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Abstract

A clique of a graph G is a set of pairwise adjacent nodes of G. Similarly, a biclique
(U, V ) of a bipartite graph G is a pair of disjoint, independent vertex sets such that each
node in U is adjacent to every node in V in G. We consider the problems of identifying
the maximum clique of a graph, known as the maximum clique problem, and identifying
the biclique (U, V ) of a bipartite graph that maximizes the product |U | · |V |, known as
the maximum edge biclique problem. We show that finding a clique or biclique of a given
size in a graph is equivalent to finding a rank one matrix satisfying a particular set of
linear constraints. These problems can be formulated as rank minimization problems and
relaxed to convex programming by replacing rank with its convex envelope, the nuclear
norm. Both problems are NP-hard yet we show that our relaxation is exact in the case
that the input graph contains a large clique or biclique plus additional nodes and edges.
For each problem, we provide two analyses of when our relaxation is exact. In the first,
the diversionary edges are added deterministically by an adversary. In the second, each
potential edge is added to the graph independently at random with fixed probability p. In
the random case, our bounds match the earlier bounds of Alon, Krivelevich, and Sudakov,
as well as Feige and Krauthgamer for the maximum clique problem.

We extend these results and techniques to the k-disjoint-clique problem. The maximum
node k-disjoint-clique problem is to find a set of k disjoint cliques of a given input graph
containing the maximum number of nodes. Given input graph G and nonnegative edge
weights w ∈ RE

+, the maximum mean weight k-disjoint-clique problem seeks to identify the
set of k disjoint cliques of G that maximizes the sum of the average weights of the edges,
with respect to w, of the complete subgraphs of G induced by the cliques. These problems
may be considered as a way to pose the clustering problem. In clustering, one wants to
partition a given data set so that the data items in each partition or cluster are similar and
the items in different clusters are dissimilar. For the graph G such that the set of nodes
represents a given data set and any two nodes are adjacent if and only if the corresponding
items are similar, clustering the data into k disjoint clusters is equivalent to partitioning
G into k-disjoint cliques. Similarly, given a complete graph with nodes corresponding to a
given data set and edge weights indicating similarity between each pair of items, the data
may be clustered by solving the maximum mean weight k-disjoint-clique problem.

We show that both instances of the k-disjoint-clique problem can be formulated as rank
constrained optimization problems and relaxed to semidefinite programs using the nuclear
norm relaxation of rank. We also show that when the input instance corresponds to a
collection of k disjoint planted cliques plus additional edges and nodes, this semidefinite
relaxation is exact for both problems. We provide theoretical bounds that guarantee ex-
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actness of our relaxation and provide empirical examples of successful applications of our
algorithm to synthetic data sets, as well as data sets from clustering applications.
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Chapter 1

Introduction

In this dissertation, we study the behaviour of combinatorial optimization problems under
certain assumptions on the structure of program inputs. In [113], Karp suggests consid-
ering the behaviour of intractable problems for random program inputs. However, a truly
random model may not be a good representation of average case data for many practical
applications. For many applications in information retrieval and data mining, a better rep-
resentation of generic program inputs would be those where a particular hidden structure
is present in the data but has been obscured by random noise. For example, natural images
tend to have large regions of similar pixels separated by sharp edges rather than random
arrangements of pixels. In this case, it would be more helpful to study the perfomance
of an image processing algorithm for images containing this structure than it would be to
consider purely random images. In matrix completion, the desired matrix to be recovered
may be of low-rank. For example, Gram matrices for data embedded in a low dimensional
Euclidean space [125, 170] will be of low-rank. Similarly, matrices arising from collabora-
tive filtering applications such as the Netflix problem [16] are believed to have low rank
since user preferences are believed to depend on a small number of factors relative to the
number of users and items in the catalogue. For clustering applications, we may not need
our clustering algorithm to obtain a partition of purely random data, which would likely
not admit a meaningful clustering, but would instead need only to obtain accurate parti-
tionings of data containing a few large distinct clusters. Due to the difficult combinatorial
nature of these problems, we will not likely be able to provide an exact solution for all
program inputs. We would instead like to identify algorithms or heuristics that efficiently
obtain good solutions when the program inputs contain the desired structure.

We consider the maximum clique, maximum edge biclique, and the maximum node
and maximum mean weight k-disjoint-clique problems. These problems arise as simple
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model problems for data mining. For example, Iasemidis et al. [103] reduce a data mining
problem in epilepsy prediction to an instance of the maximum clique problem. Similarly,
Gillis and Glineur [83] use the biclique problem as a model problem for nonnegative matrix
factorization and finding features in images. The k-disjoint-clique problem is equivalent
to the clustering problem for particular program inputs. Although each of these problems
is NP-hard, we show that they can be solved in polynomial time by relaxing to convex
programming for input graphs structured in a specific way. In particular, our relaxation
is exact in the case that the input graph consists of the desired subgraph plus a number
of diversionary edges and nodes. We call such a subgraph planted. Our techniques and
results rely heavily on recent results in sparse optimization. Specifically, our relaxations
are based on the nuclear norm heuristic for matrix rank minimization. In matrix rank
minimization, the goal is to find a matrix of minimum rank satisfying a given set of linear
constraints. Several recent results [158, 36] have shown that in the case that a solution of
very low-rank is known to exist a priori, and the set of constraints is random, then the
nuclear norm relaxation recovers the unique solution of minimum rank. These results build
upon recent breakthroughs in compressive sensing [38, 37, 58, 59]. In compressive sensing,
the goal is to recover a sparse vector from a small number of observations of its entries. In
the case that these observations are made with random matrices, the sparse solution can
be solved by relaxing to linear programming using the `1-norm.

1.1 Outline of dissertation

This dissertation is organized as follows: Chapter 2 provides necessary background results
on convex programming, matrix analysis, and probability theory. Chapter 3 presents an
overview of the nuclear norm heuristic for matrix rank minimization. Chapters 4 and 5
present relaxations for the maximum clique and maximum edge biclique, and the k-disjoint-
clique problems, respectively. For each of these problems, we provide theoretical bounds
on the size of the planted subgraph and amount of noise that our algorithm can tolerate
and still recover the exact solution. Finally, Chapter 6 contains the results of numerical
experiments that empirically demonstrate the effectiveness of our algorithms for synthetic
data sets, as well as data sets drawn from clustering and image segmentation applications.

Portions of the material in Section 2.6, and Chapters 4 and 5 appear in [7, 8].
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Chapter 2

Background

We begin by reviewing terminology and classical results from convex and matrix analysis.

2.1 Vector and matrix norms

Let E be a Euclidean space with inner product 〈·, ·〉 : E × E → R. For example, we are
interested in the Euclidean spaces E = Rn with inner product 〈·, ·〉 : E×E→ R defined by
〈x,y〉 = xTy and E = Rm×n with inner product 〈X, Y 〉 = Tr (XTY ) for all X, Y ∈ Rn×n.
A function ‖ · ‖ : E→ R+ is a norm if for all x,y ∈ E,

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α|‖x‖ for all α ∈ R, and

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Note that the inner product defines a norm by ‖x‖ =
√
〈x,x〉 for all x ∈ E. For example,

for E = Rn, the inner product defines the norm ‖ · ‖2, called the Euclidean or `2-norm, by
‖x‖2 =

√
xTx for all x ∈ Rn. When E = Rn×n, the inner product defines the Frobenius

norm, denoted ‖ · ‖F , by ‖X‖F =
√

Tr (XTX) for all X ∈ Rm×n. Other norms in Rn

include the `1-norm ‖ · ‖1, defined by ‖x‖1 = |x1| + · · · + |xn|, and the max or infinity
norm ‖·‖∞, defined by ‖x‖∞ = max{|x1|, . . . , |xn|}. In general, ‖x‖p = (

∑n
i=1 |xi|p)1/p is a
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norm, called the `p-norm, for all p ≥ 1. Note that the max norm is the limit of the `p-norm
as p→∞. We have the following chain of inequalities (see [85, Equations (2.2.5)-(2.2.7)]):

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞ (2.1.1)

for all x ∈ Rn. Moreover, we have

‖x‖2
2 ≤ ‖x‖1‖x‖∞ (2.1.2)

x ∈ Rn; see [101, Equation (5.4.14)].

Each norm ‖ · ‖v in Rn induces a norm ‖ · ‖ in Rn×n, called the operator norm induced
‖ · ‖v, by

‖A‖ = max
x∈Rn

‖Ax‖v
‖x‖v

. (2.1.3)

In particular, the Euclidean, `1, and max norms define the following operator norms in
Rm×n:

‖A‖2 := max
x∈Rn

‖Ax‖2

‖x‖2

‖A‖1 := max
x∈Rn

‖Ax‖1

‖x‖1

= max
1≤j≤n

m∑
i=1

|Aij|

‖A‖∞ := max
x∈Rn

‖Ax‖∞
‖x‖∞

= max
1≤j≤m

n∑
j=1

|Aij|.

Moreover, we have the following chains of inequalities

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖F (2.1.4)

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞ (2.1.5)

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1 (2.1.6)

‖A‖2 ≤
√
‖A‖1‖A‖∞ (2.1.7)

for all A ∈ Rm×n (see [85, Equations (2.3.7), (2.3.11), (2.3.12)]). Unless otherwise noted,
we will use ‖x‖ to denote the Euclidean norm ‖x‖2 in Rn and ‖A‖ to denote operator
`2-norm ‖A‖2 in Rn×n.
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2.2 Rank and the singular value decomposition

An n× n real matrix U is orthogonal if UTU = UUT = I. Let On denote the set of n× n
orthogonal matrices. We may factorize each m× n matrix A as

A = USV T (2.2.1)

where U ∈ Om, V ∈ On, and

S =

(
D 0
0 0

)
where D is an r× r diagonal matrix for some integer r ∈ {1, . . . ,min(m,n)}, with positive
diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0 ordered nonincreasingly. Equivalently, we have

A =
r∑
i=1

σiuiv
T
i (2.2.2)

where ui,vi denote the ith columns of U, V respectively. We call the diagonal entries of
the matrix S the singular values of A and the columns of U and V the left and right
singular vectors of A, respectively. The factorization A = USV T is called the singular
value decomposition of A. Note that the number of nonzero singular values of A is equal
to r. The value r is called the rank of A, denoted rank (A). The rank of a matrix is equal
to the number of linearly independent rows or, equivalently, columns of A. We have the
following theorem.

Theorem 2.2.1 (Rank plus nullity theorem [134, (4.4.15)]) For every A ∈ Rm×n,
we have

n = rank (A) + dim(N(A)) (2.2.3)

where N(A) denotes the nullspace of the matrix A, N(A) = {x ∈ Rn : Ax = 0}.

The singular value decomposition provides equivalent representations of the norms dis-
cussed in the previous chapter. For example, ‖A‖2 = max{σ1A), . . . , σr(A)} = σ1(A) for
all A ∈ Rm×n. That is, the operator `2-norm is equal to the max norm of the vector of
singular values of A. Similarly, ‖A‖F = (σ1(A)2 + · · ·+σ(A)2

r)
1/2 is equal to the Euclidean

norm of the vector of singular values for all A ∈ Rm×n. The nuclear norm, which will serve
a major role in our heuristics for the clique, biclique, and clustering problems, is equal to
the `1-norm of the vector of singular values ‖A‖∗ = σ1(A) + · · ·+ σr(A).
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2.3 Convex sets, functions, hulls, and cones.

Let E be a Euclidean space with inner product 〈·, ·〉. We say a subset C ⊆ E is a convex
set if (tx + (1 − t)y) ∈ C for every x,y,∈ E and t ∈ [0, 1]. Note that the intersection of
convex sets is convex. In fact, every closed convex set in E can be characterized as the
intersection of potentially infinitely many convex sets of the form {x ∈ E : 〈α,x〉 ≤ 0} for
some α ∈ E. We call such a set {x ∈ E : 〈α,x〉 ≤ 0} a half-space. We have the following
theorem.

Theorem 2.3.1 ([163, Theorem 11.5]) Every closed convex set is the intersection of
the closed half-spaces which contain it.

Theorem 2.3.1 suggests a natural means of convexifying a nonconvex set. The convex
hull of a subset C ⊆ E, denoted conv (C), is the smallest convex set in E containing C.
That is, conv (C) is equal to the intersection of all convex sets in E containing C:

conv (C) =
⋂
{S : C ⊆ S, S convex}.

An important class of convex sets are the convex cones. A set C ⊆ E is a cone if
αx ∈ C for all x ∈ C and α ∈ R+. A set C ⊆ E is a convex cone if it is both a cone
and a convex set. This holds if and only if x + y ∈ C for all x,y ∈ C. For example,
the nonnegative cone in Rn, Rn

+ := {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}, is a convex cone.
In Section 2.5, we will see that the set of n× n symmetric, positive semidefinite matrices
Σn

+ = {X ∈ Rn×n : X = XT , vTXv ≥ 0 ∀v ∈ Rn} is also a convex cone, called the
semidefinite cone.

We have a similar definition for convexity of functions. We say a function f : E →
[−∞,∞] is a convex function if its epigraph epi f := {(x, t) : t ≥ f(x)} is a convex set.
Equivalently, f is convex if f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) for every x,y,∈ E and
t ∈ [0, 1]. The domain of f is the set of elements of E where f has finite value, dom f =
{x ∈ E : f(x) < +∞}. A function f is proper if dom f is nonempty and f never takes the
value −∞. The convex envelope of a function g : E → [−∞,∞], denoted conv (g), is the
smallest convex function f such that f(x) ≥ g(x) for all x ∈ E. Equivalently, a function f is
the convex envelope of the function g if and only if epi (f) = epi (conv (g)) = conv (epi (g)).
For a convex function f : E→ [−∞,∞], φ ∈ E is a subgradient of f at x̄ if

〈φ,x− x̄〉 ≤ f(x)− f(x̄)
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for all x ∈ E. The subdifferential of f at x̄ is the set of subgradients of f at x̄, denoted
∂f(x̄). Subgradients may be thought of as a generalization of the gradient for nonsmooth
functions. Indeed, when f is continuously differentiable at x the subdifferential at x̄ is
exactly the gradient ∂f(x̄) = {∇f(x̄)}.

2.4 Convex programming

A convex program is an optimization problem of the form

inf{f(x) : x ∈ C} (2.4.1)

where f : E → (−∞,∞] is a proper, convex function and C is a convex subset of a
Euclidean space E. That is, convex programming seeks to minimize a given convex function
over a given convex set. When the given convex set C is the intersection of a convex
cone and an affine subspace, we have a conic program. An important example of conic
programming is semidefinite programming. An overview of semidefinite programming is
provided in Section 2.5.

Theorem 2.3.1 suggests that every convex program of form (2.4.1) can be rewritten in
the form

inf{f(x) : gi(x) ≤ 0 ∀ i ∈ I, hj(x) = 0 ∀ j ∈ J} (2.4.2)

where f, gi : E→ (−∞,∞], i ∈ I are proper, convex functions, hj : E → R are linear for
all j ∈ J and I, J are (possibly infinite) index sets. Here, the convex set C is the set of
all x ∈ E such that gi(x) ≤ 0 for all i ∈ I and hj(x) = 0 for all j ∈ J . Suppose that the
index sets I, J in (2.4.2) are finite; say I = {1, . . . ,m}, J = {1, . . . , p}. The Lagrangian of
the problem (2.4.2) is the function L : (E×Rm

+ ×Rp)→ R defined by

L(x,y, z) = f(x) +
m∑
i=1

yigi(x) +

p∑
j=1

zjhj(x), (2.4.3)

for all x ∈ E, y ∈ Rm
+ , z ∈ Rp. We can write (2.4.2) as the primal problem

inf
x∈E

sup
y∈Rm

+ ,z∈Rp

L(x,y, z). (2.4.4)
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Switching the order of the infimum and supremum in (2.4.4) yields the dual problem

sup
y∈Rm

+ ,z∈Rp

inf
x∈E

L(x,y, z). (2.4.5)

The dual provides a lower bound on the optimal primal value since

∞ ≥ inf
x∈E

sup
y∈Rm

+ ,z∈Rp

L(x,y, z)) ≥ sup
y∈Rm

+ ,z∈Rp

inf
x∈E

L(x,y, z) ≥ −∞.

In fact, if the primal admits a strictly feasible solution, then the optimal primal and
dual values coincide. We say that a convex program (2.4.2) satisfies the Slater constraint
qualification if there exists x̂ ∈ dom f such that gi(x̂) < 0 for all i = 1, . . . ,m. We have
the following theorem.

Theorem 2.4.1 ([26, Theorem 4.3.7]) If the Slater condition holds for the primal prob-
lem (2.4.2) then the primal and dual values are equal, and the dual value is attained if finite.

Duality can also be used to characterize when a particular feasible solution of (2.4.2)
is optimal. We have the following theorem.

Theorem 2.4.2 ([163, Theorem 28.3]) Suppose that (2.4.2) satisfies the Slater con-
straint qualification. Then x∗ is optimal for (2.4.2) if and only if there exists y∗ ∈ Rm

+ ,
z∗ ∈ Rp such that x∗,y∗, z∗ satisfy

1. Primal feasibility: gi(x
∗) ≤ 0 for all i = 1, . . . ,m, hj(x

∗) = 0 for all j = 1, . . . , p,

2. Dual feasibility: 0 ∈ ∂f(x∗) +
∑m

i=1 y∗i ∂gi(x
∗) +

∑p
j=1 z∗j∇hj(x∗), and

3. Complementary slackness: y∗i gi(x
∗) = 0 for all i = 1, . . . ,m.

We conclude this section by mentioning an important application of convex program-
ming: relaxation of combinatorial problems. Convex relaxation is a popular technique in
heuristics and approximation algorithms for combinatorial optimization. In convex relax-
ation, a combinatorial problem is relaxed to a convex program, such as minimizing the
convex envelope of the original objective function over the convex hull of the set of feasible
solutions. This relaxed problem, and convex programs of form (2.4.1) can, in general, be
solved efficiently if evaluation of f and testing membership in C can be performed effi-
ciently; see, for example, [169, 192, 142]. The optimal solution of the relaxed problem
can be then used to obtain a lower bound on that of the original problem. For example,
relaxing integrality constraints and solving the resulting linear program is a key component
of branch and cut, and branch and bound algorithms for integer programming.
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2.5 Semidefinite programming

An important class of convex programming is semidefinite programming. Here the convex
set to be optimized over is a subset of the semidefinite cone. This section reviews several
important properties of the semidefinite cone and semidefinite programs.

We say that an n × n matrix A is symmetric if A = AT . For each symmetric matrix
A, we have the factorization A = UDUT where U ∈ On and D is an n × n diagonal
matrix with diagonal entries ordered nonincreasingly. The diagonal entries of D are called
eigenvalues of A and the columns of U are eigenvectors. We call such a factorization
the spectral decomposition of A and the set of eigenvalues of A the spectrum of A. Note
that λ is an eigenvalue, with eigenvector v, if there exists v ∈ Rn, v 6= 0, such that
Av = λv. Equivalently, λ is an eigenvalue of A if it is a root of the characteristic polynomial
det(A − λI). We say that a symmetric matrix A is positive semidefinite if each of its
eigenvalues is nonnegative. Equivalently, A is positive semidefinite if xTAx ≥ 0 for all
x ∈ Rn. We denote the set of n × n symmetric matrices by Σn, and the set of n × n
symmetric positive semidefinite matrices by Σn

+. Note that the singular value and spectral
decompositions are identical for all A ∈ Σn

+. We denote the partial order on Σn
+ by “�”:

A � B, if A − B ∈ Σn
+. Similarly, we say that a matrix A is positive definite if each of

its eigenvalues is strictly positive. We denote the set of n× n symmetric positive definite
matrices by Σn

++ and have the partial order on Σn
++ defined by A � B if and only A−B � 0.

Note that Σn
+ is a convex cone for all n ∈ Z+. Indeed, the set of symmetric matrices is

closed under addition and xT (A+B)x = xTAx+xTBx ≥ 0 for all A,B ∈ Σn
+ and x ∈ Rn.

We refer to Σn
+ as the semidefinite cone.

A semidefinite program (SDP) is an optimization problem of the form

inf{〈C,X〉 : A(X) = b, X � 0} (2.5.1)

where the symmetric matrix C ∈ Σn, linear map A : Σn
+ → Rm, and vector b ∈ Rm are

given. Since the sets {X : A(X) = b} and Σn
+ are convex, and the objective function 〈C, ·〉

is linear, (2.5.1) is a convex program. Hence, we may define a dual problem and optimality
conditions for (2.5.1) as in the previous section. The dual of (2.5.1) is the semidefinite
program

sup{bTy : A∗(y) + S = C, S � 0} (2.5.2)

where A∗ : Rm → Σn
+ is the adjoint map of A defined by

(A(X))Ty = Tr (A∗(y)X)
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for all X ∈ Σn
+, y ∈ Rm. For (2.5.1), the Slater constraint qualification is satisfied if

there exists X̃ ∈ Σn such that A(X̃) = b and X̃ � 0. On the other hand, the dual
problem (2.5.2) satisfies the Slater condition if there exists S̃ ∈ Σn and ỹ ∈ Rm such
that A∗(ỹ) + S̃ = C and S̃ � 0. As before, we have the following theorem guaranteeing
equality between the optimal objective values of the primal and dual if the Slater constraint
qualification holds.

Theorem 2.5.1 ([181, Corollary 2.16]) If (2.5.1) and (2.5.2) satisfy the Slater condi-
tion, then they both attain their optimal objective values and the optimal objective values
of (2.5.1) and (2.5.2) coincide.

The necessary and sufficient conditions for optimality of a given feasible solution of a
general convex program given by Theorem 2.4.2 are specialized to semidefinite program-
ming in the following theorem.

Theorem 2.5.2 Suppose that (2.5.1) and (2.5.2) satisfy the Slater constraint qualification.
Then X∗ is optimal for the primal problem (2.5.1) and (S∗,y∗) is optimal for the dual
problem (2.5.2) if and only if X∗, S∗ � 0 and X∗, S∗,y∗ satisfy

1. Primal feasibility: A(X∗) = b,

2. Dual feasibility: A∗(y∗) + S∗ = C, and

3. Complementary slackness: 〈X∗, S∗〉 = 0.

Semidefinite programs can be solved efficiently using interior point algorithms (see
[142, 184, 176]) or first order methods [194], and several software packages for solving
semidefinite programs are available (see [173, 76, 177, 182, 194]).

2.6 Bounds on the norms of random matrices and

sums of random variables

2.6.1 Bounds on the tail of the sum of random variables

We begin with a version of the well-known Chernoff bounds providing a bound on the tail
distribution of a sum of independent Bernoulli trials (see [135, Theorems 4.4 and 4.5]).
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Theorem 2.6.1 (Chernoff Bounds) Let X1, . . . , Xk be a sequence of k independent Bernoulli
trials, each succeeding with probability p so that E(Xi) = p. Let S =

∑k
i=1 Xi be the bino-

mially distributed variable describing the total number of successes. Then for δ > 0

P
(
S > (1 + δ)pk

)
≤
(

eδ

(1 + δ)(1+δ)

)pk
. (2.6.1)

It follows that for all a ∈ (0, p
√
k),

P (|S − pk| > a
√
k) ≤ 2 exp(−a2/p). (2.6.2)

We next provide a theorem of Hoeffding (see [98, Theorem 1]), which provides a bound
on the tail distribution of a sum of bounded, independent random variables.

Theorem 2.6.2 (Hoeffding’s Inequality) Let X1, . . . , Xm be independently identically
distributed (i.i.d.) variables sampled from a distribution satisfying 0 ≤ Xi ≤ 1 for all
i = 1, . . . ,m. Let S = X1 + · · ·+Xm. Then

Pr(|S − E[S]| > t) ≤ 2 exp

(−2t2

m

)
(2.6.3)

for all t > 0. In particular, for t = a
√
m for some scalar a > 0, we have

Pr(|S − E[S]| > a
√
m) ≤ 2 exp(−2a2). (2.6.4)

Note that a sequence of k independent Bernoulli trials satisfies the hypothesis of The-
orem 2.6.2. In this sense, Theorem 2.6.2 may be thought of as a generalization of Theo-
rem 2.6.1.

2.6.2 Bounds on the norms of random matrices

We begin with a theorem of Füredi and Komlós [77] that bounds the operator `2-norm of
a random symmetric matrix whose entries have mean zero.

Theorem 2.6.3 Let A ∈ Σn be a random symmetric matrix with independently identically
distributed (i.i.d.) entries sampled from a distribution satisfying 0 ≤ Aij = Aji ≤ 1 for all
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i, j ∈ {1, . . . , n}. Then there exist c1, c2 > 0 depending only on the variance of the entries
of A such that

‖A− E[A]‖ ≤ c1

√
n

with probability at least 1− exp(−c2n
1/6).

Note that this theorem is not stated in this form in [77], but can be deduced by taking
k = σ1/3n1/6 and v = σ

√
n in the inequality

P (max |λ| > 2σ
√
n+ v) <

√
n exp(−kv/(2σ√n+ v))

on pp. 237 of [77].

In particular, we consider the probability distribution Ω for an entry Aij defined as
follows:

Aij =

{
1 with probability p,
−p/(1− p) with probability 1− p.

It is easy to see that the variance of Aij is σ2 = p/(1 − p) and each entry of A has mean
equal to 0. For random symmetric matrices drawn from the distribution Ω, Theorem 2.6.3
specializes to the following result.

Theorem 2.6.4 For all integers i, j, 1 ≤ j ≤ i ≤ n, let Aij be distributed according to Ω.
Define symmetrically Aij = Aji for all i < j.

Then the random symmetric matrix A = [Aij] satisfies

‖A‖ ≤ 3σ
√
n

with probability at least 1− exp(−cn1/6) for some c > 0 that depends on σ.

A similar theorem attributed to Geman [79] is available for nonsymmetric matrices.

Theorem 2.6.5 Let A be a dyne × n matrix whose entries are chosen according to Ω for
fixed y ≥ 0. Then, with probability at least 1 − c1 exp(−c2n

c3) where c1 > 0, c2 > 0, and
c3 > 0 depend on p and y,

‖A‖ ≤ c4

√
n

for some c4 > 0 also depending on p, y.

As in the case of [77], this theorem is not presented by Geman in this manner explicitly,
but can be deduced from the equations on pp. 255–256 of [79] by taking k = nq for a q
satisfying (2α + 4)q < 1.
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Chapter 3

Nuclear Norm Relaxation for the
Affine Rank Minimization Problem

3.1 The Affine Rank Minimization Problem

Recovering low-rank matrices from noisy linear measurements has many applications in
machine learning. For example, low-rank matrices may represent collections of stationary
objects in a series of video frames [34, Section 4], distance matrices of objects embedded in a
low-dimensional Euclidean space in sensor localization or facial recognition [125, 12, 170, 54,
119], catalogues of user preferences in collaborative filtering [161, 197], and pure or nearly
pure quantum states [88]. Moreover, modelling binary or {−1, 1} variables using low-rank
matrices is a classical technique in semidefinite relaxation of combinatorial optimization
problems, such as the maximum cut problem [84]. We will see in Chapters 4 and 5 that
rank-one matrices can be used to represent cliques in graphs and clusters of similar objects
in a data set respectively. Hence, we are often interested in identifying the matrix with
minimum rank satisfying a given set of constraints. When the set of feasible solutions for
these constraints is convex we have the rank minimization problem

min rank (X)
s.t. X ∈ C (3.1.1)
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where X ∈ Rm×n, and C is a given convex set. When the given constraint set C is affine we
have the affine rank minimization problem. That is, the affine rank minimization problem

min rank (X)
s.t. A(X) = b

(3.1.2)

seeks the matrix X ∈ Rm×n with lowest rank in the affine space defined by the given linear
map A : Rm×n → Rp and vector b ∈ Rp. In general, the affine rank minimization problem
is NP-hard. Indeed, we will see in Section 4.1.2 that the maximum clique problem, well-
known to be NP-hard, can be formulated as a special case of affine rank minimization.
Alternately, when the decision variable X is restricted to be a diagonal matrix, affine rank
minimization is equivalent to cardinality minimization, also known to be NP-hard [140].
We focus our discussion on the nuclear norm minimization (NNM) heuristic introduced by
Fazel et al. in [61, 62]. This heuristic involves solving the relaxation of (3.1.2) obtained
by replacing the objective function rank with the nuclear norm:

min ‖X‖∗ = σ1(X) + · · ·+ σmin{m,n}(X)
s.t. A(X) = b

(3.1.3)

We will see in Section 3.2, that the resulting optimization problem (3.1.3) is convex and
may be solved in polynomial time by formulating as a semidefinite program. Recently,
several software packages [33, 126, 131, 178] for solving (3.1.3) have become available.
Remarkably, although the affine rank minimization problem is intractable in general, it
has been established that the minimum rank solution can be recovered in polynomial time
by solving the (3.1.3) for many program inputs. In particular, the nuclear norm relaxation
is exact with extremely high probability when the linear map A is drawn from one of
several families of random linear maps.

The rest of this section is organized as follows. In Section 3.2 we discuss several useful
properties of the nuclear norm, which make it an attractive candidate for relaxation of
rank. The nuclear norm heuristic can be thought of as an extension of the `1 heuristic
for the cardinality minimization problem. In Section 3.3, we provide background on the
cardinality minimization problem and highlight some parallels between the `1 heuristic and
nuclear norm minimization. Conditions on the linear map A that ensure that the nuclear
norm heuristic is exact for affine rank minimization and examples of families of random
maps for which they hold can be found in Section 3.4.
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3.2 Properties of the Nuclear Norm

3.2.1 Convexity

For all X ∈ Rm×n, ‖X‖∗/‖X‖ provides an underestimate of rank (X). Indeed, suppose
that X has rank r ≥ 1 and singular value decomposition X =

∑r
i=1 σiuiv

T
i . Then

‖X‖∗
‖X‖ =

1

σ1(X)
(σ1(X) + · · ·+ σr(X)) ≤ r,

since σi(X) ≤ σ1(X), for all i = 1, . . . , r. In the case that ‖X‖ ≤ 1, we have ‖X‖∗ ≤
rank (X). Hence, the nuclear norm underestimates rank on the set {X ∈ Rm×n : ‖X‖ ≤ 1}.
In fact, this is the best convex pointwise approximation to rank on the set {X ∈ Rm×n :
‖X‖ ≤ 1}. Indeed, we have the following theorem.

Theorem 3.2.1 ([61, Theorem 1]) The convex envelope of rank (X) on the set {X ∈
Rm×n : ‖X‖ ≤ 1} is the nuclear norm ‖X‖∗.

A proof of Theorem 3.2.1 can be found in [61, Section 5.1.5]. The proof establishes the
fact that the nuclear norm ‖X‖∗ is the biconjugate of rank (X) on the set {X ∈ Rm×n :
‖X‖ ≤ 1} and then uses the fact that the biconjugate of rank (X) is equal to its convex
envelope (see [96, Theorem 1.3.5]) to complete the argument. The following corollary
extends Theorem 3.2.1 to the set {X ∈ Rm×n : ‖X‖ ≤M} for all M ≥ 0.

Corollary 3.2.1 The convex envelope of rank (X) on the set {X ∈ Rm×n : ‖X‖ ≤M} is
‖X‖∗/M for all M ≥ 0.

Corollary 3.2.1 yields the following bounds on the optimal value of an instance of the
affine rank minimization problem.

Corollary 3.2.2 ([158, pg. 479]) Let X0, X
∗ be the minimum rank and minimum nu-

clear norm solutions of A(X) = b for given linear map A : Rm×n → Rp and vector
b ∈ Rp. Then

‖X∗‖∗
‖X0‖

≤ ‖X0‖∗
‖X0‖

≤ rank (X0) ≤ rank (X∗).
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3.2.2 Formulation as a dual norm

For a given norm ‖ ·‖ in a Euclidean space E with inner product 〈·, ·〉, the dual norm ‖ ·‖d
of ‖ · ‖ is defined by

‖X‖d = sup
Y ∈E
{〈X, Y 〉 : ‖Y ‖ ≤ 1}. (3.2.1)

The dual norm is itself a norm (see [101, p. 275-276]). When E is the set of m × n
real matrices with the trace inner product 〈X, Y 〉 = Tr (XTY ), we have the following
characterization of the nuclear norm as the dual norm of the operator norm.

Theorem 3.2.2 ([158, Proposition 2.1]) The dual norm of the operator `2-norm ‖ · ‖
in Rm×n is the nuclear norm ‖ · ‖∗.

Theorem 3.2.2 implies that the nuclear norm ‖·‖∗ is indeed a norm on Rm×n. Moreover,
Theorem 3.2.2 suggests that the nuclear norm ‖X‖∗ of a given matrix X ∈ Rm×n may be
calculated as the optimal objective value of a semidefinite program (see [158, Equations
(2.5)-(2.6)]). Indeed, ‖X‖∗ is the optimal value of the optimization problem

‖X‖∗ = max{Tr (XTY ) : ‖Y ‖ ≤ 1},

which is equivalent to the semidefinite program

max
Y

Tr (XTY )

s.t.

(
I Y
Y T I

)
� 0

(3.2.2)

since ‖Y ‖ ≤ 1 if and only if I � Y TY which holds if and only if(
I Y
Y T I

)
� 0

by the Schur Complement Theorem (see [29, Appendix A.5.5]). The dual of (3.2.2) is given
by

min
W1,W2

1
2
(Tr (W1) + Tr (W2))

s.t.

(
W1 X
XT W2

)
� 0.

(3.2.3)

Note that both (3.2.2) and (3.2.3) have strictly feasible solutions. Therefore, Slater’s
condition holds and, hence, ‖X‖∗ may be computed using either (3.2.2) and (3.2.3) since
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there is no duality gap between them. An alternate argument for the lack of duality gap
between (3.2.2) and (3.2.3) can be found in the proof of Proposition 2.1 in [158].

The semidefinite formulations (3.2.2) and (3.2.3) for the nuclear norm may be used (see
[158, Equations (2.7)-(2.8)]) to express each instance of nuclear norm relaxation of affine
rank minimization as a semidefinite program. Minimization of the nuclear norm over the
affine subspace defined by the given linear map A : Rm×n : Rp and vector b ∈ Rp can be
formulated as the convex program

min{‖X‖∗ : A(X) = b} (3.2.4)

or its dual
max{bTz : ‖A∗(z)‖ ≤ 1}. (3.2.5)

Substituting the dual characterization (3.2.3) into (3.2.4) yields the following semidefinite
program formulation of nuclear norm minimization

min 1
2
(Tr (W1) + Tr (W2))

s.t.

(
W1 X
XT W2

)
� 0

A(X) = b.

(3.2.6)

Similarly, substituting the characterization of the constraint ‖X‖ ≤ 1 from (3.2.2) yields
the dual of (3.2.6)

max bTz

s.t.

(
I A∗(z)

A∗(z)T I

)
� 0.

(3.2.7)

Therefore, the convex relaxation of the affine rank minimization problem obtained by
replacing rank (X) with the nuclear norm ‖X‖∗ can be approximated within arbitrary
precision in polynomial-time as a semidefinite program.

3.2.3 Optimality conditions for the affine nuclear norm mini-
mization problem

We conclude by characterizing when a feasible solution for (3.2.4) is optimal. The following
lemma characterizes the subdifferential of the nuclear norm at X ∈ Rm×n.
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Lemma 3.2.1 ([186, Example 2]) Let X ∈ Rm×n have rank equal to r and compact
singular value decomposition X = UDV T where U ∈ Rm×r, V ∈ Rn×r and D ∈ Rr×r is
diagonal. Then the subdifferential of the nuclear norm ‖ · ‖∗ at X is equal to

∂‖X‖∗ = {UV T +W : W TU = 0,WV = 0, ‖W‖ ≤ 1}. (3.2.8)

We have the following optimality conditions for the convex problem (3.2.4).

