
Practical
Private Information Retrieval

by

Femi George Olumofin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Femi George Olumofin 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144145166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In recent years, the subject of online privacy has been attracting much interest, espe-
cially as more Internet users than ever are beginning to care about the privacy of their
online activities. Privacy concerns are even prompting legislators in some countries to de-
mand from service providers a more privacy-friendly Internet experience for their citizens.
These are welcomed developments and in stark contrast to the practice of Internet censor-
ship and surveillance that legislators in some nations have been known to promote. The
development of Internet systems that are able to protect user privacy requires private in-
formation retrieval (PIR) schemes that are practical, because no other efficient techniques
exist for preserving the confidentiality of the retrieval requests and responses of a user from
an Internet system holding unencrypted data. This thesis studies how PIR schemes can
be made more relevant and practical for the development of systems that are protective of
users’ privacy.

Private information retrieval schemes are cryptographic constructions for retrieving
data from a database, without the database (or database administrator) being able to
learn any information about the content of the query. PIR can be applied to preserve the
confidentiality of queries to online data sources in many domains, such as online patents,
real-time stock quotes, Internet domain names, location-based services, online behavioural
profiling and advertising, search engines, and so on. Typically, the database consists of
r blocks, and the user query is an index i between 1 and r. The client first encodes the
index i into a PIR query, and then forwards it to the database. The database subsequently
performs some computations linear in r, and returns the result to the client. The client
finally decodes the database response to obtain the block at index i. The main parameters
of interest are the number of bits communicated in the interaction between the client and
the database, and the amount of computation — usually server computation.

In this thesis, we study private information retrieval and obtain results that seek to make
PIR more relevant in practice than all previous treatments of the subject in the literature,
which have been mostly theoretical. We also show that PIR is the most computationally
efficient known technique for providing access privacy under realistic computation powers
and network bandwidths. Our result covers all currently known varieties of PIR schemes.
We provide a more detailed summary of our contributions below:

• Our first result addresses an existing question regarding the computational practi-
cality of private information retrieval schemes. We show that, unlike previously ar-
gued, recent lattice-based computational PIR schemes and multi-server information-
theoretic PIR schemes are much more computationally efficient than a trivial transfer

iii

of the entire PIR database from the server to the client (i.e., trivial download). Our
result shows the end-to-end response times of these schemes are one to three orders
of magnitude (10–1000 times) smaller than the trivial download of the database for
realistic computation powers and network bandwidths. This result extends and clar-
ifies the well-known result of Sion and Carbunar on the computational practicality
of PIR.

• Our second result is a novel approach for preserving the privacy of sensitive constants
in an SQL query, which improves substantially upon the earlier work. Specifically,
we provide an expressive data access model of SQL atop of the existing rudimentary
index- and keyword-based data access models of PIR. The expressive SQL-based
model developed results in between 7 and 480 times improvement in query throughput
than previous work.

• We then provide a PIR-based approach for preserving access privacy over large
databases. Unlike previously published access privacy approaches, we explore new
ideas about privacy-preserving constraint-based query transformations, offline data
classification, and privacy-preserving queries to index structures much smaller than
the databases. This work addresses an important open problem about how real
systems can systematically apply existing PIR schemes for querying large databases.

• In terms of applications, we apply PIR to solve user privacy problem in the domains
of patent database query and location-based services, user and database privacy
problems in the domain of the online sales of digital goods, and a scalability problem
for the Tor anonymous communication network.

• We develop practical tools for most of our techniques, which can be useful for adding
PIR support to existing and new Internet system designs.

Supervisor:
Ian Goldberg

Examiners:
Urs Hengartner, Doug Stinson, Alfred Menezes, and Ahmad-Reza Sadeghi

iv

Acknowledgements

This thesis is a product of three years of work under the tutelage of my supervisor Ian
Goldberg. He graciously accepted me as a transfer doctoral student from the University
of Manitoba, even when I knew nothing about private information retrieval. Soon after
my arrival to Waterloo, he exposed me to relevant literature in the areas of security,
privacy, and applied cryptography, which eventually led to my interest in PIR. He listened
to all my ideas and guided me in the pursuit of those that form the bulk of this thesis.
An Oakland PIR paper [Gol07a] and its Percy++ open source implementation that Ian
authored are the foundational work for this thesis. I count it a rare privilege to have worked
with this brilliant, vast, highly motivated, kind, and skillful supervisor. Ian bought out
my Teaching Assistantship duties to make more time available for my research, provided
research assistantship support the moment my major scholarships got all used up, and gave
many opportunities for professional development and networking via conference travels.
For all these and many more, I am grateful.

I would like to thank the other members of my thesis examining committee for their
great feedback amongst others. Thanks to Urs Hengartner for our work on location pri-
vacy, Doug Stinson for connecting me with my first community service opportunity, Alfred
Menezes for attending and providing feedback to all my PhD Seminar talks, and Ahmad-
Reza Sadeghi for coming all the way from Germany to sit as my external.

I have also enjoyed collaborations from some of the brightest people from within and
outside Waterloo. In particular, I am grateful to Peter Tysowski, Ryan Henry, Prateek
Mittal, Carmela Troncoso, and Nikita Borisov for fruitful collaborations. I have enjoyed
encouragement and/or great feedback on draft papers and talks from a number of indi-
viduals that has made this thesis much better. They include current CrySP lab students
and postdocs Mashael Alsabah, André Carrington, Tariq Elahi, Aleksander Essex, Kevin
Henry, Ryan Henry, Atif Khan, Mehrdad Nojoumian, Sarah Pidcock, Rob Smits, Colleen
Swanson, Jalaj Upadhyay, Andy Huang, Kevin Bauer, and Sherman Chow; former CrySP
students Jeremy Clark, Greg Zaverucha, Qi Xie, Can Tang, Aniket Kate, Wanying Luo,
Chris Alexander, Jiang Wu, Atefeh Mashatan, and Joel Reardon; friends and colleagues
from the School of Computer Science John Akinyemi, Carol Fung, Jeff Pound, and Dave
Loker; people from outside the University Jean-Charles Grégoire, and Angèle Hamel, con-
ference shepherd Meredith Patterson; and the anonymous reviewers of our papers.

I am blessed to have an understanding wife, Favour, who has stuck with me all through
my years of graduate school. Thank you for your support, care, patience, and faith in me.

I thank my dad, Folorunso Olumofin, for always encouraging me to press forward in
my academic pursuits. I am grateful for the prayers and support of my mom, Esther

v

Olumofin, and my mother-in-law, Rachel Sani. Words cannot express my appreciation to
my brother, Olabode Olumofin, for his surprise support gestures and my other siblings for
their goodwill.

I am grateful to Steve and Beth Fleming and the entire body of Koinonia Christian
Fellowship, for providing me with a safe place for worship, fellowship, service, and growth.
I am also thankful for my spiritual dad, David Oyedepo, for being a blessing and an
inspiration over the years.

The funding for this research was provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC) through a NSERC Postgraduate Scholarship, the
University of Waterloo through a President’s Graduate Scholarship, the Mprime research
network (formerly MITACS) through Research Assistantships, Research In Motion (RIM)
through a RIM Graduate Scholarship, and The Tor Project, Inc.

vi

Dedication

This dissertation is dedicated to Favour, Grace, Faith, and Joy.

vii

Table of Contents

List of Tables xiv

List of Figures xv

List of Queries xvii

1 Introduction 1

1.1 Preamble . 1

1.2 Open Problems . 4

1.3 Contributions . 5

1.4 Thesis Organization . 10

2 Preliminaries 12

2.1 Motivation . 12

2.2 Applications . 13

2.3 Single-server PIR Schemes . 15

2.4 Multi-server PIR Schemes . 16

2.4.1 Chor et al. Scheme [CGKS95] . 16

2.4.2 Goldberg Scheme [Gol07a] . 17

2.5 Coprocessor-Assisted PIR Schemes . 18

2.6 Relationship to other Cryptographic Primitives 19

2.7 Relation to Recent PhD Theses . 21

viii

3 Related Work 23

3.1 Multi-server and Single-server PIR . 23

3.2 Computational Practicality of PIR . 24

3.3 Data Access Models for PIR . 27

3.4 Large Database Access Privacy and Tradeoffs 29

3.5 Application Areas for PIR . 31

3.5.1 Pseudonymous Mailing System . 31

3.5.2 Location-Based Services and PIR 31

3.5.3 Electronic Commerce . 34

4 MSPIR: Revisiting The Computational Practicality of PIR 37

4.1 Introduction . 37

4.1.1 Preliminaries . 39

4.2 Efficient Single-server PIR (LPIR-A) . 40

4.2.1 Experiment . 41

4.2.2 Result . 41

4.3 Multi-server PIR . 43

4.3.1 First Scheme (MPIR-C) . 44

4.3.2 Second Scheme (MPIR-G) . 45

4.3.3 Response Time Measurement Experiment 45

4.4 Trivial Download vs. Non-Trivial PIR Compared 47

4.5 Conclusions . 50

5 SQLPIR: Privacy-preserving Queries over Relational Databases 51

5.1 Introduction . 51

5.2 Preliminaries . 54

5.2.1 Indexing . 54

5.3 Threat Model, Security and Assumptions 55

ix

5.3.1 Security and Adversary Capabilities 55

5.3.2 Data Size Assumptions . 56

5.3.3 Avoiding Server Collusion . 56

5.4 Hiding Sensitive Constants . 58

5.4.1 Overview . 58

5.4.2 Algorithm . 59

5.5 Discussion . 63

5.5.1 Parsing SQL Queries . 63

5.5.2 Indexing Subquery Results . 65

5.5.3 Database Servers . 65

5.5.4 Processing Specific Conditions . 65

5.6 Implementation and Microbenchmarks . 67

5.6.1 Implementation . 67

5.6.2 Experimental Setup . 67

5.6.3 Result Overview . 68

5.6.4 Microbenchmark Experiment . 69

5.6.5 Discussion . 71

5.7 Complex Query Evaluation . 72

5.7.1 Result Overview . 73

5.7.2 Experiments on Queries with Complex Conditions 73

5.7.3 Database Optimization Experiments 75

5.7.4 Improving Performance by Revealing Keyword Prefixes 78

5.7.5 Limitations . 78

5.8 Conclusion and Future Work . 79

x

6 TOPIR: Preserving Access Privacy Over Large Databases 80

6.1 Introduction . 80

6.2 Motivation . 82

6.2.1 High Computational Costs for Large Databases 82

6.2.2 Most Internet Users Have Low Network Bandwidth 82

6.2.3 Physical Limits of Hard Disks and Memory 83

6.2.4 “All-or-nothing” Access Privacy is Insufficient 83

6.3 Model . 84

6.4 Proposed Solution . 87

6.4.1 Defining Database Subsets . 87

6.4.2 Indexing Large Databases . 92

6.4.3 Privacy-Preserving Query Transformation 94

6.4.4 Privacy-Preserving Query Execution 96

6.5 Implementation and Evaluation . 96

6.5.1 Experimental Data Set . 96

6.5.2 Experimental Setup . 98

6.5.3 Classifying USPTO Patent Data . 98

6.5.4 Generating Indices . 99

6.5.5 Privacy-preserving Patent Database Query 102

6.5.6 Resistance to Correlation Attacks 103

6.6 Conclusions and Open Problems . 103

7 LBSPIR: Achieving Efficient Location Privacy 104

7.1 Introduction . 104

7.1.1 Requirements and Assumptions . 106

7.1.2 Our Results . 108

7.2 Our Tradeoff Solution . 108

7.2.1 Level of Privacy for the PIR Query 109

xi

7.2.2 Pre-processing and Location Cloaking 110

7.2.3 Variable Level of Privacy . 115

7.3 Security Analysis . 115

7.3.1 Collusion Prevention for PIR . 115

7.3.2 Subscription Service and Privacy 116

7.3.3 Privacy and Size of the Cloaking Region 117

7.3.4 Passive Attacks . 117

7.3.5 Active Attacks . 119

7.4 Experimental Evaluation . 120

7.4.1 Implementations . 120

7.4.2 Results and Discussion . 121

7.5 Conclusions . 125

8 PIR-Tor and PIR-Commerce: Real-World Applications of PIR 126

8.1 PIR-Tor: Scalable Anonymous Communication 126

8.1.1 Introduction . 127

8.1.2 Related Work . 129

8.1.3 PIR-Tor System Details . 130

8.1.4 Security and Privacy Implications (sketch) 133

8.1.5 Performance Evaluation . 135

8.1.6 Conclusion . 139

8.2 PIR-Commerce: Privacy-preserving e-Commerce 139

8.2.1 Introduction . 140

8.2.2 System Model, Threat Model, and Use Case 142

8.2.3 Constructions (sketch) . 143

8.2.4 Implementation and Evaluation . 145

8.2.5 Conclusion . 147

xii

9 Conclusions 148

References 151

APPENDICES 171

A Database Schema and Queries 172

B Client Calibration, Map Tracking, and User Privacy Preferences 177

C Level of Privacy Algorithm 179

xiii

List of Tables

4.1 Bandwidth estimates (in Mbps) for 1995 to 2010. 40

5.1 Experimental results for microbenchmark tests compared with those of Rear-
don et al. [RPG07] . 70

5.2 Measurements taken from executing five complex SQL queries with varying
requirements for privacy. 75

5.3 Effects of database optimization on query responsiveness, over the large data
set. 76

6.1 Measurements taken from executing keyword-based queries. 101

B.1 Modeling privacy preferences for SQL-based queries. 178

xiv

List of Figures

1.1 A concept map for this thesis showing contributions to the literature. . . . 6

4.1 Logarithmic scale plots for the lattice PIR scheme vs the trivial PIR in
different bandwidth scenarios. 42

4.2 Analytical and experimental measurements of the response time of Gold-
berg’s multi-server PIR scheme . 46

4.3 Comparing the response times of non-trivial PIR schemes vs the trivial PIR
over three current network bandwidths data. 48

4.4 Response time vs. bandwidth plot for the non-trivial PIR schemes and the
trivial PIR for a database that fit in RAM (16 GB) and that exceed RAM
(28 GB). 49

5.1 A sequence diagram for evaluating Alice’s private SQL query using PIR. . 60

5.2 Comparing microbenchmarking results for the large data set 71

5.3 Breakdown of result for the complex queries experiment for the large database. 76

5.4 Comparing this work to trivial download over a 9 Mbps connection 77

6.1 A model for preserving access privacy over large databases. 85

6.2 Index structure to support keyword-based retrieval over a large data set . . 93

6.3 A CDF plot of our sample data patent image file sizes. The x-axis is on a
log scale. 98

6.4 A CDF plot of our sample data showing the popularity of words in patents.
The x-axis is on a log scale. 100

xv

7.1 A Various-size-grid Hilbert Curve (VHC) mapping with uniform POI density
showing a user’s true position inside VHC cell. 112

7.2 Illustration of the relationship between geographical grid cells, VHC cells,
and POIs as stored in database rows. 113

7.3 Query roundtrip time and level of privacy for various numbers of POIs re-
turned per query. 122

7.4 Data transfer per server and level of privacy for various numbers of POIs
returned per query. 123

7.5 Query roundtrip time and level of privacy for various numbers of POIs re-
turned per query (Java). 124

8.1 Computation and data transfer costs for a single CPIR-Tor circuit (one PIR
query for exit node and another query for middle nodes). 135

8.2 3-server ITPIR cost. 137

8.3 Query execution time for Percy++ with and without PSPIR (k = 4, t = 2) 146

xvi

List of Queries

1 An Example Dynamic SQL Query . 53
2 Example query with a WHERE clause featuring sensitive constants. . . . 57
3 Example subquery from the query of Listing 2. 65
4 Example SQL query to be transformed. 89
5 Transformed SQL query with some substring of the constant hidden. . . . 89
6 Database schema for examples . 173
7 Database schema for microbenchmarks and experiments 174
8 Microbenchmark queries Q1–Q6 . 175
9 Experimental SQL queries CQ1–CQ5 with complex conditions 176

xvii

Chapter 1

Introduction

1.1 Preamble

The advent of Internet-accessible data sources is revolutionizing the way service providers
collect and use personal information about their users. The cleartext nature of queries
submitted to these data sources greatly simplifies how these providers capture information
about the interests, preferences, behaviours, and lifestyles of their users. While service
providers embrace this surreptitious profiling ability as a way of improving the effectiveness
and profitability of their online advertising efforts [Sol01], it provides new opportunities to
embarrass, disrepute, or cause financial loss for the users so targeted and profiled.

This thesis deals with the problem of protecting sensitive information that may be
contained in the queries that users submit to online databases. Such databases are found
in several application domains, including location-based services, online behavioural ad-
vertising, search engines, online patent searches, real-time stock quotes, Internet domain
registration and so on [Aso04, GKK+08, Jue01, SJ05]. We consider queries expressed in
various formats, such as the indices or server’s memory addresses of the data of interest to
the user, search keywords, or structured queries expressed in some language, such as SQL.
The main challenge is how to keep the sensitive information contained in the queries confi-
dential, even without undermining the database server’s ability to return correct responses.
In other words, we are interested in preserving the user’s access privacy — keeping both
the queries and the responses to queries confidential from the database server and from
other third parties. We differentiate access privacy from anonymity. The latter is about
keeping the identity of a user from being disclosed. It usually involves a form of obfuscation
of the link between a query and a user’s digital identity, such as an IP address. Ensuring

1

a user remains anonymous does not guarantee access privacy for her queries. The mere
knowledge of a query’s content (even without a link to any user) is often enough to violate
access privacy. For instance, a search through a patent database is required for every new
patent to establish originality. An inventor or the filling attorney might hide their identity
behind an anonymous overlay network like Tor, but that does not prevent a curious or
malicious database administrator from learning the keywords used for the search (i.e., the
query content). A malicious patent database administrator can preemptively file a patent
with those keywords even before the search is complete.

The protection of the content of queries from online databases is important to the future
of digital privacy on the Internet. The subject of online privacy has been attracting much
interest in recent years, especially as more users are beginning to care about their privacy.
In the UK for example, some citizens initially boycotted the 2011 UK census because of
privacy worries.1 This increasing privacy awareness is even prompting legislators in some
countries to demand from service providers a more privacy-friendly Internet experience for
their citizens. In Canada, there was a recent investigation of whether Facebook is breaching
Canada’s privacy law, with respect to how they share personal information of Canadian
Facebook users.2 In the U.S., the Energy and Commerce Joint Subcommittee of the U.S.
House of Representatives held a joint hearing on the implications of location-based services
on the privacy of consumers.3 These are welcomed developments and in stark contrast to
the practice of Internet censorship and surveillance that legislators in some nations have
been known to promote. Thus, the problem addressed by this thesis can only grow in
relevance in the future.

We focus on the technique of private information retrieval (PIR) [CGKS95] to realize
our goal of preserving access privacy for Internet users. PIR provides a means for retrieving
data from a database without the database (or database administrator) being able to learn
any information about which particular item was retrieved. A trivial solution for the PIR
problem is to transfer the entire database to the client, who then retrieves the items of
interest from the downloaded database. Although the trivial solution offers perfect privacy
protection, the communication overhead is impractical for large databases. PIR schemes
are therefore required to have sublinear communication complexity.

PIR schemes are classified in terms of their privacy guarantees, the number of servers
required for the protection they provide, and whether or not they require specialized hard-
ware. The privacy guarantee of PIR schemes is either information theoretic, computa-

1http://www.dw-world.de/dw/article/0,,15060513,00.html
2http://www.priv.gc.ca/media/nr-c/2009/nr-c_090827_e.cfm
3http://democrats.energycommerce.house.gov/index.php?q=hearing/

the-collection-and-use-of-location-information-for-commercial-purposes

2

http://www.dw-world.de/dw/article/0,,15060513,00.html
http://www.priv.gc.ca/media/nr-c/2009/nr-c_090827_e.cfm
http://democrats.energycommerce.house.gov/index.php?q=hearing/the-collection-and-use-of-location-information-for-commercial-purposes
http://democrats.energycommerce.house.gov/index.php?q=hearing/the-collection-and-use-of-location-information-for-commercial-purposes

tional, or a mix of both. Information-theoretic PIR (ITPIR) schemes guarantee query
privacy irrespective of the computational capabilities of the database servers answering
the user’s query. In introducing the notion of PIR in 1995, Chor et al. [CGKS95] proved
that the trivial scheme is optimal for information-theoretic privacy protection with a single
server [CGKS95,CKGS98]. In other words, any ITPIR with sublinear communication com-
plexity necessarily requires two or more non-colluding servers to participate in the query.
Thus, all ITPIR schemes are multi-server PIR schemes; that is, the user needs to query
multiple servers in parallel and combine their responses to obtain the result for her query.
Computational PIR (CPIR) schemes, on the other hand, assume a computationally limited
database server incapable of breaking a hard computational problem, such as the difficulty
of factoring large integers. Therefore, all existing single-server PIR schemes are CPIR
schemes. The non-collusion requirement of ITPIR is removed for CPIR, but at some cost
to efficiency. Hardware-assisted PIR schemes require the support of a secure coprocessor
(SC) at the database server host, which serves as the client proxy on the server hardware.
The memory and computing space of the SC is isolated and protected from those of the
host. We note that standard Trusted Platform Modules (TPMs) can be used to reduce
the amount of computation and the number of rounds for interactive cryptographic proto-
cols [GT08, TV09], including PIR schemes. Nevertheless, this thesis focus mainly on PIR
schemes that do not require special hardware assistance.

Every PIR scheme consists of three basic algorithms: query generation, response en-
coding, and response decoding. For a given n-bit database X, organized into r b-bit blocks,
a user intending to hide his access pattern to database block Xi uses the query generation
algorithm to encode the input index i before sending it to the database. The database then
uses the response encoding algorithm to combine each database entry Xj, j ∈ {1, ..., r}
with the query and returns an encoded response to the user. Finally, the user decodes the
response received using the response decoding algorithm. In the multi-server information-
theoretic setting where we assume two or more non-colluding database replicas, the user
must interact with multiple replicas in a manner similar to the above. The combined com-
putation cost of the client-side algorithms of query generation and response decoding is
generally much cheaper than the server-side algorithm of response encoding. A PIR scheme
is correct if it always returns the correct block Xi, private if it leaks no information to the
database about i and Xi, and non-trivial if its communication complexity is sublinear in
n [Cre06]. Symmetric PIR (SPIR) schemes have the additional property that the user only
learns the block Xi, and learns no information about other database blocks Xj, for all
j 6= i. In other words, SPIR schemes provide database privacy in addition to user privacy.

3

1.2 Open Problems

Most of the research efforts in PIR have been directed at lowering the number of bits
transferred between the client and the server(s) — lowering the communication complexity
bounds — because network bandwidth is considered to be the most expensive resource that
should be minimized [Amb97, BS03, CGKS95, CKGS98, Efr09, GR05, KO97, Lip05, Yek08].
Some other bodies of work [Aso04,AF02,BS03,BS07,GIKM98a,Gol07a] have additionally
addressed such problems as reducing server-side computational overheads via amortization
and preprocessing, and improving query robustness, amongst others.

Given the importance of the PIR construction, and in spite of the progress made to-
wards minimizing the communication in existing PIR schemes for nearly two decades, it
has been difficult to apply PIR to solve real-world privacy problems. It has even been
argued [SC07] that no single-server computational PIR scheme is as efficient as the trivial
PIR scheme. While a few recent efforts have focused on the important problem of reducing
PIR’s computational costs, we argue in this thesis that other shortcomings persist with
the current state-of-the-art approach to research and development aimed at making PIR
more practical. Consequently, this thesis adopts a more detailed approach to address the
main challenges hindering existing PIR schemes from being practical. We look beyond the
existing literature and propose an extended definition of practical private information re-
trieval, which additionally considers other dimensions to the problem of making PIR more
practical.

Definition 1 A private information retrieval scheme is practical iff it satisfies the follow-
ing five properties:

Property 1 Reasonable communication. The number of bits transferred between the client
and the server must be sublinear in the database size n [CGKS95]. Most existing PIR
schemes have practical communication complexity that is sublinear in the database
size.

Property 2 Fast computation. It has been shown that an amount of computation linear in
the database size on the server side is unavoidable for a typical PIR scheme [BIM00,
BIM04], since each query for block Xi must necessarily process all database blocks Xj,
j ∈ {1, ..., r}. Constructions that use cheap operations (such as XORs) [CGKS95,
Gol07a] instead of modular multiplications, linear algebra [AMG07,CAMG08] instead
of number theory, offline pre-computation [BIM00,BIM04] and amortization of com-
putation costs over multiple queries [BIM00, IKOS04] offer improvements. Besides,

4

the increasing pervasiveness of resource-constrained devices, which some see as the
computing platform of the future [ALD08], and the growing awareness of users for
privacy justifies the need for computationally efficient PIR schemes that are practical
on such devices. In particular, resource-constrained hardware such as smartphones
have limited processing power, memory, and wireless bandwidth. The model of PIR,
where the majority of the computation is performed on the server side, and where the
communication is minimized, fits the architecture of these devices very well. There-
fore, any progress made in making PIR more practical is particularly advantageous
for smartphone applications.

Property 3 Flexible data access model. It is much more convenient to access data us-
ing expressive access models, such as with SQL and keywords over tree-based data
structures, than with indices over single bits or blocks of bits. These advanced data
models enable the integration of PIR schemes with today’s programming languages
and databases.

Property 4 Transparent tradeoffs between privacy and efficiency. The ability to perform
tradeoffs between privacy and efficiency is an added convenience for users. The users
should not be forced to settle for the current “all-or-nothing” approach to privacy with
PIR schemes. There should be some middle ground for obtaining reasonable privacy
with the available computation and communication capability.

Property 5 Model solutions to real-world privacy problems. PIR schemes should be read-
ily applicable to solving real-world privacy problems. Developers of privacy-preserving
systems should be provided access to APIs and model applications that use the PIR
primitive.

Thesis Statement. It is possible to build systems for protecting access privacy based on
private information retrieval schemes that satisfy Definition 1.

1.3 Contributions

Our contributions cover most of the properties that we hypothesize could make PIR more
practical (Definition 1). We illustrate with a concept map of the thesis in Figure 1.1. The
main topic is at the root of the tree, and the main areas as described in our five properties
are at the second level. We show how our main contributions relate to each of the main
areas. We note that there has been extensive research on reducing the communication

5

Practical Private
Information Retrieval

Data
Transfer

MSPIR SQLPIR TOPIR LBSPIR PIR-Tor PIR-Commerce

Computation Data Access Tradeoffs Model
Applications

Figure 1.1: A concept map for this thesis showing contributions to the literature.

complexity of PIR schemes (property 1); our contributions cover the remaining properties.
We made contributions to research and development in the areas of the computational
practicality of non-trivial PIR schemes (MSPIR) [OG11] (property 2), a model of data
access for PIR with SQL (SQLPIR) [OG10b] (property 3), a user-friendly approach to trade
off privacy for computational performance for PIR schemes (TOPIR) [OG10a] (property
4), and application of the PIR primitive to solve the location privacy problem for resource-
constrained devices (LBSPIR) [OTGH10], addressing a scalability problem for the Tor
network (PIR-Tor) [MOT+11], and privacy-preserving electronic commerce to enable the
sale of digital goods (PIR-Commerce) [HOG11] (property 5).

We summarize the main contributions of this thesis as follows:

• MSPIR: Revisiting the computational practicality of private information
retrieval. We reexamine the computational practicality of PIR following the earlier
work by Sion and Carbunar [SC07], which concluded that no existing PIR construc-
tion is as efficient as the server transferring its entire database to the client (i.e., trivial
PIR). While often cited as evidence that PIR is impractical, Sion and Carbunar did
not examine multi-server information-theoretic PIR schemes, and single-server PIR
schemes that do not rely heavily on number theory, such as lattice-based schemes. We
analytically and experimentally studied the single-server lattice-based PIR scheme
by Aguilar-Melchor and Gaborit [AMG07], which has recently been introduced, as

6

well as two multi-server information-theoretic PIR schemes by Chor et al. [CGKS95]
and by Goldberg [Gol07a]. We find the end-to-end response times of these schemes to
be one to three orders of magnitude (10–1000 times) smaller than the trivial scheme
for realistic computation powers and network bandwidths. Specifically, our results
suggest (i) single-server PIR schemes based on modular multiplication cannot be
faster than trivially downloading the entire database, (ii) single-server PIR schemes
based on lattices are an order of magnitude (10 times) faster, (iii) multi-server PIR
schemes are two to three orders of magnitude (100–1000 times) faster. Our results
extend and clarify the conclusions of Sion and Carbunar for multi-server PIR schemes
and single-server PIR schemes that do not rely heavily on number theory. We believe
that many real-world situations that require privacy protection can obtain some in-
sight from our work in deciding whether to use existing PIR schemes or the trivial
download solution, based on their computing and networking constraints (property 2
of Definition 1).

• SQLPIR: Private information retrieval from relational databases. We pre-
sent a novel approach that extends the rudimentary index-based retrieval with PIR
to SQL-based retrieval. The approach shows how to retrieve data from a relational
database while keeping the sensitive information in the predicates of the retrieval
SQL query from being leaked to the PIR server and relational database system. Ex-
perimental results and microbenchmarking tests show our approach incurs reasonable
storage overhead for the added privacy benefit, leverages database optimization op-
portunities to yield fewer PIR requests, and performs between 7 and 480 times faster
than previous work.

We believe this work addresses an important obstacle to deploying successful PIR-
based systems, which is the development of a more general data access model for
PIR from a relational database (property 3 of Definition 1). Prior PIR queries are
specified in terms of database addresses [BS07, CGKS95, KO97] or by textual key-
words [CGN97], and are therefore not suitable for retrieval from relational databases.
We embed PIR schemes into the well-established context and organization of rela-
tional database systems, thereby making SQL relevant to PIR. This work also shows
how to apply PIR schemes in realistic relational database scenarios to achieve both
efficiency and query expressiveness. Since relational databases and SQL are the most
influential of all database models and query languages, we believe that many realistic
systems needing query privacy protection will find this result quite useful.

• TOPIR: Large database access privacy and tradeoffs. PIR schemes are typi-
cally designed to require PIR servers to compute on every item in the PIR database.

7

Doing this prevents the server from identifying the particular data item that is of
interest to the user. However, such linear computational cost is impractical for large
databases of several hundreds of gigabytes. This is irrespective of the negligible-
ness of the per-block computation cost, since the cost of disk/memory access alone
(i.e., without computation) will overwhelm the server’s capacity for sufficiently large
databases. We develop an approach for large database access privacy to overcome
this limitation of current PIR schemes. Our approach allows users to query a large
database by statically specifying or dynamically defining database portions possibly
with highly diverse domains of values, thereby minimizing information leakage about
the data items sought by user queries. Our approach requires minimal user interven-
tion and allows users to accompany their queries with a description of their privacy
preferences and performance tolerances, and transform these inputs to an alternative
query that can satisfy user constraints when run. Among the techniques explored
are offline data classification, constrained privacy-preserving query transformations,
and PIR over index structures much smaller than the databases. We evaluated the
system using patent data made available by the United States Patent and Trademark
Office through Google Patent; however, the approach has a much wider application
in making access privacy obtainable on the Internet. Our results show how privacy
and computational efficiency interplay in a large database query scenario, based on
user-specified preferences (property 4 of Definition 1). It also shows how to adapt
existing PIR schemes with the flexibility needed to meet the varying privacy needs of
users. For example, some users may be comfortable with revealing the shape or tex-
tual content of their queries to the database, but not the sensitive constants in their
queries; on the other hand, some other users may prefer better privacy protection
that hides both the shape and constants of their queries.

We also demonstrate several results applying PIR to real-world problems to preserve
access privacy (mostly property 5 of Definition 1, but others as well):

• LBSPIR: Private information retrieval for location-based services (LBS).
The increasing popularity of mobile devices with positioning technology such as GPS
or cell tower triangulation is fueling the growth of location-based services (LBS).
Some examples of commercial LBS are Foursquare, Places, SCVNGR, and Loopt.
We consider the problem of providing location privacy as mobile smartphone users
search for nearby points of interest (POIs) from a location-based service in a way
that preserves the privacy of the users’ locations. We propose a novel PIR-based
hybrid LBS technique [OTGH10] that achieves a good compromise between location

8

privacy and computational efficiency for resource-constrained devices, such as smart-
phones. Specifically, our approach uses a variable-sized cloaking region, which is a
representation of a geographical city, province, or state, for greater location privacy
than the traditional approach of a single cloaking region, while at the same time
decreasing wireless data traffic usage from an amount proportional to the size of the
cloaking region to a small fraction of that. Our proposal does not require the use
of a trusted third-party component, and allows the user to choose various levels of
privacy dynamically. We evaluated our approach with a proof-of-concept implemen-
tation over a commercial-grade database of points of interest. We also measured
the performance of our query technique on a smartphone and wireless network. The
results show that users can achieve a good compromise between privacy and com-
putational efficiency with our technique, unlike all other existing LBS proposals for
nearby point of interest search.

• PIR-Tor: Scalable anonymous communication using private information
retrieval. Tor is a worldwide overlay network of servers, or nodes, that allows jour-
nalists, law enforcement workers, humanitarian workers, privacy-concerned citizens,
and others to communicate over the Internet without disclosing their IP addresses.
There are currently about 2000 nodes and 250,000 users [Tor11a, DMS04a]. The
current Tor network requires all users to maintain an up-to-date list of all available
nodes in the network before constructing a circuit for anonymous communication.
As a result, Tor does not scale well. Current proposals for making Tor scale better
rely on a peer-to-peer (P2P) approach, which has unfortunately provided new av-
enues to compromise anonymity. We propose PIR-Tor as a scalable architecture for
the Tor network, whereby users no longer need to maintain a list of available nodes
in order to construct circuits. In PIR-Tor, a user obtains information about only a
few routers using PIR techniques, thereby preventing compromised directory servers
from learning the user’s choices and reducing the overall communication by at least
an order of magnitude. Experimental results show that reasonable parameters of
PIR-Tor maintain a level of security that is equivalent to that of the current Tor
network, while allowing Tor to scale by two orders of magnitude.

To the best of our knowledge, this is the first time PIR is applied to preserve access
privacy for a real-world system. PIR minimizes bandwidth usage in PIR-Tor without
compromising privacy guarantees.

• PIR-Commerce: Practical private information retrieval for electronic co-
mmerce. We provide an extension of Goldberg’s multi-server information theoretic
PIR scheme [Gol07a] to support privacy-preserving online sales of digital goods. Our

9

motivating examples are a pay-per-download music store [AIR01] where users must
pay for each song they download, a pay-per-retrieval DNA database [CDN09], a stock-
information database [GIKM98b], an e-book store, or a patent database [Aso04]. We
first extend Goldberg’s PIR scheme to a symmetric private information retrieval
(SPIR) scheme to prevent a dishonest user from obtaining additional information
beyond the database item sought, such as the record at index j 6= i, or the exclusive-
or of some subset of records in the database [GIKM98b]. Afterwards, we extend
the SPIR construction to a priced symmetric private information retrieval (PSPIR)
scheme, which supports a tiered pricing model in which users purchase records from
the PIR database in a privacy-preserving manner, and according to their price tier; for
example, non-members may pay at a regular price, while members pay a discounted
rate to purchase the same records. Our approach maintains query privacy, such that
the database servers do not learn any information about the user’s price tier, the
index of the record purchased, the price paid, or the user’s remaining balance. Via a
simple extension, our construction allows the database to support access control at
record-level granularity, which we believe to be of independent theoretical interest.
We also provide a practical implementation and evaluate the performance of our
constructions empirically.

Current priced and access-control-capable constructions lack the right combination
of features necessary for their deployment in a practical setting. Some of these
features are tiered pricing, sublinear communication complexity, access control, and
availability of practical implementations. Our schemes improve upon a number of
related constructions to PIR in the literature.

1.4 Thesis Organization

Chapter 2 begins with some motivations that users, service providers and privacy legis-
lators have for using PIR. We then give some motivating application examples requiring
practical PIR schemes, and describe various types of PIR schemes and establish their re-
lationship with other cryptographic primitives. Chapter 3 discusses previous work related
to the research described in this thesis. In particular, we cover topics like the compu-
tational practicality of PIR schemes, the models for data access with PIR, attempts at
preserving access privacy over large databases, and application areas where attempts have
been made to apply PIR for pseudonymous communication, location-based services, and
electronic commerce. We cover some previous research activities in each area and discuss
our contributions to research and development.

10

Chapter 4 describes how we revisited the computational practicality of PIR, where our
results show that some non-trivial PIR schemes are more efficient than trivially down-
loading the PIR database, while Chapter 5 presents our model of data access for PIR with
SQL. Afterwards, Chapter 6 describes our approach for preserving access privacy over large
databases using PIR.

The next two chapters cover how we apply PIR to three different problem domains.
First, we apply PIR to achieve location privacy when searching for nearby points of interest
in Chapter 7. Then, we utilize PIR in Chapter 8 to solve a scalability problem in the Tor
network, and we extend Goldberg’s PIR construction to support electronic commerce. We
end the thesis in Chapter 9 with conclusions and some more opportunities for further
research.

11

Chapter 2

Preliminaries

2.1 Motivation

Research into how to make PIR more practical offers an attractive value proposition and
benefits to users of privacy-preserving systems, service providers, and privacy legislators.

Users are increasingly aware of the problem of privacy and the need to maintain privacy
in their online activities. The growing awareness is partly due to increased dependence on
the Internet for performing daily activities — including online banking, microblogging,
and social networking — and partly because of the rising trend of online privacy invasion.
Privacy-conscious users will accept a service built on PIR for query privacy protection
because no currently deployed security or privacy mechanism offers the needed protection;
they will likely be willing to trade off query performance for query privacy and possibly
even pay to subscribe to such a service.

Similarly, service providers may adopt such a system because of its potential for revenue
generation through subscriptions and ad displays. As more Internet users value privacy,
most online businesses would be motivated to embrace privacy-preserving technologies that
can improve their competitiveness to win this growing user population. Since the protection
of a user’s identity is not a problem addressed by PIR, our proposal will not disable existing
service models relying on service providers being able to identify a user for the purpose of
targeted ads. In other words, protection of query privacy will provide additional revenue
generation opportunities for these service providers, while still allowing for the utilization
of information collected through other means to send targeted ads to the users. Thus, users
and service providers have plausible incentives to use a PIR-based solution for maintaining

12

query privacy. We even anticipate that future targeted online advertising technologies
would be enabled using techniques similar to PIR [GCF11,Jue01,TNB+10].

In addition, the very existence of a practical privacy-preserving database query tech-
nique could be enough to persuade privacy legislators that it is reasonable to demand
that certain sorts of databases enforce privacy policies, since it is possible to deploy these
techniques without severely limiting the utility of such databases.

2.2 Applications

The following interesting basic scenario motivates an application of PIR for user privacy
protection [SJ05]:

Picture the following scenario. Alice is looking for gold in California. What
Alice does is look for a place with a little gold and follow the trace. Now, Alice
wants to find gold in a place where no mining patent has been awarded, but
many patents have been awarded in California during the gold rush. What
Alice does is to walk around California with a GPS and a notebook computer.
Whenever she finds a trace of gold she follows it querying if any patent has
been awarded in that location. If she finds a trace of gold in a piece of land
with no issued patent she can request the patent and start mining for gold.

The problem is that she is worried that Bob’s Mining Patents Inc., the
service she queries the patents from, might cheat on her. Because Bob knows
she is looking for gold in California (Alice said so when signing up for Bob’s
service), he knows that, if she queries from some location, then there is gold
there. So, if she queries a location and there is no patent awarded, Bob may
run to the patent office and get the mining patent for that location.

Depending on privacy and economic constraints, a few solutions come to
mind. Alice might buy from Bob the whole database for California. Alice
then can make all the queries to her own database, and Bob will never find
out where Alice is looking for gold. But this might be very expensive, because
Bob charges per query; what he charges for the whole database will probably
be more than what Alice is willing to pay. Alice can also, with each query,
perform a collection of fake queries so that Bob can’t figure out which is the
real query (this leaks information unless she queries the whole database!), but
that still makes Alice pay for more queries than she would like.

13

Private information retrieval schemes have applications in several problem domains
including:

1. Patent databases: The filing process of a new invention necessarily requires the inven-
tor to search the patent database to establish that no previous patent has a significant
overlap with her invention. She would like to perform the search in a manner that
does not leave her search terms on the query log of the patent database. Current
patent database systems allow a curious or malicious database administrator to infer
the user’s interest either directly from the query log or in real time by following the
query as it executes.

2. Real-time stock quotes: An investor interested in a particular stock would often need
to monitor the stock price and market volume to know when to make a purchase
decision. The investor might prefer a monitoring means that keeps her stock of
interest confidential by not revealing any information about the stock.

3. DNA databases: Consider a pharmaceutical organization interested in purchasing in-
formation about particular genome sequences from a public DNA database [CDN10].
They may need the information to complete the manufacture of a new medication
that is a closely kept trade secret.

4. Registration of Internet domain names: The current process for the registration of
Internet domain names requires a user to first disclose the name for the new domain
to an Internet domain registrar. However, the registrar could subsequently use this
inside information to preemptively register the new domain and thereby deprive the
user of the registration privilege for that domain. This practice is known as front
running [ICA08]. The registrar is motivated to engage in front running because of the
revenue to be derived from reselling the domain at an inflated price, and from placing
ads on the domain’s landing page. With PIR, users can search for new domain names
without any fear of divulging the domain names to the registrar.

5. Online behavioural analysis for ad networks: Consider the challenge faced by ad net-
works when they serve ads to users based on online behavioural data aggregated
about users from multiple websites. For example, if a user frequently visits some
sports websites, then the user is targeted with ads about sports products. In a
privacy-preserving situation, it is important to be able to target users with ads with-
out the ad network being aware of the interests of or ads that are served to the user.
With PIR, the user’s ad client could privately retrieve ads based on the profiled online

14

behavioural data that is cached locally. The billing of content providers for ads dis-
played to users can also be performed in a privacy-preserving manner, such that users’
interests are unknown to the ad network (see [BRT11,GCF11,GF10,Jue01,TNB+10]).

In all of the above application scenarios, the problem is that users find it unacceptable
to disclose the sensitive information in the queries they send to the servers; they demand
confidentiality for their queries, both from third parties and from the server holding the
data of interest. Certainly, the abundance of potential applications for PIR is a justification
for finding a means to make existing and new constructions more practical.

2.3 Single-server PIR Schemes

Several single-server PIR schemes followed the first single-database scheme by Kushile-
vitz and Ostrovsky [KO97]. Each of these later schemes made some intractability as-
sumption based on the cryptographic primitive used. These include schemes based on
group-homomorphic encryption [Ste98], length-flexible additive homomorphic public-key
cryptosystems [Lip05], Φ-Hiding Assumption (ΦHA) trapdoor predicates (the hardness of
deciding if a small prime is a factor of the totient of a composite integer of unknown fac-
torization) [CMS99], and more recently, a lattice-based scheme by Aguilar-Melchor and
Gaborit [AMG07], which is based on the hardness of a differential hidden lattice problem.

For surveys on single-server PIR schemes, the reader is referred to [AMD06, OS07b].
In spite of the convenience of fielding a single PIR database, the main problem of most
single-server PIR schemes is their costly computations (modular multiplications or expo-
nentiations), the number of which is linear in the database size. The state of the art in
terms of the performance measure of computational complexity is the lattice-based scheme
by Aguilar-Melchor and Gaborit [AMG07]. The authors introduced and based the security
of the scheme on the differential hidden lattice problem, which they show is related to NP-
complete coding theory problems [Wie06]. There are two main contributions of this work
by Aguilar-Melchor and Gaborit. First, it shows that their scheme exhibits one order of
magnitude speedup by using Graphics Processing Units (GPUs) instead of CPUs to do the
bulk of the computation, and claims that other schemes will see the same speedup. Sec-
ond, it shows that in GPU-based scenarios, linear algebra based single-server PIR schemes
can be more efficient than trivial download; this attempts to dispel the question posed by
Sion and Carbunar [SC07] with respect to the practicality of single-server PIR schemes.
In comparison to other single-server PIR schemes [GR05,Lip05], this scheme gives a much
better server-side processing rate both on CPUs and GPUs. A roundtrip response rate of

15

94 s/GB was measured in [OG11], which is far more practical than the 3.3×105 s/GB rate
from the Kushilevitz and Ostrovsky scheme [KO97]. Aguilar-Melchor et al. [AMCG+08]
demonstrated a further 10 times speedup in the server-side processing rate by running the
PIR scheme on commodity GPUs, instead of on CPUs.

We present a note of caution, however, that although this PIR scheme resists known
lattice-based attacks, it is still relatively new, and its security is not as well understood as
those of the PIR schemes based on number theory.

