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Abstract 

Recent advances in polyolefin manufacture have focused on the production of differentiated 

commodity polyolefins, specialty polyolefins, and polyolefins hybrids. What differentiates these new 

polyolefin types from commodity polyolefins is that their molecular architectures are much more 

complex and often contain long chain branches (LCBs), leading to unique properties that make them 

competitive with specialty polymers. This is an exciting new research area in the polyolefin industry 

because it promises to open new markets for polyolefins that have been thus far restricted to other 

polymers.  

One approach to produce these novel polyolefins is to use one or two single-site catalysts in two 

CSTRs in series. The first CSTR is used to make semicrystalline polymer chains, some of which must 

be vinyl-terminated (macromonomers). These macromonomers are then incorporated, via terminal 

branching, onto the chains growing in the second CSTR, becoming LCBs. If the backbone and the 

macromonomer have different compositions, they are called cross-products. Since it is not possible to 

incorporate all macromonomers, the final polymer will consist of a complex mixture of linear chains 

made by the two catalysts, homogeneous-branched chains (that is, chains where the backbone and all 

LCBs are of the same type), and cross-product macromolecules. The cross-product will add rather 

special properties to the polymer and, depending on its molecular architecture, the final product may 

act as a thermoplastic elastomer (TPE). Developing polymer reactor models for different catalyst 

combinations can help understand the details of these complex syntheses and to control the properties 

and fractions of linear chains, homogeneous-branched chains, and cross-products. 

Two mathematical models were developed in this thesis for the solution polymerization of olefins 

with two single-site catalysts to predict the microstructure of long chain branched polyolefins. The 

first model was developed for a semi-batch reactor and the second one for two CSTRs in series. The 

models can predict the fractions of different polymer populations made in CSTRs and semibatch 

reactors, as well as their average chain lengths and LCB densities. Simulation results show that 

CSTRs are more efficient than semi-batch reactors to make polymers with high LCB densities and/or 

cross product fraction. 

Simulation results also show that to increase the weight percent of cross-product using a linear-

catalyst and a LCB-catalyst, the rate of macromonomer formation of the linear-catalyst should be 

high. The fraction of cross-product can be increased even further when both catalysts are capable of 
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incorporating macromonomers to form LCB-chains because; in this case, both catalysts can form 

cross-product chains. Monomer concentration has no effect on cross-product mass fraction and 

polydispersity index, but increasing monomer concentration will decrease LCB density and increase 

the average chain lengths. Catalyst deactivation also has a great impact on polymer properties: LCB 

density, polydispersity index, cross-product fraction, and average chain lengths will all decrease by 

increasing the catalyst deactivation rate of both catalysts. 

Simulation results for two CSTRs in series shows that increasing residence time in the second CSTR 

will lead to higher cross-product formation and LCB density. This rate of increase is more significant 

if the residence time in the second CSTR is similar to that of the first CSTR.  The catalyst feed policy 

also has a great impact on polymer properties. We found out that feeding the linear-catalyst and the 

LCB-catalyst in equal amounts to the first CSTR and just adding the LCB-catalyst to the second 

CSTR is the preferred catalyst injection method for making polymer with a high mass fraction of 

cross-product, high chain length averages, and lower polydispersity index (PDI). 

These simulation studies indicate that detailed polymerization kinetics for each catalyst is needed in 

order to synthesize these novel polyolefins. In the experimental part of this thesis, ethylene 

polymerization kinetics studies were performed first with two individual metallocene catalysts, then 

with both of them simultaneously. 

First, ethylene polymerization with rac-Et(Ind)2ZrCl2/MAO was carried out in a semi-batch solution 

reactor. Reaction temperature, monomer, MAO, and catalyst concentrations were the factors studied 

to establish a framework to predict catalyst decay, polymer yield and molecular weight averages. The 

polymerization order with respect to ethylene and catalyst concentration was found to be first order. 

Chain transfer to monomer was the dominating chain transfer reaction while β-hydride elimination 

was negligible. An increase in MAO concentration led to a decrease in molecular weight. Catalyst 

decay could be described with a first order mechanism. At low MAO concentration this catalyst could 

make polymer with about one vinyl group per chain.  

A similar ethylene polymerization kinetics study using dimethylsilyl(N-tert-butylamido)-

(tetramethylcyclopentadienyl)-titanium dichloride (CGC-Ti)/MAO system showed that the 

polymerization order with respect to catalyst concentration was first order, but first order catalyst 

decay failed to explain catalyst deactivation. The polymerization order with respect to ethylene 

concentration was not unity for the whole range of ethylene concentration. The trigger mechanism, 

along with reversible first order activation and deactivation with MAO and first order thermal decay, 
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could explain the effect of time, monomer and catalyst concentration on the rate of polymerization. 

Decrease in MAO concentration increased the amount of polymer chains with terminal vinyl groups 

and consequently led to polymers with LCBs. Decreasing monomer concentration at low MAO 

concentration also led to production of polymer chain with more long chain branching. 

Ethylene homopolymerization and copolymerization with 1-octene were conducted using combined 

catalysts system at low and high MAO concentrations. Reactivity ratios were calculated and polymer 

samples with bimodal MWDs were obtained but no increase in LCB frequency or cross product 

formation was detected using carbon-13 nuclear magnetic resonance (
13

C NMR) and high-

temperature gel permeation chromatography (GPC) coupled with a viscosity detector.     

In order to promote the formation of cross-product macromolecules, 1,9-decadiene was 

copolymerized with ethylene using the Et(Ind)2ZrCl2/MAO to make tailored macromonomers with 

pendant 1-octenyl branches. The macromonomers ranged from having 1 to 6.5 vinyl groups per chain. 

These macromonomers were then incorporated into growing ethylene/1-butene or ethylene/1-octene 

copolymer chains using a titanium-based constrained geometry catalyst (CGC-Ti) to form branch 

block polymer chains with amorphous main backbone having short chain branch density (SCBD) up 

to 50 per 1 000 carbon atoms, and high crystalinity long chain branches with SCBD up to 3/1000 C 

atoms (cross product). Increase in polymerization time or catalyst concentration in the second stage of 

polymerization was observed to increase the cross-product weight fraction. We also observed that an 

increase in ethylene pressure during the second stage of polymerization, while 1-butene concentration 

was constant, favoured the formation of cross product. When 1-octene was used as comonomer in the 

second  stage of polymerization, the presence of more pendant vinyl groups in the macromonomer led 

to increased long chain branching.   
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Chapter 1 

Introduction 

1.1 Motivation 

 

Polyolefins, which include various grades of polyethylene and polypropylene, are the most important 

thermoplastics today. The global demand for polyethylene and polypropylene represents over 60% of 

all commodity resins consumed worldwide on an annual basis. Polyethylene, including low-density 

polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high density polyethylene 

(HDPE), is the largest cumulative category with 38% market share, while polypropylene is the largest 

single category with 24%  market share
[1]

.   

The key points to polyolefin success are low production cost and versatility in application. 

Polyethylenes are used for blow-molded objects such as bottles (milk, food, and detergents), 

houseware appliances, toys, grocery bags, pipes, wire, cable insulation, and many other applications. 

Polypropylene (PP) is used for making pipes, bottle crates, bottle caps and closures, washing 

machines drums, toys, automotive applications, including battery cases and interior trim, rubber 

modified PP for impact resistant components, such as bumpers, packaging film for food and non-food 

applications, syringes and vials for medical use, fibers for carpeting, and many other uses. It is 

surprising that these, at a first glance, simple polymers could have such diverse applications. The key 

to this versatility lies in the way monomer molecules are connected to form polymer chains with 

entirely different macroscopic properties. 

In the broadest sense, polyethylene resin properties are determined largely by three fundamental 

distributions: molecular weight, short chain branching (or chemical composition) and long chain 

branching. It is the branching degree and type that distinguishes between the three major types of 

polyethylene, that is, LDPE, HDPE and LLDPE. High pressure low-density polyethylene (LDPE) has 

certain properties which are difficult to obtain by low pressure technologies. One of these properties 

is long chain branching, which allows easy processing at high molecular weights and makes the resin 

especially useful for extrusion coating. In addition to long chain branches (LCB), high pressure 

polyethylene contains a reasonably high amount of short chain branches (SCB) which decreases 

crystallinity and affects the stiffness of the material in the solid state. On the other hand, the high 

pressure free radical process needed to make LDPE is expensive to build and maintain, and the broad 

molecular weight distribution (MWD) of LDPE is responsible for inferior mechanical properties, 
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being a disadvantage as compared to polyethylene resins made with metallocene catalysts having 

much narrower MWD. 

Polyethylenes made with metallocene catalysts have narrow MWD with greatly improved mechanical 

properties. Processing these polymers, however, is more difficult than LDPE because of poor shear 

thinning. Adding a few LCBs to linear polyethylene chains can improve its rheological behavior. 

Although, LCB increases the resin viscosity at low shear rates (because of chain entanglement) at 

high shear rates, the branch entanglements relax and more shear thinning is observed compared to 

linear polyethylene.
[2]

 Fortunately, some metallocene catalysts can make polyethylenes with LCBs. 

These polymers combine good mechanical properties with easy processability. The mechanism of 

LCB formation with metallocenes involves the incorporation of a dead polymer chain containing a 

terminal vinyl group (macromonomer), generated in situ via β-hydride elimination or transfer to 

ethylene, as a LCBs into a growing polymer chain.  

One typical example of metallocene catalysts with the ability of producing polymers with LCB are 

the family of constrained geometry catalysts (CGCs). However, the LCB levels in CGC resins are 

relatively low because macromonomers produced in situ have only one reactive double bond per 

chain. One way to increase LCB levels in CGC resins is to copolymerize ethylene with linear 

unconjugated dienes. The resulting copolymers have an average of more than one vinyl groups per 

polymer chains, opening the possibility for developing new products with improved processability 

and mechanical properties.  

It is also possible to increase LCB levels a using combination of metallocene catalysts.When two 

metallocene catalysts are combined in the same reactor, with at least one being able to form LCBs, 

the polymer produced may contain a variety of chain architectures: linear chains, homogeneous 

branched chains, and heterogeneous branched chains (cross product). A heterogeneous branched 

chain is made when a macromonomer made by one of the catalysts in the reactor is incorporated as a 

LCB onto the chain growing on the other catalyst present in the reactor. Even a small amount of such 

cross products can significantly alter the polymer property profile. For instance, these polymers may 

behave as thermoplastic elastomers if the proper catalysts and monomers are chosen.  

Developing polymer reactor models for different catalyst combinations is also very helpful because 

we can understand the details of these complex syntheses and to control the properties and fractions 

of these cross-products .   
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1.2 Research plan and objectives  

The main objective of this thesis is to make polyolefins with complex branched structures for 

potential new applications using dual metallocene catalysts. The product components involved in the 

complex branched structures are macromonomers (semicrystalline polymer chains with terminal or 

pendant vinyl groups) amorphous polymer chains (ethylene\1-butene or ethylene\1-octene 

copolymers with high -olefin fraction), and cross-products (made by incorporating macromonomers 

into amorphous polymer chains). 

The steps followed in this thesis were:  

1) Develop mathematical models to better understand the kinetics of cross-product formation in semi-

batch and continuous reactors using dual metallocene catalysts;  

2) Synthesize macromonomers with rac-Et(Ind)2ZrCl2 and model its polymerization kinetics;  

3) Produce ethylene homopolymers using CGC-Ti and model its polymerization kinetics;  

4)  Produce amorphous ethylene/a-olefin copolymer using CGC-Ti;  

5) Combine rac-Et(Ind)2ZrCl2 and CGC-Ti to make branched polyolefins with complex molecular 

architectures containing cross products;  

6) Since efforts to make cross products using the approach in 5) were unsuccessful, produce 

polyethylene macromonomers containing 1,9-decadiene using rac-Et(Ind)2ZrCl2 in the first step, 

followed by the terpolymerizations of ethylene/1-butene/1,9-diene macromonomer or ethylene/1-

octene/1,9-diene macromonomer with CGC-Ti to make branch-bock polymer chains having 

amorphous backbones and semicrystalline LCBs.    

 

The objectives of this thesis can be summarized as follows: 

 

 Develop a mathematical model to describe the solution polymerization of olefins with two 

single-site catalysts in a semi-batch reactor. 

 Develop a mathematical model to describe the solution polymerization of olefins with two 

single-site catalysts in a series of two continuous stirred tank reactors. 

 Perform an ethylene polymerization kinetics study using rac-Et(Ind)2ZrCl2/MAO and 

estimate reaction rate constants. 
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 Perform an ethylene polymerization kinetics study using dimethylsilyl(N-tert-butylamido)- 

(tetramethylcyclopentadienyl)-titanium dichloride (CGC-Ti) and MAO and estimate 

reaction rate constants . 

 Investigate the simultaneous use of rac-Et(Ind)2ZrCl2 and CGC-Ti to increase LCB 

frequency of ethylene/-olefin copolymers. 

 Investigate the use of macromonomers of ethylene and unconjugated dienes to produce 

polymers with large fraction of branch-block chains.  

 

1.3 Thesis outline 

This thesis consists of 10 chapters and is organized as follows: 

Chapter 1 presents the introduction, research objectives, and thesis outline.  

Chapter 2 contains a literature review including polyethylene types, catalyst types and processes used 

for making polyethylene. This is followed by a literature review on the kinetics of polymerization 

with coordination catalysts. Polyolefin characterization techniques are also reviewed at the end of this 

chapter.  

Chapters 3 and 4 develop general mathematical models and present simulation results for the solution 

polymerization of olefins in semi-batch and continuous stirred tank reactors using the method of 

moments.  

Chapter 5 describes the experimental procedures used in this thesis, including polymerization 

methods and apparatuses, and polymer characterization techniques.  

Chapter 6 discusses the in-depth homopolymerization kinetics study of ethylene with rac-

Et(Ind)2ZrCl2/MAO in a semi-batch solution reactor; Chapter 7 shows a similar result for CGC-

Ti/MAO.  

An attempt to use the combined rac-Et(Ind)2ZrCl2 and CGC-Ti system to increase LCB frequency in 

the final polymer is described in Chapter 8. 

In Chapter 9, we provide results on copolymerization of ethylene and 1,9-decadiene using rac-

Et(Ind)2ZrCl2 catalyst to produce macromonomers with different concentration of  pendant vinyl 

groups. Macromonomers were then terpolymerized with ethylene and 1-butene or 1-octene using 
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CGC-Ti to produce branch-block polymers. The rest of the chapter deals with the effect of reaction 

parameters on the microstructure of the branch-block polymers produced.  

Finally, Chapter 10 summarizes the significant finding of this research and provides some 

recommendations for future work.  
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Chapter 2                                                                                                         

Literature Review and Background 

2.1 Polyolefins 

Polyolefins are the largest group of thermoplastics, often referred to as commodity thermoplastics. 

They are polymers made of simple olefins such as ethylene, propylene and higher -olefins. The two 

most common polyolefins are   polyethylene (PE) and polypropylene (PP); they have a wide range of 

applications due to their low cost and versatility. 

 

2.1.1 Polyethylene Types 

The three major types of polyethylene are: low density polyethylene (LDPE), linear or high density 

polyethylene (HDPE), and linear low-density polyethylene (LLDPE). Figure 2-1 compares the 

molecular structures of these types of polyethylene resins made by coordination (HDPE and LLDPE) 

and free-radical polymerization (LDPE). 

 

Figure  2-1. Polyethylene molecular structures. 

 

2.1.1.1 Low Density Polyethylene (LDPE) 

Low-density polyethylene is produced by free radical bulk polymerization using traces of oxygen 

(≤300 ppm) as initiator, often in combination with an alkyl or acyl peroxide or hydroperoxide in a 
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high–pressure (120-300 MPa) and high-temperature (140-325 
o
C) process in either autoclave or 

tubular reactors.
[3]

  

This oldest type of polyethylene resin differs structurally from linear polyethylenes by being highly 

branched and containing both long chain branches (LCBs) and short chain branches (SCBs) of 

different lengths, with butyl groups as the dominating SCB.
[4-7]

 The LCBs can be of the same average 

length as the polymer backbones.
 
 Branches, principally SCBs, act as defects and determine the 

degree of crystallinity which in turn affects a number of polymer properties. The number of SCBs in 

LDPE may be as high as 15-25 per 1000 carbon atoms.
[3]

   

The degree of crystallinity in LDPE is in the range of 40-60%, the melting temperature varies from 

100 to 120
o
C, and the density is approximately 910-930 kg/m

3
. The physical properties of LDPE 

depend on three structural factors: degree of crystallinity (density), molecular weight average, and 

molecular weight distribution (MWD). The degree of crystallinity and, therefore, density of 

polyethylene, is dictated primarily by the number of SCBs on the chains. Properties such as opacity, 

rigidity (stiffness), tensile strength, tear strength, chemical resistance and upper use temperature, 

which depend on crystallinity, increase as density increases. On the other hand, permeability to 

liquids and gases, elongation and resistance to stress cracking decreases with increasing 

crystallinity.
[8-9]

 

Commercial LDPE have number average molecular weights in the range of 20,000-100,000. Melt 

index (MI), which designates the weight (in grams) of polymer extruded through a standard capillary 

at 190 
o
C in 10 min and is inversely related to molecular weight, is used as a convenient measure of 

average molecular weights. Typical melt index values for LDPE are in the range of 0.1 to 109. As 

molecular weight increases, tensile and tear strength, softening temperature, stress cracking 

resistance, and chemical resistance increase, while processability worsens.
[9]

 The polydispersity index 

(PDI) also affects LDPE properties. Polyethylene with low PDI has high impact strength, reduced 

shrinkage and warpage, enhanced toughness and environmental stress cracking resistance, but poor 

processability. Typical values of PDI for commercial LDPE resins are in the range of 3-20. 

Since LDPE possesses the desired combination of low density, flexibility, resilience, high tear 

strength, and moisture and chemical resistance, which are characteristics of a good film material, thin 

film packaging comprises its major use. Other uses include wire and cable insulation and extrusion 

coating. Both film and extrusion coating applications require good processability, meaning balanced 
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melt strength and flow properties, to be able to extrude the material and form a film or coating layer 

as desired.   

2.1.1.2 High-Density Polyethylene (HDPE) 

High-density polyethylene was discovered approximately 20 years after LDPE. It was first made by 

Karl Ziegler using aluminum alkyl/transition metal halide catalyst complexes. As an example, HDPE 

can be prepared by bubbling ethylene into a suspension of Al(C2H5)3 and TiCl4 in hexane at room 

temperature.
[10]

 This type of polyethylene has few or no short chain branches, and its crystallinity falls 

in the range 70-90 % with densities from 940 to 975 kg/m
3
.
 
Most HDPEs have number average 

molecular weights of 50,000 to 250,000 and crystalline melting temperature in the range of 133-

138
o
C.

[8]
 

Various specialty ultra-high molecular weight polyethylenes (UHMWPE), with molecular weights in 

the range of 250,000-1,500,000, are also produced for pressure piping in mining, industrial, sewer, 

gas, oil, and water applications. Increased molecular weight results in increased tensile strength, 

elongation, low-temperature impact resistance, and stress crack resistance, although processing is 

more expensive because of increased melt viscosity.
[8]

 

2.1.1.3 Linear Low-Density Polyethylene (LLDPE) 

Linear-low density polyethylene is a copolymer of ethylene and α-olefins (generally 1-butene, 1-

hexene, or 1-octene) with densities in the range 915-940 kg/m
3
. Products with even lower densities, 

down to 880 kg/m
3
, are sometimes called very low-density polyethylene (VLDPE) but are chemically 

identical to LLDPE. Copolymerization of ethylene with increasing amounts of α-olefins disrupts the 

order of linear polyethylene chains by introducing SCBs. As a consequence, the density, crystallinity, 

and rigidity of LLDPE are lower than those of HDPE.
[11]

 LLDPE is frequently blended with LDPE 

for film and sheet production.
[10]

 LLDPE was in the market development stages as early as the 1960s, 

but the major driving force for the development of LLDPE processes in the late 1970s and early 

1980s was the desire to reduce the capital required to construct a high-pressure plants to produce 

LDPE and to reduce the costs associated with the maintenance and operation of complex mechanical 

equipments at pressures in the range 15,000 40,000 psi.
[12]
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2.2 Catalysts for Polyethylene Polymerization 

Today, polyethylenes are commercially produced using free-radical initiators, Ziegler-Natta catalysts, 

chromium oxide (Phillips) catalysts and, more recently, metallocene and late transition metal   

catalysts. Each type of catalyst will be discussed briefly below. 

 

2.2.1 Ziegler- Natta Catalysts 

In general, a Ziegler- Natta catalyst is a complex of a metal cation from groups I-III  in the periodic 

table, such as triethylaluminum, Al(C2H5)3, and a transition metal compound from groups IV-VIII, 

such as titanium tetrachloride (TiCl4). The former component is usually known as the co-catalyst or 

activator and the latter as the catalyst. For industrial use, most Ziegler- Natta catalysts are based on 

titanium salts and aluminum alkyls. These types of catalysts have improved considerably since their 

discovery by K. Ziegler and G. Natta in the late fifties. The first commercial Ziegler-Natta catalyst 

was a TiCl3/Et2AlCl system with low polymer yield requiring a step for removing the catalyst residue 

(de-ashing) for the commercial production of polyolefins. Modern Ziegler-Natta catalysts are TiCl4 

supported on MgCl2 and use Et3Al as activator. These catalysts are more active and have better 

control of active sites and particle morphology, enabling them to meet the increasing demands of high 

performance polyolefin materials. Nevertheless, due to their multi-sited nature, the polymer structure 

can be controlled only to a limited degree.
[13]

 

 

2.2.2 Phillips Catalysts 

A traditional Phillips catalyst is based on chromium (VI) oxide supported on silica (SiO2) or 

aluminosilicates (mixed SiO2/Al2O3). The support is sometimes modified with titania (TiO2). This 

catalyst is prepared by impregnating the finely divided support with an aqueous solution of CrO3. The 

chromium loading is in the range 0.5-5 wt%, typically 1 wt%. Unlike Ziegler- Natta catalysts, it does 

not necessarily require a cocatalyst for activation. Activation is carried out by heat treatment 

(calcination) which fixes the CrO3 on the support surface. This catalyst is very stable and useful in 

gas-phase polymerization but unable to polymerize propene to isotactic polypropylene.
[14]

 Due to 

their multi-sited nature, both Phillips and Ziegler- Natta catalysts produce ethylene homo- and 

copolymers with broad MWD and broad chemical composition distribution. 
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2.2.3 Metallocene Catalysts 

Metallocene catalysts are as old as Ziegler-Natta catalysts, but they were found to have very low 

activity when alkylaluminums were used as cocatalysts.
[15-16]

 Their potential was fully realized when 

methylaluminoxane (MAO) was used as a cocatalyst in the early 1980s.
[17]

 In contrast to 

heterogeneous Ziegler-Natta catalysts, most metallocenes have only one type of active site and are, 

therefore, classified as single site catalysts. They offer superior control over the polymer molecular 

architecture and produce chains with narrow MWD and polydispersity index close to 2.0. In addition, 

their catalytic activity is higher than that of classical Ziegler-Natta systems; for instance, for a 

standard zirconocene/MAO catalyst system, the activity is 10 to 100 times higher than that of a 

typical Ziegler-Natta catalysts.
[18]

  

Metallocene catalysts have a sandwich structure in which a π-bonded metal atom is situated between 

two aromatic rings, but this definition has been expanded to include structures having only one C5 

ring.  Figure 2-2 shows the general structure of a bridged metallocene catalyst precursor. In the 

Cp2MXY complex shown, M, is the transition metal and X and Y are usually Cl or CH3. The 5-

bonded ―tilted sandwich‖ cyclopentadienyl (Cp) ligands can be substituted and/or connected by an 

inter-annular bridge.  

 

 

Figure  2-2. General structure of a bridged metallocene catalyst precursor. 

 

Slight structural variations of the bridging groups and ring constituents, as well as transition metal 

type, can significantly affect the activity and stereoselectivity of olefin polymerization catalysts.
[19-20]

 

Generally, zirconium catalysts are more active than hafnium or titanium systems.
[19]

 The first 

metallocene catalysts were unsubstituted or substituted bis-cyclopentadienyl ligands and they were 
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activated by methylalumoxane (MAO). Today, numerous families of different single-site catalysts 

have been developed for the production of polyethylenes and other polyolefins.
[21-25]

 

One of the drawbacks of metallocene catalysts (as well as Ziegler-Natta and Phillips catalysts) is that 

they are unable to polymerize polar molecules, such as common acrylics or vinyl chloride. This is due 

to the metallocene
‘
s oxophilicity, their propensity for binding to oxygen. Introduction of a polar 

monomer into an olefin polymerization reactor will reduce the catalyst activity to almost zero. Late 

transition metal catalysts, discussed in the next section, are much less sensitive to polar comonomers. 

  

2.2.4  Late Transition Metal Catalysts 

Polymerization catalysts using late transition metals – those metals from groups 8, 9 and 10 in the 

periodic table of elements – have attracted a lot of attention lately. These compounds have good 

polymerization activity, although slightly less than metallocenes. The lower oxophilicity, and 

therefore more tolerance towards functionalized monomers, and presumed greater functional group 

tolerance of late transition metals relative to early metals make them likely targets for the 

development of catalysts for the copolymerization of ethane with polar monomers under mild 

conditions.
[23]

 The last property is very attractive for modifying the chemical composition of 

polyolefins by copolymerization with vinyl alcohols, acrylates, or other vinyl polymers. A few 

functional groups can significantly increase the hydrophobicity of polyolefins, adhesion, and 

compatibility with hydrophilic materials.
[11]

 Commercially, these catalysts still have not had a 

significant impact. The most commercially relevant late-transition metal catalysts are the Brookhart 

catalysts, which are diimine complexes of palladium or nickel with an interesting polymerization 

mechanism step called chain walking.
[26]

 

 

2.3 Processes for Polyethylene Manufacture 

Ethylene polymerization processes with coordination catalysts can be classified into solution, slurry 

and gas phase. Solution and slurry processes are based on polymerizing ethylene in a liquid carrier. 

Depending on whether the temperature at which the polymerization is carried out is below or above 

the polyethylene melting point, the process will be a slurry or solution process, respectively. 
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Following polymerization, the catalyst is killed and the polymer separated from the liquid carrier. 

Solution processes are performed in autoclave, tubular, and loop reactors.
[12]

  

In slurry processes, the polymer is separated as a powder or crumb by a combination of 

centrifugation, filtration, or steam stripping, followed by drying, melting, extruding, and pelletizing to 

get polymer pellets. In solution processes, the polymer is separated from the carrier as a molten mass 

by a combination of distillation or flashing of the carrier, and devolatilization extrusion, followed by 

pelletization to beads or granules.  

In gas phase polymerization, ethylene is circulated through a fluidized bed forming polyethylene 

powder that is removed continuously from the reactor via a sequence of valves to a product discharge 

vessel. The advantage of the gas phase process is the elimination of the liquid carrier and the unit 

operations necessary to separate, recover, and purify it. 

  

2.4 Polymerization Kinetics with Metallocene Catalysts 

The mechanism for coordination polymerization can be divided into five main classes of  reactions: 

catalyst activation with cocatalyst, catalysts initiation with monomer, chain propagation, chain 

transfer, and poisoning and deactivation.
[11], [27-32]

 Each of these steps will be described briefly below. 

 

2.4.1 Catalyst Activation 

Metallocene catalysts need to be activated by a suitable cocatalyst before they can be used for 

polymerization. MAO is the most commonly used metallocene activator; it also acts as a scavenger 

for catalyst poisons by reacting with impurities such as oxygen and water that may be present in the 

reactor.
[33]

 MAO is prepared from the controlled hydrolysis of trimethylaluminum (TMA), usually in 

toluene. The main suppliers of MAO (Akzo Nobel, Albemarle and Witco) add water to TMA by use 

of either moist nitrogen or a marginally wet aromatic solvent.
[25]

 About 5-30% of the Al atoms in 

MAO solutions are in the form of TMA. The solubility of MAO in hydrocarbon solvents is possible 

through the use of an excess of TMA during synthesis and any attempt to completely remove this 

excess TMA results in MAO precipitation.
[33]

 

Despite intense research efforts, the structure of MAO, the mechanism by which it activates 

metallocenes, and the polymerization mechanism at the active site are still not fully understood.   
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Generally, MAO consists of basic units of  Al4O3(CH3)6.
[34]

 These units can combine to form cage 

structures of preferentially four units. This cage is complexed with differing amounts of TMA which 

could be the active form for MAO.  

When  zirconocene dichloride is  treated with MAO, monomethylation  takes place within seconds.
[35]

  

Excess MAO leads to formation of  dimethylated species.  In order for the active site to form, it is at 

least necessary that one alkyl group is bonded to the metallocene.
[36]

 The site activation mechanism 

below has been proposed by Kaminsky:
[18]

 

 

Complexation 

  (2-1) 

Methylation 

   

 

(2-2)

 

 

       
(2-3)

 

 

The MAO complex can seize a methyl anion, a Cl anion, or an OR
-
 anion from the metallocene 

forming an MAO anion which can distribute the electrons over the whole cage, thus stabilizing the 

charged system.
[37]

 The appearance of alkylated metallocene cations, generally regarded as the active 

centres in olefin polymerization, as described in Equation (2-4), was confirmed by 
13

C-NMR.
[38]

  

Activation 

                                                                                                                                               (2-4) 

MAO is needed in large excess: [Al]/[metal] ratios of 1000 to10,000 are often used for metallocene 

activation in solution.
[39]

 The relatively high aluminoxane concentration can be partly explained by 

the fact that MAO acts as an impurities scavenger.
[18]

  

Catalyst deactivation may be caused by α-hydrogen transfer reactions from a zirconium methyl bond 

to a MAO methyl group or another zirconium complex, as shown in Equation (2-5). A high MAO 

                                                                                     CH3 

L2ZrCl2.MAO                               L2Zr(CH3)Cl       +                     Al-O 

                                                                                    CH3   

    L2Zr(CH3)Cl.MAO                              L2Zr(CH3)2    +     MAO-Cl 

L2ZrCl2            +       MAO                              L2ZrCl2.MAO         

 L2Zr(CH3)Cl     +MAO                             L2Zr(CH3)Cl.MAO                             [L2ZrCH3]+    + [MAO-Cl]- 
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excess is necessary to reactivate the  Zr-CH2-Al- structure formed during the inactivation reaction,
[35]

 

as proposed in Equation (2-6), which may also explain the need for high MAO concentration.
[18]

  

 

Deactivation 

 

 

   

(2-5)

 

 

Reactivation 

 
    

(2-6) 

 

 

Unfortunately, the TMA also appears to inhibit the catalytic activity of metallocene/alkylalumoxane 

catalyst system through complexation with the metallocene.
[40]

 

The high Al/Zr ratios required to obtain high catalyst activity and relatively stable kinetic profiles, 

and the high MAO cost are among some of the disadvantages of this type of cocatalyst. 

 

2.4.2 Catalysts Initiation with Monomer and Chain Propagation 

After the catalyst is activated by reaction with the cocatalyst, monomer reacts with the active site to 

form a living polymer chain of length 1, 

   *
1

* PMC
ik

                                                                                                                (2-7) 

where M is the monomer, *
1P is a polymer chain containing one monomer unit attached to a catalyst 

site, and ki is the rate constant for chain initiation for catalyst type i. Since in practice it is very 

difficult to determine the rate constants for initiation and propagation separately, most polymerization 

kinetics model use the same rate constant for initiation and propagation.
[11]

 This simplifying 

             H                       CH3                                                                        CH3 

L2-Zr+-C-H             +              Al-O                                         L2-Zr+-CH2-Al-O             +  CH4 

            H                      CH3 

                    CH3                       CH3 

L2-Zr+-CH2-Al-O-     +             Al-O-                                                -O-Al-CH2-Al-O-      +      L2Zr+-CH3 

                                        CH3                                                                CH3       CH3 
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assumption seems reasonable because they both involve the addition of an ethylene molecule to the 

catalyst site. 

The addition of monomer species to a growing polymer chain of length r, increases its length to r+1, 

as shown below,  

*

1

*

 r

k

r PMP
p

                                                                (2-8) 

Propagation reactions are usually assumed to be first order on monomer concentration, but this 

generalization does not hold for every coordination catalyst. 

 

2.4.3 Chain Transfer Reactions 

The most common transfer reactions in metallocene catalyzed polymerization are: (1) β-hydride 

elimination, (2) β-methyl elimination, (3) transfer to monomer, (4) transfer to co-catalyst, and (5) 

transfer to hydrogen.
[11]

 

In β-hydride elimination, the hydrogen atom attached to the β-carbon in the living chain is abstracted 

by the active center, forming a dead polymer chain with a terminal vinyl unsaturation ( 
rP ) , and a 

metal hydride center,
 

*
HC ,  

    **

Hr

k

r CPP
H

 


                                                                                                          (2-9) 

In a density functional study,
[41]

 this reaction was detailed to locate its transition state, but the reaction 

profile revealed that the process was endothermic and that the energy steadily increased during the 

course of the reaction until the products were formed. For this reason, it was difficult to locate a 

transition state in this case (Figure  2-3). The theoretically obtained reaction enthalpy of ΔH = 176 

kJ/mol, is in agreement with other estimates for the β-hydride elimination enthalpy obtained 

experimentally from neutral scandocene complexes.
[42-43]

                                                        . 
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Figure  2-3. Detailed mechanism for β-hydride elimination.
[41]

  

 

For propene polymerization, β-hydride elimination will produce a dead polymer chain with a 

vinyldine chain end. On the other hand, β-methyl elimination can also take place during propene 

polymerization with some catalyst systems in which a methyl group from the beta carbon of the living 

chain is abstracted by the active center, forming a dead polymer chain with a terminal vinyl 

unsaturation (


rP ) , and a metal methyl center, *

3CHC ,
[44-46]

 

**

3

3

CHr

k

r CPP
CH

 


                                                                                             (2-10) 

Transfer to monomer also occurs during olefin polymerization, leading to vinyl-terminated chains for 

the case of polyethylene and vinylidine-terminated chain for the case of polypropylene, 

  
*

1

* PPMP r

k

r

M

 
                                                                                                   (2-11) 

In the absence of hydrogen, β-hydride elimination and chain transfer to monomer are the dominant 

chain transfer reactions in olefin polymerization.
[47]

 

Chain transfer to hydrogen produces a dead chain with a saturated chain end, 

 rH

k

r PCHP
H

 *

2

*
                                                                                              (2-12) 

A number of papers have been published in which hydrogen has been used as chain transfer agent;
[48]

 

however, hydrogen was seen to be  far more reactive in metallocene-catalyzed polymerization than in 

Ziegler-Natta polymerization
[43, 49] 

and significantly increases the productivity of some metallocene 

catalysts,
[50-51]

 so its effect very often goes beyond that of mere chain transfer agent. 

The cocatalyst can also act as chain transfer agent. If the cocatalyst  is trimethylaluminum, a 

methylated active center can be formed along with the formation of an Al-CH2-R compound which by 
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treatment with HCl/EtOH, a standard laboratory post-polymerization washing procedure, results in a 

saturated end group in the polymer chain,
[52]

  

AlrCH

k

r PCAlP
Al

,

**

3
                                                                                             (2-13) 

 

2.4.4 Poisoning and Deactivation 

First order deactivation is a plausible deactivation mechanism for metallocene catalysts. This   

behavior was observed in both solution and gas phase polymerization of ethylene,
[53-55]

 

rd

k

r PCP
d

*                                                                                                                 (2-14) 

Reactions with polar impurities, also leads to the formation of a deactivated site, 

rd

k

r PCIP
dI

*

       (2-15) 

where I  and  Pr  refer to impurity and dead polymer chain of length r  respectively. 

  

2.4.5 Long Chain Branch Formation 

Terminal branching has been considered to be the most probable long chain branch  formation 

mechanism with coordination polymerization catalysts.
[28, 30, 56-58]

 In this mechanism, chains 

containing terminal double bonds (also called macromonomers), which are formed through β-hydride 

elimination or chain transfer to monomer are inserted into the growing polymer chains yielding 

LCBs,  

 
*

1,,

*

,  jinm

k

jnim PPP
b

                                                                                                       
(2-16)

 

In Equation (2-16), the first subscript refers to chain length, while the second one shows the number 

of LCBs per chain. 
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2.5 Effect of Long Chain Branches on Rheological and Solution Properties of 

Polethylene 

The rheological and processing behavior of polyethylene depends mainly on its molecular weight 

averages, MWD, and LCB density and distribution.
[59-66]

 LCB affects melt viscosity, zero shear 

viscosity, shear thinning, activation energy, die swell and many other rheological properties, whereas 

SCB has little or no effect on the rheological behavior of polyethylenes.
[67]

  

Molten polyethylene is a pseudoplastic fluid, that is, its apparent viscosity decreases with increasing 

shear stress (shear-thinning). The viscosity-shear rate relationship depends on the molecular structure, 

especially on long chain branching. As the shear rate increases, the viscosity of the long chain-

branched polyethylene chains decreases more rapidly than that of linear chains; as a result, under 

practical extrusion condition of  high shear rate, polyethylene resins containing LCBs can be extruded 

at a higher rate with a lower energy consumption. At very low shear rates the zero-shear viscosity of 

long chain-branched polyethylenes is higher than that of linear polyethylene because long chain 

branches hinder polymer chain movement when they become entangled,
[3, 67-68] 

whereas at high shear 

rates, the branch entanglements relax and shear-thinning behavior is observed.  

 Previous works
[69-70]

 on the viscoelastic behavior of linear HDPE fractions at 190 
0
C using  a series of 

nearly monodisperse polyethylenes obtained by hydrogenation of anionic polybutadienes showed that 

there is  an empirical relation between zero-shear viscosity and molecular weight,  

6.315

0 104.3 wM                                                                                                        (2-17) 

Where 0  is the zero-shear viscosity in Pa.s and Mw is the weight average molecular weight in g/mol.  

Vega et al.
[71]

 found a similar relationship for HDPE. However, for metallocene-catalyzed 

polyethylenes, the relationship was the same in form, but had a different exponent, 

6.315

0 102.3 wM
                  

Ziegler-Natta HDPE                                                   (2-18) 

 

2.417

0 103.2 wM
                  

Metallocene HDPE                                                     (2-19)
 

Since 0    of long chain-branched HDPE is greater than of linear HDPE, 
0

 can, in principle, be used 

to detect the presence of LCBs.
[67, 72-78]
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Rodriguez et al.
[79]

 studied some commercial LDPE and HDPE resins with PDI varying from 2.2 to 

3.3 and found out the following correlations for zero-shear viscosity, 

)][log(9489.119501.4log 2/3

0 gM w
                  

for HDPE                               (2-20)
 

)][log(9239.1443.4log 2/3

0 gM w
                      

for LDPE                               (2-21)
 

where g is the branching parameter defined as the ratio of the mean radius of gyration for the 

branched molecule over the linear molecule with the same molecular weight. 

LCBs also influence the flow activation energy of  polyethylene.
[73, 80]

 Increasing LCB frequency 

increases the flow activation energy, which was shown to be a good indicator of the presence of  

LCBs.
[66]

 

Molten polyethylene also exhibits elastic properties over a wide temperature range, such as die swell 

and elastic recovery when stress is removed. When molten polyethylene emerges under pressure from 

the die of an extruder, the strand increases in diameter or thickness. This phenomenon is known as die 

swell. At low shear rate, die swell increases as molecular weight and LCB frequency increase.
[3]

 

The solution properties of polyethylene are also influenced by the presence of LCBs. For linear 

chains, the intrinsic viscosity, η, is related to molecular weight according to the Mark-Houwink 

equation, 

  aKM                                                                                                                         (2-22) 

where K and a  are empirical constant that depend on solvent type and temperature for a given 

polymer. For a solution of polyethylene in 1,2,4 trichlorobenzene (TCB) at 140
o
C, K and a  are, 

39×10
-3

 mL/g and 0.725, respectively.
[81-82]

 

Introducing LCBs into linear polymer chains decreases their intrinsic viscosity, which can be used to 

confirm the presence of LCBs.
[83-84] 

  

2.6 Thermoplastic Elastomers 

Thermoplastic elastomers (TPEs) are materials with functional properties of conventional thermoset 

rubbers and processing characteristic of thermoplastics. They do not have the chemical cross-links 

present in vulcanized elastomers. Instead, elastomeric properties are the result of physical crosslinks 
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caused by the cocrystallization of semi-crystalline segments of different polymer chains that create a 

tri-dimensional network structure. The network domain is based on a block copolymer, one block 

consists of relatively long, flexible polymer chains (soft segment), while the other block is composed 

of stiff polymer molecules (hard segment). A thermoplastic elastomer is a two phase mixture with a 

dispersion of the soft rubbery phase in a continuous glassy plastic matrix. Each polymer or major 

polymer segment or block has its softening temperature, Ts. The useful temperature range for a 

thermoplastic elastomer lies above the Ts of the elastomeric (soft) phase and below the Ts of the hard 

phase. Within this temperature range, the polymer molecules in the soft phase can undergo significant 

segmental motion. The reinforcing action of the hard phase disappears above its softening 

temperature and the thermoplastic elastomer behaves as a viscous liquid. Upon cooling, the hard 

phase resolidifies and the TPE becomes rubbery again. Similarly, cooling below Ts of the soft phase 

changes the material from a rubbery to a hard brittle solid. This process is also reversible. These 

materials can therefore be processed by conventional molding techniques by heating them above the 

softening temperature of hard phase.
[9]

 The ability to recycle scrap, and overall lower production costs 

are significant advantages of TPEs. More details on this subject will be given in the introductions of 

Chapters 3 and 4.  

Typical thermoplastic elastomers derived from propylene and olefins are: isotactic polypropylene 

grafted to atactic propylene (aPP-g-iPP), or polyethylene grafted to ethylene/α-olefin copolymers 

(PEαO-g-PE).
[85]

 In the former case, isotactic polypropylene chains with terminal vinyl groups are 

produced using a stereoselective catalyst; then, using a aspecific catalyst with high reactivity ratios 

toward macromonomer incorporation (LCB Catalyst), isotactic blocks are grafted to amorphous 

backbones (Figure 2-4).  

The elastic properties of these polymers are attributed to the crystallization of isotactic blocks, 

forming physical crosslinks which link the chains to form a long-range network (Figure 2.5).  
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Figure  2-4. Mechanism for TPE formation with dual metallocene systems. 

 

 

 

Figure  2-5. Illustration of a branch-block thermoplastic elastomer made via macromonomer incorporation (— 

isotactic branches, ···· amorphous backbones).
[86] 
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2.7 Polymer Characterization 

Molecular weight distribution, degree of long chain branching, and chemical composition distribution 

are among the microstructural properties needed to describe the TPE samples that will be produced in 

this thesis. A brief overview of the characterization techniques to measure these properties will be 

given below. 