Theorem 3.2.3 ([158, Equation (2.11)]) A matrix X ∈ Rm×n is optimal for (3.2.4) if
there exists z ∈ Rp such that

A(X) = b (3.2.9)

A∗(z) ∈ ∂‖X‖∗. (3.2.10)

3.3 Cardinality Minimization and Compressed Sens-

ing

Vector cardinality minimization refers to the problem of finding the sparsest vector satisfy-
ing a given set of linear constraints. That is, given matrix A ∈ Rm×n and b ∈ Rn, we want
to find the vector x̄ with the minimum number of nonzero entries satisfying Ax̄ = b. This
problem arises in applications in signal processing. Suppose that we are given a vector
x̄ ∈ Rn representing a particular sparse signal. That is, x̄ has k nonzero entries where
k << n. We want to exploit the sparsity of x̄ and encode x̄ so that we may reduce the
amount of space required to store it. One way of doing this would be to encode x̄ as a linear
combination of known signals. That is, we can store x̄ as b = Ax̄ for some A ∈ Rm×n.
This encoding of x̄ is only useful if we are also able to decode b and recover x̄. The recon-
struction of a sparse signal from a small number of linear measurements is often referred to
as compressed or compressive sensing. The terminology “compressed sensing” comes from
the fact that, in practice, the full signal is never recorded and instead the measurement
vector b = Ax̄ is obtained from a series of independent samplings of x̄. Hence, only a
“compressed” version of the signal is “sensed”. If the matrix A is chosen so that x̄ is the
unique minimum cardinality solution of the system Ax = b then x̄ can be recovered by
solving the cardinality minimization problem

min ‖x‖0

s.t. Ax = b.
(3.3.1)
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Here ‖x‖0 denotes the number of nonzero entries of the vector x, called the cardinality, or
`0-norm of x. Note that ‖ · ‖0 is not a norm as it is neither subadditive or homogeneous.
The terminology “`0-norm” arises from the fact that

‖x‖0 = lim
p↓0

n∑
i=1

|xi|p = lim
p↓0
‖x‖pp

Thus, the objective in cardinality minimization is equal to the limit as p tends to 0 of the
objective in p-norm minimization.

Unfortunately, the cardinality minimization problem (3.3.1) is NP-hard [140]. A popu-
lar heuristic for (3.3.1) is `1-minimization, also known as basis pursuit. Santosa and Symes
[164] propose minimizing the `1-norm for detecting spikes in seismic data. Chen, Donoho,
and Saunders [47] suggest extending this heuristic to signal processing and the cardinality
minimization problem. Recall that the `1-norm on Rn is equal to

‖x‖1 =
n∑
i=1

|xi|

for all x ∈ Rn. The `1-minimization relaxation of (3.3.1) is the convex program

min ‖x‖1

s.t. Ax = b.
(3.3.2)

This relaxation may be formulated as a linear program by decomposing each x as x = x+−
x− where x+, x− are the magnitudes of the positive and negative entries of x respectively.
That is, x+

i = xi if xi ≥ 0 and is 0 otherwise, and x−i = −xi for all i such that xi < 0 and
0 otherwise. The resulting linear program is

min
∑n

i=1(x+
i + x−i )

s.t. x = x+ − x−

Ax = b
x+,x− ≥ 0.

(3.3.3)

Therefore, (3.3.2) may be solved efficiently, either as a linear program using the simplex
algorithm [144, Chapter 13] or interior-point methods (see [143], [144, Chapter 14]). Many
algorithms [116, 50, 191, 70, 14] have recently been developed for `1-minimization. The
software package SPARSELAB [57] contains implementations of several heuristics for com-
pressed sensing for use in Matlab.
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Moreover, for most large underdetermined systems of linear equations, the minimal
`1-norm solution is also the sparsest solution. Hence, `1-minimization may be used to
efficiently recover a sparse vector from a random sampling of its entries. Indeed, suppose
that the matrix A ∈ Rm×n has entries independently drawn from the normal distribution
with µ = 0, σ2 = 1, and b = Ax̄ where x̄ ∈ Rn has ‖x̄‖0 = k for k << n. Then, for
m > O(k log n), the optimal solution for the `1-minimization relaxation (3.3.2) coincides
with that for original cardinality minimization problem (3.3.1); see [59, 38]. Similar results
hold for A with entries drawn independently from the symmetric Bernoulli distribution,
and with rows equal to a random subset of the rows of the Fast Fourier Transform (see
[39, 37]).

We conclude by highlighting several similarities between rank minimization and cardi-
nality minimization, and their `1 and nuclear norm relaxations. Consider the problem of
minimizing rank of a diagonal matrix subject to some linear constraints:

min rank (Diag x)
s.t. A(Diag x) = b

(3.3.4)

where the decision variable is a n×n diagonal matrix, and the linear map A : Rn×n → Rm

and vector b ∈ Rm are given. Since the rank of a diagonal matrix is equal to the number
of nonzero entries on its diagonal, we have rank (Diag x) = ‖x‖0 for all x ∈ Rn. Moreover,
the operator A acts only on the diagonal entries of Diag x. Thus, there exists A ∈ Rm×n

such that A(Diag x) = Ax for all x ∈ Rn. Cardinality minimization is a special case of
rank minimization. Moreover, ‖Diag x‖∗ = ‖x‖1 for all x ∈ Rn since the nuclear norm
of a matrix X is simply the `1-norm of its singular values. In this sense, the `1-norm
heuristic for cardinality minimization is a vector analogue of the nuclear norm heuristic
for affine rank minimization. The `1-norm and nuclear norm share several other properties
as well. As can be expected, the `1-norm is the convex envelope of ‖ · ‖0 on the set
{‖x‖∞ : ‖x‖∞ ≤ 1}. When restricted to the vector of singular values σ(X) for some
matrix X ∈ Rm×n, this reduces to the fact that the nuclear norm is the convex envelope of
rank on the set {X : ‖X‖2 ≤ 1} since the spectral norm is the max norm of the vector of
singular values and rank is the cardinality of the vector of singular values. Furthermore,
‖ · ‖1 is the dual norm of ‖ · ‖∞. We will see in the next two sections that a number of
recovery results for compressive sensing can be extended to the matrix case to show that
the minimum nuclear norm and rank solutions provided that a low rank solution exists
and the linear map A is nicely structured.
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3.4 Theoretical guarantees for the success of the nu-

clear norm relaxation

In this section, we provide theoretical guarantees that ensure that a particular low-rank
matrix X0 is the minimum rank matrix in the affine subspace {X ∈ Rm×n : A(X) = b},
where A : Rm×n → Rp is linear and b = A(X0), and can be found by solving convex
program min{‖X‖∗ : X ∈ Rm×n, A(X) = b}.

3.4.1 The restricted isometry property and nearly isometric ran-
dom matrices

In [158], Recht, Fazel, and Parrilo show that if the linear operator A satisfies a particular
restricted isometry property then the minimum rank solution on the affine space defined
by A may be found, with probability exponentially close to 1, by minimizing the nuclear
norm over this affine space. Let A : Rm×n → Rp be a linear map. For every r ∈
{1, . . . ,min{m,n}}, the r-restricted isometry constant δr(A) is the smallest number such
that

(1− δr(A))‖X‖F ≤ ‖A(X)‖ ≤ (1 + δr(A))‖X‖F (3.4.1)

holds for every matrix X with rank at most r. This definition generalizes the restricted
isometry property (RIP) for sparse vectors developed by Candès and Tao in [38] to one for
low-rank matrices.

Let X0 be a matrix of rank r, let A : Rm×n → Rp be a linear map, and let b :=
A(X0). Using properties of the r-restricted isometry constant δr(A), Recht, Fazel, and
Parrilo provide two theorems characterizing when X0 is equal to the minimizer X∗ of
min{‖X‖∗ : A(X) = b}. These theorems generalize analogous results for cardinality
minimization to low-rank matrix recovery. The first generalizes Lemma 1.2 in [38] to
provide a characterization of when X0 is the unique minimum rank solution of A(X) = b.

Theorem 3.4.1 ([158, Theorem 3.2]) Suppose that δ2r < 1 for some integer r ≥ 1.
Then X0 is the only matrix of rank at most r satisfying A(X) = b.

The following theorem guarantees that X0 is the minimum nuclear norm solution of
A(X) = b provided the (5r)-restricted isometry constant of A is sufficiently small, and
extends Theorems 1 and 2 in [37] to low-rank matrix recovery.
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Theorem 3.4.2 ([158, Theorem 3.3]) Suppose that δ5r < 1/10 for some integer r ≥ 1.
Then X∗ = X0.

Recht, Fazel, and Parrilo show that if the random linear operator A is chosen according
to a probability distribution satisfying certain properties then, with probability tending
exponentially to 1 as m,n, p tend to∞, the operator A will have small r-restricted isometry
constant. Let A be a random variable that takes values in linear maps from Rm×n to Rp.
The linear map A is nearly isometrically distributed if, for all X ∈ Rm×n

E[‖A(X)‖2] = ‖X‖2
F (3.4.2)

and, for all 0 < ε < 1, we have

Pr(|‖A(X)‖2 − ‖X‖2
F | ≥ ε‖X‖2

F ) ≤ exp

(
−p

2

(
ε2

2
− ε3

3

))
, (3.4.3)

and there exists constant γ > 0 such that

Pr

(
‖A‖ ≥ 1 +

√
mn

p
+ t

)
≤ exp(−γpt2) (3.4.4)

for all t > 0. The following theorem states that if A : Rm×n → Rp is randomly sampled
from a nearly isometric family of linear operators then δr(A) is small for sufficiently large
p with probability tending exponentially to 1 as p tends to ∞.

Theorem 3.4.3 ([158, Theorem 4.2]) Fix 0 < δ < 1. If A : Rm×n → Rp is a nearly
isometric random variable, then, for every 1 ≤ r ≤ min{m,n}, there exists positive con-
stants c0, c1 depending only on δ such that, with probability at least 1−exp(−c1p), δr(A) ≤ δ
whenever p ≥ c0r(m+ n) log(mn).

Theorem 3.4.3 implies that nearly isometric maps satisfy the hypotheses of Theo-
rem 3.4.1 and Theorem 3.4.2 with probability exponentially close to 1. Therefore, the
minimum rank solution on the affine space defined by such a map A can be efficiently re-
covered by solving the corresponding nuclear norm minimization relaxation. In particular,
the family of random linear transforms whose matrix representations have independently
identically distributed (i.i.d.) Gaussian entries, Aij ≈ N(0, 1/p), is nearly isometric and,
hence, the nuclear norm relaxation of rank minimization subject to affine Gaussian con-
straints is exact with probability exponentially close to 1 for sufficiently large p. Similarly,
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the ensemble of random linear maps with matrix representations with entries sampled i.i.d.
from the symmetric Bernoulli distribution

Aij =

{ √
1/p with probability 1/2,

−
√

1/p with probability 1/2,

and the family with matrix representations with entries sampled i.i.d. such that

Aij =


√

3/p with probability 1/6,
0 with probability 2/3,

−
√

3/p with probability 1/6

are also nearly isometric.

The guarantees for recovery of a low-rank matrix provided by Theorems 3.4.1, 3.4.2,
and 3.4.3 have been improved upon in subsequent papers. Candès and Plan [35] provide
a minimal order of measurements required for recovery of a low-rank matrix, and Mohan
and Fazel [136] and Oymak et al. [149] show that exact recovery occurs under weaker as-
sumptions on the r-restricted isometry constants than those of Theorems 3.4.1 and 3.4.2.
Moreover, similar results have recently been obtained for other rank minimization heuris-
tics such as Singular Value Projection [104], Reweighted Trace Minimization [136], and
ADMIRA [30, 122].

3.4.2 Nuclear norm minimization and the low-rank matrix com-
pletion problem

Low rank matrix completion is the problem of recovering a low-rank matrix from a sam-
pling of its entries. This problem appears in many applications. In recommender systems,
a vendor would like to provide recommendations to its users. These recommendations are
typically based upon a small number of submitted user preferences. Users preference for
unrated items must be inferred from these submitted ratings. The resulting completed ma-
trix of all user-ratings is believed to be low-rank because it is hypothesized that only a few
factors influence one’s preferences. In sensor network localization, the positions of wireless
sensors in a region are to be recovered from a matrix containing their relative distances.
Often each sensor is only able to estimate distances using signal strength readings from its
nearest neighbours. In this case, the remaining entries of the distance matrix will have to
be recovered from these partial observations. In particular, the distance squared between
each sensor can be obtained by recovering the missing entries of the partially observed
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Gram matrix; the Gram matrix is the n× n matrix with (i, j) entry equal to pTi pj, where
pi and pj are the locations of the ith and jth sensors, respectively. This Gram matrix will
have rank equal to two if the sensors are located in the plane or three if they are located
in a three dimensional space.

In [36], Candès and Recht show that nuclear minimization can perfectly recover a low-
rank matrix M from a random sampling of its entries with probability exponentially close
to 1, if the sampling of M is performed in a special way. Specifically, Candès and Recht
pose low-rank matrix completion as the rank minimization problem

min rank (X)
s.t. Xij = Mij ∀ (i, j) ∈ Ω

(3.4.5)

where X ∈ Rm,n, M ∈ Rm×n is a given rank-r matrix, and Ω is a given subset of
{1, . . . ,m} × {1, . . . , n}. If M is the only matrix of rank at most r agreeing with M
on Ω, then M can be recovered by solving (3.4.5). In particular, this holds, with high
probability, if M is a random rank-r matrix and Ω samples sufficiently many entries of M
uniformly at random. Unfortunately, (3.4.5) is NP-hard. Candès and Recht consider the
nuclear norm relaxation

min ‖X‖∗
s.t. Xij = Mij ∀ (i, j) ∈ Ω.

(3.4.6)

When the matrix M to be recovered has rank r and satisfies some mild assumptions,
Candes and Recht show that M can be recovered from a random sampling of at most a
polylogarithmic, in m,n, and r, number of its entries by solving (3.4.6). This bound was
subsequently improved by Candès and Tao [40], Keshavan et al. [115], Gross [87], and
Recht [157].

Note that a low-rank matrix M can not be recovered if it is in the nullspace of the
sampling operator. If all observed entries of M are zero then the minimum rank matrix
agreeing with the observations is the m×n 0-matrix. This pathological case is characterized
by the row and column spaces of M having high coherence with the standard basis. Let
U be a subspace of Rn of dimension r and PU be the orthogonal projection onto U . Then
the coherence of U with respect to the standard basis is defined to be

µ(U) =
n

r
max
1≤i≤n

‖PUei‖2.

For any subspace U , µ(U) is at least 1, with equality when U is spanned by vectors whose
nonzero entries all have magnitude 1/

√
n. On the other hand, µ(U) ≤ n/r with equality

when U contains a standard basis vector. Thus, if the row or column spaces of M have high
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coherence then the nonzero entries of M will be concentrated in a few rows or columns
of M . When the low-rank matrix M has row and column spaces with sufficiently low
coherence with the standard basis, M can be recovered from a sampling of a small number
of its entries. Indeed, we have the following theorem.

Theorem 3.4.4 ([157, Theorem 1.1]) Let M be an m×n matrix of rank r with singular
value decomposition UΣV ∗. Without loss of generality, assume that m ≤ n, Σ ∈ Rr×r,
U ∈ Cm×r, and V ∈ Cn×r. Assume that

A0 The row and column spaces of M have coherences bounded above by some µ0 > 0.

A1 The matrix UV ∗ has a maximum entry, in absolute value, bounded by µ1

√
r/(mn)

for some µ1 > 0.

Suppose that p entries of M are observed with locations sampled uniformly at random.
Then if

p ≥ 32 max{µ2
1µ0}r(m+ n)β log2(2n) (3.4.7)

for some β > 1, the minimizer of (3.4.6) is unique and equal to M with probability at least

1− 6 log(n2)(m+ n)2−2β − n2−2β1/2
.

3.4.3 Nullspace conditions

In [159, 160], Recht et al. provide necessary and sufficient conditions for the nuclear norm
heuristic for affine rank minimization based on properties of the nullspace of the linear
operator A defining the set of constraints. That is, Recht et al. characterize properties of
the nullspace of A that hold if and only if the minimum nuclear norm solution is equal to
the minimum rank solution of A(X) = b. Moreover, Recht et al. show that the nullspace
of linear operators drawn from the Gaussian ensemble satisfy these conditions with ex-
tremely high probability. Oymak and Hassibi improve upon these bounds in [147]. These
results extend nullspace conditions for compressed sensing by Stojnic [172] to conditions
for nuclear norm minimization. Similarly, Dvijothm and Fazel [60] show that nuclear norm
minimization recovers the minimum rank solution provided that the nullspace of A satis-
fies the spherical section property. A subspace V ⊂ Rm×n satisfies the ∆-spherical section
property if

‖Z‖2
∗

‖Z‖2
F

≥ ∆
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for all Z ∈ V, Z 6= 0. Dvijothm and Fazel show that if the nullspace of A has the ∆-
spherical section property for sufficiently large ∆ then the minimum nuclear norm solution
is unique and equal to the unique minimum rank solution of A(X) = b. This result is
a generalization to nuclear norm minimization of a result of Zhang [193] for compressed
sensing. Oymak et al. [149] show that if a set of conditions is sufficient for recovery of a
sparse vectors then the extension of these conditions to the recovery of low rank matrices
is also sufficient. This observation leads to improved nullspace and RIP conditions and
provides nullspace conditions for success of the iterative reweighted least squares heuristic
of Mohan and Fazel [137] for low rank matrix recovery. This algorithm involves solving
the nonconvex optimization problem

min
∑n

i=1(σi(X))p

s.t. A(X) = b
(3.4.8)

for 0 < p < 1 and can be thought of as a matrix analogue of the `p-minimization heuristic
for cardinality minimization (see [44, 45, 46, 72]).

3.4.4 Minimizing rank while maximizing sparsity

Several recent papers have focused on the problem decomposing a given matrix into low-
rank and sparse components. Chandrasekaran et al. [43] consider the relaxation obtained
by minimizing a linear combination of the nuclear norm of the low rank component and
sparse component of a given matrix M ∈ Rm×n:

min ‖L‖∗ + λ‖S‖1

s.t. L+ S = M.
(3.4.9)

Here, L, S ∈ Rm×n are our decision variables, the parameter λ > 0 is given, and ‖S‖1 =∑m
i=1

∑n
j=1 |Sij| is the `1-norm of the vectorization of S. Note that ‖ · ‖1 in (3.4.9) is not,

in general, equal to the operator norm induced by the `1-norm. The relaxation (3.4.9)
is convex since each of ‖ · ‖∗ and ‖ · ‖1 is convex, and can be rewritten as a semidefinite
program (see [43, Appendix A]). Moreover, under certain assumptions on the matrix M
and parameter λ, this relaxation is exact: solving (3.4.9) returns a decomposition of M
into the sum of a low-rank matrix L and a sparse matrix S ([43, Theorem 2]). These results
were subsequently improved by Candès et al. [34].

Oymak and Hassibi [148] consider the densest subgraph problem as a special case of
finding this decomposition. The densest subgraph problem seeks to identify a collection of
densely connected subgraphs in a given graph; this may be thought of as a general way of
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posing the clustering problem (see [166]). Oymak and Hassibi note that given a graph G
containing several densely connected subgraphs, the adjacency matrices of these subgraphs
will have low rank while the adjacency matrix A(G) will be sparse outside of the dense
subgraphs. Oymak and Hassibi relax the densest subgraph problem as a modification
of (3.4.9), and show that their relaxation is exact in the case that the input graph con-
tains several densely connected subgraphs plus a moderate number of diversionary edges
and nodes (see [148, Theorems 1 and 2, Corollary 1]). In Section 5.2.2, we consider the
densest subgraph problem as a special case of a general graph-partitioning formulation
for clustering. We will see that the optimal clustering can be obtained by solving a par-
ticular semidefinite relaxation of this general partitioning problem in the case that the
input graph consists of several densely connected subgraphs plus a moderate number of
diversionary edges and nodes. Similarly, Doan and Vavasis [55] formulate the problem
of identifying a large rank-one submatrix of a given nonnegative matrix as simultaneously
minimizing the rank and maximizing the sparsity of a nonnegative matrix X subject to lin-
ear inequality constraints. This problem arises as a model problem for nonnegative matrix
factorization and identifying features in a data set. This problem is relaxed to minimizing
a linear combination of the nuclear norm and `1-norm of the decision variable subject to
the same inequality constraints. Under suitable assumptions on the input matrix M and
the parameters in the linear combination of ‖ · ‖∗ and ‖ · ‖1, this relaxation returns a large
approximately rank-one nonnegative submatrix of M (see [55, Theorem 5]).

In [42], Chandrasekaran et al. propose a general convex optimization framework for
underdetermined linear inverse problems. When structural constraints require simple so-
lutions, the set of potential solutions may be thought of as linear combinations of a few
members from an elementary atomic set. Chandrasekaran et al. propose relaxing the
problem of finding a simple model agreeing with given observations to finding a solution
minimizing a convex function that agrees with the observed measurements. The convex
function to be minimized is the norm induced by the convex hull of the atomic set, called
the atomic norm. When the atomic set is the set of rank-one matrices, this atomic norm
is the nuclear norm. Similarly, if the atomic set is the collection of standard basis vectors,
we minimize the `1-norm. Using this framework, earlier results for compressed sensing and
the nuclear norm heuristic may be extended to general linear inverse problems, such as
recovering binary vectors, permutation or orthogonal matrices, and low-rank tensors from
a small number of generic linear measurements.
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Chapter 4

Convex Relaxation for the Maximum
Clique and Maximum Edge Biclique
Problems

4.1 The maximum clique problem

Let G = (V,E) be a simple graph. A clique C of G is a subset of V such that the subgraph
of G induced by C, denoted G(C), is complete. That is, C is a clique of G, if the vertices of
C are pairwise adjacent in G, i.e. for all i, j ∈ C, ij ∈ E. The clique number of G is equal
to the cardinality of the maximum clique of G and is denoted ω(G). The maximum clique
problem focuses on identifying the largest cliques of the graph G. That is, the maximum
clique problem seeks subsets C ⊆ V such that C is a clique, and

ω(G) = max{|S| : S is a clique of G} = |C|.

The maximal clique problem seeks to identify all cliques of G that are not contained as a
subset of another clique of G. A subset C of V is an independent set, also called a stable set,
if each pair of vertices in C are nonadjacent in G. That is, a set C ⊆ V is independent if
ij ∈ E for all i, j ∈ C, where E := {ij : (i, j) ∈ V ×V, i 6= j, ij /∈ E} is the complement of
the edge set E. The size of the maximum independent set of G, denoted α(G), is called the
stability number of G. Since every clique C of G is an independent set of the complement
graph G = (V,E) of G, we have

ω(G) = α(G).
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Therefore, the maximum clique problem and maximum independent set problem are equiv-
alent.

The maximum clique problem arises in such applications as identifying connected com-
ponents in a computer or telecommunications network [1], coding theory [32], fault diagno-
sis in multiprocessor systems [18, 94], and pattern recognition [20, 21, 90, 99, 145, 153, 155],
among others. Unfortunately, the maximum clique problem is well-known to be NP-hard.
In fact, the maximum clique problem is one of the original NP-complete problems identified
by Karp [112]. Moreover, the clique number ω(G) is hard to approximate. Arora et al.
[9, 10] show that ω(G) cannot be approximated for a general N -node graph G = (V,E)
within a factor of N ε, for ε > 0 unless P=NP. This result is a consequence of the observa-
tion by Feige et al. [64, 65] that if ω(G) can be approximated within a factor of 2log1−εN in

polynomial-time, then any problem in NP can be solved in time 2logO(1)N and the fact the
MAX 3-SAT problem cannot be approximated to arbitrary small constants unless P=NP.
In fact, ω(G) cannot be approximated within a factor of N1−ε, for all ε > 0 unless NP
admits randomized polynomial time algorithms (see [95]). The best approximation ratio
known is N1−o(1) and is achieved by an algorithm developed by Boppana and Halldórsson
(see [25]).

Exact algorithms for the maximum clique problem typically involve either enumerating
all maximal cliques in the input graph G or all maximal independent sets in its complement
G (see, for example, [127, 108, 180, 31, 91]), branch and bound schemes used to enumerate
only maximal cliques and/or independent sets that improve upon the current best iterate
(see [175, 11, 73, 41, 179]) or directly solving integer program or 0-1 quadratic program
formulations of the maximum clique problem or maximum independent set problem (see
[150, 162, 27, 28, 22, 23]). The best of these algorithms are able to identify the maximum
clique of G and ω(G) with time complexity of O(20.276N) [162], and all maximal cliques of
G, and, hence, ω(G) with time complexity of O(3N/3) [180]. This bound for identifying all
maximal cliques is optimal since a graph can contain up to O(3N/3) cliques [139]. Heuristics
for the maximum clique problem include greedy algorithms based on the repeated addition
or deletion of vertices from a proposed solution until a maximal clique is obtained [117, 107],
randomized local search techniques to improve upon a previously identified clique (see
[67, 4, 74, 80, 171, 13]), and solving continuous formulations of the maximum clique problem
(see [81, 82]), among others. For a survey of techniques and applications for the maximum
clique problem see [24].
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4.1.1 Existing approaches for the maximum clique problem

The intractability of the maximum clique problem suggests studying this problem for
randomly generated input graphs. For a random graph G = (V,E) on N vertices, with
each potential edge added to E(G) independently with fixed probability 1/2, we have
ω(G) = (2 +o(1)) logN with extremely high probability (see [6, Corollary 4.5.2]). In [113],
Karp proposes a greedy algorithm that is guaranteed to find a clique within the random
graph of size (1 + o(1)) logN . It is conjectured that finding a clique of size (1 + ε) logN is
hard [113, 106]. This conjecture has led to finding large cliques in a random graph being
used in cryptographic applications [109].

Jerrum [106] and Kučera [120] propose the problem of finding the maximum clique of
size n in a random graph on N vertices that has been generated by first placing a clique
of size n in the graph and then choosing each remaining pair of vertices to be adjacent
independently at random with fixed probability p. We call such a clique a planted clique.
Kučera shows that if n = Ω(

√
N logN) then the nodes of the planted clique will be those

with the largest degree with extremely high probability, and, thus, the planted clique can
be recovered efficiently. The bound on the size of a planted clique that can be recovered
in polynomial time was subsequently improved by Alon, Krivelevich, and Sudakov [5]
and Feige and Krauthgamer [66]. In this section, we present algorithms of Alon et al.
[5] and Feige and Krauthgamer [66] that recover the planted clique, with extremely high
probability, in polynomial time in the case that n ≥ Ω(

√
N). The fact that planted cliques

of size Ω(
√
N) can found efficiently also has cryptographic consequences; Lutomirski et

al. [130] show that a particular cryptographic protocol for quantum currency is insecure
because cliques of size Ω(

√
N) may be found in polynomial time in a semirandom graph.

For any graph G = (V,E), the symmetric matrix AG ∈ RV×V where

AG(i, j) =

{
1, if ij ∈ E
0, if ij /∈ E

is called the adjacency matrix of G. Note that all eigenvalues of AG are real since the
adjacency matrix is symmetric. The algorithm of Alon et al. exploits properties of the
ordered spectrum of the adjacency matrix AG of a graph G containing a planted clique
C. In particular, Alon et al. use the fact that if G contains a planted clique C of size
n = Ω(N), then the eigenvector v2 corresponding to the second largest eigenvalue λ2of AG
is close to a vector whose entries indexed by C are significantly larger in magnitude than
its remaining coordinates with probability tending exponentially to 1 as N →∞. This fact
implies that most (at least 5n/6) of the n largest entries of v2 are indexed by the planted
clique C with probability tending exponentially to 1 as N → ∞. Moreover, this implies
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that each vertex in V \ C is adjacent to less than 3n/4 of the n vertices corresponding to
the n largest entries of v2 with probability tending exponentially to 1 as N → ∞ This
suggests the following algorithm for exactly solving the maximum clique problem in the
case that the input graph G contains a sufficiently large planted clique.

Algorithm 4.1.1 ([5, Algorithm A]) Given as input a graph G = (V,E) containing a
planted clique C of size n = Ω(N) where each potential nonclique edge is added to E with
fixed probability 1/2:

1. Find the eigenvector v2 corresponding to the second largest eigenvalue λ2 of the ad-
jacency matrix AG of G.

2. Let W ⊆ V be the set of vertices of G corresponding to the n largest (in absolute
value) entries of v2. Let Q ⊂ V be the set of all vertices of G that have at least 3n/4
neighbours in W .

3. Output Q.

Note that both W and Q can be constructed in polynomial time from v2. Moreover,
λ2 and v2 can be approximated to arbitrary precision in polynomial time (see [85, Chapter
9]). Moreover, the set Q is equal to the planted clique C with probability tending expo-
nentially to 1 as N → ∞. Therefore, Algorithm 4.1.1 recovers the maximum clique of G
in polynomial time with probability tending exponentially to 1 as N →∞.

On the other hand, the algorithms of Feige and Krauthgamer [66] use the approximation
of the stability number α(G) given by the Lovász theta function ϑ(G) (see [128]). For a
general graph G = (V,E), the ratio between ϑ(G) and the clique number ω(G) can be as
large as N1−o(1) [63] where N = |V |. Moreover, for a random graph G = (V,E) on N
vertices, with each potential edge added to E(G) independently with fixed probability 1/2,
the clique number ω(G) is close to 2 logN (see [6, Corollary 4.5.2]) and ϑ(G) = Θ(

√
N)

with probability tending exponentially to 1 as N → ∞ (see [110]). Therefore, the theta
function may not provide a good approximation of ω(G) in general. However, in the case
that the graph G = (V,E) on N contains a planted clique of cardinality Ω(

√
N) the

approximation of ω(G) given by ϑ(G) is exact with probability tending exponentially to 1
as N →∞. Indeed, we have the following result.

Theorem 4.1.1 ([66, Lemma 2]) Suppose that the graph G = (V,E) contains a planted
clique C of size n ≥ c

√
N for sufficiently large constant c where N = |V | and each potential
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edge in E not in the complete subgraph G(C) induced by C is added independently to G
with fixed probability 1/2. Then ω(G) = ϑ(G) = n with probability tending exponentially
to 1 as N →∞.

Suppose that the graph G = (V,E) satisfies the hypothesis of Theorem 4.1.1. Then
Theorem 4.1.1 suggests that the planted clique C of G may be identified by checking each
vertex v ∈ V to see if v is contained in C using ϑ(G). Indeed, by Theorem 4.1.1, ϑ(G) = n
and, for each v ∈ V , we have

ϑ(G \ v) =

{
n− 1, if v ∈ C
n, otherwise

with probability tending exponentially to 1 as N → ∞. This fact suggests the following
algorithm.

Algorithm 4.1.2 ([66, Algorithm BasicFind]) Given as input a graph G = (V,E) on
N vertices containing a planted clique C of size n = Ω(N) where each potential nonclique
edge is added to E with fixed probability 1/2:

1. Compute ϑ(G) and ϑ(G \ v) for all v ∈ V .

2. Output ϑ(G) and P = {v : ϑ(G \ v) < ϑ(G)− 1/2}.

Note that if the planted clique C of G is sufficiently large then Algorithm 4.1.2 outputs
the planted clique C = P and ω(G) = ϑ(G) with probability tending exponentially to 1 as
N →∞ by Theorem 4.1.1 and the discussion above. Moreover, for any graph G = (V,E),
ϑ(G) can be approximated within arbitrary precision in polynomial time by solving the
semidefinite program

ϑ3(G) := max
X∈ΣN+

{Tr (XeeT ) : Tr (X) = 1, Xij = 0 if ij ∈ E}; (4.1.1)

see [129, Theorem (9.3.12)]. Therefore, the maximum clique C∗ of G and the clique number
ω(G) can be identified efficiently using Algorithm 4.1.2 with probability tending exponen-
tially to 1 as N →∞, provided the input graph G contains the complete subgraph G(C∗)
induced by the clique C∗ and a moderate amount of vertices and edges other than those
of G(C) .

Algorithm 4.1.2 can be improved to include only one computation of the theta function.
For a graph G on N vertices, a set of unit vectors {ui ∈ RN : i ∈ V } is an orthonormal

32



representation of G if uTi uj = 0 for every pair of nonadjacent vertices i, j ∈ V . For any
graph G on N vertices, the theta function ϑ(G) is equal to

ϑ4(G) = max
d,{ui}i∈V

{∑
i∈V

(dTui)
2 : ‖d‖ = 1, {ui}i∈V is an orthonormal rep. of G

}
(4.1.2)

(see [129, Theorem (9.3.12)]). Suppose that the graph G = (V,E) on N vertices contains
a planted clique C of size n ≥ c

√
N where each potential nonclique edge is added to E

with fixed probability 1/2. Feige and Krauthgamer [66] show that if d, {ui}i∈V are optimal
for (4.1.2) then the n vertices of the planted clique C correspond to the n largest terms
(dTui)

2 of the summand in (4.1.2) with probability tending exponentially to 1 as N →∞.
Moreover, the solution of (4.1.1) can be efficiently transformed into an optimal solution d,
{ui}i∈V of (4.1.2). Since (4.1.1) can be solved to arbitrary precision in polynomial time,
the following algorithm correctly identifies the planted clique C of G in polynomial time
with probability tending exponentially to 1 as N →∞.

Algorithm 4.1.3 ([66, Algorithm ImprovedBasicFind]) Given as input a graph G =
(V,E) on N vertices containing a planted clique C of size n = Ω(N) where each potential
nonclique edge is added to E with fixed probability 1/2:

1. Compute optimal solution d, {ui} and optimal value ϑ∗ of (4.1.2) within additive
error ε = 1/3.

2. Compute P = {i ∈ V : (dTui)
2 > 1/2}.

3. Output P and ϑ∗.

It should be noted that the lower bound n = Ω(
√
N) on the size of the planted clique

C of G is the best known for polynomial time recovery of C. Recent work by Frieze and
Kannan [75] shows that the maximum clique problem can be solved for an input graph G
on N vertices containing a planted clique of size at least Ω(N1/3(logN)4) by maximizing
a particular three dimensional tensor, or cubic form, on the set of unit length vectors.
Unfortunately, the complexity of this problem, and of maximizing cubic forms on the set
of unit vectors in general, is unknown.

33



4.1.2 The maximum clique problem as rank minimization

Every clique C of a graph G = (V,E) corresponds to a rank-one matrix. Indeed, let v be
the characteristic vector of C:

vi =

{
1, if i ∈ V (C)
0, otherwise

for all i ∈ V . Clearly, the matrix vvT has rank equal to 1. Moreover, vvT is the adjacency
matrix of the graph G′ obtained by taking the union of the subgraph G(C) of G induced
by C and the set of loops for each v ∈ K. Therefore, if the clique C of G contains at least
n vertices then vvT is optimal for the rank minimization problem

min rank (X) (4.1.3)

s.t.
∑
i∈V

∑
j∈V

Xij ≥ n2, (4.1.4)

Xij = 0, if ij ∈ (V × V ) \ E, i 6= j, (4.1.5)

X ∈ {0, 1}V×V . (4.1.6)

Unfortunately, the rank minimization problem (4.1.3) is NP-hard.

We consider the convex relaxation of (4.1.3) obtained by replacing the objective function
with the nuclear norm. Underestimating rank (X) with ‖X‖∗ and ignoring the binary
constraint (4.1.6), we obtain the convex program

min ‖X‖∗ (4.1.7)

s.t.
∑
i∈V

∑
j∈V

Xij ≥ n2, (4.1.8)

Xij = 0 if ij ∈ (V × V ) \ E, i 6= j. (4.1.9)

Note that the factor n2 in (4.1.8) is the only inhomogeneity in the problem (4.1.7). This
implies that if X∗ is optimal for (4.1.7), we obtain the optimal solution X∗/n2 if we replace
n2 by 1 in (4.1.7) and resolve. Therefore, we do not need to know the size of the maximum
clique n prior to solving (4.1.7).

