallel but local manner. One motivation for
this model is the argument that a database of S quantum memory units is actually a
collection of S computing units [16, 54], so it is justified to replace the notion of memory
with that of processors. Another motivation is that the heuristic performance of the rho
method of collision finding, discussed in Chapter 5, seems to have exceptionally good
performance in a parallel model, even under our locality-sensitive constraints, and so we
are interested in how the quantum counterpart might compete with this performance.

10

Figure 2.1: A 4 × 4 grid (left). We can also consider each vertex being connected to the
nearest diagonal vertices (right). In either case, each vertex has a constant number of
neighbours.

We suppose we have M processors arranged in a
√
M ×

√
M grid. Each has local

black-box access to the input f . In a single unit of time, each processor may: perform
a query, perform a basic computation step, or send a message of size logN to one of its
neighbours.

Consider running some algorithm A in this model. Let T (i)(A) be the number of opera-
tions performed by processor i. Define T (A) := maxi T

(i). We can designate a distinguished
processor that must output the correct answer when the algorithm terminates. No matter
which processor we choose, there must be some processor at distance Θ(

√
M) from the

distinguished processor. If the algorithm has T ∈ o(
√
M), then the output of the distin-

guished processor is necessarily independent of some processors, since no communication
from them can have reached the distinguished processor in this time. Thus, we should really
consider the algorithm as having run on some smaller number of processors. We therefore
always assume that T ∈ Ω(

√
M), and to this end, we say that the complexity of A in this

model is actually Θ(T +
√
M) (T technically accounts for all communication costs, but the

+
√
M emphasizes the fact that T can’t be less than

√
M). We can therefore do away with

the distinguished processor formalism and suppose that each processor, or any one of the
processors, must output the correct answer; it makes no difference asymptotically.

We can thus define our final measures of complexity. If we are working with deter-
ministic processors, we can consider the deterministic M-grid complexity of a problem
F:

D�
M(F) := minT (A) +

√
M

where A is any deterministic grid algorithm that solves F. From this, we get the determin-
istic grid complexity :

D�(F) = min
M

D�
M(F)

11

If the processors are randomized, we have the randomized M-grid complexity :

R�
M(F) := minT (A) +

√
M

where A is taken over all randomized grid algorithms for F, and the randomized grid
complexity :

R�(F) = min
M

R�
M(F)

Finally, when working with a grid of quantum processors, we have the quantum M-grid
complexity of a problem:

Q�
M(F) := minT (A) +

√
M

where A is taken over all quantum grid algorithms for F, and the quantum grid complexity :

Q�(F) := min
M

Q�
M(F)

We assume that a quantum processor can implement any unitary in some universal
gate set. In the quantum grid model, we allow quantum communication, so in one time
step, a processor may send a quantum message of size logN qubits to one of its neigh-
bours. We do allow for entanglement between processors, but not for free. We suppose
the processors begin with their quantum memories in separable states, and entanglement
between processors must be produced through quantum communication.

Several other paradigms of many-processor computation have been considered in the
past.

An early model of parallel computing, the PRAM model [23], is the parallel analogue
of the RAM model. In this model, some number of processors have random access to a
shared memory. Communication between any two processors is accomplished through this
shared memory. In an ideal PRAM machine there are an unlimited number of processors
(similar to our situation, where the number of processors can grow with the problem) and
unlimited shared random access memory. This model differs significantly from ours in that
it allows all processors to have constant cost random access to the shared memory, not
accounting for the distance the information must travel. In particular, two processors in
this model may communicate in constant time, which is physically unrealistic.

However, there are interesting relationships between this model and decision tree com-
plexity. In particular, Nisan showed [42] that the complexity of a Boolean function F in
this model is Θ(logD(F)), which he shows using block sensitivity (see Chapter 7).

Another related area is that of distributed computing. In this model, a network of
independent machines is connected by some graph, and attempt to carry out a joint com-
putation. It is similar to our model in the sense that each processor has its own memory

12

and can only communicate with its neighbours by sending messages. However the spirit
of this paradigm is quite different from ours, in that the individual machines are generally
considered to be quite separate, possibly belonging to different users, and the problems
considered in this model are generally related to properties of the connection graph itself
(for example, finding a shortest path). In addition, in this model there is no bound on the
memory of individual machines.

There are many variations on these two broad ideas. For a thorough survey, see [37].

2.5 Summary of Models

The locality-sensitive models and grid models are related to their query counterparts, in
the following ways:

Table 2.1: Relationships between models

D�
M(F) ≥ D(F)

M
+
√
M D(F) ≥ D(F)

R�
M(F) ≥ R(F)

M
+
√
M R(F) ≥ R(F)

Q�
M(F) ≥ Q(F)

M
+
√
M Q(F) ≥ Q(F)

These relationships produce trivial lower bounds in the new models, discussed more in
Chapter 8.

13

Chapter 3

Oracle Problems

In this section, we give precise definitions of the problems we will be studying, including
several variations on collision finding and related problems. We present several lemmas on
the relationships between these problems.

Definition 3.0.1. Given two problems, FN and GN , we say FN poly-logarithmically re-
duces to GN if, given an algorithm A that solves GN , we can solve FN using poly(logN)
calls to A and poly(logN) other operations.

FN and GN are poly-logarithmically equivalent if FN reduces to GN and GN reduces
to FN .

The following problem, often called search or black-box search is the most fundamental
black-box problem.

Problem 1 ORN

Given a function f : [N]→ {0, 1}, return x ∈ [N] such that f(x) = 1, or output that none
exists. An element x ∈ [N] such that f(x) = 1 is called a marked element.

As the name suggests, the problem of ORN is poly-logarithmically equivalent to cal-
culating f(1) ∨ · · · ∨ f(N). Certainly if we can compute ORN as defined above, we can
compute f(1)∨· · ·∨f(N). Similarly, if we have a method A for computing f(1)∨· · ·∨f(N),
we can compute ORN(f) using a logarithmic number of calls to A: we simply do a binary
search of [N] for an input that evaluates to 1.

We now introduce the main problem of interest: collision finding.

14

Problem 2 COLN

Given a 2-to-1 function f : [N] → [R], return a pair (x, y), x 6= y such that f(x) = f(y).
Such a pair is called a collision. If (x, y) is a collision, we write x ∼ y or y = x̃.

We could, more generally, consider functions f : X → Y where |X| = N and |Y | = R,
however, in order to consider such an input and output from a black-box, we would need a
fixed binary encoding of the elements of X and Y . We therefore consider all such functions
as having domain [N] and range [R]. Additionally, we assume that we can efficiently store
elements of [R], so we suppose that R is polynomial in N . Then logR ∈ Θ(logN). In
practice it is most common to look for collisions in hash functions with R << N , so we
generally need not be concerned with the size of R, since [R] ⊂ [N] in this case, so we can
even consider f : [N]→ [N]. In theory we may not want to make this assumption.

In the comparison query model, since we do not necessarily deal with any elements of
Y , we do not assume they have some encoding, efficient or otherwise, however in this thesis
we will not consider this model.

The problem COLN , is of a somewhat theoretical nature in that it assumes that the
input is a 2-to-1 function, a very precise structure that may not often come up in practice.
We therefore consider a broader class of functions that behave similarly.

Definition 3.0.2. Fix an appropriate constant c. We say a function f is almost strictly
many-to-1 if ∣∣{y ∈ im(f) :

∣∣f−1(y)
∣∣ = 1}

∣∣ ≤ c logN

That is, there are at most c logN elements in the image of f with a unique pre-image.
We will refer to these unique pre-images as single elements.

Problem 3 C̃OLN

Given a function f : [N]→ [R] that is almost strictly many-to-1, return a collision.

The notion of an almost strictly many-to-1 function captures k-to-1 functions for any
constant integer k > 1, as well as functions that are similar to such a function in the
sense that they deviate from such a function in a logarithmic number of positions. This is
desirable, since we would like the definition to capture anything that is intuitively close to a
k-to-1 function. More generally, the definition includes any function where most elements of
[N] are part of at least one collision pair. Intuitively, it includes 2-to-1 functions, functions
that are very close to 2-to-1, and anything easier to find collisions in.

15

This broader class of functions shares some properties with 2-to-1 functions that algo-
rithms discussed in Chapter 4 will make use of. In particular, a famous theorem, often
called the birthday paradox, states that if we make about

√
N uniform independent choices

from a set of size N , then we will make the same choice more than once with constant
probability. Querying a random element in [N] is the same as choosing a random element
from im(f), though not necessarily uniformly. In Appendix A, we prove some variations
of the birthday paradox that are used to prove the following two lemmas.

Lemma 3.0.3. Suppose f is almost strictly many-to-1. Then the probability that a uniform
random subset of [N] of size S ∈ O(

√
N) contains a collision is Ω(S

2

N
). In particular, the

probability that a random pair (x, y) ∈ [N]× [N] is a collision is Ω(1
N

).

Proof. Let S be a set of size S. We will consider adding elements to S in the sequence
x1, . . . , xS.

Let X denote the number of single elements in S. By Markov’s inequality, we have:

Pr[X ≥ 1] ≤ E[X] ≤ S

N
c logN ∈ O

(√
N logN

N

)

So the probability that S has no single elements is at least 1
2

(for sufficiently large N) so
we will condition on this being true, to simplify our analysis.

Suppose there is no collision in x1, . . . , xk. Then the probability that xk+1 collides with
one of x1, . . . , xk is at least k

N
, since each xi has at least one (distinct) element in [N] with

which it collides. Thus, the probability that there is no collision in S is:

ΠS−1
k=1

(
1− k

N

)
≤ ΠS−1

k=1e
− k
N

= exp

(
−

S−1∑
k=1

k

N

)

= exp

(
−S(S − 1)

2N

)
≤ 1− S(S − 1)

4N

Thus, the probability that there is a collision in S is at least S(S−1)
4N

∈ Ω(S
2

N
).

Setting S = {x, y}, we have Pr[x 6= y ∧ f(x) = f(y)] ∈ Ω(1
N

).

16

Lemma 3.0.4. Suppose f is almost strictly many-to-1. Fix a set S ⊆ [N] of size S ≥
c′ logN for c′ > c, with no collision. The probability that a uniform random X ∈ [N]
collides with an element of S is at least Ω(S

N
).

Furthermore, fix y ∈ [N] such that y is not single. The probability that a uniform
random X ∈ [N] collides with y is Ω(1

N
).

Proof. Let S be a subset of [N] of size S ≥ c′ logN . Then it has at least S−c logN ≥ c′−c
c
S

non-single elements. Each of these has at least one distinct element in [N] that collides
with it, so there are at least Θ(S) elements in [N] that collide with an element in S. The
probability of choosing one is at least Ω(S

N
).

If y is not single then there is at least one element in [N] that collides with it, so the
probability of choosing such an element is Ω(1

N
).

It seems that in practice, C̃OLN is what we want to solve, however the nice structure of
exactly 2-to-1 functions makes COLN easier to work with. Certainly for lower bounds we
can simply consider COLN , since the set of 2-to-1 functions is a subset of the set of almost

strictly many-to-1 functions, so lower bounds for COLN are lower bounds for C̃OLN .
Intuitively, a nondeterministic algorithm that solves COLN in worst case expected time T

should also solve C̃OLN in worst case expected time T , however it is possible that some
algorithm, particularly a deterministic algorithm, may exploit the exact structure of 2-to-1
functions in a way that cannot be applied to almost strictly many-to-1 functions, so we
cannot say that these problems are equivalent. However, since most of our analyses are

based on the probability of some pair being a collision, they mostly apply to C̃OLN . Thus,
while we will generally consider the problem COLN , we will note where an algorithm works

just as well for C̃OLN .

A related problem to collision finding is that of element distinctness. It is of great
theoretical interest, having been used to prove lower bounds on sorting. It is somehow a

more general version of C̃OLN , since it places no restriction on the input function.

Problem 4 EDN

Given a function f : [N]→ [R], determine whether or not it is 1-to-1. Equivalently, given
a function f : [N]→ [R] return a collision pair.

The problem C̃OLN (and hence COLN) is a special case of EDN , but EDN is strictly

more difficult, since every allowed input to C̃OLN has the property that it has many

17

collisions, whereas an input to EDN may have only a constant number of collisions. Such
inputs are intuitively the most difficult, and we therefore often think of inputs to this
problem as having only a constant number of collisions.

We have defined EDN in two equivalent ways. We now show that these are, in fact,
equivalent.

Claim 3.0.5. The following problems are poly-logarithmically equivalent:

1. Given a function f : [N]→ [R], determine whether or not f is 1-to-1, and

2. Given a function f : [N]→ [R], return a collision in f if there is one.

Proof. Given a procedure for solving the second problem, we can clearly determine whether
f is 1-to-1 in a single call.

Suppose we have a procedure A that outputs 1 if a function is 1-to-1 and 0 otherwise. We
will show how to use this procedure to find a collision in a function f : [N] → [R]. Let
n = logN . We can think of f as a function on {0, 1}n.

Let S(z) := {w ∈ {0, 1}n : z is a prefix of w}.

Input: A black-box f : {0, 1}n → [R].
Output: A collision pair (x, y)

1. if A(f) = 1 then return 1-to-1

2. if A(f |S(0)) = 0 then x1 := y1 := 0

3. else if A(f |S(1)) = 0 then x1 := y1 := 1

4. else x1 := 0, y1 := 1

5. for i := 2, . . . , n

(a) if A(f |S(x1...xi−10)∪S(y1...yi−10)) = 0 then xi := yi := 0

(b) else if A(f |S(x1...xi−11)∪S(y1...yi−11)) = 0 then xi := yi := 1

(c) else if A(f |S(x1...xi−10)∪S(y1...yi−11)) = 0 then xi := 0, yi := 1

(d) else xi := 1, yi := 0

6. return x, y

18

Note that the above procedure makes Θ(logN) calls to A. We now argue that after any
step i, x1 . . . xi and y1 . . . yi are consistent with some collision pair. As a base case, consider
x1 and y1. If A(f |S(b)) = 0 for some bit b, then there is a collision in f with x, y ∈ S(b) so
there is some collision with x1 = y1 = b. Otherwise, there is no collision in which x and y
both have the same bit, so each collision pair differ in the first bit. Therefore, we can set
x1 = 0 and y1 = 1.

Consider step i > 1. If A(f |S(x1...xi−1b)∪S(y1...yi−1b)) = 0 for some bit b, then if x1 . . . xi−1 =
y1 . . . yi−1 then clearly we have a collision pair where each of x and y have prefix x1 . . . xi−1b.
If x1 . . . xi−1 6= y1 . . . yi−1, this could only happen if there is no collision pair with both x
and y have prefix x1 . . . xi−1 or y1 . . . yi−1, so if there is a collision in this set, then it must
be that exactly one of the pair has prefix x1 . . . xi−1b and the other y1 . . . yi−1b.

If A(f |S(x1...xi−1b)∪S(y1...yi−1b)) = 1 for both choices of b, then it must be the case that
A(f |S(x1...xi−1b)∪S(y1...yi−1b̄)) = 0 for some b, since x1 . . . xi−1 and y1 . . . yi−1 are prefixes of
some collision pair. In this case, any collision pair from this set must have exactly one of
the pair with prefix x1 . . . xi−1b and the other with prefix y1 . . . yi−1b̄, since, in particular,
they may not have the same ith bit, since this would have been caught by one of the first
two branches.

The result follows.

We now consider the relationships between the problems of element distinctness, colli-
sion finding, and black-box search. We first introduce some necessary definitions.

Definition 3.0.6. A distribution ρ on V ∈ X ` is uniform t-wise independent if for any
k ≤ t, for any α ∈ X k and I ⊆ [`] with |I| = k we have:

Pr
ρ

[VI = α] =
1

|X |k

That is, the marginal distribution on any subvector of length up to t is uniform.

A random function f : [N]→ [R] is a random variable over all functions [N]→ [R]. A
random function f : [N]→ [R] is uniform t-wise independent if (f(1), . . . , f(N)) is t-wise
independent on [R]N . A set of functions F such that a uniform random variable on F is
uniform t-wise independent is called a uniform t-wise independent family of functions.

The property of t-wise independence for some t < ` is referred to as limited indepen-
dence.

Fact 3.0.7. There exist uniform t-wise independent families of functions F , such that each
function in F can be stored using Θ(t logN) space.

19

The concept of limited independence will be of importance in several sections of this
thesis, since it provides a form of randomness that can be stored efficiently. We now use it

to show a relationship between EDN and C̃OLN .

Lemma 3.0.8. Suppose, for any positive integer N , we have an algorithm that solves EDN

using T (N) ∈ Θ(N ε) queries and S space. Then we can construct an algorithm that solves

C̃OLN using Θ̃(T (
√
N)) ∈ Θ̃(

√
T (N)) queries and space Θ̃(S).

Proof. Suppose we have an algorithm A that solves EDN using T (N) ∈ Θ(N ε) queries.
Note that A solves ED√N in T (

√
N) ∈ Θ(

√
N
ε
) ∈ Θ(

√
N ε) queries. That is, T (

√
N) ∈

Θ(
√
T (N)).

Let f : [N]→ [R] be almost strictly many-to-1. We define a subset of [N] of size approx-
imately c

√
N by S = {h(1), . . . , h(c

√
N)} = {h1, . . . , hk} for some constant c and some

uniform 4-wise independent h : [N]→ [N]. Since {f(h1), . . . , f(hk)} is a set of about c
√
N

(by Lemma A.0.1) 4-wise independent random variables, f |S has at least 1 collision with
high probability, by Lemma A.0.4, which is a variation of the birthday paradox.

We can therefore run A on f ◦ h : [
√
N]→ [N], costing Θ(

√
T (N)).

We now compare element distinctness and collision finding to search.

Lemma 3.0.9. Suppose, for any positive integer N , we have an algorithm for ORN using
space S and T (N) queries. Then:

1. we can solve EDN using space Θ(S) and Θ(T (N2)) queries, and

2. we can solve C̃OLN using space Θ(S) and Θ̃(T (N)) queries.

Proof. Given a function f : [N]→ [R], define g : [N]× [N]→ {0, 1} as follows:

g(x, y) =

{
1 if x 6= y and f(x) = f(y)
0 else

We can find a collision in f by performing black-box search on g, using T (N2) queries to
g. Each query to g costs 2 f -queries. Thus, we can find a collision in f using 2T (N2)
f -queries.

Given an almost strictly many-to-1 function f : [N] → [R] and some z ∈ [N], define
gz : [N]→ {0, 1} as follows:

gz(x) =

{
1 if x 6= z and f(x) = f(z)
0 else

20

We can find a collision in f by choosing z ∈ [N] and performing black-box search on gz.
Since f is almost strictly many-to-1, there are at most O(logN) elements in [N] that are
not part of a collision. Thus, we need repeat this process at most O(logN) times. Each
times costs T (N) queries to gz, each of which costs 1 query to f . Thus we can find a
collision in f in at most Θ(T (N) logN) ∈ Θ̃(T (N)).

Sometimes, if we know something about the number of marked elements in the input, we
can expect a search algorithm to terminate in fewer steps. That is, the number of queries
may depend on k (which we may or may not need to know in advance), the Hamming
weight of the input (number of marked elements) as well as N . We then denote the cost of
the algorithm as T (N, k) to reflect this. If we have no guarantees on the Hamming weight
of the input, we have worst case query complexity T (N) = T (N, 1). Using this new cost

function, we can get a second type of reduction from C̃OLN to ORN .

Lemma 3.0.10. Suppose we have an algorithm for ORN using space S and T (N, k)

queries, where k is the Hamming weight of the input. Then we can solve C̃OLN using
space Θ(S) and Θ(T (N2, N)) queries.

Proof. This follows from the same reduction used for EDN in the above proof, and the

fact that an input to C̃OLN has Ω(N) collision pairs.

21

Chapter 4

A Survey of ED and Collision
Algorithms

In this chapter we survey known algorithms for collision finding and element distinctness
and relate them to the grid model, with the exception of the rho algorithm, which we
discuss in great detail in Chapter 5.

We begin by outlining optimal algorithms for ORN in each model of computation.

4.1 Search-Based Methods

Since EDN and COLN can be reduced to ORN (Lemmas 3.0.9 and 3.0.10), we begin by
describing optimal methods of solving ORN in the deterministic, randomized, and quantum
models, and their grid counterparts. Each of these methods yields methods for EDN and
COLN respectively. We summarize the upper bounds implied by these algorithms in Table
4.1.

4.1.1 Deterministic Search

It is not difficult to see that any deterministic algorithm for ORN has worst case query
complexity N . The optimal deterministic algorithm is therefore to query everything in [N]
until a marked element is found. If there are k marked elements, then the worst case query
complexity is T (N, k) = N − k + 1.

22

Space: logN
Query Complexity: D(ORN) ∈ Θ(N − k)

4.1.2 Randomized Search

A randomized algorithm for ORN may randomly query independent elements of [N] until
a marked element is found, but it must still have worst case query complexity in Ω(N),
the worst case being that of a single marked element. If there are k marked elements,
the probability that a random query returns a marked element is k

N
, and so the expected

number of queries is T (N, k) ∈ Θ(N
k

).

Space: logN
Query Complexity: R(ORN) ∈ Θ(N

k
)

4.1.3 Quantum Search

Using a quantum processor to query in superposition, we can speed things up consider-
ably. Quantum search is one of the poster-algorithms of quantum computing, achieving a
quadratic speedup over any classical search method. It was first developed by Lov Grover
[24] and later generalized and analyzed by [18, 19] to a process called amplitude amplifica-
tion. Given a quantum process expressed as a unitary U such that measuring U|0〉 yields
a marked element with probability p and a black-box f which outputs 1 if and only if the
input is marked, the amplitude amplification algorithm outputs a marked element with at
least constant probability after Θ(1√

p
) queries to f .

23

Algorithm 1 AmplitudeAmp

Input: A black-box f : [N]→ {0, 1} and a unitary U

1. Define unitary operator S by S|0〉 = −|0〉 and S|x〉 = |x〉 for x 6= 0 ∈ [N]

2. |ψ0〉 := U|0〉

3. for t := 1 . . . 1√
p

|ψt〉 := USU−1Of |ψt−1〉

Given a process that succeeds with probability p, we can amplify the probability of
success by repeating the process. The trick to getting the quantum speedup is to amplify
the amplitude of the marked states, rather than the probability of getting a marked state.

Let M = {x ∈ [N] : f(x) = 1} be the set of marked elements, and M = [N] \M the
set of unmarked elements. Let |M〉 be the normalized projection of |ψ0〉 onto span{|x〉 :
x ∈M} and |M〉 the normalized projection of |ψ0〉 onto span{|x〉 : x ∈M}. Then we have
|〈M |ψ0〉|2 = p, by assumption.

We can consider each iteration as two reflections, Of and USU−1. Operator Of has
no effect on the magnitude of either the amplitude of |M〉 or the amplitude of |M〉, it
merely changes the relative phase by putting a −1 in front of |M〉. It is the reflection
about |M〉: I− 2|M〉〈M |. The second reflection is the reflection about |ψ0〉, I− 2|ψ0〉〈ψ0|.
Let sin θt

2
= 〈M |ψt〉, so the probability of measuring a marked state if we measure |ψt〉 is

sin2 θt
2

, and p = sin2 θ0
2

. We have:

|ψt+1〉 = USU−1Of |ψt〉

= USU−1(|ψt〉 − 2|M〉〈M |ψt〉) = USU−1(|ψt〉 − 2 sin
θt
2
|M〉)

= |ψt〉 − 2 sin
θt
2
|M〉 − 2|ψ0〉〈ψ0|ψt〉+ 4 sin

θt
2
|ψ0〉〈ψ0|M〉

= |ψt〉 − 2 sin
θt
2
|M〉 − 2

[
cos

θ0

2
cos

θt
2

+ sin
θ0

2
sin

θt
2

]
|ψ0〉+ 4 sin

θt
2

sin
θ0

2
|ψ0〉

= |ψt〉 − 2 sin
θt
2
|M〉+ 2

[
sin

θ0

2
sin

θt
2
− cos

θ0

2
cos

θt
2

]
|ψ0〉

24

= |ψt〉 − 2 sin
θt
2
|M〉+

[
cos

θt − θ0

2
− cos

θt + θ0

2
− cos

θt − θ0

2
− cos

θt + θ0

2

]
|ψ0〉

= |ψt〉 − 2 sin
θt
2
|M〉 − 2 cos

θt + θ0

2
|ψ0〉

Then we have:∣∣〈M |ψt+1〉
∣∣ =

∣∣∣∣〈M |ψt〉 − 2 sin
θt
2
〈M |M〉 − 2 cos

θt + θ0

2
〈M |ψ0〉

∣∣∣∣
=

∣∣∣∣sin θt2 − 2 sin
θt
2
− 2 cos

θt + θ0

2
sin

θ0

2

∣∣∣∣
=

∣∣∣∣sin θt2 + sin
θt + θ0 + θ0

2
− sin

θt + θ0 − θ0

2

∣∣∣∣
=

∣∣∣∣sin θt + 2θ0

2

∣∣∣∣
Every iteration, the angle increases by θ0 = 2 sin−1√p, so the probability of measuring a
marked state if we measure at step t + 1 is sin2(tθ0 + θ0

2
). This means that if we iterate

too many times, the success probability actually starts to decrease again. To combat this,
we can begin by assuming there are many marked elements and run the algorithm for a
random number of iterations from some constant interval [1, c]. If this does not succeed,
double the interval size and repeat [18, 19].

