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Abstract

Conformational selection is the idea that proteins traverse positions on the conforma-
tional space represented by their potential energy landscape, and in particular positions
considered as local energy minima. Conformational selection a useful concept in ligand
binding studies and in exploring the behavior of protein structures within that energy
landscape. Often, research that explores protein function requires the generation of con-
formational ensembles, or collections of protein conformations from a single structure.
We describe a method of conformational ensemble generation that uses joint-constrained
rigid-body dynamics (an approach that allows for explicit consideration of rigidity) and
the elastic network model (providing structurally derived directional guides for the
rigid-body model). We test our model on a selection of unbound proteins and exam-
ine the structural validity of the resulting ensembles, as well as the ability of such an
approach to generate conformations with structural overlaps close to the ligand-bound
versions of the proteins.
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Chapter 1

Ligand Binding Simulation, and Energy
Considerations

Proteins are known to have marginal stability while in solution. What is considered to
be the native state of a protein (often assumed to be the energetic minimum) is only
20-60 kJ mol−1 more stable than a corresponding denatured state of the same protein
[47]. Atoms, due to their kinetic energy and interatomic forces, undergo motion relative
to the remainder of the molecule. Consequently, this change in position causes the inter-
atomic forces to change. This relationship between location and the interatomic forces
causes constant fluctuations to occur between the forces responsible for forming protein
structures; that is, ionic bonding, hydrophobic forces, the hydrogen bonds, and the van
der Waals forces acting on individual atoms change constantly with the movement of
each atom. This allows the protein structure to assume various different energetically
favorable conformations. It also allows a protein structure to assume less energetically
favorable conformations transiently, while exploring its nearby conformational space
within the potential energy landscape. Under natural physiological conditions, protein
functionality may require that these conformational changes occur. It is then necessary
for the structural state of a protein to favor either a specific conformational state or
a select few low energy conformations: it is the presence of these conformations that
allows a protein to achieve functionality.

Due to their marginal stability protein structures may naturally traverse the energy
landscape near the global minimum and between various surrounding local minima. At
times, passing between neighboring energy valleys, a conformation may even need to
traverse over a ’hill’ on the energy landscape [69]. In Figure 1.1, a simplified depiction of
such a landscape is presented in two dimensions. The various possible conformations
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of a protein describe the energy landscape. Three-pronged stars indicate locations of
local energy minima in energy valleys. The five-pronged star indicates the location of
the global energy minimum. In reality this landscape is highly multi-dimensional due
to the numerous degrees of freedom a protein structure contains.

These considerations become important in studying ligand binding. Ligands, often
small biomolecules, bind receptor protein to create a protein-ligand complex which may
cause changes in the function of the protein or induce a signal cascade inside a cell.
This change in function, or the negation of this change, is often sought after in drug
design, and thus understanding ligand binding may have important implications on the
development of drugs and therapeutics [36].

Figure 1.1: A simplified diagram of a theoretical potential energy well. Different con-
formations of 1EX6 used to illustrate this point. These and all further protein structure
images generated using UCSF Chimera [49].
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1.1 Ligand binding strategies

A ligand binding to a receptor protein may bind a non-global energy minimum con-
formation. This non-optimal unbound protein conformation may give rise to a bound
protein conformation that has a lower potential energy overall. However, the only
path to achieve this low-energy complex may require the unbound protein to reach the
alternative, higher-energy conformation near the global minimum first. In certain en-
vironmental conditions (such as varying pH levels), specific conformations of a protein
may be more stabilized than expected to allow binding of ligands [70]. Some proteins
are even known to have local unfolding and folding events while under physiologically
native conditions [53]. With all this variability in the behavior of protein structure, and
thus in the behavior of ligands binding to protein, various understandings of the ligand
binding mechanism have appeared in literature over the years.

The lock and key model

Fischer’s description of the lock and key theory of protein and ligand binding (referring
to enzymes and substrates at the time) was a simple description of the protein-ligand
interaction mechanism [20]. The binding site (or the lock) was believed to be sturdy
and immobile, with only one ligand (or the key) being specific enough to enter and
activate function of the protein. The specificity of enzymatic catalysis was explained
via this perceived mechanism. Before computational studies of this type of mechanism
began, the idea of the lock and key complementarity between protein and ligands was
challenged by a more realistic view of the ligand binding mechanism.

Induced fit

The concept of ’induced fit’ has been prevalent for the majority of past ligand binding
research, after Koshland’s proposition of the concept in 1958 [39]. In this formulation
of ligand binding, ligands are positioned in a receptor structure that is considered to
be the predominant conformation in the protein population (often considered to be the
structure of lowest free energy, and the global energy minimum). Upon ligand binding,
the conformation of the active site in the protein changes in order to minimize the energy
of the protein-ligand complex [35]. This method (in general) assumes that the ligand
binds the protein while the protein is in its lowest free energy state. This may not be a
sufficiently accurate assumption for certain proteins, and an expanded theory of ligand
binding is necessary to consider this process in such cases.
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Conformational selection

Conformational selection is another concept for explaining ligand binding. It avoids
the assumption that only a single protein conformation is initially necessary by find-
ing alternative conformations of the macromolecule. With alternative conformations,
docking studies use multiple protein structures when simulating ligand binding. These
alternatives are usually energetically near the global minimum in the energy well [69].
The high-dimensional energy landscape around the global energy minimum is rough
and rugged, in the form of valleys and peaks. Traversing this energy landscape is the
key to finding ensembles suitable for conformational selection. The valleys nearby the
global energy minimum may be biologically important conformations of the protein
essential to ligand binding and function. A collection of these alternate conformations
is known as a conformational ensemble.

Conformational ensembles have uses beyond just protein-ligand interaction studies.
Ensemble generation is important in generating protein structures in protein design
research [50]. Such research allows for the generation of protein sequences necessary to
create a specific conformation. It requires the generation of protein backbones in a way
that is efficient and results in biologically plausible conformations. Homology modeling
often uses a template structure which is modified based on the amino acid sequence of
the target whose conformation is desired [76]. Additionally, pathway generation is
another reason for conformational ensemble generation [66]. In pathway generation,
stepping along a succession of conformations from one structure to another allows for a
deeper understanding of specific protein behavior and functions. However, for such a
path to make biological and energetic sense, free energy changes between conformations
must be considered.

In the current work we present an approach to conformational ensemble genera-
tion that uses constraints as an approximation of protein connectivity and rigidity, and
uses classical dynamics and harmonic approximations of protein motion to generate
conformational ensembles. We show that such an approach can efficiently generate con-
formations of protein with sound potential energy profiles. Due to the use of harmonic
approximation the approach can generate conformations close to the ligand-bound con-
formations from unbound conformations alone.
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Chapter 2

Conformational Ensemble Generation
Methods

2.1 Ensemble generation methods

2.1.1 Conformational ensemble generation via motion planning and
rigidity analysis

In robotics, the motion planning problem is the problem of finding a path from one
conformational state of an object to another. In terms of protein structures, this would
require finding a path between two energetically favorable conformations. It conse-
quently requires the generation of conformations to represent points on the energy
landscape.

Early work on the subject involved finding ’saddle points’, or high energy confor-
mations around energy valleys. These local energy maximums were used as starting
points for minimization techniques in order to find the adiabatic reaction path (the min-
imum energy path), but the actual generation of new conformations is done by linear
interpolation [21].

A recent method of path finding on the energy landscape is the probabilistic roadmap
method (PRM). The PRM samples random points in the conformational space of a
structure and retains those points where certain feasibility requirements are met. The
points that remain are connected to nearby points (nearby in terms of some distance
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function; an energy function in the case of protein conformation). Using these points in
the conformational space, paths between the points can be extracted.

The motion planning of paths of ligand structures have been explored using an artic-
ulated robot-like linkage and motion planning by Singh et al. (1999) [57]. Their research
involved using PRM’s to study binding pockets in protein, but whole structure appli-
cations have recently appeared. As these approaches use rigidity theory, we describe
some rigidity related notions before returning back to PRM’s for protein structures.

Rigidity theory has been applied to protein structures analysis and ensemble gener-
ation. The Floppy Inclusions and Rigid Substructure Topography (FIRST) program is
designed to identify rigidity and flexibility in network graphs using an algorithm called
the pebble game [34]. The pebble game is a constraint counting algorithm that deter-
mines the degrees of freedom based on a two-dimensional representation of a graph.
Pebbles represent degrees of freedom relevant to each node. A pebble can be moved to
any edge that is adjacent to the node, which makes it necessary for the edge to be covered
by a pebble at all future times during the algorithm. After completion of the algorithm,
the pebble game defines rigid components of a graph. Since it can be applied to 3D
bond-bending networks (a bar-joint model) [33], the pebble game has been previously
applied in protein rigidity and flexibility analysis [2, 34].

The usefulness of classifying atoms in rigid clusters, which are the output of FIRST,
is evident in the Framework Rigidity Optimized Dynamics Algorithm (FRODA) server
[74]. FRODA uses the rigidity results from the pebble game to create rigid clusters. Those
clusters then undergo randomized motion in order to create structural conformers. One
of the prominent uses of FRODA is targeted dynamics, where both an initial and a
final conformation are available and a path of conformations is found between the two
conformational states [74]. When no target exists, however, the motions are random and
undirected, which can result in smaller deviations from the initial state.

The rigidity considerations present in FIRST have also been used in the PRM meth-
ods of Thomas et al. (2007), who also explore the potential energy landscape of proteins
using improved PRM’s [66]. They model protein folding pathways and use rigidity
constraints computed from the pebble game algorithm [34] in order to simulate pro-
tein motion. Their iterative sampling of the protein energy landscape involves small
Gaussian perturbations, using the pebble game rigidity analysis as a guide for these
perturbations [66].

Haspel et al. (2010) use a coarse grained energy function along with a backbone and
limited side-chain representation of proteins to study paths of large-scale conformational
motions [28]. A conformational sampling method from their previous work was used
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to generate conformations. A Monte Carlo simulated annealing algorithm was used,
with perturbations of less than two degrees applied to the dihedral angles of the protein
backbone. The simulations are launched from conformations that are evaluated at the
all atom level [56]. This method requires shifting between the backbone and all atom
scale models, but results in pathways consistent with experimental data [28].

2.1.2 Molecular dynamics sampling of the energy landscape

Molecular dynamics (MD) simulations are also capable of producing ensembles [19]. Ex-
plicit MD simulations consider most of the interactions between the atoms in a molecule,
and calculate bonding and non-bonding interactions between all the atoms. Such a high
level of detail in computations of energetics and consequent dynamics of the atoms in a
protein facilitates detailed and accurate simulations of protein movement. This allows
for the ensemble to be sterically and energetically correct. The extent of computational
power and time required for MD simulations to attain this level of detail is large. MD
simulations will often have a timestep of femtosecond length, and many simulations
can achieve trajectory information for events on the nanosecond scale. However, many
protein structural rearrangement events, such as functionally important conformational
changes or folding events, take much longer in reality [65]. Reasonable simulations
would require trajectories running for microseconds, milliseconds, and sometimes even
seconds. With a femtosecond time-step, reaching such simulation lengths becomes a
difficult task. Thus, worthwhile MD simulations are very computationally expensive
and often require the use of cloud computing and large servers. Alternatives to such
simulations employ models that simplify the energy functions and interactions between
atoms in molecules.

2.1.3 Protein design to conformation generation

Many methods for ensemble generation were originally acquired through the develop-
ment of protein design methods. Protein design is the inverse of the protein folding
problem: given a known or needed protein structure (what we want to design), protein
design attempts to find an amino acid sequence that will fold to this target structure [64].
Generating structural ensembles is important in protein design, as the research requires
backbone frameworks that are biologically reasonable [69].

