
Policy-Driven Framework for Static
Identification and Verification of

Component Dependencies

by

Anastasios Livogiannis

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

c© Anastasios Livogiannis 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Software maintenance is considered to be among the most difficult, lengthy and costly
parts of a software application’s life-cycle. Regardless of the nature of the software ap-
plication and the software engineering efforts to reduce component coupling to minimum,
dependencies between software components in applications will always exist and initiate
software maintenance operations as they tend to threaten the “health” of the software
system during the evolution of particular components. The situation is more serious with
modern technologies and development paradigms, such as Service Oriented Architecture
Systems and Cloud Computing that introduce larger software systems that consist of a
substantial number of components which demonstrate numerous types of dependencies
with each other. This work proposes a reference architecture and a corresponding software
framework that can be used to model the dependencies between components in software
systems and can support the verification of a set of policies that are derived from system
dependencies and are relative to the software maintenance operations being applied. De-
pendency modelling is performed using configuration information from the system, as well
as information harvested from component interface descriptions. The proposed approach
has been applied to a medium scale SOA system, namely the SCA Travel Sample from
Apache Software Foundation, and has been evaluated for performance in a configuration
specification related to a simulated SOA system consisting to up to a thousand web services
offered in a few hundred components.

iii

Acknowledgements

“To my parents I owe my being,
and to my teachers my well-being”

Alexander the Great for his teacher, Aristotle

First and foremost, I would like to thank my supervisor, Prof. Kostas Kontogiannis for
his invaluable help to form my personality as a researcher all these wonderful years I am
under his supervision. His advices and exemplary behaviour were and still are beneficial
not only during my academic curriculum but through my entire life, as he taught me the
meaning of important concepts such as professionalism and critical, research-oriented way
of thinking.

Prof. Ladan Tahvildari, my co-supervisor, holds an important role in my graduate
curriculum as a masters student at the University of Waterloo. Apart from the significant
technical knowledge I received from working with her and her course, her advices on bal-
ancing one’s life and managing one’s time will benefit the entire life of every person who
has listened to her.

Acknowledgements go to professors Rudolph Seviora and Paulo Alencar for being the
academic readers of this work and taking the time to provide me with helpful and con-
structive comments.

Last but not least, I would like to thank my parents. Vocabularies of all the world’s
languages combined do not contain the proper wealth to describe how important is the
support I received from my parents. Patiently, listening to my needs, hopes and dreams
they were prepared to make a sacrifice in order for me to achieve my goals and make my
dreams reality. Even in the darkest times my family has faced, they were always supportive
even with the harsh decision to leave them and pursue my dreams and a better life abroad.
There is no synonym of “Thank you” that can describe the gratitude that I offer to them.

iv

Dedication

This thesis is dedicated to my parents and my sister.