Note that if we input U = H⊗n, the n-fold Hadamard gate, for n = logN , then U|0〉 is
a uniform superposition over all elements in the basis {|x〉}x∈[N]. When we measure U|0〉
in the basis {|x〉}x∈[N], we get any outcome x ∈ [N] with probability 1

p
= 1

N
. In particular,

if there is a single x ∈ [N] such that f(x) = 1, then this process is the standard quantum
search algorithm of [24]. More generally, if there are k marked elements with respect to
f , then measuring the uniform superposition gives a marked element with probability k

N
.

The algorithm therefore finds a marked element in expected
√

N
k

queries. This is optimal

[15, 18, 55].

Space: logN

Query Complexity: Q(ORN) ∈ Θ
(√

N
k

)
More generally, we can use AmplitudeAmp to reduce the number of iterations of any

probabilistic process quadratically. We will see this tool come up in various algorithms
throughout this thesis.

25

4.1.4 Deterministic Grid Search

A deterministic algorithm must query every element in the worst case, but it is possible to
divide this work among M processors. For j = 1, . . . ,M , processor j queries the elements
(j−1)N

M
+1, . . . , j N

M
. If there are k marked items, then there must be at least one processor

whose search space contains at least k
M

marked elements, so some processor is guaranteed
to find a marked element after N

M
− k

M
queries. Thus, the grid complexity of this algorithm

is T (N, k,M) = Θ(N−k
M

+
√
M). The optimal number of processors is thus M = (N−k)2/3,

in which case T (N, k) ∈ Θ((N − k)1/3).

M-Grid Complexity: D�
M(ORN) ∈ Θ(N−k

M
+
√
M)

Grid Complexity: D�(ORN) ∈ Θ((N − k)1/3) (when M = (N − k)2/3)

4.1.5 Randomized Grid Search

We can similarly spread the required Θ(N
k

) randomized queries among M processors in the
randomized model. In this setting, at each step, each processor makes a random query. At
each step, there is Θ(Mk

N
) probability that a marked element will be found. Each processor

thus needs to make about Θ(N
Mk

) queries before we can expect that one has found a marked

element. This costs T (N, k,M) ∈ Θ(N
Mk

+
√
M), which is optimized when M =

(
N
k

)2/3
,

giving T ∈ Θ
((

N
k

)1/3
)

.

M-Grid Complexity: R�
M(ORN) ∈ Θ(N

Mk
+
√
M)

Grid Complexity: R�(ORN) ∈ Θ
((

N
k

)1/3
)

(when M =
(
N
k

)2/3
)

4.1.6 Quantum Grid Search

We might try to similarly divide the
√

N
k

required quantum queries among M quantum

processors, but according to a result of Zalka [55] (also see Section 7.2.2) this is not possible.
The best we can do with many quantum processors is to divide the search space among
M processors and have them perform their own independent quantum searches of their
subspaces. More simply put (yet equivalently), as in the randomized case, we can have
each processor do an independent search (of the entire search space), but only run for

26

some T steps. In the quantum case, after T queries, a processor has probability kT 2

N
of

finding a marked element, so the probability that one of the M processors has found a

marked element after T steps is about kMT 2

N
. We thus set T ∈ Θ

(√
N
kM

)
, that is, we run

a quantum search on each processor for Θ
(√

N
kM

)
queries, taking time Θ

(√
N
kM

+
√
M
)

.

This is optimized when M =
√

N
k

, giving time Θ
((

N
k

)1/4
)

.

M-Grid Complexity: Q�
M(ORN) ∈ Θ

(√
N
Mk

+
√
M
)

Grid Complexity: Q�(ORN) ∈ Θ
((

N
k

)1/4
)

(when M =
√

N
k

)

4.1.7 Application to Element Distinctness and Collision Finding

The following table summarizes the upper bounds in each of the six models for both EDN

and C̃OLN obtained from reduction to search. Each of the single processor algorithms
uses logarithmic space.

Table 4.1: Upper Bounds Based on Reduction to Search

EDN C̃OLN

D O(N2) Õ(N)

R O(N2) O(N)

Q O(N) O(
√
N)

D�
M O(N

2

M
+
√
M) Õ(N

M
+
√
M)

D� O(N2/3) Õ(N1/3)

R�
M O(N

2

M
+
√
M) O(N

M
+
√
M)

R� O(N2/3) O(N1/3)

Q�
M O(N√

M
+
√
M) O(

√
N
M

+
√
M)

Q� O(N1/2) O(N1/4)

27

Since the algorithms described for search all use logarithmic space per processor, the
query complexity is the same as the locality-sensitive complexity.

The deterministic upper bounds for collision finding are obtained from applying the
reduction from Lemma 3.0.9, whereas the other upper bounds for collision finding can be
obtained from either reduction.

4.2 Tabular Methods

In the single processor models, we can make use of extra space to exploit some of the
structure of the problems of EDN and COLN that differentiate them from ORN2 . In
particular, if we make and store S queries to the input, we have actually queried

(
S
2

)
pairs

of elements x 6= y. These pairs are not independent, but we can still gain something from
considering a collection of S queries over simply querying S

2
pairs and discarding the result

each time. In such a tabular method, we collect a table of S query-result pairs (x, f(x))
(using space S logN ∈ Θ̃(S)) and look for a collision pair in this table, by sorting the
entries with respect to f(x). We denote the cost of one such iteration by I(S). Of course,
in a locality-sensitive model, we must count the cost of accessing elements in this space,
which will affect I. Here we describe tabular methods in each model, beginning with the
single-processor ones, and give both query complexity and locality-sensitive complexity.

4.2.1 Deterministic Tabular Method

We can solve EDN (or COLN) deterministically by querying every element in [N], storing
the results in a table of size N , and sorting the table to find any collision. This costs
only N queries, but the time for inserting each query result in its sorted order is at least
Θ̃(
√
N), bringing the total cost up to Θ̃(N

√
N).

Space: Θ̃(N)
Query Complexity: D(EDN) ∈ O(N)
Locality-Sensitive Complexity: D(EDN) ∈ O(N3/2)

28

4.2.2 Randomized Tabular Method

In the randomized tabular method, we collect a table of S uniform independent (xi, f(xi))
pairs, and search for a collision f(xi) = f(xj) by sorting the pairs by the f(xi) entry. If
the probability of finding a collision in a single iteration is p, the total cost is 1

p
I.

Algorithm 2 RandomizedTabularCollisionFinding

Input: A black-box f : [N]→ [R]

1. for i := 1, . . . , S

(a) choose xi ∈R [N]

(b) compute f(xi) and store (xi, f(xi))

2. Sort the table of (xi, f(xi)) pairs by f(xi)

3. Output any collision in the computed values

4. If no collision was found, repeat from step 1

First consider C̃OLN . By Lemma 3.0.3 we need query only Θ(
√
N) random elements

before we have a very high chance of finding a collision in the set. We therefore consider
S ∈ O(

√
N). A single iteration finds a collision with probability p ∈ Θ(S

2

N
) by Lemma

3.0.3. We therefore repeat the procedure about Θ(N
S2) times, for a cost of Θ(N

S2)I. Each
iteration costs S queries, as well as the time required for sorting. In the standard model,
this cost is S logS, so we have only logarithmic overhead. However, in a locality-sensitive
view of the world, we must account for the distance each entry must travel to reach its
sorted position. This makes our total number of operations per iteration Θ(S+

√
SS logS),

giving total Θ̃
(
S
√
S N
S2

)
∈ Θ̃

(
N√
S

)
.

Space: Θ̃(S) (for S ∈ O(
√
N))

Query Complexity: R(C̃OLN) ∈ O(N
S

)

Optimal Query Complexity: R(C̃OLN) ∈ O(
√
N) (when S =

√
N)

Locality-Sensitive Complexity: R(C̃OLN) ∈ Õ(N√
S

)

Optimal Locality-Sensitive Complexity: R(C̃OLN) ∈ Õ(N3/4) (when S =
√
N)

29

The procedure works for EDN as well, but in this case we may have as few as one
collision. We thus consider S ∈ O(N), and each iteration has probability p ∈ Ω(S

2

N2) of

finding the collision, so O(N
2

S2) iterations are required. The cost per iteration in various

models is the same as in the case of C̃OLN : S queries, or Θ̃(S
√
S) locality-sensitive time.

Space: Θ̃(S) (for S ∈ O(N))
Query Complexity: R(EDN) ∈ O(N

2

S
)

Optimal Query Complexity: R(EDN) ∈ O(N) (when S = N)
Locality-Sensitive Complexity: R(EDN) ∈ Õ(N

2
√
S

)

Optimal Locality-Sensitive Complexity: R(EDN) ∈ Õ(N3/2) (when S = N)

Note that since this algorithm is optimal for EDN when we use space S = N , we
end up with essentially the deterministic tabular method. It is interesting to note that
randomness does not seem to help solve EDN in this setting.

4.2.3 Quantum Tabular Methods and the Algorithm of Brassard,
Høyer and Tapp

In the quantum analogue of RandomizedTabularCollisionFinding, we can simply use am-
plitude amplification on the process of finding a table with a collision in it. We thus

only need 1√
p

iterations, for a cost of 1√
p
I. For C̃OLN , this gives query complexity

O
(
S
√

N
S2

)
∈ O(

√
N) and locality-sensitive complexity Õ(

√
SN), so we may as well set

S = O(1) and use logarithmic space in either setting. In that case we are simply using quan-
tum search on [N] × [N], as in Section 4.1. For EDN , we have a similar situation. The

query complexity is O

(
S
√

N2

S2

)
∈ O(N) and locality-sensitive complexity is Õ(

√
SN).

Again, we may as well set S to be constant, which gives us the search based method of
Section 4.1.

A more clever tabular method, developed by Brassard, Høyer and Tapp [20], fills a
table and then quantum searches for an element that collides with some table element.
This reduces the query cost of each iteration to I = 1, after an initial setup cost of S = S
queries.

30

Algorithm 3 BHT

Input: A black-box f : [N]→ [R]

1. for i := 1, . . . , S

(a) Choose xi ∈R [N]

(b) Compute f(xi) and store (xi, f(xi)) in the table

2. Sort the table of (xi, f(xi)) pairs by f(xi)

3. Output any collision in the computed values, or else continue

4. Define the function h : [N] → {0, 1} by h(x) = 1 if and only if ∃i such that x 6= xi
and f(x) = f(xi)

5. Quantum search for x such that h(x) = 1

6. Compute f(x) and find (x′, f(x)) in the table

7. Output (x, x′)

If p is the probability that a randomly chosen x collides with some element in the

table, then the total cost is S + 1√
p
I. First consider C̃OLN . If the table has a collision,

we are done, so assume it contains S unique images. If we select a random element, the
probability that it collides with an element in the table is p ∈ Θ(S

N
) for almost strictly

many-to-1 functions by Lemma 3.0.4. Thus the total cost is Θ
(
S +

√
N
S
I
)

.

For query complexity, we have S = S and I = 1, so the total cost is Θ
(
S +

√
N
S

)
,

which is optimized at Θ(N1/3) queries by S = N1/3. This query complexity is optimal
[35, 9]. Even if we include a random access analysis of the initial sorting of S = N1/3

elements, it merely adds a logarithmic factor. Similarly, the cost of checking if a single
element collides with an element in the sorted table is just logS, again only adding a
logarithmic factor.

In a locality-sensitive model, however, we count the sorting in the initial step as costing
S =

√
SS logS ∈ Θ̃(S3/2), and each iteration now costs I ∈ Θ̃(

√
S), since we potentially

have to compare the new element with the furthest table element. This gives a total
cost in the locality-sensitive model of Θ̃(S3/2 +

√
N). From the perspective of this model,

31

the optimal space is S = Θ(1), which is the same as choosing an element and quantum
searching for a collision with it in the single processor case (using the reduction to search
from Lemma 3.0.9).

Query Complexity: Q(C̃OLN) ∈ O
(
S +

√
N
S

)
Optimal query complexity: Q(C̃OLN) ∈ O(N1/3) (when S = N1/3)

Locality-Sensitive Complexity: Q(C̃OLN) ∈ O(
√
N)

For element distinctness, this method is less effective, even from a query complexity
perspective. If there is just a single collision in f , then the table only contains an element
in the collision pair with probability p′ ∈ Θ(S

N
). Conditioned on one collision pair element

being in the table, the probability that a random element collides with a table element is
p ∈ Θ(1

N
). The cost is thus (S+ 1√

p
I) 1√

p′
. This gives a query complexity of Θ(

√
NS+ N√

S
)

and locality-sensitive complexity of Θ̃(S
√
N +N), which is Θ̃(N) if we set S ∈ Θ(1).

Query Complexity: Q(EDN) ∈ O
(√

SN + N√
S

)
Optimal query complexity: Q(EDN) ∈ O(N3/4) (when S =

√
N)

Locality-Sensitive Complexity: Q(EDN) ∈ Õ(N)

4.2.4 Randomized Grid Tabular Method

In the grid models, each processor is restricted to logarithmic space, however, across all M
processors, the machine has a total of Θ̃(M) space. We thus replace the notion of space with
that of processors, which allows us to perform parallel queries, as well as parallel sorting
(for example, [34]), which costs only Θ(

√
M) steps of computation and communication.

Thus, the algorithm is essentially the same as RandomizedTabularCollisionFinding (with
S = M) but with an iteration cost of only I =

√
M , and an added

√
M for communicating

the final answer. The total cost of C̃OLN is thus Θ(I1
p

+
√
M) = Θ(

√
M N

M2 +
√
M) =

Θ(N
M3/2 +

√
M).

M-Grid Complexity: R�
M(C̃OLN) ∈ O

(
N

M3/2 +
√
M
)

Grid Complexity: R�(C̃OLN) ∈ O(N1/4) (when M =
√
N)

32

Similarly, for EDN we have a cost of Θ
(
I1
p

+
√
M
)
∈ Θ

(√
M N2

M2 +
√
M
)
∈ Θ

(
N2

M3/2 +
√
M
)

.

M-Grid Complexity: R�
M(EDN) ∈ O

(
N2

M3/2 +
√
M
)

Grid Complexity: R�(EDN) ∈ O
(√

N
)

(when M = N)

Note that in both cases we expect to find a collision in the first iteration (or after a
constant number of iterations): For COLN we have M =

√
N , so p = Θ(1), and for EDN

we have M = N , so we are actually just querying all elements and sorting them, which
works deterministically as well. This is somewhat interesting, because it means that for
EDN , we gain no advantage from allowing randomness unless we have restricted space.

Grid Complexity: D�(EDN) ∈ O
(√

N
)

(when M = N)

4.2.5 Quantum Grid Tabular Method

Since the optimal randomized grid algorithms use enough space that we expect to find
a collision in a constant number of iterations, we actually get no improvement over the
randomized grid with a basic tabular method, since for p ∈ Θ(1) we get 1

p
∈ Θ(1√

p
).

To be more precise, if we quantum search for a table of size M that contains a collision,

we have cost Θ
(

1√
p
I +
√
M
)
∈ Θ

(
1√
p

√
M +

√
M
)

. In the case of collision finding, this

gives a cost of Θ
(√

N
M2

√
M +

√
M
)
∈ Θ

(√
N√
M

+
√
M
)

which is optimized at Θ
(
N1/4

)
when M =

√
N , just as in the randomized algorithm, since you cannot find a table with a

collision in faster than constant time.

Similarly, for element distinctness, we have cost Θ

(√
N2

M2

√
M +

√
M

)
∈ Θ

(
N

M1/2 +
√
M
)

which is optimized at Θ(N) by M = N .

Remark 4.2.1. In cases with fewer than optimal processors, the quantum tabular method
does do better than the randomized version.

M-Grid Complexity: Q�
M(C̃OLN) ∈ O

(√
N√
M

+
√
M
)

Grid Complexity: Q�(C̃OLN) ∈ O(N1/4) (when M = N1/2)

33

M-Grid Complexity: Q�
M(EDN) ∈ O

(
N

M1/2 +
√
M
)

Grid Complexity: Q�(EDN) ∈ O(
√
N) (when M = N)

Remark 4.2.2. It is somewhat surprising that the quantum tabular method in the grid
setting does no better than a simple quantum grid search. This method does take advantage
of the structure of the problem, collecting many values and then comparing them all by
sorting, but the cost of this comparison negates any benefit over just having each processor
search the space [N]× [N] for a collision pair.

As in the single processor case, we could try to use the method of Brassard Høyer,
and Tapp, but this method actually does not parallelize well. We would have a cost of√
M 1√

p
+
√
M , where p is the probability that a random element collides with a table,

but note that this is the same cost as the basic quantum tabular method on the grid,
above, except with a smaller p. The problem is, at each iteration, rather than having each
processor make a new query, we have just one processor make a new query, which costs
just as much, but is less useful.

4.3 Markov Chains and Quantum Walks

In this section we give a tight upper bound on the quantum query complexity of EDN , due
to Ambainis [8], which makes use of the theory of quantum walks, the quantum analogue
of a random walk. We begin by giving some necessary definitions and results in the area
of Markov chains. For a thorough introduction to the subject, see, for example, [38].

A Markov chain is a random process for transitioning between states in some finite
space Ω, in which the state at time t+ 1, denoted Xt+1, may depend on the state at time
t, but is independent of all previous states. Such a chain is represented by a stochastic
transition matrix P ∈ RΩ×Ω, where P [x, y] = Pr[Xt+1 = y|Xt = x]. If the initial state of
the system is a random variable on Ω with distribution ρ0, then the state at time t will
have distribution ρ0P

t.

Definition 4.3.1. To measure the closeness of two distributions, ρ1 and ρ2, we will use
the total variation distance:

‖ρ1 − ρ2‖TV := max
A⊆Ω
|ρ1(A)− ρ2(A)| = 1

2

∑
x∈Ω

|ρ1(x)− ρ2(x)|

34

Definition 4.3.2. The mixing time of a Markov chain P is given by:

tmix(ε, P) := min{t : sup
ρ0

∥∥ρ0P
t − π

∥∥
TV
≤ ε}

where π is the stationary distribution of P .

Fact 4.3.3. Let P be an irreducible, reversible, aperiodic Markov chain, with eigenvalue
gap δ. Then

tmix(ε, P) ≤ (
1

δ
− 1) log

1

2ε

(See, for example, [38]).

Definition 4.3.4. For an irreducible Markov chain P with stationary distribution π, the
time-reversal of P is the Markov chain P ∗ defined from P by:

P ∗[x, y] =
π(y)

π(x)
P [y, x]

for all states x and y.

A random walk on a graph G is a Markov chain with transitions matrix:

P [x, y] =

{
1

deg(x)
if (x, y) ∈ E(G)

0 else

For example, we can view the standard tabular method in the randomized single proces-
sor model as being a walk on the complete graph with vertex set given by all tables of size
S, with self-loops added, which we denote by K(S). That is, we start with a random state
in the set of all tables of size S, and then at each step, we choose another state, uniformly
at random from all possible states, and check if it is marked, by sorting and looking for a
collision. The random walk on a complete graph with self-loops is a symmetric, ergodic
Markov chain.

More generally we can construct a random walk on any graph with vertex set consisting
of the space we want to search, and consider some of the vertices marked. We can consider
simulating this walk until we land on a marked vertex.

There are three costs associated with a Markov process-based algorithm. As before, we
have the setup cost S, which is the cost of constructing an initial state from the desired
initial distribution, and storing it in some convenient way, in our case, in sorted order. We

35

also have the checking cost, C, the cost of checking whether the current state is marked,
and the update cost, U, the cost of transitioning to a new state and storing it in some
convenient way, again in our case in sorted order. Notice that we can move some cost
between the updating process and the checking process: by taking more care in the update
process we may facilitate the process of checking.

We have the following relationship between Markov chains and search algorithms:

Theorem 4.3.5. Let P be a symmetric, ergodic Markov chain on state space Ω with
eigenvalue gap δ. Let p be the proportion of the state space that is marked. Then there is
a randomized algorithm that finds a marked element in expected time O(S + 1

p
(1
δ
U + C)).

The algorithm is as follows:

Algorithm 4 GenericWalkAlgorithm

Input: A black-box f : Ω→ {0, 1} such that f(v) = 1 if and only if v is marked

1. Construct and store an initial state

2. for i := 1, . . . , 1
p

(a) for j := 1, . . . , 1
δ

i. Simulate a step of P and update to the new state

(b) Check if the current state is marked, and if so, output

We have that P is reversible and ergodic, so the mixing time is tmix(ε, P) ≤ (1
δ
−1) log 1

2ε
.

Thus, after 1
δ

steps, the distribution of the chain is within a constant of uniform. Therefore,
each time the algorithm executes step 2b the current state is nearly a uniform independent
sample, and so has probability Θ(p) of being marked. We therefore run the outer loop
approximately Θ(1

p
) times.

For example, consider again the random walk on K(S). The complete graph with self-
loops has eigenvalue gap δ = 1, since its only nonzero eigenvalue is 1. The probability
that a random vertex is marked (contains a collision pair) is p ∈ Θ(S

2

N
) for almost strictly

many-to-1 functions, so we get an algorithm for C̃OLN with total cost O(S + N
S2 (U + C))

since both setup and update/checking consist of filling a table of S (x, f(x)) pairs, we get
a cost of O(N

S2I), just as in RandomizedTabularMethod. Similarly, the analysis works for
EDN .

36

We now briefly introduce the quantum analogue of a random walk, a quantum walk.
For a more thorough introduction, see [30].

In a quantum walk on a graph G, we think of walking on the edges rather than on the
vertices. In this way, we have some distribution over pairs (x, y), where we can consider be-
ing at vertex y, and having just come from vertex x (or vice versa). Of course, in the quan-
tum version of random walks, we have the quantum analogue of a probability distribution,
which is a superposition. Our states |X0〉, |X1〉, . . . look like |Xi〉 =

∑
(x,y)∈E(G) αx,y|x, y〉.

If we are searching on a particular graph, we begin in a superposition corresponding

to the distribution π(x) =
deg(x)∑

y∈V (G) deg(y)
(or for a more general Markov chain P , π is the

stationary distribution),
∑

x∈V (G)

√
π(x)|x, 0〉, and progressively move the amplitude onto

the marked vertices (note the similarity to AmplitudeAmp in that we begin in a very mixed
state and progressively move amplitude onto the marked states). The setup cost S is the
cost of constructing this initial state.

There are two types of walk “steps” a quantum walk takes. In the first type, we mix
the second register over the neighbours of the vertex in the first register:

W1|x〉|0〉 = |x〉
∑

y∈V (G)

√
P [x, y]|y〉

In the second walk operator, we mix the first register over the neighbours of the vertex in
the second register, but this time according to the time-reversed Markov chain P ∗:

W2|0〉|y〉 =
∑

x∈V (G)

√
P ∗[y, x]|x〉|y〉

A single step of the quantum walk is given by the operation W2S2W
−1
2 W1S1W

−1
1 , where

S1|x〉|0〉 = −|x〉|0〉 and S2|0〉|y〉 = −|0〉|y〉. The update cost, U, is therefore the cost of two
applications each of W1 and W2.

Finally, the checking cost, C, is the cost of implementing the operation:

O|x〉|y〉 = −|x〉|y〉

if and only of x is marked (notice how we “mark” marked states in the same way as
AmplitudeAmp).

The following theorem, which is a generalization of a result of Ambainis in [8], is due
to [39] (see also [47]):

37

Theorem 4.3.6. Let P be a reversible ergodic Markov chain on state space Ω with eigen-
value gap δ. Let p be the proportion of the state space that is marked. Then there is a
quantum algorithm that finds a marked element in expected time O(S + 1√

p
(1√

δ
U + C)).

The algorithm is simply the quantum walk analogue of Algorithm 4.3.

Consider the quantum walk on K(S). For EDN , we have p ∈ Θ(S
2

N2). The complete
graph with self-loops has eigenvalue gap δ = 1. In terms of query cost, the setup costs S
queries, the update costs S queries, and the checking requires no extra queries, so we have
total cost:

Q(EDN) = O

(
S +

1
√
p

(
1√
δ
U + C

))
= O

(
S +

N

S
S

)
= O(S +N)

This is optimized by using S ∈ Θ(1), which just gives a standard quantum algorithm for
ORN2 , just as in the standard quantum tabular method. We actually lost some of our
quantum advantage in this setting by having δ = 1, and thus δ =

√
δ. One advantage

of quantum walks over classical random walks is that they can mix quadratically faster,
but we have chosen a walk with constant mixing time, so we have not made use of this
advantage. The quantum random walk algorithm of Ambainis improves this shortcoming
by walking on a graph that takes longer to mix, but has cheaper transitions. The key
is that in a single transition, just one element in the set is changed, and the rest of the
set stays the same. This costs just one query. The graph representing this process is the
well-studied Johnson graph.

Definition 4.3.7. A Johnson graph, J(S,N) has vertex set V := {S ⊆ [N] : |S| = S} and
edge set E = {(S, T) : |S ∩ T | = S − 1}.

Fact 4.3.8. The eigenvalue gap of J(N,S) is in Θ(1
S

).

The explicit algorithm is as follows:

38

Algorithm 5 QuantumWalkED

Input: A black-box f : [N]→ [R]

1. Construct the state
∑
S⊆[N],|S|=S |S〉|0〉, where S is stored in sorted order

2. for i := 1, . . . , 1
p

(a) for j := 1, . . . , 1
δ

i. Perform one step of the quantum walk on J(N,S)

(b) Apply the check operator O

The query complexity, in the case of EDN is:

Q(EDN) ∈ O
(
S +

1
√
p

(
1√
δ
U + C

))

∈ O
(
S +

N

S

(√
S + 0

))
∈ O

(
S +

N√
S

)
This is optimized when S = N2/3, giving Q(EDN) ∈ O(N2/3).

