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Abstract

Modeling of wave scattering from grating couplers has become increasingly important
due to extensive recent research interest in the problem of plasmonic resonance. Compu-
tational algorithms which are specially used to model the problem of scattering from the
grating surfaces suffer from several drawbacks such as accuracy, computational efficiency,
and generality. To address the challenges of the previous methods, this work presents a
novel hybrid Finite Element-Boundary Integral Method (FE-BIM) solution to the problem
of scattering from grating surfaces consisting of finite or infinite array of two-dimensional
cavities and holes in an infinite metallic walls covered with a stratified dielectric layer.

To solve the scattering problem from finite number of cavities or holes engraved in a
perfectly conducting screen (PEC), the solution region is divided into interior regions con-
taining the cavities or holes and the region exterior to them. The finite element formulation
is applied inside the interior region to derive a linear system of equations associated with
nodal field values. Using two-boundary formulation, the surface integral equation employ-
ing free-space Green’s function is then applied at only the opening of the cavities or holes
to truncate the computational domain and to connect the matrix subsystem generated
from each cavity or hole.

The hybrid FE-BIM method is extended to solve the scattering problem from an infinite
array of cavities or holes in a PEC screen by deriving the quasi-periodic Green’s function.
In the scattering problem from an infinite array of cavities, the finite element formulation
is first used inside a single cavity in the unit-cell. Next, the surface integral equation
employing the quasi-periodic Green’s function is applied at the opening of only a single
cavity as a boundary constraint to truncate the computational domain. Effect of the
infinite array of cavities is incorporated into the system of the nodal equations by the
quasi-periodic Green’s function.

Finally, the method based on the hybrid FE-BIM is developed to solve the scattering
problem from grating surfaces covered with a stratified dielectric layer. In this method, the
surface integral equation employing grounded dielectric slab Green’s function is applied at
the opening of the cavities or holes inside the dielectric coating to truncate the solution
region efficiently. An accurate algorithm is presented to derive the grounded dielectric
slab Green’s function in spatial domain incorporating the effects of the surface-waves and
leaky-waves excited and propagated inside the dielectric slab. Numerical examples of near
and far field calculations for finite or infinite array of cavities or holes are presented to
validate accuracy, versatility, and efficiency of the algorithm presented in this thesis.
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Chapter 1

Introduction

1.1 Scattering from Grating Surfaces

Modeling of wave scattering from grating surfaces has become increasingly important due
to extensive research interests in the problem of plasmonic resonance [1] and phenomenon
of extraordinary transmission of light through sub-wavelength apertures [2–4]. Figure 1.1
depicts a schematic of a two-dimensional grating surface consisting of a finite array of cavi-
ties and holes engraved in a perfectly electric conducing (PEC) slab coated with conducting
layers. The slab is assumed to be infinite in size. In [2–4], it was shown that extra-ordinary
transmission of light, a plasmonics phenomenon that has gained significant prominence over
the past decade, can be realized when gratings surrounding a sub-wavelength aperture are
covered with silver or gold. The interesting feature of such noble metals is that over
the optical frequency regime, the metals exhibit negative permittivity. Therefore, mod-
eling of scattering from such grating structures will be inaccurate if the grating material
was assumed perfectly conducting. To accurately model the plasmonic resonance based
phenomenon, including extra-ordinary transmission of light, the gratings must be covered
with a conducting coating. An accurate calculation of near and far fields scattered from the
grating surfaces allows manipulation and localization of light in novel applications such as
near-field microscopy [5–8], sub-wavelength lithography [9–12], developing tunable optical
filters [13] and improving the efficiency of solar cell devices [14–16].

The problem of scattering from a two-dimensional single cavity or hole in a perfect
electric conductor is solved by decomposing the fields inside of the cavity or hole from
outside by closing the apertures with a PEC surface and introducing equivalent magnetic
current over the openings. Fields on the apertures are obtained by forcing the continuity
condition on the tangential components of the fields. An appropriate Green’s function is
required to express the fields due to equivalent magnetic current inside and outside the cav-
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Figure 1.1: Schematic of a grating surface consisting of a finite array of cavities and holes
covered with a conducting coating and engraved in an infinite-sized PEC screen.

ity or hole. The equivalent magnetic current can be found using the Method of Moments
(MoM) [17,18] or approximated by the Standard Impedance Boundary Condition (SIBC)
or Generalized Impedance Boundary Condition (GIBC) [19, 20]. Although using MoM is
a powerful method to calculate the magnetic current on the apertures, deriving Green’s
function inside the cavity limits this method to canonical shapes and only homogenous and
isotropic cavity fillings. On the other hand, SIBC and GIBC are suitable for simulating
infinite planar dielectric coatings and have limitation when encountering material discon-
tinuities and cavity edges. Therefore, SIBC and GIBC are not applicable for the multiple
cavity structures.

Methods based on Integral Equations (IE) are also used to solve the problem of scat-
tering from cavities. Although these methods are applicable to general-shape cavities,
their applications to cavities with infinite conducting walls involves geometry-specific ap-
proximations. Another problem arising with the IE-based methods is the resultant dense
system matrix which is computationally expensive to solve. To overcome these deficiencies,
hybrid methods based on the Physical Optics and Method of Moments (PO-MoM) were
introduced [21]. In the PO-MoM method, the induced current, which is the solution of the
PO method for the unperturbed conductor sheet, is corrected with the MoM solution.

One of the efficient methods to solve the scattering problem from PEC gratings is the
modal-based method. Extensive studies based on the Mode Matching Technique (MMT)
have been reported in the literature [22–31]. Typically, for a single rectangular cavity
engraved in a PEC surface, the fields inside the cavity are expressed in terms of a Fourier
series of the parallel-plate waveguide modes. In the space exterior to the cavity, the
scattered field is expressed in Fourier terms. Matching the modes inside and outside of the
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cavity at the aperture determines the unknown modes’ coefficients. The mode matching
method is efficiently applicable to multiple cavities with arbitrary shape and spacing but
it cannot be used when encountering cavities having inhomogeneous or anisotropic fillings.

Methods based on differential equations such as the Finite Element Method (FEM) and
the Finite-Difference Time-Domain method (FDTD) are suitable for the problem of scatter-
ing from general-shape cavities or holes with complex fillings. In the FEM, the variational
equation related to the weak form of Helmholtz’s equation is discretized. The attractive
feature of the finite methods is the generation of highly sparse and banded matrices which
can be solved efficiently using special algorithms. In the case of scatterers with finite geom-
etry, the unbounded region around the target is truncated using an Absorbing Boundary
Condition (ABC) or Perfectly Matched Layers (PML). In the case of infinite scatterers
such as a cavity or hole within an infinite ground plane, it is impossible to fully enclose
the scatterer’s geometry. Therefore, the behavior of the scattered field due to the infinite
PEC wall outside of the computational domain boundary cannot be modeled properly. In
other words, a portion of the scattered field from the PEC wall outside of solution domain
which propagates into the solution region is ignored and therefore, an error is introduced
to the solution. To minimize these errors, the domain truncating boundaries should be far
enough from the cavity or hole to enclose a larger segment of the PEC wall in addition to
the cavity or hole. However, placing the boundary of the computational domain far from
the cavity leads to prohibitive increase in the computational cost, in addition to inaccuracy
in the solution due to the exclusion of a large part of the scatterer.

To address the shortcomings of the generic type of FEM solutions incorporating ABCs
or PMLs, the hybrid Finite Element-Boundary Integral Method (FE-BIM) using a free-
space Green’s function was introduced in [32–35]. In FE-BIM, the mesh region is truncated
at the opening of the cavity or hole. The fields at the boundary nodes are connected to the
interior nodes via the Surface Integral Equation (SIE) where the domain of integration is
the aperture of the cavity or hole [34,35]. The singularity in Green’s function is the major
drawback of the FE-BIM while calculating the surface integral equation.

To avoid the singularity in Green’s function while using FE-BIM, the two-boundary
formulation of the FE-BIM was proposed in [32] to solve quasi-static problems such as
static and harmonic field distribution in a parallel-plate capacitor. In the two-boundary
formulation, the local sources, inhomogeneities and anisotropies are enclosed by an imag-
inary contour located inside the solution region and in close vicinity of the truncation
contour. The surface integral equation is used to connect the field values on the trunca-
tion boundary to the field values on the imaginary boundary as a boundary constraint.
In [33], the two-boundary FE-BIM based on the scattered field formulation was used to
solve the scattering problem from a single cavity engraved in an infinite PEC screen. The
effect of the non-zero scattered field on the infinite PEC screen was taken into account by
taking advantage of limited support of Green’s function on the PEC walls. Consequently,
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the infinite integral domain was truncated at the region of Green’s function support. The
method in [33] is highly efficient in solving the scattering problem from a single cavity
but in extending the method to multiple cavities the approximation used in truncating the
integral domain deteriorate when the cavities are separated by a distance smaller than the
support of Green’s function.

One question is: how the two-boundary formulation of the FE-BIM can be extended
to finite or infinite array of cavities or holes accurately? And a more important question
is: how can the FE-BIM handle the problem of scattering from multiple cavities or holes
with dielectric coating?

1.2 Survey of Recent Literature

Several methods were reported in the literature to solve the problem of scattering from
cavities and holes. Amongst the earliest works based on the equivalence principle in [17,18],
the Method of Moments (MoM) was used to calculate the equivalent magnetic current on
the apertures of a hole. The MoM formulation was represented by two n-port generalized
networks. These networks were connected by current sources in parallel. In [19], the
equivalent magnetic current was determined using the dominant mode of a Green’s function
expansion in the rectangular cavity. In [20], using the same method as in [19], the analytical
expression for a narrow rectangular cavity was derived.

Amongst the works based on the mode matching technique in [22], an exact formulation
for the problem of scattering from a single rectangular cavity was derived. The fields inside
the cavity were expressed as the sum of rectangular waveguide modes. The fields outside
the cavity were expressed in terms of a Fourier integral. The cylindrical Bessel function
were used to expand the Fourier integral into a convergent series form for the cases of
TE and TM polarizations of incident Gaussian waves. In [23] and [24], the parallel plate
waveguide modes were used inside the cavity to expand the Fourier integral of scattered
field for TE and TM polarizations of the incident wave. In [25], an extension the method
in [23] and [24] to a finite number of cavities with identical dimensions and spacing in an
infinite PEC screen was presented for the TM case. The problem of scattering from the
multiple rectangular cavities with arbitrary shape and spacing was investigated for both
the TM and TE polarizations in [26]. The problem of scattering from a single rectangular
slit was reported in [27, 28]. The fields inside the slit were expressed in terms of parallel-
plate waveguide modes. The fields in upper half-space and lower half-space were expressed
in terms of a Fourier integral as in [23]. In [29], an extension to a finite number of slits
with identical dimensions and spacing in an infinite PEC screen was presented. Recently,
a mode matching technique based on a Fourier representation of the field was applied to
solve the problem of scattering from a general-shape cavity [30]. In [30], the stair-case
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approximation was used to divide the cavity into several rectangular layers. In each layer,
the fields were expressed using the parallel-plate waveguide modes. Boundary conditions
were applied to match the fields at the interface of the layers. The near and far fields were
determined for the case of TM polarization. An extension of the method in [30] to multiple
general-shape cavities was presented in [31].

Amongst the finite mathematics-based solution of problem of scattering from a single
cavity or hole in an infinite PEC screen, the hybrid FE-BIM using free-space Green’s
function was introduced in [34, 35]. In these works, the mesh region was truncated at the
opening of the cavity or hole. The BIM was applied to derive an explicit form of a boundary
condition of the third kind (mixed boundary condition) at the cavity’s opening [36]. Using
a two-boundary formulation which was initially introduced in [32], the scattering from
a single rectangular cavity, was presented in [33]. Using the scattered field formulation,
which was introduced in [33], the non-zero scattered field on the PEC wall must be taken
into account when computing the surface integral. Since the integral domain was infinite,
the method in [33] took advantage of the limited support of Green’s function to limit the
integration domain.

When solving the problem of scattering from a large periodic array of identical cavities
or holes, it is useful to approximate the structure as an infinite array and take advantage
of the periodicity of the electromagnetic fields. Several methods were reported in the
literature to solve the problem of scattering from an infinite array of cavities or holes
engraved in metallic screens.

The problem of diffraction by an infinite periodic conducting grating was investigated
using a hybrid Finite Element Method-Method of Moments (FEM-MoM) in [37]. Using
the equivalence principle, the fields inside of the cavities or holes were decoupled from the
outside region by closing the apertures with a PEC surface and introducing equivalent
magnetic currents over the openings. Using Floquet’s theorem, the scattered fields outside
the cavities or holes are produced by the periodic equivalent magnetic current and the
fields inside the single cavity or hole were calculated using FEM. Imposing field continuity
as the boundary condition at the aperture of the single cavity or hole resulted in a set of
equations describing the unknown equivalent magnetic current. The MoM was employed
to determine the unknown magnetic current coefficients.

In [38, 39], a hybrid FEM and Floquet mode expansion of the scattered fields was
used to analyze the problem of scattering from periodic structures where the FEM was
applied inside the unit-cell which enclosed all inhomogeneities and the periodic boundary
condition was applied on the lateral boundaries of the unit-cell. In addition, field continuity
was forced on the upper and lower boundaries of the unit-cell. In this method the upper
and lower boundaries must be chosen in a homogenous medium (i.e. in an upper half-space
above the cavity) to achieve fast convergence, which results in a prohibitive increase of the
solution domain.
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An infinite array of bottle-shaped cavities was investigated in [26] using the mode
matching technique. As mentioned earlier, although the mode matching technique is highly
accurate and efficient, it cannot be used for cavities having inhomogeneous or anisotropic
fillings.

Recently, the Method of Moments was used to solve the problem of scattering from
an infinite array of rectangular cavities in an impedance screen [40]. Image theory was
applied to reduce the infinite array to a single cell of one period. Due to the periodicity,
the scattered fields were expanded in terms of Floquet series. Also, the fields inside the
cavities were expressed in terms of the eigenfunction series of a parallel plate waveguide
with impedance walls. By forcing the continuity of the fields at the aperture of the cavity,
the integral equation was derived and solved using the Method of Moments. Another
method using the Overlapping T-block Method (OTM) and the Floquet theorem was
reported in [41]. The array was divided into the infinite T-blocks associated with each
cavity. The fields inside each T-block were calculated using Green’s function and the mode
matching techniques. By superposing the fields in overlapping T-blocks and using the
Floquet theorem, the total fields were expressed in closed form. However, this method is
limited to cavities with canonical shape and homogenous fillings.

1.3 Objective of this Study

The goals of this study are:

1. Developing a new hybrid FE-BIM method to solve the problem of scattering from
a single cavity engraved in an infinite perfect electric conducting screen.

2. Extending the method in 1 to multiple cavities engraved in a PEC screen.

3. Extending the method in 1 to solve the problem of scattering from single and
multiple holes engraved in a PEC slab.

4. Developing an efficient method to solve the problem of scattering from a conducting
surface with an infinitely periodic grating.

5. Extending the methods developed in 1 - 4 to solve the problem of scattering from
grating surfaces with a dielectric coating.

The organization of this thesis is as follows: In chapter 2, the hybrid FE-BIM formu-
lation of the scattering problem from a single cavity is presented. The boundary integral
equation using free-space Green’s function for the TM and TE cases is derived, respec-
tively, to truncate the mesh region and modify the matrix equation. Then, the extension
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of the method to multiple cavities is presented. Several examples are presented and vali-
dated using methods published in the literature and available commercial packages where
possible.

Chapter 3, presents a systematic study to compare the accuracy of the BIM as a global
boundary condition with ABCs and PMLs as a local boundary condition in solving the
scattering problem from grating surfaces. In this chapter the fundamental limitations on
the use of the local boundary condition to solve the problem of scattering from an infinite
structures is discussed.

In chapter 4, the formulation which was introduced in chapter 2 is extended to holes in
the conducting screen. A boundary integral equation using a free-space Green’s function
is derived for both the upper half-space and the lower half-space of the PEC slab to
truncate the mesh region at both apertures. The method is extended to multiple holes
and holes with side gratings. Several examples are presented and validated using available
commercial FEM solvers.

In chapter 5, a new two-boundary FE-BIM formulation employing a quasi-periodic
Green’s function is developed to solve the problem of scattering from an infinite periodic
array of identical cavities engraved in an infinite perfect electric conductor screen. Several
examples are provided to validate the method.

Chapter 6 presents a solution, using the hybrid FE-BIM introduced in chapters 2-5,
to the problem of scattering from an infinite or finite array of two-dimensional cavities
engraved in an infinite PEC flat screen and covered with a stratified dielectric coating.
A boundary integral formulation employing a grounded dielectric slab Green’s function is
derived to truncate the solution region at the aperture of the cavities inside the dielectric
coating. An accurate algorithm to derive the grounded dielectric slab Green’s function
in the spatial domain incorporating the effects of the surface waves and leaky waves is
presented in this chapter. Several examples are provided and validated using available
commercial FEM solvers.

In chapter 7, the formulation which was introduced in chapter 6 is extended to an array
of holes with side gratings in a conducting screen and covered with a stratified dielectric
coating. The grounded dielectric slab Green’s function in the spatial domain is derived
for the upper half-space and the lower half-space of the PEC slab. Finally, in chapter 8,
future work and directions are provided.
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Chapter 2

Scattering from Cavities in
Conducting Surfaces

In this chapter, a new finite-element based method to solve the problem of scattering
from multiple cavities in infinite metallic structures is developed. The method presented
here is an extension of the concept introduced earlier in [33] to multiple cavities using the
total field formulation. Using the two-boundary formulation which was initially introduced
in [32], the unbounded region in the computational domain is divided into bounded frames
containing each cavity plus a thin layer above the openings of the cavities. Each layer is
limited to the width of the cavity’s aperture (see Fig. 2.1). The finite-element formulation
is used to obtain the solution of Helmholtz’s equation inside the local frames. The surface
integral equation using a half-space Green’s function, which was reported in [33], for the
TM and TE polarization is derived and applied at the opening of the cavity as a global
boundary condition. This boundary constraint determines the behavior of nodes on the
local frame boundary in terms of interior nodes. The Neumann or Dirichlet boundary
condition is applied on the PEC walls of the cavities in the TE or TM case, respectively.

It is emphasized that, in this method, the formulation is based on the total field rather
than the scattered field as in [33]. In the scattered field formulation, the non-zero scattered
field on the PEC wall must be taken into account when computing the surface integral.
Since the integral domain is infinite, in [33] an approximation was applied that took ad-
vantage of the limited support of the Green’s function. If the scattered field formulation
in [33] is extended to multiple cavities, the approximations used earlier deteriorate when
the cavities are separated by distances smaller than the support of the Green’s function. In
the total field formulation, however, the surface integration is limited to the aperture of the
cavities since it is zero on the PEC wall (after choosing the appropriate Green’s function).
Therefore, the problem of multiple cavities does not pose any particular challenge under
the total field formulation.
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2.1 Finite-Element Formulation of the Problem

Figure 2.1 shows a 2-D cavity having an arbitrary shape in a perfectly conductor surface
and illuminated by an obliquely incident plane wave. The angle θ represents the angle of
the incident wave. uinc, uref and us represent the incident field, reflected field by the PEC
wall, and scattered fields, respectively, along the cavity’s axis. Let ΓB represent the contour
at the cavity opening, and ΓO the top contour in close vicinity of ΓB such that the region
between ΓB and ΓO is devoid of field nodes. The choice ΓO locating one layer above the ΓB
minimizes the number of field unknowns at the truncating boundary. Also let Ωin denote
the interior region of the cavity including the layer between ΓB and ΓO. Next, the solution
domain Ωin is discretized into triangular elements. Notice that, however, rectangular or
other types of elements can be used without affecting the theoretical development presented
here. The unknown total field ut over each element is described by set of the interpolating
functions given by

ut =
m∑
i=1

ui
tαi(x, y) (2.1)

where m is number of nodes in each element at which the unknown field is defined, and
αi(x, y) is the interpolation function. In Eq. (2.1), ut represents Ez for TMz polarization
or Hz for TEz polarization. The conventional finite element formulation is used inside each
element to obtain the weak form of Helmholtz’s equation:

∇ ·
(

1

p(x, y)
∇ut

)
+ k0

2q(x, y)ut = g. (2.2)

In Eq. (2.2), p(x, y) and q(x, y) are defined as µr(x, y) and εr(x, y), respectively, for the
TMz polarization, or εr(x, y) and µr(x, y) , respectively, for the TEz polarization. k0 is
propagation constant of the wave in free space. The time harmonic factor exp(jωt) is
assumed and suppressed throughout. By defining the residual, re as

re = ∇ ·
(

1

p(x, y)
∇ut

)
+ k2

0q(x, y)ut − g (2.3)

and using the weighting function wi, the weighted residual integral Re
i is defined as

Re
i =

∫
Ωe

wi

(
∇ ·

(
1

p(x, y)
∇ut

)
+ k0

2q(x, y)ut − g
)
dΩ = 0. (2.4)

In Eqs. (2.3), and (2.4) the superscript e denotes the element number. Using the Green’s
first identity, Eq. (2.4) can be rewritten as

Re
i = −

∫
Ωe

(
1

p(x, y)
∇wi ·∇ut − k0

2q(x, y)wiu
t + gwi

)
dΩ+

∮
Γe

wi
p(x, y)

∇ut·dΓ = 0 (2.5)
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Figure 2.1: Schematic of the scattering problem from a cavity in a PEC surface. The
dotted line represents bounded region which contains all sources, inhomogeneities and
anisotropies.

where Γe is the contour along elements sides enclosing Ωe. By choosing wi = αi(x, y),
Galerkin’s method, Re can be expressed in matrix form

Re =
[
M e
] [
ue
]
−
[
F e
]

= 0 (2.6)

where ue represents the unknown field value at nodes in the element. The elements of
m×m matrix M e, and m× 1 matrix F e are given by

M e
ij =

∫
Ωe

(
1

p(x, y)
∇αi(x, y) ·∇αj(x, y)− k0

2q(x, y)αi(x, y)αj(x, y)

)
dΩ

+

∮
Γe

αi(x, y)

p(x, y)
∇αj(x, y) · dΓ

F e
i =−

∫
Ωe

gαi(x, y)dΩ,

(2.7)

respectively. By assembling all local system matrices Eq. (2.6), the global system matrix
can be represented symbolically asMii Mib 0

Mbi Mbb Mbo

0 Mob Moo

uiub
uo

 =

FiFb
Fo

 (2.8)

where ui, ub and uo represent nodal field values inside the cavity, on ΓB, and on ΓO,
respectively. The [F ] matrix represents impressed sources at each node, therefore, [F ] is
zero in this problem.
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The linear system of equations in Eq. (2.8) represents the relationship between the
nodal field values without any external constraint. The imposition of a specific excita-
tion represented by the incident plane wave has to be taken into consideration through a
boundary constraint that establishes a relationship between the incident field, the bound-
ary nodes and the interior nodes. In the next section, the surface integral equation will be
developed and used as a boundary constraint to express the nodal field values on ΓO in
terms of the nodal field values on ΓB.

2.2 Surface Integral Equation for TMz Polarization

The surface integral equation using the Green’s function of first kind will be used to express
the nodal field values on ΓO in terms of the nodal field values on ΓB. Let us consider
the domain Ω∞ representing the half-space above the PEC (see Fig. 2.2). In Ω∞ and
for the TMz polarization case, the electric field vector has only a z-component satisfying
Helmholtz’s equation:

∇2Ez(ρ) + k0
2Ez(ρ) = jωµrJz(ρ), ρ ∈ Ω∞ (2.9)

where Jz(ρ) is an electric current inside Ω∞. Let us introduce the Green’s functionGe(ρ,ρ′)
which is the solution due to an electric current filament located at ρ′ and governed by
Helmholtz’s equation

∇2Ge(ρ,ρ′) + k0
2Ge(ρ,ρ′) = −δ(ρ− ρ′) ρ,ρ′ ∈ Ω∞. (2.10)

Ge(ρ,ρ′) satisfies the boundary condition Ge(ρ,ρ′)|y=0 = 0 (i.e., Ge = 0 on Γ) and Som-
merfeld radiation condition at infinity (for an unbounded region including localized sources,
the field behavior at large distances from the sources must meet a physical constraint [42]).
Ge(ρ,ρ′) is easily found to be the zeroth-order Hankel function of the second kind:

Ge(ρ,ρ′) = −j
4
H

(2)
0 (k0|ρ− ρ′s|) +

j

4
H

(2)
0 (k0|ρ− ρ′i|) (2.11)

where ρ′s, and ρ′i represent the position of the source current, and its image, respectively.
The surface integral equation (Eq. (A.6)) for the TMz polarization, then can be written as

Ez(ρ
′) =− jωµr

∫
Ω∞

Jz(ρ)Ge(ρ,ρ′)dΩ

−
∮

Γ+Γ∞

(
Ez(ρ)

∂Ge(ρ,ρ′)

∂n
−Ge(ρ,ρ′)

∂Ez(ρ
′)

∂n

)
dΓ.

(2.12)

Since both Ez and Ge satisfy Sommerfeld radiation condition at infinity, integration over
Γ∞ (see Fig. 2.2) in the right hand side of Eq. (2.12) vanishes (see Eq. (A.7)). Notice that
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Figure 2.2: Schematic of surface integral contour in the half-space above cavity.