v

Table of Contents

List of Tables ix

List of Figures xi

List of Algorithms xii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 2

1.3 Thesis Contributions . 4

1.4 Organization of the Thesis . 4

2 Related Work 6

2.1 Modelling Frameworks . 6

2.1.1 Modelling Software Systems with EMF 6

2.1.2 SOA systems and SCA . 7

2.1.3 Systems Modelling and Modelling Management 11

2.2 Software Maintenance . 12

2.2.1 Impact and Dependency Analysis 12

2.2.2 Model Driven Engineering for Software Maintenance 13

2.2.3 Software Monitoring . 14

vi

3 System Architecture 16

3.1 Major Components . 16

3.2 Description of Components and Interfaces 18

3.2.1 Blackboard . 18

3.2.2 Event Handler . 19

3.2.3 PublishSubscribe . 20

3.2.4 Monitoring Component . 21

3.2.5 Policy Manager . 22

3.2.6 Modeller . 23

3.3 Overall Process . 25

4 Dependency Modeling 29

4.1 Dependency Multi-Graph Meta-Model . 30

4.2 Dependency Tree Meta-Model . 33

4.3 Traversal Policies . 34

4.3.1 Reflective . 34

4.3.2 Antisymmetric . 35

4.3.3 Symmetric . 36

4.3.4 Transitive . 36

4.4 Dependency Tree Generation . 37

4.4.1 Algorithm . 37

4.4.2 Tree Generation Examples . 40

5 Dependency Analysis 48

5.1 Dependency Tree Analysis . 49

5.1.1 Policy Triggering . 49

5.1.2 Verifying Triggered Policies . 57

5.2 Example . 59

vii

6 Case Studies 62

6.1 System Under Maintenance . 62

6.2 Case Study - Web Services Dependency Analysis on SCA Models 68

6.2.1 Invocation/Interface Dependency Process and Analysis 72

6.2.2 SCA Policy dependencies analysis 74

6.3 Performance . 75

6.3.1 Experimentation process and results 76

7 Epilogue 79

7.1 Summary . 79

7.2 Conclusion . 81

7.2.1 Limitations . 82

7.3 Future Work . 82

References 90

viii

List of Tables

4.1 Relations used for the tree generation examples 46

5.1 Results from VerificationPolicy objects of section’s 5.2 example 60

ix

List of Figures

1.1 Cost percentage of different stages of the software development life-cycle [57] 2

2.1 Example of a SCDL graphic diagram . 8

2.2 SCDL xml file example . 10

2.3 SCDL xml file policy example . 10

3.1 Component Diagram of the proposed framework’s architecture 17

3.2 Sequence Diagram of the overall process 26

4.1 Dependency Graph Meta-Model . 31

4.2 Dependency Tree Meta-Model . 35

4.3 Code sample for disjunctive dependency 39

4.4 Conjunction to Disjunction node annotation from TreeAnnotator 39

4.5 Conjunction to Disjunction node annotation from TreeAnnotator - Complex
Example . 40

4.6 Multi-Graph and derived tree for system with one antisymmetric relation . 41

4.7 Multi-Graph1 and derived tree for system with one symmetric relation . . 42

4.8 Multi-Graph and derived tree for system with one transitive relation 43

4.9 Multi-Graph and derived tree for system with one reflective relation 44

4.10 Dependency Multi-Graph for the “complete” example 45

4.11 Resulting dependency tree for the “complete” example 47

5.1 Triggering an antisymmetric relation . 53

x

5.2 Triggering a symmetric relation . 54

5.3 Triggering a transitive relation . 55

5.4 Code for exclusive calls . 56

5.5 Example 4 - Triggering dependencies near Disjunction nodes 56

5.6 VerificationPolicy Adapter pattern . 58

5.7 Dependency Tree and triggered policies for section 5.2 61

6.1 SCA Tours Travel Sample home page . 63

6.2 Travel Sample SCA design, [62] . 64

6.3 Relations for Case Study . 69

6.4 Excerpt from the composite xml file of fullapp-coordination 70

6.5 Multi-Graph for Case Study (1 of 3) . 71

6.6 Multi-Graph for Case Study (2 of 3) . 71

6.7 Multi-Graph for Case Study (3 of 3) . 72

6.8 Dependency tree for relations r1 and r2 of case study - (1 of 2) 74

6.9 Dependency tree for relations r1 and r2 of case study - (2 of 2) 75

6.10 Excerpt from creditcard.composite xml file 76

6.11 Tree derived for Case Study I, with respect to r4 76

6.12 Simulation Data . 78

xi

List of Algorithms

1 Dependency Tree Generation from Dependency Multi-Graph 37
2 Policy Triggering . 50
3 Policy Triggering - Helper . 50
4 Transitive Trigger . 51
5 Verification . 59
6 Identification of the changed SCA service nodes 73

xii

Chapter 1

Introduction

1.1 Motivation

Modern software systems’ complexity ever increases due to the growing demands of soft-
ware customers and the advances in software engineering tools, computer hardware and
networks. Additionally, most contemporary software systems are distributed in nature,
something that is intensified more with the paradigm of Cloud Computing and modern
distributed and network-based software platforms. In this context, it is hard to identify
dependencies between the different components of a large software system; hence making
software maintenance an even harder issue than it already is.

From all the stages of the life-cycle of the whole software system development, the stage
of software maintenance is the lengthiest and the most costly of them all, as seen in the
pie chart of figure 1.1 from [57]. That is the main reason why it has received significant
attention from the scientific and industrial community. Efforts toward improvements of
software maintenance can reduce software costs and increase the reliability of software
systems. The stage of software maintenance is the target of the present work.

Software maintenance can be divided into the four following categories, according to
[40].

Corrective: Finding errors in software code and performing the necessary actions to fix
them.

Perfective: Incorporating new features in the software system, based on increased/changed
user needs and enhancing the abilities of the software product.

1

Figure 1.1: Cost percentage of different stages of the software development life-cycle [57]

Adaptive: Changing the software system as to be able to perform in environments dif-
ferent than what was originally intended (i.e. porting it to a different platform).

Preventive: Enhancing the quality of the software trying to reduce the maintenance effort
needed in the future.

Because of the importance of software maintenance to the cost and efforts needed for
software development, this thesis focuses on that phase of the software development life-
cycle.

1.2 Problem Description

It is evident that software system evolution is the main consequence of software main-
tenance. Usually, during such maintenance operations there is the need to change only
one part of the software system. Hence, a number of problems might arise due to the
dependencies that exist between the system that does not change and its portion that will
be different after a maintenance operation. In this respect, the present work focuses on

2

dependency modelling and analysis during software maintenance of large software systems,
by applying the proposed methodologies to service oriented software systems, such as SCA
specified systems.

Large service oriented software systems are complex applications that require the use of
diverse and distributed components. Examples of such systems are banking applications,
procurement systems, payroll systems and customer resource management systems. Typ-
ical maintenance scenarios in these systems include the replacement of a component with
a new component, the upgrade of a component to a newer version, or the deprecation of a
component altogether. Such maintenance operations in large applications require signifi-
cant planning, as the potential for undesired side effects affecting other components could
be really high. To date, the software engineering community is attempting to address this
problem in two major directions.

The first direction relates to static and dynamic analysis of a software system for
identifying a number of different types of dependencies between components and predicting
to a certain extend, ripple effects that may occur when a component in a system will be
altered. The second direction relates to just-in-time analysis that is performed as changes
are applied by the use of installers which apply scripts that perform a series of tests
with respect preconditions and resources that need be in place for the installation or the
upgrade to be completed successfully. However, these approaches require either component
dependency models to be compiled or they focus only on the component being installed or
upgraded and fall short on taking a global view of how other components of the system
are affected by this installation or upgrade.

The approach of the current thesis is to first model dependencies between software
entities in a general manner and then present a framework where the proposed models
will be used for checking the validity of software maintenance scenarios. Based on the
discussion so far, the questions this thesis tries to address are presented in the following
list:

1. Can the dependencies of any software system be modelled in a general manner,
facilitating software checks during the maintenance phase?

2. Is it possible for a framework to be able to focus on specific types of dependencies,
based on the context of the needed checks for a specific maintenance scenario?

3. Can all the above be incorporated into a single framework that will be able to model
dependencies between software artifacts and check their violation during the software
maintenance phase?

3

4. Can this framework and those dependency models be extensible enough to accom-
modate domain-specific characteristics of the dependencies and use them in the ver-
ification policy?

1.3 Thesis Contributions

The contribution points of this thesis are as follows:

First, proposes a Dependency Multi-Graph Meta-Model for representing parallel depen-
dencies between software artifacts, which is agnostic to the specific domain of the software
system being modelled. Furthermore, it attempts to provide the necessary means to facil-
itate extensions in cases where this is needed to incorporate domain-specific information.

Second, proposes a Dependency Tree Meta-Model which can be derived from the afore-
mentioned Multi-Graph and it provides focus to dependencies that are important to be
checked in a specific context (e.g. when checking for interface compatibility).

Third, it proposes a process and a corresponding algorithm that facilitates the genera-
tion of the Dependency Tree from the Dependency Multi-Graph, given the correct context.

Fourth, it provides a framework that uses the aforementioned Meta-Models in order to
facilitate the dependency checking during the software maintenance phase.

Fifth, it evaluates the applicability of the proposed framework to a case study, where the
proposed framework is used for dependency analysis in Service Component Architecture
(SCA) systems.

Sixth, it comments on the performance of the proposed framework in a use-case study
comprising of a significant number components and services.

1.4 Organization of the Thesis

The present chapter, 1, introduces the thesis by explaining the motivation behind it, de-
scribing the problem that it targets and stating the contributions this thesis aims to offer.