The Baker lab and their Rosetta software created conformational ensembles through
backbone flexibility studies in which portions of the protein are spliced into the structure
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in question from other known protein structures based on sequence similarity [50].
Such methods require previous knowledge and databases of information about known
structures.

Moving large, rigid portions of a protein requires that these portions are reconnected.
Loop-closure methods are used to merge such portions, which allows for large scale
motions to be modeled [8]. In this approach, large helices and sheets, as well as entire
domains of proteins, are translated, and subsequently connected by the modeling of a
loop between these pieces. Inverse kinematics, another method from the field of robotics,
is the main component of loop-closure methods [13]. Inverse kinematics is the method
of solving the problem of finding the angles between joints and bodies necessary for a
known, expected final position. In the case of protein design, one knows the endpoints
of a loop, and the constraints in the loop (the bond lengths and bond angles), that can
be used as input to inverse kinematics algorithms to develop loop-closures. Non-linear
programming can be used to solve inverse kinematics problems, and while optimized
methods and algorithms exist, a final conformation is necessary in such approaches.

Another method, known as ’dead-end elimination’ (DEE), searches for the global
minimum energy conformation by pruning the conformations containing rotamers that
would not naturally exist in the low-energy conformations [25]. If a path becomes
infeasible, as indicated by a scoring function, the algorithm stops generating further
paths containing the infeasible structures.

The concept of backrub motions in the backbone has generated various methods of
creating alternate conformations [14]. In these methods, three amino acids in a protein
chain are considered and all the atoms between the first and third alpha carbons are
rotated around the axis between the carbons. Following this, the atoms between the
first and second amino acids, as well as the atoms between the second and third amino
acids are rotated to relieve strain due to the initial rotation. Combining this with DEE
algorithms allowed for development of sequences that gave conformations with low
energies [24]. Backrub motions were modeled using Monte Carlo (MC) methods by
Smith and Kortemme (2008) where the rotations were performed on segments rang-
ing in length from two to twelve amino acids [58]. Both of these methods, however,
keep conformation perturbations from becoming excessively large. In many cases, con-
formational changes during the life of a protein require movements larger than such
exploration methods allow [54].
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2.1.4 Distance geometry

Distance geometry, or the algorithms that deal with distances between atoms, has been
used in conjunction with genetic algorithms to generate conformer ensembles of small
ligands. With distance geometry generating the initial structures, the genetic algorithm
then changes the torsional angles of the ligand molecules to generate a set of alternate
conformations before a force field is used for energy minimization [71].

Distance geometry methods have been used to develop ensembles of protein con-
formations using the CONCOORD algorithm [15]. The algorithm randomly perturbs
distances in a Gaussian manner before it traverses distance restraints randomly to cor-
rect those that are outside their allowed interval. Seelinger and de Groot (2010) created
ensembles using the tCONCOORD program while using constraints describing the ra-
dius of gyration of the conformation. Their dataset contains proteins that undergo large
conformation changes during ligand binding. They evaluate their method by generat-
ing ensembles from an unbound structure and a ligand bound radius of gyration (the
root mean squared distance of the atoms to the center of mass of the protein). How-
ever, their method requires that the radius of gyration be experimentally calculated for
the unknown bound structures [54]. The authors argue that this additional input is
easily acquired through wet-lab means, though this requires some specific knowledge
about the final ligand-bound structure in question. Their method also involves a variety
of refinement steps, one of which is MD refinement causing an increase in required
computation [54].

2.1.5 Normal mode analysis and ensemble generation

The normal mode analysis (NMA) of a protein involves the generation of normal modes,
or vectors of preferred motion, from a single protein configuration. The method initially
uses a single structure assumed to be at the global energy minimum [16]. Using this
structure, a network of inter-atomic connections is built and oscillatory Hookean motions
are calculated for the protein. This method can be used in developing an ensemble
of conformations as well as understanding large-scale (low frequency) motions of a
protein [23]. NMA is known to produce low frequency modes that compare well to
real conformational differences seen in crystallography experiments [44]. For example,
hemoglobin’s change from its T state to its R state contains directions of motion very
similar to the second lowest frequency mode, and this change highly affects the efficiency
of oxygen binding [48].
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NMA has been used in various ways to generate new protein conformations. This
approach is often used instead of MD simulations because of the reduced computation
requirements while still managing to predict realistic, low frequency large-scale motions
within a protein [16]. While faster than MD simulations, NMA methods can be compu-
tationally expensive as well due to the size of the 3N×3N Hessian matrix of second order
partial derivatives used in the computations. The potential energy equations used, as
well as their second derivatives, can be difficult to calculate in some NMA models [29].

The computational expense of NMA can be avoided by simplifying the model. An
elastic network model (ENM) can be described as an abstraction of protein fluctuations
at equilibrium based on Hookean spring potentials [68]. An ENM where alpha carbons
are the only interacting sites means the model uses only alpha carbon locations in the
calculations. Such a model describes the interacting sites as interconnected with springs
that fluctuate around their equilibrium position. In an alpha carbon-based ENM, a
spring is placed between alpha carbons that are within a given distance threshold from
each other. Depending on the threshold, this may give either a dense or sparse model.
Abstracting the model beyond alpha carbons, interaction sites could be anything from
single atoms to secondary structures. Depending both on the choice of the site and the
threshold, various types of harmonic models can be built [44].

Harmonic approximations calculated using the ENM have been found to accurately
predict conformational changes within proteins, with the largest changes coinciding
with the lowest frequency modes calculated by the model [16]. This qualifies the ENM
formulation of protein harmonics for use in the discovery of important conformational
changes of the protein structure.

Pathways between known states have been generated using ENM’s and geometrical
methods. A distance interpolation method developed by Kim et al. (2002) creates
intermediate conformations between two local energy minimum structures using ENM’s
generated from the two different conformations of the same protein. The authors of
the work argue that geometric methods are superior to dynamics-based methods for
this purpose due to the requirement of small time-steps in dynamics-based methods
[37]. Another approach of this type by Zhang et al. (2007), in which a mixed ENM
is formulated by combining the potentials between the start and end structures before
interpolating across them [77].

He et al. (2003) describe a method of sampling the energy landscape by using col-
lective motions discerned from ENM and amplifying these motions in MD simulations
[30]. Their method cycles between stages of relaxation (where MD simulation allows for
a local minimum to be reached) and excitation (where the normal modes are coupled
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to the MD simulation trajectories). The ENM is used as a method of escaping local
minima. Local minima often cause MD simulation-based structure sampling to become
inefficient, as the structure remains within these energetic wells for a long time before
moving into another low energy state. The collective normal modes of the ENM can be
used to avoid this limitation of MD [30].

A method developed by Cavasotto et al. (2005) uses NMA to create new conforma-
tions by selecting normal modes that affect specific areas of interest within the protein.
Structures are perturbed along a combination of relevant normal modes (i.e. modes that
affect a specific region of interest within the protein). This is followed by Monte Carlo
methods for side chain optimization before the ensemble is used for docking and virtual
screening studies. Using this ensemble has been shown to increase docking scores and
enrichment factors [10].

ENM is most often used in a coarse-grained manner, but all-atom ENM models
have also been examined in literature. While more computationally intensive, such ap-
proaches provide more details about the harmonic, conformational behavior of protein
structures. All atom ENM’s can be used to acquire the normal modes of specific amino
acids, and various smaller atom-specific movements. Rueda et al. (2009) have used
such an all-atom approach which yielded cross-docking improvements when using an
ensemble generated by this method [51].

Fu et al. (2007) used backbone flexibility considerations in their protein design
calculations while also using NMA to sample various backbone conformations [23].
Due to the limited distortions produced by classical normal mode methods and due to
the possibility of bad geometries occurring from this method, Yang and Sharp (2009)
built upon the typical ENM method by introducing two extra force parameters [75].
These parameters account for interactions between consecutive alpha carbons and the
interactions within the same secondary structures. This method requires that the entire
backbone be rebuilt around the alpha carbons and that an ENM be newly rebuilt at each
step. The Yang and Sharp (2009) method also discards structures based on distance and
angle thresholds at each step before deciding to continue with the low frequency mode
directions or backtracking to use other modes, in a fashion similar to that of DEE [75].

Song and Jernigan (2006) use an extra force parameter between domain sections of the
protein to approximate rigidity considerations [61]. Using a larger harmonic potential
for inter-domain contacts, this domain-ENM model takes the rigidity of protein domains
into account. Other rigidity constraints are applied to ENM analysis by using the pebble
game of Thorpe et al. (2001). The graph-centric algorithm for rigidity classification is
used alongside an ENM in work by Ahmed and Golke (2006), in order to define rigid
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clusters of the protein with flexible connections between these clusters [2].

2.2 Constraint algorithms

Constraint algorithms can facilitate the calculations of the simulations of protein struc-
ture dynamics. A constraint algorithm is a method of employing restrictions on the
movement of objects in dynamics simulations. These algorithms have been previously
used in MD simulations [5, 62].

Representing the system in coordinates based on the degrees of freedom, also known
as internal coordinates, is one method of adding constraints to a protein simulation. In
this scenario, protein properties such as the dihedral angles are the coordinates. Such an
approach eliminates the need for explicit constraints between bonded atoms. Originally
used by Abe et al. (1984) as a method of energy minimization, internal coordinates
have since been used in constraint algorithms in MD simulations [5]. The use of these
methods requires extending the internal coordinates to explicit atomic coordinates at
the end of the simulation. This approach also limits the types of constraints one can
impose on a protein structure, as the definition of internal constraints can be difficult.
For example, while constraining rigid loops is possible, flexible loops such as the ones
caused by disulfide bonding are more difficult to constrain [22].

More often, Lagrange multiplier methods are used to impose constraints on a MD
simulation. The SHAKE algorithm [52] and many variations thereof [43], use the Gauss-
Seidel method (which we describe in Chapter 3) to approximate a linear system of
equations in order to ensure bond geometry constraints remain within bounds.

2.3 Critique of previous methods

The time scales restricting the sampling of the energy landscape when using MD cause
these methods to require an immoderate amount of computation, as shown in research
described in Section 2.1.2. In avoiding this issue, methods that use NMA (Section
2.1.5) provide a more computationally efficient way of altering conformational states of
proteins. However, while coarse-grained NMA based methods conceptualize the protein
as a collection of linked bodies, the actual rigidity constraints caused by bonding at the
atomic level are not explicitly considered. Work combining rigidity consideration and
the ENM is limited to considering only domain rigidity, or coarse inter-residue rigidity.
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Separately, the methods that do take rigidity into account without considering low-
frequency motions often employ Gaussian perturbations as a form of generating new
conformations (Section 2.1.1). This approach causes the exploration of the energy land-
scape to be more sporadic than the NMA methods, which appropriate the connectivity of
potential energy interactions within a protein as a guideline for conformational changes.
It also requires larger numbers of generated conformations before structures with a sig-
nificant difference in structural overlap are generated.

Seeliger and De Groot (2010) argue that the ensemble generation methods that use
backrub motions result in conformational changes smaller than those required by certain
applications of protein ensembles [54]. Their own method, based in distance geometry,
requires additional experimental data for efficient sampling of conformations when
sampling with a target structure in mind.

2.4 Problem statement and the proposed solution

Ensemble generation techniques are important tools in the analysis and understanding
of protein behavior, motion planning, and ligand binding analyses. Current ensemble
generation methods encompass a set of limitations. They are either 1) too computation-
ally expensive, 2) lack a thorough consideration of protein rigidity in the models used
or use a coarse-grained approach to rigidity due to bonds, 3) result in conformational
changes too small to properly sample the nearby energy landscape or 4) rely on random
motion or the availability of previous knowledge of the protein motion.

