
Optimal Pairings on BN Curves

by

Kewei Yu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2011

c© Kewei Yu 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Bilinear pairings are being used in ingenious ways to solve various protocol problems.
Much research has been done on improving the efficiency of pairing computations. This
thesis gives an introduction to the Tate pairing and some variants including the ate pair-
ing, Vercauteren’s pairing, and the R-ate pairing. We describe the Barreto-Naehrig (BN)
family of pairing-friendly curves, and analyze three different coordinates systems (affine,
projective, and jacobian) for implementing the R-ate pairing. Finally, we examine some
recent work for speeding the pairing computation and provide improved estimates of the
pairing costs on a particular BN curve.

iii

Acknowledgements

I would like to thank all the little people who made this possible.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables viii

1 Introduction 1

2 Mathematical Background 3

2.1 Elliptic Curves . 3

2.1.1 Group Law . 4

2.1.2 Projective Coordinates and Jacobian Coordinates 7

2.1.3 Group Order and Torsion Points . 8

2.1.4 The Frobenius Map . 9

2.2 Tate Pairing . 10

2.2.1 Divisors . 10

2.2.2 The Tate Pairing . 14

2.2.3 Properties of the Tate Pairing . 16

2.3 Miller’s Algorithm . 17

2.3.1 Miller’s Function . 17

2.3.2 Computing the Tate Pairing . 19

2.4 Pairing-Based Cryptography . 20

2.4.1 Short Signatures . 21

2.4.2 Identity-Based Encryption . 22

vi

3 Optimal Pairings 24

3.1 Vercauteren’s Construction . 24

3.2 Ate Pairing . 26

3.3 R-ate Pairing . 28

3.4 Vercauteren’s Pairing . 31

4 BN Curves 34

4.1 Family of Curves . 34

4.2 Properties of BN Curves . 36

4.3 More on Curve Construction . 38

5 Implementing the R-ate Pairing using BN Curves 39

5.1 R-ate Pairing on a Particular BN Curve 39

5.2 Tower Extension . 41

5.2.1 Fp2 Arithmetic . 43

5.2.2 Fp6 Arithmetic . 44

5.2.3 Fp12 Arithmetic . 45

5.2.4 Summary . 46

5.3 Operation Count for R-ate Pairings . 46

5.3.1 Operation Count for the Miller Loop 48

5.3.2 Operation Count for Adjustment Steps 52

5.3.3 Operation Count for Final Exponentiation 54

6 Recent Work 57

6.1 R-ate Pairings with Projective Coordinates 57

6.2 R-ate Pairings with Affine Coordinates . 64

6.3 Delaying Some Multiplications . 70

6.4 Final Exponentiation . 74

7 Concluding Remarks 77

References 78

vii

List of Tables

5.1 Cost estimates for arithmetic operations in Fp, Fp2 , Fp6 and Fp12 46

5.2 Cost estimates for the Miller loop . 53

6.1 Cost comparison: Jacobian coordinates vs. projective coordinates 62

6.2 Operation counts for the twisted ate pairing 62

6.3 Cost comparison: Affine coordinates vs. projective coordinates 65

6.4 Cost of the Miller loop: Affine coordinates vs. projective coordinates . . . 68

6.5 Cost comparison using nonstandard ratios from [19] 69

6.6 Cost of two doubling steps without the delaying idea 71

6.7 Cost of two doubling steps with the delaying idea 72

6.8 Cost of two doubling steps with the delaying idea using faster formulas . . 73

6.9 Cost of six doubling steps . 74

viii

Chapter 1

Introduction

Since 2000, non-degenerate bilinear pairings have been used in ingenious ways to solve
various protocol problems that do not have efficient solutions using conventional cryp-
tographic techniques. Among these protocols are identity-based encryption, aggregate
signature schemes, and attribute-based encryption.

The desired pairings are derived from the classic Weil and Tate pairings defined on the
rational points on low-embedding degree elliptic curves defined over finite fields. In the
past 10 years, several families of low-embedding degree elliptic curves have been discovered.
Moreover, there have been many proposal for faster pairings, including the ate pairing, the
eta paring, the R-ate pairing, and Vercauteren’s pairing. At present, it appears that the
fastest pairing that meets the 128-bit security level is Vercauteren’s pairing on Barreto-
Naehrig (BN) elliptic curves.

The purpose of this thesis is to give a complete description of the mathematics re-
quired to understand Vercauteren’s pairing, and the numerous optimizations available for
accelerating the pairing on BN curves.

The remainder of this thesis is organized as follows. In Chapter 2, we provide some
elementary background on elliptic curves, define the classic Tate pairing and describe
Miller’s basic algorithm for computing it. Finally, we present two fundamental pairing-
based cryptographic protocols, namely the Boneh-Lynn-Shacham short signature scheme
and the Boneh-Franklin identity-based encryption scheme.

In Chapter 3, we outline Vercauteren’s general construction for optimal pairings, and
then describe the ate pairing, the R-ate pairing, and Vercauteren’s optimal pairing. We
also note that the R-ate pairing is not derivable from Vercauteren’s general framework.

In Chapter 4, we present the BN family of elliptic curves, define their sextic twists, and
outline a method for efficiently constructing BN curves.

1

In Chapter 5, we give a detailed algorithm for computing the R-ate pairing on a
specially-chosen BN curve. We describe techniques for efficiently performing field arith-
metic in the extension fields Fp2 , Fp6 and Fp12 , and for the Miller loop and final exponen-
tiation. We give a careful estimate of the number of Fp arithmetic operations needed for
the pairing computation.

The purpose of Chapter 6 is to evaluate several recent papers that presented techniques
for purportedly speeding up the pairing computation. In particular, we examine a WAIFI
2010 paper and an AFRICACRYPT 2010 paper by Costello, Boyd, Nieto and Wong on
delaying full field multiplications, a PKC 2010 paper by Costello, Lange and Naehrig that
presented new formulas using ordinary projective coordinates for the doubling operation
in the Miller loop, and a Pairing 2010 paper by Lauter, Montogmery and Naehrig that
uses affine coordinates instead of projective coordinates. All these papers used very crude
methods to estimate the advantages of their new methods. We provide much more careful
estimates of the new methods, and as a result conclude that only the new formulas by
Costello, Lange and Naehrig offer speed ups over the previous methods for single pairing
computation.

2

Chapter 2

Mathematical Background

2.1 Elliptic Curves

We begin by summarizing some essential properties of elliptic curves that will be needed in
this thesis. A standard reference for this background material is Washington’s book [31].

Definition 2.1.1 An elliptic curve E over a field F is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where a1, a2, a3, a4, a6 ∈ F and 4 6= 0, and where 4 is the discriminant of E and is defined
as follows:

4 = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

If F′ is any extension of F, then the set of F′-rational points on E is

E(F′) = {(x, y) ∈ F′ × F′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {∞}

where ∞ is the point at infinity. In particular, the set of all points on E is E(F), where F
is the algebraic closure of F; we will often denote E(F) by E itself.

3

The field F can be the rational numbers Q, the real numbers R, the complex numbers
C, etc. In this thesis, we mainly consider F to be a finite field Fpk with prime p and k ≥ 1.
Equation (2.1) is called the generalized Weierstrass equation. If the characteristic of the
field is not 2, then we can complete the square on the left hand side and move the extra
terms to the right to get:(

y +
a1x+ a3

2

)2

= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x+

(
a2

3

4
+ a6

)
.

Letting y1 = y + a1x/2 + a3/2, the equation can be written as

y2
1 = x3 + a′2x

2 + a′4x+ a′6,

for some constants a′2, a′4, a′6 ∈ F. Further, if the characteristic is also not 3, then letting
x1 = x+ a′2/3, we get

y2
1 = x3

1 + ax1 + b

for some constants a, b ∈ F.

In this thesis, the elliptic curves we are mainly focusing on are the Barreto-Naehrig
(BN) curves, which will be introduced in Chapter 4. These curves are defined over Fp,
where p 6= 2, 3. So for most of this thesis, elliptic curves will be of the form

y2 = x3 + ax+ b,

where a, b are in some finite field Fpk . The discriminant is

4 = −16(4a3 + 27b2),

and 4 6= 0 implies that the polynomial x3 + ax+ b has no multiple roots. The group law
for points on the elliptic curve defined by y2 = x3 + ax + b will be introduced in Section
2.1.1.

2.1.1 Group Law

There is a chord-and-tangent rule for adding two points on an elliptic curve. Let P and
Q be two points on an elliptic curve E, with P = (x1, y1) and Q = (x2, y2). We use
y2 = x3 + ax + b as the curve equation. Let point R = (x3, y3) be the sum of P and Q;
then R is defined as follows. We first give a rough geometric description of this addition
rule. It is understood that all vertical lines intersect the point ∞, and that the reflection
of ∞ in the x-axis is ∞ itself. Now, to add P and Q, one draws the line ` through P and
Q. The line ` intersects E at a third point R′. Then R is the reflection of R′ about the
x-axis.

4

We now give algebraic formulas for the group law. First assume that P 6= Q. If x1 = x2,
then ` is the vertical line through P . Therefore, ` intersects E at ∞, and P + Q =∞. If
x1 6= x2, the slope of ` is

λ =
y2 − y1

x2 − x1

.

The equation of ` is then
y = λ(x− x1) + y1.

Hence, R = (x3,−y3) can be obtained by solving the system of equations{
y = λ(x− x1) + y1

y2 = x3 + ax+ b.

Substitute the line function into the curve function to get

(λ(x− x1) + y1)2 = x3 + ax+ b.

From this, we have a cubic polynomial in x that equals 0:

x3 − λ2x2 + (a+ 2λ2x1 − 2λy1)x+ (b− λ2x2
1 + 2λx1y1 − y2

1) = 0.

Since we already know that the three roots of the polynomial are x1, x2 and x3, the
polynomial must have the form

(x− x1)(x− x2)(x− x3) = x3 − (x1 + x2 + x3)x2 + (x1x3 + x2x3 + x1x2)x− x1x2x3.

Therefore, we have
x1 + x2 + x3 = λ2

and obtain {
x3 = λ2 − x1 − x2

y3 = −(λ(x3 − x1) + y1).

In the case that P = Q = (x1, y1), we take the tangent line through P as the line `.
Taking the derivative with respect to x of the curve equation gives

2y
dy

dx
= 3x2 + a.

If y1 = 0, then ` is a vertical line. As before, we obtain P + P =∞. If y1 6= 0, the slope λ
of ` is

λ =
dy

dx
=

3x2
1 + a

2y1

.

5

Similarly to the case P 6= Q, we obtain{
x3 = λ2 − 2x1

y3 = −(λ(x3 − x1) + y1).

Finally, if Q =∞, the line through P and ∞ is the vertical line which intersects E at
the point P ′ = (x1,−y1), where P ′ denotes the reflection of P in the x-axis. Hence, when
we reflect P ′ to get R = P +∞, we are back at P again. Therefore,

P +∞ = P

for all points P on E. Moreover, it is easy to see that

P + P ′ =∞

for all points P on E.

Theorem 2.1.1 The points E(F) on an elliptic curve E form an additive abelian group
under point addition.

Proof: The point addition on E satisfies:

1. Commutativity: Since the line through P and Q is the same as the line through Q
and P , we have P +Q = Q+ P for all P , Q on E.

2. Existence of Identity: Since P +∞ = P for all P on E, ∞ is the group identity.

3. Existence of Inverses: For any point P = (x, y) on E, there exists a point P ′ = (x,−y)
on E such that P + P ′ =∞. This point P ′ is also denoted as −P .

4. Associativity: It is not obvious that (P +Q) +R = P + (Q+R) for all P , Q, R on
E. Since the proof of this property is not needed in the rest of this thesis, the details
are omitted; the interested reader can refer to [31]. �

Now, if E is defined over F and P , Q ∈ E(F), then P + Q ∈ E(F). This shows that
E(F) is also an abelian group.

Summarizing all the above information, we have the group law as follows.

Let E/F be an elliptic curve defined by equation y2 = x3 + ax + b over field F whose
characteristic is neither 2 nor 3.

1. Identity: P +∞ =∞+ P = P for all P ∈ E(F).

6

2. Negation: If P = (x, y) ∈ E(F), then there exists−P = (x,−y) such that P+(−P) =
(x+ y) + (x,−y) =∞. Also, −∞ =∞.

3. Point Addition: Let P = (x1, y1) ∈ E(F) and Q = (x2, y2) ∈ E(F) with P 6= ±Q.
Then P +Q = (x3, y3) where

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1.

4. Point Doubling: Let P = (x1, y1) ∈ E(F) with P 6= −P . Then 2P = (x3, y3), where
x3 =

(
3x2

1 + a

2y1

)2

− 2x1

y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1.

The formulas for point addition and point doubling are given in the group law. In the
remainder of this thesis, for a ∈ N and P ∈ E, we denote by aP the a-fold sum of P with
itself. The efficiency of these formulas will be discussed in Chapter 5. Alternate formulas
for the group law can be derived by writing the points in other coordinate systems. Two
such systems are introduced in Section 2.1.2.

2.1.2 Projective Coordinates and Jacobian Coordinates

The two-dimensional projective space P2(F) over a field F consists of the equivalence classes
of non-zero triples in F × F × F, where triples (x1, y1, z1) and (x2, y2, z2) are said to be
equivalent if there exists a nonzero element λ ∈ F such that

(x1, y1, z1) = (λx2, λy2, λz2).

An equivalence class containing (x, y, z), called a projective point, will be denoted as
(x : y : z).

Let P = (x : y : z) be a point in P2(F). If z 6= 0, then P = (x : y : z) = (x/z : y/z : 1).
These points are called the finite points. If z = 0, then P = (x : y : z) is called a point at
infinity. In this way,

(x, y)↔ (x : y : 1)

is a bijection between the finite points in the 2-dimensional affine plane and the finite
points in the 2-dimensional projective space.

7

Let projective point (x : y : z) with z 6= 0 represent the affine point (x/z, y/z). Since
(x : y : z) = (λx : λy : λz) for any λ ∈ F∗, all terms in the curve equation should have the
same degree. Therefore, the projective equation of the elliptic curve is

y2z = x3 + axz2 + bz3.

For this specific curve, z = 0 implies x3 = 0. Hence, the point at infinity corresponds to
the class (0 : 1 : 0).

Similarly, in Jacobian coordinates, we use (x : y : z) to represent the affine point
(x/z2, y/z3). The elliptic curve equation becomes

y2 = x3 + axz4 + bz6.

Naturally, the point addition and point doubling formulas in projective coordinates and
Jacobian coordinates are different from those in affine coordinates. These formulas are not
unique. Different formulas and their efficiency will be discussed in Chapter 5.

2.1.3 Group Order and Torsion Points

Let E be an elliptic curve defined over Fq. We define the order of E over Fq to be the
number of points in E(Fq), denoted #E(Fq). Examining the curve equation, we see that
there are at most two roots y for each x ∈ Fq. Hence, together with the point at infinity,
the group order must be between 1 and 2q+ 1. A tighter bound of the group order is given
by Hasse’s Theorem.

Theorem 2.1.2 (Hasse’s Theorem) Let E be an elliptic curve defined over Fq. Then

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

Let t be the integer such that #E(Fq) = q + 1 − t. This integer is called the trace
of the Frobenius endomorphism and will be introduced in Section 2.1.4. From Hasse’s
Theorem, we can see that |t| ≤ 2

√
q. Since 2

√
q � q for large q, we have #E(Fq) ≈ q.

However, when a curve is used for cryptographic implementations, we are only interested
in the points with specific order, namely, the n-torsion points.

For n ∈ Z define the endomorphism

[n] : E → E

8

to be the multiplication-by-n map. Let P ∈ E be an arbitrary point on the curve. If n = 0,
then [n]P = ∞. If n > 0, then [n]P = nP . If n < 0, then [n]P = −[−n]P . For n ∈ Z,
n 6= 0, define the n-torsion points to be the kernel of the multiplication-by-n map

E[n] = ker([n]) = {P ∈ E | [n]P =∞}.

Moreover, E(Fqm)[n] is defined to be E(Fqm) ∩ E[n].

Obviously, E[n] ⊆ E(Fq). However, the coordinates of all points in E[n] are in fact
contained in some finite extension of Fq. Now, assume that gcd(q, n) = 1 and define the
embedding degree of E with respect to n to be the smallest integer k such that n | (qk−1).
A theorem by Balasubramanian and Koblitz [2] related to k is given as follows.

Theorem 2.1.3 Let E/Fq be an elliptic curve with n | #E(Fq), where n is a prime and
n - (q − 1). Then E[n] ⊆ E(Fqk) if and only if n | (qk − 1).

By Theorem 2.1.3, if n - (q− 1), then the embedding degree k is the smallest extension
of Fq over which all n-torsion points of E are defined.

2.1.4 The Frobenius Map

The Frobenius map φq for a finite field Fq is defined as follows:

φq : Fq → Fq,

x 7→ xq.

Now let E be an elliptic curve defined over Fq. The Frobenius map

φq : E(Fq)→ E(Fq),

(x, y) 7→ (xq, yq), ∞ 7→ ∞

is an endomorphism of E, called the Frobenius endomorphism. Since the qth power map
is the identity on Fq, the set of points fixed by φq is the group E(Fq). The Frobenius
endomorphism φq of E/Fq satisfies

φ2
q − [t] ◦ φq + [q] = 0.

Hence, the characteristic polynomial of φq is X2 − tX + q ∈ Z[X].

9

Theorem 2.1.4 Let E/Fq be an elliptic curve with n | #E(Fq), where n is a prime and
n - (q − 1). Let k > 1 be the embedding degree of E with respect to n, and let φq be
the Frobenius endomorphism. Then φq : E[n] → E[n] is a bijective map and has two
eigenvalues λ1 = 1 and λ2 = q. The decomposition of E[n] into eigenspaces is

E[n] = (ker(φq − [1]) ∩ E[n])⊕ (ker(φq − [q]) ∩ E[n]).

The corresponding eigenspaces are ker(φq− [1])∩E[n] = E(Fq)[n] and ker(φq− [q])∩E[n] ⊆
E(Fqk)[n].

Proof: It is clear that there are n-torsion points in E(Fq) since n | #E(Fq). Moreover,
E[n] * E(Fq) since k > 1. Points defined over Fq are fixed under φq. Hence, 1 is an
eigenvalue and the corresponding eigenspace is ker(φq − [1]) ∩ E[n] = E(Fq)[n].

Recall the characteristic polynomial of φq. Since n | (q + 1 − t), we have t ≡ q + 1
(mod n). Hence, over Fn,

X2 − tX + q = X2 − (q + 1)X + q = (X − 1)(X − q)

gives that the other eigenvalue of φq on E[n] is q. Therefore, E[n] is the sum of the two
eigenspaces ker(φq − [1]) ∩ E[n] = E(Fq)[n] and ker(φq − [q]) ∩ E[n] ⊆ E(Fqk)[n]. �

2.2 Tate Pairing

This section presents the definition and basic properties of the Tate pairing. Proofs of the
results stated here can be found in Washington’s book [31].

2.2.1 Divisors

Let E be an elliptic curve defined over a field F. Define a symbol (P) for each point P ∈ E.
A divisor D on E is a linear combination of such symbols:

D =
∑
P∈E

aP (P)

with all aP ∈ Z, and where only finitely many aP ’s are non-zero. The set of all divisors
on E is denoted Div(E). Define the support of a divisor to be the set of all points P such
that aP 6= 0. Define the degree of a divisor by

deg

(∑
P∈E

aP (P)

)
=
∑
P∈E

aP ∈ Z.

10

Define the sum of a divisor by

sum

(∑
P∈E

aP (P)

)
=
∑
P∈E

aPP ∈ E(F).

Here, the sum function simply uses the group law on E to add up the points inside the
symbols.

An important subset of Div(E) is the set of divisors with degree 0, denoted Div0(E).
The sum function

sum : Div0(E) 7→ E(F)

is surjective because
sum((P)− (∞)) = P

for all P ∈ E(F).

Let E/F be an elliptic curve defined by equation y2 = x3 + ax + b. The function field
F(E) of E is the field of fractions of F[x, y]/(y2 − x3 − ax − b). Note that a function
f(x, y) ∈ F(E) is defined at a finite point P if one can write f = u/v with u, v ∈ F(x, y)
and v(P) 6= 0; otherwise f is not defined at P and we write f(P) =∞.

Example 2.2.1 Suppose y2 = x3 + 3x is the equation of E. The function

f(x, y) =
x

y

is not defined at (0,0). However, on E,

x

y
=
xy

y2
=

xy

x3 + 3x
=

y

x2 + 3
= 0

which is defined at (0, 0) and takes the value 0 at (0, 0).

