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ABSTRACT 

Previous research has demonstrated that pool-riffle bedforms play a critical role in channel stability and 

ecosystem health in many natural gravel-bed channels.  Although the bedform length is known to scale 

with channel width, no experimental research has yet isolated the effect of bedform length on pool-riffle 

hydrodynamics.  To improve the understanding of the hydrodynamics of these bedforms so that they can 

be better incorporated in restoration practices, flume experiments were conducted testing the flow at 

seven different bedform lengths.   

 

Velocity profiles are measured in a 17 m flume with movable PVC bedforms using ultrasonic velocity 

profilers (UVPs).  Smooth two-dimensional (no sinuosity) bedforms are used in order to isolate the key 

dynamics in convective acceleration and deceleration.  The angle of transition between pool and riffle 

heights was 7°, so that permanent flow separation did not occur.  Parameters calculated from the velocity 

and turbulence profiles include the Coles’ wake parameter (a measure of the deviation from the log law), 

shear stress estimated from the velocity profile, shear stress estimated from the Reynolds shear stress, and 

vertical velocity.  From the individual velocity time series, the integral length scale and the integral time 

scales are also calculated.   

 

Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and 

turbulence within a channel.  In the pool, energy is dissipated both through turbulence and as the flow is 

redistributed to uniform flow conditions.  In the riffle, kinetic energy increases as the flow velocity 

increases, and as the length increases, the flow moves towards a new uniform flow condition.  The results 

start to explain the reasons behind the persistent scaling relation between width and bedform length.  It 

can be concluded that uniform flow conditions exist at the end of the pool when the bedform length ratio 

is greater than approximately 1:5.0 when the riffle length is held constant, and that uniform flow 

conditions are no longer observed at the end of the pool when the bedform length ratio exceeds 1:7.0 

when the pool length is held constant. 

 

Future research should concentrate on extending the results to include three-dimensional pool-riffle 

configurations, repeating bedform configurations, internal scaling parameters, and sediment transport.  

Ultimately, as the hydrodynamics of pool-riffle sequences are better understood, better bedform designs 

can be implemented in restoration projects. 
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zo  = reference bed level 

 

Greek Symbols � = major axis standard deviation � = minor axis standard deviation 

θ  = rotation angle of the principal axis  

ĸ  = von Karman constant � = wavelength  ��  = maximum velocity threshold �  = kinematic viscosity  Π  = Coles’ wake parameter 

ρ  = water density  �� = standard deviation  
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Chapter 1 

    INTRODUCTION 

Rivers have played a crucial role in the development of human society.  Many cities and civilizations 

around the world were founded along rivers, using the river as their primary water source and 

incorporating the river with their industrial needs to help grow their economy.  With time, it is 

frequently the case that the rivers that humanity has benefited from have been degraded to an unnatural 

state.  Rivers have been lined with concrete or rip rap to reduce erosion and to remove water as quickly 

as possible during high flow events (Keller, 1978).  Rivers have been straightened, reducing the 

meander length, so that new development can be constructed in previously flooded areas (Newbury and 

Gaboury, 1993).  Rivers have been dredged so that large boats can pass through the channel for 

economic gain (Holtschlag and Hoard, 2009).  These changes to the rivers natural morphology has led 

to a decrease in ecological habitat diversity in the river, created dangerous fast flowing channels during 

runoff and peak event conditions, and led to unstable channels leading to flooding and damage to urban 

and rural structures (Harper et al., 1998; Walker et al., 2004).   

 

With increasing problems related to reduced aquatic habitats, poor channel stability, and flashy runoff 

conditions in domesticated and urban watersheds, river rehabilitation and restoration have become 

important activities to reverse or counteract anthropogenic incursions.  The number of river 

rehabilitation projects has increased significantly in the past couple of decades with more than 14 000 

river rehabilitation projects undertaken since 1964 in the United States alone, with a total cost of $7.2 

billion USD (NRRSS, 2006).  Over 94% of these river rehabilitation projects have occurred since 1990 

(NRRSS, 2006).  In southern Ontario, over 120 river restoration projects took place in the 1990s at a 

total cost exceeding $11.9 million CAD (Heaton et al., 2002). 

 

River rehabilitation must integrate ecology, geomorphology, hydraulics, and hydrology to be successful 

(Clarke et al., 2003; Julien, 2002).  Engineers and scientists have been working together to understand 

river mechanics and how geomorphology affects the hydrodynamic forces governing the motion of 

water and sediment in river systems (Julien, 2002).  A pool-riffle sequence is a bedform naturally found 

in rivers, and is well known to be a stable geomorphic feature (Yang, 1971; Keller and Melhorn, 1978; 
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Wohl et al., 1993).  In recent rehabilitation projects in low-slope gravel-bed rivers, pool-riffle bedforms 

have frequently been used to create stable river channels which can promote a diverse range of aquatic 

habitats (Pasternack et al, 2008).  However, both successes and failures have been seen with this type of 

bedform installed during rehabilitation projects, where some bedforms have become eroded or filled in 

with sediment leading to failures in stability and increased flooding (Walker et al., 2004).  These results 

indicate that there is still more to learn about the pool-riffle sequence and its application to river 

rehabilitation projects.   

 

The overall objective of this thesis is to characterize the hydrodynamics of the pool-riffle sequence at 

different bedform lengths.  This includes obtaining an understanding of how the flow and turbulence in 

a channel, particularly close to the bed and side walls, change as the scale of the bedform changes. 

 

In this thesis, the known literature on riffle-pool sequences will be reviewed, including previous field 

and laboratory studies completed on the topic to provide the background needed for clarity of the 

research.  At the end of the literature review section, the detailed objectives of this thesis are outlined.  

Next the laboratory equipment used to test the effect of the length of the pools and riffles on 

hydrodynamics of pools will be explained.  Following this, the experimental methods and analysis of 

the measured velocities will be outlined.  A complete set of results of the hydrodynamic changes 

observed over different pool and riffle lengths are presented after the experimental methods are 

outlined.  Finally, a discussion of the results and a comparison to previous studies are presented, 

concluding with recommendations for future research. 
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Chapter 2 

    LITERATURE REVIEW 

This section of the thesis defines the pool-riffle sequence, and discusses the scale at which they 

naturally occur in open channels.  The role that pool-riffle sequences play on channel stability and 

ecology is highlighted, previous field and laboratory studies that have been completed on the topic are 

summarized, and the objectives of this research are outlined. 
 

 
 

 
 

 

 

2.1 Bedform Classification 

Each channel reach in different drainage systems will have different characteristics associated with 

them including slope, grain size, and roughness elements.  In alluvial systems, which are systems that 

have unconsolidated materials that can be eroded and transported by the flow (Keller and Melhorn, 

1978), there are five distinct reach bedform types that can occur based on different combinations of 

these characteristics.  The different bedform types include cascade, step pool, plane bed, pool-riffle, and 

dune ripple (Montgomery and Buffington, 1997) (Figure 1). 

 

 
Figure 1. Sketch of the side view of different bedform classifications including (a) cascade, (b) step pool, (c) plane 

bed, (d) pool-riffle, and (e) dune ripple (Montgomery and Buffington, 1997). 

(a) 

(d) 

(e) 

(c) 

(b) 

Water Level 
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Montgomery and Buffington (1997) summarized the differences of the five bedform morphologies to 

mark the differences in the major fundamental factors that govern each type (Table 1). 

 
Table 1. Diagnostic features of different alluvial bedforms. 

  Dune Ripple Pool-Riffle Plane Bed Step Pool Cascade 

Type of bed 

material 
Sand Gravel 

Gravel-
cobble 

Cobble-boulder Boulder 

Bedform 

pattern 
Multilayered 

Laterally 
oscillatory 

Featureless 
Vertically 
oscillatory 

Random 

Dominant 

roughness 

elements 

Sinuosity, 
bedforms (dunes, 

ripples, bars), 
grains, banks 

Bedforms (bars, 
pools), grains, 

sinuosity, banks 

Grains, 
banks 

Bedforms 
(steps, pools), 
grains, banks 

Grains, 
banks 

Pool spacing 

(channel 

widths) 

5 to 7 5 to 7 None 1 to 4 <1 

 

All of these different bedform types are important and unique in alluvial stream systems, however, this 

thesis focuses only on the pool-riffle sequence. 

 

2.2 Pool-Riffle Form 

Pools and riffles are common bedforms in alluvial gravel-bed streams (Leopold and Wolman, 1957; 

Keller, 1978; Leopold et al., 1964), but can also be found in some bedrock streams (Keller and 

Melhorn, 1978).  Pool-riffle sequences generally occur over low slopes, generally less than 2% 

(Montgomery and Buffington, 1997; Madej, 1999; Carling, 1991).  Pools are the topographic low of the 

bed, while the riffles are the topographic high (Montgomery and Buffington, 1997), and collectively 

they create an undulating bedform (Leopold et al., 1964) (Figure 2).   
 

 

 

Figure 2. Side view of a pool-riffle sequence (Montgomery and Buffington, 1997). 

The dominant type of planform morphology of a pool-riffle sequence is meandering, which increases 

the length and reduces the slope of a channel (Leopold et al., 1964).  With the development of 

 

 

Pool 
Riffle 

Flow 

Water Level 
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meandering, there is a decrease in tractive forces on the apex of the bends, and it is in this location 

where point bars develop (Church and Jones, 1982).  From the planform view, it is common to 

associate bars with the pool-riffle sequence, and collectively they are referred to as the pool-riffle-bar 

sequence (Figure 3). 
 

 

Figure 3. Planform view of a pool-riffle bar sequence (Montgomery and Buffington, 1997). 

Riffles are shallower, steeper zones, and occur in the straight segments, or cross overs, between pools.  

Riffles store very little transient material, and their relatively large material may be exposed (Church 

and Jones, 1982).  Riffles are generally lobate in shape, and slope alternately first toward one bank and 

then toward the other (Leopold et al., 1964; Church and Jones, 1982).  Due to the diagonal riffle, the 

water in the channel at low flow bends around the low point of the riffle, and thus tends to have a 

sinuous course even within the banks of a straight reach (Leopold et al., 1964).  Riffles are typically 15-

33% wider at the tops than pools during low flows (Richards, 1976).  Riffles act as energy dissipators in 

the channel, and promote stability while also allowing periodic transport of coarse bed sediment to 

occur at high flows (Church and Jones, 1982).  

 

Pools are associated with adjacent point bars which results in an asymmetric cross-channel profile 

(Keller and Melhorn, 1978).  The pool length varies with channel gradient and sediment transport 

conditions (Wohl et al., 1993), while the pool depth is also influenced by discharge (Lisle, 1982, Wohl 

et al., 1993).  The pool exit is an area of strong turbulent energy dissipation, increased sediment 

deposition, and also controls the size of material leaving the pool (Sear, 1996; Thompson et al, 1996).  

 

Alluvial bar development requires a sufficiently large width to depth ratio and small grain sizes relative 

to boulders that are easily mobilized and stacked by the flow (Church and Jones, 1982).  Bars deform 

slowly and are usually adjusted to long-term trends in sediment load and flow conditions due to their 

size and mobility, and therefore, they are relatively stable (Lisle, 1982).  Point bars have the length and 

height on the same order as the channel width and mean depth, respectively (Church and Jones, 1982).  

Bars act as energy dissipators that help maintain channel stability when sediment transport is occurring, 

and provide a major storage sink for bed material sediments (Church and Jones, 1982).   

  

Riffle 

Pool 
Bar 

Bar 

Pool 

Flow 
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A pool-riffle sequence can be formed freely or it can be forced.  A freely formed pool (Figure 4a) is 

created by the lateral mobility of the channel (Keller and Melhorn, 1978), sediment transport, flow 

regime, and the resulting convergence and divergence of flow (Montgomery et al., 1995).  Forced pools 

(Figure 4b) are created by bends or obstructions which cause flow convergence and turbulent velocity 

fluctuations that scour the channel bed (Montgomery et al., 1995).  
 

         

Figure 4. A sketch of a (a) freely formed pool-riffle sequence, and (b) forced pool-riffle sequence (Montgomery et 

al., 1995). 

The pool-riffle sequence is present in nearly all perennial channels in which the bed material is larger 

than coarse sand, but appears to be most characteristic of gravel bed streams (Leopold et al., 1964; 

Montgomery and Buffington, 1997).  Pool-riffle sequences will have a range of bed material size, with 

a coarse layer on the surface layer and a finer layer on the subsurface (Leopold et al., 1964).  The 

largest bed materials in pools, in both the surface and subsurface, are significantly finer than the largest 

bed materials in the riffles (Keller, 1971; Leopold et al., 1964).  In riffles, the largest material 

commonly forms in a single layer on the surface (Keller, 1971).   

 

The pool-riffle sequence is persistent over a range of flow stages (Keller and Melhorn, 1978), so it 

generally does not migrate up and down the channel (Leopold et al., 1964; Wilkinson et al., 2004).  

Very rarely is the whole bed in motion, and the material eroded from one riffle is commonly deposited 

on a downstream riffle (Sear, 1996; Montgomery and Buffington, 1997).  Pools tend to scour at high 

flow and fill during low flow, whereas riffles fill during high flow and winnow during low flow 

(Leopold et al., 1964; Keller, 1971; Keller and Melhorn, 1978).  High sediment loads tend to bury pool-

riffle sequences, whereas frequent high magnitude flows wash them out (Keller 1978).  Thompson 

(2002) assessed the morphological response of pools to flow dynamics, finding that pools elongate at a 

rate of ten times at which they deepen.  

 

In a study on alluvial streams, Madej (1999) determined that immediately after a high flow event (12 

year flood), a river bed will reorganize itself so that the pool-riffle bar sequence has very low variations 

in elevation.  As time elapses from the high flow event, the stream bed topography increases in 

elevation variations and the sequence of pool, riffle, bar, becomes more pronounced.  Following a pulse 

(a) (b) 
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of sediment and debris during a high flow event, the river channel processes and forms will adjust and 

evolve towards a new equilibrium (Madej, 1999).  High flow disturbances leading to a stable riffle-pool 

channel will result in riffles becoming more extensive, pools becoming smaller and shallower, and bed 

material textures becoming finer (Lisle, 1982).   

 

2.3 Scale of Form 

Rivers tend to move and shift in two dimensions, laterally and vertically.  Lateral movements have been 

studied extensively due to the ease of measurement from maps, and have revolved around the 

parameters of meander length or wavelength (L), amplitude (A), and mean radius of curvature (rm) 

(Figure 5). 
 

 

Figure 5. Lateral scaling parameters of a river from the planform view (Leopold et al., 1964). 

These studies led to the discovery that a channel wavelength is a function of stream width, and 

therefore, indirectly a function of discharge.  Thus, twice the distance between successive points of 

inflection is proportional to the square root of the dominant discharge (Leopold and Wolman, 1957).  

The straight line mean meander wavelength roughly averages to be eleven times the mean channel 

width (w) (Leopold and Wolman, 1964), as:  

 

    L � 10.9w$.%$        (1) 

 

From these studies, it was also determined that the channel’s mean radius of curvature can be 

empirically related to the mean meander length (Leopold et al., 1964), as: 
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   L � 4.7r*%.+,        (2) 
 

The exponents in Equations 1 and 2 are so close to unity that they are generally both considered as 

linear, and hold true for a very large range of stream sizes (Figure 6). 

 
 

 

Figure 6. Channel width and mean radius of curvature relationship to meander length (Leopold et al., 1964). 

In contrast to planform measurements, the vertical form of rivers has only been studied extensively in 

the last few decades.  Recent studies have focused on the characterization of riffle height, riffle length, 

pool depth, pool length, and the riffle to riffle length (Figure 7). 
 

 

Figure 7. Vertical scaling parameters in a river from the side view (Lofthouse and Robert, 2008). 

 



9 

 

Freely formed pool-riffles units, for both straight and meandering channels, generally have a riffle to 

riffle spacing at a repeating distance equal to between 5 and 7 channel widths (Leopold et al., 1964; 

Keller and Melhorn, 1978).  The similarity in spacing of riffles in both straight and meandering 

channels suggests that the mechanism that maintains pool-riffle sequences is present in both channel 

types, and is not necessarily only associated with a meandering channel (Leopold et al., 1964).  In 

forced pool-riffles, there is no regular spacing due to the random forcing element distribution (Madej, 

1999), and can result in a spacing value of less than the expected range for freely formed pool-riffle 

channels (Montgomery et al., 1995).  Lofthouse and Robert (2008) found that an increase in the overall 

curvature increases the pool-riffle sequence length.  When this occurs, the curvature appears to promote 

an increase in pool length more so than an increase in riffle length.    

 

The riffle height is constantly proportioned to the bankfull depth at a ratio of approximately 1:0.16, and 

the riffle length was found to increase with the bankfull depth (Carling and Orr, 2000).  The pool 

becomes longer and shallower as the gradient and available energy decreases in a channel (Wohl et al., 

1993).  The average riffle length is in the range of 1:1.3 to 1:4.5 channel widths (Lisle, 1986; Carling 

and Orr, 2000).  The average ratio of pool length to riffle length has been reported in the range of 1:0.9 

to 1.9 (Carling and Orr, 2000; Wohl et al., 1993) in channels with gradients less than or equal to 2%.   

 

2.4 Pool-Riffle Function 

A pool-riffle sequence has two main functions in a channel, a physical function, and an ecological 

function.  Physically, the pool-riffle provides stabilization to a channel by minimizing the potential 

energy loss per unit mass of water (Yang, 1971; Keller and Melhorn, 1978; Wohl et al., 1993).  At low 

flows, the riffle acts as a hydraulic control on flow through the upstream pool (Richards, 1978).  At 

high flows, the riffle is submerged and functions more as a large-scale roughness element (Caamaño et 

al., 2009) to help stabilize the channel.  In a study by Walker et al. (2004) it was found that 50 to 100% 

of the total energy was lost over a riffle and its downstream pool at high flows, proving its importance 

as a stabilization structure.   