Techniques that avoid the issues and adhere to the requirements of ensemble gener-
ation are necessary to develop a deeper knowledge of the energy landscape of proteins.
It is this landscape that regulates motion and functionality of protein structures, and
sampling these structures well in silico allows for improved computational modeling of
various other biological processes, like protein mobility and ligand binding.

We present a technique of ensemble generation that uses kinematic joints as con-
straints describing rigidity at the backbone atom level in a protein. While maintaining
these rigidity considerations, we use the ENM to efficiently guide sampling of nearby
conformations from a single protein structure. We use a constraint-based rigid-body
dynamics system in order to keep computational requirements low and to allow for
intrinsic consideration of rigidity. This ensemble generation approach combines the
efficiency of NMA based approaches with the importance of non-coarse rigidity consid-
erations without increasing computational requirements.
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Chapter 3

Backbone Rigid-body Model with
Normal Mode Guided Iterative
Dynamics

In the remainder of this work, we will be using Newtonian kinematics of rigid bodies
to model protein motions. Our goal is the efficient production of alternative protein
conformations that correspond to large scale movements suggested by the normal modes
described by an elastic network model, while constraining the model to the allowable
set of states determined by intrinsic distance and angle constraints.

3.1 Introduction

It is important to create a distinction between the terms of rigid-body and rigidity: while
they appear to be similar, the former only describes the types of objects present in a
simulation, and the latter describes the connectivity and flexibility restraints of a protein
structure. While many physics-based simulations and Newtonian methods have been
developed in the area of protein modeling and extended to computationally intensive
methods such as molecular dynamics (MD), constraint-based rigid-body models of
protein have not appeared in the literature as a vehicle for ensemble generation of
protein structures while using rigidity considerations. A constraint-based rigid-body
simulation requires much less computing power than a complete MD simulation with
full energetic considerations. In this case, parts of the protein as well as some energetic
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considerations are abstracted and simplified. Representing the protein in terms of rigid
bodies, based on bonds or upper-level structures, may be useful for exploration of
conformational space, especially with constraints being included in the simulation to
describe rigidity. Indeed, rigidity constraints have already been used in past work on
protein motion [2, 34, 61, 66]. However, these works have a coarse-grained approach to
protein rigidity.

The examination of other ensemble generation techniques, described in Chapter 2,
has elucidated a few key aims necessary in conformational ensemble generation via
computational means. To summarize aims in ensemble generation, an ensemble must:

• Contain members that are sufficiently different from one another

• Contain biologically plausible conformations (by not violating bond length and
bond angle constraints, and avoiding clashes between non-bonded atoms)

• Contain energetically stable conformations, which means that conformations must
not rise too much in energy in comparison to the global minimum

• Be generated efficiently

In this chapter, we briefly describe the steps taken to generate conformations using
our rigid-body model. We then explain each step in detail, followed by the presentation
of notes on the implementation.

3.1.1 Overall methodology

Our ensemble generation method uses the steps shown in Figure 3.1. Initial normal
mode calculated using an ENM are used as a guide for the rigid-body simulation of the
backbone structure. This is followed by side-chain repacking and energy minimization.
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Figure 3.1: The sequence of steps in the ensemble generation method: A) calculating
normal modes, B) generating backbone structures via rigid-body simulation, C) side-
chain repacking, D) energy minimization.

The rigid-body simulations and the constraint model and time-stepping algorithm
are described first. Second, the ENM is described along with its application to the
rigid-body model. Finally, implementation details and tools used for the method are
covered.
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3.2 Rigid-body simulations

Rigid-bodies are solid, non-malleable objects with specific shapes existing in Cartesian
space. A rigid-body simulation is the calculation of motions of a collection of rigid
bodies that may or may not be connected through a variety of linkages, known as joints.
While the solid body experiences no change in form, it may experience a change in
position and orientation. When multiple rigid bodies exist, the forces acting upon them
may cause a rigid body to change position, thereby affecting the position or orientation
of other rigid bodies. This can be thought of as the typical physics scenario found in
games of billiards or pool. In these games, rigid balls interact with each other and cause
both changes in position and orientation in relation to other rigid balls. Such a scenario
can be simulated with simple physical Newtonian equations, describing the state of each
ball on the pool table.

It is possible for rigid-body simulations based on Newtonian physics equations to
employ restrictions on the motions that occur within the simulation. This can be achieved
by creating dependencies between the rigid-bodies, referred to as joints or constraints,
defined by constraint equations. The joints found in the human body serve as examples
of the types of joints that can be found within a rigid-body simulation. Two rigid bodies
that are attached by a joint are limited in the motions they can achieve based on the
location and motion of the other body in the pair. The joint thus imposes constraints of
distance and mobility of each body.

The typical knee-joint constrains the femur bone above the knee and the tibia and
fibula bones below the knee to bend at only one axis, and only to specific maximum and
minimum degrees along that axis. Similarly, a constraint equation imposes limitations
upon the possible motions of two rigid-bodies in a physics simulation. Various types of
joints can be used in a computer model, allowing for simulation of real-world situations
such as the motion of a leg or the motions of atoms in a protein structure.

A hinge joint would impose restrictions similar to that of a knee-joint on two con-
nected rigid bodies, as shown in Figure 3.2. A hinge joint (depicted as a cylinder)
between two rectangular rigid bodies is shown with two different amounts of rotation,
and a rotational axis is indicated with a dashed line. Positioning the rotational axis in
a different way, restrictions similar to that of bond rotations become possible, as shown
in 3.3. Distance constraints and rotational constraints are just two examples of virtual
joints that can exist between two rigid bodies.

It is possible to represent various systems using rigid-body simulations. One of those
systems is a general protein structure. We proceed by describing the rigid-bodies and
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Figure 3.2: A hinge joint (depicted as a cylinder) between two rectangular rigid bodies
shown with two different amounts of rotation. The dashed line indicates the rotational
axis perpendicular to the length of the rectangles.

joints that connect these bodies.

3.3 The molecular backbone rigid-body model

Proteins are composed of atoms and bonds between the atoms. Many pictorial represen-
tations of molecules use a simplified description of the atoms and bonds, the components
of molecules, to present molecular structures. Ball-and-stick models show the atoms as
spheres and bonds as sticks connecting these atoms. This kind of representation will be
useful in conceptualizing the rigid-body model of protein structure.

We start by defining atoms as rigid-body spheres with a center of mass in a 3-
dimensional (3D) frame of reference. In a system of n atoms, n respective rigid-body
spheres are defined to simulate the atoms. The radius of the spheres is the atomic van
der Waals radius. The van der Waals energy spheres of covalently bonded atoms within
real protein structures intersect, but unbound atoms experience van der Waals forces
that cause attraction and repulsion, disallowing close association between the atoms. In
the model, unbound atom radii are considered to be solid and thus inhibit the unbound
atoms from getting too close to one another. Figure 3.4 shows an example of these kinds
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Figure 3.3: A hinge joint with the dashed line indicating the rotational axis parallel to
the lengths of the rectangles.

of spheres and their interactions. We show a ball and stick model of the Ni−Cai−Ci−Ni+1

backbone atoms, with the van der Waals spheres superimposed over the model. Van der
Waals spheres intersect for bonded atoms and geminal atoms, but atoms with at least
three bonds between them have clearly separate van der Waals spheres. In Figure 3.4, this
separation is visible between the two N atoms (both depicted as blue spheres). The bound
atoms have intersecting van der Waals spheres and even the spheres of the geminally
bound atoms interpenetrate, while the unbound atoms do not. This specification for the
size of the atom bodies allows the model to avoid energetically impossible conformations
during the simulation. While using rigid spheres is a simplification of the actual van der
Waals forces, which dominate the limits on proximity between atoms in a molecule, it
means that various energy calculations need not be employed to maintain an allowable
distance between atoms. In turn, this lessens the number of energy minimization steps
often applied at the end of such simulations.

3.3.1 Bonds as Joints

A covalent bond imposes a constraint on the motion of two atoms in nature. This
functionality is approximated here by forming a joint between two covalently bound
rigid-body representations of atoms (if the atoms are bound in nature). The type of joint
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Figure 3.4: The bond joints between atoms in a small portion of the protein backbone,
with small spheres representing atoms and large, transparent sphere representing the
extent of the van der Waals radius of each atom.

used to represent a covalent bond is a hinge-joint, which allows rotation between two
atoms around a specified axis. The hinge joint permits rotation between bonded atoms
as shown in Figure 3.5. Bond distances and bond angles remain the same, but dihedral
angles experience a change. The hinge joint rotation occurs about the axis running
between the center of both atoms. This type of mobility, though simplified in the model,
exists within real molecules and is explained in all chemistry and biochemistry texts.
Restricting our model to rotate the atom bodies around the bond axis maintains the bond
angles between atoms. Since the joint holds the atom bodies rigidly in the rotational
axis, the bond distance is kept unchanged. Because the distances and the bond angle
remain unchanged, the geminal distances stay the same throughout the simulations.
Overall, only the dihedral angles experience changes after application of forces to this
model.

In the backbone model, the specific bonds that are taken into rotational consideration
are the Ni − Cai bond, the Cai − Ci bond, and the Ci − Oi bond. Each of these bonds is
turned into a hinge-joint connecting two rigid bodies representing the atoms. Figure 3.5
shows a small portion of the backbone before and after a rotation around the Ni − Cai

bond. We also use joint constraints to model disulfide bonds between the Cb atoms.
Because of the chemical nature of the Ci − Ni+1 peptide bond, where the torsion angle
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(known as the Omega angle) remains at approximately 180◦ or 0◦ [41], the model does
not allow rotations about the bond axis between these atoms. For this bond, a fixed joint
is used. A fixed joint merges the motion and rotation of the two bodies involved and
disallows rotation between the Ci and Ni+1 atoms of the backbone model.

Figure 3.5: An example of a rotation around the Ni − Cai bond of a protein backbone.

3.3.2 Hydrogen bond considerations

Finally, an essential consideration in the backbone model is the addition of hydrogen
bond (H-bond) constraints. In our approach, each H-bond constrains the two bonded
atoms with a hinge joint. Since we do not use side-chains in the simulation, H-bonds are
not considered between side-chain and backbone atoms. Instead, we rely on backbone-
to-backbone H-bonds only. As the H-bonds in this model experience the limited mal-
leability allowed by hinge joints, rigidity considerations from the existence of H-bonds
are not ignored.

Unfortunately, setting hydrogen bonds as permanent constraints in the model causes
some regions in the conformational space to be omitted as a source for conformational
sampling. Indeed, this may cause some subtle conformational changes to be missed
by the model as internal H-bonds are often broken and formed during the lifespan and
function of a real protein. Other ensemble generation techniques have encountered this
issue [55]. While this is an important limitation, our model does allow for large-scale
domain and secondary structure motions. This concern opens a potential new endeavor
in ensemble generation: the consideration of structural constraints as non-static entities
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may improve the sampling of the structures in the energy valleys surrounding the
global minimum. However, as one of the aims of our model is simplicity and efficiency
while maintaining the most essential constraints, we avoid dynamic constraints such as
changing bond lengths, and assume static initial constraints remain constant throughout
the system during simulations.

The existence of H-bonds is predicted based on geometric criteria based on a survey
of small protein crystal structures from the Cambridge Structural Database [46]. There
are various geometric criteria for predicting H-bonds in a crystal structure, including
distance cut-offs and angular range criteria for the donor-acceptor complementary atom
pairings that are required for H-bonds. The atoms first selected as donor and acceptor
using the criteria and are then connected using a hinge joint.