A function can always be transformed in this way so that its value at any point is
neither 0/0 nor ∞/∞. The function takes values in F ∪ {∞}. A function is said to have
a zero at a point P if it equals 0 at P . A function is said to have a pole at P if it takes
the value ∞ at P . Define a uniformizer at P , denoted uP , to be a function such that
uP (P) = 0 and such that every function f(x, y) can be written in the form

f = urPg,

where r ∈ Z and g(P) 6= 0,∞. It is known that the integer r is independent of the choice
of uP . Now, define the order of f at P by

ordP (f) = r.

For P = (x0, y0) ∈ E, a natural choice of uP is uP = x− x0 when y0 6= 0 and uP = y when
y0 = 0.

11

Example 2.2.2 On y2 = x3 +3, x−1 is a uniformizer at (1, 2). Consider f(x, y) = y−2.
We have

y2 − 4 = x3 − 1,

so
(y + 2)(y − 2) = (x− 1)(x2 + x+ 1),

and

f(x, y) = y − 2 = (x− 1)

(
x2 + x+ 1

y + 2

)
with x2+x+1

y+2
6= 0,∞ at (1, 2). Hence,

ord(1,2)(y − 2) = 1.

For the elliptic curve E given by y2 = x3 +ax+ b, we take u∞ = x/y as the uniformizer
at ∞. For example, suppose the curve equation is y2 = x3 + 3. The curve equation can be
written as (

x

y

)3

= y−1

(
1− 3

x3 + 3

)
.

Since 1− 3

x3 + 3
6= 0,∞ at ∞, we have

y =

(
x

y

)−3(
1− 3

x3 + 3

)
,

so
ord∞(y) = −3.

Similarly,

x =
x

y
·
(
x

y

)−3(
1− 3

x3 + 3

)
gives

ord∞(x) = −2.

For a non-zero function f on E, define the divisor of f , denoted (f), to be

(f) =
∑
P∈E

ordP (f)(P) ∈ Div(E).

The divisor of a function is called a principal divisor.

Proposition 2.2.1 Let E be an elliptic curve and let f , g be non-zero functions on E.
We have:

12

1. f has only finitely many zeros and poles.

2. deg((f)) = 0.

3. f has no zeros or poles, i.e., (f) = 0, if and only if f is a constant.

4. (f · g) = (f) + (g).

5. (f/g) = (f)− (g).

6. (f)− (g) = 0 if and only if f is a constant multiple of g.

The following example illustrates some of these properties. Suppose that P , Q and R
are three points on E that lie on the line y = ax+ b. Hence, the function

f(x, y) = y − ax− b

has zeros at P , Q, R and a triple pole at ∞, so

(y − ax− b) = (P) + (Q) + (R)− 3(∞).

Suppose that R = (xR, yR). Then −R = (xR,−yR) and the vertical line x = xR passes
through R and −R. The divisor of x− xR is then

(x− xR) = (R) + (−R)− 2(∞),

so (
y − ax− b
x− xR

)
= (y − ax− b)− (x− xR) = (P) + (Q)− (−R)− (∞).

By definition of point addition in Section 2.1.1, P +Q = −R. Let `P,Q denote the function
of the line through P and Q. Let vP denote the function of the vertical line through P .
We have the following result:

(P) + (Q) = (P +Q) + (∞) +

(
`P,Q
vP+Q

)
. (2.2)

Theorem 2.2.1 Let E be an elliptic curve defined over a field F . Let D ∈ Div0(E). Then
there is a function f on E with (f) = D if and only if sum(D) =∞.

Two divisors D and D′ are said to be equivalent, denoted D ∼ D′, if D = D′ + (f) for
some function f . Hence, by Theorem 2.2.1, two equivalent divisors must have the same
degree.

13

Let f be a function. Let D =
∑

P∈E aP (P) be a divisor of degree 0 such that the
support of D is distinct from the support of (f). Define f(D) to be

f(D) =
∏
P∈E

f(P)aP .

Note that f(D) 6= 0,∞. Let f and g be two functions such that g = cf for some constant
c ∈ F. Then

g(D) = cf(D)

=
∏
P∈E

(cf(P))aP

=
∏
P∈E

caP ·
∏
P∈E

f(P)aP

= c
∑
P∈E aP · f(D)

= f(D), since deg(D) = 0.

This shows that the value of a function evaluated at a zero divisor does not change if the
function is multiplied by a non-zero field element.

2.2.2 The Tate Pairing

Let E/Fq be an elliptic curve with n | #E(Fq), where n is a prime, gcd(n, q) = 1 and
n - (q − 1). Let k > 1 be the embedding degree of E with respect to n, so E[n] ⊆ E(Fqk).
Recall from Section 2.1.3 that the set of all n-torsion points on E, denoted E[n], is

E[n] = {P ∈ E(Fqk)|nP =∞}.

Define
nE(Fqk) = {nP |P ∈ E(Fqk)}.

Then, nE(Fqk) is a subgroup of E(Fqk) and the quotient group E(Fqk)/nE(Fqk) is a group
of exponent n. Here, E(Fqk)/nE(Fqk) can be considered as a set of equivalence classes of
points in E(Fqk), where P is equivalent to Q if and only if (P −Q) ∈ nE(Fqk). An element
Q′ ∈ E(Fqk)/nE(Fqk) is a set of such equivalent points.

Let P ∈ E[n] and Q′ ∈ E(Fqk)/nE(Fqk). Let DP , DQ be two divisors with disjoint
supports such that DP ∼ (P)− (∞) and DQ ∼ (Q)− (∞), where Q ∈ Q′. Since nP =∞,
by Theorem 2.2.1 there exists a function f with divisor (f) = n(P)− n(∞) = nDP . Since
the supports of (f) and DQ are disjoint, we have f(DQ) 6= 0,∞. We can now define the
Tate pairing. The Tate pairing is a function

〈·, ·〉n : E(Fqk)[n]× E(Fqk)/nE(Fqk) −→ (F∗qk)/(F
∗
qk)

n,

14

with
〈P,Q′〉n = f(DQ).

From now on, we assume that E(Fqk) does not contain any points of order n2. Then the
set E(Fqk)[n] of n-torsion points forms a set of distinct representatives for the equivalence
classes in E(Fqk)/nE(Fqk). Let P , Q be two points in E[n]. Let DP , DQ be two divisors
with disjoint supports such that DP ∼ (P) − (∞) and DQ ∼ (Q) − (∞). Let f be a
function with divisor (f) = n(P)− n(∞). We then define the simplified Tate pairing as

〈·, ·〉n : E(Fqk)[n]× E(Fqk)[n]→ (F∗qk)/(F
∗
qk)

n,

with
〈P,Q〉n = f(DQ).

A drawback of the simplified Tate pairing is that pairing values are unique up to member-
ship in a coset of F∗

qk
. Let µn denote the order-n subgroup of F∗

qk
. Since F∗

qk
is a cyclic

group of order qk − 1, the (qk − 1)/n-th power map gives an isomorphism

(F∗qk)/(F
∗
qk)

n → µn.

This motivates the definition of the reduced Tate pairing as follows:

en : E(Fqk)[n]× E(Fqk)[n]→ µn

with
en(P,Q) = 〈P,Q〉(qk−1)/n

n = f(DQ)(qk−1)/n.

This (qk − 1)/n-th power map is called the final exponentiation.

Since n | #E(Fq), there are n-torsion points in E(Fq)[n]. We restrict the first argument
to be taken from this set. From Section 2.1.4, we can see that ker(φq − [q]) ∩ E[n] ⊆
E(Fqk)[n]. For the second pairing argument, one could choose elements in this eigenspace
of the Frobenius, since choosing both points from the other eigenspace results in a trivial
pairing value. Then the reduced Tate pairing can be defined to be:

en : G1 ×G2 → G3

with
en(P,Q) = 〈P,Q〉(qk−1)/n

n = f(DQ)(qk−1)/n,

where
G1 = ker(φq − [1]) ∩ E[n] = E(Fq)[n],

G2 = ker(φq − [q]) ∩ E[n] ⊆ E(Fqk)[n],

and
G3 = µn ⊆ F∗qk .

In the remainder of this thesis, the ‘Tate pairing’ refers to the reduced Tate pairing defined
over two n-torsion points from G1 ×G2.

15

2.2.3 Properties of the Tate Pairing

In this section, the properties of abstract bilinear pairings will be introduced. Let G1 and
G2 be abelian groups written in additive notation with identity element ∞. Suppose G1

and G2 have exponent n, and G3 is a cyclic group of order n written in multiplicative
notation with identity element 1. A bilinear pairing is a function

e : G1 ×G2 → G3

with the following properties:

1. Bilinearity: For all P1, P2 ∈ G1 and all Q1, Q2 ∈ G2 we have

• e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1) and

• e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2).

2. Non-degeneracy:

• For each P ∈ G1 with P 6=∞, there is some Q ∈ G2 such that e(P,Q) 6= 1; and

• For each Q ∈ G2 with Q 6=∞, there is some P ∈ G1 such that e(P,Q) 6= 1.

3. For all P ∈ G1 and Q ∈ G2,

• e(P,∞) = e(Q,∞) = 1,

• e(−P,Q) = e(P,Q)−1 = e(P,−Q),

• e([j]P,Q) = e(P,Q)j = e(P, [j]Q) for all j ∈ Z.

Property 3 follows from property 1. Since e(P,Q) = e(P +∞, Q) = e(P,Q)e(∞, Q), we
have e(∞, Q) = 1. Similarly, e(P,∞) = 1. Furthermore, since 1 = e(∞, Q) = e(P −
P,Q) = e(P,Q)e(−P,Q), we have e(−P,Q) = e(P,Q)−1. Similarly, e(P,−Q) = e(P,Q)−1.
Therefore, the key properties of bilinear pairings are bilinearity and non-degeneracy.

Theorem 2.2.2 Let E be an elliptic curve over Fq, and let n be a prime with gcd(n, q) = 1.
The Tate pairing satisfies:

1. Bilinearity: For all P1, P2 ∈ G1 and all Q1, Q2 ∈ G2 we have

• en(P1 + P2, Q1) = en(P1, Q1)en(P2, Q1); and

• en(P1, Q1 +Q2) = en(P1, Q1)en(P1, Q2).

2. Non-degeneracy:

16

• For each P ∈ G1 with P 6= ∞, there is some Q ∈ G2 such that en(P,Q) 6= 1;
and

• For each Q ∈ G2 with Q 6=∞, there is some P ∈ G1 such that en(P,Q) 6= 1.

The proof of non-degeneracy is briefly discussed in [16]. We prove bilinearity here. Let
P3 = P1 +P2 and let g be a function such that (P3)− (∞) = (P1)− (∞)+(P2)− (∞)+(g).
As introduced in Section 2.2.2, two functions f1, f2 with (f1) = n(P1)− n(∞) and (f2) =
n(P2)− n(∞) are used in the definitions of en(P1, Q1) and en(P2, Q1). Hence, we have

(f1f2g
n) = n(P1)− n(∞) + n(P2)− n(∞) + n(g) = n(P3)− n(∞).

Let DQ1 ∼ (Q1)− (∞) have support disjoint to the set {P1, P2, P3,∞}. We have

en(P1 + P2, Q1) = en(P3, Q1)

= (f1f2g
n(DQ1))

(qk−1)/n

= f1(DQ1)
(qk−1)/n · f2(DQ1)

(qk−1)/n · g(DQ1)
qk−1

= en(P1, Q1) · en(P2, Q1) since g(DQ1) ∈ F∗
qk

.

Let Q3 = Q1 +Q2 and let DQ1 ∼ (Q1)− (∞), DQ2 ∼ (Q2)− (∞). We have

(Q3)− (∞) = (Q1)− (∞) + (Q2)− (∞) + (h)

for some function h. Hence, DQ1 +DQ2 ∼ (Q3)− (∞). Then

en(P1, Q1 +Q2) = en(P1, Q3)

= f1(DQ1 +DQ2)
(qk−1)/n

= f1(DQ1)
(qk−1)/n · f1(DQ2)

(qk−1)/n

= en(P1, Q1) · en(P1, Q2).

This proves bilinearity of the Tate pairing.

2.3 Miller’s Algorithm

2.3.1 Miller’s Function

Miller’s algorithm [21] is the most famous algorithm for computing the Tate pairing. The
main idea is to use the double-and-add method to construct a function f such that (f) =
n(P)− n(∞). Let P ∈ E(Fqk) and λ ∈ Z. A Miller function fλ,P is a function such that

(fλ,P) = λ(P)− ([λ]P)− (λ− 1)(∞).

As we discussed in Section 2.2.1, such a function is uniquely defined up to multiplication
by constants in Fqk . We use a recurrence relation to define the Miller functions as follows:

17

1. f0,P = f1,P = 1.

2. If P =∞, then fs,P = 1.

3. If a, b are positive integers and P 6=∞, then

fa+b,P = fa,P · fb,P ·
l[a]P,[b]P

v[a+b]P

,

where l[a]P,[b]P is the equation of the line through [a]P and [b]P , and v[a+b]P is the
equation of the vertical line through [a+ b]P .

4. We provide further details on the lines l[a]P,[b]P and v[a+b]P . Let the equation of E be
y2 = x3 + Ax+B. Let [a]P = (x1, y1), [b]P = (x2, y2) and let [a+ b]P = (x3, y3).

• If [a]P 6= ±[b]P , then l[a]P,[b]P = Y −y1−
y2 − y1

x2 − x1

(X−x1) and v[a+b]P = X−x3.

• If [a]P = [b]P , then l[a]P,[b]P = Y − y1 −
3x2

1 + A

2y1

(X − x1) and v[a+b]P = X − x3.

• If [a]P = −[b]P , then l[a]P,[b]P = X − x1 and v[a+b]P = 1.

In all cases, (
l[a]P,[b]P

v[a+b]P

)
= ([a]P) + ([b]P)− ([a+ b]P)− (∞)

so that(
fa,P · fb,P ·

l[a]P,[b]P

v[a+b]P

)
= a(P)− ([a]P)− (a− 1)(∞) + b(P)− ([b]P)− (b− 1)(∞)

+

(
l[a]P,[b]P

v[a+b]P

)
= (a+ b)(P)− ([a+ b]P)− (a+ b− 1)(∞).

= (fa+b,P).

Algorithm 2.3.1 Miller’s Algorithm

Input: P,Q ∈ E[n] and λ = (λl−1λl−2 . . . λ1λ0)2 ∈ N

Output: fλ,P (Q)

1. T ← P , f ← 1

2. For i = l − 2 to 0

18

(a) f ← f 2 · lT,T (Q)

v[2]T (Q)

(b) T ← [2]T

(c) If λi 6= 0 then

i. f ← f · lT,P (Q)

vT+P (Q)

ii. T ← T + P

3. Return f

In this algorithm, Step 2 is called the Miller loop. There are log2(λ) iterations in the
Miller loop. Steps 2(a) and 2(b) are called the doubling step, while Step 2(c) is called
the addition step. Clearly, the doubling step is processed log2(λ) times and the hamming
weight of λ determines the number of times that the addition step is processed. In later
chapters of this thesis, ideas for shortening log2(λ) and decreasing the hamming weight of
λ are introduced to get faster pairings.

2.3.2 Computing the Tate Pairing

While computing the Tate pairing, we can use the Miller function fn,P since (fn,P) =
n(P) − n(∞). Let P,Q ∈ E[n], and let R ∈ E(Fq) with R /∈ {P,Q,−P,−Q,∞}. Let
DP = (P) − (∞) and DQ = (Q + R) − (R) ∼ (Q) − (∞); note that DP and DQ have
disjoint supports. Then

en(P,Q) =

(
fn,P (Q+R)

fn,P (R)

)(qk−1)/n

.

In this way, two Miller functions and an inversion need to be computed. However, if P ∈
E(Fq)[n] then fn,P (R) and the inversion can be eliminated using the following ‘denominator
elimination’ idea introduced by Barreto, Lynn and Scott [3].

Lemma 2.3.1 Let E/Fq be an elliptic curve with n | #E(Fq), where n is a prime and
n - (q − 1). Let k > 1 be the embedding degree of E with respect to n, and d be a proper
factor of k. Then any nonzero element in Fqd equals 1 after the final exponentiation by
(qk − 1)/n while computing the pairing.

Proof: The proof begins with the factorization

qk − 1 = (qd − 1) ·
k/d−1∑
i=0

qid.

19

Since k is the smallest integer such that n | qk−1, we have n - qd−1. Hence, n |
∑k/d−1

i=0 qid.

Thus, qd − 1 divides (qk − 1)/n. Let x be a nonzero element in Fqd . We have xq
d−1 = 1.

Therefore, x(qk−1)/n = 1. �

Let P ∈ E(Fq)[n], Q ∈ E[n], and let R ∈ E(Fq) with R /∈ {P,Q,−P,−Q,∞}. Let
DP = (P + R) − (R) ∼ (P) − (∞) and DQ = (Q) − (∞). Since (P + R) − (R) ∼
(P)− (∞), there exists a function g such that (P + R)− (R) = (P)− (∞) + (g). Hence,
n(P +R)− n(R) = n(P)− n(∞) + (gn). Therefore, setting

f = fn,P · gn,

we have

en(P,Q) = f(DQ)(qk−1)/n

=

(
f(Q)

f(∞)

)(qk−1)/n

=

(
fn,P (Q) · g(Q)n

fn,P (∞) · g(∞)n

)(qk−1)/n

=
fn,P (Q)(qk−1)/n · g(Q)q

k−1

1 · g(∞)qk−1
since fn,P (∞) ∈ Fq

= fn,P (Q)(qk−1)/n.

Now, the computation of the Tate pairing requires a single Miller function evaluation with
log2(n) iterations of Miller loop and a final exponentiation to the power (qk − 1)/n.

2.4 Pairing-Based Cryptography

Pairings are being used to solve protocol problems. Recall the 3 groups G1, G2 and G3

defined in Section 2.2.2. Let
e : G1 ×G2 → G3

be a bilinear pairing defined over the three n-torsion groups. Recall the Diffie Hellman
problem (DHP) in an additive group G = 〈P 〉 to be: Given aP and bP where a, b ∈ Zn,
compute abP . The co-DHP is defined to be: Given M,aP ∈ G1 and aQ ∈ G2, compute
aM . The bilinear Diffie-Hellman problem (BDHP) is defined to be: Given P ∈ G1, Q ∈ G2,
aQ and bQ where a, b ∈ Z, compute e(P,Q)ab. As is generally assumed in the literature, we
shall assume co-DHP and BDHP to be as hard as DHP in G1, G2 and G3. Some protocols
using bilinear pairings are introduced in this section.

20

2.4.1 Short Signatures

The BLS signature scheme [7] was proposed by Boneh, Lynn and Shacham.

1. Public Parameters. Let E/Fq be an elliptic curve with n | #E(Fq), where n is a
prime and n - (q − 1). Let k > 1 be the embedding degree of E with respect to n.
Let en : G1×G2 → G3 be a non-degenerate bilinear pairing with G1 = ker(φq− [1])∩
E[n] = E(Fq)[n], G2 = ker(φq − [q]) ∩ E[n] ⊆ E(Fqk)[n], and G3 = µn ⊆ F∗

qk
. Let

P ∈ G∗1 and Q ∈ G∗2. Let H : {0, 1}∗ → G1 be a hash function.

2. Key generation.

(a) Alice randomly picks x ∈ [1, n− 1] as her private key.

(b) Alice computes W = xP , X = xQ as her public key.

(c) Alice sends her public (W,X) to a certification authority.

(d) The certification authority verifies that W ∈ G1, X ∈ G2, W 6= 1, X 6= 1 and
e(W,Q) = e(P,X) and issues a certificate for (W,X).

3. Signature generation. To sign a message m ∈ {0, 1}∗, Alice does the following:

(a) Compute M = H(m) ∈ G1.

(b) Compute S = xM .

(c) The signed message is (m,S).

4. Signature verification. To verify (m,S), Bob does the following:

(a) Obtain Alice’s public key (W,X) from Alice’s certificate.

(b) Compute M = H(m) ∈ G1.

(c) Accept the signature if and only if e(M,X) = e(S,Q).

If an attacker wants to forge Alice’s signature on a message m′, he needs to compute
S = xM ′ given P , xP , M ′ = H(m′) ∈ G1 and xQ ∈ G2. This is an instance of co-DHP
which is infeasible to solve. The BLS signature scheme is called a short signature scheme
because it is the first scheme whose signatures are comprised of a single group element.
Moveover, signatures can be aggregated [6]. The BGLS signature scheme is an aggregate
signature scheme based on the BLS signature scheme. We describe BGLS next.