 

2.7.1 Molecular Weight Distribution (MWD) 

The essential distinguishing characteristic of polymeric materials is their molecular size which can be 

measured by primary or secondary methods. Primary methods determine molecular masses directly 

and secondary methods require calibration curves with stardards of known molecular masses. Gel 

permeation chromatography (GPC) is the most important secondary method for MWD determination.    

GPC is a form of liquid chromatography in which the polymer molecules are separated according to 

their molecular sizes or, more correctly, their hydrodynamic volumes in solution. The procedure 

involves injecting a dilute solution of a polydisperse polymer into a continuous flow of solvent 

passing through a column containing tightly packed microporous gel particles. The gel has particle 

sizes in the range 5-10 μm in order to give efficient packing and typically has a range of pore sizes 

from 0.5-10
5
 nm, which corresponds to the effective size range of polymer molecules.

[87]
 Separation 

of the molecules occurs by preferential penetration of polymer molecules with different sizes into the 

pores; small molecules are able to permeate more easily through the pores compared to the large sized 

molecules so that their rate of passage through the column is correspondingly slower. The continuous 

flow of the solvent leads to separation of the molecules according to size, with the large molecules 

being eluted first and the smaller molecules, which have penetrated more deeply into the pores, 

requiring longer elution times. If the pore sizes are too small to permit penetration by any of the 

molecules or too large that all molecules can penetrate them with the same relative ease, there would 

be little or no separation of the molecules. Consequently, selection of the column packing material is 

crucial and different column packings are usually required for polymers having wide range of 

molecular masses. The availability of gels of mixed pore sizes has made this a less demanding 

requirement.  

Clearly, if retention volume can be directly related to molecular weight by means of an appropriate 

calibration curve, then in principle a chromatogram can be made to yield molecular weight averages 
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and distributions. The simplest type of calibration curve is established experimentally by relating the 

peak-retention volume to molecular weight for a series of known narrow molecular weight standards. 

This calibration curve depends on the solvent used for the separation, the structure of the polymer, 

and the temperature.  

Another calibration curve, called the universal calibration curve, is obtained by relating the retention 

volume to hydrodynamic volume of polymeric molecules calculated by the product of intrinsic 

viscosity, [η], and molecular weight, M. In general, GPC universal calibrations curves for different 

types of polymers merge into a single plot when log[η]M is plotted against retention volume.
[88]

 The 

details of these routine calibration techniques have been discussed elsewhere.
[81, 89]

 

 

2.7.2 Long Chain Branching Determination 

There are three major methods for estimating LCB frequencies: 1)
13

C-NMR spectroscopy, 2) gel 

permeation chromatography coupled with online light scattering (LS), and/or viscosity (CV) 

detectors, and 3) rheological measurements.
[78, 90-92]

  

Melt rheological measurements are the most sensitive methods for detecting very low concentration 

of LCB. However, the information from melt rheological measurements is indirect because the 

measured rheological properties result from the combined effects of molecular weight averages, 

MWD, as well as LCB length, content, and distribution. Furthermore, they provide qualitative 

information about branching and their interpretations requires a good understanding of branch type 

and level. Triple detection GPC (LS, CV, plus a mass detector such as a refractometer), on the other 

hand, gives information on LCB density as well as LCB density distribution across the molecular 

weight distribution.
[83]

 

 

2.7.2.1 Long Chain Branching Determination via 13C-NMR 

Nuclear magnetic resonance spectroscopy is a powerful analytical tool that can provide a wealth of 

information on polymer molecular structure. This technique exploits the fact that the atomic nuclei of 

some elements interact with an external applied magnetic field. Unlike spinning macroscopic bodies, 

which can be made to spin in any direction, there are quantized limits to the direction of nuclear 

angular momentum. By applying a magnetic field and radiofrequency to a polymer sample, a 



 

 24 

resonance condition is attained which can be envisaged as causing the precessing nuclei to flip from 

one orientation to the other. However, the resonance frequencies of carbon nuclei located in different 

electron densities differ, making it possible to distinguish between different carbons in the sample. 

This phenomenon, known as chemical shift, has been fully exploited by polymer analysts to 

characterize branching in polyethylene.   

Let us begin our discussion of polyethylene long chain branching by examining the 
13

C-NMR spectra 

for linear ethylene 1-octene copolymer 
[5]

. The nomenclature, used to designate those polymer 

backbone and side chain carbons discriminated by 
13

C-NMR, is given in Figure 2-6. 

 

 

Figure  2-6. Carbon nomenclature for chemical shift assignments. 

 

The distinguishable backbone carbons are designated by Greek symbols while the side-chain branch 

carbons are numbered consecutively starting with methyl group and ending with methylene carbon 

bonded to the polymer backbone. The results of NMR studies show that the ―6‖ carbon resonance for 

the hexyl branch is the same as α, the ―5‖ carbon resonance  is the same as β, and the ―4‖ carbon 

resonance  is the same as γ. Resonances 1, 2 and 3, likewise, are the same as the end group 

resonances observed for linear polyethylene.
[5, 93]

 Thus, a six carbon branch produces the same 
13

C 

spectral pattern as any subsequent branch of greater length. Therefore, 
13

C-NMR, alone, cannot be 

used to distinguish a linear six-carbon branch from a longer branch.  

A survey of 
13

C-NMR spectra for essentially linear polyethylene samples
[30, 94]

 containing a small 

degree of long chain branching made by solution polymerization, shows that only 9 resonances are 

produced. A major resonance at 30 ppm arises from equivalent, recurring methylene carbons, which 
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are four or more carbon atoms removed from an end group or a branch. Resonances at 14.1, 22.9, 

32.3, and 33.9 ppm are from carbons 1, 2, 3, and the allylic carbon, respectively. These five 

resonances are fundamental to the spectra of all polyethylenes. The other four resonances, observed at 

34.6, 27.3, 30.4, and 38.2 ppm  are due to α, β, γ, and methine carbons. The γ carbon chemical shifts 

are often obscured by the major 30 ppm resonance from equivalent, recurring methylene carbons. 

Thus, in high density polyethylene, where long chain branching is essentially the only branch type 

present, 
13

C-NMR can be used to establish unequivocally the presence of branches six carbon long or 

longer. If no comonomer has been used during polymerization, it is very likely that the presence of 

such resonances are due to true long chain branching. In any event, 
13

C-NMR can be used to pinpoint 

the absence of long chain branching and place an upper limit upon the long chain branch 

concentration whenever branches with six carbons or longer are detected. 

The long chain branch density (LCBD: number of branching points per 1000 carbons), saturated 

chain end density, (SCED: number of saturated chain ends per 1000 carbons), unsaturated chain end 

density, (UCED: number of unsaturated chain ends per 1000 carbons), and long chain branch 

frequency, (LCBF: number of LCBs per polymer chain) can be calculated using the following 

equations, 

1000
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LCBD                                                                  (2-23)                                              
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where  
IA  

1IA , 
2IA  , 

vIA1
 and  

TotIA  are the integral areas of α, 1, 2, allylic carbon, and total intensity 

of carbons, respectively.
[30]

 

  

2.7.2.2 GPC/LS  

When a polymer sample elutes from a GPC column equipped with a multi-angle laser light scattering 

detector on-line, the radius of gyration and molecular weight of polymer fractions coming out of the 
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column can be measured. The corresponding radius of gyration of linear chains of same molecular 

weight can be calculated by the following relation, which correlates the radius of gyration of linear 

polyethylene to its molecular weight,
[83]

 

568.2
2/1

2 1086.2 Mr
lin

g

                                                                                             (2-27) 

where  
2/1

2

lin
gr  is the radius of gyration of a linear polyethylene chain in nm. This correlation can be 

easily obtained by injecting a linear polyethylene sample into the GPC column and then performing a 

simple linear regression to find out the pertinent constants. Since the molecular weight and radius of 

gyration of the fractions coming out of the GPC column are known, the branching parameter, g, of 

each fraction (the ratio of the mean square radius of gyration of a branched chain to that of a linear 

chain with same molecular weight) can be calculated with the equation, 
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The following Zimm-Stockmayer equation
[95]

 is then applied to calculate LCBF of fractions exiting 

from the column, 
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The average LCBF and LCBD can be calculated by, 
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The experimental results by Wang
[83] 

showed that LCBF estimates from LS detector were in good 

agreement with the 
13

C-NMR measurements for PEs with LCBF greater than 0.08 or LCBD greater 

than 0.022. Due to sensitivity limitations of the LS technique, errors for samples having LCBF less 

than 0.08 were quite significant.  
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Another common measure of LCB arises when the intrinsic viscosity of the polymer is compared with 

that of a linear chain of the same Mw,
[95-96]

 

lin

brg
][

]['




                                                                                                                           (2-32) 

One can express the correlation between these two quantities in terms of the exponent ε, 

gg '
 (2-33) 

The literature quotes values of ε ranging from 0.5 to 1.5.
[97-99]

 Using a value of ε =0.5, Mendelson et 

al.
[100]

 demonstrated that comparisons made at a constant effective molecular volume, yielded values 

of zero shear viscosity, 0 , for polymer melts with long branches are always higher than those for 

linear polymers. 

  

2.7.3  Crystallization Analysis Fractionation (Crystaf) 

Crystallization analysis fractionation (Crystaf) is a polymer characterization technique based on the 

continuous crystallization of polymer chains from a dilute solution.
[101]

 The analysis is carried out by 

monitoring the polymer solution concentration during crystallization by temperature reduction. 

Aliquots of the solution are filtered and analyzed by a concentration detector. In fact, the whole 

process is similar to a classical stepwise fractionation by precipitation, with the exception that in this 

approach no attention is paid to the polymer precipitated but to the polymer that remains in solution. 

The first data points, taken at temperatures above crystallization starts to take place, provide a 

constant concentration equal to the initial polymer solution concentration. As the temperature goes 

down, the most crystalline fractions, composed of chains without or with very few branches, will 

precipitate first, resulting in a steep decrease in the solution concentration. This is followed by the 

precipitation of fractions of increasing branch content as the temperature continues to decrease. The 

last data point, corresponding to the lowest temperature of the crystallization cycle, represents the 

fraction that has not crystallized (mainly highly branched material) and remains soluble at room 

temperature. 

For LLDPE, chain crystallizability is mainly controlled by the fraction of noncrystallizable 

comonomer units in the chain. The chains with fewer comonomer molecules will precipitate at higher 
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temperatures, whereas the chains with more comonomer content will precipitate at lower 

temperatures. Consequently, the differential Crystaf profile, together with an appropriate calibration 

curve, can be used to estimate the copolymer chemical composition distribution (CCD) of an 

ethylene/-olefin copolymer.
[101-103]

 

Other factors may affect polymer crystallizability, such as molecular weight and long chain 

branching. Soares, et. al.
[104]

 showed that long-chain branching had only a very small effect on Crystaf 

profiles, and that molecular weight effects might be significant for samples with number average 

molecular weight below 5000, but this effect may be partially corrected if terminal methyl groups are 

taken into account. 

2.7.4 Infrared Spectroscopy 

Infrared spectroscopy (IR spectroscopy) is the subset of spectroscopic techniques that deals with the 

infrared region of the electromagnetic spectrum. The main goal of IR spectroscopic analysis is to 

determine the chemical functional groups in the sample. When infrared radiation is absorbed by a 

molecule, it causes atoms in bonds to vibrate back and forth with increased amplitude. Because each 

functional group has a particular grouping of atoms, there is a characteristic infrared absorption 

associated with each type of functional group.  The infrared spectrum of a sample is collected by 

passing a beam of infrared light through the sample. If the wavenumber of the incident beam matches 

one of the characteristic absorptions of the molecule, the sample absorbs the light and hence at that 

particular wavenumber the intensity of the transmitted beam would be less than that of the reference 

beam. By varying the wavenumber over time, and monitoring the transmittance of the light passing 

through the sample, a transmittance infrared spectrum is obtained. In a Fourier transform instrument 

all frequencies are examined simultaneously. 

2.7.4.1 Sample Preparation  

Solid samples can be prepared in a variety of ways. One common method is to grind a quantity of the 

sample with a specially purified salt (usually potassium bromide) finely (to remove scattering effects 

from large crystals). This powder mixture is then pressed in a mechanical press to form a translucent 

pellet through which the beam of the spectrometer can pass. The second method is the "cast film" 

technique, which is used mainly for polymeric materials. The sample is first dissolved in a suitable, 

non hygroscopic solvent. A drop of this solution is deposited on surface of KBr or NaCl cell. The 

solution is then evaporated to dryness and the film formed on the cell is analysed directly. The third 
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method is to make a film of polymer using a hot press and brass shims. The details of this method are 

described in ASTM D5576.
[105]
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Chapter 3 

Simulation of Polymerization and Long Chain Branch Formation in a 

Semi-batch Reactor Using Two Single-Site Catalysts  

3.1 Summary 

We developed a mathematical model for the solution polymerization of olefins in a semi-batch 

reactor with two single-site catalysts. In the propylene polymerization case, our objective is to study 

the production of a thermoplastic elastomer using two catalysts, one capable of forming isotactic 

chains containing terminal vinyl bonds (macromonomers) and the other producing atactic chains 

while also being able to copolymerize macromonomers to form long chain branches (LCB). A similar 

thermoplastic elastomer can be produced by polymerizing ethylene and -olefin comonomers when 

the -olefin reactivity ratios of the two catalysts are significantly different. The model can predict the 

polydispersity index, and the number and weight average chain lengths of different polymer 

populations: linear chains, homogenous-branched chains, and cross-products, which are 

polymerization products formed when macromonomers formed on one catalyst are incorporated into 

chains growing on the other catalyst. The model can also predict the weight and mole percent of the 

different populations.  

3.2 Introduction 

Thermoplastic elastomers (TPEs) are a class of polymers or a physical mix of polymers  which 

consist of materials with both thermoplastic and elastomeric properties. TPEs are generally easier to 

process than conventional thermoset rubbers and easier to be recycled. However, TPEs are generally 

not as effective as chemically crosslinked elastomers when considering resistance to solvents and 

deformation at high temperatures and, therefore, are not used in applications such as automobile tires 

where these properties are important.
 [106]

 

There are at least two types of domains present in a TPE: a soft domain, in which flexible chain 

segments act as springs, and a hard domain, which functions as knots preventing the stretched 

polymer chains from irreversibly sliding by one another. In a thermoset rubber, the hard domain is 

created by covalent bonds, for example by vulcanization using sulfur, whereas in TPEs, physical 

aggregates such as the small crystallites in a semi-crystalline polymer or the glassy domains in a 

multiphase triblock copolymer
[107]

form the hard domain.  
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The four major types of TPEs are polyurethanes, polyester copolymers, styrene copolymers, and 

olefinics. Olefinic TPEs are classified as multicomponent or single component. Multicomponent 

olefin TPEs are made through the physical blending of polypropylene and ethylene-propylene-diene 

terpolymers (EPDM) or ethylene-propylene rubber (EPR), but the latter is preferred because of its 

lower cost.
[106] 

Single-component olefin TPEs can be prepared through polymerization of propylene 

using homogenous or heterogeneous organometallic catalysts.   

Polypropylene composed of blocks of isotactic and atactic stereosequences forms an interesting 

family of thermoplastic elastomers.
[108] 

This type of TPE is unusual because it is derived from just a 

single monomer unit. The stereoregular structure of isotactic polypropylene enables it to form helices 

that can pack into crystallites. Atactic polypropylene is stereoirregular and amorphous at all 

temperatures. The elastic properties of elastomeric polypropylene are believed to arise from their 

stereo-block (isotactic-atactic) microstructure
[109-112] 

that allows the formation of short crystallizable 

isotactic blocks in a low-tacticity polymer chain. 

Long chain-branched polypropylene
[113] 

with elastomeric properties
 
can, alternatively, be synthesized 

by grafting isotactic blocks of polypropylene containing a terminal vinyl unsaturation 

(macromonomer) to atactic propylene (aPP-g-iPP) using two metallocenes
[114]

. Some other olefinic 

thermoplastics such as high-density polyethylene (HDPE) grafted onto ethylene/α-olefin copolymers 

(PEαO-g-PE), have also been made
[85]

. In the former case, using a stereoselective catalyst, isotactic 

polypropylene chains with terminal vinyl groups are produced in a first polymerization step. In a 

second polymerization step, using a non-stereoselective catalyst with high macromonomer 

incorporation rate (LCB-catalyst), isotactic chains made in the first step are grafted onto the 

amorphous polypropylene chain, as depicted in Figure  3-1. 

Physical crosslinks resulting from crystallization of the isotactic LCBs is the reason  for the elastic 

properties of this polymer. simultaneous or sequential.
[115]

 methods can be used for the synthesis of 

these materials.  

In the simultaneous synthesis method, the catalysts capable of producing isotactic polypropylene 

macromonomers, such as rac-dimethylsilanediylbis(2-methyl-4-phenylindenyl)zirconium 

dichloride,
[44] 

and of producing atactic polypropylene chains and incorporating macromonomer, such 

as a constrained geometry catalyst, are added to the reactor simultaneously to produce polymer that 

contains a variety of chain architectures: linear chains, homogeneous-branched chains, and 

heterogeneous-branched chains (also called cross-product). Cross-product chains are generated when 
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a macromonomer made by one of the catalysts in the reactor is incorporated as a LCB onto the chain 

growing on the other catalyst present in the reactor. These cross-products chains can be seen as 

compatibilizers between the purely amorphous or purely semi-crystalline chains made by each 

catalyst individually. 

 

 

Figure  3-1. Mechanism of branch blocks formation with dual metallocenes. 

In the sequential synthesis approach, isotactic polypropylene macromonomers are first produced in 

the polymerization reactor, then by injecting a non-stereospecific catalyst capable of forming LCBs 

into the same reactor, isotactic blocks are incorporated onto atactic polypropylene chains. 

Both methods can also be used to produce TPEs based on ethylene and -olefin copolymers. For the 

simultaneous synthesis method, one of the catalysts must have a low -olefin comonomer reactivity 

ratio, thus making HDPE, while the other must have a high -olefin comonomer reactivity ratio, to 

produce amorphous ethylene/-olefin copolymer. 

Developing polymer reactor models for different catalyst combinations can help understand the 

details of these complex syntheses and to control the properties and fractions of linear chains, 

homogeneous-branched chains and cross-products. In a recently developed mathematical model,
[85]

 

only the molar fraction of linear, homogenous-branched and cross-product chains were predicted to 

explain the differences between polymers made with sequential or simultaneous modes of 

polymerization. The model was developed for semi-batch polymerization under constant ethylene 
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pressure for the case where the TPE is formed by HDPE grafting onto amorphous ethylene/α-olefin 

copolymers.   

In the present chapter, we developed a mathematical model for the solution polymerization of olefins 

in a semi-batch reactor using two single-site catalysts under constant monomer pressure. The model 

can predict molar and weight percents of the different polymer populations including linear chains, 

homogenous-branched and cross-products. The model is also able to calculate average LCB 

frequencies.  

This Chapter has been published in Journal of Macromolecular Reaction Engineering.
[116] 

3.3 Model Development 

The model uses population balances and the method of moments to calculate microstructural 

properties of macromonomers, living and dead chains. Each of these populations is subdivided into 

linear, homogeneous-branched, and cross-product chains. In homogeneous-branched chains, all LCBs 

and the backbone were made on the same catalyst. In cross-product chains, at least one of the LCBs 

and/or the backbone was made on a different catalyst used to produce the other segments. Figure  3-2 

illustrates this classification. 

 

 

 

 

 

 

 

 

 

The model can predict the following properties for each of the polymer populations: molar (n %) and 

weight (w %) percentages, number (rn) and weight (rw) average chain lengths, and average LCB per 

1000 C atoms () and per chain (Bn). 

Linear 

Homogeneous - 
Branched 

Cross - 
Product 

Catalyst 1 Catalyst 2 

Figure  3-2. Chain classification used in the model. This classification is applied to macromonomers, living and 

dead polymer chains. 
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3.3.1 Polymerization Mechanism 

The mechanism for coordination polymerization can be divided into five main reaction classes: 

catalyst activation with cocatalyst, catalyst initiation with monomer, chain propagation, chain 

transfer, and poisoning and deactivation.
[11, 27-28, 30-32]

 Terminal branching has been considered to be 

the most probable branching mechanism with coordination polymerization catalysts.
[56, 117]

 In this 

mechanism, macromonomers formed through β-hydride elimination and transfer to monomer 

(polyethylene), or β-methyl elimination (polypropylene), are inserted into the growing polymer 

chains yielding LCBs. All these steps are included in the model described below. 

The following convention was adopted to represent the different chain populations in the model: rix ,

is linear; rix , is homogeneous-branched; rix , is cross-product; the subscript i represents catalyst type; 

the subscript r indicates chains length (number of monomer units in the chain); living polymer chains 

are denoted by P, macromonomers by , and dead polymers by D. 

We have also assumed that catalyst activation with cocatalyst was instantaneous. This hypothesis can 

be easily relaxed without any significant alteration in the final model equations. 

A monomer-free catalyst, Ci, generates a polymer chain of unit length Pi,1 via insertion of a monomer 

molecule M: 
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Linear, homogeneous-branched, and cross-product chains propagate according to the reactions: 
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We have assumed, for simplicity‘s sake, that initiation and propagation reactions have the same rate 

constants, kp,i. 

Long chain branches are formed by incorporation of macromonomers of different types: 
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Chain transfer reactions can lead to the formation of either macromonomers or dead polymer chains, 

according to the chemical equations: 
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Finally, a simple first order catalyst deactivation mechanism was assumed to produce the deactivated 

species,
 iĈ : 
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3.3.2 Moment Equations for Living Chains 

The n
th
 moment, n, of a generic distribution f (x) is given by the equation: 
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The following nomenclature convention was adopted for the moments: 
II

i
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and second moments of linear chains; 
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, first and second moments of 

homogeneous-branched chains; 
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i
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ii xxx ,, are the zero
th
, first and second moments of cross-product 

chains; the subscript i indicates catalyst type; moments of living polymer chains are represented by Y, 

of macromonomers by , and of dead polymers by Q. 

The population balance for linear living chains with length larger than 2, r ≥ 2, is given by: 
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This equation will be used in a more compact form as,  
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where the following lumped parameters were defined: 
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A slightly different equation is required for chains of unity length, r = 1, 
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where, 
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The dynamic equation for the zero
th
 moment of linear living polymer made on catalyst i is: 
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Substituting Equations (3-41) and (3-48) into Equation (3-50) and simplifying the resulting 

expression, we obtain the equation for the zero
th
 moment of linear living chains: 
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The equation for the first moment is: 
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Differentiating Equation (3-52) yields: 
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Substituting Equations (3-41) and (3-48) into Equation (3-53): 
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After simplification of Equation (3-54), the expression for the first moment of linear living chains 

becomes: 
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Finally, for the second moment: 
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Substituting Equations (3-41) and (3-48) into Equation (3-56) we get: 
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After some algebraic manipulation, the following equation for the second moment of linear living 

polymer is obtained: 
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We will consider only chains with r ≥ 2 as branched chains, since chains with r = 1 must necessarily 

be linear. This is just a convention and does not affect the final calculation results for long chains, but 

simplifies the next derivation steps. 

The population balance for homogenous-branched living chains is: 
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The equation for the zero
th
 moment is obtained by substituting Equation (3-59) into Equation (3-50) 

and ignoring the first term of the right hand side for r = 1: 
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This expression can be simplified to obtain the final equation for the zero
th
 moment of homogeneous-

branched living chains: 
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The equation for the first moment is obtained by substituting Equation (3-59) into Equation (3-53) 

and summing from r = 2 to ∞ and using the identities: 
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Finally, the equation for the first moment of homogeneous-branched living chains is: 
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The equation for the second moment is obtained by substituting Equation (3-59) into Equation (3-56) 

and using the following expressions:  
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Finally, the equation for the second moment of homogeneous-branched living chains becomes: 
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For cross-product chains, we will also adopt the convention that r > 2 during all derivations.  

The population balance for cross-product chains is: 
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The equation for the zero
th
 moment is obtained by substituting Equation (3-68) into Equation (3-50): 
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This expression can be reduced to the more convenient form, 
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or: 
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The equation for the first moment is calculated by substituting Equation (3-68) into Equation (3-53) 

and simplifying the resulting equation using Equations (3-62) and (3-63): 
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The equation for the second moment is derived by substituting Equation (3-68) into Equation (3-56) 

and then applying Equations (3-62) and (3-63) to simplify the result: 
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3.3.3 Moment Equations for Macromonomers 

The population balance for linear macromonomers is given by: 

rijjjjbriiiiibriit

ri
YYYkYYYkPK

t
,,,,,,

,
)()(

d

d



   (3-74) 

Defining iY
~

 as the zero
th
 moment of the population of all living chains growing on catalyst type i, 
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 (3-75)  

leads to a more compact representation of the population balance of linear macromonomers: 
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Substitution of Equation (3-76) into Equation (3-50) leads to the expression for the zero
th
 moment of 

linear macromonomers: 
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Similarly, substitution of Equation (3-76) into Equation (3-53) results in the expression for the first 

moment: 
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Finally, combining Equations (3-76) and (3-56) leads to the expression for the second moment: 
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The population balance for homogeneous-branched macromonomers is: 
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Substituting Equation (3-80) into Equations (3-50), (3-53) and (3-56) leads to the expressions for the 

zero
th
, first and second moments of homogeneous-branched macromonomers: 
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Similarly, the population balance for cross-product macromonomers is: 
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Consequently, the equations for the zero
th
, first, and second moments are: 
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3.3.4 Moment Equations for Dead Chains 

The derivation of population balance and moment equations for dead polymers follows the same 

approach used for the macromonomers. Only the final equations are shown below. 
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3.3.5 Other Moment Equations and Molar Balances 

The equation for the zero
th
 moment of all living chains growing on catalyst type i is given by the 

expression: 
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The molar balance for catalytic active sites of type i is given by, 
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The molar balance for monomer is given by the expression, 
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where inMF ,
 
 is the molar flow rate of monomer into the reactor and   is the reactor volume. The 

equation above can be expressed more compactly: 


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Since the monomer concentration is kept constant in the reactor, Equation (3-104) simplifies to: 
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3.3.6   Chain Length Averages 

Number and weight average Chain lengths, rn and rw , are given by the ratio of two moments. For 

living linear chains made on catalyst i: 
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Similar equations are used to calculate the chain length averages of other polymer populations present 

in the reactor. 

3.3.7 Molar and Weight Percentages 

Molar percentages are calculated from the zero
th
 moments. For instance, the molar percentage of 

linear living chains made on catalyst i is given by: 
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Similarly, weight percentages are calculated using the first moments: 

%100% 































I

j

I

i

I

j

I

i

I

j

I

i

I

j

I

i

I

j

I

i
I

j

I

i

I

j

I

i

I

j

I

i
I

j

I

i

I

i

QQQQQQ

YYYYYY

Y
w  (3-110) 

 

Analogous expressions are used to calculate the molar and weight percentages of the other polymer 

populations in the reactor. 
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3.3.8 Long Chain Branch Averages 

The number of LCBs per 1000 C atoms, λ, is calculated with the expression: 
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3.3.9 Solution of the Differential Equations 

The Gear method was used to solve the simultaneous system of differential equations above which 

includes the zero
th
, first and second moment equations of the linear, homogeneous-branched and 

cross-products of the living, macromonomer and dead chains to get the concentration of different 

populations versus time.  

3.4 Results and Discussion 

Our main objective with this model is to study how different catalyst combinations and 

polymerization conditions affect the microstructure of the TPEs produced with dual metallocenes. We 

divided our investigation into four case studies to investigate some of the most important parameters 

affecting these systems: 1) macromonomer formation rate; 2) LCB incorporation rate; 3) monomer 

concentration; and 4) catalyst deactivation. Each of these case studies will be discussed in detail 

below. All simulations were done for the simultaneous synthesis approach, but the model equations 

could be equally applied to the sequential method. 

3.4.1 Case Study 1: Effect of the Rate of Macromonomer Formation  

In Case Study 1, a system of two single-site catalysts, one linear (Catalyst 2, linear-catalyst) and the 

other  capable of forming LCBs (Catalyst 1, LCB-catalyst), was studied while varying  the 

macromonomer formation rate of the linear-catalyst by changing the parameter kβ,2+kM,2[M]. Table 3-

1 shows the initial conditions and typical reaction rate constants used in the simulations. As shown in 

Table 3-1, Catalyst 2 does not form LCBs since kb,2 = 0.  

In Figures 3-3 to 3-8, the parameter a is the ratio (kβ,2+kM,2[M])/ (kβ,1+kM,1[M]), that is, the ratio 

between the rates of macromonomer formation of the linear catalyst and the LCB-catalyst. 

 



 

 49 

Table  3-1. Initial conditions and reaction rate constants used for Case Study 1. 

Rate constant Catalyst 1 Catalyst 2 Process Conditions  

Propagation rate constant, kp 

(L·mol
-1

·s
-1

) 
5000 5000 

Monomer concentration  

(mol·L
-1

) 
0.5 

Deactivation rate constant, 

kd   (s
-1

) 
0.005 0.005 Polymerization time (s) 600  

Transfer to monomer rate constant,     

kM (L·mol
-1

·s
-1

) 
0.4 0.4   

β-hydride elimination rate 

constant,   kβ  (s
-1

) 
1 1   

β-methyl elimination rate constant,   

kβ-CH3  (s
-1

) 
0 0   

LCB rate constant, kb  

(L·mol
-1

·s
-1

) 
400 0   

 

 

Figures 3-3 and 3-4 show that increasing the value of kβ,2+kM,2[M] (increasing a) of the linear-catalyst 

results in more cross-products and shifts the locus of the catalyst ratio corresponding to the maximum 

cross-product fraction. This behavior is expected, since an increase in the concentration of 

macromonomers made by the linear-catalyst will favor the incorporation of these macromonomers by 

the LCB-catalyst, thus increasing the molar and mass fractions of cross-product. We also notice that 

the mass fraction of cross-product is higher than its molar fraction since the cross-product is formed 

by LCB-chains that have, in average, higher weights than linear and homogeneously-branched chains. 
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Figure  3-3. Effect of the rate of macromonomer formation of the linear-catalyst on the cross-product weight 

percent as a function of molar fraction of the LCB-catalyst. In Figures 3-3 to 3-14, the parameter a is the ratio 

(kβ,2+kM,2[M])/ (kβ,1+kM,1[M]). 

 

 

Figure  3-4. Effect of the rate of macromonomer formation of the linear-catalyst on the mole percent of cross-

product as a function of the molar fraction of the LCB-catalyst.  
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Figure 3-5 shows that the LCB density, λ, also passes through a maximum by varying the catalyst 

ratio but, differently from Figures 3-3 and 3-4, this maximum always occurs at the same catalyst ratio. 

 

Figure  3-5. Effect of the rate of macromonomer formation of the linear catalyst on the LCB density as a 

function of the molar fraction of the LCB-catalyst.  

 

The polydispersity index increases as the value of kβ,2+kM,2[M] for the linear-catalyst increases, as 

illustrated in Figure  3-6; since the linear-catalyst makes smaller and smaller chains as kβ,2+kM,2[M] 

increases, the overall chain length distribution must necessarily broaden as indicated in the simulation 

results.  

Similarly, as the linear catalyst makes more macromonomer, the number and weight average chain 

lengths decreases, as depicted in Figures 3-7 and 3-8. A very interesting behavior and, to our 

knowledge, unreported thus far, is that a linear relationship is observed for the weight average chain 

length of the overall polymer as a function of the fraction of LCB-catalyst in the reactor. Curiously, 

this seems to be a general property of these dual-catalyst systems, as it was observed in all 

simulations described in this chapter.  
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Figure  3-6. Effect of the rate of macromonomer formation of the linear catalyst on polydispersity index as a 

function of the molar fraction of the LCB-catalyst.  

 

 

Figure  3-7. Effect of the rate of macromonomer formation of the linear catalyst on the weight average chain 

length as a function of the molar fraction of LCB-catalyst.  
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Figure  3-8. Effect of the rate of macromonomer formation of the linear catalyst on the number average chain 

length as a function of the molar fraction of LCB-catalyst.  

The results shown in Figures 3-3 to 3-8 clearly indicate that the selection of the linear-catalyst, guided 

by its ability to produce macromonomers, is a very important step when designing the microstructure 

of TPEs made with dual metallocenes, since this property will have a significant effect on the fraction 

of each polymer population, as well as in their chain length averages and LCB densities. 
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reactor was increased from 0 to 400; therefore, the ―linear‖-catalyst becomes a LCB-catalyst (as 

effective as Catalyst 1) and we will call it simply Catalyst 2 in Case Study 2. All other parameters 

used in the simulations were the same as those for Case Study 1. We superimposed the simulation 

results from Case Study 1 (solid lines), to the results from Case Study 2 (dashed lines) in Figures 3-9 

to 3-14 to show the effect on the polymer microstructure when kb,2 is changed from 0 to 400 L·mol·
-1

s
-

1
. 

Figure 3-9 shows that, as kb,2 increases, the weight percent of cross-product increases because 

Catalyst 2 now incorporates macromonomers made by Catalyst 1 and can also make cross-product 
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towards catalyst mixtures richer in Catalyst 1. A similar trend is observed for the mole percent of the 

cross-product (Figure 3-10). 

 

Figure  3-9. Effect of the rate of LCB formation by Catalyst 2 on the weight percent of cross-product as a 

function of the molar fraction of the LCB-catalyst. In Figures 3- 9 to 3-14, the dashed and solid curves are 

simulation results for Case Study 2 and 1, respectively. 

 

 

Figure  3-10. Effect of the rate of LCB formation by Catalyst 2 on the mole percent of cross-product as a 

function of the molar fraction of the LCB-catalyst.  
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 Figure 3-11 shows a behavior that departs markedly from that observed in Case Study 1, when 

Catalyst 2 only produced linear chains: in the former case study,  passed through a maximum for a 

given catalyst ratio, but now we observe a linear relationship between  and catalyst ratio. Both 

catalysts have the same LCB-forming rate constant (kb,1=kb,2); therefore, when they produce the same 

amount of macromonomer (that is, k + km,1[M] = k + km,2[M]), is unaffected by the catalyst ratio 

(the catalysts are, from a modeling point of view, the same). However, as Catalyst 2 starts making 

more macromonomer, that is k + km,2[M] > k + km,1[M], it is always more advantageous to have 

only Catalyst 2 in the reactor if our only objective it to maximize . Adding Catalyst 1 will only 

reduce the overall LCB density. Of course, this conclusion is not valid if the objective it to maximize 

the fraction of cross-product. 

 

 

Figure  3-11. Effect of the rate of LCB formation by Catalyst 2 on the LCB density as a function of molar 

fraction of LCB-catalyst.  
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Finally, Figures 3-13 and 3-14 show how the average chain lengths are affected by the simulation 

parameters. We notice again the surprising linear relation between the weight average chain length 

and catalyst ratio, even in this case study when both catalyst are capable of forming LCBs. 

 

 

Figure  3-12. Effect of the rate of LCB formation by Catalyst 2 on the polydispersity index as a function of 

molar fraction of LCB-catalyst.  

 

 

Figure  3-13. Effect of the rate of LCB formation by Catalyst 2 on the weight average chain length as a function 

of the molar fraction of the LCB-catalyst.  
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A few observations are worth summarizing at this point: 1) When Catalyst 2 is also a LCB-forming 

catalyst, the molar and weight fractions of cross-products increase (Figures 3-9 and 3-10); 2) No 

maximum is observed in the LCB density curve when both catalysts can form LCBs at the same rate 

(Figure 3-11); 3) The general trends for number and weight average chain lengths are the same when 

Catalyst 2 makes only linear chains or when it is also capable of making LCB-chains (Figures 3-13 

and 3-14 ). 

 

Figure  3-14. Effect of the rate of LCB formation by Catalyst 2 on the number average chain length as a function 

of the molar fraction of the LCB-catalyst. 
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Table  3-2. Transfer reactions rate constants for Case Study 3. 

 Catalyst 1 Catalyst 2 

Transfer to monomer rate constant 0.4 2.4 

β-hydride elimination rate constant 1 6 

 

Figures 3-15 and 3-16 show that monomer concentration does not influence the fraction of cross-

product, since monomer concentration neither affects the rate of macromonomer formation, nor the 

rate of macromonomer incorporation by Catalyst 1. Inspection of Figure 3-17 also shows that the 

polydispersity index is not altered by monomer concentration. 

On the other hand, the LCB density increases as monomer concentration decreases, as illustrated in 

Figure 3-18, since LCB formation is a competitive mechanism between macromonomer and 

monomer insertion. 

Weight average chain length also changes with monomer concentration, as shown in Figure 3-19; we 

notice again the intriguing linear relationship between weight average chain length and catalyst ratio. 

 

 

Figure  3-15. Effect of monomer concentration on the weight percent of cross-product as a function of the molar 

fraction of the LCB-catalyst. In Figures 3-15 to 3-19, monomer concentration is given in mol·L-1. 
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Figure  3-16. Effect of monomer concentration on the mole percent of cross-product as a function of the molar 

fraction of the LCB  LCB-catalyst.  

 

Figure  3-17. Effect of monomer concentration on the polydispersity index as a function of the molar fraction of 

the LCB-catalyst.  
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Figure  3-18.  Effect of monomer concentration on the LCB density as a function of the molar fraction of the 

LCB-catalyst.  

 

 

Figure  3-19.  Effect of monomer concentration on the weight average chain length as a function of the molar 

fraction of the LCB-catalyst.  
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3.4.4 Case Study 4: Effect of Catalyst Deactivation  

Finally, Case Study 4 analyzes the effect of catalyst deactivation by varying the deactivation rate 

constant of both catalysts, kd,i, simultaneously. Higher deactivation rates will lead to lower 

concentrations of macromonomer, living and dead chains in the reactor. The immediate effect is a 

decrease in the production of LCB-species, either homogeneous-branched or cross-product and, 

consequently, a decrease in chain length averages. Accordingly, we notice that, with increasing 

catalyst deactivation rates: the weight fractions of the cross-product decrease (Figure 3-20); the LCB 

density decreases (Figure 3-21); and the polydispersity and chain length averages decreases (Figures 

3-22 and 3-23). 

 

Figure  3-20. Effect of catalyst deactivation on weight percent of cross-product as a function of the molar 

fraction of the LCB-catalyst. 
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Figure  3-21. Effect of catalyst deactivation on long chain branch density as a function of the molar fraction of 

the LCB-catalyst. 

 

 

Figure  3-22. Effect of catalyst deactivation on polydispersity index as a function of the molar fraction of the 

LCB-catalyst. 
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Figure  3-23. Effect of catalyst deactivation on the weight average chain length as a function of the molar 

fraction of the LCB-catalyst. 

3.5 Concluding Remarks 

We have developed a mathematical model that can describe the microstructure of polyolefins with 

LCBs made with two metallocenes in a semi-batch reactor. In one of its applications, these dual-

metallocene systems are used to produce olefinic TPEs. The model can predict the fractions of 

different polymer populations in the reactor as well as their average chain lengths and branching 

densities. 

Simulation results show that to increase the weight percent of cross-product using a linear-catalyst 

and a LCB-catalyst, the rate of macromonomer formation of the linear-catalyst should be high. The 

fraction of cross-product can be increased even further when both catalysts are capable of 

incorporating macromonomers to form LCB-chains because, in this case, both catalysts can form 

cross-product chains.  

Monomer concentration has no effect on cross-product fraction and polydispersity index, but 

increasing monomer concentration will decrease LCB density and increase the average chain lengths. 

Catalyst deactivation also has a great impact on polymer properties: LCB density, polydispersity 

index, cross-product fraction, and average chain lengths will all decrease by increasing the catalyst 

deactivation rate of both catalysts.  

Finally, an intriguing linear relationship between weight average chain length and LCB-catalyst 

fraction appears in all simulations done in this investigation. 
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Chapter 4            

 Production of Long Chain Branched Polyolefins with Two Single-Site 

Catalysts: Comparing CSTR and Semi-Batch Performance  

  

4.1 Summary 

We developed a mathematical model to describe the solution polymerization of olefins with two 

single-site catalysts in a series of two continuous stirred-tank reactors (CSTRs). The model was used 

to simulate processes where semicrystalline macromonomers produced in the first reactor are 

incorporated as long chain branches (LCBs) onto amorphous (or lower crystallinity) chains in the 

second reactor (cross-products).  The simulation results show that CSTRs are more efficient to make 

chains with high LCB density and high weight percent of cross-products. The model can also predict 

the polydispersity index, average chain lengths, and fractions of the different polymer populations, 

and help the polymer reactor engineer formulate new products with complex microstructures. 

4.2 Introduction 

The polyolefins demand comprises two-thirds of the total demand for thermoplastics which was over 

110 million metric tons in 2007
[118]

 with the low cost of raw materials as being the main reason for 

their high demand. The same reason and the potential of metallocene catalysts to make polymers with 

tailored microstructures have attracted industry to invest on research for production of differentiated 

commodity polyolefins, specialty polyolefins, and polyolefin hybrids.  What make these new 

polyolefin types different from commodity polyolefins are their much more complex molecular 

architectures which often contain long chain branches (LCBs). This is an exciting new research area 

because it promises to open new markets for polyolefins that have been restricted to other polymers. 

 One approach to produce these novel polyolefins is to use one or two single-site catalysts in two 

CSTRs in series. The first CSTR is used to make semicrystalline polymer chains, some of which must 

be vinyl-terminated (macromonomers). These macromonomers are then incorporated, via terminal 

branching, onto the chains growing in the second CSTR, becoming LCBs. If the backbone and the 

macromonomer have different compositions, we call these chains cross-products. Since it is not 

possible to incorporate all macromonomers, the final polymer will consist of a complex mixture of 

linear chains made by the two catalysts, homogeneous-branched chains (that is, chains where the 
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backbone and all LCBs are of the same type), and cross-products. The cross-product will add rather 

special properties to the polymer and, depending on its molecular architecture, it may act as a 

viscosity modifier, a thermoplastic elastomer (TPE), or a polymer blend compatibilizer, as illustrated 

in Figure 4-1.
[119]

 It is important to keep in mind that the structures shown in Figure 4-1 represent only 

typical cross-product structures and that, in reality, the cross-products are composed of a distribution 

of chains with different molecular weights and branching frequencies.   