3.3.3 Importance of constraints

While the high numbers of constraints may seem excessive, they allow for adherence
to some essential protein modeling considerations. As the bond distances and bond
angles remain unchanged throughout the simulation, the model recognizes short co-
valent bonding between atoms as invariant. Secondly, the large number of constraints
implicitly incorporates rigidity considerations into the protein structure. In physical
reality, H-bond’s restrict secondary structure elements from becoming unstable during
movement, and maintain the secondary structures (alpha helices and beta sheets). They
also act as bridges between these secondary structures, and help shape the tertiary struc-
ture of a protein. Having H-bonds explicitly constraining motion in a computational
model means that biologically insensible structures do not arise during conformational
exploration.

This model can be compared to the 3D bond-bending network, or bar-joint model,
defined by Jacobs (1998) [33]. The articulated joint-body system we present has been
previously used to model ligands and small molecules [57]. But previous modeling
of macromolecules with such a model has often been coarse-grained. For example,
Thomas et al. (2007) developed an ensemble generation method that had to be guided
by rigidity constraints using the tertiary pebble game algorithm [66]. The use of the
pebble game algorithm has predominated rigidity considerations in protein constraint
modeling [2, 34].

The model presented here innately considers rigidity constraints due to the inclu-
sion of disulfide and H-bond linkages between atoms bodies. That is, by explicitly
considering these linkages as joints between atom bodies, the structural stability of the
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rigid portions of the system is maintained. For example, the atoms of an alpha helix
secondary structure within the protein may be modeled as rigid with respect to one
another. In other models, violation of such restrictions would cause the removal of a
conformation from the final ensemble only after the generation of the improperly formed
conformation. In the current model, however, we assume that such conformations are
never generated. Post-generational assessment and scoring would need to be explicitly
planned and executed, but with the inclusion of H-bonds between the atoms in the back-
bone of the helix, rigidity is maintained naturally through the constraint of the H-bonds
themselves.

We continue by describing joint constraints and the iterative algorithm used for quick
solutions of dynamics using such constraints.

3.4 Backbone rigid-body dynamics

3.4.1 Basic Kinematics

An excellent introduction and description of basic equations required for the simulation
of rigid body motions has been compiled by Baraff (1997) [6]. For a complete description
of basic rigid-body dynamics, along with implementation details and samples, we refer
the reader to [6].

We consider a rigid body (or atom) as a body i with a center of mass in space defined
by the function xi(t) where t is the current time in the simulation. The particle has a
linear velocity defined by the function vi(t). The angular velocity is defined byωi(t). The
mass of atom i will be mi. Since velocity is a derivative of position, we can relate linear
velocity of atom i to the position of atom i as follows:

vi(t) =
d
dt

xi(t) = ẋi(t) (3.1)

where the overhead dot specifies differentiation, and will be henceforth used as such.

3.4.2 Joint Constraints

We describe the mathematical formulation of joints as described by Smith (2004) [59]. A
joint constrains two bodies by specifying velocity constraints between them. A velocity

23



constraint on a rigid body specifies the velocity values that are allowable. The overall
velocity of body i must contain its linear and angular velocity components and so the
overall velocity vector is

~vi =
[
vi ωi

]T
=
[
vix viy viz ωix ωiy ωiz

]T
(3.2)

where the linear velocity of body i is described by three v components of velocity along
the three axis in R3, and its angular velocities are described by the ω notation.

The Jacobian is the matrix of first order partial derivatives of a vector with respect to
another vector (often two vectors of different dimensionality). Used in the calculations
of constraint dynamics, the Jacobian is the coefficient matrix of the velocity matrix V,
which stores the ~vi vectors of the system. The vector ~ci holds the velocity constraints.
In the case of a protein backbone chain, these constraints will disable certain types of
movement between bound atom bodies, while allowing other types of motion. We
describe the mathematical formulation of the Jacobian constraint matrix, presented by
Smith [59], as Ji~vi = ~c, with Ji representing the Jacobian of body i, ~vi its velocity vector,
and ~c the velocity constraint vector.

The constraint equation for body i with si constraints is then expressed as:

Ji~vi =


J11 J12 J13 J14 J15 J16
...

...
...

...
...

...
Jsi1 Jsi2 Jsi3 Jsi4 Jsi5 Jsi6

 ~vi =


c1
...

csi

 (3.3)

where si is the order of the constraint. As each constraint removes degrees of freedom
from the system, si can also be considered as the number of degrees of freedom removed
from body i. We present two examples: a simple constraint of disallowing movement
along the z axis, and the constraint of limiting rotation about a specified axis (this second
case to be used in the protein backbone model).

To inhibit movement (or translation) of the body i on the axis of vector z =
[
0 0 1

]
,

one simply specifies the constraint:[
0 0 1 0 0 0

]
~vi =
[
0
]

(3.4)

Using equation 3.2 as the definition of the velocity matrix ~v, the equation 3.4 holds
if (z)(~vi[0 : 3]) =

[
0
]
, where ~vi[0 : 3] represents a truncated version of ~vi, containing only

the linear velocity components. The only way for (z)(~vi[0 : 3]) =
[
0
]

to hold, and thus
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for equation 3.4 to hold, is for the linear velocity on the axis of z to be 0. The body can
then only move on the plane defined by the x and y axes. Figure 3.6 shows this scenario,
where a spherical object can move along the x and y axes but shows the object as crossed
out if motion occurs with a z component.

Figure 3.6: Constraining linear velocity, or motion of the rigid object, to the x − y plane

In order to limit rotation about a specific axis, we must first consider the constraint
of preventing the rotation of the body around an axis. To prevent the rotation of body i
around the axis specified by vector ~q =

[
qx qy qz

]
, we set the constraint:[

0 0 0 qx qy qz

]
~vi =
[
0
]

This restrains the rotation of the body only along an arbitrary axis orthogonal to
~q. Alternatively, it restricts the rotation of the body to be possible only around an
arbitrary axis in the plane with a normal parallel to ~q. This effectively flattens the space
of directions in which rotation can occur. Figure 3.7 shows the possible rotations of two
rectangles constrained in this way. Rotations around two arbitrary axes orthogonal to ~q
are possible but rotations around the ~q defined axis itself are not.

25



Figure 3.7: Constraining rotation of objects to axes orthogonal to the axis defined by
arbitrary vector ~q

Knowing how to prevent rotation around an axis (or to limit rotations to a plane
specified by its normal), we can limit rotations to only one axis. If using one constraint
as in Figure 3.7 limits rotation within a specified plane, then we can think of using
two constraints to limit rotation around the intersection of two planes. Thus, if we can
acquire two vectors, ~o and ~h, orthogonal to our desired rotational vector (which is a
simple matter covered in basic linear algebra texts), we can set two constraints to handle
this requirement: [

0 0 0 ox oy oz

0 0 0 hx hy hz

]
~vi =

[
0
0

]
This constraint is required for hinge motions of two bodies in relation to each other.

Using the bond between two atom bodies, we must set the hinge to be parallel to, and
located at the center of, the bond. In this case, ~o and ~h are two vectors, both orthogonal
to the bond axis as well as each other. Figure 3.8 shows this type of rotational constraint.
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This restriction represents the motion of dihedral angles, and so this constraint is used
to define bonds between atoms. A covalently bound atom is allowed to rotate only on
the bond axis with respect to the atom(s) it is bound to, as shown in Figure 3.5.

Figure 3.8: Constraining rotation of objects to only one axis orthogonal to both ~o and ~h

For further description of the joint constraints, and joint constraint formulas of vari-
ous other types of joints, we refer the reader to Smith (2004) [60].

3.5 Iterative dynamics

The velocity constraint model of rigid-body motion equations allows for an iterative
time stepping scheme as developed by Catto (2005) [9]. This algorithm requires only
linear time and space, with an O(n + s) run-time where n is the number of atoms in
a simulation and s the number of constraints present in the system. We describe the
general concept behind this procedure, as described by Catto (2005) [9], in the current
section.
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We relate the velocity vector and the Jacobian to the motion constraints (C) as:

Ċ = JV = ~c (3.5)

where J is the s-by-6n (constraints-by-velocities per body) Jacobian that must be calcu-
lated, and V is the corresponding matrix of velocity vectors. The velocity constraint
vector, ~c is the vector described in Section 3.4.2.

To ensure that constraints are adhered to, internal constraint forces can be applied to
the atoms in the simulation. The matrix of constraint forces Fc is related to the Jacobian
by:

Fc = JTλ (3.6)

where λ is a vector of s multipliers that represent the signed magnitudes of the constraint
forces. Atoms adhere to constraints specified on each atom by experiencing an internal
force that maintains the position and orientation of each atom within an allowable state.
These internal forces are applied when necessary, and so the Jacobian is evaluated at
each time-step.

In general, computing the Jacobian requires that the constraint equation in C be
developed as a function of rigid-body positions and rotations. This is followed by
differentiation of the constraint equation with respect to time. Finally, the coefficient
matrix of V must be identified (as this matrix is actually J).

By considering the constraints at the velocity level, as in equation 3.5, the constraint
equation formulation and the differentiation can both be omitted. This is why the
derivatives of the constraint functions are used as coefficients of the velocity vector
in Section 3.4.2. Using velocity constraints instead of explicit constraint equations is
possible due to equation 3.5, where the derivative of the constraints equations in C
(which are functions of position and orientation) are the velocity constraints in ~c (both
linear and rotational velocities).

Computing the new velocities of the system, V2, is done via a projected Gauss-Seidel
(PGS) algorithm. The PGS algorithm is an iterative way of solving the linear equation
Ax = b, which in this case is

JBλ = η (3.7)
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where

B = M−1JT (3.8)

η =
1
∆t

c − J(
1
∆t

V1 + M−1Fext) (3.9)

and Fext is the matrix of external forces applied, ∆t is the time-step used in the simula-
tion and M is a matrix collecting masses and rotational inertia tensors I (described in
Appendix A) for each body along the diagonal to coincide with the linear and rotational
velocities, specified by

M =


m1D 0 . . . 0 0

0 I1 . . . 0 0
...

...
. . .

...
...

0 0 . . . mnD 0
0 0 . . . 0 In


where D is a 3-by-3 identity matrix.

After computing λ, equation 3.10 is used to acquire the post time-step velocities of
the system V2:

M(V2
−V1) = ∆t(JTλ + Fext) (3.10)

where V1 are the initial velocities. The positions of all atoms are then updated using
these new velocities acquired from the time-step. Catto (2005) describes the O(s) running
time and O(s + n) space PGS algorithm, together with implementation details [9]. Due
to the nature of the velocity constraint definitions in the system, contacts and collisions
between atoms are treated as new constraint equations, which causes s to be a dynamic
variable. However, due to the linear speed of the algorithm and the tight packing of
protein structures, this fluctuation does not cause the computational requirements to
become intractable.

Having the ability to run efficient dynamics simulations on this approximation of
a protein structure, we can apply a variety of external forces to analyze the structural
behavior of the bond network without concern over energetic clashes between atom
bodies. In the current work, we use NMA, and specifically the basic ENM [68], to guide
these motions.

29



3.6 Normal mode guided movement

NMA has previously been used in the generation of new conformations, with the modes
being used as a rail on which atom movement was restricted [51]. Often, to generate new
conformations of the protein, a model would relocate atoms along the normal modes of
motion and rebuild the remainder of the protein around these perturbations.

The idea behind NMA is the expansion of a Taylor series of a potential energy
function E about the mass-weighted coordinates of the global energy minimum q0:

E(q) = E(q0) +
∑

i

∂E
∂q0

i

(qi − q0
i ) +

1
2

∑
i, j

∂2E
∂q0

i ∂q0
j

(qi − q0
i )(q j − q0

j ) + ... (3.11)

The first term of the expansion is set to zero under the assumption that the structure
is at the global energy minimum. The first derivative term, the second term of the
series, is also zero at any local or global minimum of the potential energy function, and
thus is also omitted. NMA ignores the third and higher order derivatives leaving only
the second order derivative. This approximation of the power series appears to be a
limiting factor in the use of NMA because of the rugged nature of the potential energy
landscape of protein structures. Traversing energy barriers is not immediately possible
using only classical NMA and detail may be lost in calculations. However, correlation
of normal modes with experimental data has been consistently shown and has made
this approximation method useful, though not exact, in examining protein motions [29].