1. Public Parameters. Let E/Fq be an elliptic curve with n | #E(Fq), where n is a
prime and n - (q − 1). Let k > 1 be the embedding degree of E with respect to n.
Let en : G1×G2 → G3 be a non-degenerate bilinear pairing with G1 = ker(φq− [1])∩
E[n] = E(Fq)[n], G2 = ker(φq − [q]) ∩ E[n] ⊆ E(Fqk)[n], and G3 = µn ⊆ F∗

qk
. Let

P ∈ G∗1 and Q ∈ G∗2. Let H : {0, 1}∗ → G1 be a hash function.

21

2. Key generation.

(a) Each user Ai has private key xi ∈ [1, n− 1].

(b) Each user Ai computes Wi = xiP , Xi = xiQ as the public key, where G1 = 〈P 〉
and G2 = 〈Q〉.

(c) Each user Ai sends the public (Wi, Xi) to a certification authority.

(d) The certification authority verifies that Wi ∈ G1, Xi ∈ G2, Wi 6= 1, Xi 6= 1 and
e(Wi, Q) = e(P,Xi) and issues certificates for all (Wi, Xi).

3. Signature generation. To sign messages mi’s, each user Ai does the following:

(a) Compute Mi = H(mi) ∈ G1.

(b) Compute Si = xiMi.

(c) Ai’s signature on mi is Si.

4. Signature aggregation. Given (m1, S1), (m2, S2), . . . , (mt, St), the aggregated signa-
ture is S =

∑t
i=1 Si.

5. Signature verification. To verify the aggregated signature S on (m1,m2, . . . ,mt), Bob
does the following:

(a) Obtain each Ai’s public key (Wi, Xi) from their certificates.

(b) Compute Mi = H(mi) ∈ G1.

(c) Accept the signature if and only if
∏

i e(Mi, Xi) = e(S,Q).

Only one pairing evaluation is needed in the right hand side of step 4(c) to obtain the
assurance that each message mi was signed by Ai. It is shown in [6] and [8] that this
scheme is secure if co-DHP in G1, G2 is hard and H is a random function.

2.4.2 Identity-Based Encryption

Generally, in a public-key cryptosystem, Alice first generates her public key and private
key. Bob uses her public key to encrypt the secret message and sends to Alice. Finally,
Alice decrypts the ciphertext using her private key. Identity-based cryptosystems were first
introduced by Shamir in 1984 [28]. Different from traditional public-key cryptosystems,
the private key of Alice is generated by a trusted third party (TTP) using her identity
information IDA. Bob encrypts for Alice using IDA and the TTP’s public key. In this
case, Bob does not need to worry whether Alice’s public key is authenticated or not, on
indeed whether Alice has actually generated a public key.

22

In 2001, the first practical identity-based encryption scheme was proposed by Boneh
and Franklin [5].

1. Public Parameters. Let E/Fq be an elliptic curve with n | #E(Fq), where n is a
prime and n - (q − 1). Let k > 1 be the embedding degree of E with respect to n.
Let en : G1 × G2 → G3 be a non-degenerate bilinear pairing with G1 = ker(φq −
[1]) ∩ E[n] = E(Fq)[n], G2 = ker(φq − [q]) ∩ E[n] ⊆ E(Fqk)[n], and G3 = µn ⊆ F∗

qk
.

Let P ∈ G∗1 and Q ∈ G∗2. Let H : {0, 1}∗ → G1 and H ′ : G3 → {0, 1}l be two hash
functions.

2. Key generation.

(a) TTP randomly picks t ∈ [1, n− 1] to be TTP’s private key.

(b) TTP computes T = tQ ∈ G2 as TTP’s public key, where G2 = 〈Q〉.
(c) TTP generates Alice’s private key dA using her identity information IDA: dA =

tH(IDA) ∈ G1.

(d) TTP securely sends dA to Alice.

3. Encryption.

(a) To encrypt message m ∈ {0, 1}l, Bob computes PA = H(IDA) ∈ G1 and obtains
TTP’s public key T .

(b) Bob randomly picks r ∈ [1, n− 1].

(c) Bob computes R = rQ ∈ G2.

(d) Bob encrypts the message using c = m⊕H ′(e(PA, T)r).

(e) Bob then sends the ciphertext (R, c) to Alice.

4. Decryption.

(a) Alice gets dA from TTP using a secure channel and receives the ciphertext (R, c)
from Bob.

(b) Alice decrypts the message using m = c⊕H ′(e(dA, R)).

The decryption is correct because

e(dA, R) = e(tPA, rQ) = e(PA, Q)rt = e(PA, tQ)r = e(PA, T)r.

If an attacker wants to recover m ∈ {0, 1}l from c ∈ {0, 1}l, PA ∈ G1 and R, T ∈ G2, he
needs to compute e(PA, T)r, i.e, solve an instance of BDHP. The identity-based encryption
scheme basically solves the key management problem for the certifying authority, but a
secure channel between TTP and receiver is needed.

23

Chapter 3

Optimal Pairings

Some results in this thesis are only true if the Miller functions are normalized. We start
this chapter by defining what it means for a function to be normalized.

Let f ∈ Fq(E) be a function, and suppose that f has a pole of order a at ∞. Take
u = x/y to be the uniformizer at ∞. Define the leading coefficient lc∞(f) of f to be
(uaf)(∞). Then f is said to be normalized if lc∞(f) = 1. By Lemma 2.3.1, since the
pairing values are in Fqk after the final exponentiation, we can say that fa,P is normalized
if lc∞(fa,P) is in a proper subfield of Fqk . Recall that using Miller’s algorithm introduced
in Section 2.3, a Miller function is a product of lines with leading coefficients 1. Hence,
the Miller functions we constructed in this thesis are already normalized. Unless otherwise
stated, we will assume that all Miller functions are normalized.

3.1 Vercauteren’s Construction

To clearly understand this section, the following lemma is a good place to start.

Lemma 3.1.1 For every Q ∈ E(Fqk) and integer s, let fs,Q be an Fqk-rational function
with divisor

(fs,Q) = s(Q)− ([s]Q)− (s− 1)(∞).

Then, for all a, b ∈ Z, we have

fab,Q = f ba,Q · fb,[a]Q. (3.1)

Proof: The divisors of both sides of (3.1) can be written as follows:

(fab,Q) = ab(Q)− ([ab]Q)− (ab− 1)(∞)

24

and

(f ba,Q · fb,[a]Q) = b(a(Q)− ([a]Q)− (a− 1)(∞)) + (b([a]Q)− ([ab]Q)− (b− 1)(∞)

= ab(Q)− b([a]Q)− (ab− b)(∞) + b([a]Q)− ([ab]Q)− (b− 1)(∞)

= ab(Q)− ([ab]Q)− (ab− 1)(∞).

Therefore, (3.1) holds in general. �

In [30], it is noted that the Tate pairing over G2 ×G1

en : G2 ×G1 → µn

can be defined by

en(Q,P) = fn,Q(P)(qk−1)/n,

provided that fn,Q is normalized. The central idea for Miller loop reduction is to raise the
Tate pairing en(Q,P) to some fixed integer power m; here, P ∈ G1 and Q ∈ G2. Using
Lemma 3.1.1, we have

emn (Q,P) = fn,Q(P)m(qk−1)/n

=
fmn,Q(P)(qk−1)/n

fm,[n]Q(P)(qk−1)/n
by (3.1)

=
fmn,Q(P)(qk−1)/n

1(qk−1)/n
since [n]Q =∞

= fmn,Q(P)(qk−1)/n.

Hence,
emn (Q,P) = fmn,Q(P)(qk−1)/n. (3.2)

Since the Tate pairing is non-degenerate, fmn,Q(P)(qk−1)/n also defines a non-degenerate
pairing whenever n - m. The main idea is then to find an m such that fmn,Q(P) can be
written as some multiple and/or power of simpler non-degenerate functions fλi,Q(P). If
the λi’s are small, the pairing can be computed in fewer Miller iterations. The increment
of exponentiation cost can be reduced, since the q-th powering of fλi,Q(P) corresponds
to multiplication by q in 〈Q〉. Further, multiplication by q in 〈Q〉 can be reduced to
multiplication by any integer a ≡ q (mod n).

Vercauteren first introduced the notion of an optimal pairing in his paper [30]. The
definition is as follows:

Definition 3.1.1 Let e : G1 ×G2 → GT be a non-degenerate bilinear pairing with |G1| =
|G2| = |GT | = n, where the field of definition of GT is Fqk . Then e(·, ·) is called an optimal
pairing if it can be computed in log2 n/ϕ(k)+ε(k) basic Miller iterations, with ε(k) ≤ log2 k.
Here, ϕ(k) is the Euler totient function.

25

By Definition 3.1.1, it is easy to see that, as long as all fλi,Q(P)’s can be computed in
log2 n/ϕ(k) + ε(k) basic Miller iterations, the resulting pairing is optimal. Based on this
idea, some efficient pairings are introduced in the following sections.

3.2 Ate Pairing

The ate pairing [17] is an optimized version of the Tate pairing. The missing “T” means
it is faster. Using results in the previous section, the ate pairing can be derived based on
Vercauteren’s construction. Consider a fixed power of the Tate pairing emn (Q,P).

Let λ ∈ Z, λ ≡ q (mod n); then we have

qk − 1 ≡ λk − 1 (mod n).

Since n | qk − 1, we have n | λk − 1. Letting m′ = (λk − 1)/n, we have

em
′

n (Q,P) = fnm′,Q(P)(qk−1)/n by (3.2)

= fλk−1,Q(P)(qk−1)/n.

For non-degeneracy, we need n - m′; note that n2 - qk − 1 is not sufficient. Recall the
observation

fa+b,Q = fa,Q · fb,Q ·
l[a]Q,[b]Q

v[a+b]Q

, (3.3)

where a, b ∈ Z, l[a]Q,[b]Q is the equation of the line through [a]Q and [b]Q, and v[a+b]Q is the
equation of the vertical line through [a+ b]Q. Then

em
′

n (Q,P) = fλk−1,Q(P)(qk−1)/n

=

 fλk,Q(P)

f1,Q(P) ·
l
[λk−1]Q,Q

(P)

v
[λk]Q

(P)

(qk−1)/n

by (3.3)

=

 fλk,Q(P)

1 ·
v
[λk]Q

(P)

v
[λk]Q

(P)

(qk−1)/n

since [λk − 1]Q =∞

= fλk,Q(P)(qk−1)/n.

26

By repeatedly applying (3.1), we obtain

em
′

n (Q,P) = fλk,Q(P)(qk−1)/n

=
(
fλ

k−1

λ,Q (P) · fλk−2

λ,[λ]Q(P) · fλk−3

λ,[λ2]Q(P) · · · · · fλλ,[λk−2]Q(P) · fλ,[λk−1]Q(P)
)(qk−1)/n

=

(
k−1∏
i=0

fλ
i

λ,[λk−1−i]Q(P)

)(qk−1)/n

=

(
k−1∏
i=0

f q
i

λ,[qk−1−i]Q
(P)

)(qk−1)/n

since λ ≡ q (mod n).

Notice that for a ∈ Z,

(fa,Q(P))q = fa,πq(Q)(πq(P)) = fa,[q]Q(P),

since P ∈ G1 whence πq(P) = P and since Q ∈ G2 whence πq(Q) = [q]Q. Hence for i ≥ 0,

fa,[qi]Q(P) = f q
i

a,Q(P). (3.4)

Thus, we have

em
′

n (Q,P) =

(
k−1∏
i=0

f q
i

λ,[qk−1−i]Q
(P)

)(qk−1)/n

=

(
k−1∏
i=0

f q
i·qk−1−i

λ,Q (P)

)(qk−1)/n

by (3.4)

=

(
k−1∏
i=0

f q
k−1

λ,Q (P)

)(qk−1)/n

= (fk·q
k−1

λ,Q (P))(qk−1)/n

= (fλ,Q(P))k·q
k−1·(qk−1)/n.

Now, fλ,Q(P)(qk−1)/n is of prime order n. Also, k and q are relatively prime to n, and so
n - k · qk−1. Hence, (k · qk−1)−1 mod n exists. Letting

m = m′ · (k · qk−1)−1 mod n,

the ate pairing a(Q,P) = emn (Q,P) can be defined as follows:

a(Q,P) = emn (Q,P)

= (em
′

n (Q,P))(k·qk−1)−1

= (fλ,Q(P)(qk−1)/n)k·q
k−1·(k·qk−1)−1

= (fλ,Q(P))(qk−1)/n.

27

λ is chosen so that n2 - λk − 1, and thus we have n - m′ and n - m. Since the Tate
pairing is non-degenerate, the ate pairing is also non-degenerate. For example, λ can be
chosen to be t−1 since #E(Fq) = q+ 1− t and n | q+ 1− t. By Theorem 2.1.2, |t| ≤ 2

√
q.

Hence, n ≈ q gives λ ≈
√
n. From this point of view, the Miller length of the ate pairing is

significantly shorter than that of the Tate pairing. However, the cost of the doubling and
addition steps in Miller’s Algorithm becomes larger.

The above process also works for λi ≡ qi (mod n). Zhao, Zhang and Huang [32]
introduced variations of the ate pairing using this idea. They define the atei pairing to be

ai(Q,P) = fλi,Q(P)(qk−1)/n

where λi ≡ qi (mod n). By trying different i’s, one can hope to find a λi that is smaller
than the λ in the ate pairing. However, according to Definition 3.1.1, the ate pairing and
atei pairings are not optimal pairings.

3.3 R-ate Pairing

The R-ate Pairing [20] was discovered before the publication of Vercauteren’s paper [30].
The “R” here can be regarded as a ratio of two pairings, yet it is still considered a fixed
power emn (Q,P) of the Tate pairing.

Let A,B, a, b ∈ Z with A = aB + b. Consider the Miller function fA,Q(P). We have

fA,Q(P) = faB+b,Q(P)

= faB,Q(P) · fb,Q(P) ·
l[aB]Q,[b]Q(P)

v[A]Q(P)
by (3.3)

= faB,Q(P) · fa,[B]Q(P) · fb,Q(P) ·
l[aB]Q,[b]Q(P)

v[A]Q(P)
by (3.1).

Define the function RA,B(Q,P) to be

RA,B(Q,P) =

(
fa,[B]Q(P) · fb,Q(P) ·

l[aB]Q,[b]Q(P)

v[A]Q(P)

)(qk−1)/n

=

(
fA,Q(P)

faB,Q(P)

)(qk−1)/n

.

If fA,Q(P) and fB,Q(P) are Miller functions for non-degenerate pairings, then the new
pairing RA,B(Q,P) is also a non-degenerate pairing.

28

Let L1, L2,M1,M2 ∈ Z such that

eL1
n (Q,P) = fA,Q(P)M1·(qk−1)/n

and
eL2
n (Q,P) = fB,Q(P)M2·(qk−1)/n.

Let M = lcm(M1,M2) and m = M
M1
· L1 − a M

M2
· L2. For non-degeneracy, n should not

divide the integer power m. We have

emn (Q,P) = e
M
M1
·L1−a MM2

·L2

n (Q,P)

=
en(Q,P)

L1· MM1

en(Q,P)
aL2· MM2

=

(
fA,Q(P)

fB,Q(P)a

)M ·(qk−1)/n

.

Now, it is easy to see that emn (Q,P) = RA,B(Q,P)M . RA,B(Q,P) is defined to be the
R-ate pairing. However, arbitrary integers A,B do not give a non-degenerate pairing in
general. Four possible choices for integer pairs (A,B) are given in [20] as follows:

1. (A,B) = (qi, n),

2. (A,B) = (q, T1),

3. (A,B) = (Ti, Tj),

4. (A,B) = (n, Ti),

where Ti ≡ qi (mod n) for i ∈ Z with 0 < i < k. Consider each case one by one.

First, (A,B) = (qi, n). Since A = aB + b, we have qi = an+ b. Hence, b ≡ qi (mod n)
and (

fqi,Q(P)

fan,Q(P)

)(qk−1)/n

= RA,B(Q,P) =

(
fa,[n]Q(P) · fb,Q(P) ·

l[an]Q,[b]Q(P)

v[qi]Q(P)

)(qk−1)/n

.

Since b ≡ qi (mod n), l[an]Q,[b]Q(P) is the same as v[qi]Q(P). Moreover, fa,[n]Q(P) = 1. Thus

RA,B(Q,P) =
(
fqi,Q(P)

)(qk−1)/n
. (3.5)

29

Second, (A,B) = (q, T1) that is q = aT1 + b. Then(
fq,Q(P)

faT1,Q(P)

)(qk−1)/n

= RA,B(Q,P) =

(
fa,[T1]Q(P) · fb,Q(P) ·

l[aT1]Q,[b]Q(P)

v[q]Q(P)

)(qk−1)/n

.

By (3.4), fa,[T1]Q(P) = f qa,Q(P), and hence

RA,B(Q,P) =

(
f qa,Q(P) · fb,Q(P) ·

l[aT1]Q,[b]Q(P)

v[q]Q(P)

)(qk−1)/n

. (3.6)

Third, (A,B) = (Ti, Tj) that is Ti = aTj + b. We have(
fTi,Q(P)

faTj ,Q(P)

)(qk−1)/n

= RA,B(Q,P) =

(
fa,[Tj]Q(P) · fb,Q(P) ·

l[aTj]Q,[b]Q(P)

v[qi]Q(P)

)(qk−1)/n

.

Similarly, by (3.4), fa,[Tj]Q(P) = f q
j

a,Q(P), and so

RA,B(Q,P) =

(
f q

j

a,Q(P) · fb,Q(P) ·
l[aTj]Q,[b]Q(P)

v[qi]Q(P)

)(qk−1)/n

. (3.7)

Finally, (A,B) = (n, Ti) that is n = aTi + b. Thus(
fn,Q(P)

faTi,Q(P)

)(qk−1)/n

= RA,B(Q,P) =

(
fa,[Ti]Q(P) · fb,Q(P) ·

l[aTi]Q,[b]Q(P)

v[n]Q(P)

)(qk−1)/n

.

Similarly, by (3.4), fa,[Tj]Q(P) = f q
j

a,Q(P), and so

RA,B(Q,P) =

(
f q

i

a,Q(P) · fb,Q(P) ·
l[aTi]Q,[b]Q(P)

v[n]Q(P)

)(qk−1)/n

. (3.8)

The resulting R-ate pairing in the first case (3.5) is the atei Pairing introduced in
Section 2.2. While computing the pairings in (3.6), (3.7) and (3.8), two Miller loops of
lengths log a and log b need to be evaluated. There is only one integer parameter i we can
change to get efficient pairings in (3.6) and (3.8), while we can change two parameters i and
j in (3.7). Therefore, on most of the pairing-friendly curves, we choose (A,B) = (Ti, Tj).
For the purpose of shortening the Miller length, by trying different i and j, integers a and
b can be small enough that the loop length in Miller’s algorithm is as small as log(r1/φ(k)).
Hence, the R-ate pairing is an optimal pairing by definition.

30

3.4 Vercauteren’s Pairing

Vercauteren introduced a specific optimal pairing after his general construction [30]. This
pairing is called Optimal ate pairing in [30] and some other papers. In order to be clear,
we call it Vercauteren’s Pairing in this thesis. To begin with, consider a fixed power m ∈ Z
of the Tate pairing emn (Q,P). We have

emn (Q,P) = fmn,Q(P)(qk−1)/n by (3.2).

Let α = mn and write it in base-q expansion α =
∑l

i=0 ciq
i. Using (3.3), (3.1) and (3.4),

we have

emn (Q,P) = fα,Q(P)(qk−1)/n

= f∑l
i=0 ciq

i,Q(P)(qk−1)/n

=

(
l∏

i=0

fciqi,Q(P) ·
l−1∏
i=0

l[
∑l
j=i+1 cjq

j]Q,[ciqi]Q
(P)

v[
∑l
j=i cjq

j]Q(P)

)(qk−1)/n

=

(
l∏

i=0

(
f ci
qi,Q

(P) · fci,[qi]Q(P)
)
·
l−1∏
i=0

l[
∑l
j=i+1 cjq

j]Q,[ciqi]Q
(P)

v[
∑l
j=i cjq

j]Q(P)

)(qk−1)/n

=

(
l∏

i=0

f ci
qi,Q

(P)

)(qk−1)/n

·

(
l∏

i=0

f q
i

ci,Q
(P) ·

l−1∏
i=0

l[
∑l
j=i+1 cjq

j]Q,[ciqi]Q
(P)

v[
∑l
j=i cjq

j]Q(P)

)(qk−1)/n

.