Even in the RAM model, non-query operations only add a logarithmic overhead. There
are some subtle details involving quantum data structures, but roughly speaking, the cost
of making the first S queries and sorting them is S ∈ Θ(S logS), the cost of querying a
new element and putting it in its sorted position is Θ(log S), and the cost of checking the
sorted data structure for a collision is Θ(logS).

However, in a locality-sensitive model, the costs are much higher: we have S ∈
Θ(S
√
S logS), U ∈ Θ(

√
S). We cannot avoid these extra costs, because checking if an

element collides with any of the elements in a table of size S will require information to
traverse the table, costing at least Θ(

√
S). The total cost is therefore:

Õ

(
S
√
S +

N

S

(√
S
√
S
))
∈ Õ(S

√
S +N)

This is optimized when we use only logarithmic space, in which case we are simply doing
a random walk on pairs in [N] × [N] looking for a marked element. This is a method of
quantum search that is equivalent to regular quantum search.

39

Query Complexity: Q(EDN) ∈ O
(
S + N√

S

)
Optimal Query Complexity: Q(EDN) ∈ O(N2/3) (when S = N2/3)
Locality-Sensitive Complexity: Q(EDN) ∈ O(N)

This is an improvement in terms of query complexity, and is actually tight in this regard
[35, 9]. However, in the locality-sensitive model, it is no better than reduction to quantum
search.

Ambainis’ method also works for C̃OLN , with the same complexity as the Brassard-

Høyer-Tapp method. In this case we have p ∈ Θ(S
2

N
), so the query cost isO

(
S +

√
N
S2

√
S
)
∈

O
(
S +

√
N
S

)
, which optimizes to O(N1/3) queries when S = N1/3. In the locality-sensitive

model, we have total cost O
(
S
√
S +

√
N
S2

(√
S
√
S
))
∈ O(S

√
S+
√
N), which is optimized

with logarithmic space, in which case we are simply doing a random walk on [N] × [N]
looking for a collision pair, which is, again, just another reduction to quantum search.

Applications to the quantum grid model face the same short-comings as with BHT.
Changing one element costs the same as changing all elements, so we may as well refresh
the whole table at each step, which gives us exactly the quantum tabular method.

4.4 Summary

The following table summarizes the best upper bounds in each model for EDN and C̃OLN :

40

Table 4.2: Upper Bounds

EDN C̃OLN

D Θ(N) Θ(N) ♦

R Θ(N) Θ(
√
N)

Q Θ(N2/3) Θ(N1/3)

D̄ O(N3/2) O(N) ♦

R̄ O(N3/2) O(N3/4)

Q̄ O(N) ♦ O(
√
N) ♦

D�
M — Õ(N

M
+
√
M)

D� O(N1/2) Õ(N1/3) ♦

R�
M O(N2

M3/2 +
√
M) O(N

M3/2 +
√
M)

R� O(N1/2) O(N1/4)

Q�
M O(N√

M
+
√
M) O(

√
N√
M

+
√
M)

Q� O(N1/2) ♦ O(N1/4) ♦

The ♦ symbol indicates a bound that is no improvement over reduction to search.
One pattern to note is that the new models — locality-sensitive and grid — seem to be
particularly bad for these problems in the quantum case. For both problems, the known
methods do not seem to work any better than a reduction to search in these new models.

It is somewhat surprising that the quantum grid methods do no better than the random-
ized grid methods. However, what is perhaps more surprising is the algorithm we describe
in the next section, which, though a heuristic, appears to do better in the randomized grid
model than any known quantum method.

41

Chapter 5

The Rho Method

The fastest collision finding algorithm in practice today is the parallel rho method of van
Oorschot and Wiener [51], which is a parallelization of the rho method of collision finding,
first introduced by Pollard [44]. The parallel version of this algorithm fits perfectly into the
classical grid model, because during most of the computation there is no communication
between processors.

Heuristically, the algorithm requires Θ
(√

N
M

)
queries on each of M log-space pro-

cessors, and has communication cost Θ(
√
M), so that the grid complexity is (heuristi-

cally) R�
M(rho) ∈ Θ

(√
N
M

+
√
M
)

, which is optimized when M = N1/3, giving R�(rho) ∈
Θ(N1/6). However, the expected number of queries has never been rigorously proven. Sev-
eral attempts at analysis have been made, and there are mounds of evidence that the rho
method (and variations) is an excellent heuristic, but each analysis requires a random or-
acle, which would blow up the space required by each processor from Θ(logN) to Θ(N),
and correspondingly, increase memory access cost in the grid model. The only analysis (of
which we are aware) that does not require a random oracle [26] is based on an assumption
about limited independent functions, which we show in Section 5.2.1 not to be true in
general. Thus, as of now, the rho method is merely a heuristic, albeit, a very good one.

The layout of this chapter is as follows. We begin by describing the most basic version
of the parallel rho method rho and analyse its expected performance on a random 2-to-1

input, showing that in this case it does yield a time-processor tradeoff of Θ
(√

N
M

+
√
M
)

for COLN . We can also consider applying this method to the more general problem of
EDN . We show in Section 5.1.2 that on randomized inputs with just a single collision

(the hardest cases of EDN) rho returns a collision in expected time Θ
(
N
M

+
√
M
)

. In

42

Section 5.2 we describe an elegant variation of the rho method [26, 25] used to solve the
discrete logarithm problem, but we show in Section 5.2.1 that the assumption upon which
the analysis is based is not generally true.

5.1 Basic Algorithm

In the context of the rho method, it is necessary to consider functions f : [N] → [N],
because we will be composing f with itself many times. This is reasonable, since in appli-
cations, we will generally be looking for collisions in hash functions with smaller range than
domain. Additionally, if the outputs of f are larger than N , it is not unreasonable in this
context to simply hash them back down using some suitable uniform limited independent
hash (see Definition 3.0.6).

The rho method works by using the input function itself, f , to walk through the space
[N] until the path collides with itself. To visualize this, we use the notion of a function
graph.

Definition 5.1.1. Let f : [N] → [N]. The function graph, Gf , is a directed graph with
vertex set [N] and edge set {x→ f(x) : x ∈ [N]}.

For any function f , every vertex in Gf will have out-degree 1. If f is a 2-to-1 function,
every vertex will have in-degree 2 or 0. If f is a permutation, every vertex will have
in-degree 1, and so Gf will consist of one or more cycles.

Walking along Gf , we have exactly one possible next vertex from vertex x: f(x). Thus
the walk is necessarily deterministic. Since Gf is finite, no matter where we begin the walk,
we will eventually hit a vertex that we have already seen. At this point, since the walk is
deterministic, we will cycle. Assuming that the path did not collide with its first point, it
will be shaped like the Greek letter rho (ρ), with a tail and a cycle (see Figure 5.1).

There are a number of techniques for detecting when a cycle has occurred and recov-
ering the collision that only require keeping track of Θ(logN) bits, including the starting
point, the number of steps taken, and the current point. We now outline the method of
distinguished points [21] used in the parallelization of the rho method.

Let D be a random subset of [N] that is just large enough so that we expect to see a
constant number of points in D over the course of our walk (This requires some idea of
how long it will be before we cycle. We discuss this in more detail later). We need some
succinct way of determining whether a point is in D, so we suppose it is defined by some

43

Figure 5.1: A function graph of a 2-to-1 function. A possible path through the graph is
shown in bold.

uniform k-wise independent function h : [N] → [N|D|] with x ∈ D if and only if h(x) = 1,

and k ∈ O(logN).

A point in D is said to be distinguished. In addition to keeping track of the starting
point, the number of steps, and the current point, we also record every distinguished point
we see, and at which step we first see it. Let d be the first distinguished point we see
twice, say at steps `1 and `2. Then the cycle has length σ = `2 − `1, and so we can find
the collision as follows: return to the starting point x0 and run σ steps to get to xσ. Keep
this path and start a new path at x0. Run the two paths in parallel until the first τ such
that f(xτ) = f(xσ+τ). Then (xτ , xσ+τ) is a collision.

We could instead start two paths from distinct starting points x and y and run them
until they have both hit the same distinguished point. The result will look like the greek
letter lambda (λ), rather than rho, leading some to call this a lambda method. This method
can be parallelized to an arbitrary number of processors. We outline this method in detail
now.

Let [M] index M processors arranged in a grid. Each processor j ∈ [M] has three reg-
isters: (Rj

init, R
j
curr, R

j
count), the initial register, the current register, and the count register.

Though x
(j)
i will be used to denote the value considered by processor j at the ith iteration

of phase 1, note that the processor does not keep track of these values, it only stores the
contents of the three registers at any given time (and implicitly, the function h that defines
D). The algorithm is as follows:

44

Algorithm 6 rho

Input: A black-box f : [N]→ [N]

Phase 1 Each processor j ∈ [M] does the following:

1. Choose x
(j)
0 uniformly at random from [N] and initialize memory as

(Rj
init, R

j
curr, R

j
count)j ← (x

(j)
0 , x

(j)
0 , 0)

2. while Rj
curr /∈ D and Rj

count < max

• Compute x
(j)
i+1 := f(x

(j)
i) = f(Rj

curr) (where i = Rj
count)

• Store Rj
curr ← x

(j)
i+1

• Rj
count + +

Phase 2 The processors perform a parallel sort of their triples (Rinit, Rcurr, Rcount) by the
Rcurr value. Each processors compares its Rcurr with those of its neighbours. If two
processors j and j + 1 have the same value for Rcurr, they perform Phase 3. If a
processor has a distinguished point that does not coincide with any of its neighbours,
it returns.

Phase 3 If processors j and k have coinciding distinguished points x
(j)
tj = x

(k)
tk

with tj ≤ tk
then they behave as follows:

1. Processor k computes x
(k)
tk−tj := f tk−tj(x

(k)
0) = f tk−tj(Rk

init) and stores it in Rk
curr

2. Processor j resets Rj
curr to x

(j)
0 := Rj

init

3. if x
(k)
tk−tj = x

(j)
0 then return (no actual collision occurred between j and k)

4. while f(Rk
curr) 6= f(Rj

curr)

• Rj
curr ← f(Rj

curr)

• Rk
curr ← f(Rk

curr)

5. Output (Rj
curr, R

k
curr)

Suppose, for a moment, that f is a random mapping. Then each processor is randomly
moving through the space [N] until a distinguished point is found, so for an expected
number of steps proportional to N

|D| . The processor does not explicitly store all the points

it samples during this process, however, they can be recalculated from x
(j)
0 . In addition,

45

Figure 5.2: Phase 1. The state of (Rj
init, R

j
curr, R

j
count) for processor j over time. x

(j)
i =

f(x
(j)
i−1 for i ≥ 1.

Figure 5.3: Two paths through Gf , starting from x
(j)
0 and x

(`)
0 . If the two paths collide,

they will end at the same distinguished point.

Figure 5.4: Phase 3. Two processors that have ended on the same distinguished point
reiterate side by side until they find the first coinciding values: the collision point.

46

if some processor j sees some point x at some step, and processor k sees its partner x̃
at some (possibly different) step, then processor j and k will continue on the same path,
eventually hitting the same distinguished point (probably at different times). Thus, if there
is a collision in the entire set of sampled points, then there will be two processors stopped
at the same distinguished point (except in the rare case where a distinguished point does
not occur in time and the processors stop after max steps) and the collision will be found.
(Note: the above algorithm also does not detect when a path collides with itself, that is,

when one processor has some x
(j)
k = x

(j)
` for k 6= `. We can easily build in a check for this

by combining it with the single processor version of the rho method).

Thus, if f is almost strictly many-to-1, we need to look at about
√
N points before

we can expect to find a collision, so we set |D| = M
√
N , and max = c

√
N
M

for some
appropriately large constant c. We call this instance of the rho algorithm rhocol. Each

processor runs for O
(√

N
M

)
steps in phases 1 and 3. Phase 2 takes Θ(

√
M) steps using [34].

Thus, the runtime of the algorithm is R�
M(rho) ∈ Θ

(√
N
M

+
√
M
)

. This is optimized when

M = N1/3, giving R�(rho) ∈ Θ(N1/6).

If we know f has only a constant number of collisions we can set |D| ∈ Θ(M), max =
cN
M

. We call this rhoed. In this case we can expect each processor to traverse Θ
(
N
M

)
elements, so in total we can expect to look at most of the elements in [N]. This gives

R�
M(rho) ∈ Θ

(
N
M

+
√
M
)

which is optimized when M = N2/3, giving Θ(N1/3).

If we have no guarantees on the number of collisions in f we can suppose it has many and
set |D| ∈ Θ(N), run the algorithm, and if it does not find a collision, halve the size of |D|
and repeat, until we find a collision. Each such iteration costs Θ

(
N
|D|M

)
. In the worst case,

where f has only a constant number of collisions, we may not find a collision until we set
|D| ∈ Θ(M), max = cN

M
, so the total cost is at most

∑logN
i=0

N
M

2i

N
= 1

M

∑logN
i=0 2i ∈ O

(
N
M

)
.

The function f is not a random function, however, but rather, the input function. In
most of the remainder of this chapter, we discuss whether or not rho succeeds in returning
a collision pair.

5.1.1 Probabilistic Analysis for COLN

Define F (2)
N to be the set of functions f : [N] → [N] that are 2-to-1. In this section, we

will show that if f is chosen uniformly at random from F (2)
N , then rhocol succeeds with at

least constant probability.

47

If f were a completely random function, we could simply use the standard birthday
paradox argument directly, however f is simply uniform over the restricted set of functions
F (2)
N , so we have to be careful. However, we will see that the argument for why we expect

to find a collision is nearly identical to the proof of Lemma 3.0.3.

It’s not difficult to see the following:

Lemma 5.1.2. Let f be any 2-to-1 function. Then F (2)
N = {π1 ◦ f ◦ π2 : π1, π2 ∈ SN}.

Fix a reference function χ ∈ F (2)
N as follows: χ(x) = dx

2
e. Then any function in f ∈ F (2)

N

can be constructed from χ by f = π1 ◦ χ ◦ π2 for (non-unique) π1, π2 ∈ SN . This gives the
following:

Lemma 5.1.3. If π1 and π2 are chosen uniformly and independently from SN , then π1 ◦
χ ◦ π2 is a uniform random function from F (2)

N .

Proof. Let Sf := {(π1, π2) ∈ S2
N : f = π1 ◦ χ ◦ π2}. The probability that π1 ◦ χ ◦ π2 = f is

|Sf |
N !N !

. We will show that the size of Sf is the same for each f .

For any f, g ∈ F (2)
N , we can show a one-to-one mapping from Sf to Sg. Let σ, τ ∈ SN

be such that g = σ ◦ f ◦ τ . Consider the one-to-one mapping (π1, π2) 7→ (σ ◦ π1, π2 ◦ τ).
Certainly if f = π1 ◦ χ ◦ π2 then g = σ ◦ f ◦ τ = σ ◦ π1 ◦ χ ◦ π2 ◦ τ . Thus |Sf | ≤ |Sg|. By
the same argument, |Sg| ≤ |Sf | so |Sf | = |Sg|.

We can therefore think of choosing the random function f as follows. Begin with an
empty table of N entries, indexed by [N]. Each time f is queried on some x, check the
x entry of the table, and if it contains an entry, return that entry. Otherwise, choose
a new entry at random in the following manner: each time take some y ∈ [N] without
replacement (π2), and put dy

2
e in the table (χ). Once the table is full, we can apply a

random π1 to each table element to get the random function f . Note that this does not
change which pairs of elements are collisions (that is, (x, y) is a collision with respect to
χ ◦ π2 if and only if it is a collision with respect to π1 ◦ χ ◦ π2).

Theorem 5.1.4. Let f be a random function from F (2)
N . Then the probability that rhocol

returns a collision in f is bounded away from 0 by a constant.

Proof. Consider the sequence of random variables:

(Yi)
r
i=1 = (X

(1)
1 , X

(2)
1 , . . . , X

(M)
1 , X

(1)
2 , . . . , X

(M)
2 , . . . , X

(M)
TM

)

48

Figure 5.5: A 2-to-1 function with bad structure for rho.

and suppose we query f in the order indicated by this sequence. Every time we add an
entry to the table, we’re choosing a uniform random x ∈ [N], without replacement, and we
have a collision as soon as we have two elements x and y in the table such that dx

2
e = dy

2
e.

Suppose there is no collision in Y1, . . . , Yk. Then the probability that Yk+1 = Yi (mod N
2

)
for some Yi ∈ {Y1, . . . , Yk} is exactly k

N−k ≥
k
N

. Thus, the probability that there is no
collision in Y1, . . . , Yr is at most:

Πr−1
k=1

(
1− k

N

)
≤ 1− r(r − 1)

4N

where the inequality is obtained as in Lemma 3.0.3. In rhocol, we have r ∈ Θ(
√
N) with at

least constant probability, so the probability that we have a collision is at least:

Θ

(√
N(
√
N − 1)

4N

)
∈ Θ(1)

The algorithm rhocol can expect to find a collision when the expectation is taken over
the input, but there are certain inputs where the algorithm has low probability of finding

a collision in Θ
(√

N
M

)
steps. If we let it run longer, for worst case inputs, it would be

expected to take up to Θ
(
N
M

)
steps to find a collision. One such worst-case input is as

follows:

f(x) =

x+ 1 if x < N − 1 even
x+ 2 if x < N − 1 odd
N if x = N − 1 or x = N

The function graph of f (Figure 5.5) illustrates why this function is not well-suited to
rho. If we have two processors starting at x1 and x2 respectively, with x1 < x2, it will
take Θ(x2 − x1) steps for the path starting at x1 to collide with the path starting at x2.

49

Figure 5.6: The rho of a function. Distinguished points are circled.

The expected shortest distance between two paths is Θ
(
N
M

)
, so it is very unlikely that two

paths collide, since they have expected length Θ
(√

N
M

)
.

The natural solution is to attempt to randomize the input. For instance, if we compose
the input function with a random permutation π, f ◦π will have a random 2-to-1 structure.
However, storing an actual random permutation would take space N logN , and we need
the permutation to be repeatable, so we cannot just use and discard a random value at
each step. We will discuss this dilemma further, but first we give a randomized analysis of
rhoed.

5.1.2 Probabilistic Analysis for EDN

We now show that the element distinctness version of the algorithm, rhoed, succeeds with
at least constant probability on a random worst case input. Though any function is an
allowed input to FN , a random function actually has many more collisions than a worst-
case input, which has just one collision. We discuss some of the structure of the input that
the algorithm attempts to exploit, and show that, for the expected structure of a worst
case input, the algorithm finds a collision if there is one.

Define F (1)
N to be the set of functions f : [N] → [N] with exactly one collision pair.

These are the most difficult instances of EDN .

The function graph of f ∈ F (1)
N has N vertices, each of which has out-degree 1. Exactly

one vertex has in-degree 0, exactly one vertex has in-degree 2, and the remaining vertices
have in-degree 1. Such a graph is a set of 0 or more directed cycles and a rho, which is
a directed cycle with a directed path (called the tail) ending at one of the points in the
cycle.

50

For f ∈ F (1)
N , define ρ(f) to be the rho size of f , or the number of vertices in the

rho of the function graph of f . Similarly, define the tail size, τ(f), to be the number of
vertices in the tail of the rho of f and σ(f) the number of vertices in the cycle. Note that
ρ(f) = σ(f) + τ(f). For this analysis it will be sufficient, and hopefully illuminating, to

analyse the structure of a random function in F (1)
N . Intuitively, if the tail and cycle are both

large enough that at least one processor is expected to begin on each, then at least one
processor can be expected to begin on each within an appropriate distance of the collision.

Let F be a uniform random variable on F (1)
N . We wish to consider E[σ(F)] and E[τ(F)].

It is not difficult to see that E[σ(F)] = E[τ(F)] = 1
2
E[ρ(F)]: given a fixed rho size s, the

conditional distribution of τ(F) is uniform on 1, . . . , s− 1, so the conditional expectation
is s

2
. We thus now consider E[ρ(F)].

Theorem 5.1.5. E[ρ(F)] = 2
3
N + 2

3

Proof. For a fixed rho size s, there are
(
N
s

)
ways to choose the elements in rho, s! ways to

order them, and s − 1 possible shapes for the rho (corresponding to the possible collision
values). There are (N − s)! ways to configure the non-rho elements, which are just a
permutation on N−s elements. Thus, there are

(
N
s

)
s!(N−s)!(s−1) = N !(s−1) functions

in F (1)
N with rho size s.

We have
∣∣∣F (1)

N

∣∣∣ =
∑N

s=2N !(s− 1) = N !
∑N−1

s=1 s = N !N(N−1)
2

, so the probability that F has

rho size s is Pr[ρ(F) = s] = N !(s−1)
N !N(N−1)/2

= 2(s−1)
N(N−1)

.

Thus:

E[ρ(F)] =
N∑
s=2

sPr[ρ(F) = s] =
N∑
s=2

2s(s− 1)

N(N − 1)

=
2

N(N − 1)

(
N∑
s=2

s2 −
N∑
s=2

s

)

=
2

N(N − 1)

(
N(N + 1)(2N + 1)

6
− N(N + 1)

2

)
=

1

N − 1

(
(N + 1)(2N + 1)− 3(N + 1)

3

)
=

(N + 1)(2N − 2)

3(N − 1)

=
(N + 1)2

3

51

=
2

3
N +

2

3

So the expected rho size of F is about 2
3
N .

Corollary 5.1.6. E[τ(F)] = N
3

+ 1
3

Corollary 5.1.7. Fix some constant ε, with 0 < ε ≤ 1
9
. Then Pr[τ(F) ≤ εN

3
] ≤ 3

4
.

Proof. By Markov’s inequality, we have:

Pr[N − τ ≥ a] ≤ E[N − τ]

a

Pr[τ ≤ N − a] ≤ N − E[τ]

a

Let a = (1− ε)N . Then:

Pr[τ ≤ εN] ≤
N − N

3
− 1

3

(1− ε)N
≤ 2

3(1− ε)
≤ 2

3(8/9)
=

3

4

We now show that rhoed finds a collision with constant probability.

Let Tf be the set of tail points that occur after the last distinguished point on the
tail of f . Let Sf be the set of points that occur after the last distinguished point on the
rho-cycle of f before the collision, and before the collision itself (see Figure 5.6).

The algorithm rhoed will find the collision in f ∈ F (1)
N if and only if the following

conditions are met:

1. There exists i ∈ [M] such that x
(i)
0 is in Sf and the distance from x

(i)
0 to the first

distinguished point after the collision is at most max.

2. There exists j ∈ [M] such that x
(j)
0 is in Tf and the distance from x

(j)
0 to the first

distinguished point after the collision is at most max.

We will now consider the sizes of the sets Sf and Tf . These values will depend on both
f and D, the pseudo-random set of distinguished points of size M . Since F is uniform
random, it does not matter how D is defined for this particular analysis. We thus define a
distinguished point as any point x ≤ M . This gives δ = M

N
as the fraction of points that

are distinguished.

52

Theorem 5.1.8. With constant probability, |TF | ∈ Θ
(
N
M

)
.

Proof. First, by Corollary 5.1.7, with at least constant probability, τ(F) ∈ Θ(N). Let Zi
denote the tail point at distance i from the collision, and consider the set Z1, . . . , ZcN/M .
The expected number of distinguished points in this set is:

E[Y] =

cN/M∑
i=1

P (Zi ≤M) = c
N

M

M

N
= c

Since the number of distinguished points in Z1, . . . , ZcN/M has a hypergeometric distribu-
tion, we know that

V ar[Y] =
cN
M
M(N − cN/M)(N −M)

N2(N − 1)
= c

N −M − cN/M + c

N − 1

Thus, by Chebyshev’s inequality, the probability that Y is within some constant c1 of
E[Y] = c is at least:

c2 = 1− V ar[Y]

c2
1

= 1− cN −M − cN/M + c

c2
1(N − 1)

≥ 1− c

c2
1

Let c3 = c + c1. The probability that these Y distinguished points will all fall in the set
Z c

2
N/M , . . . , ZcN/M conditioned on |Y − c| ≤ c1 (and so Y ≤ c3) is at least:

(
cN/M−c3
c
2
N/M

)(
cN/M
c
2
N/M

) = Πc3−1
i=0

c
2
N/M − i
cN/M − i

≥ Πc3−1
i=0

1

2

N/M − 2i
c

N/M − i
c

≥ Πc3−1
i=0

1

2

1

2
=

1

4c3
=: c4

Thus, the probability that c
2
N/M ≤ |Tf | ≤ cN/M is at least c2c4 = 1 − o(1), so with at

least constant probability, |Tf | ∈ Θ(N/M).

An identical argument shows that, with at least constant probability, |SF | ∈ Θ
(
N
M

)
,

and the distance from the collision to the next distinguished point is in Θ
(
N
M

)
. Therefore,

with constant probability, the algorithm finds the collision. If we choose an input uniformly
at random from F (1)

N , after a constant number of rounds of the algorithm we can expect
to find the collision with high probability.

53

5.2 The Cayley Rho Algorithm

Several variations of rho have been analysed, mostly in its application to the discrete
logarithm problem. The first, and only (that we are aware) formal analysis that does not
require a random oracle assumption is an elegant variation of the original rho method for
discrete log [26, 25]. Their main idea is to compose the standard walk with a limited
independence walk on a random Cayley graph. In this section we will outline the main
ideas of [26, 25], and then show that the assumption upon which their analysis is based is
not generally true.

