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Abstract

Previously, compiler transformations have primarily focussed on minimizing program

execution time. This thesis explores some examples of applying compiler technology out-

side of its original scope. Specifically, we apply compiler analysis to the field of software

maintenance and evolution by examining the use of global data throughout the lifetimes

of many open source projects. Also, we investigate the effects of compiler optimizations

on the power consumption of small battery powered devices. Finally, in an area closer to

traditional compiler research we examine automatic program parallelization in the form of

thread-level speculation.
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Chapter 1

Introduction

The primary task of a compiler is to faithfully generate a machine executable translation of

a source program. However, in the initial stages of developing the first FORTRAN compiler

Backus [7] noted that the compiler must not only generate a correct translation but it must

also be capable of generating code that is comparable in efficiency to hand-coded assembly.

Over the last fifty year compilers have vastly increased in complexity in order to handle

the intricacies of new programming languages and computer architectures. Today it would

be very difficult to locate a programmer who could write code that would even come close

to being as efficient as compiler generated code. The interesting blend of research areas

that touch upon compiler theory has resulted in many novel ideas and techniques that are

now starting to overflow into other areas of computer science. This thesis explores some

examples of applying compiler technology outside of its original scope. Specifically, we

apply compiler analysis to the field of software maintenance and evolution by examining

the use of global data throughout the lifetimes of many open source projects. Also, we

investigate the effects of compiler optimizations on the power consumption of small battery

powered devices. Finally, in an area closer to traditional compiler research we examine

automatic program parallelization in the form of Thread-Level Speculation (TLS).

A focus of the software engineering discipline has been, and continues to be, the de-

velopment and deployment of techniques for producing reusable, extensible, and reliable

software [13]. One proven approach toward obtaining these goals, and others, is to develop
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software as a collection of independent modules [66, 46]. This technique is especially effec-

tive when the individual modules experience a low-degree of inter-dependence or coupling

[72]. Modules that are self-contained and communicate with others strictly through well-

defined interfaces are not likely to be affected by changes made to the internals of other

unrelated components. One such type of coupling that violates this principle is common

coupling which implicitly occurs between all modules accessing the same global data. In

Chapter 2 we use compiler analysis to explore the extent of common coupling and its

impact upon software maintainability in many popular open source programs. First, we

discuss advantages and disadvantages of using global data and then proceed to provide a

broad overview of software maintenance research following with an examination of past

maintenance research that investigated the effects of common coupling on maintainability.

Finally, we describe two case studies that we have performed on the usage of global data

in evolving software systems. Some of this work appears in [84] and [91].

Optimizing compilers targeting embedded processors have traditionally focussed on im-

proving performance and minimizing the size of the generated binary. However, given the

increased usage of mobile battery powered devices, optimizing compilers targeting embed-

ded processors must also take into account the power consumption [106]. In Chapter 3 we

examine compiler optimizations that target the power consumption of battery powered de-

vices. First we provide an overview of a wide range of optimizations and research that has

attempted to identify specific optimizations that can vastly improve power consumption.

Later we focus on optimizations that can be performed by a dynamic compiler inside of

a Java Virtual Machine (JVM) running on a small power constrained device. Finally, we

present our research from [90] that examined the power and performance benefits derived

from many standard and aggressive compiler optimizations.

Automatic program parallelization has been a goal of compiler writers for a very long

time. A considerable amount of success has been achieved for scientific code that contains

regular access patterns and control flow that can be analyzed by a compiler. The automatic

parallelization of general purpose programs is a much more difficult task. For a large class

of programs a compiler can only extract fine-grained parallelism available at the instruction

level. The movement toward small-scale parallel desktop computers in the form of single-

chip multiprocessors (CMP) has increased the pressure on compiler researchers to develop

2



new techniques to extract parallelism from a wider range of programs than before. One

such approach is thread-level speculation, an aggressive parallelization technique that can

be applied to regions of code that can not be parallelized using traditional static compiler

techniques. TLS allows a compiler to aggressively partition a program into concurrent

threads without considering the data- and control-dependencies that might exist between

the threads. Chapter 4 provides an overview of TLS discussing both the hardware and

compiler support required, compiler optimizations that can improve the performance of

TLS, and finally concluding with a description of our implementation of a Java TLS library.

Some of this work appears in [70].
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Chapter 2

An Analysis of Global Data Usage in

Open Source Software

2.1 Introduction

Software engineering concerns the development and deployment of techniques for produc-

ing reusable, extensible, and reliable software [13]. One proven approach toward obtaining

these goals, and others, is to develop software as a collection of mostly independent modules

[66, 46]. This technique is especially effective when the individual modules experience a

low-degree of inter-dependence or coupling [72]. Modules that are self-contained and com-

municate with others strictly through well-defined interfaces are less likely to be affected

by changes made to the internals of other unrelated components.

Although designing software that exhibits a low degree of coupling is usually desirable

from a maintenance perspective, if the modules of a software system are to communicate

at all some form of coupling must exist. In [72] the following seven types of coupling

are defined in increasing severeness: no coupling, data coupling, stamp coupling, control

coupling, external coupling, common coupling, and content coupling.

The focus of this chapter is on the second most undesirable form of coupling, common

coupling. This manifestation of coupling implicitly occurs between all modules accessing
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the same global data and although its use is discouraged most programming languages, old

and new alike, provide some level of support for global data. In [117], this form of coupling

is referred to as clandestine coupling. Through the application of static analysis typically

found inside of a compiler our research explored the software development practices and

evolutionary trends of common coupling. Specifically, we examined the global variable us-

age within several large open source projects over a significant time span. In our first study

we tracked the evolution of global variable usage throughout the projects in an attempt

to identify any apparent trends [84]. This work revealed that common coupling is indeed

rampant in many large software systems and naturally lead us to investigate the possible

detrimental impact that global variable usage may have upon software maintenance [91].

This chapter is organized as follows: first, we discuss the advantages and disadvantages

of using global data. We then provide a broad overview of software maintenance research

followed by an examination of past maintenance research that investigated the effects of

global data usage on maintainability. Finally, we describe two case studies that we have

performed on the usage of global data in evolving software systems.

2.2 Global Data

In this section, an overview of the typical reasons cited for avoiding the use of global

variables is presented. Conversely, specific circumstances for which the use of global data

may be warranted are also discussed.

2.2.1 The Drawbacks of Global Data Usage

A global variable is simply data that is defined1 in at least one module, but can be used

indiscriminately in any other module within the same software project. Right from the

start, software developers are taught in school that global variables are dangerous, since all

1Throughout most of this paper we will use the term “definition of a variable” to denote the allocation
of storage space for a variable. However, in a later section we will overload the term to also indicate that
a value has been assigned (written) to a variable.
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modules that reference the same global variable automatically become coupled. However,

it is our belief that without fully understanding all of the subtle implications of using global

data, misconceptions such as read-only access to globals or the judicious use of file scope

globals (e.g. statics) are safe practices, will continue to exist. For an in-depth discussion

on why global variables are harmful, the reader is referred to the classic paper “Global

Variable Considered Harmful” [115] and more recently [117, 89, 46, 66]. To summarize the

disadvantages:

• Unexpected aliasing effects can occur when global data is passed as a parameter to

a function that writes to the same global data [66].

• Unexpected side-effects, since a “hidden” write to global data may occur between

two uses [66].

• There is an increased effort in porting software to a multithreaded environment, since

all accesses occur directly and might be unprotected [66].

• Reusing code across projects with globals becomes more difficult since (a) the global

data must come with it or (b), time must be spent to remove the global data. This

is appropriately compared to a virus by McConnell in [66].

• Many languages (such as C++) do not specify the order of initialization for global

data defined across more than one source file (rather, it is implementation defined)

[99, 66].

• Global variables pollute the namespace and can cause name resolution conflicts with

other variable and function declarations.

• The code is harder to comprehend. Code that makes use of global variables is no

longer localized and the maintainer must direct their focus to other parts of the

program to understand a small part of the system’s behaviour [66, 46].

• Without accessors, there can be no constraint checking. Therefore, any module can

write any value, including incorrect ones, to the global variable.
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Given these reasons a programmer should be very cautious when tempted to introduce

a global variable into a program.

2.2.2 When is it Good to Use a Global?

Given the identified drawbacks of using global data, there are valid reasons when their use

is justifiable. Some of these include:

• If there exists state that is truly used throughout the entire program, then interfaces

can be streamlined by making the data global [66].

• Global data can be used to emulate named constants and enumerations for those

languages that do not support them directly [66].

• Consider a call-chain of arbitrary length, where the first function on the chain passes

a parameter needed by the last function on the call-chain. All functions on the chain

between the first and last simply forward the parameter so that it can be passed

to the last function. In this case, making the data global effectively cuts out the

“middle-man” [66].

Of the given reasons, the second in our opinion is the most compelling, and the last

reason the least. It appears that in this case one would substitute a lesser form of coupling

(a special case of stamp coupling [72] where more data than is needed is communicated)

with a worse form, common coupling.

2.3 Software Maintenance

The maintenance phase of the software life cycle has been identified as being the dominant

phase in terms of both time and money [110]. Even in the mid-1970s researchers and prac-

titioners began to perceive the vast amount of time and money that program maintenance

was consuming. Given the billions of lines of code that have been written since then, these
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costs have only increased. A classical example of the enormous resources that software

maintenance can consume was ensuring all vital systems were year-2000 compliant.

Logically, one could point to the code size, structure, age, complexity, development

language and the quality of the internal documentation as being the key indicators to the

maintainability of a project [65]. However, few empirical studies have examined the degree

to which these factors impact project maintainability. Evidence linking many of these

measures to an approximation of the maintenance effort for a product suggests that the

correlation is weak at best for many of these factors [57, 30, 41, 51, 9].

To improve the ability of software to age and successfully evolve over time, it is impor-

tant to identify system design and programming practices, which may result in increased

difficulty for maintaining the code base. This is especially true when considering the fact

that the cost of correcting a defect increases the later it is performed in the software life

cycle [39].

Software maintenance is formally defined by the IEEE [48] as:

Modification of a software product after delivery to correct faults, to improve

performance and other attributes, or to adapt the product to a modified envi-

ronment.

Lientz and Swanson [57] categorized software maintenance tasks into four types:

Corrective: This is the traditional idea of maintenance which involves the finding and

fixing of faults.

Adaptive: The process of updating the project to changes in the execution environment.

Perfective: Feature modification of the program in response to new user requirements.

Preventive: Improving the project (source code, documentation, etc.) in an attempt to

increase its maintainability.

Some researchers use the terms software evolution and software maintenance inter-

changeably, while others refine the idea of software evolution to include the activities of
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adaptive, perfective and preventative maintenance. All of these take a product in a new

direction while corrective maintenance simply rectifies a past mistake.

Now that a broad introduction to software maintenance has been given we proceed to

focus our discussion on characteristics intrinsic to the source code that effect its maintain-

ability. Furthermore, we concentrate on research that has examined the impact of using

global data on software maintenance effort. Lientz and Swanson [57] carried out one of

the first thorough investigations of software maintenance. Statistical analysis of a wide

range of data processing applications written mostly in COBOL and RPG was performed. A

broad spectrum of aspects that impact or are impacted by software maintenance was exam-

ined. Specifically, they examined the connection with the organizational structure of the

development department (whether or not there is a dedicated maintenance staff) and the

amount of time programmers spent on maintenance, properties of a project which impact

its maintainability (for example, age and size), the use of development tools and processes,

and finally, an analysis of aspects which make maintenance difficult from a software man-

ager’s perspective. We will restrict our discussion to their findings on maintenance effort

and direct the interested reader to the text for details on the other investigations.

Analysis of the vast amount of data collected enabled Lientz and Swanson to decompose

the amount of time spent performing maintenance tasks into each of the four types of

maintenance as illustrated in Figure 2.1 [57]. For the set of programs examined they found

that 20% of the time was spent on corrective maintenance, 25% on adaptive maintenance,

50% was consumed by perfective maintenance and lastly around 5% of the time was spent

performing preventative type maintenance.

Examination of the maintenance effort applied to the programs studied resulted in five

key cause and effect relationships [57]:

1. As software ages it tends to increase in size, which in turn increases the effort required

to maintain it.

2. As software grows the time spent debugging increases and hence so does maintenance

effort.
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Figure 2.1: A decomposition of the amount of time spent performing each type of mainte-

nance task according to [57].

3. As a project ages the experience level of the maintainers decreases due to employee

turnover, thereby increasing maintenance effort.

4. As the experience level of the maintainers decreases the amount of time spent de-

bugging increases, again also increasing maintenance effort.

5. A weak causal relationship was established between the age of software and its main-

tenance effort.

Around this same time Lehman published his influential work on software evolution [56,

10, 55]. Lehman also proposed his SPE taxonomy [55] (and later SPE+ [24]) of evolving

software systems in which defined three types: specification-based (S), problem-solving (P)

(in SPE+ taxonomy this type is renamed paradigm) and evolving (E). We restrict our

discussion to E-type systems since they encompass almost all real world programs. Over

a twenty year period Lehman formulated and revised his eight Laws of Software Evolution

governing large software systems (the collected laws can be found in [54]):

1. Continuing Change: An E-type program that is used must be continually adapted

else it becomes progressively less satisfactory.
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2. Increasing Complexity: As a program evolves its complexity increases unless work

is done to maintain or reduce it.

3. Self Regulation: The program evolution process is self regulating with close to

normal distribution of measures of product and process attributes.

4. Conservation of Organizational Stability: The average effective global activity

rate of an evolving system is invariant over the product lifetime.

5. Conservation of Familiarity: During the active life of an evolving program, the

content of successive releases is statistically invariant.

6. Continuing Growth: Functional content of a program must be continually in-

creased to maintain user satisfaction over its lifetime.

7. Declining Quality: E-type programs will be perceived as of declining quality unless

rigorously maintained and adapted to a changing operational environment.

8. Feedback System: E-type programming processes constitute multi-loop, multi-

level feedback systems and must be treated as such to be successfully modified or

improved.

Many evolutionary studies have been performed on open-source software due to their

ready availability as compared to proprietary software. For example, Godfrey and Tu [37]

examined a large number of stable and development releases of the Linux Operating System

kernel [2] over a six year period. Contrary to Lehman’s conjecture that system growth

would decrease over time, they found that Linux exhibited a super-linear growth rate.

Although it is outside the scope of this survey, a detailed treatment of the differences

between maintaining open-source and closed-source projects can be found in [110].

Schach et al. [88] and later Yu et al. [117] examined global variable usage in the Linux

kernel. Their research focused on clandestine coupling, which is introduced without a

programmer’s knowledge when creating a new module that references global data and

hence is coupled to existing modules that also refer to the same global data without any

changes to the existing code. The initial work in [88] discovered that slightly more than
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half of all modules examined suffered from some form of clandestine coupling. The latter

work in [117] continued the examination of clandestine coupling between kernel and non-

kernel modules in Linux. Applying definition-use analysis from compiler theory [67], they

identified all modules that defined (wrote) a global variable and the others which used

(read) each global. They found that a large number of global variables are defined in

non-kernel modules and referenced by a kernel module. Given the lack of control over non-

kernel modules by kernel developers, Schach and Yu raised concerns over the longevity of

Linux, suggesting that maintainability issues might arise because of this common coupling

found to exist between kernel and non-kernel modules [88, 117]. However, the analysis

was based simply on the bulk number of definitions and uses is misleading. Consider a

global variable v, which is both defined and used in kernel and non-kernel modules. Using

the Schach and Yu’s classification v is an instance of the most hazardous type of global

variable. Agreeably, this type of common coupling is harmful, and should be avoided.

Suppose that we know the following facts about the definitions and uses of v:

• it is defined2 100 times in non-kernel code,

• it is used 2 times in non-kernel code,

• it is defined 10 times in kernel code,

• it is used 500 times in kernel code.

A simple examination of the number of definitions and uses, as the authors did, would cause

us to classify v as an extremely risky variable, and should cause concern for maintainers.

However, further scrutiny of the numbers is required. How is one to know where the 500

reported uses of v inside of kernel code came from? What if the majority (or all) of the

uses present inside of the kernel stem from definitions that also reside in the kernel? This

would imply that the impact of the coupling associated with v is much less than the original

study would imply and it may even downgrade the classification of v. The data reported

by Schach and Yu should have taken this into account, however doing so is an inherently

difficult process.

2Here defined is from compiler terminology meaning it was assigned a value.
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A more conclusive examination would have used definition-use chains [67]. Def-use

chains connect uses of a variable with their exact point of definition. Using a code analysis

tool to construct the def-use chains, we could then identify the chains that are formed from

the definition of a variable in a non-kernel module and then later used in a kernel module.

Variables such as this represent the dangerous occurrences of common coupling and are

exactly the instances of common coupling that Yu et al. were attempting to identify. Any

conclusions made by Schach and Yu based simply on the number of definitions and uses

without taking into account where each use flowed from should be questioned.

Epping et al. [30] examined the connection between vertical (specification) and hori-

zontal (inter-module) design complexities and maintainability (change) effort during the

acceptance and maintenance phases of two FORTRAN systems. Specifically, in regards to

global variable usage, they examined the number of globals defined, the actual number of

globals referenced, and maintainability, which they characterized by change effort. The

change effort-metric was further categorized as being isolation effort (identifying which

modules required modification), implementation effort (develop, program, and test the

change) or locality (the number of modules also requiring modification). Additionally, the

subset of all the tasks performed during the maintenance phase that were bug fixes was

also identified. Results for all changes (bug and enhancement) in the maintenance phase

indicated a correlation between change isolation to both the number of global variables and

the amount of references to globals. However, no link was found to exist in implementa-

tion effort or locality. When focusing strictly on maintenance phase bug fixes, both change

isolation and implementation effort were found to correlate to the use of global variables.

Banker, Davis and Slaughter [9] studied the link between software development prac-

tices and their later effects in the maintenance phase. Their study examined the application

of 29 perfective maintenance tasks to 23 COBOL programs. They examined how the use of

automatic code generators and pre-packaged libraries impacts software complexity, which

in turn increase the difficulty in performing maintenance tasks. It is commonly believed

that by employing automatic code generators and packaged libraries the initial software

development costs could be decreased and this reduction of effort would continue into the

latter maintenance phase of the project. This perception was confirmed for the use of

packaged libraries for their sample. However, contrary to intuition, the use of automatic
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code generators actually lead to an increase in the amount of time spent on maintenance

tasks.

2.3.1 Extracting Software Evolution Data from Version Control

System Repositories

An increasing number of studies have exploited information available on open-source projects

in version control system repositories such as the Concurrent Versions System (CVS) [17]

or Subversion. This section provides a brief introduction to CVS focusing on information

that can be used to measure change in the project and follows with an overview of software

evolution research which harnesses CVS information.

An Overview of the Concurrent Versions System

The Concurrent Versions System is a popular source code management tool (especially in

the open-source community), which tracks the various changes made to files and enables

controlled concurrent development by many developers. Each version of a file is uniquely

identified through the use of a revision number. The initial version of a file is assigned

the revision number 1.1 after which, each time an update of the file is checked into the

repository, a new number is assigned to the file (for example, 1.2).

CVS revision numbers are internal to the system and have no relationship with software

releases. Instead, symbolic names or tags are applied by a programmer to the set of files

which constitute a particular release of a system. Other useful information stored by CVS

include which developer modified the code, the date it was checked in, and the number of

lines of code added and deleted. Further discussion of CVS is delayed until the presentation

of our study in §2.4.3.

Research Using Data Mining of CVS Repositories

The application of data mining to various artifacts of the software development process

to discover and direct evolution patterns has recently received extensive treatment, most
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notably in [31, 34, 32, 123]. A common measure of software change throughout much of this

research is based upon the number of CVS updates to a file (i.e. CVS revision numbers)

and the total lines of code changed between releases.

Harrison and Walton [41] examined three years of CVS data for a large number of small

legacy FORTRAN programs. The measures of maintenance effort examined included number

of file revisions checked into CVS, Lines Of Code (LOC) changed, and structural complexity

(number of GOTO statements and cyclomatic complexity). Their findings indicated that

the number of LOC changed offered only a minor insight into future maintenance costs

while no correlation between any of the structural characteristics of the programs and

maintenance costs were found to exist.

Zimmermann et al. [123] applied data mining to CVS repositories in order to determine

various source components (i.e., files, functions, variables) that are consistently changed in

unison. Integration of their tool into an IDE enabled them to suggest, with a reasonable

degree of accuracy, other parts of the code that might need to be modified given a change

to an element in which it has been determined to have been changed together in the past.

Similar work appeared in [34], however, this work operated at the higher-level granularity

of classes.

2.4 Case Studies of Global Data Usage

This section presents two studies that we have undertaken that examine global variable

usage in a large number of widely deployed, large scale open-source systems. In §2.4.2

we examine the role of global data over a software system’s lifetime, and in §2.4.3 we

investigate the link between global variable usage and it’s effect on software maintainability.

The published results can be found in [84] and [91], respectively.
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2.4.1 An Automated Approach to Measuring Global Variable

Usage

Our objective was to study both the presence and role of global data in several large-scale

software systems, and therefore, it was important to devise an approach for automatically

collecting such data. Whereas in [117] global data usage was collected for a single version

of the Linux kernel, our focus was more extensive, as we were interested in examining

numerous releases of a project. Consider one of the projects examined in our case study

presented later in Section 2.4.2: GNU GCC. In total, we examined 51 releases of GCC

across a 16 year time period, and the cumulative source code base consists of millions of

lines of code. Clearly, examining the pervasiveness of global data over the evolution of

such a large-scale software system requires an automated process. This section provides

an overview and discussion of the design and implementation of our global data collection

tool called gv-finder.

Tool Design Criteria

Several different approaches, each with their own distinct advantages and disadvantages

were evaluated for the automatic collection of global data. The following design criteria

were used as a basis for this evaluation:

1. Scalability. In order to examine numerous versions of several software systems, the

tool must offer an acceptable level of performance in both its execution time and

memory footprint. Furthermore, it is important that the tool maintains this level of

performance with large-scale software systems where the number of source lines of

code may be in the millions. In particular, we wanted to have a global data collection

process with roughly the same performance characteristics as the software project’s

compilation stage.

2. Multiple Source Language Support. We felt it was also highly desirable to

provide the ability for studying software systems written in different programming
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languages3. This is considered important since a single software system may be

written in more than one programming language (for example, C and C++ naturally

go hand-in-hand), and since interesting differences in global data usage may exist

between similar projects written in different languages.

3. Accuracy. The collection process must be complete, specifically, it must record

all possible information on global data usage and must do so accurately. Ideally,

any such tool should also provide verbose output allowing for the verification of the

reported results.

4. Build Environment Integration. Most importantly, the tool must integrate seam-

lessly within a project’s existing build environment. This is a critical design goal as

the build environment for large-scale software projects can be extremely complicated

and sensitive to change [37]. Furthermore, the build environment can vary greatly

from project to project (e.g. the use of autoconf [107] versus the use of imake [29]).

Seamless integration enables us to sidestep both understanding and modification of

sophisticated build environments, thereby allowing the effort to be focused solely on

global data collection.

The first approach considered was to implement the tool as a specialized source code

parser, modified to record global data usage each time a global is encountered in the

source code. The specialized parser could be a stand-alone tool, or embedded within a

compiler infrastructure (such as the open source GNU compiler gcc [97]). However, this

approach failed to meet the design criteria of multi-language support since a modified

parser would have to be written for each programming language of interest. Furthermore,

global variable detection is complicated by the intricate details of various programming

language semantics. For example, in languages such as C and C++ special attention must

be paid to scoping rules (where local variables can shadow global variables), conditional

compilation directives that may change which global data references actually exist in the

software, and other preprocessing directives such as macros which can easily obfuscate

global data usage, to name a few.

3Provided of course, that the programming language supports the notion of global data which some do
not.
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A second approach considered was to modify the backend of the gcc compiler. Im-

plementing global variable detection within a compiler at a level lower than the frontend

satisfies all of the above design criteria. Multiple programming languages can now be

targeted since the backend uses a common intermediate representation for all supported

source languages. Global variable usage and detection can then be performed on the com-

mon representation and associated data structures (e.g. symbol table) already created by

the compiler. Unfortunately, this approach was quickly eliminated due to an exceptionally

steep learning curve required to modify gcc internals.

Finally, the approach decided upon was to write a stand-alone tool similar to a linker,

which takes as input a collection of relocatable object files.

gv-finder: A Linker-like Tool for Analyzing Global Data Usage

To examine the evolution of global data throughout the lifetime of a project, we created a

linker-like tool capable of extracting global variable usage data from object files. This tool,

named gv-finder, intercepts relocatable Executable and Linking Format (ELF) object

files (non-stripped) at the linking stage of the compilation process, analyzes the files and

then passes the files on to the actual linker. This process of collecting global variable

information fits seamlessly into the build process and enables the analysis of evolutionary

trends over entire product lifetimes.

Relocatable object files are usually produced as the output from either a compiler or

assembler, and contain the machine code representation for some source code entity (e.g.,

a file or a concatenation of files) along with information needed by both the linker and

loader [81]. The following two observations lead us to adopt this approach:

• If a source file uses global data that happens to be instantiated within a different

source file, the corresponding relocatable object file will contain a symbol table en-

try indicating that the global data is undefined. When the linker is invoked with

the complete set of object files used for constructing the target application, it will

replace any reference to an undefined global symbol with the address of the variable

instantiated in one of the other object files.
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• If a source file instantiates and exports global data, the corresponding relocatable

object for that file will contain a symbol table entry declaring the data as global.

The linker uses the address of this global symbol (also found in the symbol table) to

resolve references to the same symbol occurring in other external source files, as well

as for any internal references.

Therefore examination of the symbol and relocation tables in the object files enables

the identification of the names of all global variables, the module in which each is defined,

as well as the names of all modules that reference each global. This approach is in essence

the same as the second approach considered with the intermediate representation being

the binary object file itself. In addition to satisfying all of our design criteria, this method

offers the advantage of being portable across different compiler suites. This may be useful

if an application only compiles with a certain version of a compiler, or a specific company’s

compiler since native compilers for a given platform all target a common standard object

file format.

It should be noted that this approach to global data analysis requires the target ap-

plication to be compiled. This turned out to be a challenge for the very early versions

of the software studied in Section 2.4.2, as language standards, system header files, and

the required build tools have also evolved independently, and tend not to be backward

compatible. However, for global variable analysis, it is only required that the source files

compile, even if the resulting executable does not run correctly (or at all). Therefore, with

a relatively small investment in time, we found that many of the older versions could be

compiled by strategically adding fix-up macros, re-using configuration files across different

versions and, in the worst-case scenario, simply removing offending lines of code (less than

100 lines of code were commented out in any given release).

Our analysis of relocatable ELF object files makes the following distinctions between

different types of global data. We classify each reference to global data as either true, static

or external.

• True Global Data. If an object file contains a definition of a symbol marked as

“global”, the data is then classified as true global data. This data can be referenced
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in any other module without restriction, simply by referring to the symbol’s name.

Usage of a true global variable is considered the most dangerous due to the implicit

coupling between any and all modules that reference the same global symbol [117].

• Static Global Data. If an object file contains a definition of global data which is

marked as “local” then the global data is classified as static. This occurs in languages

such as C and C++ where global data is declared with the static keyword. Static

global data can only be used in the file that declares the variable, and therefore can

not introduce “clandestine” coupling [117] with other external modules. However,

all the other disadvantages associated with using global data are applicable to static

data, and therefore we feel it is important to make the distinction as static data is

still potentially dangerous and undesirable.

• External Global Data. If one or more object files contain an undefined reference to

global data, but no object file is found to provide a matching definition, we consider

the symbol to be external to the application. This occurs when an application makes

use of a library which exports a global symbol. A common example is the use of

stdout from the C standard library. This is the least severe type of global data since

the application itself is not responsible for the design of the libraries it depends upon.

