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Abstract 

Protein aggregation is a hallmark of a number of neurodegenerative disorders including 

Alzheimer‟s Disease, Huntington‟s Disease, and Amyotrophic Lateral Sclerosis. Despite the common 

occurrence of protein aggregation in disease, the fundamental mechanisms controlling the propensity of a 

protein to aggregate are not well understood. Over the past decade, one of the most significant 

advancements in the field of understanding protein aggregation has been the development of several 

aggregation prediction algorithms. In this study, two separate approaches were used to investigate the 

detailed molecular mechanisms of protein aggregation. First, a thorough investigation that compared nine 

protein aggregation prediction techniques was performed. Protein aggregation propensity calculations 

were performed on wild type and mutant sequences of three diverse proteins including Superoxide 

Dismutase (SOD), human Acylphosphatase (AcP), and the amyloid beta peptide (Aβ42). This study 

presents the first wide-scale comparison of such a large number of prediction algorithms, and additionally 

provides new information on the ability of the algorithms to successfully predict the experimentally 

observed aggregation of several mutations of diverse proteins. The algorithms were predominantly 

developed based on a set of known amyloid-forming proteins and peptides, however, are quite diverse in 

the way they were designed and the proteins on which they were tested. Interestingly, significant variation 

was observed when predicting the aggregation propensity of identical sequences by multiple techniques, 

indicating that the algorithms do not possess a consensus on the primary factors that govern aggregation. 

Further analyses compared predicted and observed aggregation data for several mutants of the test 

proteins. The aggregation prediction algorithms predominantly demonstrated poor to moderate 

correlations with observed aggregation, and the strongest correlations occurred in instances where the test 

data was used in the development of the algorithms. The general lack of ability of the algorithms to 

predict the aggregation patterns of more than one test protein suggests that aggregation may be a much 

more specific process that it is generally attributed to be in that there may be inherently different 
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properties modulating the aggregation mechanisms of different proteins towards varying aggregate 

structures. 

The second component of this project was to experimentally examine the role of salt in 

influencing protein aggregation as a method to elucidate the specific molecular mechanisms controlling 

protein aggregation pathways. The ALS-causing SOD1 mutation, A4V, in both the oxidized and reduced 

apo form, was used as a model protein. The role of NaCl and Na2SO4 in mediating protein aggregation 

was studied using several techniques. While oxidized apo A4V showed very little evidence of aggregation 

even in the presence of salt, for reduced apo, aggregates readily formed and were promoted by the 

addition of salt. This finding correlated with the increasing kosmotropic nature of the salt as described by 

the Hofmeister series. The aggregates formed in the presence of salt contained intermolecular disulphide 

bonds and demonstrated ANS and ThT binding, indicating aggregates are likely to be largely hydrophobic 

and possess beta-sheet morphology. Salt promotes protein aggregation in two ways: 1) electrostatic 

interactions shield protein charges and reduce repulsion between proteins, and 2) specific interactions 

stabilize various aggregation-prone conformations of the protein. This work is evidence of the important 

role of salt in influencing protein aggregation and provides a framework for future studies into the 

complex effects of solution conditions in modulating protein aggregation pathways.  

Both aspects of this study contribute greatly to furthering the understanding of the molecular 

mechanisms governing protein aggregation. This is of particular importance to neurodegenerative 

diseases, where uncovering the factors that modulate the formation of toxic aggregate species is important 

for disease treatment and prevention. The potential aggregation mechanisms of SOD1, and the 

contributions it may play in ALS pathogenesis, will be discussed throughout this study.  
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Chapter 1 

General Introduction 

1.1 Protein Folding, Misfolding and Aggregation 

 

The ability of polypeptide sequences to fold into functional proteins is one of the most impressive 

phenomena in molecular biology.  It requires extensive cellular precision to orchestrate the complex 

events that result in a mature protein product able to complete its role within a living machine. Inside a 

living cell, protein synthesis occurs on the ribosome, utilizing the information received by the mRNA1. 

Protein folding begins as the transcript is translated at the ribosome and continues to completion once the 

fully translated amino acid sequence is released from the ribosome2. Folding may be assisted by 

molecular chaperones, some of which bind non-specifically to the nascent polypeptide to prevent 

aggregation, and others that specifically guide later stages of the folding process, such as the formation of 

globular folds, the binding of cofactors, and the transition into multimeric forms3.  Remarkably, however, 

most proteins are able to spontaneously fold into their native structure without the aid of chaperones. This 

phenomenon has led to the understanding that all of the information required for proper folding is 

contained in the amino acid sequence and that the native state has the most stable conformation under 

physiological conditions in order for the protein to naturally reach this structure4. Based on this 

observation, early ideas suggested that a protein followed a single pathway of folding events that 

eventually led to the desired structure. This theory was problematic, however, since it would take an 

impossible amount of time for a protein to find this particular conformation by systematically attempting 

all possible pathways3. This led to the concept of an energy landscape, developed by Leopold et al. in 

19925. This new framework suggested that protein folding is not just one pathway with a series of 

intermediates, but instead included a wide range of possible routes along a folding funnel that all led to 

the final, native structure.  Figure 1.1 shows a visual depiction of a protein folding funnel. The left side of 

the funnel, coloured dark purple, represents the intramolecular contact pathway that results in the natively 
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folded protein. The rough edges on the sides of the funnel represent intermediate structures that are likely 

to be transiently populated during the folding process. The trough of the funnel represents the lowest 

energy, native state of the protein6.  

Given the complexity of the protein folding process, it is expected that mistakes can and will 

occur. When a protein folds into a non-native form, this is termed “misfolding”. In vivo, a cell responds to 

these mistakes by using chaperones that rescue misfolded proteins by aiding in proper refolding. The 

formation of non-native structures from intermolecular interactions of protein monomer subunits is 

termed aggregation. When a misfolded protein persists, it often results in the exposure of hydrophobic 

areas that can lead to the development of protein aggregates through non-native protein-protein 

interactions3. Figure 1.1 includes aggregate structures in the protein folding funnel diagram. On the left-

hand side of the funnel, in purple, intramolecular contacts that promote intermediate conformations 

leading to the native state dominate. On the right-hand side, in pink, intermolecular contacts result in 

funnelling toward amorphous and amyloid (vide infra) aggregate structures. Overlap of the two sides of 

the funnel represents the fact that similar factors can contribute to both protein folding and protein 

aggregation. Aggregation can be a result of “off-pathway” intermediates populated during folding or from 

a destabilized native state, resulting in partially folded states that tend toward intermolecular 

associations7. The types of aggregate structures that can result from intermolecular associations will be 

described in the next section. 
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Figure 1.1 The energy landscape of protein folding. On the left side of the diagram, an unfolded 

polypeptide samples intramolecular contacts in order to achieve the lowest energy, native state. It may 

transiently populate folding intermediates on its way to a proper fold. On the right side of the diagram, an 

unfolded polypeptide, or a partially folded state, makes intermolecular contacts that lead to low energy 

aggregates such as amorphous aggregates or amyloid fibrils. Figure from Hartl & Hayer-Hartl, 20097. 

 

1.2 Pathways and Products of Protein Aggregation 

 Protein aggregation is the general terminology used to describe the process by which proteins 

form non-native, multimeric complexes of varied conformations. These aggregates can range from small 

soluble oligomers, to larger amorphous structures, or insoluble, well-structured fibrils. Growing evidence 

suggests that these morphologies have separate maturation pathways that depend on the environmental 

conditions, the degree of structure, and the inherent sequence characteristics of the protein8; 9; 10. Figure 

1.2 shows a simplified scheme of how different pathways may result in varied aggregate types. 

Alterations in the native monomer can lead to the formation of early oligomers that can transform into a 



 

4 

 

range of aggregate structures11. Figure 1.3 shows another schematic representing the heterogeneity in 

aggregation pathways and the possible connections between mechanisms of formation of structurally 

varied aggregates. One of the most well characterized types of aggregates is amyloid, a fibrillar aggregate 

with extensive beta-sheet structure12. Interestingly, amyloid has been shown to form from both disease 

and non-disease related proteins13, and has further been suggested to be a possible conformation that 

could be reached by all proteins when exposed to harshly destabilizing conditions12; 14.  

 

Figure 1.2 Simplified pathway of protein aggregation from the native state. Diverse aggregate 

structures can form through separate pathways as a result of the nature of the alterations to the native 

protein monomer. Figure from Uversky, 201011. 
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Figure 1.3 Interconnected pathways of protein aggregation. Aggregate structure may form by similar 

mechanisms resulting in connected pathways of aggregate and the possibility of one type of aggregate to 

transform into another. Figure from Ross and Poirier, 200515. 

 

Variations in aggregate structures have been observed that depend on the protein in question and 

the environment in which the aggregates form. A current theory that attempts to explain differences in 
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aggregate morphology suggests that the variation between the pathway of structured fibril formation and 

amorphous aggregate formation depends on the degree of folding of the protein involved. Partially 

unfolded, highly flexible protein conformations result in the formation of structured fibres, whereas slight 

folding perturbations resulting in minimal protein unfolding tend to form amorphous aggregates10. A 

number of studies have validated this hypothesis. For example, it was shown that concanavalin A (ConA) 

has two separate aggregation pathways that depend on the pH of the reaction conditions. When the pH 

was far from the isoelectric point of ConA, large conformational changes in the protein resulted and 

induced amyloid formation. However at pH values closer to the isoelectric point, ConA experienced only 

slight conformational changes and formed amorphous aggregates16. A previous study on bovine α-

lactalbumin gave similar results17. When subjected to low pH, the protein adopted a molten-globule state 

with a high degree of flexibility, which resulted in the formation of amyloid. However, at neutral pH, 

partial unfolding due to metal interference resulted in the formation of amorphous aggregates which were 

attributed to a arise from more rigid precursor species17. These results suggest that the morphology of 

aggregates is largely dependent on the degree of unfolding of a protein in solution. However, despite the 

seemingly viable explanation of the aforementioned studies, these results are not conclusively universal. 

A recent study on the dialysis-related amyloidosis protein β2-microglobulin revealed similar fibrillar 

structures forming in a highly acidic environment (pH 2.5) and at neutral pH despite the extreme 

difference in time it takes for the aggregates to form18 . This led to the suggestion that these two pathways 

for β2-microglobulin aggregate formation may include similar intermediate structures. These results 

highlight the complexity of the mechanisms involved in governing the protein aggregation process.  

Another interesting study examined the independence of fibrillization and oligomerization 

pathways19. A wide range of small molecule aggregation inhibitors were used to study the amyloid beta 

(Aβ) peptide that has been linked to Alzheimer‟s Disease. The inhibitory compounds could be divided 

into three classes: Class I inhibited oligomerization but not fibrillization, Class II inhibited both pathways, 

and Class III was selective for inhibiting fibrillization but not oligomerization. These findings confirmed 

that the pathway of formation of oligomers is distinct from the formation of fibrils19. This is an interesting 
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result considering contrary theories that suggest the formation of small soluble oligomers may be the 

nucleating event required for the formation of more structured fibrils20. Thus it seems that there are 

several types of aggregate pathways, some in which soluble oligomers may be an end-point on their own, 

and others in which oligomers may further convert into fibrillar structures20; 21. Considering the degree 

and variability in the literature regarding the range of potential aggregate structures that can be formed by 

proteins and the conditions required to produce these structures, no generic pathway or comprehensive 

view of protein aggregation has been developed. Instead, it appears that a single protein has the potential 

to form multiple aggregate structures by more than one pathway. These mechanisms may be greatly 

influenced by the nature of the protein in question and the conditions to which it is exposed. 

1.3 Modulating Factors in Protein Aggregation 

The factors that modulate protein aggregation are not completely understood. Protein aggregation 

can occur from both an unfolded or partially folded state7. For an unfolded protein, the thermodynamic 

and kinetic properties that influence the pathway toward proper folding could be altered by the influence 

of many factors and thereby re-route the protein toward the formation of aggregates
8; 22

. Folded protein 

could also be directed to aggregate by factors that promote global unfolding or enhanced local 

fluctuations7. There are multiple variables that may play a role in controlling aggregation propensity, 

some of which are discussed below. 

1.3.1 Protein Stability and Structural Dynamics 

 As mentioned above (Section 1.2), the extent of unfolding of a protein may play a significant role 

in its tendency to aggregate and the types of aggregate structures formed10.   For example, the introduction 

of mutations that destabilize the conformation can promote fibril formation23. This has been demonstrated 

for several proteins, including lysozyme24, transthyretin25, immunoglobulin light chain26, and for soluble 

oligomer formation by superoxide dismutase27. Destabilization of the native state can result in partially 

folded intermediates that may expose aggregation-prone regions, resulting in intermolecular associations9; 

23; 28. In addition to global changes in stability, local structural fluctuations may also promote 
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aggregation29. These fluctuations could result from a mutation that perturbs the dynamics of a particular 

region of the protein without having a large effect on the overall stability of the protein29. If the increased 

dynamics occurs in a region susceptible to causing aggregation, this could have major implications for the 

likelihood of aggregation of the whole protein. For these reasons, the stability and structural dynamics of 

a protein can have a large influence on its aggregation tendencies. 

1.3.2 Inherent Characteristics of the Polypeptide Sequence 

 There are several features of an amino acid sequence that may contribute to its propensity to 

associate into aggregate structures. The observation that stability alone cannot dictate the aggregation 

tendency of a protein led to the suggestion that the inherent characteristics of the amino acids within a 

protein sequence must play a role in dictating the tendency to aggregate. In particular, hydrophobicity, 

beta sheet propensity, and charge have been suggested to play substantial roles in aggregation propensity9. 

This was shown through mutational studies of an unfolded protein, where the substitution of a single 

residue determined the aggregation pattern of the entire protein based on the change in hydrophobicity, 

charge and beta-sheet propensity introduced by the mutation
9
. Interestingly, these features are also 

important for moderating correct protein folding, and so it has been suggested that similar forces 

contribute to both processes but that different key residues are involved in forming the initial contacts that 

drive the formation of either aggregates or natively folded protein30. The role of inherent residue 

properties in protein aggregation seems to depend on short consecutive stretches of amino acids that 

possess aggregation-prone characteristics. One interesting study inserted an amyloid-prone six amino acid 

peptide (hexapeptide) into a non-amyloid forming protein and showed that even though there were no 

global effects on stability, the insertion converted the protein into an amyloidogenic species31.  This 

demonstrated that even short stretches (minimum 6 amino acids) were adequate to cause a protein to 

aggregate. It has further been suggested that the pattern of amino acids within a short peptide sequence is 

important in dictating the likelihood of amyloid formation32; 33. Another important intrinsic determinant is 

the presence of so-called “gatekeepers,”  residues flanking aggregation-prone regions that act to prevent 
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aggregation, such as charged residues or proline30. It is apparent then, that protein aggregation is at least 

partially controlled by the properties of the specific residues found within a polypeptide sequence. 

1.3.3 Solution Conditions 

 Experimental conditions can play an important role in governing protein aggregation in vitro. For 

example, sample temperature, pH, ionic strength, and surface effects have all been suggested to contribute 

to protein aggregation8; 22. These factors are capable of modulating the thermodynamic and kinetic 

properties of a protein in solution and thus can influence the rate of protein aggregation and the type of 

structure formed. The thermodynamic stability of a native protein is typically only ~5-15 kcal/mol greater 

than the unfolded state under physiological conditions34. For this reason, temperature can have drastic 

effects on the equilibrium ratios of folded and unfolded protein. Temperature-induced aggregation has 

been shown for a number of proteins including actin35, lysozyme36, beta-lactoglobulin37, and amyloid beta 

peptide38. Most of these studies observed aggregation as the temperature increased from well below to 

well beyond the melting temperature of the protein. The resulting general hypothesis was that the 

increased population of the partially unfolded protein state near the melting temperature promoted 

aggregation22.  

The net charge of a protein can greatly affect proper folding and aggregation propensity22. High 

charge density, resulting from high or low pH, produces repulsive interactions and protein unfolding; 

however, this may not promote aggregation if the charge densities are high enough to also cause 

intermolecular repulsion. When the pH is closer to the isoelectric point (pI), the protein will possess both 

positive and negative charges and aggregation can become energetically favourable22. Both the overall 

charge effects and the role in affecting protein stability are ways in which pH can influence protein 

aggregation39.  

Ions may bind to charged residues in a protein and can affect the stability, solubility, and 

electrostatic interactions of a protein22. When multivalent ions bind to a protein, they can increase the 

stability of the protein by bridging charged residues. Ions can also bind to peptide bonds due to the dipole 
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formed between the amino and carbonyl groups and can result in the destabilization of the protein‟s native 

state. At low concentrations, ions tend to associate with charged amino acids, resulting in charge 

shielding. This decreases electrostatic interactions between proteins22. The implications of ionic strength 

on aggregation are somewhat unclear. One study showed that, as the ionic strength in solution increased, 

the aggregate equilibrium shifted from higher oligomeric states to lower oligomeric states40. In contrast, a 

recent study utilized agitation along with high salt concentrations to form large, structured, amyloid 

aggregates41. Neither high ionic strength nor agitation on their own resulted in fibril formation, but the 

combination of these effects resulted in amyloid. These results seem to coincide with a more general 

observation that, at low pH, salt is often required to screen charges in order to promote aggregation42. 

Ionic effects also appear to depend on the strength of the ion being used. For example, a study on the α-

lactalbumin protein at a pH below its pI showed that aggregation was promoted by salts in the following 

order: SO4
-2 > H2PO4

- > Cl- 42. This was suggested to be due to preferential protein binding by SO4
-2 to 

block electrostatic repulsions between proteins, whereas Cl- favoured hydration of α-lactalbumin. The 

effects of these salts are consistent with the Hofmeister series, which ranks salts on their ability to 

stabilize or destabilize proteins. Salts that increase protein stability will decrease protein solubility and 

thus increase aggregation43. Similar results were observed for the yeast prion protein, where salts with 

increasing kosmotropic strength increased amyloid polymerization44. There are still some inconsistencies 

in the role of ionic strength in protein aggregation, however, as contrary results to those described above 

as to the role of kosmotropes have also been observed45. This is evidence of variable effects of salt on 

protein aggregation depending on the protein. It seems possible that salt could play different roles in 

different systems depending on the physicochemical properties of the protein involved, and the strength 

of the ion in question.  

The type and size of the surface area a protein is exposed to can play an interesting role in the 

misfolding or aggregation of a protein. It has been suggested that the recruitment of proteins to a surface 

can cause local increases in concentration and affect the conformation of interacting proteins, resulting in 

enhanced aggregation. In particular, the presence of hydrophobic or charged surfaces could contribute to 
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the opening up of tightly folded native protein and thus increases the susceptibility of the protein to 

forming intermolecular interactions46. This is especially relevant when considering the biological surfaces 

within the cell, such as lipid membranes, which may catalyze protein aggregation and lead to cellular 

toxicity47; 48. A study involving the growth of insulin fibrils revealed that nucleation occurred quicker at 

hydrophobic polystyrene surfaces than in bulk solution, suggesting that aggregation mechanisms may 

depend on surface interactions49. Surface-catalyzed aggregation studies were also performed on SMA, a 

recombinant amyloidogenic light chain variable domain48. In these studies, fibrils formed readily on the 

negatively charged surface of mica but were not observed when the surface was modified to be non-polar 

or positively charged. This was explained by the presence of weak electrostatic interactions that recruit 

the SMA protein to the mica surface. Since the interactions were not very strong, it allowed for lateral 

mobility. Once the protein was recruited to the surface, the enhanced proximity of the protein monomers 

to each other allowed for hydrophobic interactions between proteins to favour conformational transitions 

that resulted in fibril growth. Two distinct mechanisms were observed for SMA aggregation on the mica 

surface, one in which unfolded monomers formed amorphous aggregates on the mica surface that further 

rearranged into fibrils branching from the amorphous structure. In the second, structured oligomers were 

recruited to the mica surface and associated to form twisted fibrils48. More recent studies employed β-2 

microglobulin as a model for testing nucleation catalysis by nanoparticles. It was demonstrated that the 

surface area provided by the nanoparticles increased the nucleation rate and decreased lag-times in a 

manner dependent on the exposure and nature of the particle surface47. These studies indicate that both the 

degree of surface exposure and the nature of the surface in which the protein is exposed to can affect the 

aggregation pathway and the rate and the morphology of the aggregates being formed.  

It is evident that the experimental conditions can drastically influence protein folding, misfolding, 

and aggregation of a protein. The conditions experienced by a protein in vivo are very different than that 

of a protein in vitro, and the variations that can occur in both, whether pH, temperature, ionic strength, 

surface exposure, or others, have the ability to alter the kinetic and thermodynamic properties of a protein 

and influence aggregation pathways. This is an important consideration when investigating the molecular 



 

12 

 

mechanisms controlling the aggregation process, and further understanding of the roles of these factors 

could serve to provide valuable information on the variables that govern protein aggregation. 

1.4 Protein Aggregation and Disease 

Protein aggregation has been linked to a large number of diseases including Alzheimer‟s disease, 

Creutzfeldt-Jacob disease, Type II diabetes, Parkinson‟s disease,  Huntington‟s disease, and amyotrophic 

lateral sclerosis (ALS)29; 50; 51. The majority of aggregation-linked diseases can be divided into three major 

groups: neurodegenerative conditions, in which aggregation occurs in the brain, non-neuropathic, 

localised amyloidoses where aggregation occurs in a one specific tissue other than the brain, such as ALS, 

and non-neuropathic systemic amyloidoses where aggregates are present in multiple tissue types12. A 

general trend within protein aggregation disorders seems to be an increase in misfolded or unfolded 

proteins3. Protein misfolding has the potential to lead to a toxic gain of function where misfolded protein 

forms aggregates that can eventually lead to cell death. 

 The pathological mechanisms of protein aggregates are not well understood. Aggregates can 

possess a wide range of structural morphologies and growing evidence suggests that small, soluble 

oligomers are more toxic than large insoluble aggregates such as amyloid52. Patient data analysis for 

various neurodegenerative diseases, including Alzheimer‟s and Parkinson‟s, revealed that brain cells with 

large inclusion bodies were often healthier than the surrounding cells without noticeable fibril formation. 

Additionally, in some animal models of neurodegenerative diseases, symptoms appeared before insoluble 

aggregate formation occurred. Furthermore, clinical studies have confirmed the presence of insoluble 

inclusion bodies without disease symptoms53. This evidence suggests that the early stages in the aggregate 

formation pathway, such as protofibrils, small intermediate oligomers, or aggregate fragments and by-

products, are the key instigators of neurodegeneration52; 53. 

It is expected that there are common features between toxic aggregate species of different 

proteins considering the widespread occurrence of aggregation diseases. Work with antibodies has 

produced intriguing discoveries regarding this prospect by first identifying an antibody capable of 
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recognizing common structures of amyloids formed from a range of different proteins54, then by the 

isolation of an antibody that recognized pre-fibrillar amyloid oligomers of various proteins but not the 

native protein or the mature fibril55. It is thought that toxic oligomers may have common morphologies 

that can interact with similar cellular targets. Suggested mechanisms include: destabilization of 

membranes, interaction with neuronal receptors to initiate apoptosis, impairment of calcium currents as a 

result of membrane disruption, prevention of lysosome maturation due to accumulation of oligomers, 

autophagy dysfunction, oxidative damage, disruption of protein homeostasis and proteasome inhibition11. 

It is important to elucidate the common properties that may be involved in governing the toxicity of 

aggregates. A recent study from Campioni et al. compared the toxicity of two different types of soluble 

oligomers formed in different solution conditions by HypF-N56. The two conditions were as follows: A) 

50 mM acetate buffer, 12% (v/v) trifluoroethanol (TFE), 2 mM DTT, pH 5.5 and B) 20 mM 

trifluoroacetic acid (TFA), 330 mM NaCl, pH 1.7. The oligomers formed in the two conditions were 

indistinguishable by atomic force microscopy (AFM) and Thioflavin T (ThT) fluorescence properties, but 

had very different toxic properties. When human neuroblastoma cells were exposed to each type of 

aggregate and cell viability was measured, the oligomers formed in condition A caused a significant 

decrease in cell viability, similar to that observed upon exposure to amyloid beta oligomers, a peptide 

linked to Alzheimer‟s disease. However, there was no effect on cell viability when exposed to the 

oligomers formed in condition B. Further investigations, using several techniques, into the structures of 

the aggregates formed under these conditions showed that the aggregates formed in condition B were 

tightly packed with buried hydrophobic regions, while those formed in condition A were less tightly 

packed and had exposed hydrophobic regions. In addition, microscopic imaging demonstrated that while 

both types of aggregate structures associated with the cells membrane, only those formed in condition A 

were able to penetrate the cell56. This study suggests that flexibility and exposed hydrophobic regions 

may contribute to the toxicity of oligomeric aggregates.  

Another recent study compared the in vivo toxic effects of α-synuclein oligomers and fibrils57. 

Mutants were constructed that favoured either the formation of structured fibrils or soluble, ring-like 
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oligomers with a hydrodynamic radius of approximately 100 nm. A rat model of synucleinopathies, 

involving the injection of a lentivirus vector containing the α-synuclein variants into the rat‟s brain tissue, 

was used to assess toxicity. The mutants that favoured oligomer formation resulted in increased 

dopaminergic loss and neuronal death compared to wild-type and mutants favouring fibril formation. The 

neuronal cell death was coupled with increased influx of calcium, indicating damage to the cellular 

membrane. Further immunoblot studies demonstrated that oligomer-prone mutants bound strongly to 

membranes57. These studies confirm the role of oligomers in mediating toxicity and suggest that 

membrane interactions could be a key mechanism for aggregation-governed disease pathogenesis.  

1.5 Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease in which motor 

neuron degeneration results in muscle deterioration, the exaggeration of tendon reflexes, and spasticity. 

This commonly leads to respiratory failure and death within 2-5 years of disease onset. It is the most 

common adult onset motor degenerative disease. 90% of ALS cases are sporadic and 10% are familial. 

Within the 10% of cases that have hereditary links, about 20% of these patients possess mutations in the 

Cu, Zn Superoxide Dismutase (SOD1) protein, making SOD1 mutations the most common known 

causative agent of ALS. There is currently no cure for the disease, despite vigorous research efforts in the 

past decades58. ALS remains a fairly misunderstood disease that is likely triggered by a complex set of 

factors.  

1.6 Cu,Zn Superoxide Dismutase and ALS 

Cu, Zn Superoxide Dismutase (SOD1) is a human homodimeric enzyme composed of two 153 

amino acid monomers. SOD1 functions as a catalyst in the conversion of superoxide to hydrogen 

peroxide and oxygen, and for this reason it is an important enzyme in the control of reactive oxygen 

species (ROS) within a cell. Each monomer takes on a Greek key beta barrel conformation composed of 

eight antiparallel beta strands connected by a series of loops that bind one copper and one zinc ion each. 

Two of the loops are specifically involved in the binding of metals and are termed the “metal-binding 



 

15 

 

loop” and the “electrostatic loop” (see Figure 1.4). In addition to metallation, other post-translational 

modifications include the formation of a disulphide bond between cysteine 57 and cysteine 146, and 

dimerization to form the mature homodimeric protein59; 60. SOD1 is expressed in all tissues and is most 

concentrated in the cytoplasm of the cell. It is found in higher concentrations in the central nervous 

system (i.e. the brain and spinal cord) than in any other tissue51. More than 150 different SOD1 mutations 

have been characterized as contributing factors to the development of ALS (ALS Society of Canada, 

2010). The mechanisms of SOD1 toxicity are still not completely understood, even more than 15 years 

after the discovery of the causative effect of mutant SOD161. It was first hypothesized that mutations 

could result in a loss of function leading to increased oxidative stress in the motor neurons where SOD1 is 

particularly important in combating reactive oxygen species (ROS). However, mice models lacking the 

SOD1 gene were not found to develop symptoms of ALS, while mice models that had their endogenous 

SOD1 gene as well as a human ALS mutated SOD1 gene did develop ALS. This led to the understanding 

that SOD1 pathogenicity is dependent on a gain of toxic function rather than a loss of protective 

function51. The most accepted hypothesis is that the gain of toxic function is due to the formation of 

damaging protein aggregates62. It is assumed that SOD1 mutations influence physicochemical properties 

such as stability, hydrophobicity, aggregation propensity, susceptibility to post-translational 

modifications, loss of metals, and aberrant chemistry61. It has been suggested that the toxic effects of 

SOD1 mutants are dominantly a result of decreased stability and increased aggregation propensity61.  
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Figure 1.4 Structural components of dimeric holo SOD1. Beta strands 1-8 are labelled. Each monomer 

is composed of eight beta strands that together form a beta barrel. The metal binding loop shown in purple 

is also important to the dimer interface. The electrostatic loop is shown in blue. Cysteines 57 and 146 

form an intra-molecular disulphide bond and are shown in yellow. Zinc is shown in green and copper is 

shown in red. This figure was produced using PyMol, with PDB coordinates taken from 1SOS63. 

 

1.6.1 ALS Disease Durations are Specific for SOD1 Mutations 

 An interesting feature of the SOD1 mutations that lead to ALS is that they result in mutant-

dependent disease durations. It was shown by Wang et al. in 2008 that the differences in disease durations 

for each mutant are statistically significant61. Table 1.1 lists data for several of the most common 

mutations, including the number of patients and the average disease duration associated with the 

mutation. It has been speculated that the tendency of each mutant to form aggregates may be what 

determines disease duration61. 
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Table 1.1 Characteristic ALS disease durations are associated with SOD1 mutations. 

Mutation Number of 
Patients 

Disease 
Duration 

A4T 21 1.5 

A4V 205 1.2 

G37R 27 17 

L38V 22 2.4 

G41D 15 14.1 

G41S 16 1 

H43R 12 1.8 

H46R 49 17.6 

L84F 18 5.8 

L84V 10 3.2 

G85R 11 6 

D90A 15 8 

G93A 16 3.1 

G93C 27 12.1 

G93S 11 8 

G93R 4 5.3 

E100G 50 4.7 

D101N 17 2.3 

S105L 7 3.5 

I113T 38 4.3 

L144F 15 11.8 

V148G 11 2.1 

V148I 5 1.7 

I149T 15 2.7 

 

1.6.2 The Importance of Reduced Apo SOD1 

Superoxide Dismutase goes through a series of post-translational modifications in order to 

achieve its native, mature state. These include metal-binding, disulphide formation and dimerization, 

resulting in at least 44 permutations that the polypeptide could adopt depending on its disulphide status, 

metal binding and multimer formation64.  This begs the question as to whether any of these states are 

particularly vulnerable to disruption by mutation and could therefore be most relevant to ALS pathology. 
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Extensive study of the destabilizing effect of SOD1 mutations on both the holo and apo forms of the 

protein reveals that changes are more pronounced in the apo. In vivo and in vitro studies by Furukawa et 

al., 2008, showed the importance of disulphide reduction in aggregate formation by comparing the effects 

of holo, apo-oxidized, and apo-reduced SOD1 in various mutant forms65. Specifically, they showed that 

the addition of zinc to apo-oxidized conditions reduced the amount of insoluble protein aggregates 

produced when incubated with agitation overnight. Conversely, when incubation occurred with the 

addition of a reducing agent, the fraction of insoluble aggregates formed increased. These results were 

supported by in vivo experiments that showed that the total fraction of aggregates formed in mouse 

neuroblastoma cell lines could be reduced by the over-expression of CCS, the copper-chaperone 

responsible for the addition of copper to SOD1 and speculated to be involved with disulphide bond 

formation. This study promoted the theory that fALS mutations have the greatest destabilization effects 

on the de-metallated, disulphide-reduced form of SOD165. Additional in vitro experiments performed in 

the Meiering lab support these findings by showing that the changes in thermodynamic stability between 

wild-type and mutant SOD1s are generally largest in the reduced apo form of the protein. Figure 1.5 

summarizes these data by showing the melting temperatures for a number of mutants studied in the 

Meiering lab. Interestingly, only ten out of the twelve mutants shown in this figure demonstrate protein 

destabilization. Two, however, cause an increase in thermal stability, which may implicate additional 

factors beyond stability as disease-causing properties of these mutants. For the ten mutants that 

destabilize the protein, eight have the most pronounced destabilization in the reduced apo form. These 

studies promote reduced apo SOD1 as an important form of the protein to study in order to determine 

whether the decreased stability of reduced apo mutants will also lead to an increased propensity to 

aggregate. 
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Figure 1.5 The change in melting temperature induced by SOD1 mutations in different forms of the 

protein. The change in melting temperature was measured by DSC. All data was measured in the 

Meiering lab. In general, the largest changes in protein stability occur as a result of mutations in the 

reduced apo state. 