4

The next chapter, chapter 2, provides an overview of related work in the areas of
software maintenance, software modelling and impact/dependency analysis. This overview
targets methodologies and results that inspired/assisted this work, as well as tools leveraged
for the completion of the current thesis.

Chapter 3 provides the reader an insight of the structure and function of the proposed
framework. That chapter describes the functionality of every major component of the
proposed framework, its inner structure, as well as the interfaces with which the different
components of the framework can work together. It is safe to state that chapter 3 will give
the reader the adequate information to understand the overall process of the framework’s
function and the details of the structure of the individual units that it is composed of.

Chapter 4 describes the data models that are leveraged to model dependencies between
software artifacts in the proposed framework. In that chapter, both the Dependency Multi-
Graph and the Dependency Tree are presented and explained in details. Furthermore, the
exact algorithm of the generation of a Dependency Tree from the Multi-Graph is presented
and explained through examples.

Next chapter, 5 depicts how the framework leverages the aforementioned dependency
models to perform dependency analysis in software systems. The algorithm of how a Goal
Tree is analyzed and decomposed into atomic predicates to be verified or not is presented
along with an example of Goal Tree verification.

Chapter 6 provides the architecture of a prototype implementation of the framework
described in this thesis. It also provides case studies of how the prototype software can be
used in analyzing dependencies of real-word service component architecture (SCA) software
systems.

Chapter 7 summarizes the thesis explaining how the thesis contribution is achieved and
giving further ideas/guidance for future work from other researchers. Last chapter gives
the references that inspired/assisted the work of the current thesis.

5

Chapter 2

Related Work

In the related research technical literature we can identify a number of related work areas.
This chapter briefly discusses a number of related work in the general area of software engi-
neering that inspired or assisted the present thesis to be completed. Related pieces of work
that will be discussed span into the areas of software modelling, software maintenance,
model driven engineering and impact analysis. This chapter will present not only method-
ologies in those areas, but also tools that can be leveraged by researchers or practitioners
in software engineering.

2.1 Modelling Frameworks

2.1.1 Modelling Software Systems with EMF

In the area of modelling frameworks, Eclipse Modelling Framework (EMF), [11], is the
“one-stop shop” for researchers and practitioners who require a reliable and feature-rich
tool for software modelling and manipulation of the software models. The term “manipula-
tion” in this case involves generating the appropriate code to support the software model,
store the model in XMI, [23], or relational databases and transform models using lan-
guages like the Atlas Transformation Language, [35]. EMF relies on OMG’s Meta Object
Facility (MOF) Meta-Modelling language, [48] which was introduced to model the Unified
Modelling Language (UML), [49].

UML is a diagram-based modelling language to model object-oriented software systems,
or systems in general. With UML, stakeholders can describe the structural and behavioural

6

specification of a system. Well-known and very common diagrams for the first case are class
diagrams and component diagrams. Class diagrams are very common in modelling object-
oriented systems. Class diagrams offer the means to model object-oriented concepts such
as classes of objects, inheritance between classes, references of classes from other classes
and member encapsulation. Component diagrams offer a more abstract view of the system
that is designed, by showing different components and the interactions among them, via
provided and required interfaces. In such a context, components can be implemented via a
number of classes or even a number of other components, thus forming a composite com-
ponent. For modelling the behaviour of a system, UML offers different types of diagrams,
most common among them are sequence diagrams and state diagrams. Sequence diagrams
show the lifetime of an object in the system and its interactions with other objects, during
their lifetimes. Interactions in this context, refer to messages (e.g. method invocations)
either synchronous or asynchronous. State diagrams show the state of each objects in the
system and the transition to other states, based on inputs received from other objects
and/or the environment.

MOF is a meta-model trying to define UML itself. It offers all the possible means
to model concepts such as class of objects (NamedElements), methods and operations of
classes of objects (StructuralFeature) etc. MOF comes in two variants, the Essential MOF
(EMOF) and the Complete MOF (CMOF). EMOF is regarded as a subset of MOF that
has the ability to relieve stakeholders from complex modelling concepts when designing
simple meta-models to be developed via code. Concepts of EMOF are closely related to
concepts of Object-Oriented modelling. On the other hand, CMOF is the full featured
MOF meta-model that allows for complex development of meta-models for languages and
new paradigms. EMF utilizes its own meta-model, Ecore for modelling object-oriented
software related concepts. Ecore derives from EMOF and models lower-level concepts than
CMOF, in order for code generation to be more straightforward and manageable. Apart
from code generation, EMF offers a way to store model instances in XMI or databases
and a Java API in order to allow the programmatic handling of the models (initialization,
manipulation etc.). EMF and Ecore were leveraged by this thesis for generating code for
UML models and model manipulation through the Java API of EMF.

2.1.2 SOA systems and SCA

Service Oriented Architecture, [29, 43], or SOA for short, is a new software paradigm
that facilitates the composition of large software systems from software services that can
be interfaced dynamically, thus reducing the coupling that some object-oriented systems
demonstrate. The essence of Service Oriented Architecture is the existence of a Service

7

Figure 2.1: Example of a SCDL graphic diagram

Registry where Service Providers can publish their offered services and Service Consumers
can find and utilize the published services. This relieves the developers for having to
maintain references to objects as in the previous object-oriented model.

Service Component Architecture, [42, 16], is a software specification of a platform that
implements the SOA software development paradigm. It facilitates the interfacing and
wiring of services by providing an innovative configuration mechanism and its supporting
language, Service Component Description Language (SCDL for short).

The SCA specification consists of two pillars, the Assembly Model [47] and the Policy
Framework [46], along with extensions to these pillars, especially the former. Assembly
model is used to define the structural composition of an SCA system and its offered and
consumed services. The major artifact in the assembly model is the Component. Compo-
nents are usually a piece of independent business functionality that the system offers. It
is the smallest piece of SCDL modelling that can have its own implementation (through a
Java class or an html page with javascript code etc.). It offers services that other compo-
nents or clients can consume and can have references to other services that it consumes.
Usually, the services of a component’s implementation conforms to a specific interface,
modelled by either a Java interface or a Web Service Definition Language (WSDL) file.
This interface defines the parameters and return type of the services that the component
offers.

