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Abstract

Finding wide tunnels in protein structures is an important problem in Structural Bioin-

formatics with applications in various areas such as drug design. Several algorithms have

been proposed for finding wide tunnels in a fixed protein conformation. However, to the

best of our knowledge, none of the existing work have considered widening the tunnel, i.e.,

finding a wider tunnel in an alternative conformation of the given structure. In this thesis

we initiate this line of research by proposing a tunnel-widening algorithm which aims to

make the tunnel wider by a slight local change in the structure of the protein.

Given a fixed conformation of a protein with a point located inside it, we first describe

an algorithm to identify the widest tunnel from that point to the outside environment

of the protein. Then we try to make the tunnel wider by considering various alternative

conformations of the protein. We only consider conformations whose energies are not much

higher than the energy of the initial conformation. Among these alternative conformations

we select the one with the widest tunnel. However, the alternative conformation with the

widest tunnel might not be accessible from the initial structure. Thus, in the next step we

develop three algorithms for finding a feasible transition pathway from the initial structure

to the alternative conformation, i.e., a sequence of intermediate conformations between the

initial structure and the alternative conformation such that the energy values of all these

intermediate conformations are close to the energy of the initial structure.

We evaluate our tunnel-finding and tunnel-widening algorithms on various proteins.

Our experiments show that in most cases we can make the tunnel wider in an alternative

conformation. However, there are cases in which we find a wider tunnel in an alternative

conformation, but the energy value of the alternative conformation is much higher than the

energy of the initial structure. We also implemented our three pathway-finding algorithms

and tested them on various instances. Our experiments show that although in most cases we

can find a feasible transition pathway, there are cases in which the alternative conformation

has energy close to the initial structure, but our algorithms cannot find any feasible pathway

from the initial structure to the alternative conformation. Furthermore, there is a trade-off

between the running time and accuracy of the three pathway-finding algorithms.
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Chapter 1

Introduction

Proteins adopt complex three dimensional structures containing various cavities, pock-

ets, clefts, pores, channels, and tunnels. Understanding and analyzing these structural

properties have great theoretical and practical importance as they play a part in protein

functionality. In this thesis we are mainly interested in discovering tunnels, i.e., routes or

paths from the outside environment to a position inside the protein and vice versa. Finding

tunnels in protein structures is an important problem in Structural Bioinformatics, with

applications in areas such as drug design. The drug (a ligand 1) will bind to a specific part

of the protein, called the binding site. In some cases, the binding site is buried deep inside

the protein. This is especially applicable to enzymes, in which binding sites are usually

conserved in the protein [68]. Thus the ligand needs to find a tunnel from the outside

environment to the binding site. This tunnel should be wide enough to guarantee that the

ligand does not clash with other atoms. This motivates the problem of finding the widest

tunnels in protein structures.

In this thesis we consider three main problems related to finding wide tunnels in pro-

teins: the tunnel-finding problem, the tunnel-widening problem, and the pathway-finding

problem. In the tunnel-finding problem we are given a fixed conformation of a protein

and the coordinates of a point located inside the protein structure. We refer to this point

1A ligand is a substance that attaches to a special region of a biomolecule to serve a biological purpose.
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Figure 1.1: Protein 1CV2 with starting point at position (14,15,22). The starting point is
shown by an orange sphere.

as the starting point of the tunnel. Our objective is to find the widest tunnel from the

starting point to the outside environment of the protein. We consider the outside environ-

ment to be anywhere outside the convex hull of the protein atoms. Note that in a drug

design application we are interested in finding a tunnel from the binding site to the outside

environment. For simplicity we assume that the binding site can be modeled by a single

point whose coordinates are provided by the user. An instance of this problem is shown

in Figure 1.1. We are given the protein with PDB ID 1CV2 and the starting point is at

position (14,15,22) in the frame of reference used by the PDB coordinates.

We will describe a tunnel-finding algorithm that finds the widest tunnel in a fixed protein

conformation from a given starting point. While this is the widest tunnel in the given

conformation, it is possible that there exists a wider tunnel from the starting point to the

outside environment in a different conformation of the same protein. In the tunnel-widening

2



problem, our objective is to widen the tunnel, i.e., to find an alternative conformation

of the initial structure with a wider tunnel. This is motivated by some applications in

which widening the tunnel is of great importance and interest. For example, consider the

drug design application described earlier. It is possible that the tunnel discovered by the

tunnel-finding algorithm is not wide enough for the drug, while another conformation of

the protein has a sufficiently wide tunnel. Thus knowing that a wider tunnel can exist

might lead to improvements in drug design. Note that some alternative conformations

have energy values much higher than the energy of the initial conformation and thus the

probability of transition from the initial structure to these alternative conformations is

very low. Therefore we only consider alternative conformations whose energy values are

not much higher than the energy of the initial conformation.

In the pathway-finding problem we attempt to find a transition pathway from the ini-

tial structure to an alternative conformation, i.e., a sequence of intermediate conformations

between the initial and alternative conformations such that each two consecutive confor-

mations have sufficiently similar structures. To be more precise, we are looking for a

feasible transition pathway, defined as a transition pathway whose conformations do not

have energy values much higher than the energy of the initial structure.

1.1 Related Work

Various algorithms and software tools have been proposed to discover and analyze the

structural properties of proteins, e.g., POCKET [43], VOIDOO [37], HOLE [66], CAST

[44], CAVER [54], MOLE [55], MolAxis [75], CAVER2 [49], and CHUNNEL [15]. Among

these algorithms POCKET, VOIDOO, and CAST were developed to find cavities and pock-

ets inside a given protein structure. Some other algorithms such as HOLE and CHUNNEL

aim to find channels, i.e., holes that go completely through the protein, thus having two

entrances or mouths. 2 Therefore, these algorithms are not directly related to our work.

2Note that there is a bit of confusion about the definition of channels and tunnels. For example,
Coleman and Sharp [15] refer to channels as tunnels.

3



CAVER, Mole, and CAVER2 attempt to solve the tunnel-finding problem. Thus these

algorithms are more relevant to our work and we provide more details about them. CAVER

is based on the idea of partitioning the space into a set of three dimensional grid cubes and

then using a variant of the Dijkstra’s algorithm [20] to find a wide tunnel. The accuracy of

the algorithm depends on the resolution of the grid and it does not guarantee the discovery

of the widest tunnel. CAVER2 and MOLE improve the CAVER algorithm by constructing

a graph based on the Voronoi diagram (or equivalently Delaunay tessellation) 3 derived

from the protein atoms and then use a variant of the Dijkstra’s algorithm to compute

the best tunnel. MOLE tries to find short and wide tunnels by defining the objective

function as a combination of the length and width. CAVER2 on the other hand only

considers the width and provides an algorithm for computing the widest tunnel in a fixed

protein conformation. Our tunnel-finding algorithm (Section 3.1) is based on ideas similar

to CAVER2. However, CAVER2 [49] is only described in two dimensions and does not

provide the details of the algorithm.

As far as we know, there is no other algorithmic work on the tunnel-widening problem.

On the other hand, various techniques are proposed for finding feasible transition pathways

between two protein conformations, e.g., targeted molecular dynamics [62, 74] and elastic

network interpolation [34, 35]. However, these techniques are designed for the general case

of the problem, while we have a special setting in which the initial and target conformations

are structurally close (see Section 3.3 for more details). We proposed several pathway-

finding algorithms that are tailored to our special settings and thus solve the pathway-

finding problem more efficiently.

1.2 Contributions

The main contribution of this thesis is developing novel techniques and algorithms for the

tunnel-widening and pathway-finding problems. For the tunnel-finding problem, although

3Refer to Chapter 2 for more details about Voronoi diagram, Delaunay tessellation, and Dijkstra’s
algorithm.
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the idea of our algorithm is based on CAVER2 [49], we have provided a much more compre-

hensive presentation of the algorithm. Due to lack of details in [49] we had to develop most

parts of the algorithm without relying on previous efforts. Regarding the tunnel-widening

problem, to the best of our knowledge, this is the first algorithmic work on the problem.

We implemented and visualized both tunnel-finding and tunnel-widening algorithms in

Chimera/Python and applied them to several proteins of different sizes and verified that

their experimental results are promising. We also developed three different algorithms for

the pathway-finding problem and compared their performance on various input instances.

1.3 Organization of the Thesis

The thesis is structured as follows. In Chapter 2 we provide some relevant background in-

formation on proteins, Voronoi diagrams, Delaunay triangulation, and Dijkstra’s algorithm.

The descriptions of tunnel-finding, tunnel-widening, and pathway-finding algorithms are

provided in Chapter 3. In Chapter 4 we present and analyze the results of applying our al-

gorithms to various input instances. The conclusions of the thesis are provided in Chapter

5.
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Chapter 2

Fundamental Concepts and

Definitions

In this chapter we explain some fundamental concepts and definitions needed for this thesis.

2.1 Proteins

Proteins are one of the main components of living organisms and play a vital role in

both structural and biological processes [45]. A protein is a chain of amino acids. Each

amino acid consists of a side-chain (also called an R-group), an amino group (NH2), and

a carboxyl group (COOH) (see Figure 2.1). The side-chain is a group of atoms attached

to an α-carbon (Cα). The α-carbon is also connected to the amino group and carboxyl

group. Two amino acids can be joined together and form a peptide bond. The chain of

peptide bonds forms the protein backbone. An amino acid that bonds to another amino

acid to form a peptide bond is referred to an amino acid residue, since it loses a water

molecule during the reaction. There are 20 standard amino acids in nature. These amino

acids are linked through peptide bonds and form the vast variety of proteins.

Each protein performs a specific function that is related to its three-dimensional struc-

ture. This structure can be described by Cartesian coordinates of its atoms. Alternatively,

6
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Figure 2.1: (a) General structure of an amino acid. (b) A chain of amino acids.
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the three-dimensional structure of a protein can be defined by its internal coordinates, i.e.,

bond lengths, bond angles, and dihedral angles [9]. The bond length refers to the average

distance between two bonded atoms and the bond angle describes the angle formed by

three successive bonded atoms. A sequence of four consecutive bonded atoms forms a

dihedral angle (also referred to as torsion angle). Several efficient algorithms have been

proposed to convert the Cartesian coordinates of a protein to its internal coordinates and

vice versa [53, 2, 76].

The backbone of a protein can be represented by a sequence of dihedral angles, denoted

by φ, ψ, and ω. Angle φ is determined by a sequence C −N −Cα−C of backbone atoms.

In other words, it describes the rotation about the N − Cα bond. Angle ψ involves the

sequence N−Cα−C−N of backbone atoms, while ω angle is determined by the consecutive

backbone atoms Cα − C − N − Cα. The ω dihedral angle is either 0◦ or 180◦. The other

two dihedral angles take different values, although not all pairs of φ-ψ are possible. The

Ramachandran plot [58, 59, 33] shows the possible values of φ and ψ dihedral angle pairs

for an amino-acid residue in a protein.

2.1.1 Protein Structure

The structure of proteins is complex and can be described in several levels:

• Primary structure:

A protein is comprised of a linear sequence of amino acids covalently joined together

by peptide bonds [17]. A typical protein contains between 100-1000 amino acids [28].

The order of the bonded amino acids in the sequence is described by its primary

structure. Each protein has its own unique sequence which determines its biological

function and structure. Figure 2.2 shows the primary structure of a protein.

• Secondary Structure:

The secondary structure of the protein considers the local three-dimensional configu-

rations that may appear in the structure. The secondary structure is mainly formed
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Figure 2.2: The primary structure of protein with PDB ID 2L7P.

Figure 2.3: Ribbon diagram of an alpha helix with side-chains.

by hydrogen bond interactions between the atoms in the backbone [10]. There are

three types of secondary structure: alpha helices, beta sheets, and loops.

– Alpha Helix: The alpha helix is the most common type of secondary struc-

ture in the proteins and consists of many hydrogen bonds between amino acid

residues [56]. An alpha helix structure is stabilized by hydrogen bonding inter-

actions between the N −H group of residue n and the C = O group of residue

n + 4. Each alpha helix has 3.6 residues for every complete turn of the helix.

The length of each turn is about 5.4 Å [10]. Figure 2.3 shows an alpha helix

extracted from the protein with PDB ID 1CV4.

– Beta Sheet: Another regular type of secondary structure found in proteins

is the beta sheet. Similar to alpha helices, the hydrogen bonds are one of the

important characteristics of beta sheets. However, in contrast to an alpha helix,

the hydrogen bonds are between the amino groups of two chain segments whose

amino acids may be quite distant in the primary sequence. Beta sheets consist

of several beta strands held by hydrogen bonds. Adjacent beta strands can have

9



(a) (b)

Figure 2.4: (a) Ribbon diagram for antiparallel beta strands (selected form protein 1CV4)
(b) Ribbon diagram for parallel beta strands (selected from protein 1CV2).

three possible arrangements and form parallel, antiparallel, or mixed beta sheets.

In parallel beta sheets, the beta strands are aligned such that the N-terminal

ends (also called amino-terminals) of all strands point to the same directions.

However, in antiparallel arrangement the N-terminal end of one strand points

to the same direction as the C-terminal end of its adjacent strand. Thus, the

arrangement of the N-terminal ends of beta strands alternate. A combination

of parallel and antiparallel beta strands forms a mixed beta sheet (see Figure

2.4).

– Loop: The loop is another category of secondary structure of proteins. A loop

consists of a chain of amino acid residues that does not have any hydrogen

bond interaction with other regions of protein. Loops have varying lengths and

connect the alpha helices and beta sheets [1].

• Tertiary Structure:

The three-dimensional structure of the protein is formed by combining all secondary

structures including the alpha helices, beta sheets, and loops. Knowing the tertiary

structure of a protein is required for describing the biological function of the protein

[9]. The atoms of a protein can be arranged in different configurations in three-
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Figure 2.5: (a) Tertiary structure of protein 3NMQ (b) Quaternary structure of protein
1YZI.

dimensional space. Each such spatial arrangement is called a protein conformation.

The tertiary structure of protein with PDB ID 3NMQ is shown in Figure 2.5(a).

• Quaternary Structure:

There are some proteins that are comprised of multiple protein chains or subunits.

The spatial arrangement of these subunits is called the quaternary structure of the

protein [69]. The quaternary structure is stabilized by the same interactions as the

ones in the secondary and tertiary structures [7]. Figure 2.5(b) shows the quaternary

structure of protein with PDB ID 1YZI.

2.1.2 Rotamers

The atoms of the side-chain of an amino acid residue can adopt different conformations in

the space. Each side-chain conformation is called a rotamer (see Figure 2.6). A collection of

side-chain conformations (rotamers) provides a side-chain conformational space. Predicting

11
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Figure 2.6: Different rotamers for the Glutamic acid (GLU).

the protein side-chain conformations is an important aspect of protein structure prediction.

Note that the bond lengths and bond angles are the same in all rotamers of a side-chain,

but the side-chain dihedral angles (or chi angles), i.e., the angles defined by each four

consecutive side-chain atoms, are different. Each side-chain can have at most five chi

angles, denoted by χ1, χ2, χ3, χ4, and χ5. The χ1 angle is the first rotatable side-chain

dihedral angle, defined by N − Cα − Cβ − Cγ atoms, χ2 is defined by Cα − Cβ − Cγ − Cδ,
and so on. The information about possible values of chi angles for different rotamers of

a side-chain is provided by rotamer libraries, such as the Dunbrack rotamer library 1 [23]

and the Richardson rotamer library [46]. 2

Rotamer libraries describe a discrete conformational space of side-chains. More specif-

ically, they provide information about the dihedral angles of side-chain conformations and

observed frequency of each conformation. Furthermore, they usually contain informa-

tion regarding the variance about dihedral angle means or modes. Rotamer libraries can

be backbone-dependent or backbone-independent. Backbone-dependent rotamer libraries

provide information about side-chain conformational space as a function of backbone di-

hedral angles φ and ψ [25, 26, 24]. On the other hand, the backbone-independent rotamer

libraries do not depend on the backbone dihedral angles [46, 38, 47].

1http://dunbrack.fccc.edu/Home.php
2http://pibs.duke.edu/databases/rotamer.php
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2.1.3 The Protein Data Bank (PDB)

The protein Data Bank (PDB)3 is a standard repository that provides information about

three-dimensional structures of biological molecules such as proteins [5]. Since 1998, The

PDB is supported by the Research Collaboratory for Structural Bioinformatics (RCSB).4

The PDB contains structural information about thousands of biological molecules that

have been obtained by X-ray crystallography or NMR spectroscopy. Each structure has

been assigned a unique PDB ID which is a four-character alphanumeric identifier. In this

thesis, we usually refer to proteins with their PDB IDs. The three-dimensional coordinates

of molecule atoms are provided in PDB files and can be downloaded from the PDB website.

2.1.4 Potential Energy and Boltzmann’s Distribution

Potential energy of a protein is related to the structural arrangement of its atoms. In other

words, the potential energy can be represented as a function of all the relevant atomic

coordinates [72]. A protein can adopt different conformations depending on its potential

energy. More specifically, according to Boltzmann’s distribution [21] the probability that a

protein adopts a certain conformation is exponentially related to the negative of its energy.

