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Abstract

In microprocessors, achieving an efficient utilization of the execution units is a key factor

in improving performance. However, maintaining an uninterrupted flow of instructions is

a challenge due to the data and control dependencies between instructions of a program.

Modern microprocessors employ aggressive optimizations trying to keep their execution

units busy without violating inter-instruction dependencies. Such complex optimizations

may cause subtle implementation flaws that can be hard to detect using conventional

simulation-based verification techniques.

Formal verification is known for its ability to discover design flaws that may go unde-

tected using conventional verification techniques. However, with formal verification come

two major challenges. First, the correctness of the implementation needs to be defined

formally. Second, formal verification is often hard to apply at the scale of realistic imple-

mentations.

In this thesis, we present a formal verification strategy to guarantee that a micropro-

cessor implementation preserves both data and control dependencies among instructions.

Throughout our strategy, we address the two major challenges associated with formal

verification: correctness and scalability.

We address the correctness challenge by specifying our correctness in the context of

generic pipelines. Unlike conventional pipeline hazard rules, we make no distinction be-

tween the data and control aspects. Instead, we describe the relationship between a pro-

ducer instruction and a consumer instruction in a way such that both instructions can

speculatively read their source operands, speculatively write their results, and go out of

their program order during execution. In addition to supporting branch and value pre-

diction, our correctness criteria allow the implementation to discard (squash) or replay

instructions while being executed.

We address the scalability challenge in three ways: abstraction, decomposition, and

induction. First, we state our inter-instruction dependency correctness criteria in terms

of read and write operations without making reference to data values. Consequently, our

correctness criteria can be verified for implementations with abstract datapaths. Second,
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we decompose our correctness criteria into a set of smaller obligations that are easier to

verify. All these obligations can be expressed as properties within the Syntactically-Safe

fragment of Linear Temporal Logic (SSLTL). Third, we introduce a technique to verify

SSLTL properties by induction, and prove its soundness and completeness.

To demonstrate our overall strategy, we verified a term-level model of an out-of-order

speculative processor. The processor model implements register renaming using a P6-style

reorder buffer and branch prediction with a hybrid (discard-replay) recovery mechanism.

The verification obligations (expressed in SSLTL) are checked using a tool implementing

our inductive technique. Our tool, named Tahrir, is built on top of a generic interface to

SMT solvers and can be generally used for verifying SSLTL properties about infinite-state

systems.
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Chapter 1

Introduction

In microprocessors, achieving an efficient utilization of the execution units is a key factor

in improving performance. However, maintaining an uninterrupted flow of instructions is

a challenge due to the data and control dependencies between instructions of a program.

Modern microprocessors employ aggressive optimizations trying to keep their execution

units busy without violating inter-instruction dependencies. Such complex optimizations

may cause subtle implementation bugs that can be hard to detect using conventional

simulation-based verification techniques.

It was estimated that if a bug similar to the Pentium FDIV bug∗ were to go undetected

in the Intel R© Pentium R© 4 processor, it would cost Intel $12 Billion [5]. Such devastating

economic effect motivates the use of formal verification approaches. Formal verification is

known for its ability to discover design flaws that may not be detected using conventional

verification techniques. The power of formal verification approaches lies in their exhaustive

nature which enables detecting any violation of the processor specifications early in the

design phase.

Formal verification is the act of using mathematical methods in proving or disproving

the correctness of an implementation with respect to a certain specification. In the context

∗Floating point Division (FDIV) bug, discovered in 1994, resulted in Intel’s first ever chip-recall and a

charge against earnings of $475 million.
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of hardware systems, the term implementation refers to a design description at any level

of the hardware abstraction hierarchy, not only the final circuit layout [21]. The term

specification refers to the desired (correct) behavior of the design under consideration.

The most common techniques used in formal verification are:

• Theorem Proving : the implementation/specification relationship is treated as a the-

orem to be proved in the context of a proof calculus. Theorem proving tools, such

as HOL [20] and ACL2 [30, 31], are used to guarantee the soundness of verification

proofs. Human intervention is required to guide the verification.

• Model Checking : the verification is typically done by performing an exhaustive search

over the implementation state-space. Model-checking tools, such as SMV [43] and

FormalCheck [36], carry out such exhaustive searches automatically in order to min-

imize human intervention. Fully-automated model-checking techniques do not scale

well with an increase in the size of the implementation and/or specification; this is

known as the state-space explosion problem. Other model-checking techniques (e.g.,

invariant-based) trade full-automation for scalability. For instance, with invariant-

based model checking, such as in UCLID [6], the human verifier has to identify the

invariants of the implementation, which is something done automatically in SMV for

example.

Specifications can be formally represented either by a high-level model or by a set

of properties [32]. In the first case, the verification goal is to make sure that all of the

possible implementation behaviors are a subset of the specification behaviors; this is called

refinement-based verification. In the second case, the verification goal is to make sure that

all of the possible implementation behaviors satisfy the specification properties; this is

called assertion-based verification.

With formal verification come two major challenges. First, the correctness of the im-

plementation needs to be defined formally. Second, formal verification is often hard to

apply at the scale of realistic implementations. To date, a fully-automatic verification of a

realistic microprocessor is well beyond the capacity of any known formal verification tool.
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This represents an open area for future improvements highly motivated by real industrial

needs.

In this thesis, we present a formal verification strategy to guarantee that a micropro-

cessor implementation preserves both data and control dependencies among instructions.

Throughout our strategy, we address the two major challenges associated with formal

verification: correctness and scalability.

We address the correctness challenge by specifying our correctness in the context of

generic pipelines. Unlike conventional pipeline hazard rules, we make no distinction be-

tween the data and control aspects. Instead, we describe the relationship between two

arbitrary instructions, first of which produces some data that should be consumed by the

other, in such a way that both instructions can speculatively read their source operands,

speculatively write their results, and go out of their program order during execution. In

addition to supporting branch and value prediction, our correctness criteria allow the im-

plementation to discard (squash) or replay instructions while being executed.

We address the scalability challenge in three ways: abstraction, decomposition, and

induction. First, we state our inter-instruction dependency correctness criteria in terms

of read and write operations without making reference to data values. Consequently, our

correctness criteria can be verified for implementations with abstract datapaths, which

reduces the verification complexity and enables verifying larger implementations. Second,

we decompose our correctness criteria into a set of smaller obligations that are easier to

verify. All these obligations can be expressed as properties within the syntactically-safe

fragment of linear temporal logic (SSLTL). Third, we introduce a technique to verify SSLTL

properties by induction, and prove its soundness and completeness.

To check whether an implementation satisfies an SSLTL property, we first compile the

formula into a non-deterministic Büchi automaton. Then, we augment the implementation

with a set of history variables representing the states of the Büchi automaton and generate

an invariant representing the automaton’s transition relation. Finally, we check whether

the augmented implementation satisfies the invariant for both the base and inductive cases.

To demonstrate our overall strategy, we verified a term-level model of an out-of-order

speculative processor. The processor model implements register renaming using a P6-style
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reorder buffer and branch prediction with a hybrid (discard-replay) recovery mechanism.

The verification obligations (expressed in SSLTL) are checked using a tool, named Tahrir,

implementing our inductive technique. Tahrir is built on top of a generic interface to

SMT solvers and can be generally used for verifying SSLTL properties about infinite-state

systems.

1.1 Thesis Contributions

This thesis contains two major areas of research: verification of SSLTL properties on

infinite-state systems, and the specification and verification of inter-instruction dependen-

cies in microprocessors.

Our overall goal was to verify the correctness of microarchitectural algorithms. For this

reason, we chose to use term-level models of microprocessors. Term-level models would

allow us to focus on algorithms and not get lost in low-level hardware details.

The most natural approach for specifying correctness was to use LTL. In fact, all of our

properties can be easily expressed in a fragment of LTL called “syntactically-safe LTL”

(SSLTL), which is easier to verify compared to full LTL.

To accomplish this verification, we needed an effective approach for verifying SSLTL

properties about term-level models. Verification of LTL properties generally is done by

reachability analysis. Term-level models are infinite-state systems. Since reachability anal-

ysis will not terminate on infinite-state systems, our solution was to create an inductive

approach that uses manually constructed invariants to restrict the state space. This ap-

proach made it possible for us to verify SSLTL properties about infinite-state systems.

Though the SAL verification suite [15] has similar capabilities, the benefits of our work

are a clearly documented algorithm with proof of correctness and a tool with a generic

interface to SMT solver engines.

The conventional approach to the formal verification of a microprocessor is to construct

a single, monolithic, correctness criterion. The verification relies on lemmas and invariants

that are defined on a case-by-case basis for each pipeline. The conventional approach looks
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at a state of the pipeline, which is problematic because the large number of in-flight parcels

causes capacity problems in verification.

Our work provides a general definition of correctness and a general verification strat-

egy that decomposes the top-level correctness statement into simpler obligations about

data/control dependencies between parcels on individual variables. Our approach saves

the effort and potential mistakes of creating custom definitions of correctness and verifica-

tion strategies for each pipeline.

1.2 Thesis Outline

Chapter 2 explains our approach for the formal verification of SSLTL formulas. It describes

the overall verification algorithm and shows its correctness. Chapter 3 switches the focus

to the inter-parcel (instruction) correctness criteria and their decomposition. Chapter 4

sheds some light on the case study used to evaluate/illustrate the techniques presented in

chapters 2 and 3. Chapter 5 summarizes the research presented in this thesis and offers

some directions for future work.
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Chapter 2

Inductive Verification of SSLTL

The first step in verifying a reactive system is to come up with a formal specification of

the system. One of the common specification languages for reactive systems is temporal

logic. Temporal logic comes in two varieties: linear time (e.g., linear temporal logic (LTL)

[51]) or branching time (e.g., computational tree logic (CTL) [10]). The difference is that

branching time logics can reason about multiple time lines while linear time logics are

restricted to a single time line.

The ability to reason about more than one time line may suggest that branching time

logics would be superior. However, other factors such as expressiveness, efficiency and

intuitiveness need to be taken into consideration when choosing between the two classes of

logic. For instance, neither CTL or LTL is more expressive than the other, and although

CTL is more efficient (in terms of model-checking complexity), in practice, engineers found

it easier to specify properties in LTL [62].

In this research, it was more intuitive for us to use LTL in specifying the inter-instruction

dependency properties in chapter 3. Another factor favoring LTL was that all our properties

could be expressed using a fragment of LTL called the syntactically-safe linear temporal

logic (SSLTL), whose model-checking complexity is less than that of full LTL.

In this chapter, we focus on SSLTL. We provide the necessary background and demon-

strate the related work in section 2.1. Then, in section 2.2, we introduce an algorithm that
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allows us to check SSLTL properties about infinite-state systems inductively. We show the

soundness and completeness of our algorithm in section 2.3. We conclude the chapter with

a few remarks in section 2.4. A summary of the chapter can be found in section 2.5.

2.1 Background and Related Work

The goal of this section is to provide enough background information to help the reader

understand the SSLTL verification strategy we describe in section 2.2. We start by defining

two computational models: state transition systems (subsection 2.1.1) and Büchi automata

(subsection 2.1.2). Then, we define the linear temporal logic and its syntactically-safe

fragment SSLTL (subsection 2.1.3). Last, we conclude by demonstrating some of the work

done on LTL verification (subsection 2.1.4).

2.1.1 State Transition Systems

A state transition system (STS) is a graph that enumerates all the states of a reactive

system and describes the relationship between these states. Each state in an STS is labeled

by the propositions that hold in this state. The computations of the original system are

modeled as paths in the STS. We formally define an STS as follows:

Definition 2.1. (STS) A state transition system T is a five tuple T = 〈AP, S, I, R, L〉

where:

• AP is a set of atomic propositions.

• S is a (possibly infinite) set of states.

• I ⊆ S is the set of initial states.

• R ⊆ S × S is a total transition relation. R is total in the sense that for each s ∈ S,

there exists s′ ∈ S such that R(s, s′).
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• L : S 7→ 2AP is a labeling function that identifies the true atomic propositions∗ in

each state.

Example 2.1. The graph in figure 2.1 represents a state transition system T = 〈AP, S, I, R, L〉

where:

• AP = {a, b, c}

• S = {s0, s1, s2}

• I = {s0}

• R = {(s0, s0), (s0, s1), (s0, s2), (s1, s2), (s2, s0)}

• L = λ s ∈ S. if s = s0 then {a, c} elseif s = s1 then {c} else {a, b}

s0

{a, c}

s1

{c}

s2

{a, b}

Figure 2.1: An example of a state transition system (STS)

A path in a state transition system T = 〈AP, S, I, R, L〉 is an infinite sequence of states

π =≪π0π1π2 . . .≫ where R(πi, πi+1) for all i ∈ N. We refer to the suffix of π starting at

a state πj, for some j ∈ N, as ~πj. A run of T is a path π1 that starts from an initial state

(i.e., π0
1 ∈ I). On that basis, we define the following concepts:

∗A proposition is a statement that is either true or false. Atomic propositions are those propositions

which cannot be represented in terms of other propositions.
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Definition 2.2. (STS Concepts) Given a state transition system T = 〈AP, S, I, R, L〉:

• The set of all possible runs of T is:

Runs(T ) = {π | π0 ∈ I ∧ ∀ i ∈ N. R(πi, πi+1)}

• The set of reachable states of T is:

Reach(T ) = {s | ∃ π ∈ Runs(T ), i ∈ N. s = πi}

• The language of T is:

Lang(T ) = {ω | ∃ π ∈ Runs(T ). ∀ i ∈ N. ωi = L(πi)}

• The language of T restricted to a set AP ′ is:

LangAP ′

(T ) = {ω | ∃ π ∈ Runs(T ). ∀ i ∈ N. ωi = L(πi) ∩ AP ′}

Notice that, in definition 2.2, the language of T consists of a set of words. Each word

is a sequence of letters. Each letter is a set of atomic propositions.

Next, we present the concept of simulation [45] as a means of comparing the behavior

of state transition systems.

Definition 2.3. (Simulation) Let T1 = 〈AP1, S1, I1, R1, L1〉 and T2 = 〈AP2, S2, I2, R2, L2〉

be two state transition systems. We say T2 simulates T1 (denoted as T1 � T2) if and only

if:
AP2 ⊆ AP1

∧ ∃H ⊆ S1 × S2. ∀ s1.

s1 ∈ I1 =⇒ ∃ s2 ∈ I2. H(s1, s2)

∧ ∀ s2. H(s1, s2) =⇒ L1(s1) ∩ AP2 = L2(s2)

∧ ∀ s2, s
′
1. H(s1, s2) ∧ R1(s1, s

′
1) =⇒ ∃ s

′
2. H(s′1, s

′
2) ∧ R2(s2, s

′
2)

2.1.2 Büchi Automata

A Büchi automaton (BA) [7] is a finite automaton that accepts infinite input sequences

(i.e., an ω-automaton). An input sequence is accepted if and only if the automaton visits

a subset of certain states (called accepting states) infinitely often during its run. Büchi
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automata are either deterministic or non-deterministic. Throughout this thesis, the term

“Büchi automata” is used to refer to non-deterministic Büchi automata.

A simple example of a Büchi automaton is shown in figure 2.2. This automaton is

non-deterministic because for instance when the automaton reaches state q1, it is possible

to accept input literals a and b, and non-deterministically choose to stay at q1 or move to

q0. Conventionally, Büchi automata are defined as follows:

Definition 2.4. (BA) A Büchi automaton B is a five tuple B = 〈Σ, Q, q̇,∆, F 〉 where:

• Σ is a finite set of characters (input alphabet).

• Q is a finite set of states.

• q̇ ∈ Q is the initial state.

• ∆ ⊆ Q × Σ × Q is a total transition relation. Totality here means that for every

q ∈ Q, there exists q′ ∈ Q and σ ∈ Σ such that ∆(q, σ, q′).

• F ⊆ Q is the set of accepting states.

Notice that the input alphabet Σ can be defined to be the power set of a set of atomic

propositions. In this case, every character is a subset of the atomic propositions, and

should be interpreted as the conjunction of those atomic propositions.

Example 2.2. Suppose q1 is the only accepting state of the Büchi automaton shown in

figure 2.2. In this case, the automaton can be represented by a five tuple 〈Σ, Q, q̇,∆, F 〉

where:

• Σ = 2{a,b}

• Q = {q0, q1}

• q̇ = q0

• ∆ = {(q0, {a}, q0), (q0, {}, q1), (q1, {a, b}, q0), (q1, {b}, q1)}
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q0

q1 {b}

{a}

{a, b}

{}: Always satisfied

{}

Figure 2.2: An example of a Büchi automaton

• F = {q1}

In this thesis, we are interested in the subset of Büchi automata where every state is an

accepting state†. This is mainly because in our SSLTL verification approach, we translate

the properties into automata within that subset. Throughout the rest of the thesis, for

brevity, we will drop the set of final states from the tuple representing Büchi automata in

definition 2.4.

Similar to state transition systems in subsection 2.1.1, we define a run of a Büchi

automaton B = 〈Σ, Q, q̇,∆〉 as an infinite sequence of states π =≪ π0π1π2 . . .≫ that

starts from the initial state (i.e., π0 = q̇) and there exists a corresponding input sequence

σ =≪ σ0σ1σ2 . . .≫ such that ∆(πi, σi, πi+1) for all i ∈ N. We also define the following

concepts:

Definition 2.5. (BA Concepts) If B = 〈Σ, Q, q̇,∆〉 is a Büchi automaton, then:

• The set of all possible runs of B is:

Runs(B) = {π | π0 = q̇ ∧ ∀ i ∈ N. ∃ σi ∈ Σ. ∆(πi, σi, πi+1)}

†Of course this does not necessarily mean that the automaton accepts everything. Based on the tran-

sition relation, some inputs may not be accepted at certain states.
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• The language of B is:

Lang(B) = {ω | ∃ π ∈ Runs(B). ∀ i ∈ N. ∆(πi, ωi, πi+1)}

We also introduce the function BAtoSTS to syntactically transform Büchi automata to

state transition systems, where every state in the automaton is represented with (possibly)

multiple states in the STS, one state for each outgoing transition:

Definition 2.6. (BA to STS) Function BAtoSTS takes a Büchi automatonB = 〈2AP ′

, Q, q̇,∆〉

and returns a state transition system T = 〈AP, S, I, R, L〉 such that:

• AP = AP ′

• S = {(Z, σ) | Z ⊆ Q ∧ σ ⊆ AP ′ ∧

∃ q ∈ Z, q′ ∈ Q, σx ⊆ σ. ∆(q, σx, q
′)}

• I = {({q̇}, σ) | ({q̇}, σ) ∈ S}

• R = {((Z, σ), (Z ′, σ′)) | (Z, σ) ∈ S ∧ (Z ′, σ′) ∈ S ∧

Z ′ = {q′ | ∃ q ∈ Z, σx ⊆ σ. ∆(q, σx, q
′)}}

• L = λ (Z, σ). σ

2.1.3 Linear Temporal Logic (LTL)

Formal verification generally addresses properties with a temporal nature such as: “some-

thing eventually happens” or “something never happens”. Many temporal logics are used

for specifying such properties. We focus in this section on the Linear Temporal Logic

(LTL) [51], and more specifically, a fragment of it named syntactically-safe LTL (SSLTL).

Examples of other temporal logics are computational tree logics (CTL*, CTL and their

sublogics) [10] and µ-Calculus [34].

We start by introducing the syntax of LTL. The syntax is presented in Backus Naur

Form (BNF).
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Definition 2.7. (LTL Syntax) The syntax of LTL formulas can be inductively described

as follows:

φ ::= ⊤ | ⊥ | x | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (X φ) | (φ U φ) | (φ R φ)

where x is any atomic proposition

In addition to regular Boolean constants and operators: True (⊤), False (⊥), Negation

(¬), Disjunction (∨) and Conjunction (∧), LTL syntax introduces three temporal operators :

“Next” (X), “Until” (U), and “Release” (R). Some other Boolean and temporal operators

can be defined as syntactic sugar. Here are some examples:

• “Implies” (=⇒): p1 =⇒ p2 ≡ ¬p1 ∨ p2

• “Eventually” (F): F p ≡ ⊤ U p

• “Globally” (G): G p ≡ ⊥ R p

• “Weak Until” (W): p1 W p2 ≡ p2 R (p1 ∨ p2)

The semantics of LTL formulas are defined over the paths of a state transition system

as follows:

Definition 2.8. (LTL Semantics) Suppose π is a path in a state transition system T =

〈AP, S, I, R, L〉. Let x be one of the atomic propositions in AP . We define the LTL

satisfaction relation |= such that:

1. T, π |= ⊤.

2. ¬(T, π |= ⊥).

3. T, π |= x ⇐⇒ x ∈ L(π0).

4. T, π |= ¬p1 ⇐⇒ ¬(T, π |= p1).

5. T, π |= p1 ∨ p2 ⇐⇒ T, π |= p1 ∨ T, π |= p2.
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6. T, π |= p1 ∧ p2 ⇐⇒ T, π |= p1 ∧ T, π |= p2.

7. T, π |= X p1 ⇐⇒ T, ~π1 |= p1.

8. T, π |= p1 U p2 ⇐⇒ ∃ i ∈ N. T, ~πi |= p2 ∧ ∀ j : 0 ≤ j < i. T, ~πj |= p1.

9. T, π |= p1 R p2 ⇐⇒ ∀ i ∈ N. T, ~πi |= p2 ∨ ∃ j < i. T, ~πj |= p1.

As a generalization of definition 2.8, we say that a system T satisfies a property p

(written T |= p) if and only if p is satisfied in every run of T . More formally:

T |= p ⇐⇒ ∀ π ∈ Runs(T ). T, π |= p

Two of the most important classes of properties that can be specified in LTL (or in

Temporal Logics in general) are: safety properties and liveness properties. A safety prop-

erty asserts that something (bad) never happens, while a liveness property asserts that

something (good) eventually happens. All LTL properties in positive normal form (i.e.,

negation is restricted to atomic propositions) constructed with the temporal operators X

andR are safety properties [57, 35]. This class of LTL is referred to as the syntactically-safe

linear temporal logic, or simply SSLTL.

The basic syntax of SSLTL is similar to that of definition 2.7 except that the negation

is restricted to atomic propositions and the temporal operator U is not allowed. Only

formulas in positive normal form can be constructed using the basic syntax. For better

readability, we use the more flexible (yet equivalent) SSLTL syntax in definition 2.9.

