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Abstract

Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of
100,000 was investigated experimentally. The effects of experimental setup and analysis
tools on the results were also examined.

The sensitivity of linear stability predictions for measured separated shear layer velocity
profiles to both the analysis approach and experimental data scatter was evaluated.
Analysis approaches that are relatively insensitive to experimental data scatter were
identified. Stability predictions were shown to be more sensitive to the analysis approach
than to experimental data scatter, with differences in the predicted maximum disturbance
growth rate and corresponding frequency of approximately 35% between approaches.

A parametric study on the effects of experimental setup on low Reynolds number
airfoil experiments was completed. It was found that measured lift forces and vortex
shedding frequencies were affected by the end plate configuration. It was concluded that
the ratio of end plate spacing to projected model height should be at least seven, consistent
with the guideline for circular cylinders. Measurements before and after test section wall
streamlining revealed errors in lift coefficients due to blockage as high as 9% and errors in
the wake vortex shedding frequency of 3.5%.

Shear layer development over the model was investigated in detail. Flow visualization
images linked an observed asymmetry in wake velocity profiles to pronounced vortex roll-
up below the wake centerline. Linear stability predictions based on the mean hot-wire
profiles were found to agree with measured disturbance growth rates, wave numbers, and
streamwise velocity fluctuation profiles. Embedded surface pressure sensors were shown
to provide reasonable estimates of disturbance growth rate, wave number, and convection
speed for conditions at which a separation bubble formed on the airfoil surface. Convection
speeds of between 30 and 50% of the edge velocity were measured, consistent with phase
speed estimates from linear stability theory.
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Chapter 1

Introduction

Various engineering systems, including unmanned aerial vehicles and small wind turbines,
employ airfoils operating in the chord Reynolds number range from 104 to 5×105 (Refs. [1–
4]). The aerodynamic performance of such airfoils is often a concern because of the low lift
and high drag generated at low Reynolds numbers [4]. Airfoil geometry optimization as well
as passive and active flow control systems are being explored to improve the performance
of devices using low Reynolds number airfoils [5, 6]. Each of these techniques requires
a detailed understanding of flow development, which is being provided by continuing
experimental and computational studies.

Laminar boundary layer separation is the main impediment to low Reynolds number
airfoil performance [7]. In contrast to airfoil operation at higher Reynolds numbers, at
low Reynolds numbers the boundary layer on the upper surface often remains laminar
downstream of the point of minimum surface pressure, where an adverse pressure gradient
opposes the oncoming flow [8]. As a result, laminar boundary layer separation is common.
The laminar separated shear layer is highly unstable, leading to turbulent transition shortly
downstream of the separation point. At sufficiently low Reynolds numbers or high angles of
attack, the turbulent separated shear layer remains detached, leaving the airfoil in a stalled
state and resulting in very poor aerodynamic performance [1]. At higher Reynolds numbers
or lower angles of attack, the turbulent flow reattaches to form a turbulent boundary layer
on the aft portion of the airfoil, significantly improving aerodynamic performance. Studies
on performance improvement therefore generally focus on controlling the separated flow
region [5]. Such work relies on knowledge of flow development in the separated region.

The focus of this experimental investigation is transition in the laminar separated shear
layer that forms over an airfoil operating at a low Reynolds number. The feasibility of using
an embedded pressure sensor array to measure disturbance development is also of interest.
Before proceeding to acquire detailed measurements of flow development, various aspects
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of the experimental setup and analysis tools will be investigated to ensure the reliability
of the results.

Previous studies have demonstrated that low Reynolds number airfoil experiments
are sensitive to the experimental setup [3, 9, 10]. These investigations have mainly
focused on the effect of free-stream turbulence on flow development. Other aspects of
the experimental setup that are known to affect flow development include end plate
design and position [11–14], test section wall interference [15–20], and intrusive equipment
such as hot-wire probes [21]. The effects of these factors have been studied for circular
cylinders, and the conclusions of such studies are used as general guidelines for other model
geometries [14–16, 21]. However, the applicability of these guidelines for low Reynolds
number experiments on two-dimensional airfoils has not been thoroughly assessed. The
strong influence of the separated flow region on measured aerodynamic performance and
the sensitivity of this region to experimental conditions makes such an assessment valuable.

Experimental and computational studies on transition in separation bubbles often
compare results to predictions of linear stability theory (LST) to provide insight into the
mechanisms governing the initial stage of transition, assess the validity of this stability
model, or evaluate the predictions of transition models [22–32]. However, it has been
shown that for separated shear layer velocity profiles, such solutions are sensitive to the
method of analysis [33, 34]. Experimental data scatter also contributes to the uncertainty
in such calculations. This uncertainty should be estimated before drawing conclusions from
linear stability predictions.

With confidence in the experimental setup and analysis tools established, detailed
measurements of flow development over the model will be completed. An embedded
surface pressure sensor array will be used for some of these measurements, and will be
evaluated based on its capabilities for measuring flow development over airfoils. Surface
pressure sensor arrays can provide simultaneous measurements at high sample rates
and multiple spatial locations, in significantly less time than is required for detailed
velocity measurements over the model surface. This may be an acceptable compromise
in parametric studies in which more detailed information than lift and drag coefficients
is desired but for which full flow field mapping is not required. Surface pressure sensor
arrays also have potential for in-flight flow diagnostics as a method to monitor sources
of aerodynamic noise or performance variation, and could be used as an active feedback
method for flow control systems [35]. Gerakopulos [35] developed a NACA 0018 airfoil
model with an embedded pressure sensor array to explore the feasibility of such a system
for real-time flow diagnostics. Part of the present investigation will extend this work,
focusing on the potential for pressure sensor arrays to measure disturbance development
over the airfoil. Detailed measurements of flow development, complemented by theoretical
stability predictions, will be used to validate the results.
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The purpose of this investigation is to gain insight into shear layer development over
low Reynolds number airfoils through a detailed experimental study on a NACA 0018
airfoil model. Uncertainty due to the experimental setup and stability analysis tools affect
the reliability of these results, and will therefore be examined prior to completing detailed
measurements. The objectives of this thesis are further subdivided below:
1. Conduct a sensitivity analysis on approaches to performing spatial linear stability

analysis on measured separated shear layer velocity profiles, in order to,
(a) identify systematic approaches to the analysis which are relatively insensitive to

velocity profile data scatter,
(b) estimate the uncertainty in such calculations, and
(c) evaluate the importance of including viscous effects in the analysis;

2. Assess the influence of experimental setup on flow development, specifically considering,
(a) the effect of end caps and end plates as well as the effect of end plate spacing,
(b) the effect of test section blockage, and
(c) the effect of the hot-wire probe, traversing mechanism, and the smoke-wire flow

visualization technique;
3. Investigate flow development over the airfoil at various angles of attack in detail,

including an assessment of the feasibility of using an embedded surface pressure sensor
array to measure transition characteristics in the separated shear layer.
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Chapter 2

Background

The main focus of this thesis is airfoil operation at low Reynolds numbers, with particular
attention to the process of transition in the separated shear layer that develops in this
Reynolds number regime. General findings on this topic from previous studies are discussed
below. The present investigation also considers the sensitivity of linear stability analysis,
a common tool used in experimental separation bubble research, and the effect of various
aspects of the experimental setup on such experiments. These topics are also discussed.
Finally, a brief review of embedded surface pressure sensor measurement techniques is
provided.

2.1 Low Reynolds Number Airfoil Operation

Airfoils operating at low chord Reynolds numbers (i.e., 104 . Rec . 5×105) are susceptible
to laminar boundary layer separation as a result of an adverse pressure gradient acting on
the flow [1, 2]. The laminar separated shear layer is sensitive to free-stream disturbances
and will generally transition to turbulent flow shortly downstream of the separation point.
Depending on the flow conditions, the turbulent shear layer can remain separated or
reattach to form a turbulent boundary layer. Airfoil operation at low Reynolds numbers is
typically categorized based on whether boundary layer reattachment occurs, because this
is a major factor contributing to aerodynamic performance [9]. Important features of both
low Reynolds number airfoil flow regimes are illustrated in Fig. 2.1.

For flow conditions at which turbulent transition on the suction side is followed by
boundary layer reattachment, a closed region of recirculating flow, called a separation
bubble, is formed. Depending on its size and location, a separation bubble can either
reduce lift compared to that produced in fully turbulent flow over the airfoil by reducing
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Figure 2.1: Illustration of low Reynolds number airfoil flow regimes.

the maximum suction pressure [36, 37], or can increase lift by creating a region of higher
suction in the vicinity of the separation bubble [30]. The reattached turbulent boundary
layer downstream of the separation bubble will generally be thicker than would result
from attached boundary layer transition, increasing pressure drag and possibly resulting
in earlier turbulent boundary layer separation [38]. Although the thicker boundary layer
reduces skin friction drag, the net effect is typically an increase in total drag [30]. When
shear layer transition is not followed by reattachment, the airfoil is left in a stalled state,
resulting in poor aerodynamic performance [8]. At low Reynolds numbers, airfoils can stall
at relatively low angles of attack.

Detailed information about aerodynamic performance and flow development over low
Reynolds number airfoils are important in the design of lifting surfaces and flow control
systems for this flow regime. A detailed aerodynamic characterization for the NACA 0018
airfoil model used in this thesis is presented in Ref. [39]. Consistent with the general
trends for other airfoils at low Reynolds numbers [8], it was found that as the angle of
attack is increased at a constant Reynolds number, the separation bubble moves upstream
and decreases in length; above a critical angle of attack, the turbulent shear layer fails
to reattach [39]. Increasing the Reynolds number at a fixed angle of attack has a less
significant effect on the separation location, but reduces the separation bubble length;
below a critical value of Reynolds number, the separated shear layer fails to reattach.
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These trends can be observed in Fig. 2.2, which presents data for the NACA 0018 airfoil
model used in the present investigation.

For each Reynolds number, there is a critical angle of attack at which a small increase
in angle will cause an abrupt change between flow regimes of separation with reattachment
and separation without reattachment [1, 2]. A similar abrupt change can be observed
at a constant angle of attack by decreasing the Reynolds number below a critical value.
This phenomenon was first noted by Gaster [40] for the separated flow region over a flat
plate with an imposed pressure gradient. Gaster [40] referred to the dramatic increase in
separation bubble length or the complete loss of boundary layer reattachment, following a
small change in experimental parameters, as bubble bursting.

Applying low Reynolds number airfoil performance data in design can be an issue due
to several factors. Experiments on airfoils at low Reynolds numbers are very sensitive to
the angle of attack, Reynolds number, and free-stream turbulence [3]. Furthermore, these
experiments typically involve very low forces and pressures, which are difficult to measure
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Figure 2.2: Reynolds number and angle of attack dependence of separation (solid lines) and
reattachment (dashed lines) locations for a NACA 0018 airfoil. Markers identify measured
data points from Gerakopulos et al. [39] and the present investigation.
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accurately [3]. Some of these issues are discussed further in Section 2.3. Hysteresis in
aerodynamic forces with angle of attack and Reynolds number is another concern [9,10,41].
Hysteresis in airfoil performance at low Reynolds numbers refers to the dependence of
boundary layer reattachment, and as a result, airfoil lift and drag coefficients at a particular
Reynolds number and angle of attack, on whether these parameters were approached
from higher or lower values. This dependence is an important factor in stall recovery.
Hysteresis was measured to extend over angles of attack of more than 10◦ by Mueller [9]
for a Lissaman 7769 airfoil at Rec = 1.5×105 and by Marchman [10] for a Wortmann FX63-
137 airfoil at Rec = 2×105. By increasing the free-stream turbulence intensity from 0.07%
to 0.28% by means of screens and flow restrictors, Mueller [9] was able to reduce the extent
of hysteresis and eventually eliminate it. This change in turbulence intensity also had the
effect of increasing the maximum lift coefficient by 3%. The implication of the significant
effect of turbulence intensity on hysteresis is that the extent of the hysteresis loop will
be affected by the facility in which measurements are performed. Other considerations
for micro air vehicle design include the low aspect ratio wing sections required in certain
applications [42], the significant variation in atmospheric turbulence intensity [43, 44], as
well as gusts and lulls on the order of the flight speed [45].

The relatively poor aerodynamic performance and wide variation in operating
conditions for airfoils at low Reynolds numbers makes the use of flow control systems
attractive. An example of a simple passive flow control method is to install standard
vortex generators near the leading edge of the airfoil to establish a turbulent boundary
layer. This can improve aerodynamic performance for some flow conditions, but can
cause an undesirable increase of skin friction drag by replacing the laminar boundary
layer upstream of the separation point with a turbulent one [46]. Furthermore, such
vortex generators have the disadvantage of not being adaptable as flow conditions change.
Various other techniques have been considered for low Reynolds number airfoil flow control.
Typically these methods seek to move the separation point farther downstream or accelerate
the transition process [5]. Methods of separation control include wall suction, to reduce
the boundary layer thickness [5]; use of plasma actuators, which generate a body force
in the flow to maintain an attached boundary layer [47]; and specific geometry design
to optimize performance at low Reynolds numbers, as in the design of the SD 7003
airfoil [5, 48]. Acoustic excitation [5, 22, 49] and oscillating piezoceramic actuators [46]
have shown promise in controlling transition in separation bubbles. Both of these methods
create disturbances at particular frequencies and locations, accelerating natural shear
layer transition. It has been demonstrated that such approaches can induce turbulent
reattachment in flows that would otherwise remain separated, significantly improving
aerodynamic performance [22, 50]. In a numerical simulation of flow over a NACA 0012
airfoil at AOA = 5◦ and Rec = 5 × 104, for which a separation bubble formed without
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forced excitation, Jones et al. [30] predicted that although lift was decreased through forcing
at a particular frequency, an increase in the lift to drag ratio of 23% could be achieved.
Such transition control methods have the potential to adapt to flow conditions to provide
optimal control, and require very little energy input [51]. To realize this potential, active
feedback methods are required and are an area of recent interest [35,51].

2.1.1 Structure of Transitional Separation Bubbles

A model for time averaged transitional separation bubbles was proposed by Horton [36], and
is presented in Fig. 2.3. On an airfoil at a low Reynolds number, the boundary layer on the
upper surface remains laminar into the adverse pressure gradient region downstream of the
suction peak. At some location in this region, the laminar boundary layer separates. The
separated shear layer is more sensitive to small disturbances than the attached boundary
layer upstream, and as a result, transition to turbulence commonly occurs in this region.
Enhanced momentum transfer in the turbulent separated shear layer can lead to boundary
layer reattachment downstream.

Through comparisons with velocity profile measurements in shear layers over
low Reynolds number airfoils, it has been found that the locations of mean
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separation, transition, and reattachment can be approximated based on surface pressure
distributions [8, 52, 53]. Tani [52] noted the existence of a mean surface pressure
plateau between the separation and transition locations, which has zero slope for most
conditions [38]. The separation and transition locations can be estimated as the start and
end of this region, respectively. Downstream of the transition location, rapid pressure
recovery occurs. The mean reattachment point can be estimated as the location where
the rate of this pressure recovery slows, typically to the rate that would be observed in
inviscid or fully turbulent flow over the geometry [8]. It has also been found that the point
identified as the approximate transition location generally has the maximum boundary
layer displacement thickness [53]. Boundary layer momentum thickness has been found to
remain nearly constant upstream of the transition location, then abruptly change to have
a positive slope downstream [53].

Laminar-to-turbulent transition in the separated shear layer is initiated by the
amplification of background disturbances in the pressure and velocity fields within a band
of unstable frequencies [54]. As disturbances grow, they begin to interact. This can
lead to a secondary amplification of disturbances centered around subharmonics of the
primary frequency of disturbance amplification. Disturbance interactions eventually cause
the disturbance amplification rates to diminish to zero.

In the late stages of transition, shear layer roll-up has been observed in the separation
bubbles over flat plates and airfoils in direct numerical simulations [30–32, 51, 55–57] and
experiments [23,37,58,59]. The vortex passing frequency has been shown to correspond to
the central frequency of primary disturbance growth. Early numerical studies on separation
bubbles over flat plates showed that vortex roll-up resulted from a Kelvin-Helmholtz
instability of the separated shear layer [55]. This has been supported qualitatively by
the observation of Kelvin’s cat’s eye vortex patterns in separation bubble experiments on
a flat plate by Watmuff [23] and on an SD 7003 airfoil by Burgmann & Schröder [37]. Such
patterns are common to free shear layers for which transition is governed by a Kelvin-
Helmholtz instability mechanism [60].

Near the mean reattachment point, other coherent structures are observed. However,
studies of unsteady flow development near the mean reattachment location have shown
significant variations in flow phenomena with surface geometry and operating conditions.
Under certain conditions, the reattachment process is relatively steady, with rapid
breakdown to turbulence not accompanied by the shedding of large scale spanwise vortical
structures [32]. In other cases, turbulent shear layer reattachment is an unsteady
phenomenon, due to the shedding of large scale structures into the turbulent boundary
layer. This unsteadiness is observed in direct numerical simulations [55] and flow
visualization experiments [53] as a variation in the separation bubble height and length
with time, and is referred to as bubble flapping.
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Pauley et al. [55], based on a direct numerical simulation of the separation bubble
over a flat plate, concluded that bubble flapping resulted from the shedding of roll-up
vortices from the bubble. Other numerical studies on flat plates and airfoils have found
that, even when the background disturbances are too small for convective instability
to cause shear layer roll-up, separation bubble vortex shedding persists at a frequency
that does not necessarily correspond to the dominant frequency of the Kelvin-Helmholtz
instability [30, 31, 51, 56]. This difference between the shear layer instability frequency
and the bubble shedding frequency has been observed experimentally in a transitional
separation bubble forming behind a backward facing step [24]. Various explanations for
the occurrence of separation bubble flapping at frequencies other than that of the primary
disturbance amplification have been proposed. Based on a direct numerical simulation of
flow over a NACA 0012 airfoil at AOA = 5◦ and Rec = 5 × 104, Jones et al. [30] suggest
that bubble shedding can be self-sustained through an absolute instability of the shed
vortices to three-dimensional disturbances. They later proposed that wave packets, which
have developed though disturbance amplification in the separated shear layer, can undergo
acoustic scattering at the trailing edge of the airfoil and induce higher initial disturbance
amplitudes in the separated shear layer [31]. The upstream disturbance environment in
the shear layer has a particular frequency character determined by a frequency-dependent
receptivity of the shear layer at the leading edge, providing a possible explanation for why
bubble shedding was observed at a frequency of almost one-third of the central instability
frequency. Marxen & Rist [56], based on a direct numerical simulation of the separation
bubble on a flat plate, suggest that bubble shedding could be a transient effect of varying
levels of free-stream disturbances. They explain that the free-stream disturbance level
affects the transition location, and hence, the separation bubble height and length. The
separation bubble shape influences the upstream pressure distribution imposed on the
shear layer by the external irrotational flow, and as a result, the location of boundary
layer separation. Each of these factors also influence the dominant shear layer instability
frequency and disturbance amplification rates. Through this viscous-inviscid interaction,
the flow takes time to adjust to changes in the free-stream disturbance level. Bubble
flapping could therefore be caused by the constantly varying free-stream disturbance field
observed in actual flows, which would result in continuous changes in the bubble shape.
In other studies, it has been suggested that the observed self-sustained bubble shedding in
numerical simulations could be a result of insufficient solution convergence [51].

Recent experimental studies have examined bubble shedding and coherent structures
forming near the mean reattachment point in separation bubbles. For the separation
bubble forming on a flat plate with an imposed pressure gradient, Watmuff [23] observed
the center of shed vortices moving away from the surface into the higher speed free stream,
causing the formation of detached vortex loops with legs pointing upstream and towards
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the surface. Burgmann et al. [58] did not observe such structures in the separation bubble
of an SD 7003 airfoil at Rec = 2×104 and AOA = 4◦, leading them to conclude that surface
curvature has a significant effect on coherent structure development in the transition region.
They instead identified several common vortical structures which emerged through the
transition process, and further verified the existence of these structure at other Reynolds
numbers and incidence angles [37, 58, 59]. Vortex shedding from the separation bubble
was identified and, in some cycles, vortex pairing was observed, as is commonly seen in
free shear layer transition [60]. Spanwise vortices shed from the separation bubble were
observed to fragment into vortices with spanwise lengths on the order of 0.1c. It was
speculated that this fragmentation resulted from the variation in vorticity across the span.
These fragmented vortices were observed to develop a c-shaped structure, with legs directed
downstream and away from the surface. It was explained that momentum transfer from
the free stream towards the wall due to vortex circulation causes deceleration of the vortex
center, deforming the spanwise vortices into c-shaped vortex structures. These structures
had no spanwise regularity and were found to interact with each other. At a chord Reynolds
number of 6×104, the increased free-stream fluid entrainment caused the c-vortices to split
at the center, creating counter-rotating screwdriver vortices with greatest strength in the
streamwise direction [59]. Screwdriver vortices were seen to interact and form Λ-shaped
structures [37], though distinct from the regular Λ-vortex pattern typically observed in
boundary layer transition [24,61–63]. Just downstream of the mean reattachment location,
the large scale vortex structures burst, ejecting fluid away from the wall. Rapid breakdown
to small scale turbulence was observed just downstream of vortex bursting.

2.2 Stability Theory

Stability theory has provided many tools to help understand the onset of transition in
separated shear layers [64]. This section reviews some basic concepts of stability theory
and outlines some of the results obtained for transitional separation bubbles.

Linear stability theory (LST) provides a model for the amplification of small amplitude
disturbances in a laminar flow [33, 65–67]. This model is derived from the Navier-Stokes
equations under various simplifying assumptions. Velocity components are separated into
a mean base flow and time dependent fluctuation terms. The mean base flow is assumed
to be parallel. It is further assumed that the velocity fluctuations can be decomposed into
normal modes across a frequency spectrum. This is done by assuming that each disturbance
component develops as a traveling wave and that separate modes do not interact. Finally,
it is assumed that the disturbance amplitude is small, so that products of fluctuations in
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the equations can be neglected. This leads to the Orr-Sommerfeld equation [61]:

(U − ω/α)
(
v′′ − α2v

)
− U ′′v = − iUeδ

∗

αReδ∗

(
v′′′′ − 2α2v′′ + α4v

)
, (2.1)

where primes indicate differentiation with respect to y. For a separated shear layer, no-slip
and impermeability conditions are enforced on the velocity fluctuation components at the
wall. Furthermore, disturbances are assumed to decay to zero far from the wall [61]. These
conditions are expressed as,

v (0) = v (∞) = v′ (0) = v′ (∞) = 0. (2.2)

Equations 2.1 and 2.2 form an eigenvalue problem with v as the eigenfunction [33,65–67].
Non-trivial solutions can only be obtained for certain combinations of α and ω. The
problem can be solved by specifying one of these parameters and finding solutions for the
other. When α is selected, and set to a real value, the solution corresponds to temporal
amplification, with disturbance growth occurring for positive values of ωi. This type of
disturbance growth therefore corresponds to an absolute instability. When ω is selected,
and set to a real value, spatial disturbance amplification rates are computed, with negative
values of αi identifying disturbance growth. This formulation corresponds to convective
instabilities.

Viscosity, present in Eq. 2.1 through the Reynolds number, can have a stabilizing or
destabilizing effect on laminar flows [65]. For laminar boundary layers, no disturbance
amplification is predicted from Eqs. 2.1 and 2.2 in the limit of zero viscosity; however,
flow instability is predicted for finite Reynolds numbers [65]. For such flows, viscosity has
a strong destabilizing effect. In contrast, free shear layers show maximum amplification
in the limit of zero viscosity, with lower growth rates predicted when viscous effects are
accounted for [60,67]. Early linear stability calculations only considered the inviscid limit
to simplify the problem [65,66,68]. The simplified governing equation is referred to as the
Rayleigh equation [66]:

v′′ −
(

U ′′

U − ω/α + α2

)
v = 0. (2.3)

Since this equation is second order, only two boundary conditions can be imposed.
Typically, vertical velocity fluctuations are assumed to be zero at the wall and in the
free stream [66]:

v (0) = v (∞) = 0. (2.4)

The Rayleigh inflection point theorem states that it is a necessary, but not a sufficient
condition, that a velocity profile exhibiting inviscid temporal instability, have an inflection
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point [33]. Fjørtoft’s theorem further specifies that a necessary, but not a sufficient
condition, for a flow to be susceptible to inviscid temporal instability is that U ′′(U−Ui) < 0
somewhere on the profile [33]. Although these theorems do not have viscous or spatial
equivalents, the importance of the base profile inflection point on inviscid stability is
commonly used to distinguish inviscid instability from purely viscous mechanisms [60,67].

LST is the most commonly applied stability analysis tool employed to understand
measured transitional separation bubble development [22, 24–27, 29–32]. More advanced
stability analysis tools, such as secondary stability analysis and the parabolized stability
equations (PSE), have been applied in theoretical and numerical studies on transitional
separation bubble development [31,64,69–72].

Secondary stability analysis was developed to explain the spanwise periodicity,
exemplified by Λ-vortex structures, observed shortly downstream of the initial onset of
instability in attached boundary layer transition [61, 73]. This theory is similar to LST,
except the laminar base flow is modulated by the time varying instability waves computed
from the primary analysis, with amplitudes estimated from the free-stream disturbance
levels [67]. Similar to LST, a modal decomposition is assumed and non-linear fluctuation
terms are neglected [61, 74]. Secondary stability theory is considered a pseudo-non-linear
model because the modulated mean profile is taken into account [67].

The PSE are derived from the Navier-Stokes equations by separating the flow into
mean and fluctuating components [66, 67, 75, 76]. Fluctuations are decomposed into
normal modes, with a spatially dependent wave number. It is assumed that downstream
disturbance growth does not affect upstream development. The amplitude of fluctuations
are assumed to vary much more gradually in the streamwise direction than in the
vertical direction, simplifying the governing equations to a parabolic system [67]. These
assumptions inherently limit the applicability of the PSE to convectively unstable flows [75].
As compared to LST, the PSE allow non-linear terms to be included, a non-parallel
base flow to be analyzed, and upstream disturbance growth to be accounted for [75].
Furthermore, background turbulence character can be modeled through the inclusion of
forcing terms in the system of equations. However, solution of the PSE requires two
component base velocity profiles, not available from normal hot-wire measurements.

2.2.1 Stability of Separated Shear Layers

The stability of laminar separation bubbles was first examined by applying LST to
analytical velocity profiles selected to resemble separation bubble profiles [34, 77–79]. It
was found that the spatial growth rate spectrum was roughly bounded between those for
the Blasius boundary layer and a free shear layer, with a higher central frequency and
corresponding growth rate associated with the free shear layer [24, 78]. With increasing
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boundary layer shape factor, the shear layer thickens and the stability spectrum approaches
that of a free shear layer. As the shape factor decreases, viscous effects become stronger
and the growth rate spectrum approaches that of an attached boundary layer [24]. Thus,
inviscid stability analysis can provide accurate predictions for thick separation bubbles, but
viscous effects need to be accounted for in thinner bubbles [34]. Computed LST growth rate
spectra for approximate separation bubble profiles were used in various transition location
prediction algorithms [78,80]. These predictions often apply the eN method, in which the
growth rate is integrated in the streamwise direction, and transition is predicted where
the amplitude of disturbances have increased by a factor selected based on experimental
data [63]. Recent experimental and numerical investigations of transition in separation
bubbles show that these approaches can accurately predict the transition location [28].
Dovgal et al. [34] demonstrated that, for a particular family of approximate separation
bubble profiles, the linear growth of disturbances at the dominant frequency of instability
had maximum growth in the streamwise direction. Experiments on a separation bubble on a
flat plate by Lang et al. [25], in which disturbances with spanwise periodicity were imposed,
showed that two-dimensional growth dominated oblique wave development, supporting
the theoretical predictions of Dovgal et al. [34]. From experimental measurements on
separation bubbles forming behind backward facing steps, Dovgal et al. [34] concluded
that non-linear disturbance growth is not observed until disturbance amplitudes reach
approximately 1% of the free-stream velocity. Based on a comparison of the results of
a two-dimensional direct numerical simulation with linear stability analysis predictions,
Pauley et al. [55] and Lin & Pauley [57] concluded that an inviscid instability mechanism
dominated transition in the separation bubble on a flat plate.

Spatial linear stability analysis assumes convective instability of the flow. A number of
theoretical investigation have examined this assumption and concluded that, for separated
shear layers with maximum reverse flow speeds exceeding roughly 15 to 30% of the
free-stream velocity, the laminar shear layer can become absolutely unstable [64, 70, 71].
Rist et al. [54] compared instability growth in the separation bubble on a flat plate
computed from direct numerical simulation, LST predictions, and secondary stability
analysis. Consistent with the work of Dovgal et al. [34], they found that once primary
instability caused disturbances to reach amplitudes on the order of 1% of the free-stream
speed, non-linear development caused the growth of harmonic and subharmonic modes,
which were reasonably predicted by secondary stability analysis up to the saturation point
of linear growth. In contrast to attached boundary layer instability, in which secondary
amplification rates of ten times that of primary disturbance growth are predicted, they
found secondary amplification rates in the separated shear layer to be only twice that
of primary growth. As such, the secondary instability of separated shear layers is less
significant than that of attached boundary layers, and can be difficult to detect. Based
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on direct numerical simulation results, Rist et al. [54] determined that, at the streamwise
location where primary growth saturates, the growth of three-dimensional disturbances
through secondary instability is reduced significantly. Furthermore, up to this point,
the linear stability predictions accuracy matched the simulation prediction of disturbance
growth at the fundamental frequency.

Theofilis et al. [64] compared predictions of LST, solutions to the PSE, and results
from a direct numerical simulation of a separation bubble on a flat plate. They found
that the PSE solutions very closely matched direct numerical simulation results, and that
LST provided accurate predictions of primary disturbance growth. This suggests that
non-parallel flow effects do not significantly contribute to disturbance growth in separation
bubbles [30,64].

2.2.2 Approaches to Linear Stability Analysis of Measured
Separated Shear Layer Profiles

Beyond a purely theoretical study of separation bubble transition, LST has been applied to
understand measured separation bubble transition in a number of investigations of flow over
flat plates and low Reynolds number airfoils [22–32]. Despite neglecting three-dimensional
and non-linear interactions [54,73] as well as non-parallel flow effects [31,81], LST has been
shown to provide meaningful predictions for measured separation bubbles [24]. Linear
theory has been shown to accurately predict the two-dimensional fundamental growth
up to non-linear saturation [54]. Furthermore, a number of investigations have linked
linear Kelvin-Helmholtz wave growth to observed modal disturbance profiles, shear layer
roll-up, and separation bubble shedding [22–26, 37, 55]. When applied to normal hot-
wire measurements, linear stability analysis has a distinct advantage over more advanced
models, in that it only requires a single component velocity profile for the calculations.

Spatial linear stability analysis has been applied to measured separated shear layer
velocity profiles by Nishioka et al. [22] and Lang et al. [25] for flat plates and by LeBlanc
et al. [27] and Yarusevych et al. [26, 29] for airfoils operating at low Reynolds numbers.
In each of these investigations, the measured velocity profile was processed differently for
use in linear stability calculations. Nishioka et al. [22] devised a logistic series curve fit
which accurately matched the measured data. Yarusevych et al. [26,29] applied smoothing
spline fits to their velocity data. LeBlanc et al. [27] fit a modified reverse flow Falkner-Skan
profile to their data in order to estimate the boundary layer thickness shape factor, then
completed the stability calculations using the unmodified reverse flow Falkner-Skan profile
corresponding to that shape factor. Lang et al. [25] approximated the second derivative
of the velocity profile directly from high spatial resolution experimental data and used
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the data in the stability analysis without curve fitting. Other profile forms have been
employed in numerical studies of separation bubble stability. These include piecewise
sinusoidal functions [77], modified hyperbolic tangent and exponential forms [34,79], cubic
spline fits [30,31], as well as other modified reverse flow Falkner-Skan profiles [70].

Drazin & Reid [33] have noted that linear stability predictions for boundary layer
profiles at separation depend on the specific functional form of the velocity profile used in
the analysis. Furthermore, Dovgal et al. [34] compared stability predictions for reverse flow
Falkner-Skan profiles to similar modified hyperbolic tangent profiles and concluded that
LST eigenvalue spectra for separated shear layers are sensitive to the exact shape of the
profile. They warned that this could be important if experimental data is to be compared
to stability calculations. The wide variation in stability analysis approaches employed for
measured and computed separation bubble profiles warrants further examination of the
sensitivity of linear stability calculations to the method of analysis.

2.3 Influence of Experimental Setup

Experimental investigations of airfoil operation at low Reynolds numbers are challenging,
in part because of the high sensitivity of the flow to free-stream disturbances and
those generated by the experimental setup [3]. This can cause differences in measured
aerodynamic forces for matching flow parameters in different facilities [3]. In some
experiments, changes in the zero-lift angle of attack were observed with changing Reynolds
number [10]. Elements of the experimental setup that are known to influence flow
development are expected to have a pronounced effect on low Reynolds number airfoil
experiments due to the inherent sensitivity of this type of flow. The influence of three
aspects of the experimental setup will be assessed in this thesis: end plates, test section
walls, and intrusive measurement equipment. Background information on each of these
factors are provided in this section.

2.3.1 End Plates on Aerodynamic Models

End plates are commonly installed on aerodynamic models to mitigate three-dimensional
end effects [14]. A number of studies have been conducted to devise guidelines for end plate
design and spacing to produce flow near the center-span plane similar to that over a wide-
span model [11–14, 82]. Early parametric studies of end plate dimensions and position
focused specifically on the use of end plates on circular cylinder models; however, the
findings of these investigations have been applied as guidelines for other geometries [14].
It was found that, for models with a spanwise length to diameter ratio of thirty or greater,
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mean and fluctuating forces, as well as the mean base pressure measured on the center-
span plane, are representative of a wide-span model without end plates present [13,83]. For
cylinder models of lower length to diameter ratios, end plates are required to establish flow
conditions representative of a wide-span model on the center-span plane and should extend
at least 2.5 cylinder diameters upstream of the model and 4.5 diameters downstream [11].
The streamwise extent of the end plates should not appreciably exceed this recommendation
to limit boundary layer growth on the end plates and reduce the influence of this growth
on model wake development [12]. Fox & West [13] concluded that a minimum spacing of
seven cylinder diameters between the two end plates is required to obtain a base pressure
coefficient on the center-span plane matching that on a wide-span model. This spacing is
consistent with that determined by Szepessy & Bearman [84] based on measurements of
fluctuating lift and vortex shedding frequency.

Experimental studies on flow development over non-circular geometries have similarly
found that improved mean spanwise uniformity can be achieved by installing end plates
on these models [85]. Kubo et al. [14] studied the effect of end plate design on drag force
and base pressure on circular cylinders, flat plates, and rectangular cylinders of various
dimensions. Similar to the recommendations for a circular cylinder [11], they found that
the end plate diameter should be at least 8.5 times the height of the model projected onto
a streamwise normal plane [14]. Kubo et al. [14] recommend that the end plates extend at
least 4.28 model heights downstream, consistent with the value recommended for a circular
cylinder [82]. This estimate was derived from Kármán’s theory of vortex streets based on
the conclusion that the end plates should extend downstream of the model to the end
of the vortex formation region to prevent the high suction in this region from entraining
momentum from fluid passing between the end plate and the test section wall [14]. For
a circular cylinder, it was found that rectangular end plates produce flow on the center-
span plane most representative of that over a wide-span model [11]. However, results for
a square cylinder indicate that the orientation of rectangular end plates can affect surface
pressure distributions on non-circular models [82].

