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Abstract

Quantum communication promises to outperform its classical counterparts and
enable protocols previously impossible. Specifically, quantum key distribution
(QKD) allows a cryptographic key to be shared between distant parties with
provable security. Much work has been performed on theoretical and experi-
mental aspects of QKD, and the push is on to make it commercially viable and
integrable with existing technologies. To this end I have performed simulations
and experiments on QKD and other quantum protocols in regimes previously
unexplored.

The first experiment involves QKD via distributed entanglement through the
standard telecommunications optical fibre network. I show that entanglement is
preserved, even when the photons used are a shorter wavelength than the design
of the optical fibre calls for. This surprising result is then used to demonstrate QKD
over installed optical fibre, even with co-propagating classical traffic. Because
the quantum and classical signals are sufficiently separated in wavelength, little
cross-talk is observed, leading to high compatibility between this type of QKD
and existing telecommunications infrastructure.

Secondly, I demonstrate the key components of fully-modulated decoy-state
QKD over the highest-loss channel to date, using a novel photon source based
on weak coherent (laser) pulses. This system has application in a satellite
uplink of QKD, which would enable worldwide secure communication. The
uplink allows the complex quantum source to be kept on the ground while only
simple receivers are in space, but suffers from high link loss due to atmospheric
turbulence, necessitating the use of specific photon detectors and highly tailored
photon pulses. My results could be applied in a near term satellite mission.
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Chapter 1

Introduction

1.1 Quantum information

Broadly speaking, the study of quantum information involves the data storage,
manipulation, and computational abilities of quantum systems. In contrast
to classical bits which can take only values 0 and 1, qubits (quantum bits)
instead reside in quantum states |0〉 and |1〉. Since the two level qubit is a
quantum system, the states can also exist in arbitrary superpositions, |ψ〉 =
α|0〉 + β |1〉. These superpositions, along with entanglement between qubits
(i.e. stronger-than-classical correlations) allow quantum information to perform
tasks impossible classically, such as quantum teleportation [8] and quantum key
distribution [34], and perform other tasks much faster, such as factoring [103].
In this chapter I will detail the components of quantum information that lead
to quantum communication, and review the basic principles of quantum key
distribution.

1.1.1 Photons as qubits

Though there are many quantum systems that can be used to encode qubits, I
will focus only on photons as they are most relevant to communication. A photon
is the smallest unit of light, with energy E related to the wavelength λ by E = hc

λ
,

where h is Planck’s constant and c is the speed of light. Qubits can be encoded
onto photons in a number of different ways, including polarisation, location, time-
bin and frequency. This thesis focuses on polarisation encoding, where the logical
state |0〉L is encoded as horizontal polarisation of one photon |H〉 and |1〉L as
vertical polarisation |V 〉. Other states of importance are |±〉L =

1p
2

�

|0〉L ± |1〉L
�

,

or in polarisation encoding, |±〉= 1p
2
(|H〉 ± |V 〉). Thus single qubit rotations are

easily performed with half- and quarter-waveplates, and entanglement in the
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form of two-photon Bell-states is easy produced through spontaneous parametric
down-conversion (see Subsection 4.2.1). Photons interact weakly with the
environment, leading to low decoherence, but making multi-qubit gates difficult.
Nonetheless, this problem can be overcome with two-photon entangling gates
that rely on post-selection [56].

1.1.2 No-cloning theorem

A significant property of quantum information is that an arbitrary unknown state
cannot be perfectly cloned [128, 21]. Classically, of course, information can
be copied arbitrarily many times without penalty, but the no-cloning theorem
enforces a restriction on quantum cloners. The proof by counterexample is as
follows [78]: Suppose I have a quantum cloner with unitary U capable of copying
a state |ψ〉 to some ancilla qubit |z〉: U |ψ〉 ⊗ |z〉 = |ψ〉 ⊗ |ψ〉. The cloner must
also be able to copy another state |φ〉: U |φ〉 ⊗ |z〉= |φ〉 ⊗ |φ〉. Taking the inner
product of these two equations gives

�

〈φ| ⊗ 〈z|U†
�

�

U |ψ〉 ⊗ |z〉
�

=
�

〈φ| ⊗ 〈φ|
��

|ψ〉 ⊗ |ψ〉
�

(1.1)

〈φ|ψ〉〈z|z〉= 〈φ|ψ〉〈φ|ψ〉 (1.2)

〈φ|ψ〉=
�

〈φ|ψ〉
�2 . (1.3)

This has two solutions, 〈φ|ψ〉 = 0 or 〈φ|ψ〉 = 1, meaning that |φ〉 and |ψ〉
are either the same state or orthogonal states. Thus the perfect quantum cloner
cannot work on arbitrary states. This significant result has the implication that
an unknown state cannot simply be cloned and measured many times to gain
information, a requirement for the security of quantum key distribution.

1.1.3 Entanglement and tests of quantum mechanics

Entanglement is seen as a hallmark of quantum mechanics as it cannot be
simulated classically. A common example of maximally-entangled two-qubit
states are the four Bell-states on Hilbert spaces A and B (tensor products between
A and B are omitted for brevity):

|Φ±〉=
1
p

2

�

|0〉A|0〉B ± |1〉A|1〉B
�

(1.4)

|Ψ±〉=
1
p

2

�

|0〉A|1〉B ± |1〉A|0〉B
�

(1.5)
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If qubits A and B were classically correlated instead of entangled, measure-
ment in the 0/1 basis would reveal perfect correlation, but measurement in the
+/− basis would lead to no correlation, as each qubit would then independently
and randomly fall into the |+〉 or |−〉 eigenstate. By contrast, rewriting |Φ+〉 in
the +/− basis through the substitution |0/1〉= 1p

2
(|+〉 ± |−〉) gives:

|Φ+〉=
1

2
p

2

��

|+〉A+ |−〉A
��

|+〉B + |−〉B
�

+
�

|+〉A− |−〉A
��

|+〉B − |−〉B
��

(1.6)

|Φ+〉=
1
p

2

�

|+〉A|+〉B + |−〉A|−〉B
�

(1.7)

Similar to the other Bell-states, |Φ+〉 will give perfect correlations in the
H/V and +/− measurement bases, a hallmark of entanglement’s stronger than
classical correlations.

Indeed this distinction between classical correlations and entanglement led to
the Bell-type inequalities [5] following Einstein, Podolsky and Rosen’s argument
that quantum mechanics is incomplete [26]. The Bell-type inequalities assume
local, realistic theories and local hidden variables to derive a bound on some
value based on independent measurements of correlated but distant systems.
For example, the Clauser-Horne-Shimony-Holt (CHSH) inequality (Equation 1.8)
bounds the parameter SCHSH by 2, while quantum mechanics predicts a maximal
value of 2

p
2.

SCHSH = |E(φA,φB)− E(φA,φ′B)|+ |E(φ
′
A,φB) + E(φ′A,φ′B)| ≤ 2, (1.8)

As shown in Subsection 3.3.1, the correlation values
�

�E(φA,φB)
�

� ≤ 1 are
determined by many measurement outcomes with measurement settings φA and
φB respectively on distant photons A and B in correlated (or entangled) states.
The measurement settings {φA/B} determine, for example, the polarisation angles
to be measured on photons A and B respectively.

1.2 Quantum key distribution

Quantum cryptography, and specifically quantum key distribution (QKD), promise
to remove assumptions on computational power of an eavesdropper and allow
provably secure communication between distant parties. The general idea is
that quantum states are used as information carriers, with randomly chosen bits
encoded in randomly chosen mutually unbiased bases. These bases are chosen
such that their measurement operators are non-commuting, i.e. information
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cannot be learned about the quantum state in both bases simultaneously. For
photons, two such polarisation bases are H/V and +/−: a photon prepared in |H〉
and measured in the +/− basis will give either outcome with equal probability
and end up in either the |+〉 or |−〉 eigenstate, leaving no information on its
previous state. Therefore if photons are sent in a randomly chosen basis, an
eavesdropper cannot directly measure to gain full information about a single
photon as she does not know the correct basis, and in fact disturbs the state [42].
Thanks to the no-cloning theorem, the eavesdropper is also unable to clone the
photon and perform many measurements to gain knowledge [128, 21]. The
disturbances introduced by eavesdroppers (call them Eve) allow the legitimate
parties (call them Alice and Bob) to detect eavesdropping, and abort the protocol.
If there is no eavesdropping, the protocol produces a shared, random, private key
between Alice and Bob, which they can then use in the provably secure Vernam
cipher (one-time pad) [123] to communicate. The Vernam cipher requires a
private and random key as long as the message to be sent, and is secure so long
as the key is used only once, then discarded. Thus QKD addresses the question
begged by the Vernam cipher, namely the problem of distributing many keys
between distant parties with provable and compassable security. For a good
review of QKD see Reference [34].

1.2.1 Relationship to classical cryptography

Classical public key cryptography such as RSA [93], commonly used over the
internet, relies on assumptions on an eavesdropper’s computing power: if a
quantum computer were realised, RSA would be immediately insecure due to the
quantum computer’s speedup in factoring. Additionally, an attacker could store
the public key and cipher text until computing power advances, and recover the
secret message then. QKD, by contrast, is only vulnerable during key exchange.
Once the private key is shared, the security of the Vernam cipher makes the
communication invulnerable to attacks. Of course, side-channel attacks on
specific implementations of QKD during and after key exchange are a problem
(Subsection 2.1.2), and individuals can always surrender information, but the
underlying protocol is secure indefinitely.

1.2.2 QKD Protocols

BB84: 4-state qubit protocol

Charles Bennett and Gilles Brassard invented the first QKD protocol, dubbed
BB84 in 1984 [7]. In this protocol, Alice sends photonic qubits to Bob, with
random basis and bit value, then Bob measures each in a randomly chosen basis.
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Afterwards, they perform basis sifting over a classical channel, wherein they
compare the basis value for each of Bob’s detections, discarding those where they
do not agree. Now, crucially, Alice and Bob compare some of their remaining
bits to determine the quantum bit error rate (QBER). If this QBER is greater than
a predetermined security limit, Eve could have gained too much information,
and the protocol must be aborted. If not, Alice and Bob perform error correction
and privacy amplification over the classical channel. Error correction and privacy
amplification are classical protocols that ensure Alice and Bob’s keys agree, and
that they are uncorrelated to the eavesdropper respectively. Privacy amplification
consumes key to reduce the eavesdropper’s information on the remaining bits;
how much key must be consumed is determined by the QBER.

Security of QKD

Security of the theoretical QKD protocol is well proven. Mayers first proved
security in 1996 [74], inspiring future proofs based on the uncertainty principle
by Koashi [57]. Shor and Preskill in 2000 [104] made a simple and compelling
proof based on entanglement distillation. They used the property of quantum
mechanics that if Alice and Bob can verify that they share a pure entangled state,
no one else can be correlated with it. This therefore removes the possibility of
Eve’s knowledge as she is not correlated with Alice and Bob’s state before they
measure. Through a series of reductions, the security of BB84 is then derived,
resulting in a secret key for QBER® 11%.

Renner, Gisin, and Kraus improved these proofs with information theoretic
notions rather than entanglement purification [91]. Their proof introduces ε-
security, where the key shared between Alice and Bob is identical and perfectly
secure except with probability ε. This ε is bounded from below:

δ
�

ρSASB E′ , ρSS ⊗ρE′
�

≤ ε. (1.9)

Here δ(x , y) is the trace distance between density operators x and y, and
ρSASB E′ is the total joint state between Alice, Bob, and Eve, based on Alice’s key
SA, Bob’s key SB and Eve’s state E′, which may be partially correlated with Alice
and Bob. The perfectly secure situation is described by ρSS ⊗ρE′ , where Alice
and Bob are separable from Eve, and Alice and Bob each hold the same uniformly
random key S. Thus the lower the probability of failure (insecure key) required
by the application, the closer the state held by Alice, Bob and Eve must be to the
perfect case. Based on this “closeness,” a lower bound on the secret key rate can
be derived from the entropy (uncertainty) of Eve’s knowledge of the key.

5



Implementation of BB84 with weak coherent pulses

A loophole is introduced in BB84 if the information carriers are not perfect single
photons, but rather photonic modes that may contain one or more photons.
Modes of light are solutions to Maxwell’s equations and are defined by polarisa-
tion σ and momentum vector k. Fock states are simple occupation numbers of
photons in modes and form a basis, e.g. |2〉σ,k means two photons in the mode
defined by (σ, k). They are states not generally found in nature and difficult to
produce and control exactly. A laser, which would be very convenient to use as
a photon source for QKD, produces the so-called coherent state, which can be
represented as a sum over all Fock states.

|α〉= e−
|α|2

2

∞
∑

n=0

αn

p
n!
|n〉 (1.10)

The “strength” of the coherent state is given by α, and µ = |α|2 is the average
number of photons in the mode. Also relevant to photonic states are the creation
and annihilation operators â† and â, with actions â†|n〉=

p
n+ 1|n+ 1〉, â|n〉=p

n|n− 1〉, and â|α〉= α|α〉 for Fock state |n〉 or coherent state |α〉.
The upshot of Equation 1.10 for QKD is that, when using a laser as the photon

source, one can never be assured of true single photons as there is a chance for
higher photon numbers in every pulse. This allows Eve to perform a photon
number splitting attack [67], preferentially admitting pulses with more than one
photon such that she can store one and measure it later when Alice and Bob
reveal their bases, gaining full information without detection.

Hence the decoy-state protocol was invented [48, 71], wherein Alice changes
randomly the average photon number of the pulses she sends between signal
states (used for key generation) with high average photon number and decoy
states with lower average photon number. Intuitively, using decoy states allows
Alice and Bob to detect the photon number splitting attack in the following way.
The detection probability for a coherent state with average photon number µ
after a channel with single-photon transmission η (assuming threshold detectors)
is

Pdet(µ) = 1− e−µη+ Y0 (1.11)

for background count probability Y0 and assuming both Y0 and η are small.
This assumes η is independent of the average photon number, which is true for a
passive channel but not during the case of the photon number splitting attack.
Since Eve’s attack depends on blocking all single-photon pulses (since she can
gain no information from these) and admitting only multi-photon pulses, Eve
will be more likely to block decoy pulses with lower average photon number. To
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ensure the Bob’s detection rate is undisturbed by this blocking, Eve may employ
a (so far unrealized but physically allowed) lossless channel for the remaining
pulses, effectively increasing the transmission of multi-photon pulses. So now
Alice and Bob measure two different values of Pdet for signal states µ and decoy
states ν , with µ > ν:

Pdet(µ) = 1− e−µηµ + Y0 (1.12)

Pdet(ν) = 1− e−νην + Y0 (1.13)

where now η, the channel transmission, is allowed to depend on µ and ν
to allow for the possibility of the photon number splitting attack. If Alice and
Bob determine through the two values of Pdet that ηµ 6= ην , i.e. the channel acts
nonlinearly on their signal and decoy states, they cannot rule out the photon
number splitting attack and must assume it is occurring.

In practice, Alice and Bob use the multiple Pdet values to place an upper bound
on Eve’s information on the shared key through quantum optical and information
theoretic relations as shown in Section 5.3. The decoy-state protocol allows Alice
and Bob to put much tighter bounds on the number of pulses exchanged that
contained exactly one photon and so were secure against the photon number
splitting attack, and also the error rate of these single-photon pulses. It is assumed
Eve has full information on pulses with more than one photon, so the maximum
length of the secure key is upper bounded by this number of single photon pulses,
and therefore no secure key is generated if the photon number splitting attack
occurs since Eve blocks all single photon pulses. If Eve attacks only some pulses
or none at all, the tighter bounds on single photon detection and error rates allow
higher average photon number while maintaining security, such that the BB84
protocol with decoy states maintains the same loss scaling of secure key rate as
with perfect single photons. I used the decoy-state protocol in an experiment
over a high loss channel below (Chapter 5).

BBM92: implementation with entangled states

A number of years after BB84, it was discovered that entanglement could be used
for QKD as well, by Ekert (E91 protocol) [27] and also by Bennet, Brassard and
Mermin (BBM92 protocol) [9]. These protocols use the perfect correlations of
Bell-states (Equation 1.7) that remain even as the measurement basis (on both
sides) is rotated to an arbitrary angle. Like BB84, it is sufficient to detect pairs
in both the H/V and +/− bases to estimate Eve’s information. The protocol
and security from Bob’s point of view is equivalent to BB84, while Alice, instead
of preparing states based on random bit and basis choices, measures her half
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of the entangled pairs just as Bob does. BB84 and BBM92 can be seen as
formally equivalent if Alice’s source in BB84 is replaced an entangled source and
a projective measurement; thus the security of BBM92 follows from the security
of BB84. In Chapter 4, I modified a free-space QKD system based on BBM92 to
provide keys from entanglement through optical fibres.

1.2.3 Exploring demanding regimes

As seen in subsequent chapters, I considered a number of experiments and
protocols in new regimes. First, in Chapter 3 I simulated quantum communication
in the context of a satellite mission. These would of course be the longest distance
to date Bell-type tests, teleportation, or QKD, and so would have to cope with
high optical losses and short time intervals for transmission. Nonetheless, these
tests are important fundamentally to ensure entanglement is preserved over
long distances and through changing gravitational fields, to verify long distance
teleportation as a precursor to entanglement swapping, and to enable global
QKD respectively. Next in Chapter 4, I performed QKD using short wavelength
entangled photons in standard telecom optical fibres. This is unique in that it
was unclear if entanglement would be preserved due to higher order spatial
modes in the fibre. This work enables QKD in installed optical fibres with
classical communication present, with no crosstalk due to the large separation in
wavelength. Finally in Chapter 5, I present an experimental verification of the
feasibility of QKD for a satellite uplink. To cope with the high channel losses in
this new regime, I constructed a novel source for QKD, which output photons
at shorter wavelength than any QKD source previously, allowing optimised
transmission and detection. This is an important test as it verified the feasibility
of QKD over a very lossy channel, showing such a satellite mission is achievable.
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Chapter 2

Implementations of quantum communi-
cation

In this chapter I shall draw a distinction between local area QKD and global QKD.
The former defines QKD on the scale of campuses and cities, and brings secure
keys to the end user. The latter enables worldwide secure communication, and so
should operate without distance limitations. Global QKD, however, may not be
able to deliver keys directly to the user, possibly connecting only one central node
per region from which local area QKD can operate. Additionally I will address
some other long distance quantum communications experiments, as extending
the range over which we can control quantum transmissions is important both
for fundamental experiments and in practical applications.

2.1 Local area QKD

Local area QKD operates on the scale of tens of kilometres to allow key sharing
between different offices in a university or divisions of a large company across
a campus or city. It should fit smoothly into existing information technology
infrastructure and not require installing dedicated optical fibres or construction
of free space optical links. In this section I will highlight work on point-to-point
QKD links and networks, and address integrability in current telecommunications
infrastructure. In addition to the hardware discussed below, key generation and
management software is required to interface between the quantum layer and
the user layer [98], serving up keys to various users as required.
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2.1.1 Point-to-point links

The essential form of QKD is the two-user point-to-point link. This allows
key sharing between two distant users (Alice and Bob) and requires either
direct photon transmission from Alice to Bob [7], or a source of entangled
photons with direct transmission to both [27, 9]. Many such QKD systems
have been constructed (Table 2.1), both with entanglement [52, 84, 29] and
without [6, 115, 31, 45, 46, 59, 37, 36]. Some offer secure key rates beyond
1 Mbit/s [22, 23, 130], while others have distributed keys over fibre lengths up
to 250 km [25, 107, 65] or free space links 144 km long [101, 100].

Group System Distance Secure key rate
Zeilinger, 2000 [52] Ent. 360 m (1 km fibre) 400 bits/s
Zeilinger, 2004 [84] Ent. 1.45 km installed fibre 80 bits/s

Weihs, 2008 [29] Ent. 1.6 km free space 85 bits/s
Bennett, 1992 [6] LED 32 cm free space 1.2 bits/s

Townsend, 1994 [115] WCP 10 km fibre 16 kbits/s
Franson, 1994 [31] WCP 10 m fibre 0.3 bits/s

Hughes, 2002 [45, 46] WCP 10 km free space (day) 245 bits/s
Rarity, 2002 [59] WCP 23.4 km free space 200 bits/s
Buller, 2004 [37] WCP 3.75 km fibre 140 kbits/s

Shields, 2004 [36] WCP 122 km fibre 0.2 bits/s
Shields, 2008 [22] WCP 20 km fibre 1.02 Mbit/s
Shields, 2010 [23] WCP 50 km fibre 1.002 Mbits/s

Yamamoto, 2009 [130] WCP 10 km fibre 1.3 Mbits/s
Shields, 2009 [25] Ent. 200 km fibre 0.1 bits/s

Pan, 2010 [65] WCP 200 km fibre 15 bits/s
Gisin, 2009 [107] WCP 250 km fibre 15 bits/s

Zeilinger, 2007 [101] WCP 144 km free space 12.8 bits/s
Zeilinger, 2009 [100] Ent. 2× 144 km free space 0.02 bits/s

Table 2.1: Summary of previous experimental implementations of QKD. Ent.
means entanglement-based QKD, and WCP means weak coherent pulses from a
laser were used. A general progression to higher key rates and longer distances
is evident, but it is also clear that a particular system does not have to break each
record each time to be notable.

Commercial availability

In addition to the experimental implementations above, a number of commercial
QKD systems have emerged. Three products are currently on the market: IDQ
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offers a plug-and-play system based on the SARG protocol which is capable of
key distribution up to 100 km and can provide around 12 AES 256 bit keys
per minute [49]. MagiQ offers a solution aimed at enterprise Virtual Private
Networks, which can distribute keys over 140 km when decoy states are employed,
and refresh AES keys up to 100 times per second, though this key rate comes
at a much shorter distance than the maximum [72]. Finally, the newest entry,
Quintessence Labs, uses continuous variable bright lasers to distribute keys,
limiting distance to 20 km. Their claims are more vague and no definable
product is apparent [86].