Definition 2.9. (SSLTL Syntax) The SSLTL syntax is presented as follows:

φ ::= ⊤ | ⊥ | x | (¬φ̄) | (φ ∨ φ) | (φ ∧ φ) | (φ̄ =⇒ φ) | (X φ) | (φ R φ) | (G φ) | (φ W φ)

where:

φ̄ ::= ⊤ | ⊥ | x | (¬φ) | (φ̄ ∨ φ̄) | (φ̄ ∧ φ̄) | (φ =⇒ φ̄) | (X φ̄) | (φ̄ U φ̄) | (F φ̄)

x is any atomic proposition
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The syntax described in definition 2.9 does not allow an even number of negations to

be applied to U or any other operator built on top of it (as syntactic sugar), i.e., F. The

syntax also prevents an odd number of negations to be applied to R or any other operator

built on top of it, i.e., G and W. These two restrictions ensure the formula is kept within

the safe fragment of LTL.

In section 2.2, we present an algorithm for verifying SSLTL properties inductively.

We use SSLTL to specify the verification obligations in chapter 3. In that chapter, we

also use some Past linear temporal logic (PLTL) operators such as (e.g., “Past Next” X̂,

“Past Globally” Ĝ, and “Past Until” Û) in specifying some intermediate proof obligations.

These operators do not add expressive power to LTL [16]. However, they can help keep the

properties compact and easier to read. The semantics of these PLTL operators are similar

to their LTL counterparts except that they address past time as opposed to future time.

2.1.4 LTL Verification

In this section, we discuss the most common techniques for model checking linear temporal

logic (LTL). The aim of these techniques is to check whether an implementation T (modeled

as an STS for instance) satisfies a property p (specified in LTL), i.e., to check whether

T |= p. To be able to answer this question, p is compiled into a structure in the form

of a graph (namely, a tableau or an automaton) which then can be compared against the

implementation.

In the tableau-based approach, first the property p is used to build a tableau which is

a graph (or simply an STS) that contains every path that satisfies p. Then, the tableau

is composed with the implementation and the product is checked for paths that violate

p. The algorithms by Lichtenstein et al. [38] and Clarke et al. [11] are two examples of

the Tableau-based approach. In the first algorithm, the tableau construction is implicit

while in the second the tableau is directly constructed and symbolically represented as an

Ordered Binary Decision Diagram (OBDD).

The automata-based approach relies on the close relationship between LTL and Au-

tomata Theory which was first discussed by Wolper et al. [65]. Later work [63] showed
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that for any given LTL property p, it is possible to construct a finite automaton Bp on

infinite words that accepts exactly the set of computations that satisfy the property p.

By treating the implementation system T as an automaton, the problem of checking

whether T |= p is transformed into an equivalent language containment problem of whether

Lang(T ) ⊆ LangBp.

In practice, the language containment problem is solved by checking whether Lang(T ) ∩

Lang(B¬p) = ∅. The first step in implementing this approach is to construct a Büchi

automaton B¬p for the negation of the property p. Next, a product T × B¬p, whose

language equals the intersection between Lang(T ) and Lang(B¬p), is computed. The last

step is to check whether the language of the product T × B¬p is empty using techniques

based on either performing a nested depth-first search [13, 24] or computing the maximal

strongly connected components of a directed graph [58]. The property p is satisfied by the

implementation T if and only if Lang(T × B¬p) turns out to be empty.

The algorithm proposed by Gerth et al. [18] is an example of how an LTL property p is

compiled into a Generalized‡ Büchi automaton. The algorithm constructs the automaton

by incrementally building a graph of nodes. Individual nodes are recursively expanded,

split, or replaced to satisfy the subformulas of p. For representing the nodes, the algorithm

uses a data structure that keeps track of which subformulas have been processed so far as

well as which are left to be processed. After building the graph, the algorithm identifies the

accepting states based on the nodes that are marked with subformulas of the form φ1 U φ2.

Better performing algorithms for constructing Büchi automata from LTL properties were

developed by Couvreur [14], Gastin et al. [17], and Latvala [37].

In this thesis, we are interested in verifying properties specified using the syntactically-

safe fragment of LTL (SSLTL) defined in subsection 2.1.3. Kupferman and Vardi [35]

showed that for this subclass of LTL, the automaton B¬p does not have to recognize all

computations violating the property of p. Consequently, B¬p can be computed using a

more efficient approach involving the construction of an automaton on finite words. Also

in the case of SSLTL, checking language emptiness for the product T × B¬p is reduced to

‡A Generalized Büchi automaton (GBA) is defined the same as a regular Büchi automaton except that

a GBA can have multiple sets of accepting states. A word is recognized by a GBA if and only if at least

one state from every accepting set is visited infinitely often.
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invariance checking as opposed to checking cycles in the case of LTL.

In our strategy, we first construct a Büchi automaton Bp for the SSLTL property p itself

as opposed to its negation. Then through induction, we verify that the product system

satisfies an invariant about the states of Bp. For constructing Bp, we follow a straight-

forward approach based on that of Gerth et al. [18]. The difference is that in our case all

the states of Bp are considered accepting states since p is syntactically-safe. The details of

our strategy can be found in section 2.2.

2.2 SSLTL Verification Algorithm

In this section, we introduce an algorithm for verifying SSLTL properties inductively. The

algorithm takes (among other inputs) a model and an SSLTL property, and returns true if

and only if the model satisfies the property. The algorithm also takes a number representing

the depth of the induction and a Boolean expression to use in strengthening the inductive

invariant.

Before describing our algorithm, we first define what we mean by a model. The word

“model” refers to the source code of the system. Although models are finite in size, they

may describe infinite-state and/or non-deterministic systems. The purpose of a model is

to represent the behavior of a system using a set of variables and expressions over those

variables. The variables capture the state of the system and the expressions describe how

the state evolves over time. A model is formally defined as follows:

Definition 2.10. (Model) Let E be a set of expressions defined by a given grammar. A

Model M over E is a quadruple M = 〈V, Ȧ, Ä, Ā〉 where:

• V is a finite set of variables over possibly infinite domains.

• Ȧ ⊆ V × E is the set of initial-state assignments.

• Ä ⊆ V × E is the set of next-state assignments.

• Ā ⊆ V × E is a set of combinational assignments.
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Example 2.3. The state transition system T in example 2.1 can be encoded by a model

M = 〈V, Ȧ, Ä, Ā〉 where:

• V = {s, a, b, c}

• Ȧ = {(s, S0)}

• Ä = {(s, if s = S0 then S0|S1|S2 elseif s = S1 then S2 else S0)}

• Ā = {(a, s = S0 ∨ s = S2), (b, s = S2), (c, s = S0 ∨ s = S1)}

For the remainder of this section (subsections 2.2.1-2.2.9), we present the set of functions

used in our algorithm where the main function, called Verify , is presented last.

2.2.1 Translating SSLTL into Büchi Automata (SSLTLtoBA)

Function SSLTLtoBA compiles an SSLTL property into a Büchi automaton. The func-

tion implements the basic Büchi automata construction algorithm by Gerth et al. [18]

(described in subsection 2.1.4), with the exception that all the states of the constructed

automaton are considered accepting states.

Example 2.4. For an SSLTL property p = G (a W (X b)), the corresponding Büchi

automaton B = SSLTLtoBA(p) is shown in figure 2.2.

2.2.2 Converting Büchi Automata to Models (BAtoModel)

The purpose of function BAtoModel is to generate a model from a Büchi automaton B.

Every state in the automaton is represented by a Boolean (state) variable in the generated

model. The variable associated with the initial state of the automaton is initialized to 1

while all the other variables are initialized to 0 (line 7). The next values of the variables are

defined as Boolean expressions encoding the transition relation of the automaton (line 9).

The automaton is completely represented by the state variables and hence no combinational

variables are added to the generated model.
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Function BAtoM(B : BA)
Define: 〈Σ, Q, q̇,∆〉 ≡ B

V := Q;1

Ȧ := {};2

Ä := {};3

Ā := {};4

foreach q ∈ Q do5

ein := 0;6

if q = q̇ then Ȧ := Ȧ ∪ {(q, 1)} else Ȧ := Ȧ ∪ {(q, 0)};7

foreach (q1, σ1, q2) ∈ ∆ do8

if q = q2 then ein := ein ∨ q1 ∧ σ1;9

end10

Ä := Ä ∪ {(q, ein)};11

end12

return 〈V, Ȧ, Ä, Ā〉;13

Example 2.5. If the automaton generated in example 2.2 is to be passed to function

BAtoModel , the function would return a model M = 〈V, Ȧ, Ä, Ā〉 where:

• V = {q0, q1}

• Ȧ = {(q0, 1), (q1, 0)}

• Ä = {(q0, (q0 ∧ a) ∨ (q1 ∧ a ∧ b)), (q1, q0 ∨ (q1 ∧ b))}§

• Ā = {}

2.2.3 Generating Invariants from Büchi Automata (BAtoInvar)

Function BAtoInvar produces a Boolean expression describing the states and transitions of

a Büchi automaton B. The output Boolean expression is a conjunction of a set of clauses.

§Symbols a and b are free variables.
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Each clause encodes a single state (as a Boolean variable) and all its outgoing transitions

(as a Boolean expression). The generated Boolean expression can be true if and only if at

least one state and one transition going out of it are satisfied.

Function BAtoI(B : BA)
Define: 〈Σ, Q, q̇,∆〉 ≡ B

e := 0;1

foreach q ∈ Q do2

eout := 0;3

foreach (q1, σ1, q2) ∈ ∆ do4

if q = q1 then eout := eout ∨ σ1;5

end6

e := e ∨ q ∧ eout;7

end8

return e;9

Example 2.6. The invariant generated by function BAtoInvar for the automaton from

example 2.2 is:

e = (q0 ∧ (a ∨ True)) ∨ (q1 ∧ (b ∨ (a ∧ b))) = q0 ∨ (q1 ∧ b)

2.2.4 Combining Models (MergeM )

As its name suggests, function MergeM combines two models M1 and M2 into one. This is

done simply by constructing the union between each component from model M1 with the

corresponding component from model M2.

Function Merge(M1 : Model, M2 : Model)

Define: 〈V1, Ȧ1, Ä1, Ā1〉 ≡M1

Define: 〈V2, Ȧ2, Ä2, Ā2〉 ≡M2

return 〈V1 ∪ V2, Ȧ1 ∪ Ȧ2, Ä1 ∪ Ä2, Ā1 ∪ Ā2〉;1
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Example 2.7. Function MergeM combines the two models from example 2.3 and example

2.5 into a model M = 〈V, Ȧ, Ä, Ā〉 where:

• V = {s, a, b, c, q0, q1}

• Ȧ = {(s, S0), (q0, 1), (q1, 0)}

• Ä = {(s, if s = S0 then S0|S1|S2 elseif s = S1 then S2 else S0),

(q0, q0 ∧ a ∨ q1 ∧ a ∧ b),

(q1, q0 ∨ q1 ∧ b)}

• Ā = {(a, s = S0 ∨ s = S2), (b, s = S2), (c, s = S0 ∨ s = S1)}

2.2.5 Unfolding Models (Unfold)

The goal of function Unfold is to represent the values of the variables of a model M

when it runs for a given number of steps k. The values of the model variables at any

given simulation step i are represented by a fresh set of variables V i. For each step, the

assignments associated with the model variables are replicated and rewritten using the

fresh variables.

Example 2.8. Unfolding the combined model from example 2.7 for one step (k = 1)

produces an output (V,A) where:

• V = {s0, q00, q
0
1, a

0, b0, c0,

s1, q10, q
1
1, a

1, b1, c1}

• A = {(s0, S0),

(q00, 1), (q
0
1, 0),

(a0, s0 = S0 ∨ s0 = S2), (b
0, s0 = S2), (c

0, s0 = S0 ∨ s0 = S1),

(s1, if s0 = S0 then S0|S1|S2 elseif s
0 = S1 then S2 else S0),

(q10, q
0
0 ∧ a0 ∨ q01 ∧ a0 ∧ b0), (q11, q

0
0 ∨ q01 ∧ b0),

(a1, s1 = S0 ∨ s1 = S2), (b
1, s1 = S2), (c

1, s1 = S0 ∨ s1 = S1)}
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Function Unfold(M : Model, k : N)

Define: 〈V, Ȧ, Ä, Ā〉 ≡M

Define: V i ≡ {vi | v ∈ V }

Vr := V 0;1

Ar := {};2

foreach (v, e) ∈ Ȧ ∪ Ā do3

Ar := Ar ∪ {(v
0, e[V \V 0])};4

end5

for j := 1 to k do6

Vr := Vr ∪ V j;7

foreach (v, e) ∈ Ä do8

Ar := Ar ∪ {(v
j, e[V \V j−1])};9

end10

foreach (v, e) ∈ Ā do11

Ar := Ar ∪ {(v
j, e[V \V j])};12

end13

end14

return (Vr, Ar);15
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2.2.6 Expanding Invariants (Expand)

Function Expand rewrites an invariant e for the purpose of induction over a given number

of steps k. As in function Unfold , a fresh set of variables is used to represent the values

of the model variables at each step. Using these fresh variables, the function creates an

instance of the invariant for each step and returns the conjunction of all these instances.

Function Expand(V : VSet, e : BExpr, k : N)

Define: V i ≡ {vi | v ∈ V }

er := 1;1

for j := 0 to k do2

er := er ∧ e[V \V j];3

end4

return er;5

Example 2.9. Expanding the invariant from example 2.6 for one step (k = 1) produces a

Boolean expression e where:

e = q00 ∨ (q01 ∧ b0) ∧ q10 ∨ (q11 ∧ b1)

2.2.7 Checking Assignments against Boolean Expressions (Check)

The purpose of function Check is to determine whether a set of assignments A satisfy a

Boolean expression e. The function generates a formula er with an implication where the

antecedent is the conjunction of the assignments in A and the consequent is the Boolean

expression e. Then, the function returns true if and only if the generated formula er is

valid. Notice that function Check can be viewed as a complete decision procedure since

the function terminates (i.e., returns a value of true or false) for all expressions in the

supported grammar.
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Function Check(V : VSet, A : ASet, e : BExpr)

er := 1;1

foreach (v1, e1) ∈ A do2

er := er ∧ (v1 = e1);3

end4

er := er =⇒ e;5

if er = 0 then return false;6

return true;7

2.2.8 K-Step Induction over Models (KInd)

The goal of function KInd is to check whether a model M satisfies an invariant e by in-

duction over k steps. In the base case, the model M is unfolded (from its initial state)

for k − 1 steps and the invariant is expanded for the same number of steps. While in the

inductive case, the model M is unfolded for k steps starting from an arbitrary state (ob-

tained by ignoring the initial-state assignments) while the induction hypothesis is formed

by expanding the invariant for k − 1 steps. The function returns true if and only if the

invariant is satisfied in both the base and inductive cases.

Function KInd(M : Model, e : BExpr, k : N
+)

Define: 〈V, Ȧ, Ä, Ā〉 ≡M

/* Base Case */

(Vb, Ab) := Unfold(M,k − 1);1

eb := Expand(V, e, k − 1);2

if Check(Vb, Ab, eb) = false then return false;3

/* Inductive Case */

(Vi, Ai) := Unfold(〈V, {}, Ä, Ā〉, k);4

ei := Expand(V, e, k − 1);5

if Check(Vi, Ai, ei =⇒ e[V \V k]) = false then return false;6

return true;7
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2.2.9 Verifying Models (Verify)

Function Verify is the core of our SSLTL verification algorithm. The function checks

whether a model M satisfies an SSLTL property p by induction over a given number of

steps k. In addition to M , p, and k, the function takes an input Boolean expression e for

the purpose of strengthening the invariant during induction.

Function Verify starts by translating the property p into an automaton Bp. The au-

tomaton Bp is then compiled into a model Mp and an invariant ep. The generated model

Mp is combined together with the input model M into a new model Ma, which we refer

to as the augmented model. Then, function Verify checks whether the augmented model

Ma satisfies the invariant ep using k-step induction. To keep induction within the reach-

able state space of the augmented model, the invariant ep is strengthened using a Boolean

expression e.

Function Verify returns true if and only if the induction shows that the augmented

model Mp satisfies the strengthened invariant ep ∧ e for the given values of e and k. In

section 2.3, we show the soundness and completeness of this strategy. For the soundness,

we prove that the input model M satisfies the SSLTL property p if Verify returns true for

certain values of e and k. For the completeness, we show that if M satisfies p, there exist

values for e and k that would cause Verify to return true.

Function Verify(M : Model, p : SSLTL, e : BExpr, k : N+)

Define: 〈V, Ȧ, Ä, Ā〉 ≡M

Define: 〈Va, Ȧa, Äa, Āa〉 ≡Ma

Bp := SSLTLtoBA(p);1

Mp := BAtoModel(Bp);2

ep := BAtoInvar(Bp);3

Ma := MergeM (M,Mp);4

r := KInd(Ma, ep ∧ e, k);5

return r;6
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2.3 Soundness and Completeness of SSLTL Verifica-

tion Algorithm

In this section, we prove that the SSLTL verification algorithm in section 2.2 is both sound

and complete. Before presenting the proof, we first define a function, named MergeS , that

combines a state transition system with a Büchi automaton.

Definition 2.11. (STS-BA Product) Function MergeS takes a state transition system

T = 〈AP, S, I, R, L〉 and a Büchi automaton B = 〈2AP ′

, Q, q̇,∆〉 and returns a state

transition system T1 = 〈AP1, S1, I1, R1, L1〉 such that:

• AP1 = AP

• S1 = S × 2Q

• I1 = {(s, {q̇}) | s ∈ I}

• R1 = {((s, Z), (s
′, Z ′)) | R(s, s′) ∧

Z ′ = {q′ | ∃ q ∈ Z, σ ⊆ L(s). ∆(q, σ, q′)}}

• L1 = λ (s, Z). L(s)

Here is an example to illustrate the purpose of function MergeS :

Example 2.10. Consider the state transition system T from example 2.1 and the Büchi

automatonB from example 2.2 (assuming both q0 and q1 are final states). A state transition

system T1 constructed by combining T and B such that T1 = MergeS (T,B), is shown in

figure 2.3. T1 represents T and B run in parallel and synchronized based on common labels.

The core of our proof is to show that: the problem of proving language containment

between a state transition system T and a Büchi automaton can be transformed into a

problem of verifying an invariant about the states of the product state transition system

T1 = MergeS (T,B). We state this result in theorem 2.1. The theorem also includes the

equivalent problem in the simulation domain for sake of completeness. A detailed proof of

theorem 2.1 can be found in subsection 2.3.1.
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(s0, {q0})

{a, c}

(s0, {q0, q1})

{a, c}

(s2, {q1})

{a, b}

(s1, {q0, q1})

{c}

(s2, {q0, q1})

{a, b}

Figure 2.3: An example of an STS-BA product
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Theorem 2.1. Given a state transition system T = 〈AP, S, I, R, L〉 and a finite automaton

B = 〈Σ, Q, q̇,∆〉 where Σ = 2AP ′

for a set of atomic propositions AP ′ where AP ′ ⊆ AP ,

if T1 and T2 are defined such that T1 = MergeS (T,B) and T2 = BAtoSTS (B), then the

following holds:

∀ s. (s, {}) /∈ Reach(T1)

⇐⇒ LangAP ′

(T ) ⊆ Lang(B)

⇐⇒ T1 � T2

Theorem 2.1 is used to show that applying our SSLTL verification algorithm (repre-

sented by function Verify) on a model M and an SSLTL property is equivalent to verifying

that M (after being compiled to an STS using function MtoSTS ) satisfies p. We formally

state this result in the following corollary:

Corollary. For any given model M = 〈V, Ȧ, Ä, Ā〉 and SSLTL property p, the following

holds:

(∃ e, k. Verify(M, p, e, k)) ⇐⇒ MtoSTS (M) |= p

The soundness and completeness of our SSLTL verification strategy (function Verify)

are captured in this corollary by the right implication (=⇒) and the left implication (⇐=)

respectively. For the completeness result, we assume that the reachable states of the

augmented model can be described by an expression in the grammar supported by the

(complete) decision procedure represented by function Check .

In reality, even if the reachable states cannot be described by an expression within the

grammar, an over approximation (in the form of an invariant) might be sufficient for the

decision procedure to terminate. In our experience, the fact that reachable states may

not be expressible in the grammar of the decision procedure has no practical impact. The

grammars supported by modern decision procedures (e.g., SMT solvers) are sufficiently

general that we are able to write invariants strong enough to carry out the verification.

To prove the corollary, we start from the left hand side and apply a set of transforma-

tions until reaching the right hand side. The proof, sketched in figure 2.4, boils down to

five main steps:
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∃ e, k. Verify(M, p, e, k)

∃ e, k. KInd(

MergeM (M,BAtoModel(SSLTLtoBA(p))), BAtoInvar(SSLTLtoBA(p)) ∧ e, k

)

∀ s. (s, {}) /∈ Reach(MtoSTS (MergeM (M,BAtoModel(SSLTLtoBA(p)))))

∀ s. (s, {}) /∈ Reach(MergeS (MtoSTS (M), SSLTLtoBA(p)))

Lang(MtoSTS (M)) ⊆ Lang(SSLTLtoBA(p))

MtoSTS (M) |= p

1

2

3

4

5

Rewriting Verify

Lemma 2.2

Lemma 2.3

Theorem 2.1

Lemma 2.4

Figure 2.4: Proof of sketch of the corollary
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1. Function Verify is rewritten using its definition from subsection 2.2.9.

2. K-Induction on models is expressed as reachability on state transition systems by

substituting λ (s,Q). Q 6= {} for predicate¶ x in the following lemma:

Lemma 2.2. Given a model M and a predicate x, the following equivalence holds:

(∃ e, k. KInd(M,x ∧ e, k)) ⇐⇒ ∀ s1 ∈ Reach(MtoSTS (M)). x(s1)

The proof of lemma 2.2 is done by setting k to one (i.e., 1-step induction) and

choosing e to be the Boolean expression that represents all reachable states of the

STS that corresponds to M (i.e., MtoSTS (M)). As mentioned earlier, we assume

that reachable states can be expressed by an expression in the grammar.

3. The act of merging two models is transformed to an equivalent merge between an

STS and a BA using the following lemma:

Lemma 2.3. The following equivalence holds true for any model M and Büchi au-

tomaton B:

MtoSTS (MergeM (M,BAtoModel(B)))⇐⇒ MergeS (MtoSTS (M), B)

The proof of lemma 2.3 takes the form of a commuting diagram.

