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Abstract 

Existing atomic section interface proposals, thus far, have tended to only isolate transactions 

from each other. Less considered is the coordination of threads performing transactions with 

respect to one another. Synchronization of nested sections is typically relegated to outside of 

and among the top-level flattened sections. However existing models do not permit the 

composition of even simple synchronization constructs such as barriers. The proposed model 

integrates synchronization as a first-class construct in a truly nested atomic block 

implementation.  The implementation is evaluated on quantitative benchmarks, with 

qualitative examples of the atomic section interface’s expressive power compared with 

conventional transactional memory implementations. 
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Chapter 1 
Introduction 

 

Concurrent programming has traditionally been a bane of developers for decades. Ever 

since shared-memory locks and condition variables were implemented in the context of 

operating systems in the 1970s, programmers have been grappling with concurrency bugs 

such as race conditions, deadlocks, and related ills [LPSZ08]. What was once a curiosity for 

the average programmer - being the domain of systems developers and parallel computing 

centres - concurrent computing has now forced itself into the mainstream of computing 

consciousness [SL05]. 

Now that single-core performance improvements have largely halted due to a multitude of 

factors - a confluence of power dissipation, wire scaling, and instruction level parallelism 

limits - the burden for increasing performance has fallen onto the typical developer's 

shoulders to program for greater numbers of computing cores, which have become 

ubiquitous even on consumer devices [OH05]. 

The average programmer has to navigate the myriad language memory-models and 

concurrency libraries on a given platform - usually based on locks and condition variables - 

in order to construct and attempt to reason about concurrent programs, which are likely to 

contain subtle bugs that may manifest themselves only years down the line.  While there have 

been effective dynamic race-condition detectors developed, the instrumented programs’ 

performance can be degraded by a factor of ten or more and the false positive rates are 

excessively high [SBNSA97] [Nish04]. 

Ensuring mutual exclusion for concurrently accessible data can be done through coarse or 

fine-grained locking schemes.  Employing a few coarse-grained locks to protect access to 

program modules is straightforward, in that it simplifies the problem.  However, parallel 

performance suffers due to insufficient granularity of data able to be accessed in parallel.  For 

example, a big lock protecting a hash table prevents concurrent access to distinct buckets that 

a finer-grained locking scheme allows.  Yet ensuring a program is deadlock free is a difficult 
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task to achieve in the presence of fine-grained locking, which is necessary to improve the 

performance of concurrent code.  However, unlike race conditions, deadlocks [CES71] are 

easy to detect once threads are intertwined in a deadly embrace, as they manifest themselves 

in a program or component hang. 

Bugs inherent in traditional shared-memory programming are only one facet of the 

problems plaguing concurrent programs. Another issue concerns the composability of 

software in the presence of explicit fine-grained locking. Disparate modules and objects may 

need to be accessed whilst holding unrelated locks.  Thus, arbitrarily code cannot be 

refactored and the program expected to work in the presence of an increasingly complex 

maze of locks, due to intertwined concerns of mutexes and the code they protect.  Therefore, 

the inner workings of sub-modules and the data accessed therein must be known and 

understood in order to properly refactor such programs.  Hence, a program composed of 

nominally separate modules cannot be reasoned about one module at a time.  Changes must 

necessarily take into account all code and data accessed within the scope of the program. 

Software engineering best practices must often be broken when these separate concerns are 

intertwined. 

1.1 Transactional Memory 

As a response to this dilemma, in recent years a concurrent programming abstraction 

known as transactional memory [HM93] has gained prominence.  Transactional memory 

provides for mutual exclusion for all data accessed within the confines of a transactional 

block of code.  Originating from the database world, the notion of a transaction [Lome77] 

provides the properties of Atomicity, Consistency, Isolation, and Durability (ACID).  

Atomicity provides the guarantee that a sequence of statements executes indivisibly.  In 

essence, its effects are observed to occur all at once, or not at all.  Consistency ensures the 

effects of a transaction transform the program’s state such that its logic is not violated and its 

invariants are maintained.  Code inside a transaction is nominally isolated from the effects of 

statements in separate concurrent transactions.  Were concurrent transactions to access the 

same data with at least one of them mutating it - a conflict – the transactions must be 
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serialized, using an abort and retry mechanism.  This method, serialization, ensures the 

effects of one transaction are isolated from those of another.  Durability is a property not 

present in transactional memory, though in the context of databases, assures successfully 

executed transactions are saved to a stable store, such that state is not lost in the event of a 

malfunction. 

Programs constructed with such transactions exhibit atomicity of statements within atomic 

sections. In addition, statements within disparate atomic sections are isolated from one 

another.  Transactional memory does not suffer from the deadlock and race condition 

problems plaguing traditional programmer specified lock-based concurrent code.  Another 

benefit of transactional memory is the all or nothing nature of transactions that commit or 

abort, due to its atomicity property. The state of the program is never left in a half mutated 

state, but is consistent with the full updated results from a completed transaction, or rolled 

back to the state that existed before memory was mutated by an aborted transaction. 

In transactional memory, an atomic section's read and write sets constitute the sets of 

memory cells read and written respectively by statements executed within the section at 

runtime. Statements within atomic sections execute optimistically assuming exclusive access 

to their portion of the program state. If a section's read and write sets conflict with another's 

then all but one of the transactions aborts, meaning their effects are rolled back to the prior 

state before the transaction(s) executed.  Otherwise, a transaction succeeds upon commit, 

meaning its effects are made visible to other threads. 

Transactional memory suffers from the cardinal problem of not handling irreversible 

operations well. Such operations include operating system calls and I/O routines which 

cannot in general be reversed through a rollback of state due to interactions with the physical 

world.  Typical implementations execute only one transaction containing irreversible 

operations at a time - a singular master transaction - that can abort any transactions it comes 

into conflict with. Obviously the lack of concurrency for such transactions limits the potential 

of transactional memory in I/O heavy applications. 
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Transactional memory can be implemented purely in software [ST95].  Software 

transactional memory must record all memory locations read and written to as well as all 

values mutated in the course of a transaction.  The extra bookkeeping costs typically result in 

significant performance degradation due to the overhead of tracking of read and write sets 

and storing prior values in the runtime implementation.  In practice, some of the overhead 

can be mitigated through dataflow analysis, as well as dynamic filtering to remove redundant 

bookkeeping [Har09]. 

1.2 Pessimistic Transactions 

An alternative to software transactional memory is to utilize pessimistic atomic sections 

[MZGB06] to implement the transactional memory semantics. Such a solution involves 

performing static program analysis to infer a set of locks for each atomic section. These 

locksets correspond to the abstract memory locations affected during the execution of the 

section at run time.  The inferred locks ensure an atomic section has exclusive access to 

update its portion of the program’s state; therefore, by definition, its effects cannot conflict 

with those of another section. The original programs are transformed to utilize locking 

libraries in the implementation to ensure mutual exclusion. Pessimistic atomic sections can 

permit concurrency of irreversible and I/O operations because actions in disparate sections 

are predetermined not to conflict.  Therefore, arbitrary irreversible operations are permitted 

since nothing is rolled back. 

However, such implementations also suffer from performance degradation due to 

conservative static program analysis necessary to predetermine the program execution at 

runtime is faithful to the semantics of transactional memory.  An important analysis 

employed is that of determining the sets of memory locations a program pointer points to.  

Statements can affect memory indirectly through pointers and a determination of which 

locations are aliased is necessary in order to guarantee atomicity of shared-memory locations. 

The locksets inferred from these sets of shared-memory locations are necessarily imprecise 

as the runtime states of arbitrarily complex programs cannot be computed statically; it is in 

general an undecidable problem.  Such conservative assumptions do not typically permit as 
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large a number of concurrent transactions to execute in parallel even when they can actually 

do so at run time without conflict, as implemented in software transactional memory. 

1.3 Condition Synchronization 

A general problem with transactional concurrency models is the lack of support for 

condition synchronization.  Condition synchronization is a mechanism that enables threads to 

communicate in order to wait for each other, enforcing an order of execution between them. 

For example, a consumer thread, when it encounters an empty queue, can be made to wait 

until a producer thread fills the queue and notifies the consumer. 

Condition synchronization has traditionally been implemented using condition variables, 

or built into monitors. A condition variable supports two operations: signal (or notify) and 

wait. The wait operation blocks the thread that calls it until another thread invokes the signal 

operation on the same condition variable. Synchronizing atomic operations on certain 

conditions determines what can occur before and after certain program states, which is 

necessary to partially order concurrent operations. 

Consider the case of a thread arriving at a barrier and only proceeding when all threads 

have arrived: 

void enterbarrier() { 

 atomic { 

  count+=1; 

 } 

 atomic (count == thread_count) { 

  ... 

 } 

} 

This procedure waits until the number of threads that have reached the barrier is equal to 

the thread count.  Upon entry into the first atomic section, each thread atomically increments 

the count of the total number of threads entered thus far.  The thread then evaluates the 

predicate “count == thread_count”, which becomes true when all threads have 
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reached this point in the routine.  If a predicate evaluates to false conventional 

implementations would retry the (top level) atomic section. 

If a developer calls enterbarrier() from within another (conventional) transaction: 

atomic { 

 ... 

 enterbarrier(); 

 ... 

} 

The conventional transactional memory implementation would never allow the 

incremented count values from other threads to be made visible to a thread executing the 

barrier, due to the isolation property maintained by the outermost transaction.  Thus, the 

evaluated predicate would never become true, due to the rollback of the increment.  

Therefore, in a conventional optimistic implementation the transaction never completes, 

resulting in a live-lock situation.  It is the responsibility of the programmer to ensure such 

transactions are not composed, which would result in this error. 

In this thesis, inserting a new parent transaction around the previously written transactions 

allows the newly composed system to function as a whole, promoting modularity.  Thus, in 

the barrier example, the value of the incremented count variable is immediately made visible 

to the nested waiting transactions, and hence, the predicate eventually is satisfied when all 

threads reach the barrier, permitting them to pass. 

A new atomic section interface model is presented that enables certain types of 

composition.  However, due to the model’s expressive power, the developer is not prevented 

from crafting erroneous predicate code that prevents forward progress.  Nevertheless, it is 

desirable to coordinate threads with condition synchronization, and predicates - whether 

inserted into conditional statements in transactions lacking composability or promoted to first 

class status as part of the atomic section interface - cannot (in general) be evaluated statically 

to guarantee forward progress of the program at runtime. 
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1.4 Thesis Contributions 

With conventional nested atomic section semantics, a nested transaction ensconced in 

another cannot make its effects visible to other threads upon commit.  Only the successful 

commit of its top-level parent transaction ensures the new state becomes visible.  Therefore, 

reusing the example of the barrier mechanism as part of a higher-level parent transaction 

[SKBY07] prevents state changes in the nested transaction from being made visible to other 

threads entering the barrier because aborting and retrying the top level transaction upon a 

failed inner predicate is not a plausible solution.  As a result, there can be no progress in a 

thread’s execution as it rolls back its increment of the count variable; therefore the predicate 

can never be satisfied. 