8

Components are bundled into Composites. Composites are artifacts that facilitate the
comprehension of the system’s deployment, as it is usual for a composite to bundle compo-
nents that will be deployed on the same server/computer. Nevertheless, composites exist
to group components that offer common business functionality and/or use similar com-
puter resources (files, databases etc.). Composites can offer services that are forwarded to
services offered by inner components, called “promoted” services, although this is optional.
SCDL models can be also illustrated using Composite Diagrams, that offer a diagrammatic
demonstration of SCDL xml files (although, more limited).

Figure 2.1 shows such a Composite Diagram. A composite named C with three compo-
nents, namely A, B and D is illustrated. Component A offers one service that is promoted
to be offered by the composite, as well. It also has two references, ref1 and ref2. The
first reference refers to a service offered by component B and the latter references a service
offered by component D. Graphic representation of SCDL files usually is not very illustra-
tive in terms of bindings and wires between services. In figure 2.2 an xml SCDL file is
illustrated. It models a composite named “composite” that has only one component named
“component”. The component is implemented via the Java class “componentImpl” that
can be found in the package “pack”. The component offers one service named “service”
and has a reference to a service called “reference”. The binding.ws tag depicts that the
referenced SCA service can be reached in the mentioned uri and the suffix “ws” shows
that it should be called as a web service (through HTTP using SOAP). Generally, SCA
specification supports a number of ways for remote method invocation and specific imple-
mentations of it offer an even wider range of binding types (such as json-rpc). The callback
tag defines the callback interface to be used in asynchronous calls. The callback interface
can be reached at the specified uri of the following “binding.ws” tag and can be called as
a web service.

Another important pillar of the SCA specification is the Policy Framework. It allows
stakeholders to model certain policies that should be applied to the binding of services with
each other. Figure 2.3 shows an example of a service binding that requires a security policy
to be applied when other services or clients invoke the service named “service”. “Security”
is an intent that the underlying SCA runtime platform which performs the service wiring
should implement. Intents are the names of policies that a binding or wire between services
can require. PolicySets are a collection of intents that a binding or wire offers. SCA Policy
Framework contains a number of already defined intents and implementations of the SCA
specification provide the appropriate policySets that conform to them. Additionally, the
user has the possibility to model policies using the WS-Policy specification, [6].

9

<composite name="composite">

<component name="component">

<implementation.java class="pack.componentImpl"/>

<service name="service"/>

<reference name="reference">

<binding.ws uri="http://localhost:8086/WebApp/Reference"/>

<callback>

<binding.ws name="callback"

uri="http://localhost:8084/WebApp/ReferenceCallback"/>

</callback>

</reference>

</component>

</composite>

Figure 2.2: SCDL xml file example

...

<service name="service">

<binding.ws uri="..." requires="security"/>

</service>

...

</component>

</composite>

Figure 2.3: SCDL xml file policy example

10

2.1.3 Systems Modelling and Modelling Management

Apart from the tools and paradigms, in the area of systems modelling a number of related
works can be identified. In [13] a framework for specifying functional and non-functional
requirements as a collection of soft goals is presented. The framework allows for the logical
decomposition of complex requirements into simpler ones and ultimately allows for the
association of requirements with design decisions. In [71] a framework to trace aspects
identified during goal-oriented requirements analysis is presented. The framework allows
for the validation of the resulting system in light of shareholders’ cross-cutting concerns
and whether the weaved system with aspects indeed improves system qualities measured
by the degree of goal satisfaction.

In the area of model management, in [55] a formal multi-modeling framework that allows
specialized model relationship types to be defined between software models that constitutes
a new type of model called a macro-model is presented. Macro-models can be used to
support Model Driven Engineering and model management and maintenance activities. In
[53], an approach that allows for consistency checking of distributed models is discussed.
(i.e., models developed by distributed teams). The approach is based on the construction
of a merged model before checking for model consistency between models and based on
consistency predefined relations. In [8] meta-data management is addressed using model
management techniques where schemas and interface definitions are treated as first class
objects with basic management operations. A catalogue of various model synchronization
schemes has been presented in [1] where model transformations are classified according to
their external behaviour characteristics.

Generating code from models is a contemporary phenomenon in software engineering.
Legacy code with little or no specification/design documentation can be undergone reverse
engineering approaches that will allow the extraction of architectural elements. An exam-
ple of a tool that allows for the visualization of architectural diagrams extracted through
analysis of the build process, is the “Landscape Editor”, LSEdit, [60]. Using a fact ex-
tractor reverse engineering tool like LDX, [67], it is possible to extract information for the
dependencies between artifacts of an application, in different levels of abstractions (de-
pendencies of functions from variables, of source code from specific libraries etc.). Those
dependencies can be visualized in the window of LSEdit and undergo a number of layout
transformations. Interestingly, there are promising results in using such fact extraction
and visualization tools for identifying code clones, [15].

11

2.2 Software Maintenance

Software maintenance is a large sub-area under the umbrella of Software Engineering.
A plethora of diverse technologies have been studied by researchers in their attempt to
improve software maintenance, as it is one of the most important aspects of software de-
velopment. From Formal Concept Analysis and Model Synchronization, through software
monitoring, impact and dependency analysis, this section discusses a relevant to this the-
sis and important part of the wealth of knowledge produced by software scientists and
researchers in this area.

2.2.1 Impact and Dependency Analysis

From the beginning of software, dependency analysis was used for improving the perfor-
mance of software, especially in compilers. Dependence graphs or dependence trees were
and remain important models that heavily contribute to low-level dependency analysis and
to compiler optimization, [36]. In general, dependence graphs were introduced to model
dependencies between software components. In the context of compilers they allowed mod-
elling dependencies between statements of software code. Generally, dependence graphs
in the area of compiler optimization is used to pinpoint flow dependencies between read
and write statements. The analysis can categorize the dependencies into flow dependency,
anti-dependency and output dependence, [27] and dependence graphs can visualize these
types of dependencies. This analysis allows for rearranging the statements in order to
produce execution flows that could be parallelized in multi-piped hardware architectures
[27], or parallelized in different threads of programs.