In general, determining if a symbol table entry refers to global data can be difficult and

time consuming since entries that refer to external data, and entries that refer to external

functions contain identical properties (binding, type, and size [103]). Although we could

search each included library and their dependencies for a matching symbol to disambiguate

the reference (much as the linker would), we employ a more efficient technique. Instead,

we locate each reference to the global symbol in the executable image, and disassemble the

instruction containing the reference. If the instruction is a call or jmp, then it follows that

the symbol must be a function. Alternatively, if the instruction is not a call or jmp, then

it can be safely concluded that the symbol references global data. This approximation is

effective, since unlike a linker, gv-finder must only determine if the symbol is external

data, and does not need to fully resolve the reference.

gv-finder targets 32-bit little-endian ELF relocatable object files on x86 based archi-

tectures [50]. Input to gv-finder should be the same set of object files used in the linking
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Figure 2.2: Integration of gv-finder into a project’s build environment.

stage for producing the target application, and the output is a file containing the extracted

information on global variable usage within the application. Figure 2.2 illustrates how

gv-finder integrates into an application’s existing build environment. Typically, within

the build environment only tools such as ar, ld, or the compiler itself receive as input a col-

lection of compiled relocatable object files. The wrapper script gv-finder-wrapper is used

to intercept any calls made to each of these tools. A symbolic link to gv-finder-wrapper

is created for each of the tools in the gv-finder directory which is subsequently added to

the user’s PATH environment variable.

In this way, calls to the compiler, linker, and archive manager are seamlessly intercepted.

When invoked, the wrapper script is able to determine which program it was invoked for

(cc, ld or ar), thereby allowing the correct tool to be executed in the required manner after

gv-finder has been executed. In addition, the wrapper also tries to locate the source file
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used to create each object file passed to gv-finder. The discovered source files are then

passed as a collection to the external tool sclc [4] which performs accurate line counting

for various programming languages (counts are reported for raw lines of code, blank lines,

commented lines, and non-commented source lines). In this manner, only those source files

that contribute to the final executable image are considered in the analysis.

After symbolic links for each of the required build tools have been made and the PATH

variable has been set to include the gv-finder directory, global variable analysis is ready

to proceed. This is achieved by simply changing into the application’s source directory,

and executing the command make4. For example, consider the sequence of commands used

to gather the global variable usage information on a release of emacs:

j2selby@mesa> cd /usr/home/j2selby/bin

j2selby@mesa> for i in cc ld ar; do ln -sf gv-finder-wrapper $i; done

j2selby@mesa> export PATH=‘pwd‘:PATH

j2selby@mesa> cd ~/work/projects/emacs-21.4

j2selby@mesa> ./configure

j2selby@mesa> make CC=cc AR=ar LD=ld

For each project target (executable, or library) two files will be produced: a <target>.sclc

file containing source line counts, and a <target>.gv-finder file containing the global

variable analysis. The gv-finder file is composed of three sections: a header containing

a summary of the analysis, a table of static global data information, and a table of true

global data information (entries in this table with a question mark for their module name

are interpreted as external global data). Each section of the output file is now discussed

to provide the reader with an idea of what results can and can not be interpolated from

the analysis..

The header of a gv-finder output file is shown in Figure 2.3. In addition to record-

ing the absolute number of global variables discovered, a decomposition of each type as

described above is also reported. The total number of functions, as well as the number

4Possibly after running configure, imake, or other required build scripts.
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SUMMARY:
========
Processor time used during global variable analysis (sec):   7.50

Total memory used during analysis (KB):                   5620.59

Total number of analyzed ELF object files:                     72
  −> Number of ’bad’ ELF object files:                          0

Total number of discovered global variables:                 2751
  −> Number of true global variables:                        2328
  −> Number of static global variables:                       395
  −> Number of external global variables:                      28

Total number of discovered functions:                        3015
  −> Number of functions using a true global variable:       2203
  −> Number of functions using a static global variable:      441
  −> Number of functions using an external global variable:    73

Total number of relocation entries to global data:          25066
  −> Number of rel. entries to true global varaibles:       22516
  −> Number of rel. entries to static global varaibles:      2380
  −> Number of rel. entries to extern global varaibles:       170

Figure 2.3: An example of the output reported in the header of a gv-finder data file.

of functions that refer to a global variable of a particular type is also measured. Finally,

information on relocation entries to the global data is presented.

Each ELF file contains a relocation table for the executable code of the object file.

Entries in this table may contain a “link” to a global symbol defined in the object file’s

symbol table. If such an entry exists, a compiler-generated machine instruction refers to

a specific global variable. It should be mentioned that the number of such entries in this

table is not necessarily an accurate count of source code references since it is possible that

a single relocation table entry may in turn represent several references. This can occur

if the instruction pointed to by the relocation entry loads the global variable’s address

into a register, and other instructions downstream simply re-use the same register, and

hence do not directly require the global variable’s address. For a more accurate count, a

flow graph would need to be constructed from the object code, and alias analysis would

have to be performed. However, all case-studies presented here have been compiled with

no optimizations enabled; a practice that we have found increases the accuracy of global
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dispnew.o::syms_of_display()                                         2

12  must_write_spaces             term.o                   1    3    5   

dispnew.o::line_hash_code()                                          1   
dispnew.o::line_draw_cost()                                          1   
dispnew.o::update_frame_line()                                       1   
term.o::term_init()                                                  2   

dispnew.o::line_draw_cost()                                          1  

13  Vglyph_table                  dispnew.o                2    1    4  

term.o::encode_terminal_code()                                       1

14  glyph_pool_count              dispnew.o                3    0    3   

dispnew.o::new_glyph_pool()                                          1
dispnew.o::free_glyph_pool()                                         1
dispnew.o::check_glyph_memory()                                      1

>>>> TRUE GLOBAL VARIABLE TABLE <<<<

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#   GLOBAL VARIABLE NAME          ELF FILENAME           LFR  EFR  REFS 

Figure 2.4: An example of the data collected by gv-finder on each global variable.

reference counts, since register reuse is limited. Regardless, our global data reference

analysis represents a conservative estimate of global data usage, and in reality it is almost

certainly higher.

It is important to note that we do not distinguish between definitions and uses of a

global variable. Unlike [117], in this research we do not consider the use of a global variable

to be safer than a definition. In the absence of accessors, if a global variable can be read

from in a module, then the same module is also free to (intentionally or not) write a value

to the global variable.

A snippet of the global variable table section from a gv-finder output file is displayed

in Figure 2.4. In this table, three different global variables and their defining modules are

shown. Below each entry, the functions and (their containing files) that refer to the global

variable is listed. The LFR column stands for Local Function References and represents
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Lines  Blank  Cmnts   NCSL     AESL     
=====  =====  =====  =====  ==========  =======================================
    9      2      6      1         2.5  ./pre−crt0.c  (C)
 6701   1206   1453   4082     10205.0  ./dispnew.c  (C)

 1074    132    308    642      1605.0  ./scroll.c  (C)
15136   2420   3190   9584     23960.0  ./xdisp.c  (C)

 2578    350    267   1975      4937.5  ./frame.c  (C)

...........

...........

...........

185476  27460  31504  129092    322730.0  −−−−− C −−−−−  (67 files)
198130  29676  33094  138035    376388.0  ***** TOTAL *****  (69 files)

12654   2216   1590     8943     53658.0  −−−−− C++ −−−−−  (2 files)
 1020    149    254      667      1667.5  ./widget.c  (C)
  147     26     36       86       215.0  ./vm−limit.c  (C)

Figure 2.5: An example of the output generated by the sclc tool used to collect accurate

source line counts of the examined projects. A function might reference both true and

external data and therefore totals for each type are not expected to add up.

the number of functions defined within the same module that reference the global variable.

Similarly, the EFR column stands for the number of External Function References, and

refers to the number of functions defined outside of the defining module that refer to the

global variable. Finally, the References column indicates the total number of references

(e.g. relocation table entries) found to refer to the global variable. Although it is not

shown, the static variable table is identical, with the exception that all EFR counts must

be zero as no external function can reference static data.

In Figure 2.5, a portion of an sclc file is shown. Each source file that is determined

to contribute to the application’s executable image is listed with line counts. The last line

of this file presents an accumulation of line counts for all files analyzed by gv-finder.
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Results presented later in Section 2.4.2 use line counts computed in this manner, and not

line counts for the entire source tree.

The integration of gv-finder at the linkage stage enables us to bypass build envi-

ronment issues and, more importantly, to base our results solely on the actual modules

included in the final binary. Our analysis is restricted to the specific global variable ref-

erences that are present in the final executable and not those present in the entire source

code base. This eliminates the possibility of counting equivalent global variable references

multiple times that are not present in the executable due to reasons such as conditional

inclusion of object files for specific machine architectures and operating systems. The dis-

advantage of our link-time analysis is that gv-finder requires a successful compilation of

the target executable. When analyzing older releases (e.g., we studied versions of Emacs

over ten years old), the build process often fails due to dependencies on deprecated APIs

(either library or OS). Rather than omit releases that failed to build, we deployed four

different machines each recreating a specific, older build environment needed to satisfy

various releases. The use of different systems introduced a minimal amount of error, since

all of the machines are of the same architecture (x86, Linux), and therefore are equally

affected by external factors affecting the source code (such as conditional compilation).

A tool similar to gv-finder is described in [102], which uses the output of objdump to

gather global symbol information. We chose to extract the data ourselves since we already

had an existing infrastructure for analyzing ELF object files and in doing so are able to

gather results with greater accuracy and efficiency.

2.4.2 The Pervasiveness of Global Data in Evolving Software

Systems

In this study we investigated the role of global data in evolving software systems [84].

It can be argued that most software developers understand that the use of global data

has many harmful side-effects and thus should be avoided. We are therefore interested in

the answer to the following question: if global data does exist within a software project,

how does the usage of it evolve over a software project’s lifetime? Perhaps the constant
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refactoring and perfective maintenance reduces global data usage or, conversely, perhaps

the constant addition of features and rapid development promotes an increasing reliance on

global data? We are also interested in examining if global data usage patterns are useful as

a software metric. For example, if a large number of global variables are added across two

successive versions, is this indicative of an interesting or significant event in the software’s

lifetime? The focus of this research is twofold: first, to develop an effective and automatic

technique for studying global data usage over the lifetime of large software systems and

second to leverage this technique in a case-study of global data use for several large and

evolving software systems in an effort to attain answers to these questions.

We approached this project with two antagonistic views of software evolution. In the

first view, early releases of a software project are seen as pristine, and that as the software

ages, entropy takes hold and it enters into a constant state of decay and degradation [77].

Accordingly, one may hypothesize about the pervasiveness of global data with this view in

mind:

Since evolving software is in a perpetual state of entropy, the degree of main-

tainability will decrease partially due to an increase in both the number and

usage of global variables within an aging software project.

Conversely, another view is that software is in a constant state of refactoring and

redesign and, along with perfective maintenance, one can conclude that the early releases

of a software project are somewhat unstructured and, as the project ages, the design and

implementation become more stable and mature. With this view in mind, one might

suggest the following about the pervasiveness of global data in evolving software:

As software evolves in an iterative development cycle of constant refactoring and

redesign, the degree of maintainability will increase partially due to a decrease

in both the number and usage of global variables within an evolving software

project.

Although both hypotheses are convincing when viewed in isolation, it appears to us

that it is more likely that neither will apply uniformly to all evolving software systems.
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Instead, we propose that the defining characteristics of each software system (such as

the development model, development community, relative age, project goals, etc.) are the

factors determining which viewpoint is more influential. In particular, we adopt the ternary

classification of Open Source Software (OSS) as defined by Nakakoji et al. [68]. The three

types of OSS, and predictions on the global data usage for each, are:

1. Exploration-Oriented. Software that has the goal of sharing knowledge and in-

novation with the public. Such software usually consists of a single main branch

of development, that is tightly controlled by a single leader. In such a project we

predict to see very few global variables and, as the software evolves, a decrease if any

change in global variable usage.

2. Utility-Oriented. This type of software is feature-rich and often experiences rapid

development, possibly with forks. The development community typically consists of a

small number of primary developers surrounded by many “peripheral” programmers

[68]. In this category of software, we expect to see a relatively high reliance on global

data, that will gradually increase over the software’s lifetime, possibly with periods

of refactoring.

3. Service-Oriented. Software in this category tends to be very stable and devel-

opment is relatively inactive due to its large user-base and small developer group.

Unlike exploration-oriented software, where a single person has complete authority,

a small number of “council” members fulfill the decision-making role. For software of

this type, we predict global data use to be higher than exploration-oriented software

but less than utility-oriented software. As the software evolves, we also expect to

observe a decrease in reliance upon global data.

In the formulation of these categories Nakakoji et al. [68] designates that all software

developed by GNU are examples of exploration-oriented projects. This may have been true

in the past however, the vast number of projects are now developed under diverse method-

ologies. For this research we will modify their classification slightly by placing projects into

categories based on characteristics of their development community and project goals rather
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than the organization that they are developed by. Furthermore, as projects evolve they

transition from one classification type to another. Typically, projects begin as exploration-

or utility-oriented and as they mature and gain a wider user base they become an essential

service-oriented project [68]. Due to this evolving nature of the development community

and project goals and hence our designation of a project as belonging to a specific category,

we will attempt to select the type that the project was for the majority of the releases that

we studied it over.

Case Study Overview

Over the course of this study we examined one example from each of the three classifications

of OSS projects defined in [68]. Using our approach, we analyzed the primary binaries

from many popular open-source projects, including GCC, Emacs, GDB, Vim, Make, and

PostgreSQL.

GCC The GNU Compiler Collection (GCC) are arguably the most important and pivotal

set of projects that lead to the widespread adoption of the open source movement. GCC

is actually a set of programming language frontends and a shared compiler backend [97].

From that collection we examined two of the main targets that comprise the GNU C

compiler proper (gcc). First, we selected the core target cc1 that functions as the front-

and middle-ends of gcc. It handles parsing, construction of the intermediate representation

and application of high- and mid-level optimizations. We analyzed only the “hand-written”

code and not the extensive amount of automatically generated code that is incorporated

into cc1. Second, we examined libbackend.a, a library linked with cc1 that performs

code analysis, optimization and machine code generation. Originally, the functionality of

libbackend was implemented inside of cc1 until release 3.0 of GCC when most of the

libbackend code was extracted from cc1.

Although the initial releases of gcc were written by Richard Stallman many developers

soon became involved in the project and began contributing code. However, the gcc main-

tainers were slow to incorporate updates leading many developers to fork off experimental

branches [1]. A group of developers unified these various branches in the formation of the
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EGCS project which started as an offshoot of the gcc 2.8 release. The pace of development

of EGCS was unmatched by the original gcc branch until it was decided that the EGCS

offshoot would become the main branch of GCC for release 2.95. gcc is considered to be

the prototypical example of an exploration-oriented project[68].

A table displaying the release dates and the number of uncommented, non-white Source

Lines Of Code (SLOC) for all of the releases of gcc that we examined is presented in

Table 2.1. We also examined all of the EGCS releases however, we did not notice a

significant difference in global variable usage and therefore only report the results of releases

of gcc.

Emacs The GNU Emacs editor is one of the most widely used projects developed by

GNU. It was originally developed by Richard Stallman, who still remains one of the

project maintainers. Given the development process and community that supports Emacs,

Nakakoji et al. [68] identified it as an exploration-oriented project.

Our examination of Emacs consisted of fifteen releases stretching as far back as 1992.

Specifically, we examined temacs, the C core of the editor that contains the LISP interpreter

and basic I/O handling [96]. Release dates and lines of code pertaining to the releases that

we studied can be found in Table 2.2.

GDB The GNU debugger gdb, is a core development utility along with gcc and make.

Development of gdb is controlled by members of a steering committee and therefore we

consider it to be a service-oriented project. The structure of gdb was reorganized in release

5.0 to export the functionality of gdb to other applications. This resulted in the creation

of the library libgdb.so.a, the binary that we examined in this study. Information on

the eleven releases spanning seven years can be found in Table 2.3.

Vi IMproved (Vim) The Vi IMproved (Vim) editor began as an open-source version

of the popular VI editor, and has now eclipsed the popularity of the original Vi. Vim

was created by Bram Moolenar, who based it upon another editor, Stevie[3]. Develop-

ment of Vim centres around Moolenar, with other developers contributing mostly small
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Release Date SLOC Release Date SLOC

1.38 12/1990 58,318 3.1 05/2002 23,340 / 313,290

1.39 01/1991 58,413 3.1.1 07/2002 23,343 / 313,600

1.40 06/1991 58,911 3.2 08/2002 23,350 / 313,621

1.41 08/1992 59,383 3.2.1 11/2002 23,366 / 314,047

2.0 02/1992 100,717 3.2.2 02/2003 23,497 / 314,234

2.1 03/1992 101,525 3.2.3 04/2003 23,668 / 314,237

2.2.2 06/1992 104,218 3.3 05/2003 26,280 / 319,310

2.3.3 12/1992 111,467 3.3.1 08/2003 26,363 / 319,661

2.4.5 06/1993 119,564 3.3.2 10/2004 26,442 / 319,819

2.5.8 01/1994 129,471 3.3.4 05/2004 26,469 / 321,507

2.6.3 11/1994 138,786 3.3.5 09/2004 26,594 / 321,585

2.7.2 11/1995 142,593 3.3.6 05/2005 26,620 / 321,875

2.7.2.1 06/1996 142,607 3.4.0 04/2004 27,079 / 353,156

2.7.2.2 01/1996 142,615 3.4.1 06/2004 27,106 / 353,359

2.7.2.3 08/1997 142,621 3.4.2 09/2004 27,084 / 353,482

2.8.0 01/1998 162,178 3.4.3 11/2004 27,090 / 353,644

2.8.1 03/1998 162,039 3.4.4 05/2005 27,206 / 353,888

2.95 07/1999 187,542 3.4.5 11/2005 27,437 / 353,868

2.95.1 08/1999 187,566 3.4.6 03/2006 27,437 / 353,892

2.95.2 10/1999 187,619 4.0.0 04/2005 28,715 / 425,405

2.95.3 03/2001 188,095 4.0.1 07/2005 29,285 / 425,545

3.0 06/2001 25,979 / 250,794 4.0.2 09/2005 29,400 / 425,919

3.0.1 08/2001 25,981 / 251,217 4.0.3 03/2006 29,487 / 426,202

3.0.2 10/2001 25,992 / 251,271 4.1.0 02/2006 29,466 / 513,775

3.0.3 12/2001 26,001 / 251,381 4.1.1 05/2006 29,468 / 514,005

3.0.4 02/2002 26,037 / 251,345

Table 2.1: Chronological data for the releases of cc1 examined in this study. Starting at

release 3.0 the number of SLOC is reported for both cc1 and libbackend (seperated by a

‘/’).
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Release Date SLOC Release Date SLOC

18.59 10/1992 35,128 20.5 12/1999 104,821

19.25 05/1994 69,824 20.6 02/2000 104,833

19.30 11/1995 80,329 20.7 06/2000 104,934

19.34 08/1996 82,533 21.1 10/2001 128,677

20.1 09/1997 94,856 21.2 03/2002 128,890

20.2 09/1997 94,858 21.3 03/2003 129,092

20.3 08/1998 103,690 21.4 02/2005 129,092

20.4 07/1999 104,667

Table 2.2: Chronological data for the releases of emacs examined in this study.

Release Date SLOC Release Date SLOC

5.0 05/2000 120,292 6.1 04/2004 149,443

5.1 11/2001 121,763 6.2 07/2004 149,336

5.1.1 01/2002 121,779 6.3 09/2004 158,077

5.2 04/2002 122,389 6.4 02/2005 163,647

5.3 12/2002 123,417 6.5 06/2006 166,852

6.0 03/2003 134,168

Table 2.3: Chronological data for the releases of libgdb examined in this study.
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Release Date SLOC Release Date SLOC

2.8 08/1994 22,737 5.5 09/1999 94,247

4.0 05/1996 43,594 5.6 01/2000 94,964

4.1 06/1996 43,891 5.7 06/2000 96,225

4.2 07/1996 44,017 5.8 05/2001 95,548

4.3 08/1996 49,935 6.0 09/2001 140,182

4.4 09/1996 50,023 6.1 03/2002 142,091

4.5 10/1996 44,742 6.2 06/2003 156,700

5.0 02/1998 71,562 6.3 06/2004 162,441

5.1 03/1998 72,544 6.4 10/2005 162,937

5.3 08/1998 82,221 7.0 05/2006 201,260

5.4 07/1999 93,771

Table 2.4: Chronological data for the releases of vim examined in this study [40][62].

features, however, the process relies on the user community for bug reports. In terms of

the classification of open-source software defined in [68], Vim is considered an example of

a utility-oriented project.

Twenty-one releases of Vim dating back to 1994 were studied (four earlier versions

which target the Amiga were unanalyzable). Table 2.4 displays the Vim chronology of the

examined releases. Most of the releases are considered minor, however, releases 5.0, 6.0

and 7.0 are major, contributing at least 25 KLOC each to the system.

Make The GNU make utility automates the compilation process of source code. The first

release of make (3.60) that we analyzed dates back to 1991 at which time the project was

already very mature and established. Over the entire lifetime of make very few developers

have taken part in the project. Historically, development has centred around a single

person with a few other contributors and therefore we consider it to be utility-oriented

software (the project has only passed between two core maintainers over the twenty-one

releases that we examined). The release date and number of lines of source code for each

release that we analyzed can be found in Table 2.5.
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Release Date SLOC Release Date SLOC

3.60 05/1991 8,535 3.72 11/1994 10,756

3.62 10/1991 8,669 3.72.1 11/1994 10,758

3.63 01/1993 9,947 3.73 05/1995 10,728

3.64 04/1993 10,150 3.74 05/1995 10,733

3.65 05/1993 9,844 3.75 08/1996 12,547

3.66 05/1993 9,856 3.76.1 09/1997 13,413

3.67 05/1993 9,853 3.77 07/1998 13,992

3.68 07/1993 10,196 3.79.1 08/1998 15,313

3.69 11/1993 10,312 3.80 03/2002 16,124

3.70 03/1994 10,342 3.81 04/2006 16,872

3.71 05/1994 10,395

Table 2.5: Chronological data for the releases of make examined in this study.

PostgreSQL As another example of service-oriented OSS, the PostgreSQL relational

database system was examined. PostgreSQL is an example of an exploration-oriented (re-

search) project that has morphed into a service-oriented project. The system was initially

developed under the name POSTGRES at the University of California at Berkeley[80]. It

was soon released to the public and is now under the control of the PostgreSQL Global

Development Group.

Although, the PostgreSQL project is composed of many programs, we limited our

study to the postgres binary which is the backend database server. We studied eighteen

releases, of which three are considered major releases (1.02, 6.0 and 8.0.0). Version 1.02

(aka Postgres95) was the first version released outside of Berkeley, and incorporated an SQL

frontend into the system. Table 2.6 outlines the date and size changes of the PostgreSQL

server for the releases examined.
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Release Date SLOC Release Date SLOC

1.02 08/1996 86,058 7.3 11/2002 192,404

6.0 06/1997 93,506 7.4 11/2003 198,209

6.1 07/1997 94,277 8.0.0 01/2005 221,389

6.2 10/1997 115,277 8.0.1 01/2005 218,254

6.3.2 04/1998 122,672 8.0.7 02/2006 219,110

6.4.2 12/1998 120,933 8.0.8 05/2006 219,450

7.0 05/2000 138,560 8.1.0 11/2005 236,364

7.1 04/2001 147,868 8.1.3 02/2006 240,123

7.2 02/2002 160,743 8.1.4 05/2006 237,175

Table 2.6: Chronological data for the releases of postgres examined in this study.

Experimental Results and Discussion

In this section we report and discuss the results gathered through the use of gv-finder on

the selected open-source projects. Specifically, we examine the evolution of the projects in

terms of their size (lines of code), the number of global variables referenced, their reliance

upon global variables, and finally, the extent to which global data is used throughout the

system.

Changes in Number of Lines of Code Over the lifetimes of the projects that we

studied, every one except libgdb has at least doubled in terms of their code size. A wide

range of size related data was collected however, we limit our discussion to uncommented,

non-white space source lines of code (SLOC) for the files that compose the specific target

binary and not the entire code base of the project. Referring to Tables 2.1 to 2.6 the

number of Source Lines Of Code (SLOC) for all of the projects examined in this study is

presented.

Although all of the projects we examined are now mature and well established they vary

greatly in size. The smallest in number of source lines of code is make which is composed

of 8.5 KLOC in release 3.60 but almost doubled in size over the fifteen year period we
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examined with release 3.81 containing 16.8 KLOC. This is the only project with fewer than

100 KLOC by the last release studied. On the other end of the spectrum gcc (cc1 and

libbackend combined) was significantly larger than the other projects. Over the sixteen

year period that we examined gcc it grew from 58 KLOC to over 500 KLOC. The project

that exhibited the greatest growth was vim which increased from 23 KLOC to 201 KLOC,

a factor of almost nine. As expected, each project shows a small increase in size over the

minor releases as a result of perfective maintenance which can be attributed primarily to

bug fixes. However, the large increases stem from the major releases when new features

were added to the systems.

Analysis of the Evolution of Global Data Initially it was hypothesized that the

number of global variables would decrease over the lifetime of a project as the developers

had more time to perform corrective maintenance and replace the global data with safer

alternatives. However, this was not what we discovered when examining the number of

global variables. In fact, we found that the number of true global variables present in all

of the systems grew along with the lines of code for almost all of the releases examined,

as demonstrated in Figure 2.6(assuming that cc1 and libbackend are added together).

Graphs for each individual project can be found in Appendix A. In the individual figures,

the number of distinct global variables are classified as being either true, static or exter-

nal. To further clarify the figures, consider Figure A.6. Examination of Vim release 5.3

reveals that the total number of global variables identified is 766. These 766 references are

composed of 428 true, 312 static, and 26 external global variables.

The significantly greater number of global variables in temacs is immediately noticeable

upon first viewing Figure 2.6. temacs contains approximately two-times the number of

globals than any other project. Sharp increases in the number of globals appear at each

of the major releases of temacs. Analogously, the other text editor, vim had the greatest

percentage of growth in the number of global variables of all of the projects that we

examined. Global variable growth in vim and temacs was found to be 2.9x and 2.4x

respectively which was well above the average growth for the non-text editors which was

found to be 1.7x.
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Interestingly, the greatest reduction in the number of global variables coincides with

the divergence of the front- and back-ends of gcc5 into the targets cc1 and libbackend.

The total number of globals between both binaries remains lower than that identified prior

to the split for many releases until it finally surpasses the original number of globals. After

five releases even more functionality was shifted from cc1 to libbackend and again a

large number of the global variables migrate from one binary to the other. This could

hint that refactoring can have a reducing effect on the number of global variables within

a project. The finding that the number of global variables increases along with the lines

of code might suggest that the use of global variables is inherent in programming large

software systems (at least those programmed in C). This is even more interesting given

that according to the classifications in [68] postgres, gcc and temacs are developed under

a stringent process that ideally would attempt to limit the introduction and use of global

variables. However, in support of the classifications the service-oriented projects (postgres

and gdb) whose main goal is to produce extremely stable applications did in fact exhibit

the slowest percentage increase in the number of global variables.