 

1.6.3 SOD1 Aggregation and Toxicity in ALS 

There is much debate surrounding the possible mechanisms by which mutant SOD1 exerts causes 

ALS. A review by Ilieva et al. in 2009 summarized nine potential mechanisms including: A) Glutamate 

excitotoxicity caused by excessive firing of motor neurons due to overstimulation by glutamate, resultant 

from the potential oxidative effects of mutant SOD1. B) Endoplasmic reticulum (ER) stress as a result of 

mutant SOD1 aggregates binding to a chaperone that regulates ER stress transducers or by inhibition of 

ER-associated degradation of improperly folded proteins. C) Proteasome inhibition due to overload with 
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misfolded protein. D) Mitochondrial dysfunction from association of mutant SOD1 with the 

mitochondrial membrane. E) Interaction of toxic extracellular mutant SOD1 with neurosecretory vesicles 

resulting in secretion and activation of microglia immune cells that drive neuronal death. F) Extracellular 

superoxide production from the interaction of mutant SOD1 with transcription factor Nox2. G) Altered 

axonal transport through mutant SOD1 interference with axonal cytoskeletal organization. H) Synaptic 

vesicle defects. I) Loss of tight junctions that maintain the blood-spinal cord barrier, because of damage to 

the vasculature by mutant SOD1 leading to leakage of toxic products. Figure 1.6 depicts these potential 

roles of SOD1. It is most likely that a combination of these possible mechanisms results in disease 

progression.  

 

Figure 1.6 Proposed mechanisms for mutant SOD1 toxicity in ALS. Details described in text. Figure 

from Ilieva, 200966.  
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It is important to further investigate the types of misfolded and aggregated protein that may be 

responsible for the disease mechanism in SOD1-linked ALS. As stated above in Section 1.4, soluble, pre-

fibrillar oligomers are generally thought to be the cytotoxic species in aggregation-related diseases53. 

Patient data and mouse models have provided information as to the SOD1 species important in 

pathogenesis. Recent evidence based on the analysis of patient tissues using antibodies has suggested that 

protein inclusions contain misfolded SOD1 aggregates but not in the form of amyloid67.  However, the 

role of insoluble inclusions is not fully understood, as not all transgenic ALS mice models display 

evidence of inclusion formation, even when ALS symptoms are observed51. Another study that confirms 

the role of oligomeric aggregates as opposed to larger insoluble inclusions in producing disease 

characteristics  has found that small, soluble monomers, dimers, and trimers of the reduced apo form of 

SOD1 are present from the pre-symptomatic to final end stage of disease in murine models, suggesting 

that oligomers of SOD1 are a common cytotoxic species68. Although many in vitro studies have 

demonstrated amyloid formation by SOD1 and its variants65; 69; 70, the relevance to disease is questionable, 

both due to the lack of observance of amyloid in patient tissues67 and because of the increasing evidence 

of soluble oligomer toxicity52; 53. Additionally, several studies have demonstrated the formation of non-

amyloid aggregates by mutant SOD127; 71. In general, there is considerable discrepancy between the 

formation of amyloid by SOD1 mutants and their toxicity. Potential aggregation pathways and toxic 

properties of SOD1 are discussed below.  

Several specific mechanisms of SOD1 mutant aggregation and its potential toxic properties have 

been suggested. Much debate has surrounded the importance of intermolecular disulphide bonds to the 

mechanisms of SOD aggregate formation. There have been studies supporting both sides of the debate 

leading to general controversy as to the role of the free cysteines at positions 6 and 111, and the cysteines 

involved in the intramolecular disulphide at positions 57 and 146. Banci et al. 2007 have demonstrated 

that these two residues are necessary for the formation of amyloid at physiologically relevant conditions 

(37ºC, pH 7.0 and a protein concentration of 100µM in vitro). They showed that when these residues are 

mutated to alanine and serine, respectively, Thioflavin T (ThT) binding, for the purpose of detecting 
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characteristic amyloid structure, is not observed for the apo form of SOD. However in the apo wild-type 

form of SOD, with two free cysteines, ThT fluorescence is observed within the first 25 hours72. In 

contrast, it has been shown that when all four cysteines in SOD1 are mutated aggregation is still observed 

in cultured cells73. Moreover, in mutants possessing free cysteines, inter-molecular disulphide bonds were 

shown to form only late in the progression of the disease in SOD fALS mice models74. Finally, Jonsson et 

al., 2007, demonstrated that aggregates found in fALS mice models comprised SOD1 with reduced 

cysteine residues75. Thus, although there is still debate surrounding the importance of free cysteines, it 

seems reasonable to conclude that cysteines may play a role in aggregation formation at some point along 

the aggregate pathway but that the formation of disease-inducing aggregates is not dependent on 

intermolecular disulphide bond formation.  

There are many other theories regarding possible avenues for SOD1 aggregation and toxicity. 

One such theory suggests that mutant SOD1 results in the formation of toxic protein aggregates by 

decreasing the repulsive net charge of the protein76. Conversely, it has been suggested that a decrease in 

net charge could be protective and result in a lengthened disease duration61. Other mechanistic ideas 

include mutant SOD1 destabilization causing interference in the interaction of SOD1 with the copper 

chaperone (CCS) and increasing the susceptibility of the protein to metal loss77, intra-molecular 

disulphide bond reduction resulting in local unfolding and fibril formation69, and increased 

monomerization resulting in exposure of the hydrophobic dimer interface78. The diversity in potential 

mechanisms suggests that there may be multiple pathways in which SOD1 aggregates and mediates 

disease. 

1.6.4 Pseudo Wild-type Superoxide Dismutase 

 

For the purpose of all SOD1 studies, a pseudo wild-type construct was used. In pseudo wild-type 

cysteines 6 and 111 are replaced with alanine and serine, respectively. This construct is often referred to 

as pWT SOD. The purpose of this pseudo wild-type background is two-fold. First, the removal of the two 
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free cysteines increases protein yield, and second it provides a form of the protein that can be analyzed 

thermodynamically. The wild-type protein cannot be reversibly unfolded for thermal unfolding studies, 

thus limiting the ability to calculate its thermodynamic properties. For this reason, the pWT SOD is 

commonly used for thermodynamic analyses. Studies have shown that pWT SOD behaves very similarly 

to wtSOD27; 63; 79, and this is a well established construct used within the Meiering and other labs. The 

majority of the former work done in the Meiering lab has been completed on pWT and mutants in the WT 

background. Thus, for consistency, the pWT background will be used for all experiments completed in 

this thesis. 

1.7 Importance of Further Studies on the Mechanisms of Protein Aggregation 

Protein folding, misfolding and aggregation are fundamental to the understanding of molecular 

biology. Interestingly, the regions of a protein most important for protein folding are also the most prone 

to be involved in adverse aggregate formation80. Recent physicochemical studies have given some insight 

into protein folding and aggregation control, including the role of electrostatic and hydrophobic forces80; 

however mechanistic details remain elusive. Further analysis into the detailed mechanisms governing 

aggregation is required. Despite the extensive research in the past decade focussed on protein aggregation, 

there are still many unanswered questions. It has been suggested that protein maturation involves a 

crossroad in which a protein can fold properly, misfold, or not fold at all81. The factors governing the path 

a protein will take are not well understood and could have dramatic effects on the way we view the 

progression from polypeptide to protein and the potential for forming protein aggregates.  

Elucidating the principles and mechanisms of aggregate formation is of importance to many 

fields, including: 1) contributions to further understanding in molecular biology, such as fundamental 

protein assembly and factors leading to protein misfolding and the intermolecular assembly into 

aggregates, 2) understanding the aggregation pathways that are attributed to a growing number of 

diseases, 3) application for protein-based materials and drugs including novel synthesis techniques and 

design templates
41

. Many studies have taken initial steps in understanding the variety of factors that may 



 

24 

 

have an impact on protein folding and aggregation pathways; however there is still a great need for 

significantly more work to be done outside of individual context-specific experiments to systematically 

address protein aggregation complexities on a wider scale. Thus, another major challenge within this field 

is to test the current understanding of the principles controlling aggregation and design further 

experiments that address the limits of our current understanding.  

1.8 Research Objectives and Outline 

The Meiering lab is focused on developing a deeper understanding of the physical and chemical 

properties of ALS-linked SOD1 mutants and how these properties influence their aggregation pathway. 

The focus of this thesis is the investigation of the underlying principles that control the protein 

aggregation process. This is achieved by examining our current understanding of protein aggregation by 

systematically testing a series of protein aggregation prediction algorithms, which will be described in 

Chapter 2. This chapter will thoroughly explain the principles of nine different prediction algorithms and 

compare the output of the algorithms for a series of mutations of three different proteins, including 

Superoxide Dismutase. Chapter 3 extends this investigation by comparing predicted aggregation with 

observed aggregation and discusses our current understanding of the mechanisms of aggregation. This 

chapter also takes a detailed look at SOD1 correlations between observed aggregation, predicted 

aggregation, disease duration, and stability, and discusses the role of SOD1 aggregation in dictating ALS 

disease characteristics. Chapter 4 focuses on experimental data that investigates aggregation in different 

solution conditions as a method to further develop the role of ionic interactions and protein stability in 

contributing to protein aggregation. A range of techniques are used to investigate the differences in 

aggregation rate and aggregate structure for the aggregation-prone SOD1 mutant A4V when exposed to 

various salt types and concentrations. The overall objectives of this study are to increase understanding of 

the mechanisms of SOD1 aggregation and the role of SOD1 aggregation in mediating disease, and to take 

a broader look at protein aggregation - what we know and don‟t know about the principles involved in 

modulating these processes.  
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Chapter 2 

Predicting Protein Aggregation 

2.1 Introduction 

Protein aggregation is the process by which intermolecular contacts between two or more 

molecules, generally of the same protein, result in the formation of aberrant, non-native structures3. The 

presence of aggregate structures in patients with a range of different neurodegenerative diseases has 

defined protein aggregation as a hallmark in the pathology of neurodegeneration82.  Understanding protein 

aggregation is also key for aggregation prevention in pharmaceutical formulations of protein drugs8, and 

has applications for protein-based materials and drugs, including novel synthesis techniques and design 

templates for synthetic amyloid-like products 83; 84. For these reasons, it is important to elucidate the 

factors that control aggregation processes. Currently, there is limited understanding of the detailed 

molecular mechanisms by which aggregate structures form, and the contributing roles of the driving 

factors of the rate of formation and morphology of the aggregate products. Over the past several years 

significant contributions to the understanding of protein aggregation have been made by the development 

of algorithms designed to predict the propensity of a polypeptide sequence to aggregate9; 33; 61; 85; 86; 87; 88; 89. 

These algorithms are based on experimental data sets and utilize properties of the protein sequence, such 

as patterns in hydrophobicity or probability of involvement in hydrogen bonding, as contributing 

variables that dictate the overall propensity of a protein to form aggregates and allow for the identification 

of aggregation-prone regions of a protein sequence. Each algorithm was developed based on different 

experimental data and tested on varying data sets. A summary table of the variables involved in each 

algorithm is given in Table 2.1.  

With a continually increasing number of prediction algorithms it is important to test on a wider 

scale the ability of these algorithms to predict aggregation beyond the specific conditions in which they 

were developed. This will serve to further the understanding of the underlying principles of protein 

aggregation and to elucidate whether the variables involved in one confined type of aggregation may have 
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similarities to the principles governing other types of aggregation. By predicting protein aggregation and 

then testing the predictions, we can improve our understanding of the processes involved in this complex 

phenomenon and identify patterns that are involved in governing the overall aggregation process. This is 

important for identifying ways to interfere with protein aggregation which could guide the development 

of therapeutics for neurodegenerative diseases90.  

Table 2.1 Summary of the variables involved in nine different aggregation prediction algorithms. 

 

aSequence-order dependent means that the propensity of a certain residue to contribute to protein aggregation is based not only on the individual  

residue, but also on the properties of the surrounding residues in the protein sequence. 
bAggregate structure-dependent refers to the ability of portions of the polypeptide sequence to map onto known amyloid structures, and does not 

mean that the native structure of the protein in question is accounted for by the algorithm. 

Algorithm 
Features  

Chiti-
Dobson

9 
 

Wang-
Agar

61 
 Zygg

85 
 Ztox

85 
 

Fold 

PASTA
86

 TANGO
87

 
 

Profile 
3D

89 
 Amyloid

88 
 Waltz

33
  

Sequence order- 

x  x                 

   

   independent    

Sequence order- 

      x  x  x  x  x  
 

x  Dependent
a
  x  

Aggregate 
structure- 

                     
 

x  dependent
b
 x  

Developed from 
amyloid 

aggregate 
datasets  x  x  x     x  x  x  x  x  

Developed from 
non-amyloid 

aggregate 
datasets           x  x     x        

Sequence 
Hydrophobicity 

 x  x  x  x        x    

Sequence 
Charge 

 x  x  x  x        x    

Sequence Beta 
sheet propensity x  x  x  x      x  x    

Potential for 
Hydrogen 

bonding and 
molecular 
contacts          x          

Energy 
minimization of 
self association            x        

Similarity to 
amyloid forming 

hexapeptides                x  x  
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In this chapter, nine different prediction algorithms are used to predict the aggregation propensity 

of wild type and mutant sequences for three different proteins: human Cu, Zn Superoxide Dismutase 

(SOD1), human Acylphosphatase (AcP), and amyloid beta peptide (Aβ42). SOD1 was introduced in 

Section 1.6 and is particularly relevant because of its link to ALS. AcP is not a disease-linked protein, but 

has been extensively used in mutagenesis-based aggregation studies91; 92 and provides an excellent dataset 

for comparison. Aβ42 is a short 42 amino acid peptide sequence that is implicated in the pathogenesis of 

Alzheimer‟s Disease93. These three proteins have diverse native states. SOD1 is a natively folded, 153 

amino acid homodimer59. AcP is a relatively small, natively folded, 98 amino acid monomer94. However, 

in the conditions in which the aggregation of AcP mutants has been measured, the protein populated the 

unfolded state92. This is discussed further in Section 3.3.1.2. Aβ42 is a 42 amino acid peptide fragment 

without stable tertiary structure95. In organic solvents, or membrane-mimicking solution, the Aβ42 

structure is composed of two alpha helices, while in water or aqueous solvents it appears to adopt beta 

sheet morphology. Structures for Aβ42 vary widely with differences in pH, concentration, or incubation 

time, indicating that it is generally unstable95. Performing prediction analysis on all three of these proteins 

and a series of mutants will allow for a thorough comparison of the performance of the algorithms for 

different types of proteins. In the next subsections nine different aggregation prediction techniques will be 

described. These algorithms were chosen based on the popularity of use and diversity in the strategies for 

algorithm design.  

2.1.1 Chiti-Dobson Equation 

 The Chiti-Dobson method for predicting protein aggregation was published in 20039. Its 

fundamental idea is that stability alone does not explain the pathogenic effects of several disease-linked 

proteins, and so there must be additional inherent factors, such as physicochemical properties and 

secondary structure propensities, in the amino acid sequence of a protein that influence its tendency to 

form protein aggregates. Based on mutational studies of human acylphosphatase (AcP) under conditions 

in which it was unfolded (pH 5.5, 25˚C, 25% Trifluoroethanol (TFE))
92

, three main contributing variables 
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significant to amyloid formation by unfolded protein were suggested: hydrophobicity, charge, and beta-

sheet propensity. Thioflavin T (ThT) fluorescence (a technique for quantifying amyloid formation, see 

Section 3.1.1) for a series of AcP mutants was correlated with each property separately to obtain 

empirical weighting coefficients, resulting in  the following equation9: 

 ln(νmut/νWT) = 0.633∆Hydr. + 0.198(∆∆Gcoil-α + ∆∆Gcoil-β) – 0.491∆Charge (1) 

ln(νmut/νWT) represents the natural logarithm of the ratio of the rate of aggregation of mutant compared to 

wild type protein. The equation describes how mutation-dependent changes in hydrophobicity (∆Hydr), 

propensity to convert from α-helical to β-sheet structure (∆∆Gcoil-α + ∆∆Gcoil-β), and charge (∆Charge), 

affect the rate of protein aggregation. Interestingly, although protein aggregation was measured at pH 5.5, 

the charge calculations were based on the charge adopted by each amino acid a neutral pH. The charge of 

an amino acid is dependent on the pH of the solution, and charge can have a strong influence on protein 

aggregation (see Section 1.3.3.). This discrepancy in the algorithm design may have implications in the 

accuracy of the predictions. This equation was developed and verified using experimental data of peptides 

and proteins that were unfolded in the conditions tested. 

2.1.2 Wang-Agar Equation 

 The Wang-Agar equation61 is based on the original equation proposed by Chiti and Dobson9. The 

equation was “re-calibrated” in 2008 by Wang and coworkers using updated ThT data for amyloid 

forming peptides and proteins, most of which were unfolded61. The updated equation used in their studies 

was:  

ln(νmut/νWT) = 0.82∆Hydr. + 0.52(∆∆Gcoil-α + ∆∆Gcoil-β) – 0.50∆Charge  (2) 

2.1.3 Zyggregator and Ztox 

 The Zyggregator method for protein aggregation prediction was developed by Tartaglia et al. in 

200885. This algorithm is also based on the inherent properties of each amino acid that contribute to the 

tendency of a protein to aggregate. This is a sequence order-dependent algorithm. This means that the 

propensity of a certain residue to contribute to protein aggregation is based not only on the inherent 



 

29 

 

properties of the residue, but also on the properties of the surrounding residues in the protein sequence.  

The aggregation propensity of each residue is calculated based on a sliding window of 7 residues, 

including the three residues preceding and following a particular amino acid. Thus the score reported for 

each amino acid is an average of the scores for all seven residues in the sliding window centred on the 

residue being reported. Aggregation propensity is calculated based on the same three variables outlined 

by Chiti and Dobson9, and also takes into account the pattern of hydrophobicity of the sequences within 

the sliding window and the presence of gatekeeper residues (described in Section 1.3.2). The Zyggregator 

algorithm uses coefficients for the physical and chemical variables based on an experimental data set of 

amyloid forming peptides and unfolded proteins. The algorithm was tested using the AcP database 

developed by Chiti and Dobson, and with a range of unfolded proteins in varying experimental 

conditions85.  

 A second algorithm, termed Ztox, was additionally developed by Tartaglia et al.85, and is 

identical to the Zyggregator algorithm with the exception that the coefficients for the physical and 

chemical properties in the algorithm are instead based on a dataset of protofibrillar-forming polypeptide 

sequences85. The goal of this algorithm is to predict sequences most likely to form soluble oligomers, 

which are suggested to be particularly toxic52.  

2.1.4 FoldAmyloid 

 The FoldAmyloid prediction algorithm was developed by Garbuzynskiy et al.88. The unique 

approach of this algorithm is based on the concept that amino acid sequences that have the potential to 

pack most tightly have the greatest likelihood of forming amyloid88. The ability to pack tightly is 

determined by the capability of the polypeptide sequence to form hydrogen bonds and molecular contacts. 

A dataset of 3769 native proteins was used to determine the average number of molecular contacts each 

amino acid makes within native structures and the probability of each amino acid to be involved in a 

hydrogen bond either as a proton donor or proton acceptor. Each amino acid within a sequence was given 

a score for each of these types of interactions. The average of these scores over a sliding window centered 
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on the residue in question determines the likelihood of contributing to amyloid formation by each amino 

acid within the sequence. A region of five or more positive scores in a row is considered to be 

aggregation-prone88. The algorithm was developed and tested using a dataset of amyloid-forming and non 

amyloid-forming peptides. 

2.1.5 PASTA 

 The PASTA prediction algorithm was introduced by Trovata et al.86. The purpose of this method 

is to determine the regions of an input amino acid sequence that are most likely to stabilize cross-beta 

fibrillation86. The algorithm uses pair-wise energy functions for residues facing each other when two 

identical sequences align in a β-sheet orientation. Pair potentials were derived from a set of 500 globular 

protein crystal structures and an energy score was given to every possible amino acid pairing in both 

parallel and anti-parallel conformation. For each residue in the input sequence a score is given for every 

possible pairing when the sequence is aligned with itself in the parallel and anti-parallel direction and the 

template strand is moved one residue at a time in the 3‟ direction (see Figure 2.1). The total score for each 

residue is the sum of all possible pairing values. The algorithm calculates an energy score over a sliding 

window of seven residues by averaging the total base pair potentials of each of the seven residues. The 

regions with the lowest scoring energy functions are considered to be the most prone to be involved in 

beta aggregation, since a lower score represents a lower free energy of interaction. This algorithm was 

tested by correctly predicting the amyloid-forming regions of the amyloid beta peptide, α-synuclein, and 

PHF43 (a peptide fragment from the foetal form of human Tau)86.  
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Figure 2.1 Calculation of energy scores using the PASTA algorithm. The input sequence shown in red 

is aligned with an identical sequence in the parallel (top) or anti-parallel (bottom) direction. A score is 

assigned to each residue in the template sequence based on the knowledge based energies developed from 

a data set of 500 protein crystal structures. The template then shifts by one amino acid residue another 

score is assigned to each amino acid based on the new interaction. Once all possible pairings have been 

calculated, an aggregation score is given to each residue based on the sum of all the pairing scores 

assigned during the sequence alignment. Figure from Trovata et al., 200686. 

 

2.1.6 TANGO 

 The TANGO algorithm for aggregation prediction was developed by Fernandez-Escamilla et 

al.87. This method uses a strictly computational, statistical mechanics approach. It is based on the concept 

that each amino acid residue can potentially be involved in one of the following conformations: β-turn, α-

helix, β-sheet, the folded conformation, or β-aggregate87. Each segment of the protein can populate these 

conformational states according to a Boltzmann distribution. The Boltzmann distribution requires that the 

probability of populating each state depends on the energy of that state. The TANGO algorithm uses 



 

32 

 

statistical and empirical methods to develop a partition function that determines the probability of 

populating each state for every residue in the sequence based on the energy calculations over a sliding 

window of seven amino acids. Here, the score given to each amino acid is the average probability of 

populating the beta-aggregate state of the seven residues centred on each particular residue.  The 

algorithm identifies residues that have the highest likelihood of populating β-aggregates. Regions with 

several β-aggregate prone residues consecutively are considered to be hot-spot areas for aggregation. This 

validity of this method was verified using 179 peptide fragments from 21 different proteins87.  

2.1.7 WALTZ 

The WALTZ method was developed in 2010 by Maurer-Stroh et al.33, and uses a position-

specific scoring matrix to predict amyloid formation33. The algorithm is made up of three components. 

The first is a scoring matrix based on the location of amino acids in a six-residue stretch. A hexapeptide 

dataset consisting of 116 peptides that form amyloid and 103 that do not, was used to develop the scoring 

matrix by assigning each amino acid a score for every position within a hexapeptide. The score represents 

the probability of amyloid formation that exists when a given residue is in a certain position. The second 

component is a function that encompasses nineteen physical and chemical properties that have been 

implicated in favouring amyloid formation. The third component is a position-specific pseudo-energy 

matrix developed from structural modeling using amyloid backbone structures. In short, for this 

component, a known crystal structure for GNNQQNY was reduced to polyalanine. Then the alanines 

were replaced with all possible amino acid combinations and energy-optimized using FoldX. A position 

specific pseudo-energy database was created by assigning every residue a score for each position within 

the hexapeptide by averaging the calculated FoldX energies for each amino acid at each individual 

position in combination with every possible arrangement of all other amino acids at each of the other 

positions. These three components are summed in the final equation:  
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Stotal = aprofileSprofile + aphyspropSphysprop + astructSstruct  (3) 

where a represents the empirically determined weighting coefficients for each parameter and S represents 

the score for each parameter. Sprofile is the score based on the location of the residue within the 

hexapeptide, Sphysprop is the score based on the sum of nineteen physical and chemical properties, and Sstruct 

is the score based on the pseudoenergy matrix from alignment to an amyloid crystal structure33. The 

algorithm was verified by predicting amyloid-forming six amino acid regions for series of functional 

amyloid-forming proteins and confirming experimentally whether these hexapeptides do in fact form 

amyloid. 

2.1.8 Profile 3D 

The Profile 3D prediction method was developed by Goldschmidt et al.89. It is an aggregate 

structure-based approach that utilizes the known crystal structure of the amyloid forming hexapeptide 

NNQQNY89. Six residue regions of the sequence in question are threaded onto the backbone of the crystal 

structure and comparative energies are calculated using the Rosetta Design96 potential energy function. 

Segments that can form similar, self-complementary zipper structures achieve low energy scores and are 

considered capable of amyloid fibril formation. A threshold for high propensity for fibrillation was 

determined using a set of 16 hexapeptide zipper crystal structures and mapping them to the NNQQNY 

structure used in this method and calculating the comparative energy. Segments with calculated 

comparative energies below this threshold are considered highly aggregation-prone. The validity of the 

algorithm was verified by accurate predictions of the aggregation-prone regions within RNase A89.  

2.2 Methods 

2.2.1 Quantifying predicted aggregation propensities 

2.2.1.1 Chiti-Dobson 

 The Chiti-Dobson equation9 is designed to specifically calculate the difference in aggregation 

propensity upon mutation, and so the only factors that contribute to the calculation are the changes in 



 

34 

 

chemical and physical properties between the WT residue and the mutated residue. The aggregation 

propensity calculations for each mutant were performed using equation 1 in Section 2.1.1, and parameters 

from Table 2.2 in Chiti et al., 2003 (reproduced below). The propensity for alpha-coil was calculated 

using the online Agadir calculation (http://agadir.crg.es/) as described by Chiti et al9. A sample 

calculation is shown below for the A4V mutation of SOD1: 

ln(νmut/νWT) = 0.633∆Hydr. + 0.198(∆∆Gcoil-α + ∆∆Gcoil-β) – 0.491∆Charge 

∆Hydr. = Hydr. of alanine – Hydr. of valine 

= (-0.39) – (-1.3) = 0.91 

 

(∆∆Gcoil-α) = RT ln(Pαwt/Pαmut)     *Pαwt and Pαmut calculated  

        using Agadir online server 

     = 0.008314 kJ mol-1K-1(310K)ln(0.4/0.5) 

    =  -0.575 

 

(∆∆Gcoil-β) = ∆Gcoil-β for alanine - ∆Gcoil-β for valine 

= 0.47– 0.13 = 0.60 

 

∆Charge = 0 (Charge of alanine) – 0 (Charge of valine)  

= 0 

ln(νmut/νWT) = 0.633(0.91) + 0.198(0.58 + 0.60) – 0.491(0) 

    = 1.38 

 

 

Since the aggregation score for A4V is greater than 0, this mutation is predicted to increase the propensity 

for aggregation relative to wild type. In this manner, aggregation propensity compared to wild type was 

calculated for all mutants using the Chiti-Dobson algorithm.  
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Table 2.2 Scales of hydrophobicity, b-sheet propensity and charge for the 20 natural amino acids, 

reproduced from Chiti et al.
9
 

Amino Acid 
Residue 

Hydrophobicity (kcal mol
-1

) 
a
 β-sheet propensity 

b
 Charge 

c
 

Arg (R) 3.95 0.35 1 

Lys (K) 2.77 0.34 1 

Asp (D) 3.81 0.72 -1 

Glu (E) 2.91 0.35 -1 

Asn (N) 1.91 0.4 0 

Gln (Q) 1.3 0.34 0 

His (H) 0.64 (2.87) 
d
 0.37 0 (+1) 

d
 

Ser (S) 1.24 0.3 0 

Thr (T) 1 0.06 0 

Tyr (Y) -1.47 0.11 0 

Gly (G) 0 0.6 0 

Pro (P) -0.99 n.d. 0 

Cys (C) -0.25 0.25 0 

Ala (A) -0.39 0.47 0 

Trp (W) -2.13 0.24 0 

Met (M) -0.96 0.26 0 

Phe (F) -2.27 0.13 0 

Val (V) -1.3 0.13 0 

Ile (I) -1.82 0.1 0 

Leu (L) -1.82 0.32 0 
a
 hydrophobicity values of the 20 amino acid residues at neutral pH based on the partition coefficients from 

water to octanol. The data are from column 6 of Table 4.8 in ref. 30. 
b
 β-sheet propensities of the 20 amino acid residues normalized from 0 (high β-sheet propensity) to 1 (low β-

sheet propensity). The data are from column 4 of Table 1 of ref. 29. The b-sheet propensity of proline is not 
reported due to the difficulty in determining it experimentally. The β-sheet propensity of glycine is from 
theoretical calculations. 
c
 values of charge are at neutral pH. 

d
 values in brackets are at a pH lower than 6.0, when the histamine residue is positively charged 

 

 

2.2.1.2 Wang-Agar 

 The calculation of aggregation propensity using the Wang-Agar equation61 is performed 

identically to that described for the Chiti-Dobson equation with the exception of different coefficients for 

the overall equation as described in Equation 3, Section 2.1.2. 
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2.2.1.3 Zyggregator and Ztox 

 The calculation for aggregation propensity using the Zyggregator and Ztox algorithms85 was 

performed using the online server at http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php. The FASTA 

sequence for each mutant was input into the server, the pH was set to 7, and either Zagg or Ztox was 

selected depending on the prediction being performed. An example of the output is given in Figure 2.2. 

An aggregation propensity score is given to each individual residue. To calculate the total aggregation 

propensity for the protein, the Zyggregator scores greater than zero were summed (those below zero are 

not considered to be aggregation-prone and thus are not considered in the total propensity calculation). 

The difference between mutant and wild type protein was calculated by subtracting the value for the total 

propensity of wild type from the total propensity of mutant. Mutant sequences with a positive difference 

are considered to be more aggregation-prone than wild type, while those with a negative difference are 

considered to be less aggregation-prone than wild type (see Section 2.2.2).  

 

 

Figure 2.2 Zyggregator output for pWT SOD1. These data were generated using the online algorithm 

at http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php. A sample of the output for residues 1-15 is 

shown here. Positive values indicate residues above the experimentally determined cut-off for being prone 

to aggregate while negative values correspond to residues below the cut-off. 
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2.2.1.4 FoldAmyloid 

 Aggregation predictions were made with the FoldAmyloid algorithm88 using the online server at 

http://antares.protres.ru/fold-amyloid/oga.cgi. Predictions were completed using the triple hybrid setting, 

which combined scores for molecular contacts, proton donators in hydrogen bonds, and proton acceptors 

in hydrogen bonds. Example output data is given in Figure 2.3.  The predicted aggregation-prone regions 

are given under the "Prediction” heading. The profile lists the individual prediction scores for each 

residue. Scores above zero are considered to be aggregation-prone. Total aggregation sums were 

calculated identically to the method described for Zyggregator and Ztox. 

 

Figure 2.3 FoldAmyloid prediction results for pWT SOD1. This output was generated using the online 

algorithm at http://antares.protres.ru/fold-amyloid/oga.cgi. The pWT SOD1 sequence was used as the 

input data and the sample output shows the overall regions predicted to be aggregation-prone listed under 

the heading “Prediction”, and the individual residue scores for residues 1-22. Negative scores correspond 

to residues not prone to aggregate and positive scores correspond to residues prone to aggregate. Regions 

coloured in blue (residues 16-20) are predicted to be amyloidogenic based on the presence of 5 

consecutive significantly positive scores.  Nonamyloidogenic regions are in green. 



 

38 

 

2.2.1.5 PASTA 

 Aggregation propensity calculations using the PASTA method86 were performed using the online 

server at http://protein.cribi.unipd.it/pasta/. The output includes a visual profile of the aggregation-prone 

regions, and a list of the highest-scoring regions. For superoxide dismutase and amyloid beta predictions, 

the 10 highest scoring regions were used for comparison. However, for human acylphosphatase there was 

no difference in the 10 highest scoring regions for the mutants in question, and so the 20 highest scoring 

regions were calculated. The inclusion of more of the top scoring regions allowed for the observation of 

some slight differences between input sequences. Figure 2.4 shows an example of PASTA output. In 

order to quantify the prediction output, the sum of the pair-wise energy functions for the top aggregation-

prone regions, termed the PASTA energy, was calculated for each input sequence. In this case, the 

number is negative, since the regions with the lowest energy scores are most aggregation-prone (See 

Section 2.1.5). For ease of comparison, this value was converted to its absolute value when used for 

compassion with other methods.  The difference between the absolute overall aggregation values of 

mutant protein minus wild type protein was calculated for each mutant, and those with positive scores are 

predicted to be more aggregation-prone than wild type protein (see Section 2.2.2).  
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PASTA OUTPUT 

 

Figure 2.4 Example output of the PASTA algorithm. A) The aggregation profile as calculated by the 

PASTA prediction server (http://protein.bio.unipd.it/pasta/) for pWT SOD1. The y-axis plots the value for 

h(k), which is defined as the probability of a given residue to aggregate in an ordered β-structure. B) An 

example of the text output obtained from the PASTA server calculations of the top ten highest scoring 

regions for pWT SOD1.  

A 

B 
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2.2.1.6 TANGO 

 The TANGO algorithm87 was used online at http://tango.crg.es. The amino acid sequences of the 

proteins involved in this study were input and the pH, ionic strength, and temperature were set to pH 7, 

0.02 M and 310 K, respectively. An example of the output data is shown in Figure 2.5. The output 

displays the phase separation probabilities for each state. The total aggregation propensity for a given 

sequence is displayed at the top of the chart and labelled “AGG”. This value is the sum of the beta 

aggregation column. The total aggregation propensity of the wild type sequence was subtracted from the 

total propensity for each mutant sequence. A positive difference indicates the mutant is predicted to be 

more aggregation-prone than wild type and a negative difference indicates that the mutant is less 

aggregation-prone (see Section 2.2.2).  