Now consider two conformations C1 and C2 of a protein, where the energy of Ci is Ei. The

relative population of these two conformations can be computed by the following formula

N2

N1

= e
−(E2−E1)

kT , (2.1)

where Ni is the population of conformation Ci, k = 0.0019872041 kcal/mol/K is the Boltz-

mann’s constant, and T is the temperature measured in Kelvin [21]. According to this

formula, the relative population of two conformation depends both on the energy differ-

ence ∆E = E2 − E1 and the temperature T . If the energy of C2 is much higher than

the energy of C1, N2/N1 is very small, and the probability that the protein adopts C2 is

3http://www.pdb.org/pdb/home/home.do
4http://home.rcsb.org
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very low. On the other hand, increasing the temperature increases the relative population

N2/N1.

2.2 Voronoi Diagram

The Voronoi diagram is a well-known concept in computational geometry with applications

in various areas such as physics, geography, anthropology, astronomy, biology, marketing,

etc. [52]. Voronoi diagrams are usually attributed to Dirichlet [22] and Voronoi [71,

70]. Due to applications of these diagrams in different areas, they were independently

rediscovered by various researchers (see Chapter 1 of [52] for more information about the

history of Voronoi diagrams).

2.2.1 Definitions and Properties

Let P = {p1, p2, p3, ..., pn} be a set of n distinct points (also called sites) in the space S.

For simplicity we first describe the Voronoi diagram in two dimensions, i.e., we consider

the case S = R2. We assume that the points are in general position, i.e., no three points

are collinear and no four points lie on the same circle. The Voronoi diagram of P , denoted

by V (P ), partitions the space S into n regions. Each region is associated with a site pi

and contains all points that are closer to pi than to any other site in P . More formally, a

point q ∈ S lies in the region corresponding to the site pi ∈ P if and only if the following

property holds:

∀pj ∈ P : d(q, pi) ≤ d(q, pj),

where d(p, q) denotes the Euclidean distance between two points p = (px, py) and q =

(qx, qy) in R2, i.e.,

d(p, q) =

√
(px − qx)2 + (py − qy)2.
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For each site pi, the region associated with pi is called a Voronoi cell and denoted by V (pi).

Therefore, we have

V (pi) = {x ∈ S | ∀pj ∈ P : d(x, pi) ≤ d(x, pj)}.

Observe that V (P ) = ∪ni=1V (pi).

Figure 2.7 shows the Voronoi diagram of a set of 9 points in R2. In addition to Voronoi

cells, the Voronoi diagram contains Voronoi edges and Voronoi vertices. We say that two

Voronoi cells V (pi) and V (pj) are adjacent if and only if V (pi) ∩ V (pj) 6= ∅. Each two

adjacent Voronoi cells share an edge called a Voronoi edge. In other words, for each two

adjacent Voronoi cells V (pi) and V (pj) the Voronoi edge between them is defined as

V (pi) ∩ V (pj) = {x ∈ S | d(x, pi) = d(x, pj)}.

Let q be a point on the Voronoi edge between V (pi) and V (pj). Observe that the distance

of q to any site in P \ {pi, pj} is more than d(q, pi) = d(q, pj). Voronoi edges intersect each

other at Voronoi vertices. Since the points are in general position, each Voronoi vertex

is the intersection of three Voronoi edges and is equidistant from three sites. The largest

empty circle centered at a point s ∈ S, denoted by C(s), is defined as the largest circle

centered at s that does not contain any site pi ∈ P in its interior. Note that C(s) contains

at least one site on its boundary.

The Voronoi diagrams have several geometric properties. Here we list a few of them

(see [18, 52, 4] for more properties as well as the proofs):

• For every two adjacent Voronoi cells V (pi) and V (pj), there exists a point x ∈
V (pi) ∩ V (pj) such that the largest empty circle centered at x passes through only

pi and pj. For example, in Figure 2.8 the largest empty circle centered at x1 passes

through only p2 and p9.

• Let x be a Voronoi vertex in the Voronoi diagram. Then the largest empty circle

centered at x (C(x)) passes through three sites of P . For instance, in Figure 2.8 x2
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Figure 2.7: The Voronoi diagram for a set of 9 points in the plane.

is a Voronoi vertex and the largest empty circle centered at x2 passes through p6, p7,

and p8.

• Consider the Voronoi diagram of a set P in R2. Let n = |P |, ne, and nv be the the

number of sites, Voronoi edges, and Voronoi vertices, respectively. Then we have the

following bounds on ne and nv [18, 52]:

nv − ne + n = 1 n ≥ 2 (2.2)

ne ≤ 3n− 6 n ≥ 3 (2.3)

nv ≤ 2n− 5 n ≥ 3 (2.4)

Thus the number of Voronoi edges and vertices is O(n). The combinatorial complexity

of Voronoi diagram is defined as the total number of Voronoi cells, vertices, and edges.

Thus, the Voronoi diagram in R2 has linear complexity.

• A site pi ∈ P lies on the convex hull of P if and only if the Voronoi cell V (pi) is
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Figure 2.8: Voronoi diagram with largest empty circles for two points.

unbounded.

2.2.2 Higher Dimensions

We can extend the definition of Voronoi diagram to higher dimensions in a straightforward

way. In this subsection, we briefly describe the Voronoi diagram in d-dimensional space,

i.e., S = Rd. Let P = {p1, p2, p3, ..., pn} be a set of n distinct points (also called sites) in

Rd. We assume that sites are in general position, i.e., there exists no k-flat containing k+2

points nor a k-sphere containing k + 3 points, for 1 ≤ k ≤ d− 1. The Voronoi diagram of

P is a partition of Rd into n regions, called Voronoi cells. Each Voronoi cell is associated

with a site pi and is denoted by V (pi). More precisely, V (pi) can be defined as

{x ∈ Rd | ∀pj ∈ P : d(x, pi) ≤ d(x, pj)},

where d(p, q) denotes the Euclidean distance function between two points p and q in Rd.
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In three-dimensional space each Voronoi cell is a convex polyhedron and two adjacent

Voronoi cells share a Voronoi facet which is convex polygon [4]. Thus, all points on a

Voronoi facet are equidistant from two sites. Similarly, we can define Voronoi edges and

Voronoi vertices. All points on a Voronoi edge have the same distance from three sites,

while a Voronoi vertex is equidistant from four sites. Thus, the Voronoi diagram in three

dimensions consists of faces of order 0 (vertices), 1 (edges), 2 (facets), and 3 (cells). In

general, the Voronoi diagram in Rd contains faces of all dimensions from 0 up to d [3]. The

complexity of the Voronoi diagram is defined as the total number of faces of all dimensions.

It can be proved that the complexity of the d-dimensional Voronoi diagram is Θ(ndd/2e)

[36, 31]. In particular, the Voronoi diagram in R3 has quadratic complexity.

2.2.3 Algorithms

Various algorithms are proposed for computing the Voronoi diagram in optimal O(n log n)

time in R2. Shamos and Hoey [65] designed the first optimal algorithm for the computation

of the Voronoi diagram. This algorithm is based on the divide-and-conquer technique.

Several other optimal divide-and-conquer algorithms were proposed afterwards [32, 27,

42]. Fortune [29] proposed a plane sweep algorithm to compute the Voronoi diagram in

O(n log n) time.

Next, we briefly describe the algorithms for computing the Voronoi diagram in higher

dimensions. These algorithms are based on an elegant connection between Voronoi di-

agrams and convex polyhedra (see Chapter 11 of the textbook by de Berg et al. [18]

for the details). Based on this connection and using efficient algorithms for constructing

the convex hull, the Voronoi diagram in Rd can be computed in O(n log n + ndd/2e) time

[12, 14, 63]. Recall that the complexity of the Voronoi diagram in Rd is O(ndd/2e). Thus,

these algorithms are optimal.
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2.3 Delaunay Triangulation

Delaunay triangulation is the dual graph of the Voronoi diagram, originally defined by

Voronoi [71] by way of the neighbour relationships in the Voronoi diagram. However, they

are attributed to Russian mathematician Boris Nikolaevich Delone who provided a more

comprehensive definition of the concept and its properties [19]. Similar to the Voronoi

diagram, Delaunay triangulation was rediscovered later in other fields, e.g., Smith [67] and

Christ et al. [13]. See [52] for more details about the history of the Delaunay triangulation.

2.3.1 Definitions and Properties

Let P = {p1, p2, p3, ..., pn} be a set of n distinct points in the space S. For simplicity

we first describe the Delaunay triangulation in two dimensions, i.e., we consider the case

S = R2. We assume that the points are in general position. Recall from Section 2.2 that

the Voronoi diagram of P partitions the space into n regions, one for each point pi ∈ P .

We construct the Delaunay triangulation of P as follows. We connect two points pi and

pj with a straight line if and only if the Voronoi cells V (pi) and V (pj) are adjacent, i.e.,

V (pi) ∩ V (pj) 6= ∅. It can be proved [18] that by doing this we get a triangulation, i.e.,

a subdivision of the plane into triangles. Figure 2.9 shows the Delaunay triangulation for

the points of Figure 2.7. Alternatively, the Delaunay triangulation of P can be defined as

a triangulation DT (P ) such that the circumcircle of any triangle in DT (P ) contains no

point of P . Figure 2.10 shows the example of Figure 2.9 together with the circumcircles.

The Delaunay triangulation has several properties. We describe a few important prop-

erties here. The proofs are provided in [18, 52].

• The union of all triangles in DT (P ) is the convex hull of P .

• There is an edge between two points pi, pj ∈ P in DT (P ) if and only if there is a

closed circle C that contains pi and pj on its boundary and does not contain any

other point of P .
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Figure 2.9: The Delaunay triangulation for the points of Figure 2.7.

• The Delaunay triangulation of P maximizes the minimum angle over all triangula-

tions of P .

• Each point in DT (P ) has six surrounding triangles on average.

2.3.2 Higher Dimensions

The Delaunay triangulation concept can be extended to d > 2 dimensions. Since triangu-

lation is a two-dimensional geometric notion, the corresponding d-dimensional structure is

called a Delaunay tessellation for d ≥ 3. Let P = {p1, p2, p3, . . . , pn} be a set of n points in

general position in Rd. The Delaunay tessellation of P , denoted by DT (P), is a partition

of Rd into a set of simplices such that circumhypersphere of any simplex in DT (P) contains

no point of P . The Delaunay tessellation of a set of n point in Rd has at most O(ndd/2e)

simplices [64]. In Chapter 3 we compute the Delaunay tessellation of a set P of points in
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Figure 2.10: The Delaunay triangulation for the points of Figure 2.7 with the circumcircles.

three-dimensional space. In R3, DT (P) partitions the space into a set of 3-simplices, i.e.,

a set of tetrahedra. A tetrahedron t belongs to DT (P) if and only if the sphere passing

through vertices of t does not contain any point of P . The number of tetrahedra in DT (P)

is at most O(n2).

2.3.3 Algorithms

There is a close relationship between algorithms for the computation of the Delaunay

triangulation and algorithms for computing the Voronoi diagram. If we have the Voronoi

diagram for a set P of n points in R2, then we can compute DT (P) in O(n) time. Recall

from Subsection 2.2.3 that the Voronoi diagram of n points in the plane can be computed

in O(n log n) time [65, 29, 32, 27, 42]. Thus we can compute the Delaunay triangulation

of n points in R2 in O(n log n) time. Similarly, we can use algorithms for computing the

Voronoi diagram of a set P in higher dimensions to compute the Delaunay tessellation
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of P . Recall that the Voronoi diagram of a set of n points in Rd can be computed in

O(n log n+ ndd/2e) time [12, 14, 63]. Thus, we can compute the Delaunay tessellation of a

set of n points in Rd in O(n log n+ ndd/2e) time.

2.4 Dijkstra’s Algorithm

Dijkstra’s algorithm is a greedy algorithm for finding shortest paths in a weighted graph,

proposed by Edsger Dijkstra in 1959 [20]. In this problem we are given a weighted directed

graph G = (V,E), with weight function w : E → R, and a source vertex s ∈ V . We want

to find the shortest paths from s to all vertices of G. The weight of a path P from s to a

vertex v ∈ V is defined as:

w(P ) =
∑
e∈P

w(e).

The shortest path from s to v is a path from s to v with minimum weight. In Dijkstra’s

algorithm [20, 16] we maintain a set S of selected vertices for which we have found the

shortest path from the source. We also define a variable δ(v) for each vertex v ∈ V as the

weight of the shortest path from s to v that only uses the elements in S as intermediate

vertices. Initially, we have S = ∅, δ(s) = 0, and δ(v) = ∞ for each v 6= s. At each step

we pick a vertex v ∈ V \ S with minimum δ(v) and insert it into S. We also update the δ

values for the neighbours of v. The pseudocode for this algorithm is shown in Figure 2.11.

Next we analyze the running time of Dijkstra’s algorithm in terms of n = |V | and

m = |E|. We can use a priority queue to implement Dijkstra’s algorithm. More specifically,

the vertices of V \ S are stored in a min-priority queue where the priority of each element

v is δ(v). At each step, we use a delete-min operation to pick the vertex u with minimum

δ(u). Observe that each vertex is picked exactly once and therefore we have O(n) delete-min

operations. Then we update the δ values of neighbours of u. Each update might lead to a

decrease-key operation. Thus, for each vertex u, we can have up to O(deg(u)) decrease-key

operations. Since each vertex is processed exactly once, the total number of decrease-key

operations is O(
∑

u∈V deg(u)) ∈ O(2m) ∈ O(m). The initialization takes O(n) time. We
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Let G = (V,E), w : E → R be a directed weighted graph
Let s be the source vertex
1. S ← ∅
2. for v ∈ V
3. δ(v)←∞
4. δ(s)← 0
5. while S 6= V
6. u← a node in V \ S with the minimum δ(u)
7. for each neighbor (v 6∈ S) of u
8. if δ(v) > δ(u) + w(uv)
9. δ(v)← δ(u) + w(uv)
10. add u to S

Figure 2.11: Dijkstra’s algorithm.

can implement the priority queue using different data structures. If we use standard heaps,

the running time of both delete-min and decrease-key operations is O(log n) and the total

running time will be O(n + n log n + m log n) ∈ O(m log n). On the other hand, if we use

Fibonacci heaps [30] the amortized running time of delete-min and decrease-key operations

is O(log n) and O(1), respectively. Therefore the total running time of the Dijkstra’s

algorithm using Fibonacci heap will be O(n+ n log n+m) ∈ O(m+ n log n).
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Chapter 3

Methods and Algorithms

In this chapter we describe algorithms for finding and widening tunnels in protein struc-

tures. Given a fixed conformation of a protein with a starting point, we first identify and

visualize the widest tunnel leading from that point to the outside environment. Then we

extend this algorithm and explore the possibility that a slight local change in the structure

of the protein can lead to a wider tunnel. More specifically, we consider various alternative

conformations of the initial structure whose energies are not much higher than the energy

of the initial conformation and select the one with the widest tunnel. In the next step,

we attempt to verify that the alternative conformation with the widest tunnel, called the

target conformation, is accessible from the initial conformation. In other words, we want

to check whether the change in the structure of the protein is feasible. We propose and

compare several algorithms for verifying the accessibility of the target conformation from

the initial conformation.
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Atom Radius (Å)
Hydrogen (H) 1.20
Carbon (C) 1.70
Nitrogen (N) 1.55
Oxygen (O) 1.52
Sulfur (S) 1.80
Phosphorus (P) 1.80
Potassium (K) 2.75
Iodine (I) 1.98

Table 3.1: Van der Waals radii of protein atoms [6].

3.1 Finding the Widest Tunnel in a Static Protein

Structure

Recall the tunnel-finding problem defined in Chapter 1: we are given a fixed conformation

of a protein and the coordinates of a starting point. We want to find the widest tunnel

from that point to the outside environment of the protein. The starting point is considered

to be a single point inside the protein structure whose coordinates are provided by the user

and the outside environment is anywhere outside the convex hull of the protein atoms. As

stated in Section 1.1, CAVER2 [49] proposed the idea of using a Delaunay tessellation for

finding the widest tunnel, but the paper only describes the idea in two dimensions. For

completeness, we provide an overview of the algorithm in three dimensions. The protein

molecule is represented as a set of spheres, where each sphere corresponds to a single protein

atom. The radii of the spheres are set to the van der Waals radii of corresponding atoms.

The van der Waals radii of typical atoms constituting biomolecules, taken from Bondi’s

compilation [6], are shown in Table 3.1. We want to find a route T from the starting point

to the outside environment such that the ligand can pass through T without any clash with

the protein atoms. Note that the ligand does not necessarily have a spherical shape. Thus

the orientation of the ligand during its movement influences the feasibility of a tunnel: a

specific orientation might lead to clash while another orientation passes through the tunnel
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Figure 3.1: A sphere enclosing all ligand atoms.

without any clash. Modeling these changes in the orientation of the ligand or changes in

the shape of the ligand while passing through the tunnel is very complicated and beyond

the scope of this thesis. Therefore, following CAVER2 we model the ligand by a sphere

which encloses all the ligand atoms (see Figure 3.1). If the enclosing sphere of a ligand can

pass through a tunnel T without any clash, then we conclude that any orientation of the

ligand can safely pass through T . Note that, most of the time, the ligand is a simple ion

with a spherical shape. In these cases we do not need the above simplification.