The outcome whereby code reuse necessitates reasoning about the inner workings of 

callees and refactoring the program to guard against breakage is clearly unsatisfactory as 

again the notion of proper abstraction and composability of code within concurrent software 

is compromised, similar to explicit locking. Basic concurrent solutions such as barriers and 

producer/consumer patterns cannot be composed with other transactions.  Attempting to 

reuse formerly top-level transactions within other transactions unfortunately renders these 

patterns unusable, thus breaking the modularity promise of transactional memory. 

However, synchronization among threads entering the barrier under a parent transaction 

can be ensured by employing a new kind of synchronization variable for the count value 

evaluated in the predicate to guard entry to an atomic section.  Sync variables allow for 

nested atomic sections to engage in condition synchronization by perforating the 

transaction’s atomicity in order to permit restricted communication of state changes among 

transactions.  This novel mechanism enables certain classes of composability, but can also 

limit potential concurrency among atomic sections directly accessing the same sync variable.  

However, the parent sections of these atomic sections can nevertheless execute concurrently. 

This work presents an attempt to craft a semantics and develop an implementation for 

pessimistic atomic sections that promotes local program reasoning and easy refactoring in 

order to ensure modularity is maintained.  Piercing atomic sections in this manner is shown 
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to support expression of condition synchronization in a composable fashion and reasoned 

about with relative ease.  This work shall further endeavor to demonstrate these assertions 

through an efficient system and software crafted in order to assess the stated aims of this 

work.  Both quantitative results and qualitative samples shall advance the robust claims 

contained herein. 

1.5 Thesis Structure 

The rest of this work is organized into the following sections:  Chapter 2 surveys prior 

related works and provides the requisite background and terms of reference for the thesis.  

Chapter 3 discusses the language constructs introduced and their semantics.  Chapter 4 delves 

into the implementation of the system and the design decisions considered.  Chapter 5 

presents quantitative benchmark evaluations of the system and includes qualitative results 

and their interpretation, as well as an implemented system featuring the model.  Chapter 6 is 

the coda of this work and summarizes the thesis.  It also contains a section on desiderata, 

potential extensions and possible avenues of exploration. 
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Chapter 2 
Related Work 

 

This chapter discusses transactional memory, which was originally introduced as a 

hardware extension; software transactional memory, which avoids the requirements for 

special hardware; pessimistic atomic sections, which maintain the interface and much of the 

semantics of software transactional memory yet do not undertake speculative operations; and 

finally condition synchronization, a method of ordering concurrent operations and atomic 

statements. 

2.1 Transactional Memory 

The inception of the field of transactional memory was initiated by Herlihy [HM93] based 

on some processor architectures with synchronization idioms in the form of a load-linked and 

store-conditional pair of instructions.  Upon loading a datum from memory (with the load-

linked instruction) the associated datum address is recorded.  A sequence of computation 

instructions is allowed on the datum until it is ready for storing (with the store-conditional 

instruction) back to memory.  If in the meantime the address has been written to by another 

processor, or an exception occurred from one of the computations on the datum, or an 

interrupt was signaled, then the store fails, and the sequence has to be retried. 

In Herlihy’s initial (hardware) transactional memory proposal, this instruction sequence 

was extended to permit multiple memory locations to be tracked.  Thus, an atomic sequence 

featuring multiple variables could be attempted within a transaction.  Support for maintaining 

transactional coherence requires the use of existing multiprocessor coherence protocols, and 

a buffer or part of the cache to maintain speculative state.  As the initial proposal required 

dedicated hardware support, some sought to achieve similar semantics purely from the 

software system, without specialized processor structures that often have very limited sizes 

and may never be supported by industry. 
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2.2 Software Transactional Memory 

Software transactional memory (STM) became popular as a method to support 

transactions, requiring separate per thread speculative heap state and conflict detection 

among ongoing transactions.  Software transactional memory implementations must record 

all memory locations read and written to as well as all values mutated in the course of a 

transaction.  The extra bookkeeping costs typically result in significant performance 

degradation - more than an order of magnitude over an equivalent sequential program - due 

to the overhead of tracking of read and write sets and mutated values in the runtime 

implementation.  In the initial work of Shavit [ST95], transactions were static in that they 

were limited to fixed data declared as concurrently accessible and thus permitted to be 

mutated inside an atomic section. 

Today’s STMs are fully general with dynamically initiated transactions and arbitrary 

transactional state, due to advances by Herlihy [HLMS03].  Though Herlihy pioneered 

effective contention management for transactions to permit higher throughput, the resulting 

systems manifested order of magnitude overheads, or more, as compared to non-transactional 

execution. 

Unlike conventional closed-nested transactions [Moss82], where the effects of a nested 

section are invisible to other threads until the top level section completes, open-nested 

transactional memory as pioneered by Moss [Moss06] permits the effects of a nested section 

to be made visible as soon as the section commits, and thus, punctuates the top-level 

transaction, similar to this work.  The difference is this thesis work is pessimistic and thus 

never needs to rollback.  Contrast to an open-nested top-level transaction that is optimistic, 

and hence when the transaction aborts, compensating actions must often be specified by the 

programmer to undo the effects of a committed nested section, for those operations that can 

be undone. 

For example, open-nested transactional implementations can buffer output in certain 

circumstances so that it is not immediately visible.  Upon a nested transaction abort, the 

developer can specify a compensating action through a registered abort handler to nullify the 
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buffered output, thus properly rolling back the transaction.  Upon a nested transaction 

commit, the reads and write sets of the inner transaction are cleared from that of the parent.  

Thus, a memory conflict does not occur between the parent and child transaction if the parent 

accessed the memory committed by the child.  However, this has implications for the 

programming model: if an inner transaction needed to abort upon detection of such a conflict 

- in order to maintain the program’s logical semantics - then such a course of action is no 

longer possible.  Therefore, the notion of abstract locks is introduced in the open-nested 

transactional model for child transactions to acquire.  Acquiring such a lock ensures detection 

of high-level (non-memory) conflicting actions with the parent transaction. 

Both closed and open nesting can improve performance since if a nested transaction aborts, 

it can be rolled back and re-executed without aborting the outer transaction.  However, open 

nesting admits more concurrency than closed nesting due to a greater set of allowable 

schedules, yet it can exhibit loss of serializability [ALS06] in the most popular 

implementations if the effects of aborted transactions either remain visible or are allowed to 

be reified as part of optimistic retry constructs made available to the programmer.  Similar to 

this work, communication among transactions involving waiting within an optimistic 

framework has most recently been formulated [LM11] as part of a model tracking 

dependencies among transactions, and either aborting or committing all mutually dependent 

transactions together, without requiring compensating actions. 

Although STMs are more scalable than software utilizing locks, in that they have 

potentially higher throughput, they have been found to be slower than lock-based concurrent 

codes in the contended case, when transactions experience frequent aborts due to conflicts.  

This result, as well as the fact that optimistic transactional systems cannot by their nature roll 

back irreversible actions, led to the development of pessimistic transactional systems, which 

by default assume the conflicting case and thus do not roll back. 

2.3 Pessimistic Atomic Sections 

Pessimistic atomic section implementations typically utilize a collection of static program 

analyses to infer a set of locks for shared data accessed within atomic sections.  These 
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locksets correspond to the abstract memory locations affected during the execution of the 

section at run time.  The inferred locks ensure an atomic section has exclusive access to 

update its portion of the program’s state; therefore, by definition, its effects cannot conflict 

with those of another section. Fine-grained lock inference allows for higher levels of 

concurrency, yet the analysis required is prohibitive to calculate, and it is typically 

impossible to obtain the necessary precision.  Coarser locks increase thread contention of 

accessed data, preventing otherwise distinct concurrent accesses from being performed, and 

hence, reducing performance.  The original programs are transformed to utilize locking 

libraries in the implementation to ensure mutual exclusion.  Traditional locks from the 

underlying platform are utilized and lock acquisitions and releases are inserted to ensure 

atomicity. 

Brewer [MZGB06] first proposed annotating shared data that is to feature in an atomic 

section for transformation into an underlying set of locks.  His Autolocker framework could 

infer a set of lock acquisitions and releases for the program and guarantee a deadlock free 

ordering of lock acquisitions.  Autolocker allows dynamically allocated shared data to be 

marked, thus ensuring fine-grained instance-based lock inference.  Autolocker begins its 

transformation process by merging all files for a program and extracting the atomic sections.  

A dependency graph is generated containing all the locks acquired within the sections.  Then, 

a topological sort is performed to obtain a global deadlock free ordering of lock acquisitions.  

If a deadlock free transform cannot be obtained (due to a cycle in a dependency graph) for 

the given input, Autolocker signals an error at compile time. 

Unfortunately, this approach places an annotation burden on the developer as compared to 

conventional transactional memory:  concurrently accessed variables need to be marked with 

the locks protecting them.  A consequential problem is that the annotations might be 

incorrect.  Nonetheless, the programmer is freed from manually acquiring and releasing locks 

in order to access certain data. 

Subsequent work has improved on Autolocker by eliding this annotation burden placed on 

the programmer, moving to provide an atomic interface substantially similar to transactional 
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memory systems.  Hicks [HFP06] utilizes static whole program analysis to infer coarse-

grained locks directly from the data accessed in atomic sections.  A lock is associated with a 

set of memory locations; acquiring a lock thus guarantees mutual exclusion to a thread 

entering an atomic section with respect to all variables accessed within the section.  Another 

improvement in their work is to reduce the number of locks needed by merging locks that are 

always present together in the locksets of atomic sections throughout the program.  

Depending on the implementation of locks (e.g., kernel versus user locks), lock acquisition 

and release can be costly in terms of time to perform a system call and time spent in the 

kernel.  Further work by Emmi [EFJM07] attempts to minimize the set of locks needed for 

the atomic blocks by formulating lock allocation as a Binary Integer Programming (BIP) 

problem. Obtaining optimal solutions surprisingly did not take an exorbitant amount of time 

(less than a second for most programs), though transforming the atomic sections into BIP 

formulations did, taking the better part of an hour in one case. 

The work of Cherem [CCG08] infers fine-grained per data structure instance locks by 

performing a backwards analysis for each heap location accessed within an atomic section.  

Dereferenced pointer expressions corresponding to heap accesses that are in scope at the 

beginning of the atomic section are locked. To ensure analysis termination, derived 

expression locks are inferred up to a specified expression size limit, at which point coarse-

grained locks are utilized.  Furthermore, a multi-granularity locking library and assignment 

scheme is utilized such that deadlock is avoided at runtime, for the most precise compile time 

assignment of locks to date.  Cunningham [CGE08] [CDE08] implemented a lock inference 

framework for Java that supported unbounded atomic section accesses - necessary when 

accessing the nodes of a recursive structure such as a linked list for example - through a 

formulation into regular expressions.  However, their framework does not prevent deadlocks 

resulting from inserted locks, but detects them at runtime and attempts to roll back state. 