 

The pool-riffle sequence plays an important role on the river’s ecology (Moir et al., 2004).  The pool-

riffle sequence has a wide range of conditions that are needed for ecological diversity in a healthy 

channel (Boulton and Lake, 1992), including substrate particle size, current velocity, turbidity, 

dissolved oxygen, aquatic vegetation, depth, temperature, and substrate permeability (Gorman and 

Karr, 1978; Brown and Brown, 1984; Ross et al., 1993).  A range of these optimal conditions are found 

in both the pool and riffle, in general, however, it was found that higher densities of organisms are 

found in the riffle compared to the pool (Logan and Brooker, 1983).   
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Pool-riffle sequences play an important role in the welfare of fish habitat as they provide areas for 

feeding, breeding, and cover (Keller, 1978).  Stuart (1953) found that water flowing through the gravel 

of a riffle provides aeration essential to the incubation of fish ova.  Pool-riffle sequences create a 

backwater effect (backs water upstream in the pool due to the riffle), which is necessary to produce 

high-quality spawning habitats in the tail end of the pool, for such species as the Chinook, steelhead, 

and Atlantic salmon (Heggberget et al, 1986; Pasternack et al., 2008).  Backwater conditions also help 

embryos survive moderate floods by limiting the sediment’s mobility to only partial transport, whereas 

in a uniform channel the full bed would be mobile (Pasternack et al., 2008).  The natural sorting of 

coarser bed material on riffles provides an optimal environment for bottom dwelling organisms (Keller, 

1978).  These organisms are important as they provide a major food source for the fish (Keller, 1978). 

 

2.5 River Restoration 

Anthropogenic disturbances such as urban development, flood controls, and mining practices degrade 

channels and lead to a decrease in natural pool-riffle topography, and a reduction in ecological 

populations (Harper et al., 1998; Walker et al., 2004).  Rehabilitation projects have tried to recreate 

channel forms believed to be favored by particular species (specie- or habitat-driven rehabilitation).  

These projects have not addressed the underlying geomorphical processes that create channel form, 

which results in non-self-sustaining channels that require continual management input (Clarke et al., 

2003).  River rehabilitation must integrate ecology, geomorphology, hydraulics, and hydrology to be 

successful (Clarke et al., 2003).  

 

More recent rehabilitation projects in gravel-bed rivers have used riffle-pool sequences as the central 

bedform (Pasternack et al, 2008).  These projects, however, if improperly constructed, can lead to 

increased flooding, channel instability, and no net increase of ecological populations (Walker et al., 

2004).  An increase in understanding of the characteristics and controls of the pool-riffle mechanics is 

essential in water resource planning, ecological, and river management issues (Harper et al., 1998; 

Newbury and Gaboury, 1993; Clifford et al., 2006; Clifford, 1993a; Emery et al., 2003; Clarke et al., 

2003).   

 

2.6 Field Observations 

Most pool-riffle studies previously conducted have been field experiments.  The data collected from 

field experiments are often limited to one size of bedform, low flow measurements, and often sectioned 

averaged profiles (Clifford and Richards, 1992; MacVicar and Roy, 2007a).  Very few studies measure 

with a high spatial density at high flood stages, and very few divide the channel into sections based on 

expansion and contraction boundaries (MacVicar and Roy, 2007a).  This means that most 
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measurements previously taken are insufficient to characterize the pool-riffle hydrodynamics because 

they did not take into account the vertical and lateral distribution of flow parameters, or sensitive 

enough to measure the near-bed velocities during expansion and contraction in the pool (MacVicar and 

Roy, 2007a).  Spatially distributed data is also hard to collect in the field due to unsteady flow and 

changing discharge (Booker et al., 2001).  However, despite these measurement disadvantages, field 

observations do provide critical information as their bedform geometries form naturally, their roughness 

and planforms are accurate, their discharge fluctuates, and sediment transport processes can be 

observed and measured.    

 

A number of different hypotheses derived from field studies are available to explain the formation and 

maintenance of pools, including the reversal hypothesis (Keller, 1971), the lateral variability of flow 

parameters (Clifford and Richards, 1992, Thompson et al., 1998, Booker et al., 2001, MacWilliams et 

al, 2006, Harrison and Keller, 2007), scour by turbulent vortices (Clifford, 1996; Thompson, 2006), and 

routing of sediment around the deepest part of the pool due to flow convergence and divergence 

(Booker et al., 2001; MacWilliams, et al., 2006).  However, there is no consensus on one hypothesis to 

explain all pool-riffle sequences.   

 

2.6.1 The Reversal Hypothesis 

The first pool-riffle theory was proposed by Keller (1971), who postulated a reversal hypothesis.  This 

hypothesis stated that as the river discharge increased, the velocity in the bottom of a pool increased 

faster than that in the riffle, so that eventually the bottom velocity of a pool exceeded that in the riffle.  

Therefore, when the bottom pool velocity is greater than the bottom riffle velocity, the tractive forces 

will be greater in the pool.  As a result, the largest bed-load particles will generally be found on the 

riffles, and the relatively finer particle will be found in the pools.  Keller developed his reversal idea on 

Gilbert’s (1914) observations of contrasting surface agitation in streams during high and low flows 

while working for the U.S. Geological Survey (Clifford and Richards, 1992).  Keller proposed his 

hypothesis after measuring the bed velocity at 15.2 mm (0.05 ft) above the stream bed over four 

different flow rates (Figure 8). 
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Figure 8. The velocity above the stream bed for both the riffle and pool (Keller, 1971). 

It should be noted that the axes are on a log-log scale, and the data trends follow the power law.  Using 

this theory, at low flow below the velocity reversal, only the finer materials are transported, and the 

bottom velocity of the pool is less than the bottom velocity of the riffle.  At an increasing discharge, a 

transitional point is reached where the bottom velocity of the pool equals the bottom velocity of the 

riffle, and large material can be transported through both the riffle and the pool.  Above the reversal 

velocity, the bottom velocity of the pool exceeds that of the riffle, and the largest bed materials are 

moved through the pool and deposited in the stable area of the river in the riffle (Keller, 1971) (Figure 

9). 
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Figure 9. A diagram explaining the reversal hypothesis (Clifford and Richards, 1992). 

Several investigations have shown that a velocity reversal can occur (Keller, 1971; Thompson et al., 

1996, 1998, 1999; Booker et al., 2001; Wilkinson et al., 2004; MacWilliams et al., 2006).  Some have 

found that with increasing discharge the velocity increased at a faster rate through the pool than over 

the riffle, but did not observe a velocity reversal (Carling, 1991; Cliffords and Richards 1992), and 

there are some that reject the existence of a velocity reversal (Teleki, 1972; Bhowmik and Demissie 

1982).  Although literature suggests that a velocity reversal does occur in some cases, it is not clear 

whether a reversal of some type is a prerequisite for pool maintenance, or whether the reversal 

hypothesis is applicable for all pool-riffle sequences (MacWilliams et al., 2006). 

 

Clifford and Richards (1992) discussed four key weaknesses of Keller’s reversal theory.  First, Keller 

assumed the power law holds in both riffle and pool over the entire range of discharge, even though the 

only data comes from low flow discharge measurements.  Second, Keller assumed these relationships 

are similar for riffles and pools regardless of the type of channel planform, whether straight, 

meandering, or braided.  Third, the reversal hypothesis assumed occurrence for all paired cross-sections 

designated as riffle and pool, regardless of spatial variables.  Fourth, Keller used mean sectioned 

velocities and mean boundary shear stresses, while the researchers who compared their studies to his 

used a wide range of different flow parameters. 

 

Clifford and Richards (1992) state that if a reversal was going to occur, three things would have to 

happen for continuity.  First, the riffle and pool channel geometries would have to vary so that the rate 
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of change of the discharge in the cross-sectional area of the riffle is greater than that in the pool.  

Second, the differences in hydraulic geometries would have to result from the changing distribution of 

flow resistance through the sequence.  Third, scour would have to take place at high discharges in the 

pool and or deposit sediment at the riffle in order to reduce variations in the channel’s cross-sectional 

area.  Clifford and Richards (1992) conclude that the nature of the flow-sediment interaction in riffle-

pool sequences may be more complicated than the reversal hypothesis implies.  Although many studies 

of pool-riffle sequences have shown a convergence in mean parameters in pools and riffles, there is no 

evidence to suggest that a reversal in velocity must occur, and in fact some studies have shown that 

reversals do not occur at all in pool-riffles (Teleki, 1972; Bhowmik and Demissie, 1982).  It can be 

shown that a velocity reversal can occur due to non-uniform flow without causing a continuity problem, 

which will be discussed in Section 2.7.2.  Overall, from the different studies mentioned, it can be 

concluded that the reversal hypothesis is not the dominant process for pool-riffle maintenance (Clifford 

and Richards, 1992; MacWilliams et al., 2006).   

 

2.6.2 Lateral Variability of Flow Parameters  

Clifford and Richards (1992) found that a reversal, or the absence of a reversal, could be demonstrated 

simultaneously for a given pool-riffle sequence depending on which parameter was evaluated, and the 

location of the measurement cross-section.  This was due to the fact that there is lateral variability of 

flow parameters, including both velocity and shear stress.   

 

It was shown that the velocity in the pool section had the highest value near the surface and that the 

flow tended to be concentrated in the center of the channel (MacWilliams et al., 2006).  The velocities 

near the bed were the highest on the point bar side of the pool rather than in the deepest section of the 

pool (MacWilliams et al., 2006).  Clifford and Richards (1992) showed that the location of the 

maximum flow velocity shifts with changing discharge.  Thompson et al. (1998) demonstrated that for 

two channels with similar cross-sectional areas, lateral constriction could result in higher local 

velocities in the pool compared to an adjacent riffle.  By considering this lateral variability, it has been 

found that the highest shear stresses frequently occur over the upstream riffle, and in a narrower zone 

through the pool cross section, despite the overall widening of the pool downstream of the riffle cross-

section (MacWilliams et al., 2006; Harrison and Keller, 2007).  The maximum bed shear stresses at the 

pool cross-section occur on the slope of the point bar rather than in the deepest part of the pool over a 

range of discharges (MacWilliams et al., 2006).   

 

The lateral variability of flow parameters means that measuring the velocity at a fixed point for an 

entire cross-section would not explain pool-riffle maintenance.  Therefore, section-averaged data is not 

sufficient in explaining the characteristics of flow and form interactions of pool-riffle sequences 

(Clifford and Richards, 1992; MacWilliams et al., 2006).    



15 

 

2.6.3 Scour by Turbulent Vortices 

Generally, when considering sediment transport, shear stress is typically only estimated from the 

magnitude or gradient of velocity near the bed, and used in a threshold prediction, like in the Shields 

diagram (Dingman, 2009).  However, it is known that turbulent fluctuations can increase the rate of 

sediment transport (Nelson et al., 1995; Sumer et al., 2003), and can even cause sediment transport 

when the ensemble mean average critical shear stress hasn’t been achieved (Hassan and Woodsmith 

2004; Sumer et al., 2003).  The observation of higher turbulence at the head of the pool (Sear, 1996; 

Clifford, 1996) led to the hypothesis that turbulent vortices are important for pool scour (Thompson 

2002, 2004, 2006, 2007).  This theory explains why the pool center has a larger range of grain sizes 

despite having a lower mean bed shear stress, as the turbulence effects causes enhanced entrainment 

and higher bed load transport. (Hassan and Woodsmith, 2004).  

 

2.6.4 Routing of Sediment around the Deepest Part of the Pool  

Another theory for the maintenance of pool-riffle sequences involves the convergence and divergence 

of flow.   Studies have observed that many pools are characterized by a constricted width, which forces 

the lateral convergence of flow at the head of the pool (Montgomery et al., 1995; Thompson et al., 

1998).  This constriction causes a zone of greater near-bed velocities, shear stresses, turbulence, and 

secondary circulation (MacWilliams et al., 2006; Montgomery et al., 1995; Thompson et al., 1998; Sear 

1996; Harrison and Keller, 2007).  This zone is the primary pathway for sediment routing through or 

around the pool, and can serve to route the coarsest sediment away from the deepest part of the pool 

(MacWilliams et al., 2006; Booker et al., 2001) (Figure 10). 

 

 

Figure 10. Routing of sediment around deepest part of the pool due to flow convergence from the plan view 

(Pyrce and Ashmore, 2005). 
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Results indicate that the maintenance of the pool-riffle morphology could be due to the lack of sediment 

being routed into pools rather than an increased ability to erode based on convergence of flow into the 

pool (Booker et al., 2001).  At the tail of the pool, the flow diverges at the head of the riffle, leading to 

deposition on the riffle and the maintenance of a topographic high at the tail of the pool (MacWilliams 

et al., 2006).  Therefore, it has been hypothesized that flow convergence routing could be the primary 

mechanism for maintaining pool-riffle morphology (MacWilliams et al., 2006; Booker et al., 2001; 

Harrison and Keller, 2007).   

 

Each of the three theories discussed above have been observed at different field sites, and the authors 

concluded that each method could be the primary maintenance mechanism.  However, in a field study 

by MacVicar and Roy (2007a,b), near-bed velocity reversals, flow convergence, and turbulence 

generation were all present at bankfull discharge.   

 

This led to the conclusion that multiple mechanisms need to be considered to explain pool formation 

and maintenance (Thompson and Wohl, 2009; MacVicar and Roy, 2009; MacVicar and Rennie, in 

review), and that previous theories have had too narrow of a focus.  The key to understanding how 

pools and riffles are formed and maintained may be hidden by a lack of understanding of the more 

general process of convective acceleration and deceleration.   

 

2.7 Laboratory Studies 

A number of laboratory studies have been completed that, despite their idealized conditions, serve to 

characterize flow properties during convective acceleration and deceleration.  There are two limitations 

in existing laboratory studies that prevent direct comparisons between field and lab results.  First, 

existing flume tests of accelerating and decelerating flow typically measure parameters along the 

channel centerline as a means of minimizing the variability induced by proximity to the channel walls 

(Song and Chiew 2001).  Due to the fact that bedforms scale with the channel width, the effect of the 

channel side wall is needed to understand the effect the wall has on accelerating and decelerating flow 

(MacVicar and Rennie, in review).  The second limitation is that flume experiments are set to have 

equilibrium flow, but bedforms produce non-equilibrium transitions between accelerating, decelerating, 

and more uniform sections (MacVicar and Rennie, in review).  Despite the disadvantages that 

laboratory studies have, they are useful in obtaining detailed measurements over a high spatial density 

and wide range of flows.  The first non-uniform flow studies were completed on flat beds to try to 

understand the underlying differences non-uniform flow has on velocity, shear stress, and turbulence. 
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2.7.1 Flat Bed Experiments with Non-Uniform Flow 

Changes in bed elevation in pool-riffle sequences cause non-uniform flow.  Non-uniform flow occurs 

when the flow is accelerating or decelerating, and causes the slope of the water surface to not be 

parallel to the bed surface (Figure 11). 
 

 

Figure 11. A sketch of uniform, decelerating and accelerating flow (Yang and Chow, 2008). 

In uniform flow in open channels with flat beds, the streamwise velocities as well as Reynolds stresses 

follow characteristic profiles due to a balance between the accelerating force of gravity and the 

resistance from the channel bed and walls (Nezu and Nakagawa, 1993).  The streamwise velocity 

follows the log-law, and the Reynolds stress follows a linear profile decreasing in value as the distance 

from the bed increases.  In non-uniform flow, however, these characteristic profiles do not hold true, as 

the velocity profile in the outer region will follow the Coles’ wake law (Coles, 1956), and the Reynolds 

stress will no longer follow a linear profile (Yang and Chow 2008).  The streamwise velocity in 

accelerating flow generally has a convex shape (bowed outwards) when compared to uniform flow, 

where the peak velocity occurs below the water surface (Coles, 1956; Kironoto and Graf, 1995; Song 

and Chiew, 2001; Yang and Chow, 2008) (Figure 12a).  In decelerating flow, the velocity has a 

relatively less-convex shape, with the peak velocity near the water surface.  The Reynolds stress is 

relatively lower in accelerating flow but relatively higher in decelerating flow when compared to the 

linear uniform distribution.  In an accelerating flow, the Reynolds shear stress has a concave shape, and 

in decelerating flow, the Reynolds stress becomes convex in shape, with the peak below the water 

surface (Figure 12b).  The Reynolds stress tends to increase above the bed in decelerating flow due to 

the generation of new turbulence (Kironoto and Graf 1995, Song and Chiew 2001, Yang and Chow 

2008).   

Decelerating Flow 

 

Uniform Flow 

 

Accelerating Flow 
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Figure 12. Velocity and Reynolds stress profiles for uniform and non-uniform flow for (a) streamwise velocity 

and (b) Reynolds stress (Yang and Chow, 2008). 

Accelerating flow generally hampers the turbulence intensities, whereas decelerating flow strengthens 

the turbulence (Figure 13).  This understanding leads back to the explanation as to why the Reynolds 

shear stress increases in decelerating flow (Figure 12b). 

 

 

Figure 13. Turbulence intensity for uniform and non-uniform flow in the (a) streamwise, and (b) vertical direction 

(Yang and Chow, 2008). 
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The most important characteristic of non-uniform flow is the existence of the non-zero wall-normal 

velocity.  Decelerating flow generates upward wall-normal velocities, whereas accelerating flow yields 

downward wall-normal velocities (Yang and Chow, 2008).  In uniform flow, the wall-normal velocity 

is generally considered zero, however, it can be non-zero due to secondary currents.  Secondary 

currents are velocity vectors perpendicular to the main streamwise flow (Dingman, 2009), i.e., flow 

moving up or down, or laterally across the channel.  Secondary currents can be caused by the 

centripetal force resulting from channel curvature, heterogeneous turbulence generation, or both (Van 

Balen et al., 2009).  Secondary currents can lower the maximum velocity location some distance below 

the water surface at the centerline, a phenomenon known as ‘velocity dip’ (Dingman, 2009).  The 

magnitude of secondary currents is typically on the order of 5% of the downstream velocity (Dingman, 

2009), but has been shown to be as great as 40% in very sharp bends (Blanckaert, 2009).  Regardless, if 

the wall-normal velocity are caused by secondary currents or non-uniform flow, the turbulence 

characteristics are substantially different if the directions of wall-normal velocity are opposite, as the 

wall normal velocity is responsible for the re-distribution of Reynolds shear stress and turbulence 

intensities (Yang and Chow, 2008) (Figure 12b and Figure 13).   