One of the most difficult steps in performing a maintenance task is comprehending

the code, its structure and localizing the changes that are required. Its has been my

experience that the presence of global data increases the scope of understanding that a

programmer must acquire and thereby hinders programmer comprehension and possibly

increases maintenance effort. An approach to counteracting this is to limit the scope of

the global symbol by declaring the variable as static. Although statics carry many of the

drawbacks of true global variables, their scope is reduced to that of a single source file,

and therefore the number of files and functions that the programmer must comprehend

can be significantly reduced. Examining the detailed graphs presented in Appendix A we

found that, even though the number of true global variables increased over the lifetimes

of the projects, it was interesting to note that the growth in static globals out-paced that

of true globals in almost all of the projects. Given this evidence that global variables

are heavily used, and furthermore that their usage is increasing over the lifetime of these

examples of robust, extensively used software, it is at least somewhat encouraging that true

globals are growing slower than statics. If we accept that global variables exist in real C

5When referring to gcc we mean the combination of cc1 and libackend.
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systems then ideally they are used in such a manner that a programmer can easily identify

all global variables exported or imported between modules by proper use of comments,

white space and file organization (for example, if the top of each file is reserved for the

declaration of globals with sufficient white space and comments to alert the programmer

to their presence upon opening the file). Once a programmer is aware of a global variables

existence then the necessary precautions can be taken when accessing it such as guarding

it with a mutex if the code is re-entrant. However, the incorrect use of file scoped globals

can possibly introduce errors that are more difficult to track down than simply having a

true global that the programmer knows about. Consider an instance of a static global that

the programmer knows of and works under the premise that it is only modified inside of

the file that it is declared. If by mistake the variable is passed by address as a parameter

to a procedure in another module then it has now escaped and can be modified without

the programmer’s knowledge. Now aliased, a simple but common use of grep by the

programmer to find where a global symbol is referenced will not immediately expose the

escaped reads or writes.

The full extent of gv-finder’s utility is exhibited by our ability to efficiently identify the

number of global variable references over a significant lifespan of many projects. Examining

Figure 2.7 again we find that our intuition that different trends in global variable usage

would be apparent according to a project’s type is not visible. In fact the number of global

variable references increase in all binaries regardless of their classification. Furthermore,

in all projects except for postgres we found that the first release examined contained

the fewest references and the final release the most (even cc1 if viewed as two distinct

periods, pre- and post-split). Viewing Figure 2.7 a common pattern of continually rising

number of global variable references punctuated by sharp increases that are interspersed

with relatively few small decreases is exhibited.
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In an attempt to evaluate how reliant the systems are upon global data, we recorded the

number of lines of code that reference global data. Using this, we were able to calculate the

percentage of source lines of code that reference global data as displayed in Figure 2.8. The

density of global variable references for the service-oriented projects (make and postgres)

follows expectations based on their classification by having the fewest number of references

per SLOC compared to the other project types. The high number of references per SLOC

in emacs is uncharacteristic of an exploration-oriented project. Initially, emacs has a true

global variable reference every four lines of code! The density slightly decreases to one

every six SLOC but remains much higher than any other project that we examined. We

should note that in this form the view of the data diminishes the actual reliance of the

projects upon global data. This can be attributed to two factors. First, each line that

references a global variable is only counted once, even if it may reference multiple global

variables. Second, the results are slightly skewed by the precision of gv-finder compared

to the imprecision of the source code line counting tool sclc. gv-finder bases it’s count

of globals only on those actually present in the final binary. Conversely, sclc counts all

lines of code present in the C source file regardless of whether or not a specific line of

code is actually compiled into the binary. This is most apparent in the examination of

libbackend. Naturally, being the backend of a compiler, libbackend contains many lines

of architecture specific code that are guarded by preprocessor conditionals and are only

compiled into the binary for the appropriate architecture.

To gain a better perspective on the reliance of global data, we plotted the number of

references to global data divided by the total number of globals as presented in Figure 2.9.

In our initial investigation [84] that examined three projects over a shorter time span we

observed that global variable reliance formed a wave pattern that peaked at the middle of

the release cycle of the projects. We ascribed this to two possible causes depending upon

the development process of the project. First, if developed in an environment where all of

the new features to be included in a release are submitted and then the developers enter

bug fixing mode where they fix previously existing bugs as well as those discovered in the

new code by beta testers. Under this development process it would appear that the new

features are the source of the increasing reliance on global data.
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This would indicate that the original intuition that global variables were added to code as

a quick fix in order to ship the initial release, after which their number would decrease, was

simply too limited. The wave pattern that is evident in the figures could be interpreted

as the iterative process of adding new features, and hence new globals, to the system and

then later factoring them prior to the final release.

Alternatively, the wave pattern may indicate that the addition of new features in major-

releases is the result of clean, well-planned designs. It appears that the process of iden-

tifying bugs and patching them as quickly as possible results in the introduction of the

majority of references to global data. As the frequency of bug reports curtail, the devel-

opers are able to focus on refactoring the hastily coded bug fixes, thereby reducing the

reliance upon globals. Although this wave pattern was observed in all three projects in our

initial work it was apparent in all of the new projects except for libgdb.

All of the graphs previously presented simply use releases as the x-axis. This has the

effect of compressing the plots of all the projects in comparison to cc1 (and libbackend)

due to the relatively greater number of releases examined of cc1. Figure 2.10 presents

the reliance graph (evolution of references per true global variable) with the chronological

release date as the x-axis. Of interest, the wave pattern is again visible however, the peaks

and valleys do not appear as exaggerated due to the stretching of the lines in comparison

to cc1 by graphing by the release date.

Using the date as the x-axis required the deletion of many data points as they introduced

some oddities in the graphs around branch points. For example, gcc 4.0.0 was released

in 04/2005 however, gcc 3.4.4 and 3.4.5 were released after that in 05/2005 and 11/2005,

respectively. Without deleting the later 3.4 releases the graphs contained odd fluctuations

that are apparent due to the nature of the graph and not the nature of the actual code.

We assume that there was very little integration of code from the 4.0.0 branch back to the

3.4 line but, certainly almost everything added to the 3.4 branch after the release of 4.0.0

was integrated into the main development branch. The plotting of all the 3.x releases prior

to 4.x’s captures the trend of global data use and allows us to retain all of the data points

collected.
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Finally, to examine how widespread the use of global variables is throughout the sys-

tems, we collected data pertaining to the number of functions that make use of global data,

as displayed in Figure 2.11 (per project data is available in Appendix A). Again emacs and

postgres reside at different ends of the spectrum in terms of global variable usage. The

percentage of functions that reference at least one global variable in emacs was found to

be greater than 75% over the entire period studied beginning at a high of 83%. postgres

begins extremely low at 16% of all function referencing a global variable, peaking at 37%

until settling at a stable 31%. Unlike the data presented in many of the other graphs the

percentage of functions that reference global data is fairly consistent. The fluctuation in

percentage was found to be around 10% of the initial release examined (assuming cc1 and

libbackend are considered as a single entity).
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Conclusions

In this study we performed a detailed analysis of the pervasiveness of global data in many

open-source projects. Our contributions are twofold. First, the categorization of a project

as either service-, utility- or exploration-oriented does not appear to be indicative of the

usage of global data over its lifetime. In conjunction with the fact that the number of global

variables increases alongside the lines of code could indicate that the use of global data is

inherent in programming large software systems and can not be entirely avoided. Second,

and most interesting, is the finding that the usage of global data followed a wave pattern

which peaked at mid-releases for all of the systems examined. This might suggest that the

addition of new features in major-releases are the result of proper software design prin-

ciples while the corrective maintenance performed immediately after a major-release may

result in increasing the reliance upon global data. Later phases of refactoring (perfective

maintenance) appear to be able to slightly reduce this reliance.

We continued this work resulting in the case study described in §2.4.3. Our original

study in [84] contained only a subset of the results presented here. Initially, we only

examined emacs, vim, and postgres. Furthering this work by carrying out the study

described in the following section we added more projects and expanded upon the lifetimes

of others.

2.4.3 An Empirical Examination of the Effects of Global Data

Usage on Software Maintainability

In this study we attempt to evaluate the following two hypotheses regarding the use of

global variables and their possible effect on software maintenance.

1. If the presence of global variables is in fact detrimental to the comprehension and

modification of code then we would expect that a greater number of changes would

be required to maintain source files containing a large number of references to global

data compared to those that have fewer references (although previous research [57]

has differentiated between various forms of maintenance, we do not in this work).
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2. Not only do we expect the presence of global variables to increase the number of

modifications required between two releases of a product, but we would also expect

that the usage of global variables would increase the scope of the modifications,

thereby increasing the number of lines of source code that is changed.

We propose two measures to answer our postulates, both of which harness information

extracted from the Concurrent Versions System (CVS), a popular open-source code man-

agement system [17]. For example, mining information from a CVS repository can yield

the number of revisions made to each file between each product release. This then enables

the comparison of the number of CVS revisions for files in which the usage of global data

is most prevalent to those that have fewer or no references. CVS is also able to report the

number of lines changed between two revisions of a file. In an attempt to characterize the

scope of the changes performed on a file, we extract this information from the repository

and compare the total lines changed in files that have a large number of references to global

variables to other files in the system. Using our approach, we analyzed binaries from many

popular open-source projects including Emacs, GCC, GDB, Make, Vim, and PostgreSQL.

Measuring Maintenance Effort

As described earlier in §2.3.1 we employed CVS revision counts and the number of lines

of source code changed as measures of maintenance effort for the projects examined in

this study. Unfortunately, not all releases of the various projects that we examined were

tagged. For releases that were tagged, identifying the revision number of each file was

simple. However, if no release tag was present, we resorted to a brute force approach that

compared the actual source code files shipped in a release with each revision of the file in

the repository in an attempt to find a match. In some cases (typically in early releases

of a project when the development process was not formalized) we were unable to find a

match for all of the files in a release and therefore limited our results to releases that we

were able to match at least 80% of the source files that constitute the binary executable

examined.

Since the tagging of the source files at specific points is managed by developers and

not CVS, each project that was examined had different processes in place to record the
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merging of branches into the main line (if this was even recorded at all in the repository).

This posed a problem to uniformly comparing the number of revisions made to a file

between two releases in the presence of branching. To overcome this issue we recorded two

different release counts. The first is a conservative lower-bound approach that does not

count revisions along a branch between two releases, thereby assuming that every branch

is in fact a dead branch. Our second method is an optimistic upper-bound approach and

counts every revision along a branch and possibly even follows other branches that exist

between the two releases. For example, suppose that for some file the revisions 1.4.2.1,

1.4.2.2, 1.4.2.3, and 1.5 exist between two releases. If we identified that the first release

included revision 1.4.2.1 and the later 1.5 then the lower-bound approach would report that

a single revision was made between releases, while our upper-bound approach would find

that three revisions were applied (the lower- and upper-bound approaches are later referred

to as no-branch and branch respectively, in the graphs presented in Section 2.4.2). Even

though the lower- and upper-bound approaches may respectively under- or over-estimate

the maintainability effort applied to a file, we found that in practice there was very little

difference between the two approaches.

We examined the same projects as in our previous case study on global variable usage.

However, we were only able to examine a subset of the releases considered in our earlier

study due to availability of CVS data. Notwithstanding, a significant number of project

releases were examined, ranging from a minimum of nine (vim) to a maximum of twenty-

nine (cc1).

Results

To visually compare the maintenance effort applied to the source files that contain many

references to global variables to those that do not, we graphed the average number of

revisions for all files along with the average revisions for a collection of files with 50% of

the global variable references and for the set of files with 100% of the global references (the

files composing 50% of the global variable references were selected by sorting all files by the

number of references and choosing the first files that sum to 50% of the total global variable

references). Similarly, we graphed the normalized average number of lines changed in each
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release. Figures 2.16 to 2.25 illustrate our findings. No significant difference between the

upper and lower-bound approaches was found for temacs, libbackend, make, and vim and

therefore to improve the clarity of the graphs, the upper-bound (branch) is omitted.

Every effort was made to include all releases, both major and minor, of each project that

we examined. However, some releases were either unanalyzable (due to failed compilation

or difficulties in extracting the CVS information) or omitted (a product release was issued

but the files that constitute the target that we examined were unchanged). One special

incident was encountered in the analysis of vim and libbackend. The results for these

targets were skewed by the fact that both include a version.c source file which has a

disproportional number of revisions and lines changed in comparison to other files (for

libbackend this file simply stores the version number of the release in a string, similarly

for vim). We therefore omitted this file from our analysis. However, this was the only such

special circumstance.

As expected, examination of the graphs illustrates that at almost all points both the

number of revisions and the total number of lines of code changed are higher for the subset

of files that contain a greater number of references to global variables. The only instances

that the graphs deviated from this pattern when contrasting the lines of code changed

to global variables is for make and libbackend. In only one instance did comparing the

number of file revisions to global variable usage not follow the trend that we envisioned,

namely vim. Further examination of these outlying points provided some insight into

why they were contrary to our hypothesis. We found that for six of the seventeen make

releases examined, the normalized average number of lines of code changed for all of the

files containing a global variable reference was higher than that of the files containing 50%

of the global variable references. At each of these six points we found a small group of

heavily modified files (two or three) that are just outside of the 50% range. Interestingly,

it is always the same small set of files that requires substantial changes, possibly indicating

their importance to the system or that they require complex modification. Investigation of

the last three releases of vim discovered the existence of three files that contain zero global

variable references however, they were changed slightly more than the average number

of revisions applied to all files. We were unable to identify a single cause for the greater

number of lines of code changed for the files containing at least one global variable reference
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Figure 2.12: A comparison of the number of CVS file revisions for cc1 from gcc. Displayed

are the normalized average number of lines of code changed for all files, the files which

contain 50% and 100% of the references to global variables.

at the four spikes in libbackend (Figure 2.15). We plan to examine this in greater depth

in the future to find the exact cause of this behaviour.

In an attempt to track the evolution of global variable usage throughout each of the

projects we identified the top five files and functions that contain the greatest number

of references to global variables in each release. Furthermore, we also examined the five

globals that were the most heavily referenced in each product release. libgdb exhibited the

least amount of fluctuation with the same four files, functions and variables remaining in

the top five over all of the releases examined. temacs and vim were also found to be quite

stable when considering files and variables. In both of these only one file was displaced

from the top five while three variables remained heavily referenced in temacs and four

in vim. Greater variation was displayed in the functions that contained the most global

variable references. In temacs only one function remained in the top five, while two of five

remained fixed in vim.
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Figure 2.13: A comparison of the normalized number of lines changed between releases of

cc1 from gcc.
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Figure 2.14: A comparison of the number of CVS file revisions for libbackend from gcc.
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Figure 2.15: A comparison of the normalized number of lines changed between releases of

libbackend from gcc.

An interesting aspect of examining cc1 and libbackend from gcc is that most of the

libbackend code was split off from cc1 in release 3.0 of gcc. In the creation of libbackend

the five files containing the greatest number of references to global data were extracted from

cc1. After the split, the files that relied most heavily on global data remained fairly fixed

with three files remaining in the top five in libbackend, and four of the five in cc1. The

specific global variables that were referenced most heavily in cc1 were also the greatest

used in libbackend and furthermore, they continued to be over all releases examined.

There was greater variability exhibited in cc1 with only two of the top five global variables

remaining constant after the split.

The top five files and functions remained relatively constant in both make and postgres,

with three remaining in the top five over the entire lifetime that we examined. However,

the most heavily referenced global variables fluctuated greatly, with none of the top five in

the initial release remaining in the top five at the final release.

Even though the graphs visibly substantiate the link between global variable use and
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Figure 2.16: A comparison of the number of CVS file revisions for emacs. Displayed are

the average number of revisions for all files, for files with 50% of the references to global

variables, and for files with 100% of the references to global variables.

maintenance effort, further evidence of the correlation is required. Therefore, we calculated

the correlation coefficients (r values) of both measures. Calculation of an r value enables

one to evaluate the degree of correlation between two independent variables (specifically,

revisions to global variables and total lines changed to global variable references). Table 2.7

lists the results of correlating the number of references to global variables in a file to the

number of revisions checked into CVS (r(Rev,Ref)) and also for correlating the total lines

of code changed to the number of references to global variables (r(Lines,Ref)). In all

instances a close correlation (albeit some stronger than others) was identified between the

two variables for an acceptable error rate of 5% (α = 0.05), however, almost all were within

a 1% error rate. Strong correlation was found between both revisions to references and

lines to references. However, in all cases the correlation between the number of revisions

and global variable references was closer. Although this does not establish a cause and

effect relationship, it does provide evidence that a strong relationship exists between the
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Figure 2.17: A comparison of the normalized number of lines changed between releases of

Emacs.
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Figure 2.18: A comparison of the number of CVS file revisions for libgdb from gdb.
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Figure 2.19: A comparison of the normalized number of lines changed between releases of

libgdb from gdb.
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Figure 2.20: A comparison of the number of CVS file revisions for vim.
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Figure 2.21: A comparison of the normalized number of lines changed between releases of

vim.
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Figure 2.22: A comparison of the number of CVS file revisions for make.
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Figure 2.23: A comparison of the normalized number of lines changed between releases of

make.
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Figure 2.24: A comparison of the number of CVS file revisions for postgres.
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Figure 2.25: A comparison of the normalized number of lines changed between releases of

postgres.

usage of global variables and both the number and scope of changes applied to a source

file between product releases.

Finally, we should note some possible threats to the validity of our studies. First,

we were unable to examine every single release of all the projects. The application of

gv-finder to all releases of a project would result in a more precise view of the evolution

of global data usage across the entire lifetime of the projects. However, we believe that the

extensive number of releases examined provides sufficient insight into the projects upon

which we based our findings. As stated earlier, gv-finder requires a successful compilation

of the target executable to perform its analysis. In the worst case this required commenting

out some the offending lines of code (this, however, occurred infrequently and only for small

code segments). Additionally, when the build environment had changed over the course

of a projects lifetime, we deployed four different machines, each recreating a specific and

older build environment needed to satisfy various releases. The use of different systems,

however, should have introduced only a minimal amount of errors, since all of the machines

are of the same architecture (x86, Linux), and therefore are equally affected by external
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Binary N r(Rev, Ref) r(Lines, Ref)

temacs 520 0.27 0.16

cc1 642 0.16 0.09

libbackend 2822 0.12 0.08

libgdb 1563 0.44 0.39

make 337 0.42 0.31

vim 336 0.33 0.27

postgres 3156 0.24 0.22

Table 2.7: Results of correlating the number of revisions made to a file between releases

with the number of global variable references within the file (r(Rev,Ref)), and for the

total number of lines changed in a file to its number of references to global variables

(r(Lines,Ref)). N is the number of pairs examined.

factors impacting the source code (such as conditional compilation).

Additionally, the usage pattern of global data discovered by our work may not be visible

in other types of software. Although this study examined a wide spectrum of software

products, all of the projects are open-source (even further almost all are developed by

GNU) and therefore it is not clear that our findings are applicable to proprietary software.

Specifically, our findings are the result of the examination of open-source projects, two

of which are text editors. Therefore, it is not clear if our results would hold for a wider

spectrum of software (for example, proprietary industrial software).

Conclusions

In this study we examined the link between the use of global variables and software main-

tenance effort. Harnessing information extracted from CVS repositories, we examined this

link for seven large open source projects. We proposed two measures of software mainte-

nance; specifically, the number of revisions made to a file and the total lines of code changed

between two releases. Examination of the experimental data illustrated that at almost all

points both the number of revisions and the total number of lines of code changed were
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higher for the subset of files that contain a greater number of references to global vari-

ables. Further investigation using statistical analysis revealed a strong correlation between

both the number of revisions to global variable references and lines of code changed to

global variable references. However, in all cases the correlation between the number of

revisions and global variable references was stronger. Although this does not establish

a cause and effect relationship, it does provide evidence that a strong relationship exists

between the usage of global variables and both the number and scope of changes applied

to a file between product releases.

2.5 Possible Future Directions

This section provides an overview of some interesting directions that this research might be

extended upon in the future. Given the framework for investigating global variable usage,

a number of interesting possible research opportunities exist. Since gv-finder operates

at the level of ELF-object files it is capable of comparing the use of global variables in

many different programming languages. Specifically, a comparison of global variable use in

programs implemented in C, C++, and Java (to include Java an equivalent to gv-finder

for class files would have to be written) might lead to some insights into how language design

and features influence global variable usage. For example, we could examine global variable

use in different language paradigms and consider if the increased use of encapsulation in

object-oriented languages reduces global variable usage.

One of the most common reasons programmers cite for justifying the use of global vari-

ables is the increase in efficiency (for example, reducing function call overhead by pruning

the number of parameters that need to be passed around). However, the use of globals may,

in certain cases, actually degrade performance since the additional number of variables in

scope increases pressure upon the register set which can impact the ability of a compiler’s

register allocator to produce the best assignment of variables to registers. A performance

comparison of referencing global variables rather than calling accessor functions (set()

and get()) could be carried out with a few modifications to gv-finder. The addition of

a small code generator to produce the set() and get() functions for each global variable
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along with a code patcher that redirects each global variable reference to the accessor func-

tion is all that would be required. We could then compare the performance of referencing

global data to that of calling accessor and mutator functions. Interestingly, the common

perception that accessing global data improves performance may not actually be true.

Once the accessor code generator and patcher are implemented, another benefit might

be the automatic introduction of synchronization code in an attempt to reduce race con-

ditions caused by unfettered access to global data. This would be extremely useful project

given the number of single-threaded programs that are being multi-threaded to take ad-

vantage of parallelism afforded by multi-core processors. Continuing with the idea of

parallelism all of the source code we examined was single-threaded. Given the impedance

to parallelization introduced by the usage of global variables it would be interesting to

collect data on a number of multi-threaded C programs of similar size and maturity to

those that we examined to compare their global data usage.
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Chapter 3

Compiler Optimizations for Power

Constrained Devices

3.1 Introduction

The focus of optimizing compilers targeting embedded processors has traditionally been

on improving performance and minimizing the size of the generated binary. However,

given the increased use of mobile, battery-powered devices, optimizing compilers targeting

embedded processors must also take into consideration power consumption [106]. Typically,

in the past, most applications were written in a mix of C and assembly code upon which

exhaustive optimization was applied by a superoptimizer given essentially unlimited time

and computing resources. The increased processing power and memory capacity of current

generation embedded devices has coincided with the coming of age of dynamic compilers.

This has fostered a shift toward Java as the language of choice for application development

targeting embedded devices. In this market the benefits of the secure, portable, and

dynamic nature of the Java programming language are even more apparent than in the

desktop and server markets [49].

In this chapter we examine compiler optimizations which target the power consumption

of battery powered devices. First, we provide an overview of a wide range of research which
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has attempted to identify specific optimizations that can improve power consumption.

Later, we focus on optimizations that can be performed by a dynamic compiler inside a

Java Virtual Machine (JVM) running on a small power constrained device. Finally, we

present our research that performed a detailed comparison of the power and performance

benefits derived from many standard and aggressive compiler optimizations [90].

3.2 Background

3.2.1 Measuring the Effects of Compiler Optimization on Power

Consumption

Valluri et al. [106] construct a convincing argument that a third concern, namely power

consumption (and energy dissipation), should be incorporated into the balancing of per-

formance versus code size that optimizing compilers must contend with. Using the Wattch

simulation environment [12], they compared the performance and power benefits provided

by the sets of optimizations applied at the various levels of the DEC Alpha C compiler (-O0

through -O4). Additionally, [106] examined the influences of the specific optimizations of

instruction scheduling (both basic list and aggressive global scheduling), inlining, and loop

unrolling, all of which already employ heuristics to balance performance with code size and

could easily be modified to include power consumption (these optimizations were selected

since they can be enabled by a command line option to gcc).

Many possible improvements to instruction scheduling are highlighted throughout Val-

luri and John’s work [106] that could be included to take into account power usage. How-

ever, just as much of the software pipelining research assumes a naive instruction model,

where each instruction completes in one clock cycle, Valluri and John’s assume that all

instructions consume a single unit of power [106]. As noted by Chakrapani et al. [18], the

canonical example of strength reduction, where a multiply instruction is replaced with a

series of adds and shifts, can result in a reduction in both energy and power. The assertion

that an increase in the number of instructions will always result in an increase in energy

is correct under the naive assumption that all instructions consume the same amount of
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power. However, this may not be entirely realistic. The example of strength reduction

influenced us to perform this study in an attempt to identify other optimizations whose

benefit may improve power consumption greater than performance.

Valluri and John [106] do not report the exact version of gcc which was used in their

analysis of specific optimizations. However, given that the paper was published in the

beginning of 2001, gcc version 2.95 was most likely the test compiler. Although aggres-

sive instruction scheduling was included in this version of gcc for the Alpha 21064 (EV4)

architecture, it did not produce very good code. Comparing gcc’s simple list scheduler

(-fschedule-insns) to the global scheduler (-fschedule-insns2), it is interesting to

note that list scheduling actually outperforms the aggressive scheduler in three of the test

cases. The global scheduler only surpasses the list scheduler in two of the benchmarks

and the schedulers are tied in another. This highlights the immaturity of the scheduling

algorithms in this version of gcc and raises questions about the overall results. Specifically,

the authors note that the aggressive global scheduler increases register pressure to such an

extent that spill code is regularly introduced. Typically, sophisticated software pipelining

heuristics factor in register pressure and attempt to limit the number of registers that are

spilled. Given Valluri and John’s findings that the overall effect of an optimization on

power consumption is directly related to the relative change in the number of instructions

committed, then the addition of spill code may adversely affect the measurements. Inter-

estingly, all of the specific optimizations examined tend to increase register pressure and

it would have been interesting if the authors had further examined the resulting increase

in power consumption of the memory subsystem.

In [92] a similar study was performed, however, the focus was specifically on the power

consumption of the Intel Pentium 4 processor. They examined the performance and power

improvements resulting from -O0 to -O3 of Intel’s C++ compiler. Loop unrolling, loop vec-

torization and inlining were also examined, as they too can be controlled via command line

switches. A categorization of compiler optimizations with respect to their effect on power

consumption was proposed in [18]. They defined Class A optimizations as those which

yield an improvement in power consumption that is directly attributable to the decreased

execution time. Optimizations categorized as Class B either slow down or have no effect

on execution time, yet they decrease power consumption. Class C optimizations increase
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the amount of power consumed irrespective of the impact on performance (however, in

general the increased power consumption is in conjunction with an increase in execution

time) [18].

The results from [106, 92, 18] all indicate that from a compiler’s perspective, producing

a binary that is optimized for power consumption is obtained by optimizing for run-time

performance. Additionally, many of the authors propose exposing more hardware fea-

tures to compiler writers, thereby creating additional power optimization opportunities.

Recently, CPU vendors have been placing more burden upon compiler writers to achieve

the peak performance of their processors (for example, EPIC and multi-core). This has

resulted in hardware architects exposing much more of the underlying microarchitecture.

In order to improve power consumption, architects must continue this trend and allow

improvements to be developed at both the compiler and microarchitectural level.

One such example was presented by Azevedo et al. [6] who focused on compiler con-

trolled register file reconfiguration, as well as frequency and voltage scaling. By creating

multiple versions of a function (versioning), they were able to balance the power and per-

formance requirements of an application. Each version of each function was compiled to

use a different number of registers with annotations inserted to convey this information

from the compiler to the run-time system about the maximum number of registers needed

within the function. Upon function entry, the registers that are not needed are disabled

in an attempt to save power. However, this comes with increased performance costs. At

run-time, a power scheduler selects a version of the code to trade off performance for power

conservation or vice versa. Experimentation, where the power scheduler selected the best

performing version of the code that consumed power under a predefined threshold, re-

sulted in a 32% increase in execution time. Given this significant overhead, which does not

include the cost of activating/deactivating registers, the function level at which [6] recon-

figured the register file may not be appropriate. It may be more beneficial to apply this

optimization at the extended basic block level, depending upon the reconfiguration costs.

Additionally, the break-even cost of increasing execution time by limiting the number of

registers available should be carefully examined, as execution time is the dominant factor

of power consumption. Dynamic calibration of the clock frequency and voltage levels were

examined at four equidistant points ranging from 600MHz/2.2V down to 300MHz/1.1V.
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The power scheduler periodically adjusts these settings every 100ns to achieve the assigned

power limits. This technique also imposed severe overhead by increasing execution time

by 130%. In order to alleviate the performance issues [6] increased the granularity that

the power scheduler could control. The program was segmented by inserting checkpoints

at specific boundaries (i.e., loop entry/exit), and then the code was profiled to determine

the power and performance profiles of each checkpointed-region for all of the frequency

and voltage pairs. Given this data, the power scheduler was able to better control the

power-performance trade-off by selecting the most appropriate settings for each region at

a specific point in time.