 

Figure 2.5 Output predicted aggregation from the TANGO server for pWT SOD1. The prediction 

was made using the online algorithm at http://tango.crg.es/. These sample data show the individual 

probabilities for each residue and calculates the total aggregation score by summing all values for beta 

aggregation. The top left corner lists the total aggregation score next to the heading “AGG”. 
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2.2.1.7 WALTZ 

 The Waltz method33 for protein aggregation propensity prediction is available through an online 

server at http://waltz.switchlab.org/. There are several ways to adjust the output cut-off by selecting best 

overall performance, high sensitivity, high selectivity, or by choosing a custom cut-off. By decreasing the 

cut-off more data can be obtained about the aggregation tendencies for a greater portion of the protein. 

For the purposes of comparing a series of mutants, a cut-off of 50 was chosen to allow for the observation 

of more differences between mutants. An example of Waltz output is given in Figure 2.6.  From this data, 

a total aggregation score for each protein sequence was determined by calculating the sum of the products 

of the lengths of each aggregation-prone region with the average score per residue within that region. The 

difference was calculated between each mutant and compared to wild type by subtracting the wild type 

score from the mutant score. In the cases where the difference was positive the mutant was predicted to be 

more prone to aggregate than wild type, while if the difference was negative, the mutant was predicted to 

be less aggregation-prone (see Section 2.2.2).  
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Figure 2.6 Output data for aggregation prediction of pWT SOD1 using the Waltz server 

(http://waltz.switchlab.org/). A) Detailed text output showing the positions, sequences, and score per 

residue for regions above the threshold of 50. B) Graphical output displaying the sequence regions 

predicted to be aggregation-prone. 

 

2.2.1.8 Profile 3D 

 Profile 3D89 aggregation prediction calculations were completed online at 

http://services.mbi.ucla.edu/zipperdb/. Figure 2.7 gives an example of the output. The threshold for 

aggregation was determined experimentally to be a Rosetta energy of -23.0 kcal/mol through the analysis 

A 

B 

http://services.mbi.ucla.edu/zipperdb/


 

43 

 

of predicted Rosetta energies and observed amyloid formation of a set of amyloid-forming hexapeptides. 

To determine a total aggregation propensity for each sequence, all values below -23.0 kcal/mol were 

summed, and the absolute value was compared to the absolute value of the wild type protein. A positive 

difference resulting from the subtraction of the wild type score from the mutant score indicated that the 

mutant was more prone to aggregate than wild type (see Section 2.2.2). 

 

 

Figure 2.7 Output data for the predicted aggregation propensity of pWT SOD1 using the Profile 3D 

method (available at http://services.mbi.ucla.edu/zipperdb/). A) Numerical data displaying the 

calculated parameters for each hexapeptide region within the full amino acid sequence. Of particular 

importance is the Rosetta energy which describes how well the given peptide can map onto a known 

amyloid crystal structure; the lower the energy, the better the structural homology. B) A bar graph is 

displayed of the Rosetta energies for each hexapeptide (beginning at the indicated residue) region of the 

protein sequence. Bars coloured in orange and red have energies below the aggregation threshold (-23.0 

kcal/mol) and thus are predicted to be highly aggregation-prone. 

A 

B 
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2.2.2 Normalization of Aggregation Prediction Data 

 In order to directly compare aggregation propensities predicted using different methods all data 

sets were normalized on a scale of 0 to 1. Each data set included all predicted aggregation propensities of 

mutations for one of the three test proteins, and the wild type protein, as predicted by one particular 

method. The difference between mutant and wild type was calculated for each mutant sequence giving a 

data set where wild type was zero and those with positive scores were predicted to aggregate more than 

wild type, while those with negative scores were predicted to be less aggregation-prone than wild type. 

The minimum and the maximum aggregation propensity values were determined for each data set, and the 

normalized values were calculated as:  

 (3) 

where Ni represents the normalized value for the mutant sequence, i is the initial aggregation propensity 

value for the mutant sequence, max is the value for the mutant in the dataset with the highest predicted 

aggregation and min is the value for the mutant in the dataset with the lowest predicted aggregation. In 

this way, each prediction algorithm was adjusted to the same scale. 

2.2.3 Production of Hot-spot Maps 

 In order to visualize the most aggregation-prone regions of the input protein sequence, hot-spot 

maps were created. The individual residue scores for the wild type protein sequences were normalized 

over a range of 0 to 1 (as described in 2.2.2). Stacked column charts were prepared using Excel in which 

the data are displayed with the residue number along the x-axis and the cumulative normalized score for 

predicted aggregation propensity along the y-axis (for an example, see Figure 2.9). The columns are 

divided into the proportional contribution of each algorithm and colour coded to represent the methods 

used. The Chiti-Dobson and Wang-Agar calculations are not included in this comparison because these 

algorithms are designed to predict only the changes in aggregation upon mutation and are not designed to 

identify highly aggregation-prone regions of the protein. 
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2.3 Results 

2.3.1 Predicting Aggregation Propensity of Superoxide Dismutase Mutants 

 All nine algorithms introduced in Section 2.1 were used to predict the aggregation propensity of 

pWT SOD1 and twenty-four of the most common SOD1 mutations found in fALS. Table 1.1 in Chapter 1 

lists the mutants used for this analysis. Table 2.3 gives the normalized aggregation scores from highest to 

lowest for all mutants for each algorithm. The table is colour coded such that pWT SOD1 and any mutant 

with identical predicted propensity are bolded in black. Mutants with a higher predicted propensity to 

aggregate than pWT are coloured red and those with a lower predicted aggregation propensity are shown 

in green. Some of the mutants are consistently predicted to be more or less aggregation-prone than pWT 

by multiple algorithms. However, for most mutants, there are obvious discrepancies in the pattern of 

predicted aggregation scores by the nine different algorithms. To further illustrate this, Figure 2.8 shows a 

line graph of the predicted aggregation propensities for four different mutants using the nine algorithms. 

Among the mutants studied, A4V is most consistently predicted to be aggregation-prone, while A4T and 

V148I show significant variability, and H43R, with the exception of two algorithms, is primarily 

predicted not to aggregate. 
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Table 2.3 Normalized predicted aggregation propensity for wild type and twenty four SOD1 mutants. 

Chiti-Dobson Wang-Agar Zyggregator Ztox   FoldAmyloid PASTA  TANGO  Waltz   Profile 3D 

1.00 D90A 1.00 D90A 1.00 A4T 1.00 G37R 1.00 S105L 1.00 D101N 1.00 A4V 1.00 L144F 1.00 G41S 

0.81 D101N 0.77 D101N 0.99 D101N 0.97 L144F 0.77 A4V 0.93 S105L 0.73 L144F 0.95 E100G 0.98 D101N 

0.79 S105L 0.76 S105L 0.98 E100G 0.96 A4V 0.67 G37R 0.62 G93C 0.58 S105L 0.92 L38V 0.60 L144F 

0.75 E100G 0.76 E100G 0.94 A4V 0.92 D101N 0.66 G93C 0.61 E100G 0.46 D101N 0.92 L84V 0.60 V148I 

0.70 G93C 0.61 A4V 0.91 D90A 0.85 D90A 0.62 G85R 0.61 A4V 0.45 pWT 0.90 V148I 0.59 L38V 

0.69 A4V 0.60 G93C 0.91 L144F 0.84 A4S 0.62 V148G 0.61 G93S 0.45 G93R 0.88 D90A 0.59 E100G 

0.58 L144F 0.50 L144F 0.87 L84F 0.82 L38V 0.60 G93A 0.60 G93A 0.45 G85R 0.86 S105L 0.59 G41D 

0.58 G41S 0.48 G93A 0.83 L38V 0.82 V148I 0.60 G93R 0.59 pWT 0.45 G37R 0.85 V148G 0.41 D90A 

0.56 pWT 0.47 pWT 0.80 L84V 0.80 L84F 0.55 G41S 0.59 A4S 0.45 H43R 0.83 pWT 0.41 A4V 

0.56 A4T 0.45 G41S 0.79 G93R 0.78 G93A 0.54 G41D 0.59 A4T 0.45 H46R 0.83 G93S 0.39 pWT 

0.55 G93A 0.44 L38V 0.79 I149T 0.73 L84V 0.54 G93S 0.59 V148I 0.45 E100G 0.83 G93A 0.39 H43R 

0.54 L38V 0.43 A4T 0.78 I113T 0.72 I149T 0.53 D90A 0.59 H43R 0.45 G93A 0.83 G93C 0.39 L84F 

0.52 G93S 0.40 G93S 0.73 S105L 0.72 I113T 0.53 D101N 0.59 G93R 0.45 G93S 0.83 L84F 0.39 L84V 

0.50 V148I 0.39 V148I 0.70 pWT 0.68 G85R 0.52 H46R 0.59 G85R 0.45 L38V 0.83 A4V 0.38 S105L 

0.47 A4S 0.34 A4S 0.69 G93S 0.67 G93C 0.51 pWT 0.59 G37R 0.45 G41D 0.81 A4T 0.38 A4S 

0.41 H46R 0.27 H46R 0.68 G93A 0.67 S105L 0.51 H43R 0.59 H46R 0.45 G41S 0.80 A4S 0.38 A4T 

0.39 I113T 0.26 V148G 0.68 V148I 0.66 A4T 0.51 E100G 0.59 L38V 0.45 L84F 0.79 I113T 0.34 I149T 

0.39 I149T 0.24 I113T 0.66 A4S 0.65 pWT 0.51 L84F 0.59 G41D 0.45 L84V 0.79 D101N 0.20 H46R 

0.39 G85R 0.24 I149T 0.65 G41S 0.64 E100G 0.51 L38V 0.59 G41S 0.45 D90A 0.71 G85R 0.20 G93C 

0.39 G37R 0.24 G85R 0.60 H46R 0.64 G93R 0.51 L84V 0.59 L84F 0.45 G93C 0.67 I149T 0.20 G93S 

0.35 V148G 0.24 G37R 0.58 V148G 0.62 V148G 0.50 A4T 0.59 L84V 0.45 I113T 0.64 G93R 0.20 G93R 

0.35 G93R 0.20 G93R 0.56 G85R 0.53 G93S 0.50 L144F 0.59 D90A 0.43 A4T 0.61 G37R 0.20 G93A 

0.26 H43R 0.15 H43R 0.50 H43R 0.29 H46R 0.37 A4S 0.59 L144F 0.43 V148I 0.45 G41S 0.20 I113T 

0.20 G41D 0.08 L84F 0.45 G41D 0.19 G41S 0.21 I113T 0.59 V148G 0.39 A4S 0.41 H46R 0.19 G37R 

0.06 L84F 0.02 G41D 0.41 G37R 0.09 H43R 0.07 I149T 0.59 I149T 0.02 I149T 0.35 H43R 0.15 V148G 

0.00 L84V 0.00 L84V 0.00 G93C 0.00 G41D 0.00 V148I 0.00 I113T 0.00 V148G 0.00 G41D 0.00 G85R 
*Mutants coloured red, green or black have aggregation propensity scores higher than, lower than, or equal to pWT SOD1, respectively. 
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Figure 2.8 Predicted aggregation propensities of SOD1 mutants display significant variability 

between algorithms for the same mutant. The predicted aggregation propensities for four ALS-linked 

SOD1 mutations were calculated using nine different prediction algorithms. There are considerable 

differences between prediction results for the same mutant. 

 

 To compare the aggregation-prone regions predicted by the different algorithms, a map of the 

aggregation hot sports for pWT SOD1 is given in Figure 2.9. The graph is a stacked column 

representation in which the y-axis is the sum of the normalized scores for each prediction algorithm. 

There is some consistency in the regions determined to be particularly aggregation-prone. Region 145-

148 is a hot-spot identified by six out of seven algorithms. Regions 16-18, 111-114 and 149-152 include 

areas predicted to be aggregation-prone by five out of seven algorithms, while several other regions are 

identified by three or four algorithms. 
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Figure 2.9 Aggregation-prone regions of  pWT SOD1predicted by seven different algorithms. The normalized aggregation prediction scores 

for each residue are plotted as a stacked bar chart. The total height of each bar represents the sum of the aggregation scores from all 7 algorithms. 

Each bar is divided by colour (see legend) based on the contribution from each algorithm.  
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2.3.2 Predicting Aggregation Propensity of Human Acylphosphatase Mutants 

 The aggregation propensity of wild type and 30 mutants of human acylphosphatase (AcP) were 

calculated using the nine different prediction algorithms. The normalized predicted aggregation 

propensities are displayed in Table 2.4. Once again there is some consistency in certain mutations that 

consistently score higher or lower than WT. However, the overall pattern differs widely between 

algorithms. Figure 2.10 shows a line graph representing the predicted aggregation propensity for four 

mutations. All four mutants shown in this figure are predicted to have both high and low predicted 

aggregation propensities depending on the algorithm used, and so illustrate the large scatter between the 

various aggregation prediction techniques.  

 

 

Figure 2.10 Predicted aggregation propensities of AcP mutants display significant variability 

between algorithms for the same mutant. The predicted aggregation propensities for the four AcP 

mutants show considerable differences between prediction results for the same mutant. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
al

iz
e

d
 A

gg
re

ga
ti

o
n

 P
ro

p
e

n
si

ty

Prediction Algorithm

S87T

L89A

L89V

Y91Q



 

50 

 

 

 

*Mutants coloured red, green or black have aggregation propensity scores higher than, lower than, or equal to pWT SOD1, respectively. 

Table 2.4 Normalized aggregation propensities for wild type and 30 AcP mutants using nine prediction algorithms. 

Wang-Agar Chiti-Dobson Zyggregator Ztox   FoldAmyloid PASTA TANGO Waltz Profile 3D 

1.00 R23Q 1.00 R23Q 1.00 K88N 1.00 R23Q 1.00 S21R 1.00 E90H 1.00 E29K 1.00 S43E 1.00 K88N 

0.98 R97Q 0.97 R97Q 0.91 K88Q 0.89 R97Q 0.94 S92H 0.63 L89V 0.94 E29Q 0.93 E55Q 0.94 Y25A 

0.88 R77E 0.87 R77E 0.87 S92T 0.87 S92T 0.91 E90H 0.55 K88N 0.93 A30G 0.80 R23Q 0.94 F22L 

0.88 R97E 0.87 R97E 0.87 S87T 0.86 S43E 0.84 S8H 0.51 S21R 0.84 E29R 0.59 R97E 0.94 Y98Q 

0.82 K88Q 0.81 K88Q 0.86 R23Q 0.79 K88N 0.71 S87T 0.42 S92H 0.82 E29D 0.57 L89V 0.94 S43E 

0.73 K88N 0.74 E29Q 0.83 R97Q 0.73 K88Q 0.70 K88Q 0.29 F94L 0.24 Y25A 0.56 L89A 0.77 Y91Q 

0.69 E29Q 0.73 S87T 0.79 R77E 0.69 S87T 0.70 S92T 0.25 WT 0.13 S43E 0.55 K88Q 0.74 E90H 

0.66 S87T 0.72 K88N 0.74 L89V 0.67 L89V 0.65 E29R 0.25 V17A 0.12 S92T 0.51 S92T 0.73 S92T 

0.65 E55Q 0.68 E55Q 0.62 E29D 0.65 A30G 0.61 E29Q 0.25 V20A 0.11 R77E 0.50 R97Q 0.71 WT 

0.60 S92T 0.65 L89V 0.62 A30G 0.64 R77E 0.60 V20L 0.25 V20L 0.11 R97E 0.50 E29K 0.71 V17A 

0.57 L89V 0.64 S92T 0.59 R97E 0.62 E90H 0.60 F22L 0.25 V20S 0.06 WT 0.50 L89T 0.71 V20A 

0.55 WT 0.54 WT 0.58 WT 0.59 R97E 0.59 F94L 0.25 F22L 0.06 V17A 0.49 F22L 0.71 V20L 

0.51 V20L 0.53 A30G 0.56 S43E 0.57 WT 0.58 E29K 0.25 Y25A 0.06 V20A 0.48 WT 0.71 V20S 

0.50 A30G 0.48 V20L 0.50 L89T 0.57 E29D 0.57 WT 0.25 E29D 0.06 V20L 0.48 V17A 0.71 S21R 

0.42 F94L 0.48 E90H 0.45 E90H 0.43 L89T 0.57 Y91Q 0.25 A30G 0.06 V20S 0.48 V20L 0.71 R23Q 

0.40 F22L 0.46 E29K 0.45 E29Q 0.42 Y25A 0.57 S43E 0.25 S87T 0.06 F22L 0.48 V20A 0.71 E55Q 

0.40 E90H 0.44 L89T 0.42 V20L 0.41 V20L 0.57 E55Q 0.25 L89A 0.06 S87T 0.47 Y91Q 0.71 R77E 

0.39 E29K 0.40 F94L 0.38 Y25A 0.37 V17A 0.55 E29D 0.25 L89T 0.06 L89A 0.47 F94L 0.71 R97E 

0.37 S43E 0.38 F22L 0.37 E55Q 0.36 L89A 0.55 A30G 0.25 Y91Q 0.06 L89T 0.46 S87T 0.71 R97Q 

0.34 E29D 0.35 S43E 0.34 Y98Q 0.34 F22L 0.55 R77E 0.25 S92T 0.06 L89V 0.45 E90H 0.70 E29K 

0.32 L89T 0.32 E29D 0.32 F22L 0.33 S92H 0.54 L89V 0.25 Y98Q 0.06 F94L 0.45 V20S 0.50 K88Q 

0.31 V20A 0.29 E29R 0.31 V17A 0.31 E29Q 0.53 K88N 0.25 S8H 0.06 S8H 0.44 Y98Q 0.49 L89V 

0.28 L89A 0.27 L89A 0.30 F94L 0.29 S8H 0.45 L89A 0.25 E29K 0.06 S21R 0.44 K88N 0.48 L89A 

0.26 V17A 0.27 V20A 0.26 S92H 0.28 Y98Q 0.45 L89T 0.25 E29Q 0.06 K88N 0.35 Y25A 0.48 L89T 

0.24 Y25A 0.22 S8H 0.25 S8H 0.26 E55Q 0.40 R23Q 0.25 E29R 0.06 K88Q 0.35 E29D 0.47 E29D 

0.23 E29R 0.22 S92H 0.22 L89A 0.25 F94L 0.38 V20A 0.25 E55Q 0.06 S92H 0.35 A30G 0.47 A30G 

0.20 S8H 0.22 V20S 0.21 E29K 0.19 Y91Q 0.37 R97Q 0.25 R77E 0.06 R97Q 0.35 E29Q 0.47 F94L 

0.20 S92H 0.20 V17A 0.21 E29R 0.14 V20S 0.32 V17A 0.25 K88Q 0.06 Y91Q 0.35 E29R 0.47 E29Q 

0.20 V20S 0.18 Y25A 0.08 S21R 0.14 V20A 0.29 Y25A 0.25 R97E 0.06 Y98Q 0.32 R77E 0.47 E29R 

0.13 Y91Q 0.14 Y91Q 0.05 V20S 0.05 E29K 0.28 V20S 0.25 R97Q 0.05 R23Q 0.30 S92H 0.24 S92H 

0.10 Y98Q 0.10 Y98Q 0.00 Y91Q 0.05 E29R 0.15 R97E 0.23 R23Q 0.00 E55Q 0.02 S21R 0.23 S8H 

0.00 S21R 0.00 S21R 0.00 V20A 0.00 S21R 0.00 Y98Q 0.00 S43E 0.00 E90H 0.00 S8H 0.00 S87T 
*Mutants coloured red, green or black have aggregation propensity scores higher than, lower than, or equal to pWT SOD1, respectively. 
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A comparison of the regions predicted to be most aggregation-prone was done by creating a hot-

spot profile. As for SOD1 (Figure 2.9), the sum of the normalized aggregation scores for each residue as 

predicted by seven of the prediction algorithms (the Chiti-Dobson and Wang-Agar methods are not used, 

see Section 2.2.3) for wild type AcP was plotted against the residue number. Figure 2.11 displays the hot-

spot profile as a stacked bar chart. Similarly to SOD1, the aggregation-prone regions for human 

acylphosphatase (AcP) are determined by identifying regions predicted by multiple algorithms as being 

prone to aggregate. Residue 34 is predicted as aggregation-prone by all seven algorithms and residues 35-

39 are predicted to be prone to aggregation by six out of seven algorithms. Residues 95 and 96 are 

predicted to be aggregation-prone by five out of seven algorithms, and several others are identified by 

four algorithms.  
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Figure 2.11 Predicted aggregation-prone regions of AcP by seven different prediction algorithms. The normalized aggregation prediction 

scores for each residue are plotted as a stacked bar chart. The total height of each bar represents the sum of the aggregation scores from all 7 

algorithms. Each bar is divided by colour based on the contribution from each algorithm. 
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2.3.3 Predicting Aggregation Propensities of Amyloid Beta Peptide Mutants 

 Aggregation propensities were calculated for WT and five amyloid beta peptide mutants. The 

normalized propensity results are given in Table 2.5. In general, WT is predicted to be the least, or second 

least, aggregation-prone sequence. However, the predicted aggregation propensities of the five mutations 

relative to WT vary widely. Figure 2.12 plots the aggregation propensity for four Aβ42 mutants for the 

nine prediction algorithms.  E22G is consistently ranked as highly aggregation-prone by six of the nine 

algorithms whereas A21G has the lowest tendency to aggregate in six out of nine prediction techniques. 

D23N and E22K vary significantly in predicted propensity.  

 

 

Figure 2.12 Predicted aggregation propensity of amyloid beta mutants displays significant 

variability between algorithms for the same mutant. The predicted aggregation propensities for four 

Aβ42 mutations were calculated using nine different prediction algorithms. There are considerable 

differences between prediction results for the same mutant. 
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Table 2.5 Normalized aggregation propensities for wild type and 5 amyloid beta mutants using nine prediction algorithms. 

 

 

 

Figure 2.13 Predicted aggregation-prone regions of amyloid beta by seven different prediction algorithms. The normalized aggregation 

prediction scores for each residue are plotted as a stacked bar chart. The total height of each bar represents the sum of the aggregation scores from 

all 7 algorithms. Each bar is divided by colour based on the contribution from each algorithm. 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

A
gg

re
ga

ti
o

n
 P

ro
p

e
n

si
ty

 (
cu

m
u

la
ti

ve
 n

o
rm

al
iz

e
d

 
sc

o
re

)

Amino Acid Residue Number

TANGO

Profile 3D

FoldAmyloid

Ztox

Zyggregator

Waltz

PASTA

Chiti-Dobson Wang-Agar Zyggregator Ztox   FoldAmyloid PASTA Tango Waltz Profile 3D 

1.00 D23N 1.00 D23N 1.00 E22G 1.00 E22G 1.00 E22Q 1.00 D23N 1.00 E22G 1.00 E22Q 1.00 D23N 

0.83 E22G 0.97 E22G 0.73 E22Q 0.54 E22Q 0.81 E22K 0.31 E22Q 0.98 E22Q 0.99 E22G 0.57 E22K 

0.68 E22Q 0.74 E22Q 0.46 D23N 0.48 A21G 0.79 D23N 0.28 E22K 0.97 D23N 0.85 E22K 0.50 E22Q 

0.54 E22K 0.59 E22K 0.20 A21G 0.43 D23N 0.76 WT 0.18 E22G 0.83 E22K 0.77 D23N 0.49 A21G 

0.19 WT 0.17 WT 0.11 E22K 0.06 WT 0.47 E22G 0.16 WT 0.81 WT 0.44 WT 0.29 E22G 

0.00 A21G 0.00 A21G 0.00 WT 0.00 E22K 0.00 A21G 0.00 A21G 0.00 A21G 0.00 A21G 0.00 WT 
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 The regions predicted to be most aggregation-prone by each algorithm for WT Aβ42 are displayed 

in Figure 2.13. There is an obvious general consensus that the N-terminus of amyloid beta is not predicted 

to aggregate. Residues 33 and 35-37 are predicted to be aggregation-prone by all seven algorithms. 

Residues 18 and 20-22 are predicted as aggregation-prone by six out of seven algorithms. Several other 

residues are predicted to be aggregation-prone by 4 or 5 algorithms. 

2.4 Discussion 

 There are two main approaches in predicting protein aggregation. The first is the calculation of an 

overall aggregation propensity for a protein sequence. The second is the identification of the regions 

within a protein sequence that are most likely to be involved in aggregation. The algorithms used here 

were analyzed for both purposes and the results are discussed in the sections below. To date, this is the 

first broad comparison between such a large selection of algorithms. The ability of the algorithms to 

consistently predict a consensus in the overall propensity of a sequence to aggregate was quite weak. 

Based on the fact that the algorithms were developed by varying strategies and tested for the ability to 

predict different types of aggregation (see Section 2.1), the large inconsistencies in the overall predicted 

propensity for an identical sequence by multiple algorithms are not completely surprising. However, the 

extent of these differences, even for proteins that readily form amyloid, is greater than expected. This will 

be discussed in Section 2.4.1. In Section 2.4.2 a comparison of the ability of several algorithms to 

generate a consensus on the region within a protein that is most prone to aggregate is analyzed. Much 

greater success is observed by the algorithms for this technique than in predicting overall aggregation 

propensities. This may prove useful in identifying regions susceptible to promoting protein aggregation. 

2.4.1 Inconsistent Patterns in Predicted Aggregation Propensities between Algorithms 

 Extensive calculations of predicted aggregation propensity were performed using various 

techniques to look for consistency in the predictions made by multiple algorithms. It would be expected 

that if a certain mutant was predicted as highly aggregation-prone by multiple methods, it may enhance 

the likelihood that this sequence is prone to aggregate experimentally. However this is complicated by the 
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fact that different algorithms were designed to predict different types of protein aggregation (vide infra). 

Based on the role of aggregation in neurodegenerative disease pathology, the validation of predicted 

mutant aggregation propensity using multiple techniques could be particularly important to better 

understand the role of mutant aggregation in disease pathogenesis. To date, a comparison of this size 

between such a large number of algorithms and using a broad range of mutations had not been made. 

Somewhat surprisingly, there were significant deviations in the aggregation propensity scores for the 

same mutant of a certain protein by multiple prediction algorithms. This might suggest that the 

differences in design of these algorithms prevent consistent prediction scores for the same sequence. 

Table 2.6 compares the methods by which each algorithm was tested in order to confirm the validity of 

the algorithm. Eight out of nine algorithms (with the exception of Ztox) were verified by the formation of 

amyloid. Four of these algorithms (FoldAmyloid, TANGO, Waltz and Profile 3D) were verified based on 

amyloid formation by peptides. In the case of FoldAmyloid and PASTA, the algorithms were used to 

predict whether or not a short peptide sequence would form amyloid and this was tested experimentally. 

For Waltz and Profile 3D full length native protein sequences were used as input sequences to determine 

regions with high amyloidogenicity. Then peptides were acquired with the sequence of the regions highly 

predicted to aggregate and tested experimentally for amyloid formation. Based on the diversity in the 

prediction methods and the methods by which they were designed and tested, it might be expected that 

some of the algorithms would perform quite differently for the same sequence, while others may be more 

likely to give similar results because of commonalities in algorithm testing and design. This was 

additionally confirmed by performing several correlations between the prediction results for SDO1 by 

multiple algorithms. Most algorithms did not give statistically significant, strong correlations, when 

plotted against each other, confirming that the algorithms show scattered results in the predictions of 

identical sequences. 
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Table 2.6 Comparison of the methods used to test the validity of protein aggregation prediction 

techniques. 

Method of 
Algorithm 

Verification 

Prediction of 
Amyloid 

formation by 
Unfolded 
Protein 

Prediction of 
Oligomer 

formation by 
Unfolded 
Protein 

Prediction of 
Amyloid 

formation by 
hexapeptides 

Prediction of 
amyloid-prone 

regions of 
Functional 
Amyloids 

Prediction of 
amyloid-

prone 
regions of 

Folded 
Protein 

Algorithms Chiti-Dobson 
Wang-Agar 
Zyggregator 

PASTA 

Ztox FoldAmyloid 
PASTA 
TANGO 

Waltz Profile 3D 

 

Table 2.3 shows the numerical aggregation scores and the overall ranking for all SOD1 mutants 

studied. The pattern of highest to lowest aggregation propensity is different for every algorithm. In 

addition, the normalized scores vary widely for the same mutant, indicating that the degree of change in 

propensity as a result of a single mutation is quite different for different algorithms. For example the pWT 

SOD1 construct ranges from an aggregation score as low as 0.39 by Profile 3D to as high as 0.83 by 

WALTZ. Figure 2.8 further illustrates the diversity in aggregation predictions by demonstrating the range 

seen for four specific mutants between algorithms. It is interesting that while one mutation, A4V, scores 

somewhat consistently high, another, H43R, ranges quite significantly from 0 to 1. These discrepancies 

show there is a lack of consensus between the algorithms on which factors might govern the general 

principles contributing to protein aggregation.  

 To further examine the origin of the diverse range of prediction scores observed for different 

mutants, the algorithms were tested on more than one protein. Because many of the algorithms were 

developed using datasets of unfolded protein and short peptides, and many included aggregation data 

from AcP in unfolded conditions and Aβ42 (a short peptide with little secondary structure), both AcP and 

Aβ42 were chosen for additional analysis. An additional point for consideration is that most of the 

algorithms (see Table 2.1) were developed based on ThT data, a dye that binds specifically to amyloid. 

Since SOD1 is not a typical amyloid-forming protein, this may also contribute to the lack of consensus 

seen in the aggregation prediction results for SOD1. AcP forms ThT-binding aggregates at pH 5.5, while 
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Aβ42 readily form amyloid aggregates at pH 7, and thus it is expected that these proteins may show more 

consistent aggregation predictions. Somewhat surprisingly, there are considerable differences in the 

predicted aggregation scores between different algorithms used for the analysis of the same mutant, and in 

the overall observed patterns of predicted propensities, for AcP mutants when calculated using the nine 

described techniques. Table 2.4 shows the propensity rankings for each AcP mutant by all algorithms, and 

while there are some mutants that consistently score at the top or the bottom of the list, there are many 

that vary widely. A similar pattern of variation is observed for the aggregation predictions of Aβ42. There 

may be a slight improvement in consistency of the ranking pattern, likely because of the short peptide is 

less complicated than a full protein and it may be easier to accurately predict aggregation; however, the 

range of aggregation scores is still quite high, with WT ranging from 0 to 0.81. Figure 2.12 displays a 

similar lack of consensus for the propensity of predicted aggregation for four Aβ42 mutants between the 

nine algorithms despite the fact that this is a characteristic amyloid-forming peptide. As noted in Table 

2.1, all algorithms except Ztox, were designed based on amyloid-forming proteins or peptides, and as 

described in Table 2.6, almost all algorithms were tested with amyloid forming peptides and unfolded 

proteins. Thus, the inconsistency in predictions for AcP and Aβ42 is somewhat surprising; however it may 

again be an indication that the properties controlling the different types of aggregation used for the 

development of each algorithm are not identical.  

The discrepancy in aggregation scores and patterns observed for mutations of three different 

proteins suggests an overall lack of consensus of the major contributing factors controlling the protein 

aggregation processes predicted by each of these algorithms. Table 2.1 lists the variables included in each 

algorithm and Table 2.6 summarize the types of aggregation that were predicted by each method. Some 

factors such as hydrophobicity, charge and beta-sheet propensity are included in multiple algorithms, 

while others, such as hydrogen bonding, are considered by only one of the algorithms. In addition, the 

role of sequence order or aggregate structure, as incorporated through different methods by some of the 

techniques, will also play a role in the outcome of the prediction. Thus, as has been stated previously, the 

large differences in predicted aggregation propensities for the same sequence between algorithms are 
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perhaps not surprising. The more fundamental question then is which of these algorithms, or which 

components within these various algorithms, are most important to aggregation propensity, and what are 

the differences in the variables that contribute to different types of aggregation. 

The context in which each algorithm was designed strongly influenced which factors were 

included in the algorithm. For instance, the Chiti-Dobson equation was based on ThT-fluorescence of 

aggregates formed from unfolded polypeptide sequences, and so the physical and chemical properties of 

the amino acids within the sequence are likely to play the predominant role in controlling aggregation. On 

the other hand, the Waltz algorithm was based on amyloid-forming hexapeptides, and so the sequence 

order of 6-amino acid long stretches within a protein are of particular importance to predicting whether 

these short regions may contribute to amyloid formation by the protein in question. This algorithm also 

treats each hexapeptide region as an individual unit available to aggregate, and does not consider its 

context within the entire protein structure. In these examples, and in the context-specific design of each 

algorithm, it may be true that the factors controlling one system are different than the factors controlling 

another system. For example, the features that cause an unfolded polypeptide sequence to aggregate may 

be different than the factors that promote amyloid formation of a short hexapeptide, or amorphous 

aggregation by a natively folded protein. The next chapter will investigate a comparison of predicted and 

observed aggregation to look at the ability of each algorithm to predict experimental in vitro aggregation 

of these three proteins.  