2.1.2 Quantum hacking

To learn about and protect against attacks not covered in security proofs (side-
channel attacks), groups in Toronto, Ontario, (Hoi-Kwong Lo) and Tronheim,
Norway (Vadim Makarov) are very active in the new field of quantum hacking.
They seek to compromise implementations of QKD and in doing so learn how to
improve security through theoretical and experimental adjustments. The general
idea is to control Bob’s detectors such that Eve and Bob have identical results in
both basis and bit value, while introducing few or no errors. Eve then simply
follows along as Bob and Alice perform basis sifting, error correction and privacy
amplification, resulting in full knowledge of the key.

Makarov began in 2001 with an attack that used bright light to interrogate
Bob’s basis settings, allowing Eve to intercept Alice’s signal and resend the correct
signal to avoid increasing the error rate. The solution proposed is to add a delay
line before Bob’s detectors, such that Bob can set his detection basis faster than
Eve can interrogate it [121]. Lo then demonstrated the so-called time-shift attack
on a commercial QKD system employing gated photon detectors [131]: As two or
more detectors are generally used in QKD systems and detectors cannot be made
to match perfectly, there may be a time during the opening and closing of the
detector gates where the detectors have a mismatched efficiency. Eve can exploit
this mismatch by shifting Alice’s legitimate signals in time, thereby biasing Bob’s
results to the detector with higher efficiency and gaining probabilistic information.
Quantum hacking then rose to prominence with the advent of detector control
attacks, whereby bright light is used to push detectors (specifically, avalanche
photodiode single-photon detectors) into linear mode, such that the output signal
is proportional to the input illumination and no longer registers single photons.
Thus Eve has full control of Bob’s detectors and can implement an intercept-
resend attack with impunity. This detector control attack and variants have
been recently been characterised [73], implemented [69, 127, 32], and secured
against [68]. All this hacking underscores the importance of considering security

11



of specific implementations of QKD and subjecting them to rigorous trials.

2.1.3 QKD Networks

In order to connect multiple users without dedicated point-to-point links between
each pair, some form of networking is required. The most readily achievable
format is to connect trusted nodes (i.e. nodes which exclude Eve) with point-
to-point links. Consider two users, Alice and Bob, connected by single links to
an independent trusted node (see Figure 2.1). Alice and Bob each perform QKD
with the trusted node to establish separate secure keys, and the node transfers
Alice’s key to Bob using Bob’s key as a one time pad. The node must be trusted
since it knows both the interim and final keys.
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!"#$%8-&5%9:&1011100!
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Figure 2.1: Schematic of trusted node architecture for QKD network. QKD
Links 1 and 2 perform independent key distributions, leading to Alice and Bob’s
independent keys, both known also to the trusted node. The node combines the
keys in a bitwise XOR, and sends the combined key to Bob. By performing again
a bitwise XOR, Bob can use his key to extract Alice’s. In effect, Bob’s key is used
as a one time pad for Alice’s key.
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Another possibility to connect multiple users is using entanglement. A cen-
tral source of entangled photon pairs could act as a service provider selling
entanglement to end users. When two specific users want to communicate,
half of each entangled pair is routed to each user, allowing them to perform
the BBM92 protocol and generate a secure key. This scheme has the added
benefit that the source need not be trusted, as the protocol relies only the final
entanglement correlations, and can handle the case of entanglement faked by an
eavesdropper [9].

Network implementations

Three major (and many smaller) QKD network demonstrations have taken place
around the world. First, the DARPA Quantum Network was operational with six
users by 2004, stretching 20 km around Boston, Massachusetts [28]. It comprises
weak coherent pulse, entanglement, and free space QKD over its various links plus
photon switching, as in Figure 2.2a. Next in 2008, the SECOQC QKD Network in
Vienna, Austria focused on the trusted node architecture and included a similar
variety of point-to-point technologies [79]. The eight links between six nodes
are shown in Figure 2.2b, and featured more automation and improved key
management. Most recently in 2010, the Tokyo QKD Network, spanning 90 km
on its longest link as shown in Figure 2.2c, demonstrated automatic rerouting
around eavesdropping (Figure 2.3), ensuring uninterrupted key refreshing [98].

2.1.4 QKD integration in existing infrastructure

One of the challenges for local area QKD is to integrate key distribution into
existing infrastructure, namely installed optical fibres. Most implementations
mentioned above require dark fibres, i.e. single-use fibres carrying no classical
traffic. By contrast, QKD has been shown at an early stage to be compatible with
classical traffic so long as the two are separated in wavelength, e.g. 1300 nm
and 1550 nm [116]. Difficulty arises in moving the QKD to a densely multi-
plexed scheme to increase transmission distance where the quantum and classical
carriers are separated by only a few hundred GHz around the standard telecom-
munications wavelength of 1550 nm. As the classical information has many
orders of magnitude more optical power, crosstalk into the quantum channel
becomes a major issue due to four-wave mixing or Raman scattering in the
fibre [81]. Hence, local networks would best be served with lossier short wave-
length QKD to ensure good quality transmission compatible with classical traffic,
while longer distances require dark fibres or other solutions.
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Figure 2.2: Major QKD network implementations. Each network comprises
multiple QKD links and technologies in the trusted node scheme. Figures a, b, and
c are from the DARPA Quantum Network [28], the SECOQC QKD Network [79]
and the Tokyo QKD Network [98] respectively
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Figure 2.3: Tokyo QKD Network rerouting from [98]. In this screen capture of the
Tokyo QKD networks’s response to an attack, the software sees a spike in QBER
and so shuts down the link, rerouting key distribution around the eavesdropper.
Realistic attacks would be much more subtle than to create a 50 % QBER, but in
principle the rerouting succeeds.
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2.2 Global QKD

As discussed above, many implementations of point-to-point QKD and networks
have been demonstrated on the scale of tens to hundreds of kilometres. However,
the longest distances over which QKD has been demonstrated are 250 km in
ultra-low-loss fibre [107], and 144 km in free space [101, 100]. Global QKD
should bridge the gaps between local networks and operate essentially without
distance limitation. In this section I will show why QKD has a distance limitation,
and three different but possibly compatible proposals to overcome it.

2.2.1 Distance limitation for direct transmission

Unlike classical cryptography, QKD depends on the specific physical system
used for data transmission: it must be a quantum system comprised of two or
more nonorthogonal quantum states. A major drawback of the photons used in
QKD is channel transmission loss. The best optical fibres today show a loss of
0.18 dB/km, which means they lose 50 % of the photons after only 16 km, and
require a specific photon wavelength to achieve even this performance [113]. At
a 500 MHz source rate, this loss means only one photon would make the 900 km
from Ottawa to Washington, D.C. every 15 months! Through free space, the
channel loss is highly dependent on atmospheric conditions, and can range a
full order of magnitude from 25 dB to 35 dB over a 144 km link [120]. (See
Table 2.1 for a list of QKD implementations and their distance limitations.) Since
quantum mechanics guarantees by the no-cloning theorem that the unknown
quantum state required for QKD cannot be copied [128, 21], there is no way to
directly amplify the photons. But even at very long distance, some photons, prob-
abilistically, will arrive at the receiver, so why cannot a secure key be generated
from them? Since QKD relies on the quantum bit error rate (QBER) to estimate
an eavesdropper’s information, spurious detections have a deleterious effect on
the ability to prove security. Practical detectors exhibit dark counts (i.e. register
detections with no photon present), so at long distances so few photons arrive
that dark counts determine the QBER, which reaches 50 % since the dark counts
occur randomly. This leads to the typical sharp cutoff (beyond which no secure
key can be generated) on plots of secure key rate versus distance, as exemplified
in Figure 2.4.

To be specific, I assume a BB84 QKD protocol using perfect single photons
(i.e. qubits) with perfect encoding and no decoherence, and asymptotically large
in number. I will hence calculate the maximum distance in fibre for positive key
rate given a dark count rate per second d. Assuming also that the QBER E is
identical in each basis, and that one basis used preferentially with probability
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Fig. 3. Decoy QKD experimental results. Raw (filled squares), secure (open squares) key
rate, and the QBER (solid circles). Theoretical simulations are also shown for raw (solid
lines), secure (dashed lines) key rates and the QBER (dotted line). In simulations, Bob’s
detection efficiency is set to 5% (corresponding 10% of detector efficiency), detector dark
count rate of 6.8× 10−6 per gate and afterpulse rate 4.7%, and a QBER of 0.3% due to
optical misalignment. All simulation parameters used are consistent with experimental re-
sults.

by the detector afterpulse noise [10] for fiber distances less than 60 km. The raw key rates as
well as the secure key rates are in good agreement with the simulation. They decrease expo-
nentially with fiber attenuation at 0.20 dB/km, apart from for short fibers (≤20km). At 5.6 km,
the secure key rate is 1.65 Mbit/s, noticeably less than expected, due to the count rate limitation
imposed by the time-tagging electronics [29]. The secure key rates are determined to be 446
and 166 kbit/s for 40 and 60 km of fibers respectively.
For fiber lengths beyond 60 km, the detector dark count noise deteriorates the QKD perfor-

mance, causing the secure key rate to fall faster than the fiber loss and eventually preventing
key formation at a fiber distance of ∼110 km, as simulated in Fig. 3. At 100.8 km of fiber,
the QBER is measured to be 4.6%, which is still sufficiently low for efficient key formation.
The raw key rate is reduced to 257 kbit/s due to the fiber attenuation, and correspondingly the
QKD session time becomes noticeably longer at 16.5 s, in order to accumulate sufficient pho-
ton detection events to reduce statistical fluctuations. Including the effects of finite key length,
a secure key rate of 10.1 kbit/s is achieved. This is a significant improvement over the previous
records, where the key rate at an equivalent level of security is around ∼10 bit/s [23]. The key
rate is also more than 10 times greater than obtained in a recent high-speed QKD experiment
[31], where a key rate of 0.78–0.82 kbit/s was estimated asymptotically using the decoy analy-
sis method for a 97-km fiber link. The high key rate obtained here is a significant step towards
the realization of long distance information-theoretically secure communication.
Finally, we would like to point out that there still remain challenges to be overcome before

realizing a complete gigahertz QKD system. These include remote synchronization, high speed
error correction and privacy amplification, and high speed random number generation [30].
Gigahertz random number generators, which do not exist presently, are particularly important,
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Figure 2.4: Distance limitation in QKD from [22]. The raw key rate falls linearly
on the log scale, but as the arriving photon rate falls near the dark count rate,
the QBER rises rapidly, causing secure key rate to drop to zero.
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approaching 1, the secure key rate per second is [38]

R= Rdet(1−H2(E)) (2.1)

where Rdet is Bob’s total detection rate and H2(x) = −x log2(x) − (1 −
x) log2(1− x) is the binary entropy function. Secure key rate R stays positive for
E < 0.11, so to determine the maximum distance possible, the dependence of E
on distance must be calculated:

E =
0.5d

Rdet + d
=

0.5d

S10
−ηL
10 + d

. (2.2)

Here S is the source rate of emitted qubits, η is the efficiency of the quantum
channel in dB/km and L is the length of the quantum channel. (Photon detectors
are assumed to have perfect efficiency.) Solving for L given E < 0.11 gives

L <
−10

η
log10

�

3.54d

S

�

. (2.3)

For realistic values of S = 500 MHz, d = 1000 counts/s and η = 0.2 dB/km,
the maximum secure distance for QKD is 257 km, before taking into account any
other experimental imperfections or information theoretic security considerations.
It is clear then that other solutions are needed to extend the range of QKD beyond
simple point-to-point links for global coverage.

2.2.2 Quantum repeaters

Quantum repeaters hold the promise of sharing entanglement over arbitrarily
long distances using entanglement swapping [50] and quantum memories [66,
41, 30]. The idea of quantum repeaters is to distribute entanglement along
many pairs of short links, and store the entanglement in (potentially untrusted)
quantum memories, as in Figure 2.5. Multiple levels of entanglement swapping
are subsequently performed between neighbours, resulting in a final entangled
state between the most distant nodes, which can be used in the BBM92 protocol
to generate a secure key.

A significant proposal for the implementation of quantum repeaters was
made in 2001 by Duan, Lukin, Cirac and Zoller [24]. This scheme uses atomic
ensembles as both the source of entanglement and the quantum memory, relying
on a stimulated Raman transition to both emit a photon and excite the ensemble.
As these events occur only together, entanglement is present between the photon
mode and the atomic ensemble. Modes from adjacent ensembles are interfered
on a 50:50 beamsplitter and if one photon is detected, the atomic ensembles are
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entanglement has been successfully established. At first sight,
the most direct approach would be to create entanglement
between two systems locally and then send one of the two
systems (e.g., a photon) to the distant location. However, the
elementary links will still be quite long for realistic protocols,
typically of order 100 km, corresponding to a transmission of
order 10!2. Implementation of heralding in such an approach
would require the ability to measure that the photon has
arrived without destroying the entanglement, which is very
difficult in practice. A better approach is to create the entan-
glement ‘‘at a distance.’’ For example, entanglement between
one atom in A and another atom in B can be created via the
detection of a photon that could have been emitted by either
atom, provided that the measurement of the photon is per-
formed in such a way that all ‘‘which-way’’ information is
erased (Bose et al., 1999; Cabrillo et al., 1999). (This can be
seen as another application of the principle of entanglement
swapping; see Sec. II.B.1.) The detection of the photon then
serves as the heralding event for the creation of the entangle-
ment between the two atoms. If the photon is lost in trans-
mission, there is no detection and one knows that one has to
try again.

Another essential requirement for the quantum repeater
protocol is that one has to be able to store the created
elementary entanglement until entanglement has been estab-
lished in the neighboring link as well, in order to then be able
to perform the required entanglement swapping operation.
The resulting higher-level entanglement again needs to be
stored until the neighboring higher-level link has been estab-
lished and so on. Thus quantum repeaters require the exis-
tence of ‘‘quantum memories’’ (Lukin, 2003; Tittel et al.,
2008; Hammerer et al., 2010). If such memories are not
available, the only solution is to create entanglement in all
links simultaneously. Such memoryless repeaters, also called
‘‘quantum relays,’’ do not help to overcome the problem of

photon loss, but can still be useful to alleviate other problems
such as detector dark counts (Jacobs et al., 2002; Collins
et al., 2005).

Finally, one has to be able to perform the required entan-
glement swapping operations between the quantum memo-
ries, i.e., to perform local joint measurements projecting onto
entangled states between two memories. Such measurements
are certainly possible if one has a way of performing general
quantum gates (e.g., CNOT gates) between neighboring mem-
ories. However, this is generally a difficult task, and it is
thus of interest to consider dedicated, simpler solutions, e.g.,
entangling measurements that work only with a certain proba-
bility; see below.

The original quantum repeater protocol of Briegel et al.
(1998) furthermore contains ‘‘entanglement purification’’
(Bennett et al., 1996) steps that allow one in principle to
purify the effects of any kind of decoherence. However, the
implementation of such general entanglement purification
requires the preparation of at least two initial pairs for every
purified pair at any given nesting level for which purification
is implemented, leading to significant overheads and thus to
lower rates. This makes it advantageous to forgo full entan-
glement purification for simple architectures of just a few
links, where it is not necessary for small, but realistic error
probabilities per operation. In the present review our focus
will be on such simple architectures, because they offer the
most realistic chance in the short and medium terms of
achieving the most immediate goal of a quantum repeater,
namely, to outperform the quantum state distribution rate
achievable by direct transmission.

A highly influential proposal for realizing quantum repeat-
ers was made by Duan et al. (2001). It is widely known as the
DLCZ protocol (for Duan, Lukin, Cirac, and Zoller). The
authors showed how to meet all the above requirements using
atomic ensembles as quantum memories, and linear optical
techniques in combination with photon counting to perform
all the required operations. The use of atomic ensembles as
opposed to single quantum systems such as individual atoms
as memories was motivated by the fact that collective effects
related to the large number of atoms in the ensemble make it
much easier to achieve a strong and controllable coupling
between the memory and the photons that serve as long-
distance quantum information carriers.

The basic process at the heart of the DLCZ protocol is the
spontaneous Raman emission of a photon, which simulta-
neously creates a collective spin excitation in the atomic
ensemble. This correlation between emitted photons and
atomic excitations in each ensemble forms the basis for the
generation of entanglement between distant ensembles (for
each elementary link), which is done via a single-photon
detection that erases all which-way information, following
the principle outlined above for the case of individual atoms.
The spin excitations can be efficiently reconverted into pho-
tons thanks to a collective interference effect. This forms
the basis for the entanglement swapping operations, which
are again done by detecting single photons while erasing
which-way information.

The DLCZ proposal inspired a large number of highly
successful experiments [for example, Kuzmich et al.
(2003), van der Wal et al. (2003), Matsukevich and

QM QM QM QM QM QM QM QM

QM QM

QM QM QM QM

A Z

A Z

(a) Entanglement creation

(b) First entanglement swapping

B C D ... YXW

D

A Z

...

...

...

W
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FIG. 1 (color online). Principle of quantum repeaters. In order to
distribute entanglement over long distances, say between locations
A and Z, one proceeds step by step: (a) Entanglement is first created
independently within short elementary links, say between the
locations A and B, C and D, . . ., W and X, Y and Z.
(b) Entanglement is then swapped between neighboring links such
that the locations A and D, . . ., W and Z share entanglement.
(c) Entanglement swapping operations are performed successively
in a hierarchical fashion until entanglement is distributed over the
desired distance separating the locations A and Z. Squares represent
quantum memories. The dotted arrows connecting two remote
memories indicate that they are entangled.

Sangouard et al.: Quantum repeaters based on atomic ensembles . . . 35
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Figure 2.5: Quantum repeater operation from [97]. In step a), entanglement
is distribution on each of the short links A-B, C-D, etc. Next in b), the first
entanglement swapping is performed between B & C and between X & Y, leading
to entanglement between A & D and between W & Z. This step is performed
multiple times as more nodes are added. Finally in c) the last entanglement swap
is performed, entangling the two end nodes A & Z.
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cast into a state of the form

|Ψφ〉±LR =

�

S†
L ± eiφS†

R

�

p
2

|0〉L|0〉R. (2.4)

Here L and R mean the left-hand and right-hand atomic ensembles, φ is an
unknown phase between them, and S† is the creation operator on the atomic
ensemble. This satisfies step a) of Figure 2.5. Next, entanglement swapping is
performed by converting the collective atomic excitations of the two memories
(e.g. B & C) into a photon by applying a Raman retrieval pulse. These two modes
impinge on a beamsplitter as in step a) to cast the distant quantum memories
A & D into an entangled state given by Equation 2.4; repeating this step allows
finally the end nodes to share entanglement.

Despite the soundness of the proposal and experimental progress [18, 129],
quantum repeaters have yet to surpass the performance of direct photon trans-
missions, and the way forward is not clear [97]. The limited success thus far is
due partly to the difficulty in combining good fidelity, long storage time, and high
efficiency in a single quantum memory, and partly to the difficulty of performing
high fidelity entanglement swapping (see Subsection 2.3.2). In the end, quantum
repeaters would be an excellent solution for future as they require only untrusted
nodes, but are so far impractical to implement, and may require thousands of
memories even to span 1000 km [89], leaving open the question of near-term
global QKD.

2.2.3 Ground-based trusted nodes

A somewhat weaker version of the quantum repeater is to use a string of trusted
nodes to generate a secure key between distant Alice and Bob. Similar to
the networks of Subsection 2.1.3, the trusted nodes perform independent key
distributions to adjacent nodes and so build up security until the end nodes share
a key. To reach long distances, many nodes are required, and each one must
be completely trusted for final security between the end users. This constraint
can be relaxed by allowing multiple trusted-node paths from Alice to Bob and
taking a final key as a combination of the keys from all paths; so long as at
least one path is uncorrupted, Alice and Bob’s key is secure [96]. Additionally,
the cost-effectiveness of such trusted node chains has been calculated, with the
conclusion that an optimum is achieved at much shorter link distances than
the maximum of each individual QKD system [2]. However, the question of
maintaining security in so many intermediate nodes and the difficulty of crossing
oceans leads to consideration of satellites as trusted nodes.
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2.2.4 QKD with satellites

Orbiting satellites as intermediate nodes for QKD present the most viable method
of distributing keys globally, as it is generally accepted that some level of key
distribution is possible with current technology [88, 124, 11]. Whether the
first upcoming demonstration missions can evolve to a functioning commercial
quantum network is unclear and requires more technology development [77].

Satellite QKD falls into two main categories, dependent on whether the satel-
lite acts as an untrusted or trusted node. In the former case, the satellite contains
a source of entangled photon pairs. One photon of each pair is then sent directly
to each receiving party who use entanglement correlations to verify security;
this is secure even if the source is operated by Eve [9]. The difficulty in this
implementation arises in that, for a satellite to be in view of very distant ground
stations simultaneously, it must be far from Earth, leading to a very high channel
loss. It would be rather convenient to use a Geostationary satellite, as it could
distribute keys to approximately half the earth essentially indefinitely. Unfortu-
nately, this puts the satellite 36 000 km from Earth, leading to a channel loss far
beyond the capability of current technology, despite the optimistic conclusions
of Reference [76]. Architectures beyond the simple triangular key distribution
above have been considered as well [4], including satellites as passive relays [94]
and inter-satellite links [82], but these scenarios are even more difficult.

A more readily implemented case is to allow the satellite to be trusted, so that
it acts as in Figure 2.6, reconciling Alice’s and Bob’s independent key distributions
into a shared key known to Alice, Bob and the satellite. In contrast to the ground-
based trusted nodes, a satellite is generally not static, meaning it can perform
key distribution with Alice first as it passes over her location, then with Bob
some time later at an arbitrarily distant point, transforming it into a “trusted
courier.” Routine orbit analysis is necessary to ensure the satellite passes over
the desired ground stations within a reasonable time interval, allowing frequent
key refreshes. This implementation is the most readily achievable as it requires
only single quantum links upward or downward and can be implemented on a
Low Earth Orbit satellite of height 400− 1000 km, keeping the channel loss to
reasonable levels. This is therefore the most likely scenario to be realised first,
with demonstration launches expected in 2013− 2015.