Given an additive group G, and a generating set S ⊆ G, the Cayley graph of G with
generating set S, G(G,S) is the graph with vertex set G and edge set {x → x + g : x ∈
G, g ∈ S}. A random Cayley graph is a Cayley graph with a randomly chosen generating
set. We will always have G = ZN . A Cayley graph can be stored by simply storing S, so
we will have d := |S| ∈ Θ(logN). In this section, we will consider N as a prime so that
we can use the field structure of ZN . We have been considering N as even, so that we
can easily consider 2-to-1 functions, but this is not particularly necessary: we can easily
extend a a function f : [N]→ [N] to a function f ′ : [N ′]→ [N ′] where N ′ is the next even
number (or prime) by defining f ′(x) = x when x > N . If f is almost strictly many-to-1,
f ′ will be as well.

For the purpose of general collision finding (as opposed to collision finding for a specific
application, such as factoring or discrete log) we need to compose the input function f
with some sufficiently random operator π. The operator π must be repeatable, so that
once two paths collide, they remain on the same path, so we can’t, for example, simply
choose a random step at each point and then discard that random choice: we must store
all randomness used so we can repeat our choices. However, we have space limitations as
well, so clearly π cannot be completely random.

The ability to efficiently store limited independent functions (see Definition 3.0.6) makes
them seem like a possible candidate for randomizing the input in some way. In order to
randomize the walk of rho, we might try to compose it with some pseudorandom walk.
Where we have a labelling of the edges, as in a Cayley graph, we can think of a random
walk in the following way. At the ith step, we choose some random string ri, and choose
which edge to take, as a function of ri. Of course, in an actual random walk, we need the
ri to be mutually independent, however, for our walk, we don’t want this, since we want
to choose the same edge any time we’re at a particular vertex. A random oracle models
this situation perfectly, since the only dependence between the choices ri is that if we are
at vertex v at both time i and time j, then ri = rj. However, as stated above, what we
need is some efficiently storable function.

54

If the states in the path of the random walk are pairwise independent, then we can
argue that the events Xi = Xj are pairwise independent, and apply a birthday paradox
argument as in Lemma A.0.2. Notice that this is not the same as the choices at each step
being pairwise independent. To see this, consider the following example. Suppose we want
to take a limited-independence random walk on the complete graph with self-loops added,
KN , using pairwise independent choices. We will consider KN as the Cayley graph on
the additive group ZN with generating set ZN . We therefore walk by choosing a random
integer (mod N) and adding it to the current element, so our choice at step i is some
ri ∈ ZN . The following sequence is pairwise independent:

r1 ∈R ZN

r2 ∈R ZN
ri = N − ri−1 − ri−2 (mod N)∀i > 2

The (ri) are certainly pairwise independent, but consider the path of the walk, X0, X1, . . .
The Xi are not pairwise independent: for any i, j we have Xi = Xi+3j.

We now outline the walk of [26, 25]. The walk is defined for finding collisions in a specific
function used for solving discrete log, but the goal of constructing a pseudo-random walk
that is deterministic but has pairwise independent points in the path is the same, so we
could generalize to finding collisions in arbitrary functions by composing an input f with
a random walk on a random Cayley graph as follows.

Let G(ZN ,S) be the Cayley graph with generating set S := {g[1], . . . , g[d]} chosen
uniformly at random from subsets of ZN of size d ∈ Θ(logN).

Let h : [N] → [d] be a uniform t-wise independent hash for some t ∈ Θ(logN). This
function is how we will make our choices at each step. Define one step in the walk as:

Xi+1 = f(Xi) + g[h(f(Xi))]

This is just the composition of f and the function ω(x) = x+ g[h(x)], the group action
defined by gk where k is a function of the input. Until h receives the same input twice (that
is, until we see the same f(x) twice and thus have a probable collision) the sequence of h
values we see at each step, r1, r2, . . . , is exactly a t-wise independent sequence of choices.
We wish to upper bound the expected time before a collision occurs between two paths, or
that a single path collides with itself (having multiple paths with different starting points
can only decrease dependence) so we are actually concerned with the distribution of points

55

before a collision. Thus, the goal is to show that for t-wise independent choices r1, r2, . . .
from [d] the following walk will collide with itself within Θ̃(

√
N) expected number of steps:

Xi+1 = f(Xi) + g[ri]

This walk is the composition of f with the limited independence walk given by ω̄(x) =
x + g[ri]. If we can show that the Xi are pairwise independent, we can apply a birthday
argument.

Since our random choices, S and r1, r2, . . . are independent of the input, we will analyze
the pseudorandom walk function ω̄ without composition with f . This will allow us to use
the elegant analysis of [26, 25], which takes advantage of the Abelian structure of ZN ,
and intuitively, composition with a fixed f shouldn’t affect the properties of the walk. Of
course, we will be now looking at a collision in ω̄, but it’s simple to redefine collision from
Xi = Xj to Xi ∈ {Xj, X̃j}. However, we will ultimately be showing that this analysis falls
slightly short of working.

So with all this in mind, we now consider the limited independence walk given by:

Xi+1 = ω̄(Xi) = Xi + g[ri]

where r1, . . . is a t-wise independent sequence and g[1], . . . , g[d] are chosen uniformly
at random from ZN .

Consider any path produced by the limited independence walk: X0, X1, . . . , X`. We
have X` = X0 +

∑`
i=1 g[ri]. We could thus represent the point X` by the starting point

X0 and the choice vector r ∈ [d]`. Since ZN is Abelian, we could have gotten from X0 to
X` by adding the g[ri] in any order. Thus if we are only interested in the point X`, and
not how we got there, we can represent it by the starting point X0 and the d-dimensional
vector γ given by γj = |{i ∈ [`] : ri = j}|. We called γ the type of X`. If the starting point

is X0, we have X` = X0 +
∑d

j=1 γjg[j]. Note that a state Xk does not usually have a unique
type, but a type γ does correspond to a unique state X (given a fixed starting point X0).

We can assume without loss of generality that the starting point is X0 = 0. This should
not make a difference, since the set S is random, so the first step adds a uniform random
element of ZN .

Lemma 5.2.1. Let X` be the endpoint of a path of length ` > 0 and type γ. Then for all
α ∈ [N] we have PrS [X` = α] = 1

N
.

56

Proof. We have X` =
∑d

i=1 γ[i]g[i]. Since ` > 0, we have at least one entry in γ positive,
so suppose γ[k] > 0 for some k. Then:

Pr
S

[X` = α] = Pr
S

[
d∑
i=1

γ[i]g[i] = α

]

=
1

Nd

∣∣∣∣∣{~g ∈ [N]d :
d∑
i=1

γ[i]g[i] = α}

∣∣∣∣∣
=

1

Nd

∣∣∣∣∣
{
~g ∈ [N]d : g[k] = γ[k]−1

(
α−

∑
i 6=k

γ[i]g[i]

)}∣∣∣∣∣
since N prime and γ[k] 6= 0

=
1

Nd
Nd−1 =

1

N

Consider any two states on the path, Xi and Xj, with types γ1 and γ2. We are interested
in whether or not these points are independent. The following lemma is a generalization
of a lemma in [26].

Lemma 5.2.2. Let X = {Xi1 , . . . , Xik} be a set of path endpoints and {γ1, . . . , γk} a set
of types such that Xij is the point corresponding to γj. Then {Xi1 , . . . , Xik} is a set of
mutually independent random variables (in the uniform distribution over S) if and only if
{γ1, . . . , γk} is a linearly independent set over ZdN .

Proof. We have:
γT1
γT2
...
γTk

g[1]
g[2]

...
g[d]

 =

Xi1

Xi2
...
Xik

We can think of this as a system of linear equations in S = {g[1], . . . , g[d]}. The matrix
[γi[j]] is a k × d coefficient matrix.

Suppose X is a set of uniform mutually independent (in S) random variables. Then
(Xi1 , . . . , Xik) should be uniform on [N]k. Since S is chosen uniformly from [N]d, this

57

means there should be the same number of solutions S for any choice of X . That is, the
number of solutions to the linear system should not depend on X .

Suppose the γi are not linearly independent. Then for some choice of X there will be no
solutions S, and for some there will. Thus X will not be uniformly distributed over [N]k.

Suppose γi are linearly independent. Then regardless of X there are Nd−k solutions, so
the number of solutions is independent of X .

Suppose we have paths of type γ1, . . . , γk with endpoints X1, . . . , Xk, where γk = c1γ1 +
· · ·+ ck−1γk−1 for constants c1, . . . , ck−1 ∈ ZN . Then we have Xk = c1X1 + · · ·+ ck−1Xk−1,
so the Xi are not mutually independent. More specifically, if γ2 = cγ1 then X2 = cX1, so
X1 and X2 are completely correlated.

Note that if two distinct path types γ1 and γ2 are linearly dependent in ZdN , then we
have γ1 = cγ2 (mod N) for some c ∈ ZdN . Since we are considering paths of length Θ(

√
N),

we can suppose ‖γi‖1 < c
√
N for i = 1, 2 and some constant c. Further, suppose that no

entry γi[j] is greater than 1
c

√
N (types with a single large entry will be rare, since the

choices ri are uniform t-wise independent). We have:

‖γ1‖1 γ2 =
∥∥c−1γ2

∥∥
1
cγ1 (mod N)

= c−1c ‖γ2‖1 γ1 (mod N)

= ‖γ2‖1 γ1 (mod N)

And since both norms are less than c
√
N , and all entries are at most 1

c

√
N , the products

are all less than N , and thus:
‖γ1‖1 γ2 = ‖γ2‖1 γ1

Thus let c1γ1 = c2γ2 with gcd(c1, c2) = 1. Define the vector gcd of a vector v ∈ Zd as
gcd(v[1], . . . , v[d]). We have c2|c1γ1[i] for each i ∈ [d], and since gcd(c1, c2) = 1, we must
have c2|γ1[i] for all i ∈ [d]. Thus the vector gcd of γ1 is at least c2. If c2 = 1 then γ2 = c1γ1,
so the vector gcd of γ2 is at least c1, and c1 6= 1, since γ1 6= γ2. Thus, at least one of γ1

and γ2 have vector gcd greater than 1.

In order to say that the probability of two path types being linearly dependent is small,
[25] makes the following assumption:

VGCD assumption: Let r be chosen from [d]` by a t-wise independent distribution
ρ. Let vgcd denote the gcd of all entries in a vector. If ` > Ω(d), then

Pr
ρ

[vgcd(r) > 1] <
1

8N
<

1

Θ(2d)

58

This number theoretic statement is true when r is uniform random, however, limited
independence is never to be trusted. In the following section we show the existence of t-wise
independent distribution ρ which has vgcd > 1 with high probability when ` ∈ O(t3).

We first note that this is not a proof that the Cayley rho algorithm does not work.
It is possible (though likely not easy to prove) that the particular limited independent
distribution used in the Cayley rho algorithm does not suffer from this shortcoming. Ad-
ditionally, it may be possible to show the independence of the states in the walk without
this assumption, though likely more complicated. Finally, though it may be difficult to
prove that a limited independent distribution really does yield pairwise independent states
in the walk, this assumption about the distribution used seems to be as a good a heuristic
assumption as a random oracle assumption, since any algorithm that assumes a random
oracle will use a pseudo-random function in its place in practice (or else end up using an
unreasonable amount of space to store a random function). It is assumed that the pseudo-
random function used will behave sufficiently randomly with respect to the problem and
input that its lack of actual randomness will not matter. From this perspective, the vgcd
assumption seems to be just as valid, in the sense that the limited independent function
used in practice is unlikely to be constructed so as to be especially bad for this application.

5.2.1 VGCD is False for some r

Consider a t-wise independent choice vector r ∈ [d]` with distribution ρ. For such an r,
we may consider the d-dimensional vector γ = γ(r) where γj = |{i ∈ [`] : ri = j}| for each
j ∈ [d]. We can also define the random variable vgcd = vgcd(r) = gcd(γ(r)). This is best
illustrated through an example.

Example 5.2.3. Let d = 4, ` = 12, r = (1, 2, 4, 2, 2, 4, 1, 1, 1, 4, 1, 1). Then
γ(r) = (6, 3, 0, 3) and vgcd(r) = 3.

Consider the vgcd assumption when d = 2. Simply choose r1, . . . , r`−1 uniformly and
independently from [d] and set r` =

∑`−1
i=1 ri (mod 2). This distribution is uniform `−1-wise

independent and always yields an even number of 1s and an even number of 0s whenever
` is even, so the vgcd assumption certainly isn’t true in this case.

For more general values of d we will also prove the existence of a similar counter example
to this assumption. We will always assume ` is even.

We will consider Pr[2|vgcd] ≤ Pr[vgcd > 1], the probability that every choice from [d]
is made an even number of times. To this end, we introduce one final random variable:
b = b(r) := γ(r) (mod 2), the parity vector which records the parity of each entry of γ.

59

Let S` := {r ∈ [d]` : b(r) = ~0}. Choosing r uniformly from S` is actually already
quite close to t-wise independent for t ∈ Θ(d), ` ∈ Ω(d2). We will show this formally in
Theorem 5.2.10, and then show that there exists a similar distribution that is perfectly
t-wise independent, and yields even vgcd with probability less than a constant away from
1 whenever ` ∈ Ω(d3) in Theorem 5.2.15.

More formally, we prove the following:

Theorem 5.2.4. For even `, there exists a t-wise independent distribution ρ` on [d]` such
that

Pr
ρ`

[b = ~0] > 1− 2Θ(t log d log `+d)−Θ(`/d)

That is, with high probability (when ` ∈ Ω(d3), t ∈ Θ(d)), each element of [d] is chosen an
even number of times.

Definition 5.2.5. We let nk(b) :=
∣∣{r ∈ [d]k : b(r) = b}

∣∣ denote the number of choice

vectors of length k with parity vector b. Note that n`(~0) = |S`|.

pk(b) := nk(b)
dk

denotes the proportion of all choice vectors of length k that have parity
vector b. If a choice vector of length k is chosen uniformly at random, then pk is the
probability distribution on the parity vector.

Consider the distribution µ` on [d]` given by:

µ`(r) =

{ 1
n`(~0)

if r ∈ S`
0 else

This is the uniform distribution on S`, and so certainly Prµ` [vgcd > 1] = 1. We also
have, for all i ∈ [`] and all α ∈ [d], Prµ` [ri = α] = 1

d
, so the marginal distribution of each

ri is uniform on [d]. We wish to know how close µ` is to t-wise independent. That is, for
~α ∈ [d]t and ~i ∈ [`]t, how close is Prµ` [ri1 = α1 ∧ · · · ∧ rit = αt] to 1

dt
?

We have

Pr
µ`

[ri1 = α1 ∧ · · · ∧ rit = αt] =
|{r ∈ S` : ri1 = α1 ∧ · · · ∧ rit = αt}|

|S`|

Let I = {i1, . . . , it} and rI denote the vector (ri1 , . . . , rit).

|{r ∈ S` : rI = ~α}| =
∣∣∣{r ∈ [d]` : rI = ~α ∧ b(r) = ~0}

∣∣∣
60

=
∣∣{r ∈ [d]` : rI = ~α ∧ b(r[`]\I) = b(~α)}

∣∣
=
∣∣{u ∈ [d]`−t : b(u) = b(~α)}

∣∣
= n`−t(b(~α))

Thus:

Pr
µ`

[rI = ~α] =
n`−t(b(~α))

n`(~0)
=
p`−t(b(~α))d`−t

p`(~0)d`
=
p`−t(b(~α))

p`(~0)

1

dt

We are therefore interested in whether, and how quickly, the distribution pk converges to
uniform as k increases. We will use the random walk on a Boolean hypercube to investigate
this.

The Distribution of b as a Random Walk on the Boolean Hypercube

In this section, we use some well-known theory of random walks to show that the distribu-
tion of b(r), for r ∈ [d]k, converges rapidly to uniform on Bk (mod 2) := {b ∈ {0, 1}d : |b| = k
(mod 2)} as k increases.

As we choose uniform independent ri ∈ [d], we can keep track of the state bτ :=
b(r[1, . . . , τ]) at time τ . We note that at step τ , we flip the rth

τ bit of bτ−1 to obtain bτ .

The random variables b1, b2, . . . are a well-studied Markov chain: the random walk on
the Boolean hypercube of dimension d. The Boolean hypercube is the graph with vertices
{0, 1}d and edges between two vertices if they have Hamming distance 1.

Unfortunately, this random walk does not always converge to stationarity, since the
graph is bipartite. In particular, if the starting distribution has support consisting of
strings of even parity, then the distribution after an even number of steps will be supported
by even strings, and the distribution after an odd number of steps will be supported by odd
strings. We can easily resolve this issue by studying the convergence of a slightly different
random walk.

Consider the random walk on the Boolean hypercube of dimension d−1 with self-loops
added. That is, the walk given by the transition matrix P , defined:

P [x, y] =

1
d

if x = y
1
d

if ∆(x, y) = 1
0 else

We can view the state of the walk at time τ as representing the first d−1 bits in bτ . We
note that this entirely characterizes the state bτ , since the dth bit of bτ can be computed

61

from the parity of τ and the parity of the first d − 1 entries of bτ . The probability of
remaining at the same state represents the probability of flipping the dth bit (which leaves
the first d− 1 bits unchanged, but changes the parity of τ).

Define p̃k as the restriction of pk to Bk (mod 2) (which is the support of pk). We can view
p̃k as a distribution on {0, 1}d−1.

This immediately gives:

Lemma 5.2.6. Let ρ0 be the distribution on {0, 1}d−1 with ρ0(~0) = 1. Then

p̃k = ρ0P
k

Lemma 5.2.7. tmix(ε, P) ≤ (d
2
− 1) log 1

2ε

Proof. We have P irreducible, reversible, and aperiodic, so:

tmix(ε, P) ≤
(

1

δ
− 1

)
log

1

2ε

where δ is the eigenvalue gap of P . We can calculate the eigenvalue gap as 2
d
, giving:

tmix(ε, P) ≤
(
d

2
− 1

)
log

1

2ε

Lemma 5.2.8. The uniform distribution is the unique stationary distribution for P .

Proof. Since P is an irreducible random walk on a finite state space, its unique stationary
distribution is given by:

π(x) =
deg(x)∑

y∈{0,1}d−1 deg(y)

for all x ∈ {0, 1}d−1 (see, for example, [38]). Thus:

π(x) =
d

d2d−1
= 21−d

Corollary 5.2.9. Let µ be the uniform distribution on Bk. Then ‖pk − µ‖TV ≤ 2−
k
d .

62

Proof. Note that µ is exactly the uniform distribution on {0, 1}d−1: the set Bk can be
rewritten as Bk = {(s, a) : s ∈ {0, 1}d−1, a = |s|+ k (mod 2)}.

We have p̃k = ρ0P
k. Thus if k ≥ tmix(ε, P), then ‖p̃k − µ‖TV ≤ ε and so ‖pk − µ‖TV ≤ ε,

and so if k ≥ (d
2
− 1) log 1

2ε
, then ‖pk − µ‖TV ≤ ε. Solving for ε, we get ‖pk − µ‖TV ≤

2−
k
d .

Theorem 5.2.10. Consider the distribution µ` on [d]` given by the uniform distribution
on S`. For any set of I = {i1, . . . , it} ⊆ [`], the marginal distribution on rI is close to
uniform in the following precise sense:

∀α ∈ [d]t, we have

∣∣∣∣Pr[ri1 = α1 ∧ · · · ∧ rit = αt]−
1

dt

∣∣∣∣ ≤ d−t2
t−`
d

+d+1

Proof. We have Pr[vI = α] = |{v∈S`:vI=α}|
|S`|

. The number of vectors in S` with vI = α

is exactly the number of ways of choosing vĪ ∈ [d]`−t so that b(vĪ) = b(α) (since then
b(v) = ~0). This is exactly n`−t(b(α)). So:

Pr[vI = α]− 1

dt
=
n`−t(b(α))

n`(~0)
− 1

dt

=
p`−t(b(α))d`−t

p`(~0)d`
− 1

dt
=

1

dt

(
p`−t(b(α))

p`(~0)
− 1

)
By Corollary 5.2.9 we have ‖pk − µ‖TV ≤ 2−

k
d so in particular, for any b,

∣∣pk(b)− 1
2d−1

∣∣ ≤
2−

k
d . Thus:

21−d − 2−
`−t
d

21−d + 2−
`
d

− 1 ≤ p`−t(b)

p`(~0)
− 1 ≤ 21−d + 2−

`−t
d

21−d − 2−
`
d

− 1

21−d − 2−
`−t
d − 21−d − 2−

`
d

21−d + 2−
`
d

≤ p`−t(b)

p`(~0)
− 1 ≤ 21−d + 2−

`−t
d − 21−d + 2−

`
d

21−d − 2−
`
d∣∣∣∣p`−t(b)p`(~0)

− 1

∣∣∣∣ ≤ 2−
`−t
d + 2−

`
d

21−d − 2−
`
d

≤ 2
t
d + 1

2
`
d
−d+1 − 1

≤ 2t/d+1

2`/d−d

where, for the last inequality, we assume ` > d2. This gives:∣∣∣∣Pr[vI = α]− 1

dt

∣∣∣∣ ≤ ∣∣∣∣d−t(p`−t(b)p`(~0)
− 1

)∣∣∣∣ ≤ d−t2
t−`
d

+d+1

63

For the remainder of this chapter, we let ε = d−t2
t−`
d

+d+1 denote the deviation from
independence of µ`.

Almost t-wise independence to t
log d

-wise independence

We now crudely apply a theorem of Alon, Goldreich, and Mansour [5] to show that if we
have an almost t-wise independent distribution on [d]`, then there is a nearby distribution
that is t

log d
-wise independent. (Their main result is to show that, in general, given an almost

k-wise independent distribution on {0, 1}`, the nearest k-wise independent distribution is
not as close as they would like, however, it is close enough for our purposes).

We first present relevant definitions. A distribution ρ over {0, 1}n is k-bitwise indepen-
dent if it is k-wise independent under the usual definition. It follows that a distribution over
[d]` is k-bitwise independent if it is k-bitwise independent as a distribution over {0, 1}` log d.

The bias of a distribution ρ with respect to a set I ⊂ [n] is given by:

biasI(ρ) := 2 Pr

[∑
i∈I

Xi = 0 (mod 2)

]
− 1

A distribution is k-bitwise independent if and only if it has bias 0 with respect to every
subset of size at most k.

We now give some useful facts about the relationship between k-wise and k-bitwise
independence.

Claim 5.2.11. If a distribution ρ is uniform k-wise independent on [d]`, then it is uniform
k-bitwise independent on {0, 1}` log d.

Proof. Consider any k indices in [` log d]. They are from at most k entries in [`], and so
they are independent, by the uniformity and k-wise independence of ρ.

Claim 5.2.12. If a distribution is uniform k-bitwise independent on {0, 1}` log d, then it is
uniform k

log d
-wise independent on [d]`.

Proof. Any k
log d

entries in [`] are made up of k bit-indices in [` log d], and therefore have a
uniform marginal distribution.

The theorem we will apply, taken from [5], is as follows:

64

Theorem 5.2.13. Let ρ be a distribution over {0, 1}n such that the maximum bias on any
non-empty subset of size at most k is at most ε. Then there is a k-bitwise independent
distribution ρ′ such that ‖ρ− ρ′‖TV ≤ nkε

The theorem is proven by simply showing that a simple modification of a distribution
decreases the bias of a subset of size at most k to 0 without increasing the bias of any other
subset, and that this modification moves the distribution by at most ε with respect to total
variation distance. The main result of [5] is actually to show that there is not generally a
closer k-bitwise independent distribution, but this is good enough for our purposes. Note
that the theorem implies that ‖ρ− ρ′‖1 ≤ 2nkε.

Lemma 5.2.14. The distribution µ` is almost t-bitwise independent over {0, 1}` log d, with
maximum bias ε < dtε.

Proof. We have:

ε = 2 max
I∈[` log d],|I|≤t

Pr

[∑
i∈I

Xi = 0 (mod 2)

]
− 1

We can see that Pr[
∑

i∈I Xi = 0] has a maximum with each i ∈ I in a different element
of the vector over [d]`. This is because of the uniformity of µ`: within an element, the
marginal distribution of the sum of any bits will be uniform on {0, 1}. Thus, we can let
j1, . . . , jt be the indices in [`] of the elements that have a bit of I in them, and let ic be the
index within the jth

c element that is in I:

Pr

[∑
i∈I

Xi = 0

]

≤
∑

~α∈[d]t−1

Pr

[
rjt ∈ {v ∈ [d]` : vit =

t−1∑
c=1

αc,ic (mod 2)} ∧ rj1 = α1 ∧ · · · ∧ rjt−1 = αt−1

]

Let T~α := {v ∈ [d]` : vit =
∑t−1

c=1 αc,ic (mod 2)}:

Pr

[∑
i∈I

Xi = 0

]
≤

∑
~α∈[d]t−1

∑
β∈T~α

Pr[rit = β ∧ ri1 = α1 ∧ · · · ∧ rit−1 = αt−1]

≤
∑

~α∈[d]t−1

∑
β∈T~α

(
1

dt
+ ε

)

65

≤ dt−1d

2

(
1

dt
+ ε

)
=

1

2
+
dtε

2

Plugging in, we get:

ε ≤ 2

(
1

2
+
dtε

2

)
− 1 = dtε

By theorem 5.2.13, there is a t-bitwise independent distribution ρ` on {0, 1}` log d with
‖ρ` − µ`‖1 ≤ 2‖ρ` − µ`‖TV ≤ 2(` log d)tdtε. By claim 5.2.12, ρ` is t

log d
-wise independent on

[d]`.

Note that Prρ` [2|vgcd] = 〈ρ`,S`〉 = 〈µ`,S`〉 + 〈ρ` − µ`,S`〉 = 1 + 〈ρ` − µ`,S`〉 (here we
identify a set with its characteristic vector). We have |〈ρ` − µ`,S`〉| ≤ ‖ρ` − µ`‖1 since S`
is just a vector of 1s and 0s. This, combined with the above result, give us the following:

Theorem 5.2.15. ρ` is a t
log d

-wise independent distribution on [d]` with Prρ` [vgcd > 1] ≥
1− 2t log `+t log d+t log log d+t/d+d+2−`/d.