Normal mode calculations require the diagonalization of the Hessian matrix H. The
Hessian is a matrix of the second derivative of the potential energy function. With
only the second order term remaining, the potential energy becomes a sum of pairwise
potentials:

E(q) =
1
2

∑
i, j

∂2E
∂q0

i ∂q0
j

(qi − q0
i )(q j − q0

j ) =
1
2

(q − q0)Hi, j(q − q0) (3.12)

In the case of a system with n connecting nodes, H has n × n sub-matrices Hi j of
partial derivatives:

Hi j =
∂2E
∂q0

i ∂q0
j

=

∂
2E/∂xi∂x j ∂2E/∂xi∂y j ∂2E/∂xi∂z j

∂2E/∂yi∂x j ∂2E/∂yi∂y j ∂2E/∂yi∂z j

∂2E/∂zi∂x j ∂2E/∂zi∂y j ∂2E/∂zi∂z j

 (3.13)
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where each element describes the energetic contribution of the components of the dis-
placement between atoms i and j. The symmetric H can be diagonalized to produce
eigenvectors and eigenvalues that are the normal modes and their respective frequen-
cies. However, the derivation of each Hi j component of the sub-matrix requires a lot of
computation, especially when the potential energy function is as explicit as an all-atom
potential. Classical NMA uses a detailed all-atom potential, such as the one used in
AMBER [12]. To alleviate this, simplified models of NMA have been developed, such
as the ENM [68].

3.6.1 The basic elastic network model

To guide our conformation generation method, we use a coarse-grain ENM model with
a single parameter elastic network potential that uses alpha carbons as the interaction
sites. This is a simplified potential employed by Tirion in 1996 [68], and later extended
by Atilgan et al. (2001) [4]. The ENM has been previously used to develop alternate
protein conformations [75]. In this model, contact points are the alpha carbons of the
protein and the interactions between these contact points are replaced with harmonic
springs with a single spring force constant.

Given a single force constant k between alpha-carbon atoms i and j within a distance
threshold (Rc = 12Å), the Hookean pairwise spring potential is:

E(i, j) =
k
2

(di j − d0
i j)

2 =
k
2

(
√

(x j − xi)2 + (y j − yi)2 + (z j − zi)2 − d0
i j)

2 (3.14)

where dab is the distance between the atoms i and j, d0
i j is the original distance between

the atoms assumed to be in equilibrium within the given crystal structure, and the x, y, z
values are the components of the displacement vectors describing the fluctuation of the
positions of atoms i and j. Since the coarse-grain model in this description uses alpha
carbons as interacting sites, only the interactions between alpha carbons within a dis-
tance threshold will be used in calculating fluctuations. This coarse-graining approach
has been shown to generate information on motions that coincides with experimen-
tally determined protein motions [29]. Because of the coarse-graining, it is possible
to consider large backbone motions and for proteins of moderate size to be analyzed.
Conversely, calculations using classical NMA methods may become intractable with too
many interacting sites.

The total energy for the entire molecule becomes:
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EENM =
1
2

k
∑

i, j

E(i, j)θ(Rc − |di j|) (3.15)

where θ is the binary Heaviside function requiring the distance between the interacting
sites to be within the cutoff distance Rc.

As a consequence of using Equation 3.14 as the energy function, the elements of the
Hessian matrix are simple to calculate [4]. The first derivative of E with respect to the
components of the equilibrium position vector of atom i is:

∂E
∂xi

= −
∂E
∂x j

= −k(x j − xi)(1 −
d0

i j

di j
) (3.16)

∂2E
∂x2

i

= −
∂2E
∂x2

j

= k(1 + d0
i j(x j − xi)2/d3

i j −
d0

i j

di j
) (3.17)

with similar expressions holding for the y and z components of the equilibrium position
vectors. At equilibrium d0

i j = di j and the Equations 3.16 and 3.17 become:

∂E
∂xi

= 0 (3.18)

∂2E
∂x2

i

= k(x j − xi)2/d2
i j (3.19)

The cross derivatives and elements of Hi j then become the simplified:

∂2E
∂xi∂y j

= −
∂2E
∂x j∂yi

= −k
(x j − xi)(y j − yi)

d2
i j

(3.20)

After the Hessian is constructed, diagonalization is used to solve for the normal
modes of motion. H is diagonalized by

H = EmUmET
m (3.21)

where H is the Hessian, Em are the eigenvectors containing normal modes, and Um are
the frequencies of the modes. Equation 3.21 provides the easy acquisition of normal
modes and frequencies through the eigendecomposition of the Hessian matrix. The six
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lowest frequencies and corresponding modes describe translations and rotations in three
dimensions and are thus non-essential modes of motion, and therefore ignored. The
lowest frequency modes following the non-essential modes are the important modes of
motion which, as previously explained, correlate well with experimentally determined
large protein motions.

3.6.2 Normal modes as external forces

We use the normal mode directions provided by the ENM to direct motion in the rigid-
body model of the molecule. A force equivalent to:

fi = αei (3.22)

is applied to the relevant atoms of the molecule. In equation 3.22, ei is the eigenvector
(or the mode) of atom i used in the ENM, gained from the diagonalization of the Hessian
matrix. α is an experimentally defined multiplier value tunable by the user. We found
that using the length of the protein (number of residues = α) appears to work well in
this context, though the value itself is arbitrary. When using the basic ENM, this force
is applied to the alpha carbons, in the direction provided by the normal mode ei. An
example of normal mode directions is shown in Figure 3.9.

In order to explore the conformational space specified by the normal modes, the
model is modified by such forces for a few non-trivial modes. In our application,
we use the first three non-trivial modes with the lowest related frequencies. Low
frequency motions are the motions describing large collective motions of the protein
[29]. If the normal modes are ordered based on their frequencies, from low to high, this
means we use modes 7, 8, and 9. Normal modes 1-6 are trivial (they describe rotations
and translations in 3-dimensional space) and are thus omitted during this exploration
[44]. While it is possible to use normal modes beyond 9, these modes begin to exhibit
higher frequency values and will eventually fail to describe large scale motions. This is
important when using an ENM, as we do not take side-chain motions into account with
a coarse-grained ENM.

For each of the non-trivial modes selected, the force is applied to each alpha carbon in
the positive and negative direction of the normal mode specified. Because normal modes
are harmonic in nature, normal mode directionality requires that both available choices
(positive and negative directions of normal modes) are used to guide motion simulations.
According to Thorpe (2007), the symmetric properties of the ENM potential allow the
assumption that nearby atoms move together either in the positive or negative directions
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Figure 3.9: The base conformation of Guanylate kinase (PDB ID: 1EX6), with arrows
indicating the direction of the first non-trivial normal mode of the alpha carbons. Only
the modes with largest magnitude are shown.

of a given normal mode [67]. This is due to using only the displacements of atoms in
the potential function of equation 3.15. As the function uses only the displacements,
and because of the quadratic nature of the potential function, translational invariance is
inherent within the ENM. The sum of all Hookean potentials is zero when the motion
is translational at the macromolecular scale (when the entire molecule is translated
as one rigid body). This can be extended into a discussion of acoustic modes that
describe the motion of neighboring atoms moving in approximately the same collective
direction describing a low-frequency behavior of the protein [67, 3]. Thorpe stipulates the
assumption that nearby atoms move in the same direction, but while experiencing small
shifts in directionality of their vibrations along the normal mode [67]. Furthermore,
as the low-frequency normal modes represent directions of slow, collective motions
of the protein, we can assume these directionality shifts are not detrimental to the
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overall collective motion of the atoms in one vibratory direction. Thus, we can avoid a
combinatorial explosion caused by selecting all combinations of positive and negative
directions for all interacting sites and assume nearby interacting sites experience motion
in similar directions.

The application of this force is a single event at the beginning of the simulation
(not an impulse), and so acts as the initialization of the motion of the structure. Even
though only the alpha carbons that experience this force, due to the connectivity of
the model and the joint constraints, the remainder of the backbone is also modified. If
side-chains are placed in the model as well, they also experience this motion due to
the connectivity of bonds. However, using side-chains would cause clashes between
side-chain atoms which would invalidate the analysis on the intended time scale in
such a simulation. As we use the ENM to gather directions of slow collective motions
of the protein, collisions between side-chains would inhibit the proper exploration of
alternative backbone conformations based on those collective motions.

3.7 Side-chain addition and energy minimization

The newly created backbone conformations lack side-chains. Side-chains are added
using SCWRL4 [40]. This is followed by energy minimization using the Molecular
Modeling Toolkit (MMTK) [31] suite included in UCSF Chimera [49] in order to optimize
the backbone and side-chain geometries. This energy minimization method is based on
the conjugate gradient method of minimization, in which steps are taken along the
downward gradient direction in order to find the lowest point of an energy well. Few
minimization steps are necessary to achieve a low energy structure from the members
of the generated ensembles. In many cases of generated structures, negative MMTK
energy scores are generated after less than 100 steps in the MMTK conjugate gradient
minimization algorithm [31]. The energy calculations use the AMBER forcefield and all
energy values are in kJ/mol [12].

3.8 Implementation details: summary of tools used

The requirements of rigid body simulations include a dynamics engine with a stable
integrator. We use the Open Dynamics Engine (ODE) by Russell Smith as a base for
our rigid body simulations. ODE facilitates modeling of rigid bodies and joint contacts
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and uses a stable integrator to step through the simulation [60]. While other software
packages for physics simulations exist, ODE is considered one of the most popular and
has been used in commerical and research contexts, often in robotics simulations [17].

A comparison of ODE to other available physics engines is presented in Boeing
and Bräunl (2007) [7]. While achieving average result stability, ODE outperformed
other tested packages on constraint error tests when configured for simulation with the
included Euler integrator. ODE includes the projected Gauss Seidel algorithm, with a
O(s) run time for a modeled system where s is the number of constraints, or joints, at a
given timestep in the system.

The PyODE Python bindings available for the ODE [32] ease scripting with the
physics engine, and the UCSF Chimera Molecular Graphics program which allows use
of the bindings with protein structure files [49].

The elastic normal modes were calculated by the ModeHunter package [63] with the
Rc cut-off of 12.0 Å.

As the steps described within this chapter generate backbone structures of proteins,
we must re-pack amino acid side-chains for a full atom model to exist. We use the
SCWRL4 side-chain packing program due to its speed and side-chain prediction capa-
bilities [40]. A leading tool in the area of side-chain prediction, SCWRL4 uses a tree
decomposition algorithm as well as potential functions and averaging to select rotamers
for side-chain placement [40].

The MMTK package is used for energy minimization of the generated all-atom
structures [31]. The conjugate gradient minimization algorithm is applied, using the
AMBER 94 force field [12].
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Chapter 4

Results and Discussion

4.1 Ensemble generation from unbound protein structures

Alternative conformations of protein structures are useful in computational studies of
ligand binding. Docking studies benefit from the use of conformations with a structural
overlap close to that of the bound structure. Studies have shown that virtual screening
using only an unbound structure results in poorer ability to predict binders and non-
binders in a set of ligands when compared to the use of bound receptor structures [45, 73].
In this section, we show the rigid-body backbone model can be used to generate alternate
backbone conformations from apo (unbound) structures. These new conformers are then
compared to their holo (bound) counterparts and their structural likelihood is analyzed.

