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Abstract

The theme of this thesis relates to solving the optimal portfolio selection problems using
linear programming. There are two key contributions in this thesis. The first contribution
is to generalize the well-known linear optimization framework of Conditional Value-at-Risk
(CVaR)-based portfolio selection problems (see Rockafellar and Uryasev [50, 51]) to more
general risk measure portfolio selection problems. In particular, the class of risk measure
under consideration is called the Coherent Distortion Risk Measure (CDRM) and is the
intersection of two well-known classes of risk measures in the literature: the Coherent
Risk Measure (CRM) and the Distortion Risk Measure (DRM). In addition to CVaR,
other risk measures which belong to CDRM include the Wang Transform (WT) measure,
Proportional Hazard (PH) transform measure, and lookback (LB) distortion measure. Our
generalization implies that the portfolio selection problems can be solved very efficiently
using the linear programming approach and over a much wider class of risk measures.

The second contribution of the thesis is to establish the equivalences among four for-
mulations of CDRM optimization problems: the return maximization subject to CDRM
constraint, the CDRM minimization subject to return constraint, the return-CDRM utility
maximization, the CDRM-based Sharpe Ratio maximization. Equivalences among these
four formulations are established in a sense that they produce the same efficient frontier
when varying the parameters in their corresponding problems. We point out that the first
three formulations have already been investigated in Krokhmal et al. [36] with milder
assumptions on risk measures (convex functional of portfolio weights). Here we apply their
results to CDRM and establish the fourth equivalence. For every one of these formula-
tions, the relationship between its given parameter and the implied parameters for the
other three formulations is explored. Such equivalences and relationships can help veri-
fying consistencies (or inconsistencies) for risk management with different objectives and
constraints. They are also helpful for uncovering the implied information of a decision
making process or of a given investment market.

We conclude the thesis by conducting two case studies to illustrate the methodologies
and implementations of our linear optimization approach, to verify the equivalences among
four different problem formulations, and to investigate the properties of different members
of CDRM. In addition, the efficiency (or inefficiency) of the so-called 1

n
portfolio strategy

in terms of the trade off between portfolio return and portfolio CDRM. The properties of
optimal portfolios and their returns with respect to different CDRM minimization problems
are compared through their numerical results.
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Chapter 1

Introduction

This thesis studies the mathematical and computational properties of Coherent Distortion
Risk Measures (CDRMs), incorporates CDRM in various portfolio selection models and
shows the equivalences among these models.

Coherent Distortion Risk Measure, as its name reveals, is the intersection of two well-
known classes of risk measures: coherent risk measures (CRMs) and distortion risk mea-
sures (DRMs). CRM was first proposed by Artzner et al. [3] via an axiomatic approach,
in which mathematical properties of risk measures were derived from a set of intuitive
principles. DRM was first proposed and studied as an insurance premium principle in
series of papers by Wang [64, 65] and Wang et al. [69]. DRM was studied as a risk mea-
sure by Wirch and Hardy [71] and has become a popular class of risk measure since then.
These two classes of risk measures have certain desirable conceptual, mathematical and
computational properties, some of which are common for both classes while the others are
different. Further discussions of CRM and DRM will be made in Section 3.2 and Section
3.3 respectively. CDRM enjoys properties of both CRM and DRM hence can be applied
to portfolio selection problems in a unique way that neither CRM or DRM can in gen-
eral. In particular, any CDRM can be represented as a convex combination of Conditional
Value-at-Risk (CVaR) at different confidence levels but neither CRM nor DRM has such
an amenable representation.

The seminal work of Markowitz [44] gave rise to long lasting research efforts in the field
of portfolio selection. Portfolio selection problems are solved in order to exploit the so-call
risk-reward trade off. Given a universe of assets, any rational investor wants to select a
portfolio consisting these assets such that it both suits the investor’s risk appetite and
generates the highest possible portfolio return. With selected risk and return measures,
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an investor can have different ways to describe his/her risk-reward trade off, which in turn
induce different formulations of portfolio selection problems.

This thesis studies four formulations of portfolio selection problems and establishes
equivalences among these four problems via Karush-Kuhn-Tucker (KKT) conditions. Un-
less stated otherwise, the expected return and CDRM of a portfolio are the selected return
and risk measures in our portfolio selection problems. In our portfolio section problem
formulations, the n-vector x1 can be interpreted as a portfolio consisting of n instruments.
Depending on the particular application xi may represent the number of units of instru-
ment i in the portfolio or the proportion of initial wealth invested in instrument i. D ∈ Rn

denotes the set of feasible portfolios that satisfies given constraints such as budget con-
straint, non-negativity constraints, etc besides the risk and/or return constraints that are
given separately. Finally R(x) and ρ(x) denote the expected return and the risk measures
for portfolio x respectively, unless specified otherwise. Detailed formulations, notations
and discussions of these formulations will be presented in Chapter 4. As a preview, the
following four portfolio selection problems are studied in this thesis:

1. Return maximization. Select a feasible portfolio that has the highest expected
portfolio return given that its portfolio risk is at most η

max
x
{R(x)|ρ(x) ≤ η,x ∈D} (1.1)

2. Risk minimization. Select a feasible portfolio that has the lowest portfolio risk
given that its expected portfolio return is at least µ

min
x
{ρ(x)|R(x) ≥ µ,x ∈D} (1.2)

3. Utility maximization. Select a feasible portfolio that has the highest utility that
is expressed as the expected portfolio return minus the product of a risk aversion
parameter τ > 0 and portfolio risk2

max
x
{R(x)− τρ(x)|x ∈D} (1.3)

1Throughout this thesis, all vectors and matrices are specified in italic boldface while all scalers are
specified as italic.

2R(x) − τρ(x) is referred to as a utility function in the literature (see [51] for example) but it is not
the same as the classical Von Neumann-Morgenstern utility.
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4. Sharpe Ratio maximization. Select a feasible portfolio that has the highest
Sharpe Ratio, expressed as ratio of the difference of portfolio return and a benchmark
return level ν and the portfolio risk

max
x
{R(x)− ν

ρ(x)
|x ∈D} (1.4)

This thesis is structured as follows: the remainder of this chapter motivates the study
of CDRM, its different formulations in portfolio selection problems and provides a com-
prehensive literature review on developments in risk measures, portfolio selection, and
the conjunction of the two fields. Chapter 2 presents a number of preliminaries such
as linear programming (LP), fractional linear programming (LFP), Karush-Kuhn-Tucker
(KKT) conditions, and CVaR optimization shortcut for ease of later discussions. Chapter
3 studies various properties of CRM, DRM and CDRM. Chapter 4 studies four formu-
lations of CDRM portfolio selection problem and establishes equivalences among those
formulations. Chapter 5 conducts case studies and presents numerical results to verify the
equivalences shown in Chapter 4 and to study some interesting observations when applying
our methodologies to real data. Chapter 6 gives concluding remarks for this thesis and
proposes plausible extensions for future research.

1.1 Motivation

Although a rigid definition of the risk-reward trade off, or sometimes referred to as the risk-
return trade off, varies across different applications, it is commonly known as the principle
that potential return rises with an increase in risk. A quantitative measure of risk-reward
trade off in literature, for example, is the expected excess return on a broad stock market
index divided by its standard deviation, commonly known as the Sharpe ratio3. Other
measures of return and risk are used in other applications. One challenge to portfolio
managers is to construct portfolios that fully utilize a preselected measure of risk-reward
trade off. For example, an investor may want to construct a portfolio with the highest
Sharpe ratio so that the highest excess return can be obtained for each unit of risk, from
a statistical point of view. Consider yet another example, when reinsurance companies
take layers of risks from insurance companies in exchange for premiums, they may want to
collect as much premiums as possible given that their existing level of reserve is sufficient

3Also known as the price of risk and the Return on Risk Adjusted Capitals (RORAC), depending on
particular application.
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to cover losses from the risks they have taken 95% of the time. In the aforementioned
examples and many others, it is clear that utilization of risk-reward trade off naturally
induces various optimization problems.

Although the risk-reward trade off is an intuitive principle and is widely accepted in
practice, formulating the induced optimization problems into mathematical programming
problems that are computationally amenable computationally is a challenging task. The
source of difficulty is two fold. Firstly there are many risk and return measures and it is hard
to make appropriate choice in practice. In particular the choice of risk measure is in itself an
ongoing debate and a universally accepted risk measure is yet to be decided. Secondly for
predetermined choices of risk and return measures, understanding their mathematical and
computational properties is of critical importance in formulating them into programming
problems. Otherwise the induced portfolio selection problem could be ill-structured in a
sense that it cannot be solved sufficiently and hence is of little practical value.

Searching for useful risk measures can help addressing the first difficulty. Prior to the
work of Artzner et al. [3], the search of useful risk measure remained in a “passive” phase
in a sense that new risk measures are proposed by observing and tackling disadvantages of
old ones or extensions of old ones. For example, variance as a risk measure was criticized
since it penalizes both unexpected portfolio increases and unexpected portfolio declines.
Semi-variance was then proposed to tackle such shortcoming, which was later extended
to partial moments. In such phase of search, efforts were paid mostly to find out what
properties that a useful risk measure should not have. Artzner et al. [3] not only proposed a
new class of risk measures, but also initiated an “active” way of searching for desirable risk
measures. In such active search, a set of intuitive principles, such as the principle of risk
diversification and impossibility of hedging similar risks, are proposed and explored in an
intuitive way and are termed “axioms”. Such axioms are then abstracted in mathematical
expressions. The resulting properties, such as subadditivity and comonotonic additivity,
are exploited from mathematical and computational perspectives. Simply put, an active
search pays efforts to find out what properties that a useful risk measure should have.
Both CRM and DRM are products of such active search but with different sets of axioms.
Detailed discussions of the long lasting search of risk measures in literature are given in
Section 1.2.

By construction, CRM and DRM are useful risk measures because they both have some
intuitive and desirable properties as risk measures, namely their underlying set of axioms.
Moreover, the mathematical properties of CRM and DRM derived from their underlying set
of axioms ease their formulations in mathematical programming in different ways. CDRM,
as the intersection of two classes of risk measures, enjoys conceptual, mathematical, and
computational properties of both CRM and DRM. As a result, it is possible to derive
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further and stronger results for CDRM in the context of portfolio selection. Such possibility
motivates our study of CDRM and its applications in portfolio selection problems.

However, even with well chosen risk and return measures which are conceptually intu-
itive and computationally amenable, there are various ways to formulate the induced port-
folio selection problem. Within a given feasible set of portfolios4, common formulations of
portfolio selection problem include minimization of risk given expected return constraints,
maximization of expected return given risk constraints, maximization of a special utility
function that is a linear combination of return and risk, and maximization of Sharpe Ra-
tio. It is worth noting that the last formulation is generally more complicated than the
others from mathematical programming perspective. This thesis establishes equivalences
among these four formulations in a sense that these formulations produce the same optimal
solution if their parameters satisfy certain equivalent conditions.

The equivalences established in this thesis can help reconciling different investment ob-
jectives and help detecting inconsistencies for different investment criteria. For instance,
two investors with distinct objectives (one wants return maximization while the other wants
risk minimization, for example) may end up with the same optimal portfolio because a cer-
tain conditions are satisfied. Therefore under these conditions the two different investment
objectives are indeed equivalent. In practice, investors sometimes have multiple investment
decision criteria at the same time and it is of interest to tell whether these multiple criteria
are consistent with each other, i.e., whether the optimal portfolio for one criterion is the
same as that for the other criteria. For example, different departments of an investment
bank may use different investment criteria in investment decisions, it is helpful to verify the
consistencies (or inconsistencies) among these criteria to ensure the portfolio performance
of the bank’s overall portfolio.

With such equivalences, the four aforementioned types of formulations can be used in-
terchangeably. Such equivalences provide portfolio managers with extra freedom in choos-
ing decision criteria base on their own needs and conventions. For example, management
may have a risk minimization problem in mind since it has decided on a minimum accept-
able level of return but the company’s internal software is specialized in solving return
maximization problems. Our results can help recasting the risk minimization problem
as a return maximization problem so that management needs can be satisfied and com-
putational advantages can be taken in the mean time. Moreover, the equivalences reveal
linkages among these formulations. For example, if management preselects‘ a minimum ac-
ceptable level of return, the equivalences can infer its equivalent maximum acceptable risk
level, risk aversion parameter value, and benchmark return level. Such additional informa-

4The set of portfolios that satisfies portfolios constraints other than risk and return constraints.
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tion can help companies in checking consistencies in decision making process with different
decision criteria, in inferring competitors’ investing strategies from limited available infor-
mation, etc.The growing complexity of financial risk management problems demand uses of
sophisticated risk measures which in turn induce complicated mathematical programming
problems. The benefits of equivalences among different formulations will become more
and more significant by connecting a seemingly overwhelming problem with a well studied
problem that is readily applicable and can be solved efficiently.

1.2 Literature Review

The pioneering work of Markowitz [44] addressed and solved portfolio selection problems
via mathematical programming models. The mean-variance optimization framework and
the related works of Sharpe [54], Lintner [43], Merton [46] and others’ contributed to
the revolutionary development of a new subject of study: the Mordern Portfolio Theory
(MPT). Despite the critiques on its unrealistic assumptions about investors and markets,
MPT has been one of the most important models in portfolio selection and risk manage-
ment. Furthermore, MPT is appreciated in many corporate finance applications. Such
concepts as the Capital Asset Pricing Model (CAPM), the Efficient Frontier, the Capital
Allocation Line (CAL), the Capital Market Line (CML), the Security Market Line (SML)
have gained critical importances in both academic research and industrial applications. In
short, MPT’s conceptual simplicity in interpretation and structural amenability in compu-
tation lend itself the practical and theoretical importance.

One of the inspirations that MPT offers is the linkage between risk measures and
mathematical programming. Developments in the subject of portfolio selection can be
made through either search of new risk measures or improvements in modeling and solv-
ing mathematical programming. On one hand, proposals of new risk measures and ex-
ploitations of their structural properties ease the formulation of such risk measures in
programming problems and provide meaningful interpretations to programming problems’
inputs/outputs. On the other hand, advances in mathematical programming usually en-
larges the applicability of existing portfolio selection problems by exploring more efficient
solution methods, relaxing previous model assumptions, and developing more advanced
models for more sophisticated risk measures. Note that other aspects such as economic
factors in the model, modeling errors, and parameter estimation errors involved are also
important in this subject but they are outside the scope of this thesis.
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1.2.1 Advances in Risk Measures

Besides academic interests, the long lasting search for useful risk measures is in part stim-
ulated by practical needs in business and investment risk management. The definition of
risk varies across different industries and applications. Moreover, such definition can be
controversial even within one particular discipline. Nevertheless, there are plenty of liter-
atures dedicated to exploring sensible risk measures in different applications. This section
aims to provide a comprehensive literature review on the advances in risk measures without
overwhelming mathematical details and notational burdens.

Variation from expected return, or variance of returns in statistical terminology, seems
to be a logical representation for risk and hence became one of the first risk measures
studied in literature. Suppose there are n risky assets in the market and the return on
asset i is denoted by a random variable Ri. Denote the variance-covariance matrix of asset
returns by Σ, which usually is either given or estimated from data. Then for any portfolio
x, whose ith entry xi for i = 1, · · · , n denotes the proportion of initial wealth invested in
asset i, the variance of portfolio return is given by5

σ2
p = xTΣx

The variance of portfolio return as above was employed as the risk measure in the
seminal work of Markowitz’s [44] yet it has one obvious shortcoming as a risk measure.
Variance holds a symmetric view towards unexpected portfolio growths and unexpected
portfolio declines thus penalizes them in the same way. However, empirical findings show
that investors view profits and losses differently, which contradicts with the symmetric
measures that variance provides.

Semivariance, proposed by Markowitz [45] (first edition published in 1959), is alterna-
tive risk measure that tackles such symmetry issue. In line with the previous notations,
the semivariance of portfolio x is given by:

σ2
p,min = E[((

n∑
i=1

xiRi −
n∑
i=1

xiRi)
+)2]

where E[·] denotes the expectation operator, Ri = E[Ri] denotes the expected return on
asset i for i = 1, · · · , n, and (a)+ = max{a, 0} for a ∈ R.

5Throughout this thesis, superscript capital T denotes matrix transposition and any vector without
transposition operation is a column vector.
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Bawa and Lindenberg [6] further extended the mean-semivariance optimization frame-
work to a mean-lower partial moment optimization framework which considered a whole
class of risk measures that hold asymmetric view towards profit and loss.

The mean-variance optimization framework has yet another shortcoming in failing to
consider higher moments such as skewness and kurtosis for general portfolio return distri-
butions. Such measures are found important in investment decisions empirically. Research
efforts on incorporating higher moments of portfolio return distributions are evidenced by
Lai [41], Chunhachinda [15], and Harvey et al. [27].

Other investment considerations are also important in a portfolio selection model. Roy
[52] pointed out the safety first principle which states that investor want to ensure the safety
of the investment principal before considering the risk and reward trade-off. This principle
inspired the developments for numerous downside risk measures such as the Expected Gain-
Confidence Limit Criterion discussed in Baumol [5] and was later polished as a more
well-known risk measure called the Value-at-Risk (VaR).

VaR measures the potential loss in value of a risky asset or portfolio (the negate of its
return) over a defined period for a given confidence level. In many financial applications
VaR is set as a capital requirement. For example, VaR at 95% is defined as the minimal
amount of capital that is required in order to cover portfolio losses in 95% of cases. More
precisely, given a confidence level α ∈ (0, 1), the Value-at-Risk at confidence level α of a
loss random variable R∗ = −R, V aRα(R∗) is defined as the α-quantile of R∗, i.e.,

V aRα(R∗) = inf{r|Pr(R∗ ≤ r) ≥ α} (1.5)

VaR has been widely used in practice since its introduction. Moreover, it was adopted
as the “1st pillar” in Basel II, which are recommendations on banking laws and regulations
issued by Basel Committee on Banking Supervision. Jorion [30] and Pritsker [48] provided
discussions on VaR’s high status in industry regulations. Despite its conceptual simplicity
and practical popularity, VaR suffers from being unstable computationally and difficult
to work with numerically. Moreover, VaR has been criticized among academics. Firstly,
VaR does not provide information on the severity of losses beyond the threshold amount
indicated by itself. Secondly, VaR fails to be coherent in the sense of Artzner et al. [3].