Zhang, [ZSZSG07] [ZSZSG08] and Halpert [HPV07] aim to support the existing 

concurrent interfaces of OpenMP and Java monitors respectively, without requiring the 

programmer to supply locking information.  Their works cover programs containing such 

concurrent constructs, though they disregard existing locking information and attempt to 
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infer the set of locks required while adhering to the respective concurrent interface contracts. 

They both use a May-Happen-in-Parallel analysis to aid in building an atomic section 

interference graph. Whereas other works infer the locks for a section from the aliasing 

information of the data accessed within, these two works utilize the concurrency interference 

graph to discern conflicting atomic sections and assign the same lock to them.  A graph 

containing nodes representing critical sections has edges between nodes if they interfere in 

their accesses of a specific variable. They also formulate heuristics to minimize the number 

of locks allocated. 

In order to fully support their respective concurrent interfaces, both of these works also 

allow condition synchronization, in that a thread inside a critical section or monitor may wait 

on another thread until a specified condition becomes true. However, Zhang et al. forbid 

nested sections; while Halpert et al. do support nesting there is no notion of atomicity as it 

pertains to the enveloping parent sections.  Two-phased locking is a locking policy initially 

utilized in databases to guarantee the serializability of transactions.  Two-phased locking 

mandates a lock acquisition phase followed by a lock release phase; once any locks are 

released, no locks can be further acquired within a transaction [EGLT76].  Since Halpert et 

al. only support Java's critical sections semantics, they do not need to implement two-phased 

locking to guarantee the outermost transaction is atomic. 

In contrast to conventional operation-centric transactions, which are essentially blocks of 

code delimited by transaction begin and end statements, Vaziri [VTD06] attempts to 

formulate a data-centric synchronization framework that automatically locks sets of data as a 

byproduct of accessing objects.  Developers annotate fields within classes whose objects 

must be synchronized together as an atomic set, and the compiler infers atomic sections to 

satisfy these consistency constraints.  In essence, the specified higher-level data constraints 

replace the more voluminous operation-centric synchronized blocks, reducing the chances of 

data races due to programmer error in properly delimiting transactions. 
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2.4 Hybrid Transactional Memory 

There have been attempts at combinations of pessimistic and optimistic atomic section 

implementations.  Pessimistic atomic section implementations suffer from performance 

degradation due to conservative static program analysis necessary to prove that the program 

execution at runtime is faithful to the semantics of transactional memory.  Such conservative 

assumptions do not typically permit as large a number of concurrent transactions to execute 

in parallel even when they can actually do so at run time without conflict, as implemented in 

software transactional memory.  As a result, pessimistic implementations can take up to a 

factor of eight times that of optimistic implementations to execute certain microbenchmarks 

in the high contention configuration [CCG08].  On the other hand, the extra bookkeeping 

costs in software transactional memory result in significant performance degradation due to 

the overhead of tracking read and write sets and mutated values in the runtime 

implementation.  This cost is typically ameliorated by hashing the addresses of accessed 

shared data words to a smaller number of runtime metadata objects, which are utilized to 

track the read and write sets of transactions.  However, this can result in false conflicts, not 

unlike the approximation inherent in a static analysis of an aliased datum’s abstract set of 

memory locations.    Realizing this, Mannarswamy’s [MCRS10] work aims to statically infer 

the mapping of a subset of the shared data within a program to distinct runtime metadata 

objects.  At runtime, the STM implementation (TL2) allocates these mappings to their own 

metadata objects (ensuring false conflicts are not experienced), and meanwhile maps the rest 

of the accessed shared data as it otherwise would. 

The work of Usui [UBES09] collects runtime statistics on aborts as well as commits and 

adaptively executes critical sections with either locks or optimistically as transactions.  

Sections that have experienced high contention are automatically switched to acquiring locks.  

However, sections have to be marked with programmer annotated coarse-grained locks, 

which detracts from the composability and deadlock-freedom properties of conventional 

atomic sections.  The work of Dalessandro [DDSSS10] supports a restricted hybrid 

transactional model in which atomic sections that write are executed pessimistically and 
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cannot abort, while sections that only perform reads are executed optimistically and 

concurrently with other such sections, but can still abort. 

2.5 Condition Synchronization 

Whereas most atomic section implementations concern themselves with atomicity, there 

have been attempts at supporting condition synchronization mechanisms directly as a first 

class construct in the atomic section interface.  Harris [HF03] adapts C.A.R. Hoare’s 

Conditional Critical Regions (CCR) construct to an atomic section interface for use by an 

STM implementation.  A CCR permits entry into a delimited region of code upon the 

evaluation of a predicate to true.  As adapted by Harris, a predicate is permitted just after the 

atomic keyword, delineating a conditionally executed atomic section.  However, within 

Harris’ work, all conditions within nested atomic sections are effectively evaluated at the top-

level transaction (hence, nested atomic sections are flattened into the parent sections), and 

therefore, no mechanism is provided to communicate among atomic sections.  Essentially, 

any condition evaluating to false aborts the top-level transaction. 

The work of Smaragdakis [SKBY07] attempts a rather complex atomic section 

programming model - with nine additional keywords in total - in support of communication 

among transactions.  Transactions are permitted to observe the effects of other sections and 

conditionally execute through the use of a wait keyword followed by a predicate that can be 

placed in the middle of an atomic section.  Transactions are executed and automatically 

commit upon either a wait statement whose condition evaluates to false or encountering an 

irreversible operation.  Such an early commit splits the transaction into a finished part and 

future transaction that is awaiting execution.  The programmer must manually reestablish 

program invariants upon resumption of the rest of the new transaction once the condition is 

evaluated to true, or the irreversible operation finishes execution.  Every procedure 

transitively containing such a suspending transaction must be annotated as such.  This 

annotation is to aid the programmer via type system enforced warnings in the model. 



 

 17 

This chapter has discussed the history of transactional memory and atomic sections, the 

quest to make them flexible and expressive in terms of synchronization as compared to 

traditional locking constructs, while maintaining their ease of use. 
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Chapter 3 
Language Constructs and Semantics 

 

The atomic section implementation consists of syntactic additions to a base language and 

their accompanying semantic modifications.  These constructs are discussed and elaborated 

upon. 

3.1 Syntax 

The proposed atomic section interface consists of the addition of two new keywords to the 

C99 language. 

3.1.1 Atomic Sections 

The atomic keyword specifies an atomic section compound block.  The section occurs 

wherever a statement is allowed, and it may contain an optional parenthesized predicate 

guard: 

atomic [(predicate)] { 

} 

An ANTLR grammar [PARR06] for C would incorporate the following rule: 

atomic_statement 
 : 'atomic' (options: '(' expression ')') statement 
 ; 

 

Where the added statement is part of the statement non-terminal production: 

statement 
 : labeled_statement 
 | compound_statement 
 | expression_statement 
 | selection_statement 
 | iteration_statement 
 | jump_statement 
 | atomic_statement 
 ; 
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3.1.2 Sync Variables 

The sync keyword consists of a declaration qualifier for a static or global variable: 

sync int var = 0; 

An ANTLR grammar would incorporate the aforementioned construct as part of the 

following rule: 

type_qualifier 
 : 'const' 
 | 'volatile' 
 | 'restrict' 
 | 'sync' 
 ; 

 

Sync variables may only be accessed within the body or guard predicate of an atomic 

section.  Furthermore, a given sync variable cannot be accessed within multiple nested 

transaction levels along a given path of execution within a transaction.  Such a program 

construction is considered erroneous and is detected at compile time, resulting in a compiler 

error.  The atomic block syntax with optional predicate is similar to that of Harris style 

conditional critical regions [HF03] as implemented for the Java language.  The sync modifier 

is unique to this design, though in the current implementation sync variables are limited to 

static and global integers. 

3.2 Semantics 

3.2.1 Atomic Sections 

Execution of an atomic section entails execution of the statements within it.  Other threads 

observe the effects of the executed statements atomically - all at once - after all the 

statements have completed, except for effects on sync variables.  Threads execute atomic 

sections one at a time when exclusively accessing the same variables.  Variables accessed 

exclusively may only be accessed by one thread at a time. 
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3.2.2 Atomic Section Nesting without Predicates 

A transaction syntactically nested within a parent transaction is executed as an atomic 

block of statements as part of the outer transaction, which itself is a larger atomic block.  

Variables accessed within a nested section are automatically accessed exclusively in the 

parent section.  In addition, variable accesses in nested sections contained within conditional 

statements are also accessed exclusively in the parent transaction, as the implementation is 

pessimistic.  This is the closed nested model of transactions [Moss82], that is an atomic 

section model where the effects of a nested section are not visible to other threads until the 

top-level atomic section completes. 

3.2.3 Predicates 

The definition of an optional predicate expression for an atomic block permits an atomic 

section to block while waiting for a predicate to evaluate to true before executing the 

statements within.  Predicates are composed of arbitrary side-effect free expressions 

containing ordinary as well as sync variables.  An unsatisfiable predicate due to erroneous 

program construction results in an indefinitely blocked thread, i.e. synchronization deadlock.  

Predicates permit condition synchronization of programs utilizing atomic sections. 

3.2.4 Sync Variables 

The effects of mutations of variables declared with the sync modifier – sync vars – are not 

observed atomically but rather perforate transactions in that they are observed when the 

directly accessing atomic section completes.  In the execution model - as opposed to the 

implementation, which is pessimistic by default - the enclosing transaction is normally 

executed pessimistically when it contains a sync variable.  A sync variable within the 

predicate expression of an atomic section is considered part of the set of variables accessed 

within the section. 

3.2.5 Predicate Nesting 

Nested transactions may wait on predicate expressions to become true before executing.  

However, ordinary non-sync variables accessed within the section are accessed exclusively, 
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and thus, are not of much use in a predicate expression, whose state must change in order to 

eventually become true and allow entry to the nested section.  Therefore, sync variables must 

be utilized as part of a predicate expression, and as sync variables are not atomic with respect 

to the enclosing parent transaction, the resulting predicate expression is able to change state. 

An atomic section directly (that is, not transitively) accessing a sync var syntactically 

present within the section is guaranteed exclusive access to the variable for the duration of 

the section.  Upon termination of the directly accessing section, the sync var is no longer 

atomic, irrespective of the nesting depth of the section, and any changes performed to it are 

immediately visible to all threads, unlike ordinary non-sync variables accessed within a 

nested section. 

Thus, the perforation of transactions that sync vars provide permits some measure of 

limited communication among threads in an otherwise closed nested model of transactions.  

The earlier aforementioned erroneous program construction from section 3.1.2 results in a 

compiler error because only one nested level or depth of an atomic section is permitted to 

directly access a sync var.  A nested transaction further accessing a sync var in addition to its 

parent is nonsensical, as the parent transaction directly accessing the sync var would not be 

guaranteed an atomic view of it. 