Generally, dependence graphs that model low-level software behaviour can be divided
into control flow graphs and data flow graphs. In [17] the “Program Dependence Graph”
(PDG) is presented, allowing the modelling of both control dependencies and data depen-
dencies. Program Dependence Graph is a more abstract than an the abstract syntax tree
and can be used for vectorization and parallelization of the code. Program Dependence
Graphs model sequential programs, the nodes containing a set of statements of code and
the edges modelling control or data dependencies between nodes. Later, in [56], the Par-
allel Program Dependence Graph was introduced to allow for the modelling of programs
that were parallel and enhanced the PDG model with edges that either modelled parallel
execution, or posed constraints in the sequential execution of code.

As software engineering progresses, the complexity and the size of the code increases.
Contemporary systems consist of large numbers of inner parts, mostly components that

12

may or may not be accompanied by their implementation source code. This is the reason
why the capability to model software systems in higher level and more abstract ways is
needed. In compatibility testing, [70] proposes the “RATCHET” approach, where the de-
pendencies between different components are modelled in a Component Dependency Graph
(CDG) with AND and XOR nodes. According to the “RATCHET” approach, software
developers/designers create the Component Dependency Graph for the system they want
to test and identify a component C (node in CDG) they want to be tested for compatibility
with other nodes. Subsequently, “RATCHET” identifies all components directly depen-
dent to C and generates the tests for compatibility checking of all the versions of C to all
the versions of other components directly dependent to it. In [69], “RATCHET” approach
is taken one step further, by allowing stakeholders to decorate the Component Dependency
Graph with priorities between configuration management instances (versions of each com-
ponent) to be checked. The upgraded “RATCHET” system performs assortment of the
test plans to be checked, based on the given preferences.

2.2.2 Model Driven Engineering for Software Maintenance

While software systems’ size continues to grow, Model Driven Engineering was introduced
to allow for easier development of software, based on modelling techniques that might
involve, for example, the aforementioned Unified Modelling Language. As models and
modelling languages started receiving attention from researchers, practitioners and software
stakeholders, the need of impact analysis on changes in models was apparent.

The first step in impact analysis is to be able to extract the dependencies in a model,
either local or dependencies that span across multiple models that describe a software
system. In model synchronization area, [30] changes due to maintenance in a software
system is viewed as synchronization problem between different models. The models can
be in the same or different levels of abstraction. The approach involves encoding the mod-
els via a graph, EMOF meta-model called Graph Metamodel for Synchronization (GMS)
and providing a transformation algorithm between models M1 and M2 that are encoded
using GMS. The transformation algorithm provides the proper synchronization between
M1 and M2. In [31] and [33], formal concept analysis (FCA, [18]) is leveraged to iden-
tify dependencies between models of different abstraction levels. Along with the approach
in [30], it can automate the process of identifying relations between models of the same
software system in different abstraction levels, and facilitate the synchronization of the
affected portions of the models, during evolution changes in the software system.

Great role in software maintenance and impact analysis plays the identification and

13

management of inconsistencies of software artifacts when they change in time. Two con-
straint based consistency management frameworks for incremental maintenance of software
artifacts are presented in [52],[24]. These frameworks rely on the existence of a well defined
set of constraints for ensuring the consistency of the interlinked models and are capable of
incremental resolution of in-consistencies for such cases.

2.2.3 Software Monitoring

Software monitoring is an important part of the maintenance phase of a software system.
It allows for polling and extracting information from the system that could lead to identi-
fication of problems or even prevention of failures, therefore increasing software reliability.
In the area of monitoring frameworks, [59] proposes a collection of monitoring systems.
These are integrated with available hardware and software mechanisms for COTS-based
systems. [9] proposes an event-based temporal object model that keeps track of selected
values within the history of a data object.

Failure detection is a significant part of software monitoring. In [25] an approach to
automatically identify failures of a software system is presented. The approach monitors
the external behaviour of the software system and allows for cross-referencing it with the
formally specified in communicating extended finite state machines (CEFSM). As a result,
deviations of the system’s external behaviour from the prescribed one (i.e. software failures)
can be identified. Aspect Oriented Programming (AOP) is used in [61] to interweave pieces
of software code that measure metrics used to infer the “health” of the software system
under test. The approach defines such “health indicators”, such as the ratio of successful
system calls over the total number of system calls (indicator called “System Exceptions”).
It also discusses a number of design patterns for the aspect oriented code, in an effort to
formalize a useful design of metrics and indicators measurement code.

This approach differentiates from the aforementioned related work in two points; the
dependency models used and the runtime adaptivity during the triggering and verifica-
tion of the changes in the software system under maintenance. Approaches that deal with
dependencies between components of a software system view the “dependency” of two
components as one, unclassifiable entity. This work will try to model different types of
dependencies between software components or artifacts and possibly two components will
depend on each other via a diversity of types of relations. Based on the context of the
software maintenance phase, only a subset of all the possible types of dependencies will be
taken into account, for the verification of changes into the software system under mainte-
nance. Furthermore, the proposed approach will provide an adapting mechanism for the

14

verification policies to be changed at runtime. Additionally, the framework will also guide
the monitoring of the system under maintenance based on the policies that need to be
verified at each specific point in time. As a result, the proposed approach contains two
stages of adaptive behaviour, which is not seen in other similar software systems, to the
best of our knowledge.

15

Chapter 3

System Architecture

This chapter discusses the architecture of the proposed framework, i.e. its major com-
ponents, the way those components interact with each other and the process that the
framework follows in the event of dependency checking.

3.1 Major Components

Figure 3.1 depicts the component diagram of the framework’s architecture. It shows the
major components of that architecture and the interfaces used to pass messages between
these components. The architecture implements a hybrid architectural style composed of
a mainly blackboard/repository architectural style, along with a publish/subscribe style
which gives an event-handling nature to the control flow of the framework. The main
components of this architecture are:

Blackboard: The main component of the architecture. Its purpose is to hold the current
state of the framework, update it and notify the appropriate components via the
PublishSubscribe component.

Event Handler: This component is responsible for handling the events produced from
the other components of the framework. It logs these events and forwards them to
the appropriate component, Blackboard or PublishSubscribe.