End plates have been used in a number of experimental studies on airfoils operating
at low Reynolds numbers [42,86–88]. Reported end plate dimensions for such experiments
appear to roughly follow the guidelines established for other geometries, as described
above [86–88]. A comparison of low Reynolds number lift coefficient measurements on
Wortmann FX63-137 airfoil models showed that consistent results could be obtained
between different facilities with different end plate mounting designs, model aspect ratios,
and measurement techniques [10]. However, this comparison revealed that differences
between measured lift coefficients could result if small gaps exist between the model and
the end plates [10]. Force balance measurements are sometimes conducted with gaps
between the model and end plates, isolating the model from the end plates so as to remove
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the end plate drag from the measurement [10, 15]. Particularly for wing models with
spanwise variation in cross section, force balance measurements are common. Pelletier
& Mueller [86] investigated the effects of end plates on force balance measurements on a
two-dimensional Eppler 61 airfoil model at chord Reynolds numbers between 4× 104 and
105. They demonstrated that because corner flows developing at the junction between the
end plate and the model can extend over a significant spanwise length at low Reynolds
numbers, the measured lift forces can be reduced by as much as 30% due to secondary
flows developing with end plates installed. They showed that the effect of corner flows
can be significantly reduced by measuring aerodynamic force over a central span section of
the airfoil. Further investigation is required to determine how end plates affect separation
bubble characteristics and laminar-to-turbulent transition in two-dimensional low Reynolds
number airfoil experiments.

2.3.2 Test Section Wall Interference

Wall interference is another aspect of experimental setup which is known to influence
experimental results [16]. Wall interference includes solid blockage, wake blockage,
boundary layer blockage, streamline displacement by the test section walls, as well as wall
and model boundary layer interaction [15, 20]. Blockage effects are the only consequences
of wall interference considered in this investigation. Solid blockage results from the partial
obstruction of the of the test section at the model location, and causes an increase in the
effective free-stream velocity over the model. Boundary layer blockage accounts for the
increase in free-stream velocity in the wind tunnel due to boundary layer growth on the
test section walls. Without a model present, the pressure decreases nearly linearly along
the length of the test section due to boundary layer growth [15]. This pressure gradient
induces a force on any model tested in the facility. Wake blockage identifies the effect of
test section confinement on wake development behind the model [20]. Conservation of mass
flow rate through the test section requires the mass flow rate in the free stream to increase
where there is a velocity deficit in the wake. This leads to a higher free-stream speed in the
confined test section than would be observed in an unconfined flow field. Wake blockage can
also limit wake growth. Generally, blockage increases measured drag coefficients, increases
wake vortex shedding frequencies, and reduces model surface pressure coefficients [89–92].

For solid area blockage ratios of less than 0.5% of the cross sectional area of the
test section, blockage effects are generally negligible [20, 93]. Constraints on model
instrumentation and wind tunnel dimensions often result in models of higher blockage
ratios, commonly between 1 and 10% [15]. For such higher blockage ratios, various data
correction methods exist to compensate for blockage [15, 17, 18]. These tools range from
simple correction factors incorporating correlations based on measurements or theory to
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more sophisticated techniques that combine measured wall pressures with potential flow
approximations [15]. However, aerodynamic forces on airfoils operating at low Reynolds
numbers are strongly linked to the characteristics of the separated flow region which
develops over the airfoil surface, and which is sensitive to the free-stream environment [9].
If wall interference influences the separated flow region development, size, or location,
simple post-test data correction tools may not accurately correct measured aerodynamic
forces. Furthermore, if wall interference alters the transition process, qualitative results
from studies on this phenomenon could be affected.

Performing experiments in specialized test sections is an alternative to post-test data
correction. Various test sections have been designed for this purpose [16, 19, 20]. The
objective in each of these test section designs is to produce a section of flow in the wind
tunnel that better resembles that in an unconfined and infinite flow field. Relatively simple
examples are facilities with fixed-wall, diverging test sections and ones in which boundary
layer suction is applied [15]. Ventilated test section are a common design for industrial wind
tunnels [20]. Such facilities incorporate slots or perforations to allow some flow through the
test section boundaries. This approach is a compromise between the high blockage created
by closed test sections and the excessive flow expansion in open test sections. More accurate
data can be obtained, and higher blockage ratio models can be tested, in facilities with two
adjustable walls. In such facilities, two of the test section walls can be contoured to reduce
interference [19]. This idea has been extended in the design of three-dimensional adaptive
test section facilities, employing eight segmented adjustable wall sections or deformable
rubber tube test sections [19]. From data obtained in such facilities, it has been concluded
that the effects of blockage on aerodynamic data from three-dimensional models could be
achieved with much simpler two adaptive-wall test sections [16]. Adaptive slotted test
sections combine ventilated and adaptive-wall test section concepts [20]. In these facilities,
closed longitudinal slots with adjustable depth are installed along all four walls of the test
section. This provides a simple way to adjust the test section cross sectional area in the
streamwise direction, and allows adjustment on all test section walls for three-dimensional
adaptation [20].

The experimental facility used in the present investigation was a two adaptive-wall
test section wind tunnel. Various algorithms have been developed for streamlining test
sections with two adaptive walls [94]. Two efficient methods commonly employed in
wall adaptation experiments are the FLEXWALL strategy [95] and the Wall Adaptation
Strategy (WAS) [94, 96]. In both strategies, the flow is divided into a real flow field in
the test section and imaginary flow fields elsewhere. Both strategies aim to determine
wall contours for which the measured pressure distribution along the wall matches that
of the imaginary potential flow field along the boundary. In a flow bounded by only the
upper and lower walls, and for which the walls are sufficiently removed from the rotational
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flow created by the model, this flow field would resemble unbounded flow development. In
practice, factors including finite test section length, boundary layer displacement from the
side walls of the test section, interaction of the model and the side wall boundary layers,
and experimental uncertainty, can cause discrepancies between the flow with streamlined
walls and that in an unbounded flow field. In the FLEXWALL strategy, the measured
wall pressure distributions are used to compute the imaginary potential flow fields [95].
The walls are adjusted and the calculations repeated, until the computed imaginary
flow field satisfies the impermeability condition at the wall. In the WAS, the imaginary
potential flow field is computed based on the known boundary contour coordinates, and the
computed pressure distribution along this boundary is compared to the measured pressure
distribution [16, 91, 94, 96]. The walls are adjusted until these distributions match. Russo
et al. [90] showed that measurements of pressure distributions and aerodynamic forces on
a NACA 0012 airfoil model at a Mach number of 0.4 obtained after applying each of these
two strategies were in agreement. In a recent study by Goodyer & Saquib [91], it was shown
that the WAS could be used to correct cylinder drag coefficients at up to 50% blockage,
and wake vortex shedding Strouhal numbers at up to 85% blockage.

2.3.3 Hot-Wire Measurements in Separation Bubbles

Hot-wire measurements are often used in the study of separation bubbles on wind
tunnel models because they provide high spatial resolution measurements, high frequency
response, and require only a relatively simple setup [22, 23, 26–29, 97]. However, this
measurement technique has several deficiencies. Of particular concern to low Reynolds
number airfoil experiments are the low speed measurement errors inherent to hot-wire data
and the influence of the intrusive probe and support equipment on flow development. It
should be noted that Laser Doppler anemometry and particle image velocimetry techniques
also suffer from low speed measurement errors near model surfaces [98].

Low speed and near surface hot-wire measurements can be affected by rectification
error [99], low speed calibration errors [23], error due to high mean vertical flow speed [99],
and enhanced conductive heat transfer to the model surface [100–102]. Rectification
error in hot-wire measurements results from the inability of the probe to resolve the
flow direction [99]. For mean flow speeds near zero, this leads to a higher mean speed
measurement and lower root-mean-square (RMS) speed measurement than in the physical
flow. Normal hot-wire probes are also unable to distinguish between flow in the streamwise
and vertical directions. At locations of high vertical speed, the mean vertical velocity
component increases the measured mean velocity and causes a higher contribution of the
vertical velocity fluctuations to the measured RMS velocity. Hot-wire measurements near a
solid surface can also be affected by enhanced conductive heat transfer across the thin fluid
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layer separating the high temperature wire element from the surface, causing an increase
in the measured mean velocity [100–102]. Correction methods have been developed for
conduction effects in attached boundary layers [100–102]; however, none of these corrections
have been adopted as a standard procedure [99] and their validity for separated shear layer
measurements has not been verified.

Research on more advanced hot-wire measurement techniques for separation bubbles
has shown that various tools can improve measurement accuracy in the reverse flow region.
Watmuff [23] demonstrated that by using a flying hot-wire technique as opposed to a
stationary probe, measurement error due to signal rectification and vertical flow can be
significantly reduced. Häggmark et al. [97] developed a measurement probe consisting of
a hot-wire in between two resistance wires, positioned parallel and at the same elevation
from the model. They showed that this probe could resolve the flow direction when used
for a sufficiently high mean speed, but indicated that the probe could not be used near the
separation point or for moderate to high turbulence intensities. They also indicated that
the probe cannot be used to measure high frequency velocity fluctuations. Furthermore,
both of these methods were used to measure the separation bubble on a flat plate and
would be much more difficult to employ on an airfoil model, due to surface curvature.

Positioning a hot-wire probe near the surface of a model can distort the flow field [103],
causing more significant measurement errors than due to low speed limitations of the
sensor. Brendel & Mueller [53] have noted changes in flow development in separation
bubbles over low Reynolds number airfoils due to the presence of a hot-wire probe. They
note that these effects are small when the angle of the probe to the surface is kept below
10◦. They further explored the errors due to probe positioning in the separation bubble
of a low Reynolds number airfoil by comparing hot-wire and laser Doppler anemometer
measurements on a Wortmann FX63-137 airfoil at Rec = 105 and for angles of attack of −5
and 10◦. They found that, for these flow conditions, the hot-wire probe did not significantly
affect the measured profile in the laminar portion of the separation bubble. Discrepancies
were observed between the transition and reattachment locations, and were attributed
to hot-wire errors rather than changes in flow development. A similar assessment of the
influence of a hot-wire probe on flow development for other airfoil geometries and angles of
attack could provide further verification of these findings. In both of the cases examined
by Brendel & Mueller [53], the separation bubble formed over the mid-to-aft chord portion
of the airfoil. It is of interest to examine a case in which the separation bubble forms near
the leading edge, because this occurs for flow conditions close to those at which the bubble
bursts, and therefore, the flow is likely to be more sensitive to the experimental conditions.
Investigating the effect of the hot-wire probe on disturbance development in the transition
region is also of interest.
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2.4 Surface Pressure Measurements with Embedded

Sensors

Surface pressure measurements have been used to gain insight into flow development
over various geometries. Willmarth [104] summarizes several investigations which have
considered the pressure fluctuations on the surface beneath turbulent boundary layers to
identify sources of noise and vibrations on aircraft. Theoretical work has shown that surface
pressure fluctuations depend on velocity fluctuations throughout a region of the flow field,
not just at a single point. Cross-power spectra of surface pressure signals have been used to
evaluate the convection and decay of wall pressure fluctuations in the flow field. This work
has also shown that the background sound field in testing facilities limits low frequency
measurements with embedded pressure sensors. Paterson et al. [105] used arrays of five
microphones embedded in the surface of NACA 0012 and NACA 0018 airfoil models to
investigate sources of noise generation at chord Reynolds numbers between 4 × 105 and
3 × 106. They showed that the propagation speed of surface pressure fluctuations could
be determined from a cross-correlation of microphone responses. They also showed that
the microphone signals could be used to identify whether the boundary layer is laminar or
turbulent, based on the relative magnitudes of pressure fluctuations in these regimes.

Surface pressure fluctuation measurements have been used in a number of studies on
separation bubble development [106–112]. Separation bubbles forming over blunt splitter
plates, splitter plates with fences, forward facing steps, backward facing steps, and in pipe
expansion sections show similar trends [106–112]. Upstream of separation, RMS pressure
fluctuations are typically very small. The RMS pressure begins to rise at the separation
point, and continues to increase over the region of mean pressure recovery. A maximum is
reached in the reattachment region, sightly upstream of the mean reattachment point, as
the turbulent shear layer moves towards the wall. The magnitude of this peak can differ
significantly between geometries [106, 107]. Streamwise pressure fluctuation amplitude
development shows no characteristic feature at the mean reattachment location. The
pressure fluctuation magnitude decays downstream of the RMS peak, as turbulent energy
diffuses away from the wall [106].

Investigations into the separation bubble forming on blunt splitter plates [111], splitter
plates with fences [107], forward facing steps [108], and backward facing steps [108–110]
show that surface pressure data exhibit significant energy content at the frequency
corresponding to spanwise vortical structures forming in the shear layer. In some
experiments, a second lower energy peak is observed, typically at a frequency of between
one-fifth and one-third that of the vortical structures, and is often attributed to bubble
flapping [107, 109, 111]. Based on surface pressure fluctuation measurements in the
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separation bubble that formed behind a backward facing step, Driver et al. [109] suggested
that the bubble flapping they observed, having an amplitude of 20% of the shear layer
thickness, resulted from a disordered process of vortex roll-up and pairing in the shear layer.
They further determined that the unsteadiness due to bubble flapping did not provide a
significant contribution to the overall turbulence intensity measured using surface pressure
sensors.

Convection speeds on the order of 50 to 60% of the free-stream velocity in separation
bubbles on blunt face splitter plates [111] and backward facing steps [108] have been
measured by analyzing cross-spectra and cross-correlations of measurements from pairs
of embedded pressure sensors. Farabee & Casarella [108] determined that the surface
pressure field was convected downstream in the separation bubble, despite the reverse flow
near the wall. Lee & Sung [110] computed the frequency wave number energy spectrum for
the pressure fluctuations on the surface beneath a separation bubble behind a backward
facing step using data from an array of thirty-two microphones. They identified a ridge in
the spectrum corresponding to the downstream convection speed determined by Farabee
& Casarella [108]. Hudy et al. [107] performed a similar analysis on surface pressure
measurements from an array of eighty microphones beneath the separation bubble formed
behind a fence on a splitter plate. They identified a second ridge in the upstream section
of the separation bubble, with an upstream convection speed of approximately 20% of the
free-stream speed. They suggested that the upstream convection of disturbances indicates
that an absolute instability may be responsible for bubble flapping on this geometry.

The experimental model used in the present investigation was designed by
Gerakopulos [35] to investigate the feasibility of embedded pressure sensor arrays
for real-time measurements of flow development over low Reynolds number airfoils.
Gerakopulos [35] concluded that measurements from embedded pressure sensors below
the separation bubble on a low Reynolds number airfoil agree qualitatively with those
obtained in the separation bubbles formed on other geometries [35]; the development
of disturbance fluctuations contained a characteristic maximum just upstream of the
reattachment location, a frequency band of amplified disturbances could be identified, and
surface pressure fluctuation convective speeds were approximately 50% of the edge velocity.
It was further noted that when separation occurs without subsequent reattachment, surface
pressure fluctuations have significantly lower amplitudes than when a separation bubble
forms, and that the RMS surface pressure distributions do not exhibit a characteristic
maximum along the streamwise coordinate.
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Chapter 3

Experimental Methodology

This investigation is concerned with the process of transition in the separated shear layer
over an airfoil at a low Reynolds number and with the influence of specific aspects of
the experimental setup on low Reynolds number airfoil experiments. Flow conditions to
be examined in detail were selected to (1) allow observation of both separation bubble
formation and flow transition without turbulent reattachment, (2) have as high a free-
stream dynamic pressure as possible to reduce measurement uncertainty, while not being
so high as to make smoke-wire flow visualization infeasible, (3) provide a wide range of
separation bubble dimensions, and (4) produce a relatively wide range of moderate blockage
ratios. Based on the surface pressure distributions on this model for a wide range of flow
conditions, presented in Ref. [39], a chord Reynolds number of 105 and angles of attack
of 0, 5, 10, and 15◦ were selected for this study.

This chapter describes the experiment, measurement and flow visualization techniques,
as well as the wall streamlining algorithm. The uncertainties in experimental conditions
and measured parameters are discussed and quantified in Appendix A.

3.1 Experimental Setup

Experiments were preformed in an adaptive-wall, open-return, suction-type wind tunnel at
the University of Waterloo. A diagram of the wind tunnel is provided in Fig. 3.1. A section
of aluminum honeycomb and four steel screens were installed upstream of the contraction
section during recent flow conditioning upgrades [92]. The contraction section has an area
contraction ratio of 9.55. For the experiments presented in this thesis, flow uniformity
at the streamwise location of the model was within ±0.6% and the maximum free-stream
turbulence intensity was less than 0.3%.
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Figure 3.1: University of Waterloo adaptive-wall wind tunnel.

The test section has two rigid side walls and adjustable top and bottom walls that
can be contoured along their entire 6.0 m lengths using 48 rack and pinion type jacks
attached to each wall. The jacks have a finer spacing of 100 mm over a 2.25 m section
around the model than in the rest of the test section, where the jack spacing is 150 mm.
This design allows for more refined adjustment of wall contours around the model, where
flow streamline curvature can be significant. The linear resolution of the scales for setting
the jacks is 0.1 mm, and the uncertainty in setting the jacks is estimated to be less than
1 mm [113]. Inflatable rubber seals lining the edges of the adjustable walls and in contact
with the rigid side walls were charged with air at a pressure of 150 kPa during experiments,
as recommended by Sumner [113], to prevent air leakage into the wind tunnel through
these interfaces. For the purpose of flow visualization, one of the rigid side walls is made of
particle board painted a matte black, whereas the other is made of clear cast acrylic [92].

Measurements are presented for geometrically straight wall (GSW), aerodynamically
straight wall (ASW), and streamlined wall (SLW) configurations. In the GSW
configuration, the walls are straight and parallel. The test section has a width of 0.61 m
and a height of 0.89 m in this configuration. In the ASW configuration, the wall contours
are set to compensate for boundary layer growth on the test section walls, producing a
constant flow speed along the central streamwise axis of an empty test section at the desired
chord Reynolds number. The SLW configuration is the final adapted configuration, which
mitigates solid and wake blockage for a particular geometry and set of flow conditions,
producing a region of flow that closely matches that expected in an unbounded flow field.

Static pressure measurements on the adjustable walls, required for wall adaptation,
were performed using seventy static pressure taps installed on both the top and bottom
walls. The spacing between pressure taps is 50 mm over a 2.25 m section near the model
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and 150 mm elsewhere, providing higher resolution where significant pressure variation
is expected [92]. Static pressure taps are 1 mm in diameter and were drilled normal to
the wall. Each static pressure tap is connected to a Scanivalve mechanical multiplexer by
1.6 mm diameter flexible tubing.

In wall adaptation studies, the definition of free-stream velocity is important because
the free-stream speed in an empty test section at the model location for a fixed fan voltage
will change when the wall contours are adjusted. Appropriately defining the free-stream
speed ensures that a comparison of measurements in different wall configurations are
meaningful and that the converged wall shapes apply to the correct chord Reynolds number.
In the present investigation, the free-stream velocity was set based on the static pressure
difference measured across the inlet contraction section; by this procedure, the mass flow
rate through the wind tunnel is fixed, independent of the wall configuration and angle
of attack, for a given value of the pressure difference across the contraction section [98].
The free-stream velocity was set for experiments in the ASW, SLW, and intermediate wall
configurations in the wall streamlining procedure, based on the pressure difference across
the contraction section required to obtain the desired chord Reynolds number in an empty
test section set in the ASW configuration. The free-stream speed in the GSW configuration
was set to obtain the desired chord Reynolds number at the model location in an empty
test section with the walls set in the GSW configuration. Setting the free-stream speed in
this way allows the results for the GSW, ASW, and SLW configurations to be compared to
quantify the error due to blockage expected for measurements in a fixed-wall test section.
The pressure difference across the contraction section was measured based on the average
pressure from three static pressure taps of 1 mm diameter located on the top and the
two side walls of the contraction section on the large and small area sides. The pressure
taps were connected by 1.6 mm flexible tubing to an inclined manometer with a resolution
of 1.25 Pa. Free-stream speed was determined from the pressure difference across the
contraction section using a measured relationship between the pressure difference across
the contraction and the free-stream speed at the model location. The total uncertainty in
setting the free-stream velocity was estimated to be less than 2.5%.

3.1.1 NACA 0018 Airfoil Model

Experiments were performed on a NACA 0018 airfoil model with a 200 mm chord length
and a 600 mm span. A diagram of the model is provided in Fig. 3.2. The aluminum
model was polished by the procedure described by Gerakopulos [35] to ensure a smooth
and uniform surface finish, and was subsequently anodized. A total of ninety-five static
pressure taps of 0.4 mm diameter were distributed along the model surface. Sixty-five
pressure taps were distributed along the airfoil chord on the center-span plane and the
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remainder formed three spanwise rows on the upper surface of the airfoil at streamwise
locations of x/c = 0.15, 0.30, and 0.60. The static pressure taps were connected to
Scanivalve mechanical multiplexers by 0.8 mm diameter flexible tubing. Surface pressure
fluctuation measurements were obtained using twenty-five microphones installed below the
upper surface of the airfoil under 0.8 mm diameter holes. Twenty-two microphones were
distributed along the chord and four formed a spanwise row. Further details on the model
construction and instrumentation, as well as technical drawings, can be found in Ref. [35].

The angle of attack of the model was set using a digital protractor with an angular
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resolution of 0.1◦. The model axis of rotation was located 0.3c downstream of the leading
edge and 10c downstream of the contraction. This provides a more than sufficient length
of the adaptive test section upstream and downstream of the model for wall adaptation
studies [89, 114].

The two coordinate systems used in data presentation throughout this thesis are defined
with respect to the airfoil model in Fig. 3.3.

3.1.2 End Plate Design

End caps and end plates were used in different configurations for these experiments. The
end caps are rubber inserts which follow the airfoil profile and fill the 5 mm gaps between
the model and the side walls. The end plates were designed based on the recommendations
of several prior studies [11–14, 82] and the designs used in other low Reynolds number
airfoil investigations [42, 86–88]. The end plate design is illustrated in Fig. 3.2. Circular
end plates extending 90 mm upstream of the leading edge and 160 mm downstream of the
trailing edge were selected. For the purpose of flow visualization, one end plate is made of
clear Lexan and the other of aluminum painted a matte black. The outer circumference
of each end plate has a sharp 30◦ edge (Fig. 3.2). At zero angle of attack, the end plates
add an additional 1.1% blockage to the model. As illustrated in Fig. 3.2, the end plates
are designed to clamp onto the airfoil as opposed to the model axle. This allowed the
same airfoil model to be used in a study on the effect of the spanwise spacing between end
plates, and ensured that the model aspect ratio, b/c, could be varied without changing the
solid blockage ratio, B. Further details on the end plate design considerations as well as
technical drawings are provided in Appendix B.

3.2 Measurement Techniques

Three quantitative measurement techniques were employed in this investigation: static
pressure measurements using digital pressure transducers, velocity measurements using
hot-wire sensors, and surface pressure fluctuation measurements using microphones
embedded in the upper surface of the model. Measurement procedures are described
in this section, with a more detailed discussion of measurement uncertainty provided in
Appendix A.
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3.2.1 Static Pressure Measurements

For all differential static pressure measurements, the reference pressure was that measured
at a wall pressure tap upstream of the adaptive section. Wall and model static pressure
taps were connected through four Scanivalve mechanical multiplexers to a Lucas Schaevitz
P3061-2WD pressure transducer. Pneumatic and electrical connection schematics for this
system are provided in Appendix C. The mechanical Scanivalve system was renovated
and installed to replace the Scanivalve digital pressure scanners (ZOC33 modules)
which have been used in recent experiments conducted in this facility [35, 92]. The
system was installed to reduce the overall uncertainty in static pressure measurements
by (1) employing a transducer with a narrower operating range and a lower absolute
uncertainty, (2) performing measurements at each location using the same sensor, to reduce
the compounded uncertainty in computed differences due to calibration and zero pressure
voltage offset uncertainty, and (3) reducing the zero pressure voltage offset variation with
temperature over the duration of an experiment. These refinements were necessary for the
relatively low wall pressures to be measured in the present investigation compared to other
recent experiments in the adaptive-wall wind tunnel at the University of Waterloo [35,92].

The Lucas Schaevitz P3061-2WD pressure transducer had a full scale range of 500 Pa
and provided a ±5 V output which was measured using a National Instruments PCI-
6259 data acquisition card. The pressure transducer was calibrated against two inclined
manometers. For pressures of less than 62.5 Pa, a manometer with a resolution of 1.25 Pa
was used, whereas for higher pressures, a manometer with a resolution of 2.5 Pa was used.
Voltage measurements were adjusted by the difference between the calibration zero pressure
voltage offset and that measured before each experiment to compensate for changes in the
voltage response with ambient temperature [98]. A sixty second delay between switching
to the first pressure tap and acquiring pressure data ensured sufficient time for the line
pressure to stabilize. Subsequent changes between static pressure taps were followed by a
thirty second delay. These times were determined to be sufficient based on 200 s samples
of each pressure tap on the model and walls in the sequence of a standard measurement
routine. Based on the calculations summarized in Appendix A, the uncertainty in static
pressure measurements is estimated to be less than 1.6% of the dynamic pressure.

3.2.2 Velocity Measurements

Velocity measurements were preformed in the shear layer on the upper surface of the
airfoil and in the airfoil wake. Near surface measurements were performed using a Dantec
55P15 normal boundary layer type hot-wire probe, angled at 7◦ to the model surface, in
accordance with the recommendations of Brendel & Mueller [53]. Wake measurements were
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preformed using a Dantec 55P61 cross-wire probe. All hot-wire sensors were operated by
Dantec 56C17 constant temperature anemometer bridges. Hot-wire bridge output voltages
were digitized using National Instruments PCI-4472 and PCI-6259 data acquisition cards
for boundary layer and wake measurements, respectively.

Hot-wire sensors were calibrated using a Pitot-static tube positioned at the same
streamwise location, upstream of the model and 10 mm from each hot-wire probe. An
inclined manometer with a minor division of 1.25 Pa was used to measure the pressure
difference between the stagnation and static ports on the Pitot-static tube. A fifth order
polynomial fit to the voltage response of the hot-wire was used to interpolate velocity data
between calibration points [115]. Based on the method employed by Watmuff [23] for hot-
wire measurements in a separation bubble, the zero velocity voltage used in the calibration
was taken as the absolute minimum voltage measured over the sample duration with the
wind tunnel off.

An automated three-axis traversing mechanism, described in Ref. [116] and illustrated
in Fig. 3.4, was used to position the hot-wire probe in the flow, with an estimated
uncertainty in traverse movements of ±0.05 mm. The hot-wire probe extended 500 mm
upstream of the traverse. The traversing mechanism produced a blockage of about 4.5%
of the nominal test section area.

For boundary layer measurements, the distance between the hot-wire probe and the
model surface was determined optically using a Nikon D300 camera equipped with a Nikon
SB-600 speedlight and a Nikon UV-Nikkor 105 mm f/4.5 macro lens. The uncertainty in
probe positioning is estimated to be less than ±0.05 mm.

Boundary layer profile measurements were acquired at a sample rate of 5000 Hz for
twenty-six seconds, with a four second delay before measuring after changing the probe
position. Velocity measurements for boundary layer and wake velocity energy spectra
were acquired at 5000 Hz for 420 s. Wake spectra were measured at X/c = 2.7 at the
Y/c location of highest turbulence intensity, as determined from measured wake profiles
not presented in this thesis. Based on the discussion in Appendix A, the uncertainty in
hot-wire measurements was estimated to be less than 5%.

3.2.3 Microphone Measurements

Surface pressure fluctuations were measured using an array of embedded microphones,
designed and tested by Gerakopulos [35]. Details on the microphone array design, technical
drawings, calibration procedures, and microphone frequency response curves are available
in Ref. [35]. Important features of the microphone array are summarized here.

The microphone array consists of twenty-five embedded Panasonic WM-62C omni-
directional back electret condenser microphones, distributed as shown in Fig. 3.2. The
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(a) (b)

Figure 3.4: Hot-wire positioning traverse: (a) isometric view and (b) view from upstream
with GSW test section boundaries outlined.

microphones were installed below and concentric with 0.8 mm diameter holes in the upper
surface of the airfoil, in contact with the inner surface of the 1 mm thick airfoil skin. The
hole diameter was selected to ensure that the Helmholtz resonance frequency was well
above the frequency range of pressure fluctuations observed during experiments on this
model [35].

Output voltage signals from each microphone were amplified by Linear Technology low-
noise and high-speed precision dual operational amplifiers (LT 1120). The voltage signal
was carried to the data acquisition system by a 1 m Belden RG-178 coaxial cable and a
5 m Belden RG-174 mini-coaxial cable, connected by snap fit subminiature-B connectors.
Simultaneous acquisition of up to eight voltage signals is accomplished using a 24 bit
National Instruments PCI-4472 data acquisition card.

Before installation in the airfoil model, each microphone was calibrated in an anechoic
chamber designed and built by McPhee [117]. The resulting frequency response and
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sensitivity constants are provided by Gerakopulos [35]. A nearly constant voltage response
with frequency was obtained between 100 Hz and 2 kHz, defining the usable range of
the microphone array. Surface pressure spectra and RMS pressure were obtained from
microphone measurements acquired at 40 kHz for twenty-six seconds, and low-pass filtered
below 2.5 kHz.

3.3 Wall Adaptation

Wall streamlining was performed to mitigate blockage effects on measurements of shear
layer development over the airfoil model. Furthermore, measurements in the GSW, ASW,
and SLW configurations were compared to assess the influence of blockage on low Reynolds
number airfoil experiments. Wall streamlining was performed using the Wall Adaptation
Strategy (WAS) of Judd et al. [96]. The WAS is an iterative procedure by which wall
contours are determined that provide measured wall pressure distributions matching those
obtained from inviscid flow solutions over the boundary contours. A MATLAB program
was developed to perform WAS calculations for this facility, and has been used for wall
streamlining calculations in this investigation. The WAS is outlined in this section, and
details are provided in Appendix D.

Figure 3.5 illustrates the basic concept of the WAS. In the WAS, the flow field is
divided into three sections by boundary contours. The boundary contours are defined as
the wall contours, offset by the difference between the ASW and GSW wall displacements.
The section of flow between the top and bottom boundary contours is the real flow field,
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Figure 3.5: Illustration of the WAS concept.
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and can be measured experimentally. Outside of the boundary contours are the upper
and lower imaginary flow fields, which are the potential flow solutions for flow over the
boundary contours. If the top and bottom walls are sufficiently removed from rotational
flow created by the model, and thin boundary layer approximations apply to the top and
bottom test section wall boundary layers, then when the imaginary and real flow fields
match along the boundary contours, the real flow field approximates that in an unbounded
flow. Differences between the flow field in the test section and that which would occur
under unconfined conditions may still result from the finite test section length, streamline
displacement by the side walls, and differences between the actual and computed wall
displacement thickness due to model induced pressure gradients.

In the present investigation, the test section was set in the ASW configuration for
the first iteration of the WAS. ASW contours were computed assuming 1/7th power law
turbulent boundary layer growth from a virtual origin determined from boundary layer
measurements in Ref. [113]. The validity of this virtual origin and 1/7th power law
boundary layer growth, for a chord Reynolds number of 105, were verified by measuring
eight boundary layer profiles on the side walls. In order to achieve a constant free-stream
velocity in an empty test section, the ASW wall displacements need to accommodate
the total effective flow area reduction caused by boundary layer growth on all four test
section walls. This is accomplished by adjusting computed displacement thicknesses by a
measured scaling factor to compensate for side wall boundary layer growth. For the test
section configuration used in the present investigation, this scaling factor was determined
by Sumner [113], and recently verified by Bishop [92], to be 2.72.

At the start of each iteration of the WAS, the static pressure taps distributed along
the center-span of the top and bottom walls are used to measure the pressure distribution
along the boundary contour. Continuity is established between the measured flow field
and the imaginary flow fields by imposing imaginary distributed vorticity sources along
the boundary contours (Fig. 3.5). This creates vertical velocity components through the
boundary contours. The SLW configuration can therefore be equivalently defined as the
wall shape for which the imaginary and real pressure distributions along the boundary
contour match, the vorticity distribution becomes zero, or the vertical velocity through the
boundary contour becomes zero.

At each streamwise location, the change in wall contour is determined by a small wall
slope approximation to eliminate the vertical velocity component at each location along
the boundary contour. Because estimated wall movements do not account for changes in
the real flow field created by the movement of the opposite wall, wall movements tend
to overshoot the SLW contours due to a one-dimensional continuity effect on the free-
stream speed [94]. To prevent algorithm divergence, wall movements are adjusted by an
empirically selected scaling factor, taken to be 0.8 based on the recommendations of Wolf &
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Goodyer [94]. The effect that moving one wall has on the real flow field over the other wall
is partially compensated for by an empirically selected coupling factor, which transfers
a portion of the movement of each wall onto the other. Based on a parametric study
discussed by Wolf & Goodyer [94], which explored the effect of the coupling factor on the
WAS convergence rate, a coupling factor of 0.35 was selected for the present investigation.

Imaginary flow field estimates for the new wall contours can be determined by potential
flow solutions for flow over the boundary contours. In this investigation, the imaginary flow
field was determined from potential flow theory by modeling each boundary contour as one
side of a symmetric body with a uniform flow upstream [91,118]. The imaginary flow field
was computed by finding the strengths of a series of potential flow sources, distributed
along the centerline of the body, such that a streamline coinciding with the boundary
contour was produced by superposition of the flow fields created by each source.

A third order polynomial spline for the wall shape over a 1 m section at the downstream
end of the test section is used to produce a smooth transition between the computed
wall shapes and the fixed wall diffuser section. The walls are then set to the computed
contours, wall pressure measurements are acquired, and the next set of wall contours are
computed. Various convergence criteria can be used to decide when the SLW configuration
is determined to within the experimental uncertainty [19]. In this investigation, the wall
shapes were considered to be converged once that predicted wall movements were less than
the uncertainty in setting the wall shapes, i.e., less than 1 mm.

The original formulation of the WAS employed an approximate method to determine
the imaginary flow field, instead of a potential flow solution, in order to improve the speed
of wall contour iterations [96]. This approximate method is described in Appendix D.
Since previous studies in this facility employed the original method for computing the
imaginary velocity along the boundary contour [92, 113], converged wall shapes were
compared from both methods to ensure the reliability of the results. As discussed in
Appendix E, differences between the SLW configurations determined from the original
velocity field estimation method and potential flow calculations were on the order of the
uncertainty in setting the wall contours.

3.4 Flow Visualization

Smoke-wire flow visualization was used to gain insight into the overall flow field
development. The smoke-wire flow visualization setup was designed based on the
recommendations of Yarusevych et al. [119]. A sketch of the setup is presented in Fig. 3.6.
It consisted of a 0.1 mm diameter 304 stainless steel wire suspended at a spanwise location
approximately 50 mm towards the acrylic side wall from the center-span plane and 50 mm
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Figure 3.6: Sketch of the smoke-wire flow visualization setup (not to scale).

upstream of the leading edge of the airfoil at zero angle of attack. One end of the wire
was rigidly fixed to the upper wall of the wind tunnel while the other end was attached to
a weight and a spring. The weight and spring were used to maintain tension and reduce
spanwise oscillations of the wire. A 70% glycol in water mixture was selected as the smoke
generating fluid, following a comparison of various smoke fluids, including motor oils, model
train smoke fluid, baby oil, and other glycol in water mixtures. This fluid was applied to
the wire with a Q-tip, and a variable alternating current transformer was used to apply
approximately 85 V across the 0.7 m long wire to evaporate the fluid and generate smoke.
The smoke was illuminated with a Nikon SB-600 speedlight, positioned as shown in Fig 3.6.
A specially designed snoot was installed on the speedlight to reduce illumination of the
particle board wall and glare on the acrylic wall.