Proof-of-principle Satellite QKD experiments

A number of experiments have sought to confirm the feasibility of ground-to-
satellite key exchange, usually concentrating on the single downlink case. Richard
Hughes and colleagues demonstrated key exchange over a 0.5 km [45] and
then 10 km [46] free-space link in daylight, and suggested their results could
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Figure 2.6: Satellite as a trusted node for QKD. The satellite performs key
distribution with Alice (step 1) to obtain key A and subsequently with Bob (step
2) to obtain key B as it passes over his location. The satellite computes C = A+ B
then returns C to Bob through a classical channel (step 3) who can use his key B
to decrypt Alice’s key A= C + B.
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extend to satellite links. Tobias Schmitt-Manderbach, et al., later demonstrated
QKD over a 144 km free-space link, passing through much more atmosphere
than would be encountered on a satellite link, and again suggesting satellite
QKD should be possible [101]. The same link was used by Thomas Scheidl, et
al., to demonstrate the feasibility of entanglement-based QKD from space to
ground [100]. Finally, an experiment was performed by Paolo Villoresi, et al.,
which directed weak laser pulses at an retro-reflective orbiting satellite 1485 km
high, allowing measurement of return single photon statistics, and showing only
present-day technology is required [124].

2.3 Further long distance quantum communication experiments

A number of other interesting experiments comprise active areas of research. In
this section I will detail a few relevant experiments and their impacts.

2.3.1 Long distance fundamental tests

Since quantum mechanics’ formulation in the early 20th century, many experi-
ments have been derived to test its veracity. From Sir G.I. Taylor’s first double-slit
experiments with “feeble light” [112] to Alain Aspect’s violation of a Bell-type
inequality [3], photons have emerged as a convenient and versatile quantum
system. Aspect’s experiment (Figure 2.7) was the first in a long line to use
entangled photons to attempt to deny a classical description of the world and
confirm quantum mechanics. Aspect, et al., used a source of entangled pho-
ton pairs, with one photon directed to each of two receivers. These receivers
made uncorrelated but nonrandom measurement choices, and a violation of
Bell’s inequality by five standard deviations was observed. Weihs, et al. [126],
made an improvement in that they separated spatially the two receiving stations,
allowing no information to travel between the receivers. Their measurement
choices were set by quantum random number generators, and were fast enough
such that no influence (at light speed or less) could reach the other receiver
before detection. Thus quantum mechanics was shown to be incompatible with
theories that are both local and realistic. More recently, a violation of Svetlichny’s
inequality was demonstrated [63], showing quantum mechanics incompatible
with some nonlocal and realistic theories. This experiment requires three-photon
entanglement and observation of detection probabilities with many combinations
of measurement settings, and so far has not been performed with separated
observers. As more complex entangled states are produced, tighter bounds will
be able to be placed on classes of acceptable theories and our understanding of
quantum mechanics’ place in science will deepen.
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Figure 2.7: Aspect’s test of quantum mechanics from [3]. A source S of entangled
photons ν2 and ν2 is placed midway between observers a and b. The switching
device CI chooses the measurement (−→a or −→a ′) to give the outcome I

�−→a
�

or
I ′
�−→a ′

�

respectively. PM means photomultiplier, the single photon detectors used
which output electrical signals to the coincidence monitoring device.

Longer transmission distances on these tests are required for two fundamental
reasons: First, the farther apart each party, the tighter locality is enforced;
i.e. no “hidden variable” information can be transmitted between stations,
even with slower switching speeds or randomness generation. Secondly, longer
distance is intrinsically interesting, as new physics may emerge as entangled
photons are brought farther apart, or made to pass through differing gravitational
fields. Furthermore, if a quantum link to a satellite is realised, additional tests
become possible. For a single link, there is a non-standard theory which predicts
gravitationally-induced decoherence when half of an entangled pair is sent
through a gravitational gradient as would be seen from ground to a satellite [87].
Violations of Bell’s inequality additionally become possible over larger distances
than ever, which is of debatable importance, as known gravitational effects are
predicted to be too weak to measure [62]. Of perhaps more interest is the idea
to test quantum entanglement with fast moving satellite observers, which could
be arranged such that neither observer appears to have measured first in its own
reference frame [80]. Quantum mechanics predicts no change of outcomes based
on time ordering, and so this interplay with relativity could be directly tested.
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2.3.2 Quantum teleportation

Charles Bennett and coauthors in 1993 proposed a method of “teleporting an
unknown quantum state” of an input qubit |ψ〉in without those systems having
interacted, destroying the input state in the process [8]. It requires initial entan-
glement between Bob’s distant qubit B and Alice’s local qubit A to interact with
the input system, for example in the Bell-state |Ψ−〉 = 1p

2

�

|0〉A|1〉B − |1〉A|0〉B
�

.

The total state between the three qubits is then 1p
2
|ψ〉in⊗

�

|0〉A|1〉B − |1〉A|0〉B
�

. In
a photonic context, the particle to be teleported is interacted with Alice’s half of
an entangled pair, and these photons (in⊗ A) are projected onto a Bell-state and
measured. The two-bit outcome c of this projection measurement is forwarded
to Bob whose qubit was projected into one of four states correlated with c. Bob
performs one of four unitaries depending on c on his photon to correct it to the
initial input state |ψ〉B. Thus information transfer is still bounded by light speed,
but the quantum state is transferred with theoretically perfect fidelity, though
only 2 classical bits were sent. Teleportation was first demonstrated experimen-
tally by Bouwmeester, et al., who showed a decrease in detection probability
when Bob’s photon is measured with polarisation perpendicular to Alice’s input
photon, evidence that Alice’s input state was teleported to Bob [13]. Ursin, et
al., improved upon these results, teleporting a state across the river Danube with
much higher fidelities [118].

The most immediate application of teleportation is as a precursor to entangle-
ment swapping and hence to quantum repeaters. Here the input state |ψ〉in itself
is entangled to another distant system D, resulting in entanglement between
D and B after teleportation. The difference from previously mentioned experi-
ments is that for entanglement swapping, the photons that interfere in the joint
Bell-state measurement are from independent sources and have travelled long
distance. This makes it much more difficult to get sufficient indistinguishability
between these photons for a high-fidelity measurement, due to spectral, timing,
and spatial mode differences. Some progress has been made interfering entan-
gled photons from separate sources connected with only electrical timing, giving
hope to long-distance entanglement swapping [53].
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Chapter 3

Modelling and simulation of quantum com-
munication

Quantum optics experiments are generally an expensive endeavour, and their
initial setup and incremental improvements are sometimes quite slow. In this
light it is important to have a fast and flexible system to determine which ex-
periments are possible under what conditions, and what level of performance is
needed for success. At the same time, theorists at times need to test their work
in an accessible setting as close to the laboratory as possible. The simulation
solution developed in this chapter is based on matrix representations of pho-
ton number states, and is underpinned by the quantum computational toolbox
by Sze M. Tan [111], available as of this date at http://qwiki.stanford.
edu/index.php/Quantum_Optics_Toolbox. Parts of this work were done in
collaboration with co-op student Allison MacDonald, and some were based on
previous simulations by Thomas Jennewein [51], the files of which are avail-
able at http://info.iqc.ca/qpl/lab-tools/. I adapted the entanglement
simulations to our new experiments and regimes, created weak coherent pulse
simulations, added QKD theory and retrieved results.

3.1 The need for quantum optical simulation

Pedagogically, quantum optics is usually introduced in terms of single photons,
entangled pairs, unity transmission, and perfect detectors. In practise, of course,
photonic systems are more complicated, and so some method is required to
get a handle on interactions and outcomes of effects such as higher photon
number states, multi-pair emission, channel loss, and inefficient detectors with
dark counts. Quantum optical simulations are useful first in deciding which
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experiments are possible, next in choosing technology with performance required
for success, and finally in comparing experiment to theory.

3.1.1 Range of possible simulations

The quantum optics toolbox is well suited for simulating any linear optical system,
considering maximum photon numbers per mode of around 8, depending on
the number of modes; fewer modes means more photons in each mode can
be considered. Nonlinear actions are also possible, so long as the Hamiltonian
governing the process is known, as in parametric down-conversion or creation
of coherent states. Thus the toolbox can simulate the optical part of the BB84
and BBM92 protocols, Bell-type tests with two or more entangled photons (e.g.
CHSH, Mermin, Svetlichny), and of course linear optics quantum computing
experiments. Beamsplitters, waveplates, bucket and photon-number resolving
detectors, and post-selection/heralding are all readily included.

3.2 Generalised experiment simulation

The format and function of a generalised simulation is presented here. For MAT-
LAB code for specific implementations, please see the Appendix A.

Initialise Fock state dimension, e.g. N=7

Set up standard toolbox definitions, e.g. beamsplitters, ...
waveplates, annihilation operator, vacuum state

Input experimental parameters like timing window, photon ...
production rates (pair sources), source repetition rate, ...
average photon number (weak coherent pulse sources), ...
channel loss, detector dark count rate

Create initial photon state by down−conversion operator or ...
displacement operator

Combine channel and detector efficiencies and detect photon ...
state (projective measurement) in appropriate basis with ...
total efficiency and noise added

Use returned detection probabilities to calculate QBER, ...
secure key rate, inequality violations or other desired ...
results.
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Loop over one or greater parameters such as loss or ...
integration time to determine dependence

As noted in Reference [51], spectral dependencies of the systems and the time
evolution under creation and entangling operations are not simulated, but rather
the detectable outcomes of these operations are calculated. This is sufficient
when the photon wavepacket is much shorter in time than the detector resolution,
a condition generally satisfied in quantum optics experiments examined here.

3.3 Simulation outcomes

3.3.1 Simulation of Bell-type tests and teleportation

The goal of these simulations is generally to determine how many detections are
needed in an experiment and with what visibility or fidelity to show quantum
behaviour. For Bell-type tests, the final outcome is the CHSH [19], Mermin [75],
Svetlichny [109], or other parameter on the left hand side of the inequality,
which must be superior to some classical limit with some statistical certainty.
For teleportation, the (single qubit) fidelity F of the initial input with the final
teleported state is calculated, and needs to exceed the value possible with only a
classical channel, F ≤ 2/3 [83], or the cloning limit F ≤ 5/6 [16].1 These can
also be formulated in terms of visibility V , related to fidelity as V = 2F − 1 [12]
with classical limit V ≤ 1/3 and cloning limit V ≤ 2/3.

To be useful, these simulations require realistic entangled photon states, which
can be created via the down-conversion unitary acting on a two-mode vacuum:

Ĥd−c = ε
�

â1â2+ â†
1â†

2

�

Ûd−c = exp
�

−iĤd−c
� (3.1)

Here â(†)j is the annihilation (creation) operator acting on the j-th mode

and ε, which contains χ(2) nonlinear coupling, source strength, geometry and
interaction time, is determined from source singles and pair production rates.
A good estimation of ε is required for accurate simulations, and so it can be
calculated from measured source parameters as follows: First of all, a source
repetition frequency fsource is defined, which is the laser repetition rate for pulsed
sources, but is rather ambiguous for continuous wave sources, and set to the
inverse of the coincidence window for convenience. Then the pair production

1It should be noted that, in References [83, 16] and subsequent teleportation papers, fidelity is
defined as F = Tr

�

σ1/2ρσ1/2
�

or F = |〈ψ|φ〉|2 for arbitrary density operators ρ and σ or arbitrary

pure states |ψ〉 and |φ〉, as compared to the usual definition Fusual =
p

F = Tr
�
p

σ1/2ρσ1/2
�

or

Fusual =
p

F = |〈ψ|φ〉|.
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rate directly after down-conversion is back-calculated from detected pairs and
singles rates in a real or proposed source. The detected coincidence rate C is
roughly C = η1η2P, where η j is the efficiency of the j-th mode from production
to detection, and P is the pair production rate. The detected singles rate for mode
j is S j = η j P, and thus η1 =

C
η2P
= C

S2
and η2 =

C
S1

, so finally P = C
η1η2

= S1S2

C
.

The down-conversion coupling ε is then the square root of the probability (i.e.

amplitude) of pair creation per source time slot, ε =
q

P
fsource

. Though this analysis

is simplified, it gives final results of pair rates and entanglement visibility in good
agreement with experiment.

Svetlichny inequality violation

The Svetlichny inequality [109] allows pairwise nonlocal correlations over a
multipartite system, and so can be violated in quantum mechanics with tripartite
entanglement, as present in a three photon GHZ state [39]. The Svetlichny pa-
rameter Sv is at most 4 for three-particle correlations when nonlocal correlations
are allowed between any two particles at a time:

Sv = |E(φA,φB,φC) + E(φA,φB,φ′C) + E(φA,φ′B,φC)− E(φA,φ′B,φ′C)

+E(φ′A,φB,φC)− E(φ′A,φB,φ′C)− E(φ′A,φ′B,φC)− E(φ′A,φ′B,φ′C)| ≤ 4
(3.2)

where the correlation values E(φA,φB,φC) are the ensemble average over
many measurements with settings (φA,φB,φC) at sites A, B, and C respectively.
Each measurement can have one of two outcomes, assigned the value +1 or −1
respectively, implying |E| ≤ 1.

In Reference [63], the Svetlichny inequality was violated in the lab without
spacelike separated receivers, leading to a loophole where the setting of one
detector could influence the setting of another to simulate nonclassical results.
The next step is to move to separated receivers, but as this would introduce lossy
free space channels, it was unclear what source performance was required and
what channel loss was tolerable. I simulated the experiment (code in Appendix
A) to determine permissible operational parameters and the integration time
required to violate the inequality with a given statistical certainty or number
of standard deviations p above the classical limit. (A usual requirement for
success is p = 3 for a 3σ violation of the classical limit.) For this simulation, it
was assumed that only two arms had the free-space links, each with identical
transmission, as the third photon can be detected locally. For transmission above
0.1, the fidelity of the heralded three photon state with the ideal GHZ state
and Svetlichny parameter Sv are essentially constant and the only change is the
detection rate (Figure 3.1), indicating the experiment will be feasible with only
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a change in integration time. In Figure 3.2, the statistical certainty is plotted
against integration time, to show how long an integration time would be required
for, say, a 3σ violation.
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Figure 3.1: Simulation results for Svetlichny Violation. All curves refer to the
left axis with appropriate units. “4-folds/s” is the rate of detection of 4-fold
coincidences per second, made up of the three photons used in the violation and
one for heralding. “3-fold Fidelity” is the fidelity of the three-photon state with
the desired 1p

2
(|HHV 〉+ |V V H〉). “Sv” is the Svetlichny parameter, which must

be Sv > 4 for a violation, and “Sigmas of violation” is the experimental certainty
of Sv given 1 hour integration time.

Quantum teleportation

Teleportation is the act of moving a quantum state from one particle to a distant
one, without those two ever having interacted [8]. It is usually accomplished
by interfering the input state with one half of an entangled pair, projecting the
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Figure 3.2: Statistical certainty for Svetlichny Violation. As integration time is
extended, more signals accumulate and the value of Sv is more certain, leading
to a greater certainty (# of Sigmas p) of violation. The most likely experimental
scenario is transmission of about 0.3, requiring about 80 minutes for a 3σ
violation, given a local detection rate of about 80 four-fold coincidences per
second.
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two previously unentangled photons into a Bell-state, and leaving the third in a
transformed version of the input state. A unitary, which is chosen conditionally
on the Bell-state measurement outcome transforms the state of the third photon
into the initial input state. See Figure 3.3 for a diagram of teleportation.
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Figure 3.3: Diagram of quantum teleportation. Two sources for the entanglement
resource and three different kinds of input photon state are considered.

A number of situations for teleportation were considered (code in Appendix
A), including, for the entangled resource pair a down-conversion source or an
ideal entangled photon source, and for the input photon a coherent state, an
ideal single photon, or a heralded photon from down-conversion. Figure 3.4
shows results when an entangled down-conversion source is used as the resource
and compares results for the three types of input states versus loss. Here the two
photons that interfere are created locally, and the third is detected at a distant
location after undergoing loss. Three figures of merit are the teleportation rate
per second, the visibility of the teleported state, and the visibility less p standard
deviations of uncertainty σ, which still must be greater than the cloning limit of
2/3 for success. Figure 3.5 then shows the results using an ideal entangled pair,

33



for example from a quantum dot source. These results are much improved and
allow far higher channel losses.
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Figure 3.4: Teleportation simulation with down-conversion. Three types of
input photon state are compared, with ideal single photons providing the best
results due to a lower error rate from higher photon number states. Additionally,
coherent states are far easier to produce than heralded photons, leading to higher
rates and high permissible loss. The third plot takes p = 3, for a 3σ violation.

Minimum number of coincidence counts required for a Bell-type test

In addition to simulations based on the quantum optics toolbox, it was necessary
to perform analyses to determine the minimum number of received signals
required for success of various experiments. Here I will show the calculation for
a CHSH violation, which readily extends to other Bell-type tests. This section
was originally written in altered form by me for the Quantum Entanglement
Feasibility Study for the Canadian Space Agency.

The CHSH-parameter SCHSH , from Equation 1.8 depends on the correlation
values E(φA,φB), where φA/B is the setting of Alice/Bob’s analyser. Quantum
mechanics predicts a maximal violation of the CHSH inequality for the set of
polarisation angles (φA, φ̃A,φB, φ̃B) = (0◦, 45◦, 22.5◦, 67.5◦), given an initial state
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Figure 3.5: Teleportation simulation with ideal entangled pairs. The ideal
entangled pairs perform significantly better than the pairs from down-conversion,
due to a lack of double emissions leading to a reduced error rate.
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of the form |Φ+〉= 1p
2
(|HH〉+ |V V 〉). This choice of measurement settings leads

to a value of SCHSH = 2
p

2 well beyond the classical limit of SCHSH ≤ 2
In a typical experiment, the obtained counts of photon pairs depend on

Poissonian count statistics and are therefore subject to uncertainty. A successful
experiment requires that a Bell-inequality be violated by at least pσ; i.e. the
experimental value must be p times the uncertainty larger than the classical value.
For an average number of photon counts N , the uncertainty is ∆N =

p
N . This

is relevant for the expression of the correlation values E, which are determined
through coincident photon counts as

E(φA,φB) =
N++− N+−− N−++ N−−

Ntotal
. (3.3)

with N++ corresponding to the number of photon pairs counted in the two +
outputs of the analysers set to φA and φB respectively, and so on for N+−, N−+,
N−−. Each Nx y is therefore also a function of the measurement settings φA and
φB. I perform Gaussian error propagation and obtain the following uncertainty
for E:

∆E(φA,φB) =
2
p

(N+++ N−−)2(N+−+ N+−) + (N+++ N−−)(N+−+ N+−)2

(Ntotal)2
(3.4)

In a real experiment, the entanglement will not be perfect, but rather will
exhibit entanglement visibility V < 1. This causes a reduction in the maxi-
mum SCHSH to Sex periment = 2

p
2V and leads Nα, the number of photon pairs

detected with analysers at relative angle α to be somewhat altered from the usual
Nα(ideal) =

Ntotal

2
cos2(α) to

Nα =
Ntotal

2

�

1

2
+
�

cos2(α)−
1

2

�

V
�

. (3.5)

When V = 0, the number of pairs is independent of angle, and for V = 1,
Nα = Nα(ideal). For φA = 0◦ and φB = 22.5◦, this gives

N++ = N−− =
Ntotal

2

�

1
2
+
�

cos2(22.5◦)− 1
2

�

V
�

= Ntotal

2

�

1
2
+ Vp

8

�

(3.6)

N+− = N−+ =
Ntotal

2

�

1
2
+
�

cos2(112.5◦)− 1
2

�

V
�

= Ntotal

2

�

1
2
− Vp

8

�

. (3.7)

Equation 3.4 simplifies, and I obtain

∆E(φA,φB) =

s

1− V 2

2

Ntotal
. (3.8)
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The derivation proceeds similarly for the other three measurement combinations,
and since Sex periment = |E(φA,φB)− E(φA, φ̃B)|+ |E(φ̃A,φB) + E(φ̃A, φ̃B)|,

∆Sex periment = 2

s

1− V 2

2

Ntotal
. (3.9)

The goal is to perform a CHSH-inequality violation with pσ violation above the
classical limit:

Sex periment − p∆Sex periment ≥ 2 (3.10)

Thus, given Sex periment = 2
p

2V and ∆Sex periment , the minimum number of
recorded pairs is

Ntotal >

�

p× 2

2
p

2V − 2

�2
�

1−
V 2

2

�

, (3.11)

which is plotted versus visibility in Figure 3.6 for p = 3, allowing experimen-
talists to determine how many received signals are required to violate the CHSH
inequality with 3σ certainty, given their achievable entanglement visibility. This
visibility can be calculated from simulation of down-conversion or measured
experimentally. This analysis is readily extended to Mermin, Svetlichny, and
other Bell-type inequalities.