Since the maximum clique problem is hard to approximate, we cannot expect this
heuristic to provide a good approximation of ω(G) for all program inputs. Moreover, note
that the linear operator defining the linear constraints (4.1.4) and (4.1.5) will not satisfy the
sufficient conditions for exactness of the nuclear norm heuristic given by [158] or [36] in the
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planted case. Indeed, the constraint (4.1.5) is akin to a matrix completion constraint; we
know that the entries of X corresponding to nonedges must be equal to 0. Since the edges
of the planted clique are never sampled, in the planted case we have a large rank-one block
of X∗ that is left unsampled and, hence, the corresponding operator will neither satisfy the
RIP condition or be sufficiently incoherent with the standard basis. In spite of this fact, we
will show that the nuclear norm relaxation (4.1.7) is exact in the case that the input graph
G contains a sufficiently large planted clique. That is, if G contains a sufficiently large
planted clique C with characteristic vector v, then vvT is the unique optimal solution for
(4.1.3) and (4.1.7). Therefore, in this case, we can recover the maximum clique C of G by
solving the convex program (4.1.7).

In the following section, we provide bounds on the size of the planted clique and number
of diversionary nodes and edges in the input graph G, which guarantee that the nuclear
norm relaxation (4.1.7) is exact for the formulation (4.1.3).

4.1.3 Theoretical guarantees of success for nuclear norm relax-
ation of the planted clique problem

We consider input graphs G = (V,E) containing a planted clique constructed as follows.
Let |V | = N . We first add the edges ij for each pair (ij) in the vertex set V ∗ ⊆ V of size
n. Then either

(ΓA) a number r of the remaining N(N − 1)/2− n(n− 1)/2 potential edges are added to
E deterministically by an adversary, or

(ΓR) each of the remaining potential edges is added to E independently at random with
fixed probability p ∈ [0, 1).

Notice that by our construction of E, V ∗ is a clique of G of size n. In this section, we provide
values of r, n,N that yield G, as constructed above, such that the maximum clique V ∗ can
be recovered by solving the convex relaxation (4.1.7) of the maximum clique problem given
by (4.1.3).

In the case that the diversionary edges are added deterministically to the graph G
according to (ΓA) we have the following theorem.

Theorem 4.1.2 Suppose that the graph G = (V,E) contains a clique V ∗ of size n. Suppose
further that G contains at most r edges not in G(V ∗) and each vertex in V \V ∗ is adjacent to
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at most δn vertices in V ∗ for some δ ∈ (0, 1). Then there exists scalar c1 < 1/2 depending
only on δ such that if

r ≤ c1n
2

then V ∗ is the unique maximum clique of G and can be recovered by solving the convex
program (4.1.7).

These bounds are the best possible up to the constant factors. If the adversary could
join a nonclique vertex v to all n clique vertices, then the adversary would have created
a clique V ∗ ∪ v containing n + 1 vertices. Thus, the restriction that a nonclique vertex is
adjacent to at most O(n) clique vertices is the best possible. On the other hand, if the
adversary could insert (n + 1)(n + 2)/2 edges, then a new clique containing n + 1 nodes
could be created. Thus, the adversary must be a limited to adding c1n

2 edges for c1 < 1/2.

We have the following theorem for the case when the diversionary edges are added
independently at random.

Theorem 4.1.3 Suppose that the graph G = (V,E) contains a clique V ∗ of size n. Suppose
further that each potential edge of G in (V × V ) \ (V ∗ × V ∗) is added to E according to
(ΓR) with probability p ∈ [0, 1). Then there exists scalar c2 > 0 depending only on p such
that if

n ≥ c2

√
N,

where N = |V |, then V ∗ is the unique maximum clique of G and will correspond to the
unique optimal solution of (4.1.7) with probability tending exponentially to 1 as N →∞.

Note that the bound given by Theorem 4.1.3 on the size of a planted clique recoverable
by our heuristic matches, up to constants, those for Algorithms 4.1.1, 4.1.2, and 4.1.3.
We believe our technique is an improvement over the algorithms of Alon et al. and Feige
and Krauthgamer in several ways. First, as Theorem 4.1.2 implies, our technique can be
applied to find planted cliques in graphs that are constructed deterministically. Moreover,
our heuristic can be extended to the maximum edge biclique problem without modification,
whereas the algorithms of Alon et al. and Feige and Krauthgamer exploit special properties
of the clique problem. Indeed, a biclique in a bipartite graph G is not an independent set
in the complement graph G and, hence, the theta number cannot be used to approximate
the size of the maximum edge biclique. Similarly, the spectral properties of the adjacency
matrix of a planted clique used by Alon et al. do not hold for the spectrum of a planted
biclique. Moreover, we will show in Chapter 5 that similar techniques can be used to obtain
a heuristic for the clustering problem as well.
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It is important to note that we do not consider noise in the form of deletions of edges
between nodes of the planted clique. If such an edge is deleted then the rank-one ma-
trix corresponding to the planted clique is infeasible for (4.1.7); if the edge uv is deleted
then Xuv = 0 for all X feasible for (4.1.7). In Section 5.2.2, we consider a heuristic for
the weighted clustering problem that can recover a planted clique obscured noise in the
form of random edge additions and deletions, although the minimum size of the planted
clique required to guarantee success of the heuristic is significantly larger than that of
Theorem 4.1.3.

4.2 The maximum edge biclique problem

A graph G = (V,E) is bipartite if its vertex set V can be partitioned into two disjoint
independent sets V1, V2. That is, V1∩V2 = ∅ and E∩ (V1×V1) = E∩ (V2×V2) = ∅. We use
the notation G = ((V1, V2), E) to denote a bipartite graph G with disjoint, independent
vertex sets V1, V2 such that V (G) = V1∪V2 and edge set E. A pair of disjoint, independent
subsets U ′ ⊆ V , V ′ ⊆ V is a biclique of the graph G = (V,E), denoted (U ′, V ′), if the
subgraph G(U ′, V ′) of G induced by (U ′, V ′) is a bipartite complete subgraph of G; that is
(U ′, V ′) is a biclique of G, if every vertex in U ′ is adjacent to every vertex in V ′ in G(U ′, V ′).
The maximum edge biclique problem takes as input a graph G and asks for the biclique
(U ′, V ′) of G that maximizes the product |U ′| · |V ′| or, equivalently, the number of edges
contained in the complete bipartite subgraph of G induced by (U ′, V ′). The maximum
vertex biclique problem is to identify a biclique (U ′, V ′) of the input graph G = (V,E) such
that the sum |U ′| + |V ′| is maximized. Applications of the maximum biclique problem
include the problem of identifying products that use similar components to enable the use
of subassemblies to decrease assembly time in manufacturing [174], and as a model problem
for nonnegative matrix factorization and finding features in images [83].

It should be noted that, unlike the maximum clique problem, the maximum edge and
maximum vertex instances of the biclique problem are not equivalent. Indeed, the maxi-
mum edge biclique problem is NP-complete (see [151]) while the maximum vertex biclique
problem can be solved in polynomial time for bipartite graphs (see [78]) but is NP-complete
in general (see [190]). However, if we relax the definition of a biclique such that (U, V ) de-
fines a biclique of G if U, V are pairwise adjacent, although U, V may not be independent,
i.e. the subgraph of G induced by (U, V ) is not necessarily bipartite, then the maximum
vertex biclique problem can be solved in polynomial time for general graphs (see [97]).
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4.2.1 Relaxation of the maximum edge biclique problem as nu-
clear norm minimization

Consider a bipartite graph G = ((U, V ), E) where the vertex sets U and V have cardinality
M and N respectively. Let (U ′, V ′) be a biclique of G such that |U ′| = m and |V ′| = n.
Then the m× n block of the adjacency matrix of G(U ′, V ′) with rows indexed by U ′ and
columns indexed by V ′ is equal to the matrix X = ūv̄T ∈ RU×V where ū, v̄ are the
characteristic vectors in RU , RV of U ′ and V ′ respectively. Note that for every i ∈ U ,
j ∈ V such that ij ∈ (U × V ) \ E, we have Xij = 0. It follows that a biclique (U ′, V ′) of
G such that G(U ′, V ′) contains at least mn edges can be found, provided one exists, by
solving the affine rank minimization problem

min rank (X) (4.2.1)

s.t.
∑
i∈U

∑
j∈V

Xij ≥ mn, (4.2.2)

Xij = 0 if ij ∈ (U × V ) \ E (4.2.3)

X ∈ {0, 1}U×V . (4.2.4)

On the other hand, a rank-one solution X∗ satisfying (4.2.2), (4.2.3), and (4.2.4) is exactly
the (U, V )-block of the adjacency matrix of the subgraph induced by some biclique of
G containing at least mn edges. Like the rank minimization formulation (4.1.3) of the
maximum clique problem, the rank minimization problem (4.2.1) is NP-hard. As before,
we relax (4.2.1) to a convex program by underestimating rank (X) with the nuclear norm
‖X‖∗. We obtain the convex optimization problem

min ‖X‖∗
s.t.

∑
i∈U
∑

j∈V Xij ≥ mn,

Xij = 0 if ij ∈ (U × V ) \ E
(4.2.5)

Like the nuclear norm relaxation of the maximum clique problem (4.1.7), this relaxation
is exact in the case that the bipartite graph G contains a sufficiently large planted biclique
obscured by diversionary nodes and edges. We consider the cases when these diversionary
edges are added deterministically by an adversary and when the diversionary edges are
added independently at random.

Suppose that the edge set of the bipartite graph G = ((U, V ), E) is generated as follows.
We begin by adding the edges of a biclique (U∗, V ∗) with |U∗| = m, |V ∗| = n. Then, an
adversary is allowed to add at most r of the remaining MN −mn potential edges to the
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graph. The following theorem provides an upper bound on r that, under certain conditions,
ensures that (U∗, V ∗) will be the unique maximum edge biclique of G.

Theorem 4.2.1 Suppose that the bipartite graph G contains the biclique (U∗, V ∗) with
|U∗| = m, |V ∗| = n. Suppose further that each vertex in V \ V ∗ is adjacent to at most αm
vertices of U∗ and each vertex in U \U∗ is adjacent to at most βn vertices of V ∗ for some
α, β ∈ (0, 1). Then there exists scalar c1 depending only on α, β such that if the bipartite
graph G contains at most r ≤ c1mn edges not in U∗ × V ∗ then (U∗, V ∗) is the unique
maximum edge biclique of G and can be identified by solving (4.2.5).

Next, let U, V be disjoint vertex sets with |V | = N and |U | = dyNe for some fixed
positive scalar y. Consider U∗ ⊆ U and V ∗ ⊆ V such that |V ∗| = n and |U∗| = m = dzne
for fixed positive scalar z. We construct the edge set of the bipartite graph G = ((U, V ), E)
as follows:

(Ω1) For all (i, j) ∈ U∗ × V ∗, we add ij ∈ E.

(Ω2) For each of the remaining (i, j) ∈ U × V , we add edge ij to E independently with
fixed probability p ∈ (0, 1).

Note that (Ω1) implies that G contains the biclique (U∗, V ∗) with mn edges. The
following theorem provides a lower bound on n that ensures that (U∗, V ∗) is recovered
from the unique, optimal solution to (4.2.5).

Theorem 4.2.2 ([8, Theorem 5.2]) There exists c2 > 0 depending on p, y, z such that
for each bipartite graph G constructed via (Ω1), (Ω2) with n ≥ c2

√
N the biclique defined

by (U∗, V ∗) is the maximum edge biclique of G with probability tending exponentially to 1
as N →∞ and ūv̄T is the unique solution to the convex relaxation (4.2.5) where ū is the
characteristic vector of U∗ in RU and v̄ is the characteristic vector of V ∗ in RV .

4.3 A general instance of nuclear norm minimization

We consider the convex optimization problem

min ‖X‖∗ (4.3.1)
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s.t.
M∑
i=1

N∑
j=1

Xij ≥ mn, (4.3.2)

Xij = 0 for ij ∈ E. (4.3.3)

Here, X ∈ RM×N , E is a subset of {1, . . . ,M}×{1, . . . , N}, and E denotes the complement
of E. Note that the convex relaxation (4.1.7) of the formulation (4.1.3) for the maximum
clique problem is exactly the convex program (4.3.1) when m = n, M = N , the vertices
of the input graph G are labelled V = {1, . . . , N} and E is equal to the union of the
set of edges of G and the set of loops {ii : i ∈ V }. Similarly, the convex relaxation
(4.2.5) corresponds to (4.3.1) in the case that the vertex sets of the bipartite graph G are
U = {1, . . . ,M}, V = {1, . . . , N} and the subset E of {1, . . . ,M} × {1, . . . , N} is equal to
the set of edges from U to V . In this section, we provide sufficent conditions for optimality
and uniqueness of a solution to (4.3.1) which, in turn, will be used to prove Theorems 4.1.2,
4.1.3, 4.2.1, and 4.2.2 in Section 4.4.

Let Ū be a subset of {1, . . . ,M} and V̄ be a subset of {1, . . . , N} such that |Ū | = m and
|V̄ | = n. Let ū, v̄ be the characteristic vectors of Ū and V̄ respectively and let X̄ := ūv̄T .
Note that rank (X̄) = 1. Moreover, the subdifferential of ‖ · ‖∗ at X̄ is equal to

∂‖ · ‖∗(X̄) =

{
ūv̄T√
mn

+W : W v̄ = 0, W T ū = 0, ‖W‖ ≤ 1

}
(4.3.4)

by Lemma 3.2.1 and the fact that X̄ has compact singular value decomposition

X̄ =
√
mn ·

(
ū√
m

)(
v̄√
n

)T
= ūv̄T .

Combining (4.3.4) and the Karush-Kuhn-Tucker conditions for convex programming given
by Theorem 2.4.2 yields the main theorem for this section.

Theorem 4.3.1 ([8, Theorem 3.1] ) Let U∗ be a subset of {1, . . . ,M} of cardinality m,
and let V ∗ be a subset of {1, . . . , N} of cardinality n. Let ū and v̄ be the characteristic
vectors of U∗, V ∗ respectively and let X∗ = ūv̄T . Suppose X∗ is feasible for (4.3.1) and
that there exist W ∈ RM×N , λ ∈ RM×N and µ ∈ R+ such that W v̄ = 0, ūTW = 0,
‖W‖ ≤ 1 and

ūv̄T√
mn

+W = µeeT +
∑
ij∈Ẽ

λijeie
T
j . (4.3.5)
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Then X∗ is an optimal solution to (4.3.1). Moreover, for any I ⊂ {1, . . . ,M} and J ⊂
{1, . . . , N} such that I × J ⊂ E we have |I| · |J | ≤ mn.

Furthermore, if ‖W‖ < 1 and µ > 0, then X∗ is the unique optimizer of (4.3.1).

Proof: Note that (4.3.1) satisfies the Slater constraint qualification. For example, (1 +
ε)X∗ is strictly feasible for (4.3.1) for all ε > 0. Applying the sufficient conditions for
optimality given by Theorem 2.4.2 shows that X∗ is optimal for (4.3.1) if there exist
W ∈ RM×N , λ ∈ RM×N and µ ∈ R+ satisfying (4.3.5) such that W v̄ = 0, ūTW = 0, and
‖W‖ ≤ 1.

Now consider (I, J) such that I×J ⊂ E. Let X ′ = ū′(v̄′)T ·mn/(|I|·|J |), where ū′ is the
characteristic vector of I and v̄′ is the characteristic vector of J . Then X ′ is also a feasible
solution to (4.3.1). Recall that for a matrix of the form uvT , the unique nonzero singular
value (and hence the nuclear norm) equals ‖u‖ · ‖v‖. Thus, ‖X ′‖∗ = mn/(|I| · |J |)1/2

and ‖X∗‖∗ =
√
mn. Since X∗ is optimal, ‖X ′‖∗ ≥ ‖X∗‖, i.e.,

√
mn ≤ mn/(|I| · |J |)1/2.

Simplifying yields |I| · |J | ≤ mn.

Finally, we turn to the uniqueness of X∗. The optimization problem (4.3.1) can be
formulated as the semidefinite program

min 1
2
(Tr (Z1) + Tr (Z2))

s.t. Z =

(
Z1 X
XT Z2

)
� 0∑M

i=1

∑N
j=1Xij ≥ mn

Xij = 0 ∀(i, j) ∈ E

(4.3.6)

by (3.2.6). This problem is strictly feasible, and, hence, strong duality holds. The dual of
(4.3.6) is

max mnµ

s.t. Q =

(
I −∑(i,j)∈Ẽ λijeie

T
j − µeeT

−∑(i,j)∈Ẽ λijeje
T
i − µeeT I

)
� 0

µ ≥ 0.

(4.3.7)

Now suppose that there exist W,λ ∈ RM×N and µ > 0 satisfying (4.3.5) such that W v̄ = 0,
ūTW = 0 and ‖W‖ < 1. Notice that

X∗ = ūv̄T , Z∗1 =
n√
mn

ūūT , Z∗2 =
m√
mn

v̄v̄T
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forms a primal feasible triple for (4.3.6) and the matrix Q∗ as defined by µ and λ is dual
feasible. Moreover, 〈Z∗, Q∗〉 = 0, and, thus, by complementary slackness, Z∗ is optimal
for (4.3.6), Q∗ is the corresponding dual optimal solution for (4.3.7), and X∗ is optimal
for (4.3.1). Also, note that ūv̄T/

√
mn + W has maximum singular value equal to 1 with

multiplicity 1 since ‖W‖ < 1. Therefore, since υ is an eigenvalue of Q−I if and only if υ is
an eigenvalue of ūv̄T/

√
mn+W or −υ is an eigenvalue of ūv̄T/

√
mn+W , Q has exactly

one singular value equal to 0. It follows immediately that Q∗ has rank equal to M +N −1.

Now suppose that

Ẑ =

(
Ẑ1 X̂

X̂T Ẑ2

)
is optimal for (4.3.6) and, hence, X̂ is optimal for (4.3.1). Moreover, since Q∗ is dual
optimal, 〈Ẑ, Q∗〉 = 0 by complementary slackness. Therefore, Ẑ has rank 1 and must be
equal to tZ∗ for some nonnegative scalar t. It follows immediately that X̂ = (1/t)ūv̄T .
However, since X̂ is optimal for (4.3.1),

√
mn = ‖X̂‖ = ‖ūv̄T‖/t =

√
mn/t,

and, hence, t = 1. Therefore, X∗ = ūv̄T is the unique minimizer of (4.3.1).

4.4 Proofs of the theoretical guarantees

4.4.1 The adversarial noise case for the maximum clique problem

Suppose that the graph G satisfies the hypothesis of Theorem 4.1.2. That is, the graph
G = (V,E) contains a complete subgraph induced by the clique V ∗ with vertex set of size n
and at most r of the remaining potential edges are added deterministically such that each
vertex in V \V ∗ is adjacent to at most δn vertices in V ∗ for fixed δ in (0, 1). Let X∗ = v̄v̄T

be the unique optimal solution of (4.1.7) where v is the characteristic vector of V ∗. Clearly
X∗ is feasible for (4.1.7). We will show in the case that r ≤ O(n2), X∗ is the unique optimal
solution for (4.1.7) and that V ∗ can be recovered by solving (4.1.7). To do so, we show that
the optimality and uniqueness conditions given by Theorem 4.3.1 are satisfied at X∗. The
following theorem provides the necessary specialization of Theorem 4.3.1 for the maximum
clique problem (4.1.3) and its nuclear norm minimization relaxation (4.1.7).

Theorem 4.4.1 ([8, Theorem 4.1]) Let V ∗ be an n-node clique contained in an N-node
undirected graph G = (V,E). Let v̄ ∈ RV be the characteristic vector of V ∗. Let X∗ = v̄v̄T .
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Suppose also that there exist W ∈ RV×V , λ ∈ RV×V and µ ∈ R+ such that W v̄ = 0,
v̄TW = 0, ‖W‖ ≤ 1 and

v̄v̄T

n
+W = µeeT +

∑
(i,j)∈Ẽ

λijeie
T
j . (4.4.1)

Then X∗ is an optimal solution to (4.1.7). Moreover, V ∗ is a maximum clique of G.
Furthermore, if ‖W‖ < 1 and µ > 0, then X∗ is the unique optimizer of (4.1.7), and V ∗

is the unique maximum clique of G.

Theorem 4.4.1 follows immediately from the optimality and uniqueness conditions given
by Theorem 4.3.1 for the instance of (4.3.1) with N = |V | and edge-set E = E(G) ∪ {vv :
v ∈ V }.

To see that X∗ is the unique optimal solution for (4.1.7), we construct multipliers µ, λ,
and W satisfying the conditions of the previous theorem. We take µ = 1/n and define W
and λ by considering the following cases.

(ω1) If (i, j) ∈ V ∗ × V ∗, we choose Wij = 0 and λij = 0. In this case, the entries on each
side of (4.4.1) corresponding to this case become 1/n+ 0 = 1/n+ 0.

(ω2) If (i, j) ∈ E \ (V ∗ × V ∗) such that i 6= j, then we choose Wij = 1/n and λij = 0.
Then the two sides of (4.4.1) become 0 + 1/n = 1/n+ 0.

(ω3) If i /∈ V ∗, we set Wii = 1/n. Again the two sides of (4.4.1) become 0+1/n = 1/n+0.

(ω4) If (i, j) /∈ E, i /∈ V ∗, j /∈ V ∗, then we choose Wij = −γ/n and λij = −(1 + γ)/n for
some constant γ ∈ R. The two sides of (4.4.1) become 0 − γ/n = 1/n − (1 + γ)/n.
The value of γ is specified below.

(ω5) If (i, j) /∈ E, i ∈ V ∗, j /∈ V ∗, then we choose

Wij = − pj
n(n− pj)

, λij = − 1

n
− pj
n(n− pj)

where pj is equal to the number of edges in E from j to V ∗.

(ω6) If (i, j) /∈ E, i /∈ V ∗, j ∈ V ∗ then choose Wij, λij symmetrically with the previous
case.
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Note that for each i ∈ V ∗, we have W (i, V ∗) = 0 and, hence, W (i, :)v̄ = 0. For entries
i ∈ V − V ∗,

W (i, :)v̄ = pi
1

n
− (n− pi)

pi
n(n− pi)

= 0,

by our choice of Wij in cases (ω5) and (ω6). Therefore, W v̄ = 0 as required.

It remains to show that if r ≤ cn2 for sufficiently small c, depending only on δ, then
‖W‖ < 1. Consider W as defined by (ω1)–(ω6) with γ = 0. We decompose W as W =
WD + WND where WD ∈ RV×V denotes the matrix with diagonal entries equal to the
diagonal entries of W and all other entries equal to 0 and WND ∈ RV×V is the matrix with
nondiagonal entries equal to those of W and diagonal entries equal to 0. By the triangle
inequality,

‖W‖2 ≤ (‖WD‖+ ‖WND‖)2 ≤ 2(‖WD‖2 + ‖WND‖2) = 2(1/n2 + ‖WND‖2)

since ‖WD‖ = 1/n. Since ‖W‖ ≤ ‖W‖F by (2.1.4), it suffices to determine which values
of r yield

‖WND‖2
F = 2‖W (V ∗, V \ V ∗)‖2

F + ‖WND(V \ V ∗, V \ V ∗)‖2
F < (n2 − 2)/(2n2)

since, by the symmetry of W ,

WND(V ∗, V \ V ∗) = W (V ∗, V \ V ∗) = W (V \ V ∗, V ∗).

The diagonal entries of WND(V \V ∗, V \V ∗) are equal to 0 and at most 2r of the remaining
entries are equal to 1/n. Therefore,

‖WND(V \ V ∗, V \ V ∗)‖2
F ≤ 2r/n2.

Moreover, since n− pj ≥ (1− δ)n,

‖W (V ∗, V \ V ∗)‖2
F =

∑
j∈V \V ∗

(
pj ·

1

n2
+ (n− pj) ·

p2
j

(n− pj)2n2

)

=
∑

j∈V \V ∗

(
pj
n2

+
p2
j

(n− pj)n2

)

≤
∑

j∈V \V ∗

(
pj
n2

+
δnpj

(1− δ)n3

)
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=

(
1

1− δ

) ∑
j∈V−V ∗

pj
n2

≤
(

1

1− δ

)
r

n2
.

Thus, the optimality and uniqueness conditions given by Theorem 4.4.1 are satisfied by
X∗ if (

1 +
1

1− δ

)
r < (n2 − 2)/4,

or, equivalently, if

r <
1− δ

4(2− δ)(n2 − 2).

Therefore, G can contain up to O(n2) edges other than those in G(V ∗), and yet V ∗ will
remain the unique maximum clique of G.

4.4.2 The random noise case for the maximum clique problem

Suppose that the edge set of the graph G = (V,E) is constructed as follows:

(Γ1) First, the edge set {ij : i, j ∈ V ∗, i 6= j} of a clique V ∗ of size n is added to E.

(Γ2) Next, each of the remaining potential edges in (V × V ) \ (V ∗ × V ∗) is added to E
independently at random with fixed probability p ∈ [0, 1).

In this section, we show that if n ≥ Ω(N), where N = |V |, then V ∗ is the unique maximum
clique of G and can be found by solving (4.1.7) with probability tending exponentially to
1 as N tends to ∞. As in the deterministic case considered in the previous section, we
construct multipliers µ, λ, and W that satisfy the conditions of Theorem 4.4.1 to show
that the matrix X∗ = v̄v̄T , where v̄ is the characteristic vector of V ∗, is the unique
optimal solution for (4.1.7). As before, we take µ = 1/n. We define W and λ according
to (ω1)-(ω6) with γ = −p/(1 − p). By construction, W v̄ = 0. Therefore, it suffices to
show that ‖W‖ < 1 and pj < n for all j ∈ V \ V ∗. We first show that ‖W‖ < 1 with
probability tending exponentially to 1 as N →∞ in the case that n = Ω(

√
N). We write

W = W1 +W2 +W3 +W4 +W5, where each of the five terms is defined as follows.

We first define W1. For cases (ω2) and (ω4), choose W1(i, j) = W (i, j). For cases (ω5)
and (ω6), take W1(i, j) = −p/((1−p)n). For case (ω1), choose W1(i, j) randomly such that
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W1(i, j) is equal to 1/n with probability p and equal to −p/((1−p)n) otherwise. Similarly,
in case (ω3), take W1(i, i) to be equal to 1/n with probability p and equal to −p/((1−p)n)
otherwise. By construction, each entry of W1 is an independent random variable with the
distribution

W1(i, j) =

{
1/n with probability p,
−p/((1− p)n) with probability 1− p.

Therefore, applying Theorem 2.6.4 shows that there exists constant c1 > 0 such that

‖W1‖ ≤ 3

(
p

1− p

)1/2
√
N

n
(4.4.2)

with probability at least 1− exp(c1N
1/6).

Next, W2 is the correction matrix to W1 in case (ω1). That is, W2(i, j) is chosen such
that

W2(i, j) +W1(i, j) = W (i, j) = 0

for all (i, j) ∈ V ∗ × V ∗ and is zero everywhere else. As before, applying Theorem 2.6.4
shows that

‖W2‖ ≤ 3

(
p

1− p

)1/2
1√
n

(4.4.3)

with probability at least 1−exp(c1n
1/6). Similarly, W3 is the correction to W1 in case (ω3),

that is
W3(i, i) = W (i, i)−W1(i, i)

for all i ∈ V \V ∗ and all other entries are equal 0. Therefore, W3 is a diagonal matrix with
diagonal entries bounded by 2/n. It follows that

‖W3‖ ≤
2

n
. (4.4.4)

Finally, W4 and W5 are the corrections for cases (ω5) and (ω6) respectively. We will
use the following theorem to obtain upper bounds on ‖W4‖ and ‖W5‖.

Theorem 4.4.2 ([8, Theorem 2.4]) Let A be an n×N matrix whose entries are chosen
independently at random such that

Aij =

{
1 with probability p,
−p/(1− p) with probability 1− p,
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for all i = 1, . . . n, j = 1, . . . N . Suppose also that e logN ≤ √n. Let Ã be defined as
follows. For (i, j) such that Aij = 1, we define Ãij = 1. For entries (i, j) such that
Aij = −p/(1− p), we take Ãij = −nj/(n− nj), where nj is the number of 1’s in column j
of A. Then there exist c1 > 0 and c2 ∈ (0, 1) depending on p such that

P (‖A− Ã‖2
F ≤ c1N) ≥ 1− (2/3)N −Ncn2 . (4.4.5)

The proof of Theorem 4.4.2 is provided in Appendix A.1.

Note that W4 is exactly of the form (A − Ã)/n as in Theorem 4.4.2, in which N in
the theorem stands for N − n in the present context. Examining each term of (4.4.5)
shows that in the case n = Ω(N1/2), the probability that ‖A − Ã‖2

F = O(N) is at least
1 − k1 exp(−k2N

k3) for some k1, k2, k3 > 0 depending on p. It follows that there exists
constant α4 > 0 such that

‖W4‖2 ≤ ‖W4‖2
F < α2

4Nn
−2

with probability tending exponentially to 1 as N → ∞. Moreover, to obtain this bound
on ‖W4‖ we implicitly use the fact that Condition Ψ in the proof of Theorem 4.4.2 is not
violated; here nj in the proof stands for pj, for each j ∈ V \ V ∗. This implies that pj < n
for all j ∈ V \ V ∗ with probability tending exponentially to 1 as N → ∞. Finally, notice
that, by symmetry, W4 = W T

5 . Thus, since each of W1,W2, . . . ,W5 is bounded by an
arbitrarily small constant if n = Ω(

√
N), there exists constant α > 0 such that ‖W‖ < 1

with probability tending exponentially to 1 as N →∞ as required.

4.4.3 The adversarial noise case for the maximum edge biclique
problem

Suppose that the bipartite graph G = ((U, V ), E) contains the biclique (U∗, V ∗) with vertex
sets U∗, V ∗ of size m,n respectively. Suppose that each vertex in V \ V ∗ is adjacent to at
most αm vertices in U∗ and each vertex in U \U∗ is adjacent to at most βn vertices in V ∗

for some fixed α, β ∈ (0, 1). In this section, we show that if G contains at most r ≤ O(mn)
of the |U ||V | −mn remaining possible edges then (U∗, V ∗) is the maximum edge biclique
of G and can be recovered by solving (4.2.5). We will use the following specialization of
Theorem 4.3.1, which provides sufficient conditions for which the adjacency matrix of a
subgraph induced by a biclique of G is optimal for the nuclear norm relaxation (4.2.5) of
the maximum edge biclique problem.
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Theorem 4.4.3 ([8, Theorem 5.1]) Let (U∗, V ∗) be a biclique of G such that |U∗| = m
and |V ∗| = n. Let ū ∈ RM be the characteristic vector of U∗, and let v̄ ∈ RN be the
characteristic vector of V ∗. Let X∗ = ūv̄T . Note that X∗ is feasible for (4.2.5). Suppose
also that there exist W ∈ RM×N , λ ∈ RM×N and µ ∈ R+ such that W v̄ = 0, ūTW = 0,
‖W‖ ≤ 1 and

ūv̄T√
mn

+W = µeeT +
∑

(i,j)∈Ẽ

λijeie
T
j . (4.4.6)

Then X∗ is an optimal solution to (4.2.5). Moreover, every biclique (U ′, V ′) of G satisfies
|U ′| · |V ′| ≤ mn. Furthermore, if ‖W‖ < 1 and µ > 0, then X∗ is the unique optimizer of
(4.2.5) and (U∗, V ∗) is the unique optimal biclique.

As before, Theorem 4.4.3 is obtained from the optimality and uniqueness conditions
given by Theorem 4.3.1 for the instance of (4.3.1) with M = |U |, N = |V | and edge-set
E = E(G).

Let ū, v̄ be the characteristic vectors of U∗ and V ∗ respectively. Let X∗ = ūv̄T . To see
that X∗ is the unique optimal solution of (4.2.5) in the case that r ≤ cmn for some scalar
c depending only on α, β, we construct multipliers µ, λ, W that satisfy the optimality
and uniqueness conditions for (4.2.5) given by Theorem 4.4.3. We take µ = 1/

√
mn and

consider W and λ defined according to the following cases.

(ψ1) For ij ∈ U∗ × V ∗, taking Wij = 0 and λij = 0 ensures the ij-entries of both sides of
(4.4.6) are equal to 1/

√
mn.

(ψ2) For ij ∈ E \ (U∗ × V ∗), we take Wij = 1/
√
mn and λij = 0. Again, the ij-entries of

both sides of (4.4.6) are equal to 1/
√
mn.

(ψ3) For ij /∈ E such that i /∈ U∗ and j /∈ V ∗, we select Wij = −γ/√mn and λij =
−(1+γ)/

√
mn where γ will be defined below. In this case, the ij-entries of each side

of (4.4.6) are 0.

(ψ4) For ij /∈ E such that i /∈ U∗ and j ∈ V ∗, we choose

Wij = − pi
(n− pi)

√
mn

and λij =
1√
mn

( −pi
n− pi

− 1

)
where pi is equal to the number of edges with left endpoint equal to i and right
endpoint in V ∗. Note that if n = pi then i is connected to every vertex of V ∗ and
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thus the KKT condition cannot possibly be satisfied. If pi < n, both sides of (4.4.6)
are equal to −pi/((n− pi)

√
mn).

(ψ5) For ij /∈ E such that i ∈ U∗ and j /∈ V ∗, we choose

Wij = − qj
(m− qj)

√
mn

and λij =
1√
mn

( −qj
m− qj

− 1

)
where qj is equal to the number of edges with right endpoint equal to j and left
endpoint in U∗. As before, this is appropriate only if qj < m.

Consider γ = 0. As in Section 4.4.1, we use the bound ‖W‖ ≤ ‖W‖F . Notice that at
most r entries of W (U \ U∗, V \ V ∗) are equal to 1/

√
mn and the remainder are equal to

0. Therefore,

‖W (U \ U∗, V \ V ∗)‖2
F ≤

r

mn
.

Moreover, for each j ∈ V − V ∗, qj ≤ αm. It follows that

‖W (U∗, V \ V ∗)‖2
F =

∑
v∈V \V ∗

(
qv
mn

+ (m− qv)
q2
v

mn(m− qv)2

)

=
∑
v∈V ∗

qv
mn

(
1 +

qv
m− qv

)
≤
∑
v∈V ∗

qv
mn

(
1 +

α

1− α

)
=
∑
v∈V ∗

qv
mn(1− α)

≤ r

mn(1− α)
.

Similarly,

‖W (U \ U∗, V ∗)‖2
F ≤

r

(1− β)mn
.

Therefore, ‖W‖ < 1 if

r

(
1 +

1

1− α +
1

1− β

)
< mn.
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4.4.4 The random noise case for the maximum edge biclique
problem

Let y, z be fixed positive scalars. Let U, V be two disjoint vertex sets with |V | = N and
|U | = dyNe. Consider U∗ ⊆ U and V ∗ ⊆ V such that |V ∗| = n and |U∗| = m = dzne.
Suppose the edges of the bipartite graph G = ((U, V ), E) are determined as follows:

(β1) For all (i, j) ∈ U∗ × V ∗, ij ∈ E.

(β2) For each of the remaining potential edges (i, j) ∈ U × V , we add each edge ij
independently to E with probability p.

Notice that G contains the biclique (U∗, V ∗). Let ū,v̄ be the characteristic vectors of U∗

and V ∗ respectively. We show that if n = Ω(
√
N) and G is constructed as in (β1), (β2)

then ūv̄T is optimal for the convex problem (4.2.5).