Ge is zero on Γ (see Eq. (2.11)). Additionally, Ez(ρ) is zero over the PEC ground plane
except on aperture of the cavity. Upon interchanging primed and unprimed coordinates,
Eq. (2.12) can be simplified to

Ez(ρ) = −jωµr
∫

Ω∞

Jz(ρ
′)Ge(ρ,ρ′)dΩ−

∫
ΓB

Ez(ρ
′)
∂Ge(ρ,ρ′)

∂n′
dΓ. (2.13)

In Eq. (2.13), the first term of the right hand side represents the electric field generated
by the current filament and its image in the vicinity of the PEC ground plane. These
fields can be interpreted as an incident field, and a reflected field from the PEC screen,
respectively. The second term in Eq. (2.13) represents the field perturbation due to the
cavity . In other words, the total electric field at each point in the upper half-space is the
sum of the incident field, reflected field due to the PEC surface and the scattered field due
to the aperture of the cavity [36] as

Ez(ρ) = Einc
z (ρ) + Eref

z (ρ)−
∫

ΓB

Ez(ρ
′)
∂Ge(ρ,ρ′)

∂n′
dΓ. (2.14)

Referring to Fig. 2.1, let ρ and ρ′ be designated the position of nodes on ΓO and ΓB,
respectively. Therefore the incident and the reflected fields can be written as

Einc
z (ρ) = exp (−jk0(x sin θ − y cos θ))

Eref
z (ρ) =− exp (−jk0(x sin θ + y cos θ))

(2.15)

where x and y are Cartesian components of ρ. To calculate the last term in Eq. (2.14),
the aperture, ΓB, is discretized into n segments with length of ∆x′. By expanding Ez(ρ

′)
over ΓB in terms of piecewise linear interpolating functions as

Ez(ρ
′) =

n∑
j=1

Ezj(x
′
j, y
′
j)

2∑
k=1

ψjk(x
′
j) (2.16)

12



where x′ and y′ are Cartesian components of ρ′ and

ψjk(x
′
j) =

{
x′j

∆x′
, k=1;

1− x′j
∆x′

, k=2.
(2.17)

Equation (2.14) can be represented in matrix notation as[
uo
]

=
[
T
]

+
[
S
] [
ub
]

(2.18)

where the elements of [uo], [ub], and [T ] matrices represent Ez(x, y), Ez(x
′, y′), and (Einc

z (x
, y) + Eref

z (x, y)
)
, respectively, at each node. The elements of [S] are defined as

Sij =

∫ x′j

x′j−∆x′
ψj1(x′j)

∂Ge(xi, y, x
′
j, y
′)

∂y′
dx′ +

∫ x′j+∆x′

x′j

ψj2(x′)
∂Ge(xi, y, x

′
j, y
′)

∂y′
dx′ (2.19)

where

∂Ge(xi, y, x
′
j, y
′)

∂y′

∣∣∣∣
y′=0

=
−jk0y

2
√

(xi − x′j)2 + y2
H

(2)
1

(
k0

√
(xi − x′j)2 + y2

)
. (2.20)

Equation (2.18) represents the boundary constraint on the cavity opening which is different
from [36]. Combining Eq. (2.8) and Eq. (2.18) in matrix form results in the modified system
matrix [

Mii Mib

Mbi Mbb +MboS

] [
ui
ub

]
=

[
Fi

Fb −MboT

]
. (2.21)

Equation (2.21) represents the modified system matrix which can be solved using commonly
used methods for solving linear systems.

2.3 Surface Integral Equation for TEz Polarization

To derive the surface integral equation for the TEz polarization case, the electric current
filament is replaced with a magnetic current filament Mz. In Ω∞ and for the TEz po-
larization case, the magnetic field vector has only a z-component satisfying Helmholtz’s
equation

∇2Hz(ρ) + k0
2Hz(ρ) = jωεrMz(ρ), ρ ∈ Ω∞ (2.22)

where ρ and Ω∞ have the same definition as the previous section (see Fig. 2.2). Let us
introduce the Green’s function of second kind Gh(ρ,ρ′) which is the solution due to the
magnetic current filament located at ρ′ and governed by Helmholtz’s equation

∇2Gh(ρ,ρ′) + k0
2Gh(ρ,ρ′) = −δ(ρ− ρ′), ρ,ρ′ ∈ Ω∞. (2.23)
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Since the image of the magnetic current in the vicinity of the PEC surface is in the same
direction of the original current, therefore Gh(ρ,ρ′)|y=0 6= 0 on the ground plane. In this
case, boundary condition on the PEC surface can be written as

∂Gh(ρ,ρ′)

∂y′

∣∣∣∣
y=0

= 0. (2.24)

In addition, Gh(ρ,ρ′) satisfies Sommerfeld radiation condition at infinity. ThereforeGh(ρ,ρ′)
can be represented in terms of the zeroth-order Hankel function of the second kind as

Gh(ρ,ρ′) = −j
4
H

(2)
0 (k0|ρ− ρ′s|)−

j

4
H

(2)
0 (k0|ρ− ρ′i|). (2.25)

The surface integral equation (Eq. (A.6)) for the TEz polarization, can be expressed as

Hz(ρ
′) =− jωεr

∫
Ω∞

Mz(ρ)Gh(ρ,ρ′)dΩ

−
∮

Γ+Γ∞

(
Hz(ρ)

∂Gh(ρ,ρ′)

∂n
−Gh(ρ,ρ′)

∂Hz(ρ)

∂n

)
dΓ.

(2.26)

Both Hz(ρ) and Gh(ρ,ρ′) satisfy Sommerfeld radiation condition at infinity, therefore inte-
gration over Γ∞ (see Fig. 2.2) in the right hand side of Eq. (2.26) vanishes (see Eq. (A.7)).
Notice that ∂Hz(ρ)/∂n is zero over the PEC ground plane except on the cavity aperture
and ∂Gh(ρ,ρ′)/∂n is zero on Γ (see Eq. (2.24)). Upon interchanging primed and unprimed
coordinates, Eq. (2.26) reduces to

Hz(ρ) = −jωεr
∫

Ω∞

Mz(ρ
′)Gh(ρ,ρ′)dΩ +

∫
ΓB

Gh(ρ,ρ′)
∂Hz(ρ

′)

∂n′
dΓ. (2.27)

Similar to the TMz case, the first term in the right hand side of Eq. (2.27) represents the
magnetic field generated by the current filament and its image in the vicinity of the PEC
ground plane. These fields are interpreted as an incident and reflected fields from the PEC
screen [36]. The second term in Eq. (2.27) represents field perturbation due to the cavity.
Then Eq. (2.27) can be rewritten as

Hz(ρ) = H inc
z (ρ) +Href

z (ρ) +

∫
ΓB

Gh(ρ,ρ′)
∂Hz(ρ

′)

∂n′
dΓ. (2.28)

By the same definition of ρ and ρ′ and assuming the coordinate system as in Fig. 2.1, the
incident and reflected fields can be written as

H inc
z (ρ) = exp(−jk0(x sin θ − y cos θ))

Href
z (ρ) = exp(−jk0(x sin θ + y cos θ)).

(2.29)
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To calculate the last term in Eq. (2.28), the partial derivative ∂Hz(ρ
′)/∂n′ can be conve-

niently expressed as a first-order finite difference as

∂Hz(ρ
′)

∂n′
= −Hz(x = x′, y)−Hz(x

′, y′)

y − y′
(2.30)

(notice that the negative sign on the right hand side of Eq. (2.30) is because n̂′ = −ŷ′),then
the aperture ΓB, and ΓO are discretized into n segments with length of ∆x′. By expanding
both Hz(x = x′, y) and Hz(x

′, y′) over the aperture of cavity in terms of step functions as

Hz =
n∑
j=1

Hzjψj(x
′
j) (2.31)

where

ψj(x
′) =

{
1, x′j −

∆x′j
2
< x′j < x′j +

∆x′j
2

;
0, elsewhere

(2.32)

the singular behavior of the fields at the edges of the cavity can be avoided [36]. By
replacing the field expansions in Eq. (2.28) and defining the elements of matrix [S] as

Sij =

∫ x′j+∆x′j/2

x′j−∆x′j/2

Gh(xi, y, x
′
j, y
′)ψj(x

′
j)

y − y′
dx′ (2.33)

where

Gh(xi, y, x
′
j, y
′ = 0) = −j

2
H

(2)
0

(
k0

√
(xi − x′j)2 + y2

)
. (2.34)

Equation (2.28) can be represented in the matrix form as[
uo
]

=
[
T
]
−
[
S
] {[

uo
]
−
[
ub
]}

(2.35)

where the elements of [uo], [ub], and [T ] matrices represent Hz(x, y), Hz(x
′, y′), and (H inc

z (x
, y) +Href

z (x, y)
)
, respectively, at each node. Equation (2.35) can be rearranged as[

uo
]

=
{[
I
]

+
[
S
]}−1 [

T
]

+
{[
I
]

+
[
S
]}−1 [

S
] [
ub
]

(2.36)

where [I] is the unity matrix. Equation (2.36) represents the boundary constraint on the
cavity opening. Combining Eq. (2.8) and Eq. (2.36) in matrix form results in the modified
system matrix[

Mii Mib

Mbi Mbb +Mbo(I + S)−1S

] [
ui
ub

]
=

[
Fi

Fb −Mbo(I + S)−1T

]
. (2.37)

Equation (2.37) represents the modified system matrix which can be solved using commonly
used methods for solving linear systems.
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Figure 2.3: Schematic showing the extension the surface integral method to multiple cavi-
ties.

2.4 Extension to Multiple Cavities

In this section, extending the method developed above to the problem of scattering from
multiple arbitrary shape cavities in a PEC surface is presented. A schematic representing
the scattering problem for two cavities is shown in Fig. 2.3. Extending the finite element
development in section 2.1 to two cavities, the system matrix for the domains Ω1 and Ω2

is generalized as
[M ](1)[u](1) = [F ](1)

[M ](2)[u](2) = [F ](2) (2.38)

where each system of equation can be represented symbolically as Eq. (2.8). Assembling
the two systems using global numbering of nodes gives[

[M ](1) 0
0 [M ](2)

] [
[u](1)

[u](2)

]
=

[
[F ](1)

[F ](2)

]
. (2.39)

The two system matrices arising from each of the two cavities will be coupled through
the surface integral equation in the following manner. In Eq. (2.14) and Eq. (2.28), each
node on ΓO is connected via the Green’s function to all the nodes on the aperture of the
cavities, ΓB, (see Fig. 2.3). In other words, the cavities are coupled to each other only
through the surface integral equation and Green’s function. In Eq. (2.14) and Eq. (2.28),
the integration is performed over the apertures of all cavities. For instance, Eq. (2.14) for
the TMz polarization can be represented symbolically in matrix form as[

[uo]
(1)

[uo]
(2)

]
=

[
[T ](1)

[T ](2)

]
+

[
[S](11) [S](12)

[S](21) [S](22)

] [
[ub]

(1)

[ub]
(2)

]
(2.40)

where [S](ij), represents connectivity between nodes on ΓO of the ith cavity [uo]
(i) and nodes

on ΓB of the jth cavity [ub]
(j) via the surface integral equation (i & j = 1, 2). Combining
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Eq. (2.40) and Eq. (2.39) in matrix form results in the modified system matrix as
[Mii]

(1) [Mib]
(1) 0 0

[Mbi]
(1) [Mbb]

(1) + [Mbo]
(1)[S](11) 0 [Mbo]

(1)[S](12)

0 0 [Mii]
(2) [Mib]

(2)

0 [Mbo]
(2)[S](21) [Mbi]

(2) [Mbb]
(2) + [Mbo]

(2)[S](22)




[ui]
(1)

[ub]
(1)

[ui]
(2)

[ub]
(2)

 =


[Fi]

(1)

[Fb]
(1) − [Mbo]

(1)[T ](1)

[Fi]
(2)

[Fb]
(2) − [Mbo]

(2)[T ](2)

 .
(2.41)

Integration over the apertures of all cavities results in addition of off-diagonal sub-matrices
in Eq. (2.39). The resultant system matrix becomes[

[M ′](1) [C](12)

[C](21) [M ′](2)

] [
[u′](1)

[u′](2)

]
=

[
[F ′](1)

[F ′](2)

]
(2.42)

where [C](12) and [C](21) are matrices representing the coupling between the two cavities,
and are given by

[C](12) =

[
0 0
0 [Mbo]

(1)[S](12)

]
[C](21) =

[
0 0
0 [Mbo]

(2)[S](21)

] (2.43)

and [M ′] and [F ′] are given by

[M ′](1) =

[
[Mii]

(1) [Mib]
(1)

[Mbi]
(1) [Mbb]

(1) + [Mbo]
(1)[S](11)

]
[M ′](2) =

[
[Mii]

(2) [Mib]
(2)

[Mbi]
(2) [Mbb]

(2) + [Mbo]
(2)[S](22)

]
[F ′](1) =

[
[Fi]

(1)

[Fb]
(1) − [Mbo]

(1)[T ](1)

]
[F ′](2) =

[
[Fi]

(2)

[Fb]
(2) − [Mbo]

(2)[T ](2)

]
(2.44)

and [u′](k) is given by

[u′](k) =

[
[ui]

(k)

[ub]
(k)

]
(k = 1 & 2). (2.45)
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Notice that these coupling matrices are not necessarily identical. The same procedure is
applicable to the TEz polarization. Generalizing the formulation to N cavities results in
the following system matrix:

[M ′](1) [C](12) . . . [C](1N)

[C](21) [M ′](2) . . . [C](2N)

...
. . .

...
[C](N1) [C](N2) . . . [M ′](N)




[u′](1)

[u′](2)

...
[u′](N)

 =


[F ′](1)

[F ′](2)

...
[F ′](N)

 . (2.46)

Once the nodal field values on ΓO are expressed in terms of the nodal field values on ΓB,
the modified system of equations can be solved using commonly used methods for solving
linear systems.

The formulation presented in this chapter is applicable to cavities present in perfectly
conducting surfaces. For multiple cavities, equations (2.42) and (2.46) give a mathematical
quantification of the coupling factors between the cavities. Physically, it is expected that
the cavities to be coupled through surface currents existing on the segments connecting
the cavities, as that is the only mechanism for energy transfer between the cavities. In the
numerical solutions section below, the dependence of the surface currents on the distance
between the cavities is presented.

2.5 Numerical Results

Once the system of equations, Eq. (2.21) for the TMz polarization or Eq. (2.37) for the
TEz polarization, is derived, its solution (which is the field values at the aperture of the
cavities) can be obtained using commonly used methods for solving linear systems. In this
section, examples of cavities with different shapes, dimensions, and fillings are provided to
validate the algorithm developed in this chapter.

To validate the method presented here, comparison was made to the results obtained us-
ing the mode matching technique (MMT) [30,31] or those obtained by the commercial two-
dimensional finite-element simulator COMSOL [43]. While using the finite-element simu-
lator for the comparison purpose, the absorbing boundary condition (ABC) was applied
on the artificial boundary to truncate the computational domain (see Fig. 2.4). Through-
out this work, these solutions is referred as (COMSOL). Without loss of generality, the
magnitude of the incident electric field is assumed to be unity throughout this section. To
implement the algorithm developed in this work, a nodal based finite element formulation
is used. The solution domain is discretized using first-order triangle elements with a mesh
density of approximately 20 nodes per λ for the TMz case. Since there is a discontinuity in
the electric field at the edges of the cavities in the TEz case, a mesh density of 100 nodes
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Incident plane wave
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ABC or PML 
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from cavity

m(x,y)
e(x,y)

Figure 2.4: Schematic of the computational domain truncation using ABC or PML in
solving the scattering problem from a cavity with arbitrary shape in an infinite PEC
surface.

per λ is used. Throughout this section, the solution obtained using the method presented
in this chapter is referred to as “Total Field Surface Integral Equation” (TFSIE).

2.5.1 Single Cavity Case

In the first example, a 1λ× 1.5λ (width×depth) rectangular cavity is considered where λ
is the wavelength in free space. Figures 2.5 shows the total electric field at the aperture of
the cavity for TMz incident plane wave, and oblique incident angle. Comparison is made to
the results published in [30] using the mode matching method as well as the result obtained
using COMSOL.

The results in Fig. 2.5 show strong agreement between the calculations using TFSIE and
those obtained using COMSOL and the mode matching method. In the case of COMSOL,
the required computational domain was approximately 60λ2 using 4094 elements. This
COMSOL computational domain was needed so that solution would converge to the mode
matching solution. On the other hand, the TFSIE solution space was confined to the cavity
area of 1.5λ2.

In the second example, a 0.6λ × 0.4λ rectangular cavity is considered. Figure 2.6
shows the total magnetic field at the aperture of the cavity for TEz impinging wave for
oblique incident angle. The comparison is made with the results obtained using COMSOL.
Close agreement is observed between TFSIE results and those of COMSOL. Notice that
computational domain in the case of COMSOL was 150λ2 to obtained converged results.
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Figure 2.5: Amplitude of total E-field at the aperture of a 1λ× 1.5λ air-filled rectangular
cavity, TMz case, θ = 45◦, calculated using the method introduced in this work (TFSIE),
mode matching technique (MMT), and COMSOL.

Figure 2.6: Amplitude of total H-field at the aperture of a 0.6λ×0.4λ air-filled rectangular
cavity, TEz case, θ = 45◦, calculated using the method introduced in this work (TFSIE),
and COMSOL.

To show the versatility of the method introduced in this chapter in solving problem
of scattering from cavities with arbitrary shapes and fillings, an isosceles right triangle
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Figure 2.7: Amplitude of total E-field at the aperture of an isosceles right triangle air-filled
cavity with aperture size of 1λ, TMz case, normal incident, calculated using the method
introduced in this work (TFSIE), and COMSOL.

air-filled cavity with an aperture of 1λ (Fig. 2.7) for the case of normal incidence, and a
dielectric filled (εr = 10) semi-circle cavity with radius of R = 0.4λ (Fig. 2.8) for the case
of oblique incidence, are considered. Figures 2.7, and 2.8 represent total electric field at
the aperture of the cavities for TMz polarization. Strong agreement between the results
calculated using TFSIE and those obtained using COMSOL is observed in both figures.

2.5.2 Multiple Cavities

As an example of multiple cavities, six identical cavities in a PEC surface are considered.
The cavities are rectangular with dimension of 0.8λ×0.4λ and are separated by a distance
of 0.8λ. In this example, the field solution at the opening of the cavities and the far field
are presented. The far-field can be calculated using the equivalence principle. By closing
the aperture by a PEC surface and introducing an equivalent magnetic current M(x′, y′)
at the aperture, the electric field at far region can be represented as

E(x, y) = −2∇×
∫

ΓB

M(x′, y′)G(x, y, x′, y′)dx′ (2.47)

where M (x′, y′) = −n̂×E(x′, y′)|y′=0 and G(x, y, x′, y′) is the free-space Green’s function

G(x, y, x′, y′) = −j
4
H

(2)
0 (k0R) (2.48)
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Figure 2.8: Amplitude of total E-field at the aperture of a semi-circle cavity with radius of
0.4λ, dielectric-filled (εr = 10), TMz case, θ = 30◦, calculated using the method introduced
in this work (TFSIE) and COMSOL.

where R = ((x− x′)2 + (y − y′)2)
1
2 . For the TMz case where the electric field has only a

z-component, Eq. (2.47) can be written as

E(x, y) = −ẑ
∫

ΓB

2Ez(x
′, y′)|y′=0

∂G

∂y
dx′. (2.49)

For the TEz case where the magnetic field has only a z-component, the electric field at the
aperture has two components. Therefore Eq. (2.47) can be written as

E(x, y) =
−2

jωεr

(
x̂

∫
ΓB

∂Hz(x
′, y′)

∂y′
|y′=0

∂G

∂y
dx′ − ŷ

∫
ΓB

∂Hz(x
′, y′)

∂y′
|y′=0

∂G

∂x
dx′
)
. (2.50)

Figures 2.9 and 2.10 show the total electric field at the apertures of the cavities and
the far field, respectively, for the case of an oblique TMz incident plane wave. Strong
agreement is observed between TFSIE and the mode matching method [31].

Figure 2.11 shows the total magnetic field at the aperture of two identical 0.4λ× 0.2λ
rectangular cavities separated by 0.2λ, TEz case, for oblique incidence. Strong agreement
between TFSIE and COMSOL is observed aside from small deviation at the edges of the
cavities due to field singularities there.
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Figure 2.9: Amplitude of total E-field at the aperture of six identical 0.8λ× 0.4λ air-filled
rectangular cavities, TMz case, θ = 30◦, calculated using the method introduced in this
work (TFSIE), the mode matching technique (MMT), and COMSOL. The cavities are
separated by 0.8λ.

Figure 2.10: Amplitude of the far-field for six identical 0.8λ × 0.4λ air-filled rectangular
cavities, TMz case, θ = 30◦, calculated using the method introduced in this work (TFSIE),
and the mode matching technique (MMT). The cavities are separated by 0.8λ.
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Figure 2.11: Amplitude of total H-field at the aperture of two identical 0.4λ×0.2λ air-filled
rectangular cavities, TEz case, θ = 45◦, calculated using the method introduced in this
work (TFSIE), and COMSOL. The cavities are separated by 0.2λ.

Using the coordinate system as Fig. 2.3, the surface current can be calculated as

J(x) = ẑ
1

jωµr

∂Ez
∂y

(2.51)

for the TMz polarization, and

J(x) = ŷ ×H = x̂Hz (2.52)

for the TEz polarization. In Eq. (2.51) and (2.52), Ez and Hz represent the total fields.
Figures 2.12 and 2.13 show the magnitude of surface current for normal and oblique TMz-
polarized incident waves. It is observed that the induced current on the PEC surface
increases as the cavity separation decreases. The magnitude of the incident field and the
reflected field on the PEC surface are the same for both closely separated and distanced
cavities. Thus, the change in surface current is due to the scattered field from the cavities.
Since the scattered field affects the field distribution on the other cavities, the magnitude
of the surface current can be interpreted as a coupling factor between the cavities.
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Figure 2.12: Amplitude of the surface current on a PEC surface between two 0.8λ× 0.4λ
air-filled rectangular cavities, TMz case, normal incident, calculated using the method
introduced in this work (TFSIE).

Figure 2.13: Amplitude of the surface current on a PEC surface between two 0.8λ× 0.4λ
air-filled rectangular cavities, TMz case, θ = 45◦, calculated using the method introduced
in this work (TFSIE).
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Chapter 3

Fundamental Limitations on the Use
of Absorbing Boundary Condition to
Solve the Problem of Scattering from
Gratings in Conducting Surfaces

When solving the scattering problem from a bounded target using finite mathematics, it
is essential to introduce an artificial boundary to truncate the solution region surrounding
the target. Appropriate boundary condition must be imposed on the artificial boundary
to guarantee a well-posed and unique solution to the wave equation. In addition, the
boundary condition must model the behavior of the wave at infinity. In other words, the
artificial boundary must to be as transparent as possible for impinging waves from the
interior region.

There are two types of boundary conditions to truncate the solution region, viz., (i) non-
local or integral type; (ii) local or differential type. Non-local type of boundary conditions
are analytical integral equations which accurately model the behavior of the wave at the
boundaries [32]. Therefore they are exact for all range of incident angles. In addition, they
can be imposed on the boundary which is very close to the scatterer body. The major
drawback of these type of boundary condition is that they result in dense system matrix
which spoils the sparsity of the FE system matrix. In contrast, local type of boundary
conditions are partial differential equations which approximate the exact behavior of the
wave at the artificial boundary [44–46].

When solving the problem of scattering from infinite grating surfaces containing mul-
tiple cavities using non-local boundary conditions, the solution region can be truncated at
the opening of the cavities (see chapter 2). In chapter 2, the domain of the surface integral
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Figure 3.1: Schematic of the scattering problem from a cavity with arbitrary shape in an
infinite PEC surface. An ABC or PML is used to truncate the computational domain.

equation as a boundary constraint is limited to the aperture of the cavities, and, thus, the
infinitely extended perfect electric conducting (PEC) walls have no contribution in calcu-
lating the boundary condition. On the other hand, a difficulty in truncating the solution
region arises when using local boundary conditions or matched layers (typically referred
to in the literature as Absorbing Boundary Conditions, ABC, or Perfectly Matched Layer,
PML) in solving the problem of scattering from gratings in infinite PEC screens. Since it
is impossible to fully enclose the scatterer’s geometry by the ABC or PML, the behavior
of the scattered field due to the infinite PEC wall outside of the computational domain
boundary cannot be modeled properly (see Fig. 3.1). Therefore, errors can be generated
in the solution when using ABC or PML even if the truncation boundary is receded.

In this chapter the performance of commonly used ABC or PML in solving the problem
of scattering from grating surface containing a single or multiple cavities engraved in an
infinite PEC screen is analyzed. In particular, the author focused on the errors introduced
in the solution due to grazing incident waves. Next, the dependance of this error on the
location of the ABC is analyzed. The errors were calculated by comparison to the solu-
tions obtained using an TFSIE introduced in chapter 2 and the mode matching technique
reported in [25].