 

Figure  4-1. Shape-functionality schematic for cross-product structures 

Thermoplastic elastomers constitute a commercially relevant class of polymeric materials that 

combines some of the advantages of thermoplastic polymers and thermoset elastomers. Thermoplastic 

polymers soften and can be made to flow when they are heated, but harden upon cooling. This heating 

and cooling cycle can usually be repeated many times without significant degradation if the polymer 

is properly compounded with stabilizers.
[9, 107]

 Block polyolefin TPEs can be prepared through non-

living alkene polymerization catalysts such as Ziegler-Natta catalyst,
[120]

 asymmetric 

metallocenes,
[121]

 oscillating metallocenes
[122] 

or  employing living catalysts and changing the 

monomer or reaction conditions during chain formation to control block formation.
[123]

An interesting 

block polyolefin, composed of blocks of isotactic and atactic stereosequences, is derived from 

propylene alone.
[108]

 The elastic properties of elastomeric polypropylene are believed to arise from 

their stereo-block (isotactic-atactic) microstructure
 
that allows the formation of short crystallizable 

isotactic blocks in a low-tacticity polymer chain.
[109-110, 112, 120]  

An isotactic/atactic catalyst pair, acting on a propylene-only feed, would produce a reactor product 

comprising isotactic and atactic linear polypropylene chains, homogeneous-branched isotactic and 

atactic chains, and cross-product chains such as aPP-g-iPP and linear diblock copolymers consisting 
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of an amorphous backbone with terminal isotactic polypropylene LCB (Figure 3-1). Another 

interesting catalyst pair consists of one catalyst with high and the other with low comonomer 

incorporation ratios acting on a mixture of ethylene and -olefin to produce a reactor product in 

which amorphous blocks (with high -olefin fraction) and macromonomer-derived crystalline LCBs 

(with low -olefin fraction) are coupled in unique ways to make cross-products among other reactor 

components. Depending on the compositional details and the amount of such cross-product, these 

materials may exhibit characteristics of a TPE, as illustrated in Figure 4-1.
[85, 113-114]

 

Two procedures can be used for the synthesis of these materials: simultaneous or sequential 

synthesis.
[115] 

In the simultaneous synthesis method, two different catalysts are added to the reactor at 

the beginning of the polymerization. One catalyst, such as rac-dimethylsilanediylbis(2-methyl-4-

phenylindenyl)zirconium dichloride,
[44] 

produces isotactic polypropylene macromonomers,
 
while the 

other, such as a constrained geometry catalyst, produces atactic polypropylene chains and 

incorporates the macromonomer. Due to macromonomer incorporating ability of this catalyst, cross-

product chains are formed in addition to linear chains and homogeneous-branched chains.  

 

In the sequential synthesis procedure, isotactic polypropylene macromonomers are first produced in 

the polymerization reactor. These macromonomers are then incorporated onto atactic polypropylene 

chains by injecting a non-stereospecific catalyst capable of forming LCBs in the reactor. 

Developing polymer reactor models for different catalyst combinations can help understand the 

details of these complex syntheses and to control the properties and fractions of linear chains, 

homogeneous-branched chains, and cross-products. Recently we developed a mathematical 

model,
[116]

 for semi-batch polymerization reactors under constant olefin pressure to explain how 

different catalyst combinations and polymerization conditions affect the molecular properties and 

fractions of the different populations. In the present article, we extended our model to simulate the 

solution polymerization of olefins with two single-site catalysts in a series of two continuous stirred-

tank reactors (CSTR) operated at steady state. This model is essential for the scale-up of laboratory 

semi-batch reactors, to industrial scale CSTRs used in the polyolefin industry.  

This Chapter with some modification has been published in the Journal Macromolecular Reaction 

Engineering.
[124] 
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4.3 Model Development 

Our model describes the solution polymerization of olefins in a series of two CSTRs operated at 

steady state using two single-site catalysts (Figure 4-2). The following notation was used to represent 

the relevant parameters in Figure 4-2: FM,in,1 and  FM,out,1 are molar flow rates of monomer entering 

and leaving CSTR 1, respectively; FM,in,2 and  FM,out,2 are the respective values for CSTR 2. 

Parameters overall,out, 1 and overall,out, 2 are the LCB density (number of branch points per 1000 carbon 

atoms) for the polymer exiting CSTR 1 and CSTR 2 . The volumes of CSTR 1 and CSTR 2 are 

represented by v1 and v2, respectively, and were assumed to be the same with no change in the volume 

of the reaction mixtures during the polymerization.
 

inC1 , inC2
 are molar flow rates of catalysts 1 and 2 

per unit volume of the reactor. The volumetric flow rates entering and leaving CSTR 1 are denoted by 

1,

.

in  and 1,

.

out and for CSTR 2 by 2,

.

in  and 2,

.

out .   

Population balances and the method of moments were used to calculate microstructural properties of 

macromonomers, living and dead chains. Each of these populations was subdivided into linear, 

homogeneous-branched, and cross-product chains. In homogeneous-branched chains, all LCBs and 

the backbone are made by the same catalyst. In cross-product chains, at least one of the LCBs and/or 

the backbone is made on a different catalyst from that used to make the other segments. Figure 4-3 

illustrates this classification. 

 

 

Figure  4-2. Two CSTRs in series. 
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Figure  4-3. Chain classification used in the model. 

 

The model can predict the following properties for each of the polymer populations: molar (n%) and 

weight (w%) percentages, number (rn) and weight (rw) average chain lengths, and average LCB per 

1000 C atoms (λ) and per chain (Bn).  

4.3.1 Polymerization Mechanism 

The polymerization mechanism assumed to develop the rate equations for different chain populations 

is exactly the same one used in Chapter 3. The convention adopted to represent the different chain 

populations in the model is also the same as one used in Chapter 3. (see Section 3.3.1). 

Population balances and moment equations for the polymerization mechanism described by Equations 

(3-1) to (3-38) are presented in Appendix A for the first CSTR (CSTR 1). The steady-state solution of 

the moment equations derived in Appendix A is discussed in Appendix B. Appendix C lists the model 

equations for the second CSTR in series. Appendix D lists equations to calculate chain length 

averages and LCB frequencies in the CSTR 1 and fractions of the different polymer populations in 

both CSTRs. Finally, Appendix E shows the equations used to calculate LCB averages in CSTR 2.  

 

4.4 Results and Discussion 

We used our model to study how different catalyst combinations and polymerization conditions affect 

the microstructure of the polymers produced with dual metallocenes. We divided our investigation 

into four case studies: 1) Comparison of CSTR and semi-batch reactor operation; 2) Effect of 

  Linear 

Homogeneous Branched 

Cross - Product Cross-Product
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residence time in CSTR 2; 3) Effect of the LCB formation rate constant (kb,1) for the catalyst  fed to 

CSTR 2; and 4) Catalyst feeding policy.  

Each of these case studies will be discussed in detail below.  

 

4.4.1 Case Study 1: Comparing a CSTR versus a Semi-Batch Reactor  

In Case Study 1 we compared the simulation results for one CSTR and one semi-batch reactor 

(simultaneous synthesis method). The methodology used to simulate semi-batch reactors was 

presented in Chapter 3 and published in an article.
[116]

 

A system of two single-site catalysts, one linear (catalyst 2, a catalyst with very low macromonomer 

incorporation rate) and one capable of forming LCBs (catalyst 1), was investigated while varying  the 

macromonomer formation rate of the linear-catalyst by changing the value of the parameter 

kβ,2+kM,2[M]. It should be mentioned that we kept kβ,1+kM,1[M] constant. The two catalysts fed 

simultaneously to the CSTR and the semi-batch reactor. Table 4-1 lists the process conditions and 

reaction rate constants used in the simulations. As shown in Table 4-1, catalyst 2 does not form 

appreciable amount of LCBs since kb,2 = 0.001 is so small compared to kb,1 = 400.  

Table  4-1. Process conditions and reaction rate constants used in Case Study 1. 

Rate constants Units Catalyst 1 Catalyst 2 Process Conditions  

Propagation, kp  L·mol
-1

· s
-1

 5000  5000 Monomer concentration  0.5 mol·L
-1

 

Deactivation, kd  s
-1

 0.005 0.005 Polymerization time  600 s 

Transfer-to-monomer,  kM  L·mol
-1

· s
-1

 0.4 0.4   

-hydride elimination,   kβ   s
-1

 1 1   

-methyl elimination,  kβ-CH3   s
-1

 0 0   

LCB formation, kb  L·mol
-1

· s
-1

 400 0.001   

 
The catalyst molar flow rate per CSTR volume for simulations was adjusted such that the amount of 

catalyst fed into the CSTR over one average reactor residence time, was equal to the initial amount of 

catalyst in the semi-batch reactor. For example, if the initial concentration of one of the catalysts in 

the semi-batch reactor was 2×10
-6

 mol/L and the polymerization time was 600 s, the  catalyst molar 

flow rate per unit volume to the CSTR was calculated as 9
6

1033333.3
s600

mol/L102 



 mol/L·s. Thus, 

in 600 seconds, the same amount of catalyst was fed to the CSTRs and the semi-batch reactor. 

Monomer concentration was also kept the same for both reactor types. 
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In Figures 4-4 to 4-10, the parameter a is defined as the ratio (kβ,2+kM,2[M])/( kβ,1+kM,1[M]). Therefore, 

it quantifies the ratio of the macromonomer formation frequencies of the linear-catalyst and the LCB-

catalyst. A value of a = 2 indicates that the linear-catalyst has a macromonomer formation frequency 

that is twice that of the LCB-catalyst. 

Figures 4-4 and 4-5 show that the polymer made in one CSTR have both higher LCB density (LCBD) 

– measured as number of LCB per 1000 C atoms –and cross-product weight fractions than polymers 

made in a semi-batch reactor under equivalent conditions. Macromonomers are always present in a 

CSTR operated at steady-state, whereas it takes a certain time for macromonomers to accumulate in a 

semi-batch reactor before significant LCB formation occurs. It is also interesting to notice that the 

LCBD and the weight fraction of cross-product increases when the value of the parameter a is raised. 

This simply indicates that a higher production of macromonomers by the linear-catalyst will increase 

the formation of cross-product chains by the LCB-catalyst, as expected. 

 

Figure  4-4. Effect of reactor type and rate of macromonomer formation of the linear-catalyst on long chain 

branch density (LCB/1000 C) as a function of the molar fraction of the LCB-catalyst. (Dashed curves are 

simulation results for semi-batch reactors and solid curves for CSTR.) 

Consequently, weight and number average chain lengths are also higher when CSTRs are used due to 

increased LCB formation, as shown in Figures 4-6 and 4-7. We also note an intriguing linear 

relationship between weight average chain length and the molar fraction on LCB-catalyst in the 

reactor, firstly observed in our simulation of semi-batch reactors.
[116]

 Evidently, as the parameter a 
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increases, the number average chain lengths, rn and rw, decrease due to the increased rates of transfer 

to monomer and -hydride elimination of the linear-catalyst. 

 

Figure  4-5. Effect of reactor type and rate of macromonomer formation of the linear-catalyst on weight percent 

of cross-product as a function of the molar fraction of the LCB-catalyst. (Dashed curves are simulation results 

for semi-batch reactors and solid curves for CSTR.) 

 

Figure  4-6. Effect of reactor type and rate of macromonomer formation of the linear-catalyst on 

weight average molecular weight. (Dashed curves are simulation results for semi-batch reactors and 

solid curves for CSTR.) 
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Figure  4-7. Effect of reactor type and rate of macromonomer formation of the linear-catalyst on number average 

molecular weight. (Dashed curves are simulation results for semi-batch reactor and solid curves for CSTR.) 

 

Figure 4-8 shows that the polydispersity index (PDI) of polymer made in CSTRs is also higher, which 

is, once again, related to the increased LCB formation in these reactors.  

 

Figure  4-8. Effect of reactor type and rate of macromonomer formation of the linear-catalyst on the 

polydispersity index. (Dashed curves are simulation results for semi-batch reactor and solid curves for 

CSTR.) 
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As discussed above, the LCBD and weight fraction of cross-product depends strongly on the type of 

polymerization reactor, being always higher when CSTRs are used. If we calculate the percent 

increase for these variables between CSTRs and semi-batch reactors and plot them versus the fraction 

of LCB-catalyst in the reactor, some interesting trends are observed. Figure 4-9 shows how the 

increase in the weight fraction of cross-product is affected by the parameter a.  

 

Figure  4-9. Effect of the rate of macromonomer formation of the linear-catalyst on percent increase in cross-

product weight percent from semi-batch reactor to CSTR. 

 

The higher the macromonomer formation rate of the linear-catalyst (large a), the lower the difference 

between CSTR and semi-batch reactor operation. In other words, when both catalyst have the same 

macromonomer formation rate, CSTR is more efficient than semi-batch reactor in producing polymer 

with more cross-product content. Contrarily, the macromonomer formation rate of the linear-catalyst 

has no effect on the percent increase in LCBD, as depicted in Figure 4-10. Moreover, it shows that the 

difference between a CSTR and a semi-batch reactor is more pronounced at lower molar fraction of 

LCB-catalyst. This conclusion is expected because as aforementioned; macromonomers are always 

present in CSTR,whereas some time is needed for macromonomers build up before significant LCB 

formation occurs. 
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Figure  4-10. Effect of the rate of macromonomer formation of the linear-catalyst on percent increase in LCBD 

from semi-batch reactors to CSTRs. 

 

4.4.2 Case Study 2: Effect of Residence Time in the Second CSTR on Polymer 

Microstructural Properties  

In Case Study 2, the effect of residence time CSTR 2 was studied by varying it from 0 to 4000 

seconds. Linear-catalyst was fed to CSTR 1, and the LCB-catalyst was fed to CSTR 2. Reaction 

variables, kinetic rate constants, and all other parameters used in simulation are given in Tables 4-2 

and 4-3.  

Figure 4-11 shows that increasing the residence time in CSTR 2 leads to an increase in the weight 

fraction of cross-product. This increase is accompanied by a decrease in the weight fraction of linear 

chains, showing that linear chains are mostly converted to cross-product chains. Since most of the 

linear chains formed by the linear-catalyst (catalyst 2) are made in CSTR 1, their corresponding 

decrease is more pronounced at lower residence time in CSTR 2. 
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Table  4-2. Reaction variables used for Case Study 2. 

Reactor   1 2 Description 

[C1]
in 

(mol∙L
-1

∙s
-1

) 0 4×10
-9

 Molar flow rate of LCB-catalyst per 

CSTR volume   

[C2]
in

  (mol∙L
-1

∙s
-1

) 4×10
-9

 0 Molar flow rate of linear-catalyst per  

 CSTR  volume 

[M]   (mol∙L
-1

) 0.5 0.5 Monomer concentration 

[H2 ]   (mol∙L
-1

) 0.0 0.0 Hydrogen concentration 

[Al]   (mol∙L
-1

) 0.0 0. 0 Cocatalyst concentration 

tr    (s) 400 0.0-4000 Residence time 

Molar fraction of LCB-catalyst 0.0 1  

 

Table  4-3. Reaction rate constants used for Case Study 2. 

Reactor 1 1  2 2 Description 

Catalyst 1 2  1 2  

pk  (L.mol
-1

.s
-1

) - 5000  5000 5000 Propagation rate constant 

bk  (L.mol
-1

.s
-1

) - 0.001  400 0.001 LCB formation rate constant 

dk  (s
-1

) - 0.005  0.005 0.005 Deactivation rate constant 

k  (s
-1

) - 2.4  0.4 2.4 β-hydride elimination rate constant 

Mk (L.mol
-1

.s
-1

) - 6  1 6 Transfer to monomer rate constant 

Alk (L.mol
-1

.s
-1

) - 0.0  0.0 0.0 Transfer to cocatalyst rate constant 

Hk (L.mol
-1

.s
-1

) - 0.0  0.0 0.0 Transfer to hydrogen rate constant 

][Mkk M (s
-1

) - 5.4  0.9 5.4 Macromonomer formation frequency 

 

 

Figure 4-12 shows that the weight average chain length of the cross-product and of the overall 

polymer increases with increasing residence time in CSTR 2. This result is consistent with the 

decrease in weight percent of linear chains because cross-product chains result from LCB-forming 

reactions. Finally, Figures 4-13 and 4-14 show how the LCBD and PDI for the different polymer 

populations are affected by changes in residence time in CSTR 2. Figure 4-13 shows that increase in 

the residence time of the CSTR 2 leads to increase in LCBD of the overall polymer, cross-product 

and homogenous LCB product formed on catalyst 1 and since catalyst 2 has no macromonomer 

incorporating ability, LCBD for LCB 2 (homogenous LCB polymer formed on catalyst 2) is nearly 

zero.    
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Figure  4-11. Effect of average residence time in CSTR 2 on the weight fraction of different polymer 

populations. 

 

 

Figure  4-12. Effect of average residence time in CSTR 2 on the weight average chain lengths of different 

polymer populations. Values for cross-product and overall polymer are read from the right vertical axis. 
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Figure  4-13. Effect of average residence time in CSTR 2 on the LCBD of different polymer populations. LCBD 

values for homogenous product formed on catalyst 1 (LCB 1)  is read from the right vertical axis . 

 

 

Figure  4-14. Effect of average residence time in CSTR 2 on the PDI of different polymer populations. Arrows 

show which axis should be used for reading PDI. 
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4.4.3 Case Study 3: Effect of the LCB Formation Rate Constant (kb,1) for Catalyst 1 

Fed to CSTR 2 

In Case Study 3, we investigated the effect of changing the value of the LCB formation rate constant 

for the LCB-catalyst (kb,1) by varying its value from 1×10
-3 

to 600 s
-1

. The average residence times in 

both CSTRs were fixed at 400 seconds and, as for Case Study 2, the linear-catalyst is fed to CSTR 1 

and the LCB-catalyst is fed to CSTR 2. All the other simulation parameters are the same as for Case 

Study 2.  

Figure 4-15 shows that, as kb,1 increases, the fraction of cross-product exiting CSTR 2 increases. 

Macromonomers formed by both catalysts are converted into cross-products, as indicated by the 

decrease in the weight fraction of linear chains in the reactor. However, since the linear-catalyst has a 

six times higher macromonomer formation rate constant than the LCB-catalyst, the decrease in the 

fraction of linear chains made in the LCB-catalyst is more pronounced. Therefore, the higher the LCB 

formation rate constant of the catalyst fed to CSTR 2, the higher will be the weight fraction of cross-

product. 

Figure 4-16 illustrates how the weight average chain length of the cross-product increases, due to 

higher LCB formation in the reactor, the value of kb,1 increases. Figure 4-17 shows similar results for 

the LCBD.  

 

Figure  4-15. Effect of the LCB formation rate constant for the LCB-catalyst (kb,1) on the weight percent of the 

different polymer populations exiting CSTR 2. 
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Figure  4-16. Effect of the LCB formation rate constant for the LCB-catalyst (kb,1) on the weight average chain 

length of the different polymer populations exiting CSTR 2. 

 

 

Figure  4-17. Effect of the LCB formation rate constant for the LCB-catalyst (kb,1) on the LCBD of the different 

polymer populations exiting CSTR 2. Arrow direction shows which axis should be used for reading LCB. 
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4.4.4 Case Study 4: Catalyst Feed Policy 

Case Study 4 compares four different methods of catalyst addition to the CSTRs: 

 Method A: Both catalysts are added to the CSTR 1. No catalyst is added to CSTR 2. 

 Method B: The linear-catalyst (catalyst 2) is added to CSTR 1; the LCB-catalyst (catalyst 1) 

is added to CSTR 2.  

 Method C: The catalyst flow rates used in Methods A and B are halved and both catalysts are 

added to both CSTRs.  

 Method D: Same as method C, except that only the LCB-catalyst is added to CSTR 2. 

 

The overall catalyst flow rates were the same for all four methods, as described in Table 4-4. All the 

reaction rate constants and reaction parameters used in the simulations were the same as those used in 

Case Study 2, but the average reactor residence time of both CSTRs was increased to 600 seconds.  

 

 

Table  4-4. Catalyst feeding policies for Case Study 4. 

Method Catalyst  Catalyst‎Flow‎Rate‎(mol∙L
-1
∙s

-1
) 

CSTR 1 CSTR 2 

A 
Linear 8×10

-9
 0 

LCB 8×10
-9

 0 

B 
Linear 0 8×10

-9
 

LCB 8×10
-9

 0 

C 
Linear 4×10

-9
 4×10

-9
 

LCB 4×10
-9

 4×10
-9

 

D 
Linear 4×10

-9
 8×10

-9
 

LCB 4×10
-9

 0 

 

Figure 4-18 shows that the composition of the products exiting CSTR 1 are completely different when 

Method A and B are employed. However, the composition of the product exiting CSTR 2 is very 

similar when Methods A and B are used, as illustrated in Figure 4-19. For method A, only a little 

more cross-product was produced in CSTR 2 when compared to method B (55.47 vs. 52.31 wt%). 

When all the four simulations are compared, Method D is clearly the preferred approach for 

maximizing the weight fraction of cross-product. The polydispersity index of the overall polymer 
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made according to Method D is also the lowest of all catalyst feed policies (Figure 4-20) and the 

weight average chain length is the highest (Figure 4-21). 

 

Figure  4-18. Weight percent of different polymer populations exiting CSTR 1. Numbers on the columns are 

their  corresponding wt%.  

 

Figure  4-19. Weight percent of different polymer populations exiting CSTR 2. Numbers on the columns are 

their corresponding wt% . 
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Figure  4-20. Polydispersity index of different populations exiting CSTR 2. 

 

 

Figure  4-21. Weight average chain length of different populations exiting CSTR 2. 
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4.5 Concluding Remarks 

We have developed a mathematical model that describes the microstructure of long-chain branched 

polyolefins made with two metallocenes in two CSTRs in series. In one of its applications, these dual-

metallocene systems are used to produce olefinic TPEs. The model can predict the fractions of 

different polymer populations made in both reactors, as well as their average chain lengths and LCB 

densities. 

Simulation results show that CSTRs are more efficient than semi-batch reactors when higher long 

chain branch densities or more cross-product is required. To increase the weight percent of cross-

product using a linear-catalyst and a LCB-catalyst in sequential mode, the rate of macromonomer 

formation of the linear-catalyst should be higher than that of the LCB-catalyst. Increasing residence 

time in the second CSTR will also lead to higher cross-product formation and LCB density. This rate 

of increase is more significant if the residence time in the second CSTR is similar to that of the first 

CSTR.   

The catalyst feed policy also has a great impact on polymer properties. We found out that feeding the 

linear-catalyst and the LCB-catalyst in equal amounts to the first CSTR and just adding the LCB-

catalyst to the second CSTR (Method D) is the preferred catalyst injection method for making 

polymer with a high mass fraction of cross-product, high chain length averages, and lower PDI. 
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Chapter 5 

Materials and Methods 

5.1 Reagents and Apparatus 

5.1.1 Reagents 

Reagents used in each set of polymerization runs will be described in the relevant chapters.  

 

5.1.2 Polymerization Apparatus 

A 500-ml semi-batch reactor, illustrated in Figure 5-1, was used for all polymerizations. The reactor 

was equipped with stirrer, heating mantle, and cooling coil for controlling the temperature of the 

reaction media during polymerization. Two independent proportional-integral derivative control loops 

were used to control the cold water flow in the cooling coil and the power input to the electric heater. 

The monomer mass flow rate was monitored using an in-line mass flow meter installed in the 

monomer feed line. The reactor pressure was adjusted by an in-line pressure regulator installed in the 

ethylene feed line. The process control calculations were performed by a personal computer running a 

Labview program. Excellent temperature control was achieved using this control scheme as the 

reactor temperature was maintained within ±0.5 
o
C of the set point for most typical polymerizations.  

 

5.1.2.1 Polymerization Procedure 

Details of experiments and materials that are specific for each chapter will be described separately in 

those chapters. 

 

5.2 Polymer Characterization 

A general review of polymer characterization techniques was presented in Chapter 2, Section 2.8. In 

the following sections, some specific polymer characterization techniques not mentioned in Chapter 2 

but used in this thesis, will be presented. 
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Figure  5-1. Semi-batch polymerization reactor and control system 

 

5.2.1 13C-NMR Spectroscopy 

13
C-NMR was used to measure comonomer content, (1-octene, 1-butene, 1,9 decadiene)  or long-

chain branching of the samples. The 
13

C NMR spectra were obtained using a Bruker 500 MHz 

system. 100 mg of polymer sample was placed in a 5-mm NMR tube followed by addition of 0.65-0.7 

g deuterated ortho dichlorobenzene. The content of the sample tube was homogenized in a heating 

block at 135 
o
C for 4-5 h and then transferred into an NMR magnet. The probe temperature was set to 

120 
o
C. Acquisition parameters were 14 microsecond 90

o
 pulses, 2.6 s acquisition time, 7.5 s 

relaxation delay time between pulses. Inverse gated proton decoupling was applied. The biggest peak 

was referenced to 30.0 ppm.  Peak assignments will be explained in the relevant chapters.   

5.2.2 Estimation of comonomer Content by Crystalization Analysis Fractionation 

(Crystaf). 

The main idea for using Crystaf as a means for comonomer determination is to make a calibration 

curve relating crystallization peak temperature of the Crstaf profiles to comonomer content of the 

MFM- mass flow meter                                       D/A- digital to analog conversion board                     

SSR- solid state relay                                          A/D- analog to digital conversion board                      

Amp- signal amplifier                                          S.V- solenoid valve                                              

TI- temperature indicator                                     PIC- proportional-integral loop for 

cooling                           

PC- pressure  controller                                       PIH- proportional-integral loop for heating

DAS- data acquisition system                              C- catalyst 

W- water S - Solvent    
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copolymer samples determined by 
13

C NMR. In the following paragraphs, we explain how the 

calibration curve for 1-octene determination of the copolymer samples was obtained. 

Eight ethylene/1-octene copolymer samples with different 1-octene fractions were synthesized by 

copolymerization of ethylene and 1-octene using CGC-Ti in the semi-batch reactor. Table 5-1 

summarizes polymerization conditions for these samples. 

The samples were analyzed using 
13

C-NMR spectroscopy to determine their 1-octene content. 3000 

scans were used for data averaging. A representative spectrum of an ethylene/1-octene copolymer, 

sample EO-9.02 (Table 5-1), is shown in Figure 5-2 with chemical shift assignments. The comonomer 

content of the samples were calculated using the procedure proposed by DePooter et al.
[125]

 

Calculation using this procedure takes into account branches separated by one ethylene unit and two 

or three branches next to each other in addition to isolated branches. These two latter structures were 

seen when comomoner content was higher than 4 mole percent. Chemical shifts at 40.98 and 40.26 

ppm are related to these structures. The integration limits used to determine the molar composition of 

ethylene/1-octene copolymers are listed in Table 5-2. Table 5-3 lists the total area integrated under all 

the peaks in each region of interest and the calculated 1-octene mole percent of the samples.  

 

 Table  5-1. Polymerization conditions for 1-octene copolymerization 

Sample 1-octene concentration in the feed (mol.L
-1

) 

EO-9.02 0.64 

EO-6.43 0.48 

EO-5.25 0.4 

EO-4.08 0.32 

EO-3.03 0.24 

EO-1.87 0.16 

EO-0.85 0.08 

EO-0.0 0.00 

Total reactor pressure=120 psig, Reaction temperature=120 
o
C, Catalyst concentration= 6⨯10

-7
 mol/L.  
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Figure  5-2. 
13

C-NMR spectrum for the sample EO-9.02 listed in Table 5-2. 

 

 

Table  5-2. Integration limits for ethylene/1-octene copolymers 

Area Region (ppm) 

A 41.5 to 40.5 

B 40.5 to 39.5 

C 39.5 to 37 

D Peak at 36 

D+E 36.8 to33.2 

F+G+H 33.2 to-25.5 

H 28.5 to 26.5 

I 25 to24 

P 24 to 22 
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Table  5-3. List of integrated areas under the picks given in Table 5-1.  

Sample 

Value of integral in region 1-octene mole% 

A B C D D+E F+G+H H I P 

EO-9.02 1.00 2.75 20.24 7.00 76.97 612.38 71.24 1.76 42.67 9.02 

EO-6.43 1.00 3.26 30.95 9.22 128.80 1326.30 121.86 1.98 62.03 6.43 

EO-5.25 1.00 3.91 40.08 10.51 154.20 1975.40 147.70 2.03 72.10 5.25 

EO-4.08 0.00 1.00 14.00 2.68 47.21 796.70 46.85 0.49 21.98 4.08 

EO-3.03 0.00 1.00 21.54 2.78 75.55 1638.48 73.60 1.17 34.57 3.03 

EO-1.87 0.00 0.00 1.00 0.07 3.61 120.72 3.50 0.00 1.53 1.87 

EO-0.85 0.00 0.00 1.00 0.00 3.10 240.12 3.70 0.00 1.58 0.85 

EO-0.0 0.00 0.00 0.00 0.00 1.48 1483.9 0.00 0.0 1.0 0.0 

 

The molar composition of the copolymer samples was calculated using the following formulas,
[125]
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where O´  is average moles of 1-octene . O1 , O2 and E´  are moles of branch , α carbons and ethylene, 

respectively. 
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(5-5) 

The samples were also analyzed by Crystaf using a PolymerChar Crystaf model 200. Polymer 

samples were dissolved in 47 ml 1,2,4 trichlorobenzene at a concentration of 0.6 mg/ml. The polymer 

solution was heated to 160 
o
C, held for 2 hours to ensure complete dissolution, followed by 

decreasing the temperature to 105 
o
C and stabilizing for another 55 minutes. A constant cooling rate 

of 0.1
o
C/min was applied during all analyses until the temperature reached 30 

o
C. Polymer 



 

 89 

concentration in the solution phase was monitored using an in-line IR detector. The Crystaf profiles 

for all the samples in Table 5-1 are shown in Figure 5-3. Their Crystaf profiles show that CGC-Ti 

makes copolymer with unimodal SCBD, as expected for single site catalysts. Due to the high 1-octene 

of sample EO-9.02, its Crystaf peak is below 30 
o
C, the lowest temperature used during Crystaf 

analysis; therefore, it could not be included in the Crystaf calibration curve.  

 

 

Figure  5-3. Crystaf profiles for ethylene/1-octene copolymers made with CGC-Ti. The labels on the curves are 

the 1-octene mole % in the copolymer. 

 

Table 5-4 summarizes the results for 1-octene fraction in the copolymer and crystallization peak 

temperature (Tpeak) for all samples listed in Table 5-1. Tpeak is the Crystaf profile peak temperature. 

The Crystaf analyses for some of the samples were replicated to estimate the standard deviation for 

Tpeak shown in Table 5-4. 

 

Table  5-4. Crystaf and 
13

C-NMR measurements for ethylene/1-octene copolymers. 

Sample  
1-octene 

mole % 

 Tpeak  (
o
C)   Standard 

deviation 

(
o
C) 

    

EO-9.02 9.02 <30     

EO-6.43 6.43 30     

EO-5.25 5.25 42.9 42.7 42.1 42.8 0.36 

EO-4.08 4.08 50.9 51.5   0.4 

EO-3.03 3.03 57.9 58.8   0.63 

EO-1.87 1.87 67.1 66 67  0.64 

EO-0.85 0.85 74.6 75.6 74.6  0.58 

EO-0.0 0.0 86.9 87.5 86.8  0.38 
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Since the standard deviations at different 1-octene molar fractions are nearly the same (see last 

column of Table 5-4), they were pooled to get a better estimate of the standard deviation, which was 

found to be 0.5 
o
C (For more details on pooled standard deviations, see Appendix I, at the end of this 

thesis).  

An estimate of the standard deviation for 1-octene mole % in the copolymer was obtained by using 

three 
13

C-NMR analysis replicates of sample EO-4.08, and was found to be 0.032 mole %. Both 

variables, Tpeak and 1-octene mole %, are random variables and the complete analysis of the problem 

would, in principle, require an error in variable approach. This could be verified by examining the 

equation below relating 1-octene mole % to Tpeak, obtained using linear regression. 

1-octene mole %=-0.1201Tpeak(in 
o
C)+10.116  (5-6) 

Table 5-5 shows the results of a sensitivity analysis for sample EO-4.08, by changing Tpeak within two 

standard deviations and calculating the respective 1-octene mole % using Equation (5-6). 

 

 

Table  5-5. Sensitivity in 1-octene mole % due to variability in Tpeak.  

Tpeak 1-octene mole % calculated 

using Equation (5-6) 

50.2 4.087 

51.2 3.967 

52.2 3.847 

 

The difference between the maximum and minimum 1-octene mole % in Table 5-5 is 0.24, which is 

nearly twice of the four standard deviations for 1-octene mole % measured by 
13

C-NMR 

(0.24~2×4×0.032). Although, variability in 1-octene mole% is higher than variability in Tpeak but this 

difference is not in the range of order of magnitude. Therefore, we cannot assume that one of the 

variables can be approximated as a fixed variable and apply linear regression. This means that using 

linear regression is not a correct approach to obtain slope and intercept of equation 5-6 and Error in 

variable model should be invoked but Equation 5-6 can still be used to obtain a point estimate of the 

1-octene mole % in ethylene/1-octene copolymers as we did in Chapter 8.  
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The linear relationship between Crystaf peak temperature, Tpeak , and the 1-octene mole % of the 

samples measured by 
13

C-NMR is illustrated in Figure 5-4. Crystaf peak temperature decreases with 

increasing amount of 1-octene, indicating that polymer chains with higher content of short chain 

branches crystallize at lower temperatures, as expected. 

 

Figure  5-4. Plot of Crystaf peak temperaute (Tpeak) versus 1-octene mole % in ethylene/1-octene copolymer 

samples. 

5.2.3 Determination of Unsaturated Chain End Density by FT-IR (UCED) 

Five polyethylene samples were made with different unsaturated chain end densities (UCED, (1000 

C)
-1

). To make theses samples, ethylene was copolymerized with 1,9-decadiene using CGC-Ti. The 

detailed procedure for making these copolymers and analyzing them by 
13

C-NMR to determine their 

UCED is given in Chapter 9.   

The samples were melt-pressed at 150 
o
C into 0.1 to 0.3 mm disks using a table press and their 

thickness were measured with a micrometer with thimble graduations of 0.001 mm. In the FTIR 

measurements, 32 scans were collected from 400 to 4000 cm
-1

 with 2 cm
-1

 resolution. Figure 5-5 

shows the IR spectrum for these samples. The absorption band at 910 cm
-1

, which is indicative of 

terminal vinyl group, was used for construction of the calibration curve. The area under this peak was 

measured by choosing a baseline between the valleys on either side of the peak. Table 5-6 

summarizes the results for the areas under the 910 cm
-1

 peak and thickness measurements for these 

samples.  
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Figure  5-5. FTIR spectra for polyethylene films with different UCED. 

 

 

Table  5-6.  FTIR analysis summary for ethylene/1,9-decadiene copolymers.    

Sample UCED×10 
Area under the peak Aλ 

(940.6 - 871.4 cm
-1

) 
Thickness (mm ) Aλ/b (cm-1/mm) 

PE554A 5.95 1.714 0.306 5.60 

PE558B 14.69 3.588 0.207 17.34 

PE556C 22.76 5.226 0.195 26.80 

PE557C 29.84 3.901 0.107 36.46 

PE559C 37.92 5.569 0.125 44.55 

 

5.2.3.1 Calibration 

Transmittance, , is defined as, 

0I

I
  

(5-7)
 

where I0 is the intensity of the incident radiation and I is the intensity of the radiation coming out of 

the sample.  
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Absorbance, A, is defined as,  

)(10  LogA   
(5-8)

 

According to Beer
‘
s law, absorbance is related to functional group concentration (c), in our case 

UCED, as follows, 

cbaA 
 

(5-9)
 

where a is a proportionality constant called extinction coefficient and b is the path length of the 

radiation through the absorbing medium (sample thickness). Substituting c with UCED in Equation 

(5-9) and rearranging gives,  

b

A

a
UCED 1

  (5-10) 

Therefore, a plot of UCED versus Aλ/b is expected to be linear and can be used as the calibration 

curve for measuring UCED (Figure 5-6). As expected, a linear relationship with slope 0.08421 

UCED.cm.mm was observed. In Chapter 7, Figure 5-6 will be used to estimate UCED in polymer 

samples made with CGC-Ti.  

 

Figure  5-6. FTIR calibration curve used to measure UCED. 
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5.2.4 Short chain branch determination by online FTIR spectroscopy coupled 

with GPC 

FTIR detection of short chain branching for PE in trichlorobenzene solutions relies on methyl and 

methylene absorption bands found at 2855 and 2928 cm
-1

.
[126-128]

 This dependence of the FTIR spectra 

on the presence of -CH3 and -CH2- groups can be used to measure the level of short chain branching 

(SCB) in polyethylene.  In this region of the spectrum, the GPC solvent, trichlorobenzene, does not 

interfere with the infra-red absorption peaks.
[126]

 This technique is coupled with GPC and can 

significantly enhance the characterization of polyolefins by determining short chain branch 

distribution across molecular weight.  

5.2.5 Short Chain Branch Distribution Determination 

5.2.5.1 Ethyl and Hexyl Branch Distribution 

The number of ethyl and hexyl branches per 1,000 carbon atoms as a function of molecular weight 

was measured with an online dual wavelength infrared detector (Polymer Char, Valencia, Spain), 

using the above mentioned wavelengths. A calibration curve was constructed using three ethylene/1-

butene and nine ethylene/1-octene copolymer samples of known ethyl and hexyl branch content made 

with CGC-Ti. In addition to those samples, three ethylene homopolymers made with CGC-Ti under 

high Al/Ti ratio and two linear polyethylene standard samples (NBS 1475) were used as the reference 

point for zero SCBD. The SCBD of the CGC-Ti copolymers was measured by 
13

C NMR. The 

procedure for calculation of 1-butene and 1-octene content was adopted from the article by Depooter 

et.al.
[125]

 

Figure 5-7 shows the IR calibration curve used in this study. The x-axis is the ratio of the area under 

the methyl signal to the area under the methylene signal for all the samples. The lowest points on the 

curve are for ethylene homopolymers made with CGC and the linear polyethylene standards (NBS 

1475). The calibration curve for both 1-butene and 1-octene are coincident, as expected.  
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Figure  5-7. IR calibration curve for number of ethyl branches per 1,000 carbon atoms. The triangular and 

circular symbols refer to 1-butene/ethylene and 1-octene /ethylene copolymer samples, respectively. 

 

The following equation was obtained by linear regression of the data relating SCBD to the ratio of the 

intensities of methyl to methylene signals, CH3/CH2, 

92.32283.451
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5.2.6 Long Chain Branch Estimation 

It is possible to estimate the degree of long chain branching of a polymer with a viscosity detector 

that measures the intrinsic viscosity across the molecular weight distribution obtained by GPC using 

the Zimm-Stockmayer equation. This approach is based on the fact that polymer chains having LCBs 

have smaller sizes in solution, and consequently lower intrinsic viscosities, than linear molecules of 

the same molecular weight.  

The intrinsic viscosity branching factor,

 

g , is the ratio of the intrinsic viscosities of branched and  

linear chains with the same molecular weight,  
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(5-12)

 

where []b and [η]l are the intrinsic viscosities of branched and linear chains, respectively. The 

parameter g   is related to the branching factor, g, which is the ratio of the mean square radius of 

gyrations of branched and linear polymers of the same molecular weight,  

gg    (5-13) 

 where the value of ε is a function of the long chain branching structure and the number of LCBs per 

chain.
[95]

 If an on-line multiangle light scattering detector is available, the value of g can be measured 

directly during the GPC analysis and  does not need to be estimated.  

Theoretically estimated values for ε vary from 0.5 to 1.5 for several branching configurations.
[95, 129] 

For star polymers, a value of ε = 0.5 has been estimated,
[97-98]

 while studies for comb polymers 

indicate a value of 1.5.
[99]

 Randomly-branched polymers have ε values ranging between those for 

comb and star polymers. A values of  = 0.75 was reported for randomly-branched polyethylene in 

1,2,4-trichlobenzene.
[130]  

To include the SCB contraction effect on the coil dimension, the parameter  SCBg
 
introduced by 

Sun
[82]

 was used. This parameter is defined as, 

l

SCB

SCBg
][

][






                  
 (5-14)

 

where []SCB and[]l are the intrinsic viscosities of samples of the same molecular weight with and 

without short chain branches, respectively.  

The intrinsic viscosity of linear polymer solutions is described by the Mark-Houwink
[131] 

equation, 

a

l kM][  (5-15) 

where the constants k and a depend on the type of polymer, solvent, and temperature. Since the 

constant a is not affected by SCB frequency,
[82]

 Equation (5-14) can also be expressed as,  

k

k
g SCB

SCB 

           

(5-16)

 
where kSCB and k are the Mark-Houwink coefficients for the ethylene/ α-olefin copolymer (in our 

case, ethylene/1-butene or ethylene/1-octene copolymers), and ethylene homopolymer, respectively. 
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For the ethylene/1-butene and ethylene/1-octene copolymers reported by Sun,
[82]

 an empirical relation 

was found between SCBg  and 1-butene or 1-octene weight fractions, Wb or Wo,  in the copolymer. For 

ethylene/1-butene copolymer the relation is given by,, 

bSCB Wg 72.01

         (5-17) 

Similarly, for ethylene/1-octene copolymers,  

oSCB Wg 77.01  (5.18) 

The following Mark-Houwink constants were obtained at 135 
o
C for the standard linear polyethylene 

sample NBS 1475 using  our GPC on-line intrinsic viscosity measurements, 

7049.0][000527.0][ Ml 
   (5-19) 

where [] is in dL/g. These Mark-Houwink constants were obtained by averaging the results of 7 

samples. The standard deviations for k and a are 0.00004 and 0.007, respectively. These estimates are 

consistent with those found  by Sun
[131]

 for linear polyethylene at 135 
o
C in TCB, 

705.0][0004934.0][ Ml        (5-20) 

Substituting Equation (5-17) into Equation (5-16) and then using Equations (5-19) and (5-14), we 

obtain the following equation for intrinsic viscosity of linear polyethylenes with ethyl branches,  

7049.0000527.0)00288.01(][ MEBDSCB 
                                       (5-21)  

where EBD is the number of ethyl branches per 1000 carbon atoms in the chain. EBD can be 

measured for each GPC slice using the in-line IR detector, as explained in Section 5.2.5.1 

Combining Equations (5-21) and (5-12) leads to the following equation for the intrinsic viscosity 

branching factor, when ethyl branches are also present,   

7049.0000527.0)00288.01(

][

MEBD
g b






                                            
(5-22)

 

Analogously, the corresponding equation for linear ethylene/1-octene copolymers is, 

7049.0000527.0)00616.01(

][

MHBD
g b






                           
(5-23)

 

where HBD is the number of hexyl branches per 1000 carbon atoms in the chain.  
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The next step is to relate g or g  to the number of long chain branches in the polymer chains. Zimm 

and Stockmayer formulated several equations to quantify the number of long chain branches in a 

polymer based on how it compares to a linear (non-branched) variant of the same polymer. For a 

monodispersed polymer mixture with n randomly distributed trifunctional branch units per molecule, 

the g factor is given by the expression,
[95]

 

  9/47/1

1

2/1
nn

g


   
(5-24)

 

Since the intrinsic viscosity and EBD or HBD are known for each slice of the GPC chromatogram, 

we can calculate g  using Equation (5-22) or (5-23), and estimate g with Equation (5-13), setting  = 

0.75. Finally, Equation (5-23) can be used to calculate the number of LCBs per polymer chain for 

each GPC slice. 

