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Abstract

Telecommunication systems are structured to enable incremental growth, so that new
telecommunication features can be added to the set of existing features. With the addition
of more features, certain existing features may exhibit unpredictable behaviour. This is
known as the feature interaction problem, and it is very old problem in telecommunication
systems. Jackson and Zave have proposed a technology, Distributed Feature Composition
(DFC) to manage the feature interaction problem. DFC is a pipe-and-filter-like architecture
where features are “filters” and communication channels connecting features are “pipes”.

DFC does not prescribe how features are specified or programmed. Instead, Zave and
Jackson have developed BoxTalk, a call-abstraction, domain-specific, high-level program-
ming language for programming features. BoxTalk is based on the DFC protocol and it
uses macros to combine common sequences of read and write actions, thus simplifying the
details of the DFC protocol in feature models. BoxTalk features must adhere to the DFC
protocol in order to be plugged into a DFC architecture (i.e., features must be “DFC com-
pliant”). We want to use model checking to check whether a feature is DFC compliant.
We express DFC compliance using a set of properties expressed as linear temporal logic
formulas.

To use the model checker SPIN, BoxTalk features must be translated into Promela. Our
automatic verification process comprises three steps:

e Explicate BoxTalk features by expanding macros and introducing implicit details.
e Mechanically translate explicated BoxTalk features into Promela models.

e Verify the Promela models of features using the SPIN model checker.

We present a case study of BoxTalk features, describing the original features and how they
are explicated and translated into Promela by our software, and how they are proven to
be DFC compliant.

il



Acknowledgements

I would like to thank my supervisor, Professor Joanne M. Atlee for her guidance and
unquantifiable help, while working on this problem, and also while writing this thesis.

Many thanks to my committee members, Professor Richard Trefler, and Professor Nancy
A. Day, for taking the time to read my thesis and provide valuable comments that helped
me improve my thesis.

v



Dedication

Dedicated to my parents Shree and Jayu, for their support during last couple of years, and
to my niece Shravani, and nephew Neil.



Table of Contents

List of Tables X

List of Figures xii

List of Algorithms xiil

1 Introduction 1

1.1 Motivation . . . . . . . .. 1

1.2 Related Work . . . . . . . 2

1.3 Contributions of our Work . . . . . . . . . .. 5

1.4 Organization of this Document . . . . . . . . ... ... ... ... .... 7

2 Background 9
2.1 DFC .

2.1.1 Usage . . . o oo 9

2.1.2 DFC Protocol . . . . . . . . 10

2.1.3 Calls, Call Variables, Port IDs . . . . . . .. ... ... ... .... 12

2.1.4 Free and Bound Boxes . . . . . . . ..o 13

2.2 BoxTalk . . . . . 13

2.2.1 States . . .. 14

2.2.2 Transitions . . . . . ..o 15

vi



3

2.2.3 Feature Behaviour . . . . . . . .. 15

2.2.4  Call Waiting Feature Box . . . . ... ... ... ... ... .... 16
2.3 Model Checker SPIN . . . . . . . .. . 18
2.4 Promela . . . ... 18
2.4.1 Processes . . ... 19
2.4.2 Data Objects . . . . . . . . .. 19
2.4.3 Message Channels . . . . . . . .. ... ... L. 20
2.4.4 Executability . . . ... ... 21
2.4.5 Compound Statements . . . . . ... ... ... L. 22
2.4.6 Inline Functions . . . . . . . . . . .. .. 24
2.5 Property Language . . . . . . . . . .. 24
2.5.1 Linear-time Temporal Logic . . . . . . . .. ... ... ... .... 24
252 Never Claim . . . . . . . .. ... 26
Explicating BoxTalk 27
3.1 Macro-Expansion Rules . . . . . . . .. ... ... oo 28
3.2 Explication Algorithm . . . . . .. .. .. ... 30
3.3 Explicating BoxTalk - Free Features . . . . . . . ... ... ... ... ... 41
3.3.1 Step 1 - Expanding Macros . . . . . . ... .. ... ... ..... 42
3.3.2 Step 2 - Call Termination . . . . .. . ... ... ... ....... 42
3.3.3 Identifying Common States and State Names . . . ... ... ... 43
3.3.4 Step 3 - Self Transitions . . . . . ... ... ... ... ... ... 45
3.4 Explicating BoxTalk - Bound Features . . . . . ... ... ... .. .... 46
3.4.1 Step 1 -Macro Expansion . . . . . . . .. .. ... L. A7
3.4.2  Step 2 - Call Termination . . . . .. ... ... ... ... ..... 49
3.4.3 Step 3-Setup Signals . . . . . ... L 52
3.4.4 Step 4 - Self Transitions . . . . . . . .. ... ... ... 52

vil



4 Mapping Explicated BoxTalk to Promela
4.1 Promela Models of Features . . . . . . . . . . . . .. ...

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

Generating a Promela Model from a Free BoxTalk Feature . . . . .
Type Definitions and Global Variable Declarations . . . . .. . ..
Inline Functions . . . . . . .. ..o oo
Processes . . . . . ..

Generating a Promela Model from a Bound Feature . . . . . . . ..

4.2 Promela Model Comparisons . . . . . . . . . .. ... ... ...

5 Case Studies

5.1 FError Interface . . . . . . . ..
5.2 Receive Voice Mail . . . . . . . . . .
5.3 Black Phone Interface . . . . . . . . . . .

54 Answer Confirm . . . . . . . . ...
5.5 Quiet Time . . . . . . . . .
5.6 Parallel Find Me . . . . . . . . ..
5.7 Sequential Find Me . . . . . . . . ...

5.8 Properties . . . ...

5.8.1
5.8.2
5.8.3
0.8.4

Properties of Interest . . . . . . . .. ...
Global Monitor Variables as Embedded Correctness Variables
Formulated Properties . . . . . . . .. .. ... ... ........

Explanation in English . . . . ... ... ... ... .. ... ....

5.9 Model Checking and Results of Verification . . . . . . . .. ... ... ...

6 Conclusion

6.1 Explicating BoxTalk features . . . . . . . . . . ... ... ...

6.2 Translation to Promela . . . . . . . . . . ...
6.3 Modifications to Yuan Peng’s Thesis . . . . . . . .. ... ... ... ...
6.4 Case Study . . . . . . . .

55
95
57
o8
60
63
66
68

71
72
73
75
79
82
85
88
92
92
93
93
94
95



APPENDICES

A Original Grammar

B Modified Grammar

C Promela model - Free Transparent Box
D Promela model - Bound Transparent Box
E Promela model - Error Interface

F Promela Model - Receive Voice Mail

G Promela Model - Black Phone Interface
References

X

101

103

113

121

131

153

159

179

200



List of Tables

2.1 Basic Data Types . . . . . . . . . .
2.2 Logical and Temporal Operators in LTL . . . . ... ... ... ... ...

3.1 Macro expansion rules - adapted from [12] . . . ... ... ... ... ...



List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1

Method . . . . . . . 6
Usage . . . . . e 10
Piecewise Setup Process . . . . . . . . ... 11
Ports . . . . . 12
Call Waiting Feature Box - adapted from [15] . . .. ... ... ... ... 16
FTB - Original Specification . . . . . . . . .. ... ... ... .. .... 41
FTB - Explicated Specification (Step 1) . . . . . . . ... .. .. ... ... 42
FTB - Explicated Specification (Step 2) . . . . . ... ... ... ... ... 43
FTB - Explicated Specification . . . . . .. .. ... ... .. ... .... 44
BTB - Original Specification . . . . . . . .. ... ... ... ... ..... 46
BTB - Explicated Specification (Step 1) . . . . . ... .. ... ... ... 48
BTB - Post Processing Machine (Type 1) . . . . . .. ... ... ... ... 48
BTB - Post Processing Machine (Type 2) . . . ... ... ... ... .... 49
BTB - Explicated Specification (Step 2) . . . . . ... .. ... ... ... 51
BTB - Explicated Specification . . . . . .. ... . ... ... ... .... 53
Promela Architecture - Free Boxes - adapted from [12] . . . ... ... .. 56
Promela Architecture - Bound boxes - adapted from [12] . . ... ... .. 56
ETI - Original BoxTalk Specification . . . . . . ... ... ... ... .... 72

xi



5.2
2.3
5.4
2.5
2.6
2.7
5.8
2.9
5.10
5.11
0.12
5.13
5.14
5.15

EI - Explicated Specification . . . . . . . . . ... ... L. 72

RVM - Original BoxTalk Specification. . . . . . ... ... ... ... ... 73
RVM - Explicated Specification . . . . . .. .. .. ... ... .. ..... 74
BPI - Original BoxTalk Specification . . . . . . ... ... ... ... ... 76
BPI - Explicated Specification . . . . . . . . .. ... L. 78
BPI Post Processing Machine . . . . . .. .. ... ... ... ....... 79
AC - Original BoxTalk Specification . . . . . . ... ... ... ... .... 80
AC - Explicated Specification . . . . . . . ... ... ... ... ... 81
QT - Original BoxTalk Specification. . . . . . . .. ... ... ... .... 82
QT - Explicated Specification . . . . . .. .. ... ... 84
PFM - Original BoxTalk Specification . . . . . . .. ... ... ... ... .. 85
PFM - Explicated Specification . . . . . . .. ... ... ... 86
SFM - Original BoxTalk Specification . . . . . . . ... ... ... ... .. 89
SFM - Explicated Specification . . . . . .. ... ... ... ... ..... 91

xii



List of Algorithms

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

3.9

Explication Algorithm . . . . . . . .. . .. ... 32
Macro Expansion: Function:- macro_expansion(T') — (Section 3.3.1) . . . . 33
Caller hanging up: Function:- caller_hang-up(ES®) — (Section 3.3.1) . . . . 34
Termination from signal-linked states: Function:- termination_sl(ES®) —

(Section 3.3.2) . . . . . .. 35
Self Transitions: Function:- sel f transitions(ES*, ES¢, ES?) — (Section 3.3.4) 36
Function:- ES search(esy, ES,tp;) — (Section 3.3.3) . . . . . ... .. ... 37
Function:- complete(tp;, es;): Receipt of pending acknowledgements . . . . 38
Function:- terminate(es;): Receipt of pending acknowledgements when caller

hangsup . . . . . .. 39
Function:- callsets(ess, esy, {Set of Macros}) . . .. ... ... ... ... 40

xiii



Chapter 1

Introduction

1.1 Motivation

Telecommunication systems are structured to enable incremental growth so that new
telecommunication features can be added to the set of existing features. With the ad-
dition of more features, certain existing features may exhibit unpredictable behaviour,
such that the actual behaviours of features become inconsistent with their specified be-
haviours. This is known as the feature interaction problem, and it is very old problem in
telecommunication systems.

Let us look at an example of the feature interaction problem where a customer has sub-
scribed to Call Waiting (CW) and Call Forward on No Answer (CFNA) features. CW
alerts its subscribers with a special tone when they are called while they are already on
the phone. CFNA redirects an incoming call to another phone number if the subscriber
does not answer the incoming call within a set number of rings. When the customer is
involved in one phone call and receives another call, should the customer hear a special
CW notification or should the call be forwarded to another phone number? To complicate
the example further, let us assume that another feature, Answer Call, is also present. An-
swer Call is similar to CFNA | except that the Answer Call feature allows the calling party
to leave a message in an answering device when the subscriber of Answer Call does not
answer the phone after a set number of rings. Now when an incoming call is not answered,
should the call be connected to the answering machine, or should the call be forwarded to
another phone number; if the subscriber is already involved in another phone call, should
the subscriber hear a special CW tone indicating the presence of the new incoming call?



The feature interaction problem is an old problem in telecommunication systems and it
becomes very complex as more and more features, mostly call-processing features, are
added to the system. It is very difficult to figure out whether the addition of a new feature
will affect the existing ones. To redesign the existing features every time a new feature is
introduced is not a viable option.

Jackson and Zave have proposed a technology called Distributed Feature Composition
(DFC) to manage the feature interaction problem [9]. DFC has a pipe-and-filter-like ar-
chitecture [13]. In DFC, features act as filters and internal calls act as pipes that connect
the features. An internal call is a point-to-point, featureless connection obeying a fixed
protocol. Internal calls allow the transmission of signals and media in both directions
between the feature’s endpoints. Features can place, receive, or tear down internal calls
to other features. Each feature is independent of other features and does not share state.
This independence makes the addition, deletion, or modification of features simple. These
characteristics add to the power of the DFC architecture to manage the feature interaction
problem.

DFC does not prescribe how features are modeled or programmed. Zave and Jackson have
developed BoxTalk, a call-abstraction, domain-specific, high-level programming language
which is used to program DFC features [15]. BoxTalk is based on the DFC protocol; how-
ever, it abstracts away common behaviour that is present in all DFC features. Abstracted
behaviour is represented as BoxTalk macros and other implicit behaviour. That some be-
haviour is implicit adds mild complexity to the understanding of BoxTalk models; however,
BoxTalk programmers do not have to program the redundant behaviour for themselves. A
more thorough discussion of DFC and BoxTalk will follow in the next chapter.

1.2 Related Work

In this section, we briefly discuss related works of modelling and verifying DFC and BoxTalk
features.

Gregory W. Bond et al. [2] developed ECLIPSE, a virtual telecommunications network
based on IP, at AT&T Labs. ECLIPSE Statechart, a customized version of Unified Mod-
elling Language (UML) Statechart behaviour description language, was developed to define
behaviour of individual feature boxes. A feature communicates with its environment via
ports and the feature’s Statechart defines how the feature reacts to the messages it receives
on its ports. The researchers at AT&T used model checking to check that an ECLIPSE
feature obeys the communication protocols, e.g., acknowledges all requests to establish or



tear down communication channels. They used the model checker Mocha [1] and devel-
oped a translator for translating ECLIPSE features automatically into the input language
of Mocha.

Zave used Promela and Z to provide a full formal description of the service layer of a
telecommunication system organized according to the DFC virtual architecture [14]. The
DFC protocol was described using Promela [7], and the routing algorithm and routing
data were described using Z. The two descriptions were coordinated together to describe a
telecommunication system. The model checker SPIN was used to check that the protocols
of the virtual network never deadlock.

Alma L. Juarez Dominguez described a compositional reasoning method consisting of model
checking, language containment, and theorem proving to verify DFC compliance properties
over chains of an unknown number of connected DFC features [4, 5]. DFC compliance was
defined with respect to the call protocol using a set of LTL properties and, similar to our
work, the values of signals sent or received were defined using global Boolean variables.
Using the model checker SPIN, she checked that DFC signals received by a feature are
propagated to the next feature in the call. She also checked that a feature receives only
those signals from its environment which it expects and that it sends only those signals
expected by the environment. Instead of verifying that every feature works within the
environment of every other feature, she developed an abstract port model (which served
as an environment) that captured the most general port behaviour and proved that every
feature’s ports obey the abstract port model. Abstract and concrete port models are
described in terms of transitions consisting of a source state, a trigger (which receives or
sends a signal), and a destination state. The abstract model consists of a caller port (one
that places a call), a callee port (one that receives a call), a combo port (i.e., a port that
can switch between caller and callee), and their free and bound' instances are arranged
in a partial order based on language containment. Also using language containment, the
behaviour of each port in a feature was proved to be within the behaviour of one of the
abstract ports. The properties proved were proved for individual features. As a final step
of compositional reasoning, the theorem prover HOL was used to connect the individual
proofs by induction to prove that the DFC call protocol properties hold over segments of
(unknown number of) connected DFC features.

Zarrin Langari and Richard Trefler proposed a visual semantic modelling approach using
Graph Transformation Systems (GTS) to describe the dynamic behaviour of distributed
communication protocols such as DFC [10]. They modelled each state of the system as a

LA new instance of a free feature is instantiated every time the feature is included in a call. There is
only one instance of a bound feature per subscriber which is included in every call including the subscriber.



graph, and used GTS to show the evolving nature of the system. They used a three-level
hierarchical model to describe the behaviour of DFC. The first level shows the functionality
of each telephony feature as a Finite State Machine (FSM) graph. The second level shows
the composition of telephony features and interactions among telephony features through
communication channels. The third level shows the dynamic evolution of the topology of
the telephony system. The system’s state may change when features are added or deleted
(thereby changing the topology), or when the state of an existing features changes. The
third level graphs allow to analyze partial connections (telephone calls in DFC), without
focusing on other distributed processes that are not directly involved in the call. This is
advantageous in dealing with rather large communication protocols. In [11], they apply
GTS modelling to verify invariant system properties of connection-oriented services such as
DFC. They showed that the invariant system properties can be verified by analyzing finite
set of transformation rules describing the GTS system model. If the property is satisfied
by the initial state of the GTS model and all transformation rules are property preserving,
then the property is satisfied by the GTS system. The transformation rule is said to be
property preserving if it does not transform the system graph in a way that violates the

property.

Naghmeh Ghafari and Richard Trefler presented an automated method for analyzing
properties of piecewise (first-in-first-out) FIFO systems that communicate via unbounded
channels [6]. Such systems can be used for modelling distributed protocols such as IP-
telecommunication protocols and interacting web services. They present a procedure for
building an abridged model of the FIFO system, which is an abstraction of reachable chan-
nel contents. BoxOS (ECLIPSE) is a virtual telecommunication network based on IP,
developed at AT&T. They apply their procedure to BoxOS to check safety properties and
end-to-end (path) properties, eg. a message sent from one end will eventually reach to the
other end.

We are interested in automatic verification of BoxTalk features, which are more abstract
than ECLIPSE features. As a first step, we concretize all of the abstractions in a BoxTalk
feature model. That is, we expand all of the macros used by a feature and introduce
other details that are implicit in the BoxTalk models. This concretization which we call
explication, is necessary because the properties to be verified often refer to details that are
abstracted away in BoxTalk features. We have developed a program to explicate BoxTalk
features automatically, using the explication rules developed by Yuan Peng [12]. We use
the model checker SPIN [7] to verify our explicated BoxTalk features. The input language
of SPIN is Promela, and hence we translate our explicated BoxTalk features into Promela
models. Since the explication process concretizes BoxTalk macros that are based on the
DFC protocol, we test our program (explicator + translator) by checking output Promela



models against DFC-compliance properties. These properties are not very interesting to-
wards feature verification as BoxTalk macros handle DFC compliance. However, proving
these DFC-compliance properties helps to demonstrate that our translator correctly expli-
cates the BoxTalk features and that the resulting Promela models are ready to be model
checked. The ultimate goal of this research is to prove arbitrary properties of one or more
(combinations) of features (e.g., feature interaction), but this is beyond scope of this thesis.

Yuan Peng, in her Master’s thesis [12] performed manual explication of BoxTalk features
and hand translated those explicated features into Promela models. The resulting mod-
els were verified with the SPIN model checker against DFC-compliance properties. We
automated the process of generating Promela models of BoxTalk features. Similar to the
structure of Yuan Peng’s models, our Promela models are expressed in terms of constructs
that are common to multiple modelling languages (i.e., states, transitions, event queues,
variables, and changes to all). The resulting Promela models will help understand how to
structure a Promela model in terms of these constructs and will aid in the translations of
languages or of general templates into Promela in future.

1.3 Contributions of our Work

Our translation process can be summarized in three steps as follows:

1. We parse a BoxTalk feature using GNU Flex and Bison. The parsed feature is stored
in a suitable data structure for further processing.

2. We explicate the stored feature by expanding all the BoxTalk macros and introducing
an explicit representation of implicit behaviour. The resulting explicated feature is
stored internally for further translation.

3. As a last step, our program translates the explicated feature into a Promela model.

Figure 1.1 depicts a graphical representation of our method. The BoxTalk specification
and Promela model are the input and output of our program, respectively. The rectan-
gles represent the phases of our program (which starts with a parser and finishes with a
translator). The dotted part represents the verification step using the SPIN model checker.

The goal of our work was to fully automate the translation of BoxTalk specifications to
Promela models. We used the macro expansion rules from [12] to explicate BoxTalk features
before translating them into Promela models. Some of the generated Promela models are
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upwards of 1K lines of Promela code; developing such models by hand would be tedious and
error-prone. With automated translation, we are able to translate BoxTalk features into
Promela models with speed. We evaluate our work with a case study of BoxTalk features
which we explicate, translate, and model check. Appendices contain the Promela models
of some of the features from the case study.



1.4 Organization of this Document

The rest of this dissertation is organized as follows. Chapter 2 contains the background
needed to understand the thesis: DFC, BoxTalk, the target model checker SPIN. Chapter
3 explains our explication strategy with two examples. Chapter 4 explains our translation
of detailed BoxTalk models into Promela models. Chapter 5 describes our evaluation of the
translator, using a case study of BoxTalk features. Chapter 6 concludes this dissertation.






Chapter 2

Background

This chapter provides the background required to understand this thesis. We start with a
brief introduction to Distributed Feature Composition and then describe the Boxtalk mod-
elling language. We also introduce the target model checker SPIN and its input language
Promela.

2.1 DFC

Distributed Feature Composition (DFC) was designed to address the feature interaction
problem. DFC is a component-based software architecture, where a complex system model
is simplified by representing feature components as separate modules that are plugged into
the architecture. DFC has a pipe-and-filter-like architecture [13]. Pipes are unidirectional
streams of data and filters (i.e. features) are concurrent processes connected by pipes.

2.1.1 Usage

A traditional customer call is referred to as a usage. A usage is composed of several
features which are linked together by internal calls. The phone or feature that places a call
is termed the caller and the phone or feature that accepts the call is termed the callee.
Figure 2.1 displays a simple usage in the DFC architecture. Boxes represent features and
lines with arrow heads represent internal calls from the caller to the callee. An internal call
is a bi-directional, point-to-point, feature-less connection that allows transmission of signals
and media. At each end of an internal call is a feature box, which can place, receive,



or tear down internal calls to other feature boxes. Feature boxes also act as interfaces to
devices, trunks, and other resources.

I Lz |—i
Customer 1 , Customer 2

System Boundary
Figure 2.1: Usage - adopted from [9]

The usage in Figure 2.1 comprises a sequence of internal calls from line-interface box LI1
to feature box FBa to feature box FBb to line-interface box LI2.

The usage can be decomposed into source and target zones. Features in the source zone
are features subscribed to by the caller; they are applied to all calls made by the caller.
Features in the target zone are features subscribed to by the callee; they are applied to all
calls directed to the target callee. Any feature box that is closer to the caller is upstream
to other feature boxes that are further away from the caller. Feature boxes that are closer
to the callee are downstream to those features that are closer to the caller. All of the
caller’s features are upstream to all of the callee’s features.

2.1.2 DFC Protocol

Features use the DFC protocol to set up and tear down internal calls. The setup of an
internal call from one feature to another feature is carried out by the router embedded in
the DFC switch. Setup, upack, teardown, and downack are the primary DFC signals. The
setup signal is used for setting up calls and every setup request must be acknowledged with
an upack acknowledgement. In contrast, a teardown signal is used for tearing down calls,
and every teardown signal must be acknowledged with a downack acknowledgement.

In DFC, call setup is piecewise; that is, every internal call is completed and acknowledged
before setting up the next internal call. Figure 2.2 shows the piecewise setup. Piecewise

10



setup ensures that the features do not have to wait idly for the receipt of an upack signal
from the end of the usage. Instead, features can send and respond to signals immediately
after they receive the upack signal.

Line Interface Box Feature Box Feature Box Line Interface Box

setup

upack

setup

upack

setup

upack

Figure 2.2: Piecewise Setup Process

In particular, features can respond immediately to the caller hanging up, rather than
waiting until the usage is completely set up. In this manner, piecewise setup allows features
to execute with more autonomy.

Internal calls are torn down in a similar fashion: a feature sends a teardown signal to
its neighbouring features in the usage, each of which in turn sends an acknowledgement,
downack, back. They also propagate the teardown signal to their neighbouring features, if
any.

Apart from these four signals, there are four status signals used to convey the outcome of the
original call request: none, unknown, unavail, and avail. Whereas an upack acknowledges
the successful establishment of the internal call, the status signals are used to communicate
whether the usage is successfully established. If the call setup is successful, signal avail is
sent upstream. If the target address is invalid (i.e., does not exist), then signal unknown
is sent upstream to the caller. If the callee is busy, signal unavail is sent upstream. Signal
none cancels the effect of any of the three previous signals on an interface box. If the usage
setup is not successful (for example, status signal unknown or unavail), the status signal
is normally followed by a request to tear down the partial usage.

11



2.1.3 Calls, Call Variables, Port IDs

Internal calls between features are called calls. Whenever a new call is established, the
feature allocates a port for that call and stores the port identifier in a call variable. Call
variables refer to ports that represent the endpoints of active calls. All signals sent to or
received from that call variable are actually sent to or received from the port associated
with the variable. If a call is torn down, its port can be allocated to another call. Hence,
port names do not uniquely identify calls. For simplicity, we often talk about calls being
assigned to call variables.

Every feature box has one special port called boxport used for receiving setup signals.
Figure 2.3 shows two feature boxes each with a boxport and two call variables, in and out.

1. Setup (from router) 4. Setup (from router)
boxport boxport
3. Setup (to router) 6. Setup (to router)
< ® i out @= ® in out
2. Upack 5. Upack
(to upstream (to upstream
neighbour) neighbour)
FeatureBox1 FeatureBox2

Figure 2.3: Ports

When FeatureBox1 receives the setup signal on its boxport, it assigns the call to variable
in and then sends acknowledgement upack to its upstream neighbour. The feature then
continues the usage by forwarding the setup signal to the router via call variable out. The
router determines the next box, FeatureBox2, and sends a setup signal to the boxport of
that feature box. The setup signal contains FeatureBox1’s address, to which FeatureBox?2
sends an upack signal. This establishes an internal call between FeatureBox1 and Feature-
Box2. FeatureBox2 continues the usage by sending a setup signal to the router to set up
the next internal call.

12



2.1.4 Free and Bound Boxes

Features are classified in two categories: free features and bound features. With free
features, a new instance of the feature is instantiated every time the feature is included in
a usage eg. Free Transparent Box (FTB). In contrast, there is only one instance of each
bound feature per subscriber, and that one feature must be included in any usage involving
the subscriber eg. Bound Transparent Box (BTB).

With respect to setting up and tearing down calls, free and bound features behave differ-
ently. A free feature receives only one setup signal in its lifetime, which causes the feature
to be instantiated. In contrast, a bound feature can receive and react to multiple setup
signals: one for every usage the subscriber is involved in. Moreover, a bound feature could
receive a setup signal when the feature is already in the middle of a call.

A free feature ceases to exist once its calls are torn down. In contrast, a bound feature
is normally ready to be added to a new usage as soon as it issues or receives a teardown
signal along its current usage.

2.2 BoxTalk

BoxTalk is a high-level, domain-specific, call-abstraction language that facilitates easy and
correct programming of DFC features [15]. In BoxTalk, DFC features are depicted as
finite-state machines. A feature has ports for sending and receiving signals. Depending on
the signals received, a feature performs different actions. BoxTalk uses an abstraction, a
call variable, to refer to ports currently in use. Values of call variables can change over
the course of a usage. We will see an example of this later in the chapter, when we discuss
the Call Waiting feature box.

Four BoxTalk statements can alter the values of call variables:

e rcv(c) is an input event that reflects the receipt of a setup signal for setting up a
new call assigned to call variable c.

e ctu(i,c) is the action that a feature performs to continue the setup of a usage,
associating the new outgoing call to call variable c.

e Similar to ctu() is the macro new(c), which initiates a new call and assigns the call
to call variable c.
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e An assignment statement is used to change the value of a call variable. For
example, in call assignment cl , ¢2 = ¢2 , -, call variable c1 gets the value of call
variable c2; and call variable c2 gets the value noCall. Call assignments cause call
variables to represent different calls at different points of a feature’s execution.

2.2.1 States
BoxTalk supports four different types of control states:

e An initial state is depicted by a small black circle. Each feature has exactly one
initial state. Initial states have no entering transitions.

e A stable state is shown as a rectangle. A feature box can have any number of stable
states. Each stable state has at least one entering transition. Each exiting transition
is triggered by a signal from the environment.

e A transient state is represented by a large, clear circle. Transient states are used
to decompose a complex transition into a sequence of simple transitions. Transient
states are non-responsive states, meaning that the feature does not read any new
input in a transient state. Based on the evaluation of local variables, the outgoing
transitions may take different actions and may lead to different states. At least one
exiting transition out of a transient state should be enabled to ensure that execution
is never blocked in a transient state.

e A termination state is represented by a heavy bar. A feature can have any number
of termination states. Each termination state has at least one entering transition and
no exiting transitions. A feature transitions to a termination state with the receipt
of a teardown signal. Once the feature is in a termination state, it may react to other
teardown signals with a downack signal, but ignores all other signals.

Apart from these explicit states, a feature also has an implicit final state, which exists
only semantically. A final state has no graphical representation. A feature reaches its final
state after all of its calls are completely torn down (i.e., all teardown signals have been
acknowledged) and the feature is freed from the usage.

As we will see in Chapter 3 and Chapter 5, in original BoxTalk models, all states are
depicted as mentioned above. In the explicated models, the initial state is represented by
a small black circle, the final state is represented by two concentric circles (with a solid
inner circle), and all of the remaining states are represented by rounded rectangles.
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Active calls are calls which are fully established (i.e., received an acknowledgement upack).
In a stable state, two active calls are signal-linked if their call variables are paired inside
a parenthesis (for example, calls a and s are signal-linked in the transparent state in Call
Waiting Feature, Figure 2.4). If two active calls are signal-linked, then any signal that
arrives on either call is forwarded to the other call. This default behaviour of a signal-
linked state is over-ridden by explicit transitions (we will see an example in Section 2.2.4).

2.2.2 Transitions

Transitions reflect state changes. They are shown as arrows going from a source state to
a destination state. A transition’s source and destination states may be the same state.

A transition exiting an initial state or any stable state is labelled with “trigger / action(s)”,
where:

e A trigger could be a simple input event, such as receiving a signal on a particu-
lar call or it can be a macro that combines an input event with actions, such as
rev(callVariable).

e An action could be a simple action, such as sending a signal on a particular call or
it can be a macro that combines multiple actions.

A transition is enabled if its trigger event is occurring. Actions are optional.

A transition exiting a transient state is labelled as “[guard] / action(s)”, where the guard
is a predicate on the state of the feature. The transition is enabled if the guard evaluates
to true

2.2.3 Feature Behaviour

Features demonstrate the following types of behaviours:

1. Reactive: The feature reacts to an input from its environment by performing actions
and perhaps changing state.

2. Transparent: If two active calls are signal-linked in a stable state, the default
behaviour is to forward every signal received by one call to the other call. We say
that a feature behaves “transparently” in a signal-linked state because the effect is
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as if the feature does not exist and the two internal calls are directly connected. This
default behaviour is over-ridden by explicit transitions triggered by specific input
signals that cause the feature to exit the signal-linked state.

3. Discarding events: If a feature is in a non-signal-linked state and receives a signal
that does not trigger any of the state’s exiting transitions, the signal is discarded —
meaning that no other feature in the usage will see the signal.

2.2.4 Call Waiting Feature Box

Let us look at an example BoxTalk feature for the feature Call Waiting (CW). CW is
a bound feature that notifies its subscriber of an incoming call when the subscriber is
already on the phone; it allows the subscriber to answer the new call without terminating
the current call. Figure 2.4 shows a BoxTalk model of the CW feature.

[s_from_subscriber] / ctu(a, s) [reverse]

s ? switch
ﬂ [s_from_afar] /ctu (a, s)
[s_from_subscriber] / ctu(s , a) \l‘
rev(s
(s) T ) transparent
a,s
( ) rev(w) /s | cw_indicator
[s_from_afar]/{a,s=s,-};ctu(a,s)
s ? switch
I{a,w=w,a}
s ? switch
fa,w=w,-} w ? teardown call_waiting
(s,a),w
a ? teardown |
s ? teardown
/end(a) ;
{a.w=w,-}
N

all_held T2
S, W

Figure 2.4: Call Waiting Feature Box - adapted from [15]

CW has three stable states (transparent, call waiting, and all_held) and three call variables.
Call s refers to the call that connects the feature to its subscriber; calls a and w refer to
the active and waiting calls, respectively. Active call is a call that is voice-connected and

16



waiting call is a call that is on hold; only one of these calls is connected with the subscriber
at a time.

The CW feature is invoked when a new setup signal is received. In the orienting state, the
feature orients itself with respect to its subscriber: if the call originates from the subscriber,
then it remains associated with call variable s, where s denotes the subscriber; and the
macro ctu(s , a) continues the usage by setting up the next call which is assigned to call
variable a. If the initial call does not originate from the subscriber, then the subscriber is
the intended callee; so the call variable values are switched and call variable a is associated
with the initial call and call variable s is associated with noCall. The macro ctu(a , s) then
continues the usage (towards the subscriber) via call variable s.