 

2.7.2 Non-Flat Bed Experiments with Non-Uniform Flow 

The effect of a non-flat bed must also be considered along with the flat bed experiments previously 

discussed, further complicate the flow hydrodynamics over pool-riffle sequences.  In a pool-riffle 

sequence the flow depth will first increase and then decrease in a pool, causing flow deceleration in the 

upstream portion of the pool and flow acceleration in the downstream portion of the pool (MacVicar 

and Rennie, in review).  This non-uniformity causes a distribution of the velocity so that the streamwise 

velocity is relatively low near the bed and high near the water surface in decelerating flow, while the 

velocity in accelerating flow will have relatively high velocities near the bed (Kironoto and Graf 1995, 

Song and Chiew 2001, Yang and Chow 2008, Afzalimehr and Rennie 2009).  This increase in near-bed 

velocity provides the necessary mechanism for a velocity reversal to occur in the downstream portion of 

the pool, but only in zones of flow acceleration (MacVicar et al., 2010).  The velocity reversal does not 

contradict the laws of continuity as partial flow velocity reversal can occur without a reversal of bulk 

velocity (MacVicar et al., 2010).  These results are similar to those of Thompson (2004), who found 

that the velocity reversal can occur without a bulk velocity reversal when a lateral constriction is 

introduced.   

 

Previous experimental and numerical studies on non-flat beds have been completed (Yalin, 1971; 

Alfrink and van Rijm, 1983; Stansby and Zhou, 1998; Christian and Corney, 2004; Best and Kostachuk, 

2002; Onitsuka et al., 2009).  However, the non-flat beds used in these previous studies (generally 

trenches and dunes) are typically characterized by steeper slopes than that found in riffles, leading to 

flow separation at the expansion.  The previous results also have not considered the wall effect, and 
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only consider the flow at the channel centerline.  Pool-riffle sequences are not characterized by flow 

separation and scale with the channel width, and therefore, new studies must be completed to test these 

parameters.   

 

To test the effect that bedforms have on shear stress in non-uniform flow in a pool-riffle sequence, 

MacVicar and Rennie (in review) conducted preliminary flume experiments using a single bedform 

configuration.  They concluded that there are three phenomena that affect the shear stress on the bed.  

The first is the lateral convergence of mean flow and shear stress through a straight pool.  The second is 

the flow deceleration at the upstream portion of the pool that causes the main flow to move away from 

the bed of the channel, which produces a vertical flow convergence near the water surface that matches 

the lateral convergence in the center of the channel.  Lastly, the acceleration of the flow in the 

downstream portion causes the velocity to move more of the flow towards the bed, so that the near-bed 

velocity increases in the downstream portion of the pool as flow diverges across the width of the 

channel.  MacVicar and Rennie (in review) concluded that the increase in near-bed velocity in the pool 

tail, the increase in turbulence in the pool head, and the flow convergence through the pool are all 

linked to convective acceleration and deceleration.  They suggest that more research is needed to clarify 

the processes that occur in non-equilibrium transitions over multiple bedform geometries that are not 

characterized by flow separation as a means of better understanding flow over macrobedforms. 

 

2.8 Thesis Objectives 

The aim of this thesis is to better explain the effect that bedform scale has on the hydrodynamics of 

pool-riffle sequences.  This thesis followed from the preliminary experiments of MacVicar and Rennie 

(in review), that tested the effect of a two-dimensional macro-scale bedform in an open channel on the 

three-dimensional structure of the flow.  The specific objective of this thesis is to understand how the 

length and spacing of simplified bedforms affect the distribution of flow and turbulence in the channel, 

particularly, close to the channel bed or side walls where it could be significant for sediment transport.  

In the research described in this thesis, the geometry of straight artificial pools and riffle were 

implemented.  Research was conducted using ultrasonic velocity profilers (UVPs) over movable PVC 

bedforms in a laboratory flume to allow multiple analyses on pool-riffle bedform ratios.  This research 

was completed to try to identify the mechanism(s) that lead to the formation and maintenance of a 

riffle-pool in a simplified macro-scale bedform structure.  Ultimately, this research will help to improve 

sustainable engineering design for the restoration of channelized rivers by improving our ability to 

manage sediment transport, maintain ecological integrity, and reduce the risk of flooding associated 

with pool-riffle sequences. 
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Chapter 3 

    METHODOLOGY 

The following section outlines the experimental and analytical methods used in for this research 

including the experimental apparatus, the experimental runs, error detection and removal, and the 

analysis of the data.  

3.1 Experimental Apparatus 

3.1.1 Flume Description 

The laboratory experiments were conducted in a 17 m long, 0.3 m deep, 0.6 m wide molded fiberglass 

flume (Figure 14), located at the Ven Te Chow Hydrosystems Laboratory in Urbana-Champaign, 

Illinois, USA.   
 

 

 

Figure 14. Sketch of the flume used in the experiments (Butman and Chapman, 1989). 

The smooth-walled channel has plate glass windows at six locations in the middle of the raceway.  The 

windows are 1.02 m long, by 270 mm high, by 6.3 mm thick, mounted flush to the sidewalls for 

minimal flow disturbance (Butman and Chapman, 1989).  The flume is supported by two steel I-beams 

that pivot at the end of the flume.  The slope is controlled by a hydraulic jack, and was set to a slope of 
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0.0016 m/m.  Attached to the entrance of the flume channel is a head box that allows for a transition 

between turbulent incoming flow from the 152.4 mm (6 in) supply pipe to the uniform flow in the 

entrance region.  The transition has an expanding and turning section to help minimize surface waves 

and secondary flow (Butman and Chapman, 1989).  The water exits the transition at the level of the 

raceway where the water is driven down the raceway due to gravity (Butman and Chapman, 1989).  The 

head box contains a weighted Styrofoam piece to help dampen surface waves (Figure 15b), and a flow 

straightener made out of an 18 by 10 matrix of 2.54 cm (1 in) PVC tubing that is approximately 0.43 m 

(1.4 ft) long (Figure 15c).   
 

                 

Figure 15. Picture of (a) the head tank, (b) the flow dampener within the head tank, and (c) the downstream view 

of the flow straightener. 

At the end of the flume channel is a curtain style tail water control.  For the purposes of this 

experiment, the tail water control was always wide open, and therefore, made no impact on the flow 

regime.  Beyond the tail water control is the tail water tank which feeds the return line.   

 

The flume uses a re-circulating water system controlled by an electric Aurora centrifugal pump.  The 

pump is run by an electric motor controlled by a variable frequency drive controller, which allows a 

precise speed to be selected, ensuring test repeatability.  The flow rate is measured with an ultrasonic 

Ultra-Mag flow meter, which has an accuracy of ±0.05% of the actual flow (McCrometer Inc., 2011).  

The flume raceway consists of two sections, the approach section and the test section.  The approach 

section is six meters in length and consists of a flat bed which allows the flow to reach a uniform state 

before entering the test section.  The test section, which follows the approach section, is eleven meters 

in length and contains the different bedforms.  

 

On the top of the two sidewalls of the flume’s raceway is a guiderail for an instrumentation cart.  The 

cart is used to hold and transport different instrumentation up and down the length of the flume.  The 

instrumentation cart ran on four wheels and has an adjustable upper frame to ensure it is level.  The 

(b) (a) (c) 
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instrumentation cart contains a lorry bracket which can slide along the width of the instrumentation 

cart.   

 

An adjustable point gauge attached to the instrumentation cart’s lorry bracket is used to measure the 

water and bed surface elevations (Figure 16).  The water surface and bed heights were recorded at three 

locations across the flume, 0.04, 0.30, and 0.57 m (1.75, 11.75, and 22.25 in) from the near side wall, so 

that an average can be determined.  The point gauge is accurate to ±0.0254 mm (0.001 in). 

 

 

 

Figure 16. Measuring the water surface elevation with the point gauge at 0.30 m width. 

 

3.1.2 Velocity Measurements 

Velocity profiles were measured using 5 mm IMASONIC probes, with Optek Ultrasonic Velocity 

Profile (UVP) software Version 3.0, all coupled with a UVP-DUO data logger, as shown in Figure 17.   
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Figure 17. (a) UVP-DUO data logger and software (Met-Flow, 2002), and (b) an IMASONIC probe. 

The UVP probe sends out a short ultrasonic pulse into the water column at a frequency of 4 MHz, and 

receives multiple echoes returning from the reflecting particles found along the acoustic path, which 

have velocity vectors at frequencies greater than 25 Hz (Met-Flow, 2002).  The time delay (δt) between 

emissions of a pulse and reception of a corresponding echo from a region located a distance ‘r’ from the 

transducer is equal to: 
 

    δt � �
�         (3) 

where:   c = speed of sound in the transmitting medium 

The particles in the volume of water from which the sound is being scattered are moving with a radial 

velocity ‘ur’ along the axis of sound transmission.  Any backscatter sound will represent a Doppler shift 

of the frequency with respect to the original frequency when measured at the transducer (Met-Flow, 

2002).  Since the frequency is shifted twice, once when it hits the particle and again when it is reflected, 

the relation between the measured Doppler shift (FD) and the velocity of the particle in the measuring 

volume is given by: 
 

    u
 � 789�        (4) 

where:   λ =  wavelength of the ultrasound  

The Doppler shift frequency is calculated by the UVP-DUO using a time domain algorithm for each 

channel.  Since a Doppler-shifted echo burst from a channel is much shorter than the time 

corresponding to the required frequency measurement, several echoes are required to compute the shift 

frequency.  From each echo a single sample of Doppler shift frequency is measured until the entire 

frequency is reconstructed (Met-Flow, 2002).  The complete details of the Doppler shift determination 

can be found in the work of Lhermitte and Serafin (1984), and Lhermitte and Lemmin (1994).  

(b) (a) 

5 mm 
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Essentially, the UVP-DUO measures the Doppler shift and the time delay, and from them computes the 

component of the particle velocities inside the different measuring volumes.   

 

The UVP probe can measure multiple positions along the transmission axis.  The different positions 

along the axis were determined by the channel distance, and by selecting the total number of channels 

(Figure 18).  The channel distance is a function of the speed of sound in water, and is set so that channel 

volumes never overlap.  The number of channels selected depended on the water depth.  The channel 

distance ranged from 1.43 to 1.47 mm depending on temperature of the water, and the number of 

channels ranged from 35 to 100, depending on the flow depth.   
 

 

 

 

 

 

 
 

  

Figure 18. Sketch of the UVP probe sound axis, channel distance and total channels. 

The UVP probes were set to have a sampling period of 25 ms (40 samples per second), and to measure 

the velocity over a time period of 120 s.  With these parameters, each channel collected 4800 velocity 

samples in the two minutes of testing.  The velocity sensitivity of the UVP probe depends on the 

velocity resolution, or the least resolvable difference in velocity, given by (Met-Flow, 2002):   
 

    V
;<=> � ?@ABCDEFGH      (5) 

    ∆V � JKGLMNO8P        (6)    
where:  Vrange  = maximum measurable velocity component range [m/s] 

Cs  = speed of sound in water [m/s], 

fo  = ultrasound basic frequency [Hz] 

Pmax  = maximum depth [m] 

∆V  = velocity resolution [m/s] 

NDU  = number of Doppler units  
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The number of Doppler units represents the number of possible velocity values coming from the digital 

signal processer.  Due to the fact that the UVP-DUO uses an 8-bit word, the number of bit 

combinations available in the digital signal processor is 256 values (Met-Flow, 2002).  Using Equations 

5 and 6 and the values of fo = 4 MHz, Pmax = 0.06 m, and c = 1450 m/s (which are values encountered in 

the testing phase), the least resolvable difference in velocity is estimated to be 0.009 m/s.   

 

3.1.3 Water Temperature 

The temperature of the water in the flume was subject to change with room temperature.  This change 

in water temperature caused a change in the speed of the ultrasound transmitted by the UVP.  In order 

to account for the differences in the speed, the water temperature was measured periodically throughout 

each run to calculate the speed of sound used in the UVP software calculations.  The speed of sound in 

water at different temperatures is determined as (as per Table 2 in Lubbers and Graaff, 1998): 
 

   CS � 1405.03 V 4.624(TX) Y 0.0383(TX� )     (7) 

where:   Cs  = speed of sound in water [m/s] 

  Tw  = temperature of water [°C] 

 

3.1.4 Seeding 

The UVP does not measure the velocity of the fluid, but of particles that are suspended in the fluid.  

Therefore, it is important to choose a seeding material that is compatible with water and the frequency 

at which the UVP is operating.  It is recommended that the reflecting particles should have a diameter 

greater than a quarter of the wavelength (Met-Flow, 2002): 
 

    d	 \ 9B        (8)    
where:   di  = diameter of reflecting particle [m] 

  λ = wavelength [m] 

 

The wavelength is proportional to the velocity divided by the frequency of the emitted pulse (Met-

Flow, 2002):     λ � ?@C         (9) 
where:    f   = frequency [Hz] 
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The UVP operated at a frequency of 4 MHz for all trials.  The speed of sound at room temperature is 

1480 m/s.  Therefore, the wavelength emitted is 0.37 mm, and the reflecting particles should have a 

diameter greater than 93 µm.  The density of water at room temperature is 1.0 g/mL, therefore, the 

reflecting particles should have a density of approximately 1.0 g/mL, and a diameter of approximately 

93 µm. 

 

Griltex A1 P82, a thermoplastic adhesive manufactured by EMS Griltech, was selected for use as 

seeding material for the experiment because it is approximately neutrally buoyant, with a density 

ρ = 1.07 g/mL, and has a diameter suitable for reliable reflectance of the emitted 4 MHz UVP signal 

(80 µm to 200 µm) (Met-Flow, 2002; Barrie, 2009).  The seeding particles were added to the water at 

the start of each run, and periodically throughout the runs when the signal-to-noise ratio indicated a 

poor quality return.   

 

3.2 Experimental Runs 

3.2.1 Bedform Description 

Simplified two-dimensional bedforms were utilized in this experiment, which meant that no lateral 

variability was modeled.  No sediment was added to the flume so that all experiments were run on clear 

water.  Modular PVC bedforms were set on the bottom of the raceway so that different bedform 

geometries could be tested.  Bedforms were constructed as a series of shallow and deep sections 

connected by gradual transitions.  The hydrodynamics over seven different bedform lengths were tested 

by changing the length of the shallow and deep sections (Table 2 and Figure 19).   

 
Table 2. Details of the bedform geometries for each run. 

Run 
Total Bedform 

Length (m) 

Shallow Section 

Length (m) 

Deep Section 

Length (m) 

Width / Total 

Length Ratio 

1 1.82 0.40 0.40 3.0 

2 2.22 0.40 0.80 3.7 

3 3.02 0.40 1.60 5.0 

4 3.82 0.40 2.40 6.4 

5 4.22 0.80 2.40 7.0 

6 5.02 1.60 2.40 8.4 

7 5.82 2.40 2.40 9.7 
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Figure 19. Sketch of flume with bedforms. 

The ratio between channel width and total bedform length ranges from 3 to almost 10 (Table 2), which 

sufficiently covers the expected scale of 5 to 7 channel widths naturally observed in pool-riffle 

sequences.  

 

The transition sections were angled at 7.2° from horizontal over a streamwise distance of 0.50 m, giving 

a change in height of 0.06 m, and a bed slope length of 0.51 m.  This slope ensures that permanent flow 

separation does not occur (Simpson, 1989), and is in the range of typical leeside angles in 

macrobedforms (Best and Kostaschuk, 2002; Carling et al, 2000).  This slope is similar to MacVicar 

and Rennie’s (in review) flume experiments (5°), and based on MacVicar and Roy’s (2007a,b) field 

study of a forced pool-riffle.   

 

The velocity was measured over the first bedform in the series for all runs.  The measurement section 

began 0.20 m upstream of the transition to the first bedform and continued 0.5 m downstream of the 

first pool.  Downstream of the testing area consisted of a 0.40 m length shallow depth and another 

transition section down to a flat bed. 

 

The bedforms were affixed to the side walls using a 100% silicone rubber sealant.  This silicone was 

also used in between modular bedform sections to help reduce any secondary currents that may have 

been unintentionally created.  When changing between different bedform configurations, the silicone 

was removed from side wall as best as possible, however, there were still remnants of silicone on the 

side walls and windows.  This small layer of silicone on the side walls was assumed to be insignificant, 

and the walls of the flume were still assumed to be smooth. 
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3.2.2 Probe Positioning 

Data was collected from three orientations to provide data for two-dimensional velocity volumes.  

These orientations were measured on the vertical profile at 0°, -30°, and 30°, which are referred to as 

vertical, upstream, and downstream orientations, respectively (Figure 20).  Lateral data was also 

collected through the clear windows where possible using the probes along with Spectra 360 Electrode 

Gel (ultrasound jelly) as a medium.  However, this data is incomplete due to the limited windows along 

the flume, and has proven difficult to analyze due to additional noise related to the reflectance of the 

ultrasound pulse within the windows, so it is not included. 

 
 

 
Figure 20. Probe orientations used in the experiments. 

Each of the orientations used four UVP probes spaced 95 mm apart starting at 15 mm away from the 

inside wall of the raceway.  This spacing allowed for the fourth probe to be placed at 300 mm, or at 

exactly half of the flume’s width.  Analysis was completed using data from only one half of the flume 

width based on the assumption that the flow is symmetric about the center axis of the flume.  In order to 

obtain a higher spatial density of data in the transition to the deep section, additional measurements 

were taken by moving the probes to 66 mm from the inside wall.   

 

The probes were held in plastic probe holders and fixed with set screws.  These plastic holders had 

milled holes at set angles to allow for the three orientation angles.  The probe holders were attached to 

an aluminum brace that was in turn attached to an adjustable point gauge, which was fixed to the 

instrumentation cart.  The apparatus was designed to minimize the possibility for positioning errors.  

The aluminum brace was leveled and squared to the flume wall at each position prior to velocity 

measurements.  The probes were positioned so the tips of the probes were completely submerged in the 

water (Figure 21).  
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Figure 21. Measurement apparatus (a) looking downstream, and (b) looking from the side. 

The probes were moved in 153 mm (0.5 ft) increments downstream for each test.  The exceptions were 

Runs 4, 5, 6, and 7, where the probes were moved in 305 mm (1ft) increments through the deep section 

(Figure 22). 

