
Nested pessimistic transactions for both

atomicity and synchronization in

concurrent software

by

Tarek Chammah

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2011

© Tarek Chammah 2011

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

Existing atomic section interface proposals, thus far, have tended to only isolate transactions

from each other. Less considered is the coordination of threads performing transactions with

respect to one another. Synchronization of nested sections is typically relegated to outside of

and among the top-level flattened sections. However existing models do not permit the

composition of even simple synchronization constructs such as barriers. The proposed model

integrates synchronization as a first-class construct in a truly nested atomic block

implementation. The implementation is evaluated on quantitative benchmarks, with

qualitative examples of the atomic section interface’s expressive power compared with

conventional transactional memory implementations.

 iv

Acknowledgements

This work would not be possible without the support and dedication of the people around me.

As the hardest working secretary in the school, Margaret Towell is constantly on top of all

computer science graduate related issues. Margaret stays in the office later than many

graduate students, and has helped me in many ways - academic and personal.

Prabhakar Ragde is the best educator in the school and his dedication to teaching the

undergraduates shows in every class he prepares and the wealth of knowledge he endows his

lectures with. Thanks for motivating me to explore further with the functional paradigm.

William Durocher and Nancy Soontiens. Running a dojo is a tough selfless job and the

dedication and effort put into every Karate practice with us is much appreciated. You do it

purely for the love of the art and it shows in the camaraderie and esprit de corps around the

dojo.

As the senior researcher in our group, Nomair Naeem has given me advice and support in my

work and academic life. When necessary he has also given me a dose of tough love to get

moving!

Peter Buhr is the director of our lab and the doyen of concurrent programming practice and

experience on the faculty. An entertaining lecturer, Peter's enthusiasm for the subject matter

is contagious. As a reader of my thesis Peter has set a high bar for quality. Thanks for

making this a better thesis Peter.

Jonathan Rodriguez and I started in our respective programs in the area of concurrency a

term apart. Though our paths have since diverged, I fondly remember the many late night

chats we had early on as colleagues in the lab on technical issues pertaining to concurrency

models, and their implications. As well, it was often enlightening and always entertaining

discussing general topics varying from economics to history and culture, among countless

other endeavors we shared.

Ondrej Lhotak as my advisor and friend allowed me wide latitude in pursuing many disparate

interests on campus. I have attended a multitude of talks of varying subject matter. In

 v

addition I have pursued extracurricular team endeavors and volunteer activities, and sat in

many a class lecture from different faculties. With freedom comes responsibility and in

retrospect, due to my inability to stay focused, this has not always been beneficial to me. Yet

I appreciate his acceptance of means of enrichment beyond the mere academic. During my

thesis revision process, Ondrej helped me improve my technical writing for more precise

academic communication. I wish we had communicated as effectively in person towards my

research goals. The process of creating this thesis has been a painful birth of sorts, and I am

very grateful for Ondrej's patience and support over the course of my Masters thesis work.

Ondrej has always been respectful and professional; his dedication to the field and our group

has been a constant source of inspiration. Thank you for everything.

 vi

To my parents

 vii

Table of Contents
Author’s Declaration ... ii

Abstract .. iii	
Acknowledgements ... iv	
Dedication .. vi	
Table of Contents ... vii	
List of Figures .. ix	
List of Tables .. x	
Chapter 1 Introduction .. 1	

1.1 Transactional Memory .. 2	
1.2 Pessimistic Transactions ... 4	
1.3 Condition Synchronization ... 5	
1.4 Thesis Contributions ... 7	
1.5 Thesis Structure .. 8	

Chapter 2 Related Work ... 9	
2.1 Transactional Memory .. 9	
2.2 Software Transactional Memory .. 10	
2.3 Pessimistic Atomic Sections ... 11	
2.4 Hybrid Transactional Memory ... 15	
2.5 Condition Synchronization ... 16	

Chapter 3 Language Constructs and Semantics ... 18	
3.1 Syntax ... 18	

3.1.1 Atomic Sections ... 18	
3.1.2 Sync Variables ... 19	

3.2 Semantics .. 19	
3.2.1 Atomic Sections ... 19	
3.2.2 Atomic Section Nesting without Predicates .. 20	
3.2.3 Predicates ... 20	
3.2.4 Sync Variables ... 20	
3.2.5 Predicate Nesting ... 20	
3.2.6 Example ... 22	
3.2.7 Subtlety of Sync Variables and Nesting .. 24	

 viii

Chapter 4 Implementation and Design Decisions ... 25	
4.1 LLVM ... 25	

4.1.1 DSA .. 25	
4.2 Analysis Pass ... 27	

4.2.1 Transformations ... 28	
4.2.2 Sync Variables Implementation ... 30	
4.2.3 Possible Analysis Optimization ... 31	
4.2.4 Transformation Example Featuring Sync Variable ... 31	
4.2.5 Transformation Featuring Inferred Locks and Sync Variable ... 36	

Chapter 5 Evaluation ... 44	
5.1 Quantitative Results .. 44	

5.1.1 Experimental Methodology .. 44	
5.1.2 Microbenchmark Evaluations .. 44	

5.2 Qualitative Examples .. 46	
5.3 Example System Realization and Evaluation ... 49	

Chapter 6 Conclusion and Future Work ... 53	
6.1 Coda .. 53	
6.2 Desiderata .. 54	

Bibliography .. 55	
Appendix A ... 59	

 ix

List of Figures
Figure 3-1 Nested transactions accessing sync variables a and b, in addition to ordinary variable c .. 22	
Figure 4-1 Late locking with variables a, b, and c accessed from SCC nodes alpha and beta 29	
Figure 5-1 Producer / consumer PTM implementation (lower is better) ... 45	
Figure 5-2 Thread barrier PTM implementation (lower is better) .. 46	
Figure 5-3 Light messages and low generation rate (lower is better) .. 50	
Figure 5-4 Light messages and high generation rate (lower is better) ... 51	
Figure 5-5 Heavy messages and low generation rate (lower is better) ... 51	
Figure 5-6 Heavy messages and high generation rate (lower is better) .. 52	

 x

List of Tables
Table 6-1 Producer / consumer microbenchmark data ... 59	
Table 6-2 Thread barrier microbenchmark data ... 59	

 1

Chapter 1
Introduction

Concurrent programming has traditionally been a bane of developers for decades. Ever

since shared-memory locks and condition variables were implemented in the context of

operating systems in the 1970s, programmers have been grappling with concurrency bugs

such as race conditions, deadlocks, and related ills [LPSZ08]. What was once a curiosity for

the average programmer - being the domain of systems developers and parallel computing

centres - concurrent computing has now forced itself into the mainstream of computing

consciousness [SL05].

Now that single-core performance improvements have largely halted due to a multitude of

factors - a confluence of power dissipation, wire scaling, and instruction level parallelism

limits - the burden for increasing performance has fallen onto the typical developer's

shoulders to program for greater numbers of computing cores, which have become

ubiquitous even on consumer devices [OH05].

The average programmer has to navigate the myriad language memory-models and

concurrency libraries on a given platform - usually based on locks and condition variables -

in order to construct and attempt to reason about concurrent programs, which are likely to

contain subtle bugs that may manifest themselves only years down the line. While there have

been effective dynamic race-condition detectors developed, the instrumented programs’

performance can be degraded by a factor of ten or more and the false positive rates are

excessively high [SBNSA97] [Nish04].

Ensuring mutual exclusion for concurrently accessible data can be done through coarse or

fine-grained locking schemes. Employing a few coarse-grained locks to protect access to

program modules is straightforward, in that it simplifies the problem. However, parallel

performance suffers due to insufficient granularity of data able to be accessed in parallel. For

example, a big lock protecting a hash table prevents concurrent access to distinct buckets that

a finer-grained locking scheme allows. Yet ensuring a program is deadlock free is a difficult

 2

task to achieve in the presence of fine-grained locking, which is necessary to improve the

performance of concurrent code. However, unlike race conditions, deadlocks [CES71] are

easy to detect once threads are intertwined in a deadly embrace, as they manifest themselves

in a program or component hang.

Bugs inherent in traditional shared-memory programming are only one facet of the

problems plaguing concurrent programs. Another issue concerns the composability of

software in the presence of explicit fine-grained locking. Disparate modules and objects may

need to be accessed whilst holding unrelated locks. Thus, arbitrarily code cannot be

refactored and the program expected to work in the presence of an increasingly complex

maze of locks, due to intertwined concerns of mutexes and the code they protect. Therefore,

the inner workings of sub-modules and the data accessed therein must be known and

understood in order to properly refactor such programs. Hence, a program composed of

nominally separate modules cannot be reasoned about one module at a time. Changes must

necessarily take into account all code and data accessed within the scope of the program.

Software engineering best practices must often be broken when these separate concerns are

intertwined.

1.1 Transactional Memory

As a response to this dilemma, in recent years a concurrent programming abstraction

known as transactional memory [HM93] has gained prominence. Transactional memory

provides for mutual exclusion for all data accessed within the confines of a transactional

block of code. Originating from the database world, the notion of a transaction [Lome77]

provides the properties of Atomicity, Consistency, Isolation, and Durability (ACID).

Atomicity provides the guarantee that a sequence of statements executes indivisibly. In

essence, its effects are observed to occur all at once, or not at all. Consistency ensures the

effects of a transaction transform the program’s state such that its logic is not violated and its

invariants are maintained. Code inside a transaction is nominally isolated from the effects of

statements in separate concurrent transactions. Were concurrent transactions to access the

same data with at least one of them mutating it - a conflict – the transactions must be

 3

serialized, using an abort and retry mechanism. This method, serialization, ensures the

effects of one transaction are isolated from those of another. Durability is a property not

present in transactional memory, though in the context of databases, assures successfully

executed transactions are saved to a stable store, such that state is not lost in the event of a

malfunction.

Programs constructed with such transactions exhibit atomicity of statements within atomic

sections. In addition, statements within disparate atomic sections are isolated from one

another. Transactional memory does not suffer from the deadlock and race condition

problems plaguing traditional programmer specified lock-based concurrent code. Another

benefit of transactional memory is the all or nothing nature of transactions that commit or

abort, due to its atomicity property. The state of the program is never left in a half mutated

state, but is consistent with the full updated results from a completed transaction, or rolled

back to the state that existed before memory was mutated by an aborted transaction.

In transactional memory, an atomic section's read and write sets constitute the sets of

memory cells read and written respectively by statements executed within the section at

runtime. Statements within atomic sections execute optimistically assuming exclusive access

to their portion of the program state. If a section's read and write sets conflict with another's

then all but one of the transactions aborts, meaning their effects are rolled back to the prior

state before the transaction(s) executed. Otherwise, a transaction succeeds upon commit,

meaning its effects are made visible to other threads.

Transactional memory suffers from the cardinal problem of not handling irreversible

operations well. Such operations include operating system calls and I/O routines which

cannot in general be reversed through a rollback of state due to interactions with the physical

world. Typical implementations execute only one transaction containing irreversible

operations at a time - a singular master transaction - that can abort any transactions it comes

into conflict with. Obviously the lack of concurrency for such transactions limits the potential

of transactional memory in I/O heavy applications.

 4

Transactional memory can be implemented purely in software [ST95]. Software

transactional memory must record all memory locations read and written to as well as all

values mutated in the course of a transaction. The extra bookkeeping costs typically result in

significant performance degradation due to the overhead of tracking of read and write sets

and storing prior values in the runtime implementation. In practice, some of the overhead

can be mitigated through dataflow analysis, as well as dynamic filtering to remove redundant

bookkeeping [Har09].