4. Theorem 2.1 is used to link reachability to language containment.

5. The relationship between language containment and SSLTL satisfaction is established

through lemma 2.4 which capture the correctness of the Büchi automata construction

algorithm.

Lemma 2.4. Given a state transition system T and an SSLTL property p, T |= p if

and only if Lang(T ) ⊆ Lang(SSLTLtoBA(p)).

¶A predicate is a function which evaluates to either true or false. Hence predicates can be treated as

Boolean expressions. For this reason, we are able to apply the Boolean operator ∧ to x in lemma 2.2
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2.3.1 Proof of Theorem 2.1

The proof of theorem 2.1 is broken down into four goals, one per each implication. Before

stating the goals, we first mention the premises of the proof:

P1. T = 〈AP, S, I, R, L〉 is a state transition system

P2. B = 〈Σ, Q, q̇,∆〉 is an automaton

P3. AP ′ ⊆ AP

P4. Σ = 2AP ′

P5. T1 = MergeS (T,B)

P6. T2 = BAtoSTS (B)

Given the six premises, the goals can be stated as follows:

G1. ∀ s. (s, {}) /∈ Reach(T1) =⇒ LangAP ′

(T ) ⊆ Lang(B)

G2. ∀ s. (s, {}) /∈ Reach(T1)⇐= LangAP ′

(T ) ⊆ Lang(B)

G3. ∀ s. (s, {}) /∈ Reach(T1) =⇒ T1 � T2

G4. ∀ s. (s, {}) /∈ Reach(T1)⇐= T1 � T2

Our general strategy for proving each of these goals is to assume the precedent of the

implication holds, and show that the consequent has to hold as a consequence.

• Proof of goal G1:

Figures 2.5 and 2.6 illustrate the proof of goal G1. We assume that none of the states

(s, {}), for all values of s, can be reached in T1 (step 1), and show that the language

of T has to be a subset of the language of B. To prove such language containment,

we show that for any given word wT in the language of T (step 2), wT has to be in

the language of B as well (step 29).
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Suppose sT is one of the runs of T that generate wT (step 5). A sequence ZT is

defined to keep track of all B-states which are visited if B is to generate wT (step

7). sT and ZT are combined to construct a sequence sT1 (step 8). Then sT1 is shown

to be a run of T1 (step 18). Since states (s, {}) are not reachable in T1, then Zi
T is

non-empty for each value of i (step 20). That guarantees the existence of a run of B

that generates the word wT (step 28). Hence, wT is in the language of B (step 29).

• Proof of G2:

The proof of goal G2 is presented in figures 2.7 and 2.8. We assume that every word

in the language of T has to be in language of B (step 1) and prove that for any

value of s, none of the states (s, {}) is reachable in T1 (step 27). That is realized by

showing that any state sx that is reachable in T1 (step 2) cannot have the empty set

as its second component (step 26).

Suppose that sx is located on a run of T1 named sT1 (step 5) and a sequence ZT is

defined such that for each i, Zi
T equals the set of B-states associated with siT1

(step 7).

By definition of T , the word produced by sT1 (named wk) has to be in the language

of T (step 11) and hence in the language of B as well (step 12).

Let qB be one of the runs of B that generates wT (step 14). By induction, we

show that for any integer i, Zi
T has to contain at least the state qiB (step 22). That

guarantees that sx cannot have the empty set as its second component (step 26).

• Proof of G3:

Figures 2.9 and 2.10 outline the proof of goal G3. We assume that for all values of s,

none of the states (s, {}) can be reached in T1 (step 1), and show that T2 simulates

T1 (step 37). To prove simulation, we define a binary relation Ĥ such that it contains

every pair ((s, Z), (Z,L(s) ∩ AP ′)) if and only if (s, Z) is among the reachable states

of T1 (step 2) and show that Ĥ is a simulation relation between T1 and T2. In other

words, we show that Ĥ is a binary relation between S1 and S2, and by definition

satisfies the three simulation conditions: initial, invariant, and inductive (step 36).

To show that Ĥ is a binary relation between T1 and T2 states, let ((sT , ZT ), (ZB, σB))

be a pair of arbitrary states that belong to Ĥ (step 3). By definition of Ĥ, (sT , ZT )
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1 ∀ s. (s, {}) /∈ Reach(T1)

2 wT ∈ LangAP ′

(T )

3 ∀ π ∈ Runs(T1), i ∈ N, s. (s, {}) 6= πi 1

4 ∃ π ∈ Runs(T ). ∀ i ∈ N. wi
T = L(πi) ∩ AP ′ 2

5 sT sT ∈ Runs(T ) ∧ ∀ i ∈ N. wi
T = L(siT ) ∩ AP ′ 4

6 s0T ∈ I ∧ ∀ i ∈ N. R(siT , s
i+1

T ) 5

7 ZT ≡ λ i ∈ N. {q′ | i = 0 ∧ q′ = q̇

∨ i 6= 0 ∧ ∃ q ∈ Zi−1

T . ∆(q, wi−1

T , q′)}

8 sT1 ≡ λ i ∈ N. (siT , Z
i
T )

9 s0T1
= (s0T , {}) 7, 8

10 s0T1
∈ I1 6, 9

11 j ∈ N

12 sjT1
= (sjT , Z

j
T ) ∧ sj+1

T1
= (sj+1

T , Zj+1

T ) 8, 11

13 R(sjT , s
j+1

T ) 4, 9

14 Zj+1

T = {q′ | ∃ q ∈ Zj
T . ∆(q, wj

T , q
′)} 7, 11

15 wj ⊆ L(sjT ) 5

16 R1(s
j
T1
, sj+1

T1
) 12-15

17 ∀ i ∈ N. R1(s
i
T1
, si+1

T1
) 11, 16

18 sT1 ∈ Runs(T1) 10, 17

19 ∀ i ∈ N, s. (s, {}) 6= siT1
3, 18

20 ∀ i ∈ N. Zi
T 6= {} 8, 19

Figure 2.5: Proof of G1
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21 j ∈ N

22 Zj
T 6= {} 20, 21

23 ∃ q′ ∈ Zj
T . j = 0 ∧ q′ = q̇

∨ j 6= 0 ∧ ∃ q ∈ Zj−1

T . ∆(q, wj−1

T , q′) 7, 22

24 qjB qjB ∈ Zj
T ∧ j = 0 ∧ qjB = q̇

∨ j 6= 0 ∧ qj−1

B ∈ Zj−1

T ∧ ∆(qj−1

B , wj−1

T , qjB) 23

25 q0B = q̇ ∧ j 6= 0 =⇒ ∆(qj−1

B , wj−1

T , qjB) 24

26 ∃ π. π0 = q̇ ∧ j 6= 0 =⇒ ∆(πj−1, wj−1

T , πj) 23-25

27 ∃ π. π0 = q̇ ∧ ∀ i ∈ N. ∆(πi, wi
T , π

i+1) 21, 26

28 ∃ π ∈ Runs(B). ∀ i ∈ N. ∆(πi, wi
T , π

i+1) 27

29 wT ∈ Lang(B) 28

Figure 2.6: Proof of G1 (Continued)
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1 ∀ w. w ∈ LangAP ′

(T ) =⇒ w ∈ Lang(B)

2 sx ∈ Reach(T1)

3 ∃ π ∈ Runs(T1), i ∈ N. sx = πi 2

4 ∃ π. π0 ∈ I1 ∧ ∀ l ∈ N. R1(π
l, πl+1)

∧ ∃ i ∈ N. sx = πi 3

5 sT1 s0T1
∈ I1 ∧ ∀ l ∈ N. R1(s

l
T1
, sl+1

T1
)

∧ ∃ i ∈ N. sx = siT1
4

6 sT ≡ λ i ∈ N. (λ (s, Z). s) siT1

7 ZT ≡ λ i ∈ N. (λ (s, Z). Z) siT1

8 s0T ∈ I ∧ ∀ l ∈ N. R(slT , s
l+1

T ) 5, 6

9 sT ∈ Runs(T ) 8

10 wT ≡ λ i ∈ N. L1(s
i
T1
) ∩ AP ′

11 wT ∈ LangAP ′

(T ) 9, 10

12 wT ∈ Lang(B) 1, 11

13 ∃ π ∈ Runs(B). ∀ i ∈ N. ∆(πi, wi
T , π

i+1) 12

14 qB qB ∈ Runs(B) ∧ ∀ i ∈ N. ∆(qiB, w
i
T , q

i+1

B ) 13

15 q0B = q̇ ∧ ∀ i ∈ N. ∆(qiB, w
i
T , q

i+1

B ) 14

16 q0B ∈ Z0
T 5, 7, 15

17 j ∈ N ∧ qjB ∈ Zj
T

18 R1((s
j
T , Z

j
T ), (s

j+1

T , sj+1

T )) 5-7,17

19 wj
T ⊆ L(sjT ) 10, 17

20 ∆(qjB, w
j
T , q

j+1

B ) 15, 17

Figure 2.7: Proof of G2
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21 qj+1

B ∈ Zj+1

T 17-20

22 ∀ i ∈ N. qiB ∈ Zi
T 16, 17, 21

23 ∀ i ∈ N. ∃ q. q ∈ Zi
T 13, 14, 22

24 ∀ i ∈ N. Zi
T 6= {} 23

25 ∀ s. sx 6= (s, {}) 5, 7, 24

26 ∀ s. sx 6= (s, {}) 4, 5, 25

27 ∀ s. (s, {}) /∈ Reach(T1) 2, 26

Figure 2.8: Proof of G2 (Continued)

is a state of T1 (step 4). Also, (ZB, σB) has to be a state of T2 (step 12) because ZB

is a subset of Q, σB is a subset of Σ (step 11), and there exists at least one B-state

in ZB that has an outgoing transition whose label is a subset of σB (step 10).

Next, we show that the simulation conditions hold. Suppose that (sT , ZT ) is an

arbitrary state of T1. To prove the initial condition of simulation, we assume that

(sT , ZT ) is one of the initial states of T1 (step 16) and show that (ZT , L(sT ) ∩ AP ′)

is an initial state of T2 (step 21) that simulates (sT , ZT ) by definition of Ĥ (step 18).

The invariant condition follows by showing that for any T2-state sx that simulates

(sT , ZT ) (step 23), the label of sx has to match the label of (sT , ZT ) (step 24).

To prove the inductive condition, let (ZB, σB) be a state of T2 that simulates (sT , ZT ),

and (s′T , Z
′
T ) be a state of T1 that is reachable in one transition from (sT , ZT ) (step 26).

Since (s′T , Z
′
T ) is reachable in T1 (step 28), by definition of Ĥ, state (Z ′

T , L(s
′
T ) ∩ AP ′)

simulates (s′T , Z
′
T ) (step 29). Based on definition of R2 and Ĥ, it can be shown that

state (Z ′
T , L(s

′
T ) ∩ AP ′) has to be reachable in one transition from (ZB, σB) (step

34). The existence of such state (Z ′
T , L(s

′
T ) ∩ AP ′) guarantees the satisfaction of the

inductive condition.

• Proof of G4:

The proof of goal G4 can be found in figures 2.11 and 2.12. In the proof, we show
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1 ∀ s. (s, {}) /∈ Reach(T1)

2 Ĥ ≡ {((s, Z), (Z,L(s) ∩ AP ′)) |

(s, Z) ∈ Reach(T1)}

3 Ĥ((sT , ZT ), (ZB, σB))

4 (sT , ZT ) ∈ S1 2,3

5 ZB = ZT 6= {} ∧ σB = L(sT ) ∩ AP ′ 1-3

6 ∃ (s′, Z ′) ∈ S1.

R1((sT , ZT ), (s
′, Z ′))

∧ (s′, Z ′) ∈ Reach(T1) 2

7 (s′T , Z
′
T ) R1((sT , ZT ), (s

′
T , Z

′
T ))

∧ (s′T , Z
′
T ) ∈ Reach(T1) 6

8 Z ′
T 6= {} 1, 7

9 ∃ q′ ∈ Z ′
T , q ∈ ZT , σ ⊆ L(sT ). ∆(q, σ, q′) 7, 8

10 ∃ q′ ∈ Q, q ∈ ZB, σ ⊆ σB. ∆(q, σ, q′) 5, 7, 9

11 ZB ⊆ Q ∧ σB ∈ Σ 4, 5

12 (ZB, σB) ∈ S2 10, 11

13 (sT , ZT ) ∈ S1 ∧ (ZB, σB) ∈ S2 4, 12

14 Ĥ ⊆ S1 × S2 3, 13

15 (sT , ZT ) ∈ S1

16 (sT , ZT ) ∈ I1

17 (sT , ZT ) ∈ Reach(T1) 16

18 Ĥ((sT , ZT ), (ZT , L(sT ) ∩ AP ′)) 2, 17

Figure 2.9: Proof of G3
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19 (ZT , L(sT ) ∩ AP ′) ∈ S2 14, 16, 18

20 ZT = {q̇} 15

21 (ZT , L(sT ) ∩ AP ′) ∈ I2 19, 20

22 (sT , ZT ) ∈ I1 =⇒ ∃ s2 ∈ I2. Ĥ((sT , ZT ), s2) 16, 18, 21

23 Ĥ((sT , ZT ), sx)

24 L1(sT , Zk) ∩ AP2 = L(sT ) ∩ AP ′ = L2(sx) 2, 23

25 ∀ s2. Ĥ((sT , ZT ), s2) =⇒ L1((sT , ZT )) ∩ AP2 = L2(s2) 23, 24

26 Ĥ((sT , ZT ), (ZB, σB)) ∧ R1((sT , ZT ), (s
′
T , Z

′
T ))

27 (sT , ZT ) ∈ Reach(T1) 2, 26

28 (s′T , Z
′
T ) ∈ Reach(T1) 26, 27

29 Ĥ((s′T , Z
′
T ), (Z

′
T , L(s

′
T ) ∩ AP ′)) 2,28

30 ZB = ZT ∧ σB = L(sT ) ∩ AP ′ 2,26

31 Z ′
T = {q′ | ∃ q ∈ ZT , σ ⊆ L1(sT ). ∆(q, σ, q′)} 26

32 Z ′
T = {q′ | ∃ q ∈ ZB, σ ⊆ σB. ∆(q, σ, q′)} 30,31

33 (ZB, σB) ∈ S2 ∧ (Z ′
T , L(s

′
T ) ∩ AP ′) ∈ S2 26, 29

34 R2((ZB, σB), (Z
′
T , L(s

′
T ) ∩ AP ′)) 32, 33

35 ∀ s2, s
′
1. Ĥ((sT , ZT ), s2) ∧ R1((sT , ZT ), s

′
1)

=⇒ ∃ s′2. Ĥ(s′1, s
′
2) ∧ R2(s2, s

′
2) 26, 29, 34

36 Ĥ ⊆ S1 × S2 ∧ ∀ s1. 14, 15,

s1 ∈ I1 =⇒ ∃ s2 ∈ I2. Ĥ(s1, s2) 22,

∧ ∀ s2. Ĥ(s1, s2) =⇒ L1(s1) ∩ AP2 = L2(s2) 25,

∧ ∀ s2, s
′
1. Ĥ(s1, s2) ∧ R1(s1, s

′
1)

=⇒ ∃ s′2. Ĥ(s′1, s
′
2) ∧ R2(s2, s

′
2) 35

37 T1 � T2 36

Figure 2.10: Proof of G3 (Continued)

38



that for any value of s, none of the states (s, {}) can be reached in T1 (step 23),

if T2 simulates T1. We realize that by assuming the existence of a binary relation

Ĥ ⊆ S1 × S2 that satisfies the initial, invariant, and inductive simulation conditions

(step 1), and show that an arbitrary reachable T1-state sx (step 2) cannot have the

empty set as its second component (step 22).

Suppose that sx is located on a run of T1 named sT1 (step 5). Define a sequence ZT

and a word wT such that for each i, Zi
T equals the set of B-states associated with

siT1
(step 6) and wi

T equals the label of siT1
restricted to the atomic propositions in

AP ′ (step 7). Next, we show by induction that for all integer values of i, every pair

(Zi
T , w

i
T ) has to be a state of T2 (step 20) and hence Zi

T has to be non-empty by

definition of S2 (step 21) which is sufficient to prove that sx does not have the empty

set as its second component (step 22).

To prove the base case of the induction, we use the initial and invariant simulation

conditions (step 1) to show that (Z0
T , w

0
T ) has to be a T2-state that simulates s0T1

(step

12). For the inductive case, we assume that (Zj
T , w

j
T ) is a T2-state that simulates

sjT1
where j is an integer (step 13), and use the inductive and invariant simulation

conditions (step 1) to show that (Zj+1

T , wj+1

T ) is a T2-state that simulates sj+1

T1
(step

19).

2.4 Concluding Remarks

Our SSLTL verification strategy is meant to be implemented on top of an SMT solver

(such as CVC3 [3] or Z3 [47]) or an invariant checker (such as UCLID [6]). In this case,

function Check can be viewed as a call to the SMT solver or the invariant checker. Also,

the operation of function Unfold can be realized using a symbolic simulator such as the

one built in the UCLID tool.

The invariant e taken as input by function Verify can be determined through an iterative

process. As it is typical for induction, e is initially given a weak value (true for instance)

and gradually strengthened based on information from the counterexamples. The final

39



1 Ĥ ⊆ S1 × S2 ∧ ∀ s1.

s1 ∈ I1 =⇒ ∃ s2 ∈ I2. Ĥ(s1, s2)

∧ ∀ s2. Ĥ(s1, s2) =⇒ L1(s1) ∩ AP2 = L2(s2)

∧ ∀ s2, s
′
1. Ĥ(s1, s2) ∧ R1(s1, s

′
1)

=⇒ ∃ s′2. Ĥ(s′1, s
′
2) ∧ R2(s2, s

′
2)

2 sx ∈ Reach(T1)

3 ∃ π ∈ Runs(T1), i ∈ N. sx = πi 2

4 ∃ π. π0 ∈ I1 ∧ ∀ l ∈ N. R1(π
l, πl+1)

∧ ∃ i ∈ N. sx = πi 3

5 sT1 s0T1
∈ I1 ∧ ∀ l ∈ N. R1(s

l
T1
, sl+1

T1
)

∧ ∃ i ∈ N. sx = siT1
4

6 ZT ≡ λ i ∈ N. (λ (s, Z). Z) siT1

7 wT ≡ λ i ∈ N. L1(s
i
T1
) ∩ AP ′

8 Z0
T = {q̇} 5, 6

9 ∃ s2 ∈ I2. Ĥ(s0T1
, s2) 1, 5

10 s0T2
s0T2
∈ I2 ∧ Ĥ(s0T1

, s0T2
) 9

11 s0T2
= (Z0

T , w
0
T ) 1, 7, 8, 10

12 (Z0
T , w

0
T ) ∈ S2 ∧ Ĥ(s0T1

, (Z0
T , w

0
T )) 10, 11

13 j ∈ N ∧ (Zj
T , w

j
T ) ∈ S2

∧ Ĥ(sjT1
, (Zj

T , w
j
T ))

14 R1(s
j
T1
, sj+1

T1
) 5, 13

Figure 2.11: Proof of G4
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15 ∃ s′2. Ĥ(sj+1

T1
, s′2) ∧ R2(s

j
T2
, s′2) 1, 13, 14

16 sj+1

T2
Ĥ(sj+1

T1
, sj+1

T2
) ∧ R2(s

j
T2
, sj+1

T2
) 15

17 Zj+1

k = {q′ | ∃ q ∈ Zj
T , σ ⊆ wj

T .

∆(q, σ, q′)} 5-7

18 sj+1

T2
= (Zj+1

T , wj+1

T ) 6, 7,16, 17

19 (Zj+1

T , wj+1

T ) ∈ S2

∧ Ĥ(sj+1

T1
, (Zj+1

T , wj+1

T )) 16, 18

20 ∀ i ∈ N. (Zi
T , w

i
T ) ∈ S2 12, 13, 19

21 ∀ i ∈ N. Zi
T 6= {} 9, 10, 20

22 ∀ s. (s, {}) 6= sx 4, 5, 21

23 ∀ s. (s, {}) /∈ Reach(T1) 2,22

Figure 2.12: Proof of G4 (Continued)
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value of e is also dependent on the size of the induction window k. Larger values of k likely

lead to relatively weaker final values for e.

2.5 Summary

SSLTL is the largest fragment of LTL that is safe by syntax. Our approach for verifying

an SSLTL property about a model is to compile the property into an automaton and an

invariant. The automaton is combined together with the model to form the augmented

model. The invariant is checked against the augmented model using k-step induction. The

invariant can be manually strengthened to keep induction within the reachable state space.

Theorem 2.1 shows that our approach is sound and complete. A tool implementing our

approach is introduced in section 4.1.
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Chapter 3

Inter-Instruction Dependency

Correctness Criteria

This chapter explains our strategy for verifying whether a pipelined microprocessor pre-

serves data and control dependencies among instructions. Section 3.1 provides some back-

ground information about pipelining in microprocessors. It also covers the related research

in the area of formal verification of microprocessors. Section 3.2 presents a simple pipeline

example (called SimPipe) that we use for illustration throughout the chapter. Section 3.3

explains how pipelines are described based on the behavior of their parcels (or instructions).

Most of the concepts presented in section 3.3 are revisited and formalized in section 3.4.

Different aspects of the pipeline-correctness based on the behavior of parcels are ex-

pressed in section 3.5. Section 3.6 introduces the criteria based on which we determine

whether inter-parcel dependencies are correctly handled. In section 3.7, the criteria are

decomposed into smaller properties to reduce verification complexity. The soundness of

the decomposition is shown in section 3.8. The chapter is summarized in section 3.9.
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3.1 Background and Related Work

Subsection 3.1.1 describes pipelining in the context of microprocessors. It explains the

potential conflicts (i.e., hazards) that may arise in a pipelined system, and illustrates some

of the techniques to avoid those conflicts in pipelined microprocessors. Subsection 3.1.2

covers the related research conducted in the area of formal verification of microprocessors.

3.1.1 Pipelining in Microprocessors

Pipelining is an implementation technique used in digital systems (especially microproces-

sors) for enhancing performance [33, 22]. A pipelined system, also referred to as a pipeline,

is analogous to an assembly line: items are processed in an overlapped manner, and they

have to go through many steps each of which contributes something towards the final prod-

uct. The items (to be) processed by a pipeline are referred to as pipeline parcels, or just as

parcels. The steps in a pipeline are called stages. Different pipeline stages process different

parcels in parallel. The state of the pipeline (e.g., parcels progress) is recorded within a

set of storage elements (also known as the physical variables). Among storage elements,

the ones used in passing parcels from one stage to another are widely known as pipeline

registers.