The tunnel can be represented by its centerline, which is a curve connecting the starting

point to a point located outside the convex hull of the protein atoms. For each point p

on the centerline, the width of the tunnel at p, denoted by w(p), is the smallest distance

from p to the van der Waals surfaces of nearby protein atoms. In other words, w(p) is the

radius of the largest sphere centered at p that does not clash with protein atoms.

We define the width of tunnel T , denoted by w∗(T ), the minimum w(p) for all points

p on the centerline of T , i.e., the width of tunnel at its narrowest part. Observe that a

sphere of radius at most w∗(T ) can safely pass through T . The tunnel-finding algorithm

consists of three steps.
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Figure 3.2: Two adjacent tetrahedra in the Delaunay tessellation.

3.1.1 Computing the Delaunay Tessellation

Let P be the set of center points of atoms in the given protein conformation. In the

first step, we compute the Delaunay tessellation of P . Recall from Section 2.3 that this

tessellation partitions the space into a set of tetrahedra such that any sphere circumscribing

a tetrahedron does not contain any point of P in its interior.

3.1.2 Constructing a Graph

In the next step we construct an undirected weighted graph G. The vertices of G corre-

spond to the tetrahedra computed in the Delaunay tessellation. More specifically, for each

tetrahedron we consider the center of the sphere that passes through its four vertices. We

add an edge between any two vertices of the graph whose corresponding tetrahedra are

adjacent, i.e., they have a common face. The weight of the edge is the width of the path

between two tetrahedra centers that avoids all other atoms. Consider an edge between the

vertices corresponding to two adjacent tetrahedra (see Figure 3.2). These two tetrahedra

have a common face, i.e., three common atoms. We compute the radius of the circle that
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(a) (b)

(c) (d)

Figure 3.3: The first two steps of the tunnel-finding algorithm for a set of 8 points in R2.
(a) A set P of 8 points in R2. (b) The Delaunay triangulation of P . (c) The vertices of
the graph G are centers of the circumcircles of the triangles in the Delaunay triangulation.
(d) The graph G for set P .
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passes through the centers of these three atoms and then reduce it by the maximum van

der Waals radius of the three atoms. Observe that the weight of an edge uv, denoted by

weight(uv), shows the width of a route from u to v that does not clash with protein atoms.

The narrowest part of this path is on the common face of the two tetrahedra correspond

to u and v.

Figure 3.3 shows the first two steps of the tunnel-finding algorithm on a set of 8 points

For the sake of illustration we have shown the example in R2.

3.1.3 Finding the Optimal Path in the Graph

A tunnel T corresponds to a path π(T ) in G. The width of T equals the minimum weight

of edges of π(T ). Therefore, we define the weight of a path as the minimum weight of its

edges and our objective is to find the path with maximum weight. First we find a vertex

s of G whose corresponding tetrahedron center has the smallest distance to the starting

point. We want to find a path of maximum weight from s to a boundary vertex of G. A

vertex is a boundary vertex if it is located outside the convex hull of the protein atoms.

Let Π be the set of all paths from s to boundary vertices of G. We want to solve the

following optimization problem:

max
π∈Π

min
uv∈π

weight(uv).

We use a variant of the Dijkstra algorithm (described in Section 2.4) to find a path of

maximum weight. For each vertex u of graph G we maintain a width value, denoted by

width(u), holding the width of the current widest path from s to u. In other words we

define a mapping of vertices to real numbers:

width : V (G)→ R.

Initially, we assign a width of +∞ to s and width of −1 to each other vertex of the graph.

We also maintain a set S of selected vertices. Initially, no vertex is selected and we have
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Let G = (V,E) be an undirected weighted graph
Let s be the source vertex and B be the set of boundary vertices of G
1. S ← ∅
2. for v ∈ V
3. prev[v]← nil
4. width(v)← −1
5. width(s)← +∞
6. while S ∩B = ∅
7. u← a node in V \ S with the maximum width
8. for each neighbor (v 6∈ S) of u
9. if width(v) < min{width(u), weight(uv)}
10. width(v)← min{width(u), weight(uv)}
11. prev[v]← u
12. add u to S
13. π ← ∅
14. v ← S ∩B
15. while prev[v] 6= nil
16. insert v at the beginning of π
17. v ← prev[v]
18. return π

Figure 3.4: A greedy algorithm to find the best path in a graph.

S = ∅. Then at each step we select an unselected vertex u with maximum width and update

the widths of its neighbours as follows: For each neighbour v of u we check whether we

can find a wider tunnel from s to v through u. Observe that the width of the tunnel from

s to v that passes through u is

min{width(u), weight(uv)}.

If this width is better (larger) than the current width of v we update the width of v and

set its predecessor (shown by prev[v]) to u. We continue this process until we select a

boundary vertex w. Then we use prev fields to recover the optimal path from s to w. The

pseudocode for this greedy algorithm is shown in Figure 3.4.
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Figure 3.5 shows the widest tunnel found by this algorithm in protein 1CV2 with the

starting point having coordinates (14,15,22). The width of the corresponding tunnel is

0.43 Å. More details about this example and other results will be provided in Chapter 4.

3.1.4 Runtime Complexity

In this subsection we analyze the running time of the tunnel-finding algorithm. Let n

be the number of atoms in the given protein conformation. In the first step we compute

the Delaunay tessellation of n points in R3. Recall from Section 2.3 that the Delaunay

tessellation of a set of n points in Rd can be computed in O(n log n+ ndd/2e) time and has

O(ndd/2e) simplices. Therefore the Delaunay tessellation of atom centers can be computed in

O(n2) time and partitions the space into O(n2) tetrahedra. In the next step we construct a

graph G as described in Subsection 3.1.2. We can compute the center of each tetrahedron in

constant time. Therefore the vertices of graph G can be computed in time O(n2). Observe

that each tetrahedron is adjacent to at most four other tetrahedra in the tessellation. Thus,

the degree of each vertex in G is at most four and number of edges in this graph is

m =

∑
v∈V deg(v)

2
∈ O(4n2/2) ∈ O(n2).

Therefore G has O(n2) vertices and O(n2) edges. From the representation of the Delaunay

tessellation, we can compute the edges of G in time O(m) ∈ O(n2). The weight of each edge

can be computed in constant time. Thus the first two steps of the tunnel-finding algorithm

can be done in O(n2) time. The last step is the greedy algorithm that finds the optimal path

in G. Consider the pseudocode of the greedy algorithm in Figure 3.4. The initialization

(line 1-5) can be done in O(|V |) ∈ O(n2). At each iteration of the first while loop one vertex

is added to S. Therefore we have at most O(n2) iterations. We can use a max-priority

queue to maintain the vertices in V \ S, where priority of each vertex u is width(u). Thus

at each iteration of the first while loop we have one delete-max operation (in line 7) to pick

a vertex u. Then at lines 8-11 we update the weights of the neighbours of u. Each such

update might lead to an increase-key operation. Therefore we can have up to O(deg(u))
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(a)

(b)

Figure 3.5: The widest tunnel starting at position (14,15,22) in protein with PDB ID
1CV2. (a) Protein atoms represented using ball and stick option in Chimera. (b) Overall
structure of the protein represented using ribbon option in Chimera.
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increase-key operations. Since each vertex of G is processed at most once, the total number

of delete-max and increase-key operations is O(n2) and
∑

u∈V O(deg(u)) ∈ O(2m) ∈ O(n2).

If we use standard heap to implement the priority queue the running time of both increase-

key and delete-max operations is the same and equals O(log |V |) ∈ O(log n2) ∈ O(log n).

Thus the total running time of the first while loop is O(n2 log n). The last while loop is

executed O(n2) times and takes constant time per iteration. Hence, the total running

time of the greedy algorithm is O(n2 + n2 log n + n2) ∈ O(n2 log n) time. Therefore,

the tunnel-finding algorithm computes the widest tunnel in a protein with n atoms in

O(n2 + n2 + n2 log n) ∈ O(n2 log n) time.

3.2 Widening the Tunnel Using Alternative Confor-

mations

Using the techniques just described, we can find the widest tunnel in a fixed protein

conformation from a given starting point. While this is the widest tunnel in the given

conformation, it is possible that there exists a wider tunnel from the starting point to

the outside environment in a different conformation of the same protein. In this section

we consider widening the tunnel, i.e., searching for an alternative conformation of the

initial structure with a wider tunnel. More specifically, we develop an algorithm for the

tunnel-widening problem, defined and motivated in Chapter 1.

To solve the tunnel-widening problem, we investigate the possibility that a small change

in the structure of the protein can lead to a wider tunnel. In other words, we want to repo-

sition some atoms in order to widen the tunnel. Intuitively, the most relevant candidates

for relocation are the bottleneck atoms, i.e., the atoms that constitute the narrowest part

of the tunnel. Therefore, we consider alternative conformations obtained by local changes

in the structure of bottleneck region (amino acid residues containing bottleneck atoms) in

the initial conformation.

The tunnel-widening algorithm first finds the bottleneck atoms of the tunnel (see Figure

3.6). Then it selects the side-chains of their corresponding amino acid residues, called the
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Figure 3.6: The bottleneck atoms (shown in red) and their corresponding residues.

bottleneck side-chains. For each bottleneck side-chain, we obtain an alternative conforma-

tion by replacing the side-chain with one of its rotamers as described below. We select

the rotamer that has the highest probability of occurrence according to the Dunbrack

backbone-dependent rotamer library [23]. Then we make sure that the corresponding ro-

tamer does not clash with other protein atoms. Two atoms are considered to have a clash

if their van der Waals spheres overlap by more than a cutoff amount. We used 0.6 Å as

the cutoff bound.1 We select the rotamer with the highest probability that does not have

a clash. Figure 3.7 shows how a bottleneck side-chain is replaced by one of its rotamers.

Observe that bond lengths and bond angles do not change by this replacement. Therefore,

all alternative conformations have bond lengths and bond angles that are the same as the

initial conformation. The only difference between these conformations is in the dihedral

(chi) angles of the bottleneck side-chains. We then run the tunnel-finding algorithm on

each alternative conformation and check whether we can find a wider tunnel. However,

it is possible that some alternative conformations have energy values much higher than

the energy of the initial conformation. Therefore, the probability of transition from the

initial conformation to these alternative conformations is very low. Thus we restrict our

attention to acceptable alternative conformations, i.e., conformations whose energy values

1This is the default value used in Chimera software for clash recognition.
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Figure 3.7: Replacing a bottleneck side-chain by one of its rotamers. (a) The bottleneck
side-chains are shown in blue. (b) The set of rotamers is shown for the top bottleneck
side-chain. (c) The top bottleneck side-chain is replaced by the rotamer that does not have
clash with protein atoms and has the highest probability.

are not higher by more than a cutoff parameter when compared with the energy of the

initial conformation. The cutoff parameter is set such that an acceptable conformation

can be reached from the initial conformation with a reasonable probability. We can select

the cutoff parameter based on the Boltzmann’s distribution (see Section 2.1.4). Assume

that we have two conformations C1 and C2, where Ci has energy Ei and population Ni.

Table 3.2 shows the relative population N2

N1
for different values of ∆E = E2 − E1 at the

temperature T = 310K (body temperature). According to this table, for ∆E =4 kcal/mol

the relative population is
N2

N1

= e
−4

0.0019872041×310 = 0.15%,

which is a reasonable relative population. Note that N2/N1 increases in higher tempera-

tures. Therefore we set the cutoff parameter to 4 kcal/mol.

Recall that the widest tunnel found in the protein 1CV2 with the starting point at

position (14,15,22) (shown in Figure 3.5) has width 0.43 Å. One of the bottleneck side-

chains of this tunnel is the side-chain of residue ASP 108.A. The side-chain dihedral angles
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∆E N2/N1

1 19.72%

2 3.89%

3 0.77%

4 0.15%

Table 3.2: The relative population N2

N1
for different values of ∆E = E2 − E1 (in kcal/mol)

at the temperature T = 310K.

of this residue in the initial conformation are χ1 = −169.41◦ and χ2 = 74.38◦. By re-

placing the side-chain of this residue by the rotamer with dihedral angles χ1 = −166.20◦

and χ2 = 11.10◦, we identified a tunnel with width 0.59 Å. The potential energy of the

structure changed from -410.820 to -409.563 kcal/mol. Thus the alternative conformation

is acceptable and has a wider tunnel. Figure 3.8 shows the widest tunnel in this alternative

conformation. More results will be provided in Chapter 4.

3.2.1 Runtime Complexity

In this subsection we analyze the running time of the tunnel-widening algorithm on a

protein with n atoms. In the first step we run the tunnel-finding algorithm to compute the

widest tunnel T in the given protein conformation. In Subsection 3.1.4 we showed that this

can be done in O(n2 log n) time. Next we find the bottleneck atoms of T by traversing the

edges of π(T ) (the path in G corresponding to T ) and selecting the edge with minimum

weight. Since π(T ) can have at most O(|V |) ∈ O(n2) edges, this can be done in O(n2) time.

This gives us three bottleneck side-chains. For each bottleneck side-chain we can compute

the best rotamer as described in Section 3.2. Since Dunbrack library contains a constant

number of rotamers for each amino acid side-chain, we have constant number of options.

For each rotamer we can check whether it has a clash with protein atoms in time O(n).

Therefore, finding an alternative conformation of the initial structure takes O(n) time.

Then we find the widest tunnel in this alternative conformation in time O(n2 log n). Thus

the tunnel-widening algorithm takes O(n+n2 log n) ∈ O(n2 log n) time for each bottleneck
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Figure 3.8: The widest tunnel starting at position (14,15,22) in an alternative conformation
of protein with PDB ID 1CV2.
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side-chain. Since the tunnel T has three bottleneck atoms, the total running time of the

tunnel-widening algorithm is O(n2 log n+ n2 + 3× n2 log n) ∈ O(n2 log n).

3.3 Finding Feasible Transition Pathways between Two

Protein Conformations

In Section 3.1 we described an algorithm for finding the widest tunnel from a starting point

to the outside environment of a fixed protein conformation. Furthermore, the possibility

of finding a wider tunnel by a slight local change in the structure of the protein was

explored in Section 3.2. In most cases, we can find a wider tunnel in an alternative

conformation of the initial structure whose energy is not much higher than the energy of

the original conformation. For instance, we found a tunnel of width 0.59 Å in an alternative

conformation of protein with PDB ID 1CV2 (see Figure 3.8), while the widest tunnel in

the initial conformation had width 0.43 Å (see Figure 3.5). The next step is to ensure that

this conformation with the wider tunnel, called the target conformation, is accessible from

the initial conformation. In other words, we attempt to find a transition pathway, i.e., a

sequence C0, C1, . . . , Cn of conformations such that

1. C0 and Cn are the initial and target conformations, respectively.

2. C1, C2, . . . , Cn−1 are the intermediate conformations.

3. Each two consecutive conformations, i.e., Ci and Ci+1 have sufficiently similar struc-

tures, possibly based on some user-defined parameters.

Furthermore, we should make sure that the pathway is feasible, i.e., the energies of inter-

mediate conformations C1, C2, . . . , Cn are not much higher than the energy of the initial

conformation.

We propose several pathway-finding algorithms, i.e., algorithms for finding a feasible

transition pathway from the initial to the target conformation. These algorithms are
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especially designed for our setting, i.e., they use the fact that the only difference between

the two conformations is in the dihedral angles of a single side-chain. We refer to this

side-chain as the special side-chain. For example, the only difference between the two

conformations of protein with PDB ID 1CV2 shown in Figures 3.5 and 3.8 is in the side-

chain dihedral angles of residue ASP 108.A. Let χ0
1, χ

0
2, χ

0
3, χ

0
4 be the dihedral (chi) angles

of the special side-chain in C0 and χn1 , χ
n
2 , χ

n
3 , χ

n
4 be the dihedral angles of the special side-

chain in Cn.2 Note that for some amino acid residues we have less than four side-chain

dihedral angles. For instance, the special side-chain of ASP 108.A only has two dihedral

angles and we have χ0
1 = 169.41◦, χ0

2 = 74.38◦, χn1 = 166.20◦, and χn2 = 11.10◦. The

intermediate conformations discovered by our algorithms have the same structure as C0

except for the dihedral angles of the special side-chain.