1.2 Pessimistic Transactions

An alternative to software transactional memory is to utilize pessimistic atomic sections

[MZGB06] to implement the transactional memory semantics. Such a solution involves

performing static program analysis to infer a set of locks for each atomic section. These

locksets correspond to the abstract memory locations affected during the execution of the

section at run time. The inferred locks ensure an atomic section has exclusive access to

update its portion of the program’s state; therefore, by definition, its effects cannot conflict

with those of another section. The original programs are transformed to utilize locking

libraries in the implementation to ensure mutual exclusion. Pessimistic atomic sections can

permit concurrency of irreversible and I/O operations because actions in disparate sections

are predetermined not to conflict. Therefore, arbitrary irreversible operations are permitted

since nothing is rolled back.

However, such implementations also suffer from performance degradation due to

conservative static program analysis necessary to predetermine the program execution at

runtime is faithful to the semantics of transactional memory. An important analysis

employed is that of determining the sets of memory locations a program pointer points to.

Statements can affect memory indirectly through pointers and a determination of which

locations are aliased is necessary in order to guarantee atomicity of shared-memory locations.

The locksets inferred from these sets of shared-memory locations are necessarily imprecise

as the runtime states of arbitrarily complex programs cannot be computed statically; it is in

general an undecidable problem. Such conservative assumptions do not typically permit as

 5

large a number of concurrent transactions to execute in parallel even when they can actually

do so at run time without conflict, as implemented in software transactional memory.

1.3 Condition Synchronization

A general problem with transactional concurrency models is the lack of support for

condition synchronization. Condition synchronization is a mechanism that enables threads to

communicate in order to wait for each other, enforcing an order of execution between them.

For example, a consumer thread, when it encounters an empty queue, can be made to wait

until a producer thread fills the queue and notifies the consumer.

Condition synchronization has traditionally been implemented using condition variables,

or built into monitors. A condition variable supports two operations: signal (or notify) and

wait. The wait operation blocks the thread that calls it until another thread invokes the signal

operation on the same condition variable. Synchronizing atomic operations on certain

conditions determines what can occur before and after certain program states, which is

necessary to partially order concurrent operations.

Consider the case of a thread arriving at a barrier and only proceeding when all threads

have arrived:

void enterbarrier() {

 atomic {

 count+=1;

 }

 atomic (count == thread_count) {

 ...

 }

}

This procedure waits until the number of threads that have reached the barrier is equal to

the thread count. Upon entry into the first atomic section, each thread atomically increments

the count of the total number of threads entered thus far. The thread then evaluates the

predicate “count == thread_count”, which becomes true when all threads have

 6

reached this point in the routine. If a predicate evaluates to false conventional

implementations would retry the (top level) atomic section.

If a developer calls enterbarrier() from within another (conventional) transaction:

atomic {

 ...

 enterbarrier();

 ...

}

The conventional transactional memory implementation would never allow the

incremented count values from other threads to be made visible to a thread executing the

barrier, due to the isolation property maintained by the outermost transaction. Thus, the

evaluated predicate would never become true, due to the rollback of the increment.

Therefore, in a conventional optimistic implementation the transaction never completes,

resulting in a live-lock situation. It is the responsibility of the programmer to ensure such

transactions are not composed, which would result in this error.

In this thesis, inserting a new parent transaction around the previously written transactions

allows the newly composed system to function as a whole, promoting modularity. Thus, in

the barrier example, the value of the incremented count variable is immediately made visible

to the nested waiting transactions, and hence, the predicate eventually is satisfied when all

threads reach the barrier, permitting them to pass.

A new atomic section interface model is presented that enables certain types of

composition. However, due to the model’s expressive power, the developer is not prevented

from crafting erroneous predicate code that prevents forward progress. Nevertheless, it is

desirable to coordinate threads with condition synchronization, and predicates - whether

inserted into conditional statements in transactions lacking composability or promoted to first

class status as part of the atomic section interface - cannot (in general) be evaluated statically

to guarantee forward progress of the program at runtime.

 7

1.4 Thesis Contributions

With conventional nested atomic section semantics, a nested transaction ensconced in

another cannot make its effects visible to other threads upon commit. Only the successful

commit of its top-level parent transaction ensures the new state becomes visible. Therefore,

reusing the example of the barrier mechanism as part of a higher-level parent transaction

[SKBY07] prevents state changes in the nested transaction from being made visible to other

threads entering the barrier because aborting and retrying the top level transaction upon a

failed inner predicate is not a plausible solution. As a result, there can be no progress in a

thread’s execution as it rolls back its increment of the count variable; therefore the predicate

can never be satisfied.

The outcome whereby code reuse necessitates reasoning about the inner workings of

callees and refactoring the program to guard against breakage is clearly unsatisfactory as

again the notion of proper abstraction and composability of code within concurrent software

is compromised, similar to explicit locking. Basic concurrent solutions such as barriers and

producer/consumer patterns cannot be composed with other transactions. Attempting to

reuse formerly top-level transactions within other transactions unfortunately renders these

patterns unusable, thus breaking the modularity promise of transactional memory.

However, synchronization among threads entering the barrier under a parent transaction

can be ensured by employing a new kind of synchronization variable for the count value

evaluated in the predicate to guard entry to an atomic section. Sync variables allow for

nested atomic sections to engage in condition synchronization by perforating the

transaction’s atomicity in order to permit restricted communication of state changes among

transactions. This novel mechanism enables certain classes of composability, but can also

limit potential concurrency among atomic sections directly accessing the same sync variable.

However, the parent sections of these atomic sections can nevertheless execute concurrently.

This work presents an attempt to craft a semantics and develop an implementation for

pessimistic atomic sections that promotes local program reasoning and easy refactoring in

order to ensure modularity is maintained. Piercing atomic sections in this manner is shown

 8

to support expression of condition synchronization in a composable fashion and reasoned

about with relative ease. This work shall further endeavor to demonstrate these assertions

through an efficient system and software crafted in order to assess the stated aims of this

work. Both quantitative results and qualitative samples shall advance the robust claims

contained herein.

1.5 Thesis Structure

The rest of this work is organized into the following sections: Chapter 2 surveys prior

related works and provides the requisite background and terms of reference for the thesis.

Chapter 3 discusses the language constructs introduced and their semantics. Chapter 4 delves

into the implementation of the system and the design decisions considered. Chapter 5

presents quantitative benchmark evaluations of the system and includes qualitative results

and their interpretation, as well as an implemented system featuring the model. Chapter 6 is

the coda of this work and summarizes the thesis. It also contains a section on desiderata,

potential extensions and possible avenues of exploration.

 9

Chapter 2
Related Work

This chapter discusses transactional memory, which was originally introduced as a

hardware extension; software transactional memory, which avoids the requirements for

special hardware; pessimistic atomic sections, which maintain the interface and much of the

semantics of software transactional memory yet do not undertake speculative operations; and

finally condition synchronization, a method of ordering concurrent operations and atomic

statements.

2.1 Transactional Memory

The inception of the field of transactional memory was initiated by Herlihy [HM93] based

on some processor architectures with synchronization idioms in the form of a load-linked and

store-conditional pair of instructions. Upon loading a datum from memory (with the load-

linked instruction) the associated datum address is recorded. A sequence of computation

instructions is allowed on the datum until it is ready for storing (with the store-conditional

instruction) back to memory. If in the meantime the address has been written to by another

processor, or an exception occurred from one of the computations on the datum, or an

interrupt was signaled, then the store fails, and the sequence has to be retried.

In Herlihy’s initial (hardware) transactional memory proposal, this instruction sequence

was extended to permit multiple memory locations to be tracked. Thus, an atomic sequence

featuring multiple variables could be attempted within a transaction. Support for maintaining

transactional coherence requires the use of existing multiprocessor coherence protocols, and

a buffer or part of the cache to maintain speculative state. As the initial proposal required

dedicated hardware support, some sought to achieve similar semantics purely from the

software system, without specialized processor structures that often have very limited sizes

and may never be supported by industry.

 10

2.2 Software Transactional Memory

Software transactional memory (STM) became popular as a method to support

transactions, requiring separate per thread speculative heap state and conflict detection

among ongoing transactions. Software transactional memory implementations must record

all memory locations read and written to as well as all values mutated in the course of a

transaction. The extra bookkeeping costs typically result in significant performance

degradation - more than an order of magnitude over an equivalent sequential program - due

to the overhead of tracking of read and write sets and mutated values in the runtime

implementation. In the initial work of Shavit [ST95], transactions were static in that they

were limited to fixed data declared as concurrently accessible and thus permitted to be

mutated inside an atomic section.

Today’s STMs are fully general with dynamically initiated transactions and arbitrary

transactional state, due to advances by Herlihy [HLMS03]. Though Herlihy pioneered

effective contention management for transactions to permit higher throughput, the resulting

systems manifested order of magnitude overheads, or more, as compared to non-transactional

execution.

Unlike conventional closed-nested transactions [Moss82], where the effects of a nested

section are invisible to other threads until the top level section completes, open-nested

transactional memory as pioneered by Moss [Moss06] permits the effects of a nested section

to be made visible as soon as the section commits, and thus, punctuates the top-level

transaction, similar to this work. The difference is this thesis work is pessimistic and thus

never needs to rollback. Contrast to an open-nested top-level transaction that is optimistic,

and hence when the transaction aborts, compensating actions must often be specified by the

programmer to undo the effects of a committed nested section, for those operations that can

be undone.

For example, open-nested transactional implementations can buffer output in certain

circumstances so that it is not immediately visible. Upon a nested transaction abort, the

developer can specify a compensating action through a registered abort handler to nullify the

 11

buffered output, thus properly rolling back the transaction. Upon a nested transaction

commit, the reads and write sets of the inner transaction are cleared from that of the parent.

Thus, a memory conflict does not occur between the parent and child transaction if the parent

accessed the memory committed by the child. However, this has implications for the

programming model: if an inner transaction needed to abort upon detection of such a conflict

- in order to maintain the program’s logical semantics - then such a course of action is no

longer possible. Therefore, the notion of abstract locks is introduced in the open-nested

transactional model for child transactions to acquire. Acquiring such a lock ensures detection

of high-level (non-memory) conflicting actions with the parent transaction.

Both closed and open nesting can improve performance since if a nested transaction aborts,

it can be rolled back and re-executed without aborting the outer transaction. However, open

nesting admits more concurrency than closed nesting due to a greater set of allowable

schedules, yet it can exhibit loss of serializability [ALS06] in the most popular

implementations if the effects of aborted transactions either remain visible or are allowed to

be reified as part of optimistic retry constructs made available to the programmer. Similar to

this work, communication among transactions involving waiting within an optimistic

framework has most recently been formulated [LM11] as part of a model tracking

dependencies among transactions, and either aborting or committing all mutually dependent

transactions together, without requiring compensating actions.

Although STMs are more scalable than software utilizing locks, in that they have

potentially higher throughput, they have been found to be slower than lock-based concurrent

codes in the contended case, when transactions experience frequent aborts due to conflicts.

This result, as well as the fact that optimistic transactional systems cannot by their nature roll

back irreversible actions, led to the development of pessimistic transactional systems, which

by default assume the conflicting case and thus do not roll back.

2.3 Pessimistic Atomic Sections

Pessimistic atomic section implementations typically utilize a collection of static program

analyses to infer a set of locks for shared data accessed within atomic sections. These

 12

locksets correspond to the abstract memory locations affected during the execution of the

section at run time. The inferred locks ensure an atomic section has exclusive access to

update its portion of the program’s state; therefore, by definition, its effects cannot conflict

with those of another section. Fine-grained lock inference allows for higher levels of

concurrency, yet the analysis required is prohibitive to calculate, and it is typically

impossible to obtain the necessary precision. Coarser locks increase thread contention of

accessed data, preventing otherwise distinct concurrent accesses from being performed, and

hence, reducing performance. The original programs are transformed to utilize locking

libraries in the implementation to ensure mutual exclusion. Traditional locks from the

underlying platform are utilized and lock acquisitions and releases are inserted to ensure

atomicity.