The number average LCB frequency (LCBF) and LCB density (LCBD) for the whole polymer can 

then be estimated with the following equations, 






i

i

i

i

i

M

c

M

c
n

LCBF                           

(5-25)

 

nM

LCBF
LCBD




000,14
            (5-26) 
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Chapter 6 

In-Depth Investigation of Ethylene Polymerization Kinetics with rac-

Et(Ind)2ZrCl2 in a Solution Reactor 

6.1 Summary 

Ethylene polymerization with rac-Et(Ind)2ZrCl2/MAO was studied in a semi-batch solution reactor 

using a systematic statistical approach. The factors investigated were ethylene concentration, 

polymerization temperature, MAO and catalyst concentrations. The ethylene polymerization kinetics 

with rac-Et(Ind)2ZrCl2/MAO is first order with respect to ethylene and catalyst concentration. 

Catalyst deactivation is also a first order reaction. Chain transfer to monomer is the dominant chain 

transfer reaction in this system, but transfer to MAO also happens to a lesser extent. On the other 

hand, β-hydride elimination is negligible for the conditions investigated in this study.  

6.2 Introduction 

The use of two single-site catalysts to synthesize polymers with complex microstructures is a very 

promising way to create novel polyolefins. For instance, dual metallocene systems have been used to 

produce polyolefins with bimodal distributions of molecular weight
[132]

 and chemical composition,
[133]

 

and to maximize the formation of long chain branches in polyethylene.
[28]

 Dual single-site catalysts 

have also been used to produce branched
[85,116,124,134]

 or  linear olefin block copolymers through 

terminal branching and the chain shuttling process, respectively.
[135]

  

The use of two (or more) metallocene catalysts simultaneously requires a detailed knowledge of the 

kinetics of polymerization of both catalysts in order to make polymers with the proper balance of the 

two (or more) components. For instance, a polyolefin with bimodal molecular weight distribution will 

be produced only if the mass fractions and ratios of molecular weight averages of the polymers made 

by the two catalysts are within a specified range.
[136-138]

 Since these variables are sensitive to 

polymerization temperature, monomer pressure, catalyst and hydrogen concentrations, a 

polymerization kinetics model is essential for property control of polymers made with dual single-site 

catalysts. 

In this chapter, we investigate the ethylene polymerization kinetics with rac-Et(Ind)2ZrCl2/MAO in a 

solution reactor to determine its main reaction kinetic constants. Part of this Chapter has been 

published in Journal of Macromolecular Symposia
[139]

. 
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6.3 Experimental 

6.3.1 Materials 

Methylaluminoxane (MAO, 10 wt % in toluene, Sigma-Aldrich) was used as received. Ethylene and 

nitrogen (Praxair) were purified by passing through molecular sieves (3 and 4-Å) and copper(II)oxide 

packed beds. Toluene (EMD) was purified by distillation over an n-butyllithium/styrene/sodium 

system and then passed through two packed columns in series filled with molecular sieves (3, 4, and 

5-Å) and Selexorb for further purification. All air-sensitive compounds were handled under inert 

atmosphere in a glove box.  

The catalyst, rac-ethenebis(indenyl) zirconium dichloride (rac-Et[Ind]2ZrCl2), was purchased in 

powder form from Sigma-Aldrich. It was dissolved in toluene at concentration of 1×10
-8

 mol/g before 

polymerization. The toluene was distilled and passed through molecular sieves before being added to 

the catalysts to assure that it contained no catalyst poisons. 

6.3.2 Polymer Synthesis 

All polymerizations were performed in the  semi-batch reactor described in Chapter 5, Section 5.1.2. 

The reaction medium was mixed using a pitched-blade impeller connected to magneto-driver stirrer, 

rotating at 2000 rpm.  Prior to use, the reactor was heated to 125
o
C, evacuated, and refilled with 

nitrogen six times to reduce the oxygen level, before being charged with 250 ml of toluene and 0.5 g 

of AliBu3 as a scavenger. The temperature was then increased to 120
o
C and kept constant for 20 

minutes. Finally, the reactor contents were blown out under nitrogen pressure. This procedure ensures 

excellent removal of impurities from the reactor walls. 

In a typical polymerization run, 200 ml of toluene were charged into the reactor, followed by an 

appropriate amount of MAO, introduced via a 5 ml tube and a 20 ml sampling cylinder connected in 

series with an ethylene pressure differential of 20 psig. A specified volume of toluene was placed in 

the sampling cylinder before injection to wash the tube wall from any MAO solution. The same 

method was applied to inject the catalyst solution into the reactor. Monomer was supplied on demand 

to maintain a constant reactor pressure of 120 psig and monitored with a mass flow meter. With the 

exception of a 1–2
o
C exotherm upon catalyst injection, the temperature was kept at 120

o
C ± 0.15

o
C 

throughout the reaction. After 15 minutes, the polymerization was stopped by closing the monomer 

valve and immediately blowing out the reactor contents into a 1-L beaker filled with 400 ml of 
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ethanol. The polymer produced was then kept overnight, filtered, washed with ethanol, dried in air, 

and further dried under vacuum.  

6.3.3 Polymer characterization 

Molecular weight distributions (MWD) were determined with a Polymer Char high-temperature gel 

permeation chromatographer (GPC), at 145
o
C under a flow rate of trichlorobenzene of 1 ml/min. The 

GPC is equipped with three detectors in series (infra-red, light scattering, and differential 

viscosimeter) and was calibrated with polystyrene narrow standards using the universal calibration 

curve. 

6.4 Results and Discussion 

To estimate the ethylene polymerization kinetic constants during solution polymerization, the 

ethylene concentration in solution as a function of ethylene partial pressure and reaction temperature 

needs to be determined first. The method used for measuring ethylene concentration in toluene is 

explained below. 

6.4.1 Estimation of Ethylene Concentration in Toluene 

A volume of 200 ml of toluene at 25
o
C was introduced into the reactor using a calibrated sight glass. 

The reactor was heated up to the desired temperature and ethylene was fed until the desired pressure 

was established, while recording its flow rate with the in-line volume flow meter. The total moles of 

ethylene transferred to the reactor were obtained by integrating with time the ethylene volume flow 

rate into the reactor and converting it to number of moles using the ideal gas law. Ideal gas behavior 

was also assumed for calculating the total number of moles in the vapor phase. Assuming Ideal gas 

behavior is appropriate because calculation of the compressibility factor using Lee/Kesler 

correlation
[140]

 gives Z values 0.97-0.99 for the range of temperatures and pressures used in the 

polymerizations.  

Therefore, we can write for toluene, 

    sat

tolEE PxPy  11
 (6-1) 

where yE  and  xE and are the mole fractions of ethylene in the  vapor and liquid phases, respectively, 

and P and
 

sat

tolP
 
are the total reactor pressure and toluene vapor pressure,

 
respectively.  

Ethylene mole fractions in the vapor and liquid phases, and the number of moles of toluene 

in the vapor phase were calculated with the expressions, 
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where VT  is the total reactor volume, Vl   is the volume of liquid phase in the reactor,
 

g

EN  and 
g

TN  are 

the number of moles of ethylene and toluene in the gas phase, respectively, and 
T

EN   and 
T

TN   are the 

total number of moles of ethylene and toluene fed into the reactor. Substituting Equations (6-2), (6-3) 

and (6-4) into Equation (6-1) gives
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(6-5)        

Solving Equation (6-5) yields the value of
 

g

EN
 
at the specified temperature and pressure. The other

 

unknowns are obtained with the expressions,  

g

E

T
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E NNN 
 

 (6-6) 
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Finally, the ethylene concentration was calculated using the equation, 

)( L

T
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NN
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
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(6-9) 

where νl  is the specific volume of the liquid phase and CE is the ethylene concentration in the liquid 

phase. ASPEN PLUS was used to estimate the specific volumes of the liquid phase at different 

ethylene mole fractions. The reactor volume was determined by filling it with toluene at room 

temperature. The volume of toluene was calculated by measuring its mass using a precision scale, 

with accuracy of ±0.001 g, and knowing its accurate density, 866.96 ± 0.09 Kg/m
3
 at 95 % confidence 

limit at 20
o
C.

[141]
 Five replicate reactor volume measurements resulted in an average reactor volume 

of VT = 608.7 ml, with standard deviation of 0.7 ml.  

Wagner equation
[142]

 was used to calculate vapor pressures of toluene at different temperatures, 
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where A, B, C, and D are empirical constants, and TC and PC are the critical temperature and pressure. 

For toluene, A = - 7.28607, B = 1.38091, C = - 2.83433, D = - 2.79168, TC = 591.8 K , Pc = 41.06 

bar.
[142]

   

Ethylene concentrations at five different temperatures, from 100 to 140
o
C, and at constant pressure of 

120 psig, were measured using the method explained above. Three replicates at 120
o
C were 

performed to estimate standard deviation for ethylene concentration, and found to be 0.0046 mol/L. 

Table  6-1 summarizes the result of these calculations and Figure  6-1 depicts the ethylene 

concentration in toluene versus temperature. An almost linear relationship was observed for the 

studied range of temperatures. Ethylene concentrations in toluene were also measured for eleven 

different ethylene pressures at 120
o
C (Table 6-2). A linear relation represents the dependency 

reasonably well, as depicted in Figure 6-2. 

 

Table  6-1. Ethylene concentration in toluene at 120 psig and different temperatures. 

Temperature (oC) 

Ethylene 

Concentration 

(mol/L) 

Temperature (oC) 

Ethylene 

Concentration 

(mol/L) 

120 0.451 120 0.451 

120 0.459 110 0.489 

100 0.528 130 0.412 

140 0.373   
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Figure  6-1. Concentration of ethylene in toluene as a function of temperature at total pressure of 120 psig.  

 

 

Table  6-2. Ethylene concentration in toluene at 120
o
C and different total pressures. 

Pressure 

(psig) 

Ethylene 

Concentration 

(mol/L) 

Pressure (psig) 

Ethylene 

Concentration 

(mol/L) 

35.6 0.110 162.5 0.631 

58.4 0.203 184 0.717 

80 0.292 205.2 0.805 

99.2 0.370 227.2 0.901 

120.7 0.459 240 0.950 

141.6 0.541   
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Figure  6-2. Concentration of ethylene in toluene as a function of total pressure at 120
o
C. 

 

6.4.2 Effect of Catalyst Concentration 

A complete randomized design with seven catalyst concentration levels and two replicates at each 

level was used to investigate the kinetics of rac-Et(Ind)2ZrCl2 deactivation. All polymerizations were 

performed at 120
o
C and 120 psig ethylene pressure with the same solvent volume (222.8 ml toluene) 

and MAO mass (1.6258 g). Figure  6-3 shows the ethylene volumetric consumption rates versus 

polymerization time for these set of runs. 

Several elementary reactions take place during coordination polymerization: initiation, propagation, 

long chain branch formation, chain transfer reactions, and catalyst deactivation. For catalyst 

deactivation studies, however, just the initiation, propagation and deactivation steps need to be 

considered, as described below, 
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Figure  6-3. Ethylene consumption rates versus polymerization time for different catalyst concentrations. Labels 

on the side shows moles of catalyst injected into the reactor. 
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*  (6-15)                                                                          

                              i
d

i C
k

C


       (6-16) 

where, *P represents living chains, D dead chains, Ci, monomer-free active sites, and iC


 deactivated 

catalyst sites. We have also assumed that the initiation and propagation constants,
 pk , have the same 

value and that the two catalyst deactivation steps, shown in Equations (6-15) and (6-16), also share 

the same kinetic constant,
 dk . 

The molar balances for active catalyst sites and living chains are given by, 
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Solving these simultaneous differential equations with the initial conditions (at t = 0) ][ iC =
0][ iC  and  

0][ * P  yields 

][][][
])[(

0

* tMkktk

i
pdd eeCP


  (6-19) 

][][][ *

0 PeCC
tk

ii
d 

  (6-20)  

The second exponential term in Equation (6-19) is negligible because it contains the large term kp[M]. 

Thus, Equation (6-19) simplifies to, 

tk

i
deCP


 0

* ][][  (6-21) 

The molar balance for monomer is given by, 

]][[
d

][d *, MPk
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M
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inM
  (6-22) 

where FM,in is the molar flow rate of ethylene to the reactor and VR is the volume of the reaction 

medium.                                     

Substituting Equation (6-21) into Equation (6-22) and solving the resulting equation using the 

assumption that monomer concentration is constant, we conclude that, for a first order catalyst decay, 

the kinetic data obeys the following relation, 

tkMCk
V

F
dip

R

inM






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



])[][ln(ln 0

,  (6-23) 

Consequently, a plot of 









R

inM

V

F ,
ln  versus polymerization time should have a constant slope equal to 

kd and an intercept equal to ])[][ln( 0 MCk ip
for catalysts that follow first order catalyst decay kinetics 

and first order propagation rate with respect to monomer concentration. This is exactly what is 

illustrated in Figure  6-4 for ethylene polymerization runs with rac- Et(Ind)2ZrCl2. Table  6-3 shows 

the values estimated for kd and kp[M], using this approach, as well as the experimental values for 

polymer yield. 
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Figure  6-4. Ethylene polymerization with rac-Et(Ind)2ZrCl2 with several catalysts concentrations. 

Table  6-3. Reaction rate constant for rac-Et(Ind)2ZrCl2 (varying catalyst concentration). 

Run   Moles of 

Catalyst 

Slope Intercept kp[M] (s
-1

) kd (s
-1

) Polymer 

Yield (g) 

Activity  

(tonne PE/(mol 

Zr.hr))
a
  

8 5.84×10
-9

 -0.00102 -6.05543 89 462 1.02×10
-3

 8.60 5 885  

4 4.38×10
-9

 -0.00104 -6.24759 98 339 1.04×10
-3

 7.15 6 524  

14 1.02×10
-8

 -0.00119 -5.33151 105 384 1.19×10
-3

 16.20 6 335  

3 7.30×10
-9

 -0.00116 -5.67598 104 540 1.16×10
-3

 11.74 6 429  

11 2.92×10
-9

 -0.001 -6.57702 104 638 1.00×10
-3

 5.17 6 970  

12 8.76×10
-9

 -0.00129 -5.39051 116 070 1.29×10
-3

 14.36 6 559  

6 5.84×10
-9

 -0.00114 -5.86786 108 863 1.14×10
-3

 9.78 6 754  

7 4.38×10
-9

 -0.00105 -6.18042 104 731 1.05×10
-3

 7.45 6 762  

1 2.92×10
-9

 -0.00116 -6.50186 113 912 1.16×10
-3

 5.32 7 247  

9 1.45×10
-9

 -0.00098 -7.19717 114 745 1.1×10
-3

 2.91 8 012  

11 1.02×10
-8

 -0.00112 -5.1405 127 723 1.11×10
-3

 17.37 6 801  

2 7.30×10
-9

 -0.00124 -5.52014 121 843 1.24×10
-3

 13.10 7 152  

5 1.45×10
-9

 -0.00095 -7.0934 127 091 0.95×10
-3

 3.25 8 925  

13 8.76×10
-9

 -0.00101 -5.38016 117 216 1.01×10
-3

 15.18 6 933  

a: One tonne is equivalent  to 1000 Kg 

-8.2

-7.7

-7.2

-6.7

-6.2

-5.7

-5.2

0 100 200 300 400 500 600 700 800 900

Time  ( s)

nc=1.45×10-9 mol

nc=2.92×10-9 mol

nc=10.2×10-9 mol

nc=4.38×10-9 mol

nc=5.84×10-9 mol

nc=7.3×10-9 mol

nc=8.75×10-9 mol

ln
(F

M
in
/V

R
) 
 l

n
(m

o
l.

s-1
.L

-1
)



 

 109 

Theoretically, it is preferred to estimate the kinetic parameters via nonlinear regression on the 

untransformed data; therefore, Equation (6-23) is expressed below in a form suitable for nonlinear 

regression,  

 
tk

ipRinM
deMCkVF


 ][][ 0,

 (6-24) 

or 

 
tk

inM
daeF


,

 (6-25) 

Where, 

 ][Mkna pc    (6-26) 

][ 0CVn Rc 
 

(6-27) 

and nc is the number of moles of catalyst injected into the reactor. 

Nonlinear regression on the monomer consumption rate × time data using Equation (6-25) 

gives the results for kd and a listed in Table 6-4. Equation (6-26) was used to obtain kp[M] 

from a. The parameters kd and kp[M] were also estimated through linear regression and are 

reproduced in the last two columns of Table 6-4. Rate constant estimates using linear and nonlinear 

regression are practically the same. 

 We can describe the values estimated for kd and kp with the single-factor ANOVA model,  

 (6-28) 

where Yi,j is the i×j
th
 measurement,  is the overall mean,  is a parameter associated with the i

th
 

treatment level (called the treatment effect; in the present case, catalyst concentration) and 
ji ,  is a 

random error component arising from all sources of variability. The null hypothesis is 

0.....: 210  nH   (where n = 7 catalyst concentration levels) and the alternative hypothesis is 

0:1 iH   for at least one value of i.   

 

 

jiijiY ,,  

i
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Table  6-4. Summary of reaction rate constants for rac-Et(Ind)2ZrCl2 using  nonlinear  and linear regression. 

Run Moles of 

Catalyst  

a kd (s
-1

)
a
 kp[M] (s

-1
)

a
 kd (s

-1
)

b
 kp[M] (s

-1
)

b
 

8 5.84×10
-9

 5.15×10
-4

 0.99×10
-3

 88 228 1.02×10
-3

 89 462 

4 4.38×10-9 4.22×10
-4

 1.00×10
-3

 96 358 1.04×10
-3

 98 339 

14 10.2×10
-9

 9.97×10
-4

 1.21×10
-3

 97 540 1.19×10
-3

 105 384 

3 7.30×10
-9

 7.55×10
-4

 1.14×10
-3

 103 400 1.16×10
-3

 104 540 

11 2.92×10
-9

 3.08×10
-4

 0.99×10
-3

 105 637 1.00×10
-3

 104 638 

12 8.76×10
-9

 10.05×10
-4

 1.27×10
-3

 114 744 1.29×10
-3

 116 070 

6 5.84×10
-9

 6.25×10
-4

 1.12×10
-3

 107 004 1.14×10
-3

 108 863 

7 4.38×10
-9

 4.57×10
-4

 1.03×10
-3

 104 355 1.05×10
-3

 104 731 

1 2.92×10
-9

 3.32×10
-4

 1.14×10
-3

 113 766 1.16×10
-3

 113 912 

9 1.45×10
-9

 1.66×10
-4

 1.01×10
-3

 114 029 0.98×10
-3

 114 745 

11 10.2×10
-9

 13.03×10
-4

 1.11×10
-3

 127 503 1.11×10
-3

 127 723 

2 7.30×10
-9

 8.83×10
-4

 1.22×10
-3

 120 939 1.24×10
-3

 121 843 

5 1.45×10
-9

 1.84×10
-4

 0.94×10
-3

 126 607 0.95×10
-3

 127 091 

13 8.76×10
-9

 10.29×10
-4

 1.02×10
-3

 117 484 1.01×10
-3

 117 216 

a Estimated using nonlinear regression; b Estimated using linear regression. 

 
The analysis of variance for the parameter kd, estimated through nonlinear regression, is summarized 

in Table  6-5. The test statistic F0, which is the ratio of treatment mean square to error mean square, 

was used to test the null hypothesis. Since F0 = 1.55 is less than F0.05 6, 7 = 3.866, we accept the null 

hypothesis. This means that each kd measurement consists of the overall mean plus a realization of the 

random error component
ji , . This is equivalent to saying that all 14 kd estimates are taken from a 

normal distribution with mean   and variance 2 . Consequently, catalyst concentration does not 

influence the value of kd, as expected from the first order deactivation processes proposed in 

Equations (6-15) and (6-16). The normal probability plot for kd, shown in Figure  6-5, confirms the 

normal distribution of the kd estimates with confidence level of 95% and a value of  

kd = 1.081×10
-3

±6×10
-5

 s
-1

.  

A similar analysis of variance, repeated for kp[M] (Table 6-6) shows that the values estimated for 

kp[M] (109 828±6 660
 
s

-1
) are also independent of catalyst concentration.  
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Figure  6-6 shows plot of kp[M] and kd versus catalyst concentration. The normal probability plot for 

kp[M] is shown in Figure 6-7. 

The use of analysis of variance to test for no difference in treatment means requires that the 

measurement errors be normally and independently distributed with mean zero and a constant (but 

unknown) variance σ
2
.
[143]

 In Figure  6-8, the normal probability plot for the residuals of kd was 

constructed, indicating that they are normally distributed. No pattern was seen either in the plot of 

residuals versus run order and concentration, confirming independent distribution of the residuals. 

The same test was repeated for kp[M] to test normal distribution of the residuals, as shown in Figure 

 6-9.  

 

Table  6-5. Analysis of variance for kd (varying catalyst concentration). 

Source of Variation Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F0  P-

Value 

Catalyst Concentration 8.1×10
-8

 6 1.35×10
-8

 1.55  0.29 

Error 6.1×10
-8

 7 8.73×10
-9

    

Total 1.42×10
-7

 13     

 

 

Table  6-6. Analysis of variance for kp[M] (varying catalyst concentration). 

Source of Variation Sum of 

Squares 

Degrees of 

Freedom 

Mean Square F0 P-

value 

Catalyst Concentration 8.02×10
8
 6 1.337×10

8
 1.01 0.487 

Error 9.27×10
8
 7 1.324×10

8
   

Total 1.73×10
9
 13    
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Figure  6-5. Normal probability plot for kd with 95% confidence limits (varying catalyst concentration). 

 

 

 

 

Figure  6-6. Plot of kp[M] and kd versus catalyst concentration. 
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 6-7. Normal probability plot for kp[M] with 95% confidence limits (varying catalyst concentration). (Minitab 

output). 

 

 

Figure  6-8. Normal probability plot for kd residuals (varying catalyst concentration). 

 

 

Figure  6-9. Normal probability plot for kp[M] residuals (varying catalyst concentration). 
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Another point worth mentioning is that, although the kd or kp[M] values estimated by nonlinear 

regression are not exactly the same as those estimated using the slope and intercept of semi-log graph 

plot for monomer consumption rate versus time (Figure 6-4), their average values and variances are 

the same (Table 6-7), which can be verified using basic statistics.
[144]

 The 95 % confidence interval on 

the difference between the two means, knowing that variances are equal is (see Appendix I), 

-6.7×10
-5

 ≤ kd,l – kd,nl ≤ 9.5×10
-5

 s
-1

  (6-29) 

where kd,l – kd,nl are the deactivation rate constant estimated by linear and nonlinear regression, 

respectively. Since the confidence interval includes zero, it is unlikely that these two means are 

different. A similar confidence interval estimation for the difference between the two means for kp[M] 

leads to the same conclusion,  

-9903 ≤ kp[M]l – kp[M]nl ≤  7480 s
-1

 (6-30) 

where kp[M]l  and  kp[M]nl are the linear and nonlinear regression estimates of  kp[M], respectively 

(Appendix I gives more details on how  confidence intervals for difference between two means were 

calculated).  

 

 

Table  6-7. Comparison of kd and kp[M] estimated using linear and nonlinear regression methods. 

Parameter                     Sample 

mean  

Sample 

standard 

deviation 

kd 1.096×10
-3

 1.04×10
-4

 

kp[M] 111040 10830 

kd
a
 1.081×10

-3
 1.05×10

-4
 

kp[M]
a
 109828 11533 

a 
Estimated using nonlinear regression with Equation (6-24). 

 

Estimates for kp and kd can also be obtained by computing the mass of polymer (mp) produced as a 

function of catalyst concentration 
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
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



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inMp tFm
0

, d
mol

g
28  (6-31) 

Substituting Equation (6-24) into Equation (6-31), we find, 

)1]([28
tk

c

d

p

p
deMn

k

k
m


   (6-32) 

Therefore, a plot of polymer yield (mp) versus catalyst concentration should be linear with a slope

d

tk

Rp keMVk d /)1]([28


 , as confirmed in Figure  6-10. If we estimate the value of kp[M] from the slope 

of the line in Figure 6-10 and the previously estimated value of kd, we obtain kp[M] =  1.04×10
5
 s

-1
, 

which is in good agreement with the value estimated using nonlinear or linear regression of monomer 

consumption rate×time data given in  Table 6.7.  

Results of molecular weight measurements using GPC are summarized in Table 6-8. Analysis of 

variance for number and weight average molecular weights (Mn and Mw), as well as the polydispersity 

index (PDI) are presented in Tables 6-9, 6-10 and 6-11, respectively, demonstrating that none of them 

are affected by catalyst concentration. Figure  6-11 plots Mw, Mn and PDI versus catalyst 

concentration. 

 

 
Figure  6-10. Polymer yield versus catalyst concentration. 
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Table  6-8.Summary of molecular weight measurement (varying catalyst concentration) 

Run Moles of 

Catalyst  

Mn Mw  PDI 

8 5.84×10
-9

 23 200 46 900 2.02 

4 4.38×10-9 23 800 47 600 2.00 

14 1.02×10
-9

 23 700 48 200 2.03 

3 7.30×10
-9

 23 400 47 200 2.02 

11 2.92×10
-9

 22 600 45 400 2.01 

12 8.76×10
-9

 23 500 46 500 1.98 

6 5.84×10
-9

 23 500 47 000 2.00 

7 4.38×10
-9

 22 700 46 000 2.03 

1 2.92×10
-9

 22 600 47 400 2.09 

9 1.45×10
-9

 23 100 46 000 1.99 

11 1.02×10
-9

 23 3005 46 600 2.00 

2 7.30×10
-9

 23 800 47 200 1.99 

5 1.45×10
-9

 22 200 45 000 2.03 

13 8.76×10
-9

 23 000 46 000 2.00 

 

Table  6-9. Analysis of variance for Mn (varying catalyst concentration). 

Source of Variation Sum of 

Squares 

Degrees of 

Freedom 

Mean Square F0 P-

value 

Catalyst Concentration 1928 856 6 321 476 1.63 0.267 

Error 1365 870 7 195 117   

Total 3294 676 13    

 
Table  6-10. Analysis of variance for Mw (varying catalyst concentration). 

Source of Variation Sum of 

Squares 

Degrees of 

Freedom 

Mean Square F0 P-

value 

Catalyst Concentration 5 249 117 6 874 853 1.24 0.388 

Error 4 933 852 7 704 836   

Total 10 182 969 13    
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Table  6-11. Analysis of variance for PDI (varying catalyst concentration). 

Source of Variation Sum of 

Squares 

Degrees of 

Freedom 

Mean Square F0 P-

value 

Catalyst Concentration 0.01029 6 0.00171 0.62 0.713 

Error 0.01940 7 0.00277   

Total 0.02969 13    

 

 

 

 
Figure  6-11. Molecular weight averages and PDI versus catalyst concentration. 

 

6.4.3 Effect of Ethylene Pressure 

A complete randomized design with 19 polymerization runs at 9 different, equally spaced, levels of 

ethylene pressure (40 to 200 psig), comprising three replicates at 140 psig and two replicates at other 

pressure levels was chosen to test the effect of monomer pressure on polymer yield, molecular 

weight, and reaction rate constants. All other polymerization conditions were kept constant: 

polymerization temperature = 120
o
C, solvent type = toluene, solvent volume = 222.8 ml, catalyst 

concentration in the reactor = 1.316×10
-8

 mol/L, MAO mass = 1.6247 g. 
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Figure ‎6-12 shows the plot of monomer consumption versus time for several ethylene pressures. 

Similarly to the treatment adopted in Figure 6-4, we plotted  











R

inM

V

F ,
ln  versus time in Figure ‎6-13 and 

estimated kd and kp[M] from the curves intercept and slope. We also used nonlinear regression with 

Equation (6-25) to estimate kd and kp[M]. Table 6-12 summarizes the parameter estimate results and 

average molecular weight measurements. 

 

 

 

Figure  6-12. Ethylene consumption rate (ml/min) versus polymerization time for different ethylene pressures. 

(The numbers at the right-end of the curves refer to total pressures at which the polymerizations were 

performed). 

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900

40 psig

60 psig

80 psig

100 psig

120 psig

140 psig

180 psig

200 psig

160 psig

F
M

,i
n

(m
l/

m
in

)

Time (s)



 

 119 

 

Figure  6-13. Ethylene polymerization with rac-Et(Ind)2ZrCl2 under several ethylene pressures (see Figure 6-12). 

Table  6-12. Summary of reaction rate constant estimates and average molecular weight measurements for 

ethylene polymerization with rac-Et(Ind)2ZrCl2 (varying ethylene pressure). 

Pressure 

(psig) 

 

Slope Intercept kp[M] (s
-1)a kd (s

-1)a kp[M] (s
-1)b kd (s

-1)b Mn Mw PDI 

120 -0.001004 -6.596 104 254 0.001004 104 361 0.000999 22 300 45 300 2.03 

140 -0.000997 -6.453 119 867 0.000997 117 674 0.000960 23 600 47 200 2.00 

60 -0.000975 -7.481 42 967 0.000975 42 876 0.000971 21 200 44 000 2.07 

160 -0.000934 -6.339 134 295 0.000934 132 763 0.000908 24 200 47 600 1.96 

200 -0.000994 -6.058 177 329 0.000994 174 545 0.000960 23 600 49 500 2.10 

80 -0.000940 -7.167 58 502 0.000940 58 034 0.000920 23 000 45 500 1.98 

180 -0.000996 -6.157 161 849 0.000996 159 466 0.000965 24 700 48 400 1.96 

100 -0.000981 -6.868 78 853 0.000981 78 414 0.000970 22 500 46 100 2.05 

180 -0.000924 -6.288 140 726 0.000924 139 567 0.000907 23 800 47 500 2.00 

80 -0.000939 -7.172 58 019 0.000939 57 774 0.000930 22 000 45 800 2.08 

140 -0.000937 -6.607 103 009 0.000937 102 314 0.000923 24 000 48 100 2.01 

60 -0.000945 -7.381 47 382 0.000945 47 452 0.000947 21 100 44 200 2.09 

160 -0.000882 -6.302 138 579 0.000882 137 109 0.000859 23 300 46 800 2.01 

100 -0.000936 -6.946 72 904 0.000936 72 367 0.000922 22 800 46 100 2.02 

120 -0.001024 -6.602 102 808 0.001024 102 143 0.001008 24 300 47 700 1.96 

200 -0.000909 -6.087 172 872 0.000909 170 929 0.000886 24 000 47 600 1.99 

39.5 -0.000909 -8.883 10 559 0.000909 10 741 0.000936 21 000 42 500 2.02 

39 -0.001048 -8.021 24 993 0.001048 25 446 0.001041 NA NA NA 

140 -0.000948 -6.593 104 232 0.000948 103 473 0.000934 22 800 46 600 2.04 

a: Estimated using linear regression,  b:Estimated using nonlinear regression with Equation (6-25).  
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Table 6-13 gives the analysis of variance for kd (estimated by nonlinear regression). Since F0 = 1.93 is 

less than test statistic F0.05 8, 10 = 3.072, we can conclude that kd is not affected by monomer pressure, 

as expected from the proposed deactivation mechanism. This also indicates that the monomer feed 

does not introduce significant amounts of catalyst poisons in the reactor, in which case we should 

detect an apparent increase in kd with increasing monomer pressure. 

 

Table  6-13. Analysis of variance for kd (varying ethylene pressure). 

Source of Variation                     Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F0 P-

value 

Monomer Concentration 2.0625×10
-8

 8 2.578×10
-9

 1.94 0.164 

Error 1.328×10
-8

 10 1.328×10
-9

   

 Total 3.391×10
-8

 18    

 

The normal probability plot for kd (estimated by nonlinear regression), shown in Figure 6-14, 

confirms the normal distribution of the kd estimates. The average value for kd with confidence level 

of 95%  is kd = 9.5×10-4 ± 2×10-5 s-1. The corresponding average value for  kd estimated by linear  

regression is the same  kd = 9.6×10-4 ± 2.1×10-5 s-1.  Figure 6-15 plots kd versus total pressure, showing 

that

 

kd does not depend on monmer concentration, again confirming that the proposed first order 

decay is the correct choice for this polymerization system.  

  

 

Figure  6-14. Normal probability plot for kd with 95% confidence limit 95% (varying ethylene pressure). 
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Figure  6-15. Plot of kd versus total pressure.  

 

When we compare the sample mean for kd estimated when the catalyst concentration was changed 

(kd,C=1.08×10
-3

±6×10
-5

 s
-1

) and the one obtained when pressure was varied (kd,P=9.5×10
-4

±2×10
-5

 s
-1

), 

we notice that they disagree slightly. To determine the difference between these two means, we need 

to determine, first, whether their sample variances are equal or different. Hypothesis testing on ratio 

of the sample variances
[144]

 of these two samples shows that their variances are different (see 

Appendix I). Using basic statistics, the 95 % confidence interval of the difference between the means 

is 8.3×10
-5

 ≤ kd,C – kd,P ≤ 1.9×10
-4

 s
-1

. This difference is small and may be associated to batch-to-batch 

solvent purity variation, since we used two different solvent batches for the catalyst concentration and 

ethylene pressure investigations.  

The dependency of kp[M] on total reactor pressure and ethylene concentration in toluene are shown in 

Figures 6-16 and 6-17, respectively. A clear first order dependency with respect to ethylene 

concentration is noticed, and the slope of the curve in Figure 6-17 gives a point estimate of kp 

=213,000
 
L∙mol

-1
∙s

-1
. (Experimental ethylene concentrations data in Table 6-2 were used to estimate 

ethylene concentrations at different pressures.)  
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Figure  6-16.  Plot of kp[M] versus total pressure.  

 
Figure  6-17.  Plot of kp[M] versus monomer concentration.  
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Intercept=-7526±8400    1/s 

kp= 226600±16600  L/(mol.s) 

 

The confidence interval for intercept includes zero, meaning that this term is not significant in the 

model and we expect this because at zero ethylene concentration kp[M] should be zero.  Figure 6-17 

is, in fact, the no-intercept fit of the kp[M] data versus ethylene concentration.  Assuming that the 

ethylene concentration variable is error-free, we can estimate  95% confidence interval for kp, which 

is 213000±7300 L/(mol.s). This assumption is not too much unrealistic because the variability in 

kp[M] data is much higher than the variability in the regressor variable, ethylene concentration. 

Calculation of pooled standard deviation based on all  kp[M] data estimated using nonlinear regression 

(Table 6-12) gives an estimate of 7096 s-1, while standard deviation for ethylene concentration is 

0.0046 mol/L. If we perturb ethylene concentration by one standard deviation, 0.0046 mol/L, the 

change in kp[M] would be 213000×0.0046=980 s-1, which is one order of magnitude less than 7096 s-

1, the pooled standard deviation of  kp[M] data. This implies that measurement error in ethylene 

concentration can be ignored and standard least squares methods applied. 

The analysis of variance for Mw and Mn is summarized in Tables 6-14 and 6-15. Since F0 = 7.6 for Mw 

and F0 = 4.72 for Mn are both greater than F0.05 8, 9 = 3.23, we accept that Mw and Mn are affected by 

the monomer concentration, as expected. As shown in Figure 6-18, both Mw and Mn increase linearly 

with pressure, but the increase in Mw is more pronounced than the increase in Mn, as implied by their 

P and F0 values[145]. 

 
Table  6-14. Analysis of variance for Mw (varying ethylene pressure). 

Source of Variation Sum of Squares Degrees of 

Freedom 

Mean 

Square 

F0 P-value 

Monomer Concentration 4.459×10
7
 8 5.573×10

6
 7.6 0.003 

Error 6.601×10
6
 9 7.335×10

5
   

Total 5.119×10
7
 17    
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Table  6-15. Analysis of variance for Mn (varying ethylene pressure). 

Source of Variation Sum of Squares Degree of 

freedom 

Mean 

Square 

F0 P-value 

Monomer Concentration 1.781×10
7
 8 2.226×10

6
 4.72 0.016 

Error 4.245×10
6
 9 4.717×10

5
   

Total 2.205×10
7
 17    

 

 

Figure  6-18.  Effect of ethylene pressure on Mw, Mn and PDI. 

Figures 6-19 shows that the polymer yield varies linearly  with ethylene concentration. This linear 

relationship confirms that the rate of polymerization is first order with respect to ethylene 

concentration for Et(Ind)2ZrCl2 under this range of experimental conditions.  
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Figure  6-19. Polymer yield as a function of ethylene concentration in toluene.  

  

6.4.4 Estimation of Rate Transfer Constants 

The molecular weight distribution of polyolefins made with single site catalysts follows Flory
‘
s most 

probable distribution, 

)exp()( 2  rrrw   (6-28) 

where r is the chain length and w(r)dr is the weight fraction of chains with length in the interval [r, r 

+ dr]. For linear chains, the parameter τ is the reciprocal of the number average chain length, 

nr

1
  (6-29)                    

nM

mw
   (6-30) 

where rn is number average chain length and mw is monomer molecular weight. 

The parameter τ can also be expressed as, 

P

CTAHttM

R

RRR 



  (6-31) 
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where RP is the rate of   propagation, and RtM, RtβH  and RCTA are the rates of transfer to monomer, β-

hydride elimination, and transfer to chain transfer agent (in our case, transfer to MAO), respectively. 

Substituting the relevant rate terms in Equation (6-31) gives,   

][

][][1

Mkmw

AlkkMk

M p

tAlHttM

n




  (6-32) 

or,  
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or, equivalently,  
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Alkk
M

kmw

k

M
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][
][

][







 (6-34) 

where [Al] denotes concentration of MAO. Equation (6-33) is appropriate for linear curve fitting, 

while Equation (6-34) is suitable for nonlinear regression. We performed both types of regression on 

the data collected in the present study.  

Figure 6-20 shows the plot of the reciprocal of the number average molecular weight versus the 

reciprocal of monomer concentration for the set of data related to the pressure effect. Figure 6-21 

shows the nonlinear curve fitting over the untransformed data by minimizing the sum of squares of 

the residuals. Assuming that the variability in monomer concentration is negligible, the approximate 

confidence interval for the parameters can also be calculated. Table 6-16 summarizes the results for 

the 95% confidence interval calculations for the parameters using linear regression and the 

corresponding approximate ones using nonlinear regressions. The next section explains how those 

confidence intervals were calculated.  
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Figure  6-20. Plot of 1/Mn versus 1/[M]. 

 

 

 

Figure  6-21. Curve fitting for Mn data using Equation (6-34). 
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Table  6-16. Parameter estimates with 95% confidence intervals using linear and nonlinear regression (varying 

ethylene concentration). 

 Linear  regression  Nonlinear regression 

Parameter Mean with 95% C.I  Standard Error  Mean with 95% C.I Standard Error 

kM / mw kp (mol/g) 4.06×10
-5

±1.15×10
-6

 5.44×10
-7

  4.04×10
-5

±1.18×10
-6

 5.6×10
-7

 

(kβH+kAl[Al])/(mw kp) 

 (mol
2
/L.g) 

1.11×10
-6

±3.68×10
-7

 1.73×10
-7

 
 

1.17×10
-6

±4.21×10
-7

 2×10
-7

 

 

6.4.4.1  Approximate Confidence Interval for Nonlinear Model and Confidence Interval 

for Linear Model 

Despite lack of theoretical reliability, asymptotic confidence interval estimation of model parameters 

using the t-test statistic is commonly used in nonlinear regression.
[146] 

Confidence intervals estimated 

based on this method are approximate and may be underestimated; however, the estimation is 

computationally expedient and conceptually appealing. Consider the general regression model, 

iii xfyg   ),()(  (6-35) 

where yi (i = 1,….,n) are response variables observed with unknown error εi (i = 1, ….,n) and xi  are 

the fixed predictor variables. For a particular confidence level, the confidence region for an individual 

parameter i  is given by,
[147] 

 

  1'

,2/



 iipni XXst    (6-36) 

where n and p are the number of data points and parameters, respectively. The term 
pnt ,2/  is the 

upper 100×α/2 percentage point of the t-distribution with n-p degrees of freedom.
[11]

 For nonlinear 

models, X is the Jacobian evaluated at the optimum values of parameters,  


















)(

),(

j

ixf
X




   (i,j)

th
 element (6-37) 

When dealing with linear models, X would be a matrix of the form below with dimension n×p, 

)]([ ij xfX             (i,j)
th
   element  (6-38 ) 

and fj  is the function acting as the coefficient for the parameter j . 
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  1' 

iiXX is the i
th
 diagonal element of the   1' 

XX  matrix, and s can be calculated from the equation 

below,  

pn

S
s




)ˆ(2 
 (6-39) 

where )ˆ(S  is the sum of squares of residuals calculated at the optimum value of the parameters. An 

estimate of the standard deviation (estimated standard error) for parameter 
i  was obtained by 

calculating   21
sXX ii




.
 

6.4.4.2 Joint Confidence Region 

Confidence intervals estimate the variability of each parameter
 
alone, ignoring the interaction 

between the parameters, whereas a joint confidence region encompasses all combinations of values 

for the parameters that are simultaneously acceptable at the specified level of confidence. Therefore, 

the joint confidence region of the parameters gives more information about their accuracy. The  joint 

confidence region of the parameters,  ktM /mwkp and  (ktβH+ktAl[Al])/(mwkp) , having the correct shape 

but approximate probability content was constructed  by solving the equation below,
[147]

 

 











   ,,1)ˆ()( pnpF

pn

p
SS    (6-40) 

where n and p are number of data points and parameters, respectively. Fp,n-p,α is the upper critical 

value of the Fp,n-p distribution. )(S  
is the sum of the square of the residuals, which is a function of 

the parameters, and )ˆ(S is the corresponding value at the optimum values of the parameters ̂  . 

Equation (6-40) was solved iteratively using Excel to construct the joint confidence contour 

bounding. Figure 6-22 compares  the 95% joint confidence region obtained using Equation 6-40 with 

the confidence intervals estimated using linear and nonlinear regression (Table 6-15). 
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Figure  6-22. Plot of  95 % joint  confidence region and individual confidence intervals for  kM/mwkp and 

(kβH+kAl[Al])/(mwkp). The solid point in the middle of ellipse shows  the average of the parameters calculated 

using nonlinear regression while the star points shows the average value of the parameters calculated by linear 

regression.    