In the transparent state, the CW feature is dormant and the subscriber participates in the
usage in a normal way. The calls associated with call variables a and s are signal-linked
(i.e., all signals received by either call are forwarded to the other call). However, the feature
never forwards a switch! signal from the subscriber as the switch signal is only meaningful
as a subscriber command to the feature.

In the presence of a new call request, initially assigned to call variable w, the feature sends
the subscriber a special tone and the feature transitions to the call waiting state. The
subscriber can send a switch signal to indicate that he or she wants to establish a voice
connection with the waiting call. In this transition, the values of call variables a and w are
swapped (with an assignment a , w = w, a), so the subscriber is now signal-linked with the
other call. The subscriber can toggle back and forth between the two calls by repeatedly
issuing the switch signal.

Any of the three parties can hang up at any time. If the user that is waiting hangs up,
it is not noticed by the other two users; the feature simply transitions to the transparent
state where the CW feature again lies dormant. If the active call hangs up, the feature
transitions to the all_held state and waits for the subscriber to switch to the waiting call.
If instead, the subscriber hangs up, call a is torn down. However, call w is still present.
Rather than tearing down call w, the feature switches the values of call variables a and w
to make the waiting call the active call, and then calls the subscriber back to re-establish
the connection to the call that was on hold when the subscriber hung up.

1Switch is a CW feature specific signal
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2.3 Model Checker SPIN

We translate explicated BoxTalk features into Promela (Process Meta Language) models
because we want to use SPIN (Simple Promela Interpreter) [7] to verify explicated BoxTalk
features. This section introduces the model checker SPIN and Section 2.4 talks about
Promela. Readers may defer reading Section 2.3 and Section 2.4 until Chapter 5, which
describes the translation from BoxTalk to Promela.

SPIN takes as input a behavioural model of the system-to-be-verified, expressed in Promela,
and a set of properties of the system. SPIN exhaustively explores the execution paths of
the model and checks whether a property holds on all paths. If the property does not hold
on some path, then SPIN generates a counterexample: a trace of the execution path that
violates the property. The most common types of errors caught by the SPIN model checker
are deadlocks, violation of assertions, reachable bad states, and unreachable good states.

2.4 Promela

A typical Promela model is constructed from three basic objects:

e Process(es)
e Data objects

e Message channels
The program below shows a very simple Promela model.

active proctype main() {

int n = 5;
int sq;
sq=n *n;

printf(“The square of %d is %d.”, n , sq)

}

In this simple program, active and proctype are keywords used in Promela. The rest
of the program has a simple C-like structure. The simulated execution of this process
produces the following output:
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$ The square of 5 is 25.

There is no semi-colon at the end of the last (printf) statement as semi-colons act as
statement separators in Promela and not as statement terminators such as in C.

We discuss in detail all of the Promela constructs used by our models. For a thorough
treatment on SPIN and Promela, please refer to [7].

2.4.1 Processes

A Promela model is composed of a set of processes that, together, describe the behaviour
of a system. Each process is an instantiation of proctype and there must be at least one
proctype declaration in the model. There are several ways to instantiate a process in
Promela. We use the following approach:

active proctype processl () {
printf(”Process 1!7)

}

Processes declared with the keyword active are instantiated automatically and are running
when the simulation begins. Processes are always declared globally.

2.4.2 Data Objects

Data objects can be declared either globally or locally within a process. Table 2.1 lists the
basic Promela data types along with their value ranges.

The data type chan is used to declare message-passing channels. For example, the following
is a declaration of a channel 1c of messages of type bool with the capacity of two messages:

chan lc = [2] of { bool };

The data type mtype is used to give mnemonic names to values. mtype declarations are
usually placed at the start of a program. Separate mtype declarations in the same program
are treated as one big mtype declaration. For example, the following two declarations

mtype = { ml , m2 , m3 };
mtype = { m4 , m5 };

are treated internally by the program as a single declaration:

mtype = { ml , m2 , m3 , m4, m5 };
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Table 2.1: Basic Data Types

Type Range
bit 0,1
bool false,true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short -2 215 1
int —231. 23t 1
unsigned 0.2" —1

However, separate declarations offer better readability, and hence we use separate mtype
declarations in our generated Promela models.

Multiple elements of the same type can be grouped together in an array. Arraysin Promela
start with the index zero and different elements in the same array can be accessed by their
index numbers. The following declares an array c of six message-passing channels:

chan c[6];

User-defined data structures can be defined in Promela using typedef:

typedef pstruct {
mtype ml;
chan c[3];
bool pred = true

b

We use typedef in our models to define our constructs, which we will discuss in detail in
Chapter 4.

2.4.3 Message Channels

Processes communicate with each other through message channels. The following declares
a channel named in which is capable of storing up to five messages of type mtype

chan in = [5] of { mtype };

The following declaration is an array of six such message-passing channels
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chan in[6] = [5] of { mtype };

The statement in ! ml sends a message ml (of type mtype) via channel in, and the
statement in ? ml denotes the receipt of a message (assigned to variable m1) via channel
in.

Rendezvous ports are used to synchronize the communication between two processes. Ren-
dezvous communication occurs via channels of zero capacity. Such zero-capacity channels
can pass messages, but cannot store messages. Message interactions via such rendezvous
ports are by definition synchronous: communication proceeds only when both the sender
and the receiver processes are ready for the rendezvous “handshake”.

2.4.4 Executability

Statements in Promela model are either executable, meaning that they are able to run, or
are blocked. Executable statements in Promela include the following:

e All printf statements
e Any statement guarded by an expression that evaluates to true
e Any send statement for which the associated channel has capacity for a new message

e Any receive statement for which the associated channel contains a message to be
read

e Any rendezvous communication where both the sender and the receiver are ready
for the handshake

Blocked statements include the following:
e Any statement guarded by an expression that evaluates to false
e Any send statement for which the associated channel is full
e Any receive statement for which the associated channel is empty

e Any rendezvous communication where either the sender or the receiver is not ready
for the handshake

Promela has interleaving semantics of execution. Specifically, only one statement from one
process can execute at a time. The scheduling algorithm nondeterministically chooses a
process to execute from the set of executable processes.
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2.4.5 Compound Statements

Promela supports five types of compound statements:

e Atomic sequences

Deterministic steps?

Selections

Repetitions

Escape sequences

An atomic sequence is used to group together two or more statements of one process, so
that these statements execute as one statement without interleaving with other statements
from other processes. Consider the following code:

active proctype processl () {
statementl;

atomic {
statement?2 ;
statement3;
statement4 ;
}

}

In this simple process, statement2, statement3, and statement4 execute in one step
without any interruption from other processes. The only exception to this behaviour is
when any of the statements are blocked. In such a case, control leaves the atomic block,
executes one or more statements in some other process, and returns back to the blocked
statement in the atomic block when it becomes executable. For example, consider the
following code fragment:

chan c1 = [0] of { byte };

active proctype processl () { atomic { statementl; ¢l ! 1 ; statement2 }
}
active proctype process2() { atomic { ¢l ? 1 ; statement3 } }

The execution will start with process1() as channel c1 is empty initially. After exe-
cuting statements statementl and c1 ! 1 in the atomic sequence in processi, the c1

2We do not use deterministic steps, and hence we do not discuss them.
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I 1 statement is blocked because of the incomplete rendezvous handshake. The atomic
sequence of process2() is executed to completion, including the rendezvous handshake.
Finally process1() resumes and executes statement2.

As will be seen, we use atomic statements to model state transitions, to reflect that state-
transition actions take place in a single step.

A selection statement is used to nondeterministically select one option from a collection
of conditional statements. Each conditional statement is composed of a guard and an
action. A particular conditional statement is selected only if its guard evaluates to true,
in which case, the respective action is executed. If more than one guard evaluates to true,
one of the possible conditional statements’ actions are nondeterministically selected for
execution. The guards need not be mutually exclusive:
if
(a <= b) —> actionl;
(a >= b) —> action2;
fi

In the example above, if a is less than b, then actionl will be executed; if a is greater
then b, then action2 will be executed. However, if a is equal to b, then either actioni,
or action2 will be nondeterministically selected for execution.

A repetition structure is a cyclic execution of a collection of conditional statements.
It behaves the same way as a selection statement except that the statements execute
repeatedly until a break statement is encountered, at which point the control passes to
the statement immediately following the repetition structure. For example the following
loop executes until a ==

do

it (a<b) = Db=D>b-— a;
(a>b) = a=a— b;

:: (a = b) — break

od

The repetition structures are used to model the environment processes in our models.
Section 4.1 describes the architecture of our Promela models.

An escape sequence is used to prioritize the execution of different statements in the same
process. Consider the following, where E and P are arbitrary code fragments:

{ P} unless { E }

P (the main sequence) executes only if E (the escape sequence) is blocked. In other words,
E has a priority over P.
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2.4.6 Inline Functions

Inline functions in Promela are very similar to C-style macro definitions, but do not intro-
duce any overhead during verification. A textual substitution of the inline function’s body
is made by the SPIN parser at every point of invocation. If the function holds parameters,
the parser textually substitutes the formal parameters with the actual values.

An inline function has the following structure:

inline function_name( parameters_if_any ) {

body
}
2.5 Property Language
In SPIN, correctness properties are formulated using the following constructs:

e Basic assertions

End-state labels

Progress-state labels

Accept-state labels

Never Claims

Trace assertions

Linear Temporal Logic formulas

In our work, we express properties in terms of Linear Temporal Logic (LTL) formulas and
never claims.

2.5.1 Linear-time Temporal Logic

LTL models time sequentially and infinitely into the future [8]. LTL formulas are built
using atomic propositions denoted by small letters, logical connectives such as =, A, V, —,
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and <, and temporal operators such as X, [J, ¢, U, W, R3. Logical connectives are defined
as follows:

¢ is the negation of ¢

¢ A1 is the conjunction of ¢ and

¢ V 9 is the disjunction of ¢ and 1

¢ — 1 means ¢ implies ¢ (i.e., if ¢ then 1))

The following description of LTL is from [3]:

State formulas are formulas that are true in a specific state, and path formulas are formulas

that are true along a specific path. Temporal operators [3] (that we use) are defined as
follows:

e The ¢ (“eventually” or “in the future”) operator is used to assert that a property
will hold at some state on the path

e The operator O (“always” or “globally”) specifies that a property holds at every state
on the path

e The U (“until”) operator specifies that there is a state on the path where the second
property holds, and at every preceding state on the path, the first property holds.

LTL consists of formulas that have the form A*f where f is a path formula in which the
only state subformulas permitted are atomic propositions [3]. An LTL path formula is
either:

o If p € AP, then p is a path formula.

o If f and g are path formulas, then —=f, fV g, fAg, Of, Of, and fUg are path
formulas.

Table 2.2 lists all of the logical connectives and temporal operators, along with their rep-
resentation in SPIN.

3We do not use the W (weak until), R (release) and X (next) operators, and the <> connective.
4 A stands for all computation paths.
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Table 2.2: Logical and Temporal Operators in LTL

Operator | Logic | SPIN
not = !
Logical and A &&
Connectives | or V ||
implies — ->
Temporal | eventually O <>
Operators | always O (]
until 0) U

2.5.2 Never Claim

A Never Claim as the name suggests, specifies finite or infinite system behaviour that
should never occur. A never claim has the following syntax:

never { sequence }
Never claims can be written manually or can be generated mechanically from LTL formulas.

In addition, we use basic assertions (assert{false}) to prove that our models are not
vacuously true. Please refer to Chapter 5 for details.
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Chapter 3

Explicating BoxTalk

BoxTalk is a call-abstraction language in which commonalities that occur in all features
are abstracted away. This not only provides correct and efficient programming, but also
emphasizes each feature’s unique behaviour. However, for feature analysis, we cannot work
with these abstracted features. Abstractions in BoxTalk are as follows:

e Macros: A macro combines a sequence of read, write, or assignment actions. BoxTalk
macros include rev(), new(), ctu(), gone(), and end(). Section 3.1 explains how these
macros are expanded.

e Hold queue: Call setup is a two phase process; (1) sending a setup signal and (2)
waiting for an acknowledgement upack. Whenever a feature sends a setup signal
through any port, a hold queue is constructed for that port. Until the call is fully
established (i.e., an upack signal is received on that port) all signals to be sent via
that port are stored in the hold queue. When an acknowledgement upack is received
on that port, the contents of the hold queue, if any, are forwarded to the newly
established call.

e Signal linkage: Signal linkage was discussed in Chapter 2. In a stable state, two
active calls are signal-linked if their call variables are paired inside a parenthesis.
If two active calls are signal-linked in any state, then the default behaviour of the
feature is to forward any status signal that arrives on either call to the other call.

e Feature termination: When all active calls of a free feature end, the feature tran-
sitions to a final state.
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For feature verification, we need to concretize all of these abstractions. This process is
called detailing or explication.

To explicate BoxTalk features, we must first parse the BoxTalk features. The BoxTalk
grammar that was available to us was ambiguous and we had to resolve all ambiguities in
order to parse the features. Appendix Al lists the original grammar, and Appendix A2
lists our modified grammar. We developed a scanner using GNU Flex and developed a
parser using GNU Bison. The explicated features are represented in our program as an
annotated graph data structure in which the graph nodes represent BoxTalk states and
the graph edges represent BoxTalk transitions. In the remainder of this chapter, we walk
through the process of detailing the BoxTalk features with two running examples.

3.1 Macro-Expansion Rules

We worked with the macro-expansion rules from [12]. Table 3.1 displays the rules. The
dotted part of the second rule represents our modifications to the existing rules. In this
section, we first explain each original macro-expansion rule, and then explain our modifi-
cations (if any):

e rcv(c): The feature receives a setup signal and sets up a new call assigned to call
variable c¢. The macro rev(c) is fully expanded as:

boxport ? setup / ¢ | upack

e new(c) / ctu(i,c): The expansion rules for macros new(c) and ctu(i,c) are very similar,
hence we discuss their expansions together. The macro new(c) places a new call and
assigns the call to call variable c. The macro ctu(i,c) continues the existing usage
(in i) by setting up the next call in the usage and assigning the new call to call
variable c. Each of these macros expand into a sequence of two transitions, with
a new intermediate state being generated. In the first transition, a setup signal is
sent, and in the intermediate state, the feature waits for an acknowledgement upack
for call c. In the second transition, the acknowledgement is received for call c.
The destination state of the second transition is the destination state of the original
transition. Generally, the name of the intermediate state is connecting_c; however, the
name may be different if other macros/actions are present in the original transition.

We now discuss our modifications to the existing rules of [12] for expanding macros
new() and ctu(). First, in the intermediate state, call ¢ is not fully set up until the
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Table 3.1: Macro expansion rules - adapted from [12]
MACRO EXPANSION

boxport ? setup

1 _—

if hold queue, c.hold, overflows 7 Error State

new(c) vty

O.R c!setup Intermediate © 7 upack
ctu(i, c) A ”\  State

1 ? teardown

o B /itdownack .
/¢! teardown

Cintermediate € 7 intemediate ¢ 674
i State . State

¢ ? teardown

gone(c) / ¢! downack
' o—®

4 end(c) A ¢! teardown Intermediate ¢ 7 downack
CO——C) >

receipt of an acknowledgement signal. However, signals to be sent along this half-
complete call should not be lost. A hold queue, c.hold, is constructed to hold all
of the signals to be sent via this call. Once call c is fully setup, with the receipt of
an upack signal, the contents of the hold queue, if any, are forwarded to the newly
established call.

Second, in BoxTalk, hold queues are infinitely long and never overflow. However, for
finite analysis, we need to put a bound on the sizes of hold queues in our models.
We introduce an error state that represents an overflow of a hold queue: in a half-
complete call, when a hold queue reaches its capacity and that call receives another
signal, the feature transitions to the error state. Error states are final states.

Third, the caller may hang up at any time (even as a new call is being set up).
To handle this special case, extra states and transitions are required. The dotted
part in bottom half of graphical rule expansion (Table 3.1) represents the sequence
of transitions that model this behaviour. If the caller hangs up (represented by i
? teardown /i ! downack) in the intermediate state before call ¢ is fully set up,
the feature must terminate call ¢ in a particular fashion. First, a teardown signal is
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sent via call ¢ and the feature transitions to a second new intermediate state (usually
named abandonConnection_c). Recall that call ¢ has not yet received an upack signal.
Thus, the other end of call ¢ must acknowledge the call setup before acknowledging
the call teardown. When call c receives an upack signal, the feature transitions to a
third new intermediate state (usually named terminating_c), where call ¢ waits for
a downack signal. When call c receives a downack signal, the feature transitions to
the final state.

gone(c): This macro models the case in which the remote end of call ¢ initiates a
teardown of call c. It is expanded as:

¢ ? teardown / ¢ ! downack

If call ¢ is signal-linked with another call, say call o, the macro expansion also includes
the action end(o).

end(c): This macro models the case in which the feature initiates the teardown of call
c. The macro is expanded into a sequence of two transitions with a new intermediate
state (usually named terminating_c). In the first transition, a teardown signal is sent
on call c, and the feature transitions to the new intermediate state. In this state,
the feature waits for a downack signal — the receipt of which transitions the feature
to the final state.

3.2 Explication Algorithm

In this section, we present our explication algorithm, which includes expanding macros
(based on explication rules discussed in Section 3.1) and other abstractions discussed at
the start of this chapter. In the next section, we explain every step of our algorithm in
detail with the example of Free Transparent Box. First we present the pseudo code of our
algorithm and then we explain it.

The explication algorithm constructs a new model. The original BoxTalk model is defined
in terms of (S, S, T') where S* is the set of stable states, S’ is the set of transient states,
and T is the set of transitions. The new explicated BoxTalk model is defined in terms
of (ES, ET) where ES is the set of states, and ET is the set of transitions. We further
classify ES as follows:
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e ES% - Set of states in which the caller has status active! but is not signal-linked
o ESs — Set of signal-linked states
e FS¢— Set of connecting states

e [/S'! — Set of terminating states

In all of the procedures, parts of the code contained in braces ‘{’ and ‘}” are comments.
We use a plus sign (+) to refer to combining action labels in one transition. If actions are
combined in a transition, then all actions have to occur in that transition.

Procedures 3.2, 3.3, 3.4, and 3.5 are part of the same algorithm; we split these for ease of
reading. Algorithm 3.1 calls these procedures to explicate the BoxTalk model with set of
transitions 7.

The new model is constructed in an incremental fashion (i.e., we build one transition in
each step) instead of expanding an abstraction in one step.

As a first step of the explication algorithm (Procedure 3.2), for each transition in the
original BoxTalk specification, we expand all of the macros in that transition. If more than
one macro is present, the first transition of each expanded macro, as described in Table
3.1, is combined into a single joint transition in the new model (Procedure 3.2, lines 4 - 28).
The name of the intermediate state generated depends on the macro combinations being
explicated. The macro combinations in our algorithm are not exhaustive. However, the
macro combinations suffice for all of the BoxTalk models available to us. As it can be seen
from Table 3.1, expansion of macros new(), ctu(), and end() require acknowledgements.
Recursive function complete() handles receipt of pending acknowledgements. Call variable
sets (Section 3.3.3) help us keep track of all the calls and their pending acknowledgements.

The recursive function complete(tp;, es;) (Procedure 3.7) is called from Procedure 3.2 (Pro-
cedure 3.2, line 52). It completes the expansion of macros that require acknowledgements.
For each pending acknowledgement, the function creates an outgoing transition from the
source state to model the fact that acknowledgements can be received in any order (Proce-
dure 3.7, lines 2 and 13). If the destination state(s) of these transitions also have pending
acknowledgement(s), the function is called recursively (Procedure 3.7, line 26). Eventually,
the destination state of the original BoxTalk specification is reached.

The function search(es,, ES,tp;) (Procedure 3.6) avoids the creation of duplicate states
in the new model. The function is called every time a new state (es,) is encountered. This

LAll fully established calls have status active.
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function checks if the to-be-created state already exists in the set of states ES and, if it
does, the function returns the existing state (Procedure 3.6, line 4).

The function callsets(ess,es, {Set of Macros}) (Procedure 3.9) displays how the call
variable sets are updated when specific macros are present in the original transition. For
different macro combinations, “if” statements on lines 3, 6, 9, 12, and 15 are combined
accordingly.

Procedure 3.3 handles the possibility of the caller hanging up from states in which the
caller’s status is active. Recursive function terminate(es;) (Procedure 3.8) handles re-
ceipt of pending acknowledgements. This function, which is called from Procedure 3.3
(Procedure 3.3, line 14), is similar to function complete(), which is called from Procedure
3.2. However, there are subtle differences between the two recursive function. In func-
tion complete(), the eventual destination state after receipt of all pending acknowledge-
ments is the destination state of the original BoxTalk specification, whereas, in function
terminate(), the eventual destination state is state final. In function complete(), all half-
complete calls require only one acknowledgement, upack, for completion of their setup. In
function terminate(), all half-complete calls? first require an acknowledgement upack, and
then a downack, for completion of their termination.

Procedure 3.4 handles feature termination from signal-linked states (Section 3.3.2). Pro-
cedure 3.5 augments signal-linked, connecting, and terminating states of the feature with
self transitions (Section 3.3.4).

In the remainder of this section, we present our algorithm composed of several procedures.

Algorithm 3.1 Explication Algorithm
1: macro_expansion(T)

2: caller_hang_up(ES®)

3: termination_sl(ES®')

4: sel f transitions(ES®, ES¢, ESY)

2These calls are torn down when the caller hangs up.
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Procedure 3.2 Macro Expansion: Function:- macro_expansion(T') — (Section 3.3.1)

1: T = Transitions in the original BoxTalk model

2: Vip,eT

3: Create a new transition et; that combines the non-macro labels of ¢p; with the labels of
the first transitions of the expanded macros of tp;

4: etj.source.name = tp;.source.name
5: if et;.source is a transient state then {Macros do not codify guards}
6: et;.guard = tp;.guard
7 end if
{Destination state (et;.dest), trigger (et;.trigger) and actions (et;.actions) depend on macro combinations}
8: switch
9: case rcv(i) + ctu(i,c):
10: etj.dest.name = connecting_c; etj.actions = i ! upack + c ! setup + tp;.actions;
et;.trigger = boxport 7 setup
11: callsets(et;.source, etj.dest, {rcv(i), ctu(i,c)})
12: break
13: case rcv(i):
14: etj.dest.name = tp;.dest.name; etj.actions = i ! upack + tp;.actions; et;.trigger = boxport ? setup
15: callsets(et;.source, et;.dest, {rcv(i)})
16: break
17: case gone(i) + end(c):
18: etj.dest.name = terminating-c; etj.actions = i | downack + c ! teardown + tp;.actions;
etj.trigger =i 7 teardown
19: callsets(et;.source, etj.dest, {gone(i), end(c)})
20: break
21: case gone(c):
22: etj.dest.name = tp;.dest.name; etj.actions = c | downack + tp;.actions; et;.trigger = c 7 teardown
23: callsets(et;.source, etj.dest, {gone(c)})
24: break
25: case ctu(i,cl) + ctu(i,c2):
26: etj.dest.name = trying_cl_c2; etj.actions = cl ! setup + c2 ! setup + tp;.actions;
et;.trigger = tp;.trigger
27: callsets(et;.source, et;.dest, {ctu(s, cl), ctu(i, c2)})
28: break
29: case end(cl) + end(c2):
30: etj.dest.name = ending-cl_c2; etj.actions = cl ! teardown + c2 ! teardown + tp;.actions;
et;.trigger = tp;.trigger
31: callsets(et;.source, etj.dest, {end(cl), end(c2)})
32: break
33: case end(c) + new(r):
34: etj.dest.name = switching; etj.actions = c ! teardown + r ! setup + tp;.actions;
et;.trigger = tp;.trigger
35: callsets(et;.source, etj.dest, {end(c), new(r)})
36: break
37: case new(c) or ctu(i,c):
38: et;j.dest.name = connecting_c; etj.actions = c ! setup + tp;.actions; etj.trigger = tp;.trigger
39: callsets(et;.source, etj.dest, {new(c)}) or callsets(et;.source, et;.dest, {ctu(i,c)})
40: break
41: case end(c):
42: etj.dest.name = terminating-c; etj.actions = c ! teardown + tp;.actions;
et;.trigger = tp;.trigger
43: callsets(et;.source, etj.dest, {end(c5)})
44: break
45: case default: {If no macros are present}
46: etj.dest.name = tp;.dest.name; etj.actions = tp;.actions; et;.trigger = tp;.trigger
47: if etj.dest == tp;.dest then
48: etj.dest = search(et;.dest, ES, tp;)
49: else
50: et;j.dest = search(et;.dest, ES, NULL)
51: end if 33
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Procedure 3.3 Caller hanging up: Function:- caller_hang_up(ES*) — (Section 3.3.1)

1: Ves! € £S?
2: V Cay, € esf.Active
3: Add a new outgoing transition (et;) {reflecting Ca), hanging up}
et;.trigger = Cay, 7 teardown;
et;.actions = Cay, ! downack
copy all call variable sets of es{ to et;.dest
remove Cay, from et;.dest. Active
4: if et;.dest. Requested # & then

5: V Cr; € etj.dest. Requested
6: etj.actions = et;.actions + Cr; | teardown
remove Cr; from et;.dest. Requested
add Cr; into et;.dest. Abandoned
7 end if
8: if et;.dest. Active # & then
9: vV Cay, € et;.dest. Active
10: etj.actions = et;.actions + Cay, ! teardown
remove Cay, from et;.dest. Active
add Cay, into et;.dest. T'erminating
11: end if
12: etj.source.name = esj.name;
etj.dest.name = abandonConnection_calls {calls are all the call variables
belonging to es?. Requested}
13: et;.dest = search(et;.dest, ES, NULL)
14: terminate(et;.dest)
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Procedure 3.4 Termination from signal-linked states: Function:- termination_sl(ES®") —
(Section 3.3.2)

1: Vess! e ES*

2: Cal = Signal-linked Call #1
3: Ca2 = Signal-linked Call #2
{Consider the case where C'al hangs up}
4: Add a new outgoing transition (et;;) {reflecting Clal hanging up}

etj; .trigger = Cal 7 teardown;
et;;.actions = Cal | downack + Ca2 ! teardown;
et;;.source.name = esfl.name; et;;.dest.name = terminating_Ca2
copy all call variable sets of ess' to et;;.dest
remove Cal from et;;.dest. Active
remove Ca2 from et;;.dest. Active
add Ca2 into etj;.dest. Terminating
5: etji.dest = search(et;;.dest, ES, NULL)
6: Add a new outgoing transition (et;2) from terminating Ca2 triggered by Ca2
receiving downack
etjp.trigger = C'a2 7 downack; etjz.actions = &;
etjz.source.name = terminating-Ca2; etjp.dest.name = final {In state final,
all call variable sets are empty}

7 etjo.dest = search(etjp.dest, ES, NULL)
{Consider the case where C'a2 hangs up}
8: Add a new outgoing transition (et;3) {reflecting C'a2 hanging up}

etjs.trigger = C'a2 7 teardown;
etjs.actions = Ca2 | downack + Cal ! teardown;
etj3.source.name = esfl.name; etjs.dest.name = terminating Cal
copy all call variable sets of esS' to et;3.dest
remove Ca2 from et;3.dest. Active
remove Cal from et;3.dest. Active
add Cal into etjs.dest.Terminating
9: etjs.dest = search(et;s.dest, ES, NULL)
10: Add a new outgoing transition (et;4) from terminating Cal triggered by Cal
receiving downack
etjs.trigger = Cayy 7 downack; etjq.actions = &;
etjs.source.name = terminating_Cal; et;4.dest.name = final
11: etjy.dest = search(et;s.dest, ES, NULL)
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Procedure 3.5 Self Transitions: Function:- sel f_transitions(ES®, ES¢, ES') — (Section

3.3.4)

1: Vesi! € ES*

2:
3:
4:

Cal = Signal-linked Call #1

Ca2 = Signal-linked Call #2

Add two outgoing transitions (et;; and et;j2) from state es;' with same destination
state (es3)

et;;.trigger = Cal ? sig; etj;.actions = Ca2 ! sig;

et;;.source = etj;.dest = es?’

etj1.guard =[sig # SIGNAL;| {SIGN ALy is any signal for C'al that explicitly
triggers a transition that exits state esg'}

etjo.trigger = Ca2 7 sig; etjp.actions = Cal ! sig;

etjp.source = et;j;.dest = esfl

etje.guard =[sig # SIGNALy) {SIGN AL, is any signal for Ca2 that explicitly
triggers a transition that exits state esfl}

Ca € es§. Active

Cr € es§.Requested

Add an outgoing transition (et;) from state es{ with same destination state (es)
et;.trigger = Ca 7 sig; etj.actions = Cr_hold ! sig;

et;.source = et;.dest = esf

etj.guard =[sig # SIGNAL, && Cr_hold # Full] {SIGNAL, is any signal

for C'a that explicitly triggers a transition that exits state es{, and Cr_hold is the
hold queue}

9: Vest e ES

10:
11:

Ct € es{. Terminating

Add an outgoing transition (et;) from state es! with same destination state (es!)
et;.trigger = Ct 7 teardown; et;.actions = Ct | downack;

etj.source = et;.dest = es!
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Procedure 3.6 Function:- ES search(es,, ES,tp;) — (Section 3.3.3)

1: Ves; € ES {ES is the set of existing states}

2:
3:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

if es;.name == es,,.name then
if es;. Active == es,,. Active &&
es;. Requested == es,,. Requested &&
es;. Abandoned == es,,. Abandoned &&
es;. T'erminating == es,. Terminating then
return es;
end if
end if
if es,,.Active # @ then
if tpr, # NULL && tpy.dest € signal-linked then
push es,, into set of signal-linked states E.S*
else
push es,, into set of active states £/S®
end if
end if
if es,,.Requested # & then
push es,, into set of connecting states ES°¢
end if
if es,,.Terminating # & then
push es,, into set of terminating states F.S*
end if
return es,
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Procedure 3.7 Function:- complete(tp;, es;): Receipt of pending acknowledgements

1: V Cr; € es;.Requested

10:

12

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
: Vt; € esj).OUTTRAN {esj.OUTTRAN is the set of transitions that exit state es; created
in lines 2 and/or 13}

23

24
25:
26:
27:

{If macro new() or ctu() is explicated in Procedure 3.2, es;. Requested will not be

empty }

Create an outgoing transition (ety;) from state es; triggered by a corresponding upack

ety .trigger = Cr; 7 upack; etyy.actions = J; etyy.source = es;

copy all call variable sets of es; to ety;.dest

remove Cr; from ety.dest. Requested

add C'r; into ety .dest. Active {Receipt of an upack}

if etyy.dest. Terminating # @ then {If there are calls with pending downacks}
ety.dest.name = waiting_call_down {call is the contents of
ety1.dest. Terminating}

else if ety.dest. Requested # @ {If some calls are still pending upack}
ety;.dest.name = connecting_call

else {All acknowledgements received}
ety1.dest.name = tp;.dest.name

end if

if ety.dest == tp;.dest then ety .dest = search(ety;.dest, ES,tp;)

else ety;.dest = search(ety;.dest, ES, NULL) end if

1 V Ct; € esj.Terminating

{If macro end() is explicated in Procedure 3.2, es;.Terminating will not be empty}

Create an outgoing transition (ety2) from state es; triggered by a corresponding downack

etya.trigger = C't; 7 downack; etys.actions = @; ety.source = es;

copy all call variable sets of es; to etya.dest

remove Ct; from ety.dest.Terminating {Receipt of a downack}

if etys.dest. Requested # @ then {If there are calls with pending upacks}
etyo.dest.name = connecting_call

else if etys.dest. Terminating # @ {If some calls are still pending downack}
etyo.dest.name = waiting_call_down

else {All acknowledgements received}
etys.dest.name = tp;.dest.name

end if

if etyo.dest == tp;.dest then etys.dest = search(etys.dest, ES,tp;)

else etyo.dest = search(etys.dest, ES, NULL) end if

eSeurr = t;.dest
if escyrr.Requested # &V eScyrr. Terminating # @ then {If acks. pending}
complete(tp;, €Scyrr)

end if
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Procedure 3.8 Function:- terminate(es;): Receipt of pending acknowledgements when
caller hangs up

1: V Ch; € es;.Abandoned

2:

*®

10:

11

13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23

24:
25:
26:
27:

Create an outgoing transition (ety;) from state es; triggered by a corresponding upack
ety .trigger = Ch; 7 upack; ety .actions = J; ety;.source = es;
copy all call variable sets of es; to ety;.dest
remove Ch; from ety.dest. Abandoneded
add Ch; into etgy.dest.Terminating {Receipt of an upack}
if ety1.dest. Terminating # & && etyy.dest. Abandoned # @ then
ety .dest.name = abandoning_call
else if ety.dest. Terminating # @ then {If there are calls with pending downacks}
etyi.dest.name = terminating_call
else if ety .dest. Abandoned # @ {If some half-complete, torn down calls are still pending
upack}
ety .dest.name = waiting_call up
end if
ety .dest = search(ety.dest, ES, NULL)

: V Ct; € esj. Terminating
12:

Create an outgoing transition (ety2) from state es; triggered by a corresponding downack
etyo.trigger = Ct; 7 downack; etys.actions = @; etys.source = es;
copy all call variable sets of es; to ety.dest
remove Ct; from etyo.dest.Terminating {Receipt of a downack}
if etpo.dest. Terminating # @ && etys.dest. Abandoned # & then
etyo.dest.name = abandoning_call
else if etyy.dest. Abandoned # @ then {If there are half-complete, torn-down calls with
pending upacks}
etyo.dest.name = waiting_call_up
else if etyy.dest. Terminating # @ {If some calls are still pending downack}
etyo.dest.name = terminating_call
else {All acknowledgements received}
etyo.dest.name = final
end if
etyo.dest = search(etys.dest, ES, NULL)

: Vt; € esj).OUTTRAN {esj.OUTTRAN is the set of transitions that exit state es; created
in lines 2 and/or 12}

eScurr = t;.dest

if escyrr. Abandoned # &V eSeyrr. Terminating # & then {If acks. pending}
terminate(eScyrr)

end if
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Procedure 3.9 Function:- callsets(es, esy, {Set of Macros})
1: copy all call variable sets of es, to es, {ess is the source state and es; is the destination

state}

2: Ve

3: if macro rcv(c) € Set of Macros then
4: add c into es;.Active

5: end if

6: if macro gone(c) € Set of Macros then
7 remove c from es;. Active

8: end if

9: if macro new(c) € Set of Macros then
10: add c into es;. Requested

11: end if
12: if macro ctu(i,c) € Set of Macros then
13: add c into es;. Requested
14: end if
15: if macro end(c) € Set of Macros then
16: remove ¢ from es;.Active
17: add c into es;.T'erminating
18: end if
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3.3 Explicating BoxTalk - Free Features

In this section, we present in detail the explication of free BoxTalk features, using the
explication of Free Transparent Box (FTB) as an example.

rcv(i) / ctu(i, o)

transparent
@ = (i 0)

Figure 3.1: FTB - Original Specification

FTB is a simple feature that behaves only transparently. It is used for demonstration
purposes only (though its behaviour is included in other more complex features that have
signal-linked calls). Figure 3.1 displays the original specification of FTB. It has only two
states, one initial state and one stable state named transparent, and one transition from the
initial state to the transparent state. The feature is added to the usage with the received
call request, which is assigned to call variable i. The feature continues the usage by setting
up the next call o.