Let W be constructed as in (ψ1)–(ψ5) with γ = −p/(1 − p). Then X∗ = ūv̄T is the
unique optimal solution of (4.2.5) if

‖W‖ < 1, qj < dzne ∀ j ∈ V \ V ∗, and pj < n ∀ j ∈ U \ U∗

by Theorem 4.4.3. To prove that ‖W‖ < 1 with high probability as N → ∞ in the case
that n = Ω(

√
N), we write

W = W1 +W2 +W3 +W4

where each of the summands is defined as follows. We first define W1. If (i, j) ∈ U∗ × V ∗,
then we set W1(i, j) = 1/

√
mn with probability p and equal to γ/

√
mn with probability

1 − p. For (i, j) ∈ (U × V ) \ (U∗ × V ∗), we set W1(i, j) = 1/
√
mn if ij ∈ E and set

W1(i, j) = γ/
√
mn otherwise. Note that Theorem 2.6.5 implies that ‖W1‖ ≤ α

√
N/
√
mn

with probability at least 1−c1 exp(−c2n
c3) for some c1, c2, c3 > 0 Since

√
mn equals

√
dznen

and hence is proportional to n, we see that ‖W1‖ ≤ const with probability exponentially
close to 1 provided n = Ω(N1/2).

Next, set W2 to be the correction matrix for W1 for U∗ × V ∗, that is,

W2(i, j) =

{
−W1(i, j) if (i, j) ∈ U∗ × V ∗
0 otherwise,

Again, by Theorem 2.6.5 we conclude that

‖W2‖ ≤ α
1√
n
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with probability at least 1− c′1 exp(−c′2nc
′
3) for some c′1, c

′
2, c
′
3 > 0.

It remains to derive bounds for ‖W3‖ and ‖W4‖. Notice that the construction of
W (U∗, V \V ∗) and W (U \U∗, V ∗) is identical to that in Case (ω5) for the maximum clique
problem. Thus, we can again apply Theorem 4.4.2, first to W3 (in which case (n,N) in the
theorem stand for (dzne, N − n)) and second to W T

4 (in which case (n,N) in the theorem
stand for (n, dyNe − dzne) to conclude that ‖W3‖ and ‖W4‖ are both strictly bounded
above by constants provided n = Ω(N1/2) with probability tending to 1 exponentially fast
as required. Moreover, as in the proof of Theorem 4.1.3, the application of Theorem 4.4.2
to bound W3 and W4 implies that qj < dzne ∀ j ∈ V \ V ∗ and pj < n ∀ j ∈ U \ U∗ with
probability tending exponentially to 1 as N →∞ as required.
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Chapter 5

Semidefinite Relaxations for the
Clustering Problem

5.1 The clustering and k-disjoint clique problems

In this section, we show how our approach for identifying the maximum clique in a graph
can be extended to identifying collections of disjoint cliques of maximum size in a graph. In
particular, we consider the k-disjoint-clique problem. Let G = (V,E) be a simple graph on
N = |V | nodes. We call a subgraph of G composed of k disjoint cliques a k-disjoint-clique
subgraph of G. That is a subgraph K = (V ′, E ′), is a k-disjoint-clique subgraph of G, if
V ′ = C1 ∪ C2 ∪ · · · ∪ Ck where {C1, C2, . . . , Ck} is a collection of k disjoint cliques of G
and the edge set E ′ is exactly the set of edges of the complete subgraphs of G induced by
{C1, C2, . . . , Ck}. Given graph G = (V,E) and integer k, the maximum node k-disjoint-
clique problem (KDC) is to identify a k-disjoint-clique subgraph of G that contains the
maximum number of nodes. Given graph G = (V,E), integer k, and nonnegative edge
weights W ∈ RE

+, the maximum mean weight k-disjoint-clique problem (WKDC) seeks the
k-disjoint-clique subgraph K of G that maximizes the sum of the average edge-weights
of the complete subgraphs of G which compose K. That is, the maximum mean weight
k-disjoint-clique problem seeks the set of disjoint cliques C1, . . . , Ck of G that maximizes∑

i=1,...,k

1

|Ci|
∑
u,v∈Ci

Wuv. (5.1.1)
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Note that both KDC and WKDC are NP-complete. Indeed, in the special case that k = 1
and the weight matrix W is equal to the adjacency matrix AG of the input graph G, both
KDC and WKDC are equivalent to the maximum clique problem. However, as in our
earlier discussion of the maximum clique and biclique problems, we will show that we can
obtain the optimal solution in polynomial time by solving a particular convex relaxation,
in the special case that the given instance of the k-disjoint-clique problem corresponds to
a collection of planted cliques, obscured by a moderate number of noise edges and nodes.

Our interest in the k-disjoint-clique problem is motivated by its application in clus-
tering. Given a set of data, clustering seeks to divide the data into groups of similar
objects, called clusters. Clustering is a fundamental problem in statistics and machine
learning and plays a significant role in a wide range of applications, including but not
limited to information retrieval, pattern recognition, computational biology, and image
processing. The complexity of the clustering problem depends significantly on the measure
of similarity of items in the data set, but, in general, clustering is an intractable combina-
torial problem. For most practical applications, heuristics are used to find clusters in the
data sets. In particular, several optimization based heuristics have recently been proposed
[168, 152, 148, 105]. We present an overview of spectral and graph based heuristics in
Section 5.1.1. For a recent survey of clustering techniques and heuristics see [17].

Consider the following graph-theoretic representation of data. Suppose we have a set
of N items, where each pair of items is known to be similar or dissimilar. We consider the
N -node graph G = (V,E) with vertex set V equal to the set of items and with each pair of
nodes adjacent if and only if the corresponding items are similar. In this case, clustering
of the data into k disjoint clusters such that the items in each cluster are pairwise similar
is equivalent to partitioning the graph into k disjoint cliques. Such a partitioning, if one
exists, can be identified by solving this instance of the maximum node k-disjoint-clique
problem. On the other hand, suppose that we have a symmetric matrix W ∈ ΣN such
that Wij is given by some measure of similarity between objects i and j in the data set.
Clustering this data set yields a partitioning such that the items in the same cluster are
highly similar and items in different clusters are highly dissimilar. That is, the entries of
W corresponding to edges between objects in the same cluster should be large while the
entries of W corresponding to edges between objects in different clusters should be small.
Therefore, we may partition the data set into k clusters by solving the corresponding
instance of WKDC. Recent results by Ostrovsky et al. [146] and Ackerman and Ben-David
[2, 3] show that if a data set is “clusterable” in some sense, then certain clustering heuristics
will be able to find the correct partitioning of the data into clusters. Our results are of a
similar form. If the underlying data set consists of k “good” clusters, then the k-disjoint-
clique subgraph given by these clusters is optimal for the k-disjoint-clique problem.
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The rest of this chapter is organized as follows. In Section 5.1.1 we provide an overview
of graph-partitioning approaches to clustering and relate these approaches to ours. In Sec-
tions 5.2.1 and 5.2.2, we relax the maximum node and maximum mean weight k-disjoint-
clique problems, respectively, to semidefinite programming. We provide general conditions
for input instance of the k-disjoint-clique problem, that ensure that the optimal k-disjoint-
clique subgraph can be recovered by solving our semidefinite relaxation. Specifically, the
set of instances for which our algorithm successfully identifies the optimal k-disjoint-clique
subgraph are exactly those corresponding to a collection of k disjoint planted cliques ob-
scured by additional diversionary nodes and edges. Section 5.3 contains a derivation of the
bounds on the amount of noise and sizes of cliques that are algorithm for KDC can tolerate.
The proof that our convex relaxation exactly recovers the maximum node k-disjoint-clique
subgraph constructs multipliers satisfying the Karush-Kuhn-Tucker optimality conditions.
The necessary optimality and uniqueness conditions, as well as our choice of multipliers,
can be found in Section 5.3.1. Similarly, the proof that our convex relaxation is exact in
the planted case for WKDC is contained in Section 5.4. The required optimality conditions
are developed in Section 5.4.1.

5.1.1 Graph-partitioning approaches to clustering

The maximum node and maximum mean weight k-disjoint-clique problems are examples of
graph-partitioning approaches to clustering. Given a collection of N items, the similarity
graph GS = (V,E,W ) is the complete graph on N vertices with vertex set equal to the set of
items, and with weightWuv assigned to each edge uv indicating the similarity between items
u, v. Graph-partitioning attempts to cluster the data by finding an optimal partitioning
into cliques of the nodes of the similarity graph GS, with respect to some objective function
given by the edge-weights W . The objective function typically seeks to either maximize
the weight of edges of the complete subgraphs of GS induced by the cliques or to minimize
the weights of the edges cut by the partitioning of the nodes of GS. Hence, the optimal
partitioning of the graph will yield a partitioning of the data in clusters such that the items
in each cluster will be very similar or the items in different clusters will be very dissimilar.

Given a similarity graph GS = (V,E,W ), and subsets A,B of V such that A ∩B = ∅,
the value of the cut defined by (A,B) is equal to the weight of the edges from A to B:

c(A,B) =
∑

u∈A,v∈B

Wuv. (5.1.2)

Wu and Leahy [189] propose partitioning the graph using the minimum cut. Specifically,
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they seek to partition the graph into k cliques such that the maximum of the minimum cuts
defined by each clique is minimized. Since the minimum cut of a graph can be computed
efficiently (see [71]), such a partition can be computed efficiently by recursively finding
the minimum cuts bisecting the existing segments. Unfortunately, since the value of the
cut increases as the size of A increases, the partitioning of GS given by Wu and Leahy’s
algorithm favours cutting small sets of isolated nodes. To avoid this bias, a number of
alternate cut functions normalizing the value of the cut have been proposed. Wei and
Chang [187, 188] and Leighton and Rao [123] independently proposed normalizing the cut
by the number of edges cut by (A,B), by replacing the objective with the ratio cut or
minimum mean cut

Rcut(A,B) =
c(A,B)

|A| · |B| . (5.1.3)

Shi and Malik [167] propose a clustering method based on finding the partitioning of GS

that minimizes the normalized cut defined by

Ncut(A,B) =
c(A,B)

assoc(A, V )
+

c(B,A)

assoc(B, V )
(5.1.4)

for all A,B ⊆ V where

assoc(A,B) =
∑

u∈A,v∈B

Wuv (5.1.5)

for all A,B ⊆ V . Ding et al [53] attempt to simultaneously maximize the similarity between
each items within the same grouping and minimize similarity between different clusters by
minimizing the min-max cut given by

Mcut(A,B) =
c(A,B)

assoc(A,A)
+

c(A,B)

assoc(B,B)
(5.1.6)

for all A,B ⊆ V . On the other hand, Sarkar and Boyer [165] attempt to cluster by
finding a partitioning the similarity graph into cliques {C1, . . . , Ck} such that the average
associations of the cliques, given by

assoc(Ci)

|Ci|
(5.1.7)

for all i = 1, . . . , k, are maximized. Note that the objective value of a particular k-disjoint-
clique subgraph for the maximum mean weight k-disjoint-clique problem is equal to the
sum of the average associations of the cliques in its vertex set. For a comparison of graph-
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partitioning and other heuristics for clustering please see [167, 111, 195, 196].

Unfortunately, finding the optimal partitionings with respect to the modified cut func-
tions given by (5.1.3), (5.1.4), (5.1.6) is NP-hard (see [132], [167], [53] respectively). How-
ever, approximate solutions may be obtained using properties of the spectrum of the Lapla-
cian matrix D−W , where D = Diag d, di =

∑
j∈V Wij for all i ∈ V . These properties were

first developed by Donath and Hoffman [56] and Fiedler [68, 69], and their application to
the clustering problem is collectively referred to as spectral clustering. For example, Hagen
and Kahng [89] show that for given vertex sets A,B ⊆ V , the value of the cut defined by
A,B is equal to

c(A,B) =
xT (D −W )x

2
. (5.1.8)

where x ∈ {1,−1}V is chosen such that xu = 1 if u ∈ A, and xu = −1 if u ∈ B otherwise
Relaxing the restriction that x ∈ {1,−1}V to x ∈ S|V |−1 yields a continuous relaxation
whose solution is a solution of the eigensystem

(D −W )x = λx. (5.1.9)

The matrix D−W is positive semidefinite [154]. Moreover, D−W has smallest eigenvalue
λ1 equal to 0 with corresponding eigenvector x = e. Hagen and Kahng prove that the
value of the optimal ratio cut partition is approximated by

λ = min
xT e=0,x 6=0

xT (D −W )x

xTx
= λ2 (5.1.10)

with optimal value equal to the second smallest eigenvalue of D−W and optimal solution
equal to the corresponding unit eigenvector (see [101, Equation (4.2.7)]). Therefore, an
approximation of the optimal ratio cut partition can be obtained by taking the spectral
decomposition of the Laplacian D −W . Similarly, Shi and Malik [167] show that an ap-
proximate minimum normalized cut can be obtained by solving the generalized eigensystem
(D −W )x = λDx by finding the second smallest eigenvector of the normalized Laplacian
D−1/2(D−W )D−1/2 and that an approximate k-way normalized cut can be obtained from
the top k eigenvectors of D−1/2(D−W )D−1/2. Dhillon et al. [51, 52] show that this approx-
imate solution may be computed iteratively using a variant of the k-means algorithm for
clustering [92, 93] that exploits information from the weight matrix W . Similarly, Rahimi
and Recht [156] show that clustering using the normalized cut is equivalent to clustering
using hyperplane methods and propose a variant that is less sensitive to outliers in the
data. On the other hand, Ding et al. [53] obtain an approximate min-max cut using the
second eigenvector of (D−W ) and Sarkar and Boyer [165] use the eigenvector of the largest
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eigenvalue of W to approximate the subgraph with largest average association.

Our approach to the partitioning problems differs significantly from those of spectral
clustering. Instead of finding an approximately optimal partitioning of the nodes of the
similarity graph, we will show that our approach efficiently finds the exact optimal par-
tition of the similarity graph (with respect to the k-disjoint-clique objective function),
provided the data set is sufficiently clusterable. That is, if the similarity graph contains k
large disjoint cliques, either in cardinality in the maximum node case or in weight in the
maximum mean weight case, obscured by noise then we can find the exact solution for this
instance of the k-disjoint-clique problem by solving a certain semidefinite program.

5.2 Theoretical guarantees for the success of convex

relaxation of the k-disjoint clique problem

Although the k-disjoint-clique problem is known to be NP-hard, we will show it may solved
in polynomial time by solving a particular semidefinite program for certain program inputs.
In particular, these problems can be solved efficiently in the case that the optimal solution
consists of k disjoint planted cliques plus diversionary edges and nodes. In this section, we
provide theoretical bounds on the size of the planted cliques and the amount of noise that
ensure that our convex relaxation is exact. We begin with the maximum node k-disjoint
clique problem.

5.2.1 A convex relaxation for the maximum node k-disjoint clique
problem

Given a graph G = (V,E), the maximum node k-disjoint-clique problem can be formulated
as the quadratically constrained binary optimization problem

max
S={v1,...,vk}

k∑
i=1

vTi e (5.2.1)

s.t. vTi vj = 0, ∀ i, j = 1, . . . , k, i 6= j (5.2.2)

[viv
T
i ]uv = 0, if uv /∈ E, u 6= v, ∀ i = 1, . . . , k (5.2.3)

vi ∈ {0, 1}V , ∀ i = 1, . . . , k. (5.2.4)
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A feasible set S = {v1, . . . ,vk} for (5.2.1) is exactly the collection of characteristic vectors
of a set of disjoint cliques of G. Indeed, the constraint (5.2.2) ensures that the sets of
nodes indexed by S are disjoint and the constraint (5.2.3) ensures that the sets of nodes
indexed by S are subgraphs and, hence, cliques of G. Moreover, note that a feasible
solution S = {v1, . . . ,vk} need not define a partition of V . That is, a feasible solution
need not correspond to a k-disjoint-clique subgraph of KN that contains every node in
V . Unfortunately, KDC, and finding the solution to a nonlinear program with binary
constraints, is NP-hard in general. The formulation (5.2.1) may be relaxed to the rank
constrained semidefinite program

max 〈X, eeT 〉 (5.2.5)

s.t. Xe ≤ e, (5.2.6)

Xij = 0, if (i, j) /∈ E s.t. i 6= j (5.2.7)

rank (X) = k, (5.2.8)

X � 0. (5.2.9)

Here 〈·, ·〉 : RN×N → R is the inner product on RN×N defined by 〈Y, Z〉 = Tr (Y ZT ) for all
Y, Z ∈ RN×N . To see that (5.2.5) is a relaxation of (5.2.1), suppose that {C1, . . . , Ck} ⊆ V
defines a k-disjoint-clique subgraph of G. Let S = {v1, . . . ,vk} be the set of characteristic
vectors of {C1, . . . , Ck}. The matrix

X =
k∑
i=1

viv
T
i

|Ci|
(5.2.10)

is positive semidefinite with rank equal to k. Note that
∑k

i=1 vi ≤ e since v1, . . . ,vk are
orthogonal binary vectors. It follows that

Xe =
k∑
i=1

(
vi
|Ci|

)
vTi e =

k∑
i=1

vi ≤ e (5.2.11)

since vTi e = |Ci|. Moreover,

〈X, eeT 〉 = eTXe =
k∑
i=1

vTi e. (5.2.12)
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Therefore, every feasible solution S for (5.2.1) defines a feasible solution of (5.2.5) with
equal objective value. The nonconvex program (5.2.5) may be relaxed further to a semidefi-
nite program by replacing the nonconvex constraint rank (X) = k with the linear constraint
Tr (X) = k:

max 〈X, eeT 〉 (5.2.13)

s.t. Xe ≤ e, (5.2.14)

Xij = 0, if (i, j) /∈ E s.t. i 6= j (5.2.15)

Tr (X) = k, (5.2.16)

X � 0. (5.2.17)

Recall that every positive semidefinite matrix X satisfies λi(X) ≥ 0 for all i = 1, . . . , N .
Thus, for every feasible solution X for (5.2.13) we have

Tr (X) =
N∑
i=1

λi(X) =
N∑
i=1

σi(X) = ‖X‖∗ (5.2.18)

Moreover, every feasible matrix X satisfies Xe ≤ e. This implies that ‖X‖ ≤ 1 and, thus,

‖X‖∗ ≤ rank (X) (5.2.19)

for all X ≥ 0 feasible for (5.2.13) by (3.2.1) since (5.2.14) implies that ‖X‖1 ≤ 1 and
‖X‖∗ ≤ ‖X‖1 for every symmetric X by (2.1.7). Therefore, (5.2.13) may be thought of
as the relaxation of (5.2.5) obtained by replacing the rank constraint with a nuclear norm
constraint.

Note that the relaxation (5.2.13) is exactly the semidefinite programming formula-
tion (4.1.1) for the Lovász theta function ϑ(G), with the right-hand side of the trace
constraint changed from 1 to k and the additional row sum constraint (5.2.14). In the
case that k = 1, Theorem 4.1.1 implies that the optimal solutions for (5.2.5) and (5.2.13)
coincide and their nonzero eigenvector yields the maximum clique when the input graph
contains a sufficiently large planted clique. This may be extended to general k. The convex
relaxation of KDC given by (5.2.13) is exact in the case that the input graph G consists of
planted k-disjoint-clique subgraph obscured by a moderate number of diversionary edges
and nodes. That is, the solution X∗ given by (5.2.10) corresponding to the planted k-
disjoint-clique subgraph is the unique optimal solution of (5.2.13) and the characteristic
vectors of the maximum node k-disjoint-clique subgraph are exactly the eigenvectors corre-
sponding to the nonzero eigenvalues of the matrix X∗. As in our analysis of the maximum
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clique and maximum edge biclique problems, we consider two constructions of an input
graph G containing a planted k-disjoint-clique subgraph K. In the first, a number of the
potential edges of G not in E(K) are added deterministically by an adversary. In the
second, each potential edge in (V × V ) \ E(K) is added to the graph independently at
random with fixed probability p ∈ [0, 1).

We begin with the adversarial case. Suppose that the graph G = (V,E) is generated as
follows. We first add the complete subgraphs corresponding to k disjoint cliques C1, . . . , Ck
of size r1, . . . , rk respectively. Then an adversary is allowed to add a set Ck+1 of additional
vertices and a number of the remaining potential edges to graph. The following theorem
states that our adversary can add up to O(r̂2) noise edges where r̂ := min{r1, . . . , rk}
and the k-disjoint-clique subgraph defined by {C1, . . . , Ck} will be the unique maximum
k-disjoint-clique subgraph of G and will be found by solving the semidefinite relaxation
(5.2.13).

Theorem 5.2.1 ([7, Theorem 3.1]) Suppose that G contains a k-disjoint-clique sub-
graph K∗ composed of cliques C1, . . . , Ck, where |Ci| = ri for all i = 1, . . . , k. Let
Ck+1 := V \ (∪ki=1Ci) and let rk+1 = |Ck+1|. Suppose that for all i = 1, . . . , k, v ∈ Ci,
and j ∈ {1, . . . , k + 1} − i,

njv ≤ δmin{ri, rj} (5.2.20)

where δ ∈ (0, 0.382) and njv is equal to the number of nodes adjacent to v in Cj. Then there
exists scalar ρ > 0 depending only on δ such that if

|E(G) \ E(K∗)| ≤ ρr̂2 (5.2.21)

then the feasible solution X∗ corresponding to K∗ given by (5.2.10) is the unique optimal
solution to (5.2.13), and K∗ is the unique maximum node k-disjoint-clique subgraph of G.

We remark that two of the conditions imposed in this theorem are, up to the constant
factors, the best possible according to the following arguments. If njv = rj, then node v
could be inserted into clique j, so the partitioning between Cj and Ci would no longer
be uniquely determined. This shows the necessity of the condition njv = O(rj). The
condition that |E(G) \ E(G∗)| ≤ ρr̂2 is necessary, up to a constant factor, because if
|E(G) \ E(G∗)| ≥ r̂2(r̂2 − 1)/2, then we could interconnect an arbitrary set of r̂ nodes
chosen from among the existing cliques with edges to make a new clique out of them, again
spoiling the uniqueness of the decomposition.

We next consider the case when the nonclique edges of G are added randomly. Let
C1, C2, . . . , Ck+1 be disjoint vertex sets of sizes r1, . . . , rk+1 respectively, and let V =
∪k+1
i=1Ci. We construct the edge set of the graph G = (V,E) as follows:
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(Ω1) We add (i, j) to E for each q = 1, . . . , k, and each i ∈ Cq, j ∈ Cq such that i 6= j .

(Ω2) Each of the remaining possible edges is added to E independently at random with
probability p ∈ (0, 1).

Notice that the graph G = (V,E) has a k-disjoint-clique subgraph K∗ with cliques indexed
by the vertex sets C1, . . . , Ck by our construction of E. The following theorem provides
conditions on the vertex sets C1, . . . , Ck+1 that ensure that K∗ is the maximum k-disjoint-
clique subgraph of G and is recoverable by solving (5.2.13).

Theorem 5.2.2 Suppose that the random graph G = (V,E) containing a k-disjoint-clique
subgraph K∗ composed of cliques C1, . . . , Ck is constructed according to (Ω1) and (Ω2) with
probability p. Let N := |V |, Ck+1 = V \ (∪ki=1Ci) and ri = |Ci| for all i = 1, . . . , k+ 1. Let
X∗ be the feasible solution for (5.2.13) corresponding to {C1, . . . , Ck} given by (5.2.10).
Further, suppose that ri ≤ r̂3/2 for all i = 1, . . . , k where r̂ = mini=1,...,k{ri}. Then there
exists scalar c1, c2 > 0, depending only on p, such that if

c1

(
k∑
i=1

r2
i

)1/2( k∑
j=1

1

rj

)1/2

+ c2

√
N ≤ r̂, (5.2.22)

then K∗ is the unique maximum node k-disjoint-clique subgraph of G and X∗ is the unique
optimal solution of (5.2.13) with probability tending exponentially to 1 as r̂ →∞.

It is clear from (5.2.22) that the sufficient conditions for uniqueness and optimality given
by Theorem 5.2.2 cannot be satisfied unless N = O(r̂2). We now give a few examples of
values for r1, . . . , rk+1 that fulfill (5.2.22).

• Consider the case k = 1, i.e., a single large clique. In this case, taking r1 = O(N1/2)
satisfies (5.2.22) since the first term on the left is O(N1/4). Note that this is, up to
the constants, the bound given by (4.1.3), as well as by Alon et al. [5] and Feige and
Krauthgamer [66].

• Suppose k > 1 and r1 = . . . = rk = cNα for some scalar c ≥ 0. In this case, the
first parenthesized factor on the left in (5.2.22) is O(k1/2Nα) while the second is
O(k1/2N−α/2). Therefore, the first term is O(kNα/2). For (5.2.22) to hold, we need
this term to be O(r̂) = O(Nα), which is valid as long as k ≤ Nα/2. We also need
α ≥ 1/2 as noted above to handle the second term on the right. For example, for
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α = 1/2 the algorithm can find as many as N1/4 cliques of this size. For α = 2/3,
the algorithm can find as many as N1/3 cliques of this size, which is the maximum
possible since the cliques are disjoint and N is the number of nodes.

• The cliques may also be of different sizes. For example, if there is one large clique
of size O(N2/3) and N1/6 smaller cliques of size O(N1/2), then r̂ = O(N1/2), the first
parenthesized factor in (5.2.22) is N2/3 while the second is N−1/6, so the entire first
factor is O(N1/2) = O(r̂).

We note that the results for random noise in the k-disjoint-clique problem are much
better than the results for adversary-chosen noise. In the case of adversary-chosen noise,
the number of allowable noise edges is bounded above by a constant times the number of
edges in the smallest clique. In the case of random noise, the number of allowable noise
edges is the square of that quantity. For example, if there are N1/4 cliques each of size
N1/2, then the smallest clique has N edges versus N2 noise edges.

5.2.2 A convex relaxation for the maximum mean weight k-disjoint
clique problem

Let KN = (V,E) be a complete graph with vertex set V = {1, 2, . . . , N}. Given a non-
negative matrix W ∈ RN×N

+ of edge weights and integer k ∈ {1, . . . , N}, the maximum
mean weight k-disjoint clique problem seeks to identify the k-disjoint-clique subgraph K∗

of KN that maximizes the sum of the average weight (with respect to W ) covered by the
edges of each clique of K∗. More precisely, this problem can be formulated as the nonlinear
optimization problem

max
S={v1,...,vk}

k∑
i=1

〈W,vivTi 〉
vTi e

(5.2.23)

s.t. vTi vj = 0 if i 6= j (5.2.24)

vi ∈ {0, 1}N ∀ i = 1, . . . , k. (5.2.25)

As in the maximum node case, each feasible solution S = {v1, . . . ,vk} of (5.2.23) is the
collection of characteristic vectors of a k-disjoint-clique subgraph K of KN . Recall that
every feasible solution S = {v1, . . . ,vk} of (5.2.23) defines a rank-k positive semidefinite
matrix

X∗ =
k∑
i=1

viv
T
i

vTi e
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by (5.2.10). Hence, (5.2.23) can be relaxed to the rank-constrained semidefinite program

max 〈W,X〉 (5.2.26)

s.t. Xe ≤ e (5.2.27)

X ≥ 0 (5.2.28)

rankX = k (5.2.29)

X � 0. (5.2.30)

As before, we relax further by replacing rank with trace to obtain the semidefinite program

max 〈W,X〉 (5.2.31)

s.t. Xe ≤ e (5.2.32)

X ≥ 0 (5.2.33)

TrX = k (5.2.34)

X � 0. (5.2.35)

Note that the constraints (5.2.32), (5.2.33), (5.2.34), and (5.2.35) are identical to those of
the semidefinite relaxation of the k-means clustering problem considered by Peng and Wei
in [152].

We are interested in identifying a class of input instances of (5.2.23) that may be
solved directly by solving the semidefinite programming relaxation given by (5.2.31). In
particular, we will see that the SDP relaxation (5.2.31) is exact for (5.2.23) (and (5.2.26)),
when the input instance corresponds to a k-disjoint-clique subgraph of the input graph KN .
Unlike in our analysis of the maximum clique, maximum edge biclique, and maximum node
k-disjoint-clique problems, the planted case for WKDC is induced by the matrix of edge-
weights W . In the planted case, the entries of W corresponding to the edges of the planted
k-disjoint-clique subgraph of KN are significantly larger than the remaining entries. Let
K∗ be a k-disjoint-clique subgraph of KN composed of the disjoint cliques C1, C2, . . . , Ck.
We consider symmetric matrices W ∈ ΣN with random entries sampled from one of two
distributions Ω1, Ω2 as follows:

(ω1) The entries of each block of W corresponding to Cq, Cs, q, s = 1, . . . , k + 1, are
independently identically distributed (i.i.d.) such that

E[Wij] = E[Wji] =

{
α, if q = s, 1 ≤ q, s ≤ k
β, otherwise

(5.2.36)
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for fixed scalars α > β > 0 for all i ∈ Cq, j ∈ Cs, where Ck+1 := V \ (∪ki=1Ci).

(ω2) For all i, j ∈ V ,
0 ≤ Wi,j ≤ 1. (5.2.37)

That is, if the nodes i, j are in the same planted clique we sample the random variable
Wij from the probability distribution Ω1 with mean α; otherwise, we sample Wij from the
distribution Ω2 with mean β. This is a natural model for the similarity matrix W for a set
of clustered data. Indeed, consider the following examples.

• Suppose that we have an oracle that exactly detects if items in the data are similar or
not. If we require that every pair of items in each cluster is similar, then identifying
the k largest disjoint clusters in the data set is equivalent to the maximum node
k-disjoint-clique problem. Suppose that the data is clusterable in the sense that
the similarity graph contains the planted k-disjoint-clique subgraph K composed of
disjoint cliques {C1, . . . , Ck} corresponding to the clusters in the data and the graph
is sparse outside of K. Then the entries of the diagonal blocks of W indexed by
C1, . . . , Ck are equal to 1 and the off-diagonal blocks are sparse. In the random
model, where diversionary edges are added to G with probability p, this is equivalent
to having W satisfying (ω1) and (ω2) with α = 1, β = p.

• A less restrictive model for clustering is to require the subgraphs of GS corresponding
to the clusters to be densely connected but not necessarily complete. Several recent
papers [48, 148] have shown that if the input graph consists of a collection of k suffi-
ciently dense (in expectation) disjoint clusters plus a moderate number of randomly
inserted diversionary edges, then the clusters can be recovered by solving a convex
program. The problem of identifying k dense clusters in a graph is a special case
of the planted case for WKDC. In the random model, each dense (in expectation)
subgraph will correspond to a planted clique in G whose block of W will have entries
with expected value close to 1. On the other hand, the remaining entries of W will
have small expected value since the input graph is sparse outside of the planted dense
subgraphs.

• Suppose that we are given a random clustered data set D in Rn. For example,
suppose that each data point in the ith cluster Ci is placed uniformly at random in a
ball of radius ε > 0 centered at ci ∈ Rn. Suppose further that distance between each
pair of cluster centers is at least δ > 0; that is, ‖ci − cj‖ > δ for all i 6= j. Consider
W with Gaussian entries Wu,v = exp(−‖u−v‖2/σ2) for all u,v ∈ D for some scalar
σ > 0. For all u,v in the same cluster, we have Wu,v ≥ exp(−2ε2/σ2). If u,v are
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in different clusters, then Wu,v ≤ exp(−(δ − 2ε)2/σ2). For sufficiently large choice
of δ, the entries of W indexed by edges within clusters will be significantly larger in
expectation than the entries of W indexed by edges between different clusters.

The following theorem describes which partitions {C1, C2, . . . , Ck+1} of V yield random
symmetric matricesW satisfying (ω1) and (ω2) such that the feasible solution corresponding
to K is optimal for (5.2.23) and can be found with high probability by solving (5.2.31).

Theorem 5.2.3 Suppose that vertex sets C1, . . . , Ck define a k-disjoint-clique subgraph
K∗ of the complete graph KN = (V,E) on N vertices and let Ck+1 := V \ (∪ki=1Ci). Let
ri := |Ci| for all i = 1, . . . , k + 1, and let r̂ = mini=1,...,k ri. Let W ∈ ΣN be a random
symmetric matrix sampled from distributions Ω1,Ω2 according to (ω1) and (ω2). Let X∗ be
the feasible solution for (5.2.31) corresponding to C1, . . . , Ck defined by (5.2.10). Suppose
that the entries of λ and η are nonnegative. Then there exist scalars c1, c2, ρ1, ρ2 > 0 such
that if

ri ≤ c1(α− β)2r̂2 (5.2.38)

for all i = 1, . . . , k, and

ρ1

(
k
k+1∑
s=1

rs

)1/2

+ ρ2

√
N + βrk+1 ≤ c2(α− β)r̂ (5.2.39)

then X∗ is the unique optimal solution for (5.2.31), and K∗ is the unique maximum mean
weight k-disjoint-clique subgraph of KN corresponding to W with probability tending expo-
nentially to 1 as r̂ →∞.

Note that (5.2.39) cannot be satisfied if N = Ω(r̂2) or rk+1 = Ω(r̂). We now provide a
few examples of r1, . . . , rk satisfying the hypothesis of Thorem 5.2.3.

• Suppose that we have k cliques C1, . . . , Ck of size r1 = r2 = · · · = rk = N ε/2. Then
(5.4.61) implies that we may recover the k-disjoint-clique subgraph corresponding to
C1, . . . , Ck if k = O(N ε/2) for ε ∈ [1/2, 2/3]; the lower bound ε ≥ 1/2 is a consequence
of the requirement that

√
N = O(N ε), and the upper bound ε ≤ 2/3 follows from

the fact that C1, . . . , Ck are disjoint and must contain at most N nodes.

• On the other hand, we may have cliques of different sizes. For example, suppose
that we wish to recover k1 cliques of size O(N3/4) and k2 smaller cliques of size N1/2.
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Then the right-hand side of (5.2.39) is at most

O(k1N
3/8) +O(k2N

1/4).

Therefore, we may recover the planted cliques provided that k1 = O(N1/4) and
k2 = O(N1/2).

• Consider the special case where the entries of W are distributed such that WCq ,Cq =
eeT for all q = 1, . . . , k, and

[WCq ,Cs ]ij =

{
1, with probability p
0, with probability 1− p

for some fixed probability p for all q, s ∈ {1, . . . , k+1} such that q 6= s or q = s = k+1
corresponds to an instance of KDC. That is, Wij = 1 if i and j are adjacent in the
input graph G, and is equal to 0 otherwise. We note that the bounds on the number
of planted cliques tolerated by our relaxation (5.2.31) improve upon those given by
Theorem 5.2.2. However, our relaxation (5.2.31) only tolerates at most O(r̂) noise
nodes, far fewer than the bound, O(r̂2), given by Theorem 5.2.2.

5.3 Proof of the theoretical bound for the maximum

node k-disjoint-clique problem

5.3.1 Optimality conditions for the maximum node k-disjoint-
clique problem

In this section, we provide conditions for optimality of the solution X∗ corresponding to a
k-disjoint-clique subgraph of G, as defined by (5.2.10), for the convex relaxation of KDC
given by (5.2.13). We begin with the following sufficient condition for the optimality of
X∗.

Theorem 5.3.1 Let X∗ be feasible for (5.2.13). Suppose also that there exist λ ∈ RN
+ ,

µ ∈ R, η ∈ RN×N and S ∈ ΣN
+ such that

−eeT + λeT + eλT + µI +
∑

(i,j)/∈E
i 6=j

ηijeie
T
j = S, (5.3.1)
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λT (X∗e− e) = 0, (5.3.2)

〈S,X∗〉 = 0. (5.3.3)

Then X∗ is an optimal solution of (5.2.13).

Note that X = (k/n)I is strictly feasible for (5.2.13). Hence, (5.2.13) satisfies Slater’s
constraint qualification. Similarly, choosing λ = 0, η = 0 and µ large enough in (5.3.1) so
that S = µI−ee is positive definite shows that the dual of (5.2.13) also satisfies the Slater
condition. Therefore, X∗ is optimal if it satisfies the Karush-Kuhn-Tucker conditions.
Theorem 5.3.1, provides the necessary specialization to (5.2.13) of the Karush-Kuhn-Tucker
conditions for semidefinite programming given by Theorem 2.5.2 .

