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Abstract

As one of the most significant classes of structure codes, lattice codes are related

to various geometric and coding problems, such as sphere packing and covering,

quantization, signaling for the additive white Gaussian noise (AWGN) channel,

Wyner-Ziv coding, dirty-paper coding, etc. In this thesis, we are especially inter-

ested in the construction of lattice codes for the AWGN channel, since from the

classical channel coding theory, the capacity-achieving codebooks for the AWGN

channel may possess little or no structure, making them ill-suited for applications.

Specifically, we investigate the employment of lattice codes into the one-input-two-

output AWGN channel to achieve its capacity.

For the one-input-two-output AWGN channel, the receiver decodes jointly with

its two observations which are the outputs of the transmitted signal going through

two independent AWGN channels. An angle-decoding scheme is proposed, and we

prove that under such decoding scheme, the capacity of the one-input-two-output

AWGN channel can be achieved using lattice codes, where the bounding region of

the lattice code is an n-dimensional ball to preserve the structure and symmetry of

the underlying lattices, instead of a “thin” spherical shell as in previous studies.

Moreover, to further preserve the lattice symmetry and to reduce complexity,

the nested lattice code with lattice decoding is incorporated into the one-input-

two-output AWGN channel, as under the lattice decoding scheme, the receiver

decodes to the nearest lattice point, neglecting the effects of bounding region. In

contrast, minimum-distance decoding or the proposed angle-decoding aims to find

the nearest codeword inside the bounding region. We first transform the one-input-

two-output AWGN channel into a modulo-lattice additive noise (MLAN) channel

with vanishing information loss, and then apply the nested lattice code on the

MLAN channel. Furthermore, we extend the nested lattice code to a general single-

input-multiple-output AWGN channel and prove it to be capacity achieving.
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Chapter 1

Introduction

1.1 Problems and Motivations

Consider the following Gaussian channel, as shown in Fig. 1.1,

Y = X + Z, Z ∼ N (0, N)

with average power constraint

1

n

n∑
i=1

x2
i ≤ P

for any codeword (x1, x2, ...xn).

The capacity of this channel is defined as

C = max
p(x):EX2≤P

I(X;Y )

and proved to be

C =
1

2
log(1 +

P

N
).

The achievability of the capacity on Gaussian channels is based on the random

coding argument proposed by Shannon in his revolutionary paper [2], where each

codeword Xn is randomly generated according to a normal distribution with vari-

ance P − ε, i.e., Xi(ω) ∼ N (0, P − ε) for i = 1, 2, ..., n and ω = 1, 2, ..., 2nR. The
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average probability of error over the ensemble of the random codebooks is driven to

zero for any R < C. Shannon proved the existence of the optimal codebooks. How-

ever, one cannot describe the exact structures of the capacity achieving codebooks

or how to construct one. Indeed, a capacity achieving codebook that is randomly

generated may possess no structure or symmetry. Consequently, the application

of random coding theorem on the AWGN channel is quite complicated or even

unpractical. Motivated by this, over decades, the minds of the researchers in the

communication community have been dedicated to the search for low-complexity

and structured encoding and decoding schemes for the AWGN channel.

Specifically, lattices are employed for the construction of structured codes for

AWGN channels due to their figures of merit. The development of lattice codes

for AWGN channels originated in the work [3], [4] of R.de Buda, which states the

following.

(1) For any rate R < log P
N

, there exists a lattice code Cn with arbitrarily small

(maximal) probability of error with lattice decoding. Furthermore, the bounding

region of the code can be chosen as an n-dimensional ball of radius
√
nP .

(2) By choosing the bounding region as a “thin” spherical shell instead of the

whole sphere, the lattice code can achieve the capacity on AWGN channel using

maximum-likelihood (ML) decoding.

Lattice decoding amounts to find the nearest lattice point (which may not be a

codeword), neglecting the effects of the bounding region. In contrast, ML decoding,

i.e., the optimum decoding procedure, requires to find the closest codeword to the

received signal.

There are two main gaps between the above results. One is whether the rates
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up to capacity can be achieved by setting the bounding regions of lattice codes as

an n-dimensional ball as opposed to a spherical shell, so that the structure and

symmetry of the underlying lattices can be preserved. The other is to design a

capacity-achieving lattice encoding and decoding scheme to further conserve the

lattice symmetry and to reduce complexity. Rüdiger Urbanke and Bixio Rimoldi

closed the first gap in their paper [9], proving that lattice codes within spherical

bounding regions can achieve capacity on the AWGN channel. The proof is from a

fundamental geometrical perspective and is significantly simplified under the pro-

posed decoding rule, which will be specified in Chapter 3. The second gab is closed

by Uriz Erez and Ram Zamir in [13], where an AWGN channel is first transformed

into a modulo-lattice additive noise (MLAN) channel with vanishing information

loss as n goes to infinity, and then the capacity of the transformed MLAN chan-

nel is achieved with nested lattice codes with lattice encoding and decoding scheme.

Figure 1.1: Additive white Gaussian noise (AWGN) channel.

Motivated by the application of lattice codes on the AWGN channel, in this

thesis, we explore the coding schemes in [9] and [13] and extend them to a more

complicated case, the single-input-multiple-output Gaussian channel. Specifically,

the following one-input-two-output AWGN channel depicted in Fig. 1.2 is consid-

ered, Y1 = X + Z1

Y2 = X + Z2

where Z1 ∼ N (0, N1), Z2 ∼ N (0, N2) . X is the channel input with average power
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constraint P , and the receiver decodes based on Y1 and Y2 jointly.

A suboptimal angle-decoding scheme is proposed, and we prove that under

such scheme there exists a sequence of lattices Λn achieves the capacity on the

one-input-two-output AWGN channel with vanishing probability of error. Also,

we transform the one-input-two-output AWGN channel into a single-input-single-

output MLAN channel, and prove the existence of a sequence of lattices Λn such that

the information rate of the transformed MLAN channel approaches the capacity of

the original AWGN channel as n goes to infinity. Then the nested lattice code

with lattice decoding scheme is exploited into the transformed MLAN channel.

Moreover, we extend the nested lattice code to the general single-input-multiple-

output AWGN channel to achieve its capacity.

Figure 1.2: One-input-two-output AWGN channel.

1.2 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 presents some background information that supports this thesis.

Some fundamental definitions and theorems in information theory are first intro-

duced, e.g., the channel coding theorem and the basic tools to study the Gaussian
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channel. And then the Gaussian channel is specified. Also, we give a general intro-

duction to lattices.

In Chapter 3, we study the work in [9] which proves that lattice codes can

achieve the capacity on AWGN channels. Inspired by its idea, an angle-decoding

scheme for the one-input-two-output AWGN channel is proposed. Furthermore, we

prove that under such decoding scheme, the capacity of the one-input-two-output

AWGN channel can be achieved using lattice codes with an n-dimensional ball of

radius
√
nP as the boundary region.

In Chapter 4, the nested lattice code, which uses lattice encoding and decoding

to preserve the structure of the underlying lattice, is investigated. Again, we em-

ploy the nested lattice code approach on the one-input-two-output AWGN channel.

Moreover, the nested lattice code is extended to a general single-input-multiple-

output AWGN channel and proved to be capacity achieving.

Finally, Chapter 5 concludes this thesis and points out some future work related

to our research.
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Chapter 2

Preliminaries

2.1 Basics of Information Theory

In this section, we introduce some basic definitions and fundamental theorems [21]

developed in information theory.

2.1.1 Entropy and Mutual Information

We start with the concept of entropy, which is the measure of uncertainty of a

random variable. Let X be a random variable with alphabet X and probability

mass function p(x) = Pr(X = x), x ∈ X .

Definition 2.1.1 (Entropy). The entropy H(X) of a discrete random variable X

is defined by

H(X) = −
∑
x∈X

p(x) log p(x).

We can easily extend the definition of entropy to a pair of random variables

since (X, Y ) can be considered as a single vector-valued random variable.

Definition 2.1.2 (Joint entropy). The joint entropy H(X, Y ) of a pair of discrete

random variables (X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y).
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Furthermore, the conditional entropy is defined as follows.

Definition 2.1.3 (Conditional entropy). If (X, Y ) ∼ p(x, y), then the conditional

entropy H(Y |X) is defined as

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x).

We now introduce mutual information, which is a measure of the amount of

information that one random variable contains about another.

Let (X, Y ) be a pair of random variables with a joint probability mass function

p(x, y) and marginal probability mass functions p(x) and p(y).

Definition 2.1.4 (Mutual information). The mutual information I(X;Y ) is de-

fined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

We can rewrite the mutual information I(X;Y ) as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Thus, the mutual information I(X;Y ) is the reduction of the uncertainty of one

random variable due to the knowledge of the other.