The transparent state represents the feature after call o receives an upack signal. At this
point, the two calls (i and o) are signal-linked.

Our explication of a free feature is a three step process:

1. The first step expands all of the macros present in the transitions of the original
specification. Intermediate states and new transitions may be created in this step
and explicated in future steps. A final state may be created (if not already present);
it is the destination state of some of the new transitions in the explicated model.

2. The second step handles the termination of signal-linked calls. Extra states and
transitions may be created in this step as well.

3. The third step augments the feature with self-transitions. A self-transition is a tran-
sition whose source and destination are the same state.

We explain all of these steps in detail as we walk through the explication of the feature
FTB.
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3.3.1 Step 1 - Expanding Macros

The explication of macros is based on Table 3.1. Figure 3.2 shows how the FTB model
appears after macros rcv(i) and ctu(i,o) have been expanded.

=)

[

i 2 sig [full(0.hold)]

boxport ? setup
/'ilupack 0 ? upack

. /o !setup / connecting_o \ / dump(o.hold) { transparent
’\ i,o } K (i, o)

i ? teardown [nfull(o.hold)]
/i downack
/o !teardown

( abandonConnection_o )

o ? upack
/ dump(o.hold)

( \ o ? downack O
terminating_o j .

Figure 3.2: FTB - Explicated Specification (Step 1)

3.3.2 Step 2 - Call Termination

Implicit in every signal-linked state is the possibility that one of the signal-linked calls
will end because the remote party of that call hangs up. Therefore, in every signal-linked
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state, our explication program adds an outgoing transition for each active call ¢ triggered
by event gone(c) to reflect the case that a teardown signal is received on that call. The
action on each of these new transitions is to terminate the other signal-linked call. Thus
from state transparent of FTB (with active calls i and o), there are two exiting transitions,
gone(i) / end(o) and gone(o) / end(i), each representing the possibility of the receipt of a
teardown signal by one active call and the termination of the other active call.

gone(o) / end(i)

tfransparent

(i,0)

gone(i) / end(o)
Figure 3.3: FTB - Explicated Specification (Step 2)

Figure 3.3 shows the two outgoing transitions from state Transparent. With respect to
FTB, calls i and o are the only two calls in the signal-linked state transparent. Hence
the destination of these two transitions is state final. However, if other calls are present,
then the destination state will be different and will depend on the state of the other
calls. For example, states trying, ending_r, and confirming of Answer Confirm’s explicated
specification, Figure 5.9, each have a pair of signal-linked calls and a third call. The
destination states are different depending on the third call.

Figure 3.4 shows the explicated FTB model after executing Step 2 and expanding the
introduced macros. The states and transitions introduced in Step 1 are shown in gray,
and the new states and transitions introduced by Step 2 are shown in black. (The self-
transitions, shown as dashed lines, will be inserted in Step 3.)

3.3.3 Identifying Common States and State Names
Both steps 1 and 2 introduce new states, and sometimes “new” states are equivalent to

existing states in the model. For example, state terminating_o was introduced by a macro
expansion in Step 1 of the explication process and was introduced again in Step 2 as a new
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1 ]
[} 1
1 i

v I
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o ? teardown

i ? teardown
/ o | downack

/i ! downack

Figure 3.4: FTB - Explicated Specification

state that models the termination of a call. To detect when new states are equivalent to
existing states, we annotate each state with four sets of call variables - active, requested,
abandoned, and terminating. We use these four sets as follows:

e Set active stores the calls that are active (i.e., whose setup is complete) in the
corresponding state.

e Set requested stores calls whose setup is in progress (i.e., the calls for which a setup
signal has been issued, but for which the upack signal has not yet been received).

e Set abandoned stores those calls that were aborted in the process of being requested
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(i.e., the calls where the caller hangs up before the upack signal was received).

e Set terminating stores the calls that are in the process of being dismantled (i.e., the
calls for which a teardown signal has been issued, but for which the downack signal
has not yet been received).

Our program uses these sets to assign names to states generated in the explication process.
For example, if a single call is waiting for a downack acknowledgement (i.e., only one call ¢
in set terminating), such a states is named terminating c. If a half-established call (call
c) is torn down (because the caller hung up), the resulting intermediate state is named
abandonConnection_c. Whenever a request to terminate one call and set up another call
is part of the same transition (i.e., set requested and set terminating are updated in the
same transition), the resulting (intermediate) state is named switching. The source and
destination state names of the transitions from the original BoxTalk specification remain
unchanged.

We also use these call sets (in conjunction with the default new-state names) to iden-
tify common states created as a result of explicating different macros. This assists us in
avoiding duplicate states. For example, consider state terminating o. The first instance of
state terminating_o is created while expanding macro ctu(). From state connecting o to
state terminating_o, call variable o is moved from set requested to set abandoned to set
terminating. The second instance of state terminating o is reached directly from state
transparent when expanding macro end(). Call variable o is moved from set active to set
terminating. Based on the generated name of the state (i.e., terminating o) as well as
the set contents (i.e., call variable o in set terminating), our program identifies the two
terminating_o states to be the same.

3.3.4 Step 3 - Self Transitions

This step introduces the self transitions in signal-linked states, connecting states, and
terminating states.

The default behaviour of features in a signal-linked state is to forward every signal, ex-
cept the teardown signal or any signal that explicitly triggers an exiting transition, that
it receives on one call to the signal-linked call. To support analysis, we explicate this be-
haviour as actions on self-transitions. The state transparent of the FTB has two such new
transitions.

Connecting states display similar behaviour, except that the signals received on the estab-
lished internal call are forwarded to the hold queue to be stored until the to-be signal-linked
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call is established. This self-transition has an additional guard that checks whether the hold
queue has overflowed. The connecting state of FTB feature has one such new transition.

In the terminating states, it is possible for both ends of a call to initiate the call’s teardown
at (nearly) the same time. Thus, it is possible in a terminating state that a teardown signal
is received on a call that is already half torn down. As per DFC protocol, the feature
responds with a downack signal. States terminating i and terminating_ o in the explicated
FTB specification both have such self transitions.

This concludes our discussion of explication of free BoxTalk features with the example of
FTB.

3.4 Explicating BoxTalk - Bound Features

In this section, we explain our explication of bound features using the example of the
Bound Transparent Box (BTB). Figure 3.5 shows the original BTB specification. BTB is
a simple bound feature. It is used to model signal linkage between two calls.

[t_from_sub] /

[t_from_sub] / end(s) ; end(f) ; {s . t=t,-};
{s,t=t,-};ctu(s,f) ctu(s , f)
. rov(t) K - transparent rov(t) ( .
qmmg (s, f) @lvmg
[t_from_far] /

[t_from_far] /

ff.t=t,-};ctuff,s) t 1 unavail ; end(t)

Figure 3.5: BTB - Original Specification

BTB is invoked when a new setup signal is received for a call, initially assigned to call
variable t. In state orienting, the source of the call is tested to determine if the call is from
the subscriber. If it is, then call variable s (associated with the subscriber) is assigned to
the call, and the call that continues the usage is assigned call variable £ (associated with
the far party). The call assignments are reverse if call t is not from the subscriber. In state
transparent, if BTB receives a new setup signal, the behaviour depends on whether the
setup request is from the subscriber. If so, then the bound feature accepts the new call and
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tears down all old calls (see the top transition from the receiving state to the transparent
state); otherwise, the new request is rejected (see the bottom transition from the receiving
state to the transparent state). In the later case, the signal sequence upack, unavail, and
teardown is sent.

Our explication process of a bound feature is a four-step process:

1. The first step expands all macros explicitly present in the original specification. This
step is the same as the first step for free features. If a call terminate in this step, a
post-processing machine is constructed to complete the termination of this call (i.e.,
to wait for the receipt of an appropriate downack signal).

2. The second step handles feature “termination”. A bound feature never terminates.
Instead, when its calls terminate, the feature transitions to its “initial” state where
it waits to be connected into the next usage. In fact, the feature transitions to the
initial state once it is known that all of its current calls are terminating - but before
the termination of its calls is complete.

3. A bound feature receives all setup signals destined for its subscriber. As such, it
is possible for a bound feature to receive a setup signal for a new call while in the
middle of another call. This step augments the feature model to include the receipt
of and reaction to setup signals received while the feature is in a stable state.

4. The final step handles self transitions and is the same as that for free features.

Since some of these steps are the same as steps in the process to explicate free features,
we explain in detail only steps two and three, which are unique to bound features.

3.4.1 Step 1 -Macro Expansion

This step is the same as that for the free features, as macros are expanded in a similar
fashion. The only difference is the explication of the macro end(). Figure 3.6 shows the
BTB model after executing Step 1.

The tear down of calls in bound features should be instantaneous, i.e., as soon as the
teardown signal is issued, the terminating calls should be immediately ready to be included
in the next usage involving the subscriber. However, the tear down of any calls involves
a sequence of signals that are not instantaneous. For example, in BTB, when a teardown
signal is sent on call variable t, this call variable is expected to be immediately available to
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[t_from_subs]
s ? teardown [nfull(f.hold)] /'s ! teardown; post_process_s
/s ! downack /1! teardown; post_process_f
/! teardown /f!setup
post_process_f /f_communicating = false

connecting_f
s, f

f? upack
/ dump(f.hold)
/f_communicating = true

[t_from_subs]{s ,t=t, -}
/f!setup
/f_communicating = falsg

boxport ? setup
/t!upack
orienting error

s ? sig [full(s.hold)]

£ 2 sig [full(f.hold)]

boxport ? setup
/t!upack

transparent
(s, f)

[t_from_far] {f, t=t, -}
/s ! setup
/'s_communicating = false

s ? upack
/ dump(s.hold)
/'s_communicating = true [t_from_fa_r]
/t! unavail
/t!teardown

I post_process_t

connecting_s
f,s

7 teardown [nfull(s.hold)]
/! downack

/'s ! teardown
post_process_s

Figure 3.6: BTB - Explicated Specification (Step 1)

receiving

represent a new call. The task of completing the teardown of the old call associated with
the variable t is delegated to a “post-processing machine”. The post-processing machine
executes in parallel with the feature’s main machine, and its sole purpose is to complete
the teardown process of terminating calls. That way, the main machine can set up a new
call or a usage, while the post-processing machine tears down the old ones asynchronously.
The number of post-processing machines is equal to the number of call variables in the

feature.

post_process_t

t_wait_down l

t 7 downack

Figure 3.7: BTB - Post Processing Machine (Type 1)

Figure 3.7 and Figure 3.8 show two forms of post-processing machines for BTB. The post-
processing machine of Figure 3.7 covers the case where the call to be terminated (was fully
set up and) is waiting for acknowledgement downack. As the terminating call only needs a
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post_process_f f? upack

['f_communicating] ( \ / f_communicating = true
f_wait_up
post_process_f

[f_communicating] [ f wait d f ? teardown
_wall_down /1 downack

f ? downack

Figure 3.8: BTB - Post Processing Machine (Type 2)

downack acknowledgement, the intermediate state generated is named c_wait_down, where
c is the terminating call. The post-processing machine of Figure 3.8 is used for those calls
that might not be fully set up when they are terminated. In this case, the machine first
transitions to the associated c_wait_up state and with the receipt of an acknowledgement
upack, it transitions to the associated c_wait_down state. The post-processing machine
for call s in BTB is similar to that for call £, shown in Figure 3.8. Boolean variable
c_.communicating is introduced in the feature model to keep track of whether a call ¢ would
require an upack signal if it were suddenly terminated. In BTB, the feature machine tracks
the status of call variables s and f using their communicating variables; and the respective
post-processing machines use the values of those variables to determine whether they wait
for an upack acknowledgement.

As with FTB, in the connecting_c state, the half-established call may terminate if the party
attached to the other end of the call hangs up. However, with BTB (and other bound
features), the feature transitions to the initial state instead of to the terminating state as
in FTB. This is because there is only one instance of each bound feature per subscriber and
that one feature instance must be involved in any usage involving the subscriber. That is,
the same bound feature instance is reused in each usage, rather than the feature instance
terminating at the end of one usage and a new one instantiating with the next usage;
hence, a terminating bound feature transitions to the initial state. In fact, this transition
should happen as soon as all calls end with gone() or end() macros from any state (leading
to feature termination), so that the feature instance is immediately ready to participate in
another usage.

3.4.2 Step 2 - Call Termination

In state transparent of BTB, calls s and f are signal-linked. As in FTB, the receipt of
a teardown signal on either call initiates the termination of the other signal-linked call.
As discussed in the previous section, the feature activates post-processing machines to
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complete the termination of the calls. Figure 3.9 shows the partially explicated BTB
model after Step 2 is executed. New transitions introduced in Step 2 are shown in black,
old states and transitions of Step 1 are shown in gray.
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3.4.3 Step 3 - Setup Signals

A BoxTalk specification says how the feature should behave if a setup request is received
in any state in the original specification. But what if a setup request is received in one
of the states that is introduced as part of the explication process? States connecting_s
and connecting_f are two such states in which a new setup request can be received. This
step introduces two new states, deciding_1 and deciding_2, which mimic the behaviour of
the state receiving in BTB: if the new call request is issued by the subscriber, the box
tears down all old calls and accepts the new call; otherwise the box rejects the new call by
sending the signal unavail. Figure 3.10 shows the addition of these two states (shown in
black) to the existing model (shown in gray). The self-transitions that will be inserted in
Step 4 are shown as dashed lines. New transitions (black colour) and self-transitions are
also labelled with a slightly larger font, for easier reading.

3.4.4 Step 4 - Self Transitions

This step is similar to that for free features. The exception is that bound features do
not have terminating states as the feature transitions to the initial state whenever all of
its calls are terminated, allowing the feature to participate in a new usage immediately.
Therefore, our program introduces self-transitions only to the connecting c states and all
the signal-linked states.

This concludes our discussion of explication of bound BoxTalk features with the example
of BTB.
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Chapter 4

Mapping Explicated BoxTalk to
Promela

As part of our thesis work, we have automated the process of generating executable Promela
models from explicated BoxTalk features. Chapter 2 introduced the target model checker
SPIN and its input language Promela. In this chapter, we present the structure of our
generated models along with our translation process by using the examples of free and
bound features.

4.1 Promela Models of Features

The generated Promela model analyzes the behaviour of a single BoxTalk feature in isola-
tion, running in the DFC environment (i.e., receiving and sending DFC signals on ports).
Our generated Promela models have one active (main) process, which represents the
feature of interest. Another process models the environment as an active process that
communicates with the main process via rendezvous communication channels. For each
port in a BoxTalk feature specification, there are two unidirectional channels, a port_in
message channel that passes signals from the environment process to the feature process,
and a port_out rendezvous channel that passes signals from the feature process to the
environment process. There is also a channel box_in, which is used to send setup signals
to the feature process.

Free and bound feature models have different architectures. Figure 4.1 displays the archi-
tecture of our free feature models and Figure 4.2 displays the architecture of bound feature
models.
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Array of OUT channels
(glob_outs)

Feature Process Environment Process

Array of IN channels
(glob_ins)

Figure 4.1: Promela Architecture - Free Boxes - adapted from [12]

Array of OUT channels
(glob_outs)

Feature Process Environment Process

Array of IN channels
(glob_ins)

channel
(internal)

/ INTERNAL

Post-processing

Process

Figure 4.2: Promela Architecture - Bound boxes - adapted from [12]

A free feature model has only one main Promela process and one environment process,
with arrays of zero-capacity output and input channels that pass messages to and from
the environment process, respectively. A bound feature model has additional active pro-
cesses that model the post-processing machines. The number of post-processing machine
processes in a Promela model corresponds to the number of call variables in the bound
feature. There are unidirectional channels which send signals from the main feature pro-
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cess to the post-processing-machine processes. The job of the post-processing process is to
complete the teardown of calls that are terminating. The environment process also sends
acknowledgements to post-processing machine process(es) for terminating calls and vice
versa.

There is a limitation to what our Promela models can handle. Timer variables discussed
in Chapter 5 is one such limitation. Certain features use timer variables to terminate the
feature using timeouts. Our translator ignores conditions and actions on timer variables
in feature transitions.

4.1.1 Generating a Promela Model from a Free BoxTalk Feature

Our generated Promela models are composed of three main parts:

e Type definitions and global variable declarations
e Inline functions

e Process definitions

We explain each part for a free feature using Free Transparent Box (FTB), which was
introduced in Section 3.2, as an example.

To reduce the number of passes through the input (explicated BoxTalk model) while build-
ing the corresponding Promela model, we store intermediate results in five separate files:

e Type definitions, global variables, and inline functions dump(cl , c2) and reset()

Inline functions en_events(n) and en_cond(n)

Inline function next_trans(n)

Feature process

e Environment process

At the end of the translation process, all of these files are concatenated together to form
one single Promela model.
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4.1.2 Type Definitions and Global Variable Declarations

The arrays of input and output channels and the shared variables are declared globally.
Every model starts with a definition of signals, states, and user-defined types. There is an
mtype declaration for the set of signals sent to and from the feature and another one for
the states belonging to the feature. The declarations for the FTB model are as follows!:

7 mtype = { teardown , downack , other , setup , upack };
8 mtype = { initial , connecting_o , transparent , abandonConnectiono |,

terminating_o ,
9 final |, terminating_i , error };

All input channels, one for each feature port, are declared together in a single array. Since
FTB has two feature ports plus boxport, the declaration of input channels is as follows:

26  chan glob_ins[3] = [0] of {mtype};

There is an analogous declaration for an array of output channels:
34 chan glob_outs[3] = [0] of {mtype};

There is a type definition for Transition that is the same for all features. It is as follows:

11 typedef Transition {

12 mtype dest ;

13 chan in_chan;

14 bool en_flag = false;
15}

Each transition has exactly one destination state of type mtype and receives an input signal
on a specific input channel. The Boolean variable en_flag is an indication of whether the
transition is enabled to be executed. Its value is set in the inline function en_trans.

A set of global-monitor variables are declared, which are used to verify certain properties.
For example,
51 bool rcv_setup = false;

52 bool send_upack = false;
53 bool o_send_setup = false;

54 bool o_rcv_upack = false;

55 bool i_rcv_teardown = false;

56 bool i_send_downack = false;

57 bool o_send_teardown = false ;...

I'The numbers on the left indicate the line numbers of the model in Appendix A3
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Such Boolean variables are updated (set to true or false) when the associated signal is
sent to or received from the environment process (via rendezvous channels). We cannot
express properties about signals sent on rendezvous channels (because we cannot query
their contents as the channels have zero-capacity). Moreover, as we will see later in this
chapter, we use Promela program labels to model feature states, and we cannot formulate
properties over labels. Therefore, we declare monitor variables that record the occurrence
of signal event and current states of processes, and we formulate properties over these
Boolean variables. For the complete list of the global-monitor variables used in FTB,
please refer to Appendix A3.

For FTB feature, the type definition for the set of input queues, in_q, is modelled as
follows:

17 typedef in_q {

18 byte box_in = 0;

19 byte i_in = 1;

20 byte o_.in = 2;

21 bool box_in_ready = true;
22 bool i_in_ready = false;
23 bool o_in_ready = false;
24 byte selected

25 H

For each input channel X in glob_ins[]:

e there is a byte variable “X_in” that holds the index of that channel in glob_ins[]?

e there is a Boolean variable “X_in_ready” that indicates whether the feature is in a
state that is ready to receive a signal on channel X

For free features, only the ready variable box_in ready is true in the initial state; other
ready variables become true only after the calls, i and o, are initiated. When more than
one input channel is active (i.e., has incoming signals), the byte variable selected has
the value of a randomly-selected input channel (set in function reset()) from among the
channels that have incoming signals.

The type definition for the set of output queues, out_q, is analogous to the type definition
of the set of input queues in_q.

For each output channel X in glob_outs:

2The advantage of using byte variables (box_in, i, o) instead of index numbers directly is described at
the end of this section, after all type definitions have been introduced.
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e there is a byte variable “X_out” that holds the index of that channel in glob_outs[]

e there is a hold queue for each channel that the feature initiates, which is used to
store signals to be sent via that channel (until that call is fully established)

The out_q type definition for FTB model is as follows:
28 typedef out_-q {

29 byte box_out = 0; /x Never used, only declared for symmetry. x/
30 byte i_out = 1;

31 byte o_out = 2;

32 chan o_hold = [5] of {mtype};

33 }s

A snapshot is an observable point in the execution state. The type definition for a snapshot
includes the current state cs, the input queue in_qg, and the output queue out_g:

36 typedef SnapShot {

37 mtype cs;
38 in_q inqg;
39 out_q out
40}

Given these definitions, and given a Snapshot variable ss, we can write Promela expressions
that reference communication channels in terms of BoxTalk names rather than explicit
index numbers. For example, glob_ins[ss.inq.i_in] refers to the communication channel
corresponding to call variable i, and is equivalent to glob_ins[1].

4.1.3 Inline Functions

Promela inline functions are similar to C-style macros but do not introduce any overhead
during verification. We use inline functions dump(), reset(), en_events(), en_cond,
en_trans, and next_trans in our models. We only show parts of the code; for the entire
feature model, please refer to Appendix A3.

The inline function dump(cl , c¢2) is used to empty the contents of the hold_queue c1 to
channel c2.

67 inline dump(cl , ¢2) {

68 byte aSig;

69 do

70 ::cl 7 aSig —> c¢2 | aSig;
71 ::empty(cl) —> break;
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72 od
3k

In every non-transient state, the inline function reset() selects a random input channel
from among the channels receiving a signal, and sets the byte variable selected of in_q to
the selected channel. This function also resets all of the global-monitor variables to false.
The definition of reset () for FTB is as follows:

75 inline reset () {

76 rcv_setup = false;

7 send_upack = false;

78 o_send_setup = false;

79 o_rcv_upack = false;

80 i_rcv_teardown = false;

88

89 if

90 ::glob_ins[ss.inq.box_in] 7 sig —> ss.inq.selected = ss.inq.box_in;
91 ::glob_ins[ss.inq.i-in] ? sig —> ss.inq.selected = ss.inq.i-in;
92 ::glob_ins[ss.inq.o_in] ? sig —> ss.inq.selected = ss.inq.o_in;
93 fi

94}

The inline function en_events checks if the selected input channel matches the event chan-
nel of the n'* transition t [n].

Transitions exiting from transient states do not have in-channels, as transient states are
non-responsive states. In these transitions, en_events is true by default. The en_events(n)
function is as follows:

96 inline en_events(n) {
97 glob_ins [ss.inqg.selected] = t[n].in_chan;
98

The inline function en_cond(n) checks whether the guard condition of the n** transition
t[n] is true. en_cond() is true if the input signal matches the transition’s triggering
event. As part of this check, the function also checks whether the hold queue has reached
its capacity when signals are written to the hold queue (lines 107 and 108).

In case of transitions exiting transient states, which do not read input signals, the guard
predicate is evaluated. The environment process nondeterministically sets one of the guard
predicates to true. Following is the code snippet of inline function en_cond(n) for FTB:
101 inline en_cond(n) {

102 if
103 si(n = 0) && (sig = setup );
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104

105 i(n = 1) && (sig = upack );

106 si(n = 2) && (sig = teardown );

107 ci(n = 3) && ( sig != teardown && nfull(ss.out.o_hold) );
108 si(n = 4) && ( sig != teardown && full(ss.out.o_hold) );
123 fi;

124 };

shows that transition 0 is triggered by the setup signal, etc.

A transition t [n] is enabled only when (1) its event queue is selected for reading, (2) the
signal read matches the triggering event, and (3) the transition’s other guard conditions
hold. In case of transitions exiting transient states, the transition whose guard condition
holds is enabled.

The inline function en_trans() uses the results from en_events() and en_cond() to de-
termine whether a transition is enabled:

218 inline en_trans(n) {

219 if

220 ::en_events(n) —>

221 if

222 :ren_cond(n) —> t[n].en_flag = true;
223 ::else — t[n].en_flag = false;

224 fi;
225 ::else —> t[n].en_flag = false;
226 fi ;

227 };

The inline function next_trans(n) represents the execution of the enabled transition:
the current state changes to the transition’s destination state, output signals are sent on
the output channels glob_outs, and variables (including the global monitor variables) are
updated:

126 inline next_trans(n) {

127 if

128

129

130 i(n = 0) —> rcv_setup = true;

131 ss.inq.i_in_ready = true;

132 glob_outs[ss.out.i_out] ! upack;
133 send_upack = true;

134 glob_outs [ss.out.o_out] ! setup;
135 ss.inq.o_in_ready = true;
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136 o_send_setup = true;

137 ss.cs = t[0]. dest;

138

139 (n = 1) —>

140 o_rcv_upack = true;

141 dump(ss.out.o_hold , glob_outs[ss.out.o_out]);
142 ss.cs = t[1].dest;

215 fi;

216 };

4.1.4 Processes

Our generated Promela model includes two processes: a feature process and an environment
process. Both of the processes are active and running at the start of a simulation of the
model.

The feature process uses inline functions reset (), en_trans (), and next_trans () to model
transitions. A typical state and its set of exiting transitions appear as follows:

275 connecting_o_state:
276  atomic {

277 reset () ;

278 en_trans(1);

279 en_trans(2);

280 en_trans (3);

281 en_trans (4);

282

283 if

284 ::t[1].en_flag —> next_trans(1l); goto transparent_state;
285 ::t[2].en_flag —> next_trans(2); goto abandonConnectiono_state;
286 ::t[3].en_flag —> next_trans(3); goto connecting_o_state;
287 ::t[4].en_flag —> next_trans(4); goto error_state;

288 ::else —> goto connecting_o_state;

289

290 fi;

291 }

where connecting o_state is a Promela label for the connecting o state. Labels in
Promela models serve as targets of goto statements. Any statement or any control-flow
construct can be preceded by a label. Label names must be unique in a model and cannot
be the same as mtype names. Hence, state labels in our Promela models are the state
names from the original BoxTalk specification appended with “_state”.

63



The state transitions in BoxTalk are atomic and take place in one single step. Therefore,
the state label is followed by an atomic block that reflects the set of possible exiting
transitions as follows:

1. The execution step starts by reseting all of the global variables and randomly selecting
an input queue to read from.

2. Next, inline function en_trans() determines which among the state’s exiting transi-
tions are enabled and sets their en_flag values to true.

3. Finally, the if selection construct nondeterministically selects and executes (via
next_trans()) one of the enabled transitions, followed by a goto statement that
transfers control to the transition’s destination state.

The environment process models the environment of the feature: it produces all input
signals that the feature can receive and consumes all signals that the feature can send.

The following code displays the environment process of FTB:

362 active proctype env() {

363 mtype i_sigt ,o_sigt , o_sigu ;

364

365

366

367 end: do

368

369 :: ss.inq.box_in_ready —>

370 ss.inqg.box_in_ready = false;

371 glob_ins[ss.inq.box_in]| ! setup;
372

373 ::s8s.inq.i-in_ready —>

374 if

375 :: glob_ins[ss.inq.i-in] ! teardown;
376 :: glob_ins[ss.inq.i_in]| ! other;
377 fi unless {

378 (i_sigt == teardown) —>

379 glob_ins[ss.inq.i-in] ! downack;
380 i_sigt = 0;

381 }

382 ::s8s.inq.o_-in_ready —>

383 if

384 :: glob_ins[ss.inq.o0_-in] ! teardown;
385 :: glob_ins[ss.inq.o-in] ! other;
386 fi unless {
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387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

if
::(o_sigu = upack) —
glob_ins[ss.ing.o-in] ! upack;
o_sigu = 0;
;i (o-sigt teardown && o_sigu =— 0) —>
glob_ins[ss.inq.o_in] ! downack;
o_sigt = 0;
fi;
}
od
unless {
if
:ratomic { glob_outs[ss.out.o_out] ? setup —>
o_sigu = upack;
}
::glob_outs[ss.out.i_out] ? upack;
::glob_outs[ss.out.i_out] ? downack;
:ratomic { glob_outs[ss.out.i_out]|] ? teardown —>
i_sigt = teardown;
::glob_outs[ss.out.i_out] ? other;
::atomic { glob_outs[ss.out.o_out] ? teardown —>
o_sigt = teardown;
}
::glob_outs [ss.out.o_out] ? downack;
::glob_outs[ss.out.o_out] ? other;
fi;
}
goto end;
}

. The do construct models the sending of input signals. The “ready” clauses identify

which ports of the feature are expecting input from the environment process. One
ready port is nondeterministically chosen and an appropriate signal is sent on the
chosen port. For example, in FTB, if ss.in.i in ready is true and a teardown
signal is received from the feature, then a downack signal has been sent on the input
channel (lines 373, 378 - 380).

. The if construct (on line 398 following the unless keyword) models all aspects of the

environment process receiving feature output. If there are multiple output signals,
one signal is chosen nondeterministically.

. The unless construct (on line 397) is used to prioritize the receiving of signals from

the feature over the sending of new input signals to the feature.
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4. The environment process should never end; we use an end state label “end” to mark
it as a valid end state. End-state labels are any labels that start with end.

This concludes our discussion of generating a Promela model from a free BoxTalk feature.

4.1.5 Generating a Promela Model from a Bound Feature

The translation of a bound BoxTalk feature into Promela is similar to the translation of a
free BoxTalk feature into Promela. Thus, we explain in this subsection only those aspects
of the translation that are unique to bound features. We use Bound Transparent Box
(BTB), which was introduced in Section 3.3, as a running example. The Promela model
for BTB is presented in Appendix A4.

As explained in Section 3.3, the explicated BoxTalk model of a bound feature has post-
processing machines that model the termination of calls. The post-processing machines
run in parallel with the feature machine and allows the feature machine to handle new
calls while old calls are being torn down. A bound feature is modeled in Promela as two
active processes: a main feature process and an environment process; and a number of
post-processing processes (also active processes), one per call in a feature. The feature
process communicates with the post-processing processes via internal channels.