Figure 3.1 shows a simple 5-stage pipeline. The life cycle of a parcel starts at stage S1

and ends at stage S5. During its life cycle, a parcel, described as in-flight, flows through the

pipeline and interacts with (i.e., reads from or writes to) the storage elements. A parcel

proceeds to a stage by moving to the pipeline register at its input, e.g., a parcel proceeds

to S3 by moving to E23. A parcel may skip some stages (e.g., S2) and may repeat others

(e.g., S4).

The major motivation for pipelining is to improve the performance of a system, as

measured by throughput∗, without a significant increase in the system’s area [55]. This

potential improvement in throughput is due to the overlapped processing of parcels as

opposed to the sequential processing of parcels in non-pipelined systems.

∗The throughput is defined as the average number of items (parcels) processed per unit of time
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Figure 3.1: A 5-stage pipeline
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The performance improvement achieved using a pipelined system over a non-pipelined

one comes at expense of a significant increase in design complexity. Figure 3.1 reflects some

of the structural complexities that may be present in non-linear pipelines. For instance,

some of the stages (e.g., S1) have multiple successors while others (e.g., S4) have multiple

predecessors. This sort of structural complexities must be considered in designing the

pipeline in order to avoid livelock and deadlock.

The structural aspect is just one of the hurdles encountered when designing a pipeline.

Generally, the hurdles every pipeline-designer has to deal with are widely known as pipeline

hazards. Although they are generic to pipelined systems, pipeline hazards are easier ex-

plained in the context of pipelined microprocessors where instructions are treated as parcels.

Conventionally, pipeline hazards are classified into three categories [22, 56]:

1. Structural Hazards : are resource conflicts that may happen when some of the in-flight

instructions try to access shared resources simultaneously. For instance in figure 3.1,

a structural hazard arises from the fact that the two instructions at stages S1 and S2

may try to proceed to stage S3 simultaneously.

2. Control Hazards : are changes in the sequential flow of instructions caused by either

flow-control instructions (e.g., branches and subroutine calls), exceptions, or inter-

rupts. In each of these three cases, the fetching sequence may be disrupted and

some of the in-flight instructions may be discarded. For instance when an instruc-

tion raises an exception, based on the severity of such exception, the processor may

need to cancel some of the in-flight instructions before it resteers the fetch to the

exception handler.

3. Data Hazards : are data dependencies that may exist among the in-flight instructions.

These dependencies impact the order in which instructions are processed by the

pipeline. There are three types of data dependencies:

(a) Read-After-Write (RAW): happens when an instruction (consuming instruc-

tion) depends on the result of an earlier instruction (producing instruction).

For instance in figure 3.2, there is a RAW dependency between instructions p1
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and p2 with respect to register r3. RAW is considered a true dependency because

it reflects the flow of data among instructions.

(b) Write-After-Write (WAW): happens when two instructions write their results

to the same location. This is called output dependency. In figure 3.2, p1 and p3

have an output dependency with respect to r3.

(c) Write-After-Read (WAR): happens when an instruction writes to a location

used as a source operand by an earlier instruction. For instance, figure 3.2

shows a WAR dependency, also known as antidependency, between instructions

p2 and p3 with respect to register r3.

Unlike RAW, neither WAW nor WAR affects the data flow. In fact, both WAW and

WAR dependencies, referred to as name dependencies, can be removed by a technique

that combines renaming with eager forwarding.

p1 : r3 ←− r1 ∗#7

p2 : r2 ←− r3 − r2

p3 : r3 ←− r1 +#3

Figure 3.2: Sequence of instructions

If they are not handled elegantly, pipeline hazards may result in frequent stalls, i.e.,

preventing the next instruction in the instructions stream from being executed during its

designated clock cycle [22], which obviously has a negative impact on the performance.

The risk of performance degradation pushes designers to employ aggressive optimizations

for dealing with pipeline hazards. This is the reason why pipeline hazards are potential

sources of bugs during the design phase. If pipeline hazards are not handled correctly,

they cause so-called pipeline conflicts. Both a pipeline deadlock and a premature read

(i.e., reading a stale value) for a source operand of an in-flight instruction are examples of

pipeline conflicts.

The research outlined in this thesis is closely related to control and data hazards. In

fact, when we refer to instruction (parcel) dependencies, we mean both types of hazards:
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control and data. Structural hazards are rarely referred to in the rest of this thesis since we

deal with term-level models of microarchitectural algorithms that tend to abstract away

low-level details which may cause structural conflicts. Our goal for what remains in this

section is to shed light on some of the microprocessor optimizations dealing with control

and data hazards.

As mentioned before, branches, exceptions, and interrupts are the main causes of control

hazards. For control hazards, we focus only on aspects related to the different variants of

branch instructions. Exceptions are similar to branches in the sense that every instruction

that may raise an exception can be considered a branch. In other words, exceptions can be

modeled by branches. Interrupts are different from exceptions and branches in the sense

that they occur non-deterministically. Hence, they can’t be modeled as branches.

Unlike other instructions, a branch instruction has to be executed before knowing with

certainty the location of the following instruction. There are many schemes for mitigating

the effects of branches:

1. Pipeline stall cycles: once a branch is encountered, the fetch is suspended until the

branch is executed. Obviously, this could lead to a significant loss in performance

gained through pipelining.

2. Branch delay slots: the compiler fills the slots sequentially following to the branch

with some instructions that are independent of the outcome of the branch. This

scheme does not scale well with deeper pipelines where the number of delay slots

gets larger to the extent that they cannot be filled in with useful instructions at

compilation time.

3. Branch prediction: experimental results show that branch instructions exhibit quite

predictable behavior patterns [55]. This scheme makes use of these patterns in iden-

tifying (through prediction) the instruction that follows the branch. Once identified,

that instruction is fetched and executed speculatively. The branch prediction is val-

idated when the branch execution is complete. If a misprediction is detected, the

pipeline has to go through three steps for recovering :

(a) the state of the pipeline at the branch-fetching time is restored.
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(b) the instructions in the the branch shadow are discarded.

(c) the fetch is resteered towards the correct location revealed after branch execu-

tion.

The performance-loss due to misprediction (branch penalty) is a major concern in

this scheme. Frequent mispredictions may have a devastating effect on performance.

Many innovative techniques are employed in order to achieve a high prediction ac-

curacy. The prediction is made for both the branch target and the branch outcome

(e.g., taken or not- taken). Predicting the branch target is typically done through a

lookup in the so-called Branch Target Buffer (BTB), which can be viewed as a cache

for branch targets tagged by branch addresses. Predicting the branch outcome can

be either done statically or dynamically. Predicting the branch outcome as always

not-taken, is an example of the static techniques. Dynamic techniques rely on keeping

the history of branch outcome and using it in making the prediction. In the simplest

case, the history is kept using a two-bit saturation counter and updated based on the

actual branch outcome. More sophisticated techniques, such as two-level adaptive

branch prediction [55], use an additional shift register to adapt to changing dynamic

branching context. With this kind of techniques, the prediction accuracy exceeds

95%.

Several techniques, on both the software and hardware levels, are used for resolving

data hazards. In the software techniques, the compiler is responsible for scheduling in-

structions in a way that preserves data dependencies while providing efficient utilization of

the resources. Such static-scheduling techniques were commonly used in many processors

(e.g., the MIPS family [29]) during the 1980s. The main disadvantage of static scheduling

is that the machine code generated by compilers lacks portability. In fact, a new implemen-

tation of a processor may require a recompilation of the existing programs. This is needed

in order to provide efficient instruction scheduling that makes use of the optimizations

introduced in the new implementation.

A variety of hardware techniques can be used for resolving different types of data haz-

ards. Some of them are described below:
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1. Interlocking : is a safe and simple way for resolving all types of data hazards. Ad-

ditional hardware circuitry detects data dependencies (both true and name depen-

dencies) between instructions. Once a data dependency between two instructions is

detected, pipeline interlocking circuitry stalls the execution of the dependent instruc-

tion until the other instruction has produced its result. Obviously, excessive pipeline

stalling is the main drawback of this technique since it considerably decreases the

pipeline performance.

2. Forwarding : also known as bypassing, is a method for handling RAW data hazards.

Extra hardware, called forwarding logic or bypass path, feeds the result of the producer

instruction back to the front-end of the pipeline (where the source operands are read)

in order to be consumed by the dependent instruction. The forwarding is done as

soon as the producer’s result is output by the execution units. This forwarding

mechanism minimizes the time during which the pipeline stalls the execution of

the consumer instruction. With deeply-pipelined and/or superscalar machines, an

efficient implementation of this mechanism is very expensive, because many bypass

paths and extra multiplexers have to be introduced.

3. Dynamic Scheduling : is an approach by which a hardware circuit, typically referred to

as a scheduler, rearranges instructions at execution time to reduce pipeline stalls while

preserving inter-instruction dependencies. Such out-of-order execution is the main

characteristic distinguishing dynamic scheduling techniques. Dynamic scheduling

simplifies the compiler design and solves the code-portability problem associated with

static scheduling techniques. It also handles many situations where data hazards are

unknown at compile time. Unfortunately, these benefits come at the expense of a

significant increase in hardware complexity.

4. Register Renaming : is a technique for removing name dependencies (WAW and

WAR) between instructions. In this technique, the architectural registers are im-

plemented using a larger number of physical registers. The key idea to eliminate

name dependencies is to avoid using the same physical register as a destination for

more than one of the in-flight instructions. Each new instruction is assigned a unique

physical register (as a destination) and the operands of the following instructions are

50



renamed accordingly.

5. Value Prediction: is a speculative technique for exploiting the value locality, i.e., like-

lihood of recurrence of values previously seen by the instructions [39]. The technique

allows instructions to proceed to execution with predicted values for their operands

before the actual values are computed. This aggressive approach has the potential

to push performance beyond the data-flow limit imposed by the true dependencies

among instructions. In concept, value prediction shares some similarities with branch

prediction. For instance, the predicted value has to be validated later on and a re-

covery sequence has to be triggered upon detecting a misprediction. However with

value prediction, a complete value for the source operand(s) (e.g., a 64-bit integer),

as opposed to a one-bit branch outcome, has to be predicted. Therefore, value pre-

dictors (with acceptable accuracies) are much more complicated than history-based

branch predictors. This is a major limitation on the applicability of value prediction.

3.1.2 Formal Verification of Microprocessors

This section discusses related work on formal verification of pipelined microprocessors.

One of the main challenges in verifying pipelined processors is deciding how to relate

the implementation states to the corresponding specification states. In order to justify

the previous statement, let us assume that the specification is a non-pipelined processor

implementing the Instruction Set Architecture (ISA). Assume further that the specification

is able to fetch and completely execute an instruction in a single step. This means that the

states visited by the specification during the execution of a program directly correspond

to the boundaries between program instructions. On the other hand, the implementation

processes multiple instructions in parallel and overlaps each step. Therefore, the states

visited by the implementation when it executes a program are not necessarily in a direct

match with the instruction boundaries. This is the reason why the implementation states

cannot be directly compared to the specification states. Consequently, an abstraction

function is needed to transform the implementation states into states that are comparable

to the corresponding specification states.
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Burch and Dill [8] present an automatic approach for verifying pipelined processors.

The basic idea behind their approach is to push the implementation from its current state

to a flushed state, a state where there are no in-flight instructions; a flushed state can then

be compared to a specification state. For flushing the pipeline, they use an abstraction

function that carries out two operations: stalling the pipeline front-end (i.e., no new in-

structions are allowed to enter the pipeline) and proceeding with normal execution until all

the in-flight instructions complete their execution. Unfortunately, the computational com-

plexity of flushing realistic pipelines, especially for those supporting out-of-order execution,

is unmanageable.

The original flushing approach does not handle any of the liveness aspects of the pipeline

(e.g., freedom of deadlocks). Velev [64] extends the flushing approach to handle liveness

under certain modeling restrictions. The idea is to simulate the pipeline for some fixed num-

ber of steps, n, known to be enough for making a progress (e.g., fetching an instruction).

Knowledge about the implementation of the pipeline is needed in this case to determine n.

Verification scalability can be significantly improved by decomposing the verification

task into smaller subtasks. Hosabettu, Srivas and Gopalakrishnan [25] devise their ab-

straction function as a composition of a set of completion functions, one per each in-flight

instruction. A completion function mimics the desired effect (on observables) of complet-

ing an instruction. The completion functions are called in the order by which instructions

enter the pipeline (i.e., program order). In case of out-of-order execution, program order

is extracted from the reorder buffer [26]. Calling completion functions in program order

has an effect (on observables) that is similar to that of flushing the pipeline. Devising

the abstraction function as a composition of multiple completion functions allows the use

of induction over pipeline stages in comparing implementation states against specification

states.

In both flushing and completion functions techniques, correctness requires comparing

implementation states (after abstraction) to specification states each time the implemen-

tation takes a step; this type of correctness is called single-step correctness. On the other

hand, multi-step correctness requires comparing implementation states against specifica-

tion states at certain points during the implementation run. For instance, Sawada and

Hunt [53] carry out the comparison whenever the implementation visits a state that hap-
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pens to be a flushed state; in this case an abstraction function is not needed. Aagaard,

Day and Luo [2] prove that multi-step correctness is equivalent to single-step correctness

under certain conditions.

Manolois [41] expresses the correctness of pipelined microprocessors in terms of a

Well-founded Equivalence Bisimulation (WEB). Verification is done by proving a WEB-

refinement theorem that guarantees that the pipeline has exactly the same infinite execu-

tions as the specification (ISA), up to stuttering. The theorem specifies the liveness of the

pipeline in terms of a function (called rank function) that maps the pipeline states to some

ordered values which can be used to measure progress (e.g., the number of steps needed to

be taken in order to fetch a new instruction). The WEB-refinement theorem is extended

to support a hierarchical form of compositional reasoning [42].

In another decomposition style, McMillan [44] uses knowledge about the pipeline behav-

ior to manually derive a set of model checking obligations. These obligations are localized

with respect to the logical sections of the pipeline. The verification relies on SMV support

for compositional model checking.

Aagaard [1] introduces a correctness statement (PipeOk) for pipelined circuits based

upon conventional pipeline hazards. The main idea behind this technique is that a pipelined

implementation is correct if it correctly handles its structural, control and data hazards.

Aagaard proves that PipeOk guarantees single-step correctness. PipeOk is expressed as

a set of correctness obligations associated with different types of pipeline hazards. Based

on PipeOk, Shehata and Aagaard [54] present a generic strategy for verifying register

renaming techniques. They introduce a set of predicates to characterize register renaming

schemes and provide a set of model-checking obligations that are sufficient to guarantee

the data-hazard obligations in PipeOk.

The conventional approach to the formal verification of a microprocessor is to construct

a single, monolithic, correctness criterion. The verification relies on lemmas and invariants

that are defined on a case-by-case basis for each pipeline. The conventional approach looks

at a state of the pipeline, which is problematic because the large number of in-flight parcels

causes capacity problems in verification.

Our work provides a general definition of correctness and a general verification strat-
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egy that decomposes the top-level correctness statement into simpler obligations about

data/control dependencies between parcels on individual variables. Our approach saves

the effort and potential mistakes of creating custom definitions of correctness and verifica-

tion strategies for each pipeline.

3.2 Pipeline Example: SimPipe

To illustrate the concepts introduced in this chapter, we use the three-stage pipeline

SimPipe shown in figure 3.3. The purpose of SimPipe is to add up the initial contents of

an unbounded memory array M . The ultimate goal is to store, in each location Mj , the

summation of the initial contents of the preceding locations added to its initial value, i.e.,
∑j

k=0
Ṁk where Ṁk is the initial value of location Mk.

SimPipe adds up the the memory contents incrementally. It uses a counter C to keep

track of the next memory location to be processed. Suppose C holds a value of j at a

given state. The first stage (S1) increments the counter C and reads the value of location

Mj+1. Next, stage S1 passes the new value of C (i.e., j+1) along with the value read from

location Mj+1 to the following stage S2 through registers C12 and D12 respectively. Stage

S1 also resets the (bubble-flag) register B12 to indicate that the contents of registers C12

and D12 are valid.

During the second stage (S2), the value stored in register D12 (i.e., the value of Mj+1) is

added to the contents of register D23. By doing so, register D23 would carry the summation

of memory locations M0 through Mj+1. Also during this stage, the values of B12 and C12

are copied to registers B23 and C23 respectively.

In the last stage (S3), the content of D23 is written to the memory location whose

address is the value of C23. In other words, the summation of locations from M0 to Mj+1

gets stored to location Mj+1. This write operation takes place if and only if the value of

B23 is false, i.e., the values carried by C23 and D23 are valid.

In order for SimPipe to work correctly, three initial conditions need to be satisfied.

First, registers C and D23 shall store a value of 0. Second, the value of D12 shall be equal
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Figure 3.3: SimPipe pipeline
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to the content of location M0. Third, registers B12 and B23 shall store a value of true.

There are no restrictions on the initial contents of registers C12 and C23.

The functionality of SimPipe is best described by the non-pipelined system shown in

figure 3.4. This system can be used as a reference model, i.e., the specification machine

against which SimPipe is compared. In the rest of this chapter, we refer to the pipelined

and non-pipelined versions of SimPipe shown in figures 3.3 and 3.4 as the implementation

and the specification of SimPipe respectively.

C

+

1

+
.
.
.

.

.

.

Mj

Mj+1

ADDR2
DIN2

Mj+2

Mj−1

M0

DOUT0/1
ADDR0/1

T WEN2

Figure 3.4: Non-pipelined specification of SimPipe

The specification of SimPipe achieves the same functionality of stages S1, S2, and

S3 combined together in a single step. At any given state, assuming register C holds a

value of j, the system reads the values of locations Mj and Mj+1, adds these two values

together, and writes the result back to location Mj+1. One major difference here is that
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the specification obtains the value of the summation
∑j

k=0
Ṁk directly from location Mj

unlike the case of the implementation where the summation value is read from register D23.

This is why a memory component that has two read ports is used in the specification.

3.3 Parcel-Centric View of Pipelines

The conventional analogy between a pipeline and an assembly line is made clear in subsec-

tion 3.1.1. In both systems, items (or parcels) in process go through a sequence of steps

(or stages) each of which makes a contribution towards the final product (or result). More

clearly in the case of a pipeline, the final result depends on the way the parcel interacts

with both the state of the pipeline and the other parcels.

In this section, we focus on explaining the key concepts used in modeling both parcel-

state and parcel-parcel (i.e., inter-parcel) interactions. These concepts are the basic build-

ing blocks of the correctness criteria presented in the rest of the thesis. Most of the topics

discussed in this section are formalized later in section 3.4.

We start by describing the different phases in the lifetime of a parcel. At any state,

a parcel can be in one of the following four phases: top, in-flight, retired, and discarded.

Before it enters the pipeline, a parcel is considered to be in the top phase. Once a parcel

is fetched, its phase changes to become in-flight. The phase stays in-flight until processing

the parcel is either completed or abandoned. At this point, the parcel exits the pipeline,

and as a consequence, its phase changes to either retired or discarded respectively.

Example 3.1. Suppose that a parcel in the SimPipe implementation, the pipeline shown

in figure 3.3, is identified by the natural number held by register C at the time when the

parcel starts to be processed. Suppose further that C holds a value of p at the current

state. This means that parcel p has just become in-flight. Parcels p − 1 and p − 2 are

also in-flight if p − 1 and p − 2 are valid identifiers (i.e., natural numbers). These two

identifiers are valid if and only if B12 and B23 store false values, respectively. All parcels

with identifiers greater than p have not entered the pipeline yet. Therefore, these parcels

are in the top phase. On the other hand, all the parcels identified with natural numbers
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less than p − 2 are no longer in-flight. Hence, these parcels are in the retired phase since

no parcels are discarded in SimPipe.

The state of any pipeline is stored in elements called the physical variables. The physical

variables should be distinguished from those variables that are mentioned in the specifi-

cations of the pipeline (e.g., Instruction Set Architecture). We refer to the latter as the

architectural variables. The architectural variables are not actual storage elements in the

pipeline and hence they are not part of the pipeline state. The state of the pipeline is

exclusively held by the physical variables since they are the actual storage elements of the

pipeline.

The state of the pipeline is interpreted using an address map that relates the physical

variables to the architectural variables. At any given state, each physical variable is mapped

to at most one architectural variable, and for each architectural variable there exists at

least one physical variable that is mapped to that architectural variable.

The mapping relationship between a physical variable and an architectural variable

can be either static or dynamic. For instance, an architectural register can be represented

in the processor implementation by two physical variables: an entry in the (physical)

register file and a bypass register. In the first case, the register-file entry is dedicated to

the architectural register and hence the mapping is static. In the second case, the bypass

register may, over time, carry values that belong to multiple architectural registers and

hence the mapping in this case is dynamic.

Example 3.2. The physical variables of the SimPipe implementation are C, B12, C12, D12,

B23, C23, D23, andMj for all j ∈ N. Based on the specification of SimPipe, the architectural

variables are C and Mj for all j ∈ N. The physical variable C is statically mapped to the

corresponding architectural variable C. On the other hand, D23 gets dynamically mapped

over time to different locations in the architectural memory. The location represented by

D23 at a given state depends on the contents of registers B23 and C23. If the value of B23 is

false (i.e., not a bubble), then D23 is mapped to the location whose address is held by C23,

because this is where the value in D23 will be stored. Otherwise, D23 does not carry valid

data, and consequently, it does not represent any locations in the architectural memory.
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The specifications of the pipeline determine which architectural variables a parcel should

read from and/or write to. We refer to the architectural variables that need to be read

by a parcel (according to the specifications) as the sources of the parcel. Similarly, the

architectural variables to which a parcel should write (according to the specifications) are

the destinations of the parcel.

Parcels interact with the state of the pipeline during the in-flight phase by reading

from and/or writing to the physical variables that are mapped to their sources and/or

destinations respectively. This parcel-state interaction may be speculative. A parcel may

write a speculative value to a physical variable v1 that is mapped to one of its destinations

va. If the parcel detects that the written value is incorrect, the parcel signals mispredict

and takes steps towards recovery. To recover from a misprediction, the parcel can either

make a corrective write or go to the discard phase. The corrective write can be made to

any physical variable v2, which may or may not be v1, as long as it is mapped to va. The

variable v1 becomes not mapped to va until its contents are corrected.