3.3.1 Averaging Algorithm

The first algorithm is deterministic and based on the idea of averaging the dihedral angles

of the special side-chain. First we find the intermediate conformation Ci by averaging the

chi angles of the special side-chain in the initial and target conformations. More specifically,

if χi1, χ
i
2, χ

i
3, χ

i
4 are the chi angles of the special side-chain in Ci, then we have:

χij =
χ0
j + χnj

2
, j = 1, 2, 3, 4

Therefore, we obtain an intermediate conformation Ci between C0 and Cn and we have

a partial pathway C0, Ci, Cn. In the next step we find an intermediate conformation be-

tween any two consecutive conformations of the partial pathway, i.e., one intermediate

conformation between C0 and Ci and another one between Ci and Cn. We continue this

process until we find as many intermediate conformations as we want (the parameter n

that shows the number of intermediate conformations and reflects the trade-off between

running time and accuracy). Observe that this approach is equivalent to gradually (and

2Recall from Chapter 2 that each side-chain can have at most five chi angles. The only side-chain with
five chi angles belongs to ARG. However, χ5 of ARG is always 180◦ or 0◦ and thus most rotamer libraries
including Dunbrack rotamer library only consider at most four chi angles.
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Let n be the number of intermediate conformations (a parameter)
Let χ0

1, χ
0
2, χ

0
3, χ

0
4 be the chi angles of the special side-chain in the initial conformation

Let χn1 , χ
n
2 , χ

n
3 , χ

n
4 be the chi angles of the special side-chain in the target conformation

1. P = ∅
2. for j ← 1 to 4
3. increase[j]← (χnj − χ0

j )/n

4. for k ← 1 to n
5. for j ← 1 to 4
6. χkj ← χ0

j + k×increase[j]

7. add the intermediate conformation Ck with chi angles χk1, . . . , χ
k
4 to P

8. return P

Figure 3.9: The averaging algorithm for finding a pathway between two conformations.

linearly) changing the chi angles of the special side-chain from the initial chi angles to the

target chi angles. The pseudocode of this algorithm is shown in Figure 3.9. Thus we find

a transition pathway p = C0, C1, . . . , Cn from the initial to the target conformation. To

verify the feasibility of p, we test that the energy of each intermediate conformation is not

much higher than the energy of the initial conformation. Observe that if the number of

intermediate conformations is large enough, consecutive conformations will be quite similar

in structure and so the chance of having a high energy barrier between them is low.

This algorithm considers just a single pathway between the initial and target conforma-

tions and checks if the pathway is feasible. Hence it is possible that the pathway computed

by this algorithm is not feasible, while a feasible transition pathway exists. However,

surprisingly for most of our test cases, this algorithm works well and can find a feasible

pathway from the initial to the target conformation. Table 3.3 shows a feasible pathway

found by this algorithm (with parameter n set to 25) between the two conformations of

protein with PDB ID 1CV2 shown in Figures 3.5 and 3.8.
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The feasible pathway contains 26 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -169.41 , 74.38 ] -410.81966760

C1 [ -169.29 , 71.85 ] -410.79615608

C2 [ -169.16 , 69.32 ] -410.67227634

C3 [ -169.03 , 66.79 ] -409.98966834

C4 [ -168.90 , 64.26 ] -409.59712804

C5 [ -168.77 , 61.73 ] -409.54350222

C6 [ -168.64 , 59.20 ] -409.50703560

C7 [ -168.51 , 56.66 ] -409.49178566

C8 [ -168.39 , 54.13 ] -409.50039557

C9 [ -168.26 , 51.60 ] -409.53186945

C10 [ -168.13 , 49.07 ] -409.58054829

C11 [ -168.00 , 46.54 ] -409.63909832

C12 [ -167.87 , 44.01 ] -409.69835481

C13 [ -167.74 , 41.48 ] -409.74717519

C14 [ -167.61 , 38.95 ] -409.77577038

C15 [ -167.49 , 36.41 ] -409.77472919

C16 [ -167.36 , 33.88 ] -409.73670150

C17 [ -167.23 , 31.35 ] -409.65621001

C18 [ -167.10 , 28.82 ] -409.65514503

C19 [ -166.97 , 26.29 ] -409.74859384

C20 [ -166.84 , 23.76 ] -409.79650075

C21 [ -166.71 , 21.23 ] -409.80433784

C22 [ -166.59 , 18.69 ] -409.77787602

C23 [ -166.46 , 16.16 ] -409.72413779

C24 [ -166.33 , 13.63 ] -409.65031759

C25 [ -166.20 , 11.10 ] -409.56332785

Table 3.3: A feasible transition pathway found by the averaging algorithm between two
conformations of protein with PDB ID 1CV2.
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3.3.2 Randomized Algorithm

Recall that in the previous algorithm we only considered the pathway obtained by changing

the dihedral angles of the special side-chain linearly. In this section we use randomization

to find an alternative pathway that might be more desirable. As before we only change the

chi angles of the special side-chain. First we find the random intermediate conformation

Ci as follows. The chi angles of the special side-chain in Ci (χi1, χ
i
2, χ

i
3, χ

i
4) are selected

randomly between the chi angles of the special side-chain in C0 and Cn:

χij = random(χ0
j , χ

n
j ), j = 1, 2, 3, 4,

where random(a, b) denotes a number between a and b selected uniformly at random.

Therefore, we obtain an intermediate conformation Ci between C0 and Cn and we have a

partial pathway C0, Ci, Cn. In the next step we find a random intermediate conformation

between any two consecutive conformations of the partial pathway, i.e., one intermediate

conformation between C0 and Ci and another one between Ci and Cn. We continue this

process until some stopping criterion holds. We used the following criterion: we stop if

the difference between the chi angles of the special side-chain in every two consecutive

conformations is smaller than a predefined threshold, denoted by diff. Finally, we check

whether the discovered pathway is feasible as before. The pseudocode for this approach is

shown in Figure 3.10.

Table 3.4 shows a feasible pathway found by this algorithm (with parameter diff set to

8) between the two conformations of protein with PDB ID 1CV2 shown in Figures 3.5 and

3.8.

3.3.3 Greedy Algorithm

In this approach we construct a discrete conformational space and exhaustively search this

space to find the best pathway, i.e., a path p from the initial to the target conformation

so that the maximum weight among the nodes of p is the smallest possible. The energy

of a pathway is defined as the maximum energy of its intermediate conformations and we
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Let diff be a parameter related to the stopping criterion
Let χ0

1, χ
0
2, χ

0
3, χ

0
4 be the chi angles of the special side-chain in the initial conformation

Let χn1 , χ
n
2 , χ

n
3 , χ

n
4 be the chi angles of the special side-chain in the target conformation

1. P = ∅
2. RandomizedPath(χ0

1, χ
0
2, χ

0
3, χ

0
4, χ

n
1 , χ

n
2 , χ

n
3 , χ

n
4 ,diff)

RandomizedPath(χ1, χ2, χ3, χ4, χ
′
1, χ
′
2, χ
′
3, χ
′
4,diff)

1. if (|χ′1 − χ1| ≤diff) and (|χ′2 − χ2| ≤diff) and (|χ′3 − χ3| ≤diff) and (|χ′4 − χ4| ≤diff) then
2. return
3. for j ← 1 to 4
4. χ′′j= random(χj , χ

′
j)

5. Add the intermediate conformation C with chi angles χ′′1, . . . , χ
′′
4 to the P

6. RandomizedPath(χ1, χ2, χ3, χ4, χ
′′
1, χ
′′
2, χ
′′
3, χ
′′
4,diff)

7. RandomizedPath(χ′′1, χ
′′
2, χ
′′
3, χ
′′
4, χ
′
1, χ
′
2, χ
′
3, χ
′
4,diff)

Figure 3.10: A randomized algorithm for finding a pathway between two conformations.
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The feasible pathway contains 33 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -169.41 , 74.38 ] -410.81966760
C1 [ -169.37 , 70.54 ] -410.72182894
C2 [ -167.73 , 68.15 ] -410.70153355
C3 [ -167.59 , 66.64 ] -410.34598284
C4 [ -166.87 , 66.55 ] -410.46967395
C5 [ -166.85 , 66.34 ] -410.42426539
C6 [ -166.65 , 62.72 ] -410.04119105
C7 [ -166.62 , 57.70 ] -409.95628561
C8 [ -166.50 , 56.11 ] -409.95674797
C9 [ -166.50 , 54.44 ] -409.93959565
C10 [ -166.49 , 52.78 ] -409.92943212
C11 [ -166.47 , 47.19 ] -409.92775705
C12 [ -166.44 , 46.75 ] -409.93231049
C13 [ -166.44 , 46.25 ] -409.93301630
C14 [ -166.43 , 46.04 ] -409.93423048
C15 [ -166.43 , 42.55 ] -409.93433533
C16 [ -166.43 , 42.08 ] -409.93292507
C17 [ -166.43 , 41.76 ] -409.93175411
C18 [ -166.43 , 39.99 ] -409.92090589
C19 [ -166.43 , 35.99 ] -409.85650603
C20 [ -166.43 , 33.98 ] -409.79718489
C21 [ -166.43 , 33.92 ] -409.79490550
C22 [ -166.43 , 28.41 ] -409.67676769
C23 [ -166.43 , 28.27 ] -409.68192622
C24 [ -166.43 , 28.25 ] -409.68253844
C25 [ -166.43 , 26.81 ] -409.72945669
C26 [ -166.43 , 26.52 ] -409.73745887
C27 [ -166.40 , 24.81 ] -409.77253733
C28 [ -166.38 , 23.47 ] -409.78810372
C29 [ -166.38 , 21.45 ] -409.79372126
C30 [ -166.32 , 17.78 ] -409.75257572
C31 [ -166.24 , 17.68 ] -409.74716970
C32 [ -166.20 , 11.10 ] -409.56332785

Table 3.4: A feasible transition pathway found by the randomized algorithm between two
conformations of protein with PDB ID 1CV2.
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search for the pathway with the minimum energy. In other words, we want to solve the

following optimization problem:

min
p∈P

max
C∈p

E(C),

where P is the set of all pathways from the initial to target conformations in the confor-

mational space and E(C) denotes the potential energy of conformation C. In contrast to

the previous deterministic algorithm, this approach considers various paths going from the

initial to the target conformation. The algorithm consists of three steps.

1. Constructing a discretized conformational space

The first step of the algorithm is to create several intermediate conformations between

the initial and target conformations. We can use our special problem setting (all

conformations are the same, except for the dihedral angles of a single side-chain) to

discretize the conformational space in an efficient way. Let α be a parameter that

shows the number of different options (values) that we consider for each chi angle of

the special side-chain. In other words we have α possibilities for χ1 (between χ0
1 and

χn1 ), α possibilities for χ2 (between χ0
2 and χn2 ) and so on. We divide the interval

[χ0
j , χ

n
j ] into α − 1 equal subintervals. Therefore, the sets of possible values for the

j-th chi angle of the special side-chain are as follows:

{χ0
j , χ

0
j + ∆j, χ

0
j + 2∆j, . . . , χ

0
j + (α− 1)∆j},

where ∆j is the incremental amount for the j-th chi angle and defined as

∆j =
χnj − χ0

j

α− 1
, j = 1, 2, 3, 4.

The conformational space consists of all combinations of these values for the chi angles

of the special side-chain, i.e., α4 intermediate conformations. The parameter α shows

the trade-off between the running time and accuracy of our algorithm. A larger value

of α leads to more intermediate conformations (a conformational space with better

resolution) and therefore a more accurate result. So now we have α4 intermediate

conformations whose only difference is in the dihedral angles of the special side-chain
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and we should find the best path from the initial to the target conformation through

these intermediate conformations.

2. Constructing a graph

In this step we construct a graph G whose nodes correspond to the conformations

of the conformational space defined above. G has a source node, denoted by s,

corresponding to the initial conformation, and a destination node, denoted by t,

corresponding to the target conformation. We connect two conformations Ci and Ck

if and only if the difference between the j-th chi angles of the special side-chain (for

all j = 1, 2, 3, 4) in Ci and Ck is at most ∆j. For instance, if the chi angles of the

special side-chain in Ci and Ck are χi1, χ
i
2, χ

i
3, χ

i
4 and χk1, χ

k
2, χ

k
3, χ

k
4 respectively, then

we connect Ci and Ck if and only if

|χij − χkj | ≤ ∆j for 1 ≤ j ≤ 4.

observe that the j-th chi angle can either decrease by ∆j, increase by ∆j, or does not

change. Therefore, we have three options for each chi angle. Since the special side-

chain has at most four chi angles, each node can have at most 34−1 = 80 neighbours

(note that we do not count the case in which no chi angle changes). Thus each node

has degree at most 80 in G. Furthermore, a weight is assigned to each node that

corresponds to the potential energy of its corresponding conformation. The weight

of node u is denoted by weight(u). Then we can use a greedy algorithm to find the

best path in the graph G, i.e., a path π from the source node to the destination node

so that the maximum weight among the nodes of π is the smallest possible.

3. Finding the best pathway

We have a node-weighted graph G and want to find the best path from s to t. Define

the weight of a path as the maximum weight of its nodes. Our objective is to find

the path with minimum weight. Let Π be the set of all path from s to t in G. We

want to solve the following optimization problem:

min
π∈Π

max
u∈π

weight(u).
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Let G be a node-weighted graph
Let s and t be the source and destination nodes, respectively
1. A = {s}
2. S = ∅
3. for v ∈ V (G)
4. prev[v]← nil
5. while t 6∈ S
6. u← a node in A with the smallest weight
7. for each neighbor (v 6∈ A ∪ S) of u
8. add v to A
9. prev[v]← u
10. remove u from A
11. add u to S
12. π = ∅
13. v ← t
14. while prev[v] 6= nil
15. insert v at the beginning of π
16. v ← prev[v]
17. return π

Figure 3.11: A greedy algorithm for finding the best path in a graph.

We describe a greedy algorithm to efficiently find the best path in G. We maintain a

set A of active nodes and a set S of selected nodes. At each iteration, S contains the

nodes for which we have found the best path from s, while A maintains the nodes

that are not selected yet, but we have found a path from s to them. For each node v

we also maintain prev[v] which shows the last node in the best path from the source

to v and is initialized to nil. Initially A contains only the source node and S is empty.

At each step, we select a node u in A with minimum weight, add u to S, and remove

it from A. Furthermore, let v be a neighbour of u which is not in A∪S. We add v to

A and set prev[v] to u. We continue this process until we select the destination node.

We then use the prev values to find the best path from the source to the destination.

The pseudocode for this greedy algorithm is shown in Figure 3.11. We verify the
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vk = ts
u

vk−1v2v1

v

Figure 3.12: Figure for the proof of Theorem 1.

correctness of this algorithm.

Theorem 1. The greedy algorithm of Figure 3.11 returns a path π of minimum

weight from s to t in G.

Proof. Assume for the sake of contradiction that this is not true and there exists a

path π′ from s to t in G such that the weight of π′ is strictly less than the weight

of π. Let u be a node with maximum weight in π. We observe that the weight of

u is strictly more than the weights of all nodes in π′ (including s and t). We get a

contradiction by proving that the greedy algorithm never selects u and thus u cannot

be part of π. Let tu be the iteration in which u is added to S by the greedy algorithm.

Suppose that v be the last node in the path from s to u in π that belongs to π′ and

let v, v1, v2, . . . , vk = t be the nodes after v in π′ (see Figure 3.12). We know that

v is added to A before time tu. Since the weight of v is strictly less than u, v is

selected before tu as well. Therefore v1, a neighbour of v, is added to S before tu. In

general since the weight of vi is less than the weight of u, if vi is active before tu, then

it is selected before tu, and thus vi+1 becomes active before tu as well. Therefore,

all vertices of π′ are selected before u. In particular t = vk is selected before u and

the greedy algorithm stops and returns a path before selecting u. This contradiction

proves that our original assumption is incorrect and thus π is a path with minimum

weight.

Table 3.5 shows a feasible pathway found by this algorithm (with parameter α set to

20) between the two conformations of protein with PDB ID 1CV2 shown in Figures 3.5

and 3.8.
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The feasible pathway contains 38 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -169.41 , 74.38 ] -410.81966760
C1 [ -169.25 , 74.38 ] -410.85308702
C2 [ -169.09 , 74.38 ] -410.88487824
C3 [ -168.93 , 74.38 ] -410.91464549
C4 [ -168.77 , 74.38 ] -410.94303203
C5 [ -168.61 , 74.38 ] -410.96989285
C6 [ -168.45 , 74.38 ] -410.99477823
C7 [ -168.29 , 74.38 ] -411.01819007
C8 [ -168.13 , 74.38 ] -411.04183429
C9 [ -167.97 , 74.38 ] -411.06818252
C10 [ -167.81 , 74.38 ] -411.09332845
C11 [ -167.65 , 74.38 ] -411.11694227
C12 [ -167.49 , 74.38 ] -411.13889403
C13 [ -167.32 , 74.38 ] -411.15954955
C14 [ -167.16 , 74.38 ] -411.17881593
C15 [ -167.00 , 74.38 ] -411.19635226
C16 [ -166.84 , 74.38 ] -411.21266454
C17 [ -166.68 , 74.38 ] -411.22645843
C18 [ -166.52 , 71.22 ] -411.11989460
C19 [ -166.52 , 68.06 ] -410.87583550
C20 [ -166.52 , 64.89 ] -410.16150717
C21 [ -166.52 , 61.73 ] -410.04303209
C22 [ -166.52 , 58.56 ] -409.98754217
C23 [ -166.52 , 55.40 ] -409.94503613
C24 [ -166.52 , 52.24 ] -409.92182898
C25 [ -166.52 , 49.07 ] -409.91656362
C26 [ -166.52 , 45.91 ] -409.92158947
C27 [ -166.52 , 42.74 ] -409.92388160
C28 [ -166.52 , 39.58 ] -409.90862512
C29 [ -166.52 , 36.41 ] -409.86061404
C30 [ -166.52 , 33.25 ] -409.76652532
C31 [ -166.52 , 30.09 ] -409.61449941
C32 [ -166.52 , 26.92 ] -409.72755227
C33 [ -166.52 , 23.76 ] -409.78938153
C34 [ -166.52 , 20.59 ] -409.79517497
C35 [ -166.52 , 17.43 ] -409.75397726
C36 [ -166.36 , 14.26 ] -409.67025959
C37 [ -166.20 , 11.10 ] -409.56332785

Table 3.5: A feasible transition pathway found by the greedy algorithm between two con-
formations of protein with PDB ID 1CV2.
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3.3.4 Runtime Complexity

In this subsection we analyze the running time of three pathway-finding algorithms.