2.4.2 Overlapping prediction hot-spots using multiple algorithms 

 An important component in predicting protein aggregation is the ability to identify which region 

of the protein is contributing to the tendency to aggregate. Seven out of nine algorithms were used to 

identify consensus regions of high aggregation propensity for the wild type proteins involved in this 

study. In this way the „hot-spots‟ for aggregation can be predicted by looking for regions that are 

identified as potential aggregation-prone areas by multiple algorithms. There was much greater success 

identifying aggregation hot-spot regions by comparing prediction algorithm results than finding a 
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consensus in absolute overall aggregation propensity as described in the previous section. Figures 2.9, 

2.11 and 2.13, give the hot-spot maps for the SOD1, AcP, and Aβ42, respectively. For example the C-

terminal of SOD1 is strongly predicted to aggregate according to the cumulative aggregation scores. Six 

out of seven algorithms predict this region as aggregation-prone. There are also several stretches with a 

cumulative score of zero, meaning that none of the algorithms predict this region to be aggregation-prone. 

Similar results were obtained for both AcP and Aβ42 where at least 5 algorithms predict the same region 

to be aggregation-prone and stretches exist where no algorithm predicts aggregation. This is important 

because it shows that despite the general inconsistencies in predicted overall probability of a polypeptide 

sequence to aggregate, there is some consensus in identifying the regions of the protein that are most 

likely to be involved in aggregation. Figure 2.14 shows crystal structures of native holo SOD1, folded 

human AcP, and Aβ42 with the adopted secondary structure when associated with a membrane97, and 

shows the aggregation hot-spot regions mapped onto the structures. For SOD1 and AcP the hot-spot 

regions are predominantly beta strands. This is not surprising since amyloid adopts a cross beta fibrillar 

structure. The fact that these seven algorithms are somewhat able to converge upon a few short sequences 

as the consensus regions for high aggregation propensity provides evidence for the potential ability of 

prediction techniques to locate vulnerable sections within a protein. For one of these segments, 

experimental results have previously confirmed the amyloidogenic nature of these regions. For example, 

the 36-40 amino acid segment of Aβ42 was predicted to be aggregation prone by Teng et al.98. This was 

verified experimentally by inserting this peptide sequence into RNase A and demonstrating that this 

resulted in amyloid formation by this RNase A construct. The consensus results from these experiments 

identify the C-terminus as being highly aggregation prone, with residues 35-37 being predicted as 

aggregation prone by all seven algorithms. Additional experimental results are required to confirm the 

amyloidogenicity of the other identified hot-spot regions. Further analysis to decipher whether there is 

increased consistency in the aggregation-prone regions predicted by algorithms that were developed based 

on similar data sets may also provide extended information as to whether certain regions are particularly 

important in one type of aggregation versus another. 
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Figure 2.14 Aggregation-prone hotspots of three different proteins. Portions in red indicate the 

protein regions with the greatest propensity to aggregate and are determined based on calculations of 

predicted aggregation propensities from seven different algorithms (see Table 2.1. All algorithms except 

for Chiti-Dobson and Wang-Agar were used for this comparison). A) Human Cu, Zn Superoxide 

Dismutase, with zinc shown in green and copper in blue (PDB 1SOS). B) Human Acylphosphatase (PDB 

2VH7). C) Amyloid beta peptide (PDB 1Z0Q).The protein backbones are shown in ribbon representations 

generated using the program Pymol99. 

2.4.3 Current Barriers in Accurate Aggregation Prediction 

 Accurately predicting protein aggregation remains an extremely difficult task. It is an important 

undertaking, however, because it provides an opportunity to test current understanding of what causes 

protein aggregation and what are the most important variables that affect this process. It may also allow 

A 

B C 
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for the identification of proteins and mutants with a high risk of aggregating and provide a basis for the 

determination of the regions within a protein that are responsible for aggregation.  

The heterogeneity of the aggregation process is a difficult problem when it comes to designing 

specific aggregate prediction tools, as it is possible that similar factors may be involved in controlling 

more than one aggregate pathway. Most of the current algorithms focus on the prediction of amyloid 

formation and were designed and tested based on amyloid forming proteins and peptides (See Table 2.6). 

However, amyloid is only one of many possible conformations that may result from protein aggregation. 

The molecular mechanisms resulting in protein aggregation are not well understood; however, it is clear 

that there are many potential pathways that can result in various aggregate morphologies (see Section 

1.2). Some aggregate forms may be a component of a longer pathway, such as prefibrillar species that will 

further transform into mature amyloid fibrils, while others may be a separate endpoint in themselves, such 

as the formation of soluble oligomers11. Some algorithms intentionally try to maintain a narrow scope of 

prediction, such as Waltz, which specifically aims to predict only amyloid formation, whereas Tango 

aims to predict all forms of beta-sheet aggregation. These differences likely play a role in the 

inconsistencies observed for absolute aggregation scores for a given mutant. A major challenge, then, in 

the development of improved prediction algorithms is the ability to specify which type of aggregation is 

being predicted, and to find techniques to identify and measure the different types of aggregates being 

formed within an in vitro test system.  

 A second major difficulty in the effective design of aggregation prediction methods is the 

inclusion of native protein structure into the prediction method. All of the prediction algorithms included 

in this study do not take into account the native protein structure in the prediction calculation. This is 

important to consider because if the input sequence is a natively folded, extremely stable protein, than 

even if there is a highly aggregation-prone region buried in the core of the protein, it may not follow that 

the protein has an increased tendency to aggregate if it is uncommon for this region of the protein to be 

exposed100. A handful of groups have tried to address this issue by the incorporation of native structure, 

predominantly by the prediction of native structure for the given sequence, then the use of that structure in 
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the design of the prediction algorithm85. Another way to include some form of structure in aggregation 

prediction is to factor in protein stability. A measure of stability would inherently include a measure of 

the probability of a protein to persist in the unfolded or folded state, and this is expected to be an 

important contributing factor in protein aggregation23. This would assume, however, that a less stable 

protein is more likely to be unfolded, and that aggregation occurs from an unfolded state. Unfortunately, 

this is not always the case as aggregation is known to occur from both folded and unfolded states10; 29. 

Regardless, stability is known to correlate with aggregation rates and thus is an important factor in 

controlling aggregation65; 100; 101. The development of ways to more accurately represent protein structure 

in aggregation prediction tools should dramatically enhance propensity calculations. 

 Another question at the root of many of these prediction algorithms is whether or not a peptide 

region that is amyloidogenic as an individual peptide will cause the protein it is a part of to form amyloid. 

This is a fundamental issue that needs addressing, particularly considering the fact that several of the 

algorithms discussed here were developed based on and/or tested on peptide sequences. This is not an 

easy question to address as it depends on numerous other factors including the location of the peptide on 

the protein structure. If the region is buried inside the protein, it will likely not be a principal contributor 

to the aggregation tendency of the entire protein, whereas, if the amyloidogenic region is located on the 

surface of the protein it could play a predominant role10; 102. Thus, the assumption of the algorithms that 

are based on amyloid forming peptides (FoldAmyloid, TANGO, Waltz and Profile 3D) in identifying 

aggregation hot-spots is that a peptide sequence that forms amyloid in vitro will also promote aggregation 

when in the context of the native protein structure. There is some evidence to support this31; 98; 103, and 

other evidence that contests this notion100. More information is required to confirm or alter this hypothesis 

and this will be extremely important to the advancement of aggregation prediction technology.  

 Finally, the solution conditions are an additional contributing factor not well incorporated into 

most of the prediction algorithms. As discussed in 1.3.3, the temperature, ionic strength, pH and surface 

exposure can play significant roles in modulating the initial state and the aggregation patterns of a 

protein8; 22. These conditions can influence protein stability, charge, electrostatic and hydrophobic 
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interactions, and protein dynamics. Solution conditions can be used to direct the type of aggregate 

formed, and the rate of aggregation, of a protein in solution16. For these reasons, it is particularly 

important to consider the conditions in which a protein is in and how they will contribute to the state of 

the protein and the promotion of protein-protein interactions (discussed further in Chapter 4). 

 Given the complexity of the factors involved in controlling and mediating the aggregation 

process, it may not be possible to develop a prediction algorithm capable of predicting all types of protein 

aggregation. What may become a more promising and favourable research path is the development of 

specific algorithms for various types of aggregation pathways, allowing for the determination and 

differentiation of the aggregation patterns of different proteins. Thus instead of focusing on the general 

principles of protein aggregation it may be important shift the focus to very specific contexts of 

aggregation to look for the factors that influence a specific type of aggregation, then comparison of the 

factors between different aggregate types will provide information regarding how the contribution of 

different variables varies between the formation differing aggregate structures. 

2.4.4 Conclusion 

There is great diversity in current aggregation prediction techniques. Each method has potential 

strengths and weaknesses in its ability to predict the aggregation tendencies of protein sequences. 

Considering the variability in the components included in each algorithm, it is evident that the factors 

responsible for controlling the many pathways of aggregation are not well understood. Major differences 

were observed when comparing the prediction results by all nine methods for the same input sequence. 

This was true for all three proteins studied, suggesting that although each algorithm appears to be 

successful within the context it was generated, there are major limitations when attempting to apply the 

same principles over a broader range of proteins. Despite the inconsistencies in predicting overall 

aggregation tendencies, the algorithms do tend to converge in indentifying regions within a protein 

responsible for aggregation, which is a positive step in understanding the aggregation process. For these 

reasons, additional research is required to systematically test the variables contributing to aggregation and 
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determine whether there are differences in contributing factors depending on the type of aggregation 

observed.  
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Chapter 3 

Correlating Predicted and Observed Aggregation 

3.1 Introduction 

 Prediction of protein aggregation is a potentially powerful tool that may further understanding of 

the mechanisms contributing to protein aggregation pathways. Comparison between predicted and 

observed aggregation provides a tangible way to test whether the variables included in the prediction 

algorithms control the experimental aggregation in the system being tested.  Deciphering the detailed 

mechanisms controlling protein aggregation is particularly important in neurodegenerative disease 

research to elucidate the patterns contributing to the formation of toxic aggregates. A more 

comprehensive understanding of the mechanisms controlling protein aggregation pathways has potential 

to provide a basis for the development of much needed therapeutic techniques to interfere with and 

prevent aggregate formation. 

 A handful of studies have utilized protein aggregation prediction algorithms to compare predicted 

aggregation propensities of wild-type and mutant proteins with observed aggregation and/or toxicity for a 

variety of disease-linked proteins. Few, however, have taken a quantitative approach to calculate and 

correlate the predicted and observed aggregation values for several mutants of the same protein. A study 

by Luheshi et al.104,  used a Drosophila melanogaster model for Alzheimer‟s disease with a range of 

amyloid beta mutant peptides and correlated the predicted aggregation propensity of these peptides to the 

lifespan of the flies104. In this case, the predicted aggregation propensity using both the Zyggregator and 

Ztox methods correlate well with the life span of the mutant flies. The correlation with Ztox, an algorithm 

designed specifically to predict the formation of oliogomeric, pre-fibrillar structures, is stronger than the 

correlation with Zyggregator, suggesting an important role for pre-fibrillar aggregates in mediating 

aggregate toxicity104. However, this study did not directly correlate the prediction algorithms with 

observed aggregation, but instead assumed that fly death is dependent on amyloid beta aggregation and is 

a measure of the mutant aggregation tendencies. Another study investigated the effects of mutations on 
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the aggregation patterns of β2-microglobulin and compared the results with a series of aggregation 

prediction techniques100. The lag and elongation times of fibril formation were measured using Thioflavin 

T (ThT) fluorescence for a series of point mutations. Experiments showed that mutations in only one 

short stretch of the sequence had the greatest effects on aggregation rates. This was in contrast to the 

results of three prediction methods, Zyggregator85, Tango87 and Aggregscan105, which predicted two main 

regions of high amyloidogenic potential.  The discrepancy between the experimental and predicted results 

was attributed to the role of native intramolecular interactions in the second region. Because this part of 

the protein is particularly important in forming the intramolecular contacts involved in the native folded 

protein, it was predicted to also be involved in protein aggregation. However, experimental results 

revealed this was not the case100.  

These studies show some evidence for correlations between predicted and observed aggregation 

results, however, in general the limited number of these types of studies indicate a need for further 

investigation. To the best of our knowledge there has yet to be a quantitative comparison between 

predicted and observed aggregation for several algorithms using multiple, diverse, test proteins. A recent 

study performed a comparison of several prediction algorithms by correlating predicted aggregation 

propensities of several Aβ42 mutants with observed in vivo aggregation106. Aggregation was previously 

measured in an E. coli system using green fluorescent protein (GFP)107. An analysis of twelve algorithms 

demonstrated that most of the algorithms were able to accurately predict the effect of a mutation on 

aggregation propensity in vivo. Similar positive correlations were observed for the relationship between 

predicted aggregation propensities for HypN-F mutants and aggregation observed by the measuring of the 

ratio of soluble/insoluble protein in an E. coli system106. While these results are quite promising, they are 

also quite limited as they are solely based on the prediction of two short amyloid-forming peptides, and 

further studies on a more diverse set of proteins is required. Here, the three test proteins described in 

Chapter 2 will be used to test the correlation between predicted and observed aggregation in vitro. The 

results will show discrepancies in predicted and observed aggregation and highlight ideas surrounding the 

apparent specificity of aggregation predictions based on the context in which the algorithms were 
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designed. Additionally, prediction methods will be used to investigate the nature of SOD1 aggregation in 

ALS disease pathogenesis.  

3.1.1 Techniques for Measuring Protein Aggregation  

Two methods will be used in this study to measure protein aggregation. Dynamic Light Scattering 

(DLS) utilizes scattered light to measure the amount and size of aggregated species in solution, while 

Thioflavin-T (ThT) is a fluorescent dye that can be utilized to quantify fibril formation in solution. DLS 

measurements for SOD1 mutants in the reduced apo form were acquired for this study in collaboration 

with Helen Stubbs in the Meiering lab27. ThT-fluorescence data from previously published work from 

other labs will be used for correlations between predicted and observed aggregation of AcP9; 92, and 

Aβ42
108; 109; 110. The aggregation prediction algorithms that will be used in this study were predominantly 

designed based on ThT data from amyloid-forming proteins (See Section 2.1). However, SOD1 is not a 

typical amyloid-forming protein and ThT data is not readily available for SOD1 mutants. Instead, reduced 

apo SOD1 has been shown to readily form soluble aggregates, which can be monitored by DLS27. For this 

reason, DLS data as opposed to ThT data will be used as the experimental results for observed SOD1 

aggregation. These two methods for measuring aggregation are described in detail below.  

 Thioflavin T (ThT), shown in Figure 3.1, is a fluorescent dye that interacts with the beta-sheet 

structure of amyloid and amyloid-like aggregates111. It was first identified in 1959 as a histological 

amyloid marker112. Its fluorescence spectrum was further characterized in the 1980‟s and 1990‟s and 

found to exhibit a several-fold intensity fluorescence increase, an excitation maximum shift from 385nm 

to 450nm, and an emission maximum shift from 445nm to 482nm upon binding to amyloid fibres111. It 

was quickly determined that the shift and increase in fluorescence are linked to the beta-sheet morphology 

of amyloid fibres, allowing binding to occur with amyloids formed by any protein because the interaction 

is not dependent on the amino acid side chains but on the structural backbone interactions113. The specific 

molecular interactions of ThT with amyloid were far more elusive, and only recently have advancements 

been made to decipher the mechanism by which ThT interacts with amyloid fibres. It is suspected that in 
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solution the benzylamine and benzathiole rings of ThT freely rotate about their shared carbon-carbon 

bond (Fig. 3.1), thereby quenching the intrinsic fluorescence. However, upon interaction with a beta-sheet 

fibril, decreases in this rotation results in increased fluorescence. The most widely accepted model for 

ThT binding is that the side chains of amino acids involved in beta-sheet conformations form solvent-

exposed channels that act as dye binding pockets113. Further investigation has suggested that ThT-

interactions are predominantly mediated by aromatic side chains113. The interaction of ThT with beta 

sheet amyloid structures provides a useful tool to characterize the growth of amyloid fibrils. This is an 

extremely popular technique due to the relative simplicity of measuring the fluorescence increase. 

However, it is worth noting that because the specific mechanisms of ThT-amyloid interactions are not 

known, it is possible that ThT is not particularly specific to amyloid fibrils. Thus, interpretation of ThT 

data should be approached with a certain degree of caution. This chapter will utilize previously published 

aggregation rate data obtained from ThT-fluorescence experiments of several mutant proteins to explore 

the correlations between predicted and observed aggregation. 

 

Figure 3.1 Chemical structure of Thioflavin T
111

. 

 

Dynamic Light Scattering (DLS) is a useful technique for studying the size of macromolecules 

and their assemblies, both of which may be considered as light scattering particles. This method measures 

the amount of light scattered by the particles in a small volume of solution on a time scale of nanoseconds 

to seconds and directly correlates the intensity of light scattered to the motion of the particles114; 115.When 

an incident laser beam is directed at particles in solution this results in secondary wave formation, or in 

other words, scattered light
115

. A protein in solution will move randomly according to Brownian motion 



 

70 

 

and scatter light in all directions. When a detector is at a fixed angle and distance from the incident light 

beam relative to the sample, the scattered light received by detectors will fluctuate based on the motion of 

a particle in solution. The location of the particle may be such that the electromagnetic scattered light 

waves result in constructive or destructive interference116; 117. The change in the fluctuations in intensity of 

the scattered light received by the detector is fundamental to the ability of DLS to measure particle size. 

The decay times of the fluctuations in intensity can be related to the diffusion constant of the particle in 

solution116. The diffusion coefficient is dependent on the size and shape of the molecule. Therefore, the 

data received by the DLS detectors can give a great deal of information about the size and quantity of the 

particles present in solution114. During DLS measurement, the total acquisition time is divided into delay 

times (τ). An autocorrelation function is determined by plotting the averaged intensity measured during 

time τ as a function of the time between τ. From this, diffusion constants can be calculated and used to 

determine the hydrodynamic diameter of the species present in solution based on the Stokes-Einstein 

relationship116; 117. Importantly, light scattering intensity is dependent on the sixth power of the diameter, 

thus when only a small fraction of the percent mass of the sample is due to a high molecular weight 

species it can easily swamp the entire sample signal intensity116. The ability of this method to determine 

important information about particles in solution makes it to be a powerful tool in protein aggregation 

studies.  

3.2 Methods 

3.2.1 Quantifying Observed Aggregation 

 Two methods were utilized to quantify the overall observed aggregation of the proteins involved 

in this study. The first technique was Thioflavin T fluorescence. For AcP and Aβ42, ThT data summarized 

and reported in Wang et al., 2008 were used for comparison61. The rate of aggregation for mutants of 

these two proteins, as calculated from ThT fluorescence studies, were reported as ln(νmut/νWT), as 

described in Section 2.1.1 and Chiti et al.9. The ln(νmut/νWT) values for all AcP and Aβ42 mutants were 

normalized over a scale of 0 to 1 based on the difference in observed aggregation rate between mutant and 
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wild type. Equation 3 in Chapter 2 was used for the normalization calculation according to the method 

described in Section 2.2.2. Thus observed aggregation was converted to a scale from 0 to 1, where 0 

represents the lowest observed aggregation and 1 representing the highest observed aggregation of the 

data set. The second aggregation measurement technique was dynamic light scattering (DLS). The total 

light scattering intensity of particles >20 nm in diameter at the final time point in the aggregation time 

trials, as measured and described in Vassall et al., 201127, were used as a measure of overall observed 

aggregation for pWT SOD1 and 12 mutants. The originally published scale for the light scattering 

intensity measurements was from 0 to 100%, but this was adjusted to 0 to 1 by diving each percentage by 

100 for consistency with the normalized predicted aggregation results (see Section 2.2.2).  

3.2.2 Production of Correlation Plots and Statistical Analysis 

 All correlation plots were prepared using Microsoft Excel 2007. Normalized observed and 

predicted aggregation values were compared using scatter plots. A line of best fit was obtained by linear 

regression analysis using Microsoft Excel, which also outputs a correlation coefficient value (r) that 

describes of the linear dependence between two variables.   A p-value, which reports the statistical 

significance of the linear correlation, was determined from the r-score and the degrees of freedom of the 

sample size using an online algorithm (http://www.graphpad.com/quickcalcs/PValue1.cfm). A confidence 

interval of 95% is typical required for determining statistical significance, which translates to a p-value < 

0.05. 

3.3 Results  

3.3.1 Human Acylphosphatase Correlations 

 The predicted aggregation propensities for wild-type human acylphosphatase and 30 mutants 

(reported in Section 2.3 and listed in Table 2.4) were correlated with the observed aggregation for AcP as 

measured previously using ThT fluorescence9; 92. Figure 3.2 displays comparison plots for observed 

aggregation propensity versus predicted aggregation for all AcP mutants using the nine different 

algorithms. A summary of the r-scores and p-values for each algorithm is given in Table 3.1. The scores 

http://www.graphpad.com/quickcalcs/PValue1.cfm
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that are considered to be statistically meaningful (p-value < 0.05) are coloured red. Four out of nine 

algorithms produce statistically relevant results: Chiti-Dobson, Wang-Agar, Zyggregator and Ztox. 

However, even for these algorithms the correlations are not particularly strong, ranging from r-scores of 

0.54 to 0.60. The other five algorithms do not result in statistically relevant correlations. Strikingly, three 

algorithms even result in negative (albeit not significant) correlations, where the mutations with lower 

predicted aggregation propensities have higher observed aggregation results.  
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Chiti-Dobson Predicted Aggregation Propensity
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Wang-Agar Predicted Aggregation Propensity
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Zyggregator Predicted Aggregation Propensity
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Figure 3.2 Correlation plots of observed versus predicted aggregation for 30 AcP mutants using 

nine different prediction algorithms (listed in the ordinate axis labels). The data were fit to a straight 

line using linear regression.   
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3.3.2 Amyloid Beta Correlations 

 The predicted aggregation propensities for wild-type Aβ42 and five mutants linked to Alzheimer‟s 

Disease were calculated and are listed in Table 2.5. The relationship between predicted and observed 

aggregation was investigated using data reported previously on the aggregation rates of these mutants 

measured by ThT-fluorescence61; 108; 109; 110. Figure 3.3 shows the correlation plots between predicted and 

observed aggregation for Aβ42. The correlations are summarized by r-scores and p-values in Table 3.1. 

Only three out of nine algorithms, including the Chiti-Dobson and Wang-Agar equations, and the PASTA 

method, result in statistically relevant correlations for Aβ42. However, it should be noted that the 

extremely small sample size limits the likelihood of statistical relevance. The r-scores of the statistically 

significant correlations range from 0.82 to 0.92. 
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Figure 3.3 Correlation plots of observed aggregation versus predicted aggreation for Aβ42 mutants 

using nine different prediction algorithms (listed in the ordinate axis labels). The data were fit to a 

straight line using linear regression.  
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3.3.3 Superoxide Dismutase Correlations 

 Aggregation propensity was measured previously in the Meiering lab for wild-type and 12 SOD1 

mutants in the reduced apo form using DLS
27

. The observed aggregation propensity data were compared 

with the predicted aggregation propensities calculated in Chapter 2.3.1 and given in Table 2.3. The 

correlation plots are given in Figure 3.4.  A summary of r-scores and p-values is given in Table 3.1. Only 

one of the nine algorithms, FoldAmyloid, results in a statistically relevant correlation. However, the r-

score is not particularly high, 0.59, suggesting that some factors included in the algorithm are important to 

the aggregation observed here but additional variables not incorporated in this prediction technique also 

have a large influence on SOD1 aggregation.  
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Figure 3.4 Correlation plots of observed aggregation versus predicted aggreation for SOD1 mutants 

using nine different prediction algorithms (listed in the ordinate axis labels). The data were fit to a 

straight line using linear regression.  
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Table 3.1 Predicted and Observed Aggregation Correlation Summary 

  Chiti- 
Dobson 

Wang- 
Agar 

Zyggregator Ztox Fold 
Amyloid 

TANGO PASTA Waltz Profile  
3D 

AcP r-score 0.5426 0.5469 0.6057 0.5604 -0.0469 0.2081 -0.3262 0.1884 -0.2388 

p-value 0.0016 0.0015 0.0003 0.0010 0.8022 0.2613 0.0785 0.3101 0.1957 

Aβ42 r-score 0.9186 0.8862 0.6387 0.4110 0.5185 0.6508 0.8210 0.6859 0.6861 

p-value 0.0093 0.0175 0.1711 0.4195 0.2903 0.1623 0.0457 0.1324 0.1293 

SOD1 r-score 0.0574 0.0748 0.1876 0.0583 0.5940 0.3874 0.2777 -0.1539 0.0995 

p-value 0.8522 0.8081 0.5394 0.8499 0.0323 0.1914 0.3583 0.6157 0.7464 

*Values in red font are statistically significant (p<0.05) (See Methods, Section 3.2.2). 

3.3.3.1 SOD1 Stability Correlated to Aggregation Propensity 

 Further investigations were conducted to determine factors important to SOD1 aggregation, as 

observed by dynamic light scattering. Considering the weak correlations described above between 

predicted and observed aggregation, it is important to look for variables that may be neglected by these 

algorithms but are significant contributors to protein aggregation. The stabilities of wild-type and mutant 

SOD1 proteins in the reduced apo form, as measured by Differential Scanning Calorimetry (DSC) in 

previously published data27, are correlated with observed aggregation measured by DLS. The results of 

this relationship are shown in Figure 3.5. The correlation between observed aggregation and change in 

melting temperature (∆Tm) for each mutant compared to pWT in the reduced apo form gives a statistically 

significant r-score of -0.78 (p = 0.0016), indicating that a decrease in stability causes an increase in 

aggregation. This correlation is stronger than any observed for the prediction algorithms with observed 

aggregation. A study by Wang et al. suggested that the sum of predicted aggregation and mutant 

destabilization for oxidized apo SOD1 mutants correlated with the disease duration of ALS patients with 

SOD1 mutations61. These investigators hypothesized that the incorporation of instability (the 

destabilization that occurs as a result of mutation) increases the accuracy of the aggregation prediction 

algorithms61. 

 To investigate this possibility further, the destabilization of the SOD1 mutants in the reduced apo 

form was normalized (see Equation 3 in Chapter 2) over a scale of 0 to 1, with 1 being the largest 
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decrease in melting temperature when compared to pWT, and 0 being the smallest decrease (in this case a 

slight increase for H46R) in melting temperature compared to pWT.  Analogous to the method of Wang et 

al.61, the normalized instability score was added to the (previously normalized) aggregation propensity 

score and again the summed values were normalized from 0 to 1, with 0 being the lowest cumulative 

score and 1 being the highest, and therefore predicted to have the greatest propensity to aggregate. Table 

3.2 lists the r-scores for the relationship between the sum of predicted aggregation propensity and mutant 

instability and observed aggregation propensity. There is an obvious major increase in the positive 

correlations observed here compared to the predicted propensities on their own. This is a likely a result of 

the strong positive correlation between decrease in melting temperature and observed aggregation 

described above (r = 0.78). Thus, the increase in r-score for the prediction algorithms summed with 

instability can be predominantly attributed to the correlation of instability to observed aggregation. Only 

one algorithm (TANGO) gives a stronger correlation when combined with instability (r = 0.83) than 

instability on its own (r = 0.78). However, this slight increase in correlation is likely due to the fact that 

most mutants were not predicted to aggregate more than pWT by the TANGO method (Fig. 3.4 F and 

Table 3.1) and so the correlation observed here is predominantly the correlation of the instability alone 

with observed aggregation. All but one of the correlations gave statistically significant p-values, also as a 

result of the strong correlation between instability and observed aggregation (p = 0.0016). Thus, addition 

of predicted aggregation and measured stability does not improve correlation with observed aggregation. 
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Figure 3.5 The role of stability in aggregation propensity. Observed aggregation, as measured by DLS, 

for reduced apo SOD1 mutants is plotted against the change in melting temperature, observed using DSC, 

for each mutant in the reduced apo form. 

 

Table 3.2 Correlation results for the sum of predicted aggregation propensity and mutant 

instability to observed aggregation propensity. 

  Stability Chiti- 
Dobson 

Wang- 
Agar 

Zyggregator Ztox Fold 
Amyloid 

TANGO PASTA Waltz Profile 
3D 

r-score 0.7821 0.6048 0.5930 0.6367 0.5834 0.7775 0.8314 0.6416 0.4414 0.6935 

p-value 0.0016 0.0285 0.0327 0.0193 0.0363 0.0018 0.0004 0.0181 0.1311 0.0086 

*For each algorithm, the normalized predicted aggregation scores for each mutant were summed with the normalized instability scores and the 

new total was normalized and plotted against the observed aggregation results measured by DLS. A full description can be found in the text 

(Section 3.3.3.1).  

 

3.3.3.2 SOD1 Correlations with ALS Disease Durations 

 SOD1 mutations cause ALS with specific disease durations (see section 1.6.1). The relationship 

between disease-linked mutants and the characteristic time attributed to that mutant between onset and 

death was shown to be statically relevant by Wang et al.61. There is considerable evidence linking the 

pathogenesis of mutant SOD1 in fALS to protein aggregation62, and so it has been speculated that the 

propensity of a mutant to aggregate may dictate disease duration such that the mutants most prone to 

aggregate will cause the shortest disease durations61. To examine the role of reduced apo SOD1 

aggregation in disease, the observed aggregation for 11 SOD1 mutations was plotted against the 
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characteristic disease duration for each mutant. The results are shown in Figure 3.6. The correlation 

between observed aggregation and disease duration is not statistically relevant (r-score = -0.27, p = 0.43), 

however it appears there are significant outliers that greatly influence the overall trend. This will be 

discussed in 3.3.2. 

 
 

Figure 3.6 Relationship between observed aggregation for reduced apo SOD1 mutants, quantified 

using DLS, and ALS disease durations. 

 

 In order to investigate whether the factors included in the prediction algorithms play a role in 

modulating ALS disease duration, the disease durations for each mutant were plotted against the predicted 

aggregation propensities.  Twenty-four of the most common disease-linked SOD1 mutations were used 

for this investigation. Figure 3.7 shows the plots for ALS disease durations as a function of predicted 

aggregation propensity. Table 3.3 summarizes the correlations observed for these results. The correlations 

are in general quite weak. Two of the algorithms, FoldAmyloid and TANGO, actually resulted in a 

negative r-score, indicating that a higher predicted aggregation actually correlates with a longer disease 

duration, opposite to what might be expected, although not statistically significant. The only statistically 

significant correlation is that for Zyggregator, which has an r-score of 0.48 (p = 0.02). This is still a fairly 

weak correlation but may indicate that some of the factors included in the Zyggregator algorithm are 

related to how the mutant may impact ALS disease duration. 
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Figure 3.7 Correlation plots of ALS disease durations versus predicted aggreation scores for SOD1 

mutants using nine different prediction algorithms (listed in the ordinate axis labels). The data were 

fit to a straight line using linear regression.  

 

Table 3.3 Correlation values between predicted aggregation and ALS disease duration 

  Chiti-
Dobson 

Wang-
Agar 

Zyggregator Ztox Fold 
Amyloid 

TANGO PASTA Waltz Profile 
3D 

r-score 0.0843 0.1371 0.4767 0.110
5 

-0.1597 -0.0943 0.1058 0.3548 0.2818 

p-
value 

0.6955 0.5229 0.0185 0.607
2 

0.4560 0.6612 0.6227 0.0889 0.1822 

* Values in red font are statistically significant (p<0.05) (See Methods, Section 3.2.2). 
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 One final correlation relevant to disease duration studies is that of the stability of reduced apo 

SOD1 protein with ALS disease durations. Figure 3.8 shows the relationship between the change in 

melting temperature for reduced apo SOD1 mutants compared to WT and the disease durations associated 

for each mutant with ALS patients. The resulting correlation is poor, with an r-score of only 0.31 (p = 

0.35). 

 

 

 

Figure 3.8 Relationship between the change in melting temperature for reduced apo SOD1 mutants 

and the ALS disease duration characteristic for each mutant.  
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3.4 Discussion 

3.4.1 Aggregation Prediction Algorithms Do Not Accurately Predict Observed 

Aggregation for Diverse Proteins   

Testing the ability to predict protein aggregation provides significant information regarding how 

well the factors contributing to aggregation are understood. Recognizing the strengths and weaknesses of 

aggregation prediction algorithms provides a basis for further investigation into the complex processes 

involved in aggregation pathways. Section 1.3 discusses some of the potential contributing factors that 

have been shown to influence protein aggregation. Table 3.1 summarizes the correlation data for the 

relationship between predicted and observed aggregation for SOD1, AcP, and Aβ42. It is obvious that not 

all of the algorithms are able to accurately predict the measured aggregation for these three proteins and 

that there are very marked differences between the accuracy of the algorithms when comparing the three 

different proteins. There are various factors that may contribute to the poor correlations observed, which 

will be discussed in detail below, followed by interpretations of the correlation results. 