Figure 3-1 displays a diagram showing the nesting depth of nested transactions and the 

exclusivity and subsequent visibility of the accessed ordinary variable c and sync variables a 

and b within, as specified in this example code block: 

atomic ( /* a synchronized */ ) { 

 atomic ( /* b synchronized */ ) { 

  /* c accessed */ 

 } 

 atomic ( /* b synchronized */ ) { 

 } 

 /* a accessed */ 
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} 

Sync variable a is accessed in the top-level section and is exclusive to said section until 

completion and cannot be accessed in its nested sections.  Sync variable b is accessed in the 

two nested sections and is exclusive to them until they complete and cannot be accessed in 

the parent section.  Ordinary variable c happens to be accessed in the first nested section and 

is held exclusively for the entirety of the top-level section. 

Figure 3-1 Nested transactions accessing sync variables a and b, in addition to ordinary 

variable c 

3.2.6 Example 

This is illustrated with an example of a simple thread barrier.  Threads reaching a barrier 

typically each increment a counter and wait, with the last arriving thread permitting all 

threads to proceed past the barrier when the condition becomes true.  Barriers permit multiple 

threads to synchronize actions in stages.  A barrier in the presented transactional model can 

be implemented as such: 

void enterbarrier() { 

 sync int static count = 0; 

 atomic { 

  count+=1; 

 } 

 atomic(count == thread_count) { 

  ... 

 } 

} 
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The barrier code - which may be implemented as part of a library module - may be called 

and thus composed within the logic of a program already containing an atomic section like 

so: 

atomic { 

 ... 

 enterbarrier(); 

 ... 

} 

If the counter is not declared as a sync variable then the program threads executing the 

enclosing atomic section containing the barrier code could not observe the increment of the 

counter by other threads and the barrier would not function properly.  The enclosing section 

never completes as the nested barrier section waits indefinitely for the counter variable to 

change. 

If an atomic section specification is an otherwise closed nested model though permitting 

the programmer to have a limited form of communication of mutated values outside of the 

transaction, then atomic sections can be composable.  This is the motivation for the 

introduction of sync variables in the present work.  They are meant to be included in 

predicate expressions guarding entry to atomic sections and, when mutated inside, their 

updated values are visible outside of the immediate transaction upon its conclusion. 

In the barrier example, assuming the variable named count is a sync variable then its 

incremented value is visible to the second nested transaction.  Two or more atomic sections 

attempting to directly access a particular sync variable have to do so one at a time, that is, the 

variable is accessed exclusively by the directly accessing section.  Upon exiting an atomic 

section where a sync variable is accessed, the variable is free to be tested as part of the 

predicate expression of other waiting transactions, including the next nested transaction in 

the example given. 

As a sync variable is externally visible, the action of mutating it is considered irreversible 

and thus a transaction undertaking such an operation must be executed pessimistically.  In 

this atomic section model, transactions containing external operations must be executed 
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pessimistically.  While this simplifies the programming model for the developer, it has 

certain important implications.   

3.2.7 Subtlety of Sync Variables and Nesting 

It is generally considered ill-advised from a performance perspective to prevent 

independent concurrent operations from proceeding while a thread blocks on an operation.  

Yet that is what pessimistic transactions containing deeply nested waiting transactions can do 

to other threads.  This is not a formidable obstacle as the depth of nesting in typical 

transactional code has been measured to be low [CCMM06]. 

A further implication for the model is that certain program constructions can suffer from a 

situation akin to the nested monitor lockout problem [List77] found in concurrent monitor 

based code.  This problem is manifested when a thread holding a resource(s) is waiting to be 

signaled by another thread which requires the resource(s) to signal the waiting thread.  This is 

distinct from a deadlock condition in that the threads in question may well have acquired the 

resource(s) according to a common total order, though it still results in a program not making 

forward progress.  Nested monitor lockout may be resolved through a change in the affected 

code to remove the problem.  It is important to note that concurrent languages featuring 

monitors such as Java and uC++ have chosen to allow for the possibility of the nested 

monitor lockout problem to occur as an alternative to the programmer having to manually 

establish program invariants upon monitor entry, which requires global program reasoning.  

Developer diligence and awareness of this issue is a requirement in this atomic section 

model. 
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Chapter 4 
Implementation and Design Decisions 

 

Overall the system assigns locks to atomic sections so that when they access the same 

variable, the sections are assigned the same lock, which guarantees exclusive access to the 

variable at runtime.  Determining the set of variables accessed - and thus memory locations 

accessed - is a necessary prerequisite before locks are mapped to sections.  Thus, tallying the 

set of memory objects accessed within each routine in a program’s call graph and deducing 

the set of corresponding locks needed is the task of the analysis performed within the 

implemented system.  The implementation details, including modifications to the front end 

and analysis and transformation phases of the augmented compiler infrastructure, are 

elaborated. 

4.1 LLVM 

The added constructs were implemented for the C99 language as supported in the Low 

Level Virtual Machine (LLVM) 2.6 compiler infrastructure [LA04] augmented with the Data 

Structure Analysis (DSA) module [LLA07].  LLVM is a relatively new compiler framework 

and typed intermediate representation based on static single-assignment form [CFRWZ91].  

Its modern modular design facilitates new whole program optimizations and robust clean 

extensions for research and experimentation.  Note optimizations applied across the entire 

program are possible at link time where code exists for both the application program and any 

libraries utilized.  New in the 2.6 version of LLVM is a modular front end, clang, to natively 

parse many C-like languages.  LLVM’s clang front end was modified to accept the new 

constructs. 

4.1.1 DSA 

DSA is a fast mostly O(n*log(n)) time complexity points-to analysis.  It is mostly context 

sensitive in that the calling procedure context is taken into account in the resulting analysis in 

order to yield further precision. 
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DSA calculates a data structure graph (DSG) for each function in the input program such 

that distinct nodes represent disjoint sets of dynamic memory objects and edges correspond 

to pointers from the fields of the memory objects (nodes) to other such objects.  A DSG may 

also contain call nodes to other such graphs representing calls in the program control-flow 

graph.  The structures provided by DSA can readily be used to ascertain whether two pointers 

within the same function (corresponding to a DSG) may alias.  DSA does not directly support 

aliasing queries - queries determining whether the set of memory objects pointed-to by a pair 

of pointers intersect - involving pointers corresponding to nodes in different functions, 

though DSA provides the aforementioned structures and relations that can be processed to 

determine whether functions accessing data through a pointer alias the same memory object.  

Determining whether sets of accesses alias is necessary in order to guarantee independence 

of statements and their runtime effects. 

DSA operates in three phases: local, bottom up, and top down.  In the first stage of DSA, a 

DSG is created for each function in the input program using only intraprocedural 

information.  The second (“bottom-up” postorder traversal) stage incorporates information 

from the callee DSGs into the caller DSGs by cloning the former into the latter, eliminating 

incomplete information due to call nodes in a function, and thus, completing the construction 

of the call graph.  The third (“top-down” reverse postorder traversal) stage merges the caller 

DSGs into each of their callee DSGs. 

After the third stage, two distinct functions both calling a third have the memory object nodes 

corresponding to their arguments merged together into the called function’s DSG, losing 

context sensitivity.  Context sensitivity is also lost in self and mutually recursive procedures.  

Maintaining context sensitivity during this stage by splitting the called function’s DSG for 

each distinct callsite significantly expands the memory utilization of DSA, and thus, splitting 

is not performed.  After DSA finishes, complete information is attained for every input 

function’s DSG and nodes contained therein, except for memory objects that may be 

accessed by code external to the analyzed input program. 
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4.2 Analysis Pass 

This work features a lock inference analysis that, broadly speaking, forms global 

equivalence classes of memory objects, assigns said classes for each atomic section in each 

function corresponding to memory transitively accessed through contained called functions, 

and forms equivalence classes for encountered sync variables. 

The analysis pass uses the results of the top-down DSA phase to generate the points-to 

sets.  The analysis first matches the DSG nodes of the arguments and formal parameters 

across function calls in different DSGs corresponding to the caller and callee.  The matched 

nodes across the functions of the input program are subsequently put into global equivalence 

classes (ECs).  This step facilitates determining whether two pointers across the whole input 

program may alias by simply checking if their corresponding matched nodes are placed in the 

same equivalence class. 

After forming the global equivalence classes, the lock inference analysis pass collects the 

ECs corresponding to accesses at every program point in order to tally the set of equivalence 

classes of memory locations accessed inside each function.  Input programs' call graphs are 

then cleaved into strongly connected components (SCCs).  The SCCs of the call graph are 

traversed bottom up in order to union the ECs of the callees up into the calling functions.  

This step is performed so the ECs corresponding to the functions that are transitively called 

inside any atomic section are accounted for. 

A non-trivial SCC containing more than one procedure assigns the ECs of the atomic 

sections inside each procedure within the tally of all the ECs corresponding to all the 

memory locations accessed by any function within the SCC, thus losing precision, but 

efficiently handling recursive calls.  Atomic sections traversed during the pass are annotated 

with the ECs of the accesses they guard. 

The sync variables (enforced statically not to be aliased) encountered during this phase are 

placed into their own equivalence classes - one variable per class.  Like other memory 

objects, their accesses inside atomic sections need to be tallied.  Sync variables are not 

aliased with themselves or any other, therefore separate transactions accessing sync variables 
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– while serialized – still permit concurrency within distinct parent transactions.  Therefore in 

the following example, while the first thread’s parent atomic section is executing in the 

nested section within the barrier routine, the second thread’s parent atomic section may 

concurrently be executing just before or just after its own call to the barrier routine: 

atomic { // Thread 1 parent atomic section 

 enterbarrier(); // currently executing within nested section 

} 

atomic { // Thread 2 parent atomic section 

 // May be executing just before call to nested atomic section 

 enterbarrier(); 

 // May be executing just after call to nested atomic section 

} 

However, if a developer were to later insert and access a common variable within the 

parent transactions then concurrency is no longer possible.  Sync variables are currently 

limited to static and global integers and may not have their address taken in order to ensure 

disjointedness with other memory objects due to the necessarily conservative nature of the 

analysis.   

More formidable analyses exist than presented here that attempt to discern locksets for 

path expressions [EFJM07] rather than abstract memory locations, or alternatively, 

expression locks for any program point.  The analysis by Cherem at al. utilizing expression 

locks is able to reason regarding recursive structure accesses up to a specified limit, and can 

utilize fine-grained locks to protect per instance allocated structures.  Yet the resulting 

additional benefits from more thorough analyses have been found to be miniscule [CCG08], 

thus the analysis performed in this work is considered to be suitable. 

4.2.1 Transformations 

Nested atomic sections are traversed top down in the call graph to insert lock/unlock code 

of inferred locks in a total order, according to a two-phase locking discipline [EGLT76].  
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Since each EC corresponds to a lock of abstract memory locations, the set of all such 

locations must be accessed exclusively upon entering an atomic section.  Therefore, each 

lock set is reified into a Pthreads mutex. 