Minimum number of signals required for teleportation

For teleportation, success can be characterised with only one measurement
parallel to and one orthogonal to the original input state, assuming measurements
on qubits. This leads to a teleportation visibility, Vt , defined as

Vt =
N‖− N⊥
N‖+ N⊥

, (3.12)

where N‖ are photon counts on the detector channel with analyser set to
the same as the input state and N⊥ are those on the orthogonal channel. This
assumes that the receiver knows the initial input state and hence somewhat
weakens the argument that teleportation is good for arbitrary states. However,
as this analysis is targeted at satellite-based missions, a full tomography for
each input state takes many more measurement runs, and so a smaller set of
measurements is more cost-effective. The measurement can be repeated for a
few nonorthogonal input states and if all are shown to have high teleportation
visibility, true teleportation is occurring.
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Figure 3.6: Number of photon pairs for CHSH inequality. Plot of the required
total number of detected photon pairs in order to violate a CHSH-inequality with
3σ certainty, versus the entanglement visibility V . As visibility approaches the
minimum required for violation (70.7 %), the number of pairs required tends to
infinity.
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As before, Poissonian errors are assumed (∆N =
p

N) and Gaussian error
propagation is performed to find

∆Vt =
1

(Ntotal)2
Æ

N‖(2N⊥)2+ N⊥(2N‖)2 (3.13)

This equation, through N‖/⊥ =
Ntotal

2
(1± Vt) simplifies to

∆V =

È

(1− V )(1+ V )
Ntotal

(3.14)

except as V approaches 1. Then N⊥ =
Ntotal

2
(1− V ) < 1, which is unphysical

since photons can only arrive in discrete quanta. Therefore, a lower bound of the
uncertainty in N⊥ of ∆N⊥ = 1 is imposed, causing the total counts required to
saturate and not tend to zero as V approaches 1. In this regime,

∆V =

s

2+ 2V + Ntotal(1+ V )2

N3
total

. (3.15)

Equations 3.14 and 3.15 are solved for Ntotal given a pσ violation of the
cloning limit (Vt − p∆Vt > 2/3) and the result is plotted in Figure 3.7 for p =
3, allowing experimental teleportists to find the minimum number of signals
received to violate an optimal quantum cloner with 3σ certainty. Of course
this is somewhat circular: if one measures such visibility Vt , then one needs N
measurements to measure visibility Vt , but the result is nonetheless useful in
planning experiments, as an expected teleportation visibility is easily simulated
(Subsection 3.3.1), and hence the required number of signals can be calculated.

3.3.2 Simulation of QKD

Beyond simulations of quantum optical experiments above, the quantum optics
toolbox is well suited for simulating QKD systems. As security of QKD is strongly
dependent on the presence of noise and higher photon numbers [38], the Fock
space simulations allow good predictions of secure key rates and transmission
distance for QKD.

As seen in Figure 2.4, QKD exhibits generally a logarithmic drop in key rate
with distance, followed by a final sharp cutoff beyond which no key can be
generated. It is important in design of QKD systems to know the location of this
cutoff, and to be able to optimise parameters to extend transmission distance
as far as possible. The detection rate at long distance is equally important, as
many signals must be detected in order to combat finite size effects. Therefore
I constructed simulations (see code in Appendix A) to determine the detection
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Figure 3.7: Number of detections for teleportation. Plot of the required total
number of detected third photons (conditioned on a successful Bell-state mea-
surement) versus teleportation visibility required to violate the cloning limit of
Vt = 2/3 with 3σ certainty. The dashed portion of the curve is where the error
estimation breaks down, as fewer than one erroneous photon count is predicted,
requiring enforcement of a minimum uncertainty of ∆N⊥ = 1.
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rate and QBER at various channel loss values, incorporating as before realistic
photon states and background noise, and additionally assigning double clicks a
random value.

Double clicks

As required by the squashing model of QKD security (which allows to treat in-
coming optical modes as qubits) [38], double clicks (coincident detections by
both detectors in the same basis) must be assigned a random bit value. This
requires just a slight modification of the QBER calculated from detection proba-
bilities as follows. Let P(ri ght) be the probability of detecting the correct qubit
value, P(wrong) be the probability of an error, and P(double) the probability of
a double click. P(ri ght) is measured by projecting onto the subspace of one or
more photons in the correct detector and no photons in the other detector, and
similarly for P(wrong). P(double) is measured by projecting onto the subspace
of one or more photons in each detector simultaneously. Thus the total click
probability P is P = P(ri ght) + P(wrong) + P(double) and the QBER is

QBER=
P(wrong)

P
+

P(double)/2
P

(3.16)

since double clicks are assigned randomly. This modification has negligible
effect as most simulations here consider long distance, making the double-click
probability small. Nonetheless it is important to include for security at short
distances or very high pair production rates, as multiphoton events are more
likely.

Loss dependence and coincidence window

One important determination is the coincidence window (for entangled photon
schemes) or the detection window (for single photon schemes). This is a unit
of time during which detections are accepted for QKD (detections outside are
excluded), and it is generally desired to be as small as afforded by detector jitter
to exclude background noise and dark counts. Here I give an example simulation
for an asymmetric entanglement-based QKD system, with one photon detected
at the source and the other sent over a lossy channel. I found the detected
two-photon rate and secure key rate versus loss for various coincidence windows,
as shown in Figure 3.8. Thus if the channel is only 35 dB, one needs just a 2 ns
coincidence window, but to go beyond 45 dB channel loss, one needs to reduce
jitter of detectors and electronics to allow a 200 ps window, in order to exclude
more dark counts. These simulations assumed a pair production rate in the crystal
of 3.2×107 pairs per second, 2000 background and dark counts per second, 60 %
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Figure 3.8: Entangled QKD and coincidence windows. Smaller coincidence
windows give lower QBER and therefore higher keyrates, neglecting that smaller
windows may cut out legitimate signal. Thus the narrowest window above allows
longest distance QKD, as determined by the cutoff due to QBER higher than the
security limit. The two-fold rate saturates to the detector dark count rate at high
loss. These simulations are for symmetric links, i.e. each arm has the Link Loss
shown.
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efficient single photon detectors, and a misalignment of polarisation optics which
introduces a 1 % QBER. These parameters can of course all be tuned, including
adding photon number resolution or idealised photon sources.

Qubit analyser choice and dark counts

Another important parameter is the dark count rate in each detector. More dark
counts mean a higher QBER and less secure key. This has implications for the
receiver design: is it better to have active basis choice with two detectors, or
passive basis choice with four, as seen in Figure 3.9? I analysed this problem in
the case of weak coherent pulse QKD, and found that the difference in QBER
and secure key rate is negligible when loss is low. However, when the received
count rate approaches the dark count rate, the passive (four-detector) analyser
performs worse as the signal on each detector is halved, leading to a lower signal-
to-noise ratio, higher QBER and hence a shorter QKD range, as in Figure 3.10.
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Figure 3.9: Active and passive QKD polarisation analysers. The active analyser
has a fast switching half-waveplate to choose to measure in the H/V or +/- basis,
while the passive analyser accomplishes basis choice with a 50:50 beamsplitter,
meaning the incoming photons randomly move to one of the measurement bases.
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Figure 3.10: Effect of active vs. passive analyser on results for weak coherent
pulse QKD. Little difference is evident at low loss, but the higher signal-to-noise
ratio of the two detector active analyser allows QKD to reach higher channel
losses.

44



3.4 Discussion

These types of loss-dependence analysis were instrumental in deciding on re-
quired technology for the high-loss QKD system below (Chapter 5). Being able
to see precisely the effect of small adjustments to the dark count rate on the
attainable channel loss made the choice of detectors much easier and removed
guesswork from the decision. Additionally, it is clear that the optimal high-loss
system would use fast active basis choice rather than four-detector passive choice.

A deficiency of the software in its current form is the limited photon number
when many modes are considered. For example, the Svetlichny inequality viola-
tion simulation above (Subsection 3.3.1) consisted of eight modes, and my 32-bit
computer could only handle N = 3, i.e. 0, 1, or 2 photons in each mode. Thus for
simulations of larger entangled states it would be important to optimise or find
efficiencies in the code such that more photons can be considered in more modes.
This could be accomplished by considering separate Hilbert spaces for modes that
never interact, or performing a partial trace after interaction to remove modes no
longer needed. A related drawback is that this toolbox is unsuited for continuous
variable simulations, as these typically have many photons per mode. This would
require a drastic rethink of the software, and better solutions probably exist.

Nonetheless, it is clear that the quantum optics toolbox and related functions
are exceedingly helpful in simulating many relevant aspects of experiments before
any lab work is done. From teleportation to QKD, its versatility is sufficient to
allow broad use by experimentalists or theorists.
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Chapter 4

Local area quantum key distribution in
telecommunications optical fibres

This chapter is based on an experiment performed in late 2009, involving local
area QKD through standard telecommunications fibre. The content of this chapter
was published in altered form in:

Evan Meyer-Scott, Hannes Hübel, Alessandro Fedrizzi, Chris Erven, Gregor
Weihs, and Thomas Jennewein. Quantum entanglement distribution with 810 nm
photons through telecom fibres. Applied Physics Letters, 97(3):031117, 2010.

I am allowed by the policies of Applied Physics Letters and the American
Institute of Physics to reprint this content here, from section (2) of Author Rights
in the Transfer of Copyright agreement.1

Author contributions

Hannes, Alessandro and Thomas conceived the experiment. Chris and Gregor
provided the photon source, detectors and QKD software. I performed the fibre
spool measurements and analysed the data. Hannes, Chris and I performed mea-
surements over the fibre link between UW and PI. Allison MacDonald performed
calculations regarding propagation speeds in fibre (see Appendix B). I wrote the
paper with input and feedback from all authors.

1The exact text is that I retain “The nonexclusive right, after publication by AIP, to give
permission to third parties to republish print versions of the Article or a translation thereof, or
excerpts therefrom, without obtaining permission from AIP, provided the AIP-prepared version is
not used for this purpose, the Article is not published in another journal, and the third party does
not charge a fee.”
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4.1 Introduction

The ability to distribute entanglement is an important building block in the field
of quantum information processing. It is employed in protocols such as quantum
teleportation [13], quantum key distribution (QKD) [34], and quantum comput-
ing [56]. Many quantum information experiments so far have been performed at
wavelengths around 800 nm, making use of the high performance (low noise,
high speed, and around 70 % efficiency) of silicon avalanche photodiodes (Si-
APDs) for single-photon detection. Such systems have been demonstrated in
laboratories, over free space links [59, 119] or with custom laid 800 nm single
mode fibres [84], the latter of which face the difficulty of installing a dedicated
link. In addition, most quantum memory implementations and quantum dot
photon-sources are designed around 800 nm optical transitions [129]. On the
other hand, quantum communication setups have been built to make use of
existing telecom fibre infrastructure and low fibre loss at 1550 nm [44]; however,
single-photon detectors based on APDs designed for these wavelengths (InGaAs-
APDs) add considerable complexity, require elaborate synchronisation of detector
gates, and suffer from low detector efficiencies (∼15 %). In fact, based on the
efficiencies above, and fibre losses of 3 dB/km for 800 nm light and 0.22 dB/km
for 1550 nm light, overall attenuation will be lower for 800 nm photons for up
to 7.3 dB of fibre losses, corresponding to 2.4 km of telecom fibre. In spite of the
common perception that entanglement distribution at 800 nm strictly requires
wavelength-specific components, it is obvious that such short wavelength systems
would greatly benefit if used with the existing fibre infrastructure. Toward this
goal we report on the high fidelity distribution of entangled photon pairs at
810 nm through several kilometres of standard telecom fibres, which provides
a path for demonstrating quantum information applications, like entanglement
based QKD, and other quantum optics experiments in existing fibre networks.

4.2 Experimental setup

We adapted a polarisation-entanglement based quantum communication sys-
tem [29] at 810 nm using the BBM92 protocol [9] to transmit photons to Alice
and Bob through varying lengths of single mode telecom fibres (core radius of
4.1 µm] ranging from 250 m to 6000 m (Figure 4.1) or short stretches of 810 nm
single mode fibres with a core radius of 2.75 µm.
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Figure 4.1: Schematic of setup. (a) Asymmetric distribution scheme, with only
a short 810 nm single mode fibre to Bob. (b) Symmetric scheme, with long
1550 nm telecom fibres to both Alice (length DA) and Bob (length DB)
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4.2.1 Down-conversion source of photons

The source of entangled photons mentioned above is based on spontaneous
parametric down-conversion [55] in a Sagnac loop [54]. The basic operation of
the source is illustrated in Figure 4.2.

Blue 
pump 
laser

To Alice

To Bob

Dichroic 
mirror

PPKTP 
crystal

PBS 
Cube

HWP

Figure 4.2: Sagnac source of entangled photons. HWP means half-wave plate to
rotate the polarisation of all three beams 90◦, PBS is polarisation beamsplitter,
and PPKTP is periodically poled potassium titanyl phosphate for type-II down-
conversion. The blue pump laser is polarised at 45◦, leading to a coherent
superposition of propagation clockwise around the loop and counterclockwise. If
clockwise, the pump photon down-converts into an |HV 〉 pair, such that the |V 〉
photon is sent to Alice and the |H〉 to Bob. If counterclockwise, the same down-
conversion occurs, except now due to entering the polarisation beamsplitter
through the other port, the |V 〉 photon is sent to Bob and the |H〉 to Alice, leading
to a state of the form 1p

2

�

|HAVB〉+ eiφ |VAHB〉
�

.

Down-conversion is a quantum mechanical process in the realm of nonlinear
optics, which effectively splits one pump photon into two (called signal and idler)
of lower energy. Nonlinearities occur in optical materials where the material’s
polarisation response is not proportional to the driving electromagnetic field: for
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example, second harmonic generation occurs when a significant component of
the polarisation response is at double the frequency of the input field, leading to
an output field at this doubled frequency. Second harmonic generation, along
with sum frequency generation and down-conversion, rely on a χ(2) nonlinearity,
meaning electromagnetic waves of up to three distinct frequencies can mix in
the material. Second harmonic generation and sum frequency generation can
be described classically (see Subsection 5.2.3), but down-conversion is distinctly
quantum mechanical, as classical optics predicts no growth in the amplitude of
the signal and idler modes if no initial signal is present in these modes. If the
fields are quantised, however, field amplitude appears in the signal and idler
modes and due to mixing with vacuum fluctuations [43]. For signal and idler
photons to be produced with any reasonable probability, the phase matching
conditions between the three waves must be satisfied for both momentum and
energy. For momentum, the wavevectors of the down-converted light must sum
to the wavevector of the pump beam:

kpump = ksi gnal + k idler (4.1)

For energy, the frequencies of the down-converted light must sum to the pump
frequency:

ωpump =ωsi gnal +ωidler (4.2)

If crystals with a χ(2) nonlinearity are constructed in such a way that Equa-
tions 4.1 and 4.2 are satisfied (for example, with quasi-phasematching through
periodic poling [47]), down-conversion will occur from the pump frequency to
pairs of photons at the signal and idler frequencies.

In order to generate entanglement from down-conversion, two down-conversion
processes, different in some degree of freedom but indistinguishable in others
must occur coherently. Thus the entanglement is between the output states of
each of the processes occurring, for example, the direction travelled around a
Sagnac loop as in Figure 4.2. Another possibility is to use two collinear but
orthogonally oriented crystals, one of which produces photon pairs on the modes
(A, B) with polarisation state |HAHB〉 and the other |VAVB〉. If temporal, spatial
and spectral distinguishability between the pairs is washed out, an entangled
state of the form 1p

2

�

|HAHB〉+ eiφ |VAVB〉
�

is produced [60].

4.2.2 Polarisation analysis and detection

Photon analysis at Alice and Bob is done with four-detector passive polarisation
analysers (Figure 3.9). After transmission through the fibres, each photon of the
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entangled pair passes through a 50:50 beamsplitter to randomly choose either the
H/V or +/- measurement basis. The photon hence passes through a polarisation
beamsplitter to determine the polarisation value, either (H (0◦) or V (90◦)), or
(+45◦ or -45◦), depending on the basis choice. A time-tagging unit then records
the state and the time of the detection. This information is bundled and passed
to Alice and Bob’s computers, which communicate classically to find the optimal
time offset to maximise the number of coincidences between Alice’s and Bob’s
detection events.

4.3 Theory and observation of guided modes in optical fibre

Since standard telecom fibre is slightly multimode for 810 nm light we expect
the appearance of higher-order spatial modes. Guided wave theory predicts two
linearly polarised modes of propagation (LP01 and LP11) [95] for 810 nm photons
in a telecom fibre. Here the modes are labeled based on the distribution arm
(Alice or Bob) and the azimuthal index l (e.g., Al1).

The full derivation is presented in Appendix B as a report from co-op student
Allison MacDonald and summarised here. Light in an optical fibre core and
cladding obeys the Helmholtz wave equation, which admits solutions in the
form U(r,φ, z) = u(r)e−ilφe−iβz where r is the radial distance from the centre of
the fibre, φ and l are the azimuthal angle and index respectively, and β is the
propagation parameter in the direction of propagation z. The solutions for the
radial function u(r) are the Bessel functions

u(r)∝

(

Jl (X (r)) , r < a

Kl (Y (r)) , r > a.
(4.3)

By enforcing continuity of these functions and their derivative at the boundary
between core and cladding r = a, I obtain the characteristic equation:

X
Jl±1(X )
Jl(X )

=±Y
Kl±1(Y )
Kl(Y )

(4.4)

This equation is (graphically) solvable for the number of supported modes
and each mode’s propagation constant β , through relations involving X , Y , the
numerical aperture of the fibre, the wavelength and the core radius (which
determine the fibre V parameter). Figure 4.3 shows the graphical solution to the
characteristic equation for the propagation of 810 nm light in 1550 nm single
mode fibre. Two solutions are admitted, one for each of l = 0 and l = 1, with the
l = 2 solution being excluded as the curves do not intersect before the fibre V
parameter is reached, as X ≤ V through X 2+ Y 2 = V 2.
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Figure 4.3: Plot of solutions to characteristic equation for optical fibre. The
intersections of the LHS and RHS of the characteristic equation give solutions
to modes of propagation in fibre, of which there are two in this case, l = 0 and
l = 1. (The l = 2 curves do not intersect until after the fibre V parameter, which
is forbidden by definition of the parameter, and the vertical line for the l = 0
curve is an asymptote and not a true intersection.) Inset is a plot of the radial
distribution functions u(r) for 810 nm light in 810 nm and 1550 nm single mode
fibres. One mode is supported in the former and two in the latter, and it is clear
that the l = 0 modes overlap much better than the l = 0 and l = 1 modes between
fibres.
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Consistent with the guided wave theory above, the two propagation modes in
1550 nm single mode fibre show modal dispersion; i.e., the group velocity of the
A11 mode is different from that of the A01 mode, resulting in two distinct arrival
times [117]. Detecting Bob’s photons locally and Alice’s after 3 km of telecom
fibre resulted in a histogram of coincidences with two pronounced peaks, as seen
in Figure 4.4. The relative offset of the two peaks varied linearly with fibre length
(Figure 4.5) leading to a measured modal dispersion of 2.20 ns/km, in excellent
agreement with the theoretical value of 2.19 ns/km (see calculations in Appendix
B). As evidenced by the well-defined peaks in Figure 4.4, there is little crosstalk
between the two modes after the initial insertion, so the polarisation state in the
fundamental mode is well preserved and the timing signature of each mode is
evident.
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Figure 4.4: Asymmetric distribution (DA=3 km, DB=0 km): histogram of co-
incident detection events with delay between Alice’s and Bob’s detection. The
slower A11 mode in Alice’s arm is intentionally excited to illustrate the effect,
then filtered. The theoretical power distribution of the propagating spatial modes
at 810 nm for different fibre types is inset (SMF = single mode fibre).
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leading to a modal dispersion of 2.2 ns per km of fibre.
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4.4 Experimental results

4.4.1 Filtering of spatial fibre modes

For a high fidelity transmission of polarisation entangled photons it is necessary
to select only the fundamental mode in both arms (A01B01), as higher order
modes will lead to an increased error in the polarisation contrast since only one
of the polarisation rotations experienced by different modes in the fibre can be
compensated for. In principle, the modes could be separated and compensated
individually, but without such elaborate mode extraction two methods for filtering
out the higher modes at the receiver are developed:

(i) In the case of an asymmetric distribution, where the fibre lengths to
Alice and Bob are not identical, a temporal filter can be applied in the form a
of a narrow coincidence window, which will cut out the higher order peak, as
demonstrated in Figure 4.4. This technique introduces no additional optical
losses.

(ii) In a symmetric distribution, where both Alice and Bob receive photons
through telecom fibre and where the difference in fibre lengths is less than 2 km,
the A01B01 and A11B11 peaks become inseparable in time, as seen in the central
peak of Fig. 3. In this case, in addition to the temporal filter to eliminate the side
peaks, a spatial filter (810 nm single mode fibre) is used before detection. Since
the radial extent of the power in the higher order modes is greater than that in
the fundamental mode, the smaller core of the 810 nm fibre (shown as a ring
in Figure 4.6) removes around 98% of the A11 or B11 mode while preserving at
least 75% of the A01 or B01 mode.

4.4.2 Entanglement visibility

In order to quantify our filtering methods we performed entanglement distri-
bution measurements with telecom fibre spools of lengths up to DA = 6 km
(asymmetrically), and up to DA = DB = 2 km (symmetrically). We extracted the
entanglement visibility (a measure of the quality of entanglement) [44] and raw
coincidences (Table 4.1). To set a benchmark for comparison, measurements
were performed locally with short 810 nm fibres (2 m), resulting in 95.7±0.4 %
visibility, averaged over the H/V and +/- bases1. Visibility for entanglement is
defined based on the number of coincident detection events N as

V =
Nri ght − Nwrong

Nri ght + Nwrong
, (4.5)

1Differences in count rates are due to a realignment of the source between measurements.
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Figure 4.6: Symmetric distribution (DA=2 km,DB=2 km): selection of A01B01

mode by spatial filtering. The spatial filter (core radius superimposed on power
distribution) eliminates not only the side peaks (due to photons coupling into
cross modes) but also those coincidences in the central peak that are a result of
both photons coupling into the higher mode (A11B11), such that they give little
or no betraying time offset, and thus cannot be filtered temporally.
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where the definition of “right” coincidences is those that agree with the
desired (pure) entangled state. For example, anti-correlations are the “right”
coincident events for the state |Ψ−〉= 1p

2

�

|H〉A|V 〉B ± |V 〉A|H〉B
�

.