Averaging Algorithm

Consider the averaging algorithm with parameter n. We can compute each intermediate

conformation in constant time. Therefore the running time of the averaging algorithm is

O(n).

Randomized Algorithm

Let the chi angles of the special side-chain in the initial and target conformation be

(χ0
1, χ

0
2, χ

0
3, χ

0
4) and (χn1 , χ

n
2 , χ

n
3 , χ

n
4 ), respectively, and let d be the diff parameter (related

to the stopping criterion) in the randomized algorithm. Define δj as the difference between

the j-th chi angles of the special side-chain in the initial and target conformations, i.e.,

δj = |χnj − χ0
j |.

In order to analyze the expected running time of the randomized algorithm we first

consider a relevant algorithm described as follows. Initially we have an interval I of length

L, say interval [0, L). At each step we select a point p in the interval uniformly at random,

do some constant amount of work, split the interval into two subintervals I1 = [0, p)

and I2 = [p, L), and then recursively call the algorithm on each subinterval if the length

of the subinterval is larger than some parameter d. We refer to this algorithm as the

interval-splitting algorithm with parameters (L, d). We analyze the expected running time

of the interval-splitting algorithm by considering its recursion tree T . Figure 3.13 shows a

simple example of a recursion tree with L = 10 and d = 2. Observe that the number of

subproblems in the i-th level of T is at most 2i. Since the running time of each subproblem

(other than the recursive calls) is constant, the total running time at level i is at most

O(2i). Next we compute the expected number of levels (height of T ). We say that we have

a good split if we have L/4 ≤ p ≤ 3L/4. Otherwise, we say that we have a bad split. For

example, in Figure 3.13 the splits on I2 and I3 are good, while splits on I and I4 are bad.
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Observe that if we have a good split, then the sizes of both subproblems are at most 3L/4.

Therefore the size of each subproblem is reduced by a factor of 3/4 after each good split

and after i good splits, the size of subproblem becomes at most L(3/4)i. Recall that we

stop when the size of subproblem becomes ≤ d. Thus we stop after k good splits when

L(3/4)k ≤ d⇒ (3/4)k ≤ d/L⇒ (4/3)k ≥ L/d⇒ k ≥ log4/3 L/d.

Thus we stop after dlog4/3 L/de good splits. Therefore the expected number of levels is at

most the expected number of steps in which we have dlog4/3 L/de good splits. Since we

select the splitting point uniformly at random, the probability that each split is good is
3x/4−x/4

x
= 1/2, where x is the length of the interval. Therefore at each step, the probability

that the split is good is the same as the probability that split is bad and each equal 1/2.

From probability theory that the expected number of steps until we get a good split is
1

1/2
= 2 and the expected number of steps in which we get dlog4/3 L/de good splits is

2dlog4/3 L/de. Hence the expected number of levels of T is 2dlog4/3 L/de and the expected

running time of the algorithm (sum over all levels) is

2dlog4/3 L/de∑
i=0

2i ∈ O(22 log4/3 L/d) ∈ O((L/d)2 log4/3 2) ∈ O((L/d)4.82).

Observe that we can consider the randomized pathway-finding algorithm as four in-

dependent executions of the interval-splitting algorithm with parameters (δ1, d), (δ2, d),

(δ3, d), and (δ4, d). Therefore the expected running time of the randomized algorithm is

O((δ1/d)4.82 + (δ2/d)4.82 + (δ3/d)4.82 + (δ4/d)4.82).

Greedy Algorithm

Consider the greedy algorithm with parameter α. The conformational space has O(α4)

conformations. Therefore the graph G has O(α4) vertices. Recall that the degree of

each vertex of G is at most 80. Thus the number of edges in G is O(80α4/2) ∈ O(α4).

Constructing each edge or vertex of G and computing the weight of each vertex takes
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I = [0, 10)

I1 = [0, 1.7) I2 = [1.7, 10)

I3 = [1.7, 5.4) I4 = [5.4, 10)

I5 = [1.7, 3.6) I6 = [3.6, 5.4) I7 = [5.4, 9) I8 = [9, 10)

I9 = [5.4, 7.1) I10 = [7.1, 9)

Figure 3.13: A recursion tree for the interval-splitting algorithm with L = 10 and d = 2.

constant time. Therefore the graph G can be constructed in O(α4) time. Next we need to

apply the greedy algorithm of Figure 3.11 to G. Initialization (lines 1-4) takes O(|V |) ∈
O(α4) time. We maintain the vertices in A in a min-priority queue where the priority

of each vertex is its weight. At each iteration of the first while loop we use a delete-min

operation to select the vertex u in A with the minimum weight. The vertex u is removed

from A and added to S. We also add each neighbour of u which is not in A ∪ S to A

by using an insert operation. So we can have up to deg(u) ≤ 80 insert operations at each

iteration of the first while loop. Observe that u is not added to A again as we do not

add vertices in S to A. Thus the first while loop is iterated at most O(|V |) ∈ O(α4)

times. At each iteration we have a constant number of delete-min and insert operations. If

we implement the priority queue with standard heap the running time of delete-min and

insert operations is equal to O(log |V |) ∈ O(logα). Therefore the total running time of the

first while loop is O(α4 logα). The second while loop is executed O(α4) times and takes

constant time per iteration. Thus the total running time of the algorithm of Figure 3.11

is O(α4 + α4 logα + α4) ∈ O(α4 logα). Overall, the running time of the greedy algorithm

is O(α4 logα). Observe that there is a trade-off between the accuracy and running time of

the algorithm.
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Chapter 4

Results and Discussion

In this Chapter we present the results obtained by applying the algorithms described in

Chapter 3 to various protein structures. In Section 4.1 we describe the data sources and

the visualization software used in our experiments. Furthermore, we briefly explain the

software that we used for computing the potential energy of protein structures. Then we

provide our experimental results in Section 4.2. More specifically, in Subsections 4.2.1

and 4.2.2 we report the results of applying the tunnel-finding and the tunnel-widening

algorithms to several protein structures. Finally, we provide experimental results on the

application of pathway-finding algorithms in Subsection 4.2.3.

4.1 Experimental Setup

We first briefly describe the softwares that we used in our experiments, as well as our data

sources.

4.1.1 Test Data

We have tested our tunnel finding/widening algorithms on various protein structures taken

from the Protein Data Bank (PDB) [5]. As mentioned in Section 2.1.3, the Protein Data
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Bank contains three-dimensional structural data of many biological macromolecules. Every

structure has a unique identification code, called the PDB ID. The Protein Data Bank

provides the structural information of each protein structure in a PDB file. The PDB file

is a text file containing the coordinates of the protein atoms.

4.1.2 Visualization Software

After extracting the coordinates of the protein atoms from the PDB file, we can visualize

the protein structure using a visualization software. We used the UCSF Chimera software
1 [57] to visualize the protein structures as well as the discovered tunnels. Chimera is an

interactive molecular visualization program developed by the Resource for Biocomputing,

Visualization, and Informatics at the University of California, San Francisco. 2 Chimera

can be downloaded free of charge for academic, non-profit, and personal use. A Python-

standard IDLE interactive environment is provided in Chimera which can process Python

scripts. Chimera can retrieve files containing atom coordinates from various databases

such as PDB, NDP, SCOP, etc. and provides various ways to display a protein structure.

Atoms and bonds can be represented by wire-frame, stick, ball and stick, or spheres. The

ribbons (flat, edged or rounded) option is available to show the overall structure of the

protein. The molecular surface of the protein can be displayed as solid, mesh, or dot. In

this thesis, we used the ball and stick option to represent the three-dimensional structure

of the proteins.

4.1.3 Computing the Potential Energy

We have used the PyRosetta energy (score) function to compute the potential energy of

the protein structures. PyRosetta 3 [11] is a Python-based implementation of the Rosetta

molecular modeling package 4 [60] developed for predicting and designing protein struc-

1http://www.cgl.ucsf.edu/chimera/
2http://www.rbvi.ucsf.edu/
3http://www.pyrosetta.org/home
4http://www.rosettacommons.org/home
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tures, protein folding mechanisms, and protein-protein interactions. The PyRosetta score

function is based on the Rosetta energy function [60]. It takes a pose object, i.e., an object

which contains all the structural information necessary to define a protein structure, and

outputs a score that represents its energy. The Rosetta energy function consists of various

components (terms), shown in Table 4.1. Each component ci is assigned a score weight wi.

The user can assign the desired weights to the energy components to define a custom scor-

ing function. We have applied the default score weights defined in Rosetta (corresponding

to the “standard” score function) to compute the energy of the protein structures. The

corresponding weights are shown in Table 4.2. The Rosetta energy function, denoted by

FE, is defined as the weighted sum of independent energy components: 5

FE = c1 × w1 + c2 × w2 + c3 × w3 + · · ·+ ck × wk.

4.2 Experimental Results

In this section we describe the results of applying the tunnel-finding, tunnel-widening, and

pathway-finding algorithms to various proteins taken from the PDB. Recall that the input

to our tunnel-finding and tunnel-widening algorithms consists of a protein conformation

together with the coordinates of a starting point inside it. We emphasize that our algo-

rithms do not aim to find the starting points. They assume that the starting points are

provided by the user and can be anywhere inside the protein structures. Note that there

might not exist a tunnel from some starting points inside the given protein structure to the

outside environment. If the tunnel-finding algorithm is provided with such an instance,

it reports that a tunnel does not exist. In our experiments we consider various proteins

with widely different number of atoms. To illustrate the performance of our algorithms

we picked arbitrary points inside these protein structures as the starting points. Since

one of the applications of our algorithms is in drug design, we also provided two examples

5Note that some components in Table 4.1 are divided into several subcomponents in Table 4.2 and
assigned different weights.
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Components of Rosetta Energy Function

Name Description Functional form Parameters Ref.

i = residue index

rama Ramachandran
torsion pref-
erences

∑
i− ln[P (φi, ψi|aai, ssi)] φ, ψ = backbone tor-

sion angles (36 bins)
[8, 61]

aa= amino acid type

ss= secondary struc-
ture type

i, j =residue indices

LJ Lennard-
Jones interac-
tions

∑
i

∑
j>i


(

(
rij
dij

)
12 − 2(

rij
dij

)
6
)
eij if

dij
rij

> 0.6(
−8759.2(

dij
rij

) + 5672.0
)
eij otherwise

d = interatomic dis-
tance

[40]

e =geometric mean of
atom well depths

r= summed van der
Waals radii

∑
i

∑
j

[
−ln[P (dij |hjssij)]− ln[P (cos θij |dijhjssij)]

i =donor residue index

hb Hydrogen
bonding −ln[P (cosψij |dijhjssij)]

] j = acceptor residue
index

[39, 73]

d =acceptor-proton in-
teratomic distance

h= hybridization (sp2,
sp3)

ss= secondary struc-
ture type

θ= proton-acceptor-
acceptor base bond
angle

ψ= donor-proton-
acceptor bond angle

i, j =atom indices

solv Solvation
∑
i

[
∆Grefi −

∑
j

(
2∆G

free
i

4π3/2λir
2
ij

e−d
2
ijVj + (

2∆G
free
i

4π3/2λjr
2
ij

e−d
2
ijVi

)]
d = distance between
atoms

[40, 41]

r =summed van der
Waal radii

λ= correlation length

V=atomic volume

∆Gref ,∆Gfree= en-
ergy of a fully solvated
atom
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Components of Rosetta Energy Function (continued)

Name Description Functional form Parameters Ref.

i, j =residue indices

pair Residue pair
interactions
(electrostat-
ics,disulfides)

∑
i

∑
j>i−ln

[
P (aai,aaj |dij)

P (aai|dij)P (aaj |dij)

]
aa =amino acid type [40]

d= distance between
residues

i, j = residue indices

dun Rotamer self-
energy

∑
i− ln

[
P (roti|φi,ψi)P (aai|φi,ψi)

P (aai)

]
φ, ψ = backbone tor-
sion angles (36 bins)

[40, 24]

aa= amino acid type

rot=Dunbrack
backbone-dependent
rotamer

ref
Unfolded
state refer-
ence energy

∑
aa naa aa =amino acid type [40]

n = number of residues

Table 4.1: Components of Rosetta Energy Function [60].
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Score Description Weight

p aa pp Probability of amino acid at phipsi 0.640

fa atr lennard-jones attractive 0.800

fa rep lennard-jones repulsive 0.440

fa intra rep lennard-jones repulsive between atoms in the
same residue

0.004

hbond lr bb backbone-backbone hbonds distant in pri-
mary sequence

1.170

hbond sr bb backbone-backbone hbonds close in primary
sequence

1.170

hbond bb sc sidechain-backbone hydrogen bond energy 1.170

hbond sc sidechain-sidechain hydrogen bond energy 1.100

fa sol lazaridis-jarplus solvation energy 0.650

fa pair statistical residue-residue pair potential 0.490

dslf ss dst distance score in current disulfide 1.000

dslf cs ang csangles score in current disulfide 1.000

dslf ss dih dihedral score in current disulfide 1.000

dslf ca dih ca dihedral score in current disulfide 1.000

fa dun internal energy of sidechain rotamers as de-
rived from Dunbrack’s statistics

0.560

ref reference energy for each amino acid 1.000

Table 4.2: Default score weights defined in Rosetta.
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(proteins 1MJ5 and 1CQW) in which the starting point is located nearby the active site

region. More specifically, let P be the set of points in R3 that correspond to the centers of

the atoms of amino acid residues constituting an active site A. We define the centroid of

A, denoted by C(A), as the centroid of points in P and use C(A) as the starting point.

4.2.1 Finding the Widest Tunnel

Recall from Section 3.1 that given a fixed conformation of a protein and a position (starting

point) inside it, the tunnel-finding algorithm can find the widest tunnel from the starting

point to the outside environment of the protein. As stated earlier, the protein conforma-

tions are taken from the PDB and visualized in Chimera. We have tested our tunnel-finding

algorithm on various protein structures and different starting points. The coordinates of

starting points are in the frame of reference used by the PDB coordinates. In all cases,

the program discovered and facilitated the visualization of the widest tunnel in the given

static conformation in a few seconds. In this subsection we provide the results for several

instances.

• Protein 1MJ5

Protein with PDB entry 1MJ5 has one chain containing 302 amino acid residues.

This protein has an active site which is located between its two domains and includes

the catalytic residues Asp 108, Glu 132, and His 272 [51]. Recall from Chapter 1

that in drug design we are interested in finding wide tunnels from the active site

to the outside environment. Therefore, we selected the starting point to be a point

with coordinates (16.93,31.44,4.45) which is the centroid of the active site. Then, we

applied the tunnel-finding algorithm on this protein with the aforementioned starting

point. Figure 4.1 shows the widest tunnel found for this instance. The width of this

tunnel is 0.23 Å.

• Protein 1CQW

Protein 1CQW has one chain containing 295 amino acid residues. The active site of

this protein involves residues Asp 117.A, TRP 118.A, GLU 141.A, and HIS 283.A.
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(a) (b)

Figure 4.1: The widest tunnel in protein 1MJ5 with the starting point at position
(16.93,31.44,4.45). (a) Protein atoms represented using ball and stick option in Chimera.
(b) Overall structure of the protein represented using the ribbon option in Chimera.

[50]. To find the widest tunnel from the active site to the outside environment of

the protein, we set the starting point to the centroid of the active site, i.e., the point

with coordinates (21.92,98.09,39.59). Then, we applied the tunnel-finding algorithm

on this protein with the starting point at position (21.92,98.09,39.59). Figure 4.2

shows the widest tunnel discovered by the tunnel-finding algorithm for this protein

and starting point. The width of the widest tunnel is 0.54 Å.

• Protein 1CV2

The PDB entry 1CV2 corresponds to the crystal structure of haloalkane dehalogenase

LinB enzyme [48]. The length of protein 1CV2 (the number of amino acid residues) is

296. In Section 3.1, we presented the result of applying the tunnel-finding algorithm

to this protein with the starting point at position (14,15,22) (see Figure 3.5). Here,
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Figure 4.2: The widest tunnel in the protein 1CQW with the starting point at position
(21.92,98.09,39.59).

we consider the same protein conformation, but a different starting point. Figure 4.3

shows the widest tunnel discovered in this protein with the starting point at position

(24,12,18). The width of the widest tunnel in this conformation is 0.46 Å.

• Protein 1CV4

The protein with PDB ID 1CV4 is a one-chain structure and consists of 164 amino

acid residues. Therefore, it is much smaller than the previous proteins. Figure 4.4

shows the widest tunnel found in this protein with the starting point at position

(36,7,8). The width of the corresponding tunnel is 0.57 Å.