Our proof technique to show that X∗ is optimal for (5.2.13) is to construct multipliers
that satisfy Theorem 5.3.1. The difficult multiplier to construct is S, the dual semidefinite
matrix. The reason is that S must simultaneously satisfy homogeneous linear equations
given by 〈S,X∗〉 = 0, requirements on its entries given by the gradient equation (5.3.1),
and positive semidefiniteness.

Our strategy for satisfying the requirements on S is as follows. The matrix S will be
constructed in blocks with sizes inherited from the blocks of X∗. In particular, let the nodes
contained in the k planted cliques be denoted C1, . . . , Ck, and let the remaining nodes be
Ck+1. Then according to (5.2.10), X∗ has diagonal blocks X∗Cq ,Cq for q = 1, . . . , k consisting
of multiples of the all 1’s matrix. The remaining blocks of X∗ are 0’s. The diagonal blocks
of S will be perturbations of the identity matrix, with the rank-one perturbation chosen
so that each diagonal block of S, say SCq ,Cq is orthogonal to XCq ,Cq .

The entries of an off-diagonal block, say SCq ,Cs must satisfy, first of all, (5.3.1). This
constraint, however, is binding only on the entries corresponding to edges in G, since entries
corresponding to absent edges are not constrained by (5.3.1) thanks to the presence of the
free multiplier ηij on the left hand side. These entries that are free in (5.3.1) are chosen
so that (5.3.3) is satisfied. It is a well known result in semidefinite programming that the
requirements 〈S,X〉 = 0, X,S ∈ ΣN

+ together imply SX = XS = 0 (see [181, Proposition
1.19]). Thus, the remaining entries of S must be chosen so that X∗S = SX∗ = 0. Because
of the special form of X∗, this is equivalent to requiring all row and column sums of SCq ,Cs
to equal zero.

We parametrize the entries of SCq ,Cs that are not predetermined by (5.3.1) using the
entries of two vectors yq,s and zq,s. These vectors are chosen to be the solutions to systems
of linear equations, namely, those imposed by the requirement that X∗S = SX∗ = 0. We
show that the system of linear equations may be written as a perturbation of a linear
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system with a known solution, and we can thus get bounds on yq,s and zq,s. The bounds
on yq,s and zq,s in turn translate to bounds on ‖SCq ,Cs‖, which are necessary to establish
the positive semidefiniteness of S. This semidefiniteness is established by proving that the
diagonal blocks, which are identity matrices plus rank-one perturbations, dominate the
off-diagonal blocks.

Recalling our notation introduced earlier, G = (V,E) has a k-disjoint-clique subgraph
K composed of cliques C1, C2, . . . , Ck of sizes r1, r2, . . . , rk respectively. Let Ck+1 := V \
(∪ki=1Ci) be the set of nodes of G not in K and let rk+1 := |Ck+1|. Let N := |V |. Let
r̂ := min{r1, r2, . . . , rk}. For each v ∈ V , let nsv denote the number of nodes adjacent to
v in Cs for all s ∈ {1, . . . , k + 1}, and let cl(v) denote index i ∈ {1, . . . , k + 1} such that
v ∈ Ci.

Let AG ∈ RN×N be the adjacency matrix of the complement G of G; that is [AG]i,j = 1
if (i, j) /∈ E and 0 otherwise. Next, fix q, s ∈ {1, . . . , k + 1} such that q 6= s. Let
H = Hq,s ∈ RCq×Cs be the block of AG with entries indexed by the vertex sets Cq and
Cs, and let D = Dq,s ∈ RCq×Cq be the diagonal matrix such that, for each i ∈ Cq, the
(i, i)th entry of D is equal to the number of nodes in Cs not adjacent to i. That is,
D = rsI − Diag (nsCq) where nsCq ∈ RCq is the vector with ith entry equal to nsi for each
i ∈ Cq. Similarly, let F = Fq,s = rqI −Diag (nqCs). Next, define the scalar

c = cq,s :=


r̂

2

(
1

rq
+

1

rs

)
, if s ≤ k

r̂

2

(
1

r̂
+

1

rq

)
, otherwise.

Next, for each q, s = 1, . . . , k + 1 such that q 6= s let b = bq,s ∈ RCq∪Cs be defined by

bi = c ·
{
nsi , if i ∈ Cq
nqi , if i ∈ Cs.

Note that the matrix (
D H
HT F

)
is weakly diagonally dominant since the ith row of H contains exactly rs − nsi 1’s, and,
hence, positive semidefinite. Further, let y = yq,s and z = zq,s be a solution of the
perturbed system (

D + θeeT H − θeeT

HT − θeeT F + θeeT

)(
y

z

)
= b (5.3.4)
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for some scalar θ > 0 to be defined later.

As mentioned earlier, it is required that all row and column sums of SCq ,Cs equal zero.
Consider, for example, the sum of the entries in a particular row i ∈ Cq. This sum consists
of rs terms; of these terms, nsi of them are equal to −cq,s (corresponding to edges from i to
Cs) while the other rs − nsi have the form [yq,s]i + [zq,s]j. Thus, the requirement that the
row sums to zero is written

−nsi cq,s +
∑

j∈Cs;(i,j)/∈E

([yq,s]i + [zq,s]j) = 0,

which may be rewritten

(rs − nsi )[yq,s]i +
∑

j∈Cs;(i,j)/∈E

[zq,s]j = nsi cq,s. (5.3.5)

Equation (5.3.5) is exactly a row of (5.3.4) in the case θ = 0 because of the formulas used
to define D,F,H,b.

In the case that θ is not zero, the equation for the ith row in (5.3.4) has an additional
term of the form θ(eTyq,s− eTzq,s). This additional term does not affect the result, as the
following argument shows. The version of (5.3.4) with θ = 0 is singular because the vector
(e;−e) is in its null space. This corresponds to adding a scalar to each entry of yq,s and
subtracting the same scalar from each entry of zq,s. One particular way to fix that scalar
is to require that the sum of entries of yq,s equals the sum of entries of zq,s, i.e.,

eTyq,s − eTzq,s = 0. (5.3.6)

If we are able to show that (5.3.4) is nonsingular for some θ > 0 (which we will establish in
Section 5.3.2 and again in Section 5.3.3) then this particular (yq,s, zq,s) satisfying (5.3.5) and
(5.3.6) will also be a solution to (5.3.4) for nonzero θ since the additional term θ(eTyq,s −
eTzp,q) is zero.

For the remainder of this section, in order to formulate definitions for the remaining
multipliers, assume that θ > 0 and that (5.3.4) is nonsingular. Furthermore, assume that
Dii > 0 for all i ∈ Cq and Fii > 0 for all i ∈ Cs. Let

A = A(θ) :=

(
D + θeeT 0

0 F + θeeT

)
, P = P (θ) :=

(
0 H − θeeT

HT − θeeT 0

)
.
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By assumption, A+ P is nonsingular, and(
y
z

)
= (A+ P )−1b.

The proof technique in Sections 5.3.2 and 5.3.3 is to show that Q := (A + P )−1 − A−1 is
small so that (y, z) is close to A−1b. Let Q = (QT

1 , Q
T
2 )T where Q1 ∈ RCq×(Cq∪Cs) and

Q2 ∈ RCs×(Cq∪Cs). Then, under this notation,(
y
z

)
= A−1b +

(
Q1

Q2

)
b =

(
(D + θeeT )−1 0

0 (F + θeeT )−1

)(
b1

b2

)
+

(
Q1

Q2

)
b

where b1 ∈ RCq , b2 ∈ RCs are the vectors of entries of b corresponding to Cq and Cs
respectively. Therefore, if D, F and A+ P are nonsingular,

y = (D + θeeT )−1b1 +Q1b = (I + θD−1eeT )−1D−1b1 +Q1b

and
z = (I + θF−1eeT )−1F−1b2 +Q2b.

Let ȳ := y − Q1b and z̄ := z − Q2b. To give explicit formulas for ȳ and z̄, we use the
well-known Sherman-Morrison-Woodbury formula (see, for example, [85, Equation 2.1.4]),
stated in the following lemma, to calculate (I + θD−1eeT )−1 and (I + θF−1eeT )−1.

Lemma 5.3.1 If A is a nonsingular matrix in Rn×n and u,v ∈ Rn satisfy vTA−1u 6= −1
then

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5.3.7)

As an immediate corollary of Lemma 5.3.1, notice that

ȳ =

(
D−1 − θD−1eeTD−1

1 + θeTD−1e

)
b1 = D−1

(
I − θeeTD−1

1 + θeTD−1e

)
b1. (5.3.8)

and

z̄ =

(
F−1 − θF−1eeTF−1

1 + θeTF−1e

)
b2 = F−1

(
I − θeeTF−1

1 + θeTF−1e

)
b2. (5.3.9)

Finally, we define the (k + 1)× (k + 1) block matrix S̃ ∈ RN×N as follows:

(σ̃1) For all q ∈ {1, . . . , k}, let S̃Cq ,Cq = 0.
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(σ̃2) For all q, s ∈ {1, . . . , k} such that q 6= s, let

S̃Cq ,Cs = Hq,s ◦ (yq,seT + e(zq,s)T ) + cq,s(Hq,s − eeT ). (5.3.10)

(σ̃3) For all q ∈ {1, . . . , k} and i ∈ Cq, j ∈ Ck+1, let

[S̃Cq ,Ck+1
]ij = [S̃Ck+1,Cq ]ji =


−cq,k+1, if (i, j) ∈ E

cq,k+1 n
q
j/(rq − nqj), otherwise.

(σ̃4) Finally, for all i, j ∈ Ck+1, choose

[S̃Ck+1,Ck+1
]ij =

{
−1, if (i, j) ∈ E or i = j
γ, if (i, j) /∈ E (5.3.11)

for some scalar γ to be defined later.

We make a couple of remarks about (σ̃2). For q, s ∈ {1, . . . , k} such that q 6= s,
this formula defines entries of S̃Cq ,Cs to be −cq,s in positions corresponding to edges, and
[yq,s]i + [zq,s]j in other positions. The vectors yq,s and zq,s are defined by (5.3.4) precisely
so that, when used in this manner to define S̃Cq ,Cs , its row and column sums are all 0 (so

that X∗S = SX∗ = 0; the relationship SCq ,Cs ≡ S̃Cq ,Cs is given by (5.3.17) below). The
system is square because the number of constraints on Sq,s imposed by X∗S = SX∗ = 0
after the predetermined entries are filled in is |Cq|+ |Cs| (one constraint for each row and
column), which is the total number of entries in yq,s and zq,s. As mentioned earlier, there
is the slight additional complexity that these |Cq| + |Cs| equations have a dependence of
dimension 1, which explains why we needed to regularize (5.3.4) with the addition of the
θeeT terms.

As a second remark about σ̃2, we note that S̃Cq ,Cs = S̃TCs,Cq . This is a consequence of

our construction detailed above. In particular, yq,s = zs,q, Hq,s = HT
s,q, and Dq,s = Fs,q for

all q, s = 1, . . . , k such that q 6= s.

We finally come to the main theorem of this section, which provides a sufficient con-
dition for when the k-disjoint-clique subgraph of G composed of the cliques C1, . . . , Ck is
the maximum node k-disjoint-clique subgraph of G.

Theorem 5.3.2 Suppose that G = (V,E) has a k-disjoint-clique subgraph K∗ composed
of the disjoint cliques C1, . . . , Ck and let Ck+1 := V \ (∪ki=1Ci). Let ri = |Ci| for all
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i = 1, . . . , k + 1, and let r̂ = mini=1,...,k{ri}. Let X∗ be the matrix of the form (5.2.10)
corresponding to the k-disjoint-clique subgraph generated by C1, . . . , Ck. Moreover, suppose
that the matrix S̃ as defined by (σ̃1), . . . , (σ̃4) satisfies

‖S̃‖ ≤ r̂ − 1. (5.3.12)

Then X∗ is optimal for(5.2.13), and K∗ is the maximum node k-disjoint-clique subgraph
of G. Moreover, if ‖S̃‖ < r̂ − 1 and

nqv < rq (5.3.13)

for all v ∈ V and q ∈ {1, . . . , k} \ cl(v) then X∗ is the unique optimal solution of (5.2.13)
and K∗ is the unique maximum node k-disjoint-clique subgraph of G.

Proof: We will prove that (5.3.12) is a sufficient condition for optimality of X∗ by defining
multipliers µ, λ, η, and S and proving that if (5.3.12) holds then these multipliers satisfy
the optimality conditions given by Theorem 5.3.1. Let us define the multipliers µ and λ
by

µ = r̂ = min{r1, r2, . . . , rk}, (5.3.14)

λi =
(1− r̂/rq)

2
for all i ∈ Cq, (5.3.15)

for all q = 1, . . . , k and
λi = 0. (5.3.16)

for all i ∈ Ck+1. Notice that by our choice of µ and λ we have

SCq ,Cq = r̂I − (r̂/rq)eeT

for all q = 1, . . . , k by (5.3.1). Moreover, we choose η such that

ηij =

{
S̃ij − λi − λj + 1, if (i, j) /∈ E, i 6= j
0, otherwise

for all i, j ∈ V . Note that, by our choice of η, we have

SCq ,Cs =

{
S̃Cq ,Cs , if q, s ∈ {1, . . . , k + 1}, q 6= s

S̃Ck+1,Ck+1
+ r̂I, if q = s = k + 1.

(5.3.17)

by (5.3.1).
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By construction, µ, λ, η, and S satisfy (5.3.1). Since the ith row sum of X∗ is equal to
1 for all i ∈ Cq for all q = 1, . . . k and is equal to 0 for all i ∈ Ck+1, X∗ and λ satisfy the
complementary slackness condition (5.3.3). Moreover,

〈X∗, S〉 =
k∑
q=1

∑
i∈Cq

∑
j∈Cq

r̂

rq
[SCq ,Cq ]i,j

 =
k∑
q=1

1

rq

(
1− rq

(
1

rq

))
= 0,

and thus X∗ and S satisfy (5.3.3). It remains to prove that (5.3.12) implies that S is
positive semidefinite.

To prove that S is positive semidefinite we show that xTSx ≥ 0 for all x ∈ RN if S̃
satisfies (5.3.12). Fix x ∈ RN and decompose x as x = x1 + x2 where

x1(Ci) =

{
φi e, i ∈ {1, . . . , k}
0, i = k + 1

for φ ∈ Rk chosen so that x2(Ci)
Te = 0 for i = 1 . . . , k, x2(Ck+1) = x(Ck+1). Then, by

our choice of x1 and x2,

xTSx = xT2 Sx2

= r̂‖x2(C1 ∪ · · · ∪ Ck)‖2 + (r̂ − 1)‖x2(Ck+1)‖2 + xT2 S̃x2

≥ (r̂ − 1− ‖S̃‖)‖x2‖2.

Therefore, S is positive semidefinite, and, hence, X∗ is optimal for (5.2.13) if ‖S̃‖ ≤ r̂− 1.

Now suppose that ‖S̃‖ < r̂ − 1 and, for all i = 1, . . . , k, no node in Ci is adjacent to
every node in some other clique. Then X∗ is optimal for (5.2.13). For all i = 1, . . . , k, let
vi ∈ RN be the characteristic vector of Ci. That is,

[vi]j =

{
1, if j ∈ Ci
0, otherwise.

Notice that X∗ =
∑k

i=1(1/ri)vi(vi)
T . By complementary slackness, 〈X∗, S〉 = 0 and,

thus, vi is in the nullspace of S for all i = 1, . . . , k. On the other hand, consider nonzero
x ∈ RN such that xTvi = 0 for all i = 1, . . . , k. That is, x is orthogonal to the span of
{vi : i = 1, . . . , k}. Then

xTSx = r̂‖x(C1 ∪ · · · ∪ Ck)‖2 + (r̂ − 1)‖x(Ck+1)‖2 + xT S̃x
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≥ (r̂ − 1− ‖S̃‖)‖x‖2 > 0.

Therefore, Null(S) = span{vi : i = 1, . . . , k} and rank (S) = N − k.

Now suppose that X̂ is also optimal for (5.2.13). Then, by complementary slackness,
〈X̂, S〉 = 0 which holds if and only if X̂S = 0. Therefore, the row and column spaces of
X̂ lie in the null space of S. It follows immediately, since X̂ � 0, that X̂ can be written in
the form

X̂ =
k∑
i=1

σiviv
T
i +

k∑
i=1

k∑
j=1
j 6=i

ωi,jviv
T
j

for some σ ∈ Rk
+ and ω ∈ Σk, where Σk denotes the set of k × k symmetric matrices.

Now, if ωi,j 6= 0 for some i 6= j then every entry in the block X̂(Ci, Cj) = X̂(Cj, Ci)
T

must be equal to ωi,j. Since each of these entries is nonzero, this implies that each node in

Ci is adjacent to every node in Cj, contradicting Assumption (5.3.13). Therefore, X̂ has

singular value decomposition X̂ = σ1v1v
T
1 + · · · + σkvkv

T
k . Moreover, since X̂ is optimal

for (5.2.13) it must have objective value equal to that of X∗ and thus

k∑
i=1

ri =
N∑
i=1

N∑
j=1

X∗i,j =
N∑
i=1

N∑
j=1

X̂i,j =
k∑
i=1

σir
2
i . (5.3.18)

Further, since X̂ is feasible for (5.2.13),

σiri ≤ 1 (5.3.19)

for all i = 1, . . . , k. Combining (5.3.18) and (5.3.19) shows that σi = 1/ri for all i = 1, . . . , k
and, hence, X̂ = X∗ as required.

5.3.2 An upper bound on ‖S̃‖ in the adversarial noise case

Suppose that the graph G = (V,E) contains a k-disjoint-clique subgraph K∗ indexed by the
disjoint cliques C1, . . . , Ck. Let Ck+1 := V \ (∪ki=1Ci), let ri := |Ci| for all i = 1, . . . , k + 1
and let r̂ := min{C1, . . . , Ck}. To show that Theorem 5.2.1 holds, we show that the
feasible solution X∗ for (5.2.13) corresponding to K∗ as defined by 5.2.10 satisfies the
uniqueness and optimality conditions given by Theorem 5.3.2 in the case that K∗ satisfies
the conditions (5.2.20) and (5.2.21). In particular, the proof relies on establishing that S̃
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as constructed in the previous section satisfies ‖S̃‖ ≤ O(r̂) in the case that K∗ satisfies
(5.2.20) and (5.2.21).

For the remainder of the proof, to simplify the notation, we assume that rk+1 ≤ 2ρr̂2.
If rk+1 > 2ρr̂2 then Ck+1 would include one or more isolated nodes (i.e, nodes of degree
0) since |E(G) \E(K∗)| ≤ ρr̂2 by assumption, and these nodes can simply be deleted in a
preliminary phase of the algorithm. The algorithm still works with an arbitrary number of
isolated nodes in G \K∗, but the notation in the proof requires some needless additional
complexity.

Recall that the construction of the multipliers presented in Section 5.3.1 depended on
two scalars θ in (5.3.4) and γ in (5.3.11): choose θ = 1 and γ = 0. Choose q, s ∈ {1, . . . , k}
such that q 6= s and let D, F , H, b, and c be defined as in Section 5.3.1. Without loss
of generality, we may assume that rq ≤ rs. Moreover, let y and z be the solution of the
system (5.3.4) and define A,Q, P as in Section 5.3.1. We impose the assumption that
δ ∈ (0, 0.382). The constant 0.382 is chosen so that

0 < δ < (1− δ)2. (5.3.20)

We will show that, under this assumption, there exists some β > 0 depending only on δ
such that

‖S̃Cq ,Cs‖2 ≤ β‖bq,s‖1

for all q, s ∈ {1, . . . , k} such that q 6= s.

We begin by showing that, under this assumption, y and z are uniquely determined.
Note that, since nsi = rs −Dii ≤ δrs for all i ∈ Cq and nqi = rq − Fii ≤ δrq for all i ∈ Cs
by Assumption (5.2.20), D and F are nonsingular and, hence, A is nonsingular. Moreover,
A+ P = A(I +A−1P ). Therefore, A+ P is nonsingular if ‖A−1P‖ < 1. Note that, for all
t > 0, we have

λmin(D + teeT ) ≥ λmin(D) = min
i∈Cq

Dii (5.3.21)

since eeT � 0, where λmin(D + teeT ) is the smallest eigenvalue of the symmetric matrix
D + teeT . Taking t = 1 in (5.3.21) shows that

‖(D + eeT )−1‖ ≤ ‖D−1‖ =
1

mini∈Cq Dii

≤ 1

(1− δ)rs
(5.3.22)

since, for each i ∈ Cq, we have

(1− δ)rs ≤ Dii ≤ rs
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by the asssumption that (5.2.20) holds. Similarly,

‖(F + eeT )−1‖ ≤ ‖F−1‖ =
1

minj∈Cs Fii
≤ 1

(1− δ)rq
. (5.3.23)

Combining (5.3.22) and (5.3.23) we have

‖A−1‖ =
1

min{‖(D + eeT )−1‖, ‖(F + eeT )−1‖} ≤
1

(1− δ)rq
. (5.3.24)

On the other hand,

‖P‖ = ‖H − eeT‖ ≤ ‖H − eeT‖F =

∑
i∈Cq

∑
j∈Cs

(Hij − 1)2

1/2

≤
√
δrq (5.3.25)

since Hij − 1 is equal to −1 in the case that (i, j) ∈ E and 0 otherwise and there at most
δr2
q edges between Cq and Cs by Assumption (5.2.20). Therefore, since δ < (1 − δ)2 by

Assumption (5.3.20), we have

‖A−1P‖ ≤ ‖A−1‖‖P‖ ≤
√
δ

1− δ < 1

and, thus, A+ P is nonsingular and y and z are uniquely determined.

Now, recall that S̃Cq ,Cs = H ◦ (yeT + ezT )− c(eeT −H). In order to calculate an upper

bound on ‖S̃Cq ,Cs‖ we write S̃Cq ,Cs as

S̃Cq ,Cs = m1 +m2 +m3 +m4 +m5 (5.3.26)

where
m1 := H ◦ (ȳeT ), m2 := H ◦ (ez̄T ), m3 := H ◦ (Q1beT ),

m4 := H ◦ (e(Q2b)T ), m5 := −c(eeT −H)
(5.3.27)

and apply the triangle inequality to obtain

‖S̃Cq ,Cs‖ ≤
5∑
i=1

‖mi‖. (5.3.28)

Throughout our analysis of ‖S̃Cq ,Cs‖ we will use the following series of inequalities. For
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any W ∈ Rm×n, u ∈ Rm and v ∈ Rn, we have

‖W ◦ uvT‖ = ‖Diag (u) ·W ·Diag (v)‖ ≤ ‖Diag (u)‖‖Diag (v)‖‖W‖
= ‖u‖∞‖v‖∞‖W‖. (5.3.29)

On the other hand,

‖W ◦ uvT‖ = ‖Diag (u) ·W ·Diag (v)‖
≤ ‖v‖∞‖Diag (u) ·W‖ ≤ ‖v‖∞‖Diag (u) ·W‖F

= ‖v‖∞
(

m∑
i=1

u2
i ‖W (i, :)‖2

)1/2

(5.3.30)

≤ ‖u‖‖v‖∞ max
i=1,...,m

‖W (i, :)‖ (5.3.31)

and
‖W ◦ uvT‖ ≤ ‖u‖∞‖v‖ max

j=1,...,n
‖W (:, j)‖ (5.3.32)

where W (i, :) and W (:, j) denote the ith and jth row and column of W .

We begin with ‖m1‖. Applying the bound (5.3.31) with W = H, u = ȳ, and v = e we
have

‖m1‖2 ≤ max
i∈Cq

Dii‖ȳ‖2. (5.3.33)

Here, we used the fact that maxi∈Cq ‖H(i, :)‖ = maxi∈Cq
√
Dii since the ith row of H

contains exactly rs − nsi equal to 1. Thus, since

‖ȳ‖ ≤ ‖(D + eeT )−1‖‖b1‖ ≤
‖b1‖

mini∈Cq Dii

≤ ‖b1‖
(1− δ)rs

,

it follows immediately that

‖m1‖2 ≤ 1

(1− δ)2rs
‖b1‖2 (5.3.34)

since Dii ≤ rs for all i ∈ Cq. By an identical calculation, we have

‖m2‖2 ≤ 1

(1− δ)2rq
‖b2‖2. (5.3.35)
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Next, applying (5.3.31) with W = H, u = Q1b, v = e yields

‖m3‖2 ≤ max
i∈Cq

Dii‖Q1b‖2 ≤ rs‖Q1b‖2 ≤ rs‖Q1‖2‖b‖2,

since maxiDii ≤ rs. To derive an upper bound on ‖m3‖2, we first derive an upper bound
on ‖Q1‖.

Note that

Q = (A+ P )−1 − A−1 = ((I + A−1P )−1 − I)A−1 =
∞∑
`=1

(−A−1P )`A−1 (5.3.36)

since (I + X)−1 =
∑∞

`=0(−X)` for all X such that ‖X‖ < 1 by Taylor’s Theorem. Notice
that

A−1P =

(
0 P1

P2 0

)
where

P1 = (D + θeeT )−1(H − θeeT ), P2 = (F + θeeT )−1(HT − θeeT ).

It follows immediately that

Q =
∞∑
`=0

((
(P1P2)`+1 0

0 (P2P1)`+1

)
+

(
0 (P1P2)`P1

(P2P1)`P2 0

))
A−1 (5.3.37)

since, for any integer ` ≥ 1

(
0 P1

P2 0

)`
=



(
(P1P2)`/2 0

0 (P2P1)`/2

)
, if ` even

(
0 (P1P2)(`−1)/2P1

(P2P1)(`−1)/2P2 0

)
, if ` odd.

Therefore,

‖Q1‖ ≤ ‖(D + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P1‖‖(F + θeeT )−1‖
∞∑
`=0

‖P1P2‖` (5.3.38)
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and

‖Q2‖ ≤ ‖(F + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P2‖‖(D + θeeT )−1‖
∞∑
`=0

‖P1P2‖`. (5.3.39)

Substituting (5.3.22), (5.3.23) and (5.3.25) into (5.3.38) yields

‖Q1‖ ≤
1

(1− δ)rs

∞∑
`=1

(
δ

(1− δ)2

)`
+

δ1/2

(1− δ)2rs

∞∑
`=0

(
δ

(1− δ)2

)`
≤ c̃/
√
rs (5.3.40)

where

c̃ =
2 max{δ/(1− δ),

√
δ}

(1− δ)2 − δ
since

‖P1P2‖ ≤ ‖H − eeT‖2‖D−1‖‖F−1‖ ≤ δ

(1− δ)2
.

Note that Assumption (5.3.20) ensures that the infinite series in (5.3.40) converge. It
follows that

‖m3‖2 ≤ c̃2

rq
‖b‖2. (5.3.41)

On the other hand,

‖Q2‖ ≤
1

(1− δ)rq

∞∑
`=1

(
δ

(1− δ)2

)`
+

√
δ

(1− δ)2√rqrs

∞∑
`=0

(
δ

(1− δ)2

)`
≤ c̃/rq (5.3.42)

since
√
rqrs ≥ rq. Thus, applying (5.3.32) with W = H, u = e, v = Q2b we have

‖m4‖2 ≤ rq‖Q2‖2‖b‖2 ≤ c̃2

rq
‖b‖2. (5.3.43)

Finally,

‖m5‖2 = ‖c(H − eeT )‖2 ≤ ‖c(H − eeT )‖2
F

= c
∑
i∈Cq

∑
j∈Cs

(Hij − eeT )2

= c
∑
i∈Cq

nsi = ‖b1‖1. (5.3.44)
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Therefore, there exists β ∈ R such that

‖S̃Cq ,Cs‖2 ≤ β
‖b‖2

rq
+ ‖b‖1. (5.3.45)

Since ‖b‖2 ≤ ‖b‖1‖b‖∞ by (2.1.2) and

‖b‖∞ = c ·max

{
max
i∈Cq

nsi ,max
i∈Cs

nqi}
}
≤ δcmin{rq, rs} = δcrq (5.3.46)

by Assumption (5.2.20), there exists β̃ depending only on δ such that

‖S̃Cq ,Cs‖2 ≤ β̃‖b‖1 (5.3.47)

as required.

Next, consider S̃Cq ,Ck+1
for some q ∈ {1, . . . , k}. Recall that

[S̃Cq ,Ck+1
]ij =

{
−c, if (i, j) ∈ E
cnj/(rq − nj), otherwise

where nj = nqj is the number of edges from j ∈ Ck+1 to Cq for each j ∈ Ck+1. Hence,

‖S̃Cq ,Ck+1
‖2 ≤ ‖S̃Cq ,Ck+1

‖2
F

=
∑

j∈Ck+1

(
njc

2 + (rq − nj)
(

njc

rq − nj

)2
)

≤ c2
∑

j∈Ck+1

(
nj +

δnj
(1− δ)

)

=
c2

1− δ |E(Cq, Ck+1)| (5.3.48)

where E(Cq, Ck+1) is the set of edges from Cq to Ck+1. Similarly, by our choice of γ = 0
in (σ̃4), we have

‖S̃Ck+1,Ck+1
‖ = ‖SCk+1,Ck+1

− r̂I‖2

≤ ‖SCk+1,Ck+1
− r̂I‖2

F

= rk+1 + 2|E(Ck+1, Ck+1)|. (5.3.49)
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Let b̃ be the vector obtained by concatenating bq,s for all q, s ∈ {1, . . . , k}. Then, there
exist scalars ĉ1, ĉ2 ∈ R depending only on δ such that

k+1∑
q=1

k+1∑
s=1

‖S̃Cq ,Cs‖2 =
∑

q,s∈{1,...,k}
q 6=s

‖S̃Cq ,Cs‖2 + 2
k∑
q=1

‖S̃Cq ,Ck+1
‖2 + ‖S̃k+1,k+1 − r̂I‖2

≤ ĉ1‖b̃‖1 + ĉ2

k+1∑
q=1

|E(Cq, Ck+1)|+ rk+1

by (5.3.47), (5.3.48) and (5.3.49). It follows that, since ‖bq,s‖1 ≤ |E(Cq, Cs)| for all q, s ∈
{1, . . . , k} such that q 6= s, there exists ĉ3 ≥ 0 depending only on δ such that

k+1∑
q=1

k+1∑
s=1

‖S̃Cq ,Cs‖2 ≤ ĉ3R + rk+1

whereR := |E(G)\E(K∗)| is the number of edges ofG not contained in the k-disjoint-clique
subgraph K∗ composed of C1, . . . , Ck. The hypothesis of the theorem is that R ≤ ρr̂2. We
have also assumed earlier that rk+1 ≤ 2ρr̂2. Hence, the sum of the squares of the 2-norms
of the blocks of S̃ is at most (ĉ3 + 2)ρr̂2. Therefore, there exists some ρ > 0 depending
only on δ such that the preceding inequality implies ‖S̃‖ ≤ r̂− 1. Applying Theorem 5.3.2
completes the proof.

5.3.3 An upper bound on ‖S̃‖ in the random noise case

Suppose that the random graph G = (V,E) containing the k-disjoint-clique subgraph K∗

composed of cliques C1, . . . , Ck is constructed according to (Ω1) and (Ω2) with probability
p. Let N := |V |, Ck+1 = V \ ∪ki=1Ci and ri = |Ci| for all i = 1, . . . , k + 1. Further, let
θ = 1 − p in (5.3.4) and γ = p/(1 − p) in (5.3.11). As before, our strategy for proving
Theorem 5.2.2 is to show that the matrix X∗ corresponding to K∗ as defined by (5.2.10)
satisfies the sufficient conditions given by Theorem 5.3.1. It suffices to show that the
auxiliary matrix S̃ as constructed in Section 5.3.1 satisfies ‖S̃‖ ≤ O(r̂) with probability
tending exponentially to 1 as r̂ →∞ whenever ri ≤ r̂3/2 for all i = 1, . . . , k. Indeed, in this
case, applying Theorem 5.3.2 immediately shows that X∗ is the unique optimal solution
of (5.2.13) and K∗ is the unique maximum node k-disjoint-clique subgraph of G. The
following theorem provides the necessary upper bound on ‖S̃‖.
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Theorem 5.3.3 Suppose that G = (V,E) has a k-disjoint-clique subgraph K∗ composed
of the cliques C1, . . . , Ck and let Ck+1 := V \ (∪ki=1Ci). Let ri = |Ci| for all i = 1, . . . , k+ 1
and suppose that rq ≤ r̂3/2 for all q = 1, 2, . . . , k where r̂ = mini=1,...,k{ri}. Then there
exist β1, β2 > 0 depending only on p such that

‖S̃‖ ≤ β1

(
k∑
s=1

r2
s

)1/2( k∑
q=1

1

rq

)1/2

+ β2

√
N (5.3.50)

with probability tending exponentially to 1 as r̂ approaches ∞.

The remainder of this section is devoted to a proof of Theorem 5.3.3. We write S̃ as

S̃ = S̃1 + S̃2 + S̃3 + S̃4 + S̃T4

where S̃i ∈ RN×N , i = 1, . . . , 4 are (k + 1) by (k + 1) block matrices such that

S̃1(Cq, Cs) =

{
S̃(Cq, Cs), if q, s ∈ {1, . . . , k}, q 6= s
0, otherwise

S̃2(Cq, Cs) =


R(Cq, Cs), if q, s ∈ {1, . . . , k}
Ŝ(Cq, Ck+1), if s = k + 1

Ŝ(Ck+1, Cs), if q = k + 1

S̃(Ck+1, Ck+1), if q = s = k + 1

S̃3(Cq, Cs) =

{
−R(Cq, Cs), if q, s ∈ {1, . . . , k}
0, otherwise

S̃4(Cq, Cs) =

{
S(Cq, Ck+1)− Ŝ(Cq, Ck+1), if s = k + 1, q ∈ {1, . . . , k}
0, otherwise

where R ∈ ΣN is a symmetric random matrix with independently identically distributed
entries such that

Rij =

{
−1, with probability p
p/(1− p), with probability 1− p

and Ŝ ∈ RN×N such that

Ŝij =

{
−1, if (i, j) ∈ E
p/(1− p), otherwise.
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Notice that, by Theorem 2.6.4, there exist some κ1, κ2, κ3 > 0 such that

P
(
‖S̃2‖+ ‖S̃3‖ ≥ κ1

√
N
)
≤ κ2 exp(−κ3N

1/6). (5.3.51)

Moreover, by Theorem 4.4.2, there exists κ4 > 0 and κ5, κ6,∈ (0, 1) such that

P
(
‖S̃4‖ ≥ κ4

√
N
)
≤ κN5 +NκN6 . (5.3.52)

Hence, there exists some scalar β4 depending only on p such that

‖S̃‖ ≤ ‖S̃1‖+ β4

√
N

with probability tending exponentially to 1 as r̂ →∞. It remains to prove that

‖S̃1‖ ≤ O

( k∑
s=1

r2
s

)1/2( k∑
q=1

1

rq

)1/2


with probability tending exponentially to 1 as r̂ approaches ∞.

To do so, consider two vertex sets Cq and Cs such that q, s ∈ {1, . . . , k}, q 6= s.
Without loss of generality we may assume that rq ≤ rs. Define H = Hq,s, D = Dq,s,
F = Fq,s, b = bq,s, c = cq,s, y, z, A, and P as in Section 5.3.1. The following theorem
provides an upper bound on the spectral norm of S̃(Cq, Cs) for q 6= s, that holds with
probability tending exponentially to 1 as r̂ approaches ∞.