The seminal papers of Artzner et al. [3] constructed CRM based on a particular set
of axioms and showed that VaR violates the subadditivity axiom in general. Besides
pointing out the lack of coherence of VaR, Artzner et al. [3] also proposed a member of
CRM as an alternative risk measure: the Tail Conditional Expectation. Such risk measure
is studied intensively by different authors in various contexts, hence is sometimes defined
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and termed differently. Wirch and Hardy [71] defined the same risk measure as Conditional
Tail Expectation (CTE); Bertsimas et al. [12] termed a similar risk measure as the Mean
Shortfalland a similar risk measure with seemingly identical term Expected Shortfall is
studied by Acerbi et al. [1]. Rockafellar and Uryasev [50] termed their risk measure
the Conditional Value-at-Risk (CVaR) and we will follow their terminology in this thesis.
Although these risk measures are defined similarly and coincide with each other in some
cases, their differences should not be ignored. Readers may refer to Rockafellar and Uryasev
[51] for comprehensive discussions on CVaR to its full generality. In line with previous
notations, the Conditional Value-at-Risk at level α, CV aRα(R∗) is defined as the mean of
the α-tail distribution of R∗, where the distribution in question is the one with cumulative
distribution function defined by

Fα(r) =

{
0 for Pr(R∗ ≤ r) < V aRα(R∗)

Pr(R∗≤r)−α
1−α for Pr(R∗ ≤ r) ≥ V aRα(R∗)

(1.6)

Note that E[R∗|R∗ > V aRα(R∗)] and E[R∗|R∗ ≥ V aRα(R∗)] are referred to as the
upper α-CVaR(CV aR+) and the lower α-CVaR(CV aR−) respectively but neither of them
is a proper definition of CVaR. These three quantities have the same value in some cases but
are different for general loss distributions. Detailed discussions can be found in Rockafellar
and Uryasev [51].

Distortion risk measures (DRM) is another well known class of risk measures that
is constructed via similar axiomatic approach. The set of axioms underlies DRM was
originally developed for and applied in insurance premium principles, see Goovaerts et al.
[25] and Wang et al. [69]. Such premium principles are studied as risk measures in Wang
[66, 67] and are known as DRM since then. Campana [13] considered the applications
of DRM for discrete loss distributions. Gourieroux [26] provided a statistical framework
for analyzing the sensitivities of DRMs with respect to various risk aversion parameters.
Generally speaking, a DRM is the expectation of portfolio loss random variable under
a distorted probability measure. Different distortions reflect different risk appetites of
decision makers. From a mathematical point of view, DRM is a Choquet integral and all
the standard results about Choquet integrals, such as those discussed in Denneberg [19],
are applicable to DRM. Detailed discussions of DRM is given in Section 3.3.

Although there are commonalities in the underlying axioms for CRM and DRM and
there are risk measures, such as CVaR, that belong to both CRM and DRM, these two
classes of risk measures are not subclasses of each other. Kusuoka [40] studied subclasses
of CRM and proved a representation theorem for comonotonic law-invariant coherent risk
measures. For continuous loss distributions, any comonotonic law-invariant coherent risk
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measure can be represented as a convex combination of CVaR’s at different confidence
levels. Bertsimas and Brown [11] proved similar results for discrete loss distributions and
strengthen their claim by proving only finite number of CVaR’s are needed in the represen-
tation. To the best of the author’s knowledge, Bellini and Caperdoni [8] was the first paper
that synchronized CRM and DRM and studied the intersection of both classes and named
it coherent distortion risk measures (CDRM). They showed that CDRM coincides with
the class of comonotonic law-invariant coherent risk measures. Acerbi et al. [2] studied
spectral measures of risk and applied them in portfolio selection problems. A spectral risk
measure with admissible spectrum can be seen as a CDRM yet it overlooks its connection
the underlying distortion function. Acerbi et al. [2] also provided an optimization scheme
for portfolio selection problems with spectral risk measures. Inspired by the linear opti-
mization scheme for CVaR and spectral risk measures as well as the synchronization of
CRM and DRM, we consider applying the convex combination representation of CVaR’s
for CDRM in portfolio selection problems.

1.2.2 Advances in Mathematical Programming

Mathematical programming concerns the optimal allocation of resources. Its origin can be
traced back to the World War II when the armies looked for ways to minimize their own
costs and maximize losses to their enemies. The simplest model, linear programming, was
developed as an academic discipline in 1939 by Russian mathematician Kantorovich and
Dutch mathematician Koopmans, recognized by Kantorovich [33]6. The founders of the
subject, however, are generally regarded as George B. Dantzig, who devised the simplex
method in 1947 and published in Dantzig [16], and John von Neumann, who established
the theory of duality in the same year based on Neumann [63]. Important generalizations
of linear programming include:

1. Integer programming (IP), whose decision variables are restricted to integers, some-
times referred to as the integrality constraints.

2. Quadratic programming (QP), whose objective function is a quadratic function of
decision variables subject to linear constraints on these variables.

3. Nonlinear programming (NLP), whose objective function and/or constraints are non-
linear.

6The original paper was published in Russian in 1939, the reference is its translated republication in
1960.
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Fractional programming is a subclass of nonlinear programming where the objective
function is a fraction of two functions. Such optimization problems arise naturally in
many applications such as maximizing business efficiency ratio in corporate finance and
minimizing pressure (ratio of force and area) on a surface in physical applications. Ref-
erences on nonlinear programming and fractional programming include Dinkelbach [22],
Schaible and Ibaraki [53] and Stancu-Minasian [58]. Singh [55] studied the optimality
conditions in fractional programming with and without differentiability requirements for
objective and constraints.

Linear fractional programming (LFP) is a special case of fraction programming and
is employed in this thesis to solve CDRM-based Sharpe Ratio maximization problems.
Charnes and Cooper [14] discusses how to solve LFP by solving at most two related LPs
via a variable transformation method. Tantawy [60] and Tantawy [61] provided two more
solution methods and performed sensitivity analysis for LFPs.

Robust optimization and stochastic programming can also be viewed as generalizations
of linear programming but they deserve a separate discussion. The aforementioned gener-
alizations generalize the form of objective function and/or constraints but nevertheless are
deterministic models which known and fixed problem parameters are assumed. However,
any real world problem inevitably includes some degree of uncertainties in its parameter
values. Robust optimization and stochastic programming aim to tackle such difficulty and
take parameter uncertainties into consideration. Robust optimization considers parame-
ters that are known only within certain bounds and aims to find a solution that is feasible
for all parameter ranges and optimal in some sense. Its first introduction dates back to
1973 in Soyster [57]. Stochastic programming assumes parameters are random variables
and their probability distributions are known or can be estimated. The goal then is to find
a feasible solution for all possible data instances and maximizes the expectation of some
function of the decisions variables7.

1.2.3 Advances in Portfolio Selection

Advances in portfolio selection depend largely in advances in risk measures as well as in
mathematical programming. Understandings of risk measures are the theoretical bases
for formulations of portfolio selection problems. Mathematical programming determines
the breadth and depth of a risk measure’s applicability in practice. As discussed above,
the origin of mathematical programming predates that of risk measures hence the latter

7Extensive description of various methodologies for robust optimization and stochastic programming
can be found, along with other resources, at URL http://stoprog.org/
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has been a major determinant in the advances in portfolio selection. Many mathematical
models along with their solution methods are usually readily in place once the structural
properties of a new risk measure is explored and can formulated into a programming
problem.

Markowitz’s mean-variance portfolio selection framework used quadratic programming
since variance is by nature a quadratic function of portfolio weights. Skewness coefficient
and kurtosis coefficient of portfolio loss are the 3rd and 4th order polynomials of portfolio
weights hence can be naturally formulated as corresponding 3rd and 4th order programming
problems as discussed in Jurczenko et al. [32]). Portfolio selection problems with semivari-
ance as risk measure can be formulated as a second-order conic programming (SOCP). By
the same token, p-order lower partial moment risk measures can be formulated as p-order
conic programming (pOCP). References can be found in Tomoyuki [62] and Soberanis et
al. [56].

VaR’s widespread popularity has stimulated extensive research efforts in formulating a
mean-VaR portfolio selection framework. Basak and Shapiro [4] analyzed optimal portfolio
and wealth/consumption policies with VaR as risk measure. Puelz [49] presented and
compared four models for VaR portfolio selection problems. Gaivoronski and Pflug [24]
studied mean-VaR optimization problems with emphasis on its structural properties and
computational aspects. Benati and Rizzi [10] formulates mean-VaR portfolio selection
problem as mixed integer linear programs and showed that such problem is NP-hard. A
comment on this paper by Lin [42] showed that one claim in Benati and Rizzi [10] was
only partly true and proposed an alternative model for mean-VaR portfolio problem.

In actuarial and financial literature, CVaR is usually regarded as a superior risk measure
than VaR. Besides coherence, CVaR is also mathematically and computationally more
stable with respect to portfolio weights than VaR is. Remarkably, Rockafellar and Uryasev
[50] developed a CVaR minimization scheme under which portfolio selection problem with
CVaR objective can be formulated as a linear programming. Krokhmal et al. [36] made
use of such formulation and extended it to problems with CVaR constraints. Such linear
formulation for CVaR was also developed independently by Bertsimas et al. [12]. Bertsimas
et al. [12] also studied some properties of the mean-CVaR efficient frontier. Fábián [23]
exploited the linear optimization scheme of CVaR and considered CVaR in stochastic
models. Krokhmal and Soberanis [37] investigated a subclass of coherent risk measures,
termed the higher moment coherent risk measures (HMCR), formulated HMCR into p-
order conic programs, and employed a decomposition scheme to solve HMCR portfolio
selection problems efficiently.
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Chapter 2

Preliminaries

This thesis studies structural properties of CDRM, considers four formulations of mean-
CDRM portfolio selection problems, and establishes equivalences among these formulations
via Karush-Kuhn-Tucker (KKT) optimality conditions. Reviews on linear programming,
linear fractional programming, KKT optimality conditions, and CVaR minimization short-
cut are important preliminaries to ease later discussions in this thesis. Full coverage of these
preliminaries is outside the scope of this thesis yet some important results are presented
in the current chapter.

2.1 Linear Programming and Fractional Programming

As the foundation of mathematical programming, linear programming(LP) is a technique
for the optimization of a linear objective function, subject to linear equality and/or linear
inequality constraints. When put into specific context, LP can be a powerful modeling
method for determining a way to achieve the best outcome when some requirements are
specified. For example, the problem of profit maximization subject to limited resources can
be formulated as an LP. Mathematically, the standard inequality form of a minimization
LP problem is given by

minimize cTx
subject to Ax ≤ b

(2.1)

where x ∈ Rn denotes the vector of decision variables, A is an m-by-n matrix of known
coefficients, c ∈ Rn and b ∈ Rm are both vectors of known coefficients.
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cTx, the linear function of x to be minimized is called the objective function. The set
of linear equations Ax ≤ b are the constraints which specify a convex polytope over which
the objective function is to be minimized. Let D be the set of feasible solutions for (2.1),
i.e., D = {x ∈ Rn|Ax ≤ b}. It is sometimes convenient write D in terms of the individual
constraint as1 D = {x ∈ Rn|AT

i·x ≤ bi, i = 1, · · · ,m}, so that Ai·x is the gradient of the
ith constraint and bi is its right hand side. Unless stated otherwise, we assume that D is
a bounded convex set that satisfies some regularity conditions specified in Section 2.2.

Admittedly the linearity requirements on objective and constraints may hinder the
applicability of LP in practice. Yet there are plenty of modeling techniques and solution
methods which allows LP to outreach a wide range of real life problems. Although it is
not the purpose of this thesis to provide a thorough coverage on modeling and solving LP,
some relevant LP modeling techniques for discussions in this thesis are shown below:

1. For LP maximization problems we can easily minimize the negative of its original
objective function in order to convert it in the form of (2.1)

2. For any linear equality constraint

AT
i·x = bi

we can replace it by two linear inequality constraints:

AT
i·x ≤ bi

AT
i·x ≥ bi

3. For optimization problems of the form (known as minimax and maximin problems)

min
x∈D

{max{cT1 x, cT2 x, · · · , cTkx}} , or

max
x∈D

{min{cT1 x, cT2 x, · · · , cTkx}}

where ci ∈ Rn, ∀i = 1, 2, · · · , k. We can reformulate the problem by adding one
auxiliary variable z and k linear constraints:

min
x∈X,z∈R

{z|z ≥ cTi x, i = 1, · · · , k} , or

max
x∈X,z∈R

{z|z ≤ cTi x, i = 1, · · · , k}

1For any matrix A, A·i and Ai· denotes the ith column and the ith row of A respectively. Both
notations should be understood as column vectors if no transposition operation is specified.
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Remark 2.1.1. The third modeling technique discussed above can be applied in a variety
of cases

• Minimization of absolute values, min{|cTx|} = min{max{cTx, 0}}.

• Minimization a sum of maximums or maximization of a sum of minimums.

• We can even apply it to a usual objective function by realizing that min{cTx} =
min max{cTx,−∞} and max{cTx}max min{cTx,∞}. In this way we effectively
replace the original linear objective function by a linear constraint.

Popular solution methods for LP include the Simplex algorithm and the various interior
point algorithms. Although the theoretical bound of computational complexity is expo-
nential in problem size for the Simplex algorithm and is polynomial in problem size for
interior point algorithms, the Simplex algorithm is found to be more efficient than interior
point algorithms in practice. Therefore Simplex algorithm is employed in this thesis to
provide numerical demonstrations.

Despite the popularity and powerful modeling techniques of LP, in many practical
applications we may want to optimize a ratio of two functions. For example, business
efficiency ratio is defined as the ratio of expenses and revenue (with a few variations)
and it is natural for management to minimize such ratio. As mentioned in Chapter 1,
Sharpe ratio is an important measure of risk-reward trade off and maximization of Sharpe
Ratio is a canonical portfolio selection problem. Fractional programming is then a natural
formulation for such ratio optimization problems. In line with previous notations, the
standard inequality form of a maximization fractional programming problem is given by

maximize f(x)
g(x)

subject to hi(x) ≤ 0, i = 1, · · · ,m
(2.2)

where f(·) : Rm 7→ R, g(·) : Rm 7→ R, and hi(·) : Rm 7→ R for i = 1, · · · ,m are all functions
of the vector of decision variables x.

Without knowing the particular structural properties for f(·), g(·), and hi(·), i =
1, · · · ,m, it is difficult to derive optimality conditions and solution methods for Problem
(2.2).

Definition 2.1.1. A function f(·) is called convex on D if ∀x1,x2 ∈ D and ∀λ ∈ [0, 1],
we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2.3)
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Furthermore, the function f(·) is strictly convex on D if ∀x1,x2 ∈ D, x1 6= x2 and
∀λ ∈ (0, 1), the inequality (2.3) is strict.

Definition 2.1.2. A function f(·) is called quasi-convex on D if ∀x1,x2 ∈ D and ∀t ∈
[0, 1]:

f [λx1 + (1− λ)x2] ≤ max{f(x1), f(x2)} (2.4)

Furthermore, the function f(·) is called explicit quasiconvex on D if ∀x1, x2 ∈D , f(x1) 6=
f(x2) and ∀t ∈ (0, 1), the inequality (2.4) is strict.

Corollary 2.1.1. (Special case of Corollary 2.4.1 in Stancu-Minasian (1997))

For n-vectors coefficients c and d, n-vector variable x and constants c0 and d0. Let
D ⊆ Rn be a bounded convex set, the function F : D 7→ R defined as

F (x) =
cTx+ c0

dTx+ d0

is an explicit quasiconcave function provided that d′x + d0 6= 0 and the sign of d′x + d0
remains unchanged ∀x ∈D.

Theorem 2.1.1. (Variation of Theorem 2.3.5 in Stancu-Minasian [58])

If F : D 7→ R is explicit quasiconcave on the convex set D, then any local maximum
of function F (·) is a global maximum of F (·) on D.

If f(·), g(·), and hi(·), i = 1, · · · ,m are all linear functions of x in Problem (2.2), then
Problem (2.2) reduces to a well-known class of programming problems called the linear
fractional programming (LFP). In line with previous notations, the standard inequality
form of a maximization LFP problem is given by:

maximize f(x)
g(x)

= cTx+c0
dTx+d0

subject to Ax ≤ b
(2.5)

where c ∈ Rn and d ∈ Rn are vectors of known coefficients, c0 and d0 are scalars of known
coefficients.

There are Simplex method and interior point algorithms for LFP similar to those for
LP. However such algorithms are not usually available in commercial software because any
LFP can be solved by solving at most two LP’s through a simple variable transformation
method, studied by Charnes and Cooper[14].

Consider the following variable transformation:
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y = tx (2.6)

where t ≥ 0 is a scalar such that:

t =
1

dTx+ d0
⇔ dTy + d0t = 1 (2.7)

Multiplying the numerator and the denominator of the objective as well as the con-
straints of (2.5) by t, and using the relation (2.7), we have:

maximize cTy + c0t
subject to Ay − bt ≤ 0

dTy + d0t = 1
t ≥ 0

(2.8)

Denote the feasible set for Problem (2.8) by D∗ = {(yT , t)T ∈ Rn × R|Ay − bt ≤
0,dTy+d0t = 1, t ≥ 0}. Recall that D = {x ∈ Rn|Ax ≤ b} is the feasible set for Problem
2.5 which is assumed to be a bounded set.