• Protein 2YJK

Protein 2YJK has 12 chains, where each chain contains 161 amino acid residues.

Thus, it is much larger than the previous four proteins. We applied the tunnel-

finding algorithm on this protein with the starting point at position (20,5,55). The

corresponding widest tunnel is shown in Figure 4.5. The width of the tunnel is 0.86

Å. Despite the large size of the protein, the tunnel-finding algorithm was able to
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Figure 4.3: The widest tunnel in protein 1CV2 with starting point at position (24,12,18).

find and visualize the widest tunnel in a few seconds. Observe that the tunnel found

by the algorithm is long and shorter tunnels might exist. However, recall that the

tunnel-finding algorithm finds the widest tunnel, regardless of the length.

• Protein 1CSW

Protein 1CSW has 108 amino acid residues. We applied the tunnel-finding algorithm

to this protein with the starting point at position (-2,17,4). The corresponding widest

tunnel is shown in Figure 4.6. The width of this tunnel is 0.46 Å.

We also tested the tunnel-finding algorithm on several other protein conformations with

different starting points. Table 4.3 provides the results for some of these input instances.

4.2.2 Widening the Tunnel

In Section 3.2 we proposed a tunnel-widening algorithm that aims to find a wider tunnel in

an alternative conformation of the initial structure whose energy is not much higher than
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Figure 4.4: The widest tunnel in protein 1CV4 with starting point at position (36,7,8).

the energy of the initial conformation. In that section we reported the result of applying

this tunnel-widening algorithm to the protein 1CV2 with the starting point at position

(14,15,22). The tunnel-widening algorithm increased the width of the tunnel from 0.43 Å

to 0.59 Å. In this subsection we provide more experimental results for the tunnel-widening

algorithm. More specifically, we consider the instances used by the tunnel-finding algorithm

in Subsection 4.2.1.

• Protein 1MJ5

In Subsection 4.2.1 we reported that the width of the widest tunnel in the initial

conformation of protein 1MJ5 with the starting point at position (16.93,31.44,4.45)

is 0.23 Å. One of the bottleneck side-chains of this tunnel belongs to the residue HIS

272.A. The sidechain dihedral angles of this residue in the original conformation are

χ1 = −174.44◦ and χ2 = 61.70◦. By replacing the sidechain of this residue by the

rotamer with dihedral angles χ1 = −177.10◦, χ2 = 72.30◦, we identified a tunnel

with width 0.38 Å. The potential energy of the structure changed from -493.260 to

-492.636 kcal/mol. Thus we found an alternative conformation with a wider tunnel
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(a) (b)

Figure 4.5: The widest tunnel in protein 2YJK with the starting point at position (20,5,55).
(a) Protein atoms represented using ball and stick option in Chimera. (b) Overall structure
of the protein represented using ribbon option in Chimera.

Figure 4.6: The widest tunnel in protein 1CSW with the starting point at position (-2,17,4).

64



PDB ID Length (number of Coordinates of Width of the Energy

residues) the starting point widest tunnel (Å) (kcal/mol)

1CSW 108 (5,15,9) 0.20 88.119

1CSW 108 (10,21,7) 0.55 88.119

1CV4 164 (36,5,12) 0.78 -27.329

1CV4 164 (35,10,10) 0.77 -27.329

1A30 201 (15,22,2) 0.89 -250.309

1CQW 295 (14,98,43) 0.52 -487.858

1CQW 295 (26,97,36) 0.87 -487.858

1MJ5 302 (8,35,6) 0.13 -493.260

1MJ5 302 (18,32,4) 0.26 -493.260

1MJ5 302 (12,30,4) 0.11 -493.260

2HAD 310 (30,106,27) 0.84 -216.750

1EBV 551 (29,39,190) 0.75 323.946

3N5E 658 (-50,4,30) 0.42 10.396

3S2A 960 (23,-5,27) 0.68 -296.010

1DCE 1796 (58,27,30) 0.77 2502.114

Table 4.3: Width of the widest tunnels in various protein conformations and starting
points.

and not much higher potential energy. Figure 4.7 shows the widest tunnel in the

corresponding alternative conformation of protein 1MJ5.

• Protein 1CQW

Recall from Subsection 4.2.1 that the width of the widest tunnel in the initial con-

formation of protein 1CQW with the starting point at position (21.92,98.09,39.59)

is 0.54 Å. One of the bottleneck side-chains of this tunnel belongs to the residue

HIS 283.A. The sidechain dihedral angles of this residue in the initial conformation

are χ1 = −176.69◦ and χ2 = 62.68◦. We discovered a wider tunnel with width 0.63
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(a) (b)

Figure 4.7: The widest tunnel in an alternative conformation of protein 1MJ5 with the
starting point at position (16.93,31.44,4.45). (a) Protein atoms represented using ball and
stick option in Chimera. (b) Protein atoms represented using ribbon option in Chimera.

Å by replacing the sidechain of this residue by the rotamer with dihedral angles

χ1 = −175.80◦ and χ2 = 71.80◦. The potential energy of the structure changed from

-487.858 to -488.036 kcal/mol. Therefore, we found an acceptable alternative confor-

mation of protein 1CQW with a wider tunnel. Figure 4.8 shows the widest tunnel in

this alternative conformation.
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Figure 4.8: The widest tunnel in an alternative conformation of protein 1CQW with the
starting point at position (21.92,98.09,39.59)

Figure 4.9: The widest tunnel in an alternative conformation of protein 1CV2 with the
starting point at position (24,12,18).
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• Protein 1CV2

In Subsection 4.2.1 we considered the protein 1CV2 with the starting point at position

(24,12,18). The width of the widest tunnel in the initial conformation is 0.46 Å. One

of the bottleneck atoms of this tunnel belongs to the residue ASN 38.A. The sidechain

dihedral angles of this residue in the original conformation are χ1 = −168.37◦ and

χ2 = 42.51◦. By replacing the sidechain of this residue by the rotamer with dihedral

angles χ1 = −174.40◦ and χ2 = 68.30◦, we identified a tunnel with width 0.65 Å.

The potential energy of the structure changed from -410.819 to -406.236 kcal/mol.

Thus we found an alternative conformation with a wider tunnel and not much higher

potential energy. Figure 4.9 shows the widest tunnel in an alternative conformation

of protein 1CV2.

• Protein 1CV4

In Section 4.2.1 we considered the protein 1CV4 with the starting point at position

(36,7,8). The width of the widest tunnel in the initial conformation is 0.57 Å. One of

the bottleneck side-chains of this tunnel belongs to the residue ILE 3.A. The sidechain

dihedral angles of this residue in the original conformation are χ1 = −173.43◦ and

χ2 = 58.54◦. By replacing the sidechain of this residue by the rotamer with dihedral

angles χ1 = −170.0◦ and χ2 = 64.10◦, we identified a tunnel with width 0.84 Å. The

potential energy of the structure changed from -27.329 to -27.394 kcal/mol. Thus we

found an alternative conformation with a wider tunnel and not much higher potential

energy. The widest tunnel in this alternative conformation is shown in Figure 4.10.

• Protein 2YJK

Another instance considered in Subsection 4.2.1 is protein 2YJK with the starting

point at position (20,5,55). The width of widest tunnel in this instance is 0.86 Å.

One of the bottleneck side-chains belongs to the residue TYR 65.G. The side-chain

dihedral angles in the initial conformation are χ1 = −59.15◦ and χ2 = −28.56◦.

By replacing the side-chain of this residue with the rotamer with dihedral angles

χ1 = −69.0◦ and χ2 = −15.0◦ we discovered a wider tunnel with width 0.98 Å. The

energy changed from -2044.576 to -1995.577 kcal/mol. Thus, the energy value of this
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alternative conformation is much higher than the energy of the initial conformation.

Therefore, the alternative conformation is not acceptable and the tunnel-widening

algorithm fails to find a wider tunnel.

• Protein 1CSW

The last example described in Subsection 4.2.1 was protein 1CSW with the starting

point at position (-2,17,4). The width of the widest tunnel in the initial conformation

is 0.46 Å. One of the bottleneck side-chains of this tunnel belongs to the residue ARG

91.A. The sidechain dihedral angles of this residue in the original conformation are

χ1 = −59.50◦, χ2 = −157.14◦, χ3 = −65.70◦, and χ4 = −78.72◦. By replacing

the sidechain of this residue by the rotamer with dihedral angles χ1 = −69.10◦,

χ2 = −179.40◦, χ3 = −70.90◦, and χ4 = 169.90◦, we identified a tunnel with width

0.61 Å. The potential energy of the structure changed from 88.119 to 91.691 kcal/mol.

Thus we found an alternative conformation with a wider tunnel and not much higher

potential energy. Figure 4.11 shows the widest tunnel discovered in the alternative

conformation of 1CSW.

We applied the tunnel-widening algorithm to several other protein conformations and var-

ious starting points. The results obtained for the instances of Table 4.3 are provided in

Table 4.4. As can be seen, the tunnel-widening algorithm can increase the width of the

tunnel in all these cases. For instance, the width of tunnel in protein 1DCE with starting

point at position (58,27,30) is increased from 0.77 Å to 1.82 Å. Therefore the alternative

conformation of 1DCE has a tunnel that is wide enough for Magnesium ion (Mg2+, ionic

radius: 0.86 Å), while the widest tunnel in the initial structure is not wide enough for this

ligand.

4.2.3 Transition Pathway

Using the tunnel-widening algorithm, we can investigate the possibility of finding a wider

tunnel by a slight local change in the structure of the protein. In Subsection 4.2.2, we

applied the tunnel-widening algorithm to various instances and in most cases we were able
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Figure 4.10: The widest tunnel in an alternative conformation of protein 1CV4 with the
starting point at position (36,7,8).

Figure 4.11: The widest tunnel in an alternative conformation of protein 1CSW with the
starting point at position (-2,17,4).
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PDB Protein Starting Initial Target Initial Final Feasible

ID length point width width energy energy transition

(Å) (Å) (kcal/mol) (kcal/mol) pathway

1CSW 108 (5,15,9) 0.20 0.55 88.119 87.995 YES (α = 50, |χ| = 2)

1CSW 108 (10,21,7) 0.55 0.72 88.119 87.980 YES (α = 50, |χ| = 2)

1CV4 164 (36,5,12) 0.78 0.82 -27.329 -27.394 YES (α = 50, |χ| = 2)

1A30 201 (15,22,2) 0.89 1.02 -250.309 -250.562 YES (α = 50, |χ| = 2)

1CQW 295 (14,98,43) 0.52 0.77 -487.858 -487.867 YES (α = 30, |χ| = 3)

1CQW 295 (26,97,36) 0.87 1.16 -487.858 -483.982 YES (α = 50, |χ| = 2)

1MJ5 302 (8,35,6) 0.13 0.36 -493.260 -491.126 YES (α = 50, |χ| = 2)

1MJ5 302 (18,32,4) 0.26 0.50 -493.260 -490.423 YES (α = 30, |χ| = 3)

1MJ5 302 (12,30,4) 0.11 0.29 -493.260 -492.984 YES (α = 50, |χ| = 3)

2HAD 310 (30,106,27) 0.84 0.96 -216.750 -216.566 YES (α = 50, |χ| = 2)

1EBV 551 (29,39,190) 0.75 0.84 323.946 323.431 YES (α = 50, |χ| = 2)

3N5E 658 (-50,4,30) 0.42 0.58 10.396 10.001 YES (α = 50, |χ| = 2)

1DCE 1796 (58,27,30) 0.77 1.82 2502.114 2501.969 YES (α = 50, |χ| = 2)

1CV4 164 (35,10,10) 0.77 0.82 -27.329 -26.288 NO (α = 50, |χ| = 2)

3S2A 960 (23,-5,27) 0.68 0.78 -296.010 -296.187 NO (α = 10, |χ| = 4)

Table 4.4: Output of the tunnel-widening algorithm on various protein conformations.
The fourth and fifth columns show the width of the widest tunnel in the initial and the
alternative conformations, respectively. Initial and final energies shown in columns six and
seven correspond to the energy of the initial conformation and the energy of the alternative
conformation, respectively. The existence or non-existence of a feasible transition pathway
between the initial and alternative conformations is reported in the last column.
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to find a wider tunnel in an alternative structure of the initial conformation. However,

there is no guarantee that this transition from the initial conformation to the alternative

conformation is feasible. In Section 3.3 we described methods to ensure that the alter-

native conformation (also called the target conformation) is accessible from the initial

conformation. More specifically, we proposed several algorithms to find a transition path-

way between the initial conformation and the target conformation. Here, we consider the

protein instances used by the tunnel-widening algorithm in Subsection 4.2.2 and for each

instance we check whether a feasible transition pathway between the initial and target

conformations can be found.

• Protein 1MJ5

Recall that the tunnel-widening algorithm can increase the width of the widest tunnel

from 0.23 Å in the initial structure to 0.38 Å in an alternative conformation. The

dihedral angles of the special side-chain are χ1 = 174.44◦ and χ2 = 61.70◦ in the initial

conformation and χ1 = 177.10◦ and χ2 = 72.30◦ in the target conformation. The

potential energy of the structure changed from -493.260 to -492.636 kcal/mol. We use

the pathway-finding algorithms to test whether the target conformation is accessible

from the initial conformation. Table 4.5 shows the transition pathway found by the

averaging algorithm with parameter n = 25 (number of intermediate conformations).

According to these results, the energy of all intermediate conformations are close to

the energy of the initial conformation and thus the pathway is feasible. The pathways

found by the randomized algorithm with parameter diff=2 is shown in Table 4.6. It

contains 25 conformations and it is feasible as well. Using the greedy algorithm

with parameter α = 20, we also found a feasible transition pathway containing 33

conformations (see Table 4.7 for the transition pathway). Thus for this instance

all algorithms discover feasible pathways from the initial conformation to the target

conformation.
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The feasible pathway contains 26 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -174.44 , 61.70 ] -493.26006920

C1 [ -174.55 , 62.13 ] -493.25847803

C2 [ -174.65 , 62.55 ] -493.25554065

C3 [ -174.76 , 62.97 ] -493.25129358

C4 [ -174.87 , 63.40 ] -493.24578433

C5 [ -174.97 , 63.82 ] -493.23099982

C6 [ -175.08 , 64.25 ] -493.21205177

C7 [ -175.18 , 64.67 ] -493.19168453

C8 [ -175.29 , 65.09 ] -493.16994061

C9 [ -175.40 , 65.52 ] -493.14678598

C10 [ -175.50 , 65.94 ] -493.12249741

C11 [ -175.61 , 66.36 ] -493.09687832

C12 [ -175.72 , 66.79 ] -493.07024355

C13 [ -175.82 , 67.21 ] -493.04247366

C14 [ -175.93 , 67.64 ] -493.01344743

C15 [ -176.04 , 68.06 ] -492.98348870

C16 [ -176.14 , 68.48 ] -492.95245777

C17 [ -176.25 , 68.91 ] -492.92033746

C18 [ -176.36 , 69.33 ] -492.88737557

C19 [ -176.46 , 69.76 ] -492.85351601

C20 [ -176.57 , 70.18 ] -492.81891342

C21 [ -176.67 , 70.60 ] -492.78353365

C22 [ -176.78 , 71.03 ] -492.74744864

C23 [ -176.89 , 71.45 ] -492.71074975

C24 [ -176.99 , 71.88 ] -492.67341794

C25 [ -177.10 , 72.30 ] -492.63560742

Table 4.5: A feasible transition pathway found by the averaging algorithm with parameter
n = 25 between two conformations of protein 1MJ5.
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The feasible pathway contains 25 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -174.44 , 61.70 ] -493.26006920