Brewer [MZGB06] first proposed annotating shared data that is to feature in an atomic

section for transformation into an underlying set of locks. His Autolocker framework could

infer a set of lock acquisitions and releases for the program and guarantee a deadlock free

ordering of lock acquisitions. Autolocker allows dynamically allocated shared data to be

marked, thus ensuring fine-grained instance-based lock inference. Autolocker begins its

transformation process by merging all files for a program and extracting the atomic sections.

A dependency graph is generated containing all the locks acquired within the sections. Then,

a topological sort is performed to obtain a global deadlock free ordering of lock acquisitions.

If a deadlock free transform cannot be obtained (due to a cycle in a dependency graph) for

the given input, Autolocker signals an error at compile time.

Unfortunately, this approach places an annotation burden on the developer as compared to

conventional transactional memory: concurrently accessed variables need to be marked with

the locks protecting them. A consequential problem is that the annotations might be

incorrect. Nonetheless, the programmer is freed from manually acquiring and releasing locks

in order to access certain data.

Subsequent work has improved on Autolocker by eliding this annotation burden placed on

the programmer, moving to provide an atomic interface substantially similar to transactional

 13

memory systems. Hicks [HFP06] utilizes static whole program analysis to infer coarse-

grained locks directly from the data accessed in atomic sections. A lock is associated with a

set of memory locations; acquiring a lock thus guarantees mutual exclusion to a thread

entering an atomic section with respect to all variables accessed within the section. Another

improvement in their work is to reduce the number of locks needed by merging locks that are

always present together in the locksets of atomic sections throughout the program.

Depending on the implementation of locks (e.g., kernel versus user locks), lock acquisition

and release can be costly in terms of time to perform a system call and time spent in the

kernel. Further work by Emmi [EFJM07] attempts to minimize the set of locks needed for

the atomic blocks by formulating lock allocation as a Binary Integer Programming (BIP)

problem. Obtaining optimal solutions surprisingly did not take an exorbitant amount of time

(less than a second for most programs), though transforming the atomic sections into BIP

formulations did, taking the better part of an hour in one case.

The work of Cherem [CCG08] infers fine-grained per data structure instance locks by

performing a backwards analysis for each heap location accessed within an atomic section.

Dereferenced pointer expressions corresponding to heap accesses that are in scope at the

beginning of the atomic section are locked. To ensure analysis termination, derived

expression locks are inferred up to a specified expression size limit, at which point coarse-

grained locks are utilized. Furthermore, a multi-granularity locking library and assignment

scheme is utilized such that deadlock is avoided at runtime, for the most precise compile time

assignment of locks to date. Cunningham [CGE08] [CDE08] implemented a lock inference

framework for Java that supported unbounded atomic section accesses - necessary when

accessing the nodes of a recursive structure such as a linked list for example - through a

formulation into regular expressions. However, their framework does not prevent deadlocks

resulting from inserted locks, but detects them at runtime and attempts to roll back state.

Zhang, [ZSZSG07] [ZSZSG08] and Halpert [HPV07] aim to support the existing

concurrent interfaces of OpenMP and Java monitors respectively, without requiring the

programmer to supply locking information. Their works cover programs containing such

concurrent constructs, though they disregard existing locking information and attempt to

 14

infer the set of locks required while adhering to the respective concurrent interface contracts.

They both use a May-Happen-in-Parallel analysis to aid in building an atomic section

interference graph. Whereas other works infer the locks for a section from the aliasing

information of the data accessed within, these two works utilize the concurrency interference

graph to discern conflicting atomic sections and assign the same lock to them. A graph

containing nodes representing critical sections has edges between nodes if they interfere in

their accesses of a specific variable. They also formulate heuristics to minimize the number

of locks allocated.

In order to fully support their respective concurrent interfaces, both of these works also

allow condition synchronization, in that a thread inside a critical section or monitor may wait

on another thread until a specified condition becomes true. However, Zhang et al. forbid

nested sections; while Halpert et al. do support nesting there is no notion of atomicity as it

pertains to the enveloping parent sections. Two-phased locking is a locking policy initially

utilized in databases to guarantee the serializability of transactions. Two-phased locking

mandates a lock acquisition phase followed by a lock release phase; once any locks are

released, no locks can be further acquired within a transaction [EGLT76]. Since Halpert et

al. only support Java's critical sections semantics, they do not need to implement two-phased

locking to guarantee the outermost transaction is atomic.

In contrast to conventional operation-centric transactions, which are essentially blocks of

code delimited by transaction begin and end statements, Vaziri [VTD06] attempts to

formulate a data-centric synchronization framework that automatically locks sets of data as a

byproduct of accessing objects. Developers annotate fields within classes whose objects

must be synchronized together as an atomic set, and the compiler infers atomic sections to

satisfy these consistency constraints. In essence, the specified higher-level data constraints

replace the more voluminous operation-centric synchronized blocks, reducing the chances of

data races due to programmer error in properly delimiting transactions.

 15

2.4 Hybrid Transactional Memory

There have been attempts at combinations of pessimistic and optimistic atomic section

implementations. Pessimistic atomic section implementations suffer from performance

degradation due to conservative static program analysis necessary to prove that the program

execution at runtime is faithful to the semantics of transactional memory. Such conservative

assumptions do not typically permit as large a number of concurrent transactions to execute

in parallel even when they can actually do so at run time without conflict, as implemented in

software transactional memory. As a result, pessimistic implementations can take up to a

factor of eight times that of optimistic implementations to execute certain microbenchmarks

in the high contention configuration [CCG08]. On the other hand, the extra bookkeeping

costs in software transactional memory result in significant performance degradation due to

the overhead of tracking read and write sets and mutated values in the runtime

implementation. This cost is typically ameliorated by hashing the addresses of accessed

shared data words to a smaller number of runtime metadata objects, which are utilized to

track the read and write sets of transactions. However, this can result in false conflicts, not

unlike the approximation inherent in a static analysis of an aliased datum’s abstract set of

memory locations. Realizing this, Mannarswamy’s [MCRS10] work aims to statically infer

the mapping of a subset of the shared data within a program to distinct runtime metadata

objects. At runtime, the STM implementation (TL2) allocates these mappings to their own

metadata objects (ensuring false conflicts are not experienced), and meanwhile maps the rest

of the accessed shared data as it otherwise would.

The work of Usui [UBES09] collects runtime statistics on aborts as well as commits and

adaptively executes critical sections with either locks or optimistically as transactions.

Sections that have experienced high contention are automatically switched to acquiring locks.

However, sections have to be marked with programmer annotated coarse-grained locks,

which detracts from the composability and deadlock-freedom properties of conventional

atomic sections. The work of Dalessandro [DDSSS10] supports a restricted hybrid

transactional model in which atomic sections that write are executed pessimistically and

 16

cannot abort, while sections that only perform reads are executed optimistically and

concurrently with other such sections, but can still abort.

2.5 Condition Synchronization

Whereas most atomic section implementations concern themselves with atomicity, there

have been attempts at supporting condition synchronization mechanisms directly as a first

class construct in the atomic section interface. Harris [HF03] adapts C.A.R. Hoare’s

Conditional Critical Regions (CCR) construct to an atomic section interface for use by an

STM implementation. A CCR permits entry into a delimited region of code upon the

evaluation of a predicate to true. As adapted by Harris, a predicate is permitted just after the

atomic keyword, delineating a conditionally executed atomic section. However, within

Harris’ work, all conditions within nested atomic sections are effectively evaluated at the top-

level transaction (hence, nested atomic sections are flattened into the parent sections), and

therefore, no mechanism is provided to communicate among atomic sections. Essentially,

any condition evaluating to false aborts the top-level transaction.

The work of Smaragdakis [SKBY07] attempts a rather complex atomic section

programming model - with nine additional keywords in total - in support of communication

among transactions. Transactions are permitted to observe the effects of other sections and

conditionally execute through the use of a wait keyword followed by a predicate that can be

placed in the middle of an atomic section. Transactions are executed and automatically

commit upon either a wait statement whose condition evaluates to false or encountering an

irreversible operation. Such an early commit splits the transaction into a finished part and

future transaction that is awaiting execution. The programmer must manually reestablish

program invariants upon resumption of the rest of the new transaction once the condition is

evaluated to true, or the irreversible operation finishes execution. Every procedure

transitively containing such a suspending transaction must be annotated as such. This

annotation is to aid the programmer via type system enforced warnings in the model.

 17

This chapter has discussed the history of transactional memory and atomic sections, the

quest to make them flexible and expressive in terms of synchronization as compared to

traditional locking constructs, while maintaining their ease of use.

 18

Chapter 3
Language Constructs and Semantics

The atomic section implementation consists of syntactic additions to a base language and

their accompanying semantic modifications. These constructs are discussed and elaborated

upon.

3.1 Syntax

The proposed atomic section interface consists of the addition of two new keywords to the

C99 language.

3.1.1 Atomic Sections

The atomic keyword specifies an atomic section compound block. The section occurs

wherever a statement is allowed, and it may contain an optional parenthesized predicate

guard:

atomic [(predicate)] {

}

An ANTLR grammar [PARR06] for C would incorporate the following rule:

atomic_statement
 : 'atomic' (options: '(' expression ')') statement
 ;

Where the added statement is part of the statement non-terminal production:

statement
 : labeled_statement
 | compound_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement
 | atomic_statement
 ;

 19

3.1.2 Sync Variables

The sync keyword consists of a declaration qualifier for a static or global variable:

sync int var = 0;

An ANTLR grammar would incorporate the aforementioned construct as part of the

following rule:

type_qualifier
 : 'const'
 | 'volatile'
 | 'restrict'
 | 'sync'
 ;

Sync variables may only be accessed within the body or guard predicate of an atomic

section. Furthermore, a given sync variable cannot be accessed within multiple nested

transaction levels along a given path of execution within a transaction. Such a program

construction is considered erroneous and is detected at compile time, resulting in a compiler

error. The atomic block syntax with optional predicate is similar to that of Harris style

conditional critical regions [HF03] as implemented for the Java language. The sync modifier

is unique to this design, though in the current implementation sync variables are limited to

static and global integers.

3.2 Semantics

3.2.1 Atomic Sections

Execution of an atomic section entails execution of the statements within it. Other threads

observe the effects of the executed statements atomically - all at once - after all the

statements have completed, except for effects on sync variables. Threads execute atomic

sections one at a time when exclusively accessing the same variables. Variables accessed

exclusively may only be accessed by one thread at a time.

 20

3.2.2 Atomic Section Nesting without Predicates

A transaction syntactically nested within a parent transaction is executed as an atomic

block of statements as part of the outer transaction, which itself is a larger atomic block.

Variables accessed within a nested section are automatically accessed exclusively in the

parent section. In addition, variable accesses in nested sections contained within conditional

statements are also accessed exclusively in the parent transaction, as the implementation is

pessimistic. This is the closed nested model of transactions [Moss82], that is an atomic

section model where the effects of a nested section are not visible to other threads until the

top-level atomic section completes.

3.2.3 Predicates

The definition of an optional predicate expression for an atomic block permits an atomic

section to block while waiting for a predicate to evaluate to true before executing the

statements within. Predicates are composed of arbitrary side-effect free expressions

containing ordinary as well as sync variables. An unsatisfiable predicate due to erroneous

program construction results in an indefinitely blocked thread, i.e. synchronization deadlock.

Predicates permit condition synchronization of programs utilizing atomic sections.