Separate call variables are used by the main feature process and the post-processing pro-
cesses. Channels to the main feature process,“X_in”, represent BoxTalk call variables for
connecting and active calls X. Channels to the post-processing processes, “old_X_in”, rep-
resent BoxTalk call variables for calls that are being terminated. The type definition for
the set of input queues, in_q, for BTB is as follows:

22 typedef in_q {

23 byte box_in = 0;

24 byte old_t_in = 1;

25 byte old_s_in = 2;

26 byte old_f_in = 3;

27 byte t_in = 4;

28 byte s_in = 5;

29 byte f_in = 6;

30 bool box_in_ready = true;

31 bool old_t_in_ready = false;
32 bool old_s_in_ready = false;
33 bool old_f_in_ready = false;
34 bool t_in_ready = false;

35 bool s_in_ready = false;
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36 bool f_in_ready = false;
37 byte selected
38}

We declare separate call variables (indexes into communication channels) for connecting
and active calls (used by the main feature process) and for terminating calls (used by the
post-processing processes) in the type definition of set of output queues, out_q as well.
The type definition of out_q is as follows:

41 typedef out_-q {

42 byte box_out = 0; /x Never used, only declared. x/
43 byte old_t_out = 1;

44 byte old_s_out = 2;

45 byte old_f_out = 3;

46 byte t_out = 4;

47 byte s_out = 5;

48 byte f_out = 6;

49 chan f_hold = [1] of {mtype};

50 chan s_hold = [1] of {mtype};

51 )

Bound features have an additional set of channels, inter_q, to represent the internal
channels between the feature’s main process and its post-processing processes. We use
a rendezvous channel(s) for this purpose to make sure that the main process does not
terminate another call before the post-processing process has finished terminating past
calls. We modified our Promela model of bound features to have multiple post-processing
machine processes, one per each call of a feature. This ensures that requests to terminate
multiple calls in a single transition are not dropped. For example, in BTB feature, from
state requesting to state connecting_f where calls s and f are terminated. The Promela
model of BTB feature has three post-processing machine processes. For BTB feature, the
type definition for inter_q is defined as follows:

54  typedef internal {

55 chan internal_t = [0] of {mtype};
56 chan internal_s = [0] of {mtype};
57 chan internal_f = [0] of {mtype};
58  };

BTB has three additional reset_pp_X() inline function that are used in the post-processing
processes (for call X) in place of the reset () function:

205 inline reset_pp-t() {
206 glob_ins[ss.inq.old_t_in] ? sig —> ss.inq.selected = ss.inq.old_t_in
207 };
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208
209 inline reset_pp-s() {

210 glob_ins[ss.inq.old_s_in] ? sig —> ss.inq.selected = ss.inq.old_s_in
211 };

212

213 inline reset_pp_f() {

214 glob_ins[ss.inq.old_f_in] ? sig —> ss.inq.selected = ss.inq.old_f_in
215 };

Bound features also include a variable X_communicating to determine the acknowledge-
ments required by a terminating call. If the call to be terminated was fully set up in the
main machine, it only requires a downack acknowledgement. If, however, a call is to be
terminated before it is fully set up, then it requires two acknowledgements: first an upack
acknowledgement and then a downack. Boolean variable X_communicating is used to keep
track of whether call X requires an upack acknowledgement in the post-processing machine.
Whenever a setup is issued for any call X, it is initialized to false, and reset to true with
the receipt of an acknowledgement upack in the main machine.

This concludes our discussion of generating Promela models from bound BoxTalk features.

4.2 Promela Model Comparisons

In this section, we present a brief comparison of our mechanically generated Promela models
to the hand-crafted Promela models in Yuan Peng’s [12] and Alma L. Juarez Dominguez’
[4] theses.

The goal of Yuan Peng’s [12] work was to devise a mapping from BoxTalk specifications to
Promela models. The goal of our work was to fully automate the translation of BoxTalk
specifications to Promela models. We used Promela models from Yuan Peng’s thesis as
reference models for our translation and hence there is a high correlation between our
Promela models and her hand-translated Promela models.

Similar to hand-translated Promela models of Yuan Peng, our mechanically generated
models are composed of type definitions and global variables, two active processes — one
feature process and one environment process, and inline functions. The bound features
also include post-processing machines to handle completion of terminating calls.

The feature process and the environment process communicate with each other (i.e., send
signals) over rendezvous channels. Since rendezvous channels cannot store messages, we
cannot formulate properties of signals being sent over such channels. Therefore, similar to
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Yuan Peng’s models, our models incorporate global monitor variables to record signaling
events, and we use these variables directly in our properties.

The environment process models the environment of the feature and the feature process
models the transitions of the explicated BoxTalk models. We use control-flow labels to
model states of the explicated BoxTalk models. These labels also serve as targets to goto
statements to reflect state transitions. In the feature process, followed by each control-flow
label?, there is an atomic block that models state transitions. In this atomic block, the
inline function reset()* resets all global monitor variables and selects a random channel
from among channels receiving input. Then inline function en_trans() checks whether the
selected channel matches the transitions event channel, and if a match is found, it checks
whether the input signal matches the transitions triggering event. If this condition also
matches, the inline function next_trans() executes the transition by sending output signals
on output channels and updating the destination of the transition. The goto statement
transfers the program control to the label corresponding to the destination state of the
transition.

Despite these similarities, there are subtle differences between our Promela models and
Yuan Peng’s Promela models. The type definition of Transition in her Promela models
includes variables out_chan of type chan. In the inline function next_trans, the output
signals are sent on channels out_chan, and these channels are matched with the global
output channels (glob_outs) in the feature process. In our Promela models, we send output
signals directly on the global output channels and our type definition of Transition does
not include variables out_chan.

She used one single post-processing machine process in bound features to handle completion
of terminating calls. Bound feature’s main machine communicates with its post-processing
machine via rendezvous channels. With a single post-processing machine approach, when-
ever the feature’s main machine will end multiple calls at the same time, the request
to terminate the first call will be received by the post-processing machine, and all other
subsequent requests will be discarded. To overcome this problem, the number of post-
processing machine processes in our Promela models is equal to the number of calls in the
bound features.

Now we compare our approach with Alma L. Juarez Dominguez’ thesis [4]. Alma L. Juarez
Dominguez presented a compositional reasoning method consisting of model checking, lan-
guage containment, and theorem proving to verify DFC compliance properties over chains
on unknown number of connected DFC features. She used the model checker SPIN to verify

3Final state and error state labels are exceptions as they are final states of (series of) transitions.
4 Atomic blocks following transient states do not have reset() function calls.
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expected input/output properties and call protocol properties. The expected input/out-
put properties are specified as LTL invariants and express that the feature interacting
with an environment of neighbouring features receives only the signals it expects from the
environment, and sends only the signals expected by the environment. The call protocol
properties are also expressed in LTL and state that signals sent from one end of a call
segment eventually reach the other end (end-to-end path properties).

Her Promela models consist of the entire DFC architecture for constructing usages. Specif-
ically, her models include interface box processes (i.e., Caller and Callee processes), all of
the feature processes®, and router processes, one per each feature, plus a generic router
process. Initially, one instance of the Caller process is created which runs the generic user
router process and forwards the setup signal to the router. Based on the user’s subscrip-
tions and feature precedence, the router process initializes the next feature process in the
usage and forwards the setup signal further. The feature precedence is hard-coded into the
router processes and the user’s subscriptions are modelled using SPIN’s nondeterminism.
The feature process sends acknowledgement upack directly to the Caller and also runs an
instance of its feature-specific router process, which initializes the feature process corre-
sponding to the next feature in the usage. In this way, the usage is dynamically assembled
from Caller to Callee via the features the user subscribes to. Hence, she uses processes
which are not declared active, and uses init for process initializations to dynamically
create usages. In contrast, we analyze the behaviours of individual BoxTalk features run-
ning in DFC environment, and we use active feature and environment processes. There
are certain similarities between our approaches as well. Similar to our approach, she also
uses control-flow labels to model states, and models state transitions with atomic blocks
following these labels. She also uses Boolean variables to record signalling events.

Instead of verifying every feature in the environment of every other feature, she developed
an abstract port model that captures the most general port behaviour that serves as an
abstract environment. She verified each individual feature in the abstract environment and
proved that every feature’s port obeys the abstract port model. The abstract and concrete
port models are described in terms of state transitions and consist of a source state, a
destination state, and the triggering event.

She verified call protocol properties on fixed DFC segments and used theorem prover HOL
to connect the individual proofs by induction to prove that DFC call protocol properties
hold over segments of unknown number of connected DFC features.

5She verified Free Transparent Feature (FTF), Call Forwarding (CF), Originating Call Screening (OCS),
and Call Waiting (CW) features.
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Chapter 5

Case Studies

In this chapter, we evaluate our translator by applying it to a set of BoxTalk features. The
translated Promela models are verified against a set of properties that we discuss at the
end of this chapter. The case study consists of the following BoxTalk features:

e Error Interface (EI): Used by the router to handle routing errors.

e Receive Voice Mail (RVM): Allows the caller to record a voice message when the
callee does not answer the call.

e Black Phone Interface (BPI): Acts as an interface between the DFC protocol and a
telephone.

e Answer Confirm (AC): Ensures that the a successfully established usage has reached
a human callee.

e Quiet Time (QT): Subscribed to by people who do not wish to be disturbed (i.e.,
called), QT offers the callers options to choose from.

e Parallel Find Me (PFM): Tries to direct a phone call to its subscriber’s current
location by trying multiple locations in parallel.

e Sequential Find Me (SFM): Similar to PFM, but SFM tries multiple locations se-
quentially.

For space reasons, we include Promela models of only EI, RVM, and BPI features in
Appendix A5, A6, and A7, respectively.
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5.1 Error Interface

The Error Interface (EI) feature is a free feature that is used by the router to handle call
requests to invalid addresses. If a call setup fails because the target address does not exist,
then the router routes the usage to this feature. Figure 5.1 shows the original specification
of the EI feature.

rcv(c) / ¢ ! unknown ; end(c)

Figure 5.1: EI - Original BoxTalk Specification

Specifically, the EI feature accepts the call, sends a signal unknown upstream, and then
immediately tears down the call. Figure 5.2 shows the explicated EI specification:

¢ ? teardown /
¢ | downack

boxport? setup / ¢ ! upack / m
¢ lunknown / ¢ | teardown
[ o \ ¢ ? downack
. ,\ terminating_c }

Figure 5.2: EI - Explicated Specification

The rev(c) macro in the original specification is expanded in the explicated specification
to boxport ? setup / ¢! upack. The end(c) macro in the original specification is expanded
to ¢ | teardown and a new destination state, terminating_c, in which the feature waits for
a downack signal. There is a possibility in the terminating_c state that a teardown signal
is received when call ¢ is already half torn-down in which case the feature responds with
a downack signal. With the receipt of a downack signal in the terminating_c state, the
feature transitions to state final.

Appendix A5 contains the Promela model of the explicated EI specification.
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5.2 Receive Voice Mail

Receive Voice Mail (RVM) is a target-zone feature that allows a caller to record a voice
message when the subscriber (i.e., the callee) refuses or is unable to accept a call. Figure
5.3 shows the original BoxTalk specification of the RVM feature.

o ? unavail /i ! avail ;

. rev(i) / ctu(i , o) transparent end(o) ; new(r) dialogue

(i, o) (i,n)

Figure 5.3: RVM - Original BoxTalk Specification

The transition to the transparent state is the same as that in FTB: the feature is added
to the usage and assigned to call variable i and the feature continues the usage via call
o. If call o receives an unavail signal from downstream, it indicates that the callee is
not available. The feature absorbs this signal (i.e., the signal unavail is not propagated
upstream), and sends an avail signal upstream instead. (Sending signal avail upstream
encourages the caller to remain in the usage.) The feature then tears down call o and
initiates a call to the Voice Message Service, which is assigned to call variable r. On
completion of this call, the feature then transitions to the state dialogue, in which the
caller and the Voice Message Service are signal-linked. When the caller finishes sending a
message, the caller may hang up, which causes the feature to transition to the final state.

Figure 5.4 shows the explicated specification of the RVM feature. The left-hand side of
the model (up to state transparent) captures the behaviour of the feature when the called
party is available. This behaviour is equivalent to the functionality of the FTB feature.
The right-hand side of the model expresses the behaviour of the feature when the called
party is not available.
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State switching is an intermediate state that represents the situation in which the called
party is not available and the feature has terminated call o and has initiated call r to the
Voice Message Service. The name switching is assigned to this state by our program’s state
naming scheme which was introduced in Chapter 3, Section 3.2.3. In state switching, call
o is waiting for a downack signal to complete its termination, and call r is waiting for an
upack signal to complete its connection. These acknowledgements can be received in any
order, and therefore there are two transitions exiting this state, each modelling the receipt
of acknowledgements, but in different order. A third exiting transition models the case in
which caller i hangs up. If the caller hangs up before call r receives an acknowledgement
upack, the DFC protocol requires that acknowledgements upack and downack be received
on call r for the call to be terminated.

State dialogue is a signal-linked state in which calls i and r are signal-linked and signals
received from either call are forwarded to the other call. In state dialogue, the feature
terminates when the caller hangs up. Modelled by an implicit gone(i) / end(r) in the
original specification, these macros are expanded in the explicated model as explained in
Chapter 3. The feature transitions to an intermediate state, state terminating_r, in which
call r waits for an acknowledgement downack and transitions to the final state. Appendix
A6 shows the Promela model for RVM.

5.3 Black Phone Interface

Black Phone Interface (BPI) is a bound BoxTalk feature. BPI acts as an interface between
the DFC protocol and the telephone device (and its user). That is, it translates user inputs
into DFC signals, and translates received DFC signals into tones that the user hears. For
example, user action onhook is similar to call tear down, user action dialed is similar to
setting up a new call. We modify the original BoxTalk specification (that is, the input
of our program) to introduce call variable a to model a “channel” to the user for ease of
reading. Actions offhook, onhook, and dialed are user inputs that are received on call a.
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Figure 5.5 displays the original BoxTalk specification of the BPI feature. BPI has only
one call, call ¢, as BPI is an endpoint of a usage. BPI reacts to DFC call signals, media
channels, and user actions. There is a great deal of signaling redundancy in the BPI
feature. For example, signals accepted, rejected, nullified on a media channel have exactly
the same effect on the phone as DFC call signals avail, unavail, none, respectively. The
media signal waiting has no DFC counterpart. c[v] represents the voice channel v on
call c. accepted(c[v]) means that signal accepted is received on the voice channel v of call
c. States dialing, ringback, busytone and errortone are tone-generating states and their
names indicate the tones the user should be hearing. Received calls are modelled via the
path that passes through the state ringing. Outgoing calls are modelled via the path that
passes through the state dialing.

Whenever the remote party hangs up (gone(c)), the feature transitions to the disconnected
state. The feature cannot do anything in this state, and simply waits for the user to hang
up (user action onhook), at which point the feature transitions to the final state.

Figure 5.6 displays the explicated BPI feature and Figure 5.7 displays the post-processing
machine of the BPI feature. The macros in the original specification are expanded in
the explicated specification as explained in Chapter 3. With user action onhook, the
feature eventually transitions to the final state in the original specification; however, in the
explicated model of BPI, the feature transitions to the initial state so that the feature can
be invoked again with the next usage involving the subscriber. A post-processing machine
is then called to complete the call termination (i.e., receipt of a downack signal). The
Promela model for BPI feature is given in Appendix A7.
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post_process

. c_wait_down I

¢ ? downack

Figure 5.7: BPI Post Processing Machine

As explication of the remaining features from the case study is same as that explained in
Chapter 3, we explain only feature-specific peculiarities for the rest of the features.

5.4 Answer Confirm

The Answer Confirm (AC) feature is designed to ascertain that a successfully established
usage has reached a human callee by demanding that the callee press a touch-tone button
on his or her phone. In the event of the button not being pressed, the feature suppresses
the success outcome. It is a free feature.

Figure 5.8 displays the original BoxTalk specification of the AC feature. There are two
different transitions from state trying to state final. For ease of reading, we show such
multiple transitions with a single transition and enumerate it with transitions labels.

In state trying, the feature waits for the outcome signals from downstream. If an outcome
signal avail is received on call o, the AC feature calls the Voice Message Service (call
r) which will confirm that the callee has answered the phone, and transitions to state
confirming. The feature remains in state confirming until a special confirmation is received
from downstream. When the feature receives the feature-specific signal “confirmed”; the
feature transitions to state transparent, sends signal avail upstream, and terminates the
call to the Voice Message Service.

We modified the original model by introducing signal “nonconfirmed” (i.e., lack of confir-
mation) as the counter-part of “confirmed”. When the feature receives the signal “noncon-
firmed” on call r in state trying, all active calls are terminated and the feature transitions
to the final state.

Figure 5.9 shows the explicated model of the AC feature.
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transparent

{i,o0)

r ? “confirmed” /
ilavail ;
end(r)

o ? avail /
t :
accepted(o[v]) ; new(r) confirming

i,(o,r)

rev(i) / ctu(i | o) trying

(i 0)

1. 0 ? unavail /i ! unavail ;
end(o) ; end(i}

2.0 7?7 unknown /i ! unknown ;
end(o) ; end(i)

r ? “nonconfirmed” /
end(i) ; end(o) ; end(r)

This translation and signal “nonconfirmed” are
introduced in the original model.

Figure 5.8: AC - Original BoxTalk Specification
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5.5 Quiet Time

Quiet Time (QT) is a free, target-zone feature that is used by its subscribers if they do not
want to be disturbed by a phone call. Figure 5.10 shows the original BoxTalk specification
of the QT feature. After receiving the setup signal in its initial state, the QT feature
transitions to the transient state enabling.

rev(i)

enabling

[enabled]
/t1tset; new(r)

[not_enabled]
I ctu(i , 0)

r? “ctu”
dialogue /end(r); ctu(i , o) transparent

(i.n (i,0)

r? “quit”, t ? tout
/end(r) ; i ! unavail ; end(i)

Figure 5.10: QT - Original BoxTalk Specification

From state enabling, different actions are taken depending on whether the feature is en-
abled. If not enabled, the feature transitions to stable state transparent and continues the
usage via call o. In state transparent, the two calls i and o are signal-linked.

If instead the feature is enabled, the Voice Message Service is called (call r) and the feature
transitions to stable state dialogue. In state dialogue, the two calls i and r are signal-linked
and the caller engages in an Interactive Voice Response (IVR)! dialogue with the Voice
Message Service. The IVR dialogue announces that the callee does not wish to be disturbed
and offers the caller a number of different options to choose from. If the caller still wishes to
talk to the callee despite the warning message, the caller can select option “continue” and

thttp:/ /en.wikipedia.org/wiki/Interactive_voice_response# Voice-Activated_Dialling
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the Voice Message Service sends signal “ctu” to the QT feature. In this case, the feature
tears down call r and continues the usage by setting up call o. Alternatively, the caller
can abandon the call and leave a message by selecting option “quit” in state dialogue; the
feature will eventually transition to state final.

The distinctive behaviour of QT feature (and PFM and SFM) is the use of timeouts.
The timer variable t is set to a fixed time period (t ! tset) on entry to state dialogue.
If the caller does not select any option in state dialogue, the feature will timeout (t 7
tout) and will transition to state final. Due to the limitation of what we can check, our
Promela model translator ignores conditions and actions involving timer variables when it
encounters them. Figure 5.11 displays the explicated specification of the QT feature?.

2We do not show self-transitions for the remaining features.
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5.6 Parallel Find Me

Parallel Find Me (PFM) is a free, target-zone feature that tries to direct a phone call to its
subscriber’s current location by translating the target of the usage to multiple addresses.
Figure 5.12 displays the original BoxTalk specification of PFM. There are six different
transitions from state tworings to state onering and two different transitions from state
onering to state final.

rev(i)
. lookup
[exisl_sfzfloc] ) [exists_1_loc]
[ctu(i, 01); ctu(i, 02) ; t!tset fetu(i, 01) ;! tset
[exists_no_loc]
/i !unavail ; end(i)
t 7 tout / i/ unavail ; 1.01 ? unknown /i ! unavail ; end(i)
end(i) ; end(o1) ; end(02) 2.t ? tout/ i ! unavail ; end(i)
tworings onering
i,01,02 (i.o1)
1.01 ? unknown , o1 ? unavail / end(o1) ; 01,02 =02 , -

2.gone(o1)/01,02=02, -

3. 01 ?avail /! avail ; end(02)

4. 02 ? unknown , 62 ? unavail / end(02)

5. gone(02)

6.02 ? avail / i! avail ; end(o1) ;01,02=02, -

Figure 5.12: PFM - Original BoxTalk Specification

After receiving the setup signal in the initial state, the feature transitions to transient state
lookup. The transient state lookup is used by the PFM feature to determine whether zero
or more locations can be tried. In the original BoxTalk specification, in state lookup a
database query initializes the locations that can be dialed, and also the data needed to
evaluate the predicates no_loc_exists, exists_1_loc, and exists_2_loc (i.e. whether zero, one
or two locations can be dialed)?.

We abstracted the provided model to omit the database query and elide the specific loca-
tions. We know that exactly one of the transitions exiting the transient state has a guard

3The PFM model that was provided to us handles a maximum of two locations. In an actual feature,
more locations could be tried in parallel.
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boxport ? setup

[exists_no_loc]
/i1 unavail
/i!teardown

To “terminating_i”

[ abandoninging_o1_o2

i !upack [ \
. lookup
) _j o1 ? teardown
[exist_1_loc] o1 ! downack
/01! setup i ! teardown
i?sig i ? teardown
[full(01.hold)] 017 upack i 1 downack
®
error connecting_o1 | /dump(o1.hold) [ onering ofiHeatdoln
i, o1 [ (i,01)

_ o1 ? teardown

i? teardown o1 ? upack /01! downack

i ! downack /dump(o1.hold) /i!teardown

_—" o1 ! teardown / 02 ! teardown
5 abandonConnection_o1
[full(02.hold)] o
i ? sig i
[exists_2_loc]
[full(o1.hold)] /o1 ! setup
/02 ! setup
02 ? upack
/dump(02.hold)
trying_o1_o2 i ? teardown
i o102 i! downack
o1 ! teardown
02 ! teardown abandoned_o2_o1
o1,02
02 ? upack o1 ? upack

/dump(02.hold)

connecting_o1_o2
i,o1,02

i ? teardown
i ! downack
o1 ! teardown
02 ! teardown

/dump(o1.hold)

( connecting_o2_o1 '\
i,o01,02 /

o1 ? upack
/dump(o1.hold)

02 ? upack
/dump(02.hold)

o1 ? upack
/dump(o1.hold)

o1,02

abandoninging_o2_o1

o1,02

B

i ? teardown

f tworings
\ i,o1,02

To “abandoning_o2 01" <—

To “abandoning_o1_02"

that evaluates to true. We make use of SPIN’s nondeterminism to model that the number

i! downack
o1 !'teardown
02 ! teardown

To “onering”

ending_o1
o1

o1 ? downack
/{o1,02=02,-}

<

To “onering” <———

o1 ? unknown ||
o1 ? unavail
/01! teardown

o1 ? teardown
/01! downack
/{o1,02=02,}

ending_o2
02

02 ? teardown
02 ! downack

Figure 5.13: PFM - Explicated Specification

of addresses to try could be zero, one, or two.

If there are no locations to try (i.e., no_loc_exists evaluates to true), signal unavail is sent

on call i and the feature transitions to the final state.
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02 ? unknown ||
02 ? unavail
/02 ! teardown

027
downack X
To “onering”
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[exists_no_loc]
/i tunavail
/i!teardown

02 ? downack

waiting_o1_up

{ ending_i_o2 \ i 7 downack

termina

abandoninging_o1_o2 \

o1 ? upack
fdump(o1.hold)

ol,02

ending_o1_o2
i ? teardown o1, 02
/i1 downack
/01! teardown

/ 02 ! teardown

i, 02
o2 ? downack

NI

02 ? downack

\ o1

o1 ? upack
'dump(o1.hold)

ting_o1

)

o1 ? downack

I

o1 ? downack

{ terminating_i ) (

®

i ? downack

abandoninging_o2_o1
ol,02 /

02 ? upack
/dump(o2.hold)

ending_i_o1
i, ol

02 ? teardown

/ 02 ! downack
/o1 ! teardown

o1 ? downack

i 7 downack

[ terminating_o2
02 /

02 ? downack

/i! teardown

o1 ? downack

02 ? up
fdump(q

ack
2.hold)

{ waiting_o2_up

02

If there is only one location to try (i.e., exists_1_loc evaluates to true), the feature continues
the usage via call ol and transitions to state onering. In this state, if call ol receives an
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unknown or an unavail signal, then the feature fails to find the subscriber: signal unavail
is sent on call i and the feature transitions to the final state. State onering acts as a
transparent state where calls i and ol are signal-linked, and indicates a successful Find
Me.

If there are two locations to be tried (i.e., exists_2_loc evaluates to true), the feature
continues the usage to calls ol and 02 in parallel and transitions to state tworings. While
these two locations are being called in parallel, a special signal “wait” is sent on the voice
channel of call i (i[v]) so that the caller hears a ring-back and will not hang up. In state
tworings, if call ol receives signal unknown or unavail, the feature tears down that call,
assigns the value of call variable 02 to call variable o1, and transitions to state onering.
Similarly, if call ol hangs up in state tworings, the feature transitions to state onering
and makes the same call-variable assignments. From state tworings, the feature will also
transition to state onering if call 02 receives an unknown or an unavail signal, or hangs up.

The feature uses timeouts. The timer variable t is set to a fixed period (t ! tset). If
variable t times out (t ? tout), signal unavail is sent on call i and the feature transitions
to the final state. Figure 5.13 displays the explicated model of PFM feature box. From
state connecting_ol_o2, fully established call 02 may hang-up causing calls i and o1 to tear
down. The feature will transition to state abandoning_ol_i. From state abandoning_ ol i,
if call i receives acknowledgement downack, the feature will transition to state abandon-
Connection_ol. If call ol receives an upack, the feature will transition to state ending_i_ol
where both the calls wait for downack acknowledgements. Similar transitions follow from
state connecting_02_o1 when call o1 hangs up. For space reasons, we decided not to include
these transitions in the figure.

5.7 Sequential Find Me

Sequential Find Me (SFM) is also a free, target-zone feature that serves the same purpose
as the PFM feature, except that SFM tries different locations sequentially. Figure 5.14
depicts the original BoxTalk specification of the SFM feature.

After receiving the setup signal in its initial state, the SFM feature transitions to the
transient state lookup. Transient state lookup is used by SFM to determine whether zero
or more locations can be tried. In the original BoxTalk specification, in state lookup the
database query is used to initialize the locations that can be dialed, and also the data
needed to evaluate the predicates loc_list_empty and loc_list_n_empty (i.e., whether any
locations can be dialed or not). Similar to PFM, the Promela model of SFM is abstracted
and uses SPIN’s nondeterminism in place of actual location list.
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‘ rev(i) @

[loc_list_empty]
[loc_list_n_empty] /1! unavail ; end(i)
/ctu(i, 0); t!tset

[loc_list_empty]
/i !unavail ; end(i) ; end(r)

firsttry

[loc_list_empty]

/i Yunavail ; end(i)
1.0 ? unknown , o ? unavail , t ? tout failed2
/ end(o)

2. gone(o) —

[loc_list_n_empty]

? il
o ? avail Jctu(i, o) ; new(r) ; t! tset

/il avail

1. 0 ? unknown , o ? unavail , t ? tout
o ? avail /end(o)
transparent /it avail ; end(r) nexttry 2. gone(o)

(i,0) (i,no

[loc_list_n_empty]
Ictu(i, 0); t!tset

Figure 5.14: SFM - Original BoxTalk Specification

If there are no locations to try (i.e., loc_list_empty evaluates to true), signal unavail is sent
on call i and the feature transitions to the final state.

If there are location(s) to try (i.e., loc_list_n_empty evaluates to true), the feature continues
the usage via call o and transitions to state firsttry. If the feature receives signal unknown
or unavail, or call o hangs up in state firsttry, the feature transitions to transient state
failed and tears down call o.

In transient state failed, the feature evaluates the two predicates, and if the location list
is empty, the feature transitions to the final state by sending the signal unavail on call 1.
If indeed the location list is not empty, the feature calls the Voice Message Service (call r)
to play an announcement for the caller so that the caller will not hang up before all other
locations in the location list have been tried, one after the other. The feature transitions
to the state nexttry.

From state nexttry, with every failed attempt to locate the subscriber (o ? unknown or o
? unavail) or if call o hangs up, the feature transitions to state failed2. If there is still a
location to try, a call to the new location is set up and the feature transitions again to state
nexttry. Eventually, either the usage succeeds and transitions to state transparent, or the
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location list is exhausted (all locations are tried and all attempts of locating the subscriber
fail) and the feature transitions to the final state. Similar to the PFM feature, the SFM
feature employs timer variable t to set deadlines for each attempt to find the subscriber at
a particular location. Figure 5.15 displays the explicated model of the SFM feature. The
dotted transition from state trying o_r to state nexttry is similar to the transitions from
state trying_ol_o2 to state tworings in explicated model of PFM, Figure 5.13.
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5.8 Properties

In this section, we explain the properties that we prove, and talk about the property
specification language. To verify any system using SPIN, we need to have Promela model(s)
of that system. Promela is the input language of the SPIN model checker. Therefore,
we translate our BoxTalk features into Promela models. By automating the translation
process, we ensure fast and efficient translation.

5.8.1 Properties of Interest

We prove that the same set of properties used in [12] hold of our Promela models. These
properties encompass the basic behaviour of the DFC protocol. Since our translation
includes explication of BoxTalk, whose macros encode DFC protocol compliance, check-
ing these properties effectively checks that our explication process correctly expands the
BoxTalk macros and other implicit behaviours.

1. A setup signal is eventually acknowledged with an upack signal.
2. A teardown signal is eventually acknowledged with a downack signal.

3. A feature cannot send any status signals (on output channels) before sending an
upack signal.

4. A feature cannot send any status signals (on output channels) after sending a tear-
down signal.

5. In bound features, every received setup signal is acknowledged with an upack signal?

6. This is a BTB specific property. When BTB receives a new setup signal and advances
to state orienting, if during this, the post-processing process is not in state end_idle,
it implies that it is tearing down the previous call.

7. This property is BPI specific. If the main process stays in state initial and the post-
processing process is not in state end_idle, the post-processing process is tearing down
the current call.

4Bound features can receive and react to multiple setup signals in their lifetime.
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To make sure that we are not falsely proving these properties, we use an antecedent that
the feature process in not in the error state in conjunction with properties 1 to 5. We use
the remote reference operator of SPIN [7]:

name@label

which states that the proctype name is in the local control state marked by control-flow
label, label.

We use the negation of the remote reference operator in conjunction with properties 1 to
5, to state that the feature process is not in the error state when we prove the properties.
The formulated properties in Section 5.8.3 show the use of this antecedent.

5.8.2 Global Monitor Variables as Embedded Correctness Vari-
ables

As explained in Chapter 4, Section 4.1.2, we cannot formulate properties that refer to sig-
nals received or sent because we use rendezvous channels for communication, and we model
states with state labels. Rendezvous channels have zero capacity and we cannot query their
contents. Hence, we use global monitor variables such as rcv_setup, send downack, etc.
that record signal events. These variables are reset to false in the inline function reset ()
and updated (i.e., set to true) in the inline function next_trans() when the associated
signals are sent or received.

The correctness properties that we prove refer to the receipt of acknowledgements or to
signals sent. Their expression in SPIN refers to the corresponding global monitor variable
instance.

5.8.3 Formulated Properties

The properties listed in English in Section 5.8.1 are expressed as LTL formulas and never
claims as follows:

1. ( !'FeatureProcess®@error_state ) && ( [] ( rcv_setup -> <> send_upack )

)

2. ( 'FeatureProcess@error_state ) && ( [] ( rcv_teardown -> <> send_downack

) )

5Name of the feature process being checked.
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3. ( !FeatureProcess@error_state ) && ( [] ( rcv_setup -> ( ( !send.avail A
I'send_unavail A !send_unknown ) U send_upack ) ) )

4. ( 'FeatureProcess@error state ) && ( [] ( ( send_teardown || rcv_teardown
) => [] ( !send._avail A !send_unavail A !send_unknown ) ) )

5. ( 'BTBQerror_state ) && ( [] ( ( rcv_setup &% ( current_call == numl ) )
-> <>( send_upack && ( current_call == numl ) ) ) )

6. never { ( BTB@orienting state && !( pp_s@end idle state ) ) && !'( pp-call
== last call ) }

7. never { ( BPI@initial state && !( pp@end idle state ) ) && !'( pp_call ==
current_call ) }

5.8.4 Explanation in English

In the above list, properties 1, 2, 3, and 4 are very straight forward and easy to understand.

Property 5 is similar to property 1 with an additional clause which states that the call
sending a setup signal is the same one which receives an upack response. Since bound boxes
can have more than one setup signal, but each one represents a different call attempt, call
attempts are uniquely numbered to match setup signals with their corresponding upack
signals.