C1 [ -174.46 , 62.40 ] -493.28482552

C2 [ -174.50 , 62.74 ] -493.29153582

C3 [ -175.47 , 63.52 ] -493.08050736

C4 [ -175.71 , 64.05 ] -493.02441105

C5 [ -175.71 , 64.12 ] -493.02389749

C6 [ -175.73 , 64.47 ] -493.02568257

C7 [ -175.86 , 65.23 ] -493.00305915

C8 [ -175.87 , 65.77 ] -493.00771843

C9 [ -175.91 , 66.93 ] -493.01125516

C10 [ -175.95 , 66.99 ] -492.99930355

C11 [ -175.99 , 67.01 ] -492.98939543

C12 [ -176.02 , 67.64 ] -492.98488331

C13 [ -176.08 , 68.46 ] -492.97145077

C14 [ -176.48 , 68.84 ] -492.84423516

C15 [ -176.56 , 68.93 ] -492.81983565

C16 [ -176.76 , 69.06 ] -492.75033607

C17 [ -176.77 , 70.01 ] -492.75253555

C18 [ -176.77 , 70.66 ] -492.75107853

C19 [ -176.78 , 71.02 ] -492.74696147

C20 [ -176.78 , 71.13 ] -492.74662700

C21 [ -176.81 , 72.03 ] -492.73206946

C22 [ -176.96 , 72.28 ] -492.68403889

C23 [ -177.01 , 72.29 ] -492.66613660

C24 [ -177.10 , 72.30 ] -492.63560742

Table 4.6: A feasible transition pathway found by the randomized algorithm with param-
eter diff=2 between two conformations of protein 1MJ5.
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The feasible pathway contains 33 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -174.44 , 61.70 ] -493.26006920
C1 [ -174.44 , 62.23 ] -493.28208797
C2 [ -174.44 , 62.76 ] -493.30335339
C3 [ -174.44 , 63.29 ] -493.32384867
C4 [ -174.44 , 63.82 ] -493.34342907
C5 [ -174.44 , 64.35 ] -493.36218922
C6 [ -174.44 , 64.88 ] -493.38006913
C7 [ -174.44 , 65.41 ] -493.39633018
C8 [ -174.44 , 65.94 ] -493.40647166
C9 [ -174.44 , 66.47 ] -493.41286510
C10 [ -174.44 , 67.00 ] -493.41796759
C11 [ -174.44 , 67.53 ] -493.42179300
C12 [ -174.44 , 68.06 ] -493.42430182
C13 [ -174.57 , 68.59 ] -493.39301807
C14 [ -174.71 , 68.59 ] -493.35992294
C15 [ -174.84 , 68.59 ] -493.32621870
C16 [ -174.97 , 68.59 ] -493.29175406
C17 [ -175.11 , 68.59 ] -493.25656732
C18 [ -175.24 , 68.59 ] -493.22057827
C19 [ -175.37 , 69.12 ] -493.18395945
C20 [ -175.50 , 69.12 ] -493.14601682
C21 [ -175.64 , 69.12 ] -493.10744846
C22 [ -175.77 , 69.65 ] -493.06818096
C23 [ -175.90 , 69.65 ] -493.02839808
C24 [ -176.04 , 69.65 ] -492.98797292
C25 [ -176.17 , 69.65 ] -492.94669591
C26 [ -176.30 , 69.65 ] -492.90483904
C27 [ -176.44 , 70.18 ] -492.86213772
C28 [ -176.57 , 70.18 ] -492.81891342
C29 [ -176.70 , 70.71 ] -492.77458181
C30 [ -176.83 , 71.24 ] -492.72915045
C31 [ -176.97 , 71.77 ] -492.68280261
C32 [ -177.10 , 72.30 ] -492.63560742

Table 4.7: A feasible transition pathway found by the greedy algorithm with parameter
α = 20 between two conformations of protein 1MJ5.
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• Protein 1CQW

We also applied the tunnel-widening algorithm to protein 1CQW and starting point

at position (21.92,98.09,39.59). The width of the widest tunnel increased from 0.54

Å in the initial structure to 0.63 Å in an alternative conformation. The dihedral

angles of the special side-chain changed from χ1 = 176.69◦, χ2 = 62.68◦ in the initial

structure to χ1 = 175.80◦, χ2 = 71.80◦ in the target conformation. The poten-

tial energy of the structure changed from -487.858 to -488.036 kcal/mol. To check

whether the target conformation is accessible from the initial conformation, we used

the pathway-finding algorithms. Tables 4.8-4.10 show the transition pathways found

by the averaging algorithm (with parameter n = 26), the randomized algorithm (with

parameter diff=2), and the greedy algorithm (with parameter α = 20), respectively.

Observe that all algorithms discover feasible pathways from the initial conformation

to the target conformation.
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The feasible pathway contains 27 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -176.69 , 62.68 ] -487.85805674

C1 [ -176.65 , 63.03 ] -487.86890625

C2 [ -176.62 , 63.38 ] -487.87969276

C3 [ -176.59 , 63.73 ] -487.89037057

C4 [ -176.55 , 64.08 ] -487.90050744

C5 [ -176.52 , 64.43 ] -487.91047991

C6 [ -176.48 , 64.79 ] -487.92025865

C7 [ -176.45 , 65.14 ] -487.93001387

C8 [ -176.42 , 65.49 ] -487.93935306

C9 [ -176.38 , 65.84 ] -487.94815739

C10 [ -176.35 , 66.19 ] -487.95689415

C11 [ -176.31 , 66.54 ] -487.96549403

C12 [ -176.28 , 66.89 ] -487.97335635

C13 [ -176.24 , 67.24 ] -487.98089835

C14 [ -176.21 , 67.59 ] -487.98832802

C15 [ -176.18 , 67.94 ] -487.99496720

C16 [ -176.14 , 68.29 ] -488.00126880

C17 [ -176.11 , 68.64 ] -488.00731736

C18 [ -176.07 , 68.99 ] -488.01274199

C19 [ -176.04 , 69.34 ] -488.01774347

C20 [ -176.01 , 69.70 ] -488.02194936

C21 [ -175.97 , 70.05 ] -488.02586475

C22 [ -175.94 , 70.40 ] -488.02923849

C23 [ -175.90 , 70.75 ] -488.03182875

C24 [ -175.87 , 71.10 ] -488.03384842

C25 [ -175.83 , 71.45 ] -488.03529487

C26 [ -175.80 , 71.80 ] -488.03627345

Table 4.8: A feasible transition pathway found by the averaging algorithm with parameter
n = 26 between two conformations of protein 1CQW.
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The feasible pathway contains 25 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -176.69 , 62.68 ] -487.85805674

C1 [ -176.64 , 64.11 ] -487.89456813

C2 [ -176.60 , 64.64 ] -487.90950132

C3 [ -176.60 , 64.70 ] -487.91125468

C4 [ -176.59 , 64.71 ] -487.91239091

C5 [ -176.58 , 65.22 ] -487.92391343

C6 [ -176.58 , 65.60 ] -487.93247439

C7 [ -176.53 , 66.71 ] -487.95904761

C8 [ -176.42 , 67.05 ] -487.97157000

C9 [ -176.42 , 67.10 ] -487.97242425

C10 [ -176.39 , 67.42 ] -487.97984807

C11 [ -176.37 , 67.46 ] -487.98129883

C12 [ -176.37 , 67.49 ] -487.98207478

C13 [ -176.37 , 68.13 ] -487.99420020

C14 [ -176.37 , 68.17 ] -487.99479106

C15 [ -176.35 , 69.21 ] -488.01352408

C16 [ -176.30 , 69.69 ] -488.02226517

C17 [ -176.28 , 69.69 ] -488.02242986

C18 [ -176.27 , 69.69 ] -488.02255397

C19 [ -176.26 , 69.73 ] -488.02322326

C20 [ -176.24 , 70.38 ] -488.03281364

C21 [ -176.24 , 70.93 ] -488.03984181

C22 [ -176.23 , 70.99 ] -488.04063525

C23 [ -175.81 , 71.30 ] -488.03313578

C24 [ -175.80 , 71.80 ] -488.03627345

Table 4.9: A feasible transition pathway found by the randomized algorithm with param-
eter diff=2 between two conformations of protein 1CQW.
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The feasible pathway contains 27 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -176.69 , 62.68 ] -487.85805674
C1 [ -176.64 , 63.14 ] -487.87213882
C2 [ -176.60 , 63.59 ] -487.88609423
C3 [ -176.56 , 64.05 ] -487.89948554
C4 [ -176.51 , 64.50 ] -487.91241912
C5 [ -176.47 , 64.96 ] -487.92517962
C6 [ -176.42 , 65.42 ] -487.93754854
C7 [ -176.38 , 65.87 ] -487.94903854
C8 [ -176.33 , 66.33 ] -487.96034694
C9 [ -176.29 , 66.78 ] -487.97102665
C10 [ -176.24 , 67.24 ] -487.98089835
C11 [ -176.20 , 67.70 ] -487.99040421
C12 [ -176.16 , 68.15 ] -487.99884335
C13 [ -176.11 , 68.61 ] -488.00677446
C14 [ -176.11 , 69.06 ] -488.01384485
C15 [ -176.11 , 69.52 ] -488.02056947
C16 [ -176.11 , 69.98 ] -488.02707878
C17 [ -176.11 , 70.43 ] -488.03289247
C18 [ -176.11 , 70.89 ] -488.03849133
C19 [ -176.11 , 71.34 ] -488.04329514
C20 [ -176.07 , 71.80 ] -488.04678208
C21 [ -176.02 , 71.80 ] -488.04554604
C22 [ -175.98 , 71.80 ] -488.04415104
C23 [ -175.93 , 71.80 ] -488.04251486
C24 [ -175.89 , 71.80 ] -488.04062663
C25 [ -175.84 , 71.80 ] -488.03853458
C26 [ -175.80 , 71.80 ] -488.03627345

Table 4.10: A feasible transition pathway found by the greedy algorithm with parameter
α = 20 between two conformations of protein 1CQW.

• Protein 1CV2

For the protein 1CV2 with the starting point at position (24,12,18), the tunnel-

widening algorithm was able to discover a tunnel of width 0.65 Å in an alternative

conformation while the widest tunnel in the initial conformation has width 0.46 Å.
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The feasible pathway contains 21 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -168.37 , 42.51 ] -410.81966760

C1 [ -168.68 , 43.80 ] -410.68561901

C2 [ -168.98 , 45.09 ] -409.67187670

C3 [ -169.28 , 46.38 ] -409.75656046

C4 [ -169.58 , 47.67 ] -409.81638012

C5 [ -169.88 , 48.96 ] -409.84916252

C6 [ -170.18 , 50.25 ] -409.85333819

C7 [ -170.48 , 51.54 ] -409.83496357

C8 [ -170.78 , 52.83 ] -409.78903649

C9 [ -171.09 , 54.12 ] -409.71070030

C10 [ -171.39 , 55.41 ] -409.59823478

C11 [ -171.69 , 56.70 ] -409.44965416

C12 [ -171.99 , 57.99 ] -409.26377632

C13 [ -172.29 , 59.27 ] -409.03885665

C14 [ -172.59 , 60.56 ] -408.77312465

C15 [ -172.89 , 61.85 ] -408.46539127

C16 [ -173.19 , 63.14 ] -408.11378210

C17 [ -173.50 , 64.43 ] -407.71682439

C18 [ -173.80 , 65.72 ] -407.27233613

C19 [ -174.10 , 67.01 ] -406.77944668

C20 [ -174.40 , 68.30 ] -406.23611648

Table 4.11: A feasible transition pathway found by the averaging algorithm with parameter
n = 20 between two conformations of protein 1CV2.

The dihedral angles of the special side-chain has been changed from χ1 = 168.37◦,

χ2 = 42.51◦ in the initial conformation to χ1 = 174.4◦, χ2 = 68.3◦ in the alter-

native conformation. The potential energy of the structure changed from -410.819

to -406.236 kcal/mol. The transition pathways found by the three pathway-finding

algorithms are shown in Tables 4.11-4.13
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The feasible pathway contains 27 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -168.37 , 42.51 ] -410.81966760
C1 [ -168.40 , 44.36 ] -410.63609991
C2 [ -168.40 , 45.53 ] -409.71748642
C3 [ -168.41 , 45.70 ] -409.73042138
C4 [ -168.43 , 45.97 ] -409.74957493
C5 [ -168.46 , 46.62 ] -409.79273754
C6 [ -168.48 , 47.78 ] -409.85650298
C7 [ -168.50 , 47.79 ] -409.85630506
C8 [ -168.50 , 47.79 ] -409.85630712
C9 [ -168.51 , 51.17 ] -409.94330499
C10 [ -168.51 , 51.17 ] -409.94330435
C11 [ -168.51 , 52.47 ] -409.93521112
C12 [ -168.51 , 53.80 ] -409.90214635
C13 [ -168.71 , 55.27 ] -409.83297432
C14 [ -168.81 , 55.87 ] -409.79550801
C15 [ -168.81 , 56.45 ] -409.75816400
C16 [ -168.90 , 56.56 ] -409.74604855
C17 [ -168.91 , 57.79 ] -409.64854410
C18 [ -169.24 , 58.56 ] -409.55271076
C19 [ -169.24 , 58.98 ] -409.50827238
C20 [ -169.26 , 61.70 ] -409.15806166
C21 [ -169.27 , 62.95 ] -408.96079430
C22 [ -169.28 , 65.30 ] -408.52306287
C23 [ -169.49 , 65.59 ] -408.43452213
C24 [ -169.85 , 65.68 ] -408.35897100
C25 [ -170.60 , 65.91 ] -408.16481674
C26 [ -174.40 , 68.30 ] -406.23611648

Table 4.12: A feasible transition pathway found by the randomized algorithm with param-
eter diff=5 between two conformations of protein 1CV2.

As can be verified from these results, the energy of all intermediate conformations

are close to the energy of the initial conformation and thus the pathways are feasible.
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The feasible pathway contains 17 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -168.37 , 42.51 ] -410.81966760

C1 [ -168.37 , 43.80 ] -410.69641386

C2 [ -168.37 , 45.09 ] -409.68311333

C3 [ -168.37 , 46.38 ] -409.77841635

C4 [ -168.37 , 47.67 ] -409.85301799

C5 [ -168.37 , 48.96 ] -409.90646071

C6 [ -168.37 , 50.25 ] -409.93813560

C7 [ -168.68 , 51.54 ] -409.93768252

C8 [ -168.98 , 51.54 ] -409.92546850

C9 [ -169.28 , 51.54 ] -409.91078828

C10 [ -169.58 , 51.54 ] -409.89348759

C11 [ -169.88 , 51.54 ] -409.87395195

C12 [ -170.18 , 51.54 ] -409.85571916

C13 [ -170.48 , 51.54 ] -409.83496357

C14 [ -170.78 , 52.83 ] -409.78903649

C15 [ -171.09 , 54.12 ] -409.71070030

C16 [ -171.39 , 55.41 ] -409.59823478

C17 [ -171.69 , 56.70 ] -409.44965416

C18 [ -171.99 , 57.99 ] -409.26377632

C19 [ -172.29 , 59.27 ] -409.03885665

C10 [ -172.59 , 60.56 ] -408.77312465

C11 [ -172.89 , 61.85 ] -408.46539127

C12 [ -173.19 , 63.14 ] -408.11378210

C13 [ -173.50 , 64.43 ] -407.71682439

C14 [ -173.80 , 65.72 ] -407.27233613

C15 [ -174.10 , 67.01 ] -406.77944668

C16 [ -174.40 , 68.30 ] -406.23611648

Table 4.13: A feasible transition pathway found by the greedy algorithm with parameter
α = 20 between two conformations of protein 1CV2.
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The feasible pathway contains 21 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -173.43 , 58.54 ] -27.32941279

C1 [ -173.26 , 58.82 ] -27.34942089

C2 [ -173.09 , 59.10 ] -27.36770280

C3 [ -172.92 , 59.38 ] -27.38423840

C4 [ -172.75 , 59.65 ] -27.39897198

C5 [ -172.58 , 59.93 ] -27.41196152

C6 [ -172.40 , 60.21 ] -27.42318307

C7 [ -172.23 , 60.49 ] -27.43264964

C8 [ -172.06 , 60.77 ] -27.44033997

C9 [ -171.89 , 61.04 ] -27.44623706

C10 [ -171.72 , 61.32 ] -27.45039842

C11 [ -171.55 , 61.60 ] -27.45275351

C12 [ -171.37 , 61.88 ] -27.45338106

C13 [ -171.20 , 62.16 ] -27.45221853

C14 [ -171.03 , 62.43 ] -27.44934651

C15 [ -170.86 , 62.71 ] -27.44470455

C16 [ -170.69 , 62.99 ] -27.43829199

C17 [ -170.52 , 63.27 ] -27.43013062

C18 [ -170.34 , 63.54 ] -27.42009734

C19 [ -170.17 , 63.82 ] -27.40823935

C20 [ -170.00 , 64.10 ] -27.39455827

Table 4.14: A feasible transition pathway found by the averaging algorithm with parameter
n = 20 between two conformations of protein 1CV4.

• Protein 1CV4

Another instance considered by the tunnel-widening algorithm was protein 1CV4

with the starting point at position (36,7,8). While the widest tunnel in the initial

conformation has width 0.57 Å the tunnel-widening algorithm found a tunnel of

width 0.84 Åin an alternative conformation of 1CV4.
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The feasible pathway contains 19 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -173.43 , 58.54 ] -27.32941279

C1 [ -173.33 , 58.88 ] -27.34977173

C2 [ -173.33 , 60.22 ] -27.40274214

C3 [ -173.33 , 60.37 ] -27.40751114

C4 [ -173.33 , 61.03 ] -27.42459482

C5 [ -173.33 , 62.24 ] -27.44285257

C6 [ -173.33 , 62.35 ] -27.44367747

C7 [ -173.32 , 62.97 ] -27.44556540

C8 [ -173.32 , 63.49 ] -27.44375686

C9 [ -173.31 , 63.51 ] -27.44381013

C10 [ -173.30 , 63.54 ] -27.44370540

C11 [ -173.29 , 63.69 ] -27.44269976

C12 [ -173.27 , 63.82 ] -27.44170392

C13 [ -173.05 , 63.89 ] -27.44465131

C14 [ -172.58 , 64.01 ] -27.44764543

C15 [ -172.25 , 64.02 ] -27.44832651

C16 [ -172.00 , 64.03 ] -27.44719045

C17 [ -170.56 , 64.05 ] -27.41832578

C18 [ -170.00 , 64.10 ] -27.39455827

Table 4.15: A feasible transition pathway found by the randomized algorithm with param-
eter diff=2 between two conformations of protein 1CV4.