3.2.4 Sync Variables

The effects of mutations of variables declared with the sync modifier – sync vars – are not

observed atomically but rather perforate transactions in that they are observed when the

directly accessing atomic section completes. In the execution model - as opposed to the

implementation, which is pessimistic by default - the enclosing transaction is normally

executed pessimistically when it contains a sync variable. A sync variable within the

predicate expression of an atomic section is considered part of the set of variables accessed

within the section.

3.2.5 Predicate Nesting

Nested transactions may wait on predicate expressions to become true before executing.

However, ordinary non-sync variables accessed within the section are accessed exclusively,

 21

and thus, are not of much use in a predicate expression, whose state must change in order to

eventually become true and allow entry to the nested section. Therefore, sync variables must

be utilized as part of a predicate expression, and as sync variables are not atomic with respect

to the enclosing parent transaction, the resulting predicate expression is able to change state.

An atomic section directly (that is, not transitively) accessing a sync var syntactically

present within the section is guaranteed exclusive access to the variable for the duration of

the section. Upon termination of the directly accessing section, the sync var is no longer

atomic, irrespective of the nesting depth of the section, and any changes performed to it are

immediately visible to all threads, unlike ordinary non-sync variables accessed within a

nested section.

Thus, the perforation of transactions that sync vars provide permits some measure of

limited communication among threads in an otherwise closed nested model of transactions.

The earlier aforementioned erroneous program construction from section 3.1.2 results in a

compiler error because only one nested level or depth of an atomic section is permitted to

directly access a sync var. A nested transaction further accessing a sync var in addition to its

parent is nonsensical, as the parent transaction directly accessing the sync var would not be

guaranteed an atomic view of it.

Figure 3-1 displays a diagram showing the nesting depth of nested transactions and the

exclusivity and subsequent visibility of the accessed ordinary variable c and sync variables a

and b within, as specified in this example code block:

atomic (/* a synchronized */) {

 atomic (/* b synchronized */) {

 /* c accessed */

 }

 atomic (/* b synchronized */) {

 }

 /* a accessed */

 22

}

Sync variable a is accessed in the top-level section and is exclusive to said section until

completion and cannot be accessed in its nested sections. Sync variable b is accessed in the

two nested sections and is exclusive to them until they complete and cannot be accessed in

the parent section. Ordinary variable c happens to be accessed in the first nested section and

is held exclusively for the entirety of the top-level section.

Figure 3-1 Nested transactions accessing sync variables a and b, in addition to ordinary

variable c

3.2.6 Example

This is illustrated with an example of a simple thread barrier. Threads reaching a barrier

typically each increment a counter and wait, with the last arriving thread permitting all

threads to proceed past the barrier when the condition becomes true. Barriers permit multiple

threads to synchronize actions in stages. A barrier in the presented transactional model can

be implemented as such:

void enterbarrier() {

 sync int static count = 0;

 atomic {

 count+=1;

 }

 atomic(count == thread_count) {

 ...

 }

}

Time

N
es

tin
g

de
pt

h

a

b b
c

 23

The barrier code - which may be implemented as part of a library module - may be called

and thus composed within the logic of a program already containing an atomic section like

so:

atomic {

 ...

 enterbarrier();

 ...

}

If the counter is not declared as a sync variable then the program threads executing the

enclosing atomic section containing the barrier code could not observe the increment of the

counter by other threads and the barrier would not function properly. The enclosing section

never completes as the nested barrier section waits indefinitely for the counter variable to

change.

If an atomic section specification is an otherwise closed nested model though permitting

the programmer to have a limited form of communication of mutated values outside of the

transaction, then atomic sections can be composable. This is the motivation for the

introduction of sync variables in the present work. They are meant to be included in

predicate expressions guarding entry to atomic sections and, when mutated inside, their

updated values are visible outside of the immediate transaction upon its conclusion.

In the barrier example, assuming the variable named count is a sync variable then its

incremented value is visible to the second nested transaction. Two or more atomic sections

attempting to directly access a particular sync variable have to do so one at a time, that is, the

variable is accessed exclusively by the directly accessing section. Upon exiting an atomic

section where a sync variable is accessed, the variable is free to be tested as part of the

predicate expression of other waiting transactions, including the next nested transaction in

the example given.

As a sync variable is externally visible, the action of mutating it is considered irreversible

and thus a transaction undertaking such an operation must be executed pessimistically. In

this atomic section model, transactions containing external operations must be executed

 24

pessimistically. While this simplifies the programming model for the developer, it has

certain important implications.

3.2.7 Subtlety of Sync Variables and Nesting

It is generally considered ill-advised from a performance perspective to prevent

independent concurrent operations from proceeding while a thread blocks on an operation.

Yet that is what pessimistic transactions containing deeply nested waiting transactions can do

to other threads. This is not a formidable obstacle as the depth of nesting in typical

transactional code has been measured to be low [CCMM06].

A further implication for the model is that certain program constructions can suffer from a

situation akin to the nested monitor lockout problem [List77] found in concurrent monitor

based code. This problem is manifested when a thread holding a resource(s) is waiting to be

signaled by another thread which requires the resource(s) to signal the waiting thread. This is

distinct from a deadlock condition in that the threads in question may well have acquired the

resource(s) according to a common total order, though it still results in a program not making

forward progress. Nested monitor lockout may be resolved through a change in the affected

code to remove the problem. It is important to note that concurrent languages featuring

monitors such as Java and uC++ have chosen to allow for the possibility of the nested

monitor lockout problem to occur as an alternative to the programmer having to manually

establish program invariants upon monitor entry, which requires global program reasoning.

Developer diligence and awareness of this issue is a requirement in this atomic section

model.

 25

Chapter 4
Implementation and Design Decisions

Overall the system assigns locks to atomic sections so that when they access the same

variable, the sections are assigned the same lock, which guarantees exclusive access to the

variable at runtime. Determining the set of variables accessed - and thus memory locations

accessed - is a necessary prerequisite before locks are mapped to sections. Thus, tallying the

set of memory objects accessed within each routine in a program’s call graph and deducing

the set of corresponding locks needed is the task of the analysis performed within the

implemented system. The implementation details, including modifications to the front end

and analysis and transformation phases of the augmented compiler infrastructure, are

elaborated.

4.1 LLVM

The added constructs were implemented for the C99 language as supported in the Low

Level Virtual Machine (LLVM) 2.6 compiler infrastructure [LA04] augmented with the Data

Structure Analysis (DSA) module [LLA07]. LLVM is a relatively new compiler framework

and typed intermediate representation based on static single-assignment form [CFRWZ91].

Its modern modular design facilitates new whole program optimizations and robust clean

extensions for research and experimentation. Note optimizations applied across the entire

program are possible at link time where code exists for both the application program and any

libraries utilized. New in the 2.6 version of LLVM is a modular front end, clang, to natively

parse many C-like languages. LLVM’s clang front end was modified to accept the new

constructs.

4.1.1 DSA

DSA is a fast mostly O(n*log(n)) time complexity points-to analysis. It is mostly context

sensitive in that the calling procedure context is taken into account in the resulting analysis in

order to yield further precision.

 26

DSA calculates a data structure graph (DSG) for each function in the input program such

that distinct nodes represent disjoint sets of dynamic memory objects and edges correspond

to pointers from the fields of the memory objects (nodes) to other such objects. A DSG may

also contain call nodes to other such graphs representing calls in the program control-flow

graph. The structures provided by DSA can readily be used to ascertain whether two pointers

within the same function (corresponding to a DSG) may alias. DSA does not directly support

aliasing queries - queries determining whether the set of memory objects pointed-to by a pair

of pointers intersect - involving pointers corresponding to nodes in different functions,

though DSA provides the aforementioned structures and relations that can be processed to

determine whether functions accessing data through a pointer alias the same memory object.

Determining whether sets of accesses alias is necessary in order to guarantee independence

of statements and their runtime effects.

DSA operates in three phases: local, bottom up, and top down. In the first stage of DSA, a

DSG is created for each function in the input program using only intraprocedural

information. The second (“bottom-up” postorder traversal) stage incorporates information

from the callee DSGs into the caller DSGs by cloning the former into the latter, eliminating

incomplete information due to call nodes in a function, and thus, completing the construction

of the call graph. The third (“top-down” reverse postorder traversal) stage merges the caller

DSGs into each of their callee DSGs.

After the third stage, two distinct functions both calling a third have the memory object nodes

corresponding to their arguments merged together into the called function’s DSG, losing

context sensitivity. Context sensitivity is also lost in self and mutually recursive procedures.

Maintaining context sensitivity during this stage by splitting the called function’s DSG for

each distinct callsite significantly expands the memory utilization of DSA, and thus, splitting

is not performed. After DSA finishes, complete information is attained for every input

function’s DSG and nodes contained therein, except for memory objects that may be

accessed by code external to the analyzed input program.

 27

4.2 Analysis Pass

This work features a lock inference analysis that, broadly speaking, forms global

equivalence classes of memory objects, assigns said classes for each atomic section in each

function corresponding to memory transitively accessed through contained called functions,

and forms equivalence classes for encountered sync variables.

The analysis pass uses the results of the top-down DSA phase to generate the points-to

sets. The analysis first matches the DSG nodes of the arguments and formal parameters

across function calls in different DSGs corresponding to the caller and callee. The matched

nodes across the functions of the input program are subsequently put into global equivalence

classes (ECs). This step facilitates determining whether two pointers across the whole input

program may alias by simply checking if their corresponding matched nodes are placed in the

same equivalence class.

After forming the global equivalence classes, the lock inference analysis pass collects the

ECs corresponding to accesses at every program point in order to tally the set of equivalence

classes of memory locations accessed inside each function. Input programs' call graphs are

then cleaved into strongly connected components (SCCs). The SCCs of the call graph are

traversed bottom up in order to union the ECs of the callees up into the calling functions.

This step is performed so the ECs corresponding to the functions that are transitively called

inside any atomic section are accounted for.

A non-trivial SCC containing more than one procedure assigns the ECs of the atomic

sections inside each procedure within the tally of all the ECs corresponding to all the

memory locations accessed by any function within the SCC, thus losing precision, but

efficiently handling recursive calls. Atomic sections traversed during the pass are annotated

with the ECs of the accesses they guard.

The sync variables (enforced statically not to be aliased) encountered during this phase are

placed into their own equivalence classes - one variable per class. Like other memory

objects, their accesses inside atomic sections need to be tallied. Sync variables are not

aliased with themselves or any other, therefore separate transactions accessing sync variables

 28

– while serialized – still permit concurrency within distinct parent transactions. Therefore in

the following example, while the first thread’s parent atomic section is executing in the

nested section within the barrier routine, the second thread’s parent atomic section may

concurrently be executing just before or just after its own call to the barrier routine:

atomic { // Thread 1 parent atomic section

 enterbarrier(); // currently executing within nested section

}

atomic { // Thread 2 parent atomic section

 // May be executing just before call to nested atomic section

 enterbarrier();

 // May be executing just after call to nested atomic section

}

However, if a developer were to later insert and access a common variable within the

parent transactions then concurrency is no longer possible. Sync variables are currently

limited to static and global integers and may not have their address taken in order to ensure

disjointedness with other memory objects due to the necessarily conservative nature of the

analysis.

More formidable analyses exist than presented here that attempt to discern locksets for

path expressions [EFJM07] rather than abstract memory locations, or alternatively,

expression locks for any program point. The analysis by Cherem at al. utilizing expression

locks is able to reason regarding recursive structure accesses up to a specified limit, and can

utilize fine-grained locks to protect per instance allocated structures. Yet the resulting

additional benefits from more thorough analyses have been found to be miniscule [CCG08],

thus the analysis performed in this work is considered to be suitable.

4.2.1 Transformations

Nested atomic sections are traversed top down in the call graph to insert lock/unlock code

of inferred locks in a total order, according to a two-phase locking discipline [EGLT76].