4.1.1 Data set

The protein structures are sampled from the dataset used by Seelinger & Groot (2010)
[54]. These include a selection of proteins that undergo large conformational changes
upon ligand binding. The families of the receptors used, and the Protein Data Bank
(PDB) ID’s of the unbound structures and their ligand-bound target structures are:

• Periplasmic-binding protein, which have a wide range of fundamental functions

– D-Allose binding protein (ALLO), apo: 1GUD, holo: 1RPJ

– Osmo-protection protein (OSMO), apo: 1SW5, holo: 1SW2
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– D-Ribose binding protein (RIB), apo: 1URP, holo: 2DRI

• Actin-like ATPase domain

– DNA Beta-Glucosyl-transferase (GLUCO), apo: 1JEJ, holo: 1JG6

– Hexokinase (HEXO), apo: 2E2N, holo: 2E2O

• P-loop containing nucleoside triphosphate hydrolase

– Guanylate kinase (GUAN), apo: 1EX6, holo: 1EX7

4.1.2 Qualitative exploration of approximating bound structures through
ensembles

A small ensemble was created using recent crystallizations of the Guanylate kinase
unbound (apo) form structure. The backbone model of the apo-form of GUAN was
built using the method described in Chapter 3. The model was then modified by
application of forces along the directions of the normal modes, which were calculated for
the crystallized conformation using the original ENM described by Tirion [68] with alpha
carbons as interacting sites. This force application caused a continuous conformational
change in the protein backbone. The backbone positions were recorded at consecutive,
arbitrary, time-step intervals during this process. The first 3 non-trivial, low-frequency
normal modes were used to guide the force application and new conformations were
recorded for each normal mode setting. The resulting conformations were visually
compared to the holo forms of the protein. Figure 4.1 shows the holo and apo forms
and the generated structures. The progression of the generated structures from the
apo toward the holo form is especially apparent near the top of the protein in Figure
4.1, where two of the outer arms of the protein are closing down over the active site.
The conformations generated using the first non-trivial normal mode appear to move
their outer arms beyond the holo-form of the structure after passing close to the target
conformation.

4.1.3 Beginning a quantitative comparison of ensembles to target struc-
tures

Root mean square deviation (RMSD) is a function used as a comparison to measure the
difference between two conformations of the same protein. The RMSD is a measure of
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Figure 4.1: GUAN apo form (pink) and holo form (blue). Structures generated from the
first non-trivial normal mode are shown in faded grey.

structural overlap between two sets of atoms. For two protein structures, the RMSD can
be calculated as: √√

1
n

n∑
i=1

‖ti − wi‖
2 (4.1)

where n is the number of alpha carbons (or the atoms used in the analysis) and ti

and wi are the vector positions of the atoms in the protein chains being compared (for
example, t1 as the position of the alpha carbon of the first residue of the apo-form protein
and w1 as the position of the alpha carbon of the first residue of the holo-form of the
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same protein).

A small conformational ensemble (nine structures, with three generated using each
of the first three non-trivial normal modes) of Guanylate kinase was compared to the
holo-structure with Equation 4.1. As shown in Table 4.1, the procedure finds backbone
conformations with a structural overlap closer to the holo-form than a structural overlap
between the holo-form and the apo-form. Conformations that result in an RMSD lower
or equal to that of the original pair of the 1EX6 apo-conformation and the 1EX7 holo-
conformation are noted with an asterisk (*).

While the RMSD between the apo and holo conformations of Guanylate kinase is
3.640 Å, our model manages to generate a backbone conformation with an RMSD to
the holo target structure of approximately 2.2 Å. We extend the test to generate more
structures from the apo-form (PDB ID: 1EX6) and compare them to the holo-form bound
to GMP ligand (PDB ID: 1EX7), in Section 4.2.1, alongside other apo and holo protein
pairs.

Table 4.1: RMSD values between different conformations of 1EX6 (Guanylate Kinase
apo-form) and 1EX7 (Guanylate Kinase bound to GMP ligand).

Mode Conformation RMSD (Å)
1 1* 3.597
1 2* 3.447
1 3* 3.195
2 1 3.642
2 2 3.659
2 3 3.710
3 1 3.651
3 2 3.696
3 3 3.791
- Original 1EX6 3.640

4.2 Numerical results

Backbone structures were generated using each of the apo protein listed in Section 4.1.1.
Each simulation encompassed the generation of 26 conformations for each of the first
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three non-trivial normal modes, for a total of 78 structures. This was followed by side-
chain repacking for each generated protein conformation and energy minimization for
each conformation as described in 3.7.

4.2.1 Energy and structural similarity to bound structures

The structures in ensembles generated from apo structures had the RMSD from the holo
structure calculated using the alpha carbons of the protein backbone of each model. The
all-atom potential energy of each structure in the ensemble was calculated using the
AMBER94 forcefield[12] as described in Section 3.7.

Figure 4.2 shows graphs of the values of structural overlap of each member of the
generated ensembles to the target holo structures on the x-coordinate, with the potential
energy along the y-coordinate. All of the resultant ensembles produce a somewhat linear
relationship between RMSD values and potential energy values. The weak, positive
association is visible due to the conformational changes causing the structure to move
further away from the energetically stable conformation used as the base conformation
(the apo structure). The further the new structures are from the original apo structure
(and consequently the target holo structure), the more unlikely the existence of the
conformation and thus the minimization steps do not produce the same amount of
energetic stability in the structure.

As seen in Figure 4.2, structures with outlying values of potential energy exist in
some of the ensembles: this is due to energetic and steric clashes after the addition of the
side-chains to the backbone. Often, sidechain repacking may result in a small amount of
steric clashes that are eliminated via small movements in the energy minimization step.
In some cases, as in the outliers visible in Figure 4.2, 100 steps of the conjugate gradient
minimization algorithm are not enough to decrease the energy value even below zero.
In Figure 4.2 this is most apparent in the Osmo-protection protein (OSMO) graph.
Increasing the number of minimization steps removes this concern. The maximum of
100 was used in this experiment in order to show the efficiency of the model in creating
few geometrically unrealistic situations, and for many of the models in the ensembles,
fewer than 30 minimization steps are necessary to gain a negative energy value. In past
research, conjugate gradient minimization is employed with steps numbering in the
thousands [38], whereas our method does not require such a high number of steps to
achieve a structure with a low potential energy value.

The results of structural overlap of the ensemble members and the target structure
depend on the protein under analysis. Some of the conformations achieve a lowest
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Figure 4.2: The all-atom energy values vs. the RMSD from target structure for the
ensembles generated by the apo form of the protein structures. Ensemble conformers
appear in blue, original apo-form in purple, and original holo-form in green.
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RMSD (LRMSD) closer to the holo-form than their apo-form origin structure. Specif-
ically, GUAN, RIB, HEXO, and OSMO, all form ensembles with LRMSD’s lower than
their apo-holo form RMSD’s. These apo-form to holo-form RMSD’s are 3.6 Å, 4.3 Å, 3.0
Å, and 5.0 Å, respectively. The apo structure of the Osmo-protection protein was used
to generate a structure resulting in the largest improvement in structural overlap with
the holo structure. The LRMSD for OSMO was 2.2 Å. This shows an improvement of 2.8
Å from the original unbound to bound conformation structural overlap. The Guanylate
kinase ensemble yields the LRMSD of 2.3 Å, with an overlap improvement of 1.3 Å
from the original value of 3.6 Å. The improvement in overlap between the Hexokinase
bound structure and the closest member of its respective ensemble was 0.8 Å. D-Ribose
binding protein had a lower improvement in structural overlap, with the LRMSD being
4.0 Å which is a gain of approximately 0.3 Å.

The other ensembles did not contain structures with structural overlaps closer to their
target holo structures. However, all ensembles hold structurally diverse (as suggested
by their RMSD values) and energetically viable (as suggested by the energy values)
conformations.

Table 4.2: Lowest RMSD’s to holo target yield from generated ensemble

Name APO
PDB

HOLO
PDB

Residue
Count

Orig. RMSD
(Å)

LRMSD (Å) LRMSD En-
ergy (kJ/mol)

HEXO 2E2N 2E2O 298 2.989 2.180 -16682.06
GLUCO 1JEJ 1JG6 351 2.099 2.318 -22111.87
OSMO 1SW5 1SW2 270 5.035 2.181 -12490.26
ALLO 1GUD 1RPJ 288 3.515 3.852 -18547.03
RIB 1URP 2DRI 271 4.288 3.998 -19470.69
GUAN 1EX6 1EX7 186 3.640 2.317 -10863.86

Compared to Seelinger and De Groot’s (2010) ensemble generation via the tCOON-
CORD program (Table 4.3), the LRMSD yields generated by our rigid-body backbone
model are higher, making the change in structural overlap inferior. The tCOONCORD
work managed structural overlap results below 2.0 Å in the ensembles generated [54].
While some of the ensembles we generated using our method approach the 2.0 Å LRMSD
value, most do not reach this magnitude of improvement of structural overlap between
apo and holo protein structure pairs, and none of the ensembles contain members which
achieve an RMSD of below 2.0 Å.
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We used FRODA to generate 500 conformers from the apo structures. FRODA is
a ensemble generation software which uses the pebble game in order to define rigid
clusters within a protein structure, followed by randomized Monte Carlo dynamics to
change the conformation [74]. Table 4.3 shows the LRMSD’s calculated for each ensemble
by our approach, tCONCOORD, and FRODA. In some of the cases, our approach results
in ensembles with an LRMSD lower than that of FRODA (Hexokinase, Osmo-protection
protein, and Guanylate kinase), but in others FRODA manages better results, though
still not comparable with tCONCOORD.

Table 4.3: Lowest RMSD’s to holo target yield from generated ensemble, comparison to
other methods

Name LRMSD (Å) tCOONCORD FRODA
HEXO 2.18 1.42 2.90
GLUCO 2.32 1.38 2.12
OSMO 2.19 1.27 4.54
ALLO 3.852 1.07 3.37
RIB 3.998 0.98 2.52
GUAN 2.317 1.45 3.64

While our method generates some conformers that have a structural overlap closer
to the target holo structure than the original apo structure, in some cases the results
are not competitive with previous methods. The reasons for this may include the
obvious limitations of our experimental procedure: only the first three non-trivial normal
modes are used, and combinations of normal modes are not considered. Additionally,
the normal modes may not contain information on conformational changes between
unbound and bound structures as various modes of binding may exist. If conformational
changes between holo and apo structures are achieved by passing through more than one
low energy state, the protein structure may transiently exist in a local energetic minimum
different from that of the original structure. In such a situation NMA approaches such as
the one used presently may require further refinement such as the rebuilding of the ENM
at some steps during the simulation. Additionally, the constraints set by our model do
not change over time, which limits the conformational space accessible by our model.
H-bonds are not dynamic in our model of the backbone, and so conformational changes
where the H-bonds change would not be explored.
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As the timesteps of the simulation are arbitrary due to NMA not being a time-
based indicator of motion, it is difficult to decide how often structural snapshots for
the ensemble should be taken. Additionally, if the model is being used to find a target
structure, as it was in the apo and holo structure comparison studies shown both in
the current work and previously [54], it is difficult to decide on the duration of the
simulation. For example, we allow FRODA to generate 500 conformations instead of
the 78 generated by our method. The results from the tCONCOORD test are based on an
experiment that generated 1000 conformations before reducing the ensemble size after
energy minimization and constraint adherence methods [54]. Though our generated
conformers are fewer in number, some of the ensembles contain conformers with a good
structural overlap to the target holo structure.

The RMSD results indicate a large displacement of the backbone when compared
to the displacement seen in FRODA results. FRODA dynamics seem to constrain the
mobility of the backbone to approximately 1 Å from the apo structure, whereas our
method manages maximum RMSD’s of approximately 7-10 Å. Though tCONCOORD
generates structures with good structural overlaps to the holo target structures, their
use of the radius of gyration of the holo structure as input has some impact on the
effectiveness of the method, and consequently on their results. Both FRODA and our
approach use only the apo conformation as input in the ensembles we generated.