The joint confidence region stretches from 3.88×10
-5

 to 4.2×10
-5

 for kM/mwkp and from 6.0 ×10
-7

 to 

1.75×10
-6

 for (kβH+kAl[Al])/(mwkp). These confidence intervals are greater than the corresponding 

intervals estimated through linear and nonlinear regressions (Table 6-16), as expected. Despite lack of 

theoretical support for using linear regression, which causes transformation of the residuals, the 

confidence intervals for linear and nonlinear regression are nearly the same. The tilted elliptical joint 

confidence region is possibly due to high variances in Mn data or high nonlinearity of the function.  

Using our previous estimate for kp, and knowing that the relative standard deviation of a fraction is 

obtained by summing the squares of their relative standard deviations and extracting the square root 

of the sum given that  variables involved are independent, we can estimate confidence interval for kM  

and ][Alkk AlH  . The 95% confidence intervals estimates for kM and ][Alkk AlH   are given in 

Table 6.17. Appendix F gives more detail on how these confidence intervals were calculated. 
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Table  6-17. Estimates for kM and ][Alkk AlH   

Parameter  Mean value  and 95% confidence interval 

kM   240.94±10.83  

][Alkk AlH    6.98±2.53 

 

  
Later in this chapter we will show how to estimate Alk  independently of Hk  using a set of 

polymerizations performed under different MAO concentrations. 

 

6.4.5 Effect of Temperature 

Ten polymerization runs were conducted randomly at five temperature levels, with two replicates at 

each level, to study effect of temperature on the rate constants. The experimental conditions are given 

in Table 6-18. Except for the temperature, all other variables were kept constant in all 

polymerizations. 

 

 Table  6-18. Summary of experimental conditions (polymerization temperature effect). 

Temperature 120 to 140
o
C Catalyst Concentration  1.31× 10

-8
 mol/L 

Pressure 120 psig Polymerization time 15 min 

Solvent Toluene MAO (10 wt% in toluene) 2  g 

Solvent volume 222.8 ml   

 

The polymerization procedure was the same as the one used for the previous runs. Temperature 

control for one of the runs at 140 
o
C was poor (140±0.6  

0
C) and, therefore, only molecular weight 

data was considered for that run. A change in temperature of ±0.6 
0
C causes significant fluctuations in 

the monomer consumption rate curve, but has a minor effect on polymer molecular weight. Figure 6-

23 shows the plot of ethylene consumption rates versus time at different temperatures, while Figure 6-

24 depicts the plot of ln(FM,in/VR) versus time, showing good agreement with the 1
st
 order decay 

model developed above.  
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Figure  6-23. Ethylene uptake curves for polymerization runs at different temperatures. 

 

 

Figure  6-24. Effect of temperature on the plot of  ln(FM,in/VR) versus time. 
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The values of kd and kp[M] shown in Table 6-19 were calculated using the slopes and intercepts in 

Figure 6-24, and also by curve fitting of the monomer uptake data using Equation (6-24), as done 

previously for the ethylene pressure study in Section 6.4.3. 

 

 Table ‎6-19. Summary of polymerization rate constants (polymerization temperature effect). 

Temperature 

(oC) 

kp[M] (s-1)a kd  (s
-1)a kp[M] (s-1)b kd  (s

-1)b Mw Mn PDI Polymer 

Yield(g) 

140 NA NA NA NA 18 800 40 200 2.14 1.30 

140 113 200 0.00518 114 040 0.00532 17 400 38 400 2.21 1.49 

110 96 894 0.00048 97 298 0.00048 22 800 49 100 2.16 6.19 

130 126 425 0.00278 124 746 0.00274 20 500 42 800 2.09 3.75 

100 94 974 0.00031 95 278 0.00032 24 900 52 500 2.11 6.48 

120 115 039 0.00107 114 701 0.00106 22 100 46 000 2.09 5.87 

120 104 795 0.00100 103 860 0.00100 22 400 45 300 2.03 5.00 

110 93 815 0.00046 94 258 0.00047 23 300 48 000 2.06 5.91 

130 125 968 0.00291 123 413 0.00286 19 200 42 000 2.19 3.49 

100 90 752 0.00026 90 895 0.00027 25 400 51 600 2.03 6.22 

a
 Estimated using linear regression; 

b
 Estimated using nonlinear regression 

Figure 6-25 shows the Arrhenius plot for kd. The point estimate for the activation energy for catalyst 

deactivation was calculated using the slope of the line in Figure 6-25 and the Arrhenius law, to obtain 

Ea = 96  KJ/mol. Using a similar approach, we obtained the point estimate for the activation energy 

for propagation to be  EaP = 20.52  KJ/mol (Figure 6-26).  To calculate kp from kp[M] data, the 

monomer concentration data shown in Table 6-1 were used.  
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Figure  6-25. Arrhenius plot, for kd. The kd values were calculated by nonlinear regression. 

 

 

Figure ‎6-26. Arrhenius plot for kp. The kp values were calculated by nonlinear regression. 

 

Figure 6-27 show how the molecular weight averages and polydispersity index depend on the 

polymerization temperature. The molecular weight averages decrease with increasing temperature, 

while the PDI remains practically the same.  
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Figure  6-27. Effect of polymerization temperature on molecular weight averages and polydispersity. index.  

 

6.4.6 Effect of MAO concentration  

In order to investigate the effect of MAO concentration on polymerization kinetics and polymer 

molecular weight, sixteen polymerization runs were performed, randomly, at eight equally spaced 

levels of MAO concentrations at 120 
0
C with two replicates at each level.  

The summary of experimental conditions is listed in Table 6-20. Except for MAO concentration, all 

other variables were kept constant during the polymerizations. Figure 6-28 provides plots of the 

ethylene consumption rate versus time for all these runs.  

 

Table  6-20. Summary of experimental conditions (Study of MAO concentration). 

Temperature: 120
 o
C Catalyst Concentration:  1.31× 10

-8
 mol/L 

Pressure: 120 psig Polymerization time: 15 min 

Solvent: Toluene MAO (10 wt% in toluene) 0.138-2.57 g 

Solvent volume: 222.8 ml   

 

Like the treatment we adopted in the previous sections in this chapter, ln(FM,in/VR) versus time was 

plotted in Figure 6-29 and used to estimate kd and kp[M] from the curves intercept and slope. 

However, nonlinear regression was not used to estimate the kinetic parameters this time because this 

procedure leads to practically the same values, as demonstrated in the previous sections. Table 6-21 
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summarizes the results of these calculations along with the results of the molecular weight 

measurements using GPC and polymer yields for all runs. 

 

 

Figure  6-28. Ethylene uptake curves for polymerization runs at different MAO concentrations. 

 

Figure  6-29. Plots of ln(FM,in/VR)  versus time (effect of MAO concentration). 
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Table  6-21.Summary of kinetic parameters, molecular weight average measurements, and polymer yield results. 

Run Weight 

of  MAO 

solution 

(g) 

Al 

Concentration 

(Mol/L) 

Al/Zr kp[M] (s
-1) kd (s

-1) Mn Mw PDI Polymer 

Yield 

(g) 

1-M 1.764 0.0122 1 038 300 113 100 0.00115 NA NA NA 5.32 

2-M 0.951 0.0066 559 700 85 400 0.00110 23 700 48 300 2.04 4.04 

3-M 0.544 0.0038 320 200 77 600 0.00110 25 500 50 400 1.97 3.21 

4-M 2.173 0.0150 1 279 000 98 800 0.00096 22 100 45 800 2.07 4.85 

5-M 0.341 0.0024 200 700 65 600 0.00119 23 700 51 800 2.19 2.72 

6-M 1.356 0.0094 798 100 97 000 0.00102 22 900 47 200 2.06 4.44 

7-M 0.341 0.0024 200 700 70 000 0.00123 22 700 50 300 2.22 2.75 

8-M 1.764 0.0122 1 038 300 119 800 0.00100 22 600 45 200 2.00 5.83 

9-M 0.138 0.0010 81 200 12 800 0.00089 24 600 53 200 2.17 0.69 

10-M 0.951 0.0066 559 700 93 800 0.00111 22 400 47 000 2.10 4.39 

11-M 2.576 0.0178 1 516 200 112 600 0.00096 20 600 44 800 2.18 5.40 

12-M 0.544 0.0038 320 200 85 200 0.00121 22 900 49 100 2.14 3.81 

13-M 0.138 0.0010 81 200 25 800 0.00106 24 500 53 500 2.18 1.19 

14-M 1.356 0.0094 798 100 104 900 0.00105 21 900 46 000 2.10 5.02 

15-M 2.576 0.0178 1 516 200 105 400 0.00091 21 000 44 800 2.14 5.51 

16-M 2.173 0.0150 1 279 000 105 900 0.00093 22 500 46 500 2.07 5.27 

17-M 5.01 0.0346 2 950 600 101 500 0.00076 20400 44000 2.16 5.79 

 

Figures 6-30 and 6-31 show how kd and kp vary with MAO concentration, respectively. The last point 

(polymerization at high MAO concentration, Run 17-M) was not in the initial design of the 

experiments; it was performed at the end of the polymerization set to confirm some trends observed 

in the original design. The value of kd decreases with increasing MAO concentration. This implies 

that MAO reduces the rate of catalyst deactivation, perhaps by stabilizing the active sites.  

Inspection of Figure 6-31 shows that kp increases until reaching a plateau value at MAO concentration 

of approximately 0.012 mol/L (Al/Zr ratio of about 1×10
6
), remaining essentially constant up to 

MAO concentration of 0.035 mol/L, the highest MAO concentration studied (Al/Zr ratio 3×10
6
). 

MAO is believed to alkylate the transition metal-chloride bond followed by abstraction of the second 

chloride to yield a metalloceinum cation.
[8]

 The maximum kp value observed in Figure 6-31 may 

correspond to the amount of MAO that completely converts the metallocene to the active 

metallocenium cation species. A similar trend was seen in the plot of polymer yield versus MAO 
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concentration (Figure 6-32). If we define the catalyst activation efficiency as the ratio of actual 

polymer yield to the maximum polymer yield (the polymer yield at the plateau part of the polymer 

yield versus Al/catalyst ratio curve), this efficiency would depend on the Al/Zr ratio, with its 

maximum value at Al/Zr about 1×10
6 

for the catalyst studied.  

 

 

Figure  6-30. Plot of kd versus MAO concentration. 

 

Figure  6-31. Plot of kp versus MAO concentration. 
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Figure  6-32. Polymer yield versus MAO concentration. 

 

 

Figure  6-33. Effect of MAO concentration on molecular weight averages and PDI. 
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trimethyl aluminum (AlMe3) contained in the MAO solution.
[48]

 This type of chain transfer has also 

been reported in propylene polymerization using TMA.
[45]

  

6.4.6.1 Estimation of transfer to MAO rate constant 

 
Equation (6-34) can be rearranged to the following form, 
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                                                                         (6-41) 

 
A nonlinear least squares fit of Equation (6-41) over the Mn data shown in Figure 6-34 gives the 

estimates for the transfer to propagation constants with their corresponding approximate 95% 

confidence interval  limits and estimated standard errors shown in Table 6-22. 

 

 

 

 

Figure  6-34. Curve fitting of Mn data using Equation (6-41). 
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kM / mwkp+ kβH/( mw kp[M]) (mol/g)  4.092×10
-5
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  6.67×10
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Since the value of kM/mwkp, 4.04×10
-5

±1.18×10
-6

  mol/g,  is  known from previous calculations 

(Table 6-16), we can calculate  kβH/( mw kp[M])   and its approximate 95% confidence interval using 

propagation of errors,  

g

mol

Mmwk

k

p

H 77 101.17102.5
][

 


 

(6-42) 

Since its confidence interval includes zero, we conclude that transfer by β-hydride elimination is 

negligible with this catalyst under the polymerization conditions investigated herein. 

Similarly, using the previously estimated value of kp, 213000 L.mol
-1

.s
-1

, the approximate 95 % 

confidence interval for the kinetic parameter kAl     is, 

smol

L
k Al

.
420925 

   

(6-43)
 

Appendix G shows how these confidence intervals were calculated. 

 

Linear regression can also be used to estimate the transfer to propagation constants. Rearranging 

Equation (6-41) yields the expression below which is suitable for linear regression, 
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(6-44)

 

 

The plot of 1/Mn versus [Al] is shown in Figure 6-35. Intercept and slope of the line with their 95% 

confidence intervals are,  
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(6-46) 

These means and confidence intervals are very close to individual confidence intervals estimated by 

nonlinear regression. 
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Figure  6-35. Plot of 1/Mn versus MAO concentration 
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Figure  6-36. Plot of  95 % joint  confidence region and individual confidence intervals for  kAl/mwkp[M]  and 

(kM/mwkp+ kβH/(mwkp[M])).  

 

6.4.7 Estimation of activation energy for chain transfer to monomer  

The set of experiments used to estimate the effect of temperature on the polymerization constants 

were performed at 120 psig. In the experimental conditions adopted for these runs, kAl[Al] << kM[M] 

(12.9 s
-1

 and 90 to 127 s
-1

, respectively). Noting that β-hydride elimination is negligible, as 

demonstrated in Sections 6.4.6.1, Equation (6-32) is reduced to, 
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Taking logarithm of both sides and substituting the relevant terms from the Arrhenius law,   
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where kM0 and  kp0 are the frequency factors, and EaM  and EaP are the activation energies for transfer 

to monomer and propagation, respectively. 

Figure 6-37 shows how the ln(Mn) varies as a function of the inverse of absolute polymerization 

temperature. The  slope of the best fit line is 1247.97 J/(mol.K), which leads to an estimated transfer 

to monomer activation energy of EaM  = 30.9 KJ/mol. The higher activation energy for transfer to 

monomer than for propagation (EaP = 20.52 KJ/mol, see Section 6.4.5) implies that the former is more 

temperature sensitive than the latter. Therefore, increasing polymerization temperature causes a 

decrease in polymer molecular weight averages. 

 

 

Figure  6-37. Plot of  ln(Mn) as a function of reciprocal polymerization temperature.  

 

6.4.8 Estimation of the macromonomer content  in polymer  

It is possible to estimate macromonomer content in a polymer if the reaction mechanism and the 

related reaction rate constants are known. We can also estimate macromonomer content using 
13

C-

NMR. As a final check to see if the estimated reaction rate constants are reasonable, we estimated the 

macromonomer content of one of the sample ( 3-M) using  both methods.The paragraphs below 

explain, in detail, about these two methods.  
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Chain transfer to monomer leads to the production of macromonomers, while chain transfer to MAO 

produces Al-terminated dead polymer chains.  

Transfer to monomer                                                      

*
,

*

PP
k

MP
iM

                                      
(6-49)

 

Transfer to cocatalyst 

i

iAl
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k
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,
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(6-50) 

where 
P  denotes macromonomer concentration. If we assume that the rate of LCB formation is 

negligible compared to the rate of transfer to monomer, the ratio of macromonomer formation via 

chain transfer to monomer to overall rate of chain transfer gives the mole fraction of macromonomer 

in the final product, as expressed by Equation (6-51).  
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Substituting the relevant rate terms in Equation (6-51) gives  
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(6-52) 

 

Equation (6-52) shows that the mole fraction of macromonomer in the final product is a function of 

monomer and MAO concentrations. At polymerization conditions used to make Sample 3-M, [Al] = 

0.0038 mol/L and [M] = 0.454 mol/L. Substituting these concentrations and the rate constants (kM = 

240.9, kAl =925) in Equation (6-52), the mole fraction of macromonomer in the polymer is estimated 

to be equal to 0.97.  

To check this estimate, Sample 3-M was analyzed by 
13

C NMR. Figure 6-38 shows the proton 

decoupled 
13

C NMR spectrum for Sample 3-M. 
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Figure  6-38. 

13
C NMR spectra of polyethylene (Sample 3-M in Table 6-17). 

 

Four well resolved peaks were observed, with chemical shifts positioned at 14.06, 22.86, 32.18, and 

33.97 ppm. To account for the peaks observed in this spectrum, the structure shown in Figure 6-39 

was assumed.  

 

 
Figure  6-39. Carbon nomenclature for polymer chains with vinyl end group. 

 

These chemical shifts corresponds to carbons 1, 2, 3 and 1v of the structure shown in Figure 6-39, 

based on the Grant and Paul rule.
[148-149]

 Other types of carbon atoms (4, 5, 6 , 2v,…5v) have chemical 

shifts located at 30 or near 30 ppm.  

The number average molecular weight can be calculated using the equation below, 
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(6-53) 

where UCED is the number of unsaturated chain ends per 1 000 carbon atoms and SCED is the 

number of saturated chain ends per 1 000 carbon atoms. UCED and SCED are calculated using 

Equations (2-25) and (2-24). 
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UCED, SCED and Mn for Sample 3-M, calculated using Equations (2-25), (2-24), and (6-53), are 

equal to 0. 594, 0.599,  and 23, 464. The mole fraction of macromonomer in the final product can be 

calculated using equation below which was found to be 0.99, 

  

2

)( UCEDSCED
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UCED
fractionmoleerMacromonom






  

(6-54) 

The mole fraction of macromonomer estimated by 
13

C-NMR is close to the one estimated through 

kinetic equations confirming that the estimated kinetic parameters are satisfactory. The assumption of 

no LCB formation is reasonable because no LCB sign was seen in its 
13

C NMR spectrum (Figure 6-

38). 

 

6.5 Conclusions 

The results of this study show that propagation and deactivation steps are first order reaction for the 

solution polymerization of ethylene using rac-Et(Ind)2ZrCl2/MAO. Chain transfer to monomer is the 

main chain  transfer reaction leading  to the generation  of vinyl-terminated polymers. Chain transfer 

by β-hydride elimination is negligible, while transfer to cocatalyst happens to some extent depending 

on the amount of MAO. However, the extent of this type of chain transfer reaction diminishes if 

concentration of MAO is kept low.  

Increasing MAO concentration will increase polymerization activity to a maximum value of about 

7.5×10
6
 Kg PE/(mol Zr.hr) at Al/Zr ratio of about 1×10

6
. MAO also decreases catalyst deactivation, 

possibly by stabilizing the active sites.  

The reaction rate constants for propagation, catalyst deactivation, chain transfer to monomer and 

chain transfer to MAO were estimated. Their estimated values are: 213,000 L.mol
-1

.s
-1

, 0.001 s 
-1

,
 
241 

L.mol
-1

.s
-1 

and 925 L.mol
-1

.s
-1

, respectively, at 120 
o
C. We also estimated the activation energy for 

propagation, catalyst deactivation, and chain transfer to monomer. Their estimated values are 20.52, 

96 and 30.9 KJ/mol, respectively.   
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Chapter 7                                                                                                             

Ethylene Homopolymerization Kinetics with a Constrained Geometry 

Catalyst in a Solution Reactor 

7.1 Summary 

The solution polymerization of ethylene was studied in a semi-batch reactor using the constrained 

geometry catalyst (CGC) dimethylsilyl(N-tert-butylamido)-(tetramethylcyclopentadienyl)-titanium 

dichloride catalyst and methylaluminumoxane (MAO) as the cocatalyst. The influence of monomer 

concentration, temperature, MAO and catalyst concentrations on the ethylene polymerization kinetics 

were investigated systematically. The deactivation of the CGC/MAO system during ethylene 

polymerization can be described with a first order thermal deactivation mechanism that includes 

reversible activation and deactivation with MAO. The polymerization order with respect to ethylene 

varies with ethylene concentration from first to second order. The trigger mechanism was shown to 

describe very well the effect of ethylene concentration on polymer yield and polymerization kinetics. 

Low MAO concentration favors formation of polymer chains with unsaturated chain ends which in 

turn leads to formation of polymers with increased long chain branch density. It was also observed 

that the catalyst does not behave as a true single site catalyst at low MAO concentration. Finally, at 

low MAO concentration, low ethylene concentration increases long chain branch formation.  

 

7.2 Introduction 

Constrained geometry catalysts (CGC), a type of transition metal complexes bearing linked amido 

ligands, have found wide interest both in academia and industry  since 1990.
[150]

 This type of  catalyst 

retains one of the cyclopentadienyl rings of metallocenes, but replaces the other ring with a nitrogen 

substituent that coordinates with the metal center, usually a group 4 metal (Zr or Ti).
[8]

 Figure 7-1 

depicts the structure of an exemplary CGC-Ti catalyst. These complexes are also known as half–

sandwich complexes or Dow catalysts. 
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Figure  7-1. Structure of CGC-Ti catalyst. 

When activated with MAO or borates, CGC can produce polyolefins with long chain branches (LCB) 

by the re-insertion of chains terminated with reactive double bonds (macromonomers). In the case of 

ethylene polymerization, vinyl-terminated chains are created by chain transfer to ethylene or β-

hydride elimination   

The  amide donor ligand of the complex depicted in Figure 7-1 stabilizes the electrophilic metal 

center electronically, while the short Me2Si< bridging group causes a more open environment at the 

metal site compared to conventional metallocenes;
[151]

 consequently, these types of catalysts allow the 

facile incorporation of bulky monomers, including 1-alkenes, cycloalkenes, and styrene
[22]

 into 

random ethylene copolymers that are characterized by narrow molecular weight and chemical 

composition distributions.  

Although several experimental studies on olefin homo- and copolymerization with CGC have been 

published,
[63-64, 152-156]

 only a few investigations have dealt with polymerization kinetic studies. In one 

such study, ethylene was polymerized with CGC-Ti and the authors concluded that as monomer 

concentration increased, the polymer yield also increased, but that the MAO/CGC-Ti ratio had no 

effect on polymer yield; unfortunately, no information was reported on catalyst decay, which has a 

marked influence on polymer yield.
[157]

 In another study,
[30]

 the CGC 

TiMe2/tris(pentafluorophenyl)boron/MAO system was used in a CSTR for ethylene 

homopolymerization. Ten polymerization runs were performed to investigate the effect of reactor 

residence time, polymerization temperature, ethylene and hydrogen concentrations on polymerization 

kinetics. Polyethylene samples with LCB frequencies from 0.07 to 0.16 were made and the CGC 

appeared to behave as a single site catalyst. The authors concluded that a first order catalyst decay 

model was not appropriate to explain the observed results, but they did not propose an alternative 

model to describe their data. They assumed a first order propagation step with respect to ethylene 

concentration and based on this assumption estimated some reaction rate constants.  
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In the present investigation, we polymerized ethylene with CGC-Ti/MAO system in a semibatch 

reactor in the solution state. Polymerization of ethylene was studied systematically by changing 

ethylene, catalyst, and MAO concentrations. A kinetic model, based on the trigger mechanism
[32]

, was 

proposed, tested, and then refined based on monomer uptake curves and polymer yield data. First 

order thermal decay of the catalyst along with reversible and irreversible deactivation of the catalyst 

sites by MAO seemed to be satisfactory for explaining the effect of catalyst and ethylene 

concentration, as well as time, on ethylene uptake curves. Polymers produced at low MAO 

concentrations were found to have higher unsaturated chain end density and long chain branch 

frequencies.   

7.3 Experimental 

7.3.1 Materials 

Methylaluminoxane (MAO, 10 wt % in toluene, Sigma-Aldrich) was used as received. Ethylene and 

nitrogen (Praxair) were purified by passing through molecular sieves (3 and 4-A˚) and copper(II) 

oxide packed beds. Toluene (EMD) was purified by distillation over an n-

butyllithium/styrene/sodium system and then passed through two packed columns in series filled with 

molecular sieves (3, 4, and 5-A˚) and Selexorb for further purification. All air-sensitive compounds 

were handled under inert atmosphere in a glove box.  

The catalyst, dimethylsilyl(N-tert-butylamido)-(tetramethylcyclopentadienyl)-titanium dichloride 

(CGC-Ti), was purchased as powder  from Boulder Scientific and dissolved in toluene which was 

first distilled over metallic sodium and then flown through a molecular sieve bed before 

polymerization.  

7.3.2 Polymer synthesis 

The method used for polymerizations is explained in Chapter 6, Section 6.3.2. 

7.3.3 Polymer characterization 

7.3.3.1 Gel Permeation Chromatography (GPC) 

Molecular weight distributions (MWD) were determined with a Polymer Char high-temperature gel 

permeation chromatographer, run at 145
o
C under a flow rate of trichlorobenzene of 1 ml/min. Our 

GPC is equipped with three detectors in series (infra-red, light scattering and differential 

viscosimeter). The GPC was calibrated with polystyrene narrow standards. 
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7.3.3.2 Carbon-13 Nuclear Magnetic Resonance (
13

C-NMR) 

The 
13

C-NMR spectrum was taken on a Bruker 500 MHz system with 5-mm tube. The probe 

temperature was set at 120
o
C. The solutions were prepared for analysis by dissolution of 

approximately 100 mg of each sample in 650 L of o-dichlorobenzene-d4. The samples were 

dissolved by heating on a hot plate at 130
o
C for 6 hours. Acquisition parameters were 14 micro 

second  90
o
 pulse, inverse gated proton decoupling, 10 s delay time between pulses, and 10 000 scans 

for data averaging. All spectra were referenced by setting the main polyethylene chain peak to 30.00 

ppm.  

 

7.3.3.3 Fourier-Transform Infrared Spectroscopy (FT-IR) 

Fourier transform–infrared spectroscopy was used to quantify the vinyl groups in the polymer chains. 

The spectra were recorded from 400 to 4 000 cm
-1

, after 32 scans, with a resolution of 2 cm
-1

. The 

absorption band at 910 cm
-1

,
 
representative of vinyl groups, was used to measure the amount of vinyl 

groups in the polymer. The calibration curve, Figure 5-6, was used to estimate unsaturated chain end 

density in   polymer samples. 

7.4 Results and Discussion 

7.4.1 Effect of Ethylene Pressure  

The effect of ethylene pressure on ethylene polymerization with CGC was investigated by varying it 

from 35 to 220 psig at a constant temperature of 120
o
C. A complete randomized design with eleven 

monomer concentration levels and at least two replicates at each level was adopted. All 

polymerizations were performed at a catalyst concentration of 0.547 mol/L, 222.8 ml of solvent, and 

2.0 g of MAO solution (10 wt % in toluene).  Polymer yields and molecular weight measurements are 

summarized in Table 7-1. 
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Table  7-1. Summary of polymerization runs (effect of monomer concentration).  

Run Reactor 

pressure (psig) 

Mw Mn PDI Polymer 

Yield (g) 

Activity (kg 

PE/(mol Ti.hr))  

120A 120 188 600 91 500 2.06 5.59 40 900 

60A 60 121 000 52 600 2.30 1.70 12 400 

100A 100 166 600 74 100 2.25 4.39 32 100 

80A 80 142 800 69 900 2.04 3.01 22 000 

120B 120 174 900 80 600 2.17 6.01 44 000 

80B 80 150 700 68 600 2.20 2.80 20 500 

60B 60 115 600 55 300 2.09 1.75 12 800 

100B 100 163 100 78 100 2.09 4.10 30 000 

120C 120 173 700 75 800 2.29 5.51 40 300 

100C 100 167 300 74 400 2.25 4.10 30 000 

45A 45 95 600 40 800 2.34 1.01 7 300 

140A 140 202 600 96 500 2.10 6.70 49 000 

140B 140 212 600 99 000 2.15 7.80 57 000 

45B 45 110 500 48 900 2.26 0.90 6 600 

140C 140 206 100 99 000 2.08 7.78 56 900 

180A 180 237 300 109 600 2.17 10.40 76 100 

35A 35 73 800 32 200 2.29 0.50 3 700 

160A 160 216 600 105 000 2.06 8.60 62 900 

160B 160 227 200 102 000 2.23 9.13 66 800 

180B 180 240 400 106 900 2.25 10.44 76 300 

220A 220 261 300 115 500 2.26 13.23 96 700 

200A 200 247 900 102 000 2.43 12.20 89 200 

220B 220 253 900 112 000 2.27 14.40 105 300 

200B 200 250 700 110 200 2.27 11.69 85 500 
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7.4.2 Polymerization Order with Respect to Ethylene Concentration 

The polymer yield versus ethylene concentration in the liquid phase is shown in Figure 7-2. The 

experimental results of Table 6-1 were used to calculate ethylene concentration in the liquid phase 

corresponding to each total reactor pressure in Table 7-1. As expected, the curve passes through the 

origin, but a curvature is seen at low ethylene concentrations which clearly point out to a non-first 

order dependence of the polymerization rate on ethylene concentration. When the polymer yield is 

plotted versus the square of the ethylene concentration in the reactor liquid phase for the low 

concentration range (Figure 7-3), a linear relation is observed, confirming a second order dependency 

at low ethylene concentrations. Contrarily, Figure 7-2 shows that polymer yield depends linearly on 

ethylene concentration for values higher than approximately 0.4 mol/L. This indicates that the 

propagation order with respect to ethylene concentration changes from two to one when the ethylene 

pressure is increased. Ethylene polymerization orders higher than one were also reported by other 

investigators.
[158-163]

 We proposed the mechanism described in Equations (7-1) and (7-2) as a possible 

explanation for the observed change in propagation order. 

MP

k

k

MP

r

f





 **  (7-1) 

MP
k

MMP
p

 **  (7-2) 

The formulation of Equations (7-1) and (7-2) is consistent with the main assumptions of the trigger 

mechanism,
[31-32]

 according to which a monomer molecule first forms a complex with the active site 

and insertion into the growing polymer chain can only take place if a second monomer unit 

approaches the active site, triggering the insertion. In the above mechanism P* is the uncomplexed 

active site with a growing polymer chain of any length, while P*·M is a growing polymer chain 

complexed with a monomer molecule. When a complexed growing polymer chain of length j reacts 

with a monomer unit, a complexed growing polymer chain of length j+1 is produced. Reversible 

complex formation between active site with one monomer molecule is also accepted.
[164-166]

  

Assuming that the reaction described in Equation (7-1) is a fast equilibrium, we can write,  

   
r

f

k

PMk
MP

]][[
][

*

*   
(7-3)

                                                  

The total concentration of active sites, Ct, in the reactor at a given time is given by the sum of 

complexed and uncomplexed active sites, 
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][][ ** PMPCt   (7-4) 

Substituting Equation (7-3) in Equation (7-4) and solving for [P
*
] yields, 

t

fr

r C
Mkk

k
P

][
][ *


  (7-5) 

Finally, combining Equations (7-5) and (7-3) gives the concentration of complexed sites in the reactor 

at a given time,  

][

][
][ *

Mkk

CMk
MP

fr

tf


  (7-6) 

According to Equation (7-2), the polymerization rate is given by the expression,  

]][[ * MMPkR pp   (7-7) 

which can be combined with Equation (7-6) to find the final expressions for the polymerization rate 

governed by the mechanism expressed in Equations (7-1) and (7-2),  
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(7-8) 

or, 

][1

][ 2

MK

MKCk
R
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p




 

(7-9) 

where,  

r

f

k

k
K   (7-10)  

Consequently, at low ethylene pressures K[M] << 1, simplifying Equation (7-9)  to, 

2][MKCkR tpp                                                                                                     
(7-9.a)

 

and the polymerization order with respect to ethylene concentration approaches two. Inspection of 

Equations (7.8) or (7.9) will also demonstrate that the polymerization rate becomes first order with 

respect to ethylene concentration as [M] increases and k[M] >> 1. Therefore, Equations (7.8) and 

(7.9) can describe the change in polymerization order depicted in Figure 7-2. 
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Figure  7-2. Polymer yield versus ethylene concentration in the reactor liquid phase.  

 

 

Figure  7-3. Polymer yield versus the square of ethylene concentration in the reactor liquid phase (low ethylene 

concentration range). 
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7.4.3 Catalyst Deactivation 

The activation of coordination catalysts, such as CGC, by MAO involves very fast reduction and 

alkylation reactions yielding the catalytically active sites. After achieving a maximum polymerization 

activity, most coordination catalysts deactivate following a profile that depends on the catalyst type, 

polymerization temperature, and impurity level in the reactor. Figure 7-4 shows the ethylene 

consumption rates as a function of polymerization time for several ethylene pressures.  

The first order catalyst decay model has been already described in Chapter 6 with Equation (6-21). 

However, this model fails to describe the polymerization data with CGC adequately, as shown in 

Figure 7-5 for a typical polymerization run. 

 

 

Figure  7-4. Ethylene reactor feed flow rate versus time at different total reactor pressures (For runs in Table 7-

1). 
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Figure  7-5. Experimental ethylene uptake curve and first order catalyst deactivation model for ethylene 

polymerization with CGC at total reactor pressure of 120 psig (Run 120 B in Table 7-1). 

 

As an alternative to the first order catalyst decay model developed in Chapter 6, we propose a second 

order model to describe the data presented in Figure 7-4,  
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In Equation (7-11), it is assumed that the catalyst activation is instantaneous: as soon as the catalyst is 

injected in the reactor and comes in contact with MAO, all the catalyst sites are activated. Following a 

derivation similar to the one applied for rac-Et(Ind)2ZrCl2 in Chapter 6, we finally obtain the 

following expressions for monomer consumption rate, (more details on derivation are given in 

Appendix H)  
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Rearranging gives, 
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Equation (7-13) shows that, for second order catalyst decay kinetics, the plot of the reciprocal of the 

monomer of consumption rate versus time is linear. Figure 7-6 illustrates this behavior for some 

typical polymerization runs performed at different ethylene partial pressures.  

 

 

Figure  7-6. Second order decay model for CGC deactivation at several ethylene partial pressures. 
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(7-14) 

where n is polymer yield in moles. Although the polymerization curves presented in Figure 7-6 seem 

to be well described with a second order decay model, Equation (7-14) reveals that the polymer yield 

is not a linear function of catalyst concentration. However, the additional experimental results that 

will be reported below show that the polymer yield is indeed linearly related to catalyst concentration 

which contradicts the dependency found in Equation (7-14). Before proposing a modification to this 

deactivation mechanism in Section  7.4.5, results for the effect of catalyst concentration on the 

polymerization rate will be discussed. 
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7.4.4 Effect of Catalyst Concentration at High MAO Concentration. 

7.4.4.1 Effect of Catalyst Concentration on Polymer Yield 

Six polymerizations were performed at a constant MAO concentration (the same MAO concentration 

at which the previous set of polymerization runs, given in Table 7-1, were performed), but different 

catalyst concentrations and two polymerization temperatures, to investigate the effect of catalyst 

concentration on polymer yield at high MAO concentration. The polymerization conditions are 

summarized in Table 7-2. Runs 160A, 160B, 180A, and 180B have already been reported in Table 7-

1 and are reproduced in Table 7-2 for easy comparison. Polymer yield and molecular weight 

measurements using GPC are shown in Table 7-3. 

 

Table  7-2. Summary of polymerization conditions (effect of catalyst concentration). 

Run Temperature (
o
C) Pressure (psig) Catalyst 

concentration(mol/L) 

C-3 140 120 2.55 

C-2 140 120 1.89 

C-1 140 120 1.22 

160A 120 160 0.547 

160B 120 160 0.547 

160C 120 160 0.274 

160D 120 160 0.274 

180A 120 180 0.547 

180B 120 180 0.547 

180C 120 180 0.274 
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Table  7-3. Polymer yield and molecular weight measurement results (effect of catalyst concentration).  

Run Mn Mw PDI Polymer 

Yield (g) 

C-1 35 500 93 400 2.63 5.68 

C-2 33 900 94 400 2.79 3.95 

C-3 34 000 91 400 2.68 2.78 

160A 105 000 216 600 2.06 8.6 

160B 102 000 227 200 2.23 9.13 

160C 101 700 225 400 2.22 4 

160D 99 700 232 200  2.33 4.35 

180A 109 600 237 300 2.17    10.4 

180B 106 900 240 400 2.25 10.44 

180C 105 800 247 900 2.34 5.03 

 

The first three polymerization runs in Table 7-3 (runs C-1, C-2 and C-3) have the same 

polymerization conditions, except for the catalyst concentration. Figure 7-7 plots polymer yield 

versus catalyst concentration for these three runs, showing a clear linear relationship. Moreover, a 

linear extrapolation shows that it passes through the origin, as expected. Ethylene flow rate curves for 

these three polymerizations are shown in Figure 7-8. As a further test, we plotted the corresponding 

products of ethylene flow rates and catalyst ratio C/CC-3, where CC-3 is the catalyst concentration of 

run C-3, selected as the base, and C is the catalyst concentration of the other run. All curves merge 

into a single one, implying that ethylene flow rate is proportional to catalyst concentration in the 

reactor (Figure 7-9).  

Comparing the yields of polymerization runs 160A and 160B with 160C and 160D shows that 

doubling catalyst concentration doubles polymer yield. The same conclusion is reached when the 

polymer yields for the runs 180A, 180B, and 180C are compared. Therefore, we have enough 

evidence to show that the polymer yield is proportional to the catalyst concentration in the reactor, at 

least at high MAO/CGC ratios and when the change in catalyst concentration is within the range 
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investigated in this study. These experimental findings are in disagreement with Equation (7-14), 

which results from the direct application of a second order decay profile for CGC. 

 

Figure  7-7. Plot of polymer yield versus catalyst concentration for runs C-1, C-2 and C-3. 

 

Figure  7-8. Ethylene reactor feed flow rate for runs C-1, C-2 and C-3.  
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Figure  7-9. Plot of ethylene flow rate times catalyst concentration divided by catalyst concentration for run C-3 

for runs C-1, C-2 and C-3. 

 

7.4.4.2 Effect of Catalyst Concentration on Polymer Molecular Weight 

A good estimate of variance for weight and number average molecular weight is necessary to check if    

change in catalyst concentration can affect molecular weight. Since variances for Mn and Mw are 

independent of ethylene concentration and they are nearly the same, combining variances   using the 

pooled estimator of variances can provide these estimates.  

The pooled estimate of the common standard deviation for Mw and Mn based on the data in Table 7-1 

were found to be 5 864 and 4 200, respectively (For more details on calculation of pooled estimate of 

variance, see Appendix I). This variability includes errors from molecular weight measurements and 

polymerization replicates. The difference between the mean Mw of polyethylene samples made at two 
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of the same samples is 1150 which is again less than two times of pooled estimate of the common 

standard deviation for Mn (2×4 200). This means that the difference between the means of average 

molecular weights at the two levels of catalyst concentrations results from random error variable. A 

similar calculation was performed for the two levels of catalyst concentration at 180 psig, reaching 

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800

F
M

,i
n

 ⨯
C

/C
C

-3
(m

l/
m

in
)

Time (s)



 

 163 

the same conclusion. Therefore, there is no evidence that changing catalyst concentration affects 

average molecular weights.  

 

7.4.5 Modified Deactivation Mechanism  

As shown above, a simple second order catalyst decay mechanism will not predict a linear 

relationship between polyethylene yield and catalyst concentration. However, the experimental results 

described in Section 7.4.4 show that such a linear relationship is indeed observed for the range of 

conditions investigated in this study. Therefore, it is necessary to propose a mechanism that can 

describe a non-first order catalyst decay rate and, at the same time, account for the linear relation 

between polymer yield and catalyst concentration in the reactor. 

Let us assume that the uncomplexed and complexed active sites decay according to a first order 

model. Since we have assumed that the elementary reaction described in Equation (7-1) is a fast 

equilibrium, it is required that the deactivation rate constants for both active site states be the same, as 

will be explained in the short derivation below. 

According to Equation (7-3), [P
*
] and [P

*
·M] are related through the following relation, 

]][[][ ** MPKMP 
  

(7-15)
 

Taking the derivative of both sides assuming that [M] is constant gives, 

t

P
MK

t

MP

d

][d
][

d

][d **




 
(7-16)

 

Assuming that
 
[P

*
] and [P

*
·M] deactivate according to first order kinetics,  

][][][ *
1

*
2 PkMKMPk dd 

 
(7-17) 

and then using Equation (7-15), we conclude that
 12 dd kk  . 

Therefore, the rate of deactivation for all catalyst sites, assuming first order decay, would   follow the 

simple law, 

td
t Ck

dt

dC
1

 

(7-18) 
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However, as we showed before, the simple first order model cannot explain the decay behavior of the 

CGC catalyst. Therefore, assuming that the deactivation of uncomplexed and complexed active sites 

occurs with different rate constants cannot be beneficial in explaining decay behavior of this catalyst. 

In order to model the catalyst decay behavior with CGC-Ti, we assumed that there were three 

elementary steps involved: thermal deactivation, and MAO-promoted deactivation and reactivation. 

The thermal deactivation step is given by the reaction below, 

dp
dth

t C
k

C    (7-19) 

where kdth denotes the thermal deactivation rate constant, and Cdp are the permanently deactivated 

sites. MAO-promoted (or, possibly TMA contained in MAO) deactivation and reactivation reactions 

are represented as,  

d
d

t C
k

MAOC   (7-20) 

t
a

d C
k

MAOC   (7-21) 

 

where Cd is a reversibly deactivated (or dormant) catalyst site that can be reactivated by reaction with 

MAO.
 
This type of reversible deactivation mechanism has been used before to model the catalyst 

decay behavior of Cp2ZrCl2 for the polymerization of ethylene and propylene.
[167-168]

  

The corresponding molar balances for Ct and Cd are given by, 

datdtdth
t CMAOkCMAOkCk

t

C
][][

d

d


 

(7-22)
 

tdda
d CMAOkCMAOk

t

C
][][

d

d


 

(7-23) 

Since MAO is present in excess and its concentration is much higher than the CGC-Ti concentration, 

ka[MAO] and kd[MAO] may be assumed to be invariant during polymerization and will be represented 

by the lumped constants k'a and k'd, respectively. 

Equations (7-22) and (7-23) can be solved with Laplace transforms with the initial conditions Ct = C0 

and Cd = 0 at t = 0 to yield,  

)()()()( ''

0 sCksCkkCssC datddtht 

 

(7-24) 
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)()()( '' sCksCkssC tddad 

 

(7-25)

 

Rearranging Equation (7-25),  
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(7-26) 

and then substituting Equation (7-26) into Equation (7-24) yields, 
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(7-27)

 

The theory of partial fractions enables us to write Equation (7-27) as,  
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(7-28) 

 where s1 and s2 are constants defined as,  
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(7-30) 

Taking the inverse Laplace transform of Equation (7-28) gives the solution for the concentration of 

active sites in the time domain, 
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(7-31) 

The molar balance for monomer in a semi-batch reactor is given by, 

p
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inM
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(7-32)

 

Since monomer concentration is kept constant, we conclude that,  

RpinM VRF ,

 
(7-33)
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Combining Equations (7-9), (7-31) and (7-33) leads to the final expression for the monomer feed flow 

rate to the reactor for a catalyst that follows the trigger mechanism and deactivates according to the 

steps proposed in Equations (7-19)-(7-21), 
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(7-34) 

Finally, the polymer yield, in moles, can be obtained by the integration of Equation (7-34), 
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(7-35) 

Differently from Equation (7-14), Equation (7-35) predicts that the polymer yield depends linearly on 

catalyst concentration in the reactor, in agreement with the experimental findings presented in Section 

7.4.4. 