Zhang et al. [120] examined the ability of a compiler to deactivate functional units

when they are not being utilized. Using backward dataflow analysis, Zhang et al. [120]

identified paths in the control-flow graph where a functional unit was not in use and inserted

deactivate/activate calls to transition the unit into an idle/active state. An evaluation

of a combination of the two approaches of input vector control and supply gating was

performed. The first approach, input vector control, places a unit into the deepest sleep

mode by sending it the lowest amount of power possible. Supply gating is a more aggressive

technique that entirely shuts off the power supply to the unit. Supply gating suffers

from the problem of a long latency period before a unit reactivates after it has been

turned off. An estimated delay of hundreds of cycles must be tolerated before a unit

reactivates (unfortunately, they do not report the exact latency required to reactivate a

unit that has been completely shut down). This extended latency period precludes the use

of supply gating in many circumstances, whereas input vector control does not suffer from

this drawback, requiring only two cycles to become fully active. In an attempt to make

supply gating more applicable, [120] experimented with scheduling the activate calls early

enough in advance such that the unit was ready when needed.

Zhang et al. examined the power savings resulting from each approach, a combination

of both techniques that applied supply gating when the unit was inactive for an extended

period, and with pre-activation of idle units [120]. The combined approach with pre-

activation was found to produce the best results, saving an average of 45.8% of the leakage

energy. However, almost all of the savings can be attributed to input vector control, which

alone was able to achieve an average savings of 45.4%. To better evaluate the benefits of
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pre-activation, and speculating that the unit reactivation delay will decrease, the latency

was reduced to 45 cycles. Under this reduced latency, pre-activation was found to improve

power consumption in six out of the eight benchmarks, with a maximum improvement of

over 18% compared to supply gating on its own.

Data concerning the Basic Block (BB) length of the paths, where they were able to

transition a functional unit into an idle mode, would have been very interesting but was

not presented. A simple reporting of the minimum, maximum, and average number of BBs

would have given the reader a sense of the scale in which this technique is applicable.

In many of today’s advanced microprocessors a single machine instruction is decom-

posed into multiple micro-operations that are not visible to the compiler or assembly

programmer. Detailed examples of micro-operations, which if exposed to compiler writers

could result in the improved power consumption of general purpose programs, are provided

in [5].

Consider the common instruction sequence which loads a value, performs an operation

on the value, and then writes the result back to memory. Often these temporaries are used

a single time by the store instruction following the operation that defined it. Asanović et

al. [5] reports that approximately 50% of all updates to the register file arise from these

temporaries. The temporaries’ path to the register file can be short circuited through a

register bypass latch, thereby eliminating the update. Experimentation with exposing the

register file bypass latches to the compiler was performed by [5] with small extensions

to lifetime analysis and instruction scheduling. This simple transformation was able to

significantly reduce register file traffic. Specifically, 34% of all writes to the register file

were eliminated, and 28% of the reads.

Direct mapped caches consume more power than associative mapped caches due to

the higher number of misses. However, the hardware needed to perform the parallel tag-

checking uses a large amount of power. Direct addressing of data that the compiler can

guarantee will resolve to a line already present in the cache can eliminate the power con-

sumed by the parallel search [5]. The addition of a Direct-Address register (DA) to hold

references to cache lines, and a valid bit are the only requirements of this extension. This

addition allows loads to go unchecked by specifying a virtual address, and a cache line
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number where the datum can be found (word, byte, etc). When a compiler identifies refer-

ences to data that it knows will reside on the same line number (assuming data alignment

through stack fixing), it simply loads the DA register with the line number on the first

load, then subsequent loads can use the tag-unchecked version. In the worst case, if the

cache line is evicted or invalidated, the loads revert back to the standard mode. Evaluation

by [5] found that an average of approximately 42% of all tag-checks were eliminated, with

an extensive range from 17% to 77%.

A significant amount of power is required to extract the instruction-level parallelism

available to complex out-of-order superscalar processors. The fetch unit must aggressively

bring in instructions in order to enlarge the dynamic instruction window, the future register

file and reorder buffer must record results of out-of-order calculations, all of which hinges

upon the branch predictor correctly determining which path to fetch instructions from.

Often the fetch unit is so far ahead that many instructions will need to be canceled,

resulting in wasted power and increased heat. To combat this, [105] targeted the fetch unit

by statically identifying phases where the rate of Instructions Per Cycle (IPC) is low and

therefore the fetch unit should be throttled back.

Data dependency analysis performed on a low-level intermediate representation en-

abled [105] to statically predict the amount of IPC. Their analysis is at the loop-level,

where each basic block of the Control-Flow Graph (CFG) is annotated with the number

of instructions in the block. An inorder traversal of the CFG is performed, splitting BBs

whenever a true dependency is identified. Upon completion, these segmented blocks rep-

resent an approximation of the number of instructions that can be initiated in any given

cycle. This simple static estimation of IPC was found to be remarkably accurate by [105].

The estimated IPC of the segmented blocks is compared with a threshold, and if the IPC is

found to be low, then a throttling flag is inserted to tell the processor to stop fetching new

instructions for a couple of cycles. Since the regions are formed around true dependencies,

the rationale for throttling back the fetch stage is that the issue stage will be stalled due to

the dependent instructions about to enter the queue. Experimentation found that the ideal

threshold was two instructions per cycle, at which point the fetch unit is cooled for one

cycle. Results for the SPEC benchmarks were promising, achieving an average decrease of

8% in power consumption, along with a 1.4% increase in execution time. Simulations of
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Mediabench [53] resulted in even better power savings of 11.3%, with a performance hit of

4.9%. Additionally, [105] found that this technique improved the energy usage of not only

the fetch unit but also the issue queue and instruction cache.

3.2.2 Optimization of Java Programs Running on

Embedded Devices

The increasingly dynamic nature of programming languages has fostered a significant

amount of research on run-time systems over the last decade. One of the areas that

researchers have focused on is the speed-ups obtained by employing some form of dynamic

compilation resulting in mixed-mode execution (interpretation of “cold” Java bytecode and

native execution of “hot” dynamically compiled code), as opposed to strictly interpreta-

tion. Two approaches to limiting the overhead introduced by a dynamic compiler have

become conventional. The first approach settles with a simple, fast “naive” compiler that

generates poor quality code that does however, execute faster than interpretation. At the

other end of the spectrum lies adaptive dynamic optimizing systems, which have multiple

levels of optimization relying upon profiling information in order to selectively concen-

trate the optimization effort. For example, Sun Microsystems’ HotSpot Virtual Machine

(VM) [59] applies a mix of interpretation, profiling, and compilation. Initially, methods

are interpreted until the profiler detects that they have become hot, at which time they

are compiled using an optimizing compiler. Two versions of the HotSpot VM exist, the

client VM takes the first approach by quickly generating native code that is not heavily

optimized. The server VM generates very good quality code using a heavyweight compiler

performing extensive optimization. JikesRVM [16] takes a compile-only approach, first

applying a fast baseline compiler to translate the bytecodes into native code and then, as

profiling identifies heavily called methods, they are recompiled at successively higher levels

of optimization.

Early Java Virtual Machine (JVM) prototypes for small devices, such as the Spotless

system [100], and its later incarnation as the kilobyte-JVM (KVM) [94], simply attempted

to prove that a complete JVM could be ported to devices with limited processing power

and memory capacity. One of the first attempts to incorporate a Just In Time (JIT) com-
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piler into a JVM targeting an embedded device was Shaylor’s extension of the KVM [93].

Since it was an early proof-of-concept implementation, the interpreter was called upon to

handle many complex situations (i.e., exception handling and garbage collection) in order

to simplify native code generation. This required the VM to be able to interleave execu-

tion between the interpreter and native code not only at method entry and exit points

but also in the middle of methods (specifically, at backward branch targets). Accordingly,

this necessitated special handling of both the Java and native execution stacks. To enable

execution to switch from interpreted to compiled mode at the target of a backward branch,

the compiler must ensure that the stack is empty across basic block boundaries. This was

accomplished by creating new local variables into which the stack-based intermediate re-

sults (temporaries) are “spilled.” Compilation proceeds in a two-stage process. The first

phase pre-processes the bytecode, performing a bytecode-to-bytecode transformation, ini-

tially converting the bytecode into three-address code in which the stack temporaries are

mapped to distinct local variables (they do not necessarily have to be distinct but it sim-

plifies the required analysis). The “elimination” of the Java stack occurs at the translation

back to bytecode when the introduced locals are not boiled away into stack temporaries.

In the StrongARM implementation, the JIT uses 12 registers for this scheme, nine of which

are specifically mapped to the local variables at indices 0 to 8 while the remaining three

are considered general purpose registers. Although this phase occurs at run-time, Shay-

lor notes that it can be performed ahead-of-time, most conveniently at installation time.

Switching from native execution to interpreter-mode required much more work to convert

an activation record on the native stack into an equivalent Java stack frame. The second

phase of the compiler translated the bytecode back into three-address code and performed

simple, fast, naive code generation. This simplistic approach to code generation also en-

abled simple code cache management (when the cache was full it was flushed). The JIT

was found to be capable of translating approximately one byte every 75 cycles (interest-

ingly, this is roughly equivalent to the interpretation of two bytecode instructions). With a

128Kb code cache the simple JIT was found to significantly speed-up execution time from

a range of 6 to 11 times [93].

Another project that extended Sun’s KVM is Debbabi et al.’s work [27], which incorpo-

rated selective dynamic compilation of hot methods. Their approach favoured minimizing
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the size of the binary and the dynamic memory overhead of the VM over the quality of the

generated native code. Method invocation counts were profiled to identify hot methods

to be compiled by a simple, fast, single-pass compiler. No intermediate representation is

constructed and limited simple optimizations are applied in the generation of stack-based

native code. Although [27] does not apply sophisticated optimizations on the generated

code, the speed-ups obtained emphasize the chasm between interpretation and mixed-mode

execution. An overall average improvement of four-times was reported on the CaffeineMark

suite [25]. Impressively, this is accomplished by the modest addition of 138Kb to the total

dynamic memory overhead of the KVM (64Kb for the compiler and profiler code, and

74Kb for data structures including a 64Kb code cache).

Chen and Olukotun [22] took a different approach than many of the existing dominant

JVMs. They challenged the notion that a simple, fast, dynamic compiler can not produce

high quality optimized native code. Focusing on the performance of the compiler, they

engineered microJIT, a small (less than 200Kb), fast, lightweight dynamic compiler that

executes 2.5-10 times faster than dataflow compilers (such as HotSpot server VM, and

Latte [116]), and 30% faster than a simple JIT (client VM).

The key improvement to the structure of the VM was to limit the number of passes

performed by the compiler to only three. The first pass is very simple, quickly construct-

ing the CFG, identifying extended basic-blocks, and computing dominator information.

The second phase is the core of microJIT, using triples as its intermediate representation

it builds the dataflow graph and performs loop-invariant code motion, algebraic simpli-

fication, inlining of small methods (applying type specialization if applicable), and both

the local and global (non-iterative) forms of copy propagation, constant propagation, and

common-subexpression elimination. The microJIT compiler does not perform dataflow

analysis in the traditional manner by iterating over a lattice, and computing flow func-

tions, in both directions [67]. Dataflow information is shared between the passes. However,

microJIT only performs forward dataflow, and hence cannot apply optimizations requiring

backward dataflow analysis. The final pass generates machine code, allocates registers,

and applies some common machine idioms.

The microJIT compiler was able to outperform both the HotSpot client and server VMs

for short running applications. Surprisingly, it was able to break even with the server VM
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for long running applications, each outperforming the other in four benchmarks. In terms

of memory usage during the compilation phase, microJIT was found to require double the

amount of memory as the client VM, however, it used an average of 87% less memory than

the server VM.

It is commonly believed that virtual machines that employ interpretation are better

suited for memory constrained devices than those which dynamically compile commonly

executed code. Vijaykrishnan et al. [108] dispel this myth. A detailed comparison of the

energy consumed by the memory hierarchy between interpretation and mixed-mode ex-

ecution found that even when constraining the memory size (the conditions expected to

be favourable to interpretation) that mixed-mode constantly outperformed interpretation.

Additionally, [108] found that execution time was the dominant JVM phase out of class

loading, dynamic compilation, garbage collection, and execution in terms of power con-

sumption, and that main memory consumed more power than other levels of the memory

hierarchy.

It was interesting to note the effect that the dynamic compiler had on the I-cache.

Two sources of increased I-cache activity were identified. First, a large number of faults

are caused when the working set changes as the compiler is called upon to generate na-

tive code. Second, the incorporation of newly compiled code into the I-cache consumed

a significant amount of energy. The combination of these factors resulted in the D-cache

consuming more energy than the I-cache when using a JIT, whereas the I-cache domi-

nated energy consumption when in interpreted mode. load, and store instructions were

found to contribute disproportionately to energy consumption given their usage. Specif-

ically, Vijaykrishnan et al. state that load, and store instructions consume 52.2% of

the total energy consumption while only accounting for 19.4% of the total number of in-

structions [108]. This indicates that a dynamic compilation system must be equipped

with a sophisticated register allocation mechanism, and optimizations that reduce register

pressure should be included.

Bruening and Dusterwald [14] attempted to identify what the ideal unit of compilation

is in an embedded environment where space constraints are imposed upon the compiled

code. Guided by the “rule” postulated by Knuth [52] that 90% of the execution time

is spent within 10% of the code, a comparison of shapes (regions) of compilation was
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performed in order to determine the shapes that would fall within the 90:10 ratio.

The shapes examined include various combinations of whole methods, traces, and loops.

The analysis of compiling entire methods ranged from compiling all methods encountered

to selective compilation of hot methods. A trace was defined as a single-entry, multiple-

exit path beginning at either a method-entry, the target of a loop back-edge, or the exit

of another trace and terminating at one of a backward taken branch, a thrown exception,

or when a maximum number of branches is encountered [14]. A restricted form of inter-

procedural traces was examined such that if the compiled path follows the invoked method,

then the entire method is compiled and not just a specific path. This same restriction was

applied to method invocations inside a loop body. The main advantage in terms of space

when compiling an entire method body over a trace is that in general there are fewer exit

points and hence less native to interpreter context-switching code overhead [14].

The findings reported in [14] indicate that compiling entire methods can not attain the

desired 90:10 ratio. Compiling at an invocation count threshold of 50 (which still triggered

100% of the methods being compiled) resulted in only 74% of the time being spent in 18%

of the code. Using traces or loops alone was also unable to reach the 90:10 ratio. However,

the combination of traces and methods came close, where 15% of the code accounted for

93% of the execution time (using 500 as the trace and method threshold). The only shape

that experimentally attained the 90:10 ratio was the combination of loops and methods

which was found to result in 91% of the time being spent in 10% of the code (again with a

trigger threshold of 500). A slightly lower threshold combination of 50 loop iterations and

500 method invocations yielded a similar ratio of 92:12. Although, the mixture of loops

and methods was the only shape able to achieve the 90:10 ratio [14] argued that traces and

methods is the best selection due to the simplicity in analyzing and optimizing straight-line

execution traces.
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3.3 Case Study

3.3.1 A Fine-Grained Analysis of the Performance and Power

Benefits of Compiler Optimizations for Embedded Devices

Our case study performs a comparison of the performance and power benefits resulting

from many traditional and aggressive compiler optimizations. We translate representative

examples from an extensive list of what are now standard static compiler optimizations into

PowerPC assembly code [47] (as derived from [67]). The unoptimized and optimized assem-

bly code sequences are then executed in the Dynamic SuperScalar Wattch (DSSWattch)

simulation environment to capture their performance and power characteristics.

Previous studies [106, 18, 92] have examined the impact of compiler optimizations on

power consumption in resource-constrained embedded devices. However, in general, their

examinations focused on the sets of transformations applied at various levels of optimization

(for example, the optimizations applied by gcc at -O3). Our work presents a fine-grained

study of compiler optimizations in isolation that is achieved by hand programming various

transformations in PowerPC assembly. Specifically, we examine the results obtained by

the early optimizations of constant propagation, constant folding, copy propagation, dead-

code elimination, if-simplification, inlining, and value numbering. Additionally, the more

aggressive loop optimizations of bounds-checking elimination, loop-invariant code motion,

unrolling, unswitching, fusion, interchange, skewing, and tiling are also studied. All opti-

mizations are applied in isolation except for constant folding, which is naturally performed

after constant propagation.

The contribution of this study is that it serves as a metric for deciding which optimiza-

tions should be performed at different optimization levels if power is of equal concern as

performance. The selection of the appropriate optimizations for the various levels is impor-

tant in an adaptive dynamic compilation environment such as [16] that applies increasingly

aggressive optimizations at each successive level. It is feasible that static optimizing com-

pilers which target the embedded market will ship with power specific optimizations which

are enabled via a command line switch analogous to performance optimizations (i.e., -P3).
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Optimization Expected Performance/Power Benefits

Copy Propagation Decreased register pressure and memory traffic

Constant Propagation Decreased register pressure, use of immediate

instructions

Constant Folding Fewer instructions executed

Value Numbering Fewer instructions executed, reduced register

pressure

Dead-Code Elimination Fewer instructions executed, decreased code size

If-Simplification Fewer instructions executed, less work for branch

predictor

Inlining Elimination of call overhead, increased register

pressure

Table 3.1: Overview of the performance and power benefits expected to arise from the

early optimizations examined.

Benchmarks

This section describes each of the early and loop optimizations examined and the expected

performance and power benefits resulting from their application. The examples from [67]

were selected since they represent the prototypical application of an optimization and there-

fore achieve a close approximation of the derivable benefit. Tables 3.1 and 3.2 highlight the

key benefits to execution time and power consumption of the early and loop optimizations,

respectively.

Copy propagation replaces uses of a variable that are a copy of another, with references

to the original variable along all paths that the copy assignment is not overshadowed by

another assignment. For example, consider the code on the left-hand side of Figure 3.1

(from [67]). Applying copy propagation, the references to b can be replaced with references

to a as shown on the right-hand side of the column of “|*|” which serve as a divider between

the original and optimized code sequences in Figure 3.1. The PowerPC assembly code used
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Optimization Expected Performance/Power Benefits

Bounds-Check Elimination Fewer comparisons, less work for branch

predictor

Fusion Improved D-Cache and register usage

Interchange Improved D-Cache and register usage

Loop-Invariant Code Motion Fewer instructions executed, decreased register

pressure

Skewing Improved D-Cache and register usage

Tiling Improved D-Cache and register usage

Unrolling Fewer comparisons, branch predictor, increased

register pressure

Unswitching Fewer comparisons, branch predictor

Table 3.2: Overview of the performance and power benefits expected to arise from the loop

optimizations examined.

in the simulation appears on the right-hand side of the figure1. Notice in the optimized

code of Figure 3.1 the reduction in the number of loads resulting from propagating the

use of a held in register %rO throughout the code. The reduction in memory traffic and

register pressure are the principle factors in the performance gain and the power savings.

Constant propagation replaces references to a variable that is assigned a compile-time

constant with the actual constant value. This can effectively reduce register pressure since

the immediate forms of an instruction can be generated, thereby eliminating the need for

a second operand register. An example of the application of constant propagation can be

found in Figure 3.2.

Constant folding identifies calculations whose operands are known and are constant at

compile-time and therefore can be statically evaluated. Constant propagation also has a

cascading effect when combined with constant folding. Considering the code in Figure 3.2,

1It should be noted that although PowerPC assembly instructions reference a register simply by its
number, the code sequences presented use the easier to read mnemonics which identify a register as %rX.
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b = a |# b = a |*| b = a |# b = a

c = 4 * b | lwz %r0,8(%r31) |*| c = 4 * a | lwz %r0,8(%r31)

if (c !> b) | stw %r0,12(%r31) |*| if (c !> a) | stw %r0,12(%r31)

d = b + 2 |# c = 4 * b |*| d = a + 2 |# c = 4 * a

e = a + b | mulli %r0,%r0,4 |*| e = a + a | mulli %r10,%r0,4

| stw %r0,16(%r31) |*| | stw %r10,16(%r31)

|# if c > b goto L2 |*| |# if c > a goto L2

| lwz %r9,12(%r31) |*| | cmpw %cr7,%r10,%r0

| cmpw %cr7,%r0,%r9 |*| | bgt %cr7,.L2

| bgt %cr7,.L2 |*| |# d = a + 2

|# d = b + 2 |*| | addi %r10,%r0,2

| lwz %r9,12(%r31) |*| | stw %r10,20(%r31)

| addi %r0,%r9,2 |*| |.L2:

| stw %r0,20(%r31) |*| |# e = a + a

|.L2: |*| | add %r0,%r0,%r0

|# e = a + b |*| | stw %r0,24(%r31)

| lwz %r9,8(%r31) |*|

| lwz %r0,12(%r31) |*|

| add %r0,%r9,%r0 |*|

| stw %r0,24(%r31) |*|

Figure 3.1: An example of copy propagation where references to b can be replaced with

references to a (adapted from [67], page 357). The optimized high-level code and PowerPC

assembly can be seen on the right-hand side of the column of “|*|” in the diagram.

it is evident that all of the calculations can be replaced with simple assignments since

the compiler is capable of performing all of them at compile-time. The result of applying

constant folding after constant propagation allows the calculation of c to be folded into a

simple assignment, and the conditional expression dependent upon c can be evaluated to

false as shown in Figure 3.3.

Another simple optimization is value numbering which stores the result of a calculation

for later use rather than re-calculating it when needed. Considering the snippet of code

on the left in Figure 3.4, it is clear that the values assigned to b, c, and computed in the

if conditional are already known in the assignment to a. Therefore, we can eliminate the

redundant operations, and reuse the results of the earlier temporaries, as can be seen on the

right-hand side of Figure 3.4. The elimination of redundant operations and reduction of

register pressure are the main factors in the improved performance and power consumption.
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b = 3 |# b = 3 |*|b = 3 |# b = 3

c = 4 * b | li %r0,3 |*|c = 4 * 3 | li %r0,3

if (c !> b) | stw %r0,12(%r31) |*|if (c !> 3) | stw %r0,12(%r31)

d = b + 2 |# c = 4 * b |*| d = 3 + 2 |# c = 4 * 3

e = a + b | mulli %r0,%r0,4 |*|e = a + 3 | mulli %r10,%r0,4

| stw %r0,16(%r31) |*| | stw %r10,16(%r31)

|# if c > b goto L2 |*| |# if c > a

| lwz %r9,12(%r31) |*| |# goto L2

| cmpw %cr7,%r0,%r9 |*| | cmpwi %cr7,%r10,3

| bgt %cr7,.L2 |*| | bgt %cr7,.L2

|# d = b + 2 |*| |# d = a + 2

| lwz %r9,12(%r31) |*| | addi %r10,%r0,2

| addi %r0,%r9,2 |*| | stw %r10,20(%r31)

| stw %r0,20(%r31) |*| |.L2:

|.L2: |*| |# e = a + 3

|# e = a + b |*| | addi %r0,%r10,3

| lwz %r9,8(%r31) |*| | stw %r0,24(%r31)

| lwz %r0,12(%r31) |*|

| add %r0,%r9,%r0 |*|

| stw %r0,24(%r31) |*|

Figure 3.2: An example of constant propagation where references to b can be replaced with

the constant numeric value 3 (adapted from [67], pages 357 and 362).

b = 3 |# b = 3 |# c = 12 |# e = a + 3

c = 12 | li %r0,3 | li %r10,12 | addi %r0,%r0,3

e = a + 3 | stw %r0,12(%r31) | stw %r10,16(%r31) | stw %r0,24(%r31)

Figure 3.3: The result of applying constant folding after constant propagation has been

carried out in Figure 3.2 (adapted from [67]).
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L2: |.L2: |*|L2: |.L2:

a = i + 1 |# a = i + 1 |*| a = i + 1 |# a = i + 1

b = 1 + i | lwz %r9, 8(%r31) |*| b = a | lwz %r9,8(%r31)

i = j | addi %r9, %r9, 1 |*| i = j | addi %r9,%r9,1

if (i+1) | stw %r9, 16(%r31) |*| t1 = i + 1 | stw %r9,16(%r31)

goto L2 |# b = 1 + i |*| if t1 |# b = a

c = i + 1 | lwz %r9, 8(%r31) |*| goto L2 | stw %r9,20(%r31)

| addi %r9, %r9, 1 |*| c = t1 |# i = j

| stw %r9, 20(%r31) |*| | lwz %r9,28(%r31)

|# i = j |*| | stw %r9,8(%r31)

| lwz %r9, 28(%r31) |*| |# t1 = i + 1

| stw %r9, 8(%r31) |*| | addi %r9,%r9,1

| addi %r9, %r9, 1 |*| | stw %r9,32(%r31)

|# if (i+1) goto L2 |*| |# if t1 goto L2

| cmpi %cr7, %r9, 0 |*| | cmpwi %cr7,%r9,0

| bne %cr7, .L3 |*| | bne %cr7,.L3

| b .L2 |*| | b .L2

|.L3: |*| |.L3:

|# c = i + 1 |*| |# c = t1

| lwz %r9, 8(%r31) |*| | stw %r9,24(%r31)

| addi %r9, %r9, 1 |*|

| stw %r9, 24(%r31) |*|

Figure 3.4: An example of an instruction sequence where value numbering is applicable

(adapted from [67], page 344).

Calculations whose results are not used or are overwritten before being referenced in

another calculation or output statement are not useful computation and can therefore be

considered dead-code. Since dead-code does not produce results that are actually used in

the program, it can safely be removed without any change to the programs’ semantics

(however, care must be taken when dealing with instructions that can raise an exception

if they are to be preserved). For example, on the left-hand side of Figure 3.5 the variable

k is referenced only in its own calculation, and can therefore be eliminated as illustrated

on the right-hand side.