4.2.2 Time requirements

In the implementation of the method presented in this work, the minimization step
requires the majority of the time taken for structure generation. All ensembles generated
in this work were constructed using a 2.91 Ghz AMD Athlon dual core machine with
4 GB of RAM. Each conformation requires approximately 10 seconds to be generated
without minimization (this includes generating the extraneous backbone conformation
and skipping conformations which are too similar to one another in terms of structural
overlap) and an extra 2 minutes with minimization. Reducing the need for minimization
steps is important and using geometrical and steric constraints present in the rigid-body
model calculations in this work alleviates the need for extensive minimization.

When compared with the tCONCOORD method, which requires 4 days per case
on a 50 node cluster [54], our approach is more tractable. The multiple steps and MD
refinement used by the tCOONCORD work cause a high computational and time re-
quirement. While the actual conformational sampling by tCONCOORD may take much
less time, the MD requirements of their proposed workflow cause the full method to suf-
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fer from high time expenditures. Each of the cases in our work requires approximately
3 hours to generate 78 structures on average. The majority of this time was used for the
100 conjugate gradient energy minimization steps for each generated protein structure.

4.2.3 G-factor scores

We use the G-factor as one of the indicators of goodness of the generated structural
ensembles. The G-factor is calculated as the log-odds score based on stereochemical
properties [42]. It is calculated based on the observed distribution of these stereochem-
ical properties from a set of 163 high resolution crystal structures (solved by X-ray
crystallography to a resolution below 2.0 Å) [18]. For each residue, the G-factor is the
combination of the log-odds ratio of the torsion angle properties of the given residue (the
phi and psi angles, chi angles when applicable, and the omega angle) and the log-odds
ratio of the covalent geometry properties (backbone bond lengths and backbone bond
angles) of the given residue. A G-factor below -1.0 indicates an unreliable residue score
and suggests that the properties do not coincide with the distribution seen in the high
resolution set of structures used to develop the scoring function.

The program PROCHECK-NMR [41, 42] is used to calculate the G-factor for each
residue in the generated models. PROCHECK-NMR is designed to verify the structures
of NMR ensembles and is therefore a good candidate for the quantification of protein
ensemble quality.

Table 4.4 shows the resulting average G-factors in the generated protein structures.
G-factors averaged over residues for each generated ensemble are shown in the first
column and percentages of residues with average G-factors below the -1.0 threshold are
shown in the second column. All the ensembles have average G-factor scores above
this threshold. However, approximately 10% of the average residue G-factors are below
this threshold in all the generated ensembles. Nonetheless, some of the ensembles have
an average G-factor very near that of the original apo structure (notably OSMO, ALLO,
and GUAN).

4.2.4 Ramachandran plots

The Ramachandran plot is a distribution of allowable phi/psi angle pairs in a protein
backbone. This two dimensional plot shows areas where the phi/psi torsional angle pairs
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Table 4.4: G-factors of generated ensembles.

Name Apo structure average G-factor Ensemble average G-factor % < -1.0
HEXO (2E2N) 0.42 0.04 10%
GLUCO (1JEJ) 0.32 -0.05 8%
OSMO (1SW5) 0.10 0.05 9%
ALLO (1GUD) 0.17 0.11 8%
RIB (1URP) 0.24 0.13 9%
GUAN (1EX6) 0.00 -0.04 12%

are statistically likely for specific residue types or for the entire protein backbone chain.
A data point on the plot represents a phi and psi combination for a sampled residue.
The phi dihedral angle is defined by the horizontal axis (ranging from [-180,+180]) and
the psi dihedral is situated on the vertical axis with the same range. An area on the plot
is defined as ”core”, ”allowed”, ”generous”, or ”disallowed” based on the distribution
of residues in known structures having specific phi/psi combinations qualifying in the
area. Protein conformations are considered to be reliable when 90% of the non-glycine
and non-proline residues are within the ”core” sections.

We use PROCHECK-NMR [42] for calculation of the plots for the structures in each
ensemble. The different permissive regions are originally defined within PROCHECK-
NMR based on an analysis of 118 structures of resolution less than or equal to 2.0 Å.

The results are shown in Table 4.5. The majority of residues reside in the ”core”, or
the most favored regions of the Ramachandran plot. The GLUCO ensemble is the only
generated ensemble without at least 90% of phi/psi pairs in these ”core” regions. The
additionally and generously allowed regions contain approximately 10% of residues in
each ensemble. None of the ensembles contain more than 2% of residue dihedral angles
within disallowed regions. The ALLO and RIB ensembles both have 1.1% of residues in
the disallowed regions.

In the rigid-body joint constraint backbone model, it is only the dihedral angles
that experience changes due to the application of forces to the atoms. It is important
that these changes avoid creating unlikely dihedral angles in residues of the generated
protein structure. While the results of the ensemble generation presented in Table 4.5 are
reasonable, some of the dihedral angles in the ensembles are in disallowed regions of the
Ramachandran plot. From visual inspection of the Ramachandran plots, the majority of
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Table 4.5: Ramachandran plot location percentages of the generated ensembles.

Name Method Core Allowed Generous Disallowed

HEXO (2E2N) Joint 91.4% 8.0% 0.5% 0.1%
FRODA 89.8% 9.3% 0.5% 0.3%

GLUCO (1JEJ) Joint 87.5% 11.4% 0.7% 0.4%
FRODA 83.7% 15.0% 1.0% 0.3%

OSMO (1SW5) Joint 90.8% 8.1% 0.9% 0.1%
FRODA 86.6% 12.8% 0.5% 0.1%

ALLO (1GUD) Joint 91.4% 7.4% 0.1% 1.1%
FRODA 87.5% 10.9% 0.7% 0.9%

RIB (1URP) Joint 90.9% 7.6% 0.4% 1.1%
FRODA 86.4% 12.1% 0.6% 1.0%

GUAN (1EX6) Joint 90.9% 8.2% 0.6% 0.3%
FRODA 85.9% 13.8% 0.3% 0.0%

these outliers are from late-stage models, i.e. structures that have experienced motion in
the directions of a given normal mode over many time steps. This implies that permitting
the simulation to achieve extensive structural change in the direction of a single normal
mode will result in unlikely structures. Permitting this extent of structural changes in
the conformation may also be responsible for the G-factor results shown in Section 4.2.3
as the G-factor scores are also dependent on the phi and psi angles of the residues.

The Ramachandran plots of the ensembles generated by FRODA were analyzed using
PROCHECK-NMR in order to compare the results of our model to an already established
method that strongly considers rigidity. We compare the location percentages in Table 4.5
and in all cases, our method produces a better Ramachandran plot distribution for each
ensemble than the FRODA method, which has residues in the core regions consistently
under 90% in all ensembles it generated. This implies that our approach produces more
geometrically likely structures, at least in terms of phi and psi angle pairs.

4.2.5 Bond length and bond angle stability

The PGS algorithm acquires the new velocities of objects in order to update the new posi-
tions of the objects [9]. Such an approach, in which the new velocities are used to update
positions, is referred to as a semi-implicit, or a symplectic Euler integration scheme. It
has been shown that this scheme has stability and energy conservation properties that
are comparable to the Verlet integration scheme [27]. The Verlet integration scheme is
the most commonly used integration scheme in MD simulations [1]. However, the PGS
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algorithm is an iterative algorithm and may suffer from errors. To discern whether these
errors affect the results, we check that constraints specified by the rigid-body model are
held in the newly generated conformations.

Distances between bound atoms and bond angles are used to evaluate stability of
the algorithm. Since the model defines these as static, the maintenance of bond lengths
and angles will imply stability of the algorithm.

The number of iterations of the iterative PGS algorithm can be varied between
simulations. Continuing the example of 1EX6, with 20 iterations of the PGS algorithm per
time-step, bond lengths experience modifications that generate errors over 0.05 Å, with
some errors becoming larger than 0.1 Å. However, increasing the number of iterations
to 200 completely eliminates errors over 0.05 Å. After the short energy minimization
procedure bond lengths can be assumed to be within acceptable ranges.

While an analysis of the backbone bond lengths and angles is included within the G-
factor score (Section 4.2.3), a closer examination of these properties is done in the current
section. The WHATIF program [72] calculates the root mean square (RMS) Z-scores and
standard deviations for both bond lengths and bond angles in the ensembles. Z-scores
that indicate good agreement with likely values are close to 1.0. As shown in Table 4.6,
all ensembles contain reasonable bond angles and bond lengths. The Z-scores of the
Omega angles were also calculated and are all close to 1.0. All of the backbone angles
were classified as acceptable by WHATIF.

Because the constraints imposed on the model were the bond lengths and bond
angles, these results imply the constraints were obeyed during the generation of alternate
protein conformations. The Omega angle was constrained with a non-rotatable joint,
which means that the Ci−1 − Ni inter-residue bonds were kept from rotation about the
bond axis, keeping these atoms immobile in relation to one another throughout the
simulation.

Table 4.6: Bond length and angle Z-scores as calculated by WHATIF.

Name Bond length z-score Bond angle z-score Omega angle z-score
HEXO (2E2N) 1.382 ± 0.132 0.981 ± 0.063 1.216 ± 0.062
GLUCO (1JEJ) 1.365 ± 0.089 1.029 ± 0.071 1.250 ± 0.070
OSMO (1SW5) 1.355 ± 0.067 1.010 ± 0.065 1.492 ± 0.065
ALLO (1GUD) 1.373 ± 0.059 1.020 ± 0.070 1.385 ± 0.056
RIB (1URP) 1.339 ± 0.012 1.001 ± 0.027 1.205 ± 0.041
GUAN (1EX6) 1.338 ± 0.016 0.976 ± 0.023 1.337 ± 0.043

54



4.3 Concept discussion

4.3.1 Non-coarse rigid-body simulation

The method presented in Chapter 3 uses a spherical rigid-body per backbone atom
during the simulations, and links these rigid-body atoms using joints. This introduces
many bodies, joints, and contact points for a given motion simulation. Thus, efficient
dynamics simulation techniques are essential when simulating these many-body sys-
tems. The use of Catto’s (2005) linear algorithm to solve dynamics equations enable the
simulation of motions of medium sized protein backbones with very reasonable time
and computation expenditures. However, if a coarse-grained rigid body model was
employed, faster simulations may become possible.

The reasons why excessive coarse-graining is not essential when generating struc-
tural samples from NMA guided motions in our approach are two-fold. First, the ENM
used as a directional guide in our model is already coarse-grained in that it takes only
alpha carbons into consideration. Abstracting the protein further may incur loss of infor-
mation about the finer changes in the low-frequency motions of the backbone. Second,
using only the backbone atoms in the simulation removes the need to rebuild the entire
backbone from the alpha carbon locations. When an ENM is analyzed using only alpha
carbons, the positions of the remainder of the atoms in the protein must be extrapo-
lated from the alpha carbon positions. For example, Yang and Sharp (2009) apply likely
angles and bond lengths found via PROCHECK between consecutive alpha carbons.
They superimpose these bond locations onto the alpha carbon positions and follow this
with energy minimization [75]. These types of rebuilding steps are unnecessary if all
backbone atoms are explicitly involved in the generation of the backbone, as is the case
in the model presented in this work.