2.1.2 Channel Capacity

One of the most fundamental goals in information theory is to find the highest

communication rate at which information can be transmitted with arbitrarily low

probability of error. Shannon’s channel coding theorem [1] answers this question for

single user channels. Before we state the channel coding theorem, first we need the

following definitions to obtain a better understanding of a communication system.
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Definition 2.1.5. A discrete channel, denoted by (X , p(y|x),Y), consists of two

finite sets X and Y and a collection of probability mass functions p(y|x), one for

each x ∈ X , such that for every x and y, p(y|x) ≥ 0, and for every x,
∑

y p(y|x) = 1,

with the interpretation that X is the input and Y is the output of the channel. The

channel is said to be memoryless if the probability distribution of the output depends

only on the input at that time and is conditionally independent of previous channel

inputs or outputs.

Definition 2.1.6. The n-th extension of the discrete memoryless channel (DMC)

is the channel (X n, p(yn|xn),Yn), where

p(yk|xk, yk−1) = p(yk|xk), k = 1, 2, ..., n.

If the channel is used without feedback, then the channel transition function reduces

to

p(yn|xn) =
n∏
i=1

(yi|xi).

Definition 2.1.7. An (M,n) code for the channel (X , p(y|x),Y) consists of the

following:

1. An index set {1, 2, . . . ,M}.

2. An encoding function Xn : {1, 2, . . . ,M} → X n, yielding codewords

Xn(1), Xn(2), . . . , Xn(M).

The set of codewords is called the codebook.

3. A decoding function g : Yn → {1, 2, . . . ,M}, which is a deterministic rule

which assigns a guess to each possible received vector.

A DMC channel is illustrated in Figure 2.1, where message W is encoded into an

n-bits codeword Xn, and after channel, Xn is mapped to Y n. The decoder decodes

W as Ŵ based on its observation Y n.

Definition 2.1.8 (Probability of error). Let

λi = Pr(g(Y n) 6= i|Xn = Xn(i)) =
∑

yn:g(yn)6=i

p(yn|xn(i))
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be the conditional probability of error given that index i was sent. The maximal

probability of error λ(n) for an (M,n) code is defined as

λ(n) = max
i∈{1,2,...,M}

λi.

The average probability of error P
(n)
e for an (M,n) code is defined as

P (n)
e =

1

M

M∑
i=1

λi.

Definition 2.1.9. The rate R of an (M,n) code is

R =
logM

n
bits per transmission.

Definition 2.1.10 (Achievable rate and capacity). A rate R is said to be achievable

if there exists an sequence of (2nR, n) codes such that the maximal probability of error

λ(n) tends to 0 as n → ∞. The capacity of a discrete memoryless channel is the

supermum of all achievable rates.

We now formally state Shannon’s channel coding theorem.

Theorem 2.1.1 (The Channel Coding Theorem). All rates below capacity C =

maxp(x) I(X;Y ) are achievable. Specifically, for every rate R < C, there exists a

sequence of (2nR, n) codes with maximum probability error λ(n) → 0. Conversely,

any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤ C.

Figure 2.1: DMC channel.

2.1.3 Differential Entropy

Now we introduce the concept of differential entropy, which is the entropy of a

continuous random variable.
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Definition 2.1.11 (Support set of a continuous random variable). Let X be a

random variable with cumulative distribution function F (x) = Pr(X ≤ x). If F (x)

is continuous, the random variable is said to be continuous. Let f(x) = F ′(x) when

the derivative is defined. If
∫∞
−∞ f(x) = 1, then f(x) is called the probability density

function for X. The set where f(x) > 0 is called the support set of X.

Definition 2.1.12 (Differential entropy). The differential entropy h(X) of a con-

tinuous random variable X with density f(x) is defined as

h(X) = −
∫
S

f(x) log f(x)dx,

where S is the support set of the random variable.

As in the discrete case, we extend the definition of differential entropy of a single

random variable to multiple random variables.

Definition 2.1.13 (Joint and conditional differential entropy). The differential

entropy of a set of random variables X1, X2, ..., Xn with density f(x1, x2, ..., xn) is

defined as

h(X1, X2, ..., Xn) = −
∫
f(x1, x2, ..., xn) log f(x1, x2, ..., xn)dx1dx2...dxn.

If X, Y have a joint density function f(x, y), we can define the conditional differ-

ential entropy h(X|Y ) as

h(X|Y ) = −
∫
f(x, y) log f(x|y)dxdy.

The following theorems will be broadly used in the studying of Gaussian Chan-

nels in the sequel.

Theorem 2.1.2 (Entropy of a multivariate normal distribution). Let X1, X2, ..., Xn

have a multivariate normal distribution with mean µ and covariance matrix K. (We

use N (µ,K) to denote this distribution.) Then

h(X1, X2, ..., Xn) =
1

2
log(2πe)n|K| bits,

where |K| denotes the determinant of K.
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Theorem 2.1.3. Let the random vector X ∈ Rn have zero mean and covariance

K = EXXt, i.e., Kij = EXiXj, 1 ≤ i, j ≤ n. Then,

h(X) ≤ 1

2
log(2πe)n|K|,

with equality iff X ∼ N (0, K).

2.2 The Gaussian Channel

In this section, we introduce the most important continuous alphabet channel, the

Gaussian Channel, as shown in Fig. 1.1. This is a time discrete channel with output

Yi at time i, where Yi is the sum of the inputXi and noise Zi. Zi is independent

of Xi and is drawn i.i.d from a Gaussian distribution with variance N . Thus, the

channel can be expressed as

Y = X + Z, Z ∼ N (0, N). (2.1)

We assume an average power constraint on the inputX. For any codeword (x1, x2, ..., xn)

transmitted over the channel, we require

1

n

n∑
i=1

x2
i ≤ P.

Definition 2.2.1 (Capacity of Gaussian channel). The information capacity of the

Gaussian Channel with power constraint P is

C = max
p(x):EX2≤P

I(X;Y ). (2.2)

We can calculate the information capacity as follows,

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z). (2.3)

11



(2.3) follows since Z is independent of X.

Now, with

h(Z) =
1

2
log 2πeN

and

EY 2 = E(X + Z)2 ≤ P +N,

by Theorem. 2.1.3, we have

I(X;Y ) = h(Y )− h(Z)

≤ 1

2
log 2πe(P +N)− 1

2
log 2πeN

=
1

2
log(1 +

P

N
).

Hence, the capacity of the Gaussian channel is

C = max
p(x):EX2≤P

I(X;Y ) =
1

2
log(1 +

P

N
),

where the maximum is attained when X ∼ N (0, P ). As a result, we have the

following theorem.

Theorem 2.2.1. The capacity of a Gaussian channel with power constraint P and

noise variance N is

C =
1

2
log(1 +

P

N
) bits per transmission. (2.4)

An (M,n) code and the achievable rate of the Gaussian channel are defined

similarly with the discrete case as follows.

Definition 2.2.2. An (M,n) code for the Gaussian channel with power constraint

P consists of the following:

1. An index set {1, 2, . . . ,M}.

2. An encoding function x : {1, 2, . . . ,M} → X n, yielding codewords xn(1), xn(2), . . . , xn(M),

satisfying the power constraint P , i.e., for every codeword

n∑
i=1

x2
i (w) ≤ nP, w = 1, 2, ...,M.

12



3. A decoding function

g : Yn → {1, 2, . . . ,M}.

Definition 2.2.3. A rate R is said to be achievable for a Gaussian channel with

a power constraint P if there exists a sequence of (2nR, n) codes with codewords

satisfying the power constraint such that the maximal probability of error tends to

zero. The capacity of the channel is the supremum of the achievable rates.

2.3 Lattices: Definitions and Figures of Merit

Lattices are related to several geometric problems such as sphere packing, sphere

covering and the kissing number problems, as well as other areas of mathematics

like number theory and combinatorics. Outside mathematics, the main application

of lattices is in engineering, and specifically in channel coding. In the recent years,

interesting links were found between lattices and coding schemes for multi-terminal

networks. Lattice codes form effective arrangements of points in space for coding

problems, e.g., quantization and signaling for the AWGN channel [24], [10]. Good

lattices tend to be “perfect” in all aspects as the dimension goes to infinity. In

this section, we will introduce some basic definitions and main figures of merit of

lattices for the further study of lattices in the area of Gaussian network information

theory.

Definition 2.3.1. An n-dimensional lattice Λ is defined by a set of n basis vectors

g1,g2, ...,gn ∈ Rn. The lattice Λ is composed of all integral combinations of the

basis vectors, i.e.,

Λ = {λ = G · i : i ∈ Zn},

where Z = {0,±1,±2, ...} and the n × n generator matrix G is given by G =

[g1,g,...,gn].