For the transformation, all the ECs are sorted into an arbitrary total order such that 

deadlock at runtime is prevented.  A classic two-phase locking (2PL) policy is implemented 

to ensure atomicity for the overall (arbitrary nested) atomic section.  As an optimization, late 

locking is performed such that a lock is delayed from being acquired (not necessarily at the 

beginning of a top-level atomic section) until the beginning of the nested section where the 

first access is performed corresponding to the lock. 

The order of accesses performed at runtime is conservatively approximated in the SCC of 

the call graph through the intersection of a given function’s directly accessed memory objects 

with the result of the union of its accessed objects and its called functions’ accessed objects.  

Any memory objects in the intersection are necessarily accessed after the start of said 

function.  Calls to Pthreads mutex unlock routines are inserted such that all locks 

corresponding to ECs are released at the end of the top-level atomic section.  The SCCs of 

the call graph are then traversed top down through the atomic sections.  In this fashion, 

nested atomic sections across functions are evaluated from outer section to inner section.  A 

diagram follows showing late locking employed with three variables a, b, and c accessed 

from SCC nodes alpha and beta.  Though the SCC node alpha transitively accesses variables 

b and c, locks on them are not acquired upon entry to this SCC node, but upon entry to the 

first node where they are accessed, SCC node beta. 

Figure 4-1 Late locking with variables a, b, and c accessed from SCC nodes alpha and beta 

 

SCC alpha 

SCC beta 

directly accesses a; transitively accesses a, b, c 

directly accesses b, c 
acquire locks on b, c 

acquire lock on a 
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Every atomic section encountered is transformed such that the ECs directly guarded within 

are represented as locks that must be held upon entry.  The locks representing ECs directly 

guarded in the section are a subset of the ECs guarded by the section transitively.  A global 

array of Pthreads mutex structures corresponding to the ECs of the program is inserted into 

the program text such that the Pthreads mutex calls access the necessary structures at 

runtime. 

Given that the locks representing ECs are acquired in a total order, delayed locking may be 

a vacuous optimization if locks which may safely be acquired later in the call graph happen 

to be ordered before locks which are necessary to be acquired earlier in the call graph, and 

therefore, the former end up being acquired prior to the latter.  This approach guarantees each 

atomic section acquires a (super) set of the locks necessary to protect data accesses 

transitively performed from within.  Furthermore, the fact that each atomic section nominally 

attempts to acquire only the locks protecting its direct accesses – late locking – allows for 

more potential concurrency to be exhibited.  However all locks previously acquired are still 

released at the end of the top-level atomic section.  This is in contrast to some 

implementations that acquire all locks transitively required at the beginning of the top-level 

atomic section and release them all at its end.  A simple heuristic combines multiple Pthreads 

locks always acquired together inside atomic sections into a single lock.  This step reduces 

the lock acquisition overhead of the underlying library. 

4.2.2 Sync Variables Implementation 

Given the semantics of sync variables, different implementations are possible.  For 

example, continuous polling of the variable(s) associated with an atomic section’s predicate 

may be used.  Alternatively, a change in any of the variables results in a notification and 

reevaluation of the predicate.  In the current implementation, the latter approach is chosen as 

the former method is considered to unnecessarily penalize threads that wait.  Notification is 

implemented using Pthreads condition variables (which also require an associated lock), and 

is triggered upon the exit of an atomic section that modifies a sync variable.  Upon 

notification, an attempt is made to acquire the lock(s) of the sync variable(s) within a 
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predicate expression.  If the predicate evaluates to true, the associated atomic section is 

executed.  Otherwise the lock(s) of the sync variable(s) are released and the predicate is 

retested at a later time, upon further notification.  One limitation of Pthreads is that a thread 

may wait on only one condition variable at a time.  Thus, the current implementation only 

allows one sync variable within a predicate. 

4.2.3 Possible Analysis Optimization 

A given total order imposed on lock acquisitions may penalize certain program executions.  

A lock corresponding to a memory location access within a deeply nested atomic section may 

be ordered early in a total order.  Thus, it might have to be acquired early within the overall 

atomic section of a given thread’s execution, preventing other threads from accessing it 

within their own atomic sections if the other accesses within their sections do not conflict 

with said thread.  In the current implementation, the chosen order is arbitrary.  A different 

approach to ordering could utilize acquired statistics from program runs to attempt to order 

the locks in a suitable arrangement so as to improve performance.  Information collected on 

program execution determines the atomic sections and locks that are most frequently 

executed or waited upon. 

A further transformation may then make use of this information such that distinct overall 

atomic sections containing nested sections experiencing heavy contention over a small 

intersecting set of locks would have their ordering changed such that entry into an overall 

atomic section does not acquire a lock whose corresponding memory locations are accessed 

late within a deeply nested section that are contended by other overall atomic sections.  

LLVM does not account for threads in its relatively immature profile guided information 

collection and optimization infrastructure however; therefore, this technique was not 

attempted. 

4.2.4 Transformation Example Featuring Sync Variable 

Given the discussion of the analysis and transformation of the implementation, a running 

example is presented featuring condition synchronization among threads as introduced with 

barriers and featuring a sync variable, and the step by step transformation of the program as it 
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is run through the implemented system.  Some of the automatically generated code and 

outputs resulting from the transformations are elided, as they do not pertain to the discussion. 

The example program creates NUM_THREADS threads that are then run with the same 

function containing a call to a barrier within it. Note, the preprocessor variable 

NUM_THREADS is changed to the appropriate number of processors between configuration 

runs. All threads must synchronize with the barrier after executing the first half of the 

function, before they can proceed to the second half. Upon finishing execution of the 

function, the threads are terminated by being joined with the main program thread. 

#include <pthread.h> 

#include <stdio.h> 

 

#define NUM_THREADS 8 

 

void simplebarrier() 

{ 

  sync static int count = 0; 

  atomic { 

    count++; 

  } 

  atomic (count == NUM_THREADS) { 

  } 

} 

 

void *TaskCode(void *argument) 

{ 

  int tid = *((int *) argument); 

  for(volatile int i=0;i<100000000;i++) ; // work delay 

  // printf("Thread %d completing first half of task.\n", tid); 

  simplebarrier(); 

  for(volatile int i=0;i<100000000;i++) ; // work delay 

  // printf("Thread %d completing second half of task.\n", tid); 
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} 

 

int main (int argc, char *argv[]) 

{ 

  pthread_t threads[NUM_THREADS]; 

  int thread_args[NUM_THREADS]; 

  int rc; 

 

  /* create all threads */ 

  for (int i=0; i<NUM_THREADS; ++i) { 

    thread_args[i] = i; 

    // printf("creating thread %d\n", i); 

    rc = pthread_create(&threads[i], (void *) NULL, TaskCode, 
(void *) &thread_args[i]); 

  } 

 

  /* wait for all threads to complete */ 

  for (int i=0; i<NUM_THREADS; ++i) { 

    // printf("joining thread %d\n", i); 

    rc = pthread_join(threads[i], NULL); 

  } 

} 

The analysis phase first tallies the points-to Equivalence Classes (ECs) for each function in 

the input program from the results of the post processing of the Data Structure Analysis 

(DSA) pass.  Thus, the ECs for the three procedures of the extended example are: 

{sync.simplebarrier.count} for the simplebarrier procedure that reflects the sync variable 

accessed in its atomic sections, {} for the TaskCode procedure, and {} for the main 

procedure. 

The call graph for the input program is main -> TaskCode -> simplebarrier.  Therefore, a 

postorder traversal of the SCCs of the callgraph of the input program yields the following 

ECs for the three procedure of the extended example: 
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{sync.simplebarrier.count} for the simplebarrier, {} for the TaskCode procedure, and {} 

for the main procedure. 

Note that sync variables are not propagated up into the calling procedures.  The 

transformation phase begins by a reverse postorder traversal of the SCCs of the callgraph and 

inserts lock/unlock code for the atomic sections in the simplebarrier procedure for the 

Pthreads mutex associated with the accessed sync variable.  Therefore, the LLVM specific 

basic block disassembly output for the entry to the first atomic section is transformed to 

insert locking code, from: 

atomic.begin:                                ; preds = %entry 

  br i1 true, label %atomic.body, label %atomic.end 

to: 

atomic.begin:                                ; preds = %entry 

  %sync.simplebarrier.count = call i32 @pthread_mutex_lock([40 x 
i8]* @0) ; <i32> [#uses=0] 

  br i1 true, label %atomic.body, label %atomic.end 

In generic LLVM assembly, the branch mnemonic as shown features the condition as the 

first operand (in this instance it is the constant true) and the second operand as the basic 

block to branch to upon a true condition (which is what is taken in this instance), and the 

third basic block to branch upon a false condition. 

The exit from the atomic section is transformed to insert unlocking code, from: 

atomic.end:             ; preds = %atomic.body, %atomic.begin 

  br label %atomic.begin1 

to: 

atomic.end:             ; preds = %atomic.body, %atomic.begin 

  %sync.simplebarrier.count1 = call i32 
@pthread_cond_broadcast([48 x i8]* @"0") ; <i32> [#uses=0] 

  %sync.simplebarrier.count2 = call i32 @pthread_mutex_unlock([40 
x i8]* @0) ; <i32> [#uses=0] 

  br label %atomic.begin1 
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Note the inserted call to the Pthreads specific sync variable mapped condition variable 

broadcast call.  The second atomic section entry is likewise transformed from: 

atomic.begin1:                          ; preds = %atomic.end 

  %tmp2 = load i32* @sync.simplebarrier.count ; <i32> [#uses=1] 

  %cmp = icmp eq i32 %tmp2, 5                ; <i1> [#uses=1] 

  br i1 %cmp, label %atomic.body3, label %atomic.end4 

to: 

atomic.begin1:                          ; preds = %atomic.end 

  %sync.simplebarrier.count3 = call i32 @pthread_mutex_lock([40 x 
i8]* @0) ; <i32> [#uses=0] 

  %tmp2 = load i32* @sync.simplebarrier.count ; <i32> [#uses=1] 

  %cmp = icmp eq i32 %tmp2, 5                ; <i1> [#uses=1] 

  br i1 %cmp, label %atomic.body3, label %atomic.end4 

Note the test for entry into the atomic section if the condition is satisfied.  In the next step, 

the transformation phase splits the aforementioned basic block into a first block that locks the 

generated mutex associated with the sync variable: 

atomic.begin1:                          ; preds = %atomic.end 

  %sync.simplebarrier.count3 = call i32 @pthread_mutex_lock([40 x 
i8]* @0) ; <i32> [#uses=0] 

  br label %atomic.cond 

And a second block that tests if the condition is satisfied: 

atomic.cond:             ; preds = %atomic.cv, %atomic.begin1 

  %tmp2 = load i32* @sync.simplebarrier.count ; <i32> [#uses=1] 

  %cmp = icmp eq i32 %tmp2, 5                ; <i1> [#uses=1] 

  br i1 %cmp, label %atomic.body3, label %atomic.cv 

If the condition is satisfied, the thread may proceed into the body of the atomic section.  