3.1 General Description of the Problem

As a representative example of the problem of scattering from gratings in metallic screens,
the problem depicted in Fig. 3.1 which shows an electromagnetic wave impinging on a cavity
engraved in an infinite metallic wall is considered. The solution region can be truncated
using the ABC as a local boundary condition as it is shown in Fig. 3.1.
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Because generic types of ABCs and PMLs are ineffective in absorption of evanescent
waves, the introduced error due to these mesh truncation techniques is in general inversely
proportional to the distance between the truncation walls and the cavity. Therefore, ABC
or PML cannot be located very close to the cavity. In addition, it is impossible to fully
enclose the scatterer’s geometry by an ABC or PML. Therefore, the behavior of the scat-
tered field due to the PEC surface that lies outside of the computational domain boundary
cannot be modeled properly and thus any consequential physical interaction cannot be
included in the solution. In fact, more explicitly, as can be shown in Fig. 3.1, a portion of
the scattered field from the PEC wall which propagates into the solution region is ignored
and therefore, an error is introduced to the solution. The error would most likely depend
on the incident angle. By increasing the incident angle, more energy is reflected into the
solution region by the PEC walls located outside of the ABC, whereas, at zero angle of
incidence, the reflected energy from the surface surrounding the cavity does not enter the
computational domain depicted in Fig. 3.1. Therefore this error is expected to increase
as the incident angle increases. To minimize this error, the domain truncating boundaries
should be located far enough from the cavity to enclose a larger segment of the PEC wall
in addition to the cavity. However, placing the boundary of the computational domain
far from the cavity leads to prohibitive increase in the computational cost, in addition to
inaccuracy in the solution due to the exclusion of a large part of the scatterer. (The com-
putational cost is most critical when considering cavities whose size is several wavelengths,
and when loading the cavities to minimize RCS, requiring extensive optimizations). Notice
also that enlarging the computational domain by including a larger segment of the PEC
wall while keeping the upper boundary (the horizontal terminating boundary in Fig. 3.1)
very close to the PEC wall does not reduce the errors as in such scenario the upper bound-
ary experiences a large concentration of waves incident at oblique angles, which cannot
be absorbed effectively by typical PML or ABC methods. (There are specialized ABC or
PML methods that are designed to absorb waves incident at oblique angles, or even effec-
tively absorb evanescent waves such as in [47,48], however, these truncation techniques are
specialized and typically add additional computational overhead.)

3.2 Numerical Results

To study the limitations on the use of ABC or PML to truncate the computational domain
for the gratings problems considered in this chapter, the highly robust and widely used full-
wave simulator, HFSS [49] which employs a highly effective implementation of PML was
used for comparison purposes. The author emphasizes that the purpose of the comparison is
to accentuate the limitations of PML or ABC rather than the effectiveness of the simulator
in general. Since the PML implementation in HFSS provides much higher accuracy than
the ABC implementation in the same solver, the comparison was made to the solution
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obtained using PML. This solution henceforth will be referred to as HFSS-PML. However,
in the first example the results obtained using ABC are showed as a benchmark. This
solution is referred as HFSS-ABC. It is important to note that HFSS uses multilayer
biaxial anisotropic materials in the PML implementation [50].

In the absence of analytical solutions to the problem of scattering from cavities, the
solutions generated by two methods will be used for gauging the errors caused by the
HFSS-PML or HFSS-ABC solutions. The first method, which was introduced in chapter 2
employs the surface integral equation to truncate the computational domain at the aperture
of the cavity, and the second method employs the mode matching techniques [25]. These
two solutions are considered highly accurate in the sense that the approximations used
in their respective solution procedures involve discretization of the field rather than any
boundary condition approximations. The solutions presented here are made over a wide
range of incident angles. For the transverse magnetic incident plane wave where the electric
field vector lies along the axis of the cavities, the error in the magnitude of the total electric
field at the aperture of the cavity is calculated as

err. =

√∫
(E − E0)2 dξ∫

E2
0dξ

× 100% (3.1)

where E is the total electric field obtained using the HFSS-PML or HFSS-ABC solutions
and E0 is total electric field calculated using the surface integral equation method reported
in chapter 2 referred as (TFSIE), or the mode matching technique [25], respectively. The
integration domain is the aperture of the cavities.

In the first example, a 0.8λ×0.4λ (width×depth) rectangular cavity in a PEC sheet was
considered where λ is the wavelength in free space. The solution region using HFSS-PML
or HFSS-ABC is truncated by a rectangular mesh. The vertical distance of the truncation
boundary from the PEC screen is h = 1λ and the distance of the lateral truncation walls D
from the edge of the cavity is set to be 4λ (see inset of Fig. 3.2). Figure 3.2 shows the error
using the results calculated using TFSIE and the mode matching technique for incident
angle range of 0◦ − 85◦. It is observed that by increasing the incident angle, the error
increases in an almost exponential trend. This is because by increasing the incident angle,
more reflected waves from the PEC screen outside of the PML or ABC which propagate
into the solution region are ignored. As it is shown in Fig. 3.2, the increment trend is
uniform in HFSS-PML case while it highly depends on incident angles in HFSS-ABC case
for θ > 30◦. To validate this reason, the distance of the lateral truncation walls (i.e. D)
from the cavity was changed.

Figure 3.3 shows the effect of increasing D on the error for grazing incident angle of
θ = 85◦ By increasing the D from 4λ to 16λ, the error decreases from 37% to 8% in
HFSS-PML case. Notice that to achieve 8% solution accuracy, a computational space
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Figure 3.2: Error versus incident angle (θ) for a 0.8λ × 0.4λ air-filled rectangular cavity,
TMz case, D = 4λ, h = 1λ. Error between results obtained using: Case1: HFSS-PML
and TFSIE, Case2: HFSS-PML and mode matching technique, Case3: HFSS-ABC and
TFSIE, Case4: HFSS-ABC and mode matching technique.

Figure 3.3: Error versus distance (D) of the lateral PML walls from a 0.8λ× 0.4λ air-filled
rectangular cavity, TMz case, θ = 85◦, h = 1λ. Error between results obtained using:
Case1: HFSS-PML and TFSIE, Case2: HFSS-PML and mode matching technique, Case3:
HFSS-ABC and TFSIE, Case4: HFSS-ABC and mode matching technique.
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of approximately 32λ2 would be needed when using a PML-based truncation technique;
whereas, the solution space using TFSIE which is confined to the cavity’s area, would
require a computational domain of 0.32λ2. (It is important to emphasize here that while
approximate computational areas are used to highlight the efficiency and accuracy of the
methods discussed here, other aspects of different code implementations are intentionally
not discussed here such as the algorithm used to solve the systems matrix, the type of
bases functions used in the finite element method implementation, ...etc.)

As a second example, five identical cavities in a PEC screen are considered. The cavities
are rectangular with dimension of 0.8λ×0.4λ and are separated by a distance of 0.2λ. The
vertical distance of the mesh truncation wall from the PEC screen is h = 1λ and the
distance of the lateral truncation walls from the cavities is set to be D = 4λ (see the inset
of Fig. 3.4). Figure 3.4 shows the error for incident angle varying from θ = 0◦ to θ = 85◦.
Figure 3.5 shows the decrease in the cavity field error from 30% to 14% when D is increased
from 4λ to 16λ. Notice that despite the excessive computational domain needed when D
is increased to 16λ resulting in a computational domain of 37λ2, the error in the apertures
field remains above 10%.

Figure 3.4: Error versus incident angle (θ) for five identical 0.8λ×0.4λ air-filled rectangular
cavities, TMz case, D = 4λ, h = 1λ. The cavities are separated by 0.2λ. Error between
results obtained using: Case1: HFSS-PML and TFSIE, Case2: HFSS-PML and mode
matching technique.
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Figure 3.5: Error versus distance (D) of the lateral PML walls from the marginal cavities
in an array of five identical 0.8λ × 0.4λ air-filled rectangular cavities, TMz case, θ = 85◦,
h = 1λ. The cavities are separated by 0.2λ. Error between results obtained using: Case1:
HFSS-PML and TFSIE, Case2: HFSS-PML and mode matching technique.
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Chapter 4

Scattering from Holes in Conducting
Screens

In this chapter, the method introduced in chapter 2 is extended to solve the problem
of scattering from multiple holes in infinite metallic screens. Using the two-boundary
formulation, the unbounded region in the computational domain is divided into bounded
frames containing each hole plus a thin layer above the apertures of the hole in the upper
half-space and lower half-space. These thin layers are limited to the width of the each hole
(see Fig. 4.1). The finite-element formulation is used to obtain the solution of Helmholtz’s
equation inside the local frames. The surface integral equation using a half-space Green’s
function is applied at each opening of the holes as a global boundary condition to determine
the behavior of nodes on the local frame boundary in terms of interior nodes. The Neumann
or Dirichlet boundary condition is applied on the PEC walls of the holes in the TE or TM
case, respectively.

In this formulation, it is shown that by appropriate modification of the Green’s function,
the surface integral is limited to the aperture of the holes at both the upper half-space and
the lower half-space since it is zero on the PEC wall. Therefore, the extension of the
method introduced in chapter 2 for cavities to the holes does not pose any particular
challenge under the total field formulation. The method presented here is applicable to
both TM and TE polarization cases.

4.1 Finite-Element Formulation of the Problem

Figure 4.1 shows a 2-D hole having an arbitrary shape in perfectly conductor surface and
illuminated by obliquely incident plane wave. The angle θ represents the angle of the

33



Figure 4.1: Schematic of the scattering problem from a hole in a PEC surface. The dotted
line represents bounded region which contains all sources, inhomogeneities and anisotropies.

incident wave, and uinc, uref , us, and utrans denote the incident field, reflected field by the
PEC screen, scattered field by the aperture of the hole, and transmitted fields through the
hole, respectively, along the hole axis. Lets divide the problem into three regions. Region
I and II denote the upper and lower half-spaces of the PEC slab. Region III represents
inside the hole. Let ΓIB and ΓIIB represent the contour at the interface of the hole openings
with region I and II, respectively. Also let ΓIO and ΓIIO as the exterior contour in close
vicinity of ΓIB and ΓIIB , respectively. Let Ωin denote the interior region of the hole, region
III, including the layer between ΓB and ΓO in the region I and II. By discretizing the
solution domain Ωin into triangular elements, the unknown total field ut over each element
is described by the set of interpolating functions given by Eq. (2.1). The conventional finite
element formulation is used inside each element to obtain the weak form of Helmholtz’s
equation:

∇ ·
(

1

p(x, y)
∇ut

)
+ k0

2q(x, y)ut = g (4.1)

where ut, p(x, y), q(x, y), and k0 have the same definition as in section 2.1. Also the time
harmonic factor exp(jωt) is assumed and suppressed throughout this chapter. Following
the procedure in section 2.1, the Galerkin-weighted residual integral for each element Re

can be expressed in matrix form as

Re =
[
M e
] [
ue
]
−
[
F e
]

= 0 (4.2)
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where the elements of matrices M e, and F e are given by Eq. (2.7). By assembling all local
system matrices Eq. (4.2) the global system matrix can be represented symbolically as

Mii MibI MibII 0 0
MbI i MbIbI 0 MbIoI 0
MbII i 0 MbIIbII 0 MbIIoII

0 MoIbI 0 MoIoI 0
0 0 MoIIbII 0 MoIIoII



ui
ubI
ubII
uoI
uoII

 =


Fi
FbI
FbII
FoI
FoII

 (4.3)

where ui, ubI , ubII , uoI , and uoII represent nodal field values inside the hole, on ΓIB, ΓIIB ,
ΓIO and on ΓIIO , respectively. The [F ] matrix represents impressed sources at each node,
therefore, [F ] is zero in this problem.

The linear system of equations in Eq. (4.3) represents the relationship between the
nodal field values without any external constraint. In next section, the surface integral
equation will be developed as a boundary constraint to modify the system matrix equation
of Eq. (4.3).

4.2 Surface Integral Equation for TMz Polarization

In this section, the surface integral equation using the Green’s function of first kind will be
derived and used to express the nodal field values on ΓO in terms of the nodal field values
on ΓB in region I and II, respectively.

4.2.1 Upper Half-Space (Region I)

Let us consider the domain ΩI
∞ representing the half-space above the PEC (see Fig. 4.2).

In ΩI
∞ and for the TMz polarization case, the electric field vector has only a z-component

satisfying Helmholtz’s equation:

∇2Ez(ρ) + k0
2Ez(ρ) = jωµrJz(ρ), ρ ∈ ΩI

∞ (4.4)

where Jz(ρ) is an electric current inside ΩI
∞. Let us introduce the Green’s function

GI
e(ρ,ρ

′) which is the solution due to an electric current filament located at ρ′ and governed
by Helmholtz’s equation

∇2GI
e(ρ,ρ

′) + k0
2GI

e(ρ,ρ
′) = −δ(ρ− ρ′) ρ,ρ′ ∈ ΩI

∞. (4.5)

GI
e(ρ,ρ

′) satisfies the boundary condition GI
e(ρ,ρ

′)
∣∣
y=0

= 0 (i.e., GI
e = 0 on ΓI) and

Sommerfeld radiation condition at infinity. GI
e(ρ,ρ

′) is easily found to be the zeroth-order
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Figure 4.2: Schematic of the surface integral contour in the upper half-space and the lower
half-space of a hole.

Hankel function of the second kind:

GI
e(ρ,ρ

′) = −j
4
H

(2)
0 (k0|ρ− ρ′s|) +

j

4
H

(2)
0 (k0|ρ− ρ′i|) (4.6)

where ρ′s, and ρ′i represent the position of the source current, and its image, respectively.
The surface integral equation (Eq. (A.6)) in region I for the TMz polarization, can then
be written as

Ez(ρ
′) =− jωµr

∫
ΩI
∞

Jz(ρ)GI
e(ρ,ρ

′)dΩI

−
∮

ΓI+ΓI
∞

(
Ez(ρ)

∂GI
e(ρ,ρ

′)

∂n
−GI

e(ρ,ρ
′)
∂Ez(ρ)

∂n

)
dΓI

(4.7)

where ΓI + ΓI∞ is the contour enclosing ΩI
∞. Since both Ez and GI

e satisfy Sommerfeld
radiation condition at infinity, integration over ΓI∞ (see Fig. 4.2) in the right hand side of
Eq. (4.7) vanishes (see Eq. (A.7)). Notice thatGI

e is zero on ΓI (see Eq. (4.6)). Additionally,
Ez(ρ) is zero over the PEC ground plane except on hole aperture. Upon interchanging
primed and unprimed coordinates, the Eq. (4.7) can be simplified to

Ez(ρ) = −jωµr
∫

ΩI
∞

Jz(ρ
′)GI

e(ρ,ρ
′)dΩI −

∫
ΓI
B

Ez(ρ
′)
∂GI

e(ρ,ρ
′)

∂n′
dΓI . (4.8)
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Equation (4.8) can be interpreted as Eq. (2.13) where the first term of the right hand side
represents the incident field, and the reflected field from the PEC screen, respectively. The
second term of Eq. (4.8) represents the field perturbation due to the aperture of hole. In
other words, the total electric field at each point in the upper half-space is the sum of
the incident field, reflected field due to the PEC surface and the scattered field due to the
aperture of the hole as

Ez(ρ) = Einc
z (ρ) + Eref

z (ρ)−
∫

ΓI
B

Ez(ρ
′)
∂GI

e(ρ,ρ
′)

∂n′
dΓI . (4.9)

Referring to Fig. 4.1, let ρ and ρ′ be designated the position of nodes on ΓIO and ΓIB,
respectively. Therefore the incident and the reflected fields can be written as

Einc
z (ρ) = exp (−jk0(x sin θ − y cos θ))

Eref
z (ρ) =− exp (−jk0(x sin θ + y cos θ))

(4.10)

where x and y are Cartesian components of ρ. To calculate the last term in Eq. (4.9), the
aperture, ΓIB, is discretized into n segments with length of ∆x′. By expanding Ez(ρ

′) over
ΓIB in terms of piecewise linear interpolating functions as

Ez(ρ
′) =

n∑
j=1

Ezj(x
′
j, y
′
j)

2∑
k=1

ψjk(x
′
j) (4.11)

where x′ and y′ are cartesian components of ρ′ and

ψjk(x
′
j) =

{
x′j

∆x′
, k=1;

1− x′j
∆x′

, k=2.
(4.12)

Equation (4.9) can be represented in matrix notation as[
uoI
]

=
[
T I
]

+
[
SI
] [
ubI
]

(4.13)

where the elements of [uoI ], [ubI ], and [T I ] matrices represent Ez(x, y), Ez(x
′, y′), and(

Einc
z (x, y) + Eref

z (x, y)
)
, respectively, at each node. Noting that dΓI = dx′ and n̂′ = −ŷ′,

the elements of [SI ] are defined as

SIij =

∫ x′j

x′j−∆x′
ψj1(x′j)

∂GI
e(xi, y, x

′
j, y
′)

∂y′

∣∣∣∣∣
y′=0

dx′ +

∫ x′j+∆x′

x′j

ψj2(x′j)
∂GI

e(xi, y, x
′
j, y
′)

∂y′

∣∣∣∣∣
y′=0

dx′

(4.14)
where

∂GI
e(xi, y, x

′
j, y
′)

∂y′

∣∣∣∣∣
y′=0

=
−jk0y

2
√

(xi − x′j)2 + y2
H

(2)
1

(
k0

√
(xi − x′j)2 + y2

)
. (4.15)

Equation (4.13) represents the boundary constraint on the aperture of the hole in the
region I.
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4.2.2 Lower Half-Space (Region II)

Let us consider the domain ΩII
∞ representing the half-space below the PEC slab (see

Fig. 4.2). In the source-free region ΩII
∞ and for the TMz polarization case, the trans-

mitted electric field vector has only a z-component satisfying the homogenous Helmholtz’s
equation:

∇2Ez(ρ) + k0
2Ez(ρ) = 0, ρ ∈ ΩII

∞. (4.16)

Let us introduce the Green’s function GII
e (ρ,ρ′) governed by Helmholtz’s equation

∇2GII
e (ρ,ρ′) + k0

2GII
e (ρ,ρ′) = −δ(ρ− ρ′) ρ,ρ′ ∈ ΩII

∞. (4.17)

Equation (4.17) is similar to the Eq. (4.5) but the main difference is in the location of
the unit source. In Eq. (4.5) the unit source is located on ΓIo whereas in Eq. (4.17)
unit source is assumed to be located on ΓIIo . GII

e (ρ,ρ′) satisfies the boundary condi-
tion GII

e (ρ,ρ′)
∣∣
y=−ts

= 0 where ts is the thickness of the PEC slab (i.e., GII
e = 0 on ΓII)

and Sommerfeld radiation condition at infinity. GII
e (ρ,ρ′) is found to be the zeroth-order

Hankel function of the second kind as Eq. (4.6). The surface integral equation (Eq. (A.6))
in the source-free region ΩII

∞ for the TMz polarization, can then be expressed as

Ez(ρ
′) = −

∮
ΓII+ΓII

∞

(
Ez(ρ)

∂GII
e (ρ,ρ′)

∂n
−GII

e (ρ,ρ′)
∂Ez(ρ)

∂n

)
dΓII (4.18)

where ΓII + ΓII∞ is the contour enclosing ΩII
∞ in counter-clockwise direction. Since both

Ez and GII
e satisfy Sommerfeld radiation condition at infinity, integration over ΓII∞ (see

Fig. 4.2) in the right hand side of Eq. (4.18) vanishes (see Eq. (A.7)). Notice that GII
e is

zero on ΓII . Additionally, Ez(ρ) is zero over the PEC ground plane except at aperture
of hole. Upon interchanging primed and unprimed coordinates, the Eq. (4.18) can be
simplified to

Ez(ρ) = −
∫

ΓII
B

Ez(ρ
′)
∂GII

e (ρ,ρ′)

∂n′
dΓII . (4.19)

Equation (4.19), represents the transmitted field from the aperture of the hole into the
region II. To calculate Eq. (4.19), the aperture, ΓIIB , is discretized into n segments with
length of ∆x′ in the same manner as the upper half-space. Also, Ez(ρ

′) is expanded over ΓIIB
in terms of piecewise linear interpolating functions as Eq. (4.11) where the interpolating
function is defined as Eq. (4.12). Also, it is noticeable that the normal vector n̂′ is in
direction of ŷ′. Therefore, Eq. (4.19) can be represented in matrix notation as[

uoII
]

= −
[
SII
] [
ubII
]

(4.20)
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where the elements of [uoII ] matrix represent Ez(ρ) at each node. The elements of [SII ]
are defined as

SIIij =

∫ x′j

x′j−∆x′
ψj1(x′j)

∂GII
e (xi, y, x

′
j, y
′)

∂y′

∣∣∣∣∣
y′=−ts

dx′+

∫ x′j+∆x′

x′j

ψj2(x′j)
∂GII

e (xi, y, x
′
j, y
′)

∂y′

∣∣∣∣∣
y′=−ts

dx′

(4.21)

where

∂GII
e (xi, y, x

′
j, y
′)

∂y′

∣∣∣∣∣
y′=−ts

=
−jk0(y + ts)

2
√

(xi − x′j)2 + (y + ts)2
H

(2)
1

(
k0

√
(xi − x′j)2 + (y + ts)2

)
.

(4.22)
Equation (4.20) represents the boundary constraint on the aperture of the hole in the
region II.

4.2.3 Modified Finite-Element System Matrix for TMz Polariza-
tion

Equations (4.13) and (4.20) represent the boundary constraint on the hole opening. Com-
bining these equations and Eq. (4.3) in matrix form results in Mii MibI MibII

MbI i MbIbI +MbIoIS
I 0

MbII i 0 MbIIbII −MbIIoIIS
II

 ui
ubI
ubII

 =

 Fi
FbI −MbIoIT

I

FbII

 . (4.23)

Equation (4.23) represents the modified system matrix which can be solved using commonly
used methods for solving linear systems.

4.3 Surface Integral Equation for TEz Polarization

In this section, the surface integral equation in region I and II using Green’s function of
second kind for the TEz polarization will be derived.

4.3.1 Upper Half-Space (Region I)

To derive the surface integral equation for the TEz polarization case, the electric current
filament is replaced with a magnetic current filament Mz. In ΩI

∞ and for the TEz po-
larization case, the magnetic field vector has only a z-component satisfying Helmholtz’s
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equation
∇2Hz(ρ) + k0

2Hz(ρ) = jωεrMz(ρ), ρ ∈ ΩI
∞ (4.24)

where ρ and ΩI
∞ have the same definition as the section 4.2.1 (see Fig. 4.2). Let us introduce

the Green’s function GI
h(ρ,ρ

′) which is the solution due to the magnetic current filament
located at ρ′ and governed by Helmholtz’s equation

∇2GI
h(ρ,ρ

′) + k0
2GI

h(ρ,ρ
′) = −δ(ρ− ρ′), ρ,ρ′ ∈ ΩI

∞. (4.25)

Since the image of the magnetic current in the vicinity of the PEC surface is in the same
direction of the original current, therefore GI

h(ρ,ρ
′)|y=0 6= 0 on the ground plane. In this

case, boundary condition on the PEC surface can be represented by

∂GI
h(ρ,ρ

′)

∂y′

∣∣∣∣
y=0

= 0. (4.26)

In addition, GI
h(ρ,ρ

′) satisfies Sommerfeld radiation condition at infinity. ThereforeGI
h(ρ,ρ

′)
can be represented in terms of the zeroth-order Hankel function of the second kind as

GI
h(ρ,ρ

′) = −j
4
H

(2)
0 (k0|ρ− ρ′s|)−

j

4
H

(2)
0 (k0|ρ− ρ′i|) (4.27)

where ρ′s, and ρ′i represent the position of the source current, and its image, respectively.
The surface integral equation (Eq. (A.6)) in region I for the TEz polarization, then can be
written as

Hz(ρ
′) =− jωεr

∫
ΩI
∞

Mz(ρ)GI
h(ρ,ρ

′)dΩI

−
∮

ΓI+ΓI
∞

(
Hz(ρ)

∂GI
h(ρ,ρ

′)

∂n
−GI

h(ρ,ρ
′)
∂Hz(ρ)

∂n

)
dΓI .

(4.28)

Both Hz(ρ) and GI
h(ρ,ρ

′) satisfy Sommerfeld radiation condition at infinity, therefore inte-
gration over ΓI∞ (see Fig. 4.2) in the right hand side of Eq. (4.28) vanishes (see Eq. (A.7)).
Notice that ∂Hz(ρ)/∂n is zero over the PEC ground plane except on the aperture of hole
and ∂GI

h(ρ,ρ
′)/∂n is zero on the ΓI (see Eq. (4.26)). Upon interchanging primed and

unprimed coordinates, the Eq. (4.28) reduces to

Hz(ρ) = −jωεr
∫

ΩI
∞

Mz(ρ
′)GI

h(ρ,ρ
′)dΩI +

∫
ΓI
B

GI
h(ρ,ρ

′)
∂Hz(ρ

′)

∂n′
dΓI . (4.29)

Similar to the TMz case, the first term in the right hand side of Eq. (4.29) represents the
magnetic field generated by the magnetic current filament and its image in the vicinity of
the PEC ground plane. These fields can be interpreted as an incident field and a reflected
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field from the PEC screen. The second term in Eq. (4.29) represents field perturbation due
to the aperture of the hole. Then Eq. (4.29) can be rewritten as

Hz(ρ) = H inc
z (ρ) +Href

z (ρ) +

∫
ΓI
B

GI
h(ρ,ρ

′)
∂Hz(ρ

′)

∂n′
dΓI . (4.30)

By the same definition of ρ and ρ′ as in section 4.2.1, and assuming the coordinate system
as in Fig. 4.1, the incident and reflected waves can be written as

H inc
z (ρ) = exp(−jk0(x sin θ − y cos θ))

Href
z (ρ) = exp(−jk0(x sin θ + y cos θ)).

(4.31)

To calculate the last term in Eq. (4.30), the partial derivative ∂Hz(ρ
′)/∂n′ can be expressed

as a first-order finite difference as

∂Hz(ρ
′)

∂n′
= −Hz(x = x′, y)−Hz(x

′, y′)

y − y′
(4.32)

(notice that the negative sign on the right hand side of Eq. (4.32) is because n̂′ = −ŷ′),then
the aperture ΓIB, and ΓIO are discretized into n segments with length of ∆x′. By expanding
both Hz(x = x′, y) and Hz(x

′, y′) over the aperture of the hole in terms of step functions
as

Hz =
n∑
j=1

Hzjψj(x
′
j) (4.33)

where

ψj(x
′
j) =

{
1, x′j −

∆x′j
2
< x′j < x′j +

∆x′j
2

;
0, elsewhere.