An optimization that is similar to dead-code elimination is if-simplification which identi-

fies when a true or false branch leading from a conditional expression will never be followed

and therefore, can be eliminated. For example, considering Figure 3.6 it is clear that the

second if expression is redundant since it tests the same condition as the first and neither
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f() |# l = j + 1 |*| f() | stw %r9,12(%r31)

{ | addi %r0,%r9,1 |*| { |# j > n goto exit

B1: | stw %r0,20(%r31) |*| B1: | lwz %r9,12(%r31)

i = 1 |# j = j + 2 |*| i = 1 | lwz %r0,24(%r31)

j = 2 | addi %r9,%r9,2 |*| j = 2 | cmpw %cr7,%r9,%r0

k = 3 | stw %r9,12(%r31) |*| n = 4 | bgt %cr7,.exit

n = 4 |# j > n goto exit |*| |.L3:

| lwz %r9,12(%r31) |*| B2: |# print(l)

B2: | lwz %r0,24(%r31) |*| i = i + j | lis %r9,.LC0@ha

i = i + j | cmpw %cr7,%r9,%r0 |*| l = j + 1 | la %r3,.LC0@l(%r9)

l = j + 1 | bgt %cr7,.exit |*| j = j + 2 | lwz %r4,20(%r31)

j = j + 2 |.B3: |*| | crxor 6,6,6

|# k = k - j |*| if (j > n) | bl printf

if (j > n) | lwz %r9,16(%r31) |*| return j + i |# goto B2

return j + i | lwz %r0,12(%r31) |*| | b .B2

| subf %r0,%r0,%r9 |*| B3: |.exit:

B3: | stw %r0,16(%r31) |*| print(l) |# return j + i

k = k - j |# print(l) |*| goto B2 | lwz %r0,12(%r31)

print(l) | lis %r9,.LC0@ha |*| } | lwz %r9,8(%r31)

goto B2 | la %r3,.LC0@l(%r9) |*| | add %r3,%r0,%r9

} | lwz %r4,20(%r31) |*|--------------------| lwz %r11,0(%r1)

| crxor 6,6,6 |*|# i = 1 | lwz %r0,4(%r11)

-------------------| bl printf |*| li %r0,1 | mtlr %r0

# i = 1 |# goto B2 |*| stw %r0,8(%r31) | lwz %r31,-4(%r11)

li %r0,1 | b .B2 |*|# j = 2 | mr %r1,%r11

stw %r0,8(%r31) |.exit: |*| li %r0,2 | blr

# j = 2 |# return j + i |*| stw %r0,12(%r31) |

li %r0,2 | lwz %r0,12(%r31) |*|# n = 4 |

stw %r0,12(%r31) | lwz %r9,8(%r31) |*| li %r0,4 |

# k = 3 | add %r3,%r0,%r9 |*| stw %r0,24(%r31) |

li %r0,3 | lwz %r11,0(%r1) |*|.B2: |

stw %r0,16(%r31) | lwz %r0,4(%r11) |*|# i = i + j |

# n = 4 | mtlr %r0 |*| lwz %r0,8(%r31) |

li %r0,4 | lwz %r31,-4(%r11) |*| lwz %r9,12(%r31) |

stw %r0,24(%r31) | mr %r1,%r11 |*| add %r0,%r0,%r9 |

.B2: | blr |*| stw %r0,8(%r31) |

# i = i + j | |*|# l = j + 1 |

lwz %r0,8(%r31) | |*| addi %r0,%r9,1 |

lwz %r9,12(%r31) | |*| stw %r0,20(%r31) |

add %r0,%r0,%r9 | |*|# j = j + 2 |

stw %r0,8(%r31) | |*| addi %r9,%r9,2 |

Figure 3.5: An example of a function in which the variable k and all assignments to it can

be considered dead-code and therefore eliminated (adapted from [67], pages 595 and 597).
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if (a > d) | lwz %r0,20(%r31) |*|if (a > d) | lwz %r0,20(%r31)

b = a | cmpw %cr7,%r9,%r0 |*| b = a | add %r0,%r9,%r0

c = 4 * b | bgt %cr7,.L7 |*| c = 4 * b | stw %r0,24(%r31)

if (a > d) || bool |# if e == 1 |*| d = b |

d = b | lwz %r0,24(%r31) |*| e = a + d |

else | cmpwi %cr7,%r0,1 |*| |

d = c | beq %cr7,.L7 |*|--------------------|

e = a + d | b .L6 |*|# if a > d |

|.L7: |*| lwz %r0,8(%r31) |

--------------------|# d = b |*| lwz %r9,20(%r31) |

# if a > d | lwz %r0,12(%r31) |*| cmpw %cr7,%r0,%r9 |

lwz %r0,8(%r31) | stw %r0,20(%r31) |*| ble %cr7,.L5 |

lwz %r9,20(%r31) | b .L8 |*| mulli %r0,%r0,4 |

cmpw %cr7,%r0,%r9 |.L6: |*| stw %r0,16(%r31) |

ble %cr7,.L5 |# d = c |*|# b = a |

# b = a | lwz %r0,16(%r31) |*| lwz %r0,8(%r31) |

lwz %r0,8(%r31) | stw %r0,20(%r31) |*| stw %r0,12(%r31) |

stw %r0,12(%r31) |.L8: |*|# c = 4 * b |

# c = 4 * b |# e = a + d |*| lwz %r0,12(%r31) |

lwz %r0,12(%r31) | lwz %r0,8(%r31) |*|# d = b |

mulli %r0,%r0,4 | lwz %r9,20(%r31) |*| lwz %r0,12(%r31) |

stw %r0,16(%r31) | add %r0,%r0,%r9 |*| stw %r0,20(%r31) |

# if a > d | stw %r0,24(%r31) |*|# e = a + d |

lwz %r9,8(%r31) | |*| lwz %r9,8(%r31) |

Figure 3.6: An example of if simplification where an unnecessary conditional branch can

be elimination (adapted from [67], page 585).

variable in the expression is updated along the path between the conditionals.

As with value numbering, the performance and power benefits arising from dead-code

elimination and if-simplification is the reduction in the amount of work performed.

Inlining replaces a function call with a copy of the callee’s code. This eliminates the

call and return overhead, which is significant in object-oriented languages that typically

consist of many small repeatedly called leaf methods. However, the greatest impact of

inlining stems from its more aggressive use as an enabling optimization, allowing many of

the traditional intra-procedural optimizations presented earlier to be applied. Considering

the example from [67], presented in Figure 3.7, the function g is an ideal candidate for

inlining into the function f. As a result, on the right-hand side of Figure 3.7 it can be seen
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g(int b,int c) |# d = b * c |*|f() |f:

{ | mullw %r0,%r3,%r4 |*|{ | ...

int a, d | stw %r0,20(%r31) |*| int a, e, d; |# a = 2

a = b + c |# return d |*| a = 2; | li %r0,2

d = b * c | mr %r3,%r0 |*| a = 3 + 4; | stw %r0,8(%r31)

return d | lwz %r11,0(%r1) |*| d = 3 * 4; |# a = 3 + 4

} | lwz %r31,-4(%r11) |*| e = d; | li %r0,3

| mr %r1,%r11 |*| print(e) | addi %r9,%r0,4

f() | blr |*|} | stw %r9,8(%r31)

{ |################### |*| |# d = 3 * 4

int a, e |f: |*| | mulli %r0,%r0,4

a = 2 | ... |*| | stw %r0,16(%r31)

e = g(3,4) |# a = 2 |*| |# e = d

print(e) | li %r0,2 |*| | stw %r0,12(%r31)

} | stw %r0,8(%r31) |*| |# print(e)

|# call g(3,4) |*| | lis %r9,.LC0@ha

-------------------| li %r3,3 |*| | la %r3,.LC0@l(%r9)

g: #save context | li %r4,4 |*| | lwz %r4,12(%r31)

stwu %r1,-48(%r1)| bl g |*| | crxor 6,6,6

stw %r31,44(%r1) |# e = g(3,4) |*| | bl printf

mr %r31,%r1 | stw %r3,12(%r31) |*|

# unload b, c |# print(e) |*|

stw %r3,8(%r31) | lis %r9,.LC0@ha |*|

stw %r4,12(%r31) | la %r3,.LC0@l(%r9)|*|

# a = b + c | lwz %r4,12(%r31) |*|

add %r10,%r3,%r4 | crxor 6,6,6 |*|

stw %r10,16(%r31)| bl printf |*|

Figure 3.7: A simple inlining example where the function g is a good candidate to be

inlined into f (adapted from [67], page 469).

that after inlining has been applied it opens up the possibility of further transformations

such as constant folding and copy propagation which could reduce the code to simply

print(12).

Loop-invariant code motion is a simple, yet highly effective optimization. It is the

process of hoisting computations that are not dependent upon loop variables outside of the

loop. This has the desired effect of only executing the loop-invariant code once as opposed

to every iteration. For example, consider the high-level pseudo-code example in Figure 3.8

(from [67]). It is clear that the variables a, b, and c are all computed with values that
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are independent of each loop iteration. Therefore, as exemplified in the right-hand side of

Figure 3.8, they can safely be moved outside of the loop body, and computed only a single

time.

Unswitching is a specific application of loop-invariant code motion where the invariant

code is a conditional. The conditional code is moved outside of the loop and the loop

body is replicated along both the true and false paths flowing from the comparison. The

performance benefits arise chiefly from the reduction in the number of instructions exe-

cuted. Therefore, the improvements in power consumption should be attributable mostly

to the ALU, however, the removal of the conditional due to unswitching should also reduce

the amount of power consumed by the branch predictor. An example of unswitching is

illustrated in Figure 3.9.

Languages such as Java perform a run-time bounds-check upon an access to an array.

This is done to ensure that the index is valid within the range of the array. However,

this is extremely costly, especially when the access is inside of a loop iterating over an

entire array. When the size of the array and the range of indexes are known, a compiler

(run-time or static) can eliminate the bounds-check if all indexes can be guaranteed to

lie within the valid range of the array. The removal of the bound checking code along

the critical path of a loop will considerably improve performance and should decrease the

amount of power consumed by the ALU and branch predictor. Consider the example of

bounds-check elimination illustrated in Figure 3.10. The iteration space of the loop is

known and therefore if the size of the array b is at least 50×10, then the bounds-check can

be eliminated. Note that only the upper bound is checked in this example, usually both

the lower and upper bounds are checked to ensure that the array update does not cross

either boundary.

Loop unrolling reduces the loop overhead associated with checking the loop terminating

condition by replicating the loop body multiple times inside the modified loop. Many

original iterations are therefore performed in a single unrolled iteration. The blurring of

iteration boundaries by reducing the number of checks for the loop termination condition

should also impact the power consumed by the ALU and branch predictor. However, loop

unrolling can significantly increase register pressure and code size, thereby consuming more

power in the memory hierarchy. Although each optimization was examined in isolation, it
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b = 2 |# a = b + 1 |*|L1: |.L2:

i = 1 | lwz %r9,12(%r31) |*| b = 2 |# if i > 100 goto exit

| addi %r0,%r9,1 |*| i = 1 | lwz %r0,32(%r31)

L1: | stw %r0,8(%r31) |*| a = b + 1 | cmpwi %cr7,%r0,100

if (i > 100) |# c = 2 |*| c = 2 | bgt %cr7,.exit

goto exit | li %r0,2 |*| t1 = a > 1 |.L3:

| stw %r0,16(%r31) |*| |# if i % 2 != 0 goto L4

a = b + 1 |# if (i%2 != 0) goto L3 |*|L2: | lwz %r0,32(%r31)

c = 2 | lwz %r0,32(%r31) |*| if (i > 100) | rlwinm %r0,%r0,0,31,31

| rlwinm %r0,%r0,0,31,31 |*| goto exit | cmpwi %cr7,%r0,0

if (i % 2 == 0) { | cmpwi %cr7,%r0,0 |*| | bne %cr7,.L4

d = a + d | bne %cr7,.L3 |*| if (i % 2 == 0) { |# d = a + d

e = 1 + d |# d = a + d |*| d = a + d | lwz %r9,20(%r31)

} | lwz %r9,20(%r31) |*| e = 1 + d | lwz %r0,8(%r31)

else { | lwz %r0,8(%r31) |*| } | add %r0,%r9,%r0

d = -c | add %r0,%r9,%r0 |*| else { | stw %r0,20(%r31)

f = 1 + a | stw %r0,20(%r31) |*| d = -c |# e = 1 + d

} |# e = 1 + d |*| f = 1 + a | addi %r0,%r0,1

| lwz %r9,20(%r31) |*| } | stw %r0,24(%r31)

i = i + 1 | addi %r0,%r9,1 |*| | b .L5

if (a > 1) | stw %r0,24(%r31) |*| i = i + 1 |.L4:

goto L1 | b .L4 |*| if (!t1) |# d = -c

|.L3: |*| goto L2 | lwz %r0,16(%r31)

exit: |# d = -c |*| | neg %r0,%r0

| lwz %r0,16(%r31) |*|exit: | stw %r0,20(%r31)

----------------------| neg %r0,%r0 |*| |# f = 1 + e

# b = 2 | stw %r0,20(%r31) |*|---------------------| lwz %r9,8(%r31)

li %r0,2 |# f = 1 + a |*|# b = 2 | addi %r0,%r9,1

stw %r0,12(%r31) | lwz %r9,8(%r31) |*| li %r0,2 | stw %r0,28(%r31)

# i = 1 | addi %r0,%r9,1 |*| stw %r0,12(%r31) |.L5:

li %r0,1 | stw %r0,28(%r31) |*|# i = 1 |# i = i + 1

stw %r0,32(%r31) |.L4: |*| li %r10,1 | lwz %r9,32(%r31)

.L1: |# i = i + 1 |*| stw %r10,32(%r31) | addi %r0,%r9,1

# if i <= 100 goto L3 | lwz %r9,32(%r31) |*|#a = b + 1 | stw %r0,32(%r31)

lwz %r0,32(%r31) | addi %r0,%r9,1 |*| addi %r10,%r10,1 |# if !t1 goto L2

cmpwi %cr7,%r0,100 | stw %r0,32(%r31) |*| stw %r10,8(%r31) | lwz %r0,36(%r31)

bgt %cr7,.exit |# if a > 1 goto L1 |*|# c = 2 | beq %r0,.L2

.L2: | lwz %r0,8(%r31) |*| stw %r0,16(%r31) |.exit:

| cmpwi %cr7,%r0,1 |*|# t1 = a > 1 |

| bgt %cr7,.L1 |*| cmpwi %cr7,%r10,1 |

|.exit: |*| stw %cr7, 36(%r31) |

Figure 3.8: An example of a code segment where loop-invariant code motion is applicable

(from [67], page 400).
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for (i=0; i<100; i++) | lwz %r9,0(%r11) |*|if (k == 2) |# i++

if (k == 2) |# incr |*| for (i=0; i < 100; i++)| lwz %r9,8(%r31)

a[i] = a[i] + 1; | addi %r0,%r9,1 |*| a[i] = a[i] + 1; | addi %r0,%r9,1

else | stw %r0,0(%r11) |*|else | stw %r0,8(%r31)

a[i] = a[i] - 1; | b .L10 |*| for (i=0; i < 100; i++)| b .L9

|.L11: |*| a[i] = a[i] - 1 ; |# k == 2 <FALSE>

----------------------| |*| |.L8:

.L8: |# k == 2 <FALSE> |*|-------------------------|# i = 0

# for i < 100 |# compute a[i] |*|# if k == 2 | li %r0,0

lwz %r0,8(%r31) | lwz %r0,8(%r31) |*| lwz %r0,12(%r31) | stw %r0,8(%r31)

cmpwi %cr7,%r0,99 | slwi %r9,%r0,2 |*| cmpwi %cr7,%r0,2 |.L13:

bgt %cr7,.L9 | addi %r0,%r31,8 |*| bne %cr7,.L8 |# for i < 100

# if k == 2 | add %r9,%r9,%r0 |*|# k == 2 <TRUE> | lwz %r0,8(%r31)

lwz %r0,12(%r31) | addi %r11,%r9,8 |*|# i = 0 | cmpwi %cr7,%r0,99

cmpwi %cr7,%r0,2 | lwz %r9,0(%r11) |*| li %r0,0 | bgt %cr7,.L12

bne %cr7,.L11 |# decr |*| stw %r0,8(%r31) |# compute a[i]

# k == 2 <TRUE> | addi %r0,%r9,-1 |*|.L9: | lwz %r0,8(%r31)

# compute a[i] | stw %r0,0(%r11) |*|# for i < 100 | slwi %r9,%r0,2

lwz %r0,8(%r31) |.L10: |*| lwz %r0,8(%r31) | addi %r0,%r31,8

slwi %r9,%r0,2 |# i++ |*| cmpwi %cr7,%r0,99 | add %r9,%r9,%r0

addi %r0,%r31,8 | lwz %r9,8(%r31) |*| bgt %cr7,.L12 | addi %r11,%r9,8

add %r9,%r9,%r0 | addi %r0,%r9,1 |*|# compute a[i] | lwz %r9,0(%r11)

addi %r11,%r9,8 | stw %r0,8(%r31) |*| lwz %r0,8(%r31) |# decr

| b .L8 |*| slwi %r9,%r0,2 | addi %r0,%r9,-1

|*| addi %r0,%r31,8 | stw %r0,0(%r11)

|*| add %r9,%r9,%r0 |# i++

|*| addi %r11,%r9,8 | lwz %r9,8(%r31)

|*| lwz %r9,0(%r11) | addi %r0,%r9,1

|*|# incr | stw %r0,8(%r31)

|*| addi %r0,%r9,1 | b .L13

|*| stw %r0,0(%r11)

Figure 3.9: An example of unswitching where the conditional expression if (k == 2) can

be hoisted outside of the loop and hence only executed once rather than the number of

loop iterations. Adapted from [67], page 589.
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for(i=0; i<50; i++){ | cmpwi %cr7,%r0,10 |*|for(i=0; i<50; i++) | stw %r0,16(%r31)

for(j=0; j<10; j++){| ble %cr7,.L19 |*| for(j=0; j<10; j++)|# j++

if (i > 50) | bl Error |*| s = s + b[i][j] | lwz %r9,12(%r31)

Error() |.L19: |*| | addi %r0,%r9,1

if (j > 10) |# Load b[i,j] |*|---------------------| stw %r0,12(%r31)

Error() | lwz %r0,8(%r31) |*|.L12: | b .L15

s = s + b[i][j] | mulli %r9,%r0,10 |*|# for i < 50 |.L14:

} | lwz %r0,12(%r31) |*| lwz %r0,8(%r31) |# i++

| add %r0,%r9,%r0 |*| cmpwi %cr7,%r0,49 | lwz %r9,8(%r31)

----------------------| slwi %r9,%r0,2 |*| bgt %cr7,.L13 | addi %r0,%r9,1

.L12: | addi %r0,%r31,8 |*|# j = 0 | stw %r0,8(%r31)

# for i < 50 | add %r9,%r9,%r0 |*| li %r0,0 | b .L12

lwz %r0,8(%r31) | addi %r9,%r9,24 |*| stw %r0,12(%r31) |

cmpwi %cr7,%r0,49 |# s = s + b[i,j] |*|.L15: |

bgt %cr7,.L13 | lwz %r11,16(%r31) |*|# for j < 10 |

# j = 0 | lwz %r0,0(%r9) |*| lwz %r0,12(%r31) |

li %r0,0 | add %r0,%r11,%r0 |*| cmpwi %cr7,%r0,9 |

stw %r0,12(%r31) | stw %r0,16(%r31) |*| bgt %cr7,.L14 |

.L15: |# j++ |*|# Load b[i,j] |

# for j < 10 | lwz %r9,12(%r31) |*| lwz %r0,8(%r31) |

lwz %r0,12(%r31) | addi %r0,%r9,1 |*| mulli %r9,%r0,10 |

cmpwi %cr7,%r0,9 | stw %r0,12(%r31) |*| lwz %r0,12(%r31) |

bgt %cr7,.L14 | b .L15 |*| add %r0,%r9,%r0 |

# if i > 50 ERROR |.L14: |*| slwi %r9,%r0,2 |

lwz %r0,8(%r31) |# i++ |*| addi %r0,%r31,8 |

cmpwi %cr7,%r0,50 | lwz %r9,8(%r31) |*| add %r9,%r9,%r0 |

ble %cr7,.L18 | addi %r0,%r9,1 |*| addi %r9,%r9,24 |

bl Error | stw %r0,8(%r31) |*|# s = s + b[i,j] |

.L18: | b .L12 |*| lwz %r11,16(%r31) |

# if j > 10 ERROR | |*| lwz %r0,0(%r9) |

lwz %r0,12(%r31) | |*| add %r0,%r11,%r0 |

Figure 3.10: A sample code snippet illustrating the application of bounds-checking elimina-

tion. The loop bounds are known and hence the compiler can eliminate the bounds-check

if the array contains at least 50× 10 elements. Adapted from [67] page 455.
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must be noted that loop unrolling mainly facilitates other optimization such as software

pipelining. An example of loop unrolling is displayed in Figure 3.11. The optimized loop

on the right-hand side of the figure has been unrolled by a factor of two, hence two original

loop iterations are performed in a single unrolled iteration. However, notice that the

number of instructions has not exactly doubled; the code has only expanded 1.9 times,

thereby exemplifying the reduction of loop overhead.

Loop interchange swaps the nesting levels of two adjacent loops. In general, it is used to

alter a loop nest in order to increase parallelism. However, in terms of improving the power

consumed by the data cache, interchange can be used to modify the locality characteristics

of a loop nest by increasing spatial reuse. For loop nests that access array elements,

loop interchange can rearrange the loop nest to achieve stride-1 access in the inner loop.

Considering the example in Figure 3.12, the loop carried dependence that exists between

element i and i+ 1 has been shifted to the inner loop to improve locality and open up the

possibility of scalar replacement of an array access.

Loop skewing is a simple transformation that modifies the bounds of a loop but does

not impact the instructions of the loop body. Skewing is generally used to alter depen-

dence distances, thereby enabling other transformations such as permutation or tiling to be

applied. If a loop has a dependence of (d1, d2), then the dependence will be (d1, fd1 + d2)

after skewing by a factor of f . Generally, to skew a loop by a factor of f , the outer loop

index is multiplied by f and added to the index of the inner loop. All uses of the inner

loop index in the loop body are adjusted by subtracting the skew factor. Considering the

example from [67], presented in Figure 3.13, the inner loop is skewed by i, thereby hoisting

the calculation i+ j out of the body of the inner loop.

Loop fusion is the process of merging two distinct loops into one. In general, fusion

can be applied if the two loops share the same iteration space, the latter loop does not

consume a value generated from the earlier, and the result of fusion does not introduce a

loop carried dependence which flows from the first loop to the second. The overhead of the

second loop is removed entirely and, possibly more important, reuse at the register and

cache levels is exploited. Although the potential improvement is greatest when the fused

loops share the same iteration space, it is not necessarily required.
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acc = 10 |# if a[i] > max |*|# imax = 0 | addi %r11,%r12,4

max = 0 | lwz %r9,0(%r9) |*| stw %r0,32(%r31) |# load b[i1]

imax = 0 | lwz %r0,16(%r31) |*|# imax1 = 0 | addi %r9,%r13,4

| cmpw %cr7,%r9,%r0 |*| stw %r0,36(%r31) |# a[i1] * b[i1]

for(i=0; i<100; i++){ | ble %cr7,.L10 |*|# i1 = 1 | lwz %r11,0(%r11)

acc=acc + a[i] * b[i]|# max = a[i] |*| li %r0,1 | lwz %r0,0(%r9)

if (a[i] > max){ | stw %r9,16(%r31) |*| stw %r0,12(%r31) | mullw %r9,%r11,%r0

max = a[i] |# imax = i |*|# i = 0 |# add acc1 and ST

imax = i | lwz %r0,8(%r31) |*| stw %r0,8(%r31) | lwz %r0,20(%r31)

} | stw %r0,20(%r31) |*|.L8: # for i < 99 | add %r0,%r0,%r9

} |.L10: |*| lwz %r0,8(%r31) | stw %r0,20(%r31)

|# i++ |*| cmpwi %cr7,%r0,98 |# load a[i1]

-----------------------| addi %r0,%r0,1 |*| bgt %cr7,.L9 | lwz %r0,12(%r31)

# acc = 10 | stw %r0,8(%r31) |*|# load a[i] | slwi %r9,%r0,2

li %r0,10 | b .L8 |*| lwz %r0,8(%r31) | addi %r0,%r31,8

stw %r0,12(%r31) | |*| slwi %r9,%r0,2 | add %r9,%r9,%r0

# max = 0 | |*| addi %r0,%r31,8 | addi %r9,%r9,40

li %r0,0 | |*| add %r9,%r9,%r0 |# if a[i1] > max1

stw %r0,16(%r31) |*|*********************|*| addi %r11,%r9,40 | lwz %r9,0(%r9)

# imax = 0 |*|*********************|*|# Save Addr of a[i] | lwz %r0,28(%r31)

stw %r0,20(%r31) |*|acc = 10 | mr %r12,%r11 | cmpw %cr7,%r9,%r0

# i = 0 |*|acc1 = 0 |# load b[i] | ble %cr7,.L12

stw %r0,8(%r31) |*|max = 0 | lwz %r0,8(%r31) |# max1 = a[i1]

.L8: |*|max1 = 0 | slwi %r9,%r0,2 | stw %r9,28(%r31)

# for i < 100 |*|imax = 0 | addi %r0,%r31,8 |# imax1 = i1

lwz %r0,8(%r31) |*|imax1 = 0 | add %r9,%r9,%r0 | lwz %r0,12(%r31)

cmpwi %cr7,%r0,99 |*|i1 = 1 | addi %r9,%r9,440 | stw %r0,36(%r31)

bgt %cr7,.L9 |*|for(i=0; i<99; i=i+2){ |# Save Addr of b[i] |.L12: # i1 = i1 + 2

# load a[i] |*| acc=acc + a[i] * b[i]| mr %r13,%r9 | lwz %r9,12(%r31)

lwz %r0,8(%r31) |*| if (a[i] > max){ |# compute a[i] * b[i] | addi %r0,%r9,2

slwi %r9,%r0,2 |*| max = a[i] | lwz %r11,0(%r11) | stw %r0,12(%r31)

addi %r0,%r31,8 |*| imax = i | lwz %r0,0(%r9) |# i = i + 2

add %r9,%r9,%r0 |*| } | mullw %r9,%r11,%r0 | lwz %r9,8(%r31)

addi %r11,%r9,24 |*| acc1=acc1+a[i1]*b[i1]|# add acc and ST | addi %r0,%r9,2

# load b[i] |*| if (a[i1] > max1){ | lwz %r0,16(%r31) | stw %r0,8(%r31)

lwz %r0,8(%r31) |*| max1 = a[i1] | add %r0,%r0,%r9 | b .L8

slwi %r9,%r0,2 |*| imax1 = i1 | stw %r0,16(%r31) |.L9: #if max1 > max

addi %r0,%r31,8 |*| i1+=2 |# load a[i] | lwz %r0,28(%r31)

add %r9,%r9,%r0 |*|} | lwz %r0,8(%r31) | lwz %r9,24(%r31)

addi %r9,%r9,424 |*|if (max1 > max) { | slwi %r9,%r0,2 | cmpw %cr7,%r0,%r9

# compute a[i] * b[i] |*| max = max1 | addi %r0,%r31,8 | ble %cr7,.L13

lwz %r11,0(%r11) |*| imax = imax1 | add %r9,%r9,%r0 |# max = max1

lwz %r0,0(%r9) |*|} | addi %r9,%r9,40 | stw %r0,24(%r31)

mullw %r9,%r11,%r0 |*| |# if a[i] > max |# imax = imax1

# add acc and ST |*|-----------------------| lwz %r9,0(%r9) | lwz %r0,36(%r31)

lwz %r0,12(%r31) |*|# acc = 10 | lwz %r0,24(%r31) | stw %r0,32(%r31)

add %r0,%r0,%r9 |*| li %r0,10 | cmpw %cr7,%r9,%r0 |

stw %r0,12(%r31) |*| stw %r0,16(%r31) | ble %cr7,.L11 |

# load a[i] |*|# acc1 = 0 |# max = a[i] |

lwz %r0,8(%r31) |*| stw %r0,20(%r31) | stw %r9,24(%r31) |

slwi %r9,%r0,2 |*|# max = 0 |# imax = i |

addi %r0,%r31,8 |*| stw %r0,24(%r31) | lwz %r0,8(%r31) |

add %r9,%r9,%r0 |*|# max1 = 0 | stw %r0,32(%r31) |

addi %r9,%r9,24 |*| stw %r0,28(%r31) |.L11: # load a[i1] |

Figure 3.11: An example of loop unrolling adapted from [67] page 563. The optimized

loop displayed on the right-hand side has been unrolled by a factor of two.