Flow visualization photographs were obtained using a Nikon D300 digital camera with
a Nikon 18-70 mm f/3.5-4.5 Nikkor AF-S DX lens. The camera was operated in an eight
frame-per-second continuous shooting mode. A Cactus PT-04 radio frequency trigger
and receiver pair was wired together and used to synchronize the off-camera flash to the
shutter.
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Chapter 4

Sensitivity of Linear Stability
Analysis of Separated Shear Layers

In this chapter, the sensitivity of spatial linear stability analysis of measured separated
shear layer profiles is explored. Linear stability analysis involves numerically solving the
Orr-Sommerfeld equation (Eq. 2.1) or the Rayleigh equation (Eq. 2.3) for a particular base
velocity profile, U(y). When the velocity profile is determined from experimental data, the
approach to processing that profile for use in stability calculations can affect the results. In
this investigation, two general categories of approaches are considered: (1) directly using
experimental data in the differential equation and (2) solving the differential equation
for a curve fit to experimental data. When the measured profile is directly used in the
stability equation, the numerical solution method can affect the results due to the relatively
low spatial resolution of measured profiles. For this reason, the sensitivity of solutions
obtained by various numerical methods are compared for cases in which stability analysis
is performed directly on the measured velocity profile. When the velocity profile used in the
stability calculations is obtained by curve fitting experimental data, the spatial resolution
of the profile can be increased indefinitely to obtain a grid independent solution. For such
an approach, any reliable numerical solution method will yield the same result for a given
curve fit. However, the solution obtained can be sensitive to both the type of curve fit
employed and experimental data scatter [34]. Both of these sensitivities will be explored
for approaches in which a curve fit is applied to the measured velocity profile.

The following methodology is employed to compare the stability predictions obtained
using the various numerical solution methods and velocity profile processing approaches.
First, a simulated velocity profile is analyzed to isolate the effects of experimental data
scatter from variability in stability predictions due to the choice of profile processing
approach and solution method. For this purpose, a curve fit determined by Nishioka et
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al. [22] for a velocity profile measured in the separated shear layer that formed over a flat
plate airfoil at AOA = 8◦ and x/c = 0.027 is selected. The profile is defined as follows [22]:

U

U∞
= 1− G(y)

G(0)
, (4.1)

where,

G(y) =
−0.260

1 + e2(y+0.2)
+

1.692

[1 + 0.2e5.5(y−1.8)]
5 +

0.405

[1 + 0.2e8(y−1.8)]
5 +

0.183

[1 + 0.2e2(y−3.2)]
0.125 . (4.2)

The shape of this profile is common to separated shear layers forming over airfoils operating
at low Reynolds numbers [23,25–27,33,97]. The curve fit was selected by Nishioka et al. [22]
to facilitate inviscid stability analysis and accurately represents the measured velocity
profile [22]. Discrete data points on this curve fit, with a constant ∆y/δ∗ spacing are used
to simulate a measured velocity profile without data scatter. Grid independent solutions
to the Rayleigh and Orr-Sommerfeld equations for this curve fit were obtained, and are
referred to as reference solutions in subsequent discussion.

The second basis for comparison of the stability predictions obtained using various
solution methods and velocity profile processing approaches is the susceptibility of these
predictions to the velocity profile data scatter inherent in experimental measurements. To
model data scatter, Gaussian noise with a second standard deviation of 2.5% of the free-
stream velocity is imposed on the simulated velocity profile described above. This level of
data scatter was found to approximate an upper bound on the data scatter observed in
the separated shear layer measurements from Refs. [23], [25], [26], [27], [33], and [97].

Finally, the solution methods and velocity profile processing approaches are evaluated
based on stability predictions for measured separated shear layer profiles presented in
previous studies.

The above methodology is applied separately in Sections 4.2, 4.3, and 4.4 for
respectively solving the Rayleigh equation directly using experimental data, the Rayleigh
equation using a curve fit to experimental data, and the Orr-Sommerfeld equation.

4.1 Numerical Methods

Several numerical methods are available to solve Eq. 2.3. Three methods are considered in
this investigation for use when experimental data is analyzed without curve fitting:

1. a finite difference (FD) method,
2. a piecewise linear velocity profile approximation (PWL) method, and
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3. a Runge-Kutta (RK) integration method.
In the FD method, the derivatives in Eq. 2.3 are approximated using second order
central difference formulas, leading to an algebraic eigenvalue problem for each disturbance
frequency [33,120]; the resulting system of equations can be solved using a linear companion
matrix method [120, 121]. In the PWL method, the velocity profile in Eq. 2.3 is
approximated as a set of linear segments; enforcing continuity of the pressure field and the
wall-normal velocity field leads to an algebraic eigenvalue problem for each disturbance
frequency, which can be solved using a root-finding algorithm [33, 66, 67]. In the RK
method, Eq. 2.3 is written as an equivalent system of first order differential equations. For
each disturbance frequency, the equations are numerically integrated from the free stream
to the wall; the eigenvalue is determined by a shooting procedure to satisfy the boundary
condition at the wall [33,66,67]. Both second order and fourth order RK formulations were
considered in this investigation. For a velocity profile of sufficiently high spatial resolution,
each of the above solution methods converge to the same eigenvalue spectrum. However,
these solution methods will be compared based on their predictions for the relatively low
spatial resolution typical of measured separated shear layer profiles.

Each of the methods described above has specific advantages. The FD method can be
used to solve for the eigenvalues directly, without applying a shooting method, avoiding
numerical sensitivity to the initial value selected in the root-finding procedure. The PWL
method does not require the calculation of U ′′, which is advantageous because experimental
data scatter is compounded in computing U ′′. The RK method is more efficient than the
FD method when high spectral resolution is desired, and is less sensitive to the initial
eigenvalue estimates used in the shooting procedure than the PWL method.

The RK method can be applied to different equivalent first order systems derived from
the Rayleigh equation. Two formulations are considered here, one in terms of vertical and
streamwise velocity fluctuations and the other in terms of vertical velocity and pressure
fluctuations. Unless otherwise specified, the RK method will refer to the more common
approach, in which integration is performed to obtain the vertical and streamwise velocity
fluctuation profiles [122]. In this formulation, the second derivative of the base velocity
profile is required, and is computed using a second order central difference approximation
for the interior points, and first order forward and backward difference formulas at the lower
and upper domain boundaries, respectively. Since experimental data scatter is amplified
in computing U ′′, it has been suggested that the alternative system of first order equations
for vertical velocity and pressure fluctuations, which does not contain a U ′′ term, could
provide solutions less sensitive to experimental data scatter [123]. The performance of
an RK method using this alternative formulation is discussed briefly in Section 4.2, with
supporting results and discussion presented in Appendix F.
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When curve fitting is employed to obtain a high spatial resolution base velocity profile,
each of the solution methods will provide effectively the same grid independent results.
Only fourth order RK integration of the vertical and streamwise velocity fluctuation
equations is employed when the Rayleigh equation is solved for a curve fit to the
experimental data. This method is considered to provide numerically exact solutions to
the Rayleigh equation [120].

For reasons explained in Section 4.4, only approaches employing curve fitting of the
base velocity profile have been considered for solving the Orr-Sommerfeld equation. The
Orr-Sommerfeld equation is solved in two steps. First, the solution is computed using a
Chebyshev collocation method [66] with a linear companion matrix method to determine
the eigenvalues [120]. Higher resolution is then achieved by using the eigenvalue spectrum
computed from the Chebyshev collocation method to initiate the shooting procedure in a
compound matrix method solution employing fourth order Runge-Kutta integration [67].

MATLAB solvers for the Rayleigh and Orr-Sommerfeld equations were written based on
each of the solution methods discussed above, and used to generate the stability predictions
presented in this thesis. Further details on each of the solution methods are provided in
Appendix F.

4.2 Rayleigh Equation Solutions using Experimental

Profiles Directly

The FD, PWL, and RK methods, applied directly to discrete velocity data, are first
compared based on their predictions for a profile without experimental data scatter. For
this purpose, a simulated discrete velocity profile generated from the continuous profile of
Eqs. 4.1 and 4.2 was considered. The growth rate spectrum predictions for velocity profiles
of various spatial resolutions are presented in Fig. 4.1. It should be noted that, for the
profile of Nishioka et al. [22], a data point spacing of ∆y/δ∗ = 5.6 × 10−2 corresponds
to ∆y = 0.1 mm, which is a relatively high spatial resolution for separated shear layer
measurements [22,23,26,27,54,97]. Figure 4.1 shows that all three solution methods provide
similar eigenvalue predictions at each level of data density, and that they each converge to
the reference solution for a sufficiently high spatial resolution. With a profile point spacing
of ∆y/δ∗ = 5.6×10−2, the maximum disturbance growth rate and corresponding frequency
are predicted to within 4% of the reference solution.

For disturbance frequencies at which the eigenvalue is accurately predicted, the three
solution methods applied to a discrete velocity profile with a point spacing of ∆y/δ∗ =
5.6× 10−2 provide accurate estimates of the streamwise velocity fluctuation profiles. This
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Figure 4.1: Comparison of Rayleigh equation eigenvalue spectrum predictions for the
simulated profile, computed using various solution methods directly on discrete profiles.

is illustrated by the streamwise velocity fluctuation amplitude and phase profile plots
shown in Figs. 4.2b and 4.2c. The profiles pertain to the predicted frequency of maximum
disturbance growth rate from the reference solution (ωδ∗/Ue = 1.17). Figure 4.2 shows that,
as compared to the PWL method, the FD and second order RK methods more accurately
predict the fluctuation amplitude and phase, particularly in the range 0.75 . y/δ∗ . 1.25.
The results presented in Figs. 4.1 and 4.2 demonstrate that the three solution methods
applied directly to the simulated velocity data without data scatter and with sufficiently
high spatial resolution provide predictions similar to the reference solution.

In practice, experimental data scatter contaminates measured velocity profiles. The
effect of velocity profile data scatter on stability predictions is modeled by imposing
Gaussian noise with a second standard deviation of 2.5% of the free-stream velocity on the
simulated velocity profile with a point spacing of ∆y/δ∗ = 5.6×10−2. One hundred profiles
were generated in this way and stability analysis was subsequently performed directly on
each profile. The impact of the simulated data scatter on the stability spectrum is depicted
in Fig. 4.3. The FD, PWL, and RK methods show the greatest spectral deviation due to
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Figure 4.2: Comparison of Rayleigh equation streamwise velocity fluctuation profile
predictions at ωδ∗/Ue = 1.17 for the simulated profile of ∆y/δ∗ = 5.6 × 10−2, computed
using various solution methods directly on discrete profiles. Presented are the (a) mean
velocity profile curve fit of Nishioka et al. [22], (b) streamwise velocity fluctuation
amplitude, and (c) streamwise velocity fluctuation phase.

data scatter for ωδ∗/Ue & 1.0. For all three solution methods, the maximum disturbance
growth rate and corresponding frequency are predicted to within 7.5% and 15% bands,
respectively.

A few notes on the performance of other numerical methods for solving the Rayleigh
equation should be made before continuing to examine the accuracy of the FD, PWL, and
RK methods. The Chebyshev collocation method is a common and accurate tool used
to solve the Rayleigh equation [66, 120, 121, 124–131]. For numerical accuracy, collocation
points are usually selected as the locations of maxima and minima of the highest order
Chebyshev polynomial used in the expansion [132]. However, experimental velocity profiles
are typically acquired with a regular point spacing, and therefore do not match to these
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Figure 4.3: Second standard deviation bands of Rayleigh equation growth rate predictions
computed using various solution methods directly on one hundred simulated discrete
profiles with ∆y/δ∗ = 5.6× 10−2 and imposed data scatter.

collocation points. As such, this approach has not been considered. An alternative
formulation of the RK method, in which the Rayleigh equation is reduced to an equivalent
system of equations for the vertical velocity fluctuations and the pressure fluctuations was
evaluated based on convergence with velocity profile spatial resolution and sensitivity to
data scatter. The results are presented in Appendix F. It was found that this method
requires higher velocity profile spatial resolution than the other methods considered to
obtain a growth rate spectrum with reasonable high frequency behavior. Finally, when
performing the analysis directly on discrete velocity profiles, it was found that using
a fourth order RK method instead of a second order method unnecessarily limits the
usefulness of the results by providing 50% lower spatial resolution in the streamwise velocity
fluctuation profiles.

Although the results in Fig. 4.3 suggest that reasonable stability predictions can be
obtained using discrete velocity data with a spatial resolution and level of data scatter
typical of experimental measurements, the methods need to be further evaluated using
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actual experimental velocity profiles. The results of the stability analyses performed on ten
measured separated shear layer profiles from various studies are summarized in Table 4.1.
In this table, data scatter has been quantified by U ′′RMS, defined as,

U ′′RMS =

√√√√ N∑
k=1

[U ′′(yk)− U ′′k ]2

(U ′′max)2N
, (4.3)

to reflect the sensitivity of U ′′ to data scatter and the significance of U ′′ in Eq. 2.3. In
Eq. 4.3, U ′′ is determined from a Dini et al. [79] fit, defined in Section 4.3, U ′′max is the
maximum magnitude of U ′′, and U ′′k is the finite difference approximation of the second
derivative of the measured velocity profile at yk. It should be noted that the velocity profile
data were extracted from published figures, and that this process has contributed to the
data scatter in the analyzed profiles. For comparison of Table 4.1 and Fig. 4.3, note that
the one hundred simulated data scatter profiles have a mean U ′′RMS value of 0.27 with a
standard deviation of 0.04.

The results presented in Table 4.1 suggest that velocity profiles with relatively low data
scatter, such as those from Lang et al. [25] and LeBlanc et al. [27], provide reasonable
growth rate spectrum predictions for all frequencies including that of the maximum
disturbance growth rate. With higher levels of data scatter, as in the profiles of Yarusevych
et al. [26] for Rec = 1.5 × 105, reasonable predictions of the frequency of maximum
disturbance growth rate were obtained, however, the growth rate spectra exhibit extraneous
behavior at frequencies beyond the spectral peak. Two forms of extraneous spectral
behavior were observed: a leveling off of the growth rate at high frequencies before steeply
falling to zero, and continuously increasing growth rates at high frequencies. At even higher
levels of data scatter, the extraneous behavior extended to frequencies below that of the
expected growth rate peak, preventing a peak from being identified. It should be noted
that although the frequency of the dominant disturbances are predicted to within 30% for
some data sets (Table 4.1), the deviation in the predicted growth rate exceeded 100% in
some cases. This amount of deviation between measured growth rates and predictions of
stability analysis on measured separated shear layer profiles is observed in Ref. [26], in
which it is speculated that the level of discrepancy could be reduced by performing viscous
analysis instead.

The results presented here indicate that the FD, PWL, and second order RK
methods can provide accurate predictions of the frequency corresponding to the maximum
disturbance amplification when velocity profile data with relatively low data scatter are
available. However, as velocity profile data scatter increases, the reliability of stability
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Table 4.1: Comparison of measured growth rate spectrum to Rayleigh equation predictions
using various solution methods directly on experimental profiles. The – symbol indicates
that the solution had no spectral peak.

εω extraneous
experiment U ′′RMS FD PWL RK behavior?
Häggmark et al. [97], flat plate, Rex = 3.92× 105 0.64 37 37 – yes

Lang et al. [25], flat plate, x = 300 mm 0.09 1 1 1 no

LeBlanc et al. [27], Liebeck LA2573A, Rec = 2.35 × 105,
AOA = 4◦, x/c = 0.371

0.09 4 4 5 no

Watmuff [23], flat plate, Rex = 3.42× 105 0.13 26 27 20 no

Yarusevych et al. [26], NACA 0025, Rec = 105, AOA = 0◦,
x/c = 0.44

0.35 – – – yes

Yarusevych et al. [26], NACA 0025, Rec = 105, AOA = 5◦,
x/c = 0.37

0.19 12 12 8 yes

Yarusevych et al. [26], NACA 0025, Rec = 105, AOA =
10◦, x/c = 0.25

0.25 – – – yes

Yarusevych et al. [26], NACA 0025, Rec = 1.5 × 105,
AOA = 0◦, x/c = 0.62

0.11 26 25 25 yes

Yarusevych et al. [26], NACA 0025, Rec = 1.5 × 105,
AOA = 5◦, x/c = 0.44

0.16 15 13 16 yes

Yarusevych et al. [26], NACA 0025, Rec = 1.5 × 105,
AOA = 10◦, x/c = 0.22

0.20 2 2 6 yes

predictions deteriorates. For velocity profiles with relatively high levels of data scatter,
velocity profile curve fitting may be employed to mitigate the effects of data scatter.

4.3 Rayleigh Equation Solutions for Curve Fits to

Experimental Profiles

In this section, the sensitivity of inviscid spatial linear stability predictions for curve fits
to the measured base velocity profile is considered. Since it has been established that, for
a velocity profile with sufficient spatial resolution, solutions obtained using the FD, PWL,
and RK methods match, only the fourth order RK method will be employed in this section.

The curve fits considered in this investigation are summarized in Table 4.2 and include
common generic curve fit forms [133] as well as functional forms used in previous studies
to approximate separated shear layer profiles [22,27,34,67,77–79]. The parameters aj and
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Table 4.2: Definitions of velocity profile curve fits.
curve fit definition
cubic spline [133] piecewise cubic polynomial, U , with continuous U ′ and U ′′

Dini et al. [79] fit U
Ue

= 1−a1
2

[
1 + tanh

(
y−a2
a3

)]
Dovgal et al. [34] fit U

Ue
= tanh[a1(y−a2)]+tanh(a1a2)

1+tanh(a1a2) + a3
y
a2

exp

[
−1.5

(
y
a2

)2

+ 0.5

]
Falkner-Skan fit [61] U

Ue
= F ′(η) where F is given by F ′′′ + FF ′′ + a2(1− F ′2) = 0 subject to

F (0) = F ′(0) = 0 and F ′(∞) = 1

Green [77] fit U
Ue

=

[
1−2a3, 0≤y<a1

1−a3
[
1+cos

(
π

y−a1
a2

)]
, a1≤y<a2

1, a2≤y

]
LeBlanc et al. [27] fit U

Ue
=
[
a3F

′(η), F ′<0

F ′(η), 0≥F ′
]

where F is given by F ′′′ + FF ′′ + a2(1 − F ′2) = 0

subject to F (0) = F ′(0) = 0 and F ′(∞) = 1

logistic series fit [22] U
Ue

= 1− G(y)
G(0) where G(y) =

4∑
k=1

[
ak,1

1+ak,2 exp[ak,3(y+ak,4)]

]ak,5

piecewise cubic Hermite
polynomial [133]

piecewise cubic Hermite polynomial, U , for which U ′ at the interval end
points are approximated by finite difference formulas

sine series [133]
3∑
k=1

ak,1 sin (ak,2y + ak,3)

smoothing spline [133] piecewise cubic polynomial, U , that minimizes Sp
∑
k [Uk − U (yk)]

2
+

(1− Sp)
∫
|U ′′|2dy

ak,j in the curve fit definitions were determined for each discrete profile using a numerical
least squares residual optimization procedure.

The sensitivity of stability predictions to the choice of velocity profile curve fit is first
established independent of the effect of velocity profile data scatter. This was accomplished
by completing inviscid spatial linear stability analysis using each of the curve fits identified
in Table 4.2 to approximate the base velocity profile of Eqs. 4.1 and 4.2 with a point spacing
of ∆y/δ∗ = 5.6 × 10−2 and without imposed data scatter. Figure 4.4 shows the growth
rate and wave number spectra obtained using each of the fits except the smoothing spline.
Despite all fits closely approximating the simulated velocity data (R0 < 0.4), there is
significant variation in the corresponding stability predictions. Specifically, the maximum
disturbance growth rate predictions vary within a band of 30% of the value predicted by
the reference solution, and the corresponding frequency similarly varies within a band of
15%. Note that since the simulated velocity data used here were generated from another
curve fit, i.e., from Eqs. 4.1 and 4.2, the close agreement of a given spectrum with that from
the reference solution should not be used as a performance measure for the corresponding
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Figure 4.4: Eigenvalue spectrum of the Rayleigh equation using various curve fits to the
simulated velocity profile of Eqs. 4.1 and 4.2 with ∆y/δ∗ = 5.6× 10−2.

fit; only the relative difference between the spectra pertaining to different curve fits is
significant.

Growth rate spectrum predictions computed using a smoothing spline fit to the velocity
profile data were found to be sensitive to the choice of smoothing parameter. This was
determined by performing stability analysis on smoothing spline fits to six velocity profiles
presented by Yarusevych et al. [26]. The optimum value of the smoothing parameter,
i.e., that resulting in the most accurate estimate of the experimentally measured frequency
of maximum disturbance growth rate, varied by more than 20% between these six profiles.
Furthermore, over the range of smoothing parameters for which a reasonable fit to the
velocity profile was obtained (R0 . 1), the predicted frequency of maximum disturbance
amplification was found to vary by up to 50% for a given mean profile. Thus, it
was concluded that performing stability analysis on a smoothing spline fit to measured
velocity profile data may yield stability predictions that depend on the subjectively chosen
smoothing parameter. As such, smoothing spline fits should be avoided when performing
stability analysis on experimental data.
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The susceptibility of stability predictions to experimental data scatter is critical in
selecting a curve fitting method for approximating a measured velocity profile. The
sensitivity of LST predictions to velocity profile data scatter was evaluated using the
simulated discrete velocity profile of Eqs. 4.1 and 4.2 with ∆y/δ∗ = 5.6 × 10−2 and
imposing Gaussian data scatter with a second standard deviation of 2.5% of the free-stream
velocity. One hundred discrete profiles were generated in this way. Each of the curve fits
considered (Table 4.2) were applied to the generated profiles, and stability analysis was
subsequently performed on these profile fits. Table 4.3 summarizes the results, presenting
five measures to evaluate the stability predictions obtained with each curve fit. Note that
an over-bar on a parameter signifies an average over the one hundred data sets, and that the
superscript “peak” designates the quantity as corresponding to the maximum disturbance
growth rate. The least squares residual without data scatter, R0, and the average least
squares residual over all one hundred profiles with data scatter, R, are normalized by the
number of data points and the edge velocity, and are expressed as percentages. They
quantify the agreement between the curve fits and the discrete data points. The average
error in the maximum disturbance growth rate quantifies the deviation in the magnitude
of the spectral peak, and is defined as follows:

εα =
1

100

100∑
k=1

∣∣∣∣∣∣α
peak
i − αpeak

i,k

αpeak
i

∣∣∣∣∣∣× 100%. (4.4)

Similarly, the average error in the frequency corresponding to the maximum disturbance
growth rate is defined as,

εω =
1

100

100∑
k=1

∣∣∣∣∣ωpeak − ωpeak
k

ωpeak

∣∣∣∣∣× 100%. (4.5)

The integrated growth rate error quantifies the deviation in the growth rate predictions
across the spectrum, not just at the peak. It is computed from,

εΣ =
1

100

100∑
k=1

∫ ωmax

0
|αi − αi,k| dω∫ ωmax

0
|αi| dω

× 100%, (4.6)

in which ωmax is the maximum frequency for which disturbances are unstable in the
averaged growth rate spectrum.

The results presented in Table 4.3 show that the predictions of stability analysis
performed on curve fits that pass closest to the velocity profile data points, i.e., on curve
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Table 4.3: Curve fit residuals and error parameters for Rayleigh equation solutions on one
hundred discrete profiles, created by imposing data scatter on the simulated profile from
Eqs. 4.1 and 4.2 with ∆y/δ∗ = 5.6× 10−2.

curve fit R0 R εω εα εΣ

cubic spline 0 0 5.6 4.5 28.0
Dini et al. [79] fit 0.029 0.039 1.8 1.3 3.5
Dovgal et al. [34] fit 0.016 0.025 1.9 1.6 3.8
Green [77] fit 0.026 0.035 2.5 1.3 3.9
LeBlanc et al. [27] fit 0.0026 0.012 2.1 1.7 4.0
logistic series 0.00041 0.018 17.7 16.4 25.2
piecewise cubic Hermite polynomial 0 0 7.5 6.0 35.4
reverse flow Falkner-Skan fit 0.078 0.085 3.4 3.1 8.9
sine series 0.017 0.044 10.5 4.1 13.7
smoothing spline, Sp = 0.99 0.35 0.36 1.4 0.6 1.6
smoothing spline, Sp = 0.999 0.037 0.044 2.6 0.9 3.1
smoothing spline, Sp = 0.9999 0.0016 0.0067 3.4 1.9 7.7
smoothing spline, Sp = 0.99999 0.000040 0.0019 5.0 3.4 21.1

fits with the lowest average least squares residuals, are the most susceptible to velocity
profile data scatter. Specifically, the cubic spline, logistic series, piecewise cubic Hermite
polynomial, sine series, and smoothing splines with relatively high values of the smoothing
parameter (Sp & 0.99999 in this case) have the lowest least squares residuals but result in
integrated growth rate spectrum error values greater than 10%. All of the error measures
for the stability predictions obtained using the Dini et al. [79] fit, Dovgal et al. [34] fit,
Green [77] fit, LeBlanc et al. [27] fit, and the reverse flow Falkner-Skan fit, are less than
10%, while the fits still match the velocity profile well (R ≤ 0.40). Thus, these five curve
fits are expected to provide the lowest variability due to data scatter in the velocity profile
measurements and will therefore be the focus of the remainder of this section.

Variability in the growth rate spectrum due to data scatter in the simulated velocity
profile is illustrated in Fig. 4.5 for the five curve fits identified as providing stability
predictions with low sensitivity to velocity profile data scatter. Shaded regions in the
figure outline second standard deviation bands for the one hundred simulated velocity
profiles with data scatter. Each band gives an indication of the extent of variability that
can be expected by repeating the analysis with that curve fit on successive velocity profile
measurements for the same flow conditions. A comparison of the results in Figs. 4.4 and 4.5
suggests that, for the five curve fits identified, there is greater variability in the growth
rate spectrum predictions due to the choice of curve fit type (Fig. 4.4) than due to data
scatter when applying a specific curve fit (Fig. 4.5).
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Figure 4.5: Variability in Rayleigh equation eigenvalue spectra for various curve fit forms
used in the analysis. Bands show the second standard deviation of growth rate predictions
based on the analysis of one hundred simulated discrete profiles with ∆y/δ∗ = 5.6× 10−2

and imposed data scatter.

It should be noted that, if estimating the streamwise velocity fluctuation profiles using
linear stability analysis is of particular importance in a given study, fits with discontinuities
in the base velocity profile should be avoided. The Green [77] and LeBlanc et al. [27]
fits have such discontinuities. Figure 4.6 shows streamwise velocity fluctuation profiles
obtained from stability analysis using the five curve fits to the simulated velocity profile
from Eqs. 4.1 and 4.2 with ∆y/δ∗ = 5.6 × 10−2 and without data scatter. The results
reveal discontinuities in velocity fluctuation profiles for the Green [77] and LeBlanc et
al. [27] fits at the locations of discontinuities in the slopes of their respective base profile
fits. Specifically, in Figs. 4.6b and 4.6c this occurs at y/δ∗ ≈ 0.74 for the LeBlanc et al. [27]
fit and at y/δ∗ ≈ 0.69 and 1.24 for the Green [77] fit. Despite producing discontinuities in
the streamwise velocity fluctuation profiles, the Green [77] and LeBlanc et al. [27] curve
fits result in reasonable growth rate spectrum predictions and have low susceptibility to
data scatter. For these reasons, the Green [77] and LeBlanc et al. [27] fits will be further
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Figure 4.6: Streamwise velocity fluctuation profile predictions of the Rayleigh equation at
ωδ∗/Ue = 1.17, using curve fits on the simulated velocity profile from Eqs. 4.1 and 4.2
with ∆y/δ∗ = 5.6 × 10−2. Presented are the (a) curve fits to the mean velocity profile,
(b) velocity fluctuation amplitude, and (c) velocity fluctuation phase.

evaluated along with the reverse flow Falkner-Skan, Dini et al. [79], and Dovgal et al. [34]
fits by comparing their stability predictions for measured separated shear layer profiles.

Stability analysis was performed on ten published separated shear layer profiles using
each of the five curve fits shown to provide stability predictions with relatively low
susceptibility to data scatter. The obtained growth rate spectra are plotted in Fig. 4.7.
The results suggest that no single fit is consistently able to produce the best estimate of
the measured frequency of maximum disturbance growth rate for the ten profiles analyzed.
Moreover, the frequency estimates obtained for two different fits can deviate by up to
35% for the same measured profile. The deviations between the predicted frequencies of
maximum disturbance growth rate and those measured experimentally are quantified in
Table 4.4. For each curve fit, the average error and the maximum error are tabulated. The
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Figure 4.7: Computed Rayleigh equation growth rate spectra of various measured separated
shear layer profiles. Dashed lines indicate the measured frequency of maximum energy
content. Values of Ue and δ∗ were estimated using the LeBlanc et al. [27] fit.
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Table 4.4: Average and maximum error in the frequency of maximum disturbance growth
rate predictions from Fig. 4.7.

curve fit average error maximum error
Dini et al. [79] 19% 44%
Dovgal et al. [34] 18% 39%
Flakner-Skan fit 16% 30%
Green [77] fit 14% 32%
LeBlanc et al. [27] fit 12% 25%

results show that the LeBlanc et al. [27] fit provides the lowest average and maximum errors
in the characteristic frequency predicted for the ten measured velocity profiles considered.
However, the LeBlanc et al. [27] fit was only the best predictor of the frequency of maximum
disturbance growth rate for three out of the ten profiles analyzed. For the experimental
profiles analyzed, the reverse flow Falkner-Skan, Green [77], and LeBlanc et al. [27] curve
fits performed better on the average than the Dini et al. [79] and Dovgal et al. [34] fits,
as indicated by the data in Table 4.4. However, Figs. 4.7b, e, and i show that there are
cases in which using either the Dini et al. [79] or Dovgal et al. [34] curve fits provide more
accurate predictions of the frequency of maximum disturbance growth rate compared to
those obtained using other fits. The results presented in this section give an indication of
the level of uncertainty in the predictions of inviscid spatial linear stability analysis when
curve fits are applied to measured velocity profiles.

4.4 Solutions to the Orr-Sommerfeld Equation for

Experimental Profiles

Inviscid spatial linear stability analysis of measured separated shear layer profiles often
provides reasonable estimates of the frequency of maximum disturbance growth rate, but
over-predicts the magnitude of the growth rate spectrum [22,26,29]. Including viscosity in
the analysis has the effect of reducing the disturbance amplification rate, and may improve
the estimates. The sensitivity of solutions to the Orr-Sommerfeld equation for measured
separated shear layers to experimental data scatter and the velocity profile processing
approach are examined in this section.

Figure 4.8 compares the eigenvalue spectra of the Rayleigh and Orr-Sommerfeld
equations for the reference profile of Eqs. 4.1 and 4.2 to the measured spectrum. Based on
the eigenvalue spectrum, viscosity acts only to damp disturbance amplification, preserving
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Figure 4.8: Eigenvalue spectra of the Orr-Sommerfeld and Rayleigh equations for the profile
fit of Eqs. 4.1 and 4.2, compared to measurements of Nishioka et al. [22].

the shape of the inviscid growth rate spectrum and approximate frequency of maximum
disturbance growth rate. Minor changes are observed in the wave number spectrum.
Including viscosity in the linear stability predictions reduces the difference between the
predicted and measured maximum disturbance growth rate by about 50%, but reduces the
agreement between measurements and predictions at higher frequencies (ωδ∗/Ue & 1.5).

Figure 4.9 compares the measured streamwise velocity fluctuation profiles at two
frequencies to those predicted by the Rayleigh and Orr-Sommerfeld equations. The
viscous and inviscid profile predictions show similar characteristic fluctuation profiles, with
a dominant peak occurring at approximately the location of the mean velocity profile
inflection point. This is in contrast to a fluctuation profile with a single peak near
the wall predicted for viscous Tollmien-Schlichting wave growth in attached boundary
layers [61]. The most significant difference between the Rayleigh and Orr-Sommerfeld
equation predictions of the velocity fluctuation profiles is that the Orr-Sommerfeld equation
solution satisfies the no-slip condition at the wall. However, this does not have a significant
effect on the profile at distances from the wall that could be measured with the hot-wire
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Figure 4.9: Mean velocity profile, (a), and streamwise velocity fluctuation amplitude
profiles, (b) and (c), of the Rayleigh and Orr-Sommerfeld equations, for the profile fit
of Eqs. 4.1 and 4.2.

probe (y/δ∗ & 0.1 for this profiles). Furthermore, including viscous effects in the predictions
does not reduce the discrepancy between the measured and predicted velocity fluctuation
profiles. The similarity between the viscous and inviscid predictions in Figs. 4.8 and 4.9,
illustrate the dominance of an inviscid instability mechanism in the laminar separated shear
layer.

Several of the conclusions drawn from the previous sections on the sensitivity of inviscid
spatial linear stability analysis of measured separated shear layer velocity profiles can be
extended to Orr-Sommerfeld equation solutions for such profiles. First, when the analysis
is to be performed on wind tunnel measurements of separated shear layers on low Reynolds
number airfoils, the data scatter and spatial resolution commonly available are not sufficient
to provide confidence in the results. Therefore, only methods employing curve fitting will be
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considered for solving the Orr-Sommerfeld equation based on experimental data. Second,
curve fits which closely follow data scatter in measured profiles will be most sensitive to
experimental data scatter. Curve fits for which Rayleigh equation solutions were found
to be sensitive to experimental data scatter are therefore excluded in this section. To
demonstrate that the level of variability in the growth rate spectrum predictions due to
the choice of velocity profile curve fit is similar for the Orr-Sommerfeld equation as for the
Rayleigh equation, the eigenvalue spectrum of the Orr-Sommerfeld equation for each curve
fit on the simulated velocity profile of Eqs. 4.1 and 4.2 with a point spacing of ∆y/δ∗ =
5.6× 10−2 were computed and are presented in Fig. 4.10. Comparing Figs. 4.4 and 4.10, it
can be seen that the eigenvalue spectra of the Rayleigh and Orr-Sommerfeld equations are
similar for each fit, with the Orr-Sommerfeld equation growth rate spectrum for each fit
being of lower magnitude than the corresponding Rayleigh equation spectrum. Third, due
to the presence of derivatives of the mean velocity profile in both the Rayleigh and Orr-
Sommerfeld equations, profile fits with discontinuous derivatives will have discontinuities
in the predicted streamwise velocity fluctuation profiles. For this reason, the Green [77]
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Figure 4.10: Eigenvalue spectrum of the Orr-Sommerfeld equation using various forms of
curve fits to the simulated velocity profile of Eqs. 4.1 and 4.2 with ∆y/δ∗ = 5.6× 10−2.
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and LeBlanc et al. [27] fits will not be considered further for Orr-Sommerfeld equation
solutions. Thus, only the Dini et al. [79], Dovgal et al. [34], and Falkner-Skan fits will
be considered for base velocity profile representations when solving the Orr-Sommerfeld
equation for measured separated shear layer profiles.