PublishSubscribe: The purpose of this component is to facilitate the subscription of
other components to specific types of events. It holds a list of those subscriptions

16

<<component>>

EventHandler

<<component>>

EventCollector

<<artifact>>

EventLog

<<component>>

PubSubNotifier

<<component>>

StateUpdater

<<component>>

Modeller

<<component>>

TreeGenerator

<<component>>

Tree

Annotator

<<component>>

NodeEditor

<<component>>

Relationship
Editor

<<component>>

Policy Manager

<<component>>

PolicyTrigger

<<component>>

PolicyVerifier

<<component>>

Blackboard

<<artifact>>

DependencyModels

<<artifact>>

Worklist

<<component>>

Monitoring
Component

<<component>>

SensorContainer

<<component>>

PublishSubscribe

<<artifact>>

Subscriptions
INotifyNewEvent IEventMessage

IUpdateState

ISubscribe

INewEvent

Figure 3.1: Component Diagram of the proposed framework’s architecture

and upon the reception of a specific event, it forwards the event to the component it
has subscribed for it.

Modeller: This component is responsible for modelling dependencies between entities of
the system under maintenance. It creates the Dependency Multi-Graph model and,
based on the context of the current maintenance scenario, generates the Dependency
Tree model to be used by the Policy Manager (see chapter 4).

Monitoring Component: This component uses a set of sensors that monitor the sys-
tem under maintenance for important information. Such information is needed for
verifying or denying the validity of a software maintenance event.

Policy Manager: This component is responsible for the verification or denial of the va-
lidity of a software maintenance event. As an example, software maintenance events
include the update, removal or addition of a Web Service in Service Oriented Archi-
tecture systems. Policy Manager leverages information gathered from the Monitoring
Component’s sensors and uses the dependency models produces from the Modeller
component, in order to perform the validation check.

17

Next section discusses the aforementioned components in details and describes how
these components communicate with each other.

3.2 Description of Components and Interfaces

3.2.1 Blackboard

This is the major component of the framework’s architecture. Its main purpose is to store
the state of the framework. The state of the framework refers to the dependency models
that have been created and the list of policies that are triggered to be verified. Blackboard
component stores these two pieces of information into the DependencyModels and Worklist
artifacts, respectively. Next two sections discuss these artifacts and the interfaces that the
Blackboard uses, in detail.

Artifacts of the Blackboard

As seen in figure 3.1 the Blackboard component consists of two artifacts, namely the De-
pendencyModels and the Worklist artifact.

The first artifact stores the part of the framework state that refers to the dependency
models. Those dependency models are created from the Modeller component and passed
to the Blackboard as events, through the Event Handler component. There are two types
of dependency models used by the proposed framework, a dependency multi-graph that
models all dependencies, and a dependency tree that models only a subset of all the
potential dependencies (see chapter 4). DependencyModels artifact stores both models,
but only the dependency tree can be populated to other components. The reason behind
this design decision is that Policy Manager component (which cares about the current
set of dependencies that should be verified) will perform verification based on the set
of dependencies that are relevant to the latest software maintenance operation, i.e. only
the dependency tree is needed. However, the dependency multi-graph is stored in the
Blackboard to allow for comprehensive traceability of the framework’s state at each point
in time.

The second artifact is a list of “dependencies” (that will be also called “policies”) that
should be verified in order for the framework to prove the validity of the last performed
software maintenance operation. Those dependencies are practically the edges of the de-
pendency tree stored in the DependencyModels artifact, annotated with specific strategy

18

that will guide the verification process (see chapter 5). It is the responsibility of the Policy
Manager to trigger the appropriate verifiers to perform verification of the elements inside
the Worklist.

Interfaces provided by the Blackboard

Blackboard component provides the IUpdateState interface. It is used by the Event Han-
dler component when a new event that should change the state of the framework arises.
Typically, the interface is used when the Modeller generates a new dependency tree from
the dependency multi-graph or when the Policy Manager adds a new, to-be-verified policy
in the Worklist.

3.2.2 Event Handler

This component serves as the intermediate of the other components, along with the Pub-
lishSubscribe component. Its control flow involves the following steps.

1. Collect a new event from other components via the INewEvent provided interface.

2. Log this event into an appropriate storage container or database (handled by the
EventLog artifact).

3. Determine the appropriate recipient of the event, depending on the event’s type.
There are two options here.

(a) The event is a request from a component to subscribe to a specific type of events.
The event should be forwarded to the PublishSubscribe component.

(b) The event relates to the state of the framework. This type of events should be
forwarded to the Blackboard component.

Sub-components of the Event Handler

Event Handler consists of three sub-components, namely Event Collector, PubSub Notifier
and State Updater.

Event Collector is the sub-component responsible for collecting the events generated by
other components and logging them properly, for traceability reasons. This sub-component

19

consists of one artifact, the EventLog which represents the logging mechanism used for the
recording of the observed events in the system under maintenance. After logging the event,
this sub-component forwards it to one of the other two sub-components, based on the type
of the event.

PubSub notifier handles case 3a of the aforementioned control flow. It is notified by
the Event Collector sub-component when a request for subscription to a specific type of
events has been received. Subsequently, it forwards this request to the PublishSubscribe
component, using the ISubscribe interface.

StateUpdater is responsible for case 3b of the above control flow. It is notified by
the Event Collector sub-component when an event that changes the state of the frame-
work has been received. It forwards the event to the Blackboard component, through the
IUpdateState interface.

Interfaces provided by the Event Handler

Event Handler component provides the INewEvent interface. This interface is used from
Policy Manager, Modeller and Monitoring Component components of the framework.
Those components can generate events related to a new state of the framework (change in
the dependency models, a new observation about the system under maintenance, a new
policy in the work-list) or events that request their subscription to one of the state update
event types. When one of those three components has a new event to populate, it does
so using the INewEvent interface. Afterwards, the event is logged and transfered to the
appropriate recipient, as described above.

3.2.3 PublishSubscribe

This component handles subscription of other components to events they are interested
into. It receives those subscription request events from the PubSub Notifier sub-component
of the Event Handler. Examples of such request is the subscription of Policy Manager to
monitoring events (from the Monitoring Component) that relate to the verification of
policies in the current work-list. It is clear that the PublishSubscribe component acts
also as a delegate component between the Blackboard component and the three main
components of the system, namely Policy Manager, Monitoring Component and Modeller.
As such a delegate component, it is used to propagate appropriate messages to the three
aforementioned components, when the state of the Blackboard changes.