(4.34)

the singular behavior of the fields at the edges of the hole can be avoided. By replacing
the field expansions in Eq. (4.30) and defining the elements of matrix [SI ] as

SIij =

∫ x′j+∆x′j/2

x′j−∆x′j/2

GI
h(xi, y, x

′
j, y
′ = 0)ψj(x

′
j)

y − y′
dx′ (4.35)

where

GI
h(xi, y, x

′
j, y
′ = 0) = −j

2
H

(2)
0

(
k0

√
(xi − x′j)2 + y2

)
. (4.36)

Equation (4.30) can be represented in the matrix form as[
uoI
]

=
[
T I
]
−
[
SI
] {[

uoI
]
−
[
ubI
]}
. (4.37)
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In Eq. (4.37), the elements of [uoI ], [ubI ], and [T I ] matrices represent Hz(x, y), Hz(x
′, y′),

and
(
H inc
z (x, y) +Href

z (x, y)
)
, respectively, at each node. Equation (4.37) can be rear-

ranged as [
uoI
]

=
{[
I
]

+
[
SI
]}−1 [

T I
]

+
{[
I
]

+
[
SI
]}−1 [

SI
] [
ubI
]

(4.38)

where [I] is the unity matrix. Equation (4.38) represents the boundary constraint on the
hole opening into the region I.

4.3.2 Lower Half-Space (Region II)

Let us consider the domain ΩII
∞ representing the half-space below the PEC slab (see

Fig. 4.2). In the source-free region ΩII
∞ and for the TEz polarization case, the transmit-

ted magnetic field vector has only a z-component satisfying the homogenous Helmholtz’s
equation:

∇2Hz(ρ) + k0
2Hz(ρ) = 0, ρ ∈ ΩII

∞. (4.39)

Let us introduce the Green’s function GII
h (ρ,ρ′) governed by Helmholtz’s equation

∇2GII
h (ρ,ρ′) + k0

2GII
h (ρ,ρ′) = −δ(ρ− ρ′) ρ,ρ′ ∈ ΩII

∞. (4.40)

Equation (4.40) differs from Eq. (4.25) in the location of the unit source. In Eq. (4.25)
the unit source is located on ΓIo whereas in Eq. (4.40) unit source is assumed to be located
on ΓIIo . GII

h (ρ,ρ′) satisfies Sommerfeld radiation condition at infinity and the boundary
condition as

∂GII
h (ρ,ρ′)

∂y′

∣∣∣∣
y=−ts

= 0 (4.41)

where ts is the thickness of the PEC slab. GII
h (ρ,ρ′) is found to be the zeroth-order Hankel

function of the second kind as Eq. (4.27). The surface integral equation (Eq. (A.6)) in
region II for the TEz polarization, then can be written as

Hz(ρ
′) = −

∮
ΓII+ΓII

∞

(
Hz(ρ)

∂GII
h (ρ,ρ′)

∂n
−GII

h (ρ,ρ′)
∂Hz(ρ)

∂n

)
dΓII (4.42)

where ΓII + ΓII∞ is the contour enclosing ΩII
∞ in counter-clockwise direction. Since both

Hz and GII
h satisfy Sommerfeld radiation condition at infinity, integration over ΓII∞ (see

Fig. 4.2) in the right hand side of Eq. (4.42) vanishes (see Eq. (A.7)). Notice that
∂GII

h (ρ,ρ′)/∂n is zero on ΓII . Additionally, ∂Hz(ρ)/∂n is zero over the PEC ground plane
except on the aperture of the hole. Upon interchanging primed and unprimed coordinates,
Eq. (4.42) can be simplified to

Hz(ρ) =

∫
ΓII
B

GII
h (ρ,ρ′)

∂Hz(ρ
′)

∂n′
dΓII . (4.43)
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Equation (4.43) represents the transmitted field from the aperture of the hole into the
region II. Upon using (x′, y′) and (x, y) as Cartesian components of ρ′ and ρ, respectively,
and expressing the partial derivative as a first-order finite difference, Eq. (4.43) can be
written as

Hz(ρ) =

∫
ΓII
B

GII
h (ρ,ρ′)

(
Hz(x = x′, y)−Hz(x

′, y′)

y − y′

)
dx′. (4.44)

To calculate the integral in Eq. (4.44), the aperture ΓIIB and ΓIIO are discretized into n
segments with length of ∆x′. Both Hz(x = x′, y) and Hz(x

′, y′) are expanded as Eq. (4.33)
over the hole aperture in terms of step functions as Eq. (4.34). By replacing the field
expansions in Eq. (4.44) and defining of elements of matrix [SII ] as

SIIij =

∫ x′j+∆x′j/2

x′j−∆x′j/2

GII
h (xi, y, x

′
j, y
′ = −ts)ψj(x′j)

y − y′
dx′ (4.45)

where

GII
h (xi, y, x

′
j, y
′ = −ts) = −j

2
H

(2)
0

(
k0

√
(xi − x′j)2 + (y + ts)2

)
(4.46)

Eq. (4.44) can be represented in the matrix form as[
uoII

]
=
[
SII
] {[

uoII
]
−
[
ubII
]}
. (4.47)

In Eq. (4.47), the elements of [uoII ], and [ubII ] matrices represent Hz(x, y) and Hz(x
′, y′),

respectively, at each node. Equation (4.47) can be rearranged as[
uoII

]
= −

{[
I
]
−
[
SII
]}−1 [

SII
] [
ubII
]
. (4.48)

Equation (4.48) represents the boundary constraint on the hole opening into the region II.

4.3.3 Modified Finite-Element System Matrix for TEz Polariza-
tion

Equations (4.38) and (4.48) represent the boundary constraints on the hole openings.
Combining these equations and Eq. (4.3) in matrix form results in Mii MibI MibII

MbI i MbIbI +MbIoI (I + SI)−1SI 0
MbII i 0 −MbIIoII (I − SII)−1SII

 ui
ubI
ubII

 =

 Fi
FbI −MbIoI (I + SI)−1T I

FbII

 .
(4.49)

Equation (4.49) represents the modified system matrix which can be solved using commonly
used methods for solving linear systems.
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Figure 4.3: Schematic showing the extension of the surface integral method to multiple
holes.

4.4 Extension to Multiple Holes with Side Grating

In this section, the method developed above is extended to the problem of scattering from
multiple holes in a PEC surface. A schematic representing the scattering problem for
two holes is shown in Fig. 4.3. The region inside the holes are labeled as Ω1 and Ω2.
Extending the finite element development in section 4.1 to two holes, the system matrix
for the domains Ω1 and Ω2 is generalized as

[M ](1)[u](1) = [F ](1)

[M ](2)[u](2) = [F ](2) (4.50)

where each system of equation can be represented symbolically as Eq. (4.3). Assembling
the two systems using global numbering of nodes gives[

[M ](1) 0
0 [M ](2)

] [
[u](1)

[u](2)

]
=

[
[F ](1)

[F ](2)

]
. (4.51)

The two system matrices arising from each of the two holes will be coupled through the sur-
face integral equation in the following manner. In region I, each node on ΓIO is connected
via the Green’s function to all the nodes on the aperture of the two holes, ΓIB, via Eq. (4.9)
and Eq. (4.30) for the TMz and TEz polarization, respectively (see Fig. 4.3). Also, in
region II, each node on ΓIIO is connected via the Green’s function to all the nodes on the
aperture of the two holes, ΓIIB , via Eq. (4.19) and Eq. (4.43) for the TMz and TEz polar-
ization, respectively. In other words, the holes are coupled to each other only through the
surface integral equation and Green’s function in each region. In the set of equations (4.9)
and (4.30), or the set of equations (4.19) and (4.43), the integration is performed over the
apertures of all holes in region I or region II, respectively. For instance, Eq. (4.13) and
Eq. (4.20) for the TMz polarization can be represented symbolically in matrix form as[

[uoI ]
(1)

[uoI ]
(2)

]
=

[
[T I ](1)

[T I ](2)

]
+

[
[SI ](11) [SI ](12)

[SI ](21) [SI ](22)

] [
[ubI ]

(1)

[ubI ]
(2)

]
(4.52)
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and [
[uoII ]

(1)

[uoII ]
(2)

]
= −

[
[SII ](11) [SII ](12)

[SII ](21) [SII ](22)

] [
[ubII ]

(1)

[ubII ]
(2)

]
, (4.53)

respectively, where [S](ij), represents connectivity between nodes on ΓO of the ith hole [uo]
(i)

and nodes on ΓB of the jth hole [ub]
(j) via the surface integral equation (i & j = 1, 2) in

both region I and II. Combining Eq. (4.51), Eq. (4.52) and Eq. (4.53) in matrix form
results in the modified system matrix as[

[M ′](1) [C](12)

[C](21) [M ′](2)

] [
[u′](1)

[u′](2)

]
=

[
[F ′](1)

[F ′](2)

]
(4.54)

where [C](12) and [C](21) are matrices representing the coupling between the two holes, and
are given by

[C](12) =

0 0 0
0 [MbIoI ]

(1)[SI ](12) 0
0 0 −[MbIIoII ]

(1)[SII ](12)


[C](21) =

0 0 0
0 [MbIoI ]

(2)[SI ](21) 0
0 0 −[MbIIoII ]

(2)[SII ](21)

 (4.55)

and [M ′] and [F ′] are given by

[M ′](1) =

 [Mii]
(1) [MibI ]

(1) [MibII ]
(1)

[MbI i]
(1) [MbIbI ]

(1) + [MbIoI ]
(1)[SI ](11) 0

[MbII i]
(1) 0 [MbIIbII ]

(1) − [MbIIoII ]
(1)[SII ](11)


[M ′](2) =

 [Mii]
(2) [MibI ]

(2) [MibII ]
(2)

[MbI i]
(2) [MbIbI ]

(2) + [MbIoI ]
(2)[SI ](22) 0

[MbII i]
(2) 0 [MbIIbII ]

(2) − [MbIIoII ]
(2)[SII ](22)


[F ′](1) =

 [Fi]
(1)

[FbI ]
(1) − [MbIoI ]

(1)[T I ](1)

[FbII ]
(1)


[F ′](2) =

 [Fi]
(2)

[FbI ]
(2) − [MbIoI ]

(2)[T I ](2)

[FbII ]
(2)


(4.56)

and [u′](k) is given by

[u′](k) =

 [ui]
(k)

[ubI ]
(k)

[ubII ]
(k)

 (k = 1 & 2) (4.57)
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Notice that these coupling matrices are not necessarily identical. The same procedure is
applicable to the TEz polarization. Generalizing the formulation to N holes results in the
following system matrix:

[M ′](1) [C](12) . . . [C](1N)

[C](21) [M ′](2) . . . [C](2N)

...
. . .

...
[C](N1) [C](N2) . . . [M ′](N)




[u′](1)

[u′](2)

...
[u′](N)

 =


[F ′](1)

[F ′](2)

...
[F ′](N)

 . (4.58)

Once the nodal field values on ΓO are expressed in terms of the nodal field values on ΓB at
each region, the modified system of equations can be solved using commonly used methods
for solving linear systems.

The formulation presented in this chapter is applicable to holes with side cavities present
in perfectly conducting surfaces. For multiple holes and cavities, Eq. (4.58) gives a mathe-
matical quantification of the coupling factors between the holes and cavities. Physically, it
is expected that the holes and cavities to be coupled through surface currents existing on
the segments connecting the holes and cavities, as that is the only mechanism for energy
transfer between them. This mechanism is discussed in section 2.5.2.

4.5 Numerical Results

Once the system of equations, Eq. (4.23) for the TMz polarization or Eq. (4.49) for the TEz

polarization, is derived, its solution (which gives the field values at the apertures of the
holes) can be obtained using commonly used methods for solving linear systems. In this
section, examples of single and multiple holes with side gratings with different dimensions
and fillings are provided to validate the algorithm developed in this chapter.

To validate the method presented here, comparison was made to the results obtained
by commercial two-dimensional finite-element simulator COMSOL [43]. While using finite-
element simulator for the comparison purpose, the absorbing boundary condition (ABC)
was applied on the artificial boundary to truncate the computational domain (see Fig. 4.4).
Throughout this work, these solutions is referred as (COMSOL). Without loss of generality,
the magnitude of the incident electric field is assumed to be unity throughout this work. To
implement the algorithm developed in this chapter, a nodal based finite element formulation
is used. the solution domain is discretized using first-order triangle elements with a mesh
density of approximately 20 nodes per λ for the TMz case. Since there is a discontinuity
in the electric field at the edges of the holes or cavities as the side gratings in the TEz

case, mesh density of 100 nodes per λ is used. Throughout this work, the solution obtained
using the method presented in this chapter is referred to as “Total Field Surface Integral
Equation” (TFSIE).
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Figure 4.4: Schematic of the computational domain truncation using ABC or PML in
solving the scattering problem from a hole with arbitrary shape in an infinite PEC surface.

4.5.1 Single Hole Case

In the first example, a 0.8λ×0.5λ (width×depth) rectangular hole is considered where λ is
the wavelength in free space. Figures 4.5 and 4.6 show the total electric field for the TMz

polarization and total magnetic fields for the TEz polarization of incident plane waves, at
the both apertures of the hole, for an oblique incident angle. The results in Fig. 4.5 and
Fig. 4.6 show strong agreement between the calculations using TFSIE and those obtained

Figure 4.5: Amplitude of total E-field at the hole openings into the region I (R-I) and the
region II (R-II) for a 0.8λ× 0.5λ air-filled rectangular hole, TMz case, θ = 30◦, calculated
using the method introduced in this work (TFSIE), and COMSOL.
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Figure 4.6: Amplitude of total H-field at the hole openings into the region I (R-I) and the
region II (R-II) for a 0.8λ× 0.5λ air-filled rectangular hole, TEz case, θ = 30◦, calculated
using the method introduced in this work (TFSIE), and COMSOL.

using COMSOL.

As the next example of a single hole case, a 0.7λ × 0.35λ rectangular hole shown in
Fig. 4.7 is considered. The hole is filled with silicon having a relative permittivity of
εr = 11.9 and including a 0.42λ × 0.07λ PEC strip positioned at the geometric center of
the hole. Good agreement is observed between the results calculated using TFSIE and
those obtained by COMSOL. This numerical example shows the versatility of the TFSIE
to solve the problem of scattering from the holes with complex structures and fillings.

4.5.2 Multiple Holes

Five identical 0.4λ×0.2λ rectangular holes separated by 0.4λ are considered as an example
of scattering problem from multiple holes. Figures 4.8 and 4.9 show the total electric field
for the TMz polarization and total magnetic field for the TEz polarization, respectively, at
the aperture of the five holes, for oblique incidence. Close agreement between TFSIE and
COMSOL is observed.

In Fig. 4.10 and Fig. 4.11 the total electric, and magnetic fields in the far region in
the lower half-space (region II) for an array of five holes are presented, respectively. The
far-field can be calculated using the equivalence principle. By closing the apertures by a
PEC surface and introducing an equivalent magnetic current M (x′, y′) at the aperture into
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Figure 4.7: Amplitude of total E-field at the hole openings into the region I (R-I) and the
region II (R-II) for a 0.7λ × 0.35λ silicon-filled (εr = 11.9 ) rectangular hole, TMz case,
θ = 30◦, calculated using the method introduced in this work (TFSIE), and COMSOL.
The 0.42λ× 0.07λ PEC strip is positioned at the geometric center of the hole.

Figure 4.8: Amplitude of total E-field at the holes openings into the region I (R-I) and
the region II (R-II) for five identical 0.4λ × 0.2λ air-filled rectangular holes, TMz case,
θ = 30◦, calculated using the method introduced in this work (TFSIE), and COMSOL.
The holes are separated by 0.4λ.
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Figure 4.9: Amplitude of total H-field at the holes openings into the region I (R-I) and the
region II (R-II) for five identical 0.4λ×0.2λ air-filled rectangular holes, TEz case, θ = 30◦,
calculated using the method introduced in this work (TFSIE), and COMSOL. The holes
are separated by 0.4λ.

the region II, the transmitted electric field in the far region can be represented as

E(x, y) = −2∇×
∫

ΓII
B

M (x′, y′)G(x, y, x′, y′)dx′ (4.59)

where M (x′, y′) = −n̂×E(x′, y′)|y′=−ts and G(x, y, x′, y′) is the free-space Green’s function

G(x, y, x′, y′) = −j
4
H

(2)
0 (k0R) (4.60)

where R = ((x− x′)2 + (y + ts)
2)

1
2 . For the TMz case where the electric field has only a

z-component, Eq. (4.59) can be written as

E(x, y) = −ẑ
∫

ΓII
B

2Ez(x
′, y′)|y′=−ts

∂G

∂y
dx′. (4.61)

For the TEz case where the magnetic field has only a z-component, the electric field at the
aperture has two components. Therefore Eq. (4.59) can be written as

E(x, y) =
−2

jωεr

(
x̂

∫
ΓII
B

∂Hz(x
′, y′)

∂y′
|y′=−ts

∂G

∂y
dx′ − ŷ

∫
ΓII
B

∂Hz(x
′, y′)

∂y′
|y′=−ts

∂G

∂x
dx′

)
.

(4.62)
Figure 4.10 shows far electric field for TMz-polarized normal incident and Fig. 4.11 shows
far magnetic field and TEz-polarized oblique incident.
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Figure 4.10: Amplitude of total E-field in the far region II (R-II) for five identical 0.4λ×
0.2λ air-filled rectangular holes, TMz case, normal incident, calculated using the method
introduced in this work (TFSIE). The holes are separated by 0.4λ.

Figure 4.11: Amplitude of total H-field in the far region II (R-II) for five identical 0.4λ×
0.2λ air-filled rectangular holes, TEz case, θ = 30◦, calculated using the method introduced
in this work (TFSIE). The holes are separated by 0.4λ.
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4.5.3 Single Hole with Side Grating

In this section, a single 0.5λ × 0.8λ rectangular hole and three 0.5λ × 0.3λ cavities as a
side grating in the PEC slab is considered (see inset of Fig. 4.12). The hole and cavities
are separated by 0.5λ. Both sides of the PEC slab have an identical grating. The analysis
of this structure is very important due to study of the extraordinary transmission of light.

Figure 4.12 shows the total electric field at the apertures of the hole and side cavities for
oblique incident plane waves. Close agreement between TFSIE and COMSOL is observed
despite a deviation between the results calculated using TFSIE and those obtained by
COMSOL for the farthest cavities from the hole in the region II. The cavities in region II
are coupled to the incident wave in region I via the guided waves passing through the hole.
Therefore, by increasing the distance between the cavities and the hole, the field amplitude
at the aperture of the cavities is expected to decrease. However, Fig. 4.12 shows that in
the case of COMSOL by increasing the distance between the cavities and the hole, the
field amplitude at the aperture of the cavities increases. This increment in field amplitude
is due to the non-physical reflections from the truncating boundary while using the ABC
in the case of COMSOL. On the other hand, the results calculated using TFSIE clearly
show decrement of the field amplitude as the distance between the cavities and the hole
increases. Figure 4.13 shows the calculated field values in logarithmic scale in region II

Figure 4.12: Amplitude of total E-field at the openings into the region I (R-I) and the
region II (R-II) for a single 0.5λ × 0.8λ hole with three identical 0.5λ × 0.3λ air-filled
rectangular side cavities, TMz case, θ = 30◦, calculated using the method introduced in
this work (TFSIE), and COMSOL. The hole and the cavities are separated by 0.5λ.
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Figure 4.13: Amplitude of total E-field in region II (R-II) of Fig. 4.12 in logarithmic scale,
calculated using the method introduced in this work (TFSIE), and COMSOL.

of Fig. 4.12. In case of COMSOL, the required computational domain was approximately
159λ2 while the TFSIE solution domain was confined to the hole and cavities area of 2.2λ2.
This efficiency in computational resources leads to further studies of plasmonic resonance
due to grating surfaces.

Figure 4.14 shows the total magnetic field at the apertures of the hole and side cavities
for an oblique incident plane waves. For the TEz polarization, the same deviation in region
II between results calculated TFSIE and those obtained using COMSOL is observed. The
cavities in region II are coupled to the incident wave in region I via the guided waves
passing through the hole. These guided waves are excited by interaction of incident field
with grating surface in region I which in turn excite the surface current on the PEC
segments in region II. Since the surface currents or in other words, evanescent waves
can not be modeled properly by an ABC or PML is placed close to the aperture [51], it
is necessary to choose an ABC or PML far enough from the aperture in the commercial
solver to achieve accurate results. In contrast, the surface integral equation can model the
evanescent waves as well as propagation waves.
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Figure 4.14: Amplitude of total H-field at the openings into the region I (R-I) and the
region II (R-II) for a single 0.5λ × 0.8λ hole with three identical 0.5λ × 0.3λ air-filled
rectangular side cavities, TEz case, θ = 30◦, calculated using the method introduced in
this work (TFSIE), and COMSOL. The hole and the cavities are separated by 0.5λ.
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Chapter 5

Scattering from an Infinite Periodic
Array of Cavities in a Conducting
Screens

In this chapter, a new algorithm is developed to solve the problem of scattering from an
infinite periodic array of identical cavities engraved in an infinite perfect electric conductor
screen. Using the two-boundary formulation which was used in previous chapters, the solu-
tion domain is confined to only one cavity which is divided into interior and exterior regions.
The finite-element formulation is applied inside the interior regions to obtain the solution of
Helmholtz’s equation. The surface integral equation using the half-space Green’s function,
is applied at the openings of all cavities as a global boundary condition. Taking advantage
of the field’s periodicity at the apertures of the cavities, the half-space Green’s function is
replaced by the quasi-periodic Green’s function, thus limiting the surface integral equation
to the aperture of only one cavity. The Neumann or Dirichlet boundary condition is applied
on the PEC walls of the cavity for the TE or TM polarization, respectively. The advantage
of this method is that no periodic boundary condition, which would require a constrained
mesh scheme, is used in this formulation. Also, it is emphasized that in the method pre-
sented here, the surface integral equation using the quasi-periodic Green’s function is used
to derive a linear system of equation as a constraint which connects the field values on the
boundary to the field values on the apertures of the single cavity in the array by consider-
ing the coupling between all cavities. The attractive feature of two-boundary formulation
combined with quasi-periodic Green’s function is that no singularities in Green’s function
arises while applying the surface integral as a boundary constraint.

55



5.1 Finite-Element Formulation of the Problem

Figure 5.1 shows a 2-D perfectly conducting screen containing infinite periodic identical
cavities illuminated by an obliquely incident plane wave. The periodicity and width of the
aperture of the cavities are denoted by P and W , respectively. uinc, and us denote the
incident field, and scattered field from the aperture of the cavities, respectively, along the
axis of the cavities. The infinite periodic array of cavities can be divided into unit-cells.
The width of each unit-cell equals the periodicity of the array. The unit-cells are indexed
by m where m = −∞· · · ,−1, 0, 1, · · ·∞.

Figure 5.2 shows three successive unit-cells as part of an infinite array of cavities. For
a cavity in each unit-cell (i.e., the mth unit-cell), ΓB is defined to be the contour at the
opening of the cavity, and ΓO as the top contour in close vicinity of ΓB such that the region
between ΓB and ΓO is devoid of field nodes. Also let Ωm

in denote the interior region of the
mth cavity bounded by the PEC surface of the cavity and ΓO. Next, the solution domain
Ωm
in is discretized into triangular elements. Notice that, however, rectangular or other types

of elements can be used without affecting the theoretical development presented here. The
unknown total field ut over each element is described by a set of interpolating functions
given by

ut =
N∑
i=1

ui
tαi(x, y) (5.1)

where N is the number of nodes in each element at which the unknown field is defined,
and αi(x, y) is an interpolation function. The finite element formulation is used inside each

Figure 5.1: Schematic of the scattering problem from an infinite periodic array of cavities
with arbitrary shape engraved in a conducting surface.
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Figure 5.2: Schematic of an unit-cell of an infinite periodic array of cavities engraved in a
conducting surface.

element of Ωm
in to obtain the weak form of Helmholtz’s equation:

∇ ·
(

1

p(x, y)
∇ut

)
+ k0

2q(x, y)ut = 0 (5.2)

where ut, p(x, y), q(x, y), and k0 have the same definitions as in section 2.1. The time
harmonic factor exp(jωt) is assumed and suppressed throughout. Following the procedure
in section 2.1, the Galerkin-weighted residual integral Re for each element inside mth unit-
cell can be expressed in matrix form as

Re =
[
M e
]m [

ue
]m − [F e

]m
= 0 (5.3)

where [ue]m represents the unknown field value at each node of the eth element inside mth

cavity. The [F e]m matrix represents impressed sources at each node; therefore, for the
problem of scattering from cavities considered in this chapter, [F e]m is zero. The elements
of N ×N matrix [M e]m are given by(

M e
ij

)m
=

∫
Ωe

(
1

p(x, y)
∇αi(x, y) ·∇αj(x, y)− k0

2q(x, y)αi(x, y)αj(x, y)

)
dΩ

+

∮
Γe

αi(x, y)

p(x, y)
∇αj(x, y) · dΓ.

(5.4)

By assembling all local system matrices Eq. (5.3) the global system matrix for the mth

cavity can be represented symbolically asMii Mib 0
Mbi Mbb Mbo

0 Mob Moo

m uiub
uo

m =

FiFb
Fo

m (5.5)

57



where ui, ub and uo represent nodal field values inside the cavity, on ΓB, and on ΓO,
respectively. Extending the formulation to all cavities, Ω−∞in · · · Ω∞in, we have the following
system of matrix equations:

[M ]−∞[u]−∞ = [F ]−∞

...
[M ]0[u]0 = [F ]0

...
[M ]∞[u]∞ = [F ]∞

(5.6)

where each matrix equation in the system in Eq. (5.6) can be represented symbolically as
Eq. (5.5).