Definition 2.3.2 (Nearest neighbor quantizer and Voronoi region [5]). The nearest

neighbor quantizer Q(·) associated with Λ is defined by

Q(x) = λ ∈ Λ, if ‖x− λ‖ ≤ ‖x− λ′‖ ∀λ′ ∈ Λ,

13



where ‖·‖ denotes Euclidean norm. The basic Voronoi region associates with λ ∈ Λ,

denoted by V0, is a set of points in Rn closest to the zero codeword, i.e.,

V0 = {x : Q(x) = 0}.

The Voronoi region associated with each λ ∈ Λ is the set of points x such that

Q(x) = λ and it is given by a shift of V0 by λ.

According to the definition of Voronoi region, every x ∈ Rn can be uniquely

expressed as

x = λ+ r,

with λ ∈ Λ, r ∈ V .

Definition 2.3.3 (Modulo lattice operation). The modulo lattice operation with

respect to a lattice Λ is defined as,

x mod Λ = x−Q(x).

It will prove useful to consider more general fundamental regions and quantizers

for a lattice Λ.

Definition 2.3.4. Let Ω be any fundamental region of Λ, i.e., every x ∈ Rn can

be uniquely written as x = λ + e where λ ∈ Λ, e ∈ Ω and Rn = Λ + Ω. We

correspondingly define the quantizer associated with Ω by

QΩ(x) = λ, if x ∈ λ+ Ω.

Following, we introduce some important parameters to measure a lattice Λ .

Definition 2.3.5 (Second moment of a lattice). The second moment σ2
Λ associated

with Ω of a lattice is defined as

σ2
Λ =

1

n
E‖U‖2 =

1

n

∫
Ω
‖x‖2dx

V

where U is a random vector uniformly distributed over Ω and V , V (Λ) = |Ω|.

14



For a fixed lattice, σ2
Λ is minimized if Ω is chosen as the Voronoi region V .

A figure of merit of a lattice quantizer with respect to the Mean-square error

distortion measure is the normalized second moment defined as follows.

Definition 2.3.6 (Normalized seconde moment). The normalized second moment

of Λ is defined as

G(Λ) ,
σ2

Λ

V 2/n
=

1

n

∫
V ‖x‖

2dx

V 1+2/n
. (2.5)

The minimum possible value of G(Λn) over all lattices in Rn is denoted by Gn.

It is well known that

Gn ≥ G∗n >
1

2πe

where G∗n is the normalized second moment of an n-dimensional sphere and 1
2πe

is

the normalized seconde moment of an infinite-dimensional sphere. A result in [11]

states that there exists a sequence of lattices Λn with

lim
n→∞

Gn =
1

2πe
,

i.e., there exists a sequence of “good” lattices Λ∗n whose Voronoi region V approaches

a sphere in the sense that G(Λ∗n) = Gn → G∗n → 1
2πe

as n→∞. We say that such

lattices are good for quantization [12].
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Chapter 3

A Geometric Approach to the

Capacity of AWGN Channels

Using Lattice Codes

Reconsider the following AWGN channel with power constraint P ,

Y = X + Z, Z ∼ N (0, N).

As mentioned in the previous chapter, the capacity of this channel is C = 1
2

log(1 +

P
N

). However, from a classical information theoretic perspective, the achievability of

the capacity is based on a random coding argument, hence, the capacity achieving

codebooks may exhibit little or no structure, making them ill-suited for practical

applications. This inspires the investigation into the maximal reliable transmission

rates achievable by structured codes, in other words, the search for low-complexity,

structured codes with rates approaching capacity for the AWGN channel.

An important class of structured codes is the class of lattice codes. In [9], the

authors proved that lattice codes with spherical bounding region can achieve the

channel capacity of AWGN channels from a geometric approach. In this chapter,

we will first introduce the work in [9] and then modify and extend it to the AWGN
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channel with one input and two outputs.

3.1 Lattice Codes Can Achieve Capacity on the

Single-Input-Single-Output AWGN Channel

A lattice code Cn is defined as the intersection of an (possibly translated) n-

dimensional lattice Λn with a region Bn of bounded support.

The main result in [9] is summarized by the following theorem.

Theorem 3.1.1. Let P,N and ε > 0 be given. If

R <
1

2
log(1 +

P

N
)

then there exists a lattice code Cn for the AWGN channel with power constraint P

and noise variance N , where Bn is the n-dimensional ball of radius
√
nP , such that

Cn has rate lower-bounded by R and average probability of error of a minimum-

distance decoder upper-bounded by ε.

For the consistency of our work on the extension to the one-input-two-output

AWGN channel, here the proof of the above theorem is outlined.

Let P be the signal power constraint per dimension and N be the noise variance.

R is given such that

R <
1

2
log(1 +

P

N
).

There exist R′ and P ′ such that

R < R′ <
1

2
log(1 +

P ′

N
) <

1

2
log(1 +

P

N
).

Let Tn be the n-dimensional ball of radius
√
nP and volume

Vn =
(πnP )

n
2

Γ(n/2 + 1)
, (3.1)

17



where Γ(x) is the well-known Gamma function. For P ′ < P , let T ′n be the n-

dimensional ball of radius
√
nP ′ and volume

V ′n =
(πnP ′)

n
2

Γ(n/2 + 1)
. (3.2)

Further, define T4n = Tn\T ′n with volume V 4n = Vn − V ′n.

Given a lattice Λn with fundamental region Ωn and s ∈ Ωn, define the lattice

code

Cn = (Λn + s) ∩ Tn

and the subcodes

C ′n = (Λn + s) ∩ T ′n,

C4n = (Λn + s) ∩ T4n .

Let Mn = Mn(Λn, s), M
′
n = M ′

n(Λn, s) and M4
n = M4

n (Λn, s) be the cardinalities

of these codes respectively.

For an arbitrary code C, let P C denote the average probability of error under

minimum-distance decoding. Let π : Rn\{0} → ∂T ′n be the mapping defined by

π(x) = (
√
nP ′/‖x‖)x. The mapping radially projects a nonzero point onto the

sphere of radius
√
nP ′. Then we have the following lemmas.

Lemma 3.1.1.

P Cn ≤ M ′
n

Mn

+ P C
4
n .

Lemma 3.1.2.

P C
4
n ≤ P π(C4n ).

Combining Lemma 3.1.1 and Lemma 3.1.2, we get

P Cn ≤ M ′
n

Mn

+ P π(C4n ). (3.3)

Next, we will bound P π(C4n ) by defining a suitable suboptimum decoder.
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For y ∈ Rn and 0 < θ < π
2
, let Bθ(y) be the n-dimensional closed circular cone

with apex at 0, axis passing through y and half angle θ. For each x ∈ π(C4n ) the

associated decoding region Aθ(x) is defined as

Aθ(x) = Bθ(x)\
⋃

x′∈π(C4n )\{x}

Bθ(x
′). (3.4)

In words, the decoding region of a codeword consists of those parts of its associated

cone which do not overlap with any cone associated to another codeword. Note

that

Acθ(x) = Bc
θ(x)

⋃
x′∈π(C4n )\{x}

Bθ(x
′).

Let P
π(C4n )
θ denote the probability of error for the proposed suboptimum decoder

and x0 = (
√
nP ′, 0, ..., 0). For any x ∈ C4n , we have

P
π(C4n )
θ = Pr(π(x) + Z ∈ Acθ(π(x)))

≤ Pr(π(x) + Z ∈ Bc
θ(π(x))) +

∑
x′∈C4n \{x}

Pr(π(x) + Z ∈ Bθ(π(x′)))

= Pr(x0 + Z 6∈ Bθ(x0)) +
∑

x′∈C4n \{x}

Pr(π(x) + Z ∈ Bθ(π(x′)))

= Pr(x0 + Z 6∈ Bθ(x0)) +
∑

x′∈C4n \{x}

Pr(π(x′) + Z ∈ Bθ(π(x)))

= Pr(x0 + Z 6∈ Bθ(x0)) +
∑

x′∈C4n \{x}

pθ(x, x
′)

= Pr(x0 + Z 6∈ Bθ(x0)) +
∑

g∈Λn\{0}

pθ(g + x, x)XT4n (g + x), (3.5)

where

pθ(x, x
′) := Pr(π(x′) + Z ∈ Bθ(π(x)))

and

XT4n (x) =

1, if x ∈ T4n

0, if x 6∈ T4n .
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Lemma 3.1.3. Given dn ∈ R+ there exists a lattice Λ∗n with determinant det(Λ∗n) =

dn and an s∗ ∈ P ∗n such that

1

M4
n (Λ∗n, s

∗)

∑
x

∈ C4n (Λ∗n, s
∗)

∑
g∈Λn\{0}

pθ(g + x, x)XT4n (g + x)

≤ 2
√
nP (n− 1)πn−1/2(nP ′)n/2

dnΓ(n+1
2

)

∫ θ

0

(sinx)n−2dx.