Proof.

‖ρ` − µ`‖1 ≤ 2(` log d)tdtε

≤ 2(`d log d)t2
t−`
d

+d+1 by theorem 5.2.10

= 2(log `+log d+log log d)t2
t−`
d

+d+2

= 2t log `+t log d+t log log d+t/d+d+2−`/d

So Prρ` [vgcd > 1] > Prρ` [2|vgcd] ≥ 1− 2t log `+t log d+t log log d+t/d+d+2−`/d.

We can set t ≈ d log d to get d ≈ logN -wise independence, as desired. Though this is
good enough, we conjecture that a more careful analysis could remove these unsatisfying
log d terms. However we still have that for ` ∈ Ω(d3), there is a high probability that
vgcd > 1:

Pr
ρd3

[vgcd > 2] > 1− 2d log d log d3+d log d log d+d log d log log d+d log d/d+d−d3/d+2

= 1− 24d log2 d+d log d log log d+log d+d−d2+2

≥ 1− 2cd log2 d−d2

66

This means that in a walk of length log3N we cannot guarantee pairwise independence
of the states in the walk.

Remark 5.2.16. A similar argument works for more general primes. Simply replace the
random walk on a Boolean hypercube with the random walk on the torus.

5.3 Rho Methods and Quantum Computing

Though there does not appear to be a rigorous analysis showing that the rho algorithm
works in expected Θ(

√
N) time on a single processor, or as little as Θ(N1/6) on N1/3 pro-

cessors, there are numerous heuristic analyses that suggest that, in practice, the algorithm
does this well [48, 49, 41, 32, 31].

We now address the natural question: can a quantum computer improve this algorithm.
There are several reasons to believe that it cannot. First of all, the nature of this algorithm
is very serial, whereas a quantum computer gains its speedup mainly from its ability to do
operations in superposition, which are very parallel in nature. A quantum computer could
not speed up the process of iterating f without exploiting some structure of f .

One possible idea would be to use quantum search to find an optimal starting configu-
ration, thereby requiring fewer steps. We show now that this approach yields no speedup.

Consider M processors iterating for T steps. If T is not sufficiently large, this process
will have sub-constant probability of finding a collision, but we can run the process multiple
times and eventually we’ll expect to find a collision. We can quadratically reduce the
number of times we must run this process by simply using amplitude amplification on the
process of finding a starting configuration that yields a collision with T steps. It is not
surprising that it is optimal to simply make T large enough that we expect to find a collision
in 1 iteration of the process, since otherwise we are throwing away all the computation
we’ve done so far and starting from scratch. Nevertheless, we show the simple calculations
that prove that this is in fact the case.

If we run the algorithm for T steps on M processors, we have probability p ∈ Θ
(

(MT)2

N

)
of finding a collision (under some assumption) since we look at about TM different ele-
ments. One such iteration costs T +

√
M , and using amplitude amplification, we will run

this about 1√
p

times before we expect to find a collision, so the total cost is:√
N

(MT)2
(T +

√
M) +

√
M =

√
N

M
+

√
N√
MT

+
√
M

67

This is optimized by making T as large as possible, so that we expect to find a collision in
the first iteration, with no need for quantum search.

Similarly for EDN , the probability that one iteration finds a collision is Θ
(

(MT)2

N2

)
, so

we get total cost:
N

MT
(T +

√
M) +

√
M =

N

M
+

N√
MT

+
√
M

Once again, we may as well make T as large as we like, so we need only a single iteration
and quantum search offers no advantage.

68

Chapter 6

A New Deterministic Algorithm for
the Hardest Instances of EDN

In this section we outline a new algorithm, which is joint work with Frédéric Magniez, that
solves a very restricted case of element distinctness. We assume that the input function
has exactly one collision, and that both the domain and the range are [N]. It requires
Θ(log2N) space and Θ(N logN) locality-sensitive time on a single processor. It can be ef-

ficiently parallelized with deterministic grid complexity Θ̃
(
N
M

+
√
M
)

, which is optimized

at Θ̃(N1/3) when M = N2/3. We begin by outlining the algorithm, and then we briefly
discuss the relationship to streaming models of computation.

We will consider integers in [N] as logN bit strings, and so we will temporarily let
[N] = {0, . . . , N −1}, for convenience, for the duration of this section. For x ∈ [N], denote
by x[i] the ith bit of x. As usual, we also use this notation to index vectors: v[i] denotes
the ith entry of ~v. Finally, we say a string x (or vector) is consistent with c[i] for some
string (vector) c if x[i] = c[i].

Consider a function f : [N] → [N] with exactly one collision. Let m denote the tail
endpoint, which is the unique point with no preimage in f . Let r denote the collision
point. The sequence K := (f(x))N−1

x=0 contains every point in [N] \ {m, r} exactly once, r
exactly twice, and m exactly 0 times. We wish to collect statistics on this set in a way
that gives us information on m and/or r, using an amount of space that is logarithmic in
N . In particular, if we could find r, we could find the collision pair, which is exactly the
pair of preimages of r in f , using N evaluations of f by simply streaming through K and
recording any value that maps to r. We note the relation to the streaming model.

69

Figure 6.1: A function graph of a function with exactly one collision.

If we stream through the sequence K, we can collect some statistics on the values we
see, provided these statistics don’t require too much space to store. One simple set of
statistics is the number of elements in the sequence with ith bit 1 (resp. 0). In every bit
where r and m differ, we will count N

2
+ 1 values of ri for the ith bit, and N

2
− 1 values of

r̄i = mi, so we will learn ri and mi exactly. On the other hand, when ri = mi we will learn
nothing. This can be expected to happen in about half the bits given randomized input (or
on fixed input if we randomize the statistics we collect, from 〈ei, x〉 for ei[i] = 1, ei[j] = 0
for j 6= i, to 〈si, x〉 for randomly chosen strings si), but in particular, in every case it must
happen in at least one bit, since r 6= m. This already gives a randomized Θ(logN) space
algorithm with runtime Θ̃(N

√
N).

As we learn bits of r, we can narrow our search space by ignoring all elements of [N]
not consistent with the known bits of r. In particular, once we have learned a single bit of
r in the manner described above, say r[k], we can construct a subsequence of K consisting
of the N

2
elements of [N] that are consistent with r[k]. This new sequence, K ′, will contain

r twice, and will contain every other point in [N] that is consistent with r[k] exactly once.
Of course, it will not contain m; it shouldn’t contain m, since the known bit of r is one
where r and m differ, so m will not be consistent with that bit.

If we ignore the kth bit of each item, K ′ is the sequence (up to reordering): (0, . . . , N
2
−

1, r̃), where r̃ is just r when we ignore the kth bit. We thus have every logN − 1 bit string,
plus a second appearance of r̃. We can thus learn r̃ by bitwise xoring the items in the
sequence, since for i 6= k,

∑
x∈K′ x[i] (mod 2) =

∑
x∈[N/2] x[i] + r[i] (mod 2) = r[i]. We

can thus learn every bit of r̃, which is exactly every unknown bit of r. Once we have r, we
can find and output the collision pair. The full algorithm is below.

70

Algorithm 7

Input: A black-box f : [N]→ [N] with exactly one collision.

1. ~d0 := ~0, ~d1 := ~0

2. for x := 0, . . . , N − 1

3. y := f(x)

4. for i := 1, . . . , logN

5. if y[i] = 0 then d0[i] := d0[i] + 1

6. else d1[i] := d1[i] + 1

7. k := min{i ∈ {1, . . . , logN} : d0[i] 6= d1[i]}

8. r := 0

9. if d0[k] > d1[k] then r[k] := 0

10. else r[k] := 1

11. for x := 0, . . . , N − 1

12. y := f(x)

13. if y[k] = r[k]

14. for i := 1, . . . , logN such that i 6= k do r[i] := r[i]⊕ y[i]

15. C := ∅

16. for x := 0, . . . , N − 1 if f(x) = r then C := C ∪ {x}

17. return C

First we set counters to 0. Each of d0 and d1 has logN entries, one for each bit position
of the items in the sequence. d0 counts the number of 0s encountered in each position and
d1 the number of 1s. The first loop performs this counting. It streams through the sequence
K = (f(x))N−1

x=0 and for each bit position i, checks if f(x)[i] is 0 or 1 and increments the

71

correct counter.

We know that once this process has finished there must be at least one i such that
d1[i] 6= d0[i]. We call the first such position k. We now know r[k] exactly, and we know
also that m[k] 6= r[k].

The second loop streams through K ′ by simply streaming through K and ignoring all
items for which f(x)[k] 6= r[k]. For each bit i 6= k, r[i] is the xor of all ith bits in the items
of K ′. Finally, in the third loop we search for preimages of r, which we now know. If
f(x) = r, we add x to the set C, which will necessarily contain two items by the end of
the loop, since r has two preimages. These two items are exactly the collision pair.

This process uses Θ(log2N) space, since the counters ~d0 and ~d1 each have logN entries
of size logN .

The first and second loops cost Θ(N logN) time each. The fourth loop costs Θ(N).
Thus, the entire process costs Θ(N logN) time.

Parallelization

The above algorithm can be carried out by M processors in Θ
(
N
M

logN +
√
M
)

time.

Consider a grid of M processors, each with Θ(log2N) space. We can efficiently paral-
lelize the above algorithm by dividing the space [N] evenly among the M processors. For
each of the three major loops, every processor performs the loop, restricting to its own
search space. When every processor is finished the loop, answers are propagated back to
some main processor. For instance, in the case of the first loop, some processor a might

receive some
~
d

(b)
0 from one of its neighbours (possibly more), which it adds entry-wise to its

own
~
d

(a)
0 before passing the result on to another of its neighbours. This propagation takes

Θ(
√
M) time, but each loop now takes Θ

(
N
M

logN
)

time, for a total of Θ
(
N
M

logN +
√
M
)

time. The optimal setting of M is thus M = N2/3, giving a runtime Θ(N1/3 logN).

This algorithm makes use of the particular structure of the input function in a way
that cannot be directly applied to general f . It is somewhat interesting that this algorithm
manages to solve only the hardest instances of EDN .

The algorithm illustrates an interesting relationship between solving query problems in
limited space and the streaming model of computation, in which a global function must
be computed on inputs received in sequence with limited storage space. A single log-space
processor with black-box access to the input may be strictly more powerful, since it can

72

access the input adaptively, in any order, however in the problems we consider, one could
argue that there is no advantage to querying adaptively.

The parallel between these two settings is of interest, and likely not fully explored. It
will be interesting future work to see what else can be gained by considering the problems
in this way.

73

Chapter 7

A Survey of Quantum Lower Bound
Methods and their Application to
Collision Finding and Element
Distinctness

In this chapter, we survey the major methods of proving lower bounds for quantum query
complexity. In Chapter 8 we will discuss the prospects for applying each to the locality-
sensitive and grid models.

It may be useful to reflect here on what exactly a query lower bound tells us about
a problem. A query lower bound on collision finding, for instance, does not tell us that,
given a function f , we will not be able to find a collision in f with fewer than T queries.
A query bound tells us that if we hope to solve the problem in fewer than T steps (and
so fewer than T queries) we will need to exploit something about the structure of f : we
cannot simply treat it as a black-box.

There are two main techniques for deriving quantum query lower bounds, both ex-
tensions of classical techniques: the polynomial method [12], and the adversary method
[6].

There are several equivalent variations of what we will call the weighted adversary
method as well as a strictly stronger version, called the negative weights adversary method.
The negative weights adversary lower bound is a semidefinite program whose optimal
solution is a tight lower bound for any Boolean problem, however finding this optimal
solution may be incredibly difficult for a given problem.

74

To lower bound the problems we consider, it suffices, and is often much easier, to lower
bound a related decision problem, which is a Boolean function F : [R]N → {0, 1}. For EDN

there is the equivalent problem of determining whether or not the input function is 1-to-1,
and for COLN there is the problem of determining whether an input function is 1-to-1
with the promise that it is either 1-to-1 or 2-to-1. Therefore, in a slight abuse of notation,
we will, for the duration of this section, consider EDN and COLN to be these related
decision problems. Though the methods we will discuss can be extended to non-Boolean
functions, we will only consider their application to Boolean functions.

The problems we consider have inputs f : [N] → [R], which can be viewed as vectors
in [R]N , or equivalently, as binary strings of length Ñ := N logR. We thus consider each

of our problems as a Boolean function F : [R]N → {0, 1} or F : {0, 1}Ñ → {0, 1} as

appropriate. Throughout this chapter, f [i] will denote the ith bit of f ∈ {0, 1}Ñ , and f(x)
will denote the xth entry of f ∈ [R]N .

To make a lower bound technique immediately applicable to a broad class of problems,
it is often useful to relate it to some well-studied measure of the hardness of a problem.
Then for any problem to which we can apply this measure, we get an immediate lower
bound as a function of this measure. We now present some such measures to which we will
relate the lower bound techniques.

Certificate Complexity

Definition 7.0.1. Let F : [R]N → {0, 1} be a Boolean function. A 1-certificate is an
assignment C : S → [R] for S ⊆ [N] such that F(f) = 1 whenever f is consistent with C.
The size of C is |S|. We can similarly define a 0-certificate.

The certificate complexity, Cf (F), of F on f is the size of the smallest F(f)-certificate
that agrees with f . The certificate complexity C(F) of F is the maximum Cf (F) over all f .
The 1-certificate complexity C(1)(F) of F is the maximum Cf (F) over all f with F(f) = 1.
The 0-certificate complexity of F is similarly defined.

Example 7.0.2. C(ORN) = N , since Cf (ORN) = N for f = 0, since changing any of its
entries changes F(f) from 0 to 1. So the smallest F(f) = 0-certificate that agrees with f
has S = [N]; in other words, the certificate is all of f .

On the other hand, C(1)(ORN) = 1, since any C : {i} → {0, 1} with C(i) = 1 is
a 1-certificate for ORN , and every f such that F(f) = 1 is consistent with some such
certificate, since it has some f [i] = 1.

75

Example 7.0.3. C(PARITYN) = C(0)(PARITYN) = C(1)(PARITYN) = N , since
N − 1 of the bits of f never determine F(f).

Example 7.0.4. C(EDN) = N , since Cf (F) = N for any f that has no collision. Given
any assignment C of size less than N that is consistent with a 1-to-1 function, there are
several functions consistent with C that are not 1-to-1 (set the unassigned entry to the
same value as any of the N − 1 assigned entries).

However, C(1)(EDN) = 2, since a 1-certificate for any f with a collision (x, y) is just
the assignment C : {x, y} → X given by C(x) = C(y) = f(x).

Similarly, the certificate complexity of COLN is C(COLN) = N
2

+ 1, though it has
1-certificate complexity C(1)(COLN) = 2.

It is a notable feature of the problems we are interested in that they have constant
1-certificate complexity.

Block Sensitivity

Definition 7.0.5. Let F : {0, 1}Ñ → {0, 1} be a total Boolean function, f ∈ [R]N ≡
{0, 1}Ñ , and B ⊆ [Ñ]. Let fB denote the vector obtained from f by flipping all bits with
indices in B. We say that F is sensitive to B on f if F(f) 6= F(fB). The block sensitivity,
bsf (F), of F on f is the maximum t such that there exist disjoint B1, . . . , Bt such that F
is sensitive to each Bi on f . The block sensitivity bs(F) of F is the maximum bsf (F) over
all f .

Given a function F : [R]N → {0, 1}, we can consider a very similar, possibly more
natural notion. Let B ⊂ [N]. Say that F is sensitive to B on f if there exists g ∈ [R]N

such that F(f) 6= F(g) and f(x) = g(x) if and only if x /∈ B. If we define the block
sensitivity using this notion of sensitivity, its value will differ by at most a factor of logR.
It is therefore not particularly important which notion we employ.

Example 7.0.6. bs(ORN) = N , since bsf (ORN) = N for f = 0 (with Bx = {x} for
x = 1, . . . , N).

Example 7.0.7. bs(MAJORITYN) = N
2

, since bsf (MAJORITYN) = N
2

for any f
with |f | = N

2
(with Bx = {x} for each x with f(x) = 1).

Example 7.0.8. Let f be a 1-to-1 function with image [N] ⊆ [R]. Then flipping any bit
in the last logN bits of any entry in f will create a collision. Thus bs(EDN) ≥ N logN .

76

Lemma 7.0.9. [42] Let F : {0, 1}Ñ → {0, 1}. Then bs(F) ≤ C(F) ≤ bs(F)2.

Proof. If C : S → {0, 1} is a F(f)-certificate, and B is a block to which f is sensitive, then
since F(f) 6= F(fB) it can’t be that B ∩S = ∅, so S must be as large as any set of disjoint
blocks to which f is sensitive. Thus bsf (F) ≤ Cf (F) for all f , so bs(F) ≤ C(F).

Let B1, . . . , Bb be disjoint minimal sets of indices with b = bsf (F) ≤ bs(F). Define C :⋃b
i=1Bi → {0, 1} by C(j) = f [j].

Suppose C is not an F(f)-certificate. Then let f ′ be consistent with C but have F(f ′) 6=
F(f). Define Bb+1 so that f ′ = fBb+1 . Then F is sensitive to Bb+1 under f , and Bb+1 is
disjoint from B1, . . . , Bb, since f and f ′ are both consistent with C, so they agree with all
indices in

⋃b
i=1Bi. This contradicts the maximality of b. Thus, C is an F(f)-certificate.

Suppose |Bi| > bs(F) ≥ bsfBi (F) for some i. Since |Bi| is minimal, we must have that
flipping any j ∈ Bi in fBi takes F(fBi) back to F(f). Thus F is sensitive to {j}j∈Bi , so
bsfBi (F) ≥ |Bi|, which is a contradiction. Thus |Bi| ≤ bs(F) for all i.

Putting these together, we have an F(f)-certificate C with size
∑b

i=1 |Bi| ≤ bs(F)2. Thus
C(F) ≤ bs(F)2.

7.1 The Polynomial Method

The Quantum Polynomial Method [12] extends the Classical Polynomial Method (see, for
example, [13]) for proving lower bounds in the decision tree model to the quantum query
model.

Let F : {0, 1}Ñ → {0, 1} be a Boolean function. Then F can be represented by an

Ñ -variate polynomial p ∈ R[x1, . . . , xÑ] — that is, F(f) = p(f) for all f ∈ {0, 1}Ñ . We
define deg(F) to be the minimum degree of any polynomial that represents F.

More generally, we say that p ∈ R[x1, . . . , xÑ] approximates F if |F(f)− p(f)| ≤ 1
3

for all f ∈ {0, 1}Ñ . We define d̃eg(F) to be the minimum degree of any polynomial that
approximates F.

A polynomial of the form p(x1, . . . , xÑ) =
∑
S⊂[Ñ] Πi∈Sxi is called multilinear. Notice

that since xk = x for any k whenever x ∈ {0, 1}, we can, without loss of generality,
restrict to multilinear p. There is a unique multilinear p such that p represents F and
deg(p) = deg(F).

We now examine the relationship between polynomials and quantum query algorithms.

77

Lemma 7.1.1. Let A be a quantum circuit that makes T queries to some input f ∈
{0, 1}Ñ . Then there are complex-valued Ñ-variate multilinear polynomials pi,w for each
basis state |i, w〉, each of degree at most T , such that the final state of the circuit is∑

i,w pi,w(f [1], . . . , f [Ñ])|i, w〉 for any input f .

Proof. Let |ψtf〉 be the state just before the tth query, so |ψt+1
f 〉 = UtOf |ψtf〉.

The amplitudes of |ψ0
f〉 are necessarily independent of f , since no query to f has been

made yet. Thus, they are constant (of degree 0) in the bits of f .

A query Of maps |i, w〉 7→ (−1)f [i]|i, w〉 = (1 − 2f [i])|i, w〉 so if the amplitude of |i, w〉
in |ψtf〉 is α(f) then the amplitude after application of Of is (1 − 2f [i])α(f), which has

degree at most deg(α)+1 in f [1], . . . , f [Ñ]. Thus the maximum degree over all amplitudes
increases by at most 1 with each query.

Note that the Ut cannot increase the maximum degree in f , since the amplitudes after
applying Ut are just linear combinations of the amplitudes before. Thus after T steps, the
maximum degree in f of any amplitude is at most T .

This proof exploits various features of a quantum algorithm, namely the nature of
a query operator, and the linearity of all other operators. We have so far said nothing
about the algorithm outputting the correct answer. The following lemma moves us in this
direction.

Lemma 7.1.2. Let A be a quantum algorithm that makes T queries to f and B a set of
basis states. Then there is a real-valued multilinear polynomial P (f) of degree at most 2T
such that P (f) is the probability of observing a state from B upon measuring the final state
of A on input f .

Proof. By the previous lemma, write the final state as
∑

i,w pi,w(f)|i, w〉. Then

P (f) :=
∑

(i,w)∈B |pi,w(f)|2

=
∑

(i,w)∈B |<(pi,w(f)) + i=(pi,w(f))|2

=
∑

(i,w)∈B <(pi,w(f))2 +
∑

(i,w)∈B =(pi,w(f))2

which has degree at most 2T , since each of =(pi,w)(f) = =(pi,w(f)) and <(pi,w)(f) =
<(pi,w(f)) have degree at most T for each (i, w), and P (f) is real-valued, since <(pi,w) and
=(pi,w) are real-valued.

If we let B be the set of basis states with right-most bit 1 (the accepting states) then
we can write the acceptance probability of a circuit as a degree 2T polynomial P (f). In

78

the exact model, we require P (f) = F(f), that is, if F(f) = 1, the algorithm should accept
(output 1) with probability 1, so P must represent F, and thus 2T ≥ deg(F). However,
we are concerned with bounded error algorithms, so we merely require that P (f) ≥ 1− ε if
F(f) = 1 and P (f) ≤ ε if F(f) = 0. Setting ε = 1

3
, we get |P (f)− F(f)| ≤ 1

3
, or in other

words, P approximates F. This directly yields the following:

Theorem 7.1.3. Q(F) ≥ d̃eg(F)

2

The difficulty is now in lower bounding the approximate degree of F. In the remainder
of this section, we will consider techniques for doing so.

Definition 7.1.4. A function F : {0, 1}Ñ → {0, 1} is symmetric if for all f, g ∈ {0, 1}Ñ
with |f | = |g|, F(f) = F(g). That is, F depends only on the Hamming weight of its input.

An example of a symmetric problem is ORN . The problems of COLN and EDN are
not symmetric by this definition, however they do exhibit certain symmetries. If we view
the inputs as binary strings, then permuting the bits may change the output, however, if
we view the inputs as vectors in [R]N , permuting the entries does not change the output.
These types of symmetries are exploited in polynomial lower bounds for EDN and COLN ,
which we will briefly discuss in Section 7.1.2.

Definition 7.1.5. We define the symmetrization of p : RÑ → R as psym(f) := 1
Ñ !

∑
π∈SÑ

p(π(f))

where π(f) = (f [π(1)], . . . , f [π(Ñ)]).

Note that if p is symmetric, then psym = p. Also note that deg(p) ≥ deg(psym). Finally,
note that psym(f) is the expectation of p(π(f)) over a uniform choice of π.

Lemma 7.1.6. [12] Let p : RÑ → R be a multilinear polynomial. There exists a univariate

polynomial q : R→ R such that deg(q) ≤ deg(p) and psym(f) = q(|f |) for all f ∈ {0, 1}Ñ .

Proof. Let Vj be the sum of all possible terms of degree j (terms with j variables). Each

Vj has
(
Ñ
j

)
terms.

Since psym is symmetric, if it has one term from Vj with coefficient cj, then it must have

every term from Vj with coefficient cj. Thus we can write psym = c0 +
∑d

j=1 cjVj for
d = deg(psym).

Evaluating Vj(f) for f ∈ {0, 1}Ñ gives the number of terms in which only 1-bits of f
appear, corresponding to subsets of S ⊆ [Ñ] of size j such that ∀i ∈ S, f [i] = 1. There are

79

|f | 1-bits in f so Vj(f) =
(|f |
j

)
. We can thus write:

psym(f) = c0 +
d∑
j=1

cj

(
|f |
j

)

whenever f ∈ {0, 1}Ñ . We then get the desired q by setting:

q(|f |) = c0 +
d∑
j=1

cj

(
|f |
j

)

Thus, if we can lower bound the degree of the univariate polynomial q, we can lower
bound the approximate degree of F. The following theorem is an important tool for
bounding the degree of a polynomial which will come up again in Section 7.1.2.

Theorem 7.1.7 (Paturi’s Theorem). [43] Given b1, b2, and a > 0, let p : R → R be a
polynomial such that:

1. b1 ≤ p(i) ≤ b2 for all i ∈ {0, . . . , a}

2. |p′(x)| ≥ O(1) for some x ∈ [0, a]

Then deg(p) ≥ Ω
(√

a
b2−b1

)
.

7.1.1 Relation to Block Sensitivity

Theorem 7.1.8. [12] If F is a Boolean function, Q(F) ≥
√

bs(F)/16.

Proof. Let A be a quantum algorithm making T = Q(F) queries to f and computing F(f)
with bounded error ≤ 1

3
. Let P be a degree 2T polynomial that approximates F.

Let b = bs(F) = bsf (F) for some f , and B0, . . . , Bb−1 a set of blocks to which F is sensitive
on f . Without loss of generality, assume F(f) = 0.