The systems of equations in Eq. (5.6) are coupled to each other only through the surface
integral equation. It is impossible to solve all systems of equations in Eq. (5.6) simulta-
neously. In the next section, an algorithm that solves the problem of an array of infinite
cavities is developed by considering only one system of equations corresponding to a single
cavity while incorporating the effect of all other cavities. This will be accomplished by
making use of the quasi-periodic Green’s function in conjunction with the surface integral
equation. More specifically, the linear system of equations in Eq. (5.5) represents the rela-
tionship between the nodal field values for the mth cavity without any external constraint
represented by the infinite array of cavities and the incident plane wave. The imposition
of a specific excitation represented by the incident plane wave has to be taken into consid-
eration through a boundary constraint that establishes a relationship between the incident
field, the boundary nodes and the interior nodes.

5.2 Surface Integral Equation

The surface integral equation using the half-space Green’s function will first be used to
express the nodal field values on ΓO of each cavity in terms of the nodal field values on ΓB
of all cavities (see Fig. 5.3). Next, we develop an algorithm to limit the surface integral
equation to the aperture of one cavity by replacing the half-space Green’s function by the
quasi-periodic Green’s function that takes into account the effect of all cavities.

5.2.1 Surface Integral Equation for TMz Polarization

For TMz polarization where the electric field vector is parallel to the axis of the cavities,
the surface integral equation (see Eqs. (A.6), (2.14)) is expressed as

Ez(ρ) = Einc
z (ρ) + Eref

z (ρ)−
∞∑

m=−∞

∫
Γm
B

Ez(ρ
′)
∂Ge(ρ,ρ′)

∂n′
dΓ (5.7)
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Figure 5.3: Schematic of the surface integral contour in the half-space above the cavities.

where ρ and ρ′ represent the position of the nodes on ΓO and ΓB , respectively. Note that
the integration is performed only at the aperture of the cavities ΓmB . Ez(ρ) on the left-
hand side of the Eq. (5.7) represents the total field value at any point in upper half-space
above the cavities. Also Einc

z (ρ) and Eref
z (ρ) on the right-hand side represent the incident

field and the reflected field by the PEC screen, respectively. The last term in Eq. (5.7)
represents the scattered field due to aperture of the cavities. In Eq. (5.7), Ge(ρ,ρ′) is the
Green’s function of the first kind satisfying the boundary condition Ge(ρ,ρ′)|y=0 = 0 (i.e.,
Ge = 0 on Γ) and Sommerfeld radiation condition at infinity. Ge(ρ,ρ′) is found to be the
zeroth-order Hankel function of the second kind:

Ge(ρ,ρ′) = −j
4
H

(2)
0 (k0|ρ− ρ′s|) +

j

4
H

(2)
0 (k0|ρ− ρ′i|) (5.8)

where ρ′s, and ρ′i represent the position of the source current, and its image, respectively.
In Eq. (5.7), each node on ΓO is connected via the surface integral equation to the all nodes
on the aperture of all cavities, ΓB, (see Fig. 5.3). In other words, the cavities are coupled
to each other only through the surface integral equation.

To calculate the last term in Eq. (5.7), the aperture, ΓB of each cavity, and ΓO are
discretized into J segments with length of ∆x′. Then Ez(ρ

′) is expanded over ΓB in terms
of piecewise linear interpolating functions as

Ez(ρ
′) =

J∑
j=1

Ezj(x
′
j, y
′
j)ψj(x

′
j) (5.9)

where x′ and y′ are Cartesian components of ρ′. Equation (5.7) can be represented in
discrete notation as

uoi
n = T ni +

∞∑
m=−∞

J∑
j=1

(∫
ψj(x

′
j
m

)
∂

∂y′
Ge
(
xi
n, yi

n, x′j
m
, y′j

m)
dx′
)
ubj

m (5.10)
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where uoi
n and T ni represent Ez(ρ), and (Einc

z (ρ) + Eref
z (ρ)), respectively, at the ith node

on the ΓO of the nth cavity. Also the ubj
m represents Ezj(ρ

′) at the jth node on the ΓB
of the mth cavity. It is noticeable that in Eq. (5.10), integration is performed on the jth

segment of the ΓB of the mth cavity.

Physically, the cavities are indistinguishable in structure, therefore similar distribution
of the field magnitude at the apertures of all cavities is expected. Now, let assume similar
discretization of ΓB of all cavities. This assumption does not pose any limitation on the
generality and versatility of this method but helps to simplify the algorithm by using the
Floquet theorem. In practice a mesh is created and the formulation is applied on one
cavity. By similar discretization of the ΓB of all cavities and same local numbering of the
nodes, the total field value at two nodes with same position with respect to the edge of the
cavities (i.e., the jth nodes of the mth and nth cavities) are related as

ubj
m = ubj

ne−j(m−n)k0‖P (5.11)

where k0‖ = k0 sin θ and P is periodicity of the array. Note that the coordinates of such
nodes are related as

x′j
m

=x′j
n

+ (m− n)P

y′j
m

=y′j
n
.

(5.12)

Without loss of generality, n is chosen as zero for a cavity located at the origin and the
superscript n is suppressed throughout. Inserting Eq. (5.11) and Eq. (5.12) into Eq. (5.10),
results in

uoi = Ti+
∞∑

m=−∞

J∑
j=1

(∫
ψj(x

′
j +mP )

∂

∂y′
Ge
(
xi, yi, x

′
j +mP, y′j

)
dx′
)
ubje

−jmk0‖P . (5.13)

Note that since the mesh scheme is assumed to be identical for all cavities, the interpolating
function ψj(x

′
j + mP ) is the same as ψj(x

′
j). Changing the order of the summations and

integral, Eq. (5.13) can be rewritten as

uoi = Ti +
J∑
j=1

(∫
ψj(x

′
j)

∂

∂y′

(
∞∑

m=−∞

e−jmk0‖PGe(xi, yi, x
′
j +mP, y′j)

)
dx′

)
ubj . (5.14)

The quasi-periodic Green’s function of the first kind (which is solution to an infinite periodic
array of current sources with an uniform progressive phase shift in proximity of an infinite
ground plane) is defined as

Ge
Q(xi, yi, x

′
j, y
′
j) =

∞∑
m=−∞

e−jmk0‖PGe(xi, yi, x
′
j +mP, y′j). (5.15)
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By replacing the sum containing the half-space Green’s function with the quasi-periodic
Green’s function as in Eq. (5.15), the surface integral equation is limited to the aperture
of one cavity only. Equation (5.14) can be represented in matrix form as[

uo
]

=
[
T
]

+
[
S
] [
ub
]

(5.16)

where the elements of [S] are defined as

Sij =

∫
jth segment

ψj(x
′
j)
∂

∂y′
Ge
Q

(
xi, yi, x

′
j, y
′
j

)
dx′. (5.17)

Combining Eq. (5.16) and Eq. (5.5) in matrix form results in the modified system matrix
for one cavity as [

Mii Mib

Mbi Mbb +MboS

] [
ui
ub

]
=

[
Fi

Fb −MboT

]
. (5.18)

5.2.2 Surface Integral Equation for TEz Polarization

For the TEz polarization where the magnetic field vector is parallel to the axis of the
cavities, the surface integral equation (see Eqs. (A.6), (2.28)) is written as

Hz(ρ) = H inc
z (ρ) +Href

z (ρ) +
∞∑

m=−∞

∫
Γm
B

Gh(ρ,ρ′)
∂Hz(ρ

′)

∂n′
dΓ. (5.19)

The integration is performed at the aperture of all cavities ΓmB . Similar to the TMz case,
Hz(ρ) on the left-hand side of the Eq. (5.19) represents the total field value at any point in
the upper half-space above the cavities. Also H inc

z (ρ) and Href
z (ρ) on the right-hand side

represent the incident field and the reflected field by the PEC screen, respectively. The
last term in Eq. (5.19) represents the scattered field due to the aperture of the cavities.
In Eq.(5.19), Gh(ρ,ρ′) is Green’s function of the second kind satisfying the boundary
condition ∂Gh(ρ,ρ′)/∂n′|y=0 = 0 (i.e., ∂Gh(ρ,ρ′)/∂n′ = 0 on Γ) and the Sommerfeld
radiation condition at infinity. Therefore Gh(ρ,ρ′) can be represented in terms of the
zeroth-order Hankel function of the second kind as

Gh(ρ,ρ′) = −j
4
H

(2)
0 (k0|ρ− ρ′s|)−

j

4
H

(2)
0 (k0|ρ− ρ′i|). (5.20)

To calculate the last term in Eq. (5.19), the partial derivative ∂Hz(ρ
′)/∂n′ can be conve-

niently expressed as a first-order finite difference as

∂Hz(ρ
′)

∂n′
= −Hz(x = x′, y)−Hz(x

′, y′)

y − y′
(5.21)
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(notice that the negative sign on the right hand side of Eq. (5.21) is because n̂′ = −ŷ′),
then the apertures ΓB, and ΓO of each cavity are discretized into J segments with length
∆x′. By expanding both Hz(x = x′, y) and Hz(x

′, y′) over the aperture of the cavity in
terms of step functions as

Hz =
J∑
j=1

ψj(x
′
j)Hzj, (5.22)

Eq. (5.19) can be represented in discrete form as

uoi
n = T ni −

∞∑
m=−∞

J∑
j=1

(∫
Gh(xi

n, yi
n, x′j

m
, y′j

m
)

ψj(x
′
j
m)

yjm − y′j
mdx

′
)(

uoj
m − ubjm

)
. (5.23)

In Eq. (5.23), uoi
n, and T ni represent Hz(ρ), and (H inc

z (ρ) +Href
z (ρ)), respectively, at the

ith node on the ΓO of the nth cavity. The uoj
m and ubj

m represent nodal field value at the
jth node on the ΓO and ΓB of the mth cavity, respectively. Notice that in Eq. (5.23), the
integration is performed on the jth segment of the ΓB of the mth cavity.

By considering the fact that the cavities in the infinite array are identical, and assuming
similar discretization of the ΓB and ΓO of the all cavities, the field values and coordinates
of the two nodes with same position in two different cavities can be expressed through
Eqs. (5.11) and (5.12). Similar to the TMz case, without loss of generality, n is chosen
as zero for a cavity located at the origin and the superscript n is suppressed throughout.
Replacing Eqs. (5.11) and (5.12) into Eq. (5.23), results

uoi = Ti−
∞∑

m=−∞

J∑
j=1

(∫
Gh(xi, yi, x

′
j +mP, y′j)

ψj(x
′
j +mP )

yj − y′j
dx′
)

(uoj e
−jmk0‖P − ubj e−jmk0‖P ).

(5.24)

In Eq. (5.24), the interpolating function ψj(x
′
j + mP ) can be replaced with ψj(x

′
j) since

identical mesh scheme is assumed at the aperture of all cavities. By changing the order of
summations and integral, Eq. (5.24) can be rewritten as

uoi = Ti−
J∑
j=1

(∫ ( ∞∑
m=−∞

e−jmk0‖PGh(xi, yi, x
′
j +mP, y′j)

)
ψj(x

′
j)

yj − y′j
dx′
)

(uoj−ubj). (5.25)

The quasi-periodic Green’s function of the second kind (which is solution to an infinite
periodic array of current sources with an uniform progressive phase shift in proximity of
an infinite ground plane) is defined as

Gh
Q(xi, yi, x

′
j, y
′
j) =

∞∑
m=−∞

e−jmk0‖PGh(xi, yi, x
′
j +mP, y′j). (5.26)
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Similar to the TMz case, by replacing the sum containing the half-space Green’s function
with the quasi-periodic Green’s function, the surface integral equation is limited to the
aperture of one cavity. Equation (5.25) can be represented in matrix form as[

uo
]

=
[
T
]
−
[
S
] {[

uo
]
−
[
ub
]}

(5.27)

where the elements of [S] are defined as

Sij =

∫
jth segment

Gh
Q(xi, yi, x

′
j, y
′
j)
ψj(x

′
j)

yj − y′j
dx′. (5.28)

Equation (5.27) can be rearranged as[
uo
]

=
{[
I
]

+
[
S
]}−1 [

T
]

+
{[
I
]

+
[
S
]}−1 [

S
] [
ub
]

(5.29)

where [I] is unity matrix. Combining Eq. (5.29) and Eq. (5.5) in matrix form results in
the modified system matrix for one cavity as[

Mii Mib

Mbi Mbb +Mbo(I + S)−1S

] [
ui
ub

]
=

[
Fi

Fb −Mbo(I + S)−1T

]
. (5.30)

5.3 Numerical Results

Once the system of equations, Eq. (5.18) for the TMz polarization or Eq. (5.30) for the
TEz polarization, is derived, its solution (which is the field values at the aperture of the 0th

cavity) can be obtained using commonly used methods for solving linear systems. Using
Eq. (5.11), the field values at the aperture of any cavity can be determined. Since structures
having infinite periodic cavities are non-physical, the infinite periodicity is typically used to
approximate an array with large number of cavities where the interest lies in determining
the field distribution at the center of the array. In this section, examples of infinite array
of cavities with different dimensions, periodicity, and fillings are provided.

To validate the method presented here, comparison was made to the results calculated
by the finite-element method using local boundary conditions and the mode matching
technique (MMT). While using the finite-element method for the comparison purpose, the
solution region was bounded to a unit-cell and the periodic boundary condition (PBC)
was applied at the lateral boundaries of the unit-cell. To truncate the computational
domain above the unit-cell, either the second order Bayliss-Grunzburger-Turkel (BGT-
II) boundary operator or the perfectly matched layer (PML) are employed. Throughout
this section, these solutions are referred as (FEM-BGT-II), and (FEM-PML), respectively.
Without loss of generality, the magnitude of the incident electric field is assumed to be
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unity throughout this work. To calculate the quasi-periodic Green’s function in Eq. (5.15)
for TMz polarization or Eq. (5.26) for TEz polarization, the infinite series is truncated such
that containing 401 terms. The partial sum of the quasi-periodic Green’s function is then
calculated by direct summation. Note that using acceleration techniques such as Ewald’s
transformation increases the efficiency of the method. To apply FE formulation inside the
cavity, the solution domain is discretized using first-order triangle elements with a mesh
density of approximately 20 nodes per λ for the TMz case. Since there is a discontinuity in
the electric field at the edges of the cavities in the TEz case, a mesh density of 100 nodes
per λ is used. Throughout this section, the solution obtained using the method presented
in this chapter is referred to as “Total Field Surface Integral Equation” (TFSIE).

In the first example, an infinite array of 0.6λ × 0.4λ (width×depth) rectangular cavi-
ties is considered where λ is the wavelength in free space. The periodicity of the array is
P = 1λ. The cavity is filled with material having relative permittivity of εr = 1.4− j0.01.
Figure 5.4 shows the total electric field at the aperture of the 0th cavity for a TMz incident
plane wave, for an obliquely incident angle of 30◦. The results in Fig. 5.4 show strong
agreement between the calculations using TFSIE and those calculated using FEM-BGT-II
and FEM-PML. However, it is important to note that the necessary computational domain
to achieve the accurate results in FEM-BGT-II and FEM-PML is 4λ2 and 1.2λ2, respec-

Figure 5.4: Amplitude of total E-field at the aperture of an infinite array of 0.6λ × 0.4λ
dielectric-filled (εr = 1.4− j0.01) rectangular cavities, TMz case, θ = 30◦, calculated using
TFSIE, the finite-element method using PBC and the second order BGT (FEM-BGT-II),
and the finite-element method using PBC and PML (FEM-PML). The periodicity of the
array is 1λ.
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Figure 5.5: Amplitude of total H-field at the aperture of an infinite array of 0.6λ × 0.4λ
dielectric-filled (εr = 1.4− j0.01) rectangular cavities, TEz case, θ = 30◦, calculated using
TFSIE, and the finite-element method using PBC and the second order BGT (FEM-BGT-
II). The periodicity of the array is 1λ.

tively. On the other hand, the solution region in TFSIE method is confined only to the
area of the cavity, which is 0.24λ2. The large solution region used in the FEM-BGT-II and
FEM-PML solutions is needed to minimize the effect of evanescent waves on the absorbing
boundary condition or PML at the top boundary. The solution time needed for the meth-
ods employing PML and BGT-II were approximately 75 and 220 seconds, respectively,
while only 9 seconds were needed to solve the same example using TFSIE. Notice that,
however, that all developed algorithms for comparison purpose (i.e., FEM-PML) were not
necessarily optimized for maximum efficiency; nevertheless, this solution-time comparison
gives a perspective on the difference in execution time between the different methods. Fig-
ure 5.5 shows the total magnetic field at the aperture of the 0th cavity in the same array
for the case of TEz incident plane wave. The results in Fig. 5.5 shows strong agreement
between the results obtained by this method and those obtained using FEM-BGT-II.

To show the versatility of the proposed method in solving cavities with inhomogeneous
fillings, an infinite array of 0.9λ×0.5λ rectangular cavities filled by three layer of dielectric
materials is considered as shown in the inset of Fig. 5.6. The layers have equal width of
0.3λ. The center layer has a permittivity of εr = 4 while the other layers have a permittivity
of εr = 2.1. The periodicity of the array is P = 1λ. Figures 5.6 and 5.7 show the total
electric and magnetic fields at the aperture of the 0th cavity for an obliquely incident plane
wave with incident angle of 10◦, for the TMz and TEz cases, respectively. The results,
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Figure 5.6: Amplitude of total E-field at the aperture of an infinite array of 0.9λ × 0.5λ
rectangular cavities filled with inhomogeneous dielectric material (εr1 = 4 & εr2 = 2.1),
TMz case, θ = 10◦, calculated using TFSIE, and the finite-element method using PBC and
the second order BGT (FEM-BGT-II). The periodicity of the array is 1λ.

Figure 5.7: Amplitude of total H-field at the aperture of an infinite array of 0.9λ × 0.5λ
rectangular cavities filled with inhomogeneous dielectric material (εr1 = 4 & εr2 = 2.1),
TEz case, θ = 10◦, calculated using TFSIE, and the finite-element method using PBC and
the second order BGT (FEM-BGT-II). The periodicity of the array is 1λ.
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show strong agreement between the results obtained using TFSIE and those obtained
using FEM-BGT-II. The computational domain needed for the FEM-BGT-II solution is
approximately 11 times larger than that used by TFSIE.

Next, an infinite periodic array of bottle-shaped cavities engraved in a PEC surface is
considered. This problem was presented in [26]. The schematic of the bottle-shaped cavity
is shown in Fig. 5.8. The cavities have minimum and maximum widths of w1 = 0.4λ and
w2 = 1λ, respectively. Also the total depth of the cavities is d1 + d2 = 0.4λ+ 0.5λ = 0.9λ.
The neck and the body of the cavities are filled by dielectric materials with permittivities
of εr1 = 2.1 and εr2 = 4, respectively. The periodicity of the array is P = 1.2λ. Figure 5.9
shows the total electric field at the aperture of the 0th cavity for a TMz incident plane
wave incident angle of 45◦. The results in Fig. 5.9 show strong agreement between the
calculations using TFSIE and those calculated using FEM-BGT-II.

Figure 5.8: Schematic of an unit-cell of an infinite periodic array of bottle-shaped cavities
engraved in a conducting surface. Each cavity has total depth of d1 + d2, and minimum
and maximum widths of w1 and w2, respectively.

To validate the far-field calculation using the method proposed in this work, an infinite
array of air-filled bottle-shaped cavities with the dimensions similar to those in [26] is
considered. Figure 5.10 shows the grating efficiency of the zero-order diffraction as a
function of the depth of the cavities for TMz polarized obliquely incident plane wave. The
results in Fig. 5.10 show strong agreement between TFSIE calculation and those in [26]
that were obtained using modal methods.
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Figure 5.9: Amplitude of total E-field at the aperture of an infinite array of a bottle-shaped
cavities with inhomogeneous filling (εr1 = 2.1 & εr2 = 4), TMz case, θ = 45◦, calculated
using TFSIE, and the finite-element using PBC and the second order BGT (FEM-BGT-II).
The periodicity, widths, and depths of the cavities are P = 1.2λ, (w1 = 0.4λ & w2 = 1λ),
and (d1 = 0.4λ & d2 = 0.5λ), respectively.

Figure 5.10: Efficiency of the zero-order diffraction as a function of the depth of the cavities
in an infinite array of bottle-shaped air-filled cavities, TMz case, θ = 45◦, calculated using
TFSIE, and mode matching technique (MMT). The periodicity, widths, and depths of the
cavities are P = 0.92λ, (w1 = 0.4 P & w2 = 0.9 P ), and (d1 = 1/9 d2), respectively.
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Chapter 6

Scattering from Cavities in a
Conducting Surface with a Stratified
Dielectric Coating

In chapter 2, the two-boundary FE-BIM formulation was presented to solve the problem
of scattering from grating surfaces consisting of single or multiple cavities engraved in an
infinite PEC screen. The finite element formulation was applied inside the cavities to
derive a linear system of equations associated with field unknowns. The surface integral
equation employing the free-space Green’s function was then applied at the opening of
the cavities to truncate the computational domain and to connect the matrix subsystem
generated from each cavity. By appropriate modification of Green’s function, the surface
integral equation was limited to the aperture of the cavities resulting in a highly accurate
and efficient solution. In chapter 5, the algorithm presented in chapter 2 was extended
to infinite array of uniform cavities by replacing the free-space Green’s function with the
quasi-periodic Green’s function in the surface integral equation formulation.

Extension of the hybrid FE-BIM used in chapter 2 and 5 to solve the scattering problem
from grating surfaces covered with a dielectric coating becomes more challenging due to
the placement of part of the surface integral contour inside the dielectric coating. When
the surface integral equation is enforced on a contour inside the dielectric coating, the free-
space Green’s function (typically used in previous chapters where no coatings were present)
needs to be replaced with the grounded dielectric slab Green’s function (GDS-GF). When
this replacement takes place, one needs to be aware of the surface and leaky waves that
are now generated because of the presence of the coating.

In [52], a closed-form of GDS-GF due to a current source located inside the grounded
dielectric slab (interior problem) was formulated in the spectral-domain by directly solving

69



Helmholtz’s equation. In [53], a closed-form spectral-domain vector and scalar poten-
tial Green’s function for layered media was formulated using the piece-wise homogeneous
transmission line Green’s function. Mapping the spectral-domain Green’s function into
the spatial-domain leads to highly oscillatory Sommerfeld type integral including a finite
number of surface-wave poles and an infinite number of leaky-wave poles. Such an integral
is computationally very expensive to solve. Extensive studies on approximating the spatial
domain Green’s function for layered media have been reported in the literature. The most
efficient approximations are Discrete Complex Image Method (DCIM) [54–57], Rational
Function Fitting Method (RFFM) [58, 59], and hybrid DCIM-RFFM [60, 61] which ap-
proximate the spectral domain Green’s function in terms of simple functions leading to
closed-form expression for Green’s function in the spatial domain.

In this chapter, a solution to the problem of scattering from an infinite and finite
array of two-dimensional cavities engraved in an infinite PEC flat screen and covered
with a stratified dielectric coating using FE-BIM is presented. Using the two-boundary
formulation, the finite element formulation is applied inside the cavities to derive a linear
system of equations associated with the field unknowns. The surface integral equation
employing GDS-GF is formulated to derive the boundary constraint on the field unknowns
at the opening of the cavities. The GDS-GF, which is the solution due to a single unit
source placed inside the dielectric slab, is derived in the spectral domain by directly solving
Helmholtz’s equation as in [52]. The spatial domain GDS-GF is expressed in terms of a
Fourier transform type integral that includes a finite number of surface-wave poles and
an infinite number of leaky-wave poles. To transform the GDS-GF to a form that can
be computed and thus useful for the implementation of the surface integral equation, the
quasi-periodic Green’s function in the spatial domain due to an infinite periodic array of
the unit sources using Floquet theorem first is derived (as described in chapter 5). The
quasi-periodic Green’s function is then expressed in terms of an infinite series of Fourier
type integrals. Next, the quasi-periodic Green’s function is transformed into discrete form
using the Poisson’s sum formula; therefore, calculating the Fourier integrals in the Green’s
function series is avoided. Finally, the spatial-domain Green’s function due to a single unit
source is calculated by assuming the unit sources are placed infinitely far apart.

6.1 Scattering from an Infinite Periodic Array of Cav-

ities with a Dielectric Coating

6.1.1 Finite Element Formulation of the Problem

Figure 6.1 depicts a 2-D perfectly conducting screen containing infinite periodic identical
cavities coated with a homogeneous dielectric layer illuminated by an obliquely incident
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Figure 6.1: Schematic of the scattering problem from a conducting screen containing an
infinite periodic array of identical cavities coated with a dielectric layer. The distance
between the ΓO contour and aperture opening is exaggerated for clarity.

plane wave. The periodicity, width of the aperture of the cavities, and the thickness of the
dielectric coating are denoted by P ,w, and ts, respectively. The infinite periodic array of
cavities is divided into unit-cells. The width of each unit-cell equals to the periodicity of
the array P . The unit-cells are indexed by m where m = −∞· · · ,−1, 0, 1, · · ·∞. Three
successive unit-cells as part of an infinite array of cavities are shown in Fig. 6.1.

For a cavity in each unit-cell (i.e., the mth unit-cell), ΓB is defined to be the contour
at the opening of the cavity, and ΓO as the top contour in close vicinity of ΓB and inside
the dielectric coating such that the region between ΓB and ΓO is devoid of field nodes and
inhomogeneities (see Fig. 6.1). Also let Ωm

in denote the interior region of the mth cavity
bounded by the PEC surface of the cavity and ΓO. The finite element formulation is
applied inside Ωm

in to obtain the weak form of Helmholtz’s equation:

∇ ·
(

1

p(x, y)
∇ut

)
+ q(x, y)k0

2ut = 0 (6.1)

where ut is the total field. The time harmonic factor exp(jωt) is assumed and suppressed
throughout. The functions p(x, y) and q(x, y) are defined as µr(x, y) and εr(x, y), respec-
tively, for the TMz polarization, or εr(x, y)and µr(x, y), respectively, for the TEz polariza-
tion, and k0 is the propagation constant of the wave in free space.