Moreover, s∗ can be chosen in such a way that

M ′
n(Λ∗n, s

∗)

M
(
nΛ∗n, s

∗)
≤ 4

V ′n
Vn

and

M4
n (Λ∗n, s

∗) ≥ V 4n
4dn

.

Applying Lemma 3.1.3 and (3.5) to (3.3), we get

P Cn(Λ∗n,s
∗) ≤ M ′

n(Λ∗n, s
∗)

M
(
nΛ∗n, s

∗)
+

1

M4
n

∑
x∈C4n (Λ∗n,s

∗)

P π(C4n (Λ∗n,s
∗))(π(x))

≤ M ′
n(Λ∗n, s

∗)

M
(
nΛ∗n, s

∗)
+

1

M4
n

∑
x∈C4n (Λ∗n,s

∗)

P
π(C4n (Λ∗n,s

∗))
θ (π(x))

≤ M ′
n(Λ∗n, s

∗)

M
(
nΛ∗n, s

∗)
+ Pr(x0 + Z 6∈ Bθ(x0))

+
1

M4
n (Λ∗n, s

∗)

∑
x

∈ C4n (Λ∗n, s
∗)

∑
g∈Λn\{0}

pθ(g + x, x)XT4n (g + x)

≤ 4
V ′n
Vn

+ Pr(x0 + Z 6∈ Bθ(x0)) +
2
√
nP (n− 1)πn−1/2(nP ′)n/2

dnΓ(n+1
2

)

∫ θ

0

(sinx)n−2dx.

(3.6)

Choose dn = 2−nR
′
V 4n , then the rate 1

n
logMn(Λ∗n, s

∗) is lower bounded by

1

n
logMn(Λ∗n, s

∗) ≥ 1

n
logM4

n (Λ∗n, s
∗)

≥ 1

n
log

V 4n
4dn

=
1

n
log 2nR

′−2

= R′ − 2

n
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> R− 2

n
.

To upper bound the average probability of error P Cn(Λ∗n,s
∗), we let sin θ = 2−R

′
, then

the last term on the right side of (3.6) can be also bounded to zero as n→∞. And

by Lemma 3.2.2 in Section 3.2.3, it follows that

Pr(x0 + Z 6∈ Bθ(x0))→ 0

as n→∞. This proves Theorem 3.1.1.

Here we give an interpretation of the proof above. Although the decoding region

is defined as

Aθ(x) = Bθ(x)\
⋃

x′∈π(C4n )\{x}

Bθ(x
′)

for each x ∈ π(C4n ) , as n→∞, by letting sin θ = 2−R
′
, we have∑

x′∈C4n \{x}

Pr(π(x) + Z ∈ Bθ(π(x′)))→ 0,

that is, with θ properly set, Bθ(x) tends to be non-overlapping as the dimension n

goes to infinity, i.e., Aθ(x)→ Bθ(x) as n→∞. Consequently, codewords x ∈ π(C4n )

are separated well enough that after the channel, the received signal is still closest

to the transmitted one. And the minimum distance between any two codewords

becomes 2
√
nP ′ · sin θ and approaches 2

√
NP
P+N

when we let R′ → R and P ′ → P

to achieve the channel capacity as n→∞.

Inspired by this interpretation, in the following section, we apply lattice codes

to a more complex case, the one-input-two-output AWGN channel, and prove that

lattice codes can achieve the capacity of this channel from a geometric approach.
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3.2 An Extension to the One-Input-Two-Output

AWGN Channel

We consider the following Gaussian channel with one input X and two outputs Y1

and Y2 as depicted in Fig.1.2. Y1 = X + Z1,

Y2 = X + Z2.

(3.7)

where Z1 ∼ N (0, N1) and Z2 ∼ N (0, N2). The receiver decodes jointly with Y1 and

Y2.

3.2.1 Channel Capacity

For the above AWGN channel, let X ∼ N (0, P ) to achieve the channel capacity.

Accordingly, Y1 and Y2 are both normally distributed with mean 0 and variance

P + N1, P + N2 respectively. Furthermore, the vector (Y1, Y2) has a multivariate

normal distribution, since any linear combination of its components has a univariate

normal distribution. We denote

(Y1, Y2) ∼ N (µY , KY ),

where

µY = (EY1, EY2) = (0, 0)

is the mean vector, and KY is the covariance matrix with value

KY =

 σ2
Y1

ρY1,Y2σY1σY2

ρY2,Y1σY2σY1 σ2
Y2

 .

ρY1,Y2 is the correlation between Y1 and Y2, defined as

ρY1,Y2 =
E(Y1 − µY1)E(Y2 − µY2)

σY1σY2
.

22



Thus,

ρY1,Y2 =
E(Y1Y2 − µY1Y2 − Y1µY2 + µY1µY2)

σY1σY2
(3.8)

=
EY1Y2

σY1σY2

=
E(X + Z1)(X + Z2)

σY1σY2

=
EX2 + EXEZ1 + EXEZ2 + EZ1EZ2

σY1σY2

=
P√

(P +N1)(P +N2)
. (3.9)

And

KY =

P +N1 P

P P +N2

 .

Similarly, (Z1, Z2) ∼ N (µZ , KZ), where

µZ = (0, 0)

and

KZ =

N1 0

0 N2

 .

Therefore, the channel capacity is

I(X;Y1, Y2) = h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2)

=
1

2
log (2πe)2|KY | −

1

2
log (2πe)2|KZ |

=
1

2
log
|KY |
|KZ |

=
1

2
log

(P +N1)(P +N2)− P 2

N1N2

=
1

2
log (1 +

P (N1 +N2)

N1N2

)

=
1

2
log (1 +

P
N1N2

N1+N2

). (3.10)

We can interpret such channel as a single-input-single-output AWGN channel with

noise N ∼ N (0, N1N2

N1+N2
).
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3.2.2 Basics of Spherical Trigonometry

Before we move to the proof of the achievability of capacity on the one-input-two-

output AWGN channel using lattice codes, we give a brief introduction to some

basic definitions and theorems in spherical trigonometry [23], which will support

our proof in the sequel.

Definition 3.2.1 (Circle and great circle). If a plane cuts a sphere, its intersection

is a circle. Circles whose centers coincide with the center of the sphere are great

circles.

Definition 3.2.2 (Arc and spherical triangle). As with a line segment in a plane,

an arc of a great circle (subtending less than 180◦)on a sphere is the shortest path

lying on the sphere between its two endpoints.

When the arcs of three great circles intersect on the surface of a sphere, the lines

enclose an area known as a spherical triangle.

As their name implies, the great circles are the largest circles of intersection one

can obtain by passing a straight plane through a sphere. To measure an arc on

the great circle and the relationship between two arcs, respectively, we use central

angle and spherical angle defined as follows.

Definition 3.2.3 (Central angle). A central angle is an angle whose vertex is the

center of a circle, and whose sides pass through a pair of points on the circle, thereby

subtending an arc between those two points whose angle is (by definition) equal to

the central angle itself.

Definition 3.2.4 (Spherical angle). A spherical angle is the angle formed by the

intersection of the arcs of two great circles. If we draw tangents to the arcs at their

point of intersection, than the angle formed by the two tangents is said to be the

measure of the spherical angle.

For example, in Fig.3.1, arcs ÂBC and ÂDC form the spherical angle ∠A and

∠C. If we draw the tangents to the arcs ÂBC and ÂDC at C, then ∠QCP is
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said to be the measure of the spherical angle ∠C. And arc B̂D is measured by its

central angle ∠BOD.

We point out that a spherical triangle is specified as usual by its spherical angles

and its sides, and the sides are given not by their lengths, but by their central angles.

Figure 3.1: Spherical angle and its measure.

Given a spherical triangle, we can utilize the Law of Sines and the Law of

Cosines to calculate its unknown angles.

Theorem 3.2.1 (Law of Sines and Law of Cosines). Given a spherical triangle

4ABC as shown in Fig. 3.2, with central angles a, b and c associated with arcs

BC, AC and AB respectively. By the Law of Sines, we have

sin a

sinA
=

sin b

sinB
=

sin c

sinC
.

And by the Law of Cosines,

cos a = cos b cos c+ sin b sin c cosA.
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Figure 3.2: Spherical triangle.

3.2.3 Achievability of the Channel Capacity

For the one-input-two-output AWGN channel with power constraint P , each code-

word x of an n-dimensional lattice code must satisfy

‖x‖ ≤ nP,

where ‖ · ‖ is the Euclidean norm. Still, the signal space is set as an n-dimensional

ball of radius
√
nP .