However, if the condition is not satisfied the thread is directed to a newly generated block 

that calls the Pthreads specific sync variable mapped condition variable wait call: 

atomic.cv:                             ; preds = %atomic.cond 

  %sync.simplebarrier.count5 = call i32 @pthread_cond_wait([48 x 
i8]* @"0", [40 x i8]* @0) ; <i32> [#uses=0] 
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  br label %atomic.cond 

Upon being woken up, the thread is directed to the second of the split block outlined earlier 

to test the predicate condition again.  The specification for the Pthreads API is that the lock 

associated with the condition variable is atomically released upon a thread waiting, and 

reacquired upon waking up after being signaled, respectively.  The exit of the atomic section 

is transformed to insert unlocking code, from: 

atomic.end4:          ; preds = %atomic.body3, %atomic.begin1 

  ret void 

to: 

atomic.end4:          ; preds = %atomic.body3, %atomic.begin1 

  %sync.simplebarrier.count4 = call i32 @pthread_mutex_unlock([40 
x i8]* @0) ; <i32> [#uses=0] 

  ret void 

The sync variable is included in the text of the program: 

@sync.simplebarrier.count = internal global i32 0 ; <i32*> 
[#uses=3] 

And the generated Pthreads mutex lock and condition variable are also included in the 

program: 

@0 = global [40 x i8] zeroinitializer   ; <[40 x i8]*> [#uses=5] 

@"0" = global [48 x i8] zeroinitializer ; <[48 x i8]*> [#uses=2] 

4.2.5 Transformation Featuring Inferred Locks and Sync Variable 

The previous running transformation example was rather simple, as the framework did not 

need to infer locks.  In this subsection, an implementation of the producer/consumer pattern 

is presented which utilizes the generic shared queue insertion and removal operations 

illustrated in section 5.2 as examples of the condition synchronization facility possible with 

the model.  The intermediate representation of the program is transformed, step-by-step, as it 

is run through the implemented system.  Some of the automatically generated code and 

outputs resulting from the transformations are elided, as they do not pertain to the discussion. 
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The extended example creates producer and consumer threads each executing their own 

respective actions of putting and taking items from a shared queue.  A fixed number of items 

are produced, so the amount of work is fixed regardless of the number of threads.  The 

underlying queue code is generic, utilizing pointers to heap allocated elements.  Thus, this 

implementation requires locks to be inferred to protect the shared memory structure from 

inadvertent accesses.  The put and get procedures also utilize a size sync variable to ascertain 

and mutate the number of elements contained in the queue.  All threads must synchronize 

with the queue such that only one thread may put or take items from the queue.  Upon 

finishing execution of their respective tasks, the producer and consumer threads are 

terminated by being joined with the main program thread.  As in the previous example, the 

preprocessor variable NUM_THREADS is eight in this example but is changed to the 

appropriate number of processors between configuration runs. 

#include <pthread.h> 

#include <stdio.h> 

 

typedef int TItem; 

#define NUM_THREADS 8   

#define NUM_ITEMS 1048576 

 

void *prod(void *arg) 

{ 

  int tid = *((int *) arg); 

  for(int i=0;i<(NUM_ITEMS/NUM_THREADS);i++) { 

    TItem* elp=(TItem*)malloc(sizeof(TItem)); 

    *elp=i*NUM_THREADS+tid; 

    put(elp); 

  } 

} 

 

void *cons(void *arg) 

{ 
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  int tid = *((int *) arg); 

  for(int i=0;i<(NUM_ITEMS/NUM_THREADS);i++) { 

    TItem* elp=get(); 

    free((void*)elp); 

  } 

} 

 

void *prodcons(void *arg) 

{ 

  int tid = *((int *) arg); 

  for(int i=0;i<(NUM_ITEMS/NUM_THREADS);i++) { 

    TItem* elp=(TItem*)malloc(sizeof(TItem)); 

    *elp=i*NUM_THREADS+tid; 

    put(elp); 

    elp=get(); 

    free((void*)elp); 

  } 

} 

int main (int argc, char *argv[]) 

{   

  pthread_t threads[NUM_THREADS]; 

  int thread_args[NUM_THREADS]; 

  int rc; 

  

  /* create all threads */  

  if (NUM_THREADS==1) { 

    thread_args[0] = 0; 

    rc = pthread_create(&threads[0], (void *) NULL, prodcons, 
(void *) &thread_args[0]); 

  } 

  else 

  for (int i=0; i<NUM_THREADS; ++i) { 

    thread_args[i] = i; 
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    if (i % 2) { 

      rc = pthread_create(&threads[i], (void *) NULL, cons, (void 
*) &thread_args[i]); 

    } 

    else { 

      rc = pthread_create(&threads[i], (void *) NULL, prod, (void 
*) &thread_args[i]); 

    } 

  } 

 

  /* wait for all threads to complete */ 

  for (int i=0; i<NUM_THREADS; ++i) { 

    rc = pthread_join(threads[i], NULL); 

  } 

} 

The analysis phase first tallies the points-to Equivalence Classes (ECs) for each function in 

the input program from the results of the post processing of the Data Structure Analysis 

(DSA) pass.  Thus, the ECs for the six procedures of this extended example are: 

{sync.num_entries, 0xfecb18, 0xff28a8, 0x103b7b0, 0x103b8c0} for the get procedure that 

reflects four disjoint equivalence classes of memory locations identified and the sync variable 

sync.num_entries accessed in its atomic section, {sync.num_entries, 0xfecb18, 0xff2818, 

0x103b7b0, 0x103b8c0} for the put procedure with the first element representing the sync 

variable accessed in its atomic section and the last four reflecting the distinct equivalence 

classes of memory locations identified, {0x103b8c0} for the prod procedure, {0x103b8c0} 

for the cons procedure, {0x103b8c0} for the prodcons procedure, and {} for the main 

procedure.  The get and put procedures share many of the equivalence classes as they access 

the many of the same abstract locations of memory objects. 

The call graph for the input program is main -> prod -> put, main -> cons -> put, main -> 

prodcons, prodcons -> put, prodcons -> get.  Therefore, a postorder traversal of the SCCs of 

the callgraph of the input program yields the following ECs for the six procedure of the 

extended example: 
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{sync.num_entries, 0xfecb18, 0xff28a8, 0x103b7b0, 0x103b8c0} for the get procedure, 

{sync.num_entries, 0xfecb18, 0xff2818, 0x103b7b0, 0x103b8c0} for the put procedure, 

{0xfecb18, 0xff2818, 0x103b7b0, 0x103b8c0} for the prod procedure, {0xfecb18, 0xff28a8, 

0x103b7b0, 0x103b8c0} for the cons procedure, {0xfecb18, 0xff2818, 0xff28a8, 0x103b7b0, 

0x103b8c0} for the prodcons procedure, and {0xfecb18, 0xff2818, 0xff28a8, 0x103b7b0, 

0x103b8c0} for the main procedure. 

The transformation phase begins by a reverse postorder traversal of the SCCs of the 

callgraph and inserts lock/unlock code for the atomic sections in the put and get procedures 

for the Pthreads mutex associated with the accessed sync variable, as well as the four inferred 

locks corresponding to the four equivalence classes of identified memory locations.  

Therefore, the LLVM specific basic block disassembly output for the entry to the atomic 

section in the get procedure is transformed to insert locking code, from: 

atomic.begin:                                ; preds = %entry 

  %tmp = load i32* @sync.num_entries     ; <i32> [#uses=1] 

  %cmp = icmp sgt i32 %tmp, 0                ; <i1> [#uses=1] 

  br i1 %cmp, label %atomic.body, label %atomic.end 

to: 

atomic.begin:                                ; preds = %entry 

  %sync.num_entries = call i32 @pthread_mutex_lock([40 x i8]* @0) 
; <i32> [#uses=0] 

  %"1046a10" = call i32 @pthread_mutex_lock([40 x i8]* @1) ; <i32> 
[#uses=0] 

  %"1049d60" = call i32 @pthread_mutex_lock([40 x i8]* @2) ; <i32> 
[#uses=0] 

  %"1046d60" = call i32 @pthread_mutex_lock([40 x i8]* @3) ; <i32> 
[#uses=0] 

  %"1046d90" = call i32 @pthread_mutex_lock([40 x i8]* @4) ; <i32> 
[#uses=0] 

  %tmp = load i32* @sync.num_entries     ; <i32> [#uses=1] 

  %cmp = icmp sgt i32 %tmp, 0                ; <i1> [#uses=1] 

  br i1 %cmp, label %atomic.body, label %atomic.end 
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Note the test for entry into the atomic section if the condition is satisfied.  The entry to the 

transformed atomic section contains five locks being acquired.  One of which is the lock 

corresponding to the sync variable, the rest are locks representing the equivalence classes. 

In the next step, the transformation phase splits the aforementioned basic block into a first 

block that locks the generated mutex associated with the sync variable as well as the inferred 

locks: 

atomic.begin:                                ; preds = %entry 

  %sync.num_entries = call i32 @pthread_mutex_lock([40 x i8]* @0) 
; <i32> [#uses=0] 

  %"1046a10" = call i32 @pthread_mutex_lock([40 x i8]* @1) ; <i32> 
[#uses=0] 

  %"1049d60" = call i32 @pthread_mutex_lock([40 x i8]* @2) ; <i32> 
[#uses=0] 

  %"1046d60" = call i32 @pthread_mutex_lock([40 x i8]* @3) ; <i32> 
[#uses=0] 

  %"1046d90" = call i32 @pthread_mutex_lock([40 x i8]* @4) ; <i32> 
[#uses=0] 

  br label %atomic.cond 

And a second block that tests if the condition is satisfied: 

atomic.cond:              ; preds = %atomic.cv, %atomic.begin 

  %tmp = load i32* @sync.num_entries     ; <i32> [#uses=1] 

  %cmp = icmp sgt i32 %tmp, 0                ; <i1> [#uses=1] 

  br i1 %cmp, label %atomic.body, label %atomic.cv 

If the condition is satisfied, the thread may proceed into the body of the atomic section.  