A parcel can also make an arbitrary number of speculative reads from physical variables

that are mapped to its sources. Similar to the write case, a parcel can read any of its sources

multiple times using different physical variables that are mapped to that source. The last

read by a parcel from any physical variable that is mapped to a source va is called the final

read from va. All but the final reads are considered speculative and therefore do not affect

the final results of the parcel.

The definition of the dual concept (final writes) is slightly different. A final write made

by a parcel to a destination va is the latest write of a new value to any physical variable

that is mapped to va. The major difference here is that the final write may take place

before the last write. In other words, after a parcel makes its final write to a detention va,

the parcel can copy that value to other physical variables that are mapped to va. Allowing

this behavior is important for modeling forwarding techniques in microprocessors. Similar

to the case of the reads, all but the final writes are considered speculative and hence should

not have any impact on the final “architectural” state of the pipeline†. The architectural

state of a pipeline is captured by the subset of physical variables that are mapped to

†Final state here means any state that can be reached from the current state by flushing the pipeline.
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architectural variables.

Both control and data flow among parcels in a pipeline have to be consistent with the

way parcels are ordered. In the context of microprocessors, this order takes the form of a

program that specifies both control and data dependencies among instructions (or parcels).

Inter-parcel dependencies manifest themselves in the way parcels read from and write to

the physical variables.

Two situations need to be addressed in order to handle inter-parcel dependencies cor-

rectly. The first situation is when a parcel p2 has a source va that is a destination of an

older parcel p1 (i.e., p1 comes in order before p2), and va is not a destination of any parcel

that comes in between p1 and p2. In this case, we refer to p1 and p2 as the producer and

the consumer respectively, and we briefly describe this situation by saying that there is a

direct dependency from p1 to p2.

The second situation is about a consumer that has no producer. This happens when a

parcel p has a source va that is not the destination of any older parcel. We describe this

situation by saying there is no dependency from any parcel to p. In section 3.6, we present

two minimally-restrictive rules to guarantee that inter-parcel dependencies are preserved

in both the direct-dependency and no-dependency situations.

3.4 Parcel-Based Instrumentation of Pipelines

Specifying criteria to judge the correctness of the implementation is a key step in formal

verification. In the case where the focus is on verifying whether a pipeline preserves de-

pendencies between parcels, devising these criteria requires a mechanism for identifying

parcels and marking certain events that take place during their lifetime. In this section,

we show how a pipeline can be systematically instrumented to track individual parcels and

monitor their interaction with each other as well as with the pipeline state variables (i.e.,

physical variables). We use this instrumentation technique in section 3.6 to specify prop-

erties to guarantee that parcel-to-parcel communication is done properly. Other aspects of

pipeline-correctness can be expressed using this instrumentation technique as explained in

section 3.5.
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We start by presenting a mathematical model for pipelines. A pipeline X is defined as

a six-tuple 〈V, Va, Q, Q̇, T,AM〉 where:

• V is the set of physical variables.

• Va is the set of architectural variables.

• Q is the set of states. Each state is an environment (over V ) that maps each variable

in V to a value. The value of a variable v ∈ V at a state q ∈ Q is denoted by q.v.

• Q̇ ⊆ Q is the set of initial states.

• T ⊆ Q × Q is the transition relation.

• AM ⊆ V × Va × Q is the address map predicate. Notationally, AMva
v q means that a

physical variable v is mapped to an architectural variable va at a state q. It is possible

that v does not represent any architectural variables at a state q, i.e., ¬AMv′a
v q for

all v′a ∈ Va.

Example 3.3. The address map predicate AM for the SimPipe implementation can be

formally defined by pattern-matching one of the following cases:

AMC
C q ≡ True

AMMk

Mj
q ≡ (j = k)

AMMk

D23
q ≡ ¬q.B23 ∧ (k = q.C23)

AM q ≡ False

where the last case matches all the patterns that are not matched by the first three cases.

Since D12, C12, and C23 are not used in exchanging either data or control information

among parcels, none of these physical variables is mapped to an architectural variable.

A run of the pipeline X is an infinite sequence of states σ =≪ σ0σ1σ2 . . .≫ where

σ0 ∈ Q̇ and T (σi, σi+1) for all i ∈ N. The set of runs of X is denoted as Runs(X ).

To be able to track parcels, we augment the pipeline with a mechanism for identifying

parcels and a set of predicates that captures relevant events in the lifetime of those parcels.

More specifically, the pipeline X is augmented by adding the following three components:
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1. Parcel identifiers : an ordered set 〈P,≺〉 where P is an infinite set of parcel identifiers

and ≺ ⊆ P × P is a total order over these identifiers.

Example 3.4. The ordered set 〈P,≺〉 used to identify parcels in SimPipe can be

defined to be 〈N, <〉

2. Phase predicates : used to probe the phase of a parcel at any given state. Four

predicates are used for that purpose:

(a) Top predicate (Top ⊆ P × Q): holds for parcels that have not entered the

pipeline yet.

(b) In-flight predicate (Infl ⊆ P × Q): holds for parcels that are being processed

by the pipeline.

(c) Discarded predicate (Dis ⊆ P × Q): holds for parcels that have been discarded

and no longer processed by the pipeline.

(d) Retired predicate (Ret ⊆ P × Q): holds for parcels that have been completely

processed and exited the pipeline.

Example 3.5. The phase predicates in the SimPipe implementation can be defined

as follows:

Top p q ≡ p > q.C

Infl p q ≡ p ≤ q.C ∧ p ≥ q.C − 2

Ret p q ≡ p < q.C − 2

Dis p q ≡ False

3. Interaction predicates : used to capture events in which parcels interact with the state

of the pipeline. Two predicates are used for that purpose (supposing D is the set of

values that can be held by variables in V ):

(a) Read predicate (Rd ⊆ V × Va × D × P × Q): holds when a parcel reads from

a variable. Notationally, Rdva
v d p q means that a parcel p reads a data value d

from a physical variable v that is mapped to an architectural variable va. Notice

that the mapping relationship between v and va should hold at the time when
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the read takes place, which can be formally captured as follows:

∀ σ, v, va, p, d, j. σ ∈ Runs(X ).

Rdva
v d p σj =⇒ AMva

v σj

Example 3.6. The read predicates in the SimPipe implementation can be de-

fined as follows:

RdC
C d p q ≡ p = q.C ∧ d = q.C ∧ AMC

C q

RdMk

Mj
d p q ≡ p = q.C ∧ d = q.Mj ∧ j = q.C + 1 ∧ AMMk

Mj
q

RdMk

D23
d p q ≡ ¬q.B12 ∧ p = q.C12 ∧ d = q.D23 ∧ AMMk

D23
q

Rd d p q ≡ False

(b) Write predicate (Wr ⊆ V × Va × D × P × Q): holds when a parcel writes to a

variable. The write predicate (Wr) is notationally similar to the read predicate

(Rd). However, when the write takes place at a state q, the mapping relationship

holds in the following state q′. Also, the written value becomes available at q′.

These two characteristics are described by the following formula:

∀ σ, v, va, p, d, j. σ ∈ Runs(X ).

Wrvav d p σj =⇒ AMva
v σj+1 ∧ σj+1.v = d

Example 3.7. The write predicates in the SimPipe implementation can be

defined as follows:

WrCC d p q ≡ p = q.C ∧ d = q.C + 1

WrMk

Mj
d p q ≡ ¬q.B23 ∧ p = q.C23 ∧ d = q.D23 ∧ j = k

WrMk

D23
d p q ≡ ¬q.B12 ∧ p = q.C12 ∧ d = q.D12 + q.D23 ∧ k = q.C12

Wr d p q ≡ False

In addition to the parcel predicates used for augmenting the pipeline X , we introduce

four shortcut predicates:

1. Fetch predicate (Fetch ⊆ P × Q): holds when a parcel (among those in the top

phase) is about to enter the pipeline. This happens right before a parcel becomes

in-flight. The following formula captures the semantics of the fetch predicate:

∀ σ, p, j. σ ∈ Runs(X ).

Fetch p σj ⇐⇒ Top p σj ∧ Infl p σj+1
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2. Retire predicate (Retire ⊆ P × Q): holds when an in-flight parcel is about to exit the

pipeline after completion. This is immediately before that parcel becomes retired.

The semantics of the retire predicate are formalized as follows:

∀ σ, p, j. σ ∈ Runs(X ).

Retire p σj ⇐⇒ Infl p σj ∧ Ret p σj+1

3. Final-read predicate (FRd ⊆ V × Va × D × P × (N → Q) × N): holds when

a parcel reads a value associated with an architectural variable and afterwords the

parcel makes no other reads from any physical variables mapped to that architectural

variable. The final-read predicate is formalized as:

∀ σ, v, va, p, d, j. σ ∈ Runs(X ).

FRdva
v d p σ j

⇐⇒

Rdva
v d p σj

∧ ∀ v′, d′, k. k > j. ¬(Rdva
v′ d′ p σk)

4. Final-write predicate (FWr ⊆ V × Va × D × P × (N → Q) × N): holds in a

state at which a parcel writes the final value of an architectural variable. Unlike the

definition of the final read, following writes may happen as long as the value being

written is always the same. The final-write predicate is formalized as:

∀ σ, v, va, p, d, j. σ ∈ Runs(X ).

FWrvav d p σ j

⇐⇒

Wrvav d p σj

∧ ∀ v′, d′, k. d′ 6= d, k > j. ¬(Wrvav′ d′ p σk)

Other variations of the predicates presented in this section are needed to express dif-

ferent aspects of correctness concisely. Instead of introducing new predicates, we overload

the predicates presented above in three different ways:

1. We use a run instead of a state to mean that at least one of the states within that

run satisfies the predicate. For instance, Retire p σ where σ ∈ Runs(X ) is equivalent

to ∃ i. Retire p σi.
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2. We remove the state argument when the predicates are used in a context in which

states are implicit. For example, in the context of linear temporal logic, we write

G ¬Wrvav p to mean that Wrvav p q never holds in any future state q.

3. We remove arguments other than the state as a means of existential quantification.

For instance, Wrva p q is equivalent to ∃ v′, d′. Wrvav′ d′ p q. Using this notation, we

can briefly express an anonymous write to a physical variable v at a state q as: Wrv q.

3.5 Parcel-Based Correctness of Pipelines

This section describes ongoing work in collaboration with Aagaard. Our individual work

resumes in section 3.6. The collaborative work is aimed at a general, high-level, and

complete definition of correctness independent of any particular verification technique.

Inter-parcel correctness is a key aspect of overall correctness. As defined later in this

section, inter-parcel correctness refers to the behavior of data values across potentially

distant points in time in an infinite stream of computation. In section 3.6, we take the

stream- and data-based definition of inter-parcel correctness and translate it into a form

that is more amenable to automated verification.

The focus in this section is to express the correctness of a pipeline in terms of the

behavior of its parcels. The main idea is to compare the writes made by the parcels in a

pipeline (i.e., implementation) against those made by the corresponding parcels in a non-

pipelined reference model (i.e., specification). The pipeline is said to be correct if those

two sets of writes are equivalent.

Suppose that the implementation is a pipeline I = 〈Vi, Va, Qi, Q̇i, Ti,AM〉 that is aug-

mented with the four components:

1. an ordered set of parcel identifiers: 〈Pi,≺〉.

2. a set of phase predicates: {Top, Infl,Ret,Dis}.

3. a set of interaction predicates: {Rd,Wr}.
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4. a set of shortcut predicates: {Fetch,Retire,FRd,FWr}.

By definition, the architectural variables in the implementation are those variables

referenced by the specification. On that basis, we model the specification as a pipeline

whose physical variables match those in Va. In other words, let the specification be a

pipeline S = 〈Va, Va, Qs, Q̇s, Ts, {(va, va, qs) | va ∈ Va ∧ qs ∈ Qs}〉. Notice that the address

map predicate is defined such that each variable is mapped to itself.

In order to track the writes of parcels in the specification, S is augmented with two

components:

1. an ordered set of parcel identifiers. To simplify the presentation, we assume without

loss of generality that parcels in the specification are identified by natural numbers,

i.e., the ordered set of identifiers is 〈N, <〉.

2. a write predicate SWr.

In the specification, parcels are neither overlapped nor speculatively processed. In each

step the specification fetches a new parcel and processes it until completion. Therefore,

parcels processed in a given run of the specification can be simply identified by state indices

with that run. On the contrary, parcels in the implementation may be overlapped and/or

discarded while being processed. Only those parcels that retire in the implementation

match parcels in the specification.

Whether a parcel pi in an implementation run σi matches a parcel ps in a specification

run σs, denoted pi
σiσs===
PCL

ps, is defined by induction over ps. In the base case, where ps = 0,

pi matches ps if and only if pi is the first parcel to retire. In the inductive case, where

ps > 0, assuming parcels in the implementation retire in order, pi matches ps if and only

if pi is the first parcel to retire after the parcel that matches ps − 1. The parcels-matching

relation ===
PCL

, which is called parcels equality, is defined as follows:
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pi
σiσs===
PCL

ps ≡

BASE (ps = 0) :

Retire pi σi

∧ ∀ p′i ≺ pi. ¬(Retire p′i σi)

INDUCTIVE (ps > 0) :

Retire pi σi

∧ ∃ p′i ≺ pi.

p′i
σiσs===
PCL

ps − 1

∧ ∀ p′′i . p
′
i ≺ p′′i ≺ pi. ¬(Retire p′′i σi)

The equivalence between the final writes made by pi during σi and those made by ps

during σs is denoted as pi
σiσs===
FWr

ps. Such an equivalence means that both pi and ps write to

the same set of architectural variables. It also means that the values produced during the

final writes of pi are the same as those written by ps. The relation ===
FWr

, which is called

final-writes equality, is defined as follows:

pi
σiσs===
FWr

ps ≡

∀ va.

Wrva pi σi ⇐⇒ SWrva ps σs

∧ ∀ vi, j, k.

FWrvavi pi σi j

∧ SWrva ps σ
k
s

=⇒

σj+1

i .vi = σk+1
s .va

Given the parcels equality and the final-writes equality defined above, the correctness

is stated by saying that: the final writes of each parcel that retires in the implementation

I shall be equivalent to the writes of the matching parcel in the specification S. We refer to

this correctness statement as the final-writes containment. The final-writes containment is

formally expressed as follows:

∀ σi, pi, ps. σi ∈ Runs(I). ∃ σs ∈ Runs(S).

pi
σiσs===
PCL

ps =⇒ σi
pips===
FWr

σs

The final-writes containment can be decomposed into two criteria. The first of which

guarantees that a parcel in the implementation would behave correctly in isolation from
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other parcels. We refer to this aspect as the intra-parcel correctness. The main purpose

of the intra-parcel correctness is to make sure that the datapath of the implementation

meets the specification. The intra-parcel correctness also covers some aspects related to

parcels flow. For instance, it ensures that a parcel is not lost, duplicated, or created, and

guarantees that a parcel is steered to the right stage. The second criterion addresses the

interaction between parcels and guarantees that inter-parcel dependencies are preserved.

We refer to this aspect as the inter-parcel (dependency) correctness. The goal of the inter-

parcel correctness is to ensure that both control and data flow in the implementation are

consistent with the specification.

The intra-parcel correctness states that: if the final values read by an implementation

parcel pi are the same as those read by the corresponding specification parcel ps, then

the final values written by pi shall be identical to those written by ps. The intra-parcel

correctness is formally expressed as follows:

∀ σi, pi, ps. σi ∈ Runs(I). ∃ σs ∈ Runs(S).

pi
σiσs===
PCL

ps

∧ (∀ va, d. FRd
va d pi σi ⇐⇒ σps

s .va = d)

=⇒ ∀ v′a, d
′. FWrv

′

a d′ pi σi ⇐⇒ SWrv
′

a d′ ps σs

The inter-parcel correctness can be viewed as a protocol for parcel communications

which guarantees that parcel dependencies are correctly handled by the implementation.

This protocol takes the form of two rules that address the direct-dependency and the no-

dependency situations explained in section 3.3. Both rules rely on the way parcels are

ordered in the implementation and make no reference to the specification. Consequently,

no reference model is needed for verifying these two rules.

We refer to the first rule as the producer-consumer rule. This rule addresses the case

when there is a direct dependency from a parcel p1 to a parcel p2 with respect to an

architectural variable va. The rule ensures that there is a physical variable vi through

which the data is passed from p1 to p2 properly. In other words, p1 writes the final value of

va to vi, p2 makes its final read of va from vi, and no other parcel writes to vi in between.

The direct-dependency rule is formally stated as follows:
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∀ σi, va, p1, p2. σi ∈ Runs(I).

Retire p1 σi ∧ Retire p2 σi ∧ p1 ≺ p2

∧Wrva p1 σi ∧ Rdva p2 σi ∧ ∀ p. p1 ≺ p ≺ p2. ¬(Wrva p σi)

=⇒

∃ vi, x, y.

FWrvavi p1 σi x ∧ FRdva
vi

p2 σi y ∧ ∀ z. x < z < y. ¬(Wrvi σ
z
i )

The second rule is called the no-producer rule. This rule considers the case in which

a parcel p does not depend on any older parcel with respect to an architectural variable

va. The rule guarantees that p shall make its final read of va from a physical variable vi to

which no parcels make any writes. The no-dependency rule is expressed as follows:

∀ σi, va, p. σi ∈ Runs(I).

Retire p σi

∧ Rdva p σi ∧ ∀ p
′ ≺ p. ¬(Wrva p′ σi)

=⇒

∃ vi, x.

FRdva
vi

p σi x ∧ ∀ y < x. ¬(Wrvi σ
y
i )

Specifying and verifying the inter-parcel correctness is one of the main contributions of

this thesis. In section 3.6, we provide another version of the inter-parcel correctness that

can be used in verifying implementations with abstract datapaths. Through the case study

in chapter 4, we illustrate how the inter-parcel correctness can be verified in the context

of microprocessors.

3.6 Specifying Inter-Parcel Correctness

This section introduces the criteria we use in determining whether a pipelined implemen-

tation preserves the dependencies between parcels. The criteria are formulated as two

properties that correspond to the two inter-parcel rules presented in section 3.5. The first

property describes the interaction between any two parcels where the leading parcel pro-

duces data to be consumed by the trailing parcel. In the second property, we address the

case in which a parcel consumes data that is not produced by any leading parcel. The first

is called producer-consumer property while the second is called the no-producer property.
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The purpose of the inter-parcel rules is to define correctness from a mathematical per-

spective. The rules emphasize clarity and generality, and make use of infinite streams,

comparison of data values across distant points in time and other features that are difficult

to verify automatically. To simplify verification, we introduce additional instrumentation

that allows us to translate these rules about infinite streams into properties about individ-

ual states that do not refer to data values.

We introduce instrumentation predicates to represent complex expressions in rules. The

first category of complex expressions makes reference to data values. By replacing refer-

ences to data values with instrumentation predicates, we reduce verification complexity by

enabling the datapath to be abstracted away. The second category of complex expressions

describe complicated sequences of events. Using an instrumentation predicate, verifying a

rule is decomposed into two simpler tasks: (1) verifying the rule with the predicate in place

of the complex expression and (2) verifying that the behavior of the predicate is consistent

with the expression that it replaces.

We introduce three instrumentation predicates. The definitions of these predicates will

vary from pipeline to pipeline. With each predicate, we give a criterion that the predicate

must satisfy to ensure that the definition of the predicate is consistent with the intention.

For an instrumented pipeline I as described in section 3.5, the predicates are:

1. Direct-dependency predicate (DDep ⊆ Va × P × P × Q): marks a direct-dependency

between two parcels with respect to an architectural variable. For instance, DDepva p1 p2 q

means that, at a state q, there is a direct-dependency from a parcel p1 to a parcel p2

with respect to an architectural variable va. In other words, va is both a destination

of p1 and a source of p2, and va is not a destination of any parcel that comes in

between p1 and p2, and eventually retires. The direct-dependency predicate should

be defined such that:
∀ σi, va, p1, p2, x. σi ∈ Runs(I).

Retire p2 σx
i ∧ DDepva p1 p2 σx

i

⇐⇒

Retire p1 σi ∧ Retire p2 σi ∧ p1 ≺ p2

∧Wrva p1 σi ∧ Rdva p2 σi

∧ ∀ p. p1 ≺ p ≺ p2. Retire p σi =⇒ ¬(Wrva p σi)
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2. No-dependency predicate (NoDep ⊆ Va × P × Q): holds when a parcel does not

depend on any leading parcels with respect to an architectural variable. For instance,

NoDepva p q means that, at a state q, there is no dependency from any older parcel

to a parcel p with respect to an architectural variable va. Meaning that va is a source

of p2 and not a destination of any parcel that comes before p1, and eventually retires.

The no-dependency predicate should be defined such that:

∀ σi, va, p, x. σi ∈ Runs(I).

Retire p σx
i ∧ NoDepva p σx

i

⇐⇒

Retire p σi

∧ Rdva p σi

∧ ∀ p′ ≺ p. Retire p σi =⇒ ¬(Wrva p′ σi)

3. Mispredict predicate (Mp ⊆ Va × P × Q): holds when a parcel signals mispredict

on the value of an architectural variable. The mispredict predicate should be defined

such that:
∀ σi, va, d, d

′, x, x′. σi ∈ Runs(I).

Wrva d p σx
i ∧Wrva d′ p σx′

i ∧ d 6= d′ ∧ x < x′

=⇒

∃ y. x < y ≤ x′. Mpva p σy
i

Figures 3.5 and 3.6 use two timing diagrams to describe the scenarios specified in the

producer-consumer and no-producer properties respectively. The x-axis represents the

states. The y-axis represents the predicates. The predicates are grouped based on the

parcels and/or the variables that they share. The values of the predicates are denoted by

circles. A solid circle denotes a value of true while a hollow circle denotes a value of false.

For the phase predicates, we use the first letter to imply a true value, i.e., a circle with

the letter “I” implies that the predicate “Infl” is true, etc. At any given state, the value of

a predicate can be either a precondition or a postcondition in the specified scenario. The

value is a postcondition by default. All preconditions are marked.

In figure 3.5, we sketch the scenario specified in the producer-consumer property. The

scenario marks some events of interest taking place during the lifetime of two arbitrary
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parcels p1 and p2 representing the producer and the consumer respectively. The scenario

highlights four preconditions that need to be satisfied in order to enforce the producer-

consumer relationship between p1 and p2.