Lemma 2.1.1. For any feasible solution (yT , t)T ∈D∗ of the problem (2.8), we have t > 0

Proof. Assume that (ŷT , 0)T ∈ D∗ and let x̂ ∈ D. Since Aŷ ≤ 0 it follows that xr =
x̂ + rŷ ∈ D. Yet r can be as large as required, which implies that D is unbounded and
leads to a contradiction.

Theorem 2.1.2. (Variation of Theorem 3.4.1 in Stancu-Minasian [58])

If dTx∗ + d0 > 0 where x∗ is the optimum solution for (2.5) and (y∗T , t∗)T is an
optimum solution for (2.8), then x = y∗

t∗
is an optimum solution for (2.5).

Proof. Since (y∗T , t∗)T is an optimum solution for (2.8), we have:

cTy∗ + c0t
∗ ≥ cTy + c0t, ∀(yT , t)T ∈ D∗ (2.9)

Assume that x = y∗

t∗
were not an optimum solution for (2.5). Hence there is another

point x0 ∈ D which is optimum, i.e.,

cTx0 + c0

dTx0 + d0
>
cT (y

∗

t∗
) + c0

dT (y
∗

t∗
) + d0
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But

cT (y
∗

t∗
) + c0

dT (y
∗

t∗
) + d0

=
cTy∗ + c0t

∗

dTy∗ + d0t∗
= cTy∗ + c0t

∗

since

dTy∗ + d0t
∗ = 1, (y∗T , t∗)T ∈ D∗

Hence

cTx0 + c0

dTx0 + d0
> cTy∗ + c0t

∗ (2.10)

Since x0 is an optimum solution of (2.5) and by assumption dTx0 + d0 > 0. Let
dTx0 + d0 = ε and let ŷ = x0

ε
, t̂ = 1

ε
. The point (ŷT , t̂)T is a feasible solution for (2.8)

since

Aŷ =
Ax0

ε
≤ b

ε
= bt̂

dT ŷ + d0t̂ = dT
x0

ε
+ d0

1

ε
=

dTx0 + d0
ε

= 1

t̂ ≥ 0

We have

cTx0 + c0

dTx0 + d0
=

cTx0

ε
+ c0

ε

dTx0

ε
+ d0

ε

=
cT ŷ + c0t̂

dT ŷ + d0t̂
= cT ŷ + c0t̂ (2.11)

(2.10) and (2.11) imply

cT ŷ + c0t̂ > c
Ty∗ + c0t

∗ (2.12)

which contradicts (2.9). The proof is complete.
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Note that Theorem 2.1.2 was proved under the assumption that dTx∗ + d0 > 0 where
x∗ is the optimum solution for (2.5). If dTx∗+d0 < 0, we can replace (cT , c0) and (dT , d0)
by (−cT ,−c0) and (−dT ,−d0), respectively. The value of the objective function will not
change and we get −dTx∗−d0 > 0. Thus the results of Theorem 2.1.2 remain valid in this
case too. As a result, we can state the following result:

Theorem 2.1.3. (Variation of Theorem 3.4.2 in Stancu-Minasian [58])

If D is a bounded convex set, then for solving (2.5) it is sufficient to solve the following
two LP’s:

max{cTy + c0t|Ay − bt ≤ 0,dTy + d0t = 1, t ≥ 0} (2.13)

max{−cTy − c0t|Ay − bt ≤ 0,−dTy − d0t = 1, t ≥ 0} (2.14)

If the sign of the denominator at the optimum solution is not known, then both prob-
lems, (2.13) and (2.14), must be solved. The solution which gives the largest value is
selected. But if the sign of the denominator at the optimum solution is known, then ac-
cording to Theorem 2.1.2, it is sufficient to solve only one of the problems (2.13) or (2.14),
depending on the sign of the denominator. Discussions for the case where denominator is
zero at optimum solution is omitted here because a risk measure of zero rarely occur in
real life applications. Readers are encouraged to refer to Stancu-Minasian [58] for more
details.

2.2 Karush-Kuhn-Tucker Optimality Conditions

In theory of nonlinear programming, the Karush-Kuhn-Tucker (KKT) optimality condi-
tions (also known as the Kuhn-Tucker or KKT conditions2) are necessary conditions for
a solution to be optimal, provided that some regularity conditions are satisfied3. Unless

2The KKT conditions were originally named after Harold W. Kuhn, and Albert W. Tucker, who first
published the conditions in Kuhn and Tucker [38]. It was discovered later that the necessary conditions
for this problem had been stated by William Karush in Karush [34].

3Examples of regularity conditions include linear independence constraint qualification, constant rank
constraint qualification, etc. The required set of regularity conditions varies depending on the structure
of programming problem of interest. Discussions on regularity conditions can be found in Bazaraa et al.
[7] and Peterson [47].
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specified otherwise, we assume throughout this thesis that all regularity conditions are
satisfied.

Consider a general nonlinear programming(NLP) minimization problem in standard
inequality form given by

minimize f(x)
subject to hi(x) ≤ 0, i = 1, · · · ,m (2.15)

Problem (2.15) may have several local minima and the necessary conditions for opti-
mality can be obtained by using the Lagrange multiplier method. The Lagrangian function
for (2.15) is given by:

L(x,u) = f(x) +
m∑
i=1

uihi(x), (2.16)

where uT = (u1, · · · , um) is called the Lagrange dual multiplier vector.

Theorem 2.2.1. (Karush-Kuhn-Tucker Necessary Optimality Conditions)

If x∗ is a regular4, local minimizer to (2.15), then there exists a Lagrange multiplier
vector u∗ such that5

−∇f(x∗) =
m∑
i=1

u∗i∇hi(x∗) (2.17)

hi(x
∗) ≤ 0, i = 1, · · · ,m (2.18)

u∗i ≥ 0, i = 1, · · · ,m (2.19)

u∗ihi(x
∗) = 0, i = 1, · · · ,m (2.20)

Condition (2.17) is referred to as the Lagrangian stationarity condition because it is
derived from setting the gradient of the Lagrangian function (2.16) equal to zero. The
Lagrangian Stationarity Condition gives a set n equations and is a necessary condition for
x∗ to be a stationary point (could be a minimum, maximum, or saddle point). Condition
(2.18) is called the primal feasibility condition which restricts x∗ to be a feasible solution
for problem (2.15). This set of condition is merely a replication of the constraints of (2.15).

4x∗ satisfies all regularity conditions.
5∇ denotes the gradient operator
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Condition (2.19) is called the dual feasibility condition. For every nonlinear programming
problem, there exists a corresponding Lagrangian dual problem. Any feasible solution of a
Lagrangian dual problem produces an objective value that is greater than or equal to that
of its primal problem. The dual feasibility condition guarantees the feasibility of u∗ for the
Lagrangian dual of (2.15). Last but not least, condition (2.20) is commonly referred to
as the complementary slackness condition. This condition provides linkage between (2.15)
to its Lagrangian dual problem. The complementary slackness condition is of critical
importance in establishing optimality of x∗ and in developing solution methods for various
programming problem.

The necessary conditions are sufficient for optimality if the objective function f is con-
tinuously differentiable concave function and the inequality constraints hi are continuously
differentiable convex functions. In the special case of LP and LFP, KKT conditions are
both necessary and sufficient conditions for optimality. Moreover, KKT conditions can be
reduced to a simpler set of conditions for LP and are referred to as duality. Neverthe-
less, we adhere to KKT conditions as optimality in order to maintain consistencies when
comparing optimality conditions for LP and LFP. The necessity and sufficiency of KKT
conditions for LP and LFP are both important in establishing equivalences among different
formulations of portfolio selection problems.

2.3 CVaR Minimization Short-cut

The linear representation of CVaR developed in Rockafellar and Uryasev [50] is of funda-
mental importance for the CDRM optimization framework studied in this thesis. In line
with their work, we review the definition of CVaR and present several theoretical results
that are important to discussions in this thesis. Krokhmal et al. [36] extended the appli-
cability of such linear minimization of CVaR by considering portfolio selection problems
with CVaR constraints. Rockafellar and Uryasev [51] considered portfolio selection prob-
lems with multiple CVaR constraints, termed the portfolio risk-shaping with CVaR. In this
section we review their results and will adhere as much as possible to the notations therein.

Let l(x,y) be the loss associated with the decision vector x, to be chosen from a setD ⊆
Rn, and the random vector y ∈ Rm. The vector x represents what we may generally call
a portfolio, with D expressing the set of all feasible portfolios subject to certain portfolio
constraints. y is a probability mass vector, i.e., yi denotes the probability for realizing the
ith scenario. For every x, the loss l(x,y) is a random variable having a distribution in R
induced by the distribution of y. Unless indicated otherwise, the underlying probability
distribution of y in Rm is assumed to be discrete uniform distribution, i.e. the probability of
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realizing the loss li = l(x, yi) is pi = 1
m
, i = 1, · · · ,m. This is not a very limiting assumption

if we restrict ourselves to discrete portfolio loss distributions, which is always the case if
we are obtaining distributional information via scenario generation or from historical data
samples. In addition, given any arbitrary discrete distribution representable with rational
numbers, we may always convert it to discrete uniform distribution for some large enough
m.

For every portfolio x, we denote by Ψ(x, ·) the cumulative distribution function for the
portfolio loss l = l(x,y), i.e.,

Ψ(x, ζ) =
m∑
i=1

pi1{li≤ζ} (2.21)

Definition 2.3.1. Definitions of α-VaR and α-CVaR for scenario models(Proposition 8
in Rockafellar et al. [51])

Suppose for each x ∈D the distribution of the portfolio loss l = l(x,y) is concentrated
in m <∞ points, and Ψ(x, ·) is a step function with jumps at those points. Fixing x, let
those corresponding portfolio loss points be ordered as l(1) ≤ l(2) ≤ · · · ≤ l(m). Denote the
probability of realizing the loss l(i) by p(i) > 0 for i = 1, · · · ,m.

Let iα be the unique index such that

iα∑
i=1

p(i) ≥ α >
iα−1∑
i=1

p(i) (2.22)

The α-VaR of the portfolio loss is given by

ζα(x) = l(iα), (2.23)

and the α-CVaR of the portfolio loss is given by

φα(x) =
1

1− α
[(

iα∑
i=1

p(i) − α)liα +
m∑

i=iα+1

p(i)l(i)] (2.24)

The key to the CVaR linear minimization formulation is a characterization of φα(x)
and ζα(x) in terms of a special function Fα(x, ζ) given by

Fα(x, ζ) = ζ +
1

1− α
E[(l(x,y)− ζ)+] = ζ +

1

1− α

m∑
i=1

pi(li − ζ)+ (2.25)

22



Theorem 2.3.1. Convex formulation for CVaR minimization problems (Theorem 14 in
Rockafellar et al. [51])

Minimizing φα(x) with respect to x ∈ D is equivalent to minimizing Fα(x, ζ) over all
(xT , ζ)T ∈D × R, in the sense that

min
x∈D

φα(x) = min
(xT ,ζ)T∈D×R

Fα(x, ζ) (2.26)

where moreover

(x∗T , ζ∗)T ∈ arg min
(xT ,ζ)T∈D×R

Fα(x, ζ)⇐⇒ x∗ ∈ arg min
x∈D

φα(x), ζ∗ ∈ arg min
ζ∈R

Fα(x∗, ζ) (2.27)

Theorem 2.3.1 provides a convex representation of CVaR as the optimal objective value
of a convex programming problem. Furthermore, such convex programming problem calcu-
lates VaR and CVaR simultaneously. Such convex representation of CVaR can be further
simplified as linear representation via LP modeling techniques we have discussed in Sec-
tion 2.1. With such linear representation we can cast any portfolio selection problem with
CVaR objective and linear constraints as an LP.

Moreover, the following result consider applying the linear representation of CVaR as a
constraint in portfolio selection problems. Such conversion can be shown in various ways.
For example, one can apply the third LP modeling technique in Section 2.1 to convert a
CVaR objective into a CVaR constraint. One can also derive the same result by using
KKT conditions.

Theorem 2.3.2. Portfolio optimization with CVaR constraint (Theorem 4 in Krokhmal
et al. [36])

For any portfolio selection problem with a continuously differentiable convex objective
function f(·) : Rn 7→ R, the two minimization problems below

min{f(x)|x ∈D, φα(x) ≤ η} (2.28)

and

min{f(x)|(x, ζ) ∈D × R, Fα(x, ζ) ≤ η} (2.29)

are equivalent in the sense that their objectives achieve the same minimum values. More-
over (x∗T , ζ∗)T solves problem (2.29) if and only if x∗ solves problem (2.28).
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Rockafellar and Uryasev [51] considered a further extension to Theorem 2.3.2 in which
multiple CVaR constraints are incorporated into one problem. Handling several CVaR at
different probability thresholds helps portfolio manager in shaping the risk profile of their
portfolio losses, hence the term portfolio risk-shaping is given to such formulation.

Theorem 2.3.3. Risk shaping with CVaR (Theorem 16 in Rockafellar et al. [51])

For any selection of probability thresholds αi and loss tolerances ηi, i = 1, · · · ,m, the
problem

minimize f(x)
subject to φαi(x) ≤ ηi i = 1, · · · ,m

x ∈ D
(2.30)

is equivalent to the problem

minimize f(x)
subject to Fαi(x, ζi) ≤ ηi i = 1, · · · ,m

(xT , ζ1, · · · , ζm)T ∈ D × R× · · · × R
(2.31)

in the sense that their objectives achieve the same minimum values.

Moreover (x∗T , ζ∗1 , · · · , ζ∗m)T solves problem (2.31) if and only if x∗ solves problem (2.30)
and the inequality Fαi(x

∗, ζ∗i ) ≤ ηi holds for i = 1, · · · ,m.

Moreover one then has φαi(x
∗) ≤ ηi for i = 1, · · · ,m. And φαi(x

∗) = ηi for every i
such that Fαi(x

∗, ζ∗i ) = ηi.

If the loss l(x, y) is a linear function of x, then the linearization scheme in Krokhmal
et al. [36] can be employed to convert any CVaR objective/constraint into linear functions
of x. A brief summary of their results is given below

• Replace a CVaR objective function by a linear objective and 2m additional linear
constraints:

min{φα(x)|x ∈D}
m

min{Fα(x, ζ)|x ∈D}
m
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minimize ζ + 1
1−α

m∑
j=1

pjzj

subject to zj ≥ lj(x, y)− ζ j = 1, · · · ,m
zi ≥ 0 j = 1, · · · ,m
x ∈ D

(2.32)

• Replace a CVaR constraint by 2m+ 1 linear constraints:

min{f(x)|φα(x) ≤ η,x ∈D}
m

min{f(x)|Fα(x, ζ) ≤ η,x ∈D}
m

minimize f(x)

subject to ζ + 1
1−α

m∑
j=1

pjzj ≤ η

zj ≥ lj(x, y)− ζ j = 1, · · · ,m
zi ≥ 0 j = 1, · · · ,m
x ∈ D

(2.33)

• Replace k CVaR constraints by (2m+ 1)k linear constraints:

min{f(x)|φαi(x) ≤ ηi, i = 1, · · · , k,x ∈D}
m

min{f(x)|Fαi(x, ζi) ≤ ηi, i = 1, · · · , k,x ∈D}
m

minimize f(x)

subject to ζi + 1
1−α

m∑
j=1

zij ≤ ηi i = 1, · · · , k

zij ≥ lj(x, y)− ζi i = 1, · · · , k; j = 1, · · · ,m
zij ≥ 0 i = 1, · · · , k; j = 1, · · · ,m
x ∈ D

(2.34)

Last but not least, in cases where f(x) is a linear function or a fraction of two linear
functions of x, Problem (2.31) reduces to an LP or an LFP respectively. Discussions and
results in Chapter 4 rely heavily on the linear CVaR formulation presented in this section.
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Chapter 3

Coherent Distortion Risk Measures

Quantifying the risk or the uncertainty in the future value of a portfolio is one of the
most important tasks in risk managements. This quantification is usually achieved by
modeling the uncertain payoff as a random variable, to which then a certain functional is
applied. Such functionals are usually called risk measures. A risk measure attempts to
assign a single numerical value to a random potential financial loss. Applications of such
risk measures include margin requirements in financial trading, insurance risk premiums,
and government regulatory deposit requirements for banking regulation. Conventionally,
portfolios’ return distributions are considered in finance and investment applications while
portfolios’ loss distributions are concerned in insurance applications. To avoid ambiguity,
this thesis considers a portfolio’s loss distribution, or equivalently the negative of return
distributions in quantifying its underlying riskiness.

3.1 Basic Risk Measures

The uncertainty for future value of an investment position is usually described by a function
X : Ω 7→ R, where Ω is a fixed set of scenarios with a probability space (Ω,F ,P). Let
X be a linear space of random variables on Ω, i.e., a set of functions X : Ω 7→ R. It is
assumed that X is bounded. In particular, X ⊆ L∞(Ω,F ,P)1. For introduction, X can be
thought of as a loss from an uncertain position. For X, Y ∈ X , we denote the state-wise
dominance by X ≥ Y , i.e., X ≥ Y ⇔ X(ω) ≥ Y (ω) for all ω ∈ Ω.

1When |Ω| is finite and supported by finite elements, this is automatically satisfied
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Definition 3.1.1. A mapping ρ : X 7→ R is called a risk measure if it satisfies, for all
X, Y ∈ X :

A1 Monotonicity: If X ≥ Y , then ρ(X) ≥ ρ(Y ).

A2 Translation invariance: If c ∈ R, then ρ(X + c) = ρ(X) + c.

The financial meaning of monotonicity is clear: The risk of a portfolio is at least as
much as another one if the former incurs at least as much losses as the latter in very state
of economy. Translation invariance is motivated by the interpretation of ρ(X) as a reserve
requirement, i.e., ρ(X) is the amount which should be raised in order to make X acceptable
from the point of view of a supervising agency. Thus, if there is a constant loss added to
all future state of economy, then the reserve requirement is increased by the same amount.