20

It can be argued that subscription types of events are part of the framework’s state
and should be stored inside the Blackboard. However, the current design separates the
concern of the event-driven control flow of the framework from the concern of storing the
framework’s state in a uniform manner. The event-driven control flow is mainly handled
by the Event Handler and PublishSubscribe component, whereas Blackboard is responsible
for interpreting those events into changes of the framework’s state.

Artifacts of PublishSubscribe

PublishSubscribe component consists of one artifact, namely the Subscriptions artifact.
Generally, it can be seen as a mapping between the interested component and the type of
the event this component is interested into. The users of the proposed framework are free
to implement their own data structure that models this mapping.

Interfaces provided by PublishSubscribe

PublishSubscribe component provides two interfaces to communicate with other compo-
nents of the framework:

ISubscribe: This interface facilitates the submission of request events from the Event
Handler component.

IEventMessage: This interface is used from the Blackboard component to propagate
state-changing events to the subscribed components (through the PublishSubscribe
component).

3.2.4 Monitoring Component

This component is responsible for monitoring the system under maintenance and providing
valuable information needed for it. Information needed from the system under mainte-
nance may involve resources usage (network, hard disk, physical memory . . .), web service
availability (demo calls to web services, polling, ping . . .) or time/space and reliability
measurements of the system under maintenance (time elapsed, number of failures . . .).
This information is gathered by a set of sensors controlled by the Monitoring Component
component and encoded into events offered to the other components to the framework.

21

Sub-components of Monitoring Component

Monitoring Component consists of a Sensor Container sub-component which is responsi-
ble for handling all the sensors attached to the system under maintenance. Those sensors
can be activated/deactivated based on policies in the current work-list. It is the respon-
sibility of the Sensor Container to handle these activations and deactivations, whereas
Monitoring Component interprets events received from other components and generates
events targeting other components of the framework.

Interfaces provided by Monitoring Component

This component provides only one interface, namely INotifyNewEvent interface. It is the
same interface used by Modeller and Policy Manager components. This interface facilitates
the population of events from these three components to the framework’s state (Blackboard)
or to the subscriptions PublishSubscribe component stores.

3.2.5 Policy Manager

The triggering of appropriate policies and their verification is the responsibility of the
Policy Manager component. The term policy refers to the algorithm/methodology used
to verify or deny the validity of a dependency after a maintenance operation in the system
under maintenance has been performed. The verification of the policy may be subject to
information gathered by the Monitoring Component and is controlled by the dependency
tree model created by the Modeller component (see chapters 4 and 5).

Policy Manager component is not aware of the dependency multi-graph for the system
under maintenance. Instead, it tries to verify the policies of the dependency tree model.
The reason behind this decision is the fact that the dependency multi-graph contains all
the possible relations between software entities of the system under maintenance. But
under a specific maintenance context (e.g. interface compatibility), only one part of those
dependencies can cause problem in the system. The generation of the dependency tree
saves Policy Manager for the effort of checking for every possible relation and allows it to
focus on the important relations, based on the context.

Furthermore, Policy Manager component is interested into two types of events. The
first type is the events that relate to the dependency tree model at a specific point in
time. The second type is the events that relate to information gathered by the Monitoring
Component and can be leveraged to verify or deny policies. It is worth to note that Policy

22

Manager will subscribe only to events that relate to the active policies and not to policies
irrelevant to the current state of the verification process.

Sub-components of Policy Manager

Policy Manager encapsulates two sub-components, namely Policy Trigger and Policy Veri-
fier. The first is responsible for triggering the appropriate policies to be verified. Normally,
the set of those policies derives from the dependency tree model produced by the Modeller
component and stored in the Blackboard. The second sub-component is responsible for
verifying or denying the policy, by using information from the sensors of the Monitoring
Component. Policy Manager can instantiate a large number of Policy Verifier objects at
any given point in time. Each Policy Verifier is responsible for a set of policies (that will
be later called strategy). It is the responsibility of the Policy Manager to combine the
intermediate results of each Policy Verifier to the final result. There are two outcomes in
this combination process:

1. All the Policy Verifiers agree upon the result. The final result matches the agreeing
results (if all the verifiers verify, then the final result is verification, if all the verifiers
deny, then the final result is denial).

2. There are controversial results from all the Policy Verifier objects. The Policy Man-
ager flags the final result as controversial and gives a warning to the user of the
framework.

Interfaces provided by the Policy Manager

Policy Manager provides the INotifyNewEvent interface, which is explained in section 3.2.4.

3.2.6 Modeller

The purpose of this component is to model the dependencies of the system under main-
tenance. There are two models used by this framework, a dependency multi-graph and a
dependency tree that derives from the multi-graph. Both models are created once, during
the framework’s initialization. The second one is created when under the assumption of
a specific software maintenance context (e.g. service invocation) so it is a subset of the
first one. The purpose of the dependency tree is to provide a focused view on the po-
tentially troublesome dependencies, given the context of the last maintenance operation.
More information on the two dependency models will be given in chapter 4.

23

Sub-components of Modeller

The mission of the Modeller component is to model the multi-graph and generate the
dependency tree from it. Modelling the multi-graph is done by the NodeEditor and Re-
lationEditor sub-components, while generating the dependency tree is done by the Tree-
Generator and TreeAnnotator components.

A multi-graph consists of nodes and parallel edges. Nodes denote specific software
artifacts of the system and edges that connect them denote dependencies between the
nodes. Hence, the multi-graph consists of two sets, G(VG, EG), a set VG of the nodes
(or vertices) and a set EG of edges between them. The process that Modeller follows to
construct these two sets is mentioned below.

1. NodeEditor sub-component reads the appropriate software artifacts (usually high-
level artifacts, such as deployment configuration or SCDL files) of the system under
maintenance and produces a list of nodes. Each node corresponds to each of the
software entities identified in the system under maintenance.

2. RelationEditor sub-component reads the list of nodes created from the previous sub-
component and parses again the software artifacts (usually lower-level now, such as
implementation artifacts) to identify dependencies between the nodes, hence creating
the edges of the multi-graph.