Variability to velocity profile data scatter was again assessed based on one hundred
simulated velocity profiles with data scatter by imposing Gaussian noise on the simulated
velocity profile of Eqs. 4.1 and 4.2 with a profile point spacing of ∆y/δ∗ = 5.6×10−2. Second
standard deviation bands of the resulting eigenvalue spectra are presented in Fig. 4.11, with
corresponding error measures presented in Table 4.5. A comparison of Figs. 4.5 and 4.11
shows that, as was found for Rayleigh equation solutions, the Falkner-Skan fit provides the
highest variability in the growth rate spectrum of the Orr-Sommerfeld equation out of the
three profile fits considered. Furthermore, the compounded variability in the results due to
the choice of curve fit and data scatter appears to be smaller for Orr-Sommerfeld equation
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Figure 4.11: Variability in Orr-Sommerfeld equation eigenvalue spectra for various curve
fit forms used in the analysis. Bands show the second standard deviation of growth rate
predictions based on the analysis of one hundred simulated discrete profiles with ∆y/δ∗ =
5.6× 10−2 and imposed data scatter.
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predictions, as indicated by the greater overlap of the three bands in Fig. 4.11 compared
to those in Fig. 4.5. Comparing Tables 4.3 and 4.5, it can be concluded that the relative
error measures for the Orr-Sommerfeld equation solutions are marginally lower than those
of the Rayleigh equation solutions. This suggests that including viscosity in the stability
analysis not only improves the accuracy of the growth rate predictions but also reduces
the sensitivity of the analysis to data scatter.

Streamwise velocity fluctuation profiles computed using the three curve fits to the
simulated velocity profile of Eqs. 4.1 and 4.2 with a point spacing of ∆y/δ∗ = 5.6 × 10−2

and no imposed data scatter are presented in Fig. 4.12. By comparing Figs. 4.6 and 4.12,
it can be concluded that satisfying the no-slip condition at the wall reduces the difference
between predictions from different curve fits near the wall (y/δ∗ . 0.75). However, the
upper peak near y/δ∗ ≈ 1.25 is still more prominent for the Falkner-Skan fit than for
the Dini et al. [79] and Dovgal et al. [34] fits. Phase shift profiles show a lower level of
disagreement between the three fits.

Figure 4.12a shows that the Falkner-Skan, Dini et al. [79], and Dovgal et al. [34] fits
produce very different mean profile curvatures in the reverse flow region near the wall. Most
notably, the Dovgal et al. [34] fit follows the measured curvature well, whereas the Dini et
al. [79] fit approaches a constant value and does not satisfy the mean flow no-slip condition
at the wall. Despite this difference, Fig. 4.10 shows that, as was found for Rayleigh equation
solutions, the eigenvalue spectrum of the Orr-Sommerfeld equation for the Dini et al. [79]
and Dovgal et al. [34] fits are very similar. Furthermore, the streamwise velocity fluctuation
profiles from these fits and the Falkner-Skan fit are very similar. It may be expected that
the additional boundary conditions imposed in the Orr-Sommerfeld equation solution will
cause the curvature of the profile near the wall to have a more significant effect on the
results than in solutions to the Rayleigh equation. However, velocity profile curvature in
the reverse flow region had no significant effect on the stability predictions, indicating that
measurement error in the reverse flow region, inherent to near wall velocity measurements,

Table 4.5: Error parameters for stability analysis of one hundred discrete profiles, created
by imposing data scatter on the simulated profile from Eqs. 4.1 and 4.2 with ∆y/δ∗ =
5.6× 10−2.

curve fit εω εα εΣ

Dini et al. [79] fit 1.7 1.1 3.1
Dovgal et al. [34] fit 1.7 1.3 3.4
reverse flow Falkner-Skan fit 3.4 2.9 7.8
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Figure 4.12: Streamwise velocity fluctuation profile predictions of the Orr-Sommerfeld
equation at ωδ∗/Ue = 1.17, using curve fits on the simulated velocity profile from Eqs. 4.1
and 4.2 with ∆y/δ∗ = 5.6 × 10−2. Presented are the (a) curve fits to the mean velocity
profile, (b) velocity fluctuation amplitude, and (c) velocity fluctuation phase.

will not have a significant effect on linear stability predictions for measured separated shear
layer profiles.

Stability predictions based on Dini et al. [79], Dovgal et al. [34], and Falkner-Skan
curve fits were further evaluated by comparing predictions for six measured separated
shear layer profiles over a NACA 0025 airfoil from Yarusevych et al. [26] to measured
growth rate spectra. Figure 4.13 presents growth rate spectra of the Orr-Sommerfeld and
Rayleigh equations for each of these profiles. In contrast to the results in Fig. 4.8, based
on measurements from Nishioka et al. [22], the results in Fig. 4.13 show no significant
improvement in the predictions of linear stability analysis compared to measured growth
rates when viscosity is included in the analysis. Whereas the results in Fig. 4.8 show
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Figure 4.13: Comparison of growth rate spectrum measurements to LST predictions for
published measurements on a NACA 0025 airfoil. Rayleigh and Orr-Sommerfeld equation
solutions are indicated by dashed and solid curves, respectively.
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that including viscosity in the analysis can reduce the discrepancy between predicted and
measured maximum amplification rates by 50%, Fig. 4.13 shows improvements of only
5 to 20%. As was found for Rayleigh equation solutions, no single fit provided the most
accurate prediction of the maximum disturbance growth rate for all of the measured profiles
examined.

Experimental uncertainty in growth rate measurements and simplifications of LST
may contribute to the differences between the measured and computed growth rate
spectra in Figs. 4.8 and 4.13 that remain after viscosity is included in the calculations.
Experimental uncertainty in the measured growth rates can be significant, as discussed
in Appendix A. This is likely the most significant factor contributing to the observed
discrepancies. Simplifications of LST may also contribute. However, a comparison of
direct numerical simulation, a PSE solution, and LST predictions by Theofilis et al. [64]
for disturbance growth in the separation bubble on a flat plate, indicated a difference of
about 10% between the linear stability predictions and the other two data sets. This is a
much smaller discrepancy than observed in Fig. 4.13 between measured growth rate spectra
and linear stability predictions.

From this investigation into the sensitivity of linear stability analysis of measured
separated shear layer profiles, it can be concluded that, for data typical of hot-wire
measurements of separated shear layer velocity profiles over low Reynolds number airfoils,
curve fitting is required before completing stability calculations. For this purpose,
the Falkner-Skan, Dini et al. [79], and Dovgal et al. [34] fits provide relatively low
variability to profile data scatter and yield streamwise velocity fluctuation profiles without
discontinuities. The relative variability between curve fits can be greater than the
variability of a particular curve fit to data scatter, and no one fit consistently provided the
most accurate prediction of the frequency of maximum disturbance growth rate compared
to that measured experimentally. Therefore, the analyst should consider the uncertainty
induced by the choice of curve fitting method on the conclusions drawn from the analysis.
No changes were observed in the general trends of the eigenvalue spectrum or velocity
fluctuation profiles when viscosity was included in the analysis; however, including viscosity
reduced the predicted disturbance growth rates and also reduced the sensitivity of stability
predictions to velocity profile data scatter. The apparent sensitivity of spatial linear
stability analysis of measured separated shear layer profiles to experimental data scatter
and velocity profile processing approach should be considered when drawing conclusions
from such an analysis.
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Chapter 5

Effect of Experimental Setup on Flow
Development

This chapter focuses on the effects that three elements of the experimental setup have on
flow development: end plates, test section walls, and intrusive equipment. The effect of each
element will be evaluated from measurements of static pressure distributions, model surface
pressure fluctuations, and energy spectra of velocity fluctuations in the airfoil wake. Static
pressure distributions along the chord are used to determine the effect of each element of the
experimental setup on lift and locations of flow separation, transition, and reattachment.
Similar pressure measurements along three spanwise rows of pressure taps are used to
assess mean flow two-dimensionality. Spectral analysis of measurements from microphones
embedded in the airfoil surface below the separated flow region are compared to determine
how disturbance amplification in the transitioning flow is affected by the experimental
setup. Energy spectra of velocity fluctuations are used to evaluate the effect of experimental
setup on wake vortex shedding characteristics.

5.1 End Plate Configuration

In this section, the effects of end plates on flow development are examined by comparing
measurements obtained with different end plate configurations. Seven configurations were
considered: neither end caps nor end plates installed (free ends), only end caps installed,
and end caps and end plates installed with five different spanwise end plate spacing
distances in the range 0.5 ≤ b/c ≤ 2.5. Boundary layer measurements on the side
walls of the wind tunnel at the location of the airfoil model showed that the boundary
layer thickness is approximately 0.26c. Thus, the inward side of each end plate is just
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outside of the side wall boundary layer for a spanwise end plate spacing of b/c = 2.5. All
data presented in this section were obtained with the wind tunnel walls set in the ASW
configuration for an empty test section at Rec = 105.

Surface pressure distributions measured for the various end plate configurations are
presented in Fig. 5.1. The distributions for AOA = 0, 5, and 10◦ are typical for conditions
at which a separation bubble forms [1,8]. The mean pressure on the upper surface decreases
rapidly up to a suction peak near the leading edge. At a location downstream of the
suction peak, the rate of pressure recovery decreases significantly, creating a pressure
plateau in the model surface pressure distribution. The beginning and end of this pressure
plateau mark the locations of laminar boundary layer separation and separated shear layer
transition, respectively [8,52]. Rapid surface pressure recovery is observed up to the mean
reattachment location, downstream of which pressure recovery continues at a reduced
rate [8]. The surface pressure distributions for AOA = 15◦ are typical for conditions
at which laminar boundary layer separation occurs without subsequent reattachment: the
upper surface pressure distribution is nearly flat over most of the chord, with the exception
of a low magnitude suction peak just downstream of the leading edge.

For AOA = 0, 5, and 10◦, relatively minor differences are observed between surface
pressure distributions obtained for a model with free ends and those obtained with only
end caps installed. However, for AOA = 15◦, at which the airfoil is stalled, installing
end caps causes a noticeable increase in the suction pressure over the upper surface of the
model. Installing end plates produces a more substantial change in the surface pressure
distributions for each angle of attack. Installing end plates at b/c = 2.5 causes an increase
in the suction pressure on the upper surface. Further increases occur as the end plate
spacing is reduced to b/c = 1.5. This change can be observed in the inset plots of the
suction peaks and the pressure plateaus in Fig. 5.1. Decreasing the end plate spacing
below b/c = 1.5 results in a reduction in magnitude of the suction peak and pressure
plateau, for angles of attack other than zero. For AOA = 5 and 10◦, the transition
location moves upstream by approximately 4% of the chord for b/c = 0.5 compared to all
other configurations with and without end plates installed. At AOA = 15◦ (Fig. 5.1d),
for which the airfoil is stalled, changing the end plate configuration causes a shift of up
to 0.15 in the value of the surface pressure coefficient in the relatively constant surface
pressure region downstream of the separation point. Based on the lower surface pressure
distributions in Fig. 5.1 for AOA = 5 and 10◦, it can be concluded that flow development
over the lower surface of the model is less sensitive than that over the upper surface to
the use of end plates and their spacing; appreciable changes in the lower surface pressure
distribution from that measured in the free ends configuration are only observed for the
lowest end plate spacing considered (b/c = 0.5).

Lift coefficients, computed from the measured pressure distributions, are presented
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Figure 5.1: Streamwise distributions of surface pressure for the various end plate
configurations. In plot (a), for clarity, only the upper surface pressure distribution is
plotted. Solid lines indicate portions of the graph magnified in the inset plots.
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in Fig. 5.2. Changing the end plate configuration causes changes in the measured lift
coefficient by as much as 11% of the maximum lift coefficient at this Reynolds number.
Lift increases when end plates are installed and is least sensitive to end plate spacings for
b/c & 1.5. Lift coefficients change more significantly with end plate spacing for b/c . 1.5.
The non-zero lift coefficients observed for AOA = 0◦ with end plates installed suggest that
the end plates are changing the effective aerodynamic zero angle of attack. Previous low
Reynolds number airfoil investigations have similarly observed that the zero-lift angle is
sensitive to flow conditions [10]. In the present investigation, the effect of the end plate
configuration on the stall angle was also investigated. Installing end plates at b/c = 2.0
was found to increase the stall angle by approximately 1◦ compared to the end caps only
configuration.

The results in Figs. 5.1 and 5.2 show that the end plate configuration influences mean
flow development on the center-span plane, and as a result, the lift coefficient computed
from pressure measurements on this plane. The extent to which the flow is affected at other
locations on the span is assessed on the basis of spanwise surface pressure distributions
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Figure 5.2: Variation in lift coefficient computed from the measured pressure distributions
for the various end plate configurations. Measurements were repeatable to within the
marker size.

66



measured at x/c = 0.15, 0.30, and 0.60. These distributions are presented in Fig. 5.3. The
results show that installing end caps has a minor effect on mean spanwise uniformity. In
contrast, installing end plates improved spanwise uniformity considerably for each angle
of attack considered. The end plate spacing does not have an appreciable effect on mean
spanwise uniformity for spacings as low as b/c = 1.0, the lowest value for which there is
more than one z/c static pressure tap location between the end plates on this airfoil model.

Since separated shear layer development governs the aerodynamic performance of low
Reynolds number airfoils [1], it is of interest to assess how experimental setup affects
laminar-to-turbulent transition in the shear layer. Gerakopulos [35] showed that embedded
surface pressure sensors can be used to characterize shear layer development over this
airfoil model at low Reynolds numbers. Such measurements are used here to assess the
effects of end plates on transition in the separated shear layer. Figure 5.4 presents energy
spectra of pressure fluctuations from measurements with microphones embedded in the
airfoil surface at various streamwise locations in the transition region. Note that results
for b/c = 0.5 are not included because an end plate obstructs the embedded microphones
when installed at this spacing. For each angle of attack, at least one streamwise location
shows a band of frequencies over which disturbances have been amplified with respect to the
broadband background disturbance environment. The process of disturbance amplification
leads to turbulent transition, influencing the size and location of the separation bubble and,
consequently, the overall aerodynamic performance. In Fig. 5.4, it can be seen that at some
x/c locations, the end plate configuration affects the magnitude of amplified disturbances
in the separated shear layer. For example, as end plates are installed and moved closer
together for AOA = 5◦, the broad spectral peaks around f = 500 Hz at x/c = 0.32
and 0.34 increase in magnitude. For AOA = 10◦ the broad peak around f = 1000 Hz
is less affected by the end plate configuration than for AOA = 5◦. However, from a
close examination of the peaks in the energy spectrum at AOA = 10◦ for x/c = 0.15
and 0.17, it can be seen that end plates reduce the spectral noise across the peak. One
possible explanation for this is that the improved spanwise uniformity in mean surface
pressure with the end plates installed also reduces the spanwise variation in the central
frequency of disturbance amplification, improving the coherence of measured pressure
fluctuations. Another possibility is that the end plates are reducing the contribution of
side wall boundary layer noise to the background disturbances being amplified in the shear
layer.

The effects of end plate configuration on wake vortex shedding characteristics were
assessed based on energy spectra of the vertical velocity fluctuations measured at X/c =
2.7. Figure 5.5 presents the results for AOA = 10 and 15◦, with the selected angles
producing the most pronounced spectral peaks and representing conditions under which
separation occurs with and without reattachment.
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Figure 5.3: Upper surface spanwise pressure distributions for the various end plate
configurations. Black, red, and blue markers show pressure coefficients at x/c = 0.15,
0.30, and 0.60, respectively. In plot (d), for clarity, Cp values for x/c = 0.30 and 0.60 are
shifted by −0.5 and −1.0, respectively.

68



250 500 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

E
p
p

250 500 1000 250 500 1000 250 500 1000

(a) AOA = 0◦
f , Hz

x/c=0.73

f , Hz

x/c=0.66

f , Hz

x/c=0.56

f , Hz

x/c=0.51

free
ends

end
caps

b/c=2.5

b/c=2.0

b/c=1.5

b/c=1.0

250 500 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

E
p
p

250 500 1000 250 500 1000 250 500 1000

(b) AOA = 5◦
f , Hz

x/c=0.43

f , Hz

x/c=0.39

f , Hz

x/c=0.34

f , Hz

x/c=0.32

free
ends

end
caps

b/c=2.5

b/c=2.0

b/c=1.5

b/c=1.0

250 500 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

E
p
p

250 500 1000 250 500 1000 250 500 1000

(c) AOA = 10◦
f , Hz

x/c=0.21

f , Hz

x/c=0.19

f , Hz

x/c=0.17

f , Hz

x/c=0.15

free
ends

end
caps

b/c=2.5

b/c=2.0

b/c=1.5

b/c=1.0

250 500 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

E
p
p

250 500 1000 250 500 1000 250 500 1000

(d) AOA = 15◦
f , Hz

x/c=0.19

f , Hz

x/c=0.17

f , Hz

x/c=0.15

f , Hz

x/c=0.13

free
ends

end
caps

b/c=2.5

b/c=2.0

b/c=1.5

b/c=1.0

Figure 5.4: Energy spectra of surface pressure fluctuations for various end plate
configurations. Note that, for clarity, successive spectra at a given x/c location and angle
of attack are increased in magnitude by a factor of ten relative to the preceding spectrum.
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Figure 5.5: Energy spectra of vertical velocity at X/c = 2.7 with various end plate
configurations. Note that, for clarity, successive spectra at a given angle of attack are
increased in magnitude by a factor of ten relative to the preceding spectrum.

For AOA = 15◦, separation occurs without subsequent reattachment, causing large
scale wake vortex shedding, which is responsible for the strong peaks in the energy
spectra in Fig. 5.5b. For the free ends configuration, this peak occurs at a frequency
of approximately 23 Hz. Installing end caps causes this frequency to increase to 25 Hz.
Installing end plates at b/c = 2.5 further increases the vortex shedding frequency to 27 Hz.
This value is retained for all other end plate spacings considered. It should be noted that
this shift in the wake vortex shedding frequency from 23 Hz to 27 Hz was also observed in
energy spectra of pressure fluctuations measured using microphones embedded in the aft
portion of the model. A similar increase in vortex shedding frequency on the center-span
plane when end plates are installed can be observed in the results of Mair & Stansby [12] for
a circular cylinder. In the present study, the vortex shedding frequency remains constant
for all end plate spacings. This is consistent with the conclusion of West & Apelt [83],
based on measurements on a circular cylinder, that the vortex shedding frequency does

70



not vary with model aspect ratio at a constant blockage ratio. However, the fact that the
measurements with free ends and with only end caps installed correspond to approximately
the same solid blockage ratio, but result in different vortex shedding frequencies, indicates
that the change in vortex shedding frequency is not only a result of the added blockage.
It is speculated that end caps and end plates both reduce the volume of low momentum
fluid transfered from the side wall boundary layer into the vortex formation region. Such
momentum transfer could reduce the effective speed of flow structures and, consequently,
the vortex shedding frequency. For end plate spacings of less than b/c = 2.0, the spectral
peak broadens, suggesting that the end plates are affecting the coherence of spanwise
vortical structures in the near wake.

For AOA = 10◦, laminar boundary layer separation is followed by turbulent boundary
layer reattachment downstream, leading to a narrow wake with smaller and less coherent
spanwise vortical structures being shed from the airfoil. As a result, the energy spectra in
Fig. 5.5a have much broader peaks than those in Fig. 5.5b. For AOA = 10◦, the end plate
configuration had no measurable effect on the central frequency of the spectral peak.

Fox & Wolf [13] concluded that, for a circular cylinder model without end plates
installed, the ratio of spanwise width to diameter of the model must be greater than
thirty to produce mean pressure distributions on the center-span plane representative of a
wide-span model. Since no experimental data are available for a NACA 0018 airfoil model
at Rec = 105 and an aspect ratio of thirty or greater, it is not possible to verify that the
results obtained with end plates installed are representative of flow over a wide-span model.
However, the mean spanwise uniformity produced with end plates installed, and which is
expected for flow over a wide-span model, suggests that end plates should be installed for
measurements over airfoil models at low Reynolds numbers. Furthermore, the change in
vortex shedding frequency seen in Fig. 5.5b when end plates are installed implies that end
plates are required when performing measurements in the near wake of an airfoil at a low
Reynolds number. The results in Fig. 5.5b also suggest that the end plate spacing should
be greater than b/d ≈ 6.6 (b/c ≈ 2.0 for AOA = 15◦ on this model), to ensure that the
end plates do not interfere with wake vortex shedding.

Figure 5.6 presents wall pressure distributions for AOA = 10◦ with the various end
plate configurations. The free ends and end caps only configurations have blockage ratios
of 5.2%, whereas the other configurations have blockage ratios, including the projected end
plate area, of 6.3%. It can be seen that the end plate configuration affects the wall pressure
distribution, suggesting that added blockage due to end plates is contributing to some of
the measured changes in flow development discussed above.

The results presented in this section quantify the effects of end plates on flow
development over an airfoil model at a low Reynolds number. End plates significantly
improved mean spanwise flow uniformity compared to configurations without end plates
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Figure 5.6: Variation of ASW wall pressure distribution with end plate configuration for
AOA = 10◦.

installed. Furthermore, it was shown that the end plate configuration can affect wake
development and lift coefficients. The model aspect ratio could not be increased sufficiently
to verify that, as was found for circular cylinder models [13], the sectional aerodynamic
forces measured on a wide-span model would better match those measured with end plates
installed at a large enough spacing. However, the results presented here are consistent
with this finding. Based on the results of this section, it is concluded that end plates
should be used in low Reynolds number airfoil experiments to reduce the mean spanwise
non-uniformity of the flow. Consistent with the guidelines for circular cylinder models, it
is recommended that the end plates have a spacing of b/d & 7 and are positioned outside
of the test section wall boundary layers. In the present investigation, an end plate spacing
of b/c = 2.0 was selected to satisfy these conditions, and was shown to provide the lowest
variation in lift coefficients and wake velocity energy spectra with end plate spacing.
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5.2 Blockage

The effects of wind tunnel blockage were investigated by comparing measurements of
flow development over the model before and after streamlining the wind tunnel walls.
For the angles of attack and end plate configurations investigated, the solid blockage
ratios, including end plate blockage, ranged from 4 to 8%. The blockage ratios for each
configuration are listed in Table 5.1. Except where otherwise indicated, the measurements
in this section were obtained with the end plates installed at b/c = 2.0. Appendix E
provides similar data for measurements performed with only end caps installed.

Figure 5.7 presents ASW and SLW contours for the angles of attack investigated. In the
GSW configuration, boundary layer blockage, solid blockage, and wake blockage influence
flow development. Moving from GSW to ASW contours removes boundary layer blockage.
The ASW contours show the effective change in test section area, at each streamwise
location, required to maintain a constant free-stream speed along the streamwise axis in
an empty test section. Moving from the ASW to SLW contours removes solid and wake
blockage. The difference between the SLW and ASW contours are streamline displacements
expected in an unconfined flow field at the distance of the walls from the model. For
conditions at which boundary layer reattachment occurs, i.e., for AOA = 0, 5, and 10◦, the
upper SLW contour displacements increase with increasing angle of attack. This trend is
expected because the blockage ratio increases with increasing angle of attack. For AOA = 5
and 10◦, both the upper and lower SLW contours have positive displacements from the ASW
contours, with the distance between the upper and lower walls at each location marginally
greater than the distance between upper and lower ASW contours. This suggests that
solid blockage is displacing streamlines near the upper and lower walls, without causing
significant acceleration along these streamlines. Significantly different behavior is observed
forAOA = 15◦, at which the airfoil is stalled. As compared to the other angles of attack, the
upper and lower walls are farther apart at the streamwise location of the model (X/c = 0)
and the magnitudes of the SLW contour displacements from the ASW configuration are

Table 5.1: Blockage ratio, B, for various angles of attack with and without end plates
installed.

AOA without end plates with end plates
0◦ 4.0% 5.1%
5◦ 4.3% 5.4%
10◦ 5.2% 6.3%
15◦ 6.8% 7.9%
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Figure 5.7: ASW contour and SLW contours for each angle of attack tested, with end
plates installed at b/c = 2.0.

greater well downstream of the model (X/c & 5). These differences in the streamline
pattern near the walls for AOA = 15◦ compared to the other angles reflect the significant
changes in the flow field when the separation bubble bursts. Furthermore, the greater
distances between the upper and lower SLW contours for AOA = 15◦ indicate that the
higher wake blockage produced by the stalled airfoil model is causing significantly higher
acceleration of flow near the walls than for conditions at which a separation bubble forms
over the airfoil.

Wall pressure distribution measurements were acquired in order to perform wall
streamlining calculations. These data also provide insight into the overall flow field
development and how blockage influences this development. Wall pressure distributions for
the GSW, ASW, and SLW configurations are presented in Fig. 5.8. Since these pressure
distributions are along streamlines on either side of the model, the area between the
upper and lower wall pressure distributions represents the sectional lift force on the model.
Only the upper wall pressure distribution is presented for AOA = 0◦, because the upper
and lower distributions nearly coincide for this angle. For AOA = 5, 10, and 15◦, the
asymmetry introduced into the flow by the airfoil results in higher speed flow near the
upper wall than near the lower wall for −3 . X/c . 5. Upstream and downstream of this
region, the differences between the upper and lower wall pressure distribution are small,
but the GSW wall pressure distribution has a significant negative slope which quantifies
free-stream acceleration due to blockage. This slope is reduced to almost zero in the ASW
configuration, indicating that boundary layer blockage was primarily responsible for this
acceleration. For angles of attack at which a separation bubble forms (AOA = 0, 5, and
10◦), wall streamlining provides similar pressure distributions to those obtained in the
ASW configuration. However, for each angle of attack the maximum suction pressure near
X/c = 0 is lower in the SLW configuration. This is an indication of solid blockage mitigation
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(d) AOA = 15◦ (B = 7.9%)

Figure 5.8: Upper (black) and lower (blue) wall pressure distributions in the GSW, ASW,
and SLW configurations, with end plates installed at b/c = 2.0. For clarity, only the upper
wall pressure distributions are shown in (a).

75



through wall streamlining; in the ASW configuration, a higher effective free-stream speed
is measured than in the SLW configuration as a result of reduced cross sectional area at
the streamwise location of the model. Downstream of the model, the ASW and SLW wall
pressures have similar values for AOA = 0, 5, and 10◦, suggesting that when the flow is
attached near the trailing edge of the airfoil, the narrow wake that forms produces a low
level of wake blockage. For AOA = 15◦, at which the flow is separated at the trailing edge of
the model and a wide wake is formed, the magnitudes of ASW configuration wall pressures
are lower than the corresponding SLW configuration wall pressures. This indicates that
wake blockage is causing a more significant acceleration of the free-stream flow over the
model and in the wake when the airfoil is stalled. Note that, in each of the wall pressure
distributions, differences between the upper and lower wall pressure coefficients on the
order of 0.05 are observed near X/c = 8, corresponding to the location of the spanwise
axis of the hot-wire traverse during these experiments.

The effect of blockage on mean flow development over the model is summarized through
model surface pressure distributions in Fig. 5.9. For angles of attack at which a separation
bubble forms, the length and position of the pressure plateau downstream of the suction
peak does not change with wall configuration. This suggests that blockage has not affected
the location or size of the separation bubble, to more than the spatial resolution of the static
pressure taps. However, blockage causes a shift in the upper surface pressure distribution
on the order of 10% of the dynamic pressure. This effect is more pronounced at higher
angles of attack, due to the higher blockage ratios at higher angles. The greatest difference
between the surface pressure distributions measured in the different wall configurations is
observed for AOA = 10◦ at x/c ≈ 0.24, which is between the transition and reattachment
points. This variation suggests that the transition and reattachment locations are affected
by wall blockage, however, the changes are less than the spatial resolution of the static
pressure taps.

The effect of blockage on measured lift coefficients is presented in Fig. 5.10a.
Considering the data obtained with end plates installed at b/c = 2.0, it can be seen that
the measured lift coefficients decrease as the walls are moved from GSW to ASW contours,
and from ASW to SLW contours. The level of deviation between the measured GSW and
SLW lift coefficient data increases with angle of attack, as expected from the higher solid
blockage ratios at higher angles. Differences in the measured lift coefficients between the
GSW and SLW configurations are as high as 9% of the maximum lift coefficient.

To separate the effects of end plates from the effects of blockage, wall streamlining
was repeated with only end caps installed on the model. The resulting lift coefficients are
plotted in Fig. 5.10a, with the corresponding surface pressure distributions, wall pressure
distributions, and wall contours provided in Appendix E. The results show that, for
conditions at which a separation bubble forms over the airfoil surface, i.e, for AOA = 0, 5,
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Figure 5.9: Streamwise distributions of surface pressure for various wall configurations with
end plates installed at b/c = 2.0.
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Figure 5.10: Variation in lift coefficient computed from the measured pressure distributions
for the various end plate configurations: (a) comparison of GSW, ASW, and SLW
configuration data and (b) comparison of corrected GSW data to SLW data.

and 10◦, the measured lift coefficients in the SLW configuration with end plates installed at
b/c = 2.0 and with only end caps installed agree to within the measurement repeatability,
indicated by the marker size. This suggests that for angles of attack at which a separation
bubble forms, the increased solid blockage created by using end plates with walls in the
GSW or ASW configurations can bias lift coefficient measurements obtained from surface
pressure distributions on the center-span plane. Significantly different behavior is observed
for AOA = 15◦. For this angle, the SLW lift coefficient with end plates installed at b/c = 2.0
and that with only end caps installed differ by approximately 11% of the maximum lift
coefficient. This is a result of the lower suction pressure on the center-span plane without
end plates installed, caused by the mean spanwise non-uniformity in surface pressures over
a significant portion of the chord at AOA = 15◦ (Fig. 5.3d). This finding suggests that,
at post-stall angles of attack, the spanwise non-uniformity of the flow that exists without
end plates installed causes greater error in the measured lift coefficients than that created
by the added solid blockage when end plates are installed.

Aerodynamic forces measured in fixed-wall facilities are often adjusted to compensate
for blockage effects [15]. It is, therefore, of interest to compare corrected lift coefficient data
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to measurements in the SLW configuration. Figure 5.10b compares measured lift data in
the GSW configuration, the adjusted data obtained by applying the common blockage
correction method described by Barlow et al. [15] for two-dimensional bodies spanning the
test section, and measurements in the SLW configuration. The lift coefficient increases at an
approximately constant rate with angle of attack for 0◦ < AOA < 5◦. The corresponding
surface pressure distributions indicate that the separation bubble moves upstream with
increasing angle of attack. For 5◦ < AOA < 11◦, the separation bubble forms sufficiently
close to the leading edge to cause a significant reduction in the maximum suction pressure
on the upper surface of the airfoil compared to flow development without separation. This
results in the lower lift slope for 5◦ < AOA < 11◦ compared to 0◦ < AOA < 5◦. A
significant reduction in lift occurs between AOA = 11 and 12◦, indicating that the airfoil
model has stalled. Applying the blockage correction formulas reduces the lift coefficients,
with the most significant changes observed near the stall angle. The corrected lift
coefficient data for AOA = 5 and 10◦ coincide with the SLW configuration measurements.
This demonstrates that the simple blockage correction method can accurately correct lift
coefficient data when a separation bubble forms on the airfoil surface. A difference between
the corrected datum and the SLW configuration measurement is observed at AOA = 0◦,
and is attributed to the sensitivity of the flow over airfoils at low Reynolds numbers near
the zero-lift angle [10]. For AOA = 15◦, the correction method does not significantly
reduce the difference between the GSW and SLW configuration measurements. This is a
weakness of simple blockage correction methods, which do not adequately correct for bluff
body wake blockage at blockage ratios above approximately 6% as a result of qualitative
changes in model surface pressure distributions at higher blockage ratios [83, 134,135].

The process of laminar-to-turbulent transition in the separated shear layer over the
airfoil is of interest because it largely determines the overall airfoil performance. Energy
spectra of model surface pressure fluctuations were used to assess the effect of blockage
on the transition process, and are presented in Fig. 5.11. The results show that the
central frequency and width of the spectral peaks, which are attributed to growing
disturbances in the separated shear layer, do not change significantly as a result of wall
streamlining. However, some variations are observed in the small peaks within the central
band of amplified frequencies, for the different wall configurations. These changes indicate
variations in the energy content at a particular location in the transitioning flow. This may
be responsible for the minor dependence of the transition location on the wall configuration,
observed in the mean surface pressure distributions (Fig. 5.9).

Changes in the wake vortex shedding frequency with wall configuration are presented
in Table 5.2 for AOA = 15◦. Removing boundary layer blockage by moving from GSW
contours to ASW contours reduces the Strouhal number for wake vortex shedding by
about 0.002. This change is within the estimated uncertainty of ±0.002 in determining
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Figure 5.11: Energy spectra of surface pressure fluctuations for various wall configurations.
Note that, for clarity, successive spectra at a given x/c location and angle of attack are
increased in magnitude by a factor of ten relative to the preceding spectrum.
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Table 5.2: Strouhal number variation with wall configuration for AOA = 15◦ and b/c = 2.0.

configuration St
GSW 0.208
ASW 0.206
SLW 0.201

the Strouhal number. Streamlining the walls changes the Strouhal number by about 0.005
from the ASW configuration. This is attributed to the reduced free-stream velocity in
the wake when blockage is removed, resulting in a lower speed of vortex cores, and thus,
a lower vortex passing frequency at the measurement location. Based on Fig. 5.8, it was
concluded that the acceleration of the free stream downstream of the model for AOA = 15◦

was primarily due to wake blockage, because differences between the ASW and SLW wall
pressure distributions in the far wake were significant only for the post-stall angle of attack.
This suggests that wake blockage is the most significant factor contributing to the observed
3.5% difference in measured wake vortex shedding frequency between the GSW and SLW
configurations. The differences in measured wake vortex shedding frequency and wall
pressures between the ASW and SLW configurations for AOA = 15◦ indicate that solid
and wake blockage should be taken into consideration for measurements in the wake of
a stalled airfoil model under low Reynolds number conditions. It should be noted that
changes in the wake vortex shedding frequency could not be resolved for conditions at
which a separation bubble formed on the airfoil surface.

Based on this wall streamlining investigation, it was found that in low Reynolds
number airfoil experiments with models of moderate blockage ratios (4% . B . 8%),
test section blockage can cause measurable changes in sectional lift coefficients and wake
vortex shedding frequencies. Blockage was found to cause an increase in the measured
pressure distributions on the upper surface of the model, resulting in errors as high as 0.08
in the measured lift coefficients. Error increased with solid blockage ratio as the angle of
attack was increased. It was shown that for conditions at which a separation bubble forms
on the model surface, a simple correction method can be employed to accurately correct lift
coefficient data. Test section blockage was found to cause a 3.5% increase in the the wake
vortex shedding frequency behind the model at a post-stall angle of attack, suggesting that
wall streamlining may be important in detailed studies on wake development under stalled
conditions.
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5.3 Intrusive Techniques

Positioning a hot-wire probe near the surface of a model can distort the flow field [21,103].
The extent to which the flow upstream of the probe is affected needs to be quantified in
assessing the accuracy of near surface velocity measurements. This section considers the
effect of a normal hot-wire probe, and the traverse used to position it, on flow development
over an airfoil model at a low Reynolds number. The effect of opening and closing the wind
tunnel door during operation is also discussed, since such intrusion is sometimes required
to apply smoke generating fluid to a wire during smoke-wire flow visualization experiments.