The scenario begins at some state qF1 where p1 enters the pipeline (first precondition)

and shows that p1 eventually becomes retired (second precondition). The scenario ends

when the consumer parcel p2 exits the pipeline at some state qR2 (third precondition) where

there is a direct dependency from p1 to p2 with respect to some architectural variable va

(fourth precondition).

Mpva p1

Wrvavi p1

Rdva
vi

p2

Rdva p2

Wrvi

p1

p2

DDepva p1 p2

2: Precondition

4: Precondition

1: Precondition

RT

vi

p1/p2

RI

3: Precondition

Phase

Phase

I R
qF1

qR2

qw

qr

qR2qrqwqF1
States

Figure 3.5: Producer-consumer property
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As shown in figure 3.5, the key to satisfying the producer-consumer property is the

existence of some physical variable vi (mapped to va) through which the data is passed

from the producer p1 to the consumer p2. The way the producer-consumer relationship is

enforced in the property is threefold. First, the producer p1 makes a final write to vi at

some state qw. Second, the consumer p2 makes a final read from vi at some state qr. Third,

to insure the data is passed correctly from the producer to the consumer, no other parcel

is allowed to write to vi in between states qw and qr.

The producer-consumer property makes no restrictions on the way the producing and

consuming parcels interact with the pipeline state prior to making their final write and read

respectively. In other words, the producer p1 may make an arbitrary number of speculative

writes to those physical variables that are mapped to va before reaching qw. Similarly, the

consumer p2 may speculatively read from the physical variables that are mapped to va for

an arbitrary number of times before its final read at state qr.

The producer-consumer property, sketched in figure 3.5, can be formally expressed in

the linear temporal logic as follows:
PropProdCons ≡

∀ va, p1, p2. ∃ vi.
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
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




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The no-producer property is pictorially represented in figure 3.6. The scenario sketched

in the figure begins from the initial state q0 and involves some events related to an arbitrary
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consuming parcel p. The scenario has three preconditions. First, parcel p enters the pipeline

at some state qF . Second, p exits at some following state qR. Third, at state qR, p does

not have any dependencies with respect to specification register va (third precondition).

Rdva
vi

p

Rdva p

Wrvi

p

NoDepva p

3: Precondition

vi

RI

2: Precondition

Phase
IT

1: Precondition

qR

qr

q0

qF

qRqrq0
StatesqF

Figure 3.6: No-producer property

If the three preconditions are satisfied, the no-producer property guarantees the exis-

tence of some physical variable vi from which p makes its final read for the value of va at

some state qr. It also guarantees that no parcels have written to vi at any state before qr.

Hence, the initial value of vi is kept unchanged until it gets consumed by p.

Similar to the producer-consumer property, the no-producer property allows the con-

sumer p to freely interact with pipeline state before making its final read at qr. The

no-producer property is formally specified in the linear temporal logic as follows:
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PropNoProd ≡

∀ va, p. ∃ vi.






























F (Fetch p ∧ X F (Retire p ∧ NoDepva p))

=⇒




















¬Wrvi
W










Rdva
vi

p

∧ X







¬Rdva p

W

Retire p ∧ NoDepva p



































































3.7 Decomposing Inter-Parcel Correctness

In section 3.6, the inter-parcel dependency correctness is presented in the form of two prop-

erties: PropProdCons and PropNoProd. Both of these properties address some key

events in the lifetime of any parcel and describe the interaction between parcels that may

or may not overlap in time. Due to the temporal complexity of properties PropProdCons

and PropNoProd, we break them down into a set of smaller properties that are more

suitable for model checking. In breaking down PropProdCons and PropNoProd, we

introduce an extra predicate:

Source predicate (Src ⊆ Va × P × Q): shows whether an architectural variable is the

source of a parcel.

In this section, we focus on explaining the properties resulting from the decomposition.

The soundness of the decomposition is proven in section 3.8. We classify the properties pre-

sented here into two categories: obligations (subsection 3.7.1) and consistency conditions

(subsection 3.7.2). The purpose of the obligations is to uncover bugs in the implementa-

tion. The consistency conditions on the other hand capture inconsistencies in predicates

definitions and prevent vacuous verification. Although this classification is based on con-

ceptual rather than syntactical differences, the consistency conditions are generally simpler

than the obligations.
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The decomposition of properties PropProdCons and PropNoProd is illustrated in

figures 3.7 and 3.8 respectively. First, properties PropProdCons and PropNoProd are

decomposed into 4 obligations and 11 consistency conditions. Then, two out of the four

obligations (Ob1 and Ob3) are further broken down into two (smaller) obligations and

three consistency conditions.

Cn8

Ob4

Cn15

Ob1

Cn9

Cn12

Ob1a

Cn1b

PropProdCons

Cn5

Cn7 Cn10

Cn13

Cn6

Cn11

Ob2
Cn1c MRWr

Phase

Enter/Exit

DDep

Rd

≺

Figure 3.7: Decomposition tree of the producer-consumer property

3.7.1 Obligations

Obligation Ob1 says that the producer does not signal mispredict between its final write

and the consumer’s final read. Obligation Ob2 says that the producer does not signal

mispredict after the consumer’s final read. Together, these two obligations prevent bugs

whereby a consumer reads an incorrect speculative value from a producer. In the case that

a consumer is dependent upon the initial state (i.e., is not dependent on any older parcel),

obligation Ob3 ensures that no parcel writes to the variable before the consumer does its

final read.
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Cn14

Cn8

Ob4

Cn15

Ob3

Cn9

Cn12
Ob3a

Cn3b

PropNoProd

PWr

Phase

Enter/Exit

NoDep

Rd

Figure 3.8: Decomposition tree of the no-producer property

Unlike the rest of the properties, obligations Ob1 and Ob3 address events in the past.

To break down these obligation into smaller properties about present and future time, we

introduce two additional predicates. The purpose of these predicates is to capture history

information about the writes to physical variables. The two predicates can be described

as follows:

1. Most-recent-write predicate: MRWrvavi p q means that the most recent write to a

physical variable vi has been made by a parcel p, and at the time of that write vi was

mapped to an architectural variable va.

2. Past-write predicate: PWrvavi p q means that a parcel p has written to a physical

variable vi at some point in the past and at the time of that write vi was mapped to

an architectural variable va.

Obligation Ob1 is decomposed into obligation Ob1a and consistency conditions Cn1b

andCn1c. ObligationOb1a uses the most-recent-write predicate to say that the consumer

makes its final read from a variable that was written to most recently by the producer.

The consistency conditions ensure that the most-recent-write predicate is consistent with

the behavior of the pipeline.

77



Obligation Ob3 is decomposed into obligation Ob3a and consistency condition Cn3b.

Obligation Ob3a uses the past-write predicate to ensure that no parcel has written to the

variable from which the consumer does its final read. The consistency condition describes

the required characteristics of the past-write predicate.

The final obligation (obligation Ob4) says that if a parcel should read an architectural

variable, then it performs the read before retirement. The obligations are described in

more detail over the rest of this subsection.

Ob1‡: No misprediction is signaled between producer’s final write and con-

sumer’s final read.

If a parcel p2 makes its final read for an architectural variable va using a physical

variable vi, and at the time p2 retires there exists a direct dependency from a parcel

p1 to p2 with respect to va, then before the current state there exists a write for the

value of va made to vi by p1. From that state at which p1 writes to vi, p1 shall not

signal mispredict on the value of va.
∀ vi, va, p1, p2.

G











Rdva
vi

p2

∧ X (¬Rdva p2 U (¬Rdva p2 ∧ Retire p2 ∧ DDepva p1 p2))

=⇒

X̂ ((¬Wrva ∧ ¬Mpva p1 ∧ (Infl p1 ∨ Ret p1)) Û (Wrvavi p1 ∧ Infl p1))











Ob2: No misprediction is signaled after consumer’s final read.

If a parcel p2 makes a final read for the value of an architectural variable va using a

physical variable vi, and at the time p2 retires there exists a direct dependency from

a parcel p1 to p2 with respect to va, then p1 must not signal mispredict on the value

of va.
∀ vi, va, p1, p2.

G











Rdva
vi

p2

∧ X (¬Rdva p2 U (¬Rdva p2 ∧ Retire p2 ∧ DDepva p1 p2))

=⇒

¬Mpva p1 W Ret p1











‡
Ob1 is decomposed into Ob1a, Cn1b and Cn1c.
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Ob3§: No writes happen before consumer’s final read.

If a parcel p2 makes a final read for the value of an architectural variable va using a

physical variable vi, and at the time p2 retires it has no dependencies with respect to

va, there exists no writes to vi prior to the current state.
∀ vi, va, p.

G











Rdva
vi

p

∧ X (¬Rdva p U (¬Rdva p ∧ Retire p ∧ NoDepva p))

=⇒

X̂ Ĝ ¬Wrva











Ob4: Source is read before retirement.

If a parcel p enters the pipeline, then starting from the next state, p shall not retire

before reading va if va is marked as its source at retirement time.
∀ p.

G (Fetch p =⇒ X (¬(Retire p ∧ Srcva p) W Rdva p))

Ob1a: Consumer makes its final read from a variable where the most recent

write to that variable is made by producer.

If a parcel p2 makes a final read for the value of an architectural variable va using a

physical variable vi, and at the time p2 retires there exists a direct dependency from

a parcel p1 to p2 with respect to va, then the most recent write to vi must have been

done by p1.
∀ vi, va, p1, p2.

G











Rdva
vi

p2

∧ X (¬Rdva p2 U (¬Rdva p2 ∧ Retire p2 ∧ DDepva p1 p2))

=⇒

MRWrvavi p1











Ob3a: Consumer’s final read is made from a variable to which no parcel has

written.

If a parcel p2 makes a final read for the value of an architectural variable va using a

§
Ob3 is decomposed into Ob3a and Cn3b.
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physical variable vi, and at the time p2 retires it has no dependencies with respect to

va, then in the current state vi shall not be marked with any past writes.
∀ vi, va, p.

G











Rdva
vi

p

∧ X (¬Rdva p U (¬Rdva p ∧ Retire p ∧ NoDepva p))

=⇒

¬PWrvi











3.7.2 Consistency Conditions

Consistency conditions Cn1b, Cn1c and Cn3b describe the relationship between the

write predicate, and the most-recent-write and past-write predicates. Together, conditions

Cn1b and Cn1c guarantee that the most-recent-write predicate is reset when the parcel

is fetched, becomes true after the parcel writes, and stays true unless another parcel writes

or a misprediction is signaled. Condition Cn3b ensures that the past-write predicate holds

once the parcel writes.

The main characteristics of the parcel order are described by consistency conditions

Cn5 and Cn6. The first condition states that parcel order shall be fixed over time. The

second condition says that when a parcel is fetched, no younger parcels shall be in-flight.

Consistency conditions Cn7 through Cn10 address the relationship between different

phase predicates. Condition Cn7 says that an in-flight parcel cannot be in the retired

phase. Conditions Cn8 and Cn9 imply that retired parcels and discarded parcels never

become in-flight. Similarly, condition Cn10 says that a discarded parcel cannot become

retired.

Consistency conditions Cn11 and Cn12 describe how the phase of a parcel changes

when it enters or exits the pipeline respectively. Condition Cn11 says that a parcel needs

to be in the top phase before it becomes in-flight. Condition Cn12 states that when a

parcel ceases to be in-flight, it either becomes retired or discarded.

The dependency predicates are the focus of consistency conditions Cn13 and Cn14.

Condition Cn13 says that when there is a direct dependency between two parcels on one

of the architectural variables, the producer shall be the older parcel and the variable shall
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be the source of the consumer. Condition Cn14 states that if the no-dependency predicate

holds for a parcel on one of the architectural variables, the variable shall be the source of

that parcel.

The last consistency condition Cn15 ensures that when an architectural variable is

read by a parcel, there exists a corresponding physical variable from which the read is

made. The rest of this subsection has more details about the consistency conditions.

Cn1b: Most-recent-write predicate is set to false at fetch time.

If at the current state a parcel p enters the pipeline, then in the next state p shall

not be marked as the parcel which made the most recent write to a physical variable

vi which is mapped to an architectural variable va.
∀ vi, va, p.

G (Fetch p =⇒ X ¬MRWrvavi p)

Cn1c: Most-recent-write predicate becomes true after write and stays true

unless another parcel writes or a misprediction is signaled.

If in the next state a parcel p is marked as the parcel making the most recent writer

to a physical variable vi mapped to an architectural variable va, then in the current

state, either p writes to vi, or else three conditions shall hold: p is marked as the

parcel making the most recent write to vi, p does not signal mispredict on the value

va, and no other parcel writes to vi.
∀ vi, va, p.

G (X MRWrvavi p =⇒Wrvavi p ∨ (MRWrvavi p ∧ ¬Mpva p ∧ ¬Wrvi))

Cn3b: Past-write predicate is set to true after any write.

If a parcel writes to a physical variable vi or vi is marked with a past write, then vi

shall be marked with a past write in the next state.
∀ vi.

G ((PWrvi ∨Wrvi) =⇒ X PWrvi )

Cn5: Parcel order does not change over time.

If in the next state a parcel p1 comes in order before a parcel p2, the same shall be

true in the current state.
∀ p1, p2.

G (X p1 ≺ p2 =⇒ p1 ≺ p2)
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Cn6: None of the younger parcels are in-flight at fetch time.

If a parcel p1 enters the pipeline, in the next state the phase of every younger parcel

p2 shall not be in-flight.
∀ p1, p2.

G (Fetch p1 ∧ p1 ≺ p2 =⇒ X ¬Infl p2)

Cn7: In-flight implies not retired.

If a parcel p is in the in-flight phase, it can not be in the retired phase.
∀ p.

G (Infl p =⇒ ¬Ret p)

Cn8: Retired parcel never becomes in-flight.

If a parcel p is in the retired phase, it never becomes in-flight.
∀ p.

G (Ret p =⇒ G ¬Infl p)

Cn9: Discarded parcels never become in-flight.

If a parcel p is in the discarded phase, it never becomes in-flight.
∀ p.

G (Dis p =⇒ G ¬Infl p)

Cn10: Discarded parcels never become retired.

If a parcel p is in the discarded phase, it shall not be in the retired phase.
∀ p.

G (Dis p =⇒ G ¬Ret p)

Cn11: Only parcels in top may become in-flight.

For a parcel p to change its phase to become in-flight in the next state, it has to be

currently in the top phase.
∀ p.

G (¬Infl p ∧ X Infl p =⇒ Top p)
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Cn12: In-flight changes to retired or discarded.

If an in-flight parcel p changes its phase in the next state, it becomes either retired

or discarded.
∀ p.

G (Infl p ∧ X ¬Infl p =⇒ X (Ret p ∨ Dis p))

Cn13: Direct-dependency predicate is stronger than source predicate.

If there is a direct dependency from one parcel p1 to another parcel p2 with respect

to an architectural variable va at the time p2 retires, then p1 shall come before p2 in

order and va shall be a (final) source of p2.
∀ va, p1, p2.

G (DDepva p1 p2 ∧ Retire p2 =⇒ p1 ≺ p2 ∧ Srcva p2)

Cn14: No-dependency predicate is stronger than source predicate.

If a parcel p has no dependencies with respect to an architectural variable va at the

time it retires, then va shall be marked as a (final) source of p.
∀ va, p.

G (NoDepva p ∧ Retire p =⇒ Srcva p)

Cn15: Reading an architectural variable is made from a physical variable

mapped to it.

If a parcel p reads an architectural variable va, there exists a physical variable vi from

which p reads the value of va and vi is mapped to va.
∀ va, p.

G (Rdva p =⇒ ∃ vi. Rd
va
vi

p)

3.8 Soundness of Decomposition

In this section, we show that verifying the obligations and consistency conditions presented

in section 3.7 guarantees the satisfaction of the inter-parcel dependency properties defined

in section 3.6, namely, the producer-consumer (PropProdCons) and the no-producer
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(PropNoProd) properties. More precisely, we justify the soundness of the decomposition

trees associated with the two inter-parcel dependency properties and shown in figures 3.7

and 3.8 respectively.

In figure 3.9, we sketch a proof to show that the obligations imply the producer-

consumer property (PropProdCons). The premises of our proof are the four precon-

ditions of PropProdCons (steps 1-4). Given the obligations and the premises, we prove

that there exists a physical variable vi (representing the architectural variable va) through

which the producing parcel p1 passes uncorrupted data to the consuming parcel p2.

We first show that va shall be marked as a final source of p2 at the time it retires (step

5). At that time, p1 must come in order before p2 (step 6) and that is true also at the time

p1 enters the pipeline (step 7). Consequently, at the time p1 becomes in-flight, p2 shall not

be in-flight (step 8). p2 enters the pipeline in a following state (step 9) and its phase turns

in-flight and stays so until it retires (step 10). Before it retires, p2 has to make a final read

of the value of va (step 11) through some physical variable vi (step 12).

Similarly, once p1 enters the pipeline its phase becomes in-flight and stays so until it

exits (step 13). During that window and before p2 makes its final read, p1 shall make a

final write for the value of va to vi (step 14). Between the write and the read no parcel

writes to vi (step 15). After the write, p1 does not signal mispredict on the value of va

(steps 16-17).

Our proof for the soundness of decomposing the no-producer property (PropNoProd)

is sketched in figure 3.10. The proof premises are the three preconditions of PropNoProd.

The goal is to show that satisfying the preconditions, the obligations, and the consistency

conditions guarantees the existence of a physical variable vi (representing the architectural

variable va) whose initial value is not altered by any parcel and from which the consuming

parcel p2 makes its final read.

First, we show that the phase of p2 has to be in-flight as long as p2 is being processed by

the pipeline (step 4). At the time p2 retires, va shall be its final source (step 5). Therefore,

before its retirement, p2 makes a final read for the value of va (step 6) from one of the

physical variables, namely vi (step 7). Finally, it is shown that before the read takes place,

no parcel writes to vi (step 8).
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Figure 3.9: Sketch of decomposition proof of the producer-consumer property
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Figure 3.10: Sketch of decomposition proof of the no-producer property
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3.9 Summary

Correctness of a pipeline is specified in terms of the behavior of its parcels. A pipeline

is instrumented with predicates to monitor some parcel activities such as reading from or

writing to the physical variables. Using this instrumentation, inter-parcel correctness is

expressed in the form of two properties that support speculative out-of-order processing

of parcels. The two properties are decomposed into 4 obligations and 14 consistency

conditions. The obligations detect implementation bugs while the consistency conditions

ensure instrumentation predicates are defined correctly. The decomposition is proven to

be sound.
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Chapter 4

Processor Case Study

We conducted a case study to illustrate our verification techniques (presented in chapters

2 and 3) and evaluate their effectiveness. We implemented a tool, named Tahrir, aimed

at verifying syntactically-safe LTL (SSLTL) properties using the algorithm explained in

section 2.2. We used Tahrir to verify that the inter-parcel properties introduced in sec-

tion 3.6 are satisfied by a processor. The processor chosen for our case study supports

speculative out-of-order execution of instructions. Structural hazards and functionality of

the execution units are abstracted away from the processor model since the focus is on

verifying inter-instruction dependencies.

Tahrir is introduced in section 4.1. The microarchitecture of the processor is presented

in section 4.2. The processor model is explained in section 4.3. The verification is described

in section 4.4. An analysis of the verification can be found in section 4.5. The chapter is

summarized in section 4.6.
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4.1 SSLTL Verification Tool - Tahrir

In this section, we present Tahrir ∗, a tool aimed at inductively verifying syntactically-safe

LTL (SSLTL) properties about infinite-state systems. Tahrir implements the algorithm

presented in section 2.2 (function Verify). Tahrir has a generic interface at its core that

allows using an SMT solver (or invariant checker) as a decision procedure. Both CVC3

[3] and UCLID [6] are currently supported. Apart from its decision engine, Tahrir is

implemented in more than 6000 lines of Moscow ML [50] code.

Tahrir takes as input a model to be verified and a set of SSLTL properties about that

model. In addition to that, the user needs to set the induction depth (k) and choose which

decision procedure is to be used by Tahrir. For each property p, the user needs to provide

a proof statement through which the arguments of p (if they exist) can be bound with

a universal quantifier. The proof statement includes lists of lemmas and assumptions to

be used in proving the target invariant (i.e., ep in section 2.2) by induction. In the base

case of the induction, the assumptions are used to prove that the model satisfies the target

invariant in the initial k− 1 states. In the inductive case, the assumptions and lemmas are

combined to show that the model satisfy the target invariant in the kth step.

The following is an example of a proof statement:

PSTMT1: PROVE FORALL(x,y). p(x,y)

USING FORALL(v, w). l1(v), l2(x, y), l3(v, w)

ASSUMING FORALL(u). a1(u), a2(x)

where p is the (target) property to be verified using l1, l2 and l3 as lemmas, and a1 and a2

as assumptions. Typically, both the assumptions and lemmas are SSLTL formulas of the

formG φ where φ is purely combinational (i.e., φ does not contain any temporal operators).

However, the use of generic SSLTL formulas instead is not syntactically restricted.

Generally, a proof statement may contain up to three sets of variables bound by univer-

sal quantification. In the case of PSTMT1, these three sets are {x, y}, {v, w}, and {u}. We

define the number of outer quantifiers (NOQ) to be the number of variables in the first set

∗Our tool is named after Tahrir Square (Liberation Square), a major public town square in downtown

Cairo, Egypt. Tahrir Square was the epicenter of the Egyptian revolution triggered on January 25, 2011.
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while the number of inner quantifiers (NIQ) to be the number of variables that belong to

the other two sets. For instance, The numbers NOQ and NIQ for proof statement PSTMT1

are two and three respectively.

The modeling language of Tahrir is based on that of UCLID. The language has four na-

tive datatypes: TRUTH (Boolean), TERM (unbounded integers), PRED[n] (n-ary predicates

where n ∈ N
+), and FUNC[n] (n-ary functions where n ∈ N

+). Creating enumerated

datatypes is also supported in the language. Both native and enumerated datatypes can

be used in defining the model variables and inputs with the exception that inputs have to

be of 0-ary datatypes. Symbolic constants can be defined using native datatypes.

Expressions of type TRUTH can be built using relational operators (e.g., < and >),

Boolean operators (e.g., ∧ and ∨), and predicate applications (e.g., p(x, y) where p is of

type PRED[2]). Function applications can be used in constructing expressions of type TERM

as well as enumerated types. Expressions for predicates and functions are represented as

lambda expressions (e.g., Lambda(x, y).x > y).