The dihedral angles of the special side-chain in the initial conformation of 1CV4 are

χ1 = 173.4◦ and χ2 = 58.5◦ and the corresponding angles in the alternative conforma-

tion are χ1 = 170.0◦ and χ2 = 64.1◦. The potential energy of the structure changed

from -27.329 to -27.394 kcal/mol. Tables 4.14-4.16 show the transition pathways

found by the pathway-finding algorithms. According to these results, the pathways

discovered by all algorithms are feasible.
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The feasible pathway contains 25 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -173.43 , 58.54 ] -27.32941279
C1 [ -173.26 , 58.82 ] -27.34942089
C2 [ -173.09 , 59.10 ] -27.36770280
C3 [ -172.92 , 59.38 ] -27.38423840
C4 [ -172.75 , 59.65 ] -27.39897198
C5 [ -172.58 , 59.93 ] -27.41196152
C6 [ -172.40 , 60.21 ] -27.42318307
C7 [ -172.23 , 60.49 ] -27.43264964
C8 [ -172.06 , 60.77 ] -27.44033997
C9 [ -171.89 , 61.04 ] -27.44623706
C10 [ -171.89 , 61.32 ] -27.45061219
C11 [ -171.89 , 61.60 ] -27.45409249
C12 [ -171.89 , 61.88 ] -27.45669655
C13 [ -171.89 , 62.16 ] -27.45837160
C14 [ -171.72 , 62.43 ] -27.45832214
C15 [ -171.55 , 62.43 ] -27.45694666
C16 [ -171.37 , 62.43 ] -27.45496481
C17 [ -171.20 , 62.43 ] -27.45242213
C18 [ -171.03 , 62.43 ] -27.44934651
C19 [ -170.86 , 62.71 ] -27.44470455
C20 [ -170.69 , 62.99 ] -27.43829199
C21 [ -170.52 , 63.27 ] -27.43013062
C22 [ -170.34 , 63.54 ] -27.42009734
C23 [ -170.17 , 63.82 ] -27.40823935
C24 [ -170.00 , 64.10 ] -27.39455827

Table 4.16: A feasible transition pathway found by the greedy algorithm with parameter
α = 20 between two conformations of protein 1CV4.

• Protein 1CSW

In Subsection 4.2.2 we reported that the width of the widest tunnel increases from

0.46 Å in the initial conformation to 0.61 Å in an alternative conformation of 1CSW.

The dihedral angles of the special side-chain are change from χ1 = −59.50◦, χ2 =
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−157.14◦, χ3 = −65.70◦, and χ4 = −78.72◦ in the initial conformation to χ1 =

−69.10◦, χ2 = −179.40◦, χ3 = −70.90◦, and χ4 = 169.90◦ in the target conformation.

The potential energy of the structure changed from 88.119 to 91.691 kcal/mol. Thus,

the tunnel-widening algorithm finds an acceptable alternative conformation with a

wider tunnel. Next we use the pathway-finding algorithms to test whether this al-

ternative conformation is accessible from the initial conformation. Table 4.17 shows

the transition pathway found by the averaging algorithm with parameter n = 28.

According to these results, energy of several intermediate conformations are much

higher than the energy of the initial conformation. For example the potential en-

ergy of C8 is 523.275 kcal/mol. Thus the discovered pathway is not feasible. The

pathway found by the randomized algorithm with parameter diff=28 is shown in

Table 4.18. Similar to the pathway found by the averaging algorithm, this path-

way contains several intermediate conformations with energies much higher than the

energy of the initial conformation. The maximum potential energy of intermediate

conformations is 999.928 kcal/mol and belongs to C25. Therefore, the randomized

algorithm does not discover a feasible pathway. The pathway found by the greedy

algorithm with parameter α = 12 is shown in Table 4.19. This pathway contains

29 conformations. Several intermediate conformations have potential energies much

higher than the energy of the initial conformation. Thus the discovered pathway is

not feasible. However, observe that the maximum energy of the conformations in

this pathway is 325.435 kcal/mol which is much lower than the maximum energy

of the pathway found by the averaging and randomized algorithms. This example

shows the ability of the greedy algorithm to find better pathways compared to the

other two algorithms. Furthermore, this example shows that in some cases we have

an energy barrier between two conformations C and C ′, even though the potential

energies of C and C ′ are close.

86



The feasible pathway contains 29 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -59.50 , -157.14 , -65.70 , -78.72 ] 88.11877308

C1 [ -59.84 , -157.94 , -65.88 , -69.84 ] 88.76312274

C2 [ -60.19 , -158.73 , -66.07 , -60.96 ] 91.12595918

C3 [ -60.53 , -159.53 , -66.25 , -52.09 ] 98.61611918

C4 [ -60.87 , -160.32 , -66.44 , -43.21 ] 130.92369780

C5 [ -61.21 , -161.12 , -66.62 , -34.33 ] 229.95535485

C6 [ -61.56 , -161.91 , -66.81 , -25.45 ] 370.21796456

C7 [ -61.90 , -162.71 , -67.00 , -16.57 ] 466.92597221

C8 [ -62.24 , -163.50 , -67.18 , -7.69 ] 523.27534913

C9 [ -62.59 , -164.30 , -67.37 , 1.19 ] 520.15920069

C10 [ -62.93 , -165.09 , -67.55 , 10.07 ] 435.63204139

C11 [ -63.27 , -165.89 , -67.74 , 18.95 ] 318.80960351

C12 [ -63.61 , -166.68 , -67.92 , 27.83 ] 220.36323140

C13 [ -63.96 , -167.48 , -68.11 , 36.71 ] 156.01762667

C14 [ -64.30 , -168.27 , -68.30 , 45.59 ] 128.44639966

C15 [ -64.64 , -169.07 , -68.48 , 54.47 ] 114.70583466

C16 [ -64.99 , -169.86 , -68.67 , 63.35 ] 106.31996194

C17 [ -65.33 , -170.66 , -68.85 , 72.22 ] 102.70208190

C18 [ -65.67 , -171.45 , -69.04 , 81.10 ] 110.81705131

C19 [ -66.01 , -172.25 , -69.22 , 89.98 ] 170.45693121

C20 [ -66.36 , -173.04 , -69.41 , 98.86 ] 273.74613012

C21 [ -66.70 , -173.84 , -69.60 , 107.74 ] 349.90903557

C22 [ -67.04 , -174.63 , -69.78 , 116.62 ] 363.59276044

C23 [ -67.39 , -175.43 , -69.97 , 125.50 ] 295.21575579

C24 [ -67.73 , -176.22 , -70.15 , 134.38 ] 197.44499990

C25 [ -68.07 , -177.02 , -70.34 , 143.26 ] 114.48624372

C26 [ -68.41 , -177.81 , -70.52 , 152.14 ] 91.23784450

C27 [ -68.76 , -178.61 , -70.71 , 161.02 ] 89.40702470

C28 [ -69.10 , -179.40 , -70.90 , 169.90 ] 91.68776538

Table 4.17: A feasible transition pathway found by the averaging algorithm with parameter
n = 28 between two conformations of protein 1CSW.
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The feasible pathway contains 31 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -59.50 , -157.14 , -65.70 , -78.72 ] 88.11877308
C1 [ -59.50 , -157.19 , -66.36 , -74.91 ] 88.19091383
C2 [ -59.50 , -157.20 , -66.37 , -54.46 ] 94.36287390
C3 [ -59.50 , -157.20 , -66.40 , -48.95 ] 100.08907109
C4 [ -59.50 , -157.21 , -66.40 , -41.16 ] 125.94322980
C5 [ -59.51 , -157.21 , -66.40 , -28.29 ] 284.74896125
C6 [ -59.51 , -157.21 , -66.40 , -28.26 ] 285.24433610
C7 [ -59.51 , -157.21 , -66.42 , -11.22 ] 432.75141371
C8 [ -59.51 , -157.22 , -66.43 , -7.23 ] 416.40757258
C9 [ -59.51 , -157.22 , -66.49 , -4.61 ] 393.19411797
C10 [ -59.51 , -157.22 , -66.58 , 7.96 ] 252.22855650
C11 [ -59.51 , -157.23 , -66.96 , 17.21 ] 154.30963479
C12 [ -59.52 , -157.23 , -66.98 , 22.42 ] 123.65174902
C13 [ -59.54 , -157.27 , -67.00 , 30.35 ] 108.74681393
C14 [ -59.60 , -157.35 , -67.00 , 37.35 ] 105.05128563
C15 [ -59.60 , -157.36 , -68.13 , 40.09 ] 103.90127575
C16 [ -59.61 , -157.36 , -68.53 , 40.12 ] 103.73521650
C17 [ -59.61 , -157.36 , -68.56 , 42.01 ] 103.32336404
C18 [ -59.61 , -157.37 , -68.56 , 62.68 ] 123.12727228
C19 [ -59.61 , -157.37 , -68.58 , 81.20 ] 360.94924086
C20 [ -59.61 , -157.37 , -68.66 , 84.09 ] 432.25797304
C21 [ -59.61 , -157.37 , -68.73 , 84.63 ] 446.12090322
C22 [ -59.61 , -157.37 , -68.83 , 86.67 ] 500.90401542
C23 [ -59.62 , -157.42 , -69.34 , 87.86 ] 526.14192830
C24 [ -59.64 , -158.60 , -69.93 , 97.61 ] 786.79380396
C25 [ -59.75 , -158.88 , -70.65 , 113.28 ] 999.92742382
C26 [ -60.29 , -159.12 , -70.85 , 120.27 ] 872.11380927
C27 [ -60.85 , -165.35 , -70.85 , 146.45 ] 246.95435113
C28 [ -61.11 , -172.05 , -70.86 , 148.03 ] 128.06620486
C29 [ -66.98 , -178.67 , -70.87 , 149.47 ] 92.98776895
C30 [ -69.10 , -179.40 , -70.90 , 169.90 ] 91.69121722

Table 4.18: A feasible transition pathway found by the randomized algorithm with param-
eter diff=28 between two conformations of protein 1CSW.
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The feasible pathway contains 29 conformations as follows:

Conformation Chi angles of the special side-chain Energy (kcal/mol)

C0 [ -59.50 , -157.14 , -65.70 , -78.72 ] 88.11877308

C1 [ -60.30 , -157.14 , -65.70 , -78.72 ] 87.94953520

C2 [ -61.10 , -157.14 , -65.70 , -78.72 ] 87.80912306

C3 [ -61.90 , -157.14 , -65.70 , -78.72 ] 87.72126419

C4 [ -62.70 , -157.14 , -65.70 , -78.72 ] 87.68187487

C5 [ -63.50 , -157.14 , -65.70 , -78.72 ] 87.67098305

C6 [ -64.30 , -157.14 , -65.70 , -78.72 ] 87.69847516

C7 [ -65.10 , -157.14 , -65.70 , -78.72 ] 87.75758846

C8 [ -65.90 , -157.14 , -65.70 , -58.00 ] 90.49567308

C9 [ -65.90 , -157.14 , -65.70 , -37.28 ] 113.65927925

C10 [ -65.90 , -157.14 , -65.70 , -16.56 ] 325.43516078

C11 [ -65.90 , -157.14 , -65.70 , 4.15 ] 325.01742525

C12 [ -65.90 , -157.14 , -65.70 , 24.87 ] 121.54359834

C13 [ -66.70 , -158.99 , -66.13 , 45.59 ] 101.56423665

C14 [ -66.70 , -160.85 , -66.13 , 45.59 ] 101.38880312

C15 [ -66.70 , -162.70 , -66.57 , 66.31 ] 100.63508544

C16 [ -66.70 , -164.56 , -67.00 , 66.31 ] 97.46533112

C17 [ -66.70 , -166.41 , -67.43 , 66.31 ] 96.65485362

C18 [ -66.70 , -168.27 , -67.87 , 66.31 ] 98.50112297

C19 [ -66.70 , -170.12 , -68.30 , 66.31 ] 104.83819265

C20 [ -67.50 , -171.98 , -68.73 , 66.31 ] 122.13109030

C21 [ -68.30 , -173.84 , -69.17 , 87.03 ] 121.70575588

C22 [ -68.30 , -173.84 , -69.60 , 87.03 ] 120.54790522

C23 [ -68.30 , -175.69 , -70.03 , 87.03 ] 131.22686047

C24 [ -68.30 , -177.55 , -70.47 , 87.03 ] 158.12340975

C25 [ -69.10 , -179.40 , -70.90 , 107.75 ] 197.71114282

C26 [ -69.10 , -179.40 , -70.90 , 128.46 ] 183.57063713

C27 [ -69.10 , -179.40 , -70.90 , 149.18 ] 91.74556571

C28 [ -69.10 , -179.40 , -70.90 , 169.90 ] 91.68776538

Table 4.19: A feasible transition pathway found by the greedy algorithm with parameter
α = 12 between two conformations of protein 1CSW.
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Chapter 5

Conclusions

In this thesis we developed efficient algorithms for finding and widening tunnels in protein

structures. Given a fixed protein conformation and a starting point inside it, the tunnel-

finding algorithm can compute the widest tunnel from the starting point to the outside

environment of the protein. Then the tunnel-widening algorithm explores the possibility

that a small local change in the structure of the protein conformation might lead to a wider

tunnel. More specifically, it considers some alternative conformations obtained by relocat-

ing the bottleneck side-chain atoms and picks the conformation with the widest tunnel

whose energy is not much higher than the energy of the initial conformation. We also pro-

posed algorithms for finding feasible transition pathways between the initial structure and

an alternative conformation to make sure that the alternative conformation is accessible

from the initial conformation. More specifically, we introduced three pathway-finding algo-

rithms: averaging, randomized, and greedy algorithms. While averaging and randomized

algorithms have better running time, the greedy algorithm gives the most accurate results.

Therefore, there is a trade-off between the running time and accuracy of the algorithms.

We implemented these algorithms in Chimera/Python and tested them on various input

instances. In all cases the tunnel-finding algorithm computed the widest tunnel if it exists.

Note that for some combinations of the protein conformation and the starting point there

is no tunnel from the starting point to the outside environment. The tunnel-widening
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algorithm was able to widen the tunnel in most cases. There were a few cases for which the

tunnel-widening algorithm found an alternative conformation C with a wider tunnel but the

energy of C was much higher than the energy of the initial conformation. We also used the

pathway-finding algorithms to verify that the alternative conformation with wider tunnel

and acceptable energy value is actually accessible from the initial conformation, i.e., there

is a feasible transition pathway from the initial structure to the alternative conformation.

Although in most cases our algorithms were able to find a feasible transition pathway from

the initial structure to the alternative conformation, there were cases in which no feasible

transition pathway from the initial structure to the alternative conformation was found

by our algorithms. Furthermore the three pathway-finding algorithms had comparable

performance in most cases, but there were a few input instances for which the greedy

algorithm outperformed the averaging and randomized algorithms.

We should point out that we only concentrate on the algorithmic aspects of the tunnel-

finding and tunnel-widening problems. In particular, finding a tunnel that is wide enough

for a ligand does not guarantee that in real life the ligand actually passes through this

tunnel. Various biological factors affect the actual behaviour of ligands. Considering these

factors is beyond the scope of this thesis and can be considered as a future work.

One potential extension to our work is to remove the following simplifying assumption

that we made in our computations. We modelled the ligand by a sphere enclosing all the

ligand atoms. A more accurate model is to consider the actual shape of the ligand. Note

that this makes the problem much more complicated as the orientation of the ligand during

its movement can influence the feasibility of the tunnel.
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[49] P. Medek, P. Beneš, and J. Sochor. Computation of tunnels in protein molecules using

Delaunay triangulation. Journal of WSCG, University of West Bohemia, Pilsen, 15(1-

3):107–114, 2007. 3, 4, 5, 25

[50] J. Newman, T. S. Peat, R. Richard, L. Kan, P. E. Swanson, J. A. Affholter, I. H.

Holmes, J. F. Schindler, C. J. Unkefer, and T. C. Terwilliger. Haloalkane dehaloge-

nases: structure of a rhodococcus enzyme. Biochemistry, 38(49):16105–16114, 1999.

60

[51] A. J. Oakley, M. Klvaa, M. Otyepka, Y. Nagata, M. C. J. Wilce, and J. Damborsk.

Crystal structure of haloalkane dehalogenase linb from sphingomonas paucimobilis

ut26 at 0.95 resolution: dynamics of catalytic residues,. Biochemistry, 43(4):870–878,

2004. 59

[52] A. Okabe, B. N. Boots, and k. Sugihara. Spatial tessellations : concepts and applica-

tions of Voronoi diagrams. Wiley and Sons, Chichester, England, 1992. 14, 15, 16,

19

[53] J. Parsons, J. B. Holmes, J. M. Rojas, J. Tsai, and C. E. M. Strauss. Practical

conversion from torsion space to cartesian space for in silico protein synthesis. Journal

of Computational Chemistry, 26(10):1063–1068, 2005. 8

[54] M. Petrek, M. Otyepka, P. Banás, P. Kosinová, J. Koca, and J. Damborský. CAVER:
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