Using SCWRL4 [40] to repack side-chains has two benefits. The obvious benefit is the
decreased amount of computation required to simulate only a backbone model, though
the actual time required to run a full-atom mechanics simulation using the present model
is not excessive due to the linear nature of the integrator and time stepping scheme
by Catto (2005) [9]. More importantly, the removal of side-chains for the simulation
is, conceptually, an essential part of generating backbone ensembles. We use NMA to
gather information about the low-frequency motions of the protein, which are long-term
motions and take place over large time scales. Side-chain motions are high-frequency
motions; that is, the motions of the side-chains are much faster than backbone motions.
Low and high-frequency motions of protein structures occur at different time scales
in nature and efficiently simulating one type of motion (low-frequency motion) may
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not allow for an easy way to efficiently simulate the other (high-frequency motion)
concurrently. Thus, we limit ourselves to low-frequency motions which are important
in the function of proteins [11, 26]. Tests of all-atom models with simulated motion
initiated by forces constructed from the normal modes were undertaken, but due to
the presence of side-chains, very limited mobility was present in the backbone. This
crowding of atoms in an all-atom model makes motions in a long time-scale difficult to
simulate efficiently.

4.3.2 Normal modes as motion guidelines and rigidity considerations

Previous use of NMA methods to guide structural sampling involved the translation of
atoms along the normal modes [75]. Our method considers what effect the connectivity
of the entire protein backbone has on the low-frequency motions described by NMA.
By taking the backbone connectivity into account, along with the H-bonds and disulfide
bonds, we recognize that low-frequency motions of the atoms may not continue in the
original normal mode directions.

The theory of ENM approximates the protein as a network of bodies connected by
springs with an equal spring potential [44]. The normal modes are thus the initial
direction of harmonic motion of the atoms used as interacting sites. However, once
these atoms move along the normal modes the original network may become obsolete
due to the cut-off threshold and the assumptions of harmonic motion. This is why NMA
methods are used on structures considered to be within an energetic minimum and
why large conformational deviation from this structure is avoided in the original NMA
model [44].

Because we do not mix the normal modes, and because we only limit our exploration
of the conformational space to the directions indicated by the first three non-trivial
normal modes, we lack a thorough sampling based on other normal modes. While
an obvious limitation, the effectiveness of using such a small amount of information
as directional guidance supports the previously experienced usability of the ENM to
describe low-frequency protein motions [29, 44]. The ENM used in our work is a single-
potential ENM, and

In our simulation, the motion of the backbone is initiated by the normal modes, but
constrained by backbone connectivity. Backbone connectivity, together with the energy
considerations of interatomic forces, results in motion constraints. These constrained
motions are modeled after real protein structures due to the natural rigidity that this
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connectivity provides. This joint-based approach to applying rigidity constraints is a
conceptual mirror of the covalent bonds and H-bonds present in real protein structures.

Rigidity analysis has been used in protein motion considerations before and has
played and important role in generating ensembles and paths between conformations
[34, 66]. While an ENM alone has some inherent rigidity considerations, the connectivity
in an ENM is based on a distance cut-off due to the connectivity of the springs that
the ENM simulates. To properly understand the motion a protein experiences due to
harmonics, we must take care to incorporate bond-connectivity. This is accomplished
in the current model by constraining ENM guided movement with the rigidity of both
covalent and hydrogen bonds in the protein backbone. Rigidity theory algorithms have
been used with NMA methods before, but the actual sampling involved coarse graining
and was essentially based on adding spring potentials based on the rigid or non-rigid
distinction to portions of the ENM [2]. Rigidity considerations must be employed when
studying protein motion due to the effect bond connectivity has on protein structure.
Our method approximates the physical reality of this connectivity by explicitly defining
all the bonding constraints in a protein backbone model. Because of this connectivity,
the conformers generated by our rigid-body, joint-constrained backbone are of good
stereo-chemical and energetic quality.
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Chapter 5

Conclusions

We have presented an application of a constraint based dynamics technique and the
elastic network model to explore conformational changes in protein structures. The
constraint based method provides quick integration due to the linear algorithm used
for time-stepping of rigid-bodies. Using the rigid-body approach for atom modeling
facilitates the abstraction and simplification of electrochemical inter-atomic interactions
through rigid-body collisions. These approximations make backbone structure compu-
tations tractable for larger proteins. The ability to inherently constrain certain aspects of
the simulation as part of the model provides a useful option to reduce unlikely confor-
mations in efficient ensemble generation. Rigidity considerations are explicitly defined
due to the joint constraints and their computational tractability. The use of a rigid-body
model also allows for application of directional information, such as the information
generated by an ENM, as is done in this work.

The method was tested with a few unbound protein structures: D-Allose bind-
ing protein, Osmo-protection protein, D-Ribose binding protein, DNA Beta-Glucosyl-
transferase, Hexokinase, and Guanylate kinase. We show that the method is able to
generate conformations structurally closer to a biological ligand-bound target confor-
mation than the unbound conformation in most of these cases. The structures in these
generated ensembles are shown to achieve low potential energies with only few clean-up
steps.

While the use of basic ENM derived directions does not generate conformers struc-
turally closer to the holo structures than those generated by previous methods [54], we
are able to generate conformers with a better dihedral angle distribution than previous
ensemble generation techniques that consider rigidity [74]. This suggests that such an
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explicit consideration of connectivity and thus of rigidity within the protein backbone
can be a beneficial tool in ensemble generation techniques.

5.1 Future Work

With constraint based methods being useful for very basic descriptions of inter-atomic
interactions, it will be worthwhile to explore the possibilities of increasing the biological
relevance of such constraints. Joints insilico can be abstracted in various ways. Thus,
creating joints that encompass the Lennard-Jones potential or other interactions between
nearby atoms would allow for improved motion studies of protein structure, especially if
the speed of using constraint algorithms like the linear time stepping method presented
in Chapter 3 is not hindered by such additions. Molecular dynamics simulations with an
iterative integrator and constraints which describe atomic interactions could be useful
in understanding protein motions. Applying fluidity to the connectivity modeled by
the rigid-body backbone, such as enabling the breaking and forming of H-bonds during
the simulation, can open up a larger conformational space when sampling conformers.

Exploring how directional force application of normal modes can affect protein struc-
tures further may allow for new possibilities within NMA research. NMA is not the only
way to describe expected protein motions, and the use of other methods such as prin-
cipal component analysis would be beneficial to improving the quantity of structures
generated. As there was no mixing of normal modes in the analysis of the protein struc-
tures in this work, the generated ensembles may be missing important conformations
as well. Combining normal modes for use as directional guides may improve results of
this study.

While we only explored conformational relations between protein structures using
structural overlap calculations, motion planning and path discovery methods could be
applied to the ensembles generated by our rigid-body backbone model. This may shed
new light on the interaction of normal modes between protein structures and important
functional behavior of protein.
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Appendix A

Rotational Inertia

The concept of rotational inertia of a rigid body i with mass m is necessary in the mathe-
matics of rigid-body dynamics. The inertial tensor matrix I is used in the calculation of
the rotational momentum Li(t) at time t,

Li(t) = Iω(t)

with I being a 3 × 3 inertial tensor matrix and ω(t) the rotational velocity at time t.

The inertial tensor matrix is a descriptor of the distribution of mass within the body
around the center of mass of the body. Since this does not normally change, an inertial
matrix is usually computed for each body at the beginning of a simulation and stored
throughout the simulation to ease the computational requirements. I is defined by

I =
∑
∀i

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz
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where
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with r′i being the displacement, from the origin, of a point i on the rigid body. The
r′ix, r

′

iy and r′iz values are the respective components of the displacement vector. During
implementation, the finite sums are converted to integrals over the body volume and the
mass becomes a density function: summing over all points of a rigid body shape would
otherwise be a complicated task. To make this calculation feasible, the body-coordinate
system allows us to define a body specific inertial tensor Ib, where the origin is at the
center of mass of the body. Conversion between the body inertial tensor matrix Ib and
the global coordinate system inertial tensor matrix I is simple:

I = R(t)IbR(t)T (A.1)

where R(t) is the orientation matrix, or a matrix indicating the orientation of the
body in comparison to the global coordinate system. At time t, the columns of R(t) are
global coordinate directions that coincide with the axes of the rigid-body. For a deeper
explanation of the rotational inertia matrices, we refer the reader to Baraff (1997) [6].
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[65] H. Taketomi, Y. Ueda, and N. Gō. Studies on protein folding, unfolding and fluctuations by computer
simulation. International journal of peptide and protein research, 7(6):445–459, 1975.

[66] S. Thomas, X. Tang, L. Tapia, and N. M. Amato. Simulating protein motions with rigidity analysis.
J. Comput. Biol., 14:839–855, 2007.

[67] MF Thorpe. Comment on elastic network models and proteins. Physical Biology, 4:60, 2007.

[68] M. M. Tirion. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis.
Phys. Rev. Lett., 77:1905–1908, Aug 1996.

[69] C. J. Tsai, B. Ma, Y. Y. Sham, S. Kumar, and R. Nussinov. Structured disorder and conformational
selection. Proteins, 44:418–427, Sep 2001.

[70] N. Vaidehi and T. Kenakin. The role of conformational ensembles of seven transmembrane receptors
in functional selectivity. Curr Opin Pharmacol, 10:775–781, Dec 2010.

[71] M.J. Vainio and M.S. Johnson. Generating conformer ensembles using a multiobjective genetic
algorithm. Journal of chemical information and modeling, 47(6):2462–2474, 2007.

[72] G. Vriend. What if: a molecular modeling and drug design program. Journal of Molecular Graphics,
8(1):52–56, 1990.

[73] G.L. Warren, C.W. Andrews, A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lambert, M. Lindvall,
N. Nevins, S.F. Semus, S. Senger, et al. A critical assessment of docking programs and scoring
functions. Journal of medicinal chemistry, 49(20):5912–5931, 2006.

[74] S. Wells, S. Menor, B. Hespenheide, and MF Thorpe. Constrained geometric simulation of diffusive
motion in proteins. Physical Biology, 2:S127, 2005.

[75] Q. Yang and K. A. Sharp. Building alternate protein structures using the elastic network model.
Proteins, 74:682–700, Feb 2009.

[76] Y. Zhang. Progress and challenges in protein structure prediction. Current opinion in structural biology,
18(3):342–348, 2008.

[77] W. Zheng, B.R. Brooks, and G. Hummer. Protein conformational transitions explored by mixed
elastic network models. Proteins: Structure, Function, and Bioinformatics, 69(1):43–57, 2007.

66


	List of Tables
	List of Figures
	List of Important Notation
	Introduction
	Ligand binding strategies

	Conformational Ensemble Generation Methods
	Ensemble generation methods
	Conformational ensemble generation via motion planning and rigidity analysis
	Molecular dynamics sampling of the energy landscape
	Protein design to conformation generation
	Distance geometry
	Normal mode analysis and ensemble generation

	Constraint algorithms
	Critique of previous methods
	Problem statement and the proposed solution

	Backbone Rigid-body Model with Normal Mode Guided Iterative Dynamics
	Introduction
	Overall methodology

	Rigid-body simulations
	The molecular backbone rigid-body model
	Bonds as Joints
	Hydrogen bond considerations
	Importance of constraints

	Backbone rigid-body dynamics
	Basic Kinematics
	Joint Constraints

	Iterative dynamics
	Normal mode guided movement
	The basic elastic network model
	Normal modes as external forces

	Side-chain addition and energy minimization
	Implementation details: summary of tools used

	Results and Discussion
	Ensemble generation from unbound protein structures
	Data set
	Qualitative exploration of approximating bound structures through ensembles
	Beginning a quantitative comparison of ensembles to target structures

	Numerical results
	Energy and structural similarity to bound structures
	Time requirements
	G-factor scores
	Ramachandran plots
	Bond length and bond angle stability

	Concept discussion
	Non-coarse rigid-body simulation
	Normal modes as motion guidelines and rigidity considerations


	Conclusions
	Future Work

	Appendices
	Rotational Inertia
	Bibliography