DA/DB Trans. Filtering Visibility Coinc. Secure Key
(km) Loss (dB) (%) (rate/s) (rate/s)
2/0 6 None 88.0±0.2 3000 420

(Asym) 7 Temporal 94.6±0.2 2700 800
5/0 15 Temporal 91.6±0.5 430 90
2/2 12 None 62.9±0.4 5200 0

(Sym) 14 Temporal 92.2±0.3 3600 850
16 Temporal+spatial 95.6±0.2 1950 650

Table 4.1: Summary of entanglement distribution for various telecom fibre
lengths, including QKD key rates. Transmission loss includes attenuation in the
optical fibres, as well as loss from the filtering processes. Local measurements
gave an average visibility of 95.7±0.4%. Uncertainty is taken as due to Poissonian
count fluctuations. “Asym” and “sym” respectively indicate whether the source is
located asymmetrically at Alice, or symmetrically between Alice and Bob.

For the asymmetric distribution we employed a 3 ns coincidence window as
the temporal filter: at 2 km of fibre in one arm, for example, overall visibility
was improved from 88.0 % to 94.6 % with this method. Figure 4.7 shows
the visibility for asymmetric distribution distances up to 6 km. In the case of
symmetric distribution (see Table 4.1), we employed both filtering techniques to
raise visibility from 62 % to 95.6 %. For this and the asymmetric case, visibility
is brought close to the benchmark which implies that the higher order modes
are suppressed using the filtering detailed above, and that there is no significant
crosstalk along the length of the fibre.

4.4.3 Quantum key distribution

To illustrate the utility of this form of entanglement distribution, we additionally
extracted the secure key rate for QKD based on realistic error correction and
privacy amplification [70]. Figure 4.7 also shows this calculated secure key rate,
dropping linearly (on the log scale) with increasing lengths of fibres, with a sharp
cut-off around 6 km due to increased loss and detector dark counts.

QKD over installed fibre link

As a realistic example of a network implementation, we performed a full QKD
protocol over two symmetric 2.2 km channels of installed telecom fibres. Two
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Figure 4.7: Secure key generation rates (triangles) and measured visibility
(circles) as a function of fibre length in Alice’s arm. The open symbols are local
data, and the line is a fit to the secure key rate with realistic parameters (see
Reference [70]). Error bars are smaller than symbol size.

parallel fibres were used between the Mathematics and Computer Building on the
University of Waterloo’s campus (source of entangled photons) and the Perimeter
Institute (detection modules Alice and Bob), leading to a total distribution
distance of 4.4 km. The quantum bit error rate (QBER) was higher than for the
fibre spools, likely due to disturbances from passing cars, trains, and thermal
fluctuations. For example, over 15 minutes, the average QBER was 4.3 % (i.e.,
91.4 % visibility) with both temporal and spatial filtering, leading to an average
secure key rate of 350 bits/s (see Figure 4.8). During longer runs, the errors
tended to increase with time due to polarisation drifts in the fibres.

QKD with classical traffic

As the quantum signals around 800 nm wavelength are so far separated from the
classical traffic at 1310 nm or, more commonly, 1550 nm, it was expected that
there should be little or no cross-talk when these two signals are sent through
the same fibre. This would allow QKD to take place over fibres that are in use
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Figure 4.8: Secure key generation rate (triangles) and measured QBER (circles)
in a symmetric installed fibre link. Each data point is the average over 20 s.
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for internet traffic, including the classical communication for the QKD protocol.
One small data run was taken over the UW to PI fibre link (Figure 4.9) including
classical internet traffic at 1310 nm over the same fibre. The results for QBER are
presented in Figure 4.10, and show no appreciable increase in QBER when the
classical traffic is activated. Catherine Holloway later took much more complete
data on the interplay of classical and quantum photons in fibre, confirming the
compatibility of the two signals: QBER is essentially independent of classical
bit rate (tested up to 100 Mbps), and the classical traffic is unaffected by the
quantum transmissions.

Figure 4.9: Path of installed fibre optic link. Two parallel fibres run from the
Mathematics & Computer building on the University of Waterloo’s campus to
the Perimeter Institute for Theoretical Physics in uptown Waterloo. Map © 2011
Google and GeoEye.
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4.5 Discussion

Our approach has the potential for much higher distribution rates, as local coinci-
dence rates of 2.5 MHz have been achieved with short-wavelength entanglement
sources [100]. Assuming the same fibre loss observed here, secure key rates of
500 kb/s are possible over a 4 km symmetric link using only standard telecom
fibres. Previous systems based on weak laser pulses around 800 nm were limited
to key rates of 100 kb/s over 4 km of telecom fibre [20]. Given the superior
functionality and lower complexity of detectors at 800 nm combined with the
multiuser networking capabilities of entanglement [64], we believe that such
QKD systems will find applications in inner city links or corporate networks. In
addition, the possibility to address multiple modes in a fibre could be useful for
implementations of higher-dimensional quantum information.

We have demonstrated the viability of entanglement distribution in standard
optical fibres using 810 nm photons, including the compatibility of quantum
communications with classical traffic. With suitable filtering, error rates are not
affected by higher order modes in the fibre and high fidelity distribution can
be achieved over several kilometres. We believe our results pave the way for a
wide usage of telecom optical infrastructure together with the well established
quantum information systems at shorter wavelengths.
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Chapter 5

Demonstration of quantum key distribu-
tion system for high loss satellite uplink

This chapter is based on an experiment performed 2010-2011. The content of
this chapter is in preparation for journal submission in altered form with the
following authorship:

Evan Meyer-Scott, Zhizhong Yan, Allison MacDonald, Jean-Philippe Bourgoin,
Hannes Hübel and Thomas Jennewein.

Author contributions

Thomas and Hannes conceived the experiment and photon source, and supervised
the project. Jean-Philippe performed the satellite simulations. Zhizhong built
Alice’s modulation system. Allison built Bob’s receiver and wrote the timing
synchronisation software. I built the photon source, performed the experiment
and analysed the data. I wrote the paper with input from all authors.

5.1 Introduction

Quantum key distribution (QKD) is the most successful application to arise thus
far from quantum information theory [7, 34], but it carries the drawback of a
distance limitation [107, 65, 110, 120, 101]: even with future advances, no more
than 400 km of direct transmission in optical fibres is expected [33]; however,
quantum repeaters and satellites both have the potential to enable worldwide
quantum communication. The former is very appealing with recent promising
results [30], but is still in the fundamental research stage. Satellite QKD, by
contrast, is achievable by today’s satellite and quantum technologies, which
already have the required performance [11]. In the most feasible scenario, the
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satellite acts as a trusted node and performs consecutive key distributions to
two different ground stations allowing a symmetric key sharing between any
two locations [1]. Both a downlink and uplink of photons from/to a satellite
have been considered to transmit quantum keys. The downlink is expected to
experience lower attenuation, since the uplink beam is much more affected by
atmospheric turbulence [11]. Nonetheless, an uplink may be more practical
since it keeps the complex and power-hungry source of photons on the ground,
and permits the use of cutting-edge sources which may include weak coherent
pulses, heralded or entangled photons, single photon emitters, and possibly
quantum memories. With respect to satellite technology, the uplink is beneficial
due to looser telescope pointing requirements, less demanding opto-mechanics
(no precision coupling or fibres), and lower data processing needs. Additionally,
all required components for the receiver have flown in space, most notably single-
photon detectors [58]. However, the channel loss in an uplink is estimated to
be above 40 dB, beyond the capability of current QKD systems, and generally
deemed impossible. Here we show it is indeed feasible by implementing a
photonic system capable of QKD in this high loss regime, which includes a
novel photon source, advanced timing analysis, and single photon detectors with
the highest overall figure of merit [40]. Our system can perform QKD up to
57 dB total loss in the infinite key limit [71], and has the potential to overcome
finite size effects on a single satellite passage [108]. Our approach could be
implemented immediately in a satellite mission.

In support of our experimental work, we have performed a rigorous anal-
ysis of channel performance for uplinks and downlinks, including diffraction,
atmospheric turbulence, pointing error, multiphoton statistics, optical/detector
inefficiencies, satellite orbit statistics, and background noise, to produce secure
key rate statistics for a variety of conditions and systems (see Methods). As a
specific example, for an uplink to a satellite 600 km high, using a 25 cm diameter
telescope on the ground and 30 cm on the satellite, our model shows about
80% of total satellite passages over the ground station will be usable for QKD
asymptotically (infinite key limit), with an average total loss of 52 dB, an order
of magnitude beyond the capability of current QKD systems.

5.2 Experimental setup

5.2.1 Technology considerations

The most obvious challenge in a satellite uplink is the sheer link distance: it can
be 500 km to more than 30,000 km depending on the satellite orbit, with no
possibility for an intermediate node, making the quantum channel extremely
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lossy. Additionally, noise due to detector dark counts and stray light, especially
moonlight and terrestrial light, will make satellite QKD more demanding. Fi-
nally, the short duration of each satellite passage, on the order of hundreds of
seconds, makes proving security of QKD difficult, given the small number of
quantum signals received. To address the challenges of a satellite uplink, both
physical and technical parameters must be tuned. The first variable that can be
chosen to minimize loss is the wavelength of the photons. Beam spread due to
diffraction is the main source of loss and is proportional to wavelength, so short
wavelength photons are preferred. After considering the optical transmission
of the atmosphere and single photon detector capabilities, the best choice is
λ= 532 nm, which enables the use of thin silicon avalanche photodiodes [90].
This type of detector has the highest figure of merit for single photon quantum
information applications [40], based on efficiency, timing jitter and dark count
rate. In order to limit background noise, the system must employ short pulses and
temporally precise detection which allow temporal filtering of received signals.
The optimisation of this temporal filtering is described below. Furthermore, a
high system clock rate is important to generate enough signals to account for
statistical fluctuations in estimation of an eavesdropper’s information (finite size
effects). As a final consideration, the QKD system must have phase randomization
such that subsequent pulses share no phase relation, which is assumed in security
proofs to limit information given to an eavesdropper.

5.2.2 System configuration

Our weak coherent pulse decoy-state system satisfies all the above requirements
through the sum-frequency generation, or up-conversion method of photon
production. The design and implementation are illustrated in figure 5.1.

To provide short pulses and fast modulation, light from a mode-locked ti-
tanium sapphire laser at 810 nm is combined in two type-I Periodically-Poled
KTP crystals with light from a 1550 nm continuous-wave laser to produce, due
to energy conservation, photons at 532 nm. The arrangement is equivalent
to an asymmetric down-conversion entanglement source run in reverse [44],
and uses two orthogonally-oriented PPKTP crystals, for polarisation-insensitive
up-conversion (see Subsection 5.2.3 for a description of up-conversion). The
source employs phase precompensation using birefringent wedges in the 810 nm
beam to compensate for temporal walkoff in the PPKTP crystals. The pulsed
810 nm beam is set to 45◦ polarisation (coherent superposition of horizontal
and vertical), while the 1550 nm pump light is modulated in polarisation (qubit
state) and intensity (signal or decoy). In this configuration, the output pulses
at 532 nm follow the pulse length of the 810 nm laser and the polarisation and

67



!"#$%&"'($#)
*+,-)./0)

1".2.3"34)567$)
*,88-)./0)

9:;<)
1&"'()

:!)

:!)
<!)

)
)

<&='$)
*>?6.4/=@$?0)

A"B)
*?$'$=7$?0)

C=.D&$)/"#$)EB?$)

9=B$?)F"&6?=462".)
'".>?"&&$?)
1"6G=6&)'6B&$)

:!) :H64$)/"#3&6>"?)

<!) </F&=>3#$)/"#3&6>"?)

9=B?$)>")I?$$)4F6'$)
'"3F&$?)

J='H?"=')/=??"?)

)
)

K?>H"D".6&)::LM:)
'?N4>6&4)

O$.4)

P6&I%567$)F&6>$)

;&6.%M6N&"?)F"&6?=4$?)

C=.D&$)FH">".)
#$>$'>"?)

9=B?$)F"&6?=462".)
B$6/4F&=@$?)

:"&6?=462".%
/6=.>6=.=.D)EB?$) M=/$>6DD$?)

QF%'".7$?>$#)
&=DH>)*8RS)./0)

A=?$I?=.D$.>)5$#D$4)

A6.#F644)E&>$?)

:"&6?=4$?)

9=B?$)T-%,-)
B$6/4F&=@$?)

CF&=>)"U)4"/$)
FH">".4)I"?)4"3?'$)
'H6?6'>$?=462".)

M=/$>6DD$?)

Figure 5.1: Simplified schematic of QKD system for high loss link. The colour
of the beams and fibre optics indicates the wavelength of light: red for 810 nm,
blue for 1550 nm and green for 532 nm. Alice’s up-conversion photon source
produces photons at 532 nm which are sent through the controllable-loss channel
to Bob’s receiver, a mock-up of a satellite receiver.
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amplitude of the modulated 1550 nm beam. The modulation is accomplished
with off-the-shelf telecom waveguide modulators, which show high stability and
switching contrast, and switching speeds of a few GHz. The power of the two
input beams is controlled such that the output pulses at 532 nm contain around
one photon per pulse, as determined by the optimal average photon number
for decoy-state QKD. The phase randomization is also accomplished with the
telecom laser, whose coherence time is less than the period between adjacent
pulses emitted from the mode-locked laser (see Methods).

Figure 5.2: Picture of QKD source for high loss link. The 810 nm (red) and
1550 nm (blue) beams converge in the crystals and up-convert to 532 nm (green),
which is collected in fibre and routed to Alice’s sending telescope.

The up-converted photons are collected into single mode fibre, then Alice splits
off 10 % of the photons with a 90-10 fibre beamsplitter for source characterisation
(another 90-10 beamsplitter is used in series to further attenuate the signal Alice
must measure). The remaining photons (90 %) are allowed to exit at the fibre tip
to the quantum channel, then pass through an adjustable lens to control the beam
size at Bob’s receiver and therefore the channel loss. Bob’s lens selects a small
portion of the beam to simulate a high loss channel to space. Bob performs active
basis choice with a half-wave plate (see Methods), then the light passes through
a polariser (to determine the bit value) and narrow-band filters before arriving
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at silicon single-photon detectors from Micro Photon Devices. The detectors have
a peak efficiency of 48% at 550 nm, 10 dark counts per second and 30 ps timing
resolution, which allows temporal exclusion of much background noise. The
detector events are registered and digitised using a timetagging module with
156 ps resolution. All these components are commercially available, making this
system practical for satellite applications.

Figure 5.3: Picture of QKD receiver for high loss link. Bob’s receiver includes
telescope, motorised half-waveplate, polarising beamsplitter and two detectors
from MPD.

5.2.3 Up-conversion or sum frequency generation

Generally speaking, up-conversion and sum frequency generation are equivalent
terms describing a second order (χ(2)) nonlinear optical process in which two
low frequency input beams are converted into a higher frequency output beam.
The term up-conversion is used preferentially here to highlight the fact that this
particular source can operate as both an up-converter and down-converter, the
former producing light at 532 nm and the latter producing entangled pairs which
are asymmetric in wavelength, at 810 nm and 1550 nm. The aim here is to
provide polarisation- and amplitude-modulated output light pulses at 532 nm,
a wavelength previously inaccessible for QKD due to a lack of fast modulators.
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Though up-conversion can be treated quantum mechanically as down-conversion
(see Subsection 4.2.1), here I will derive it classically following Reference [14],
as it is indeed a purely classical process, especially when involving strong pump
lasers as is the case in this source. I show that up-conversion output power is
linear in each of the input pump powers and not subject to quantum mechanical
noise.

First, I assume the three relevant waves are monochromatic and collinear,
and label ω1,2 as the frequency associated with the pump light at 810 nm and
1550 nm respectively, and ω3 =ω1+ω2 as the output light at 532 nm. Then I
start from the driven wave equation as follows:

∇2 Ẽ j −
n2

j

c2

∂ 2 Ẽ j

∂ t2 =
1

ε0c2

∂ 2 P̃N L
j

∂ t2 (5.1)

Here Ẽ j denotes the electric field amplitude of the j-th frequency, and the
tilde means fast varying; n j is the index of refraction of the crystal at ω j; c is
the speed of light in vacuum; ε0 is the permittivity of free space; and P̃N L

j is the
result of the nonlinearity, in effect a driving term at frequency ω j. Concentrating
on the output frequency j = 3, and assuming plane waves I define

Ẽ3(z, t) = A3(z)e
i(k3z−ω3 t)+ c.c. (5.2)

where z is the distance along the propagation direction in the crystal, A3(z) is
the slowly varying amplitude of the field, and k3 =

n3ω3

c
is the wavenumber in the

crystal. Similarly for the nonlinear driving term, with c.c = complex conjugate,

P̃N L
3 (z, t) = 4ε0de f f E1E2e−iω3 t + c.c. (5.3)

where de f f is the effective nonlinearity which can be calculated from the
nonlinear susceptibility tensor, and E j(z) = A j(z)e

ik jz is the pump electric fields,
with slowly varying amplitude A j(z). As the pump powers in my source are
1−20 mW and the output power is around 30 pW, it is a very good approximation
that the pump fields are constant, i.e. A1,2(z) = A1,2 = const. Thus the nonlinear
driving term is

P̃N L
3 (z, t) = 4ε0de f f A1A2ei[(k1+k2)−ω3 t] + c.c. (5.4)

Substituting into Equation 5.1 and reducing ∇2 to ∂ 2

∂ z2 due to plane waves, I
obtain the following and simplify.
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i

(5.5)
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3n2

3

c2 A3(z)
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−4de f f A1A2ω
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(5.6)

d2A3(z)
dz2 + 2ik3

dA3(z)
dz

=
−4de f f A1A2ω

2
3

c2 ei(k1+k2−k3)z (5.7)

I drop the complex conjugate terms as they satisfy equality independently.
I now invoke the slowly varying amplitude approximation to drop the second

derivative, i.e.
�

�

�

d2A3(z)
dz2

�

�

��
�

�

�k3
dA3(z)

dz

�

�

�. Finally I introduce ∆k = k1+ k2− k3 to get

dA3(z)
dz

=
2ide f f A1A2ω

2
3

k3c2 ei∆kz . (5.8)

A simple integration over z from 0 to the crystal length L gives

A3(L) =
2ide f f A1A2ω

2
3

k3c2

�

ei∆kL − 1

i∆k

�

. (5.9)

Finally, I calculate the intensity I3 of the output field at ω3 as

I3 = 2n3ε0c|A3|2 =
8n3ε0de f f |A1|2|A2|2ω4

3

k2
3c3

�

�

�

�

�

ei∆kL − 1

∆k

�

�

�

�

�

2

. (5.10)

Of note is that the output intensity is perfectly linear in each of the input
intensities, thus, modulating the input beam at 1550 nm in intensity will cause
proportional modulation of the output beam for decoy and signal states. Inter-
estingly, even when a quantum mechanical picture is considered where the field
amplitudes Ak become annihilation operators âk, no additional noise is added by
the up-conversion process as there are no terms independent of both operators
on the pump modes. This is especially relevant in the sense that one of the pump
beams cannot spontaneously up-convert to 532 nm without the presence of the
other beam, in contrast to spontaneous down-converison. Additionally, there is
no analog to the error-inducing double emission of down-conversion, as any addi-
tional photons are emitted into the same polarisation mode. Unfortunately, there
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is a second-order source of noise as the 810 nm photons can be down-converted
to photons at 1550 nm and 1697 nm, the former of which can subsequently
be up-converted as an erroneous photon in the output 532 nm beam. Though
the phasematching is extremely weak, this is still a major problem when using
up-conversion for single photon detection in the 1550 nm range [122]. Thank-
fully, the effect is neglectable here as the both pump beams are relatively strong
lasers, completely overpowering the single photon level of this spurious down-
and up-conversion.

Resuming the derivation, the final factor in Equation 5.10 is

�

�

�

�

�

ei∆kL − 1

∆k

�

�

�

�

�

2

=
1

∆k2 (e
−i∆kL − 1)(ei∆kL − 1)

=
1

∆k2

�

2− (ei∆kL + e−i∆kL)
�

=
2

∆k2 (1− cos(∆kL))

=
2

∆k2

�

2sin2(∆kL/2)
�

= L2sinc2(∆kL/2).

(5.11)

Thus the output intensity is

I3 =
8n3ε0de f f |A1|2|A2|2ω4

3 L2

k2
3c3

sinc2(∆kL/2). (5.12)

This leads to the phasematching condition of ∆k = 0, as the sinc(x) function
has a maximum at x = 0. This equation is impossible to satisfy in normally dis-
persive materials, leading to other solutions such as birefringent phasematching
or quasi-phasematching [47], which gives a phasematching condition of

∆k = 0= k1+ k2− k3− 2π/Λ, (5.13)

where Λ is now a parameter of the material controllable through periodic pol-
ing. This method was used to construct the type-I periodically poled KTP crystals
used here for up-conversion. As the type-I crystals used satisfy phasematching
only when the polarisations of all fields are the same, two crystals are needed
to provide polarisation-insensitive up-conversion. Two crystals are placed back
to back, such that one crystal performs up-conversion for horizontally polarised
light, and the other for vertically polarised. So long as distinguishability (in spec-
trum and time) between the two crystals is removed (by temperature tuning and
phase compensation respectively), the two crystals can also up-convert coherent
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superpositions of horizontal and vertical polarisations, such that all four qubit
states necessary for QKD can be produced by the up-conversion process. 1

5.2.4 Timing synchronisation

As seen in figure 5.4, the timetagging clock at Bob may drift hundreds of nanosec-
onds relative to the laser clock (period = 13 ns) at Alice. As an example, if the
laser clock period is shortened by only 1 fs, the clocks will be offset by 76 ns
after one second, making signal identification impossible. Therefore, timing
synchronisation between Alice and Bob is necessary, and is accomplished here
by timetagging a frequency-divided version of the laser clock. Bob then sends
his timetags to Alice who uses her timetagged laser clock signal to stretch or
compress portions of Bob’s detection timetags depending on the fluctuations as
caused by cavity length changes in the laser or drifts in the timetagger’s clock.
Thus Alice can identify which tags to keep based on timing and relay this in-
formation to Bob. This could be performed over a satellite’s communication
channel, and since only detection times and not bit or basis values are revealed,
no information is leaked to Eve beyond what she is already assumed to know.