Now define Vercauteren’s Pairing a[c0,c1,...,cl] to be

a[c0,c1,...,cl] =

(
l∏

i=0

f q
i

ci,Q
(P) ·

l−1∏
i=0

l[
∑l
j=i+1 cjq

j]Q,[ciqi]Q
(P)

v[
∑l
j=i cjq

j]Q(P)

)(qk−1)/n

.

We can see that Vercauteren’s Pairing is a ratio of pairings we already know, namely

a[c0,c1,...,cl] =
emn (Q,P)∏l
i=0 f

ci
qi,Q

(P)
.

Therefore, Vercauteren’s Pairing is bilinear and non-degenerate. For efficiency, we need to
carefully choose the fixed power m so that all the ci’s are small. By Definition 3.1.1, as

long as all ci ≤ n
1
l+1 , Vercauteren’s Pairing is an optimal pairing. Vercauteren [30] gives

an algorithm to derive such m.

31

Consider the following ϕ(k)-dimensional lattice

L =

n 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

. . .

−ql 0 · · · 0 1

 .

In [30], it is concluded that finding the short vectors in the lattice L is easy, since k is
small.

Let a short vector V be

V = (v0, v1, v2, · · · , vl) ·

n 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

. . .

−ql 0 · · · 0 1

= (v0n− v1q − v2q

2 − · · · − vlql, v1, v2, · · · , vl)

= (c0, c1, c2, · · · , cl),

where all vi ∈ Z. By Minkowski’s theorem, there exists such short vector V ∈ L with
‖V ‖∞ ≤ n1/ϕ(k), where ‖V ‖∞ = maxi |ci|. Hence, we can have

v0n = c0 + c1q + c2q
2 + · · ·+ clq

l

with all ci ≤ n1/ϕ(k). Therefore, if we choose v0 to be our fixed power m, Vercauteren’s
Pairing

a[c0,c1,...,cl] =

(
l∏

i=0

f q
i

ci,Q
(P) ·

l−1∏
i=0

l[∑l
j=i+1 cjq

j]Q,[ciqi]Q
(P)

v[
∑l
j=i cjq

j]Q(P)

)(qk−1)/n

with mn =
∑l

i=0 ciq
i is an optimal pairing.

The relationship between Vercauteren’s Pairing and the R-ate pairing is not clear.
Both pairings can be written as a ratio of known pairings and a product of Miller functions
and line functions. For the R-ate pairing, we look at the third case listed in the previous
section, since it is the most used case for many pairing-friendly curves including BN curves.
Vercauteren’s Pairing can be written as

a[c0,c1,...,cl] =
emn (Q,P)∏l
i=0 f

ci
qi,Q

(P)
=

(
l∏

i=0

f q
i

ci,Q
(P) ·

l−1∏
i=0

l[
∑l
j=i+1 cjq

j]Q,[ciqi]Q
(P)

v[
∑l
j=i cjq

j]Q(P)

)(qk−1)/n

,

32

while the R-ate pairing can be written as

RA,B(Q,P) =

(
fTi,Q(P)

faTj ,Q(P)

)(qk−1)/n

=

(
fa,[Tj]Q(P) · fb,Q(P) ·

l[aTj]Q,[b]Q(P)

v[qi]Q(P)

)(qk−1)/n

,

where Ti ≡ qi (mod n) for i ∈ Z with 0 < i < k.

On one hand, there could be more than one coefficient among the ci’s not equal to 1,
so it is not always possible to get Vercauteren’s Pairing from the R-ate pairing. On the
other hand, if the fixed power m in Vercauteren’s Pairing could be chosen so that

a[c0,c1,...,cl] =
emn (Q,P)∏l
i=0 f

ci
qi,Q

(P)
=

(
fTi,Q(P)

faTj ,Q(P)

)(qk−1)/n

,

then we need mn = aqj + b which might not be true in general. We conclude that
Vercauteren’s Pairing and the R-ate pairing are distinct optimal pairings.

33

Chapter 4

BN Curves

In this chapter, we study a family of elliptic curves defined over a prime field Fp such that
the group of Fp-rational points has prime order n. The curves have embedding degree
k = 12 with respect to n. The curves were discovered in 2005 by Barreto and Naehrig [4].

4.1 Family of Curves

The family of elliptic curves is described in the following theorem [4].

Theorem 4.1.1 Let u ∈ Z be an integer such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

and
n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime numbers. Then there exists an ordinary elliptic E defined over Fp with #E(Fp) =
n. The embedding degree of E with respect to n is k = 12, and the curve can be given by
an equation

E : y2 = x3 + b, b ∈ Fp.

The trace of the Frobenius endomorphism over Fp is given by t = t(u) = 6u2 + 1.

A pair (p, n) of prime numbers as described in Theorem 4.1.1 is called a BN prime pair.
Finding a BN prime pair of a certain bit size is not difficult. One just randomly chooses
different numbers for parameter u until both p(u) and n(u) are prime. The values of u can
be chosen so that p(u) and n(u) have a desired bit size.

34

For the curve equation y2 = x3 + b, the distribution of b is discussed as follows. Let
p ∈ N be a prime. For x0 ∈ Fp, b ∈ F∗p can be chosen such that x3

0 + b is a square y2
0 in Fp.

Then, P = (x0, y0) is an affine point on the curve E : y2 = x3 + b. If we randomly choose
b ∈ F∗p, there is a chance of 50% to obtain a square y2

0 = x3
0 + b. Similarly, for y0 ∈ Fp,

b ∈ F∗p should be chosen so that y2
0 − b is a cube in Fp. If we randomly choose b ∈ F∗p, there

is a chance of 1/3 to obtain a cube x3
0 = y2

0 − b. A lemma about b is given as follows.

Lemma 4.1.1 Let E : y2 = x3 + b be a BN curve defined over Fp. Then b is neither a
square nor a cube in Fp. In particular, it is not a 6th power. If P = (x0, y0) ∈ E(Fp), then
x0 6= 0 and y0 6= 0.

Proof: First assume b is a square. Then P = (0,
√
b) is in E(Fp). Note that by the group

law, [2]P = −P so that P is a point of order 3. Since #E(Fp) = n is a prime and 3 - n,

this is a contradiction. Now assume that b is a cube. Then Q = (− 3
√
b, 0) is in E(Fp).

Since the order of Q is 2, this contradicts 2 - n. Conversely, if P = (x0, y0) ∈ E(Fp), then
x0 6= 0 and y0 6= 0. �

The condition x0y0 6= 0 is the only restriction for (x0, y0) to be a generator point. Let
(p, n) be a BN prime pair, and let x0 ∈ F∗p. Then, on average we expect 12 random choices
for b ∈ F∗p until the curve E : y2 = x3 + b has order n and a generator with x-coordinate
x0.

With all the information given above, an algorithm for constructing BN curves can be
formulated.

Algorithm 4.1.1 Algorithm to construct BN curves:

Input: The expected bit length ` of the curve order n.

Output: Parameters p, n, b, y0 such that the curve E : y2 = x3 + b has order n over Fp,
the point P = (1, y0) is a generator of the curve, and n has bitlength at least `.

1. Let p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 and n(u) = p(u)− 6u2.

2. Compute the smallest integer u such that log2 n(−u) ≥ `.

3. Loop until p and n are prime.

(a) Compute t← 6u2 + 1.

(b) Compute p← p(−u) and n← p+ 1− t.
(c) If p and n are prime, then go to Step 4.

(d) Compute p← p(u) and n← p+ 1− t.

35

(e) If p and n are prime, then go to Step 4.

(f) Compute u← u+ 1 and go back to Step 3(a).

4. Loop until the curve E : y2 = x3 + b has order n.

(a) Choose b ∈ F∗p at random.

(b) If b+ 1 is not a quadratic residue mod p, then go back to Step 4(a).

(c) Compute y0 such that y2
0 ≡ b+ 1 (mod p) and set P ← (1, y0).

(d) If nP 6=∞, then go back to Step 4(a).

5. Return p, n, b, y0.

This algorithm gives a curve which has a generator with x-coordinate equal to 1.

4.2 Properties of BN Curves

Let E be an elliptic curve defined over Fq. An elliptic curve E ′ defined over Fq is called
a twist of E if there is an isomorphism ψ from E ′ to E that is defined over an extension
field Fqd . The minimal extension degree d for which there exists such an isomorphism is
called the degree of the twist E ′.

The most important property of BN curves is the existence of a twist of degree 6. The
second pairing argument defined over the field Fp12 is usually taken from the p-eigenspace
of the Frobenius endomorphism on the n-torsion subgroup.

Lemma 4.2.1 [23] Let E/Fp be a BN curve. The curve E has a unique twist E ′/Fp2 of
degree d = 6 with the following properties:

1. The order #E ′(Fp2) is divisible by n.

2. The twist can be represented by the equation

E ′ : y2 = x3 + b/ξ,

where ξ ∈ Fp2\((Fp2)2 ∪ (Fp2)3).

3. The corresponding isomorphism ψ is given by

ψ : E ′ → E,

(x′, y′) 7→ (ξ1/3x′, ξ1/2y′).

36

4. A point Q′ ∈ E ′(Fp2) of order n is mapped via ψ into the p-eigenspace of the Frobenius
endomorphism φp, i.e., φp(ψ(Q′)) = [p]ψ(Q′).

In Section 2.1.4, we defined G1 = ker(φp− [1]) = E(Fp) and G2 = E[n]∩ker(φp− [p]) ⊆
E(Fp12)[n]. Lemma 4.2.1 shows that we can represent the group G2 by the Fp2-rational
points of order n on the twist E ′. We can perform the elliptic curve operations on the
twist instead of doing them in G2. We define G′2 to be the group of Fp2-rational n-torsion
points on the twist E ′,

G′2 = E ′(Fp2)[n].

A twisted pairing on a BN curve is then defined on G1×G′2 or G′2×G1, where G1, G2 and
G′2 are all cyclic groups of prime order n and ψ is a group isomorphism

ψ : G′2 → G2.

Since the twist E ′ is defined over Fp2 , we construct the finite field Fp12 as an extension
of Fp2 . As in Lemma 4.2.1, ξ ∈ Fp2\((Fp2)2 ∪ (Fp2)3), and so the polynomials x2 − ξ and
x3 − ξ are irreducible over Fp2 since otherwise ξ would be a square or a cube.

Lemma 4.2.2 Let q be a prime power such that q ≡ 1 (mod 6), and ξ ∈ Fq2\((Fp2)2 ∪
(Fq2)3). Then x6 − ξ ∈ Fq[x] is irreducible over Fq.

Proof: Since q ≡ 1 (mod 6), all 6-th roots of unity are in Fq. Let ω be a root of x6 − ξ
and u ∈ Fq be a primitive 6-th root of unity. Thus,

x6 − ξ =
5∏
i=0

(x− uiω).

Assume x6 − ξ has a cubic factor over Fq. Then, the constant term of the cubic factor
has the form ui+j+kω3 where i, j, k are distinct integers between 0 and 5. Thus, we have
ω3 ∈ Fq so that ξ = (ω3)2 is a square, which is a contradiction. Hence, x6 − ξ does not
have a cubic factor. Similarly, x6 − ξ does not have a quadratic factor. Therefore, x6 − ξ
is irreducible over Fp. �

Let ω ∈ Fp12 be a root of the irreducible polynomial x6 − ξ, i.e., ω6 = ξ. The curve
isomorphism ψ can be written as

ψ : E ′ → E,

(x′, y′) 7→ (ω2x′, ω3y′).

This map is needed during the pairing computation. The curve arithmetic in G2 can be
replaced by arithmetic in G′2. For example, we compute the Tate pairing using the function

en : G1 ×G′2 → G3,

37

en(P,Q′) = fn,P (ψ(Q′))(p12−1)/n,

where P ∈ G1, Q′ ∈ G′2. It will be shown in Chapter 5 that the map ψ from G′2 to G2

can be computed at negligible cost. The efficiency of using BN curves will also be further
analyzed in Chapter 5.

4.3 More on Curve Construction

The algorithm introduced in Section 4.1 gives a curve that works in general. However, for
efficient pairing implementation, Pereira et al. defined a subfamily of BN curves [25].

Definition 4.3.1 A BN curve E/Fp : y2 = x3 + b is called friendly if p ≡ 3 (mod 4) and
if there exist c, d ∈ F∗p such that either b = c4 + d6 or b = c6 + 4d4.

Such friendly BN curves have the following properties:

1. Since p ≡ 3 (mod 4), we can represent Fp2 by Fp[i]/(i2 + 1).

2. ξ = c2 +d3i or ξ = c3 +2d2i is provided by c and d to represent Fp6 = Fp2 [v]/(v3− ξ).

3. The sextic twist of correct order is given by E ′ : y2 = x3 + ξ, where ξ is the complex
conjugate of ξ.

4. (−d2, c2) and (−c2, 2d2) are generators of G2.

5. (−di, c) and (−c, d(1− i)) are generators of G′2.

Note that with the help of these two parameters c and d, we can efficiently define the
group generators, sextic twist, and field extensions. Some other suggestions for improving
efficiency are provided in [25].

1. The Hamming weights of either the BN parameter u or the loop order 6u+ 2 of the
optimal pairings are minimal for a given bitlength.

2. b is as small as possible.

3. Carefully choose c and d so that b and ξ has low Hamming weight. Thus, multipli-
cation by b or ξ consists only of shifts and additions.

We use a specific BN curve suggested in [25] for implementation in Chapter 5 and
Chapter 6.

38

Chapter 5

Implementing the R-ate Pairing
using BN Curves

5.1 R-ate Pairing on a Particular BN Curve

In this section, a particular BN curve is introduced and will be used for the remainder of
this thesis. We have

E : y2 = x3 + 2, (5.1)

and
u = −(265 + 255 + 1) < 0.

Recall the R-ate pairing introduced in Section 3.3. In the third case (see (3.7)), we choose
(A,B) = (T10, T1). Thus,

RA,B(Q,P) =

(
fpa,Q(P) · fb,Q(P) ·

`[aT1]Q,[b]Q(P)

v[p10]Q(P)

)(p12−1)/n

,

where a = 6u + 3, b = 6u + 2, T1 = p mod n and T10 = p10 mod n. Since for any point
Q ∈ G2 we have [p]Q = φp(Q), the line function

`[aT1]Q,[b]Q(P) = `[ap]Q,[b]Q(P) = `φp([a]Q),[b]Q(P)

can be transformed so that its evaluation is faster. Hence, we can write the R-ate pairing
as

RA,B(Q,P) =

((
fb,Q(P) ·

`[b]Q,Q(P)

v[b+1]Q(P)

)p
· fb,Q(P) ·

`φp([a]Q),[b]Q(P)

v[q10]Q(P)

)(p12−1)/n

.

39

We call b = 6u+ 2 the R-ate parameter. Note that the R-ate parameter is negative, so we
compute f|b|,Q instead of fb,Q in the Miller Loop. Since

(f−1
|b|,Q) = − (|b|(Q)− ([|b|]Q)− (|b| − 1)(∞))

= b(Q) + ([−b]Q) + (−b− 1)(∞)

and
(fb,Q) = b(Q)− ([b]Q)− (b− 1)(∞),

we have
(f−1
|b|,Q)− (fb,Q) = ([−b]Q) + ([b]Q)− 2(∞),

and thus (f−1
|b|,Q) is equivalent to (fb,Q). In order not to affect the pairing value, it is required

to compute a curve point negation in G2 and an inversion in G3 before we apply the final
exponentiation. The curve parameters are summarized here:

1. Embedding degree k = 12.

2. u = −(265 + 255 + 1).

3. p = 36u4 + 36u3 + 24u2 + 6u+ 1 is a 254-bit prime of Hamming weight 43 and p ≡ 1
(mod 6), p ≡ 3 (mod 4).

4. n = 36u4 + 36u3 + 18u2 + 6u+ 1 is a 254-bit prime of Hamming weight 51.

5. t = 6u2 + 1 is a 127-bit integer of Hamming weight 13.

6. b = 6u+ 2 is a 65-bit integer of Hamming weight 5.

It will be shown in Section 5.2 that all vertical lines are equal to 1 after the final expo-
nentiation. Hence, we can ignore the evaluation of the vertical lines during the pairing
computation and rewrite the function as

RA,B(Q,P) =
((
fb,Q(P) · l[b]Q,Q(P)

)p · fb,Q(P) · l[aT1]Q,[b]Q(P)
)(p12−1)/n

.

The algorithm to compute this particular pairing is given as follows.

Algorithm 5.1.1 Algorithm to compute the R-ate pairing on BN curves (where
the R-ate parameter is negative):

Input: P ∈ G1, Q ∈ G2, b = |6u+ 2| =
∑log2(b)

i=0 bi2
i

Output: RA,B(Q,P)

40

1. T ← Q, f ← 1

2. for i = blog2(b)c − 1 to 0

(a) f ← f 2 · `T,T (P), T ← 2T

(b) if bi = 1, then f ← f · `T,Q(P), T ← T ← T +Q

3. T ← −T , f ← f−1

4. f ← f · (f · `T,Q(P))p · `π(T+Q),T (P)

5. f ← f (p12−1)/n

6. Return RA,B(Q,P) = f .

5.2 Tower Extension

To achieve a high performance, a standard method is to represent Fp12 using tower exten-
sions. It is clear that x2 − (−1) is irreducible in Fp. Thus, the extension field Fp2 can be
represented as Fp[i]/(i2 + 1). We use the field extension

• Fp2 = Fp[i]/(i2 − β), where β = −1,

• Fp4 = Fp2 [s]/(s2 − ξ), where ξ = 1 + i,

• Fp6 = Fp2 [v]/(v3 − ξ),

• Fp12 = Fp2 [ω]/(ω6 − ξ)

suggested and implemented in [1][25]. We also have Fp12 = Fp4 [ω]/(ω3 − s) and Fp12 =
Fp6 [ω]/(ω2 − v). Here is a short proof that ξ is neither a square nor a cube in Fp2 .

Proof: Assume that ξ ∈ Fp2 is a square. In our chosen curve, we have b = 2 = (1+i)·(1−i).
Then,

b = ξ · ξ
= s2 · s2 for some s ∈ Fp2
= (s · s)2

Hence, b is square which contradicts Lemma 4.1.1. We conclude that ξ is not a square.
Similarly, ξ is not a cube. �

41

An element α ∈ Fp12 can be represented in the following ways:

α = a0 + a1ω where a0, a1 ∈ Fp6
= (a0,0 + a0,1v + a0,2v

2) + (a1,0 + a1,1v + a1,2v
2)ω where ai,j ∈ Fp2

= (a0,0 + a1,1s) + (a1,0 + a0,2s)ω + (a0,1 + a1,2s)ω
2

= a0,0 + a1,0ω + a0,1ω
2 + a1,1ω

3 + a0,2ω
4 + a1,2ω

5.

Note that converting from one towering Fp2 → Fp6 → Fp12 to the other Fp2 → Fp4 → Fp12
is simply permuting the order of the Fp2 coefficients.

Recall the existence of sextic twists introduced in Section 4.2. The twist can be repre-
sented by the equation E ′ : y2 = x3 + 2/ξ. Since (1 + i)(1 − i) = 2, we have 1 − i = 2/ξ.
The sextic twist can thus be represented by equation E ′/Fp2 : y2 = x3 + 1 − i and the
corresponding isomorphism ψ is given by

ψ : E ′ → E,

(x′, y′) 7→ (x′ω2, y′ω3).

Mapping a point in G′2 to a point in G2 can be considered as changing both the coordinates
of the former into two 6-dimensional vectors,

(x′, y′) 7→ ((0, 0, x′, 0, 0, 0), (0, 0, 0, y′, 0, 0)) (5.2)

Therefore, the cost of the map ψ is negligible.

Let P = (x1, y1) ∈ G1 and Q = (x2, y2) ∈ G2. Obviously, we have x1, y1 ∈ Fp. By (5.2),
we see that x2 and y2 have the form x2 = x′2ω

2 ∈ Fp6 and y2 = y′2ω
3 ∈ Fp4 where x′2 and

y′2 ∈ Fp2 . For any P = (x1, y1) ∈ G1 and Q = (x2, y2) ∈ G2, recall that v(P) = x1 − x2

is the formula of the vertical line through Q evaluated at P . Since x1 ∈ Fp and x2 ∈ Fp6 ,
these function values x1 − x2 are all in Fp6 ⊂ Fp12 . By Lemma 2.3.1, after we apply the
final exponentiation, we can ignore the evaluation of the vertical lines during the pairing
computation. This is called denominator elimination.