5.3.1 Influence of the Hot-Wire Probe and Traverse

With end plates installed at b/c = 2.0, and the wind tunnel set in the appropriate
SLW configuration, mean surface pressure distributions were measured with the hot-
wire traverse at various positions in the spanwise plane of the static pressure taps.
Measurements of surface pressure fluctuations were performed with the hot-wire probe at
the same X-Y coordinates, in the spanwise plane of the embedded microphone array. As
a baseline for comparison, measurements were first performed with the traverse positioned
far downstream of the model, with the hot-wire probe tip at Xp/c = 7. The effect of the
traverse was then assessed by repeating these measurements with the probe atXp/c = 0 and
Yp/c = 1. Finally, the effect of the probe was investigated by repeating the measurements
with a Dantec 55P15 hot-wire probe positioned at less than 0.005c from the surface, i.e., as
close to the surface as possible without risking damage to the probe. These measurements
were performed for three streamwise locations at each angle of attack to help identify
regions where the hot-wire probe has the most significant effect on flow development. The
resulting surface pressure distributions are presented in Fig. 5.12.

Figure 5.12 shows that moving the traverse upstream from Xp/c = 7 to Xp/c = 0 has
a minor effect on the mean surface pressure distributions. The most significant changes
occur for AOA = 5 and 10◦, for which shifts in the surface pressure of less than 5% of the
dynamic pressure are observed in the pressure plateaus created by the separation bubbles.

The proximity of the probe to the surface of the airfoil has a measurable effect on
upstream flow development only when the probe is positioned near the separation point.
This is best illustrated by the × symbols in Fig. 5.12c. For this data set, the presence of the
probe has eliminated the pressure plateau, indicating that the probe has caused attached
boundary layer transition and prevented separation. Less significant changes occur in the
pressure distributions upstream of the probe for AOA = 0 and 5◦, indicating that the flow
is most sensitive to the proximity of the hot-wire probe for angles of attack just below
the stall angle. Thus, near surface velocity profile measurements acquired with a hot-wire
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Figure 5.12: Model surface pressure distributions with the hot-wire probe at various
positions. Legend entries identify the location of the probe tip, with Xp/c coordinates
used when the probe is at Yp/c = 1 and xp/c coordinates used when the probe is within
0.005c of the upper surface of the model. Dashed lines identify xp/c locations.
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probe close to the measured separation point need to be carefully scrutinized for such
flow conditions. For conditions at which reattachment occurs (AOA = 0, 5, and 10◦) the
pressure distribution sufficiently far downstream of the hot-wire probe appears unaffected
by the proximity of the probe to the surface. However, the separated flow just downstream
of the probe is affected, as exemplified by the × symbols in Fig. 5.12b. For the case of
separated shear layer transition without subsequent reattachment, the × and + symbols in
Fig. 5.12d show that positioning the probe near the separation point increases the surface
pressure by approximately 10% of the dynamic pressure in the nearly constant pressure
region between x/c ≈ 0.05 and x/c ≈ 0.9. For all angles of attack considered, positioning
the probe far downstream in the turbulent flow region (� symbols) appears to have no more
effect on the flow development than moving the traverse from Xp/c = 7 to Xp/c = 0.

Spanwise surface pressure distributions were also measured for each angle of attack and
probe position indicated in Fig. 5.12. No changes in spanwise uniformity due to probe
position were observed.

Energy spectra from measurements with embedded microphones are presented in
Fig. 5.13. For these measurements, the hot-wire probe was positioned in the spanwise
plane of the embedded microphones. For each angle of attack, spectra at four streamwise
locations are presented. At each streamwise location, a sequence of five spectra are plotted,
which correspond to measurements with the hot-wire probe at each position considered.
Moving the traverse towards the model from far downstream, with the probe far above the
surface, i.e., moving from Xp/c = 7 to Xp/c = 0, does not have a significant effect on the
energy spectra. However, differences are observed when the probe is positioned near the
airfoil surface. For each angle of attack, there was one xp/c probe position for which all
of the x/c measurement locations were downstream of the hot-wire probe, i.e., xp/c = 0.4
for AOA = 0◦, xp/c = 0.3 for AOA = 5◦, xp/c = 0.125 for AOA = 10◦, and xp/c = 0.125
for AOA = 15◦. These measurements are severely affected by the presence of the hot-wire
probe. However, measurements acquired just upstream of the hot-wire probe, e.g., those
for xp/c = 0.4 at AOA = 5◦ and xp/c = 0.2 at AOA = 10◦, show only minor changes due
to the presence of the hot-wire probe as compared to the baseline case with the probe at
Xp/c = 7. Positioning the hot-wire probe in the turbulent boundary layer, i.e., positioning
the probe at the highest value of xp/c in Fig. 5.13 for AOA = 0, 5, and 10◦, has no influence
on upstream measurements. For the case of separation without reattachment (AOA = 15◦),
transition is less affected by the probe position than for cases at which turbulent boundary
layer reattachment occurs.

The intrusion of the hot-wire probe had a measurable effect on flow development only
when positioned near the separation point with the model near the stall angle. For most
conditions, the mean surface pressure distributions and energy spectra of surface pressure
fluctuations measured in the transitioning separated shear layer upstream of the hot-wire
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Figure 5.13: Energy spectra of surface pressure fluctuations with end plates installed at
b/c = 2.0 and the hot-wire probe at various positions. Note that, for clarity, successive
spectra at a given x/c location and angle of attack are increased in magnitude by a factor
of ten relative to the preceding spectrum.
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probe were unaffected by the presence of the probe. However, it was shown that positioning
a hot-wire probe near the measured separation point for an angle of attack near the stall
angle can cause attached boundary layer transition without separation, for conditions at
which a transitional separation bubble would have otherwise formed.

5.3.2 Effect of Opening the Wind Tunnel Door

Smoke-wire flow visualization experiments, discussed in Chapter 6, required the wind
tunnel door to be opened and closed while the tunnel was in operation. The effect of
this intrusion on flow development after closing the door was assessed to ensure that the
flow visualization images accurately reflect the measured flow development. Mean and
fluctuating surface pressure measurements were used to evaluate the effect of opening the
door. It was found that, within thirty seconds of closing the door, surface pressure spectra
and the maximum suction pressure returned to the same conditions that existed prior
to opening the door. Supporting results and discussion for this finding are presented in
Appendix G.
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Chapter 6

Boundary Layer Development

Shear layer development over the airfoil surface is examined in this chapter. The
conclusions from Chapter 5 have been applied in the experiments of this chapter to
improve the reliability of the results. Specifically, end caps were installed, end plates were
positioned with a spacing of b/c = 2.0, the test section walls were set to the applicable
SLW configuration for the angle of attack, and hot-wire measurements at locations where
the probe affected flow development were identified.

6.1 Flow Visualization

Smoke-wire flow visualization was performed to provide qualitative insight into the overall
flow field development. Flow visualization experiments incorporated a thirty second time
delay between closing the wind tunnel door and acquiring images, as recommended in
Section 5.3.2. End plates were removed for flow visualization experiments to improve
smoke visibility.

Figures 6.1-6.4 present smoke-wire flow visualization images of the airfoil and near
wake for various angles of attack. The end of the airfoil nearest to the camera is outlined
in white, while streaklines occupy a plane near the center-span of the model. These
images illustrate two distinctly different flow regimes, common to airfoil operation at
low Reynolds numbers [1–3]. For AOA = 0, 5, and 10◦ (Figs. 6.1-6.3), the flow is
attached near the trailing edge, resulting in streaklines near the airfoil surface that closely
follow the surface curvature. A narrow wake forms behind the model with a centerline
nearly parallel to the airfoil chord. Hot-wire measurements presented in Section 6.2 show
that, for these angles of attack, a separation bubble forms on the airfoil surface. For
AOA = 15◦ (Fig. 6.4), boundary layer separation occurs near the leading edge without
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X/c=0.0 0.5 1.0 1.5 2.0

Figure 6.1: Smoke-wire flow visualization for AOA = 0◦.

X/c=0.0 0.5 1.0 1.5 2.0

Figure 6.2: Smoke-wire flow visualization for AOA = 5◦.
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X/c=0.0 0.5 1.0 1.5 2.0

Figure 6.3: Smoke-wire flow visualization for AOA = 10◦.

X/c=0.0 0.5 1.0 1.5 2.0

Figure 6.4: Smoke-wire flow visualization for AOA = 15◦.
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reattaching farther downstream. As a result, a wider wake forms than at the lower angles
considered.

Vortex shedding patterns can be seen in the wake of the airfoil for all angles of attack
in Figs. 6.1-6.4, verifying that the dominant frequencies of the velocity fluctuations in the
wake, identified from Fig. 5.5, are associated with vortex shedding. The larger and more
clearly defined structures in Fig. 6.4 compared to Fig. 6.3 suggest greater coherence of wake
structures at AOA = 15◦ compared to AOA = 10◦, agreeing with the trends noted for the
velocity energy spectra in Fig. 5.5. Lower coherence of spanwise vortices when a separation
bubble forms has also been noted for other flow conditions and airfoil geometries in prior
low Reynolds number experiments [136,137].

At non-zero angles of attack, the asymmetry in geometry causes wake vortices with
positive and negative rotation to differ in shape. This may be responsible for the asymmetry
in both the mean and RMS wake velocity profiles presented for this model in Ref. [137],
and reproduced for AOA = 10◦ and Rec = 105 in Fig. 6.5. This behavior is clearly seen
by comparing the streaklines on either side of the wake centerline in Fig. 6.2. The lower
row of vortices, i.e., those with positive sign, show more defined roll-up. This may be the
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Figure 6.5: Wake profiles of (a) mean velocity and (b) RMS velocity measured at
X/c = 0.95 with a normal hot-wire probe for AOA = 10◦, Rec = 105, and in the GSW
configuration. The data in this figure are reproduced from Ref. [137].
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reason that the RMS wake velocity profile presented in Fig. 6.5b shows a more pronounced
peak below the wake centerline than above it. A close examination of Fig. 6.5a reveals
that the magnitude of ∂U/∂Y is higher at the shear layer core below the wake centerline
than in the shear layer core above it. This indicates a higher mean vorticity of spanwise
coherent structures below the wake centerline, and may be the reason that more defined
peaks were observed in the wake velocity spectra computed from measurements along the
shear layer core below the wake centerline than from measurements acquired in the shear
layer core above the wake centerline.

The images in Figs. 6.1-6.4 can also be used to verify assumptions made in the end plate
design and wall adaptation algorithm. Kubo et al. [14] concluded that end plates should
be designed to extend downstream of the model to the end of the vortex formation region,
so as to prevent the relatively high suction in this region from entraining fluid from the
side wall boundary layer and affecting wake development. The end plate design developed
for these experiments made use of an estimate of this length provided by Kubo et al. [14].
From the smoke-wire flow visualization images in Figs. 6.1-6.4, it was determined that, for
each angle of attack, spanwise wake vortices being shed from the model form upstream of
the trailing edges of the end plates, which extend 0.8c downstream of the trailing edge of
the model. This confirms that the estimate used in the end plate design meets the end
plate requirement suggested by Kubo et al. [14].

An assumption inherent in the wall adaptation algorithm used in these experiments
is that a significant volume of irrotational flow separate the adjustable walls from the
highly rotational flow created by the model. The smoke-wire flow visualization images in
Figs. 6.1-6.4 show smooth streaklines away from the model and wake. The presence of the
model induces mild curvature in the streaklines near the test section wall, however, the
smooth streaklines away from the model and outside of the upper and lower wall boundary
layers suggest that the flow rotationality in this region is negligible. These observations
support the validity of the assumption of a sufficient volume of irrotational flow outside of
the adjustable wall boundary layers.

The streakline patterns observed in Figs. 6.1-6.4 are consistent with the SLW
configuration wall contours presented in Fig. 5.7. Near the top and bottom of each image,
the shape of the streaklines agree qualitatively with the streamline patterns computed from
the WAS. Specifically, the location of maximum streamline displacement predicted from
the WAS calculations matches that in the flow visualization images, and the positive slope
of the streamlines below and just upstream of the model at AOA = 5 and 10◦ are reflected
in the images. Furthermore, the downward angle of the wall contours just downstream
of the model for AOA = 5 and 10◦ are consistent with the negative slope of the wake
centerline seen in Figs. 6.2 and 6.3.

Figures 6.6-6.9 present smoke-wire flow visualization images and measured mean
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Figure 6.6: Boundary layer (a) smoke-wire flow visualization and (b) measured mean
velocity profiles, for AOA = 0◦.
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Figure 6.7: Boundary layer (a) smoke-wire flow visualization and (b) measured mean
velocity profiles, for AOA = 5◦.

93



(a)

Airfoil

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0
−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

X/c

Y
/
c

(b)

U/U∞

0 1 2

Figure 6.8: Boundary layer (a) smoke-wire flow visualization and (b) measured mean
velocity profiles, for AOA = 10◦.
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Figure 6.9: Boundary layer (a) smoke-wire flow visualization and (b) measured mean
velocity profiles, for AOA = 15◦.
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velocity profiles over the upper surface of the airfoil. Note that, for AOA = 0, 5, and
10◦, profile traverses were performed in the vertical direction, whereas for AOA = 15◦,
the boundary layer profiles were measured along paths normal to the airfoil surface. Only
the profiles at AOA = 15◦ could be measured along vectors normal to the surface, due to
limitations on streamwise increments of the hot-wire traverse. The boundary layer profiles
for AOA = 0, 5, and 10◦ show that the reverse flow region only extends to approximately
0.01c from the surface. As a result, the separation bubble is difficult to detect in the
smoke-wire images.

For conditions at which boundary layer reattachment occurs (Figs. 6.6-6.8), the
streaklines follow the airfoil curvature closely, suggesting that the parallel flow assumption
of linear stability theory is valid for these flow conditions. However, for AOA =
15◦ (Fig. 6.8), separation occurs close to the leading edge of the airfoil and the trajectory
of the streaklines visible in the image form large angles with the surface.

For conditions at which boundary layer reattachment occurs, the boundary layer profiles
show that the separation bubble moves upstream with increasing angle of attack; for
AOA = 0◦ the separation bubble is located near the trailing edge, for AOA = 5◦

the separation bubble is at a mid-chord location, and for AOA = 10◦ it is near the
leading edge. Locations of separation and reattachment are difficult to identify from the
smoke-wire images, due to the very thin shear layer at these locations. The separation
bubble is tallest for AOA = 0◦, and for this case, near the location of shear layer
reattachment (xR/c ≈ 0.9), the streakline nearest to the airfoil surface steeply curves
towards the model. The reattachment location could not be identified in the smoke-wire
images for the thiner bubbles at AOA = 5 and 10◦. However, streamwise oscillations in
the streaklines near the airfoil surface can be observed in Figs. 6.7-6.9 downstream of the
transition location, and are indicative of shear layer unsteadiness. Shear layer flapping
may be a result of such unsteadiness, as has been observed in previous separation bubble
experiments [53,107,109,111].

6.2 Boundary Layer Measurements

This section presents detailed measurements of flow development over the airfoil. Changes
in flow development with angle of attack are summarized in the surface pressure
distributions in Fig. 6.10. For conditions at which a separation bubble forms on the upper
surface of the airfoil, locations of separation, transition, and reattachment were estimated
from the mean surface pressure distributions, based on the method described by O’Meara
& Mueller [8]. Figure 6.10 shows that, for conditions at which a separation bubble forms, as
the angle of attack increases the maximum suction pressure on the upper surface increases,
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Figure 6.10: Model surface pressure distributions with estimated x/c locations of
separation (S), transition (T), and reattachment (R) determined from mean surface
pressure distributions for conditions at which separation bubbles form. For clarity, in (a),
only the upper surface pressure distribution is presented.
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the separation point moves upstream, and the separation bubble length decreases. These
trends are common for airfoil operation at low Reynolds numbers [8, 50, 53, 138]. The
dramatically different flow regime observed in Fig. 6.4 compared to Fig. 6.3, indicates that
the separation bubble bursts between AOA = 10 and 15◦. The resulting upper surface
pressure distribution at AOA = 15◦ shows significantly lower suction pressures than at
AOA = 10◦.

Mean and RMS boundary layer velocity profile measurements are presented in
Figs. 6.11-6.14. Figure 6.15 provides a closer view of the boundary layer profiles in
and around the relatively small separation bubble for AOA = 10◦. As discussed in
Appendix A, these hot-wire measurements are most accurate in the attached laminar
and turbulent boundary layers, and in the higher speed flow outside of the recirculation
regions. Velocity measurements from these regions can be used to accurately determine
RMS velocity variation along the shear layer core, shear layer energy spectrum development
in the streamwise direction, and disturbance amplification rates. In the recirculating flow
regions, higher measurement uncertainty results from low speed calibration error [23], hot-
wire voltage rectification error [99], error due to enhanced conductive heat loss near the
model surface [100–102], and error due to high mean vertical flow speed [99]. Although
these sources of error interfere with the accurate determination of the maximum reverse flow
speed, the height of the reverse flow region can be confidently determined. By removing
measurements obtained at near zero velocity, and rectifying the mean velocity profiles in
the reverse flow region, reasonable estimates of boundary layer thickness parameters can
also be obtained [38, 53]. Furthermore, it was shown in Chapter 4 that errors in mean
velocity profile measurements in the reverse flow region have only a minor effect on LST
estimates of disturbance growth rates and streamwise velocity fluctuation profiles.

The boundary layer profiles presented in Figs. 6.11-6.15 show mean velocity field
development over the model. These profiles exhibit typical trends for low Reynolds number
flows over airfoils [25, 50, 53]. For AOA = 0, 5, and 10◦, attached laminar boundary layer
profile development can be observed upstream of the separation point. For AOA = 15◦,
no attached boundary layer profiles were measured, since separation occurs very close to
the leading edge. Downstream of the separation point, separated shear layer profiles are
presented for each angle of attack. The mean velocity profiles exhibit reverse flow near the
wall and a profile inflection point at the approximate height of the displacement thickness,
indicated by the dashed curves in Figs. 6.11-6.14. For AOA = 0, 5, and 10◦, the height
of the inflection point reaches a maximum at approximately the transition location and
then decreases to zero. Beyond this point, an attached turbulent boundary layer develops.
For AOA = 15◦, the height of the separated shear layer velocity profile inflection point
increases continuously to the trailing edge.

RMS velocity profiles are presented below the mean velocity profiles in Figs. 6.11-
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Figure 6.15: Boundary layer profiles in and around the separation bubble showing (a) mean
and (b) RMS velocity for AOA = 10◦. Estimated x/c locations of separation, transition,
and reattachment are indicated by S, T, and R, respectively.
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6.15. In the laminar boundary layer, measured for AOA = 0, 5, and 10◦, low amplitude
fluctuations with a single peak near the wall are observed. These profiles are similar to the
Tollmien-Schlichting wave shapes that develop in unstable laminar boundary layers on flat
plates [33, 61, 67]. The magnitude of the maximum RMS velocity in each profile changes
gradually in the streamwise direction in the attached laminar boundary layer. Downstream,
in the laminar separated flow region, the RMS velocity profiles develop additional peaks and
the amplitude of fluctuations increase rapidly in the streamwise direction. Such three peak
RMS velocity profiles are typical for transitional separated shear layers [24,34,53]. At each
streamwise location, the RMS velocity peak with the greatest amplitude is approximately
at the height of the displacement thickness, which roughly corresponds to the mean profile
inflection point. For AOA = 0, 5, and 10◦, the RMS velocity profiles in the reattached
turbulent boundary layer have a single peak near the wall and decay more gradually into
the free stream than in the laminar boundary layer upstream. Sufficiently far downstream,
these profiles resemble the RMS velocity profiles commonly measured in the turbulent
boundary layers on flat plates [139]. For AOA = 15◦, over most of the airfoil chord the
RMS velocity profiles exhibit a single peak near the mean profile inflection point. This
profile is similar to the RMS velocity profiles in turbulent free shear layers (e.g., Ref. [139]),
except near the model surface where the profile must satisfy the no-slip condition.

Estimates of the locations of separation, transition, and reattachment can be made
based on the mean velocity profiles and energy spectra in the shear layer. The separation
location can be estimated as the first profile with zero or negative slope at the model
surface. Note that limitations on the closest measurement location, errors associated with
low speed and near wall velocity measurements, and probe interference effects identified in
Chapter 5 cause uncertainty in this estimate. For conditions at which a separation bubble
forms, the transition location can be estimated as the location of maximum displacement
thickness [53]. For the case of separation without reattachment, the transition location
was estimated from energy spectra of the fluctuating velocity component. The final
streamwise location at which a characteristic instability frequency could be identified in
the spectrum was used as the estimate of the transition location. This approach was found
to provide consistent estimates of the transition location for the separation bubble cases
as compared to the estimates based on the model surface pressure distributions. The
reattachment location can be estimated as the first location downstream of the transition
point at which the mean velocity profile has a positive slope at the wall. Estimates of the
separation, transition, and reattachment locations, based on surface pressure distributions
for conditions at which boundary layer reattachment occurs and velocity measurements for
stalled conditions, are indicated in Figs. 6.11-6.15. Where estimates of these locations can
be obtained from both velocity profile measurements and surface pressure measurements,
the values agree to within the measurement resolution.
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The displacement thickness curves in Figs. 6.11-6.13 exhibit common trends for
separation bubbles [53]. The rate of change of displacement thickness in the streamwise
direction is low in the attached laminar boundary layer, but increases significantly at the
separation point. The displacement thickness continues to increase up to the transition
location, and then decreases as enhanced momentum transfer in the turbulent shear
layer reduces the height of the reverse flow region near the surface. The minimum
displacement thickness downstream of the transition point occurs at approximately the
mean reattachment location. Downstream, in the developing turbulent boundary layer,
the displacement thickness increases at a much higher rate than in the upstream laminar
boundary layer. Under stalled conditions (Fig. 6.14), the displacement thickness increases
nearly linearly in the streamwise direction downstream of the separation point.

Figure 6.16 provides an overview of the geometry of the reverse flow region and how
it changes with angle of attack. The U/U∞ = 0 contour was estimated from the mean
velocity profile measurements in Figs. 6.11-6.14. The observed reverse flow region shapes
for AOA = 0, 5, and 10◦ agree qualitatively with previous studies on low Reynolds number
airfoils [37,53]. As noted in relation to Fig. 6.10, the separation bubble shifts upstream and
decreases in length as the angle of attack increases. However, the height of the reverse flow
region does not change monotonically with angle of attack. For a thick airfoil, such as the
NACA 0018 airfoil examined in this investigation, the surface geometry in the vicinity of
the separation bubble changes significantly with separation bubble location. The effective
changes in surface curvature near the separation bubble can be seen in Fig. 6.16, and may
contribute to the measured trend in maximum reverse flow height with angle of attack.
For conditions at which a separation bubble forms, the distance between the transition and
reattachment locations is small compared to the overall bubble length. For AOA = 15◦, at
which boundary layer reattachment does not occur, Fig. 6.16 illustrates how the U/U∞ = 0
contour remains at an approximately constant height in the X-Y coordinate system. For
this angle of attack, the flow behaves as that over a bluff body, with laminar separation
relatively far upstream and a wide wake forming behind the model.

Boundary layer thickness parameters were computed based on the velocity profile
measurements in Figs. 6.11-6.14. The streamwise variation of these parameters is presented
in Fig. 6.17, for angles at which a separation bubble forms, and in Fig. 6.18, for the stalled
case. The data have been separated in this way because the boundary layer thickness
parameters are significantly larger for the stalled case. For conditions at which a separation
bubble forms, the zero velocity contours clearly show the trends noted from Fig. 6.16:
as the angle of attack increases, the separation bubble shifts upstream and decreases in
length, with the maximum height of the reverse flow region at AOA = 5◦ less than that
at 0 and 10◦. By comparison with Figs. 6.11-6.13, it can be seen that the transition
location approximately corresponds to the streamwise location of maximum separation
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Figure 6.17: Estimated zero mean velocity contour and boundary layer thickness
parameters for AOA = 0, 5, and 10◦.
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Figure 6.18: Estimated zero mean velocity contour and boundary layer thickness
parameters for AOA = 15◦.
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bubble height, as has been observed in prior low Reynolds number airfoil experiments [53].
Figure 6.17 shows that the maximum displacement thickness is roughly proportional to
the maximum height of the reverse flow region in the separation bubble. The momentum
thickness plots are consistent with qualitative trends noted by Brendel & Mueller [53] for a
Wortmann FX63-137 airfoil at Rec = 105; specifically, the momentum thickness has a small,
nearly constant value upstream of the transition point, begins to increase significantly near
the transition location, and shows no distinct features at the mean reattachment point.
This momentum thickness trend is also observed for the stalled condition in Fig. 6.18. The
resulting boundary layer thickness shape factor curves show similar trends between each of
the angles of attack, including the stalled case. However, for the stalled case, measurements
were only obtained downstream of the separation point, and as a result, trends in the
attached boundary layer and just downstream of separation could not be compared. The
boundary layer thickness shape factor is relatively constant upstream of the separation
point, then gradually increases up to the transition location where it undergoes a steep
reduction to a value that remains nearly constant with streamwise position throughout
the developing turbulent boundary layer. The nearly constant values of the shape factor
upstream and downstream of the transition point are approximately equal. Similar shape
factor trends can be observed in the results of Burgmann & Schröder [37]. The maximum
value of the shape factor does not follow the same trend with angle of attack as was
observed for the height of the reverse flow region.

Figure 6.19 compares the RMS velocity measured along the displacement thickness
curve, RMS surface pressure fluctuations, and the locations of separation, transition, and
reattachment for each angle of attack investigated. Note that the RMS velocity at the
height of the displacement thickness is presented, rather than at the measured RMS velocity
maximum, because displacement thickness is obtained through velocity profile integration
and is therefore less sensitive to local data scatter around the RMS velocity peak. The
RMS velocity trends are in qualitative agreement with separation bubble measurements in
previous studies [23,28,50]. Upstream of the separation point, the RMS velocity diminishes
in the streamwise direction. This can be observed for both AOA = 0◦ and AOA = 5◦. For
the other two angles of attack, the separation location is too far upstream for this region
to be observed in the measured data. The decay of RMS velocity is attributed to the
expansion of the velocity profile in the streamwise direction, the decrease in edge velocity
in the pressure recovery region, and the attenuation of certain disturbance components in
the boundary layer. Downstream of the separation location the RMS velocity increases at a
very high rate and eventually reaches a maximum just upstream of the mean reattachment
point. The RMS velocity maximum observed at each of the four angles of attack is in
the range 0.2 . ũ/U∞ . 0.3, and increases with angle of attack for conditions at which
a separation bubble forms. Downstream of the transition location, the RMS velocity
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Figure 6.19: Streamwise development of (a) RMS streamwise velocity, at y = δ∗, and
(b) RMS surface pressure fluctuations, compared to (c) locations of mean separation,
transition, and reattachment. Solid markers indicate measurements for which the hot-
wire probe was believed to have changed the location of, or eliminated, separation.
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gradually decays. This is similarly observed in turbulent boundary layers on flat plates
as a result of the profile expanding into the free stream and absorbing lower turbulence
intensity flow [139].

For angles of attack at which a separation bubble forms, the RMS surface pressure
development in Fig. 6.19 exhibits qualitatively similar behavior to separation bubbles
on blunt splitter plates, splitter plates with fences, forward facing steps, and backward
facing steps [106–112]; in the laminar boundary layer upstream of separation, RMS surface
pressure is relatively low, increases rapidly downstream of the separation point, reaches a
maximum between the transition and reattachment points, and then decays in the attached
turbulent boundary layer. The data presented by Mabey [106] for splitter plates with
fences, forward facing steps, and backward facing steps show that the maximum value of
RMS surface pressure depends on the specific geometry over which the separation bubble
forms. The maximum value of p̃/q∞, measured to be approximately 0.2 in the present
investigation, is higher than the values between 0.04 and 0.1 presented by Mabey [106].
For AOA = 15◦, low amplitude fluctuations are observed, which increase gradually in
the streamwise direction and show no distinctive features. The low amplitude of these
fluctuations distinguishes the RMS pressure distribution from that expected for an attached
turbulent boundary layer at higher Reynolds numbers, as have been measured by Paterson
et al. [105]. These findings indicate that surface pressure measurements can be used to
identify whether the airfoil is stalled and to provide reasonable estimates of the location
and size of the separation bubble if one exists.

Comparing the RMS velocity and RMS surface pressure distributions in Fig. 6.19, it
can be concluded that features that can be identified from RMS velocity measurements
along the shear layer core can also be determined from less time consuming surface pressure
measurements. Rapid growth of RMS velocity and surface pressure begins at approximately
the same location at a given angle of attack, for AOA = 0, 5, and 10◦. Furthermore, the
RMS velocity and surface pressure begin to decay at approximately the same location at
a given angle of attack, as observed for AOA = 5 and 10◦. The RMS surface pressure
decays more rapidly than the RMS velocity downstream of the transition location, which
may be due to the rapidly increasing turbulent boundary layer thickness reducing the
pressure fluctuation magnitudes observed at the surface. Similar behavior could not be
verified for the AOA = 0◦ case, because the transition location at this angle of attack
was downstream of the microphone array. For the stalled condition (AOA = 15◦), the
increase in RMS velocity between the separation and transition locations is not reflected in
the RMS surface pressure distribution. Furthermore, the RMS velocity decay downstream
of the transition location is not seen in the RMS surface pressure distribution. These
observations suggest that for a taller shear layer, as exists at AOA = 15◦, the distance
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between the shear layer core and the surface causes differences between the trends of
pressure fluctuations at the surface and velocity fluctuations at the shear layer core.

It should be noted that the solid markers in Fig. 6.19a identify those measurements
for which the hot-wire probe is believed to have caused the mean separation location to
shift upstream or to have forced transition without separation. Such an influence when
the hot-wire probe is positioned near the separation point was inferred from mean surface
pressure distributions in Chapter 5, and is further supported by comparing the location
where RMS velocity and RMS surface pressure begin to increase in Figs. 6.19a and b. The
AOA = 10◦ data show a particularly strong influence of the hot-wire probe, consistent
with the relatively significant effect of the hot-wire probe on separation, as suggested by
Fig. 5.12c. The RMS velocity data show the onset of disturbance growth, followed by a
sudden decay, before the smooth and continuous growth leading to turbulent transition.
The earlier onset of growth observed in the velocity RMS plots explains the upstream
movement of the transition location inferred from Fig. 5.12c.

Energy spectra of the fluctuating streamwise velocity and surface pressure are presented
in Figs. 6.20-6.23. Upstream of the mean separation point, the velocity spectra are flat,
indicating that the free-stream disturbances are of relatively low magnitude and that
no appreciable disturbance growth has occurred in the attached boundary layer. Just
downstream of the separation point, the energy content grows and extends to a broader
range of frequencies around a central value. The central instability frequency increases
with increasing angle of attack for angles at which a separation bubble forms. Harmonics
of the central frequency are seen to develop upstream of the transition location. Harmonics
of the fundamental frequency may be observed as a result of the contribution of vertical
velocity fluctuations to the measurements of streamwise velocity fluctuations and static
surface pressure fluctuations. Vertical velocity fluctuations are expected to have a similar
spectral distribution to those of streamwise velocity and static surface pressure, however,
these three signals will be out of phase. As a result, if two of these quantities contribute to
the response of one sensor, the resulting energy spectrum may contain lower energy value
harmonics of the fundamental frequency. The magnitude of the spectral peak decreases
significantly between the transition point and the subsequent measurement station, which
for AOA = 10◦ is over a distance of 0.01c. This change from a dominant frequency in
the spectrum to very broadband energy content indicates that the final breakdown to
turbulent flow has occurred over a very short length, as is common in separated shear layer
transition [53]. For the post-stall angle of attack, the location of this abrupt change from
frequency centered energy content to wide spread energy content was used to identify the
transition location. For each of the angles of attack, well downstream of the transition
point a typical broadband turbulent energy spectrum is observed (see, e.g., Ref. [139]).

Energy spectra of the fluctuating surface pressure show the same trends as for the
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Figure 6.20: Spectra of (a) streamwise velocity fluctuations and (b) surface pressure
fluctuations for AOA = 0◦. For clarity, spectra are normalized by the total energy content
and scaled by a factor proportional to 10x/c.
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Figure 6.21: Spectra of (a) streamwise velocity fluctuations and (b) surface pressure
fluctuations for AOA = 5◦. For clarity, spectra are normalized by the total energy content
and scaled by a factor proportional to 10x/c.
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Figure 6.22: Spectra of (a) streamwise velocity fluctuations and (b) surface pressure
fluctuations for AOA = 10◦. For clarity, spectra are normalized by the total energy content
and scaled by a factor proportional to 10x/c.
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Figure 6.23: Spectra of (a) streamwise velocity fluctuations and (b) surface pressure
fluctuations for AOA = 15◦. For clarity, spectra are normalized by the total energy content
and scaled by a factor proportional to 10x/c.
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velocity fluctuations. Locations where dominant disturbance growth begins and transition
occurs agree to within the spatial resolution of the measurements. Energy spectra of
surface pressure fluctuations in the laminar boundary layer contain significant signal noise
related to the very low magnitude of pressure fluctuations at the surface in this region.
The contribution of signal noise is less significant in the separation bubble, where higher
energy fluctuations develop through the transition process. It should be noted that the
background disturbances observed in laminar boundary layer measurements had very low
magnitude and were not centered at any specific frequency. Therefore, if acoustic noise
has contributed to this signal, it is unlikely to have influenced the dominant instability
frequency controlling separation bubble transition.

Multiple narrow spectral peaks are observed within the band of unstable frequencies
in Figs. 6.20-6.23, particularly in the energy spectra for AOA = 10◦ (Fig. 6.22). Some
studies on transitional separation bubbles have attributed lower frequency secondary peaks
to bubble flapping [24]. In the present investigation, the cause of the distinct peaks
within the unstable band of frequencies was not confirmed. Flow visualization experiments
employing high frame rate imaging may reveal the physical reason for these peaks, and are
recommended as future work.

Many features of flow development over the airfoil were identified through measurements
with embedded microphones. Based on the measurements in this section, a few areas
for improvement can be noted for consideration in future experiments. As mentioned in
relation to Fig. 6.19, the microphone array does not extend sufficiently far upstream to fully
resolve the details of disturbance growth and transition for AOA = 15◦, nor does it extend
sufficiently far downstream to resolve these details at AOA = 0◦. Furthermore, greater
microphone resolution would enhance the capabilities of this system for smaller separation
bubbles, such as that at AOA = 10◦. At certain angles of attack, higher resolution would
improve the accuracy of disturbance growth rate and instability wave length measurements.
The benefits of a larger microphone array with higher spatial resolution are illustrated by
the greater details available from the velocity spectra in Figs. 6.20-6.23, than from the
corresponding pressure spectra.

6.3 Instability of the Laminar Separated Shear Layers

Linear stability analysis was performed on the measured separated shear layer profiles
presented in Section 6.2. The results are compared to measured growth rates, phase
speeds, and streamwise velocity fluctuation profiles in this section to gain insight into flow
development in transitioning separated shear layers. Disturbance growth rate estimates
based on hot-wire and surface pressure measurements are compared to evaluate the
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capabilities of an embedded surface pressure sensor array for measurements of disturbance
development. Such measurements are significantly less time consuming than hot-wire
measurements, and would therefore be valuable in parametric studies.