In accord to this definition, expectations, variance and higher moments, partial mo-
ments, quantile measures such as V aR, and conditional expectations such as CVaR are all
risk measures. Our task is to look for particular classes of risk measures that have more
desirable properties.

Definition 3.1.2. A risk measure ρ is called a convex risk measure if it satisfies:

A3 Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), λ ∈ [0, 1]

Consider two investment strategies that lead to two loss random variables, X and
Y . If one takes only a fraction λ of loss X and 1 − λ of loss Y , one obtains a loss
random variable λX + (1 − λ)Y . The axiom of convexity gives a precise meaning to
the idea that diversification should not increase the risk. This is a desirable property
for both economic reasons (convex preferences) and computational reasons (ensuring that
optimization such over risk measures induces convex optimization problems). The idea
of risk diversification becomes even clearer when we note that convexity implies a weaker
requirement of quasiconvexity:

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )}, λ ∈ [0, 1]

Note that quantile risk measures such as V aR is not a convex risk measure. Consider
the example shown in Table 3.1. We see that 0.5V aR0.95(X) + 0.5V aR0.95(Y ) = 0 < 50 =
V aR0.95(0.5X+0.5Y ) which violates the convexity axiom. Therefore VaR is not a member
of convex risk measure in general. The lack of convexity for VaR has been a strong critique
because it is counterintuitive and it is computationally difficult to deal with.
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Scenarios Probability Loss Profile X Loss Profile Y Loss Profile X+Y
1 0.0384 100 0 100
2 0.0384 0 100 100
3 0.0016 100 100 200
4 0.9216 0 0 0

V aR0.95 0 0 100

Table 3.1: Example for showing V aR is not convex

3.2 Coherent Risk Measure

Artzner et al. [3] defines the class of Coherent Risk Measures(CRM) in terms of four axioms:
monotonicity, subadditivity, positive homogeneity, and translation invariance. With the
definition of convex risk measure, we can reach an alternative and equivalent2 definition of
CRM:

Definition 3.2.1. A convex risk measure ρ is called a coherent risk measure if it satisfies:

A4 Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X)

The positive homogeneity axiom states that risk scales linearly with the size of a posi-
tion.

The following is a representation theorem for CRM. In essence, it states that we can
describe any coherent risk measure equivalently in terms of expectations over a family of
distributions or a family of “generalized” scenarios.

Theorem 3.2.1. (Representation Theorem of Coherent Risk Measures) A risk measure ρ
is coherent if and only if there exists a family of probability measures Q on (Ω,F) with
Q� P ∀Q ∈ Q 3 such that

ρ(X) = sup
Q∈Q

EQ[X], ∀X ∈ X (3.1)

where EQ[X] denotes the expectation of the random variable X under the measure Q (as
opposed to the measure of X itself).

2Under the axiom of positive homogeneity, convexity is equivalent to subadditivity.
3� denotes absolute continuity, i.e. Q� P⇔ Q(A) = 0 s.t. P(A) = 0 for A ∈ F
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Note that this representation theorem actually predates the introduction of CRM by
Artner et al. [3]. See Chapter 10 of Huber [28] for one version of the proof.

The representation theorem says that all coherent risk measures may be represented
as the worst-case expectation over a family of “generalized scenarios”. For example, the
generating family for CV aRα(X) is Qα = {Q� P|dQ

dP ≤
1

1−α}
4.

Given a vector of data observations on portfolio losses l = (l1, · · · , lm)T , coherent risk
measure of this set of observations can be obtained based on the representation theorem of
CRM. A risk measure is a coherent risk measure if and only if there exists a set of weights
Q = {q = (q1, · · · , qm)T |qi ≥ 0, i = 1, · · · ,m;

∑m
i=1 qi = 1} such that

ρ(l) = sup
q∈Q
{
m∑
i=1

qili}, ∀l ∈ Rm (3.2)

Note that if historical data is used to calculate the CRM for the future, we have
implicitly made the assumption that the future losses will have the same distributions
as the past’s.

Although linear optimization framework for CVaR discussed in Chapter 2 provides
connections for CRM and portfolio selection through the particular case of CVaR. Yet we
cannot make further claims without imposing more structural properties for CRM.

3.3 Distortion Risk Measure

Another well known class of risk measures is the class of Distortion Risk Measures(DRM),
proposed by Wang et al. [69] in the context of calculating insurance risk premiums. This
set of axioms also underlies the definition of DRM.

Definition 3.3.1. A mapping ρ : X 7→ R is called a distortion risk measure if it satisfies,
for all X, Y ∈ X

B1 Conditional state independence: ρ(X) = ρ(Y ) if X and Y have the same distribution.
This means that the risk of a position is determined only by the loss distribution.

B2 Monotonicity: ρ(X) ≤ ρ(Y ) if X ≤ Y .

4 dQ
dP denotes the Radon-Nikondym derivative of Q with respect to P
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B3 Comonotonic additivity: ρ(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotonic,
where random variables X and Y are comonotonic if and only

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 a.s. for ω1, ω2 ∈ Ω

B4 Continuity:

lim
d→0

ρ((X − d)+) = ρ(X+),

lim
d→∞

ρ(min{X, d}) = ρ(X),

lim
d→−∞

ρ(max{X, d}) = ρ(X).

where (X − d)+ = max(X − d, 0)

If two random variable X and Y are comonotonic, then X(ω) and Y (ω) always move
in the same direction as the state ω changes. The notion of comonotonicity is central in
risk measures. See discussions on comonotonicity in Dhaene et al. [21] and Dhaene et al.
[20]. Wang et al. [69] imposed axiom B3 based on the argument that the comonotonic
random variables do not hedge against each other, leading to additivity of risks. They also
proved(Theorem 3 in Wang et al. [69]) that if X contains all the Bernoulli(p) random
variables, 0 ≤ p ≤ 1, then risk measure ρ satisfies axioms B1-B4 and ρ(1) = 1 if and only
if ρ has a Choquet integral representation with respect to a distorted probability:

ρg(X) =

∫
Xd(g ◦ P) =

∫ 0

−∞
[g(P(X > x))− 1]dx+

∫ ∞
0

g(P(X > x))dx (3.3)

where g(·) is called the distortion function which is nondecreasing with g(0) = 0 and
g(1) = 1, and g ◦ P(A) := g(P(A)) is called the distorted probability.

Definition 3.3.2. A risk measure ρ : X 7→ R that satisfies ρ(X) = ρ(Y ) for all X, Y ∈ X
such that X and Y have the same distribution under P is called a law invariant risk
measure.

All the standard results about Choquet integrals apply to distortion risk measures:

1. ρg(X) ≥ 0 if X ≥ 0.
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2. ρg(X + c) = ρg(X) + c, ∀c ∈ R.

3. ρg(λX) = λρg(X), ∀λ ≥ 0.

4. ρg(−X) = −ρg∗(X), where g∗(x) = 1− g(1− x) is the dual distortion of g.

5. ρg(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotone.

6. If a random variable Xn has a finite number of values, Xn converges to X, i.e.,

Xn
W→ X, and ρg(X) exists, then ρg(Xn)

W→ ρ(X). This property implies that it is
enough to prove the statement for the discrete random variables, and then carry over
the result to the general continuous case.

Furthermore, by construction a distortion risk measure depends only on the distribution
of the random variable X hence it is law invariant.

The Choquet integral representation of DRM is used to explore its mathematical prop-
erties, calculations of DRMs can be easily done by taking the expected value of X under
probability measure P∗ := g ◦ P5.

Some well-known distortion functions g in the literature include:

1. CV aRα distortion: gCV aR(x, α) = min{ x
1−α , 1}. This was first observed by Wirch

and Hardy [71] .

2. Wang Transform(WT) distortion: gWT (x, β) = Φ[Φ−1(x)− Φ−1(β)]. This was intro-
duced by Wang [67]

3. Proportional hazard(PH) distortion: gPH(x, γ) = xγ with γ ∈ (0, 1]. This was
proposed by Wang et al. [69]

4. Lookback(LB) distortion: gLB(x, δ) = xδ(1−δ lnx) with δ ∈ (0, 1]. This was proposed
by Hürlimann [29]

For discretely distributed portfolio losses random variable l = (l1, · · · , lm)T and its
probability masses Pr[l = li] = pi for i = 1, · · · ,m, we can obtain the cumulative

distribution function Fl(l) =
m∑
i=1

pi1{li≤l}. Then discrete survival function is given by

5See Theorem 1 in Wang [66] and Definition 4.2 in Wang [67]
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P(X > x) = Sl(l) = 1− Fl(l) and is applied in the distorted probability representation of
(3.3). We have

ρg(l) =

∫ 0

−∞
[g(Sl(l))− 1]dl +

∫ ∞
0

g(Sl(l))dl = E∗[l] =
m∑
i=1

p∗(i)l(i) (3.4)

where p∗(1) = 1− g(Sl(l(1))) and p∗(i) = g(Sl(l(i−1)))− g(Sl(l(i))), i = 2, · · · ,m.

Since g is non-decreasing, g(0) = 0 and g(1) = 1, it follows that p∗i ≥ 0 for i = 1, · · · ,m,
and

∑m
i=1 p

∗
i = 1−g(Sl(l(m))) = 1. In the special case where P(l = li) = 1

m
for i = 1, · · · ,m,

then the construction of q is given by qi = g(m−i+1
m

)− g(m−i
m

), i = 1, · · · ,m. This special
case is the emphasis of this thesis.

Similar with CRM, we need to impose more conditions on DRM hence its corresponding
distortion functions in order to incorporate it into portfolio selection problems.

3.4 Coherent Distortion Risk Measure

From the previous discussions about CRM and DRM, it is of interest to explore the Co-
herent Distortion Risk Measure(CDRM) which is the intersection of these two classes of
risk measures in order to develope CDRM portfolio selection problems.

One crucial property that a DRM lacks to be a CRM is subadditivity. Wirch and Hardy
[72] proved that a DRM is subadditive, hence coherent if and only if its distortion function
g is concave6. Kusuoka [40] showed that DRM is a particular case of law-invariant coherent
risk measures.

There are two ways to derive CDRM: Bellini et al. [8] defined CDRM as a subclass
of DRM, namely DRM with concave distortion function g; Bertsimas et al. [11] defined
CDRM as a subclass of CRM, namely CRM that is also comonotonic and law invariant7.
These two definitions are indeed equivalent since it is shown in Bellini et al. [8] that
the class of coherent distortion risk measures coincides with the class of comonotonic law
invariant coherent risk measures.

Definition 3.4.1. We say ρ is a coherent distortion risk measure if:

6Wang and Dhaene [68] proved sufficiency and Wirch and Hardy [72] finished the proof by showing
necessity

7Definition 4.5 in Bertsimas et al. [11] should be defining CDRM as oppose to defining DRM.
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• ρg is a distortion risk measure with a concave distortion function g, or equivalently,

• ρ is a coherent risk measure that is also comonotonic and law-invariant.

The following representation theorem for CDRM is the key result that enables us to
develope a convex optimization framework for any CDRM portfolio selection problem.

Theorem 3.4.1. Representation Theorem of Coherent Distortion Risk Measure (Variation
of Lemma 4.1 in Bertsimas et al. [11])

For any random variable X and a given concave distortion function g, risk measure ρg
is a coherent distortion risk measure if and only if there exists a function w : [0, 1] 7→ [0, 1],

satisfying
∫ 1

α=0
w(α)dα = 1, such that:

ρg(X) =

∫ 1

α=0

w(α)φα(X)dα (3.5)

where φα(X) is the α-CVaR of X.

This representation theorem says any CDRM can be represented as a convex combi-
nation of CV aRα(X), α ∈ [0, 1] and we can construct any CDRM based on a convex
combination of CV aRα(X), α ∈ [0, 1]. This result was proved by Kusuoka [40] for con-
tinuous portfolio loss distributions. Bertsimas et al. [11] proved this result for discrete
portfolio loss distributions.

For portfolio losses random variable l = (l1, · · · , lm)T and the special case of discrete
uniform probability masses Pr[l = li] = 1

m
for i = 1, · · · ,m, Bertsimas et al. [11] strength-

ened the representation theorem that any CDRM can be represented as a convex com-
bination of finite number of CV aRα(X)s. The main results of their work are presented
below.

Definition 3.4.2. Define the restricted simplex in m-dimension as:

∆̂m ≡ {q ∈ Rm|
m∑
i=1

qi = 1, q1 ≤ · · · ≤ qm}

Definition 3.4.3. For a given loss observation l = (l1, · · · , lm) and the corresponding
ordered losses l(1), · · · , l(m), define a CVaR-Matrix Q ∈ Rm × Rm with columns Q·i ∈ Rm,
i = 1, · · · ,m:
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Q = [Q·1,Q·2, · · · ,Q·m] =


1
m

0 0 · · · 0
1
m

1
m−1 0 · · · 0

1
m

1
m−1

1
m−2 0 0

...
...

...
. . .

...
1
m

1
m−1

1
m−2 · · · 1


Observe that

φ j−1
m

(l) =
m∑
i=1

1

m− j + 1
l(i) =

m∑
i=1

Qijl(i), j = 1, · · · ,m (3.6)

Therefore Q·j is the restricted simplex to for calculating CV aR j−1
m

(l).

Theorem 3.4.2. Finite Generation Theorem for Coherent Distortion Risk Measures (The-
orem 4.2 in Bertsimas et al. [11])

For a give portfolio loss sample l = (l1, · · · , lm), the corresponding ordered losses
l(1), · · · , l(m) and a given concave distortion function g, a risk measure ρg is a CDRM

if and only if there exists a q ∈ ∆̂m such that

ρg(l) =
m∑
i=1

qil(i) (3.7)

Moreover, every such q ∈ ∆̂m can be written in the form

q =
m∑
j=1

wjQ·j (3.8)

where wi ≥ 0, i = 1, · · · ,m,
∑m

i=1wi = 1, and Q·j is the restricted simplex for calculating
CV aR j−1

m
(l).

Moreover, the convex weights are given by{
w1 = mq1
wi = (m− i+ 1)(qi − qi−1) i = 2, · · · ,m (3.9)
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By (3.7) and (3.8) and by the construction of Q, any CDRM for a give loss sample l
can be expressed as a convex combination of |l| CVaRs. In particular, we have

ρg(l) =
m∑
i=1

qil(i) =
m∑
i=1

(
m∑
j=1

wjQij)l(i) =
m∑
j=1

wj(
m∑
i=1

Qijl(i)) =
m∑
j=1

wjφ j−1
m

(l) (3.10)

where wi ≥ 0, i = 1, · · · ,m,
∑m

i=1wi = 1.

A complete proof of the finite generation theorem can be found in Bertsimas et al. [11].
We provide here a heuristic proof and verifications of their results.

It is well known that CV aR is a CDRM and CDRM is closed under convex com-
binations, hence ρg(l) is a CDRM because it can be written as convex combination of
CVaRs. For the other direction, since CDRM is a subclass of DRM, we see from (3.4)
that qi = g(m−i+1

m
)− g(m−i

m
) for i = 1, · · · ,m. Let w1 = mq1, wi = (m− i + 1)(qi − qi−1),

i = 2, · · · ,m, we can verify the following conditions on q and w:

1. Since g is nondecreasing, qi ≥ 0, i = 1, · · · ,m.

2. Since g(0) = 0 and g(1) = 1,
∑m

i=1 qi =
∑m

i=1 g(m−i+1
m

)− g(m−i
m

) = g(1)− g(0) = 1.

3. Since g is concave, g(0.5m−i+1
m

+ 0.5m−i−1
m

) ≥ 0.5g(m−i+1
m

) + 0.5g(m−i−1
m

). We have

g(m−i
m

)− g(m−i−1
m

) ≥ g(m−i+1
m

)− g(m−i
m

), i = 2, · · · ,m
qi ≥ qi−1, i = 2, · · · ,m

Since q1 ≥ 0 and qi ≥ qi−1, i = 2, · · · ,m, wi ≥ 0, i = 1, · · · ,m we have
∑m

i=1wi =∑m
i=1 qi = 1.

Definition 3.4.4. Definition of WT-measure (Definition 4.3 in Wang [67]) For a loss
random variable X with cumulative distribution function FX(x), we define the WT risk
measure with parameter β as:

1. For a preselected confidence level β, let ϕ = Φ−1(β).

2. Apply the Wang Transform: F ∗ = Φ[Φ−1(F (x))− ϕ].

3. The WT-measure is the expected value under F ∗.

WTβ(X) = E∗[X]
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WT-measure is a well-known member of coherent distortion risk measure. We will
illustrate by numerical examples how WT-measure is expressed as a convex combination
of CVaRs.

Consider a hypothetical portfolio with the following discrete uniform loss distribution.

Loss x PF f(x) CDF F (x) Distorted CDF F ∗(x) Weight w
1 0.2 0.2 0.006450784 0.03225392
2 0.2 0.4 0.028834822 0.06373302
3 0.2 0.6 0.082035941 0.09245124
4 0.2 0.8 0.210920213 0.15136630
5 0.2 1 1.000000000 0.66019552

Table 3.2: Calculation of w for uniformly distributed losses (WT-measure with β = 0.95)

On one hand, the expected value under the distorted distribution is given by

WT0.95 = E∗[X] = 4.671758

On the other hand, the convex weight vector is calculated as Equation (3.9) and is
given in the last column of Table 3.2. observe that CV aR at confidence level 0, 0.2, 0.4,
0.6 and 0.8 are 3, 3.5, 4, 4.5 and 5 respectively. Then the convex combination of CVaRs
weighted by w is given by

5∑
i=1

wiφ i−1
5

(X) = 4.671758 = WT0.95

Consider another hypothetical portfolio whose losses are not uniformly distributed.

We can convert such a loss distribution into a discrete uniform distribution by enlarging
the sample space, i.e., artificially split the mass point(s) that is(are) “too heavy”.