 
 

 

 

 

 

Figure 22. Sketch of Run 5’s probes measurement planes and probe increment movements downstream from the 

side view. 
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At each measurement location, the point gauge and cart position were recorded.  The point gauge 

provided the vertical location of the probes.  The cart position allowed the calculation of the streamwise 

position of the probes by using the geometric relationships between the cart, the point gauge, the 

aluminum brace, and the plastic holder, to the center of the probe.  The horizontal position of the probes 

was noted, but was predetermined to be at either the 15 mm or 66 mm away from the inside flume wall.   

 

3.2.3 Water Depth and Discharge 

The flow rate was held constant at 15.4 L/s and the depth of the water upstream of the bedforms was 

kept at a constant 120 mm in all runs.  With these inlet conditions, the bulk velocity was 0.21 m/s in the 

approach section, and the water depth in the deep and shallow sections was approximately 120 mm and 

60 mm, respectively, for all bedform configurations.  The purpose for these conditions was to keep the 

water depth in the pool twice as deep as the water in the riffle, which was similar to MacVicar and 

Rennie’s (in review) flume experiments based on MacVicar and Roy’s (2007a,b) field study.  This 

water depth maintained a width to depth ratio of 1:10 in the shallow section, and a 1:5 ratio in the deep 

section, which is sufficiently wide so that a velocity dip is not expected at the channel centerline.  The 

bulk velocity was higher than the previous studies conducted by MacVicar and Roy (2007a, b), but was 

decided upon primarily because it was sufficient in keeping the seeding material in suspension, which is 

necessary in order to obtain high quality data using the UVPs.  

 

3.2.4 Froude and Reynolds Numbers  

The Froude number relates inertial forces to gravitational forces, and represents the effect that gravity 

has on the state of flow in open channels (Dingman, 2009), and is defined as: 
 

    Fr � ��`=�       (10) 

where:   Fr  = Froude number 

  u�  = average streamwise velocity [m/s] 

g  = gravitational acceleration [9.81 m/s2] 

d  = total water depth [m] 
 

In this experiment, it was important that the Froude number always indicated subcritical flow, which 

occurs when Fr < 1.  This was important so as to not introduce a hydraulic jump, and so that the Froude 

number was similar to previous field and lab studies that this experiment was based upon.  A hydraulic 

jump is the rise of the water surface level that takes place due to the transformation of supercritical flow 

to subcritical flow (Dingman, 2009).   
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The Reynolds number relates inertial forces to viscous forces, and is used to determine whether a flow 

is laminar or turbulent, and is defined as: 
      

    Re � �� ���bµ        (11)    
where:   Re  = Reynolds number 

ρ  = water density [1000 kg/m3] 

  µ  = kinematic viscosity [0.01 m2/s] 

 

In this experiment, it was important that the Reynolds number indicated turbulent flow on the same 

order of magnitude as previous field studies in order to have similar flow conditions.  Table 3 shows the 

maximum Reynolds and Froude numbers from all experimental runs and values from previous field and 

lab studies.  A spatial distribution of the Froude and Reynolds numbers can be seen in Appendix A and 

Appendix B, respectively. 
 

Table 3. Comparison of the maximum Froude and Reynolds number from Runs 1 through 7 versus previous field 

and lab studies. 

Study Max Fr  Max Re 

Run 1 0.60 3.2E+04 

Run 2 0.57 3.0E+04 

Run 3 0.61 3.2E+04 

Run 4 0.60 3.1E+04 

Run 5 0.64 3.0E+04 

Run 6 0.67 3.2E+04 

Run 7 0.72 3.3E+04 

MacVicar and Rennie (in review) 0.27 7.5E+04 

MacVicar and Roy (2007a) 0.59 7.8E+05 

 

The Froude values created in the experiment are much higher than the lab study completed by 

MacVicar and Rennie (in review), but relatively close to the values from the field study conducted by 

MacVicar and Roy (2007a).  The Reynolds numbers tested in this experiment are lower than the lab and 

field studies, however, they are on the same order of magnitude, and are in the fully turbulent regime.   
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3.2.5 Uniform Flow and Repeatability 

In order to ensure that the flow was uniform after the 6 m approach section, and to show that the tests 

were repeatable, the velocities at the end of the approach section was measured in each run for all 

orientations.  If the flow was uniform, the velocity profiles in each run should follow the same trend, 

and if the tests were repeatable and the upstream conditions were held the same, the profiles should be 

of similar magnitudes.  The velocity data from the specific probe orientations were utilized to create the 

velocity profiles.  For the upstream, vertical, and downstream orientations, the velocity profiles, 

magnitudes, and trends are very similar in each run, indicating uniform flow and repeatability of the 

velocity measurements (Figure 23). 

 
 

    

 

Figure 23. Centerline uniform flow profiles along the axis of the probe in the (a) upstream, (b) vertical, and 

(c) downstream orientations. 

It should be noted that the vertical radial velocities are at least two orders of magnitude smaller than the 

upstream and downstream radial velocities, which is why there is more variation in these 

measurements, as the velocity is nearing the lower limit of the measurement resolution.  The vertical 

velocity is more variable than the streamwise velocity due to the sensitivity of the probes. 

 

3.3 Analysis 

The analysis of the raw data is a complicated and extensive procedure comprised of a series of error 

analysis and calculation steps (Figure 24).   
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Figure 24. Flow chart of the data analysis. 

The analysis process is explained in detail, starting from the raw data, moving on to the results of the 

error analysis, through the interpolation process, and concluding with the calculation of different flow 

properties used in the results of this thesis. 

 

3.3.1 Raw Data 

As stated in Section 3.1.2, the UVP probes were set to have a sampling period of 25 ms, so each 

channel collected 4800 samples of raw data in the two minutes of testing.  The raw data of the velocity 

measurements were then stored as an MPROF file format, which is a unique format specifically 

programmed for the UVP Optec software.  The raw data collected included the time delay, Doppler 

shift frequency, channel distance, and channel width, plus numerous other variables.  The raw data was 

Raw Data
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•Probe Positioning
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•Seeding Errors
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then converted by the software into a beam velocity in the direction of the probe for each channel based 

upon the time delay and Doppler shift frequency.  The average and range of the velocity data for each 

channel in the profile was provided in a summary to the user at the end of each testing period (Figure 

25). 
 

 

Figure 25. Average and range of the raw radial velocity data in a MPROF file from the downstream orientation. 

Further analysis of the raw data must be conducted to determine downstream velocity, but before this 

occurs, the data is analyzed for errors. 

 

3.3.2 Error Analysis 

Errors that can occur in the UVP measurements include, but are not limited to, the computation of the 

Doppler shift (Pedocchi and Garcia, 2009; Goring and Nikora, 2002), the random motion of the 

velocity inside the sampling volume (Pedocchi and Garcia, 2009), and a lack of data points due to 

insufficient seeding.  These errors will result in white noise, wrapping errors, and spikes, and some of 

the erroneous data will look similar to the natural fluctuations in the velocity (Nikora and Goring, 

2002).  To remove erroneous data points and identify data series with significant error that could not be 

removed, the data was filtered for spikes, white noise, and wrapping errors.   
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3.3.2.1 Seeding Error Filter 

One error that occurred in Run 2’s upstream orientated data only was a wrapping error caused by 

insufficient seeding material.  This error led to an increase in near zero values caused by no data, which 

led to an increase in standard deviation and resulted in a mean velocity closer to zero in comparison 

with other runs (Figure 26).   
 

 

Figure 26. Velocity profiles at 6.4 m in the upstream orientation from Run 1 through 4. 

This error was remedied by creating a de-wrapping program in MATLAB, which was only applied to 

Run 2’s upstream data before it was sent to the subsequent filters.  Because this type of error resulted in 

data that was closer to zero than the mode, a secondary mode of data appeared in the histogram (Figure 

27).   

 

 

Figure 27. Example of a histogram from Run 2’s upstream data. 
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To eliminate this data, an estimate of the standard deviation of the main mode was calculated from the 

data that was farther from zero than the secondary mode.  Assuming all of the data should follow a 

single distribution, likely error points were determined as those that had a z score greater than 6, which 

is equivalent to the 99.9999999th percentile of the data.  Such an extreme value was found to be 

necessary to prevent the misclassification of good data where data was strongly negatively skewed, 

which was the case in some locations due to shear layers.  The bad data was then replaced with an 

interpolated value from the surrounding good data points.  Data series with greater than 5% seeding 

error were removed from further analysis.  Of the approximately 32 million total data points in Run 2’s 

upstream orientation data, this source of error affected only 2.52% of the data.   

 

3.3.2.2 Single Point Error Filtering 

Each channel within a probe’s profile collects 4800 velocity readings during the 120 seconds of testing.  

A normal velocity signal will have natural fluctuations attributed to it, but it can also have erroneous 

fluctuations known as spikes (Figure 28). 

 

   

Figure 28. Example of spikes in a velocity time series. 

These spikes occur for a variety of different reasons, as discussed previously.  The spikes may account 

for a small percentage of the data, but will have large impacts on the data quality and statistics, and 

therefore they need to be identified and replaced by a more probable data point.  Single point error 

filtering was conducted on every time series for better quality data.  If a time series was identified to 

have more than 5% spikes attributed to it, it was classified as bad data and was completely disregarded.  

If less than 5% of the data was identified as spikes, the spikes were replaced with an interpolated value 

from the surrounding good data.  Spikes were identified using the Goring and Nikora (2002) filter 

algorithm.  The method is based on the assumption that good data cluster in a dense cloud in a three-

dimensional ellipsoid formed by the velocity and its first and second derivatives (Figure 29).  

 

= Spike 
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Figure 29. Example of a three-dimensional cluster of good data when the velocity and its first and second 

derivatives are plotted against each other (Goring and Nikora, 2002). 

Following the work of Goring and Nikora (2002), detrended velocity series were calculated by 

removing the mean and long-period fluctuations from the raw data using a high-pass filter.  These were 

added back in after despiking.  Surrogates of the velocity were calculated for the first and second 

derivative as:  

 

    Δu	 � (u	d$ Y u	e$)/2      (12) 

    Δ�4	 � (Δ4	d$ Y Δ4	e$)/2     (13) 

where:  4g = detrended velocity series 

  Δ4g = surrogate for first derivative of the detrended velocity series 

  Δ�4	 = surrogate for second derivative of the detrended velocity series  

 

To calculate the surrogates, the velocity is not divided by the time step, so the velocity’s order of 

magnitude does not differ from that of the second derivative, which removes and the possibility of 

complex solutions to Equations 12 and 13 (Goring and Nikora, 2002).  The theoretical maximum 

velocity threshold from the detrended data series and the first and second derivative surrogates were 

then calculated, as: 
 

    λh � `2 ln(n) σl      (14) 

where:  λh  = maximum velocity threshold 

n  = length of the raw data series 
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  �l = standard deviation 

 

The rotation angle (θ) of the principal axis (Δ�4g versus 4g) of the ellipsoid was determined using the 

filtered velocity and the surrogate’s second derivative, as: 
 

    θ � tane$ r∑(4gΔ�4g) t∑ 4g�uv w    (15) 

Once the rotation angle of the principal axis is determined, the three ellipses can be determined using 

the three pairs of variables shown in Table 4.  
 

Table 4. Pair of major and minor axis standard deviation variables. 

Major Axis Standard 

Deviation (x) 
Minor Axis Standard 

Deviation (y) ���z ��{�z ���z ��{A�z ��{�z ��{A�z 
 

The major and minor axes, respectively, of the three ellipses are the ellipsoid geometry solutions of:   
 

    (���)� � |�}~��� V �������     (16) 

    (���)� � |������ V ��}~���     (17) 

where:  a  = major axis 

  b  = minor axis 

 

As an example, for Δ�4g versus 4g, the major axis is �����, and the minor axis is ����{�A .  Each radial 

velocity data point is then checked to determine if they lie within the created ellipse (Figure 30).  If a 

data point is identified as falling outside the ellipse, it was considered to be a spike, and was replaced 

with an interpolated value from the surrounding good data points.  If the data series had greater than 5% 

spike replacement, the series was considered poor quality, and was removed from further analysis. 
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Figure 30. Example of calculated ellipsoid surrounding good data for different pairs of variables (Goring and 

Nikora, 2002). 

 

3.3.2.3 Butterworth (Low Pass) Filtering 

The UVP transducer sends out a set frequency and receives a wide range of frequencies back in 

response.  The high frequency data returned has a low output signal amplitude versus input frequency 

relationship (M(f)), which indicates that the return signal is due to noise and not due to the velocity of a 

fluid element.  A frequency filter can be used to remove undesirable frequency information from a 

signal.  A low-pass filter, or a Butterworth filter, allows frequencies below a cutoff frequency to pass 

while blocking the frequencies above the cutoff frequency (fc).  A sharp cutoff of an ideal filter cannot 

occur in a practical filter, as all filter’s response curves will contain a transition band over which the 

magnitude ratio decreases relative to the frequency.  The slope of the transition band will depend on 

which order of exponential filter (k) is selected (Figure 31). 
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Figure 31. Frequency response function versus normalized frequency showing different orders of exponential 

filters (Figliola and Beasley, 2006). 

The high frequency data of each beam velocity series was filtered using a third order Butterworth filter, 

where the cutoff frequency was calculated using the Nyquist frequency (Roy et al., 1997).  The Nyquist 

frequency (fN) is half of the sampling frequency (fD) of a discrete signal, and it used in order to have an 

unbiased reconstruction of the signal (Roy et al., 1997; Met-Flow, 2002).  No useful information above 

the Nyquist frequency can be obtained.  The Nyquist frequency is defined as: 
 

    fO � C8�         (18)    
 

The half-power frequency (f�%) for a third order Butterworth filter was based on Table 1 from Roy et al. 

(1997), and is defined as: 

     f�% � C8�.+�       (19)    
 

The cutoff frequency used in the Butterworth filter was calculated using: 
 

Transition Band Slopes 

Cutoff Frequency 
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    f� � C��C�         (20) 
    

3.3.2.4 Profile Filtering 

After the above filters had been achieved on the individual raw data series, the filtered velocity profiles 

were then filtered using statistical calculations.  This was necessary because of poor data located close 

to the probe and channel bed, and due to a reflectance problem, where some data in the middle of the 

profile was poor.  The profile filtering was accomplished by fitting an algorithm to the mean velocity, 

standard deviation, and skewness data using a third order polynomial equation.  If the data fell outside 

the polynomial fit by having values less than in the 99th percentile of the cumulative normal probability, 

the data was considered to be an outlier and was removed from further analysis (Figure 32).   

 
 

 

 
Figure 32. Statistical filtering of the velocity profile using (a) mean velocity, (b) standard deviation, and 

(c) skewness, where: red = good data, blue = bad data, blue with red circle = touching bed or water surface. 

 

3.3.2.5 Error Results 

The overall effect of the wrapping, spikes, and profile filtering was assessed by calculating the number 

of channels removed from further analysis per probe orientation in each run (Table 5). The total error 

for each run ranges from 2.8 to 6.1%, which is considered to be within acceptable limits.  The vertical 

orientation had higher error due to reflectance issues from the bed, and the main issues in the upstream 

and downstream orientations occurred during the transition sections due to the complex nature of the 

flow. 
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Table 5. Error based on each probe orientation for Runs 1 through 7. 

Run 

Upstream Downstream Vertical 
Total 

Error Bad 

Channels 

Total 

Channels 
Error 

Bad 

Channels 

Total 

Channels 
Error 

Bad 

Channels 

Total 

Channels 
Error 

1 64 4116 1.6% 151 4185 3.6% 112 3280 3.4% 2.8% 

2 269 5344 5.0% 86 5767 1.5% 394 5061 7.8% 4.6% 

3 339 7148 4.7% 170 7044 2.4% 472 6332 7.5% 4.8% 

4 319 6908 4.6% 349 6705 5.2% 612 7788 7.9% 6.0% 

5 389 8206 4.7% 388 7696 5.0% 603 6798 8.9% 6.1% 

6 406 8174 5.0% 385 8258 4.7% 262 7057 3.7% 4.5% 

7 440 8401 5.2% 323 8201 3.9% 496 7042 7.0% 5.3% 

 

3.3.3 Interpolation 

Beam velocity measurements were taken every 153 mm or 305 mm (0.5 ft to 1 ft) down the flume’s 

raceway, and data from all orientations was only available in locations were beam velocities intersected 

(Figure 22).  Therefore, it was necessary to estimates beam velocities by interpolation on an orthogonal 

grid using a program written in MATLAB.  The interpolation was completed using a grid spacing of 

0.01, 0.02, and 0.05 in the x, y, and z directions, respectively, and used a linear interpolation method.  

This grid spacing created a 101 x 11 x 51 three dimensional matrix of the beam velocity components 

treating the entire flume measurements as one volume. 

 

The interpolation process was also completed treating the entire flume as four different consecutive 

volumes that corresponded with the change in bed slope.  In this case, the grid spacing was 0.025, 0.05, 

0.005 in the x, y, and z directions, respectively. This grid spacing created a 41 x 11 x 201 three 

dimensional matrix of the beam velocity components for each volume. 

 

3.3.4 Calculation of Flow Properties 

The analysis up to this point has been based on the velocity in the probe’s radial orientation.  Now that 

the raw data has been filtered for errors, and interpolated across a grid of the flume, it is possible to 

calculate the orthogonal components of velocity (u, w), and the Reynolds stresses (u
w
������). 

 

3.3.4.1 Calculation of Velocity and Reynolds Stress 

The UVP probes were orientated as shown in Figure 33, where α is the angle from the vertical, and ur1, 

ur2, and ur3 are the instantaneous radial velocities. 
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Figure 33. UVP probe orientations and radial velocity components (Pedocchi and Garcia, 2009). 

From geometry, the radial velocities, ur1, ur2, and ur3 are a function of the horizontal (ui) and vertical 

(wi) velocities at each point along the sound path, as: 
 

   u
$ � u$ sin α Y w$ cos α        (21) 

   u
� � Yw�         (22) 

   u
� � Yu� sin α Y w� cos α       (23) 

 

Adding and subtracting Equations 21 and 23 yields: 
 

   4�$ V 4�� � (4$ Y 4�) ��� � Y (2$ V 2�) }~� �    (24) 

   4�$ Y 4�� � (4$ V 4�) ��� � Y (2$ Y 2�) }~� �      (25) 

 

Averaging over several points and assuming the flow is statistically uniform (i.e. 4$��� = 4���� = 4� and �$��� = ����� = ��), the average velocity components in the streamwise (4�) and vertical (2�) direction can be 

expressed as: 
 

   u� � �K������e�K������� S	< �         (26) 

   w� � Y �K������d�K������� ��S �         (27) 

   w� � Yu
�����        (28)    

u 

v 
ur3 ur2 ur1   α α w 
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Equation 28, which calculates the vertical velocity directly from the vertical probe, gives more 

appropriate results, as it does not enhance the vertical velocity errors by analytical manipulation.  