2.4 Multi-server PIR Schemes

Gasarch [Gas04] provides an older survey of PIR schemes. A more recent primer on PIR by
Beimel is also available [Bei08]. We provide an overview of two multi-server information-
theoretic PIR schemes, from Chor et al. [CGKS95] and from Goldberg [Gol07a]. The Chor
et al. [CGKS95] scheme is comparatively simpler, being the first PIR protocol invented.
The Goldberg [Gol07a] scheme is slightly more elaborate and has available source code,
which is useful for performance measurements [OG10b, OG11, OTGH10]. The implemen-
tation of [Gol07a], known as Percy++ [Gol07b], is an open-source project on SourceForge.

2.4.1 Chor et al. Scheme [CGKS95]

This description is based on the simple O(
√
n) protocol by Chor et al. The setup consists

of ` servers each holding a copy of the database. The database D in each server is treated
as an r× b matrix of bits (i.e., elements of GF (2)), where the kth row of D is the kth block
of the database. During query generation, the client interested in block i of the database
picks ` random bitstrings ρ1, . . . , ρ`, each of length r, such that ρ1 ⊕ · · · ⊕ ρ` = ei, where
ei is the string of length r which is 0 everywhere except at position i, where it is 1. The
client sends ρj to server j for each j.

During response encoding each server j computes Rj = ρj · D, which is the XOR of
those blocks k in the database for which the kth bit of ρj is 1, and sends Rj back to the
client.

Finally, during response decoding, the client computes R1⊕ · · ·⊕R` = (ρ1 ⊕ · · · ⊕ ρ`) ·
D = ei ·D, which is the ith block of the database. In the above, we ignore ` in the O(

√
n),

because it is small.

16

2.4.2 Goldberg Scheme [Gol07a]

Goldberg’s multi-server PIR scheme is similar, but more complex than the Chor et al.
scheme. The similarity lies in its use of simple XOR operations to accomplish most of its
server-side computations. However, it uses Shamir secret sharing [Sha79] to split the user’s
query vector ei into ` shares which are then transmitted to the servers. The server database
D is treated as an r × s matrix of w-bit words (i.e., elements of GF (2w)), where again r
is the number of blocks and s is the number of w-bit words per block. In addition, the
elements of ei, ρj, and Rj are elements of GF (2w), instead of single bits. These changes are
necessary because the protocol addresses query robustness for Byzantine servers that may
respond incorrectly or not respond at all. For simplicity, this thesis will only discuss honest
servers, which respond correctly. We choose w = 8 to simplify the cost of computations; in
GF (28), elements are bytes, additions are XOR operations, and multiplications are lookup
operations into a 64 KB table; all of these operations are very fast. These are the choices
made by the open-source implementation of this protocol [Gol07b].

During query generation, the client encodes a query for database block i by first uni-
formly choosing ` random distinct non-zero indices α1, . . . , α` from GF (28). Next, the
client chooses r polynomials of degree t, one for each block in D. The coefficients of the
non-constant terms for polynomial fj are random elements of GF (28), while those for
the constant terms should be 1 if i = j and 0 otherwise. Afterwards, the client hands
out to each server j a vector ρj formed from evaluating all r polynomials at αj; that is,
ρj = [f1(αj), . . . , fr(αj)]. (Note that each fk(αj) is an element of GF (28) — a single byte.)

Response encoding and decoding: In a manner similar to the Chor et al. scheme,
each server computes a response vector Rj = ρj · D, where each of the s elements of
vector Rj = [rj1, . . . , rjs] is also a single byte. The servers send Rj to the client and
the client computes the query result using Lagrange interpolation, which also amounts to
simple arithmetic in GF (28). Evaluating the resulting polynomial at a point x = 0 gives
the desired database block. In particular, the client recieves [r11, . . . , r1s], . . . , [r`1, . . . , r`s]
from the ` servers. The database block i is computed by evaluating a vector of s unique
polynomials, each of degree t, at a point x = 0; i.e., [φ1(0), . . . , φs(0)]. The client computes
each unique polynomial φi from the ` points (α1, r1i), (α2, r2i), . . . , (α`, r`i) using Lagrange
interpolation.

Goldberg’s PIR scheme [Gol07a] provides good support for query robustness against
colluding servers. It provides a t-private v-Byzantine-robust k-out-of-` scheme for 0 < t <
k ≤ ` and v < k−b

√
ktc. In other words, users submit their queries to at least k out of the

` servers, and the system can tolerate up to v servers being Byzantine (i.e., responding in-
correctly) without inhibiting the ability of users to retrieve the correct record, and t servers

17

colluding without compromising users’ query privacy. The scheme also optionally supports
τ -independence [GIKM98a], a property that prevents the database servers from learning
the contents of the database with information-theoretic protection against coalitions of up
to τ servers.

2.5 Coprocessor-Assisted PIR Schemes

Coprocessor-assisted PIR utilizes a secure coprocessor (SC) at the server-side host [AKS08,
Hen07] to create a computing space that is protected from outside adversaries and the host
itself. There are two main approaches for coprocessor-assisted PIR schemes. In earlier
schemes [SS01] where the focus was on reducing communication costs, the trusted hard-
ware processes each query by reading every data item in the database and returning the
requested item to the user. The server is oblivious of the particular item returned because
it has no access to the private memory and computation of the trusted hardware. More
recent schemes [IS04, IS05, WDDB06] facilitate faster online queries by performing most
of the server-side reading and computations offline. However, depending on the amount
of internal memory of the secure coprocessor, the external database requires reshuffling
after every m queries (m� n). These latter schemes all have optimal O(log n) communi-
cation complexity, O(1) online computational complexity and O(n) offline computational
complexity.

Asonov et al. [Aso04, AF02] propose a relaxation of the strong privacy requirement of
PIR to reduce preprocessing complexity; their PIR also requires the support of a secure
coprocessor (SC). This relaxation intends to replace the strong privacy requirement of no
information about the user query being revealed to a weaker privacy notion of not much
information about the user query being revealed. In order words, their construction offers
repudiation instead of privacy. The user can deny querying a particular block and no one
can prove the user wrong, even with the cooperation of the database. They gave the name
Repudiative Information Retrieval (RIR) to this form of PIR with relaxed privacy. Their
approach, however, reduces computation from Θ(n) to Θ(

√
n).

The major drawbacks of these schemes are the requirements for specialized tamperproof
hardware and the computationally expensive periodic reshuffling operation [AKS08, IS05].
The only SC scheme in the literature that does not require periodic reshuffling is recently
proposed by Wang et al. [WWP10]. Their scheme works in two stages: offline shuffling and
online retrieving. In the offline shuffling stage, the database records are doubly encrypted
and permuted, while in the online retrieving stage, the SC reads two records from the

18

shuffled database and writes two records back to it. Reshuffling of the database is altogether
avoided using the double encryption and twin-writing operations.

The state of the art for coprocessor-assisted PIR is the single-server PIR scheme by
Williams and Sion [WS08], which offers an order of magnitude improvement in computa-
tional performance. This particular work describes how to realize single-server PIR using
an efficient oblivious RAM protocol and a secure coprocessor. They achieved improve-
ments in the communication and computational complexity bounds of hardware-assisted
PIR to O(log2 n) per query, given that a small amount of temporary secure storage, on the
order of Θ(

√
n), is available. Lu and Ostrovsky [LO11] recently introduced the concept

of multi-server oblivious RAM, which makes a non-collusion assumption like multi-server
PIR, but only provides computational privacy (unlike multi-server information theoretic
PIR). They improved over existing ORAM protocols by eliminating the usually expensive
oblivious sorting step of earlier protocols.

2.6 Relationship to other Cryptographic Primitives

Basic PIR schemes place no restriction on information leaked about other items in the
database, which are not of interest to the user. However, an extension of PIR, known as
Symmetric PIR (SPIR) [MS00], adds that restriction by insisting that a user learns only
the result of her query. The restriction is crucial in situations where the database privacy
is equally of concern.

Single-server SPIR schemes are closely related to several other cryptographic primitives,
including the notion of oblivious transfer (OT) [NP99, NP01]. In OT, a database (or
sender) transmits some of its items to a user (or chooser), in a manner that preserves their
mutual privacy. The database has assurance that the user does not learn any information
beyond what he or she is entitled to, and the user has assurance that the database is
oblivious of his or her choice. A 1-out-of-2 OT scheme allows a database X consisting of
two records and a user holding an index i ∈ {0, 1} to run a protocol that results in the
user learning the ith record and no information the (1 − i)th record, while the database
learns nothing about i. Unlike PIR and SPIR, however, OT schemes have no sublinear
communication requirements. Brassard et al. [BCR86] considered the more general notion
of 1-out-of-n OT, where the database holds n records and the user learns the record at
index i, and learns nothing about the remaining n− 1 records [OS07b]; the database still
learns nothing about i. We can refer to OT and SPIR as generalizations of PIR, but they
require extra computational cost. In addition, every 1-out-of-n OT scheme with a sublinear
communication complexity is an SPIR scheme.

19

Also of independent interest is the intimate relationship between multi-server PIR and
locally decodable codes (LDCs) [Yek07,Yek10]. LDCs are a class of error-correcting code
with highly efficient “sublinear time” decoding procedures. LDCs provide efficient random-
access retrieval and high noise resilience for data transmitted over noisy channels or stored
on corrupted media. As a result, LDCs have longer codewords and are less efficient than
traditional error-correcting codes. A (k, δ, ε)-LDC encodes an n-bit database X into a
longer N -bit codeword Y , such that even after up to δN bits of the codeword Y are
adversarially corrupted, it is still possible to use a randomized decoding algorithm that
reads only k bits of Y , to retrieve bit Xi, i ∈ {1, ..., n} with probability at least 1−ε [Yek10].
The inefficient Hadamard code has N = 2n codeword length [Yek11]. For a codeword Y
corrupted at 0.1N bits, it is possible to recover any bit X with probability 0.8 just by
querying k = 2 bits of Y . The shortest codeword LDC by Yekhanin [Yek08] is based on
a Mersenne prime Mp = 2p − 1. We have N = exp(n1/p), for every n, and require k = 3
queries. For the largest known Mp,

1 p = 43 112 609, and we have N < exp(n1/108). It has
been claimed [Yek10] that it is possible to derive all recent information-theoretic multi-
server PIR schemes by first constructing LDCs, and then converting the LDCs to PIR
schemes. Short LDCs would yield communication-efficient PIR schemes and vice versa.
However, such PIR schemes are not efficient in terms of computation. We note, however,
that most PIR schemes are constructed from the ground up, without any intermediate
LDC construction step.

Private matching and private set intersection schemes [CZ09,FNP04,JL09] consider the
problem of computing the intersection of two private sets from two users, such that each
user only learns the sets’ intersection. These schemes are more closely related to OT and
SPIR than PIR because the privacy of both parties is considered. A modified private set
intersection scheme, where one of the parties (the database) does not need to learn of the
result of the intersection, is related to PIR, though it is much more efficient because it is
a tailored (dedicated) scheme. Nevertheless, we can use PIR to solve the private matching
problem, and additionally enjoy the flexibility of specifying queries in a more expressive
language suitable for retrieving an arbitrary data.

A related problem to PIR is that of privately searching an unencrypted stream of doc-
uments [BSW09, OS07a]. In these schemes, the client selects some keywords, and then
encrypts them before sending them to a server. The server performs a search using the
keywords over a stream of unencrypted documents and returns the list of documents con-
taining the keywords back to the client. The server remains oblivious of which particular
document it returns, and the confidentiality of the keywords is preserved. Existing con-
structions are limited to returning documents that give exact matches on a keyword list,

1http://www.mersenne.org/various/history.php

20

http://www.mersenne.org/various/history.php

or two keyword lists combined with logical “OR” or “AND”. These types of queries are
much simpler than a PIR-enabled relational database query, which may contain multiple
operators — comparison, logical, and so on. In addition, range queries are not presently
possible with private stream searching because exact keywords must be specified for the
search.

We will consider some other related constructions in the next chapter.

2.7 Relation to Recent PhD Theses

There are a few recent PhD theses that have considered the practicality of cryptographic
protocols. Geisler [Gei10], inspired by Yao’s millionaires problem [Yao82], proposed a
secure comparison protocol (secure two-party computation) based on homomorphic en-
cryption. This work allows Alice and Bob to learn the result of comparing their respective
private inputs, while neither learns any information about the input of the other party.
A Java implementation of the protocol takes about 0.56 seconds to compare two 16-bit
integers and 1.13 seconds to compare two 32-bit integers, both based on 1536-bit RSA
for security. Geisler also presented a framework and a tool known as the Virtual Ideal
Functionality Framework or VIFF for short. VIFF intends to simplify the building of
secure multi-party computation systems and provides a high-level language for writing
secure multi-party computation protocols. It works by compiling the high-level specifi-
cation of a protocol into VIFF API calls, which are subsequently executed by a Python
virtual machine. Unlike our contribution that seeks to make PIR more practical, this thesis
contributes by simplifying the prototyping of secure multi-party computation protocols.

Also motivated by Yao’s millionaires problem [Yao82], Schneider [Sch11] focused on
algorithmic techniques to engineering two-party secure function evaluation (SFE) proto-
cols. Two-party SFEs allow Alice and Bob holding respective inputs a and b to jointly
compute a function f over their private inputs, without revealing any information other
than the result f(a, b) to both of them. The thesis presented results that leveraged TPMs
to make the evaluation of SFEs more efficient and to make the communication costs of
garbled circuit-based SFEs independent of the size of the evaluated function. In addition,
the thesis developed a tool to generate cryptographic protocols such as zero-knowledge
proofs from high-level descriptions. Again, this thesis leveraged TPMs to reduce the com-
munication cost of a specific class of SFE and to make SFEs more efficient, which is a
different problem from making PIR more practical. We note that we can view PIR as SFE
with a constraint that only one of the parties learns the result of the computation. It is

21

also the case that TPMs can help minimize the computation and communication costs of
PIR schemes [Aso04].

We also note that De Cristofaro [Cri11] very recently defended his thesis, which dealt
with privacy-preserving ways for two parties to share sensitive information. The thesis,
although not yet published, includes the work by De Cristofaro et al. [CLT11], which con-
siders how two parties (user and database) can share information without either of them
leaning more information beyond what they are entitled. They presented two protocols
and modeled them in terms of simple database queries. The first protocol requires the user
to download an encrypted database, from which he or she can selectively decrypt records.
They addressed the high communication overhead of this first protocol in their second
protocol, which introduces a third party “isolated box” assumed not to be colluding with
either the user or database. As a result, the implementation of the second protocol added a
small overhead of 10% to non-private MySQL database queries. In comparison, we empha-
size in this thesis how to preserve access privacy over databases using PIR techniques. Our
SPIR construction from Section 8.2 provides both user and database privacy, and equally
makes a non-collusion assumption as the second protocol of De Cristofaro et al. [CLT11].
However, the non-collusion property of our schemes is configurable, with t ≥ 2 (we used
t = 2 in our experiments), whereas De Cristofaro et al. [CLT11] only supports t = 1. t is
the maximum number of colluding parties that cannot compromise privacy guarantees.

22

Chapter 3

Related Work

This chapter covers previous work related to this thesis. The first three sections are mostly
related to our MSPIR, SQLPIR and TOPIR contributions, while the last section covers
prior attempts to apply PIR to realize access privacy in several problem domains. We begin
by describing attempts in the literature to reduce the computational cost of PIR schemes.
Afterwards, we give an overview of prior work aimed to make data access during PIR
more expressive. Since computing on every PIR database block may be too slow for large
databases, we present some work done to help users trade off privacy for computational
efficiency. We briefly highlight a pseudonymous mailing system as one of the first systems
that rely on PIR. Then we cover literature on location-based services and PIR. Finally,
we describe some work on using cryptographic primitives like OT and SPIR for obtaining
access privacy in the online sales of digital goods.

3.1 Multi-server and Single-server PIR

Chor et al., in defining the notion of PIR, proved that the trivial PIR scheme of trans-
ferring the entire database to the user and having him retrieve the desired item locally
has optimal communication complexity for information-theoretic privacy protection with
a single server. [CGKS95, CKGS98] However, more efficient information-theoretic solu-
tions with sub-linear communication complexity were shown to exist if multiple, non-
colluding servers hold copies of the database. They proposed a number of such multi-
server information-theoretic PIR schemes [CGKS95,CKGS98], including a simple `-server
scheme transferring O(

√
n) bits, a 2-server scheme requiring O(n1/3) bits transfer, a gen-

eral `-server scheme with O(n1/`) bits transfer and a (1
3

log2 n+ 1)-server scheme trans-

23

ferring 1
3
(1 + o(1)) · log2

2 n · log2 log2(2n) bits, where n is the size of the database in
bits and ` ≥ 2 is the number of servers. Subsequent work has mostly focused on im-
proving PIR’s communication complexity bounds [CGKS95, CKGS98], while some oth-
ers [Aso04, BS07, GIKM98a, Gol07a] have addressed such problems as using amortization
and preprocessing to reduce server-side computational overheads and improving query ro-
bustness, amongst others.

Chor and Gilboa [CG97] were the first to relax the absolute privacy offered by multi-
server information-theoretic PIR by using cryptographic primitives. They proposed a fam-
ily of 2-server computationally private PIR schemes by making intractability assumptions
on the existence of pseudorandom generators or one-way functions. Schemes in this family
have a worst-case communication complexity of O(nε), for every ε > 0. In the same year
(1997), Kushilevitz and Ostrovsky [KO97] proposed the first single-server PIR scheme with
a similar communication complexity by assuming quadratic residuosity decisions modulo
a composite of unknown factorization are hard. Thus, the best protection offered by any
non-trivial single-server PIR scheme is computational privacy, but database holders do not
need to replicate their data to external servers. Several other single-server PIR schemes
followed, each making some intractability assumption based on the cryptographic primi-
tive used [AMG07, CMS99, Lip05]. These include schemes based on group-homomorphic
encryption [Ste98], length-flexible additive homomorphic public-key cryptosystems [Lip05],
Φ-Hiding Assumption (ΦHA) trapdoor predicates (the hardness of deciding if a small prime
is a factor of the totient of a composite integer of unknown factorization) [CMS99], and
more recently, a lattice-based scheme by Aguilar-Melchor and Gaborit [AMG07].

3.2 Computational Practicality of PIR

PIR has to date been the primary approach to the problem of preserving access privacy
for Internet users and several attempts have been made to make PIR more practical.
The general technique used to determine if a PIR scheme is practical is to compare its
performance with that of the trivial scheme, given figures for network bandwidth and
computational power. As observed previously, the most limiting of the barriers to making
PIR more practical is the computational requirement of PIR schemes. The performance
measure of a scheme in terms of its computational complexity has only received limited
attention. The first of these is the work by Beimel et al. [BIM00, BIM04], which shows
that, given an n-bit database X that is organized into r b-bit blocks, standard PIR schemes
cannot avoid a computation cost that is linear in the database size because each query for
block Xi must necessarily process all database blocks Xj, j ∈ {1, · · · , n}. They introduced

24

a model of PIR with preprocessing which requires each database to precompute and store
some extra bits of information, which is polynomial in the number of bits n of the database,
before a PIR scheme is run the first time. Subsequently, the databases can respond to users’
queries in a less computationally expensive manner using the extra bits.

Asonov et al. [Aso04,AF03] and Smith et al. [SS01] similarly explore preprocessing for
reducing server-side computation. However, the specialized hardware requirement at the
server makes this solution less desirable. Several hardware-assisted PIR schemes [Aso04,
SS01,WS08] rely on the preprocessing model. With the exception of Wang et al. [WWP10],
all secure coprocessor-based PIR schemes require periodic database reshuffles (i.e., repeats
of the preprocessing stage). The reshuffling cost of Williams and Sion [WS08], for example,
is O(log4(n)), but when amortized, it is O(log3(n)) per query. Nonetheless, the paper
shows how to achieve improvements in the communication and computational complexity
bounds of hardware-assisted PIR to O(log2 n) per query, provided that a small amount of
temporary storage, on the order of Θ(

√
n), is available on the secure coprocessor.

In 2006, panelists from SECURECOMM [Cre06] came together to discuss how to
achieve practical private information retrieval. The discussion covers several aspects of
transitioning cryptographic primitives from theory to practice and the need for practical
PIR implementations and benchmarks on real data. The panelists were optimistic about
future PIR deployments and pointed to the need for finding PIR schemes that require
cheaper operations or utilize secure hardware at the server side.

The paper by Sion and Carbunar [SC07] compares the bandwidth cost of trivial PIR to
the computation and bandwidth cost of a single-server computational PIR scheme [KO97],
which they considered to be the most efficient at that time. Their motivation was to stim-
ulate practical PIR schemes; nevertheless, the result has been cited in the literature to
promote the general idea that non-trivial PIR is always more costly than trivial download.
A few attempts have been made [AMG07,CAMG08,TP11] to argue otherwise by introduc-
ing more efficient computational PIR schemes that may be practical to deploy. Our work
(Chapter 4) extends Sion and Carbunar’s work in important ways. First, their analysis was
based on a number-theoretic computational PIR scheme [KO97], whereas we considered
different varieties of computational PIR schemes: a number-theoretic scheme [KO97] and a
lattice-based linear algebra scheme [AMG07]. A consideration of the state-of-the-art PIR
schemes on the basis of their underlying mathematical assumptions is important because
computational performance is currently a limiting factor to the practicality of PIR schemes.
Second, we extend the analysis of practicality to multi-server PIR schemes, which have
never been considered by any previous measurement study. Information-theoretic multi-
server PIR schemes are especially important because they can offer a stronger privacy
guarantee for non-colluding servers, unlike computational PIR schemes that require large

25

keys to protect against future powerful adversaries. Besides, multi-server PIR schemes give
better performance and are directly deployable in domains where the databases are nat-
urally distributed, such as Internet domain name registration [OG10b]. Even in domains
where the database is not distributed, deployment is possible using servers containing ran-
dom data [GIKM98a], which eliminates the need for an organization to replicate its data
to foreign servers.

Aguilar-Melchor and Gaborit [AMG07] and Aguilar-Melchor et al. [AMCG+08] explore
linear algebra techniques using lattices to propose an efficient single-server PIR scheme.
The security of the scheme is based on the hardness of the differential hidden lattice problem
— a problem related to NP-complete coding theory problems [Wie06]. Aguilar-Melchor et
al. [AMCG+08] subsequently used commodity Graphics Processing Units (GPUs), which
are highly parallelizable, to achieve a database processing rate of 2 Gb/s, which is about
ten times faster than running the same PIR scheme on CPUs. However, the evaluation
from Aguilar-Melchor et al. [AMCG+08] considers a small experimental database consist-
ing of twelve 3 MB files and they did not measure the total roundtrip response time for
queries; they considered the server-side cost but ignored client-side computation and trans-
fer costs. It is important to consider the total cost because their scheme is not as efficient
in terms of communication complexity as other existing schemes, and roundtrip response
time depends on both the communication and computational complexities of a scheme.
In addition, the measurements for the single-server PIR schemes [GR05, Lip05] used for
their comparison was based on estimates derived from openssl speed rsa, which is quite
unlike our approach where the comparison is based on analytical expressions for query
response times and experimental observations. Besides, they only considered single-server
PIR schemes, whereas we also consider multi-server PIR schemes and the state-of-the-art
single-server PIR schemes.

While the authors achieved a server-side processing rate of 2 Gb/s, there was no in-
dication of what roundtrip query response time to expect. In addition, we would want
to take measurements on our experimental hardware for fair comparison with the trivial
PIR solution and multi-server PIR schemes. We note that the 2 Gb/s processing rate was
obtained using commodity GPUs, and not on traditional CPUs. They show experimen-
tally that their implementation has a better server-side processing throughput on GPUs
than on CPUs (single-processor, dual-core and quad-core processors) by a factor of ten.
In comparison to other single-server PIR schemes [GR05,Lip05], this scheme gives a much
better server-side processing rate both on CPUs and GPUs.

Trostle and Parrish [TP11] proposed a single-server computational PIR scheme where
server-side operations are simple modular additions. The scheme is based on a trapdoor
group, which allows an entity with knowledge of the trapdoor to compute an inversion

26

problem efficiently (e.g., computing discrete logarithms). Without the knowledge, it is
computationally hard to solve the problem. While the scheme gave better performance
than similar single-server PIR schemes [GR05, Lip05], it is not quite as efficient as the
scheme of Aguilar-Melchor and Gaborit [AMG07] and Aguilar-Melchor et al. [AMCG+08].

In the context of keyword search using PIR, Yoshida et al. [YCSI08] considered the
practicality of a scheme proposed by Boneh et al. [BKOS07]. This public key encryption
based keyword search protocol is essentially single-server PIR. Their investigations found
the scheme to be costlier than the trivial PIR solution.

3.3 Data Access Models for PIR

Some research efforts have explored using expressive data access models for the databases
used in PIR schemes. Most PIR proposals provide rudimentary data access models, lim-
ited to either retrieving a single bit or a block of bits [BS07, CGKS95, KO97] using data
indices/addresses or textual keywords [CGN97]. These theoretical primitives are a limiting
factor in deploying successful PIR-based systems. There is therefore a need for an extension
to a more expressive data access model, and to a model that enables data retrieval from
structured data sources, such as from relational databases. The main challenge in realizing
the objective is the difficulty in finding a balance between keeping a query private and the
need of a database to understand the query. A query expressed in SQL explicitly describes
the result that the database is expected to understand and produce. Conversely, a PIR
query is private, but not expressive; the PIR server can process a query without needing
to understand its content. The goal therefore, will be to provide support for privacy, while
preserving the expressiveness and benefits of SQL.

A common assumption for PIR schemes is that the user knows the index or address
of the item to be retrieved. However, Chor et al. [CGN97] proposed a way to access data
with PIR using keyword searches over three data structures: binary search tree, trie and
perfect hashing. Our SQLPIR work in Chapter 5 extends keyword-based PIR to B+ trees
and minimal perfect hash functions. In addition, we provide an implemented system and
combine the technique with the expressive SQL. The technique in [CGN97] neither explores
B+ trees nor considers executing SQL queries using keyword-based PIR.

Reardon et al. [RPG07] similarly explore using SQL for private information retrieval,
and proposed the TransPIR prototype system. We will use this work as the basis for
comparisons with our SQLPIR contribution (Chapter 5), since it is the closest. TransPIR
performs traditional database functions (such as parsing and optimization) locally on the

27

client; it uses PIR for data block retrieval from the database server, whose function has
been reduced to a block-serving PIR server. The benefit of TransPIR is that the database
will not learn any information even about the textual content of the user’s query. The
drawbacks are poor query performance because the database is unable to perform any
optimization, and the lack of interoperability with any existing relational database system.

Freedman et al. [FIPR05] provide a solution for database search with keywords in
various settings including OT, using oblivious polynomial evaluation and homomorphic
encryption. However, each database tuple, which they referred to as a payload, still needs to
be tagged with an appropriate keyword. The key improvements over earlier results [NP99,
NP01] is the preservation of privacy against a fixed number of queries after an initial
setup, a fixed number of rounds for oblivious query evaluation, and the ability to deal with
exponential domain sizes.

Recall that private matching and private set intersection schemes [CZ09,FNP04,JL09]
consider the problem of computing the intersection of two private sets from two users, such
that each user only learns the sets’ intersection. Our SQLPIR work is significantly different
from private intersection schemes because SQL queries are richer and more complex than
simple set intersection. In addition, an SQL query describes the expected result of a query,
which may not contain any itemized listing of the data, whereas private set intersection
schemes require the exact data to be the input of a query.

A number of approaches for searching on encrypted data have been proposed [BSNS06,
SWP00,YY08]. Shi et al. [SBC+07] consider the problem of storing encrypted data in an
untrusted repository. To retrieve a subset of the encrypted data, the user must possess a
key that will only decrypt the data matching some preauthorized attributes or keywords.
They considered the encryption and auditing of network flows, but the approach is also
applicable to financial audit logs, medical privacy, and identity-based biometric encryption
systems. Our SQLPIR work is different from encrypted data search in three ways. First,
we do not require encryption of the data, regardless of the assumption of the adversary
being an insider to the database server. The privacy provided with PIR aims to hide the
particular data that is of interest, in the midst of the entire unencrypted data set. Second,
the type of query supported with our approach is much more extensive. Third, encrypted
data search is typically performed on unstructured or textual data, whereas our approach
deals with structured data in the context of relational databases.

A closely related research stream in the computing context of Database-as-a-Serv-
ice [HILM02, HMT04] is the problem of privately searching an encrypted index over an
outsourced database. Hacigümüş et al. [HILM02] present a technique for executing SQL
queries over a user-encrypted database hosted in a service provider’s server. The goal is to

28

protect the data from the service provider, but still enable the user to query the database.
The context of use for the Database-as-a-service paradigm differs from that of PIR. The
service provider typically owns the data that multiple users query with PIR, and the goal
of PIR is not to hide data from the server, but to hide data access patterns, which could
leak information about users’ requests.

3.4 Large Database Access Privacy and Tradeoffs

Many public databases over which users’ access privacy is important are large. Querying
such databases with existing PIR schemes will always be too slow because it will take too
long to read and compute on every database block. Traditional information retrieval even
avoids reading every database block; the problem is even greater for PIR, which requires
additional time to compute on every block. The reality of providing access privacy over
large databases points to the need for a systematic way to query a reasonably large subset
of the database in a timely fashion, in which case the user privacy is now with respect
to the database subset. While prior work [CKGS98, Ghi08] suggested the possibility of
tradeoffs, our LBSPIR work validates tradeoffs for PIR in an LBS context (Chapter 7).
In contrast to these prior works, our TOPIR work (Chapter 6) uniquely addresses the
problem of preserving access privacy over a large database in a generic way. For the rest
of this section, we will present some related work on privacy-preserving queries over large
data sets.

Wang et al. [WAEA10] proposed a bounding-box PIR (bbPIR) which combines the
concept of k-anonymity with the single-server computational PIR scheme by Kushilevitz
and Ostrovsky [KO97] to allow users to define a “bounding box” portion of the database
matrix and basing PIR on that smaller portion. Their extension also allows the user to
specify both the privacy and the service charge budget for PIR queries. The bbPIR work
overlaps our work (Chapter 6) in some areas, but there are several differences. First,
bbPIR defines rectangular bounding boxes within a PIR matrix at runtime, whereas our
work considers both runtime and offline approaches to defining database portions. The
way we define database portions at runtime also differs from that of bbPIR; we consider
the sensitive constants in the input query, statistical information on the distribution of
the data, and past query disclosures, which allow for logical or non-contiguous database
portions. This is unlike bbPIR, which is agnostic to logical data contents. Second, the
bbPIR charge-budget model is based on the number of blocks retrieved (typically the
square root of the bounding box area). We model the user’s budget in terms of his or
her delay tolerances, which has more generic interpretations (e.g., response time, number

29

of blocks, computations). Third, bbPIR is restricted specifically to one particular PIR
scheme [KO97], whereas our approach is generic and can use any underlying PIR scheme.
Fourth, bbPIR is limited to the retrieval of numeric data by address or by key using
a histogram, whereas we support retrieval using any of three data access models—by
index, keyword, or SQL. Our approach also involves an explicit intermediate stage for
transforming an input query q to an equivalent privacy-preserving query Q and requires
minimal user intervention.

Howe and Nissenbaum [HN09] developed a browser extension known as TrackMeNot
which tries to solve the problem of preserving access privacy during web searches. Track-
MeNot tries to hide a user’s request to a search engine in a cloud of dummy queries that
are made at specified time intervals. The privacy guarantee is not as strong as our tech-
nique that is based on PIR because the server is still able to observe the content of every
query made. TrackMeNot utilizes a significant amount of constant bandwidth for generat-
ing decoy queries, which can potentially slow down the network and the search engine or
database server when deployed on a large scale. In addition, the adversary might be able
to distinguish actual queries from dummy queries by considering their submission timings
or other metainformation. Indeed, Peddinti and Saxena [PS10] have shown how a search
engine can compromise the privacy guarantees of TrackMeNot using off-the-shelf machine
learning classifiers.

Domingo-Ferrer et al. [DFBAWM09] considered a scenario where the holders of a
database (e.g., a search engine corpus) are uncooperative in allowing the user to obtain
access privacy. In other words, the holders are unwilling to support any PIR protocol,
and yet the user desires reasonable access privacy over the large data set. They proposed
h(k)-PIR which embellishes the user’s query keywords with some other k − 1 bogus key-
words. After the server returns a response, the client filters the response to remove items
related to the bogus keywords, and finally displays the result to the user. They defined
an access privacy scheme as satisfying h(k)-PIR if the adversary can only view the user’s
query as a random variable Q0 satisfying H(Q0) ≥ h(k), where h(.) is a function, k is
a non-negative integer, and H(Q0) is the Shannon entropy of Q0. The security of the
scheme relies on using a large set of k bogus keywords with identical relative frequencies
as the query keywords. However, the accuracy of the query result degenerates with higher
values of k, which is their point of tradeoff, unlike our approach in Chapter 6 where the
tradeoff is between privacy and computational efficiency. In addition, their approach relies
on the availability of a public thesaurus of keywords with known relative frequencies. It
is somewhat misleading for the label of PIR to be used for this approach as its privacy
guarantee is not as strong as standard PIR; the adversary can still observe the content of
every query made by users.

30

3.5 Application Areas for PIR

This section covers some systems that have been described and built using the PIR prim-
itive. We will describe each system and conclude with the contributions we have made to
this area of research.

3.5.1 Pseudonymous Mailing System

An interesting description of a practical pseudonymous message retrieval system using the
technique of PIR is presented by Sassaman et al. [SCM05]. The system, known as the Pyn-
chon Gate, helps preserve the anonymity of users as they privately retrieve messages using
pseudonyms from a centralized server. Unlike our use of PIR to preserve a user’s query
privacy, the goal of the Pynchon Gate is to maintain privacy for users’ identities. It does
this by ensuring the messages a user retrieves cannot be linked to his or her pseudonym.
The construction resists traffic analysis, though users may need to perform some dummy
PIR queries to prevent a passive observer from learning the number of messages she has
received.

3.5.2 Location-Based Services and PIR

One of the motivations for developing useful and practical PIR schemes is the increasing
pervasiveness of mobile devices with positioning capabilities. When a user queries a remote
server from a stationary desktop, the information leaked by the query is often limited to the
content of the query. However, when a user queries a location-based service, the longitude
and latitude of the user’s physical location are also being disclosed to the server. The
problem of location privacy is how to keep users’ location information private from an LBS
while still ensuring the LBS is able to return responses that are precise; locations in close
proximity for a nearby neighbour problem, for example.

We provide a brief overview of cloaking- and PIR-based approaches for location privacy.
Solanas et al. [SDFMB08] provides a survey and classification of methods for location pri-
vacy in LBS. Similarly, in a position paper in 2008 [Ghi08], Ghinita introduced a taxonomy
for LBS privacy techniques.

31

Location cloaking techniques

Location cloaking in general seeks to prevent an attacker from being able to compromise
location privacy by linking queries made by a particular user to the user’s exact location.
The attacker may be in a position to observe traffic flowing through the network or even
be situated at the LBS provider endpoint.

One popular cloaking technique is based on the principle of k -anonymity, where a user
is hidden among k− 1 other users. Queries from multiple users are typically aggregated at
an anonymity server, which forms an intermediary between the user and the LBS provider.
This central anonymity server can provide spatial and temporal cloaking functions, so that
an attacker will encounter difficulty matching multiple queries that are observed with users
at particular locations and at particular points in time. Many cloaking solutions for location
privacy suggest either a central anonymity server as described [GG03,XC07], or other means
such as decentralized trusted peers [CML06] or distributed k -anonymity [ZH09].

The chief problem is that the anonymity server must normally be part of the trusted
computing environment and represents a single point of vulnerability. If it is successfully
attacked, or collusion with the LBS server occurs, then the locations of all users may be
divulged. It is also observed that although a cloaking technique by itself is advantageous
in that it does not result in increased computational cost on the server, it can carry with
it a high communication cost from the LBS provider to the client. This can mean a large
and unacceptable penalty for mobile phone users. Finally, if a reduced sample population
results from the number of active users in a particular geographic area, it may not suffice
to satisfy the desired degree of anonymity. If the anonymity server delays execution of
a request until the k -anonymity condition is satisfied, then this delay may prove to be
unacceptable to the user from a feature interaction point of view.

PIR-based techniques

PIR has been applied to solving the problem of keeping a user’s location private when
retrieving location-based content from a PIR database. This content typically consists of
points of interest (POIs), with each entry consisting of a description of a place of interest
as well as its geographical location. The only work cited for PIR in the survey by Solanas
et al. [SDFMB08] that does not utilize a third party is a 2008 paper by Ghinita [GKK+08].
The key strengths of the solution of Ghinita are the nondisclosure of location information
and the fact that it is resistant against correlation attacks for both stationary and highly
mobile users.

32

Our LBSPIR work that leverages the PIR technique for location privacy (Chapter 7)
differs from the PIR approach of Ghinita [GKK+08] in three important ways. First, the lat-
ter is specifically based on the 1997 computational PIR scheme by Kushilevitz et al. [KO97].
It would require considerable re-invention before it could be used with recent and more
efficient PIR schemes. For instance, it re-organizes a POI database into a square matrix M
despite the reduced communications costs attainable from using a rectangular matrix. On
the other hand, our approach is flexible and supports any block-based PIR scheme. Sec-
ond, the costs of computation and communication with the approach are O(n) and O(

√
n),

respectively, where n is the number of items, or POIs, in the database. The user has no
flexibility for dealing with this linear computational cost for large n and it reveals too
many POIs to the user; it is too costly for low-bandwidth devices. Our hybrid technique
departs from this one-size-fits-all approach and enables users to negotiate their desired
level of privacy and efficiency with LBS providers. Third, the scope of the approach did
not consider privacy-preserving partitioning for the data set. It considers partitioning with
kd-trees and R-trees in the general sense, without specific privacy considerations. On the
other hand, our work uses a different method of partitioning of POI data that permits
cloaking, and offers privacy protection when used in conjunction with PIR.

The common criticism against this PIR-based approach in the location privacy litera-
ture is that it is too costly to be practical [LBCP08], and that the computational overhead is
unsuitable for resource-constrained hardware, such as smartphones [RPB08]. Most efforts
to apply PIR in this domain rely on hardware-assisted variants, with a secure coproces-
sor (SC) at the LBS server host [AKS08, Hen07]. For example, Hengartner [Hen08] used
trusted computing and secure logging to preserve location privacy. He addressed the ineffi-
ciency of PIR by adopting an alternative solution that requires a Trusted Platform Module
(TPM) [Tru10] and cloaks a user’s location before accessing the POI database. The service
provider can learn the user’s cloaking region, but not the exact location. The motivation
for Hengartner’s work was to avoid using PIR in such a way that it would have to process
all of the POIs in the database in order to respond to a query, because the computational
cost is linear in the size of the database.

The taxonomy for LBS privacy proposed by Ghinita [Ghi08] discusses how each tech-
nique realizes tradeoffs in privacy and efficiency. The taxonomy, in increasing order of pri-
vacy protection and decreasing order of performance, is: two-tier spatial transformations
(e.g., SpaceTwist [YJHL08]), three-tier spatial transformations (e.g., Casper [MCA06])
and cryptographic transformations (e.g., the PIR approach by Ghinita et al. [GKK+08]).
The paper defines the taxonomy using the architecture of the various techniques and the
transformation of the user’s location (i.e., through perturbation or encryption). Techniques
based on the two-tier spatial transformation do not utilize an anonymity server and are

33

therefore vulnerable to background knowledge attacks — where the adversary has gathered
some external knowledge about the user’s location. The three-tier spatial transformation
techniques employ an anonymity server and resist background knowledge attacks, but
query performance is not as good as in the two-tier transformational techniques.

Hybrid techniques

Hybrid techniques [Ghi08] permit privacy-efficiency tradeoff decisions to be made by com-
bining the benefits of cloaking- and PIR-based techniques. Chor et al. [CKGS98] con-
jectured a tradeoff between privacy and computational overhead as a means of reducing
the high computational overhead for some application areas of PIR. Our work (Chapter 7)
concretizes and validates their conjecture in the context of LBS, and also realizes the future
work left open by Ghinita [Ghi08], which is to further reduce the performance overhead of
PIR techniques. The optimization of PIR by Ghinita et al. [GKK+08] reuses partial com-
putation results (i.e., multiplications of large numbers) and parallelizes the computations.
This optimization reduces the CPU cost by 40%, but the overall query response time is
still impractical [LBCP08, RPB08]. Ghinita [Ghi08] suggests improving the performance
of PIR-based techniques for LBS privacy through a hybrid method that includes a PIR
phase on a restricted subset of the data space. Our work answers the open question of
how to reduce the processing cost of PIR, without requiring the LBS to have multiple
CPUs to take advantage of parallelization. Parallel processors are not typically found on
smartphones, either.

3.5.3 Electronic Commerce

The related bodies of work to our PIR-Commerce contribution (Section 8.2) are symmet-
ric private information retrieval (SPIR), oblivious transfer (OT), OT with access control
(OTAC), and priced OT (POT).

Recall from Section 2.6 that OT schemes allow a database X consisting of two records
and a user holding an index i ∈ {0, 1} to run a protocol that results in the user learning
the ith record and no information the (1− i)th record, while the database learns nothing
about i.

SPIR schemes [GIKM98b] address database privacy so that dishonest users cannot
learn any information about other database records beyond the record retrieved. All ex-
isting communication-efficient 1-out-of-n OT schemes are essentially single-server SPIR,
whereas all existing communication-efficient distributed 1-out-of-n OT schemes [GIKM98b]

34

(i.e., two or more servers) are essentially multi-server SPIR. The first work on preserving
database privacy against dishonest users in a multi-server PIR setting was by Gertner et
al. [GIKM98b] They propose a single-round `-server SPIR scheme with communication
complexity O(log n ·n1/(2`−1)) for ` ≥ 2 and a O(log n)-server scheme with communication
complexity O(log2 n · log log n). Kushilevitz and Ostrovsky [KO97] briefly discuss how to
convert their single-server PIR into SPIR using general zero-knowledge proof techniques,
however they propose no concrete constructions. No existing SPIR scheme simultaneously
provides support for both access control and tiered pricing as in our PIR-Commerce work
(Section 8.2).

Several OTAC schemes [CDN09, CGH09, ZAW+10] were recently proposed. As with
our approach, these schemes typically consist of three parties: user, database, and issuer.
The issuer provides users needing access to the database with credentials encoding the
access rights of users as an attribute set. The database encrypts its content under an
access policy specific to each record and makes the encrypted contents available to users
for download. A user with a valid credential can run the OTAC protocol with the database
to obtain a decryption key for a particular record. After the protocol, the database learns
that a user with a valid credential has obtained a key, but learns nothing about the user’s
credential or the decryption key issued. Users download the entire encrypted database and
use the key obtained to decrypt the desired record. Zhang et al. [ZAW+10] used attribute-
based encryption to specify record-level access policies in disjunctive form without requiring
duplication of database records. However, these schemes do not consider an economic
model where users pay for each record and their high communication overhead makes
them considerably more costly than SPIR.

POT schemes [AIR01, CDN10] were originally introduced by Aiello et al. [AIR01] to
explore the difference between physical goods requiring close monitoring of inventory levels
and digital goods that are essentially of unlimited supply (i.e., cannot be depleted by
purchases). In their model, users first deposit some money with the database and then
proceed to buy multiple digital goods from the database, such that the total price of
purchased goods does not exceed the user’s deposit/balance. The database does not learn
which digital goods the user has purchased. However, since the database tracks the users’
accounts, all queries by a single user are linkable. This enables the database server to
deduce the number of digital goods a particular user has purchased, the average price
of those purchases, and the user’s spending pattern [CDN10]. Furthermore, the scheme
provides no way for users to recharge their balance, which means that when a user’s
balance becomes lower than the price of any record, the remaining balance is rendered
useless. Camenisch et al. [CDN10] address these problems by encoding users’ wallets in an
anonymous credential so that the database is no longer required to maintain user-specific

35

state information; as a result, user purchases become unlinkable. They also lay out an
extension that makes use of a trusted third party to facilitate a fair purchase protocol; i.e.,
an optimistic fair exchange protocol to prevent the database server from cheating by not
sending the correct decryption key (or wallet) to the user.

All of the above priced and access-control-capable OT and SPIR schemes lack some
ingredients necessary for deployment in a practical setting. The foremost missing ingre-
dient is the right combination of functionalities for access control, tiered pricing, sublin-
ear communication complexity, and availability of practical implementations. The SPIR
schemes [GIKM98b, KO97] provide no pricing or access control functions. OT schemes
(i.e., 1-out-of-n) have prohibitively expensive communication costs and require a static
encrypted database, which potentially breaks other applications using the same database.
In particular, existing OTAC schemes [CDN09, CGH09, ZAW+10] do not provide pricing
functions, while the POT schemes [AIR01, CDN10], on the other hand, provide no access
control functions.