The second and third columns of Table 3.4 are not theoretically rigorous yet they only
serve as intermediate steps to calculate our weighting factors w.

On one hand, the expected value under distorted distribution is given by

WT0.95 = E∗[X] = 3.700593
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Loss x PF f(x) CDF F (x)
1 0.2 0.2
2 0.4 0.6
3 0.2 0.8
4 0.2 1

Table 3.3: Non-uniformly distributed portfolio losses.

Loss x PF f(x) CDF F (x) Distorted CDF F ∗(x) Weight w
1 0.2 0.2 0.006450784 0.03225392
2 0.2 0.4 0.028834822 0.06373302
2∗ 0.2 0.6 0.082035941 0.09245124
3 0.2 0.8 0.210920213 0.15136630
4 0.2 1 1.000000000 0.66019552

Table 3.4: Conversion into uniform loss distribution and calculation of w (WT-measure
with β = 0.95).

On the other hand, the convex combination of CVaRs, weighted by w, is given by

5∑
i=1

wiφ i−1
5

(X) = 3.700593 = WT0.95

The above two examples show how to calculate the weighting factors for CVaRs in order
to express WT-measure as a convex combination of CVaRs at different confidence levels.
Such a calculation is valid for any CDRM in general. These two examples also show how to
convert a non-uniform discrete loss distribution into discrete uniform distributions provided
that the original probability masses are representable by rational numbers. Moreover, we
see that the weighting factors are independent of actual portfolio loss amounts, only the
number of scenarios and the distortion function matter. This independence is useful in
formulating CDRM portfolio selection problems into programming problems. Once these
two pieces of information is known, any optimization problem over CDRM reduces to a
optimization problem over convex combination of CVaRs. Taking advantage of the linear
optimization framework for CVaR, any portfolio selection problem over CDRM can be
similarly formulated as an LP and can be solved efficiently.
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Chapter 4

Formulations and Equivalences

Portfolio selection problems can be formulated in different ways. One can consider mini-
mizing CVaR while requiring a minimum level of expected return. Alternatively, one can
maximize returns while limiting the maximum level risks. Last but not least, one can max-
imize a utility function expressed as a linear combination of return and risk. Krokhmal
et al.[36] considered these three equivalent formulations of optimization problems under
some conditions on risk and return measures. Their equivalent results can be applied to our
portfolio selection problems over CDRM. In addition, we show that a CDRM-based Sharpe
ratio maximization problem is also equivalent to the aforementioned three formulations for
CDRM portfolio selection problems.

4.1 CDRM in Convex Programming

Inspired by the convex representation Fα(x, ζ) for φα(x) and the Representation Theorem
of Coherent Distortion Risk Measure(Theorem 3.4.1), we consider the following special
function:

Mg(x, ζ) =

∫ 1

α=0

w(α)Fα(x, ζα)dα (4.1)

where w(α) ≥ 0 and
∫ 1

α=0
w(α)dα = 1.

The convex weights w(α), α ∈ [0, 1] depend on both the original portfolio loss distri-
bution and the choice of distortion function. The Representation Theorem of Coherent
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Distortion Risk Measure(Theorem 3.4.1) ensures the existence of such weights and defines
CDRM for a given set of weights.

For each α ∈ [0, 1] there is a corresponding auxiliary variable ζα. Taking partial deriva-
tives with respect to all ζα for α ∈ [0, 1] and setting them equal to zeros give the extremal
properties of Mg(x, ζ) and can provide more insights about the connection between a par-
ticular CDRM, ρg(x), and its convex representation Mg(x, ζ). Yet ζ may have infinite
many entries ζα. Taking partial derivative with respect to all ζα for α ∈ [0, 1] requires
calculus of variations, which is outside the scope of this thesis. We solve this problem by
applying properties of Choquet integrals because CDRM is a subclass of DRM.

Theorem 4.1.1. Convex formulation for CDRM minimization problems

Minimizing ρg(x) with respect to x ∈ D is equivalent to minimizing Mg(x, ζ) over all
(xT , ζT ) ∈ D × R|ζ|, in the sense that

min
x∈D

ρg(x) = min
(xT ,ζT )T∈D×R|ζ|

Mg(x, ζ) (4.2)

where moreover

(x∗T , ζ∗T )T ∈ arg min
(xT ,ζT )T∈D×R

Mg(x, ζ)⇐⇒ x∗ ∈ arg min
x∈D

ρg(x), ζ∗ ∈ arg min
ζ∈R

Mg(x
∗, ζ)

(4.3)

Proof. Since CDRM is a subclass of DRM , all results of DRM and of Choquet integrals
can be applied. The sixth result of Choquet integral presented in Section 3.3 implies that
it is enough to prove the statement for the discrete portfolio loss random variables, and
then carry over the result to the continuous case.

Consider a discrete portfolio loss random variable l = l(x,y) = (l1, · · · , lm)T induced
by the choice of portfolio x ∈ Rn and the random vector y ∈ Rm. Denote the probability
of realizing li = l(x, yi) by pi > 0, i = 1, · · · ,m and denote the corresponding cumulative
distribution function and survival function by Fl(l) and Sl(l) respectively. Let the portfolio
loss points be ordered as l(1) ≤ l(2) ≤ · · · ≤ l(m). Denote the probability of realizing the
loss l(i) by p(i) > 0 for i = 1, · · · ,m. Given a nondecreasing concave distortion function
g : [0, 1] 7→ [0, 1] such that g(0) = 0 and g(1) = 1, the corresponding CDRM , ρg(x), is
given by

ρ(x) =
m∑
i=1

qil(i)
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where q1 = g(1)− g(1− p(1)) and qi = g(Sl(l(i−1)))− g(Sl(l(i))), i = 2, · · · ,m.

Since portfolio losses are discretely distributed at m points, there are m jumps in Fl(l).
Denote these probability levels at these m mass points by:

αi =


0 for i = 1

i−1∑
j=1

p(j) for i = 2, · · · ,m (4.4)

The m CVaRs at these probability levels are given by

φαi(x) =
1

1− αi

m∑
j=i

p(j)l(j), i = 1, · · · ,m (4.5)

Consider the weights wi, i = 1, · · · ,m as follows:

wi =

{ q1
p(1)

if i = 1

(qi −
p(i)
p(i−1)

qi−1)
Sl(l(i−1))

p(i)
if i = 2, · · · ,m

(4.6)

One can verify that1 wi ≥ 0 for i = 1, · · · ,m and
m∑
i=1

wi = 1. Furthermore, we have

ρ(x) =
m∑
i=1

wiφαi(x)

where φαi(x), i = 1, · · · ,m are defined in Equation (2.24).

Consider the following special function

Mg(x, ζ) =
m∑
i=1

wiFαi(x, ζαi)

where Fαi(x, ζαi) and αi, i = 1, · · · ,m are defined in Equation (2.25) and Equation (4.4)
respectively.

Since Fαi(x, ζαi), i = 1, · · · ,m are all joint convex functions of x and ζαi and Mg(x, ζ)
is a convex combination of Fαi(x, ζαi) for i = 1, · · · ,m, then Mg(x, ζ) is a joint convex
function of x and ζ.

1See proof in Appendix A.1
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For a given portfolio x, we want to find ζ∗ that minimizes M(x, ζ). Since Mg(x, ζ) is
a convex function of ζ, we can simply set the gradient of Mg(x, ζ) with respect to ζ equal
to zero. We have

0 = ∂Mg(x,ζ)

∂ζ

0 = ∂
∂ζαi

wj[ζαi + 1
1−αi

m∑
i=1

pi(li − ζαi)+], i = 1, · · · ,m

0 = wj[1− 1
1−αi

m∑
i=1

pi1(li−ζαi )], i = 1, · · · ,m

⇔
{
ζ∗αi ∈ [li, li+1) if wi 6= 0
ζ∗αi unconstrainted if wi = 0

Substituting these extremal conditions into M(x, ζ), we have

min
ζ∈Rm

M(x, ζ) =
m∑
i=1

wi[ζ
∗
αi

+
1

1− αi

m∑
j=1

pj(lj − ζ∗αi)
+]

=
m∑
i=1

wi[ζ
∗
αi

+
1

1− αi

m∑
j=i

pj(lj − ζ∗αi)
+]

=
m∑
i=1

wi[ζ
∗
αi

+
1

1− αi

m∑
j=i

p(j)l(j) −

m∑
j=i

p(j)

1− αi
ζ∗αi ]

=
m∑
i=1

wi[
1

1− αi

m∑
j=i

p(j)l(j)]

=
m∑
i=1

wiφαi(x)

= ρg(x)

The minimum value of M(x, ζ) is precisely ρg(x) and such result holds for any portfolio
x. Therefore the equivalences in Theorem 4.1.1 hold.

Theorem 4.1.1 is an extension of the convex formulation of CVaR in Rockafellar et al.
[50]. It is also an extension to the finite generation of CDRM in Bertsimas ea al.[11] by
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considering general discrete loss distributions as opposed to discrete uniform loss distribu-
tion only. Discrete uniform distribution for portfolio losses is a special case in the above
convex formulation hence we can apply our result straightforwardly. Furthermore, it is
often easier to prove statements using discrete uniform distribution and carry the results
over to continuous distribution by taking limits of the sample size.

4.2 Return-CDRM Formulations and Equivalences

Based on the linear optimization framework for CVaR, we find two ways to develope a
linear optimization framework for CDRM portfolio selection problems. Firstly, CVaR has
a convex representation w.r.t portfolio weights and any CDRM can be expressed as a
convex combination of CVaRs. Since convex combination of convex functions is also a
convex function, one can formulate CDRM problems as convex programming problems.
Secondly, we can consider the so-called risk-shaping problem with CVaRs and show that
it is equivalent to a portfolio selection problem with CDRM and vice versa. The former is
straightforward and it was shown partially in Section 4.1. Chapter 3 provides discussions on
the convex representation of CDRM and the current chapter derives different formulations
for CDRM portfolio selection problems based on risk-shaping problem over CVaR.

Theorem 4.2.1. Consider the following programming problems with continuously differ-
entiable convex objective function f and constraints hi

minimize f(x)
s.t. Fαi(x, ζi) ≤ ηi, i = 1, · · · ,m

hi(x) ≤ 0 i = m+ 1, · · · ,m+ k
(4.7)

and

minimize f(x) +Mg(x, ζ)
s.t. hi(x) ≤ 0 i = m+ 1, · · · ,m+ k

(4.8)

where Fαi(x, ζi) for i = 1, · · · ,m are defined in Equation (2.25). Mg(x, ζ) =
m∑
i=1

Fαi(x, ζi)

for some weight vector w = (w1, · · · , wm)T ≥ 0.

Let u1i , i = 1, · · · ,m + k be the KKT multipliers for constraints in Problem (4.7) and
let u2i , i = m+ 1, · · · ,m+ k be the KKT multipliers for constraints in Problem (4.8), then
these two problems are equivalent in the following sense:
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• If (x∗T , ζ∗T )T is an optimal solution to Problem (4.7) with KKT multipliers u1∗,

then it is also an optimal solution for Problem (4.8) provided that wi =
u1∗i
m∑
i=1

u1∗i

for

i = 1, · · · ,m. If
m∑
i=1

u1∗i = 0, then set wi = 0 for i = 1, · · · ,m.

• If (x∗T , ζ∗T )T is an optimal solution to Problem (4.8) with KKT multipliers u2∗,
then it is also an optimal solution for Problem (4.7) provided that ηi = Fαi(x

∗, ζ∗i )
for i = 1, · · · ,m.

Proof. Let u1i , i = 1, · · · ,m + k be the KKT multipliers for constraints in Problem (4.7)
and let u2i , i = m+ 1, · · · ,m+ k be the KKT multipliers for constraints in Problem (4.8).
Moreover, let u1∗

i and u2∗
i be the vectors of KKT multipliers that correspond to the optimal

solutions in their respective problems. Then the KKT optimality conditions for Problem
(4.7) are given by

−∇f(x∗) =
m∑
i=1

u1∗i ∇Fαi(x∗, ζ∗i ) +
m+k∑
i=m+1

u1∗i ∇hi(x∗) (4.9a)

Fαi(x
∗, ζ∗i ) ≤ ηi, i = 1, · · · ,m (4.9b)

hi(x
∗) ≤ 0, i = m+ 1, · · · ,m+ k (4.9c)

u1∗i ≥ 0, i = 1, · · · ,m+ k (4.9d)

u1∗i [Fαi(x
∗, ζ∗i )− ηi] = 0, i = 1, · · · ,m (4.9e)

u1∗i hi(x
∗) = 0, i = m+ 1, · · · ,m+ k (4.9f)

and the KKT optimality conditions for CDRM Minimization Problem (4.8) are given
by

−∇f(x∗)−
m∑
i=1

wiFαi(x
∗, ζ∗i ) =

m+k∑
i=m+1

u2∗i ∇hi(x∗) (4.10a)

hi(x
∗) ≤ 0, i = m+ 1, · · · ,m+ k (4.10b)

u2∗i ≥ 0, i = m+ 1, · · · ,m+ k (4.10c)

u2∗i hi(x
∗) = 0, i = m+ 1, · · · ,m+ k (4.10d)

If (x∗T , ζ∗T )T is an optimal solution for Problem (4.7), then it satisfies conditions

(4.9) by the necessity of KKT optimality conditions. Setting wi =
u1∗i
m∑
i=1

u1∗i

or wi = 0 if
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m∑
i=1

u1∗i for i = 1, · · · ,m it is clear that conditions (4.10) are satisfied for u2∗i = u1∗i for

i = m+ 1, · · · ,m+ k. By the sufficiency of KKT optimality conditions, (x∗T , ζ∗T )T is also
an optimal solution for Problem (4.8).

If (x∗T , ζ∗T )T is an optimal solution for Problem (4.8), then it satisfies conditions (4.10)
by the necessity of KKT optimality conditions. Setting ηi = Fαi(x

∗, ζ∗i ) then conditions
(4.9) are satisfied with u1∗i = wi for i = 1, · · · ,m and u1∗i = u2∗i for i = m+ 1, · · · ,m+ k.
By the sufficiency of KKT optimality conditions, (x∗T , ζ∗T )T is also an optimal solution
for Problem (4.7).

Theorem 4.2.1 is stated on a mathematical programming basis but we can make connec-
tions between CVaR risk shaping problems and CDRM optimization problems by using
results in Rockafellar et al. [51].

Theorem 4.2.2. Equivalence between CVaR Risk-Shaping Problems and CDRM Portfolio
Selection Problems

For any selection of probability thresholds αi, i = 1, · · · ,m, consider a CVaR risk-
shaping problem

min
x∈D
{f(x)|φαi(x) ≤ ηi, i = 1, · · · ,m} (4.11)

Optimization with respect to a CDRM ρg(x) =
m∑
i=1

wiφαi(x)

min
x∈D
{f(x) + ρg(x)} (4.12)

Suppose the feasible sets of both problems satisfy all constraint qualifications of KKT op-
timality conditions. Varying the parameters ηi and wi, i = 1, · · · ,m traces the multidimen-
sional efficient frontiers for their respective problem. Moreover, varying these parameters
for ηi ∈ R and wi ≥ 0, i = 1, · · · ,m traces out the same efficient frontier.

Proof. By Theorem 2.3.3, Problem (4.11) can be formulated into a convex programming
Problem (4.7). Similarly, by Theorem 4.1.1 Problem (4.12) can be formulated into a convex
programming Problem (4.8).

Let (x∗T , ζ∗T )T be an optimal solution for Problem (4.7), by Theorem 2.3.3 one has
φαi(x

∗) ≤ ηi for every i and actually φαi(x
∗) = ηi for all i such that Fαi(x

∗, ζ∗i ) = ηi. By
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KKT conditions (4.9), we see that u1∗i = 0 for all i such that Fαi(x
∗, ζ∗i ) < ηi. If u1∗i > 0

for some i = 1, · · · ,m, then based on Theorem 4.2.1 we know that (x∗T , ζ∗T )T is also an

optimal solution for Problem (4.8) provided that wi =
u1∗i
m∑
i=1

u1∗i

for i = 1, · · · ,m. If u1∗i = 0

for all i = 1, · · · ,m, then based on Theorem 4.2.1 we know that (x∗T , ζ∗T )T is also an
optimal solution for Problem (4.8) provided that wi = 0 for i = 1, · · · ,m.

Conversely, let (x∗T , ζ∗T )T be an optimal solution for Problem (4.8), Theorem 4.2.2
implies that it is also an optimal solution to Problem (4.7) with optimal KKT multipliers
u1∗ = wi for i = 1, · · · ,m and u1∗ = u2∗ for i = m+ 1, · · · ,m+ k.

Furthermore, we always have

m∑
i=1

wiFαi(x
∗, ζ∗i ) =

m∑
i=1
wi>0

wiFαi(x
∗, ζ∗i )

=
m∑
i=1
u1∗i >0

wiFαi(x
∗, ζ∗i )

=
m∑
i=1

Fαi (x
∗,ζ∗i )=ηi

wiFαi(x
∗, ζ∗i )

=
m∑
i=1

Fαi (x
∗,ζ∗i )=φαi (x

∗)

wiFαi(x
∗, ζ∗i )

=
m∑
i=1
wi>0

wiφαi(x
∗)

=
m∑
i=1

wiφαi(x
∗)

= ρg(x
∗)

Hence any point on the efficient frontier of the CV aR risk-shaping problem (4.11)
corresponds to a point on the efficient frontier of the CDRM optimization problem (4.12)
and vice versa. Therefore, both problems generate the same efficient frontiers by varying
their respective parameters.
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In the special case that u1∗i = 0 for all i = 1, · · · ,m for Problem (4.11) or equivalently
wi = 0 for all i = 1, · · · ,m in Problem (4.12), both problems in fact reduce to

min
x∈D
{f(x)} (4.13)

Theorem 4.2.2 provides new perspectives for CDRM and CVaR optimization problems.
On one hand, although we make use of the special function Mg(x, ζ) as a convex represen-
tation of CDRM hence formulate Problem (4.8), we can view it as a CVaR risk-shaping
problem. As a result, we are able to shape the portfolio loss distribution with only one
single CDRM. On the other hand, portfolio selection problems with a single CVaR objec-
tive/constraint is a special case of CVaR risk-shaping problems and hence a special case
of CDRM optimization problem.