Therefore, Equation 28 was utilized for the presentation of the vertical velocity results.   

 

The Reynolds stress (���) was calculated using the deviation from the streamwise velocity (4�
), and the 

deviation from the vertical velocity (2�
), as: 
 

    ��� � Y�4323������ � 1000 � ����A
��g�A��    (29) 

 

In general, the Reynolds stress is approximately equal to the total shear stress in a flat bed.  However, 

with the introduction of bedforms, the total shear stress must be calculated through different methods 

based on the velocity profile and the Reynolds stress profile.  

 

3.3.4.2 Calculations from Profiles 

Velocity profiles describe the variation of velocity with distance from the bed surface.  The distance 

from the bed (z) was normalized by the water depth (d) as: 
 

    z/Z � ��        (30)    
where:  z/Z  = normalized water depth [m/m] 

 

The inner region (z/Z = 0 to 0.20) of a uniform flow velocity profile in an open channel can be 

expressed by the log law (Nezu and Nakagawa, 1993; Onitsuka, et al., 2009), as: 
 

    
���� �  $  ln ����

µ � V C      (31) 

where:  4�  = point velocity [m/s] 

z  = height above the bed [m] 

  zo  = reference bed level [m] 

  u*  = shear velocity [m/s] 

  ĸ  = von Karman constant [~0.4] 

  C = constant of integration, where C = 0 for a rough bed and ~ 5 for a smooth bed 
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The outer region (z/Z = 0.2 to 1) of the velocity profile can be expressed by the Coles’ wake law 

(Coles, 1956; Song and Chiew, 2001; Onitsuka et al., 2009), as:   

 

    
���� � $  ln ����

µ � V C V �¡  sin� �¢� ��£�    (32) 

where:   zc  = height above the bed at which the maximum velocity occurs [m] 

Π  = Coles’ wake parameter  

u*  = shear velocity [m/s] 

zo  = reference bed elevation of the shear velocity [m] 

 

The Coles’ wake parameter is defined as the deviation of a velocity profile from the log law of uniform 

flow (Figure 34), and indicates the wake-strength in the outer region of the turbulent velocity profile 

(Song and Chiew, 2001).  In uniform flow in wide channels where the width to depth ratio is greater 

than 5, Π is equal to zero because there are no inertial effects in the outer layer, and the velocity 

distribution will follow a straight line in a log-linear plot (Coles, 1956).  Coles (1956) showed that Π 

will be greater than zero during convective deceleration due to the relatively high inertia in the outer 

zone, which is when the near surface velocities are relatively high.  He also showed that Π will be less 

than zero during convective acceleration, as the flow will have relatively low inertia in the outer zone, 

while the near-bed velocities are relatively high.   
 

 

Figure 34. Comparison of the log law versus the Coles’ wake law for different Π values when zc = 0.9. 
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3.3.4.2.1 Shear Stress Estimated Using the Inner Velocity Profile 

The shear stress transmitted from the water on the bed is critical for the prediction of sediment 

entrainment.  The general form for calculating shear stress is: 
 

    �� � �4��       (33)    
where:  � = shear stress [kg/ms2] 

  4� = shear velocity [m/s] 

 

The value of u* was extrapolated using the Clauser chart method following Wei et al. (2005) using the 

velocity data of the inner zone as: 

 

 

   ���¤ � ¥����¤�� ¦$§ ln �¨��¤© � V $§ ln ¦¥����¤��ª V 5ª    (34) 
where:   uc  = maximum velocity in the profile [m/s] 

 

3.3.4.2.2 Shear Stress Estimated Using the Reynolds Stress Profile 

The Reynolds stress (τRe) profiles were calculated using Equation 29.  The shear stress measurement 

from the Reynolds stress (τr) was taken from the first good data point near the bed.  Extrapolation of the 

Reynolds stress to the bed caused irregular results due to the high slope near the bed.  This especially 

occurred in areas of deceleration, and therefore, an extrapolation method was not used. 

 

3.3.4.2.3 Coles’ Wake Parameter Estimated Using the Outer Velocity Profile  

The Coles’ wake parameter (Π) was calculated by fitting the velocity profile of the outer zone to the 

following equation (Onitsuka et al., 2009): 

 

     �£e���� � �¡  cos� �¢� ��£� Y ln � ��£� κ⁄     (35)    
 

In order to obtain realistic results, a condition was set that stated that at least three points had to be in 

the profile in order for the fitting function to occur.  If this condition was not met, the Π value was not 

calculated for that profile and the result will show a blank space on the contour plot. 
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3.3.4.3 Calculation of Coherent Structures 

Coherent structures describe how the largest structures in turbulent flow are organized, and are defined 

by a length or time period.  Coherent structures are important in understanding the process of energy 

production and dissipation in the flow due to turbulence (O’Neill et al., 2004).  A correlation function 

describes how related two random data series are to one another through different changes in time or 

distance steps.  For example, data sampled from two time series close to one another should have a 

higher correlation than data sampled from a larger time step.  The integral time scale (ITS) is defined as 

the characteristic time scale for the dynamics of measured quantities in turbulent flow.  The integral 

length scale (ILS) is a measure of the longest correlation distance between the velocities at two points 

in the flow field (O’Neill et al, 2004).  The correlation characteristics for both parameters are similar, 

showing a fast decay of the correlation at small distances followed by a slowly damped oscillation 

(Figure 35). 

 

 

Figure 35. Spatial and temporal cross correlation function at different time and distance steps (Uijttewaal and 

Tukker, 1998). 

The characteristic length or time scale of the large scale motion is the distance or time between the first 

and second maximum of the oscillation.  The characteristic length or time of the small scale motions are 

more difficult to define, but can be estimated from the distance or time where the fast decaying 

correlation changes over the oscillating characteristic (~20 mm in Figure 35).   

 

3.3.4.3.1 Integral Time Scale 

The ITS is a measure of the correlation sequence of a turbulent process at one location through shifts in 

time.  The time-shifted cross-correlation sequence is given by (Uijttewaal and Tukker, 1998): 

 

C
ro

ss
 C

o
rr

el
a

ti
o

n
 F

u
n

ct
io

n
 



49 

 

    R­(Δt) � ®�(�,­D)·�(�,­Dd{­)±(®�A(�,­D)±®�A(�,­Dd{­)±)�.�     (36)    
  where:  Rt = time-shifted cross-correlation sequence 

  to = reference time [s] 

  ∆t = change in time [s] 

  x = position [m] 

  < > = denotes average of time interval 

 

The cross-correlation sequence of the velocity data was calculated in MATLAB, and was set to have a 

lag range of -500 to 500, and to be normalized so that the autocorrelations at zero lag are identically 

equal to 1.0.  The correlation sequence was then checked against the 99% significance level threshold, 

which was equal to a correlation value of 0.034.  When the correlation value dropped below this 

threshold, the correlation sequence was considered to no longer be significantly related, and the ITS of 

the correlation was computed, as: 
 

    ITS � ´ R­µ% (t)dt       (37) 
where:   t  = time [s] 

dt  = time step [s] 

T = time at which correlation still exceeds 99% significance limit threshold [s] 

 

3.3.4.3.2 Integral Length Scale 

The ILS is a measurement of the longest correlation distance between the velocities at two points in the 

flow field.  The spatial cross-correlation sequence was estimated in MATLAB (Uijttewaal and Tukker, 

1998), as: 
 

    R�(Δx) � ®�(�D)·�(�Dd{�)±(®�A(�D)±®�A(�Dd{�)±)�.�     (38)    
where:  Rx   = spatial cross-correlation sequence 

xo = reference position [m] 

  ∆x = change in position [m] 

 

The cross-correlation sequence was set to have a lag range of 0, and to be normalized so that the 

autocorrelations at zero lag were identically equal to 1.0.  The cross-correlation data is compared 

against the 95% significance level threshold, which was equal to a correlation value of 0.024.  When 
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the correlation value dropped below this threshold, the correlation sequence was considered to no 

longer be significantly related, and the ILS of the correlation was computed, as: 
 

    ILS � ´ R�·% (x)dx      (39)    
where:   Rx   = spatial cross-correlation sequence 

  x  = distance [m] 

dx  = distance step [m] 

X = distance where correlation still exceeds 95% significance limit threshold [m] 
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Chapter 4 

    RESULTS 

The results section presents the flow parameters calculated for the different configurations tested.  

These results are broken into two subsections, the results from the change in pool length, and the results 

from the change in riffle length.  The results are presented in a variety of views including from the side 

(XZ plane), from the top (XY plane), and from a cross-sectional view (YZ plane).  For clarity, the 

bedform sections are referred to by their specific zone, which is based on the bed slope, as indicated 

below (Figure 36). 
 

 

Figure 36. Sketch of the bedform zones in the XZ plane. 

When the results are presented in the XY plane, the zoning system will be considered the same way as 

above, and the sloped sections will be indicated by a set of short horizontal lines connected to the 

vertical line that is the highest part of the section, i.e., the edges of the riffle (zone II) (Figure 37). 
 

 

Figure 37. Sketch of the bedform zones in the XY plane. 
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When the results are presented in the YZ plane, they will be shown from cross-sections at 10%, 50%, 

and 80% of the pool (Figure 38). 
 

 

Figure 38. Model showing pool cross-sections at 10%, 50%, and 80%. 

The first results presented are the changes in the mean streamwise velocity.  From the streamwise 

velocity, the changes in the Coles’ wake parameter (Π), and one estimate of the shear stress (τu) can be 

explored, as these parameters are fit to the slope of the velocity profile.  Following this, the vertical 

velocity is considered, showing the impact of the bedforms on the flow distribution.  The Reynolds 

shear stress is then presented along with the shear stress estimated on the Reynolds stress (τr), which is 

important in determining turbulence strength and characteristics.  Finally, the coherent structures of the 

different runs are presented showing the strength and location of coherent turbulence as it is affected by 

the different configurations of the bedforms. 

 

4.1 Pool Length 

The first variable tested was the effect that the pool length, or the length of zone IV, had on the 

hydrodynamics within the flume.  These results include the data collected from Run 1 to Run 4 (Table 

2). 

 

4.1.1 Distribution of Flow 

The streamwise velocity profiles in zones I, II, and III, have similar contours in all runs (Figure 39).  

This result verifies that the flow is uniform before entering the testing area, and that the downstream 

configurations are not impacting the flow in the initial contraction section.  The contour lines in all runs 

change from angled to nearly vertical at the end of zone I and through zone II, and return to angled or 
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even horizontal in zone III and zone IV (Figure 39).  These results indicate that the vertical velocity 

gradient is decreasing as the flow moves through zone I, and increasing in zone III and IV.   

 

The streamwise velocity in zone IV changes as the pool length increases (Figure 39).  When zone IV is 

short in length, the water velocity near the surface stays relatively high across the section, and the 

velocity near the bed is relatively slow.  When zone IV’s length increases, the velocity in the middle of 

the section near the surface decreases, and increases near the bed.  These results suggest that in longer 

bedforms the flow is more redistributed, as the velocity slows near the water surface and increases near 

the bed surface.  Overall, longer lengths of zone IV result in lower velocities near the surface and 

reduce the vertical velocity gradient at the end of the zone. 

 

Deviations from smooth contours can be observed in many of the streamwise velocity plots in zone I 

(Figure 39).  These bumps are thought to be related to a reflectance problem from the UVPs pointed in 

the downstream direction that causes poor quality data.  This problem is observed in multiple runs and 

is considered to be an error that was not remedied by the filtering process.  All other bumps observed in 

this area will also be considered errors and will not be described in subsequent results.   

 

When viewed near the channel wall, the streamwise velocity profiles in zones I, II, and III, have similar 

contours for all runs as the length of zone IV increases (Figure 40).  The only difference is the slight 

change in velocity gradient contours at the transition from zone II to zone III near the bed surface.   

 

There is little difference in the velocity magnitude in zone IV near the wall, despite the fact that the 

pool length is changing, and despite the differences observed at the centerline (Figure 40).  These 

results show that the pool length does not impact the flow distribution near the wall in the same way 

that it does on the flow at the centerline.   
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Figure 39. Mean streamwise velocity (U) in the XZ plane at the channel centerline (y=0.30 m) for Runs 1 

through 4. 

 

   

Figure 40. Mean streamwise velocity (U) in the XZ plane near the channel wall (y=0.03 m) for Runs 1 through 4.  

 

(a) Run 1 

(c) Run 3 

(d)  Run 4 

(b) Run 2 

(a) Run 1 

(d)  Run 4 

(c)  Run 3 

(b)  Run 2 
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Viewed in cross-section, it is clear that higher velocities in zone IV occur near the center of the channel, 

while the lower velocities occur near the bed and side walls (Figure 41).  Towards the end of zone IV, 

the higher streamwise velocities extend to more regions of the cross-section, creating boundary 

velocities more similar to those in the rest of the cross section (Figure 41iii).  The streamwise velocity 

in Runs 1 and 2 show rapid velocity gradients at the end of zone IV, while Runs 3 and 4 show gradual 

changes in velocity gradients near the end of zone IV (Figure 41iii).  These results show that longer 

pools produce a more uniform velocity flow distribution at the end of the pool.  Overall, the velocity is 

lower near the water surface, but higher near the bed and side walls as zone IV’s length increases. 

 

A dip in the streamwise velocity is observed in the cross-sectional results, particularly in the 

downstream end of the longer pools (Figure 41iic,d and Figure 41iiib,c,d).  Near the water surface, the 

velocity gradient contours bend creating a rounded contour, so the maximum velocity is below the free 

water surface.  This result indicates that the walls are having an influence on the flow distribution.   

 
 

 

Figure 41. Mean streamwise velocity (U) in the YZ plane for Runs 1 through 4 at 10%, 50%, and 80% of zone IV. 

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 

(d)  Run 4 

(iii) 80% of Zone IV (ii) 50% of Zone IV (i) 10% of Zone IV 
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The velocity profiles at the start of zone IV are similar for all runs, marked by a prominent change in 

slope at z/Z≈0.045 (Figure 42).  By the end of zone IV, Run 1 still has that similar profile shape, while 

Run 4 has a more linear velocity profile at the channel centerline (Figure 42a).  Overall, the velocity 

increases as the distance from the bed increases, and all velocities are similar at z/Z≈0.3.  At the start of 

zone IV near the wall, the velocity profile is similar for all runs, with slight variations in magnitude 

near the bed (Figure 42b).   At the end of zone IV near the wall, the velocities are very similar, and 

there is less velocity gradient through the water depth.  In the middle of zone IV, at both the channel 

centerline and wall, the longer pools have faster near-bed velocities and slower near surface velocities 

with a pivot point at approximately z/Z≈0.3 (Figure 42ii).  These differences have largely disappeared 

by the end of the pool. 

 
 

    

   

Figure 42. Streamwise velocity (U) profiles for Runs 1 through 4 at 10%, 50% and 80% of zone IV at y = 0.30 m 

and 0.03 m. 

The shear stress estimated from the velocity gradient in the inner zone increases at the end of zone I and 

through zone II, and decreases in zone III (Figure 43).  These results indicate that the velocity profile 

has a steeper slope near the bed in zones I and II due to the increase in velocity, and that this slope 
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decreases in zone III due to the deceleration of flow.  Areas of higher shear stress in the center of the 

longer pools confirm the increase in near-bed velocities shown in Figure 39.  The shear stress in zone 

IV is near zero at the beginning and along the side wall, and increases towards the middle of the 

channel as the flow moves downstream (Figure 43).  The bed velocities in zone III, at the start of zone 

IV, and near the wall through zone IV, are slow, which leads to very low shear stress in those areas.  

The bed velocities near the end of zone IV increase with increasing zone length, leading to the observed 

increase in shear stress (Figure 43). 
 

 

Figure 43. Shear stress estimated from the velocity profile (τu) in the XY plane for Runs 1 through 4. 

The peak value of the Coles’ wake parameter (Π) occurs in zone III, and the magnitude decreases in 

zone IV (Figure 44).  These results indicate that the Π parameter is greatly affected by the channel wall 

and from the bedform expansion as there is a strong increase in wake strength of the velocity profile 

near the wall.   

 

The value of Π is approximately zero by the end of zone IV for the longer runs (Figure 44).  This 

indicates that the flow has achieved uniform flow by the end of zone IV, as the velocity profile is close 

to that of the log law (Equation 31).  In shorter pools, Π remains high at the downstream end of the 

pool, and the flow distribution in zone V is not similar to the flow distribution in zone I.  It should be 

noted that the white region in each planform contour plot occurs because there is not enough data over 

(c)  Run 3 

(d)  Run 4 

(a)  Run 1 

(b) Run 2 



58 

 

its entire depth that meets the criteria to calculate the Coles’ wake parameter, as discussed in Section 

3.3.4.2.3.    

 

 

Figure 44. Coles’ wake parameter (Π) in the XY plane for Runs 1 through 4. 

 

4.1.2 Secondary Circulation 

The vertical velocity can be utilized as an indication of secondary currents, as it can help describe the 

direction of the flow redistribution.  The vertical velocity is usually used for this application when 

lateral current data is unavailable.  Due to the probe’s sensitivity, the vertical velocity is more variable 

than the streamwise velocity.  In spite of this sensitivity, however, the patterns of the vertical velocity 

are still clearly visible.  The vertical velocities are positive in zone I and negative in zone III (Figure 

45), particularly near the bed.  The maxima and minima of the positive and negative velocities are 

observed along the bed in between zone I and zone II, and in between zone II and zone III, respectfully.  

The vertical velocity in zone IV is slightly negative in all runs throughout the entire water depth. 