The behavior of the model is specified as a set of expressions assigned to its variables.

Each combinational variable is assigned a single expression that represents its value in the

current state. Each state variable can be assigned two expressions: one to represent its

initial value and another to represent its value in the next state.

The ultimate goal of Tahrir is to check whether the language of the model is contained

in the language of the Büchi automaton that is constructed from an SSLTL property.

To achieve this goal, Tahrir follows the algorithm explained in section 2.2. First, Tahrir

translates the property into a Büchi automaton. Then, for each state in the Büchi au-

tomaton, the model is augmented with a Boolean (history) variable to keep track of that

state. This encoding of states (as Boolean variables) is used because the automaton is

non-deterministic and the encoding allows us easily to represent the automaton being in

multiple states at the same time.

Based on Theorem 2.1, for language containment to hold, it shall be always the case

that at least one of the history variables, representing the states of the generated Büchi

automaton, is true. We refer to this as the target invariant (i.e., ep in section 2.2). For

SSLTL properties of the formG e, where e does not contain any temporal operators, Tahrir
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considers e to be the target invariant. For this type of property, Tahrir does not generate

a Büchi automaton and adds no history variables to the model.

With other forms of properties (i.e., other than G e), Tahrir constructs the Büchi

automaton using the basic algorithm proposed by Gerth et al. [18]. After that Tahrir

tries to minimize the size of the automaton by merging the states which have identical

predecessors or successors. During this step, Tahrir repeatedly calls the SAT solver zChaff

[46] to identify pairs of matching states. The minimized version of the automaton is then

used to generate the target invariant.

Tahrir verifies whether the target invariant is indeed an invariant using k-step induction.

In the base case, Tahrir simulates the model for k−1 steps from the initial states and calls

the SMT solver to check whether the target invariant is satisfied in each step. The actual

Boolean formula that gets checked by the SMT solver is generated taking into consideration

the list of assumptions (specified in the proof statement) as well as the target invariant.

For instance, the Boolean formula that gets generated in the base case for proof statement

PSTMT1 is:

∀ x, y. (∀ u. a1|
k−1
0 (u) ∧ a2|

k−1
0 (x)) =⇒ p|k−1

0 (x, y)

where φ|nm represents the invariant generated from a property φ and expanded over steps

m through n. In other words, it is the conjunction of all the instances of the invariant from

step m to step n.

In the inductive case, Tahrir simulates the model for k steps starting from an uncon-

strained state. The SMT solver is called to check whether the target invariant is satisfied

in the kth step. The Boolean formula passed to the SMT solver includes the lemmas as

induction hypotheses to limit induction within the reachable state space. For instance, the

Boolean formula that gets generated in the inductive case for proof statement PSTMT1 is:

∀ x, y. (∀ u. a1|
k
0(u) ∧ a2|

k
0(x))

∧ (∀ v, w. l1|
k−1
0 (v) ∧ l2|

k−1
0 (x, y) ∧ l3|

k−1
0 (v, w))

=⇒ p|kk(x, y)

For flexibility, the target invariant is not considered as an induction hypothesis by

default, but instead, the user may include the target property (e.g., p in the case of

PSTMT1) as one of the lemmas in the proof statement.
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4.2 Processor Microarchitecture

Our aim in this section is to describe the microarchitecture of the processor to which we

apply our verification strategies presented in chapters 3 and 2. The microarchitecture

used in our case study supports two features found in most modern microprocessors: out-

of-order and speculative execution of instructions. We focus here on these two features

because of their strong impact on the way instruction dependencies are handled within a

microprocessor.

The microarchitecture presented here can be viewed as a six-stage pipeline. Some of

these pipeline stages may be pipelined and may produce instructions out of order. However,

at any point in time each stage receives and produces at most one instruction. The status

of the instructions flowing through the pipeline is held by a set of storage elements. Figure

4.1 shows the different pipeline stages and storage elements put together to build the

microarchitecture.

At a high level, the pipeline can be divided into three parts: a front-end, a process-

ing core, and a back-end. In the front-end (fetch/decode (FD) and rename (RN) stages),

instructions are processed in program order. Program order constraints are relaxed when

instructions get to the processing core (schedule/dispatch (SD), execute (EX), and re-

cover/bypass (RB) stages). Instructions are put back into program order when they reach

the back-end of the pipeline (write-back/retire (WR) stage). To explain in more detail the

functionality of all the blocks that show up in figure 4.1, we describe the journey of an

individual instruction I1 from the moment it is fetched until it retires.

The journey begins when the program counter (PC) points to the location of instruction

I1 in the instruction memory† (IMEM). This is when the fetch/decode (FD) stage starts

fetching instruction I1 from IMEM. After fetching, the FD stage decodes instruction I1

into its main components (i.e., operation code, source operand(s), destination, etc). Based

on these components, the FD stage computes (maybe through prediction with some types

of instructions, e.g., when I1 is a conditional branch) the address of the next instruction to

†More accurately, we should refer to this as the instruction cache instead. However, the differences

between the levels in the memory hierarchy are abstracted away here for simplification.
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Figure 4.1: An out-of-order speculative microarchitecture
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be fetched and updates the PC accordingly. At the end of this phase, the FD stage passes

the components of I1 to the rename (RN) stage through pipeline register FDRN.

The RN stage starts by assigning I1 a unique entry at the tail of the reorder buffer

(ROB). This is the location where most of the processing history of I1 is usually recorded.

Moreover, the index of that entry is used to identify I1 throughout the rest of its journey.

This index also reflects the relative age of I1 according to program order. The latter

information is needed to determine the time at which I1 is allowed to retire; normally,

instructions retire in fetch order (i.e., program order).

The RN stage uses the main register alias table (RAT) in mapping the indices of the

source registers of I1 to their most recent producing instructions identified by their ROB

entries; this is what is known as register renaming. The main RAT is updated to reflect

that I1 is now the most recent instruction that writes to the destination register. The RN

stage might need to save a snapshot of the main RAT (after update) to one of the unused

RATs. Creating a backup copy of the main RAT at this point helps the pipeline later

recover if the instructions processed after I1 turn out to be mispredicted. The renaming

phase ends by passing I1 to the schedule/dispatch (SD) stage through pipeline register

RNSD.

The SD stage keeps I1 in internal storage (typically known as a reservation station) until

all its source operands are ready. After that, I1 gets scheduled for later execution based on

the availability of the appropriate execution unit. At the time of dispatch, all the source

operands of I1 need to be read. The location from which a source operand is read depends

on whether the producing instruction is in-flight. As long as the producing instruction

is still in-flight, the value can be obtained from the ROB entry of the producing parcel

(forwarding) or the bypass register RBSD (bypassing) if possible. Otherwise, the value is

obtained from the register file (RF). After reading the source operands, I1 is dispatched

for execution by moving to pipeline register SDEX.

The EX stage carries out the operation specified by I1 and computes the result. This

result is then sent along with I1 to the recover/bypass (RB) stage through pipeline register

EXRB. The RB stage then uses I1’s result in confirming the predictions that may have

been made during the fetching phase of I1. If a misprediction is detected, the recovery
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takes place in three steps. First, the pipeline front-end is resteered by loading the PC

with the correct address of the instruction that follows I1. Second, the backup copy of the

RAT associated with I1 is restored. Last, all the instructions that are fetched after I1 are

invalidated. At the end of this phase, the result of I1 is saved to its ROB entry and copied

to the bypass register RBSD. By doing so, the result immediately becomes available to all

the consuming instructions through forwarding or bypassing.

By writing its result to the ROB, I1 transfers to its final processing phase during which

it waits for all preceding instructions to complete. It is only after that when I1 is permitted

to retire by the write-back/retire (WR) stage. The result of I1 is then committed to the

RF and all the pipeline resources allocated to I1, e.g., ROB entry and backup RAT, are

freed.

4.3 Implementing the Microarchitecture

In this section we introduce the processor model verified in our case study. The model

implements the microarchitecture presented in section 4.2. However it abstracts away some

of the details that may be irrelevant in verifying instruction dependencies. For instance

structural hazards cannot occur in the model because it uses unbounded storage elements.

Also the model uses a simplified instruction format where each instruction has only one

source operand. Instruction operation codes are grouped into two abstract types: branch

and arithmetic. Also the model uses uninterpreted functions in representing some of the

irrelevant hardware modules such as the functional units and the decoding logic.

For the purpose of this thesis, we elaborate on how the storage elements are represented

using the modeling language of Tahrir. Figure 4.2 illustrates the structure of each storage

element. Most of the datatypes used here are native datatypes (see section 4.1 for details).

The only exceptions are the two enumerated datatypes: OP and PH. OP represents the

different types of instructions, in this case we have only two abstract operation codes: qBRq

(branch) and qARq (arithmetic). PH represents the different processing phases, i.e., qFDq,
qRNq, etc.

The PC is modeled as a variable of type TERM. The bypass register (RBSD) and the
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pipeline registers (FDRN, RNSD, SDEX, and EXRB) are each composed of several fields

which carry relevant information about the instruction held by the register. The field

Bubble, which can be found in every pipeline register, indicates whether the register cur-

rently holds a bubble (i.e., does not hold not an instruction). The other fields in the FDRN

register are aimed at holding the instruction components resulted from decoding. The field

InstID, found in the rest of the pipeline registers as well as in the bypass register, is used

to carry the instruction identifier, which is also a pointer to the ROB entry associated with

the instruction. The execution results of an instruction exiting the EX stage is saved to the

field Rslt in both the EXRB and RBSD registers. The field Valid in the RBSD register

is initialized to false and becomes true once a result is copied to the register.

IMEM is modeled as a one-argument function (IMEM) that maps each address to one of

the program instructions. The RF is similarly modeled as a one-argument function (RF),

yet in this case RF is a map from the identifiers (indices) of the architectural registers to the

data held by these registers. The RATs are built out of three components: Busy, InstID,

and Main. Each component takes two arguments. The first argument selects one of the

RATs. The second argument is an index within that RAT. Busy(i, j) decides whether,

according to the ith RAT, there exists an instruction among those in-flight that writes to

the architectural register j. InstID(i, j) identifies the in-flight instruction behind the most

recent write to the architectural register j (according to the ith RAT). The third component

(Main) is a pointer to the main RAT, the one used during the register renaming phase.

The last storage element illustrated in figure 4.2 is the ROB. The ROB is implemented

as a typical First-In-First-Out (FIFO) queue. Instructions enter the ROB from one end

(pointed to by the tail pointer Tail) and exit from the other end (pointed to by the head

pointer Head). Both the tail and head pointers are initialized with the index of the first

ROB entry (FirstID). Tail is incremented each time an instruction enters the ROB while

Head is incremented whenever an instruction exits the ROB. Empty is a flag set to true if

and only if none of the ROB entries is currently occupied by any instruction.

Every ROB entry has twelve fields each of which holds history information about the

associated instruction. PredPC is assigned the value of the PC when the instruction enters

the RN stage. At the same time, the instruction components resulting from decoding are

saved to OpCode, DstIdx, and SrcIdx. The information extracted from the RAT when
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renaming the source register is kept in SrcBusy and SrcInstID. The identifier of the RAT

used for renaming the instruction operands is saved to Main. SrcVal stores the value of

the source operand after dispatch. After execution, instruction result is saved to Rslt, and

RsltRdy is set to true. Phase indicates the current processing phase of the instruction.

Finally, Invalid is a flag set when the instruction is canceled (invalidated).

The storage elements explained above are initialized such that the only instruction

processed by the model is the one currently being fetched. This means that, firstly, none of

the ROB entries are occupied by any instructions, i.e., ROB.Head and ROB.Tail are equal,

and ROB.Empty is true. Secondly, none of the pipeline registers holds any instructions,

i.e., none of the following variables is true: FDRN.Bubble, RNSD.Bubble, SDEX.Bubble, and

EXRB.Bubble. Thirdly, none of the entries of the main RAT is marked busy, i.e., for every

integer x, RATs.Busy(RATs.Main, x) must not hold. Lastly, the value kept in the bypass

register is marked invalid, i.e., RBSD.Valid is false. All other storage elements are initially

assigned non-deterministic (arbitrary) values.

4.4 Verifying Inter-instruction Dependencies

In this section, we show how we verify whether the processor model explained in section

4.3 satisfies the inter-parcel dependency obligations and consistency conditions presented

in section 3.7. As mentioned before, a mechanism for identifying parcels in the model is

required to be able to use the inter-parcel dependency properties. This mechanism has

to include an infinite set of parcel identifiers P and a total order ≺ defined over the set

such that it reflects the age of parcels. Since parcels are instructions in this context, and

instructions are identified in the model using ROB indices, we define P to be the set of

ROB indices, i.e., {y | y ∈ Z ∧ y ≥ FirstID}. The less-than relation < over integers is

used as a total order over parcel identifiers since ROB indices are integer numbers reflecting

the order at which instructions are fetched.

In order to instantiate the inter-parcel dependency properties for the processor model,

we need to define the set of architectural variables and identify which physical variables

are architecturally visible. A physical variable is architecturally visible if and only if it
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is used to exchange values representing architectural variables between parcels. Since the

register file and the program counter are the only two architectural elements in the model,

the set of architectural variables Va is defined to be {PC} ∪ {RFx | x ∈ Z}.

The physical variables which are architecturally visible are identified by inspecting the

model and determining which variables are mapped to the architectural variables and used

for inter-parcel communications. The architectural program counter and register file are

explicitly represented in the model by the two storage elements PC and RF respectively.

Further inspection of the model reveals that instructions can exchange (read/write) the

values of their operands through EXSD.Rslt and ROB.Rslt as well as RF. Therefore, we

define the set of physical variables which are architecturally visible V a
i to be {RFx | x ∈

Z} ∪ {PC, EXSD} ∪ {ROBy | y ∈ Z ∧ y ≥ FirstID}.

To verify that the model satisfies the inter-parcel dependency properties, we check

all the possible instances of each property generated using the two sets V a
i and Va. For

example, to verify obligation Ob1a, we check four instances of Ob1a in which the two

bound variables (va, vi) are substituted by (PC, PC), (RFx, RFx), (RFx, ROBy), or (RFx, EXSD)

for arbitrary values of x and y. We refer to those four instances as Ob1aPCPC, Ob1aRFxRFx
,

Ob1aRFxROBy
, and Ob1aRFxEXSD, respectively.

As another example, to verify the consistency condition Cn15, we check the two in-

stances Cn15PC and Cn15RFx where the variable va is replaced by PC and RFx respec-

tively. Since the only possible value for the variable vi is PC, the existential quantifica-

tion can be removed and vi can be simply substituted by PC. In other words, Cn15PC

can be rewritten as: G (RdPC p =⇒ RdPCPC p). Similarly, Cn15RFx can be rewritten as:

G (RdRFx p =⇒ RdRFxRFx
p ∨ RdRFxEXSD p ∨ RdRFxROBy

p), since in this case vi shall represent one of

the physical variables that are mapped to RFx.

In the rest of this section, we explain how the instrumentation predicates are defined in

terms of the state variables of the model (subsection 4.4.1). We also describe the lemmas

we need and the assumptions we make in order to carry out the verification inductively

(subsection 4.4.2).
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4.4.1 Instrumentation Predicates

Most of the information needed for defining the instrumentation predicates is directly

extracted from the model. In the few cases where the required information is missing,

the state of the model is augmented using history variables. For instance, the model does

not keep track of which instruction has recently updated the program counter. Since this

information is needed to define some predicates such as MRWrPC and PWrPC , we add

a history variable Hist.PCWriter (of type TERM) to the model in order to memorize that

piece of information. Variable Hist.PCWriter is initialized to some constant value NotID

and updated with the ID of an instruction when it writes to the program counter. The

constant value NotID should not match any of the instruction IDs. In other words, NotID

must be outside the range of ROB indices, i.e., NotID must be less than FirstID.

Similarly, we add a history variable Hist.RFWriter (of type FUNC[1]) to map each entry

in the register file to the ID of the instruction which has most recently written to that entry.

The last history variable, namely Hist.PrevInst (of type FUNC[1]), is used to identify for

any given instruction which instruction precedes it in program order.

Before defining the instrumentation predicates, we introduce a few shortcuts to help

make the predicate definitions more readable. Each shortcut is a combinational variable

(of type TRUTH) defined in terms of the state variables of the model. Variable Shct.Mispred

is set to true if and only if a misprediction is detected by the instruction exiting the EX

unit. Variables Shct.Alloc and Shct.Dealloc mark the states at which an entry in the

ROB is either allocated or released respectively. Variable Shct.Full becomes true if and

only if all the entries in the ROB are occupied. Variable Shct.XFull reflects whether the

ROB is about to become fully occupied in the next state (i.e., whether Shct.Full is true

in the next state).

Shct.Mispred ≡ ¬ROB.Invalid(EXRB.InstID)

∧ ¬EXRB.Bubble

∧ ROB.OpCode(EXRB.InstID) = qBRq

∧ ¬(ROB.PredPC(EXRB.InstID) = EXRB.Rslt)

Shct.Alloc ≡ ¬FDRN.Bubble ∧ ¬Shct.Mispred

Shct.Dealloc ≡ ¬ROB.Empty ∧ ROB.RsltRdy(ROB.Head)
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Shct.Full ≡ ¬ROB.Empty ∧ ROB.Head = ROB.Tail

Shct.XFull ≡ (ROB.Head = ROB.Tail+ 1 ∧ Shct.Alloc ∧ ¬Shct.Dealloc)

∨ (Shct.Full ∧ (Shct.Dealloc⇐⇒ Shct.Alloc))

In the remaining part of this subsection (4.4.1), we explain how the instrumentation

predicates are defined for the processor model considered in our case study. We classify the

predicates into three categories. The first category contains the phase predicates. Under

the second category, we include all the predicates related to the architectural program

counter and it physical version. The third category contains all the predicates related to

the architectural register file and its physical representation in the model (i.e., RF, result

field of the ROB, and EXSD register).

Phase Predicates

The instrumentation predicates are meant to capture some milestones in the lifetime of a

parcel. Defining those predicates for a given pipeline requires an understanding of how a

parcel interacts with the pipeline state variables (i.e., storage elements or physical vari-

ables) during its journey through the pipeline.

Determining the set of parcels which are in-flight at any given moment is a key in

defining the phase predicates. For the processor model under consideration, those parcels

are the instructions which are being processed by the different pipeline stages. At any

given state, two of the in-flight instructions are processed in the front-end of the processor.

These two instructions are identified by the indices ROB.tail and ROB.tail+1 since these

indices refer to the two ROB entries that will be eventually allocated to the instructions

once they pass the front-end. The rest of the in-flight instructions (processed either at the

core or the back-end) can be identified by the indices of the ROB entries which are busy.

These indices range from ROB.head up to ROB.tail− 1.

A parcel p is in-flight (i.e., Infl p holds) if and only if p is an index within ROB.head and

ROB.tail + 1. ROB indices greater than ROB.tail + 1 represent parcels in the top phase

since these indices refer to the ROB entries which will eventually be used by instructions yet

to be processed. On the other hand, the indices of the ROB which are less than ROB.Head
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represent parcels that exited the pipeline (i.e., instructions that finished execution). The

final phase of each of these parcels can be determined based on the value of the Invalid

bit of the associated ROB entry. A value of true means that parcel is discarded, otherwise

it is retired.

Infl p ≡ p≥ ROB.Head ∧ p ≤ ROB.Tail+ 1

Top p ≡ p> ROB.Tail+ 1

Ret p ≡ p< ROB.Head ∧ ¬ROB.Invalid(p)

Dis p ≡ p< ROB.Head ∧ ROB.Invalid(p)

The processor model fetches and/or retires at most one instruction at any given state.

For an instruction to be fetched (i.e., a parcel to enter the pipeline), the FDRN register

has to hold an instruction and no misprediction has to be signaled. The identity of the

instruction being fetched is ROB.Tail+ 2, because this index refers to the ROB entry that

the instruction will occupy. On the other hand, the identity of an instruction when it

is about to exit the pipeline is ROB.Head, because this represents the oldest instruction

in-flight. For an instruction to retire, it has to have its result ready and its ROB entry

valid.

Fetch p ≡ p= ROB.Tail+ 2 ∧ ¬FDRN.Bubble ∧ ¬Shct.Mispred

Retire p ≡ p = ROB.Head ∧ p < ROB.Tail

∧ ROB.RsltRdy(p) ∧ ¬ROB.Invalid(p)

Program Counter Predicates

Since each instruction needs to read the PC (at least once) to determine which instruction to

be fetched next, the PC can be viewed as a source of data for every instruction. Therefore,

the source predicate is defined such that SrcPC p is true regardless of the value of p. Similarly,

the address-map predicate AMPC
PC is defined to be true. This means that the physical

PC (i.e., the physical variable named PC) is statically mapped to the architectural PC

regardless of the current state of the processor.

SrcPC p ≡ True
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AMPC
PC ≡ True

The direct-dependency predicate is defined such that DDepPC p1 p2 holds if and only

if three conditions are satisfied. First, the ID of the producer instruction p1 is one of the

ROB indices. Second, the PC is a source of data for the consumer instruction p2, which

trivially holds by definition of the source predicate. Third, p1 is the instruction which

directly precedes p2. On the other hand, the no-dependency predicate is defined such that

NoDepPC p holds if and only if the PC is a source for instruction p and there is no producer-

consumer relationship between p and the instruction that precedes it. In this case p has

to be the first instruction to be processed.

DDepPC p1 p2 ≡ FirstID< p1 ∧ SrcPC p2 ∧ Hist.PrevInst(p2) = p1

NoDepPC p ≡ SrcPC p ∧ ¬DDepPC Hist.PrevInst(p) p

The definition of the read predicate for the physical PC (RdPC) has two cases. Each case

addresses one of the two instructions processed in the front-end (ROB.Tail and ROB.Tail+

1), since these are the only instructions that would need to read the PC (to determine the

next instruction to be fetched). In both cases, for the read to take place, the ROB shall

not be about to become full and no misprediction shall be signaled. If the FDRN register

carries a bubble then the read is done by the older instruction ROB.Tail, otherwise the

read is done by ROB.Tail + 1. The definition of the read predicate for the architectural

PC (RdPC) is identical to RdPC because, as mentioned earlier, the physical PC is statically

mapped to the architectural PC.