 29

Since each EC corresponds to a lock of abstract memory locations, the set of all such

locations must be accessed exclusively upon entering an atomic section. Therefore, each

lock set is reified into a Pthreads mutex.

For the transformation, all the ECs are sorted into an arbitrary total order such that

deadlock at runtime is prevented. A classic two-phase locking (2PL) policy is implemented

to ensure atomicity for the overall (arbitrary nested) atomic section. As an optimization, late

locking is performed such that a lock is delayed from being acquired (not necessarily at the

beginning of a top-level atomic section) until the beginning of the nested section where the

first access is performed corresponding to the lock.

The order of accesses performed at runtime is conservatively approximated in the SCC of

the call graph through the intersection of a given function’s directly accessed memory objects

with the result of the union of its accessed objects and its called functions’ accessed objects.

Any memory objects in the intersection are necessarily accessed after the start of said

function. Calls to Pthreads mutex unlock routines are inserted such that all locks

corresponding to ECs are released at the end of the top-level atomic section. The SCCs of

the call graph are then traversed top down through the atomic sections. In this fashion,

nested atomic sections across functions are evaluated from outer section to inner section. A

diagram follows showing late locking employed with three variables a, b, and c accessed

from SCC nodes alpha and beta. Though the SCC node alpha transitively accesses variables

b and c, locks on them are not acquired upon entry to this SCC node, but upon entry to the

first node where they are accessed, SCC node beta.

Figure 4-1 Late locking with variables a, b, and c accessed from SCC nodes alpha and beta

SCC alpha

SCC beta

directly accesses a; transitively accesses a, b, c

directly accesses b, c
acquire locks on b, c

acquire lock on a

 30

Every atomic section encountered is transformed such that the ECs directly guarded within

are represented as locks that must be held upon entry. The locks representing ECs directly

guarded in the section are a subset of the ECs guarded by the section transitively. A global

array of Pthreads mutex structures corresponding to the ECs of the program is inserted into

the program text such that the Pthreads mutex calls access the necessary structures at

runtime.

Given that the locks representing ECs are acquired in a total order, delayed locking may be

a vacuous optimization if locks which may safely be acquired later in the call graph happen

to be ordered before locks which are necessary to be acquired earlier in the call graph, and

therefore, the former end up being acquired prior to the latter. This approach guarantees each

atomic section acquires a (super) set of the locks necessary to protect data accesses

transitively performed from within. Furthermore, the fact that each atomic section nominally

attempts to acquire only the locks protecting its direct accesses – late locking – allows for

more potential concurrency to be exhibited. However all locks previously acquired are still

released at the end of the top-level atomic section. This is in contrast to some

implementations that acquire all locks transitively required at the beginning of the top-level

atomic section and release them all at its end. A simple heuristic combines multiple Pthreads

locks always acquired together inside atomic sections into a single lock. This step reduces

the lock acquisition overhead of the underlying library.

4.2.2 Sync Variables Implementation

Given the semantics of sync variables, different implementations are possible. For

example, continuous polling of the variable(s) associated with an atomic section’s predicate

may be used. Alternatively, a change in any of the variables results in a notification and

reevaluation of the predicate. In the current implementation, the latter approach is chosen as

the former method is considered to unnecessarily penalize threads that wait. Notification is

implemented using Pthreads condition variables (which also require an associated lock), and

is triggered upon the exit of an atomic section that modifies a sync variable. Upon

notification, an attempt is made to acquire the lock(s) of the sync variable(s) within a

 31

predicate expression. If the predicate evaluates to true, the associated atomic section is

executed. Otherwise the lock(s) of the sync variable(s) are released and the predicate is

retested at a later time, upon further notification. One limitation of Pthreads is that a thread

may wait on only one condition variable at a time. Thus, the current implementation only

allows one sync variable within a predicate.

4.2.3 Possible Analysis Optimization

A given total order imposed on lock acquisitions may penalize certain program executions.

A lock corresponding to a memory location access within a deeply nested atomic section may

be ordered early in a total order. Thus, it might have to be acquired early within the overall

atomic section of a given thread’s execution, preventing other threads from accessing it

within their own atomic sections if the other accesses within their sections do not conflict

with said thread. In the current implementation, the chosen order is arbitrary. A different

approach to ordering could utilize acquired statistics from program runs to attempt to order

the locks in a suitable arrangement so as to improve performance. Information collected on

program execution determines the atomic sections and locks that are most frequently

executed or waited upon.

A further transformation may then make use of this information such that distinct overall

atomic sections containing nested sections experiencing heavy contention over a small

intersecting set of locks would have their ordering changed such that entry into an overall

atomic section does not acquire a lock whose corresponding memory locations are accessed

late within a deeply nested section that are contended by other overall atomic sections.

LLVM does not account for threads in its relatively immature profile guided information

collection and optimization infrastructure however; therefore, this technique was not

attempted.

4.2.4 Transformation Example Featuring Sync Variable

Given the discussion of the analysis and transformation of the implementation, a running

example is presented featuring condition synchronization among threads as introduced with

barriers and featuring a sync variable, and the step by step transformation of the program as it

 32

is run through the implemented system. Some of the automatically generated code and

outputs resulting from the transformations are elided, as they do not pertain to the discussion.

The example program creates NUM_THREADS threads that are then run with the same

function containing a call to a barrier within it. Note, the preprocessor variable

NUM_THREADS is changed to the appropriate number of processors between configuration

runs. All threads must synchronize with the barrier after executing the first half of the

function, before they can proceed to the second half. Upon finishing execution of the

function, the threads are terminated by being joined with the main program thread.

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 8

void simplebarrier()

{

 sync static int count = 0;

 atomic {

 count++;

 }

 atomic (count == NUM_THREADS) {

 }

}

void *TaskCode(void *argument)

{

 int tid = *((int *) argument);

 for(volatile int i=0;i<100000000;i++) ; // work delay

 // printf("Thread %d completing first half of task.\n", tid);

 simplebarrier();

 for(volatile int i=0;i<100000000;i++) ; // work delay

 // printf("Thread %d completing second half of task.\n", tid);

 33

}

int main (int argc, char *argv[])

{

 pthread_t threads[NUM_THREADS];

 int thread_args[NUM_THREADS];

 int rc;

 /* create all threads */

 for (int i=0; i<NUM_THREADS; ++i) {

 thread_args[i] = i;

 // printf("creating thread %d\n", i);

 rc = pthread_create(&threads[i], (void *) NULL, TaskCode,
(void *) &thread_args[i]);

 }

 /* wait for all threads to complete */

 for (int i=0; i<NUM_THREADS; ++i) {

 // printf("joining thread %d\n", i);

 rc = pthread_join(threads[i], NULL);

 }

}

The analysis phase first tallies the points-to Equivalence Classes (ECs) for each function in

the input program from the results of the post processing of the Data Structure Analysis

(DSA) pass. Thus, the ECs for the three procedures of the extended example are:

{sync.simplebarrier.count} for the simplebarrier procedure that reflects the sync variable

accessed in its atomic sections, {} for the TaskCode procedure, and {} for the main

procedure.

The call graph for the input program is main -> TaskCode -> simplebarrier. Therefore, a

postorder traversal of the SCCs of the callgraph of the input program yields the following

ECs for the three procedure of the extended example:

 34

{sync.simplebarrier.count} for the simplebarrier, {} for the TaskCode procedure, and {}

for the main procedure.

Note that sync variables are not propagated up into the calling procedures. The

transformation phase begins by a reverse postorder traversal of the SCCs of the callgraph and

inserts lock/unlock code for the atomic sections in the simplebarrier procedure for the

Pthreads mutex associated with the accessed sync variable. Therefore, the LLVM specific

basic block disassembly output for the entry to the first atomic section is transformed to

insert locking code, from:

atomic.begin: ; preds = %entry

 br i1 true, label %atomic.body, label %atomic.end

to:

atomic.begin: ; preds = %entry

 %sync.simplebarrier.count = call i32 @pthread_mutex_lock([40 x
i8]* @0) ; <i32> [#uses=0]

 br i1 true, label %atomic.body, label %atomic.end

In generic LLVM assembly, the branch mnemonic as shown features the condition as the

first operand (in this instance it is the constant true) and the second operand as the basic

block to branch to upon a true condition (which is what is taken in this instance), and the

third basic block to branch upon a false condition.

The exit from the atomic section is transformed to insert unlocking code, from:

atomic.end: ; preds = %atomic.body, %atomic.begin

 br label %atomic.begin1

to:

atomic.end: ; preds = %atomic.body, %atomic.begin

 %sync.simplebarrier.count1 = call i32
@pthread_cond_broadcast([48 x i8]* @"0") ; <i32> [#uses=0]

 %sync.simplebarrier.count2 = call i32 @pthread_mutex_unlock([40
x i8]* @0) ; <i32> [#uses=0]

 br label %atomic.begin1

 35

Note the inserted call to the Pthreads specific sync variable mapped condition variable

broadcast call. The second atomic section entry is likewise transformed from:

atomic.begin1: ; preds = %atomic.end

 %tmp2 = load i32* @sync.simplebarrier.count ; <i32> [#uses=1]

 %cmp = icmp eq i32 %tmp2, 5 ; <i1> [#uses=1]

 br i1 %cmp, label %atomic.body3, label %atomic.end4

to:

atomic.begin1: ; preds = %atomic.end

 %sync.simplebarrier.count3 = call i32 @pthread_mutex_lock([40 x
i8]* @0) ; <i32> [#uses=0]

 %tmp2 = load i32* @sync.simplebarrier.count ; <i32> [#uses=1]

 %cmp = icmp eq i32 %tmp2, 5 ; <i1> [#uses=1]

 br i1 %cmp, label %atomic.body3, label %atomic.end4

Note the test for entry into the atomic section if the condition is satisfied. In the next step,

the transformation phase splits the aforementioned basic block into a first block that locks the

generated mutex associated with the sync variable:

atomic.begin1: ; preds = %atomic.end

 %sync.simplebarrier.count3 = call i32 @pthread_mutex_lock([40 x
i8]* @0) ; <i32> [#uses=0]

 br label %atomic.cond

And a second block that tests if the condition is satisfied:

atomic.cond: ; preds = %atomic.cv, %atomic.begin1

 %tmp2 = load i32* @sync.simplebarrier.count ; <i32> [#uses=1]

 %cmp = icmp eq i32 %tmp2, 5 ; <i1> [#uses=1]

 br i1 %cmp, label %atomic.body3, label %atomic.cv

If the condition is satisfied, the thread may proceed into the body of the atomic section.

However, if the condition is not satisfied the thread is directed to a newly generated block

that calls the Pthreads specific sync variable mapped condition variable wait call:

atomic.cv: ; preds = %atomic.cond

 %sync.simplebarrier.count5 = call i32 @pthread_cond_wait([48 x
i8]* @"0", [40 x i8]* @0) ; <i32> [#uses=0]

 36

 br label %atomic.cond

Upon being woken up, the thread is directed to the second of the split block outlined earlier

to test the predicate condition again. The specification for the Pthreads API is that the lock

associated with the condition variable is atomically released upon a thread waiting, and

reacquired upon waking up after being signaled, respectively. The exit of the atomic section

is transformed to insert unlocking code, from:

atomic.end4: ; preds = %atomic.body3, %atomic.begin1

 ret void

to:

atomic.end4: ; preds = %atomic.body3, %atomic.begin1

 %sync.simplebarrier.count4 = call i32 @pthread_mutex_unlock([40
x i8]* @0) ; <i32> [#uses=0]

 ret void

The sync variable is included in the text of the program:

@sync.simplebarrier.count = internal global i32 0 ; <i32*>
[#uses=3]

And the generated Pthreads mutex lock and condition variable are also included in the

program:

@0 = global [40 x i8] zeroinitializer ; <[40 x i8]*> [#uses=5]

@"0" = global [48 x i8] zeroinitializer ; <[48 x i8]*> [#uses=2]

4.2.5 Transformation Featuring Inferred Locks and Sync Variable

The previous running transformation example was rather simple, as the framework did not

need to infer locks. In this subsection, an implementation of the producer/consumer pattern

is presented which utilizes the generic shared queue insertion and removal operations

illustrated in section 5.2 as examples of the condition synchronization facility possible with

the model. The intermediate representation of the program is transformed, step-by-step, as it

is run through the implemented system. Some of the automatically generated code and

outputs resulting from the transformations are elided, as they do not pertain to the discussion.