 

7.4.6 Estimation of Kinetic Parameters 

Equation (7-34) can be rearranged into the following form, 
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(7-36)

                                                                                        

 

The right hand side (RHS) of Equation (7-36) is a function of polymerization time, catalyst 

concentration, reactor volume, and temperature-dependent rate constants, while the left hand side 

(LHS) depends on monomer concentration, reactor feed flow rate, and the equilibrium constant K. 

Therefore, if we plot Equation (7-36) LHS versus time for the runs performed at varying monomer 

concentrations but same catalyst concentration, reactor volume, and temperature, we expect all curves 

to merge into a single one, given that we have chosen a proper value for the equilibrium constant K.  

The optimum value for K can be obtained by minimizing the following objective function,    
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where the subscripts ‗max‘ and ‗min‘ are the maximum and minimum values of Equation (7-36) LHS 

for all runs at time t, and av refers to its average value for all runs at time t. In fact, by minimizing this 

objective function, we are minimizing the area of the error band relative to total area under the 

average monomer consumption rate. Half of the value of the objective function at the optimum point 

would be the maximum value of the error in predicting polymer yield with Equation (7-35). The 

optimum K value estimated by minimizing the objective function defined in Equation (7-37) is 1.1. 

Figure 7-10 shows the plot of Equation (7-36) LHS versus time for all the polymerization runs in 

Table 7-1 using K = 1.1. All curves merge relatively well into a single ‗master‖ curve, especially 

taking into consideration that, due to normal random error during the polymerizations, perfect 

overlapping would be extremely unlikely. Since the reactor temperature and pressure fluctuate more 

at the beginning of the polymerization, more variability is observed at shorter polymerization times.  

 

 

Figure  7-10. Plot [ (1+K[M])FM,in /[M]
2
]av

 

versus time for all the runs in Table 7-1. 
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Table 7-4. None of the confidence intervals include zero, indicating that all the parameters are 

significant and supporting the model‘s adequacy.  

 Figure 7-11 shows the experimental Equation (7-36) LHS for all runs 

av

inM

M

FMK


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
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2

,

][

])[1(

superimposed with the RHS of equation 7-36 with the estimated model parameters in Table 7-4. 

Table  7-4. Summary of estimated model parameters  

Parameter Estimated value with 

approximate 95% confidence 

interval 

'

ak  3.3746×10
-3

±1.5×10
-4

   s
-1 

kpC0VR 6.149×10
-3

±1.34×10
-4

    L.s
-1 

s1 -1.169×10
-2

±3.7×10
-4

  s
-1 

s2 -1.202×10
-3

±4.5×10
-5

  s
-1 

 

 Values for kdth and '

dk  can be calculated using the equations below, obtained by solving Equations 

(7-29) and (7-30) simultaneously, 
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(7-39)

 

Table 7-5 tabulates the point estimates of the all kinetic parameters required for the model represented 

by Equation (7-34). 
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Table  7-5. Estimated values of kinetic parameters for Equation (7-34). 

Parameter Estimated value 

'

ak
 

3.746×10
-3

   s
-1 

kp 5.0455×10
4
    L.mol

-1
.s

-1 

dthk  3.633×10
-3    

s
-1 

'

dk  5.1436×10
-3

   s
-1 

K 1.1 

 

 

Figure  7-11. Plot of Equation

 

(7-36) LHS, [ (1+K[M])FM,in /[M]
2
]av, versus time. The dotted curve shows the 

fitted curve. 

Figure 7-12 shows how the experimental ethylene feed flow rates are very well represented by 

Equation (7-34) using the parameters reported in Table 7-5. The excellent agreement demonstrates 

that the proposed model can describe well the dependency of time and ethylene pressure on the 

monomer uptake curves. 
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Figure  7-12. Comparison between experimental ethylene feed flow rates and model predictions with Equation 

(7-34) and parameters in Table 7-5.Dashed curves are model predictions. 

 

Using the estimated kinetic parameters reported in Table 7-5 and Equation (7-35), we tried to predict 

the polymer yield. Figure 7-13 compares experimental and predicted polymer yields for a wide range 

of ethylene concentrations. Once again, good agreement was observed between experimental data and 

model predictions.   

 

Figure  7-13. Comparison between experimental and simulated polymer yields.   
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The findings on decay behaviour of the CGC-Ti catalyst can be summarized as follows: 

 Assuming a first order model alone (thermal decay or deactivation by impurities) cannot 

explain CGC deactivation. A second order model can explain CGC deactivation as a function 

of time, but it is unable to explain the effect of catalyst concentration. 

 Assuming reversible activation and deactivation with MAO can explain the effect of catalyst 

concentration, but it cannot explain the effect of time because the consequence of this 

assumption would be the following equation for ethylene flow rate into the reactor, obtained 

by solving the relevant differential equations, 

     tkk
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When time approaches infinity, the liming value for monomer flow rate reaches the limiting 

value‘     
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(7-41) 

This limiting behavior contradicts our findings because our observations were that kinetic 

curves go to zero as time increases. 

In conclusion, in addition to

 

reversible activation and deactivation with MAO, thermal deactivation 

should also be assumed to explain the effect of monomer concentration, catalyst concentration, and  

time on the polymerization rate of ethylene with CGC-Ti under the conditions investigated in this 

study.    

 

 

7.4.7 Effect of Monomer Concentration on Molecular Weight  

Figure 7-14 shows how Mn, Mw and PDI of polyethylene made with CGC-Ti vary with reactor total 

pressure. The PDI remains practically constant in all polymerizations, with values in a narrow range 

between 2 and 2.5, as theoretically expected for a single-site catalyst. Both Mn and Mw initially 

increase with polymerization pressure and then tend to constant values, which is consistent with a 

chain growth mechanism controlled by transfer to ethylene.  
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Figure  7-14. Variation of Mn, Mw and PDI with ethylene concentration. 

  

7.4.8 Estimation of Chain Transfer Rate Constants 

Transfer to monomer, to metal alkyls, to transfer agents, such as H2, and -hydride elimination, are 

among the main chain transfer mechanisms for polymerization with coordination catalyts.
[31-32]

  

The number average molecular weight, Mn, is related to the relative rate of propagation to chain 

transfer reactions through the following equation,  
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   (7-42) 

where RP is the rate of propagation, RM, RβH and RAl  are the rate of transfer to monomer, β-hydride 

elimination, and transfer to MAO, respectively, and  mw is monomer molecular weight. 

When a monomer approaches a complexed catalyst site, two reactions may take place: transfer to 

ethylene, forming a dead polymer chain with a terminal double bound (macromonomer) and a catalyst 

site attached to a single monomer unit, as described in Equation (7-43), or monomer propagation, 

where the monomer molecule is inserted into the growing polymer chain, as already represented in 

Equation (7-2),  
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MPP
k

MMP M  **  (7-43) 

where P  denotes  polymer chains with terminal double bound. Notice that we kept the trigger 

mechanism formalism that assumes that one monomer molecule remains complexed to the active site. 

Macromonomers can also be formed via β-hydride elimination, in which the hydrogen atom attached 

to the  carbon in the chain is transferred to the metal center, as described in the following equation, 

i

H
CP

k
MP  

*  
(7-44) 

The rates of macromonomer formation by these two transfer mechanisms are given by the 

expressions, 

]][[ * MMPkR MM   (7-45)    

][ * MPkR HH  
 (7-46) 

Substituting [P*.M] with Equation (7-6) into Equations (7-45) and (7-46), 
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Similarly, for chain transfer to MAO, 
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Finally, substituting Equations (7-9), (7-47), (7-48), and (7-49) into Equation (7-42) gives,  
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which is, in fact, the same result we obtained in Equation (6-31). Figure 7-15 shows the plot of 

mw/Mn versus the reciprocal of ethylene concentration in the reactor. The slope and intercept of the 

line provide the point estimates for kM / kp and (kβH+kAl[Al])/ kp, respectively, which are reported in 

Table 7-6. 

Figure 7-16 plots Mn/mw versus monomer concentration. Nonlinear regression of Equation (7-51) was 

performed by minimizing sum of squares of the residuals to obtain kM / kp and (kβH+kAl[Al])/ kp. 

Assuming that the variability in ethylene concentration is negligible, the approximate confidence 

interval for the parameters can also be calculated. Table 7-6 summarizes the results of 95% 

confidence interval calculations for the parameters using linear regression and the corresponding 

approximate ones using nonlinear regressions.  

 

Table  7-6. Summary of chain transfer parameter estimation using linear and nonlinear regression. 

 Parameter Linear 

Regression 

Estimated 

standard error 

Nonlinear 

Regression 

Estimated 

Standard Error 

kM / kp 1.43×10
-4

±1.8×10
-5

 8.68×10
-6

 1.5×10
-4

±1.6×10
-5

 8×10
-6

 

(kβH+kAl[Al])/ kp 8.2×10
-5

±5.6×10
-6

 2.71×10
-6

 7.86×10
-5

±8.9×10
-6

 4.33×10
-6
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Figure ‎7-15. Plot of 1/Mn versus 1/[M]. 

 

 

Figure  7-16. Curve fitting for Mn data using Equation (7-51). 
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7.4.9 Effect of MAO Concentration on Polymer Microstructure  

Thirteen polymerization runs were performed to study effect of MAO concentration on 

microstructural properties of the resulting polymer. Temperature and pressure were kept constant 

during all polymerizations. Catalyst concentration was also the same for all polymerizations, except 

for Run 453, where it was necessary to reduce the Al/Ti to its lowest value. The summary of 

polymerizations conditions is given in Table 7-7.   

 

Table  7-7. Summary of polymerization run conditions (effect of MAO). 

Run MAO (g) Al/Ti 

441 0.98 12 400 

442 1.57 19 900 

443 2.75 34 900 

444 0.39 4 900 

445 2.16 27 400 

446 0.98 12 400 

447 1.57 19 900 

448 3.93 49 500 

454 0.39 4 900 

455 1.57 19 900 

456 2.75 34 900 

457 0.98 12 400 

453
a
 0.39 1 200 

Catalyst concentration: 0.62 mol/L, polymerization temperature: 120oC, polymerization pressure 120 psig.  

aCatalyst concentration: 2.44 mol/L 

 

 

Table 7-8 summarizes molecular weight average measurements, and polymer yield. 
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Table  7-8. Summary of polymer yield and GPC data. 

Run Mw Mn PDI Polymer 

Yield (g) 

441 177 200 68 100 2.6 2.4 

442 184 900 80 500 2.3 3.5 

443 164 200 82 000 2.2 5.92 

444 153 700 39 900 3.85 0.97 

445 175 500 76 900 2.28 5.02 

446 180 800 69 000 2.62 2.84 

447 183 500 78 400 2.34 3.84 

448 191 200 88 100 2.17 7.77 

454 168 000 48 200 3.49 1.24 

455 177 800 76 700 2.32 4.12 

456 188 700 83 600 2.26 6.94 

457 152 600 62 700 2.43 2.62 

453 147 700 37 800 3.91 3.01 

 

The polymer yield increases with MAO concentration in the reactor, as shown in Figure 7-17. 

Interestingly, the polymer yield for Sample 453, which was made at higher catalyst concentration 

than the other runs, does not lie on the curve showing the trend for the samples made at the same 

(lower) catalyst concentration but different MAO concentrations. However, if we normalize its yield 

by multiplying by the catalyst concentration of all other samples and then dividing by its catalyst 

concentration, we see that it follows the same trend. This confirms that polymer yield is linearly 

related to catalyst concentration, as shown before. Figure 7-18 illustrates how PDI, Mn and Mw vary 

with Al/Ti ratio. Decreasing Al/Ti ratio down to a certain level (about 20 000) does not affect 

molecular weight and PDI, while a further decrease will reduce Mn and Mw, and increase 

polydispersity.  
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Figure  7-17. Polymer yield versus MAO concentration. 

 

 

Figure  7-18. Molecular weight averages and PDI as a function Al/Ti. 
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7.4.10 Long Chain Branch Detection 

Figure 7-19 shows the 15
o
 light scattering signal intensity versus GPC elution volume for all the 

polymerization runs listed in Table 7-7. For samples made at high MAO concentration or high Al/Ti 

ratio (Al/Ti > 20 000), no significant shoulder or bimodality is observed. At low Al/Ti ratios (Al/Ti < 

12 000 and lower) a shoulder appears at low elution volumes, becoming more significant as the Al/Ti 

ratio decreases. To confirm that this high molecular weight shoulder comes from long chain 

branching, we analyzed Sample 453, which had the lowest Al/Ti ratio of all samples shown in Table 

7-7, by 
13

C NMR. Figure 7-20 shows the proton-decoupled 
13

C NMR spectrum for Sample 453. 

Seven well resolved peaks were observed with the chemical shifts positioned at 14.2, 22.9, 32.2, 

34.57, 27.28, 38.2 and 33.97 ppm. To account for the peaks observed in this spectrum, the structure 

shown in Figure 7-21 was assumed. Based on the Grant and Paul rules, the foregoing chemical shifts 

correspond to carbons 1, 2, 3, α, β, br and 1v, respectively. Other types of carbons have chemical 

shifts located at 30 or near 30 ppm so they would be obscured by the main peak at 30 ppm. Inspection 

of the spectrum in Figure 7-20 confirms the presence of LCBs in Sample 453. The plot of log [] 

versus log MW for Sample 453 depicted in Figure 7-22 further confirms the presence of LCBs in 

this sample. 

 

 

Figure  7-19. 15
o
 Light scattering signal intensity versus GPC elution volume for samples made under different 

Al/Ti ratios. 
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Figure  7-20.  
13

C-NMR spectrum for Sample 453 (top) and 448 (bottom). 

 

 

 

Figure  7-21. Chemical structure for long chain branched CGC-Ti polyethylene. 

 

The increase in PDI observed when the Al/Ti ratio was reduced can be partially attributed to the 

formation of LCBs, as shown in 
13

C-NMR spectra for Sample 453, but the observed increase is too 

high to be credited only to the presence of LCBs. 
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Sample 448, which was made at high Al/Ti ratio, was also analyzed using 
13

C-NMR spectroscopy. 

Four peaks, corresponding to 1, 2, 3 and 1v carbons were observed, but no LCB peak was detected 

(Figure 7-20). In addition, its log [] versus log MW plot was linear, indicating that LCB frequency 

in the sample is negligible. The summary of 
13

C NMR analysis for the two samples is given in Table 

7-9. 

 

Table  7-9. Summary of 
13

C-NMR analysis for the samples 453 and 448. 

 Sample UCED SCED LCBF 

453 0.39 0.78 0.23 

448 0.064 0.29 0 

 

 

 

Figure  7-22. Molecular weight distribution and intrinsic viscosity plot for Sample 453.The intrinsic viscosity 

plot for the linear sample NBS 1475 is shown for comparison. 
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different Al/Ti ratios were measured using FTIR spectroscopy. This method was explained in detail in 

Chapter 5, Section 5.1.5. Figure 7-23 plots the sample UCEDs versus the Al/Ti ratio. (The multiple 

points at each Al/Ti level are measured replicates, not polymerization replicates, so the variability at 

each Al/Ti level reflects variability in UCED measurements). Since UCED for Sample 448, (made at 

the high Al/Ti ratio of 49 500) is low and the sample has no LCBs, it seems that high Al/Ti ratios 

slow down chain transfer reactions that lead to the formation of vinyl-terminated chains 

(macromonomers), while the rate of transfer to MAO increases. It also appears that the decrease in 

the rate of macromonomer formation reactions is more pronounced than the increase in the rate of 

chain transfer to MAO as the Al/Ti ratio is increased. The overall effect of these two rate changes is 

that molecular weight initially increases with increasing Al/Ti ratio until it finally levels off while, at 

the same time, the concentration of macromonomer decreases. Therefore, when the Al/Ti ratio 

decreases, the rate of macromonomer formation increases, the molecular weight decreases, and more 

LCBs are formed.  

Figure 7-24 shows how the unsaturated chain end frequency (UCEF), or the number of unsaturated 

chain ends per polymer chain, varies as a function of the Al/Ti ratio. The UCEF was calculated with 

the expression, 

14000

nMUCED
UCEF




    
(7-52)

 

It is interesting to note that at low Al/Ti ratios UCEF is approximately equal to 1. This indicates that 

most chains in the sample have one vinyl terminal group and, consequently, that chain transfer to 

MAO is negligible when the Al/Ti ratio is relatively low. Since UCEF decreases with increasing 

Al/Ti and chain transfer to MAO does not produce vinyl terminated chains, transfer to MAO is likely 

to become more relevant at higher Al/Ti ratios. 
 

Figure 7-25 compares the MWD of Sample 448 made at Al/Ti = 49 500 with those of Samples 444 

and 453, produced with Al/Ti ratios of 4 900 and 1 200, respectively. The fraction of low molecular 

weight chains increases when the MAO concentration decreases. It can be speculated that this lower 

molecular weight chains are more likely to be vinyl terminated. It is also interesting to note that, for 

these samples, MWD depends on MAO concentration, not on Al/Ti ratio, because Samples 453 and 

444 were made at the same MAO concentration but at different Al/Ti ratios of 1200 and 4200, 

respectively.   
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Figure  7-23. Unsaturated chain end density (UCED) as a function of Al/Ti ratio. 

 

Figure  7-24. Unsaturated chain end frequency (UCEF) versus Al/Ti ratio. 
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Figure  7-25. Molecular weight distributions of Samples 444, 453,   and 448 made at different Al/Ti ratios. 
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Table  7-10. Summary of polymerization runs (Effect of monomer concentration at Al/Ti=916). 

Run 733 734 735 736 737 738 741 742 745 

Total reactor 

pressure (psig) 
120 160 80 80 120 205 120 40 40 

Catalyst concentration: 4.9 mole/L, Temperature: 120oC, Al/Ti: 916. 

 

Table  7-11. Summary of GPC results and polymer yields (Effect of monomer concentration at Al/Ti=916). 

Run Pressure 

(psig) 

Mw Mn PDI Polymer 

Yield (g) 

LCBF
a
 

733 120 142200 40200 3.5 4.57 0.2 

734 160 176700 46400 3.8 6.64 0 

735 80 113400 31400 3.6 2.04 0.27 

736 80 113600 32400 3.5 2.50 0.25 

737 120 137600 38600 3.6 4.79 0.21 

741 120 158900 46300 3.4 4.69 0.18 

742 40 94000 23400 4.0 0.65 0.32 

738 205 195300 55100 3.5 10.22 0 

745 40 105200 24900 4.2 0.77 0.3 

a Estimated using Zimm-Stockmeyer equation. 

 

Figure 7-26 plots polymer yield versus monomer concentration. As observed for high Al/Ti (see 

Figure 7-1), a non-first order dependence on monomer concentration is also noticed.  

Plots of the 15
o
 GPC light scattering detector signal intensity versus elution volume for all polymer 

samples are shown in Figure 7-27. At an ethylene pressure of 120 psig, a shoulder is observed on the 

low elution volume region (high molecular weight), which corresponds to long chain branched 

polymer chains, as demonstrated in Section 7.4.8.1. Decreasing ethylene pressure accentuates this 

bimodality. The area under the high molecular weight peak (low elution volume) increases as 

ethylene pressure decreases, implying that LCB formation is more significant at lower pressures.  
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Figure  7-26. Polymer yield as a function of ethylene concentration (Al/Ti=916). 

 

 

Figure  7-27. 15
o
 GPC light scattering detector signal intensity versus elution volume for samples in Table 7-10. 
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 Figure 7-28 compares the MWDs for all samples, and log [] versus log MW plots for the linear 

polyethylene standard NBS 1475 and Sample 745 (made at 40 psig). The nonlinear log [] versus log 

MW curve for Sample 745 is a clear indication of the presence of LCBs. The high molecular weight 

shoulders seen for the samples made at 120, 80, and 40 psig are also indications of LCB chains. 

Zimm-Stockmayer equations, introduced in Chapter 5, were used to estimate the LCB frequency for 

these samples (Table 7-11), confirming that decreasing ethylene pressure in the reactor leads to more 

long chain branching in the polymer. 

Figure 7-29 shows how Mn, Mw and PDI vary with ethylene concentration. PDI is almost constant at 

high ethylene concentrations, but starts to increase for values lower than 0.4 mol/L. This change in 

PDI at lower ethylene concentrations can be attributed to an increase in the rate of LCB formation due 

to the decreasing ethylene concentration. Although at high ethylene concentrations (ethylene 

pressures of 160 psig and higher) no sign of LCB was observed by the GPC viscometer, PDI still 

remains higher that the theoretical value of two expected for polyethylene made with single-site 

catalysts at uniform conditions, which indicates that not all increase in PDI can be attributed to long 

chain branching. In fact, a true single site behavior is not observed when MAO concentration is low.   

 

 

Figure  7-28. Molecular weight distribution of the polyethylene samples made at low Al/Ti ratio and Plot of log 

[] versus log MW for Sample 745 (P =40 psig)  and NBS 1475. 
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Figure  7-29. Effect of ethylene concentration on Mn, Mw and PDI (Low MAO concentration)  

Finally, Figure 7-30 compares Mn and Mw for the two sets of samples made at low and high Al/Ti 

ratios. Weight and number averages are higher when the polymers are made at larger Al/Ti ratios, but 

this difference decreases for lower ethylene pressures. 

 

 

Figure  7-30. Effect of ethylene concentration and Al/Ti ratio on molecular weight. 
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7.5 Conclusions 

The kinetics of ethylene solution polymerization using the CGC/MAO system was studied in a 

semibatch reactor at high temperature. The propagation reaction order was found to be first order with 

respect to catalyst concentration, whilst the order with respect to ethylene concentration changed from 

1 to 2. Assuming reversible activation and deactivation with MAO along with thermal deactivation 

can explain the effect of time, monomer and catalyst concentration on the propagation rate. 

Decrease in MAO concentration leads to the production of polymer chains with terminal vinyl 

groups, which may be subsequently incorporated into growing polymer chains to produce long chain 

branched polymers. Polymer molecular weight is decreased by lowering MAO concentration, whilst 

PDI increases. Part of the increase in PDI due to the lowering of MAO concentration can be attributed 

to LCB formation, whereas the rest results from non single site behavior of the catalyst at low MAO 

concentration. Decrease in monomer concentration leads to the production of polymer chains with 

increased LCB frequencies while the MAO concentration is low.  
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Chapter 8   

Kinetic Study on Homopolymerization of Ethylene Using a 

Combination of Two Single Site Catalysts in a Solution Reactor 

8.1 Summary 

The homopolymerization of ethylene and copolymerization of ethylene and 1-octene was studied in a 

semi-batch solution reactor using a combination of dimethylsilyl(N-tert-butylamido)- 

(tetramethylcyclopentadienyl)-titanium dichloride  (CGC-Ti) and rac-Et(Ind)2ZrCl2 catalyst and 

MAO as cocatalyst. Polymerizations were performed either at high (0.013 mol Al/L) and low (0.003 

mol Al/L) MAO concentrations. The results show that catalyst sites act independently of each other 

and no increase in long chain branch formation was observed. Based on Crystaf profiles of the 

copolymerization runs, reactivity ratios for ethylene\1-octene using rac-Et(Ind)2ZrCl2 and CGC-Ti 

were determined. 

8.2 Introduction 

Increasing polymer molecular weight improves physical properties of unimodal MWD polyolefin 

resins at the expense of decrease in processability. One way of overcoming this problem is to use 

bimodal MWD resins. Bimodal resins have both high and low molecular weight polymer chains. Low 

molecular weight polymer chains enhance processability and the high molecular weight ones enhance 

physical properties. The common method for making bimodal resins is to use two reactors in series 

(tandem reactor technology). Metallocene catalyst technology has made it possible to produce 

bimodal resins in a single reactor by using two metallocenes that make polymer chains with 

significantly different average molecular weights. Intimate mixing of high and low molecular weight 

portions, less process complexity, and lower investment costs are among the advantages of using 

metallocene catalysts for making bimodal MWD resins. Another way to increase processablity is to 

introduce long chain branches into unimodal MWD resins. Combined metallocene catalysts can also 

be used to make bimodal resins with long chain branches. In this chapter, we investigate the 

combination of rac-Et(Ind)2ZrCl2 and CGC-Ti to make polyethylene with increased long chain 

branching. Three cases were tested: homopolymerization at high and low MAO concentration, and 

copolymerization at high MAO concentration.  
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8.3 Experimental 

8.3.1 Materials 

Methylaluminoxane (MAO, 10 wt % in toluene, Sigma-Aldrich) was used as received. 1-Octene was 

passed through a packed column filled with molecular sieves (3, 4, and 5-Å). The purification process 

for ethylene, nitrogen, and toluene was explained in Chapter 6, Section 6.3.1. The catalysts, CGC-Ti 

and rac-Et(Ind)2ZrCl2  were  purchased as powders from Boulder Scientific and dissolved in toluene 

which was first  distilled over metallic sodium and then flown through a molecular sieve bed before 

polymerization. 

8.3.2 Polymer Synthesis and Characterization 

The method used for homopolymerization was explained in Chapter 6, Section 6.3.2. Catalysts were 

mixed in a vial and then transferred to the catalyst injection assembly about 10 minutes before 

transferring into the reactor. For copolymerization with the combined catalyst system, 1-octene was 

transferred into the reactor after MAO injection. 

Methods used for polymer characterizations were explained in Chapter 7, Section 7.3.3. 

8.4 Results and Discussion 

8.4.1 Ethylene Homopolymerization with Et(Ind)2ZrCl2/CGC-Ti at High MAO 

Concentration  

The simulation results presented in Chapter 3 show that when ethylene is polymerized with two single 

site catalysts, one capable of producing macromonomers and the other of incorporating 

macromonomers, the long chain branching frequency can be increased. The results reported in 

Chapter 6 show that rac-Et(Ind)2ZrCl2 is an excellent catalyst for the production of polyethylene 

macromonomers. As dicussed in Chapter 7, some of the polymer samples made with CGC-Ti 

contained long chain branches. To check whether the macromoners produced by rac-Et(Ind)2ZrCl2 

could be incorporated into the growing polymer chains produced by CGC-Ti, ethylene was 

polymerized with a combination of these two catalysts at high MAO concentration. Fourteen 

polymerizations were run at seven different molar catalyst ratios. Table 8-1 summarizes the 

polymerization conditions for these runs. Molecular weights and polymer yields for all these runs are 

listed in Table 8-2. 
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Table  8-1. Polymerization conditions for combined catalyst system at high MAO concentration. 

Run CGC 

Concentration 

(nmol) 

rac-Et(Ind)2ZrCl2 

Concentration 

(nmol) 

'x  Polymer Yield 

(g) 

274 0 11.5 0 5.15 

276 608 0 1 5.87 

277 304 5.8 0.5 5.44 

278 203 7.6 0.34 5.37 

279 506 1.9 0.83 5.47 

280 104 9.6 0.17 5.39 

281 400 4 0.65 5.99 

282 400 4 0.65 4.94 

283 304 5.8 0.5 4.93 

284 0 11.5 0 4.59 

285 608 0 1 4.81 

286 104 9.6 0.17 4.9 

287 506 1.9 0.83 5.1 

288 304 5.8 0.5 5.12 

Polymerization Temperature:120 
0
C, Polymerization Pressure : 120 psig. Polymerization time: 15 min, MAO 

concentration: 0.013 mol Al/L. 

 

Average polymer yield per mole of rac-Et(Ind)2ZrCl2 catalyst, calculated from polymer yield data  for 

runs 274 and 284,  using Equation I-2 in Appendix I, with 95% confidence interval is :  

mole

Kgt
69800423500

2)105.111000(

48.0

)105.1110002(

)59.415.5(
9

)714,025.0(

9
















     

(8-1) 

Similarly, the average polymer yield per mole of CGC-Ti catalyst, calculated from polymer yield data 

for runs 276 and 285, with 95% confidence interval is:  

 
mole

Kg
13208783

2)106081000(

48.036.2

)1060810002(

)81.487.5(
99












   

(8-2) 

 

In order to estimate 95% confidence intervals in the above calculations, we assumed that the same 

phenomena were generating random error at each level of catalysts combination; therefore, the 

polymer yield standard deviations at all levels were pooled to obtain a single estimate of the standard 

deviation, equal to 0.48 g (for more details on pooled standard deviation, see Appendix I).  
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Comparing polymer yields for rac-Et(Ind)2ZrCl2 and CGC-Ti shows that the polymer yield per mole 

of rac-Et(Ind)2ZrCl2 is about 50 times of the polymer yield per mole of CGC-Ti under the same 

polymerization conditions. Consequently, using catalyst mole fraction is not a convenient variable for 

displaying polymer yield data for this combined system. A modified catalyst mole fraction, 
'x , 

defined by the equation below was introduced,  

 
  Ti-CGC of moles maximum

  Ti-CGC of  moles

  ZrClEt(Ind)-rac of moles maximum

 ZrClEt(Ind)-rac of moles
  Ti-CGC of moles maximum

  Ti-CGC of  moles

22

22

'



x

  (8-3) 

The parameters, maximum moles of CGC-Ti, and, maximum rac-Et(Ind)2ZrCl2, introduced in 

Equation 8-3 are 608 and 11.5  nmol, respectively, which are the moles of catalyst injected into the 

reactor  for the Runs 276 and 274. The fourth column of Table 8-1 gives 
'x values for each run. 

 

Table  8-2. Molecular weight averages and polymer yields for runs listed in Table 8-1. 

Run Mw Mn PDI Polymer Yield 

(g) 

wc×100 wGPC×100 

274 48 800 23 400 2.09 5.15 0 0 

276 191 000 79 000 2.41 5.87 100 100 

277 149 200 39 600 3.77 5.44 52 63 

278 116 000 31 600 3.68 5.37 36 43 

279 171 800 57 200 3.00 5.47 85 87 

280 87 500 27 700 3.16 5.39 18 21 

281 162 800 45 400 3.58 5.99 68 73 

282 155 800 45700 3.41 4.94 68 71 

283 142 000 38 200 3.72 4.93 52 57 

284 46 900 23 600 1.99 4.59 0 0 

285 186 400 79 200 2.35 4.81 100 100 

286 78 500 26 100 3.01 4.9 18 20.4 

287 162 000 54 000 3 5.1 85 83 

288 136 800 37 700 3.63 5.12 52 58 

 

Figure 8-1 plots the polymer yield versus the  modified CGC-Ti mole fraction, 
'x  . The linear trend 

observed indicates that activities of these two catalysts are additive and do not affect each other. 

Visual inspection of the polymer yield data in Figure 8-1 also shows that the polymer yield variance 

does not depend on CGC-Ti fraction, supporting the use of pooled standard deviation. 
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Figure  8-1.Polymer yield versus modified catalyst mole fraction x´. 

The Mark-Houwink plot and 
13

C NMR analysis were used to determine whether combining these two 

catalysts increase long chain branching. Figure 8-2 shows the MWD of all samples overlaid with their 

corresponding log [] versus log M plots. The linear trends observed in their intrinsic viscosity plots 

indicate lack of long chain branching. To support these observations, we analyzed samples 274 and 

277, containing zero and 50 weight % CGC-Ti polymer, respectively, by 
13

C NMR. Their spectra 

showed resonances related to saturated and vinyl carbons, but any peaks indicative of the presence of 

long chain branches were not detected (Figure 8-3). 

 

Figure  8-2. MWDs and Mark-Houwink plots for the sample listed in Table 8-1. 
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Figure  8-3. 
13

C-NMR spectra for sample 277 (top) and sample 274(bottom). 

8.4.1.1 Determination of Weight Fraction of CGC-Ti Polymer Using GPC. 

It is possible to calculate the weight percent of polymer made with each catalyst type using the 

molecular weight distribution of polymers produced with the combined catalyst system. The 

following paragraph explains how this calculation was performed.  

Polymers made using individual rac-Et(Ind)2ZrCl2 and CGC-Ti were mixed in different proportions 

and their MWDs were measured by GPC. Seven 20 mg polymer blends containing 0, 20, 40, 50, 60, 

80 and 100 wt% CGC-Ti polymer were prepared using a precision scale, with accuracy of ±0.0001 g. 

The weight fraction of the CGC-Ti polymer in the samples (we refer to this weight fraction as wGPC 

afterwards) listed in Table 8-2 was measured by interpolating between the MWD of those seven 

polymer blends. Figure 8-4 compares the MWD of sample 283 with the two polymer blends prepared 

by adding CGC-Ti and rac-Et(Ind)2ZrCl2  polymers. The wGPC for those two blends were 50 and 60 

(w50 and w60 samples, respectively). As shown in Figure 8-4, the MWD for sample 283 lies between 

the MWDs of w50 and w60 samples. Therefore, the wGPC for sample 283 should be between 50 and 

60 %. The precise wGPC for sample 283 can be obtained by a trial and error procedure based on the 

MWDs of the samples w50, w60, and 283 using the following MWD linear interpolation expression,  
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     (8-4) 

where dw50 and dw60 are the weight fractions of the slices coming out of the GPC columns at 

molecular weight M for samples w50 and w60, respectively, dwint  is the interpolated weight fraction 

of the slice at the same molecular weight, M, and x is the wGPC for sample 283, which is unknown and 

should be determined by trial and error. If we choose the correct value of x, we expect the MWD for 

sample 283 to coincide with the interpolated MWD (Figure 8-4). The wGPC for sample 283 

determined by this method was 0.565. The same method was applied to obtain the wGPC for other 

samples, shown in the last column of Table 8.2. 

 

 

Figure  8-4. MWD for sample 283, w50, w60, and interpolated MWD with 56.5 wt% content of CGC-Ti 

polymer and polymers made using individual CGC-Ti and rac-Et(Ind)2ZrCl2 catalysts. 

      

We can also predict the weight fraction of the CGC-Ti polymer in the polymer samples using the 

average polymer yield per mole of the individual catalysts, calculated in Section 8.4.1, Equations 8-1 

and 8-2, and moles of individual catalysts used in the polymerization. Henceforth, we refer to this 

weight fraction as wc.  
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Equation below was used to calculate wc . 

indEtindEtcTiCGCTiCGCc

TiCGCTiCGCc

c
anan

an
w










,,

,

    
(8-5)

 

where nc,CGC-Ti  and nc,Et-ind  are  the moles of CGC-Ti  and rac-Et(Ind)2ZrCl2 catalysts  injected into the 

reactor, respectively, and aCGC-Ti and  aEt-ind  are their corresponding  average polymer yield per mole 

of catalyst. The sixth column of Table 8-2 tabulates the values calculated for wc. 

Figure 8-5 plots wGPC for the samples, versus wc, for all the runs listed in Table 8-1. A positive 

deviation (wGPC > wC) is observed, which may be attributed to the effect of change in Al/Ti ratio on 

polymer yield. For example, in sample 283, CGC-Ti and rac-Et(Ind)2ZrCl2 concentrations in the 

reactor are half of those in samples 276 and 274, respectively. When CGC-Ti concentration is 

reduced, the Al/Ti ratio increases; therefore, an increase in the activity of CGC-Ti is expected as 

shown in Chapter 7, Figure 7-17. On the other hand, for rac-Et(Ind)2ZrCl2 an increase in yield is not 

expected because the MAO concentration is so high that a further increase in MAO concentration 

has no effect on its activity, as shown in Figure 6-32 in Chapter 6. 

 

 

Figure  8-5. Plot of wGPC  versus wc    

Figure 8-6 plots Mw, Mn and PDI versus wGPC. The linear relation observed in the Mw plot seems to 
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maximum increase in PDI is achieved when the weight fraction of CGC-Ti polymer is about 0.5, as 

also expected.  

 

Figure  8-6. Molecular weight averages and PDI versus weight fraction of CGC-Ti polymer (wGPC).  

 

Since, in Case study 1 in Chapter 3, we assumed that both catalysts have the same propagation and 

deactivation rate constants, the immediate consequence is that the LCB catalyst mole fraction and 

LCB catalyst weight fraction are equivalent. Therefore it is reasonable to compare the trends in  

Figure 8-6 with those in Figures 3-6, 3-7, and 3-8. As it was shown in Figure 3-7, weight average 

chain length is a linear function of LCB catalyst mole fraction which is consistent with the trend 

observed in Figure 8-6 for Mw. A nonlinear increasing trend is seen for Mn in Figutre 8-6 which is 

again in consistent with the simulation trend observed in Figure 3-8 for the number average chain 

length. Polydispersity index passes a maximum at LCB catalyst mole fraction of 0.5 which was also 

observed in Figure 8-6.  

 

8.4.2 Copolymerization of Ethylene and 1-Octene Using Et(Ind)2ZrCl2/CGC-Ti  at 

High MAO Concentration. 

A total of nine polymerizations were run, in random order, at seven different and equally 

spaced 1-octene concentration levels to investigate 1-octene incorporating ability of the two 
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catalysts under the same polymerization conditions. Except for 1-octene concentration, all 

reaction variables were kept the same during the polymerizations. Table 8.3 indicates the 

conditions used for each experiment. 

Crystaf was used to analyze the 1-octene incorporation in the copolymer samples. The Crystaf 

profiles for all the runs in Table 8-3 are illustrated in Figures 8-7 and 8-8. Two full replicates (runs 

408 and 412) were performed to show the repeatability of the bimodal Crystaf profiles. With the 

exception of samples 413 and 415, made without 1-octene, all Crystaf profiles were bimodal, showing 

that the reactivity ratios for rac-Et(Ind)2ZrCl2 and CGC-Ti are very different: the high temperature 

peaks correspond to copolymer chains made with rac-Et(Ind)2ZrCl2, while the low temperature ones 

are related to copolymers formed on CGC-Ti. Since no intermediate Crystaf peak was observed for 

any sample, we may conclude that copolymer chains made with rac-Et(Ind)2ZrCl2 were not 

significantly incorporated on chains made with CGC-Ti. 

Table  8-3. Copolymerization conditions using combined metallocene catalysts. 

Run CGC-Ti 

nanomoles 

 rac-

Et(Ind)2ZrCl2 

(nanomoles) 

1-octene (g) Yield (g) 

407 106.3 2.97 8 7.92 

408 106.3 2.97 4 8.76 

409 106.3 2.97 12 7.52 

410 106.3 2.97 6 8.67 

415 106.3 0 0 3.6 

412 106.3 2.97 4 6.8 

411 106.3 2.97 10 7.1 

414 106.3 2.97 2 7.13 

413 106.3 2.97 0 6.3 

MAO concentration = 0.013 mol Al/L, toluene volume = 222.8 ml, polymerization temperature = 

120
o
C, total reactor  pressure = 120 psig, polymerization time = 15 min. 

 

Figure 8-9 shows MWD and hexyl branch distribution (HBD) for four samples covering the whole 

range of 1-octene loading into the reactor. For all three copolymer samples (407,408,409), HBD is 

low for the low molecular weight components, where most of the polymer chains were formed by 

rac-Et(Ind)2ZrCl2, while increasing to higher values for the high molecular weight components, made 
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with CGC-Ti. This type of distribution is called reverse comonomer incorporation, meaning that the 

comonomer content of the copolymer increases as the molecular weight of the polymer chains 

increases. Polymers with reverse comonomer incorporation are useful in improving the characteristics 

that govern long term creep-related properties like slow crack growth resistance.
[169]

  

  

 

Figure  8-7. Crystaf profiles for samples 413, 408, 412, 407 and 409. 

 

Figure  8-8. Crystaf profiles for samples 410, 411, 414 and 415. 
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Figure  8-9. MWD and HBD for samples 407 (8 g 1-octene), 408 (4 g 1-octene), 409 (12 g 1-octene) and 413 

(0.0 g 1-octene). The dashed curve shows MWD for sample 413. 

 

Table 8-4 summarizes the GPC results of the samples shown in Figure 8-9, and sample 415 which 

was made using CGC-Ti catalyst alone. Although the HBD of the three copolymer samples differ 

significantly, their MWDs and molecular weight averages are nearly the same.  

 

Table  8-4. Summary of GPC results for some selected samples from Table-8-3 

Run HBD Mw Mn PDI 

407 13.1 110 700 40 500 2.73 

408 7.1 128 400 41 800 3.1 

409 21.3 100 330 40 800 2.46 

413 0 100 200 36 500 2.74 

415 0 183 300 80 900 2.26 

 

When the peak crystallization temperature, Tpeak, for both Crystaf profile peaks shown in Figures 8-7 

and 8-8 are plotted versus the mass of 1-octene added to the reactor, two linear relationships are 

observed, showing that both catalyst sites compete for 1-octene incorporation (Figure 8-10).  
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Figure  8-10. Crystaf peak temperature versus 1-octene mass added to the reactor for the runs listed in the Table 

8-3. 

 

8.4.2.1 Reactivity Ratio Estimation 

Crystaf peak temperature data (Figure 8-10), Crystaf calibration curve (Figure 5-4), the Mayo-Lewis 

equation, and a method to estimate 1-octene and ethylene concentration in the reactor liquid phase at 

the polymerization conditions were used to estimate the reactivity ratios for ethylene/1-octene using 

CGC-Ti and rac-Et(Ind)2ZrCl2. 

The Mayo-Lewis equation, relating the mole fraction of ethylene in copolymer, F1, to ethylene mole 

fraction in the reactor, f1, is given by,  
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The variable f1 can be calculated using ethylene, M1, and -olefin, M2, molar concentrations in the 
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Finally, r1 and r2 are the reactivity ratios given by the expressions, 
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(8-9) 

where k11 and k21 are the propagation rate constants when M1 reacts with polymer chains ending with 

M1, or M2, respectively, and k12 and k22 are the corresponding propagation rate constants when M2 

reacts with  polymer chains ending with M1 and M2, respectively. 

Aspen Plus was used to estimate ethylene, 1-octene, and toluene concentrations in the reactor liquid 

phase. The Peng-Robison equation of state was selected to estimate the fugacity coefficients of each 

component in both vapor and liquid phases. Table 8-5 lists the output results of Aspen Plus for 

concentration of ethylene, 1-octene, and toluene in the liquid phase. 

 

Table  8-5. Liquid phase composition of ethylene/1-octene/toluene mixtures at 120
o
C and 120 psig as 

estimated by Aspen Plus using the Peng-Robison equation of state. 

 Liquid phase composition 

1-octene in the  

feed (g) 

1-octene 

(mol/L) 

Ethylene 

(mol/L) 

Toluene 

(mol/L) 

f1 

0 0.0000 0.4480 8.073 1.000 

2 0.0678 0.4480 7.970 0.869 

4 0.1339 0.4479 7.869 0.770 

6 0.1983 0.4479 7.771 0.693 

8 0.2611 0.4478 7.675 0.632 

10 0.3225 0.4477 7.582 0.581 

12 0.3823 0.4476 7.491 0.539 

Toluene volume: 222.8 ml  

 

The relationship between the mass of 1-octene added to the reactor and the resulting concentration in 

the liquid phase is almost linear, as is illustrated in Figure  8-11.  