5.3 Decoy-state protocol

Weak coherent pulse sources based on (up-conversion of) highly attenuated
lasers are attractive for QKD; however, because of the Poissonian statistics of
photon number in laser pulses, some pulses will have more than one photon
and be subject to the photon number splitting attack [67]. In this attack, an
adversary Eve splits off one photon from the pulse and stores it to measure
only after the legitimate party Bob reveals his measurement basis. Eve then
measures in the correct basis, and so gains full information about multi-photon
pulses without leaving a trace. To combat this attack, the decoy-state protocol
was introduced, wherein Alice changes the average photon number of randomly
interspersed pulses from the signal level µ to the decoy level ν . Since Eve cannot
know whether a given pulse is a signal or decoy pulse, the decoy pulses allow
much better bounds on how much information Eve has gained from multiphoton
signals, and thus how much privacy amplification must be performed. The
asymptotic key rate (adapted from Reference [71]) per laser pulse obtainable

1Down-conversion is a similar process to up-conversion, but its derivation requires quantisation
of the light fields for spontaneous pair creation. Thus the field amplitudes Ak become mode
annihilation operators âk, and the non-commuting nature of these operators allows photon
creation in the output even with no initial field in those modes.
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Figure 5.4: Typically observed drift between Alice’s and Bob’s clocks. Alice’s
clock is determined by the repetition rate of the mode-locked laser and Bob’s
comes from his timetagger. Drifts in the clock are large compared to the nominal
laser clock period of 13 ns, making timing synchronisation a necessity. Our
synchronisation scheme correctly aligns Bob’s detection events independent of
which device is drifting.
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from a decoy pulse protocol is

R≥ q
Nµ

Nµ+ Nν
{−Qµ f (Eµ)H2(Eµ) +Q1

�

1−H2(e1)
�

}, (5.14)

where q = 1/2 is the basis reconciliation factor, Qµ is the signal gain, i.e.
the ratio of Bob’s detections to pulses sent by Alice for average photon number
µ, Eµ is the quantum bit error rate for signal pulses, f (Eµ) = 1.22 is the error
correction efficiency for practical error correction codes, H2(x) = −x log2(x)−
(1− x) log2(1− x) is the binary entropy function, and Q1 and e1 are the estimated
gain and error rate for single photon pulses. The factor

Nµ
Nµ+Nν

is added since only

detections of the signal state µ contribute to the final key, and Nµ/ν is the number
of signal/decoy detections. The key rate is then the gain of single-photon pulses,
less the error correction on all signal pulses, less the privacy amplification on
single-photon pulses. Note that this key rate should be multiplied by the laser
pulse rate to obtain secure key bits per second.

We chose the two-decoy protocol from Reference [71]. In this protocol, Alice
sends randomly a signal pulse with average photon number µ, a decoy pulse with
average photon number ν < µ, or the vacuum. In our case, to illustrate the utility
of the two-decoy method, we took the vacuum as being sent between adjacent
laser pulses. Q1 and e1 can be estimated without loss of security as

Q1 =
µ2e−µ

µν − ν2

�

Qν eν −Qµeµ
ν2

µ2 −
µ2− ν2

µ2 Y0

�

(5.15)

e1 =
EνQν
Q1

−
e0Y0

Q1eµ
; (5.16)

where Y0 and e0 = 0.5 are the vacuum yield and error rate.

5.4 Experimental results

Our main results are summarised in figure 5.5. Simulations of satellite orbits
over one year were performed (see Methods) to predict the total channel loss
(including receiver) in an uplink versus passage time of the satellite. Using a
realistic orbit at 600 km height, 712 satellite passages over our hypothetical
ground station near Ottawa, Canada were predicted, about 80% of which have a
portion with low enough loss for QKD. The total loss versus time of the overall
best single passage and of the 80th percentile passage are plotted in figure 5.5a.
We then performed a quantum optical simulation including photon production,
channel transmittance and detection, to produce a secure key rate versus total
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loss as shown in figure 5.5b. The simulations show key generation is possible
up to 63 dB asymptotically, well over the 52 dB average loss of the simulated
satellite uplink.

Using our experimental setup, the detection rate and quantum bit error rate
(QBER = Eµ) in each of the rectilinear and diagonal bases for signals and decoys
were measured and a final secure key rate from equation (5.14) was calculated.
A pseudorandom sequence of 256 pulses was repeated and the resulting timetags
formed into a histogram (Figure 5.6) to give information on each individual
pulse state, allowing full characterisation of the system’s capability. The results
versus loss in figure 5.5b, based on many 1000 second data collection runs at
a clock rate of 76 MHz, show secure key distribution is possible up to 57 dB
experimentally, and agree well with the quantum optical simulation. The secure
key generation rate at this maximum 57 dB is 2 bits/s, highlighting the viability
of the quantum optics and detectors required for a satellite uplink. Allowing
6 dB for receiver and detector efficiency, this permits channel losses up to 51 dB,
higher than any decoy-state systems previously built [110, 107, 65].

Finally, the total loss versus time for a satellite passage and secure key rate
versus total loss can combine to produce figure 5.5c, secure key rate versus time
for a satellite passage. The rate is given in bits per laser pulse on the left axis and
bits per second on the right, based on our clock rate of 76 MHz. To determine
secure key rate at a given time, map points from figure 5.5a to 5.5b to determine
the key rate at the corresponding loss, and then map this value to figure 5.5c. The
curves in figure 5.5c can be integrated to find total bits of secure key generated
over one passage. For the 80th percentile passage shown here, a total of 5.7×104

bits of secure key could be generated with our 76 MHz system. Additionally, as
seen in figure 5.7, our source and transmitter are stable enough over a satellite
passage not to require active correction.

5.4.1 Timing analysis for noise reduction

To separate legitimate detections from background noise, all detections were
timetagged and these timetags binned with a bin width equal to a fraction of
the laser clock cycle. Then the detections from the QKD source should be tightly
peaked around the laser pulse times with a width determined by the jitter (see
Methods), and the background noise distributed randomly. The true signals were
separated from dark counts and stray light by choosing an optimal window width
around the peaks, which narrows with increasing loss as more background counts
must be excluded to maintain an acceptable QBER (figure 5.8). Therefore only
timetags within the window contribute to the final key calculations, and those
outside are discarded. The optimal timing window in figure 5.8c decreases from
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Figure 5.5: Secure key rate for a satellite passage. We calculated the trajectory
of a low earth orbit satellite for one year to determine the number of passages
(712) over a given ground station and the loss as a function of time for each
one. Here we show simulation data for the best overall passage in that year and,
for comparison, the 142nd best passage, i.e. 80th percentile. a) Simulation of
total loss versus visible passage time for a satellite uplink. The loss is minimum
as the satellite is closest to the ground station (highest elevation angle) and
increases as the satellite approaches the horizon. b) Experimental results and
simulation of secure key rate versus loss. Our data agree well with the theoretical
curve, which uses a quantum optical simulation to predict key rates. Treatment
of error analysis is included in QKD security proofs, and is generally based
on upper bounding the information given to an eavesdropper compatible with
measurement results. c) Expected secure key rate versus time for a satellite
passage, based on simulations and experimental parameters. The secure key rate
in bits/s on the right axis assumes the 76 MHz clock rate of our source. The loss
versus time and secure key rate versus loss curves combine to produce the output
key rate over one satellite passage.
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Figure 5.6: Detection histograms for Alice and Bob, showing polarisation (qubit)
and amplitude (signal/decoy) modulation. The histograms are constructed by
binning together detections versus the time after Alice’s laser trigger. Bob’s
detections are the top two plots, with Alice’s source characterisation on the
bottom. Alice and Bob’s intensities correspond to each other, as the output is
randomly modulated between signal and decoy pulses. Bob also sees polarisation
modulation; the first and last pulses are vertically polarised, while the middle
two are diagonal. Alice monitors her source locally to ensure she is sending the
correct average photon number for signal and decoy pulses.
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Figure 5.7: Stability of secure key rate (solid line) and QBER (dashed line). Data
were taken at 30 dB total loss over 1000 s, and the mean secure key rate and
QBER are 7560± 24 bits/s and 1.85± 0.03% respectively. The small drifts are
likely due to temperature fluctuations which alter the polarisation transformation
the in connecting optical fibres.
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2 ns at low loss, to 40 ps at 57 dB, making full use of the good timing afforded
by our system.

5.4.2 Finite size effects

Until this point, all discussion of QKD has assumed an infinite key length, allow-
ing exact estimation of QBER and signal/decoy gains. In implementations this
is of course not the case, and the finite size of the raw key plays an important
role in how much privacy amplification must be performed [99], especially in
the case of short satellite passages. Here I will therefore consider statistical fluc-
tuations [108] of the measured parameters Qµ/ν and Eµ/ν , as well as information
theoretic security definitions based on the deviation of the final key from a perfect
key [91].

Specifically, for statistical fluctuations, 10 standard deviations are added to or
subtracted from Qµ, Qν , Eµ and Eν such that the worst case scenario is considered,
and the probability that the actual values fall outside this range is less than 10−25.
Finally, a parameter ∆ is added that is the outcome of information theoretic
security proofs based on smooth min-entropy [99].

∆= 2 log2

�

1

2(ε− ε− εEC)

�

+ 7

r

Nµ log2

�

2

ε− ε′

�

(5.17)

Where ε is the total allowable probability that the final key is insecure, chosen
to be ε = 10−6 due to the finite lifetime of a satellite, εEC = 10−10 is the error
correction failure probability, and ε and ε′ can be optimised numerically with the
constraint ε− εEC > ε > ε

′ ≥ 0. The final key rate with finite size effects is then

R≥ q
Nµ

Nµ+ Nν
{−Qµ f (Eµ)H2(Eµ) +Q1

�

1−H2(e1)
�

−Qµ∆/Nµ}, (5.18)

Given the known µ, ν , Nµ, Nν , ε, εEC , bounded Qµ, Qν , Eµ, Eν and estimated
Q1, e1 from our experimental runs, a secure key rate R can be calculated versus
total loss for each loss setting in Figure 5.5. This is plotted in Figure 5.9, with the
asymptotic experimental results for comparison. A secure key is still possible with
our system including all finite size effects up to 48 dB average total loss over an
assumed 300 s satellite passage, which would require larger telescopes or more
efficient detectors to be feasible. However, the source rate of our system could be
easily increased, requiring only a mode-locked laser with shorter cavity length
and possibly faster electronics to drive the modulators. Given an achievable
1 GHz clock rate, Figure 5.10 shows an average total loss up to 55 dB is feasible
over a 300 s passage, giving hope for a truly secure satellite uplink. Additionally,
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Figure 5.8: Raw key rate (all signal detection events), secure key rate, and QBER
versus timing window from experimental data. a) At 40 dB total loss, b) At 54 dB
total loss. Note that raw key rate and QBER both increase with timing window,
as more dark and background counts are admitted. Secure key rate shows a
maximum at 1.2 ns timing window for the 40 dB case and 0.4 ns for the 54 dB
case, as the benefit of increasing the raw key rate is offset by the detriment of
increasing the QBER. c) Secure key rate versus timing window for various loss
points. The observed optimal timing window is marked on each curve with an X,
and the dashed line is a guide to the eye for the optimal window width trend.
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recent work on the finite key problem for qubits [114] should allow channel
losses to be extended further (once optical modes are considered), making a
larger number of yearly satellite passages usable for QKD.
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Figure 5.9: Finite size effects on secure key rate. The asymptotic curve assumes
an infinite number of signals is received, while the others assume the number
received over a 300 s satellite passage with average total loss given by the x-axis
“Loss”. “Stat fluc” includes only statistical fluctuation of parameters, while “Full
finite” includes also ∆ from information theoretic security proofs [99].

5.5 Discussion

We have demonstrated the design and viability of a QKD system capable of
operation under ultra-high channel losses of up to 57 dB. Our system therefore
satisfies the challenging requirements for uplink of quantum keys to a satellite,
and future improvements will allow the technical requirements to be satisfied
with full information theoretic security. As noted above, a space-based quantum
receiver is less demanding than a quantum source, as all required components
for the receiver have flown in space [85], so a near-term satellite mission using
our approach as a prototype is immediately viable.
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Figure 5.10: Finite size effects for various source repetition rates. Every curve
here includes all finite size effects for a 300 s satellite pass with average total loss
given by the x-axis “Loss”. The benefit of increasing the source rate diminishes as
the asymptotic limit is reached, but with a 1 GHz source, QKD is possible out to
55 dB total loss.
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5.5.1 Next steps

We are working on a full-scale QKD mission, the next steps of which include
determining sufficient classical processing and communication bandwidth and
designing a reference frame system to compensate for the slow rotation of the
satellite [17, 61]. Additionally, how best to deal with a strongly fluctuating
channel while maintaining security is an open question [11, 102], and putting
tighter bounds on the finite-key problem for realistic implementations is a great
challenge for theorists, to enable the use of lossier channels than ever [114, 15].
Our system must be updated to include a truly random pulse sequence on Alice’s
side, and a receiver on Bob’s side capable of measuring in both rectilinear and
diagonal bases simultaneously with passive basis choice (see Methods). To bring
our system to the desired 1 GHz clock rate is not difficult, as the modulators can
handle a few GHz and the up-conversion process is clock rate independent. We
would simply require a mode-locked laser with shorter cavity length and updated
electronics.

5.5.2 Future advances

Finally, with a quantum receiver in space and a suitable photon source, a number
of additional quantum physics experiments over ground-space distance become
viable, including teleportation and entanglement swapping [4], fundamental
tests of quantum mechanics [35], and tests of new physical theories [87]. In
addition, an entangled photon source which emits one photon around the desired
532 nm is envisaged for the future [106, 105]. This photon would be directed
to the satellite while the other photon of the entangled pair would be in the
telecom band around 1550 nm, suitable for long-distance transmission in optical
fibres. A central ground station containing the source could be connected locally
by fibres to end-users, and globally via satellite to another such ground station.
Furthermore, it is possible that the uplink transmission can be enhanced by
implementing wave-front corrections of the transmitted optical beam, through
adaptive optics [10]. This technology is used in astronomic observation, and
could be realized at the ground station even once the mission is deployed. In
summary, the future for QKD using satellites is bright, the uplink is demonstrably
feasible, and in the near term we expect to see multiple satellite missions for
quantum information, both for fundamental science and applications.
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5.6 Methods

Satellite performance simulation. Naturally, the channel loss will vary on each
satellite passage as the satellite passes from horizon to horizon. QKD will be
possible for only during the overhead portion of each passage as too shallow
an elevation angle gives too high a channel loss. Additionally only some of the
satellite passages will be viable for QKD since the degree to which the satellite
passes directly over the ground station varies with each passage. Our simulations
include satellite orbit statistics over one year and allow for a comprehensive
calculation of loss and background noise with time. Completing the satellite
and channel simulations allows a further quantum optical simulation including
multiphoton statistics, detector efficiencies and dark counts.

Phase randomisation. To confirm that the coherence length of the 1550 nm
continuous wave laser was short enough to ensure phase randomisation of the
outgoing pulses, we used an imbalanced fibre-based Mach-Zehnder interferom-
eter on the 1550 nm light. By increasing the length of fibre in one arm, the
interference fringes at the output beamsplitter were made to disappear. At 1 m
of fibre the fringes were already weak, and by 2 m of fibre they were negligible.
To further confirm that the output pulses at 532 nm were not coherent, a simi-
lar fibre interferometer was constructed to measure the 532 nm up-converted
coherence directly. Due to the difficulty in interfering subsequent laser pulses,
the source was operated in continuous wave mode, and when 2 m of fibre was
introduced to imbalance the interferometer the interference fringes dropped
from 77 % visibility to 6.6 %. Therefore the coherence length of the output
532 nm light is sufficiency less than the distance between pulses (4 m) for phase
randomisation, assuming that each frequency component of the source in pulsed
mode is affected similarly.

Receiver basis choice. The optimal solution for this short wavelength is to
use passive basis choice, wherein the incoming photon passes through a 50:50
beamsplitter and is measured in either the rectilinear or diagonal basis depending
on the path randomly taken out of the beamsplitter. Because only two detectors
were available for this experiment, we implemented a slow, active basis choice: a
motorised rotation stage containing a half-wave plate was rotated to 0◦ or 22.5◦

to choose to measure in the rectilinear and diagonal bases respectively.
Receiver timing system. In practical QKD systems, the use of timing infor-

mation is necessary to exclude illegitimate detections [20]. Our system employs
free-running detectors and timetags every detection event, in contrast to gated
detection schemes which only open detectors during the specified arrival time of
a pulse. Both are subject to detector control attacks [73, 127, 125] with most
effort being focused on gated avalanche photodiodes for telecom applications
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[69]. For satellite applications, the timetagging method is preferable as it requires
much less data transmission. A recent precise timing experiment [92] required
every gate pulse to be sent classically in parallel to the quantum channel from
Alice to Bob, a vast overhead which is impractical for space applications, due
to both fast and slow changes in optical path length. By contrast, using the
timetagging approach, Bob can send back to Alice only the timetags generated
by his receiver, which will be small in number due to the high channel loss. Alice
can then align them to her source rate and tell Bob which to keep. As an example,
with a clock rate of 1 GHz Alice would have to send 109 gate pulses per second
independent of the loss for gated operation, while if using timetags, Bob would
have to transmit only about 5000 timetags per second back to Alice for 50 dB
total loss.

Jitter analysis. The final jitter of Alice’s mode-locked laser timetags is about
300 ps. Given the 156 ps resolution of the timetagger, and jitter of Alice’s elec-
tronics of 200 ps, this leaves 160 ps for jitter of the laser. Therefore, improvement
is possible most easily in the laser stability and timetag resolution, making this
timing method even more appealing.
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Chapter 6

Conclusion

The projects of this thesis aimed at first estimating experimental parameters
through simulation and consequently developing and implementing quantum
communication in regimes so far untested. The two main experimental results
were:

1. An implementation of entangled quantum key distribution using short-
wavelength photons over standard telecom optical fibres.

2. A demonstration of the feasibility of quantum key distribution at high loss,
towards a satellite uplink.

For the QKD in fibres, this work could lead to an entanglement server model,
where a central facility (e.g. on a campus or office park) houses an entangled
photon source connected by optical fibres to nearby buildings. The entangled
source can be untrusted, and provides pairs of photons to two users who want to
communicate securely. Only existing optical fibres are required, as the photons
for QKD are compatible with classical traffic. This contribution to local area QKD
would allow short range, highly secure networks with lower initial investment
than dedicated quantum links. Entanglement distribution may also have some
application in distributed quantum computing, or as a quantum bus between
computing nodes or experiments.

The demonstration of QKD towards a satellite uplink, by contrast, is an
important step forward for global QKD. This would allow key distribution without
distance limitation using satellites as trusted nodes. As this demonstration of QKD
provided full qubit and decoy-state modulation over an extremely lossy channel,
it shows that current technology with novel implementations hold promise for
increasing the range and key rates of QKD. Our next plans are to implement in the
lab and outside a full QKD protocol as would be seen with a satellite, including
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error correction and privacy amplification, automatic polarization compensation
for satellite rotation, and a method to deal with the strongly fluctuating link
loss. This should move the world ever closer to its first quantum satellite mission,
whether an uplink based on our work, or a downlink or entangled double-
downlink. Any of these technologies is capable of demonstrating QKD on a global
scale, and would likely spark widespread commercial and government interest.
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Appendix A

Code for specific quantum optics simu-
lations

Sze Tan’s quantum computational toolbox [111] is available as of this date at
http://qwiki.stanford.edu/index.php/Quantum_Optics_Toolbox, and
Thomas Jennewein’s additional functions [51] are available at http://info.
iqc.ca/qpl/lab-tools/. An important function to note is display_state4,
which displays the simulated photon states in a nice format.

A.1 MATLAB code for Svetlichny inequality violation

% Evan Meyer−Scott for GHZ Project March 10, 2011, ...
modification of

% Thomas Jennewein, 8.10.2008

% This script simulates a double down−conversion source of ...
four−photon states with one as a trigger to produce ...
three−photon GHZ states. These states are subjected to ...
loss and detector noise then used to violate Svetlichny's ...
inequality.

clear

%% Initializations − vary these parameters to check performance
% Definitions for qotoolbox
N=3; %Fock space dimension
% Sets up standard quantum optics functions
standard_defintions_qo_toolbox_evan;
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% Make a couple changes from the standard definitions to get ...
phases right

H_ph_i = a'*a.*−pi/2;
U_ph_i = expm(−1i*H_ph_i);
U_had=tensor(ida,U_ph_i)*U_bs*tensor(ida,U_ph_i);

% This is the maximal source emission time slots: a ...
somewhat simple model is to take ...
1/single_photon_coherence (in the limit that the single ...
photon coherence is shorter than the pump coherence.