Let (M,S, I) denote the cost of multiplication, squaring and inversion in Fp. Let
(Md, Sd, Id) for d ∈ 2, 4, 6, 12 denote the cost of multiplication, squaring and inversion in
Fpd . To roughly determine the efficiency of the whole pairing computation, we convert
all operation counts into M . Since the cost of addition is negligible compared with the
cost of multiplication, we only count the number of multiplications. Experimentally [15],
S ≈ 0.9M and I ≈ 41m. In this thesis, we assume S ≈M .

Lemma 5.2.1 If a ∈ Fp and b ∈ Fpd for d ∈ 2, 4, 6, 12, then the cost of computing a · b is
dM .

42

Proof: Suppose Fpd = Fp[ω]. We have

b =
d−1∑
i=0

biω
i

where bi ∈ Fp. Thus,

a · b = a ·
d−1∑
i=0

biω
i =

d−1∑
i=0

(abi)ω
i;

the last expression has d multiplications in Fp. �

This lemma can be extended as follows: if a ∈ Fpd and b ∈ Fped for d ∈ {2, 4, 6, 12} and
e ∈ N, then the cost of computing a · b is eMd.

5.2.1 Fp2 Arithmetic

Let a+bi and a′+b′i be two abritrary Fp2 elements with a, b, a′, b′ ∈ Fp. Using Karatsuba’s
method,

(a+ bi) · (a′ + b′i) = aa′ + bb′i2 + ab′i+ a′bi

= (aa′ − bb′) + ((a+ b) · (a′ + b′)− aa′ − bb′) i,

which reduces one multiplication in a quadratic extension to three small field multiplica-
tions (i.e., a · a′, b · b′ and (a+ b) · (a′ + b′)); thus we have M2 ≈ 3M . For squaring in Fp2 ,
we have

(a+ bi)2 = a2 + 2abi+ b2i2

= (a2 − b2) + 2abi

= (a+ b) · (a− b) + 2abi,

and S2 ≈ 2M (i.e., the two Fp multiplications are (a + b) · (a − b) and a · b). Since
(a+ bi)(a− bi) = (a2 + b2), we have

(a+ bi)−1 =
a− bi
a2 + b2

.

Hence, to compute an inversion in a quadratic extension, we need to compute two squarings
(i.e., a2 and b2), one inversion (i.e., (a2 + b2)−1), and two multiplications (i.e., by Lemma
5.2.1, (a2 + b2)−1 · (a− bi)) in the small field, so I2 ≈ 2S + I + 2M ≈ I + 4M .

Lemma 5.2.2 Let a+ bi be an arbitrary Fp2 element with a, b ∈ Fp. Then the cost of p-th
powering is negligible in Fp2.

43

Proof: The binomial theorem gives

(a+ bi)p =

p∑
d=0

(
p
i

)
· ad · (bi)p−d

= ap + bpip since all other terms are multiples of p

= a+ bi · ip−1

= a+ bi · (β)
p−1
2

= a+ bi · (−1) since β is a quadratic non-residue

= a− bi.

Thus, one can raise an element in Fp2 to the p-th power by just changing the sign of the
second component. �

Lemma 5.2.2 can be extended as follows: the cost of pd-th powering is negligible in Fp2d .

5.2.2 Fp6 Arithmetic

Let a + bv + cv2 and a′ + b′v + c′v2 be two arbitrary Fp6 elements with a, b, c, a′, b′ and
c′ ∈ Fp2 . Using Karatsuba’s method,

(a+ bv + cv2) · (a′ + b′v + c′v2) = aa′ + (ab′ + a′b)v + (ac′ + a′c+ bb′)v2 + (bc′ + b′c)v3

+cc′v4

= (aa′ + (bc′ + b′c)ξ) + (cc′ξ + (ab′ + a′b)) v

+ ((ac′ + a′c) + bb′)) v2

= (aa′ + ((b+ c)(b′ + c′)− bb′ − cc′)ξ)
+ (cc′ξ + ((a+ b)(a′ + b′)− aa′ − bb′)) v
+ (((a+ c)(a′ + c′)− aa′ − cc′) + bb′)) v2,

which reduces one multiplication in a cubic extension to six small field multiplications
(i.e., a · a′, b · b′, c · c′, (a + b) · (a′ + b′), (a + c) · (a′ + c′) and (b + c) · (b′ + c′)); we
have M6 ≈ 6M2 ≈ 18M . Note that we did not count an Fp2 multiplication by ξ as a
multiplication for the following reason. Let a+ bi be an arbitrary Fp2 element; then

(a+ bi) · ξ = (a+ bi)(1 + i)

= a+ bi+ ai+ bi2

= (a− b) + (a+ b)i,

44

which means the cost of multiplication by ξ is as cheap as two additions in Fp2 . For squaring
in Fp6 , we have the following formula from [9]:

(a+ bv + cv2)2 = a2 + b2v2 + c2v4 + 2abv + 2acv2 + 2bcv3

= (a2 + 2bcξ) + (2ab+ c2ξ)v + (b2 + 2ac)v2

= (a2 + 2bcξ) + (2ab+ c2ξ)v +
(
(a− b+ c)2 − a2 − c2 + 2ab+ 2bc

)
v2

Hence, to compute a squaring in Fp6 we need to compute two multiplications (i.e., a · b and
b ·c) and three squarings (i.e., a2, c2 and (a−b+c)2) in Fp2 . Thus, S6 ≈ 2M2 +3S2 ≈ 12M .
Finally, the formula for inversion in cubic extension field is provided in [27] as

(a+ bv + cv2)−1 =
A+Bv + Cv2

bCξ + aA+ cBξ
,

where A = a2− bcξ, B = c2ξ−ab, and C = b2−ac. Hence, inversion in Fp6 can be reduced
to three squarings (i.e., a2, b2 and c2), nine multiplications (i.e., six multiplications for b · c,
a ·b, a ·c, b ·C, a ·A, c ·B and three multiplications for (A+Bv+Cv2) · (bCξ+aA+cBξ)−1

by Lemma 5.2.1) and one inversion (i.e., (bCξ + aA + cBξ)−1) in Fp2 . Thus we have
I6 ≈ 3S2 + 9M2 + I2 ≈ 37M + I.

5.2.3 Fp12 Arithmetic

Since Fp12 is a tower of quadratic, cubic and quadratic extensions. Karatsuba’s method
gives M12 ≈ 3M6 ≈ 54M . As in the Fp2 case, we have S12 ≈ 2M6 ≈ 36M .

Lemma 5.2.3 [29] If α = a + bω ∈ Fp12 with a, b ∈ Fp6 satisfies αp
6+1 = 1, then α2 can

be computed in roughly 24M .

Proof: Note that, by Lemma 5.2.2, for any α = a + bω ∈ Fp12 with a, b ∈ Fp6 , we have

αp
6

= a− bω. Thus

1 = αp
6+1

= (a+ bω) · (a− bω)

= a2 − b2ω2,

which means a2 can be written as a2 = b2ω2 + 1 = b2v + 1. Then

α2 = (a+ bω)2

= a2 + 2abω + b2ω2

= (a2 + b2v) + (2ab)ω

= (2b2v + 1) +
(
(a+ b)2 − a2 − b2

)
= (2b2v + 1) +

(
(a+ b)2 − (b2v + 1)− b2

)
.

45

Hence, squaring such α can be accomplished with two Fp6 squarings (i.e., b2 and (a+ b)2)
for a total cost of 24M . �

We denote such squaring by S ′12. It is used in the final exponentiation steps during the
pairing computation. Inverting such α is essentially free since we have

α−1 = αp
6

= a− bω.

Finally, inversion in Fp12 can be reduced to two squarings, one inversion and two mul-
tiplications in Fp6 . Thus we have I12 ≈ 2S6 + I6 + 2M6 ≈ 97M + I.

5.2.4 Summary

The costs of arithmetic operation in Fp, Fp2 , Fp6 and Fp12 are summarized in Table 5.1.

Operation Cost
Multiplication in Fp M
Squaring in Fp S ≈ M
Inversion in Fp I
Multiplication in Fp2 3M
Squaring in Fp2 2M
Inversion in Fp2 I+4M
Multiplication in Fp6 18M
Squaring in Fp6 12M
Inversion in Fp6 I+37M
Multiplication in Fp12 54M
Squaring in Fp12 36M
Inversion in Fp12 I+97M

Table 5.1: Cost estimates for arithmetic operations in Fp, Fp2 , Fp6 and Fp12

5.3 Operation Count for R-ate Pairings

In order to carefully count the operations, we restate the algorithm to compute the R-ate
pairing on this specific BN curve.

Algorithm 5.3.1 Algorithm to compute the R-ate pairing on BN curve (5.1):

Input:

46

• P = (xP , yP) ∈ G1 with xP , yP ∈ Fp,

• Q = (xQω
2, yQω

3) ∈ G2 with xQ, yQ ∈ Fp2,

• b = |6u+ 2| =
∑65

i=0 bi2
i.

Output: RA,B(Q,P).

1. T ← (xQ, yQ, 1), f ← 1.

2. For i from 63 to 0 do:

(a) f ← f 2 · `T,T (P).

(b) T ← 2T .

(c) If bi = 1, then f ← f · `T,Q(P), T ← T +Q.

3. T ← −T , f ← f−1.

4. Compute f · (f · `T,Q(P))p · `φp(T+Q),T (P) as follows:

(a) Convert T to affine coordinates and store as T ′.

(b) f ′ ← f · `T,Q(P), T ← T +Q.

(c) f ′ ← (f ′)p.

(d) f ′ ← f ′ · `φp(T),T ′(P).

(e) f ← f · f ′.

5. Compute f (p12−1)/n as follows (see Section 5.3.3):

(a) f ← fp
6−1.

(b) f ← fp
2+1.

(c) a← f−6u−5.

(d) b← ap.

(e) b← a · b.
(f) f ← fp

3 · [b · (fp)2 · fp2]6u2+1 · b · (fp · f)9 · a · f 4.

6. Return RA,B(Q,P) = f .

In this algorithm, Step 2 is called the Miller loop. Step 3 and Step 4 are the adjustment
steps for this specific pairing. Step 5 is called the final exponentiation. Next we perform
the operation counts for these three parts.

47

5.3.1 Operation Count for the Miller Loop

Recall the sextic twist E ′ of E over Fp2 ,

E ′/Fp2 : y2 = x3 + 1− i,

and the corresponding isomorphism ψ given by

ψ : E ′ → E,

(x′, y′) 7→ (x′ω2, y′ω3).

Note that ψ as well as its inverse can be computed at negligible cost. At the beginning of
the algorithm, we assign T to be in E ′/Fp2 . To avoid inversions, G′2 is usually represented
in projective coordinates and jacobian coordinates. We shall use jacobian coordinates. A
point (X, Y, Z) in jacobian coordinates corresponds to the point (x, y) in affine coordinates
with x = X/Z2 and y = Y/Z3. Recall the point doubling formula introduced in Section
2.1.1. Let P = (x, y) with P 6= −P . Then 2P = (x3, y3), where

x3 =

(
3x2

2y

)2

− 2x (5.3)

y3 =

(
3x2

2y

)
(x− x3)− y. (5.4)

In jacobian coordinates we derive the formula for doubling a point T = (X, Y, Z) to
2T = (X3, Y3, Z3). Substituting x = X/Z2, y = Y/Z3, x3 = X3/Z

2
3 and y3 = Y3/Z

3
3 into

(5.3) gives

X3

Z2
3

=

(
3(X

Z2)2

2(Y
Z3)

)2

− 2

(
X

Z2

)
=

9X4

Z8
· Z

6

4Y 2
− 2X

Z2

=
9X4

4Y 2Z2
− 8XY 2

4Y 2Z2

=
9X4 − 8XY 2

4Y 2Z2
.

48

Similarly, substituting x = X/Z2, y = Y/Z3, x3 = X3/Z
2
3 and y3 = Y3/Z

3
3 into (5.4) gives

Y3

Z3
3

=

(
3(X

Z2)2

2(Y
Z3)

)
·
(
X

Z2
− X3

Z2
3

)
− Y

Z3

=

(
3X2

Z4
· Z

3

2Y

)
·
(
X

Z2
− X3

Z2
3

)
− Y

Z3

=
3X2

2Y Z
·
(

4XY 2

4Y 2Z2
− 9X4 − 8XY 2

4Y 2Z2

)
− 8Y 4

8Y 3Z3

=
3X2(4XY 2 − (9X4 − 8XY 2))− 8Y 4

8Y 3Z3
.

Hence we have 2T = (X3, Y3, Z3) where
X3 = 9X4 − 8XY 2

Y3 = (3X2)(4XY 2 −X3)− 8Y 4

Z3 = 2Y Z.

Since we are doing the curve arithmetic on E ′/Fp2 , one point doubling requires four squar-
ings (i.e., X2, Y 2, (X2)2 and (Y 2)2) and three multiplications (i.e., X ·Y 2, (3X2) ·(4XY 2−
X3) and Y · Z) in Fp2 . Thus, each point doubling in G′2 costs 4S2 + 3M2 = 17M .

The value of the tangent line through T at P is always computed together with the
point doubling. Recall the line function from Section 2.3.1: for P = (xP , yP) ∈ G1,
T = (x1, y1) ∈ G2, the formula of the tangent line through Q evaluated at P is

`T,T (P) = yP − y1 −
3x2

1

2y1

(xP − x1).

Different from the point doubling formula, this line must be evaluated in Fp12 . Let T =
(x1, y1) = (xTω

2, yTω
3), and let (X, Y, Z) be the point we stored in jacobian coordinates

such that xT = X/Z2 and yT = Y/Z3. Then

`T,T (P) = yP − y1 −
3x2

1

2y1

(xP − x1)

= yP − yTω3 − 3(xTω
2)2

2yTω3
(xP − xTω2)

= yP −
Y

Z3
ω3 −

3(X
Z2ω

2)2

2 Y
Z3ω3

(xP −
X

Z2
ω2)

=
yPZ

3 − Y ω3

Z3
− 3X2ω4

Z4
· Z3

2Y ω3
· xPZ

2 −Xω2

Z2

=
2yPY Z

3 − 2Y 2ω3 − 3X2ω(xPZ
2 −Xω2)

2Y Z3
.

49

Since 2Y Z3 ∈ Fp2 , the final exponentiation will convert it to 1. Thus, we take

`T,T (P) = 2yPY Z
3 − 2Y 2ω3 − 3X2ω(xPZ

2 −Xω2)

= 2yPY Z
3 − 3xPX

2Z2ω + (3X3 − 2Y 2)ω3.

Note that X2, Y 2 and Y Z are also computed while doubling T , so we can share these
results here. Therefore, to compute `T,T (P) we need one squaring (i.e., Z2) in Fp2 , three
multiplications (i.e., X ·X2, Z2 ·X2 and Z2 ·Y Z) in Fp2 and four multiplications (i.e., two
for yP · Y Z3 and two for xP ·X2Z2) in Fp, for a total of S2 + 3M2 + 4M ≈ 15M .

Let T = (x1, y1) ∈ G2 and Q = (x2, y2) ∈ G2 with T 6= ±Q. The point addition formula
in Section 2.1.1 is given as T +Q = (x3, y3) where

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2 (5.5)

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1. (5.6)

Let T = (X1, Y1, Z1) ∈ G′2 be the point we stored in jacobian coordinates and Q =
(xQω

2, yQω
3) ∈ G2 in affine coordinates. Substituting x1 = X1/Z

2
1 , y1 = Y1/Z

3
1 , x3 =

X3/Z
2
3 and y3 = Y3/Z

3
3 into (5.5) gives

X3

Z2
3

=

(
yQ − Y1

Z3
1

xQ − X1

Z2
1

)2

− X1

Z2
1

− xQ

=

(
yQZ

3
1 − Y1

Z3
1

· Z2
1

xQZ2
1 −X1

)2

− X1 · (xQZ2
1 −X1)2

Z2
1 · (xQZ2

1 −X1)2
− xQ · Z2

1(xQZ
2
1 −X1)2

Z2
1(xQZ2

1 −X1)2

=
(yQZ

3
1 − Y1)2 − (X1 + xQZ

2
1)(xQZ

2
1 −X1)2

Z2
1(xQZ2

1 −X1)2

Similarly, substituting x1 = X1/Z
2
1 , y1 = Y1/Z

3
1 , x3 = X3/Z

2
3 and y3 = Y3/Z

3
3 into (5.6)

gives

Y3

Z2
3

=

(
yQ − Y1

Z3
1

xQ − X1

Z2
1

)
·
(
X1

Z2
1

− X3

Z2
3

)
− Y1

Z3
1

=

(
yQZ

3
1 − Y1

Z3
1

· Z2
1

xQZ2
1 −X1

)
·
(
X1

Z2
1

− (yQZ
3
1 − Y1)2 − (X1 + xQZ

2
1)(xQZ

2
1 −X1)2

Z2
1(xQZ2

1 −X1)2

)
− Y1

Z3
1

=
(yQZ

3
1 − Y1){X1(xQZ

2
1 −X1)2 − [(yQZ

3
1 − Y1)2 − (X1 + xQZ

2
1)(xQZ

2
1 −X1)2]}

Z3
1(xQZ2

1 −X1)3

− Y1(xQZ
2
1 −X1)3

Z3
1(xQZ2

1 −X1)3
.

50

Hence we have T +Q = (X3, Y3, Z3) with
X3 = (yQZ

3
1 − Y1)2 − (X1 + xQZ

2
1)(xQZ

2
1 −X1)2

Y3 = (yQZ
3
1 − Y1)[X1(xQZ

2
1 −X1)2 −X3]− Y1(xQZ

2
1 −X1)3

Z3 = Z1(xQZ
2
1 −X1).

We rewrite X3 as

X3 = (yQZ
3
1 − Y1)2 − (X1 + xQZ

2
1)(xQZ

2
1 −X1)2

= (yQZ
3
1 − Y1)2 − (xQZ

2
1 −X1 + 2X1)(xQZ

2
1 −X1)2

= (yQZ
3
1 − Y1)2 − (xQZ

2
1 −X1)3 + 2X1(xQZ

2
1 −X1)2.

Since (xQZ
2
1 − X1)3 and X1(xQZ

2
1 − X1)2 are needed for computing Y3 and Z3, we can

save one multiplication here. Hence, we need three squarings (i.e Z2
1 , (xQZ

2
1 − X1)2 and

(yQZ
3
1 − Y1)2) and eight multiplications (i.e xQ · Z2

1 , Z2
1 · Z1, yQ · Z3

1 , X1 · (xQZ2
1 − X1)2,

(xQZ
2
1 −X1) · (xQZ2

1 −X1)2, (yQZ
3
1 − Y1) · [X1(xQZ

2
1 −X1)2 −X3], Y1 · (xQZ2

1 −X1)3 and
Z1 · (xQZ2

1 − X1)) in Fp2 , that is 3S2 + 8M2 = 30M for computing one point addition in
G′2.

Let T = (x1, y1) = (xTω
2, yTω

3) ∈ G2, Q = (x2, y2) = (xQω
2, yQω

3) ∈ G2, P = (xP , yP)
and let T +Q = (x3, y3). Recall the formula for evaluating the line through T and Q at P
in Section 2.3:

`T,Q(P) = yP − y1 −
y2 − y1

x2 − x1

(xP − x1).

Let (X, Y, Z) be the point we stored in jacobian coordinates such that xT = X/Z2 and
yT = Y/Z3. Then

`Q,T (P) = yP − y2 −
y2 − y1

x2 − x1

(xP − x2)

= yP − yQω3 − yQω
3 − yTω3

xQω2 − xTω2
· (xP − xQω2)

= (yP − yQω3)−
yQω

3 − Y
Z3ω

3

xQω2 − X
Z2ω2

· (xP − xQω2)

= (yP − yQω3)− (yQZ
3 − Y)ω3

Z3
· Z2

(xQZ2 −X)ω2
· (xP − xQω2)

=
(yP − yQω3)Z(xQZ

2 −X)− (yQZ
3 − Y)ω(xP − xQω2)

Z(xQZ2 −X)
.

Since Z(xQZ
2 − X) ∈ Fp2 , the denominator will equal 1 after the final exponentiation.

Thus, we take

`Q,T (P) = (yP − yQω3)Z(xQZ
2 −X)− (yQZ

3 − Y)ω(xP − xQω2)

= yPZ(xQZ
2 −X)− xP (yQZ

3 − Y)ω − (yQZ(xQZ
2 −X)− xQ(yQZ

3 − Y))ω3.