90



for (i=0; i<n; i++) { |.L8: #for i < n | lwz %r0,8(%r31) | lwz %r0,8(%r31)

for (j=0; j<n; j++) {| lwz %r0,8(%r31) | slwi %r9,%r0,2 | slwi %r9,%r0,2

a[i][j]=b[i]+0.5 | lwz %r9,16(%r31) | addi %r0,%r31,8 | addi %r0,%r31,8

a[i+1][j]=b[i]+0.5 | cmpw %cr7,%r0,%r9 | add %r9,%r9,%r0 | add %r9,%r9,%r0

} | bge %cr7,.L9 | addi %r9,%r9,520 | addi %r9,%r9,520

} |# j = 0 |# load 0.5 |# load 0.5

| li %r0,0 | lfs %f13,0(%r9) | lfs %f13,0(%r9)

| stw %r0,12(%r31) | lis %r9,.LC3@ha | lis %r10,.LC3@ha

|.L11: #for j < n | la %r9,.LC3@l(%r9) | la %r10,.LC3@l(%r10)

| lwz %r0,12(%r31) | lfs %f0,0(%r9) | lfs %f0,0(%r10)

| lwz %r9,16(%r31) |# a[i][j]=b[i]+.5 |# a[i+1][j]=b[i]+.5

| cmpw %cr7,%r0,%r9 | fadds %f0,%f13,%f0 | fadds %f0,%f13,%f0

| bge %cr7,.L10 | stfs %f0,0(%r11) | stfs %f0,0(%r11)

|# addr of a[i][j] |# addr of a[i+1][j] |# j++

| lwz %r0,8(%r31) | lwz %r0,8(%r31) | lwz %r9,12(%r31)

| mulli %r9,%r0,11 | mulli %r9,%r0,11 | addi %r0,%r9,1

| lwz %r0,12(%r31) | lwz %r0,12(%r31) | stw %r0,12(%r31)

| add %r0,%r9,%r0 | add %r0,%r9,%r0 | b .L11

| slwi %r9,%r0,2 | slwi %r9,%r0,2 |.L10: # i++

| addi %r0,%r31,8 | addi %r0,%r31,8 | lwz %r9,8(%r31)

| add %r9,%r9,%r0 | add %r9,%r9,%r0 | addi %r0,%r9,1

| addi %r11,%r9,24 | addi %r11,%r9,68 | stw %r0,8(%r31)

|# addr of b[i] |# addr of b[i] | b .L8

*******************************************************************************************

for (j=0; j<n; j++) { |# j = 0 |# addr of b[i] | slwi %r9,%r0,2

for (i=0; i<n; i++) {| li %r0,0 | lwz %r0,8(%r31) | addi %r0,%r31,8

a[i][j]=b[i]+0.5 | stw %r0,12(%r31) | slwi %r9,%r0,2 | add %r9,%r9,%r0

a[i+1][j]=b[i]+0.5 |.L8: # for j < n | addi %r0,%r31,8 | addi %r9,%r9,520

} | lwz %r0,12(%r31) | add %r9,%r9,%r0 | lfs %f13,0(%r9)

} | lwz %r9,16(%r31) | addi %r9,%r9,520 |# load 0.5

| cmpw %cr7,%r0,%r9 | lfs %f13,0(%r9) | lis %r10,.LC3@ha

| bge %cr7,.L9 |# load 0.5 | la %r10,.LC3@l(%r10)

|# i = 0 | lis %r9,.LC3@ha | lfs %f0,0(%r10)

| li %r0,0 | la %r9,.LC3@l(%r9) |# a[i+1][j]=b[i]+.5

| stw %r0,8(%r31) | lfs %f0,0(%r9) | fadds %f0,%f13,%f0

|.L11: # for i < n |# a[i][j]=b[i] + .5 | stfs %f0,0(%r11)

| lwz %r0,8(%r31) | fadds %f0,%f13,%f0 |# i++

| lwz %r9,16(%r31) | stfs %f0,0(%r11) | lwz %r9,8(%r31)

| cmpw %cr7,%r0,%r9 |# addr of a[i+1][j] | addi %r0,%r9,1

| bge %cr7,.L10 | lwz %r0,8(%r31) | stw %r0,8(%r31)

|# addr of a[i][j] | mulli %r9,%r0,11 | b .L11

| lwz %r0,8(%r31) | lwz %r0,12(%r31) |.L10:

| mulli %r9,%r0,11 | add %r0,%r9,%r0 |# j++

| lwz %r0,12(%r31) | slwi %r9,%r0,2 | lwz %r9,12(%r31)

| add %r0,%r9,%r0 | addi %r0,%r31,8 | addi %r0,%r9,1

| slwi %r9,%r0,2 | add %r9,%r9,%r0 | stw %r0,12(%r31)

| addi %r0,%r31,8 | addi %r11,%r9,68 | b .L8

| add %r9,%r9,%r0 |# addr of b[i] |

| addi %r11,%r9,24 | lwz %r0,8(%r31) |

Figure 3.12: An example of interchanging two loop nests. The i and j loops have been

interchanged to increase spatial reuse (adapted from [67] page 684).
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for i = 0 to n do | add %r9,%r9,%r0 |*|for i = 0 to n do | ble %cr7,.L10

for j = 0 to n do | addi %r11,%r9,24 |*| for j = i+1 to i+n do |#compute addr of a[i]

a[i] = a[i+j] + 1 |# i + j |*| a[i] = a[j] + 1 | lwz %r0,8(%r31)

done | lwz %r9,8(%r31) |*| done | slwi %r9,%r0,2

done | lwz %r0,12(%r31) |*|done | addi %r0,%r31,8

------------------------| add %r0,%r9,%r0 |*| | add %r9,%r9,%r0

# i = 0 |#calc. addr of a[i+j] |*|-------------------------| addi %r11,%r9,24

li %r0,0 | slwi %r9,%r0,2 |*|# i = 0 |#compute addr of a[j]

stw %r0,8(%r31) | addi %r0,%r31,8 |*| li %r0,0 | lwz %r0,12(%r31)

.L8 # for i < n | add %r9,%r9,%r0 |*| stw %r0,8(%r31) | slwi %r9,%r0,2

lwz %r0,8(%r31) | addi %r9,%r9,24 |*|.L8: | addi %r0,%r31,8

lwz %r9,16(%r31) |# a[i] = a[i+j] + 1 |*|# for i < n | add %r9,%r9,%r0

cmpw %cr7,%r0,%r9 | lwz %r9,0(%r9) |*| lwz %r0,8(%r31) | addi %r9,%r9,24

bge %cr7,.L9 | addi %r0,%r9,1 |*| lwz %r9,16(%r31) |# a[i] = a[j] + 1

# j = 0 | stw %r0,0(%r11) |*| cmpw %cr7,%r0,%r9 | lwz %r9,0(%r9)

li %r0,0 |# j++ |*| bge %cr7,.L9 | addi %r0,%r9,1

stw %r0,12(%r31) | lwz %r9,12(%r31) |*|# j = i + 1 | stw %r0,0(%r11)

.L11: | addi %r0,%r9,1 |*| lwz %r9,8(%r31) |# j++

# for j < n | stw %r0,12(%r31) |*| addi %r0,%r9,1 | lwz %r9,12(%r31)

lwz %r0,12(%r31) | b .L11 |*| stw %r0,12(%r31) | addi %r0,%r9,1

lwz %r9,16(%r31) |# i++ |*|.L11: | stw %r0,12(%r31)

cmpw %cr7,%r0,%r9 |.L10: |*|# for j < i + n | b .L11

bge %cr7,.L10 | lwz %r9,8(%r31) |*| lwz %r9,8(%r31) |.L10: # i++

#compute addr of a[i] | addi %r0,%r9,1 |*| lwz %r0,16(%r31) | lwz %r9,8(%r31)

lwz %r0,8(%r31) | stw %r0,8(%r31) |*| add %r9,%r9,%r0 | addi %r0,%r9,1

slwi %r9,%r0,2 | b .L8 |*| lwz %r0,12(%r31) | stw %r0,8(%r31)

addi %r0,%r31,8 | |*| cmpw %cr7,%r9,%r0 | b .L8

Figure 3.13: An example of a loop nest skewed by a factor of i (adapted from [67], page

692).
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for (i=0; i<n; i++) |# for j < n |*|for (i=0; i<n; i++) |# b[i] = a[i] * .618

a[i] = a[i] + 1 | lwz %r0,12(%r31) |*| a[i] = a[i] + 1 | lwz %r0,0(%r9)

endfor | lwz %r9,16(%r31) |*| b[i] = a[i] * .618 | lis %r9,0x4330

for (j=0; j<n; j++) | cmpw %cr7,%r0,%r9 |*|endfor | lis %r10,.LC4@ha

b[j] = a[j] * .618 | bge %cr7,.L12 |*| | la %r10,.LC4@l(%r10)

endfor |#compute addr of b[j] |*| | lfd %f13,0(%r10)

----------------------| lwz %r0,12(%r31) |*|----------------------| xoris %r0,%r0,0x8000

# i = 0 | slwi %r9,%r0,2 |*|# i = 0 | stw %r0,828(%r31)

li %r0,0 | addi %r0,%r31,8 |*| li %r0,0 | stw %r9,824(%r31)

stw %r0,8(%r31) | add %r9,%r9,%r0 |*| stw %r0,8(%r31) | lfd %f0,824(%r31)

.L8: | addi %r11,%r9,424 |*|.L8: | fsub %f13,%f0,%f13

# for i < n |#compute addr of a[j] |*|# for i < n | lis %r9,.LC0@ha

lwz %r0,8(%r31) | lwz %r0,12(%r31) |*| lwz %r0,8(%r31) | lfd %f0,.LC0@l(%r9)

lwz %r9,16(%r31) | slwi %r9,%r0,2 |*| lwz %r9,12(%r31) | fmul %f0,%f13,%f0

cmpw %cr7,%r0,%r9 | addi %r0,%r31,8 |*| cmpw %cr7,%r0,%r9 | frsp %f0,%f0

bge %cr7,.L9 | add %r9,%r9,%r0 |*| bge %cr7,.L9 | stfs %f0,0(%r11)

#compute addr of a[i] | addi %r9,%r9,24 |*|#compute addr of a[i] |# i++

lwz %r0,8(%r31) |#b[j] = a[j] * .618 |*| lwz %r0,8(%r31) | lwz %r9,8(%r31)

slwi %r9,%r0,2 | lwz %r0,0(%r9) |*| slwi %r9,%r0,2 | addi %r0,%r9,1

addi %r0,%r31,8 | lis %r9,0x4330 |*| addi %r0,%r31,8 | stw %r0,8(%r31)

add %r9,%r9,%r0 | lis %r10,.LC4@ha |*| add %r9,%r9,%r0 | b .L8

addi %r11,%r9,24 | la %r10,.LC4@l(%r10) |*| addi %r11,%r9,8 |

# a [i] = a[i] + 1 | lfd %f13,0(%r10) |*|# a [i] = a[i] + 1 |

lwz %r9,0(%r11) | xoris %r0,%r0,0x8000 |*| lwz %r9,0(%r11) |

addi %r0,%r9,1 | stw %r0,844(%r31) |*| addi %r0,%r9,1 |

stw %r0,0(%r11) | stw %r9,840(%r31) |*| stw %r0,0(%r11) |

# i++ | lfd %f0,840(%r31) |*|#compute addr of b[i] |

lwz %r9,8(%r31) | fsub %f13,%f0,%f13 |*| lwz %r0,8(%r31) |

addi %r0,%r9,1 | lis %r9,.LC0@ha |*| slwi %r9,%r0,2 |

stw %r0,8(%r31) | fmul %f0,%f13,%f0 |*| addi %r0,%r31,8 |

b .L8 | frsp %f0,%f0 |*| add %r9,%r9,%r0 |

.L9: | stfs %f0,0(%r11) |*| addi %r11,%r9,408 |

# j = 0 |# j++ |*|#compute addr of a[i] |

li %r0,0 | lwz %r9,12(%r31) |*| lwz %r0,8(%r31) |

stw %r0,12(%r31) | addi %r0,%r9,1 |*| slwi %r9,%r0,2 |

.L11: | stw %r0,12(%r31) |*| addi %r0,%r31,8 |

| b .L11 |*| add %r9,%r9,%r0 |

Figure 3.14: An example of fusing two loops that have the same iteration space thereby

reducing the amount of loop overhead (adapted from [67], page 693).
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Loop Tiling partitions the iteration space of a loop nest into rectangular blocks (tiling is

also known as blocking, strip-mine-and-interchange or unroll and jam) [114, 113]. Reuse of

array elements along multiple dimensions of the iteration space can be exploited by operat-

ing on tiles which are small enough such that all elements of the tile can fit in cache [113].

Of all the loop transformations discussed, tiling can provide the most substantial benefits

to the memory hierarchy. Tiling a loop results in the creation of two loops, the outer

(controlling) loop visits each tile and the inner (tiled) loop visits each element of the tile.

Figure 3.15 illustrates an example of a loop that has been transformed to take advantage

of a tile size of 2. The improvements in power consumption by interchange, skewing, fusion

and tiling should be evidenced mostly in the data-cache, register file and, to a lesser extent,

the ALU and branch predictor.
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for(i=1; i<n; i++){ | stfs %f0,0(%r11) |*| bge %cr7,.L10

b[i] = a[i] + b[i] |# i++ |*|#compute addr of b[i]

a[i+1] = a[i] + 1.0 | lwz %r9,8(%r31) |*| lwz %r0,8(%r31)

} | addi %r0,%r9,1 |*| slwi %r9,%r0,2

| stw %r0,8(%r31) |*| addi %r0,%r31,8

-----------------------| b .L8 |*| add %r9,%r9,%r0

# i = 1 | |*| addi %r10,%r9,72

li %r0,1 |*|************************** |*|#compute addr of a[i]

stw %r0,8(%r31) |*|************************** |*| lwz %r0,8(%r31)

.L8: |*|for(i=1; i<n; i+=2){ | addi %r0,%r31,8

# for i < n |*| for(j=i;j<Min(i+1,n);j+){ | add %r9,%r9,%r0

lwz %r0,8(%r31) |*| b[i] = a[i] + b[i] | addi %r11,%r9,24

lwz %r9,16(%r31) |*| a[i+1] = a[i] + 1.0 |# b[i] = a[i] + b[i]

cmpw %cr7,%r0,%r9 |*| } | lfs %f13,0(%r11)

bge %cr7,.L9 |*|} | lfs %f0,0(%r9)

#compute addr of a[i] |*| | fdivs %f0,%f13,%f0

lwz %r0,8(%r31) |*|-----------------------------| stfs %f0,0(%r10)

slwi %r9,%r0,2 |*|# i = 1 |#compute addr of a[i+1]

addi %r0,%r31,8 |*| li %r0,1 | lwz %r0,8(%r31)

add %r9,%r9,%r0 |*| stw %r0,8(%r31) | slwi %r9,%r0,2

addi %r11,%r9,24 |*|.L8: | addi %r0,%r31,8

#compute addr of b[i] |*|# for i < n | add %r9,%r9,%r0

lwz %r0,8(%r31) |*| lwz %r0,8(%r31) | addi %r11,%r9,28

slwi %r9,%r0,2 |*| lwz %r9,16(%r31) |#compute addr of a[i]

addi %r0,%r31,8 |*| cmpw %cr7,%r0,%r9 | lwz %r0,8(%r31)

add %r9,%r9,%r0 |*| bge %cr7,.L9 | slwi %r9,%r0,2

addi %r9,%r9,72 |*|# temp = i + 1 | addi %r0,%r31,8

# b[i] = a[i] + b[i] |*| lwz %r9,8(%r31) | add %r9,%r9,%r0

lfs %f13,0(%r11) |*| addi %r0,%r9,1 | addi %r9,%r9,24

lfs %f0,0(%r9) |*| stw %r0,144(%r31) |#a[i+1] = a[i] + 1.0

fdivs %f0,%f13,%f0 |*|# if n < i + 1 | lfs %f13,0(%r9)

stfs %f0,0(%r10) |*| lwz %r0,16(%r31) | lis %r9,.LC4@ha

#compute addr of a[i+1]|*| lwz %r9,144(%r31) | la %r9,.LC4@l(%r9)

lwz %r0,8(%r31) |*| cmpw %cr7,%r9,%r0 | lfs %f0,0(%r9)

slwi %r9,%r0,2 |*| ble %cr7,.L11 | fadds %f0,%f13,%f0

addi %r0,%r31,8 |*|# temp = n | stfs %f0,0(%r11)

add %r9,%r9,%r0 |*| lwz %r10,16(%r31) |# j++

addi %r11,%r9,28 |*| stw %r10,144(%r31) | lwz %r9,12(%r31)

#compute addr of a[i] |*|.L11: | addi %r0,%r9,1

lwz %r0,8(%r31) |*|# bound = temp | stw %r0,12(%r31)

slwi %r9,%r0,2 |*| lwz %r0,144(%r31) | b .L12

addi %r0,%r31,8 |*| stw %r0,20(%r31) |.L10:

add %r9,%r9,%r0 |*|# j = i |# i = i + 2

addi %r9,%r9,24 |*| lwz %r0,8(%r31) | lwz %r9,8(%r31)

# a[i+1] = a[i] + 1.0 |*| stw %r0,12(%r31) | addi %r0,%r9,2

lfs %f13,0(%r9) |*|.L12: | stw %r0,8(%r31)

lis %r9,.LC4@ha |*|# for j < bound | b .L8

la %r9,.LC4@l(%r9) |*| lwz %r0,12(%r31) |

lfs %f0,0(%r9) |*| lwz %r9,20(%r31) |

fadds %f0,%f13,%f0 |*| cmpw %cr7,%r0,%r9 |

Figure 3.15: An example of loop tiling adapted from [67], page 694.

95



Experimental Results

The primary goal of this study is to perform a fine-grained comparison of the effects of

individual optimizations on resource-constrained devices. To this end, we first carefully

describe the simulation environment in which our experiments were performed. The per-

formance and power measurements captured by the simulation environment for each of the

optimizations described in the previous section are then reported. Finally, we will conclude

with an analysis of the findings.

Methodology

The performance and power profiles reported in this study were captured using the DSS-

Wattch [28] simulation environment. DSSWattch is the most recent layer on top of a

sophisticated and established set of research tools for computer architecture simulation.

At the base of this environment is SimpleScalar [15], a cycle accurate out-of-order simu-

lator for the Alpha and PISA architectures. Wattch [12] introduced the ability to track

the power consumption of programs executed in the SimpleScalar environment. Dynamic

SimpleScalar (DSS) [45] is a PowerPC port of SimpleScalar (specifically, the PowerPC 750)

that also added the capability to simulate programs that are dynamically compiled. Finally,

DSSWattch is an extension of the original Wattch power module which adds floating-point

support and allows for the mixed 32- and 64-bit modes present in the PowerPC architec-

ture.

Wattch incorporates four different power models:

1. Unconditional Clocking: Full power is consumed by every unit each cycle.

2. Simple Conditional Clocking (CC1): A unit that is idle for a given cycle consumes

no power.

3. Ideal Conditional Clocking (CC2): Accounts for the number of ports that are accessed

on a unit and power is scaled linearly with the number of ports.

4. Non-Ideal Conditional Clocking (CC3): Models power leakage by assuming that an

idle unit consumes only 10% of its maximum power for a cycle in which it is inactive.
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All of the tests were performed on a 1.9GHz dual-processor AMD Opteron, running

Gentoo GNU/Linux with 2MB of main memory. However, the simulation environment is

that of a PowerPC 750 running GNU/Linux using the default DSSWattch configuration.

The default DSSWattch configuration used throughout the simulations can be found in

Table B.1 of Appendix B. Under this configuration, DSSWattch was found to be capable

of simulating an average of approximately 470K instructions per second in single user mode.

Results

Our findings for the loop optimizations indicate that the improvements in power consump-

tion are directly linked to the reduction in the number of committed instructions. We

found an average performance improvement of 17.0%, with a range from 5.3% to 44.5%

and an average decrease in power consumption of 15.3% ranging from 7.6% to 31.0% under

the non-ideal power model (CC3). However, the power benefits resulting from the early

optimizations displayed a closer linkage to the speed-up obtained than the reduction in the

number of instructions committed than the speed-up. The average decrease in execution

time resulting from the early optimization was 4.8%, ranging from 15.8% to a slow down

of 0.9% and the average decrease in power consumption was 6.2% with a range from 16.1%

to an increase of 0.5% (CC3).

Note that the performance numbers reported in [106, 18, 92] are the result of applying

an entire set of optimizations, such as all those examined in this study. Our results, in

contrast, are obtained from a single application of each optimization in isolation. Each

benchmark from [67] was placed inside a test harness, where the code was executed 1000

times.

Figures 3.16 and 3.17 display a comparison of the normalized execution time, num-

ber of instructions committed, and the amount of power consumed between the original,

and optimized code sequences for the early and loop optimizations, respectively. Power

consumption for the CC1, CC2, and CC3 models is reported, however, discussion of the re-

sults is focused on the non-ideal model (CC3), since it is the most realistic by incorporating

power leakage of idle units.

Out of all the early optimizations considered, the application of constant folding after
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constant propagation was found to have the greatest impact on performance and power,

providing improvements of 15.8% and 16.1%, respectively. Copy propagation and value

numbering also resulted in substantial improvements, yielding a 5% minimum decrease in

power consumption. Given the benefits in both performance and power, the set of early op-

timizations definitely performed by an adaptive dynamic optimizer should include constant

propagation, constant folding, copy propagation, and value numbering. Additionally, these

optimizations (typically considered “peephole” optimizations) are simple and efficient to

perform, thereby increasing the return on investment made by the dynamic compiler.

Optimizations such as dead-code elimination, if-simplification, and inlining did not

contribute significantly on their own, and their applicability to a specific code segment

should be guided by heuristics. It should be noted that the results obtained for function

inlining do not represent the full impact that it can have. Many of the optimizations

enabled after inlining has been performed were not taken into account, and therefore the

results understate the importance of inlining.

The elimination of bounds-checking was found to provide the greatest improvement in

both performance and power consumption of the loop optimizations. DSSWattch measured

a speed-up of 44.5% and power savings of 31.0%. As expected, all of the loop optimizations

significantly improved execution time and power usage, with a minimum return of 8.0% for

each. Loop nests must always be the first place that a compiler attempts to optimize and

ideally a dynamic compiler should be capable of applying all of the loop transformations

examined in this study. This finding should be tempered with the fact that the loop

optimizations are substantially more complex to perform than the early optimizations,

requiring expensive analysis (dependence) and complex code transformations.

An attempt to determine if the effect on power consumption corresponds more closely

to the changes in performance or to the number of instructions committed was inconclusive.

The variance from execution time to power consumption for the early optimizations was

found have a high correspondence. Specifically, the average variance between performance

and power consumption was 0.000016, while the variance between the number of instruc-

tions committed and power consumption was 0.002 (with a standard deviation of 0.004

and 0.05, respectively). Conversely, changes in the number of instructions committed for

the loop optimizations correspond more closely to power consumption than execution time,
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with variances of 0.002 and 0.005 and standard deviations of 0.03 and 0.05, respectively.

Tables 3.3 and 3.4 display the amount of energy consumed by each component that

DSSWattch is able to track (only the results for the CC3 power module are reported). The

power savings in the load/store queue and the L2 cache were each found to be the most

significant in two of the early optimizations examined. Whereas, for the loop optimizations

the branch prediction unit dominated in four of the eight optimizations and the register

file was the largest contributor in two of the remaining optimizations.
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Figure 3.18: A comparison of the change in instructions per cycle to the change in power

consumed per cycle measured by the CC1, CC2, and CC3 power models for early opti-

mizations.

Although this study did not directly focus on the effects of instruction scheduling, it is

interesting to examine the change in the number of committed instructions per cycle, in

comparison to the change in power consumed per cycle (PPC), as displayed in Figures 3.18

and 3.19. The amount of instruction-level parallelism increased in almost all of the loop

benchmarks and, accordingly, so did the PPC, given that more functional units were uti-

lized per cycle. The number of IPC was unaffected in most of the early optimizations

except for copy propagation and value numbering, where the IPC was reduced by 0.14 and

0.08, respectively.

Future Work

An interesting avenue of further investigation would be instruction cache improvements.

Expensive offline I-cache optimizations such as code positioning [78] can be performed on

the JVM code, while the dynamically compiled code can be placed in the heap according

to the policies of the memory allocator, and later moved closer to its neighbors in the call

tree by the garbage collector. Extensive coverage of dynamically compiled, code cache

management techniques for embedded devices can be found in [20, 119, 79, 83, 44].
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Figure 3.19: A comparison of the change in instructions per cycle to the change in power

consumed per cycle measured by the CC1, CC2, and CC3 power models for loop optimiza-

tions.

Similar to the work by Azevedo et al. [6] that deactivated unused registers we could

modify the simulator by setting the size of the register file equal to the number of registers

used in each of the benchmarks and thereby examine the effect of turning off the unused

registers.

Conclusion

This study examined the effects of a substantial collection of early and loop compiler opti-

mizations on both the execution time and power consumption in the DSSWattch simulation

environment. Examples of each of the optimizations were translated from [67] into Pow-

erPC assembly and simulated by DSSWattch. Application of each optimization in isolation

resulted in an overall average improvement in performance of 4.8% and a 6.2% decrease

in power consumption for the early optimizations, and an average speed-up of 17.0% and

average power savings of 15.3% for the loop optimizations. The improvements resulting

from the loop optimizations were found to be closely tied to the decrease in the number of

instructions committed, which on average was 14.1%. As a result of these findings, the ear-

liest optimization level of an adaptive dynamic optimizer should at least include constant
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propagation, constant folding, copy propagation, and value numbering. Additionally, the

compiler should be sufficiently sophisticated such that it can carry out the analysis required

to perform all of the loop transformations examined in this study.

Unfortunately, although DSSWattch does differentiate between the amount of power

consumed by integer and floating-point operations, it does not assign a cost to individual

instructions. This precluded the examination of optimizations such as strength reduction,

which often replaces a complex instruction sequence with a longer sequence consisting

of simpler instructions. The application of strength reduction may have resulted in a

performance increase, however, under DSSWattch’s current power model it would have

incorrectly reported an increase in power consumption, as a result of the increased instruc-

tion count. In future work the amount of power consumed by various instructions should

be scaled in order to capture more accurate results.

If the findings of this study are to be applied as a criterion for the selection of the

optimizations that are appropriate at each optimization level in an adaptive dynamic opti-

mizing compiler, then the cost of performing each optimization must be studied further. In

conjunction with this work, the performance, and power impacts of applying each transfor-

mation at run-time must be factored into the level formation process. For example, if this

study found that a specific optimization provided a 3% performance improvement and a

2% savings in power, however, performing the optimizations is expensive in terms of both

time and power, then it may be more suitable for inclusion at a higher optimization level

such as -O3 rather than -O1.
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Chapter 4

Towards Compiler Generated

Thread-Level Speculation

4.1 Introduction

General purpose programs often contain impediments to parallelization, such as unanalyz-

able memory references and irregular control-flow, and are therefore difficult for a static

compiler to parallelize. Thread-Level Speculation (TLS) is an aggressive parallelization

technique that can be applied to regions of code that can not be parallelized using tra-

ditional static compiler techniques. TLS allows a compiler to aggressively partition a

program into concurrent threads without considering the data- and control-dependencies

that may exist between the threads. This is enabled by the assumption that the data- and

control-violations will be detected at run-time by an enhanced cache coherency protocol.

Alongside of the speculative cache, a tightly coupled single-chip multiprocessor (CMP

- now more commonly referred to as multi-core processors) architecture which affords low-

latency interprocessor communication is required. Although CMPs have been discussed

in research for nearly a decade, they are now widespread in the commercial market, for

example, IBM’s Power4 [101] and Intel’s Core Duo [36]. However, the speculative cache

hardware required to perform TLS efficiently has not been included on current CMPs, it
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is appearing in experimental processors such as Sun’s ROCK architecture [19] and Intel’s

hybrid approach Anaphase [61]. Recently, Azul Systems released massively parallel special

purpose hardware to specifically handle high throughput Java workloads. One of the

additions to their architecture is support for TLS or as they refer to it as “optimistic

thread concurrency” [38].

This chapter provides an overview of TLS, discussing both the hardware and compiler

support required, compiler optimizations that can improve the performance of TLS, and

finally concludes with a description of our implementation of a Java TLS library.