Moreover, Theorem 4.2.2 offers an extra way to tackle CVaR risk-shaping problems.
Portfolio managers now have the freedom to choose whether to trace the efficient frontier
of Problem (4.7) or Problem (4.8) depending on which one can be solved more efficiently
with their software.

If f(x) is a loss measure (negate of a return measure), then Problem (4.12) is in
fact a CDRM utility maximization problem and Problem (4.8) is its convex formulation.
There are clearly more formulations for portfolio selection problems. In a general setting,
Krokhmal et al. [36] established equivalences among three formulations of a portfolio
selection with given risk and reward measures.

Theorem 4.2.3. (Variation of Theorem 3 in Krokhmal[36])

Consider a risk functional ρ(x) and a reward functional R(x) dependent on the portfolio
weights x and the following three problems:

max{R(x)− τρ(x)|τ1 ≥ 0,x ∈D} (4.14)

min{ρ(x)|R(x) ≥ µ,x ∈D} (4.15)

max{R(x)|ρ(x) ≤ ρ,x ∈D} (4.16)

Suppose that constraints R(x) ≥ µ, ρ(x) ≤ ρ are regular constraints2. Varying the
parameters τ1, µ, and ρ traces the efficient frontiers for the problems (4.14)-(4.16), accord-
ingly. If ρ(x) is convex, R(x) is concave and the set D is convex, then the three problems,
(4.14)-(4.16), generate the same efficient frontier.

2These constraints satisfy constraint qualifications for KKT conditions.
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The equivalence among problems (4.14)-(4.16) is well known for mean-variance effi-
cient (see Steinbach [59]) and mean-regret efficient frontiers (see Dembo and Rosen [17]).
For discrete loss distributions, we will further show equivalences among the above three
formulations and the CDRM-based Sharpe ratio maximization.

Theorem 4.2.4. Given a CDRM ρg(x) that depends on the portfolio weights x and a
reward function R(x) that is linear function or can be converted into linear functions of
x, consider the following four problems:

• Return maximization subject to CDRM constraint

max{R(x)|x ∈D, ρg(x) ≤ η} (4.17)

• CDRM minimization subject to return constraint

min{ρg(x)|x ∈D, R(x) ≥ µ} (4.18)

• Return-CDRM utility maximization for given risk aversion parameter τ ≥ 0

max{R(x)− τρg(x)|x ∈D} (4.19)

• CDRM-based Sharpe Ratio maximization for given benchmark return level ν

max{R(x)− ν
ρg(x)

|x ∈D} (4.20)

Assume ρg(x) > 0 for all x ∈ D and ν < R(x) for some x ∈ D. Suppose that
constraints ρg(x) ≤ η, R(x) ≥ µ are regular constraints. Varying the parameters η, µ,
τ , and ν traces the efficient frontiers for the problems (4.17), (4.18), (4.19), and (4.20)
respectively. Moreover, these four problems generate the same efficient frontier.

In addition, suppose x∗ is an optimal solution for one of the problems (4.17), (4.18),
(4.19), or (4.20) with a preselected parameter. Let u3∗m+1 and u4∗m+1 be the KKT multipliers
for the return and risk constraints in problems (4.17) and (4.18) at the optimal solutions,
then x∗ is also an optimal solution for the other three problems provided that the parameters
in those problems equal to the implied values given in Table 4.1.
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Problem (4.17) (4.18) (4.19) (4.20)
Preselected
Parameter

η µ τ ν

Implied
Parameters

For (4.17), η = N/A ρg(x
∗) ρg(x

∗) ρg(x
∗)

For (4.18), µ = R(x∗) N/A R(x∗) R(x∗)

For (4.19), τ = u3∗k+1 τ = 1
u4∗k+1

N/A R(x∗)−ν
ρg(x∗)

For (4.20), ν = R(x∗)− u3∗k+1ρg(x
∗) R(x∗)− 1

u4∗k+1
ρg(x

∗) R(x∗)− τρg(x∗) N/A

Table 4.1: Relationships between Preselected Parameter of One Formulation and Implied
Parameters of the Other Formulations

Proof. Since φαi(x) for any given probability level αi, i = 1, · · · ,m are convex with respect
to x and ρg(x) is a convex combination of φαi(x), i = 1, · · · ,m, then ρg(x) is convex with
respect to x. Moreover, we have assumed that the return function is linear or representable
by linear functions of x hence is concave. Therefore problems (4.17), (4.18)and (4.19) sat-
isfy the assumptions in Theorem 4.2.3 hence their equivalences follow straightforwardly. It
remains to show the equivalences among CDRM-based Sharpe Ratio maximization problem
(4.20) and the other three problems.

Let D = {x|hi(x) ≤ 0, i = 1, · · · ,m} be the set of all feasible portfolios except risk
and return constraints. Let u3∗, u4∗, u5∗, and u6∗ be the KKT multipliers for problems
(4.17)-(4.20) at their respective optimal solutions. Note that u3∗ and u4∗ have m+1 entries
while u5∗, and u6∗ have m entries. Since R(x) is representable by linear functions of x
and Mg(x, ζ) can be used for ρg(x) and can be linearized, problems (4.17)-(4.20) are all
convertible into LPs and LFPs for which KKT conditions are both necessary and sufficient
conditions for optimality.
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• KKT optimality conditions for Problem (4.17)

∇R(x∗) =
m∑
i=1

u3∗i ∇hi(x∗) + u3∗m+1∇ρg(x∗) (4.21a)

hi(x
∗) ≤ 0, i = 1, · · · ,m (4.21b)

ρg(x
∗) ≤ η (4.21c)

u3∗i ≥ 0, i = 1, · · · ,m+ 1 (4.21d)

u3∗i hi(x
∗) = 0, i = 1, · · · ,m (4.21e)

u3∗m+1[ρg(x
∗)− η] = 0 (4.21f)

• KKT conditions for Problem (4.18)

−∇ρg(x∗) =
m∑
i=1

u4∗i ∇hi(x∗)− u4∗m+1∇R(x∗) (4.22a)

hi(x
∗) ≤ 0, i = 1, · · · ,m (4.22b)

R(x∗) ≥ µ (4.22c)

u4∗i ≥ 0, i = 1, · · · ,m+ 1 (4.22d)

u4∗i hi(x
∗) = 0, i = 1, · · · ,m (4.22e)

u4∗m+1[R(x∗)− µ] = 0 (4.22f)

• KKT conditions for Problem (4.19)

∇R(x∗)− τ∇ρg(x∗) =
m∑
i=1

u5∗i ∇hi(x∗) (4.23a)

hi(x
∗) ≤ 0, i = 1, · · · ,m (4.23b)

u5∗i ≥ 0, i = 1, · · · ,m (4.23c)

u5∗i hi(x
∗) = 0, i = 1, · · · ,m (4.23d)

(4.23e)

50



• KKT conditions for Problem (4.20)

∇R(x∗)
1

ρg(x∗)
−∇ρg(x∗)

R(x∗)− ν
[ρg(x∗)]2

=
m∑
i=1

u6∗i ∇hi(x∗) (4.24a)

hi(x
∗) ≤ 0, i = 1, · · · ,m (4.24b)

u6∗i ≥ 0, i = 1, · · · ,m (4.24c)

u6∗i hi(x
∗) = 0, i = 1, · · · ,m (4.24d)

(4.24e)

For a chosen benchmark return level ν, let (x∗T , ζ∗T )T be an optimal solution for
Problem (4.20) with KKT multipliers u6∗, then

• (x∗T , ζ∗T )T is an optimal solution for problem (4.17) provided that η = ρg(x
∗).

Moreover, the optimal KKT multipliers are u3∗i = u6∗i ρg(x
∗) for i = 1, · · · , k and

u3∗k+1 = R(x∗)−ν
ρg(x∗)

.

• (x∗T , ζ∗T )T is an optimal solution for problem (4.18) provided that µ = R(x∗).

Moreover, the optimal KKT multipliers are u4∗i = u6∗i
[ρg(x∗)]2

R(x∗)−ν for i = 1, · · · , k and

u4∗k+1 = ρg(x∗)
R(x∗)−ν .

• (x∗T , ζ∗T )T is an optimal solution for problem (4.19) provided that τ = R(x∗)−ν
ρg(x∗)

.

Moreover, the optimal KKT multipliers are u5∗i = u6∗i ρg(x
∗) for i = 1, · · · , k.

Conversely,

• Let (x∗T , ζ∗T )T be an optimal solution for problem (4.17) for given η and u3∗ be the
corresponding KKT multipliers. (x∗T , ζ∗T )T is also an optimal solution for problem
(4.20) provided that ν = R(x∗)−u3∗k+1ρg(x

∗). Moreover, the optimal KKT multipliers
are u6∗i = u3∗i

1
ρg(x∗)

for i = 1, · · · , k.

• Let (x∗T , ζ∗T )T be an optimal solution for problem (4.18) for given µ and u4∗ be the
corresponding KKT multipliers. (x∗T , ζ∗T )T is also an optimal solution for problem
(4.20) provided that ν = R(x∗)− 1

u4∗k+1
ρg(x

∗). Moreover, the optimal KKT multipliers

are u6∗i = u4∗i
1

ρg(x∗)
for i = 1, · · · , k.
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• Let (x∗T , ζ∗T )T be an optimal solution for problem (4.19) for given τ and u5∗ be the
corresponding KKT multipliers. (x∗T , ζ∗T )T is also an optimal solution for problem
(4.20) provided that ν = R(x∗) − τρg(x∗). Moreover, the optimal KKT multipliers
are u6∗i = 1

ρg(x∗)
for i = 1, · · · , k.

Therefore, any point on the efficient frontier of each of the problems (4.17)-(4.20) is
correspond to a point on the efficient frontiers of the other three problems. These four
problems generate the same efficient frontier.

Observe that the return maximization problem (4.17) and the CDRM minimization
problem (4.18) can be viewed as a pair in the sense that the implied parameter for one
problem is equal to the optimal objective value of the other. Similar paring relationship
is true for the CDRM utility maximization problem (4.19) and the CDRM-based Sharpe
Ratio maximization problem (4.20). We will explore such paring relationships in Chapter
5 by considering the geometric interpretations of the parameters in these four problems.

Theorem 4.1.1 implies that the function Mg(x, ζ) can be used instead of ρg(x) in
optimization problems and by construction Mg(x, ζ) is a convex combination of Fαi(x, ζi).
We can employ the linearization scheme for Fαi(x, ζi), which is readily available, repeatedly
to linearize Mg(x, ζ).

Consider scenario generations with m scenarios for n financial instruments. One can
generate future losses for different insurance/reinsurance contracts or future prices/returns
of corporate stocks. Let L = [Lij]

m
i=1

n
j=1 be the loss matrix or the negate of return matrix

generated, where Lij denotes the loss in scenario i from instrument i. Let the probability
of realizing scenario i be pi for i = 1, · · · ,m. In line with the previous notations, the loss
function of a portfolio x is then

l(x,y) = Lx⇔ l(x, yi) = LTi·x (4.25)

Let c = (c1, · · · , cn)T be the premium or price vector of the instruments. The vector
c can be generated separately from the L, can be obtained from market data, or can be

the expected return based on L, i.e., cj = L̄·i =
m∑
i=1

piLij. Then the LP formulations of

portfolio selection problems over CDRM are given by

• Return maximization subject to CDRM constraint, Problem (4.17)
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maximize cTx
subject to Ax ≤ b

m∑
j=1

wj[ζj + 1
1−αj

m∑
i=1

pizij] ≤ η

zij ≥ LTi·x− ζj i = 1, · · · ,m; j = 1, · · · ,m
zij ≥ 0 i = 1, · · · ,m; j = 1, · · · ,m

(4.26)

• CDRM minimization subject to return constraint, Problem (4.18)

minimize
m∑
j=1

wj[ζj + 1
1−αj

m∑
i=1

pizij]

subject to Ax ≤ b
cTx ≥ µ
zij ≥ LTi·x− ζj ∀i, j = 1, · · · ,m
zij ≥ 0 ∀i, j = 1, · · · ,m

(4.27)

• Return-CDRM utility maximization for a given risk aversion parameter τ ≥ 0, Prob-
lem (4.19)

maximize cTx− τ
m∑
j=1

wj[ζj + 1
1−αj

m∑
i=1

pizij]

subject to Ax ≤ b
zij ≥ LTi·x− ζj ∀i, j = 1, · · · ,m
zij ≥ 0 ∀i, j = 1, · · · ,m

(4.28)

The formulation for CDRM-based Sharpe Ratio maximization for a given benchmark
return level ν, Problem (4.20), is an LFP

maximize cTx−ν
m∑
j=1

wj [ζj+
1

1−αj

m∑
i=1

pizij ]

subject to Ax ≤ b
zij ≥ LTi·x− ζj ∀i, j = 1, · · · ,m
zij ≥ 0 ∀i, j = 1, · · · ,m

(4.29)
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We can utilize the variable transformation technique by letting

x̂ = tx, ζ̂ = tζ, ẑ = tz

where t = 1
m∑
j=1

wj [ζj+
1

1−αj

m∑
i=1

pizij ]
..

Then Problem (4.29) can be solved by solving at most two LPs given by

maximize cT x̂− νt
subject to Ax̂− bt ≤ 0

ẑij ≥ LTi· x̂− ζj ∀i, j = 1, · · · ,m
ẑij ≥ 0 ∀i, j = 1, · · · ,m

m∑
j=1

wj[ζ̂j + 1
1−αj

m∑
i=1

piẑij] = 1

t ≥ 0

(4.30)

and

maximize −cT x̂+ νt
subject to Ax̂− bt ≤ 0

ẑij ≥ LTi· x̂− ζj ∀i, j = 1, · · · ,m
ẑij ≥ 0 ∀i, j = 1, · · · ,m

−
m∑
j=1

wj[ζ̂j + 1
1−αj

m∑
i=1

piẑij] = 1

t ≥ 0

(4.31)

It is not necessary to solve both Problem (4.30) and Problem (4.31) in many cases.
For example, CDRM is a risk measure so it is rarely negative in practice. If we know the
optimal portfolio has a positive CDRM, then it is sufficient to solve Problem (4.30) only.
In fact, it is sufficient to solve only one of Problem (4.30) or Problem (4.31) if we have
prior knowledge about the sign of either risk or return at optimal portfolio.

Chapter 6 Numerical works
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Chapter 5

Case Studies and Numerical Results

The properties of CRM and DRM ease our exploitation of CDRM’s theoretical properties.
Discussions in Chapter 3 reveal that CDRM is both conceptually intuitive and compu-
tationally amenable. Various linear formulation for CDRM problems their equivalences
as discussed in Chapter 4 largely enhanced the applicability of CDRM in practice. Two
case studies are conducted in this chapter to illustrate the CDRM portfolio optimization
methodologies presented in previous chapters. A reinsurance portfolio selection problem
with simulated insurance losses is studied and numerical verifications of the equivalences
among different formulations are provided in Section 5.1. An investment portfolio selection
problem with real historical data is studied, empirical analyses and comparisons among
different members of CDRM are provided in Section 5.2. The actual choice of CDRM
objective/constraints in any portfolio selection problem varies and should be derived on
a case by case basis. The emphasis of these two examples is the illustration of the linear
optimization methodologies for CDRM portfolio selection problems, rather than a practical
recommendation for industrial applications. All programming problems in this chapter are
solved with AMPL using the Gurobi 4.5.1 solver.

5.1 Case Study: Reinsurance Portfolio Construction

Suppose a reinsurance company wants to construct a portfolio from n risk contracts. The
risk premiums for these contracts are publicly available in the market. The company
believes that there are m possible future states of economy and has sufficient information
to simulate the future losses for all contracts. Then the company has the loss matrix L and
the premium vector c and hence is able to formulate CDRM portfolio selection problems.
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An anonymous reinsurance company provides us with the premiums of 10 risk contracts
and the simulated losses for these contracts in 10, 000 future states of economy. For sim-
plicity, we assume equal probability of realization for each of these 10, 000 future states. In
addition, we assume that the company can purchase (assume risks and collect premiums)
or sell (transfer risks and pay premiums) any number of units or fraction of these risk con-
tracts. The losses incurred/reimbursed and premiums collected/paid will be proportional
to the number of units purchased/sold. The return measure of interest is the difference
between portfolio premium and expected portfolio loss, i.e., the expected portfolio profit.
The preselected risk measure is the 95%-CVaR of portfolio losses. Table 5.1 shows some
statistics1 of the 10 risk contracts.

Contract Premium
Losses

Mean STD Skew Kurt 95%VaR 95%CVaR
1 554271 311388 1377843 5 31 2613161 5885442
2 364272 222117 1172497 6 41 588329 4338214
3 91763 55953 739026 16 274 0 1119065
4 867176 437968 1806626 4 21 3845685 7937610
5 798005 438464 2913258 7 55 0 8769284
6 107585 43381 263019 6 42 0 867624
7 878525 375438 1375166 4 18 3160679 5974087
8 3081188 1283828 2199151 2 5 5661191 8442634
9 65162 29352 324061 12 134 0 587044
10 885897 385173 1047454 6 48 1506500 3693435

Table 5.1: Premiums and Summary Statistics of Simulated Losses for the 10 Risk Contracts

We observe from Table 5.1 that

1. The market premium for each contract is greater than its expected loss. We can view
such difference as the risk loading for a contract which reflects the risk appetite of
the market towards each contract.

2. The skewness coefficients of the simulated losses are positive. This implies that all
simulated loss distributions are skewed to the right, which corresponding to large
losses.