51

Note that since Z2, xQ ·Z2, Z ·(xQZ2−X), Z ·Z2 and yQ ·Z3 are also needed for computing
T+Q, we can save one squaring and four multiplications in Fp2 . Hence, to evaluate `Q,T (P)
we need two more multiplications (i.e., yQ ·Z(xQZ

2−X) and xQ · (yQZ3− Y)) in Fp2 and
four more multiplications (i.e., two for yP · Z(xQZ

2 −X) and two for xP · (yQZ3 − Y)) in
Fp, that is 2M2 + 4M ≈ 10M . If T + Q is not computed at the same time, then the cost
of evaluating `Q,T (P) is S2 + 6M2 + 4M ≈ 24M .

Recall that both `T,T (P), `Q,T (P) ∈ Fp12 have the form a+ bω+ cω3 with a, b, c ∈ Fp2 .
Let ` be an element in Fp12 of the form ` = a+ bω + cω3 with a, b, c ∈ Fp2 and let f be a
general element in Fp12 of the form f = f0 + f1ω with f0, f1 ∈ Fp6 . Then ` can be written
as ` = a+ (b+ cv)ω so that the product ` · f can be expressed as

` · f = (a+ (b+ cv)ω) · (f0 + f1ω)

= (af0 + (b+ cv)f1v) + (af1 + (b+ cv)f0)ω

= (af0 + (b+ cv)f1v) + [(a+ b+ cv)(f0 + f1)− af0 − (b+ cv)f1]ω.

From Lemma 5.2.1 we can see that af0 can be computed in three Fp2 multiplications. Let
f0 = f0,0 + f0,1v + f0,2v

2 with f0,0, f0,1, f0,2 ∈ Fp2 . Then

(b+ cv) · f0 = (b+ cv) · (f0,0 + f0,1v + f0,2v
2)

= (bf0,0 + cf0,2ξ) + (cf0,0 + bf0,1)v

+[(b+ c)(f0,0 + f0,1 + f0,2)− bf0,0 − cf0,2 − cf0,0 − bf0,1]v2

gives that five multiplications (i.e., b ·f0,0, c ·f0,2, c ·f0,0, b ·f0,1 and (b+c) ·(f0,0 +f0,1 +f0,2))
in Fp2 are needed for computing (b+ cv) · f0. Similarly, another five multiplications in Fp2
are needed for (a+ b+ cv) · (f0 + f1). Therefore, the multiplication between line functions
`T,T (P), `Q,T (P) ∈ Fp12 and f ∈ Fp12 requires only 13 multiplications in Fp2 , that is
13M2 ≈ 39M .

The cost of Steps 2(a) and 2(b) is S12 ≈ 36M for the squaring, 17M for point doubling,
15M for the line evaluation, and 39M for the multiplication between f 2 and `T,TP . The
cost of Step 2(c) is 30M for point addition, 10M for point the line evaluation, and 39M
for the multiplication between f and `T,QP . Recall that, |6u + 2| is a 65-bit integer of
Hamming weight 5. Steps 2(a) and 2(b) are processed 64 times, and bi = 1 is encountered
four times in Step 2(c). Hence, the cost of Miller loop is

64 · (36M + 17M + 15M + 39M) + 4 · (30M + 10M + 39M) ≈ 7164M.

The operation cost for the Miller loop is summarized in Table 5.2.

5.3.2 Operation Count for Adjustment Steps

As the BN parameter is chosen to be u = −(265 + 255 + 1), the R-ate parameter 6u+ 2 is
negative. In order to obtain the correct pairing value, we add Step 3 right after the Miller

52

Operations Cost
Point Doubling in G′2 (T + T) 17M
Evaluating Line `T,T (P) while computing (T + T) 15M
Point Addition in G′2 (T +Q) 30M
Evaluating Line `T,Q(P) while computing (T +Q) 10M
Evaluating Line `T,Q(P) 24M
Multiplication between f and ` 39M

Table 5.2: Cost estimates for the Miller loop

loop. Note that T ∈ G′2 is stored in jacobian coordinates. Let T = (X, Y, Z) with X, Y ,
Z ∈ Fp2 . We can compute

−T = (X,−Y, Z)

with a cheap negation in Fp2 . The inversion for computing f−1 ∈ Fp12 is expensive. How-
ever, in the final exponentiation step, the inversion of f is required. Therefore, we can store
f for later use before we apply the expensive inversion. The cost of Step 3 is I12 ≈ 97M+I.

To convert T in jacobian coordinates to T ′ in affine coordinates, we use the map

T → T ′,

(X, Y, Z) 7→ (XZ−2, Y Z−3).

Thus, one inversion (i.e., Z−1), one squaring (i.e., (Z−1)2) and three multiplications (i.e.,
Z−1 ·Z−2, X ·Z−2 and Y ·Z−3) in Fp2 are needed. The cost of Step 4(a) is I2 +S2 + 3M2 ≈
15M + I. Similarly to Step 2(c), the cost of Step 4(b) is 79M .

Let A =
∑5

i=0 aiω
i be an arbitrary element in Fp12 with ai ∈ Fp2 . Then, the Frobenius

53

map is given as

Ap =

(
5∑
i=0

aiω
i

)p

=
5∑
i=0

apiω
ip

=
5∑
i=0

api (ω · ωp−1)i

=
5∑
i=0

api (ω · ξ
p−1
6)i since p ≡ 1 (mod 6)

=
5∑
i=0

(api · ξi
p−1
6)ωi.

Note that if the ξi
p−1
6 ∈ Fp2 are precomputed, then the p-th powering in Fp12 can be

computed at a cost of roughly 5 multiplications (i.e., api · ξi
p−1
6 for i ∈ {1, 2, 3, 4, 5}) in Fp2 ,

since api can be computed at a negligible cost and ξi
p−1
6 = 1 when i = 0. Hence, Step 4(c)

can be accomplished at a cost of 5M2 ≈ 15M . Similarly, the pe-th powering of A with
e ∈ N can be computed in 15M by using

Ap
e

=
5∑
i=0

(ap
e

i · ξi
pe−1

6)ωi.

For T = (X, Y, Z) with X, Y , Z ∈ Fp2 , the cost of applying the Frobenius map

φp(T) = (Xp, Y p, Zp)

is almost free. According to Section 5.3.1, the line evaluation without point addition cost
24M . Thus, together with multiplication, Step 4(d) is computed as a cost of roughly
24M + 39M ≈ 63M . Finally, the multiplication between f and f ′ in Step 4(e) costs a
full Fp12 multiplication M12 ≈ 54M . Therefore, the total cost of the adjustment steps is
323M + 2I.

5.3.3 Operation Count for Final Exponentiation

The algorithm we use for the final exponentiation is from [13]. The main idea of this
algorithm is to use the fact that exponentiations to powers of p are efficiently computed.

54

We first factor (p12 − 1)/n into three parts,

p12 − 1

n
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

n
.

Note that the first two exponentiations are easy to compute. In Step 5(a), the cost of
powering fp

6
is negligible since f ∈ Fp12 . Since f−1 is pre-stored before the adjustment

steps, the cost of Step 5(a) is 1 multiplication in Fp12 , M12 ≈ 54M . As analyzed in Step

4(c), the powering fp
2

cost 5M2 ≈ 15M . We only need one more multiplication in Fp12 to

compute fp
2+1 = f · fp2 . Hence, the cost of Step 5(b) is 5M2 +M12 ≈ 69M .

Now, the only problem left is to raise f ∈ Fp12 to the power (p4 − p2 + 1)/n, which
is call the “hard exponentiation”. Recall that, for BN curves we have p = 36u4 + 36u3 +
24u2 + 6u+ 1 and n = 36u4 + 36u3 + 18u2 + 6u+ 1. If we substitute these two polynomials
into (p4 − p2 + 1)/n, we will get a high-degree polynomial in terms of u. Then we write
this polynomial in base p as

p3 + (6u2 + 1)p2 + (−36u3 − 18u2 − 12u+ 1)p+ (−36u3 − 30u2 − 18u− 2).

Then

f
p4−p2+1

n = fp
3 · f (6u2+1)p2 · f (−36u3−18u2−12u+1)p · f−36u3−30u2−18u−2

= fp
3 · (fp2)6u2+1 · (fp)−36u3−18u2−12u+1 + f−36u3−30u2−18u−2

= fp
3 · (fp2)6u2+1 · (fp)(−36u3−30u2−6u−5)+(12u2+2)+(−6u−5)+9

·f (−36u3−30u2−6u−5)+(−6u−5)+(−6u−5)+9+4

= fp
3 · (fp2)6u2+1 · (fp)(−6u−5)(6u2+1)+2(6u2+1)+(−6u−5)+9

·f (−6u−5)(6u2+1)+(−6u−5)+(−6u−5)+9+4

= fp
3 · [fp2 · (fp · f)−6u−5 · (fp)2]6u

2+1 · (fp · f)−6u−5 · f−6u−5 · (fp · f)9 · f 4

Exponentiations to powers of p can be efficiently computed using Frobenius. Other expo-
nentiations in terms of u can be computed using the square and multiply method. In the
curve we chose, −6u− 5 is a 65-bit integer of Hamming weight 5 and 6u2 + 1 is a 127-bit
integer of Hamming weight 13. Step 5(c) to Step 5(f) evaluate the “hard exponentiation.”

Note that after we apply Step 5(a), f satisfies the condition that fp
6+1 = 1. Thus, the

cost of squaring such f is S ′ ≈ 24M . Step 5(c) costs 64S ′ + 4M12 ≈ 1752M . The cost of
Step 5(d) is 5M2 ≈ 15M and the cost of Step 5(e) is M12 ≈ 54M .

For Step 5(f), we need 15M2 ≈ 45M to compute fp, fp
2

and fp
3
, 2M12 +S ′ ≈ 132M to

compute b · (fp)2 · fp2 , 126S ′ + 12M12 ≈ 3672M for the 6u2 + 1-th powering, 3S ′ +M12 ≈
126M for the 9-th power, and 2S ′ ≈ 48M to compute f 4. Finally, 6M12 ≈ 324M extra
cost is needed to multiply the terms together. Therefore, the total cost of the “hard
exponentiation” is 6168M and the cost of the whole final exponentiation step is 6291M .

55

The total cost of computing the R-ate pairing is

7164M + 323M + 2I + 6291M = 13778M + 2I ≈ 13860M.

56

Chapter 6

Recent Work

In this chapter, we analyze some recent work [10] [11] [12] [19] [18] on speeding up the
pairing computation. These speed-ups are applied to compute the R-ate pairing on the
BN curve described in Chapter 5, and conclusions are drawn about the effectiveness of the
speed-ups.

6.1 R-ate Pairings with Projective Coordinates

In 2010, Costello, Lange and Naehrig provided some improved formulas for using projective
coordinates instead of jacobian coordinates [12]. A point (X, Y, Z) in projective coordinates
corresponds to the point (x, y) in affine coordinates with x = X/Z and y = X/Z. In these
coordinates, the equation of the BN curve is(

Y

Z

)2

=

(
X

Z

)3

+ b,

or
X3 = Z(Y 2 − bZ2).

Recall the point doubling formula introduced in Section 2.1.1. Let P = (x, y) with P 6= −P .
Then 2P = (x3, y3), where

x3 =

(
3x2

2y

)2

− 2x (6.1)

y3 =

(
3x2

2y

)
(x− x3)− y. (6.2)

57

In projective coordinates we derive the formula for doubling a point T = (X, Y, Z) to
2T = (X3, Y3, Z3). Substituting x = X/Z, y = Y/Z, x3 = X3/Z3 and y3 = Y3/Z3 into (6.1)
gives

X3

Z3

=

(
3(X

Z
)2

2(Y
Z

)

)2

− 2

(
X

Z

)
=

9X4

Z4
· Z

2

4Y 2
− 2X

Z

=
9X4

4Y 2Z2
− 8XY 2Z

4Y 2Z2

=
9XZ(Y 2 − bz2)− 8XY 2Z

4Y 2Z2

=
X(Y 2 − 9bz2)

4Y 2Z
.

Similarly, substituting x = X/Z, y = Y/Z, x3 = X3/Z3 and y3 = Y3/Z3 into (6.2) gives

Y3

Z3

=

(
3(X

Z
)2

2(Y
Z

)

)
·
(
X

Z
− X3

Z3

)
− Y

Z

=

(
3X2

Z2
· Z

2Y

)
·
(
X

Z
− X(Y 2 − 9bz2)

4Y 2Z

)
− Y

Z3

=
3X2

2Y Z
· X(4Y 2 − Y 2 + 9bZ2)

4Y 2Z
− Y

Z

=
3X3(3Y 2 + 9bZ2)− 8Y 4

8Y 3Z2
− Y

Z

=
3Z(Y 2 − bZ2)(3Y 2 + 9bZ2)− 8Y 4

8Y 3Z2
− Y

Z

=
9Y 4 + 27bY 2Z2 − 9bY 2Z2 − 27b2Z2

8Y 3Z
− 8Y 4

8Y 3Z

=
Y 4 + 18bY 2Z2 − 27b2Z2

8Y 3Z
.

Hence we have 2T = (X3, Y3, Z3) where
X3 = 4XY (Y 2 − 9bz2)
Y3 = Y 4 + 18bY 2Z2 − 27b2Z2

Z3 = 8Y 3Z.

Note that since we are doing the curve arithmetic on the twisted curve E ′/Fp2 , one point
doubling requires seven squarings (i.e., X2, Y 2, Z2, 2XY = (X + Y)2 −X2 − Y 2, 2Y Z =

58

(Y +Z)2−Y 2−Z2, (Y Z)2 and Y 4 = (Y 2)2) and two multiplications (i.e., 2XY ·(Y 2−9bZ2)
and (8Y Z) · (Y 2)) in Fp2 . Thus, a point doubling in G′2 costs 7S2 + 2M2 = 20M . Recall
the line function from Section 2.3.1: for P = (xP , yP) ∈ G1, T = (x1, y1) ∈ G2, the formula
of the tangent line through Q evaluated at P is

`T,T (P) = yP − y1 −
3x2

1

2y1

(xP − x1).

Let T = (x1, y1) = (xTω
2, yTω

3), and let (X, Y, Z) be the point stored in projective coor-
dinates such that xT = X/Z and yT = Y/Z. Then

`T,T (P) = yP − y1 −
3x2

1

2y1

(xP − x1)

= yP − yTω3 − 3(xTω
2)2

2yTω3
(xP − xTω2)

= yP −
Y

Z
ω3 −

3(X
Z
ω2)2

2Y
Z
ω3

(xP −
X

Z
ω2)

=
yPZ − Y ω3

Z
− 3X2ω4

Z2
· Z

2Y ω3
· xPZ −Xω

2

Z

=
2yPY Z

2 − 2Y 2Zω3 − 3X2ω(xPZ −Xω2)

2Y Z2

=
Z(2yPY Z − 2Y 2ω3 − 3xPX

2ω) + 3ω3Z(Y 2 − bZ2)

2Y Z2
.

Since 2Y Z ∈ Fp2 , the final exponentiation will convert it to 1. Thus, we take

`T,T (P) = 2yPY Z − 3xPX
2ω + (Y 2 − b3Z2)ω3.

Note that X2, Y 2, Z2 and Y Z are already computed when doubling T . Therefore, to
compute `T,T (P) we need only four multiplications (i.e., two for yP · 2Y Z and two for
xP · 3X2) in Fp. The doubling step thus requires 2M2 + 7S2 + 4M ≈ 24M using projective
coordinates. Although more additions and subtractions are used in these formulas, they
are more efficient compared to 32M using jacobian coordinates.

Let T = (x1, y1) ∈ G2 and Q = (x2, y2) ∈ G2 with T 6= ±Q. The point addition formula
in Section 2.1.1 is given as T +Q = (x3, y3) where

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2 (6.3)

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1. (6.4)

59

Let T = (X, Y, Z) ∈ G′2 be the point stored in projective coordinates andQ = (xQω
2, yQω

3) ∈
G2 in affine coordinates. Substituting x = X/Z, y = Y/Z, x3 = X3/Z3 and y3 = Y3/Z3

into (6.3) gives

X3

Z3

=

(
yQ − Y

Z

xQ − X
Z

)2

− X

Z
− xQ

=

(
yQZ − Y

Z
· Z

xQZ −X

)2

− X + xQZ

Z

=
Z(yQZ − Y)2 − (X + xQZ)(xQZ −X)2

Z(xQZ −X)2
.

Similarly, substituting x = X/Z, y = Y/Z, x3 = X3/Z3 and y3 = Y3/Z3 into (6.4) gives

X3

Z3

=

(
yQ − Y

Z

xQ − X
Z

)
·
(
xQ −

X3

Z3

)
− yQ

=

(
yQZ − Y
xQZ −X

)
·
(
xQZ(xQZ −X)2 − Z(yQZ − Y)2 + (X + xQZ)(xQZ −X)2

Z(xQZ −X)2

)
−yQ

=
(yQZ − Y)[xQZ(xQZ −X)2 − Z(yQZ − Y)2 + (X + xQZ)(xQZ −X)2]

Z(xQZ −X)3

−yQZ(xQZ −X)3

Z(xQZ −X)3
.

Hence we have T +Q = (X3, Y3, Z3) with
X3 = (xQZ −X)[Z(yQZ − Y)2 − (X + xQZ)(xQZ −X)2]
Y3 = (yQZ − Y)[xQZ(xQZ −X)2 − Z(yQZ − Y)2 + (X + xQZ)(xQZ −X)2]
−yQZ(xQZ −X)3

Z3 = Z(xQZ −X)3.

Hence, we need ten multiplications (i.e., xQ ·Z, yQ ·Z, (X+xQZ)·(xQZ−X)2, Z ·(yQZ−Y),
X3 = (xQZ − X) · [Z(yQZ − Y)2 − (X + xQZ)(xQZ − X)2], (xQZ − X)3 = (xQZ −
X) · (xQZ − X)2, Z3 = Z · (xQZ − X)3, yQZ · (xQZ − X)3, xQZ · (xQZ − X)3 and
(yQZ−Y) · [xQZ(xQZ−X)2−Z(yQZ−Y)2 + (X +xQZ)(xQZ−X)2]) and two squarings
(i.e., (xQZ −X)2 and (yQZ − Y)2) in Fp2 , that is 10M2 + 2S2 ≈ 34M for computing one
point addition in G′2.

Let T = (x1, y1) = (xTω
2, yTω

3) ∈ G2, Q = (x2, y2) = (xQω
2, yQω

3) ∈ G2, P = (xP , yP)
and let T +Q = (x3, y3). Recall the formula for evaluating the line through T and Q at P
in Section 2.3:

`T,Q(P) = yP − y2 −
y2 − y1

x2 − x1

(xP − x2).

60

Let (X, Y, Z) be the point stored in projective coordinates such that xT = X/Z and
yT = Y/Z. Then

`Q,T (P) = yP − y2 −
y2 − y1

x2 − x1

(xP − x2)

= yP − yQω3 − yQω
3 − yTω3

xQω2 − xTω2
· (xP − xQω2)

= (yP − yQω3)−
yQω

3 − Y
Z
ω3

xQω2 − X
Z
ω2
· (xP − xQω2)

= (yP − yQω3)− (yQZ − Y)ω3

Z
· Z

(xQZ −X)ω2
· (xP − xQω2)

=
(yP − yQω3)(xQZ −X)− (yQZ − Y)ω(xP − xQω2)

xQZ −X
.

Since (xQZ − X) ∈ Fp2 , the denominator will equal to 1 after the final exponentiation.
Thus, we take

`Q,T (P) = (yP − yQω3)(xQZ −X)− (yQZ − Y)ω(xP − xQω2)

= yP (xQZ −X)− xP (yQZ − Y)ω − (xQY − yQX)ω3.

Note that xQZ and yQZ are already computed when computing T+Q. Hence, we need two
more multiplications (i.e., yQ ·X and xQ ·Y) in Fp2 and four more multiplications (i.e., two
for yP · (xQZ−X) and two for xP · (yQZ−Y)) in Fp, that is 2M2 +4M ≈ 10M . If Q+T is
not computed at the same time, then the cost of evaluating `Q,T (P) is 4M2 + 4M ≈ 16M .
Both `T,T (P), `Q,T (P) ∈ Fp12 have the form a+ bω + cω3 with a, b, c ∈ Fp2 . Therefore, as
discussed in Section 5.3.1, the multiplication between line functions `T,T (P), `Q,T (P) ∈ Fp12
and f ∈ Fp12 requires only 13 multiplications in Fp2 , that is 13M2 ≈ 39M .