Table  8-6 lists the Tpeak for Figure  8-7 and 8-8 and their corresponding 1-octene contents, calculated 

using Equation (5-6), and F1 values. Since there are two Crystaf peaks for copolymers made in the 

combined catalysts runs, two values are reported for 1-octene and ethylene mole fractions.The 

Percent conversion of 1-octene can also be calculated based on the Crystaf profiles, polymer yields 

and Crystaf calibration curves as it is explained below for sample 410.  
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The percent area under the CGC-Ti peak in the Crystaf profile for sample 410 is 58.2 which was 

calculated by numerical integration. The 1-octene mole% of the two peaks of Crystaf profiles for 

sample 410 can be converted to 1-octene wt %, and then since polymer yield is known, mass of 1-

octen in the final polymer is calculated. 1-octene conversion is the mass of 1-octene incorporated 

divided by the initial mass of 1-octene in the liquid phase which can be calculated by multiplying the 

1-octene concentration in the liquid phase and volume of liquid phase estimated using the phase 

equilibrium calculation through Aspen Plus (Table 8-7, third column). Calculation for sample 410 is 

given below. 

Mass of 1-octene in the polymer: 

=8.67×0.58×10.56/100 + 8.67×(1-0.58)×1.82/100=0.53+0.066=0.596 g  (8-10) 

Initial mass of 1-octene in the liquid phase = 0.267×0.1983×112.2=5.94 g  (8-11) 

1-octene fractional conversion=0.596/5.94=0.101  (8-12) 

Summary of the calculations for the other samples are given in Table 8-7. 1-Octene conversions for 

all runs were low; therefore, it is reasonable to assume that the 1-octene concentration remains 

practically the same throughout the polymerization.   

  

 

Figure  8-11. Relationship between 1-octene concentration in the reactor liquid phase and the amount of 1-

octene added to the reaction mixture (estimated by Aspen Plus). 
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Table  8-6. Copolymerization runs for samples made using a combination of CGC-Ti and rac-Et(Ind)2ZrCl2. 

Run CGC-

Ti 

Peak 

(
o
C) 

rac-

Et(Ind)2ZrCl2 

peak (
o
C) 

1-octene mole 

%  

 in polymer 

(CGC-Ti 

peak) 

1-octene mole %   

in polymer 

(rac-Et(Ind)2ZrCl2 

peak) 

F1  

(CGC-Ti) 

F1 (rac-

Et(Ind)2

ZrCl2) 

407 51 80.2 3.991 0.484 0.9601 0.9952 

408 68.1 82.1 1.937 0.256 0.9815 0.9974 

409 35.7 75.5 5.828 1.049 0.9417 0.9895 

410 60.4 80.4 2.862 0.460 0.9714 0.9954 

415 87.1 NA 0 NA 1 NA 

412 68.1 82.3 1.937 0.232 0.9806 0.9977 

411 44.6 76.9 4.76 0.880 0.9524 0.9912 

414 78.7 83.4 0.664 0.1 0.9934 0.9990 

413 87 87 0 0 1 1 

 

 

Table  8-7. Summary of calculation results for 1-octene conversion. 

Run CG wt% by 

Crstaf 

Liquid phase 

volume (L) 

1-octene wt% 

in CGC-Ti 

polymer peak 

1-octene wt% 

in 

 rac-

Et(Ind)2ZrCl2 

polymer peak 

1-octene 

Conversion (%) 

407 51 0.271 14.28 1.91 8.2 

408 54 0.261 7.33 1.02 9.8 

409 58 0.277 19.87 4.07 8.4 

410 58 0.267 10.56 1.82 10.1 

412 50 0.261 7.33 0.92 7.2 

411 47 0.274 16.69 3.44 6.9 

414 50
*
 0.261 2.61 0.40 5.4 

413 0.00 0.257 0.00 0.00 0.0 

* Due to overlapping of the Crystaf peaks, a tentative value of 50 wt% was assumed. 

Crystaf peak temperature data and their corresponding 1-octene contents for a set of ten 

copolymerization runs conducted at exactly the same polymerization conditions of the runs listed in 

Table 8-3, except using rac-Et(Ind)2ZrCl2 catalyst instead of using combined catalysts, are also given 

in Table 8-8.  Their corresponding Crystaf profiles are shown in Figure  8-12. 
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Table  8-8.Summary of copolymerization run results for samples made using  rac-Et(Ind)2ZrCl2 

Run 1-octene in 

feed (g) 

Tpeak (
o
C) 1-octene 

mole %  in 

copolymer 

f1 F1 

397 0 87 0 1.0000 1.0000 

398 4 82.8 0. 17 0.7699 0.9983 

399 12 75 1.11 0.5393 0.9889 

400 0 86.5 0 1.0000 1.0000 

401 8 79.1 0. 62 0.6316 0.9938 

402 12 75.6 1.04 0.5393 0.9896 

403 8 78.9 0. 64 0.6316 0.9936 

404 4 83.1 0. 14 0.7699 0.9986 

405 8 78.6 0. 68 0.6316 0.9932 

406 4 82.9 0. 16 0.7699 0.9984 

T=120 
o
C, P=120 psig, MAO concentration=0.015 

 

 

Figure  8-12. Crystaf profiles for the samples made with rac-Et(Ind)2ZrCl2 listed in Table  8-8.  

 

Figure  8-13 plots the 1-octene mole fraction in the polymer versus 1-octene concentration (mol/L) in 

the liquid phase for the combined catalyst system. The line with the higher slope corresponds to 

copolymer chains formed on CGC-Ti and the lower line is related to copolymer chains formed on 

rac-Et(Ind)2ZrCl2. The corresponding plot, related to samples made with to rac-Et(Ind)2ZrCl2 alone is 

also given in Figure 8-13 and is indistinguishable from samples made with rac-Et(Ind)2ZrCl2 in the 
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combined catalyst system, implying that presence of CGC-Ti has not affected 1-octene incorporation 

by rac-Et(Ind)2ZrCl2. Therefore, to calculate the reactivity ratio for rac-Et(Ind)2ZrCl2, we used both 

sets of data, rac-Et(Ind)2ZrCl2 alone and in combination with CGC-Ti. The ratio of the slopes of the 

upper to the lower line in Figure  8-13 is 6.1; it is a measure of the reactivity towards 1-octene 

incorporation of CGC-Ti relative to rac-Et(Ind)2ZrCl2. 

 

 

Figure  8-13. 1-octene content in polymer (mole fraction) versus 1-octene concentration in the liquid phase 

(mol/L) for combined catalyst system and rac-Et(Ind)2ZrCl2 alone (red diamond symbols). 

 

Estimates of the reactivity ratios, r1 and r2, for rac-Et(Ind)2ZrCl2 were obtained by fitting Equation (8-

6) to the experimental data and minimizing the sum of square of residuals using Newton‘s method. 

MATLAB curve fit toolbox was used for nonlinear regression. Table 8-9 summarizes the results of 

the curve fitting. 

  

Table  8-9. Reactivity ratios for ethylene/1-octene using rac-Et(Ind)2ZrCl2/MAO. 

Parameter Value Lower confidence limit Higher confidence limit 

r1 133.6 97.3 169.9 

r2 0.79 0.2 1.38 

Sum of squares of residuals=4.9×10
-6

, R
2
=0.98 
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Similar calculations were performed to estimate the reactivity ratios for CGC-Ti (Table 8-10).  

Finally, Figure  8-14 shows the Mayo–Lewis equation fit for the copolymer composition as a function 

of ethylene molar fraction in the initial monomer mixture for the rac-Et(Ind)2ZrCl2 and CGC-Ti 

systems.  

 

Table  8-10.  Reactivity ratios for  ethylene/1-octene using CGC-Ti/MAO catalyst system (combined catalyst 

system) . 

Parameter Value Lower confidence limit Higher confidence limit 

r1 17.06 14.39 19.73 

r2 0.356 0.085 0.627 

Sum of squares of residuals=1.03×10
-5

, R
2
=0.996 

 

 

 

Figure  8-14. Copolymer composition versus liquid phase composition for rac-Et(Ind)2ZrCl2 and CGC-Ti 

systems.  

Estimates of the reactivity ratios, r1 and r2, for rac-Et(Ind)2ZrCl2 have wider confidence intervals than 

CGC-Ti. This is due to high variability in the F1 measurements compared to the total change in  F1  

covered which is about 0.01.To decrease the confidence intervals, a wider range of  f1 values should 

be covered for rac-Et(Ind)2ZrCl2 catalyst or we should use 
13

C-NMR instead of Crystaf calibration 

curve, to reduce the variability in the F1  measurements. 
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8.4.3 Ethylene Homopolymerization with Combined Metallocene Catalysts at Low  

MAO Concentration (0.003 mol Al/L) 

 

Similar to the set of polymerization runs shown in Table 8-1, another set of polymerizations were 

conducted at low MAO concentration (0.003 mol Al/L). Polymerization temperature and pressure, 

MAO concentration, and polymerization time were kept the same. Table 8-11 summarizes the 

polymerization conditions for these runs. The variable 
'x  in Table 8-11 is the modified catalyst mole 

fraction, as defined by Equation (8-3).  

Table  8-11. Polymerization conditions using combined metallocene catalysts ([MAO] = 0.003 molAl/L). 

Run CGC-Ti 

(nanomoles) 

rac-

Et(Ind)2ZrCl2 

(nanomoles) 

'x  Yield 

507 0 3 0.00 3.89 

509 546 0 1.00 4 

510 546 3 0.50 7.46 

511 546 2.04 0.59 4.77 

512 182 3 0.25 4.41 

513 546 1.01 0.75 3.93 

514 364 3 0.40 5.85 

Total reactor pressure=120 psig, Temperature= 120 
o
C, Polymerization time =15 min. 

 

Figure 8-15 shows MWDs for all samples overlaid with their corresponding log [] versus log M 

plots. Except for sample 509 (dashed curve), for which a slight departure from linearity is seen in its 

viscosity plot, all the other samples follow a linear trend indicating that there is no detectable long 

chain branching. Samples 507, 509 and 510 were also analyzed by 
13

C-NMR (Figure 8-16). No peaks 

related to long chain branches (α, β or br carbons ) were observed for samples 507 and 510; however, 

peaks related to α and β carbons, which are indicative of LCB, were observed in the spectra for 

sample 509 which was made using only CGC-Ti. The peak related to the br carbon was not observed, 

likely because the intensity of this carbon peak is almost one third of the other two. The long chain 

branch frequency estimated based on these two peaks was about 0.11 LCB per chain.  
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Figure  8-15. Molecular weight distributions and Mark-Houwink plots for samples listed in Table 8-11. 

 

 

Figure  8-16. 
13

C-NMR spectra for samples 509 (above), 510 (middle) and 507 (below). 
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Table 8-12 summarizes the molecular weight averages and polymer yields for this set of samples. The 

CGC-Ti polymer content for the samples, listed in the last column, were determined using Equation 

(8-13) below, which is analogous to Equation (8-4). The variables dw100 and dw0 are the weight 

fractions of the slices coming out of the GPC columns at molecular weight M for samples 509 and 

507, containing 100 and 0 % CGC-Ti polymer, respectively.  

0100int )1( dwxdwdw 

   

(8-13) 

Figure 8-17 illustrates MWDs of samples 507, 509, 510, and the hypothetical polymer blend 

containing 50 wt% CGC-Ti polymer. The full overlap of the MWDs for sample 510 and the 

hypothetical polymer blend containing 50 wt% CGC-Ti supports the hypothesis that macromonomers 

produced by rac-Et(Ind)2ZrCl2 catalyst sites have not been incorporated into polymer chains formed 

by CGC-Ti catalyst. This type of exact match for the MWDs was also seen for the other samples in 

this set. 

 

Table  8-12. Polymer yields and GPC results of samples listed in Table 8-11. 

Run Mw Mn PDI Yield wc  Wt fraction of CGC-Ti polymer  

in sample determined by MWD  

507 55 500 27 600 1.99 3.89 0  0 

509 121 500 39 300 3.10 4 1  1 

510 104 100 36 700 2.83 7.46 0.51  0.60 

511 95 300 33 800 2.82 4.77 0.60  0.56 

512 73 400 31 300 2.35 4.41 0.26  0.27 

513 117 300 34 900 3.36 3.93 0.75  0.71 

514 94 800 34 800 2.72 5.85 0.41  0.5 

 

 



 

 212 

 

Figure  8-17.  Molecular weight distributions of samples 507, 509, 510 and a hypothetical polymer sample with 

50% CGC-Ti polymer content. 

 

Figure 8-18 plots the weight fraction of the CGC-Ti polymer in the polymer samples, determined by 

GPC, versus weight fraction of the CGC-Ti polymer in the polymer samples, wc, estimated through 

catalyst mole fractions in the feed. Unlike the case of homopolymerization using the combined 

catalyst system at high MAO concentration (0.013 mol Al/L), a positive deviation was not observed. 

This seems reasonable because, at low MAO concentration, neither catalyst had reached their 

maximum activity, so their catalyst activities were affected by change in Al/catalyst ratio. The overall 

effect was such that no deviation was observed.   

This data can be examined from another point of view, by plotting the actual polymer yield and the 

theoretical polymer yield (yields when the effect of MAO concentration on polymer yield is 

neglected, so that the polymer yields from each catalyst are additive) versus 
'x , as shown in Figure 8-

19. The theoretical polymer yield, mth, was calculated based on the activity of the individual catalysts 

using equation below.  

indEtindEtcTiCGCTiCGCcth ananm   ,,

      

(8-14)
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 For all catalyst combinations, the actual polymer yield (dashed curve) is lower than the theoretical 

yield (solid curve) implying that catalyst activities have decreased.  By increasing catalyst 

concentration, while MAO concentration is constant, the ratio of Al to catalyst sites decreases causing 

decrease in catalyst activities which in turn decreases polymer yield.  

 

 

 

Figure  8-18. Weight fraction of CGC-Ti in polymer estimated using MWD versus the corresponding weight 

fraction using the concentration of the catalysts injected in the reactor ([MAO] = 0.003 mol Al/L). 

 

 

Figure  8-19. Actual polymer yield (dashed curve) and theoretical polymer yield (solid curve) versus modified 

catalyst mole fraction x´. 
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8.5 Conclusions  

Ethylene homopolymerization and copolymerization with 1-octene were conducted using a combined 

catalysts system (CGC-Ti and rac-Et(Ind)2ZrCl2) at low and high MAO concentrations (0.003 and 

0.013 mol Al/L, respectively). Polymer samples with bimodal MWDs were obtained at high MAO 

concentration but no LCB was detected in the samples using 
13

C NMR and a in-line GPC viscosity 

detector. The CGC-Ti polymer content of the samples were higher than expected based on the moles 

of the catalysts injected. This could be due to effect of  MAO/catalyst ratio on polymer yield.   

We also copolymerized ethylene and 1-octene using the combined catalysts system. Using the Crystaf 

calibration curve and Crystaf profiles of the copolymer samples, the reactivity ratios for ethylene/1-

octene were estimated. For CGC-Ti catalyst, estimates of r1 and r2 with approximate 95% confidence 

intervals are 17.1 ± 2.7 and 0.356 ± 0.271, respectively, whereas for rac-Et(Ind)2ZrCl2 their 

corresponding values are 133.6 ± 36.3 and 0.79 ± 0.59. 
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Chapter 9                                                                                                            

Production of Ethylene/-Olefin/1,9-Decadiene Copolymers with 

Complex Microstructures Using a Two-Stage Polymerization Process  

 

9.1 Summary 

Ethylene was copolymerized with 1,9-octadiene using methylaluminoxane-activated rac-Et-Ind2ZrCl2 

at 120
o
C to produce macromonomers with pendant and terminal vinyl groups, with frequencies up to 

6.5 vinyls per polymer chain. The macromonomer pendant vinyl group content is linearly related to 

the diene concentration added to the reactor. The macromonomers were then terpolymerized with 

ethylene and 1-butene or 1-octene using a constrained geometry catalyst (dimethylsilyl(N-tert-

butylamido)-(tetramethylcyclopentadienyl)-titanium dichloride) at 120
o
C in toluene. The resulting 

branched polymers showed three distinct populations during crystallization analysis fractionation, 

indicating the formation of a new fraction produced by the incorporation of macromonomer chains 

into ethylene/1-butene or ethylene/1-octene copolymer chains. 

 

9.2 Introduction 

Metallocene catalysts enable the production of polyolefins with narrow molecular weight distribution 

and uniform comonomer distribution. Certain metallocenes, such as constrained geometry catalysts, 

can also form polymers with long chain branches (LCB) and good processability, while keeping the 

molecular weight distribution (MWD) quite narrow. The use of mixed metallocene catalysts results in 

more degrees of freedom to make polyethylene resins with designed microstructural properties. Dual 

metallocene systems have been used to produce polyolefins with bimodal distributions of molecular 

weight and chemical composition,
[132-133, 137-138, 170-171]

 to maximize the LCB formation in 

polyethylene,
[28, 94, 172]

 and to produce branched and  linear olefin block copolymers.
[85, 116, 135]

 Similar 

products can also be made with a single metallocene in two reactors operated in series under different 

polymerization conditions. 

It has been shown that by the proper selection of catalysts pairs, comonomer types, and 

polymerization conditions, it is possible to make copolymers displaying characteristics of 

thermoplastic elastomers.
[135, 173]

 Olefin copolymerization with dienes opens up the possibility of 
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creating chains with pendant double bonds that act as macromonomers with increased likelihood of 

being incorporated into a growing polymer chain formed on another catalyst site.   

Several articles have been published on the copolymerization of ethylene and 1,5-hexadiene with 

homogeneous metallocenes, showing that 1,5-hexadiene is preferentially incorporated  into the 

polymer backbone as five-membered rings instead of generating pendant vinyl groups.
[174-178]

 

Selectivity toward cyclization was reported to decrease when diene concentration increased over 50 

mol%.
[175]

 

Ethylene copolymerization with 1,7-octadiene using constrained geometry catalysts (CGC) has also 

been reported, with the conclusion that diene insertion was in the  form of  cyclic structures like 1,3-

cycloheptane and 1,5-cyclononane in the main polyethylene chain, with 1,5-cyclononane being the 

dominant ring structure.
[179-180]

 Several bridged and non-bridged zirconocene catalysts  were  also 

investigated for copolymerization of ethylene and 1,7-octadiene at 40
o
C to conclude that zironocene 

catalysts with indenly ligands produced copolymers having 1,3-disubstituted cycloheptane units, 

while zirconocene catalysts with cyclopentadienyl or pentamethylcclopentadienyl ligands gave 1-

hexenyl pendant branches along the main polymer chain or 1,3-disubstituted cycloheptane units.
[181]

 

Finally, the copolymerization of ethylene and 1,9-decadiene was shown to generate 1-octenyl 

branches or loosely crosslinked polyethylene, depending on the type of metallocene used during the 

polymerization.
[181]

  

In this chapter, we copolymerized ethylene and 1,9-decadiene to make macromonomers with different 

number of pendant vinyl groups in a separate reactor using rac-Et(Ind)2ZrCl2, and then 

terpolymerized these macromonomers with ethylene and α-olefins (1-butene and 1-octene) on a 

second polymerization step, using CGC-Ti, to create complex polymers with branched structures 

composed of three main components: a high-crystallinity fraction (macromonomers), a low-

crystallinity (or amorphous) fraction (α-olefin copolymer), and a third component resulting from the 

crosslinking of the two previous components (cross-product). Figure 9-1 illustrates this classification. 

The whole product made after the second stage of polymerization will be referred to as Branch-block 

copolymer. 
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Figure  9-1. Microstructure classification. 

 

9.3 Experimental 

9.3.1 Materials 

Methylaluminoxane (MAO, 10 wt % in toluene, Sigma-Aldrich) was used as received. Ethylene and 

nitrogen (Praxair) were purified by passing through molecular sieves (3 and 4-A˚) and 

copper(II)oxide packed beds. Toluene (EMD) was purified by distillation over a n-

butyllithium/styrene/sodium system and then passed through two packed columns in series filled with 

molecular sieves (3, 4, and 5-A˚) and Selexorb for further purification. All air-sensitive compounds 

were handled under inert atmosphere in a glove box.  

The catalysts, rac-ethenebis(indenyl) zirconium dichloride (rac-Et[Ind]2ZrCl2) and dimethylsilyl(N-

tert-butylamido)-(tetramethylcyclopentadienyl)-titanium dichloride (CGC-Ti), were purchased as 

powders from Sigma-Aldrich and Boulder Scientific, respectively, and were dissolved in toluene 

which was first distilled over metallic sodium and then flown through a molecular sieve bed before 

polymerization. 

9.3.2 Polymer Synthesis 

All polymerizations were performed in a 500 ml Parr autoclave reactor operated in semi-batch mode. 

The polymerization temperature was controlled using an electrical band heater and internal cooling 

coils. The reaction medium was mixed using a pitched-blade impeller connected to a magneto-driver 

Ethylene/α-olefin copolymer

Cross- product

Macromonomer
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stirrer, rotating at 2000 rpm. Prior to use, the reactor was heated to 125
o
C, evacuated, and refilled 

with nitrogen six times to reduce the oxygen concentration in the reactor, then 250 ml of toluene 

along with 0.5 g of triisobutyl aluminum  was charged into the reactor. The temperature was then 

increased to 120
o
C and kept constant for 20 minutes for stabilization. Finally, the reactor contents 

were blown out under nitrogen pressure. This procedure ensures excellent removal of impurities from 

the reactor walls.  

To make macromonomer, first 200 ml of toluene was charged into the reactor, followed by 0.58 g of 

MAO (10 wt%), introduced via a 5 ml tube and a 20 ml sampling cylinder connected in series with an 

ethylene pressure differential of 50 psig. A specified volume of toluene was placed in the sampling 

cylinder before injection to wash the tube wall from any MAO solution. Then the band heater was 

powered on to commence heating of the reactor up to 120
o
C. Ethylene was introduced to the reactor 

until the solvent was saturated with ethylene and the total pressure in the reactor reached 120 psig. 

After approximately 10 minutes, when the reactor temperature set point was reached and kept at a 

stable value, catalyst solution was injected using the same method for MAO injection, but with a 

lower pressure differential to ensure a minimum pressure increase in the reactor at the start of the 

polymerization, but still enough to transfer the catalyst solution completely to the reactor. Ethylene 

was supplied on demand to maintain a constant reactor pressure of 120 psig and monitored with a 

mass flow meter. With the exception of a 1–2
o
C exotherm upon catalyst injection, the temperature 

was kept at 120
o
C ± 0.15

o
C throughout all polymerizations. After 15 minutes, the polymerization was 

stopped by closing the ethylene valve and immediately blowing out the reactor contents into a 2-L 

beaker filled with 400 ml of ethanol. The polymer produced was then kept overnight, filtered, washed 

five times cross-currently with ethanol, dried in air, and further dried under vacuum.  

 

9.3.3 Synthesis of Branch-Block Copolymers 

The branch-block copolymers were made separately from the macromonomers (sequential 

process
[124]

). After charging the reactor with a specified amount of macromonomer and removing air 

from the reactor by alternating vacuum and nitrogen purging cycles, solvent was added and the 

reactor was heated to 120
o
C with high stirring to dissolve the macromonomer followed by the 

addition of cocatalyst. An appropriate amount of comonomer (1-butene or 1-octene) was then added 

to the reactor. Finally, the reactor was pressurized with ethylene up to the desired polymerization 

pressure. The reactor was equilibrated at 120
o
C for 10 minutes. Catalyst was injected using a 5 ml 
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catalyst injection tube connected to a 20 ml sampling cylinder filled with a specified volume of 

toluene to wash the tube walls from any catalyst solution and guarantee that catalyst transfer was 

complete. After 10 to15 minutes of polymerization time, the reactor contents were forced out of the 

reactor (using nitrogen pressure) into a beaker containing ethanol to stop reaction immediately. 

Washing and drying of the polymer were performed the same way as for macromonomers. 

 

9.3.4 Polymer Characterization 

The polymer molecular weight averages and molecular weight distribution (MWD) were measured at 

135
o
C with a Polymer Char high-temperature gel permeation chromatographer (GPC), under a flow 

rate of trichlorobenzene of 1 ml/min. A column bank of three PLgel Olexis 13  m mixed pore type 

300×7.5 mm columns were used for GPC separations. The GPC was equipped with three detectors in 

series (infra-red, light scattering 15
0 

angle and differential viscometer). The GPC was calibrated with 

polystyrene narrow standards. 

 The 
13

C NMR spectrum was taken on a Bruker 500 MHz system. The probe temperature was set at 

120
o
C. Acquisition parameters were optimized for quantitative NMR, including a 14 microsecond 90

o
 

pulse, inverse gated proton decoupling and 10 s delay time between pulses. 10000 scans was used for 

data averaging of  homopolymers and 5000 for copolymers. The biggest peak was referenced to 30.0 

ppm. Deuterated ortho dichlorobenzene was used to obtain the field-frequency lock. 

Crystallization analysis fractionation (Crystaf) was performed using a Polymer Char Crystaf model 

200. Polymer sample was dissolved in 47 ml of 1,2,4 trichlorobenzene at a concentration of 0.6 

mg/ml. The polymer solution was heated to 160
o
C, held for 2 hours to ensure complete dissolution, 

followed by decreasing the temperature to 105
o
C and stabilizing for another 55 minutes. A constant 

cooling rate of 0.1
o
C/min was applied during all analyses until the temperature reached 30

o
C. 

Polymer concentration in the solution phase was monitored using an in-line infrared detector. 

Ethyl and hexyl branch distribution were determined using infrared detectors of the  GPC. The details 

of this method are given in Chapter 5, Section 5.1.6. The Zimm-Stockmeyer approach was used to 

determine the degree of long chain branching, as detailed in Chapter 5, Section 5.2.6. 
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9.4 Results and Discussion 

9.4.1 Macromonomer Synthesis 

Ethylene was copolymerized with different amounts of 1,9-decadiene using rac-Et[Ind]2ZrCl2/MAO 

in toluene at 120
o
C and a total reactor pressure  of 120 psig to make macromonomers with different 

fractions of pendant vinyl groups. Twelve polymerization runs were performed at five different 

decadiene concentrations and polymerization time of 15 minutes. The run order was randomized to 

avoid possible biases in the experimental results. Table 9-1 summarizes molecular weight 

measurements and polymer yields for these runs. It is hard to deduce any conclusive effect by just 

glancing at the weight average molecular weights in Table 9-1, or even by plotting their molecular 

weight distributions, as shown in Figure 9-1.  However, inferential statistics can be used to conclude 

that macromonomers made with higher decadiene concentrations also had higher weight average 

molecular weights, as will be explained in the following paragraphs. 

 

Table  9-1. Molecular weight measurements for ethylene/1,9-decadiene copolymers. 

Run 
1,9 decadiene in 

feed (mmol/L) 
Mw Mn PDI 

Polymer 

Yield (g) 

 

1 0.114 52 300 25 500 2.05 4.8 

2 0.077 51 900 26 100 1.99 5.6 

3 0 50 500 25 000 2.02 7.7 

4 0.039 50 900 25 400 2.00 6.45 

5 0.114 52 700 24 800 2.13 5.26 

6 0.077 50 800 25 300 2.00 5.85 

7 0 51 000 25 500 2.00 7.47 

8 0.152 54 100 25 500 2.13 4.8 

9 0.039 50 500 25 200 2.00 6.16 

10 0.114 52 900 25 900 2.04 5.65 

11 0 51 400 25 800 1.99 7.5 

12 0.077 51 500 25 100 2.05 6.27 

 

 



 

 221 

 

Figure  9-2. Molecular weight distribution of the ethylene/1,9-decadiene copolymers . 

 

Molecular weight measurements can be described with the single-factor ANOVA model,
[144]

  

jiijiY ,,     (9-1) 

where Yi,j is the i×j
th
 measurement,  is the overall mean,

i  is a parameter associated with the i
th
 

treatment level (called the treatment effect – in the present case, weight average molecular weight) 

and 
ji ,  is a random error component arising from all sources of variability. The null hypothesis is 

0.....: 210  nH 
 
(where n = 5, conc. of decadiene in the reactor) and the alternative hypothesis 

is 0:1 iH   for at least one value of i.   

Since the number of replicates are not the same in all treatments levels (see Table 9-1), an unbalanced 

design
[144]

 approach was used to perform the analysis of variance, as summarized in Table 9-2. The 

test statistic F0, which is the ratio of the treatment mean square to error mean square, was used to test 

the null hypothesis. Because F0 = 16.058 is greater than F0.05 4, 7 = 4.12, we reject the null hypothesis 

and conclude it is unlikely that the treatment means are equal. In other words, the 1,9-decadiene 

concentration affects the molecular weight averages of the ethylene/1,9-decadiene copolymers. 
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Table  9-2. Analysis of variance for weight average molecular weight. 

Source of Variation 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Square 

F0 

 

P-

Value 

Diene concentration 12 153 518 4 3 038 379 16.058 0.0012 

Error 1 324 493 7 189 213 
  

Total 13 478 011 11 
   

 

The analysis of variance assumes that the measurements are normally and independently distributed 

with the same variance for each factor level. The normality assumption can be checked by 

constructing a normal probability plot of the residuals. The normal probability plot of the residuals for 

weight average molecular weight measurements is shown in Figure 9-3. The impression from 

examining this display is that the error distribution is normal, despite the fact that it is likely with 

small samples to see moderate departures from  normality. The plots of the residuals versus run order 

and diene amount in the reactor also do not show any pattern, with the approximately uniform spread 

of residuals supporting the assumption of equal variances (these figures were not shown herein for the 

sake of brevity). 

In Figure 9-4, weight and number average molecular weights were plotted versus decadiene mass 

added to the reactor. A slight, but statistically significant increase in Mw is observed. The reason for 

increasing Mw with the increase in the diene content in the reactor can be attributed to the higher 

probability of macromonomer incorporation (LCB formation reactions) onto the growing polymer 

chains because of the increase in pendant vinyl group concentration in the macromonomer chains. 

This increase is also confirmed by the log [] versus log M plot shown in Figure 9-5, since samples 

with higher diene content have a more marked deviation from linearity in the high molecular weight 

region. However, the LCB frequency was not high because the MWD shown in Figure 9-2 are not 

significantly affected.  
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Figure  9-3. Normal probability plot of residuals for weight average molecular weight measurements. 

 

 

Figure  9-4. Number and weight average molecular weight measurements versus concentration of 1,9-decadiene 

in the reactor. 

The Crystaf profiles for these macromonomers are shown in Figure 9-6. It is clear that, as the 

diene content increases in the macromonomer chains, their Crystaf peak temperatures 

decrease as expected, since the incorporation of the diene molecules generates short chain 

branches (SCB) that decrease the crystallizabilities of the macromonomer chains.  
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Figure  9-5. Intrinsic viscosity plot for ethylene/1,9-decadiene copolymers. 

 

 

Figure  9-6. Crystaf profiles for ethylene/1,9-decadiene copolymers.  
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9.4.1.1 Macromonomer structure investigation by 13C NMR 

Five samples with different diene molar fractions were selected randomly from the resins made for 

further study using nuclear magnetic resonance spectroscopy.  

Figure 9-7 illustrates the 
13

C NMR spectrum of an ethylene/1,9-decadiene copolymer (Run 4, Table 

9-1). Based on the peaks observed in its spectrum, the structure shown in Scheme 9-1 was proposed 

for the ethylene/1,9-decadiene copolymers. Using the Grant and Paul rules,
[148-149]

 we obtained the 

assignments listed in Table 9-3. 

 

 

Figure  9-7. 
13

C NMR spectra of poly(ethylene-co-1,9-decadiene) (Run 4). 

 

 

 

Scheme 9-1.  Carbon nomenclature for chemical shift assignments.  
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Table  9-3.
 13

C NMR chemical shifts for poly(ethylene-co-1,9-decadiene) made with rac-Et-(Ind)2ZrCl2. 

Resonance peak Chemical‎shift‎calculated‎(δ)‎

(ppm) 

Chemical‎shift‎observed‎(δ)‎

(ppm) 

1 14.07 14.05 

2 22.68 22.85 

3 32.46 32.17 

4 29.58 29.57 

br 38 38.18 

α 34.89 34.55 

β 27.56 27.31 

γ 30.44 30.5 

δ 30.07 30 

ε 30.01 30 

5b 27.13 27.22 

4b 30.41 30.29 

3b 30.42 30.5 

2b 29.58 29.57 

1b 34.07 33.92 

1v 34.07 33.93 

2v 29.58 29.57 

3v 30.3 30.3 

 

The following equations were developed to calculate the pendant unsaturated chain end density 

(PUCED, number of pendant vinyl groups per 1000 carbon atoms), assuming that all pendant groups 

are the source of branch points in the polymer chains, 

Tot

b

IA

IAIAIA
PUCED






6

)(
1000

5

   

(9-2) 

or

 

Tot

brb

IA

IAIAIAIA
PUCED






7

)(
1000

5

  

(9-3)
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where
IA , 

IA , 
bIA5  

and 
brIA  are the areas of the peaks for α, β, 5b and tertiary carbon atoms, 

respectively. The 5b carbon atom has a lower chemical shift than the β carbon (27.22 versus 27.31), 

which explains the double peak at approximately 27 ppm shown in Figure 9-7. The deconvolution of 

this peak using Lorentzian functions gives an average area ratio of 1.9 for all four samples, which 

shows that the chemical shift assignment is correct (allowing for small deconvolution and integration 

errors). Therefore, to calculate 
bIAIA 5

we just integrate the bimodal peak from 27 to 27.5 ppm.  

The number average molecular weight is calculated with a modified version of Equation (6-59) to 

account for pendant vinyl groups,   

0000,28

1 PUCEDUCEDSCED

M n




 

 (9-4) 

The unsaturated chain end density, UCED, calculated using Equation (2-25), gives the total number 

of pendant and terminal vinyl groups per 1,000 carbons; the difference between UCED and PUCED 

is the number of terminal vinyl bonds at the end of the polymer chains per 1,000 carbon atoms. Table 

9-4 summarizes the result of these calculations for selected polymer samples. The last column in 

Table 9-4 also lists the number average molecular weights determined using GPC, demonstrating that 

they are in good agreement with those determined using 
13

C NMR. 

 

Table  9-4. 
13

C NMR results for poly(ethylene-co-1,9-decadiene) copolymers 

Run 
1,9 decadiene 

 in feed (mmol/L) 
UCED×10 SCBD×10 PUCED

a×10 PUCED
b×10 Mn

c
 Mn

d
 

3 0 5.95 5.99 0.00 0.00 23 464 25 020 

4 0.039 14.69 5.34 8.18 7.56 23 625 25 400 

6 0.077 22.76 4.73 15.75 15.37 23 834 25 346 

5 0.114 29.84 6.12 24.40 24.11 24 224 24 759 

8 0.152 37.92 5.94 32.24 31.37 24 089 25 460 
a
 PUCED calculated using Equation 9-2,  

b
 PUCED calculated using Equation 9-3, 

c
 Determined 

using 
13

C NMR,  
d
 Determined using GPC.  

 

Figure 9-8 shows the proton decoupled 
13

C NMR spectrum for Run 3 (Table 9-1, no diene). To 

account for the peaks observed in this spectrum, the structure for ethylene homopolymer shown in 

Scheme 9-2 was assumed. 
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Figure  9-8. 
13

C NMR spectra of linear polyethylene (Run 3 in Table 1). 

 

 

 

Scheme 9-2. Carbon nomenclature for ethylene homopolymer (Sample 3) 

Four well resolved peaks are expected for carbons 1, 2, 3 and 1v if this structure is present. Based on 

the Grant and Paul rules,
[148-149]

 we can estimate the chemical shift positions of those four carbons 

(Table  9-5). The calculation of the chemical shift positions for the other carbons using the same rule 

shows that they are very close to 30 ppm and, since they are obscured by the main spectrum peak, 

related to methylene carbon, centered at 30 ppm, we cannot get useful information from those 

carbons. Of course, this does not produce any difficulty because the resonances of the unambiguous 

carbons can be used to extract useful microstructural information.  

 

Table  9-5. Chemical shift assignments for polyethylene made with rac-Et-(Ind)2ZrCl2. 

Resonance peak 
Chemical‎shift‎calculated‎(δ)‎

(ppm) 

Chemical shift observed 

(δ)‎(ppm) 

1 14.07 14.05 

2 22.68 22.85 

3 32.46 32.17 

1v 34.07 33.92 
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The unsaturated chain-end density (UCED, number of unsaturated chain ends per 1000 carbon 

atoms), the saturated chain end density (SCED, number of saturated chain ends per 1000 carbon 

atoms), and number average molecular weight, Mn,  were calculated using the Equations (2-25), (2-

24) and (6-53) for this sample (Table 9-4, Run 3). In the derivation of Equation (6-53), we have 

assumed that all chains have a terminal vinyl unsaturation. This assumption is acceptable for the 

homopolymer made in Run 3 (Table 9-1) because its UCED and SCED are practically the same. 

 

Figure 9-9 shows how UCED and SCED vary with the concentration of 1,9-decadiene in the reactor. 

Higher diene concentrations increase the polymer vinyl group density linearly, while the SCED 

remains unaffected, implying that one end of the polymer chains is saturated and the other end has a 

terminal vinyl group. On the other hand, as the concentration of decadiene in the reactor is increased, 

the number of these unsaturated pendant groups in the polymer also increases. 

 

Figure  9-9. Dependency of UCED and SCED with 1,9-decadiene concentration in the reactor. 

 

Figure 9-10 shows that PUCED increases linearly with 1,9-decadiene concentration in the reactor. 

These macromonomer chains, functionalized with pendant vinyl groups, have increased the 

possibility of being incorporated onto a growing chain made on another catalyst site (or in another 

reactor), leading to the formation of chains with long chain branches, as will be demonstrated below.  
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Figure  9-10.  PUCED versus 1,9-decadiene concentration  in feed. 

Three other important macromonomer microstructural characteristics are the average ethylene 

sequence length between diene units, n , average pendant vinyl groups per polymer chain,  , and 

average unsaturated chain ends per polymer chain,  . Equations for calculating these properties are 

given below, 

 

  281
000,14

000,14

111
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









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


PUCEDM

PUCEDM
M

n
n

n

n

 
 

(9-5)

 

000,14

nMPUCED


 
 (9-6)

 

000,14

nMUCED 


 

 (9-7)

 

Table 9-6 summarizes these calculations for the five selected samples. 
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Table  9-6. Summary of calculations for microstructural properties of ethylene-1,9-decadiene copolymers. 

Run 
1,9 decadiene in 

feed (mmol/L) 
n      

3 0 838 0 0.997 

4 0.039 352 1.38 2.479 

6 0.077 228 2.68 3.876 

5 0.114 162 4.22 5.103 

8 0.152 128 5.55 6.525 

 

Increasing the diene concentration in the reactor causes a linear increase in the pendant unsaturated 

chain end frequency ( ) and the unsaturated chain end frequency ( ) as shown in Figure 9-11. 

Figure 9-12 illustrates how the average ethylene sequence length between diene units decreases with 

increasing diene concentration in the reactor.  

 

 

Figure  9-11. Pendant ( ) and unsaturated ( ) chain end frequency variation with 1,9-decadiene 

concentration in the reactor.  
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Figure  9-12. Average ethylene sequence length between diene units in the copolymer versus concentration of 

1,9-decadiene in the reactor. 

Figure 9-13 shows the Crystaf peak temperature versus pendant unsaturated chain end frequency of 

the copolymer. A linear trend was observed, indicating that the 1,9-decadiene molecules incorporated 

in the polyethylene chain decreased its crystallizability, as would also be observed for -olefin 

incorporation. 

 

 

Figure  9-13.  Crystaf peak temperature versus pendant unsaturated chain end frequency in the copolymer.  
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9.4.2 Synthesis of Branch-Block Copolymers 

Two procedures may be used for the production of branch-block copolymers: simultaneous or 

sequential synthesis. In the simultaneous synthesis, two catalysts are added to the reactor at the same 

time to produce branch-block copolymers, while in the sequential synthesis approach, 

macromonomers are produced separately and then introduced in another reactor to be terpolymerized 

with ethylene and -olefins with a catalyst capable of incorporating macromonomers into the 

growing copolymer chains. In this investigation, we adopted the sequential approach because it leads 

to higher macromonomer incorporation, as shown in our previous simulation studies.
[116, 124] 

The 

procedure for making the macromonomers containing terminal and pendant vinyl groups was 

explained in the previous section.  

The comonomers used were 1-butene and 1-octene. Reaction variables tested included polymerization 

time, ethylene pressure, and catalyst concentration. The catalyst used for macromonomer 

incorporation was CGC-Ti. 

9.4.2.1 Brach-Block Copolymers Made with 1-Butene 

9.4.2.1.1 Effect of Degree of Unsaturation in Macromonomer  

In the first set of runs, three polymerization were performed, each starting with macromonomers of 

different vinyl group densities to produce branch–block copolymers. Table 9-7 summarizes the 

polymerization conditions for these runs. 

 

  

Table  9-7. Ethylene/1-butene polymerization conditions.  

Sample Macromonomer 

concentration 

(g/L) 

 

 

Macromonomer 

UCED×10 

Number of 

vinyl groups 

per 

macromonomer 

chain 

Total 

polymer 

weight 

(g)
a
 

Weight 

of 

polymer  

Formed 

(g) 

Polymerization 

time 

(min) 

A 13.47 5.95 1 10.9 7.9 15 

B 13.47 22.76 3.88 15.07 12.07 15 

C 13.47 37.92 6.53 9.36 6.36 15 

Polymerization conditions:  Temperature= 120 
o
C, pressure= 120 psig, Toluene=222.8 ml, 1-butene=0.62 mol/L  

a:Total polymer weight = macromonomer weight  + weight of polymer formed  
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Molecular weights and short chain branch frequencies for the polymers made with macromonomers 

A, B, and C are summarized in Table 9-8.    

 

Figure 9-14 shows the Crystaf profile for samples A, B and C. Samples B and C, made with 

macromonomers having higher vinyl group density, are trimodal, while sample A is bimodal. The 

high crystallization temperature peak corresponds to unreacted macromonomer, while the low 

crystallinity (or soluble) peak is formed by ethylene/1-butene low crystallinity (or amorphous) 

copolymer. The intermediate peak observed in samples B and C results from the incorporation of 

macromonomers into growing copolymer chains (cross-product). For sample C, the intermediate 

Crystaf peak and the macromonomer peak superimpose because the macromonomer has lower 

crystallizability due to its higher 1,9-decadiene incorporation, as already illustrated in Figure 9-6. 

 

Figure  9-14. Crystaf  profiles for samples A, B and C. 