RdPC p ≡ (p = ROB.Tail ∧ ¬Shct.Mispred

∧ ¬Shct.XFull ∧ FDRN.Bubble)

∨ (p = ROB.Tail+ 1 ∧ ¬Shct.Mispred

∧ ¬Shct.XFull ∧ ¬FDRN.Bubble)

RdPC p ≡ RdPC p

The definition of the write predicate for the physical PC (WrPC) is similar to that of the

read predicate with the exception that it adds an extra case. This extra case addresses the

corrective write which happens when a misprediction is detected. In this case the write

is done by the instruction which has just exited the EX stage and hence identified by the
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value of EXRB.InstID. The write predicate for the architectural PC (WrPC) is defined to be

equal to WrPC for the same reason mentioned earlier in explaining the definition of RdPC.

The misprediction predicate is defined such that MpPC p holds if and only if p is the ID of

the instruction held by the EXRB register and p writes to the PC.

WrPC p ≡ (p = ROB.Tail ∧ ¬Shct.Mispred

∧ ¬Shct.XFull ∧ FDRN.Bubble)

∨ (p = ROB.Tail+ 1 ∧ ¬Shct.Mispred

∧ ¬Shct.XFull ∧ ¬FDRN.Bubble)

∨ (p = EXRB.InstID ∧ Shct.Mispred)

WrPC p ≡ WrPC p

WrPC ≡ WrPC ROB.Tail ∨WrPC ROB.Tail+ 1 ∨WrPC EXRB.InstID

MpPC p ≡ ¬EXRB.Bubble ∧ p = EXRB.InstID ∧WrPC p

The predicate which captures the most recent write to the physical PC can be defined

such that MRWrPC p is true if and only if p is the value recorded in the history vari-

able Hist.PCWriter and p belongs to the set of ROB indices. The past-write predicate

(PWrPC ) can be defined on top of the most-recent-write predicate by fixing p to the value

of Hist.PCWriter. This means that PWrPC holds if and only if the value of the history

variable Hist.PCWriter equals one of the ROB indices.

MRWrPC p ≡ p≥ FirstID ∧ p = Hist.PCWriter

PWrPC ≡ MRWrPC Hist.PCWriter

Register File Predicates

Each entry in the physical register file is statically mapped to the corresponding architec-

tural register. Therefore, the address-map predicate for the physical register file (AMRFx
RFz

) is

defined to hold if and only if z is the same as x. On the other hand, the ROB entries and the

EXSD register are dynamically mapped to the architectural registers. A ROB entry ROBj

is mapped to an architectural register RFz if and only if the destination index of instruction

j is z. Similarly, the EXSD register is mapped to RFz if and only if the destination index
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of the instruction whose result is held in EXSD is z. The mispredict predicate (MpRFz )

is defined to be false because the processor does not support executing instructions using

speculative values for their operands (i.e., data speculation or value prediction).

AMRFx
RFz
≡ z= x

AMRFz
ROBj

≡ z= ROB.DstIdx(j)

AMRFz
EXSD ≡ z= ROB.DstIdx(EXSD.InstID)

MpRFz ≡ False

Realizing that instructions read source their operands as they exit the SD stage is key

in defining the read predicates RdRFz , RdROBj , and RdEXSD. More precisely, for each of these

predicates to hold for an instruction p, p has to be in the SDEX register. The status of

the instruction producing the source operand of p determines the location of the read and

as a consequence which one of the three predicates is true. If the producer is no longer

in-flight, the value of the source operand is obtained from the RF, and hence RdRFz p is

true. Otherwise, RdEXSD p is true if the source operand is available in the SDEX register,

else, the source operand shall be read from the ROB and so RdROBz p is true. The read

predicate for architectural registers is simply defined such that RdRFz p holds if and only if

some physical location mapped to architectural register RFz is read by instruction p.

RdRFz p ≡ ¬SDEX.Bubble

∧ p = SDEX.InstID ∧ z = ROB.SrcIdx(p)

∧ ¬(ROB.SrcBusy(p)

∧ ROB.SrcInstID(p) ≥ ROB.Head

∧ ROB.SrcInstID(p) < ROB.Tail)

RdROBj p ≡ ¬SDEX.Bubble

∧ p = SDEX.InstID ∧ j = ROB.SrcInstID(p)

∧ (ROB.SrcBusy(p)

∧ ROB.SrcInstID(p) ≥ ROB.Head

∧ ROB.SrcInstID(p) < ROB.Tail)

∧ (EXSD.Bubble ∨ EXSD.InstID 6= ROB.SrcInstID(p))
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RdEXSD p ≡ ¬SDEX.Bubble

∧ p = SDEX.InstID

∧ (ROB.SrcBusy(p)

∧ ROB.SrcInstID(p) ≥ ROB.Head

∧ ROB.SrcInstID(p) < ROB.Tail)

∧ ¬EXSD.Bubble ∧ EXSD.InstID = ROB.SrcInstID(p)

RdRFz p ≡ RdRFz p

∨ RdROBROB.SrcInstID(p) p ∧ AMRFz
ROBROB.SrcInstID(p)

∨ RdEXSD p ∧ AMRFz
EXSD

There are two moments at which an instruction p writes a value to a physical location

mapped to its destination register. First, when p finishes execution, its result is written

to both its ROB entry ROBj (where p equals j) and the EXSD register. In this case both

WrROBj p and WrEXSD p shall be true. Second, when p retires, its result is written to the

RF entry RFz associated with its destination unless p has been invalidated. In this case

WrRFz p must be true. The write predicate for architectural registers is defined, in analogy

with the corresponding read predicate, such that WrRFz p holds if and only if p writes its

result to any of the physical locations mapped to architectural register RFz.

WrRFz p ≡ ¬ROB.Empty ∧ ROB.RsltRdy(p) ∧ ¬ROB.Invalid(p)

∧ p = ROB.Head ∧ z = ROB.DstIdx(p)

WrROBj p ≡ ¬EXRB.Bubble ∧ p = EXRB.InstID ∧ j = p

WrEXSD p ≡ ¬EXRB.Bubble ∧ p = EXRB.InstID

WrRFz p ≡ WrRFz p

∨WrROBp p ∧ AMRFz
ROBp

The predicates which capture the anonymous writes to the three physical representa-

tions of the architectural registers can be expressed in terms of the write predicates defined

above. For instance, the predicate WrRFz is defined to be true if and only if the instruction

at the head of the ROB writes to RFz. On the other hand, the predicates WrROBj and

WrEXSD hold if and only if the instruction kept in the EXRB register writes to ROBj and

EXRB respectively.
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WrRFz ≡ WrRFz ROB.Head

WrROBj ≡ WrROBj EXRB.InstID

WrEXSD ≡ WrEXSD EXRB.InstID

The most-recent-write predicate associated with the RF is defined such that MRWrRFz p

is true if and only if p is the instruction which makes the most recent write to RFz and p

is a ROB index. The predicate associated with the ROB is defined such that MRWrROBj p

holds if instruction p occupies the entry ROBj and the result saved at that entry is ready.

For the EXSD, MRWrEXSD p shall hold if and only if p is the instruction whose result is in

the EXSD register and p is one of the ROB indices.

MRWrRFz p ≡ p= Hist.RFWriter(z) ∧ p ≥ FirstID

MRWrROBj p ≡ ROB.RsltRdy(p)∧ p < ROB.Tail ∧ p ≥ FirstID ∧ p = j

MRWrEXSD p ≡ ¬EXSD.Bubble ∧ p = EXSD.InstID ∧ p ≥ FirstID

The past-write predicate for the RF is defined to be true for an entry RFz if and only if

the history variable RFWriter(z) contains a ROB index. The past-write predicate for the

ROB and the EXSD register are defined to be true. The reason behind that is to make

sure that in these two cases obligation Ob3a is reduced to the negation of the precedent.

In other words, to satisfy Ob3a, an instruction cannot make its final read for the source

operand from neither the ROB nor the EXSD if that instruction does not depend on any

older instruction.

PWrRFz ≡ Hist.RFWriter(z)≥ FirstID

PWrROBj ≡ True

PWrEXSD ≡ True

The source predicate SrcRFz p holds if and only if z is the index of the source operand

of instruction p. For a pair of instructions p1 and p2, the direct-dependency predicate

shall be true if and only if RFz is the source operand of p2 and p1 is the producer. The

no-dependency predicate holds for an instruction p if and only if RFz is the source operand

of p, none of the in-flight instructions is a producer, and no instruction has written to RFz.

SrcRFz p ≡ p< ROB.Tail ∧ z = ROB.SrcIdx(p)
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DDepRFz p1 p2 ≡ SrcRFz p2

∧ ((ROB.SrcBusy(p2) ∧ p1 = ROB.SrcInstID(p2))

∨

(¬ROB.SrcBusy(p2) ∧ p1 = Hist.RFWriter(z)

∧ p1 ≥ FirstID))

NoDepRFz p ≡ SrcRFz p ∧ ¬ROB.SrcBusy(p) ∧ Hist.RFWriter(z) < FirstID

4.4.2 Lemmas and Assumptions

In verifying the inter-parcel dependency properties, we needed to make three assumptions.

One of these three assumptions states that the constant value NotID never matches the ID

of any instruction (i.e., an index in the ROB). Since ROB indices start at FirstID, we

simply assume that NotID is less than FirstID.

The other two assumptions specify the behavior of the two black-box stages SD and

EX respectively. One assumption restricts the SDEX register (which otherwise contains

a non-deterministic value) to instructions that are currently in-flight. It also makes sure

that the source operand of the instruction in the SDEX register is available in the RF, the

EXSD register, or the ROB. The other assumption targets the EXRB register and makes

sure it holds one of those in-flight instructions whose results are not yet ready.

Since Tahrir implements an inductive approach for verifying SSLTL properties, addi-

tional lemmas are typically needed to strengthen the inductive invariant, and hence, keep

induction within the reachable state-space. In verifying the inter-parcel dependency prop-

erties against the processor model, we needed (to verify) a total of 43 lemmas to exclude

unreachable states. These lemmas can be classified into three categories:

1. Lemmas relating the different state variables of the processor model (i.e., ROB fields,

pipeline registers, etc) to each other: a total of 19 lemmas belong to this category.

Lemmas Lm1 and Lm16 are detailed below for illustration.

Lm1: The ROB is not full and the head pointer is less than or equal to the tail

pointer

G (¬Shct.Full ∧ ROB.Head ≤ ROB.Tail)

108



Lm16: If p is an in-flight branch instruction occupying an entry in the ROB and

p has neither produced a result nor been invalidated yet, then the ID of the

RAT associated with p has to be less than the ID of the current RAT‡.

G

















p< ROB.Tail ∧ p ≥ ROB.Head

∧ ¬ROB.Invalid(p) ∧ ¬ROB.RsltRdy(p)

∧ ROB.OpCode(p) = qBRq






=⇒

ROB.Main(p) < RATs.Main











2. Lemmas relating state variables of the processor model to history variables: this

category includes six lemmas. Lemma Lm20 is explained below as an example.

Lm20: If p identifies an in-flight instruction occupying an entry in the ROB, then

the ID of the preceding instruction either belongs to the set of ROB indices or

equals to the constant NotID, and in either case that ID has to be less than p.
∀ p.

G







p< ROB.Tail ∧ p ≥ ROB.Head =⇒

Hist.PrevInst(p) < p

∧ (Hist.PrevInst(p) ≥ FirstID ∨ Hist.PrevInst(p) = NotID)







3. Lemmas relating the states of the Büchi automata (generated from the obligations)

to the state variables of the processor model: a total of 18 lemmas are classified under

this category. To illustrate these lemmas, we elaborate below on lemma Lm35 which

addresses the states of the Büchi automaton generated for obligation Ob3a, more

specifically its instance Ob3aPCPC. The Büchi automaton for that obligation is shown

in figure 4.3.

Lm35: If an instruction p is not in the state q0, p shall be less than or equal to

the index of the ROB tail. If p equals the tail index, either the FDRN register

does not carry an instruction or the ID of the preceding instruction is among

the set of ROB indices. Otherwise, either p does not currently depend on any

‡This implies that the RAT used at the time instruction p was in the RN stage is a past snapshot of

the current RAT.
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previous instructions with respect to PC or p has been invalidated.
∀ p.

G







¬q0(p) =⇒

p = ROB.Tail ∧ (FDRN.Bubble ∨ Hist.PrevInst(p) ≥ FirstID)

∨ p < ROB.Tail ∧ (¬NoDepPC p ∨ ROB.Invalid(p)







q0

q1

¬RdPC p ∨ ¬PWrPC

True

RdPC p ∧ ¬RdPC p

∨ RdPC p ∧ ¬PWrPC

RdPC p ∨ ¬NoDepPC ∨ ¬Retire p

Figure 4.3: Büchi automaton for obligation Ob3aPCPC

4.5 Verification Remarks

The total number of properties verified in our case study is 83. These properties can be

divided into three categories:

• The first category contains 14 properties, all of which are instances of the inter-parcel

obligations. The properties in this category are listed as follows:

Ob1aPCPC Ob1aRFxRFx
Ob1aRFxEXSD Ob1aRFxROBy

Ob2PCPC Ob2RFxRFx
Ob2RFxEXSD Ob2RFxROBy

Ob3aPCPC Ob3aRFxRFx
Ob3aRFxEXSD Ob3aRFxROBy

Ob4PC Ob4RFx — —
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• The second category contains 26 properties. These properties represent all the in-

stances of the inter-parcel consistency conditions. The following is a list of all the

properties in this category:

Cn1bPC
PC Cn1bRFx

RFx
Cn1bRFx

EXSD Cn1bRFx
ROBy

Cn1cPCPC Cn1cRFxRFx
Cn1cRFxEXSD Cn1cRFxROBy

Cn3bPC
PC Cn3bRFx

RFx
Cn3bRFx

EXSD Cn3bRFx
ROBy

Cn5 — — —

Cn6 — — —

Cn7 — — —

Cn8 — — —

Cn9 — — —

Cn10 — — —

Cn11 — — —

Cn12 — — —

Cn13PC Cn13RFx — —

Cn14PC Cn14RFx — —

Cn15PC Cn15RFx — —

• The third contains 43 properties. These properties are the lemmas introduced for the

purpose of limiting induction scope to reachable states. Examples of these lemmas

can be found in subsection 4.4.2.

The machine on which we ran our verification experiments is a Linux box that has a 3.2

MHz Intel dual-core processor with 3.4 GB of memory. The cumulative CPU time taken

for verifying the properties by Tahrir using the CVC3 engine is 6.27 minutes. It takes 7.25

minutes to accomplish the same task using the UCLID engine. The maximum memory

consumption is 157.5 MB and 171.2 MB during the two runs respectively.

Figure 4.4 has two plots that show the CPU runtime and memory consumed in veri-

fying each property during the two runs. The plotted data include the time and memory

consumed in generating and optimizing the automata. These data also include the time

and memory consumed by the decision engine (i.e., CVC3 and UCLID).
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Figure 4.4: CPU time and memory consumption: CVC3 (Top) and UCLID (Bottom)
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In the plots shown in figure 4.4, the properties are categorized based on the number

of inner quantifiers (NIQ) used in their proof statements. Based on the plotted data,

properties with relatively higher NIQs tend to consume more resources during verification.

This is not surprising because the inner quantifiers appear in the final formula which gets

sent to the decision engine. Hence, a higher number of quantifiers would possibly lead to

more variable instantiations and consequently increase the amount of resources consumed

in determining the falsifiability of the formula.

4.6 Summary

Tahrir, a tool that uses an SMT solver as a decision engine, is implemented to verify

SSLTL properties inductively. Tahrir is used to verify inter-instruction dependencies in

a processor modeled with an abstract datapath. The processor model supports out-of-

order speculative execution of instructions. The instrumentation predicates are defined in

terms of the variables of the model. The inter-instruction correctness is instantiated into

14 obligations and 26 consistency conditions. The total number of properties verified is

83 (including 43 lemmas for strengthening the induction). Verification takes less than 8

minutes and consumes less 200MB of memory.
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Chapter 5

Conclusions

Our thesis contributions can be summarized in two main points:

1. Introducing an inductive approach for verifying SSLTL properties: in our approach,

the target SSLTL property is transformed into an invariant which can be then checked

by induction using an SMT solver or an invariant checker. Our approach is shown to

be sound and complete with respect to the standard definition of LTL correctness.

2. Presenting a strategy for verifying whether a pipelined microprocessor preserves data

and control dependencies among instructions: in our strategy, data and control de-

pendencies are treated uniformly. Our top-level correctness criteria are decomposed

into a set of safety properties that allow flexible forms of speculative out-of-order

execution of instructions.

Chapter 2 presents an algorithmic view of our approach for verifying SSLTL properties

by k-step induction. The main function Verify takes (among other inputs) a model M

and an SSLTL property p, and returns true if and only if the M satisfies p. It also takes

a number k representing the depth of the induction and a Boolean expression e to use in

strengthening the inductive invariant.

Function Verify starts by translating the property p into an automaton Bp. The trans-

lation is an implementation of the basic Büchi automata construction algorithm with the
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exception that all the states of the constructed automaton are considered accepting states.

The automaton Bp is transformed to a model Mp by encoding its states as Boolean vari-

ables. An invariant ep (written in terms of these variables) is built to describe the states

and transitions of Bp. The augmented model Ma is formed by adding Mp to the original

model M .

Function Verify then checks whether the augmented model Ma satisfies the invariant

ep using k-step induction. During induction, the invariant is strengthened using e to

limit unreachable states. A value of true is returned by function Verify if and only if the

induction shows that the augmented model Mp satisfies the strengthened invariant ep ∧ e

for the given values of e and k.

Our approach for SSLTL verification is proven to be sound and complete. The core

of the proof is theorem 2.1 which is used to show that applying our SSLTL verification

algorithm (represented by function Verify) on a model M and an SSLTL property is

equivalent to verifying that M satisfies p.

Chapter 3 explains how we specify that a microprocessor handles dependencies between

instructions correctly. In our correctness definitions, we describe the way instructions

should interact with the state variables of the microprocessor as well as with each other.

We present the correctness in the context of generic pipelines where instructions are referred

to as parcels.

The state of the pipeline is captured by a set of physical variables. These physical vari-

ables can be statically or dynamically mapped to architectural variables. Parcels interact

with the state of the pipeline by reading from and/or writing to the physical variables.

A parcel can make an arbitrary number of reads from and/or writes to physical variables

that are mapped to the same architectural variable. All but final reads and writes are

considered speculative and hence do not affect the final results of a parcel.

A pipeline is instrumented with a parcel identification mechanism and some predicates

to monitor parcel activities. Predicates such as Top and Infl probe the phase of a parcel at

any given state. Predicates such as Rd and Wr mark the interactions between a parcel and

the variables of the pipeline. History information about these interactions are captured

by predicates such as MRWr and PWr. Different types of inter-parcel dependencies are
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identified by predicates such as DDep and NoDep.

Using this instrumentation, inter-parcel correctness is expressed in the form of two prop-

erties that support speculative out-of-order processing of parcels: PropProdCons and

PropNoProd. PropProdCons describes the interaction between any two parcels where

the leading parcel produces a data to be consumed by the trailing parcel. PropNoProd

addresses the case in which a parcel consumes a data that is not produced by any leading

parcel.

Due to their temporal complexity, properties PropProdCons and PropNoProd are

decomposed into 4 obligations and 14 consistency conditions. The purpose of the obliga-

tions is to detect bugs in the implementation. The consistency conditions ensure that the

definitions of the instrumentation predicates are correct. The decomposition is proven to

be sound.

Chapter 4 describes a case study that we conducted to illustrate our verification tech-

niques (presented in chapters 2 and 3) and evaluate their effectiveness. Tahrir, a tool that

uses an SMT solver as a decision engine, is developed to verify SSLTL properties about

term-level models inductively. Tahrir implements the algorithm given by function Verify .

The verification is guided by proof statements specifying assumptions about the model and

lemmas to keep induction within reachable states.

Tahrir is used to verify inter-instruction dependencies in a processor modeled with an

abstract datapath. The processor model supports out-of-order speculative execution of

instructions. The architectural variables in the model are a program counter (PC) and a

register file (RF). The model uses a register alias table (RAT) and a reorder buffer (ROB)

to implement register renaming. The ROB is also used for bookkeeping and for exchanging

(forwarding) data between in-flight instructions. Instructions can also exchange data using

a bypass register (RBSD).

The parcel-based instrumentation technique is applied to the model. Parcels (instruc-

tions) are identified by ROB indices. The instrumentation predicates are defined in terms of

the model variables in addition to a few history variables. The inter-instruction correctness

is instantiated into 14 obligations and 26 consistency conditions. This instantiation relies

on manually specifying which physical variables in the model are architecturally visible.
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The total number of properties verified in our case study is 83. This number includes 43

lemmas that are introduced to strengthen the induction. Tahrir takes less than 8 minutes

and consumes less than 200MB of memory in verifying the properties. Our results show

some correlation between the number of inner quantifier (NIQ) variables used in the proof

statement of a property and the resources consumed in verifying that property. Properties

with higher NIQ tend to take longer time and/or consume more memory to verify.

In formulating the correctness criteria and decompositions, our goal was to make the

criteria as general as possible. For example, in our case study, we were able to use the same

correctness criteria for both the program counter and register file (i.e., for both control

and data dependencies). However, further evaluation on a wider range of pipelines will be

necessary to validate the true generality of our criteria and strategy.

Our plan for future research is four-fold: (1) evaluate the generality of our inter-parcel

verification strategy, (2) extend its applicability, (3) boost the performance of our SSLTL

verification tool (Tahrir), and (4) enhance its usability.

To evaluate the generality of our inter-parcel verification strategy, we will apply our

strategy to microprocessor models that support optimizations that are not covered in our

case study such as exceptions and value prediction. We will also conduct case studies

focused on other types of pipelined systems, i.e., non-processor pipelines such as those

used in image and/or video processing.

To extend its applicability, we will combine our strategy with a mechanism for automatic

datapath abstraction such as the one proposed by Ciubotario [9]. This will allow us to

tackle more concrete models of microprocessors, i.e., bit-level models as opposed to term-

level models similar to the one verified in our case study.

To boost tool’s performance, we will replace the current system-call-based interface at

the core of Tahrir with an API-based interface. We believe a tighter coupling between

Tahrir and its decision engine would enhance overall performance. We will also imple-

ment a more efficient algorithm for generating Büchi automata such as those developed by

Couvreur [14], Gastin et al. [17], and Latvala [37].

To enhance the tool’s usability, we will provide Tahrir with a capability that helps the

user come up with the invariants. To do so, we will explore the existing techniques for
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automatic generation of invariants such as those presented by Bensalem et al. [4].
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