36

Chapter 4

MSPIR: Revisiting The
Computational Practicality of PIR

This chapter is adapted from published work supervised by Ian Goldberg [OG11].

In this chapter, we report on a performance analysis of a single-server lattice-based
scheme by Aguilar-Melchor and Gaborit, as well as two multi-server information-theoretic
PIR schemes by Chor et al. and by Goldberg. Using analytical and experimental tech-
niques, we find the end-to-end response times of these schemes to be one to three orders
of magnitude (10–1000 times) smaller than the trivial scheme for realistic computation
power and network bandwidth. Our results extend and clarify the conclusions of Sion and
Carbunar for multi-server PIR schemes and single-server PIR schemes that do not rely
heavily on number theory.

4.1 Introduction

In 2007, Sion and Carbunar [SC07] considered the practicality of single-server computa-
tional PIR schemes and concluded that PIR would likely remain several orders of magnitude
slower than an entire database transfer — the trivial PIR scheme — for past, current, and
future commodity general-purpose hardware and networks. They based their result on
the cheaper cost of transferring one bit of data compared to the cost of PIR-processing
that bit using modular multiplication on such hardware. The PIR scheme of Kushilevitz
and Ostrovsky, which was used in their comparison, requires one modular multiplication
per database bit. They projected future increases in computing performance and network

37

bandwidth using Moore’s Law [Moo65] and Nielsen’s Law [Nie88] respectively, and argued
that improvements in computing performance would not result in significant improvements
in the processing speed of PIR because of the need to use larger key sizes to maintain secu-
rity. The significance of this work lies in establishing that any computational PIR scheme
that requires one or more modular multiplications per database bit cannot be as efficient
as the trivial PIR scheme.

However, it is not clear whether the conclusions of Sion and Carbunar [SC07] also apply
to multi-server PIR schemes as well as single-server PIR schemes that do not rely heavily
on number theory (i.e., modular multiplications). This is an important clarification to
make because PIR-processing with most multi-server PIR schemes and some single-server
PIR schemes [AMG07,TP11] costs much less than one modular multiplication per database
bit. Besides, the projections by Sion and Carbunar [SC07] assume that all PIR schemes
make intractability assumptions that would necessitate the use of larger keys to guarantee
security and privacy when today’s hardware and networks improve. However, multi-server
PIR schemes offering information-theoretic privacy will continue to guarantee security and
privacy without requiring key size changes irrespective of these improvements.

In this chapter, we revisit the computational practicality of PIR in general by extending
and clarifying the results in [SC07]. First, we provide a detailed performance analysis of
a recent single-server PIR scheme by Aguilar-Melchor and Gaborit [AMG07] and Aguilar-
Melchor et al. [AMCG+08,CAMG08], which has attempted to reduce the cost of processing
each database bit by using cheaper operations than modular multiplications. Unlike previ-
ous schemes that rely heavily on number theory, this particular scheme is based on linear
algebra, and in particular, lattices. The authors introduced and based the security of
the scheme on the differential hidden lattice problem, which they show is related to NP-
complete coding theory problems. [Wie06] They proposed and implemented the protocols,
but their analysis was limited to server-side computations by the PIR server [AMCG+08]
on a small experimental database consisting of twelve 3 MB files. It is unclear how well
the scheme compares against the trivial PIR scheme for realistic database sizes. Using the
PIR scheme of Kushilevitz and Ostrovsky and updated parameters from [SC07], we first
reestablished the result by Sion and Carbunar that this scheme is an order of magnitude
more costly than the trivial PIR scheme. We also provide a new result that shows that
the single-server PIR scheme in [AMG07] offers an order of magnitude smaller response
time compared to the trivial scheme, thus extending the conclusions of Sion and Carbunar
about computational PIR schemes.

Second, we explore the case of multi-server information-theoretic PIR, which is yet to
be considered by any previous study. Considering multi-server PIR is important because
such schemes do not require costly modular arithmetic, and hence will benefit immensely

38

from advances in computing and network trends. We derive upper-bound expressions for
query round-trip response times for two multi-server information-theoretic PIR schemes
by Chor et al. [CGKS95] and by Goldberg [Gol07a], which is novel to this thesis. Through
analytical and experimental techniques we find that the end-to-end response times of multi-
server PIR schemes to be two to three orders of magnitude (100–1000 times) smaller than
the trivial scheme for realistic computation powers and network bandwidths.

4.1.1 Preliminaries

We begin by outlining a few building blocks, some of which are based on the work of Sion
and Carbunar [SC07]. These include the hardware, network bandwidth between the user
and the server, and execution time estimates for modular multiplication.

Hardware description. All but one of our experiments were performed on current server
hardware with two quad-core 2.50 GHz Intel Xeon E5420 CPUs, 32 GB of 667 MHz DDR2
memory, 6144 KB cache per core, an Adaptec 51645 RAID controller with 16 1.5TB SATA
disks, and running Ubuntu Linux 9.10. The memory bandwidth is 21.344 GB/s and the
disk read bandwidth is at least 300 MB/s. We note that these machine characteristics are
not unusual for database server hardware; this machine cost less than $8,000. We ran the
GPU implementation of the Aguilar-Melchor et al. [AMG07] scheme on a machine with
a Tesla C1060 GPU, 8 GB RAM, 116 MB/s disk bandwidth, and running Ubuntu Linux
9.10.

Network. Three types of network setups were considered [SC07]: average home-user
last-mile connection [Inf09], Ethernet LAN, and commercial high-end inter-site connec-
tions [Int09, Spu00, Tan02]. Table 4.1 shows various network connection speeds (Mbps)
since 1995, when PIR was introduced. The values up until 2006 are reused from [SC07],
while we provided the subsequent values based on the capacity of today’s network band-
widths.1

Modular multiplication. The work of Sion and Carbunar [SC07] uses Dhrystone MIPS
ratings for Pentium 4 CPUs in order to estimate tmul, the time it takes to compute a
modular multiplication — the building block for the PIR scheme of Kushilevitz and Ostro-
vsky [KO97]. Such CPUs have long been retired by Intel and are no longer representative of

1The company Ookla Net Metrics launched Speedtest.net in 2007 and the Pingtest.net tool
in 2009. Recently, it has made Internet bandwidth data based on tests from various loca-
tions around the world available to researchers for free download (http://www.netindex.com).
The dataset covers 2008 to the present (Source: http://www.itworld.com/networking/108922/

internet-speedtest-results-going-public).

39

http://www.netindex.com
http://www.itworld.com/networking/108922/internet-speedtest-results-going-public
http://www.itworld.com/networking/108922/internet-speedtest-results-going-public

Table 4.1: Bandwidth estimates (in Mbps) for 1995 to 2010. We adapted values up to 2007
from Sion and Carbunar [SC07] and those after 2007 are based on the Internet speed data
for Canada and US from NetIndex.com [Ook10].

Network types 1995 1997 1998 1999 2001 2005 2006 2007 2008 2009 2010
End-user (B) .028 .056 .768 1 4 6 6 6 8 9
Ethernet LAN (B2) 10 100 1000 10000 10000 10000 10000 10000 10000
Commercial (B3) .256 .768 1 10 100 1000 1500 1500 1500 1500 1500

today’s multi-core CPUs. In addition, the Dhrystone benchmark, which found widespread
usage at the time it was introduced in 1984, is now outdated. According to Dhrystone
benchmark author Reinhold P. Weicker, it can no longer be relied upon as a representative
benchmark for modern CPUs and workloads [Wei02].

Instead, we measure the time directly. The current recommended key size for the
security of the Kushilevitz and Ostrovsky scheme is 1536 bits, based on the key size schedule
from RSA Labs [Kal03], NIST [Nat07], and NESSIE [New04]. We experimentally measured
the value of tmul on the server hardware described above. After repeated runs of the
measurement code and averaging, we obtained tmul = 3.08± 0.08 µs.

Projections. Moore’s Law [Moo65] has an annual growth rate of 60%, which surpasses
the 50% growth rate of Nielsen’s Law [Nie88]. While the faster growth rate of computing
capabilities does not necessarily favour computational single-server PIR schemes, it does
favour multi-server information-theoretic PIR schemes. Therefore, advances in computing
and network trends will not outdate our result regarding the practicality of multi-server
PIR schemes.

4.2 Efficient Single-server PIR (LPIR-A)

We experimentally evaluated an implementation of the Aguilar-Melchor et al. [AMCG+08]
single-server PIR scheme. This is the most efficient known single-server PIR scheme, and
has available source code both for CPUs and GPUs. We present a note of caution, however,
that although this PIR scheme resists known lattice-based attacks, it is still relatively new,
and its security is not as well understood as those of the PIR schemes that rely heavily on
number theory.

40

4.2.1 Experiment

We obtained the source code [GPG09] for this scheme, removed interactivity, changed the
default parameters to a set that guarantees security in a practical setting (complexity
of over 2100 operations to break the scheme) [AMG07], and added instrumentation to
the CPU and GPU code variants. The data set for our experiment consists of various
databases of sizes between 1 GB and 28 GB, each containing random data. Bugs in
the implementation [GPG09] prevented us from testing larger databases for the selected
security parameters. We did not fix the bugs because doing so would require rewriting a
significant portion of the code. Besides, 28 GB and smaller databases are sufficient for
doing a fair comparison with the trivial PIR scheme. We ran the experiment on the server
hardware described in Section 4.1.1 and measured the data transfer between the client
and the server, running on the same machine. We ran queries to retrieve between 5 and
10 random blocks for each database size, and computed the average response time and
standard deviation for each database size.

4.2.2 Result

Figure 4.1 shows the log-log plots of our results with breakdowns of the time for query
generation and upload, response encoding and download, and response decoding, as well
as the trivial download time for the different sizes of databases we tested. Plots (a), (b),
and (c) respectively reflect bandwidth values typical of an Internet connection in the US
and Canada, a 100 Mbps fast Ethernet, and a 1 Gbps gigabit Ethernet, all using the CPU
for computation. Plot (d) represents a 100 Mbps fast Ethernet using the GPU hardware.

In plot (a), for example, the largest portion of the overall time is that of query upload;
this is due to the comparatively low 2 Mbps upload bandwidth typical of a home Internet
connection [Ook10]. On the other hand, the time to download the query result (at 9 Mbps)
is much smaller. In general, the response time is proportional to n and the slope of the
line is 1, as the computation costs, in particular server-side response encoding, dominate.
When the database exceeds the available RAM size, further slowdowns are seen in the
results.

The slope of the trivial PIR line is always 1, since the time is simply that of transferring
the entire database. We observed that for tiny databases of a few megabytes (not shown
on Figure 4.1), the trivial PIR scheme is faster, but depending on the bandwidth, there is
a crossover point at which sending less data plus computing on every bit of the database
becomes faster than sending the entire database. For the average home connection, for

41

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Database size (MB)

(a) Over 9/2 Mbps download/upload (CPU)

trivial PIR
(D, R, E, U, and G)

(R, E, U, and G)
(E , U, and G)

(U and G)
(G) only

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Database size (MB)

(b) Over 100 Mbps fast Ethernet (CPU)

trivial PIR
(D, R, E, U, and G)

(R, E, U, and G)
(E , U, and G)

(U and G)
(G) only

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Database size (MB)

(c) Over 1 Gbps gigabit Ethernet (CPU)

trivial PIR
(D, R, E, U, and G)

(R, E, U, and G)
(E , U, and G)

(U and G)
(G) only

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Database size (MB)

(d) Over 100 Mbps fast Ethernet (GPU)

trivial PIR
(D, R, E, U, and G)

(R, E, U, and G)
(E , U, and G)

(U and G)
(G) only

Figure 4.1: Logarithmic scale plots for query generation (G), query upload(U), response
encoding (E), response download (R), and response decoding (D) times for the single-server
PIR scheme [AMCG+08] and the trivial PIR scheme in different bandwidth scenarios.

example, we found this to occur at a very small database size (approximately 32 MB). For
the 1 Gbps connection, the network is so fast that the entire database can be transferred
in less time than it takes for the client to even generate its query, except for databases of
6 GB and larger. Even then, trivial transfer was much faster than the overall cost of this
PIR scheme for such fast networks.

We note that plot (a) is the most representative of today’s consumer bandwidth sit-
uation. Based on the recently available Internet speed database [Ook10], the average
bandwidth for the Internet user is improving rather slowly, with average download rates of
6, 7.79, and 9.23 Mbps for Canada and the US for 2008, 2009, and January 1 to May 30 of
2010. The average upload rates for the respective periods are 1.07, 1.69, and 1.94 Mbps. We

42

note that Nielsen’s Law specifically addresses the type of users described as normal “high-
end” who can afford to pay a premium for high-bandwidth network connections. [Nie88]
We contrast these users from “low-end” users [Nie88] that the above bandwidth averages
from the Internet speed data [Ook10] include. Hence, the majority of Internet users are
low-end users, and their bandwidth is much more limited than that predicted by Nielsen’s
Law.

In the plots and in the analysis above, we show changing bandwidths and assume that
computing power stays the same. However, if we assume that processors improve at a faster
rate than Internet bandwidth for high-end users due to Moore’s Law and Nielsen’s Law,
then the crossover point will move down and the PIR scheme will become faster at smaller
database sizes. From plot (d), the GPU run gives a better response time, in comparison
to plot (b), for memory-bound databases (about 6 GB or less). For disk-bound databases,
the response time degenerates due to the lower disk bandwidth of the GPU machine. We
ran the same code on the CPU of the GPU hardware; using the GPU, we found about
five times speedup in the server-side processing rate for memory-bound databases and no
noticeable speedup for disk-bound databases. Our observed speedup is half the speedup
reported by Aguilar-Melchor et al. [AMCG+08], but we used much larger databases.

4.3 Multi-server PIR

In this section, we provide detailed performance analyses of two multi-server information-
theoretic PIR schemes, from Chor et al. [CGKS95] and from Goldberg [Gol07a]. We begin
with an overview of these schemes and later show how they compare with the single server
schemes [AMG07,KO97] and the trivial PIR scheme. The reason for choosing Chor et al.
scheme is its simplicity, being the first PIR protocol invented. The reason for choosing
Goldberg’s scheme is its comprehensiveness and source code availability, which allows for
easy experimental analysis. The implementation of the Goldberg’s scheme, known as
Percy++ [Gol07b], is an open-source project on SourceForge. We also reproduce and
reuse the results by Sion et al. [SC07] for the purpose of comparison with the two multi-
server PIR schemes. Their result features the single-server PIR scheme by Kushilevitz and
Ostrovsky [KO97], which they argued to be the most efficient of existing single-server PIR
schemes.

In order to maintain the user’s privacy, it must be the case that not all (in the case
of the Chor et al. protocol) or at most a configurable threshold number (in the case of
the Goldberg protocol) of the database servers collude to unmask the user’s query. This
is sometimes brought forward as a problematic requirement of these schemes. We note

43

that, as discussed elsewhere [OG10b], there are reasonable scenarios — such as distributed
databases like DNS or whois databases, where the copies of the database may be held by
competing parties — in which the non-collusion requirement is acceptable. Further, other
privacy-enhancing technologies, such as anonymous remailers [DDM03] and Tor [DMS04a],
also make the assumption that not all of the servers involved are colluding against the user.

4.3.1 First Scheme (MPIR-C)

Sion and Carbunar [SC07] used a closed-form expression for the computation and com-
munication cost of the PIR scheme in [KO97]. While we derive similar expressions for
the multi-server schemes we studied, we note that such expressions will only approximate
the cost because most modern x86 CPUs support hardware-level parallelism such as su-
perscalar operations; single-cycle operations, such as XORs, are parallelized even within
a single core. Hence, such expressions can be used to determine an upper bound on what
response time to expect. We will later determine the exact response time for this PIR
scheme through experiments.

Recall from Section 2.4.2 that in the simple O(
√
n) protocol by Chor et al, ` servers

store a copy of the database D — an r × b matrix of bits. For optimal performance, we
set r = b =

√
n. Hence, the upper bound for the client and server execution times for this

protocol can respectively be computed as 2(`−1)
√
n
m
t⊕+2`

√
ntt and n

m
· (t⊕+2tac)+n · tov,

where t⊕ and tt are respectively the execution times for one XOR operation and the transfer
time for one bit of data between the client and the server; m is the machine word-size (e.g.,
64 bits), n is the database size (in bits), ` is the number of servers, tov represents the
amortized server overhead per bit of the database — this overhead is dominated by disk
access costs, but also includes things like the time to execute looping instructions as a
minor component — and tac denotes the time for one memory access. Note that the server
execution time is the worst-case time because it assumes all the blocks in the database are
XORed, whereas we only need to XOR blocks where the ith bit of ρj is 1. The expression
charges all of the data transfer to the client, since it needs to be serialized there, whereas
the server processing is performed in parallel among the ` servers.

An upper bound on the query round-trip execution time for this multi-server PIR
scheme is then TMPIR−C < (2(`− 1)

√
n/m+n/m) · t⊕+ 2`

√
n · tt + 2n/m · tac +n · tov. The

most dominant term is n ·
(

1
m
t⊕ + 2

m
tac + tov

)
, which will suffice for the entire expression

when the value of n is large. We note that the dominant term is independent of the number
of servers `. Nevertheless, it is better to use the entire equation to determine the upper
bound on execution time for more objective comparison purposes.

44

Sion and Carbunar [SC07] denoted tt = 1
B

, given that B is the bandwidth (in bps) of
the network connection between the client and the server. t⊕ will be one cycle. (We indeed
measured it to be 0.40± 0.01 ns, which is exactly as expected on our 2.50 GHz processor.)
Similarly, we measured tac to be 1 cycle (0.4000± .0003 ns). Using unrolling to minimize
the overhead of loop instructions, tov will be dominated by the memory bandwidth if the
database fits into memory, or by disk bandwidth otherwise. An upper bound for tov on our
test machine is therefore 0.006 ns for in-memory databases and 0.417 ns for disk-bound
databases, based on the numbers in Section 4.1.1.

4.3.2 Second Scheme (MPIR-G)

Recall that Goldberg’s scheme [Gol07a] uses ` servers to treat the database D as an r × s
matrix of w-bit words (i.e., elements of GF (2w)), where again r is the number of blocks
and s is the number of w-bit words per block. As before, we choose r = s, but now
r = s =

√
n/w. We also choose w = 8 to simplify the cost of computations. Using the

protocol description of this scheme and the source code [Gol07b], we counted each type
of operation to derive upper bounds for the respective client and server execution times
as `(` − 1)

√
n/8(t⊕ + tac) + 2`

√
8ntt + 3`(` + 1)(t⊕ + tac), and (n/8)(t⊕ + 3tac) + n · tov,

where the terms are as above. Again, note that we charge all of the communication to
the client. The upper bound expression for the protocol’s round-trip response time is then

TMPIR−G <
(

(
√
n/8 + 3)`2 − (

√
n/8− 3)`+ n/8

)
(t⊕ + 3tac) + 2`

√
8n · tt + n · tov.

Here, the dominant term is n ·
(
1
8

(t⊕ + 3tac) + tov
)
. Again, the dominant term is inde-

pendent of `.

4.3.3 Response Time Measurement Experiment

We measure the round-trip response times for the multi-server PIR schemes in this section.
We first modified an implementation of MPIR-G (Percy++) [Gol07b] to use wider data
types to enable support for larger databases. We then measured its performance over five
different sets of databases, with databases in each set containing random data and ranging
in size from 1 GB to 256 GB.

Next, we fetched 5 to 10 blocks from the PIR servers. On the first query, the database
needs to be loaded into memory. The server software does this with mmap(); the effect
is that blocks are read from disk as needed. We expect that the time to satisfy the first
query will thus be noticeably longer than for subsequent queries (at least for databases

45

 0.1

 1

 10

 100

 1000

 1 10 100

R
es

po
ns

e
tim

e
(s

)

Database size (GB)

analytical upper bound (equation 2)
measurements with full disk latency

measurements with partial disk latency

Figure 4.2: Analytical and experimental measurements of the response time of Goldberg’s
multi-server PIR scheme [Gol07a] (computations only). The upper line is derived from
equation (2), but excluding time for communications. The middle line is the time for the
first query, which includes startup overhead and reading the database from disk. The lower
line is the time for subsequent queries, which only incur disk latencies once the database
exceeds the available RAM size.

that fit into available memory), and indeed that is what we observe. For databases larger
than available memory, we should not see as much of a difference between the first query
and subsequent queries. We show in Figure 4.2 plots of the average response time with
standard deviations for these two measurements (i.e., PIR response time for the first query,
and for the second and subsequent queries). From the plot, the speed of 1.36 seconds per
GB of data is consistent until the databases that are at least 16 GB in size are queried.
Between 18 GB and 30 GB, the time per GB grew steadily until 32 GB. The threshold
crossed at that range of database sizes is that the database size becomes larger than the
available RAM (somewhat smaller than the total RAM size of 32 GB). As can be seen from
the plot, the measured values for that range are especially noisy for the lower line. We
designed our experiment to take measurements for more databases with size in that range;
we surmise that the particulars of Linux’s page-replacement strategy contribute a large
variance when the database size is very near the available memory size. For even larger
databases, PIR query response times consistently averaged 3.1 seconds per GB of data.
This is because every query now bears the overhead of reading from the disk. In realistic
deployment scenarios where the database fits into available memory, the overhead of disk
reads is irrelevant to individual queries and is easily apportioned as part of the server’s
startup cost. Even when the database cannot fit in available memory, the bottleneck of disk
read overheads could be somewhat mitigated by overlapping computation and disk reads;

46

we did not implement this optimization because the current performance was sufficient for
head-to-head comparison with the trivial solution. Note that in practice, the disk read
latency would equally come into play even for trivial PIR.

We made similar measurements for the Chor et al. [CGKS95] MPIR-C scheme using an
implementation we developed. The implementation differed from the Percy++ [Gol07b]
implementation in that it does XORs in units of 64-bit words, instead of in bytes. We
obtained a speed of 0.5 seconds per GB (sometimes as fast as 0.26 seconds per GB) for
small databases that fit in available memory and 1.0 seconds per GB for larger databases.

4.4 Trivial Download vs. Non-Trivial PIR Compared

We next compare the round-trip response rates for each of the PIR schemes already ex-
amined to the response rates of the trivial PIR scheme and the Kushilevitz and Ostro-
vsky [KO97] scheme. We note that for the non-trivial schemes, the amount of data trans-
mitted is tiny compared to the size of the database, so the available bandwidth does not
make much difference. To be as generous as possible to the trivial PIR scheme, we measure
the non-trivial schemes with the home connection bandwidth B — 9 Mbps download and
2 Mbps upload. We provide comparisons to the trivial PIR scheme with bandwidths of B,
B2 — 10 Gbps Ethernet, and B3 — 1.5 Gbps inter-site connections (see Table 4.1).

Figure 4.3 shows the log-log plot of the response times for the multi-server and lattice-
based PIR schemes against the earlier results from Sion and Carbunar [SC07], which include
the trivial scheme and the Kushilevitz and Ostrovsky scheme [KO97]. As in Sion and Car-
bunar [SC07], we give maximal benefit to the scheme of Kushilevitz and Ostrovsky [KO97]
by ignoring all costs except those of modular multiplication for that scheme, using the
value for tmul given in Section 4.1.1. We point out that the values for the trivial scheme
and the Kushilevitz and Ostrovsky scheme are computed lower bounds, while those for
the LPIR-A, MPIR-G, and MPIR-C schemes are experimentally measured. The number
of PIR servers for the multi-server schemes is ` = 2.

We can see from the plot that, as reported in [SC07], the trivial PIR scheme vastly
outperforms the computational PIR scheme of Kushilevitz and Ostrovsky, even at the
typical home bandwidth. However, at that bandwidth, the lattice-based scheme of Aguilar-
Melchor et al. is over 10 times faster than the trivial scheme. Further, both multi-server
schemes are faster than the trivial scheme, even at the B3 (1.5 Gbps) speeds; the MPIR-G
scheme is about 4 times faster for databases that fit in RAM, and the MPIR-C scheme
is over 10 times faster. For large databases, they are 1.7 and 5 times faster, respectively.

47

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Database size (GB)

cPIR

Trivial (B)

LPIR-A (B)

Trivial (B3)

MPIR-G (B)

MPIR-C (B)

Trivial (B2)

Figure 4.3: Comparing the response times of PIR schemes by Kushilevitz and Ostrovsky
(cPIR) [KO97], Aguilar-Melchor [AMCG+08] (LPIR-A), Chor et al. [CGKS95] (MPIR-C),
and Goldberg [Gol07a] (MPIR-G), as well as the trivial PIR scheme over three current
network bandwidths using different database sizes. The bandwidth used for the non-trivial
PIR schemes is B. ` = 2 for the multi-server PIR schemes.

Only at B2 Ethernet speeds of 10 Gbps does the trivial scheme beat the multi-server
schemes, and even then, in-memory databases win for MPIR-C. The apparent advantage
of the trivial scheme even at these very high bandwidths may, even so, be illusory, as we
did not include the time to read the database from memory or disk in the trivial scheme’s
lower-bound cost, but we did for the LPIR and MPIR schemes.

One might try rescuing the trivial PIR scheme by observing that, having downloaded
the data once, the client can perform many queries on it at minimal extra cost. This
may indeed be true in some scenarios. However, if client storage is limited (such as on
smartphones), or if the data is updated frequently, or if the database server wishes to more
closely control the number of queries to the database — a pay-per-download music store,

48

for example — the trivial scheme loses this advantage, and possibly even the ability to be
used at all.

To better see at what bandwidth the trivial scheme begins to outperform the others,
we plot the response times vs. bandwidth for all five schemes in Figure 4.4. We include
one plot for a database of 16 GB, which fits in RAM (a), and one for 28 GB, which does
not (b). We see that the trivial scheme only outperforms LPIR-A at speeds above about
100 Mbps, and it outperforms the MPIR schemes only at speeds above 4 Gbps for large
databases and above 8 Gbps for small databases. In addition, due to the faster growth
rate of computing power as compared to network bandwidth, multi-server PIR schemes
will become even faster over time relative to the trivial scheme, and that will increase the
bandwidth crossover points for all database sizes.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Bandwidth (Mbps)

(a) 16 GB database (fits in RAM)

cPIR
Trivial

LPIR-A
MPIR-G
MPIR-C

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Bandwidth (Mbps)

(b) 28 GB database (exceeds RAM)

cPIR
Trivial

LPIR-A
MPIR-G
MPIR-C

Figure 4.4: Plots of response time vs. bandwidth for the PIR schemes by Kushilevitz and
Ostrovsky (cPIR) [KO97], Aguilar-Melchor [AMCG+08] (LPIR-A), Chor et al. [CGKS95]
(MPIR-C) and Goldberg [Gol07a] (MPIR-G), as well as the trivial PIR scheme for database
sizes that fit in RAM (16 GB) and that exceed RAM (28 GB).

49

It follows that the multi-server schemes are definitely more practical than the trivial
scheme, and the lattice-based scheme is more practical than the trivial scheme for most
reasonable bandwidths, including for home and mobile devices.

4.5 Conclusions

We reexamined the computational practicality of PIR following the earlier work by Sion
and Carbunar [SC07]. Some interpret Sion and Carbunar as saying that no PIR scheme can
be more efficient than the trivial PIR scheme of transmitting the entire database. While
this claim holds for the number-theoretic single-database PIR scheme by Kushilevitz and
Ostrovsky [KO97] because of its reliance on expensive modular multiplications, it does
not hold for all PIR schemes. We performed an analysis of the recently proposed lattice-
based PIR scheme by Aguilar-Melchor and Gaborit [AMG07] to determine its comparative
benefit over the trivial PIR scheme, and found this scheme to be an order of magnitude
more efficient than trivial PIR for situations that are most representative of today’s average
consumer Internet bandwidth. Next, we considered two multi-server PIR schemes, using
both analytical and experimental techniques. We found multi-server PIR to be a further
one to two orders of magnitude more efficient. We conclude that many real-world situations
that require privacy protection can obtain some insight from our work in deciding whether
to use existing PIR schemes or the trivial download solution, based on their computing
and networking constraints.

Our work may be extended by exploring practical ways for deploying PIR to address
real-world privacy problems. In addition, it would be interesting to explore practical and
technical means to mitigate some of the assumptions for multi-server PIR schemes, such
as preventing the collusion of the servers answering the queries of users.

50

Chapter 5

SQLPIR: Privacy-preserving Queries
over Relational Databases

This chapter is adapted from published work supervised by Ian Goldberg [OG10b].

In this chapter, we explore how Private Information Retrieval (PIR) can help users
keep their sensitive information from being leaked in an SQL query. We show how to
retrieve data from a relational database with PIR by hiding sensitive constants contained
in the predicates of a query. Experimental results and microbenchmarking tests show our
approach incurs reasonable storage overhead for the added privacy benefit and performs
between 7 and 480 times faster than previous work.

5.1 Introduction

Most software systems request sensitive information from users to construct a query, but
privacy concerns can make a user unwilling to provide such information. For instance,
the current process for Internet domain name registration requires a user to first disclose
the name for the new domain to an Internet domain registrar. Subsequently, the registrar
could then preemptively use this inside information to register the new domain and thereby
deprive the user of the registration privilege for that domain. This practice is known as
front running [ICA08]. The registrar is motivated to engage in front running because of
the revenue to be derived from reselling the domain at an inflated price, and from placing
ads on the domain’s landing page. Many users, therefore, find it unacceptable to disclose
the sensitive information contained in their queries by the simple act of querying a server.

51

Users’ concern for query privacy and our proposed approach to address it are by no
means limited to domain names; they apply to publicly accessible databases in several
application domains where the user needs access privacy (see the preamble to this thesis
in Section 1.1). Although ICANN claims the practice of domain front running has sub-
sided [ICA08], we will, however, use the domain name example in this chapter to enable
head-to-head performance comparisons with a similar approach by Reardon et al. [RPG07],
which is based on this same example.

While today’s most developed and deployed privacy techniques, such as onion routers
and mix networks, offer anonymizing protection for users’ identities, they cannot preserve
the privacy of the users’ queries. For the front running example, the user could tunnel
the query through Tor [DMS04b] to preserve the privacy of his or her network address.
Nevertheless, the server could still observe the user’s desired domain name, and launch a
successful front running attack.

The rudimentary data access models of PIR are one of the hindering factors in deploying
successful PIR-based systems. These models are limited to retrieving a single bit or a block
of bits [BS07,CGKS95,KO97] by an array index or by a textual keyword [CGN97]. These
models have little use for deploying real-world systems relying on PIR. There is therefore a
need for an extension of PIR’s data access primitives to a more expressive model suitable
for retrieval from structured data sources, such as from a relational database. We address
this need by integrating PIR with the widely deployed SQL.

We begin with the concept of dynamic SQL, which is fundamental to modern appli-
cations relying on relational databases. Dynamic SQL is an incomplete SQL statement
within a software system, meant to be fully constructed and executed at runtime [SKS05];
it is a flexible, efficient, and secure way of using SQL in software systems. The flexibility
enables systems to construct and submit SQL queries to the database at runtime. Dynamic
SQL is efficient because it requires only a single compilation that prepares the query for its
subsequent executions. In addition, dynamic SQL is more secure because malicious SQL
code injection is much more difficult. We observe that the shape or textual content of an
SQL query prepared within a system is not private, but the constants the user supplies at
runtime are private, and must be protected. For domain name registration, for example,
the textual content of the query is exposed to the database, but only the textual keyword
for the domain name is really private. For example, the shape of the dynamic query in
Listing 1 is not private; the question mark ? is used as a placeholder for a private value
to be provided before the query is executed at runtime. Of note is the related observation
made between parameterized SQL queries and parse tree validation [BWS05, HP05a]. In
this context, runtime parse trees obtained from combining user inputs with parameter-
ized queries are validated to ensure consistency with parse trees for programmer-specified

52

queries, thereby defeating SQL injection. Unlike valid inputs which only alter the seman-
tics of a parse tree, SQL injection attempts to change both the syntax and semantics of a
parse tree [HP05b].

Listing 1 An Example Dynamic SQL query (see Listing 6 in Appendix A for the corre-
sponding database schema)
SELECT t1.domain, t1.expiry, t2.contact

FROM regdomains t1, registrar t2

WHERE (t1.reg_id = t2.reg_id) AND (t1.domain = ?)

Our approach to preserving query privacy over a relational database is based on hiding
such private constants of a query. The client sends a desensitized version of the prepared
SQL query appropriately modified to remove private information. The database executes
this public SQL query, and generates appropriate cached indices to support further rounds
of interaction with the client. The client subsequently performs a number of keyword-based
PIR operations [CGN97] using the value for the placeholders against the indices to obtain
the result for the query.

None of the existing proposals related to enabling privacy-preserving queries and robust
data access models for private information retrieval makes the noted observation about the
privacy of constants within an otherwise-public query. These include techniques that elimi-
nate database optimization by localizing query processing to the user’s computer [RPG07],
problems on querying Database-as-a-Service [HMT04,HILM02], those that require an en-
crypted database before permitting private data access [SBC+07], and those restricted to
simple keyword search on textual data sources [BSW09]. This observation is crucial for
preserving the expressiveness and benefits of SQL, and for keeping the interface between
a database and existing software systems from changing while building in support for user
query privacy. Our approach improves over previous work with additional database op-
timization opportunities and fewer PIR operations needed to retrieve data. To the best
of our knowledge, we are the first to propose a practical technique that leverages PIR to
preserve the privacy of sensitive information in an SQL query over existing commercial
and open-source relational database systems.

Our contributions. We address the problem of preserving the privacy of sensitive in-
formation within an SQL query using PIR. In doing this, we address two obstacles to
deploying successful PIR-based systems. First, we develop a generic data access model
for private information retrieval from a relational database using SQL. We show how to
hide sensitive data within a query and how to use PIR to retrieve data from a relational

53

database. Second, we develop an approach for embedding PIR schemes into the well-
established context and organization of relational database systems. It has been argued
that performing a trivial PIR operation, which involves having a database send its entire
data to the user, and having the user select the item of interest, is more efficient than
running a computational PIR scheme [SC07]; however, as seen in Chapter 4, information-
theoretic PIR schemes are much more efficient. We show how the latter PIR schemes can
be applied in realistic scenarios, achieving both efficiency and query expressiveness. Since
relational databases and SQL are the most influential of all database models and query
languages, we argue that many realistic systems needing query privacy protection will find
our approach quite useful.

The rest of this chapter is organized as follows: Section 5.2 provides some background
on the relational model, SQL, and database indexing. Section 5.3 details the threat model,
security, and assumptions for this work, while Section 5.4 provides a description of the ap-
proach for hiding sensitive constants within an SQL query. We provide detailed discussions
of the algorithm in Section 5.5. Sections 5.6 and 5.7 present an overview of the prototype
implementation, results of microbenchmarking and the experiments used to evaluate this
prototype in greater depth. Section 5.8 concludes the chapter and suggests some future
work.

5.2 Preliminaries

5.2.1 Indexing

A database index is a supplementary data structure used to access data from the database
efficiently. Data is indexed either directly by the values of one or more attributes or
by hashes (generally not cryptographic hashes) of those values. The attributes used to
define an index form the key. Indices are typically organized into tree structures, such
as B+ trees where internal or non-leaf nodes do not contain data; they only maintain
references to children or leaf nodes. Data is either stored in the leaf nodes, or the leaf
nodes maintain references to the corresponding tuples (i.e., records) in the database. The
number of nodes between the root and any leaf of a B+ tree is constant, because the tree
is balanced. Furthermore, the leaf nodes of B+ trees may be linked together to enable
sequential data access during range queries over the index; range queries return all data
with key values in a specified range.

Hashed indices are specifically useful for point queries, which return a single data item
for a given key. For many situations where efficient retrieval over a set of unique keys is

54

needed, hashed indices are preferred over B+ tree indices. However, it is challenging to
generate hash functions that will hash each key to a unique hash value. Many hashed
indices used in commercial databases, for this reason, use data partitioning (bucketiza-
tion) [HMT04] techniques to hash a range of values to a single bucket, instead of to indi-
vidual buckets. Recent advances [BBdCR09, BZ07] in perfect hash functions (PHF) have
produced a family of hash functions that can efficiently map a large set of n key values to
a set of m integers without collisions, where n is less than or equal to m. A perfect hash
function is minimal when n = m. These PHF can work with large sets of keys (on the
order of billions), unlike earlier developments, such as gperf [Sch00], that can only manage
small sets of keys.

5.3 Threat Model, Security and Assumptions

5.3.1 Security and Adversary Capabilities

Our main assumption is that the shape of SQL queries submitted by the users is public or
known to the database administrator. Applicable practical scenarios include design-time
specification of dynamic SQL by programmers, who expect the users to supply sensitive
constants at runtime. Moreover, the database schema and all dynamic SQL queries ex-
pected to be submitted to, for example, a patent database, are not really hidden from the
patent database administrator. Simultaneous protection of both the shape and constants
of a query are outside of the scope of this work, and would likely require treating the
database management system as other than a black box.

Our approach is sufficiently generic to allow an application to rely on any block-based
PIR system, including single-server, multi-server, and coprocessor-assisted variants. We
assume an adversary with the same capability as that assumed for the underlying PIR
protocol. The two common adversary capabilities considered in theoretical private in-
formation retrieval schemes are the curious passive adversary and the Byzantine adver-
sary [BS07,CGKS95]. Either of these adversaries can be a database administrator or any
other insider to a PIR server.

A curious passive adversary can observe PIR-encoded queries, but should be incapable
of decoding the content. In addition, it should not be possible to differentiate between
queries or identify the data that makes up the result of a query. In our context, the
information this adversary can observe is the desensitized SQL query from the client and the
PIR queries. The information obtained from the desensitized query does not compromise

55

the privacy of the user’s query, since it does not contain any private constants. Similarly,
the adversary cannot obtain any information from the PIR queries because PIR protocols
are designed to be resistant against an adversary of this capability.

A Byzantine adversary with additional capabilities is assumed for some multi-server PIR
protocols [BS07,Gol07a]. In this model, the data in some of the servers could be outdated,
or some of the servers could be down, malfunctioning or malicious. Nevertheless, the client
is still able to compute the correct result and determine which servers misbehaved, and
the servers are still unable to learn the client’s query. Again, in our specific context, the
adversary may compromise some of the servers in a multi-server PIR scenario by generating
and obtaining the result for a substitute fake query or executing the original query on these
servers, but modifying some of the tuples in the results arbitrarily. The adversary may
respond to a PIR request with a corrupted query result or even desist from acting on the
request. Nevertheless, all of these active attack scenarios can be effectively mitigated with
a Byzantine-robust multi-server PIR scheme.

5.3.2 Data Size Assumptions

We service PIR requests using indexed data extracted from relational databases. The size
of these data depends on the number of tuples resulting from the desensitized query. We
note that even in the event that this desensitized query yields a small number of tuples
(including just one), the privacy of the sensitive part of the SQL query is not compromised.
The properties of PIR ensure that the adversary gains no information about the sensitive
constants from observing the PIR protocol, over what he already knew by observing the
desensitized query.

On the other hand, many database schemas are designed in a way that a number of
relations will contain very few rows of data, all of which are meant to be retrieved and
used by every user. Therefore, it is pointless to perform PIR operations on these items,
since every user is expected to retrieve them all at some point. The adversary does not
violate a user’s query privacy by observing this public retrieval.

5.3.3 Avoiding Server Collusion

Information-theoretic PIR is generally more computationally efficient than computational
PIR, but requires that the servers not collude if privacy is to be preserved; this is the
same assumption commonly made in other privacy-preserving technologies, such as mix
networks [Cha81] and Tor [DMS04b]. We present scenarios in which collusion among

56

servers is unlikely, yielding an opportunity to use the more efficient information-theoretic
PIR.

The first scenario is when several independent service providers host a copy of the
database. This applies to naturally distributed databases, such as Internet domain reg-
istries. In this particular instance, the problem of colluding servers is mitigated by practical
business concerns. Realistically, the Internet domain database is maintained by different
geographically dispersed organizations that are independent of the registrars that a user
may query. However, different registrars would be responsible for the content’s distribution
to end users as well as integration of partners through banner ads and promotions. Since
the registrars are operating in the same line of business where they compete to win users
and deliver domain registry services, as well as having their own advertising models to
reap economic benefits, there is no real incentive to collude in order to break the privacy of
any user. In this model, it is feasible that a user would perform a domain name registra-
tion query on multiple registrars’ servers concurrently. The user would then combine the
results, without fear of the queries revealing its content. Additionally, individual service
agreements can foreclose any chance of collusion with a third party on legal grounds. Users
then enjoy greater confidence in using the service, and the registrars in turn can capitalize
on revenue generation opportunities such as pay-per-use subscriptions and revenue-sharing
ad opportunities.

The second scenario that offers less danger of collusion is when the query needs to be
private only for a short time. In this case, the user may be comfortable with knowing that
by the time the servers collude in order to learn her query, the query’s privacy is no longer
required.

Note that even in scenarios where collusion cannot be forestalled, our system can still
use any computational PIR protocol; recent such protocols [AMG07] offer considerable
efficiency improvements over previous work in the area, as seen in Chapter 4.

Listing 2 Example query with a WHERE clause featuring sensitive constants.
SELECT t1.contact, t1.email, t2.created, t2.expiry

FROM registrar t1, regdomains t2

WHERE (t1.reg_id = t2.reg_id) AND (t2.created > 20090101) AND

(t2.domain = ’anydomain.com’)

57

5.4 Hiding Sensitive Constants

5.4.1 Overview

Our approach is to preserve the privacy of sensitive data within the WHERE and HAVING
predicates of an SQL query. For brevity, we will focus on the WHERE clause; a similar
processing procedure applies to the HAVING clause. This may require the user (or appli-
cation) to specify the constants that may be sensitive. For the example query in Listing 2,
the domain name and the creation date may be sensitive.

Our approach splits the processing of SQL queries containing sensitive data into two
stages. In the first stage, the client computes a public subquery, which is simply the original
query that has been stripped of the predicate conditions containing sensitive data. The
client sends this subquery to the server, and the server executes it to obtain a result for
the subquery. The desired result for the original query is contained within the subquery
result, but the database is not aware of the particular tuples that are of interest.

In the second stage, the client performs PIR operations to retrieve the tuples of in-
terest from the subquery result. To enable this, the database creates a cached index on
the subquery result and sends metadata for querying the index to the client. The client
subsequently performs PIR retrievals on the index and finally combines the retrieved items
to build the result for the original query. An alternative approach to storing materialized
tuples or subquery results in an index is to maintain index entries as references to actual
database tuples. In other words, each index entry will simply store keys and reference
database tuples. We can consider an index built using this approach as maintaining a
‘view’ of the subquery result (i.e., no data materialization). The approach saves storage
space, but will incur considerable performance overhead. PIR queries over such indices nec-
essarily require individual fetching of all tuples in the original subquery result (at worst),
or systematic range-based fetches (at best). These operations will be slow and much more
complex to implement. For these reasons, our approach explores indices built on materi-
alized data.

The important benefits of this approach as compared with the previous approach by
Reardon et al. [RPG07] are the optimizations realizable from having the database execute
the non-private subquery, and the fewer number of PIR operations required to retrieve the
data of interest. In addition, the PIR operations are performed against a cached index,
which will usually be smaller than the complete database. This is particularly true if there
are joins and non-private conditions in the WHERE clause that constrain the tuples in
the query result. In particular, a single PIR query is needed for point queries on hash

58

table indices, while range queries on B+ tree indices are performed on fewer data blocks.
Figure 5.1 illustrates the sequence of events during a query evaluation.

We note that often, the non-private subqueries will be common to many users, and the
database does not need to execute them every time a user makes a request. Nevertheless,
our algorithm details, presented next in Section 5.4.2, show the steps for processing a
subquery and generating indices. Such details are useful in an ad hoc environment, where
the shape of a query is unknown to the database a priori; each user writes his or her own
query as needed. Our assumption is that revealing the shape of a query will not violate
users’ privacy (see Section 5.3).

5.4.2 Algorithm

We describe our algorithm with an example by assuming an information-theoretic PIR
setup with two replicated servers. We focus on hiding sensitive constants in the predicates
of the WHERE clause. The algorithm details for the SELECT query in Listing 2 follow.
We assume the date 20090101 and the domain anydomain.com are private.

Step 1: The client builds an attribute list, a constraint list, and a desensitized SELECT
query, using the attribute names and the WHERE conditions of the input query. We refer
to the desensitized query as a subquery.

To begin, initialize the attribute list to the attribute names in the query’s SELECT
clause, the constraint list to be empty, and the subquery to the SELECT and FROM
clauses of the original query.