Using the finite element formulation inside the solution domain Ωm
in as in section 5.1,

the finite element system matrix can be represented symbolically asMii Mib 0
Mbi Mbb Mbo

0 Mob Moo

m uiub
uo

m =

FiFb
Fo

m (6.2)
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where ui, ub and uo represent nodal field values inside the mth cavity, on ΓB, and on ΓO
of the mth cavity, respectively. The [F ]m matrix represents the impressed sources at each
node; therefore, for the problem of scattering from cavities considered in this work, [F ]m is
zero. The imposition of a specific excitation represented by the incident plane wave has to
be taken into consideration through a boundary constraint that establishes a relationship
between the incident field, the boundary nodes and the interior nodes in Eq. (6.2).

6.1.2 Surface Integral Equation

Figure 6.2 represents the schematic of the half-space Ω∞ above an infinite array of cavities
engraved in the PEC screen including the dielectric slab. The region Ω∞ is enclosed by
the surface integral contour Γ + Γ∞. In Ω∞, the field vector u(ρ) has only a z-component
and is expressed by the surface integral equation

uz(ρ) =−
∫

Ω∞

gz(ρ
′)Ge,h(ρ,ρ′)dΩ

−
∮

Γ+Γ∞

(
uz(ρ

′)
∂Ge,h(ρ,ρ′)

∂n′
−Ge,h(ρ,ρ′)

∂uz(ρ
′)

∂n′

)
dΓ.

(6.3)

In Eq. (6.3), uz(ρ) and gz(ρ) represent the electric field Ez(ρ) and the electric current
Jz(ρ), respectively, for the TMz polarization, or the magnetic field Hz(ρ) and the magnetic
current Mz(ρ), respectively, for the TEz polarization. Also, Ge,h(ρ,ρ′) is introduced as
the grounded dielectric slab Green’s function which is the solution to a current filament
located at ρ′. The superscripts “e” and “h” represent Green’s function obtained as the
solution to an electric current source for the TMz polarization, and a magnetic current
source for the TEz polarization, respectively.

In Eq. (6.3), uz(ρ) on the left-hand side, represents the total field value at any point
inside the dielectric layer. Also the first term on the right-hand side represents the excita-
tion due to the current source gz(ρ

′). In the scattering problem, this term is interpreted
as the incident plane-wave and its multiple reflections by the PEC screen and the air-
dielectric interface in absence of the cavities. Since both uz(ρ

′) and Ge,h(ρ,ρ′) satisfy the
Sommerfeld radiation condition at infinity (in the next section it will be shown that the
fields satisfy Sommerfeld radiation condition on the part of the Γ∞ boundary located inside
the dielectric layer as well as free-space), the integration along Γ∞ in the second term of
right-hand side of Eq. (6.3) vanishes (see Eq. (A.7)).

For the TMz polarization where the electric field vector is parallel to the axis of the
cavities, Ge(ρ,ρ′) satisfies Dirichlet boundary condition Ge(ρ,ρ′)|y′=0 = 0 (i.e., Ge(ρ,ρ′) =
0 on Γ). Additionally, uz(ρ

′) is zero on the PEC segments of the Γ. Consequently, Eq. (6.3)
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Figure 6.2: Schematic of the surface integral contour in the half-space above the cavities.

is simplified as

uz(ρ) = uexcitz (ρ)−
∞∑

m=−∞

∫
Γm
B

uz(ρ
′)
∂Ge(ρ,ρ′)

∂n′
dΓ (6.4)

where integration is performed at the aperture of all cavities ΓmB . For the TEz polarization
where the magnetic field vector is parallel to the axis of the cavities, Gh(ρ,ρ′) satisfies
Neumann boundary condition ∂Gh(ρ,ρ′)/∂n′|y′=0 = 0 (i.e., ∂Gh(ρ,ρ′)/∂y′ = 0 on Γ). In
addition, ∂uz(ρ

′)/∂n′ is zero on the PEC segments of the Γ. Consequently, Eq. (6.3) is
simplified as

uz(ρ) = uexcitz (ρ) +
∞∑

m=−∞

∫
Γm
B

Gh(ρ,ρ′)
∂uz(ρ

′)

∂n′
dΓ. (6.5)

The second term on the right-hand side of Eqs. (6.4), (6.5) represents the scattered field
due to the apertures of the cavities.

Physically, the cavities are indistinguishable in structure, therefore a similar distribution
of the field magnitude at the apertures of all cavities is expected. Using the Floquet
theorem, the total field values at the aperture of the cavities uz(ρ

′) are related as

uz(ρ
′ +mPx̂) = uz(ρ

′)e−jmkx0P (6.6)

where kx0 = k0 sin θ. Consequently, the integration over all apertures in Eq. (6.4), and
Eq. (6.5) can be limited to aperture of only one cavity (see sections 5.2.1 and 5.2.2)

uz(ρ) = uexcitz (ρ)−
∫

ΓB

uz(ρ
′)
∂Ge

Q(ρ,ρ′)

∂n′
dΓ (6.7)

for the TMz polarization, and

uz(ρ) = uexcitz (ρ) +

∫
ΓB

Gh
Q(ρ,ρ′)

∂uz(ρ
′)

∂n′
dΓ (6.8)
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Figure 6.3: Schematic of the grounded dielectric slab and the equivalent transmission line
model.

for the TEz polarization, respectively. In Eq. (6.7)-(6.8), Ge,h
Q (ρ,ρ′) is defined as quasi-

periodic GDS-GF and expressed as

Ge,h
Q (ρ,ρ′) =

∞∑
m=−∞

e−jmkx0PGe,h(ρ,ρ′ +mPx̂). (6.9)

In the next section an algorithm will be presented to calculate the quasi-periodic GDS-GF
in spatial domain.

To calculate the uexcitz in Eq. (6.7), and Eq. (6.8), the grounded dielectric slab is mod-
eled as a shorted transmission line with characteristic impedance of Z1 cascaded with an
infinitely long transmission line with characteristic impedance of Z0 (see Fig. 6.3). There-
fore, the field at any point inside the dielectric slab in absence of the cavities can be written
as

uexcitz (ρ) = Einc
z (x, ts)e

−jky0 ts
(

2Zin
Zin + Z0

)
sin (ky1y)

sin (ky1ts)
(6.10)

for the TMz polarization, and

uexcitz (ρ) = H inc
z (x, ts)e

−jky0 ts
(

cos θ

cos θt
2Z0

Zin + Z0

)
cos (ky1y)

cos (ky1ts)
(6.11)

for the TEz polarization, respectively. In Eqs. (6.10)-(6.11), Zin is defined as the input
impedance of the transmission line measured at the air-dielectric interface y = ts.

By discretizing the aperture of the cavity ΓB, Eqs. (6.7)-(6.8) are represented in matrix
form as [

uo
]

=
[
T
]

+
[
S
] [
ub
]

(6.12)
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for the TMz polarization, and[
uo
]

=
{[
I
]

+
[
S
]}−1 [

T
]

+
{[
I
]

+
[
S
]}−1 [

S
] [
ub
]

(6.13)

for the TEz polarization, respectively, where [I] in Eq. (6.13) represents unity matrix.
Combining Eq. (6.12) or Eq. (6.13) with Eq. (6.2) in matrix form results in the modified
system matrix as [

Mii Mib

Mbi Mbb +MboS

] [
ui
ub

]
=

[
Fi

Fb −MboT

]
(6.14)

for the TMz polarization, or[
Mii Mib

Mbi Mbb +Mbo(I + S)−1S

] [
ui
ub

]
=

[
Fi

Fb −Mbo(I + S)−1T

]
. (6.15)

for the TEz polarization, respectively. The solution of the modified system matrices in
Eqs. (6.14)-(6.15) can be obtained using commonly used methods for solving linear systems.

6.2 Green’s Function for the Grounded Dielectric Slab

(Interior Problem)

Figure 6.4(a) depicts the schematic of a current source located inside a 2-D infinite grounded
dielectric slab. The permittivity and thickness of the dielectric slab are denoted by ε1, and
ts respectively. By directly solving Helmholtz’s equation as in [52], the GDS-GF in spatial
domain is expressed in terms of Fourier transform integral as

Ge,h(x, y;x′, y′) =
1

2π

∫ ∞
−∞

e−jkx|x−x
′|G̃e,h(y, y′, kx)dkx (6.16)

where Ge,h(x, y;x′, y′) and G̃e,h(y, y′, kx) are GDS-GF in spatial, and spectral domain,
respectively. In Eq. (6.16), G̃e(y, y′, kx) is defined as

G̃e(y, y′, kx) =


jky0 sin(ky1 (ts−y))+ky1 cos(ky1 (ts−y))

ky1(jky0 sin(ky1 ts)+ky1 cos(ky1 ts))
sin(ky1y

′), y′ ≤ y < ts;

e−jky0 (y−ts)

(jky0 sin(ky1 ts)+ky1 cos(ky1 ts))
sin(ky1y

′), y′ < ts ≤ y

(6.17)

for the TMz polarization, and G̃h(y, y′, kx) is defined as

G̃h(y, y′, kx) =


jky0 sin(ky1 (ts−y))+ky1 cos(ky1 (ts−y))

ky1(jky0 cos(ky1 ts)−ky1 sin(ky1 ts))
cos(ky1y

′), y′ ≤ y < ts;

e−jky0 (y−ts)

(jky0 cos(ky1 ts)−ky1 sin(ky1 ts))
cos(ky1y

′), y′ < ts ≤ y

(6.18)
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Figure 6.4: Schematic of (a) a single unit source (b) an infinite periodic array of unit
sources with an uniform progressive phase shift, located inside a grounded dielectric slab.

for the TEz polarization, respectively. In Eqs. (6.16)-(6.18), kx, ky0 = (k2
0 − k2

x)
1/2 and

ky1 = (k2
1 − k2

x)
1/2 represent the Cartesian components of the propagation vector in the

air and dielectric. Note that the x-component of the propagation vector kx is continuous
across the air-dielectric interface. The position of the source point and field point are
denoted by (x′, y′), and (x, y), respectively.

In Eq. (6.16), Ge(x, y;x′, y′) and Gh(x, y;x′, y′) satisfy Dirichlet boundary condition
(i.e., Ge

|y′=0 = 0), and Neumann boundary condition (i.e., ∂Gh/∂y′|y′=0 = 0) on the PEC

screen, respectively. In addition, Ge(x, y;x′, y′) and Gh(x, y;x′, y′) satisfy the Sommerfeld
radiation condition at infinity as follows.

Inside the dielectric slab (y < ts), waves are superposition of the plane waves having
a continuous spectrum of wave-numbers kx traveling along the x-axis while G̃e,h(y, y′, kx)
represents an infinite number of standing-waves along the y-axis. The Sommerfeld radiation
condition for each mode is then written as

lim
|x|→∞

(
1

2π

∫ ∞
−∞

(
∂

∂x
± jkx)e−jkx|x−x

′|G̃e,h(y, y′, kx)dkx

)
= 0. (6.19)

Outside of the dielectric slab (ts < y) waves are superposition of the plane waves having a
continuous spectrum of wave-numbers kx but a total wave-number of k0 traveling radially,
while G̃e,h(y, y′, kx) represents an infinite number of propagating-waves along the y-axis.
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The Sommerfeld radiation condition for each mode is then written as

lim
ρ→∞

(
1

2π

∫ ∞
−∞

(
∂

∂ρ
+ jk0)e−jkx|x−x

′|G̃e,h(y, y′, kx)dkx

)
= 0 (6.20)

where ρ represents the position of the field point in cylindrical coordinates.

6.2.1 Quasi-Periodic GDS-GF to an Array of Periodic Unit Sources

To derive the quasi-periodic grounded dielectric slab Green’s function used in Eqs. (6.7)-
(6.8) in closed form, let assume an infinite periodic array of current sources located inside
the grounded dielectric slab. Figure 6.4(b) shows the schematic of three successive current
sources as part of infinite array of current sources located inside a 2-D infinite grounded
dielectric slab. The periodicity of the current sources is denoted by P . In Fig. 6.4(b), the
current sources are indexed by m. Also, assume a phase shift of exp (−jkx0P ) between
successive current sources in the periodic array. By assigning a phase of zero to the current
source located at origin (i.e., m = 0), the phase of mth current source is then written as
exp (−jmkx0P ). The quasi-periodic GDS-GF due to an infinite periodic array of current
sources is defined (see Eqs. (5.15) and (5.26))

Ge,h
Q (x, y;x′, y′) =

∞∑
m=−∞

e−jmkx0P
(

1

2π

∫ ∞
−∞

e−jkx|x−(x′+mP )|G̃e,h(y, y′, kx)dkx

)
. (6.21)

Using Poisson’s sum formula and the relationship derived in [62], the quasi-periodic Green’s
function in Eq. (6.21) is simplified to the discrete form as

Ge,h
Q (x, y;x′, y′) =

1

P

∞∑
m=−∞

e−jkxm |x−x
′|G̃e,h(y, y′, kxm) (6.22)

where kxm has discrete values of

kxm = kx0 +
2mπ

P
. (6.23)

It is necessary to truncate the series in Eq. (6.22) to implement the surface integral
equation numerically. To study the effect of the series truncation on the accuracy of the
method, the following partial sums are defined for the TMz and TEz cases, respectively as

SeN =
1

P

N∑
m=−N

e−jkxm |x−x
′| ∂

∂y′
G̃e(y, y′, kxm), (6.24)
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and

ShN =
1

P

N∑
m=−N

e−jkxm |x−x
′|G̃h(y, y′, kxm). (6.25)

In Eq. (6.24), for the TMz polarization, ∂G̃e/∂y′ is considered rather than G̃e since the
former appears in the surface integral formulation. The effect of truncation on the con-
vergence of the partial sum of the series is shown in following versus different factors such
as lateral distance between the source point and the field point (|x− x′|), thickness of the
dielectric slab (ts), and the loss tangent of the dielectric coating (ε

′′
/ε
′
).

Figure 6.5 shows the normalized magnitude of the SeN for the TMz case and ShN for
the TEz case versus N for three various separation values between the source point and
the field point (|x− x′|). It is observed that the larger lateral distance between the source
point and the field point results in faster convergence of the series, and ShN converges faster
than SeN . In Fig. 6.6, normalized magnitude of SeN and ShN versus N for three various slab
thicknesses (ts) are shown. It is observed that the series converges faster for the larger
values of ts. Physically, by increasing the slab’s thickness, the distance between source
and its images increases and therefore, the level of contribution to the field distribution
around the source is limited to the source itself and few image sources. Mathematically,
the series terms with large harmonic numbers decay fast. The normalized magnitude of the
SeN and ShN versus N for various dielectric loss tangent values (ε

′′
/ε
′
) is shown in Fig. 6.7.

Figure 6.5: Normalized magnitude of the partial sum of the series (a) for the TMz case
(Eq. (6.24)), and (b) for the TEz case (Eq. (6.25)) versus lateral distance of the source
point and the field point (|x − x′|). ts = 0.25λ, ε

′′
/ε
′

= 0.5, kx0 = k0/2, y = 0.01λ, and
y′ = 0.
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Figure 6.6: Normalized magnitude of the partial sum of the series (a) for the TMz case
(Eq. (6.24)), and (b) for the TEz case (Eq. (6.25)) versus thickness of the dielectric coating
(ts). |x− x′| = 0.6λ, ε

′′
/ε
′
= 0.5, kx0 = k0/2, y = 0.01λ, and y′ = 0.

It is observed that by increasing the loss of the dielectric coating, the series in SeN and ShN
converge faster.

Figure 6.7: Normalized magnitude of the partial sum of the series (a) for the TMz case
(Eq. (6.24)), and (b) for the TEz case (Eq. (6.25)) versus loss tangent of the dielectric
coating (ε

′′
/ε
′
). |x− x′| = 0.6λ, ts = 0.25λ, kx0 = k0/2, y = 0.01λ, and y′ = 0.

The convergence studies conducted above show that the accuracy of the algorithm
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presented here for calculating the quasi-periodic GDS-GF is guaranteed by choosing proper
N . It is important to emphasize that the convergence behavior of the quasi-periodic GDS-
GF is only dependent on the geometrical and material properties of the coating. Notice
that using some mathematical techniques such as extraction of images may accelerate the
convergence of the series.

6.2.2 GDS-GF due to a Single Unit Source

The grounded dielectric slab Green’s function due to a single unit source is defined using
the concept of quasi-periodic GDS-GF. When infinite current sources exist, many sources
contribute through guided waves in the dielectric layer to the field distribution in the close
proximity of a single current source. The level of contribution by other sources strongly
depends on the distance between sources. If the current sources are placed infinitely far
apart, the field contribution within the close proximity of a single current source will be due
to that source itself. In the formulation presented here, the distance between the current
sources appears as the periodicity P (see Fig. 6.4 and Eqs. (6.22)-(6.23)). Therefore, the
GDS-GF as a solution to a single current source Ge,h

S (x, y;x′, y′) can be expressed as

Ge,h
S (x, y;x′, y′) = lim

P→∞

(
1

P

∞∑
m=−∞

e−jkxm |x−x
′|G̃e,h(y, y′, kxm)

)
. (6.26)

In Eq. (6.26), the subscript “S” is used to show the difference between the discrete form
of Ge,h

S and its original form Ge,h in Eq. (6.16).

It is important to note that Eq. (6.26) is valid for thin substrates or thick lossy sub-
strates. From a mathematical point of view, in the case of lossless dielectric slab, the
surface-waves excited in the dielectric slab have poles on the real axis. By increasing the
period P , the sample points in the summation of Eq. (6.26) corresponding to different
values of the summation index m will move closer to each other and one of them is always
very close to the surface-wave pole. Therefore, the series in Eq. (6.26) will not converge.
However, for thin substrates where the residue of the pole is small enough, the series will
converge.

Figures 6.8 and 6.9 show the magnitude of SeN for the TMz case and ShN for the TEz

case versus N for various periodicity values of an infinite array of current sources inside
the lossless, and lossy thin dielectric coating, respectively. To isolate the current sources
completely, one may assign very large value to the periodicity of the array in Eq. (6.26).
The major drawback of assigning a large value to the periodicity of the array is slow
convergence of SeN and ShN in Eq. (6.24), and Eq. (6.25), respectively. The convergence
study suggests that extending the periodicity to several wavelengths (i.e.; P ≈ 10 − 20λ)
guarantees isolation of the current sources in addition to the fast convergence of the series.
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Figure 6.8: Magnitude of the partial sum of the series (a) for the TMz case (Eq. (6.24)),
and (b) for the TEz case (Eq. (6.25)) versus periodicity of an infinite array (P ) inside a
thin lossless dielectric coating. |x− x′| = 0, ts = 0.25λ, kx = k0/2, y = 0.01λ, and y′ = 0.

Figure 6.9: Magnitude of the partial sum of the series (a) for the TMz case (Eq. (6.24)),
and (b) for the TEz case (Eq. (6.25)) versus periodicity of an infinite array (P ) inside a thin
lossy dielectric coating with ε

′′
/ε
′

= 0.5. |x − x′| = 0, ts = 0.25λ, kx = k0/2, y = 0.01λ,
and y′ = 0.
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Figure 6.10: Magnitude of the partial sum of the series (a) for the TMz case (Eq. (6.24)),
and (b) for the TEz case (Eq. (6.25)) versus periodicity of an infinite array (P ) inside a
thick lossless dielectric coating. |x− x′| = 0, ts = 1λ, kx = k0/2, y = 0.01λ, and y′ = 0.

Figure 6.11: Magnitude of the partial sum of the series (a) for the TMz case (Eq. (6.24)),
and (b) for the TEz case (Eq. (6.25)) versus periodicity of an infinite array (P ) inside a
thick lossy dielectric coating with ε

′′
/ε
′
= 0.5. |x− x′| = 0, ts = 1λ, kx = k0/2, y = 0.01λ,

and y′ = 0.
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Figures 6.10 shows the magnitude of SeN for the TMz case and ShN for the TEz case
versus N for various periodicity values of an infinite array of current sources inside the
lossless thick dielectric coating. As it is mentioned above, the series for the TEz case does
not converge even for a large number of terms. By adding a loss to the dielectric, the
surface waves excited in the structure decay fast and therefore the series in Eq. (6.26)
converges. Figure 6.11 shows the magnitude of the SeN for the TMz case and ShN for the
TEz case versus N for various periodicity values of an infinite array of current sources
inside the lossy thick dielectric coating.

6.3 Scattering from Finite Array of Non-Uniform Cav-

ities with a Dielectric Coating

Figure 6.12 depicts the schematic of a 2-D perfectly conducting screen containing two cavi-
ties with different shapes and fillings covered with homogeneous dielectric layer illuminated
by an obliquely incident plane wave. Similar to the method in section 2.4, the solution
domains Ω1 and Ω2 are defined for the cavities. Using the finite element formulation inside
the solution regions Ω1 and Ω2 to obtain the weak form of Helmholtz’s equation results in
a finite element system matrix for each cavity as

[M1][u1] = [F1]
[M2][u2] = [F2]

(6.27)

PEC

ΓO
ΓB

ts

Ω1 Ω2

u

X
Y

e 0

e 1

Figure 6.12: Schematic of the scattering problem from a conducting screen containing two
non-uniform cavities coated with a dielectric layer.
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Figure 6.13: Schematic of the surface integral contour in the half-space above two cavities
with different shapes and fillings.

where each system of equations can be represented symbolically as Eq. (6.2). Assembling
the two systems of equations using a global numbering of nodes results[

[M1] 0
0 [M2]

] [
[u1]
[u2]

]
=

[
[F1]
[F2]

]
. (6.28)

Then, the surface integral equation (Eq. (6.3)) employing GDS-GF, Ge,h
S (ρ,ρ′), is applied

at the aperture of two cavities to truncate the solution domain. Figure 6.13 represents the
surface integral contour in half-space above the ground plane. Imposing proper boundary
condition on Ge,h

S (ρ,ρ′) at infinity and on the ground plane results in

uz(ρ) = uexcitz (ρ)−
∫

ΓB1
+ΓB2

uz(ρ
′)
∂Ge

S(ρ,ρ′)

∂n′
dΓ (6.29)

for the TMz polarization, and

uz(ρ) = uexcitz (ρ) +

∫
ΓB1

+ΓB2

Gh
S(ρ,ρ′)

∂uz(ρ
′)

∂n′
dΓ (6.30)

for the TEz polarization, respectively. In Eqs (6.29)-(6.30), Ge,h
S (ρ,ρ′) is the grounded

dielectric slab Green’s function which is a solution to a single current source defined by
Eq. (6.26). In Eq. (6.29) and Eq. (6.30), the integration is performed over the apertures of
both cavities and this results in the addition of off-diagonal sub-matrices to the matrix in
Eq. (6.28). The resultant system matrix becomes[

[M ′
1] [C12]

[C21] [M ′
2]

] [
[u′1]
[u′2]

]
=

[
[F ′1]
[F ′2]

]
(6.31)
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where [C12] and [C21] are matrices representing the coupling between the two cavities (see
section 2.4). The modified system matrix in Eq. (6.31) represents the finite element system
matrix encountering the coupling between two cavities through the grounded dielectric
slab Green’s function. Generalizing the algorithm to N non-uniform cavities results in the
following matrix system:

[M ′
(1)] [C(12)] . . . [C(1N)]

[C(21)] [M ′
(2)] . . . [C(2N)]

...
. . .

...
[C(N1)] [C(N2)] . . . [M ′

(N)]




[u′(1)]

[u′(2)]
...

[u′(N)]

 =


[F ′(1)]

[F ′(2)]
...

[F ′(N)]

 . (6.32)

Notice that the finite element system matrix in Eq. (6.31) or Eq. (6.32) can be represented
symbolically as Eq. (6.14) for the TMz polarization or Eq. (6.15) for the TEz polarization.

6.4 Numerical Results

Once the system of equations, Eq. (6.14) for the TMz polarization or Eq. (6.15) for the
TEz polarization, is derived, its solution (which gives the field values at the apertures of
the cavities) can be obtained using commonly used methods for solving linear systems. In
this section, examples of an infinite array of identical cavities with different dimensions,
periodicity, and fillings, are provided to validate the algorithm developed in section 6.1.
Next, examples of finite cavities with different geometries and fillings are provided as
formulated in section 6.3.

To validate the method presented here, comparison is made to the results obtained
by commercial two-dimensional finite-element simulator COMSOL [43]. Throughout this
section, these solutions are referred as COMSOL. To obtain the results using COMSOL
for the case of infinite array of cavities, the periodic boundary condition is applied on the
lateral boundaries of the unit-cell. Also, the absorbing boundary condition is applied on the
top truncation boundary. For the case of finite array of cavities, the absorbing boundary
condition is applied on the lateral truncation boundaries as well as the top boundary.
Without loss of generality, the magnitude of the incident electric field is assumed to be
unity throughout this section. To implement the algorithm developed in this chapter, the
nodal based finite element formulation is used. The solution domain is discretized using
first-order triangle elements with a mesh density of approximately 20 nodes per λ for the
TMz case. Since there is a discontinuity in the electric field at the edges of the cavities
in the TEz case, a mesh density of 100 nodes per λ is used. Throughout this section, the
solution obtained using the method presented in this paper is referred to as “Total Field
Surface Integral Equation-Spatial Domain Green’s Function” (TFSIE-SDGF).
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6.4.1 Infinite Array of Identical Cavities

In the first example, an infinite periodic array of bottle-shaped cavities engraved in a PEC
surface covered with a dielectric coating is considered. The schematic of the bottle-shaped
cavity is shown in the inset of Fig. 6.14. The cavities have minimum and maximum widths
of w1 = 0.4λ and w2 = 1λ, respectively. The total depth of the cavities is d1 + d2 =
0.4λ + 0.5λ = 0.9λ. The cavities are coated with a dielectric layer having a thickness of
ts = 0.25λ, and a permittivity of εr1 = 1.4(1 − 0.5j). Also the neck and the body of
the cavities are filled by dielectric materials with permittivities of εr2 = 2.1 and εr3 = 4,
respectively. The periodicity of the array is P = 1.2λ. Figure 6.14 shows the total electric
field at the aperture of the m = 0 cavity for a TMz incident plane wave with an incident
angle of 45◦. The results in Fig. 6.14 show strong agreement between the calculations using
the method presented here and those calculated using COMSOL.