3.4.1.1 Differences in the Type of Aggregation being Monitored 

The first issue to consider is the type of aggregation being measured for each of these proteins 

and how this is related to the design of the prediction algorithms. Both AcP and Aβ42 aggregation were 

monitored using ThT-binding. As previously described (Section 3.1.1), ThT is a fluorescent dye that 

binds to the β-aggregate structure of amyloid fibrils resulting in an increase in intensity of the emission 

maximum and shift of the emission maximum from 445 nm to 482 nm111. Thus, ThT fluorescence is a 

direct measure of amyloid fibril formation. In contrast, SOD1 aggregation was measured by dynamic light 

scattering. This gives a measure of size but is not specific to the molecular structure of the aggregate. The 

reasoning behind this is that SOD1 does not typically form amyloid fibrils (see Section 1.6.2) and in the 

conditions used here it does not form amyloid, as confirmed by lack of ThT binding and by AFM studies 

revealing amorphous aggregates (Helen R Stubbs and Elizabeth M Meiering, unpublished data) . The 

types of aggregates being observed by the DLS experiments are soluble and range in size from ~100 to 
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~1000 nm in hydrodynamic diameter27. Thus, it is important to consider whether the algorithms are 

designed to predict the type of aggregation being observed. Refer to Table 2.1 in Section 2.1 for a 

summary of the algorithms used in these studies. Four of the algorithms (Chiti-Dobson, Wang-Agar, 

Zyggregator and Ztox) utilized much of the same AcP and Aβ42 data used for the correlations shown here 

for the purpose of designing and training the algorithms. Thus, AcP and Aβ42 would be expected to 

perform well. The other algorithms were also developed based primarily on ThT-data of other proteins 

and peptides. For these reasons, it would be expected that the algorithms should be capable, at least to 

some degree, of accurately predicting aggregation for AcP and Aβ42. The correlation results between 

predicted and observed aggregation for these two proteins does indicate some success by some of the 

prediction algorithms, however significantly weaker than expected. This will be discussed further in 3.4.2. 

Much less is known about how well the algorithms might be expected to perform in predicting non-

amyloid aggregation as current development and use of these algorithms has been almost solely focussed 

on amyloid. SOD1 has the weakest correlations between predicted and observed aggregation (Table 3.1) 

compared to the other two proteins studied. This may be a direct indication that because the algorithms 

were designed based on amyloid formation, they are incapable of accurately predicting the soluble 

oligomer formation by reduced apo SOD1. This possibility is discussed in greater detail in 3.4.2. 

3.4.1.2 Variations in the Initial Structures of the Test Proteins 

 The state of a protein in solution may have a significant influence of the susceptibility of the 

protein to aggregation and the type of aggregate structures that might form. It has been suggested that 

proteins can aggregate from the natively folded state by local fluctuations that expose hydrophobic 

regions, i.e. without the requirement of crossing large energy barriers such as from the folded to the 

unfolded state29. The presence of mutations may enhance unfolding fluctuations as a result of the 

destabilization, which could further promote aggregate formation10. The lack of structure in fully unfolded 

protein may contribute to the ability to form extensive intermolecular associations, such as those present 

in amyloid
10

. Therefore, another particularly relevant difference between the proteins used in this study 
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that may play an important role in dictating the mechanism of protein aggregation is the initial state that 

the protein is in. As described in Section 2.1, SOD1, AcP and Aβ42, represent three different types of 

protein structures. SOD1 is a natively folded, metal-binding, dimer59. For the purpose of these studies, 

SOD1 aggregation was analyzed in its reduced apo form, lacking metals and with a reduced disulphide 

bond. In this form, SOD1 exists as a marginally stable monomer27; 65; 118. The fact that the reduced apo 

monomer is only marginally stable suggests that it will have increased structural fluctuations or may exist 

in a partially folded state. In addition, the destabilization effects of several SOD1 mutants result in 

significant population of the unfolded state of the reduced apo protein at physiological conditions27. The 

experimental conditions used to measure reduced apo mutant SOD1 aggregation were pH 7.4 and 37˚C in 

quiescent conditions. Some of the mutants observed in this study have melting temperatures at or below 

37˚C, and thus will populate both the folded and the unfolded state27. In contrast AcP is unfolded at the 

conditions used for experimental measurements9 (see Section 2.1), and Aβ42 is a peptide lacking stable 

tertiary structure with the capability of adopting both alpha helical or beta sheet structure depending on 

the solution conditions95 (see Section 2.1). In the solution conditions in which the aggregation 

measurements are taking place it is likely to preferentially adopt a beta sheet conformation95. For these 

reasons it is expected that AcP and Aβ42 may possess enhanced exposure of regions prone to aggregate, as 

opposed to the potentially folded protein, SOD1, in which aggregation-prone regions may remain buried 

in the folded state or only sometimes accessible depending on the stability and population dynamics of 

the mutant. Thus native state structure is more strongly favoured in the experimental conditions of SOD1 

than for either AcP or Aβ42. For these reasons, aggregation mechanisms are likely to differ between 

SOD1, AcP, and Aβ42
119. This is evidenced by the differing structures formed in these two systems; 

amyloid formation by AcP and Aβ42, and soluble oligomer formation by SOD1. The formation of amyloid 

vs. non-amyloid aggregates may be a direct result of the degree of structure of the initial protein. Several 

studies suggest that a higher degree of structure corresponds with the formation of amorphous aggregates, 

while less-structured, more unfolded, proteins or peptides are more likely to form amyloid10; 120. 
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In one such study, the variable domain of a recombinant amyloidogenic light chain, SMA, was 

used for investigating the role of structure in dictating aggregate morphology. Although at pH 4 and 6 

secondary structure was maintained, there were significant alterations in the tertiary structure of SMA, 

resulting in the fast formation of amorphous aggregates. At pH 3, however, SMA was relatively globally 

unfolded with decreased secondary and tertiary structure, but remained compact and slow formation of 

amyloid fibrils was observed120. In addition, β2-microglobulin mutational studies that measured the 

effects of mutations on the secondary structure (as monitored by circular dicroism) and aggregation rates 

(as monitored by ThT fluorescence)  suggested that variations in the amount of ordered structure affect 

the aggregation pathway and final morphology of the amyloid being formed121. These examples provide 

evidence that varying mechanisms are involved in controlling different types of aggregation, and that the 

structure of the initial protein can greatly influence the structure of the aggregates formed. Starting 

structures remain an un-addressed complication in protein aggregation prediction algorithms and could 

play a significant role in the success of the algorithms.  

3.4.1.3 Variations in the Size of the Test Proteins 

A recent study by Ramshini et al.122 compared the sequence length for a sample of aggregation-

prone, disease-linked proteins, and found striking evidence that the length of the polypeptide sequence 

may play an important role in dictating aggregation patterns. Proteins with longer sequences have a 

greater tendency to form non-amyloid protein deposits in disease, while proteins with shorter sequences 

(<250 amino acids) more often form amyloid deposits in patients122. The differing sizes of SOD1, AcP, 

and Aβ42 may also impact the aggregation of these proteins. The SOD1 monomer is 153 residues in 

length, while AcP is 98 and Aβ42 is 42. Although these differences are not particularly drastic, they could 

be significant. The SOD1 monomer is three times the length, and AcP twice the length, of Aβ42. If only a 

small section of the protein is prone to aggregate, having a smaller sequence may increases aggregation 

propensity by preventing interference from non aggregation prone regions of the protein. Thus, protein 
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size is an important factor to consider when investigating the relationship between aggregation prediction 

algorithms and measured protein aggregation.  

3.4.1.4 Differences in Solution Conditions of Aggregation Samples 

Solution conditions can influence many characteristics of a protein in solution including its 

stability, charge, and solubility, which can all affect aggregation (see Section 1.3.3). Therefore, a third 

important factor to consider when investigating the relationship between predicted and observed 

aggregation is the solution conditions for each aggregation experiment. The experimental conditions for 

aggregate formation of AcP were pH 5.5, 298 K and an ionic strength of 50 mM9; 92. Aβ42 aggregation 

was measured at pH 7.4 or 7.5, 298 K or 310 K and an ionic strength of 100 mM, 150 mM, or 155 mM108; 

109; 110. The SOD1 aggregation data was collected at pH 7.4, 310 K and an ionic strength of 1 mM27. The 

differing solution conditions for the three proteins in question present additional complications when it 

comes to predicting protein aggregation. It can be argued that the relative difference between the 

aggregation tendency of various mutants remains constant regardless of solution conditions, as long as the 

conditions are constant. If this were the case, the predictions should not be affected by the differing 

solution conditions, as long as all data for the same protein are collected under the same conditions. 

However, this may not hold true if the conditions were altered in such as way that aggregation occurred 

by a different mechanism. For example, comparative differences in the aggregation patterns of mutant 

protein at a low pH versus a neutral pH may not be the same if the protein is unfolded in one context and 

folded in the other, and this could result in the formation of different aggregate structures16. Furthermore, 

the solution conditions are not always the same for all data collected for the same protein, as described for 

Aβ42. Furthermore, many of the algorithms were developed based on aggregation data that was not all 

collected at the same experimental conditions, which also could have important implications to the 

success of the algorithms.  



 

93 

 

3.4.2 Interpreting the Correlation Results between Predicted and Observed Aggregation 

 With these complications in mind, general principles can nevertheless be deduced from the 

correlation data between predicted and observed aggregation for the three proteins in question using the 

nine different prediction techniques.  

3.4.2.1 Moderate Correlations Observed between Predicted and Observed Aggregation for AcP 

The results for AcP will be considered first. Four out of nine algorithms (Chiti-Dobson, Wang-

Agar, Zyggregator and Ztox) give statistically relevant positive correlations with r-scores between 0.54 

and 0.61. These are not particularly convincing correlation coefficients, which is surprising considering 

AcP is unfolded in the conditions tested, and readily forms amyloid. Additionally, AcP data was used in 

the design of the Chiti-Dobson and Wang-Agar algorithms. The difference between the correlation given 

here for the Chiti-Dobson algorithm and that from the original paper9 arises due to the fact that the 

original study only included the mutations found in primary sequence regions 16-31 and 87-98, which are 

considered to be particularly important for aggregation. The analysis shown here includes data for a larger 

set of AcP mutations, including mutations within and outside these regions. Thus the discrepancy results 

from a larger, less selective, dataset used in the correlations described here. Interestingly, a more inclusive 

dataset results in a weaker correlation of 0.54 (Table 3.1) compared to 0.769. This may indicate that the 

physicochemical properties included in the Chiti-Dobson equation are important for determining the 

extent of aggregation in regions experimentally identified as being aggregation prone, but may not be the 

determining factors for whether or not these regions will cause a protein to aggregate. This algorithm may 

be better suited for the prediction of mutational effects in regions that have already been demonstrated to 

be involved in aggregation, while for a complete sequence analysis, this method may not be as accurate.  

The best overall correlation between predicted and observed aggregation for AcP comes from 

Zyggregator, with an r-score of 0.61. Again, this weak relationship indicates that some significant factors 

are captured by the algorithm, while missing others. Interestingly, the five poorest performing algorithms 

for AcP (TANGO, Waltz, FoldAmyloid, PASTA and Profile 3D) are based on, or tested with, 
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hexapeptide fragments (six amino acid stretches based on amyloid forming proteins, see Section 2.1). 

This may demonstrate the limitations of studying peptide fragments as means for accurately predicting 

aggregation of longer protein sequences. Short sections predicted to be involved in aggregation based on 

amyloid formation by hexapeptides may not result in aggregation in the context of a larger protein 

sequence100. In general the aggregation prediction methods have limited success in predicting AcP 

aggregation. The four algorithms that gave positive, statistically relevant results focus on the role of 

inherent physical and chemical properties of the amino acid sequence. This indicates that these properties 

do strongly influence aggregation of unfolded AcP, however the moderate correlations observed suggest 

these are not the only factors contributing to the aggregation process. 

3.4.2.2 Partial Success in Correlating Predicted and Observed Aggregation for Aβ42 

 Overall, the prediction algorithms are the most successful at accurately predicting ThT-monitored 

Aβ42 aggregation, similar to the successful correlations previously observed for the relationship between 

predicted aggregation using many algorithms with in vivo aggregation of Aβ42 in E.coli106. In the case of 

the work described here, the sample size is quite small, making it more difficult to interpret the accuracy 

of the results. With an increased number of mutational studies the correlation results could become much 

more or less significant. Interpretations of the presented results then must be approached with caution. 

Three out of nine algorithms, including Chiti-Dobson, Wang-Agar and PASTA, give statistically 

significant correlations with r-scores between 0.82 and 0.92. The Chiti-Dobson equation performs the 

best, as expected since Aβ42 data was used as a validation dataset when the equation was designed. The 

Wang-Agar equation follows closely behind since it is the same formula as the Chiti-Dobson method with 

updated coefficients. The third best algorithm was PASTA, with an r-score of 0.82 (p = 0.05). This 

algorithm calculates the pair-wise energy function between two identical sequences when they align in a 

beta-sheet conformation; it was verified by correctly predicting the most amyloidogenic region of Aβ42. 

The rest of the algorithms did not reveal statistically significant correlations, however, none resulted in 

exceptionally poor correlations. With a greater sample size more of the algorithms may have statistical 
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relevance. The better ability of the algorithms to accurately predict the aggregation observed here is likely 

due to the fact that Aβ42 is only a peptide and does not contain stable higher order protein structure. It also 

readily forms amyloid at neutral pH and low ionic strength. Thus, the dominant factors expected to 

contribute to its aggregation are the inherent properties of the amino acids within the sequence. These 

factors are well captured by several of the algorithms, including the Chit-Dobson and Wang-Agar 

equations, which give the strongest correlation results.  

3.4.2.3 Poor Correlations for Predicted and Observed Reduced Apo SOD1 Aggregation 

From Table 3.1 it is clear that the prediction algorithms do a poor job at predicting DLS-

monitored aggregation of the reduced apo form of SOD1. Only one algorithm, FoldAmyloid, results in a 

statistically significant correlation; however, with an r-score of only 0.59, it is not a particularly strong 

correlation. Yet, the FoldAmyloid algorithm does better than the others, suggesting that hydrogen 

bonding and molecular contacts, the major components of this algorithm (described in Section 2.1.4), play 

some role in the formation of soluble aggregates by reduced apo SOD1 mutants. TANGO and PASTA 

have the next best r-scores, but at values of 0.39 and 0.28, neither of these algorithms is capable of 

accurately predicting SOD1 aggregation. The rest of the algorithms display very poor relationships, 

ranging from 0.19 for Zyggregator to -0.16 for Waltz. The general poor performance of the algorithms at 

predicting reduced apo SOD1 aggregation may be dependent on several factors. As mentioned above, the 

aggregation is being monitored by DLS and is not amyloid. Considering that these algorithms were 

primarily developed based on amyloid forming peptides and proteins, this may be evidence that amyloid 

formation and soluble oligomer formation are not governed by the same contributing factors. There are 

many possible pathways and products of aggregation (see Section 1.2), and so there must be determining 

factors that alter the course towards the formation of one type of aggregate or another. It is possible that 

completely different factors are responsible for modulating the different pathways. However, it may be 

more likely that similar factors, but with different levels of weighting, contribute to these processes. If the 

latter were true, algorithms may be able to be redesigned for increased suitability in predicting other types 
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of aggregation, beyond the context in which they were designed, by retraining with aggregation data from 

non amyloid-forming systems. Additionally, the fact that reduced apo SOD1 is marginally stable and thus 

exists in a folded, partially folded, or unfolded conformation, sets it apart from the proteins and peptides 

used to design and train the algorithms in question. The overall design of these algorithms may be less 

suitable for the prediction of aggregation by folded proteins.  

3.4.3 Difficulty in Predicting Protein Aggregation Outside of the Context of Algorithm 

Development 

Thus, it appears that while the aggregation prediction algorithms are able to successfully predict 

aggregation within the context in which they were developed, none are able to accurately predict 

aggregation of a wider set of protein types. While some, such as the Chiti-Dobson and Wang-Agar 

equations perform reasonably well for unfolded AcP and the short Aβ42 peptide, they fail when it comes 

to the non-amyloid forming, potentially folded monomer, SOD1. Others that were developed to 

successfully identify aggregation-prone regions33; 89, are unable to predict overall aggregation propensity. 

There is still much unknown about of protein aggregation pathways. The present work clearly shows that 

significant ground has been made in the understanding some of the principles controlling aggregation 

within a confined context (such as amyloid formation by unfolded proteins9; 61; 85; 86). Continued research 

will allow for further understanding of the roles of each potential variable in dictating aggregation 

propensity and further deciphering of whether some factors may have differing roles in modulating the 

formation of different types of aggregate structures. The seemingly narrow scope of the aggregation 

prediction algorithms may require a re-think in field regarding the way protein algorithms are developed 

and used, and the types of protein aggregation they are capable of predicting. 

3.4.4 Predicted and Observed SOD1 Aggregation fails to determine ALS Disease Duration   

 An intriguing characteristic regarding the causative role of mutant SOD1 in ALS is the 

characteristic disease durations for different mutations (see Section 1.6.1 for details). It has been 

suggested that mutations introduced into SOD1 will influence the aggregation propensity of the protein 



 

97 

 

and that the aggregation propensity will control the disease duration61. To further investigate the 

possibility of this role of SOD1 mutant aggregation in dictating disease, the observed aggregation results 

for reduced apo SOD1 mutants were plotted against the disease durations of those mutants (Figure 3.6). 

The r-score of this relationship was only 0.27 (p = 0.43), indicating no significant correlation. There are 

several ways to interpret this result with respect to the role of SOD1 in disease. The first is that reduced 

apo SOD1 is not the common denominator in ALS disease pathogenesis27. Section 1.6.2 describes the 

hypothesis that due to the destabilization that occurs as a result of mutations in the reduced apo form, this 

marginally stable form of SOD1 may be the most prone to aggregate and therefore may be the most toxic. 

Contrary to this hypothesis, the aggregation of reduced apo SOD1 mutants in quiescent, physiological 

solution conditions observed by DLS27 does not clearly correlate with ALS disease duration. Importantly 

though, it does not mean that reduced apo is not playing a role in disease, or even that it is not a 

significant player. Instead, different mutants may be most toxic in different forms of the protein27. Thus, 

there could be different disease mechanisms for different mutants.  

Another possible interpretation is that the type of aggregation measured by DLS may not be a 

toxic form that would contribute to disease. There is continued debate over what is the toxic species in 

protein aggregation diseases52. Increasing evidence suggests that soluble oligomers may be more toxic 

than insoluble amyloid52; 53, as discussed in Section 1.4. It seems that the species produced during these 

DLS experiments may be representative of soluble oligomers that could contribute to toxicity.  However, 

currently the actual toxic aggregate species in ALS are not known and further investigation is required66. 

The weak correlation between reduced apo SOD1 aggregation and disease duration suggests that there is 

still much to investigate regarding the role of aggregation in modulating disease. It is evident that SOD1 

mutations cause ALS (see Section 1.6), and it is likely that aggregation plays a role in the pathogenesis67. 

Therefore, it is important to continue pursuing the role of misfolded and aggregated SOD1 in all forms as 

it is apparent that complex mechanisms are involved in the syndrome of ALS. 

 As correlations between experimental reduced apo SOD1 aggregation and ALS disease duration 

are not statistically relevant, further investigation of the variables contributing to disease duration were 
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carried out using the aggregation prediction algorithms. Twenty-four of the most common SOD1 

mutations (see Table 1.1) were used for this analysis. The relationships between predicted aggregation 

and ALS disease duration were generally quite poor (Table 3.3). The only algorithm that resulted in a 

statistically relevant disease correlation was Zyggregator, with a correlation coefficient of 0.48 (p = 0.02). 

This is not a particularly strong correlation, but it is not irrelevant either. It out-performs the Chiti-Dobson 

and the Wang-Agar methods, which suggest that disease properties are dependent on more than the 

physicochemical properties of the residue that is mutated. Zyggregator calculates physical and chemical 

properties over a sliding window, thereby incorporating effects of the sequence surrounding the mutation. 

It also includes a function for the pattern of the sequence (the pattern of hydrophobic residues can 

promote beta-sheet formation123), as well as the role of gate-keeper residues in preventing aggregation123; 

124. These four characteristics, taken together, appear to play some role in dictating ALS disease duration. 

These are by no means the whole story; however, they may provide a basis to build upon. All other 

algorithms do not result in statistically relevant correlations with disease duration; however, the primary 

function of these algorithms is to predict amyloid formation. The lack of correlation between predicted 

aggregation and disease duration may then be an additional indication that other forms of SOD1 

aggregation, not amyloid, are involved in ALS, as discussed in section 1.6.3. 

 A final relationship that was investigated was reduced apo mutant SOD1 stability and disease 

duration. The correlation coefficient between the ∆Tm of mutants and disease duration of ALS patients 

was only 0.31 (p = 0.35). This is not statistically significant and thus does not strongly support that the 

decrease in stability of reduced apo SOD1 by ALS mutations directly causes the observed patient disease 

durations. This is important to consider because enhanced populations of misfolded species may not only 

trigger aggregation but may also have direct detrimental effects on cellular components as individual 

misfolded species66. The poor correlation does not necessarily mean that reduced apo SOD1 is an 

insignificant state in contributing to disease, but could indicate that a more complex set of variables, 

beyond stability alone, are involved in determining disease.  
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Interestingly, there are two main outlier mutants in this correlation, which when removed greatly 

strengthen the observed relationship. Figure 3.9 shows that when G37R and V148I are excluded, the 

correlation between observed aggregation and disease duration increases from an r-score of 0.27 (p = 

0.43) to 0.78 (p = 0.013), while the correlation between the change in melting temperature and disease 

duration increases from an r-score of 0.31 (p = 0.35) to 0.86 (p = 0.003). It is not obvious why these two 

mutations might be such extreme outliers. Additional data will be needed in order to determine whether 

this trend continues with a larger data set. However, what might be implicit in these results is the 

identification of one of many potential mechanisms contributing to determining ALS disease duration: 

while most of the mutants here follow the trend of destabilization causing aggregation, and aggregation 

dictating disease duration, others, such as V148I and G37R, may have a different mechanism. In 

particular, G37R, though quite destabilized in the reduced apo form, has a very long disease duration. 

This could be a result of a differing degree of toxicity of the aggregates being formed.  

Preliminary investigations based on further analysis of DLS data have hinted that the size of the 

aggregate structures may play a role in controlling disease. Figure 3.10 shows a comparison of the ratio of 

species with a hydrodynamic diameter between 20 and 200 nm to total aggregation (>20 nm) with the 

ALS disease durations. The same relationship is shown for the ratio of species formed with a 

hydrodynamic diameter greater than 200 nm to the total aggregation. The trends suggest that the greater 

the proportion of smaller species, the shorter the disease duration. Although there are not enough data to 

give a convincing, statistically reliable correlation, these results may be an indication that the size of 

aggregates plays a role in toxicity. This is similar to the proposed idea that small soluble oligomers are 

more toxic than large, insoluble amyloid species57. Interestingly, for G37R, 84% of the total scattered 

light is from aggregates larger than 200nm, which supports the notion of larger species being less toxic. 

On the other hand, V148I, shows very little aggregation in the reduced apo form, and is even slightly 

stabilized. This may indicate that V148I exerts its toxic effects in a different form of the protein.  
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Figure 3.9 Identification of outliers for reduced apo SOD1 correlations. A) The relationship between 

the observed aggregation of SOD1 mutants and ALS disease duration. B) The relationship between the 

change in melting temperature as a result of mutations in reduced apo SOD1 and disease duration. V148I 

is shown in red and G37R in yellow. Both mutants are excluded from the linear regression analysis and 

do not contribute to the given r-scores and p-values. 
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Figure 3.10 Role of aggregate size in dictating ALS disease duration. A) ALS disease duration versus 

the ratio of the percentage intensity of scattered light of aggregate species with hydrodynamic diameters 

between 20 and 200 nm to total aggregate species as monitored by DLS for 11 disease-causing SOD1 

mutations (including G37R and V148I) in the reduced apo form. B)  ALS disease duration vs. the ratio of 

the percentage of aggregate species with hydrodynamic diameters greater than 200 nm to total aggregate 

species as monitored by DLS for 11 disease-causing SOD1 mutations in the reduced apo form.  
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 Unravelling the complex role of SOD1 mutations in modulating disease is a difficult task. Here 

we have seen hints at various factors that appear likely to be involved in controlling disease duration, 

including: protein stability, the pattern of physical and chemical properties of the amino acids in the 

protein sequence, and the average sizes of aggregate species formed.  However, a complete mechanism 

has not been elucidated. This work highlights that reduced apo SOD1 is probably an important player in 

disease, since the instability and aggregation tendencies of this form of the protein can demonstrate 

significant correlation with disease duration when potential outliers are removed; however, scatter in this 

correlation and other data suggest that other forms of the mutant proteins may also play a role. 

Regardless, the inability of any of the correlations to fully explain ALS disease duration confirms the 

complexity of this disease. There is likely to be multiple effects of mutant SOD1s in various forms that 

work together to result in motor neuron toxicity27. Continued investigation is required to elucidate the 

principles governing the role of mutant SOD1 in ALS pathogenesis. 

3.4.5 Conclusions 

 Accurately predicting protein aggregation using computational methods is a complicated 

undertaking. The relationship between predicted and observed aggregation for three diverse proteins and a 

large set of mutants demonstrates that while moderate success can be achieved in predicting the 

aggregation propensity of various mutants for amyloid-forming proteins, there are still significant gaps in 

accurately understanding the underlying principles involved in diverse aggregation processes. Testing of 

widely used aggregation prediction algorithms, including the Chiti-Dobson equation9, Wang-Agar 

equation61, Zyggregator85, Ztox85, FoldAmyloid88, PASTA86, TANGO87, and Profile 3D89, demonstrates 

the limitations of applying methods developed in a specific test system to broader contexts. This points 

out that there are likely to be fundamental differences in the variables contributing to aggregation in 

different systems. It may be concluded, however, that although there may not be one set of global 

variables that governs all forms of aggregation, there could be an overlap in the factors governing more 

than one type of aggregation pathway. Thus, continued research should allow for the conceptualization of 
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multiple aggregation pathways, and the development of specific prediction tools for predicting certain 

types of aggregation. Gaining such understanding has important implications for many protein 

aggregation-linked diseases50, including the role of SOD1 in ALS62, and for practical aspects of 

formulating protein solutions for various pharmaceutical8 or biotechnological84 applications. By focusing 

future work on specializing prediction algorithms to predict aggregation within a narrow context, the 

comparison between algorithms will increase information regarding the differences in principles 

modulating different types of aggregation.  
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Chapter 4 

Probing the Role of Salt in Protein Aggregation Mechanisms 

4.1 Introduction 

 Protein aggregation is a complex process in which multiple variables contribute to the pathways 

and products involved. Due to the diversity of the aggregate structures that can be formed, and the many 

factors that appear to modulate these processes, there is still a general lack of understanding of the 

principles of protein aggregation. In order to further probe the detailed mechanisms of aggregate 

formation, the role of ionic strength was investigated in detail here by monitoring the aggregation patterns 

of one of the most common ALS-causing SOD1 mutations, A4V, in the oxidized and reduced apo form, 

in a range of different salt solutions. 

4.1.1 The Role of Ionic Strength in Protein Aggregation 

 Solution conditions can have a very significant impact on protein aggregation (see Section 1.3.3). 

The details of how ions interact with proteins and affect intermolecular attractions are not well 

understood. Section 1.3.3 describes some of the previous work that has investigated the patterns of 

protein aggregation in various types and concentrations of salt. However, there does not appear to be one 

clear way in which all ions influence protein aggregation. In general it seems that ions can have 

electrostatic interactions, and stabilization or destabilization effects, that may result in aggregation 

promotion or inhibition depending on the state of the protein and the nature of the ion125.  

4.1.2 ANS Binding 

In order to investigate the aggregation tendencies of A4V SOD1 in various salt conditions, 1-

Anilino-8-naphthalene sulfonate (ANS), was used as a fluorescent monitor of aggregate formation. ANS 

is a dye that binds to exposed hydrophobic regions of a protein resulting in an increase in dye 

fluorescence intensity and a blue-shift of the fluorescence spectrum to a maximum of 475 nm (see Figure 

2.1)126. This occurs because of the protein‟s ability to shield the dye from the polar solution 

environment126. ANS has often been used to characterize protein folding and it has been suggested that 
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ANS binding is a useful tool for detecting protein aggregation at early stages, with the capability of 

interacting with hydrophobic areas in fibrils and amorphous aggregates127. When the dye interacts with 

protein molecules there is a change in polarity and viscosity of the environment resulting in an increase in 

fluorescence intensity and shift in intensity maximum. Both hydrophobic and electrostatic interactions 

can contribute to ANS binding to protein127. There is still controversy as to what the specific binding 

modes of ANS to protein may be, and considerable evidence suggests that ANS likely has multiple 

mechanisms of binding128. ANS has been used very extensively in protein aggregation studies129. Recent 

investigations using ANS have suggested that it is an excellent probe for detecting toxic oligomers130. 

Several known amyloid forming peptides and proteins were monitored over time for ThT and ANS 

binding and for loss of cell viability when neuroblastoma cells were exposed to aggregates at various time 

points. ANS fluorescence, but not ThT fluorescence, correlated well with cell death, suggesting ANS is 

able to detect soluble oligomers that may be responsible for cell toxicity130 (see Section 1.4 for more 

information about toxic protein aggregates). The ability of ANS to detect early aggregates makes it 

suitable for investigating differences in aggregation patterns as a result of varied ionic strength. 
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Figure 4.1 ANS Fluorescence spectra in the presence of protein aggregates. All samples contain 125 

µM ANS. The black line represents buffer, and the dotted and dashed grey lines represent aggregates 

formed by mutant A4V reduced apo SOD1. Both protein samples were incubated at 1 mg/mL in 20 mM 

Hepes, 1 mM TCEP, pH 7.4, and either 300 mM Na2SO4 (dashed) or 300 mM NaCl (dotted), in anaerobic 

conditions at 37˚C for approximately 400 hours.  

 

4.1.3 Colloidal Stability and the Second Virial Coefficient 

Protein aggregation is controlled by a complex set of factors that dictate whether dominant amino 

acid interactions will be intramolecular or intermolecular. Significant emphasis has been placed on the 

conformational stability of a protein as a dominant factor in dictating aggregation (see Section 1.3.1). A 

second important variable is the role the solution conditions play in favouring electrostatic interactions 

between the protein and the solvent or protein-protein interactions131. Colloidal stability is the strength of 

protein-protein interactions compared to the strength of protein-solvent interactions22. It is measured by 

the second virial coefficient (B22). When B22 is positive it indicates that protein-solvent interactions are 

stronger that protein-protein interactions. This results in dominating repulsive forces between protein 

molecules and aggregation is disfavoured. In the case where B22 is negative, protein-protein interactions 

are stronger than protein-solvent interactions, favouring aggregation22; 125. It has been suggested that non-

native aggregation of folded protein involves two energy barriers125. The first is the free energy of 
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unfolding of the protein (∆Gunf) and the second is the interaction energy of protein-protein interactions, 

represented by the second viral coefficient. In conditions where conformational stability is dominant over 

colloidal stability (large ∆Gunf and a negative B22) protein unfolding becomes the rate-limiting step in 

aggregation. In this case, aggregation can be decreased by increasing ∆Gunf. In solution conditions that 

have high colloidal stability (B22 is a large, positive value), the colloidal stability is dominant over 

conformational stability and the interaction between proteins becomes the rate-limiting step in 

aggregation. In this case aggregation can be reduced by altering the solution conditions to increase 

repulsive interactions, thus increasing B22
125. For these reasons, colloidal stability is an important, but 

often overlooked, factor to consider when analyzing protein aggregation in varying solution conditions.  

It is worth evaluating why certain solvent conditions may increase or decrease the second virial 

coefficient as a way of deciphering some of the complexities of the overall mechanisms of protein 

aggregation. A study of the colloidal stability of lysozyme showed that increasing the concentration of 

NaCl resulted in a decrease in B22, which in turn increased protein aggregation132. This effect was more 

pronounced for denatured than native state lysozyme. Two potential explanations were suggested: first 

that NaCl promoted the formation of hydrophobic clusters between proteins, and second that charge 

shielding reduced electrostatic repulsion and promoted protein-protein association132. Another study 

sought to correlate the second virial coefficient with aggregation rates for lysozyme and a monoclonal 

antibody (mAb1)133. Aggregation was monitored in several different salts and concentrations. For mAb1 

in acidic conditions, B22 decreased as the strength of the chaotropic salt increased according to the 

Hofmeister series. This also corresponded with an increase in the rate of aggregation133, and followed the 

same pattern of aggregation measured previously45. The interesting result from this study is the positive 

relationship between chaotropic strength and protein aggregation. This is contrary to the typical 

interpretation of the Hofmeister series in which ions that act as stronger protein stabilizers (weaker 

chaotropes, therefore stronger kosmotropes) typically result in decreased protein solubility and increased 

aggregation (see Section 1.3.3)43. For mAb1, the role of the chaotropes in promoting aggregation was 

rationalized based on the idea that chaotropes bind weakly to protein and instead pair with each other, 
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allowing for the promotion of protein-protein interactions45. However, while these interactions are 

important for mAb1 aggregation in acidic conditions and low ionic strength, contrary results have been 

observed for other proteins in other studies42; 44, indicate the promotion of aggregation by chaotropes is 

not a universal principle. One study looked at the effect of several salts on seven different proteins and 

concluded that the effect of the salts generally followed the Hofmeister series, in that the stronger the 

kosmotrope, the larger the decrease in B22
134. It also demonstrated that at low salt concentrations (< 0.5 

M) protein interactions could be attractive or repulsive, depending on the protein134. The diversity in these 

results further emphasizes the complexity of factors that can modulate protein-protein and protein-solvent 

interactions. In light of these results and the ability of the second virial coefficient to correlate with 

observed aggregation, the examination of colloidal stability is important for increased understanding of 

the variables that contribute to protein aggregation, and was investigated here. 