• Attribute list: {t1.contact, t1.email, t2.created, t2.expiry}

• Constraint list: {}

• Subquery: SELECT t1.contact, t1.email, t2.created, t2.expiry

FROM registrar t1, regdomains t2

Next, consider each WHERE condition in turn. If a condition features a private con-
stant, then add the attribute name to the attribute list (if not already in the list), and
add (attribute name, constant value, operator) to the constraint list. Otherwise, add the
condition to the subquery.

On completing the above steps, the attribute list, constraint list, and subquery with
reduced conditions for the input query become:

59

Alice PIR Server Database File System

ServerClient

subquery

subquery

subquery result

index on subquery result

index helper data

PIR query q(i) on index

PIR retrieval of q(i)

PIR result

PIR result

...

...

...

compute query result

Figure 5.1: A sequence diagram for evaluating Alice’s private SQL query using PIR.

• Attribute list: {t1.contact, t1.email, t2.created, t2.expiry, t2.domain}

• Constraint list: {(t2.created,20090101,>),(t2.domain,’anydomain.com’,=)}

• Subquery:
SELECT t1.contact,t1.email,t2.created,t2.expiry,t2.domain

FROM registrar t1, regdomains t2 WHERE (t1.reg id = t2.reg id)

Step 2: The client sends the subquery, a key attribute name, and an index file type to each
server.

The key attribute name is selected from the attribute names in the constraint list —
t2.created, t2.domain in our example. The choice may either be random, made by the
application designer, or determined by a client optimizer component with some domain
knowledge that could enable it to make an optimal choice. One way to make a good choice
is to consider the selectivity — the ratio of the number of distinct values taken to the total

60

number of tuples — expected for each constraint list attribute, and then choose the one
that is most selective. This ensures the selection of attributes with unique key values before
less selective attributes. For example, in a patent database, the patent number is a better
choice for a key than the author’s gender. A poor choice of key can lead to more rounds of
PIR queries than necessary. Point queries on a unique key attribute can be completed with
a single PIR query. Similarly, a good choice of key will reduce the number of PIR queries
for range queries. For the example query, we choose t2.domain as the key attribute name.

For the index file type, either a PHF or a B+ tree index type is specified. Other
index structures may be possible, with additional investigation, but these are the ones we
currently support. More details on the selection of index types is provided below.

Step 3: Each server executes the subquery on its relational database, generates a cached
index of the specified type on the subquery result, using the key attribute name, and
returns metadata for searching the indices to the client.

The server computes the size of the subquery result. If it can send the entire result
more cheaply than performing PIR operations on it, it does so. Otherwise, it proceeds
with the index generation. For hash table indices, the server first computes the perfect
hash functions for the key attribute values. Then it evaluates each key and inserts each
tuple into a hash table. The metadata that is returned to the client for hash-based indices
consists of the PHF parameters, the count of tuples in the hash table, and some PIR-specific
initialization parameters.

For B+ tree indices, the server bulk inserts the subquery result into a new B+ tree
index file. B+ tree bulk insertion algorithms provide a high-speed technique for building a
tree from existing data [APV02]. The server also returns metadata to the client, including
the size of the tree and its first data block (the root). Generated indices are stored in a
disk cache external to the database.

Step 4: The client receives the responses from the servers and verifies they are of the
appropriate length. For a Byzantine-robust multi-server PIR, a client may choose to pro-
ceed in spite of errors resulting from non-responding servers or from responses that are of
inconsistent length.

Next, the client performs one or more keyword-based PIR queries, using the value
associated with the key attribute name from the constraint list, and builds the desired
query result from the data retrieved with PIR.

The encoding of a private constant in a PIR query proceeds as follows. For PIR queries
over a hash-based index, the client computes the hash for the private constant using the

61

PHF functions derived from the metadata1. This hash is also the block number in the hash
table index on the servers. This block number is input to the PIR scheme to compute the
PIR query for each server. For a B+ tree index, the user compares the private value for
the key attribute with the values in the root of the tree. The root of the tree is extracted
from the metadata it receives from the server. Each key value in this root maintains
block numbers for the children blocks or nodes. The block number corresponding to the
appropriate child node will be the input to the PIR scheme.

For hash-based indices, a single PIR query is sufficient to retrieve the block containing
the data of interest from the hash table. For B+ tree indices, however, the client uses PIR
to traverse the tree. Each block can hold some number m of keys, and at a block level,
the B+ tree can be considered an m-ary tree. The client has already been sent the root
block of the tree, which contains the top m keys. Using this information, the client can
perform a single PIR block query to fetch one of the m blocks so referenced. It repeats this
process until it reaches the leaves of the tree, at which point it fetches the required data
with further PIR queries. The actual number of PIR queries depends on the height of the
(balanced) tree, and the number of tuples in the result set. Traversals of B+ tree indices
with our approach are oblivious in that they leak no information about the node access
pattern; we realize retrieval of a node’s data as a PIR operation over the data set of all
nodes in the tree. In other words, it does not matter which particular branch of a B+ tree
is the location for the next block to be retrieved. We do not restrict PIR operations to
the subset of blocks in the subtree rooted at that branch. Instead, each PIR operation
considers the set of blocks in the entire B+ tree. Range queries that retrieve data from
different subtrees leak no information about to which subtree a particular piece of data
belongs. The only information the server learns is the number of blocks retrieved by such
a query. Therefore, specific implementations may utilize dummy queries to prevent the
server from leaning the amount of useful data retrieved by a query [SCM05].

To compute the final query result, the client applies the other private conditions in the
constraint list to the result obtained with PIR. For the example query, the client filters out
all tuples with t2.created not greater than 20090101 from the tuple data returned with
PIR. The remaining tuples give the final query result.

Capabilities for dealing with complex queries can be built into the client. For example,
it may be more efficient to request a single index keyed on the concatenation of two
attributes than separate indices. If the client requests separate indices, it will subsequently
perform PIR queries on each of those indices, using the private value associated with each

1Using the CMPH Library [BBdCR09] for example, the client saves the PHF data from the metadata
into a file. It reopens this file and uses it to compute a hash by following appropriate API call sequences.

62

attribute from the constraint list. Finally, the client combines the partial results obtained
from the queries with set operations (union, intersection), and performs local filtering on
the combined result, using private constant values for any remaining conditions in the
constraint list to compute the final query result. The client thus needs query-optimization
capabilities in addition to the regular query optimization performed by the server. This is
an open area of work closely related to database optimization.

5.5 Discussion

In this section, we discuss important architectural components and design decisions related
to the algorithm presented in Section 5.4.

5.5.1 Parsing SQL Queries

The algorithm parses an input query — the WHERE and HAVING clauses in particular.
Other subclauses of the SELECT statements, such as GROUP BY and ORDER BY, can
either be processed as part of a subquery or applied on the result obtained with PIR.
Specific implementations can adopt the mature parsers developed with open source and
commercial databases.

The expression tree provides an easy way to construct the desensitized query and
the constraint list. The parsing process builds an expression tree representation for the
WHERE clause conditions. The internal nodes of this expression tree typically contain
arithmetic, relational, and logical operators, while the leaf nodes consist of attribute names
and constants. Any WHERE clause predicate expression can be a join, a non-private con-
dition or a private condition. The latter contains a sensitive constant value, whereas the
former two do not. Our parser allows the user to tag sensitive constants with the sym-
bol “#” to differentiate them from public constants. For example, the sensitive constant
‘20090511’ is tagged in this query: SELECT * FROM table WHERE n = 20090605 AND p

= #20090511. Each WHERE clause condition is related to another condition with the log-
ical AND. Logical OR conditions are not considered as expression delimiters, but disjunct
multiple subexpressions in the same condition. Typically, relational databases convert the
WHERE clause conditions in the input query to an equivalent set of conditions in the
conjunctive normal form, to facilitate query optimization.

For an example of AND and OR, consider the two SELECT queries below, which differ
only in their WHERE clause conditions.

63

(i) SELECT * FROM table WHERE a = ’SQL’ AND b = ’LEX’

(ii) SELECT * FROM table WHERE a = ’SQL’ OR b = ’LEX’

The client can compute the result for (i) using either one or two indices, whereas it
requires two indices to compute the result for (ii). To compute the result for (i) with a
single index, the client requests an index for a or b because both of the conditions in the
WHERE clause can only be true if one of them is true. If it requests an index for a, it
will first perform keyword-based PIR using the literal ’SQL’ over this index, and then
filter the result obtained with the second condition b = ’LEX’. To compute either (i) or
(ii) with two indices, the client requests indices for both a and b, and then performs two
keyword-based PIR searches using the string literals ’SQL’ and ’LEX’ over the respective
indices. Finally, the client computes the intersection of the tuples in the two PIR results
to obtain the result for (i), or it computes the union to obtain the result for (ii).

We note that a worst-case query scenario having several private conditions combined
with an OR operator will have storage and computational costs linear in the number of
unique attribute names used with the private conditions. In certain circumstances, it may
be possible to eliminate the storage cost by maintaining references to the tuple data in the
database rather than maintaining a materialized copy in an index.

Currently, logical NOT conditions cannot be processed with PIR. We are unable to
find any practical PIR scenario to justify its use. For example, performing PIR queries
on a patent database will generally not require a NOT operator. We prescribe client-
side processing for NOTs, after using PIR to retrieve the data required for evaluating the
condition.

This expression tree is traversed twice. The first traversal lists the desensitized query’s
WHERE conditions, which includes all joins and all non-private conditions. The logical
AND operator combines the joins and the non-private conditions. The boolean true value
can serve as a placeholder for every private condition. For example, the actual WHERE
clause for the subquery in Listing 3 can be WHERE (t1.reg id = t2.reg id) AND true

AND true, which can be subsequently optimized. The second traversal lists the private
conditions, which are used to build the constraint list. The above two traversals can
be combined in a single pass to output the public WHERE conditions and the private
conditions.

64

Listing 3 Example subquery from the query of Listing 2.
SELECT t1.contact, t1.email, t2.created, t2.expiry, t2.domain

FROM registrar t1, regdomains t2

WHERE (t1.reg_id = t2.reg_id)

5.5.2 Indexing Subquery Results

For many general purposes, it may be impractical to execute the desensitized query and
generate an index on the query result for every request. The use of an index cache addresses
some of the cost, because the database can use the same cached index to serve multiple
PIR queries (with the same private attributes, though not necessarily the same private
constants) from multiple users. This mitigates the computational costs for generating
indices. An exception for the use of a cache is when the shape of the input query is
unpredictable, especially in an environment where the users make ad hoc queries. In this
case, a separate index must be generated for each unique query.

5.5.3 Database Servers

Practical implementations could use any commercial or open-source database server to
execute the desensitized query. The client does not need to install database client programs
to query the database server in the privacy-friendly manner we describe; however, the client
will need an installation of the private SQL client that implements the client-side logic of
the algorithm. Similarly, a program that implements the server-side logic of the algorithm
must be installed at the server.

5.5.4 Processing Specific Conditions

We provide an overview on how to deal with private constants in specific conditions of
the WHERE clause. In particular, we consider simple conditions, as well as specialized
conditions such as BETWEEN, LIKE, and IN.

A simple WHERE clause condition consists of the general form column relop literal
or literal relop column, where relop is a relational operator, such as =, <>,<,>,<=, and
>=. If the column is used to index a query result, then the literal will be used as input
to the keyword-based PIR. The operator “=” indicates a point query. If the key attribute
column is unique, then a single result is expected; either a hash or a B+ tree index is

65

appropriate. On the other hand, a B+ tree is preferred for non-unique key values, since
there may be multiple tuples in the query result. The other operators, which imply range
queries, require B+ tree indices. The literal or its next or previous neighbours from the
domain of values for the data type, in sorted or lexicographical order, provide one of the
values for the range search. The other value is determined from the smallest or largest
value in the domain for the data type. The input values for range search for the condition
t2.created > 20090101, for example, are (20090102, 99991231).

A BETWEEN condition has the general form column BETWEEN literal1 AND
literal2, which is equivalent to the condition column >= literal1 AND column <=
literal2. This condition is processed as a range query on the two literal values.

A LIKE condition has the form column LIKE literal, where literal is a search condi-
tion that involves one or more wildcards, such as % and . The allows for the matching
of a single character, while the % allows for matching strings of any length, including zero-
length strings. Prefix-based conditions, such as domain LIKE ‘some%’, and suffix-based
ones, such as domain LIKE ‘%main.com’ can easily be processed with a B+ tree index over
the attribute, or the reverse of the attribute, respectively. Other variants are more easily
processed in the client; the client would first retrieve the data from the server with PIR,
and then perform a more sophisticated filtering on the result using the wildcard expression.

An IN condition has the general form column IN (literal1,literal2, ...). If the attribute
column has unique values, then the tuple associated with each literal can be retrieved with
a point query on the same index over the column attribute. Some PIR implementations,
such as Percy++ [Gol07b], can simultaneously retrieve multiple blocks for a set of literal
values in a single query. Otherwise, a combination of range and point queries will be
required. The client optimizer can be built to intelligently combine literal values to reduce
the overall number of PIR queries.

Client-side support for database function evaluation is required when private constants
are used as function parameters in a WHERE clause expression. Such functions can be
evaluated before the data required are retrieved with PIR, or afterwards. The latter follows
for functions that take private constants and attribute names as parameters.

We note that special WHERE clause conditions, such is IS NULL and IS NOT
NULL, do not require any private constants. It would suffice to include them in the
desensitized query in many situations. Alternatively, they could be processed locally,
especially for ad hoc queries, if they are considered to reveal sensitive information about
the tuples of interest.

Finally, an implementation may decide to localize the processing of all the above con-
ditions, as well as other conditions of the WHERE clause. The approach to adopt depends

66

on the amount of optimization the client is capable of performing and the requirements of
the application domain.

5.6 Implementation and Microbenchmarks

5.6.1 Implementation

We developed a prototype implementation of our algorithm to hide the sensitive portions
of SQL queries using generally available open-source C++ libraries and databases. We
developed a command-line tool to act as the client, and a server-side database adapter to
provide the functions of a PIR server. For the PIR functions, we used the Percy++ PIR
Library [Gol07b,Gol07a], which offers three varieties of privacy protection: computational,
information theoretic and hybrid (a combination of both). We extended Percy++ to
support keyword-based PIR. For generating hash table indices for point queries, we used the
C Minimal Perfect Hash (CMPH) Library [BBdCR09,BZ07], version 0.9. We used the API
for CMPH to generate minimal perfect hash functions for large data sets from query results;
these perfect hash functions require small amounts of disk storage per key. For building
B+ tree indices for range queries on large data sets, we used the Transparent Parallel I/O
Environment (TPIE) Library [Dep09,VV95]. Finally, we base the implementation on the
MySQL [Sun09] relational database, version 5.1.37-1ubuntu5.1.

5.6.2 Experimental Setup

We began evaluating our prototype implementation using a set of six whois-style queries
from Reardon et al. [RPG07], which is the most appropriate existing microbenchmark for
our approach. We explored tests using industry-standard database benchmarks, such as the
Transaction Processing Performance Council (TPC) [Tra09] benchmarks, and open-source
benchmarking kits such as Open Source Development Labs Database Test Suite (OSDL
DTS) [WT09], but none of the tests from these benchmarks is suitable for evaluating our
prototype, as their test databases cannot be readily fitted into a scenario that would make
applying PIR meaningful. For example, a database schema that is based on completing
online orders will only serve very limited purpose to our goal of protecting the privacy of
sensitive information within a query.

We ran the microbenchmark tests using two whois-style data sets, similar to those
generated for the evaluation of TransPIR [RPG07] (we provide a brief discussion of the

67

TransPIR solution in Section 3.3). The smaller data set consisted of 106 domain name
registration tuples, and 0.75×106 registrar and registrant contact information tuples. The
second data set similarly consisted of 4× 106 and 3× 106 tuples respectively. We describe
the evaluation queries and the two database relations respectively in Listing 8 and Listing 7
of Appendix A. We chose the predicate parameters for the benchmark queries to ensure
query selectivity values (ratio of the number of matching tuples in the query result — not
the subquery result — to the total number of tuples in the database) similar to those used
in the original benchmarking of TransPIR [RPG07]. The respective values for benchmark
queries Q1 through Q6 for the small data set were 1.00 × 10−6, 2.00 × 10−5, 4.20 × 10−5,
5.90 × 10−5, 1.33 × 10−6, and 3.87 × 10−2. For the large data set they were 2.50 × 10−7,
2.00× 10−5, 4.20× 10−5, 5.90× 10−5, 2.50× 10−7, and 4.20× 10−5.

The measurements for all test queries are based on the default behaviour of the TPIE
Library with respect to determining the branching factor λ for B+ tree indices. The follow-
ing expression shows the computation of branching factor with this default configuration:

λ =

⌊
γ × size(os block)− size(BID)− size(size t)

size(Key) + size(BID)

⌋
Where γ, os block, BID, size t, and Key are respectively the data logical blocking

factor, operating system block, block ID, C++ size t data type, and the key. size(x)
is the size of x in bytes. Specifically for our experimental setup for the large data set,
the branching factor for indices over integer keys is 2730, and it is 409 for indices over
character keys. For the small data set, these values are respectively 1634 and 215. Our
implementation stores integer keys in 8 bytes, and character keys in 72 bytes. The branch-
ing factor values are based on a block size of 32 KB (γ = 8), and 16 KB (γ = 4), where
size(os block) = 4096 bytes. The actual fill factor (again, the default for the TPIE Li-
brary) is 0.6 for internal B+ tree nodes. Later in our evaluation, we report the disk sizes
for indices built for our experiment on the queries with complex conditions (Table 5.2).

We ran all experiments on a test machine with two quad-core 2.50 GHz Intel Xeon
E5420 CPUs, 8 GB RAM, and running Ubuntu Linux 9.10. We used the information-
theoretic PIR support of Percy++, with two database replicas. The server also runs a
local installation of a MySQL database.

5.6.3 Result Overview

The results from the benchmark tests indicate that while our current prototype incurs
some storage and computational costs over non-private queries, the costs seem entirely

68

acceptable for the added privacy benefit (see Table 5.1 and Figure 5.2 later in this section
and Table 5.2 and Figure 5.3 in Section 5.7). In addition to being able to deal with complex
queries and leverage database optimization opportunities, our prototype performs much
better than the TransPIR prototype from Reardon et al. [RPG07] — between 7 and 480
times faster for equivalent data sets.

The most indicative factor of performance improvements with our prototype is the
reduction in the number of PIR queries in most cases. Other factors that may affect
the validity of the result, such as variations in implementation libraries, are assumed to
have negligible impact on performance. Our work is based on the same PIR library as
that of Reardon et al. [RPG07]. Our comparison is based on the measurements we took
by compiling and running the code for TransPIR on the same experimental hardware
platform as our prototype. We initially attempted to run the microbenchmarking tests for
the larger data with TransPIR on the development hardware platform for our prototype,
but was limited by this commodity hardware because TransPIR requires a 64-bit processor
and a minimum of 6 GB RAM to index or preprocess the larger data set. The development
hardware (not the test machine above) had a 32-bit processor and only 3 GB RAM.

5.6.4 Microbenchmark Experiment

We executed the six whois-style benchmark queries over the data sets and obtained mea-
surements for the time to execute the private query, the number of PIR queries performed,
the number of tuples in the query results, the time to execute the subquery and gener-
ate the cached index, and the total data transfer between the client and the two PIR
servers. Table 5.1 shows the results of the experiment (a plot of the same result for the
large database is shown in Figure 5.2). The cost of indexing (QI) can be amortized over
multiple queries. The indexing measurements for BTREE (and HASH) consist of the time
spent retrieving data from the database (subquery execution), writing the data (subquery
result) to a file and building an index from this file. Since TransPIR is not integrated
with any relational database, it does not incur the same database retrieval and file writing
costs. However, TransPIR incurs a one-time preprocessing cost (QI) which prepares the
database for subsequent query runs. Comparing this cost to its indexing counterpart with
our BTREE and HASH prototypes shows that our methods are over an order of magnitude
faster.

69

Table 5.1: Experimental results for microbenchmark tests compared with those of Reardon
et al. [RPG07]. BTREE, HASH, and TransPIR are respectively the timing result for
our B+ tree prototype, our hash table prototype, and from TransPIR [RPG07]; Time =
time to evaluate private query, PIRs = number of PIR operations performed, Tuples =
count of rows in query result (not subquery result), QI = timing for subquery execution
and index generation, Xfer = total data transfer between the client and the two PIR
servers.

Small database (.75 M contacts, 1 M registrations, and block size of 16 KB)
Query Approach Time (s) PIRs Tuples QI (s) Xfer (KB)

Q1 HASH 0 1 1 4 64
BTREE 6 4 1 9 256
TransPIR 7 2 1 120 128

Q2 BTREE 3 3 20 7 192
TransPIR 76 23 20 120 1,472

Q3 BTREE 3 3 42 7 192
TransPIR 149 45 42 120 2,880

Q4 BTREE 13 3 59 8 256
TransPIR 217 62 59 120 3,968

Q5 BTREE 5 4 1 13 256
TransPIR 10 3 1 120 192

Q6‡ BTREE 5 3 29 13 192
TransPIR 558 111 42 — 7,104

Large database (3 M contacts, 4 M registrations, and block size of 32 KB)
Query Approach Time (s) PIRs Tuples QI (s) Xfer (KB)

Q1 HASH 2 1 1 16 128
BTREE 4 3 1 38 384
TransPIR 25 2 1 1,017 256

Q2 BTREE 5 4 80 32 512
TransPIR 999 83 80 1,017 10,624

Q3 BTREE 5 4 168 32 512
TransPIR 2,055 171 168 1,017 21,888

Q4 BTREE 6 5 236 37 640
TransPIR 2,885 240 236 1,017 30,720

Q5 BTREE 5 3 1 67 384
TransPIR 37 3 1 1,017 384

Q6‡ BTREE 5 4 168 66 512
TransPIR 3,087 253 127 — 32,384

‡We reproduced TransPIR’s measurements from [RPG07] for query Q6 because we could not get
TransPIR to run Q6 due to program errors. The ‘—’ under QI indicates measurement missing
from [RPG07].

70

 1

 10

 100

 1000

 10000

Q1 Q2 Q3 Q4 Q5 Q6

R
es

po
ns

e
tim

e
(s

)

Query

TransPIR
This Work

4 5 5 6 5 5

25

999

2055
2885

37

3087

Figure 5.2: Comparing microbenchmarking results for the large data set. The y-axis is on
a logarithmic scale.

5.6.5 Discussion

The empirical results for the benchmark tests reflect the benefit of our approach. For all
of the tests, we mostly base our comparison on the timing for query evaluation with PIR
(Time), and sometimes on the index generation timing (QI). The time to transfer data
between the client and the servers is directly proportional to the amount of data (Xfer),
but we will not use it for comparison purposes because the test queries were not run over
a network.

Our hash index (HASH) prototype performs the best for query Q1 on both data sets,
followed by our B+ tree (BTREE) prototype; it achieves better performance for the large
set. The query of Q1 is a point query having a single condition on the domain name
attribute.

Query Q2 is a point query on the expiry date attribute, with the query result ex-
pected to have multiple tuples. Again, our BTREE prototype outperforms TransPIR by
a significant margin for both data sets; the improvement is most noticeable for the large
data set. The number of PIR queries required to evaluate Q2 with BTREE is 5% of the

71

number required by TransPIR. A similar trend is repeated for Q3, Q4 and Q6. Note that
the HASH prototype could not be used for Q2 because hash indices accept unique keys
only; it can only return a single tuple in its query result.

Query Q3 is a range query on the expiry date attribute. Our BTREE prototype
respectively was approximately 50 and 411 times faster than TransPIR for the small and
large data sets. Of note is the large number of PIR queries that TransPIR needs to evaluate
the query; for the large data set, our BTREE prototype requires only 2% of that number.
We observed a similar trend for Q4, where BTREE was 17 and 480 times faster for the
small and large sets respectively. This query features two conditions in the SQL WHERE
clause. The combined measured time for BTREE — the time taken to both build an index
to support the query and to run the query itself — is still 10 and 67 times faster than the
time it takes TransPIR to execute the query alone.

Query Q5 is a point query with a single join. For the large data set, it took BTREE
only about 14% of the time it took TransPIR. We observed the time our BTREE spent
in executing the subquery to dominate; only a small fraction of the time is spent building
the B+ tree index.

Our BTREE prototype similarly performs faster for Q6, with an order of magnitude
similar to Q2, Q3, and Q4.

In all of the benchmark queries, the proposed approach performs better than TransPIR
because it leverages database optimization opportunities, such as for the processing of sub-
queries. In contrast, TransPIR assumes a type of block-serving database that cannot give
any optimization opportunity. Therefore, in our system the client is relieved from having
to perform many traditional database functions, such as query processing, in addition to
its regular PIR client functions.

5.7 Complex Query Evaluation

In addition to the above microbenchmarks, we performed two other experiments to evaluate
our prototype. The first of these studies the behaviour of our prototype on complex
input queries, such as aggregate queries, BETWEEN and LIKE queries, and queries with
multiple WHERE clause conditions and joins. Each of these complex queries has varying
privacy requirements for its sensitive constants. The second experiment tests whether
our prototype leverages database optimization. We run the first experiment on the same
hardware configuration as the microbenchmark tests, and the second experiment on the
developmental hardware platform. For the test data, query selectivity for complex queries

72

CQ1 through CQ5 are 3.70×10−6, 5.05×10−2, 2.11×10−6, 1.30×10−3, and 5.34×10−6 for
the small data set. Similarly for the large data set, the values are 5.70× 10−7, 5.12× 10−2,
1.58× 10−6, 9.52× 10−7, and 1.50× 10−6.

5.7.1 Result Overview

The results obtained from the experiments demonstrate the benefits of our approach for
dealing with complex queries. While the storage and computational costs (over non-private
querying) remain, the overall performance and resource requirements are still reasonable
for the added privacy benefit. The prototype requires additional storage for two types
of indices used for PIR operations. The first type of index is generated for a particular
shape of query, over one or more key attributes or combinations of attributes. These types
of indices need permanent storage in the same manner as native indices for relational
databases. The second type of index is used in an ad hoc environment, where the tuples
in a subquery result can be constrained in an unpredictable manner, with one or more
WHERE clause conditions and joins. These latter indices must be generated as needed. In
most practical situations, it should be possible for indices to be based on the former type,
just like most software systems rely on indices prebuilt by the database to efficiently run
their queries.

5.7.2 Experiments on Queries with Complex Conditions

We describe and present the results of experiments that examined the behaviour of our pro-
totype when supplied with SQL queries that are more complex than the above microbench-
marks. We provide a number of synthetic query scenarios having different requirements
for privacy, the corresponding SQL queries with appropriate tagging for the condition in-
volving sensitive data, and the measurements. As mentioned above, our SQL parser uses
the “#” character to tag private conditions; we include that tag in the SQL queries we
present in Listing 9 of Appendix A. We used the same database schema (see Listing 7 of
Appendix A) as the microbenchmarks. The measurements show execution duration for the
original query without privacy provision over the MySQL database, the same query after
removal of conditions with sensitive information over the MySQL database, and several
other measurements taken from within our prototype using a B+ tree index. All of the
measurements are reported in Table 5.2. We show a breakdown of the timings for the large
database in Figure 5.3.

73

Private point query (CQ1). The task is to obtain a domain name record from the whois
server without revealing the sensitive domain name information.

Private range query (CQ2). The ICANN Security and Stability Advisory Committee
may be interested in performing an investigation on some registrars, with IDs ranging from
198542 to 749999. The task is to privately obtain some domain name information without
revealing the range of IDs for the registrars. We show the query to obtain registration
records with status in the set (1, 4, 5, 7, 9), and expiration dates between 20090101 and
20091031, without revealing the registrar ID range.

Private aggregate point query (CQ3). The task is to compute the total number of
registrations sponsored by a particular registrar in a privacy-preserving manner. The
registrar ID is sensitive.

Non-private LIKE query (CQ4). The task is to efficiently retrieve a single domain
name record from a whois server with some amount of privacy. In other words, a user
wants to reveal a prefix of the domain name to improve performance, while still preventing
the adversary from learning the exact textual domain name. Since many long domain
names have a common prefix, the user intends to leverage that knowledge to improve
query performance.

Private LIKE query (CQ5). The task is to retrieve registration records from a whois
server without revealing the LIKE wildcard.

Results. We see from Table 5.2 that in most cases, the cost to evaluate the subquery
and create the index dominates the total time to privately evaluate the query (BTREE),
while the time to evaluate the query on the already-built index (Time) is minor. An
exception is CQ2, which has a relatively small subquery result (rTuples), while having to
do dozens of (consequently smaller) PIR operations to return thousands of results to the
overall range query. Note that in all but CQ2, the time to privately evaluate the query on
the already-built index is at most a few seconds longer than performing the query with no
privacy at all; this underscores the advantage of using cached indices.

We note from our results that it is much more costly to have the client simply download
the cached indices. We observe, for example, that it will take about 5 times as long, for a
user with 10 Mbps download bandwidth, to download the index for CQ5 on the large data
set. Figure 5.4 compares the roundtrip time for queries with our approach to the time it
takes to download the database over a 9 Mbps connection, which is representative of the
average bandwidth of Internet users from Canada and the US in 2010 [Ook10]. Moreover,
this trivial download of data is impractical for devices with low bandwidth and storage
(e.g., mobile devices).

74

Table 5.2: Measurements taken from executing five complex SQL queries with varying
requirements for privacy. oQm = timing for executing original SQL query directly against
a MySQL database, BTREE = overall timing for meeting privacy requirements with our
B+ tree prototype,Time = time to evaluate private query within BTREE, PIRs = number
of PIR operations performed, Tuples = number of records in final query result, rTuples
= number of indexed records in subquery result, Xfer = total data transfer between the
client and the two PIR servers, Size = temporary storage space for cached index.

Small database with .75 M contact records, 1 M registration records

Query oQm BTREE Time PIRs Tuples rTuples Xfer Size

(s) (s) (s) (KB) (MB)

CQ1 0 8 2 3 1 328,805 192 110.57

CQ2 0 2 2 17 686 13,594 1,088 4.57

CQ3 0 13 2 3 1 473,646 192 157.82

CQ4 0 0 0 2 1 768 128 0.32

CQ5 0 17 3 4 4 749,472 256 251.82

Large database with 3 M contact records, 4 M registration records

Query oQm BTREE Time PIRs Tuples rTuples Xfer Size

(s) (s) (s) (KB) (MB)

CQ1 2 31 2 3 1 1,753,144 384 579.63

CQ2 1 15 13 41 3,716 72,568 5,248 25.13

CQ3 0 80 3 3 1 631,806 384 209.38

CQ4 2 25 5 3 1 1,050,300 384 348.63

CQ5 2 69 3 3 6 4,000,000 256 1,324.13

5.7.3 Database Optimization Experiments

We studied the overall response of our prototype to determine the benefits accrued from
database optimization. The experimental MySQL database runs mostly with the default
settings. The only change made was reducing the default number of user connections to
free up memory for other processes running on the machine. In other words, we did not
tune the database for optimal performance in the course of our previous experiments.

Most databases cache query plans and small-sized query results when a query is ex-
ecuted for the very first time. Subsequent executions of the same query will be more
responsive by reusing the cached plan and result. For this experiment, we disabled cache
usage by flushing the relations in our database before running each query. Flushing rela-
tions in MySQL closes the open relations and flushes the query cache. This ensures the

75

 0

 10

 20

 30

 40

 50

 60

 70

 80

CQ1 CQ2 CQ3 CQ4 CQ5

R
es

po
ns

e
tim

e
(s

)

Query

Subquery
Indexing

PIR

Figure 5.3: Breakdown of result for the complex queries experiment for the large database.

Table 5.3: Effects of database optimization on query responsiveness, over the large data set.
BTREE = overall timing for meeting privacy requirements with our B+ tree prototype,
rQp = subquery execution duration within BTREE, cI = timing for generating cached
index within BTREE, Time = time to evaluate private query within BTREE.

With optimization: Without optimization:

default database settings query cache disabled

Query BTREE = rQp + cI + PIR BTREE = rQp + cI + PIR)

(s) (s) (s) (s) (s) (s) (s) (s)

CQ1 104 50 52 2 122 69 50 3

CQ2 22 3 1 18 29 4 2 23

CQ3 375 347 22 5 454 434 15 6

CQ4 66 25 32 9 66 26 29 11

CQ5 214 90 118 6 436 310 120 6

database obtains a fresh query plan and result set every time.

We ran this experiment on the less powerful hardware platform we used to develop the

76

 1

 10

 100

 1000

 10000

CQ1 CQ2 CQ3 CQ4 CQ5

R
es

po
ns

e
tim

e
(s

)

Query

Trivial download
This Work

2

18

3
5

3

515

22

186
310

1177

Figure 5.4: Comparing this work to trivial download over a 9 Mbps connection. The y-axis
is on logarithmic scale.

prototypes, because the time to build a fresh query plan does not take a significant time
for the more powerful hardware platform we used for running the previous tests.

Table 5.3 presents the measurements taken for CQ1 through CQ5 over the large data
set under default database behaviour, and the measurements taken when the relations of
the database are flushed. The result obtained for these queries validates the claim that our
approach leverages database optimization to improve performance. The most interesting
measurements taken in this experiment are the subquery execution durations (rQp). For
CQ1, CQ3, and CQ5, the difference in measurements is obvious. However, the effect is
not quite obvious for CQ2 and CQ4. For the latter pair, the fraction of the overall timing
spent for PIR queries is nonnegligible: 79% and 17% respectively. For CQ1, CQ3, and
CQ5, the portion of the time spent for PIR is respectively 2%, 1%, and 1%. The results for
CQ1, CQ3, and CQ5 clearly indicate the contributions of database optimization to query
responsiveness with our approach.

77

5.7.4 Improving Performance by Revealing Keyword Prefixes

One way to improve query performance is by revealing a prefix or suffix of the sensitive
keyword in a query. Revealing a substring of a keyword helps to constrain the result set
that will be indexed and retrieved with PIR. We have demonstrated the feasibility of this
technique with complex query CQ4 (Listing 9 and Table 5.2). While this technique may
be infeasible in some application domains, due to the sensitive nature of the keyword, it
does improve performance in others. This technique does, of course, trade off improved
performance for some loss of privacy, though it is in fact the user (who can best make this
trade-off decision) who can decide to what extent to use it. Making this trade-off decision
in a privacy-friendly manner necessarily requires some knowledge of the data distribution
in terms of the number of tuples there are for each value in the domain of values for a
sensitive constant. This information can be included in the metadata a server sends to the
client and the client can make this trade-off decision on behalf of the user based on the
user’s preset preferences. We consider this extension in Chapter 6.

The processing of queries that allow users to reveal either a prefix or suffix of their
private constant will proceed as follows on a prebuilt index: A user would first request the
root to a particular subtree in a prebuilt B+ tree index (indexed either on the attribute or
the reverse of the attribute, as above), by supplying a substring for that root. The server
would search for and return the requested root, without PIR. Subsequent PIR queries by
the user will be based on the subtree with the retrieved root, instead of the entire B+ tree.
In other words, revealing a substring of a user’s private keyword reveals the portion of the
data that is of interest to the user. However, the level of privacy protection may still be
sufficient for many user and application purposes.

The only realistic situations where performance cannot be easily improved with this
technique are when users must make ad hoc queries that are unknown to the server before a
system is deployed. In such situations, it is difficult to make a single index generic enough
to serve the diversity of the constraints in an ad hoc query.

5.7.5 Limitations

Our approach can preserve the privacy of sensitive data within the WHERE and HAVING
clauses of an SQL query, with the exception of complex LIKE query expressions, negated
conditions with sensitive constants, and SELECT nested queries within a WHERE clause.
Complex search strings for LIKE queries, such as (LIKE ’do%abs%.c%m’), are beyond the
current capability of keyword-based PIR. Similarly, negated WHERE clause conditions,

78

such as (NOT registrant = 45444), are infeasible to compute with keyword-based PIR.
Our solution to dealing with these conditions in a privacy-friendly manner is to compute
them on the client, after the data for the computation has been retrieved with PIR; con-
verting NOT = queries into their equivalent range queries is generally less efficient than
our proposed client-based evaluation method. In addition, our prototype cannot process
a nested query within a WHERE clause. We propose that the same processing described
for a general SQL query be recursively applied for nested queries in the WHERE clause.
The result obtained from a nested query will become an input to the client optimizer, for
recursively computing the enclosing query for the next round. There is need for further
investigation of the approach for nested queries returning large result sets and for deeply
nested queries.

5.8 Conclusion and Future Work

We have provided a privacy mechanism that leverages private information retrieval to
preserve the privacy of sensitive constants in an SQL query. We described techniques to
hide sensitive constants found in the WHERE clause of an SQL query, and to retrieve
data from hash tables and B+ tree indices using a private information retrieval scheme.
We developed a prototype privacy mechanism for our approach offering practical keyword-
based PIR and enabled a practical transition from bit- and block-based PIR to SQL-enabled
PIR. We evaluated the feasibility of our approach with experiments. The results of the
experiments indicate our approach incurs reasonable performance and storage demands,
considering the added advantage of being able to perform private SQL queries. We hope
that our work will provide valuable insight on how to preserve the privacy of sensitive
information for many existing and future database applications.

Future work can improve on some limitations of our prototype, such as the process-
ing of nested queries and enhancing the client to use statistical information on the data
distribution to enhance privacy. The same technique proposed in this chapter can be ex-
tended to preserve the privacy of sensitive information for other query systems, such as
URL query, XQuery, SPARQL and LINQ. Private information retrieval is only the first
step for preserving a user’s query privacy. An extension to this work can explore private
information storage (PIS) [OS97], and how to use it for augmenting the privacy of users in
real-world scenarios. An interesting focus would be to extend PIS to SQL in the manner of
this work, in order to preserve the privacy of sensitive data within SQL INSERT, UPDATE
and DELETE data manipulation statements.

79

Chapter 6

TOPIR: Preserving Access Privacy
Over Large Databases

We develop a technique to address the problem of preserving access privacy for users ac-
cessing a large database over the Internet. Our technique explores constraint-based query
transformations, offline data classification, and privacy-preserving queries to index struc-
tures much smaller than the databases. Our approach enables the querying of a large
database by statically specifying or dynamically defining database portions on keys, pos-
sibly with high diversity in their range of values, thereby minimizing information leakage
about the potential data items of interest to users. In addition, our approach requires min-
imal user intervention and allows users to specify descriptions of their privacy preferences
and delay tolerances along with their input queries to derive transformed queries capable of
satisfying the input constraints when executed. We evaluated the system using patent data
made available by the United States Patent and Trademark Office through Google Patent;
however, the approach has a much wider application in making access privacy obtainable
for today’s Internet users.

6.1 Introduction

Databases in the real world are often large and complex. The challenge of querying such
databases in a timely fashion has been studied by the database, data mining and infor-
mation retrieval communities, but rarely studied in the security and privacy domain. We
are interested in the problem of preserving access privacy for users when querying large

80

databases of several hundreds or thousands of gigabytes of data. This is a harder problem
than in other domains because the textual contents of queries are themselves protected
from the database server. Standard PIR schemes [CGKS95] solve this problem for smaller
databases, but they are just too slow for large databases, making them inappropriate for
meeting the expectations of today’s Internet-savvy interactive users. This is because ex-
isting PIR schemes have an unavoidable computational cost linear in the database size
n [BIM04]. We note that even when faster algorithms and increased computing capacities
are available, the overall per-query response time will still be slow for sufficiently large n.

In this chapter, we justify the importance of providing access privacy over a reason-
able subset of a large database, when absolute access privacy over the entire database
is infeasible, and/or when users’ privacy preferences allow for some flexibility, but they
cannot tolerate long delays in obtaining responses to their queries. We build upon and
extend some earlier work [CG97, OTGH10, WAEA10] that supports performing PIR over
a database subset as a useful practice. Our goal is to simplify how to query a subset of
a database while minimizing the privacy lost and minimizing query response time. We
provide a generalized approach for querying large databases. Our algorithm works in two
stages: offline preprocessing and online query. During offline preprocessing, the database
administrator classifies the data in the large database into smaller chunks (or buckets) and
generates a number of indices to support keyword- and full-text-based search. The user
specifies her online query either as array indices, one or more keywords, or in SQL. She
also specifies her delay tolerances and privacy preferences to the algorithm or system. De-
lay tolerance indicates how long she is willing to wait (in seconds) for her query results,
while her privacy preferences spell out constraints on the amount of information to leak
about her query to the database. Our system derives and executes an alternative query
that satisfies the input constraints and returns a correct response to the user. The query
execution time is satisfactory to the user because her query runs against a subset of the
database, unlike queries that run over the entire data set, which may be too slow.

Unlike previous work, our approach explores new ideas about classifying large databases
into buckets, searching and retrieving data from large databases over index structures
that are much smaller than the database, ensuring access privacy over the buckets while
minimizing risks of correlated queries, and the development of a practical Patent Query
System that demonstrates a privacy-friendly alternative to Google Patent Search.

Outline of the chapter. We motivate the research in Section 6.2. In Section 6.3,
we provide the model we are proposing for preserving access privacy over large databases.
In Section 6.4, we provide details of our approach for classifying, indexing, and querying a
large database in such a way that the privacy and performance preferences of the user are
considered. Section 6.5 describes our implementation and evaluation of the approach using

81

patent data from the US Patent and Trademark Office (USPTO). Section 6.6 concludes
the chapter.

6.2 Motivation

We motivate the need for providing access privacy over large databases and highlight some
drawbacks of the current state-of-the-art approach to the challenge of providing access
privacy.

6.2.1 High Computational Costs for Large Databases

Existing PIR schemes are slow when used to query large databases. We found from our
evaluation in Chapter 4 that the round-trip response time of the fastest single-server PIR
scheme [AMCG+08] is approximately 3 minutes—the time to retrieve a meaningful piece
of data (e.g., 4 KB) from a 1 GB database on a typical home user Internet connection
of 9 Mbps download and 2 Mbps upload [Ook10]. We found the fastest multi-server PIR
schemes [CGKS95,Gol07a] to have a better response time of between 0.5 s and 1.3 s. On the
other hand, it takes approximately 15 minutes for a typical home user to trivially download
the entire database. There are clear advantages from using PIR (even in comparison to
trivial download) over databases of this size. However, for a larger database of 16 GB, the
respective response times for single-server and multi-server PIR are 16 minutes and 7–21 s
respectively, compared to 4 hours for trivial download. Again, there is an advantage in
using PIR over the trivial solution; however, the response time will not be as tolerable for
users as with the smaller 1 GB database. If we project the response times by assuming
a 1 TB database that is not uncommon in the real world, the numbers look ridiculously
expensive: 17 hours for single-server PIR, or 34–53 minutes for multi-server PIR. Although
those numbers are far superior to the 11-day trivial download time, these times are still
too slow for usable systems. We note that it is unlikely for the response time to become
affordable in the future because the multiplicative factor resulting from the scale of a
large database will overwhelm almost any per-item computational cost, no matter how
low or insignificant. Querying a large database by retrieving every block is not practical
for interactive queries in the traditional information retrieval context, and so will it most
probably remain in the PIR context.

6.2.2 Most Internet Users Have Low Network Bandwidth

The original motivation for studying PIR recognizes network bandwidth usage as the

82

most expensive resources that should be minimized. As a result, most recent PIR schemes
have near-optimal communication complexity. After almost two decades of work on PIR,
most Internet users are still low-bandwidth users. The network bandwidth of the average
home Internet user is improving at a rather slow pace [Ook10]. As mentioned in Chapter 4,
the most valid source of data to show this trend is the recently available Internet speed
database [Ook10]. The average download rates of users in Canada and the US for 2008,
2009, and January 1 to May 30 of 2010 are 6, 7.79, and 9.23 Mbps. The average upload
rates for those respective periods are 1.07, 1.69, and 1.94 Mbps. We can see that the growth
rate is rather slow. In early November 2010, the average Internet download and upload
rates for the G8 Nations was 9.55 Mbps and 2.32 Mbps respectively. This latter result was
based on a survey of over 400,000 Internet users for a six-month period ending November
2, 2010. These averages more correctly reflect the improvements in Internet bandwidth
than those predicted by Nielsen’s Law [Nie88]. Again, as noted in Chapter 4, Nielsen’s
Law specifically addresses the type of users described as normal “high-end” who can afford
high-bandwidth Internet connections [Nie88]. This class of users should be contrasted
from “low-end” users [Nie88] that the above bandwidth averages from the Internet speed
data [Ook10] include. Since most Internet users are at the low-end category, minimizing
the communication between the user and the database is necessary for realizing access
privacy.

6.2.3 Physical Limits of Hard Disks and Memory

Large databases cannot fit in available RAM in most situations. Consequently, the
processing rate of typical PIR schemes will be disk bounded since every data item must
first be read and then processed. Disk read latency also applies to the cases of trivial
download and traditional non-private information retrieval. The latter avoids reading the
entire database for each query being processed, since it will be impractical to do so in order
to answer queries interactively.