 

The vertical velocity near the side wall and water surface in zone IV is consistently slightly positive, 

and the vertical velocity near the bed is slightly negative, with the transition occurring at approximately 

half the depth (Figure 46).  This trend is observed in all runs and extends throughout almost the entire 

length of zone IV.  This pattern seems to be related to the impact of both the channel walls and the 

bedform.   

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 

(d)  Run 4 



59 

 

 

Figure 45. Mean vertical velocity (W) in the XZ plane at the channel centerline (y=0.30 m) for Runs 1 through 4. 

 

 

Figure 46. Mean vertical velocity (W) in the XZ plane near the channel wall (y=0.03 m) for Runs 1 through 4. 

(a)  Run 1 

(d)  Run 4 

(b)  Run 2 

(c)  Run 3 

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 

(d)  Run 4 
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The magnitude of the vertical velocity increases as the flow moves through zone IV (Figure 47) (Note 

the change in colour scale from previous figures).  Overall, the vertical velocities at the start of zone IV 

are negative.  By the end of zone IV, the vertical velocities near the channel wall and water surface 

have a positive velocity, especially in the longer pools (Figure 47).  The extent to which the vertical 

velocity near the wall extends into the channel width increases as the length of zone IV increases, and 

the positive velocities near the bed increase higher into the water depth as the length of the zone 

increases.  The near wall flow in the vertical direction is redistributed toward the channel centerline as 

it reaches the water surface. 
 

 

 

Figure 47. Mean vertical velocity (W) in the YZ plane for Runs 1 through 4 at 10%, 50%, and 80% of zone IV. 

 

4.1.3 Distribution of Turbulence 

Turbulence is generated as the flow expands through zone II and into zone III (Figure 48).  The peak in 

the Reynolds stress occurs in zone III and at the start of zone IV.   This location corresponds to areas of 

the lowest bed velocities, the flow expansion, and rapid velocity gradients in the streamwise direction.  

The peak in Reynolds stress is farther from the bed at the end of the pool as the length of zone IV 

(i) 10% of Zone IV (ii) 50% of Zone IV (iii) 80% of Zone IV 

(a) Run 1 

(b) Run 2 

(c) Run 3 

(d) Run 4 
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increases (Figure 48).  This location corresponds to an increase in both positive vertical velocities, and 

τu. 

 

It should be noted that there is an error in Run 2, as discussed in Section 3.3.2.1, which is especially 

noticeable in the Reynolds stress (Figure 48b).  While the other runs show slightly positive Reynolds 

stress values in zone I and II, Run 2 shows a slightly negative trend.  In zone III and zone IV, the 

Reynolds stress near the water surface for Run 2 is again negative while the other runs show slightly 

positive Reynolds stresses.  This error is assumed to be attributed to the slight variations caused by the 

seeding problem which was not completely solved by the de-wrapping program.   This phenomena 

shows up again in the subsequent results and will be considered an error from which no conclusions are 

drawn. 

 

Compared to the centerline results, the distribution of the Reynolds stress near the wall is not as 

affected by the length of zone IV (Figure 49).  The peak cell looks similar in term of size and 

magnitude for all runs even though the pool length increases.  The peak magnitude, however, is greater 

near the wall than compared to the channel centerline.  At the end of the longer pools, there is a zone of 

relatively strong negative Reynolds stress near the water surface (Figure 49c,d). 

 

The magnitude of Reynolds stress decreases near the end of zone IV as the pool length increases 

(Figure 50).  When zone IV is short in length, the magnitude of Reynolds stress stays very similar 

throughout the entire length of the pool.  When zone IV’s length increases, the Reynolds stress 

decreases greatly by the end of zone IV.  For Runs 1 and 2, the Reynolds peak extends almost the entire 

width of the channel at the end of the pool, while in Runs 3 and 4, the peak is near the wall.   

 



62 

 

 

Figure 48. Reynolds stress (τRe) in the XZ plane at the channel centerline (y=0.30 m) for Runs 1 through 4. 

 

 

Figure 49. Reynolds stress (τRe) in the XZ plane near the channel wall (y=0.03 m) for Runs 1 through 4. 

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 

(d)  Run 4 

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 

(d)  Run 4 
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As zone IV’s length increases, the peak in Reynolds stress shifts from the side wall to the center of the 

channel and also moves upwards (Figure 50).  The location of the peak Reynolds stress shifts upward 

with increasing distance downstream in zone IV for Runs 2, 3 and 4, as at the peak is located in the 

lower third of the cross-section at the start of zone IV, and in the middle of the cross-section at the end 

of zone IV.  The Reynolds stress changes from high values near the bed and very low values near the 

surface to a diagonal cross section as zone IV’s length increases (Figure 50).  This transition to the 

diagonally shaped profile of Reynolds stress is characteristic of uniform flow in an open channel (Nezu 

and Nakawaga, 1993).   

 
 

 

Figure 50. Reynolds stress (τRe) in the YZ plane for Runs 1 through 4 at 10%, 50%, and 80% of zone IV. 

The Reynolds stress profile at the start of zone IV is high near the bed and low near the water surface 

(Figure 51i).  This is due to the turbulence that is created near the bed and not at the water surface from 

the flow expansion.  As the length of zone IV increases, the Reynolds stress decreases near the bed 

(Figure 51ii, iii).  The Reynolds stress near the water surface at the end of zone IV has slightly negative 

(i) 10% of Zone IV 

(c)  Run 3 

(b)  Run 2 

(a)  Run 1 

(ii) 50% of Zone IV (iii) 80% of Zone IV 

(d)  Run 4 
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values near the wall (Figure 51biii).  This is the same trend that was observed in the cross-sectional 

view where negative stress occurs near the water surface as the flow becomes uniform.   

 

It should be noted that the Reynolds stress profile for Run 2 does not tend towards zero stress at the 

water surface like the other runs, which again indicates that there are errors associated with this run and 

that conclusions should not be based on the centerline data from Run 2.  

 
 

   

   

Figure 51. Reynolds stress (τRe) profiles for Runs 1 through 4 at 10%, 50% and 80% of zone IV at y = 0.30 m 

and 0.03 m. 

The shear stress on the bed as estimated from the Reynolds stress profile (τr) peaks in zone III, 

especially near the channel wall, and decreases with increasing distance in zone IV (Figure 52).  This 

peak corresponds to the increase in magnitude of the Reynolds stress observed in zone III.  Elevated τr 

values extend through the entire length of zone IV for all runs with slightly lower values near the 

channel wall.   
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Figure 52. Shear stress estimated from the Reynolds stress profile (τr) in the XY plane for Runs 1 through 4. 

The integral time scale (ITS) coherence shows that there is higher coherence in zone IV than in zone II 

(Figure 53).  This increase in coherence occurs to a point in zone IV, then decreases in the longer pools.  

Overall, trends in the ITS are obscured by the variability observed at the channel centerline.  

 

More consistent patterns in ITS coherence are observed near the wall, with a common peak in 

coherence near the bed surface at the transition from zone III to zone IV (Figure 54).  This pocket of 

higher coherence may be related to the low streamwise velocities and low τu near the wall and bed in 

this transition area.  The ITS coherence in zone II is very low (Figure 54), as the flow in this area is 

accelerating, and therefore, there is little coherence.  In the downstream end of zone IV, the ITS 

decreases near the bed surface and increases near the water surface (Figure 54). 
 

(d)  Run 4 

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 
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Figure 53. Integral time scale (ITS) in the XZ plane at the channel centerline (y=0.30 m) for Runs 1 through 4 

using the US probe. 

 

 

Figure 54. Integral time scale (ITS) in the XZ plane near the channel wall (y=0.03 m) for Runs 1 through 4 using 

the US probe. 

(a)  Run 1 

(b)  Run 2 
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High coherence in the integral length scale (ILS) is measured in the start of zone I (Figure 55).  This 

area corresponds to uniform flow and low Reynolds stress.  The measured ILS is low over zone II for 

all runs, as the flow in this area is accelerating.  As the length of zone IV increases, the length of the 

measured coherence of the ILS increases with the highest peaks existing near the end of zone IV 

(Figure 55).  The location of this peak corresponds with the downstream end of the zone of high 

Reynolds stress and Π parameter, as shown in Figure 44 and Figure 48. 

 

 

 

Figure 55. Integral length scale (ILS) in the XZ plane at the channel centerline (y=0.30 m) for Runs 1 through 4 

using the US probe. 

The magnitude of the ILS coherence is lower near the channel wall than compared to that in the middle 

of the channel (Figure 56).  The overall shape of the contours is the same, with low coherence over 

zone II, and higher coherence in zone I and zone IV.  The main difference from the centerline data is 

that the maximum values are much higher in zone IV when compared to zone I.  Near the wall, the 

coherence tends to peak early in zone IV and decrease downstream. 
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(b)  Run 2 

(c)  Run 3 

(d)  Run 4 
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Figure 56. Integral length scale (ILS) in the XZ plane near the channel wall (y=0.03 m) for Runs 1 through 4 

using the US probe. 

4.2 Riffle Length 

The second variable changed was the riffle length and how it affected the hydrodynamics within the 

flume.  These results include the data collected from Runs 4 to Run 7 (Table 2).  Overall, the riffle 

length data is largely consistent with the pool length tests.  The results will concentrate on the 

differences from the results measured over the tests considering the change in pool length. 
 

4.2.1 Distribution of Flow 

The overall distribution of the flow is consistent with that observed in Runs 1 through 4, where the 

velocity gradient is decreasing in zone I, increasing in zone III, and decreasing in zone IV.  The key 

difference is that the streamwise velocity over zone II increases in magnitude as zone II’s length 

increases (Figure 57).  Higher velocity magnitudes are observed at the end of zone II in Run 6 and even 

more so in Run 7, indicating that these increased lengths of zone II cause an acceleration of the flow at 

the centerline to higher velocities than previously observed.  Higher velocities near the bed at the 

transition from zone II to zone III can also be seen in Runs 6 and 7.  The streamwise velocity in zone IV 

increases along the water surface as zone II’s length increases, however, the near-bed velocity stayed 

relatively similar (Figure 57).  The increase in water surface velocity is related to the increase in 

velocity leaving zone II.  The overall increase in velocity in Runs 6 and 7 creates steeper velocity 

gradients at the end of zone IV. 

(a)  Run 1 

(b)  Run 2 

(c)  Run 3 

(d)  Run 4 
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Figure 57. Mean streamwise velocity (U) in the XZ plane at the channel centerline (y=0.30 m) for Runs 4 

through 7.  

 

       

Figure 58. Mean streamwise velocity (U) in the XZ plane near the channel wall (y=0.03 m) for Runs 4 through 7. 
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Near the channel wall, the overall magnitude of the velocity in all zones is less than the velocity at the 

channel centerline (Figure 58).  The velocity exiting zone II is very similar for all runs despite the 

change in riffle length.  The velocity in zone IV has similar patterns to those observed in Figure 46.     

 

When viewing the pool cross-section, the velocity contours in all runs are different at the start of zone 

IV (Figure 59).  Run 6 and Run 7 have high velocity cores at the beginning of the pool, and very slow 

near-bed and near-wall velocities, while the other runs have a slower core and faster near-bed and near-

wall velocities.  As the flow moves toward a more uniform state, velocity gradients near the end of the 

pool show a more gradual change compared to at the beginning of the pool.  Higher velocities near the 

water surface are still observed at the end of zone IV for Run 7.  The velocity dip phenomenon is 

observed in Figure 59c,d, Figure 59ii, and Figure 59iii. 

 
 

 

Figure 59. Mean streamwise velocity (U) in the YZ plane for Runs 4 through 7 at 10%, 50%, and 80% of zone IV. 

Along the channel centerline at the start of the pool, the velocity profile near the bed is similar in all 

runs (Figure 60ai).  The velocity profile near the water surface is different for each run as the velocity 

(a)  Run 4 

(b)  Run 5 

(c)  Run 6 

(d)  Run 7 

(i) 10% of Zone IV (ii) 50% of Zone IV (iii) 80% of Zone IV 
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exiting zone II increases with increasing zone II length.  The transition from the similar profile to 

different profiles occurs at z/Z≈0.50.  Near the channel wall, the velocity profiles at the start of the pool 

have similar profiles for all runs except Run 7 (Figure 60bi).  Overall, Run 7 has a slower velocity over 

the entire water depth as compared to the other runs. 

 

At the channel centerline near the middle and end of the pool, the velocity profile in each run is fairly 

constant (Figure 60ii and Figure 60iii).  The shape of each run’s velocity profile remains constant while 

the magnitude varies slightly between the different runs.  These profiles show that the maximum 

velocity occurs at the water surface.  At the channel wall, the velocity profile in all runs is very similar, 

as the flow moves downstream of the pool (Figure 60bii and Figure 60biii).  These profiles show that 

the peak velocity is slightly below the surface near the wall in all runs.  
 

 

 

            

Figure 60. Velocity (U) profiles for Runs 4 through 7 at 10%, 50% and 80% of zone IV at y = 0.30 m and 0.03 m. 

The shear stress estimated from the velocity profile increases as the length of zone II increases (Figure 

61).  This stress corresponds to the increase in velocity over zone II.  The shear stress decreases through 

zone III, and is slightly elevated in the middle of zone IV, but stays near zero along the channel wall 

and at the start of zone IV (Figure 61).  These results are similar to that seen for the results as the pool 

length increases.   
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Figure 61. Shear stress based on the velocity profile slope (τu) in the XY plane for Runs 4 through 7. 

The Π parameter increases in zone III and decreases in zone IV, with the length of zone II having an 

impact on the magnitude of the parameter (Figure 62).  The peak is located near the side wall and its 

magnitude increases as the velocity exiting zone II increases.  It should be noted that Run 5’s peak 

magnitude of Π is thought to be low in Figure 62 as compared to the other runs due to an unknown error 

that was not resolved in the filtering process.   

 

The Π parameter returns to near zero much quicker near the wall than compared to the centerline as the 

length of zone II increases (Figure 62).  This indicates that although the increase in velocity leaving 

zone II did not correspond to an increase in magnitude of the wake strength at the centerline, it does 

correspond to an increase in distribution of elevated wake strength downstream.  Overall, there in an 

increasing lateral gradient at the end of zone IV.  
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(d)  Run 7 
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Figure 62. Coles’ wake parameter (Π) in the XY plane for Runs 4 through 7. 

 

4.2.2 Secondary Circulation 

The vertical velocity measured as the riffle length increases show similar patterns as to those observed 

as the pool length increases.  The vertical velocities are strongly positive in zone I and slightly negative 

in zone III (Figure 63).  The key difference is that zone III’s negative velocities are strong in Run 4, but 

as the length of zone II increases, the magnitude of the negative velocities decreases in zone III.  The 

vertical velocity along the length of zone II indicates slightly positive velocities towards the end of zone 

II as the zone length increases.  At the end of zone IV, the area of positive vertical velocity near the bed 

increases as the length of zone II increases.   
 

The vertical velocity near the channel wall shows negative velocities in zone III (Figure 64), which is 

similar to the previous results.  The vertical velocity profiles over zone II show slightly negative 

vertical movement as compared to the slightly positive movement at the channel centerline.  The 

vertical velocity near the water surface in zone IV near the channel wall is consistently slightly positive, 

while near the bed the velocity is slightly negative (Figure 64), which is consistent with the previous 

results.   
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(b)  Run 5 
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(d)  Run 7 
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Figure 63. Mean vertical velocity (W) in the XZ plane at the channel centerline (y=0.30 m) for Runs 4 through 7. 

 

       

Figure 64. Mean vertical velocity (W) in the XZ plane near the channel wall (y=0.03 m) for Runs 4 through 7. 
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At the start of zone IV, the vertical velocity in all runs has an overall positive trend near the wall and 

centerline with a negative trend in between (Figure 65).  At the middle and end of zone IV, the overall 

vertical trend is positive near the bed and side walls, with a negative trend sloping from the water 

surface near the channel centerline to the bed surface near the channel wall.  The magnitude of the 

positive vertical velocity near the wall decreases as the length of zone II increases.   

 
 

 

Figure 65. Mean vertical velocity (W) in the YZ plane for Runs 4 through 7 at 10%, 50%, and 80% of zone IV. 

 

4.2.3 Distribution of Turbulence 

Turbulence is generated at the flow expansion in zone III and along the length of the riffle near the bed 

(Figure 66).  The Reynolds stress in zone II increases along the bed as the length of zone II increases, 

however, the stress near the water surface stays near zero in all runs.  The extent of high Reynolds 

stress in zone IV increases to extend the entire length of zone IV as the length of zone II increases, 

however, the magnitude of this stress is similar in all runs. 
 

(ii) 50% of Zone IV (iii) 80% of Zone IV 

(a) Run 4 

(b) Run 5 

(c) Run 6 

(d) Run 7 

(i) 10% of Zone IV 
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Figure 66. Reynolds stress (τRe) in the XZ plane at the channel centerline (y=0.30 m) for Runs 4 through 7. 

 

      

Figure 67. Reynolds stress (τRe) in the XZ plane near the channel wall (y=0.03 m) for Runs 4 through 7. 

(a)  Run 4 

(b)  Run 5 

(c)  Run 6 

(d)  Run 7 

(a)  Run 4 

(c)  Run 6 

(b)  Run 5 

(d)  Run 7 
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The extent of the distribution of the Reynolds stress into zone IV is less near the side wall than at the 

channel centerline (Figure 67).  The distribution of stress near the wall is similar in all runs, even 

though the lengths of zone II are different.  The magnitude of the Reynolds stress is greater near the 

side wall than at the channel centerline. The peak magnitude of Reynolds stress in Runs 5 and 6 are 

thought to be a low due to an unknown error.  An area of negative Reynolds stress is observed at the 

end of zone IV in all runs. 

 

At the beginning of the pool, the Reynolds stress is high at the near-bed surface in all runs (Figure 68).  

The peak magnitude decreases as the flow moves through zone IV and shifts towards the channel 

centerline.  By the end of zone IV, all runs show the diagonal Reynolds stress cross-section, indicating 

that they have all reached a more uniform state (Nezu and Nakawaga, 1993).   Runs 6 and 7 still show 

relatively high shear stress near the channel centerline than the other runs. 
 

 

Figure 68. Reynolds stress (τRe) in the YZ plane for Runs 4 through 7 at 10%, 50%, and 80% of zone IV. 