Tn, T ′n, Vn, V ′n, T4n , Cn, C ′n, C4n , Mn,M
′
n,M

4
n are defined in the same way as in

Section 3.1 for some P ′ < P . Specifically, for an arbitrary code C, let P C denote

the average probability of error under an angle-decoding scheme defined as follows.

For y ∈ Rn and 0 < θ < π
2
, let Bθ(y) be the n-dimensional closed circular cone

with apex at 0, axis passing through y and half angle θ. Upon receiving y1 and y2,

the decoding area is defined as

Aθ1,θ2(y1, y2) = Bθ1(y1) ∩Bθ2(y2) ∩ T4n , (3.11)
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where θ1 and θ2 will be determined later. If there is one and only one codeword x′

in Aθ1,θ2(y1, y2), we decodes the transmitted signal x as x′. Otherwise, an error is

claimed.

Lemma 3.2.1.

P Cn ≤ M ′
n

Mn

+ P C
4
n .

Proof.

P Cn =
1

Mn

∑
x∈Cn

P Cn(x)

=
1

Mn

∑
x∈C′n

P Cn(x) +
1

Mn

∑
x∈C4n

P Cn(x)

=
M ′

n

Mn

+
1

Mn

∑
x∈C4n

P Cn(x)

≤ M ′
n

Mn

+
1

M4
n

∑
x∈C4n

P Cn(x)

=
M ′

n

Mn

+ P C
4
n .

By Lemma 3.1.3, for any ε > 0, there exists a sufficiently large n, such that

M ′
n

Mn

≤ 4V ′n
Vn

= 4
(πnP ′)

n
2

Γ(n/2 + 1)
/

(πnP )
n
2

Γ(n/2 + 1)

= 4(
P ′

P
)
n
2

≤ ε.

Thus, to upper bound the average probability of error P Cn , now we only need to con-

sider the codewords in the n-dimensional sphere shell T4n , that is the sub-codebook

C4n .

27



Suppose codeword x ∈ C4n is transmitted, the decoder receives y1 and y2. The

premiss of successful decoding is that

x ∈ Bθ1(y1) and x ∈ Bθ2(y2),

i.e., x ∈ Aθ1,θ2(y1, y2).

Lemma 3.2.2. For the following AWGN channel,

Yi = Xi + Zi

where each n-dimensional codeword x = (x1, x2, ..., xn) satisfies ‖x‖ = nS and

Zi ∼ N (0, N), we have

sin∠(x+ Z, x)→
√

N

S +N
as n→∞.

Proof.

cos∠(x+ Z, x) =
(x+ Z) · x
‖x+ Z‖‖x‖

=
‖x‖2 + x · Z
‖x+ Z‖‖x‖

Since x and the Gaussian noise Z are independent, we have

x⊥Z, i.e., x · Z = 0.

Also,

E‖x+ Z‖2 = E(x2 + 2x · Z + Z2)

= S2 +N2

Hence,

cos∠(x+ Z, x)→ S
√
S +N

√
S

as n→∞

=

√
S

S +N
.

And

sin∠(x+ Z, x)→
√

N

S +N
as n→∞.
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According to the above lemma, we let sin θ1 =
√

N1

P ′+N1
and sin θ2 =

√
N2

P ′+N2
so

that

x ∈ Aθ1,θ2(y1, y2)

with probability approaching to 1 as n goes to infinity.

As illustrated in Fig.3.3, let O be the center of Tn and OX,XY1, and XY2

represent x, Z1 and Z2 respectively. θ′1, θ
′
2 are the angles between x and y1, y2. The

shadowed area represents Bθ1(y1), where θ1 is chosen slightly greater than θ′1 with

high probability, so that x ∈ Bθ1(y1) almost surely.

Figure 3.3: The angle-decoding scheme for the AWGN channel.

Next, we will upper bound the probability that there are other codewords be-

sides the true codeword x lying in the decoding area Aθ1,θ2(y1, y2) by properly setting

the fundamental region Ωn of the lattice Λn. Specifically, we will make sure that

Ωn is large enough that no two codewords can exist in Aθ1,θ2(y1, y2) simultaneously .
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Denote ∂Tn(x) as the sphere of radius
√
nPx and center O, where Px = ‖x‖.

First, let’s look at the projection of Bθ1(y1) and Bθ2(y2) on ∂Tn(x), represented

by the outer circles of the two rings in Fig.3.4, while the inner circles stand for

the projection of Bθ′1
(y1) and Bθ′2

(y2) on ∂Tn(x). Hence, the shadowed part is the

projection of decoding area Aθ1,θ2(y1, y2) on the sphere ∂Tn(x). Let the intersection

points of axis OY1 and OY2 with ∂Tn(x) be O1 and O2 respectively. Obviously,

the edges of the projection of Bθ′1
(y1) and Bθ′2

(y2) on ∂Tn(x) intersect at X and its

symmetrical point X ′. By symmetrical, we mean that X and X ′ are symmetrical

with respect to the great circle OO1O2. Also, as in the Proof of the Capacity The-

orem in [22], for any point y ∈ Aθ1,θ2(y1, y2), y is contained in the n-dimensional

ball centered at H and of radius 1
2
XX ′ with probability approaching to 1, if we

let P ′ arbitrarily close to P with n goes to infinity. In another word, if we set the

fundamental region Ωn of Λn as an n-dimensional ball of radius 1
2
XX ′, then with

high probability, no other codeword is in Aθ1,θ2(y1, y2).

In the following, we will calculateXX ′ with the knowledge of spherical trigonom-

etry which still holds in the n-dimensional space. All the discussion is based on the

sphere ∂Tn(x).

Figure 3.4: The projection of the decoding area on the sphere ∂Tn(x).

In Fig.3.3, XY1⊥OXY2, since the channel input x and the noise Z1, Z2 are
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mutually independent, i.e., Z1⊥x and Z1⊥Z2.

Similarly, XY2⊥OXY1.

Thus, OXY1⊥OXY2. Since the great circle OO1X and OO2X are on the planes

OXY1 and OXY2 respectively, we have

Ô1X⊥Ô2X.

Also, XX ′⊥OO1O2. Therefore, X̂X ′⊥Ô1O2 at point H. To sum up, 4XO1O2 is

a right spherical triangle with height X̂H, and the central angles of Ô1X and Ô2X

are θ′1 and θ′2 respectively, as shown in Fig.3.4. Let ρ be the central angle of X̂H

and ω be the central angle of Ô1O2. By the spherical Law of Sines, we have

sin θ′1
sinO2

=
sin θ′2
sinO1

= sinω,

and
sin θ′1

sin∠O1HX
=

sin ρ

sinO1

i.e.,

sin θ′1 =
sin ρ

sinO1

since ∠O1HX = π
2
.

Thus,

sinω = sin θ′2 ·
sin θ′1
sin ρ

. (3.12)

Also, by the spherical Law of Cosines, we have

cosω = cos θ′1 cos θ′2 + sin θ′1 sin θ′2 cos∠O1XO2

= cos θ′1 cos θ′2. (3.13)

Combining (3.12) and (3.13), we have

sin2 ρ =
sin2 θ′1 sin2 θ′2

sin2 ω

=
sin2 θ′1 sin2 θ′2

1− cos2 ω

=
sin2 θ′1 sin2 θ′2

1− cos2 θ′1 cos2 θ′2
(3.14)
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As n→∞, let P ′ → P , then

sin θ1, sin θ′1 →
√

N1

P +N1

, (3.15)

and

sin θ2, sin θ′2 →
√

N2

P +N2

. (3.16)

Inserting (3.15) and (3.16) into (3.14), we have

sin2 ρ→
N1

P+N1
· N2

P+N2

1− P
P+N1

· P
P+N2

=
N1N2

P (N1 +N2) +N1N2

=
N1N2

N1+N2

P + N1N2

N1+N2

.

And

1

2
XX ′ =

√
nPx · sin ρ

→
√
nP ·

√√√√ N1N2

N1+N2

P + N1N2

N1+N2

. (3.17)

We denote rn(P,N1, N2) =
√
nP ·

√
N1N2
N1+N2

P+
N1N2
N1+N2

, and let Ωn be the n-dimensional ball

of radius rn(P,N1, N2). Hence, the minimum distance between any two codewords

is 2rn(P,N1, N2).