Theorem 5.3.4 Let q, s ∈ {1, . . . , k} such that q 6= s. Suppose that rq and rs satisfy

rq ≤ rs ≤ r3/2
q . (5.3.53)

Then there exists B̃1 > 0 depending only on p such that

‖S̃1(Cq, Cs)‖ = ‖S̃(Cq, Cs)‖ ≤ B̃1
rs√
rq

(5.3.54)

with probability tending exponentially to 1 as r̂ approaches ∞.
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Note that Theorem 5.3.4 implies Theorem 5.3.3. Indeed, suppose that there exists B̃1

depending only on p such that

‖S̃1(Cq, Cs)‖ ≤ B̃1
max{rs, rq}

(min{rq, rs})1/2
(5.3.55)

for all q, s ∈ {1, . . . , k}, q 6= s with probability tending exponentially to 1 as r̂ →∞. Then

k∑
q=1

k∑
s=1

‖S̃1(Cq, Cs)‖2 ≤ 2B̃2
1

k∑
q=1

k∑
s=1

r2
s

rq
= 2B̃2

1

(
k∑
s=1

r2
s

)(
k∑
q=1

1

rq

)

and, hence, there exists some β̂1 depending only on p such that

‖S̃1‖ ≤ β̂1

(
k∑
s=1

r2
s

)1/2( k∑
q=1

1

rq

)1/2

with probability tending exponentially to 1 as r̂ →∞ as required.

The remainder of this section consists of a proof of Theorem 5.3.4. Recall that S̃(Cq, Cs) =
H ◦(yeT +ezT )−c(eeT −H). We begin by showing that A+P is nonsingular and, hence, y
and z are uniquely determined. Let δ := (1−p)/(2p). Recall that nsi = rs−Dii corresponds
to rs independent Bernoulli trials each succeeding with probability equal to p and, hence,

P (nsi ≥ (1 + δ)prs) = P (rs −Dii ≥ (1 + δ)prs) ≤
(

eδ

(1 + δ)(1+δ)

)prs
(5.3.56)

for each i ∈ Cq by Theorem 2.6.1. Rearranging, we have that Dii ≥ (θ − δp)rs with
probability at least

1−
(

eδ

(1 + δ)(1+δ)

)prs
for each i ∈ Cq. Similarly,

P (nqi ≤ (1 + δ)prq) = P (Fii ≥ (θ − δp)rq) ≥ 1−
(

eδ

(1 + δ)(1+δ)

)prq
(5.3.57)

for all i ∈ Cs. Therefore, by the union bound, rs − Dii ≤ (1 + δ)prs for all i ∈ Cq and
rq − Fii ≤ (1 + δ)prq for all i ∈ Cs, and, hence, D, F are nonsingular with probability at
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least

1−rs
(

eδ

(1 + δ)(1+δ)

)prq
− rq

(
eδ

(1 + δ)(1+δ)

)prs
≥ 1− (rq + rs)

(
eδ

(1 + δ)(1+δ)

)pr̂
. (5.3.58)

Moreover, applying (5.3.21) shows that D + θeeT and F + θeeT are nonsingular and

‖(D + θeeT )−1‖ ≤ ‖D−1‖ ≤ 1

(θ − δp)rs
, (5.3.59)

‖(F + θeeT )−1‖ ≤ ‖F−1‖ ≤ 1

(θ − δp)rq
, (5.3.60)

with probability at least (5.3.58). It follows immediately that A is nonsingular and

‖A−1‖ = max{‖(D + θeeT )−1‖, ‖(F + θeeT )−1‖}

≤ 1

(θ − δp) min{rq, rs}
=

1

(θ − δp)rq
(5.3.61)

with probability at least (5.3.58).

Recall that, in the case that A is nonsingular, it suffices to prove that ‖A−1‖‖P‖ < 1
to show that A + P is nonsingular. Moreover, recall that θ = 1 − p is chosen to ensure
that the entries of H − θeeT have expected value equal to 0. We can extend H − θeeT to
an rs × rs random matrix P̃ with entries i.i.d. with expected value equal to 0 by adding
rs− rq rows with entries i.i.d. such that each additional entry takes value equal to −θ with
probability p and value equal to p with probability θ. Therefore, by Theorem 2.6.5

‖P‖ = ‖H − θeeT‖ ≤ ‖P̃‖ ≤ γ1

√
rs (5.3.62)

for some γ1 > 0 depending only on p with probability at least 1 − c̄1 exp(−c̄2r
c̄3
s ) where

c̄i > 0 depend only on p. Combining (5.3.61), (5.3.62), (5.3.53) and applying the union
bound shows that

‖A−1‖‖P‖ =
γ1
√
rs

(θ − δp)rq
< 1

with probability at least

1− (rq + rs)

(
eδ

(1 + δ)(1+δ)

)pr̂
− c̄1 exp(−c̄2r

c̄3
s )

85



for sufficiently large rq. Therefore, A + P is nonsingular and y and z are uniquely deter-
mined with probability tending exponentially to 1 as r̂ →∞.

For the remainder of the section we assume that A + P is nonsingular. We define Q,
Q1, Q2, ȳ and z̄ as in Section 5.3.1. To find an upper bound on ‖S̃(Cq, Cs)‖, we decompose
S̃(Cq, Cs) as

S̃(Cq, Cs) = M1 +M2

where M1 := H ◦ (ȳeT + ez̄T )− c(eeT −H) and M2 := H ◦ (Q1beT + ebTQT
2 ).

We first obtain an upper bound on the norm of M1. We define d ∈ RCq to be the
vector such that di is the difference between the number of edges added between the node
i and Cs and the expected number of such edges for each i ∈ Cq. That is,

d = nsCq − E[nsCq ] = nsCq − prse.

Similarly, we let f := nqCs − prqe. Note that, by our choice of d and f , we have rsI −D =
prsI + Diag (d) and rqI − F = prqI + Diag (f). Notice that for θ = 1 − p we have
D = θrsI −Diag (d). Expanding (5.3.8) we have

ȳ =

(
D−1 − θD−1eeTD−1

1 + θeTD−1e

)
b1

=
D−1

1 + θeTD−1e
(b1 + θb1e

TD−1e− θeeTD−1b1)

=
D−1

1 + θeTD−1e
(b1 + θ(b1e

T − ebT1 )D−1e)

since eTD−1b1 = bT1D
−1e. Substituting b1 = c(rse− d̄), where d̄ := diag (D), we have

b1e
T − ebT1 = c(ed̄T − d̄eT )

and, hence,

ȳ =
cD−1

1 + θeTD−1e
(rse− d̄ + θ(ed̄T − d̄eT )D−1e)

=
cD−1

1 + θeTD−1e
(rse− d̄ + θeeTe− θd̄eTD−1e)

=
cD−1

1 + θeTD−1e
(rse + θrqe)− ce
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=
c(rs + θrq)D

−1

1 + θeTD−1e

(
1

θrs
(D + Diag (d))

)
e− ce

=

(
c(rs + θrq)

(1 + θeTD−1e)θrs
− c
)

e +
c(rs + θrq)

(1 + θeTD−1e)θrs
D−1d

since

I =
1

θrs
(D + Diag (d)).

Let ȳ1 := ω1e, ȳ2 := υ1e where

ω1 :=
c(θrq + rs)

θ(rs + rq)
− c, υ1 :=

c(θrq + rs)

(1 + θeTD−1e)θrs
− c− ω1

and let

ȳ3 :=
c(θrq + rs)

(1 + θeTD−1e)θrs
D−1d.

Hence, ȳ = ȳ1 + ȳ2 + ȳ3. Similarly, z̄ = z̄1 + z̄2 + z̄3 where z̄1 := ω2e, z̄2 := υ2e where

ω2 :=
c(rq + θrs)

θ(rs + rq)
− c, υ2 :=

c(rq + θrs)

(1 + θeTF−1e)θrq
− c− ω2

and

z̄3 :=
c(rq + θrs)

(1 + θeTF−1e)θrq
F−1f .

Therefore, we can further decompose M1 as M1 = M̃1 + M̃2 + M̃3 where

M̃1 := H ◦ (ȳ1e
T + ez̄T1 )− c(eeT −H),

M̃2 := H ◦ (ȳ2e
T + ez̄T2 ), M̃3 := H ◦ (ȳ3e

T + ez̄T3 ).

Notice that the matrix M̃1 has entries corresponding to edges equal to −c and remaining
entries equal to cp/(1− p) since

ω1 + ω2 =
c(1 + θ)(rq + rs)

θ(rq + rs)
− 2c =

cp

θ
.
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Therefore, each entry of the matrix M̃1 has expected value equal to 0. Moreover, each
entry of the random block matrix M̂ of the form

M̂ =

(
M̃1

R̃

)
has expected value equal to 0 if R̃ has identically independently distributed entries such
that

R̃i,j =

{
−c, with probability p
cp/(1− p), with probability 1− p.

Therefore, there exist c1, c2, c3, c4 > 0 such that

‖M̃1‖ ≤ ‖M̂‖ ≤ c4

√
rs (5.3.63)

with probability at least 1− c1 exp(−c2r
c3
s ) by Theorem 2.6.5.

To obtain upper bounds on ‖M̃2‖ and ‖M̃3‖ we will use the following bound on the `1

and `2-norms of random vectors with binomially distributed entries.

Theorem 5.3.5 Let I1, I2 be index sets of size r1, r2 respectively. Let {Xij : i ∈ I1, j ∈ I2}
be a collection of independent Bernoulli trials, each succeeding with probability p. Let
ni =

∑
j∈I2 Xij be the binomially distributed random variable describing the number of

successes for each i ∈ I1. Then there exists scalar B such that∑
i∈I1

|ni − pr2|α
r2 − ni

≤ Br1r
α/2−1
2 (5.3.64)

for α = 1, 2 with probability at least

1− r1v
r2
p − (2/3)r1 (5.3.65)

where vp = (eδ/(1 + δ)(1+δ))p and δ = min{p,√p− p}.

The proof of Theorem 5.3.5 uses techniques similar to those used in the proof of The-
orem 4.4.2 and is provided in Appendix A.2.

In the cases when I1 = Cq, I2 = C2 and ni = rs−Dii for all i ∈ Cq and I1 = Cs, I2 = Cq
and ni = rq − Fii for all i ∈ Cs, Theorem 5.3.5 specializes to the following bounds.
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Lemma 5.3.2 There exists B > 0 depending only on p such that∑
i∈Cq

|θrs −Dii|α
Dii

≤ B
rq

r
1−α/2
s

(5.3.66)

and ∑
i∈Cs

|θrq − Fii|α
Fii

≤ B
rs

r
1−α/2
q

(5.3.67)

for α = 1, 2 with probability at least

1− (rq + rs)v
r̂
p − 2(2/3)r̂ (5.3.68)

where vp = (eδ/(1 + δ)(1+δ))p and δ = min{p,√p− p}.

As an immediate corollary of Lemma 5.3.2, we have the following bound on |υ1| and
|υ2|.

Corollary 5.3.1 There exists B1 > 0 depending only on p such that

|υ1|+ |υ2| ≤ B1
r

3/2
q + r

3/2
s

(rq + rs)(rqrs)1/2

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂.

Proof: We begin with υ1. Notice that

υ1 =
c(θrq + rs)

θ

(
1

(1 + θeTD−1e)rs
− 1

rq + rs

)
=
c(θrq + rs)(rq − θrseTD−1e)

θrs(rq + rs)(1 + θeTD−1e)
.

Moreover,

|θrseTD−1e− rq| =

∣∣∣∣∣∣
∑
i∈Cq

θrs
Dii

−
∑
i∈Cq

1

∣∣∣∣∣∣ ≤
∑
i∈Cq

∣∣∣∣θrsDii

− 1

∣∣∣∣ =
∑
i∈Cq

|θrs −Dii|
Dii

and, since Dii ≤ rs for all i ∈ Cq, we have

rs(1 + θeTD−1e) ≥ rs

(
1 +

θrq
rs

)
= θrq + rs. (5.3.69)
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Therefore, setting α = 1 in (5.3.66) shows that

|υ1| ≤
c(θrq + rs)Brq

θr
3/2
s (rq + rs)(1 + θeTD−1e)

≤ cB(θrq + rs)rq
θ
√
rs(rq + rs)(θrq + rs)

≤ B1
rq√

rs(rq + rs)

holds with probability at least 1 − (2/3)r̂ − rqv
r̂
p, where B1 := B/θ. By an identical

calculation

|υ2| ≤
B1rs√

rq(rq + rs)

with probability at least 1 − (2/3)r̂ − rsvr̂p. Applying the union bound yields the desired
probabilistic bound on |υ1|+ |υ2|.

Observe that, as an immediate consequence of Corollary 5.3.1 and the facts that H ◦
eeT = H and ‖H‖F ≤ √rqrs, we have

‖M̃2‖ = ‖H ◦ (ȳ2e
T + ez̄T2 )‖ ≤ (|υ1|+ |υ2|)‖H‖F ≤ B1

rq
3/2 + rs

3/2

rq + rs
≤ 2B1

√
rs (5.3.70)

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂.

The following corollary of Lemma 5.3.2 provides an an upper bound on ‖M̃3‖.

Corollary 5.3.2 There exists B2 depending only on p such that

‖M̃3‖ ≤ ‖H ◦ (ȳ3e
T + ez̄T3 )‖ ≤ B2(

√
rq +

√
rs) (5.3.71)

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂.

Proof: To obtain an upper bound on ‖M̃3‖, we first obtain upper bounds on ‖H ◦(ȳ3e
T )‖

and ‖H ◦ (ez̄T3 )‖. We begin with ‖H ◦ (ȳ3e
T )‖. Since∑

i∈Cq

Dii(D
−1d)2

i =
∑
i∈Cq

|θrs −Dii|2
Dii

applying (5.3.66) with α = 2 and (5.3.30) with W = H, u = ȳ3, and v = e shows that

‖H ◦ (ȳ3e
T )‖ ≤

∑
i∈Cq

ȳ3(i)2‖H(i, :)‖2

1/2
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=
c(θrq + rs)

(1 + θeTD−1e)θrs
·

∑
i∈Cq

Dii[D
−1d]2i

1/2

≤ c(θrq + rs)

(1 + θeTD−1e)θrs
(Brq)

1/2 (5.3.72)

≤ B2
√
rq (5.3.73)

where B2 :=
√
B/θ, (5.3.73) follows from (5.3.69) and (5.3.72) holds with probability at

least 1− (2/3)r̂ − rqvr̂p. Similarly,

‖H ◦ (ez̄T3 )‖ ≤ B2

√
rs (5.3.74)

with probability at least 1− ((2/3)r̂ + rsv
r̂
p). Applying the union bound shows that

‖M̃3‖ ≤ ‖H ◦ (ȳ3e
T )‖+ ‖H ◦ (ez̄T3 )‖ ≤ B2(

√
rq +

√
rs) (5.3.75)

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂ as required.

We complete the proof of Theorem 5.3.4 by showing that M2 = H ◦ (Q1beT + ebTQT
2 )

has norm at most a constant multiple of rs/
√
rq with high probability. The following

lemma provides an upper bound on ‖Q1b‖ and ‖Q2b‖.

Lemma 5.3.3 There exist B3, B4 and c̄i > 0, i = 1, 2, 3, depending only on p such that

‖Q1b‖ ≤ B3
r

1/2
s

r
1/2
q

(5.3.76)

‖Q2b‖ ≤ B4
r

1/2
s (rq + r

1/2
s )

r
3/2
q

(5.3.77)

with probability at least

1− c̄1 exp(−c̄2r̂
c̄3)− (rq + rs)

(
eδ

(1 + δ)(1+δ)

)pr̂
(5.3.78)

where δ = (1− p)/(2p).

Proof: We first derive a bound on each of ‖Q1‖, ‖Q2‖ and ‖b‖ and consequently a
bound on each of ‖Q1b‖ and ‖Q2b‖ by applying the inequalities ‖Q1b‖ ≤ ‖Q1‖‖b‖ and
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‖Q2b‖ ≤ ‖Q2‖‖b‖. Recall that

‖Q1‖ ≤ ‖(D + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P1‖‖(F + θeeT )−1‖
∞∑
`=0

‖P1P2‖`

and

‖Q2‖ ≤ ‖(F + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P2‖‖(D + θeeT )−1‖
∞∑
`=0

‖P1P2‖`

where P1 = (D+ θeeT )−1(H− θeeT ), P2 = (F + θeeT )−1(HT − θeeT ). Applying the upper
bounds on ‖(D + θeeT )−1‖, ‖(F + θeeT )−1‖, and ‖H − θeeT‖ given by (5.3.59), (5.3.60),
and (5.3.62) shows that

‖P1P2‖ ≤
‖H − θeeT‖2

(mini∈Cq Dii)(mini∈Cs Fii)
≤ γ2

1

(θ − δp)2rq
(5.3.79)

with probability at least (5.3.78). Therefore, there exists γ2 > 0 depending only on p such
that

‖Q1‖ ≤
1

(θ − δp)rs

∞∑
`=1

(
γ2

1

(θ − δp)2rq

)`
+

γ1

(1− δp)2rq
√
rs

∞∑
`=0

(
γ2

1

(θ − δp)2rq

)`
≤ γ2

rq
√
rs

(5.3.80)

with probability at least (5.3.78) since

∞∑
`=0

(
γ2

1

(θ − δp)2rq

)`
≤ O(1)

and
∞∑
`=1

(
γ2

1

(θ − δp)2rq

)`
≤ O(r−1

q ).

with probability at least (5.3.78) in the case that rq > (γ1/(θ−δp))2. Similarly, there exists
γ3 > 0 depending only on p such that

‖Q2‖ ≤
γ3

rq
(r−1
q + r−1/2

s ) =
γ3(rq + r

1/2
s )

r2
qr

1/2
s

(5.3.81)
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with probability at least (5.3.78). Finally, recall that

bi = c ·
{
nsi , if i ∈ Cq
nqi , if i ∈ Cs.

Therefore,

‖b‖ = c

∑
i∈Cq

(nsi )
2 +

∑
i∈Cs

(nqi )
2

1/2

≤ (1 + δ)pc(rqrs)
1/2(rq + rs)

1/2

with probability at least 1 − (rq + rs)
(
eδ/(1 + δ)(1+δ)

)pr̂
by (5.3.56) and (5.3.57). Thus,

applying the union bound shows that there exist B3, B4 > 0 depending only on p such that

‖Q1b‖ ≤
γ2(1 + δ)pc(rqrs)

1/2(rq + rs)
1/2

rqr
1/2
s

≤ B3
r

1/2
s

r
1/2
q

‖Q2b‖ ≤
γ3(1 + δ)pc(rqrs)

1/2(rq + rs)
1/2(rq + r

1/2
s )

r
3/2
q r

1/2
s

≤ B4
r

1/2
s (rq + r

1/2
s )

r
3/2
q

with probability at least (5.3.78) since (rq + rs)
1/2 ≤ 2(r

1/2
s ).

To obtain an upper bound on ‖M2‖ we decompose M2 as

M2 = (H − θeeT ) ◦ (Q1beT ) + θ(Q1beT ) + (H − θeeT ) ◦ (e(Q2b)T ) + θ(e(Q2b)T ).

As an immediate corollary of Lemma 5.3.3 we have

‖(Q1b)eT‖ = ‖Q1b‖‖e‖ =
√
rs‖Q1b‖ ≤ B3

rs

r
1/2
q

(5.3.82)

and

‖e(Q2b)T‖ = ‖e‖‖Q2b‖ =
√
rq‖Q2b‖ ≤ B4

r
1/2
s (rq + r

1/2
s )

rq
(5.3.83)

with probability at least (5.3.78). Moreover, applying (5.3.29) with W = H − θeeT ,
u = Q1b, and v = e we have

‖(H − θeeT ) ◦ (Q1beT )‖ ≤ ‖H − θeeT‖‖Q1b‖∞ ≤ ‖H − θeeT‖‖Q1b‖. (5.3.84)
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Thus, combining (5.3.84), (5.3.62), and (5.3.76) we have

‖(H − θeeT ) ◦ (Q1beT )‖ ≤ B3γ1
rs

r
1/2
q

(5.3.85)

with probability at least (5.3.78). Similarly,

‖(H − θeeT ) ◦ (e(Q2b)T )‖ ≤ B4γ1
rs(rq + r

1/2
s )

r
3/2
q

(5.3.86)

with probability at least (5.3.78). Therefore, there exists ĉ depending only on p such that

‖M2‖ ≤ ĉ
rs

r
1/2
q

(5.3.87)

with probability at least (5.3.78) since rs ≤ O(r2
q) and, hence (rq + r

1/2
s )/rq ≤ O(1).

5.4 Proof of Theorem 5.2.3

5.4.1 Optimality conditions for the maximum mean weight k-
disjoint clique problem

As in our analysis of the maximum node k-disjoint-clique problem, the proof of Theo-
rem 5.2.3 relies on showing that a proposed optimal solution satisfies the sufficient condi-
tions for optimality given by the Karush-Kuhn-Tucker conditions. The following theorem
provides the necessary specialization of these optimality conditions to (5.2.31).

Theorem 5.4.1 Let X∗ be feasible for (5.2.31) and suppose that there exist some µ ≥ 0,
λ ∈ RN

+ , η ∈ RN×N
+ and S ∈ ΣN

+ such that

−W + λeT + eλT − η + µI = S (5.4.1)

〈λ,Xe− e〉 = 0 (5.4.2)

〈X, η〉 = 0 (5.4.3)

〈X,S〉 = 0. (5.4.4)

Then X∗ is optimal for (5.2.31).
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Let K∗ be a k-disjoint-clique subgraph of KN composed of the vertex sets C1, . . . , Ck
of sizes r1, . . . , rk and let X∗ be the corresponding feasible solution of (5.2.31) defined by
(5.2.10). Let Ck+1 := V \ (∪ki=1Ci) and rk+1 := N −∑k

i=1 ri. Let r̂ := mini=1,...,k ri. Let
W ∈ ΣN be a random symmetric matrix sampled from a distribution satisfying (ω1) and
(ω2). Our approach to show that X∗ is optimal for (5.2.31) is to construct multipliers
µ ≥ 0, λ ∈ RN

+ , η ∈ RN×N
+ , and S ∈ ΣN

+ satisfying (5.4.1), (5.4.2), (5.4.3), and (5.4.4).
Note that once the multipliers µ, λ, η are chosen, the gradient equation (5.4.1) provides an
explicit formula for the multiplier S.

The matrix S and, hence, λ and η will be constructed in blocks indexed by the vertex
sets C1, . . . , Ck+1. According to (5.2.10), the diagonal blocks X∗Cq ,Cq of X∗ for q = 1, . . . , k,

consist of multiples of the all ones matrix eeT . The remaining blocks of X∗ are equal to
0. It follows that we have ηCq ,Cq = 0 for all q = 1, . . . , k by (5.4.3). Moreover, we have
λCk+1

= 0 by (5.4.2). For each q = 1, . . . , k, we choose λCq such that SCq ,Cq is orthogonal
to X∗Cq ,Cq . In particular, it suffices to choose λ such that

0 = SCq ,Cqe = µe + rqλCq + (λTCqe)e−WCq ,Cqe (5.4.5)

for all q = 1, . . . , k. Rearranging (5.4.5) shows that λCq is the solution to the system

(rqI + eeT )λCq = WCq ,Cqe− µe (5.4.6)

for all q = 1, . . . , k. Applying the Sherman-Morrison-Woodbury formula (5.3.7) with A =
rqI, u = v = e shows that choosing

λCq =
1

rq

(
WCq ,Cqe−

1

2

(
µ+

eTWCq ,Cqe

rq

)
e

)
(5.4.7)

ensures that 〈SCq ,Cq , X∗Cq ,Cq〉 = 0 for all q = 1, . . . , k.

Recall that the requirements that 〈S,X〉 = 0 and S ∈ ΣN
+ imply that XS = SX = 0.

Therefore, we must choose the entries of each off-diagonal block SCq ,Cs so that X∗S =
SX∗ = 0. For our particular choice of X∗, this is equivalent to requiring all row and
column sums of SCq ,Cs to be equal to 0 for all q, s ∈ {1, . . . , k + 1} such that q 6= s. To
ensure that SCq ,Cse = 0 and SCs,Cqe = 0, we parametrize the entries of ηCq ,Cs using the
vectors yq,s and zq,s. In particular, we take

ηCq ,Cs =

(
δ̄q,k+1

2

(
α− µ

rq

)
+
δ̄s,k+1

2

(
α− µ

rs

)
− β

)
eeT + yq,seT + e(zq,s)T . (5.4.8)
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Here δ̄ij := 1 − δij, where δij is the Kronecker delta function defined by δij = 1 if i = j
and 0 otherwise. That is, we take ηCq ,Cs to be the expected value of λCqe

T + eλTCs−WCq ,Cs

plus the parametrizing terms yq,seT and e(zq,s)T . The vectors yq,s and zq,s are chosen
to be the solutions to the systems of linear equations imposed by the requirement that
X∗S = SX∗ = 0. As before, we show that this system of linear equations is a perturbation
of a linear system with known solution. Using the solution of the perturbed system we
obtain bounds on yq,s and zq,s, which are in turn used to establish that η is nonnegative
and S is positive semidefinite.

Fix q, s ∈ {1, . . . , k + 1} such that q 6= s. Let

η̃Cq ,Cs := λCqe
T + eλTCs −WCq ,Cs . (5.4.9)

Note that the symmetry of W implies that η̃Cs,Cq = η̃TCq ,Cs . Let b = bq,s ∈ RCq∪Cs be
defined by

bCq = η̃Cq ,Cse− E[η̃Cq ,Cs ]e, (5.4.10)

bCs = η̃Cs,Cqe− E[η̃Cs,Cq ]e. (5.4.11)

We choose y and z to be solutions of the system(
rsI + θeeT (1− θ)eeT

(1− θ)eeT rqI + θeeT

)(
y
z

)
= b (5.4.12)

for some scalar θ > 0 to be defined later.

The requirement that the row sums of SCq ,Cs are equal to zero is equivalent to y = yq,s

and z = zq,s satisfying the system of linear equations

0 = −rsyi−zTe + rs

(
λi −

δ̄q,k+1

2rq
(αrq − µ)

)
+

(
λTCse−

δ̄s,k+1

2
(αrs − µ)

)
− ([WCq ,Cse]i − rsβ) (5.4.13)

for all i ∈ Cq. Similarly, the column sums of SCq ,Cs are equal to zero if and only if y and
z satisfy

0 = −rqzi−yTe + rq

(
λi −

δ̄s,k+1

2rs
(αrs − µ)

)
+

(
λTCqe−

δ̄q,k+1

2
(αrq − µ)

)
− ([WCs,Cqe]i − rqβ) (5.4.14)
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for all i ∈ Cs. Note that the system of equations defined by (5.4.13) and (5.4.14) is
equivalent to (5.4.12) in the special case that θ = 0. However, when θ = 0, the system of
equations in (5.4.12) is singular, with nullspace equal to the vector (e;−e). It follows that
(y + ce; z − ce) is a solution of (5.4.12) for any scalar c if (y; z) is a solution of (5.4.12).
In particular, there exists solution (y; z) of (5.4.12) such that

eTyq,s − eTzq,s = 0. (5.4.15)

When θ is nonzero, each row of the system (5.4.12) has an additional term of the form
θ(eTy − eTz). Therefore, for θ > 0 such that (5.4.12) is nonsingular, the solution (y; z)
satisfying (5.4.13), (5.4.14), and (5.4.15) is also the unique solution to (5.4.12) since the
term θ(eTy − eTz) is zero. In particular, note that (5.4.12) is nonsingular for θ = 1. For
this choice of θ, y and z are the unique solutions of the systems

(rsI + eeT )y = b1 (5.4.16)

(rqI + eeT )z = b2 (5.4.17)

where b1 := b(Cq) and b2 := b(Cs). Applying the Sherman-Morrison-Woodbury formula
(5.3.7) with A = rsI, u = v = e and A = rqI, u = v = e yields

y =
1

rs

(
b1 −

(bT1 e)

rq + rs
e

)
(5.4.18)

z =
1

rq

(
b2 −

(bT2 e)

rq + rs
e

)
(5.4.19)

respectively.

In summary, we choose the multipliers µ ∈ R, λ ∈ RN , η ∈ RN×N as follows:

µ = (α− β)r̂/2 (5.4.20)

λCq =


1

rq

(
WCq ,Cqe−

1

2

(
µ+

eTWCq ,Cqe

rq

)
e

)
, if q ∈ {1, . . . , k}

0, if q = k + 1
(5.4.21)

ηCq ,Cs =

{
E[η̃Cq ,Cs ] + yq,seT + e(zq,s)T , if q, s ∈ {1, . . . , k + 1}, q 6= s
0, otherwise

(5.4.22)

97



where η̃Cq ,Cs is defined as in (5.4.9) and yq,s, zq,s are given by (5.4.18) and (5.4.19) for all
q, s ∈ {1, . . . , k + 1} such that q 6= s. We choose S according to (5.4.1). Finally, we define
the (k + 1)× (k + 1) block matrix S̃ in ΣN by

S̃Cq ,Cs =


SCq ,Cs , if q, s ∈ {1, . . . , k + 1}, q 6= s
−WCk+1,Ck+1

, if q = s = k + 1
0, otherwise.

(5.4.23)

We conclude by providing the following theorem, which provides a sufficient condition for
when the proposed solution X∗ is the unique optimal solution for (5.2.31) and when K∗ is
the maximum mean weight k-disjoint-clique subgraph of KN corresponding to W .

Theorem 5.4.2 Suppose that the vertex sets C1, . . . , Ck define a k-disjoint-clique subgraph
K∗ of the complete graph KN = (V,E) on N vertices and let Ck+1 := V \ (∪ki=1Ci). Let
ri := |Ci| for all i = 1, . . . , k + 1, and let r̂ = mini=1,...,k ri. Let W ∈ ΣN be a random
symmetric matrix sampled from distributions Ω1,Ω2 satisfying (ω1) and (ω2). Let X∗ be the
feasible solution for (5.2.31) corresponding to C1, . . . , Ck defined by (5.2.10). Let µ ≥ 0,
λ ∈ RN , η ∈ RN×N be chosen according to (5.4.20), (5.4.21), and (5.4.22), and let S be
chosen according to (5.4.1). Suppose that the entries of λ and η are nonnegative. Then
there exist scalars c1, c2 > 0 such that if

ri ≤ c1(α− β)2r̂2 (5.4.24)

for all i = 1, . . . , k, and
‖S̃‖ ≤ c2(α− β)r̂ (5.4.25)

then X∗ is optimal for (5.2.31), and K∗ is the maximum mean weight k-disjoint-clique
subgraph of KN corresponding to W . Moreover, if

rse
TWCq ,Cqe > rqe

TWCq ,Cse (5.4.26)

for all q, s ∈ {1, . . . , k} such that q 6= s, then X∗ is the unique optimal solution of (5.2.31)
and K∗ is the unique maximum mean weight k-disjoint-clique subgraph of KN .

Proof: By construction, µ, λ, η, and S satisfy (5.4.1), (5.4.2), (5.4.3), and (5.4.4).
Moreover, µ, λ, and η are nonnegative by assumption. Therefore, to prove that X∗ is
optimal for (5.2.31), it suffices to show that S is positive semidefinite. To do so, we fix
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x ∈ RN and decompose x as x = x1 + x2 where

x1(Ci) =

{
φie, if i ∈ {1, . . . , k}
0, if i = k + 1

for some φ ∈ Rk chosen such that x2(Ci) is orthogonal to e for all i = 1, . . . , k, and
x2(Ck+1) = x(Ck+1). By our choice of x1 and x2, we have

xTSx = xT2 Sx2

=
∑
i=1

(x2(Ci)
T (αeeT −WCi,Ci)x2(Ci) + xT2 (S̃ + µI)x2

≥
(
µ− max

i=1,...,k
‖αeeT −WCi,Ci‖ − ‖S̃‖

)
‖x2‖

≥
(
α− β

2
r̂ − γ max

i=1,...,k

√
ri − ‖S̃‖

)
‖x2‖.

with probability tending exponentially to 1 as r̂ →∞, since there exists γ > 0 such that

‖αeeT −WCi,Ci‖ ≤ γ
√
ri.

with probability tending exponentially to 1 as r̂ →∞ by Theorem 2.6.3. Therefore, there
exists scalars c1, c2 such that if ri ≤ c1(α−β)2r̂2 and ‖S̃‖ ≤ c2(α−β)r̂, then xTSx ≥ 0 for
all x ∈ RN with equality if and only if x2 = 0 with probability tending exponentially to 1
as r̂ →∞. Therefore X∗ is optimal for (5.2.31) with probability tending exponentially to
1 as r̂ → ∞. Moreover, vi is in the nullspace of S for all i = 1, . . . , k by (5.4.4) and the
fact that X∗ =

∑k
i=1 viv

T
i /ri. Since xTSx = 0 if and only if x2 = 0, the nullspace of S is

exactly equal to the span of {v1, . . . ,vk} and S has rank equal to N − k.

To see that X∗ is the unique optimal solution for (5.2.31) if Assumption (5.4.26) holds,
suppose, on the contrary, that X̃ is also optimal for (5.2.31). By (5.4.4), we have 〈X̃, S〉 =
0, which holds if and only if X̃S = 0. That is, the row and column spaces of X̃ lie in the
nullspace of S. Since X̃ � 0 and X̃ ≥ 0, we may write X̃ as

X̃ =
k∑
i=1

k∑
j=1

σijviv
T
j (5.4.27)
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for some σ ∈ Rk×k
+ . The fact that X̃ satisfies X̃e ≤ e implies that

σqqrq +
k∑
s=1
s 6=q

σqsrs ≤ 1 (5.4.28)

for all q =, 1 . . . , k. Moreover, since 〈X̃,W 〉 = 〈X∗,W 〉, there exists some q ∈ {1, . . . , k}
such that

σqqv
T
qWvq +

k∑
s=1
s 6=q

σqsv
T
qWvs ≥

vTqWvq

rq
. (5.4.29)

Combining (5.4.28) and (5.4.29) shows that

0 ≤ vTqWvq

 1

rq
−

k∑
s=1
s 6=q

σqsrs
rq

+
k∑
s=1
s 6=q

σqsv
T
qWvs −

vTqWvq

rq

=
k∑
s=1
s 6=q

σqs
rq

(rqv
T
qWvs − rsvTqWvq),

contradicting Assumption (5.4.26). Therefore, X∗ is the unique optimal solution of (5.2.31)
as required.

5.4.2 A lower bound on λ and η in the planted case

Let C1, . . . , Ck denote the vertex sets of a k-disjoint-clique subgraph of the complete graph
KN = (V,E) on N vertices. Let Ck+1 := V \ (∪ki=1Ci) and let ri := |Ci| for all i =
1, . . . , k + 1. Let r̂ := min{r1, . . . , rk}. Let W ∈ ΣN be a random symmetric matrix
sampled from distributions Ω1, Ω2 according to (ω1) and (ω2). Let µ, λ, η be chosen as in
(5.4.20), (5.4.21), and (5.4.22) respectively. We now establish that the entries of λ and η
are nonnegative with probability tending exponentially to 1 as r̂ approaches ∞. To do so,
we will use the following bounds on the `1 and `2-norms of random vectors whose entries
are equal to the sum of independently identically distributed (i.i.d.) random variables.

Theorem 5.4.3 Let I1, I2 be index sets of size r1, r2 respectively. Let {Xij : i ∈ I1, j ∈ I2}
be a collection of independently identically distributed (i.i.d.) random variables with mean
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x̄ such that 0 ≤ Xij ≤ 1 for all i ∈ I1, j ∈ I2. Then there exists scalar B such that

∑
i∈I1

∣∣∣∣∣∑
j∈I2

Xij − r2x̄

∣∣∣∣∣
δ

≤ Br1r
δ/2
2 (5.4.30)

with probability at least
1− (2/3)r1 − 2r1 exp(−2r2) (5.4.31)

for δ = 1, 2.