Fix v ∈ Rb and define u ∈ RÑ as:

u[i] =

v[j] if f [i] = 0 and i ∈ Bj
¯v[j] if f [i] = 1 and i ∈ Bj

f [i] else

80

Define q(v) = P (u), a b-variate polynomial of degree ≤ 2T with the following properties:

• q(v) ∈ [0, 1] for all v ∈ {0, 1}b since P is a probability function.

• |q(0)− 0| = |P (f)− F(f)| ≤ 1
3
, so 0 ≤ q(~0) ≤ 1

3
, since v = 0⇒ u = f .

• |q(v)− 1| =
∣∣P (fBi)− F(fBi)

∣∣ ≤ 1
3

if v has v[i] = 1 and v[j] = 0 for all j 6= i, so
2
3
≤ q(v) ≤ 1 if |v| = 1.

The last observation follows from the fact that if v = (0, . . . , 0, 1, 0, . . . , 0) with v[i] = 1,
then u = fBi . To see this, note that for j 6∈ Bi, u[j] = f [j] if j 6∈

⋃b−1
k=0 Bk, and if j ∈ Bk

for some k 6= i, then u[j] = f [j], and if j ∈ Bi, then u[j] = f [j].

Let r be the univariate polynomial of degree 2T such that r(|v|) = qsym(v) for all v ∈ {0, 1}b.
We have 0 ≤ r(i) ≤ 1 for i = 1, . . . , b. We also have r(0) ≤ 1

3
and r(1) ≥ 2

3
so for some

x ∈ [0, 1] we have r′(x) ≥ 1
3
. Thus by Theorem 7.1.7 we have:

deg(r) ≥

√
1

3

b
1
3

+ 1− 0

2T ≥
√
b

4

T ≥
√

b

16

Q(F) ≥
√

bs(F)

16

The key to the ease of dealing with symmetric polynomials is that there is a single
variable, the Hamming weight of the input, which determines the outcome, so we can
easily construct a univariate polynomial, which is much easier to deal with by, for instance,
applying Paturi’s Theorem. The tricks involved in applying polynomial lower bounds to
more general problems are often aimed at reducing the number of variables to as few as
possible by exploiting symmetries in the problem. We give several examples in the following
section.

81

7.1.2 Applications to Collision Finding and Element Distinctness

In this section we briefly summarize polynomial lower bounds for EDN and COLN and
the techniques used to obtain them. The tight quantum query complexity lower bound of
Q(COLN) ∈ Ω(N1/3) (which implies Q(EDN) ∈ Ω(N2/3) by Lemma 3.0.8) was developed
in stages. In 2002, Aaronson [1] developed novel techniques to extend the polynomial
method and proved a lower bound of Q(COLN) ∈ Ω(N1/5). Shortly after, this proof was
extended by Shi [46, 3] using similar techniques as well as novel ones to Q(COLN) ∈
Ω(N1/4) or, if we restrict to inputs with R ≥ 3

2
N , a lower bound of Ω(N1/3). In 2003,

Ambainis [9] and Kutin [35] simultaneously and independently extended these results to
Q(COLN) ∈ Ω(N1/3). Kutin did so by extending the techniques of Aaronson and Shi, in
a somewhat simplified and quite elegant way, and Ambainis by proving a general result
about lower bounds on functions with large range applying to functions with small range.
We will briefly outline the proof of Kutin, which uses techniques of Aaronson and Shi, and
then summarize the result of Ambainis.

Let A be a quantum query algorithm that computes COLN with bounded error in T
queries.

Define N × R Boolean variables as follows. For all (x, y) ∈ [N] × [R], δx,y(f) = 1 if
and only if f(x) = y. By a similar argument as Lemma 7.1.1, the amplitudes of each basis
state of |ψTf 〉 are multilinear polynomials in the δx,y(f) of degree at most T . Similarly, the
acceptance probability is a multilinear polynomial in the δx,y of degree at most 2T .

Since P is a multilinear polynomial in the δx,y(f), each term is the product of some
subset of the δx,y, and some coefficient. For any subset S ⊆ [N] × [R] we can write:
IS(f) = Π(x,y)∈Sδx,y(f). Since each x maps to exactly one image y, any term with both
δx,y1 and δx,y2 for y1 6= y2 will be 0 (since f(x) = y1 and f(x) = y2 cannot both be true).
Thus, we can restrict to subsets S in which each x ∈ [N] appears in at most one pair. The
subset S then looks like

⋃t
i=1 Si × {yi} for some disjoint Si ⊆ [N] and yi ∈ [R]. We can

then write IS as IS = Πt
i=1Πx∈Siδx,yi(f), which is a monomial in the δx,y of degree at most∑t

i=1 |Si|. Then we have P (f) =
∑
S⊆[N]×[R] cSIS(f) for some coefficients cS .

Let F(N,R) be the set of functions f : [N] → [R], (isomorphic to [R]N). To look at
symmetries among these functions, Kutin turns to SN × SR. For any (σ, τ) ∈ SN × SR,
define Γτ,σ : F(N,R)→ F(N,R) by Γτ,σ(f) = τ ◦ f ◦ σ. Note that Γτ,σ(f) is 1-to-1 if and
only if f is 1-to-1. Thus, COLN is invariant under application of Γτ,σ.

For m ∈ [N], k, ` > 0, such that k|m and `|N −m (call such a triple (m, k, `) valid), let
fm,k,` denote a function in F(N,R) such that fm,k,`|[m] is a k-to-1 function with image in [m],
and fm,k,`|[m+1,N] is `-to-1, with image in [m+1, R]. Consider Γτ,σ(fm,k,`) = τ ◦fm,k,`◦σ. We

82

have that Γτ,σ(fm,k,`)|σ([m]) is a k-to-1 function on τ([m]), since if fm,k,` maps {x1, . . . , xk}
to y, then Γτ,σ(fm,k,`) maps σ(x1), . . . , σ(xk) to τ(y) (and τ and σ are permutations, and
so cannot introduce new collisions). Similarly, Γτ,σ(fm,k,`)|σ([m+1,N]) is `-to-1 with image in
τ([m+ 1, R]).

Lemma 7.1.9. Define a polynomial q(m, k, `) by q(m, k, `) = Eσ,τ [P (Γτ,σ(fm,k,`))]. Then
q has degree deg(P) in m, k, and `.

The expectation is simply a kind of symmetrization.

It remains only to show that deg(q) ∈ Ω(N1/3). To apply Paturi’s Theorem, we just
need to show that q is within some constant sized interval [b1, b2] for all integral values of
the variables in some range of size c, and that q has some constant increase or decrease,
over some constant interval within that range. Then we get deg(q) ∈ Ω(

√
c). A modified

version of Paturi’s Theorem is used for the second part:

Theorem 7.1.10. [46, 35] Given integers a < b and a real number α ∈ [a, b], let p : R→ R
be a polynomial such that:

1. p(x) ≤ 1 for all integers x ∈ [a, b]

2. |p(α− 1)− p(α)| ≥ c for some constant c > 0

Then deg(p) ∈ Ω(
√

(α− a+ 1)(b− α + 1)).

Since q is a convex combination of P (f) for various functions f ∈ F(N,R), we have
q(m, k, `) ∈ [0, 1] for all valid triples of integers (m, k, `). Consider q(m, 1, 1) for any m:

q(m, 1, 1) =
∑
σ,τ

p(σ, τ)P (Γτ,σ(fm,1,1))

where p is a probability function. Since fm,1,1 is a 1-to-1 function, Γτ,σ(fm,1,1) is a 1-to-1
function, so P (Γτ,σ(fm,1,1)) ≤ 1

3
. Thus we can write:

q(m, 1, 1) ≤
∑
σ,τ

p(σ, τ)
1

3
=

1

3

Thus q(m, 1, 1) ∈ [0, 1
3
]. On the other hand, consider q(m, 2, 2):

q(m, 2, 2) =
∑
σ,τ

p(σ, τ)P (Γτ,σ(fm,2,2)) ≥
∑
σ,τ

p(σ, τ)
2

3
=

2

3

83

since Γτ,σ(fm,2,2) is a 2-to-1 function, so A must accept with probability at least 2
3
. Thus

q(m, 2, 2) ∈ [2
3
, 1].

Suppose q(N
2
, 1, 2) ≥ 1

2
. Let c be the least integer for which

∣∣q(N
2
, 1, c)

∣∣ ≥ 2 (so c 6 |N
2

,
or (N

2
, 1, c) would be a valid triple). Then of course we have q ∈ [−2, 2] on the range

(m, k, `) ∈ {N
2
} × {1} × {0, . . . , c}. Further, we have |q(m, 1, 1)− q(m, 1, 2)| ≥ 1

2
− 1

3
= 1

6
,

so we can apply Paturi’s Theorem to get deg(q) ∈ Ω(
√

c
4
) = Ω(

√
c).

We can also consider elements in the range (m, k, `) ∈ {0, c, 2c, . . . ,mbN
m
c}×{1}×{c}.

In this range, we have q(m, k, `) ∈ [0, 1] but q(N
2
, 1, c) ≥ 2, so the value of q changes by

at least 1 on an interval of size less than 1. Furthermore, this interval occurs at distance
N
2c

points from the edge of the range. Thus, we can apply the modified version of Paturi’s

Theorem to get deg(q) ∈ Ω
(√

N
2c
N
2c

)
∈ Ω

(
N
c

)
. Thus, we have deg(q) ∈ Ω

(√
c+ N

c

)
∈

Ω(N1/3).

In the case where q(m, 1, 2) < 1
2
, the argument is similar.

To summarize, this method succeeded by finding symmetries in the problem so that a
new polynomial with fewer variables could be constructed, and applying Paturi’s Theorem
to the new polynomial to lower bound its degree, and thus the degree of P .

Ambainis shows the following, which implies tight lower bounds from the work of Aaron-
son and Shi:

Theorem 7.1.11. Let F : F(N,R) → {0, 1} be a Boolean problem such that for all
σ ∈ SN and τ ∈ SR, F(f) = F(τ ◦ f ◦ σ). Let F′ be the restriction of F to F(N,N). Then

d̃eg(F) = d̃eg(F′) where degrees are in δx,y.

Call a function F such that F(f) = F(τ ◦ f ◦ σ) for all f ∈ F(N,R), σ ∈ SN and
τ ∈ SR, symmetric in SN × SR.

To prove this result, Ambainis introduces new variables: zy = |f−1(y)| for each y ∈ [R].
He shows that for all F symmetric in SN × SR, there exists a polynomial q(z1, . . . , zR) of
degree d that approximates F if and only if there exists a polynomial p(δ1,1, . . . , δN,R) of
degree d that approximates F. This is another example of finding symmetries in a problem
in order to reduce the number of variables.

Certainly if q(z1, . . . , zR) approximates F, then q(z1, . . . , zN , 0, . . . , 0) approximates F′

and this only makes the degree smaller, so d̃eg(F) ≥ d̃eg(F′).

On the other hand, suppose we have a polynomial q′(z1, . . . , zN) that approximates F′.
Let q′sym be the symmetrization of q′, which has the same degree (and is just q′ if q′ is

84

symmetric). Then we can write q′sym =
∑

E cEq
′
E where E is taken over all ordered subsets

of Z+ in which the members add up to at most d, and q′E =
∑
S⊆[N]:|S|=|E|Πsi∈Sz

Ei
si

.

Consider q =
∑

E cEqE where qE =
∑
S⊆[R]:|S|=|E|Πsi∈Sz

Ei
si

. Then q actually ap-

proximates F. This relies on the fact that at most N members of [R] have a pre-
image in any f , so we certainly don’t need to consider qE with |E| > N . We have
q(z1, . . . , zN , 0, . . . , 0) = q′(z1, . . . , zN), so q approximates F for any function f : [N]→ [N].
Given any f ′ : [N] → [R], we can construct f : [N] → [N] by applying some appropriate
permutations to get f ′ = τ ◦ f ◦ σ. Since q is symmetric, we have q(z1(f ′), . . . , zR(f ′)) =
q(z1(f), . . . , zR(f)), and so, since F is symmetric in SN × SR, q approximates F on any
input.

7.2 The Quantum Adversary Method

One sense in which the polynomial method is not very quantum is that it does not use the
fact that intermediate operations must be unitary: the argument in Lemma 7.1.1 would
work for any linear operators Ut. In this section we outline a class of lower bound methods
that take more advantage of the structure of a quantum query algorithm.

In the classical adversary method, deterministic lower bounds are proven by showing
that a certain number of queries are required to distinguish between 0 and 1 inputs, where
some adversary can adaptively choose the input as it is queried. The adversary is assumed
to choose the query responses in such a way as to avoid committing to a particular output
for as long as possible. For example, in the case of ORN , the adversary will return 0 to
every query made, up until the last element is queried. In this way, it is not known until
all elements have been queried whether or not the input has a marked element. In other
words, the adversary avoids providing a certificate for as long as possible.

In the quantum case, since queries are made in superposition, this method is not directly
applicable. However, in 2000, Ambainis [6] published the first quantum analogue to the
classical adversary method. This method works by choosing a particular set of inputs
that are difficult to distinguish and considering running an algorithm on a superposition
of these inputs. This is similar to the classical adversary method, in that the adversary
attempts to remain consistent with some 0 instance as well as some 1 instance for as
many queries as possible. The argument is that any algorithm that computes F must, in
particular, be able to distinguish between any two inputs f, g with F(f) 6= F(g). In order
to distinguish between these inputs, the state of the algorithm running on the superposition
of inputs must have a sufficient amount of entanglement between the input space HI and

85

the computation space HC by the time it terminates. By upper bounding the amount by
which entanglement can increase with each query, a lower bound on the required number
of queries can be computed.

In order for the computation to distinguish between two inputs, we need the compu-
tation system to have sufficient information about the input system, that is, we need the
mutual information between the two systems to be sufficiently high. We can define the
mutual information between two quantum systems as:

I(ρIC) := S(ρI) + S(ρC)− S(ρIC)

Since ρIC is a pure state, it has S(ρIC) = 0, so we want the systems ρI and ρC to have
high entropy, or in other words, to be mixed. The more entangled two systems, the more
mixed the resulting state when one system is traced out.

Consider a quantum query circuit as in Section 2.2. The non-query operations U0, . . . , UT
act locally on HC , and so cannot increase the entanglement between the two systems. Only
the query operator O can increase entanglement between HI and HC . Before any query
has been made, the initial state on HC is independent of the input, and so the two systems
are completely unentangled.

Consider the initial state of HI ⊗ HC when we run the circuit on a superposition of
inputs from some set S:

|Ψ0〉 :=
∑
f∈S

αf |f〉 ⊗ U0|0 . . . 0〉

In general, we will denote the state on HI ⊗HC after t steps as |Ψt〉, so the final state
looks like:

|ΨT 〉 :=
∑
f∈S

αf |f〉|ψTf 〉

If this state has no entanglement between the two systems, then |ψTf 〉 does not depend
on f at all. In this case, the output cannot be correct, because it is independent of the
input, and there are both 0 and 1 inputs in S. On the other hand, if every element of f
has been queried and stored, then |ψTf 〉 actually contains f , that is, |ψTf 〉 = |f〉|φ〉 for some
|φ〉, so the system is actually maximally entangled. Intuitively, we need |ψTf 〉 to contain
enough information about f that it can distinguish it from the other inputs, so there must
be a high degree of entanglement between the two systems.

86

Let ρ(T) = |ΨT 〉〈ΨT | and ρ
(T)
I = TrC(ρ), the final system on the input space. We have:

ρ
(T)
I =

∑
f∈S

∑
g∈S

αfα
∗
g|f〉〈g|〈ψTg |ψTf 〉

so:
ρ

(T)
I [f, g] = 〈ψTg |ψTf 〉αfα∗g

Suppose F(f) = 0 and F(g) = 1 and suppose A computes F with bounded error ε. We can
write the final states of A on inputs f and g as:

|ψTf 〉 =
∑
z

c(0)
z |z〉|0〉+

∑
z

c(1)
z |z〉|1〉

|ψTg 〉 =
∑
z

d(0)
z |z〉|0〉+

∑
z

d(1)
z |z〉|1〉

where |z〉 ranges over all possible states of the non-answer part of the computation register.

Then if ε1 =
∑

z

∣∣∣c(1)
z

∣∣∣2 and ε2 =
∑

z

∣∣∣d(0)
z

∣∣∣2, we have ε1 ≤ ε and ε2 ≤ ε, since ε1 is the

probability of measuring 1 on input f and ε2 is the probability of measuring 0 on input g.

We then have: ∣∣〈ψTg |ψTf 〉∣∣ =

∣∣∣∣∣∑
z

c(0)∗
z d(0)

z +
∑
z

c(1)∗
z d(1)

z

∣∣∣∣∣
≤
∑
z

∣∣c(0)
z

∣∣ ∣∣d(0)
z

∣∣+
∑
z

∣∣c(1)
z

∣∣ ∣∣d(1)
z

∣∣
≤
√∑

z

∣∣∣c(0)
z

∣∣∣√∑
z

∣∣∣d(0)
z

∣∣∣+

√∑
z

∣∣∣c(1)
z

∣∣∣√∑
z

∣∣∣d(1)
z

∣∣∣
=
√
ε1(1− ε2) +

√
ε2(1− ε1)

This expression is maximized by taking ε1 and ε2 as close as possible to 1
2
, so:∣∣〈ψTg |ψTf 〉∣∣ ≤ 2

√
ε(1− ε)

This gives the following:

Theorem 7.2.1. [6] Let A be a quantum algorithm for computing F as described above
with bounded error ε. Then for all f, g such that F(f) 6= F(g), we have:∣∣∣ρ(T)

I [f, g]
∣∣∣ ≤ 2

√
ε(1− ε)

∣∣∣α(T)
f

∣∣∣ ∣∣α(T)
g

∣∣
87

The only thing that remains is to show that a single query cannot increase the en-
tanglement by very much. Exactly how much should, of course, depend on the problem
in question. For example, consider the trivial problem F : {0, 1}N → {0, 1} given by
F(f) = f [1], that is, F(f) is just the first bit of f . Then obviously a single query is
sufficient to compute F. Let f, g : [N] → {0, 1} be such that f [1] = 0 and g[1] = 1. Let
S = {f, g}. Then after querying the first bit, we have αf |f〉|0〉+αg|g〉|1〉. If αf = αg = 1√

2
then the two systems are maximally entangled after a single query. In general, however,
this will not be the case.

Note that the above also depends on S and the amplitudes αf of f ∈ S. Choosing
these optimally will result in the best lower bound obtainable by this method. The first
result on how the choice of S and the superposition of inputs leads to a particular lower
bound is from Ambainis’ original paper on the quantum adversary method [6]. If we choose
some difficult to distinguish set S, then, in particular, for any set of pairs (f, g) ∈ S × S
such that F(f) 6= F(g) we want the algorithm to be able to distinguish each pair. We
represent this as a symmetric |S|× |S| {0, 1}-matrix Γ with Γ[f, g] = 0 when F(f) = F(g).
When Γ[f, g] = 1, we consider f, g as a pair we want the algorithm to distinguish. We
can also picture Γ as a bipartite graph with vertex classes S0 := {f ∈ S : F(f) = 0} and
S1 := {g ∈ S : F(g) = 1}.

We are interested in how a single query may help distinguish between inputs f and g
with Γ[f, g] = 1, and so we define, for each x ∈ [N], Γx by: Γx[f, g] = 1 if and only if
Γ[f, g] = 1 and f [x] 6= g[x]. Of course, we can also consider Γx as a subgraph of Γ.

Define r(A) as the set of rows of a matrix A and c(A) as the set of columns of A.
For matrices A and B of the same dimensions, let 〈A,B〉 = Tr(A†B) =

∑
i,j A[i, j]∗B[i, j]

denote the Hilbert-Schmidt inner product.

Theorem 7.2.2. [6] Let S be a set of valid inputs to some problem F. Let Γ be a symmetric
|S| × |S| {0, 1}-matrix such that if F(f) = F(g) for f, g ∈ S, then Γ[f, g] = 0. Then any
quantum circuit computing F with bounded error requires at least

Ω

(
min{‖r‖2 : r ∈ r(Γ)}min{‖c‖2 : c ∈ c(Γ)}

maxx max{‖r‖2 : r ∈ r(Γx)}maxx max{‖c‖2 : c ∈ c(Γx)}

)
queries. Considering Γ as the adjacency matrix of a graph, this quantity can be stated as:√

min{degΓ(f) : f ∈ S0}min{degΓ(g) : g ∈ S1}
maxx max{degΓx(f) : f ∈ S0}maxx max{degΓx(g) : g ∈ S1}

88

Proof. Let A be any quantum circuit that computes F with bounded error in T queries.
We will consider running A on the following superposition of inputs:

1√
2

∑
f∈S0

1√
|S0|
|f〉+

1√
2

∑
g∈S1

1√
|S1|
|g〉

We will define a progress function to measure the entanglement between the input and
computation space at each step t:

W (t) :=
∑

{f,g}∈E(Γ)

∣∣∣ρ(t)
I [f, g]

∣∣∣ = 〈ρ(t)
I ,Γ〉

Notice that we have:

W (0) =
∑

{f,g}∈E(Γ)

1

2
√
|S0| |S1|

=
|E(Γ)|

2
√
|S0| |S1|

And by Theorem 7.2.1, we need:

W (T) ≤
∑

{f,g}∈E(Γ)

1√
|S0| |S1|

√
ε(1− ε) = |E(Γ)|

√
ε(1− ε)
|S0| |S1|

So we have:

W (0)−W (T) ∈ Ω

(
|E(Γ)|√
|S0| |S1|

)
Thus we need only bound the change in weight at each step as:

W (t)−W (t+1) ∈ O

(
|E(Γ)|√
|S0| |S1|

√
maxx max{degΓx(f) : f ∈ S0}maxx max{degΓx(g) : g ∈ S1}

min{degΓ(f) : f ∈ S0}min{degΓ(g) : g ∈ S1}

)
Since |E(Γ)| ≥ 1

2
|S0|min{degΓ(f) : f ∈ S0} |S1|min{degΓ(g) : g ∈ S1}, it suffices to prove:

W (t)−W (t+ 1) ∈ O
(√

max
x

max{degΓx(f) : f ∈ S0}max
x

max{degΓx(g) : g ∈ S1}
)

We have:

W (t)−W (t+ 1) = 〈ρ(t)
I − ρ

(t+1)
I ,Γ〉 =

∑
{f,g}∈E(Γ)

(ρ
(t)
I [f, g]− ρ(t+1)

I)

89

≤
∑

{f,g}∈E(Γ)

1

2
√
|S0| |S1|

[〈ψtf |ψtg〉 − 〈ψt+1
f |ψ

t+1
g 〉]

Let |ψtf〉 =
∑

x,w a
f
x,w|x,w〉 where the first register is the query register and the second

register is the rest of the computation space. Then after applying the query operator we
get: |ψ̂tf〉 =

∑
w,x:f(x)=0 a

f
x,w|x,w〉 −

∑
w,x:f(x)=1 a

f
x,w|x,w〉.

Then:

〈ψtf |ψtg〉 − 〈ψt+1
f |ψ

t+1
g 〉 = 〈ψtf |ψtg〉 − 〈ψ̂tf |U

†
t+1Ut+1|ψ̂tg〉 = 〈ψtf |ψtg〉 − 〈ψ̂tf |ψ̂tg〉

=
∑
x,w

af∗x,wa
g
x,w −

∑
w,x:f(x)=g(x)

af∗x,wa
g
x,w +

∑
w,x:f(x) 6=g(x)

af∗x,wa
g
x,w

= 2
∑

x,w:f(x)6=g(x)

af∗x,wa
g
x,w

Plugging in, we get:

|W (t)−W (t+ 1)| ≤ 1√
|S0| |S1|

∑
x,w:f(x)6=g(x)

∣∣afx,w∣∣ ∣∣agx,w∣∣
≤ 1√

|S0| |S1|

∑
x,w

∑
{f,g}∈E(Γx)

∣∣afx,w∣∣ ∣∣agx,w∣∣
≤ 1√

|S0| |S1|

∑
x,w

√∑
f∈S0

degΓx(f)
∣∣∣afx,w∣∣∣2 ∑

g∈S1

degΓx(g) |agx,w|2

by Cauchy-Schwartz. Let dix := max{degΓx(f) : f ∈ Si} for i = 0, 1, and di := maxx d
i
x.

Then:

|W (t)−W (t+ 1)| ≤ 1√
|S0| |S1|

∑
x,w

√√√√(d0
x

∑
f∈S0

∣∣∣afx,w∣∣∣2)(d1
x

∑
g∈S1

|agx,w|2
)

≤
√
d0d1

∑
x,w

√
1

|S0|
∑
f∈S0

∣∣∣afx,w∣∣∣2 1

|S1|
∑
g∈S1

|agx,w|2

≤
√
d0d1

∑
x,w

1

2

[
1

|S0|
∑
f∈S0

∣∣afx,w∣∣2 +
1

|S1|
∑
g∈S1

∣∣agx,w∣∣2
]

90

by the arithmetic mean geometric mean inequality. Moving the sum over x,w into the
other two sums gives:

|W (t)−W (t+ 1)| ≤
√
d0d1

2

[
1

|S0|
∑
f∈S0

1 +
1

|S1|
∑
g∈S1

1

]
=

√
d0d1

2

By definition of d0 and d1, this gives exactly:

|W (t)−W (t+ 1)| ∈ O
(√

max
x

max{degΓx(f) : f ∈ S0}max
x

max{degΓx(g) : g ∈ S1}
)

Though clearly not the most general construction possible, it is fairly simple to relate
this to the block sensitivity (and thus certificate complexity). Let f be an input that is sen-
sitive to a maximum number of blocks B1, . . . , Bt, with t = bs(F). Then we can set (with-
out loss of generality) S = {f, fB1 , . . . , fBt}, so that S0 = {f} and S1 = {fB1 , . . . , fBt} to
prove the following:

Theorem 7.2.3. [6] Let F be a Boolean function and A a quantum algorithm that computes
F with bounded error using T queries. Then T ∈ Ω(

√
bs(F)).