6.2.4 “All-or-nothing” Access Privacy is Insufficient

PIR schemes are well suited for solving the access privacy problem because they provide
a strong privacy guarantee against a powerful adversary (i.e., a database administrator or
owner). However, having a new perspective on how to leverage PIR to address the access
privacy problem for large databases is necessary. Today’s online users have reasonable
(but not absolute) means of protecting information about their identity (i.e., anonymity)
using onion routers and mix networks. A system like Tor is quite successful in helping
dissidents, citizens of oppressive regimes, military personnel, and many Internet users
stay anonymous. Whereas anonymity systems in wide use today do not offer an absolute

83

guarantee for privacy, they are nonetheless successfully deployed and are used by a wide
population of users. On the other hand, the PIR community has largely continued to
approach the case of protecting the content of the user’s query with the notion of absolute
or “all-or-nothing” privacy, with respect to PIR-processing every data item in the database.
Since we are yet to find a better alternative, we reexamined the currently held rigid notion
of privacy with PIR and substituted a somewhat more relaxed notion that allows users
to enjoy “graduated” privacy instead. Such a change in perspective will help realize the
fielding of user-centric systems with acceptable performance and access privacy protection.

We note that Asonov et al. [AF02] relaxed the strong privacy guarantee of PIR that
reveals no information about a query to a weaker notion that reveals not much information.
They referred to schemes exhibiting such property as repudiative information retrieval
(RIR). The information revealed by an RIR scheme is insufficient for anyone, even with
the cooperation of the database, to say whether or not a particular item of the n items in
a database is the one retrieved by a query. The work was motivated by work in secure-
coprocessor-based PIR on reducing preprocessing complexity from O(n log n) to O(

√
n).

An open problem from the work is how to achieve RIR without using a secure coprocessor.

6.3 Model

Our model consists of the user and the database interacting using four algorithms: query
transformer, query executor, data classifier, and data indexer. The query executor encap-
sulates the query generation and response decoding algorithms for some PIR scheme. We
illustrate the components of our model in Figure 6.1.

Before users can run their queries, the database administrator uses a classifier algo-
rithm [BGV92] to classify the data in the database into subsets or buckets. This process
divides the large database into buckets using one or more attributes of the data as the
key. The classification also returns an easily computable function that outputs a bucket
number for an item of data when a key is passed as input. For example, we can com-
pute a non-cryptographic hash of a key to determine the bucket number. We note that a
tradeoff has to be made between an easily computable function that randomly partitions
the data set and a more costly function that divides the data set into subsets that can
provide the most access privacy when queried. There is information leakage when a client
successively performs two or more queries relating to the user’s specific interest over a
single or multiple subsets of a large database. For example, the adversary might be able
to easily determine that successive queries over database subset DB1 indicate the user is
interested in any one of these smaller subset of database items. However, such leakages
can be minimized by systematically diversifying the distribution of the data by their keys

84

UG,,q

DB
1

DB
2

DB
k

DB

I
1

I
2

I
k

I
*

RQuery

Executor

Query

Transformer

Data

Classifier

Data

Indexer

User
Adversary

Q

Figure 6.1: A model for preserving access privacy over large databases.

over the subsets, thereby making it difficult for an adversary to correlate a user’s interest
to the set of queries he or she makes over any single bucket or multiple buckets. We leave
for future work the problem of finding a way to classify a large data set into subsets that
minimizes information leakage over multi-round search and retrieval. Nevertheless, as we
will see later, our approach performs a PIR-based search and retrieval over an index built
on the entire data set, and not a subset. It therefore forestalls any chance for inferring key
relationships through queries made to indices built over the entire database.

The data classification algorithm does not have to be overly complex. We note that
some hierarchical clustering algorithms in the unsupervised learning category [HG05] can
probabilistically determine whether or not a data point or key is classified into some clusters
(i.e., buckets) may be sufficient in some situations, such as when query failures are allowed.
However, it is unlikely for data in large publicly held databases, where access privacy is
important, to require such complex clustering approaches that are typically studied in
the data mining literature. Preprocessing with a classifier algorithm is not required if
the user can suitably define data subsets dynamically at runtime by leaking some general
information to the database for defining the subset. However, there might be performance
penalties.

In addition, the database administrator builds two types of indices over the entire data
set. The first type is a master index to be used for searches over every keyword in the
entire database or selected attributes of the data. For example, we might want to build
an index over the keywords in the title, abstract, claims, a combination of these, or the
entire attributes of a data set of patent documents. This index also contains compressed

85

summaries of the database items which will be displayed to the user during a search. We
denote the master index by I∗ in Figure 6.1. The second type of index is built over keys on
specific attributes of the data and supports retrievals of full data items over that particular
attribute. For example, indices might be built over the patent number, application date,
issued date, title, inventor, or assignee fields of a patent document. We denote these second
type of indices by I1,I2,· · · ,Ik in Figure 6.1.

Once the offline processing is completed, users can start querying the large database.
The user request to the database is a three-tuple (q, δ, ρ), where q is the input query in the
natural form; i.e., a database item index [CGKS95], a keyword [CGN97], or a language-
based [OG10b] (e.g., SQL) query. δ is the cost tolerance of the user in seconds. Conversion
to other dimensions of cost, such as dollars, is straightforward given the recent availability
of pricing models [CS10] for cloud computing. ρ represents the privacy preferences of the
user. For example, a user that knows that she is prone to privacy violation due to easy
availability of additional information about her interests might opt for an option that does
not disclose any partial or general information about her interests. The definitions of δ
and ρ for a particular user only need to be completed once.

The user’s request is input to the query transformer algorithm which will produce an
equivalent query that can satisfy δ and ρ.

Definition 2 An algorithm Γ accepts query q, processing cost tolerance δ, and privacy
preferences as inputs, and outputs either ⊥ or a query Q that can be executed by some
privacy-preserving system. Then Γ is a valid query transformer iff for all non-⊥ out-
puts, result(execute(q)) = result(execute(Q)), cost(Γ) + cost(execute(Q)) + ∆ ≤ δ, and
execute(Q) conforms to the given privacy preferences.

The functions result(·), execute(·), and cost(·) respectively denote the result of a query,
the execution of a query, and the cost (time, computations and communications) required
for executing an algorithm or a query. ∆ encompasses the variability in the costs of query
transformation and query execution. It is often the case that cost(execute(q)) ≤ δ. The
goal is to produce valid query transformers that output ⊥ as little as possible.

The query executor runs the transformed query using a PIR client algorithm, performs
additional processing on the data items retrieved with PIR, and returns the result to the
client. A minimum of two rounds of PIR queries is required to retrieve information from
the database. The first round of PIR queries is over one of the indices. For example, in a
keyword search, the client will first determine the set of addresses (array indices) for the
entries of an index matching the search terms. For a hash table index, the address can be

86

computed from the perfect hash functions [BBD09] for that index, whereas an oblivious
traversal over a tree-based index is required to help locate the address in other instances.
From Chapter 5, oblivious traversal describes how a client can use PIR to search a tree-
based index structure located at the server, without the server being able to learn any
information about which nodes in the tree are included in the traversal path. The client
algorithm for the PIR scheme is then used to encode these addresses into PIR queries, and
the queries are sent to the PIR server(s). The server(s) uses the server algorithm for the
PIR scheme (i.e., response encoding) over the index to generate a response, and forwards
it to the client. The query executor locally ranks the data returned for the queries before
displaying it to the user. The second round of PIR proceeds once the user selects the
desired item for retrieval from the result. This time, the particular data item of interest
is retrieved from a statically specified bucket or a dynamically defined portion of the large
database. The retrieval procedure is akin to the standard search-and-retrieve model used
for searching documents and retrieving one of the documents returned by following links
on everyday search engines. In practice, however, more dummy queries may be needed to
prevent the adversary from learning the number of terms in the user’s query or the size of
the data item that was eventually retrieved.

6.4 Proposed Solution

Our solution allows the user to obtain reasonable access privacy when querying a large
database by allowing the user to specify her delay tolerances and privacy preferences along
with her query. We will describe in detail each of the steps from our model in Section 6.3 in
two phases. In the first phase, the database administrator generates indices and establishes
data subsets in buckets. During the second phase, the user runs her queries.

6.4.1 Defining Database Subsets

Since preserving absolute access privacy over a large database is hard to accomplish in
near real time, data classification can be used to organize the data in such databases into
smaller subsets. A subset can be defined dynamically at runtime or statically before the
first query is run. We refer to dynamically defined subsets as portions, and statically
defined subsets as buckets. The minimum size of a subset should be sufficiently small so
that it can be queried within the smallest amount of delay a particular system supports.
For example, if a system supports a minimum delay of 10 s, and given a PIR scheme like
Goldberg’s [Gol07a] which processes databases at 1.3 s/GB, then the size of each database

87

subset should be approximately 5 GB, leaving some time for other processing activities
and network delays.

Runtime definition

We note that it is not always the case that buckets must be defined for every practical
situation. If it is sufficiently fast to define database portions at query time, then the user
query may leak information to help the database server define the subset. Defining database
subsets dynamically offers some flexibility that makes it suitable for any query type we
support—index-, keyword-, and language-based queries. Besides, it groups data of similar
kind in the target portion, thereby allowing range queries over the data in that portion.
However, it has a number of drawbacks. First, the client software must explicitly leak
information to the database about the interest of the user. Disclosing broad information
about the user interests to the adversary might seem innocuous at first; however, if the
adversary possesses some additional knowledge, he or she might be able to utilize this
information to narrow down the search space for the user’s interest. Second, it might be
slow, because of the server-side requirement to retrieve the data for the portion before
computing on the data using PIR. Third, the client would need information about the
distribution of the data in the database (i.e., a histogram of the data) before it can have
assurance that the portion it is defining is indeed safe or contains enough data. For example,
revealing a substring of a user’s query might just be enough for the adversary to identify
the particular data targeted by the query. The client needs to be able to approximate
the size of the resulting database portion from looking at her substrings. Data histograms
are constructed easily by today’s relational databases, but an extra step is required to
construct it for unstructured and semi-structured data. Finally, there are privacy concerns
with respect to the popularity of defined portions. For example, if the data in the portions
defined by a particular user is not popular, then the attacker might have higher probability
of determining the user’s interest. Conversely, better privacy will result if the data in the
portions have high popularity.

Information that is leaked to define database portions dynamically depends on the type
of query. For index-based queries, the client will identify the range of indices that contains
the desired index. The client must maintain local state information to help it reuse the
same range for queries on all indices in that range; otherwise, it might be vulnerable
to intersection attacks. Defining database portions for keyword-based queries is difficult
because a keyword can appear in any attribute of a data set. We will later describe
our technique for realizing keyword-based queries. The client has some leverage in leaking
information on language-based queries. In SQL for example, information might be leaked in

88

several places, such as substrings of a predicate constant, whole constants, whole predicates
or even all predicates in a query. As an example of leaking information about sensitive
constant substrings, consider the SQL query in Listing 4.

Listing 4 Example SQL query to be transformed.
SELECT title, abstract, url, version, last_updated

FROM document

WHERE (last_updated > 20100101) AND

(title = ’Practical Access Privacy’)

Disclosing the prefix ’Practical’ of the sensitive title ’Practical Access Privacy’

gives some privacy because several documents have title that begins with the keyword
’Practical’. The really sensitive part of the title is still hidden from the database. The
resulting subquery that leaks the title prefix is shown in Listing 5.

Listing 5 Transformed SQL query with some substring of the constant hidden.
SELECT title, abstract, url, version, last_updated

FROM document

WHERE (last_updated > 20100101) AND

(title LIKE ’Practical%’)

The corresponding PIR query for Listing 5 has the form KeywordPIRQuery(’Access
Privacy’, I), where I, based on the technique from Chapter 5, is the index generated from
the subquery result, and KeywordPIRQuery(·, ·) is a keyword-based PIR search over the
index I. The result of the PIR query is the overall result for Q. The decision to leak
information about constants 20100101 and ’Practical’ is best based on the statistics of
past disclosures from other users of the system running this particular query. For example,
if 90 percent of users leak information about the date 20100101 in the query in Listing 4,
then it should not be a significant privacy loss to also leak information about that date
in the current user’s query. However, such leakages can result in much more efficient PIR
because PIR will now be performed on a smaller portion of the database.

Offline Definition

Before the first query is made, the database is classified or clustered into some k buckets.
We consider databases that contain information in hierarchically organized categories. For

89

example, “Sports” might be a parent category for “Baseball” or “American League”. If
the database does not have a natural hierarchical structure, then decision-tree [SL91],
neural-net [Lip88], or Bayesian [HG05] classification techniques can be used for most multi-
attribute data sets with relevance to access privacy. There is a large body of work in the
data mining literature about these areas and this work does not explore them further.
A hierarchical structure is needed to support range queries within a particular parent
category. Otherwise, data that should belong together are distributed to separate buckets,
making range queries impossible. In addition, we require the classification approach to
provide a function that accepts a data point and computes the bucket number containing
that point. This requirement disqualifies many traditional clustering algorithms because
removal of a single point may completely alter clusters. We note that this requirement is
not difficult to realize in practice, because most real-world databases where access privacy is
needed can be categorized using techniques like decision trees. The data in structured data
sources like relational databases can always be classified by some attributes of the data.
The classification can utilize histograms maintained by the database on the distribution of
the data set. We note that histograms are widely used in relational databases for estimating
selectivity during query optimization and for approximate query evaluation.

Once the data is classified, each of the k portions may simply be represented as pointers
to items in the larger database or the data may be materialized from the larger databases
and separately stored on disk. At query time, the client must evaluate the provided
function in order to determine which bucket (or buckets, if the user can tolerate more
delays) should be queried. Unlike when a client defines database portions at runtime, the
client is not leaking any information directly related to query contents to the database. The
only information being leaked is the bucket(s) to use, which can be made not to disclose
any specific information related to the item of interest as explained next.

For the classification techniques for the static bucket definition approach to be max-
imally private, each bucket must be striped with information from many or all possible
parent categories. In other words, every bucket should exhibit high diversity in their infor-
mation content, such that the user’s general interest cannot be localized to any one category,
simply from learning the bucket number(s) used for the query. We defer to future work a
way to derive optimally diverse buckets and how to guarantee such a property for any data
set. In addition, mechanisms for ensuring that buckets have equal popularity among users
are necessary especially if the database cannot be relied upon to provide information about
the popularity of buckets. Mix-matching of buckets with disparate popularity increases the
chances of the adversary guessing the item of interest to the user. One possible mechanism
is for the servers in a multi-server PIR setting to compute the top-k popular items in the
database and replicate these into a smaller database. We studied such a mechanism in

90

our original paper [HOG11], which is related to our PIR-Commerce contribution (later in
Chapter 8). However, it is not a direct contribution from this thesis, and will therefore not
be discussed further. Note that in computing the top-k popular items, the servers do not
learn any information about the queries of users; they only jointly learn the top-k popular
items. The replication of the top-k items to smaller databases allows PIR to be performed
in a more computationally efficient manner, in addition to enhancing the privacy of user
queries.

Another possible mechanism is for users to jointly support a semi-trusted public forum
to which they can periodically connect and upload the list of the database portions or
bucket numbers that have been previously used for their queries. A list of bucket numbers
or database portions of a user forms an access map. We note that disclosing a user’s access
map does not help the database or a third party to violate the privacy of the user, since
the data items of interest to the user will still remain hidden within the map. Such a
forum serves as a repository to develop the statistics of the popularity of each database
portion or bucket. The distribution of popular database items may not be as precise as
the top-k mechanism above, but it is nonetheless useful in a single-server PIR setting or in
a multi-server PIR setting where the servers cannot be relied upon to compute the top-k
popular items. A user takes advantage of the public repository by retrieving an access
map that contains the data of interest from the repository and then sending the map along
with her query to the PIR servers. A simple technique to ensure that queries have similar
popularity is for users to volunteer by sending dummy queries to enhance the frequency
of use of unpopular portions or buckets. Such public forums are not detrimental to users’
privacy because it is the same information that users send to the database in the first
place. However, there are performance implications from the use of dummy queries. The
database can actually maintain the same information and even associate each map to the
users that have used them. Making it public provides a means of sharing maps among
users in order for them to cooperate in protecting their queries. For example, many users
may independently define a map containing a particular bucket, which happens to contain
a data item about score information from the 2010 FIFA World Cup. Given the popularity
of that data item in the months when the soccer games were played, the database might
have a better chance at learning the target of such popular queries. On the other hand,
if multiple buckets having the same popularity are used by several users, it will be harder
for the database to learn which data item is responsible for the high traffic.

A related practice from major search engines is a recent feature advertising most popular
search terms or hot topics to users. Microsoft Bing offers xRank. Google offers Google
Trends, Google Insights for Search, and Trends for Websites. Yahoo! offers Trending
Now. Some of these contain coarse-grained information about the location of the user

91

that originated the search. Statistical information of this nature about previous searches
accumulated for a particular system can be useful for making tradeoff decisions between
performance and efficiency for applications using PIR schemes.

Some of the benefits of using static buckets include no explicit information leakage
about the user’s query, improved online query performance because data materialization
for portions defined dynamically can be avoided, and flexible definition of sub-portions in
a dynamic fashion over individual buckets. Some of the drawbacks are that it is best for
data that has been or can be classified into some hierarchical structure and the need to
cluster the data ahead of time.

6.4.2 Indexing Large Databases

We denote the range of integers between 1 and m as [m]. Given a list of attributes over a
large data set to build an index on, the database follows these steps:

Step 1: Generate a perfect hash function (PHF) f over the list of m unique keywords
(excluding stopwords) from the data in the attributes. Construction time for the state-
of-the-art PHF [BBD09] takes O(m) time, and as low as 0.67 bits per key is stored. It
takes under 30 s on commodity hardware to generate this PHF for m = 2×107 (20 million
unique words) and a representation size of under 2 MB.

Step 2: Create a table T of m rows, where each row Ti (i ∈ [m]) is the slot for the ith

unique word. More precisely, each row Ti consists of two fields: a counter field Ti−size,
and a contiguous, fixed-size list of length s of summary data T ji−data of data items that
contain that keyword. The fixed-size summary of each data item should contain sufficient
information to convey the content of the data item to the user and, possibly, for ranking
of retrieved summaries by the client. Additionally, it should contain the offset of the data
item in the bucket the data item is classified into. In a patent database, for example, things
like title, date of application, patent number and an excerpt of the patent’s abstract with
the keyword in context would be appropriate. The value of s is carefully chosen to ensure
that every data item in the database exists as T ji−data for some values of i and j. In other
words, every data item can be searched and located by some keywords. On one hand, if
the value of s is chosen too small, many summary data items might be excluded from an
index, and could not be located during a search. On the other hand, if s is chosen to be too
large, then query response over the index will suffer. Since the same number of patents are
indexed for every word, an appropriate ranking strategy will help ensure that every patent
appears in some T ji−data. Ranking may imply truncating the list of data items containing

92

datasize

f(wordm)

f(word1)

f(word2)

12

1

6

s

DB
1

DB
2

DB
k

Figure 6.2: Index structure (i.e., table T) to support keyword-based retrieval over a large
data set. s = 12 is the width of the index, f(·) is a PHF, word1, · · · , wordm are keywords,
and DB1, · · · , DBk are subsets of the database.

a particular keyword. Should there be fewer than s summaries for a particular word, the
remaining slots are padded as appropriate. Similarly, some high-frequency words (i.e.,
words appearing in too many data items) or words that span too many unrelated buckets
might be excluded entirely. Finally, initialize Ti−size = 0 (i ∈ [m]).

Step 3: For each data item, prepare a summary α and extract unique words (excluding
stopwords) from the key attributes for the master index. In preparing α, a lookup to
a secondary hash table might be necessary to obtain the offset for the data item which
α is summarizing in the containing bucket. The hash table is easily generated during
classification of data into buckets.

Step 4: For each word w use the PHF f to compute the table slot k = f(w) and update
T `k−data = α, where ` = Tk−size or the `th slot in rank order of the list of summaries
including α and the existing summaries in Tk−data. If Tk−size = s (i.e., full), then we
drop the lowest-ranked item. Otherwise, increment Tk−size by 1. Continue from Step 3 if
there are more data items. The above step ensures that the highest-ranked summaries are
placed on each Tk−data list. We illustrate the structure of T and the buckets in Figure 6.2.

We note that performing PIR over a master index is within reach, compared with
performing PIR over the large database. The key benefit of the master index is that its
size is much smaller than n. In environments with high transaction volume, the value of m
will increase rather slowly, whereas the value of s or the ranking strategy for the patents
containing a particular keyword w might need to be changed to ensure all data items are

93

indexed, and also to minimize wasted space.

Secondary indices to support keyword-based PIR over any of the attributes of a data
item can be generated in a similar manner; however, the words are now the values of the
keys. We note that we describe a related approach in Chapter 5 for the generation of
hash-table and B+-tree indices.

6.4.3 Privacy-Preserving Query Transformation

A query transformer follows some constraints to convert an input query into another query
that may be executed by some privacy-preserving system. Our notion of query transfor-
mation aims to derive an equivalent output query that will provide an acceptable level of
access privacy, given the cost constraints and privacy preferences of the user. The concept
of query transformation can be applied to the three data access and query models that have
been proposed in the study of PIR (i.e., index-based [CGKS95], keyword-based [CGN97]
and language-based [OG10b]). As an example, we will describe the transformation process
for keyword-based queries, which is the most widely used online search model.

We use integer values for the user delay tolerance δ in seconds. Since there is no univer-
sal model of privacy preferences that can satisfy the needs of every user, system or privacy
legislation [Kob01], any number of parameters can be specified as privacy preferences ρ
in a particular situation. The privacy preferences will constrain the information that is
leaked about the buckets or database portions that will be used in answering the user’s
query. For example, a user might opt never to disclose any information about substring
constants in an SQL query if the user considers it to be too risky.

An example of modeling user privacy preferences for an SQL query is available in
Appendix B.

Transforming keyword-based queries

We take a k-keyword query as consisting of a nonempty set of keywords ω = {w1, w2,
· · · , wk} combined by logical operators. The client computes the address of each of the
keywords ij = f(wj) for all j ∈ [k] in the master index using the PHF f retrieved from the
server. Then, it generates PIR queries for those addresses and forwards them to the PIR
server(s). The PIR server(s) evaluate the queries over the master index, which is much
smaller than the whole database. (It is also possible for each keyword to target a different
index, but that requires some enhancements in the query syntax and semantics.) Let the

94

result returned by the PIR server for the respective keywords be r1, r2, · · · , rk. Recall from
the index generation steps above that each result rj ≡ Tj−data. The client would then
combine and rank the elements of Tj−data using the logical connectives. The ranked list of
summaries α1, α2, · · · , αL, L ≤ ks, is now displayed to the user. We note that the database
server cannot learn any information about ω since each PIR query is over the entire block
of data for the master index or the indices used. As previously identified, dummy queries
can further prevent the learning of the number of keywords in the user’s query.

After the user responds by selecting an αj, the query transformation process begins.
Again, the description of ρ will help the query transformation process decide whether
to base the retrieval upon the bucket specified in the description of αj or to leak some
information about the data item of interest using data contained in the summary. Recall
that each summary contains the bucket number, index of the data item in the PIR data
block for the bucket, and other identifying information. Should the client choose to define
database portions for answering the queries, based on the user’s privacy preferences, it
will use information about the data statistics contained in the calibration metadata to
determine whether the leakage is safe. For example, if the statistical information says that
some 110, 000 patents were issued the first two quarters of the year 2009, the client might
leak information about the issue dates of the patent as being January to June of 2009 if
the query input constraints are met. That is, it is also the case that 110, 000 patents is
sufficient to satisfy the user’s access privacy level, the estimated execution time does not
exceed δ, and the user privacy preferences allow disclosure of information about the year
and/or month.

However, if the client chooses to query data from the buckets, it determines the bucket
that contains the data item to be retrieved from the content of α. Using the parameters
from calibration metadata (see Appendix B for a description), it checks if δ ≤ (ttr+tPIR+∆)
(∆ accounts for the variability in the timing for transformation and post-processing of
PIR queries) and returns ⊥ with a suggestion to the user about adjusting the value of δ;
otherwise the transformation process proceeds. The client examines its archive of query
maps and selects the one that contains the bucket of interest, if found. Otherwise, the user
randomly selects some γ buckets in a list such that δ ≤ (trt + (γ + 1) · tPIR + ∆), adds the
bucket containing the data item to the list, and permutes the modified list. The permuted
list will be used to answer the query.

The output of query transformation over bucket(s) consists of a set of one or more
bucket numbers and the addresses of the data items to be retrieved from the bucket(s).
A similar output for queries over dynamically defined database portions consists of the
identifying information to be leaked to the server and a key derived from αj for locating
the complete data for αj from the portion.

95

6.4.4 Privacy-Preserving Query Execution

The query executor runs a transformed query over the data defined by the access map
to retrieve the data item of interest, while preserving the access privacy preferences and
performance constraints of the user.

The process of running a transformed query over some bucket(s) begins with the client
generating PIR queries to retrieve the data item at the specified address. The client
determines the relative address of this item using the bucket offset and length information
from the calibration metadata. In the case of dynamically defined portions, the query
executor at the client requests the database to retrieve the data items related to the
leaked information and to build an index over the retrieved data. The PIR server will
forward some session metadata to the client, which will allow it to perform keyword-based
PIR [CGN97,OG10b] over the index that was generated.

6.5 Implementation and Evaluation

The ability to query a patent database without giving away access privacy is one of the
most well-cited application areas motivating the study of private information retrieval.
We evaluated our approach using the patent database that has been made freely available
through an agreement between Google and the USPTO.

6.5.1 Experimental Data Set

Bulk Downloads of US Patent Grants. In the past, organizations needing to do com-
prehensive analysis of patents issued by the USPTO could either request bulk downloads
on digital media like CDs or DVDs for a fee of between $10,000 and $250,000 to cover
USPTO expenses [Goo10], or download the information on a file-by-file basis from the
USPTO website. The recent agreement between Google and USPTO has enabled anyone
to download the entire collection for free through Google. The bulk download data made
available via Google are unchanged from their USPTO formats, although they have been
repackaged as zip files.

Google Patent Search. Besides making bulk patent data available, Google Patent
Search enables users to perform full-text search and retrieval over the entire database of
patent grants and applications. Google hosts and maintains a corpus containing all of

96

these documents, which have been converted from the original USPTO images into a form
that can be easily searched. As of November 2010, there are over 7 million patents and
over a million patent applications. The entire collection of patents issued by the USPTO
since the 1790’s through those issued in the last few months, as well as patent applications
that have been published, are available in the corpus. Users can either perform a full-text
search over the corpus or search by attributes like patent number, classification, and issue
date.

The USPTO grants approximately 4,000 patents weekly [Goo10]. We downloaded zip
files for the multi-page images of all patent grants for the year 2009, and used them as our
experimental data set. The zip files contain images in Tagged Image File Format (TIFF)
Revision 6.0. After extraction, we had a total of 209,960 individual patents in separate
multi-page TIFF files (a total of 220 GB of data).

In addition, we downloaded zip files for the “US patent grants full text with embedded
images” corpus for 2009. Each zip file contains the full-text, drawings, and secondary file
formats like genetic sequence data and chemical structures. The full-text files are XML
files that conform to the U.S. Patent Grant DTD. We only extracted the full text XML
files from the zip files; the secondary files were not extracted because they are already part
of the patent TIFF images. Since XML files are more easily parsed and processed, we
extracted data from the full-text XML and used it to index the patent TIFF images. The
doc-number tag in each XML file served as a link to the image of the patent document
in TIFF format since the patent number is used as the filename for each TIFF file. The
full-text patent XML files resulted in an additional 16 GB of data.

The CDF plot of the file sizes for the TIFF images (in KB) is shown in Figure 6.3.
The smallest patent file was 33.4 KB, and the largest was 155.8 MB. However, the next to
the largest file was only 83.3 MB. From the CDF plot, about 99% of patents are 6 MB or
smaller, which is reasonable. Padding 99% of the patent files to have equal length will not
be a significant problem; however, the adversary might have an advantage identifying the
remaining 1%. On the other hand, padding all patents to be 156 MB will offer the best
privacy, but the user will have to perform more PIR requests than necessary 99.99% of the
time. Although the padding strategy is an important security parameter, we deferred the
tradeoff decision of choosing a strategy until actual system deployment time. We however
pad each patent to have a size in multiples of the PIR block size. In addition, we were able
to obtain some savings in the TIFF file sizes using compression.

97

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

P
ro

b
a

b
ili

ty

Size of Patent Image [KB]

Figure 6.3: A CDF plot of our sample data patent image file sizes. The x-axis is on a log
scale.

6.5.2 Experimental Setup

We developed a C++ system based on our access privacy approach for searching and re-
trieving from the database of patent documents. We used RapidXml [Kal09] to parse
the patent XML files and the C Minimal Perfect Hash (CMPH) Library [BBdCR09]
for building hash-based indices. We implemented the PIR aspects of our system using
Percy++ [Gol07b]. Our hardware is an Intel Xeon E5420 server with two 2.50 GHz quad-
core CPUs, 32 GB RAM, and Ubuntu Linux 10.04.1. The rest of this section describes
how we built indices over the patent data in order to support keyword-based queries.

6.5.3 Classifying USPTO Patent Data

We leveraged the U.S. Patent Classification System (USPC) to classify the patents in our
data set into buckets such that each bucket contained one or more collections that are
identifiable by their alphanumeric subclass. We determined the number of buckets to use
by considering the total size of our patent images (i.e., 220 GB) and the time it will take
a low-budget user to successfully query a bucket. If the data in each bucket is too large,
it might not be within the reach of low-budget users. On the other hand, if there are too
many small buckets, then users would need to specify several buckets for each query, which
may add to the bandwidth cost. With compression of the patent images, and exclusion of

98

patent images of some full-text XML files that failed parsing with the RapidXml library,
the total compressed data size we classified into buckets was 127 GB. Also, we decided
to make each bucket be approximately 1 GB of compressed data. That informed our
choice to set the number of buckets to 126. We simply took the hash of the alphanumeric
subclass of each patent to determine the bucket number. A better way would be to divide
individual patents into buckets by considering the keywords that relate to them. When
patents containing a particular keyword are evenly distributed among the buckets, there
will be less information leakage from an adversary observing the retrieval pattern of a user
over multiple buckets.

6.5.4 Generating Indices

We built indices over the experimental data to support keyword-based search. The process
involves reading and parsing the XML files, extracting relevant attributes for creating
the summary of the patent, distributing the patent TIFF image files into their respective
buckets, and finally merging the buckets. We concatenated the TIFF images of the patents
in each bucket because the PIR scheme used for the evaluation expects a PIR database to
be a single block of data.

Again, we used a simple strategy to rank all patents containing a particular keyword.
For a particular word, the patents containing that word are ranked using the reciprocal of
the total number of words in each patent. We note that term frequency [SB88], inverse
document frequency [SJ88], and cosine similarity [SM86] are alternative ranking strategies
explored in the data mining community.

Completeness of keyword-based indices. We evaluated the index for keyword-based
search over the titles and abstracts in our data set to determine whether every patent
appears as a summary item associated with some words. If some patents are missing, then
they cannot be searched and retrieved with any keyword. Again we discovered that index
completeness is a tradeoff decision driven by the ranking strategy of patents for a particular
word and the width s of the index. We will only consider the latter.

For our experiment, when we set the value of s to 31 to align the index entry for each
word to be in multiples of 4 KB, about 31% of the patents did not appear in the index.

99

When we increased s to 63, still 24% of the patents were left out. However, when we
increased s to 252 only about 0.2% of the patents were excluded.

The cumulative distribution function of words in the number of patents is shown in
Figure 6.4, which further explains the reason for the behaviour. We only considered whether
a word appeared in the key attributes (title and abstract) of a patent, and not how often
it appeared. From the plot, 25% of the words appeared in exactly one patent, 65% of
the words appeared in at most 10 patents, and 98% of the words appeared in up to 1000
patents. Recall that s constrains the width of an index. On one hand, if any patent has all
of its keywords being common (appearing in more than s patents), it may not be indexed
at all. The smaller s is, the more likely this is to happen. On the other hand, the user
might have to retrieve enormous amount of data in the display page of a search results if
s is made too large.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
ro

p
o
rt

io
n
 o

f
W

o
rd

s

Number of Patents

Figure 6.4: A CDF plot of our sample data showing the popularity of words in patents.
The x-axis is on a log scale.

One solution to ensuring all patents are indexed is to use a better ranking strategy.
Another solution is to set s to be the frequency of the word with the highest frequency of
occurrence in patents. The Ti−data items would no longer be required to be of equal length.
Each may, however, be padded to be in multiples of the PIR block size. At query time,
the client will have the flexibility of choosing the number of summaries to retrieve for each
Ti−data. This is achieved by specifying the beginning offset into Ti−data and the number
of summaries to retrieve. Varying the size of the block does leak some information to the
database. The client will have to be consistent in the size of the block used. A parallel
to the above is when the results of a search engine are returned: sometimes thousands,

100

Table 6.1: Measurements taken from executing keyword-based queries. s is the width of
the index, SizeI is the size of an index in MB, Timegen, TimeqI , TimeqB , and TimeqDB

are respectively the timings (seconds) for generating an index, querying the index using
PIR, retrieving a patent from a bucket using PIR, and retrieving a patent from the entire
database using PIR. DownloadB and DownloadDB are the respective timings (seconds) for
downloading a bucket and downloading the entire database both over a 9 Mbps network
bandwidth [Ook10]. A bucket consists of 1.2 GB of data, while the database consists of
127 GB of data.

s T imegen SizeI TimeqI TimeqB DownloadB TimeqDB DownloadDB
(secs) (MB) (secs) (secs) (secs) (secs) (secs)

31 536 348.27 0.6±0.0 42.7±0.1 1092.3 4519.1 115598.2

63 609 1393.09 2.4±0.2 42.7±0.1 1092.3 4519.1 115598.2

252 1600 5572.38 10.0±0.1 42.7±0.1 1092.3 4519.1 115598.2

sometimes few. Often, the user does not have to view the low-ranking entries at the bottom
of the list before she finds the summary that interests her.

Patent class diversity of buckets. It is necessary for each bucket of patents to be
diverse in terms of its USPC class representation. A highly diverse bucket decreases the
chance of leaking information about the general interest of a user when the bucket number
is disclosed to the PIR server. We examined the distribution of USPC classes into the
various buckets, and found each bucket contains information from between 136 and 180
classes. There are 474 classes and a total of 158 514 unique subclasses in our data set.

Keyword diversity of buckets. We examined the distribution of the 44 600 keywords
in our data set into buckets. If a keyword targets one or a few buckets, then the adversary
might be able to infer the query keyword from the bucket number. We examined the
frequency of keywords in each bucket for our experiment and found each bucket has between
5 862 and 10 137 keywords. The buckets defined exhibit high diversity in their keyword
contents. Better privacy can be obtained from combining multiple buckets in a query.

101

6.5.5 Privacy-preserving Patent Database Query

We measured the query response time of our implementation for keyword-based query
over our data set. The three timings reported in Table 6.1 represent the time to generate
a master index over the entire data set (Timegen), the time to query the index (TimeqI),
and the time to retrieve the patent image from the corresponding bucket (TimeqB). The
size of the master indices for the parameter s is also shown (SizeI). For all values of s,
the size of the bucket containing the patent retrieved was 1.2 GB. The time for generating
an index increases linearly with s. The sizes of the indices also grow linearly in s, as does
the time to query the index. The time to retrieve a patent TIFF image from the bucket
is constant in all cases. It is not surprising that it takes longer to retrieve a patent image
from a bucket than a single block containing patent summaries from an index, because
the retrieval of patent images requires a larger block size and returns more data than the
retrieval of summaries in an index. In this particular case, queries over the respective
indices are fetching 8 KB, 32 KB, and 128 KB of data, whereas 768 KB of compressed
patent images were retrieved from the bucket.

The performance benefits of our approach for privacy-preserving search and retrieval
of patent images become more compelling when we compare the combined time to query
the indices and the buckets with PIR to the time for downloading the entire 1.2 GB
bucket. Our approach only requires 4% to 5% of the time for trivial download. Similarly,
if we compare our approach with a naive approach that performs PIR over the entire
127 GB patent database, we see that query response times with our approach are only
about 1% of the response time for the naive PIR approach. Besides, additional cost would
be incurred from a necessary search that must first be performed over a secondary index
structure built over the 127 GB database, since it is impossible to efficiently search and
retrieve from a PIR database without using a secondary index data structure. The absolute
privacy benefits of privately searching and retrieving from the entire database may be too
expensive. Finally, if we compare our approach with the trivial download of the entire
127 GB database, we see that our approach requires between 0.04% and 0.05% of the time
for trivial download. The main benefit of our approach is the feasibility of obtaining strong
privacy over a reasonable subset of a large database, as determined by the user. All of the
other approaches explored above are impractical today in terms of computation cost. With
our approach, the user can privately search and retrieve from a database with reasonable
privacy protection proportional to the size of a bucket.

102

6.5.6 Resistance to Correlation Attacks

Our approach is resistant to correlation attacks irrespective of the number of keywords used
in a single query, the number of queries a user makes, or if queries are repeated. The reason
behind the privacy guarantees of our approach is the completeness of the indices that users
query; i.e., the indices were built over the entire data set of patents and not over a subset.
Each Ti−data retrieved for each keyword does not leak any information about the keyword or
its relationship with the other keywords. The ranking of the combined Ti−data summaries,
and the selection of a single summary item from the combined summaries is performed
at the client, and therefore leaks no information to the database servers. The summaries
convey sufficient information to help the user choose the exact summary of the patent of
interest, which is retrieved at the second round of PIR queries. This second round of PIR is
performed over a specific bucket, which leaks no additional information about the specific
patent in the bucket that may be of interest to the user. Any information the server learns
from the user performing successive PIR queries over the same or different buckets does not
improve the adversary’s chances of learning the data items of interest to a particular user,
provided each bucket is striped with patents containing all possible keywords. In other
words, if the data classification results in buckets that are well diversified in their patent
contents (i.e., for each search keyword, one can find a patent containing that keyword in
every bucket), our approach does not leak extra information.

6.6 Conclusions and Open Problems

We have proposed a practical approach for gaining reasonable access privacy when querying
a large database. Our approach is based on classifying a large data set into buckets,
dynamically defining portions of the database, generating indices over the larger database,
performing keyword- and attribute-based queries over the indices, and retrieving data items
from a suitably defined database portion or static buckets. We validated our approach
experimentally by applying it to the query of patent data obtained from the agreement
between USPTO and Google, and demonstrated that a privacy-friendly alternative to
Google Patent is possible. Future work will further extend our approach using a larger data
set and will explore using better classification and ranking algorithms in the classification
and indexing of the data. It will be interesting to explore ways to classify any data set into
optimal portions that minimize information leakage for user queries over the portions.

103

Chapter 7

LBSPIR: Achieving Efficient
Location Privacy

This chapter is based on published work co-authored with Piotr K. Tysowski, and super-
vised by Ian Goldberg and Urs Hengartner [OTGH10]. The results in Section 7.4 improve
upon the earlier result in the paper. We provide more details on the improvements later
in this chapter.

We present a technique for private information retrieval that allows a mobile device user
to retrieve information from a database server without revealing what is actually being re-
trieved from the server. We perform the retrieval operation in a computationally efficient
manner to make it practical for resource-constrained hardware such as smartphones, which
have limited processing power, memory, and wireless bandwidth. In particular, our al-
gorithm makes use of a variable-sized cloaking region that increases the location privacy
of the user at the cost of additional computation, but maintains the same traffic cost.
Our proposal does not require the use of a trusted third-party component, and ensures
that we find a good compromise between user privacy and computational efficiency. We
evaluated our approach with a proof-of-concept implementation over a commercial-grade
database of points of interest. We also measured the performance of our query technique
on a smartphone and wireless network.

7.1 Introduction

The increasing popularity of mobile devices with positioning technology such as GPS or
cell tower triangulation is fueling the growth of location-based services (LBS). We consider

104

a particular LBS that allows users of mobile devices to find Points Of Interest (POIs),
such as restaurants, hotels, or gas stations, in close proximity to their current locations.
LBS providers such as Google, Yahoo!, and Microsoft typically store a collection of POIs
in databases, which can be queried by the company’s own mobile client applications or
licensed to third party independent software vendors. A user queries an LBS by first
establishing his or her current location using the positioning technology supported by his
or her device, and then use it as the origin for the search. The problem is that if the
user’s actual location is provided as the origin to the LBS, which performs the lookup of
the POIs, then the LBS will learn that location. In addition, a history of locations visited
may be recorded and could potentially be used to target the user with unexpected content
such as local advertisements, or worse, used to track him or her. The user’s identity may
be divulged through the inclusion of the originating dynamic IP address, e-mail address,
or phone number in requests to the LBS server so that the results of an LBS query can
be routed back to the correct user via a TCP data connection, e-mail reply, or SMS reply,
respectively. If a location can always be correlated to each request, then the user’s current
pattern of activity and even personal safety is being entrusted to a third party, potentially
of unknown origin and intent. Although search engines routinely cache portions of previous
queries in order to deliver results that are more relevant in the future, we are concerned
when the user’s exact location history is tracked, and not just the key words used in the
search.

For many users, this constitutes an unacceptable violation of privacy, and efforts should
be made to avoid it. As location technology becomes commonplace, users will become
increasingly aware of and concerned about location privacy. Not only are privacy and
personal safety important considerations, but recent advances in mobile advertising have
even opened the possibility of location-based spam. Our challenge has been to design
a system whereby a user can retrieve useful POI information without having to disclose
his or her exact location to a third party such as the LBS server. The user should also
not have to reveal what particular POIs were searched for and found, as each POI record
typically includes precise location coordinates. Thus, the server will be unable to infer the
user’s current location or likely destination, or accumulate a history of requests made for
profiling purposes. Generally speaking, a user will typically be comfortable with a certain
degree of privacy, meaning that the user could be expected to be anywhere within a certain
geographic area, such as a city or neighbourhood, without fear of discovery.

Today’s smartphones have high-performing processors which are suitable for crypto-
graphic operations that can enable location privacy. For instance, the Apple iPhone 3GS
contains a Samsung ARM 833 MHz CPU, while the BlackBerry Storm 2 contains a Qual-
comm 528 MHz CPU. However, these devices have limited memory and bandwidth. For

105

instance, the iPhone and Storm are both limited to 256 MB of dynamic RAM, 32 GB of
flash memory, and operate on 3G wireless networks no faster than the (theoretical) 7.2
Mbps HSDPA network. Consider these data limits with respect to a typical commercial
POI database for the U.S. and Canada, which can contain 6 to 12 million entries and
require 1 to 2 GB or more of flash data storage [GPS09b]. Requiring that the smartphone
download the entire database for each request so as not to provide information about its
current location is clearly not practical; nor is requiring that it periodically download just
the updated data to ensure accuracy of results, given the practical bandwidth limits, data
usage limits, and associated overage charges (penalties for exceeding the limits) of smart-
phone data plans. Thus, it is desirable to provide a cryptographic way for a mobile user
to request local information while preserving location privacy. Although extra server-side
processing demands must be anticipated on a privacy-enhanced LBS server, it may easily
be scaled to multiple computers in a distributed fashion, which is a reasonable tradeoff.

7.1.1 Requirements and Assumptions

We are interested in a nearby POIs (i.e., nearest neighbour) LBS that meets the following
requirements:

• The LBS server must not learn the user’s exact location. It may only identify a
general region that is large enough, in terms of area and the number of POIs it
contains, to confer a sufficient level of privacy to the user’s satisfaction.

• There must be no third parties, trusted or otherwise, in the protocol between the
user and the server.

• The implementation must be computationally efficient on hardware, such as smart-
phones, which are resource constrained. A user may be expected to tolerate a delay
of no more than several seconds for any kind of query.

• The approach cannot rely on a secure processor that is not typically found on a
commercial smartphone.

Our proposed solution is sufficiently generic to allow an application to rely on any PIR
scheme. We make the same assumptions as that of the underlying PIR scheme, where
retrieval is either by object index or keyword [CGN97]. We describe a server that can
find the relevant POI entries based on the user’s location of interest, without learning that

106

location; this is possible through the use of PIR because the entries in the POI database
are indexed by their location.

Although PIR satisfies our baseline privacy constraints, current implementations of it
fail to satisfy our third condition, which is usable performance on modern smartphone
hardware. Our challenge has been to complement PIR with a new algorithmic approach
that effectively reduces the amount of computations without significantly sacrificing the
user’s location privacy.