Codeword X ∈ C4n is random selected and transmitted, then for any ε > 0,

under our proposed angle-decoding scheme, where θ1 and θ2 are set as

sin θ1 =

√
N1

P ′ +N1

and

sin θ2 =

√
N2

P ′ +N2

.
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Then the average probability of error under the proposed angle-decoding scheme

can be upper bounded as,

P Cn ≤ M ′
n

Mn

+ P C
4
n

≤ ε+ P C
4
n

= ε+ P{X 6∈ Aθ1,θ2(y1, y2) or ∃X ′ 6= X s.t. X,X ′ ∈ Aθ1,θ2(y1, y2)}

≤ ε+ P{X 6∈ Aθ1,θ2(y1, y2)}+ P{∃X ′ 6= X s.t. X,X ′ ∈ Aθ1,θ2(y1, y2)}

≤ ε+ P{X 6∈ Aθ1,θ2(y1, y2)}+ P{∃X ′, X ′′ s.t. X ′, X ′′ ∈ Aθ1,θ2(y1, y2)} (3.18)

≤ ε+ ε+ ε

= 3ε

when P ′ → P as n → ∞, where (3.18) follows that the probability of X,X ′ ∈

Aθ1,θ2(y1, y2) is less than or equal to the probability that there exist any pair of

codewords (X ′, X ′′) such that X ′, X ′′ ∈ Aθ1,θ2(y1, y2).

And with P Cn upper bounded as n→∞, the achievable rate is

R =
1

n
log

Vn
vol(Ωn)

=
1

n
log(

(πnP )
n
2

Γ(n/2 + 1)
/

(πr2
n(P,N1, N2))

n
2

Γ(n/2 + 1)
)

=
1

n
· n

2
log

πnP

πnP ·
N1N2
N1+N2

P+
N1N2
N1+N2

=
1

2
log

P + N1N2

N1+N2

N1N2

N1+N2

=
1

2
log(1 +

P
N1N2

N1+N2

).

Finally, we reach the following theorem.

Theorem 3.2.2. For the one-input-two-output AWGN channel, with any ε > 0,

there exists a sequence of n-dimensional lattice Λn with fundamental region Ωn,

such that its rate R defined as

R =
1

n
log

vol(Tn)

vol(Ωn)
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approaches C with the average decoding error probability Pe upper bounded by 3ε for

sufficiently large n, where C = 1
2

log (1 + P
N1N2
N1+N2

) is channel capacity, vol(·) denotes

the volume of an n-dimensional space, and Tn is the n-dimensional ball of radius
√
nP .
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Chapter 4

Nested Lattice Code Approach to

the Capacity of AWGN Channels

The central line of development in the application of lattices for the AWGN channel

originated in the work of De Buda. De Buda’s theorem [4] states that a spherical

lattice code with second moment P , which is the intersection of a lattice with a

sphere, can approach arbitrarily closely the AWGN channel capacity. To achieve

the best error exponent of the AWGN channel, a “thin” spherical shell is taken in-

stead of a full sphere. This result has been corrected and refined by several authors

[6], [7], [8] including [9] that we exploited in the last chapter.

However, when a lattice code is defined in this manner, much of the underlying

lattice’s structure and symmetry, the key factors that we apply a lattice code to

AWGN channels to replace a random code, are lost. In addition, the optimality

of such schemes relies on maximum-likelihood (ML) decoding, i.e., minimum dis-

tance decoding when the codewords are uniformly distributed. Thus, the decoding

regions are not fundamental regions of the lattices and are unbounded, resulting a

further lost of the lattice symmetry. In contrast, lattice decoding amounts to find

the nearest lattice point (which might not be a codeword), neglecting the effects of

the bounding region, to take full advantage of the underlying lattice structure and
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to deduce decoding complexity [15], [7].

Therefore, Uri Erez and Ram Zamir [13] proposed a new scheme with lattice

encoding and decoding, the nested lattice code defined in the whole sphere, and

proved it to be capacity achieving for AWGN channels. In this chapter, we will in-

vestigate the nested lattice code, and again, extend it to the one-input-two-output

AWGN channel, further, to the general single-input-multiple-output AWGN chan-

nel.

4.1 Achieving Capacity on the AWGN Channel

with Lattice Encoding and Decoding

Recall the AWGN channel defined in 2.1 with average power constraint P .

In [13], an AWGN channel is first transformed to a modulo-lattice additive noise

(MLAN) channel, and then a nested lattice code is used in the MLAN channel to

achieve its capacity, where the coarse lattice is used for shaping so that it is a good

quantizer, and the fine lattice defines the codewords so that it is a good channel

code.

4.1.1 Transformation from AWGN Channels to MLAN Chan-

nels

In this section, we describe a technique derived in [14] to transform a block of n

uses of the AWGN channel Y = X + Z to an n-dimensional MLAN channel. The

input alphabet of this channel is a fundamental region Ω of a lattice Λ, which we

call the shaping lattice. Such transformation is not strictly information lossless,

however, for a “good” lattice, the information loss goes to zero as the dimension of
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the lattice goes to infinity.

Let U be a random variable uniformly distributed over Ω. We employ U as a

dither signal that is assumed to known to both transmitter and receiver, and is

independent of the channel. The following property will be extensively used in the

sequel.

Lemma 4.1.1. For any random variable X ∈ Ω, statistically independent of U ,

we have that the sum Y = X +U mod Ω Λ is uniformly distributed over Ω, and is

statistically independent of X.

Given t ∈ Ω and the dither U , the output of the transmitter is given by a

modulo lattice operation

Xt = [t− U ] mod Ω Λ. (4.1)

After the AWGN channel, the received signal Y = Xt + Z is multiplied by some

attenuation factor 0 < α < 1, which will be specified later, and the dither U is

added. Finally, the decision signal is defined as

Y ′ = [αY + U ] mod Ω Λ. (4.2)

Lemma 4.1.2. The channel from t to Y ′ defined by (2.1), (4.1) and (4.2), is

equivalent in distribution to the channel

Y ′ = [t+ Z ′] mod Ω Λ (4.3)

where Z ′ is independent of t and is distributed as

Z ′ = [αZ + (1− α)U ] mod Ω Λ

where U is a random variable uniformly distributed over Ω and is statistically in-

dependent of Z.
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Proof.

Y ′ = [αY + U ] mod Ω Λ

= [α(Xt + Z) + U ] mod Ω Λ

= [Xt + U + (α− 1)Xt + αZ] mod Ω Λ

= [(t− U) mod Ω Λ + U + (α− 1)Xt + αZ] mod Ω Λ

= [t− (1− α)Xt + αZ] mod Ω Λ (4.4)

where (4.4) follows the distributive law of the modulo operation. And the lemma

follows, since by Lemma 4.1.1, Xt is independent of t and has the same distribution

as U .

For an input power constraint, let Ω be the Voronoi region V of the lattice.

Since V = −V , we have

Z ′ = [(1− α)U + αZ] mod Λ

where mod Λ denotes mod V Λ.

Moreover, the lattice is scaled so that the second moment of V is P . Hence, by

Lemma 4.1.1, the average transmitted power is

1

n
E‖Xt‖2 =

1

n
E‖U‖2 = P, (4.5)

satisfying the power constraint of the AWGN channel.

Next, we will calculate the capacity of the MLAN channel.

For the equivalent channel (4.3), take Ω = V , so that the input T ∼ Unif(V)

to achieve the capacity. Thus, the output Y ′ is also uniformly distributed over the

Voronoi region V . The resulting information rate is

1

n
I(T ;Y ′) =

1

n
h(Y ′)− 1

n
h(Y ′|T )
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=
1

n
log V − 1

n
h(Z ′)

=
1

2
log

P

G(Λ)
− 1

n
h(Z ′) (4.6)

where V is the volume of V and (4.6) follows the definition of normalized second

moment (2.5).

We are still left with the choice of α. Suppose α = 1, then Z ′ = Z mod Λ.

When P � N and Λ is a “good” lattice in the sense that G(Λ) ≈ 1
2πe

, it can

be shown that the effect of the modulo operation on the noise entropy becomes

negligible. As a result, we have

1

n
h(Z ′) ≈ 1

n
h(Z) =

1

2
log 2πeN

and the information rate tends to 1
2

log P
N

, the rate previously conjectured to be the

greatest achievable with lattice decoding [3], [7].

Nevertheless, in order to maximize 1
n
I(T ;Y ′), we search for an α to minimize

1
n
h(Z ′).

By Lemma 2.1.3,

1

n
h(Z ′) ≤ 1

n
· 1

2
log((2πe)n · 1

n
E‖Z ′‖2). (4.7)

And we know that

1

n
E‖Z ′‖2 ≤ 1

n
E‖(1− α)U + αZ‖2

= (1− α)2P + α2N

≥ P

P +N
·N (4.8)

where (4.8) meets equality when α is chosen as the MMSE coefficient P
P+N

[16].
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Hence, with α = P
P+N

,

1

n
h(Z ′) ≤ 1

2
(2πe

PN

P +N
).

Now consider a sequence of lattices Λn with limn→∞G(Λn) = 1
2πe

.

Theorem 4.1.1 (Capacity of MLAN channel). For the MLAN channel, if we

choose T ∼ Unif(V), α = P
P+N

, and if the sequence of lattices Λn satisfies limn→∞G(Λn) =

1
2πe

, then

lim
n→∞

1

n
I(T ;Y ′) =

1

2
log(1 + SNR).