4.2 Background

4.2.1 Hardware Support for Thread-Level Speculation

This section provides a hardware-centric overview of what is required to provide an ef-

ficient TLS framework, namely a tightly coupled single-chip multiprocessor architecture

which affords low-latency interprocessor communication and a speculative cache coherency

protocol. Since CMPs (multi-cores) have now become mainstream, we limit our discussion

to a synopsis for their adoption by the large CPU manufacturers. A number of competing

speculative cache architectures have been proposed such, as Speculative Versioning Cache

(SVC) [109] and the Address Resolution Buffer (ARB) [33] however, we focus on the SVC

since it appears to be the more likely approach to be adopted in real hardware. Recent

work has applied the the proven database techniques of transactional memory [43].

In the late 1990s hardware architects realized that superscalar processors and the per-

formance improvements resulting from the level of parallelism that they can exploit, namely

instruction-level parallelism (ILP), were producing a diminishing rate of return [111, 73].

In order to continually feed the multiple execution units of the high frequency superscalar

processors the instruction pipeline was becoming increasing long, many expensive hard-

ware features were required such as branch prediction and instruction reorder buffers. In

order to provide the market with ever faster CPUs many researchers believed the answer

was in extracting a greater level of parallelism from general purpose programs. Olukotun
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Figure 4.1: An example of a generalized four processor thread-level speculative architecture.

et al. [73] proposed replacing the single complex superscalar processor on a chip with many

simpler ones. With an increasing amount of chip area being consumed by the hardware

required for ILP, they argued that the space might be more beneficially used by a greater

number of simpler processors forming an architecture capable of enabling courser grained

parallelism.

Let us start by presenting an example of a simple four-processor TLS architecture as

illustrated in Figure 4.1. Each processor (Pi) has a private level-1 cache (L1i) that buffers

a threads’ speculative state. The processors are tightly interconnected, communicating via

a specialized bus that arbitrates access to the true global state held in a unified on-chip

level-2 cache (L2). It should be noted that each processor can in fact be a superscalar

processor capable of exploiting parallelism at the instruction level. However, they do not

typically have the extraordinarily deep pipelines as later versions of Intel’s Pentium or

AMD’s Athlon processors.

Most of the commercially available CMPs are two or four processor configurations.

However, to fully exploit TLS, more units are required. Focusing strictly upon function-

level speculation, Warg and Stenström [112] experimentally found that eight processors
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ValidTag P DataStore Load

Figure 4.2: An illustration of a cache line in the naive speculative versioning cache archi-

tecture [109].

were sufficient to exploit the parallelism available in the SPEC benchmarks [42]. At-

tempting to extract all of the potential TLS parallelism available at the both the loop-

and function-levels accordingly requires a greater number of processors as evidenced by

Prvulovic et al. [82], who found a 32-processor architecture resulted in the greatest average

speedup (their benchmarks contained a mixture of test programs from suites such as SPEC

and Perfect Club [11]).

The main task of the speculative cache is the isolation of the correct sequential execution

state from the possibly incorrect speculative threads state. In the approach proposed

in [109] each processor speculatively executes a numbered task out of order which is an

element of a total ordering representing the correct sequential execution of the program.

Following the format in [109] we will first describe the naive SVC approach and then add

successive levels of detail in order to rectify the shortcomings of earlier versions.

Suppose a cache line in the SVC is as appears in Figure 4.2. Each cache line contains

a tag, a valid bit, load and store bits to identify if the processor has read or written

data, the processor ID (P) of the processor that contains a copy of the line for the closest

successor task, and the data. Using the processor IDs recorded in each cache line, a Version

Ordered List (VOL) is formed linking the states of successively “younger” threads together.

The Version Control Logic (VCL) unit uses the VOL to identify the correct version of a

cache line to supply to a processor upon an L1 cache miss. The four main tasks that

a speculative cache must handle are loads, stores, commits and rollbacks (referred to as

squashes in [109]), defined as follows:

Load: Set the load bit and search for the value written by the nearest predecessor thread.

Store: If a store misses, then an invalidation signal is sent to all processors executing

successor threads. Each processor that receives this signal must examine if the load
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bit is set for the given cache line, if so, a read after write (RAW) violation has occurred

and a rollback of the successor threads is necessary.

Commit: When a thread successfully completes it’s speculative task it must commit its

changes to the global state by writing all dirty cache lines to the L2 cache and

invalidate all other speculative copies of the modified lines.

Rollback: When a RAW violation has been detected all cache lines must be invalidated

and the affected tasks restarted.

In order to improve the performance of TLS and increase the cache line size of the

naive version, the addition of extra bits to each cache line is required. The number of

cache misses due to invalidation upon a RAW hazard can be reduced by identifying non-

speculative data that does not need to be cleared when servicing a rollback. In the naive

SVC design illustrated in Figure 4.2 each line consisted of a single word of data that is

extremely unrealistic. Gopal et al. [109] suggests dividing each line into sub-blocks, each

with load and store bits in order to increase the cache line size while attempting to limit

false sharing.

Prvulovic et al. [82] identified three fundamental architectural factors limiting the scal-

ability of TLS. Specifically, Prvulovic singled out the overhead of committing a specula-

tive task’s updates to shared memory, increased processor stalls due to possible overflows

of the speculative buffer, and the increased speculative-induced memory traffic resulting

from tracking possible RAW violations. The process of committing a completed specula-

tive task’s state to shared memory imposes serialization of execution, since this must be

performed in sequential execution order to ensure program correctness. Often this is per-

formed eagerly upon completion of the speculative task. However, when scaling to a large

number of processors, this can become a performance bottleneck [82]. In order to resolve

this issue, Prvulovic proposed a solution that enabled threads to lazily commit their state

in constant time, regardless of the amount of data to be updated. If the speculative state

of a thread is sufficiently large then the possibility exists that the speculative buffer may

overflow, forcing a processor to stall the speculative thread of execution until some later

time when it can commit some if its speculative state. To alleviate the stalls [82] employed

110



a simple overflow area that chained together uncommitted, evicted, dirty speculative cache

lines. A large volume of speculative-induced memory traffic is introduced due to tracking

reads and writes at the fine granularity required to identify a RAW violation. Further-

more, the forwarding of data between speculative threads also increases the burden upon

the memory subsystem. According to [82], some of this overhead can be eliminated by

identifying the data access patterns of a speculative thread and allowing for various de-

grees of sharing of cache lines to occur. A detailed comparison of some of the approaches

to solving many of these issues can be found in [35].

Without the benefit of an actual underlying TLS architecture many researchers re-

lied upon simulation in early studies in order to evaluate the possibilities of this level of

parallelism and from the compiler perspective, which optimizations might increase the ef-

fectiveness of TLS. Rundberg and Strenström [85, 86] implemented an all-software TLS

system that simulated an SVC by encapsulating speculative variables (those variables in

which dependence analysis proved inconclusive) inside of a C-struct alongside of load and

store vectors, and the values generated by all threads. Each load and store of a speculative

variable was replaced with highly-tuned assembly code that performed the same actions

that the SVC would have, if it had been present. Later in § 4.3 we describe our work in [70]

that implemented a similar TLS architecture, however, our approach added higher-level

components such as a speculative thread manager, applied speculation at both the loop

and method levels and targeted programs written in Java rather than C.

4.2.2 An Overview of the Interaction Between Hardware and

Software in Thread-Level Speculation

Now that we have briefly detailed the hardware required to support TLS we proceed by

providing an expanded overview of TLS. Although many approaches to TLS have been pro-

posed in the literature, each requiring a different degree of hardware-software interaction to

enable speculation, our general overview does not adhere to one specific model (at different

points we do, however, discuss the details of some of the various approaches). Initially,

we focus on loop-speculation since it follows more closely to traditional parallelization,

however, later we describe function-level speculation. Consider the speculative execution
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of a loop L that iterates m times. Also suppose that there are p processors available and

that we have a matching number of threads. For the sake of clarity we assume that each

thread is numbered with a thread ID and these numbers map to a specific loop iteration

(for example, thread 8 will execute the 8th iteration of L).

Suppose that n threads begin execution at approximately the same time, each mapped

to an available processor. The state of the lowest numbered thread embodies the “correct”

sequential execution state of the program and accordingly will be referred to as the master-

thread. The state of all other threads is speculative and therefore must be isolated from the

global state to preserve correctness. As mentioned earlier, this is accomplished by storing

the speculative state in processor local L1 cache and the version control logic maintains

consistency by regulating access to the “true” global state held in a unified on chip L2

cache.

A speculative load does not directly cause a RAW violation and is therefore easier to

handle than a speculative store. Upon issuing a load of a speculative variable the thread

ID of the issuer must be recorded and the correct value supplied to the thread. If the

thread performing the load has previously written to the location, then the load can be

handled locally. Otherwise, the speculative caches of other processors must be examined

to forward the value from the oldest predecessor thread that has written to the location.

Speculative stores modify only the local speculative cache until a thread is allowed to

commit its updates to shared memory. In the abstract TLS architecture that we describe

here, RAW hazards (true dependencies) are the only dependence violations that can oc-

cur since write after read (anti-dependencies) and write after write dependencies (output

dependencies) are avoided by localizing speculative stores (and hence are implicitly re-

named). When a speculative store misses, much more work is performed in comparison to

a speculative load, since a RAW violation might be detected.

Typically, a large number of speculative threads are created, adding significantly to the

thread management overhead. This is often reduced by using the standard multithreading

technique of creating a thread-pool matching the available number of processors to which

speculative tasks are assigned as they become available. Upon successful completion of a

speculative loop iteration, a thread can be assigned a new iteration to execute in many
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different ways. The mechanism that involves the least amount of overhead inlines the

iteration selection code into the beginning of a speculative region and assigns loop iterations

in a cyclic manner. For example, if thread number tnum initially speculatively executes

iteration pmod tnum and has just completed iteration i, then it would then be assigned

iteration (i ∗ p) + (tnummod p).

Alternatively, the thread can request a new iteration from a high-level thread manager.

This approach, although introducing greater overhead, vastly increases the flexibility in the

assignment of loop iterations to speculative threads. A naive form of thread management is

required to handle the bookkeeping even for simply assigning a thread the next sequential

loop iteration (i.e., assigning iteration i+ 1 after the successful completion of iteration i).

As noted in [75] most dependence distances are quite small and therefore this approach

often performs badly due to the heavy rollback overhead.

However, much more sophisticated heuristics can be used to profile the loop and base

the selection of the next loop iteration upon past run-time behavior. For example, consider

the situation in which a compiler could not statically determine that a loop was positively

free of dependencies and speculation was therefore employed. Also suppose that loop

iterations are being executed in a cyclic manner as previously described, however, a loop

carried dependence with a distance slightly less than the number of processors was found

to exist resulting in many rollbacks. A high-level thread manager could detect this and

possibly transform the iteration-space traversal of the loop by assigning the iteration step

size to match the identified loop carried dependence distance, thereby eliminating the costly

rollbacks.

When a RAW violation occurs, an exception is generated that can either be handled by

compiler generated code or by a user supplied routine in order to rollback the speculative

state and restart the affected threads. Minimally, the thread that caused the violation

and any dependent threads (for example, a thread that had a value forwarded to it from

the violating thread) must have their state restored and speculation restarted. A conser-

vative approach requiring significantly less bookkeeping and analysis could simply restart

all threads higher than the violator. In such an approach the costs of a rollback are pro-

hibitive not only because the work performed by the invalidated speculative threads are

wasted cycles but also due to the fact that rollback handling itself is an expensive process.
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The partitioning of sequential code into speculative regions is an extremely difficult task

that must attempt to balance the drive to increase the region size (and thereby extract

greater parallelism) with the increased likelihood of introducing a RAW violation as well

as the increased amount of speculative state that must be buffered. In the worst case, a

feedback mechanism should be present in the thread manager to identify when speculation

is inappropriate due to the presence of data dependencies. A simple mechanism could

monitor the ratio of rollbacks to commits and should an intolerable threshold be reached,

speculation could be abandoned for sequential execution of the region.

Function (method)-level1 speculation attempts to overlap the execution of a function

call with speculative execution of the code downstream from the function return point.

When the master-thread encounters a function call site it executes the call as normal.

However, a speculative thread is spawned to continue execution at the return point. The

underlying speculative CMP handles the forwarding of writes performed by the master-

thread to the speculative thread, identifies dependence violations (RAW) and, if needed,

restarts the affected threads. The short interconnections between units in a CMP enables

the relatively fine grained parallelism (overlaps with loop and thread granularity) available

at the function level to be exploited.

This works well for functions that do not return a value, however, in order to speculate

on functions that do return a value, some form of value prediction must be employed. A

value predictor attempts to guess the return value of the function and passes this value to

the speculative thread upon which it can base its speculative computation . If the predicted

value is incorrect, the speculative state must be invalidated and the thread is restarted

with the appropriate value. An illustration of function-level speculation is presented in

Figure 4.3.

Chen and Olukotun [23] experimented with the introduction of method-level specu-

lation into general purpose Java programs while Warg and Strenström [112] compared

function-level speculation in imperative and object-oriented programs (specifically, C and

Java). Interestingly, [112] found little difference between programs written in both of these

1These terms will be used almost interchangeably, except that each reflects the type of programming
language under consideration.
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. . .

. . .

rval = f(a,b) ------ Master Thread ------> int f(int a, int b) {

executes call . . .

if (rval != 0){ <--*-- Value Predictor . . .

// handle error | guesses rval==0 . . .

. . . | }

} | Speculative thread executes

. . . | code downstream from call

. . . | site

. . . |

. . . V

Figure 4.3: An example of function-level speculation. The master thread represents the

true sequential execution state of the program and therefore handles the call as normal. The

speculative thread begins execution at the function return point evaluating the conditional

expression with a rval = 0 supplied by the value predictor.

languages. This is contrary to the general expectation that the typically smaller, more fo-

cused concept of an object-oriented method is better suited for speculative parallelization

than the larger, more loosely organized structure of a function in an imperative language

such as C.

A large number of value prediction schemes have been proposed such as [64, 60, 87].

Briefly, we discuss three types of predictors that should be included in a hybrid predictor

in order to reduce the rollback overhead resulting from mis-speculation. Specifically, two

computational based predictors – last-value and stride prediction, that can provide accurate

prediction rates for function return values, and the more general contextual approach of

finite-context predictors are addressed.

Last-Value: A simple approach that records the last value assigned to a variable. This

strategy introduces very little overhead while producing good results for highly regu-
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lar values. For example, consider the return value of system calls, a common approach

to error checking involves returning 0 for success and a non-zero value to indicate that

an error occurred. Assuming that errors happen infrequently, a last-value predictor

works well in this situation.

Stride: Often a return value is not simply a constant value but is an increment of a

previous value and accordingly, a last-value predictor is unable to correctly guess

the next value. By recording the last two values, a stride predictor can correctly

determine the increment of a value and possibly reduce the number of incorrect

predictions in comparison to a last-value predictor.

Finite-Context: Last-value and stride predictors base their decisions strictly upon the

values that have occurred over some time frame, they do not however, record the

context in which a value is generated. Finite-context predictors buffer a specific

number of the last values that have been assigned to a variable and attempt to

identify more complex patterns (in comparison to simple strides) occurring in the

values.

In order to balance the predictor overhead with the increased accuracy of the more

expensive techniques, a hybrid approach capable of identifying the most appropriate tech-

nique for a specific situation should be employed. This can often be identified by the

instruction sequence that generates a value, for example, consider the sequence if (x)

return 0; else return 1;, obviously a last-value predictor is appropriate. However,

if we modify the sequence slightly to be if (x) return n; else return n-1; a stride

predictor would produce better results.

4.2.3 Compiler Optimizations Targeting Thread-Level Specula-

tion

Although some approaches to TLS are strictly hardware based, most require compiler

generated support in order to fully exploit the parallelism available at the thread-level. It

is the job of a compiler to identify and create speculative regions of code, perform a range
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of standard to aggressive optimizations as well as transformations that may improve the

speculative performance of the generated code.

A focus of a compiler generating code for a TLS architecture must be the identification

and, if possible, the elimination of data dependencies that may result in expensive roll-

backs. When speculating at the loop-level, [75] highlighted the importance of identifying

loop-carried dependencies (for example, induction variables) and transforming them into

intra-thread dependencies by either changing how a variable is calculated or by skewing

the iteration space of the loop (again consider induction variables, whose calculation in

many cases can be transformed to be based upon the iteration number (thread ID) of the

loop, rather than an increment of some factor of a value generated by a previous loop

iteration). Furthermore, [58, 26] discussed the relaxed data dependence analysis enabled

by an underlying TLS architecture that transformed the analysis from being necessarily

overly conservative to highly aggressive.

As noted earlier, although each processor of a CMP is generally simpler than many

superscalar processors, they are in fact capable of exploiting parallelism at the instruction-

level. Attempting to extract and balance the amount of parallelism available at both the

thread- and instruction-levels Tsai et al. discussed speculative region formation and loop

optimizations that can improve TLS [104]. In consideration of loop-nests [104] suggested

that if the speculative state was not too large, then the outer-loop should be selected for

speculative parallelization and instruction-level parallelism should be extracted from the

inner-loop. Otherwise, if an inner-loop is speculated upon, then the loop should be unrolled,

thereby increasing the speculative region size as well as the possible amount of ILP. If the

speculative state is too large and therefore increasingly likely to result in a RAW violation or

a speculative buffer overflow, then loop interchange should be employed to shift the thread-

level parallelism toward the inner-loops and hence reduce the amount of speculative data

generated [104]. Conversely, loop interchange can also be used to created larger speculative

regions by moving a speculative inner-loop outward. A detailed account of the design of

the compiler used in [104] is presented in [121]. Specifically, in consideration of TLS, [121]

discusses the selection of an appropriate level of intermediate code representation (high-

level), staging of the parallelization phase (very early, high-level optimization), as well as

the required analysis (alias, interprocedural dataflow and dependence analysis), and code
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generation.

Chen and Olukotun [23] identified two simple code transformations that increased the

effectiveness of method speculation. First, they found it beneficial to “outline” loop bodies

into methods of their own. By creating two smaller methods, the size of the speculative

state per method is decreased and thereby reduces the likelihood of a violation occurring.

Second, moving reads/writes of variables that consistently produce violations up or down in

the lifetime of a speculative thread may result in eliminating a violation or at least allowing

it to occur earlier and therefore reduce the amount of wasted computation resulting in a

rollback. Similarly, [76, 75] and [98, 118] all advocated the introduction of synchronization

points where dependent data can be exchanged between threads when it is determined that

a rollback occurs at a high frequency. Furthermore, [118] attempted to shrink the size of the

synchronized regions (thereby reducing the amount of time spent idle by other speculative

threads awaiting a value to be forwarded) by employing aggressive instruction scheduling.

Chen and Wu [21] combined TLS and hot path (trace) speculation following the influ-

ential work of the Dynamo system [8]. Using off-line profiling results, they were able to

optimistically identify the dominant path through single-entry, multiple-exit regions of the

control-flow graph (CFG). Once a hot path is found, the compiler generates two versions of

the code for the region of the CFG that the path lies along. A speculative thread executes

a straight-line version of the code along the hot path formed by omitting the cold branches.

Another thread executes checker code to ensure that the speculative execution does not

flow off of the hot path onto a cold one. If so, it triggers a rollback and the speculative

results are squashed. Otherwise, if execution remained along the hot path, the speculative

thread receives a signal from the checker thread and is free to commit the speculative data

to shared memory. Interestingly, it should be noted that this approach is actually specu-

lating at three levels, namely, path, thread and instruction. Unfortunately, the hot paths

are created based upon basic block execution counts rather than an actual path profile that

would have improved the probability that execution remained along the predicted path.

Additionally, since off-line profile results were used, their approach necessarily needed to

be overly conservative in selecting hot paths due to the increased likelihood of a behavior

shift across executions resulting in mis-speculation (only edges that were followed 95% of

the time were included in hot path formation).

118



4.3 A Library for Thread-Level Speculation

Our work in [70] applied TLS to a distributed computing environment in an attempt to

ameliorate the overhead introduced by remote method invocations. In this section we limit

our discussion to the Java library that provided TLS support for the research conducted

in [70]. Our goals for creating a TLS library in Java were twofold. First, we lacked the

actual hardware required and therefore were in need of a vehicle to carry out research on

the possibilities of TLS. Second, we wanted a clean target for which a compiler could easily

generate parallel code. Although, the compiler analysis required to identify and generate

TLS code was not implemented, this was one of the primary focuses in the design of the

library and therefore, we believe that it would not be difficult to bridge the gap between

programmer generated versus compiler generated code targeting our library.

Our initial vision for this project was the creation of a library that a Java compiler, or

more appropriately, a dynamic optimizing Java Virtual Machine (JVM) [59] could target.

Using this library, speculative parallelism could be exploited and furthermore, it would

enable us to perform experiments with TLS such as:

• compiler optimizations that improve speculation

• the possibilities of run-time generated speculation

• the “relaxed” model of speculative data dependence analysis

• thread partitioning and how to mix loop- and method-level speculation

As much as possible, we implemented a direct translation of a speculative versioning

cache in Java. Similarly, Rundberg and Stenström [85] implemented the SVC using a

low-level mix of C and assembly. Upon identification of a code region that was suitable

for speculation (both loop- and method-level speculation are supported), the region was

transformed into a speculative version controlled by a high-level thread manager that

handled thread spawning, dispatching of speculative tasks, committing speculative state

to global visibility and rollbacks.
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When speculating using the library, all variables that are considered to be specula-

tive (those which data dependence analysis was unable to prove were conclusively free of

producing a violation) were encapsulated inside of a speculative class that included load

and store vectors to maintain the possibly many values written by the speculative threads.

Inside of a speculative region all loads and stores to speculative variables are transformed

into method calls that simulate an underlying SVC and therefore ensure correct program

semantics by detecting an occurrence of a RAW violation. Speculative classes for many of

the primitive data types (boolean, byte, char, float, double, short, int and long) were

provided as well as distinct classes for object and array reference types. Unlike Rundberg

and Stenström [85], that had the benefits of direct access to memory addresses, the shad-

owing of reference types proved difficult in our Java implementation. For example, consider

an object accessed by two speculative threads. Suppose that each thread accesses different

fields of the object and therefore do not produce a RAW violation. When committing the

updated fields in a C implementation of the SVC this is quite simple, since tracking is per-

formed at the address level and therefore the distinction between the different fields of the

object is enabled. However, without access to addresses it was troublesome to implement

a generic commit method that a compiler could easily hook into. This is loosely equivalent

to the difficulties in a hardware SVC with limiting the overhead required to track reads

and writes at the word level with balancing the possibility of introducing false sharing.

When attempting to exploit the thread-level speculative parallelism available in general

purpose Java programs we found it is necessary to provide speculative versions of the

frequently used container classes such as Vector and ArrayList. We provided speculative

versions of these containers that, for example, are capable of replacing the sequential

iteration through the container with a speculatively parallel traversal.

The overhead of simulating the SVC in Java proved to be quite high in our implemen-

tation. However, we were able to achieve significant speed-ups when applying our TLS

framework to a distributed environment where we could reduce remote-method invoca-

tion overhead by speculatively overlapping many remote calls. Experimentation with our

framework in a more standard setting would require identifying the equivalent amount of

time (cycles) that a hardware implementation of an SVC would use to perform speculative

loads and stores to the overhead resulting from simulating these speculative accesses. Given

120



this equivalence, a large part of the simulation overhead could be extrapolated from the

run-times of our benchmarks, possibly yielding better insight into the benefits of applying

TLS.

4.3.1 Distributed Models of Thread-Level Speculation

4.3.2 Introduction

This study applied thread-level speculation to an area where it had not previously been

attempted, namely distributed systems, and found that besides the obvious performance

benefit from parallelization the communication and dispatch overhead inherent to such

architectures can be effectively reduced.

Distributed Software Component Architectures (DSCA) provide a mechanism for soft-

ware modules to be developed independently, using different languages. These components

can be combined in various configurations, to construct distributed applications. Oancea

and Watt [71] proposed a generic component architecture extension that provides support

for parameterized (generic) components, and can easily be adapted to work on top of var-

ious SCAs (such as CORBA [74] and DCOM [95]). This work attempted to alleviate the

main bottleneck and hindrance to performance in the implementation of this architecture.

First, the overhead associated with inter-component communication delays can be quite

significant. In the context of a distributed application, the network and dispatching over-

head typically becomes the dominant factor. This is especially true for object-oriented

languages that typically have shorter average method lengths. Second, separate compi-

lation of components hinders interprocedural compiler optimizations such as inlining and

alias analysis.

In this study we explored the novel application of speculative techniques to a distributed

environment in an attempt to address the aforementioned issues. We proposed two models

of thread-level speculation that are capable of exposing parallelism that is not exploitable

using traditional parallelizing compiler techniques. The application of these specific tech-

niques can yield substantial performance benefits, even in the case when the underlying

hardware is not a multiprocessor.
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The first model attempts to ameliorate the overhead of client-server communication by

overlapping the remote invocations with speculative computation performed on the server

side. This allows multiple remote invocations to be replaced with fewer calls that the server

expands into a series of speculative iterations of the same code. We obtained speed-ups as

high as 1.91x when the client and server were running on the same machine, and 3.53x in

the distributed case.

The second model simulates procedure inlining. The server (master) runs a predictor

program that approximates the code that was supposed to be executed by the client. The

client validates the correctness of the predicted version of the program using results sent

back by the server. This model obtains speed-ups as high as 11.54x when the client and

server share the same machine and 21.10x for the distributed case.

The remainder of this chapter is organized as follows. In Sections 4.3.3 to 4.3.6, we

provide an overview of our TLS framework continuing with a description of the application

of TLS to a distributed heterogeneous environment. Afterward, in Section 4.3.7 we report

and analyze the performance benefits of exploiting the parallelism enabled by TLS in order

to speed-up client-server applications. Finally, we conclude with the contributions of this

work in Section 4.4.

4.3.3 Distributed Applications of Thread-Level Speculation

This section introduces two TLS models, inspired by [85, 86] and [122], that can be applied

in a potentially multi-language, distributed environment. Performance improvements are

derived from two aspects. First, the communication overhead is reduced by eliminating

stalls between the client and the server. Second, by taking advantage of the server/client

support for parallelism. In most cases the second model yields better speed-ups compared

to the first. However, in environments where security is of concern, the code migration

aspect of the second approach might preclude its use.

Throughout this study we assume that the server’s throughput is reasonable low (that

is, the server has some idle time and is not over-run with clients requesting it’s services).

Section 4.3.4 presents an overview of our approach, while Sections 4.3.5, and 4.3.6 introduce

the two speculative models, respectively.
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(E) Pipelined Execution

.....

o1.remoteInvocation1();
.....

o2.remoteInvocation2();
.....

o3.remoteInvocation3();

.....

o1.remoteInvocation1();
.....

o2.remoteInvocation2();
.....

o3.remoteInvocation3();

DOALL 30 i=1, n

(C) Parallel Loop

30  CONTINUE

}

(D) Parallel Flow

(first two iterations)

(A) Sequential Client Code (B) Sequential
			Flow

for (i = 0; i < n; i++){

pipeline

stabilizes

Figure 4.4: A simple sequential distributed loop and it’s parallel counterpart.

4.3.4 Overview

Figure 4.4.A presents an example of a general, object-oriented, client program, while Fig-

ure 4.4.B displays its normal (sequential) flow of execution. If the loop can be executed

concurrently, as evident in Figure 4.4.C, then the speed-up can be quite substantial. Fig-

ure 4.4.D is a temporal depiction of the first two concurrent iterations. Notice that after

some number of iterations, the pipeline stabilizes, and the communication cost is substan-

tially ameliorated (Figure 4.4.E). The communication costs could be further decreased by

inlining the client code into the server. Additionally, server side parallelism can be effec-

tively exploited. This becomes more important as the size of method being speculatively

executed increases.