Note that we make no effort to hide the user’s identity from the location-based service.
We assume that it is acceptable to reveal the user’s identity for the purpose of routing
the response to a location-based request, and for offering a customized LBS experience.
A user that also wishes to hide his or her identity to some extent may wish to make use
of an onion router, such as Tor [DMS04a]. However, we note that there are application
domains where the protection of a user’s location using our proposed technique is superior
to anonymizing the user’s identity. For example, it is easy to try to identify a user who
made a query with a particular geographical coordinate, simply by looking up the user who
lives at the corresponding residential address and assuming the request did not originate
elsewhere. On the other hand, our proposed technique hides query contents from the LBS,
and leaves no useful clues for determining the user’s current location.

When a typical mobile phone accesses a third-party LBS provider through a wireless
3G data connection, we assume that it reveals only its identity and the query itself to
the provider. Unavoidably, a mobile communications carrier is always aware of the user’s
location based on the cell towers in contact, and so it must not collude with the LBS
provider. Our assumption relies on the LBS provider not being integrated into the carrier’s
infrastructure, such as a traffic reporting service using cell tower data that discovers a user’s
location passively. Our assumption is valid for the vast majority of LBS applications,
which are unaffiliated with the carrier; these include search portals, social applications,
travel guides, and many other types. When communicating with such an application, the
mobile user’s IP address is of no help in determining the user’s physical location, as it is
dynamically assigned independent of location. Only a central gateway that is administered
by the telecommunications carrier will be identified. We assume that no other information
will be gleaned by the LBS provider. In the case where a mobile user utilizes Wi-Fi instead,
the user will be assigned an address that points to the nearby access point, however, and
may need to employ other techniques, such as Tor, to mask the address.

107

7.1.2 Our Results

We propose a novel hybrid LBS technique that integrates location cloaking and private
information retrieval. We have also implemented and evaluated our proposal to determine
its practicality on resource-constrained hardware. The results show that users can achieve a
good compromise between privacy and computational efficiency with our technique, unlike
all other existing LBS proposals.

7.2 Our Tradeoff Solution

We have developed a hybrid solution that uses PIR to achieve query privacy in the context
of a location-based service, and a cloaking technique to reduce the computational cost of
PIR to a feasible level. Our technique essentially describes how the user creates a cloaking
region around his or her true location, and performs a PIR query on the contents of the
cloaking region only. The benefits are numerous: the user’s location is kept hidden from
the server to an acceptable degree regardless of the number of other users in the area;
there is no intermediary server that is responsible for cloaking and that would need to
be trusted; and the computational cost of the cryptographic algorithms employed is still
practical. We ensure that the user downloads only the POIs that are of interest to the
smartphone, keeping wireless traffic to a minimum to reduce costs and conserve the battery.
We describe our solution in this section.

The approach that we propose entails two phases. First, there is a pre-processing phase
in which the system is set up for use. The pre-processing operation must be carried out
whenever significant changes are made to the POI database on the server. In practice, it
can occur every few months during a period of low usage on the server such as nighttime
maintenance activities. Second, there is an execution phase, in which the LBS server
responds to queries for POIs from users. At a high level, the pre-processing phase consists
of the following steps:

1. A geographic region is projected onto a two-dimensional plane.

2. A suitable grid is formed on the plane.

3. A collection of POIs is saved in a database such that each row corresponds to one
POI.

4. Each cell of the grid is mapped to a portion of the database, i.e., a particular set of
database rows (each containing a POI).

108

5. The grid structure is transmitted and saved on the client device in a local mapping
database so that it can be referenced in a subsequent query.

The execution phase, in which a query is made for a set of nearby POIs, consists of the
following steps:

1. The user determines the area of interest, either based on the current physical position
as determined through GPS, or some other arbitrary area that the user may be
traveling to in the future.

2. The user chooses a desirable level of privacy.

3. The client creates a cloaking region corresponding to this level of privacy, which will
enclose the area of interest.

4. The client sends the cloaking region to the server. Also, the client identifies which
portion of the cloaking region contains the area of interest, in a way that is hidden
from the server.

5. The server receives the request, and finds the database portion corresponding to the
cloaking region. A block of rows is retrieved from this portion based on the user’s
specified location of interest. The POIs present in these rows are transmitted back
to the client. Note that this step is done privately using PIR, so that the server does
not learn anything about the block retrieved.

6. The client decodes the result, and automatically finds the nearest neighbour POI, or
presents the full list of POIs returned to the user to choose amongst.

7.2.1 Level of Privacy for the PIR Query

To defeat a server’s ability to narrow down the search space for the item of interest to the
user, PIR protocols typically process every item, or POI, in the PIR database. This results
in a computational complexity that is linear in the PIR database size n.

We propose a tradeoff, in the tradition of PIR development over the years, to make PIR-
based solutions practical. For example, information theoretic privacy necessitates replacing
a single database with at least two replicated databases; another option is to compromise
information theoretic privacy for lower privacy (i.e., attain computational privacy). Our
proposal is to offer users the choice of trading off privacy for better query performance,

109

by specifying the levels of privacy that they want for their queries. A level of privacy for
the query determines the number of items that the PIR server must process in order to
provide a response. Setting levels of privacy is a common practice in several domains where
privacy is important (e.g., web browsers). In the specific case of location privacy, we argue
that resource-constrained device users are willing to trade off privacy to obtain reasonable
performance. On the other hand, such users are equally willing to trade off some level of
performance to gain some level of privacy support.

A user sets the desired privacy level by specifying the size and position of the cloaking
region. The ratio of the number of POIs inside this region to the number of POIs in the
entire POI database defines the level of privacy. The privacy level can be specified in
terms of cities/towns (city level), states/provinces (provincial level), and so on, to enhance
user-friendliness. Thus, a privacy level value of 1 indicates that the user desires query
privacy at the same level as that offered by a typical PIR protocol. Similarly, if a user
sets the query privacy level to 0.6, the PIR query will execute faster. Although the cost
is still linear in the number of items in terms of computational complexity, the constant
coefficient is modified, leading to significant performance gains. At the same time, it will
be disclosed to the server that a particular amount of 0.4n items are not of interest to
the user; this leakage of information does not necessarily constitute a significant breach of
location privacy.

The cloaking region is thus identified as a subset of the entire world described by the
database. If we imagine that the world is mapped as a grid of so-called geographic grid cells
that are equally distributed, then one of these cells will be chosen to comprise the cloaking
region. If a higher privacy level is desired, then the cloaking region may be expanded
to include multiple geographic grid cells, and thus a larger portion of the database that
describes the world. It is sufficient to identify each grid cell by its cell number if the
mapping is static and published. The process of mapping the world to a geographic grid
occurs during the pre-processing phase, is described next.

7.2.2 Pre-processing and Location Cloaking

The first step in the pre-processing phase is to represent a geographic area such as the
United States and Canada on a two-dimensional plane using a map projection method
such as the commonly used Miller cylindrical projection [Sny93]. Once that is done, the
user’s location of interest may be found on this plane. It is necessary to obscure the user’s
location by creating a cloaking region around the user’s true position or area of interest.
POIs will be found anywhere by the LBS server within this cloaking region. The region

110

must be sufficiently large in order to achieve sufficient privacy for the user, but at the same
time it must be sufficiently small to minimize the amount of computation required on the
user’s mobile device to process the query results, as well as to constrain the amount of
wireless data traffic required to transport them.

Several techniques allow POIs to be mapped to a cloaking region. One technique is
quad-tree mapping [GG03], but it has the disadvantage (from its use in Casper [MCA06]) of
forming an unnecessarily large cloaking region, which can impair performance [BLPW08].
Another technique is called VHC (Various-size-grid Hilbert Curve) mapping [PYZ+09],
which suits our purpose. In particular, it solves the problem of the density of POIs varying
by geographic area. If the density of POIs is significantly higher for a given region (such as
a city), then a higher data traffic cost will result if the size of the cloaking region remains
constant, and the query will be much slower. If on the other hand, the density becomes
significantly lower (such as in a sparsely populated region like the countryside), then the
result size may be so minimal that the server may guess the user’s likely destination with a
high degree of confidence, leading to loss of privacy. VHC solves this problem by creating
variable-sized regions that can be used for cloaking, based on the density of the POIs in
the geographic area.

Essentially, VHC maps the two-dimensional geographic grid to a one-dimensional space
such that it has equal POI density everywhere (see Figure 7.1a). Assume that a typical
POI database that covers the regions of Canada and the U.S. will have 6 million POIs. If
each VHC cell must contain the same number of POIs, such as 60, then there will be a
total of 100,000 VHC cells that will cover this geographic region. Suppose that the lowest
POI density found in the database is 60 POIs per 40,000 km2. Thus, the maximum size of
a VHC cell will be 40,000 km2.

Now, we create a geographic grid overlaying the U.S. and Canada regions with fixed-size
square cells that are 200 km in length (the area of each is 40,000 km2). This corresponds
to the maximum size of a single VHC cell as described above. Each geographic grid cell,
however, may contain any number of smaller-sized VHC cells if the POI density of the
region is greater (see Figure 7.1 (b)).

Finally, the client determines a cloaking region based on a particular privacy level,
which will dictate the number of geographic grid cells to include inside the cloaking region.
Suppose that the client chooses a privacy level such that the cloaking region consists of
four geographic grid cells. The user’s true location is in one of these grid cells. Inside of the
geographic grid cell, there is a set of variable-sized VHC cells according to the distribution
of the POIs in the geographic grid cell. The user’s area of interest, in which POIs will be
searched, will be the single current VHC cell found inside the geographic grid cell. The

111

(a)

Geo cell 1 Geo cell 2

Geo cell 3 Geo cell 4

VHC cell 25

User’s true position

(b)

Figure 7.1: (a) A Various-size-grid Hilbert Curve (VHC) mapping with uniform POI den-
sity. (b) A user’s true position inside VHC cell 25 (shaded) and within a cloaking region
bounded by the single geographical grid cell 2. The POI results for VHC cell 25 only will
be returned in a query. If a larger cloaking region consisting of geographic grid cells 1 to
4 was specified (for privacy), the same POI results would still be returned.

number of POIs per VHC cell is known, and in our case, it is 60. Thus, the user will initiate
a request that will publicly reference the cloaking region, as well as privately referencing
the specific VHC cell in which the user is located or interested in. The user will receive
a set of 60 POIs that are found in his or her current VHC cell only. The server will only
know that the location of interest is somewhere within the cloaking region defined by the
geographic grid cells. In other words, the server learns of the larger geographical area
defining the cloaking region, but does not learn of the smaller area defining the VHC cell
that contains the 60 POIs.

The geographic grid is useful in specifying the size of the cloaking region and for identi-
fying which VHC cells will comprise the cloaking region. The level of privacy, defined from
0 to 1, establishes the size of the cloaking region. The client then sends this cloaking region
to the server, by identifying the bounding coordinates (i.e., the longitude and latitude of
the top-left and bottom-right corners). The server will then be able to identify which VHC
cells belong to this cloaking region, and therefore which portion of the database must be
read. The client must also encode the VHC cell containing the area of interest inside a PIR
query. (Each VHC cell in the system is uniquely identified by a numeric value.) Figure 7.2

112

...

...

...

...

POI 1 POI 2 POI 60...

POI 61 POI 62 POI 120...

POI 180...

POI 240...

POI 300...

POI 360...

POI 420...

POI 480...

POI 121

POI 181

POI 241

POI 301

POI 361

POI 421

POI 122

POI 182

POI 242

POI 302

POI 362

POI 422

VHC cell 1

VHC cell 2

VHC cell 3

VHC cell 4

VHC cell 5

VHC cell 6

VHC cell 7

VHC cell 8

...

Geo cell 1

Geo cell 2

Figure 7.2: Illustration of the relationship between geographical grid cells, VHC cells, and
POIs as stored in database rows.

further illustrates the relationships among a geographical grid, VHC cells and POIs.

Thus, our cloaking technique provides a way of reducing the search space of the POI
database by employing multiple levels of database segmentation. The cloaking region itself
is described as a rectangular area corresponding to a single, or multiple, geographic grid cell
or cells. Inside each geographic grid cell are found one or multiple VHC cells, the number
depending on the POI density. The user’s true location is inside one of these VHC cells,
and the user retrieves POIs corresponding to that VHC cell only. As far as the LBS server
is concerned, though, the user could be located anywhere within the larger geographic grid
cell.

The geographic grid is fixed. The initial grid cell dimensions are configured based
on the maximum size of each VHC cell, but once established, will not need to change.
Both the client and server must have the same knowledge of the geographic grid. It
can be distributed offline (along with the software for the user’s smartphone). A simple
approach to determining grid cell dimensions is to use a geographic coordinate system
such as Degrees-Minutes-Seconds (DMS) [KK00]. For instance, each grid cell may be two
latitude degrees in length, which roughly equates to 200 km. A population of tens of
thousands to millions of users may typically inhabit and stay within the bounds of a grid
cell that is 40,000 km2 in size, leading to excellent privacy. Cells of larger size will afford
province- and state-level privacy if desired.

Both the client and server must agree on the same VHC mapping, and this mapping
must be done off-line in advance. Because it is dependent on population density, it will
remain relatively static over time even as the population grows, and can be dynamically
updated on the client if necessary. In order to contain knowledge of the mapping to define

113

the cloaking region, the user may make use of a pre-computed map file that is stored
locally on the device. This mapping technique is a replacement for a cloaking region that
is simply based on cells of constant size, and ensures that a constant and predictable
number of results are returned for the user’s grid cell.

The idea of using VHC to address the general problem of location privacy was proposed
by Pingley et al. [PYZ+09], but in a way that is very different from ours. Specifically, VHC
was used to map the user’s current location to a 1-dimensional space. Random perturbation
was then applied on the 1-dimensional value, which was then mapped back to 2-dimensional
space according to the VHC mapping, to represent the user’s true location. In essence, the
random perturbation was applied to create confusion for an attacker about the user’s true
location. Our technique differs in that VHC is used for a different purpose; it defines the
storage of POI entries of interest within a geographic cell, which comprises the cloaking
region, in a way that allows proximate POIs to be stored as adjacent database entries. We
then utilize this cloaking region within the context of a privacy-preserving PIR protocol.
We do not perform perturbation of the location, which we argue would result in decreased
privacy. Indeed, a non-stationary user whose true location is randomly perturbed is still
subject to correlation attacks. In our approach, we will demonstrate that the cost of
computational and communication overhead through our use of PIR is acceptable, as we
provide a method for retrieving only a subset of entries of the entire POI database for each
query. Our technique is also impervious to correlation attacks.

The device must store a copy of the VHC map in local non-volatile memory, but the
storage requirements are very reasonable. The current geographic grid cell encapsulating
the user can be derived from the user’s current latitude and longitude coordinate, if the
mapping convention is known. A single coordinate for the intersection point of each VHC
cell inside (i.e. one of its corners) can then be recorded. Hence, a single coordinate would
suffice to store each VHC cell in device memory. For quick lookup and to minimize storage
requirements, the coordinates of all VHC cells only in the current geographic cell could be
stored. Assuming that the smallest VHC cell size is 1 km2 in size, then the worst case is
that 40,000 coordinates will need to be stored to account for all VHCs. Two bytes will be
sufficient to store each VHC coordinate, because the origin of the geographic grid cell is
known, so that the total cost will be approximately 80,000 bytes to store all VHC cells.
This is the worst theoretical case; in practice, small VHC cells will only be encountered in
very dense metropolitan areas, and they will not occupy an entire geographic cell.

114

7.2.3 Variable Level of Privacy

The size of the cloaking region and the performance of a query depend on the user’s
specified level of privacy. If the user wishes to obtain a higher level of privacy, then the
size of the cloaking region can be defined to be larger, and to encompass a larger number
of geographic grid cells (and thus VHC cells), but the amount of computation on the
server will increase accordingly, delaying the response. Nevertheless, the chief benefit is
that the processing time of the query on the server is predictable, because each VHC cell
in each request contains the same number of POIs. The key fact is that the amount of
data transmitted will be roughly proportional to the number of POIs in a single VHC cell
(depending on the details of the PIR scheme being employed), but the server will only
learn the client’s location to the resolution of the cloaking region. The amount of variation
allowed in the size of the cloaking region should be kept to a minimum, as this variable
may be used to form part of a fingerprint of a target in a correlation attack. Allowing
a one-cell or two-by-two-cell region only may be a good compromise. The latter could
be employed by the user on a permanent basis to avoid the threat of inter-cell movement
being discovered.

Our proposed algorithms for privacy-preserving queries, which allow the user to specify
a level of privacy, are explained in detail in Appendix C.

7.3 Security Analysis

In this section, we qualitatively analyze the security guarantees of our approach. We note
that the location of interest for a nearby POI search may be either the user’s true, physical
location, or some other location that must be kept private. For the purpose of this analysis,
however, we will simplify the job of a malicious LBS server by assuming the location of
interest is the user’s actual location. Without this assumption, it will be more difficult
for the server to infer a user’s actual location because the user may issue a query for a
geographical area without physically residing in that area.

7.3.1 Collusion Prevention for PIR

The approach we have presented is sufficiently generic to allow an application to rely
on any existing computational or information-theoretic PIR (single-server, multi-server or
hardware-assisted). We present an approach for preventing collusion between servers in the

115

case of information-theoretic multi-server PIR. This concept is important to our discussion
because information-theoretic PIR makes the usual assumption that the PIR servers that
implement it are not colluding to violate the privacy of the users.

The problem of colluding servers is mitigated by practical business concerns. Realisti-
cally, a single POI database would be maintained by an organization that is independent of
the LBS providers that a user may query. For instance, LBS providers such as Google and
Microsoft may contract the use of a POI source such as the Yellow Pages, an organization
that is responsible for its own content that it updates regularly. However, Google and Mi-
crosoft would be responsible for the content’s distribution to end users as well as integration
of partners through banner ads and promotions. Since the LBS providers are operating in
the same or similar line of business where they compete to win users and deliver their own
advertising models to reap economic benefits, there is no real incentive to collude in order
to break the privacy of any user. In this model, it it conceivable that a user would perform
a location-based query and would invoke it on the multiple LBS providers concurrently,
and combine the results, without fear of the queries divulging the user’s precise location.
Users then enjoy greater confidence in usage of the service, and the LBS providers in turn
can capitalize on revenue generation opportunities such as pay-per-use subscriptions and
revenue-sharing ad opportunities.

7.3.2 Subscription Service and Privacy

There is still an open question concerning the effect of a subscription service on the privacy
of users. If the model is structured as one that is pay-per-use, then the LBS provider must
be provided with a means of identifying the user making a request for billing purposes.
Similarly, in order to deliver a customized experience to a user based on personal preferences
or history of usage, identification of the user must occur. This practical and reasonable
requirement breaks the anonymizing component in proposals such as that of Pingley et
al [PYZ+09]. In contrast, this limitation does not lead to the loss of privacy in our approach
because it is focused on preserving the privacy of the location rather than the identity of
the user. The LBS provider may have multiple ways of determining which user it was that
issued a particular query. Nevertheless, that correlation will not constitute a loss of access
privacy. If a requirement exists to keep the user’s identity secret for any reason, then there
is a need to employ cryptographic schemes based on private credentials and anonymous
e-cash as described by Camenisch et al. [CLM07]. As we will see later in Chapter 8, we
extend PIR to a model that allows the user to purchase digital goods in a manner that
preserves both her access privacy and her anonymity (when the transaction is made over
an anonymous communication network, such as Tor).

116

7.3.3 Privacy and Size of the Cloaking Region

Unlike location privacy solutions based on k -anonymity [CML06, GG03, XC07], our solu-
tion preserves the privacy of the user’s location irrespective of the number of other users
initiating queries for the same location. The server can infer only the user’s location based
on the cloaking region. The user may adjust the size of the cloaking region based on his
or her personal preferences (i.e., the desired level of privacy, query performance, and cost),
because a larger region will entail more computation.

The size of the cloaking region is based on a particular size of geographic area and
does not need to be adjusted based on the known distribution of POIs within the region.
The user only establishes a reasonable level of privacy based on the number of geographic
grid cells that define a geographic area. The boundary of the cloaking region utilized in
a request is established by the user and is based on the geographic cell map contained on
the user’s device and the level of privacy parameter. The size of the cloaking region and
its boundaries are not controlled by the server.

In the extreme case, the user may choose a maximum level of privacy, despite the
computational costs entailed. In this case, the user will define a cloaking region that
includes the entire geographic region that can be queried; e.g., all of North America. The
server would execute its query on all the rows of its database, and so there will be a
significant computation cost. However, because only the coordinates of the cloaking region
are sent in our protocol, and because only the POIs for the user’s current VHC cell will be
returned, the additional bandwidth cost in this scenario is limited to the cost of sending a
larger PIR query, which is now over the entire database of POIs. The level of privacy will
be absolute, in that no information about the user’s location will be leaked to the server.

In typical usage, however, the user is expected to define a cloaking region that bounds
one or more geographic grid cells, depending on the desired level of privacy. For example, a
matrix of 1-by-1 geographic grid cell, 2-by-2 cells, or 3-by-3 cells, etc. This user can always
adjust the level of privacy for each request. This is useful in the case where the user is
traveling between VHC cells. For example, if the user is traveling by car on a highway, and
may cross the current geographic grid cell before the next query is issued, then a larger
cloaking region formed from the neighbouring grid cells may be appropriate to request.

7.3.4 Passive Attacks

The cloaking region is selected based on the user’s location. Let us suppose that the user’s
preferred level of privacy will be satisfied with a cloaking region that is defined by a matrix

117

of 2-by-2 geographic grid cells. The user will be located in one of these geographic grid
cells. Three additional geographic cells must be chosen to form the cloaking region. If
the user proceeds to pick these geographic cells randomly from the surrounding set of
geographic cells for each request, then each request may send a different cloaking region.
After a number of these requests, and if the user remains stationary inside one of these
geographic grid cells, then the server will be able to correlate these requests, and determine
the overlapping grid cell which likely contains the user.

In our design, we have elected to specify fixed groups of geographic grid cells at various
levels of privacy. In other words, if the user remains stationary, then for each request, the
user, depending on the privacy level, will select the same 2-by-2 matrix, or 3-by-3 matrix,
etc. Therefore, the correlation attack described above is impossible because the client will
send the same cloaking region for all queries for a given privacy level.

Next, consider the case of a mobile user who is physically moving between VHC cells.
As long as the user does not move outside of the cloaking region, then the same cloaking
region will be transmitted for all queries, and the user will not be subject to a correlation
attack, even if the user moves between VHC cells. The same is true if the user moves
between geographic grid cells, but still within the same cloaking region defined by the
user’s level of privacy.

If the user moves to a VHC cell that is outside of the original cloaking region, then a
new cloaking region must be formed. The user will now occupy a new geographic grid cell
that will define a new cloaking region. The server could observe that requests are being
made for neighbouring cloaking regions, and could infer that the user is somewhere close
to the edge of these regions, or is traveling between them. This is a consequence of the user
having to create cloaking regions such that there is never any overlap between them. The
assignment of geographic grid cells to cloaking regions must satisfy this requirement, and is
done based on their consecutive ordering on the grid. To avoid the possibility of the server
detecting movement between cloaking regions, it is recommended that the user instead
increases the privacy level so that a greater number of geographic grid cells will define
the cloaking region. This enlarged cloaking region should contain the original cloaking
region. Now, if the user moves between grid cells, the same cloaking region will still cover
them, and a correlation attack will be unsuccessful. Thus, the user should be aware of
his or her likely movement in the future and choose a privacy level such that the cloaking
region will contain all current and likely future locations. If the size of the cloaking region
is constantly adjusted up and down, based on movement and stationary states, then the
server may be able to reconstruct a history of the user’s movement patterns. Note that in
the general proposed scheme, it is not strictly required for the user to be able to predict
the path of future travel for all requests. It simply confers an optional improvement to

118

privacy if the user can encapsulate an intended path of travel through a more informed
choice of the cloaking region boundaries.

In addition, if an attacker observes the communication between the client and the
server, then only the client’s identity will be disclosed. Neither the contents of the query
nor the results can be decoded if end-to-end encryption, such as Transport Layer Security
(TLS), is utilized for the communications link. The server must be able to identify the
address of a user’s mobile device in order to route its response. The address itself will not
give away the user’s position, however.

7.3.5 Active Attacks

Replay Attack

If an attacker observes a request from the client and launches a replay attack against the
server, then the server will respond to the request, but neither the attacker nor the server
will receive any additional information on the user’s location. TLS can of course also
mitigate this attack if necessary.

Result Tampering Attack

When our approach is used with a single-server PIR scheme, a malicious server can return
POIs that are not found in the cloaking region, but the user can filter the results out based
on their coordinates. If the server returns false POIs, the user will not be able to verify
and detect them. This is unlikely, as the server would need to replace all the rows in the
portion of the database (corresponding to the cloaking region) with false information. If
the server returns an empty result instead of the actual content in its database portion,
then the user may expand the search by increasing the level of privacy and increasing the
size of the cloaking region or by exploring neighbouring VHC cells within the cloaking
region, but the server will fail to learn anything additional about the user’s location.

For information-theoretic PIR, this attack is impossible unless the servers are colluding.
At best, one of the servers could deny service for the query by returning garbage or by not
responding. Such an attack can be prevented by multi-server PIR schemes with support
for Byzantine robustness [BS07,Gol07a].

119

7.4 Experimental Evaluation

7.4.1 Implementations

We developed a C++ prototype and a Java prototype for our proposal. The evaluation of
our approach in terms of feasibility and scalability is based on the C++ prototype. The
point of the Java prototype is to demonstrate the successful porting of our implementation
to a smartphone platform.

The C++ prototype is based on the Percy++ [Gol07b] implementation of Goldberg’s
PIR scheme [Gol07a]. We modified Percy++ to support our proposal for allowing PIR
queries to be based on a database portion defined by the cloaking region and added code for
instrumentation. We measured the computational performance of the PIR algorithm when
it does take into account the query level of privacy, and when it does not take it into account.
We ran the PIR implementation against a database of 6 million synthetic POIs, the typical
number of POIs in a commercial POI database for the U.S. and Canada [GPS09a,GPS09b].
We note that a comparable set of experiments by Ghinita et al. [GKK+08] considers a much
smaller database: only 10,000 and 100,000 POIs. A head-to-head comparison with their
work is infeasible because we used different PIR implementations and test data. Each
POI consists of 256 bytes that we generated randomly. Again, this size is a conservative
representation of practical POI sizes. In comparison, the POIs from the experiments of
Ghinita et al. [GKK+08] are only 64 bits in length.

For the Java prototype, we re-implemented the open source C++ client code for
Percy++ in Java and ported the implementation to Google’s Android smartphone plat-
form, which supports the Java programming language. Note that we did not need to
rewrite the Percy++ server code. In the original paper [OTGH10], we based the Java
prototype on a computational SPIR protocol implementation [SJ05], which is the only
publicly available Java implementation to our knowledge. This SPIR protocol was derived
from the oblivious transfer protocol by Naor and Pinkas [NP99]. This earlier Java pro-
totype development consists of both a server component and a client component that we
deployed on the Android smartphone platform. In spite of the extensive modification of
the code to get it working on Android (e.g., replacing RMI mechanism with HTTP socket
communication), the resulting implementation is quite slow. In this thesis, we address the
performance problem with the Percy++ Java implementation. We also repeated the tests
for the C++ prototype using an optimum word size setting for Percy++ and obtained
better numbers.

120

7.4.2 Results and Discussion

We measured query roundtrip times for the C++ prototype on a machine with a 2.91 GHz
dual-core AMD CPU, 3 GB RAM, and running Ubuntu Linux. Since the Percy++ PIR
uses replicated databases, we set the number of databases to 2, and the word size to the
optimal setting of 8 bits per word [Gol07a]. Figure 7.3 shows query roundtrip times and
levels of privacy for queries returning various numbers of POIs. A similar plot for total
data transfer per server is shown in Figure 7.4. The number of POIs returned for each
query is equivalent to the number of POIs in a VHC cell. Similarly, the number of POIs
returned by a query is equivalent of the number of blocks (in bytes), that a traditional PIR
query returns. A block of 10 POIs is equivalent to 2560 bytes of data (each POI consists
of 256 bytes).

For various levels of privacy (0.01, 0.09, · · · , 1), the communication-optimal set of
block sizes (in number of POIs) is respectively ζ = (15, 46, 63, 77, 88, 98, 107, 116, 123,
131, 138, 144, 151, 153). The query roundtrip or response times at query level of privacy
1 for block sizes 10, 50, 100, 250, 500, and 153 (element of ζ) are between 3.4 and 6.7
seconds. This is because each PIR request runs against the entire database of 6 million
synthetic POIs. However, the query roundtrip time improves with lower levels of privacy.
For example, the query response times for the above block sizes 10, 50, 100, 250, 500, and
63 (element of ζ) at a privacy level of 0.17 are between 0.6 and 3.9 seconds. One must
observe that setting the query level of privacy to 0.17 is equivalent to privately querying a
block of POIs from a portion of the database consisting of 1.02 million POIs. If we assume
the number of POIs in each of the territories, provinces, and states of Canada and US is
proportional to their population, a level of privacy set to 0.17 implies a cloaking region
that covers approximately all ten provinces and all three territories of Canada, as well as
the US states of New York and Connecticut combined. Similarly, a user who intends to
hide his or her query in a cloaking region that covers the US state of Washington will set
his or her query level of privacy to a much lower value 0.02, while a user who intends to
hide his or her query in a cloaking region that covers the Canadian city of Toronto will
simply set his or her query level of privacy to an even lower value of 0.01. The query
response times for Washington State and Toronto are respectively 0.10± 0.00 seconds and
0.05± 0.01 seconds for an optimal block size, which in our testing configuration consists of
22 and 15 POIs respectively. It is easy to observe from Figure 7.4 that the communication-
optimal block sizes set ζ results in the least amount of data transfer (query and response
size). While it does not appear to be the most computationally efficient, from Figure 7.3,
it results in the transfer of the most number of POIs, with the least per query rate of
transfer. Furthermore, the worst-performing block size is the one consisting of 10 POIs

121

 0

 1

 2

 3

 4

 5

 6

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e
ry

 R
o
u
n
d
tr

ip
 t
im

e
 (

s
)

Level of Privacy ρ

POIs/block
10 50 100 250 500 ζ

Figure 7.3: Query roundtrip time and level of privacy for various numbers of POIs returned
per query. ζ represents the communication-optimal set of block sizes for the levels of
privacy. Error bars are plotted for all data points, but some of these may be difficult to
see.

(Figure 7.4). Again, that might not seem obvious if one considers just the roundtrip query
time without the cost of data transfer. On the other hand, large block sizes, such as 500,
carry performance penalties and overheads, which depend on the characteristics of the
underlying PIR scheme, and on the resource constraints of the runtime hardware (e.g.,
RAM, disk and memory cache sizes, and network bandwidth).

We also installed the client for the Java prototype on a Nexus One Android smartphone,
which features a 1 GHz Qualcomm ARM processor and 512 MB memory. We ran our tests
over a WiFi connection. Figure 7.5 shows the overall roundtrip query time (including data
transfer) for the Java prototype. For a province or state granularity for level of privacy
(value of 0.02), the roundtrip response time for an optimal block setting is about 1 second,
which is obviously practical. We note that the Android smartphone runs out of heap

122

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
a
ta

 T
ra

n
s
fe

r
(K

B
)

Level of Privacy ρ

POIs/block
10 50 100 250 500 ζ

Figure 7.4: Data transfer per server and level of privacy for various numbers of POIs
returned per query. ζ represents the communication-optimal set of block sizes for the
levels of privacy.

memory when we set the level of privacy higher than 0.73 for most of the non-optimal
block size settings. For example, the two best-performing non-optimal block settings from
Figure 7.5 are the 50 and 100 POIs/block. Unfortunately, the highest level of privacy
a user can set for these without exhausting available heap size is about 0.73. At higher
values, the size of the query computed by the smartphone can no longer fit in available
heap memory. This behaviour further justifies the importance of our approach of using
level of privacy to scale the query size and the amount of computation. Note that the
communication-optimal set of block sizes, ζ, allows the user to set up to the maximum
level of privacy. Increasing available heap memory for the Nexus One Android smartphone
requires recompiling and reinstalling the smartphone OS.

In our earlier work [OTGH10], we installed the client for the SPIR Java prototype on
a G1 Android smartphone from T-Mobile, which features a Qualcomm ARM processor

123

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e
ry

 R
o
u
n
d
tr

ip
 t
im

e
 (

s
)

Level of Privacy ρ

POIs/block
10 50 100 250 500 ζ

Figure 7.5: Query roundtrip time and level of privacy for various numbers of POIs returned
per query for the Percy++ Java prototype. The cost of data transfer is included in the
roundtrip time. Error bars are plotted for all data points, but some of these may be difficult
to see.

running at 528 MHz, and includes 192 MB DDR SDRAM, and 256 MB flash memory.
Although our locked smartphone was capable of running on T-Mobile’s 3G network in the
U.S., it did not support the 3G frequency bands in operation in Canada. We ran our tests
using the Rogers EDGE network, which is slower by up to a factor of ten. We created an
Android application with a user interface that allows the user to specify the server address
and query parameters such as the size of the cloaking region and the size of the portion of
the cloaking region to fetch.

For a cloaking region consisting of 400 cells (i.e., database rows), and a POI result size
of 32 bits (i.e., size of a database row), the following performance was measured on the
actual Android smartphone: query generation required 2.04 s, result processing required
8.02 s, and the total roundtrip time (including transmission over the wireless EDGE packet

124

data network) required 207.49 s. In comparison, when the cloaking region was reduced
to 100 cells, with the same POI result size, the performance measurements were: query
generation of 4.40 s, result processing of 3.42 s, and a roundtrip time of 62.55 s. We
observed little variance in the query encoding time, but the decoding time varied nearly
proportionally with the size of the cloaking region, as one would expect. More detail on
our implementation is available in the original paper [OTGH10].

Overall, we are positive that the Percy++ Java implementation will be usable on live
mobile networks. Moreover, there should be a noticeable speedup when server hardware is
used to run the PIR server; our experiment uses a commodity desktop computer.

7.5 Conclusions

In this chapter, we have proposed an algorithm for privately querying location-based ser-
vices that achieves a good compromise between user location privacy and computational
efficiency. We have implemented and evaluated our algorithm and shown that it is practical
on resource-constrained hardware. Our approach of using a variable-sized cloaking region
divided into VHC cells results in greater location privacy than the traditional approach
of a single cloaking region, while at the same time decreasing wireless data traffic usage
from an amount proportional to the size of the cloaking region to an amount proportional
to the size of a VHC cell. It also allows the user to dynamically choose various levels of
privacy. Although increasing the size of the cloaking region does result in higher compu-
tation in processing the query, we believe that this tradeoff is very reasonable, given that
the processing power of today’s smartphones is still less of a concern than the speed and
cost of wireless network connectivity.

Our work could be extended by improving on our general scenario where the user
retrieves all of the POIs that belong to the VHC cell of interest. It is possible that the user
will not find a suitable POI within this set, and will wish to search further in neighbouring
VHC cells. This may be the case when the result set does not contain a desired POI.
Therefore, the user may wish to expand the search by searching in a broader geographical
area.

125

Chapter 8

PIR-Tor and PIR-Commerce:
Real-World Applications of PIR

This chapter covers two areas where we applied PIR to solve practical problems. First, we
demonstrate practical examples of applying computational and information-theoretic PIR
schemes to make the Tor anonymous communication network scale better and examine the
resulting design tradeoffs. Second, we show how to tailor and extend the cryptography of
PIR to solve the real-world problem of preserving access privacy in an electronic commerce
transaction.

8.1 PIR-Tor: Scalable Anonymous Communication

This section is adapted from published work co-authored with Prateek Mittal, Carmela
Troncoso, Nikita Borisov, and Ian Goldberg [MOT+11].

Existing anonymous communication systems like Tor require all clients to maintain an
up-to-date list of every available node in the network before they can construct a circuit
for anonymous communication. As a result, Tor does not scale well. Current proposals for
making Tor scale better rely on a peer-to-peer (P2P) approach, which has unfortunately
provided new avenues to compromise anonymity. In this section, we step away from P2P
approaches and propose a client-server architecture that relies on PIR. We propose PIR-Tor
as a scalable architecture for the Tor network, whereby users no longer need to maintain a
list of available nodes in order to construct circuits. In PIR-Tor, a client obtains information
about only a few nodes using PIR techniques, thereby preventing compromised directory

126

servers from learning the user’s choices and reducing the overall communication by at least
an order of magnitude. Experimental results show that reasonable parameters of PIR-Tor
maintain a level of security that is equivalent to that of the current Tor network, while
allowing Tor to scale by two orders of magnitude.

8.1.1 Introduction

Tor is a worldwide overlay network of servers, or nodes, that allows journalists, law en-
forcement workers, humanitarian workers, privacy-concerned citizens, and others to com-
municate over the Internet without disclosing their IP addresses [DMS04a, Tor11b]. As
of June 2011, there are over 2000 nodes which serve hundreds of thousands of users
daily [Tor11a, Loe09]. In order to build circuits for anonymous communication, a Tor
client would need to learn of available Tor nodes. It does this by downloading two pieces
of information from special Tor nodes, known as directory servers. First, some trusted
directory authorities create a network consensus file, which is a signed list of all available
nodes and their network addresses, and distribute the list to clients through the directory
servers. The second piece of information to download from directory servers is the node
descriptors file, which contains detailed information about each node. A client constructs
a circuit using three nodes. The first node is known as an entry guard or simply a guard.
The first time a client connects to Tor, it selects three nodes to be its entry guards. These
nodes will continue to be used for all circuit construction by the same client as long as
they remain available. The rationale for choosing three fixed nodes as entry guards is to
protect against certain long-term attacks on anonymous communication [ØS06]. Next, the
client picks an exit node from the list of available nodes. Each exit node has an exit policy,
which specifies ports the node is willing to use for forwarding traffic to the Internet. The
client’s desired exit port must match the exit policy of the selected exit node. Finally, the
client picks any other node as a middle node. Since nodes in Tor have different bandwidths,
clients select nodes with a probability that is proportional to their bandwidth, in order to
achieve load balancing on the network.

The high cost of bandwidth required for downloading the network consensus and node
descriptors is a major hindrance to Tor’s scalability. While a client is able to multiplex
multiple TCP/IP streams over a single circuit, it needs to download an up-to-date network
view and reestablish a new circuit (with nodes likely different from the prior circuit) quite
frequently. In particular, it must download a fresh network consensus every 3 hours,
download a fresh node descriptors file every 18 hours, and rebuild a new circuit every 10
minutes. Thus, if there are n clients, r nodes, and the consensus size is S, the overhead
of fetching the network consensus will be nrS data transfer every 3 hours. As shown by

127

McLachlan et al. [MTHK09], the current Tor architecture could soon lead to a situation
where more bandwidth is used to help users download an up-to-date view of the network
than for anonymous communication.

Current proposals for making Tor scale better rely on a peer-to-peer (P2P) approach,
which has unfortunately provided new avenues to compromise anonymity. The dynamism
and complexity of many such P2P-based designs make it very hard for the authors to do
a thorough analysis of their design and provide a rigorous proof of security. As a result,
the security community has been quite successful at breaking the state-of-art peer-to-peer
anonymity designs [BDMT07,DC06,DS08,MB08,WMB10,THK09].

Consequently, we step away from P2P-based approaches and propose a client-server
architecture that relies on PIR. Our new architecture is called PIR-Tor. Our key observa-
tion for PIR-Tor is that while Tor clients require as few as 3 nodes to construct circuits
for anonymous communication, the current architecture still requires them to download
the entire database of nodes. We use PIR to download the few nodes required for circuit
construction, thereby preventing compromised directory servers from learning the partic-
ular choice of nodes selected by a client for circuit construction, and thereby mitigating
route fingerprinting attacks [DC06, DS08]. A route fingerprinting attack is one where an
adversary is able to observe the subset of nodes learned by a client, and uses this partial
knowledge the client has about the network view to identify the traffic from the client.

We consider two architectures for PIR-Tor, based on the use of computational PIR
(CPIR-Tor) or information-theoretic PIR (ITPIR-Tor), and evaluate their performance
and security. We find that for a scenario where clients create a single circuit, CPIR-
Tor provides an order of magnitude improvement over a full download of all descriptors,
while ITPIR-Tor provides a two order of magnitude improvement. However, for scenarios
where clients wish to build multiple circuits, several PIR queries must be performed, and
the communication overhead of CPIR-Tor quickly approaches that of a full download. We
therefore propose to perform a few PIR queries and reuse their results for creating multiple
circuits, and highlight the security implications of the same. In the case of ITPIR-Tor, we
find that the communication overhead for creating multiple circuits is at least an order of
magnitude smaller than that of a full download. The client can therefore perform new PIR
queries for each circuit construction. We show that, subject to certain constraints, ITPIR-
Tor has security equivalent to the current Tor network. Our proposed architectures will
allow the current Tor to easily sustain a 10-fold increase in both the number of nodes and
of clients, and reasonably sustain a 100-fold increase. It also supports a scenario where all
clients can be used as middle-only nodes [DM06] to improve the security and performance
of the Tor network.

128

The remainder of this section is organized as follows. We briefly highlight related
work in Subsection 8.1.2. We give details of our proposals in Subsection 8.1.3 and a
sketch of the traffic analysis implications of our architecture in Subsection 8.1.4. Sub-
section 8.1.5 sketches our performance evaluation for the computational and information-
theoretic PIR proposals and provides some discussion. Finally, we conclude the section in
Subsection 8.1.6.

8.1.2 Related Work

Peer-to-peer approaches proposed for scalable anonymous communication systems can be
categorized into architectures that rely on distributed hash tables (DHT), and those that
rely on random walks on unstructured or structured topologies. Besides our work that does
not rely on P2P approaches, Mittal et al. [MBTR10] briefly considered the idea of using
PIR to make anonymous communication systems scale better. However, their description is
incomplete and their evaluation is very preliminary; they considered an architecture based
on an inefficient CPIR scheme [KO97]. We build upon their work and present a complete
PIR-based architecture that considers both efficient CPIR and ITPIR schemes. We show
that an ITPIR-based architecture outperforms a CPIR-based architecture in many scaling
scenarios, discuss the privacy implications of our architecture, and show that reasonable
parameters of PIR-Tor provide equivalent security to Tor.

Distributed hash tables, also known as structured P2P topologies, assign neighbour
relationships using a peseudorandom function based on the IP addresses or public keys of
nodes. For example, Salsa [NW06], by Nambiar and Wright, is built on top of a DHT, and
uses a specially designed secure lookup operation to select random nodes in the network.
The secure lookups use redundant checks to mitigate attacks that try to bias the result of
the lookup. Other examples of DHT-based P2P anonymous communication architectures
include NISAN [PRR09] by Panchenko et al. and Torsk [MTHK09] by McLachlan et al.
However, Mittal and Borisov [MB08] showed that Salsa leaks information that helps an
attacker to observe a large fraction of node lookups in the system; node selection is not
private. In addition, Salsa is vulnerable to a selective denial-of-service attack, where nodes
break circuits that they cannot compromise [BDMT07, THK09]. In a similar manner,
NISAN and Torsk have been broken by Wang et al. [WMB10].

Architectures that rely on P2P random walks include MorphMix [RP02] and Shad-
owWalker [MB09]. For example, MorphMix [RP02] alleviates the scalability problem in
Tor by organizing nodes in an unstructured peer-to-peer overlay, where each node has
knowledge of only a few other nodes in the system. A client constructs a circuit using

129

recommendations from other nodes in the system. It performs a random walk by first
selecting a random neighbour and building an onion routing circuit to it. Next, the client
queries the neighbour for its list of neighbours, selects a random peer, and then extends
the onion routing circuit to it. This process is repeated to construct a circuit of any length.
Just as for the DHT-based P2P architectures, MorphMix has been proven as insecure by
Tabriz and Borisov [TB06], and Schuchard et al. [SDH+10] have found a way to attack
ShadowWalker.

We note that all the peer-to-peer designs are quite complex, which makes analyzing
their security and privacy guarantees quite difficult. It is therefore no wonder that the
security community has been quite successful at breaking the state-of-art designs.

8.1.3 PIR-Tor System Details

We are interested in an architecture that meets the following requirements:

• The bandwidth requirement to maintain an up-to-date network view by each client
should be small and sublinear in the size of the network consensus and node descrip-
tors. Such a design will improve performance, allow the number network to scale
better, and improve users’ anonymity [DM06].

• The security properties must be well understood. In other words, it must leverage
security mechanisms that are easy to analyze.

• It must not impose additional latency on circuit creation time. In other words, the
wait time for circuit creation must be the same as for the existing Tor network.

• Deployment of the architecture must require minimal or no changes to the current
Tor architecture to make for easy transition. We note that a peer-to-peer system
would require substantial engineering effort to deploy.