In Fig. 6.19, disturbance growth is evident in the laminar portion of the separation
bubble in both the RMS velocity and RMS surface pressure plots. These data are
presented on a logarithmic scale in order to emphasize the agreement and disagreement
from exponential disturbance growth, assumed by LST for component disturbances.
For each angle of attack, a region of relatively constant growth rate can be identified.
However, even in these regions the trend is not perfectly linear. This deviation does not
necessarily invalidate the linear growth assumption, as it may be an effect of the combined
disturbance components in the RMS velocity measurement. Non-parallel flow effects may
also contribute to the discrepancy. LST is based on the assumption that the mean vertical
velocity is negligible, implying that the flow is parallel, and that the growth rate spectrum
does not vary in the streamwise direction. However, as is clearly seen in Figs. 6.11-6.14,
the displacement thickness changes significantly in the separated flow region, indicating
that the flow is not parallel. Linear stability theory may still provide a reasonable
model for disturbance growth at each individual measurement location, assuming quasi-
parallel flow; however, the frequency band of amplified disturbances or the growth rate
magnitudes may change in the streamwise direction. Thus, even if the RMS velocity and
pressure plots do not show perfectly exponential growth, this does not mean that non-linear
terms are influencing disturbance development. Near the transition location, significant
deviation from exponential disturbance growth is observed. This is likely a result of non-
linear interactions, which dominate the transition process over a very short section of
the chord and which have been identified in numerical simulations of separation bubble
development [25,54].

In this section, linear stability predictions are presented for the velocity profiles
characterized in Table 6.1. The profiles for each angle of attack were selected from profiles
at three to five x/c locations in the linear growth portion of the laminar separated shear

Table 6.1: Characteristic parameters of profiles used in linear stability calculations.

AOA x/c γ δ∗ θ H Ue/U∞ Reδ∗

0◦ 0.73 31.7◦ 0.0173 0.0027 6.4 1.15 2.0× 103

5◦ 0.34 41.5◦ 0.0073 0.0015 4.9 1.46 1.0× 103

10◦ 0.18 23.5◦ 0.0099 0.0013 7.9 1.79 1.7× 103

15◦ 0.10 13.5◦ 0.0212 0.0017 12.4 1.25 2.8× 103
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layer. Results for one profile at each angle of attack are presented. However, the analysis
was also performed for the other profiles in the laminar separated shear layer, and the
results agreed to within the expected variability due to data scatter, identified in Chapter 4.
In Table 6.1, the shear angle, γ, is the mean velocity profile angle at the inflection point,
i.e., γ = arctan (dy/dU) at the profile inflection point. For these data, the shear angle
decreases with increasing shape factor. This is interesting because the other parameters in
Table 6.1 that characterize the profiles show no clear trend connecting values for conditions
with and without shear layer reattachment. Since only four profiles are considered, no
conclusion can be drawn about the general nature of this trend.

The velocity profiles on which linear stability calculations were performed, were first
processed to compensate for mean rectification error in the reverse flow region and to
remove extraneous data points where the flow speed was nearly zero. The processed velocity
profiles are presented in Fig. 6.24 with the Dini et al. [79] fit (Table 4.2) computed for each
profile. The Dini et al. [79] type fit was selected for this analysis over the Falkner-Skan
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Figure 6.24: Measured velocity profiles (markers) and corresponding Dini et al. [79]
fits (solid line) used in linear stability calculations. See Table 6.1 for relevant profile
parameters.
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and Dovgal et al. [34] fits also recommended in Chapter 4, because this fit has the fewest
parameters and does not depend on measured profile curvature in the reverse flow region.
Furthermore, this fit showed the lowest variability due to data scatter based on the results
in Table 4.5.

Growth rate spectra computed from both the Rayleigh and Orr-Sommerfeld equations,
for the profiles in Fig. 6.24, are compared to measured disturbance growth rates in Fig. 6.25.
Measured growth rates were obtained by calculating the spatial growth exponent from
RMS values of band-pass filtered hot-wire measurements at y = δ∗ and from RMS surface
pressure measurements. For the stalled case, growth rates could only be determined
from the hot-wire measurements because the microphone array did not extend far enough
upstream or have sufficient spatial resolution to provide reasonable estimates of the growth
rate. For each angle of attack, the computed spectra predict spatial amplification over a
band of frequencies, as was observed to occur from the energy spectra in Figs. 6.20-6.23.
Disturbance amplification is predicted over a wider range of frequencies than is observed
in Figs. 6.20-6.23, because small growth rates at very high and very low frequencies do
not result in detectable amplification in the laminar separated shear layer. In Fig. 6.25,
the maximum disturbance growth rate increases with increasing angle of attack for angles
at which a separation bubble forms. The higher spatial growth rates at higher angles of
attack explains why the separation bubble length decreases with increasing angle of attack,
as noted in relation to Fig. 6.10.

The measured and computed growth rate spectra in Fig. 6.25 agree to within the
combined uncertainty in growth rate measurements and in the LST predictions due to
the choice of curve fit and to mean profile data scatter (Chapter 4). The frequency of
maximum disturbance growth rate is accurately predicted, and agrees with the central
frequencies observed in the energy spectra in Figs. 6.20-6.23. The frequency band of
amplified disturbances can be more easily identified from the measured growth rates than
from the energy spectra of Figs. 6.20-6.23.

The effect of viscosity on the growth rate predictions from LST in Fig. 6.25 is similar
to that observed in Section 4.4; specifically, the spectrum retains its general shape and
dominant frequency but viscosity has a damping effect on the disturbance growth rate.
Figure 6.26 shows the percentage difference in maximum growth rate predictions between
the viscous and inviscid solutions, computed from Dini et al. [79] fits to profiles measured
in this study and previous experimental studies on transition in separated shear layers.
The data have a strong dependence on the displacement thickness Reynolds number. This
dependence is indicated by the solid line curve fit, which quantifies the rate at which the
error between viscous and inviscid LST predictions for measured separated shear layers on
low Reynolds number airfoils decreases with increasing Reynolds number. The fit provides
a method of estimating the effect of viscosity or adjusting inviscid growth rate calculations.
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Figure 6.25: Growth rate spectra from hot-wire measurements (� markers) and
surface pressure measurements (4 markers) compared to predictions of the Rayleigh
equation (dashed line) and the Orr-Sommerfeld equation (solid line). Uncertainty bars are
shown for hot-wire data only; the estimated uncertainty in αic based on surface pressure
measurements is quantified in Appendix A.
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Figure 6.26: Percentage difference in the maximum disturbance growth rate prediction
between viscous and inviscid linear stability analyses from several separated shear layer
experiments.

The difference between growth rate predictions from viscous and inviscid analysis for these
experiments does not exceed 15%, which is less than the variability due to the choice of
curve fit (Chapter 4) and the uncertainty in the measured growth rate (Appendix A). It is
concluded that, for this type of flow, the inviscid instability approximation does not limit
the value of LST predictions of disturbance amplification rates based on measured mean
velocity profiles.

Computed and measured real wave number spectra are presented in Fig. 6.27. Wave
number was determined from the phase speed of spatial instability waves, measured as
the ratio of the streamwise distance between successive microphones and the time delay
between the measured pressure fluctuation signals at each frequency. The time delay
was estimated from the cross-correlation sequence of the band-pass filtered microphone
data. As noted for the growth rate spectra, measurements can only be obtained over
the band of frequencies for which pressure fluctuations are of sufficient magnitude relative
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Figure 6.27: Wave number spectra measured (markers) and computed from the Rayleigh
equation (dashed curve) and the Orr-Sommerfeld equation (solid curve). Dashed vertical
lines identify the computed frequency of maximum disturbance growth rate from the Orr-
Sommerfeld equation solution.
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to the background disturbance environment. Furthermore, for the AOA = 15◦ case, the
spatial resolution of the microphone array is not sufficient to estimate the wave number
of disturbances near or above the frequency of maximum disturbance amplification. As
a result, only the longer wavelength disturbances at lower frequencies could be measured
for this case. The measurements agree with the computed wave number spectra to within
the combined uncertainty in the measurements and the variability due to data scatter
and analysis approach in linear stability calculations. The wave number spectra show
smaller differences between the Rayleigh and Orr-Sommerfeld equation solutions than were
observed in the growth rate spectra. Thus, using the inviscid approximation when the wave
number spectrum is of interest should have only a minor effect on the predictions.

The results in Figs. 6.25 and 6.27 demonstrate that surface pressure measurements can
be used to obtain estimates of disturbance growth rate and wave number for conditions at
which a separation bubble forms on the airfoil surface. Because the disturbance wavelength
and microphone spacing were of the same order of magnitude, adjustments had to be
made to compensate for wave number aliasing in some of the measurements. Greater
spatial resolution of the microphone array could eliminate this source of error and enable
measurements over a wider range of conditions. It should also be noted that, for the
measurements presented in Fig. 6.27, the time delay between measurement locations was
on the order of one millisecond. In light of this, a high measurement sample rate of
40 kHz was used to reduce discretization error in phase speed estimates, which would have
increased the uncertainty in wave number measurements. The difficulties associated with
high frequency and small wavelength disturbance measurements mentioned here should
be considered in the design of embedded sensor arrays for aerodynamic applications or
experimental measurements.

Table 6.2 provides a summary of the Orr-Sommerfeld equation solutions, measured
convection speeds, as well as the separation, transition, and reattachment locations for
each angle of attack. These data reiterate the trends noted previously: for angles of attack
at which a separation bubble forms, the separation bubble decreases in length as the angle
of attack increases due to higher disturbance growth rates in the separated shear layer.
This change is accompanied by an increase of the phase speed and a reduction of the
wavelength of disturbances.

The surface pressure fluctuation convection speeds in Table 6.2 were measured in the
same way as phase speeds, without band-pass filtering the surface pressure data obtained
from the embedded microphones. The convection speed represents the average speed at
which pressure fluctuations are convected downstream in the separated shear layer. This
quantity is different from phase speed, in that it describes the speed of the total pressure
fluctuation signal, not the speed of disturbances at a particular frequency. If the pressure
fluctuations in the separated shear layer can be attributed to linear disturbance growth, the
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Table 6.2: Summary of flow development in the separation bubble.

measured Orr-Sommerfeld equation solution

AOA xS/c xT/c xR/c Uc/U∞ fpeakc/U∞ −αpeak
i c αpeak

r c λ/c cr/U∞
0◦ 0.48 0.81 0.88 0.42 7.1 32.7 85.9 0.073 0.45
5◦ 0.24 0.44 0.50 0.53 13.0 40.5 140.2 0.045 0.54
10◦ 0.08 0.22 0.27 0.61 25.4 100.7 205.1 0.031 0.63
15◦ 0.04 0.19 – – 15.1 91.6 153.5 0.041 0.46

phase speed at the frequency of maximum disturbance amplification should be similar to
the convection speed. This is expected because the phase speed does not vary significantly
over the band of measurable unstable frequencies and because pressure fluctuations near
the dominant instability frequency will provide the most significant contribution to the
overall pressure fluctuation field. The computed phase speeds at the frequency of maximum
disturbance growth rate are graphically compared to the measured convection speeds in
Fig. 6.28. The computed phase speed accurately predicts the measured convection speed for
angles at which a separation bubble forms, further supporting the claim of Gerakopulos [35]
that the measured convection speeds in separation bubbles over low Reynolds number
airfoils are associated with growing disturbance wave packets propagating through the
shear layer. Note that the convection speed was not measured for AOA = 15◦, due to
limitations on the spatial resolution of surface pressure measurements.

Convection and phase speeds obtained in the present investigation and those reported
in previous experimental studies on flow development over airfoils at low Reynolds numbers
are presented in Fig. 6.29. In this plot, phase speeds were computed from LST, whereas
convection speeds were measured experimentally. In Fig. 6.29a, the free-stream velocity is
used to non-dimensionalize the data, whereas in Fig. 6.29b, scaling is in terms of the edge
velocity. For clarity, uncertainty bands are not presented in Fig. 6.29, but are of similar
magnitude to those in Fig. 6.28. Consistent with the data in Fig. 6.28, Fig. 6.29 indicates
that when scaling is in terms of free-stream velocity, the convection speed increases with
angle of attack for angles at which a separation bubble forms. Normalizing by the edge
velocity reduces the range of non-dimensional phase speeds and convection speeds to
between approximately 0.3 and 0.5. Yarusevych et al. [136] found a narrower range of
values, between approximately 0.45 and 0.5 from a smaller data set. They reasoned that
this range of speeds corresponds to the average of the edge velocity and the maximum
reverse flow speed, because that is the approximate speed of the fluctuation vorticity core
at the mean velocity profile inflection point. The wider range of values observed in Fig. 6.29
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Figure 6.28: Comparison of measured convection speeds and computed phase speeds at
the dominant frequencies of disturbance amplification.

may partially be due to measurement uncertainty, which is as high as ±0.05 for some of the
data points. Another factor may be the variation in phase speed at the dominant instability
frequency due to differences in the separated shear layer velocity profile. By applying LST
to analytical separated shear layer profiles, Dovgal et al. [34] computed phase speeds at the
frequency of maximum disturbance growth rate between approximately 0.3 and 0.5. These
values were obtained by analyzing profiles with different maximum reverse flow speeds,
distances of the inflection point from the wall, and Reynolds numbers based on shear layer
thickness. The phase speeds they computed are between the value of approximately 0.5,
predicted from inviscid analysis of a free shear layer which approaches zero velocity in one
direction [140], and values of less than 0.3 predicted for the Blasius boundary layer profile
for Reδ∗ & 3 × 103 (Ref. [63]). The results presented here indicate that the convection
speed of disturbances in the separated shear layer over a low Reynolds number airfoil are
dependent on more factors than just the edge velocity and maximum reverse flow speed.
The similar range of values in Fig. 6.29 compared to the phase speed range in predictions
of Dovgal et al. [34] suggest that the convection speed of disturbances also have a strong
dependence on the velocity profile Reynolds number and the distance of the shear layer
core from the airfoil surface.
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Figure 6.29: Comparison of convection speed and phase speed measurements from various
studies. Filled markers (i.e., the � and � markers) indicate conditions at which separation
occurred without reattachment. All other markers are for conditions at which a separation
bubble formed. Data for the NACA 0018 airfoil were measured in the present study, phase
speeds for the NACA 0025 airfoil are from Yarusevych et al. [26], convection speeds for the
NACA 0025 airfoil are from Yarusevych et al. [136], and data for the SD 7003 airfoil are
from Burgmann & Schröder [37].

Streamwise velocity fluctuation amplitude profiles are presented in Figs. 6.30-6.33. The
measured profiles are of RMS velocity at particular frequencies, and were computed after
band-pass filtering velocity data on intervals of fc/U∞ ± 0.6. For each angle of attack,
four profiles are presented, which span the range of unstable disturbances that could be
resolved. The results are normalized by the maximum RMS velocity at the frequency of
maximum disturbance growth rate. Measurements are compared to computed streamwise
velocity fluctuation profiles from both the Rayleigh and Orr-Sommerfeld equations.

The measured RMS streamwise velocity fluctuation amplitude profiles in Figs. 6.30-
6.33 show commonly observed trends for velocity fluctuation amplitude profiles in laminar
separated shear layers [22,25] and those predicted from LST [34]. Specifically, the profiles
have three maxima for y/δ∗ & 0.5, the largest coinciding with the mean velocity profile
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Figure 6.30: Streamwise velocity fluctuation amplitude profiles measured (markers) and
computed from the Rayleigh (dashed line) and Orr-Sommerfeld (solid line) equations for
AOA = 0◦.
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0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|u|/ũ
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Figure 6.31: Streamwise velocity fluctuation amplitude profiles measured (markers) and
computed from the Rayleigh (dashed line) and Orr-Sommerfeld (solid line) equations for
AOA = 5◦.
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Figure 6.32: Streamwise velocity fluctuation amplitude profiles measured (markers) and
computed from the Rayleigh (dashed line) and Orr-Sommerfeld (solid line) equations for
AOA = 10◦.
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Figure 6.33: Streamwise velocity fluctuation amplitude profiles measured (markers) and
computed from the Rayleigh (dashed line) and Orr-Sommerfeld (solid line) equations for
AOA = 15◦.
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inflection point and the other two near the locations of maximum and minimum curvature
in the mean profile. The correspondence between the location of this dominant peak and
the mean profile inflection point indicates that an inviscid instability mechanism is driving
the initial stages of transition in the separated shear layers forming at each angle of attack.
The modal RMS velocity profiles decay into the laminar free stream and also approach the
no-slip condition at the model surface. The amplitude of fluctuations diminish at higher
and lower frequencies. In this way, the contribution of velocity fluctuations at a particular
frequency to the overall velocity signal decreases as |f − fpeak| increases.

The computed streamwise velocity fluctuation profiles from the Rayleigh and Orr-
Sommerfeld equations show a similar three peak structure to that which was measured
experimentally. Figures 6.30-6.33 shows that both the inviscid and viscous analyses provide
accurate predictions of the location of the dominant peak at y/δ∗ ≈ 1. The location of the
peak at y/δ∗ ≈ 1.5 is also accurately predicted; however, the relative magnitude of this peak
compared to that at y/δ∗ ≈ 1 is not well predicted for AOA = 5◦ at fc/U∞ = 10.4 and 12.9,
or for AOA = 10◦ at fc/U∞ = 26.1. The relative magnitude of the peak at y/δ∗ ≈ 1.5 was
similarly under-predicted in the linear stability analysis of Lang et al. [25] of the measured
transitional separation bubble on a flat plate. In Chapter 4, it was observed that the
magnitude of this peak can be affected by the choice of curve fit (Fig. 4.12), with the
solution for the Dini et al. [79] fit predicting a lower magnitude peak than the solution for
the Falkner-Skan fit. The decay of the streamwise velocity fluctuation amplitude into the
free stream is reasonably predicted for AOA = 0, 5, and 10◦ (Figs. 6.30-6.32). However, for
AOA = 15◦ (Fig. 6.33), the measured velocity fluctuation amplitudes in the free stream
are higher than those predicted from LST. For this angle of attack, separation occurs
close to the leading edge. This causes low absolute magnitudes of fluctuations in the free
stream, and results in higher relative error in the measurements for this case. The largest
discrepancies between the measured and computed streamwise velocity fluctuation profiles
are observed at AOA = 5◦, the angle for which the maximum height of the separation
streamline is closest to the surface. Some of the discrepancies for this angle of attack
may be a result of greater hot-wire measurement error near the surface. Discrepancies
between the measured and computed profiles at each angle of attack for y/δ∗ . 0.5 are
attributed to low speed and rectification error in hot-wire measurements over this region.
Similar discrepancies for y/δ∗ . 0.5 are apparent in the computed and measured streamwise
velocity fluctuation profiles in Fig. 4.8 from the results of Nishioka et al. [22].

Figures 6.30-6.33 show similar agreement between the Rayleigh and Orr-Sommerfeld
equation predictions of the streamwise velocity fluctuation profiles as was observed for the
simulated mean velocity profile in Section 4.4. The solutions agree well on the location
and relative magnitudes of the three profile peaks. However, discrepancies between the
two solutions are observed for y/δ∗ . 0.5. The inviscid solution does not satisfy the no-slip
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condition at the wall, whereas the viscous solution does. The Orr-Sommerfeld equation
solution also contains a small amplitude peak at y/δ∗ ≈ 0.15, possibly resulting from a
viscous instability mechanism providing a minor contribution to disturbance development.

Phase shift profiles for the computed streamwise velocity fluctuation amplitude profiles
in Figs. 6.30-6.33 are plotted in Fig. 6.34. These profiles, combined with the fluctuation
amplitude profiles in Figs. 6.30-6.33, define predicted instantaneous modal velocity
fluctuation profiles. The phase difference between two points at a particular angle of attack
and frequency in Fig. 6.34 is the predicted phase difference between the component velocity
fluctuations at that frequency between those two points. The phase shift profiles show that,
at each streamwise location, component velocity fluctuations near the wall (y/δ∗ . 0.5)
are out of phase with those in the free-stream (y/δ∗ & 1.5). The extent of the phase
change across the profile is greatest near the central instability frequency, with lower phase
differences observed at higher and lower frequencies. This suggests that the amplitude
of modal vorticity fluctuations at the mean profile inflection point are greatest near the
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Figure 6.34: Streamwise velocity fluctuation phase shift profiles computed for the measured
velocity profiles from the Orr-Sommerfeld equation. Profiles are shifted in phase to have a
maximum phase of 2π rad.
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central instability frequency. The general shape of the phase shift profile does not change
significantly with frequency for the cases considered. In each of the phase shift profiles, a
local maximum exists near the mean profile inflection point (y/δ∗ ≈ 1). Just below this
point, a relatively steep phase reversal is observed. The rate of phase reversal changes with
both frequency and angle of attack.

132



Chapter 7

Conclusions

Boundary layer development over a NACA 0018 airfoil model at a Reynolds number of
Rec = 105 and angles of attack of AOA = 0, 5, 10, and 15◦ was investigated experimentally.
Two flow regimes common to airfoil operation at low Reynolds numbers were observed in
this range of flow conditions; for AOA = 0, 5, and 10◦, a separation bubble formed on
the airfoil surface, whereas for AOA = 15◦, laminar boundary layer separation occurred
without reattachment of the turbulent shear layer. This investigation had three main
objectives: (1) quantify the sensitivity of linear stability predictions for measured separated
shear layers to both the analysis approach and experimental data scatter, (2) assess the
influence of end plates, test section blockage, and intrusive equipment on the low Reynolds
number airfoil experiments, and (3) investigate flow development over the model with
particular attention to laminar-to-turbulent transition characteristics that can be measured
with embedded surface pressure sensors.

7.1 Sensitivity of Linear Stability Analysis

The sensitivity of spatial linear stability analysis of measured separated shear layers
was evaluated. It was found that, for measured velocity profiles of low data scatter
and high spatial resolution, the finite difference method, piecewise linear velocity profile
approximation method, and Runge-Kutta method, applied directly to measured data,
can each provide accurate stability predictions. However, when these solution methods
were applied directly to measured separated shear layer profiles, extraneous growth rate
spectrum behavior was observed for profiles with moderate levels of data scatter. On this
basis, it was concluded that for the level of data scatter typical of hot-wire measurements
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in separated shear layers over low Reynolds number airfoils, a direct analysis of the discrete
profile may produce unreliable results.

Performing stability analysis on curve fits to measured velocity profiles is an alternative
to directly analyzing experimental data. This approach can provide realistic stability
predictions over a wider range of spatial resolutions and levels of data scatter. Ten curve
fits were examined in this study. Differences in the predictions of the Rayleigh equation
due to the choice of curve fit were evaluated by applying stability analysis to curve fits of a
simulated discrete velocity profile without data scatter. Despite the accuracy with which
each curve fit matched the discrete velocity data, the predicted frequency of maximum
disturbance growth rate was found to vary by up to 25% between fits. The ten fits were
further evaluated based on the sensitivity of Rayleigh equation predictions, obtained using
these fits, to base velocity profile data scatter. The lowest variability due to data scatter was
observed in the results obtained using the reverse flow Falkner-Skan, Dini et al. [79], Dovgal
et al. [34], Green [77], and LeBlanc et al. [27] fits. These five fits were further compared
based on Rayleigh equation predictions for ten experimental separated shear layer profiles.
No one fit consistently provided the most accurate prediction of the frequency of maximum
disturbance growth rate compared to that measured in the experiment. Base profile fits
with discontinuous derivatives, such as the Green [77] and LeBlanc et al. [27] fits, were
shown to produce streamwise velocity fluctuation profile predictions with non-physical
discontinuities.

A similar approach was employed to examine the sensitivity of the Orr-Sommerfeld
equation to data scatter and the choice of a separated shear layer velocity profile fit.
For the experiments considered, including viscosity in the analysis reduced the predicted
growth rates by less than 15%. The variability in the maximum disturbance growth rate
and corresponding frequency due to the choice of curve fit was similar to that observed
for the Rayleigh equation. Further comparison of the variability due to data scatter for
the Falkner-Skan, Dini et al. [79], and Dovgal et al. [34] fits revealed that Orr-Sommerfeld
equation solutions are marginally less sensitive than Rayleigh equation solutions. The
results show that the variation in the growth rate spectrum due to the choice of curve fit
is greater than that due to mean profile data scatter. The maximum disturbance growth
rate and corresponding frequency were found to vary by as much as 35% between fits. The
apparent sensitivity of spatial linear stability analysis of measured separated shear layer
profiles to experimental data scatter and the velocity profile processing approach should
be considered when drawing conclusions from such an analysis.
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7.2 Effect of Experimental Setup

The effects of end plates, blockage, and intrusive equipment on low Reynolds number
airfoil experiments were investigated through experiments on a NACA 0018 airfoil model
at Rec = 100 × 103 and AOA = 0, 5, 10, and 15◦. From measurements on the model
with various end plate configurations, it was shown that end plates significantly improve
the mean spanwise uniformity of the flow compared to experiments conducted on a model
with free ends or with only end caps installed. The extent of this improvement in mean
spanwise uniformity was quantified using mean static pressure measurements across the
span at three streamwise locations. The surface pressure distributions and lift coefficient
curves were least sensitive to end plate spacing for end plate spacings of b/c & 2.0 (b/d &
6.6). It was shown that the added solid blockage with end plates installed can affect
measured lift coefficients, and should be taken into account. The transition location and
stall angles were shown to have only a minor dependence on end plate configuration.
However, it was found that installing end plates reduces noise in energy spectra of surface
pressure fluctuations in the separation bubble and that the end plate configuration affects
disturbance amplification during separated shear layer transition. Measurements in the
wake of the model showed that positioning the end plates at b/c . 1.5 reduces the coherence
of wake vortices compared to measurements on the model with b/c & 1.5. The end plate
spacing did not affect the frequency of vortex shedding; however, the vortex shedding
frequency measured for a free ends model and for a model with only end caps installed
were both lower than the value with end plates installed.

Blockage effects were assessed through measurements in the GSW, ASW, and SLW
configurations. The angles of attack and end plate configurations considered provided
blockage ratios of between 4 and 8%. The locations of separation, transition, and
reattachment did not change with wall configuration by more than the spatial resolution
of the static pressure taps. However, changes in the values of mean pressure between
the transition and reattachment points suggests that blockage has a small effect on the
locations of transition and reattachment. Blockage was found to cause errors in the
measured lift coefficients as high as 9% of the maximum lift coefficient at this Reynolds
number. Applying the blockage correction method described by Barlow et al. [15] for two-
dimensional bodies spanning the test section accurately adjusted sectional lift coefficient
data for test section blockage when a separation bubble formed on the airfoil surface.
However, this correction method performed poorly for data at AOA = 15◦ due to
limitations of simple blockage correction formulas for bluff bodies of solid blockage ratios
greater than approximately 6%. For AOA = 15◦, test section blockage was found to
increase the wake vortex shedding frequency by 3.5%, indicating that blockage may be an
important consideration if detailed measurements are to be performed in the wake of the
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model at post-stall angles of attack. SLW contours were determined from the WAS using
both the original method of Judd et al. [96] for estimating the imaginary velocity field
and a potential flow method to estimate the imaginary velocity field. The resulting wall
shapes and flow measurements agreed to within their respective uncertainties, verifying
the newly developed WAS program for the University of Waterloo adaptive-wall wind
tunnel. Although the results from the two methods agreed for the flow conditions tested,
in experiments with higher blockage ratios the potential flow method is expected to reduce
experimental error.

The effect of the hot-wire probe and traverse on flow development was assessed using
mean and RMS surface pressure measurements with the hot-wire probe positioned at
various locations. It was found that, when the traverse is moved to the streamwise position
where measurements will be acquired but with the probe well above the surface, the
added blockage of the traverse causes a measurable shift in the magnitude of the mean
surface pressure distribution. Positioning the probe near the separation point can shift the
separation point upstream. For angles of attack approaching the stall angle, positioning
the hot-wire probe near the measured separation point can force transition to occur in
the attached boundary layer without separation. A comparison of RMS surface pressure
development to RMS velocity in the shear layer indicated that this change in separation
location shifts the location of measurable disturbance amplification upstream. No changes
in surface pressure distributions or energy spectra were observed when the probe was
positioned near the surface in the downstream turbulent flow.

The extent to which the flow is disturbed by opening the wind tunnel door to apply
smoke-wire fluid for flow visualization experiments was investigated. It was concluded
that, for each angle of attack tested, the mean pressure at the suction peak and the surface
pressure energy spectra return to their prior states within thirty seconds of closing the test
section door.

7.3 Separated Shear Layer Development

Smoke-wire flow visualization images provided qualitative insight into flow development
over the model and in the near wake. The images show significantly different wake
development when a separation bubble forms than at post-stall angles of attack.
Specifically, bubble bursting dramatically increases the wake width and the length scale of
spanwise vortical structures shed from the model. These images confirmed that wake vortex
shedding was responsible for the observed peak in energy spectra of velocity fluctuations
in the wake of the model. Furthermore, the images for AOA = 5 and 10◦ showed a greater
degree of roll-up in the vortical structures forming below the wake centerline than in
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those forming above it, providing a physical interpretation for the observed asymmetry in
mean and RMS wake velocity profiles and an explanation for why stronger spectral peaks
were measured along the shear layer core below the wake centerline. The smoke-wire
flow visualization images also indicate that the assumption of irrotational flow sufficiently
removed from the model, inherent in the wall adaptation algorithm, was satisfied in these
experiments. Furthermore, the images showed that the model wake vortex formation length
was less than the distance that the end plates extended into the wake, satisfying the end
plate design requirement proposed by Kubo et al. [14].

Detailed hot-wire measurements of shear layer development over the model were
obtained. Consistent with previous studies (e.g., Ref. [8]), the results show that the
separation bubble moves upstream, decreased in length, and exhibits higher disturbance
growth rates as the angle of attack is increased. However, the separation bubble height
did not show a monotonic trend with angle of attack. In agreement with the findings
of Brendel & Mueller [53] for a Wortmann FX63-137 airfoil at Rec = 105, it was
found that the displacement thickness increases significantly between the locations of
separation and transition, and reaches a maximum at the location of maximum bubble
height, i.e., at the transition location. Furthermore, the momentum thickness remained
nearly constant up to the transition location, where it began to increase rapidly. The
boundary layer thickness shape factor followed similar trends for the cases of separation
with and without reattachment, and was in qualitative agreement with the measured shape
factors of Burgmann & Schröder [37]. The shape factor had a low, nearly constant value
upstream of the separation point and well downstream of the transition point, increased
substantially between the separation and transition locations, and decreased downstream
of the transition point. The displacement thickness was shown to provide a reasonable
estimate for the location of the maximum RMS velocity and the mean velocity profile
inflection point in the separated shear layer.

Surface pressure spectra and velocity spectra along the separated shear layer core
showed similar trends. The location of separation was marked by a noticeable increase
in the disturbance amplification rate, which remained nearly constant until just upstream
of the transition location. The RMS surface pressure continued to rise to a maximum
just upstream of the reattachment location and then decayed gradually downstream as
the turbulent profile expanded. This is consistent with trends observed in separation
bubbles formed on other geometries [106, 107]. The results of Mabey [106] show that the
maximum RMS surface pressure in a separation bubble depends on the specific geometry
inducing separation [106]. The maximum values of p̃/q∞ on the order of 0.2 measured
in the present investigation are higher than the values between 0.04 and 0.1 reported by
Mabey [106] for splitter plates with fences, forward facing steps, and backward facing steps.
The streamwise development of the maximum RMS velocity showed a more gradual decay
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downstream of the reattachment location than observed in the RMS surface pressures and
a maximum value in the range 0.2 . ũ/U∞ . 0.3 for each angle of attack. The trends
observed in the energy spectra of surface pressure and velocity fluctuations were also in
agreement; just downstream of the separation point the energy content increased within a
band of frequencies, developed harmonics near the transition point, and spread to produce
broadband spectral content downstream.

Linear stability analysis revealed a correspondence between the measured central
frequency of disturbance growth and that predicted from theory. Viscosity was found
to influence the predicted dominant frequency by less than 5% as compared to the inviscid
spectrum. Furthermore, measured frequency component RMS velocity fluctuation profiles
matched the inviscid linear stability predictions well for y/δ∗ & 0.5. Including viscosity
in the analysis mainly affected the predicted velocity fluctuation profiles in a region
very close to the airfoil surface (y/δ∗ . 0.15). These findings suggest that disturbance
development over the majority of the laminar separated shear layer is primarily governed
by a linear inviscid mechanism. Linear stability predictions were further compared to
measured amplification rates, wave numbers, and phase speeds determined from the
embedded pressure sensors. Linear stability predictions agreed with measurements to
within the measurement uncertainty. The agreement of phase speed predictions with
convection speed measurements further supports the claim of Gerakopulos [35] that the
convection speeds measured in separation bubbles over low Reynolds number airfoils are
associated with wave packets of growing disturbances propagating through the shear layer.
Measured growth rate spectra computed from hot-wire measurements along the shear
layer core and from embedded surface pressure sensor measurements agreed to within the
measurement uncertainty. This demonstrates that embedded surface pressure sensors can
be used to measure disturbance growth rates in separation bubbles on low Reynolds number
airfoils in significantly less time than is required for similar measurements using hot-wire
anemometry. Such measurements could also be completed on the wing of an aircraft, to
compare separation bubble development under experimental conditions to actual operating
conditions, and may find application in active flow control systems. Measured convection
speeds from this investigation and prior low Reynolds number airfoil experiments were also
compared. Convection speeds in the range 0.3 . Uc/Ue . 0.5 were observed, consistent
with the range of phase speeds computed by Dovgal et al. [34] from linear stability analysis
on representative separated shear layer profiles. This suggests that the convection speed
of pressure fluctuations in the separated shear layer over a low Reynolds number airfoil
depends on the reverse flow speed, the distance of the shear layer core from the surface,
and the characteristic Reynolds number.

138



Chapter 8

Recommendations

The following recommendations are made based on the findings of this thesis:

1. Linear stability analysis on hot-wire measurements of the separated shear layer over a
low Reynolds number airfoil should be performed using a Falkner-Skan, Dini et al. [79],
or Dovgal et al. [34] fit to the experimental data. The results of this investigation
indicate that the reliability of stability predictions for measured velocity profiles depends
on the spatial resolution and level of data scatter in the measurements. For high
spatial resolution profiles with low data scatter, performing stability analysis directly
on the discrete velocity profile, using a finite difference method, piecewise linear velocity
profile approximation method, or a Runge-Kutta method, can remove the dependence
of the predictions on the choice of curve fit. However, for data typical of hot-
wire measurements over low Reynolds number airfoils, such an approach can produce
unreliable results, and thus, curve fitting will be required. Reverse flow Falkner-Skan,
Dini et al. [79], and Dovgal et al. [34] fits to the measured velocity profile were found
to provide realistic growth rate spectrum and streamwise velocity fluctuation profile
predictions with relatively low sensitivity to profile data scatter.