 37

The extended example creates producer and consumer threads each executing their own

respective actions of putting and taking items from a shared queue. A fixed number of items

are produced, so the amount of work is fixed regardless of the number of threads. The

underlying queue code is generic, utilizing pointers to heap allocated elements. Thus, this

implementation requires locks to be inferred to protect the shared memory structure from

inadvertent accesses. The put and get procedures also utilize a size sync variable to ascertain

and mutate the number of elements contained in the queue. All threads must synchronize

with the queue such that only one thread may put or take items from the queue. Upon

finishing execution of their respective tasks, the producer and consumer threads are

terminated by being joined with the main program thread. As in the previous example, the

preprocessor variable NUM_THREADS is eight in this example but is changed to the

appropriate number of processors between configuration runs.

#include <pthread.h>

#include <stdio.h>

typedef int TItem;

#define NUM_THREADS 8

#define NUM_ITEMS 1048576

void *prod(void *arg)

{

 int tid = *((int *) arg);

 for(int i=0;i<(NUM_ITEMS/NUM_THREADS);i++) {

 TItem* elp=(TItem*)malloc(sizeof(TItem));

 *elp=i*NUM_THREADS+tid;

 put(elp);

 }

}

void *cons(void *arg)

{

 38

 int tid = *((int *) arg);

 for(int i=0;i<(NUM_ITEMS/NUM_THREADS);i++) {

 TItem* elp=get();

 free((void*)elp);

 }

}

void *prodcons(void *arg)

{

 int tid = *((int *) arg);

 for(int i=0;i<(NUM_ITEMS/NUM_THREADS);i++) {

 TItem* elp=(TItem*)malloc(sizeof(TItem));

 *elp=i*NUM_THREADS+tid;

 put(elp);

 elp=get();

 free((void*)elp);

 }

}

int main (int argc, char *argv[])

{

 pthread_t threads[NUM_THREADS];

 int thread_args[NUM_THREADS];

 int rc;

 /* create all threads */

 if (NUM_THREADS==1) {

 thread_args[0] = 0;

 rc = pthread_create(&threads[0], (void *) NULL, prodcons,
(void *) &thread_args[0]);

 }

 else

 for (int i=0; i<NUM_THREADS; ++i) {

 thread_args[i] = i;

 39

 if (i % 2) {

 rc = pthread_create(&threads[i], (void *) NULL, cons, (void
*) &thread_args[i]);

 }

 else {

 rc = pthread_create(&threads[i], (void *) NULL, prod, (void
*) &thread_args[i]);

 }

 }

 /* wait for all threads to complete */

 for (int i=0; i<NUM_THREADS; ++i) {

 rc = pthread_join(threads[i], NULL);

 }

}

The analysis phase first tallies the points-to Equivalence Classes (ECs) for each function in

the input program from the results of the post processing of the Data Structure Analysis

(DSA) pass. Thus, the ECs for the six procedures of this extended example are:

{sync.num_entries, 0xfecb18, 0xff28a8, 0x103b7b0, 0x103b8c0} for the get procedure that

reflects four disjoint equivalence classes of memory locations identified and the sync variable

sync.num_entries accessed in its atomic section, {sync.num_entries, 0xfecb18, 0xff2818,

0x103b7b0, 0x103b8c0} for the put procedure with the first element representing the sync

variable accessed in its atomic section and the last four reflecting the distinct equivalence

classes of memory locations identified, {0x103b8c0} for the prod procedure, {0x103b8c0}

for the cons procedure, {0x103b8c0} for the prodcons procedure, and {} for the main

procedure. The get and put procedures share many of the equivalence classes as they access

the many of the same abstract locations of memory objects.

The call graph for the input program is main -> prod -> put, main -> cons -> put, main ->

prodcons, prodcons -> put, prodcons -> get. Therefore, a postorder traversal of the SCCs of

the callgraph of the input program yields the following ECs for the six procedure of the

extended example:

 40

{sync.num_entries, 0xfecb18, 0xff28a8, 0x103b7b0, 0x103b8c0} for the get procedure,

{sync.num_entries, 0xfecb18, 0xff2818, 0x103b7b0, 0x103b8c0} for the put procedure,

{0xfecb18, 0xff2818, 0x103b7b0, 0x103b8c0} for the prod procedure, {0xfecb18, 0xff28a8,

0x103b7b0, 0x103b8c0} for the cons procedure, {0xfecb18, 0xff2818, 0xff28a8, 0x103b7b0,

0x103b8c0} for the prodcons procedure, and {0xfecb18, 0xff2818, 0xff28a8, 0x103b7b0,

0x103b8c0} for the main procedure.

The transformation phase begins by a reverse postorder traversal of the SCCs of the

callgraph and inserts lock/unlock code for the atomic sections in the put and get procedures

for the Pthreads mutex associated with the accessed sync variable, as well as the four inferred

locks corresponding to the four equivalence classes of identified memory locations.

Therefore, the LLVM specific basic block disassembly output for the entry to the atomic

section in the get procedure is transformed to insert locking code, from:

atomic.begin: ; preds = %entry

 %tmp = load i32* @sync.num_entries ; <i32> [#uses=1]

 %cmp = icmp sgt i32 %tmp, 0 ; <i1> [#uses=1]

 br i1 %cmp, label %atomic.body, label %atomic.end

to:

atomic.begin: ; preds = %entry

 %sync.num_entries = call i32 @pthread_mutex_lock([40 x i8]* @0)
; <i32> [#uses=0]

 %"1046a10" = call i32 @pthread_mutex_lock([40 x i8]* @1) ; <i32>
[#uses=0]

 %"1049d60" = call i32 @pthread_mutex_lock([40 x i8]* @2) ; <i32>
[#uses=0]

 %"1046d60" = call i32 @pthread_mutex_lock([40 x i8]* @3) ; <i32>
[#uses=0]

 %"1046d90" = call i32 @pthread_mutex_lock([40 x i8]* @4) ; <i32>
[#uses=0]

 %tmp = load i32* @sync.num_entries ; <i32> [#uses=1]

 %cmp = icmp sgt i32 %tmp, 0 ; <i1> [#uses=1]

 br i1 %cmp, label %atomic.body, label %atomic.end

 41

Note the test for entry into the atomic section if the condition is satisfied. The entry to the

transformed atomic section contains five locks being acquired. One of which is the lock

corresponding to the sync variable, the rest are locks representing the equivalence classes.

In the next step, the transformation phase splits the aforementioned basic block into a first

block that locks the generated mutex associated with the sync variable as well as the inferred

locks:

atomic.begin: ; preds = %entry

 %sync.num_entries = call i32 @pthread_mutex_lock([40 x i8]* @0)
; <i32> [#uses=0]

 %"1046a10" = call i32 @pthread_mutex_lock([40 x i8]* @1) ; <i32>
[#uses=0]

 %"1049d60" = call i32 @pthread_mutex_lock([40 x i8]* @2) ; <i32>
[#uses=0]

 %"1046d60" = call i32 @pthread_mutex_lock([40 x i8]* @3) ; <i32>
[#uses=0]

 %"1046d90" = call i32 @pthread_mutex_lock([40 x i8]* @4) ; <i32>
[#uses=0]

 br label %atomic.cond

And a second block that tests if the condition is satisfied:

atomic.cond: ; preds = %atomic.cv, %atomic.begin

 %tmp = load i32* @sync.num_entries ; <i32> [#uses=1]

 %cmp = icmp sgt i32 %tmp, 0 ; <i1> [#uses=1]

 br i1 %cmp, label %atomic.body, label %atomic.cv

If the condition is satisfied, the thread may proceed into the body of the atomic section.

However, if the condition is not satisfied the thread is directed to a newly generated block

that unlocks the inferred locks, calls the Pthreads specific sync variable mapped condition

variable wait call, and then locks the inferred locks again (upon being woken up):

atomic.cv: ; preds = %atomic.cond

 %"1046d911" = call i32 @pthread_mutex_unlock([40 x i8]* @4) ;
<i32> [#uses=0]

 %"1046d612" = call i32 @pthread_mutex_unlock([40 x i8]* @3) ;
<i32> [#uses=0]

 42

 %"1049d613" = call i32 @pthread_mutex_unlock([40 x i8]* @2) ;
<i32> [#uses=0]

 %"1046a114" = call i32 @pthread_mutex_unlock([40 x i8]* @1) ;
<i32> [#uses=0]

 %sync.num_entries7 = call i32 @pthread_cond_wait([48 x i8]*
@"0", [40 x i8]* @0) ; <i32> [#uses=0]

 %"1046a11" = call i32 @pthread_mutex_lock([40 x i8]* @1) ; <i32>
[#uses=0]

 %"1049d61" = call i32 @pthread_mutex_lock([40 x i8]* @2) ; <i32>
[#uses=0]

 %"1046d61" = call i32 @pthread_mutex_lock([40 x i8]* @3) ; <i32>
[#uses=0]

 %"1046d91" = call i32 @pthread_mutex_lock([40 x i8]* @4) ; <i32>
[#uses=0]

 br label %atomic.cond

The exit from the atomic section is transformed to insert unlocking code, from:

atomic.end: ; preds = %atomic.body, %atomic.begin

 %tmp5 = load i32** %item ; <i32*> [#uses=1]

 store i32* %tmp5, i32** %retval

 %0 = load i32** %retval ; <i32*> [#uses=1]

 ret i32* %0

to:

atomic.end: ; preds = %atomic.body, %atomic.begin

 %"1046d901" = call i32 @pthread_mutex_unlock([40 x i8]* @4) ;
<i32> [#uses=0]

 %"1046d602" = call i32 @pthread_mutex_unlock([40 x i8]* @3) ;
<i32> [#uses=0]

 %"1049d603" = call i32 @pthread_mutex_unlock([40 x i8]* @2) ;
<i32> [#uses=0]

 %"1046a104" = call i32 @pthread_mutex_unlock([40 x i8]* @1) ;
<i32> [#uses=0]

 %sync.num_entries5 = call i32 @pthread_cond_broadcast([48 x i8]*
@"0") ; <i32> [#uses=0]

 %sync.num_entries6 = call i32 @pthread_mutex_unlock([40 x i8]*
@0) ; <i32> [#uses=0]

 %tmp5 = load i32** %item ; <i32*> [#uses=1]

 43

 store i32* %tmp5, i32** %retval

 %0 = load i32** %retval ; <i32*> [#uses=1]

 ret i32* %0

Note the inserted call to the Pthreads-specific condition variable broadcast call that is

mapped to the sync variable.

The sync variable is included in the text of the program:

@sync.num_entries = global i32 0, align 4 ; <i32*>
[#uses=6]

And the generated Pthreads mutex locks and condition variable are also included in the

program:

@0 = global [40 x i8] zeroinitializer ; <[40 x i8]*> [#uses=6]

@1 = global [40 x i8] zeroinitializer ; <[40 x i8]*> [#uses=4]

@2 = global [40 x i8] zeroinitializer ; <[40 x i8]*> [#uses=4]

@3 = global [40 x i8] zeroinitializer ; <[40 x i8]*> [#uses=4]

@4 = global [40 x i8] zeroinitializer ; <[40 x i8]*> [#uses=4]

@"0" = global [48 x i8] zeroinitializer ; <[48 x i8]*> [#uses=4]

The transformation steps for the put procedure and resulting intermediate representations

and inferred locks are very similar.