We compare the multiplication counts in Table 6.1. We can see that the doubling step is
more efficient while the addition step is less efficient using projective coordinates. Based on
the operation count, projective coordinates is more efficient than jacobian coordinates even
when each doubling step is followed by an addition step. However, the loop parameter is
always chosen to have a low Hamming weight so that only a few addition steps are required
in the whole process.

Using the BN curve introduced in Chapter 5, the cost of the Miller loop is

64 · (20M + 4M + 36M + 39M) + 4 · (34M + 10M + 39M) ≈ 6668M.

There is one point addition and two line evaluations (one followed by the point addition
and another computed alone) in the adjustment steps. Hence, 4M is saved so that the

61

Operation Jacobian Projective
Coordinates Coordinates

Point Doubling in G′2 (T + T) 17M 20M
Evaluating Line `T,T (P)
(while computing (T + T)) 15M 4M
Point Addition in G′2 (T +Q) 30M 34M
Evaluating Line `T,Q(P)
(while computing (T +Q)) 10M 10M
Evaluating Line `T,Q(P) 24M 16M
Multiplication between f and ` 39M 39M
Doubling Step in Miller’s Algorithm 32M + 36M + 39M 24M + 36M + 39M
Addition Step in Miller’s Algorithm 40M + 39M 44M + 39M

Table 6.1: Cost comparison: Jacobian coordinates vs. projective coordinates

adjustment steps cost 319M + 2I. The cost of computing one pairing is decreased from
13860M to

6668M + 319M + 2I + 6291M ≈ 13360M.

Therefore, the pairing computation is roughly 3.74% faster using projective coordinates.

Costello et al. compared the optimal ate pairings and the twisted ate pairings defined
in [12]. The results are summarized in Table 4 of that paper. We focus on the row with
k = 12, since BN curves have embedding degree 12. For optimal ate pairings, the first
pairing argument is in G2 and the second pairing argument is in G1. Conversely, for twisted
ate pairings, the first pairing argument is in G1 and the second pairing argument is in G2.
We list the operation counts for the twisted ate pairing in Table 6.2.

Operations Twisted ate Pairing
Point Doubling in G1 (T + T) 7S + 2M
Evaluating Line `T,T (P) while computing (T + T) 4M
Point Addition in G′2 (T +Q) 10M + 2S
Evaluating Line `T,Q(P) while computing (T +Q) 2M + 4M
Evaluating Line `T,Q(P) 4M + 4M
Multiplication between f and ` 39M
Doubling Step in Miller’s Algorithm 13M + 36M + 39M
Addition Step in Miller’s Algorithm 18M + 39M

Table 6.2: Operation counts for the twisted ate pairing

In Costello et al.’s comparison table [12], the column “Tate : ate (s = m)” gives

62

the base field multiplication count of one doubling step for both twisted ate pairings and
optimal ate pairings. Costello et al. [12] used the Toom-Cook method for computing the
multiplication f 2 · ` using 45M . Furthermore, he assumed s = m in all extension fields.
Hence, one also needs 45M to compute the squaring f 2. Therefore, the cost of computing
one doubling step (point doubling T + T and line `T,T (P) evaluation, full field squaring f 2

and full field multiplication f 2 · `) in the twisted ate pairing is

13M + 45M + 45M = 103M.

In contrast, the cost of computing one doubling step in the optimal ate pairing is

31M + 45M + 45M = 121M.

The cost of point doubling and line evaluation is estimated in [12] to be 31M instead of
24M , because the cost of seven squarings in Fp2 is assumed to be as much as the cost of
seven multiplications in Fp2 . Costello et al.’s cost estimates should be updated as follows:

1. The Toom-Cook method requires fewer multiplications than Karatsuba’s method,
but is slower in practice [13]. Hence, it is better to use Karatsuba’s method.

2. The multiplications between the pairing value f and the line functions can exploit
the sparseness of the line function values, and thus can be computed more efficiently
than general multiplications in Fp12 .

3. Assuming s = m in all extension fields is not quite accurate. It is better to only
assume that s = m in the base field.

With these improved counts, the estimated cost of one doubling step in the twisted ate
pairing is

13M + 36M + 39M = 88M,

whereas the estimated cost of one doubling step in the optimal ate pairing is

24M + 36M + 39M = 99M.

Therefore, the value in column “Tate : ate (s = m)” should be 88 : 99 instead of 103 : 121.

The column “mopt : Te : r” in Costello et al.’s comparison table represents the loop
length ratios for optimal ate pairings, twisted ate pairings, and Tate pairing, respectively.
For BN curves, we have

1. mopt = log2 | 6u− 2 |,

2. Te = (t− 1)2 = log2 | 36u3 + 18u2 + 6u+ 1 |,

63

3. r = log2 | 36u4 + 36u3 + 18u2 + 6u+ 1 |.

Powers of (t− 1)2 mod r do not give shorter loop length so that the ratio mopt : Te : r for
BN curves is approximately 1 : 3 : 4. This is different from the entry “1 : 2 : 4” in [12].

The last column “amopt vs. ηTe” represents a factor of how many times faster the
computation of the Miller loop is for the optimal ate pairing than for the twisted ate
pairing. For the BN curve (5.1), Te is a 192-bit integer of Hamming weight 36. One Miller
loop for twisted ate pairing costs

191 · (13M + 36M + 39M) + 35 · (18M + 39M) = 18803M.

Hence, the last column should be amopt(2.8), not amopt(1.7).

6.2 R-ate Pairings with Affine Coordinates

Inversion costs much more than other operations in the same field. Naturally, we choose
projective coordinates or jacobian coordinates to avoid inversions in pairing computations.
In 2010, Lauter, Montgomery and Naehrig analyzed and implemented the optimal ate
pairing using affine coordinates [19]. Recall the point doubling formula introduced in
Section 2.1.1. Let T = (x, y) ∈ G′2 with T 6= −T . Then 2T = (x3, y3), where

λ =
3x2

2y
x3 = λ2 − 2x
y3 = λ(x− x3)− y.

Since in optimal ate pairings we are doing the curve arithmetic on the twisted curve E ′/Fp2 ,
we have x, y, x3 and y3 ∈ Fp2 . We need one inversion (i.e., (2y)−1), two squarings (i.e., x2

and λ2) and two multiplications (i.e., 3x2 · (2y)−1 and λ · (x − x3)) in Fp2 . Thus, point
doubling in G′2 cost 2S2 + 2M2 + I2 ≈ I2 + 10M using affine coordinates. Recall from
Section 2.3.1 that for P = (xP , yP) ∈ G1 and T = (xω2, yω3) ∈ G2, the formula for the
tangent line through T evaluated at P is

`T,T (P) = yP − yω3 − 3(xω2)2

2yω3
(xPxω

2)

= yP − yω3 − ωλ(xPxω
2)

= yP − λxPω + (λx− y)ω3.

Then, to compute `T,T (P) we need two multiplications (i.e., xP ·λ) in Fp and one multipli-
cation (i.e., λ ·x) in Fp2 . Hence, the doubling step requires 3M2 +2S2 +I2 +2M ≈ 15M+I2

using affine coordinates.

64

Let T = (x, y) ∈ G′2 and Q = (xQ, yQ) ∈ G′2 with T 6= ±Q. The point addition formula
in Section 2.1.1 is given as T +Q = (x3, y3) where

λ =
y − yQ
x− xQ

x3 = λ2 − x− xQ
y3 = λ(x− x3)− y.

Clearly, we need one inversion (i.e., (x−xQ)−1), two multiplications (i.e., (y−yQ)·(x−xQ)−1

and λ·(x−x3)), and one squaring (i.e., λ2) in Fp2 , for a total cost of 2M2+S2+I2 ≈ 8M+I2

for computing one point addition in G′2. Let T = (xω2, yω3) ∈ G2, Q = (xQω
2, yQω

3) ∈ G2,
P = (xP , yP) ∈ G1 and let T + Q = (x3, y3). Recall the formula for evaluating the line
through T and Q at P in Section 2.3:

`T,Q(P) = yP − yQω3 − yQω
3 − yω3

xQω2 − xω2
(xP − xQω2)

= yP − yQω3 − λω(xP − xQω2)

= yP − λxPω + (λxQ − yQ)ω3.

Then, we need one multiplication (i.e., λ ·xQ) in Fp2 and two multiplications (i.e., λ ·xQ) in
Fp, that is M2+2M ≈ 5M for compute `T,Q(P). If Q+T is not computed at the same time,
we need to compute λ. Then the cost of evaluating `Q,T (P) is 2M2 + 2M + I2 ≈ 8M + I2.
Both `T,T (P) and `Q,T (P) ∈ Fp12 have the form a+bω+cω3 with a, b, c ∈ Fp2 . Therefore, as
discussed in Section 5.3.1, the multiplication between line functions `T,T (P), `Q,T (P) ∈ Fp12
and f ∈ Fp12 requires 39M . We list the operation counts in Table 6.3 and compare with
those using projective coordinates.

Operation Affine Coordinates Projective Coordinates
Point Doubling in G′2 (T + T) 10M + I2 20M
Evaluating Line `T,T (P)
(while computing (T + T)) 5M 4M
Point Addition in G′2 (T +Q) 8M + I2 34M
Evaluating Line `T,Q(P)
(while computing (T +Q)) 5M 10M
Evaluating Line `T,Q(P) 8M + I2 16M
Multiplication between f and ` 39M 39M
Doubling Step in Miller’s Algorithm 36M + 39M + 15M + I2 36M + 39M + 24M
Addition Step in Miller’s Algorithm 39M + 13M + I2 39M + 44M

Table 6.3: Cost comparison: Affine coordinates vs. projective coordinates

65

Our chosen loop parameter is a 65-bit integer with hamming weight 5. Then we need

64 · (36M + 39M + 15M + I2) + 4 · (39M + 13M + I2)

= (5760M + 64I2) + (208M + 4I2)

operations to compute the Miller loop when using affine coordinates.

Note that the efficiency of using affine coordinates depends on how efficient inversions
in Fp2 can be computed. We argued in Section 5.2.1 that one inversion in Fp2 can be
computed using two squarings, two multiplications and one inversion in Fp, that is I2 ≈
2S + I + 2M ≈ 4M + I, to compute an inversion in Fp2 . Hence, the cost of computing the
Miller loop is

(5760M + 64I2) + (208M + 4I2)

= 5968M + 68(4M + I)

= 6240M + 68I.

Montgomery introduced a sharing-inversions trick in 1987 [22]. Using his idea, n in-
versions can be computed at the cost of one inversion and 3(n− 1) multiplications in the
same field. The algorithm is given as follows.

Algorithm 6.2.1 Algorithm to compute n inversions in a field:

Input: n elements, a1, a2, . . . , an, in a field.

Output: a−1
1 , a−1

2 , . . . , a−1
n .

1. A1 ← a1.

2. For i = 2 to n do: Ai ← Ai−1 · ai.

3. Bn ← A−1
n .

4. For i = n− 1 to 1 do: Bi ← Bi+1 · ai+1.

5. a−1
1 ← B1.

6. For i = 2 to n do: a−1
i ← Bi · ai−1.

7. Return a−1
1 , a−1

2 , . . . , a−1
n .

66

According to the algorithm, we need one inversion for Step 3, n− 1 multiplications for
Step 2, n−1 multiplications for Step 4, and n−1 multiplications for Step 6, for a total of one
inversion and 3(n−1) multiplications to compute n inversions. We can see that if n is large,
then an inversion has effectively the same cost as three multiplications in the same field.
However, the algorithm introduced at the beginning of Section 5.3 goes through the binary
representation of the loop parameter from left to right. In this order, point doublings and
point additions must be computed one after another. In order to use the inversion-sharing
thick, Schroeppel and Beaver suggested to go through the binary representation from right
to left [26]. Algorithm 6.2.2 is the updated right-to-left algorithm.

Algorithm 6.2.2 Right-to-left algorithm to compute the R-ate pairing on the
BN curve (5.1):

Input:

• P = (xP , yP) ∈ G1 with xP , yP ∈ Fp,

• Q = (xQ, yQ) ∈ G′2 with xQ, yQ ∈ Fp2,

• b = |6u+ 2| =
∑64

i=0 bi2
i.

Output: RA,B(Q,P).

1. T ← Q, f ← 1, j ← 0.

2. For i = 0 to 64 do:

(a) if bi = 1, then T ′[j]← T , f ′[j]← f , j ← j + 1.

(b) f ← f 2 · `T,T (P).

(c) T ← 2T .

3. T ← T ′[0], f ← f ′[0].

4. For j = 1 to 4 do:

(a) f ← f · f ′[j] · `T ′[j],Q(P).

(b) T ← T + T ′[j].

5. T ← −T , f ← f−1.

6. f ← f · (f · `T,Q(P))p · `φp(T+Q),T (P).

7. f ← f (p12−1)/n.

67

8. Return RA,B(Q,P) = f .

This algorithm can only apply the inversion-sharing trick on the point addition steps.
However, if multiple pairings are computed at the same time, we can complete all steps
up to the inversions and then compute the inversions simultaneously. If a large number of
pairings are computed at the same time, we can achieve I ≈ 3M . We count the cost for
the Miller loop (i.e., Steps 1 to 4 in the above algorithm) on our chosen curve using affine
coordinates. We need 36M+39M+15M+I2 to compute Steps 2(b) and 2(c). Note that one
more multiplication in Fp12 is required for each addition step. Then, 54M+39M+13M+I2

is required to compute Steps 4(a) and 4(b). Hence, we need

64 · (36M + 39M + 15M + I2) + 4 · (54M + 39M + 13M + I2)

= (6016M + 64I) + (440M + 4I)

= (6456M + 64I) + I + 3(4− 1)M

= 6465M + 65I

to compute the Miller loop. We compare the cost of the Miller loop using affine coordinates
and projective coordinates in Table 6.4.

Operations Counts for Miller loop I I ≈ 41M I ≈ 3M
Affine Coordinates (left-to-right) 6240M + 68I 9028M 6444M
Affine Coordinates (right-to-left) 6465M + 65I 10885M 6660M
Projective Coordinates 6668M 6668M 6668M

Table 6.4: Cost of the Miller loop: Affine coordinates vs. projective coordinates

The pairing computation is even slower with the inversion-sharing trick, since there
are two Fp12 multiplications in Step 6 of the right-to-left algorithm for each addition
step. Therefore, we analyze the efficiency of using affine coordinates without applying
the inversion-sharing trick. In Section 5.2, we assumed that

1. I ≈ 41M ;

2. S ≈M ;

3. The cost of additions and subtractions are negligible;

4. The cost of multiplications by small field elements is negligible.

Using these assumptions, pairings using affine coordinates are much slower than pairings
using projective coordinates. However, Lauter, Montgomery and Naehrig [19] used very
different cost ratios:

68

1. I ≈ 13M , thus I2 ≈ 4M + I = 17M ;

2. S ≈M ;

3. The cost of additions and subtractions are not negligible — 3 additions or sub-
tractions in Fp cost roughly the same as 1 multiplication in Fp. Consequently, 1
multiplication in Fp2 costs roughly 5 multiplications in Fp, and 1 squaring in Fp2
costs roughly 3 multiplications in Fp.

When we derived the point doubling formula using projective coordinates, two multiplica-
tions are counted as two squarings using the formula xy = 1

2
[(x+ y)2 − x2 − y2] as x2 and

y2 are precomputed. However, one squaring, one addition and two subtractions in Fp2 cost
roughly as much as one multiplication in Fp2 . Thus, we consider the two squarings to be
multiplications and count the operations again in Table 6.5 using the ratios from [19].

Operations Affine Coordinates Projective Coordinates
Point Doubling in G′2 (T + T) 2M2 + 2S2 + I2 ≈ 33M 4M2 + 5S2 ≈ 35M
Evaluating Line `T,T (P)
(while computing (T + T)) M2 + 2M ≈ 7M 4M
Point Addition in G′2 (T +Q) 2M2 + S2 + I2 ≈ 30M 10M2 + 2S2 ≈ 56M
Evaluating Line `T,Q(P)
(while computing (T +Q)) M2 + 2M ≈ 7M 2M2 + 4M ≈ 14M
Multiplication between f and ` 39M 39M
Doubling Step 36M + 39M + 40M 36M + 39M + 39M
Addition Step 39M + 37M 39M + 70M
Whole Miller loop 7664M 7732M

Table 6.5: Cost comparison using nonstandard ratios from [19]

Note that there are more additions and subtractions in formulas using projective coordi-
nates. Together with the multiplication counts in Table 6.5, Lauter et al.’s implementation
achieves a faster pairing computation using affine coordinates even when a single pairing is
computed. However, their multiplication-inversion ratio and multiplication-addition ratio
are not considered to be standard (e.g. see [1], [13], [15], [27]). Affine coordinates are less
efficient than projective coordinates in general according to the operation counts using
more standard ratios.

69

6.3 Delaying Some Multiplications

In 2010, Costello, Boyd, Nieto and Wong introduced the idea of delaying some expensive
multiplications in order to achieve speedups in pairing computations [10]. The idea can be
briefly described as combining n consecutive doubling steps together. By “consecutive”, we
mean that there are no addition steps between the doubling steps. We begin by describing
the method for n = 2.

First, we look at two consecutive doubling steps without applying the delaying-idea.
We list the operations in order as follows.

1. Compute T ′ = 2T and `T,T .

2. Evaluate `T,T (P).

3. Compute f ′ = f 2 · `T,T (P).

4. Compute T ′′ = 2T ′ and `T ′,T ′

5. Evaluate `T ′,T ′(P).

6. Compute f ′′ = f ′2 · `T ′,T ′(P).

Thus, two point doublings (i.e., T ′ = 2T and T ′′ = 2T ′) and two line evaluations (i.e.,
`T,T (P) and `T ′,T ′(P)) are computed in Fp2 . Two squarings (i.e., f 2 and f ′2) and two
multiplications by the line functions (i.e., f 2 · `T,T (P) and f ′2 · `T ′,T ′(P)) are computed
in Fp12 . As discussed in Section 6.1, the costs estimated by Costello et al. [10] can be
improved as follows:

1. It is better to use Karatsuba’s method for multiplication than the Toom-Cook method.

2. The multiplications between the pairing value f and the line functions can be com-
puted at a cost of 39M .

3. Assuming s = m in all extension fields is not quite accurate. It is better to only
assume that s = m in the base field.

The estimated costs are listed in Table 6.6 for both the twisted ate pairing and the optimal
ate pairing.

In [10], two consecutive doubling steps are combined as follows.

1. Compute T ′ = 2T and `T,T .

70

Operation Twisted-ate pairing Optimal-ate pairing
T ′ = 2T and `T,T 2M + 7S 2M2 + 7S2

Evaluate `T,T (P) 4M 4M
f ′ = f 2 · `T,T (P) S12 +M12 S12 +M12

T ′′ = 2T ′ and `T,T 2M + 7S 2M2 + 7S2

Evaluate `T ′,T ′(P) 4M 4M
f ′′ = f ′2 · `T ′,T ′(P) S12 +M12 S12 +M12

2 doubling steps 206M 242M
2 doubling steps (improved estimates) 176M 198M

Table 6.6: Cost of two doubling steps without the delaying idea

2. Compute T ′′ = 2T ′ and `T ′,T ′ .

3. Compute `2
T,T · `T ′,T ′ .

4. Evaluate `2
T,T · `T ′,T ′(P).

5. Compute f ′′ = f 4 · `2
T,T · `T ′,T ′(P).

Thus, two point doubling (i.e., T ′ = 2T and T ′′ = 2T ′) and one line evaluation (i.e., `2
T,T ·

`T ′,T ′(P)) are computed in Fp2 . Two squarings (i.e., f 2 and (f 2)2) and one multiplication
by the line functions (i.e., f 4 · `2

T,T · `T ′,T ′(P)) are computed in Fp12 . The hard part is the
computation of the line function `2

T,T · `T ′,T ′ . Recall that `T,T (P) and `T ′,T ′(P) have the
form

`T,T = ayP + bxpω + cω3

and
`T ′,T ′ = a′yP + b′xpω + c′ω3,

where a, b, c, a′, b′ and c′ ∈ Fp2 . Then, we need at most three squarings (i.e., a2, b2

and c2) and another three squarings (i.e., 2x · y = (x + y)2 − x2 − y2 where x ∈ {a, b, c},
y ∈ {a, b, c} and x 6= y) to compute `2

T,T . Thus, at most 18 multiplications (i.e., x · y where
x ∈ {a′, b′, c′} and y ∈ {a2, b2, c2, ab, ac, bc}) are needed to compute `2

T,T · `T ′,T ′ . If y2
P is

converted to x3
P + b, the form of `2

T,T is

`2
T,T (P) = (A+BxP + Cx2

P +Dx3
P) + (E + FxP)yP

where A, B, C, D, E and F can be represented by Fp2 elements. Similarly, `2
T,T · `T ′,T ′ has

the form

`2
T,T · `T ′,T ′(P) = (A′ +B′xP + C ′x2

P +D′x3
P + E ′x4

P) + (F ′ +G′xP +H ′x2
P + I ′x3

P)yP

71

where A′, B′, C ′, D′, E ′, F ′, G′, H ′ and I ′ can be represented by Fp2 elements. Thus,
multiplications such as B′ · xP cost more than Fp2 multiplications. Suppose that x2

P , x3
P ,

x4
P , xPyP , x2

PyP and x3
PyP are precomputed; we approximate the cost of line evaluation to

be eight multiplications in Fp2 . Note that `2
T,T ·`T ′,T ′(P) is no longer of the form a+bω+cω3

where a, b and c ∈ Fp2 . The multiplication f 4 · `2
T,T · `T ′,T ′(P) costs 54M . The estimated

costs are listed in Table 6.7 for both the twisted ate pairing and the optimal ate pairing.