2. End plates should be installed for low Reynolds number airfoil experiments following
the general recommendations for circular cylinders. The results of this investigation
indicate that the general guidelines that end plates be positioned outside of the side
wall boundary layers and at b/d & 7, also apply to low Reynolds number airfoil
experiments. End plates were found to have a particularly strong effect on the frequency
of vortex shedding behind a stalled airfoil. It was also shown that although end plates
improve mean spanwise uniformity, the added blockage they produce should be taken
into account.
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3. Investigate the effect of wall streamlining on drag and wake development behind this
model. It was shown that wall streamlining can affect the vortex shedding frequency
in the wake of the model. The results also show significant wall deflections behind
the airfoil, particularly for the stalled case, indicating that blockage is affecting wake
development. Furthermore, wall streamlining may have a more significant effect on drag
than lift. Therefore, measurements of wake profiles with the walls in the GSW, ASW,
and SLW configurations are recommended and should be used to assess the effect of
blockage on measured drag forces and on wake development.

4. Hot-wire measurements near the separation point at angles of attack approaching bubble
bursting conditions should be carefully scrutinized. It was found that the hot-wire probe
can change the location of, or eliminate, separation, and can affect velocity fluctuation
amplitudes. It was shown that changes in flow development caused by the presence of
the hot-wire probe can be detected in mean surface pressure and RMS velocity data.

5. Obtain high frame rate flow visualization images of the separation bubble. Energy
spectra of the velocity and surface pressure fluctuations revealed secondary spectral
peaks at lower frequencies than that of the dominant shear layer instability.
Furthermore, smoke-wire flow visualization images revealed oscillations in the
streaklines near the model surface, indicative of shear layer unsteadiness. Bubble
flapping or the development of vortical structures in the shear layer could explain these
observations, however, further investigation is required. Flow visualization experiments
employing high frame rate imaging are recommended to help identify the physical reason
for the observed unsteadiness.

6. Compare LST predictions to PSE solutions for two-component velocity data in the
separation bubble. It is expected that a particle image velocimetry system will
soon be available for measurements on this model. PSE solutions for two-component
velocity data, which can be obtained from this system, may provide insight into flow
development. This tool may help determine the influence of non-parallel flow over thick
airfoils and help in describing non-linear interactions.

7. Investigate the potential for using more sensitive pressure sensors, extending closer to the
leading edge, for measurements when leading edge stall occurs. Similar to the findings
of Gerakopulos [35], it was observed that the magnitudes of surface pressure fluctuations
are significantly smaller for cases of separation without subsequent reattachment than
for conditions at which a separation bubble forms. Since a major advantage of flow
control on low Reynolds number airfoils is the potential to prevent or recover from stall,
being able to accurately measure separated shear layer development with embedded
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pressure sensors after the bubble bursts may be of interest. An array of more sensitive
microphones extending closer to the leading edge may be difficult to implement, but
could provide more detailed information about flow development when separation occurs
without subsequent reattachment.

8. Explore the possibility of increasing the spatial resolution of the microphone array.
For the flow conditions in these experiments, the spatial resolution of the microphone
array imposed limitations on the measurements. These limitations include the inability
to resolve details of disturbance development for short separation bubbles, inadequate
spatial resolution for disturbance wave number measurements at some conditions, and
an inability to detect the transition and reattachment trends for bubbles near the trailing
edge. Increasing the number of microphones to improve spatial resolution and extending
the array closer to the trailing edge could provide more details on flow development.
Operating this array by scanning through the various sensors, instead of acquiring actual
simultaneous data, would improve the resolution of wave number decompositions and
could allow for frequency wave number energy spectrum analysis. These results could
be used to determine whether absolute instability waves are propagating upstream, as
have been detected in the separation bubble on a splitter plate with a fence by Hudy et
al. [107], and predicted in the direct numerical simulation of the separation bubble on
a NACA 0012 airfoil by Jones et al. [30].

9. Measure phase shift profiles of modal velocity fluctuations in the separation bubble.
By acquiring simultaneous hot-wire profiles and surface pressure measurements in the
laminar portion of the separation bubble, it may be possible to determine phase shift
profiles for the disturbance components. These measurements will likely require a high
sample rate in order to adequately resolve the phase shifts. Such measurements could
verify the trends observed in computed phase shift profiles from LST.
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laminar separation bubble. Experiments in Fluids, 41(2):319–326, 2006.
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Appendix A

Experimental Uncertainty

Table A.1 summarizes the uncertainty estimates for measured quantities presented in
this thesis. Figures and tables are identified that contain measurements to which these
uncertainty estimates apply. Subsequent sections of this appendix describe how the
estimates in Table A.1 were obtained. Throughout this appendix, the uncertainty is stated
as a 95% confidence interval on the reported measurement. Estimates were based on
the approach to uncertainty analysis presented by Moffat [141]. The uncertainties due
to each significant source of error are estimated and combined under the assumption of
mutually exclusive contributions to the overall uncertainty. Note that the uncertainties
due to the end plate configuration and test section wall interference are not included in the
estimates. These factors are addressed in Chapter 5, where the uncertainty estimates from
this appendix are used to determine how significant a change due to end plate configuration
or wall adaptation is required to conclude that the flow has changed.

A.1 Uncertainty in Experimental Setup

Specified experimental conditions each have a degree of uncertainty associated with
them, which determines the range of possible flow conditions to which the measurements
correspond. This section provides estimates of the uncertainty in free-stream speed, angle
of attack, and end plate spacing.

Chord Reynolds number was determined from the measured pressure difference across
the wind tunnel inlet contraction. The pressure difference was correlated to the free-
stream speed by measurements with a Pitot-static tube. The main sources of uncertainty
in the measured free-stream speed are due to the manometer resolution used to measure
the pressure difference, the calibration procedure, and the accepted variation in free-
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Table A.1: Summary of measurement uncertainty estimates.
quantity conditions uncertainty applicable tables & figures
AOA ±0.22◦

b/c ±0.025 Figs. 5.1, 5.2, 5.3, 5.6, & 5.9
CL ±0.024 Figs. 5.2 & 5.10
Cp ±0.016 Figs. 5.1, 5.3, 5.12, & 6.10
Cp,w ±0.016 Figs. 5.6b & 5.8

fpeakc/U∞ ±0.63 Table 6.2
H ±0.105H Figs. 6.17d, 6.18d, & Table 6.1
Rec ±2800
St ±0.002 Table 5.2

U/U∞ for U/U∞ & 0.25 ±0.05 Figs. 6.6a, 6.7a, 6.8a, 6.9a,
6.11a, 6.12a, 6.13a, 6.14a,
6.15a, & 6.24

Uc/U∞ ±0.035 Figs. 6.28, 6.29, & Table 6.2
ũ/U∞ for U/U∞ & 0.25 ±0.05 Figs. 6.6b, 6.7b, 6.8b, 6.9b,

6.11b, 6.12b, 6.13b, 6.14b,
6.15b, 6.19a, 6.30, 6.31, 6.32, &
6.33

|u|/U∞ for U/U∞ & 0.25 ±0.10 Figs. 6.30, 6.31, 6.32, & 6.33
ṽ/U∞ for U/U∞ & 0.25 ±0.05 Fig. 5.5

p̃/q∞ ±
√

(0.02)2+(0.20p̃/q∞)2 Fig. 6.19b
xR/c ±0.01 Figs. 6.10, 6.11, 6.12, 6.13, 6.15,

6.16, 6.19c, & Table 6.2
xS/c ±0.02 Figs. 6.10, 6.11, 6.12, 6.13, 6.14,

6.15, 6.16, 6.19c, & Table 6.2
xT /c based on Cp ±0.01 Figs. 6.10, 6.11, 6.12, 6.13, 6.15,

6.16, 6.19c, & Table 6.2
xT /c based on Evv ±0.02 Figs. 6.14, 6.16, 6.19c, &

Table 6.2
∆Y/c for the ASW configuration ±0.005 Fig. 5.7
∆Y/c for the SLW configuration ±0.010 Fig. 5.7
y/c ±0.00025 Figs. 6.6, 6.7, 6.8, 6.9, 6.11,

6.12, 6.13, 6.14, 6.15, 6.16, 6.24,
6.30, 6.31, 6.32, 6.33, & 6.34

−αic based on ũ/U∞ ±
√

(10)2 + (0.1αic)2 Fig. 6.25

−αic based on p̃/q∞ ±
√

(10)2 + (0.3αic)2 Fig. 6.25

αrc ±
√

(8)2 + (0.04αrc)2 Fig. 6.27
δ∗/c ±0.05δ∗/c Figs. 6.17b, 6.18b, 6.24, 6.30,

6.31, 6.32, 6.33, 6.34, &
Table 6.1

δ0/c for AOA = 0, 5, and 10◦ ±0.001 Figs. 6.17a & 6.16a-c
δ0/c for AOA = 15◦ ±0.01 Figs. 6.18a & 6.16d
θ/c ±0.05θ/c Figs. 6.17c, 6.18c, & Table 6.1
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stream speed during an experiment. The inclined manometer used for free-stream speed
measurements had 0.25 Pa minor divisions. The uncertainty in the inclined manometer
reading was estimated to be less than 0.50 Pa, roughly 1.5% of the pressure difference
corresponding to Rec = 105. Manometer measurements of the pressure difference across
the contraction and across the Pitot-static tube during calibration each had the same
uncertainty as that associated with manometer measurements. During experiments, the
free-stream speed was allowed to vary to within 1% of the specified value. Combining these
estimated values yields a total uncertainty of 2.8%.

The angle of attack was set with a digital protractor with an angular resolution of
0.1◦. The uncertainty in the angle of attack setting is also influenced by a bias error
introduced in determining the aerodynamic zero angle of attack. The aerodynamic zero
angle of attack was determined by measuring model pressure distributions over a wide range
of angles and finding the zero angle that provided the best symmetry between pressure
distributions at positive and negative angles [35]. Small imperfections in the model can
make an accurate determination of the zero-lift angle of attack difficult, particularly at low
Reynolds numbers, for which the flow is very sensitive to experimental conditions [3]. Based
on measured pressure distributions over various Reynolds numbers and angles of attack,
it was estimated that the uncertainty in the aerodynamic zero angle of attack is less than
0.2◦. The combined uncertainty due to the protractor setting and the aerodynamic zero
angle determination is 0.22◦.

End plate spacing was set as close to the stated values as was reasonable. The
uncertainty in this setting was assessed by measurements of the end plate spacing at four
locations on the circumferences of the end plates, each time the end plates were installed.
Based on these measurements, the b/c spacing was set to within ±0.025, with the end
plates having a maximum tilt of less than 0.5◦.

A.2 Hot-Wire Uncertainty

Hot-wire measurement uncertainty has been examined in several studies [98–103,115,142].
The accuracy of such measurements depends on factors including probe geometry,
calibration method, flow incidence angle, turbulence intensity, flow speed, and proximity
to solid surfaces [99]. Error caused by flow obstruction by the probe and incidence angle
have been limited by using a boundary-layer type normal hot-wire probe angled at 7◦ to
the surface, based on the recommendations of Brendel & Mueller [53]. The uncertainty
in mean and RMS velocity measurements with the normal hot-wire probe was estimated
to be less than 5% of the free-stream speed for flow speeds greater than about 2 m/s,
based on an extensive study on hot-wire error completed by Kawall et al. [142]. Lower
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speed measurements presented in this thesis were influenced by more significant sources of
error, including those due to mean surface normal flow, hot-wire signal rectification, and
enhanced conductive heat transfer to the airfoil model, each of which are discussed below.

As discussed in Section 2.3.3, there is no generally accepted correction method for
near wall conductive heat transfer errors in hot-wire measurements acquired in separation
bubbles. No corrections have been made in this thesis for near wall conductive losses in
hot-wire measurements. The thickness of the layer affected by enhanced conductive heat
transfer to the model was estimated to be 0.0015c from hot-wire measurements with zero
free-stream speed. The thickness of the affected region is expected to be smaller with a non-
zero free-stream speed, due to more dominant convective losses from the wire. However,
the zero flow condition is used to estimate an upper bound on the error due to convective
losses of 0.06U∞ near the wall.

Hot-wire rectification error can significantly affect the mean and RMS velocity
measurements in a separated shear layer. Based on the measured velocity at the location
of y = δ0, the uncertainty due to rectification error, after negating the mean reverse flow
speed measurement, is estimated to be less than 25% of the free-stream speed.

Particularly between the transition and reattachment points, directional unsteadiness
and high vertical velocities contribute to significant hot-wire errors [53, 99]. In the
experiments discussed in this thesis, separated shear layer measurements below the
separation streamline and between the transition and reattachment locations were exposed
to strong vertical velocity fluctuations, and as a result the hot-wire measurement error
is high in this region. Based on the separated shear layer measurements presented in
Chapter 6, it is estimated that the uncertainty in normal hot-wire measurements between
the transition and reattachment locations and between the airfoil surface and the mean
separation streamline, due to high mean vertical flow speed, is less than 25% of the free-
stream speed.

It should be noted that the high uncertainty in the reverse flow hot-wire measurements
have a less significant effect on post-processed results, including LST predictions, boundary
layer thickness estimates, and disturbance growth rate measurements. Although the
uncertainty is very limiting in the study of flow below the separation streamline, it was
not limiting for most of the analysis presented in this thesis. The uncertainty cited here
does not include those profiles identified in Chapter 6 as having separation induced by the
presence of the hot-wire probe.

A cross-wire probe was used to measure the vertical velocity fluctuations in the airfoil
wake for the purpose of estimating the vortex shedding frequency and other features of the
spectral energy distribution. Based on the study by Kawall et al. [142], the uncertainty in
the RMS vertical velocity is estimated to be less than 5% of the free-stream speed.

Uncertainty in the measured distance of the hot-wire probe from the airfoil surface also
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affects the shear layer profile measurements presented in Chapter 6. This uncertainty
was assessed in two ways, one based on optical resolution and the other based on
measurement repeatability. The position measurement requires determining four points
on digital photographs, two calibration grid locations, the tip of the hot-wire prong, and
the surface location directly below the hot-wire probe. From these images, the operator
could be confident in the location of each of these points to within ±1.5 pixels. Since
each distance measurement is based on the locations of four points, the uncertainty in the
measurement is the combined uncertainty in determining the coordinates of each point.
Based on the optical resolution of the system, the uncertainty in the measured hot-wire
probe position was estimated to be less than 0.05 mm. The number of traverse motor steps
from the initial probe location, after traverse lead screw backlash was removed, was used
to determine all other positions away from the model surface. As such, the uncertainty
in traverse movements had to be assessed. This was done by moving the probe to thirty
arbitrary locations and using the optical measurement device to measure the distance
traveled. Furthermore, each image was processed five times to determine the variability in
measured distance with the optical system. By this approach, the total uncertainty due
to the operator of the optical measurement device, variability in the traverse movement,
and error in the optical measurement procedure was estimated to be less than 0.05 mm. It
was also found that the uncertainty in traverse movement over fifty 1 mm movements was
purely due to variability; error stack-up over long traverses was less than the measurement
uncertainty.

Disturbance growth rate measurements are affected by several sources of error. A
main source of uncertainty is the combined error in hot-wire measurements resulting from
computing the slope of the RMS velocity in the streamwise direction. This contribution to
the uncertainty is estimated to be less than 10/c based on an uncertainty in RMS velocity
measurements of 0.05U∞. As can be seen in Fig. 6.19, the measured RMS growth in
the separated flow region is not perfectly exponential. As a result, the estimated growth
rate can be affected by the measurement points included in the calculation. Similarly,
the streamwise spatial resolution of measurements contributes to the error in computed
growth rate by affecting the number of points over which the growth rate is averaged
and the confidence that the points used in the estimate are in the linear growth region.
Based on a sensitivity analysis of the computed growth rate magnitudes to the points
included in the calculation, the uncertainty in reported growth rate measurements due to
the calculation procedure and the spatial resolution is estimated to be less than 10% of
the computed growth rate at each point. Finally, error is introduced into the growth rate
measurements through band-pass filtering the hot-wire signals to decompose the growth
rate into frequency components. This has the effect of averaging the modal growth rate
over a narrow band of frequencies and also introduces errors due to imperfect filter design.
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Since this error is difficult to quantify, and is likely small in comparison to the 10% errors
introduced by other sources, this component is neglected. The combined uncertainty
reported in the growth rates obtained from hot-wire measurements is estimated to be
less than

√
(10/c)2 + (0.1αi)2.

Disturbance amplitude profiles for particular frequencies were computed from the
RMS velocity measurements after band-pass filtering. The uncertainty in this type of
measurement is difficult to quantify, but results from uncertainty in the RMS velocity
measurements and due to the filtering operation. It is conservatively estimated to be less
than 10% of the free-stream speed, outside of the low speed and reverse flow regions near
the wall.

Boundary layer thickness parameters were computed from hot-wire measurements.
These estimates are susceptible to hot-wire errors and uncertainty due to the estimation
method. Displacement thickness and momentum thickness estimates are insensitive to the
estimate of δe, because the integrand in their definitions is nearly zero for U/Ue ≈ 1. The
main contribution to uncertainty in these estimates are those due to hot-wire error at low
speeds, in the reverse flow region and near the wall. The uncertainties in the measured
displacement and momentum thicknesses were estimated based on a bias in the reverse flow
velocity of 10% of the free-stream velocity and over a vertical distance of roughly 0.5δ∗.
By this method, the uncertainty in the reported displacement and momentum thicknesses
is estimated to be less than 5%. Boundary layer shape factor is determined as the ratio of
these two parameters. The maximum uncertainty in the boundary layer thickness shape
factor is estimated to be less than 0.105H. Estimates of the zero velocity locations are
also affected by hot-wire rectification error and mean vertical flow. The uncertainty in
this location is estimated from the separated shear layer profiles presented in Chapter 6.
It can be seen that as the wall is approached from the free stream, at a certain location
the nearly linear velocity profile curves to have zero slope. It is physically expected that
this roughly linear trend will continue into the start of the reverse flow region. Therefore,
the uncertainty in the determined zero velocity location can be estimated as the distance
between the location where the velocity profile begins to deviate significantly from the
linear trend and the intersection of the extrapolated linear shear region to the zero velocity
axis. Based on this approach, the worst case uncertainty in the reported zero velocity
location is estimated to be less than 0.001c for cases of boundary layer reattachment and
0.01c for cases without boundary layer reattachment.

Locations of separation and transition were determined from hot-wire measurements
for AOA = 15◦, i.e., for the stalled case. From the profiles and energy spectra presented
in Chapter 6, the locations of separation and transition could be identified with confidence
to within one profile location on either side. This was used as the uncertainty estimate for
xS/c and xT/c for the stalled case.
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The wake vortex shedding frequency was estimated as the central frequency of the peak
in the energy spectrum of vertical velocity fluctuations. The sample rate and the number
of averages used in the discrete Fourier transform were set to values that ensured that the
frequency resolution in the computed energy spectrum produced a negligible contribution
to the uncertainty in the identified vortex shedding frequency. The main contribution to the
uncertainty was in identifying the central frequency of the spectral peak, which has width
and contains noise from the hot-wire signal. For AOA = 15◦, the central frequency could
be determined with confidence to within ±0.25 Hz. Uncertainty in the central instability
frequency was similarly estimated to be within ±25 Hz.

A.3 Uncertainty in Static Pressure Measurements

In this section, the uncertainty of mean static pressure measurements and the uncertainty
in values obtained from these measurements are estimated. The estimates in this section
apply to both model surface pressure and test section wall pressure measurements.

The most significant source of uncertainty in the mean static pressure measurements
reported in this thesis were introduced through the calibration method. A constant
pressure was applied to an inclined manometer with 0.25 Pa minor divisions and to
the pressure transducer. This was repeated for ten pressure levels over the operating
range for the experiment. A linear fit over these data was then used to interpolate mean
static pressure from transducer voltage measurements. The uncertainty in the inclined
manometer measurement was estimated to be less than 0.50 Pa. Error in the measured
voltage was estimated as the discretization error of the data acquisition system to be less
than 0.05 Pa. Deviation in the pressure-voltage response from the linear fit was estimated
to be less than 0.005 Pa, as the maximum deviation from the average which could be
estimated from any two calibration points.

Pressure transducer calibration curves are sensitive to temperature. The most
significant effect is removed by measuring the zero pressure voltage offset before each
experiment, and shifting the measured voltage data by the change in this quantity from
the calibration data. However, temperature changes during the experiment can still cause a
time dependent error in the measurements. Furthermore, changes in the linear calibration
fit slope with temperature can have an effect on the measurements. Based on zero pressure
voltage offset measurements, acquired before and after each of twenty pressure distribution
measurements, it was estimated that the uncertainty due to zero pressure voltage offset
drift during an experiment is less than 0.1 Pa. The manufacturer specified pressure-voltage
response slope variation with temperature for the Lucas Schaevitz P3061-2WD pressure
transducer is 0.02%/◦C. During all of the measurements reported in this thesis, the ambient
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temperature was recorded to deviate by less than 1◦C from the calibration value. This
variation contributes to the uncertainty, because no adjustment was made for changes in
the calibration fit slope. The uncertainty due to variation in the pressure-voltage response
slope was estimated to be less than 0.1 Pa. The time required to calibrate the system was
short enough that no measured temperature variation was recorded. Thus, the uncertainty
due to temperature drift during calibration was neglected. Furthermore, temperature
variation in the resistance of the cables connecting the transducer to the data acquisition
card was neglected.

Static pressure tap geometry can affect mean static pressure measurements [143]. The
static pressure tap geometry can cause a small local change in streamline curvature above
the tap, inducing a small centrifugal force, which increases the measured pressure, or can
produce a small separated flow region, decreasing the measured pressure [143]. Based on
a number of experiments summarized by Chue [143], the maximum error due to pressure
tap geometry in this study is estimated to be less than 0.14 Pa.

Rise time for pressure in the static lines was estimated by continuously sampling each
pressure tap for 200 s after setting the Scanivalve mechanical multiplexer system to measure
that tap. These data were used to determine the delay time between incrementing the
Scanivalve mechanical multiplexer setting and beginning to acquire the measurement. In a
similar way, the sample time required to obtain a stable ensemble average was determined
from subsets of these data. Since the static pressure lines are relatively long, pressure
fluctuations of the time scale observed in this experiment are expected to have a negligible
influence on instantaneous measurements. Longer time scale fluctuations, resulting from
variation in the fan speed, may still be observed. As a result, the mean static pressure can
vary slowly with time. This introduces uncertainty in the pressure measurement due to
both the selected rise time and sample duration. Based on the variability in one second
averages of mean static pressure over two minutes for each pressure tap, it was estimated
that the uncertainty due to long time variations in the mean static pressure are less than
0.13 Pa.

Prior to acquiring mean static pressure measurements, the zero pressure voltage offset
was measured to compensate for temperature drift in this quantity. Thus, each static
pressure measurement is based on the voltage from the transducer when exposed to
the pressure differential that is to be measured, and a voltage measurement with zero
pressure differential across the transducer. As a result, the uncertainty in the measured
voltage at zero pressure contributes to the uncertainty in the mean static surface pressure
measurement. A discretization error of less than 0.05 Pa and due to long time variation in
the ensemble average of less than 0.13 Pa contribute to this uncertainty. The measurement
of static surface pressure is also subject to a discretization error of less than 0.05 Pa.

The repeatability of an experiment is another source of uncertainty. This includes
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uncertainty in the measured surface pressure distribution due to error in setting the angle
of attack and free-stream speed as well as any changes between experiments that were not
realized or could not be controlled. This component of uncertainty was estimated based on
three model surface pressure distributions, measured on different days over a one month
period. The second standard deviation of the difference between each set of measurements
was estimated to be less than 0.03 Pa.

Combining the uncertainties described above based on the procedure described by
Moffat [141] leads to an estimated total uncertainty in the static pressure measurements
of less than 0.56 Pa, or equivalently, less than 1.6% of the free-stream dynamic pressure.

Aerodynamic forces on the airfoil model were computed from mean surface pressure
measurements. In this calculation, more than 95% of the lift force resulted from the
pressure difference between the upper and lower surface at each location along the chord,
multiplied by the area over which those pressures acted. On this basis, the uncertainty
in the pressure difference used in the integration was estimated to be the combined
uncertainty of two pressure measurements, i.e., 2.3% of the free-stream dynamic pressure.
The static pressure taps have a finite size, and an uncertainty in their location on the
model, contributing to uncertainty in the computed lift coefficient through uncertainty in
the distance between taps used in the numerical integration. Based on the specified model
manufacturing tolerances (see Ref. [35]), the uncertainty in the location of each pressure
tap is estimated to be less than 0.0002c. The pressure across the finite size pressure tap
is expected to be a central value over the tap. Therefore, the contribution of the finite
pressure tap size to uncertainty in the lift coefficient is neglected. Based on these estimates,
the combined uncertainty in the lift coefficient due to uncertainty in mean static pressure
measurements and pressure tap locations is expected to be less than 2.4% of the free-stream
dynamic pressure per unit span.

For angles of attack at which flow reattachment occurs, locations of separation,
transition, and reattachment were estimated from model surface pressure distributions.
Thus, the uncertainties in these estimates are based on the spatial resolution of model
surface pressure taps. The laminar portion of the separation bubble can be estimated
from mean static pressure measurements as the region of nearly constant surface pressure
downstream of the suction peak, and followed by a region of steep pressure recovery [52].
The separation location can be estimated as the start of the region of constant pressure.
Since this pressure plateau can make a small angle to the inviscid flow pressure distribution,
it is estimated that this location can be determined to within three static pressure taps,
i.e., ±4 mm. The transition location can be identified as the start of the steep pressure
recovery region [8]. Since in the present investigation, the pressure recovery region in the
separation bubble was always very distinct, it was estimated that the transition location
could be determined to within one static pressure tap, i.e., ±2 mm. The reattachment
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location can be determined as the location where a marked decrease in the rate of surface
pressure recovery is observed [8]. This location is also very distinct, and can be estimated
to within one static pressure tap, i.e., ±2 mm.

A.4 Microphone Measurement Uncertainty

Microphone measurement uncertainty results from the calibration approximations and the
background noise level. During calibration, it was assumed that the pressure voltage
response of the microphone was linear with amplitude. Furthermore, the microphone
sensitivity was assumed to be independent of frequency in the operating range. For
the microphone array used in experiments discussed in this thesis, the validity of these
assumptions were demonstrated by Gerakopulos [35]. Based on the calibration data
presented by Gerakopulos [35], the uncertainty due to the measured sensitivity coefficient
and the calibration procedure is estimated to be less than 20%. Ambient noise in the
laboratory as well as electrical noise resulting from signal amplification and interference
with other equipment also contribute to the measurement uncertainty. Gerakopulos [35]
presents the RMS surface pressure measured by each microphone with the wind tunnel off.
Wind tunnel generator and fan noise are also expected to contribute to this uncertainty.
The uncertainty in p̃/q∞ due to background noise was estimated from the minimum value
of RMS surface pressure measured in the experiments to be approximately 0.02. Therefore,
the total uncertainty in p̃/q∞ is estimated to be less than

√
(0.02)2 + (0.20p̃/q∞)2.

Disturbance growth rate estimates from microphone measurements have similar sources
of uncertainty as those estimates obtained from hot-wire measurements. Specifically, the
uncertainty in the RMS surface pressure measurements, the sensitivity of the estimated
exponential growth coefficient to the spatial locations included in the average, and the
spatial resolution of the measurements all contribute to the overall uncertainty in the
growth rate measurement. For hot-wire data, measurement locations could be selected to
limit the error due to spatial resolution in growth rate estimates. This was not possible
with the microphone array. As a result, the uncertainty in the growth rate estimate for
small separation bubble cases is relatively high. Employing the same method as for growth
rate measurements from hot-wire data, the uncertainty in growth rate measurements from
microphone data was estimated to be less than

√
(10/c)2 + (0.3αi)2.

Convection speed was determined as the ratio of the distance between two microphones
in the separated shear layer to the time lag between the two microphone signals. The time
lag was determined from the cross-correlation function of the two microphone signals. The
uncertainty in the time lag is estimated to be less than 4% from the ratio of the dominant
disturbance frequency to the sample rate. The uncertainty in the computed convection
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speed is then estimated to be less than 3.5% of the free-stream speed. This estimate is also
used for the uncertainty in the phase speed estimates, which are computed in a similar way.
Measured phase speeds are not directly reported in this thesis, but are used in computing
the real wave number spectrum. The frequency component is also used in the wave number
calculation, and therefore, the uncertainty resulting from averaging over a frequency band
also affects the result. Combining these sources of uncertainty, the total uncertainty in
measured αrc values is estimated to be less than

√
(8)2 + (0.04αrc)2.

A.5 Uncertainty in SLW Configuration

Sumner [113] estimated the uncertainty in setting the wall contours of the University of
Waterloo adaptive-wall wind tunnel to be less than 1 mm. Uncertainty in the calculated
wall configuration results from uncertainty in wall contour settings, uncertainty in wall
pressure measurements, and variation in the wall boundary layer thickness due to the
presence of the model. The repeatability of the SLW coordinates was estimated by
computing these contours based on pressure measurements in the final SLW configuration
on two separate days. The SLW coordinates for each angle of attack were repeatable to
within 1.5 mm. Employing a model for boundary layer thickness on a flat plate with an
imposed pressure gradient, it was estimated that the uncertainty in the SLW configuration
due to pressure gradient induced displacement thickness variation is less than 1 mm.
Combining these factors, the total uncertainty in the SLW coordinates is estimated to
be less than 2.1 mm. Uncertainty in the ASW contours results from error in setting the
walls and in the 1/7th power law turbulent boundary layer growth approximation, including
error in the measured virtual origin and in the side wall boundary layer growth multiplying
factor. The 1/7th power law estimate was determined to be accurate through measurements
of the side wall boundary layer thickness, and was found to be insensitive to the uncertainty
in the measured input parameters.
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Appendix B

End Plate Design

As discussed in Section 3.1.2, the design of end plates has been studied in several prior
investigations [11–14,82]. The end plate design used in the present investigation is described
here, and technical drawings of the final assembly are provided.

The end plates were to be designed based on those employed in similar low Reynolds
number airfoil investigations. The end plate spacing needed to be adjustable, and the end
plates had to fit on an existing NACA 0018 model. Furthermore, for the purpose of flow
visualization, it was desirable for the end plates to produce minimal optical obstruction of
the center-span plane and to limit the reflection of light from the off-camera flash.

The end plates used on the airfoil are illustrated in Fig. 3.2. The end plates clamp on
to the model as opposed to the axle, which allows for changes of the end plate spacing
without changing the model blockage ratio [83, 84]. Weather striping was used to seal the
interface between the end plates and the airfoil, as reported for the low Reynolds number
airfoil experiments in Ref. [10].

The end plate on the acrylic wall side was machined from transparent Lexan to allow
for photographs of the center-span plane. The end plate on the particle board wall side was
machined from aluminum and painted a matte black to limit the reflection of light from
this end plate in flow visualization images. Such a configuration, in which one end plate is
made of aluminum and the other of a transparent material, was also employed in the low
Reynolds number airfoil experiments in Ref. [9] to facilitate flow visualization photographs.
Lexan was selected as the transparent end plate material for ease of machining.

Circular end plates were chosen to limit changes in the effective end plate configuration
with changes in the angle of attack. Despite the finding for a circular cylinder that
rectangular end plates produce a flow most representative of that over a wide-span
model [11], circular end plates have been used in this investigation because studies on
square cylinders indicate that the flow is affected when rectangular end plates are rotated
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with the model [82]. Furthermore, circular end plates are common in low Reynolds number
airfoil experiments [86, 88].

Dimensions for the end plates were selected based on those used in other low Reynolds
number airfoil experiments, and to follow the general guidelines developed for other
geometries [11, 13, 14]. An end plate diameter of 45 cm, greater than twice the chord
length, was selected based on the dimensions used by Lee & Gerontakos [88] for a low
Reynolds number airfoil experiment. This diameter also allowed the end plates to extend
9 cm upstream of the model and 16 cm downstream of the model. For AOA . 15◦,
the end plates extend more than 2.5 model heights upstream of the model axle and 4.5
model heights downstream, as recommended for circular cylinder models [11,14]. The end
plate thickness was chosen to be 6.35 mm based on rigidity tests on end plates of various
thicknesses in the wind tunnel at typical operating speeds for this model.

As seen in the technical drawings in Section B.1, the end plates were designed to slide on
to the model from the trailing edge. This limited optical obstruction in flow visualization
images from the seams in the end plates. The end plates were secured by clamping pieces
that screwed into the side of the main plate, on the test section wall side. The through
holes in one clamp were over sized so that the end plates could be secured by compression
from the top and bottom connector pieces.

B.1 End Plate Drawings

The following pages provide technical drawings for the aluminum end plate components.
The Lexan end plate is a mirror image of this design, across the center-span plane. Other
than the material, the only difference between the end plates is that the type of holes used
in the top connector and the bottom connector are interchanged.
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Appendix C

Scanivalve Control System

In order to reduce the uncertainty in wall and model surface pressure measurements for
the low pressures to be measured in this investigation, the digital pressure scanners used
in recent experiments in this facility [35, 92] were replaced with Scanivalve mechanical
multiplexers. The main advantage of this system is that a pressure transducer with
a narrower operating range than those in the existing digital pressure scanner system,
described in Ref. [92], could be used. A schematic of the wiring and pneumatic connections
of the Scanivalve mechanical multiplexer system is presented in Fig. C.1, with descriptions
of components and cables provided in Table C.1. Figure C.2 presents the control circuit
developed to relay the data acquisition system commands to the Scanivalve mechanical
multiplexer solenoids and to signal when each multiplexer is in the home position. The
main control circuit was deigned and built by Neil Griffett and was later modified to switch
between active solenoids, so that the same circuit could be used to control multiple pairs
of solenoids.

Control logic for the system was programmed in LabVIEW. At the start of operation,
the Scanivalve units are returned to the home position, i.e., the zero pressure voltage
offset measurement location. This is accomplished by sending a square wave signal to the
control circuit, instructing the Scanivalve units to step through measurement positions
until the home position signal is returned. At this first measurement location, the pressure
transducer is connected on both sides to a constant reference pressure, allowing the zero
pressure voltage offset to be measured. Following this measurement, the system steps
through each of the measurement positions and samples the voltage response of the pressure
transducer for a set period. Because there are a total of 235 static pressure taps along the
walls and on the model, whereas single multiplexer wafers only contain twenty-four inputs,
the SV1 unit is used to change the wafers on the SV2, SV3, and SV4 units that are
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Table C.1: Description of labels in Fig. C.1.
label description

module
Ctrl Box control circuit detailed in Fig. C.2

DAQ data acquisition system
PS power supply
PT pressure transducer
SV1 Scanivalve mechanical multiplexer 1
SV2 Scanivalve mechanical multiplexer 2
SV3 Scanivalve mechanical multiplexer 3
SV4 Scanivalve mechanical multiplexer 4

electrical cables
¶ 24 VDC power from PS to Ctrl Box
· Ctrl Box Scanivalve 2 terminal block to solenoid and home position

indicator of SV2
¸ Ctrl Box Scanivalve 3 terminal block to solenoid and home position

indicator of SV3
¹ Ctrl Box Scanivalve 4 terminal block to solenoid and home position

indicator of SV4
º Ctrl Box Scanivalve 1 terminal block to solenoid and home position

indicator of SV1
» Ctrl Box DAQ terminal block to 5 VDC supply, ground, digital input 1-2,

and digital output 1-2 of DAQ
¼ PT output to analog input 1 of DAQ

pneumatic lines
¬ from upper wall pressure taps to SV2; taps 1-24 connect to disk 1, 2-48 to

disk 2, and 48-70 to disk 3
 from airfoil pressure taps to SV3; taps 1-24 connect to disk 1, 2-48 to disk

2, 48-72 to disk 3, and 73-95 to disk 4
® from lower wall pressure taps to SV3; taps 1-24 connect to disk 1, 2-48 to

disk 2, and 48-70 to disk 3
¯ from SV2 to SV1; outputs of SV2 disks 1-3 connect to inputs 6-8 of SV1

disk 1
° from SV3 to SV1; outputs of SV3 disks 1-4 connect to inputs 2-5 of SV1

disk 1
± from SV4 to SV1; outputs of SV4 disks 1-3 connect to inputs 9-11 of SV1

disk 1
² from the reference static pressure taps to SV1 disk 1 input 1 and PT
³ SV2 disk 1 output to PT
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Created in DoubleCAD XT,
        (www.DoubleCAD.com)
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Box

SV1
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PT

DAQ
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·

¸
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¬



®

¯

°

±

²

³

Figure C.1: Scanivalve mechanical multiplexer system pneumatic and electrical connection
routing diagram.