 44

Chapter 5
Evaluation

The evaluation performed shows the suitability of the developed atomic section

programming model and implementation for constructing robust, performant concurrent

programs. The model is shown to provide increased programmability and expressiveness

when compared to conventional STM interfaces.

5.1 Quantitative Results

Quantitative results are presented for two programs illustrating common concurrency

patterns including producers/consumers and thread barriers.

5.1.1 Experimental Methodology

Benchmark configurations include: the particular benchmark programs; the

implementation framework the programs are run under; the choice of one, two, four, or eight

processors; and possibly data sets and settings such as the level of contention. All

configuration instances were run five times, the order of runs randomized with other

configurations, with the average of the five runs per configuration recorded in the graphs.

All programs were run on an eight processor four socket dual-core Linux machine with 16

GB of RAM.

5.1.2 Microbenchmark Evaluations

Microbenchmark evaluation results are presented for the producer/consumer pattern of

code discussed in the transformation subsection 4.2.5, utilizing the condition synchronization

construct involving the put and get shared queue operations from section 5.2. Figure 5-1

displays the average runtimes in seconds for the evaluated configurations of up to eight

processors. It shows that though runtime decreases with up to four processors, it increases

with eight, due to overhead.

 45

Figure 5-1 Producer / consumer PTM implementation (lower is better)

The thread barrier example in the transformation subsection 4.2.4 was executed as a

microbenchmark on up to eight processors. Figure 5-2 displays the average runtimes in

seconds for the evaluated configurations. The same amount of work is performed by each

thread regardless of configuration since even though the work delays are executed in parallel,

they are the same for all threads so the times cannot decrease. The small amount of

contention that exists - due to the barrier - increases with more threads, along with the

variability of scheduling inherent with greater numbers of threads, the displayed runtimes

thus increase with more threads attempting to enter the barrier.

 46

Figure 5-2 Thread barrier PTM implementation (lower is better)

5.2 Qualitative Examples

Qualitative results from the limited experience implementing programs in this model have

thus far been positive. The new approach preserves the benefits of traditional transactional

semantics, while permitting disciplined multithreaded cooperation.

Thread coordination is essential in concurrent applications. One class of thread

coordination problems concerns producer/consumer patterns, which are prevalent in

multithreaded applications. A producer/consumer pattern involves a producer thread (or

multiple threads) creating a unit of work at a variable - and usually different - rate than the

unit of work can be processed by a consuming thread (or multiple threads.) The varying rate

in processing items of work in a chain of processing steps can sometimes be explained by the

different speeds and latencies of particular levels of the memory hierarchy.

Processing a unit of work defined in terms of a memory frame versus a disk block versus a

network packet can require processing times that differ by an order of magnitude or more,

depending on the latency of the devices in question. This difference is one of the motivations

for the producer and consumer threads being decoupled as part of the producer/consumer

pattern. Another motivation for the loose coupling of item processing may be the priority of

 47

different threads coordinating operations. A user interface thread is latency sensitive and

may hand off further processing of an identified work item to a lower priority consuming

thread.

An example of a generic producer/consumer design utilizing the transactional model

follows. In it, the sync variable num_entries is incremented by the producer thread

placing a work item into the shared buffer. The producer waits at the start of the transaction

if the queue is full. The in and out index variables correspond to the ends of the buffer the

producer and consumer place and take items, respectively, and are modulo incremented. The

consumer thread decrements num_entries upon taking a work item from the queue. If

upon entry to the atomic section the queue is tested to be empty, the consumer waits for an

item to be placed into the queue by the producer. The type of the items placed into the queue

is left for the implementation to define.

sync int num_entries = 0;

#define MAX_ENTRIES 1048577

TItem* buf[MAX_ENTRIES];

int in = 0, out = 0;

void put(TItem* item) {

 atomic (num_entries < MAX_ENTRIES) {

 buf[in] = item;

 in = (in + 1) % MAX_ENTRIES;

 num_entries++;

 }

}

TItem* get(void) {

 TItem* item;

 atomic (num_entries > 0) {

 item = buf[out];

 out = (out + 1) % MAX_ENTRIES;

 num_entries--;

 }

 return item;

 48

}

The details of the producer and consumer thread implementations are highly specific to the

operation objective and are customized depending on the application. Note that the

processing of the item and the handoff with the shared buffer may well be small details as

part of an overall larger atomic operation according to the logic of the application.

Examples of producer/consumer patterns invoked as part of program library-based

solutions that can be composed with concurrent application transactions include file copy,

application logging, document search, plugin filters, and web server data aggregation and

statistics.

Threads orchestrating the copying of files and directories can decouple the process of

locating individual files (according to a specified criterion) from actually copying them. A

program performing this operation as part of a transaction allows the file locator and file

copying threaded codes (which may be factored into their own callable module) to coordinate

with each other. In this instance, the file locator is higher priority than the file copying

thread as it is identifying files to be copied for the file copier to start its operation.

An application logger module can asynchronously accept input messages while the

application it is composed with conducts its own operations, which may be performed with

transactions, and the log processor thread can write the log entry messages to a permanent

medium.

A text processor may be composed with a document search and indexing service, which

consist of document text crawling and indexing threads that are independent of the main

program threads. The application can permit a user search of a document to be accelerated

by utilizing an index of the document as part of a program transaction.

An extendable application can feature third-party plugins that may filter input

cooperatively as though in a pipeline. The producing and consuming plugin stages may

themselves be consumers and producers, respectively, of further plugin stages. The

application may conduct transformation operations on data filtered through certain plugins as

part of program transactions.

 49

A web server application may aggregate statistical data on the requests served by sending

metadata of information sent to a reducer thread that collates the statistical data and may be

located in its own analytics module. The application threads that serve the data as part of

their transactions identify and send the metadata to the aggregator, which runs independently

yet still coordinates in consuming the metadata.

5.3 Example System Realization and Evaluation

The constructs and implementation were utilized to develop one of the examples from the

previous section. An application logger is constructed that features a pipeline of logging

threads. The first stage filters messages – informative (light) or trace (heavy) – onto distinct

queues for separate logging threads to handle. Application threads generate messages

modeling low or high logging message dispatch and arrival for the application loggers onto

the initial filter queue of the pipeline. The application threads feature an atomic section,

corresponding to a chunk of code within an application that is intended to be executed as one

unit, such as a relational database subquery. From within the section the application threads

are synchronized at a barrier to start together and then generate the messages. The called

barrier routine contains a nested atomic section. Sync variables are utilized in the initial

stage of the pipeline, to control access to the filter queue, as well as in the two downstream

logging queues, and in the thread barrier procedure. Each pipeline stage’s sync variable

counts the number of elements in its corresponding queue. Threads cannot take elements

from the queue if it is empty, nor can they put elements onto the queue if it is full, as

accessed using the queue’s sync variable. The application logger source is in the appendix.

Each message features an allocated character string buffer, a length field, and a stamp for

the thread id of the generating application thread. Light (informative) messages were thirty-

two bytes in length, while heavy (e.g. stack trace) were sixty-four kilobytes. Heavy message

generation is eight times greater than the light generation case. Figures 5-3 through 5-6

display the average runtimes in seconds for one through eight processors for the four possible

configurations of the two dimensions concerning the message type and message generation

rate.

 50

For the light weight messages generated at a low message generation rate, the performance

improves with two threads, though deteriorates with a higher thread count, due to overhead

of threading as well as synchronized access to a shared resource, since higher thread counts

increase contention and serialize access to the queues, as well as increase scheduling delays.

For light messages dispatched at a high rate, performance in terms of runtime is more than an

order magnitude worse than the low rate of dispatch, and does not improve beyond two

threads. For heavy weight messages, performance does not noticeably improve with more

threads (except for the slight decrease in run time for the light dispatch rate at two threads.)

However, performance does not degrade nearly as severely with more threads than in the

cases with light weight message dispatch.

Figure 5-3 Light messages and low generation rate (lower is better)

 51

Figure 5-4 Light messages and high generation rate (lower is better)

Figure 5-5 Heavy messages and low generation rate (lower is better)

 52

Figure 5-6 Heavy messages and high generation rate (lower is better)

 53

Chapter 6
Conclusion and Future Work

The presented atomic section programming model features first class support for condition

synchronization with truly nested transactional semantics. The benefits include composability

of software, reuse of code and libraries featuring idioms such as many producer/consumer

patterns, and barrier synchronization. Simplicity of the model is also a virtue as it decreases

the cognitive load on the programmer.

6.1 Coda

The need for condition synchronization is outlined and the inadequacies of existing

transactional memory systems detailed. A model and syntax for implementing condition

synchronization in the context of atomic sections is presented along with its compositional

properties. The sync variable construct enables nested transactions to block a thread until a

predicate expression becomes true before the thread starts the transaction.

Notable findings of the model in regards to expressivity is that the atomic section interface

is able to capture concurrent patterns and use cases featuring condition synchronization such

as barriers and producer/consumer scenarios.

Open questions regarding the model are:

Is the transactional model as implemented general enough for constructing a broad cross

section of concurrent software?

Are the constructs for condition synchronization sufficiently expressive to capture most

use cases of conventional conditional variables?

What are the implications for conditions and transactions when embedded in a language

with exception handling?

 54

Are transactions in and of themselves a proper construct to reason about and craft

concurrent distributed software that may need to coordinate across large distances without

the strict synchronization requirements and overheads inherent to transactions?

6.2 Desiderata

Further quantitative evaluation of the implementation on the STAMP benchmark suite

[MCKO08] against an STM competitor is in order. More extensive heuristics for assigning

lock sets to atomic blocks are planned to be implemented as future work, in order to improve

performance. In addition, exploring a hybrid combination of pessimistic and optimistic

transactional memory [LM11] with support for condition synchronization is a fruitful

endeavor. Finally, evaluation of the programming model on further benchmarks and larger

software projects would be beneficial in gaining confidence with regards to the applicability

and generality of the proposed atomic section interface.

 55

Bibliography

[ALS06] Kunal Agrawal, Charles E. Leiserson, Jim Sukha. Memory Models for Open-

Nested Transactions. MSPC 2006.

[Boeh09] H. J. Boehm. Transactional Memory Should Be an Implementation

Technique, Not a Programming Interface. HotPar 2009.

[CCCMM05] Brian D. Carlstrom, et al. Transactional Execution of Java Programs. SCOOL

2005.

[CCG08] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for

atomic sections. PLDI 2008.

[CCMM06] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D.

Carlstrom, Christos Kozyrakis, Kunle Olukotun. The Common Case Transactional

Behavior of Multithreaded Programs. HPCA 2006.

[CDE08] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Lock inference proven

correct. FTfJP 2008.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM

Computing Surveys, June 1971.

[CFRWZ91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control dependence

graph. TOPLAS 1991.

[CGE08] D. Cunningham, K. Gudka, and S. Eisenbach. Keep off the grass: Lock

inference for atomicity. CC 2008.

[DDSSS10] Luke Dalessandro, Dave Dice, Michael Scott, Nir Shavit, Michael Spear.

Transactional Mutex Locks. Euro-Par 2010.

[DS09] P. Dudnik, M. M. Swift. Condition Variables and Transactional Memory:

Problem or Opportunity. TRANSACT 2009.

 56

[EFJM07] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, Rupak Majumdar. Lock

allocation. POPL 2007.