Figure 6.14: Amplitude of the total E-field at the aperture of an infinite array of bottle-
shaped cavities with dielectric coating and inhomogeneous filling, TMz case, θ = 45◦.
εr1 = 1.4(1−0.5j), εr2 = 2.1, εr3 = 4, w1 = 0.4λ, w2 = 1λ, d1 = 0.4λ, d2 = 0.5λ, P = 1.2λ,
and ts = 0.25λ.

As a second example, an infinite array of 0.6λ× 0.4λ rectangular cavities covered with
a dielectric coating is considered. The thickness and the permittivity of the dielectric layer
are ts = 0.25λ, and εr1 = 1.4(1 − 0.5j), respectively. Also, the cavities are filled by two
layers of dielectric materials with permittivities of εr2 = 4, and εr3 = 2.1, as shown in the
inset of Fig. 6.15. The layers have equal width of 0.3λ. The periodicity of the array is
P = 1λ. Figure 6.15 shows the total magnetic field at the aperture of the m = 0 cavity
for an obliquely incident plane wave with an incident angle of 30◦, for the TEz case. The
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Figure 6.15: Amplitude of the total H-field at the aperture of an infinite array of rectangular
cavities with dielectric coating and inhomogeneous filling, TEz case, θ = 30◦. w = 0.6λ,
d = 0.4λ, εr1 = 1.4(1− 0.5j), εr2 = 4, εr3 = 2.1, P = 1λ, and ts = 0.25λ.

results show close agreement between the results obtained using our method and those
obtained using COMSOL.

To calculate the results using TFSIE-SDGF, the SeN in Eq. (6.24) for the first example,
and ShN in Eq. (6.25) for the second example are truncated at N = 100. Also, it is impor-
tant to note that while using COMSOL, it is needed to minimize the effect of evanescent
waves on the absorbing boundary condition at the top boundary. Therefore, to achieve
accurate results we located the top boundary 1λ away from the air-dielectric interface,
which results in an increase of the solution region. Notice that the solution region in the
method presented here is limited to the area of a cavity.

6.4.2 Finite Array of Non-Uniform Cavities

To validate the algorithm presented in section 6.2.2, two rectangular cavities with different
dimensions and fillings are considered (see inset of Fig. 6.16). The cavities are coated with
a dielectric layer having a thickness of ts = 0.25λ, and a permittivity of εr1 = 1.4(1−0.5j).
The cavities have dimensions of (w1 × d1 = 0.6λ × 0.4λ), and (w2 × d2 = 0.4λ × 0.8λ),
respectively and are separated by the distance of D = 0.05λ. Also, the cavities are filled
with lossy dielectric materials of εr2 = 4(1 − 0.5j), and εr3 = 2.1(1 − 0.5j). Figures 6.16
and 6.17 show the total electric and magnetic field at the apertures of the cavities for
an obliquely incident plane wave with an incident angle of 15◦ for the TMz case and the
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Figure 6.16: Amplitude of the total E-field at the aperture of two rectangular cavities with
different dimensions and fillings, covered with a dielectric coating, TMz case, θ = 15◦.
w1× d1 = 0.6λ× 0.4λ, w2× d2 = 0.4λ× 0.8λ, separated by D = 0.05λ, εr1 = 1.4(1− 0.5j),
εr2 = 4(1− 0.5j), εr3 = 2.1(1− 0.5j), and ts = 0.25λ.

Figure 6.17: Amplitude of the total H-field at the aperture of two rectangular cavities
with different dimensions and fillings, covered with a dielectric coating, TEz case, θ = 15◦.
w1× d1 = 0.6λ× 0.4λ, w2× d2 = 0.4λ× 0.8λ, separated by D = 0.05λ, εr1 = 1.4(1− 0.5j),
εr2 = 4(1− 0.5j), εr3 = 2.1(1− 0.5j), and ts = 0.25λ.
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TEz case, respectively. Strong agreement between the results calculated using the method
presented here and those obtained using COMSOL is observed.

To calculate the results using TFSIE-SDGF, P is chosen as 13λ in Eq. (6.26). In
addition, SeN in Eq. (6.24) for the TMz case, and ShN in Eq. (6.25) for the TEz case are
truncated at N = 3500, respectively. To obtain results using COMSOL the infinite PEC
wall with dielectric coating is truncated with a rectangular absorbing boundary. Therefore,
the necessary computational domain to achieve the converged results is 15.93λ2 for the TMz

case, and 30.93λ2 for the TEz case, respectively. On the other hand, the solution region in
the method presented here is confined only to the area of the cavities, which is 0.56λ2 for
both polarizations.

Figure 6.18 shows the calculated normalized far-field (with normalization factor of
1/(
√

2πρ)), TMz case, for the two non-uniform cavities considered in the previous example
(see inset of Fig. 6.16). Using the equivalence principle and introducing an equivalent
electric current at the aperture of the cavities and the ground plane, the electric field in
the far region can be represented as

E(ρ) =
1

jωε

(
∇×∇×

(∫
Γ

J(ρ′)G(ρ,ρ′)dΓ′
)
− J(ρ)

)
(6.33)

where Γ is a contour on the infinite ground plane (see Fig.6.13). In Eq. (6.33), J(ρ′) =
n̂ × H(ρ′) and G(ρ,ρ′) are the induced electric current on the ground plane and the
Green’s function obtained as the solution to a source located inside the half-space dielectric,
respectively. The Green’s function is given as

G(ρ,ρ′) = lim
P→∞

(
1

P

∞∑
m=−∞

e−jkxm |x−x
′| e−jky0ye−jky1y

′

j(ky1 + ky0)e
(−j(ky1−ky0 )ts)

)
, y′ < ts < y. (6.34)

For the TMz case where the electric field has only a z-component, the surface current J(ρ′)
can be written as

J(ρ′) = ẑ
1

jωµ

∂Ez(ρ
′)

∂n′
. (6.35)

Therefore, Eq. (6.33) can be written as

E(ρ) = ẑ

∫
Γ

∂Ez(ρ
′)

∂n′
G(ρ,ρ′)dΓ′. (6.36)

The surface current induced on the infinite ground plane is due to the incident field and the
scattered field due to the aperture of the cavities. The effect of the incident field appears
as a specular reflection of the ground plane in the far region. In calculating the integral
in Eq. (6.36), the infinite ground plane is approximated by finite ground plane truncated
at x = ±5λ0. Close agreement is observed between the far-field calculations in Fig. 6.18
using TFSIE-SDGF and those obtained using COMSOL.
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Figure 6.18: Amplitude of total E-field in the far region for two rectangular cavities with
different dimensions and fillings covered with a dielectric coating, TMz case, θ = 15◦.
w1× d1 = 0.6λ× 0.4λ, w2× d2 = 0.4λ× 0.8λ, separated by D = 0.05λ, εr1 = 1.4(1− 0.5j),
εr2 = 4(1− 0.5j), εr3 = 2.1(1− 0.5j), and ts = 0.25λ.
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Chapter 7

Scattering from Holes in a
Conducting Surface with a Stratified
Dielectric Coating

In this chapter, the method introduced in chapter 6 is extended to solve the problem
of scattering from multiple holes engraved in an infinite PEC flat screen covered with a
stratified dielectric coating. Using the two-boundary formulation, the unbounded region
in the computational domain is divided into bounded frames containing each hole plus
a thin layer above the apertures of the hole as depicted in Fig. 7.1. The finite-element
formulation is used to obtain the solution of Helmholtz’s equation inside the local frames.
The surface integral equation employing a grounded dielectric slab Green’s function (GDS-
GF) is applied at each opening of the holes as a global boundary condition to determine
the behavior of nodes on the local frame boundary in terms of the interior nodes.

7.1 Finite-Element Formulation of the Problem

Figure 7.1 depicts a 2-D hole having an arbitrary shape in a perfectly conductor surface
covered with a homogeneous dielectric layer on both sides and illuminated by an obliquely
incident plane wave. In Fig. 7.1, uinc, us, and utrans denote the incident field, scattered field
by the aperture of the hole, and the transmitted field through the hole, respectively. Next,
the problem is divided into three regions. In Fig. 7.1, region I and II denote the upper and
lower half-spaces of the PEC slab including the dielectric layers, and region III represents
the region inside the hole, respectively. In the region I, the thickness and permittivity
of the dielectric layer are shown as tIs and ε1. Also, in the region II, the thickness and
permittivity of the dielectric layer are shown as tIIs and ε2. The thickness of the PEC slab
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Figure 7.1: Schematic of the scattering problem from a conducting screen containing an
arbitrary shape hole coated with dielectric layers.

and permittivity of the hole’s filling in the region III are denoted as t and ε3, respectively.
Let ΓIB and ΓIIB represent the contour at the interface of the hole openings with region I
and II, respectively. Also let ΓIO and ΓIIO as the exterior contour inside the dielectric layers
and in close vicinity of ΓIB and ΓIIB , respectively. Let Ωin denotes the interior region of the
hole, region III, including the layer between ΓB and ΓO in the region I and II. The finite
element formulation is applied inside Ωin to obtain the weak form of Helmholtz’s equation,

∇ ·
(

1

p(x, y)
∇ut

)
+ q(x, y)k0

2ut = 0 (7.1)

where ut is the total field. The time harmonic factor exp(jωt) is assumed and suppressed
throughout. The functions p(x, y) and q(x, y) are defined as µr(x, y) and εr(x, y), respec-
tively, for the TMz polarization, or εr(x, y)and µr(x, y), respectively, for the TEz polar-
ization, and k0 is the wave-number of the wave in free space. Using the finite element
formulation inside the solution domain Ωin as in section 4.1, the finite element system
matrix can be represented symbolically as

Mii MibI MibII 0 0
MbI i MbIbI 0 MbIoI 0
MbII i 0 MbIIbII 0 MbIIoII

0 MoIbI 0 MoIoI 0
0 0 MoIIbII 0 MoIIoII



ui
ubI
ubII
uoI
uoII

 =


Fi
FbI
FbII
FoI
FoII

 (7.2)

where ui, ubI , ubII , uoI , and uoII represent nodal field values inside the hole, on ΓIB, ΓIIB ,
ΓIO and on ΓIIO , respectively. The [F ] matrix represents impressed sources at each node;
therefore, [F ] is zero in this problem.
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The linear system of equations in Eq. (7.2) represents the relationship between the
nodal field values without any external constraint. In the next section, the surface integral
equation will be developed as a boundary constraint to modify the system matrix equation
of Eq. (7.2).

7.2 Surface Integral Equation

In this section, the surface integral equation using the grounded dielectric slab Green’s
function will be derived and used to express the nodal field values on ΓO in terms of
the nodal field values on ΓB in region I and II, respectively. Figure 7.2 represents the
schematic of the surface integral contour in the upper half-space ΩI

∞ and the lower half-
space ΩII

∞ including the dielectric slabs. The upper half-space ΩI
∞ and the lower half-space

ΩII
∞ are enclosed with the surface integral contour ΓI + ΓI∞, and ΓII + ΓII∞, respectively. In

ΩI
∞ and ΩII

∞,the field vector u(ρ) has only a z-component.

7.2.1 Upper Half-Space (Region I)

In the region I, the field vector u(ρ) is expressed by the surface integral equation as

uz(ρ) =−
∫

ΩI
∞

gz(ρ
′)Ge,h

I (ρ,ρ′)dΩ

−
∮

ΓI+ΓI
∞

(
uz(ρ

′)
∂Ge,h

I (ρ,ρ′)

∂n′
−Ge,h

I (ρ,ρ′)
∂uz(ρ

′)

∂n′

)
dΓ.

(7.3)

In Eq. (7.3), uz(ρ) and gz(ρ) represent the electric field Ez(ρ) and the electric current
Jz(ρ), respectively, for the TMz polarization, or the magnetic field Hz(ρ) and the magnetic
current Mz(ρ), respectively, for the TEz polarization. Also, Ge,h

I (ρ,ρ′) is introduced as
the grounded dielectric slab Green’s function which is the solution to a current filament
located at ρ′ inside the dielectric layer in upper half-space. In Eq. (7.3), Ge,h

I (ρ,ρ′) is
defined as (see section 6.2)

Ge,h
I (ρ,ρ′) = lim

P→∞

(
1

P

∞∑
m=−∞

e−jkxm |x−x
′|G̃e,h

I (y, y′, kxm)

)
(7.4)

where G̃e
I(y, y

′, kxm) is defined as

G̃e
I(y, y

′, kxm) =


jky0 sin(ky1 (tIs−y))+ky1 cos(ky1 (tIs−y))

ky1(jky0 sin(ky1 t
I
s)+ky1 cos(ky1 t

I
s))

sin(ky1y
′), y′ ≤ y < tIs;

e−jky0 (y−tIs)

(jky0 sin(ky1 t
I
s)+ky1 cos(ky1 t

I
s))

sin(ky1y
′), y′ < tIs ≤ y

(7.5)

93



Figure 7.2: Schematic of the surface integral contour in the upper half-space and the lower
half-space.

for the TMz polarization, and

G̃h
I (y, y

′, kxm) =


jky0 sin(ky1 (tIs−y))+ky1 cos(ky1 (tIs−y))

ky1(jky0 cos(ky1 t
I
s)−ky1 sin(ky1 t

I
s))

cos(ky1y
′), y′ ≤ y < tIs;

e−jky0 (y−tIs)

(jky0 cos(ky1 t
I
s)−ky1 sin(ky1 t

I
s))

cos(ky1y
′), y′ < tIs ≤ y

(7.6)

for the TEz polarization, respectively. In Eqs. (7.4)-(7.6), (x, y) and (x′, y′) are Cartesian
components of the ρ, and ρ′, respectively. Also, ky0 = (k2

0−k2
xm)1/2 and ky1 = (k2

1−k2
xm)1/2

represent the Cartesian components of the propagation vector in the air and dielectric where
kxm is defined by

kxm = kx0 +
2mπ

P
. (7.7)

Note that the x-component of the propagation vector kxm is continuous across the air-
dielectric interface. In Eq. (7.3), uz(ρ) on the left-hand side represents the total field
value at any point inside the dielectric layer. Also, the first term on the right-hand side
represents the excitation due to the current source gz(ρ

′) in the upper half-space. In the
scattering problem, this term is interpreted as the incident plane-wave and its multiple
reflections by the PEC screen and the air-dielectric interface in the absence of the holes.
Since both uz(ρ

′) and Ge,h
I (ρ,ρ′) satisfy the Sommerfeld radiation condition at infinity as

discussed in section 6.2, the integration along ΓI∞ in the second term of right-hand side of
Eq. (7.3) vanishes (see Eq. (A.7)).

For the TMz polarization where the electric field vector is parallel to the axis of
the holes, Ge

I(ρ,ρ
′) satisfies the Dirichlet boundary condition Ge

I(ρ,ρ
′)|y′=0 = 0 (i.e.,
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Ge
I(ρ,ρ

′) = 0 on ΓI). Additionally, uz(ρ
′) is zero on the PEC segments of the ΓI . Conse-

quently, Eq. (7.3) is simplified to

uz(ρ) = uexcitz (ρ)−
∫

ΓI
B

uz(ρ
′)
∂Ge

I(ρ,ρ
′)

∂n′
dΓ (7.8)

where the integration is performed at the aperture of all holes ΓIB. For the TEz polarization
where the magnetic field vector is parallel to the axis of the holes, Gh

I (ρ,ρ
′) satisfies the

Neumann boundary condition ∂Gh
I (ρ,ρ

′)/∂n′|y′=0 = 0 (i.e., ∂Gh
I (ρ,ρ

′)/∂y′ = 0 on ΓI). In

addition, ∂uz(ρ
′)/∂n′ is zero on the PEC segments of the ΓI . Consequently, Eq. (7.3) is

simplified to

uz(ρ) = uexcitz (ρ) +

∫
ΓI
B

Gh
I (ρ,ρ

′)
∂uz(ρ

′)

∂n′
dΓ. (7.9)

The second term on the right-hand side of Eqs. (7.8)-(7.9) represents the scattered field
due to the aperture of the holes. uexcitz in Eq. (7.8) and Eq. (7.9) is defined by Eq. (6.10),
and Eq. (6.11), respectively where ts is replaced with tIs. By discretizing the aperture of
the hole ΓIB (see sections 4.2.1 and 4.3.1), Eqs. (7.8) and (7.9) can be represented in matrix
form as [

uoI
]

=
[
T I
]

+
[
SI
] [
ubI
]

(7.10)

for the TMz polarization, and[
uoI
]

=
{[
I
]

+
[
SI
]}−1 [

T I
]

+
{[
I
]

+
[
SI
]}−1 [

SI
] [
ubI
]

(7.11)

for the TEz polarization, respectively, where [I] in Eq. (7.11) represents the unity matrix.

7.2.2 Lower Half-Space (Region II)

In region II, the field vector u(ρ) is expressed by the surface integral equation as

uz(ρ) = −
∮

ΓII+ΓII
∞

(
uz(ρ

′)
∂Ge,h

II (ρ,ρ′)

∂n′
−Ge,h

II (ρ,ρ′)
∂uz(ρ

′)

∂n′

)
dΓ (7.12)

where uz(ρ) has the same definition as in Eq. (7.3). Also, Ge,h
II (ρ,ρ′) is introduced as the

grounded dielectric slab Green’s function which is the solution to a current filament located
at ρ′ inside the dielectric layer in the lower half-space. In Eq. (7.12), Ge,h

II (ρ,ρ′) is defined
as

Ge,h
II (ρ,ρ′) = lim

P→∞

(
1

P

∞∑
m=−∞

e−jkxm |x−x
′|G̃e,h

II (y, y′, kxm)

)
(7.13)
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where G̃e
II(y, y

′, kxm) is defined as

G̃e
II(y, y

′, kxm) =
jky0 sin(ky2 (y+t+tIIs ))+ky2 cos(ky2 (y+t+tIIs ))

ky2(jky0 sin(ky2 t
II
s )+ky2 cos(ky2 t

II
s ))

sin(ky2(y
′ + t)), −(t+ tIIs ) < y ≤ y′;

ejky0 (y+t+tIIs )

(jky0 sin(ky2 t
II
s )+ky2 cos(ky2 t

II
s ))

sin(ky2(y
′ + t)), y ≤ −(t+ tIIs ) < y′

(7.14)

for the TMz polarization, and

G̃h
II(y, y

′, kxm) =
jky0 sin(ky2 (y+t+tIIs ))+ky2 cos(ky1 (y+t+tIIs ))

ky2(jky0 cos(ky2 t
II
s )−ky2 sin(ky2 t

II
s ))

cos(ky2(y
′ + t)), −(t+ tIIs ) < y ≤ y′;

ejky0 (y+t+tIIs )

(jky0 cos(ky2 t
II
s )−ky2 sin(ky2 t

II
s ))

cos(ky2(y
′ + t)), y ≤ −(t+ tIIs ) < y′

(7.15)

for the TEz polarization, respectively. In Eq. (7.13)-(7.15), ky0 = (k2
0 − k2

xm)1/2 and ky2 =
(k2

2 − k2
xm)1/2 represent the Cartesian components of the propagation vector in the air

and dielectric where kxm is defined by Eq. (7.7). In Eq. (7.12), uz(ρ) on the left-hand
side represents the total field value at any point inside the dielectric layer. Since both
uz(ρ

′) and Ge,h
II (ρ,ρ′) satisfy the Sommerfeld radiation condition at infinity as discussed

in section 6.2, the integration along ΓII∞ on the right-hand side of Eq. (7.12) vanishes (see
Eq. (A.7)).

For the TMz polarization where the electric field vector is parallel to the axis of
the holes, Ge

II(ρ,ρ
′) satisfies the Dirichlet boundary condition Ge

II(ρ,ρ
′)|y′=−t = 0 (i.e.,

Ge
II(ρ,ρ

′) = 0 on ΓII). Additionally, uz(ρ
′) is zero on the PEC segments of the ΓII .

Consequently, Eq. (7.12) is simplified to

uz(ρ) = −
∫

ΓII
B

uz(ρ
′)
∂Ge

II(ρ,ρ
′)

∂n′
dΓ (7.16)

where the integration is performed at the aperture of all holes ΓIIB . For the TEz polarization
where the magnetic field vector is parallel to the axis of the holes, Gh

II(ρ,ρ
′) satisfies the

Neumann boundary condition ∂Gh
II(ρ,ρ

′)/∂n′|y′=−t = 0 (i.e., ∂Gh
II(ρ,ρ

′)/∂y′ = 0 on ΓII).

In addition, ∂uz(ρ
′)/∂n′ is zero on the PEC segments of the ΓII . Consequently, Eq. (7.12)

is simplified to

uz(ρ) = +

∫
ΓII
B

Gh
II(ρ,ρ

′)
∂uz(ρ

′)

∂n′
dΓ. (7.17)
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The term on the right-hand side of Eqs. (7.16)-(7.17) represents the transmitted field
through the aperture of the holes. By discretizing the aperture of the hole ΓIIB (see sec-
tions 4.2.2 and 4.3.2), Eqs. (7.16) and (7.17) are represented in matrix form as[

uoII
]

= −
[
SII
] [
ubII
]

(7.18)

for the TMz polarization, and[
uoII

]
= −

{[
I
]
−
[
SII
]}−1 [

SII
] [
ubII
]

(7.19)

for the TEz polarization, respectively, where [I] in Eq. (7.19) represents the unity matrix.
Combining Eq. (7.10) and Eq. (7.18) for TMz case or Eq. (7.11) and Eq. (7.19) for the
TEz case with Eq. (7.2) in matrix form results in the modified system matrix as Mii MibI MibII

MbI i MbIbI +MbIoIS
I 0

MbII i 0 MbIIbII −MbIIoIIS
II

 ui
ubI
ubII

 =

 Fi
FbI −MbIoIT

I

FbII

 (7.20)

for the TMz case, or Mii MibI MibII

MbI i MbIbI +MbIoI (I + SI)−1SI 0
MbII i 0 −MbIIoII (I − SII)−1SII

 ui
ubI
ubII

 =

 Fi
FbI −MbIoI (I + SI)−1T I

FbII

 (7.21)

for the TEz case, respectively. The solution of the modified system matrices in Eqs. (7.20)-
(7.21) can be obtained using commonly used methods for solving linear systems.

7.3 Numerical Results

Once the system of equations, Eq. (7.20) for the TMz polarization or Eq. (7.21) for the
TEz polarization, is derived, its solution, which gives the field values at the aperture of the
holes, can be obtained using commonly used methods for solving linear systems. Notice
that extending the algorithm to multiple holes is straightforward (see section 4.4). In this
section, the example of the grating surface consisting of holes with side gratings is provided.

Figure 7.3 shows the schematic of a single hole with three identical rectangular side
cavities engraved in an infinite PEC slab and coated with dielectric layers with thicknesses
and permittivities of tIs and ε1, respectively, above the PEC slab, and tIIs and ε2, respec-
tively, below the PEC slab. The size of the hole and identical side cavities is w × t and
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Figure 7.3: Schematic of a single hole with three identical rectangular side cavities engraved
in an infinite PEC slab and coated with dielectric layers.

w × d, respectively. The hole and side cavities are filled with a dielectric material having
permittivity of ε3. Also the hole and cavities are separated by w.

To validate the method presented here, comparison is made to the results obtained
by COMSOL, commercial two-dimensional finite-element simulator [43]. Throughout this
section, the solutions obtained using COMSOL are referred as COMSOL. To obtain the
results using COMSOL the absorbing boundary condition is applied on the truncation
boundaries as it is shown in Fig. 4.4. Without loss of generality, the magnitude of the
incident electric field is assumed to be unity throughout this section. To implement the
algorithm developed in this chapter, the nodal-based finite element formulation is used.
The solution domain is discretized using first-order triangle elements with a mesh density
of approximately 20 nodes per λ for the TMz case. Since there is a discontinuity in the
electric field at the edges of the hole and side cavities in the TEz case, the mesh density of
100 nodes per λ is used. Throughout this section, the solution obtained using the method
presented in this chapter is referred to as “Total Field Surface Integral Equation-Spatial
Domain Green’s Function” (TFSIE-SDGF).

Figures 7.4 and 7.5 show the total electric field for the TMz polarization and total
magnetic field for the TEz polarization incident wave, respectively, at the apertures of
the hole and side cavities for oblique incident plane waves. For the TMz polarization,
close agreement between TFSIE-SDGF and COMSOL is observed. However in the case of
COMSOL, the required computational domain is approximately 500λ2 while the TFSIE-
SDGF solution domain is confined to the hole and cavities area of 2.2λ2. For the TEz

polarization and in the region I, close agreement between TFSIE-SDGF and COMSOL
is observed. In the region II, a deviation between the results calculated using TFSIE-
SDGF and those obtained by COMSOL for the side cavities is observed. This deviation is
due to the non-physical reflections from the lateral truncation boundaries that are used in
COMSOL.
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Figure 7.4: Amplitude of the total E-field at the openings into the region I (R-I) and the
region II (R-II) for a single hole with three identical side cavities, TMz case, θ = 20◦.
w = 0.5λ, t = 0.8λ, d = 0.3λ, tIs = tIIs = 0.3λ, εr1 = εr2 = 2.1(1− 1j), εr3 = 4.