Proof. Since the capacity of the original AWGN channel is C = 1
2

log(1 + P
N

), on

the one hand, it follows from the data processing inequality that

1

n
I(T ;Y ′) ≤ 1

2
log(1 +

P

N
). (4.9)

On the other hand, from (4.6), (4.7) and (4.8), we get

1

n
I(T ;Y ′) ≥ 1

2
log

P

G(Λn)
− 1

2
log(2πe

PN

P +N
) (4.10)

=
1

2
log(

P +N

PN
· P

2πeG(Λn)
)

→ 1

2
log(1 +

P

N
) (4.11)

as G(Λn)→ 1
2πe

with n→∞.

4.1.2 Nested Lattice Codes for Shaping and Coding

Before applying the nested lattice code into the modulo transformation scheme in

the previous section, we formally define nested lattices and some related notations.

Definition 4.1.1 (Nested Lattices, nesting ratio and coset leaders). A pair of

n-dimensional lattices (Λ1,Λ2) is called nested if Λ2 ⊂ Λ1, i.e., there exists corre-

sponding generator matrices G1 and G2 such that

G2 = G1 · J,
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where J is an n× n integer matrix whose determinant is greater than one.

Denote the Voronoi regions of Λ1 and Λ2 as V1 and V2, and their volumes as V1

and V2 respectively. We call n
√
det(J) = n

√
V2
V1

the nesting ratio.

The points of the set

C = Λ1 mod Λ2 , Λ1 ∩ V2

are called the coset leaders of Λ2 relative to Λ1.

A nested lattice code is a lattice code whose bounding region is the Voronoi

region of a sublattice. This can be visualized as in Fig.4.1, where a pair of two-

dimensional ratio-three nested lattices is depicted.

Figure 4.1: Nested lattices of ratio three.

And the coding rate of the nested lattice code is defined as

R =
1

n
log ‖C‖ =

1

n
log

V2

V1

.
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Let (Λ1,Λ) be a rate-R nested lattice code with σ2(V) = P . Following, we

incorporate the nested lattice code into the MLAN transformation scheme of an

AWGN channel.

Message selection: Associate a message with each member of coset leaders

C = {c}.

Encoding : Let U ∼ Unif(V) be the dither. Given the message c ∈ C, the encoder

sends

X = [c− U ] mod Λ.

Consequently, by Lamma 4.1.1 and (4.5), X is uniform over V with average trans-

mitted power P .

Decoding : Let α = P
P+N

. The decoder decodes c as

ĉ = QV1(αY + U) mod Λ

This lattice encoding and decoding scheme is depicted in Fig.4.2.

It follows from Lemma 4.1.2 that

ĉ = QV1([αY + U ] mod Λ) mod Λ

= QV1(Y
′) mod Λ

= QV1([c+ Z ′] mod Λ) mod Λ

where Z ′ = (1− α)U + αZ mod Λ.

The equivalent channel from c to ĉ is illustrated in Fig.4.3.

Since the channel is modulo additive and Λ is nested in Λ1, the decoding error

probability for any codeword c is given by

Pe = Pr(Z ′ 6∈ V1).
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Figure 4.2: Lattice encoding/decoding scheme.

Figure 4.3: Equivalent MLAN channel.

By Theorem 3 in [13], there exists a sequence of n-dimensional nested lattice

pairs (Λ
(n)
1 ,Λ(n)) whose rate R approaches the capacity of the AWGN channel with

error probability Pe goes to zero as n→∞.

4.2 Incorporation of Nested Lattice Codes into

One-Input-Two-Output AWGN Channels

Recall the one-input-two-outputs AWGN channel defined in (3.7) with power con-

straint P and noise variances N1 and N2 , to employ nested lattice codes on such

channel, as in Section 4.1.2, we first transform it into an MLAN channel.

Given t ∈ V and the dither U , the transmitter sends

X = [t− U ] mod Λ. (4.12)

Upon receiving Y1 = X + Z1 and Y2 = X + Z2, the receiver computes

Y ′ = (αY1 + βY2 + U) mod Λ. (4.13)
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This results the MLAN channel from t to Y ′. Similarly, we have the following

lemma and theorem.

Lemma 4.2.1. The channel from t to Y ′ defined by (3.7), (4.12) and (4.13) is

equivalent in distribution to the channel

Y ′ = (t+Neff ) mod Λ (4.14)

where Neff is independent of t and is distributed as

Neff = [(1− α− β)U + αZ1 + βZ2] mod Λ. (4.15)

where U is a random variable uniformly distributed over V and is independent of

Z1 and Z2.

Proof.

Y ′ = [α(X + Z1) + β(X + Z2) + U ] mod Λ

= [X + U + (α + β − 1)X + αZ1 + βZ2] mod Λ

= [(t− U) mod Λ + U + (α + β − 1)X + αZ1 + βZ2)] mod Λ

= [t− (1− α− β)X + αZ1 + βZ2] mod Λ.

According to Lemma 4.1.1, X is independent of t and has the same distribution as

U . In addition, we have V = −V . Consequently,

Neff = [(1− α− β)U + αZ1 + βZ2] mod Λ.

Theorem 4.2.1. For the MLAN channel defined in (4.14) and (4.15), if we choose

T ∼ Unif(V), α = PN2

(N1+N2)P+N1N2
and β = PN1

(N1+N2)P+N1N2
, and if the sequence of

lattices Λn satisfies limn→∞G(Λn) = 1
2πe

, then

lim
n→∞

1

n
I(T ;Y ′) =

1

2
log(1 + SNR),

where SNR = P
N1N2
N1+N2

with respect to (3.10).
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Proof. With the choice of T ∼ Unif(V), the output Y ′ is also uniformly distributed

over V . Hence,

1

n
I(T ;Y ′) =

1

n
h(Y ′)− 1

n
h(Y ′|T ) (4.16)

=
1

2
log

P

G(Λ)
− 1

n
h(Neff ). (4.17)

Again, we choose α and β as MMSE coefficients to minimize h(Neff ) as follows.

Peff ,
1

n
E‖Neff‖2 ≤ 1

n
E‖(1− α− β)U + αZ1 + βZ2‖2 (4.18)

= (1− α− β)2P + α2N1 + β2N2. (4.19)

Let
∂Peff
∂α

=
∂Peff
∂β

= 0

to minimize Peff . We get

α =
PN2

(N1 +N2)P +N1N2

(4.20)

and

β =
PN1

(N1 +N2)P +N1N2

. (4.21)

Therefore,

Peff = (
N1N2

(N1 +N2)P +N1N2

)2P + (
PN2

(N1 +N2)P +N1N2

)2N1

+ (
PN1

(N1 +N2)P +N1N2

)2N2

=
N1N2P [N1N2 + P (N1 +N2)]

[(N1 +N2)P +N1N2]2

=
P

1 + P
N1N2
N1+N2

=
P

1 + SNR
.

With the same deduction in (4.9), (4.10) and (4.11), the theorem follows.

The one-input-two-output AWGN channel is transformed into a single-input-

single-output MLAN channel with noise Neff instead of N ′ compared with the
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corresponding MLAN channel of the single-input-single-output AWGN channel.

Thus, the nested lattice code for such AWGN channel is also quite similar, with

minor changes.

Still, let (Λ1,Λ) be a rate-R nested lattice code. The message selection and

encoding stay the same where the encoder sends

X = [c− U ] mod Λ.

Upon reception, the decoder computes

ĉ = QV1(αY1 + βY2 + U) mod Λ.

Hence,

ĉ = QV1 [(αY1 + βY2 + U) mod Λ] mod Λ

= QV1 [(c+Neff ) mod Λ] mod Λ.

where Neff = (1− α− β)U + αZ1 + βZ2 mod Λ. The decoding error probability

is given by

Pe = Pr(Neff 6∈ V1)

and by Theorem 3 in [13], approaches zero with n goes to infinity.

4.3 An extension to the Single-Input-Multiple-

Output AWGN Channel

In the previous section, we exploited nested lattice codes for the one-input-two-

output AWGN channel to achieve the channel capacity. Following this idea, now

we further extend nested lattice codes to a more general case, the single-input-

multiple-output AWGN channel.

46



Consider the following AWGN channel with input X and n outputs Y1, Y2, ..., Yn.

Y1 = X + Z1

Y2 = X + Z2

... ... ...

Yn = X + Zn

(4.22)

where Zi are mutually independent and Zi ∼ N (0, Ni) for i = 1, 2, ..., n.