The proof of Theorem 5.4.3 is a modification of the proof of Theorem 5.3.5 and is
included in Appendix A.3.

We begin by deriving lower bounds on the entries of η. To show that ηij ≥ 0 for all
i, j ∈ V with high probability, we will use the following lemma, which provides an upper
bound on ‖yq,s‖∞ and ‖zq,s‖∞ for all q, s ∈ {1, . . . , k + 1} such that q 6= s, holding with
probability tending to 1 as r̂ tends to ∞.

Lemma 5.4.1 There exists scalar c̃ > 0 such that

‖yq,s‖∞ + ‖zq,s‖∞ ≤ c̃r̂−1/4 (5.4.32)

for all q, s ∈ {1, . . . , k + 1} such that q 6= s with probability at least

1− k2(10((2/3)r̂ − 2r̂ exp(−2r̂))− 8r̂ exp(−2r̂1/2)). (5.4.33)

Proof: Fix q, s ∈ {1, . . . , k} such that q 6= s. The proof for the case when either q or s is
equal to k + 1 is analogous. We first obtain an upper bound on ‖y‖∞ = ‖yq,s‖∞. By the
triangle inequality, we have

‖y‖∞ ≤
1

rs

∥∥∥∥b1 +
|bT1 e|
rq + rs

e

∥∥∥∥
∞
≤ 1

rs

(
‖b1‖∞ +

|bT1 e|
rq + rs

)
. (5.4.34)

Hence, to obtain an upper bound on ‖y‖∞, it suffices to obtain bounds on ‖b1‖∞ and
|bT1 e|. We begin with ‖b1‖∞. Recall that we have

bi = rs

(
λi −

1

2rq
(αrq − µ)

)
+

(
λTCse−

1

2
(αrs − µ)

)
−
(∑
j∈Cs

Wij − βrs
)
. (5.4.35)
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for each i ∈ Cq. Note that

λTCse =
1

rs

(
eTWCs,Cse−

1

2
rsµ−

1

2
eTWCs,Cse

)
=

1

2rs
(eTWCs,Cse− rsµ).

Applying (5.4.30) with δ = 1, I1 = I2 = Cs, and X`1,`2 = W`1,`2 for all `1, `2 ∈ Cs, we have∣∣∣∣λTCse− 1

2
(αrs − µ)

∣∣∣∣ =
1

2rs
|eTWCs,Cse− αr2

s | ≤
B

2

√
rs (5.4.36)

with probability at least

1− (2/3)rs − 2rs exp(−2rs) ≥ 1− p1 (5.4.37)

where
p1 := (2/3)r̂ + 2r̂ exp(−2r̂). (5.4.38)

Next, applying (2.6.3) with S =
∑

`∈CsWi` and t = r
3/4
s shows that∣∣∣∣∣∑

`∈Cs

Wi` − βrs
∣∣∣∣∣ ≤ r3/4

s (5.4.39)

with probability at least 1− p2 where

p2 := 2 exp(−2r̂1/2). (5.4.40)

Finally, by applying (2.6.3) with S =
∑

`∈Cq Wi`, t = r
3/4
q and (5.4.30) with δ = 1, I1 =

I2 = Cq and X`1,`2 = W`1,`2 for all `1, `2 ∈ Cq.

|λi −
1

2rq
(αrq − µ)| ≤ 1

rq

∣∣∣∣∣∣
∑
`∈Cq

Wi` − rqα

∣∣∣∣∣∣+
1

2r2
q

∑
`1∈Cq

∣∣∣∣∣∣
∑
`2∈Cq

W`1,`2 − rqα

∣∣∣∣∣∣
≤ r−1/4

q +
B

2
r−1/2
q ≤

(
1 +

B

2

)
r−1/4
q (5.4.41)

with probability at least 1−p1−p2. Combining (5.4.36), (5.4.39) and (5.4.41) and applying
the union bound shows that there exists scalar c1 > 0 such that

‖b1‖∞ ≤ c1r
−1/4
q rs (5.4.42)

102



with probability at least 1 − 2p1 − 2p2. By a similar argument, there exists scalar c2 > 0
such that

‖b2‖∞ ≤ c2r
3/4
q (5.4.43)

with probability at least 1− 2p1 − 2p2.

We next obtain an upper bound on |bT1 e| and |bT2 e|. We have

bT1 e = rs

(
λTCqe−

1

2
(αrq − µ)

)
+rq

(
λTCse−

1

2
(αrs − µ)

)
+(βrsrq−eTWCq ,Cse). (5.4.44)

By (5.4.36) and the union bound, we have∣∣∣∣λTCse− 1

2
(αrs − µ)

∣∣∣∣ ≤ B

2

√
rs (5.4.45)∣∣∣∣λTCqe− 1

2
(αrq − µ)

∣∣∣∣ ≤ B

2

√
rq (5.4.46)

with probability at least 1−2p1. Moreover, applying (5.4.30) with δ = 1, I1 = Cq, I2 = Cs,
X`1,`2 = W`1,`2 for all `1 ∈ Cq, `2 ∈ Cs, we have

|eTWCq ,Cse− βrsrq| ≤
∑
`1∈Cs

∣∣∣∣∣∣
∑
`2∈Cq

W`1,`2 − βrq

∣∣∣∣∣∣ ≤ Brq
√
rs (5.4.47)

with probability at least 1− p1. Substituting (5.4.45), (5.4.46), and (5.4.47) into (5.4.44),
we have

|bT1 e| ≤ c3rs
√
rq (5.4.48)

for some scalar c3 > 0 with probability at least 1 − 3p1 by the union bound. Similarly,
there exists scalar c4 > 0 such that

|bT2 e| ≤ c4rq
√
rs (5.4.49)

with probability at least 1− 3p1. Substituting (5.4.42) and (5.4.48) in (5.4.34) yields

‖y‖∞ ≤ c̃1r
−1/4
q . (5.4.50)

for some scalar c̃1 > 0 with probability at least

1− 5p1 − 2p2. (5.4.51)
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Similarly, there exists scalar c̃2 > 0 such that

‖zq,s‖∞ ≤ c̃2r
−1/4
q (5.4.52)

with probability at least (5.4.51). Combining (5.4.50) and (5.4.52) and applying the union
bound once more completes the proof.

As an immediate consequence of Lemma 5.4.1, we have the following corollary that
states that η is nonnegative with probability tending exponentially to 1 for sufficiently
large values of r̂.

Corollary 5.4.1 For all r̂ such that r̂ ≥ (2c̃/(α − β))4, the entries of the matrix η are
nonnegative with probability at least (5.4.33).

Proof: Fix q, s ∈ {1, . . . , k + 1} such that q 6= s. Lemma (5.4.1) implies that

ηij ≥
1

2
(α− β)− ‖y‖∞ − ‖z‖∞ ≥

1

2
(α− β)− c̃r̂−1/4 (5.4.53)

for all i ∈ Cq, j ∈ Cs, with probability at least (5.4.33). Therefore, ηij ≥ 0 for any r̂
greater than (2c̃/(α− β))4 for all i, j ∈ V with probability at least (5.4.33).

The following theorem provides a lower bound on the entries of λCq for all q = 1, . . . , k.

Theorem 5.4.4 There exist scalars c̄1, c̄2 > 0 such that

λi ≥ r̂(c̄1 − c̄2r̂
−1/4) (5.4.54)

for all i ∈ V \ Ck+1 with probability at least

1−N((2/3)r̂ − 2r̂ exp(−2r̂)− 2r̂ exp(−2r̂1/2)). (5.4.55)

Proof: Fix q ∈ {1, . . . , k} and i ∈ Cq. Recall that

λi =
∑
j∈Cq

Wij −
1

2rq
eTWCq ,Cqe−

µ

2
.
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Applying (2.6.3) with S =
∑

j∈Cq Wij and t = r
3/4
q yields∑

j∈Cq

Wij ≥ αrq − r3/4
q (5.4.56)

with probability at least 1− p2. Moreover, (5.4.46) implies that

1

2rq
eTWCq ,Cqe ≤

1

2
(αrq +B

√
rq) (5.4.57)

with probability at least 1 − p1. Combining (5.4.56) and (5.4.57) and applying the union
bound shows that there exist scalars c̄1, c̄2 depending only on α, β such that

λi ≥ αrq − r3/4
q −

1

2
(αrq +B

√
rq)−

µ

2
≥ rq(c̄1 − c̄2r

−1/4
q )

with probability at least 1 − p1 − p2. Applying the union bound over all i ∈ V \ Ck+1

completes the proof.

Note that Theorem 5.4.4 implies that λ ≥ 0 with probability tending exponentially to 1
as r̂ tends to∞. Therefore, µ, λ, η constructed according to (5.4.20), (5.4.21), and (5.4.22)
are dual feasible for (5.2.31) with probability tending exponentially to 1 as r̂ → ∞. The
following theorem states the uniqueness condition given by (5.4.26) is satisfied with high
probability for sufficiently large r̂.

Theorem 5.4.5 There exists scalar c > 0 such that if r̂ > 4c/(α− β)2 then

rse
TWCq ,Cqe > rqe

TWCq ,Cse

for all q, s ∈ {1, . . . , k} such that q 6= s with probability at least

1− 2k2
(
(2/3)r̂ + 2r̂ exp(−2r̂)

)
. (5.4.58)

Proof: Fix q 6= s such that rq ≤ rs. Applying (5.4.30) with δ = 1, I1 = I2 = Cq, and
X`1,`2 = W`1,`2 for all `1, `2 ∈ Cq shows that

eTWCq ,Cqe ≥ αr2
q −Br3/2

q (5.4.59)
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with probability at least 1− p1. Similarly, applying (5.4.30) with δ = 1, I1 = Cq, I2 = Cs,
and X`1,`2 = W`1,`2 for all `1 ∈ Cq, `2 ∈ Cs yields

eTWCq ,Cse ≤ βrqrs +Brqr
1/2
s (5.4.60)

with probability at least 1− p1. Combining (5.4.59) and (5.4.60) yields

rse
TWCq ,Cqe− rqeTWCq ,Cse ≥ rsr

2
q(α− β −B(r−1/2

q + r−1/2
s )

≥ rsr
2
q(α− β − 2Br̂−1/2) > 0

if r̂ > 4B2/(α− β)2, with probability at least 1− 2p1. Applying the union bound over all
choices of q, s completes the proof.

We have shown that µ, λ, η constructed according to (5.4.20), (5.4.21), and (5.4.22) are
dual feasible for (5.2.31) and the uniquness condition (5.4.26) is satisfied with probability
tending exponentially to 1 as r̂ → ∞. In the next subsection, we derive an upper bound
on the norm of S̃ and use this bound to obtain conditions ensuring dual feasibility of S
and, hence, optimality of X∗ for (5.2.31).

5.4.3 A bound on ‖S̃‖ in the planted case

Suppose that the random matrix W is sampled from distributions Ω1,Ω2 satisfying (ω1) and
(ω2) corresponding to partitioning C1, . . . , Ck+1 of the vertices of the complete graph KN =
(V,E) on N = |V | vertices. Let ri = |Ci| for all i = 1, . . . , k + 1. Let r̂ := mini=1,...,k ri.
Let µ ∈ R+, λ ∈ RN , η ∈ RN×N , S ∈ ΣN , S̃ ∈ ΣN be defined as in Section 5.4.1.
In this section, we derive an upper bound on ‖S̃‖, which will be used to verify that the
conditions on the partitioning C1, . . . , Ck+1 imposed by (5.2.38) and (5.2.39) ensure that
the k-disjoint-clique subgraph of KN composed of the cliques C1, . . . , Ck is the unique
maximum mean weight k-disjoint-clique of KN with respect to W and can be recovered by
solving (5.2.31) with probability tending exponentially to 1 as r̂ → ∞. In particular, we
will prove the following theorem.

Theorem 5.4.6 There exist scalars ρ1, ρ2 > 0 such that

‖S̃‖ ≤ ρ1

(
k

k+1∑
s=1

rs

)1/2

+ ρ2

√
N + βrk+1 (5.4.61)
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with probability tending exponentially to 1 as r̂ approaches ∞.

This theorem, along with Theorems 5.4.2 and 5.4.4, and Corollary 5.4.1, establishes
Theorem 5.2.3. Indeed, if the right-hand side of (5.4.61) is at most c2r̂ and sri ≤ c1r̂

2

for each i = 1, . . . , k then Theorems 5.4.2 and 5.4.4, and Corollary 5.4.1 imply that the k-
disjoint-clique subgraph corresponding to the partitioning C1, . . . , Ck is optimal for (5.2.23)
and can be recovered by solving (5.2.31).

The remainder of this section consists of a proof of Theorem 5.4.6. We decompose S̃ as

S̃ = S̃1 + S̃2 + S̃3 + S̃4

where S̃i ∈ ΣN , i = 1, . . . , 4, are (k + 1) by (k + 1) block matrices such that

S̃1(Cq, Cs) =

{
S̃(Cq, Cs), if q, s ∈ {1, . . . , k + 1}, q 6= s
0, otherwise

S̃2(Cq, Cs) =

{
βeeT −W, if q = s = k + 1
βeeT −R(Cq, Cs), otherwise

S̃3(Cq, Cs) =

{
0, if q = s = k + 1
R(Cq, Cs)− βeeT , otherwise

S̃4(Cq, Cs) =

{
−βeeT , if q = s = k + 1
0, otherwise

where R ∈ ΣN is a random symmetric random matrix with independently identically
distributed (i.i.d.) entries satisfying (ω2) with mean equal to β. By Theorem 2.6.3, there
exist ρ2, κ1, κ2 > 0 such that

‖S̃2‖+ ‖S̃3‖ ≤ ρ2

√
N (5.4.62)

with probability at least
1− κ1 exp(−κ2N

−1/6). (5.4.63)

Morever, we have
‖S̃4‖ = β‖eeT‖ = βrk+1. (5.4.64)

The fact that

‖S̃1‖2 = O

(
k
k+1∑
s=1

rs

)
with probability tending exponentially to 1 as r̂ →∞ is an immediate consequence of the
the following theorem, which provides an upper bound on the norm of S̃(Cq, CS) holding
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with probability tending exponentially to 1 as r̂ approaches ∞.

Theorem 5.4.7 There exists t > 0

‖S̃1(Cq, Cs)‖ = ‖S̃(Cq, Cs)‖ ≤ t
√

max{rq, rs} (5.4.65)

for all q, s ∈ {1, . . . , k+1}, q 6= s, with probability tending exponentially to 1 as r̂ approaches
∞.

Proof:

We consider q, s ∈ {1, . . . , k} such that q 6= s. The derivation of the bound on
‖S̃1(Cq, Cs)‖ for the case that q = k + 1 or s = k + 1 is analogous. Without loss of
generality we may assume that rq ≤ rs. We decompose SCq ,Cs as SCq ,Cs = M1 + M2 + M3

where

M1 =

(
λCq −

1

2rq
(αrq − µ)e

)
eT

M2 = e

(
λCs −

1

2rs
(αrs − µ)e

)T
M3 = yeT + ezT .

We first obtain a bound on the norm of M1. Recall that

λCq =
1

rq

(
WCq ,Cqe−

1

2

(
µ+

eTWCq ,Cqe

rq

)
e

)
by (5.4.7). Rearranging, we have

M1 =
1

rq

(
WCq ,Cq −

1

2

(
µ+

eTWCq ,Cqe

rq

)
e

)
− 1

2rq
(αrq − µ)

=
1

rq
(WCq ,Cqe− αrqe)eT +

1

2rq

(
αrq −

eTWCq ,Cqe

rq

)
eeT . (5.4.66)

Note that we have ∣∣∣∣αrq − eTWCq ,Cqe

rq

∣∣∣∣ ≤ B
√
rq (5.4.67)
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with probability at least (5.4.37) by (5.4.36) On the other hand, applying (5.4.30) with
δ = 2, I1 = I2 = Cq, and X`1,`2 = W`1,`2 for all `1, `2 ∈ Cq, shows that

1

rq
‖WCq ,Cqe− αrqe‖2 ≤ Brq (5.4.68)

with probability at least (5.4.37). Substituting (5.4.68) and (5.4.67) into (5.4.66) and
applying the union bound, we have

‖M1‖ ≤
1
√
rq

√
Brqrs +

1

2rq
Brq
√
rs =

√
B

2
(
√
B + 2)

√
rs (5.4.69)

with probability at least 1− 2p1 where

p1 = (2/3)r̂ − 2r̂ exp(−2r̂) (5.4.70)

Similarly, we have

‖M2‖ ≤
√
B

2
(
√
B + 2)

√
rs (5.4.71)

with probability at least 1− 2p1.

It remains to obtain an upper bound on ‖M3‖. Applying the triangle inequality, we
have

‖M3‖ ≤
√
rs‖y‖+

√
rq‖z‖. (5.4.72)

We begin by obtaining a bound on ‖y‖. Note that there exists scalar c > 0 such that

‖y‖ ≤ 1

rs

(
‖b1‖+

|bT1 e|
rq + rs

√
rq

)
≤ 1

rs

(
‖b1‖+

crsrq
rq + rs

)
(5.4.73)

with probability at least 1− 3p1 by the triangle inequality and (5.4.48). We next obtain a
bound on ‖b1‖. Recall that

‖b1‖ ≤ rs

∥∥∥∥λCq − 1

2rq
(αrq − µ)e

∥∥∥∥+

∣∣∣∣λTCse− 1

2
(αrs − µ)

∣∣∣∣√rq+‖WCq ,Cse−βrse‖. (5.4.74)

Note that (5.4.69) implies that

rs

∥∥∥∥λCq − 1

2rq
(αrq − µ)e

∥∥∥∥ =
√
rs‖M1‖ ≤

√
B

2
(
√
B + 2)rs (5.4.75)
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with probability at least 1 − 2p1. Next, applying (5.4.30) with δ = 2, I1 = Cq, I2 = Cs,
and X`1`2 = W`1`2 for all `1 ∈ Cq, `2 ∈ Cs yields

‖WCq ,Cse− βrse‖2 ≤ Brqrs (5.4.76)

with probability at least 1 − p1. Therefore, substituting (5.4.45), (5.4.75), (5.4.76) in
(5.4.73), there exists scalar t1 > 0 such that

‖b1‖ ≤ t1rs (5.4.77)

with probability at least 1 − 3p1 by the union bound. Substituting (5.4.77) in (5.4.73)
yields

‖y‖ ≤ t1 + c (5.4.78)

with probability at least 1 − 6p1 by the union bound. Similarly, there exists t2 > 0 such
that

‖z‖ ≤ t2

√
rs√
rq

(5.4.79)

with probability at least 1−6p1. Substituting (5.4.78) and (5.4.79) in (5.4.72) and applying
the union bound shows that

‖M3‖ ≤ (t1 + t2 + c)
√
rs (5.4.80)

with probability at least 1−12p1. Finally, combining (5.4.69), (5.4.71), and (5.4.80) shows
that there exists scalar t > 0 such that

‖SCq ,Cs‖ ≤ t
√
rs (5.4.81)

with probability at least 1− 16p1 as required.
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Chapter 6

Numerical results

In this chapter, we provide empirical evidence that our heuristics for the maximum clique,
KDC, WKDC, and clustering problems are exact for a variety of program inputs. Our
tests were performed using the 64-bit version of Matlab R2011a on a PC running Mac OSX
10.6.7, with a 2.26 GHz Intel Core 2 Duo processor and 2GB of RAM. The Matlab code
used to perform these tests is available from http://www.math.uwaterloo.ca/∼bpames,
under a GNU General Public License.

6.1 The Maximum Clique Problem

For N = 200 and each n = 2, 4, · · · , 170, we repeated the following procedure 15 times.
First, a random N × N matrix A, corresponding to a random graph containing planted
clique of size n, was generated as follows. Let V = {1, . . . , N} and V ∗ = {1, . . . , n}. We set
Aij = 1 for all (i, j) ∈ V ∗×V ∗. For each remaining pair (i, j) ∈ (V ×V )\(V ∗×V ∗) such that
i < j we set Aij = 1 with probability 1/2 and Aij = 0 with probability 1/2, independently.
We then set Aji = Aij. Note that A is the adjacency matrix of a graph containing a planted
clique V ∗ of size n and loops for all i ∈ V ∗ constructed according to (ΓR) in Section 4.1.3.
We attempt to recover the planted clique V ∗ using three different algorithms. We first
attempt to identify V ∗ using Algorithm 4.1.1. We implement Algorithm 4.1.1 in Matlab
as the function Alon. We use the software package PROPACK [121] to compute the second
eigenvector v2 of A and declare V ∗ recovered if the vector output by Alon is equal to the
characteristic vector of V ∗. Next, we attempt to recover V ∗ by solving the nuclear norm
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minimization problem

min{‖X‖∗ : 〈X, eeT 〉 ≥ n, Xij = 0 if Aij = 0, i 6= j}. (6.1.1)

We solve (6.1.1) using the nuclear norm minimization software package PPAPack [126] in
Matlab. We formulate and solve this problem using the Matlab function MaxCliquePPA,
which is a modification of the example RunMaxClique provided with PPAPack. We declare
V ∗ to be recovered if the output matrix X∗ satisfies ‖X∗ − vvT‖F/‖vvT‖F < 10−2. We
test theoretical recovery of V ∗ by checking if the multiplier W , as constructed according to
(ω1)-(ω6) in Section 4.4.1 with γ = −1, satisfies ‖W‖ < 1. Finally, we attempt to recover
V ∗ by solving the semidefinite program

min{〈X, eeT 〉 : X � 0, Xe ≤ e, Tr (X) = 1, Xij = 0 if Aij = 0, i 6= j}. (6.1.2)

We solve (6.1.2) in Matlab using the semidefinite programming software package SDPNAL [194].
We formulate and solve (6.1.2) in SDPNAL using the Matlab functions kdc_sdpnal_1 and
kdc_sdp_nal_2 with input G = A and k = 1. The function kdc_sdpnal_1 generates the
appropriate program inputs A, b, C for SDPNAL, calls SDPNAL to solve (6.1.2), and outputs
the obtained optimal solution X∗, as well as the coefficient matrix C and the rows of A
and b corresponding to the row sums and trace constraints. The function kdc_sdpnal_2

generates the rows of the program inputs A, b not already saved in memory and solves
the resulting semidefinite program using SDPNAL, and outputs X∗. We declare V ∗ to be
recovered in this case if the output X∗ satisfies ‖nX∗ − vvT‖F/‖vvT‖ < 10−3. Moreover,
we test theoretical recovery of V ∗ by checking if the dual variable S, as constructed in
Section 5.3.1 with θ = 1/2 and γ = 1, is semidefinite. We say that V ∗ is theoretically re-
covered if λmin(S) > −10−8. Figures 6.1.1 and 6.1.2 plot the average recovery and average
error, respectively, for each trial of each heuristic. The average value of ‖W‖ and λmin(S)
for each trial is plotted in Figure 6.1.3. Table 6.1.1 summarizes the computational time
required for each algorithm.

Note that we have a sharp transition to theoretical perfect recovery at n ≈ 30 ≈
√

200
for both NNM and SDP heuristics, although we do not obtain perfect recovery in practice
until n is much larger. Moreover, we have a sharp decrease in the error for the NNM
heuristic at n ≈ 30. The lack of recovery in the NNM case appears to be due to the
solver PPAPack not providing a solution within the desired error tolerance, 10−2, of the
optimal solution of (6.1.2). The desired optimal solution X0 can be recovered by rounding
each entry of X∗ to the nearest integer. On the other hand, the lack of recovery by the
SDP heuristic appears to be due to the SDP solver SDPNAL failing to obtain an optimal
solution for n less than 160. In this case, SDPNAL appears to be terminating at a suboptimal
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Figure 6.1.1: Success rate (out of 15 trials) of Algorithm 4.1.1, and our heuristics based on
nuclear norm minimization and semidefinite programming for recovery of a planted clique
of size n in a graph on N = 200 nodes.
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(b) NNM

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Size of planted clique n

R
e
c
o
v
e
ry

 

 
Recovered

Predicted

(c) SDP
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Figure 6.1.2: Average error, as measured by the Frobenius norm, for the NNM and SDP
heuristics for recovery of a planted clique of size n in a graph on N = 200 nodes.
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Table 6.1.1: CPU times of the spectral, NNM, and SDP heuristics for max clique

n
CPU time

Algorirthm 4.1.1 NNM SDP
Best Worst Average Best Worst Average Best Worst Average

2 0.128 0.294 0.197 1.95 3.08 2.32 172.0 214.8 196.8
10 0.060 0.121 0.068 1.47 1.76 1.58 185.4 224.8 195.9
18 0.061 0.148 0.073 1.10 1.43 1.22 237.5 245.1 241.7
26 0.047 0.061 0.051 0.93 1.46 1.10 145.8 274.3 205.1
34 0.034 0.035 0.035 4.76 6.29 5.47 155.9 247.1 206.8
42 0.023 0.037 0.028 3.67 9.95 7.49 108.1 257.7 186.8
50 0.024 0.147 0.038 3.71 5.23 4.36 172.0 244.1 192.9
58 0.025 0.094 0.030 3.27 3.59 3.38 172.5 226.8 221.7
66 0.025 0.026 0.025 2.05 2.31 2.11 249.9 252.0 250.9
74 0.017 0.061 0.020 1.92 2.09 2.03 200.3 313.5 227.5
82 0.018 0.057 0.025 2.12 3.88 2.83 162.0 206.8 186.4
90 0.018 0.027 0.020 2.08 3.07 2.32 191.4 257.1 239.2
98 0.026 0.031 0.027 2.81 2.98 2.88 152.9 252.3 179.4
106 0.026 0.040 0.027 2.31 2.72 2.49 239.6 330.4 297.1
114 0.026 0.090 0.032 1.63 2.52 2.05 146.0 259.4 217.6
122 0.026 0.027 0.026 1.35 1.93 1.64 164.6 275.4 209.4
130 0.026 0.027 0.026 2.02 2.35 2.22 150.9 429.4 282.1
138 0.026 0.089 0.036 1.74 2.22 1.96 60.4 223.3 116.8
146 0.027 0.128 0.049 1.80 2.35 2.02 46.0 65.1 49.1
154 0.038 0.056 0.044 1.65 2.14 1.84 43.5 259.0 127.8
162 0.038 0.059 0.041 1.38 4.98 1.86 41.8 55.0 47.6
170 0.045 0.066 0.047 2.72 3.74 2.99 22.9 26.7 24.7
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Figure 6.1.3: Behaviour of the multipliers W and S predicting theoretical recovery of a
planted clique of size n in a graph on N = 200 nodes for the NNM and SDP heuristics.
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solution that is not close in any sense to X0. From these trials, it appears that our NNM
heuristic for the maximum clique problem outperforms the existing spectral and ϑ-function
heuristics; we quickly (< 10 seconds) obtain a good approximation of the planted clique
via NNM for much smaller values of n than we do using Algorithm 4.1.1 or by solving the
SDP relaxation.

We repeat these trials for the nuclear norm heuristic for N = 500 and N = 1000. It
takes, on average, approximately 15 seconds to solve each instance (6.1.2) for N = 500
and 45 seconds to solve each instance for N = 1000.s As before, we have a sharp tran-
sition to predicted recovery at n = 50 ≈ 2

√
N and n = 65 ≈ 2

√
N for N = 500 and

N = 1000 respectively, but do not consistently obtain the correct solution (within the
desired error bounds) until n is much larger. We also have a sharp decrease in error
shortly after these transition points, which suggests that the lack of recovery of the pre-
dicted solution is caused by inaccurate solutions to (6.1.2) returned by PPApack and not
because the predicted solution is suboptimal. The results of these trials are summarized
in Figures 6.1.4, 6.1.5, and 6.1.6.
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Figure 6.1.4: Success rate (out of 15 trials) of the NNM heuristic for recovery of a planted
clique of size n in a graph on in a graph on N nodes.
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(b) N = 1000
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Figure 6.1.5: Average error, as measured by the Frobenius norm, for the NNM heuristic
for recovery of a planted clique of size n in a graph on N nodes.
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(b) N = 1000
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Figure 6.1.6: Behaviour of the multiplier W predicting theoretical recovery of a planted
clique of size n in a graph on in a graph on N nodes.
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6.2 Random data for KDC

For each k = 2, . . . , 20, we performed the following procedure 15 times. We generate the
adjacency matrix A of a random graph containing a k-disjoint-clique subgraph composed
of cliques C1, . . . , Ck of size r1 = r2 = · · · = rk = r̂ = 25 and rk+1 = 0. We do so by
setting all entries of the 25× 25 diagonal blocks indexed by C1, . . . , Ck equal to 1 and then
choosing each remaining upper triangular entry of A to be equal to 1 with probability 1/2,
and the lower triangular entries of A by symmetry. and equal to 0 with probability 1/2.
We then solve the semidefinite program

min{〈X, eeT 〉 : X � 0, Xe ≤ e, Tr (X) = k, Xij = 0 if Aij = 0, i 6= j} (6.2.1)

using SDPNAL in Matlab. As before, we construct the necessary program inputs A,b and C
using the functions kdc_sdpnal_1 and kdc_sdp_nal_2. We declare the planted k-disjoint-
clique subgraph to be recovered if the optimal solution X∗ returned by SDPNAL satisfies
‖X∗ −X0‖F/‖X0‖F < 10−3, where X0 is the predicted optimal solution given by (5.2.10).
We also recorded the minimum eigenvalue of the predicted semidefinite dual multiplier S,
constructed as in Section 5.3.1 with θ = 1/2, γ = 1, to test theoretical recovery of X0.
As before, we say that we have theoretical recovery if λmin(S) > 10−8 and calculate the
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Figure 6.2.1: Results of trials for the SDP relaxation of KDC for r̂ = 25

(a) Recovery

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of planted cliques k

R
e

c
o

v
e

ry

 

 

Recovered

Predicted

(b) Error
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minimum eigenvalue of S using PROPACK. Our results are summarized in Figure 6.2.1 and
Table 6.2.1. Note that our bounds on the number of cliques that our algorithm can recover
appear to be conservative compared to those encountered in practice. There is a sharp
transition from predicted recovery of X0 at k = 5 =

√
r̂, yet we still recover the proposed

optimal solution X0 for all k less than 19.

Note that solving each instance of KDC as generated above requires solving a semidefi-
nite program with kr̂(kr̂−1)/2 decision variables and approximately kr̂+ 1 +k(k−1)r̂2/2
constraints. For larger values of k or r̂, it becomes impractical to solve this large SDP.
Hence, we do not check performance of our heuristic for r̂ larger than 25. Instead we check
the predicted performance. That is, we test our theoretical bounds for larger values ensur-
ing optimality of X∗, for random graphs containing k planted cliques of size r̂ = 50, 100.
We repeat the following procedure 15 times for each k. We first generate the random
matrix A as above with all-ones diagonal blocks of size r̂. We then calculate the proposed
choice of S (with θ = 1/2 and γ = 1) and check the smallest eigenvalue of S using PROPACK.
We declare that S is semidefinite, and, hence, we would recover X0 if we solved (6.2.1),
if λmin(S) > −10−8. Figures 6.2.2 and 6.2.3 plot the number of predicted recoveries and
average value of λmin(S) for each k.
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Table 6.2.1: Results of the SDP relaxation for KDC: Here k denotes the number of planted
cliques. Recovery is the number of instances (out of 15) where the predicted and recovered
solutions agree (within error tolerance). Theoretical recovery is the number of times that
the multiplier S is positive semidefinite. The error and λmin(S) are the average over all
15 trials of ‖X∗ −X0‖F/‖X0‖F and the smallest eigenvalue of the predicted multiplier S.
CPU times include the time required to construct the inputs for the SDP solver, as well
as the time required to solve the SDP.

k Recovery
Predicted

λmin(S) Error
CPU time

Recovery Best Average Worst
2 15 15 -9.1057e-15 1.1819e-06 0.34583 0.4705 1.0359
3 15 15 -1.7146e-14 1.0815e-06 0.63443 0.74517 0.94566
4 15 15 -1.7458e-14 2.5751e-06 1.3334 1.4266 1.5638
5 15 15 -2.953e-14 1.5193e-06 1.7705 2.0589 2.4045
6 15 10 -0.17539 1.0473e-06 2.3517 2.6684 3.1613
7 15 0 -2.0738 1.6333e-06 3.9691 4.4433 5.6791
8 15 0 -4.3379 1.9826e-06 6.6964 7.2963 8.4287
9 15 0 -5.8891 3.8052e-06 9.0208 10.033 11.247
10 15 0 -8.2213 4.3938e-06 12.033 13.265 16.077
11 15 0 -9.9102 2.5215e-06 14.749 16.894 20.724
12 15 0 -11.724 1.8852e-06 19.408 23.265 25.447
13 15 0 -13.417 2.3138e-06 26.058 27.049 28.429
14 15 0 -14.989 3.3615e-06 33.059 35.694 43.768
15 15 0 -16.402 3.2636e-06 47.341 51.233 54.927
16 15 0 -17.749 3.639e-06 59.124 62.782 64.848
17 15 0 -19.387 7.6072e-06 76.937 82.384 89.216
18 15 0 -20.854 5.2288e-06 107.05 115.01 127.81
19 4 0 -22.056 0.032889 219.18 576.66 901.86
20 0 0 -23.174 0.31126 355.72 435.97 651.17
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Figure 6.2.2: Predicted recovery rates for the SDP relaxation of KDC.
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(b) r̂ = 100
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Figure 6.2.3: The minimum eigenvalue of the proposed multiplier S.
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6.3 Random data for WKDC

We considered random matrices W ∈ Σkr̂ generated as follows. Let C1 = {1, . . . , r̂},
C2 = {r̂ + 1, . . . , 2r̂}, . . . , Ck = {(k − 1)r̂ + 1, . . . , kr̂}. Fix α > 2β. For each q = 1, . . . , k,
we choose the entries of Wij, i, j ∈ Cq, i ≤ j uniformly at random (independently) from
the interval [1 − 2(1 − α), 1] so that these entries of W have expected value α. The
off-diagonal upper triangular entries of W are drawn independently at random from the
uniform distribution on the interval [0, 2β]. These entries of W are i.i.d. random variables
with expected value β. We choose the lower triangular entries ofW by symmetry. Note that
this W is drawn from a distribution satisfying Conditions (ω1) and (ω2) as in Section 5.2.2.

Let r̂ = 15, α = 0.65, and β = 0.3. We repeated the following process 15 times for each
k. We generate the random symmetric matrix W ∈ Σ15k as above and solve the semidefinite
relaxation of WKDC given by (5.2.31) using SDPNAL in Matlab. We use the Matlab func-
tions wkdc_sdpnal_1 and wkdc_sdpnal_2 to formulate and solve (5.2.31). These functions
are the WKDC analogue of the functions kdc_sdpnal_1 and kdc_sdpnal_2 described in
the previous sections. Let X∗ be the solution obtained from solving (5.2.31). We consider
the planted k-disjoint-clique subgraph recovered if X∗ satisfies ‖X∗−X0‖F/‖X0‖F < 10−3

where X0 is the feasible solution corresponding to {C1, . . . , Ck} given by (5.2.10). We
also test the predicted recovery rate, by checking if the proposed multipliers S, λ, and
η as constructed in Section 5.4.1, are dual feasible. Figure 6.3.1 plots the empirical and
theoretical success rates of our heuristic as well as the average error for each trial, and
Figure 6.3.2 plots the average behaviour of the dual variables S, λ, and η for each k. Our
results are summarized in Table 6.3.1. Note that our theoretical guarantees for optimality
of X∗ appear to be rather conservative; the proposed multiplier S is never semidefinite in
our trials, yet we have perfect recovery for all k up to 54. Moreover, our results do not
exhibit a sharp transition from perfect recovery. Although we do not recover X0 in all
trials for k ≥ 54, we still have recovery in some trials for all k less than 76.