Proof. In this case, Γ is simply the star graph on t+ 1 vertices, and Γx for x ∈ Bi (it can
be in at most one since the blocks are disjoint) consists of a single edge {f, fBi}. We thus
have:

min{degΓ(g) : g ∈ S0} = t = bs(F)

min{degΓ(g) : g ∈ S1} = 1

max
x

max{degΓx(g) : g ∈ S0} = max
x

max{degΓx(g) : g ∈ S1} = 1

So Q(F) ∈ Ω(
√
bs(F)).

This is not necessarily the best construction for Γ, and in the original adversary method
paper, Ambainis gives examples of several unweighted adversary lower bounds that are
higher than

√
bs(F).

The adversary method can be generalized and strengthened by assigning weights to each
pair in S. There are a number of equivalent [52] ways of formulating this generalization, and
depending on the context, it may be helpful to use one or the other. Equivalent formulations

91

include: spectral adversary [11], weighted adversary [7], strong weighted adversary [56],
and Kolmogorov adversary [36]. We call this the weighted adversary method.

We assign weights to each pair of inputs by defining an |S| × |S| non-negative real
symmetric matrix Γ with diagonal entries all 0. More generally, if F(f) = F(g), then
Γ[f, g] = 0. The weight of a pair of inputs is meant to measure how difficult to distinguish
those two inputs are. The weighted version of Γ is certainly more general than the {0, 1}
version. The better our choice of Γ, the better the lower bound that this method yields.

If we allow negative weights, we get the more powerful negative weights adversary
method, which we discuss in Section 7.2.1. For now we assume all weights are non-negative.

We are still concerned with the difficulty of distinguishing some set of inputs, but we
now consider running the algorithm on a superposition of inputs defined in the following
way.

Let δ be a normalized eigenvector of Γ corresponding to its largest eigenvalue. Then
we define the initial state as |Ψ0〉 =

∑
f∈S δ[f]|f〉 ⊗ |0 . . . 0〉. As in the unweighted case,

we will define some notion of progress and show a lower bound on the progress required to
correctly distinguish between different inputs, as well as an upper bound on the increase
in progress given by a single query.

Define Γx as the |S| × |S| {0, 1}-matrix such that Γx[f, g] = Γ[f, g] if and only if
f [x] 6= g[x] and Γx[f, g] = 0 otherwise.

Definition 7.2.4. Define the spectral norm of a matrix A as ‖A‖2 = σmax(A), where σmax
is the largest singular value. If A is Hermitean, ‖A‖2 is equal to the largest eigenvalue of

A, up to sign. We can also write ‖A‖2 = maxv 6=0
‖Av‖2
‖v‖2

, the induced operator norm of the

Euclidean norm.

Definition 7.2.5. Define the weighted adversary bound of a problem F as:

ADV (F) = max
Γ

‖Γ‖2

maxx ‖Γx‖2

where Γ is taken over all non-negative real valued symmetric matrices with Γ[f, g] = 0 if
F(f) = F(g).

We now show that ADV (F) is truly a lower bound on the quantum query complexity
of F.

Theorem 7.2.6. [28, 11] Let F : [R]N → {0, 1} be a Boolean function. Then ADV (F) ≤
Q(F).

92

Proof. Let Γ be a weighted adversary matrix with δ as defined above. Suppose we begin
in the state |Ψ0〉 =

∑
f δ[f]|f〉⊗U0|0 . . . 0〉. Denote the state right before the t+ 1th oracle

call as |Ψt〉 =
∑

f δ[f]|f〉|ψtf〉. Let ρ
(t)
I be the state of the input space after t steps, that is,

ρ
(t)
I = TrC(|Ψt〉〈Ψt|). Note that ρ

(t)
I [f, g] = δ[f]∗δ[g]〈ψf |ψg〉.

Define W (t) := 〈ρ(t)
I ,Γ〉, the progress after t steps. We will prove the following three things:

1. W (0) = ‖Γ‖2

2. W (t)−W (t+ 1) ≤ 2 maxx ‖Γx‖2

3. W (T) ≤ 2
√
ε(1− ε) ‖Γ‖2

The first fact follows from the definition of W :

〈ψ0
f |ψ0

g〉 = 1

for all f and g, since no query has been made yet. Thus ρ
(0)
I [f, g] = δ[f]∗δ[g] so ρ

(0)
I = δδ†,

so:

W (0) = 〈δδ†,Γ〉 = Tr((δδ†)†Γ) = Tr(δ†Γδ) = Tr(δ† ‖Γ‖2 δ) = ‖Γ‖2 Tr(δ†δ) = ‖Γ‖2

The third fact follows from Theorem 7.2.1: 〈ψTf |ψTg 〉 ≤ 2
√
ε(1− ε) for every f and g such

that F(f) 6= F(g):

W (T) = 〈ρ(T)
I ,Γ〉 =

∑
f,g

Γ[f, g]δ[f]∗δ[g]〈ψTf |ψTg 〉 ≤ 2
√
ε(1− ε)

∑
f,g

Γ[f, g]δ[f]∗δ[g]

= 2
√
ε(1− ε)〈δδ†,Γ〉 = 2

√
ε(1− ε) ‖Γ‖2

It remains only to bound the change in weight given by a single query. We have (using the
notation of Theorem 7.2.2):

|W (t)−W (t+ 1)| ≤
∑
f,g

Γ[f, g]δ[f]δ[g]
∣∣〈ψtf |ψtg〉 − 〈ψt+1

f |ψ
t+1
g 〉

∣∣
≤
∑
f,g

Γ[f, g]δ[f]δ[g]2
∑

x,w:f(x)6=g(x)

∣∣afx,w∣∣ ∣∣agx,w∣∣
93

≤ 2
∑
x,w

∑
f,g

Γx[f, g]δ[f]δ[g]
∣∣afx,w∣∣ ∣∣agx,w∣∣

Define vx,w ∈ R|S| by vx,w[f] = δ[f]
∣∣afx,w∣∣. Note that ‖vx,w‖2

2 =
∑

f δ[f]2
∣∣afx,w∣∣2 ≤∑

f

∣∣afx,w∣∣2. This gives:

|W (t)−W (t+ 1)| ≤ 2
∑
x,w

∑
f

vx,w[f]
∑
g

Γx[f, g]vx,w[g]

= 2
∑
x,w

∑
f

vx,w[f](Γxvx,w)[f]

= 2
∑
x,w

v†x,wΓxvx,w

≤ ‖Γx‖2 ‖vx,w‖
2
2

≤ 2 max
x
‖Γx‖2

∑
x,w,f

∣∣afx,w∣∣
= 2 max

x
‖Γx‖2

The result follows.

The weighted adversary method faces two strict limitations, known as the certificate
complexity barrier and the property testing barrier. These barriers put strict limits on the
lower bounds obtainable by the weighted adversary method. They are stated below:

Theorem 7.2.7 (Certificate Complexity Barrier). [52] If F : [R]N → {0, 1} is a total
Boolean function, then ADV (F) ≤

√
C(0)(F)C(1)(F), and if F is a partial Boolean function,

ADV (F) ≤ 2
√

min{C(0)(F),C(1)(F)}N .

The problems of interest to us have constant sized 1-certificates, and thus, the weighted
adversary method can yield a lower bound no higher than

√
N . It is known that the

actual lower bound on EDN is greater than this (Ω(N2/3)), and this was proven using the
polynomial method (see Section 7.1.2).

Theorem 7.2.8 (Property Testing Barrier). [27] Let F : [R]N → {0, 1} be a partial Boolean
function with the promise that if F(f) 6= F(g) then ∆(f, g) ≥ Nε where ∆ is the Hamming
distance. Then ADV (F) ≤ 1

ε
.

94

For C̃OLN , all almost strictly many-to-1 functions have Hamming distance at least
N/2 − c logN from 1-to-1 functions, so the weighted adversary method cannot prove a
lower bound higher than 2 for this problem. All known lower bounds for collision finding
are thus proven using the polynomial method.

The limitations of the weighted adversary method stem partially from the fact that it
does not take into account that the information learned from some query may be more or
less than that learned from another query. The amount of information currently known by
the algorithm is not captured, only the maximum increase per step. This does not take into
account the possibility of discarding information, as is done in the space-bounded setting.
Interestingly, however, an early application of an adversary-like argument (pre-dating the
actual formalization of the adversary method) by Zalka [55] does manage to take this into
account. This result is of particular interest to us, because it includes a lower bound for
ORN in a parallel-query model. We discuss this more in Section 7.2.2. First, we discuss
one final generalization of the adversary method.

7.2.1 The Negative Weights Adversary Method

This further generalization of the adversary method, which is strictly stronger than the
weighted adversary method, is the negative weights adversary method [27] obtained by
allowing Γ to take negative values. It is subject neither to the certificate complexity nor
the property testing barrier. It is simple to generalize to this method, but the proof of its
validity is nontrivial. Whereas the weighted adversary method lower bounds the number of
queries required to distinguish various inputs, the negative weights adversary method also
uses the fact that the algorithm must not only distinguish inputs, but actually compute
the function on any input.

It is surprising that such a simple change in the method could allow for such a strong
difference. Intuitively, it is:

good to give negative weight to entries with large Hamming distance, entries
which are easier to distinguish by queries. Consider an entry (f, g) where f and
g have large Hamming distance. This entry appears in several Γx matrices but
only appears in the Γ matrix once. Thus by giving this entry negative weight
we can simultaneously decrease ‖Γx‖2 for several x’s, while doing relatively
little damage to the large Γ matrix [27].

95

Definition 7.2.9. Define the negative weights adversary bound of a problem F as:

ADV ±(F) = max
Γ

‖Γ‖2

maxx ‖Γx‖2

where Γ is taken over all real valued symmetric matrices with Γ[f, g] = 0 if F(f) = F(g).

In the weighted adversary method, we prove that the progress function must have
dropped below a certain threshold after T queries using the fact that the algorithm must
distinguish different inputs. In the negative weights adversary method, we use the stronger
fact that there must exist a measurement that would give the right answer after T queries.

Theorem 7.2.10. [27] Let F : [R]N → {0, 1} be a Boolean function. Then Q(F) ∈
Ω(ADV ±(F)).

To prove this theorem, we will use the following lemma:

Lemma 7.2.11. Let A, B, and C be square matrices of the same dimension. Then:

〈AB†, C〉 ≤
√
〈A,A〉〈B,B〉 ‖C‖2

Proof. We have:

〈AB†, C〉 ≤
∣∣〈AB†, C〉∣∣
‖C‖2

‖C‖2 ≤ maxM

∣∣〈AB†,M〉∣∣
‖M‖2

‖C‖2

We have that ‖·‖2 is the Schatten∞-norm: ‖M‖2 = ‖M‖(∞) = limp→∞
[
Tr((M †M)p/2)

]1/p
.

For Schatten norms ‖·‖(p) and ‖·‖(q) such that 1
p

+ 1
q

= 1 we have:

‖X‖(p) = maxM
|〈X,M〉|
‖M‖(q)

so we have:
〈AB†, C〉 ≤

∥∥AB†∥∥
(1)
‖C‖2 = Tr(

√
(AB†)†AB†) ‖C‖2

= Tr(A†B) ‖C‖2 ≤ ‖A‖(2) ‖B‖(2) ‖C‖2 ≤
√
〈A,A〉〈B,B〉 ‖C‖2

where the second last inequality is by Hölder’s inequality.

We’re now ready to prove the theorem:

96

Proof. Define W (t) as in Theorem 7.2.6. Just as in the proof of Theorem 7.2.6, we will
prove the following:

1. W (0) = ‖Γ‖2

2. W (t)−W (t+ 1) ≤ 2 maxx ‖Γx‖2

3. W (T) ≤ 2
√
ε(1− ε) ‖Γ‖2

The proof of the first item is identical to that of Theorem 7.2.6 and the second is similar
enough that we omit it. However, if we try to apply the same method for the third item,
we will run into a problem, since Γ may now have negative entries, so we cannot substitute
the upper bound on 〈ψTf |ψTg 〉 into the formula W (T) =

∑
f,g Γ[f, g]δ[f]δ[g]〈ψTf |ψTg 〉 to get

an upper bound. Instead, they make use of the fact that there exists a complete set
of orthogonal projectors {M0,M1} (or more generally, for non-Boolean functions, {My},
however we will assume F is Boolean) such that for all valid inputs f ,

∥∥MF(f)|ψTf 〉
∥∥2

2
≥ 1−ε.

Define D ∈ {0, 1}|S|×|S| such that D[f, g] = 1 if and only if F(f) 6= F(g). Then we have
Γ = Γ ◦ D, where ◦ denotes the Hadamard product. If we define Y0 and Y1 such that
ρ

(T)
I ◦D = Y0Y

†
1 , we can write:

〈ρ(T)
I ,Γ〉 = 〈D ◦ ρ(T)

I ,Γ〉 ≤
√
〈Y0, Y0〉〈Y1, Y1〉 ‖Γ‖2

by the previous Lemma.

Define X0 and X1 in R|S|×|S| as follows:

Xb[f, :] := MF(f)+b|ψTf 〉

So X0 is the projection onto correct outcomes and X1 is the projection onto incorrect
outcomes. We then have:

(X0X
†
1 +X1X

†
0)[f, g] = δfδ

∗
g [〈ψTg |MF(g)MF(f)|ψTf 〉+ 〈ψTg |MF(g)M ¯F(f)|ψTf 〉]

If f [x] 6= g[x]:
= δfδ

∗
g [〈ψTg |M2

0 |ψTf 〉+ 〈ψTg |M2
1 |ψTf 〉]

= δfδ
∗
g〈ψTg |[M0 +M1]|ψTf 〉

= δfδ
∗
g〈ψTg |ψTf 〉

97

since M0,M1 form a complete measurement. On the other hand, if f [x] = g[x] = b:

= δfδ
∗
g [〈ψTg |Mb̄Mb|ψTf 〉+ 〈ψTg |MbMb̄|ψTf 〉] = 0

Since M0 and M1 are orthogonal projectors. Thus, D ◦ ρ(T)
I = X0X

†
1 +X1X

†
0. This gives:

〈D ◦ ρ(T)
I ,Γ〉 ≤ 〈X0X

†
1,Γ〉+ 〈X1X

†
0,Γ〉

≤
√
〈X0, X0〉〈X1, X1〉 ‖Γ‖2 +

√
〈X1, X1〉〈X0, X0〉 ‖Γ‖2 = 2

√
〈X0, X0〉〈X1, X1〉 ‖Γ‖2

= 2

√∑
f∈S

|δf |2
∥∥MF(f)|ψTf 〉

∥∥2

2

∑
f∈S

|δf |2
∥∥∥MF(f)|ψTf 〉

∥∥∥2

2
‖Γ‖2 ≤ 2

√
(1− ε)ε ‖Γ‖2

The result is immediate.

The lower bound obtained by ADV ± is tight for any Boolean function [45]. This isn’t
so surprising given the previous proof: the fact that there must exist measurements that
output the correct answer with sufficient probability is exploited, and this is exactly what
it means to compute something with bounded error.

7.2.2 An Adversary-Like Bound on Search with Parallel Queries

Before Ambainis first defined the formal adversary method, Zalka [55] used a similar tech-
nique to prove a tight lower bound on ORN . Of particular interest to us, he also proved
a lower bound on the number of parallel queries needed to solve ORN .

Suppose we have a black-box for f such that if we input a vector (x1, . . . , xk) ∈ [N]k,
we get (f(x1), . . . , f(xk)). We call one such query a k-parallel query. Since we require

Ω(
√
N) quantum queries to solve ORN , we require at least Ω(

√
N
k

) k-parallel queries.
For any problem F, let Q(k)(F) be the number of k-parallel queries required to solve F.

Trivially, we have Q(k)(F) ∈ Ω(Q(F)
k

). Zalka showed an even tighter bound for search:

Q(k)(ORN) ∈ Ω(
√
N√
k

).

Zalka’s bound implies that we cannot simply divide the Θ(
√
N) queries required for

ORN among M processors. In general, if we can prove a parallel query lower bound, this
implies a lower bound in the grid model. We have:

Lemma 7.2.12.
Q�
M(F) ≥ Q(M)(F) +

√
M

98

For this reason, parallel query results are of great interest. We therefore now outline
Zalka’ proof. It does not use the technique of defining a Γ matrix, however it is based on
the idea that an algorithm that computes ORN must be able to distinguish between any
inputs with ORN(f) 6= ORN(g).

Let S be the set of inputs to ORN containing all f with Hamming weight 0 or 1 (where
f are viewed as binary strings of length N). That is, S contains f = 0 and gx defined by
gx(y) = 1 if and only if y = x, for x = 1, . . . , N . We are concerned with the algorithm’s
ability to distinguish any (f, gx) pair of inputs. We thus consider the average distance
between final states |ψTf 〉 and |ψTgx〉. This gives an upper bound on the success probability
(1− ε).

Lemma 7.2.13. [55] Let A be a quantum algorithm that computes ORN with bounded
error that has final state |ψTg 〉 on any input g. Then:

1

N

N∑
x=1

∥∥|ψTf 〉 − |ψgx〉∥∥2

2
∈ Ω(1)

The constant in the above term is determined by the allowed error probability, ε (which
we assume to be constant). The main result is to upper bound the average distance as
follows:

Theorem 7.2.14. [55] Suppose we have an algorithm A that computes ORN with bounded
error using T k-queries. Then:

1

N

N∑
x=1

∥∥|ψTgx〉 − |ψTf 〉∥∥2

2
∈ O

(
kT 2

N

)

This result, combined with the previous lemma, imply that T ∈ Ω
(√

N
k

)
.

Proof. Write U t
f := UtOf , U t

x = UtOgx and Dt
x = U t

f − U t
x. Then we can write:

|ψTf 〉 = (UT
x +DT

x)|ψT−1
f 〉 = |ψTx 〉+

T−1∑
t=0

UT
x . . . U

T−t+1
x DT−t

x |ψT−t−1
f 〉

Thus we can write:

∥∥|ψTgx〉 − |ψTf 〉∥∥2
=

∥∥∥∥∥
T−1∑
t=0

UT
x . . . U

T−t+1
x DT−t

x |ψT−t−1
f 〉

∥∥∥∥∥
2

99

≤
T−1∑
t=0

∥∥UT
x . . . U

T−t+1
x DT−t

x |ψT−t−1
f 〉

∥∥
2

=
T−1∑
t=0

∥∥DT−t
x |ψT−t−1

f 〉
∥∥

2

since the norm is invariant under unitary transformations. The states UT−t
f |ψT−t−1

f 〉 and

UT−t
x |ψT−t−1

f 〉 only differ in the amplitudes of basis states that look like |x1, . . . , xk, w〉 where
xi = x for at least one i, and w is any state of the workspace. Intuitively, this means that
only a small number of amplitudes notice the difference between the two types of queries.
This also means that UT−t

f |ψT−t−1
f 〉 − UT−t

x |ψT−t−1
f 〉 = UT−t

f Px|ψT−t−1
f 〉 − UT−t

x Px|ψT−t−1
f 〉,

where Px is the projection onto basis states containing x in one of the query registers. This
gives: ∥∥|ψTgx〉 − |ψTf 〉∥∥2

≤
T−1∑
t=0

∥∥UT−t
f Px|ψT−t−1

f 〉 − UT−t
x Px|ψT−t−1

f 〉
∥∥

2

≤
T−1∑
t=0

[∥∥UT−t
f Px|ψT−t−1

f 〉
∥∥

2
+
∥∥UT−t

x Px|ψT−t−1
f 〉

∥∥
2

]

≤
T−1∑
t=0

2
∥∥Px|ψT−t−1

f 〉
∥∥

2

Therefore: ∥∥|ψTgx〉 − |ψTf 〉∥∥2

2
≤ 4

(
T−1∑
t=0

∥∥Px|ψT−t−1
f 〉

∥∥
2

)2

≤ 4T
T−1∑
t=0

∥∥Px|ψT−t−1
f 〉

∥∥2

2

Now let P j
x be the projection onto basis states |x1, . . . , xk, w〉 such that xj = x. This gives:

1

N

N∑
x=1

∥∥|ψTgx〉 − |ψTf 〉∥∥2
≤ 4T

N

N∑
x=1

T−1∑
t=0

∥∥Px|ψT−t−1
f 〉

∥∥2

2

≤ 4T

N

N∑
x=1

T−1∑
t=0

k∑
j=1

∥∥P j
x |ψT−t−1

f 〉
∥∥2

2

100

=
4T

N

T−1∑
t=0

k∑
j=1

N∑
x=1

∥∥P j
x |ψT−t−1

f 〉
∥∥2

2

=
4T

N
Tk

where the last equality follows from the fact that
∑N

x=1

∥∥P j
x |ψtf〉

∥∥2

2
= 1 for each j. This

gives 1
N

∑N
x=1

∥∥|ψTgx〉 − |ψTf 〉∥∥2

2
∈ O

(
kT 2

N

)
, as desired.

101

Chapter 8

Lower Bounds in the Grid Model

To the end of finding lower bounds in the grid and locality-sensitive models, there are
several possible directions to take. As previously mentioned, query lower bounds lead
trivially to lower bounds in the locality-sensitive and grid models (see Table 2.1) and we
derive trivial lower bounds for EDN and COLN in the grid model in this manner in the
following section. However, in order to prove tight lower bounds, we will need something
more. One possible direction is that of parallel query lower bounds. The parallel query
lower bound for ORN ([55] and see Section 7.2.2) leads to a tight quantum grid lower
bound (see Table 8.1). Similar future results for EDN and COLN may give tight grid
lower bounds.

Another possible direction of interest is space-time tradeoffs. These are of interest on
their own, however they would have implications in the locality-sensitive or grid models,
since in the locality-sensitive single processor setting, access to space is expensive, so using
less of it is desirable, and in the grid model, each processor is space bounded.

After summarizing the trivial bounds in Section 8.1, we will outline the prospects for
future work towards lower bounds in Sections 8.2, 8.3 and 8.4.

8.1 Some Trivial Lower Bounds

The following table summarizes the known bounds in the grid model. For classical upper
bounds on COLN and EDN , we include both the rigorous upper bounds, and heuristic
upper bounds (denoted Ô).

102

Distributed Grid Complexity Bounds

Classical (R�) Quantum (Q�)

Lower Bound Upper Bound Lower Bound Upper Bound

ORN Θ(N1/3) Θ(N1/3) Θ(N1/4) Θ(N1/4)

EDN Ω(N1/3) O(N1/2) / Ô(N1/3) Ω(N2/9) O(N1/2)

COLN Ω(N1/6) O(N1/4) / Ô(N1/6) Ω(N1/9) O(N1/4)

Table 8.1: Grid Lower Bounds

The non-heuristic upper bounds are taken from Table 4.2, and the heuristic upper
bounds are based on the rho method, described in Chapter 5. Following is a short expla-
nation of each lower bound.

Quantum Search Lower Bound This lower bound is based on Zalka’s result that

Q(k)(ORN) ∈ Ω
(√

N
k

)
([55] or see Section 7.2.2). From this we get

Q�
M(ORN) ∈ Ω(Q(M)(ORN) +

√
M) ∈ Ω(

√
N

M
+
√
M) ∈ Ω(N1/4)

The remaining lower bounds are obtained directly from the query lower bounds using:
R�
M(F) ≥ R(F)

M
+
√
M and Q�

M(F) ≥ Q(F)
M

+
√
M .

Quantum Element Distinctness Lower Bound Any quantum algorithm that solves
EDN must make Q(EDN) ∈ Θ(N2/3) queries. Therefore, a grid algorithm with M pro-

cessors must have at least one processor that performs Ω(N
2/3

M
) queries, so it has grid

complexity Q�
M(EDN) ∈ Ω(N

2/3

M
+
√
M) ∈ Ω(N2/9).

Quantum Collision Finding Lower Bound Similarly, we have Q(COLN) ∈ Θ(N1/3)

and so Q�
M(COLN) ∈ Ω(N

1/3

M
+
√
M) ∈ Ω(N1/9).

Classical Search Lower Bound We have R(ORN) ∈ Ω(N), so
R�
M(ORN) ∈ Ω(N

M
+
√
M) ∈ Ω(N1/3).

103

Classical Element Distinctness Lower Bound We have R(EDN) ∈ Ω(N), so
R�
M(EDN) ∈ Ω(N

M
+
√
M) ∈ Ω(N1/3).

Classical Collision Finding Lower Bound We have R(COLN) ∈ Ω(
√
N), so

R�
M(COLN) ∈ Ω(

√
N
M

+
√
M) ∈ Ω(N1/6).

8.2 Prospects for Applying the Polynomial Method

The polynomial method does not take very many computational restrictions into account
in its lower bounds (essentially only linearity of the operations) and it certainly does not
account for space bounds. However, it could potentially provide parallel query lower bounds
in the following way.

Given a function f : [N] → [R], we can consider the function f (k) : [N]k → [R]k given
by f (k)(x1, . . . , xk) = (f(x1), . . . , f(xk)). We can consider the problem k-COLN , which
takes a black-box input f (k) and looks for some (x1, . . . , xk) such that there are some i 6= j
such that xi 6= xj and fk(x1, . . . , xk)[i] = f (k)(x1, . . . , xk)[j], that is, f(xi) = f(xj). We
wish to lower bound the number of queries required to f (k), which is, of course, a lower
bound on the k-query complexity of EDN or COLN , depending on which inputs we allow.
This, in turn, would imply a grid lower bound. It may be possible to exploit symmetries
in this problem to find a polynomial lower bound on its query complexity. Though finding
such symmetries is not an easy task, this is still a direction that merits further study.