Variable current_call has the value of the most recently set up call, last_call has the
value of the call that was set up just before current_call (the second-most-recently set up
call), and pp_call has the value of the most recent call that the post-processing machine
is tearing down. If (pp_call == last_call), then the post-processing machine is tearing
down the previous call.

For properties 6 and 7, we use @ to indicate that a process is in a particular state. For exam-
ple, BTB@ orienting state states that the main process of BTB is in orienting state.
Properties 6 and 7 are unintuitive. To better visualize the structure of the properties, let
us first abbreviate the clauses in the formula. Let us denote

BTB@ orienting state in property 6 by p

pp-s@ end_idle_state by q

pp-call == last_call by r.

The English description of the original property can be expressed as ((p A —q) — 7). It
can be expressed only in terms of A and — logical connectives as follows:
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(PA—q) =
< a(pA-g)Vr asa—b=-aVb
< a((pA—g) A=) asaVb=-—(-aA-b)

The property in the list above has p, q, and r replaced by their original forms and — is
represented by never. The translation of property 7 is similar.

5.9 Model Checking and Results of Verification

In this section, we present our model checking attempts and the results of verification.

For model checking, we used Spin version 6.0.1 running on Linux platform (Ubuntu 10.10)
on an Acer Aspire Laptop with Intel® Pentium® dual core processor T2300 (2.00 GHz)
with 3.00 GHz RAM.

Initial attempts to verify properties described in Section 5.8 revealed errors in the transla-
tion program. After fixing all the typographical errors in our generated models (and our
translator program), we started model checking. In our generated models, we used state
labels in the environment process. For example, the following is a part of Free Transparent
Feature’s Promela model:

if

::8s.cs = connecting_.o —>

glob_ins[ss.in.o_in] ! upack;
fi;
However, with this approach, we discovered that the model always transitions to state
transparent from state connecting o with the receipt of acknowledgement upack. State
abandonConnection_o was never reached in the verification run.

We encountered another error while we were checking Receive Voice Mail model. SPIN
reported the following error:

$ pan:1: invalid end state (at depth 224)
$ pan: wrote freeboxrvm.pml. trail

When we examined the generated counterexample, it was found out that the environment
process was issuing the wrong acknowledgement. The counterexample generated followed
the path from initial state to connecting o state to transparent state to switching state to
abandoning_r_o state. Please refer to Figure 5.4. From state switching, if caller i hangs
up, (i 7 teardown /i ! downack), a teardown signal is issued on the half complete call
r. The environment process was sending acknowledgement downack on call r, however,

95



the half established call r was first expecting an acknowledgement upack, which it never
received.

After fixing these errors, we were able to prove all of the properties stated in Section 5.8.
In Appendices A3, A4, A5, A6, and A7, we present Promela models of explicated FTB,
BTB, EI, RVM, and BPI features respectively with the properties proved for each model.
For space reasons, we do not include Promela models of other features.

We also proved that the properties being checked are not vacuously true in our models
by inserting assert(false) after each state label. By checking these assertions, SPIN
model checker determines that every state is reachable. For example, after inserting
assert(false) following label abandonConnection o_state in RVM feature, SPIN pro-
duced the following error:

$ pan:1: assertion violated 0 (at depth 161)
$ pan: wrote freeboxrvm.pml. trail

The time to verify a model increases rapidly as the model size increase. For instance, SPIN
model checking of the EI feature with three states and three transitions runs in under a
minute, whereas SPIN model checking of AC feature with 20 states and 67 transitions
requires 18 minutes to generate the result.
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Chapter 6

Conclusion

We developed a fully automated translator from BoxTalk features to Promela models. We
verified the translation by checking the resulting Promela models against DFC-compliance
properties using the SPIN model checker.

6.1 Explicating BoxTalk features

BoxTalk is a domain-specific, call-abstraction, high-level programming language used to
program DFC features. BoxTalk abstracts the common behaviour that is present in all
DFC features into BoxTalk macros and other implicit behaviour. However, to analyze
BoxTalk features, the feature models need to explicitly represent the implicit behaviour.
A large part of our work involved explicating BoxTalk features to explicitly represent
features’ implicit behaviour.

Explication of free and bound BoxTalk features follow slightly different steps. The expli-
cation process of free BoxTalk features takes place as follows:

1. Expand all macros present in the transitions of the original BoxTalk specification.
This step may generate new states and transitions that may be explicated in other
steps.

2. In every signal-linked state, some active call may end because the remote party of
that call hangs up, which causes the other signal-linked call to terminate. This step
explicates the receipt of events initiating the teardown and the completion of the
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tearing down of both the signal-linked calls. Extra states and transitions may be
generated in this step as well.

. In certain states, the feature reacts to signals without changing state. For example, in

signal-linked states, the default behaviour of the feature is to forward any signal from
one signal-linked call to the other. Such behaviour is explicated as self transitions
that have the same source and destination state. This step augments the feature
with these self transitions.

The explication process of bound BoxTalk features is similar to that of free BoxTalk fea-
tures, with some unique explications:

1.

4.

6.2

This step expands all macros present in the transitions of the original BoxTalk speci-
fication. The only difference is the explication of macro end(). Since there is only one
instance of a bound feature per subscriber, the teardown of calls in bound features
must be instantaneous. However, the teardown of a call comprises steps which are
not instantaneous (e.g., waiting for a downack acknowledgement). A post-processing
machine, one per each call variable in a feature, is created, in each bound feature, to
complete the teardown process of terminating calls. This way, the feature machine
can set up a new call, or participate in a new usage, and the post-processing machine
can tear down the old call in parallel. Since this one instance of a bound feature must
be included in every usage involving the subscriber, whenever all calls terminate, the
feature transitions to the initial state so that it can immediately participate in the
next usage.

. This step handles call termination from signal-linked states.

Bound features can receive and react to setup signals in any stable state. Different
actions are taken depending on whether the setup request is from the subscriber or
from the far party. This step handles the receipt of such setup signals.

This step, which is similar to Step 3 for free features, handles self-transitions.

Translation to Promela

Our program translates explicated BoxTalk features into Promela models.
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For each free BoxTalk feature, there is one active Promela process for the feature machine
and another active Promela process representing the environment process. The environ-
ment process models the environment of the feature, generating signals that the feature
can receive from its environment and receiving the feature’s output. For bound BoxTalk
features, there are additional active processes, one per call in the usage, that model the
post-processing machine.

6.3 Modifications to Yuan Peng’s Thesis

In her Master’s thesis, Yuan Peng [12] manually explicated a set of BoxTalk features and
hand translated the explicated models into Promela models. We have fully automated the
process of explicating and translating BoxTalk specifications into Promela models. We use
a multi-step explication process to explicate free and bound features (Section 6.1). We
also modified explication rules of macros new() and ctu() from the existing rules developed
by Yuan Peng. Our modified rules include the special case of explication when the caller
hangs up in an intermediate state where the “new” call is half established, (i.e., waiting
for an acknowledgement upack). The feature terminates in a special way where the half
established call waits for two acknowledgements, first an upack and then a downack. In the
intermediate state where new call is half established, a hold queue is constructed to hold
all of the signals to be sent via this call. If the hold queue overflows, the feature transitions
to the error state. Our modified rules of macros new() and ctu() also handle this case.

Our bound features differ from [12], in that they have multiple post-processing machines,
one per each call variable of the bound feature. Since a bound feature’s main machine
communicates with its post-processing machine(s) via rendezvous channel(s), then if there
is only a single post-processing machine to process the termination of multiple calls, then,
whenever the feature’s main machine tries to end multiple calls, the post-processing ma-
chine would receive the first request to end a call and all subsequent requests would be
discarded.

6.4 Case Study

We used a case study to evaluate our translator by translating a set of available BoxTalk
specifications into Promela models and proving that they are DFC compliant. Since the
translation of BoxTalk specifications to Promela models includes expanding of BoxTalk
macros that encode DFC compliance, we check our Promela models against properties
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that encompass DFC protocol. Checking that the Promela models satisfy these properties
also proves that the models have been correctly explicated.

All of the properties that we proved were DFC-protocol properties. The generated models
can also be used to prove other correctness properties of the features (e.g., that execution
should never halt in a transient state or that the path between two responsive states must
be cycle-free). However, we did not attempt to identify correctness criteria to be proved
of the case-study features as this was outside the scope of our thesis. We were interested
in transforming original specifications into Promela models so that such verifications are
possible.

We verified individual BoxTalk features and their interactions with the environment. How-
ever, real systems involve combinations of features. For example, any feature should include
an Error Interface Box in case a caller dials an invalid number. With bound features, the
subscriber may subscribe to more than one bound feature. As a future work, our program
can be extended to facilitate the model checking of combinations of features and to examine
how one feature interacts with another feature (and not just the environment).
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Appendix A

Original Grammar

PARSER BEGIN ( Boxtalk )

public class Boxtalk {
public static void main(String args[]) throws ParseException {
Boxtalk parser = new Boxtalk (System.in);
parser . Input () ;

}

PARSER END( Boxtalk)
// LEXICAL PART

SKIP : {

» » |

2 t”
2 in” i
” \r ”

}

MORE :
7 //” : INSSINGLE LINE_.COMMENT |
7 /+” : INMULTILINE. COMMENT

}

<IN_SINGLE_LINE.COMMENT>
SPECIAL.TOKEN : {
<SINGLE_LINE.CCOMMENT: "\n” | "\r” | ”\r\n” > : DEFAULT
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}

<IN.MULTI_LINE.COMMENT>
SPECIAL.TOKEN : {

<MULTILINE.COMMENT: ”x/” > : DEFAULT
}

<IN_SINGLE_LINE_.COMMENT , INMULTI_LINE_.COMMENT>
MORE : {

< 7] >
}

TOKEN : {
< ARC: 7Arc” > |
< AVAIL: ”avail”

BOUND: ”Bound”

CALL: ” Call” >

CLASS: 7 Class”

CLS: 7cls” > |

CIU: ”ctu” >

DID: 7dld” > |

END: 7end” >

FREE: "Free’ |

GONE: ”gone” > |

GRAPH: ”Graph” > |

|

vV —V V

>

INIT: 7Init” >
NEW: "new” > |
NONE: "none” > |
NOSIG: ”nosig” > |
NOTES: " Notes” >
OUT: ”out” > |
RCV: "rev” > |
REV: 7rev” > |
SET: ”Set” > |
SETUP: ”setup” > |
SIGNAL: ”Signal” > |
SLOT: "Slot” > |
SRC: "src” > |
STABLE: ”Stable” > |
STAT: ”stat” > |
STRING: ”String” > |
SUBS: ”subs” > |
TERM: ”Term” > |
TEXT: "text” > |
TIMER: ” Timer” > |

ANANNANNANNNNANANNNNANNNNNNANNNNNNNNNNNNNNA
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TOUT: ”tout” > |
TRANSIENT: ” Transient” > |
TRG: "trg” > |

TSET: 7 tset” > |

TYPE: ”"type” > |

UNAVAIL: ”unavail” > |
UNKNOWN: 7 unknown” > |
VIDEO: ”video” > |

VOICE: ”voice” > |

ZONE: ”zone” >

ANNNNNNNANNNNAN

}

TOKEN : {
< STRINGLIT: ”\”” ( ~[77\77w] )* 77\77,, >
}

TOKEN : {
< JAVALIT: 77\$” ( ~|:77\$77} )* ”\$77 >
}

TOKEN : {
< ID: [77 a77_77 Z)? ’77A77_77Z77 ,77 77’ ] ( [77 a??_” Z77 ’77A77_77 Z?? ’77 777 777 077_77 97’ ] )* >
¥

TOKEN : {
< DIGITS: [70"="9"] ( [70"="9"] )x >
}

// THE GRAPH

// Currently Missing: call arrays

// Additional Syntactic Constraints:

// 1) There is exactly one initial state, which has no in—transitions.

// 2) Each transient state has at least one in—transition and at least one
// out—transition .

// 3) Each stable state has at least one in—transition.

// 4) Each termination state has at least one in—transition and no

// out—transitions.

// 5) If a CallVarName appears in a StableStateltem , it must either be

// declared as a call variable in the Notes, or it must be the name of a

// pseudocall. If it is the name of a pseudocall, it can only appear in
a

// Linkage in which all the other LinkageObj have the form ”7c¢[m]”.
// 6) With the one exception in (5), a Linkage must link either all
// CallVarNames or all "c¢[m]” expressions.

// 7) An expression ”c[m]” in a LinkageObj must match the declarations
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// according to the semantics of media processing in Boxtalk.

// 8) If a ProgName appears in a TransientState, it must be defined in the
// Notes as a void program, in either Java or Boxtalk.

// 9) Each path between responsive states must be cycle—free.

void Input() : {} {
<GRAPH> ”"{” GraphltemSet () ”}” <NOTES> "{” BoxtalkNotes() ”}”
}

void GraphltemSet () : {} {
( ResponsiveState() | TransientState() | Arc() )=
}

void ResponsiveState () : {} {
<INIT> StateName () 7{” 7}”7 |
<TERM> StateName () 7{” 7}”7 |
<STABLE> StateName ()

"{” ( StableStateltem () ( ”,” StableStateltem () )x )? ”7}”

}
void StableStateltem () : {} {

CallVarName () |

" (” Linkage() 7)”
}
void Linkage() : {} {

LinkageObj() ( ( ”’<” | ”>” ) LinkageObj () |

77 LinkageObj() ( ”7,” LinkageObj() )x
)

}

void LinkageObj() : {} {
CallVarName () ( 7[” S
}

void TransientState () : {}
<TRANSIENT> StateName ()
}

void Arc() : {} {
<ARC> 7{” StateName() "—>” StateName() 7{” ArcBody() 7}” ”}”
}

// TRANSITION (ARC, FOR SHORT) BODIES
// Additional Syntactic Constraints:

lotName () 7]” )?

7{” ( ProgName() )? 7}”
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// 1) If an arc originates at a responsive state, the conditions in its

CondList

// must begin with ”"rcv”, ”gone”, or ”callvarname?”.

// 2) If an arc originates at a transient state, the conditions in its
CondList

// must be BoolExps or ProgNames or 7!7.

// 3) 7!”7 is the only Cond in its CondList.

// 4) Each transient state has at most one out—transition with Cond ”!”.

// 5) All CallVarNames parsed in Conds must be declared as call variables in

// the Notes, with the exception of one parsed preceding ”tout”, which

// must be declared as a timer variable in the Notes.

// 6) If a ProgName is used as a Cond, it must be defined in the Notes as a

// BoolExp or as a Java program that returns a Boolean value.

// 7) All CallVarNames parsed in Unconds must be declared as call variables
in

// the Notes, with the exception of one parsed preceding ”tset”, which

// must be declared as a timer variable in the Notes.

// 8) If a ProgName is used as an Uncond, it must be defined in the Notes as
an

// DataAssign or as a void Java Program.

// 9) If a ProgName is used as an argument of a cls(), it must be defined in
// the Notes as a CallClass.

void ArcBody () : {} {
CondList () ( 7/” UncondSeq() )?
}

void CondList () : {} {
} Cond() ( 7,” Cond() )=

void Cond() : {} {
<RCV> 7 (7 CallVarName () 7)” ( "{” FieldInfo() ”}” )? |
<GONE> ” (” CallVarName () 7)” |
LOOKAHEAD(3)
CallVarName () 7?7 <TOUL> |
LOOKAHEAD(6)
CallVarName () ( 7[” SlotName() ”]” )? 7?” SignalExp() |
LOOKAHEAD( 2)
BoolExp () |
ProgName () |

7

}

void UncondSeq() : {} {
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} Uncond () ( 7;” Uncond() )x

void Uncond() : {} {
<NEW> 7 (7 CallVarName () 7)” 7{” FieldInfo() 7}” |

<CTG> 7 (” CallVarName() 7 ,” CallVarName() 7)”
( 7{” FieldInfo() 7}” )? |
<REV> 7 (” CallVarName () ”,” CallVarName() 7)”

( 7{” FieldInfo() 7}” )? |
<END> ” (” CallVarName () 7)” |
<CLS> 7 (” CallVarName () ”,” ProgName() 7)” |
LOOKAHEAD( 3)

CallVarName () 71”7 <TSET> "{” FieldInfo () "}” |
LOOKAHEAD( 2)

CallVarName () ( 7[” SlotName() ”]” )? 7!” SignalExp() |
LOOKAHEAD( 3)

CallAssign () |

SignalAssign () |

LOOKAHEAD( 2)

StringAssign () |

ProgName ()

// STATEMENTS

// Additional Syntactic Constraints:

// 1) In a CallAssign, the numbers of terms on both sides of the "=" must
// be the same.

// 2) A CallAssign must preserve the property that no two call variables

// have the same value, unless the common value is NoCall (”-7).
// 3) A SignalName on the left side of a SignalAssign must be declared as a
// signal variable name in the Notes.

void CallAssign() : {} {

CallVarName () ( 7,” CallVarName() )x "=" CallList ()
}
void CallList () : {} {

CallExp() ( 7,” CallExp() )=x
}

void SignalAssign() : {} {
SignalName () ”=" SignalExp ()
}
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void StringAssign() : {} {

}

StringVarName () ”=" StringExp ()

// EXPRESSIONS

//

//
//
//

Additional Syntactic Constraints:

1) If a ProgName is used as FieldInfo, it must be defined in the Notes as
FieldInfo .

2) A SignalName might be a signal type such as ”avail” or it might be the
name of a signal variable. I am putting them in the same name space
because it would be very confusing to allow a programmer to use ”avail

as the name of a signal wvariable. It also makes programming easier.
3) Usually we can tell from how it is used in a signal expression whether
a SignalName is a signal type or a variable:

s{src=me} s is a signal type, this is a signal literal
c:s s is a signal type, this expression is a signal
variable

s+{src=me} s is a signal variable, this expression uses an
override
4) However, if a SignalName s is used by itself as a signal expression,
we
can’t tell from context whether s is a signal name and the expression
is a literal , or whether s is a signal variable. In this case we must
look to see whether s is declared as a signal variable name.

void BoolExp() : {} {

}

ConjunctExp () ( 7||” ConjunctExp() )=

void ConjunctExp() : {} {

}

EqualityExp () ( 7&&” EqualityExp () )=

void EqualityExp () : {} {

}

void CallExp() : {}
CallVarName () |

}

( LOOKAHEAD(2) StringExp() | CallExp() )
(7= | 7”!=" ) ( LOOKAHEAD(2) StringExp() | CallExp() ) |
( ” ! b ) ? ” (77 BOOIEXp () ” )7’

void SignalExp() : {} {
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LOOKAHEAD(2)
SignalName () ”{” FieldInfo() ”}” |
LOOKAHEAD(2)
CallVarName () ( 7[” SlotName() ”]” )? ”:” SignalName ()
( ”_‘_77 77{” Fieldlnfo() ”}77 )?
( 7= 7{” FieldName() ( 7,” FieldName() )x ”}” )? |
SignalName () ( "+” 7{” FieldInfo () "7} )?
( 7= 7{” FieldName() ( 7,” FieldName() )x ”}” )?
}
void FieldInfo () : {} {
LOOKAHEAD(2)
FieldPair () ( 7,” FieldPair() )= |
ProgName ()
}
void FieldPair () : {} {
FieldName () 7=" ( LOOKAHEAD(2) StringExp() | CallExp() )

void StringExp() : {} {

LOOKAHEAD(2)

SignalExp () ”.” FieldName() | <SUBS> | <STRINGLIT> | StringVarName ()
}

// THE NOTES

// Additional Syntactic Constraints:

// 1) FieldInfo in a Program must be a real list of fields and values
just

// a ProgName.

// 2) A ProgName used as a call class in a declaration must be defined in

, not

the

// ProgramPart as a CallClass.

// 3) A ProgName defined in the ProgramPart as ”{}” is defining a CallClass
with

// no slots.

void BoxtalkNotes() : {} {
( <BOUND> | <FREE> ) BoxName() ”"{” DeclPart() ( ProgramPart() )7 ”7}”

}
void DeclPart () : {} {

Decl() ( LOOKAHEAD(2) ”;” Decl() )*
}
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void ProgramPart() : {} {
737 ( Program () )+

}
void Decl() : {} {
( <CALL> CallVarName() ( ”,” CallVarName() )* ( <CLASS> ProgName() )? )
( <TIMER> CallVarName() ( ”,” CallVarName() )* ) |
( <SIGNAL> SignalName() ( ”,” SignalName() )x ) |
( <STRING> StringVarName () ( 7,” StringVarName() )* )

}

void Program () : {} {
<CLASS> ProgName () ”{” CallClass() 7}” |
<SET> SignalName () 7{” SignalName() ( ”,” SignalName() )+ "}” |
ProgName () 7{” (
LOOKAHEAD(2) BoolExp () |
LOOKAHEAD(3) DataAssign() |
FieldInfo () |
<JAVALIT>
)2 7
}

void DataAssign() : {} {
( LOOKAHEAD(3) SignalAssign() | StringAssign() )

( 7;” ( LOOKAHEAD(3) SignalAssign() | StringAssign() ) )=
}
void CallClass () : {} {
<SLOT> SlotName () 7=" MediaName () 7 [” ( <DIGITS> | "%” ) "]”
( 7;” <SLOT> SlotName() "=" MediaName() " [ ( <DIGITS> | "+" ) "]” )«
}

// NAME SPACES
void BoxName() : {} { <ID> }
void StateName () {} { <ID> }
void CallVarName() {} { <ID> }
void SignalName () {} {
<SETUP> | <AVAIL> | <UNAVAIL> | <UNKNOWN> | <NONE> | <STAT> | <OUT> |
<NOSIG> | <ID> }
void FieldName () {} {
<SRC> | <TRG> | <DLD> | <ZONE> | <TYPE> | <ID> }
void StrlngVarName() {} { <ID> }
void ProgName () {} { <ID> }
void SlotName () {} { <ID> }
void MediaName() : {} { <VOICE> | <TEXT> | <VIDEO> }
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Appendix B

Modified Grammar

%glr-parser
union {

{

token <string>

token <symbol>
token <number>
token

token

type

type

type

type <string>

The bold and italicized font mark our changes to the original grammar

char *string;

char symbol;

int number; }

/* Declarations (data structures, functions)*/ }

ID STRINGLIT SETUP AVAIL UNAVAIL UNKNOWN

NONE OUT STAT NOSIG SRC TRG DLD ZONE TYPE SUBS
BOOL VOICE VIDEO TEXT

R S A A B St A A A e S
NUMBER

GRAPH INIT STABLE TRANSIENT CTU NEW RCV GONE END
ARC TRANS NOTES TERM REV SIGNAL TOUT TSET

SET TIMER BOUND CALL CLASS CLS STRING FREE AND
NOTEQUAL OR EQUAL SLOT

<string> statename callvarname linkageobjs linkageobj

slotname tvarname stablestateitem linkage

<string> fieldname progname signalname callvarnamess
stringvarnamess transientstate

<string> fieldnames fieldpair fieldinfo stringexp

stringvarname signalexp tvarnames signalnamess

callexp calllist callvarnames boolvarname boolvarnames
boxname signaln medianame
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input:

graphitemsets:

graphitemset:

responsivestate:

stablestateitems:

stablestateitem:

linkage:

linkageobjs:

linkageobj:

transientstate:

arc:

NOTES “{’ boxtalknotes ‘}’ GRAPH {’ graphitemsets

| FREE boxname NOTES ‘{’ boxtalknotes ‘}’ GRAPH
‘{’ graphitemsets ‘}’

| BOUND boxname NOTES ‘{’ boxtalknotes ‘}’ GRAPH
{’ graphitemsets ‘}’

graphitemset
| graphitemsets graphitemset

responsivestate
| transientstate
| arc

INIT statename ‘{’ ‘}’

| TERM statename ‘{" ‘}’

| STABLE statename ‘{" ‘}’

| STABLE statename ‘{’ stablestateitems ‘}’

stablestateitem
| stablestateitems ‘,” stablestateitem

callvarname
| ‘(" linkage )’

linkageobj ‘<’ linkageobj
| linkageobj ‘>’ linkageobj
| linkageobjs

linkageobj
| linkageobjs ¢,” linkageobj

callvarname
| callvarname ‘[" slotname |’

TRANSIENT statename ‘{* ‘}’
| TRANSIENT statename ‘{’ progname ‘}’

ARC ¢{’ statename TRANS statename ‘{" arcbody ‘}" ‘}’
| ARC ‘{’ statename “{’ arcbody ‘}’ statename ‘}’
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arcbody: condlist
| condlist ‘/” uncondseq

condlist: cond
| condlist ‘,” cond

cond: RCV ¢(’ callvarname ‘)’
| RCV (" callvarname ‘)’ {’ fieldinfo ‘}’
| GONE ‘(" callvarname *)’
| callvarname ‘77 TOUT
| callvarname ‘7’ signalexp
| callvarname ‘[* slotname ‘|’ ‘7’ signalexp
| boolexp
| progname
| signalname ‘(’ callvarname ‘[’ slotname ‘]’ ¢)’

| signalname ‘(’ callvarname )’
’ £!7

uncondseq: uncond
| uncondseq ‘; uncond

uncond: NEW ¢(’ callvarname ‘)" ‘{’ fieldinfo ‘}’
| CTU (" callvarname ‘,” callvarname *)

| CTU ¢(’ callvarname ‘,” callvarname )" *{’ fieldinfo ‘}’
)
)

) J

| REV ‘(’ callvarname ‘" callvarname ‘)’

| REV ‘(" callvarname *,” callvarname ‘)’ ‘{’ fieldinfo ‘}’
| END (" callvarname )’

| CLS ‘(" callvarname ‘,” progname ‘)’

| callvarname ‘!” TSET {’ fieldinfo ‘}’

| callvarname ‘!” signalexp

| callvarname ‘[" slotname ‘|” ‘! signalexp
| progname

| fieldpairs

115



boolexp:

conjunctexp:

equalityexp:

conjunctexp
| boolexp OR conjunctexp

equalityexp
| conjunctexp AND equalityexp

stringexp EQUAL stringexp

| stringexp NOTEQUAL stringexp
| stringexp EQUAL -’

| stringexp NOTEQUAL ‘-’

| ‘-" EQUAL stringexp

| -" NOTEQUAL stringexp

| ‘(" boolexp ‘)’

| I (" boolexp ‘)’
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signalexp:

fieldnames:

fieldinfo:

fieldpairs:

fieldpair:

stringexp:

signalname ‘{’ fieldinfo ‘}’

| callvarname ;" signalname

| callvarname ‘[" slotname ‘|” *’

| callvarname ;" signalname ‘4’
| callvarname ‘[" slotname ‘|” <’

| callvarname ;" signalname ‘-” ¢
| callvarname ‘[’ slotname ‘|” ¢’

| signalname

| signalname ‘4’ ‘{’ fieldinfo ‘}’
| signalname “ ‘{’ fieldnames ‘}’

fieldname
| fieldnames ‘,” fieldname

fieldpair
| fieldinfo *,” fieldpair

fieldpair
| fieldpairs ‘,” fieldpair

fieldname ‘=’ stringexp
| fieldname ‘=" ¢’
| signaln ‘=’ signalexp

signalexp ‘. fieldname
| SUBS
| STRINGLIT

| stringvarname
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boxtalknotes: FREE boxname ‘{’ declpart ‘}’
| BOUND boxname ‘{’ declpart ‘}’
| FREE boxname ‘{’ declpart programpart ‘}’
| BOUND boxname ‘{’ declpart programpart ‘}’
| declpart programpart
| declpart

declpart: decl
| declpart ;7 decl

programpart: ;" programpt

programpt: program
| programpt program

decl: CALL callvarnamess
| CALL callvarnamess CLASS progname
| CLASS progname CALL callvarnamess
| TIMER tvarnames
| SIGNAL signalnamess
| STRING stringvarnamess

callvarnamess: callvarname
| callvarnamess ‘, callvarname

program: CLASS progname {* ‘}’
| CLASS progname ‘{’ callclass ‘}’
| SET signalname ‘{’ signalnames ‘}’
| progname ‘{’ boolexp ‘}’
| progname ‘{’ fieldpairz ‘}’
| progname ‘{" STRINGLIT ‘}’
| progname ‘{" ‘}’
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fieldpairz: fieldpair
| fieldpairz ‘;’ fieldpair

signalnamess: signalname
| signalnamess ‘,” signalname

stringvarnamess: stringvarname
| stringvarnamess ¢, stringvarname

tvarnames: tvarname
| tvarnames ‘,” tvarname

signalnames: signalname
| signalnames ‘;” signalname

callcls: SLOT slotname ‘=" medianame ‘" NUMBER ‘]’
| SLOT slotname ‘=" medianame ‘[* “*’ ‘]’

callclass: callcls
| callclass ;" callcls

statename: ID

callvarname: ID

stringvarname: ID

progname: ID

slotname: ID

tvarname: ID
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medianame:

signalname:

signaln:

fieldname:

boxname:

VOICE
| TEXT
| VIDEO

SETUP

| AVAIL

| UNAVAIL

| UNKNOWN
| NONE

| STAT

| OUT

| NOSIG

| ID

SETUP
| AVAIL

| UNAVAIL

| UNKNOWN
| NONE

| STAT

| OUT

| NOSIG

SRC
| TRG
| DLD
| ZONE
| TYPE
| ID

ID
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Appendix C

Promela model - Free Transparent
Box

1 /x */

2 /x FreeTransparentBox x/

3 /x */

4

5 /x type definitions x/

6

7 mtype = { teardown , downack , other , setup , upack };

8 mtype = { initial , connecting_o , transparent , abandonConnectiono
terminating_o ,

9 final |, terminating_i , error };

10

11 typedef Transition {

12 mtype dest;

13 chan in_chan;

14 bool en_flag = false;

15}

16

17 typedef in_q {

18 byte box_in = 0;

19 byte i_in = 1;

20 byte o_in = 2;

21 bool box_in_ready = true;

22 bool i_in_ready = false;

23 bool o_in_ready = false;

24 byte selected

25 };

26 chan glob_ins[3] = [0] of {mtype};
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

typedef out_-q {
byte box_out = 0;
byte i_out = 1;
byte o_out = 2;

chan o_hold = [5] of {mtype};

b

chan glob_outs [3] = [0] of {mtype};

typedef SnapShot {
mtype cs;
in_q inqg;
out_q out

* * /
/x global wariable declarations x/
* %/
mtype sig;
SnapShot ss;
Transition t[14];
/x  Global Monitor Variables =/
bool rcv_setup = false;
bool send_upack = false;
bool o_send_setup = false;
bool o_rcv_upack = false;
bool i_rcv_teardown = false;
bool i_send_downack = false;
bool o_send_teardown = false;
bool o_rcv_teardown = false;
bool o_send_downack = false;
bool i_send_teardown = false;
bool o_rcv_downack = false;
bool i_rcv_downack = false;
/4 v/

/+x Inline Functions x/

inline dump(cl , ¢2) {
byte aSig;
do
:rcl 7 aSig —> c¢2 | aSig;
::empty(cl) —> break;
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72 od

3k

74

75 inline reset () {

76 rcv_setup = false;

7 send_upack = false;

78 o_send_setup = false;

79 o_.rcv_upack = false;

80 i_rcv_teardown = false;

81 i_send_downack = false;

82 o_send_teardown = false;

83 o_rcv_teardown = false;

84 o_send_downack = false;

85 i_send_teardown = false;

86 o_rcv_downack = false;

87 i_rcv_downack = false;

88

89 if

90 ::glob_ins[ss.ing.box.in] 7 sig —> ss.inq.selected = ss.inq.box_in;
91 ::glob_ins[ss.inq.i-in] ? sig —> ss.inq.selected = ss.inq.i-in;
92 ::glob_ins[ss.inq.o.in] ? sig —> ss.inq.selected = ss.inq.o_in;
93 fi

94 };

95

96 inline en_events(n) {

97 glob_ins[ss.inq.selected] = t[n].in_chan;

98  };

99

100

101 inline en_cond(n) {

102 if

103 ci(n = 0) && (sig = setup );

104

105 i(n = 1) && (sig = upack );

106 si(n = 2) && (sig = teardown );

107 ci(n = 3) && ( sig != teardown && nfull(ss.out.o_hold) );
108 si(n = 4) && ( sig != teardown && full(ss.out.o_hold) );
109

110 (n = 5) && (sig = teardown );

111 (n = 6) && (sig == teardown );

112 (n = 7) && ( sig != teardown );

113 (n = 8) && ( sig != teardown );

114

115 i(n = 9) && (sig = upack );

116
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117 s:(n = 10) && (sig = downack );

118 i(n = 11) && (sig = teardown );

119

120

121 si(n = 12) && (sig = downack );