• The constraints that the existing Tor network places on circuit creation, such as
the requirement for clients to comply with the policies of exit nodes, and the se-
lection of trusted nodes as entry guards, must be preserved. Some prior work like
ShadowWalker [MB09] and Salsa [NW06] did not address these issues.

130

System architecture

Our key observation when designing PIR-Tor is that the client-server model of Tor can
be preserved while simultaneously improving scalability by having clients download de-
scriptors only for a few nodes, instead of downloading the entire database of descriptors.
Unfortunately, doing this in a naive way breaks the client’s privacy, as compromised di-
rectory servers learn which nodes the client knows about. We therefore leverage PIR for
downloading a few descriptors from the descriptors database, without letting the database
know what was downloaded. Note that a client connecting to Tor for the first time should
still do a one-time download of the network consensus and node descriptors database, which
does not affect the scalability of our proposal.

Recall that we base the two flavours of our architecture on CPIR and ITPIR. While
clients can use either of these, the underlying techniques have different threat models,
resulting in slightly different architectures and security guarantees. While our architec-
ture is compatible with all existing CPIR and ITPIR schemes, we base CPIR-Tor on the
single-server lattice-based scheme by Aguilar-Melchor et al. [AMG07], and ITPIR-Tor on
the multi-server scheme by Goldberg [Gol07a]. The lattice-based CPIR scheme is the com-
putationally fastest single-server scheme available [OG11], and both schemes are available
as open-source libraries [Gol07b,GPG09].

CPIR-Tor architecture. Since Tor directory servers already maintain a copy of the
network consensus and node descriptors, we propose to use them as the PIR database.
Note that the current Tor architecture uses directory servers as download servers for the
network view. For CPIR-Tor, clients can use a CPIR protocol to query a single directory
server and obtain the identities of random nodes in the system. The directory authorities
sign each block of the consensus and descriptors lists to ensure the integrity of the network
view.

ITPIR-Tor architecture. Since Tor already places significant trust in guard nodes, we
use a client’s three guard nodes as the servers for ITPIR. Unless all three guard nodes
are compromised (a low-probability event), they cannot learn of the descriptors retrieved
by the clients. Just as in the existing Tor network, a compromise of all three guard
nodes allows the traffic from the client to be linked. When all three guard nodes are
compromised, they still cannot actively modify entries in the PIR database because they
are individually signed by the directory authorities. However, they can only learn which
exit node descriptors were downloaded by the client. (In Tor, guards always know the

131

identities of the middle nodes in circuits through them.) If the exit node in a circuit is
honest, then guard nodes cannot break user anonymity. On the other hand, if the exit node
used is malicious, then user anonymity is trivially broken [DC06]; the adversary could have
performed end-to-end timing analysis anyway [BMG+07].

We discarded two other alternative architectures for ITPIR-Tor that were not as at-
tractive. The first is to have clients query three directory servers using PIR. However, this
gives many opportunities to break clients’ anonymity as the current Tor architecture does
not trust directory servers. The second alternative is for clients to perform PIR over some
threshold of directory authorities. This approach is somewhat secure because Tor already
trusts that a majority of the directory authorities are honest. However, the computational
overhead from all clients querying a fixed number of directory authorities will become a
source of performance bottleneck and a target for DDoS attacks as the network grows.

Database organization and formatting. We propose to organize nodes in the data-
base in line with the constraints on the existing Tor network. In particular, we propose to
use three databases: one each for the entry guards, middle nodes, and exit nodes. Nodes
that can serve both as entry guard and as exit are duplicated in the respective databases.
We took a snapshot of the current Tor network and found 222 unique exit policies from 953
exits. Of these, 471 are standard exits and the remaining 482 share 221 non-standard exit
policies. Had the number of non-standard exits been few, we would have recommended
for clients to download them entirely and use PIR to fetch from the standard exit policies,
but this was not the case.

In order to load balance the network, Tor clients select nodes with a probability that de-
pends on their bandwidth capacity; that is, higher capacity nodes are selected with higher
probability. We therefore require descriptors in the exit database to be grouped by exit pol-
icy, and then sorted in descending order of their bandwidth capacity. Similarly, descriptors
in the middle database are sorted solely by bandwidth. To pick a high-bandwidth index
for PIR queries, the client selects a low-value index. In order to make appropriate choices
for bandwidth-weighted selection of nodes, we propose that each Tor client download a
bandwidth distribution synopsis from the directory servers. An alternative is for them to
use the Snader-Borisov [SB08] criterion for node selection, which utilizes only the relative
rank of each node in terms of its bandwidth, and not the bandwidth values themselves.

The PIR block size should be large enough to fit at least one descriptor; however,
more may fit in a single block. Padding should be used to ensure that descriptors do not
cross block boundaries. We propose to use the threshold BLS signature scheme [BLS01] to
sign each block since the signature is short (a single group element of 23 bytes, for 80-bit

132

security), regardless of the number of directory authorities issuing signatures.

Querying directory servers. The client queries directory servers with PIR to retrieve
descriptors well in advance of circuit construction. Note that the client may be unable
to determine in advance the exit policies required for circuit construction. The client can
overcome this by retrieving blocks with descriptors that support all standard exit policies.
In addition, the user may download non-standard exit policies periodically (e.g., every 3
hours) when they are few.

A client initiates a query by connecting to one of its directory servers, which responds
with timestamped and signed meta-information about each PIR database, such as the
number of blocks in the database, the block size, the distribution of exit policies, and a
bandwidth synopsis. Afterwards, the client generates PIR queries based on the information
to retrieve descriptors.

A client can optimize node selection for ITPIR-Tor by not retrieving a middle node
with PIR. Instead, the client retrieves (non-privately) a single middle node descriptor from
one of its guard nodes. This optimization is possible because ITPIR-Tor uses guard nodes
as PIR servers, and uses them as the first node in every circuit creation. The middle
node so retrieved should only be used for circuits originating for the same guard node;
otherwise, even a single compromised guard node would be able to perform fingerprinting
attacks [DC06].

Creating circuits. The circuit creation mechanism for ITPIR-Tor and CPIR-Tor re-
mains the same as with the current Tor network. In the current Tor network, a client
recreates circuits every 10 minutes. We find the cost of all Tor clients performing one
PIR query every 10 minutes manageable for ITPIR-Tor, whereas the cost is higher for
CPIR-Tor. Therefore, we propose to perform fewer PIR queries for CPIR-Tor and reuse
descriptors within each 3-hour window. We provide more details in Subsection 8.1.5.

8.1.4 Security and Privacy Implications (sketch)

We provide a sketch of the security and privacy implications of PIR-Tor. The full details
are available in the original published work [MOT+11].

We analyzed how resistant our designs are to traffic analysis by considering a realistic
adversary who can:

133

• Control a fraction of the Tor network, either by compromising existing nodes or by
introducing new nodes, where she can observe traffic.

• Create, modify, delete, or delay traffic

• Observe clients’ PIR queries to directory servers and know that a client only learns
a fixed number of descriptors per query.

Prior work [DC06, DS08] has shown that the success of route fingerprinting attacks
increases as clients’ knowledge about the total number of nodes in an anonymity network
becomes limited. These papers assumed node discovery by clients is not anonymous; that
is, the adversary can learn which subset of the network a user knows about. This knowledge
can help build a mapping between the profiles of users and their potential choices of nodes
for building circuits. In cases where the set of nodes discovered by a user is disjoint (or
unique) from those discovered by other anonymous users, it is trivial for the user’s circuit
to be “fingerprinted” or mapped to her identity. The current Tor network is not prone
to route fingerprinting attacks because clients maintain an up-to-date view of the entire
network.

In the case of PIR-Tor, the threat model is slightly different. The use of PIR completely
hides node discovery information from the adversary. What the adversary learns from a
PIR query is that a client has retrieved a block (potentially containing one or more de-
scriptors), but is unsure of which particular block. This makes it impossible to localize the
knowledge of a client to any specific partial view of the network. However, if the adversary
controls the entry guard and the exit node of a circuit constructed by a client, then the
adversary is able to use this additional knowledge to link a client with the destination of
her traffic and perform a traffic confirmation attack [Ray00]. This latter attack will occur
with equal chances in PIR-Tor as in the current Tor network.

Clients for our ITPIR-Tor architecture can request new descriptors for each circuit cre-
ation because the computation and communication cost of ITPIR is small. As a result, the
adversary must assume that the client may know any node, and ITPIR-Tor fingerprinting
resistance is equivalent to the current Tor network. In the case of CPIR-Tor, the higher
computation and communication cost of CPIR demands for the client to reuse descriptors.
Unfortunately, reusing descriptors for creating multiple circuits improves the chances the
adversary has in aggregating profiles of nodes in the connection made by a client. Thus,
CPIR-Tor does not break anonymity, but breaks unlinkability of circuits. However, the
window of linkability is limited to 3 hours, after which the client retrieves fresh descriptors
and creates new circuits. If a client retrieves b > 1 blocks every three hours, and rebuilds

134

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

S
e

rv
e

r
c
o

m
p

u
ta

ti
o

n
 (

s
)

Number of nodes

2 CPIR

(a) Server computation

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

M
B

 t
ra

n
s
fe

rr
e

d

Number of nodes

download

2 CPIR

(b) Total communication

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

C
lie

n
t

c
o

m
p

u
ta

ti
o

n
 (

s
)

Number of nodes

2 CPIR

(c) Client computation

Figure 8.1: Computation and data transfer costs for a single CPIR-Tor circuit (one PIR
query for exit node and another query for middle nodes).

a new circuit every 10 minutes, then the adversary is limited to linking data for only 36/b
circuits (the client requires 2 descriptors for each circuit creation).

8.1.5 Performance Evaluation

We experimentally evaluated our CPIR-Tor and ITPIR-Tor architectures on a dual In-
tel Xeon E5420 2.50 GHz quad-core machine running Ubuntu Linux 10.04.1. We base
our results on numbers for a single core, and assume a bandwidth of 9 Mbps, being
the standard home Internet connection for Canada and the US [Ook10]. We measured
the client/server computation cost and communication cost by running an implementa-
tion [GPG09] of the CPIR scheme of Aguilar-Melchor et al. [AMG07], and the Percy++
implementation [Gol07b] of Goldberg’s multi-server PIR scheme [Gol07a]. We chose the
standard CPIR security parameters [AMG07] (`0 = 19 and N = 50), set the number of
ITPIR servers to 3, and set the size of a descriptor to 2 100 bytes (the maximum descrip-
tor size we measured from the current Tor network). In addition, we varied the number
of nodes in a PIR database and set the middle database to be twice the size of the exit
database [Tor11a]

Reducing ITPIR-CPIR communication cost. Unlike existing CPIR schemes that
rely heavily on number theory, the lattice-based CPIR scheme [AMG07] transmits more
data per query, but has the best overall response time due to its lower computational
cost (see Chapter 4). Data transfer for this scheme (as well as other CPIR schemes) can
be reduced using the recursive construction by Kushilevitz and Ostrovsky [KO97] without
much increase in computational cost; this recursion can be implemented in a single round of

135

interaction between the client and the server. We denote the recursion parameter in CPIR
using R. If we denote the number of nodes in the database by n, then the communication
cost of CPIR in our architecture is proportional to 8R ·n1/(R+1). We explored various values
of the recursive parameter R and found that R = 2 gives the best overall performance. For
example, when R = 3, the CPIR scheme requires about the same amount of computation,
whereas R = 2 transmits less data. Beyond R = 3 the communication cost becomes higher
because the term 8R begins to dominate in the expression.

Results and Analysis

Figure 8.1 shows the server computation, data transfer, and client computation costs for
two CPIR queries; one for a middle node and another one for an exit node. In terms of
data transfer, performing two CPIR queries is more expensive for the current network size.
However, the client needs to create 18 circuits every 3 hours (rebuild a circuit every 10
minutes). Tor clients are able to amortize the cost of a single download over the 3 hours
period. However, performing 36 CPIR, 18 for each of middle and exit nodes, will be more
expensive than downloading the complete databases unless the number of nodes in the Tor
network grows to over 40 000. We instead propose to perform b < 36 CPIR queries for both
middle and exit nodes and reuse nodes within each 3-hour window. As noted previously,
reusing nodes for rebuilding circuits does not affect anonymity, but breaks unlinkability of
multiple circuits.

Similarly, we plot the server computation, data transfer, and client computation cost
for ITPIR-Tor in Figure 8.2. We observe that the cost of performing a single ITPIR query
is at least 2 orders of magnitude smaller than the cost of trivial download. The cost of PIR
queries to build 18 circuits every 3 hours is even at least an order of magnitude smaller.
Thus, the client does not have to reuse nodes for rebuilding circuits, resulting in security
that is equivalent to the current Tor network. The regular vertical drop in client compute
time in Figure 8.2(c), the zigzag pattern, results from fitting more node descriptors into
a PIR block. As the PIR block size increases gradually, it becomes large enough to fit an
additional descriptor, and the number of blocks in the database jumps down.

Growth Projections

We project several growth scenarios for the Tor network to evaluate how well CPIR-Tor
and ITPIR-Tor would scale in comparison to the Tor network. We base our projection
on the data transfer cost and the number of cores it would take to compute the required

136

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

S
e

rv
e

r
c
o

m
p

u
ta

ti
o

n
 (

s
)

Number of nodes

18 ITPIR
1 ITPIR

(a) Server computation

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

D
a

ta
 t

ra
n

s
fe

r
(M

B
)

Number of nodes

download
18 ITPIR

1 ITPIR

(b) Total communication

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06 1e+07

C
lie

n
t

c
o

m
p

u
ta

ti
o

n
 (

s
)

Number of nodes

18 ITPIR
1 ITPIR

(c) Client computation

Figure 8.2: 3-server ITPIR cost.

number of PIR queries, and set b = 1 block. We consider the following growth scenarios 1)
the current Tor network size of 2 000 nodes and 250 000 clients; 2) increasing the number
of clients by a constant factor; 3) increasing the number of nodes by a constant factor; 4)
increasing both the number of nodes and clients by a constant factor; and 5) Allowing all
clients to become middle-only nodes.

At the current Tor network size of 2 000 nodes and 250 000 clients, the server compute
time for 2 000 node descriptors for CPIR-Tor is 0.2 s. The number of exit nodes is about
half the total number of nodes; i.e., 1 000, with 0.1 s server compute time. For CPIR-Tor,
the time to retrieve an exit node and a middle node combined is therefore 0.3 s. Therefore
a directory server core can support 36 000 clients

(
3·60·60
0.3

)
every 3 hours, and we would

need 7 cores to support 250 000 clients (at less than 10% utilization since there are more
than 100 cores). As of February 2011, the network consensus size is 560 KB, while the
node descriptor size is 3.3 MB. In a 3-hour period the current Tor client would download
1.1 MB (the entire network consensus and a sixth of the size of node descriptors), whereas
CPIR-Tor client would download 2 MB. We can see that CPIR-Tor is not a better option
for the current Tor capacity. For ITPIR-Tor, the total compute time to support a single
circuit is 0.005 s. Each guard node core can support 36 000 clients. Each of the current 500
guard nodes would service PIR requests for an average of 1 500 clients (three guard nodes
per request), which amounts to 0.4% of one core. The communication cost of building a
single circuit in this case is 12 KB, and the cost of building 18 circuits is 216 KB. Thus,
ITPIR-Tor transmits less data even on the current Tor network size.

For other growth scenarios, the data transfer cost and number of cores required to
support CPIR-Tor scales sublinearly in the number of nodes, whereas the Tor network
would scale linearly in the number of nodes. For example, when the number of nodes
becomes 20 000, the total data transfer and cores needed for CPIR-Tor every 3 hours is

137

respectively 4 MB and 59, whereas Tor would require 11 MB download. As the number
of nodes increases, it becomes more and more advantageous to use CPIR-Tor in the place
of Tor. When all clients are made middle-only nodes, the server compute time for middle
nodes increases to 20 s, while the server compute time for exits remains the same (i.e.,
0.1 s). Therefore, a total of 466 cores would be required to support CPIR-Tor. In terms
of data transfer, CPIR-Tor costs just 8 MB every 3 hours, compared to 111 MB for Tor.

ITPIR-Tor maintains its advantages for all of the growth scenarios considered. The
data transfer cost is between 0.2 MB to 0.5 MB, while the core utilization is between 0.4%
and 5% for network growth of up to 10 times. Finally, converting all clients to middle-only
nodes would not increase the cores utilization of our ITPIR-Tor architecture because we
retrieve middle nodes non-privately (without PIR).

The CPIR-Tor architecture is easier to deploy because only a fraction of the directory
servers would need to maintain an up-to-date view of the network to be able to support
PIR requests. It is advantageous in situations where a client’s browsing time is small, or
when the client is not concerned about linkability of circuits. In the case of ITPIR-Tor, all
guard nodes must be converted to directory servers and would need to maintain a view of
the network for it to be deployed. However, the overall data transfer by client is minimized
and the architecture scales better.

Limitations

The Tor network runs on bandwidth donated by volunteer nodes. We have proposed an
architecture that trades off bandwidth for computation at the directory servers, and thus
directory servers are required to volunteer some extra computational resources. We find in
our performance evaluation that directory servers need to volunteer only a small fraction of
their CPU resources, especially in the case of ITPIR-Tor. In addition, the communication
overhead in our architecture is at least an order of magnitude smaller than that of Tor for
all growth scenarios. Overall, we argue that PIR-Tor offers a good compromise between
bandwidth and computational resources, and results in an overall reduction in resource
consumption at volunteer nodes. Secondly, PIR-Tor is not as scalable as alternate peer-to-
peer approaches, which can scale to tens of million nodes. However, our design provides
improved security properties over prior work. In particular, reasonable parameters of
ITPIR-Tor provide equivalent security to that of the Tor network. The security of our
architecture mostly depends on the security of PIR schemes, which are well understood
and relatively easy to analyze, as opposed to peer-to-peer designs that require analyzing
extremely complex and dynamic systems. Finally, PIR-Tor assumes that the exit database

138

contains a small set of standard exit policies, though it can tolerate a few outliers by
downloading their information in their entirety.

8.1.6 Conclusion

We have presented CPIR-Tor and ITPIR-Tor as a two PIR-based architectures that could
allow Tor to scale better. Our architectures eliminate the need for clients to maintain
an up-to-date view of network nodes, while preventing compromised Tor directory servers
from learning the choice of nodes the user selects for creating circuits. We experimentally
evaluated the two flavours of our architecture and found that they reduce data transfer
cost in Tor by at least an order of magnitude. For CPIR-Tor, the client retrieves only a few
blocks and reuses them for multiple circuit creation. We show that reusing circuits breaks
linkability, but anonymity of the communication is preserved. In the case of ITPIR-Tor,
a client does not have to reuse circuits, thereby offering a security that is equivalent to
the current Tor network. Finally, ITPIR-Tor may be more difficult to deploy because it
requires all guard nodes to become PIR servers.

8.2 PIR-Commerce: Privacy-preserving e-Commerce

This section is adapted from published work co-authored with Ryan Henry and Ian Gold-
berg [HOG11].

We extend Goldberg’s multi-server information-theoretic PIR scheme to enable privacy-
preserving online purchase of digital goods. Our first extension is a symmetric PIR (SPIR)
scheme, which adds support for database privacy under computational assumptions (the
user privacy is still information-theoretically protected). We then extend the SPIR to a
priced symmetric private information retrieval (PSPIR) scheme, which allows for tiered
pricing, such that users can purchase records from the database without the database
being able to learn any information about the index or the price paid for the record.
Tiered pricing allows the database to set prices based on the status of users. For example,
platinum members pay at the most discounted price, while gold members pay a higher price,
and other members pay full price. When a user buys a record, the membership status of
the user is not revealed by the transaction. Finally, we provide an extension to PSPIR to
support group-based access control with record-level granularity, such that the database is
able to restrict the purchase of some records according to membership status. There are no
other PSPIR or oblivious transfer protocols that support tiered pricing and access control

139

lists, while preserving the sublinear communication complexity requirement of PIR. We also
implemented our protocols as an add-on to Percy++ [Gol07b]. Measurements indicate that
our protocols are practical for deployment in real-word e-commerce systems.

8.2.1 Introduction

In multi-server PIR, ` database servers each possess a replica of the database and a user
submits his query to some size-k (or larger) subset of these servers in such a way that no
server (or coalition of servers up to some threshold t) can learn the user’s query. One can
view the database X as consisting of n bits organized into r records, each of size b = n

r

bits. We follow the usual convention of specifying a PIR query by the index i of interest.
Thus, in a PIR query, the user retrieves the record at index i without the servers learning
any information about i. We note that our SQLPIR contribution (Chapter 5) allows one to
build SQL-based queries atop this basic index-based retrieval model. Existing multi-server
PIR schemes offer information-theoretic privacy protection for the user’s query, but they
allow a dishonest user to obtain additional information, such as the record at index j 6= i,
or the exclusive-or of some subset of records in the database [GIKM98a]. However, for
many real-world applications, protecting database privacy by preventing dishonest users
from learning extra information about the database is advantageous. Examples abound in
online sales of digital goods, such as a pay-per-download music store [AIR01] where users
must pay for each song they download, a pay-per-retrieval DNA database [CDN09], a stock-
information database [GIKM98a], or a patent database [Aso04]. In all of these practical
situations, it is necessary to guarantee the seller of these digital goods that users learn
exactly the database record of interest and nothing more. In some scenarios it may even
be desirable to sell database records according to a tiered pricing plan whereby different
users pay different prices for each record depending on, e.g., their membership status or
geographic location.

Symmetric private information retrieval [GIKM98a] adds an additional restriction to
PIR that prevents the user from learning information about any records except for the
one he requested, thus addressing the need for simultaneous user and database privacy;
however, no existing SPIR scheme supports both (tiered) record-level pricing and access
control lists. Some oblivious transfer (OT) schemes [AIR01, CDN09, CDN10, CDNZ11]
offer one or the other of these functions, but no scheme in the literature provides them
both. Moreover, OT schemes generally have no requirement for sublinear communication
complexity, which renders them useless for online sales of some types of digital goods, such
as multimedia data, where the bandwidth requirement is high. Some schemes even require
the user to download an encrypted copy of the entire database (e.g., [CDN09, CDN10,

140

CDNZ11]) and later purchase decryption keys for individual encrypted records. This allows
one to amortize the cost of many transactions, but renders the scheme unsuitable for
applications in which the contents of the database change frequently. Storing the database
in an encrypted format also limits the usefulness of the database for other applications
that need ready access to the cleartext data. Other OT-based schemes [AIR01] require the
database servers to store state information, such as the number of purchases made by a
user, or his remaining balance, which might leak information about the user’s queries or
enable the server to link his purchases.

In this section, we present a protocol that extends the open-source PIR scheme by
Goldberg [Gol07a] first to an SPIR scheme, and then to a priced symmetric private in-
formation retrieval scheme offering tiered pricing with record-level granularity. Our initial
PSPIR construction allows a content provider or merchant to sell digital goods through a
distributed database and collect all proceeds from these sales. We then extend this simple
scheme to enable the database servers to control access to individual records by implement-
ing group-centric access control lists. These enhancements provide a stronger and more
realistic model of private information retrieval that enables strong privacy protection for
e-commerce.

In our model, users belong to different pricing tiers and pay (perhaps different amounts)
for each record; moreover, the database may require users to have explicit authorization
to access some or all of the records in the database. In particular, tiered pricing logically
groups users into different price tiers and allows the database to set the price and availability
of each record with respect to each tier (a price tier is then roughly analogous to a group in
the context of access control). Our approach enforces these constraints without revealing
the user’s price tier to the servers during a protocol run. Thus, when run over an anonymous
communications channel, our protocols maintain user anonymity in addition to access
privacy; that is, the database servers do not learn any information about the identity nor
the query of the user. More specifically, queries do not leak information about the index
or price of the purchased record, the price tier according to which the user pays, the user’s
remaining balance, or even whether the user has ever queried the database before.

Outline.

The reminder of this section is organized as follows: Subsection 8.2.2 gives our system model
and threat model. Subsection 8.2.3 gives sketches of our SPIR and PSPIR constructions as
well as the extension of PSPIR to support group-centric access control. In Subsection 8.2.4,
we discuss our implementation of the protocols and our result. We conclude this section
in Subsection 8.2.5.

141

8.2.2 System Model, Threat Model, and Use Case

Our system model consists of three players: the merchant, the bank, and the user. The
merchant is a seller holding a database of several tens of gigabytes of digital goods, such
as MP3 files and e-books, divided into r records (or files). Our system relies on multi-
server PIR which implies ` non-colluding servers hold a copy of the database, and the
user must submit query to a subset of k > `/2 of them. We note that our scheme can
easily use a random server model of PIR [GIKM98a], where the merchant can replicate a
random-looking database to multiple non-colluding servers and the user purchases records
by querying the merchant’s server (containing the real database) as well as a subset of
k > `/2 of the random servers. We associate T price tiers to the database, such that each
price tier encodes the prices of all r records as nonnegative integers or ⊥ to indicate that
a record is unavailable for that price plan. We do not make any assumption about the size
of T . Pricing tiers are usually not many; under 10. A large T , such as over 1000, may
impair performance.

The bank is a credential issuer of digital wallets to users. We did not discuss the
semantics of the bank, but any non-rerandomizable (one-show) credential issuing system,
such as that of Brands [Bra95] or Au et al. [ASM06] should suffice. Each wallet encodes a
balance (0 when initially issued) and the index of the user’s price tier. A user loads funds
in her wallet using, for example, prepaid credit cards purchased via cash transactions from
a grocery store.

The user is any online shopper interested in privacy-preserving purchase of digital goods
from the merchant using a wallet that encodes a price tier and some balance. A user buys a
record by proving to the merchant’s servers that her wallet encodes sufficient funds for the
price of that record in her price tier. She does this by sending her wallet to some k > `/2
servers as well as her query. The servers check that the wallet has not been spent before
and then issue a cryptographically signed receipt that encodes the price of the record and
the wallet used to make the payment. The user then uses the receipt to obtain a new
wallet, unlinkable from her old one, which encodes here remaining balance (if any). Note
that the purchase and wallet refreshing processes do not reveal any information to the
merchant or bank about the user’s price tier, the record purchases, the price paid for the
record, the remaining balance, or any information that could be used to link the user’s old
and new wallets.

As a motivating use case, we consider the online purchase of e-books, such as from
Amazon’s Kindle Store. Interestingly, Amazon announced in May 2011 that in the last
year, they have sold more e-books than paperbacks and hardbacks combined [Ama11].
The growing popularity of e-books suggests the deployment of a way to purchase e-books

142

that does not reveal the user’s reading preferences will only grow in relevance. The recent
lawsuit by Amazon against the state of North Carolina to prevent the disclosure of customer
purchase records [McC10] further justifies why a privacy-preserving alternative to purchase
Amazon’s e-books will be an atractive offering to privacy-conscious customers.

Our threat model considers users that are malicious, and merchants (and database
servers) that are honest-but-curious. However, Goldberg’s PIR scheme — and by extension,
our proposed scheme — is robust against some threshold of malicious database servers
through the Byzantine robustness property as well.

8.2.3 Constructions (sketch)

We provide highlights of our constructions in this subsection. Complete details and proof of
security are available in the full paper [HOG11]. We begin with an extension of Goldberg’s
PIR scheme to an SPIR scheme, and later extend the SPIR to support our model of tiered
pricing.

SPIR Construction

We converted Goldberg’s PIR scheme into Symmetric PIR to ensure that no single query
will ever reveal information beyond a single database record. Recall from Section 2.4.2
that the constant terms of the random polynomials a client selects when generating a
query for Goldberg’s PIR scheme are 0 everywhere except at the position of the record
sought (i.e., i), where it is 1. A dishonest client that chooses 1 in more than a single position
would be able to retrieve partial information about more than a single database record.
Running malformed queries of these type multiple times and aggregating their results by
interpolation will help the user learn about more records than the total number of queries
sent. Thus, the client needs to convince the servers that exactly one of the polynomials
has a non-zero constant term.

We accomplish the SPIR construction using the PolyCommitDL polynomial commit-
ment construction of Kate et al. [KZG10]. Polynomial commitments allow a client to create
constant-sized commitments to polynomials, which the servers can use at a later time to
verify evaluation of the polynomials to some point, even while remaining oblivious of the
polynomials. We call the commitment a client creates and sends to a server to confirm
the evaluation of a polynomial at some point a witness. Recall from Section 2.4.2 that the
client generates r polynomials. Our extension requires the client to commit to these poly-
nomials, provide witnesses to the evaluation of the polynomials at the servers’ respective

143

indices, and prove in zero knowledge that the polynomials evaluate to a standard basis
vector (i.e., the client’s query vector ei) at a point x = 0. We also use the threshold BLS
signature [BLS04] in such a way that each server signs and forwards a signature on the
commitment it receives from the client. The client combines these signatures into a single
group signature and forwards it the servers, which can then verify that, indeed, they are
all seeing the same commitments. This defeats attacks from a dishonest user that rely on
sending commitments to different polynomials to each server.

Further, a dishonest user may choose her polynomial in such a way that it reveals
information about some other database record when interpolated at a point x = a. This
is not surprising because Gertner et al. [GIKM98a] has proved that information-theoretic
SPIR is impossible to accomplish without some interactions among the servers or a shared
secret among them. We address this problem by having the servers share a secret key sk
that is unknown to the users. This is a reasonable assumption to make since the servers
are already sharing the same copy of the database. Each server j uses Fsk(~C) to seed
a pseudorandom generator (PRG) and generate a common ephemeral (r + 1)th database

record for the current query, where F is a pseudorandom function family and ~C is a vercor
of the commitments. It also generates a polynomial fr+1 of degree t with constant term
0, and non-constant terms drawn pseudorandomly from GF (28), and appends fr+1(j) to
the ρj it receives from the client. Afterwards, the server encodes a response to the query
exactly as in Goldberg’s original scheme (see Section 2.4.2).

Our SPIR construction provides query privacy information theoretically against up to
t− 1, and computationally (under the Discrete Logarithm assumption [KZG10]) against t,
colluding servers. The database privacy is protected computationally under the t-Strong
Diffie-Hellman assumption [KZG10]. Full protocol details and proof are available in the
original paper [HOG11]. In addition, our construction preserves the t-private v-Byzantine-
robust k-out-of-` properties of Goldberg’s scheme [Gol07a], but not the τ -independence
property. The rerandomization of the user’s query with the ephemeral database record
breaks the latter property.

PSPIR Construction

We extend our SPIR construction to a priced symmetric PIR as follows. First, the user and
the servers independently compute a receipt as a commitment to the price of the record for
purchase, under each of the price tiers. We take advantage of the homomorphic property
of polynomial commitments: given two commitments C1 = gφ1(α) and C2 = gφ2(α) to two
polynomials φ1 and φ2, the product of the commitments C1C2 is a commitment to their

144

sum φ1 + φ2. [KZG10] We have the user prove in zero knowledge that a receipt encodes
the right price for the record according to her price tier, and that her wallet has enough
balance to complete the purchase.

Once convinced of the proof, each server issues a BLS signature on the receipt and the
user’s wallet, and then proceeds to process the query as in the SPIR construction.

If the user wishes to make another purchase at a future date, then she must run a
credential issuing protocol with the bank using the BLS signature, receipt and wallet. The
bank verifies the signature is indeed valid and the user obtains a new wallet encoding her
new balance. Note that the old and new wallet are unlinkable.

PSPIR and access control

We make a simple modification to the PSPIR construction to implement access control
lists. The idea is to impose a maximum balance bmax, and have them prove that their new
balance does not exceed bmax each time they refresh their wallets with the bank. The bank
will not issue a new wallet to any user that is unable to pass the proof. The rest of the
protocol description remains the same with the exception that we now interpret ⊥ in the
price tiers to mean bmax + 1. These simple changes ensure that no user can ever purchase
records marked with ⊥, for which they are not allowed.

8.2.4 Implementation and Evaluation

We implemented the protocols using Ben Lynn’s PBC (Pairing-Based Cryptography) li-
brary [Lyn11] with Aniket Kate’s PBCWrapper package [Kat11] for C++ Wrapper classes,
Victor Shoup’s NTL [Sho11] with the GNU Multi-Precision Arithmetic Library [Fre11] for
multi-precision arithmetic, and OpenSSL [Pro11] for hash functions (we use SHA-256).
Our PSPIR implementation is built atop Ian Goldberg’s implementation of his PIR scheme,
Percy++ [Gol07b]. For our evaluation, we implemented the protocol as a standalone add-
on to Percy++, but we will later integrate it with the Percy++ library. All measurements
were taken in Ubuntu Linux 10.04.1 LTS running on a machine with Dual Intel Xeon
E5420 2.50 GHz CPUs and 32 GB memory. The value of the modulus for the polynomial
operations was 160 bits long.

We measured the performance of the implementation of our PSPIR protocol for various
values of the PIR parameters n (the size of the database), b (the size of each record in
the database), k (the number of servers participating in each query), and t (the number of
servers that can collude without affecting query privacy).

145

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

C
o
m

p
u
te

 t
im

e
(s

)

Database size (GB)

Percy++ vs. Percy++ w/ PSPIR

Percy++ with PSPIR (w = 160)
Percy++ only (w = 160)

Percy++ only (w = 8)

Figure 8.3: Query execution time for Percy++ with and without PSPIR (k = 4, t = 2).
The percent compute time attributable to the PSPIR enhancements decreases monotoni-
cally from ≈ 86% for a 1 GB database down to ≈ 33% for a 44 GB database. Percy++
starts carrying the extra overhead of disk reads after a 28 GB database, which exceeds avail-
able RAM. The w = 8 plot shows the execution time for Percy++ using its performance-
optimal parameter choices, whereas the w = 160 plot shows Percy++ with parameters
needed to ensure the security of PSPIR. The Percy++ with PSPIR plot shows the com-
bined cost of Percy++ with w = 160 and the PSPIR enhancements. Error bars are plotted
for all data points, but are small and may therefore be difficult to see. For comparison,
downloading a 44 GB database in OT-based schemes takes over 11 hours at 9 Mbps, which
is the average Internet bandwidth in Canada and the US [Ook10].

Our experiment measures the computational overhead added to Percy++ by the PSPIR
enhancements. We generated databases of sizes ranging from 1 GB to 44 GB containing
random data, and took measurements for both Percy++ and Percy++ with PSPIR. We set
k = 4, t = 2, and b =

√
160n, which is the communication-optimal record size for this PIR

scheme. Figure 8.3 shows the plots of the measurements for Percy++ with and without
PSPIR. We observe that PSPIR results in a moderate increase in compute times, with the
percent compute time attributable to the PSPIR enhancements decreasing monotonically
from about 86% for a 1 GB database down to just 33% for a 44 GB database. The upward
bump just before 30 GB marks the point after which the database no longer fits in available
memory. From that point on, every query bears more overhead from disk reads. In terms
of communication overhead, PSPIR increases Percy++’s query size, which is itself just k
times the size of the retrieved record, by a multiplicative factor of about 5. However, it
increases each server’s response by only 46 bytes, which corresponds to two BLS signature

146

shares.

We observe, however, that the use of 160-bit words in the database to guarantee security
for the commitments used in PSPIR slightly degrades Percy++’s performance from its
optimal setting of 8-bit words.

8.2.5 Conclusion

We have extended Goldberg’s multi-server information-theoretic PIR with a suite of pro-
tocols for privacy-preserving e-commerce. Our protocols add support for symmetric PIR,
priced symmetric PIR with tiered pricing, and group-based access control lists with record-
level granularity, while preserving the sublinear communication complexity of PIR. We have
implemented our PSPIR protocol atop Percy++, an open-source implementation of Gold-
berg’s PIR scheme, and evaluated its performance empirically. Our measurements indicate
the performance of our protocols is reasonable, making them acceptable for deployment in
real-world e-commerce systems. Furthermore, the right mix of features, the fact that our
SPIR construction preserves PIR’s sublinear communication complexity, and the ability to
apply it over unencrypted databases, makes it more practical than competing OT-based
schemes. For future work, we intend to optimize our implementation to incorporate our
protocols into Percy++.

147

Chapter 9

Conclusions

The main goal of this thesis is to show that current private information retrieval schemes
can be usefully engaged to preserve access privacy in many real-world practical situations.
It is our desire that the results discussed will stimulate further research and practical
deployment of PIR-based systems.

While it may be infeasible to obtain absolute access privacy protection in some problem
domains due to the scale of the databases, we are quite convinced that current PIR schemes
are able to deliver absolute access privacy in many problem areas. In situations where
absolute privacy cannot be attained, our approach to preserving access privacy over very
large databases can help end users trade off access privacy for computational performance
and vice versa. We encourage system designers to adopt PIR, even when it can only deliver
access privacy on a subset of a large data set. As research and development continues to
improve, PIR will become more and more practical and relevant to people’s transactions
over the Internet.

We already highlighted some future work related to our contributions. Several other
open problems remain.

In order to maintain the user’s privacy with information-theoretic PIR, it must be the
case that not all [CGKS95] or at most a configurable threshold number [Gol07a] of the
database servers collude to unmask the user’s query. This is sometimes brought forward
as a problematic requirement of these schemes. As we noted in Chapter 5, there are rea-
sonable scenarios — such as distributed databases like DNS or whois databases, where the
copies of the database may be held by competing parties — in which the non-collusion
requirement is acceptable. Further, other privacy-enhancing technologies, such as anony-
mous remailers [DDM03] and Tor [DMS04a], also make the assumption that not all of

148

the servers involved are colluding against the user. The above considerations apparently
limit the application of multi-server PIR in environments where the database is not natu-
rally distributed. There is need for an exploration of practical means that will reduce the
likelihood of collusion to a similar extent as Tor.

Along similar lines, there is need for research on deploying PIR in a cloud computing
environment where each PIR server is located on a cloud belonging to different geographical
regions of the world, managed by different infrastructure providers, and controlled by
different entities. It is important for there to be a practical means to detect and prevent
situations with high likelihood of collusion, such as when some supposedly independent
servers are colocated on the same cloud or are running on different clouds but by the same
holding organization. Cloud computing provides an “unlimited” amount of computation
power for making PIR queries. It is especially relevant to PIR because of the possibility
to configure the servers to dynamically scale up or scale down the amount of computation
power for servicing user queries. Dynamic scaling of available computation power is not
usually available for locally hosted solutions.

Closely following the above is another interesting future work that explores the ran-
dom server model of PIR [GGM98] to make PIR more practical. The goal is to make it
possible for users to interact with various PIR servers hosted on the cloud to answer their
queries. The same set of PIR servers can be used to answer the query of users for different
databases (multiple organizations providing PIR-based services). The PIR server itself will
not contain any information about the individual data of the organizations. The random
server model of PIR makes it possible for database owners to use PIR without physically
distributing their database to untrusted holders.

The current random server model scheme [GIKM98a], however, does not guarantee
privacy for repeated queries because the adversary is able to observe when queries are
repeated. They proposed a buffering technique to keep track of query-response pairs (j,Xj)
such that an Xj is retrieved from the buffer if it has been requested before, otherwise
it is retrieved from the PIR server (using their basic scheme). A random element of
Xi is also retrieved if Xj is already in the buffer. However, the technique adds m log n
communication complexity to the scheme for a buffer size of size m and requires the scheme
to be reinitialized (database setup) after every m queries.

The work may begin with adapting Goldberg’s scheme and its implementation library
to use the random server model on cloud computing infrastructures to protect the content
of a PIR database. The extension would not require each server to hold a separately
precompiled database and would protect the privacy of repeated queries without requiring
reinitialization of the PIR database. In this manner, a single server can use its independent

149

database to service the retrieval requests of users from multiple PIR-based systems.

With regards to improving the computational performance of multi-server PIR schemes,
it has been claimed that PIR schemes generally exhibit one order of magnitude speedup by
using GPUs instead of CPUs to do the bulk of the computation [AMCG+08]. An interesting
future work is to study to what extent the computational performance of Goldberg’s multi-
server scheme can be enhanced by such parallelization. The database of the PIR server
can be shared between different read devices with each portion processed with different
cores or GPUs. Research in this direction is important to our goal of making PIR more
practical because the implementation of this PIR scheme [Gol07b, Gol07a] is the only
available open-source multi-server PIR library. A parallelized version of the library with
better performance will encourage application developers to consider using this PIR scheme
in their systems.

150

References

[AF02] Dmitri Asonov and Johann-Christoph Freytag. Repudiative information
retrieval. In WPES’02: Proceedings of the 2002 ACM Workshop on Privacy
in the Electronic Society, pages 32–40, New York, NY, USA, 2002.

[AF03] Dmitri Asonov and Johann-Christoph Freytag. Almost optimal private
information retrieval. In PET’02: Proceedings of the 2nd International
Workshop on Privacy Enhancing Technologies, pages 209–223, 2003.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Proceedings of EUROCRYPT 2001, Innsbruck,
Austria, May 2001.

[AKS08] Houtan Shirani-Mehr Ali Khoshgozaran and Cyrus Shahabi. SPIRAL, a
scalable private information retrieval approach to location privacy. In Pro-
ceedings of the 2nd International Workshop on Privacy-Aware Location-
based Mobile Services (PALMS), 2008.

[ALD08] Niwaer Ai, Ying Lu, and Jitender Deogun. The smart phones of tomorrow.
SIGBED Rev., 5(1):1–2, 2008.

[Ama11] Amazon.com. News release: Now selling more kindle books than print
books, Accessed May 2011.

[Amb97] Andris Ambainis. Upper bound on communication complexity of private
information retrieval. In ICALP’97: Proceedings of the 24th International
Colloquium on Automata, Languages and Programming, pages 401–407,
London, UK, 1997.

[AMCG+08] Carlos Aguilar-Melchor, Benoit Crespin, Philippe Gaborit, Vincent Jolivet,
and Pierre Rousseau. High-speed private information retrieval computation

151

on GPU. In SECURWARE’08: Proceedings of the 2008 Second Interna-
tional Conference on Emerging Security Information, Systems and Tech-
nologies, pages 263–272, Washington, DC, USA, 2008.

[AMD06] Carlos Aguilar-Melchor and Yves Deswarte. Single-database private infor-
mation retrieval schemes : Overview, performance study, and usage with
statistical databases. In Privacy in Statistical Databases, CENEX-SDC
Project International Conference, PSD 2006, Rome, Italy, December 13-
15, 2006, Lecture Notes in Computer Science, pages 257–265, 2006.

[AMG07] Carlos Aguilar-Melchor and Philippe Gaborit. A lattice-based
computationally-efficient private information retrieval protocol. In WE-
WORC, July 2007.

[APV02] Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. Implementing
I/O-efficient data structures using TPIE. In ESA’02: Proceedings of the
10th Annual European Symposium on Algorithms, pages 88–100, London,
UK, 2002.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In
Proceedings of SCN 2006, Maiori, Italy, September 2006.

[Aso04] Dmitri Asonov. Querying Databases Privately: A New Approach To Private
Information Retrieval. SpringerVerlag, 2004.

[BBD09] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash,
displace, and compress. In ESA 2009: Proceedings of the 17th Annual
European Symposium, September 7-9, 2009, pages 682–693, 2009.

[BBdCR09] Fabiano Cupertino Botelho, Djamel Belazzougui, and Davi de Castro Reis.
CMPH: C minimal perfect hashing library on sourceforge, Accessed June
2009. http://cmph.sourceforge.net/.

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In Proceedings of CRYPTO 1986, Santa Barbara, CA,
1986.

[BDMT07] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial
of service or denial of security? In Sabrina De Capitani di Vimercati and
Paul Syverson, editors, ACM Conference on Computer and Communica-
tions Security (CCS 2007), pages 92–102, 2007.

152

[Bei08] Amos Beimel. Private information retrieval: A primer. Department of
Computer Science, Ben-Gurion University (Submitted for Publication), Jan
2008.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In CLOT ’92, pages 144–152, 1992.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computa-
tion in private information retrieval: PIR with preprocessing. In Advances
in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings,
Lecture Notes in Computer Science, pages 55–73, 2000.

[BIM04] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ compu-
tation in private information retrieval: Pir with preprocessing. J. Cryptol.,
17(2):125–151, 2004.

[BJSW08] Claudio Bettini, Sushil Jajodia, Pierangela Samarati, and Xiaoyang Sean
Wang, editors. Proceedings of the 1st International Workshop on Privacy
in Location-Based Applications, Malaga, Spain, October 9, 2008, volume
397 of CEUR Workshop Proceedings, 2008.

[BKOS07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith, III.
Public key encryption that allows PIR queries. In CRYPTO’07: Proceed-
ings of the 27th annual international cryptology conference on Advances in
cryptology, pages 50–67, 2007.