 

Figure 9-15  presents the log [] versus log M  plot overlaid on the MWDs for samples A, B and C. 

Due to polymer coil contraction resulting from 1-butene SCBs, the intrinsic viscosity of sample A is 

lower than that for the NBS 1475 standard with no SCBs, but it follows the linear trend characteristic 

of polymers without LCBs. This measurement confirms our observation in Figure 9-14 that no cross-
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product was formed in sample A, which is simply a blend of two linear polymers. The log  versus 

log MW plots for samples B and C, on the other hand, show a clear departure from linearity at higher 

molecular weight values, indicating that those samples contain LCBs. This supports our conclusion 

that the intermediate Crystaf peak is formed by macromonomer chains grafted onto ethylene/1-butene 

copolymer chains. 

 

Figure  9-15.   MWD and intrinsic viscosity plot for sample A. Dashed curves are related to sample C. 

 

The LCBF and LCBD for samples A, B and C were also calculated using the method developed in 

Chapter 5, Section 5.2.6 (Table 9-8). A  value of 0.75 was used in Equation (5-13)  to relate g to 

g´.[130] 
Although the exact value for ε is not known for our branch-block copolymers, assuming ε = 

0.75 enables us to estimate their approximate LCB frequencies and it is a useful measure for 

comparing variation among polymer samples. 

Table  9-8. Molecular weight measurements using GPC and long chain branch calculation using Zimm- 

Stockmayer equation. 

Sample Mw Mn PDI EBD LCBF for the 

whole polymer
a
 

LCBD for the 

whole polymer
b
 

A 50 400 21 000 2.4 29 0 0 

B 108 400 27 300 3.9 36.8 0.2 0.103 

C 115 800 27 800 4.2 35.7` 0.74 0.37 
a
LCBF: number of long chain branches per polymer chain (short chain branch correction was applied).  

b
LCBD: number of long chain branches per 1,000 carbon atoms. 
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The result of LCBF calculations shows that an increase in pendant vinyl group frequency of the 

macromonomer leads to production of polymers with higher long chain branch frequencies (Table 9-

8).  

Finally, if we compare the MWDs of the three samples, we observe that polymers made with 

macromonomers with higher diene density have broader MWDs caused by LCB formation reactions 

resulting in the production of cross-product chains of higher molecular weight.  

9.4.2.1.2 Effect of Polymerization Time and Catalyst Concentration 

Four polymerization runs were performed to investigate effect of polymerization time and catalyst 

concentration on cross-product formation. The polymerization conditions are summarized in Table 9-

9. 

The polymerization procedure was the same as used in the previous runs. The UCED of the 

macromonomer used in the terpolymerization was 2.28 per 1000 carbons. Run F in Table 9-9 is just 

an ethylene/1-butene copolymerization under the same conditions to locate the Crystaf peak for the 

ethylene/1-butene copolymer alone. 

 Runs D and G were performed to investigate the effect of polymerization time on cross-product 

formation. Their polymerization conditions were the same, except for polymerization time, which was 

7 minutes for run D and 15 minutes for run G. Similarly, runs E and G were performed under the 

same polymerization conditions, except that in run E the amount of CGC injected in the 

polymerization reactor was lower than in run G. Table 9-10 summarizes molecular weight results for 

these polymers. 

Table  9-9. Polymerization conditions and summary results for runs D through G. 

Sample Polymerization 

time (min) 

Macromonomer 

concentration 

(g/L) 

 

 

Total 

polymer 

weight 

(g) 

Polymer 

formed 

(g) 

Weight% of 

macromonomer 

CGC 

Catalyst 

( mole/L) 

 

D 7 13.47 13.3 10.3 22.6 8.98 

E 15 13.47 6.84 3.86 48.4 6.7 

F 15 0 6.5 6.5 0 1.8 

G 15 13.47 18.6 15.6 16.1 8.98 

Polymerization conditions:  Temperature = 120
o
C, pressure = 120 psig, toluene volume = 222.8 ml, 1-butene 

Conc. = 0.4 mol/L. The UCED of the macromonomers used in these polymerizations was 2.28. 
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Table  9-10. GPC-IR results for samples D-G and macromonomer. 

Sample Mw 

 

Mn PDI Ethyl branch/1000C 

of the whole polymer  

LCBF 

of the whole 

polymer
a
 

D 187 300 41 300 4.54 25 0.62 

E 73 300 25 300 2.9 19 0.16 

F 96 000 38 200 2.5 29 0 

G 273 300 42 100 6.5 26.3 1.03 

Macromonomer 54 100 26 000 2.08 0 0.083 

a:  Calculated using Zimm-Stockmeyer  equation 

 

Figure 9-16 overlays the Crystaf profiles of polymers D, F, G, and macromonomer, while Figure 9-17 

shows their corresponding MWDs. As discussed above, if no cross-product is formed during 

polymerization, two Crystaf peaks are expected: one high-temperature peak for the macromonomer, 

and another low-temperature peak for the ethylene/1-butene copolymer (equivalent to that of polymer 

F). Interestingly, an intermediate third peak was observed for the samples D and G, which indicates 

the formation of cross-product chains. 

The MWD plots in Figure 9-17 also strongly support the presence of branched cross-products because 

of the observed broadening of the MWD. Increase in time of polymerization increases molecular 

weight and long chain branch frequency of the whole polymer, as shown in Table 9-10. The ethylene 

branch density of the whole polymer also increases because the mass fraction of the cross-product 

increases (Table 9-10).  

Figure 9-18 shows the log [] versus log MW plots for polymers D, F, G, macromonomer and linear 

NBS standard 1475. Sample F exhibits simple power law behavior described by the Mark-Houwink 

equation, which is indicative of linear polymers, while the curvature of the corresponding curves for 

samples D and G imply the presence of LCBs. The actual structure of these LCBs is likely to be of 

two polymer chains connected through a bridge six carbons long, resulting from the polymerization of 

the pendant double bond of 1,9-decadiene units. The ―main‖ branch is an amorphous ethylene/1-

butene chain with high 1-butene content (about 40 ethyl branches per 1000 carbon atoms), while the 

macromonomer branch is more crystalline, with about three SCBs per polymer chain.  

Long chain branch frequencies (LCBF) for the polymer samples were also calculated and are shown 

in Table 9-10. Although these numbers are not absolute, they are useful to compare the extent of LCB 
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formation in the samples. The results in Table 9-10 show that increasing polymerization time leads to 

higher LCBF values for the whole polymer, which is the expected result for this type of 

polymerization. 

 

 

Figure  9-16. Crystaf profiles for samples D, F and G. The dashed line is for sample F (ethylene/1-butene 

copolymer). 

 

Figure  9-17. Molecular weight distributions for samples D, F, G and macromonomer.  
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Figure  9-18 . Intrinsic viscosity versus molecular weight for samples D, F, G, macromonomer, and NBS 1475.  

 

Samples E and G were made at different CGC concentrations. Figure 9-19 shows the effect of 

changing CGC concentration on the MWD of the resulting terpolymer. Increasing CGC concentration 

leads to more macromonomer incorporation (for the same polymerization time), which in turn 

broadens the MWD with the formation of higher molecular weight polymer. In Run E, despite the 

lower CGC concentration, LCBs are still formed (as shown by the deviation from linearity in the log 

[] versus log MW plot in Figure 9-20), but not enough to produce a noticeable Crystaf peak, only a 

slight shoulder (Figure 9-21).   
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Figure  9-19. Molecular weight distributions for samples E, G, F and macromonomer. 

 

 

Figure  9 9-20. Plot of intrinsic viscosity versus molecular weight for samples E, F, G, macromonomer, and NBS 

1475. 
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Figure  9-21. Crystaf profiles for samples E, F, G, and macromonomer. 

 

9.4.2.1.3 Ethylene Pressure Effect 

The effect of ethylene pressure on the microstructural properties of the resulting terpolymers was 

investigated at three different ethylene partial pressures during polymerization. The UCED of the 

macromonomer used was approximately 2.3 (2.68 pendant vinyl groups per chain).  CGC and 

cocatalyst loadings were the same for all three runs. Polymerization temperature and time were also 

the same, except for the highest ethylene pressure run, for which the polymerization time had to be 

decreased to approximately three minutes to reduce the polymer mass to an acceptable range and 

avoid mass and heat transfer limitations (polymer yield is directly proportional to ethylene pressure). 

The polymerization conditions are summarized in Table  9-11. Average molecular weights and SCB 

frequencies are shown in Table  9-12 . 
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Table  9-11. Polymerization conditions for samples H, I, and J. 

Sample Total pressure 

during 

polymerization (psig) 

 

Macromonomer 

UCED×10 

 

CGC 

Catalyst  

(mole/L) 

Total polymer 

weight (g) 

Polymer  

Formed 

(g) 

Time 

(min) 

H 46 22.76 12.25 4.6 1.6 15 

I 120 22.76 12.25 11.76 8.76 15 

J 200 22.76 12.25 14.04 11.04 2.8 

Polymerization conditions:  Temperature = 120 
o
C, , Toluene=222.8 ml, 1-butene=0.63 mol/L. 

 

Table  9-12. Average molecular masses, SCBD and long chain branch frequency for samples H, I and J  

Run Mw Mn PDI Average 

Ethyl 

branch/1000C 

for the whole 

polymer 

Average  

Ethyl 

branch/1000C 

for the 

polymer 

formed by 

adding CGC 

LCBF 

 corrected 

for SCB 

LCBD of 

the X-

product  

H 58 900 14 300 4.1  40.5 117 0.054 0.0003 

I 84 400 22 600 3.7 35.5 48 0.17 0.126 

J 119100 37 100 3.2 18.5 23.5 0.16 0. 65 

Macromonomer 54100 26 000 2.08 0.0 - 0.081 n/a 

 

The overlay of the Crystaf profiles for samples H, I and J is shown in Figure  9-22. Sample H, made at 

the lowest ethylene pressure, does not show an intermediate peak. For sample I, the left side shoulder 

of the macromonomer peak is attributed to macromonomer incorporation into the copolymer chains 

by the CGC catalyst. The intermediate peak for the sample J is formed by a similar mechanism. It 

may seem counterintuitive that increasing ethylene pressure would favor macromonomer 

incorporation, but this behavior seems to be related to the 1-butene fraction in the chains made by the 

CGC catalyst. As the ethylene pressure increases in the reactor for the same 1-butene concentration, 

the fraction of 1-butene in the copolymer decreases, as clearly seen in the Crystaf profiles depicted in 

Figure 9-22 (the copolymer peak move to higher crystallization temperature). Due to steric effects, it 

is more likely that a macromonomer chain will be inserted into the growing chain terminated in an 
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ethylene, rather than a butene, unit. Therefore, increasing the ethylene pressure at the same 1-butene 

concentration will indirectly favor macromonomer insertion, as illustrated in Figure 9-22. 

Figure  9-23  shows the SCB distribution across the MWD for sample H, which was made at the 

lowest ethylene pressure. A bimodal MWD peak is observed and since the high molecular weight 

peak for that sample coincides with the macromonomer peak (dashed curve in Figure 9-23), it seems 

that the high molecular weight peak results from the unreacted macromonomer. This conclusion is 

also supported by SCBD versus molecular weight plot shown in Figure 9-23 because the SCBD for 

high molecular weight polymer is very low, practically in the experimental range of SCBD measured 

for the macromonomer alone. 

Figure  9-23 also depicts the log [] versus log MW plot across the MWD for sample H and 

macromonomer. The log [] versus log MW plot deviates from linearity at both low and high 

molecular weight regions. The deviation at the low molecular weight may be attributed to the 

presence of higher SCB frequency chains. Since the difference between the log [] versus log MW 

plots for macromonomer and sample H is small, the LCB in sample H is not high, as already noticed 

by inspection of its Crystaf profile. Therefore, the small deviation at the high molecular weight region 

may be attributed to the presence of LCBs in the unreacted macromonomer itself. As proposed above, 

the high short chain branch frequency (117 SCB/1000 for lower molecular weight region) of the 

polymer backbone growing on CGC in sample H might cause steric hindrances which decrease the 

rate of macromonomer incorporation. 

 

 

Figure  9-22. Crystaf profile for samples H, I, J, and macromonomer.   
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Figure  9-23. MWD, SCB distribution  and intrinsic viscosity plot for the sample H and macromonomer. Dashed 

lines and solid lines  are related to macromonomer and sample H, respectively. 

Figure  9-24 show analytical results for sample I, made at total pressure of 120 psig. This figure 

clearly shows the presence of LCBs in sample I, since log [] versus log MW plots deviates from 

linearity significantly. Comparing the SCB distribution of this sample (Figure 9-24) with the one 

made at the lowest pressure (Figure 9-23) shows a gradual, not sudden, decrease in SCB. This 

happens because the molecular weight of the copolymer made at higher ethylene pressure increases, 

making the MWD unimodal and ―merging‖ the MWD distributions for each component in the 

polymer. 

Figure  9-25 shows the log [] versus log MW plot for sample J. The LCB frequency of sample J is 

similar to that of sample I (Table 9-12). We can speculate that a low ethylene pressure favors the 

formation of LCBs but, at the same time, the higher SCB frequency in ethylene/1-butene copolymers 

made at lower ethylene pressures makes it harder for macromonomers to be incorporated into these 

chains; these two factors, acting in opposing directions, cause the LCBF of the samples I and J, 

polymerized at 120 and 200 psig, to be approximately the same.  

The SCB distribution as a function of molecular weight for sample J, as shown in Figure  9-25, is very 

interesting because it initially increases with molecular weight, reaches a maximum, and then 
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decreases. This apparently abnormal behavior is easy to explain: the copolymer made at higher 

ethylene pressure has higher molecular weight averages than those of the macromonomer,  

consequently, the low MW region is mostly composed of macromonomer with low SCB content; the 

intermediate MW region is mostly formed by ethylene/1-butene copolymer with high SCB frequency; 

finally, the high MW region contains most of the cross-product, which is formed by copolymer (high 

SCB) and macromonomer (low SCB) chains linked by covalent bonds.  

 

 

Figure  9-24. MWD, intrinsic viscosity plot and SCB distribution for sample I. 

 

Figure  9-25. MWD and intrinsic viscosity plot for samples J and macromonomer. Dashed lines are related to 

macromonomer and solid lines refer to sample J. 
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9.4.2.2 Branch-Block Copolymers Made with 1-Octene 

Similar experiments were conducted with 1-octene instead of 1-butene to synthesize branch-block 

copolymers. The polymerization procedure was analogous to the one used for ethylene/1-butene 

copolymerizations. Two factors were investigated: 1-octene concentration and degree of unsaturation 

in macromonomer. Table 9-13 summarizes the conditions for these polymerization runs and Table 9-

14 lists some polymer properties and yields.   

 

Table  9-13. Polymerization conditions for samples L, M, L-n and M-n. 

Sample Initial 

macromonomer 

concentration 

in the reactor 

(g/L) 

 

 

Macromonomer 

  
1-octene 

concentration 

in the reactor 

(mol/L) 

Polymerization 

time (min) 

CGC 

Catalyst 

concentration 

In the reactor 

(mole/L)  

 

L 13.47 5.1 0.36 15 2.44 

M 13.47 5.1 0.48 15 2.44 

L-n 13.47 1 0.36 15 2.44 

M-n 13.47 1 0.48 15 2.44 

T=120 
0
C, P=120 psig 

 

Table  9-14. Summary of GPC results and LCBs calculations for samples L, M, M-O, L-O, M-n and L-n 

Sample Total 

Polymer 

weight (g) 

Polymer 

formed by 

adding 

CGC (g) 

Mw Mn PDI HBD 

whole 

polymer 

HBD 

polymer 

formed 

by CGC 

LCBF 

Macromonomer   53 000 24 800 2.1 0  0.09 

L 13.15 10.15 275 200 56 521 4.9 11.1 14.4 0.89 

M 13.1 10.1 217 334 53 425 4.1 14.6 18.9 0.31 

M-O   121 200 55 000 2.2 24 24 0 

L-O   128 000 59 000 2.2 17.3 18.9 0 

 M-n 13.15 10.6 45 800 112 800 2.5 12.4 17.4 0 

L-n 11.46 8.46 50 900 137 000 2.7 9.8 13.3 0 
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Effect of 1-Octene Concentration 

Polymerization runs L and M were both done at the same macromonomer concentration, having 

identical average unsaturated chain ends per polymer chain, but with different concentrations of 1-

octene in the reactor. All other reaction conditions were the same. Two ethylene-1-octene copolymers 

were also made under the same 1-octene concentrations used for making samples L and M to 

indentify the Crystaf peaks when no macromonomer was added to the reactor (samples L-O and M-

O).  

Figure 9-26 illustrates the Crystaf  profiles of samples L, M, L-O, M-O, and macromonomer.  

 

 

Figure  9-26. Crystaf profiles for samples M, L, M-O, L-O, and macromonomer. 

 

Both L and M samples have intermediate Crystaf peaks due to the incorporation of macromonomer 

into the growing ethylene/1-octene copolymer chains. A few interesting observations can be made 

regarding these Crystaf profiles. First, polymers made under lower 1-octene concentration seem to 

produce more cross-product, as indicated by the higher area under the intermediate Crystaf peaks for 

samples L and M. This is in agreement with the previous observation that decreasing ethylene 

pressure, and thus increasing the 1-butene fraction in the copolymer, led to the production of less 

cross-product in the ethylene/1-butene copolymerization experiments. Second, it appears that there is 
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a competition for insertion between 1-octene and macromonomer; the presence of macromonomer 

seems to decrease the relative rate of 1-octene insertion. This is clear when comparing the positions 

for the L-O and M-O peaks with the lower crystallinity peaks for samples L and M, respectively. We 

suggest that 1-octene is less likely to be polymerized after a macromonomer insertion due to steric 

effects (that is, the reactivity ratio for 1-octene/macromonomer is small), effectively lowering 1-

octene incorporation in the copolymer. 

Figure 9-27 shows the MWD and log [] versus log M plot for samples L and M. The log [] versus 

log M curves for both samples deviate from linearity at high molecular weight, confirming the 

presence of long chain branching in these polymers. 

If we assume that there is no interaction between macromonomer and the CGC-produced copolymer 

chains, we can predict the MWD of the resulting polymer by superposition of the MWDs of the 

macromonomer and of the ethylene/1-octene copolymer. Figure 9-27 compares these hypothetical 

MWDs with the ones actually measured for samples L and M, clearly showing that significant 

chemical bonding between macromonomer and ethylene/1-octene chains took place during the 

polymerization.  

Since the initial mass of macromonomer and the final mass of polymer are known, the mass of 

ethylene/1-octene copolymer made in the second stage of polymerization can be calculated. 

Therefore, we can calculate the hexyl branch density of the ethylene/1-octene copolymer made in the 

second stage of polymerization (second last column of the table 9-14). The following shows typical 

calculation for sample M. 

  3×0.0+HBD×10.1=13.1×14.6  (9-8) 

Therefore, the hexyl branch density (HBD) of the ethylene/1-octene copolymer made in the second 

stage of polymerization would be 18.9. 

The hexyl branch density calculated for the ethylene/1-octene copolymer made in the second stage of 

polymerization of sample M is lower than the corresponding  hexyl branch density  of sample M-O. 

This means that the ability of CGC to incorporate 1-octene is affected by the presence of 

macromonomer. The same conclusion can be drawn when HBD of the ethylene/1-octene copolymer 

made in the second stage of polymerization for samples L and L-O are compared. Comparing the 

Crystaf  profiles of samples M and M-O, which were made at identical 1-octene concentration, shows 

that their far left peaks do not overlap which support the aforementioned   conclusion.  

The long chain branch frequency for sample L, calculated using the Zimm-Stocymayer approach 

(Table 9-14), is higher than the long chain branch frequency for sample M. Since the hexyl branch 
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density in the copolymer chains of sample M is 18.9 which is higher than hexyl branch density in 

sample L, 14.4,  it can be concluded that steric hindrances of the hexyl  branches might  be the reason 

for reduced amount of LCB in sample M.  

 

Figure  9-27. MWD and intrinsic viscosity plot for samples L and M. The viscosity plots for samples L and M 

are the SCB corrected ones.  

 

Effect of degree of unsaturation in macromonomer  

It has been demonstrated above that polyethylene macromonomers having vinyl pendant double 

bonds resulting from ethylene/1,9-decadiene copolymerization were very effective in forming cross-
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macromonomers that contained only terminal unsaturations (no diene incorporation), we synthesized 

two more samples (L-n and M-n) using macromonomers produced in the absence of 1,9-decadiene. 

Tables 9-13 and 9-14 show the polymerization conditions and polymer properties for these resins. 

Sample L-n was made under polymerization conditions similar to those used to make sample L, with 

the exception that the macromonomer had only terminal vinyl groups. A similar approach applies to 

sample M-n as compared to sample M. Figure 9-28 illustrates the Crystaf profiles of samples L, M, L-
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Figure  9-28. CRSTAF profile for samples L, M, M-n, L-n and macromonomers 

The low crystallinity Crystaf peaks of samples L and M overlap with the corresponding low 

crystallinity peaks of samples L-n and M-n, respectively, since they correspond to ethylene/1-octene 

copolymer chains that have not reacted with the macromonomer chains. 

Figure 9-29 shows the MWD overlaid with hexyl branch distribution for sample L-n. No LCB 

formation is apparent in this sample, as its log [] versus log M plot is linear and overlaps the 

corresponding plot for the linear polyethylene NBS 1475 standard after short chain branch correction. 

The lack of intermediate Crystaf peak in Figure 9-28 for this sample also confirms that long chain 

branching is negligible.  

The  HBD for low molecular chains is zero, increasing gradually until reaching a maximum value of 

13.5 SCB/1000C, and remaining constant for higher molecular weights. This observation indicates 

that macromonomer chains (with no hexyl branches) are located in the low molecular region of the 

MWD.   
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Figure  9-29. Molecular weight distribution, hexyl branch distribution, and viscosity plot for sample L-n. 

 

The   log [] versus log M plot for the sample M-n also indicate that the polymer is linear (see Figure 

9-30) and no cross-product peak was observed in its Crystaf profile in Figure 9-28. Both observations 

imply that long chain branching in these polymers is below the detection range of the online GPC 

viscometer detector and Crystaf. 

 

Figure  9-30. MWD, hexyl branch distribution, and viscosity plot for sample M-n. 
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9.5 Conclusions 

Branch-block copolymers can be made in two polymerization stages. Stage 1 is used to produce linear 

macromonomers with pendant vinyl groups. Stage 2 is employed to make ethylene/-

olefin/macromonomer terpolymers. The proportions of the different components in the polymer (high 

crystallinity, low crystallinity, and cross-product) can be regulated by varying reactor residence time, 

catalyst concentration, diene fraction, and ethylene/-olefin ratio. 

The copolymerization of ethylene with 1,9-decadiene using MAO-activated rac-Et-IndZrCl2 catalyst 

was used to produce macromonomers containing pendant  1-octenyl branches. Increasing the diene 

concentration in the reactor at a constant ethylene pressure causes a linear increase in the frequency of 

pendant 1-octenyl branches in the macromonomer, while the molecular weight average of the 

polymer increases only slightly.  

Under the experimental conditions covered in this investigation, we were not able to make branch-

block copolymers with macromonomers having only terminal unsaturations (no diene), although the 

homopolymer made using rac-Et-IndZrCl2 had about one terminal vinyl group per chain. Introducing 

a certain amount of pendant vinyl group into the copolymer made by rac-Et-(Ind)2ZrCl2, however, 

facilitated the production of branch-block copolymer with CGC and produced a material with 

considerable fractions of cross-product. 

When macromonomers containing pendant double groups were present in the second stage of 

polymerization, longer polymerization times and higher CGC concentrations increased the weight 

fraction of cross-product. Increasing the ethylene pressure during the second polymerization stage at a 

constant 1-butene concentration produced copolymer chains with higher crystallinity and favored the 

formation of cross-product, likely due to steric effects associated with the sequential insertion or 1-

butene and macromonomer.  

When 1-octene was used as the comonomer, it was observed that increase in 1-octene concentration 

decreased long chain branching, whereas Increase in pendant vinyl group frequency of the 

macromonomer led to increased long chain branching. 
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Chapter 10 

Conclusions and Recommendations 

10.1 Conclusions 

 

Significant contributions to polymer science and polymer reaction engineering have been made in this 

research:  

1) For the first time, a mathematical model was developed for a system of two continuous stirred 

tank reactors in series using a combination of two single site catalysts that produced LCB 

polymers. Population balances and the method of the moments were used to develop the model. 

The model can predict average weight fractions, molecular weights, average chain lengths, 

polydispersity and long chain branch density for different polymer populations. This model can 

be used to guide polymer reactor engineers formulate new products with complex 

microstructures.  

2) A similar model was developed for semibatch reactors to predict change in microstructural 

properties with time. Simulation results show that CSTRs are more efficient than semibatch 

reactors in producing branch-block polymers.  

3) A systematic methodology for olefin polymerization kinetics determination with metallocenes 

was introduced for semibatch reactors that can be used to obtain kinetic parameters and 

statistically test polymerization mechanism.  

4) An in-depth study on ethylene homopolymerization kinetics with rac-Et(Ind)2ZrCl2/MAO system 

was performed for the first time, revealing that the catalyst decays according to a first order 

model, chain transfer to monomer is the dominant transfer reaction, followed by chain transfer to 

MAO, and that macromonomers can be prepared at low MAO concentrations.  

5) For the first time, a polymerization kinetics model was developed for the homopolymerization of 

ethylene with CGC-Ti/MAO system at high MAO concentration. Unlike rac-

Et(Ind)2ZrCl2/MAO, increase in MAO concentration leads to an increase in molecular weights. 

Decrease in monomer pressure and MAO concentration favors formation of polymer with long 

chain branches.  

6) Polymer microstructures with defined pendant 1-octenyl branches frequency  were made using  

rac-Et(Ind)2ZrCl2/MAO catalyst, which can be used as macromonomer for further  

copolymerization reactions. 
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7) Polymer chains with complex microstructures were made by incorporating macromonomers with 

two to five pendant vinyl groups into ethylene/1-butene or ethylene/1-octene copolymers. These 

long chain branched materials were called cross-product. The cross-product compatibilizes the 

low crystallinity or amorphous copolymer chains with the high crystallinity macromonomer 

molecules, forming a long-range network bound by physical crosslinks.  

 

10.2 Recommendations for Future Work 

We did a systematic investigation study on making branch block copolymer made using 1,9 

decadiene, ethylene and 1-butene or 1-octene. An interesting research topic could arise from making 

isotactic blocks of propylene with sterospecific metallocene catalysts having pendant  1-octenyl 

branches and then  incorporating them to copolymer chains of ethylene and 1-octene or 1-butene to 

make thermoplastic elastomers with enhanced properties.  

Mathematical modeling of the polymerization for a semibatch reactor with initial presence of 

macromonomer having pendant vinyl groups could help to understand and expedite the experimental 

part.  

Experimental study to increase the amount of cross products for TPEs made using isotactic propylene 

and α-olefin copolymers. Surface response methodology would be a fast and most convenient method 

to achieve this goal.   

Another subject that needs to be investigated is to do kinetic study on homopolymerization using 

CGC and borate as cocatalyst and comparing the results with present study to figure out which 

cocatalyst is more efficient in producing polymers with more LCBs. 
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APPENDICES 

 

Appendix A 

Population Balances and Moment Equations ( CSTR 1) 

The n
th
 moment, n, of a generic distribution f (x) is given by the equation: 
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The following convention was adopted for the moments: II

i

I

ii xxx ,, are the zero
th
, first and second 

moments of linear chains; 
II

i

I

ii xxx ,, are the zero
th
, first and second moments of homogeneous-

branched chains; 
II

i

I

ii xxx ,, are the zero
th
, first and second moments of cross-product chains; the 

subscript i indicates catalyst type; moments of living polymer chains are represented by Y, of 

macromonomers by , and of dead polymers by Q. 

 

Living Chains 

The population balance for linear living chains with length larger than 2, r ≥ 2, is given by 
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where s is the reciprocal of the average residence time in the CSTR . 

This equation will be used in a more compact form as  
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where the following lumped parameters were defined 



 

 266 
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A slightly different equation is required for chains of unity length, r = 1 
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The dynamic equation for the zero
th
 moment of linear living polymer made on catalyst i is 
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Substituting Equations (A-3) and (A-10) into Equation (A-12) and simplifying the resulting 

expression, we obtain the equation for the zero
th
 moment of linear living chains 
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The equation for the first moment is 
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Differentiating Equation (4A-14) yields 
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Substituting Equations (A-3) and (A-10) into Equation (A-15) 
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Simplifying Equation (A-16), leads to the first moment equation for the linear living chains 
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Finally, for the second moment 
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Substituting Equations (A-3) and (A-10) into Equation (A-18) we get 
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After some algebraic manipulation, the following equation for the second moment of linear living 

polymer is obtained 
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We will consider only chains with r ≥ 2 as branched chains, since chains with r = 1 must necessarily 

be linear. This is just a convention and does not affect the final calculation results for long chains, but 

it simplifies the next derivation steps. 

The population balance for homogenous-branched living chains is 
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The equation for the zero
th
 moment is obtained by substituting Equation (A-21) into Equation (A-12) 

and ignoring the first term on the right-hand side for r = 1 
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This expression can be simplified to obtain the final equation for the zero
th
 moment of homogeneous-

branched living chains 
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The equation for the first moment is obtained by substituting Equation (A-21) into Equation (A-15), 

summing from r = 2 to ∞, and using the identities 
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Finally, the equation for the first moment of homogeneous-branched living chains is 
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The equation for the second moment is obtained by substituting Equation (A-21) into Equation (A-

18) and using the following expressions  
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Finally, the equation for the second moment of homogeneous-branched living chains becomes 
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For cross-product chains, we will also adopt the convention that r > 2 during all derivations.  

The population balance for cross-product chains is 
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The equation for the zero
th
 moment is obtained by substituting Equation (A-30) into Equation (A-12) 
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This expression can be reduced to the more convenient form 
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The equation for the first moment is calculated by substituting Equation (A-30) into Equation (A-15) 

and simplifying the resulting equation using Equations (A-24) and (A-25) 
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The equation for the second moment is derived by substituting Equation (A-30) into Equation (A-18) 

and then applying Equations (A-24) and (A-25) to simplify the result 
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Macromonomers 

The population balance for linear macromonomers is given by 
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Defining 
iY

~
 as the zero

th
 moment of the population of all living chains growing on catalyst type i 
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 (A-37)  

leads to a more compact representation of the population balance of linear macromonomers 
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Substitution of Equation (A-38) into Equation (A-12) leads to the expression for the zero
th
 moment of 

linear macromonomers 
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Similarly, substitution of Equation (A-38) into Equation (A-15) results in the expression for the first 

moment 
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Finally, combining Equations (A-38) and (A-18) leads to the expression for the second moment 
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The population balance for homogeneous-branched macromonomers is 
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Substituting Equation (A-42) into Equations (A-12), (A-15) and (A-18) leads to the expressions for 

the zero
th
, first and second moments of homogeneous-branched macromonomers 
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Similarly, the population balance for cross-product macromonomers is 



 

 272 

rjjbiibrjjtriit
r sYkYkPKPK

t



)

~~
(

d

d
,,,,,,  

 (A-46) 

Consequently, the equations for the zero
th
, first, and second moments are 
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Dead Chains 

The derivation of population balance and moment equations for dead polymers follows the same 

approach used for the macromonomers. Only the final equations will be shown below. 
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Appendix B 

Steady-State Solution of the Moment Equations (CSTR 1) 

The steady-state solution for the moment equations is obtained, as usual, by setting the time 

derivatives in the right-hand side of the moment equations derived in Appendix A to zero and solving 

for the unknown moments.  

 

Zero
th

 Moments  

The equation for the zero
th
 moment of all living chains growing on catalyst type i is given by the 

expression 
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The molar balance for catalytic active sites of type i is given by 
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where in

iC  is molar flow rate of catalyst per unit volume to the reactor. Using Equation (B-3) to 

eliminate  
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 from Equation (B-4) and solving for Ci  
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where the parameter i is defined as 
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The concentration of all macromonomer chains (
~

) can be calculated with the equation  
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Taking derivatives of both sides of Equation (B-8) substituting Equations (A-39), (A-44), and (A-47), 

leads to the following equation for the steady-state zero
th
 moment of all macromonomers in the 

reactor 
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Assuming that the concentrations of monomer (M), hydrogen (H2), and cocatalyst (Al), are known, 
iY

~

, iC , and 
~

 can be calculated with Equations (B-3), (B-6) and (B-10), respectively. The values for 

iY  and i are also easily found from the steady-state solutions of Equations (A-13) and (A-37), 

respectively 
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The steady-state equations for the zero
th
 moments of branched living chains and macromonomers 

have to be solved simultaneously. We used a simple Gauss-Seidel iteration approach with first 

estimate 0ΘΘi  to calculate ii YY  and . These values were used to re-estimate ΘΘi  and , and 

the iterations were repeated until convergence was achieved using the following equations 
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Finally, the zero
th
 moment equations for the dead polymer chains can be solved sequentially 
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First Moments  

The steady state equations for the first moments can be solved sequentially after the solution for the 

zero
th
 moments. After some algebraic manipulation, the following solutions are derived  
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Second Moments 

The steady state equations for the second moments can be solved sequentially after the solution for 

the zero
th
 and first moments with the following expressions 
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Appendix C 

Model Equations for CSTR 2 

The moment equations for CSTR 1 are derived with a simple modification of the equations for CSTR 

1 to allow for the flow of species from CSTR 1 to CSTR 2. The procedure will be illustrated for the 

equation of the zero
th
 moment of linear living polymer and, for the sake of brevity, just final results 

for all other moments, along with the methodology for solving them, will be presented.  

For CSTR 2, we must modify Equation (A-13) to allow for the flow of zero
th
 moment (polymer molar 

concentration) from CSTR1 to CSTR 2 
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The volumes of CSTR 1 and CSTR 2 are represented by ν1 and ν2, respectively, and were assumed to 

be the same with no change in the volume of the reaction mixtures during the polymerization. 
inC1 ,

inC2
are molar flow rates of catalysts 1 and 2 per unit volume of the reactor. The volumetric flow rates 

entering and leaving CSTR 1 are denoted by 1,

.

in  and 1,
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out and for CSTR 2 by 2,
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where *

iY  is the zero
th
 moment of living linear polymer leaving CSTR 1.  

Since the average residence time in the reactor is given by the ratio
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where 
*

rt  is the average residence time in CSTR 1. 

The steady-state solution of Equation (C-2) is 
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where s
*
 is the reciprocal of the average residence time in CSTR 1.  

Similar equations for all the other moments can be developed in an analogous way. Their final 

expressions are listed below. 

 

Zero
th

 Moments  

The following equations can be solved sequentially 
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The following equations need be solved simultaneously 
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Finally, the moment equations for the dead polymers can be solved sequentially  
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First Moments  

All first moment equations can be solved sequentially. 
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Second Moments 

All second moment equations are solved sequentially. 
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Appendix D 

Additional Reactor and Polymer Property Equations for CSTR 1 

The molar balance for monomer is given by 
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where M 
in 

 is the molar flow rate of monomer to the reactor per reactor volume 
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The steady-state solution of Equation (C-1) is 
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Chain length averages are given by the ratio of two moments. For living linear chains made on 

catalyst i 
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r
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Similar equations are used to calculate the chain length averages of other polymer populations present 

in the reactor. 

Molar percentages are calculated from the zero
th
 moments. For instance, the molar percentage of 

linear living chains made on catalyst i is given by 
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Similarly, weight percentages are calculated using the first moments 
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Analogous expressions are used to calculate the molar and weight percentages of the other polymer 

populations in the reactor. 

Two types of LCB averages will be calculated: the number of LCBs per 1000 carbon atoms (or 

LCBD) and the number of LCBs per chain (Bn). The general expressions for these averages are 

tionpolymeriza of rate

formation LCB of rate
500   (D-9) 

The number of LCBs per chain is calculated with the equation 
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Therefore, for homogeneous-branched chains 
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for cross-product chains 
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and, finally, for the overall polymer: 

MYkYk

YkYk

pp

b,b,

O
)

~~
(

~
)

~~
(

500
22,11,

2211




   (D-13) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 290 

Appendix E 

Long Chain Branch Averages for CSTR 2 

Additional equations are needed to calculate LCB averages for CSTR 2. Since their derivations are 

lengthy, just final equations are shown here.  

Parameters [M]i and xi are monomer concentration and conversion in CSTR 1 (i = 1) or CSTR 2 (i = 

2).  

The monomer conversion in CSTR 1 can be calculated with the equation 
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Monomer conversion for CSTR 2 is given by 
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Where s2  is the reciprocal of the residence time in the CSTR 2 
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The LCB density for the polymer exiting CSTR 2 (overall,out,2) was calculated using the equation  
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where overall,inst,2 is the instantaneous LCB density of the overall polymer within CSTR 2 if there was 

no flow from CSTR 1, calculated with Equation (D-13) with the corresponding monomer and 

population concentrations in CSTR 2. The parameter overall,out,1 is the LCB density of the polymer 

exiting CSTR 1, which is again calculated with Equation (D-13) using monomer and populations  

concentrations in CSTR 1. 

The equation for calculating the LCB density of the cross-product exiting CSTR 2 is   
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Where ncross,out,1  and ncross,out,2 denote the mole fraction of the cross-product exiting CSTR 1 and 

CSTR 2, respectively. Their corresponding number average chain lengths are rn,cross,out,1  and rn,cross,out,2. 

In the same way, rn,overall,out,1 and rn,overall,out,2 represent the number average chain lengths of the overall 

polymer exiting CSTR 1 and CSTR 2. 

Finally, the LCB density of homogeneous-branched chains is: 
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Appendix F 

 

Relative standard deviation (RSD) is defined as the standard deviation, s, divided by the mean value.  

When experimental data involved are related through products and quotients like product below. 

cbay    (F-1) 

The relative standard deviation of the result y, sy/y, is obtained by summing the squares of the relative 

standard deviations of a, b and c and extracting the square root of the sum given that variables 

involved are independent.  
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We can estimate confidence interval for kM  and ][Alkk AlH   using equation F-2 and the  estimated 

standard errors from nonlinear regression (last column of Table 6-16) . For kM, we can write   
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Since mw is a constant , RSD(mw) would be zero. Therefore, we can write equation below    
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Similarly, for ][Alkk AlH   
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Substituting the relevant parameters into the equations F-5 and F-6 gives 
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The 95% confidence intervals estimates for kM  and ][Alkk AlH   are 

mol.s

L
83.1094.24094.2401013.294.240 2
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(F-10) 
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Appendix G 

 

The standard deviation of the sum of two random variables can be related to their individual standard 

deviations and the covariance between them. 

),cov(2)var()var()( YXYXYXSD 

           

(G-1) 

If the random variables are independent, then their covariance is zero, so 

 )var()var()( YXYXSD 

     

(G-2)

 
Similar to equation G-1, we can write 

     22
]))[/(()/(])[/(/ MmwkkSDmwkkSDMmwkkmwkkSD pHpMpHpM  

    

(G-3) 

 

Substituting the relevant terms for kM / mwkp, and kM / mwkp+ kβH/( mw kp[M]) from Tables 6-16 and 

6-22 into equation G-3 gives, 
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and its approximate 95% confidence interval is,  
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The relative standard deviation for kAl was calculated using Equation G-6 and the previously 

estimated values of kp,(Section 6.4.3), monomer concentration (Section 6.4.1) and  kAl/(mwkp[M])  

(Table 6-22) .  
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The approximate 95 % confidence interval for the kinetic parameter kAl     is, 
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Appendix H 

 

The concentration of complexed active sites is given by equation 7-6 rewritten below 
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The propagation rate is: 

]][.[ * MMPkR pp 

  

(H-3)

 

Substituting equation (H-2) in (H-3) gives equation below
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 If we assume that catalyst sites decay according to the second order model given below 
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d
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Integration of the equation (H-5) yields 
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Rearranging lead to 
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If we now substitute equation (H-7) in (H-4), we get the expression below 

)1])([1(

][

0

2

0

tCkMK

MKCk
R

d

p

p




  

(H-8) 



 

 297 

The molar balance for monomer in a semi-batch reactor is given by, 
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Since monomer concentration is kept constant, we conclude that,  

RpinM VRF ,   (H-10) 

Substituting equation (H-8) in (H-10) leads to equation below  
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Appendix I 

 

Pooled standard deviation 

In statistics, a problem often arises when there are several series of measurements performed under 

similar conditions and it is desired to achieve an improved estimate of the variability of the process. If 

we assume that the same phenomena are generating random error at every level of independent 

variable, although their means may differ, so standard deviations can be pooled to express a single 

estimate of the standard deviation called pooled standard deviation. The reason for using pooled 

standard deviation is to avoid numerous repeated tests required at each value of x, which sometimes 

causes the expense of testing to become prohibitive. The pooled standard deviations sp from k series 

of measurements can be calculated as 
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sn

s

)1(

)1( 2
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The suffices 1, 2, ... i refer to the different series of measurements. In this case it is assumed that there 

exists a single underlying standard deviation s of which the pooled standard deviation sp is a better 

estimate than the individual calculated standard deviations s1, s2, ... sr. 

The 95% confidence interval for the mean of the ith factor level is calculated by: 

i

p

rNi
n

s
tMean   ),2/(

  (I-2) 

 

N is the total number of observations 

r is the number of factor levels 

ni is the number of observations for the ith factor level  
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Difference in means of two normal distribution  

Test for equality of variances 

Suppose that two independent normal populations are of interest, where the population means 

and variances, say, 
1  , 2

1  , 
2 and 2

2  
, are unknown.  If  s1

2 
and  s2

2 
are the sample variances and  

samples sizes are  n1 and n2, respectively, then the following test procedure can be applied to test for 

equality of variances
[144]

. 

Null hypothesis:       2

2

2

1     (I-3) 

Alternative hypothesis:    2

2

2

1        (I-4) 

Test statistic:       
2

2

2

1
0

s

s
f        (I-5) 

The null hypothesis will be rejected If    
1,1,2/0 21  nnff 
  (I-6) 

 where 
1,1,2/ 21  nnf  is the upper  α/2 percentage point of the F distribution with n1-1 numerator and n2 

-1 denominator degrees of freedom.  

Confidence interval for difference in means when variances are unequal 

The confidence interval for the difference in means can be calculated from the equation below. 

2

2

2

1

2

1
,2/2121

2

2

2

1

2

1
,2/21

n

s

n

s
txx

n

s

n

s
txx   

  

(I-7) 
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Confidence interval for difference in means when variances are equal 

The confidence interval for the difference in means of two normal distributions, when their variances 

are equal, can be calculated from the equation below.  
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Where 
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