122 ii(n = 13) && (sig = teardown );

123 fi;

124 };

125

126 inline next_trans(n) {

127 if

128

129

130 ci(n = 0) —> rcv_setup = true;
131 ss.inq.i-in_.ready = true;

132 glob_outs[ss.out.i_out] ! upack;
133 send_upack = true;

134 glob_outs|[ss.out.o_out] ! setup;
135 ss.inq.o-in_ready = true;

136 o_send_setup = true;

137 ss.cs = t[0]. dest;

138

139 i(n = 1) —>

140 o_rcv_upack = true;

141 dump(ss.out.o_hold , glob_outs[ss.out.o_out]);
142 ss.cs = t[1].dest;

143

144 i(n = 2) >

145 i_rcv_teardown = true;

146 i_send_downack = true;

147 glob_outs[ss.out.i_out] ! downack;
148 ss.inq.i_in_ready = false;

149 o_send_teardown = true;

150 glob_outs[ss.out.o_out] ! teardown;
151 ss.cs = t[2].dest;

152

153 i(n = 3) —>

154 ss.out.o_hold ! sig;

155 ss.cs = t[3].dest;

156

157 i(n = 4) —>

158 ss.inq.i_-in_ready = false;

159 ss.inq.o_in_ready = false;

160 ss.cs = t[4]. dest;

161

124



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

i(n = 5) >

i_rcv_teardown =
i_send_downack =

ss.inq.i_in_ready

true;
true;
glob_outs[ss.out.i_out] ! downack;

false;

o_send_teardown = true;
glob_outs|[ss.out.o_out] ! teardown;

ss.cs = t[5]. dest

i(n = 6) —>

)

o_rcv_teardown = true;
o_send_downack = true;
glob_outs|[ss.out.o_out] ! downack;

ss.inq.o_in_ready

false;

i_send_teardown = true;
glob_outs[ss.out.i_out] ! teardown;

ss.cs = t[6].dest

(n =17) >

3

glob_outs[ss.out.o_out] ! sig;

ss.cs = t[7]. dest

i(n = 8) >

7

glob_outs[ss.out.i_out] ! sig;

ss.cs = t[8]. dest

i(n = 9) —>

)

o_rcv_upack = true;
dump (ss.out.o_hold

ss.cs = t[9]. dest

i(n = 10) —

)

, glob_outs[ss.out.o_out]);

o_rcv_downack = true;
ss.inq.o_in_ready = false;
ss.cs = t[10].dest;

2i(n = 11) —>
o_rcv_teardown = true;
o_send_downack = true;
glob_outs[ss.out.o_out] ! downack;
ss.cs = t[11].dest;

i(n = 12) —
i_rcv_downack = true;
ss.inq.i-in_ready = false;
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207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

ss.cs = t[12].dest;

i(n = 13) —>

fi;
}s

if

i_rcv_teardown = true;
i_send_downack = true;
glob_outs|[ss.out.i_out] ! downack;
ss.cs = t[13].dest;
inline en_trans(n) {
:ren_events(n) —>
if
:ren_cond(n) —> t[n].en_flag = true;
:relse —> t[n].en_flag = false;
fi;
::else —> t[n].en_flag = false;

fi;

}s

b

active proctype FreeTransparentBox () {

= initial;

.dest = connecting_o;

.in_chan = glob_ins[ss.inq.box_in];
.dest = transparent;

.in_chan = glob_ins[ss.inq.o-in|;
.dest = abandonConnectiono;
.in_chan = glob_ins[ss.inq.i_-in ];
.dest = connecting_o;

.in_chan = glob_ins[ss.inq.i_-in |;
.dest = error;

.in_chan = glob_ins[ss.inq.i_-in |;
.dest = terminating_o;

.in_chan = glob_ins[ss.inq.i_-in |;
.dest = terminating_i;

.in_chan = glob_ins[ss.inq.o_in|;
.dest = transparent;

.in_chan = glob_ins[ss.inq.i_-in |;
.dest = transparent;

.in_chan = glob_ins[ss.inq.o_in|;
.dest = terminating_o;

.in_chan = glob_ins[ss.inq.o-in|;
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252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

[ Y Y s Y < R S S SR
[ e S R S N e
W WNoN = OO

.dest = final;

.in_chan = glob_ins[ss.
.dest = terminating_o;
.in_chan = glob_ins[ss.
.dest = final;

.in_chan = glob_ins[ss.
.dest = terminating_i;
.in_chan = glob_ins[ss.

initial_state:

atomic {

reset () ;
en_trans (0);

if
Dot

::else —> goto

fi;

)

inq.o_in |;

inq.o_-in];

inq.i_in |;

inq.i-in];

0].en_flag —> next_trans(0); goto connecting_o_state;

connecting_o_state:

atomic {

reset () ;

en_trans (1)
en_trans (2)
en_trans (3);
en_trans (4)

3

3

)

1].en_flag —> next_trans(
2].en_flag —> next_trans(
3].en_flag —> next_trans(
4].en_flag —> next_trans(4);
se

initial_state;

1)
2)
3)
4

goto
goto
goto
goto

—> goto connecting_o_state;

transparent_state:

atomic {

reset () ;
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297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

next_trans (5); goto
next_trans (6); goto
next_trans (7); goto
next_trans (8); goto

e —> goto transparent_state;

en_trans (5);
en_trans (6);
en_trans (7);
en_trans (8);
if
it [5].en_flag —
20t [6]. en_flag —
20t [7]. en_flag —>
::t[8].en_flag —
irels
fi;
}
abandonConnectiono_state:
atomic {
reset () ;

en_trans (9);

if

terminating_o_state;
terminating_i_state;
transparent_state;
transparent_state;

::t[9]. en_flag —> next_trans(9); goto terminating o_state;
::else —> goto abandonConnectiono_state;

fi;

)

terminating_o_state:
atomic {
reset () ;
en_trans (10);
en_trans (11);

if

t[10].en_flag —> next_trans(10); goto final_state;
t[11]. en_flag —> next_trans(11); goto terminating_o_state;
:else —> goto terminating_o_state;

fi;

terminating_i_state:
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342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

atomic {
reset () ;

en_trans (12);
en_trans (13);

if

::t[12].en_flag —> next_trans(12); goto
::t[13].en_flag —> next_trans(13); goto
::else —> goto terminating_i_state;

fi;

)

}

error_state:

final_state:

progress:

skip;
H
active proctype env() {
mtype i_sigt ,o_sigt , o_sigu
end: do

S
1188
if
fi

tI 88

fi

s.inq.box_in_ready —>

)

ss.inq.box_in_ready = false;

glob_ins[ss.inq.box_in]
.inq.i_in_ready —>
glob_ins[ss.inq.i-in |

glob_ins[ss.inq.i-in]
unless {

(i_sigt = teardown) —>

!
!

glob_ins[ss.inq.i_in]

i_sigt = 0;
.inq.o_in_ready —>
glob_ins[ss.inqg.o_in]

glob_ins[ss.inq.o_in|
unless {

!
!

| setup;

teardown ;

other;

! downack;

teardown ;
other;
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387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

417 1t1 p0 {(!FreeTransparentBox@error_state)
418 1tl pl {(!FreeTransparentBox@error_state)
419 1t1 p2 {(!FreeTransparentBox@error_state)
420 1t1 p3 {(!FreeTransparentBox@error_state)
421 1t1 p4 {(!FreeTransparentBox@error_state)

422 1t1 pb {(!FreeTransparentBox@error_state)

if
::(o_sigu = upack) —
glob_ins[ss.ing.o-in] ! upack;
o_sigu = 0;
::(o_sigt teardown && o_sigu = 0) —>
glob_ins[ss.inq.o_in] ! downack;
o_sigt = 0;
fi;
}
od
unless {
if
:ratomic { glob_outs[ss.out.o_out] ? setup —>
o_sigu = upack;

}

::glob_outs[ss.out.i_out] ?
::glob_outs[ss.out.i_out] 7
::atomic { glob_outs[ss.out.
i_sigt teardown ;

::glob_outs[ss.out.i_out] ?
::atomic { glob_outs[ss.out.
o_sigt teardown ;

}
::glob_outs [ss.out.o_out] ?
::glob_outs [ss.out.o_out] ?
fi;
}
goto end;

}

send_upack)}
i_send_downack)}
i_rcv_downack)}
o_rcv_upack)}
o_send_downack)}

o.rcv_downack)}

upack ;
downack;
i_out] ? teardown —>

other;
o_out] ? teardown —>

downack ;
other;

[](revosetup —> <>
[J(i_rev_teardown —> <>
[](i-send_teardown —> <>
[](o_send_setup —> <>

[](o_rcv_teardown —> <>

EFEEEEE

[](o_send_teardown —> <>
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Appendix D

Promela model - Bound Transparent
Box

1 /% */

2 /x BoundTransparentBox x/

3 /x */

4

5 /x type definitions x/

6

7 mtype = { teardown , downack , other , setup , upack , unavail };
8

9 mtype:{ post_process_t , post_process_s , post_process_f };
10 mtype = { initial , orienting , connecting_f , deciding_-1 , transparent
11 connecting_s , deciding_2 , receiving , error };

12

13 mtype = { idle , t_-work , s_work , f_wait_up , f_work |,

14 s_wait_up };

15

16 typedef Transition {

17 mtype dest ;

18 chan in_chan;

19 bool en_flag = false;

20}

21

22 typedef in_q {
23 byte box_in = 0;
24 byte old_t_in =
25 byte old_s_in = 2;
26 byte old_f_in =

|
@
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

byte t_in = 4;
byte s_in = 5;
byte f_in = 6;

bool box_in_ready = true;
bool old_t_in_ready = false;
bool old_s_in_ready = false;
bool old_f_in_ready = false;
bool t_in_ready = false;
bool s_in_ready = false;
bool f_in_ready = false;
byte selected

g

chan glob_ins [7] = [0] of {mtype};

typedef out_q {
byte box_out = 0
byte old_t_out =
byte old_s_out =
byte old_f_out =
byte t_out = 4;
byte s_out = 5;
byte f_out = 6;
chan f_hold = [5] of {mtype};
[5

W N =

chan s_hold = [5] of {mtype};
}s
chan glob_outs[7] = [0] of {mtype};
typedef internal {
chan internal_t = [0] of {mtype};
chan internal_s = [0] of {mtype};
chan internal_f = [0] of {mtype};
};
typedef SnapShot {
mtype cs;
mtype cs_post_process;
in_q inq;

out_q out;
internal intq;};

/*

/x  Global Variable Declarations x/

SnapShot ss;
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72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

mtype sig;
mtype inter_sig;

bool
bool
bool
bool
bool
bool

t_from_subs = true;
current_t_from_subs = true;
s_.communicating = true;
old_s_communicating = true;
f_communicating = true;
old_f_communicating = true;

Transition t[36];

/x  Global Monitor Variables x/

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool

byte
byte
byte
byte

rcv_setup = false;
send_upack = false;
f_send_setup = false;
s_send_setup = false;
f_rcv_upack = false;
s_rcv_teardown = false;
s_send_downack = false;
f_send_teardown = false;
t_send_unavail = false;
t_send_teardown = false;
s_send_teardown = false;
f_rcv_teardown = false;
f_send_downack = false;
s_rcv_upack = false;
counter = 0;

last_call = 0;

pp-call = 0;
current_call = 0;

inline dump(cl , ¢2) {
byte aSig;
do

:cl ?7 aSig —> ¢2 | aSig;
;empty(cl) —> break;

od

}s

inline setup_initial(b) {

SS

if

inq.s_in_ready = true;

.inq.f_in_ready = true;
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117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(b)) =

s_.communicating = true;

f_communicating = false;
:(!'b) —

s_communicating = false;

f_communicating = true;

fi;
b

inline teardown_cleanup(c) {

if
(e = 0) >
ss.inq.old_t_in_ready = true;
(e =1) >
ss.inq.s_in_ready = false;
ss.inq.old_s_in_ready = true;
old_s_communicating = s_communicating;
(e = 2) >
ss.inq.f_in_ready = false;
ss.inq.old_f_in_ready = true;
old_f_communicating = f_communicating;
fi;

?

b

inline reset () {

rcv_setup = false;
send_upack = false;
f_send_setup = false;
s_send_setup = false;
f_rcv_upack = false;
s_rcv_teardown = false;
s_send_downack = false;
f_send_teardown = false;
t_send_unavail = false;
t_send_teardown = false;
s_send_teardown = false;
f_rcv_teardown = false;
f_send_downack = false;
s_rcv_upack = false;
if

::glob_ins [ss.ing.box_in] ? sig —> ss.inq.selected

::glob_ins[ss.inq.s_in] ? sig —> ss.inqg.selected
::glob_ins[ss.inq.f_in] ? sig —> ss.inq.selected

fi
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162 };

163

164 inline en_events(n) {

165 if

166 2:(n = 0) && ss.inq.selected = ss.inq.box_in;
167 i(n = 1) && true;

168 si(n = 2) && true;

169 si(n = 3) && ss.inq.selected = ss.inq.box_in;
170 i:(n = 4) && ss.inq.selected = ss.inq.f{_in;

171 ::(n = 5) && ss.inq.selected = ss.inq.s_in;

172 ::(n = 6) && ss.inq.selected = ss.inq.s_in;

173 2:(n = 7) && ss.inq.selected = ss.inq.s_in;

174 si(n = 8) && true;

175 i(n = 9) && true;

176 ::(n = 10) && ss.inq.selected = ss.inq.box_in;
177 ::(n = 11) && ss.inq.selected = ss.inq.f_in;

178 ::(n = 12) && ss.inq.selected = ss.inq.s_in;

179 si(n = 13) && ss.inq.selected = ss.inq.f_in;

180 ii(n = 14) && ss.inq.selected = ss.inq.s_in;

181 ::(n = 15) && ss.inq.selected = ss.inq.box_in;
182 ::(n = 16) && ss.inq.selected = ss.inq.s_in;

183 ::(n = 17) && ss.inq.selected = ss.inq.f_in;

184 ::(n = 18) && ss.inq.selected = ss.inq.f_in;

185 si(n = 19) && ss.inq.selected = ss.inq.f_in;

186 2:(n = 20) && true;

187 ci(n = 21) && true;

188 i(n = 22) && true;

189 si(n = 23) && true;

190 si(n = 24) && true;

191 si(n = 25) && true;

192 ci(n = 26) && true;

193 ci(n = 27) && true;

194 ci(n = 28) && true;

195 2:(n = 29) && ss.inq.selected = ss.inq.old_t_in;
196 s:(n = 30) && ss.inq.selected = ss.inq.old_s_in;
197 ::(n = 31) && ss.inq.selected = ss.inq.old_s_in;
198 ::(n = 32) && ss.inq.selected = ss.inq.old_f_in;
199 ::(n = 33) && ss.inq.selected = ss.inq.old_f_in;
200 ::(n = 34) && ss.inq.selected = ss.inq.old_f_in;
201 ::(n = 35) && ss.inq.selected = ss.inq.old_s_in;
202 fi:

203 };

204

205 inline reset_pp_-t () {
206 glob_ins [ss.inq.old_-t_in] ? sig —> ss.inq.selected = ss.inq.old_t_in
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207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

b

inline reset_pp_s() {

}s

inline reset_pp_f() {

}s

inline en_cond(n) {

if

—~ NN N N

=B B BB

BB B BB

=B B BB

s B

=]

£E EE EEEEE EEEEE Fr FREREEE BR E

( sig

setup );

glob_ins[ss.inq.old_s_in] ? sig —> ss.inq.selected = ss.inq.old_s_in

glob_ins [ss.inq.old_f_in] ? sig —> ss.inq.selected = ss.inq.old_f_in

current_t_from_subs;
'current_t_from_subs;

sig
sig
sig
sig
sig

P,

setup );
upack );
teardown
teardown
teardown

) && !ss.inq.old_f_in_ready;
&& nfull(ss.out.f_hold) );
&& full (ss.out.f_hold) );

lcurrent_t_from_subs;
current_t_from_subs;

sig
sig
sig
sig
sig

Py

sig
sig
sig
sig
sig

Py

setup );
teardown
teardown
teardown

= teardown

setup );
upack );
teardown
teardown

= teardown

)

) I'ss.inq.old_f_in_ready;
)

)

)
&& nfull(ss.out.s_hold) );
&& full(ss.out.s_hold) );

'current_t_from_subs;
current_t_from_subs;

current_t_from_subs;
'current_t_from_subs;

1
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252
253
254
255
256
257
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259
260
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262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
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280
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282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

if

inline next_trans(n) {

(n=0) > rcv_setup = true;
glob_outs[ss.out.t_out] ! upack;
send_upack = true;
current_t_from_subs = t_from_subs;
last_call = current_call;
current_call = counter;

ss.cs = t[0]. dest;

i(n = 1) —> f_send_setup = true;

glob_outs[ss.out.f_out] ! setup;
setup_initial (current_t_from_subs)
ss.cs = t[1].dest;

i(n = 2) > s_send_setup = true;

glob_outs[ss.out.f_out] ! setup;
setup_initial (current_t_from_subs)
ss.cs = t[2].dest;

i(n = 3) = rcv_setup = true;
current_t_from_subs = t_from_subs;
last_call = current_call;
current_call = counter;
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si(n = 24) && (inter_sig == post_process_t);
s:(n = 25) && (inter_sig = post_process_s) &&
si(n = 26) && (inter_sig == post_process_f) &&
c:(n = 27) && (inter_sig = post_process_f) &&
::(n = 28) && (inter_sig = post_process_s) &&
si(n = 29) && sig = downack;
s:(n = 30) && sig = downack;
si(n = 31) && sig = teardown;
c:(n = 32) && sig = upack;
::(n = 33) & sig = downack;
si(n = 34) && sig = teardown;
:(n = 35) && sig = upack;

fi;

b

/%

/x Inline Functions */

old_s_communicating;
lold_f_communicating ;
old_f_communicating ;
lold_s_communicating;



297 send_upack = true;

298 glob_outs[ss.out.t_out] ! upack;

299 ss.cs = t[3].dest;

300

301 i(n = 4) —> f_recv_upack = true;
302 dump(ss.out.f_hold , glob_outs[ss.out.f_out]);
303 f_communicating = true;

304 ss.cs = t[4]. dest;

305

306 i(n = 5) = s.rcv_teardown = true;
307 s_send_downack = true;

308 glob_outs[ss.out.s_out] ! downack;
309 f_send_teardown = true;

310 glob_outs[ss.out.f_out] ! teardown;
311 pp-call = current_call;

312 ss.intq.internal_f ! post_process_f;
313 ss.cs = t[5].dest;

314

315 i(n = 6) > ss.out.f_hold ! sig;
316 ss.cs = t[6].dest;

317

318 i(n = 7) —> ss.inq.s_in_ready = false;
319 ss.inq.f_in_ready = false;

320 ss.cs = t[7].dest;

321

322 i(n = 8) —> t_send_unavail = true;
323 glob_outs[ss.out.t_out] ! unavail;
324 t_send_teardown = true;

325 glob_outs[ss.out.t_out] ! teardown;
326 ss.intq.internal_t | post_process_t;
327 ss.cs = t[8].dest;

328

329 i(n = 9) > s_send_teardown = true;
330 glob_outs[ss.out.s_out] ! teardown;
331 pp-call = last_call;

332 ss.intq.internal_s ! post_process_s;
333 f_send_teardown = true;

334 glob_outs[ss.out.f_out] ! teardown;
335 ss.intq.internal_f ! post_process_f;
336 f_send_setup = true;

337 glob_outs[ss.out.f_out] ! setup;

338 setup-initial (current_t_from_subs)
339 ss.cs = t[9]. dest;

340

341 i(n = 10) —> rcv_setup = true;
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342 current_t_from_subs = t_from_subs;

343 last_call = current_call;

344 current_call = counter;

345 send_upack = true;

346 glob_outs[ss.out.t_out] ! upack;

347 ss.cs = t[10].dest;

348

349 i(n = 11) —> f_rcv_teardown = true;
350 f_send_downack = true;

351 glob_outs[ss.out.f_out] ! downack;
352 s_send_teardown = true;

353 glob_outs[ss.out.s_out] ! teardown;
354 pp-call = current_call;

355 ss.intq.internal_s | post_process_s;
356 ss.cs = t[11].dest;

357

358 i(n = 12) —> s_rcv_teardown = true;
359 s_send_downack = true;

360 glob_outs[ss.out.s_out] ! downack;
361 f_send_teardown = true;

362 glob_outs[ss.out.f_out] ! teardown;
363 pp-call = current_call;

364 ss.intq.internal_f ! post_process_f;
365 ss.cs = t[12]. dest;

366

367 2:(n = 13) —> glob_outs[ss.out.s_out] ! sig;
368 ss.cs = t[13].dest;

369

370 i(n = 14) —> glob_outs [ss.out.f_out] ! sig;
371 ss.cs = t[14]. dest;

372

373 i(n = 15) —> rcv_setup = true;

374 current_t_from_subs = t_from_subs;
375 last_call = current_call;

376 current_call = counter;

377 send_upack = true;

378 glob_outs[ss.out.t_out] ! upack;

379 ss.cs = t[15].dest;

380

381 i(n = 16) —> s_rcv_upack = true;
382 dump(ss.out.s_hold , glob_outs[ss.out.s_out]);
383 s_.communicating = true;

384 ss.cs = t[16]. dest;

385

386 i(n = 17) —> f_rcv_teardown = true;
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387 f_send_downack = true;

388 glob_outs[ss.out.f_out] ! downack;
389 s_send_teardown = true;

390 glob_outs[ss.out.s_out] ! teardown;
391 pp-call = current_call;

392 ss.intq.internal_s ! post_process_s;
393 ss.cs = t[17].dest;

394

395 si(n = 18) — ss.out.s_hold ! sig;
396 ss.cs = t[18].dest;

397

398 i(n = 19) —> ss.inq.s_in_ready = false;
399 ss.inq.f_in_ready = false;

400 ss.cs = t[19]. dest;

401

402 2:(n = 20) —> t_send_unavail = true;
403 glob_outs[ss.out.t_out] ! unavail;
404 t_send_teardown = true;

405 glob_outs[ss.out.t_out]|] ! teardown;
406 ss.intq.internal_t ! post_process_t;
407 ss.cs = t[20]. dest;

408

409 i(n = 21) —> s_send_teardown = true;
410 glob_outs[ss.out.s_out]| ! teardown;
411 pp-call = last_call;

412 ss.intq.internal_s ! post_process_s;
413 f_send_teardown = true;

414 glob_outs|[ss.out.f_out] ! teardown;
415 ss.intq.internal_f | post_process_f;
416 f_send_setup = true;

417 glob_outs[ss.out.f_out] ! setup;
418 setup_initial (current_t_from_subs)
419 ss.cs = t[21].dest;

420

421 i(n = 22) > s_send_teardown = true;
422 glob_outs[ss.out.s_out] ! teardown;
423 pp-call = last_call;

424 ss.intq.internal_s ! post_process_s;
425 f_send_teardown = true;

426 glob_outs[ss.out.f_out] ! teardown;
427 ss.intq.internal_f ! post_process_f;
428 f_send_setup = true;

429 glob_outs[ss.out.f_out] ! setup;
430 setup_initial (current_t_from_subs)
431 ss.cs = t[22]. dest;
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432

433 si(n = 23) > t_send_unavail = true;

434 glob_outs[ss.out.t_out] ! unavail;

435 t_send_teardown = true;

436 glob_outs[ss.out.t_out] ! teardown;

437 ss.intq.internal_t ! post_process_t;

438 ss.cs = t[23]. dest;

439

440 i(n = 24) —> ss.cs_post_process = t[24].dest;
441

442 (n = 25) —> ss.cs_post_process = t[25].dest;
443

444 i(n = 26) —> ss.cs_post_process = t[26].dest;
445

446 i(n = 27) —> ss.cs_post_process = t[27]. dest;
447

448 ci(n = 28) —> ss.cs_post_process = t[28].dest;
449

450 i(n = 29) > ss.inq.old_t_in_ready = false;
451 ss.cs_post_process = t[29].dest;

452

453 2:(n = 30) —> ss.inq.old_s_in_ready = false;
454 ss.cs_post_process = t[30]. dest;

455

456 i(n = 31) —> glob_outs[ss.out.old_s_out] ! downack;
457 ss.cs_post_process = t[31].dest;

458

459 i(n = 32) —> ss.cs_post_process = t[32].dest;
460

461 ii(n = 33) > ss.inq.old_-f_.in_ready = false;
462 ss.cs_post_process = t[33].dest;

463

464 i(n = 34) —> glob_outs[ss.out.old_f_out] ! downack;
465 ss.cs_post_process = t[34].dest;

466

467 ::(n = 35) —> ss.cs_post_process = t[35].dest;
468 fi;

469 };

470

471 inline en_trans(n) {

472 if

473 ::en_events(n) —>

474 if

475 :ren_cond(n) —> t[n].en_flag = true;

476 :relse —> t[n].en_flag = false;
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478
479
480
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484
485
486
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488
489
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494
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500
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504
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508
509
510
511
512
513
514
515
516
517
518
519
520
521

fi;

:relse —> t[n].en_flag = false;
fi;
}s
/s o/
active proctype BIB() {
ss.cs = initial;
t[0].dest = orienting;
t[0].in_chan = glob_ins[ss.inq.box_in];
t[1].dest = connecting_f;
t[2].dest = connecting_s;
t[3].dest = deciding-1;
t[3].in_.chan = glob_ins[ss.inqg.box_in];
t[4]. dest = transparent;
t[4].in_chan = glob_ins[ss.inq.f_in];
t[5].dest = initial;
t[5].in_.chan = glob_ins[ss.inq.s_in ];
t[6].dest = connecting_f;
t[6].in_-chan = glob_ins[ss.inq.s_in |;
[7].dest = error;
[7].in_chan = glob_ins[ss.inq.s_in];
t [8].dest = connecting_f;
t[9].dest = connecting_f;
t[10].dest = receiving;
[10].in_chan = glob_ins[ss.inq.box_in];
[11].dest = initial;
t[11].in_chan = glob_ins[ss.inq.f_in ];
t[12].dest = initial;
[12].in_chan = glob_ins[ss.inq.s_in];

142



522

523 t[13].dest = transparent;

524 t[13].in_chan = glob_ins[ss.inq.f_in |;
525

526 t[14].dest = transparent;

527 t[14].in_chan = glob_ins[ss.inq.s_in];
528

529 t[15].dest = deciding_2;

530 t[15].in_.chan = glob_ins[ss.inq.box_in];
531

532 t[16].dest = transparent;

533 t[16].in_chan = glob_ins[ss.inq.s_in];
5934

535 t[17].dest = initial;

536 t[17].in_.chan = glob_ins[ss.inq.f_in |;
537

538 t[18].dest = connecting_s;

539 t[18].in_chan = glob_ins[ss.inq.f_in |;
540

541 t[19].dest = error;

542 t[19].in_chan = glob_ins[ss.inq.f_in];
543

544 t[20].dest = connecting_s;

945

546 t[21].dest = connecting_f;

547

548 t[22].dest = connecting_f;

549

550 t[23].dest = transparent;

551

552 end_initial_state:

553 atomic {

554 reset () ;

555 en_trans (0);

556

557 if

558 ::t[0].en_flag —> next_trans(0); goto orienting_state;
559 ::else —> goto end_initial_state;
560 fi;

561 }

562

563 orienting._state:

564 atomic {

565 en_trans (1) ;

566 en_trans (2);
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567
968
5969
570
571
5972
973
974
575
576
o7
978
979
580
581
582
583
584
985
586
587
588
589
990
591
592
593
594
995
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

if

:t[1].en_flag —> next_trans(1l); goto connecting_-f_state;
:t[2].en_flag —> next_trans(2); goto connecting_s_state;
::else —> goto orienting_state;

fi;

}

connecting_f_state:

atomic {
reset () ;
en_trans (3);
en_trans (4);
en_trans (5);
en_trans (6) ;
en_trans (7);
if
::t[3].en_flag —> next_trans(3); goto deciding_-1l_state;
::t[4].en_flag —> next_trans(4); goto transparent_state;
::t[5]. en_flag —> next_trans(5); goto end_initial_state;
::t[6].en_flag —> next_trans(6); goto connecting_f_state;
20t [7].en_flag —> next_trans(7); goto error_state;
::else —> goto connecting_f_state;
fi;

}

deciding_1_state:

atomic {
en_trans (8);
en_trans (9);
if
::t[8].en_flag —> next_trans(8); goto connecting_f_state;
::t[9]. en_flag —> next_trans(9); goto connecting_-f_state;
::else —> goto deciding_1l_state;
fi;

}

transparent_state:

atomic {
reset () ;

en_trans (10);
en_trans (11);
en_trans (12);
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612 en_trans (13);

613 en_trans (14);

614

615 if

616 ::t[10].en_flag —> next_trans(10); goto receiving_state;
617 ::t[11].en_flag —> next_trans(11); goto end_initial_state;
618 ::t[12].en_flag —> next_trans(12); goto end_initial_state;
619 ::t[13].en_flag —> next_trans(13); goto transparent_state;
620 ::t[14].en_flag —> next_trans(14); goto transparent_state;
621 ::else —> goto transparent_state;

622 fi:

623 1

624

625 connecting_s_state:
626 atomic {

627 reset () ;

628 en_trans (15);

629 en_trans (16);

630 en_trans (17);

631 en_trans (18);

632 en_trans (19);

633

634 if

635 ::t[15]. en_flag —> next_trans(15); goto deciding_-2_state;
636 ::t[16].en_flag —> next_trans(16); goto transparent_state;
637 20t [17].en_flag —> next_trans(17); goto end_initial_state;
638 ::t[18].en_flag —> next_trans(18); goto connecting_s_state;
639 ::t[19].en_flag —> next_trans(19); goto error_state;

640 ::else —> goto connecting_s_state;

641 fi:

642 1

643

644 deciding_2_state:

645 atomic { //assert (false) ;

646 en_trans (20);

647 en_trans (21);

648

649 if

650 ::t[20].en_flag —> next_trans(20); goto connecting_s_state;
651 ::t[21].en-flag —> next_trans(21); goto connecting_f_state;
652 ::else —> goto deciding_2_state;

653 fi:

654 }

655

656 receiving_state:
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657
658
659
660
661
662
663
664
665
666
667
668
669

}

atomic {
en_trans (22);
en_trans (23);

if

::t[22].en_flag —> next_trans(22); goto connecting_f_state;
::t[23].en_flag —> next_trans(23); goto transparent_state;
::else —> goto receiving_state;

fi;

error_state:
skip;

670 };

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

active proctype pp_t() {

ss.cs_post_process = idle;
t[24].dest = t_work;

t[29].dest = idle;
[29].in_chan = glob_ins[ss.inq.old_t_in ];

[

end_idle_state:

}

t

}

atomic {
ss.intq.internal_t ? inter_sig;
en_trans (24);

if
::t[24].en_flag —> next_trans(24); goto t_work_state;
::else —> goto end_idle_state;

fi;

)

_work_state:
atomic {
reset_pp_-t();
en_trans (29);

if
::t[29]. en_flag —> next_trans(29); goto end_idle_state;
::else —> goto t_work_state;

fi;

)
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702

703 };

704

705 active proctype pp-s() {

706

707 ss.cs_post_process = idle;

708

709 t[25].dest = s_work;

710

711 t[28].dest = s_wait_up;

712

713 t[30].dest = idle;

714 t[30].in_chan = glob_ins[ss.inq.old_s_in |;
715

716 t[31].dest = s_work;

T17 t[31].in_chan = glob_ins[ss.inq.old_s_in];
718

719 t[35].dest = s_work;

720 t[35].in_.chan = glob_ins[ss.inq.old_s_in|;
721

722 end_idle_state:
723 atomic {

724 ss.intq.internal_s ? inter_sig;

725 en_trans (25);

726 en_trans (28);

727

728 if

729 ::t[25]. en_flag —> next_trans(25); goto s_work_state;
730 ::t[28].en_flag —> next_trans(28); goto s_wait_up_state;
731 ::else —> goto end_idle_state;

732 fi;

733 }

734

735 s_wait_up-_state:

736 atomic {

737 reset_pp-s();

738 en_trans (35);

739

740 if

741 ::t[35].en_flag —> next_trans(35); goto s_work_state;
742 ::else —> goto s_wait_up_state;
743 £i -

744 }

745

746 s_work_state:
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748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
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765
766
767
768
769
770
771
772
773
774
e
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791

}

atomic {
reset_pp-s();
en_trans (30);
en_trans (31);

if
::t[30].en_flag —> next_trans(30); goto end_idle_state;
::t[31].en-flag —> next_trans(31); goto s_work_state;
::else —> goto s_work_state;

fi;