 

The Reynolds stress profile shows high values near the bed and low values near the water surface at the 

start of zone IV (Figure 69).  Near the centerline, the Reynolds stress is similar in all runs, however, 

(a)  Run 4 

(d)  Run 7 

(c)  Run 6 

(b)  Run 5 

(i) 10% of Zone IV (ii) 50% of Zone IV (iii) 80% of Zone IV 
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near the channel wall, higher levels of Reynolds stress occur, particularly in Run 7.  The irregularities 

of the Reynolds stress profile near the wall may be related to the lateral position of the high stress cells 

for the different channel geometries. 

 

At the channel centerline, the Reynolds stress profiles at the end of zone IV are slight variations of 

convex shapes in all runs (Figure 69aiii).  At this location, higher overall magnitudes of Reynolds stress 

are seen in Run 7, with the peak located at the vertical midpoint, while the other runs peak closer to the 

bed.  This indicates that the flow in Run 7 is still decelerating while the flow in the other runs is closer 

to uniform flow.  The Reynolds stress profile near the channel wall indicates a slightly negative profile 

near the water surface (Figure 69biii).  This negative stress is attributed to the uniform flow cross-

section of Reynolds stress observed in Figure 68iii.   

 
 

  

  

Figure 69. Reynolds stress (τRe) profiles for Runs 4 through 7 at 10%, 50% and 80% of zone IV at y = 0.30 m 

and 0.03 m. 

The shear stress estimated from the Reynolds stress increases along zone II and III (Figure 70).  The 

peak shear stress occurs in zone III, and corresponds to the peak in the Reynolds stress.  The shear 
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stress in zone II is related to the increase in Reynolds stress observed near the bed.  The Reynolds stress 

decreases in zone IV, but remains slightly elevated throughout the entire length of the zone.  Overall, 

the Reynolds stress is low near the wall and high near the channel centerline in zone IV.   
 
 

 

Figure 70. Shear stress estimated from the Reynolds stress profile (τr) in the XY plane for Runs 4 through 7. 

Similar to the results from increasing the pool length, low ITS values are observed at the channel 

centerline in all runs, and are not shown in these results (see Appendix C).  At the channel wall, an 

increasing trend of coherence as the riffle length increases is found in zone III (Figure 71).  This 

increase is attributed to the slow moving bed velocities observed in zone III compared to the faster 

moving surface velocities.  While the ITS coherence along zone II remains very low, higher  ITS values 

are more common in zone IV as the length of zone II increases (Figure 71).  

 

Similar ILS results are observed as the riffle length increases as compared to the results of the pool 

length increasing (Figure 72).  Although the length of zone II increases, there is little difference in 

magnitude and shape of the elevated coherence in the different runs.  The peak coherence in zone IV is 

generally located near the end of the section.  Similar magnitudes of coherence are measured over the 

length of zone II for each run even though the length increases.  The coherence near the side wall is 

very similar to that at the centerline, only with smaller magnitudes, and therefore is not shown in these 

results but can be found in Appendix C. 

(d)  Run 7 

(a)  Run 4 

(b)  Run 5 

(c)  Run 6 
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Figure 71. Integral time scale (ITS) in the XZ plane near the channel wall (y=0.03 m) for Runs 4 through 7 using 

the US probe. 

 

       

Figure 72. Integral length scale (ILS) in the XZ plane at the channel centerline (y=0.30 m) for Runs 4 through 7 

using the US probe. 

(a)  Run 4 

(b)  Run 5 

(c)  Run 6 

(d)  Run 7 

(a)  Run 4 

(b)  Run 5 

(c)  Run 6 

(d)  Run 7 
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4.3 Other Results 

To be thorough, two extra parameters were tested during the experimental phase, the effect of water 

depth and the effect of roughness.  Complete details of these two testing methods and results can be 

found in Appendix D and Appendix E.  In general, the results observed from these two parameters were 

expected, as they followed similar patterns as changing the pool and riffle length.  There were some key 

differences, however, which are discussed below. 

 

4.3.1 Results from Changing the Water Depth 

Overall, the streamwise velocity and the Reynolds stress decreases as the water depth increases, which 

is expected.  The first noticeable difference is observed in the turbulent coherence.  At the channel 

centerline, the ILS increases significantly in zone II and zone IV as the water depth increases (Figure 

73).  These areas correspond to low Reynolds stress and slower velocities.  Although the ILS coherence 

increases near the channel centerline, the coherence values remain low near the channel wall (Figure 

74). 

 

 

Figure 73. Integral length scale (ILS) in the XZ plane at the channel centerline (y=0.30 m) for four different 

depths using the US probe. 

(a) 0.05 m 

(b) 0.06 m 

(c) 0.08 m 

(d) 0.10 m 
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Figure 74. Integral length scale (ILS) in the XZ plane near the channel wall (y=0.03 m) for four different depths 

using the US probe. 

At the channel centerline, the ITS becomes more coherent as the water depth increases, especally in 

zone IV (Figure 75).  There are also some coherent trends observed in zone II.  Both of these areas 

previously showed no consistent trend when changing the riffle or pool length.   

 

Near the channel wall, the coherence trend near the bed in zone III decreases as the water depth 

increases (Figure 76).  This pocket of coherence had previously increased in both the increase in riffle 

and increase in pool length.  The overall ITS coherence seems to slightly increase over zone II and 

decrease in zone IV as the water depth increases. 

 

(a) 0.05 m 

(b) 0.06 m 

(c) 0.08 m 

(d) 0.10 m 
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Figure 75. Integral time scale (ITS) in the XZ plane at the channel centerline (y=0.30 m) for four different depths 

the US probe. 

      

Figure 76. Integral time scale (ITS) in the XZ plane near the channel wall (y=0.03 m) for four different depths 

using the US probe. 

(b) 0.06 m 

(c) 0.08 m 

(d) 0.10 m 

(d) 0.10 m 

(c) 0.08 m 

(a) 0.05 m 
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4.3.2 Results from Changing the Wall and Bed Roughness 

Overall, the streamwise velocity and Reynolds stress increase as the roughness factors increase.  The 

shear stress estimated from the velocity profile slightly decreases in zone II as the roughness increases, 

and increases near the centerline in zone IV (Figure 106).  Similar peaks in shear stress in zone II can 

be seen at the start of the riffle at x = 7 m and at x = 8 to 8.5 m. 

 

        

Figure 77. Shear stress estimated from the velocity profile (τu) in the XY plane for different roughness factors. 

The Π parameter increases as the roughness factors increase (Figure 78).  The peak Π value extends the 

entire width of the channel as the channel surfaces become more rough.  This peak had previously been 

located near the wall in all of the smooth surface runs.  The Π value increases in zone II, and in zone 

IV, the Π value does not return to near zero at the wall when both the wall and bed are rough. 

 

       

Figure 78. Coles’ wake parameter (Π) in the XY plane for different roughness factors. 
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(b) Rough 
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Chapter 5 

    DISCUSSION  

This section discusses the suitability of the experiments in the flume for considering the effect that 

changing the pool and riffle lengths has on the hydrodynamics of the flow.  The results of the 

experiment are then discussed in terms of how the bedform geometry can push the distribution of flow 

and turbulence both away from and towards what is expected in uniform flow.  The effect that shear 

stress plays on the stability of the bedforms, as well as a discussion on the coherence of the turbulence 

in the system, are also presented.  Previous field, laboratory, and numerical studies are compared to the 

results of this research.  The overall fundamental control that scale has on hydrodynamics is outlined, 

and recommendations for future research due to the limitations of this study are discussed.   

 

5.1 Suitability of the Experimental Apparatus 

The results presented in the previous chapter have all been obtained from tests conducted in a 

laboratory flume.  Conducting the research in a flume makes it possible to reduce the total number of 

system variables so that a more controlled experiment can be conducted, however, the appropriateness 

of the techniques and results must be considered.  Looking at both the repeatability of the measured 

data upstream of the bedforms, as well as the effect of other more typical conditions has on the 

measurements can be used to consider the appropriateness of the techniques used in this thesis. 

 

When only the pool length is varied (Runs 1 to 4), the upstream location includes both the initial 

contraction and the riffle, or zones I and II.  In the side view orientations both in the center of the 

channel and near the wall, it was seen that both the streamwise and vertical velocities over these 

sections are very similar in Runs 1 through 4.  As the riffle length is varied (Runs 4 to 7), the only 

consistent upstream location is the contraction section leading into the riffle.  Once again, the 

streamwise and vertical velocities at the centerline and near the wall show that the flow is similar 

leading into the riffle in these four runs.  The similarity of the upstream flow demonstrates the 

repeatability of the flume conditions, and the appropriateness of using the flume to examine the flow 

conditions of a pool-riffle in a straight channel with non-deformable boundaries. 

 

The effects that depth and roughness have on the hydrodynamics of the flow were also considered.  

Overall, the depth and roughness introduced a new balance between stresses at the centerline and side 
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wall, as seen in the turbulence production, turbulent coherence, and deviation from uniform flow.  

These additional factors demonstrate the complexity of the underlying process of convective 

acceleration and deceleration in an open channel.  Because of this complexity, experiments with 

geometries that would be more representative of the natural pool-riffle form would be difficult, it was 

concluded that the effect of bedform length on pool-riffle hydrodynamics is most clearly observed 

when it is isolated in an experimental flume with a smooth straight bedform configuration, as was used 

in this research.   

 

5.2 Comparison to Previous Studies 

The results from this research were compared to previous studies in order to determine if the flow 

conditions created in the flume were reasonable when compared to those conditions observed in the 

field and in previous laboratory and numerical modeling.  The streamwise velocity results are similar to 

previous studies as it was found that at the pool head, the flow converged towards the centerline as 

previously observed (MacVicar and Roy, 2007a; Clifford and Richards, 1992; MacWilliams et al., 

2006), and by the end of the pool the flow profile became fuller by extending similar velocities across 

the entire cross-section (MacVicar and Roy, 2007a).   

 

The Π parameter agreed well with previous studies.  The magnitude of the Π parameter near the 

centerline was within the range of Π ≈ 3 to 7, which was similar to the results of MacVicar and Rennie 

(in review), where Π ≈ 4, however, Π = 0.41 in the study by Kironoto and Graf (1995).  The difference 

between the results of this research and that presented by Kironto and Graf (1995) can be explained as 

the latter used a much milder expansion section (slope > 1%).  The magnitude of the Π parameter near 

the channel wall was slightly higher in this study, where Π > 9, as compared to the study completed by 

MacVicar and Rennie (in review) where Π ≈ 7.  

 

The profile of turbulence as expressed by the Reynolds stress followed that of previous research, as the 

peak turbulence occurred at the flow expansion, and decreases as it moves downstream.  This initial 

area of high turbulence corresponds to previous studies (MacVicar and Roy, 2007a; Clifford 1993b; 

Clifford, 1996).  The fact that as the flow decelerates in the pool, the Reynolds stress occurs at a 

distance away from the bed, has also been found in previous studies (Simpson, 1989; Yang and Chow, 

2008; MacVicar and Rennie, in review).   

 

The shear stress based on the velocity profile increases in accelerating flow and decreases in 

decelerating flow, which is consistent with previous results (MacVicar and Rennie, in review; Kironoto 

and Graf, 1995; Song and Chiew, 2001; Yang and Chow, 2008).  The increase in shear stress through 

the middle of the pool with an increasing lateral gradient is similar to the results of MacVicar and 
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Rennie (in review).  The results of the shear stress estimated from the Reynolds stress profile showed 

an increase during the flow expansion, which is consistent with previous results (MacVicar and Roy, 

2007a; MacVicar and Rennie, in review).   

 

The coherence structures measured in this study compared to those from previous experiments were 

similar for the ITS but different for the ILS.  Similar to the ITS results presented in this thesis, 

MacVicar and Roy (2007b) found short random pockets of ITS coherence near the bed in the pool with 

no overall trend.  However, they found negligible levels of ILS coherence through the pool, while in 

this research the pool was characterized by significant ILS coherence. 

 

5.3 Adjustment to Uniform Flow 

As the flow moves over the bedform, kinetic energy is first generated as the velocity increases over the 

riffle, and then dissipated as it expands and slows into the pool.  During this increase and decrease of 

kinetic energy, non-uniform flow conditions are created.  In order for the flow to recover to a uniform 

flow state, a sufficient pool length is required.  Once the flow has reached uniform flow, the flow will 

remain in this state until a new non-uniform flow element (riffle) is introduced.  In these experiments, a 

transition from non-uniform flow to uniform flow towards the end of the pool was clearly seen as the 

pool length increased, as shown in the streamwise velocity, Π, vertical velocity, and the Reynolds stress 

results.   

 

When the flow transitions from the riffle to the pool, there is a high velocity core near the water surface 

and centerline in the channel.  As the pool length increases, this high velocity core expands to a slower 

and fuller cross-section of flow.  The fact that the velocity is nearly the same at all locations in the 

cross-section, even near the side walls and bed of the channel, suggests that the flow is adjusting to a 

more uniform state by the end of the pool at increased pool lengths. 

 

As the pool length increases, the Π parameter in the pool decreases so that the value of Π in Run 4 at 

the end of the pool is near zero (Figure 79).  Note that Π has been smoothed by a running average over 

the five nearest points and that the total length has been normalized by the different zones.  When the 

pool length is short, the magnitude of Π is still elevated at the end of the pool, as in Run 1 where Π 

approximately equals 2 by the end of the pool.  This indicates that the velocity profile in a short pool is 

still being influenced by the relatively high near surface velocities.  As the pool length increases, the 

near water surface velocities decrease towards the end of the pool, allowing the velocity profile to 

become more logarithmic, and the Π value to return to near zero, like in Run 4.  Overall, as the value of Π decreases the flow uniformity increases, as the Π  value is a measure of the deviation of the flow 

away from the log-law of uniform flow.   
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Figure 79. Comparison of the Coles’ Wake Parameter (Π) at the channel centerline for Runs 1 through 4 with 

normalized zones. 

As the pool length increases, the cross-sectional profile of secondary currents in the pool adjusts to an 

expected uniform cross-section in an open channel as measured by Nezu and Nakawaga (1993) (Figure 

80).  Note that the lateral directions have been assumed from the vertical velocities.  In uniform flow, 

the vertical velocities have positive magnitudes in the pool near the bed and along the side wall.  The 

adjustment to a uniform cross-section again indicates that the pool is sufficiently long enough in Run 3 

and 4 to create uniform flow conditions. 

 

 

  Contraction          Riffle            Expansion           Pool             Contraction 



 

Figure 80. Secondary effects (a) numerically simulated by Nezu and Nakawaga (1993) with an aspect ratio of 

B/h = 2, and (b) measured at 80% of zone IV (pool) in Run 4.
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. Secondary effects (a) numerically simulated by Nezu and Nakawaga (1993) with an aspect ratio of 

2, and (b) measured at 80% of zone IV (pool) in Run 4. 

As the pool length increases, the Reynolds stress cross-sectional profile adjusts to an expected uniform 

section as measured by Nezu and Nakawaga (1993) (Figure 81).  A uniform Reynolds stress has a 

diagonal transition between negative stress near the wall and surface and the positive stress at the bed.  

As the pool length increases, the flow adjusts from the high Reynolds stress near the bed to the diagonal 

 

           

. Reynolds stress (a) measured by Nezu and Nakawaga (1993), and (b) measured at 80% of zone IV 

(pool) in Run 4. 

When considering the streamwise velocity, ∏ parameter, vertical velocity, and Reynolds stress towards 

the end of the pool as the pool length increases, it can be concluded that the flow returns to a uniform 

state towards the end of the pool if the pool length is long enough.  Introducing the riffl

uniform flow until a bedform length ratio (width to total bedform length) of 1:5.0 is reached and the 

flow is mostly uniform, or a ratio of 1:6.4 is reached where the flow is completely uniform. 

(b) 

(b) 

 

. Secondary effects (a) numerically simulated by Nezu and Nakawaga (1993) with an aspect ratio of 

adjusts to an expected uniform 

).  A uniform Reynolds stress has a 

tive stress at the bed.  

from the high Reynolds stress near the bed to the diagonal 

 

Nezu and Nakawaga (1993), and (b) measured at 80% of zone IV 

parameter, vertical velocity, and Reynolds stress towards 

the end of the pool as the pool length increases, it can be concluded that the flow returns to a uniform 

state towards the end of the pool if the pool length is long enough.  Introducing the riffle causes non-

uniform flow until a bedform length ratio (width to total bedform length) of 1:5.0 is reached and the 

f 1:6.4 is reached where the flow is completely uniform.   If the pool 
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length were to increase past this ratio, the flow would remain uniform, provided that the channel 

boundary and roughness remain uniform, until it reached some flow-changing element.   

 

5.4 Adjustment Away from Uniform Flow 

The riffle length was increased in order to assess how the same pool length dynamics changed with new 

upstream conditions.  As the riffle length increased, the flow adjusted away from a uniform flow state at 

the end of the pool, which is shown in the results of the streamwise velocity, Π, and the Reynolds stress.   

 

With an increase in riffle length, the streamwise velocity profile near the end of the pool adjusts from 

having a slow near surface velocity when the riffle is short, to having a faster velocity core near the 

water surface when the riffle is long.  As discussed previously, an increased velocity core with flow 

occurring over less of the cross-sectional area suggests that the flow is adjusting to a less uniform state 

by the end of the pool as the riffle length increases.  The velocity gradient across the channel width also 

changes, as there is a relatively rapid change in velocity across the entire cross-section when the riffle 

length is increased.  The increase in velocity gradient again suggests the flow is transitioning to a less 

stable state.   

 

The faster velocity core at the water surface leads to increasingly higher Π values observed at the end of 

the pool (Figure 82).  This change indicates that the flow is moving from a uniform flow at the end of 

the pool, like in Run 4 where Π is approximately zero, to a flow with a non-uniform profile, like in 

Run 7 where Π is approximately 0.5.  As mentioned above, a Π value near zero suggests uniform flow, 

whereas the flow becomes less uniform as Π increases, which is what is occurring as the riffle length 

increases.  As the riffle length continues to increase, the Π values at the end of the pool are likely to 

keep increasing, and the flow will continue to move towards a more non-uniform flow, unless the pool 

length increases.   