Figure 7.5: Amplitude of the total H-field at the openings into the region I (R-I) and the
region II (R-II) for a single hole with three identical side cavities, TEz case, θ = 20◦.
w = 0.5λ, t = 0.8λ, d = 0.3λ, tIs = tIIs = 0.3λ, εr1 = εr2 = 4(1− 1j), εr3 = 10.
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Chapter 8

Conclusion and Future Work

8.1 Contributions

In this thesis, a novel computational algorithm based on hybrid finite element - boundary
integral method for scattering problem from two-dimensional gratings is developed. In
the algorithm presented in this work, the solution region is divided into an interior region
containing the finite number of cavities or holes engraved in the conducting screen and the
region exterior to them. The finite element formulation is applied inside the interior regions
to derive a linear system of equations associated with field unknowns. Using two-boundary
formulation, the surface integral equation employing the free-space Green’s function is then
applied only at the openings of the cavities or holes as a boundary constraint to connect
the field unknowns at the boundaries to the interior field unknowns.

The hybrid FE-BIM algorithm is extended to grating surfaces containing infinite num-
ber of cavities or holes by deriving the quasi-periodic Green’s function. The infinite array
of cavities or holes is divided into unit-cells. The finite element formulation is then applied
inside the cavities or holes in the unit-cell. The surface integral equation as a global bound-
ary condition employing the quasi-periodic Green’s function is used to truncate the solution
region to the cavities or holes to only one unit-cell, resulting in a highly efficient solution
procedure. In this formulation, no singularities in the quasi-periodic Green’s function arise
while applying the surface integral as a boundary constraint.

Finally, the algorithm is extended to solve the problem of scattering from finite or
infinite array of two-dimensional cavities or holes engraved in a metallic screen and covered
with stratified dielectric coating. Similar to the metallic grating surfaces, the finite element
formulation is applied only inside the cavities or holes. The surface integral equation
employing the grounded dielectric slab Green’s function GDS-GF in spatial domain is
formulated to derive the boundary constraint on the field unknowns at the opening of the
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cavities or holes. The spatial domain GDS-GF is expressed in terms of a Fourier transform
type integral that includes finite number of surface wave poles and infinite number of
leaky wave poles. To transform the GDS-GF to a form that can be computed and thus
useful for the implementation of the surface integral equation, the quasi-periodic Green’s
function in spatial domain which is the solution to an infinite periodic array of the unit
sources is first derived using Floquet theorem. The quasi-periodic Green’s function is
then expressed in terms of an infinite series of Fourier type integrals. Next, the quasi-
periodic Green’s function is transformed into discrete form using Poisson’s sum formula;
therefore, eliminating the need to calculate Fourier integrals in the Green’s function series.
Finally, the spatial domain Green’s function which is the solution to a single unit source
is calculated by assuming the unit sources placed infinitely apart.

The method presented in this thesis is applicable to the scattering problem from cavi-
ties or holes with arbitrary shapes, sizes, and fillings. Also the algorithm presented here is
applicable to the scattering problems from grating surfaces covered with materials having
arbitrary permittivity and permeability having strong relevance to plasmonics problems.
Furthermore, no singularities in the Green’s function arise while applying the surface inte-
gral as a boundary constraint. The formulation is based on the total field and is applicable
to both TM and TE polarizations. The run-time and solution efficiency of the technique
developed in this thesis are two major attractive features making it well suited for opti-
mization problems involving gratings and holes.

In summary, the following contributions were achieved in this thesis:

1. Developed a new FEM-based method to solve the problem of scattering from a
single cavity with arbitrary shape and filling engraved in an infinite perfect electric
conducting (PEC) screen for TM and TE polarization. The method is based on
the total field formulation and using the surface integral equation and the free-space
Green’s function as a boundary constraint. This work was published in [63].

2. Extended the method developed in 1 to the problem of scattering from multiple
cavities with arbitrary shape and spacing. Described the coupling between the
cavities mathematically using the surface integral equation and the Green’s function,
and analyzed the physical mechanism of the coupling between the cavities. This
work was reported in [63].

3. Extended the method developed in 1 to the problem of scattering from single and
multiple holes with arbitrary shape and spacing engraved in a perfectly conducting
slab by applying the surface integral equation and the Green’s function as a boundary
constraint at both openings of the holes. This work was published in [64].

4. Extended the method developed in 1 to the problem of scattering from infinite
array of cavities with arbitrary shape, filling, and spacing engraved in the perfectly
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conducting slab by applying the surface integral equation and the quasi-periodic
Green’s function as a boundary constraint. This work was published in [65].

5. Extended the method developed in 1 to the problem of scattering from finite and
infinite array of cavities with arbitrary shape, filling, and spacing engraved in a per-
fectly conducting slab covered with stratified dielectric coating by using the surface
integral equation and the grounded dielectric slab Green’s function as a boundary
constraint. This work was published in [66].

6. Developed an algorithm to express the spatial domain grounded dielectric slab
Green’s function in series form. Analyzed the convergence behavior of the grounded
dielectric slab Green’s function series versus different parameters such as lateral dis-
tance between the source point and the field point, the thickness of the dielectric
slab, and the loss tangent of the dielectric coating. This work was reported in [66].

7. Extended the method developed in 6 and 3 to the problem of scattering from a
grating structure containing array of holes with side cavities with arbitrary shape,
filling, and spacing engraved in a perfectly conducting slab covered with stratified
dielectric coating.

8. Presented and validated several numerical examples for single and multiple cav-
ities and holes with different shapes and fillings with or without dielectric coating.

9. Compared the efficiency of the new boundary integral method introduced in this
work with absorbing boundary condition and perfectly matched layer used by generic
full wave field solvers for modeling the scattering problem from grating surfaces.
Analyzed the versatility of the present method in modeling of the scattering from
grating surfaces due to the grazing incidents. This work was published in [67].

8.2 Future Directions

Following are some possible direction for the further research work:

1. Extending the algorithm presented in this thesis to the problem of scattering from
three dimensional (3-D) gratings. The extension the method to the 3-D structure
provides highly accurate and efficient solution to optimization problems associated
with electromagnetic band-gap structures and frequency selective surfaces.
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2. Investigating the scattering problem from grating structures covered with the nobel
metals such as silver or gold in order to study engineering application of extraordi-
nary transmission of light and plasmonic resonances. The interesting feature of such
noble metals is that over the optical frequency regime, the metals exhibit negative
permittivity. Possible modification in the Green’s function due to the negative per-
mittivity of the coating may be needed. Also convergence of the Green’s function
series for a coating with negative permittivity potentially is challenging.

3. Generalizing the algorithm to the class of eigenvalue problems associated with
photonics applications such as dispersion studies in photonic crystals.
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Appendix A

Boundary Integral Formulation

In this section, the boundary integral formulation for two-dimensional interior problem
will be derived. Figure A.1 depicts a region Ω including current filament g. Region Ω is
enclosed by a boundary Γ. In Fig. A.1, uz and g represent electric field, and electric current,
respectively for the TMz polarization, or magnetic field, and magnetic current,respectively
for the TEz polarization. The field vector uz is governed by Helmholtz’s equation:

∇2uz(ρ) + k0
2uz(ρ) = jωp(ρ)gz(ρ), ρ ∈ Ω. (A.1)

where p(ρ) is defined as µr(ρ) for the TMz polarization, or εr(ρ) for the TEz polarization,
respectively. By introducing the Green’s function G(ρ,ρ′) which is the field observed at
ρ due to a current filament located at ρ′, satisfying the boundary condition in Ω, and
governed by Helmholtz’s equation

∇2G(ρ,ρ′) + k0
2G(ρ,ρ′) = −δ(ρ− ρ′) ρ,ρ′ ∈ Ω. (A.2)

Figure A.1: Schematic of surface integral contour around an arbitrary closed volume.
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Multiplying both sides of Eq. (A.1) by G(ρ,ρ′) and integrating over Ω yields∫
Ω

G(ρ,ρ′)
(
∇2uz(ρ) + k0

2uz(ρ)
)
dΩ = jω

∫
Ω

p(ρ)gz(ρ)G(ρ,ρ′)dΩ. (A.3)

invoking the Green’s second identity∫
Ω

(
uz∇2G−G∇2uz

)
dΩ =

∮
Γ

(
uz
∂G

∂n
−G∂uz

∂n

)
dΓ (A.4)

where Γ is the contour enclosing Ω, Eq. (A.3) can be written as∫
Ω

uz(ρ)
(
∇2G+ k0

2G
)
dΩ = jω

∫
Ω

p(ρ)gz(ρ)GdΩ +

∮
Γ

(
uz
∂G

∂n
−G∂uz

∂n

)
dΓ. (A.5)

Substituting Eq. (A.2) in Eq. (A.5), and interchanging primed and unprimed coordinates

uz(ρ) = −jω
∫

Ω

p(ρ′)gz(ρ
′)G(ρ,ρ′)dΩ−

∮
Γ

(
uz(ρ

′)
∂

∂n′
G(ρ,ρ′)−G(ρ,ρ′)

∂

∂n′
uz(ρ

′)

)
dΓ.

(A.6)
Equation (A.6), represents the boundary integral formulation for the two-dimensional re-
gion including sources.

For cylindrical waves satisfying Sommerfeld radiation condition [42], the second term
of Eq. (A.6) vanishes as the boundaries are placed at infinity (i.e., Γ→∞)

lim
Γ→∞

∮
Γ

(
uz
∂G

∂n′
−G∂uz

∂n′

)
dΓ = lim

Γ→∞

∮
Γ

(uz(−jkG)−G(−jkuz)) dΓ = 0. (A.7)

Therefore Eq. (A.6) can be simplified for the far region as

uz(ρ) = −jω
∫

Ω

p(ρ′)gz(ρ
′)G(ρ,ρ′)dΩ. (A.8)

106



Bibliography

[1] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings.
Springer, NewYork NY, 1998. 1

[2] T. W. Ebbesen H. J. Lezec H. F. Ghaemi T. Thio and P. A. Wolff. Extraordinary op-
tical transmission through sub-wavelength hole arrays. Nature, 391:667–669, February
1998. 1

[3] H. J. Lezec A. Degiron E. Devaux R. A. Linke L. Martin-Moreno F. J. Garcia-Vidal
and T. W. Ebbesen. Beaming light from a subwavelength aperture. Science, 297:820–
823, August 2002. 1

[4] A. Krishnan T. Thio T. J. Kim H. J. Lezec T. W. ebbesen P. A. Wolff J. Pendry
L. Martin-Moreno and F. J. Garcia-Vidal. Evanescently coupled resonance in surface
plasmon enhanced transmission. Optics Communication, 200:1–7, December 2001. 1

[5] S. Kawata. Near-field microscope probes utilizing surface plasmon polaritons. Appl.
Phys., 81:15–27, 2001. 1

[6] F. Wei and Z. Liu. Plasmonic structured illumination microscopy. Nano Letters,
10:2531–2536, July 2010. 1

[7] H. Hu C. Ma and Z. Liu. Plasmonic dark field microscopy. Appl. Phys., 96:113107–1–3,
March 2010. 1

[8] A. Sentenac K. Belkebir H. Giovannini and P. C. Chaumet. Subdiffraction resolution
in total internal reflection fluorescence microscopy with a grating substrate. Optics
Letters, 33:255–257, February 2008. 1

[9] X. Luo and T. Ishihara. Surface plasmon resonant interference nanolithography tech-
nique. Appl. Phys. Letter, 84:4780–4782, June 2004. 1

[10] X. Luo and T. Ishihara. Subwavelength photolithography based on surface-plasmon
polariton resonance. Optics Express, 12:3055–3065, July 2004. 1

107



[11] Y. Ngu M. Peckerar M. Dagenais J. Barry and B. Dutt. Lithography plasmonics
and subwavelength aperture exposure technology. J. Vac. Sci. Tech. B, 25:2471–2475,
November 2007. 1

[12] Y. Xiong Zh. Liu and X. Zhang. Projecting deep-subwavelength patterns from
diffraction-limited masks using metal-dielectric multilayers. Appl. Phys., 93:111116–
1–3, September 2008. 1

[13] Y. Yoon H. Lee S. Lee S. H. Kim J. Park and K. Lee. Color filter incorporating
a subwavelength patterned grating in poly silicon. Optics Express, 16:2374–2380,
February 2008. 1

[14] K. R. Catchpole and S. Pillai. Surface plasmon for enhanced silicon light-emitting
diods and solar cells. Journal of Luminescence, 121:315–318, September 2006. 1

[15] A. K. Pradhan R. B. Konda H. Mustafa R. Mundle O. Bamiduro U. N. Roy Y. Cui
and A. Burger. Surface plasmon resonance in cdse semiconductor coated with gold
nanoparticles. Optics Express, 16:6202–6208, April 2008. 1

[16] S. Pillai K. R. Catchpole T. Trupke and M. A. Green. Surface plasmon enhanced
silicon solar cells. Journal of Applied Physics, 101:093105–1–8, May 2007. 1

[17] R. F. Harrington and J. R. Mautz. A generalized network formulation for aperture
problems. IEEE Trans. Antenna Propag., 24:870–873, November 1976. 2, 4

[18] D. T. Auckland and R. F. Harrington. Electromagnetic transmission through a filled
slit in a conducting plane of finite thickness TE case. IEEE Trans. Microwave Theory
Tech., 26:499–505, July 1978. 2, 4

[19] K. Barkeshli and J. L. Volakis. TE scattering by a two-dimensional groove in a
ground plane using higher order boundary conditions. IEEE Trans. Antenna Propag.,
38:1421–1428, September 1990. 2, 4

[20] K. Barkeshli and J. L. Volakis. Scattering from narrow rectangular filled grooves.
IEEE Trans. Antenna Propag., 39:804–810, June 1991. 2, 4

[21] Y. Shifman and Y. Leviatan. Scattering by a groove in a conducting plane a PO-MoM
hybrid formulation and wavelet analysis. IEEE Trans. Antenna Propag., 49:1807–1811,
December 2001. 2

[22] Y.-L Kok. Boundary-value solution to electromagnetic scattering by a rectangular
groove in a ground plane. J. Opt. Soc. Am. A, 9:302–311, February 1992. 2, 4

108



[23] T. J. Park H. J. Eom and K. Yoshitomi. An analytic solution for transverse-magnetic
scattering from a rectangular channel in a conducting plane. J. Opt. Soc. Am. A,
73:3571–3573, April 1993. 2, 4

[24] T. J. Park H. J. Eom and K. Yoshitomi. An analysis of transverse electric scatter-
ing from a rectangular channel in a conducting plane. Radio Science, 28:663–673,
September 1993. 2, 4

[25] T. J. Park H. J. Eom and K. Yoshitomi. Analysis of TM scattering from finite
rectangular grooves in a conducting plane. J. Opt. Soc. Am. A, 10:905–911, May
1993. 2, 4, 27, 29

[26] R. A. Depine and D. C. Skigin. Scattering from metallic surfaces having a finite
number of rectangular grooves. J. Opt. Soc. Am. A, 11:2844–2850, November 1994.
2, 4, 6, 67

[27] S. H. Kang H. J. Eom and T. J. Park. TM-scattering from a slit in a thick conducting
screen: Revisited. IEEE Trans. Microwave Theory Tech., 41:895–899, June 1993. 2, 4

[28] T. J. Park S. H. Kang and H. J. Eom. TE scattering from a slit in a thick conducting
screen: Revisited. IEEE Trans. Antenna Propag., 42:112–114, August 1994. 2, 4

[29] H. J. Eom. Electromagnetic Wave Theory for Boundary-Value Problems. Springer,
NewYork NY, 2004. 2, 4

[30] M. A. Basha S. K. Chaudhuri S. Safavi-Naeini and H. J. Eom. Rigorous formulation
for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly
conducting plane. J. Opt. Soc. Am. A, 24:1647–1655, June 2007. 2, 4, 5, 18, 19

[31] M. A. Basha S. K. Chaudhuri and S. Safavi-Naeini. Electromagnetic scattering from
multiple arbitrary shape grooves: A generalized formulation. Microwave Symposium,
24:1935–1938, June 2007. 2, 5, 18, 22

[32] B. H. McDonald and A. Wexler. Finite-element solution of unbounded field problems.
IEEE Trans. Microwave Theory Tech., 20:841–847, December 1972. 3, 5, 8, 26

[33] O. M. Ramahi and R. Mittra. Finite element solution for a class of unbounded ge-
ometries. IEEE Trans. Antenna Propag., 39:244–250, February 1991. 3, 4, 5, 8

[34] J. M. Jin and J. L. Volakis. TM scattering by an inhomogeneously filled aperture in a
thick conducting plane. Microwaves Antennas and Propagation IEE Proceedings H,
137:153–159, June 1990. 3, 5

109



[35] J. M. Jin and J. L. Volakis. TE scattering by an inhomogeneously filled thick con-
ducting plane. IEEE Trans. Antenna Propag., 38:1280–1286, August 1990. 3, 5

[36] J. M. Jin. The Finite Element Method in Electromagnetics. Jon Wiley & Sons Inc.,
NewYork NY, 1993. 5, 12, 13, 14, 15

[37] S. D. Gedney and R. Mittra. Analysis of the electromagnetic scattering by thick grat-
ings using a combined FEM/MM solution. IEEE Trans. Antenna Propag., 39:1605–
1614, November 1991. 5

[38] T. Delort and D. Maystre. Finite-element method for gratings. J. Opt. Soc. Am. A,
10:2592–2601, December 1993. 5

[39] G. Pelosi A. Freni and R. Coccioli. Hybrid technique for analyzing scattering from
periodic structures. in IEE Proceedings-H of Microwaves Antennas and Propagation,
140:65–70, April 1993. 5

[40] Y. A. Baranchugov P. M. Zatsepin and S. A. Komarov. Electromagnetic wave scatter-
ing from an infinity array of rectangular cavities in an impedance screen. in proceedings
of IEEE Region 8 International Conference on Computational Technologies in Elec-
trical and Electronics Engineering, pages 347–349, July 2008. 6

[41] Y. H. Cho. Transverse magnetic plane-wave scattering equations for infinite and semi-
infinite rectangular grooves in a conducting plane. IET Microw. Antennas Propag.,
2:704–710, March 2008. 6

[42] L. B. Felson and N. Marcuvitz. Radiation and Scattering of Waves. IEEE Press, New
Jersey NJ, 1973. 11, 106

[43] COMSOL Version 3.5. Comsol Multiphysics. http://www.comsol.com. 18, 46, 85,
98

[44] B. Engquist and A. Majda. Absorbing boundary condition for numerical simulation
of waves. Mathematics for Computation, 31:629–651, 1977. 26

[45] A. Bayliss M. Gunzburger and E. Turkel. Boundary condition for the numerical
solution of elliptic equations in exteior regions. SIAM Appl. Math., 42:430–450, April
1982. 26

[46] O. Ramahi A. Khebir and R. Mittra. Numerically derived absorbing boundary con-
dition for the solution of open region scattering problems. IEEE Trans. Antenna
Propag., 39:350–353, March 1991. 26

110



[47] O. M. Ramahi. The concurrent complementary operators method for FDTD mesh
truncation. IEEE Trans. Antenna Propag., 46:1475–1482, October 1998. 28

[48] J-P Berenger. Numerical reflection from FDTD-PMLs: A comparison of the split
PML with the unsplit and CFSPMLs. IEEE Trans. Antenna Propag., 50:258–265,
March 2002. 28

[49] Ansoft HFSS Version 10.1. Ansoft Corporation. http://www.ansoft.com. 28

[50] I. Bardi and Z. Cendes. New directions in HFSS for designing microwave devices.
Microwave Journal., 41:22–, August 1998. 29

[51] R. Mittra O. Ramahi A. Khebir R. Gordon and A. Kouki. A review of absorbing
boundary condition for two and three-dimensional electromagnetic scattering problem.
IEEE Trans. Magnetics, 25:3034–3039, July 1989. 53

[52] A. Parsa and R. Paknys. Interior Green’s function solution for a thick and finite
dielectric slab. IEEE Trans. Antenna Propag., 55:3504–3514, December 2007. 69, 70,
75

[53] K. A. Michalski and D. Zheng. Electromagnetic scattering and radiation by surfaces
of arbitrary shape in layerd media, part i:, theory. IEEE Trans. Antenna Propag.,
38:335–344, March 1990. 70

[54] M. I. Aksun. A robust approach for the derivation of closed-form Green’s functions.
IEEE Trans. Microwave Theory Tech., 44:651–658, May 1996. 70

[55] G. Dural and M. I. Aksun. Closed form Green’s function for general sources and
stratified media. IEEE Trans. Microwave Theory Tech., 43:1545–1552, July 1995. 70

[56] M. I. Aksun F. Caliskan and L. Gurel. An efficient method for electromagnetic char-
acterization of 2-D geometries in stratified media. IEEE Trans. Microwave Theory
Tech., 50:1264–1274, May 2002. 70

[57] M. I. Aksun and G. Dural. Clarification of issues on the closed-form Green’s functions
in stratified media. IEEE Trans. Antenna Propag., 53:3644–3653, November 2005. 70

[58] R. R. Biox F. Mesa and F. Medina. Application of total least squares to the derivation
of closed-form Green’s functions for planar layered media. IEEE Trans. Microwave
Theory Tech., 55:268–280, February 2007. 70

[59] F. Mesa R. R. Biox and F. Medina. Closed-form expressions of multilayered planar
Green’s functions that account for the continuous spectrum in the far field. IEEE
Trans. Microwave Theory Tech., 56:1601–1614, July 2008. 70

111



[60] A. Alparslan M. I. Aksun and K. A. Michalski. Closed-form Green’s functions in
planar layered media for all ranges and materials. IEEE Trans. Microwave Theory
Tech., 58:602–613, March 2010. 70

[61] R. R. Biox A. L. Fructos and F. Medina. Closed-form uniform asymptotic expansions
of Green’s functions in layered media. IEEE Trans. Microwave Theory Tech., 58:2934–
2945, September 2010. 70

[62] D. M. Pozar and D. H. Schaubert. Scan blindness in infinite phased arrays of printed
dipoles. IEEE Trans. Antenna Propag., 32:602–610, June 1984. 77

[63] B. Alavikia and O. M. Ramahi. Finite-element solution of the problem of scattering
from cavities in metallic screens using the surface integral equation as a boundary
constraint. J. Opt. Soc. Am. A, 26:1915–1925, September 2009. 101

[64] B. Alavikia and O. M. Ramahi. Electromagnetic scattering from multiple sub-
wavelength apertures in metallic screens using the surface integral equation method.
J. Opt. Soc. Am. A, 27:815–826, April 2010. 101

[65] B. Alavikia and O. M. Ramahi. An efficient method using finite-elements and the
surface integral equation to solve the problem of scattering from infinite periodic
conducting grating. Radio Science, 46:RS1001–1–10, 2011. 102

[66] B. Alavikia and O. M. Ramahi. Hybrid finite element - boundary integral algorithm to
solve the problem of scattering from finite and infinite array of cavities with stratified
dielectric coating. J. Opt. Soc. Am. A, 28:1022–1031, June 2011. 102

[67] B. Alavikia and O. M. Ramahi. Fundamental limitations on the use of open-region
boundary conditions and matched layers to solve the problem of gratings in metallic
screens. ACES Journal, 25:652–658, August 2010. 102

112


	List of Figures
	Introduction
	Scattering from Grating Surfaces
	Survey of Recent Literature
	Objective of this Study

	Scattering from Cavities in Conducting Surfaces
	Finite-Element Formulation of the Problem
	Surface Integral Equation for TMz Polarization
	Surface Integral Equation for TEz Polarization
	Extension to Multiple Cavities
	Numerical Results
	Single Cavity Case
	Multiple Cavities


	Fundamental Limitations on the Use of Absorbing Boundary Condition to Solve the Problem of Scattering from Gratings in Conducting Surfaces
	General Description of the Problem
	Numerical Results

	Scattering from Holes in Conducting Screens
	Finite-Element Formulation of the Problem
	Surface Integral Equation for TMz Polarization
	Upper Half-Space (Region I)
	Lower Half-Space (Region II)
	Modified Finite-Element System Matrix for TMz Polarization

	Surface Integral Equation for TEz Polarization
	Upper Half-Space (Region I)
	Lower Half-Space (Region II)
	Modified Finite-Element System Matrix for TEz Polarization

	Extension to Multiple Holes with Side Grating
	Numerical Results
	Single Hole Case
	Multiple Holes
	Single Hole with Side Grating


	Scattering from an Infinite Periodic Array of Cavities in a Conducting Screens
	Finite-Element Formulation of the Problem
	Surface Integral Equation
	Surface Integral Equation for TMz Polarization
	Surface Integral Equation for TEz Polarization

	Numerical Results

	Scattering from Cavities in a Conducting Surface with a Stratified Dielectric Coating
	Scattering from an Infinite Periodic Array of Cavities with a Dielectric Coating
	Finite Element Formulation of the Problem
	Surface Integral Equation

	Green's Function for the Grounded Dielectric Slab (Interior Problem)
	Quasi-Periodic GDS-GF to an Array of Periodic Unit Sources
	GDS-GF due to a Single Unit Source

	Scattering from Finite Array of Non-Uniform Cavities with a Dielectric Coating
	Numerical Results
	Infinite Array of Identical Cavities
	Finite Array of Non-Uniform Cavities


	Scattering from Holes in a Conducting Surface with a Stratified Dielectric Coating
	Finite-Element Formulation of the Problem
	Surface Integral Equation
	Upper Half-Space (Region I)
	Lower Half-Space (Region II)

	Numerical Results

	Conclusion and Future Work
	Contributions
	Future Directions

	APPENDICES
	Boundary Integral Formulation
	Bibliography