However, if the condition is not satisfied the thread is directed to a newly generated block 

that unlocks the inferred locks, calls the Pthreads specific sync variable mapped condition 

variable wait call, and then locks the inferred locks again (upon being woken up): 

atomic.cv:                             ; preds = %atomic.cond 

  %"1046d911" = call i32 @pthread_mutex_unlock([40 x i8]* @4) ; 
<i32> [#uses=0] 

  %"1046d612" = call i32 @pthread_mutex_unlock([40 x i8]* @3) ; 
<i32> [#uses=0] 
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  %"1049d613" = call i32 @pthread_mutex_unlock([40 x i8]* @2) ; 
<i32> [#uses=0] 

  %"1046a114" = call i32 @pthread_mutex_unlock([40 x i8]* @1) ; 
<i32> [#uses=0] 

  %sync.num_entries7 = call i32 @pthread_cond_wait([48 x i8]* 
@"0", [40 x i8]* @0) ; <i32> [#uses=0] 

  %"1046a11" = call i32 @pthread_mutex_lock([40 x i8]* @1) ; <i32> 
[#uses=0] 

  %"1049d61" = call i32 @pthread_mutex_lock([40 x i8]* @2) ; <i32> 
[#uses=0] 

  %"1046d61" = call i32 @pthread_mutex_lock([40 x i8]* @3) ; <i32> 
[#uses=0] 

  %"1046d91" = call i32 @pthread_mutex_lock([40 x i8]* @4) ; <i32> 
[#uses=0] 

  br label %atomic.cond 

The exit from the atomic section is transformed to insert unlocking code, from: 

atomic.end:             ; preds = %atomic.body, %atomic.begin 

  %tmp5 = load i32** %item                 ; <i32*> [#uses=1] 

  store i32* %tmp5, i32** %retval 

  %0 = load i32** %retval                  ; <i32*> [#uses=1] 

  ret i32* %0 

to: 

atomic.end:             ; preds = %atomic.body, %atomic.begin 

  %"1046d901" = call i32 @pthread_mutex_unlock([40 x i8]* @4) ; 
<i32> [#uses=0] 

  %"1046d602" = call i32 @pthread_mutex_unlock([40 x i8]* @3) ; 
<i32> [#uses=0] 

  %"1049d603" = call i32 @pthread_mutex_unlock([40 x i8]* @2) ; 
<i32> [#uses=0] 

  %"1046a104" = call i32 @pthread_mutex_unlock([40 x i8]* @1) ; 
<i32> [#uses=0] 

  %sync.num_entries5 = call i32 @pthread_cond_broadcast([48 x i8]* 
@"0") ; <i32> [#uses=0] 

  %sync.num_entries6 = call i32 @pthread_mutex_unlock([40 x i8]* 
@0) ; <i32> [#uses=0] 

  %tmp5 = load i32** %item                 ; <i32*> [#uses=1] 
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  store i32* %tmp5, i32** %retval 

  %0 = load i32** %retval                  ; <i32*> [#uses=1] 

  ret i32* %0 

Note the inserted call to the Pthreads-specific condition variable broadcast call that is 

mapped to the sync variable. 

The sync variable is included in the text of the program: 

@sync.num_entries = global i32 0, align 4         ; <i32*> 
[#uses=6] 

And the generated Pthreads mutex locks and condition variable are also included in the 

program: 

@0 = global [40 x i8] zeroinitializer   ; <[40 x i8]*> [#uses=6] 

@1 = global [40 x i8] zeroinitializer   ; <[40 x i8]*> [#uses=4] 

@2 = global [40 x i8] zeroinitializer   ; <[40 x i8]*> [#uses=4] 

@3 = global [40 x i8] zeroinitializer   ; <[40 x i8]*> [#uses=4] 

@4 = global [40 x i8] zeroinitializer   ; <[40 x i8]*> [#uses=4] 

@"0" = global [48 x i8] zeroinitializer ; <[48 x i8]*> [#uses=4] 

The transformation steps for the put procedure and resulting intermediate representations 

and inferred locks are very similar. 
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Chapter 5 
Evaluation 

 

The evaluation performed shows the suitability of the developed atomic section 

programming model and implementation for constructing robust, performant concurrent 

programs.  The model is shown to provide increased programmability and expressiveness 

when compared to conventional STM interfaces. 

5.1 Quantitative Results 

Quantitative results are presented for two programs illustrating common concurrency 

patterns including producers/consumers and thread barriers. 

5.1.1 Experimental Methodology 

Benchmark configurations include: the particular benchmark programs; the 

implementation framework the programs are run under; the choice of one, two, four, or eight 

processors; and possibly data sets and settings such as the level of contention.  All 

configuration instances were run five times, the order of runs randomized with other 

configurations, with the average of the five runs per configuration recorded in the graphs.  

All programs were run on an eight processor four socket dual-core Linux machine with 16 

GB of RAM. 

5.1.2 Microbenchmark Evaluations 

Microbenchmark evaluation results are presented for the producer/consumer pattern of 

code discussed in the transformation subsection 4.2.5, utilizing the condition synchronization 

construct involving the put and get shared queue operations from section 5.2.  Figure 5-1 

displays the average runtimes in seconds for the evaluated configurations of up to eight 

processors.  It shows that though runtime decreases with up to four processors, it increases 

with eight, due to overhead. 
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Figure 5-1 Producer / consumer PTM implementation (lower is better) 

The thread barrier example in the transformation subsection 4.2.4 was executed as a 

microbenchmark on up to eight processors.  Figure 5-2 displays the average runtimes in 

seconds for the evaluated configurations.  The same amount of work is performed by each 

thread regardless of configuration since even though the work delays are executed in parallel, 

they are the same for all threads so the times cannot decrease.  The small amount of 

contention that exists - due to the barrier - increases with more threads, along with the 

variability of scheduling inherent with greater numbers of threads, the displayed runtimes 

thus increase with more threads attempting to enter the barrier. 
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Figure 5-2 Thread barrier PTM implementation (lower is better) 

5.2 Qualitative Examples 

Qualitative results from the limited experience implementing programs in this model have 

thus far been positive.  The new approach preserves the benefits of traditional transactional 

semantics, while permitting disciplined multithreaded cooperation. 

Thread coordination is essential in concurrent applications.  One class of thread 

coordination problems concerns producer/consumer patterns, which are prevalent in 

multithreaded applications.  A producer/consumer pattern involves a producer thread (or 

multiple threads) creating a unit of work at a variable - and usually different - rate than the 

unit of work can be processed by a consuming thread (or multiple threads.)  The varying rate 

in processing items of work in a chain of processing steps can sometimes be explained by the 

different speeds and latencies of particular levels of the memory hierarchy. 

Processing a unit of work defined in terms of a memory frame versus a disk block versus a 

network packet can require processing times that differ by an order of magnitude or more, 

depending on the latency of the devices in question.  This difference is one of the motivations 

for the producer and consumer threads being decoupled as part of the producer/consumer 

pattern.  Another motivation for the loose coupling of item processing may be the priority of 



 

 47 

different threads coordinating operations.  A user interface thread is latency sensitive and 

may hand off further processing of an identified work item to a lower priority consuming 

thread. 

An example of a generic producer/consumer design utilizing the transactional model 

follows.  In it, the sync variable num_entries is incremented by the producer thread 

placing a work item into the shared buffer.  The producer waits at the start of the transaction 

if the queue is full.  The in and out index variables correspond to the ends of the buffer the 

producer and consumer place and take items, respectively, and are modulo incremented.  The 

consumer thread decrements num_entries upon taking a work item from the queue.  If 

upon entry to the atomic section the queue is tested to be empty, the consumer waits for an 

item to be placed into the queue by the producer.  The type of the items placed into the queue 

is left for the implementation to define. 

sync int num_entries = 0; 

#define MAX_ENTRIES 1048577 

TItem* buf[MAX_ENTRIES]; 

int in = 0, out = 0; 

void put(TItem* item) { 

 atomic (num_entries < MAX_ENTRIES) { 

  buf[in] = item; 

  in = (in + 1) % MAX_ENTRIES; 

  num_entries++; 

 } 

} 

TItem* get(void) { 

 TItem* item; 

 atomic (num_entries > 0) { 

  item = buf[out]; 

  out = (out + 1) % MAX_ENTRIES; 

  num_entries--; 

 } 

 return item; 
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} 

The details of the producer and consumer thread implementations are highly specific to the 

operation objective and are customized depending on the application.  Note that the 

processing of the item and the handoff with the shared buffer may well be small details as 

part of an overall larger atomic operation according to the logic of the application. 

Examples of producer/consumer patterns invoked as part of program library-based 

solutions that can be composed with concurrent application transactions include file copy, 

application logging, document search, plugin filters, and web server data aggregation and 

statistics. 

Threads orchestrating the copying of files and directories can decouple the process of 

locating individual files (according to a specified criterion) from actually copying them.  A 

program performing this operation as part of a transaction allows the file locator and file 

copying threaded codes (which may be factored into their own callable module) to coordinate 

with each other.  In this instance, the file locator is higher priority than the file copying 

thread as it is identifying files to be copied for the file copier to start its operation. 

An application logger module can asynchronously accept input messages while the 

application it is composed with conducts its own operations, which may be performed with 

transactions, and the log processor thread can write the log entry messages to a permanent 

medium. 

A text processor may be composed with a document search and indexing service, which 

consist of document text crawling and indexing threads that are independent of the main 

program threads.  The application can permit a user search of a document to be accelerated 

by utilizing an index of the document as part of a program transaction. 

An extendable application can feature third-party plugins that may filter input 

cooperatively as though in a pipeline.  The producing and consuming plugin stages may 

themselves be consumers and producers, respectively, of further plugin stages.  The 

application may conduct transformation operations on data filtered through certain plugins as 

part of program transactions. 
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A web server application may aggregate statistical data on the requests served by sending 

metadata of information sent to a reducer thread that collates the statistical data and may be 

located in its own analytics module.  The application threads that serve the data as part of 

their transactions identify and send the metadata to the aggregator, which runs independently 

yet still coordinates in consuming the metadata. 

5.3 Example System Realization and Evaluation 

The constructs and implementation were utilized to develop one of the examples from the 

previous section.  An application logger is constructed that features a pipeline of logging 

threads.  The first stage filters messages – informative (light) or trace (heavy) – onto distinct 

queues for separate logging threads to handle.  Application threads generate messages 

modeling low or high logging message dispatch and arrival for the application loggers onto 

the initial filter queue of the pipeline.  The application threads feature an atomic section, 

corresponding to a chunk of code within an application that is intended to be executed as one 

unit, such as a relational database subquery.  From within the section the application threads 

are synchronized at a barrier to start together and then generate the messages.  The called 

barrier routine contains a nested atomic section.  Sync variables are utilized in the initial 

stage of the pipeline, to control access to the filter queue, as well as in the two downstream 

logging queues, and in the thread barrier procedure.  Each pipeline stage’s sync variable 

counts the number of elements in its corresponding queue.  Threads cannot take elements 

from the queue if it is empty, nor can they put elements onto the queue if it is full, as 

accessed using the queue’s sync variable.  The application logger source is in the appendix. 

Each message features an allocated character string buffer, a length field, and a stamp for 

the thread id of the generating application thread.  Light (informative) messages were thirty-

two bytes in length, while heavy (e.g. stack trace) were sixty-four kilobytes.  Heavy message 

generation is eight times greater than the light generation case.  Figures 5-3 through 5-6 

display the average runtimes in seconds for one through eight processors for the four possible 

configurations of the two dimensions concerning the message type and message generation 

rate. 