4.1.4 Monitoring Apo A4V Aggregation in the Presence of Salt 

The SOD1 mutation, A4V, was selected as a model protein for facilitating further investigations 

of the role of salt in protein aggregation. Reduced apo A4V aggregates readily in physiological solution 

conditions27 and so provides an ideal system for monitoring the effects of changes in solution conditions 

on protein aggregation. Salts with differing kosmotropic strengths (Na2SO4, NaCl) were employed for 

these investigations. The aggregation patterns for both oxidized apo and reduced apo were monitored 

extensively in varying concentrations of these salts. 

4.2 Methods 

4.2.1 Protein Production and Purification 

This project employed well established methods in the Meiering lab in order to produce holo 

SOD1135; 136. Briefly, plasmids containing the A4V SOD1 gene were transformed into SOD-/- E.coli cells 

(cells lacking all bacterial forms of SOD). Osmotic shock was used to release SOD1 from the periplasmic 

space. Purification was completed by heat-treating the osmotic solution while copper-charging the 

protein, then using an a ammonium sulphate gradient on a hydrophobic interaction column to separate the 
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purified holo protein117; 136; 137. Purified protein samples were concentrated using a centricon device with a 

10,000 Da molecular weight cut-off, cellulose membrane. Final concentrations were determined prior to 

storage by measuring absorbance at 280 nm and using an extinction coefficient of 5,400 M-1cm-1 per 

monomer138. Samples were filtered with a 0.2 µm filter, flash frozen in liquid nitrogen, and stored at -

80˚C. 

4.2.2 De-metallation of Holo SOD1 to Prepare Apo SOD1 

In order to remove the metals from the holo protein, a well established protocol in which a series of 

dialyses with EDTA in acidic conditions, followed by dialyses in sodium chloride to remove EDTA and 

finally in water to remove salt, was used139. In brief, holo SOD1 at a concentration of approximately 0.5 

mg/mL was prepared in 3500 Da molecular weight cut-off dialysis tubing. Four exchanges against 100 

mM EDTA, 50 mM sodium acetate, pH 3.8 over an average time period of 36 hours was followed by four 

exchanges of similar length in 100 mM NaCl, 50 mM sodium acetate, pH 3.8. The final step was to 

exchange the protein into water by four exchanges over a 36 hour period. The protein was then 

concentrated using a centricon device, filtered with a 0.2 µm filter, flash frozen in liquid nitrogen, and 

stored at -80˚C. 

4.2.3 Disulphide Reduction 

In order to study SOD1 in its most immature form it is necessary to reduce the cysteines at position 

57 and 146 in order to eliminate the intramolecular disulphide bond formed at this site. This was 

accomplished through a protocol developed by K. Vassall in the Meiering lab27. First, in order to expose 

the disulphide bond which is located in the hydrophobic core of the protein, the protein must be 

denatured. The disulphide-intact apo protein was placed in a solution of 2 M guanidinium chloride, 20 

mM Hepes, pH 7.8 that had been degassed for 30 minutes prior to the addition of protein. The sample was 

incubated at room temperature for 30 minutes to allow for complete unfolding. Next, the charged 

reducing agent, tris (2-carboxymethyl) phosphine (TCEP) hydrochloride was added to a final 

concentration of 10 mM, resulting in the reduction reaction of the disulphide bond. The mixture was 
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incubated at 37ºC in an anaerobic environment (sealed dessicator) for 1 hour. Finally, the reduced protein 

mixture was exchanged into a 1 mM or 10 mM TCEP, 20 mM HEPES, pH 7.8 buffer using nanocep 

centrifuge (molecular weight cut-off of 3000 Da) tubes by performing successive dilutions and 

concentrations. The disulphide status of the final protein was later confirmed by Differential Scanning 

Calorimetry (DSC) and SDS-PAGE27.  

4.2.4 Iodoacetamide Modification SDS-PAGE Gels 

To verify the disulphide status of reduced apo SOD1 samples a procedure involving 

iodoacetamide modification and separation by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used27. Disulphide-reduced apo SOD1 has a more expanded structure 

than disulphide-oxidized apo SOD1, and runs slightly slower than the more compact oxidized form on a 

denaturing gel, allowing the two forms of the protein to be distinguished.  To prevent the re-oxidation of 

reduced SOD1 that can occur on the gel, the free cysteines were modified with iodoacetamide, as has 

been described previously64. Protein samples were precipitated by incubation on ice for 20 minutes with 

equal volume of 20% Trichloroacetic Acid (TCA). The samples were then pelleted by centrifugation and 

the supernatant was discarded. Acetone was used to wash the pellet by re-suspension in a small volume of 

acetone. Centrifugation was again used to pellet the sample and the supernatant was discarded. The pellet 

was then dried under vacuum and dissolved in buffer containing 50 mM Hepes, 2.5% SDS, 1 mM 

bathocuprione disulfontate, and 100 mM iodoacetamide, pH 7.2.  The samples were incubated for 1 hour 

in an anaerobic environment to allow for modification of all free cysteines. After 1 hour the samples were 

diluted 1:1 in 2X SDS-PAGE loading buffer, loaded onto a 15% SDS-PAGE gel, and run at a constant 

voltage of 140 V for approximately 2 hours.  

4.2.5 Preparation of Small Volume Aggregation Trials 

Oxidized protein stock or freshly reduced SOD1 (filtered and confirmed with DLS as 

monodisperse for monomer species) was diluted to a final protein concentration of 1 mg/mL using the 

appropriate stock buffers to result in 140 µL samples with the following buffer conditions: 20 mM Hepes, 
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1 or 10 mM TCEP (for reduced samples only), and 0 mM, 150 mM or 300 mM of the appropriate salt 

(NaCl, Na2SO4 or NaH2PO4), and pH 7.4. The 140 µL samples were prepared in conical glass vials (03-

344-153, Wheaton Science Products) and lids were wrapped with parafilm. During the aggregation trials, 

all samples were kept at 37˚C in anaerobic conditions.  

4.2.6 ANS Fluorescence to Monitor Protein Aggregation 

The fluorescence of 1-Anilino-8-naphthalene sulfonate (ANS) was monitored daily during 

aggregation time-trials using a Thermo Scientific NanoDrop 3300 Fluorometer. 1.5 µL of protein 

aggregate sample was combined with 0.5 µL of 500 µM ANS on the sample platform of the surface of the 

NanoDrop 3300, for a final concentration of 0.75 mg/mL protein and 125 µM ANS. After a period of 45 

seconds a fluorescence measurement was taken by excitation with UV light at a wavelength of 365 nm ± 

10 nm and an emission spectrum was recorded between 400 and 650 nm. The maximum fluorescence of 

ANS when bound to protein was approximately 475 nm, and so the fluorescence at 475 nm was recorded. 

The measurement was repeated 3 more times for the same sample, and two samples were measured for 

every vial at each time point, giving a total of 8 readings. The average fluorescence at 475 nm was plotted 

against time to monitor the time-course of aggregation for oxidized or reduced apo A4V in each of the 

solution conditions used.  

4.2.7 Thioflavin T Fluorescence 

ThT fluorescence was measured for the end point samples of several aggregation trials to evaluate 

the presence of amyloid-like aggregates. Protein samples were combined 1:1 with buffer containing 

50µM ThT and 100 mM Glycine, pH 9 and immediately a fluorescence measurement was taken using a 

Flourolog fluorometer. The excitation wavelength was 445 nm and the emission spectrum was measured 

between 455 and 600 nm. The average of five spectra is reported as the ThT spectrum for each protein 

sample.  
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4.2.8 Measuring Aggregate Sizes Using DLS 

Dynamic Light Scattering was used at the beginning of reduced apo aggregation trials to confirm 

that the filtered reduced samples were monodisperse for monomer and there were no aggregate species 

present that could seed aggregation. In addition, at the end of the aggregation time-trials DLS was used to 

analyze the size of the aggregates formed. Light scattering measurements were made using the Malvern 

Zetasizer Nano-ZS. A clean, de-dusted, 45 µL, quartz cuvette was used to measure the particle sizes 

present in each aggregate sample. Measurements were taken at 37˚C and three sets of five measurements 

each were averaged to obtain the size distributions of each sample. The intensity plots were used to 

compare the size of the aggregated species.  

4.2.9 Measuring the Second Virial Coefficient Using Light Scattering 

Light scattering was also to determine the second virial coefficients for each of the solution 

conditions used in the aggregation trials. Debye‟s light scattering equation (Equation 1) can be used to 

obtain the second virial coefficient (B22) from the scattering intensity measured over a range of protein 

concentrations.   

  (1) 

Rθ is the Rayleigh ratio, which is the ratio of scattered light intensity at angle θ to incident light intensity. 

K is an optical constant, c is the protein concentration and M is the molecular weight of the protein131. 

Light scattering was used to measure the scattering intensity which was used to calculate the Rayleigh 

ratio. A plot with Kc/Rθ on the y-axis and concentration on the x-axis is called a Debye plot. The linear 

relationship between these variables allows for the determination of the molecular weight of the protein 

(1/y-intercept) and the second virial coefficient (slope/2). The Malvern software provides a method for 

molecular weight and B22 determination by Debye analysis, which was used to analyze a series of light 

scattering measurements that were taken for freshly prepared protein samples (prior to any detectable 

aggregation).  
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4.2.10 DNTB Assay for the Determination of TCEP Oxidation 

In order to monitor the extent of oxidation of the reducing agent, TCEP, used in the reduced apo 

A4V aggregation trials, an assay based on 5, 5‟-dithiobis (2-nitrobenzoic acid) (DNTB) previously 

described by Han and Han140, was used. DTNB is composed of two 2-nitro-5-thiobenzoate (NTB) units 

linked by a disulphide bond. In the presence of TCEP, DNTB is reduced to form two NTB molecules. 

NTB is a chromophore with a maximum absorbance at 412 nm, where DTNB has negligible absorbance. 

By measuring the concentration of NTB produced, using the extinction coefficient 14,150 M-1cm-1, the 

concentration of reduced TCEP can be calculated as half of the concentration of NTB140. Original TCEP 

stock was made by weighing out solid TCEP-HCl and dissolving in water for a final concentration of 100 

mM. Further dilutions were made with the appropriate buffer for a final concentration of 1 mM TCEP.  

Alternatively, neutral TCEP was stored as a stock solution at 500mM, according to manufacturer 

instructions, and was diluted into the appropriate buffer for a final buffer concentration of 10 mM TCEP. 

The assay was performed by combining 495 µL of 100 mM TRIS, 100 µM DTNB, pH 7.5, with 5 µL of 

buffer containing 1 mM TCEP, or 499 µL of TRIS/DTNB buffer with 1 µL of 10 mM TCEP. An 

absorbance spectrum was measured from 600 to 200 nm and the absorbance at 412 nm was used to 

calculate the concentration of NTB. Based on the observed versus expected concentration of NTB the 

proportion of reduced TCEP to total TCEP was calculated.  

4.3 Results 

4.3.1 Apo Oxidized A4V Aggregation in Salt 

The aggregation patterns of oxidized apo A4V were monitored in a range of solution conditions 

using several methods for analysis. The solution conditions used were 20 mM Hepes, pH 7.4 and the 

following salt concentrations: 0 mM added salt, and 150 mM or 300 mM of sodium sulphate (Na2SO4), 

sodium chloride (NaCl), or sodium phosphate (NaH2PO4). The aggregation of these samples was 

measured over several weeks using ANS fluorescence to monitor aggregate formation. Figure 4.2 gives 
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the summarized ANS results for oxidized apo A4V aggregation in all the solution conditions. There was 

very little difference in the ANS fluorescence over 450 hours for all samples. 

 

 

Figure 4.2 Time-course of ANS Fluorescence for apo oxidized A4V samples in varying salt 

conditions and 20 mM Hepes, pH 7.4. Samples were incubated at 37˚C in anaerobic conditions. The 

control sample contained no added salt. Data presented is from 1 or 2 independent time-courses, and in 

the case of 2 time-courses, averaged values are plotted and standard deviation is represented by error bars 

shown in black. 

 

At the end of the time-course experiments, DLS was used to assess the size of the particles found 

in solution. Figure 4.3 shows the DLS results for the initial control sample and for all samples at the 452 

hour end point, and Table 4.1 gives the corresponding hydrodynamic diameters of the particles in 

solution. These results show evidence for the presence of larger species by the end of the aggregation 

time-trials; however, the dominant species in all conditions is the dimer peak, at around 6 nm. Light 

scattering intensity is dependent on the sixth power of the diameter of the scattering particle
116
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only a small fraction of the percent mass of the sample is present as a high molecular weight species it can 

easily dominate the entire sample signal intensity. This indicates that even though two species are present 

in these samples, there is only very little of the larger molecular weight species. 

 

Figure 4.3 DLS results for end point samples of oxidized apo A4V aggregation time-trials. 1 mg/mL 

oxidized apo A4V samples were incubated at 37°C, in 20 mM Hepes, pH 7.4, and various salt conditions. 

After 452 hours, 45 µL aliquots were removed and DLS measurements were performed. All results shown 

are at the 452 hour time point with the exception of the control sample which is also shown at the initial 

time point. 

 

 

0

20

40

60

80

100

120

140

160

0.4 4 40 400 4000

P
e

rc
e

n
t 

In
te

n
si

ty
 (

%
)

Hydrodynamic Diameter (nm)

300mM NaH2PO4

150mM NaH2PO4

300mM NaCl

150mM NaCl

300mM Na2SO4

150mM Na2SO4

Control T452

Control T0



 

116 

 

Table 4.1 Average hydrodynamic diameters of particles in oxidized apo A4V samples at the end 

point of the ANS aggregation time-trial. 

 Control 

T0 

Control 

T452 

150 mM 

Na2SO4 

300 mM 

Na2SO4 

150 mM 

NaCl 

300 mM 

NaCl 

150 mM 

NaH2PO4 

300 mM 

NaH2PO4 

Hydrodynamic 
Diameter (nm) 

5.9 5.4 

117.0 

6.0 

155.9 

6.0 

373.1 

5.5 

172.9 

5.7 

153.4 

5.8 

125.9 

6.3 

519.8 

 

 The ANS and DLS results demonstrate limited aggregation of the apo oxidized A4V. To further 

investigate the role of the solution conditions in promoting protein-protein interactions, light scattering 

measurements were taken to create Debye plots for each type of salt at a concentration of 150 mM and in 

the control buffer. The plots are given in Figure 4.4 and the calculated molecular weights and second 

virial coefficients are given in Table 4.2. Three separate experiments were performed to obtain Debye 

plots for each solution condition, two at concentration ranges from 0.5 - 1.5 mg/mL and one at a range of 

0.5 - 2.25 mg/mL. The data in the Debye plots show increased scatter at lower protein concentrations; this 

is not unexpected as this is reaching the lower limits for instrument performance. Accordingly, multiple 

samples were prepared for low protein concentrations and the data were averaged (Figure 4.4). In 

addition, for a few of the plots, major outliers were removed from the correlation based on the Q-test with 

a 90% confidence interval. In Figure 4.4, panels A, B, and C (Control, 150 mM NaCl, and 150 mM 

Na2SO4, respectively) give correlations with r-values above 0.5. The 150 mM NaH2PO4 plot (Figure 4.4 

D) gives an unconvincing result with an r-value of only 0.19. There are several reasons that may have 

contributed to the error in these experiments. Light scattering is an extremely sensitive technique and any 

non-homogenous distribution of particles in solution can have large impacts in the Debye plot 

calculations. If there was any contaminating dust in the solutions, this may have interfered with accurate 

results. Unfortunately, at the time when these experiments were performed the appropriate 0.02 µm filters 

typically used to remove dust and particulates from all buffers had been out of stock from the supplier for 

several months, and so samples were filtered instead with 0.2 µm filters which may have left some dust 

particles present in solution, potentially resulting in error in the light scattering measurements. Another 
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factor that could have been a source of error was the small volumes used for the preparation of these 

samples. Limited amounts of protein were available and thus it was typical for volumes of less than 100 

µL to be transferred during sample preparation. There is generally a greater chance of error when using 

small volumes which may also contribute to the weak linear relationship observed for the phosphate 

buffer plot.  

 Despite the possible sources of error, summary Table 4.2 shows consistency in the trend of the 

B22 values obtained for 3 out of 4 conditions, and an accurate molecular weight calculation for 2 of the 

conditions. Both the control and the 150 mM Na2SO4 samples give molecular weights very close to the 

expected molecular weight of the dimer, 31.5 kDa. The NaCl and NaH2PO4 plots gave higher and lower 

than expected molecular weights respectively, which may be attributed to experimental uncertainty in the 

experiment. The second virial coefficient values (B22) are quite similar for the NaCl, and Na2SO4 samples, 

with values of 0.00371 and 0.00354 mL·mol/g, respectively, and are approximately 2.5-fold greater than 

the value obtained for the control (0.00148 mL·mol/g) The positive sign of these values indicates that 

oxidized A4V has a greater tendency to form protein-solvent interactions than protein-protein interactions 

in these conditions. In phosphate, the sign of B22 is negative, however, due to the poor correlation 

obtained for these results, replicate experiments are required to confirm the validity of this result. 
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Figure 4.4 Debye plots for oxidized apo A4V in varying salt conditions. All samples are in 20 mM 

Hepes at a pH of 7.4. Panels A-D represent the following salt conditions respectively: 0 mM salt, 150 

mM NaCl, 150 mM Na2SO4 and 150 mM NaH2PO4. The plots given are the average Kc/Rθ values for the 

concentrations in which more than one measurement was taken, and the measurements greater than 1.5 

mg/mL are from a single experiment.  

 

Table 4.2 Molecular weight and second virial coefficients of oxidized apo A4V in varying salt 

conditions determined by Debye plot analysis. 

 Control 150 mM NaCl 150 mM Na2SO4 150 mM 

NaH2PO4 

MW (g/mol) 31,881 38,825 29,974 17,996 

B22 (mL·mol/g) 0.00148 0.00371 0.00354 -0.00084 
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4.3.2 Reduced Apo A4V Aggregation in 1 mM TCEP Buffer and Varying Salt Conditions 

4.3.2.1 Time-course of ANS Fluorescence of Reduced apo A4V Aggregation in 1 mM TCEP 

Buffer and Varying Salt Conditions 

 Reduced apo A4V was prepared as described in Section 4.2.3 and aggregation time-course trials 

were observed using ANS fluorescence. Samples were monitored for an approximately 450 hour time-

trial under anaerobic conditions at 37°C. Multiple independent time-courses were obtained giving a total 

of 2 to 4 replicates of each of the following solution conditions: 20 mM Hepes, 1 mM TCEP, pH 7.4 

containing 0 mM, 150 mM, or 300 mM of NaCl or Na2SO4. Figure 4.5 compares the ANS results for all 

solution conditions and Figure 4.6 gives the individual ANS plots for each solution condition. The 

samples in Na2SO4 exhibit the highest ANS fluorescence increase over time, while the NaCl samples have 

only moderate fluorescence increases. The 300 mM Na2SO4 sample shows a larger ANS fluorescence 

increase than the 150 mM sulphate sample, while the two NaCl concentrations behave similarly to each 

other. The control sample, without added salt, has only a very slight overall increase in ANS fluorescence 

over the entire time-course.  

 

Figure 4.5 Summarized ANS fluorescence results for reduced apo A4V samples in 20 mM Hepes, 1 

mM TCEP and various salt concentrations as indicated in the legend. Individual data points are 

averages for 2 or 3 independent time-courses, and error bars represent the standard deviation of the 

measurements.
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Figure 4.6 ANS Fluorescence for aggregation time-trials of reduced apo A4V samples in various 

salt conditions. All samples are in 1 mM TCEP, 20 mM Hepes, and incubated in anaerobic 

conditions at 37°C. Panels A-E represent the following salt samples respectively: 0 mM salt, 150 mM 

NaCl, 300 mM NaCl, 150 mM Na2SO4, and 300 mM Na2SO4. Individual data points are averages for 2 or 

3 independent time-courses, and error bars represent the standard deviation of the measurements.
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4.3.2.2 SDS PAGE gels and DTNB buffer Assays Reveal Reduced Apo A4V Oxidation 

To determine whether the samples remained reduced throughout the time-course of the 

experiments, iodoacetamide-modified samples were run on an SDS PAGE gel (Figure 4.7). Some limited 

amounts of protein degradation are seen in a number of the A4V samples. This is sometimes observed for 

long duration time-courses. It is clear that although the protein is almost completely reduced at the 

starting time point (lane 6) it becomes substantially oxidized by the end of the time-trial (lanes 5, 8, and 

9). Interestingly, the samples in salt seemed to oxidize more than the control sample, which remains 

significantly reduced (lane 7). In particular, the NaCl sample (lane 5) is almost completely oxidized by 

the 451 hour time point, and the Na2SO4 samples (lanes 8 and 9) appear to be more than 50% oxidized. In 

addition, higher molecular weight bands are readily detectable in the sulphate samples, indicative of the 

formation of disulphide cross-linked species. There is some evidence of cross-linking, albeit less 

significant, in both the NaCl (lane 5) and control (lane 7) at the end of the aggregation time-course.  

 

Figure 4.7 Iodoacetamide-modified reduced apo A4V samples at various time points during 

aggregation time-courses in differing salt conditions and 1 mM TCEP, 20 mM Hepes, and 37°C. 

The lanes that have been modified by iodoacetamide have been denoted “IA.” The oxidized and reduced 

apo A4S control samples (lanes 1, 3 and 4) are significantly degraded, but nevertheless show where the 

oxidized and reduced bands should be. Time point of sample is listed in the given legend. 

1 = Red. Apo A4S 

2 = blank 

3 = Ox. Apo A4S 

4 = IA Ox. Apo A4S 

5 = IA 150 mM NaCl T = 451 

6 = IA Control T=0 

7 = IA Control T=479 

8 = IA 150 mM Na2SO4 T=479 

9 = IA 150 mM Na2SO4 T=527 

10 = blank  
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This oxidation of SOD1 was unexpected given that during previous experiments of reduced apo 

SOD1 aggregation in the absence of added salt, samples remained reduced over this time range27.  The 

oxidation was therefore investigated further by monitoring the time-course of TCEP oxidation using the 

DTNB assay. Buffer samples were prepared identically to the buffers used in the reduced apo A4V 

aggregation trials. They were monitored without the presence of protein by incubation in the same conical 

glass vials used for the aggregation time-trials and were stored in an evacuated desiccator at 37˚C. The 

time-course of the observed TCEP oxidation is shown in Figure 4.8. The solutions containing added salts 

become almost completely oxidized by approximately 150 hours while the control sample with no added 

salt becomes fully oxidized just prior to 400 hours. The oxidation of the TCEP likely plays a large role in 

the oxidation of the A4V samples observed by SDS PAGE (Figure 4.7). Even without salt present, the 

control buffer sample becomes oxidized more quickly than would be expected based on the stability of 

the TCEP molecule140; 141. 

 

  

 

 
 

Figure 4.8 Time-course of 1mM TCEP oxidation. The percent reduced TCEP on the y-axis is 

calculated from the ability of TCEP to reduce DTNB into two NTB chromophores.  
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Previous studies have suggested that a 2 mM TCEP solution at pH 7.2, 25˚C, in 50 mM 3-(N-

morpholino)propanesulfonic acid (MOPS), 2 mM MgCl2, and 50 mM KCl, undergoes oxidation as a first 

order reaction and becomes approximately 10% oxidized in one week141. This corresponds to an oxidation 

rate of 1.0 x 10-5 min-1 142. The half life of oxidation based on this value is 1155 hours, much longer than 

the rate of oxidation observed in the conditions used here. On the contrary, the reaction trend in Figure 

4.8 appears to be closer to zero order kinetics than to first order. In the salt conditions, 1 mM TCEP is 

completely oxidized by approximately 150 hours, giving a zero order reaction rate of 1.11 x 10-4 

mM/min, while without salt complete oxidation occurs around the 380 hour mark, giving a reaction rate 

of 4.39 x 10-5 mM/min. The rate of oxidation has also been measured previously in conditions similar to 

the conditions used in this experiment by Han and Han, 1994140. In this case, 2 mM TCEP in 50 mM 

Hepes and pH 6.8 or 8.2 became 14.8% or 13.6% oxidized respectively, over a three week period. This 

translates into zero order rate constants of 9.79 x 10-6 mM/min at pH 6.8, and 9.00 x 10-6 mM/min at pH 

8.2. Again, these values are considerably smaller than the rates observed here at pH 7.4, 37˚C. The 

kinetics of the reaction monitored by Han and Han140 followed more closely to first order than zero order, 

which would result in first order rate constants of 5.30 x 10-6 min-1 at pH 6.8 and 4.83 x 10-6 min-1 at pH 

8.2. These translate into half-lives of 2180 hours and 2392 hours, respectively. Therefore, the fact that the 

TCEP becomes fully oxidized within 150 hours for salt buffers or 400 hours for the control buffer is quite 

surprising. The observation that TCEP becomes oxidized so quickly likely plays an important role in the 

aggregation pathway of reduced apo A4V under these conditions (discussed further in Section 4.4.2.3).  
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4.3.2.3 ThT Fluorescence and DLS Measurements of End-point Samples of Reduced Apo A4V 

Time-courses 

Two final experiments were performed to characterize the nature of the aggregates formed in 

these time-courses. To test whether the cross-linked aggregates, seen on the SDS PAGE gel (Figure 4.7), 

have amyloid-like characteristics, ThT fluorescence measurements were performed on the aggregates 

formed in the control and the sulphate samples. Unfortunately, there was not enough sample volume left 

from the chloride samples at the end of the time-course to perform ThT analysis. Figure 4.9 shows the 

ThT results from a single experiment with one sample for each condition. The increased ThT fluorescence 

suggests that the aggregates formed in the presence of sulphate have amyloid-like characteristics. The 

samples with no added salt have very little ThT fluorescence and thus do not contain amyloid-like 

aggregates. Although these results are intriguing, replicate samples are required to confirm their validity.   

 
 

Figure 4.9ThT Fluorescence for end point aggregation samples of reduced apo A4V with and 

without Na2SO4. Samples were incubated at 1 mg/mL, 20 mM Hepes, pH 7.4, 37˚C in an evacuated 

dessicator for approximately 475 hours and diluted 1:1 in ThT buffer (50µM ThT, 100 mM Glycine, pH 

9) immediately prior to fluorescence measurement. 
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A second test to investigate the nature of the aggregates formed during these experiments was to 

use DLS to assess the size of the aggregates. Figure 4.10 shows the averaged DLS results of the end point 

samples for two independent time-courses in 20 mM Hepes, 1 mM TCEP and varying salt conditions. In 

all conditions the monomer peak disappears and the intensity is dominated by aggregated species. Table 

4.3 gives the size of the dominant species in each solution for each trial. The species formed in the salt 

conditions have larger hydrodynamic diameters than those formed in the control buffer. The aggregates 

formed by the end of the time-trial in the control buffer are around 40 or 48 nm, whereas the dominant 

species formed in the salt samples ranges from 47 to 163 nm. The 300 mM NaCl sample in panel B shows 

two different sizes of aggregates being formed, one approximately 750 nm in size. These results suggest 

that salt induces the formation of aggregate species with greater hydrodynamic diameters than in the 

control buffer. A comparison was performed between the derived mean count rate, which reports on the 

total intensity of scattered light, for each end point sample using DLS and the final ANS fluorescence for 

the same sample. The correlation plots for two independent experiments are given in Figure 4.11. The r-

values are both 0.98, with high statistical significance. This demonstrates a strong relationship between 

the amount of scattered light and the ANS fluorescence. Since total scattered light intensity is a common 

measure of total aggregation, it is likely that the ANS fluorescence increase results from increased protein 

aggregation.  
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Figure 4.10 DLS results for reduced apo A4V aggregation trials in 1 mM TCEP, 20 mM Hepes, and 

various concentrations of salt. Measurements are given for the initial time point of the control sample 

and for all samples at the end point. Samples were incubated for approximately 450 hours at 37˚C in an 

anaerobic environment prior to DLS measurements. Panels A and B represent two independent 

experiments.  
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Table 4.3 Average hydrodynamic diameters of end point aggregate species for two independent 

time-courses of reduced apo A4V. 

  Initial 
Control  

Final 
Control  

150 mM  
NaCl 

300 mM 
NaCl 

150 mM 
Na2SO4 

300 mM 
Na2SO4 

Average 
Hydro-
dynamic 
Diameter 
(nm) 

Trial 1 7.7 48.6 163.4 75.8 109.6 141.7 

Trial 2 7.3 40.7 47.94 753.17 
91.35 

80.1 145.0 

 Average
Ŧ
 7.5 ± 0.3 44.7 ± 5.6 105.7 ± 

81.6 
83.6 ± 
11.0 

94.9 ± 
20.9 

143.3 ± 
2.3 

*All samples excluding the initial control are at the end point of the aggregation time-course experiments. For Trial 1 this was 451 hours and for 

Trial 2 480 hours. All samples were at 1 mg/mL protein, 1 mM TCEP, 20 mM Hepes, pH 7.4, and 37˚C. Each diameter value for the individual 

trials is an average of three consecutive measurements of the same sample. 
ŦThe average was determined for the hydrodynamic diameter values of trials 1 and 2 in each condition. In the case where one trial showed more 

than one species, the average is reported of the species from each trial with the most similar diameter size. 

 

 

     

Figure 4.11 Relationship between ANS Fluorescence and DLS derived mean count rate at the end 

point of reduced apo A4V aggregation time-trials in 20 mM Hepes, 1 mM TCEP, and varying salt 

conditions.  

 

4.3.3 Reduced apo A4V Aggregation in 10 mM TCEP Buffer and Varying Salt Conditions 

4.3.3.1 Time-course of ANS Fluorescence of reduced apo A4V Aggregation in 10 mM TCEP 

Buffer and Varying Salt Conditions 

 To address the issue of TCEP oxidation during the course of the aggregation experiments in 1 

mM TCEP, identical experiments were performed in 10 mM TCEP buffers, in attempt to keep the free 
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thiols of apo A4V reduced during the time-course of the experiments. Time-trials were carried out over 

approximately 450 hours by incubation in an anaerobic environment at 37˚C as before. Samples were 

prepared containing 1 mg/mL protein, 20 mM Hepes, 10 mM TCEP, pH 7.4 and 0 mM salt or 150 mM or 

300 mM NaCl or Na2SO4. The comparative ANS results for all of the solution conditions are given in 

Figure 4.12. It is evident that again Na2SO4 has the greatest influence on aggregation, with 300 mM 

Na2SO4 resulting in the highest ANS fluorescence, followed by 150 mM Na2SO4, 300 mM NaCl, 150 mM 

NaCl and the control sample with no added salt. Figure 4.13 shows the ANS results for the individual 

conditions to further illustrate the trend in aggregation and reproducibility of the ANS fluorescence time-

courses. 

 

Figure 4.12 Summary of ANS fluorescence results for reduced apo A4V aggregation trials. Samples 

were incubated in anaerobic conditions at 37°C. All samples contain 1 mg/mL protein, 20 mM Hepes, 10 

mM TCEP, pH of 7.4. Each data point shown is the average from two independent experiments (with 

some conditions replicated within each experiment). Standard deviations are shown as error bars. 
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Figure 4.13 ANS Fluorescence time-course measurements for 1 mg/mL reduced apo A4V in 20 mM 

Hepes, 10 mM TCEP, pH 7.4, 37°C, and various salt conditions. A-E represent the following 

conditions respectively: 0 mM salt, 150 mM NaCl, 300 mM NaCl, 150 mM Na2SO4, and 300 mM 

Na2SO4. Each data point shown is the average from two independent experiments (with some conditions 

replicated within each experiment). Standard deviations are shown as error bars. 
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4.3.3.2 SDS PAGE gels and DTNB buffer Assays Reveal Reduced Apo A4V Oxidation 

The reduced apo A4V aggregation samples were analyzed to determine the oxidation state of the 

protein at the end points of the aggregation time-courses, using iodoacetamide modification of free thiols, 

followed by SDS-PAGE, as before (Section 4.3.2.2). Figure 4.14 shows the gel results for all salt samples 

at the end of the aggregation time-course. Lane 6 in Panel A shows the initial time point of the control 

sample is mostly reduced. After 474 hours, lane 7 demonstrates that the control sample is mostly 

oxidized, with a small fraction reduced and some evidence of cross-linking in the higher molecular weight 

region. The sulphate samples in lane 8 (150 mM) and lane 9 (300 mM) show full oxidation by the end of 

474 hours. Strong bands are found in the top and bottom of the stacking gel indicating that large cross-

linked species that are too big to enter the gel are present in the sulphate samples. The chloride samples in 

Panel B lanes 5 (300 mM), 6 (upper fraction of 150 mM) and 7 (lower fraction of 150 mM) also show 

complete oxidation at the end of the 474 hour time-trial. The upper and lower fractions of the 150 mM 

sample were divided by pipetting the top 50 µL and lower 50 µL separately from the ~100 µL aggregate 

sample left in the glass vial at the end of the time-course. The purpose of this was to see if any of the 

aggregates had settled in the bottom of the vial. The similarity of the two samples on the gel demonstrates 

that there was no major difference between the top and bottom fractions. Significant cross-linking is also 

observed for the NaCl samples. Protein is apparent in the stacking gel, in particular in the 300 mM NaCl 

sample well. These gels imply that reduced A4V protein was more readily oxidized in the salt solutions 

resulting in increased cross-linked species.  
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Figure 4.14 SDS-PAGE gels of iodoacetamide-modified reduced apo A4V samples at various time 

points during aggregation time-courses in differing salt conditions and 10 mM TCEP, 20 mM 

Hepes, pH 7.4. Panels A and B represent different samples from the same time-course experiment. The 

samples that have been modified by iodoacetamide have been denoted “IA.” In Panel B, the 150 mM 

NaCl samples in lanes 6 and 7 represent the upper and lower fractions removed from the sample vial at 

the final time point of the aggregation time-course.  