 

It is interesting to note that the riffle has reached a Π value of zero at the end of the riffle in Run 7, 

indicating uniform flow was established at this riffle length.  This uniform flow that was achieved in the 

riffle is now more concentrated in a high velocity core and therefore farther away from the uniform 

flow conditions in the pool.  This means that a longer distance is required for the flow to adjust from the 

uniform conditions of the riffle to the uniform conditions dictated by the pool. 
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Figure 82. Comparison of the Coles’ Wake Parameter (Π) at the channel centerline for Runs 4 through 7 with 

normalized zones. 

As the riffle length increases, the area of elevated Reynolds stress extends farther into the pool.  With 

this increase in elevated Reynolds stress at the end of the pool, the flow cannot transition to a uniform 

state as it could when the riffle length was shorter.  The YZ orientation of the Reynolds stress shows the 

contours moving from the uniform low stress diagonal cross-section observed in Run 4, to a cross-

section with a higher peak near the channel centerline, as in Run 7.  This confirms that the flow is not 

uniform at the end of the pool in the tests with increased riffle length.  

 

The results of the streamwise velocity, Π parameter, and Reynolds stress profiles near the end of the 

pool as the riffle length increases, as discussed above, suggest that uniform flow conditions will only 

exist in the long pool if the riffle length is short enough.  Once the bedform length ratio is greater than 

1:7.0, the flow tends towards a non-uniform state at this constant pool length.   

 

5.5 Comparison of Different Shear Stresses 

In uniform flow, the shear stress estimated from the velocity profile and from the Reynolds stress 

profile should theoretically give similar values (Wilcock, 1996).  Different values indicate that the 

stresses are out of balance.  Reynolds stress is normally generated at the wall, and is related to the 

  Contraction         Riffle             Expansion         Pool             Contraction 
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gradient of velocity near the wall in a classic boundary layer (Dingman, 2009).  In decelerating flow, 

and in the adjustment of an accelerated flow (concentrated in a high velocity core) towards uniform 

flow, Reynolds stress is generated elsewhere in the section due to strong velocity gradients.  In this 

case, the Reynolds stress peak occurs above the surface of the bed (Yang and Chow, 2008).  The 

opposite occurs in accelerating flow, and in the adjustment of a decelerated flow (fuller velocity profile, 

nearly constant across the cross-section) towards uniform flow.  Reynolds stress in the second case 

stays low, even as the near-bed velocity gradient increases, indicating that stress on the bed is very 

high.  It takes some distance before the Reynolds stress can catch up to the shear stress due to velocity, 

which occurs when the Reynolds stress is generated at the bed and diffuses upwards, as occurs in 

uniform channels.   

 

In these experiments, the shear stress estimated from the velocity profile increases over the contraction 

and riffle and decreases through the expansion and pool (Figure 83a).  The shear stress estimated from 

the Reynolds stress profile remains low over the contraction and start of the riffle, increases over the 

end of the riffle and expansion, and decreases in the pool.  Note that the shear stress has been smoothed 

by a running average over the five nearest points.   

 
 

   

 

Figure 83. Comparison of τu and τr at the channel centerline (y=0.30 m) for Run 1 and Run 7.   

In general, as the pool and riffle length increase, the difference in the two estimated shear stresses at the 

end of the riffle and pool decreases (Figure 83b).  The decrease in the shear stress difference shows that 

the two shear stresses are converging to a common value, indicating that a new balance between the 

forces acting on the velocity and turbulence has been reached.  In Runs 6 and 7, the riffle length was 
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long enough for a more uniform flow to develop, and a new balance between the two stresses 

developed leading to similar values in τr and τu.  This same balance between the stresses occurs in the 

pool for all runs other than Run 1.  As the pool length increases, a new balance of the shear stresses 

occurs, indicating that the flow is moving towards uniformity. 

 

When comparing the total summation of τu and τr, the stress increases over the riffle and decreases over 

the pool, with the peak located in the expansion (Figure 84).  This indicates that riffles can ‘end’ when a 

threshold is exceeded on the way up and scour occurs in the expansion.  Pools will ‘end’ when a 

threshold is exceeded on the way down and sediment will deposit, forming the exit slope from the pool 

to the next riffle.   

 

Overall, the level of total shear stress in Run 1 remains high throughout the entire pool length, 

indicating that erosion will be dominant in this configuration.  All other runs show smaller total shear 

stress levels at the end of the pool, indicating that sediment may deposit in the end of these relatively 

stable areas.  The difference between the incoming shear stress observed in zone I and the exiting shear 

stress observed in zone V, is due to the fact that the approach section consisted of a flat bed with no 

bedforms, and therefore, had very little shear stress associated to it. 

 

 

 

Figure 84. Summation of τu and τr at the channel centerline (y=0.30 m) for Runs 1 through 7. 
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5.6 Fundamental Control on Hydrodynamics 

Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and 

turbulence within a channel.  In the pool, energy is dissipated both through turbulence and as the flow is 

redistributed to match uniform flow.  In the riffle, kinetic energy is generated as the flow velocity 

increases, which redistributes the flow towards its own unique uniform conditions.   

 

In general, as the pool length increases, the flow in the pool-riffle unit becomes more uniform.  This is 

confirmed as the flow returns to a more uniform state by the end of the pool in the longer pools, as 

observed with the streamwise velocity, vertical velocity, and Π parameter.  The Reynolds stress also 

decreases as the pool length increases, causing an increase in turbulent coherence downstream of the 

high Reynolds stress.  At the downstream end of the pool, both shear stresses estimated from the 

velocity profile and Reynolds stress profile decrease to their lowest values.  From these results, it can be 

concluded that uniform flow conditions exist at the end of the pool when the bedform length ratio is 

greater than approximately 1:5.0 when the riffle length was held constant.   

 

In general, as the riffle length increases, the flow in the pool became more non-uniform.  This is evident 

from the increasing lateral gradients in streamwise velocity, Π, and Reynolds stress.  As the riffle length 

increases, a faster and more turbulent core is generated at the channel centerline, leading to less uniform 

flow throughout the entire pool length.  As the riffle length increases, the generated turbulence 

increases, leading to non-uniform flow cross-section at the end of the pool.  From these results, it can be 

concluded that uniform flow conditions are no longer observed at the end of the pool when the bedform 

length ratio exceeds 1:7.0 when the pool length was held constant. 

 

Due to the fact that the bedforms were not deformable and therefore do not fully represent natural 

bedforms, the use of these results in pool-riffle design is highly speculative and more research must be 

completed.  However, comparing the results found in this thesis to the summarized hypotheses in 

Section 2.6, multiple mechanisms are observed that could influence pool-riffle maintenance.  For 

instance, increased turbulence at the pool head supports the idea that it may be important for pool scour, 

and the results support previous observations of flow convergence in pools.  Using the suggested 

bedform scaling range for design is speculative as well, but turbulence eventually decreases in the pool, 

which suggests that it may limit the length of the pool, as the material would eventually start to deposit 

and a riffle would form.  Along with the pool-riffle scales considered in this thesis, more research must 

be conducted at the internal scaling parameters, i.e. the relative length of the pool and riffle within one 

bedform length, as these scaling relations will also impact the hydrodynamics within a pool-riffle unit, 

and will change the results found in this thesis. 
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5.7 Recommendations for Future Research 

The results show the hydrodynamic effects of convective acceleration and deceleration over different 

bedform lengths of a smooth, low-slope bedform in a wall-bounded open channel.  The main limitation 

of this study is that it was conducted over simplified bedforms that lacked sediment transport, realistic 

three-dimensional topography (sinuosity), and repeating bedforms.  Although these parameters were 

removed in order to reduce the complexity of the experiment and results, these factors must be 

considered to determine the role they play in the process of pool formation and maintenance in natural 

and restored channels.   

 

Another limitation of this study is the complexity of pool-riffle scaling.  Pool-riffle sequences are 

known to scale at a width to total bedform length of 1:5-7.  It was this definition of bedform scaling that 

these experiments were based upon.  However, the scale between the length of the pool and the length 

of the riffle is not explicitly stated in this definition.  The literature states that the ratio of pool to riffle 

length is generally around 1:0.9-1.9 in channels with less than 2% slope (Carling and Orr, 2000; Wohl 

et al., 1993).  In these experiments, the pool to riffle ratio varied between each test, with a 1:1 ratio in 

Runs 1 and 7, to a maximum ratio of 1:6 in Run 4.  This scaling parameter may play a vital role in pool-

riffle maintenance, and should be considered in future research. 

 

The turbulent structures were measured in this research, with some coherence observed in the integral 

time scale and the integral length scale.  The data showed interesting results, however, the overall trend 

in the data was not clear through these findings.  Turbulent structures may reveal important trends in 

coherence in flow over bedforms and should be pursued in future research. 

 

The results found in this thesis should be compared to future pool-riffle studies to determine if these 

findings on the flow hydrodynamics are applicable over a wide range of field sites.  All future 

experiments should measure velocity in high spatial distributions to observe the three-dimensional 

effects that occur throughout the convective acceleration and deceleration processes.  The experiments 

should also categorize the results based upon the different bed slopes so that the flow in different zones 

can be easily compared. 
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Chapter 6 

    CONCLUSIONS 

Pool-riffle sequences are used in current river restoration practices but their hydrodynamics are still not 

fully understood, which can lead to unstable restoration designs.  Using Ultrasonic Velocity Profilers 

over movable, simplified bedforms, the effects of flow and turbulence were measured over seven 

different pool-riffle bedform lengths.  The described experiments demonstrate that the length of the 

pool and riffle exert a fundamental control on the distribution of the flow and turbulence in a channel.  

These experiments are unique in the literature and indicate that simplified experiments can be used to 

understand the hydrodynamics of convective acceleration and deceleration found in natural pool-riffle 

bedforms.  Other parameters tested show the complexity of the hydrodynamics and confirm the need 

for isolating the key parameters, as was completed in this thesis, as a means to unlocking the reasons 

behind persistent scaling relation between width and bedform length.   

 

Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and 

turbulence within a channel.  In the pool, energy is dissipated both through turbulence and as the flow is 

redistributed to uniform flow conditions.  In the riffle, kinetic energy increases as the flow velocity 

increases, and as the length increases, the flow moves towards a new uniform flow condition.  

Therefore, when the flow reaches the pool, the distribution of flow is farther from the uniform flow 

conditions in the pool.  This means that longer distances are required to redistribute the flow in the pool 

to uniform conditions when the riffle length is long.  It can be concluded from these results that uniform 

flow conditions exist at the end of the pool when the bedform length ratio is greater than approximately 

1:5.0 when the riffle length is held constant, and that uniform flow conditions are no longer observed at 

the end of the pool when the bedform length ratio exceeds 1:7.0 when the pool length is held constant. 

 

These results should be used only as a preliminary understanding in restoration design.  Multiple 

controls are responsible for stable pool-riffle sequences, and more information is needed to fully 

understand pool-riffle hydrodynamics.  Future research should concentrate on extending the results to 

include three-dimensional pool-riffle configurations, repeating bedform configurations, internal scaling 

parameters, and sediment transport.  Ultimately, as the hydrodynamics of pool-riffle sequences are 

better understood, better bedform designs can be implemented in restoration projects.
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Appendix A – Froude Number 

 

Figure 85. Froude number (Fr) in the XY plane for all runs. 
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Appendix B – Reynolds Number 

  

Figure 86. Reynolds number (Re) in the XY plane for the different runs. 
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Appendix C – Extra Riffle Length Results 

 

Figure 87. Integral length scale (ILS) in the XZ plane near the channel wall (y=0.03 m) for Runs 4 through 7 

using the US probe. 

 

 

Figure 88. Integral time scale (ITS) in the XZ plane at the channel centerline (y=0.30 m) for Runs 4 through 7 

using the US probe. 

(a) Run 4 

(b) Run 5 

(c) Run 6 

(d) Run 7 

(a) Run 4 
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(c) Run 6 

(d) Run 7 
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Appendix D –Experimental Results for Different Depths 

As a part of the experimental phase of this thesis, different water depths were tested to determine the 

effect the water depth had on the hydrodynamics through the pool-riffle sequence.  The depths that 

were tested were 0.05, 0.06, 0.08, and 0.10 m over zone II (original depth tested was 0.06 m).  The 

bedform configuration used was the same as Run 7 (Table 2).  In order to keep the bulk velocity 

upstream of the bedforms at a constant 0.21 m/s, the flow rate was changed in each test at different 

depths (Table 6).  The bulk velocity over the riffle was different each run, however.  The change in 

flow rate did affect the Fr and Re numbers slightly, however, they remained in an acceptable range for 

the flow to be considered in the same regime. 

 
Table 6. Different flow rates, Froude and Reynolds numbers for the different depths tested. 

Depth of Riffle  (m) Flow Rate (L/s) Max Fr Max Re (x10
4
) 

0.05 14.9 0.84 3.5 

0.06 15.4 0.72 3.3 

0.08 18.0 0.44 3.5 

0.10 20.6 0.35 3.8 

 

The following figures show the results collected from the different water depths.  The results follow the 

same format as those in the body of the thesis, and include streamwise velocity, Π, τu, vertical velocity, 

τRe, τr, ILS, and ITS.  These results are not explained in detail and are simply here for the viewing 

interest of the reader.  No conclusions were made based on these results in the body of the thesis.  It 

should be noted that testing was difficult at the 0.05 m depth as the velocities were very high, waves 

were starting to form in zone IV (Figure 89), and multiple air bubbles were formed on the UVP probe, 

especially in zone III.  It is for these reasons that the results from this depth has many errors associated 

with it. 

 

                    

Figure 89. (a)Top view and (b) side view of the wave formation in zone IV during 0.05 m testing. 

(a) (b) 
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Figure 90. Mean streamwise velocity (U) in the XZ plane at the channel centerline (y=0.30 m) for four different 

depths. 

 

Figure 91. Mean streamwise velocity (U) in the XZ plane near the channel wall (y=0.03 m) for four different 

depths. 
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(d) 0.10 m 



113 

 

       

Figure 92. Shear stress estimated from the velocity profile (τu) in the XY plane for four different depths. 

 

       

Figure 93. Coles’ wake parameter (Π) in the XY plane for four different depths. 
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Figure 94. Mean vertical velocity (W) in the XZ plane at the channel centerline (y=0.30 m) for four different 

depths. 

 

 

Figure 95. Mean vertical velocity (W) in the XZ plane near the channel wall (y=0.03 m) for four different depths. 
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Figure 96. Reynolds stress (τRe) in the XZ plane at the channel centerline (y=0.30 m) for four different depths. 

           

Figure 97. Reynolds stress (τRe) in the XZ plane near the channel wall (y=0.60 m) for four different depths. 
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Figure 98. Shear stress estimated from the Reynolds stress profile (τr) in the XY plane for four different depths. 
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Figure 99. Integral length scale (ILS) in the XZ plane at the channel centerline (y=0.30 m) for four different 

depths using the US probe. 

        

Figure 100. Integral length scale (ILS) in the XZ plane near the channel wall (y=0.03 m) for four different depths 

using the US probe. 
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Figure 101. Integral time scale (ITS) in the XZ plane at the channel centerline (y=0.30 m) for four different depths 

the US probe. 

      

Figure 102. Integral time scale (ITS) in the XZ plane near the channel wall (y=0.03 m) for four different depths 

using the US probe. 
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Appendix E – Experimental Results for Roughness 

Factors 

As a part of the experiment phase of this thesis, different roughness factors were tested to determine the 

effect channel roughness had on the hydrodynamics through the pool-riffle sequence.  Three different 

trials were conducted using different roughness factors.  The first was a smooth PVC bed and smooth 

side walls.  The second trial used an abrasive tape material along the length of the bed surface, with the 

side walls remaining smooth.  The third trial used this same rough material along the side walls as well 

as along the bed surface (Figure 103).  
 

          

Figure 103. Pictures of the (a) bed roughness, and (b) bed and wall roughness in the flume. 

The abrasive tape was classified as 46 grit on the roughness scale (Esterly, 2010).  The bedform 

geometry was the same as that of Run7 (Table 2).  The maximum Fr and Re values were in an 

acceptable range for the flow to be considered in the same regime as previous results (Table 7). 
 

Table 7. Maximum Fr and Re values for the different roughness factors. 

Roughness Factor Max Fr Max Re (x10
4
) 

Smooth 0.72 3.3 

Rough Bed 0.71 3.0 

Rough Bed and Wall 0.70 3.2 

 

The following figures are the results collected from these different depths.  The results follow the same 

format as the results in the body of the thesis, and include streamwise velocity, Π, τu, vertical velocity, 

τRe, τr, ILS, and ITS.   

(a) (b) 
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Figure 104. Mean streamwise velocity (U) in the XZ plane at the channel centerline (y=0.30 m) for different 

roughness factors. 

 

 

 

Figure 105. Mean streamwise velocity (U) in the XZ plane near the channel wall (y=0.03 m) for different 

roughness factors. 
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Figure 106. Shear stress estimated from the velocity profile (τu) in the XY plane for different roughness factors. 

 

 

 

Figure 107. Coles’ wake parameter (Π) in the XY plane for different roughness factors. 
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Figure 108. Mean vertical velocity (W) in the XZ plane at the channel centerline (y=0.30 m) for different 

roughness factors. 

 

 

 

 

Figure 109. Mean vertical velocity (W) in the XZ plane near the channel wall (y=0.03 m) for different roughness 

factors. 
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Figure 110. Reynolds stress (τRe) in the XZ plane at the channel centerline (y=0.30 m) for different roughness 

factors. 

 

 

 

Figure 111. Reynolds stress (τRe) in the XZ plane near the channel wall (y=0.03 m) for different roughness factors. 
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Figure 112. Shear stress estimated from the Reynolds stress profile (τr) in the XY plane for different roughness 

factors. 
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Figure 113. Integral length scale (ILS) in the XZ plane at the channel centerline (y=0.30 m) for four different 

depths using the US probe. 

 

 

       

Figure 114. Integral length scale (ILS) in the XZ plane near the channel wall (y=0.03 m) for four different depths 

using the US probe. 
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Figure 115. Integral time scale (ITS) in the XZ plane at the channel centerline (y=0.30 m) for three different 

roughness factors using the US probe. 

 

 

      

Figure 116. Integral time scale (ITS) in the XZ plane near the channel wall (y=0.03 m) for three different 

roughness factors using the US probe. 
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