4.3.1 Channel Capacity

First, we calculate the channel capacity of the multiple-output AWGN channel

in (4.22). Similarly with the two-output case in Section. 3.2.1, Yi is normally

distributed with mean 0 and variance P + Ni, and the vector (Y1, Y2, ..., Yn) has a

multivariate normal distribution, denoted by

(Y1, Y2, ..., Yn) ∼ N (µY , KY ),

where

µY = (EY1, EY2, ..., EYn) = (0, 0, ..., 0)

and

KY =



σ2
Y1

ρY1,Y2σY1σY2 ρY1,Y3σY1σY3 ... ... ρY1,YnσY1σYn

ρY2,Y1σY2σY1 σ2
Y2

ρY2,Y3σY2σY3 ... ... ρY2,YnσY2σYn

... ... ... ... ... ...

... ... ... ... ... ...

ρYn,Y1σYnσY1 ρYn,Y2σYnσY2 ρYn,Y3σYnσY3 ... ... σ2
Yn


.

Note that ρYi,Yj is the correlation between Yi and Yj for i, j = 1, 2, ..., n. As com-

puted in (3.8) and (3.9), we get

ρYi,Yj =
P√

(P +Ni)(P +Nj)
.
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Therefore, we have

KY =



P +N1 P P ... ... P

P P +N2 P ... P

... ... ... ... ... ...

... ... ... ... ... ...

P P P ... ... P +Nn


. (4.23)

Also, it’s obvious that

(Z1, Z2, ..., Zn) ∼ N (µZ , KZ)

with

µZ = (0, 0, ..., 0)

and

KZ =



N1 0 0 ... 0

0 N2 0 ... 0

... ... ... ... ...

... ... ... ... ...

0 0 0 ... Nn


. (4.24)

Follows from (4.23) and (4.24), we have

I(X;Y1, Y2, ..., Yn) = h(Y1, Y2, ..., Yn)− h(Y1, Y2, ..., Yn|X)

= h(Y1, Y2, ..., Yn)− h(Z1, Z2, ..., Zn)

=
1

2
log (2πe)n|KY | −

1

2
log (2πe)n|KZ |

=
1

2
log
|KY |
|KZ |

=
1

2
log

∑n
i=1

∏n
k=1Nk

Ni
P +

∏n
k=1Nk∏n

k=1Nk

(4.25)

=
1

2
log (1 + P

n∑
i=1

1

Ni

) (4.26)

The calculation of |KY | in (4.25) can be easily done by deduction and hence

is omitted here. Next, we will apply nested lattice codes to the general multiple-

output AWGN channel to achieve its capacity (4.26).
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4.3.2 Design of Nested Lattice Codes for the Single-Input-

Multiple-Output AWGN Channel

Given a general multiple-output AWGN channel (4.22), here we focus on the trans-

formation of this channel to its corresponding MLAN channel, the rest of the work

is quite similar to the two-output Gaussian case and therefore will not be detailed.

With t ∈ V and the dither U , the transmitter sends

X = (t− U) mod Λ. (4.27)

And upon receiving (Y1, Y2, ..., Yn), the receiver computes

Y ′ = (
n∑
i=1

αiYi + U) mod Λ (4.28)

as its decision signal.

This results in the MLAN channel from t to Y ′ and the following lemma and

theorem can be derived accordingly.

Lemma 4.3.1. The channel from t to Y ′ defined by (4.22), (4.27) and (4.28) is

equivalent in distribution to the channel

Y ′ = (t+N
(n)
eff ) mod Λ (4.29)

where N
(n)
eff is independent of t and is distributed as

N
(n)
eff = [(1−

n∑
i=1

αi)U +
n∑
i=1

αiZi] mod Λ. (4.30)

where U is a random variable uniformly distributed over V and is independent of

Zi for i = 1, 2, ..., n.

The proof of Lemma.4.3.1 is quite similar to that of Lemma. 4.2.1, thus is

omitted here.
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Theorem 4.3.1. For the MLAN channel defined in (4.29) and (4.30), if we choose

T ∼ Unif(V), αi = P

P (1+
∑

j 6=i
Ni
Nj

)+Ni
for i, j ∈ {1, 2, ..., n}, and if the sequence of

lattices Λn satisfies limn→∞G(Λn) = 1
2πe

, then

lim
n→∞

1

n
I(T ;Y ′) =

1

2
log(1 + SNR),

where SNR = P
∑n

i=1
1
Ni

with respect to the channel capacity (4.26) of the multiple-

output Gaussian channel.

Proof. Here we only need to prove that

P
(n)
eff =

P

1 + SNR
(4.31)

where P
(n)
eff is the average power of N

(n)
eff per dimension.

With the same deduction in (4.17) and (4.19), it follows

1

n
I(T ;Y ′) =

1

2
log

P

G(Λ)
− 1

n
h(N

(n)
eff ),

and

P
(n)
eff =

1

n
E‖N (n)

eff‖
2 ≤ (1−

n∑
i=1

αi)
2P +

n∑
i=1

α2
iNi. (4.32)

Let
∂P

(n)
eff

∂αi
= 0

for i = 1, 2, ..., n, to minimize P
(n)
eff , we get the following n equations,

(
n∑
i=1

αi − 1)P + αiNi = 0. (4.33)

Thus,

αiNi = αjNj

for any i, j = 1, 2, ..., n, i.e.,

αj =
Ni

Nj

αi (4.34)
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Inserting (4.34) into (4.33) for each j 6= i, we have

P (1 +
∑
j 6=i

Ni

Nj

)αi +Niαi = P.

Hence,

αi =
P

P (1 +
∑

j 6=i
Ni

Nj
) +Ni

=
P

P
∑

j
Ni

Nj
+Ni

.

Also, we can express αi in another way, which facilitate the calculation of P
(n)
eff

though seems more complicated, as follows,

αi =
P
Ni

∏
kNk∏

kNk +
∑

j

∏
k Nk

Nj
P
. (4.35)

Combining (4.32) and (4.35), we get

P
(n)
eff = (1−

n∑
i=1

αi)
2P +

n∑
i=1

α2
iNi

= (1−
∑

i
P
Ni

∏
kNk∏

kNk +
∑

j

∏
k Nk

Nj
P

)2P +
∑
i

(
P
Ni

∏
kNk∏

kNk +
∑

j

∏
k Nk

Nj
P

)2Ni

= (

∏
kNk∏

kNk +
∑

j

∏
k Nk

Nj
P

)2P +
P 2

∏
kNk

∑
i

∏
k Nk

Ni

(
∏

kNk +
∑

j

∏
k Nk

Nj
P )2

=

∏
kNkP (

∏
kNk + P

∑
i
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

As the most important continuous alphabet channel, the Gaussian channel relates

to many practical problems. However, from the classical random coding perspec-

tive, the capacity-achieving codebooks for the Gaussian channel may not preserve

any structures, hence are complicated and inefficient for real applications. Moti-

vated by this, we investigated lattice codes for AWGN channels.

Our work mainly consists of two parts.

First, we studied the proof of lattice codes being capacity achieving for AWGN

channels in [9]. We gave an intuitive interpretation of the proof, based on which an

angle-decoding scheme is proposed for the one-input-two-output AWGN channel.

And we proved that lattice codes can achieve the capacity of the one-input-two-

output AWGN channel using the proposed decoding scheme.

Secondly, the nested lattice code is explored since it uses lattice coding and

decoding to preserve the symmetry of the underlying lattices, and therefore, turns
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out to be advantageous in practice. Still, we extended the nested lattice code to

the one-input-two-output AWGN channel and proved it to be capacity-achieving.

Further, a general multiple-output AWGN channel is considered and the nested

lattice codes is employed to achieve its capacity.

5.2 Future Work

Multiple input multiple output (MIMO) systems has attracted great attention as

a method to achieve high data rates over wireless networks. The capacity of single

user MIMO Gaussian networks was first studied in [17] and [18]. And this work has

been extended to MIMO multiple-access channels [19] as well as MIMO broadcast

channels [20].

Our research solves the lattice coding for the single-input-multiple-output AWGN

channel. In the short run, we would like to study its dual channel, the single

user multiple-input-single-output Gaussian channel. First, we will focus on a spe-

cial case, the two-input-one-output AWGN channel as shown in Fig.5.1, where X1

and X2 are jointly encoded and transmitted over an AWGN channel with noise

Z ∼ N (0, N). Upon receiving Y , the decoder tries to decode the codeword vector

(X1, X2). We hope to extend the proposed angle-coding scheme and the nested

lattice code to this two-input-one-output AWGN channel to achieve its capacity,

and then, to the general multiple-input-single-output case.

Figure 5.1: Single user two-input-one-output AWGN channel.
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In the long run, we hope to incorporate lattice codes into the single user MIMO

Gaussian channel, where the transmitter and the receiver communicate both with

multiple antennas, to facilitate the application of structured codes in wireless net-

works.
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