)

b

active proctype pp_f() {

ss.cs_post_process = idle;

t[26].dest = f_wait_up;

t[27].dest = f_work;

t[32].dest = f_work;

t[32].in_chan = glob_ins[ss.inq.old_f_in ];

t[33].dest = idle;
t[33].in_chan = glob_ins[ss.inq.old_f_in |;

t[34].dest = f_work;
t[34].in_chan = glob_ins[ss.inq.old_f_in];

end_idle_state:

}

atomic {
ss.intq.internal_f 7 inter_sig;
en_trans (26) ;
en_trans (27);

if
::t[26].en_flag —> next_trans(26); goto f_wait_up_state;
::t[27]. en_flag —> next_trans(27); goto f_work_state;
::else —> goto end_idle_state;

fi;

)
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792

793 f_wait_up-state:

794 atomic {

795 reset_pp_f();

796 en_trans (32);

797

798 if

799 ::t[32].en_flag —> next_trans(32); goto f_work_state;
800 ::else —> goto f_wait_up_state;
801 fi:

802 }

803

804 f_work_state:

805 atomic {

806 reset_pp_f();

807 en_trans (33);

808 en_trans (34);

809

810 if

811 ::t[33].en_flag —> next_trans(33); goto end_idle_state;
812 ::t[34]. en_flag —> next_trans(34); goto f_work_state;
813 ::else —> goto f_work_state;

814 fi:

815 }

816

817 };

818

819 active proctype env() {
820 mtype f_sigu , s_sigu;

821 end:

822 do

823

824 i ss.inq.box_in_ready && !ss.inq.old_t_in_ready
825 && !ss.inq.old_s_in_ready && !ss.inq.old_-f_in_ready —>
826 if

827 ::atomic{

828 t_from_subs = true;

829 counter = counter + 1;

830 glob_ins [ss.inq.box_in] ! setup;

831 }

832 ::atomic{

833 t_from_subs = false;

834 counter = counter + 1;

835 glob_ins [ss.inq.box_in] ! setup;

836 }
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837 fi ;

838 ::s8s.inq.s_in_ready && !ss.inq.old_t_in_ready —>

839 if

840 ::glob_ins[ss.inq.s_in] ! other;

841 ::glob_ins[ss.inq.s-in] ! teardown;

842 fi unless {

843 if

844 ::(s_sigu == upack) —>

845 if

846 ::(current_t_from_subs) —> glob_ins[ss.inq.f_in] ! upack;
847 s_sigu = 0;

848 ::else —> glob_ins[ss.inq.s_in] ! upack;

849 s_sigu = 0;

850 fi ;

851 fi:

852 }

853 ::8s.inq.old_s_in_ready && !ss.inq.old_t_in_ready —>
854 if

855 ::glob_ins[ss.inq.old_s_in] ! downack;

856 ::glob_ins[ss.inq.old_s_in] ! upack;

857 fi:

858 ::s8s.inq.f_in_ready && !ss.inq.old_t_in_ready —>

859 if

860 ::glob_ins [ss.inq.f_in] ! other;

861 ::glob_ins[ss.inq.f_in] ! teardown;

862 fi unless {

863 if

864 ::(f_sigu = upack) —>

865 if

866 ::(current_t_from_subs) —> glob_ins[ss.inq.f_in] ! upack;
867 f_sigu = 0;

868 ::else —> glob_ins[ss.inq.s_in] ! upack;

869 f_sigu = 0;

870 fi:

871 fi:

872 }

873 ::s8s.inq.old_f_in_ready && !ss.inq.old_t_in_ready —>
874 if

875 ::glob_ins[ss.inq.old_f_in] ! downack;

876 ::glob_ins[ss.inq.old_f_in] ! upack;

877 fi;

878 ::ss.inq.old_t_in_ready —> glob_ins[ss.inq.old_t_in] ! downack;
879 od

880 wunless {

881 if
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882 ::atomic{
883 glob_outs[ss.out.
884 ::atomic{
885 glob_outs[ss.out.
886 ::glob_outs [ss.out.
887 ::glob_outs [ss.out.
888 ::atomic {
889
890 :
false;}
801 ::atomic {
892
893
894 ::atomic {
895
896
false;}
897
898
899
900 fi:
901 }
902 goto end;
903 1

f_out]

s_out |
t_out |
t_out ]

setup —> f_sigu

setup —> s_sigu
upack ;
unavail;

upack;}

upack;}

glob_outs[ss.out.t-out] ? teardown —> teardown_cleanup (0);}

::atomic{glob_outs[ss.out.s_out] ? downack —> ss.inq.s_in_ready =

glob_outs[ss.out.s_out] ? teardown —> teardown_cleanup(1);}
::glob_outs[ss.out.s_out] 7 other;

glob_outs[ss.out.f_out] ? teardown —> teardown_cleanup (2);}
::atomic{ glob_outs[ss.out.f_out] ? downack —> ss.inq.f_in_ready =

::glob_outs[ss.out.f_out] ? other;
::glob_outs[ss.out.old_s_out] ? downack;
::glob_outs[ss.out.old_f_out] ? downack;

904 1tl p0 {!(BTB@error_state) && ([]((rcv_setup && (current_call = 5))—>
<> (send_upack &&(current_call = 5))))}

905 never{(BTB@Qorienting_state && (!(pp-fQend_idle_state) && !(
pp-s@end_idle_state) && !(pp-t@end_idle_state))) && !(pp-call =
last_call)}
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Appendix E

Promela model - Error Interface

1 /x */
2 /x Errorlnterface %/

3 /* */
4

5 /x type definitions x/

6

7 mtype = { teardown , downack , other , setup , upack
8 mtype = { initial | terminating_c , final };

9

10 typedef Transition {

11 mtype dest;

12 chan in_chan;

13 bool en_flag = false;

14}

15

16 typedef in_q {
17 byte box_in = 0;
18 byte c_in = 1;

19 bool box_in_ready = true;

20 bool c_in_ready = false;

21 byte selected

22}

23 chan glob_ins [2] = [0] of {mtype};
24

25 typedef out_q {

26 byte box_out = 0;

27 byte c_out = 1;

28 };

29 chan glob_outs[2] = [0] of {mtype};
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

typedef SnapShot {
mtype cs;
in_q inqg;
out_q out

/x global wvariable declarations

k-

SnapShot ss;
Transition t[3];
mtype sig;

/x  Global Monitor Variables x/

bool rcv_setup = false;

bool send_upack = false;

bool c_send_unknown = false;
bool c_send_teardown = false;
bool c_rcv_downack = false;
bool c_rcv_teardown = false;
bool c_send_downack = false;

/*

/x Inline Functions x/

inline dump(cl , ¢2) {
byte aSig;
do
::cl 7 aSig —> c2 ! aSig;
::empty(cl) —> break;
od
b

inline reset () {

rcv_setup = false;
send_upack = false;
c_send_unknown = false;
c_send_teardown = false
c_rcv_downack = false;
c_rcv_teardown = false;
c_send_downack = false;
if
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75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

::glob_ins[ss.inq.box_in] ? sig —> ss.inq.selected = ss.inq.box_in;

::glob_ins[ss.inq.c.in]| 7 sig —> ss.inq.selected
fi
b

inline en_events(n) {
glob_ins[ss.inqg.selected]
};

t[n].in_chan;

inline en_cond(n) {
if
i(n = 0) && (sig == setup );
2i(n
2:(n
fi;
};

1) && (sig = downack );
2) & (sig = teardown );

inline next_trans(n) {
if
i(n = 0) —> rcv_setup = true;

ss.inq.c_in_ready = true;
glob_outs[ss.out.c_out] ! upack;
send_upack = true;
glob_outs[ss.out.c_out] ! unknown;
c_send_unknown = true;
glob_outs[ss.out.c_out] ! teardown;
c_send_teardown = true;
ss.cs = t[0]. dest;

i(n = 1) —>
c_rcv_downack = true;
ss.inq.c_in_.ready = false;
ss.cs = t[1].dest;

2i(n = 2) —>
c_rcv_teardown = true;
c_send_downack = true;
glob_outs[ss.out.c_out] ! downack;
ss.cs = t[2].dest;
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120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

inline en_trans(n) {

if
cen_events(n) —>
if
:ren_cond(n) —> t[n].en_flag = true;
::else —> t[n].en_flag = false;
fi;
::else — t[n].en_flag = false;
fi;
}s
active proctype ErrorInterface () {
ss.cs = initial;
t[0].dest = terminating_c;
t[0].in_chan = glob_ins[ss.inq.box_in];
t[1].dest = final;
t[1].in_chan = glob_ins[ss.inq.c_in];
t[2].dest = terminating_c;
t[2].in_chan = glob_ins[ss.inq.c_in];
initial_state:
atomic {
reset () ;

en_trans (0);

if

::t][0].en_flag
:else —> goto

fi;

)

terminating_c_state:

atomic
re

{

set ();

en_trans (1) ;
en_trans (2);

if

::t[1]. en_flag
::t[2]. en_flag
::else —> goto

—> next_trans (0); goto terminating_c_state;
initial_state;

—> next_trans(1l); goto final_state;
—> next_trans(2); goto terminating_c_state;
terminating_c_state;
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165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

}s

fi;

error_state:
final_state:
progress:

S

kip;

active proctype env() {
mtype c_sigt ;

end:

}

1t1
1t1
1t]
1t]

do
ss.inq.box_in_ready —>
ss.inq.box_in_ready = false;
glob_ins[ss.ing.box_in] ! setup;
::s8s.inq.c_in_ready —>
if
glob_ins[ss.inq.c.in] ! teardown;
glob_ins[ss.inq.c.in] ! other;
fi
od
unless {
if
::glob_outs[ss.out.c_out] ? upack;
::glob_outs [ss.out.c_out] ? unknown;
:ratomic { glob_outs[ss.out.c_out] ? teardown —>
glob_ins [ss.inq.c-in] ! downack;
}
::glob_outs [ss.out.c_out] ? downack;
::glob_outs[ss.out.c_out] ? other;
fi;
}
goto end;
p0 {[](rcv_setup —> <>send_upack)}
pl {[](c.rcv_teardown —> <>c_send_downack)}
p2 {[](rcv_setup —> ((!c_send_unknown) U send_upack)))}
p3 {[]((c-rcv_teardown || c_send_teardown) —> [](!c-send_unknown))}
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Appendix F

Promela Model - Receive Voice Mail

1 /x */

2 /x ReceiveVoiceMail */

3 /* */

4

5 /x type definitions x/

6

7 mtype = { teardown , downack , other , setup , upack , unavail |, avail |
dummy };

8 mtype = { initial , connecting_.o , transparent , switching , waitingodown

9 connecting_r , dialogue , abandonConnectiono , terminating_o , final

10 terminating_i , abandoning.r_.o , ending_o_r , waitingrup ,
terminating.r

11 error };

12

13 typedef Transition {

14 mtype dest ;

15 chan in_chan;

16 bool en_flag = false;

17}

18

19 typedef in_q {

20 byte box_in = 0;

21 byte i_in = 1;

22 byte r_in = 2;

23 byte o_in = 3;

24 bool box_in_ready = true;
25 bool i_in_ready = false;
26 bool r_in_ready = false;
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

bool o_in_ready = false;
byte selected

I
chan glob_ins[4] = [0] of {mtype};

typedef out_q {
byte box_out
byte i_out =
byte r_out = 2;
byte o_out = 3;
chan o_hold = [5] of {mtype};
chan r_hold = [5] of {mtype};

};

chan glob_outs[4] = [0] of {mtype};

0;

)

w o~

typedef SnapShot {
mtype cs;
in_q inq;
out_q out

}s
/% */

/x global wariable declarations x/

/s o/

mtype sig;
SnapShot ss;
Transition t[43];

/x  Global Monitor Variables x/
bool rcv_setup = false;

bool send_upack = false;

bool o_send_setup = false;
bool o_rcv_upack = false;
bool i_rcv_teardown = false;
bool i_send_downack = false;
bool o_send_teardown = false;
bool o_rcv_unavail = false;
bool i_send_avail = false;
bool r_send_setup = false;
bool o_rcv_teardown = false;
bool o_send_downack = false;
bool i_send_teardown = false;
bool r_rcv_upack = false;
bool o_rcv_downack = false;
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72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

bool r_send_teardown = false;

bool r_rcv_.dummy = false;
bool i_rcv_downack = false;
bool r_rcv_downack = false;

/* */

/+x Inline Functions x/

inline dump(cl , ¢2) {
byte aSig;
do
:rcl 7 aSig —> c¢2 ! aSig;
::rempty(cl) —> break;
od
}s

inline reset () {
rcv_setup = false;
send_upack = false;
o_send_setup = false;
o_rcv_upack = false;
i_rcv_teardown = false;
i_send_downack = false;
o_send_teardown = false
o_rcv_unavail = false;
i_send_avail = false;
r_send_setup = false;
o_rcv_teardown = false;
o_send_downack = false;
i_send_teardown = false;
r_rcv_upack = false;
o_rcv_downack = false;
r_send_teardown = false;
r.rcv.dummy = false;
i_rcv_downack = false;
r_rcv_downack = false;

if
::glob_ins[ss.inq.box_in] ? sig —> ss.inq.selected =
::glob_ins[ss.inq.i_in]
::glob_ins [ss
::glob_ins [ss
fi

.inq.o_-in|
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ss.inq.box_in;

? sig —> ss.inq.selected = ss.inq.i_-in;
.inq.r_in] 7 sig —> ss.inq.selected = ss.inq.r_in;
?7 sig —> ss.inq.selected = ss.inq.o_in;



117 inline en_events(n) {

118 glob_ins [ss.inqg.selected] = t[n].in_chan;

119 };

120

121 inline en_cond(n) {

122 if

123 i(n = 0) && (sig = setup );

124

125 i(n = 1) && (sig = upack );

126 si(n = 2) & (sig = teardown );

127 ci(n = 3) && ( sig != teardown && nfull(ss.out.o_hold) );
128 si(n = 4) && ( sig != teardown && full(ss.out.o_hold) );
129

130 c:(n = 5) && (sig = unavail );

131 2i(n = 6) && (sig = teardown );

132 i(n = 7) & (sig = teardown );

133 ii(n = 8) && ( sig != teardown );

134 i(n = 9) && ( sig != teardown );

135

136 2:(n = 10) && (sig = upack );

137 2:(n = 11) && (sig = downack );

138 i(n = 12) && (sig = teardown );

139 si(n = 13) && ( sig != teardown && nfull(ss.out.r_hold) );
140 i(n = 14) && (sig = teardown );

141 2:(n = 15) && ( sig != teardown && full(ss.out.r_hold) );
142

143 2:(n = 16) && (sig = downack );

144 ii(n = 17) && (sig = teardown );

145 si(n = 18) && ( sig != teardown );

146 2i(n = 19) & (sig = teardown );

147 ci(n = 20) & (sig = dummy );

148

149 (n = 21) && (sig = upack );

150 (n = 22) && (sig = teardown );

151 (n = 23) && ( sig != teardown );

152 (n = 24) && ( sig != teardown && full(ss.out.r_hold) );
153

154 ii(n = 25) && (sig = teardown );

155 si(n = 26) && ( sig != teardown );

156 si(n = 27) && (sig = dummy );

157

158 ci(n = 28) && (sig = upack );

159

160 si(n = 29) && (sig = downack );

161 ii(n = 30) && (sig = teardown );
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162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

fi;

b

inline

if

:(n

= 31) && (sig == downack );

= 32) && (sig == teardown );

= 33) & (sig = upack );

= 34) && (sig = downack );

= 35) & (sig = teardown );

= 36) && (sig = downack );

= 37) & (sig = downack );

= 38) && (sig = teardown );

= 39) & (sig = dummy );

= 40) & (sig = upack );

= 41) && (sig = downack );

= 42) & (sig = dummy );

next_trans(n) {

= 0) —> rcv_setup = true;
ss.inq.i-in_ready = true;
glob_outs[ss.out.i_out] ! upack;
send_upack = true;
glob_outs[ss.out.o_out] ! setup;
ss.inq.o_in_ready = true;
o_send_setup = true;

ss.cs = t[0]. dest;

= 1) —>
o_rcv_upack = true;
dump (ss.out.o_hold , glob_outs[ss.out.o_out]);

ss.cs = t[1].dest;

= 2) —>
i_rcv_teardown = true;
i_send_downack = true;
glob_outs[ss.out.i_out] ! downack;
ss.inq.i_in_ready = false;
o_send_teardown = true;
glob_outs[ss.out.o_out] ! teardown;
SS.Cs t[2]. dest;
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207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

i(n = 3) >

ss.out.o_hold ! sig;
ss.cs = t[3].dest;

ci(n = 4) —>
ss.inq.i_in_ready = false;
ss.inq.r_in_ready = false;
ss.inq.o_in_ready = false;

ss.cs = t[4]. dest;

i(n = 5) —>
o_rcv_unavail = true;
i_send_avail = true;
glob_outs[ss.out.i_out] ! avail;
o_send_teardown = true;
glob_outs[ss.out.o_out] ! teardown;
r_send_setup = true;
glob_outs|[ss.out.r_out] ! setup;
ss.inq.r_in_ready = true;

ss.cs = t[5].dest;

i(n = 6) —>
i_rcv_teardown = true;
i_send_downack = true;
glob_outs[ss.out.i_out] ! downack;
ss.inq.i_in_ready = false;
o_send_teardown = true;
glob_outs[ss.out.o_out] ! teardown;

ss.cs = t[6].dest;

(n = 7) >
o_rcv_teardown = true;
o_send_downack = true;
glob_outs|[ss.out.o_out] ! downack;
ss.inq.o_in_ready = false;
i_send_teardown = true;
glob_outs[ss.out.i_out] ! teardown;

ss.cs = t[7].dest;

i(n = 8) —>

glob_outs[ss.out.o_out] ! sig;
ss.cs = t[8].dest;

i(n = 9) >

glob_outs[ss.out.i_out] ! sig;
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252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

ss.cs = t[9].dest;

= 10) —>
r.rcv_upack = true;
dump(ss.out.r_hold , glob_outs[ss.out.r_out]);

ss.cs = t[10].dest;

= 11) —>
o_rcv_downack = true;
ss.inq.o_in_ready = false;

ss.cs = t[11].dest;

= 12) —>
i_rcv_teardown = true;
i_send_downack = true;
glob_outs[ss.out.i_out] ! downack;
ss.inq.i_in_ready = false;
r_send_teardown = true;
glob_outs[ss.out.r_out] ! teardown;

ss.cs = t[12].dest;

= 13) —>
ss.out.r_hold ! sig;
ss.cs = t[13].dest;

= 14) —>
o_rcv_teardown = true;
o_send_downack = true;
glob_outs|[ss.out.o_out] ! downack;

ss.cs = t[14].dest;

= 15) —>
ss.inq.i_in_ready = false;
ss.inq.r_in_ready = false;
ss.inq.o_in_ready = false;

ss.cs = t[15].dest;

= 16) —>
o_rcv_downack = true;
ss.inq.o_in_ready = false;

ss.cs = t[16].dest;

= 17) —>
i_rcv_teardown = true;
i_send_downack = true;
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297 glob_outs[ss.out.i_out] ! downack;

298 ss.inq.i-in.ready = false;

299 r_send_teardown = true;

300 glob_outs[ss.out.r_out] ! teardown;
301 ss.cs = t[17].dest;

302

303 ::(n = 18) —>

304 ss.cs = t[18].dest;

305

306 2i(n = 19) —>

307 o_rcv_teardown = true;

308 o_send_downack = true;

309 glob_outs [ss.out.o_out] ! downack;
310 ss.cs = t[19].dest;

311

312 i(n = 20) —>

313 rorev_dummy = true;

314 ss.cs = t[20]. dest;

315

316 i(n = 21) —>

317 r_rcv_upack = true;

318 dump(ss.out.r_hold , glob_outs[ss.out.r_out]);
319 ss.cs = t[21].dest;

320

321 i(n = 22) —>

322 i_rcv_teardown = true;

323 i_send_downack = true;

324 glob_outs[ss.out.i_out] ! downack;
325 ss.inq.i-in_.ready = false;

326 r_send_teardown = true;

327 glob_outs[ss.out.r_out] ! teardown;
328 ss.cs = t[22].dest;

329

330 2i(n = 23) —>

331 ss.cs = t[23].dest;

332

333 si(n = 24) —>

334 ss.inq.i_in_ready = false;

335 ss.inq.r_in_ready = false;

336 ss.inq.o-in_ready = false;

337 ss.cs = t[24].dest;

338

339 ci(n = 25) —>

340 i_rcv_teardown = true;

341 i_send_downack = true;
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342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

glob_outs|[ss.out.i_out] ! downack;

ss.inq.i-in_ready =

false;

r_send_teardown = true;
glob_outs[ss.out.r_out] ! teardown;

ss.cs = t[25]. dest;

i(n = 26) —>

glob_outs[ss.out.r_out] ! sig;

ss.cs = t[26].dest;

i(n = 27) —>

r_rev_dummy = true;
ss.cs = t[27].dest;

::(n = 28) —>

o_rcv_upack = true;
dump (ss.out.o_hold
ss.cs = t[28].dest;

2i(n = 29) —>

ss.cs = t[32].dest;

::(n = 33) —>

r_rcv_upack = true;
dump (ss.out.r_hold
ss.cs = t[33].dest;

, glob_outs[ss.out.o_out]);

o_rcv_downack = true;
ss.inq.o_in_ready = false;
ss.cs = t[29].dest;

i(n = 30) —>
o_rcv_teardown = true;
o_send_downack = true;
glob_outs|[ss.out.o_out] ! downack;
ss.cs = t[30].dest;

2:(n = 31) —>
i_rcv_downack = true;
ss.inq.i_in_ready = false;
ss.cs = t[31].dest;

2:(n = 32) —>
i_rcv_teardown = true;
i_send_downack = true;
glob_outs|[ss.out.i_out] ! downack;

, glob_outs[ss.out.r_out]);
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387

388 i(n = 34) —>

389 o_.rcv_downack = true;

390 ss.inq.o_in_ready = false;
391 ss.cs = t[34].dest;

392

393 ::(n = 35) —>

394 o_rcv_teardown = true;

395 o_send_downack = true;

396 glob_outs[ss.out.o_out] ! downack;
397 ss.cs = t[35].dest;

398

399 ii(n = 36) —>

400 o_rcv_downack = true;

401 ss.inq.o_in_ready = false;
402 ss.cs = t[36].dest;

403

404 i(n = 37) >

405 r_.rcv_downack = true;

406 ss.inq.r_in_ready = false;
407 ss.cs = t[37].dest;

408

409 i:(n = 38) —>

410 o_rcv_teardown = true;

411 o_send_downack = true;

412 glob_outs[ss.out.o_out] ! downack;
413 ss.cs = t[38].dest;

414

415 i(n = 39) >

416 rorev.dummy = true;

417 ss.cs = t[39].dest;

418

419 i(n = 40) —>

420 r_.rcv_upack = true;

421 ss.cs = t[40]. dest;

422

423 si(n = 41) —>

424 r_rcv_downack = true;

425 ss.inq.r_in_ready = false;
426 ss.cs = t[41]. dest;

427

428 2i(n = 42) —>

429 rorev_dummy = true;

430 ss.cs = t[42].dest;

431
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432 fi;
433 };

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

inline en_trans(n) {

if
:ren_events(n) —>
if
:ren_cond(n) —> t[n].en_flag = true;
::else —> t[n].en_flag = false;
fi;
:relse — t[n].en_flag = false;
fi;

?

b

ss.cs = initial;

t[0]. dest = connecting_o;
t[0].in_chan = glob_ins[ss.inqg.
t[1].dest = transparent;
t[1].in_.chan = glob_ins[ss.ing.
t[2].dest = abandonConnectiono;
t[2].in_chan = glob_ins[ss.inq.
t[3].dest = connecting_o;
t[3].in_chan = glob_ins[ss.ing
t[4].dest = error;

t[4].in_chan = glob_ins[ss.inq.
t[5]. dest = switching;
t[5].in_chan = glob_ins[ss.inq.
t[6].dest = terminating_o;
t[6].in_.chan = glob_ins[ss.inq.
t[7].dest = terminating_i;
t[7].in_chan = glob_ins[ss.inq.
t [8]. dest = transparent;
t[8].in_chan = glob_ins[ss.ing
t[9]. dest = transparent;
t[9].in_chan = glob_ins[ss.ing.
t[10].dest = waitingodown
t[10].in_chan = glob_ins[ss.ing
t[11].dest = connecting_r;
t[11].in_chan = glob_ins[ss.ing
t[12].dest = abandoning.r_o;
t[12].in_chan = glob_ins[ss.inqg.
t[13].dest = switching;
t[13].in_chan = glob_ins[ss.ing

active proctype ReceiveVoiceMail () {

box_in];
o_in|;

i_in];

.i_in];

i_in |;
o_in |;
i_in |;

o_in |;

.i_in];

o_in|;

.r_in];
.o_in];
i_in|;

cisin];
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477 t[14].dest = switching;

478 t[14].in_chan = glob_ins[ss.inq.o_in];
479 t[15].dest = error;

480 t[15].in_.chan = glob_ins[ss.inq.i_-in ];
481 t[16].dest = dialogue;

482 t[16].in_chan = glob_ins[ss.inq.o_in];
483 t[17].dest = ending_o_r;

484 t[17].in_chan = glob_ins[ss.inq.i-in |;
485 t[18].dest = waitingodown;

486 t[18].in_chan = glob_ins[ss.inq.i_in ;
487 t[19].dest = waitingodown

488 t[19].in_chan = glob_ins[ss.inq.o_in];
489 t[20].dest = waitingodown

490 t[20].in_chan = glob_ins[ss.inq.r_in ;
491 t[21].dest = dialogue;

492 t[21].in_chan = glob_ins[ss.inq.r_in];
493 t[22].dest = waitingrup;

494 t[22].in_chan = glob_ins[ss.inq.i-in |;
495 t[23].dest = connecting.r;

496 t[23].in_.chan = glob_ins[ss.inq.i_-in |;
497 t[24].dest = error;

498 t[24].in_chan = glob_ins[ss.inq.i_-in |;
499 t[25].dest = terminating_ r;

500 t[25].in_.chan = glob_ins[ss.inq.i-in |;
501 t[26].dest = dialogue;

502 t[26].in_.chan = glob_ins[ss.inq.i_-in ];
503 t[27].dest = dialogue;

504 t[27].in_chan = glob_ins[ss.inq.r_in];
505 t[28].dest = terminating_o;

506 t[28].in_chan = glob_ins[ss.inq.o_in];
507 t[29].dest = final;

508 t[29].in_chan = glob_ins[ss.inq.o_in];
509 t[30].dest = terminating_o;

510 t[30].in_chan = glob_ins[ss.inq.o_in];
511 t[31].dest = final;

512 t[31].in_chan = glob_ins[ss.inq.i_in |;
513 t[32].dest = terminating_i;

514 t[32].in_chan = glob_ins[ss.inq.i_-in |;
515 t[33].dest = ending_o_r;

516 t[33].in_chan = glob_ins[ss.inq.r_in|;
517 t[34].dest = waitingrup;

518 t[34].in_chan = glob_ins[ss.inq.o_in];
519 t[35].dest = abandoning.r_o;

520 t[35].in_.chan = glob_ins[ss.inq.o_in|;
521 t[36].dest = terminating_r;
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522
923
524
525
526
527
528
529
530
531
532
5933
5934
935
536

e+ e+ c+ c+ c+ o+ o+ttt
N N N N N O JU I U U JCRY U
O~ — OO W©W©OoWOo -~

.in_chan = glob_ins[ss.
.dest = terminating_o;
.in_chan = glob_ins[ss.
.dest = ending_o_r;
.in_chan = glob_ins[ss.
.dest = ending_o_r;
.in_chan = glob_ins[ss.
.dest = terminating_r;
.in_chan = glob_ins[ss.
.dest = final;
.in_chan = glob_ins[ss.
.dest = terminating_r;
.in_chan = glob_ins[ss.