As before, it was impractical to test the actual performance of our heuristic for larger
choices of r̂. Instead we tested the predicted recovery, according to the proposed dual
variables S, λ, and η. For each r̂ = 50, 100, we repeated the following process 15 times
for each choice of k. We generated the random symmetric matrix W ∈ Σkr̂, and S, λ, η
as above. We say that our algorithm would recover the correct optimal solution if each
of λmin(S), min(λ) and min(η) is at least −10−8. Figure 6.3.3 plots the fraction of trials
in which all three multipliers are feasible for each k. We have expected perfect recovery
for all k less than 19 and 38 for r̂ = 50 and 100 respectively, at which point there is a
sharp transition to zero recovery. The minimum entry of η was equal to 0 for each trial.
Figures 6.3.4 and 6.3.5 plot the average values of λmin(S) and min(λ) for each k.
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Figure 6.3.1: Results for the SDP relaxation of WKDC for r̂ = 15
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(b) Error
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Figure 6.3.2: Average behaviour (over all 15 trials) of the dual variables S, λ, η for the SDP
relaxation of WKDC
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Table 6.3.1: Results of the SDP relaxation for WKDC: k denotes the number of planted
cliques. Recovery is the number of instances (out of 15) where the predicted and recovered
solutions agree (within error tolerance). Theoretical recovery is the number of times that
the multiplier S is positive semidefinite, and the multipliers λ and η are nonnegative.
The error, λmin(S), minλ, min η are the average over all 15 trials of ‖X∗ −X0‖F/‖X0‖F ,
the smallest eigenvalue of the predicted multiplier S, and smallest entries of λ and η
respectively. CPU times include the time required to construct the inputs for the SDP
solver, as well as the time required to solve the SDP.

k Recovery
Predicted

Error λmin(S) minλ min η
CPU time

Recovery Best Average Worst
2 15 0 1.27E-06 -0.89 0.24 0 0.37954 0.45645 0.53273
6 15 0 2.33E-06 -1.89 0.21 0 0.85935 0.99998 1.1072
10 15 0 1.73E-06 -2.50 0.22 0 1.5955 2.2866 3.425
14 15 0 2.20E-06 -3.06 0.22 0 5.4248 6.9991 9.4268
18 15 0 1.44E-06 -3.49 0.21 0 11.3 14.449 17.766
22 15 0 4.26E-06 -3.89 0.21 0 22.713 25.458 28.729
26 15 0 2.51E-06 -4.27 0.20 0 28.964 37.073 45.767
30 15 0 1.98E-06 -4.60 0.22 0 35.352 48.372 60.963
34 15 0 6.41E-06 -4.94 0.20 0 78.588 108.59 173.68
38 15 0 4.67E-05 -5.26 0.20 0 124.39 221.45 317.52
42 15 0 1.79E-04 -5.53 0.20 0 181.09 607.23 1321.1
46 15 0 7.84E-05 -5.82 0.21 0 211.84 629.26 1449.7
50 15 0 1.50E-04 -6.08 0.21 0 268.67 1014.6 1857.4
54 14 0 3.57E-04 -6.34 0.20 -3.68E-04 326.28 1045.9 2753.7
58 14 0 3.83E-04 -6.58 0.20 0 259.59 1220 3955
62 14 0 3.80E-04 -6.83 0.20 -3.78E-03 461.43 1128.5 2916.1
66 11 0 7.69E-04 -6.10 0.20 -4.81E-03 1086.6 2213.1 4410.4
70 11 0 1.03E-03 -7.26 0.19 -6.33E-03 1183.7 3129.4 5365.1
74 6 0 1.50E-03 -7.49 0.19 -4.90E-03 2375.7 3932.9 4979.7
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Figure 6.3.3: Predicted recovery rates for the SDP relaxation of WKDC
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(b) r̂ = 100
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Figure 6.3.4: Average behaviour (over all 15 trials) of the dual variable S
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Figure 6.3.5: Average behaviour (over all 15 trials) of the dual variable λ
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6.4 Clustering data sets

In this section, we apply our heuristic for KDC and WKDC to data sets from clustering
applications.

6.4.1 The Supreme Court data set

We consider the liberal-conservative divide of the Rehnquist Supreme Court. The data
used is the 9× 9 similarity matrix W giving the percentages of cases in which the justices
agreed, contained in Table 6.4.1. Here, clusters within the data set will correspond to
subsets of the Supreme Court whose decisions on cases, and hence, legal and political
ideologies, are similar. This data set was previously analyzed by Hubert and Stanley in
[102], as well as Ben-Israel and Iyigun in [15]. We will show that this data set may be
clustered using our semidefinite relaxation of WKDC.

We use the following algorithm for clustering data.

Algorithm 6.4.1 Given data set of N items, similarity matrix W ∈ ΣN , and proposed
number of clusters k.
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Table 6.4.1: Agreement among the nine Supreme Court justices

St Br Gi So Oc Ke Re Sc Th
1 St 1 0.62 0.66 0.63 0.33 0.36 0.25 0.14 0.15
2 Br 0.62 1 0.72 0.71 0.55 0.47 0.43 0.25 0.24
3 Gi 0.66 0.72 1 0.78 0.47 0.49 0.43 0.28 0.26
4 So 0.63 0.71 0.78 1 0.55 0.5 0.44 0.31 0.29
5 Oc 0.33 0.55 0.47 0.55 1 0.67 0.71 0.54 0.54
6 Ke 0.36 0.47 0.49 0.5 0.67 1 0.77 0.58 0.59
7 Re 0.25 0.43 0.43 0.44 0.71 0.77 1 0.66 0.68
8 Sc 0.14 0.25 0.28 0.31 0.54 0.58 0.66 1 0.79
9 Th 0.15 0.24 0.26 0.29 0.54 0.59 0.68 0.79 1

1. Solve (5.2.31) with given k and W . Let X∗ be optimal solution obtained.

2. Refine X∗ to X̃:

(a) For each i = 1, . . . , N , if the ith row of X∗ has row sum less than 0.9, set
X∗(:, i) = 0, X∗(i, :) = 0.

(b) For all i, j ∈ {1, . . . , N} let X̃ij =
⌈
X∗ij − 1/N

⌉
.

3. Obtain the eigenvectors v1,v2, . . . ,vk corresponding to the k largest eigenvalues of
X̃.

4. Refine these eigenvectors to ṽ1, . . . , ṽk by taking ṽi(j) = dvi(j)− 1/Ne for all i =
1, . . . , k and j = 1, . . . , N . These refined eigenvectors are the characteristic vectors
of the clusters identified by the algorithm.

We applied Algorithm 6.4.1 with k = 2 and W as given by Table 6.4.1. The Matlab
function weighted_kdc_cvx was used to formulate and solve (5.2.31) using CVX [86] and
SeDuMi [173]. We identified two disjoint clusters in the data. The names of the Supreme
Court justices in each cluster are listed in Table 6.4.2. Our 2-clustering of the Rehnquist
Supreme Court agrees with that identified in [102] and [15]. Note that our algorithm
does not provide any information about the political ideologies of either cluster; the labels
“Liberal” and “Conservative” used to identify each cluster were assigned in [102], in which
a ranking of justices from most liberal to most conservative was obtained.
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Note that our heuristic for clustering is sensitive to the choice of k. For example, if we
instead solve (5.2.31) with k = 3, we obtain a clustering of the Supreme Court into three
voting blocks, labelled in Table 6.4.3 as “Liberal”, “Moderate Conservative”, and “Most
Conservative”, in agreement with the ranking provided in [102]. Thus, the choice of k = 3
causes the “Conservative” cluster to be split into two smaller clusters. Larger choices of
k result in clusters of size 1. Hence, only k = 2 and k = 3 yield meaningful clusterings of
the Supreme Court data set.

Table 6.4.2: A 2-clustering of the Rehnquist Supreme Court

1: “Liberal” 2: “Conservative”

Stevens (St) O’Connor (Oc)
Breyer (Br) Kennedy (Ke)
Ginsberg (Gi) Rehnquist (Re)
Souter (So) Scalia (Sc)

Thomas (Th)

Table 6.4.3: A 3-clustering of the Rehnquist Supreme Court

1: “Most Conservative” 2: “Moderate Conservative” 3: ”Liberal”

Thomas (Th) O’Connor (Oc) Stevens (St)
Scalia (Sc) Kennedy (Ke) Breyer (Br)

Rehnquist (Re) Ginsberg (Gi)
Souter (So)

6.4.2 Birth and death rates

We consider the problem of clustering subsets of a Euclidean space E. In such a space, we
have a natural model of similarity; x,y ∈ E are similar if they are sufficiently close with
respect to the norm in E. We define the similarity matrix W ∈ [0, 1]n×n by

Wx,y = exp(−‖x− y‖2/σ2) (6.4.1)
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for all x,y ∈ S, where S is the set to be clustered, n = |S| is the cardinality of S, and
‖ · ‖ is the norm defined by the inner product associated with E, and σ > 0 is the variance
of the distances between the points in S. Note that the clustering of the data is highly
dependent on the choice of similarity matrix W . For example, consider the data set in R2

depicted in Figure 6.4.1. This data set consists of two clusters, one centered at the origin
and another arranged in a ring surrounding the cluster centered at the origin. We obtain
a 2-clustering of the data using Algorithm 6.4.1 for k = 2 and W defined as in (6.4.1)
where ‖ · ‖ is the Euclidean norm in R2. We solve the relaxation of (5.2.31) using SDPNAL.
Our heuristic correctly identifies the cluster at the origin but fails to recover the entire
second cluster; this failure to correctly cluster the data is due to the use of the incorrect
measure of similarity ‖ · ‖ in W . We perform the change of basis obtained by converting
the data set to polar coordinates, and then rescale the θ-coordinates of the data set by
1/10. Applying Algorithm 6.4.1 with Euclidean W to this transformed data set yields the
correct clustering of the original data; see Figure 6.4.1. In general, choosing the correct
similarity matrix is a hard problem and will restrict ourselves to ad hoc choices of W .

Figure 6.4.1: Clustering of a sample data set in R2. The data is not clusterable with respect
to the Euclidean norm in R2. After change of basis, we obtain the correct clustering
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We analyze crude birth and death rate data drawn from the United States Census Bu-
reau’s International Database [183]. Figure 6.4.2 plots the number of births and number
of deaths per 1000 people for 97 countries drawn from either the set of “More developed
countries” or “Less developed countries” as identified by the United Nations. From Fig-
ure 6.4.2(a), it appears as though this data consists of two clusters in R2; one corresponding
to the more developed nations and one corresponding to the less developed nations. We
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Figure 6.4.2: Clustering of nations based on crude birth and death rates

(a) Original data (b) Clustered data

attempt to cluster this data by applying Algorithm 6.4.1 with k = 2 and W as defined
by (6.4.1) using SDPNAL in Matlab. Solving (5.2.31) for this data set takes less than 5
seconds. We obtain the partitioning of the data into two clusters and one outlier given by
Figure 6.4.2 (b).

We next consider expanding the data to the full set of 227 countries provided by the
United States Census Bureau’s International Database. Solving (5.2.31) with k = 2 and
W as above does not yield a good partitioning of the data. This is because the separation
between the two predicted clusters is not distinct; there are many countries that could,
based solely on their crude birth and death rates, be consider members of either the
most developed or least developed. After solving (5.2.31) and refining, these countries
are classified as members of both clusters. However, if we solve our relaxation (5.2.13)
of KDC using the refined optimal solution X∗ as the adjacency matrix of G, we obtain a
clustering that identifies two tight clusters in the data set; see Figure 6.4.3.

6.4.3 Image segmentation

In this section, we apply our clustering heuristic to image segmentation. Image segmen-
tation refers to the process of partitioning the pixels of a given image into segments or
regions such that the pixels in each segment share certain characteristics. Hence, image
segmentation seeks a clustering of the pixels of a given image.
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We construct the similarity graph G = (V,E,W ) corresponding to the pixels of a given
image I as in [167]. The set of nodes of G is the set of pixels of the input image I. We
add an edge for every pair of nodes in V , and assign weight

Wij =

{
exp

(
−‖I(i)−I(j)‖2

σ2
I

)
· exp

(
−‖X(i)−X(j)‖2

σ2
X

)
, if ‖X(i)−X(j)‖ < r,

0, otherwise
(6.4.2)

for each edge ij ∈ E, where I(i) and X(i) denote the intensity and position of the ith
pixel of the input image, and σI , σX , r are fixed, positive scalars to be chosen later. Note
that Wij is large if the i and jth pixels are close to each other and similar in intensity, and
Wij = 0 if i and j are more than r pixels apart.

Using Algorithm 6.4.1, we obtain a clustering into 3 distinct segments of a 30 × 30
synthetic image obscured by noise. Figure 6.4.4 contains the noisy image, as well as the
identified segments. In general, the computational cost of our algorithm is prohibitively
high. To segment an m × n image, we must solve a convex program with an mn × mn
semidefinite decision variable and O(m2n2) nonnegative decision variables and constraints.
This is impractical, or impossible, for even moderate choices of m,n; say m,n > 50.
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Figure 6.4.3: Clustering of nations based on crude birth and death rates

(a) Original data
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(b) Overlapping clusters
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Figure 6.4.4: (a) A synthetic noisy image with three segments. (b)-(d) show the recovered
segments, obtained using Alg 6.4.1 using k = 3, W as in (6.4.2) with σI = 0.2, σX = 50,
r = 25.
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Chapter 7

Conclusions

We have shown that the maximum clique, maximum edge biclique, and maximum node and
maximum mean weight k-disjoint-clique problems can be relaxed to convex programming
by replacing matrix rank with its convex envelope, the nuclear norm. In the special case
that the input graph consists of a single large instance of the desired subgraph and a
moderate number of additional nodes and edges then these relaxations are exact. Therefore,
in this planted case, these hard combinatorial problems can be solved efficiently by solving
these tractable relaxations. For each problem, we provide theoretical bounds on the number
of diversionary edges and nodes our algorithm can tolerate and still recover the desired
hidden subgraph. We provide separate analyses for deterministically and randomly inserted
diversionary edges. Our bounds for the amount of random noise tolerated by our nuclear
norm minimization (4.1.7) and semidefinite relaxation (5.2.13) of the maximum clique
problem match those in the literature by Alon et al. [5] and Feige and Krauthgamer [66].
We believe our technique provides an improvement over these existing heuristics. We have
shown that it may be extended to the problems of identifying the maximum edge biclique
in a bipartite graph and of identifying the maximum k-disjoint-clique in an undirected
graph without modification. Moreover, our relaxation technique may be extended to any
rank minimization or rank-constrained optimization problem, although possibly without
the accompanying guarantee of exact recovery. Furthermore, we have provided empirical
evidence that our algorithm for recovering a planted clique is more robust in practice than
those of Alon et al. and Feige and Krauthgamer, and that our heuristic for KDC and
WKDC provides meaningful partitions of data sets from clustering applications.

• Extensions to other combinatorial problems: A common relaxation technique for com-
binatorial optimization is to lift vectors of integer variables to the positive semidef-
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inite cone. The resulting positive semidefinite variable in the lifted problem will
necessarily be low-rank. For example, Goemans and Williamson [84] obtain semidef-
inite relaxations of the maximum cut and maximum 2-satisfiability problems by
replacing integer variables u ∈ {−1, 1}N with semidefinite variables X ∈ ΣN

+ sat-
isfying diag (X) = e, rank (X) = 1. In general, this lifting procedure yields a
rank-constrained semidefinite programming formulation for the original combina-
torial problem. This formulation is then relaxed to semidefinite programming by
dropping the rank constraints on the decision variable. We have seen that relaxing
this rank constraint using the nuclear norm instead of removing it entirely yields an
exact relaxation for the maximum clique problem in the special case that the input
graph contains a sufficiently large planted clique. It would be interesting to see if our
relaxation and analytical techniques can be applied to other combinatorial optimiza-
tion problems to improve upon existing approximation bounds or identify classes of
program inputs for which the resulting relaxation is exact.

• Relaxations for other graph-partitioning objectives: In particular, we are interested
in obtaining exact relaxations for the graph-partitioning problems discussed in Sec-
tion 5.1.1. The maximum mean weight k-disjoint-clique problem seeks to identify a
partition the nodes of the complete graph KN on N nodes into k disjoint cliques and
a set of outliers such that the weight of the edges between nodes in each clique is
maximized. However, this partition does not exploit information about the weights
of edges between nodes in different vertex sets. When the input graph is the sim-
ilarity graph for some data set to be clustered, this partition yields a clustering of
the data set where similarity between items in each cluster is high but not neces-
sarily one where items in different clusters are dissimilar. Therefore, clustering data
by identifying the maximum mean weight k-disjoint-clique subgraph of its similarity
graph is prone to incorrectly labelling items as outliers. We would like to cluster data
using graph-partitioning that simultaneously maximizes the similarity between items
in the clusters and minimizes the similarity between items in different clusters such as
those given by the normalized cut (5.1.4) or min-max cut (5.1.6) objectives. Ideally,
we would like to extend our results to semidefinite relaxations of these problems,
although it is unclear what these relaxations would look like.

• Theoretical bounds for spectral clustering: Computing the partitioning of the input
graph given by our relaxations of KDC and WKDC is significantly more expensive
than obtaining the partitioning yielded by spectral clustering techniques. Indeed,
after obtaining an optimal solution X∗ for (5.2.13) or (5.2.31) we must extract the
eigenvectors corresponding to the k largest eigenvalues of X∗ to obtain characteristic
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vectors for the k disjoint cliques composing the optimal k-disjoint-clique subgraph of
the input graph. In this sense, solving (5.2.13) and (5.2.31) can be thought of as a
preprocessing step for a spectral method where the similarity matrix W is “corrected”
to X∗. That is, we learn the correct choice of W by solving for X∗ and then obtain
a partitioning of the input graph using the spectrum of X∗. In the planted case,
we are guaranteed that the partition of the input graph given by X∗ is exactly the
characteristic vectors of the optimal k disjoint cliques with respect to W (and X∗).
For especially large input graphs, it may take hours to obtain X∗ by solving (5.2.13)
or (5.2.31) directly while taking a spectral or singular value decomposition of X∗

may take only a few minutes. Hence, we would like to obtain the optimal k-disjoint-
clique subgraph directly from the adjacency matrix AG or the similarity matrix W .
Alon et al. [5] show that the maximum clique of may be recovered in the planted
case using only spectral information; recall Algorithm 4.1.1. Similarly, McSherry
[133] shows that the graph bisection and k-colouring problems may be solved exactly
using spectral methods for certain input graphs. It would be interesting to determine
if these results can be extended to other spectral approaches to clustering and graph-
partitioning.
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Appendix A

Proofs of probabilistic bounds

A.1 Proof of Theorem 4.4.2

From the definition of Ã, for column j, there are exactly n−nj entries of Ã that differ from
those of A. Furthermore, the difference of these entries is exactly (nj−pn)/((1−p)(n−nj)).
Therefore, for each j = 1, . . . , N , the contribution of column j to the square norm difference
‖A− Ã‖2

F is given by

‖A(:, j)− Ã(:, j)‖2
F =

(nj − pn)2

(1− p)2(n− nj)
.

Recall that the random variables n1, . . . , nN are independent, and each is the result of n
Bernoulli trials done with probability p.

We now define Ψ to be the event that at least one nj is very far from the mean. In
particular, Ψ is the event that there exists a j ∈ {1, . . . , N} such that nj > qn, where q =
min(

√
p, 2p). Let Ψ̃ be its complement, and let ψ̃(nj) be the indicator of this complement

(i.e., ψ̃(nj) = 1 if nj ≤ qn else ψ̃(nj) = 0). Let c be a positive scalar depending on p to be
determined later. Observe that

P (‖A− Ã‖2
F ≥ cN) = P (‖A− Ã‖2

F ≥ cN ∧ Ψ̃) + P (‖A− Ã‖2
F ≥ cN ∧ Ψ)

≤ P (‖A− Ã‖2
F ≥ cN ∧ Ψ̃) + P (Ψ). (A.1.1)

We now analyze the two terms separately. For the first term, we use the same technique as
in the proofs of Theorems 5.3.5 and 5.4.3. Let φ be the indicator function of nonnegative
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reals. Then

P (‖A− Ã‖2
F ≥cN & ∧ Ψ̃) = P (‖A− Ã‖2

F − cN ≥ 0 ∧ ψ̃(n1) = 1 ∧ · · · ∧ ψ̃(nN) = 1)

= E(φ(‖A− Ã‖2
F − cN) · ψ̃(n1) · · · ψ̃(nN)).

Let h be a positive scalar depending on p to be determined later. Observe that for any
such h and for all x ∈ R, φ(x) ≤ exp(hx). Thus,

P (‖A−Ã‖2
F ≥ cN ∧ Ψ̃) ≤ E(exp(h‖A− Ã‖2

F − hcN) · ψ̃(n1) · · · ψ̃(nN))

= E

(
exp

(
h

N∑
j=1

(
‖A(:, j)− Ã(:, j)‖2

F − c
))
· ψ̃(n1) · · · ψ̃(nN)

)

= E

(
exp

(
h

N∑
j=1

(
(nj − pn)2

(1− p)2(n− nj)
− c
))
· ψ̃(n1) · · · ψ̃(nN)

)

= E

(
N∏
j=1

exp

(
h

(
(nj − pn)2

(1− p)2(n− nj)
− c
))

ψ̃(nj)

)

=
N∏
j=1

E

(
exp

(
h

(
(nj − pn)2

(1− p)2(n− nj)
− c
))

ψ̃(nj)

)
(A.1.2)

= f1 · · · fN , (A.1.3)

where

fj = E

(
exp

(
h

(
(nj − pn)2

(1− p)2(n− nj)
− c
))

ψ̃(nj)

)
.

To obtain (A.1.2), we used the independence of the nj’s. Let us now analyze fj in isolation.

fj =
n∑
i=0

exp

(
h

(
(i− pn)2

(1− p)2(n− i) − c
))

ψ̃(nj)P (nj = i)

=

bqnc∑
i=0

exp

(
h

(
(i− pn)2

(1− p)2(n− i) − c
))

P (nj = i)

≤
bqnc∑
i=0

exp

(
h

(
(i− pn)2

(1− p)2(n−√pn)
− c
))

P (nj = i).

To derive the last line, we used the fact that i ≤ √pn since i ≤ qn. Now let us reorganize
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this summation by considering first i such that |i − pn| < √n, and next i such that
|i− pn| ∈ [

√
n, 2
√
n), etc. Notice that, since i ≤ qn ≤ 2pn, we need consider intervals only

until |i− pn| reaches pn. Then

fj ≤
bp
√
nc∑

k=0

∑
i:|i−pn|∈[k

√
n,(k+1)

√
n)

exp

(
h

(
(i− pn)2

(1− p)2(n−√pn)
− c
))

P (nj = i)

≤
bp
√
nc∑

k=0

∑
i:|i−pn|∈[k

√
n,(k+1)

√
n)

exp

(
h

(
(k + 1)2n

(1− p)2(n−√pn)
− c
))

P (nj = i)

=

bp
√
nc∑

k=0

∑
i:|i−pn|∈[k

√
n,(k+1)

√
n)

exp

(
h

(
(k + 1)2

(1− p)2(1−√p) − c
))

P (nj = i)

=

bp
√
nc∑

k=0

exp

(
h

(
(k + 1)2

(1− p)2(1−√p) − c
)) ∑

i:|i−pn|∈[k
√
n,(k+1)

√
n)

P (nj = i)

≤ 2

bp
√
nc∑

k=0

exp

(
h

(
(k + 1)2

(1− p)2(1−√p) − c
))

exp(−k2/p),

where, for the last line, we have applied (2.6.2). The theorem is valid since k ≤ p
√
n.

Continuing this derivation and overestimating the finite sum with an infinite sum,

fj ≤ 2 exp(−hc) ·
∞∑
k=0

exp

(
h(k + 1)2

(1− p)2(1−√p) − k
2/p

)
= 2 exp

(
h

(1− p)2(1−√p) − hc
)

+ 2 exp(−hc) ·
∞∑
k=1

exp

[
h(k + 1)2

(1− p)2(1−√p) − k
2/p

]
.

Choose h so that h/((1 − p)2)(1 − √p) < 1/(8p), i.e., h < (1 − p)2(1 − √p)/(8p). Then
the second term in the square-bracket expression at least twice the first term for all k ≥ 1,
hence

fj ≤ 2 exp

(
h

(1− p)2(1−√p) − hc
)

+ 2 exp(−hc) ·
∞∑
k=1

exp
(
−k2/(2p)

)
. (A.1.4)
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Observe that
∑∞

k=1 exp(−k2/(2p)) is dominated by a geometric series and hence is a finite
number depending on p. Thus, once h is selected, it is possible to choose c sufficiently large
so that each of the two terms in (A.1.4) is at most 1/3. Thus, with appropriate choices of
h and c, we conclude that fj ≤ 2/3. Thus, substituting this into (A.1.3) shows that

P (‖A− Ã‖2
F ≥ cN ∧ Ψ̃) ≤ (2/3)N . (A.1.5)

We now turn to the second term in (A.1.1). For a particular j, the probability that
nj > qn is bounded using (2.6.1) by vnp where vp = (eδ/(1 + δ)(1+δ))p, where δ = q/p − 1,
i.e., δ = min(p,

√
p − p). Then the union bound asserts that the probability that any j

satisfies nj > qn is at most Nvnp . Thus,

P (‖A− Ã‖2
F ≥ cN) ≤ (2/3)N +Nvnp .

This concludes the proof.

A.2 Proof of Theorem 5.3.5

The random numbers {ni : i ∈ I1} are independent, and each is the result of r2 Bernoulli
trials, each with probability of success equal to p. We define Ψ to be the event that at least
one ni is very far from its expected value. That is, Ψ is the event that there exists i ∈ I1

such that ni > tr2, where t = min{√p, 2p}. Moreover, we define Ψ̃ to be its complement,

and let ψ̃(ni) be the indicator function such that

ψ̃(ni) =

{
1, if ni ≤ tr2

0, otherwise.

Let B be a positive scalar depending on p to be determined later. Then

P

(∑
i∈I1

|ni − pr2|α
r2 − ni

≥ B
r1

r
1−α/2
2

)
≤ P

(∑
i∈I1

|ni − pr2|α
r2 − ni

≥ B
r1

r
1−α/2
2

∧ Ψ̃

)
+ P (Ψ).

(A.2.1)
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We will analyze the two terms separately. For the first term we use a technique of Bernstein
(see [98]). Let φ be the indicator function of the nonnegative reals. Then,

P

(∑
j∈I1

|nj − pr2|α
r2 − nj

≥ B
r1

r
1−α/2
2

∧ Ψ̃

)

= P

(∑
j∈I1

|nj − pr2|α
r2 − nj

−B r1

r
1−α/2
2

≥ 0 ∧ ψ̃(nj) = 1 ∀ j ∈ I1

)

= P

(∑
j∈I1

r
1−α/2
2 |nj − pr2|α

r2 − nj
−Br1 ≥ 0 ∧ ψ̃(nj) = 1 ∀ j ∈ I1

)

= E

(
φ

(∑
j∈I1

r
1−α/2
2 |nj − pr2|α

r2 − nj
−Br1

)
·
∏
j∈I1

ψ̃(nj)

)
.

Let h be a positive scalar depending on p to be determined later. Notice that for any h > 0
and all x ∈ R, φ(x) ≤ exp(hx). Thus, by the independence of the nj’s,

P

(∑
i∈I1

|ni − pr2|α
r2 − ni

≥ B
r1

r
1−α/2
2

∧ Ψ̃

)

≤ E

(
exp

(
h
∑
j∈I1

(
|nj − pr2|α

r
α/2−1
2 (r2 − nj)

−B
))
·
∏
j∈I1

ψ̃(nj)

)

=
∏
j∈I1

E

(
exp

(
h

(
|nj − pr2|α

r
α/2−1
2 (r2 − nj)

−B
))

ψ̃(nj)

)
=
∏
j∈I1

fj,

where

fj = E

[
exp

(
h

(
|nj − pr2|α

r
α/2−1
2 (r2 − nj)

−B
))

ψ̃(nj)

]
.

We now analyze each fj individually. Fix j ∈ I1. Then

fj =

btr2c∑
i=0

exp

(
h

(
|nj − pr2|α

r
α/2−1
2 (r2 − nj)

−B
))

P (nj = i)
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≤
btr2c∑
i=0

exp

(
h

( |i− pr2|α
(1−√p)r2

α/2
−B

))
P (nj = i)

since i ≤ tr2 and, hence, i ≤ √pr2. We now reorganize this summation by considering i
such that |i − pr2| <

√
r2, then i such that

√
r2 ≤ |i − pr2| < 2

√
r2, and so on. Notice,

since i ≤ tr2 ≤ 2pr2, we need only to consider intervals until |i− pr2| reaches pr2. Hence,

fj ≤
bp√r2c∑
k=0

∑
i:|i−pr2|∈[k

√
r2,(k+1)

√
r2)

exp

(
h

(
|i− pr2|α

(1−√p)rα/22

−B
))

P (nj = i)

≤
bp√r2c∑
k=0

∑
i:|i−pr2|∈[k

√
r2,(k+1)

√
r2)

exp

(
h

(
(k + 1)α

1−√p −B
))

P (nj = i)

≤ 2

bp√r2c∑
k=0

exp

(
h

(
(k + 1)α

1−√p −B
))

exp(−k2/p)

by (2.6.2). Overestimating the finite sum with an infinite sum, we have

fj ≤ 2 exp(−hB) ·
∞∑
k=0

exp

(
h(k + 1)α

1−√p − k
2/p

)
.

Choosing h such that h ≤ (1−√p)/(8p) ensures that

h(k + 1)α

1−√p − k
2/p ≤ −k2/(2p)

for all r1, r2 and k ≥ 1. Hence, splitting off the k = 0 term, we have

fj ≤ 2 exp

(
h

1−√p − hB
)

+ 2 exp(−hB) ·
∞∑
k=1

exp(−k2/(2p)). (A.2.2)

Since
∑∞

k=1 exp(−k2/(2p)) is dominated by a geometric series, the summation in (A.2.2)
is a finite number depending on p. Therefore, once h is chosen, it is possible to choose
B, depending only on p and h, such that each of the two terms in (A.2.2) is at most 1/3.
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Therefore, we can choose h and B so that fj ≤ 2/3 for all j ∈ I1. It follows that

P

(∑
i∈I1

|ni − p2|α
r2 − ni

≥ B
r1

r
1−α/2
2

∧ Ψ̃

)
≤ (2/3)r1 (A.2.3)

To obtain a bound on the second term in (A.2.1), notice that the probability that nj > tr2

is at most vr2p where vp = (eδ/(1 + δ)(1+δ))p by Theorem 2.6.1, where δ = t/p − 1 =
min{p,√p− p}. Applying the union bound shows

P

(∑
i∈I1

∑
i∈I1

|ni − p2|α
r2 − ni

≥ B
r1

r
1−α/2
2

)
≤ (2/3)r1 + r1v

r̂2
p

as required.

A.3 Proof of Theorem 5.4.3

Denote by ni the summation
∑

j∈I2 Xij for each i ∈ I1. We define Ψ to be the event that
at least one ni differs significantly from its mean; that is, we define Ψ to be the event that
there exists i ∈ I1 such that ni > tr2 where t := 1 + x̄. We let Ψ̃ denote the complement
of Ψ, and let ψ̃(ni) be the indicator of this complement. That is, ψ̃(ni) = 1 if ni ≤ tr2 and
is equal to 0 otherwise. We let B be a positive scalar to be determined later. Note that

P

(∑
i∈I1

|ni − x̄r2|δ
r2

≥ B
r1

r
1−δ/2
2

)
≤ P

(∑
i∈I1

|ni − x̄r2|δ
r2

≥ B
r1

r
1−δ/2
2

∧ Ψ̃

)
+ P (Ψ). (A.3.1)

We analyze the two terms separately. To obtain an upper bound on the first term we use
the technique of Bernstein used in the proof of Theorem 5.3.5. Let φ be the indicator
function of the nonnegative reals. Then

P

(∑
i∈I1

|ni − x̄r2|δ
r2

≥ B
r1

r
1−δ/2
2

∧ Ψ̃

)

= P

(∑
i∈I1

|ni − x̄r2|δ
r2

−B r1

r
1−δ/2
2

≥ 0 ∧ ψ̃(ni) ∀i ∈ I1

)
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= P

(∑
i∈I1

|ni − x̄r2|δ

r
δ/2
2

−Br1 ≥ 0 ∧ ψ̃(ni) ∀i ∈ I1

)

= E

(
φ

(∑
i∈I1

|ni − x̄r2|δ

r
δ/2
2

−Br1

)
·
∏
i∈I1

ψ̃(ni)

)
.

Let h be a positive scalar satisfying h ≤ 1/4. For any h > 0 and all x ∈ R, φ(x) ≤ exp(hx).
By the independence of the ni’s, we have

P

(∑
i∈I1

|ni − x̄r2|δ
r2

≥ B
r1

r
1−δ/2
2

∧ Ψ̃

)

= E

(
φ

(∑
i∈I1

|ni − x̄r2|δ

r
δ/2
2

−Br1

)∏
i∈I1

ψ̃(ni)

)

≤ E

(
exp

(
h

(∑
i∈I1

|ni − x̄r2|δ

r
δ/2
2

−Br1

))
·
∏
i∈I1

ψ̃(ni)

)

=
∏
i∈I1

E

(
exp

(
h

(
|ni − x̄r2|δ

r
δ/2
2

−B
))

ψ̃(ni)

)
=
∏
i∈I1

fi,

where

fi := E

(
exp

(
h

(
|ni − x̄r2|δ

r
δ/2
2

−B
))

ψ̃(ni)

)

=

∫ trs

0

exp

(
h

(
|x− x̄r2|δ

r
δ/2
2

−B
))

g(x)dx (A.3.2)

where g is the probability density function of ni for all i ∈ I1.

We analyze each fi individually. Fix i ∈ I1. For each integer, k = 0, 1, . . . , btr2c, and x
such that

k
√
r2 ≤ |x− x̄r2| ≤ (k + 1)

√
r2,
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we overestimate the integrand in (A.3.2) as

exp

(
h

(
|x− x̄r2|δ

r
δ/2
2

−B
))

P (|x− x̄r2| ≥ k
√
r2) ≤ 2 exp(h(k + 1)δ − hB) exp(−2k2)

(A.3.3)
by (2.6.4). It follows that

fi ≤
bt√r2c∑
k=0

2 exp(h(i+ 1)δ − hB − 2k2). (A.3.4)

Overestimating the finite sum in (A.3.4) as an infinite sum and observing that the choice
of h ≤ 1/4 ensures that h(k + 1)δ − 2k2 ≤ −k2 yields

fi ≤ 2 exp(h(1−B)) + 2 exp(−hB)
∞∑
k=1

exp(−k2). (A.3.5)

Note that
∑∞

k=1 exp(−k2) is dominated by a geometric series. Therefore, for fixed h ≤ 1/4,
it is possible to choose B, depending only on h, so that each term in (A.3.5) is at most
1/3 and, hence fi ≤ 2/3 for all i ∈ I1. It follows immediately that

P

(∑
i∈I1

|ni − x̄r2|δ
r2

≥ B
r1

r
1−δ/2
2

∧ Ψ̃

)
≤ (2/3)r1 . (A.3.6)

We next obtain a bound on the second term in (A.3.1). For any i ∈ I1, the probability
that |ni − x̄r2| > r2 is at most 2 exp(−2r2) by (2.6.3). Applying the union bound shows
that the probability that any i ∈ I1 satisfies |ni − x̄r2| > r2 is at most

P (Ψ) ≤ 2r1 exp(−2r2). (A.3.7)

Substituting (A.3.6) and (A.3.7) in (A.3.1) completes the proof.
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