% But it might be set to the coincidenc window for ...
simplification

coinc_window=3e−9;
% f_source is then an effective source repetition rate
f_source=1/coinc_window;

% Source rate estimation, based on the observed singles and ...
coincidences

coinc=19333; % Two−photon coincidence rate from ...
down−conversion source

singles=400000; % Single count rate per second for ...
down−conversion source

net_source_rate=singles^2/coinc; % Source rate in crystal
epsilon=sqrt(net_source_rate/f_source); % Squeezing parameter

% Integration time for uncertainty reduction
time=logspace(2,6);

%Link efficiencies
effc_source=coinc/singles; % Includes photon collection and ...

detectors
link1=[.1 .2 .3 .4 .5]; % Efficiency of free space links, ...

photons 1&3
link3=link1;
% Add 500 m fibre for delay of photon 2, at 3dB/km
link2=10^−.15;
% Efficiency of receiving optics/Pockels cell
effc_optics=.6;

%Include noise from darks counts and background light over ...
freespace link

darks=600;
background=4000;
noise_factor_link=(darks+background)*coinc_window; % Noise ...

over link
noise_factor_local=background*coinc_window; % Noise for ...

locally detected photons
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%% Create entangled state |HHV>+|VVH> (requires post selection)

% The photons are as follows: 1 & 3 are from independent ...
down−conversions and are the ones interfered to create ...
entanglement then sent over the links, 1 & 2 are an ...
entangled pair from down−conversion and 3 & Trig are a ...
correlated pair, with Trig being the trigger photon

%Use down−conversion
H_chi2=(tensor(a,a)+tensor(a',a'))*epsilon; % Hamiltonian
U_chi2=expm(−1i*H_chi2); % Unitary

% Act unitary on vacuum to create pair state |HH>
spdc_state=tensor(U_chi2*tensor(vacc,vacc));

% Permute to create entangled state, photons 1 & 2 |HH>+|VV>
% Modes here are |Q1H, Q1V, Q2H, Q2V>
phi_plus=permute(tensor(spdc_state,spdc_state),[1 4 2 3]);

% Create pair, photons 3 & Trig |HH>
% The modes here are: |TrigH, TrigV, Q3H, Q3V>
% Permute to separate Trig and 3
HH=permute(tensor(spdc_state,vacc,vacc),[1 4 2 3]);

%Rotate Q3 to 45deg before interference with Q1
HH=tensor(ida,ida,U_had)*HH;

%Polarization beamsplitter between Q1 and Q3 with permute
psi=permute(tensor(phi_plus,HH),[7,2,3,4,5,6,1,8]);

%Swap H&V in Q3 to make desired (|HHV>+|VVH>)⊗|Trig>
psi=permute(psi,[1,2,3,4,5,6,8,7]);

%% Looping and detection
% Loop over integration time and free space link transmission
for n=1:length(time)

for m=1:length(link1)

% Create projector for bucket detector for each photon
[proj{1},unproj{1}]=BucketDetector_noise(N,effc_source...

*link1(m)*effc_optics,noise_factor_link);
[proj{2},unproj{2}]=BucketDetector_noise(N,effc_source...
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*link2*effc_optics,noise_factor_local);
[proj{3},unproj{3}]=BucketDetector_noise(N,effc_source...

*link3(m)*effc_optics,noise_factor_link);
[proj{4},unproj{4}]=BucketDetector_noise(N,effc_source,...

noise_factor_link);

% Svetlichny's ineqaulity
% Perform heralded 3−fold measurements and return ...

E(a,b,c), for each of two analyser settings phi
phi_a=[3*pi/4 pi/4];
phi_b=[pi/2 0];
phi_c=[0 pi/2];

% E_Svetlichny returns the correlation value ...
E(a,b,c) for a given set of

% measurement angles (\phi_a,\phi_b,\phi_c), and the ...
uncertainty

% in this value
% Multiply source rate by time/8 since 8 measurement ...

settings
[E(1),deltaE(1)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(1),phi_b(1),phi_c(1),f_source*time(n)/8);
[E(2),deltaE(2)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(1),phi_b(1),phi_c(2),f_source*time(n)/8);
[E(3),deltaE(3)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(1),phi_b(2),phi_c(1),f_source*time(n)/8);
[E(4),deltaE(4)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(1),phi_b(2),phi_c(2),f_source*time(n)/8);
[E(5),deltaE(5)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(2),phi_b(1),phi_c(1),f_source*time(n)/8);
[E(6),deltaE(6)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(2),phi_b(1),phi_c(2),f_source*time(n)/8);
[E(7),deltaE(7)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(2),phi_b(2),phi_c(1),f_source*time(n)/8);
[E(8),deltaE(8)]=E_Svetlichny(N,psi,proj,unproj,...

phi_a(2),phi_b(2),phi_c(2),f_source*time(n)/8);

% Rate_Svetlichny simply returns the sum of all ...
measurement

% outcomes, giving a total fourfold detection rate.
rate=Rate_Svetlichny(N,psi,proj,unproj);

% Now extract useful information:

% Fourfold count rate per second
counts(m)=rate*f_source;

% Entanglement visibility and fidelity
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vis=Vis_Svetlichny(N,psi,proj,unproj);
fidelity(m)=vis/2+1/2;

% Svetlichny parameter and uncertainty
Sv(n,m)=abs(sum(E([1 2 3 5]))−sum(E([4 6 7 8])));
deltaSv(n,m)=sqrt(sum(deltaE.^2));

% Number of sigmas violation of the classical limit ...
of 4

sigmas=(Sv−4)./deltaSv;

end

end

%% Plot results

% One useful plot is that of sigmas of violation versus ...
time, to find out

% how long to integrate for a violation of, say, three ...
standard deviations

semilogx(time/3600,sigmas,'.−')
xlabel('Time (h)')
ylabel('# of Sigmas violation')
title('# of Sigmas Svetlichny Violation versus Integration ...

Time')

%% Required functions

function [probs, deltaE]=E_Svetlichny(N, ...
in,proj,unproj,phi_a,phi_b,phi_c,f_source)

% Determine the four−fold count rates for an 8 mode state, ...
e.g. |Q1H,Q1V,Q2H,Q2V,TrigH,TrigV,Q3H,Q3V>, measured ...
along |H> +/− exp(i phi_j)|V> for j = a,b,c

standard_defintions_qo_toolbox;
H_ph_i = a'*a.*−pi/2;
U_ph_i = expm(−1i*H_ph_i);
U_had=tensor(ida,U_ph_i)*U_bs*tensor(ida,U_ph_i);
% Set the phase of the measurement
Hrot_a=a'*a*phi_a;
Urot_a=expm(−1i*Hrot_a);

Hrot_b=a'*a*phi_b;
Urot_b=expm(−1i*Hrot_b);
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Hrot_c=a'*a*phi_c;
Urot_c=expm(−1i*Hrot_c);

% Outcome: mode1−> +1(good) mode2−> −1(bad)

%Apply phase shift to each mode2, then hadamard between each 1&2
final_state=tensor(U_had,U_had,ida,ida,U_had)...

*tensor(ida,Urot_a,ida,Urot_b,ida,ida,ida,Urot_c)*in;

% Expectation value to get probability of detection
HHH=f_source*sum(expect(tensor(proj{1},unproj{1},proj{2},...

unproj{2},proj{4},ida,proj{3},unproj{3}),final_state));
HHV=f_source*sum(expect(tensor(proj{1},unproj{1},proj{2},...

unproj{2},proj{4},ida,unproj{3},proj{3}),final_state));
HVH=f_source*sum(expect(tensor(proj{1},unproj{1},unproj{2},...

proj{2},proj{4},ida,proj{3},unproj{3}),final_state));
HVV=f_source*sum(expect(tensor(proj{1},unproj{1},unproj{2},...

proj{2},proj{4},ida,unproj{3},proj{3}),final_state));
VVV=f_source*sum(expect(tensor(unproj{1},proj{1},unproj{2},...

proj{2},proj{4},ida,unproj{3},proj{3}),final_state));
VVH=f_source*sum(expect(tensor(unproj{1},proj{1},unproj{2},...

proj{2},proj{4},ida,proj{3},unproj{3}),final_state));
VHV=f_source*sum(expect(tensor(unproj{1},proj{1},proj{2},...

unproj{2},proj{4},ida,unproj{3},proj{3}),final_state));
VHH=f_source*sum(expect(tensor(unproj{1},proj{1},proj{2},...

unproj{2},proj{4},ida,proj{3},unproj{3}),final_state));
good=real(HHH+HVV+VVH+VHV);
bad=real(HHV+HVH+VVV+VHH);

probs=(good−bad)/(good+bad);
deltaE=2/(good+bad)*sqrt((1−probs)^2*good+(1+probs)^2*bad);
end

function rate=Rate_Svetlichny(N,in,proj,unproj)

ida=identity(N);
final_state=in;

HHH=f_source*sum(expect(tensor(proj{1},unproj{1},proj{2},...
unproj{2},proj{4},ida,proj{3},unproj{3}),final_state));

HHV=f_source*sum(expect(tensor(proj{1},unproj{1},proj{2},...
unproj{2},proj{4},ida,unproj{3},proj{3}),final_state));

HVH=f_source*sum(expect(tensor(proj{1},unproj{1},unproj{2},...
proj{2},proj{4},ida,proj{3},unproj{3}),final_state));

HVV=f_source*sum(expect(tensor(proj{1},unproj{1},unproj{2},...
proj{2},proj{4},ida,unproj{3},proj{3}),final_state));

VVV=f_source*sum(expect(tensor(unproj{1},proj{1},unproj{2},...
proj{2},proj{4},ida,unproj{3},proj{3}),final_state));

110



VVH=f_source*sum(expect(tensor(unproj{1},proj{1},unproj{2},...
proj{2},proj{4},ida,proj{3},unproj{3}),final_state));

VHV=f_source*sum(expect(tensor(unproj{1},proj{1},proj{2},...
unproj{2},proj{4},ida,unproj{3},proj{3}),final_state));

VHH=f_source*sum(expect(tensor(unproj{1},proj{1},proj{2},...
unproj{2},proj{4},ida,proj{3},unproj{3}),final_state));

rate=real(HHH+HHV+HVH+HVV+VVV+VVH+VHV+VHH);

end

function vis=Vis_Svetlichny(N,in,proj,unproj)

ida=identity(N);
final_state=in;

HHH=f_source*sum(expect(tensor(proj{1},unproj{1},proj{2},...
unproj{2},proj{4},ida,proj{3},unproj{3}),final_state));

HHV=f_source*sum(expect(tensor(proj{1},unproj{1},proj{2},...
unproj{2},proj{4},ida,unproj{3},proj{3}),final_state));

HVH=f_source*sum(expect(tensor(proj{1},unproj{1},unproj{2},...
proj{2},proj{4},ida,proj{3},unproj{3}),final_state));

HVV=f_source*sum(expect(tensor(proj{1},unproj{1},unproj{2},...
proj{2},proj{4},ida,unproj{3},proj{3}),final_state));

VVV=f_source*sum(expect(tensor(unproj{1},proj{1},unproj{2},...
proj{2},proj{4},ida,unproj{3},proj{3}),final_state));

VVH=f_source*sum(expect(tensor(unproj{1},proj{1},unproj{2},...
proj{2},proj{4},ida,proj{3},unproj{3}),final_state));

VHV=f_source*sum(expect(tensor(unproj{1},proj{1},proj{2},...
unproj{2},proj{4},ida,unproj{3},proj{3}),final_state));

VHH=f_source*sum(expect(tensor(unproj{1},proj{1},proj{2},...
unproj{2},proj{4},ida,proj{3},unproj{3}),final_state));

vis=real((HHV+VVH−HHH−HVH−HVV−VVV−VHV−VHH)...
/(HHH+HHV+HVH+HVV+VVV+VVH+VHV+VHH));

end

A.2 MATLAB code for teleportation simulation

function [counts vis Vp]=Teleportation_thesis(loss,time,darks)
% Evan Meyer−Scott 23 Septermber 2010,
% Modification of Thomas Jennewein 2008
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% This function takes the inputs loss (channel loss in dB), ...
measurement time (in seconds) and darks (dark count rate ...
per second in each detector) and simulations a ...
teleportation experiment, where two photons are ...
interfered locally and the third photon onto which the ...
initial state is teleported is sent over long distance, ...
e.g. to a satellite. To get plots versus time or loss, ...
simply loop over this function with different values

%% Setup

% Definitions for qotoolbox
% Fock space dimension
N=5;
% Sets up standard quantum optics functions
standard_defintions_qo_toolbox;

% Repetition rate of entangled pair source pump laser
f_laser=1e9;

% Select type of input photon
% (0) Triggered photon from down−conversion
% (1) Coherent pulse, with strength alpha
% (2) Ideal single photon
type_input=2;

% Select type of entantlement resource
% (0) Down−conversion
% (1) Ideal entangled pair
type_entanglement=0;

% More complete Bell−state measurement? (0) No, (1) Yes
mc_bsm=1;

% Efficiencies
effc_apd=0.6; % Bucket detector efficiency
effc_optics=0.19; % Analysing optics efficiency

% Link attenuation, from decibels to fractional
effc_link=10.^(−loss/10);
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% Detector noise factor: dark counts per laser pulse
noise_factor=darks/f_laser;

%Source rate estimation, based on the observed singles and ...
coincidences

singles=1e6; % Single count rate per second for ...
down−conversion source

coinc=1e5; % Two−photon coincidence rate frowm ...
down−conversion source

net_source_rate=singles^2/coinc; % Source rate in crystal
epsilon=sqrt(net_source_rate/f_laser); % Squeezing parameter

%% Create modes and photons

%Create entanglment resource state
if type_entanglement==0; % Create entangled pair from ...

down−conversion

H_dc=(tensor(a,a)+tensor(a',a'))*epsilon; % Hamiltonian
U_dc=expm(−1i*H_dc); % Unitary
% Act unitary on vacuum to create pair state |HH>
dc_state=tensor(U_dc*tensor(vacc,vacc));
% Permute to create entangled state |HV>+|VH>
psi=permute(tensor(dc_state,dc_state),[1 3 4 2]);

else % Create ideal entangled pair |HV>+|VH>

ideal_state=tensor(oneph,vacc,vacc,oneph)...
+tensor(vacc,oneph,oneph,vacc);

psi=ideal_state;

end

% The Hilbert space will be 6 modes, 2 (H or V) for each ...
photon, with mode 1 being the input, mode 2 being ...
interfered with mode 1, and mode 3 being the distant mode ...
onto which the input state is teleported.

% Therefore modes 2 and 3 are the entanglement resource.
% |H1, V1, H2, V2, H3, V3>

% Create input photon
if type_input==0 % Create heralded photon from down−conversion

effc_hrld=0.2; % Heralding efficiency
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% Heralding bucket detector (Avalanche Photodiode, APD)
[apd_hrld un_hrldapd]=BucketDetector_noise(N,effc_hrld...

*effc_apd,noise_factor);

% Epsilon for the heralded down−conversion
epsilon_herald=0.2;

H_herald=(tensor(a,a)+tensor(a',a'))*epsilon_herald; % ...
Hamiltonian

U_herald=expm(−1i*H_herald); % Unitary

% Act unitary on vacuum to create pair state for heralding
dc_herald=tensor(U_herald*tensor(vacc,vacc));

num_sources=1; % An array of heralded sources can be ...
used for better

% efficiency, but keep at 1 for now

% This function performs heralding and gives a ...
conditional state in a

% single mode
[herald_state ...

count_prob]=herald_source3(N,dc_hrld,num_sources,apd_hrld);

% The total initial state is therefore
in_state=tensor(herald_state,vacc,psi);

elseif type_input==1 % Create coherent state from weak laser
% Coherent state "strength"; mean photon number = alpha^2
alpha=0.3;

U_dis=expm(alpha*(a'−a)); % Displacement operator
cohr_state=U_dis*vacc; % Act displacement operator on vacuum

%Total input state is therefore
in_state=tensor(cohr_state,vacc,psi);

elseif type_input==2 % Create ideal single photon

%Total input state is therefore
in_state=tensor(oneph,vacc,psi);

end

% Rotate input to +45 input, or any other state to check ...
teleportation of

% various nonorthogonal states
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in_state=tensor(U_had,ida,ida,ida,ida)*in_state;

%% Measurement
%******************************************
% Apply the Bell−state measurement with a beamsplitter:
% First move the polarizations together |H1,H2,V1,V2,H3,V3>
out_state=permute(in_state,[1,3,2,4,5,6]);
% Apply bgeamsplitter to the (H1,H2) and (V1,V2) terms
out_state=tensor(U_bs,U_bs,ida,ida)*out_state;
% Permute back to |H1,V1,H2,V2,H3,V3>
out_state=permute(out_state,[1,3,2,4,5,6]);
%******************************************

% Create measurement projectors
% Long link bucket detector (Avalanche Photodiode, APD)
[apd_link ...

un_linkapd]=BucketDetector_noise(N,effc_link*effc_optics...

*effc_apd,noise_factor);
% Local bucket detector (Avalanche Photodiode, APD)
[apd_proj ...

un_projapd]=BucketDetector_noise(N,effc_optics*effc_apd,...
noise_factor);

% This function performs a simplified Bell−state measurement ...
on modes 1 and 2 with 25% success probability and a ...
measurement on mode 3 to return detection probabilities ...
for the teleported state in each of the three standard ...
bases: H/V, +/−, L/R

det_prob=real(msrmt_3qb_2ch_6mode_mc_BSM2(N,out_state,apd_proj,...
un_projapd,apd_link,un_linkapd,mc_bsm));

% det_prob is a vector of the detection probabilities of ...
mode 3 in the

% following states: (H, V, +, −, L, R)
% The visibility in each basis is therefore:

vis_hv=(det_prob(1)−det_prob(2))./(det_prob(1)+det_prob(2));
vis_pm=(det_prob(3)−det_prob(4))./(det_prob(3)+det_prob(4));
vis_lr=(det_prob(5)−det_prob(6))./(det_prob(5)+det_prob(6));

% The +/− basis is of interest, since input photon was |+>
vis=vis_pm;

% The count rate in each detector is
count_r=det_prob*f_laser;

% Which gives for a 2−detector analyser a total count rate
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counts=(count_r(1)+count_r(2));

%Thus the uncertainty in this visibility is
deltavis=sqrt((1−vis)*(1+vis)/(counts*time));

% And finallyt the violation parameter is (Vp>2/3 to violate ...
cloning limit)

Vp=vis−3*deltavis;
end

A.3 MATLAB code for QKD simulation

% Evan Meyer−Scott 30 August 2010, modification of
% Thomas Jennewein, 8.10.2008

% This script seeks to find the QBER (or entanglement ...
visibility), detection rate, and final secure key rate ...
for QKD based on entangled sources or weak coherent pulses.

clear

%%Setup
N=7; % Fock space dimension
% Sets up standard quantum optics functions
standard_defintions_qo_toolbox;

% Create photons based on down−conversion (0) or ideal ...
entangled pair (1) or weak coherent pulses (2)

photon_type=0;

% Choose (for entanglement) whether to plot symmetric ...
(2xloss) or asymmetric (one photon measured locally) links

if photon_type==0||photon_type==1
plot_sym=0;
plot_asym=0;

end

% Choose active basis choice (2 detectors) or passive (4 ...
detectors)

% (0) active
% (1) passive
basis_choice=0;

% Define average photon number mu and displacement parameter ...
alpha=sqrt(mu) if using weak coherent pulses

if photon_type==2
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mu=0.56;
alpha=sqrt(mu);
end

% Define intial QBER due to polarisation misalignment etc.
initial_QBER=0.01;

% Efficiencies for detectors (bucket Avalanche Photodiodes) ...
and receiving optics

effc_apd=0.6;
effc_optics=0.475;

% Detecor noise factor: background per second, taken from ...
intrinsic APD dark

% counts + stray light
darks=500;

% Net source rate (i.e. backcalculated from the singles and ...
coincidences for down−conversion) gives approximately the ...
epsilon, but for weak coherent pulses, net source rate is ...
the laser rep rate

net_source_rate=32e6;

% The coincidence window is the time interval in which pairs ...
of photons are accepted (for entanglement) or the time ...
interval around the expected laser pulse time around ...
which single detections are accepted (for weak coherent ...
pulses) This can be a vector as it is looped over

coinc_window=[1]*1e−9;

% Link attenuation in dB (2nd for 2 'symmetric' links), i.e. ...
link_dB1 is used as the first link in a two−link scenario ...
and the only link in a one−link scenario. This is ...
generally a vector as it is looped over; add another loop ...
to loop over link_dB2 as well if needed. It is nice to ...
have finer resolution near the QKD cutoff

link_dB1=[0:2:34 35:.1:45];
x1=10.^(−link_dB1/10);

link_dB2=link_dB1;
x2=10.^(−link_dB2/10);

% Looping variable lengths
m=numel(x1);
n=numel(coinc_window);

% Initialise to zeros for faster looping
twofold_rate=zeros(1,m);

117



singles_rate=zeros(1,m);
vis=zeros(1,m);
twofold_rate_asym=zeros(1,m);
singles_rate1=zeros(1,m);
singles_rate2=zeros(1,m);
vis_asym=zeros(1,m);
twofolds=zeros(m,n);
singles=zeros(m,n);
visibilities=zeros(m,n);
visibilities_asym=zeros(m,n);
twofolds_asym=zeros(m,n);
singles1_asym=zeros(m,n);
singles2_asym=zeros(m,n);
QBER=zeros(1,m);
QBER_sym=zeros(1,m);
QBER_asym=zeros(1,m);
final_bits_sym=zeros(m,n);
final_bits_asym=zeros(m,n);
e1=zeros(1,m);
Q1=zeros(1,m);

%% Weak coherent pulses
if photon_type==2

% Make a coherent state with displacement operator
D = expm(alpha*a'−alpha'*a);
% Put the coherent state in mode 1, and vacuum in mode ...

2, therefore detections in
% mode 2 are errors
psi = tensor(D*vacc,vacc);

% Add initial QBER with partially transmitting ...
beamsplitter between

% modes 1 and 2
eta=asin(sqrt(initial_QBER));
H_bs = (tensor(a,a') + tensor(a',a))*eta;
U_bs = expm(−1i*H_bs);
psi=U_bs*psi;

%Loop over coincidence window
for n=1:numel(coinc_window)

% Noise factor per pulse is (darks/s)x(s/pulse) of ...
coincidence

% window
noise_factor=darks*coinc_window(n);
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%Loop over link loss
for m=1:numel(x1)

effc_link1=x1(m);

% Create detectors, including fock space N, ...
combined losses due to the link, optics ...
efficiency, and detector efficiency, and noise

% The way to treat active vs passive analyser is ...
to halve the input (at 50:50 beamsplitter) ...
for the passive analyser before creating the ...
projector (decreasing SNR), then double the ...
output count rate (since there are 2 bases)

if basis_choice==0
[apd_link1 ...

un_linkapd1]=BucketDetector_noise(N,...
effc_link1*effc_optics*effc_apd,noise_factor);

else
[apd_link1 ...

un_linkapd1]=BucketDetector_noise(N,...
0.5*effc_link1*effc_optics*effc_apd,noise_factor);

end

% Now measure on fock space N, state psi, and ...
detector modules 1 and 2 to return ...
measurement probabilities

% probs(1) = mode 1 probability
% probs(2) = mode 2 probability
% probs(3) = double click probability (must ...

randomise)
if basis_choice==0

probs=real(measure_2modes_2detectors ...
(N,psi,apd_link1,un_linkapd1));

else
probs=2*real(measure_2modes_2detectors ...