8.3 Prospects for Applying the Adversary Method

The negative weights adversary method gives tight lower bounds on the minimum number
of queries required overall, but does not account for any notion of either space or par-
allelization. However, Zalka’s proof shows that adversary-like arguments can be used to
prove parallel query lower bounds, which in turn imply grid lower bounds. It would be
interesting to succeed in applying a similar argument to COLN .

Of perhaps greater interest would be to somehow modify the negative weights adversary
method to take space bounds into account. To prove such a lower bound, such as a lower
bound for a log-space single quantum processor, we would need to take into account that
the algorithm “forgets” query results, since it can only store a small amount of information.

104

Figure 8.1: A space-bounded algorithm broken into slices. The input to the first slice is
the inital state of size S. Each slice sends a quantum state of size S to the next slice.

Thus, at each step we increase the difference between |ψf〉 and |ψg〉 by querying, but this
query necessarily requires the uncomputing of some other information (to make room for
the query result) which should intuitively make the total increase smaller. Taking this
into account would require modifying the step where we upper bound the change in the
weight function to account for the space bound. A general adversary method applicable
to space-bounded settings could potentially have wide-ranging applications.

8.4 Relation to Communication Complexity

There have been several quantum space-time tradeoffs proven in the past (for example
[10, 33]), but all that we know of have been for non-Boolean functions with multi-part
outputs. A standard approach goes as follows. Consider running some algorithm on space
S for time T , and break the algorithm into “time slices” (as in Figure 8.1), each of which
outputs some number k of the output parts. We can consider one slice as performing some
computation, and then passing its state to the next slice, as a kind of S-qubit message.
The next slice then performs its portion of the computation, starting from the state it
received from the previous slice. If we suppose it succeeds in outputting its k outputs with
probability 2

3
, then if we consider instead running the slice with a completely mixed starting

state, it must output correctly with probability at least 2
3
2−S, because the completely mixed

state has overlap at least 2−S with the proper starting state, whatever it is. Using some
kind of direct product theorem, which upper bounds the success probability, in terms of
time, of computing k instances of some problem (which we have somehow embedded in the
outputs) we get a tradeoff between S and k, and thus a tradeoff between S and the time
required.

105

The problems we’re interested in do not have this multi-output structure, but the con-
cept of considering slices of an algorithm communicating an S-qubit state to a future slice
is an interesting one. It opens up the possibility of applying results from communication
complexity. In the grid model, there is also the issue of lateral communication. Thus the
setting of communication complexity, specifically space-bounded communication complex-
ity is similar to the grid setting, in which processors wish to compute some joint function
using as little communication as possible.

The idea that communication complexity results could be applied to parallel computa-
tion is not a new one. In [53], Yao points out that a VLSI chip of size m×m computing a
function with communication complexity C would require time at least C

m
to compute the

function. Our setting is somewhat different in that each processor has access to the same
input. However, although in theory a single processor could compute the function with
no communication by doing all necessary queries itself, we suppose that in any optimal
algorithm, the work is somehow divided, and two different processors have queried different
portions of the input. Thus, communication complexity techniques may be applicable.

Combining the notions of spatial and temporal communication ideas gives rise to an
interesting way of considering the information propagation (through both time and space)
in the grid. At time step t, a processor may potentially have access to a neighbour’s
state from time t − i provided that neighbour is at most distance i away. That is, we
can consider each processor’s backward light cone (Figure 8.2). This gives a picture of
a processor performing computation on decreasing space: at step T it has just Ω(logN)
memory, but at step T − i, it had Ω(i2 logN) memory.

Looking at all M processor, we can consider the entire computation as a 3-dimensional
object (1 dimension in time and 2 in space) with communication constraints. We can view
this object as a directed graph with vertex set P t

i,j where i and j range over [
√
M] and

t ∈ [T], and edge set (P t
i,j, P

t+1
k,`) ∈ E if k ∈ {i, i+ 1, i− 1} and ` ∈ {j, j + 1, j − 1}. Each

vertex represents a processor, Pi,j at time t. At time t, Pi,j may make a single query based
on the input states he receives from incoming edges. For the purpose of considering a lower
bound, we may allow the processor unlimited auxiliary computation at step t, at the end
of which he must send forward communication along all of his outgoing edges.

Using this communication-based paradigm, it may be possible to use one or more
known results or techniques to find grid lower bounds for COLN , and perhaps even other
problems.

106

Figure 8.2: The backward light cone of a single processor.

8.5 Final Remarks

We have outlined two new related models of computation: the locality-sensitive model and
the grid model, and surveyed algorithms and lower bounds for COLN , EDN and ORN in
the classical and quantum versions of these models that follow from results in the query
model. However, there are many open problems in this model, even for these particular
problems. There are gaps in the upper and lower bounds for EDN and COLN in both
the classical (non-heuristic) and quantum grid settings. Of particular interest is the fact
that the quantum upper bounds for EDN and COLN in the grid are no better than their
classical counterparts, and are in fact worse than the best classical heuristics. Closing
these gaps may be a major undertaking, but is certainly of great interest as future work.

107

References

[1] S. Aaronson. Quantum lower bound for the collision problem. In Proceedings of
the thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages
635–642, New York, NY, USA, 2002. ACM. arXiv:quant-ph/0111102. 82

[2] S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Proceedings
of the forty-fourth Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’03, pages 200–209, Washington, DC, USA, 2003. IEEE Computer Society. 2,
9

[3] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and element dis-
tinctness problems. Journal of the ACM, 51:595–605, 2004. 82

[4] H. Abelson and P. Andreae. Information transfer and area-time tradeoffs for VLSI
multiplication. Communications of the ACM, 23:20–23, January 1980. 9

[5] N. Alon, O. Goldreich, and Y. Mansour. Almost k-wise independence versus k-wise
independence. Information Processing Letters, 88:107–110, 2003. iv, 64, 65

[6] A. Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the
thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00, pages
636–643, New York, NY, USA, 2000. ACM. arXiv:quant-ph/0002066v1. 74, 85, 87,
88, 91

[7] A. Ambainis. Polynomial degree vs. quantum query complexity. In Proceedings of the
forty-fourth Annual IEEE Symposium on Foundations of Computer Science, pages
230–239, 2003. arXiv:quant-ph/0305179. 92

[8] A. Ambainis. Quantum walk algorithm for element distinctness. In Proceedings of
the forty-fifth Annual IEEE Symposium on Foundations of Computer Science, pages
22–31, 2004. 34, 37

108

[9] A. Ambainis. Polynomial lower bounds in quantum complexity: collision and
element distinctness with small range. Theory of Computing, 1:37–46, 2005.
arXiv:quant-ph/0305179v3. 31, 40, 82

[10] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower bound method with
applications to direct product theorems and time-space tradeoffs. In Proceedings of
the thrity-eighth Annual ACM Symposium on Theory of Computing, pages 618–633,
2006. 105

[11] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and semi-definite
programming. In Proceedings of the eighteenth IEEE Annual Conference on Compu-
tational Complexity, pages 179–193, 2003. 92

[12] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. In Proceedings of the thirty-ninth Annual IEEE Symposium on Foun-
dations of Computer Science, pages 352–361, Los Alamitos, California, 1998. IEEE
Computer Society Press. arXiv:quant-ph/9802049v3. 74, 77, 79, 80

[13] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the eighth
IEEE Structure in Complexity Theory Conference, pages 82–95, 1993. 77

[14] P. Benioff. Space searches with a quantum robot. AMS Contemporary Mathematics
Series, 305, 2002. arXiv:quant-ph/0003006v2. 9

[15] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing. SIAM Journal on Computing (special issue on quantum com-
puting), 26:1510–1523, 1997. arXiv:quant-ph/9701001v1. 25

[16] D. J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete?, 2009. Workshop Record of SHARCS’09: Special-purpose Hard-
ware for Attacking Cryptographic Systems. 1, 9, 10

[17] R. Bousso. The holographic principle. Reviews of Modern Physics, 74:825–874, 2002.
arXiv:hep-th/0203101v2. 9

[18] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 56:493–505, 1998. arXiv:quant-ph/9605034v1. 23, 25

[19] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification
and estimation. In S. J. Lomonaca and H. E. Brandt, editors, Quantum Computation
and Quantum Information Science, volume 305 of AMS Contemporary Mathematics

109

Series Millennium Volume, pages 53–74. AMS, 2002. arXiv:quant-ph/0005055v1.
23, 25

[20] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News, 28:14–19, 1997. arXiv:quant-ph/9705002. 30

[21] J.-P. Delescaille and J.-J. Quisquater. How easy is collision search? applications to
DES. In Lecture Notes in Computer Science 434: Advances in Cryptology, Eurocrypt
’89, pages 429–434. Springer-Verlag, 1989. 43

[22] L. Fortnow. Birthday paradox variance. http://blog.computationalcomplexity.

org/2009/11/birthday-paradox-variance.html, 2009. 115

[23] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the
tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 114–118,
New York, NY, USA, 1978. ACM. 12

[24] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96,
pages 212–219, New York, NY, USA, 1996. ACM. arXiv:quant-ph/9605043. 23, 25

[25] J. Horwitz. Applications of Cayley Graphs, Bilinearity, and Higher-Order Residues to
Cryptology. PhD thesis, Stanford University, 2004. 43, 54, 55, 56, 58

[26] J. Horwitz and R. Venkatesan. Random Cayley digraphs and the discrete logarithm. In
Proceedings of the fifth International Algorithmic Number Theory Symposium, pages
100–114, 2002. 42, 43, 54, 55, 56, 57

[27] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Pro-
ceedings of the thirty-ninth Annual ACM Symposium on Theory of Computing, STOC
’07, pages 526–535, New York, NY, USA, 2007. ACM. arXiv:quant-ph/0611054v2.
94, 95, 96

[28] P. Høyer and R. Špalek. Lower bounds on quantum query complexity, 2005.
arXiv:quant-ph/0509153v1. 92

[29] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing.
Oxford University Press, 2006. 6

[30] J. Kempe. Quantum random walks - an introductory overview, 2003.
arXiv:quant-ph/0303081v1. 37

110

http://blog.computationalcomplexity.org/2009/11/birthday-paradox-variance.html
http://blog.computationalcomplexity.org/2009/11/birthday-paradox-variance.html

[31] J. H. Kim, R. Montenegro, Y. Peres, and P. Tetali. A birthday paradox for Markov
chains, with an optimal bound for collision in the Pollard rho algorithm for discrete
logarithm. In Proceedings of the eighth International Symposium on Algorithmic Num-
ber Theory. Springer-Verlag, 2008. 67

[32] J. H. Kim, R. Montenegro, and P. Tetali. Near optimal bounds for collision in Pollard
rho for discrete log. In Proceedings of the forty-eighth Annual IEEE Symposium on
Foundations of Computer Science, pages 215–223, Washington, DC, USA, 2007. IEEE
Computer Society. 67

[33] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product
theorems and optimal time-space tradeoffs. SIAM Journal of Computing, 36:1472 –
1493, 2007. 105

[34] H. T. Kung and C. D. Thompson. Sorting on a mesh-connected parallel computer.
Communications of the ACM, 20:263–271, April 1977. 32, 47

[35] S. Kutin. Quantum lower bound for the collision problem with small range. Theory
of Computing, 1:29–36, 2005. 31, 40, 82, 83

[36] S. Laplante and F. Magniez. Lower bounds for randomized and quantum query com-
plexity using Kolmogorov arguments. In Proceedings of the nineteenth IEEE Annual
Conference on Computational Complexity, pages 294–304, Washington, DC, USA,
2004. IEEE Computer Society. arXiv:quant-ph/0311189v1. 92

[37] C. Leopold. Parallel and Distributed Computing: A Survey of Models, Paradigms and
Approaches. Wiley, 2000. 13

[38] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, 2009. 34, 35, 62

[39] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. In Pro-
ceedings of the thirty-ninth Annual ACM Symposium on Theory of Computing, STOC
’07, pages 575–584, New York, NY, USA, 2007. ACM. arXiv:quant-ph/0608026v4.
37

[40] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 2001. 4

[41] S. D. Miller and R. Venkatesan. Non-degeneracy of Pollard rho collisions. International
Mathematics Research Notices, 2009:1–10, 2008. 67

111

[42] N. Nisan. CREW PRAMs and decision trees. SIAM Journal of Computing, 20:999–
1007, 1991. 12, 77

[43] R. Paturi. On the degree of polynomials that approximate symmetric Boolean func-
tions (preliminary version). In Proceedings of the twenty-fourth Annual ACM Sympo-
sium on Theory of Computing, STOC ’92, pages 468–474, New York, NY, USA, 1992.
ACM. 80

[44] J. M. Pollard. A monte carlo method for factorization. BIT Numerical Mathematics,
15:331–334, 1975. 42

[45] B. Reichardt. Reflections for quantum query algorithms. In Proceedings of the twenty-
second ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560–569, 2011.
arXiv:quant-ph/1005.1601v1. 98

[46] Y. Shi. Quantum lower bounds for the collision and the element distinctness problems,
2001. arXiv:quant-ph/0112086v1. 82, 83

[47] M. Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of
the fory-fifth Annual IEEE Symposium on Foundations of Computer Science, pages
32–41. IEEE Computer Society Press, 2004. 37

[48] E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In
Proceedings of the third International Symposium on Algorithmic Number Theory,
pages 541–554, London, UK, 1998. Springer-Verlag. 67

[49] E. Teske. On random walks for Pollard’s rho method. Mathematics of Computation,
70:809–825, 2000. 67

[50] C. D. Thompson. Area-time complexity for VLSI. In Proceedings of the eleventh
Annual ACM Symposium on Theory of Computing, STOC ’79, pages 81–88, New
York, NY, USA, 1979. ACM. 9

[51] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12:1–28, 1996. 42

[52] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theory of
Computing, 2:1–18, 2006. arXiv:quant-ph/0409116v3. 91, 94

[53] A. C. Yao. The entropic limitations on VLSI computations. In Proceedings of the
thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 308–
311, New York, NY, USA, 1981. ACM. 106

112

[54] C. Zalka. Could Grover’s quantum algorithm help in searching an actual database?,
1999. arXiv:quant-ph/9901068v1. 10

[55] C. Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A, 60(4):2746–
2751, Oct 1999. arXiv:quant-ph/9711070v2. 25, 26, 95, 98, 99, 102, 103

[56] S. Zhang. On the power of Ambainis’ lower bounds. Theoretical Computer Science,
339:241–256, 2005. arXiv:quant-ph/0311060. 92

113

Appendix A

Birthday Paradox Arguments

The following lemma allows us to sample from a set using a limited independent function
without worrying about the sample size being affected by the limited independence.

Lemma A.0.1. Let f : [N]→ [N] be a uniform random function and h : [N]→ [N] be a
uniform pairwise independent function. Define random variables Fk = |{f(1), . . . , f(k)}|
and Hk = |{h(1), . . . , h(k)}|. Then Hk and Fk are identically distributed.

Proof. The random variable Fk can be seen as the distribution on the kth step of the
well-known coupon collector problem, if we start with 0 coupons. In this Markov process,
there are N possible coupons, and at each step, a new one is chosen uniformly at random.
The state of the Markov chain is (usually) the number of coupons seen so far, so as more
coupons are collected, the chances of seeing a new one decrease.

As for Hk, the process of choosing a new element by h is not independent of previous
choices, however, we can show that if we only consider the number of distinct elements of
[N] we’ve seen so far, Hk, then the transitions are actually only dependent on the current
state.

We have for the first step Pr[F1 = 1] = 1, since after we’ve chosen exactly one coupon, we
have exactly one distinct coupon. For k > 1 and s ≤ k we have:

Pr[Fk = s] = Pr[Fk−1 = s]Pr[Fk = s|Fk−1 = s] +Pr[Fk−1 = s−1]Pr[Fk = s|Fk−1 = s−1]

= Pr[Fk−1 = s]
s

N
+ Pr[Fk−1 = s− 1]

N − s+ 1

N

and Pr[Fk = s] = 0 when s > k.

114

We can similarly write Pr[H1 = 1] = 1 and for k > 1 and s ≤ k:

Pr[Hk = s] = Pr[Hk−1 = s]Pr[Hk = s|Hk−1 = s]+Pr[Hk−1 = s−1]Pr[Hk = s|Hk−1 = s−1]

Since h is pairwise independent, we have

Pr[h(i) = h(j)] =
∑
a∈[N]

Pr[h(i) = a ∧ h(j) = a] =
∑
a∈[N]

1

N2
=

1

N

whenever i 6= j. We can compute:

Pr[Hk = s|Hk−1 = s] = Pr[h(k) = h(1) ∨ · · · ∨ h(k) = h(k − 1)]

= Pr[
∨

unique h(i)

h(k) = h(i)] =
∑

unique h(i)

Pr[h(k) = h(i)] = s
1

N

and
Pr[Hk = s|Hk−1 = s− 1] = Pr[h(k) 6= h(1) ∧ · · · ∧ h(k − 1)]

= 1− Pr[
∨

unique h(i)

h(k) = h(i)] = 1− s− 1

N
=
N − s+ 1

N

We can thus write:

Pr[Hk = s] = Pr[Hk−1 = s]
s

N
+ Pr[Hk−1 = s− 1]

N − s+ 1

N

By induction we can see that Pr[Hk = s] = Pr[Fk = s] for all s and k, so Hk and Sk are
identically distributed.

The following lemma is a generalization of the birthday paradox proof using variance
from [22].

Lemma A.0.2. Let Y1, . . . , Ym be a sequence of variables on [r] such that for (i, j) 6=
(k, `), the events Yi = Yj and Yk = Y` are independent and identically distributed. Let

µ = Pr[Yi = Yj] for i 6= j. Then if m ≥ c
√
µ−1 for some sufficiently large constant c, with

at least constant probability, there are i 6= j such that Yi = Yj.

115

Proof. For i < j, let Cij indicate the event Yi = Yj. Then C =
∑

i<j Cij is the number
of collisions in Y1, . . . , Ym. We want an upper bound on Pr[C = 0]. By Chebyshev’s
inequality, we have:

Pr[C = 0] ≤ Pr[|C − E[C]| ≥ E[C]] ≤ V ar[C]

E[C]2

Since the Cij are pairwise independent, we have:

V ar[C] = E[C2]− E[C]2 = E[
∑
i<j

∑
k<`

CijCk`]− E[
∑
i<j

Cij]
2

=
∑
i<j

∑
k<`

E[CijCk`]− (
∑
i<j

E[Cij])
2

=
∑
i<j

E[C2
ij] +

∑
i<j

∑
k<`:(k,`)6=(i,j)

E[Cij]E[Ck`]−
∑
i<j

∑
k<`

E[Cij]E[Ck`]

=
∑
i<j

E[Cij]−
∑
i<j

E[Cij]
2 =

∑
i<j

V ar[Cij]

We have E[C] =
∑

i<j E[Cij] =
(
m
2

)
µ and V ar[C] =

∑
i<j E[Cij]−

∑
i<j E[Cij]

2 =
(
m
2

)
µ−(

m
2

)
µ2. This gives:

Pr[C = 0] ≤
(
m
2

)
µ+

(
m
2

)
µ2(

m
2

)2
µ2

≤ 1(
m
2

)
µ
≤ 2

m2µ
≤ 2

c2

Corollary A.0.3. Let Y1, . . . , Ym be a sequence of random variables on [r] such that Pr[Yi =
Yj] = 1

N
for i 6= j, and the events Yi = Yj and Yk = Y` are independent for (i, j) 6= (k, `).

Then if m ≥ c
√
N for some sufficiently large constant c, with at least constant probability,

there are i 6= j such that Yi = Yj.

In the following variation of the birthday paradox, we require only that the sequence
be 4-wise independent, and that we have at least some overlap between the distribution
of each random variable. If the distribution of the random variables were orthogonal, for
instance, Yi = i with probability 1, of course we will not get a collision.

Lemma A.0.4. Let Y1, . . . , Ym be a sequence of (not necessarily uniform, nor identically
distributed) 4-wise independent random variables on [r] with the property that if pi is the

116

distribution of some Yi and pj is the distribution of some Pj, then 〈pi, pj〉 ∈ O
(

1
N

)
. Then

if m ≥ c
√
r for some sufficiently large constant c, with at least constant probability, there

are i 6= j such that Yi = Yj.

Proof.

Notice that:
E[Cij] = Pr[Yi = Yj] =

∑
α∈[r]

pi(α)pj(α) = 〈pi, pj〉

so:
E[C] =

∑
i<j

〈pi, pj〉

As in the previous lemma, we have:

Pr[C = 0] ≤ V ar[C]

E[C]2

However, in this case, since the Cij are not necessarily independent, we need to work harder
to compute the variance:

V ar[C] =
∑
i<j

∑
k<`

E[CijCk`]−
∑
i<j

∑
k<`

E[Cij]E[Ck`]

=
∑
i<j

∑
k<`

Pr[Yi = Yj ∧ Yk = Y`]−
∑
i<j

∑
k<`

E[Cij]E[Ck`]

=
∑
i<j

Pr[Yi = Yj]+
∑
i<j<k

Pr[Yi = Yj = Yk]+
∑

i<j,k<`,i 6=j 6=k 6=`

Pr[Yi = Yj∧Yk = Y`]−
∑
i<j

∑
k<`

E[Cij]E[Ck`]

So:

Pr[C = 0] ≤
∑

i<j 〈pi, pj〉(∑
i<j 〈pi, pj〉

)2 +

∑
i<j<k

∑
α∈[r] pi(α)pj(α)pk(α)(∑
i<j 〈pi, pj〉

)2

+

∑
i 6=j 6=k 6=`

∑
α,β∈[r] pi(α)pj(α)pk(β)p`(β)(∑

i<j 〈pi, pj〉
)2 − 1

We will bound each term separately:∑
i<j 〈pi, pj〉(∑
i<j 〈pi, pj〉

)2 =
1∑

i<j 〈pi, pj〉
≤ 1(

m
2

)
a
N

117

for some constant a, by assumption. So:∑
i<j 〈pi, pj〉(∑
i<j 〈pi, pj〉

)2 ≤
2N

am2
≤ 2N

ac2N
=

2

ac2

Next we bound: ∑
i<j<k

∑
α∈[r] pi(α)pj(α)pk(α)(∑
i<j 〈pi, pj〉

)2

≤

∑
i<j<k

(∑
α∈[r]

√
pi(α)pj(α)

)(∑
α

√
pi(α)pk(α)

)(∑
α

√
pj(α)pk(α)

)
(∑

i<j 〈pi, pj〉
)2

≤
∑

i<j<k

√
〈pi, pj〉〈pi, pk〉〈pj, pk〉(∑
i<j 〈pi, pj〉

)2

The above is maximized when the 〈pi, pj〉 are minimized, giving:∑
i<j<k

∑
α∈[r] pi(α)pj(α)pk(α)(∑
i<j 〈pi, pj〉

)2 ≤
(
m
3

)
a3/2

N3/2(
m
2

)2 a2

N2

≤ 2(m− 2)
√
N

6m(m− 1)
√
a
≤
√
N

3m
√
a
≤

√
N

3c
√
N
√
a

=
1

3c
√
a

Finally, we bound:∑
i 6=j 6=k 6=`

∑
α,β∈[r] pi(α)pj(α)pk(β)p`(β)(∑

i<j 〈pi, pj〉
)2 =

∑
i 6=j 6=k 6=` 〈pi, pj〉〈pk, p`〉∑
i<j,k<` 〈pi, pj〉〈pk, p`〉

≤ 1

since the sum on the bottom includes strictly more terms than the sum on the top.

Putting these together gives:

Pr[C = 0] ≤ 2

ac2
+

1

3c
√
a

which is bounded above by 1
2

when c is large enough with respect to a (for instance,

c ≥ 2
√

2/a).

118

	Introduction
	Models of Computation
	Quantum Computation
	Quantum Query Model
	Locality-Sensitive Models
	Distributed Grid Models
	Summary of Models

	Oracle Problems
	A Survey of ED and Collision Algorithms
	Search-Based Methods
	Deterministic Search
	Randomized Search
	Quantum Search
	Deterministic Grid Search
	Randomized Grid Search
	Quantum Grid Search
	Application to Element Distinctness and Collision Finding

	Tabular Methods
	Deterministic Tabular Method
	Randomized Tabular Method
	Quantum Tabular Methods and the Algorithm of Brassard, Høyer and Tapp
	Randomized Grid Tabular Method
	Quantum Grid Tabular Method

	Markov Chains and Quantum Walks
	Summary

	The Rho Method
	Basic Algorithm
	Probabilistic Analysis for COLN
	Probabilistic Analysis for EDN

	The Cayley Rho Algorithm
	VGCD is False for some r

	Rho Methods and Quantum Computing

	A New Deterministic Algorithm for the Hardest Instances of EDN
	A Survey of Quantum Lower Bound Methods and their Application to Collision Finding and Element Distinctness
	The Polynomial Method
	Relation to Block Sensitivity
	Applications to Collision Finding and Element Distinctness

	The Quantum Adversary Method
	The Negative Weights Adversary Method
	An Adversary-Like Bound on Search with Parallel Queries

	Lower Bounds in the Grid Model
	Some Trivial Lower Bounds
	Prospects for Applying the Polynomial Method
	Prospects for Applying the Adversary Method
	Relation to Communication Complexity
	Final Remarks

	References
	Appendix
	Birthday Paradox Arguments