1Rounded to the nearest integer.
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3. The kurtosis coefficients of the simulated losses are high. This implies the existence
of extremely large losses with small probabilities. Such characteristic is also reflected
from the 95%-VaR and 95%-CVaR columns. For example, contract 3, 5, 6 and 9
have zero 95%-VaR yet their 95%-CVaR are large, which mean that with lower than
5% chance there would be huge losses.

Additionally, the empirical correlation matrix for the simulated losses of these 10 risk
contracts is provided in Table 5.2. We can see that the maximum correlation between two
contracts is 0.55028 while the minimum is −0.0069. Note that there are contracts whose
losses are negatively correlated, which enables effective risk hedging against each other.

1 2 3 4 5 6 7 8 9 10
1 1
2 0.0004 1
3 0.0105 -0.0037 1
4 0.4173 0.0247 -0.0013 1
5 0.0218 0.1486 0.0026 0.1791 1
6 0.1746 0.2689 -0.0035 0.1773 0.4436 1
7 0.0205 0.5503 -0.0069 0.0521 0.2199 0.3304 1
8 0.4620 0.0216 0.0011 0.2226 0.0469 0.0975 0.0499 1
9 -0.0031 0.1602 0.0058 0.0068 0.1751 0.2352 0.3691 0.0159 1
10 0.3313 0.0030 -0.0029 0.2043 0.0255 0.0711 0.0155 0.4258 0.0023 1

Table 5.2: Correlation Matrix of Risk Contracts

In order to get a benchmark portfolio for later comparisons, we first consider a balanced
portfolio, i.e., a portfolio consists of 1

10
unit of each of the 10 contracts. Portfolio premium,

summary statistics of portfolio losses, and expected portfolio profit for balanced portfolio2

are given in Table 5.3.

Premium
Losses Expected

ProfitMean STD Skew Kurt 95%-VaR 95%-CVaR
769384 358306 667647 3 12 1716458 2656764 40578

Table 5.3: Premium, Summary of Losses, and Expected Profit of Balanced Portfolio

2Rounded to the nearest integer.

57



Note that the portfolio premium, the expected loss, and hence the expected profit of
balanced portfolio are the average of original 10 risk contracts’ premiums, expected losses
and expected profits. However, all other statistics of the portfolio losses such as standard
deviation, skewness kurtosis, 95%V aR, and 95%CV aR are all lower than the average of
the 10 risk contracts corresponding measures. This reveals that the balanced portfolio
enjoys the benefit of risk diversification hence achieves the average expected profit while
bearing lower than average risks.

Although the balanced portfolio illustrates the benefit of diversification, we will show
that such a simple portfolio construction is far from being optimal in the sense of risk-
reward trade off. We solve the utility maximization problem (4.19) hence LP (4.28) re-
peatedly by varying the risk-aversion parameter τ from 0 to 3 with increments of 0.005
and hence trace efficient frontier in expected profit v.s. 95%-CVaR plane for these 10
risk contracts. Note that the decision variables xi, i = 1, · · · , 10 in this example denote
the number of unit(s) of risk contract i purchased (or sold if xi < 0) by the reinsurance
company. A budget constraint is imposed, all feasible portfolios collect the same amount
of premium as the balanced portfolio does. The resulting efficient frontier is shown in
Figure 5.1. The balanced portfolio in expected profit v.s. 95%-CVaR plane is shown in
the enlarged graph as diamond at the bottom right.

We see that the balanced portfolio is far away from the efficient frontier therefore
is highly inefficient in terms of the trade off between expected profit and 95%-CVaR. In
particular, at the same 95%-CVaR level as that of the balanced portfolio, one can achieve a
much higher expected profit than that of the balanced portfolio. This inefficiency suggests
the importance to active risk management in portfolio construction. Despite the benefit of
diversification, simple portfolio construction scheme such as the balanced strategy could
result in bearing unnecessary risks and/or losing possible profit.

Figure 5.1 also helps us to verify the equivalences established in Theorem 4.2.4 nu-
merically and provides us with geometric interpretations of the parameters in problems
(4.17)-(4.20).

To verify the equivalences established in Theorem 4.2.4, we can first solve any one of
the problems (4.17)-(4.17) with a preselected parameter then use the implied parameters
to solve the other problems. According to Theorem 4.2.4, the parameters and the optimal
objective values of these four problems are interrelated as specified in Table 4.1.

We set τ = 0.2 and solve the utility maximization problem (4.19). The optimal solution
is referred to as the target portfolio hereafter and is highlighted as a triangle in the enlarged
efficient frontier in Figure 5.1. By optimality of the target portfolio it must be a point on
the efficient frontier and Figure 5.1 confirms this property. Premium, summary statistics
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of losses and the expected profit3 of the target portfolio are shown in Table 5.4.

Optimal

Utility
Premium

Losses Expected

ProfitMean STD Skew Kurt 95%VaR 95%CVaR
100567 769384 305689 492425 2 4 1313074 1815641 463695

Table 5.4: Premium and Summary Statistics of Simulated Losses for Target Portfolio

Due to our budget constraint, the total premium collected from target portfolio is the
same as that from balanced portfolio. However, comparing Table 5.4 and Table 5.3 we
see that the target portfolio’s loss distribution is better than the balanced portfolio’s in
expected loss, standard deviation, skewness, kurtosis, 95%V aR, and 95%CV aR. Such
superiority illustrates once more the insufficiency of balanced portfolio.

We then solve problems (4.17), (4.18) and (4.20) by setting η = 1815641, µ = 769384−
305689 = 463695, and ν = 463695−0.2×1815641 = 100567 and imposing the same budget
constraint. The optimal solutions, the optimal objective values and other related program
outputs are summarized in Table 5.5

Utility

Maximization
Profit
Maximization

CDRM
Minimization

Sharpe Ratio

Maximization
Preselected Parameter τ = 0.2 η = 1815641 µ = 463695 ν = 100567
Program Outputs
Optimal Utility4 100567 100567 100567 100567
Optimal Profit5 463695 463695 463695 463695
CDRM6 1815641 1815641 1815641 1815641
Optimal Sharpe Ratio7 0.2 0.2 0.2 0.2

Table 5.5: Optimal Portfolio Information for Different Formulations of Profit-CDRM
Problems

We can see from Table 5.5 that profits, 95%-CVaRs, utilities, and CDRM -based Sharpe
Ratios are all the same for the optimal portfolios for these three problems with parameters
selected according to Table 4.1.

3Rounded to the nearest integer.
4R(x∗)− 0.2× ρg(x∗) at the optimal solution for respective problem.
5R(x∗) at the optimal solution for respective problem.
6ρg(x

∗) at the optimal solution for respective problem.
7R(x∗)−ν
ρg(x∗) at the optimal solution for respective problem.
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As mentioned in Chapter 4, the parameter ν in CDRM -based Sharpe Ratio maximiza-
tion problem is equal to the optimal utility and the parameter τ in utility maximization
problem is equal to the optimal Sharpe Ratio. Moreover, the parameter η in the profit
maximization problem is equal to the optimal CDRM and the parameter µ in the CDRM
minimization problem is equal to the optimal profit. These pairing relationships are proven
in Theorem 4.2.4 and verified in this numerical example.

We can explore geometric interpretations of these four parameters via the efficient
frontier. The dashed line in the upper graph in Figure 5.1 passes through (0, 100567) and
(1815641, 463695) and has a slope of 0.2. Note that the intercept is the optimal utility
and the slope equals to the optimal Sharpe Ratio. The vertical dashed line in the enlarged
efficient frontier graph in Figure 5.1 has an x-intercept of 1815641, the optimal CDRM
value. The horizontal dashed line in the same graph has a y-intercept of 463695, the
amount of optimal profit.

A CDRM constraint restricts the feasible set to be the area under the efficient frontier
and to the left of the maximum acceptable CDRM level η, i.e., the area below the curve
and to the left of the vertical dashed line in Figure 5.1. If we look for the highest point in
this area, which is equivalent to maximizing profit subject to a CDRM constraint, we will
reach at the target portfolio with optimal objective value µ. Similarly, a profit constraint
restricts the feasible set to be the area under the efficient frontier and above the minimum
acceptable profit level µ, i.e., the area below the curve and above the horizontal dashed
line in Figure 5.1. If we search for the leftmost point in this area, which is equivalent to a
minimizing CDRM subject to a profit constraint, we will again reach at the target portfolio
with optimal objective η, as shown in Figure 5.1. Such geometric interpretations of η and
µ explain the relationship between the optimal objective values and parameters in profit
maximization problem (4.17) and CDRM minimization problem (4.18).

For any feasible portfolio x with profit R(x) and CDRM ρg(x) and a given risk aversion
parameter τ , the utility R(x)− τρg(x) is the y-intercept for a straight line going through
(ρg(x), R(x)) with slope τ in the profit-CDRM plane. Therefore a utility maximization
problem is equivalent to shifting a fixed-slope straight line upward with at least one point
within the efficient frontier, highest possible line is the dashed line in the upper graph of
Figure 5.1. For any feasible portfolio x with profit R(x) and CDRM ρg(x) and a given

benchmark profit level ν, the CDRM-based Sharpe Ratio R(x)−ν
ρg(x)

is the slope of a straight

line that goes through (0, ν) and (ρg(x), R(x)) in the profit-CDRM plane. Therefore a
CDRM-based Sharpe Ratio maximization problem is equivalent to rotating a straight line
that is pivoted at (0, ν) counterclockwise with at least one point of the line within the
efficient frontier, the resulting straight line is again the dashed line in the upper graph of
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Figure 5.1.

Theoretical aspects such as monotonicity and concavity of the return-CDRM efficient
frontier requires a more rigorous exploration and is outside the scope of this thesis. Inspired
by the usual mean-variance efficient frontier in canonical Markowitz settings and in view
of Figure 5.1, we conjecture that the return-CDRM efficient frontier is an increasing and
concave curve in the return-CDRM plane.

5.2 Case Study: Investment Portfolio Construction

Consider an investment portfolio selection problem using historical data. We construct
our portfolios from 20 stocks9, 2 from each of the 10 sectors defined in Global Industry
Classification Standard(GICS). The stocks chosen and their corresponding GICS sectors
are shown in Appendix B.1. Weekly prices10 from 02/01/2001 to 31/05/2011 (a total of 543
weeks, hence 542 weekly returns) for these stocks were obtained from finance.yahoo.com11.
Figure 5.2 shows the time series plot for the sum of these 20 stocks’ prices. Since we have
confined our portfolios to be constructed from these stocks Figure 5.2 represents our a time
series plot for the “market portfolio”.

We see from Figure 5.2 that there had been market declines from 2001 to 2003 as the
aftershock from 9 − 11 terrorist attack in 2001. We also see market declines from 2007
to 2009 resulted from the so-called “sub-prime mortgage financial crisis”. Moreover, the
“market portfolio” increases gradually from mid-2003 to 2005, from mid-2005 to 2007,
and after 2009. We replace scenario generation by historical data of stock returns and
assume equal probability for each scenario. Therefore the loss matrix L100×20 represents
the negative returns of 20 stocks in 100 scenarios, and the return vector c = (L̄·1, · · · , L̄·20).
Note that both quantities changes over time. The portfolio’s expected return and 95%-
CVaR of the negative returns are the return and risk measures of interest.

We first examine the performance of a simple yet common investment portfolio, the
equally weighted portfolio, also known as the 1

n
-portfolio (also known as the naive strategy).

In an 1
n
-portfolio, initial wealth is invested equally, in monetary amount, in all available

stocks. Benartzi and Thaler [9] observed that many participants in defined contribution
plans used this simple strategy. Windcliff and Boyle [70] explored this simple investment

9Stocks with ticker symbols AEP, AIG, C, CI, ETR, F, FMC, GD, GE, HUM, IP, KO, MCD, MRO,
MSFT, NSM, T, VZ, WMT, and XOM.

10Closing prices adjusted for dividends and splits.
11Last access on 25/07/2011.
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Market Portfolio Value from 2001 to 2011
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Figure 5.2: Time Series Plot of the “Market Portfolio”
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strategy in the classical Markowitz framework and gave merits to this diversification rule
when parameter estimation risks and parameter estimation errors are considered. DeMiguel
et al. [18] preformed extensive empirical study across 14 portfolio selection models and
found that none of them consistently outperforms the 1

n
-portfolio in terms of the Sharpe

Ratio. We traced the efficient frontiers in return v.s. 95%-CVaR plane at the beginning
of year 2003, 2005, 2007, as well as 2009 with the same methodologies in previous section.
Figures 5.3-5.6 these four efficient frontiers receptively. Moreover, the risk-reward trade off
for 1

n
-portfolios at the same times are shown as solid diamonds in corresponding figures.

We can see that the 1
n
-portfolio lies far away from all the efficient frontiers. In three

out of four figures (Figures 5.3,5.4 and 5.6) the 1
n
-portfolio lies below the minimum-risk

portfolio. In Figure 5.6 even bears a risk that exceeds the risk of the maximum return
portfolio (and hence maximum risk portfolio). All these figures suggest the inefficiency of
the 1

n
−portfolio and the importance of active risk management. Moreover, the 1

n
-portfolio

lies significantly farther from the efficient frontier in periods of market declines (see Figure
5.3 and Figure 5.6) than in periods of market increases (see Figure 5.4 and Figure 5.5).
One possible explanation is that, assets are more correlated when the market performs
poorly hence the benefit of risk diversification for 1

n
-portfolio becomes the disadvantage of

risk aggregation.

5.2.1 Portfolio Optimization with Different Members of CDRM

We examine four members of CDRMs: the Conditional Value-at-Risk measures (CVaR),
the Wang Transform measures (WT), the Proportional Hazards transform measures (PH),
and the lookback distortion measures (LB). We examine these CDRMs within subclasses
(risk measures with the same distortion function but different parameters) and across
subclasses (risk measures with different distortion functions).

Recall that for any portfolio loss sample l = (l1, · · · , lm) whose ordered losses are
denoted by l(1), · · · , l(m), a CDRM with respect to a given distortion function g(x) is given

by ρg(l) =
m∑
i=1

qil(i) =
m∑
i=1

wiφ i−1
m

(l) where qi = g(m−i+1
m

) − g(m−i
m

), i = 1, · · · ,m and w is

defined in Equation (3.9).

We acknowledge that assuming the one-week-ahead return distribution to be discrete
uniform distribution with the past 100 weeks’ returns as the support is unrealistic. Es-
timation errors of using such a distributional assumption can be large hence hinder the
usefulness of our results. These issues are addressed in many academic studies such as
Jorion [31] and the references therein. Our main purpose is to illustrate CDRM portfolio
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Efficient Frontier in Return v.s. 95%-CVaR Plane, 2003
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Figure 5.3: Efficient Frontier at the Beginning of 2003
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Efficient Frontier in Return v.s. 95%-CVaR Plane, 2005

95%-CVaR of Negative Returns (in %)

R
et

u
rn

(i
n

%
)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

Figure 5.4: Efficient Frontier at the Beginning of 2005
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Efficient Frontier in Return v.s. 95%-CVaR Plane, 2007
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Figure 5.5: Efficient Frontier at the Beginning of 2007
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Efficient Frontier in Return v.s. 95%-CVaR Plane, 2009
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Figure 5.6: Efficient Frontier at the Beginning of 2009
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optimization methodologies and comparisons of different of CDRMs. More adequate sce-
nario generation procedures and more stochastic estimation methods may be applied to
enhance the practical performance of our optimization framework.

The initial portfolio consists of $100 cash and the portfolio is rebalanced weekly accord-
ing to our CDRM optimal portfolios. The optimization was run for 442 overlapping 100-
week periods and should determine optimal investment portfolios that minimizes CDRM
subject to various constraints. The interpretation of decision variables in this example is
different to that in the previous reinsurance example. Decision variables xi, i = 1, · · · , 10
in this example denote the fraction of wealth, in monetary amount, invested in stock i. We

impose a budget constraint
20∑
i=1

xi = 1, no-short selling constraints x ≥ 0, upper-limit con-

straints x ≤ 0.2 so that no more than 20% of the total portfolio value should be invested
in one single stock, and a return constraint R(x) ≥ µ where µ is the expected return of
the 1

n
-portfolio.

Optimization with CVaR

CV aRα is the fundamental building block in our CDRM optimization framework. The
distortion function for CVaR measures is given by

gCV aR(x, α) = min{ x

1− α
, 1}, α ∈ [0, 1] (5.1)

We examine gCV aR for α = 0.9, α = 0.95, and α = 0.99. The weights qi, i = 1, · · · , 100
for ordered statistics and the weights wi, i = 1, · · · , 100 for CV aRα are shown in Figure
5.7.

CV aRα = CV aRα(l) represents the average of lis that exceed V aRα(l) and the weights
i(i)s (as shown in the left column of Figure 5.7) confirm such representation. Graphs in
the right column of Figure 5.7 shows the weights for CV aRαs at different αs such that
the resulting convex combination of CV aRα reconciles our desired CDRM. Since CV aRα

is the basic unit, hence the convex weights for CV aRα measure consist of only one non-
zero entry which corresponds to α. The convex representation of CV aRα is identical to
itself therefore our CDRM optimization scheme does not incur extra work should a simple
representation be detected.

After optimizations over three different CV aRαs, we compared the performances of
their optimal portfolios. Portfolio values with out-of-sample returns (the returns that were
realized) and portfolio values and portfolio values with expected returns (the returns based
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Figure 5.7: q and w for CV aRα
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on the average over the past 100 weeks) are shown in Figure 5.8. The time series for port-
folio values with realized returns is much more spiky compared to that for portfolio values
with expected returns. This is not surprising because the expected returns were calcu-
lated as an average over consecutive overlapping 100-week periods and hence effectively a
smoothing technique had been applied.

Summary statistics for the expected and realized returns for optimal portfolios over
CV aR0.9, CV aR0.95, and CV aR0.99 are given in Table 5.6.