(N,psi,apd_link1,un_linkapd1));
end

%Rates returned are 'per pulse', so multiply by ...
source rat

singles_rate(m)=sum(probs)*net_source_rate;

%Determine visibility and QBER from returned ...
detection

%probabilities, with randomised double clicks
doubles=probs(3);
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QBER(m)=(probs(2))/sum(probs)+doubles/2/sum(probs);
vis(m)=1−2*QBER(m);

% Weak coherent pulse values: these can be taken ...
directly from the simulation as below, or a ...
more realistic decoy state system can be ...
simulated by sending and detecting signal ...
states with average photon number mu, and ...
decoy states with nu < mu

% Total signal gain
Qmu=sum(probs);
% Single photon gain
if basis_choice==0

Q1(m)=(apd_link1(2,2)−apd_link1(1,1)) ...

*exp(−mu)*(mu);
else

Q1(m)=2*(apd_link1(2,2)−apd_link1(1,1)) ...

*exp(−mu)*(mu);
end

% Single photon error rate
e1(m)=(0.5*apd_link1(1,1)+initial_QBER* ...

(apd_link1(2,2)−apd_link1(1,1)))/(apd_link1(2,2));
end

%Rearrange data by coincidence window
singles(:,n)=singles_rate;
visibilities_asym(:,n)=vis;

% Calculate final key rate from Lo & Ma, PRA 2005
Emu=QBER;
% Binaray entropy function
H2=−Emu.*log2(Emu) − (1−Emu).*log2(1−Emu);
H21=−e1.*log2(e1) − (1−e1).*log2(1−e1);
final_bits_asym(:,n)=0.5*net_source_rate* ...

(−Qmu*1.22.*H2+Q1.*(1−H21));
end

else
%% Use Entangled States

%Loop over coincidence window
for n=1:numel(coinc_window)

% Source frequency is approximated to inverse of ...
coincidence window

f_source=1/coinc_window(n);
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% Determine squeezing parameter epsilon and dark ...
count probability 'per pulse' from source rates, ...
dark rates and source frequency

epsilon=sqrt(net_source_rate/f_source);
noise_factor=darks/f_source;

if photon_type==0; % Create entangled pair from ...
down−conversion

H_dc=(tensor(a,a)+tensor(a',a'))*epsilon; % ...
Hamiltonian

U_dc=expm(−1i*H_dc); % Unitary
% Act unitary on vacuum to create pair state |HH>
dc_state=tensor(U_dc*tensor(vacc,vacc));
% Permute to create entangled state |HV>+|VH>
psi=permute(tensor(dc_state,dc_state),[1 3 4 2]);

else % Create ideal entangled pair |HV>+|VH>
ideal_state=tensor(oneph,vacc,vacc,oneph)+ ...

tensor(vacc,oneph,oneph,vacc);
psi=ideal_state;

end

%Loop over link loss
for m=1:numel(x1)

effc_link1=x1(m);
effc_link2=x2(m);

% Create detectors, including fock space N, ...
combined losses due to two links, optics ...
efficiency, and detector efficiency, and noise

% The way to treat active vs passive analyser is ...
to halve the input (at 50:50 beamsplitter) ...
for the passive analyser before creating the ...
projector (decreasing SNR), then double the ...
output count rate (since there are 2 bases)

if basis_choice==0
[apd_link1 ...

un_linkapd1]=BucketDetector_noise(N, ...
effc_link1*effc_optics*effc_apd,noise_factor);

[apd_link2 ...
un_linkapd2]=BucketDetector_noise(N, ...
effc_link2*effc_optics*effc_apd,noise_factor);
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%For asymmetric, i.e. only one link, this is ...
the local arm

[apd un_apd]=BucketDetector_noise(N, ...
effc_optics*effc_apd,noise_factor);

else
[apd_link1 ...

un_linkapd1]=BucketDetector_noise(N, ...
0.5*effc_link1*effc_optics*effc_apd,noise_factor);

[apd_link2 ...
un_linkapd2]=BucketDetector_noise(N, ...
0.5*effc_link2*effc_optics*effc_apd,noise_factor);

[apd un_apd]=BucketDetector_noise(N, ...
effc_optics*0.5*effc_apd,noise_factor);

end

% Double link with arbitrary losses in each arm, ...
measure on Fock space N, state psi, and ...
detector modules 1 and 2

% probs(1) = HH
% probs(2) = HV
% probs(3) = VH
% probs(4) = VV
% probs(5:6) = singles on link 1
% probs(7:8) = singles on link 2
% probs(9:10) = double clicks on links 1/2

probs=real(measure_2folds_4modes_unsymetric_detectors( ...
N,psi,apd_link1,un_linkapd1,apd_link2,un_linkapd2));

% Rates returned are 'per pulse', so multiply by ...
source rate

twofold_rate(m)=sum(probs(1:4))*f_source;
singles_rate(m)=sum(probs(5:6))*f_source;

% Determine visibility and QBER from returned ...
detection probabilities

QBER_sym(m)=(probs(1)+probs(4))/sum(probs([1:4 ...
9:10]))+0.5*sum(probs(9:10))/sum(probs([1:4 ...
9:10]));

vis(m)=1−2*QBER_sym(m);

% Single link with loss in only one arm, measure ...
on Fock space N, state psi and detector ...
modules 1 and local

probs=measure_2folds_4modes_unsymetric_detectors( ...
N,psi,apd_link1,un_linkapd1,apd,un_apd);

twofold_rate_asym(m)=sum(probs(1:4))*f_source;
singles_rate1(m)=sum(probs(5:6))*f_source;
singles_rate2(m)=sum(probs(7:8))*f_source;
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QBER_asym(m)=(probs(1)+probs(4))/sum(probs([1:4 ...
9:10]))+0.5*sum(probs(9:10))/sum(probs([1:4 ...
9:10]));

vis_asym(m)=1−2*QBER_asym(m);

end

%Rearrange data by coincidence window or source rate
twofolds(:,n)=twofold_rate;
singles(:,n)=singles_rate;
visibilities(:,n)=vis;

twofolds_asym(:,n)=twofold_rate_asym;
singles1_asym(:,n)=singles_rate1;
singles2_asym(:,n)=singles_rate2;
visibilities_asym(:,n)=vis_asym;

% Calculate final secure key bits from Ma et al., ...
PRA 2007

z=QBER_sym;
H2=−z.*log2(z) − (1−z).*log2(1−z);
final_bits_sym(:,n)=twofold_rate*0.5.*(1−(1+1.22).*H2);

z=QBER_asym;
H2=−z.*log2(z) − (1−z).*log2(1−z);
final_bits_asym(:,n)=twofold_rate*0.5.*(1−(1+1.22).*H2);

end
end

%Get labels ready for plotting

if photon_type==0
EPS_type='Down−conversion EPS';

elseif photon_type==1
EPS_type='Idealised EPS';

else
EPS_type='Weak coherent pulses';

end

if basis_choice==1
channel_detector='Passive';

else
channel_detector='Active';

end

bbb=num2str(coinc_window'./1e−9, '%0.2f ns');
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if photon_type==0||photon_type==1
if plot_sym==1
%%Plot symmetric links
figure()
subplot(3,1,1)
plot(link_dB1,abs(visibilities));
title(sprintf('Visibility for %s, symmetric links: ...

FockSpace = %d, Darks=%0.2f, \n Detection−Effc=%0.2f, ...
Coupling−Effc=%0.2f, %s analyser', EPS_type, N, ...
darks, effc_apd, effc_optics, channel_detector))

ylabel('polarisation Visibility')

legend(cellstr(bbb));

subplot(3,1,2)
semilogy(link_dB1,twofolds);
ylabel('Two−fold rate [cps]')
xlabel('Link Loss [dB]')
legend(cellstr(bbb));

subplot(3,1,3)
semilogy(link_dB1,final_bits_sym)
ylabel('Secure key rate (bits/s)')
xlabel('Link Loss (dB)')
legend(cellstr(bbb));
end
%%Plot asymmetric links
if plot_asym==1
figure()
subplot(3,1,1)
plot(link_dB1,abs(1/2−abs(visibilities_asym)/2))
title(sprintf('QBER for %s, assymetric links: FockSpace ...

= %d, Darks=%0.2f, \n Detection−Effc=%0.2f, ...
Coupling−Effc=%0.2f, %s analyser', EPS_type, N, ...
darks, effc_apd, effc_optics, channel_detector))

ylabel('QBER')

legend(cellstr(bbb));

subplot(3,1,2)
semilogy(link_dB1,twofolds_asym);
ylabel('Two−fold rate [cps]')
xlabel('Link Loss [dB]')

subplot(3,1,3)
semilogy(link_dB1,final_bits_asym)
ylabel('Secure key rate (bits/s)')
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xlabel('Link Loss (dB)')

end

elseif photon_type==2
%%Plot weak coherent pulse

figure
subplot(3,1,1)
plot(link_dB1,1/2−abs(visibilities_asym)/2);
title(sprintf('QBER for %s, symmetric links: FockSpace = ...

%d, Darks=%0.2f, \n Detection−Effc=%0.2f, ...
Coupling−Effc=%0.2f, %s analyser', EPS_type, N, ...
darks, effc_apd, effc_optics, channel_detector))

ylabel('QBER')
legend(cellstr(bbb));

subplot(3,1,2)
semilogy(link_dB1,singles);
ylabel('Received Count Rate [cps]')
xlabel('Link Loss [dB]')

subplot(3,1,3)
semilogy(link_dB1,final_bits_asym)
ylabel('Secure key rate (bits/s)')
xlabel('Link Loss (dB)')

end

function probs=measure_2modes_2detectors(N,in,proj,unproj)

%Evan Meyer−Scott, 10.17.2010 from Thomas Jennewein, 8.10.2008
%Determin the singles count rates for a 2 mode state, e.g. ...

|H1,V1>

final_state=in;

%singles
H=sum(expect(tensor(proj,unproj),final_state));
V=sum(expect(tensor(unproj,proj),final_state));
%Double clicks
HV=sum(expect(tensor(proj,proj),final_state));

probs=[H,V,HV];
end

function probs=measure_2folds_4modes_unsymetric_detectors( ...
N,in,proj1,unproj1,proj2,unproj2)
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%Thomas Jennewein, 8.10.2008
%Determin the 2fold count rates for a 4 mode state, e.g. ...

|H1,V1,H2,V2>

%Thoams Jennewein, 12.11.2008, extension for usymetric ...
detectors, such as

%in a unsymmetric entangled photon expeirment.

%Evan Meyer−Scott, 2010, added double clicks
ida=identity(N);

final_state=in;
% Coincidences
HH=sum(expect(tensor(proj1,unproj1,proj2,unproj2),final_state));
VV=sum(expect(tensor(unproj1,proj1,unproj2,proj2),final_state));
HV=sum(expect(tensor(proj1,unproj1,unproj2,proj2),final_state));
VH=sum(expect(tensor(unproj1,proj1,proj2,unproj2),final_state));

% Singles1
H1=sum(expect(tensor(proj1,unproj1,ida,ida),final_state));
V1=sum(expect(tensor(unproj1,proj1,ida,ida),final_state));

% Singles2
H2=sum(expect(tensor(ida,ida,proj2,unproj2),final_state));
V2=sum(expect(tensor(ida,ida,unproj2,proj2),final_state));

% Double clicks
H1V1=sum(expect(tensor(proj1,proj1,proj2,ida),final_state))+ ...

sum(expect(tensor(proj1,proj1,ida,proj2),final_state));
H2V2=sum(expect(tensor(proj1,ida,proj2,proj2),final_state))+ ...

sum(expect(tensor(ida,proj1,proj2,proj2),final_state));

probs=[HH,HV,VH,VV,H1,V1,H2,V2,H1V1,H2V2];
end
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Appendix B

Calculating the dispersion of the (lm)=(01),
(11) modes for 810 nm light in a 1550 nm
optical fibre

This Appendix was written by Allison MacDonald as part of her co-op work term.
It is included here for ease of reference.

B.1 Calculation of dispersion from guided wave theory

We introduce MATLAB code which calculates the dispersion between spatial
modes in a fibre at a given wavelength, using both an exact method and an
approximation which is valid for fibres with large V parameters (multimode
fibres).

The following derivation is taken from [95]. In a step-index optical fiber, both
the core (r < a) and cladding (r > a) exactly obey the Helmholtz equation:

∇2U + n2(r)k2
0U = 0 (B.1)

which can be expressed in polar coordinates as:

∂ 2U

∂ r2 +
1

r

∂ U

∂ r
+

1

r2

∂ 2U

∂ φ2 +
∂ 2U

∂ z2 + n(r)2k2
0U = 0 (B.2)

with

n(r) =

(

n1, r < a

n2, r > a
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and k0 =
2π
λ

. The modes of light in the fibre propagate in the z-direction,
characterised by a propagation constant β , so U(z)∝ e−iβz, and are periodic in φ
with period 2π, so U(φ)∝ e−ilφ, with l an integer. Assuming separable solutions,

U(r,φ, z) = u(r)e−ilφe−iβz , l = 0, ± 1, ± 2, ... (B.3)

This leads to the following differential equation for u(r):

d2u

dr2 +
1

r

du

dr
+

�

n2(r)k2
0 − β

2−
l2

r2

�

u= 0 (B.4)

Making the following definitions:

k2
T = n2

1k2
0 − β

2 (B.5)

γ2 = β2− n2
2k2

0 (B.6)

we obtain two equations for the core and cladding:

d2u

dr2 +
1

r

du

dr
+

�

k2
T −

l2

r2

�

u= 0, r < a (B.7)

d2u

dr2 +
1

r

du

dr
−
�

γ2+
l2

r2

�

u= 0, r > a. (B.8)

These are well-known differential equations, whose solutions are known as
Bessel functions:

u(r)∝

(

Jl(kT r), r < a

Kl(γr), r > a
(B.9)

In considering boundary conditions for the modes which may propagate
inside a weakly guiding fibre (n1 ≈ n2), the condition that must be obeyed by β
is approximately equivalent to the condition that u(r), the radial distribution for
each mode, and its derivative be continuous at the boundary between core and
cladding (r = a):

kT aJ ′l (kT a)

Jl(kT a)
=
γaK ′l (γa)

Kl(γa)
(B.10)

where

J ′l (x) =±Jl∓1(x)∓ l
Jl(x)

x
(B.11)
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K ′l (x) =−Kl±1(x)∓ l
Kl(x)

x
. (B.12)

Combining Equations B.10–B.12, we obtain the characteristic equation:

X
Jl±1(X )
Jl(X )

=±Y
Kl±1(Y )
Kl(Y )

(B.13)

with X = kT a and Y = γa. This can be solved graphically by plotting the left
side and the right side, both versus X , and finding their intersections. (We see

from Equations B.5 and B.6 that X 2+ Y 2 =
�

n2
1− n2

2

�

k2
0a2 = NA2

�

2π a
λ0

�2
= V 2,

where NA = n2
1−

2
2 is the numerical aperture of the fibre, with n1 and n2 the

refractive indices of the core and cladding, respectively, and we have defined the
fibre “V parameter”).

In general, Equation B.13 has multiple solutions for each value of the index
l, which are labeled by the index m. The number of solutions is limited by V ,
since Y becomes imaginary when X > V . The indices l and m characterise the
azimuthal and radial distributions, respectively, of each mode. In our case, we
modelled a fibre with a small V parameter, so there was only one solution for the
azimuthal modes of interest (l = 0, 1).

We solved Equation B.13 by using the MATLAB interpolate function to find
the value of X at which the LHS − RHS = 0. We did this for a small range
(800− 820 nm) of wavelengths around 810 nm, and deduced β as follows:

βlm =

È

4π2n2
1

λ2 −
X 2

lm

a2 (B.14)

for each wavelength. The group velocity of each mode is given by

vlm =
∂ω

∂ βlm
(B.15)

so the inverse group velocity is the slope of the β versus ω = 2πc
λ

plot,
which is simply calculated as the mean of di f f (β)/di f f (ω), since the plot is
approximately a straight line. If this is done for two modes (specified by l and
m), the dispersion can be calculated as

D =
1

v11
−

1

v01
(B.16)

with appropriate unit conversion factors. We note that we obtained a value
of 2.19823 ns/km for the two modes of 810 nm light in telecom fibre with core
radius 4.1 µm, in good agreement with the experimentally obtained value of
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Figure B.1: Characteristic equation solution for fibre modes via graphical inter-
section, for single mode fibre at 810 nm (core radius 2.5 µm).
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Figure B.2: Propagation constant β versus ω for two propagation modes of
810 nm light in telecom optical fibre. The very slight difference in slope of the
two curves leads to modal dispersion.
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2.2 ns/km. This means each kilometre of propagation causes the two modes to
be temporally separated by an additional 2.2 ns.

The second, more approximate, method for calculating the dispersion assumes
a large V parameter, which occurs either for a large numerical aperture (n1 and
n2 are very different), or the core radius to wavelength ratio is large, making the
fibre essentially multimode. A series of approximations based on a large V leads
to [95]:

βlm ≈ n1k0

�

1−
(l + 2m)2

M
∆

�

≈ n1
ω

c

�

1−
(l + 2m)2

M
∆

� (B.17)

where

M ≈
4

π2 V 2 ≈
8a2ω2n2

1∆

π2c2 (B.18)

is the approximate total number of modes allowed to propagate in the fibre,

and ∆=
n2

1−n2
2

2n2
1

, and m and l are the radial and azimuthal indices of each propa-

gating mode. Given Equations B.15 and B.17, we can calculate the group velocity
of each mode as:

vlm ≈
c

n1

�

1+
(l + 2m)2

M
∆

�−1

(B.19)

The dispersion is again given by Equation B.16.
For the core size of the fibres of interest, we found that the results of the two

methods did not agree at all. Consequently, we investigated the results given by
each method as a function of the core radius of the optical fibre. We found that
the large V parameter approximation converges with the graphical solution for
fibres with radii around 30 µm, or a V parameter of 2.8.
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Figure B.3: Comparison of dispersion calculation methods. The “exact” curve is
from the graphical fitting method, while the “approximate” curve is based on the
large V parameter assumption.
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B.2 MATLAB code to calculate dispersion

%Find the dispersion between the l=0,1 modes in SMF−28 fiber ...
using 810 nm.

c=3.0e8; %speed of light
lambda=1e−9*(800:0.1:820);
a=4.1e−6; %radius of core
l=[0,1];
inverse_vel=zeros(1,numel(l));

for m=1:numel(l)

nlambda=numel(lambda);
beta=zeros(1,nlambda);
omega=2*pi*c./lambda;
solution=zeros(1,nlambda);
for p=1:nlambda;

d=0.6961663*(lambda(p)*1e6)^2/ ...
((lambda(p)*1e6)^2−0.0684043^2);

e=0.4079426*(lambda(p)*1e6)^2/ ...
((lambda(p)*1e6)^2−0.1162414^2);

f=0.8974794*(lambda(p)*1e6)^2/ ...
((lambda(p)*1e6)^2−9.896161^2);

n1=sqrt(d+e+f+1); %n of core, using ...
Sellemeier equation

n2=n1/1.0036; %n of cladding
NA=sqrt(n1^2−n2^2); %numerical aperture of ...

fiber
V=2*pi*a*NA/lambda(p); %V parameter of the fiber
X=(0.1:0.1:V−0.1);

k=numel(X);
Y=sqrt(V^2−X.^2);
LHS=zeros(1,k);
RHS=zeros(1,k);
y=zeros(1,k);

for n=1:k
LHS(n)=X(n)*besselj(l(m)+1,X(n))/(besselj(l(m),X(n))); ...

%LHS of characteristic eqn
RHS(n)=Y(n)*besselk(l(m)+1,Y(n))/(besselk(l(m),Y(n))); ...

%RHS of characteristic eqn
y(n)=LHS(n)−RHS(n);

end
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%find where LHS=RHS (xlm)
solution(p)=interp1(y,X,0);
beta(p)=sqrt(n1^2*4*pi^2/lambda(p)^2−solution(p)^2/a^2);
end

%Calculate slope of each curve (beta vs omega)
slope=diff(beta)./diff(omega);
inverse_vel(m)=mean(slope);

%plot beta
hold on
plot(omega,beta,'*')
title(sprintf('Propagation constant for the l=%d mode',l(m)))
ylabel('Beta')
xlabel('Angular frequency')

end

%Calculate dispersion
dispersion=(inverse_vel(2)−inverse_vel(1))*1e+12;
sprintf('Dispersion is %g ns/km',dispersion)

%Calculate dispersion using large V parameter ...
approximation

m=1;
lambda2=810e−9;
d=0.6961663*(lambda2*1e6)^2/((lambda2*1e6)^2−0.0684043^2);
e=0.4079426*(lambda2*1e6)^2/((lambda2*1e6)^2−0.1162414^2);
f=0.8974794*(lambda2*1e6)^2/((lambda2*1e6)^2−9.896161^2);
n12=sqrt(d+e+f+1);

n22=n12/1.0036;
delta=(n12^2−n22^2)/(2*n12^2);
w=2*pi*c/lambda2;
c1=c/n12;

M=8*a^2*w^2*delta/(pi^2*c1^2);

%l=0,m=1
group_v1=c1/(1+((0+2*m)^2)*delta/M);
%l=1,m=1
group_v2=c1/(1+((1+2*m)^2)*delta/M);

dispersion2=(1/group_v2−1/group_v1)*1e+12;
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