 

 

 A TCEP oxidation test was performed using the DTNB assay to determine how long the 10 mM 

TCEP buffers remain reduced. 140 µL samples were prepared and incubated in the identical glass vials 

that were used for the aggregation time-course experiments. Figure 4.15 shows the DTNB assay results. 

Of particular interest is that the TCEP was not 100% reduced initially. The TCEP used for this experiment 
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was a different compound than for the 1 mM TCEP trials. In the 1 mM TCEP trials, TCEP-HCl, which is 

available in solid form, was dissolved with water and diluted into the appropriate buffer. For the 10 mM 

TCEP trials, neutral TCEP was required since TCEP-HCl would greatly decrease the sample pH. Neutral 

TCEP is obtained from the supplier as a powder with instructions to reconstitute in 1 mL of water to 

obtain a 500 mM solution. These instructions were followed and the 500 mM solution was stored at -

20˚C. It is surprising that the initial measurement of freshly prepared buffer was only 60-70% reduced, 

and that although there was 6-7 times the amount of reduced TCEP in these solutions compared to the 1 

mM TCEP buffer, the samples were completely oxidized by approximately 210 hours. This is only about 

50 hours longer than for complete oxidation of the 1 mM samples (see Figure 4.8). Surprisingly, the 10 

mM TCEP control sample seems to behave the same as the salt samples and actually becomes fully 

oxidized, much more quickly than the 1 mM TCEP sample. Thus, the inherent properties of the TCEP-

HCl and TCEP-neutral appear to differ. It is unclear what the reasons behind this are. Once again, TCEP 

oxidation appears to be a zero order reaction, in this case, with a reaction rate of 5.56 x 10-4 mM/min for 

all samples at pH 7.8. The phosphate samples at pH 6 and 5.5 became oxidized by the 94 hour time point, 

giving a zero order reaction rate of 1.24 x 10-3 mM/min.  This is consistent with previous findings that 

phosphate accelerates TCEP oxidation, potentially by forming an instable TCEP-phosphate complex that 

enhances oxidation140. Additionally, in 50mM Hepes buffer, it was shown that a decrease in the solution 

pH increases the rate of TCEP oxidation140. Thus both the presence of phosphate and the decrease in pH 

may contribute the faster rate of TCEP oxidation than is observed for the control and salt conditions at pH 

7.8. Given that previous results in similar conditions to those for the control, NaCl, and Na2SO4 solutions 

used in this experiment give a zero order reaction rate of 9.00 x 10-6 mM/min140 (discussed in Section 

4.3.2.2), the reaction rates observed here are shockingly high. This probably has important implications 

for the observed aggregation behaviour of reduced apo A4V by allowing for the oxidation of free thiols to 

form intermolecular disulphide cross-linked species. 
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Figure 4.15 Time-course of 10mM TCEP oxidation. Buffers were prepared identically to the reduced 

apo A4V aggregation trials and monitored over time using the DTNB assay for the percent of TCEP 

remaining reduced. The initial TCEP concentration was 10 mM. All samples are in 20 mM Hepes, pH 7.8 

except for the NaH2PO4 samples which are at the pH listed. 

  

4.3.3.3 ThT Fluorescence and DLS Measurements of End-point Samples of Reduced Apo A4V 

Time-courses 

In order to gather more information about the aggregate species formed during these experiments, 

the end points of the aggregation time-trials were analyzed using ThT fluorescence and DLS. ThT 

fluorescence data for the end points of two different time-trials are shown in Figure 4.16. While there is 

some variability in the exact fluorescence readings for the two time-courses, both show the Na2SO4 

samples as having the highest ThT fluorescence, followed by NaCl, and then control (no added salt) 

samples. The ThT fluorescence is indicative of amyloid-like aggregation in the end point samples, which 

is promoted by the presence of salts, especially Na2SO4.  
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Figure 4.16 ThT Fluorescence of reduced apo A4V aggregate samples. All samples were in 20 mM 

Hepes, 10 mM TCEP, pH 7.4. The ThT fluorescence was corrected for protein concentration by dividing 

ThT Fluorescence by the measured protein concentration of each sample. Panels A and B represent two 

independent time-course experiments. All salt samples were measured at the end of the aggregation time-

course which was 474 hours in panel A and 455 hours in panel B. The control sample (no added salt) was 

measured at both the initial and final time points of the reaction. 
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 Dynamic Light Scattering (DLS) measurements were performed on samples from each of the 

solution conditions at the end of two independent trials (Figure 4.17).  Table 4.4 summarizes the acquired 

data. Fairly high reproducibility can be noted by the shape of the curves and the relatively small error bars 

in Figure 4.17. In all end point aggregate samples the monomer peak has disappeared and a larger species 

with an average diameter of 80-370 nm appears. The salt samples seem to promote the formation of larger 

species than in the control sample, with the largest hydrodynamic diameter found in the 300 mM Na2SO4 

sample, as was also observed for the aggregation time-trials in 1 mM TCEP buffers. However, the 

greatest variations between replicate samples are also seen in the sulphate samples which may indicate 

that these samples are prone to form heterogeneous aggregate species of varying sizes. 

 

 

Figure 4.17 Average DLS result for of two independent reduced apo A4V aggregation trials in 10 

mM TCEP, 20 mM Hepes, pH 7.4 and varying salt conditions. The average percent intensity is plotted 

against the size of the species in solution. Error bars represent the variations in measurements from the 

two independent time-courses.  All samples are from the end point of the aggregation trials with the 

exception of the initial control sample in black.  
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Table 4.4 Average hydrodynamic diameter of end point aggregate species for two independent 

time-courses of reduced apo A4V aggregation in a range of salt conditions*. 

  Initial 
Control  

Final 
Control  

150 mM  
NaCl 

300 
mM 

NaCl 

150 mM 
Na2SO4 

300 mM 
Na2SO4 

Average 
Hydro-
dynamic 
Diameter 
(nm) 

Trial 1 9.8 69.9 
588.8 

262.4 109.9 363.5 
53.1 

279.2 
 

Trial 2 9.2 87.5 164.1 129.2 209.4 461.2 
70.8 

 Average
Ŧ
 9.5 ± 0.4 78.7 ± 12.4 213.2 ± 

69.5 
119.6 ± 

13.7 
286.4 ± 
109.0 

370.2 ± 
128.7 

*All samples excluding the initial control are at the end point of the aggregation time-course experiments. For trial 1 this was 474 hours and for 

Trial 2 450 hours. Each diameter-value for the individual trials is an average of three consecutive measurements of the same sample. 
ŦThe average was determined for the hydrodynamic diameter values of trials 1 and 2 in each condition. In the case where one trial showed more 

than one species, the average is reported of the species from each trial with the most dominant signal intensity. 

 

 

 The derived mean count rates for the final aggregate samples were measured and correlated with 

the final ANS fluorescence measurements for each solution condition for two separate trials. Figure 4.18 

gives the two correlation plots. For both replicate experiments there is a statistically relevant strong 

correlation (r = 0.92 and 0.95) between the DLS count rate and final ANS fluorescence measurement. 

This indicates that the increase in ANS fluorescence is a result of an increase in aggregate species as 

monitored by the enhanced light scatter in the DLS measurements. 
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Figure 4.18 Relationship between ANS Fluorescence and DLS derived mean count rate at the end 

point of reduced apo A4V aggregation time-trials in 20 mM Hepes, 10 mM TCEP and varying salt 

conditions.  

4.3.3.4 Debye Plot Analysis of Reduced Apo A4V in Varying Salt Conditions 

To aid in the understanding of the roles the salts are playing in controlling the aggregation 

pathways observed here, light scattering measurements were taken at various protein concentrations in 

each of the salt types to create Debye plots. This allowed for the determination of the second virial 

coefficient (B22) in 0 mM salt and 150 mM salt buffers in the background of 10 mM TCEP, 20 mM 

Hepes, and pH 7.4. The plots are given in Figure 4.13, and Table 4.4 summarizes the results. Due to 

limited time and available protein, the Debye plots were completed only over a small protein 

concentration range and were not repeated. For most plots the correlation coefficient is close to 0.9, 

indicating a strong correlation. Intriguingly, the value of B22 in Na2SO4 is positive, indicating protein-

solvent interactions are favoured over protein-protein interactions, which is contrary to the aggregation 

results observed for reduced apo A4V in these conditions. This is an unexpected result and requires 

replicate experiments to test the validity of this observation. In all other conditions the overall trend for 

B22 is negative, signifying that protein-protein interactions are favoured in these conditions.  

r = 0.9182
p-value = 0.0277
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Figure 4.19 Debye plots for reduced apo A4V in a range of solution conditions. All samples were in 

20 mM Hepes, 10 mM TCEP, and pH 7.4.  A-E represent the addtion of the following salts respectiviely: 

0 mM salt, 150 mM NaCl, 150 mM Na2SO4, 150 mM NaH2PO4 and 150 mM TMAO.  
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Table 4.5 Molecular Weights and Second Virial Coefficients determined from Debye plot analysis 

of reduced apo A4V in varying solution conditions. 

 

In addition to the sulphate and chloride buffers that were used for the aggregation time-trial 

experiments, Debye plots were also made for reduced apo A4V in 150 mM NaH2PO4 and 

Trimethylamine-N-oxide (TMAO). TMAO is an osmolyte found in the mammalian kidney and several 

deep sea animals, and serves to protect proteins from denaturation by urea present in the cellular 

environment143. It has been shown to be a universal protein stabilizer without significantly changing the 

native structure and activity of the protein144. Evidence has shown that in the presence of denaturant, 

TMAO interacts with N-H bonds in the protein backbone and restricts the conformational space sampled 

by the bond, thus promoting more restricted structural fluctuations145; 146. TMAO was used in the Debye 

plot analysis as a measure of the role of protein stabilization in preventing protein-protein interactions. 

Salts are also known to stabilize proteins, however the addition of TMAO allows for the investigation of 

the role of stabilization without the impact of the ionic interactions which play a major role in salt effects.  

Both the NaH2PO4 and TMAO samples behave similarly to the NaCl sample and result in a 

negative slope in the Debye plots which corresponds to the favouring of protein-protein interactions over 

protein-solvent interactions. Table 4.5 summarizes the molecular weights and second virial coefficients 

determined from these plots. The expected molecular weight for the SOD1 monomer is 15.75 kDa. The 

control sample and the TMAO sample result in molecular weight values closest to the expected monomer 

value while all other conditions show significant differences. This indicates that replicate experiments are 

necessary to validate these results. However, in general, the negative B22 value suggests that in the 

reduced apo form, A4V preferentially forms protein-protein interactions rather than protein-solvent 

interactions.

 
 

Control 150 mM 
NaCl 

150 mM 
N2SO4 

150 mM 
NaH2PO4 

150 mM 
TMAO 

Molecular Weight 
(Da) 

13,351 4,947 65,619 7,918 11,754 
 

B22  
(mL·mol/g) 

-0.0045 -0.0868 0.0086 -0.0482 -0.0277 
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4.4 Discussion 

For the purpose of thoroughly investigating the aggregation patterns of the SOD1 mutant A4V, and 

to compare the effects of salt on different initial states of the same protein, two forms of the mutant were 

studied. The metal-free form of A4V with the disulphide bond intact, termed oxidized apo A4V, and the 

metal-free form of A4V with the disulphide bond reduced, termed reduced apo A4V, were investigated in 

detail. Both forms were monitored for aggregate formation in the presence and absence of added salts, 

and the results are discussed below 

4.4.1 Oxidized Apo A4V is only slightly Prone to Aggregate in Quiescent Conditions in a 

Range of Salt Conditions 

 Limited investigations have been completed on the aggregation tendencies of oxidized apo A4V. 

In the studies described in Section 4.3.1, oxidized apo A4V was monitored in a range of salt conditions by 

ANS binding and revealed very limited evidence for aggregation. The ANS binding results (Figure 4.2) 

demonstrate limited fluorescence fluctuations are observed for all conditions, showing no convincing 

evidence of considerable aggregation. Further investigation was performed by dynamic light scattering of 

the samples after the completed time-course. Figure 4.3 shows that despite the lack of change in ANS 

fluorescence there does appear to be the formation of small amounts of larger species in the oxidized apo 

A4V samples in all solution conditions. The dimer peak at 6 nm remains the dominant species even after 

450 hours. A second species between 177 and 155 nm arises in most solution conditions, and in 300 mM 

sulphate and 300 mM phosphate solutions, a species of approximately 373 nm or 575 nm, respectively, 

becomes the second most intense species. The fact that the 6 nm species remains the largest intensity peak 

even at the end of the time-course is evidence that the proportion of aggregated species in solution is very 

small. Light scattering intensity is dependent on the sixth power of the diameter of the scattering 

particle116, thus when only a small fraction of the percent mass of the sample is present as a high 
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molecular weight species it can easily dominate the entire sample signal intensity (see Section 4.3.1). The 

fact that both the small and large species are detectable simultaneously is evidence that only a tiny 

fraction of the sample is forming larger aggregate species and that the majority of the sample is not 

aggregated. 

 To investigate the role of the solution conditions in promoting protein-protein interactions, light 

scattering was used to create Debye plots to determine the second virial coefficient. The second virial 

coefficient (B22) gives information as to whether the protein in solution favours protein-solvent or protein-

protein interactions. Table 4.2 gives the B22 results for oxidized apo A4V in 20 mM Hepes, pH 7.4 and 0 

mM salt, or 150 mM NaCl, Na2SO4 or NaH2PO4. For all conditions except for NaH2PO4, the B22 value is 

positive and varies between 0.00148 and 0.00371. This fits well with the observation that apo A4V is 

only slightly prone to aggregate in the oxidized state, as the positive B22 values indicate that the protein is 

more inclined towards protein-solvent interactions than protein-protein interactions. The negative value 

obtained for the NaH2PO4 sample is acquired from a Debye plot with relatively high scatter and a low 

correlation coefficient (Figure 4.4 D, r = 0.19). For this reason it is difficult to say whether this negative 

B22 is significant and repeat experiments are required to confirm the validity of this result.  

In previous experiments comparing the effects of various salts on the second virial coefficient for 

seven different proteins it was commonly observed that NaCl had very little effect on B22
134.This is 

somewhat different than the results obtained here, where the value for B22 in NaCl (0.00371) compared to 

that of the control (0.00148) is about 2.5-fold higher. In addition, the previous study showed that in 

general the salt effects on a given protein followed the Hofmeister series, in that the stronger the 

kosmotrope, the greater the decrease in  B22
134. In the results observed here, the B22 values observed in 

NaCl and Na2SO4 are higher than in the control (approximately 2.5-fold), which is opposite of the 

expected trend. However there is significant scatter in these plots (Figure 4.4), and thus it is likely that the 
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B22 values are not fully reliable. Repeat measurements are required to obtain more accurate values. 

Regardless, the trend in the sign of the B22 values is generally positive, indicating that oxidized apo A4V 

does not favour protein-protein interactions in the solutions conditions tested. Thus, even though salt has 

been suggested to increase the probability of forming protein-protein interactions134, the solubility and 

conformational stability of oxidized apo A4V prevent significant protein aggregation even in the presence 

of salt. 

 The general observations for oxidized apo A4V based on the studies here suggest that regardless 

of solution conditions it has relatively low propensity to aggregate. Oxidized apo A4V exists as a dimer 

with an apparent melting temperature of 50.7˚C135. Thus, at the experimental conditions of 37˚C, it is 

expected that the protein will remain predominantly as a folded dimer, and even in the presence of salt, 

aggregation does not become favoured. This does not necessarily mean that the oxidized apo state of 

SOD1 does not aggregate but instead that the conditions used here did not promote aggregation 

sufficiently enough to be observed by the ANS fluorescence method of monitoring protein aggregation. In 

these experiments aggregation time-courses were measured in quiescent, physiologically relevant 

conditions. Holo SOD1 has been shown to aggregate to low levels in similar solution conditions but at a 

concentration of 10 mg/mL71. Thus, the protein concentration may be one factor that could be altered to 

cause oxidized apo A4V to become more inclined to aggregate.  

Various other experiments have demonstrated that oxidized apo SOD1 can be induced to 

aggregate in vitro under appropriate conditions. WT SOD1 (containing two free cysteines, C6 and C111) 

in the apo oxidized form was demonstrated to form heterogeneous aggregate samples that showed a 

steady ThT fluorescence increase for the first 150 hours of incubation in air at 37˚C, pH 7 and 100µM 

(~1.6 mg/mL) protein concentration72. Follow-up studies showed that fALS mutants in the WT 

background were also prone to aggregation in the oxidized apo form in the same conditions147. The 
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conditions used in these studies were quite similar to those of the experiments described here except for 

the exposure to air.  All samples monitored here were kept in capped vials in a sealed, evacuated, 

dessicator, and thus in an anaerobic environment. The aggregates formed under the air-exposed 

conditions formed intermolecular disulphide bonds and resulted in large, soluble, oliogomeric aggregates 

that bound ThT72; 147. A key difference in these experiments is the use of the WT background vs. the pWT 

background used for the experiments described in Section 4.3.1. In this case, the free thiols at position 6 

and 111 have been replaced with alanine and serine respectively (see Section 1.6.4). Thus by using the 

pWT construct and by incubation in an anaerobic environment, the A4V protein is not expected to form 

intermolecular disulphide bonds as this would require the reduction of the intramolecular disulphide 

followed by re-oxidation between the thiols of different monomers. In another previous study that used 

agitation to induce aggregation of 1 mg/mL samples of oxidized apo WT SOD1 in 50 mM MOPS, 0.1 M 

NaCl, 1 mM EDTA, pH 7, it was demonstrated that the aggregates bound ThT and contained 

intermolecular disulphide bonds69. Since the oxidized apo aggregates in the WT background were 

characterized by disulphide cross-linking in both of these previous examples, it is not surprising that 

similar aggregation is not observed here for oxidized apo A4V in the pWT background and in anaerobic 

conditions.  

 Oxidized apo A4V in the pWT background is not prone to aggregate in quiescent, physiologically 

relevant, anaerobic, solution conditions. Even in the presence of salts of varying kosmotropic strengths, 

no observable aggregation was measured by ANS fluorescence. Thus, although salts have the potential to 

promote aggregation (see Section 1.3.3), oxidized apo A4V in the solution conditions used here, resulted 

in very little aggregate formation and the prevalence of non-aggregated soluble protein dimers in all test 

conditions. This suggests that oxidized apo SOD1 has a relatively low propensity to form non-covalent 
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aggregates, but can be induced to aggregate quite readily by the oxidation of free thiols69; 72, which is 

additionally true for other proteins148.   

4.4.2 Reduced apo A4V in the presence of 1 mM or 10 mM TCEP and Various Salt 

Conditions is Prone to re-oxidize and form Disulphide Cross-linked Aggregates with 

Amyloid-like characteristics 

4.4.2.1 Reduced apo A4V Favours Protein-Protein Interactions more than Protein-Solvent 

Interactions 

 It has been previously suggested that reduced apo SOD1 may be more prone to aggregate than 

both the oxidized apo and holo forms of the protein65 (See Section 1.6.2) . This hypothesis is supported by 

the difference in second virial coefficients of the oxidized and reduced form of apo A4V. In the oxidized 

apo form the B22 values in various buffer conditions are generally positive (see Table 4.2), indicating that 

the protein favours protein-solvent interactions over protein-protein interactions, and therefore it is 

colloidally stable. Initial inspection of the Debye plots for reduced apo A4V (Figure 4.19) shows 

obviously negative slopes indicating that the protein is colloidally destabilized and favours protein-protein 

interactions over protein-solvent interactions. The B22 values are summarized in Table 4.5. Interestingly, 

the only plot that shows a positive correlation for reduced apo A4V is that of the Na2SO4 sample, which 

based on the aggregation results would be expected to have the strongest negative correlation because it 

appears to have the greatest tendency to aggregate (vide infra). However, these are preliminary results 

that have not been replicated and are based only on a few concentration points and thus require further 

validation.  

To test the role of protein stability in influencing the second virial coefficient, a Debye plot was 

performed in a 150 mM TMAO buffer (Figure 4.19 E). TMAO is a stabilizing agent expected to prevent 

protein unfolding. Surprisingly, the TMAO does not appear to have a significant effect on promoting 

protein-solvent interactions, as represented by the negative B22 value. In fact, the slope of the Debye plot 
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is actually more negative in TMAO than in the control sample without salt, suggesting that TMAO may 

not aid in preventing reduced apo A4V aggregation, and may actually induce aggregation. TMAO can 

cause the native-like folding of naturally unfolded proteins149. If in the same way, TMAO stabilizes the 

unfolded state of reduced apo A4V, resulting in a more compact structure, this could be a potentially 

mechanism of promoting aggregation since partially-folded states are considered to be particularly 

aggregation prone7.   In addition, other factors beyond stability, including factors that influence 

electrostatic and Van der Waals interactions, such as net charge and exposed hydrophobic groups, 

influence colloidal stability22, and are likely to play a role in determining the B22 value of reduced apo 

A4V in varying solution conditions. Regardless, based on the general trends observed in Debye plot 

analysis, it can be generally concluded that when the disulphide bond is reduced, apo A4V has a negative 

B22 value indicating an increased tendency to form intermolecular associations than in the oxidized apo 

form. Further investigation is required to confirm the role of salt in influencing the second virial 

coefficient of reduced apo in solution.  

4.4.2.2 Salt Promotes Reduced apo A4V Aggregate Formation with Increased ANS 

Fluorescence 

The role of salt in the mechanisms of protein aggregation is not fully understood. Salts can have 

both electrostatic and stabilization effects on proteins that may promote or prevent aggregation depending 

on the protein in question and the state the protein is in125. The aggregation patterns of 1 mg/mL reduced 

apo A4V were monitored by ANS fluorescence in a range of salt conditions in a buffer containing 1 mM 

or 10 mM TCEP.  Interestingly, the initial time points for all samples had higher ANS fluorescence 

signals in the reduced apo form than in the oxidized apo form. This is likely a result of increased exposure 

of hydrophobic groups in the monomeric, more expanded structure of the reduced form of the protein, 

which are more buried in the more compact, dimeric oxidized apo SOD1150 . In addition, reduced apo 
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A4V is only marginally stable at 37˚C, with an apparent melting temperature of 36˚C27, indicating the 

population of unfolded monomer would be expected to be around half of the total protein concentration. 

The unfolded species may also contribute to the increase in ANS fluorescence by the exposure of 

hydrophobic residues. Based on the fact that at the conditions used for experimentation reduced apo A4V 

will be approximately half unfolded, salt may have complex effects on the aggregation of this protein by 

interactions with both the folded and unfolded states (vide infra).  

Salts can interact with proteins and play a role in shielding charges, resulting in decreased 

repulsion between proteins and potentially increased aggregation. Monomeric SOD1 has a net negative 

charge at neutral pH76, and so it would be expected that under the experimental conditions (pH 7.4) 

charge shielding may promote aggregate. Ions could also be involved with the selective binding and 

stabilization of various states of the protein (ie. folded, unfolded, or partially folded). Stabilization of the 

folded state would result in less unfolded protein by shifting the equilibrium towards folded protein. 

Na2SO4 has previously been shown to cause stabilization and structural compaction of a monomeric 

intermediate form of apo SOD1151. Additionally, stabilization of the unfolded state could cause partial 

refolding into a more compact state, similar to what has been observed for osmolytes149.  The potential 

stabilization roles of salt could significantly affect the aggregation patterns of the protein. Investigation 

into the role of ions in reduced apo A4V aggregation was performed by monitoring the time-course of 

aggregation in the following salt conditions: 0 mM salt or 150 mM NaCl or Na2SO4. 

Over the approximately 450 hour time-course of the experiments, the protein samples in 150 mM 

or 300 mM Na2SO4 show large increases in ANS fluorescence over the first 50 hours, followed by a 

period of more gradual increases in ANS fluorescence for the rest of time-course of the experiment (see 

Figures 4.5 D,E and 4.12 D,E).  The samples in 150 mM NaCl show a steady, gradual increase in ANS 

fluorescence over the entire 450 hours (Figures 4.5 B and 4.12 B). In 300 mM NaCl the average ANS 
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fluorescence remains fairly constant over the time-course in 1 mM TCEP (Fig.4.5 C), while showing a 

moderate increase in fluorescence over time in 10 mM TCEP (Fig. 4.12 C). In the control samples with 

no added salt, the 1 mM TCEP sample remains fairly constant in fluorescence while in the 10 mM TCEP 

sample there is a slight gradual increase in ANS fluorescence over time. In addition to differences in the 

overall pattern of ANS fluorescence for the different types of solution conditions, the initial ANS 

fluorescence also varies. In general, the salt samples seem to have slightly higher initial ANS 

fluorescence than the control samples. The difference is slightly more pronounced for the Na2SO4 samples 

than the NaCl samples. This may be indicative of some initial aggregation occurring before the first time 

point of fluorescence is taken, or that the salt promotes increased hydrophobic exposure in the reduced 

apo form.  

From the ANS results the overall aggregation pattern seems to follow the Hofmeister series in 

that the order of greatest to least aggregation is Na2SO4 > NaCl > no salt. This is somewhat expected as 

this pattern has been observed for the role of salt in protein aggregation previously42; 44 and additionally 

corresponds to the ThT results (see Section 4.4.2.4). The kosmotropic salts in the Hofmeister series have 

been suggested to decrease protein solubility and can lead to increased protein aggregation43. The ionic 

strength of the salts allows for charge shielding which may decrease the net repulsive forces between like-

charged protein molecules. As mentioned above, a significant portion of the reduced apo A4V species 

will be unfolded. This may result in the exposure of aggregation prone regions, and in addition the 

exposure of charged regions that may cause electrostatic repulsions between monomers. The presence of 

salt could provide the ions necessary to shield these charges and allow for intermolecular association into 

aggregate structures. This would explain the trend observed for the salts used in this experiment. Sulphate 

has a higher ionic strength than chloride and thus would be better at shielding charges and promoting 

aggregation. ANS-binding aggregates appear faster in the sulphate samples than in the chloride samples, 
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and faster in chloride than without salt. This suggests that salt increases the rate of aggregation (see 

Section 4.4.2.4).  

It is important to consider whether the aggregation observed here is occurring from the unfolded 

or folded state, or from a transiently populated intermediate state. From these experiments it is not 

possible to determine this information; however, it is relevant to consider the possibility of aggregation 

from each of these states. Kosmostropic salts have been shown to stabilize proteins43, and specifically, 

Na2SO4 has been demonstrated to stabilize SOD151. If aggregation were to occur from the folded state 

than it may be expected that the stabilization effects of salt would correspond to an increase in 

aggregation from the folded state since the presence of salt would shift the equilibrium toward folded 

protein. However, additional effects of salts, such as charge-shielding as mentioned above, complicate 

data interpretation. The increase in exposed charges characteristic of the unfolded state could be shielded 

by the presence of ions, supporting that salts may enhance aggregation from the unfolded state. This 

behaviour has been confirmed by the necessity of high ionic strength in protein solutions in which 

aggregation is induced by low pH42. In addition, the presence of salt may influence the stability of 

potential intermediate states. For example, the monomer intermediate for oxidized apo SOD is selectively 

and markedly stabilized by Na2SO4
151.  Additionally, the stabilization of a folding intermediate has been 

observed for the four helical protein Im7152. If this were the case, the stabilization of a partially folded 

intermediate may be particularly influential in promoting protein aggregation as it has been suggested that 

too much structure, or too little structure, may both inhibit aggregation119, and that partially folded 

intermediates are particularly aggregation prone7. Further experimentation is required to elucidate which 

scenario is leading to the aggregation observed for reduced apo A4V in these conditions.  

The two predominant effects of the interactions between salt and protein are electrostatic 

interactions that shield net charge, and specific interactions resulting in protein stabilization (see Figure 
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4.20). Both of these factors can contribute to promoting protein aggregation. The fact that both NaCl and 

Na2SO4 are observed to promote reduced apo A4V aggregation suggests that salt may be decreasing the 

negative repulsive charges between protein monomers and stabilizing partially folded protein structures in 

such a way to increase intermolecular reactions, resulting in protein aggregation. 

 

Figure 4.20 Possible roles of salts on promoting protein aggregation. Two important roles of salt on 

aggregation include: A) Stabilization of an aggregation-prone state (whether folded, unfolded, or a 

partially folded intermediate), and B) electrostatic interactions resulting in charge shielding and reduced 

repulsive charges between monomers. 

4.4.2.3 Salt Promotes Protein Re-oxidation and Disulphide Cross-linking 

The role of disulphide cross-linking in SOD aggregation has been a significant point of 

controversy among researchers. Some studies have suggested that free thiol oxidation is required for the 

formation of amyloid-like aggregates72; while in contrast, others have shown that aggregation still occurs 

when all four cysteines are mutated73. It has also been suggested that intermolecular disulphide formation 

in ALS mice models is only important in late stage disease, and it is not required to initiate aggregation74. 

Further investigation into the patterns of aggregation of reduced apo A4V reveal that in both 1 mM and 
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10 mM TCEP buffers (20 mM Hepes, pH 7.4) the protein became significantly re-oxidized and formed 

high molecular weight, cross-linked species during a 450 hour time-course with incubation at 37˚C in an 

anaerobic environment. The SDS PAGE gel shown in Figure 4.7 clearly demonstrates that the reduced 

apo protein becomes at least partially oxidized throughout the time-course of the experiment in 1 mM 

TCEP buffers and that the salt conditions promote significant protein re-oxidation and the formation of 

covalent intermolecular disulphide bonds, particularly in the sulphate samples (Figure 4.7 lanes 8 and 9). 

Similarly, in the 10 mM TCEP buffer conditions, considerable cross-linking is represented by higher 

molecular weight bands seen in the salt conditions (Figure 4.14, panel A lane 8 and 9 and panel B lanes 5-

7). The relative intensities of the bands for cross-linked species follows the order of Na2SO4 > NaCl > no 

salt, which is identical to the pattern observed for ANS fluorescence. This may indicate that the cross-

linked species induced by the presence of salt are responsible for the increase in ANS fluorescence.  

The salt samples demonstrate increased oxidation and disulphide linking in both the 1 mM and 10 

mM TCEP buffer conditions. Interestingly, while in 1 mM TCEP buffers there is some remaining reduced 

protein at the end of the time-course in the control and sulphate samples (Figure 4.7 lanes 7-9), in the 10 

mM TCEP buffers there is only a small fraction of reduced protein remaining in the control sample, and 

none in the sulphate samples (Figure 4.14 panel A lanes 7-9). This suggests that the samples are more 

easily oxidized in the 10 mM TCEP samples as opposed to the 1 mM TCEP samples. This is an 

unexpected result considering that the concentration of TCEP has been increased 10-fold. To investigate 

whether the TCEP buffers are remaining reduced during the time-course of the experiments, DTNB 

assays were performed for both the 1 mM and 10 mM TCEP samples. The buffer analysis test to 

determine the time-course of 1 mM TCEP oxidation (Figure 4.8) clearly demonstrates that the salt buffers 

become oxidized more quickly than the control buffer. Interestingly, in the 10 mM TCEP buffer (Figure 

4.15), the control behaves similarly to the salt buffers at the same pH. In both cases, the TCEP becomes 
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oxidized more quickly than expected. The rate of TCEP oxidation in similar conditions (50 mM Hepes, 

pH 8.2) to what was used here was previously measured and gives a zero order rate constant of 9.0 x 10-6 

mM/min. However, in the 1 mM TCEP samples the salt conditions result in a zero order rate constant of 

1.1 x 10-4 mM/min, or 4.39 x 10-5 mM/min for the control sample. In 10 mM TCEP the zero order rate 

constant was approximately identical in all conditions at pH 7.8 with a value of 5.6 x 10-4 mM/min. 

Therefore in all experimental conditions the rate was significantly faster than previously measured (five-

fold greater for the control in 1 mM TCEP and 12 to 60-fold greater in all other conditions). The fastest 

rate occurred in the 10 mM TCEP samples, which may be indicative of why these samples resulted in 

almost complete protein oxidation by the end of the time-course experiments as observed in the SDS 

PAGE gels (Figure 4.14). These results are quite surprising, first because the rate of TCEP oxidation is 

much higher than previously determined, and second because the 10 mM TCEP samples had higher rates 

of oxidation than the 1 mM TCEP samples. 