Figure 4.4 represents an ideal Fortran DOALL parallelization of the program. However,

this is not possible since the code is split, and separately compiled between the client and

the server. To achieve this, we employ our distributed TLS models that are discussed in

Sections 4.3.5, and 4.3.6.
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4.3.5 Distributed Speculation Model

This section provides an overview of our TLS framework and describes its application to

a distributed environment. Our model differs from that of a typical TLS scheme by the

fact that the speculative variables may reside on a remote machine, and therefore are not

directly accessible by the client. Our approach employs a remote object, whose methods

reference these variables, to act as a proxy for them.

Figure 4.6 presents part of a two-client program that uses the services provided by a

server that implements the functionality of the GIDL specification presented in Figure 4.5

(ignore for the moment the lines marked with * and the TLSPackage module). Even

under the assumption that the server’s code is available for analysis (which it is not),

note that the client code can not be conservatively parallelized due to the loop-carried

true data dependence of distance 1 in client A, and due to the indirect access of the

vector’s vect elements in client B (see the lines marked ***). In both cases, profiling

information combined with code analysis performed on the client may (non-conservatively)

suggest that a region of rich-parallelism could be exploited. Suppose the if branch is

cold, considering the hot path the code resembles a data dependence free loop (modulo

the data dependences introduced by possible object aliasing). Given these hindrances to

parallelization our speculative framework can be employed.

The client announces to the server that speculation is about to commence, and provides

the required information regarding the speculative region. The TLS module used by the

GIDL stub will invoke the target-language compiler (Java in our example) to compile the

respective methods with support for speculation, thus generating some new (speculation

related) methods on the server side (while it is clear how this transformation would be

implemented, we currently perform it by hand). Furthermore, it will modify the GIDL

specification to also include speculation (lines marked with * together with the TLSPackage

module in Figure 4.5), and re-compile it to update the client and server stubs.

Each interface that is found to contain at least one speculative method is required to in-

herit from the TLSPackage::SpeculativeVariable interface (see Figure 4.5). Essentially,

this interface functions as a proxy for the speculative variables identified in it’s speculative

methods (as they do not have distributed support). Information received from the client
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module TLSPackage {

exception TLSDependenceViolation { long threadNum; };

interface SpeculativeVariable {

void reset(in long tId, in long maxTId);

void commitValue(in long tId);

void initSpeculation();

};

interface SplitableVariable<T:SplitableVariable<T> > :

SpeculativeVariable {

typedef sequence<T> SeqT;

SeqT splitSpeculativeVariable(in long nr);

void recombineIterators(in SeqT s);

};

};

interface GetValueObject {

long getValue();

void setValue(in long val);

};

module IteratorPackage {

interface Iterator<T> :

TLSPackage::SplitableVariable<Iterator<T>>{ // *

long isEmpty();

void step();

T value();

void resetIterator();

};

};

module ContainerPackage { //...

interface Vector<T:GetValueObject, C:Comparator<T> > :

Container<T,C>, TLSPackage::SpeculativeVariable{ // *

T elementAt(in long i);

void setElementAt(in T o, in long i);

T specElementAt(in long i, in long threadNum); // *

void specSetElementAt(in T o, in long i, in long threadNum) // *

raises (TLSPackage::TLS_Dependence_Violation); //....

}; //....

}; //....

Figure 4.5: GIDL specification. Lines marked with * denote TLS support
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// A)

for(int i=0; i<dim[0]; i++) {

GetValueObject gvo = vect.elementAt( new Long_GIDL(i) );

int elem = gvo.getValue().getValue();

elem *= ...;

if (elem > -1)

gvo.setValue(new Long_GIDL(elem));

else {

GetValueObject gvo1;

if(i > 0) {

gvo1 = vect.elementAt( new Long_GIDL(i-1) ); //***

elem = (long)gvo1.getValue().getValue();

elem *= ...;

}

else elem = ...;

gvo1 = factoryImpl.createComparableObject(new Long_GIDL(elem));

vect.setElementAt(gvo1, new Long_GIDL(i));

}

}

// B)

for(; index_it.isEmpty().getValue() != 0; index_it.step()) {

Long_GIDL ind = index_it.value();

GetValueObject gvo = vect.elementAt(ind); //***

int elem = gvo.getValue().getValue();

elem *= ...;

if(isValidElement(elem)) {

GetValueObject gvo1;

gvo1 = factoryImpl.createComparableObject(new Long_GIDL(elem));

vect.setElementAt(gvo1, ind); // ***

}

}

Figure 4.6: Two client code regions that can be exploited by speculative parallelism.

Throughout this section we will use these kernels as our benchmarks for speculation.
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T[] arr;

TLS.Arrays.SpecArrRefU1D<T> specArr;

ArrayList<GIDL.TLSPackage.SpeculativeVariable> specVars;

final public void initSpeculation() {

specArr = new TLS.Arrays.SpecArrRefU1D<T>(arr,1,1,ob_T);

specVars.add(specArr);

}

final public void setElementAt(T ob, LongGIDL a1) {

arr[a1.getValue()] = ob;

}

final public void specSetElementAt(T ob, LongGIDL a1, LongGIDL th)

throws _TLSPackage.TLSDependenceViolation {

int threadNum = th.getValue();

try {

spec_arr.speculativeStore(a1.getValue(), threadNum, ob);

} catch(TLS.DependenceViolation exc) {

throw new _TLSPackage.TLSDependenceViolation(threadNum);

}

}

Figure 4.7: Examples of the server side speculative code for ContainerPackage::Vector

will aid the server side compiler in pruning the number of variables that are considered

speculative. However, if this is the only modification, the client-code labelled B in Fig-

ure 4.6 will generate many rollbacks due to the iterator step operation. To solve this,

the Iterator class extends the SplittableVariable interface, allowing each speculative

thread to work with disjoint iterators.

Figure 4.7 presents the setElementAt method and a speculative version

specSetElementAt. Notice that the generated speculative code differs very little from

the original. Specifically, it receives an extra parameter, the ID of the thread executing the

method (th). Second, the speculative operation is guarded by a try-catch block. If a vio-
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Thread Manager

        rollback = TRUE;

    catch( TLS_DEP_VIOLATION v ) {

    }

    id = tm.newId(id,this);

        return;

    }

  }

    if ( rollback ) {

  while( true ) {

        rollback = FALSE;

        if ( !tm.rollbackST(is,this) ) { 

            threadWait();

        }

    } else if ( tm.shouldRollback(id) ) {

        threadWait();

    }

    if ( !tm.recycle(id) ){

        done = TRUE;

  bool rollbackSt( int id, SpecThread st ) {}

  bool shouldRollback( int id ) {}

  bool recycle( int id ) {}

  public void speculate() {

      createSpecThreadPool();

      forAllSpecThreads( startSpeculation() );

      joinSpecThreads();

      forAllSpecThreads( commitState() );

  }

      forAllSpecVars( initSpecualation() ); 

  int  barrierId = −1;

  int  newId( int id, SpecThread st ) {}

    

Speculative Threads

    try { programIteration(); }

Figure 4.8: Overview of the interaction between speculative threads and the high-level

thread manager.

lation is detected then the exception is forwarded as an exception onto the client. Finally,

the container that may be the source of a data dependence violation (arr:T[]) is replaced

with a speculative version (in this case the specArr:TLS.Arrays.SpecArrRefU1D<T>).

These speculative variables are created and initialized by the initSpeculation method

of the Vector interface. The reset and commitValue methods (omitted from Figure 4.7

for brevity) traverse the list of speculative variables encapsulated by this class (Vector)

and re-initializes them, or writes a value to the original location that the speculative vari-

able shadows, respectively. These methods are invoked when handling a rollback or when

speculation has succeeded and the speculative state should be merged with the true non-

speculative state, respectively.

As depicted in Figure 4.8, the client initiates speculative execution by instantiating a

thread-manager and invoking the speculate method on it. The thread manager calls the

initSpeculation method on all local speculative variables, and on all the remote objects

that act as proxies for the speculative variables identified on the server. Furthermore, it

creates a pool of speculative threads (registered with itself) and starts them. A speculative
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thread executes iterations of the speculative region corresponding to the sequential code,

except that it now references local speculative variables and invokes the speculative handler

methods. At the end of an iteration the speculative thread checks to see if any violations

were detected by the other threads. If so, the thread transitions into the waiting state.

Otherwise it is assigned a new id (sequential execution iteration number), and checks to

determine if the termination condition is true. If a thread catches a data dependence

violation exception (thrown locally or by the server), it invokes the rollbackST method

on it’s thread manager, which will set the manager’s barrierId flag. In the end, only

the lowest id thread that has detected a rollback will be alive. At this time, for each

speculative variable the value generated by the thread with the highest id less than or

equal to the id of the running thread is committed. Finally, all the speculative variables

are committed and any clean up code is executed. Adaptability is built into the system by

monitoring the ratio of rollbacks to commits. If a predefined threshold is surpassed then

speculation is abandoned for sequential execution, otherwise the speculative threads are

awakened and speculation continues.

4.3.6 Distributed Speculative Inlining Model

The second speculative model presented here, inspired by Zilles and Sohi [122], achieves a

speed-up in a manner that is analogous to procedure inlining. More precisely, the client

provides the server (or vice versa) with a predictor program that approximates the code

executed by the client. There are no constraints associated with the distilled program.

However, in order to result in a speed-up, the distilled version must be an accurate repre-

sentation of the original. The server (master) runs the predictor program and transmits

back to the client the values of the live variables computed along the anticipated path

through the client’s code. It is the client’s responsibility to validate the correctness of the

master’s computation.

Our model differs from Zilles and Sohi [122] in several ways. First, Zilles and Sohi ex-

pects the distilled program to be much faster (a straight line code segment of the dominant

hot path) than the slave’s verification code. In our case, we prefer the approximate pro-

gram to be as close as possible to the original (and hence less likely to contain a violation),
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simply because of the high cost associated with a rollback. Second, our implementation

is adapted to a distributed environment, and therefore, is geared toward other goals, such

as eliminating network and dispatching overhead. The parallelization of the predictor

program becomes more important as the iteration granularity increases.

There are two situations when program distillation is most beneficial inside of our

framework. The first is when a method returns a predictable value. Consider a local

object that is used in a branch condition as in: if(client obj.IsValidElement()). In

this case the hot branch will be added to the predictor excluding the test (the test will

be a remote invocation from the server point of view, and thus expensive). The second

case, is when the deletion of a cold branch causes the number of speculative variables to

dramatically decrease, or the predictor code becomes conservatively parallelizable. In such

a situation the server may even employ a conventional parallelization model to achieve the

greatest speed-up. In Figure 4.6.A, if the true path from if (elem > -1) is found to be

hot then a predictive program can be constructed by keeping the target and removing the

cold path. Further analysis by the server-side compiler of the predictor may conservatively

discover that the vector’s element holder (arr in Figure 4.7) will not generate any data

dependence violations.

The server side of the speculative inlining model is composed of two communicating

instances of our TLS framework, as shown in Figure 4.9. Master threads, registered to a

higher-level thread-manager, execute out of order iterations of the distilled program. At

the end of every iteration, the live variables of the master threads are packed into a record

residing in a predefined location, indexed by the thread’s id, in an array of sequences of

records (viewed as a multi-dimensional array – the Master Array of Seqs in Figure 4.9).

Master threads are not permitted to over-write non-null records since this implies that the

record has not yet been committed because at least one thread is lagging behind. When a

sequence is filled up, it is inserted into the slave queue (Slave Queue of Seqs in Figure 4.9)

and a new, empty sequence is placed in the table. The terminating condition of the master

threads is dictated by the client’s code.

The slave threads spin attempting to dequeue a sequence from the slave queue (if

not dequeue, wait and try again). They request the client to verify the current sequence

containing several live-variable records. A slave-thread’s exit condition is reached when
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if full

 } ...

  try {
  ...

  seq = queue.poll();

  slave.checkRecord(seq);

Slave Threads

  try {predictor_iter();}

while(true) {

}

  ...

checkRec(lvars,id); ...

Master Threads

Slave Thread Manager

Slave Queue of Seqs

Master Array of Seqs

Figure 4.9: An example of the speculative inlining model depicting the interaction between

the master and slave threads and the slave thread manager.

all of the master-threads are dead and no data in the slave-queue requires verification.

No explicit synchronization is required between the master and slave threads except for

guarded access to the slave-queue.

The client performs verification in the following manner. If any of the instructions that

were not part of the predictor program (branch conditions excluded) are reached, or a cold

branch excluded from the predictor is taken, then a violation has occurred. The client

throws a dependence violation exception that will be caught by the corresponding slave

thread on the server-side. The slave thread manager will handle the rollback as described

in the previous section, additionally it will set the barrierId flag of the master thread

manager to the id of the thread that detected the violation. Thus, all of the master-threads

are going to be in a waiting-state; all have an id greater than barrierId, otherwise the

corresponding sequence would not have reached the client. Finally, only one slave-thread,

specifically the one with the lowest id that detected the rollback is running. Only then

are the speculative variables committed, and reinitialized. Control is then handed to the

client who sequentially executes the iterations corresponding to the records in the received

sequence.
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module MasterSlavePackage {

interface Master< T:GetValueObject,

C:ContainerPackage::Comparator<T> >{

void runMaster(in long i, in long j, in long s, in long l,

in long sps, in long ms,

in ContainerPackage::Vector<T, C> v);

};

interface Slave<T: GetValueObject> {

struct LiveVariables {

T elementAtResult;

long threadNum;

long getValueResult;

};

typedef sequence<LiveVariables> seqLV;

void checkRecord(in seqLV lv)

raises(TLSPackage::TLSDependenceViolation);

void performRollbackOfIteration(in seqLV lv);

};

};

Figure 4.10: GIDL specification support for the speculative inlining model

Figure 4.10 depicts the GIDL specification, corresponding to the client program dis-

played in Figure 4.6.A that is needed by our speculative inlining model. When a client

discovers a region of code suitable for speculation, it locally creates and runs a slave

checking-server (type Slave<>). The Master<E,C> createMaster(Slave<E> s) method

creates a remote-object that upon invoking the runMaster method, will create the server-

side two-level TLS architecture described. The checkRecord method in the Slave interface

is responsible for validating the speculative results. If a dependence violation exception is

thrown the client is requested to sequentially execute several iterations

(performRollbackOfIteration()).
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As noted earlier, the inlining model almost always yields a greater speed-up compared

to the first approach. This is due to the fact that the number of remote calls performed

is significantly reduced via the inlining. However, client code may reference many objects

distributed over many servers, among which, some may not support code movement via

a common intermediate representation (IR). Moreover, security issues may disallow the

sharing of specific regions of code or data. In such situations, a combination of the two

models is the preferred solution (if the code possesses high-level parallelism). The mas-

ter is selected by identifying the remote object that is invoked most frequently. Predicted

programs corresponding to the functionality of the servers that support a common commu-

nication, and allow code migration will also be inlined into the master. If the code exposes

parallelism, the execution time may be further decreased by concurrently executing spec-

ulative iterations of the master thread. Thus, one application may create a hierarchy of

inlined speculations along with overlapping speculative iterations.

4.3.7 Results

The benchmarks used to evaluate the TLS framework are variations of the two examples

presented throughout this chapter. The “remote” method granularity was varied from

10 to 10000 instructions, by padding their implementations with data dependence free

code. Thus the speculative overhead (speculative load/store) is minimal in comparison

with the overhead of remote method invocation. Our tests were carried out under two

configurations, one ran on a single machine that acted as both client, and server (2.4GHz

P4/512 Mb). The second configuration employed two machines on the same local network

(both 800MHz P3/256Mb RAM). The performance results were gathered on machines

running GNU/Linux.

We applied our TLS framework to distributed programming in anticipation that speed-

ups could be obtained by overlapping network stalls with speculative computation, thereby

minimizing idle times. Table 4.1 shows the speed-ups observed by employing our first

distributed TLS model compared to sequential program execution. The performance im-

provement depends upon the size of the thread pool, the amount of work performed by

the remote method (granularity) and on the rollback ratio. In a rollback free (“ideal”)

133



Table 4.1: Distributed Speculation Architecture:

Number of client threads (#Th), number of remote instructions executed (Inst), nMc

speed-up vs. sequential, where n = the number of machines, c = client version (example

A or B from Figure 4.6. nMcrb represents the same but with 1% rollback rate.

#Th Inst 1MA 1MArb 1MB 1MBrb 2MA 2MArb 2MB 2MBrb

4 10 1.35 1.30 1.30 1.23 2.23 2.05 2.05 1.98

8 10 1.55 1.51 1.56 1.52 3.01 2.72 3.24 2.71

16 10 1.65 1.53 1.62 1.53 3.36 2.76 3.36 2.68

32 10 1.91 1.47 1.69 1.44 3.22 2.37 3.46 2.27

4 103 1.31 1.28 1.30 1.28 2.09 2.03 2.13 2.03

8 103 1.51 1.45 1.53 1.48 3.12 2.72 3.16 3.07

16 103 1.62 1.46 1.62 1.46 3.29 2.94 3.47 2.66

32 103 1.73 1.48 1.70 1.35 3.53 2.31 3.53 2.17

4 104 1.25 1.23 1.32 1.26 2.25 2.03 2.04 1.86

8 104 1.36 1.27 1.50 1.38 2.71 2.35 2.78 2.39

16 104 1.41 1.24 1.55 1.32 2.83 2.35 3.17 2.41

32 104 1.44 1.25 1.63 1.24 2.73 2.01 3.41 2.05

execution, the peak speed-up is achieved when the number of client threads is somewhere

between 16 and 32 (32 client threads achieve a 1.91, 1.69, 3.22, 3.46 times speed-up). Al-

though not presented here, further increase in the pool size begins to decrease the speedup

compared to that of 32 threads. This suggests that the pipeline has stabilized, the addi-

tional benefit of increasing the amount of concurrency is negated by the speculative thread

related overhead. Our framework is rollback tolerant in the sense that it gracefully accom-

modates a 1% rollback probability. In examination of the cost of a rollback, we noticed

that the performance difference with respect to the ideal case decreases with the size of the

thread pool. This is due to the greater number of inter-thread dependencies resulting in

redundant work and increased synchronization overhead. The observed number of threads

that provided the best speed-up was either 8 or 16. This is in accordance with the empirical

study described by Marcuello and González [63] which found that in general, a CMP with
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Table 4.2: Speculative Inlining Architecture:

Number of remote instructions executed (Inst) Seq = slave sequence size, nMc speed-up

vs. sequential, n = # machines, c = client version, nMcrb as before with a 1% rollback

rate.
Inst Seq 1MA 1MArb 1MB 1MBrb 2MA 2MArb 2MB 2MBrb

10 1 3.02 2.31 4.69 3.27 5.86 4.70 8.96 6.58

103 1 2.88 2.22 4.20 3.06 4.96 4.67 10.22 9.21

104 1 1.96 1.32 2.86 1.88 3.76 2.26 5.19 2.99

10 10 9.59 3.20 11.54 3.65 15.57 4.75 21.10 6.18

103 10 7.35 1.77 9.33 2.54 14.05 2.52 14.83 2.86

104 10 2.97 0.71 4.13 0.89 3.83 1.10 5.62 1.57

16 processors was sufficient for the parallelism extracted via TLS.

Our second model clearly yields substantial performance benefits compared to the first

as demonstrated in Table 4.2. There are two main reasons for this. First, we have elim-

inated CORBA’s inherent remote method dispatch costs by inlining the client code into

the server. All of the remote calls in the initial code are now handled locally. Second,

the network overhead is reduced by batched communication of the live variables. More

precisely, if there are r remote calls per iteration, and the slave sequence size is s, the

first model performs r ∗ s remote calls for every remote call made by the second model.

The server is configured to use 15 concurrent slave threads to “pipeline” the remote client

checking phase.

In an ideal (rollback free) execution scenario, the application of this model obtains

impressive speed-ups. On a single machine, execution time was 9.6 and 11.5 times faster,

and 15.6 and 21.1 times faster over a distributed network with a method granularity,

and slave sequence size of 10 (slave sequence size represents the number of records sent

in a batch for the client to check for correctness). However, for a 1% rollback probability,

the corresponding speed-up decreases dramatically (from 3.20 to 6.18). This is due to a

limitation in our implementation such that rollbacks are handled by asking the client to

sequentially execute the iterations associated with the sequence of records that generated
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the violation (10 in our case). Another approach would be to sequentially execute only

the guilty iteration. The downfall of this is a cascade of rollbacks when data dependent

instructions are localized at the loop level. Either way, rollback handling will remain

expensive (see results in Table 4.2 for sequence size 1) and influence the compiler to be

conservative by generating predicted programs that are more “correct” than “distilled.”

Table 4.1 and Table 4.2 show that for both our models, the speed-up decreases when the

method granularity increases. In this case, taking advantage of the machine’s (potential)

parallelism will provide additional speed-up. This increase in code size could be offset by

taking greater advantage of instruction-level parallelism and the larger region of code to

apply aggressive scheduling over.

4.4 Conclusion

This study examined the potential of thread-level speculation in a new area, the environ-

ment of distributed software components. We have found that substantial speed-ups can

be achieved from this form of parallelism.

We proposed two TLS models employed in a distributed setting that substantially re-

duced the network and remote method invocation overhead. This becomes more noticeable

as the remote method granularity increases. The first model performs concurrent specula-

tive iterations on the client, overlapping with communication. The second model mimics

procedure inlining to eliminate distributed system overhead.

The performance improvement depends upon many factors. For the first model perfor-

mance increases range from 1.4× to 1.9× on a single machine, and 3.5× when distributed

across a local network. For the second model, speed-ups range between 3× and 11.5× on

one machine, and from 3.8× to 22.1× when distributed. Allowing a 1% rollback rate gives

a somewhat smaller speed up for the first model, and substantially decreases speed-up for

the second model.
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Chapter 5

Conclusion

Previously, compiler transformations have primarily focussed on minimizing program ex-

ecution time. Throughout this work we have displayed examples of many of these same

analyses and transformations that can be used to profile or improve other program charac-

teristics than speed. Specifically, we applied these techniques to analyze the relationship

between global variable usage and software maintenance effort [84, 91], examine the ef-

fects of optimizations upon power usage [90], and investigate speculative parallelism at the

thread-level [70].

In our initial analysis of global data usage [84] we found that the categorization of a

project as either service-, utility- or exploration-oriented does not appear to be indicative

of the usage of global data over its lifetime. In conjunction with the fact that the number

of global variables increases alongside the lines of code could indicate that the use of

global data is inherent in programming large software systems and can not be entirely

avoided. Furthermore, and most interesting, is the finding that the usage of global data

followed a wave pattern which peaked at mid-releases for all of the systems examined.

This might suggest that the addition of new features in major-releases are the result of

proper software design principles while the corrective maintenance performed immediately

after a major-release may result in increasing the reliance upon global data. Later phases

of refactoring (perfective maintenance) appear to be able to slightly reduce this reliance.

Continuing with the theme of compiler analysis and software maintainability we examined
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the links between the usage of global data and software maintenance effort. Harnessing

information extracted from CVS repositories, we examined this link for seven large open

source projects. We proposed two measures of software maintenance effort; specifically, the

number of revisions made to a file and the total lines of code changed between two releases.

Examination of the experimental data illustrated that at almost all points both the number

of revisions and the total number of lines of code changed were higher for the subset of files

that contain a greater number of references to global variables. Further investigation using

statistical analysis revealed a strong correlation between both the number of revisions to

global variable references and lines of code changed to global variable references. However,

in all cases the correlation between the number of revisions and global variable references

was stronger. Although this does not establish a cause and effect relationship, it does

provide evidence that a strong relationship exists between the usage of global variables

and both the number and scope of changes applied to file between product releases.

With the enormous growth of battery-powered devices ranging from smartphones to

laptops we investigated shifting the focus of a compiler from execution time to power

usage. Examples of a substantial collection of both early and loop optimizations were

translated into PowerPC assembly and simulated. Application of each optimization in

isolation resulted in an overall average improvement in performance of 4.8% and a 6.2%

decrease in power consumption for the early optimizations, and an average speed-up of

17.0% and average power savings of 15.3% for the loop optimizations. The improvements

resulting from the loop optimizations were found to be closely tied to the decrease in

the number of instructions committed, which on average was 14.1%. As a result of these

findings, the earliest optimization level of an adaptive dynamic optimizer should at least

include constant propagation, constant folding, copy propagation, and value numbering.

Additionally, the compiler should be sufficiently sophisticated such that it can carry out

the analysis required to perform all of the loop transformations examined.

Finally, we examined the possibility of a run-time parallelizing compiler that generates

parallel code by hooking into a library that provides support for thread-level speculation.

We then applied this library to a distributed environment and found that we could sub-

stantially reduce network and remote method invocation overhead.

In particular we found the possibilities of harnessing compiler analyses to improve
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software quality extremely beneficial. For example, our data gathered by gv-finder could

be used to identify global variables or furthermore, specific uses of globals that correspond

to regions of code that are difficult to maintain (as measured by revision effort). This data

might pinpoint code regions where refactoring could greatly improve the maintainability

of the code base.

Through the use of a combination of hints, warnings, and automatic and user-guided

transformations, a static compiler analysis engine could be utilized in a variety of code

improvement tasks. An extremely simple example would identify attempts to read or write

to a descriptor (i.e. file, port, socket, etc.) that has not been opened (this is analogous

to the warnings already issued by a compiler upon encountering pointers that are used

before being defined). A more ambitious example is the pointer analysis behind tools such

as valgrind [69] that are capable of aiding programmers in tracking down bad pointers.

This can significantly speed-up development by identifying possible pointer issues which

are notoriously difficult and time consuming to find and rectify. Another project on which

we have started investigation involves refactoring code clones that differ mainly in the data

types that they work upon. Analysis of a high-level intermediate representation such as

an abstract-syntax tree could identify clones of this type and the transformation engine

could refactor the regions by creating a polymorphic version (i.e., template or bounded-type

function) thereby improving maintainability. This type of transformation, while improving

source code quality, would not affect performance since the compiler would be able to

“undo” the transformation by specializing the generic code according to the instantiated

types.
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Appendix A

Evolution of Global Data

This section displays the global variable evolution data for each individual projects that

we examined.
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Appendix B

Dynamic SimpleScalar Wattch

Simulation Configuration
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Architectural Feature Configuration

Instruction fetch queue size 4

Extra branch mis-prediction latency 3

Speed of front-end of machine relative to core 1

Branch predictor type bimodal

Bimodal predictor config (table size) 2048

2-Level predictor config (L1 size, L2 size, hist, xor) 1, 1024, 8, 0

Combining predictor config (meta table size) 1024

Return address stack size 8

BTB config (sets, assoc) 512, 4

Instruction decode B/W (insts/cycle) 4

Instruction issue B/W (insts/cycle) 4

Issue instructions down wrong execution paths true

Instruction commit B/W (insts/cycle) 4

Register Update Unit (RUU) size 16

Load/Store queue size 8

L1 D-Cache (sets, blk size, assoc, policy) 128, 32, 4, LRU

L1 D-Cache hit latency (cycles) 1

L2 D-Cache 1K, 64, 4, LRU

L2 D-Cache hit latency (cycles) 6

L1 I-Cache 512, 32,1, LRU

L1 I-Cache hit latency (cycles) 1

L2 I-Cache unified

L2 I-Cache hit latency (cycles) 6

Flush caches on system calls false

Memory access latency (first chunk, inter-chunk) 18, 2

Memory access bus width (bytes) 8

I-TLB 16, 4K,4, LRU

D-TLB 32, 4K, 4, LRU

I/D-TLB miss latency (cycles) 30

Integer ALU’s 4

Integer multiplier/dividers 1

Number of memory system ports 2

Floating point ALU’s 4

Floating point multiplier/dividers 1

Table B.1: The DSSWattch simulation environment configuration used throughout the

evaluation.
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