Table C.2: Description of terminal wires in Fig. C.2.
terminal description
power

1 +24 VDC from power supply
2 power supply ground

DAQ terminal block
3 DAQ +5 VDC power
4 DAQ ground
5 DAQ digital output 1
6 DAQ digital output 2
7 DAQ digital input 1
8 DAQ digital input 2

Scanivalve terminal blocks
9, 13, 17, 21 solenoid power
10, 14, 18, 22 solenoid power return
11, 15, 19, 23 home position indicator
12, 16, 20, 24 home position indicator return
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Figure C.2: Scanivalve mechanical multiplexer system control circuit.
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connected to the pressure transducer. In this way, the pressure in each of the pneumatic
lines can be measured by the same pressure transducer.
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Appendix D

Wall Adaptation Strategy

In this appendix, the WAS developed by Judd et al. [96], as detailed by Wolf &
Goodyer [94], is described. An approach for implementing subsequent recommendations by
the authors of Ref. [94] for estimating the imaginary velocity field is also discussed [16]. The
WAS algorithm was coded in MATLAB to compute new wall contours for the University
of Waterloo adaptive-wall wind tunnel from arbitrary input wall contours and pressure
distributions.

Figure 3.5 provides a sketch of the WAS concept. The boundary contour is the wall
contour offset by the difference between the GSW and ASW displacements at each location
along the test section. Initial wall contours must be selected that provide a known
imaginary flow field over the boundary contour. Traditionally, the ASW configuration
has been used [94]. In this configuration, the wall shapes are adjusted to remove the
streamwise pressure gradient in the empty test section. This is equivalent to displacing
the walls from the GSW configuration by the wall boundary layer displacement thickness,
multiplied by an experimentally determined factor to account for the side wall boundary
layer thickness. A 1/7th power law turbulent velocity profile approximation can be used to
estimate the displacement thickness [63],

δ∗w(X) = 0.02 (X −Xvo)
6/7

(
c

Rec

)1/7

. (D.1)

Sumner [113] determined the side wall boundary layer thickness compensation factor for
displacement thickness in the University of Waterloo adaptive-wall wind tunnel to be
2.72 based on measurements at various free-stream speeds. It was further determined
that the virtual origin for the power law displacement thickness calculation was Xvo/c ≈
10 (Ref. [113]). These values were verified more recently by Bishop [92] and the accuracy of
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the displacement thickness model was established with point measurements in the present
investigation.

In the ASW configuration, the boundary contours are straight and parallel. This results
in an inviscid flow field solution over these contours of a constant velocity parallel to the
walls. Alternatively, any other reasonable wall contour can be selected and used, and the
imaginary flow field over the boundary contour determined by potential flow calculations.
To reduce the number of wall movements to convergence, potential flow streamlines over
the model are commonly selected as the initial state [91].

With the model installed and the walls in the initial configuration, test section wall
pressure distributions are measured and converted to velocities through the definition of
the pressure coefficient. The imaginary and measured flow fields are then joined at the
boundary contour. At the boundary between the two flow fields, there is a discontinuity
in velocity, which can be represented by a distributed vorticity source, as illustrated
in Fig. 3.5. The strength distribution of the notational vorticity, Γ(X), at the wall
pressure measurement locations, is proportional to the difference between the measured
and imaginary velocity fields at these location, i.e., Γ(X) = UR(X)−UI(X). As a result of
the velocity discontinuity along the boundary, a vertical component of velocity is induced
at each location, vw(X). Since the wall slope is generally small, the induced velocity can be
estimated by approximating the contribution of each elemental vorticity as being entirely
in the vertical direction, i.e.,

vw(X) =
1

2π

∫ ∞
−∞

Γ(x̌)

X − x̌dx̌. (D.2)

In implementing the wall streamlining algorithm, Eq. D.2 is integrated analytically, using
a third order polynomial fit for Γ(X) based on the values computed at the two upstream
and two downstream measurement locations on each interval. Upstream and downstream
of the test section the integrand is assumed to be zero. In the objective SLW configuration,
there is zero induced vertical velocity. For small wall slopes, the amount of wall movement
required to eliminate the induced velocity on an interval can be approximated as,

∆

(
dY

dX

)
≈ − vw

U∞
. (D.3)

The predicted change in slope does not account for changes in the flow field around the
model due to changes in the wall contours, nor does it account for changes in the pressure
distribution along one wall due to movements of the other wall [94]. As a result, wall
streamlining is an iterative process. The main problem is that by moving both walls, the
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free-stream velocity in the wind tunnel is changed due to a one-dimensional continuity
effect. In order to ensure convergence to the SLW configuration, the wall movements are
reduced by a scaling factor (SF ), and a coupling factor (CPLF ) is applied to transfer
a portion of the computed wall movement from each wall onto the opposite wall. The
choice of these factors can affect the number of WAS iterations required. Typical values
of SF = 0.8 and CPLF = 0.35 have been reported by Wolf & Goodyer [94], and were
adopted in the present investigation.

Based on the new wall configuration, the imaginary velocity field over the boundary
contour is estimated by one of the two approaches outlined in Section D.1. The walls
are then moved to the new configuration and the process of measuring the wall pressure
distributions and completing wall adaptation calculations is repeated. This continues until
the wall movements or pressure distribution changes are within a specified tolerance [16].

D.1 Estimating the Imaginary Velocity Field

In the original WAS algorithm, the imaginary flow field pressure distribution
was determined iteratively based on wall pressure measurements from the previous
iterations [94]. This method required the ASW configuration to be used to initiate the
wall streamlining procedure. For a single adaptive-wall in a semi-infinite flow field on
one side of a two-dimensional model, and for which the effect of the wall movement on
the flow over the model has no significant effect on the pressure distribution on the wall,
the imaginary and real velocity fields must be equal. Thus, the velocity field after a wall
displacement change would be Unew

I (X) = U old
I (X) + 1

2

[
U old
R (X)− U old

I (X)
]
. With two

adaptive walls, this approximation is still employed. In order to incorporate the scaling
factors, it is assumed that scaling the wall movement equivalently scales the imaginary
velocity field adjustment, i.e.,

Unew,s
I (X) = U old

I (X) +
SF

2

[
U old
R (X)− U old

I (X)
]
. (D.4)

The coupling factor is incorporated by approximating the change in imaginary velocity
field due to the transfered wall movement, as that which would occur over the opposite
wall due to the movement:

Unew,c
I (X) = Unew,s

I (X) + CPLF
[
Unew,s
I (X)o − U old

R (X)o
]
, (D.5)

where the o subscript indicates that the quantities correspond to the opposite wall.
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D.1.1 Potential Flow Estimate

Iterative adjustment of the imaginary velocity field, as described above, improved the
efficiency of the WAS algorithm when computer resources for calculating the imaginary
flow field by potential flow theory were limiting the speed of wall adaptation studies [96].
In general, the approximations and compounded uncertainty introduced by iterative
calculations using experimental data are undesirable [16]. Modern implementations of
the WAS need not invoke these approximations, because the alternative potential flow
calculations no longer require significant computing time. This type of calculation is
outlined here.

The inviscid flow field over a body can be determined from the superposition of a
uniform velocity and a set of potential flow sources [118]. For the purpose of efficient
potential flow calculations in the WAS algorithm, each wall’s boundary contour can be
modeled as one side of a symmetric two-dimensional body [91]. This model is depicted in
Fig. D.1. Note that because the adaptive walls can have positive or negative displacements
relative to the GSW configuration, the boundary contour known from the experiment, and
extending over the length LTS in Fig. D.1, is displaced from the centerline a distance h.

The coordinates of the boundary contour can be determined from the known wall
coordinates by adjusting for the scaled displacement thickness, i.e., the displacements from
the GSW contours to the ASW contours. The boundary contour coordinates determined
from the wall shape extend over the test section length, LTS. Upstream and downstream
of the test section, distances of LUS and LDS, respectively, the streamline is assumed to
be flat, as is expected sufficiently far from the model. Points p1 to pN on the streamline
are determined by a cubic spline interpolation to provide sufficient resolution for grid

h

XnX0

Xm

LTS

LUS LDS

pm
pNp1p2p3

ana1a2a3 aNa0

� -� -

� -� - � -

� -

?

6

?

6
Ym

-
U∞

Figure D.1: Sketch of sources and sinks approximation for potential flow calculation.
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independent potential flow solutions. Potential flow sources of strength a1 to aN are
distributed along the centerline to produce the boundary contour. In order to displace
the boundary contour a distance h, a source of strength a0 is placed far upstream of the
test section, so that the free-stream velocity has recovered by the point p1. This effectively
imposes the boundary contour shape on a Rankine half body [144].

To obtain the streamline offset of h, the source far upstream is assigned a strength
of a0 = −h/π, based on the properties of a Rankine half body [144]. The value of the
streamfunction corresponding to the modeled boundary streamline is then Ψ/U∞ = h.
The value of the sources a1 to aN are assigned such that the value of the streamfunction
is constant along the boundary contour. Applying superposition of potential flow sources,
the equation for the streamfunction at each pm point is then,

Ψm

U∞
= h = Ym +

N∑
n=0

an arctan

[
Ym

Xm −Xn

]
. (D.6)

This provides a linear system of equations for the sources an, which can be directly solved.
From this solution, the velocity at each pm location can then be computed as,

Um
U∞

= 1 +
N∑
n=0

an arctan

[
Xm −Xn

(Xm −Xn)2 + Ym

]
. (D.7)

The vertical component of velocity can be similarly computed; however, because the wall
displacements are small relative to the length of the test section, this component was found
to be negligible in WAS calculations.

The above solution method was programmed in MATLAB. Grid independence from the
choice of h, LUS, LDS, X0, and N was verified for representative cases. The efficiency of
this calculation was not found to be an issue, even with N ≈ 1.5× 104. Because the value
of X0 does not affect the number of calculations, this parameter could be set higher than
necessary, to 104 m. The accuracy of the solution method was verified against XFOIL [145]
predictions for symmetric airfoils formed from boundary contour coordinates.

D.2 Determining Wall Contours

Computed slope changes are used to determine wall contours in the next iteration by
integrating the slope changes in the streamwise direction from the upstream anchor point,
fixed at zero slope. The integration is computed for a cubic spline to the slope increments,
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available at each wall pressure tap. This integral is evaluated up to each jack location,
yielding the displacement of each jack.

Since the entrance and exit to the test section have fixed cross sections, it is necessary
to blend the wall contours to the height at the exit of the test section. The blending
algorithm applied in previous WAS calculations for the University of Waterloo adaptive-
wall wind tunnel has been adopted here [92, 113]. A 0.8 m portion of the adaptive-wall
section was used to implement the blending shape. The coordinates of two jacks upstream
of this section, computed using the WAS, and two jacks downstream of this section with
coordinates for the ASW configuration, were used to define a cubic polynomial interpolation
for the blended wall shape. This approach has been shown to provide accurate SLW results
for a circular cylinder in this facility [92].

Differences between the flow field in the test section and an infinite flow field are still
expected after wall streamlining due to several limitations. Despite design efforts to ensure
a long adaptive section [89], finite test section length prevents boundary contours from
exactly following infinite flow field streamlines upstream of the model and can limit the
length into the wake that can be adapted. Side wall boundary layer growth leads to
streamline displacement towards the center-span plane. Although the acceleration of the
flow due to this growth is accounted for in the top and bottom wall displacements, the
change in streamline shape near the side walls cannot be eliminated in two adaptive-wall
test sections. Finally, the calculated displacement thickness of the boundary layers on
the test section walls does not account for pressure gradients in the streamwise direction
due to the presence of the model. Although in some investigation efforts have been
taken to account for this variation, e.g., Ref. [91], it is difficult to do so because the
gradients along the side walls also vary with distance from the model. In the present
investigation, the variation in wall boundary layer thickness due to model induced pressure
gradients was estimated using a Kármán integral relation for turbulent boundary layers
with imposed pressure gradients and simple Kármán-type closure with an approximate
correlation between Coles’ wake parameter and the Clauser parameter (see, e.g., Ref. [63],
pages 454-457). It was found that, for the flow conditions in these experiments, the
variation in estimated wall contours caused by the influence of model induced pressure
gradients on the test section wall boundary layer thickness, was within the uncertainty in
setting the wall displacements. Furthermore, the uncertainty in the refined displacement
thickness estimate, due mainly to approximating the streamwise pressure gradient from low
pressure measurements, was on the order of the uncertainty in setting the wall contours.
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Appendix E

Additional WAS Results

Measurements of wall and model surface pressure distributions, as well as predicted wall
shapes, obtained with and without end plates installed and using both the potential flow
imaginary velocity field WAS calculation method and the original iterative method, are
presented in this appendix. Figure E.1 provides SLW configuration model surface pressure
distributions measured with only end caps installed on the model. These data were used
to compute lift coefficients in Fig. 5.10a. Similar SLW configuration wall displacements
and wall pressure distributions were obtained with only end caps installed as with end
plates installed, and are presented in Figs. E.2 and E.3. These data show that only minor
differences result from using end plates. The wall movements are consistently of greater
magnitude when end plates are installed, as a result of the higher solid blockage ratio with
end plates installed.

Figures E.2 and E.3 compare SLW configuration results obtained using both the original
iterative imaginary velocity field estimation method in the WAS algorithm, and the
potential flow calculation method. The difference in wall coordinates between the two
methods was on the order of the uncertainty in setting the wall positions. This verified the
potential flow calculation modification to the program and showed that, in the University of
Waterloo adaptive-wall wind tunnel, at blockage ratios on the order of less than 8% and for
free-stream speeds providing a chord Reynolds number on this model of approximately 105,
using the potential flow calculation instead of the original method is unnecessary. However,
at higher blockage ratios, for which more than three iterations of the WAS algorithm are
required to determine the SLW coordinates, the accumulated error from using the original
method may be significant. Furthermore, since the potential flow calculation does not
noticeably increase the calculation time for wall movements, this method should be used
for future studies in this facility, to reduce accumulated error in wall displacements.
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Figure E.1: Streamwise distributions of model surface pressure in the SLW configuration
with only end caps installed. Data for angles of attack at which a separation bubble formed
are presented in (a) and data for the stalled condition are presented in (b).
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Figure E.2: SLW contours with and without end plates installed and using the
original (filled markers) and potential flow (unfilled markers) imaginary velocity field
estimation methods.
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Figure E.3: Wall pressure distributions with and without end plates installed and using
the original (filled markers) and potential flow (unfilled markers) imaginary velocity field
estimation methods.
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Appendix F

LST Solvers

This appendix provides details on the numerical methods used to solve the Rayleigh and
Orr-Sommerfeld equations in this investigation. MATLAB programs were developed to
apply each of the solution methods to arbitrary separated shear layer profiles.

F.1 PWL Method

Approximating the mean streamwise velocity profile as a set of linear segments reduces the
Rayleigh equation (Eq. 2.3) to a second order homogeneous ordinary differential equation
with constant coefficients [66]:

v′′ − α2v = 0. (F.1)

The constants of integration for each linear segment are determined by applying the two
boundary conditions in Eq. 2.4 to the first and last segments and by enforcing continuity
of pressure and wall normal velocity at the connection points between linear segments [66]:

[[(U − ω/α) v′ − U ′v]] = 0, (F.2)[[
v

U − ω/α

]]
= 0, (F.3)

where, [[·]] indicates the difference between the quantity evaluated on the upper and lower
curve segment, at the connection point. Substituting the general solution into the matching
conditions at each connection point leads to the following relations:

a2n−1 − a2n+1 = (a2n+2 − a2n) e2αyn , (F.4)
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α (Un − ω/α)
[
(a2n+2 − a2n) eαyn − (a2n+1 − a2n−1) e−αyn

]
=
(
U ′n+1a2n+1 − U ′na2n−1

)
e−αyn +

(
U ′n+1a2n+2 − U ′na2n

)
eαyn ,

(F.5)

where a is the vector of integration constants for each interval. Applying the boundary
conditions, a1 = −a2 and a2N = 0, closes the algebraic system. Thus, the problem takes
the form,

C0a = 0, (F.6)

where the coefficient, C0, is determined by evaluating Eqs. F.4 and F.5. Since this is a
homogeneous linear system, the solution can be found by determining the eigenvalue such
that det(C0) = 0 (Ref. [67]).

In theory, the algebraic system can be solved directly for all of the eigenvalues for
a particular piecewise linear profile approximation. However, due to the non-linear
appearance of the eigenvalue in the system for spatial stability analysis, such an approach
becomes inefficient for large numbers of profile segments. Instead, an iterative procedure
to determine one mode at a time is employed. For a particular disturbance frequency,
an initial approximation for the eigenvalue is used to evaluate det(C0). The eigenvalue is
iteratively refined using a secant method until det(C0) is within a specified tolerance of zero.
For each disturbance frequency, the initial approximation for the eigenvalue is determined
by extrapolating converged values from solutions obtained for other frequencies.

F.2 RK Integration

Runge-Kutta integration can be used to solve the Rayleigh and Orr-Sommerfeld equations
for velocity profiles with non-zero values of U ′′. For the purpose of numerical integration,
the Rayleigh equation is rearranged into a system of first order equations as follows:

dv

dy
= u, (F.7)

du

dy
=

(
U ′′

U − ω/α + α2

)
v. (F.8)

Noting that the separated shear layer profile approaches a constant value in the free stream,
the free-stream boundary condition of Eq. 2.4 can be rewritten as [65],

lim
y→∞

u

v
= −α, (F.9)
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in order to obtain a grid independent solution with a smaller integration domain. The
U ′′ term in Eq. F.8 can be computed by a second order central difference approximation
for the interior points, and first order forward and backward difference formulas at the
lower and upper domain boundaries, respectively. The Rayleigh equation can then be
solved numerically for a given disturbance frequency by a Runge-Kutta method (see, e.g.,
Ref. [146]) to integrate Eqs. F.7 and F.8 from the free stream to the wall, using a guessed
value of α, the boundary value u(ymax) = −αv(ymax), and an arbitrarily chosen v(ymax).
The secant method is used to iteratively adjust the value of α, computed from the new
value of v(0) in each iteration until the wall boundary condition is satisfied to within a
specified tolerance. This procedure is completed for each disturbance frequency for which a
solution is desired, with a secant method employed to extrapolate initial eigenvalue guesses
from those computed at other frequencies.

F.2.1 An Alternative to the Rayleigh Equation for Inviscid LST

The first order system formulation of the Rayleigh equation, given by Eqs. F.7 and F.8,
contains a term with the second derivative of the mean streamwise velocity, the computed
value of which is very sensitive to experimental data scatter. It has been suggested that
more reliable results can be obtained by formulating the linear stability problem in a
form without the U ′′ term [122]. To explore this option, the linear stability equations are
formulated in terms of the pressure fluctuation and vertical velocity fluctuation profiles
instead of the streamwise and vertical velocity fluctuation profiles [123].

Simplifying the Navier-Stokes equations by assuming parallel mean flow, neglecting
higher order fluctuation terms, assuming that disturbances can be decomposed into normal
modes, and taking the inviscid limit, results in a system of three first order inviscid
linear stability equations for fluctuating pressure and velocity components [61]. Instead of
uncoupling the system from the pressure fluctuation equation and invoking the disturbance
streamfunction to arrive at a single second order equation, i.e., the Rayleigh equation, the
streamwise velocity fluctuation equation is uncoupled, resulting in an equivalent system of
two first order equations [123]:

dp

dy
= −iρ (αU − ω) v, (F.10)

dv

dy
=

(
iα
p

ρ
+ v

dU

dy

)(
U − ω

α

)
. (F.11)

Similar boundary conditions are used as for the Rayleigh equation. A value for the vertical
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velocity fluctuation at ymax is selected, and the equation,

lim
y→∞

p/ρ

v
= i
(
Ue −

ω

α

)−1

, (F.12)

is used to define numerical boundary condition for the free-stream pressure fluctuation as,
p(ymax) = iρ (Ue − ω/α) v(ymax).

The above system of equations can be solved by Runge-Kutta integration employing
a secant method to iteratively determine the eigenvalues such that the zero fluctuation
conditions are satisfied at the wall. Note that, whereas Eqs. F.7 and F.8 contain a U ′′

term, Eqs. F.10 and F.11 do not. For a velocity profile with sufficiently high profile spatial
resolution, as would be available from a curve fit to the measured velocity profile, these
two systems will provide the same solution. However, it is possible that their solutions will
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Figure F.1: Convergence rate and variability due to data scatter for the alternative RK
method applied directly to discrete velocity profile data. Curves show solutions for the
simulated profile without data scatter and the shaded band indicates the second standard
deviation of solutions for one hundred simulated profiles with ∆y/δ∗ = 5.6 × 10−2 and
imposed data scatter.
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differ for the relatively low profile spatial resolution available from experimental data, due
to the amplification of experimental data scatter in computing U ′′.

Figure F.1 illustrates the convergence and variability due to data scatter for this solution
method. Figures 4.1 and 4.3 are similar plots for the other solution methods applied directly
to discrete velocity profiles. The alternative RK method (Fig. F.1) performs poorly for low
spatial resolutions as compared to the other methods (Fig. 4.1); however, the variability
due to data scatter for this formulation is on the same order as the other methods (Fig. 4.3).

F.2.2 Compound Matrix Method

Directly solving the Orr-Sommerfeld equation by a shooting method can be difficult
because the equation is numerically stiff [147]. The compound matrix method establishes
an equivalent system of equations for which numerical solutions are more easily
determined [147]. Detailed mathematical formulations of this method are presented in
Refs. [67] and [147]. Through these manipulations, a system of equations is developed that
is equivalent to the Orr-Sommerfeld equation [67]:

Θ′1 = Θ2, (F.13)

Θ′2 = Θ3 + Θ4, (F.14)

Θ′3 =

{
2α2 +

iαReδ∗

Ueδ∗

(
U − ω

α

)}
Θ2 + Θ5, (F.15)

Θ′4 = Θ5, (F.16)

Θ′5 =

{
α4 +

iαReδ∗

Ueδ∗

[
α2
(
U − ω

α

)
+ U ′′

]}
Θ1+

{
2α2 +

iαReδ∗

Ueδ∗

(
U − ω

α

)}
Θ4+Θ6, (F.17)

Θ′6 =

{
α4 +

iαReδ∗

Ueδ∗

[
α2
(
U − ω

α

)
+ U ′′

]}
Θ2. (F.18)

The boundary conditions are then,

Θ1(ymax) = 1, (F.19)

Θ2(ymax) = −(α + χ), (F.20)

Θ3(ymax) = α2 + αχ+ χ2, (F.21)

Θ4(ymax) = αχ, (F.22)

Θ5(ymax) = −αχ(α + χ), (F.23)
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Θ6(ymax) = α2χ2, (F.24)

where χ =
√
α2 + iαReδ∗(1− ω/α)/(Ueδ∗). Runge-Kutta integration can then be applied

to these equations for each disturbance frequency, using a secant method to determine
the eigenvalue such that the wall boundary condition, Θ1(0) = 0, is satisfied. Once the
eigenvalue is determined, the eigenfunction can be computed by numerically integrating
the equation [67],

Θ1v
′′ −Θ2v

′ + Θ4v = 0, (F.25)

towards the wall from an arbitrarily selected value of the free-stream vertical velocity
fluctuation.

F.3 FD Formulation

Finite difference approximations to the Rayleigh equation have been shown to provide
accurate results in comparison with Runge-Kutta integration and spectral methods [120].
In this investigation, finite difference solutions have only been applied for discrete data
points, and for this reason the formulation accommodates uneven profile point spacing.
Substitution of second order central difference formulas into the Rayleigh equation (Eq. 2.3)
leads to,

vm+1 −
(

1 + ym+1−ym
ym−ym−1

)
vm +

(
ym+1−ym
ym−ym−1

)
vm−1

1
2

(ym+1 − ym) (ym+1 − ym−1)
−
(

U ′′m
Um − ω/α

+ α2

)
vm = 0, (F.26)

for m ∈ [1, N ]. Similarly, the boundary condition of Eq. 2.4 and the impermeability
condition become [1 + α (yN+1 − yN)] vN+1 = vN and v0 = 0. This system of equations can
be rearranged into a polynomial eigenvalue problem with matrix coefficients of the form,(

C0α
3 + C1α

2 + C2α + C3

)
v = 0, (F.27)

and solved using the companion matrix method, described in Section F.5.

F.4 Chebyshev Collocation Formulation

Spectral methods have a number of advantages over local methods when solving stiff
differential eigenvalue problems such as the Orr-Sommerfeld equation [132, 148]. Most
notably, spectral methods allow for the direct solution of multiple modes simultaneous and
do not require an iterative procedure to determine the eigenvalues. An appropriate choice of
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trial functions can provide moderate solution accuracy with very few terms in the assumed
solution [132], making such methods ideal for determining approximate eigenvalues to
initiate the shooting procedures in local methods when high accuracy or fine spectral
resolution is required [67].

Spectral methods employ a series of orthogonal trial functions to approximate the
solution to a differential equation [132]. Test functions are selected so that the properties
of orthogonal functions can be exploited to develop an algebraic system of equations for
the coefficients of the series solution. Spectral methods are categorized based on the
choice of trial and test functions. Chebyshev polynomials are commonly used as trial
functions in Orr-Sommerfeld equation solutions [66,120,121,124–131] because they provide
infinite convergence, i.e., the solution converges faster than the number of trial functions
used in the expansion to any finite power [132]. A number of studies have verified that
Chebyshev collocation and Chebyshev tau schemes can both be used in linear stability
analysis to accurately calculate eigenvalues [120,124,127,130]. In the present investigation,
a Chebyshev collocation method, similar to that described in Ref. [66], is employed with
appropriate modifications to accommodate a spatial stability formulation for a semi-infinite
domain problem. It should be noted that the Chebyshev collocation approach was only
used to identify less dominant modes induced by data scatter in measured mean velocity
profiles and to find a sufficient approximation for the eigenvalue at one location to initiate
the shooting procedure in local methods. Thus, the convergence of this method was not
important, provided that the computed eigenvalue provided convergence of the shooting
procedure in the Runge-Kutta integration. For this purpose, 200 terms in the Chebyshev
polynomial series expansion was found to be more than sufficient.

The nth Chebyshev polynomial is given as Tn(ŷ) = cos[(n − 1) arccos(ŷ)] (Ref. [132]).
The domain of these functions is ŷ ∈ [−1, 1], whereas the domain of a separated shear
layer profile is y ∈ [0,∞). In order to approximate the solution to the Orr-Sommerfeld
equation with Chebyshev polynomials, it is necessary to map the problem domain onto
that of the trial functions. Various transforms have been used for this purpose, and have
been found to affect the number of polynomial terms required for convergence [148]. the
choice of domain mapping was not a concern in the present investigation because spectral
calculations were only needed for approximate solutions. The following simple coordinate
transformation was selected to map the physical coordinate system, y ∈ [0,∞), onto the
Chebyshev polynomial domain, ŷ ∈ [−1, 1]: ŷ = 2y/ymax − 1. Substitution into the Orr-
Sommerfeld equation (Eq. 2.1) yields,

(U − ω/α)

(
ξ2d

2v

dŷ2
− α2v

)
− U ′′v = − iUeδ

∗

αReδ∗

(
ξ4d

4v

dŷ4
− 2α2ξ2d

2v

dŷ2
+ α4v

)
, (F.28)
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where ξ = 2/ymax. Similarly, the boundary conditions of Eq. 2.2 become,

v (±1) = v′ (±1) = 0. (F.29)

In spectral collocation formulations, Dirac delta functions with singularities coinciding
with the collocation points are used as the test functions [132]. For numerical accuracy,
the N collocation points, ŷm, are selected as locations of the minima and maxima of the
highest order Chebyshev polynomial used in the expansion, i.e., ŷm = cos(mπ/N) + 1.
Thus, a series expansion of the eigenfunction that exactly satisfies the differential equation
at these locations is to be determined. Expanding the vertical velocity fluctuation profile
in Eqs. F.28 and F.29 into a Chebyshev polynomial series,

v =
N∑
n=1

anTn(ŷ), (F.30)

and evaluating the equation at the collocation points, reduces the Orr-Sommerfeld equation
to a system of algebraic equations in the form,(

C0α
4 + C1α

3 + C2α
2 + C3α + C4

)
a = 0, (F.31)

where, for n ∈ [1, N ] and m ∈ [3, N − 2],

C0m,n = − Ueδ
∗

iReδ∗
Tn(ŷm), (F.32)

C1m,n = −UmTn(ŷm), (F.33)

C2m,n =
2ξ2Ueδ

∗

iReδ∗

d2Tn
dŷ2

(ŷm) + ωTn(ŷm), (F.34)

C3m,n = −U ′′mTn(ŷm) + Umξ
2d

2Tn
dŷ2

(ŷm), (F.35)

C4m,n = −ξ
4Ueδ

∗

iReδ∗

d4Tn
dŷ4

(ŷm)− ωξ2d
2Tn
dŷ2

(ŷm). (F.36)

The boundary conditions are C41,n = Tn(−1), C42,n = T ′n(−1), C4N−1,n
= Tn(1), C4N,n =

T ′n(1), and C0m,n = C1m,n = C2m,n = C3m,n = 0 for m = 1, 2, N − 1, and N . Equation F.31
can then be solved directly by the companion matrix method described in Section F.5.
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F.5 Companion Matrix Method

As seen in Sections F.3 and F.4, finite difference and Chebyshev collocation formulations
for spatial linear stability analysis lead to polynomial eigenvalue problems with matrix
coefficients (e.g., Eq. F.31). Such equations can be recast into linear generalized eigenvalue
problems through the companion matrix method, and then solved efficiently. To illustrate
this method, consider Eq. F.31. This equation can be rearranged into the following linear
generalized eigenvalue problem [121]:


−C1 −C2 −C3 −C4

I 0 0 0
0 I 0 0
0 0 I 0

− α

C0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I




α3a
α2a
αa
a

 = 0. (F.37)

Equations of this form can be solved using the QR algorithm [132], pre-programmed into
scientific computing software such as MATLAB.
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Appendix G

Intrusiveness of Flow Visualization

This appendix examines the effect of opening and closing the wind tunnel door while the
tunnel is running. Such intrusion is sometimes necessary to apply smoke-wire fluid for flow
visualization experiments. It is important to know whether the flow returns to its previous
state after the door is closed, and how long it takes for the flow to settle, in order to
have confidence that flow visualization images are of the same flow development that was
measured. These effects were assessed by measuring mean and fluctuating surface pressure
over a time interval in which the wind tunnel door was opened for fifteen seconds and then
closed.

The response of mean static pressure at the suction peak for each angle of attack
is presented in Fig. G.1. For each angle of attack, it took less than thirty seconds for
the measured pressure to return to the initial value. Note that this is not a precise
measurement because, due to the static pressure tube length, the rise time for static
pressure measurements from this system is approximately twenty seconds. However, the
fact that the magnitude of the suction peak returns to the value before the door was opened
suggests that the mean flow returns to its previous state less than thirty seconds after the
door is closed, for each set of flow conditions considered.

Simultaneous microphone measurements were acquired during and following opening
and closing the wind tunnel door to assess whether quasi-periodic flow behavior returned
to the same state following the intrusion. The results are summarized using spectrogram
plots in Fig. G.2. For each of the angles of attack and microphone locations, the energy
spectra appear to return to the prior state within ten seconds of closing the door. The
energy spectra acquired before and after the door was opened and closed further suggest
that the same flow state is re-established once the wind tunnel door is closed. Based on
these measurements, it is concluded that acquiring flow visualization images thirty seconds
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after closing the wind tunnel door is sufficient to ensure that the flow being photographed
is the same as that which was measured without opening the door.
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Figure G.1: Response of mean surface pressure near the suction peak to opening the wind
tunnel door for fifteen seconds. The test section door was open for the time between the
dashed lines.
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Figure G.2: Time evolution of energy spectra of pressure fluctuations measured with
embedded microphones, with the wind tunnel door open for the time between the dashed
lines. Average spectra were taken before opening the door and over a period of 105 s,
beginning thirty seconds after closing the door. Spectra obtained before and after the
intrusion are normalized and shifted in magnitude for clarity.

211


	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Background
	Low Reynolds Number Airfoil Operation
	Structure of Transitional Separation Bubbles

	Stability Theory
	Stability of Separated Shear Layers
	Approaches to Linear Stability Analysis of Measured Separated Shear Layer Profiles

	Influence of Experimental Setup
	End Plates on Aerodynamic Models
	Test Section Wall Interference
	Hot-Wire Measurements in Separation Bubbles

	Surface Pressure Measurements with Embedded Sensors

	Experimental Methodology
	Experimental Setup
	NACA 0018 Airfoil Model
	End Plate Design

	Measurement Techniques
	Static Pressure Measurements
	Velocity Measurements
	Microphone Measurements

	Wall Adaptation
	Flow Visualization

	Sensitivity of Linear Stability Analysis of Separated Shear Layers
	Numerical Methods
	Rayleigh Equation Solutions using Experimental Profiles Directly
	Rayleigh Equation Solutions for Curve Fits to Experimental Profiles
	Solutions to the Orr-Sommerfeld Equation for Experimental Profiles

	Effect of Experimental Setup on Flow Development
	End Plate Configuration
	Blockage
	Intrusive Techniques
	Influence of the Hot-Wire Probe and Traverse
	Effect of Opening the Wind Tunnel Door


	Boundary Layer Development
	Flow Visualization
	Boundary Layer Measurements
	Instability of the Laminar Separated Shear Layers

	Conclusions
	Sensitivity of Linear Stability Analysis
	Effect of Experimental Setup
	Separated Shear Layer Development

	Recommendations
	PERMISSIONS
	REFERENCES
	APPENDICES
	Experimental Uncertainty
	Uncertainty in Experimental Setup
	Hot-Wire Uncertainty
	Uncertainty in Static Pressure Measurements
	Microphone Measurement Uncertainty
	Uncertainty in SLW Configuration

	End Plate Design
	End Plate Drawings

	Scanivalve Control System
	Wall Adaptation Strategy
	Estimating the Imaginary Velocity Field
	Potential Flow Estimate

	Determining Wall Contours

	Additional WAS Results
	LST Solvers
	PWL Method
	RK Integration
	An Alternative to the Rayleigh Equation for Inviscid LST
	Compound Matrix Method

	FD Formulation
	Chebyshev Collocation Formulation
	Companion Matrix Method

	Intrusiveness of Flow Visualization