537 initial_state:

538
539
540
541
542
543
544
545
546
547 }
548
549

atomic {

reset () ;
en_trans (0);

if

inqg.

ing.

inq

inq

ing.
ing.

ing.

o_in |;

r_in;

.o_in];

.r_in];

r_in;
r_inJ;

r_in |;

::t[0]. en_flag —> next_trans(0); goto connecting_o_state;

::else —> goto

fi;

550 connecting_o_state:

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566 }

initial_state;

atomic {
reset () ;
en_trans (1) ;
en_trans (2);
en_trans (3);
en_trans (4);
if
::t[1]. en_flag —> next_trans(1l); goto
::t[2].en_flag —> next_trans(2); goto
::t[3]. en_flag —> next_trans(3); goto
::t[4]. en_flag —> next_trans(4); goto
:else —> goto connecting_o_state;
fi;
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567

568

569 transparent_state:
570 atomic {

571 reset () ;

572 en_trans (5);

573 en_trans (6);

574 en_trans (7);

575 en_trans (8);

576 en_trans (9);

o7

978 if

579 ::t[5].en_flag —> next_trans(5); goto switching_state;

580 ::t[6].en_flag —> next_trans(6); goto terminating_o_state;
581 ::t[7].en_flag —> next_trans(7); goto terminating_i_state;
582 ::t[8].en_flag —> next_trans(8); goto transparent_state;
583 t[9]. en_flag —> next_trans(9); goto transparent_state;
584 ::else —> goto transparent_state;

985

586 fi:

587 }

588

589

590 switching_state:
591 atomic {

592 reset () ;

593 en_trans (10);

594 en_trans (11);

595 en_trans (12);

596 en_trans (13);

597 en_trans (14);

598 en_trans (15);

599

600 if

601 ::t[10].en-flag —> next_trans(10); goto waitingodown_state;
602 ::t[11].en_flag —> next_trans(11); goto connecting_r_state;
603 ::t[12].en_flag —> next_trans(12); goto abandoning.r_o_state;
604 ::t[13].en_flag —> next_trans(13); goto switching_state;
605 ::t[14].en_flag —> next_trans(14); goto switching_state;
606 t[15].en,f1ag —> next_trans(15); goto error_state;

607 :else —> goto switching_state;

608

609 fi -

610 }

611
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612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

waitingodown_state:
atomic {

reset () ;

en_trans (16);

en_trans (17);

en_trans (18);

en_trans (19);

en_trans (20);

if

2t [16].en_flag —>
it [17]. en_flag —
::t[18].en_flag —>
::t[19]. en_flag —>
:t[20].en_flag —

next_trans (
next_trans (
next_trans (
next_trans (
next,trans(ZO

1
1
1
1

::else —> goto “wﬂtingodoanstate,

fi;

connecting_r_state:

atomic {
reset () ;
en_trans (
en_trans (
en_trans (
en_trans (

fi;

3

dialogue_state:
atomic {
reset () ;
en_trans (25);

.en_flag —>
.en_flag —>
.en_flag —>
[24].en_flag —

::else —> goto connecting._r_stat

next_trans (21
next_trans (22
next_trans (23
next_trans (2

) ;
) ;
) ;
)
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)

goto
goto
goto
goto
goto

goto
goto
goto
goto

dialogue_state;

ending_o_r_state;
waitingodown_state;
waitingodown_state;
waitingodown_state ;

dialogue_state;

waitingrup_state;
connecting_r_state;
error_state;



657
658
659
660
661
662
663
664
665
666
667 }
668
669

en_trans (26);
en_trans (27);

if
[25].en_flag —> next_trans(25); goto terminating_r_state;
[26].en_flag —> next_trans(26); goto dialogue_state;
[27].en_flag —> next_trans(27); goto dialogue_state;
:else —> goto dialogue_state;

it
0t
it

fi;

)

670 abandonConnectiono_state:

671
672
673
674
675
676
677
678
679
680 }
681
682

atomic {

reset () ;
en_trans (28);
if

t[28]. en_flag —> next_trans(28); goto terminating_o_state;

:else —> goto abandonConnectiono_state;

fi;

683 terminating_o_state:

684
685
636
687
688
689
690
691
692
693
694
695 }
696
697

atomic {

reset () ;
en_trans (29);
en_trans (30);

if
t[29]. en_flag — next_trans(29); goto final_state;
t[30].en_flag —> next_trans(30); goto terminating_o_state;
::else —> goto terminating_o_state;

fi;

3

698 terminating_i_state:

699
700
701

atomic {

reset () ;
en_trans (31);
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702 en_trans (32);

703

704 if

705 ::t[31].en_flag —> next_trans(31); goto final_state;
706 ::t[32].en_flag —> next_trans(32); goto terminating_i_state;
707 ::else —> goto terminating_i_state;

708

709 fi;

710 )

711

712

713 abandoning_r_o_state:

714 atomic {

715 reset () ;

716 en_trans (33);

717 en_trans (34);

718 en_trans (35);

719

720 if

721 ::t[33].en_flag —> next_trans(33); goto ending_o_r_state;
722 ::t[34].en_flag —> next_trans(34); goto waitingrup_state;
723 t[ 5].en_flag —> next_trans(35); goto abandoning_r_o_state;
724 :else —> goto abandoning._r_o_state;

725

726 fi;

727 )

728

729

730 ending_o_r_state:
731 atomic {

732 reset () ;

733 en_trans (36) ;

734 en_trans (37);

735 en_trans (38);

736 en_trans (39);

737

738 if

739 ::t[36].en_flag —> next_trans(36); goto terminating_r_state;
740 20t [37].en_flag —> next_trans(37); goto terminating_o_state;
741 ::t[38].en_flag —> next_trans(38); goto ending-o_r_state;
742 t[39].en,f1ag —> next_trans(39); goto ending_o_r_state;
743 :else —> goto ending_o_r_state;

744

745 £i -

746 )
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747

748

749 waitingrup-state:

750 atomic {

751 reset () ;

752 en_trans (40);

753

754 if

755 ::t[40].en_flag —> next_trans(40); goto terminating._r_state;
756 ::else —> goto waitingrup_state;
757

758 fi;

759 }

760

761

762 terminating_r_state:

763 atomic {

764 reset () ;

765 en_trans (41);

766 en_trans (42);

767

768 if

769 ::t[41].en_flag —> next_trans(41); goto final_state;
770 ::t[42].en_flag —> next_trans(42); goto terminating._r_state;
771 ::else —> goto terminating._r_state;

772

773 fi;

774}

775

776 error_state:

777 final_state:

778 progress:

779

780 skip;

781 };

782

783 active proctype env() {

784 mtype i_sigt ,r_sigt , r_sigu ,o_sigt , o_sigu ;
785

786

787

788 end: do

789

790 :: ss.inqg.box_in_ready —>

791 ss.inq.box_in_ready = false;
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792 glob_ins[ss.inq.box_in]| ! setup;
793

794 ::s8s.inq.i-in_ready —>

795 if

796 :: glob_ins[ss.inq.i-in] ! teardown;
797 :: glob_ins[ss.inq.i_-in] ! other;

798 fi unless {

799 (i-sigt == teardown) —>

800 glob_ins[ss.inq.i-in] ! downack;
801 i_sigt = 0;

802 }

803 ::ss.inq.r_in_ready —>

804 if

805 ::glob_ins[ss.inq.r_in] ! dummy;

806 fi unless {

807 if

808 ::(r_sigu = upack) —>

809 glob_ins[ss.inq.r_in] ! upack;
810 r_sigu = 0;

811 ci(rosigt teardown && r_sigu = 0) —>
812 glob_ins[ss.inq.r_in] ! downack;
813 r_sigt = 0;

814 fi

815 }

816 ::8s.inq.o_in_ready —>

817 if

818 :: glob_ins[ss.inq.o-in] ! teardown;
819 :: glob_ins[ss.inq.o_in] ! other;

820 fi unless {

821 if

822 ::(o_sigu = upack) —>

823 glob_ins[ss.inq.o_in] ! upack;
824 glob_ins[ss.inq.o_in] ! avail;
825 o_sigu = 0;

826 ::(o.sigt = teardown && o_sigu = 0) —>
827 glob_ins[ss.inq.o.in] ! downack;
828 o_sigt = 0;

829 fi:

830 }

831 od

832 unless {

833 if

834 :ratomic { glob_outs[ss.out.r_out] ? setup —>
835 r_sigu = upack;

836 }
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837 ::atomic { glob_outs[ss.out.o_out]| ? setup —>

838 o_sigu = upack;

839

840 ::glob_outs[ss.out.i_out] ? upack;

841 ::glob_outs [ss.out.i_out] ? downack;

842 ::glob_outs[ss.out.i_out] ? avail;

843 :ratomic { glob_outs[ss.out.i_out] ? teardown —>
844 i_sigt = teardown;

845 }

846 ::glob_outs[ss.out.i_out] ? other;

847 :ratomic { glob_outs[ss.out.r_out] ? teardown —>
848 r_sigt = teardown;

849

850 ::glob_outs[ss.out.r_out] ? other;

851 ::atomic { glob_outs[ss.out.o_out| ? teardown —>
852 o_sigt = teardown;

853 }

854 ::glob_outs [ss.out.o_out] 7 downack;

855 ::glob_outs [ss.out.o_out] ? other;

856 fi:

857 )

858 goto end;

859

860 1tl p0 {(!ReceiveVoiceMail@error_state)
)}

861 1tl1 pl {(!ReceiveVoiceMail@error_state)
i_send_downack)}

862 1tl p2 {(!ReceiveVoiceMail@error_state)
i_rcv_downack)}

863 1tl1 p3 {(!ReceiveVoiceMail@error_state)
o_rcv_upack)}

864 1t1 p4 {(!ReceiveVoiceMail@error_state)
o_send_downack)}

865 1tl p5 {(!ReceiveVoiceMail@error_state)
o_rcv_downack)}

866 1tl p6 {(!ReceiveVoiceMail@error_state)
i_send_teardown) —> [](!i_send_avail))}

867 1tl p7 {(!ReceiveVoiceMail@error_state)
i_send_avail U send_upack))}

868 1tl p8 {(!ReceiveVoiceMail@error_state)
r_rcv_upack)}

869 1tl p9 {(!ReceiveVoiceMail@error_state)
r_rcv_downack) }

[](rcvosetup —> <> send_upack
[](i_rcv_teardown —> <>
[](i_send_teardown —> <>
[](o_send_setup —> <>
[](o-rev_teardown —> <>
[](o_send_teardown —> <>
[]((i-rcv_teardown ||
[1((rev_setup) = (!

[](r_send_setup —> <>

EEEEEEREEEEE

[](r_send_teardown —> <>
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Appendix G

Promela Model - Black Phone
Interface

/+* BlackPhonelnterface x/

1
2
3
4
5 /x type definitions x/
6
7
8

mtype = { teardown , downack , other , setup , upack , offhook |,
9 accepted , avail , dialed , onhook , waiting , rejected |,
10 unknown , unavail , nullified , none };
11

12 mtype = { post_process };
13 mtype = { initial | ringing , dialing , talking , connecting_c |,

14 silent , final , ringback , busytone , errortone |,
15 disconnected };

16

17 mtype = { idle , c_work };
18

19 typedef Transition {

20 mtype dest;

21 chan in_chan;

22 chan out_chan [1];

23 bool en_flag = false;
24}

25

26 typedef in_q {
27 byte box_in = 0;
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28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

byte old_c_in = 1;
byte c_.in = 2;
byte v_in = 3;
byte a_in = 4;

bool box_in_ready = true;
bool old_c_in_ready = false;
bool c_in_ready = false;
bool a_in_ready = true;
byte selected
}s
chan glob_ins [5] = [0] of {mtype};

typedef out_q {
byte box_out =
byte c_out = 1;
chan c_hold = [3] of {mtype};
I

0;

chan glob_outs[2] = [0] of {mtype};

typedef internal {
chan internal_¢ = [0] of {mtype};

}s

typedef SnapShot {
mtype cs;
mtype cs_post_process;
in_q inqg;
out_q out;
internal intq;};

Ve

/x global wariable declarations x/

Ve

bool rcv_setup = false;

bool send_upack = false;
bool c_rcv_teardown = false;
bool c_send_downack = false;
bool c_send_teardown = false;
bool c_send_setup = false;
bool c_rcv_upack = false;

SnapShot ss;
mtype sig;
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73 mtype inter_sig;

74

75 Transition t[51];

76

7 byte counter = 0;

78 byte last_call = 0;

79 byte pp_call = 0;

80 byte current_call = 0;

81

82 inline setup_initial() {

83 ss.inq.c_in_ready = true;

84 };

85

86 inline teardown_cleanup () {

87 ss.inq.c_in_ready = false;

88 ss.inq.old_c_in_ready = true;

89}

90 inline reset () {

91 rcv_setup = false;

92 send_upack = false;

93 c_rcv_teardown = false;

94 c_send_downack = false;

95 c_send_teardown = false;

96 c_send_setup = false;

97 c.rcv_upack = false;

98

99 if

100 ::glob_ins[ss.inq.box_in] ? sig —> ss.inq.selected = ss.inq.box_in;
101 ::glob_ins[ss.inq.c-.in] ? sig —> ss.inq.selected = ss.inq.c.in;
102 ::glob_ins[ss.inq.v_in] ? sig —> ss.inq.selected = ss.inq.v_in;
103 ::glob_ins[ss.inq.a-in] ? sig —> ss.inq.selected = ss.inq.a_in;
104 fi

105 };

106

107 inline en_events(n) {

108 if

109 ::(n = 0) && ss.inq.selected = ss.inq.box_in;

110 ::(n = 1) && ss.inq.selected = ss.inq.a_in;

111 ::(n = 2) && ss.inq.selected = ss.inq.v_in;

112 s:(n = 3) && ss.inq.selected = ss.inq.a_in;

113 i:(n = 4) && ss.inq.selected = ss.inq.a_in;

114 ::(n = 5) && ss.inq.selected = ss.inq.v_in;

115 ::(n = 6) && ss.inq.selected = ss.inq.v_in;

116 i:(n = 7) && ss.inq.selected = ss.inq.v_in;

117 ::(n = 8) && ss.inq.selected = ss.inq.c.in;
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118 2:(n = 9) && ss.inq.selected = ss.inq.c_in;
119 s:(n = 10) && ss.inq.selected = ss.inq.c_in;
120 si(n = 11) && ss.inq.selected = ss.inq.c_in;
121 ci(n = 12) && ss.inq.selected = ss.inq.a_in;
122 ::(n = 13) && ss.inq.selected = ss.inq.c_in;
123 ::(n = 14) && ss.inq.selected = ss.inq.v_in;
124 ::(n = 15) && ss.inq.selected = ss.inq.v_in;
125 si(n = 16) && ss.inq.selected = ss.inq.v_in;
126 i:(n = 17) && ss.inq.selected = ss.inq.c_in;
127 ::(n = 18) && ss.inq.selected = ss.inq.c_in;
128 2:(n = 19) && ss.inq.selected = ss.inq.c_in;
129 ::(n = 20) && ss.inq.selected = ss.inq.c_in;
130 si(n = 21) && ss.inq.selected = ss.inq.a_in;
131 si(n = 22) && ss.inq.selected = ss.inq.v_in;
132 c:(n = 23) && ss.inq.selected = ss.inq.v_in;
133 ::(n = 24) && ss.inq.selected = ss.inq.v_in;
134 ::(n = 25) && ss.inq.selected = ss.inq.c_in;
135 si(n = 26) && ss.inq.selected = ss.inq.c_in;
136 si(n = 27) && ss.inq.selected = ss.inq.c_in;
137 c:(n = 28) && ss.inq.selected = ss.inq.c_in;
138 c:(n = 29) && ss.inq.selected = ss.inq.c_in;
139 ::(n = 30) && ss.inq.selected = ss.inq.a_in;
140 ::(n = 31) && ss.inq.selected = ss.inq.v_in;
141 si(n = 32) && ss.inq.selected = ss.inq.v_in;
142 ::(n = 33) && ss.inq.selected = ss.inq.v_in;
143 c:(n = 34) && ss.inq.selected = ss.inq.c_in;
144 ::(n = 35) && ss.inq.selected = ss.inq.c_in;
145 ::(n = 36) && ss.inq.selected = ss.inq.c_in;
146 si(n = 37) && ss.inq.selected = ss.inq.c_in;
147 s:(n = 38) && ss.inq.selected = ss.inq.a_in;
148 2:(n = 39) && ss.inq.selected = ss.inq.v_in;
149 ::(n = 40) && ss.inq.selected = ss.inq.v_in;
150 ::(n = 41) && ss.inq.selected = ss.inq.v_in;
151 i:(n = 42) && ss.inq.selected = ss.inq.v_.in;
152 si(n = 43) && ss.inq.selected = ss.inq.c_in;
153 ii(n = 44) && ss.inq.selected = ss.inq.c_in;
154 ::(n = 45) && ss.inq.selected = ss.inq.c_in;
155 ::(n = 46) && ss.inq.selected = ss.inq.c_in;
156 ::(n = 47) && ss.inq.selected = ss.inq.a_in;
157 s:(n = 48) && ss.inq.selected = ss.inq.a_in;
158 2i(n = 49) && true;

159 ::(n = 50) && ss.inq.selected = ss.inq.old_c_in;
160 fi;

161 };

162
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163 inline reset_pp () {

164 if

165 ::glob_ins[ss.inq.old_c_in] ? sig —> ss.inq.selected
166 fi:

167 };

168

169

170 inline en_cond(n) {

171 if

172

173 i(n = 0) && ( sig = setup );

174 si(n = 1) && ( sig = offhook );
175

176 ii(n = 2) & ( sig = accepted );
177

178 i(n = 3) && ( sig = dialed );
179 si(n = 4) && ( sig == onhook );
180

181 c:(n = 5) & ( sig = waiting );
182 i(n = 6) && ( sig = rejected );
183 i(n = 7) && ( sig = nullified );
184 2:(n = 8) && ( sig == unknown );
185 i(n = 9) && ( sig == unavail );
186 2:(n = 10) && ( sig = none );

187 si(n = 11) && ( sig = teardown );
188 s:(n = 12) && ( sig = onhook );
189

190 (n = 13) && ( sig == upack );
191

192 ii(n = 14) & ( sig = waiting );
193 ::(n = 15) && ( sig = accepted );
194 ci(n = 16) && ( sig = rejected );
195 ii(n = 17) && ( sig == unknown );
196 ii(n = 18) && ( sig == unavail );
197 ci(n = 19) & ( sig = avail );
198 ci(n = 20) && ( sig = teardown );
199 s:(n = 21) && ( sig = onhook );
200

201

202 i(n = 22) && ( sig = accepted );
203 ci(n = 23) && ( sig = rejected );
204 si(n = 24) && ( sig = nullified );
205 ii(n = 25) && ( sig == unknown );
206 ii(n = 26) && ( sig == unavail );
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207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

(n = 27) && ( sig = avail );
(n = 28) && ( sig == none );
(n = 29) && ( sig == teardown );
(n = 30) && ( sig = onhook );
i(n = 31) && ( sig = waiting );
ii(n = 32) && ( sig = accepted );
si(n = 33) && ( sig == nullified );
2i(n = 34) && ( sig = unknown );
2:(n = 35) && ( sig = avail );
2:(n = 36) && ( sig = none );
si(n = 37) && ( sig = teardown );
::(n = 38) && ( sig == onhook );
i:(n = 39) & ( sig = waiting );
c:(n = 40) && ( sig = accepted );
si(n = 41) && ( sig = rejected );
si(n = 42) && ( sig == nullified );
ii(n = 43) && ( sig == unavail );
ci(n = 44) & ( sig = avail );
2:(n = 45) && ( sig = none );
si(n = 46) && ( sig = teardown );
si(n = 47) && ( sig = onhook );
(n = 48) && ( sig = onhook );
n = 49) && inter_sig = post_process;
2:(n = 50) && sig = downack;
fi;
}s
/*
/+x Inline Functions x/

inline next_trans(n) {

if

i(n = 0) >
setup_initial ();
glob_outs[ss.out.c_out]
send_upack = true;
current_call = counter;
ss.cs = t[0].dest;

rcv_setup = true;

upack;
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252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

:(n

i(n = 1) —> ss.cs = t[1].dest;

= 2) > glob_outs[ss.out.c_out|
ss.cs = t[2].dest;

i(n = 3) > c_send_setup = true;

setup_initial ();
glob_outs[ss.out.c_out] ! setup;
ss.cs = t[3].dest;

i(n = 4) > ss.cs = t[4]. dest;

pp-call = current_call;

2:(n = 5) —> ss.cs = t[5].dest;
(n = 6) —> ss.cs = t[6].dest;
(n=17) > ss.cs = t[7].dest;
(n = 8) —> ss.cs = t[8].dest;
(n=9) —> ss.cs = t[9]. dest;

i(n = 10) —> ss.cs = t[10].dest;

i(n = 11) — c.rev_teardown = true;

c_send_downack = true;
glob_outs|[ss.out.c_out] ! downack;
ss.inq.c_in_ready = false;

ss.cs = t[11].dest;

i(n = 12) —> c.send_teardown = true;

glob_outs[ss.out.c_out] ! teardown;
ss.intq.internal_c¢ ! post_process;
pp-call = current_call;

ss.cs = t[12].dest;

(n = 13) —> c.rcv_upack = true;

ss.cs = t[13].dest;

i(n = 14) —> ss.cs = t[14].dest;
(n = 15) —> ss.cs = t[15].dest;
(n = 16) —> ss.cs = t[16].dest;
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297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

(n = 17) —> ss.cs = t[17].dest;
(n = 18) —> ss.cs = t[18].dest;
(n = 19) — ss.cs = t[19].dest;

i(n = 20) > c_.rcv_teardown = true;
c_send_downack = true;
glob_outs[ss.out.c_out] ! downack;
ss.inq.c_in_ready = false;

ss.cs = t[20].dest;

si(n = 21) —> c_send_teardown = true;

glob_outs[ss.out.c_out] ! teardown;
ss.intq.internal_c ! post_process;
pp-call = current_call;

ss.cs = t[21].dest;

(n = 22) —> ss.cs = t[22].dest;
(n = 23) —> ss.cs = t[23].dest;
(n = 24) —> ss.cs = t[24].dest;
(n = 25) —> ss.cs = t[25]. dest;
(n = 26) — ss.cs = t[26].dest;
(n = 27) —> ss.cs = t[27].dest;
(n = 28) —> ss.cs = t[28].dest;
i(n = 29) > c_.rcv_teardown = true;
c_send_downack = true;
glob_outs[ss.out.c_out] ! downack;
ss.inq.c_in_ready = false;

ss.cs = t[29].dest;

i(n = 30) > c.send_teardown = true;

glob_outs[ss.out.c_out] ! teardown;
ss.intq.internal_c ! post_process;
pp-call = current_call;

ss.cs = t[30]. dest;
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342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

ss.intq.internal_c

ss.cs = t[38].dest

i

ci(n = 31) —> SS.CS t[31].dest;
(n = 32) —> SS.CS t[32]. dest;
(n = 33) —> SS.cCS t[33]. dest;
(n = 34) —> SS.Cs t[34]. dest;
(n = 35) —> $s.cCS t[35]. dest;
(n = 36) —> SS.cCS t[36].dest;
i(n = 37) > c_.rcv_teardown = true;
c_send_downack = true;
glob_outs[ss.out.c_out] ! downack;
ss.inq.c_in_ready = false;
ss.cs = t[37].dest;
2i(n = 38) > c.send_teardown = true;
glob_outs[ss.out.c_out] ! teardown;

post_process;
pp-call = current_call;

(n = 39) —> $5.CS t[39]. dest;

(n = 40) — SS.cCS t[40]. dest;

(n = 41) —> SS.Cs t[41].dest;

(n = 42) —> SS.cCS t[42]. dest;

(n = 43) — SS.CS t[43]. dest;

(n = 44) —> SS.CS t[44]. dest;

(n = 45) —> SS.cCS t[45]. dest;

(n = 46) — c.rev_teardown = true;
c_send_downack = true;
glob_outs[ss.out.c_out] ! downack;
ss.inq.c_in_ready = false;
ss.cs = t[46].dest;

(n = 47) —> c.send_teardown = true;
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387 glob_outs[ss.out.c_out] ! teardown;

388 ss.intq.internal_c ! post_process;
389 pp-call = current_call;

390 ss.cs = t[47]. dest;

391

392 ci(n = 48) —> ss.cs = t[48]. dest;
393

394 ::(n = 49) —> ss.cs_post_process = t[49].dest;
395

396 ::(n = 50) —> ss.inq.old_c_in_ready = false;
397 ss.cs_post_process = t[50].dest;

398

399 fi;

400 };

401

402 inline en_trans(n) {

403 if

404 :ren_events(n) —>

405 if

406 ::en_cond(n) —> t[n].en_flag = true;
407 ::else t[n].en_flag = false;

408 £i ;

409 :relse t[n].en_flag = false;

410 fi;

411}

412

413 active proctype BPI() {

414 ss.cs = initial;

415

416 t[0].dest = ringing;

417 t[0].in_chan = glob_ins[ss.inqg.box_in];
418

419 t[1].dest = dialing;

420 t[1].in_chan = glob_ins[ss.inq.a_in];
421

422 t[2].dest = talking;

423 t[2].in_chan = glob_ins[ss.inq.v_in];
424

425 t[3].dest = connecting_c;

426 t[3].in_chan = glob_ins[ss.inq.a_in];
427

428 t[4].dest = initial;

429 t[4].in_chan = glob_ins[ss.inq.a_in];
430

431 t[5]. dest = ringback;
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432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

.in_chan = glob_ins[ss.

.dest = busytone;

.in_chan = glob_ins[ss.
.dest = silent;
.in_chan = glob_ins[ss.

.dest = busytone;
.in_chan = glob_ins[ss.

.dest = busytone;
.in_chan = glob_ins[ss.

.dest = silent;

.in_chan = glob_ins[ss.

.dest = disconnected;

.in_chan = glob_ins[ss.

.dest = initial;

.in_chan = glob_ins[ss.

.dest = silent;

.in_chan = glob_ins[ss.

.dest = ringback;

.in_chan = glob_ins[ss.

.dest = talking;

.in_chan = glob_ins[ss.

.dest = busytone;

.in_chan = glob_ins[ss.

.dest = errortone;

.in_chan = glob_ins[ss.

.dest = busytone;

.in_chan = glob_ins[ss.

.dest = talking;

.in_chan = glob_ins[ss.

.dest = disconnected;

inq.v_in|;

inq.v_in];

inq.v_in|;

inq.c_in];

inq.c_in |;

inq.c_in];

inq.c_in];

inq.a_in |;

inq.c_in];

inq.v_in|;

inq.v_in];

inq.v_in |;

inq.c_in];

inq.c_in];

inq.c_in];
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477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

.in_chan = glob_ins[ss.
.dest = initial;
.in_chan = glob_ins[ss.

.dest = talking;
.in_chan = glob_ins[ss.

.dest = busytone;
.in_chan = glob_ins[ss.

.dest = silent;
.in_chan = glob_ins[ss.

.dest = errortone;
.in_chan = glob_ins[ss.

.dest = busytone;
.in_chan = glob_ins[ss.

.dest = talking;

.in_chan = glob_ins[ss.
.dest = silent;
.in_chan = glob_ins[ss.
.dest = disconnected;
.in_chan = glob_ins[ss.
.dest = initial;
.in_chan = glob_ins[ss.

.dest = ringback;
.in_chan = glob_ins[ss.

.dest = talking;
.in_chan = glob_ins[ss.

.dest = silent;
.in_chan = glob_ins[ss.

.dest = errortone;
.in_chan = glob_ins[ss.

.dest = talking;

inq.c_in |;

inq.a_in];

inq.v_in |;

inq.v_in];

inq.v_in |;

inq.c_in];

inq.c_in];

inq.c_in |;

inq.c_in];

inq.c_in |;

inq.a_in];

inq.v_in |;

inq.v_in];

inq.v_in];

inq.c_in];
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522
923
524
525
526
527
528
529
530
531
532
5933
5934
935
536
537
538
939
540
541
542
543
544
945
546
547
548
549
550
951
552
553
554
959
5956
557
558
559
560
961
562
563
564
565
5966

t[35].in_chan = glob_ins[ss.
[36].dest = silent;
t[36].in_chan = glob_ins[ss.
[37].dest = disconnected;
t[37].in_chan = glob_ins[ss.
t[38].dest = initial;
t[38].in_chan = glob_ins[ss.
t[39].dest = ringback;
[39].in_chan = glob_ins[ss.
t[40].dest = talking;
[40].in_chan = glob_ins[ss.
[41].dest = busytone;
t[41].in_chan = glob_ins[ss.
[42].dest = silent;
t[42].in_chan = glob_ins[ss.
t[43].dest = busytone;
t[43].in_chan = glob_ins[ss.
t[44].dest = talking;
t[44].in_chan = glob_ins[ss.
t[45].dest = silent;
[45].in_chan = glob_ins[ss.
[46].dest = disconnected;
t[46].in_chan = glob_ins[ss.
[47].dest = initial;
t[47].in_chan = glob_ins[ss.
t[48].dest = initial;
t[48].in_chan = glob_ins[ss.
end_initial_state:
atomic {
reset () ;

en_trans (0);

inq.c_in |;

inq.c_in];

inq.c_in |;

inq.a_in];

inq.v_in |;

inq.v_in];

inq.v_in];

inq.v_in|;

inq.c_in];

inq.c_in |;

inq.c_in];

inq.c-in |;

inq.a_in];

inq.a_in];
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567
968
5969
570
571
5972
973
974
575
576
o7
978
979
580
581
582
583
584
985
586
587
588
589
990
591
592
593
594
995
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

en_trans (1) ;

if

:t[0].en_flag —> next_trans(0); goto ringing_state;
::t[1].en_flag —> next_trans(1l); goto dialing_state;
::else —> goto end_initial_state;

fi;
}

ringing_state:
atomic {
reset () ;
en_trans (2);

if
::t[2].en_flag —> next_trans(2); goto talking_state;
::else —> goto ringing_state;

fi;

)

}

dialing_state:
atomic {
reset () ;
en_trans (3);
en_trans (4);

if
:t[3].en_flag —> next_trans(3); goto connecting_c_state;
::t[4]. en_flag —> next_trans(4); goto end_initial_state;
::else —> goto dialing_state;

fi;
}

talking_state:

atomic {
reset () ;
en_trans
en_trans

(
(
en_trans (
(
(
(

en._ trans
en_trans
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612 en_trans (11);

613 en_trans (12);

614

615 if

616 ::t[5].en_flag —> next_trans(5); goto ringback_state;

617 t[6].en_flag —> next_trans(6); goto busytone_state;

618 20t [7].en_flag —> next_trans(7); goto silent_state;

619 ::t[8].en_flag —> next_trans(8); goto busytone_state;

620 ::t[9]. en_flag —> next_trans(9); goto busytone_state;

621 t[10].en_flag —> next_trans(10); goto silent_state;

622 t[11].en_flag —> next_-trans(11); goto disconnected_state;
623 ::t[12].en_flag —> next_trans(12); goto end_initial_state;
624 ::else —> goto talking_state;

625

626 fi:

627 }

628

629 connecting_c_state:

630 atomic {

631 reset () ;

632 en_trans (13);

633

634 if

635 ::t[13].en-flag —> next_trans(13); goto silent_state;
636 ::else —> goto connecting_c_state;
637

638 fi;

639 }

640

641 silent_state:

642 atomic {

643 reset () ;

644 en_trans (14);

645 en_trans (15);

646 en_trans (16);

647 en_trans (17);

648 en_trans (18);

649 en_trans (19);

650 en_trans (20);

651 en_trans (21);

652

653 if

654 ::t[14].en_flag —> next_trans(14); goto ringback_state;
655 ::t[15].en_flag —> next_trans(15); goto talking_state;
656 ::t[16].en_flag —> next_trans(16); goto busytone_state;
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657 2t [17].en_flag —> next_trans(17); goto errortone_state;
658 ::t[18].en_-flag —> next_trans(18); goto busytone_state;

659 ::t[19]. en-flag —> next_trans(19); goto talking_state;

660 ::t[20].en_flag —> next_trans(20); goto disconnected_state;
661 ::t[21]. en_flag —> next_trans(21); goto end_initial_state;
662 ::else —> goto silent_state;

663

664 £i:

665 }

666

667 ringback_state:
668 atomic {

669 reset () ;

670 en_trans (22);

671 en_trans (23);

672 en_trans (24);

673 en_trans (25);

674 en_trans (26);

675 en_trans (27);

676 en_trans (28);

677 en_trans (29);

678 en_trans (30);

679

680 if

681 ::t[22].en_flag —> next_trans(22); goto talking_state;
682 ::t[23].en_flag —> next_trans(23); goto busytone_state;
683 ::t[24]. en_flag —> next_trans(24); goto silent_state;
684 ::t[25].en_flag —> next_trans(25); goto errortone_state;
685 ::t[26].en_flag —> next_trans(26); goto busytone_state;
686 ::t[27]. en_flag —> next_trans(27); goto talking_state;
687 ::t[28].en_flag —> next_trans(28); goto silent_state;
688 ::t[29].en_flag —> next_trans(29); goto disconnected_state;
689 ::t[30].en_flag —> next_trans(30); goto end_initial_state;
690 ::else —> goto ringback_state;

691

692 fi:

693 }

694

695 busytone_state:
696 atomic {

697 reset () ;

698 en_trans (31);
699 en_trans (32);
700 en_trans (33);
701 en_trans (34);
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702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
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739
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743
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en_trans
en_trans
en_trans
en_trans
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::else —> goto busytone_state;

fi;

}

3

errortone_state:

atomic
re

if
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{

set ();
en_trans
en_trans
en_trans
en_trans
en_trans
en_trans
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next_trans (
next_trans (
next_trans (
next_trans (

::else —> goto errortone_state;

fi;

)
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31)
32)
33)
34)
35) ;
36)
37)
38)

goto
goto
goto
goto
goto
goto
goto
goto

goto
goto
goto
goto
goto
goto
goto
goto
goto

ringback_state;
talking_state;
silent_state;
errortone_state;
talking _state;
silent_state;
disconnected_state;
end_initial_state;

ringback_state;
talking_state;
busytone_state;
silent_state ;

busytone_state;
talking_state;
silent_state;

disconnected_state;
end_initial_state;



747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
e
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791

}

disconnected_state:
atomic {
reset () ;
en_trans (48);

if
::t[48]. en_flag —>

next_trans (48); goto end_initial_state;

::else —> goto disconnected_state;

fi;
}
error_state:
skip;
b

active proctype pp() {
byte inter_sigl;
Ss.cs_post_process =

t[49].dest = c_work;
t[50].dest = idle;

-+

end_idle_state:
atomic {
ss.intq.internal_c ?
en_trans (49);

if
::t[49]. en_flag —

50].in_chan = glob._
[

idle ;

ins[ss.inq.old_c_in ;

inter_sigl;

next_trans (49); goto c_work_state;

::else —> goto end_idle_state;

fi;
}

c_work_state:
atomic {
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792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

reset_pp () ;
en_trans (50);

if
::t[50].en_flag —> next_trans(50); goto end_idle_state;

::else —> goto c_work_state;

fi;

active proctype env() {

end:

do

::ss.inq.box_in_ready && (ss.cs = initial) —>
counter = counter + 1;

glob_ins [ss.ing.box_in]!setup;
::s8s.inq.a_in_ready —>

if
::(ss.cs = initial) —> glob_ins[ss.inq.a_in] ! offhook;
glob_ins[ss.inqg.a_in] ! dialed;
::l(ss.cs = initial) && !(ss.cs = ringing) && !(ss.inq.old_c_in_ready
—>
glob_ins[ss.inq.a-in] ! onhook;
::(ss.cs = disconnected) —> glob_ins[ss.inq.a_-in] ! onhook;
::else —> glob_ins[ss.inq.a_in] ! other;
fi;
::ss.ingq.c.in_ready && !(ss.cs = ringing) —>
if
::glob_ins[ss.inq.c_in]| ! teardown;

::!(ss.cs = errortone) —> glob_ins[ss.inq.c_in] ! unknown;
::1(ss.cs = busytone) —> glob_ins[ss.inq.c.in] ! unavail;
I'(ss.cs = talking) — glob_ins[ss.inq.c_in] ! avail;

'(ss.cs = silent) —> glob_ins[ss.inq.c-in] ! none;
::1(ss.cs = talking) —> glob_ins[ss.inq.v_in] ! accepted;
!'(ss.cs = ringback) —> glob_ins[ss.inq.v_in] ! waiting;
!'(ss.cs = busytone) —> glob_ins[ss.inq.v_in] ! rejected;
::1(ss.cs = nullified) —> glob_ins[ss.inq.v_in] ! nullified;
fi;
::ss.inq.old_c_.in_ready —> glob_ins[ss.inq.old_c_in] ! downack;
od
unless {
if

::atomic{ glob_outs[ss.out.c_out] ? setup —> glob_ins[ss.inq.c_in] !
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838
839
840
841
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844

upack; }

::atomic{ glob_outs[ss.out.c_out] ? upack —> glob_ins[ss.inq.v_in] !

accepted; }

::glob_outs[ss.out.c_out] ? avail;
:: glob_outs [ss.out.c_out] ? downack;
::atomic{ glob_outs[ss.out.c_out] ? teardown —> teardown_cleanup(); }

fi;
}

goto end;

}s

never{(BPI@end_initial_state && !(pp@end_idle_state)) && !(pp-call =

current_call)}
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