 

 50 

For the light weight messages generated at a low message generation rate, the performance 

improves with two threads, though deteriorates with a higher thread count, due to overhead 

of threading as well as synchronized access to a shared resource, since higher thread counts 

increase contention and serialize access to the queues, as well as increase scheduling delays.  

For light messages dispatched at a high rate, performance in terms of runtime is more than an 

order magnitude worse than the low rate of dispatch, and does not improve beyond two 

threads.  For heavy weight messages, performance does not noticeably improve with more 

threads (except for the slight decrease in run time for the light dispatch rate at two threads.)  

However, performance does not degrade nearly as severely with more threads than in the 

cases with light weight message dispatch. 

 

Figure 5-3 Light messages and low generation rate (lower is better) 
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Figure 5-4 Light messages and high generation rate (lower is better) 

 

Figure 5-5 Heavy messages and low generation rate (lower is better) 
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Figure 5-6 Heavy messages and high generation rate (lower is better) 
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Chapter 6 
Conclusion and Future Work 

 

The presented atomic section programming model features first class support for condition 

synchronization with truly nested transactional semantics. The benefits include composability 

of software, reuse of code and libraries featuring idioms such as many producer/consumer 

patterns, and barrier synchronization. Simplicity of the model is also a virtue as it decreases 

the cognitive load on the programmer. 

6.1 Coda 

The need for condition synchronization is outlined and the inadequacies of existing 

transactional memory systems detailed.  A model and syntax for implementing condition 

synchronization in the context of atomic sections is presented along with its compositional 

properties.  The sync variable construct enables nested transactions to block a thread until a 

predicate expression becomes true before the thread starts the transaction. 

Notable findings of the model in regards to expressivity is that the atomic section interface 

is able to capture concurrent patterns and use cases featuring condition synchronization such 

as barriers and producer/consumer scenarios. 

Open questions regarding the model are: 

Is the transactional model as implemented general enough for constructing a broad cross 

section of concurrent software? 

Are the constructs for condition synchronization sufficiently expressive to capture most 

use cases of conventional conditional variables? 

What are the implications for conditions and transactions when embedded in a language 

with exception handling? 
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Are transactions in and of themselves a proper construct to reason about and craft 

concurrent distributed software that may need to coordinate across large distances without 

the strict synchronization requirements and overheads inherent to transactions? 

6.2 Desiderata 

Further quantitative evaluation of the implementation on the STAMP benchmark suite 

[MCKO08] against an STM competitor is in order.  More extensive heuristics for assigning 

lock sets to atomic blocks are planned to be implemented as future work, in order to improve 

performance.  In addition, exploring a hybrid combination of pessimistic and optimistic 

transactional memory [LM11] with support for condition synchronization is a fruitful 

endeavor.  Finally, evaluation of the programming model on further benchmarks and larger 

software projects would be beneficial in gaining confidence with regards to the applicability 

and generality of the proposed atomic section interface. 
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Appendix A 

Data for graphed quantitative results is presented in this appendix, as well as source code. 

 

Table 6-1 Producer / consumer microbenchmark data 

1	   0.503	   0.561	   0.434	   0.473	   0.478	  

2	   0.466	   0.449	   0.464	   0.433	   0.41	  

4	   0.36	   0.364	   0.359	   0.361	   0.359	  

8	   0.808	   0.451	   0.716	   0.497	   0.643	  

 

 

Table 6-2 Thread barrier microbenchmark data 

1	   0.547	   0.549	   0.548	   0.546	   0.547	  

2	   0.549	   0.548	   0.551	   0.549	   0.551	  

4	   0.559	   0.552	   0.564	   0.559	   0.551	  

8	   0.574	   0.564	   0.573	   0.582	   0.581	  

 

 

Source code for application logger: 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
int NUM_APP_THREADS = -1; 
int NUM_LOG_THREADS = -1; 
int LOWHIGH = -1; 
int LIGHTHEAVY = -1; 
int NUM_ITEMS = -1; 
int LIGHTLEN = 32; 
int HEAVYLEN = 65536; 
int LOWRATE = 128; 
int HIGHRATE = 1024; 
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typedef struct {char* msg; int len, stamp} TItem; 
 
const int MAX_ENTRIES = 1024; 
TItem* fil_buf[MAX_ENTRIES]; 
sync int fil_num_entries = 0; 
int fil_in = 0, fil_out = 0; 
 
TItem* light_buf[MAX_ENTRIES]; 
sync int light_num_entries = 0; 
int light_in = 0, light_out = 0; 
 
TItem* heavy_buf[MAX_ENTRIES]; 
sync int heavy_num_entries = 0; 
int heavy_in = 0, heavy_out = 0; 
 
void barrier() 

{ 

  sync static int count = 0; 

  atomic { 

    count++; 

  } 

  atomic (count == NUM_APP_THREADS) { 

  } 

} 
 
void putfilter(TItem* item) { 
 atomic (fil_num_entries < MAX_ENTRIES) { 
  fil_buf[fil_in] = item; 
  fil_in = (fil_in + 1) % MAX_ENTRIES; 
  fil_num_entries++; 
 } 
} 
 
TItem* getfilter(void) { 
 TItem* item; 
 atomic (fil_num_entries > 0) { 
  item = fil_buf[fil_out]; 
  fil_out = (fil_out + 1) % MAX_ENTRIES; 
  fil_num_entries--; 
 } 
 return item; 
} 
 
void putlight(TItem* item) { 
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 atomic (light_num_entries < MAX_ENTRIES) { 
  light_buf[light_in] = item; 
  light_in = (light_in + 1) % MAX_ENTRIES; 
  light_num_entries++; 
 } 
} 
 
TItem* getlight(void) { 
 TItem* item; 
 atomic (light_num_entries > 0) { 
  item = light_buf[fil_out]; 
  light_out = (light_out + 1) % MAX_ENTRIES; 
  light_num_entries--; 
 } 
 return item; 
} 
 
void putheavy(TItem* item) { 
 atomic (heavy_num_entries < MAX_ENTRIES) { 
  heavy_buf[heavy_in] = item; 
  heavy_in = (heavy_in + 1) % MAX_ENTRIES; 
  heavy_num_entries++; 
 } 
} 
 
TItem* getheavy(void) { 
 TItem* item; 
 atomic (heavy_num_entries > 0) { 
  item = heavy_buf[heavy_out]; 
  heavy_out = (heavy_out + 1) % MAX_ENTRIES; 
  heavy_num_entries--; 
 } 
 return item; 
} 
 
void *app(void *arg) 
{ 
  int tid = *((int *) arg); 
  atomic { 
    barrier(); 
    for(int 
i=0;i<((NUM_LOG_THREADS/NUM_APP_THREADS)*NUM_ITEMS/NUM_APP_THREADS);
i++)   { 
      TItem* elp=(TItem*)malloc(sizeof(TItem)); 
      elp->msg=malloc(sizeof(LIGHTLEN)); 
      elp->len=LIGHTLEN; 
      elp->stamp=i*NUM_APP_THREADS+tid; 
      putfilter(elp); 
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      printf("thread with id %d generated message with stamp %d\n", 
tid, elp->stamp); 
    } 
  } 
} 
 
void *lightlogger(void *arg) 
{ 
  int tid = *((int *) arg); 
  for(int i=0;i<(NUM_ITEMS/NUM_LOG_THREADS);i++) { 
    TItem* elp=getlight(); 
    printf("thread with id %d logged light message with stamp %d\n", 
tid, elp->stamp); 
    free(elp->msg); 
    free((void*)elp); 
  } 
} 
 
void *heavylogger(void *arg) 
{ 
  int tid = *((int *) arg); 
  for(int i=0;i<(NUM_ITEMS/NUM_LOG_THREADS);i++) { 
    TItem* elp=getheavy(); 
    printf("thread with id %d logged light message with stamp %d\n", 
tid, elp->stamp); 
    free(elp->msg); 
    free((void*)elp); 
  } 
} 
 
void *filter(void *arg) 
{ 
  int tid = *((int *) arg); 
  for(int 
i=0;i<(((NUM_LOG_THREADS/NUM_APP_THREADS)*NUM_ITEMS/NUM_APP_THREADS)
);i++) { 
    TItem* elp=getfilter(); 
    if (elp->len == LIGHTLEN) { 
      putlight(elp); 
      printf("thread with id %d filtered light message with stamp %d 
onto light queue\n", tid, elp->stamp); 
    } 
    else { 
      putheavy(elp); 
      printf("thread with id %d filtered heavy message with stamp %d 
onto heavy queue\n", tid, elp->stamp); 
    } 
  } 
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} 
 
int main (int argc, char *argv[]) 
{ 
  pthread_t logthreads[32]; 
  int logthread_args[32]; 
  pthread_t appthreads[16]; 
  int appthread_args[16]; 
  int rc; 
 
  if (argc==1||argc!=5) { 
    printf("Usage: <# app threads> <# logging threads> (0=='low 
rate' | 1=='high rate') (0=='light msg' | 1=='heavy msg')\n"); 
    exit(0); 
  } 
  NUM_LOG_THREADS = atoi(argv[2]); 
  NUM_APP_THREADS = atoi(argv[1]); 
  LOWHIGH = atoi(argv[3]); 
  LIGHTHEAVY = atoi(argv[4]); 
 
  if (LOWHIGH) 
    NUM_ITEMS=HIGHRATE; 
  else 
    NUM_ITEMS=LOWRATE; 
 
  /* create all threads */ 
  for (int i=0; i<NUM_LOG_THREADS; ++i) { 
    logthread_args[i] = i; 
    if (i % 3 == 0) { 
      printf("creating filter logger thread %d \n", i); 
      rc = pthread_create(&logthreads[i], (void *) NULL, filter, 
(void *) &logthread_args[i]); 
    } 
    else if (i % 3 == 1) { 
      printf("creating light message consuming logger thread %d \n", 
i); 
      rc = pthread_create(&logthreads[i], (void *) NULL, 
lightlogger, (void *) &logthread_args[i]); 
    } 
    else if (i % 3 == 2) { 
      printf("creating heavy message consuming logger thread %d \n", 
i); 
      rc = pthread_create(&logthreads[i], (void *) NULL, 
heavylogger, (void *) &logthread_args[i]); 
    } 
  } 
  for (int i=0; i<NUM_APP_THREADS; ++i) { 
    appthread_args[i] = i; 
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    printf("creating message generating app thread %d \n", i);  
    rc = pthread_create(&appthreads[i], (void *) NULL, app, (void *) 
&appthread_args[i]); 
  } 
 
  /* wait for all threads to complete */ 
  for (int i=0; i<NUM_APP_THREADS; ++i) { 
    printf("joining app thread %d\n", i); 
    rc = pthread_join(appthreads[i], NULL); 
  } 
  for (int i=0; i<NUM_LOG_THREADS; ++i) { 
    printf("joining log thread %d\n", i); 
    rc = pthread_join(logthreads[i], NULL); 
  } 
} 