Operations Twisted-ate pairing Optimal-ate pairing
T ′ = 2T and `T,T 2M + 7S 2M2 + 7S2

T ′′ = 2T ′ and `T ′,T ′ 2M + 7S 2M2 + 7S2

Compute `2
T,T · `T ′,T ′ 18M + 6S 18M2 + 6S2

Evaluate `2
T,T · `T ′,T ′(P) 8 · 2M 8 · 2M

f ′′ = f 4 · `2
T,T · `T ′,T ′(P) 2S12 +M12 2S12 +M12

2 doubling steps 193M 257M
2 doubling steps (improved estimates) 184M 248M

Table 6.7: Cost of two doubling steps with the delaying idea

Comparing the results in Tables 6.6 and 6.7, we can see that although one multiplication
in Fp12 is saved, the computation of the line function is more complicated. Moreover, the
line function is not sparse, thus cannot be computed using the method introduced in Section
5.3.1. The delaying idea slows down the pairing computation in general. It is argued by
Costello et al. [10] that combining more consecutive doubling steps together makes it more
difficult to compute the super-line function. For curves with small embedding degree, it
is optimal to combine the doubling steps in pairs. Costello et al. summarize their results
using a table in Section 6 of [10]. We examine the row with embedding degree k = 12
and the column with s = m. They count the Fp multiplications required to compute one
doubling step for the twisted ate pairing. According to the results in Tables 6.6 and 6.7,
the value in column “N = 0” should be 88 instead of 103. The value in column “Optimal
N” should be 92 rather than 96.5.

Costello, Boyd, Nieto and Wong [11] also specialized this delaying idea to some special
curves. For BN curves with embedding degree k = 12 and curve equation y2 = x3 + b, the
curve arithmetic is explicitly given.

Let T = (X, Y, Z) be a point on the curve stored in projective coordinates. Then

72

T ′ = 2T = (X3, Y3, Z3) and L = `2
T,T · `T ′,T ′(P) can be computed using the follow formulas.

X3 = 4XY (Y 2 − 9bz2)
Y3 = Y 4 + 18bY 2Z2 − 27b2Z2

Z3 = 8Y 3Z
L = α · (L0 + L1 · xP + L2 · x2

P + L3 · yP + L4 · xPyP)

α =
−Z3[X(X3 − 8bZ3)− 4Z(X3 + bZ3)]2

64z7Y 5 · (27X6 − 36X3Y 2Z + 8Y 4Z2)
L0 = 2X(Y 6 − 75bY 4Z2 + 27b2Y 2Z4 − 81b3Z6)
L1 = −4Z(5Y 6 − 75bZ2Y 4 + 135Y 2b2Z4 − 81b3Z6)
L2 = −6X2Z(5Y 4 + 54bY 2Z2 − 27b2Z4)
L3 = 8XY Z(5Y 4 + 27b2Z4)
L4 = 8Y Z2(Y 4 + 18bY 2Z2 − 27b2Z4).

Note that α is in a proper subfield of Fp12 , and so will be eliminated after the final expo-
nentiation (Lemma 2.3.1). Thus, L can be computed as

L = L0 + L1 · xP + L2 · x2
P + L3 · yP + L4 · xPyP .

The cost of computing T ′ = 2T and L = `2
T,T · `T ′,T ′ is 11M2 + 11S2 (or 11M + 11S) for

optimal ate pairings (or twisted ate pairings), and the cost of computing L(P) is 4 · 2M .
(The details are omitted. The interested reader can refer to Section 5.1 and Appendix 2 of
[11].) Note that the point doubling T ′′ = 2T ′ is computed without the evaluation of `T ′,T ′ .
We do not compute X2

3 and thus have to compute X3 · Y3 using one multiplication instead
of one squaring. Hence, we need 3M2 +5S2 (or 3M +5S) to compute T ′′ = 2T ′ for optimal
ate pairings (or twisted ate pairings). The estimated costs are listed in Table 6.8 for both
the twisted ate pairing and the optimal ate pairing using the faster formulas.

Operation Twisted-ate pairing Optimal-ate pairing
T ′ = 2T and L 11M + 11S 11M2 + 11S2

T ′′ = 2T ′ 3M + 5S 3M2 + 5S2

Evaluate L(P) 4 · 2M 4 · 2M
f ′′ = f 4 · L(P) 2S12 +M12 2S12 +M12

2 doubling steps 173M 233M
2 doubling steps (improved estimates) 164M 208M

Table 6.8: Cost of two doubling steps with the delaying idea using faster formulas

The last two rows of Tables 6.6, 6.7 and 6.8 are summarized in Table 6.9. For better
comparison with Table 2 of [11], we provide the cost of computing six doubling steps in
different scenarios.

73

Twisted-ate Optimal-ate
Pairing Pairing

Standard 618M 726M
Pair-up the doubling steps 579M 771M
Pair-up with faster formulas 519M 699M
Standard (improved estimates) 528M 594M
Pair-up the doubling steps (improved estimates) 552M 744M
Pair-up with faster formulas (improved estimates) 492M 624M

Table 6.9: Cost of six doubling steps

We can see that the delaying-idea can improve the twisted ate pairings with the faster
formulas. However, it does not speedup the optimal ate pairings with our more accurate
cost estimation. Costello et al. [11] also provide formulas for combining three doubling
steps. In that case, we need 498M (or 720M) to compute six doubling steps for twisted
ate pairings (or optimal ate pairings), which is slower. Table 2 of [11] summarize their
results. We examine the row with embedding degree k = 12. In their table, n = i
means i doubling steps are combined for simultaneous computation. They count the Fp
multiplications required to compute six doubling steps for both twisted ate pairings and
optimal ate pairings. According to the results in Tables 6.6 and 6.9, the value in column
“Pairings on G1×G2” should be 528 (or 492, 498 respectively) instead of 618 (or 519, 536
respectively) for n = 1 (or n = 2, n = 3 respectively). The value in column “Pairings on
G2×G1” should be 594 (or 624, 720 respectively) instead of 726 (or 699, 824 respectively)
for n = 1 (or n = 2, n = 3 respectively). The value in column “Best” on the right hand
side of column “Pairings on G2 × G1” should be (n = 2, 7%) instead of (n = 2, 18%).
This means that, for twisted ate pairings, the doubling steps can be computed 7% more
efficiently if two consecutive doubling steps are combined. The value in column “Best”
on the right hand side of column “Pairings on G1 × G2” should be (n = 1,−) instead of
(n = 2, 5%). This means that, for optimal ate pairings, the delaying idea cannot speed up
the computation of doubling steps.

6.4 Final Exponentiation

Define
Φk(x) = x2·2a−13b−1 − x2a−13b−1

+ 1

with k = 2a3b to be the k-th cyclotomic polynomial. Define

GΦk(p) = {α ∈ Fpk | αΦk(p) = 1}

74

to be the cyclotomic subgroup of Fpk . Recall that we can factor the exponent (p12 − 1)/n
into three parts,

p12 − 1

n
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

n
.

Note that p4− p2 + 1 = Φ12(p) is the 12th cyclotomic polynomial evaluated at p. Thus, we
have

p12 − 1

n
=
p12 − 1

Φ12(p)
· Φ12(p)

n
.

As discussed in Section 5.3.3, the first term α(p12−1)/Φ12(p) can be computed efficiently using
the Frobienius map. For any α ∈ F∗p12 , we have α(p12−1)/Φ12(p) ∈ GΦ12(p).

Theorem 6.4.1 Let q = pi ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂ F∗q6. Let e be an `-bit exponent
with binary representation e = e`−1e`−2...e2e1e0. Let He = {i : 1 ≤ i ≤ ` − 1 and ei = 1},
and let |He| = N . Then, ge can be computed at a cost dominated by

min{4(`− 1)Mi + (6N − 3)Mi +NM6i + 3NSi + Ii, 6(`− 1)Mi +NM6i}. (6.5)

This theorem is a combination of Corollary 4.1 in [18] and results of Section 3 in [14]. We
omit the proof here. The interested reader can refer to Sections 3 and 4 of [18] and Sections
2 and 3 of [14]. There are two formulas estimating the cost of the exponentiation. The
first is faster when ` is large while the second is better for small exponents.

Recall the algorithm to compute the final exponentiation in Section 5.3. We do the
following to compute f (p12−1)/n:

1. f ← fp
6−1.

2. f ← fp
2+1.

3. a← f−6u−5.

4. b← ap.

5. b← a · b.

6. f ← fp
3 · [b · (fp)2 · fp2]6u2+1 · b · (fp · f)9 · a · f 4.

The first two exponentiations, Steps 1 and 2, are computed at a cost of 123M . Exponen-
tiations to powers of p can be efficiently computed using Frobenius. Other exponentiations
in terms of u can be computed using the square and multiply method. In our chosen

75

curve, −6u− 5 is a 65-bit integer of Hamming weight 5 and 6u2 + 1 is a 127-bit integer of
Hamming weight 13. By Theorem 6.4.1, Step 3 can be computed using

4 · 64M2 + (24− 3)M2 + 4M12 + 12S2 + I2 ≈ 1075M + I.

Similarly, we need

4 · 126M2 + (72− 3)M2 + 12M12 + 36S2 + I2 ≈ 2443M + I

for the (6u2 + 1)-th powering in Step 6. Step 4 costs 15M. Step 5 costs 54M. We need 45M
to compute fp, fp

2
and fp

3
. By Theorem 6.4.1, we need 6M2 ≈ 18M each to compute f 2,

(f 2)2 and (fp)2. Similarly, we need 6 · 3M2 +M12 ≈ 108M to compute the 9-th powering.
Finally, 8M12 ≈ 432M to multiply all terms together. Therefore, the total cost of the
whole final exponentiation is 4349M + 2I using the squaring methods suggested in [18]
and [14]. This estimate is significantly faster than the 6291M estimated in Chapter 5.

Recall that the only method in this chapter which actually speeds up the Miller loop
computation is to use projective coordinates instead of jacobian coordinates. The cost of
the Miller loop decreases from 7164M to 6668M . Therefore, the best operation count we
can achieve for R-ate pairing computation on our chosen BN curve is

6668M + 323M + 2I + 4349M + 2I = 11340M + 4I,

which is 20% faster than the operation count of 13778M + 2I in Chapter 5.

76

Chapter 7

Concluding Remarks

Optimal ate pairings are known to be the fastest pairings for single pairing computation.
The implementation of optimal ate pairings on pairing-friendly BN curves currently holds
the speed record. Vercauteren gave a method to characterize optimal ate pairings by
considering a fixed power of the Tate pairing [30]. According to the discussion at the end
of Section 3.4, Vercauteren’s method does not characterize all optimal ate pairings.

In this thesis, we evaluated the multiplication costs for computation of a single R-ate
pairing with jacobian coordinates, projective coordinates and affine coordinates. With the
improved formulas provided by Costello, Lange and Naehrig [12], projective coordinates
turn out to be the best for implementing the optimal ate pairings. In contrast, Lauter,
Montgomery and Naehrig [19] claimed that affine coordinates are more efficient on their
platform. We find that their cost ratios A/M (cost ratio between addition and multiplica-
tion) and M/I (cost ratio between multiplication and inversion) are very large compared
with the commonly-accepted ratios. Affine coordinates are more efficient if A/M and M/I
are large, while projective coordinates are more efficient if A/M and M/I are small. A
careful operation count (including the cost of additions) can be applied to determine the
break-even point. However, it would appear that projective coordinates are superior on all
existing platforms.

The delaying idea introduced by Costello, Boyd, Nieto and Wong in [10] and [11] is
not suitable to compute a single optimal ate pairing. However, if multiple pairings are
computed in parallel so that the cost of an inversion is as small as the cost of three
multiplications in the same field, the delaying idea may be worth using. The efficiency of
final exponentiation is significantly improved using the faster squaring method introduced
by Granger and Scott [14] and Karabina [18].

Finally, we used the improved formulas for projective coordinates by Costello, Lange
and Naehrig [12] to compute the Miller loop and use the faster squaring method intro-

77

duced in [18] and [14] to compute the final exponentiation. The overall cost of a pairing
computation is 20% faster than the operation counts derived in Chapter 5.

78

References

[1] D. Aranha, K. Karabina, P. Longa, C. Gebotys and J. Lopez, Faster explicit formulas
for computing pairings over ordinary curves, Advances in Cryptology - EUROCRYPT
2011, Lecture Notes in Computer Science, 663, 48-68, 2011. 41, 69

[2] R. Balasubramanian and N. Koblitz, The improbability that an elliptic curve has
subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm,
Journal of Cryptology, 11, 141-145, 1998. 9

[3] P. Barreto, B. Lynn and M. Scott, Efficient implementation of pairing-based cryp-
tosystems, Journal of Cryptology, 17, 321-334, 2004. 19

[4] P. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, Selected
Areas in Cryptography (SAC 2005), Lecture Notes in Computer Science 3897 (2006),
354-368, 2005. 34

[5] D. Boneh and M. Franklin, Identity-based encryption from the Weil Pairing, Advances
in Cryptology - CRYPTO 2001, Lecture Notes in Computer Science, 2139, 213-229,
2001. 23

[6] D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and verifiably entrypted
signatures from bilinear maps, Advances in Cryptology - EUROCRYPT 2004, Lecture
Notes in Computer Science, 2656, 416-432, 2003. 21, 22

[7] D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, Advances
in Cryptology - ASIACRYPT 2001, Lecture Notes in Computer Science, 2248, 514-
532, 2001. 21

[8] S. Chatterjee, D. Hankerson, E. Knapp and A. Menezes, Comparing two pairing-based
aggregate signature schemes, Designs, Codes and Cryptography, 55, 141-167, 2010. 22

[9] J. Chung and A. Hasan, Asymmetric squaring formula, 18th IEEE Symposium on
Computer Arithmetic (ARITH 07), 113-122, 2007 45

79

[10] C. Costello, C.Boyd, J. Nieto and K. Wong, Delaying mismatched field multiplications
in pairing computations, International Workshop on the Arithmetic of Finite Fields -
WAIFI 2010, Lecture Notes in Computer Science, 6087, 196-214, 2010. 57, 70, 72, 77

[11] C. Costello, C.Boyd, J. Nieto and K. Wong, Avoiding full field arithmetic in pairing
computations, AFRICACRYPT 2010, Lecture Notes in Computer Science, 6055, 203-
224, 2010. 57, 72, 73, 74, 77

[12] C. Costello, T. Lange and M. Naehrig, Faster pairing computations on curves with
high-degree twists, Public Key Cryptography - PKC 2010, Lecture Notes in Computer
Science, 6056, 224-242, 2010. 57, 62, 63, 64, 77

[13] A. Devegili, M. Scott and R. Dahab, Implementing cryptographic pairings over
Barreto-Naehrig curves, Pairing-Based Cryptography - Pairing 2007, Lecture Notes in
Computer Science, 4575, 197-207, 2007. 54, 63, 69

[14] R. Granger and M. Scott, Faster squaring in the cyclotomic subgroup of sixth degree
extensions, Public Key Cryptography - PKC 2010, Lecture Notes in Computer Science,
6056, 209-223, 2010. 75, 76, 77, 78

[15] D. Hankerson, A. Menezes and M. Scott, Software implementation of pairings, M.
Joyed, G. Neven (eds) Identity-Based Cryptography, IOS Press, 2008. 42, 69

[16] F. Hess, A note on the Tate pairing of curves over finite fields, Archive for Mathemat-
ical Logic, 82, 28-32, 2004. 17

[17] F. Hess, N. Smart and F. Vercauteren, The eta pairing revisited, IEEE Transactions
on Information Theory, 52, 4595-4602, 2006. 26

[18] K. Karabina, Squaring in cyclotomic subgroups, Cryptology ePrint Archive, Report
2010/542, 2010. 57, 75, 76, 77, 78

[19] K. Lauter, P. L. Montgomery and M. Naehrig, An analysis of affine coordinates for
pairing computation, Pairing Based Cryptography - Pairing 2010, Lecture Notes in
Computer Science, 6487, 1-20, 2010. viii, 57, 64, 68, 69, 77

[20] E. Lee, H. Lee and C. Park, Efficient and generalized pairing computation on abelian
varieties, IEEE Transactions on Information Theory, 55, 1793-1803, 2009. 28, 29

[21] V. Miller, The Weil pairing and its efficient calculation. Journal of Cryptology, 17,
235-261, 2004. 17

[22] P. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation 48, 243-264, 1987. 66

80

[23] M. Naehrig, Constractive and computational aspects of cryptographic pairings, PhD
thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2009. 36

[24] Y. Nogami, M. Akane, Y. Sakemi, H. Kato and Y. Morikawa, Integer variable χ-based
ate pairing, Pairing-Based Cryptography - Pairing 2008, Lecture Notes in Computer
Science, 5209, 178-191, 2008.

[25] G. Pereira, M. Simplicio Jr., M. Naehrig and P. Barreto, A family of implementation-
friendly BN elliptic curves, Cryptology ePrint Archive, Report 2010/429, 2010. 38,
41

[26] R. Schroeppel and C. Beaver, Accelerating elliptic curve calculations with the recip-
rocal sharing trick, Mathematics of Public-Key Cryptography, University of Illinois at
Chicago, 2003. 67

[27] M. Scott, Implementing cryptographic pairings, Pairing-Based Cryptography - Pairing
2007, Lecture Notes in Computer Science, 4575, 177-196, 2007. 45, 69

[28] A. Shamir, Identity-based cryptosystems and signature schemes, Advances in Cryp-
tology - Proceedings of CRYPTO 84, Lecture Notes in Computer Science, 196, 47-53,
1985. 22

[29] M. Stam and A. Lenstra, Efficient subgroup exponentiation in quadratic and sixth
degree extensions, Cryptographic Hardware and Embedded System - CHES 2002,
Lecture Notes in Computer Science, 4249, 134-147, 2006. 45

[30] F. Vercauteren, Optimal Pairings, IEEE Transactions on Information Theory, 56,
455-461, 2010. 25, 28, 31, 32, 77

[31] L. Washington, Elliptic curves cumber theory and cryptography, second edition, CRC
Press, 2008. 3, 6, 10

[32] C. Zhao, F. Zhang and J. Huang. A Note on the Ate Pairing, Cryptology ePrint
Archive: Report 2007/247, 2007. 28

81

	List of Tables
	Introduction
	Mathematical Background
	Elliptic Curves
	Group Law
	Projective Coordinates and Jacobian Coordinates
	Group Order and Torsion Points
	The Frobenius Map

	Tate Pairing
	Divisors
	The Tate Pairing
	Properties of the Tate Pairing

	Miller's Algorithm
	Miller's Function
	Computing the Tate Pairing

	Pairing-Based Cryptography
	Short Signatures
	Identity-Based Encryption

	Optimal Pairings
	Vercauteren's Construction
	Ate Pairing
	R-ate Pairing
	Vercauteren's Pairing

	BN Curves
	Family of Curves
	Properties of BN Curves
	More on Curve Construction

	Implementing the R-ate Pairing using BN Curves
	R-ate Pairing on a Particular BN Curve
	Tower Extension
	Fp2 Arithmetic
	Fp6 Arithmetic
	Fp12 Arithmetic
	Summary

	Operation Count for R-ate Pairings
	Operation Count for the Miller Loop
	Operation Count for Adjustment Steps
	Operation Count for Final Exponentiation

	Recent Work
	R-ate Pairings with Projective Coordinates
	R-ate Pairings with Affine Coordinates
	Delaying Some Multiplications
	Final Exponentiation

	Concluding Remarks
	References