 There are several factors that may promote the oxidation of the TCEP in the conditions used here 

including the small sample volumes, large surface area exposure to the glass of the vials and the presence 

of salt. The glass vials used in these experiments hold volumes of 140 µL. The conical shape results in a 

large solvent area to glass exposure. The presence of oxygen in the silicon oxide glass, and the potential 

for accumulation of charges on the glass surface153, may contribute to the redox chemistry and enhance 

TCEP oxidation. However, there do not seem to be any previous publications noting similar glass effects 

on the rate of oxidation of reducing agents. It is additionally unclear why the 10 mM TCEP solution 

would have a faster rate of oxidation than the 1 mM TCEP solution. As discussed in Section 4.3.3.2, two 

different forms of TCEP were used for the preparation of the 1 mM and 10 mM TCEP solutions. 

However, there is no obvious reason as to why this might influence the rate of oxidation. The 1 mM 

solution is prepared from a TCEP-HCl molecule, while the 10 mM solutions from neutral TCEP. Thus the 
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only difference is the presence of HCl, and it is not obvious whether the presence of this ionic acid might 

slow the oxidation reaction. Another point for consideration is the redox potential of the solution, which 

is determined by the ratio of oxidized to reduced TCEP.  Since the 10 mM TCEP had a higher proportion 

of oxidized TCEP at the beginning of the time-course, it‟s potential to reduce was lower. This likely 

contributed to the observation of the faster oxidation of reduced apo SOD1 in the 10 mM TCEP buffer 

compared to the 1 mM CTEP buffer, but it does not explain the usually high rate of TCEP oxidation in 

both of these buffers. Further investigation into this intriguing observation is required. The rate of TCEP 

oxidation is likely to have a significant impact on the formation of disulphide cross-linked aggregates as 

the reduced apo A4V becomes re-oxidized. 

Disulphide cross-linked aggregates have been described previously for SOD1 in various forms. 

Banci et al., in 2008, demonstrated that oxidized apo mutants in a WT background (containing free C6 

and C111) formed disulphide-linked soluble aggregate structures by the oxidation of free thiols upon 

incubation in air in solution conditions of 37˚C, pH 7, and 100 µM protein154. The aggregates showed 

increased ThT-fluorescence which was proportional to the percentage of aggregated species in solution. 

The oliogomeric species were destroyed in the presence of the reducing agent dithiothreitol (DTT)154. In 

addition, it was shown that reduced apo WT SOD1 could form aggregate species with or without 

intermolecular disulphide bonds depending on the solution conditions69. In 1 M guanidine hydrochloride 

(Gdm-HCl), 10 mM TCEP, cross-linked aggregates were formed. However in 100 mM TCEP, aggregates 

formed that did not possess intermolecular disulphide bonds. Agitation was used to induce aggregation in 

both of these conditions69. This seems to suggest that destabilization by Gdm-HCl and reduction by 10 

mM TCEP was adequate for exposing free thiols but that the reducing potential of 10 mM TCEP was not 

able to keep the thiols reduced and cross-linked aggregates were formed. It is possible that the Gdm-HCl 

also was involved in charge shielding which may have promoted aggregation. Similarly, in the quiescent 
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conditions of the experimental results for reduced apo A4V in varying salt conditions described here, 

intermolecular disulphides were also a characteristic trait of the aggregates. Salt may have promoted the 

formation of intermolecular disulphide formation by the reduction of repulsive electrostatic forces 

allowing for increased protein-protein interactions. Because the buffer did not remain a reducing 

environment, this allowed for the re-oxidation of the free thiols to result in the formation of 

intermolecular disulphide bonds.  This may have occurred first through the aggregation of reduced apo 

A4V in a reducing environment (as A4V has previously been shown to aggregate in quiescent solutions in 

the reduced apo form without formation of disulfide bonds27) that situated the protein monomers in such a 

way that when the solution became an oxidizing environment free thiols were in close proximity to free 

thiols from other monomers as opposed to thiols on the same strand. The result then becomes the 

favoured formation of intermolecular instead of intramolecular disulphide bonds (see Figure 4.20). This 

potential mechanism will be discussed further in Section 4.4.3. 

4.4.2.4 Salt Promotes Larger Aggregates with Increased Amyloid-like characteristics 

 Salt could have multiple effects in modulating the aggregation patterns of proteins. Two possible 

effects of salt may be altering the rate of aggregate formation and moderating the morphology of the 

aggregates being formed. It is obvious from the ANS binding results that aggregates appear faster in salt 

conditions than in the absence of salt (see Section 4.4.2.2). In order to further characterize the structure of 

the aggregates formed by A4V in the varying salt conditions used here, a series of tests were designed to 

gather more information about the structure and size of the aggregates being formed. ThT-fluorescence 

was used for the investigation of the amyloid-like nature of the aggregates and Dynamic Light Scattering 

(DLS) was employed to gather information about the sizes of the aggregates. Preliminary ThT data of the 

sulphate samples in 1 mM TCEP buffers (Figure 4.9) demonstrates that the aggregate species formed in 

sulphate solutions are amyloid-like. The endpoint samples of 150 mM and 300 mM sulphate show that a 
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pronounced difference in ThT results when compared to the endpoint control sample. The control sample 

has a slight increase (approximately 3-fold) in ThT fluorescence compared to the buffer, while sulphate 

samples show a ThT fluorescence increase of 18-fold (150 mM sulphate) of 36-fold (300 mM sulphate). 

This indicates that aggregate species formed in the presence of sulphate posses the cross-beta fibrillar 

structure that interacts with ThT to cause fluorescence.  

More extensive ThT binding investigations were completed for the samples in 10 mM TCEP and 

are displayed in Figure 4.16. From these results it is evident that the protein samples in sulphate display 

the strongest ThT-fluorescence, followed by the NaCl samples, and finally the control samples. All end 

point samples have an increase in ThT-fluorescence compared to the control sample at the initial time 

point, which behaves identically to the ThT buffer without protein added. These results are in agreement 

with both the SDS-PAGE and ANS-binding results in which aggregation is promoted by salt in 

accordance with the Hofmeister series. It appears that the salt causes an increase in disulphide cross-

linked aggregate species which is associated with an increase in ANS and ThT fluorescence. The 

interaction with ThT is characteristic of amyloid-like aggregates and suggests that these cross-linked 

species possess beta-sheet morphology.  

Dynamic Light Scattering results demonstrate differences in the hydrodynamic diameters for 

aggregates formed in varying solution conditions. Figures 4.9 and 4.16, and Tables 4.3 and 4.4 describe 

the summarized results for the endpoint DLS measurements for 1 mM TCEP and 10 mM TCEP buffer 

conditions, respectively. In both cases, the sizes of the aggregates are larger in the salt samples compared 

to the control sample. In general, the species size is larger in the 10 mM TCEP samples which may be a 

result of the faster TCEP oxidation described in Section 4.4.2.2, if disulphide oxidation promotes 

aggregate growth. In both sets of experiments the largest species was formed in the 300 mM sulphate 

buffers. Figures 4.10 and 4.17 demonstrate the correlation between total light scattering intensity and 
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ANS fluorescence. The high correlations (all > r = 0.9) indicate that a sample with high ANS fluorescence 

also has the greatest light scatter. This could be a result of two possibilities: 1) the aggregates interacting 

with ANS are large species (as evidenced by DLS) and larger species will scatter more light than smaller 

species, or 2) there are more aggregates forming in the samples with higher ANS fluorescence and the 

increased number of aggregated species results in more light scatter. It is possible that both of these 

possibilities are contributing factors and that the salt samples induce the formation of larger aggregated 

species, and more aggregated species, than the control sample. Overall, these results suggest that the 

presence of salt increases the tendency of reduced apo A4V to form increased numbers of large, soluble 

protein aggregates. Similar results have been observed for α-amylase from Bacillus halmapalus, where 

the presence of salt caused an increase in aggregate size compared to aggregate formation in the absence 

of salt155.  

These results suggest that the salt samples have an effect on the structure of the aggregates 

formed by reduced apo A4V. In the presence of salt, aggregates show increased amyloid-like 

characteristics and are larger sizes than in the absence of salt. However, in these experiments the amount 

of total protein in each sample was the same, but the amount of protein aggregates in each sample 

differed. Thus, the differences in ThT fluorescence could actually be a result of differing amounts of 

aggregates in solution and not necessarily that salt promotes aggregation in the form of amyloid-like 

structures more than in the absence of salt. In order to appropriately determine this, samples would need 

to be normalized for aggregate concentration instead of overall protein concentration. Similarly, the DLS 

results suggest that salt promotes the formation or larger aggregates, however it could also be argued that 

salt increases the rate of aggregate growth and that over time, all solutions may reach the same size 

aggregates, but that the salts might promote reaching the final structure faster. For these reasons, the 

complex roles of salts in the mechanisms of protein aggregation must be investigated further (see Section 
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5.2.2) to define the implications of ionic strength on aggregate structure. Regardless, from the results 

obtained here, it can be concluded that for reduced apo A4V, salt promotes the appearance of larger, ThT-

binding aggregates compared to samples with no added salt.  

4.4.3 Conclusions 

 The roles of salt in the mechanism of protein aggregation are difficult to generalize as they can 

vary considerably from one protein to another. For the A4V aggregation experiments discussed in this 

chapter, increasing ionic strength was observed to play three major roles: 1) promote the rate of formation 

of ANS-binding aggregates, 2) promote the formation of disulphide cross-linked aggregates, and 3) 

promote the growth of protein aggregates into large, amyloid-like species. Both sulphate and chloride 

were extensively studied and all experimentation demonstrated that the order in which these ions 

promoted protein aggregation was: no salt < NaCl < Na2SO4, following the increasing kosmotropic nature 

described by the Hofmeister series. This confirms previous results that demonstrate similar aggregation 

patterns for the role of salt on the aggregation of α-lactalbumin42 and yeast prion protein44. The salt 

buffers are likely to play multiple significant roles in contributing to the enhancement of reduced apo 

SOD1 aggregation. It is difficult to separate the different roles of the salts, and the roles these properties 

might play in the aggregation results observed here. It is reasonable to suggest that both the stabilization 

and electrostatic effects of the salts could contribute to the observations. Kosmotropes are known to 

increase protein stability and enhance the salting out effect by decreasing protein-solvent interactions43. In 

this way, kosmotropes can promote the formation of hydrophobic clusters. Sulphate has a higher ionic 

strength than chloride, and since it is observed to have a greater influence on increasing protein 

aggregation of reduced apo A4V, this is consistent with a potentially important role of charge shielding 

on protein aggregation. These factors may work together to stabilize aggregation-prone conformations of 

reduced apo SOD1 (whether folded, unfolded, or partially folded) and promote protein-protein 
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interactions by decreasing solvent interactions, enhancing hydrophobic associations, and shielding 

repulsive charges. A schematic of what this aggregation pathway could look like is given in Figure 4.21.  

 Salts play a significant role in modulating the aggregation of protein. As seen in the results here, 

salts have the potential to cause increased protein aggregation in accordance with the Hofmeister series. 

Both ionic interactions and stability effects may contribute to the role of salt in protein aggregation (see 

Figure 4.20), which is an important consideration in improving understanding of the fundamental 

principles of protein aggregation. These studies provide a significant basis for improved understanding of 

the role of salt in modulating the pathways of protein aggregation. Further investigations will continue to 

increase understanding in the molecular pathways of protein aggregation. 
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 Figure 4.21 Schematic of a potential aggregation mechanism of reduced apo A4V in salt conditions 

resulting in the formation of disulphide cross-linked, amyloid-like soluble aggregates. Unfolded, 

partially folded, or folded reduced apo A4V associates into soluble oliogomeric aggregates. Salt ions 

(shown as black circles) prevent intermolecular repulsion between charged residues (shown as positive 

red circles and negative blue circles) and promote hydrophobic clustering. Oxidative solution conditions 

results in the formation of disulphide cross-linked species that further rearrange into aggregates with 

increased beta-sheet structure. 
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Chapter 5 

Summary and Future Work 

 

5.1 Summary and Conclusions 

 This project set out to investigate the molecular mechanisms of protein aggregation. Two 

approaches were used for the purpose of achieving this goal. First, an investigation was completed that 

compared nine protein aggregation prediction techniques. The algorithms were used to predict 

aggregation for several mutations of three very different proteins. Predictions were compared for identical 

sequences to determine whether varying techniques would form a consensus on the mutants most prone to 

aggregate and the regions of a protein most likely to be involved in aggregation. Further investigations 

were completed by comparing predicted aggregation results with experimentally observed aggregation.  

 The second component of this project was to examine experimentally the role of salt in 

influencing protein aggregation. The ALS-causing SOD1 mutant, A4V, was used as a model protein for 

this study. The aggregation patterns of the oxidized and reduced apo form of this protein were monitored 

using a variety of techniques including ANS and ThT fluorescence, DLS, and SDS-PAGE gels. The two 

major roles of salt in modulating protein aggregation were examined in detail, including charge shielding 

which can decrease repulsive charges between proteins, and specific interactions which can stabilize 

aggregation-prone forms of the protein.  

Table 5.1 provides a summary of potential variables discussed throughout this study that may 

influence protein aggregation, and the impact they can have on the protein. These factors will be further 

discussed in the summary sub-sections below. In addition, Figure 5.1 gives a summary scheme of the 

diversity of the potential pathways that could be involved in protein aggregation. Importantly, solution 

conditions could have significant effects on modulating these pathways. 
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Table 5.1 Summary of potential variables that contribute to protein aggregation. 

Variable Potential Impact on Protein 

Solution Conditions (ie. Ionic strength, 
temperature, pH etc.)

8; 22
* 

 

Charge, solubility, stability, electrostatic and 
hydrophobic interactions 

Inherent Properties of the amino acids in the 
protein sequence

9
 

 

Net charge, alpha helix or beta sheet propensity 
and hydrophobicity 

Native Structure
10

 The degree of foldedness of the native protein, 
and the amount of alpha helix or beta sheet 
secondary structure 
 

Stability
28

 Probability of populating folded and unfolded 
states 
 

Local fluctuations
29

 
 

Exposure of aggregation prone regions 

*The solution conditions have the potential to alter all additional variables listed in the row below. 

 

 

Figure 5.1 Overview of protein aggregation mechanisms. Figure reproduced from Giurleo et al., 

2008156. 
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5.1.1 Comparison of Multiple Aggregation Prediction Algorithms 

 The following nine protein aggregation prediction algorithms were used to predict the 

aggregation propensity of many mutants of three different proteins: Chiti-Dobson equation9, Wang-Agar 

equation61, Zyggregator85, Ztox85, FoldAmyloid88, PASTA86, TANGO87, and Profile 3D89. These 

algorithms are quite diverse in the way in which they were designed and the proteins on which they were 

tested (see Tables 2.1 and 2.5). In general, most of the algorithms were developed and tested based on 

Thioflavin T (ThT) fluorescence data, which measures the rate of amyloid formation. Three proteins, 

including Superoxide Dismutase (SOD1), a 153 amino acid, homodimer59, human Acylphosphatase 

(AcP), a 98 amino acid, natively-folded monomer92, and the Amyloid Beta peptide (Aβ42), a 42 amino 

acid peptide without stable tertiary structure95, were used as test proteins. Both SOD1 and Aβ42 are 

additionally interesting because they have been linked to neurodegenerative disorders50; 51. The 

aggregation prediction propensities were calculated for all three wild-type proteins and mutants, by all 

nine algorithms. This study presents the first wide-scale comparison of many prediction algorithms by 

comparing the predicted aggregation propensities of multiple mutants of three different proteins. 

Comparisons of predicted aggregation propensities for a given protein sequence revealed marked 

differences, even for Aβ42, which readily forms amyloid. This lead to the conclusion that the prediction 

algorithms do not form a consensus on the factors that control protein aggregation. This is not particularly 

surprising because of the diversity in the contexts in which the algorithms were designed. For example, 

the Chiti-Dobson equation was developed based solely on the role of the physical and chemical properties 

of single point mutations in causing amyloid formation of unfolded proteins9. In contrast, the 

FoldAmyloid method predicts aggregation based on the ability of consecutive residues in a sequence to 

form extensive molecular contacts including hydrogen bonds, and was not specifically designed to predict 

amyloid only, but may be relevant in predicting additional forms of aggregates88. Therefore, the 
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observation that the algorithms predict differing aggregation propensities for the same sequence may 

imply that the factors that modulate differing types of aggregation play different roles in varying types of 

aggregation. Figure 5.1 demonstrates a broad range of aggregation pathways. These pathways may be 

influenced differently by different factors and so algorithms developed based on one specific pathway 

may not be successful in predicting the aggregation of a different pathway. For example, an algorithm 

developed based on ThT binding by full-length proteins forming mature fibrils may result in the inclusion 

of variables that are not particularly relevant to the formation of branched protofibrils by short peptides.  

 In addition to predicting the overall propensities of aggregation for several protein sequences, the 

algorithms were used to examine aggregation-prone regions of the three wild type test proteins. Although 

the algorithms did not converge upon a consensus of the factors governing protein aggregation, as 

discussed above, they were much more successful at converging upon the regions within a sequence that 

are most prone to aggregate. Hot-spot maps were generated for SOD1, AcP and Aβ42, and in all three 

proteins, regions in which positive aggregation propensities, as predicted by at least 5 out of the 7 

algorithms, were identified (the Chiti-Dobson and Wang-Agar equations could not be used because they 

only predict overall aggregation propensities and do not identify aggregation-prone regions of a 

sequence). This is a promising result because it demonstrates the agreement between algorithms in 

locating aggregation-prone stretches within a protein sequence. In this manner, multiple algorithms may 

be used together to locate sections within a protein at are particularly vulnerable to protein aggregation. 

Further experimental validation of the success of using this approach to identify aggregation-prone 

regions is required. 

5.1.2 Correlating Predicted and Observed Protein Aggregation 

 Over the past decade several advances have been made in the field of understanding protein 

aggregation, including the development of aggregation prediction algorithms. In this study, many of these 
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algorithms were used to predict the aggregation propensity of a series of mutants of three different test 

proteins, and the results were correlated with previously measured experimental aggregation propensities9; 

27; 92; 108; 109; 110. This provides the first broad-scale analysis that tests the success of the aggregation 

prediction techniques in correlating with observed aggregation. The results were somewhat surprising and 

are an important consideration for future advancement in refining the understanding of the detailed 

mechanisms that modulate protein aggregation pathways. In brief, the aggregation prediction algorithms 

predominantly demonstrated poor to moderate correlations with observed aggregation for three test 

proteins. The best correlations were those of the Aβ42 and its mutants, likely because Aβ42 readily forms 

amyloid experimentally and it is a short peptide without extensive native structure. The Chiti-Dobson (r = 

0.92) and Wang-Agar (r = 0.89) equations gave the strongest correlations for predicted and observed 

aggregation propensity of this protein. It is not surprising that these correlations are high as the Aβ42 data 

used to make these correlations was used in the design of the algorithms. It is more surprising that so few 

of the algorithms were able to accurately predict the aggregation of Aβ42, resulting in statistically 

insignificant correlations for six of the prediction techniques.  

The second best correlations were observed for AcP. In the conditions in which the experimental 

data was collected (pH = 5.5), AcP was unfolded9. The aggregation data for AcP mutants was also used in 

the development of the Chiti-Dobson and Wang-Agar equations and was used to test the accuracy of the 

Zyggregator algorithm. Thus, it is expected that these algorithms would be able to accurately predict AcP 

aggregation. Statistically significant correlations, albeit not particularly strong (r-values ranging from 0.55 

to 0.61), were obtained for these three algorithms and the Ztox algorithm, which is based on the 

Zyggregator method. Surprisingly, all other algorithms could not accurately predict amyloid formation by 

unfolded AcP. This may be attributed to the fact that most of the unsuccessful algorithms were developed 
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based on hexapeptide data and there the factors modulating the aggregation patterns of short peptides may 

different than that of a larger protein sequence. 

Finally, the algorithms gave the poorest correlations for SOD1. Only one algorithm, Zyggregator, 

gave a statistically relevant, moderate correlation (r = 0.59). SOD1 aggregation was measured in the 

reduced apo state by Dynamic Light Scattering. This method does not monitor amyloid formation like 

ThT fluorescence, but instead measures light scatter as an indicator of total protein aggregation. Reduced 

apo SOD1 mutants form soluble oliogomeric structures and not fibrillar amyloid27. The fact that the 

algorithms are incapable of predicting the aggregation observed here may reflect the specificity of these 

algorithms for the prediction of amyloid. That being said, the algorithms did not perform particularly well 

at predicting amyloid formation by Aβ42 and AcP. These results imply that, in general, the aggregation 

prediction algorithms are incapable of predicting aggregation outside of the individual contexts in which 

they were designed and tested (see Table 2.6). This provides further evidence of the specificity of the 

factors involved in different types of protein aggregation pathways (as discussed in Section 5.1.1).  

5.1.3 Investigating the Role of Reduced Apo SOD1 in ALS 

 The instability of the reduced apo form of SOD1 has resulted in the suggestion that this form of 

the protein may be specifically important in causing ALS77. For the purpose of further investigating the 

potential role of reduced apo, several possible correlations were investigated between the properties of 

SOD1 mutants in the reduced apo form and the characteristic disease durations of ALS patients with 

SOD1 mutations (see Section 1.6.1). The aggregation of reduced apo SOD1 mutants, as measured by 

DLS27, was plotted against ALS disease durations, resulting in a poor correlation (r = 0.27). There are 

multiple ways to interpret this result. First, it could be that reduced apo SOD1 aggregation is not 

important in disease. However, a more likely interpretation may be that reduced apo SOD1 aggregation is 

not the only important factor in disease. Instead, it is likely that different forms of the protein may be most 
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toxic depending on the mutant27. Quite intriguingly, there appears to be two main outliers (G37R and 

V148I) in the relationship between observed aggregation and disease duration which when removed 

markedly improve the correlation (r = 0.78). This may indicate that some of the mutants involved in this 

study form aggregates in the reduced apo form that may be implicated in disease duration, while others 

are outside of this trend and likely exert their toxic effects in a different form of the protein.  

 

5.1.4 Probing the Role of Salt in Modulating Aggregation 

 The role of salt in protein aggregation was investigated by monitoring the aggregation patterns of 

oxidized and reduced apo A4V in physiological relevant, quiescent solution conditions. Oxidized apo 

A4V showed very little tendency to aggregate regardless of the experimental solution conditions. This is 

in contrast to previous studies that showed that wild type and mutant oxidized apo SOD1 readily form 

large, disulphide-linked, ThT-binding, soluble oligomers72; 154. As opposed to the wild-type protein used 

for these former studies, the experiments described in Chapter 4 employ the A4V mutant in the pWT 

background (see Section 1.6.4) in which the free cysteines at positions 6 and 111 are replaced with 

alanine and serine, respectively. Additionally, former studies incubated protein samples in air-exposed 

conditions, while the current study incubated samples in sealed vials in anaerobic conditions. For these 

reasons, it is not surprising that the oxidized apo A4V in the pWT background did not form disulphide-

linked aggregate species. This suggests that oxidized apo SOD1 has a relatively low propensity to form 

non-covalent aggregates, but can be induced to aggregate quite readily by the oxidation of free thiols69; 72. 

The presence of salt did not cause a large difference in the observed aggregation of oxidized apo A4V 

when compared to conditions without added salt. The only slight evidence for a role of salt comes from 

the DLS results which show an increase in hydrodynamic diameter of aggregated species in salt samples 

compared to the control sample. However, the dominant species contributing to the DLS light scattering 
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intensity in all solution conditions is the dimer peak, indicating only a very small fraction of the oxidized 

apo A4V protein is aggregating (see Section 4.3.1). This implies that although salt has been suggested to 

promote aggregation of proteins134, under the salt conditions used for these experiments, the 

conformational stability of oxidized apo A4V prevents the favouring of protein-protein interactions and 

thus minimal protein aggregation is observed.  

 In the reduced apo form of A4V, salt was shown to promote protein aggregation in correlation to 

the increasing kosmotropic nature of the salt. Previously, reduced apo A4V was shown to readily form 

soluble, oliogomeric aggregates that were not disulphide-linked, in quiescent, physiologically relevant 

(pH 7.4, 37˚C) solution conditions27. The experiments described in Sections 4.3.2 and 4.3.3 for reduced 

apo A4V employed the same solution conditions to those used previously except for incubation in small-

volume glass vials, and the addition of NaCl or Na2SO4 at a concentration of 150 or 300 mM. 

Interestingly, the aggregates formed in the salt conditions during ~450 hour time-trials with incubation in 

anaerobic conditions at 37˚C, resulted in the formation of high molecular weight, disulphide-linked 

species. These aggregates had increased ANS and ThT fluorescence, and larger hydrodynamic diameters, 

when compared to aggregates formed in the control conditions without salt added. The formation of 

disulphide-linked aggregates was partially attributed to TCEP oxidation over the time-course of the 

experiment, which promoted protein re-oxidation in all solution conditions. Based on the cumulative 

results gained from the extensive studies performed here it was determined that the order in which salt 

promoted protein aggregation was: no salt < NaCl < Na2SO4. Previous investigations into the role of salt 

in the aggregation patterns of α-lactalbumin42 and yeast prion protein44 followed the same pattern in 

which the increasing kosmotropic strength of the salt, according to the Hofmeister series, caused 

increased protein aggregation.  
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Salt can influence protein aggregation by two main mechanisms: 1) electrostatic interactions 

which shield protein charges and reduce the electrostatic repulsion between proteins, and 2) specific 

interactions that stabilize various forms of the protein22. In the reduced apo A4V system investigated here 

salt could potentially promote aggregation through both of these mechanisms. Monomeric SOD1 has a 

net negative charge at neutral pH76, and salt ions could be involved in shielding these charges to promote 

protein-protein interactions. Secondly, salt may influence the stability of the protein in such a way that 

aggregation-prone states are stabilized. Na2SO4 has been shown to preferentially stabilize the monomeric 

intermediate during apo SOD1 unfolding, resulting in a compaction of the expanded structure151. If 

Na2SO4 were able to interact with the unfolded state in a similar manner, this could result in the 

compaction of the unfolded protein into a partially folded protein7, which may be particularly prone to 

aggregate. Similarly, it has been demonstrated for the Im7 protein that Na2SO4 can stabilize a folding 

intermediate state of the protein152. If a similar mechanism applies for reduced apo A4V, this could also 

result in the stabilization of aggregation-prone partially folded structure.  

Thus the presence of salt can have important implications for protein-protein interactions in 

solution. For reduced apo A4V, Na2SO4 strongly promotes the formation of disulphide-linked, soluble 

aggregate species with amyloid-like, beta-sheet structure. A schematic of the potential mechanism by 

which aggregates were formed in the presence of salt can be found in Figure 4.20. 

5.2 Future Work 

5.2.1 Improving Aggregation Prediction Algorithms 

 The correlations between observed and predicted aggregation discussed in Chapter 3 provide 

pertinent evidence that 1) current aggregation prediction techniques perform poorly in predicting 

observed protein aggregation for proteins outside of the specific context in which the algorithms were 

created, and 2) different types of protein aggregation pathways are controlled by differing variables. This 
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information highlights an important question in the study of the molecular mechanisms of protein 

aggregation, and that is whether there are general principles involved in modulating all types of 

aggregation. These results suggest that the variables that control aggregation may differ depending on the 

type of aggregation. Figure 5.1 highlights that there are many potential complex pathways of protein 

aggregation. Future work in the development of protein prediction algorithms may need to focus on 

narrowing the scope of prediction algorithms towards the accurate prediction of a very specific 

aggregation pathway. This would result in many algorithms, each specific to one type of aggregation (ie. 

amorphous, amyloid, oliogomeric etc.). From this, the comparison of the variables important to each 

algorithm will provide insight into the specific factors involved in modulating different types of 

aggregation. It may be discovered that similar variables, but with difference empirical significance, may 

contribute to more than one type of aggregation pathway. 

 SOD1 could provide a practical test protein for the development of enhanced algorithms. The 

large number of mutants for this protein is advantageous for forming a test sample large enough to gain 

reliable results. A way to begin this type of algorithm design may be to take a previous algorithm (for 

example, the Chiti-Dobson equation) and re-calibrate the variables based on experimental aggregation 

results in differing solution conditions. SOD1 may be directed to form different types of aggregates in 

different conditions. For example the presence of Na2SO4 promotes the formation of beta-sheet 

aggregates by reduced apo A4V that interact with ThT (see Chapter 4). Thus, several mutants could be 

monitored in high concentrations of Na2SO4 to create a data base of aggregation rates for the formation of 

beta-sheet aggregates by reduced apo SOD1 mutants. This data could be used to re-train the Chiti-Dobson 

equation specifically for this type of aggregation. Alternatively, the DLS data that monitors the formation 

of soluble, oliogomeric aggregates could additionally be used to re-train the equation within the context of 

this type of aggregation. Then, the comparison of the coefficients in each of these systems may provide 
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insight into the factors contributing to aggregation in each of these specific contexts. Furthermore, the 

algorithms could be used to generate the probability of a protein forming one type of aggregate over 

another. 

 There are several other significant factors known to have potential to modulate protein 

aggregation that are currently not well accounted for in the available prediction algorithms. Table 5.1 lists 

some of the important contributing factors. Potentially the most influential factor is the solution 

conditions. As noted, the solution conditions can have large effects on protein charge, solubility, and 

electrostatic and hydrophobic interactions8; 22. These factors can furthermore affect the protein structure, 

stability and local fluctuations that are important in influencing the potential intermolecular interactions 

that modulate protein aggregation (see Section 1.3). Currently, the only methods that incorporate effects 

of solution conditions are Zyggregator and Ztox85 which allow for the input of pH, and TANGO87, which 

allows for the input of pH, ionic strength, and temperature. Because solution conditions can have such 

significant impacts on a protein and its aggregation tendencies, it is important that future work in the 

development of prediction algorithms address this issue.  

Additionally, the native structure and stability of a protein controls the populations of folded and 

unfolded species that exist in solution. The degree of foldedness of a protein can modulate the type of 

aggregate structure formed10. For this reason, the structure of the native state, and the proportion of folded 

vs. unfolded species that exist in the experimental conditions, have significant influences on observed 

aggregation. This issue has only been addressed by the creators of Zyggregator, who have attempted 

various methods157, including the input of PDB files, or the prediction of structure from primary 

sequences using CamP85, for incorporating native structure into prediction techniques. However, this 

remains a relatively unaddressed issue by prediction methods and further research on this issue is 

necessary for increasing the effectiveness of aggregation prediction algorithms. 
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5.2.2 Further Experimental Investigations into the Specific Roles of Solution Conditions 

in Modulating Aggregation 

 The experiments described in Chapter 4 only scratch the surface of the types of experiments 

needed to further examine the specific roles solution conditions can play in modulating protein 

aggregation. It was observed that increasing the kosmotropic strength of the salts in a reduced apo A4V 

aggregation time course experiment results in increased aggregate formation. This implies a potential role 

of both stability and charge in controlling aggregation. Further experimentation using a broader range of 

salt concentrations, and incorporating other salts with varied kosmotropic strengths (such as HPO4
2-, 

ClO3
-, SCN-), would further verify the role of kosmotropic salts in reduced apo A4V aggregation. In 

addition, it will be important to perform similar experiments on various other mutants. By selecting 

mutants with differing properties than A4V, such as V148I which is slightly stabilized compared to pWT 

(Tm = 50˚C)27, and A4T, which is even more destabilized than A4V compared to pWT (Tm = 31˚C)27, in 

the reduced apo form, more information could be gathered as to how salt effects influence aggregation of 

SOD1 mutants with differing stabilities. Additionally, H43R, which has a melting temperature similar to 

A4V in the reduced apo form (Tm = 35˚C)27, but causes an overall reduction in net charge, would provide 

additional information about the potential charge-shielding effects of the salts (salt may have less of an 

effect in H43R aggregation since the overall net charge is already less due to the presence of positively 

charged arginine).  

 Another pertinent issue to address in the experiments of reduced apo SOD1 in the presence of salt 

is the re-oxidation of the protein during the time course. The reason reduced apo protein is becoming re-

oxidized is likely due to the oxidation rate of the TCEP used in these studies. It is necessary that this is 

addressed in order to monitor the effects of salt on aggregates that are not disulphide linked. This is 

particularly important in the study of SOD1 because disulphide cross-linked aggregates may not be 

relevant to early stage ALS disease pathogenesis (see Section 1.6.3)67; 75. 
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 Finally, to thoroughly address the role of the contributing factors to protein aggregation that are 

modulated by solution conditions it will be important to monitor aggregation in conditions beyond the 

addition of salt. By performing similar analyses while varying pH and temperature, and by the addition of 

crowding agents, considerable insight can be gained to provide a broader perspective on the effects of 

solution conditions on protein aggregation. It is likely that different conditions will result in the formation 

of different types of protein aggregates. This insight will be extremely valuable in advancing our current 

understanding of the molecular mechanisms that contribute to the many pathways protein aggregation. 
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