Optimal Returns CV aR0.9 CV aR0.95 CV aR0.99

Expected Realized Expected Realized Expected Realized
Mean 0.00245 0.00148 0.00228 0.00117 0.00205 0.00139

Standard Deviation 0.00210 0.01891 0.00234 0.02050 0.00262 0.02243
Skewness 0.39751 -0.93697 0.19613 -0.56738 -0.17578 -0.20805
Kurtosis 0.58559 6.08202 0.13816 4.96513 0.21126 4.47107

Sharpe Ratio 1.17098 0.07833 0.97380 0.05718 0.78529 0.06219

Table 5.6: Summary Statistics for CV aRα Minimization Optimal Portfolios

From a theoretical point of view, optimization of CV aRα with a lager α represents
a more risk averse decision making process that with a smaller α. Therefore optimal
portfolios with larger α should have a smaller expected return on average. The bottom
graph in Figure 5.8 and the summary statistics of expected returns in Table 5.6 both
confirm this theoretical property.

In this example, the mean realized returns are lower the mean expected returns in all
three cases. The portfolios with realized returns have terminal wealths than those with ex-
pected returns at all confidence levels. Nevertheless, the realized returns and the resulting
portfolios display some consistencies with the expected returns and their portfolios. For
example, the optimal portfolios w.r.t CV aR0.9 (solid lines in Figure 5.8) achieves higher
terminal wealth with both realized returns and with expected returns. We also observe
that the lower the confidence level is, the higher the canonical Sharpe Ratio is for both
expected returns and realized returns.

Optimization with WT-Measures

The WT-measure is a well-known member of DRM introduced in Wang [66]. There have
been extensions and variations of the WT since its introduction. In the following example,
we follow the definition of WT in Wang [67], whose distortion function is given by
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Figure 5.8: Time Series Plots for Optimal Portfolios w.r.t CV aRαs
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gWT (x, β) = Φ[Φ−1(x)− Φ−1(β)], β ∈ [0, 1] (5.2)

where Φ is the standard normal cumulative distribution function.

Wang [66] showed that gWT is concave for β > 0.5 and is convex if β < 0.5. We examine
gWT for β = 0.75, β = 0.85, and β = 0.95. The weights qi, i = 1, · · · , 100 for ordered
statistics and the weights wi, i = 1, · · · , 100 for WTβs are shown in Figure 5.9.

We see that β in WTβ plays similar role as α in CV aRα. More emphasis is placed to
minimizing upper tail of the distribution for larger β, as we can see from the graphs in the
left column of Figure 5.9. From the graphs in the right column of Figure 5.9, we see that
the minimization of WT0.75 is emphasizing in minimizing CV aRαs for small αs. Since we
calculated CV aRα using the negative returns and CV aR0(l) = E[l], minimizing CV aRαs
for small αs is in some sense maximizing return. Minimization of WT0.85 takes a balanced
approach to minimize CV aRαs for all αs non-significant emphasis in both low and high
tails of the distribution. Minimization of WT0.95 has strong focus on minimizing CV aRαs
for large αs. In all three cases, even though there are noticeable preferences towards either
return maximization or risk minimization, the preferences is not strong. For example, even
though WT0.95 has a clear preference towards minimization of CV aRαs for large αs, the
largest weight among all CV aRαs is around 0.15 and is much smaller than 1, in which
case becomes the minimization of CV aR0.99 itself.

The time series plots for optimal portfolios with realized and expected returns w.r.t the
above three WT-measures are shown in Figure 5.10. The corresponding summary statistics
for the expected and realized returns are given in Table 5.7.

Optimal Returns WT0.75 WT0.85 WT0.95
Expected Realized Expected Realized Expected Realized

Mean 0.00310 0.00164 0.00261 0.00143 0.00232 0.00140
Standard Deviation 0.00217 0.01919 0.00209 0.01915 0.00233 0.02107

Skewness -0.00193 -1.00243 0.37370 -0.77534 0.10951 -0.30517
Kurtosis -0.23044 7.06069 0.38650 5.88635 0.31371 5.46812

Sharpe Ratio 1.42672 0.08560 1.24928 0.07477 0.99638 0.06628

Table 5.7: Summary Statistics for WTβ Minimization Optimal Portfolios

Similar to the CV aRα minimization example, the realized returns has lower mean value
than that of the expected returns. Optimal portfolios with expected returns achieve higher
terminal wealth than those with realized returns for all β. Nevertheless, for both realized
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and expected returns, the optimal portfolios w.r.t WT0.75 outperform those w.r.t WT0.95,
which in turn outperform those w.r.t WT0.95. The mean of expected returns for WT0.75 is
higher than that for WT0.85, which in turn is higher than that for WT0.85. In our example,
the lower β is, the higher the canonical Sharpe Ratio is for both expected and realized
returns.

Optimization with PH-Transform Measures

The PH-transform measure was introduced in Wang et al. [69]. The distortion function
for PH-transform is given by

gPH(x, γ) = xγ, γ ∈ (0, 1] (5.3)

It is clear that gPH is concave for γ ∈ (0, 1] and hence the PH-transform measure is a
member of CDRM. We examine PHγ for γ = 0.1, γ = 0.5, and γ = 0.9. The weights qi,
i = 1, · · · , 100 for ordered statistics and the weights wi, i = 1, · · · , 100 for CV aRαs are
shown in Figure 5.11.

We see that portfolio optimizations over PHγ are very close to two-point optimizations:
minimization CV aRα for α = 0.99 and hence minimization of extreme losses as well as
minimization of CV aRα for α = 0 and hence maximization of expected return. The PHγ

cares little about other percentiles of the loss distribution, as revealed in graphs on the left
of Figure 5.11. In our numerical example, optimization w.r.t PH0.9 is almost the same as
return maximization.

The time series plots for optimal portfolios with realized and expected returns w.r.t the
above the PHγs are given in Figure 5.12. The corresponding summary statistics for the
expected and realized returns are given in Table 5.8.

As we have discussed previously, minimization of PHγ places more emphasis on max-
imizing the portfolio returns with lager γ. As a result, we see the expected returns for
optimal portfolios increases with γ. Moreover, the difference in the mean expected return
is surprisingly significant. The mean expected return for optimal portfolios w.r.t PH0.9 is
more than twice as much as the mean expected return for those w.r.t PH0.5. Although
the actual realized returns are lower than the expected returns, but we can still observe
the same relationship between expected returns and the value of γ: the higher the γ, the
higher the mean. We see in our example that the higher the γ, the higher the canonical
Sharpe Ratio.
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Optimal Returns PH0.1 PH0.5 PH0.9

Expected Realized Expected Realized Expected Realized
Mean 0.00212 0.00130 0.00296 0.00148 0.00609 0.00277

Standard Deviation 0.00257 0.02218 0.00231 0.02091 0.00352 0.02622
Skewness -0.19087 -0.26156 -0.19624 -0.83421 1.51062 -0.95739
Kurtosis 0.36133 5.14293 -0.13181 8.50931 3.96695 6.78000

Sharpe Ratio 0.82426 0.05844 1.28245 0.07091 1.72943 0.10574

Table 5.8: Summary Statistics for PHγ Minimization Optimal Portfolios

Optimization with LB-Transform Measures

The LB-transform measure was introduced by Hürlimann[29] to investigate option strate-
gies and for exchange risk modeling. The distortion function for LB-transform is given
by

gLB(x, δ) = xδ, δ ∈ (0, 1] (5.4)

gLB is a concave function for δ ∈ (0, 1] hence LBγ is a member of CDRM. We examine
gLB for δ = 0.1, δ = 0.5, and δ = 0.9. The weights qi, i = 1, · · · , 100 for ordered statistics
and the weights wi, i = 1, · · · , 100 for CV aRαs are shown in Figure 5.13.

We see from Figure 5.14 that LB-transform measure places the main focus in minimizing
CV aRαs for large αs. The parameter δ can be viewed as a measure of risk aversion. The
smaller the δ, the closer the LBδ minimization is to a CV aR0.99 minimization. For large
values of δ, we can see that the weights for CV aRαs are almost the same for all αs, which
implies there is no emphasis on minimizing any one CV aRα over the others.

The time series plots for expected and actual portfolio values with respect to the above
three LB-transform measures are given in . The corresponding summary statistics for the
expected and realized returns are given in Table 5.9.

Since smaller values of δ correspond to stronger emphasis on minimizing extreme losses,
the underlying decision making process is more risk averse. As a result, we shall expect
low mean return for small δs. Both the expected and actual portfolios in Figure 5.14
validate such property. We see that the higher the δ, the higher the canonical Sharpe
Ratio. However, such observation is merely based on our empirical results and rigorous
justifications is absent.
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Optimal Returns LB0.1 LB0.5 LB0.9

Expected Realized Expected Realized Expected Realized
Mean 0.00206 0.00134 0.00228 0.00137 0.00261 0.00145

Standard Deviation 0.00259 0.02230 0.00239 0.02130 0.00207 0.01893
Skewness -0.16833 -0.22880 0.03581 -0.34008 0.41528 -0.80400
Kurtosis 0.29438 4.59996 0.28190 5.15387 0.47363 6.04230

Sharpe Ratio 0.79704 0.05995 0.95589 0.06439 1.26086 0.07645

Table 5.9: Summary Statistics for LBδ Minimization Optimal Portfolios

In summary, we perform a final comparison among the best performing portfolios in
the aforementioned four members of CDRMs, the 1

n
-portfolio, and the return maximization

portfolio. Note that we can also view the return maximization problem as a CDRM mini-
mization problem by minimizing CV aR0 of the negative returns. The resulting time series
are plotted in Figure 5.15 the summary statistics for 1

n
portfolio and profit maximization

portfolio is given in Table 5.10.

Optimal Returns 1
n
-Portfolio Max Return Portfolio

Expected Realized Expected Realized
Mean 0.00168 0.00208 0.00639 0.00279

Standard Deviation 0.00279 0.03038 0.00352 0.02947
Skewness -0.33372 0.25175 1.52513 -0.73268
Kurtosis 0.64192 13.73943 4.02045 4.95543

Sharpe Ratio 0.60129 0.06854 1.81415 0.09480

Table 5.10: Summary Statistics for 1
n
-Portfolio and Return Maximization Portfolio

We see that for our selection of stocks, the return maximization produces the best
portfolio in terms of its terminal wealth and the mean portfolio returns. However, this
should not be a practical recommendation for portfolio manager because it might bear
unacceptably high risks. For instance, the standard deviation of the expected returns for
return maximization portfolios is the highest among all portfolios we have discussed in this
section. Investors should consider their own risk appetites and choose an appropriate risk
measure in every investment decision.
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Figure 5.15: Time Series Plots for Optimal Portfolios for Various CDRMs

83





Chapter 6

Conclusions and Future Directions

In this thesis we extend the convex formulation of CVaR and its linearization scheme
developed in Rockafellar et al. [50] [51] and Krokhmal et al. [36] to a general class of
risk measure, the CDRM. The class of risk measure includes members such as CVaR, WT-
measures, PH-transform measures, and lookback-distortion measures. The risk measures
were mainly used for calculating risk levels (or insurance premiums) for a given portfolio.
With our CDRM optimization framework, these risk measures can be used for optimizing
risk levels (or insurance premiums) within a give set of feasible portfolios.

The Finite Generation Theorem for CDRM in Bertsimas et al. [11] assumes discrete
uniform distribution for portfolio losses and states that any CDRM can be expressed as
a convex combination of finite many CVaRs at different confidence levels. We extend the
Finite Generation Theorem to general discrete distributions portfolio loss and the convex
combination representation is still valid.

We show that any CVaR risk-shaping problem is equivalent to a CDRM utility max-
imization problem in a sense that both problem traces out the same multi-dimensional
efficient frontier. Furthermore, portfolio selection problems with CVaR objective can be
converted to problems with one CVaR constraint, which are special cases of CVaR risk-
shaping problems. As a result, any portfolio problem with CVaR objective/constraint(s)
can be viewed as a CDRM utility maximization problem. Conversely, any CDRM utility
maximization problem can be viewed as a CVaR risk-shaping problem.

Besides the CDRM utility maximization problem, we propose three other formulations
of CDRM portfolio selection problems: return maximization with a CDRM constraint,
CDRM minimization with a return constraint, and CDRM-based Sharpe Ratio maximiza-
tion. We establish equivalences among these four formulations in a sense that they trace
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out the same efficient frontier. For any of the four problems with a preselected parameter,
we provide the expressions of the implied parameters for the other three problems. Last
but not least, we explore the paring relationships between CDRM utility maximization
problems and CDRM-based Sharpe Ratio maximization problems as well as between re-
turn maximization problems and CDRM minimization problems, both analytically and
geometrically.

We perform cases studies to provide numerical examples and verifications of the afore-
mentioned relationships and paring properties. In addition, we perform empirical analysis
of the efficiency of 1

n
-portfolio in terms of the trade off between portfolio return and 95%-

CVaR of portfolio losses. We find that the 1
n
-portfolio is highly inefficient in the sense that

it is far away from the efficient frontiers at different times. Our numerical results show
that 1

n
-portfolio is farther away from the efficient frontier during periods of market declines

than it is during market increases.

Finally, we explore the properties of four members of CDRM, CVaRs, WT-measures,
PH-measures, and LB-measures by comparing the performance optimal portfolios and
their returns w.r.t these members. Although all these members are risk measures, opti-
mizations over these CDRMs in fact provide risk minimization and return maximization
simultaneously. However, each of these four member has unique risk appetite in terms of
their relative weights towards minimizing CVaRs at different confidence levels. We also
find several relationships between the parameter value for each of these CDRMs and the
corresponding Sharpe Ratios in our numerical results.

Results in this thesis are the initial steps and there are still many to take. Some possible
extensions of our work for future research are:

1. Explore more efficient solution methods for CDRM optimization problems by exploit-
ing the structural properties of its programming formulation. To CDRM portfolio
selection problem with m scenarios via LP we need m CVaR constraints in general,
each of which requires m additional auxiliary variables and 2m auxiliary constraints.
With a reasonable number of scenarios such as m = 100 or m = 1, 000, we may need
of solve an LP with at least 10, 000 and 1, 000, 000 constraints, which could be time
consuming. One can explore the structural properties of CDRM optimization prob-
lems (diagonal matrix for auxiliary constraints) and employ decomposition solution
methods such as the Bender’s Decomposition to solve it more efficiently.

2. Solve CDRM optimization problems via stochastic programming. Künzi et al. [39]
considered solving CVaR minimization problems using stochastic programming. Our

86



CDRM optimization framework is based largely on the CVaR optimization frame-
work, it is of interest to consider solving CDRM optimization problems via similar
methodologies.

3. Consider CDRM in multi-period models. We develope our CDRM optimization
framework as an one-period model. Yet in practice portfolio managers may want
to incorporate information for periods ahead and hence want to make decisions ac-
cordingly. A multi-periods model is needed in those situations. For example, Fábián
[23] considered CVaR portfolio selection problems in two-stage stochastic models. It
is of interest to extend the models therein to CDRM portfolio selection problems.

4. Explore other members of CDRM. The CDRMs considered in this thesis are DRMs
with concave distortion functions. It is of interest to consider some known subclasses
of CRMs such as higher moment coherent risk measures defined in Krokhmal [35]
and to verify whether they are members of CDRM.
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Appendix A

Auxiliary Proof

A.1 Properties of Weights in Equation (4.6)

1. wi ≥ 0 for i = 1, · · · ,m By assumption p1 > 0 and g : [0, 1] 7→ [0, 1] is nondecreasing,
thus q1 ≥ 0 and

w1 =
q1
p1
≥ 0

Furthermore, since g is concave, for i = 2, · · · ,m

(qi −
pi
pi−1

qi−1)

= {[g(1− F (li−1))− g(1− F (li))]−
pi
pi−1

[g(1− F (li−2))− g(1− F (li−1))]}

=
pi + pi−1
pi−1

{g(1− F (li−1))− [
pi−1

pi + pi−1
g(1− F (li)) +

pi
pi + pi−1

g(1− F (li−2))]}

≥ pi + pi−1
pi−1

{g(1− F (li−1))− g(1− F (li−1))}

≥ 0

2.
m∑
i=1

wi = 1
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By construction

m∑
i=1

wi

=
q1
p1

+
m∑
i=2

(qi −
pi
pi−1

qi−1)
1− F (li−1)

pi

=
q1
p1

+
m∑
i=2

qi
1− F (li−1)

pi
−

m∑
i=2

qi−1
1− F (li−1)

pi−1

=
q1
p1

+ [
m−1∑
i=2

qi

1−
i−1∑
j=1

pj

pi
+ qm

1−
m−1∑
j=1

pj

pm
]− [

m∑
i=3

qi−1

1−
i−1∑
j=1

pj

pi−1
+ q1

1− p1
p1

]

= q1(
1

p1
− 1− p1

p1
) + [

m−1∑
i=2

qi

1−
i−1∑
j=1

pj

pi
+

m−1∑
i=2

qi

1−
i∑

j=1

pj

pi
] + qm

pm
pm

=
m∑
i=1

qm

= 1
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B.1 The Companies Selected for Investment Portfolio

Construction

GICS Sector Company Ticker Symbol
Consumer Discretionary Ford Motor F

McDonald’s Corp. MCD
Consumer Staples Coca Cola Co. KO

Wal-Mart Stores WMT
Energy Marathon Oil Corp. MRO

Exxon Mobil Corp. XOM
Financials American Intl Group Inc AIG

Citigroup Inc. C
Health Care CIGNA Corp. CI

Humana Inc. HUM
Industrials General Dynamics GD

General Electric GE
Information Technology Microsoft Corp. MSFT

National Semiconductor NSM
Materials FMC Corporation FMC

International Paper IP
Telecommunication Services AT&T Inc T

Verizon Communications VZ
Utilities American Electric Power AEP

Entergy Corp. ETR

Table B.1: Companies Selected for Investment Portfolio Construction Case Study
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