[BLPW08] Bhuvan Bamba, Ling Liu, Peter Pesti, and Ting Wang. Supporting anony-
mous location queries in mobile environments with privacygrid. In Pro-
ceeding of the 17th international conference on World Wide Web, pages
237–246, New York, NY, USA, 2008.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In C. Boyd, editor, 7th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT 2001),
volume 2248 of Lecture Notes in Computer Science, pages 514–532, 2001.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. Journal of Cryptology, 17(4):297–319, January 2004.

153

[BMG+07] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Dou-
glas Sicker. Low-resource routing attacks against Tor. In Ting Yu, editor,
ACM Workshop on Privacy in the Electronic Society (WPES 2007), pages
11–20, 2007.

[Bra95] Stefan Brands. Restrictive blinding of secret-key certificates. In Proceedings
of EUROCRYPT 1995, Saint-Malo, France, May 1995.

[BRT11] Mikhail Bilenko, Matthew Richardson, and Janice Y. Tsai. Targeted, not
tracked: Client-side solutions for privacy-friendly behavioral advertising. In
4th Hot Topics in Privacy Enhancing Technologies (HotPETs 2011), pages
29–40, 2011.

[BS03] Amos Beimel and Yoav Stahl. Robust information-theoretic private infor-
mation retrieval. In SCN’02: Proceedings of the 3rd International Confer-
ence on Security in Communication Networks, pages 326–341, 2003.

[BS07] Amos Beimel and Yoav Stahl. Robust information-theoretic private infor-
mation retrieval. J. Cryptol., 20(3):295–321, 2007.

[BSNS06] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the integra-
tion of public key data encryption and public key encryption with keyword
search. In Information Security, 9th International Conference, ISC 2006,
Samos Island, Greece, August 30 - September 2, 2006, Proceedings, Lecture
Notes in Computer Science, pages 217–232, 2006.

[BSW09] John Bethencourt, Dawn Song, and Brent Waters. New techniques for
private stream searching. ACM Trans. Inf. Syst. Secur., 12(3):1–32, 2009.

[BWS05] Gregory Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti. Using parse
tree validation to prevent SQL injection attacks. In SEM, pages 106–113,
2005.

[BZ07] Fabiano C. Botelho and Nivio Ziviani. External perfect hashing for very
large key sets. In CIKM’07: Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, pages 653–662,
New York, NY, USA, 2007.

[CAMG08] Carlos Carlos Aguilar-Melchor and Philippe Gaborit. A fast private infor-
mation retrieval protocol. In Information Theory, 2008. ISIT 2008. IEEE
International Symposium on, pages 1848 –1852, 6-11 2008.

154

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious trans-
fer with access control. In Proceedings of ACM CCS 2009, Chicago, IL,
November 2009.

[CDN10] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Unlinkable
priced oblivious transfer with rechargeable wallets. In Proceedings of FC
2010, Tenerife, Canary Islands, January 2010.

[CDNZ11] Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Za-
verucha. Oblivious transfer with hidden access control lists. In Proceedings
of PKC 2011, Taormina, Italy, March 2011.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval
(extended abstract). In STOC’97: Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 304–313, New York, NY, USA,
1997.

[CGH09] Scott E. Coull, Matthew Green, and Susan Hohenberger. Controlling access
to an oblivious database using stateful anonymous credentials. In Proceed-
ings of PKC 2009, Irvine, CA, March 2009.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In FOCS’95: Proceedings of the 36th Annual
Symposium on the Foundations of Computer Science, pages 41–50, Oct
1995.

[CGN97] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by
keywords. Technical Report TR CS0917, Department of Computer Science,
Technion, Israel, 1997.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

[CLM07] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-
cash. In SP’07: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pages 101–115, Washington, DC, USA, 2007.

155

[CLT11] Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. Efficient techniques
for privacy-preserving sharing of sensitive information. In Jonathan M. Mc-
Cune, Boris Balacheff, Adrian Perrig, Ahmad-Reza Sadeghi, Angela Sasse,
and Yolanta Beres, editors, TRUST, volume 6740 of Lecture Notes in Com-
puter Science, pages 239–253. Springer, 2011.

[CML06] Chi-Yin Chow, Mohamed F. Mokbel, and Xuan Liu. A peer-to-peer spatial
cloaking algorithm for anonymous location-based service. In Proceedings of
the 14th Annual ACM international Symposium on Advances in Geographic
information Systems, pages 171–178, New York, NY, USA, 2006.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally pri-
vate information retrieval with polylogarithmic communication. In EURO-
CRYPT’99: Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques, pages 402–414, 1999.

[Cre06] Giovanni Di Crescenzo. Towards practical private information retrieval.
Achieving Practical Private Information Retrieval Panel, SecureComm
2006, Aug. 2006.

[Cri11] Emiliano De Cristofaro. Privacy-Preserving Sharing of Sensitive Informa-
tion (Working Title). PhD thesis, University of California, Irvine, Califor-
nia, USA, August 2011.

[CS10] Yao Chen and Radu Sion. On securing untrusted clouds with cryptography.
In WPES ’10, pages 109–114, 2010.

[CZ09] Jan Camenisch and Gregory M. Zaverucha. Private intersection of certified
sets. In Financial Cryptography and Data Security: 13th International Con-
ference, FC 2009, Accra Beach, Barbados, February 23-26, 2009. Revised
Selected Papers, pages 108–127, 2009.

[DC06] George Danezis and Richard Clayton. Route fingerprinting in anonymous
communications. In A. Montresor, A. Wierzbicki, and N. Shahmehri, ed-
itors, International Conference on Peer-to-Peer Computing (P2P 2006),
pages 69–72, 2006.

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: De-
sign of a type III anonymous remailer protocol. In SP’03: Proceedings of
the 2003 IEEE Symposium on Security and Privacy, pages 2–15, Oakland,
CA, May 2003.

156

[Dep09] Department of Computer Science at Duke University. The TPIE (tem-
plated portable I/O environment), Accessed July 2009. http://madalgo.

au.dk/Trac-tpie/.

[DFBAWM09] Josep Domingo-Ferrer, Maria Bras-Amorós, Qianhong Wu, and Jesús
Manjón. User-private information retrieval based on a peer-to-peer com-
munity. Data Knowl. Eng., 68:1237–1252, November 2009.

[DM06] Roger Dingledine and Nick Mathewson. Anonymity loves company: Us-
ability and the network effect. In 5th Workshop on the Economics of In-
formation Security (WEIS 2006), 2006.

[DMS04a] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In SEC’04: Proceedings of the 13th USENIX
Security Symposium, San Diego, CA, August 2004.

[DMS04b] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In USENIX Security Symposium, pages 21–21,
2004.

[DS08] George Danezis and Paul F. Syverson. Bridging and fingerprinting: Epis-
temic attacks on route selection. In N. Borisov and I. Goldberg, editors, 8th
Privacy Enhancing Technologies Symposium (PETS 2008), volume 5134 of
Lecture Notes in Computer Science, pages 151–166, 2008.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length.
In STOC’09: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, pages 39–44, New York, NY, USA, 2009.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Joe Kilian, editor,
TCC, volume 3378 of Lecture Notes in Computer Science, pages 303–324,
2005.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science,
pages 1–19, 2004.

[Fre11] Free Software Foundation. The GNU multiple precision (GMP) arithmetic
library, Accessed March 2011. Version 5.0.1.

157

http://madalgo.au.dk/Trac-tpie/
http://madalgo.au.dk/Trac-tpie/

[Gas04] William I. Gasarch. A survey on private information retrieval (column:
Computational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[GCF11] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical privacy in
online advertising. In Proceedings of the 8th USENIX conference on Net-
worked systems design and implementation, NSDI’11, pages 13–13, 2011.

[Gei10] Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD
thesis, Aarhus University, Aarhus, Denmark, 2010.

[GF10] Saikat Guha and Paul Francis. Privacy Analysis of the Privad Privacy-
preserving Advertising System. Technical report, MPI-SWS-2010-002,
Max Planck Institute for Software Systems, 2010. http://adresearch.

mpi-sws.org/privad-privacy.pdf.

[GG03] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based
services through spatial and temporal cloaking. In MobiSys ’03: Proceed-
ings of the 1st international conference on Mobile systems, applications and
services, pages 31–42, New York, NY, USA, 2003.

[GGM98] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A random server model for
private information retrieval or how to achieve information theoretic PIR
avoiding database replication. In RANDOM’98: Proceedings of the Second
International Workshop on Randomization and Approximation Techniques
in Computer Science, pages 200–217, London, UK, 1998.

[Ghi08] Gabriel Ghinita. Understanding the privacy-efficiency trade-off in location
based queries. In SPRINGL ’08: Proceedings of the SIGSPATIAL ACM
GIS 2008 International Workshop on Security and Privacy in GIS and
LBS, pages 1–5, New York, NY, USA, 2008.

[GIKM98a] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In STOC’98: Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing,
pages 151–160, New York, NY, USA, 1998.

[GIKM98b] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In Proceedings of
STOC 1998, Dallas, TX, May 1998.

158

http://adresearch.mpi-sws.org/privad-privacy.pdf
http://adresearch.mpi-sws.org/privad-privacy.pdf

[GKK+08] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and
Kian-Lee Tan. Private queries in location based services: Anonymizers
are not necessary. In SIGMOD’08: Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data, pages 121–132,
2008.

[Gol07a] Ian Goldberg. Improving the robustness of private information retrieval.
In IEEE Symposium on Security and Privacy, pages 131–148, 2007.

[Gol07b] Ian Goldberg. Percy++ project on SourceForge, June 2007. http:

//percy.sourceforge.net/.

[Goo10] Google. About google patent search, Accessed November 2010. http:

//www.google.com/googlepatents/about.html.

[GPG09] GPGPU Team. High-speed pir computation on GPU on Assembla, Ac-
cessed June 2009. http://www.assembla.com/spaces/pir_gpgpu/.

[GPS09a] GPSmagazine. Garmin nüvi 780 GPS review, Accessed April 2009. http:
//www.gpsmagazine.com/2008/04/garmin_nuvi_780_gps_review.php.

[GPS09b] GPSreview.net. POI – points of interest, Accessed April 2009.
http://www.gpsreview.net/pois/.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information
retrieval with constant communication rate. In ICALP’05: Proceedings of
the 32nd International Colloquium on Automata, Languages and Program-
ming, pages 803–815, 2005.

[GT08] Vandana Gunupudi and Stephen R. Tate. Generalized non-interactive
oblivious transfer using count-limited objects with applications to secure
mobile agents. In FC’08: Twelfth International Conference on Financial
Cryptography and Data Security, Cozumel, Mexico, 2008.

[Hen07] Urs Hengartner. Hiding location information from location-based services.
In Mobile Data Management, 2007 International Conference on, pages 268–
272, May 2007.

[Hen08] Urs Hengartner. Location privacy based on trusted computing and secure
logging. In SecureComm ’08: Proceedings of the 4th international confer-
ence on Security and privacy in communication netowrks, pages 1–8, New
York, NY, USA, 2008.

159

http://percy.sourceforge.net/
http://percy.sourceforge.net/
http://www.google.com/googlepatents/about.html
http://www.google.com/googlepatents/about.html
http://www.assembla.com/spaces/pir_gpgpu/
http://www.gpsmagazine.com/2008/04/garmin_nuvi_780_gps_review.php
http://www.gpsmagazine.com/2008/04/garmin_nuvi_780_gps_review.php

[HG05] Katherine A. Heller and Zoubin Ghahramani. Bayesian hierarchical clus-
tering. In ICML ’05, pages 297–304, 2005.

[HILM02] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing
SQL over encrypted data in the database-service-provider model. In ACM
SIGMOD, pages 216–227, 2002.

[HMT04] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index
for range queries. In VLDB, pages 720–731, 2004.

[HN09] Daniel C. Howe and Helen Nissenbaum. TrackMeNot: Resisting surveil-
lance in web search. In Ian Kerr, Valerie Steeves, and Carole Lucock,
editors, Lessons from the Identity Trail: Anonymity, Privacy, and Iden-
tity in a Networked Society, chapter 23, pages 417–436. Oxford University
Press, 2009.

[HOG11] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR for electronic
commerce. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, Chicago, IL, October 2011.

[HP05a] Robert J. Hansen and Meredith L. Patterson. Guns and butter: Towards
formal axioms of input validation. In Black Hat USA 2005, Las Vegas, July
2005.

[HP05b] Robert J. Hansen and Meredith L. Patterson. Stopping injection attacks
with computational theory. In Black Hat USA 2005, Las Vegas, July 2005.

[ICA08] ICANN Security and Stability Advisory Committee (SSAC). Report on
domain name front running, February 2008.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch
codes and their applications. In STOC ’04: Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 262–271, 2004.

[Inf09] InformIT. Introduction to DSL, Accessed July 2009. http://www.

informit.com/articles/article.aspx?p=31699&seqNum=3.

[Int09] Intel. Intel and ethernet, Accessed July 2009. http://www.intel.com/

standards/case/case_ethernet.htm.

160

http://www.informit.com/articles/article.aspx?p=31699&seqNum=3
http://www.informit.com/articles/article.aspx?p=31699&seqNum=3
http://www.intel.com/standards/case/case_ethernet.htm
http://www.intel.com/standards/case/case_ethernet.htm

[IS04] Alexander Iliev and Sean Smith. Private information storage with
logarithmic-space secure hardware. In In I-NetSec 04: 3rd Working Con-
ference on Privacy and Anonymity in Networked and Distributed Systems,
pages 201–216, 2004.

[IS05] Alexander Iliev and Sean W. Smith. Protecting client privacy with trusted
computing at the server. IEEE Security and Privacy, 3(2):20–28, 2005.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom func-
tion with applications to adaptive OT and secure computation of set in-
tersection. In TCC’09: Proceedings of the 6th Theory of Cryptography
Conference on Theory of Cryptography, pages 577–594, Berlin, Heidelberg,
2009.

[Jue01] Ari Juels. Targeted advertising ... and privacy too. In CT-RSA 2001:
Proceedings of the 2001 Conference on Topics in Cryptology, pages 408–
424, London, UK, 2001.

[Kal03] Burt Kaliski. TWIRL and RSA key size, 2003. http://www.rsa.com/

rsalabs/node.asp?id=2004.

[Kal09] Marcin Kalicinski. RapidXml. http://rapidxml.sourceforge.net/, Accessed
November 2009.

[Kat11] Aniket Kate. PBCWrapper: C++ wrapper classes for the pairing-based
cryptography library, Accessed March 2011. Version 0.8.0.

[KK00] Melita Kennedy and Steve Kopp. Understanding Map Projections. ESRI
(Environmental Systems Research Institute) press, 2000.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: sin-
gle database, computationally-private information retrieval. In FOCS’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, page 364, Washington, DC, USA, 1997.

[Kob01] Alfred Kobsa. Tailoring privacy to users’ needs. In UM ’01, pages 303–313,
2001.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Science,
pages 177–194, 2010.

161

http://www.rsa.com/rsalabs/node.asp?id=2004
http://www.rsa.com/rsalabs/node.asp?id=2004

[LBCP08] Dan Lin, Elisa Bertino, Reynold Cheng, and Sunil Prabhakar. Position
transformation: a location privacy protection method for moving objects.
In SPRINGL ’08: Proceedings of the SIGSPATIAL ACM GIS 2008 Inter-
national Workshop on Security and Privacy in GIS and LBS, pages 62–71,
New York, NY, USA, 2008.

[Lip88] Richard P. Lippmann. An introduction to computing with neural nets. In
Artificial neural networks: theoretical concepts, pages 36–54, Los Alamitos,
CA, USA, 1988.

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communi-
cation. In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao,
editors, ISC, volume 3650 of Lecture Notes in Computer Science, pages
314–328, 2005.

[LO11] Steve Lu and Rafail Ostrovsky. Multi-server oblivious ram. Cryptology
ePrint Archive, Report 2011/384, 2011. http://eprint.iacr.org/.

[Loe09] Karsten Loesing. Measuring the Tor Network: Evaluation of Client Re-
quests to the Directories. Technical report, The Tor project, 2009.

[Lyn11] Ben Lynn. PBC library: The pairing-based cryptography library, Accessed
March 2011. Version 0.5.11.

[MB08] Prateek Mittal and Nikita Borisov. Information leaks in structured peer-to-
peer anonymous communication systems. In P. F. Syverson and S. Jha, ed-
itors, ACM Conference on Computer and Communications Security (CCS
2008), pages 267–278, 2008.

[MB09] Prateek Mittal and Nikita Borisov. ShadowWalker: peer-to-peer anony-
mous communication using redundant structured topologies. In S. Jha and
A. D. Keromytis, editors, ACM Conference on Computer and Communi-
cations Security (CCS 2009), pages 161–172, 2009.

[MBTR10] Prateek Mittal, Nikita Borisov, Carmela Troncoso, and Alfredo Rial. Scal-
able anonymous communication with provable security. In 5th USENIX
conference on Hot topics in security (HotSec’10), pages 1–16, 2010.

[MCA06] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. The new Casper:
query processing for location services without compromising privacy. In

162

http://eprint.iacr.org/

VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pages 763–774, 2006.

[McC10] Declan McCullagh. Amazon Fights Demand for Customer Records, April
2010. http://news.cnet.com/8301-13578_3-20002870-38.html.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics Magazine, 38(8), 1965.

[MOT+11] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and
Ian Goldberg. PIR-Tor: Scalable anonymous communication using private
information retrieval. In Proceedings of the 20th USENIX Security Sympo-
sium, San Diego, CA, August 2011.

[MS00] Sanjeev Kumar Mishra and Palash Sarkar. Symmetrically private informa-
tion retrieval. In INDOCRYPT’00: Proceedings of the First International
Conference on Progress in Cryptology, pages 225–236, London, UK, 2000.

[MTHK09] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. Scal-
able onion routing with Torsk. In Somesh Jha and Angelos D. Keromytis,
editors, ACM Conference on Computer and Communications Security,
pages 590–599, 2009.

[Nat07] National Institute of Standards and Technology. Key management guide-
line, 2007. http://csrc.nist.gov/groups/ST/toolkit/index.html.

[New04] New European Schemes for Signatures, Integrity, and Encryption. Final
report of European Project IST-1999-12324, 2004. https://www.cosic.

esat.kuleuven.be/nessie/.

[Nie88] Jakob Nielsen. Nielsen’s law of Internet bandwidth, April 1988. http:

//www.useit.com/alertbox/980405.html.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evalua-
tion. In ACM Symposium on Theory of Computing, pages 245–254, 1999.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
SODA’01: Proceedings of the 12th annual ACM-SIAM Symposium On Dis-
crete Algorithms, pages 448–457, Philadelphia, PA, USA, 2001.

163

http://news.cnet.com/8301-13578_3-20002870-38.html
http://csrc.nist.gov/groups/ST/toolkit/index.html
https://www.cosic.esat.kuleuven.be/nessie/
https://www.cosic.esat.kuleuven.be/nessie/
http://www.useit.com/alertbox/980405.html
http://www.useit.com/alertbox/980405.html

[NW06] Arjun Nambiar and Matthew Wright. Salsa: a structured approach to
large-scale anonymity. In R. N. Wright and S. De Capitani di Vimercati,
editors, 13th ACM Conference on Computer and Communications Security
(CCS 2006)), pages 17–26, 2006.

[OG10a] Femi Olumofin and Ian Goldberg. Preserving access privacy over large
databases. Technical report, CACR 2010-33, University of Water-
loo, 2010. http://www.cacr.math.uwaterloo.ca/techreports/2010/

cacr2010-33.pdf.

[OG10b] Femi Olumofin and Ian Goldberg. Privacy-preserving queries over rela-
tional databases. In PETS’10: Proceedings of the 10th Privacy Enhancing
Technologies Symposium, Berlin, 2010.

[OG11] Femi Olumofin and Ian Goldberg. Revisiting the computational practi-
cality of private information retrieval. In FC’11: Fifteenth International
Conference on Financial Cryptography and Data Security, St. Lucia, 2011.

[Ook10] Ookla. Netindex.com source data (Canada and US), Accessed July 2010.
http://www.netindex.com/source-data/.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended
abstract). In STOC’97: Proceedings of the twenty-ninth annual ACM Sym-
posium on Theory of Computing, pages 294–303, New York, NY, USA,
1997.

[ØS06] Lasse Øverlier and Paul Syverson. Locating hidden servers. In IEEE Sym-
posium on Security and Privacy (S&P 2006), 2006.

[OS07a] Rafail Ostrovsky and William E. Skeith, III. Private searching on streaming
data. J. Cryptol., 20(4):397–430, 2007.

[OS07b] Rafail Ostrovsky and William E. Skeith, III. A survey of single-database
private information retrieval: Techniques and applications. In PKC’07:
Proceedings of the 10th international conference on Practice and theory in
public-key cryptography, pages 393–411, 2007.

[OTGH10] Femi Olumofin, Piotr K. Tysowski, Ian Goldberg, and Urs Hengart-
ner. Achieving efficient query privacy for location based services. In
PETS’10: Proceedings of the 10th Privacy Enhancing Technologies Sympo-
sium, Berlin, 2010.

164

http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-33.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-33.pdf
http://www.netindex.com/source-data/

[Pro11] OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS, Ac-
cessed February 2011. Version 1.0.0.

[PRR09] Andriy Panchenko, Stefan Richter, and Arne Rache. NISAN: network
information service for anonymization networks. In S. Jha and A. D.
Keromytis, editors, ACM Conference on Computer and Communications
Security (CCS 2009), pages 141–150, 2009.

[PS10] Sai Teja Peddinti and Nitesh Saxena. On the privacy of web search based
on query obfuscation: a case study of TrackMeNot. In Proceedings of the
10th Privacy Enhancing Technologies Symposium, PETS’10, pages 19–37,
2010.

[PYZ+09] A. Pingley, W. Yu, N. Zhang, X. Fu, and W. Zhao. CAP: A context-
aware privacy protection system for location-based services. In 29th IEEE
International Conference on Distributed Computing Systems, Jun 2009.

[Ray00] Jean-François Raymond. Traffic analysis: Protocols, attacks, design issues,
and open problems. In H. Federrath, editor, Proceedings of Designing Pri-
vacy Enhancing Technologies: Workshop on Design Issues in Anonymity
and Unobservability, volume 2009 of Lecture Notes in Computer Science,
pages 10–29, 2000.

[RP02] Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-to-
peer based anonymous Internet usage with collusion detection. In Sushil
Jajodia and Pierangela Samarati, editors, ACM Workshop on Privacy in
the Electronic Society (WPES 2002), pages 91–102, 2002.

[RPB08] Daniele Riboni, Linda Pareschi, and Claudio Bettini. Privacy in georefer-
enced context-aware services: A survey. In Bettini et al. [BJSW08].

[RPG07] Joel Reardon, Jeffrey Pound, and Ian Goldberg. Relational-complete pri-
vate information retrieval. Technical report, Technical Report CACR 2007-
34, University of Waterloo, 2007.

[SB88] Gerard Salton and Christopher Buckley. Term-weighting approaches in
automatic text retrieval. Inf. Process. Manage., 24:513–523, August 1988.

[SB08] Robin Snader and Nikita Borisov. A tune-up for Tor: Improving security
and performance in the Tor network. In Proceedings of the Network and
Distributed System Security Symposium (NDSS 2008), 2008.

165

[SBC+07] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian
Perrig. Multi-dimensional range query over encrypted data. In SP’07:
Proceedings of the 2007 IEEE Symposium on Security and Privacy, pages
350–364, Washington, DC, USA, 2007.

[SC07] Radu Sion and Bogdan Carbunar. On the computational practicality of
private information retrieval. In Network and Distributed Systems Security
Symposium, 2007.

[Sch00] Douglas C. Schmidt. More C++ gems, chapter GPERF: a perfect hash
function generator, pages 461–491. Cambridge University Press, New York,
NY, USA, 2000.

[Sch11] Thomas Schneider. Engineering Secure Two-Party Computation Protocols:
Advances in Design, Optimization, and Applications of Efficient Secure
Function Evaluation. PhD thesis, Ruhr-University Bochum, Bochum, Ger-
many, February 2011.

[SCM05] Len Sassaman, Bram Cohen, and Nick Mathewson. The Pynchon Gate: a
secure method of pseudonymous mail retrieval. In WPES’05: Proceedings
of the 2005 ACM Workshop on Privacy in the Electronic Society, pages
1–9, New York, NY, USA, 2005.

[SDFMB08] Agusti Solanas, Josep Domingo-Ferrer, and Antoni Mart́ınez-Ballesté. Lo-
cation privacy in location-based services: Beyond TTP-based schemes. In
Bettini et al. [BJSW08].

[SDH+10] Max Schuchard, Alexander W. Dean, Victor Heorhiadi, Nicholas Hopper,
and Yongdae Kim. Balancing the shadows. In K. Frikken, editor, 9th ACM
workshop on Privacy in the electronic society (WPES 2010), pages 1–10,
2010.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Sho11] Victor Shoup. NTL: A library for doing number theory, Accessed March
2011. Version 5.5.2.

[SJ88] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval, pages 132–142. Taylor Graham Publishing, London,
UK, UK, 1988.

166

[SJ05] Felipe Saint-Jean. Java implementation of a single-database computation-
ally symmetric private information retrieval (cSPIR) protocol. Technical
Report YALEU/DCS/TR-1333A, Yale University, New Haven, CT, USA,
2005.

[SKS05] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, Inc., New York, NY, USA, 5th edition, 2005.

[SL91] Seyed Rasoul Safavian and David Landgrebe. A survey of decision tree clas-
sifier methodology. IEEE Transactions on Systems, Man and Cybernetics,
21(3):660 –674, May 1991.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[Sny93] John P. Snyder. Flattening the Earth, two thousand years of map projec-
tions. University of Chicago Press, 1993.

[Sol01] Daniel J. Solove. Privacy and power: Computer databases and metaphors
for information privacy. Stanford Law Review, 53(6):1393–1462, 2001.

[Spu00] Charles E. Spurgeon. Ethernet: The Definitive Guide. O’Reilly & Asso-
ciates, Inc., USA, 2000.

[SS01] Sean William Smith and David Safford. Practical server privacy with secure
coprocessors. IBM Syst. J., 40(3):683–695, 2001.

[Ste98] Julien P. Stern. A new efficient all-or-nothing disclosure of secrets protocol.
In ASIACRYPT’98: Proceedings of the International Conference on the
Theory and Applications of Cryptology and Information Security, pages
357–371, London, UK, 1998.

[Sun09] Sun Microsystems. MySQL, Accessed July 2009. http://www.mysql.com/.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In SP’00: Proceedings of the 2000
IEEE Symposium on Security and Privacy, page 44, Washington, DC, USA,
2000.

[Tan02] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Tech-
nical Reference, 2002.

167

[TB06] Parisa Tabriz and Nikita Borisov. Breaking the collusion detection mecha-
nism of MorphMix. In George Danezis and Phillipe Golle, editors, Privacy
Enhancing Technologies (PETS 2006), volume 4258 of Lecture Notes in
Computer Science, pages 368–383, 2006.

[THK09] Andrew Tran, Nicholas Hopper, and Yongdae Kim. Hashing it out in public:
common failure modes of DHT-based anonymity schemes. In S. Paraboschi,
editor, 8th ACM Workshop on Privacy in the Electronic Society (WPES
2009), pages 71–80, 2009.

[TNB+10] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and
Solon Barocas. Adnostic: Privacy preserving targeted advertising. In Net-
work and Distributed Systems Security Symposium, 2010.

[Tor11a] The Tor Project. Tor metrics portal, June 2011.
http://metrics.torproject.org/.

[Tor11b] The Tor Project. Who uses Tor. http://www.torproject.org/about/

torusers.html.en, Accessed June 2011.

[TP11] Jonathan Trostle and Andy Parrish. Efficient computationally private in-
formation retrieval from anonymity or trapdoor groups. In Proceedings of
the 13th international conference on Information security, ISC’10, pages
114–128, 2011.

[Tra09] Transaction Processing Performance Council. TPC benchmark C, Accessed
July 2009. http://www.tpc.org/.

[Tru10] Trusted Computing Group. Trusted platform module. http://www.

trustedcomputinggroup.org/developers/trusted_platform_module,
Accessed July 2010.

[TV09] Stephen R. Tate and Roopa Vishwanathan. Improving cut-and-choose in
verifiable encryption and fair exchange protocols using trusted computing
technology. In Proceedings of the 23rd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security XXIII, pages 252–267, 2009.

[VV95] Darren Erik Vengroff and Jeffrey Scott Vitter. Supporting I/O-efficient
scientific computation in TPIE. In SPDP’95: Proceedings of the 7th IEEE
Symposium on Parallel and Distributed Processing, page 74, Washington,
DC, USA, 1995.

168

http://www.torproject.org/about/torusers.html.en
http://www.torproject.org/about/torusers.html.en
http://www.tpc.org/
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module

[WAEA10] Shiyuan Wang, Divyakant Agrawal, and Amr El Abbadi. Generalizing
PIR for practical private retrieval of public data. In DBSec’10, pages 1–16,
Rome, Italy, 2010.

[WDDB06] Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private
information retrieval using trusted hardware. In Dieter Gollmann, Jan
Meier, and Andrei Sabelfeld, editors, ESORICS, volume 4189 of Lecture
Notes in Computer Science, pages 49–64, 2006.

[Wei02] Alan R. Weiss. Dhrystone benchmark: History, analysis, scores and rec-
ommendations. EEMBC White Paper, 2002.

[Wie06] Christian Wieschebrink. Two NP-complete problems in coding theory with
an application in code based cryptography. In 2006 IEEE International
Symposium on Information Theory, pages 1733–1737, July 2006.

[WMB10] Qiyan Wang, Prateek Mittal, and Nikita Borisov. In search of an anony-
mous and secure lookup: attacks on structured peer-to-peer anonymous
communication systems. In Angelos D. Keromytis and Vitaly Shmatikov,
editors, ACM Conference on Computer and Communications Security
(CCS 2010), pages 308–318, 2010.

[WS08] Peter Williams and Radu Sion. Usable PIR. In NDSS’08: Proceedings
of the 16th Annual Network and Distributed System Security Symposium,
2008.

[WT09] Mark Wong and Craig Thomas. Database test suite project on SourceForge,
Accessed July 2009. http://osdldbt.sourceforge.net/.

[WWP10] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Secure coprocessor-
based private information retrieval without periodical preprocessing. In
AISC ’10, pages 5–11, 2010.

[XC07] Toby Xu and Ying Cai. Location anonymity in continuous location-based
services. In Proceedings of the 15th Annual ACM international Symposium
on Advances in Geographic information Systems, pages 1–8, New York,
NY, USA, 2007.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, FOCS ’82,
pages 160–164, 1982.

169

http://osdldbt.sourceforge.net/

[YCSI08] Rei Yoshida, Yang Cui, Rie Shigetomi, and Hideki Imai. The practicality
of the keyword search using PIR. In ISITA’08: Proceedings of the 2008 In-
ternational Symposium on Information Theory and its Applications, pages
1–6, December 2008.

[Yek07] Sergey Yekhanin. Locally decodable codes and private information retrieval
schemes. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2007.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponen-
tial length. J. ACM, 55(1):1–16, 2008.

[Yek10] Sergey Yekhanin. Private information retrieval. Commun. ACM, 53(4):68–
73, 2010.

[Yek11] Sergey Yekhanin. Locally decodable codes: a brief survey. In Proceedings
of the 3rd International Workshop on Coding and Cryptography (IWCC),
2011, Qingdao, China, May/June 2011.

[YJHL08] Man Lung Yiu, C.S. Jensen, Xuegang Huang, and Hua Lu. Spacetwist:
Managing the trade-offs among location privacy, query performance, and
query accuracy in mobile services. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, pages 366–375, April 2008.

[YY08] Stephen S. Yau and Yin Yin. Controlled privacy preserving keyword search.
In ASIACCS’08: Proceedings of the 2008 ACM Symposium on Information,
Computer and Communications Security, pages 321–324, New York, NY,
USA, 2008.

[ZAW+10] Ye Zhang, Man Ho Au, Duncan S. Wong, Qiong Huang, Nikos Mamoulis,
David W. Cheung, and Siu-Ming Yiu. Oblivious transfer with access control
: Realizing disjunction without duplication. In Proceedings of Pairing 2010,
Yamanaka Hot Spring, Japan, December 2010.

[ZH09] Ge Zhong and Urs Hengartner. A distributed k-anonymity protocol for
location privacy. In Proceedings of Seventh IEEE International Conference
on Pervasive Computing and Communication (PerCom 2009). Galveston,
TX, pages 253–262, 2009.

170

APPENDICES

171

Appendix A

Database Schema and Queries for
our SQLPIR Contribution

This appendix lists the database schemas and the queries relating to the examples and
experiments in Chapter 5. Listing 6 shows the database schema for the examples, List-
ing 7 shows the schema for the microbenchmarks and experiments, Listing 8 shows the
microbenchmark queries from Reardon et al. [RPG07], and Listing 9 shows the experimen-
tal queries with complex conditions.

172

Listing 6 Database schema for examples.

CREATE TABLE registrar (

reg_id int(11) NOT NULL,

contact char(60) default NULL,

phone char(80) default NULL,

address char(80) default NULL,

email char(60) default NULL,

PRIMARY KEY (reg_id));

CREATE TABLE regdomains (

id int(11) NOT NULL,

domain char(80) default NULL,

created int(8) default NULL,

expiry int(8) default NULL,

reg_id int(11) NOT NULL,

status varchar(2) default NULL,

PRIMARY KEY (id));

173

Listing 7 Database schema for microbenchmarks and experiments.

CREATE TABLE contact (

contact_id int(11) NOT NULL,

name char(60) default NULL,

address char(80) default NULL,

email char(60) default NULL,

PRIMARY KEY (contact_id));

CREATE TABLE registration (

reg_id int(11) NOT NULL,

domain char(80) default NULL,

expiry_date int(8) default NULL,

reg_date int(8) default NULL,

registrant int(11) default NULL,

registrar int(11) default NULL,

status varchar(2) default NULL,

PRIMARY KEY (reg_id));

ADD FOREIGN KEY fk_registrant (registrant) REFERENCES contact(contact_id);

ADD FOREIGN KEY fk_registrar (registrar) REFERENCES contact(contact_id);

174

Listing 8 Microbenchmark queries from Reardon et al. [RPG07].

Q1 – Point query with single result

SELECT domain, reg_date

FROM registration

WHERE domain = ?

Q2 – Point query with multiple results

SELECT domain

FROM registration

WHERE expiry_date = ?

Q3 – Range query with single condition

SELECT domain, status

FROM registration

WHERE expiry_date > ?

Q4 – Range query with multiple conditions

SELECT *

FROM registration

WHERE expiry_date > ? AND

reg_date < ?

Q5 – Point query with join

SELECT domain, name, email

FROM contact, registration

WHERE domain = ? AND

registrant = contact_id

Q6 – Range query with join

SELECT *

FROM contact, registration

WHERE expiry_date > ? AND

registrar=contact_id

175

Listing 9 Experimental SQL queries CQ1–CQ5. “#” indicates a private constant or
condition. Each private constant or condition features a sensitive constant.

CQ1 – Private point query on a range with sensitive domain name information (private constant).

SELECT domain, name, address, email, reg_date, expiry_date

FROM registration, contact

WHERE (contact_id = registrant) AND

(reg_date > 20090501) AND

(domain = #’somedomain.org’)

CQ2 – Private range query with sensitive registrar ID range (private condition).

SELECT domain, name, address, email, expiry_date

FROM registration, contact

WHERE (contact_id = registrant) AND

(status IN (1,4,5,7,9)) AND

(registrar #BETWEEN 198542 AND 749999) AND

(expiry_date BETWEEN 20090101 AND 20091031)

CQ3 – Private aggregate point query with sensitive registrar ID value (private constant).

SELECT registrar, count(domain)

FROM registration, contact

WHERE (contact_id = registrar) AND

(registrar = #635393)

GROUP BY registrar

HAVING count(domain) > 0

ORDER BY registrar ASC

CQ4 – Non-private LIKE query revealing only the prefix of a domain name (private condition).

SELECT domain, name, address, email, reg_date, expiry_date

FROM registration, contact

WHERE (contact_id = registrant) AND

(domain LIKE ’some%’) AND

(domain = #’somedomain.com’)

CQ5 – Private LIKE query with domain name prefix as wildcard (private condition).

SELECT domain, name, address, email, reg_date, expiry_date

FROM registration, contact

WHERE (contact_id = registrant) AND

(domain #LIKE ’some%’)

176

Appendix B

Client Calibration, Map Tracking,
and User Privacy Preferences for
our TOPIR Contribution

Client Calibration

Before a user runs the first query, the client needs to be calibrated. Calibration equips
the client with some metadata for making correct estimates about the cost of executing
a query. Some of the information in this metadata are the average duration for query
transformation (ttr), the average duration for retrieving a data item from a bucket (tPIR),
the PHF f that was generated when the data is being indexed, statistical information
about the distribution of data in the database, and a small table of information (TB) about
buckets: their numbers, beginning offsets and lengths in bytes. Some of the information
might need to be refreshed periodically (e.g., statistical information on data distribution).

Tracking Buckets and Portions Map

The client needs to maintain maps of portions and buckets for all her queries. A map
describes either the buckets or the identifying information submitted to the database for
defining the portion for answering a query. The main idea is that the client will reuse the
same map for repeated queries. If the client does not reuse existing maps, intersection
attacks by the adversary can help isolate the bucket of interest or the data sub-portion of

177

Table B.1: Modeling privacy preferences for SQL-based queries.

[1] subset := bucket | ; Use static buckets only

portion | ; Use dynamic portions only

any ; Use either

[2] disclosures := query | ; Entire query (no access privacy)

substring | ; All but the substrings of constants

constant | ; All but constants in predicates

predicate | ; All but predicates having constants

none ; Hide query shape, predicates and constants

[3] attributes := title | ; Allow disclosures of patent titles

abstract ; Allow disclosures of abstracts

[4] mindegree := real_number ; Minimum degree of access privacy

interest, thereby decreasing the level of access privacy. Whenever a map is used for the
first time, it is appended to a list of maps and its popularity or frequency of use is set
to 1. Subsequently, the client retrieves and reuses maps from the list if a query can be
answered using an existing map; otherwise it creates a new map. The client also updates
the popularity of a reused map. In an honest-but-curious adversarial model, the database
can be relied upon to publish maps of portions and buckets queried by all users. A user
can reuse maps predefined in the database in that case. However, if the database is not
relied upon to publish correct maps, a user can share maps with other users by periodically
uploading their map data to a third-party system through an anonymous channel, and the
system will use the information to update the popularity of the maps.

An Example User Privacy Preferences Modeling

An example of modeling user privacy preferences for an SQL query is shown in Table B.1.
The attributes element in the definition specifies the list of attribute names containing
data that may be disclosed to define a database portion. The client software should not
disclose values for attributes names not listed (e.g., patent assignees, inventing parties,
date of issue, etc.).

178

Appendix C

Level of Privacy Algorithm for our
LBSPIR Contribution

Algorithms

In this appendix, we present the algorithms that implement our proposal to allow a user to
set his or her level of query privacy (equivalent to the size of the cloaking region) in the PIR
query. Let PIR = {PIREncode, PIRProcess, PIRDecode} be some PIR protocol where
PIREncode, PIRProcess, and PIRDecode are the query encoding, response processing,
and response decoding protocols, respectively.

Query Generation (by PIR client)

Let n be the total number of items (or POIs) in the PIR database or databases (in the
case of a PIR protocol with replicated databases), σ be the number of VHC grid cells in
the map where each grid cell has n/σ items. Let i be the index of the database block that
the user is after, and ρ ∈ [0, 1] be the level of query privacy preset by the user. In models
where users pay for computational resources used by PIR servers, this privacy level must
have been negotiated by the user and LBS provider. The user selects this level by using
an application interface on the smartphone. The level is specified in terms of cities/towns
(city level), state/provinces (provincial level), and so on.

i. Compute w = dρne and set R = {r1, r2, r3, . . . , rw} to be the set of indices for the
items corresponding to the cloaking region.

179

ii. Compute (q, τ) = PIREncodeR(i) as the PIR query encoding for i, using only the
item indices in R (i.e., not all the indices in all geographical grid locations in the
entire map are required). Here, q is the query to be sent to the database server, and
τ is some state information that will be used to decode the server’s response.

iii. Send {q, R} to the database (or PIR server). Instead of sending R, it may be more
efficient to send only the top left and bottom right coordinates of the bounding
rectangle that covers the cloaking region, or the range of identifiers (or numbers) for
the VHC grid cells that are within the cloaking region, or for the geographic cells that
contain them. In any of these cases, the PIR server can use the provided information
to determine R.

Response Encoding (by PIR server)

i. Retrieve a database portion D = {d1, d2, d3, . . . , dw}, where each database item in
D correponds to an index in R. Each item is a POI data structure with attributes
longitude, latitude, name, address, phone, category, website address, and so on.

ii. Execute PIRProcessD(q) to obtain response r, which should be the block of POIs
in the user’s VHC grid cell.

iii. Return r back to the client.

Response Decoding (by PIR client)

i Execute PIRDecodeR(τ, r) to obtain a database response to the query. The response
should be the set of POIs that the query requested.

ii The client can locally compute the nearest neighbour using the set of POIs that was
returned.

180

	List of Tables
	List of Figures
	List of Queries
	Introduction
	Preamble
	Open Problems
	Contributions
	Thesis Organization

	Preliminaries
	Motivation
	Applications
	Single-server PIR Schemes
	Multi-server PIR Schemes
	Chor et al. Scheme chor95
	Goldberg Scheme goldberg07

	Coprocessor-Assisted PIR Schemes
	Relationship to other Cryptographic Primitives
	Relation to Recent PhD Theses

	Related Work
	Multi-server and Single-server PIR
	Computational Practicality of PIR
	Data Access Models for PIR
	Large Database Access Privacy and Tradeoffs
	Application Areas for PIR
	Pseudonymous Mailing System
	Location-Based Services and PIR
	Electronic Commerce

	MSPIR: Revisiting The Computational Practicality of PIR
	Introduction
	Preliminaries

	Efficient Single-server PIR (LPIR-A)
	Experiment
	Result

	Multi-server PIR
	First Scheme (MPIR-C)
	Second Scheme (MPIR-G)
	Response Time Measurement Experiment

	Trivial Download vs. Non-Trivial PIR Compared
	Conclusions

	SQLPIR: Privacy-preserving Queries over Relational Databases
	Introduction
	Preliminaries
	Indexing

	Threat Model, Security and Assumptions
	Security and Adversary Capabilities
	Data Size Assumptions
	Avoiding Server Collusion

	Hiding Sensitive Constants
	Overview
	Algorithm

	Discussion
	Parsing SQL Queries
	Indexing Subquery Results
	Database Servers
	Processing Specific Conditions

	Implementation and Microbenchmarks
	Implementation
	Experimental Setup
	Result Overview
	Microbenchmark Experiment
	Discussion

	Complex Query Evaluation
	Result Overview
	Experiments on Queries with Complex Conditions
	Database Optimization Experiments
	Improving Performance by Revealing Keyword Prefixes
	Limitations

	Conclusion and Future Work

	TOPIR: Preserving Access Privacy Over Large Databases
	Introduction
	Motivation
	High Computational Costs for Large Databases
	Most Internet Users Have Low Network Bandwidth
	Physical Limits of Hard Disks and Memory
	``All-or-nothing'' Access Privacy is Insufficient

	Model
	Proposed Solution
	Defining Database Subsets
	Indexing Large Databases
	Privacy-Preserving Query Transformation
	Privacy-Preserving Query Execution

	Implementation and Evaluation
	Experimental Data Set
	Experimental Setup
	Classifying USPTO Patent Data
	Generating Indices
	Privacy-preserving Patent Database Query
	Resistance to Correlation Attacks

	Conclusions and Open Problems

	LBSPIR: Achieving Efficient Location Privacy
	Introduction
	Requirements and Assumptions
	Our Results

	Our Tradeoff Solution
	Level of Privacy for the PIR Query
	Pre-processing and Location Cloaking
	Variable Level of Privacy

	Security Analysis
	Collusion Prevention for PIR
	Subscription Service and Privacy
	Privacy and Size of the Cloaking Region
	Passive Attacks
	Active Attacks

	Experimental Evaluation
	Implementations
	Results and Discussion

	Conclusions

	PIR-Tor and PIR-Commerce: Real-World Applications of PIR
	PIR-Tor: Scalable Anonymous Communication
	Introduction
	Related Work
	PIR-Tor System Details
	Security and Privacy Implications (sketch)
	Performance Evaluation
	Conclusion

	PIR-Commerce: Privacy-preserving e-Commerce
	Introduction
	System Model, Threat Model, and Use Case
	Constructions (sketch)
	Implementation and Evaluation
	Conclusion

	Conclusions
	References
	APPENDICES
	Database Schema and Queries
	Client Calibration, Map Tracking, and User Privacy Preferences
	Level of Privacy Algorithm