[EGLT76] K. P. Eswaran, Jim N. Gray, R. A. Lorie, I. L. Traiger. The notions of

consistency and predicate locks in a database system. Communications of the ACM,

November 1976.

[Har09] T. Harris. Invited talk: Language Constructs for Transactional Memory. POPL

2009.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight transactions.

OOPSLA 2003.

[HFP06] Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock Inference for

Atomic Sections. TRANSACT 2006.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III.

Software transactional memory for dynamic-sized data structures. PODC 2003.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural

support for lock-free data structures. ISCA 1993.

[HMPH05] Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy.

Composable memory transactions. PPoPP 2005.

[HPV07] R. Halpert, C. J. F. Pickett, and C. Verbrugge. Component-based lock

allocation. PACT 2007.

[LA04] Chris Lattner, and Vikram Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. CGO 2004.

[List77] Andrew Lister. The problem of nested monitor calls. SIGOPS Operating

Systems Review 1977.

[LLA07] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context- sensitive

points-to analysis with heap cloning practical for the real world. PLDI 2007.

 57

[LM11] V. Luchangco, V. J. Marathe. Revisiting Condition Variables and

Transactions. TRANSACT 2011.

[Lome77] D. B. Lomet. Process structuring, synchronization, and recovery using atomic

actions. Conference on language design for reliable software 1977.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from

Mistakes - A Comprehensive Study on Real World Concurrency Bug Characteristics.

ASPLOS 2008.

[LR06] Larus, J.R. and Rajwar, R. Transactional Memory. Morgan & Claypool, 2006.

[MCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun.

STAMP: Stanford Transactional Applications for Multi-Processing. IISWC 2008.

[MCRS10] Sandya Mannarswamy, Dhruva R. Chakrabarti, Kaushik Rajan, Sujoy

Saraswati. Compiler aided selective lock assignment for improving the performance of

software. PPoPP 2010.

[Moss06] J.E.B. Moss. Open nested transactions: Semantics and support. Workshop on

Memory Performance Issues 2006.

[Moss82] J.E.B. Moss. Nested transactions: An approach to reliable distributed

computing. Symposium on Reliability in Distributed Software and Database Systems

1982.

[MQ08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,

Piramanayagam Arumuga Nainar, Iulian Neamtiu. Finding and Reproducing Heisenbugs

in Concurrent Programs. OSDI 2008.

[MZGB06] Bill McCloskey, Feng Zhou, David Gay, Eric Brewer. Autolocker:

synchronization inference for atomic sections. POPL 2006.

[Ni07] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard

L. Hudson, J. Eliot B. Moss, Bratin Saha, Tatiana Shpeisman. Open Nesting in Software

Transactional Memory. PPoPP 2007.

 58

[Nish04] H. Nishiyama. Detecting data races using dynamic escape analysis based on

read barrier. VM 2004.

[OH05] K. Olukotun, L. Hammond. The Future of Microprocessors. ACM Queue

September 2005.

[Parr06] Terence Parr. ANSI C grammar for ANTLR v3. 2006.

www.antlr.org/grammar/1153358328744/C.g

[SBNSA97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas

Anderson. Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs. SOSP

1997.

[SKBY07] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, Michal Young.

Transactions with isolation and cooperation. OOPSLA 2007.

[SL05] H. Sutter, J. Larus. Software and the Concurrency Revolution. ACM Queue

September 2005.

[ST95] Nir Shavit and Dan Touitou. Software Transactional Memory. PODC 1995.

[Stee96] B. Steensgaard. Points-to analysis in almost linear time. POPL 1996.

[UBES09] Takayuki Usui, Reimer Behrends, Jacob Evans, Yannis Smaragdakis.

Adaptive locks: Combining transactions and locks for efficient concurrency. PACT 2009.

[VTD06] M. Vaziri, F. Tip, and J. Dolby. Associating Synchronization Constraints with

Data in an Object-Oriented Language. POPL 2006.

[ZSZSG07] Yuan Zhang, Vugranam C. Sreedhar, Weirong Zhu, Vivek Sarkar, Guang R.

Gao. Optimized lock assignment and allocation: a method for exploiting concurrency

among critical sections. PPoPP 2007.

[ZSZSG08] Yuan Zhang, Vugranam C. Sreedhar, Weirong Zhu, Vivek Sarkar, Guang R.

Gao. Minimum lock assignment: A Method for Exploiting Concurrency among Critical

Sections. LCPC 2008.

 59

Appendix A

Data for graphed quantitative results is presented in this appendix, as well as source code.

Table 6-1 Producer / consumer microbenchmark data

1	 0.503	 0.561	 0.434	 0.473	 0.478	

2	 0.466	 0.449	 0.464	 0.433	 0.41	

4	 0.36	 0.364	 0.359	 0.361	 0.359	

8	 0.808	 0.451	 0.716	 0.497	 0.643	

Table 6-2 Thread barrier microbenchmark data

1	 0.547	 0.549	 0.548	 0.546	 0.547	

2	 0.549	 0.548	 0.551	 0.549	 0.551	

4	 0.559	 0.552	 0.564	 0.559	 0.551	

8	 0.574	 0.564	 0.573	 0.582	 0.581	

Source code for application logger:

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int NUM_APP_THREADS = -1;
int NUM_LOG_THREADS = -1;
int LOWHIGH = -1;
int LIGHTHEAVY = -1;
int NUM_ITEMS = -1;
int LIGHTLEN = 32;
int HEAVYLEN = 65536;
int LOWRATE = 128;
int HIGHRATE = 1024;

 60

typedef struct {char* msg; int len, stamp} TItem;

const int MAX_ENTRIES = 1024;
TItem* fil_buf[MAX_ENTRIES];
sync int fil_num_entries = 0;
int fil_in = 0, fil_out = 0;

TItem* light_buf[MAX_ENTRIES];
sync int light_num_entries = 0;
int light_in = 0, light_out = 0;

TItem* heavy_buf[MAX_ENTRIES];
sync int heavy_num_entries = 0;
int heavy_in = 0, heavy_out = 0;

void barrier()

{

 sync static int count = 0;

 atomic {

 count++;

 }

 atomic (count == NUM_APP_THREADS) {

 }

}

void putfilter(TItem* item) {
 atomic (fil_num_entries < MAX_ENTRIES) {
 fil_buf[fil_in] = item;
 fil_in = (fil_in + 1) % MAX_ENTRIES;
 fil_num_entries++;
 }
}

TItem* getfilter(void) {
 TItem* item;
 atomic (fil_num_entries > 0) {
 item = fil_buf[fil_out];
 fil_out = (fil_out + 1) % MAX_ENTRIES;
 fil_num_entries--;
 }
 return item;
}

void putlight(TItem* item) {

 61

 atomic (light_num_entries < MAX_ENTRIES) {
 light_buf[light_in] = item;
 light_in = (light_in + 1) % MAX_ENTRIES;
 light_num_entries++;
 }
}

TItem* getlight(void) {
 TItem* item;
 atomic (light_num_entries > 0) {
 item = light_buf[fil_out];
 light_out = (light_out + 1) % MAX_ENTRIES;
 light_num_entries--;
 }
 return item;
}

void putheavy(TItem* item) {
 atomic (heavy_num_entries < MAX_ENTRIES) {
 heavy_buf[heavy_in] = item;
 heavy_in = (heavy_in + 1) % MAX_ENTRIES;
 heavy_num_entries++;
 }
}

TItem* getheavy(void) {
 TItem* item;
 atomic (heavy_num_entries > 0) {
 item = heavy_buf[heavy_out];
 heavy_out = (heavy_out + 1) % MAX_ENTRIES;
 heavy_num_entries--;
 }
 return item;
}

void *app(void *arg)
{
 int tid = *((int *) arg);
 atomic {
 barrier();
 for(int
i=0;i<((NUM_LOG_THREADS/NUM_APP_THREADS)*NUM_ITEMS/NUM_APP_THREADS);
i++) {
 TItem* elp=(TItem*)malloc(sizeof(TItem));
 elp->msg=malloc(sizeof(LIGHTLEN));
 elp->len=LIGHTLEN;
 elp->stamp=i*NUM_APP_THREADS+tid;
 putfilter(elp);

 62

 printf("thread with id %d generated message with stamp %d\n",
tid, elp->stamp);
 }
 }
}

void *lightlogger(void *arg)
{
 int tid = *((int *) arg);
 for(int i=0;i<(NUM_ITEMS/NUM_LOG_THREADS);i++) {
 TItem* elp=getlight();
 printf("thread with id %d logged light message with stamp %d\n",
tid, elp->stamp);
 free(elp->msg);
 free((void*)elp);
 }
}

void *heavylogger(void *arg)
{
 int tid = *((int *) arg);
 for(int i=0;i<(NUM_ITEMS/NUM_LOG_THREADS);i++) {
 TItem* elp=getheavy();
 printf("thread with id %d logged light message with stamp %d\n",
tid, elp->stamp);
 free(elp->msg);
 free((void*)elp);
 }
}

void *filter(void *arg)
{
 int tid = *((int *) arg);
 for(int
i=0;i<(((NUM_LOG_THREADS/NUM_APP_THREADS)*NUM_ITEMS/NUM_APP_THREADS)
);i++) {
 TItem* elp=getfilter();
 if (elp->len == LIGHTLEN) {
 putlight(elp);
 printf("thread with id %d filtered light message with stamp %d
onto light queue\n", tid, elp->stamp);
 }
 else {
 putheavy(elp);
 printf("thread with id %d filtered heavy message with stamp %d
onto heavy queue\n", tid, elp->stamp);
 }
 }

 63

}

int main (int argc, char *argv[])
{
 pthread_t logthreads[32];
 int logthread_args[32];
 pthread_t appthreads[16];
 int appthread_args[16];
 int rc;

 if (argc==1||argc!=5) {
 printf("Usage: <# app threads> <# logging threads> (0=='low
rate' | 1=='high rate') (0=='light msg' | 1=='heavy msg')\n");
 exit(0);
 }
 NUM_LOG_THREADS = atoi(argv[2]);
 NUM_APP_THREADS = atoi(argv[1]);
 LOWHIGH = atoi(argv[3]);
 LIGHTHEAVY = atoi(argv[4]);

 if (LOWHIGH)
 NUM_ITEMS=HIGHRATE;
 else
 NUM_ITEMS=LOWRATE;

 /* create all threads */
 for (int i=0; i<NUM_LOG_THREADS; ++i) {
 logthread_args[i] = i;
 if (i % 3 == 0) {
 printf("creating filter logger thread %d \n", i);
 rc = pthread_create(&logthreads[i], (void *) NULL, filter,
(void *) &logthread_args[i]);
 }
 else if (i % 3 == 1) {
 printf("creating light message consuming logger thread %d \n",
i);
 rc = pthread_create(&logthreads[i], (void *) NULL,
lightlogger, (void *) &logthread_args[i]);
 }
 else if (i % 3 == 2) {
 printf("creating heavy message consuming logger thread %d \n",
i);
 rc = pthread_create(&logthreads[i], (void *) NULL,
heavylogger, (void *) &logthread_args[i]);
 }
 }
 for (int i=0; i<NUM_APP_THREADS; ++i) {
 appthread_args[i] = i;

 64

 printf("creating message generating app thread %d \n", i);
 rc = pthread_create(&appthreads[i], (void *) NULL, app, (void *)
&appthread_args[i]);
 }

 /* wait for all threads to complete */
 for (int i=0; i<NUM_APP_THREADS; ++i) {
 printf("joining app thread %d\n", i);
 rc = pthread_join(appthreads[i], NULL);
 }
 for (int i=0; i<NUM_LOG_THREADS; ++i) {
 printf("joining log thread %d\n", i);
 rc = pthread_join(logthreads[i], NULL);
 }
}