The aforementioned two-step process is general for modelling dependencies and creating
the multi-graph for any type of software system. The user of the framework is free to
specialize the functionality provided by the Modeller to meet the requirements of a software
domain of interest. For the purposes of the current work, chapter 6 depicts a prototype
usage of the proposed framework, for Service Component Architecture software systems.
In the case of SCA systems, the artifacts that Modeller uses can be the contribution zip
files, the configuration of an SCA domain, or a SCDL file, a configuration of a component
who produces or consumes web services. The web services that the SCA system offers or
consumes can play the role of the software entities modelled by the nodes of the multi-graph.
The dependencies that those web services can have with each other (e.g. invocation, data
dependencies) can form the edges of the multi-graph. The process is explained in chapter 6,
in detail.

The third sub-component of the Modeller, TreeGenerator, takes into account only a
specific subset of all the types of dependencies in the multi-graph. Based on the charac-
teristics of those dependencies and the multi-graph, TreeGenerator identifies the related

24

nodes and edges and produces the dependency tree model. The exact algorithm is given
in chapter 4.

Last but not least, Modeller invokes the TreeAnnotator component. The dependency
tree produced by the previous component contains conjunctive branches between different
edges. However, based on information at the implementation level, certain branches can
be annotated as disjunctive, as at runtime the verification of a branch might imply that it
is not worth checking the alternative branch. As an example, consider the case where there
is a invocation relationship between a component C1, a component C2 and a component
C3. Let us assume that the first component can call the other two, so there is an edge
between C1 and C2 and one between C1 and C3. TreeGenerator component will model
these two dependencies via a tree where C1 is the parent and has two children, C2 and C3.
The edges will be conjunctive with each other, meaning that the framework must verify
that both invocations from C1 can be made with no problems. Interestingly, if the two
invocations are made into two alternative blocks of code (e.g. C1 calls C2 if a “boolean”
condition is met, or C3 otherwise) then the system can check only the subtree that applies.
This is done when the two branches, and their subsequent sub-trees, have been annotated
as disjunctive by the framework.

TreeAnnotator is the Modeller’s sub-component that transforms certain branches to
disjunctive, based on information from implementation artifacts (source code files). De-
tailed discussion on the Modeller’s modelling algorithms and the trees will be given in
chapter 4.

3.3 Overall Process

Previous sections gave the component diagram of the framework’s architecture, figure 3.1,
and explained the major components and its inner structure. This section will try to shed
light on how the framework works, what is the exact flow of events handled between its
components. An example of the process flow of the framework is illustrated in figure 3.2.
For simplicity, an initial stage where all the components subscribe for particular types of
events is omitted. The process illustrated starts from the moment where the Modeller
models the dependency multi-graph. It is worth to note that each message shown in
figure 3.2 is named after the corresponding interface without the leading ”I” (see figure 3.1).
The messages of sequence diagram 3.2 are explained one by one in the following list.

1. Modeller models the dependency multi-graph and generates a new event captured by
the Event Handler.

25

 : Monitoring Component : PublishSubscribe : Policy Manager : EventHandler : Blackboard : Modeller

[Until result

available]

loop

NewEvent9:

NewEvent17:

NotifyNewEvent7:

NotifyNewEvent12:

NotifyNewEvent16:

NotifyNewEvent20:

NotifyNew Event8:

NewEvent13:

StateUpdate2:

StateUpdate5:

StateUpdate10:

StateUpdate14:

StateUpdate18:

EventMessage3:

EventMessage6:

EventMessage11:

EventMessage15:

EventMessage19:

NewEvent1:

NewEvent4:

Figure 3.2: Sequence Diagram of the overall process

26

2. Event Handler logs the event and forwards it to the Blackboard as a state update.

3. Blackboard stores the dependency multi-graph and notifies the PublishSubscribe com-
ponent of the new event. (No component registers for updates in the multi-graph as
it is stored only for traceability purposes, so no component is notified from Publish-
Subscribe)

4. Modeller generates a dependency tree from the multi-graph created before. This
tree generation is done based on a user-indicated subset of important dependencies.
Modeller notifies Event Handler that a dependency tree is created.

5. Event Handler logs the event and forwards the generated tree to the Blackboard as
a state update.

6. Blackboard forwards the state update to the PublishSubscribe component.

7. PublishSubscribe notifies Monitoring Component that a new tree is generated via the
INotifyNewEvent interface. Monitoring Component will enable all sensors that can
trace changes to the tree’s nodes.

8. PublishSubscribe notifies Policy Manager, as well. Policy Manager requires the infor-
mation of the dependency tree to initialize policies that will be potentially triggered
in the future.

9. Monitoring Component produces a new event that a component of the system under
maintenance has changes (i.e. a node in the dependency tree has changed). Event
Handler receives this new events, logs it and forwards it to the Blackboard as a state
update.

10. Blackboard marks the changed node (the dependency tree nod that corresponds to
the component changed in the software under maintenance) and notifies the Publish-
Subscribe component of the change.

11. PublishSubscribe receives the information that a node has changed and needs to be
verified. For this type of messages, Policy Manager is interested, so a notification
message to that component is prepared.

12. PublishSubscribe sends a new event notification to the Policy Manager component.
The later inspects the node changed and its Policy Trigger sub-component allocates
the appropriate Policy Verifier sub-components along with the appropriate policies.

27

13. The information of the policies to be verified is populated from the Policy Manager
via the Event Handler component and the INewEvent interface.

14. As usual, Event Handler component logs the event (the policies to be triggered) and
forwards the state update to the Blackboard. Blackboard adds the policies into the
work-list.

15. Via the IEventMessage interface, PublishSubscribe is notified about the new additions
to the work-list in the Blackboard.

16. PublishSubscribe notifies Monitoring Component about the new additions in the
work-list. Monitoring Component will enable all sensors that will assist in the veri-
fication of the policies in the work-list.

17. This message initiates a loop of messages that will be executed until the final ver-
ification of the maintenance operation. The loop starts with a new event from the
Monitoring Component that updates the framework about information gathered from
its sensors. This event is populated to the Event Handler.

18. Event Handler logs the event and forwards the state update to the Blackboard com-
ponent.

19. Blackboard notifies PublishSubscribe with the new information from the Monitoring
Component’s sensor(s).

20. PublishSubscribe notifies Policy Manager component that new information regarding
the verification of the policies is available. The appropriate Policy Verifier sub-
component will receive the information and try to infer the final result (acceptance
of the maintenance operation). Steps 17-20 will be repeated until information for all
the triggered policies is gathered and a result from Policy Manager is available.

The process will continue with the Policy Manager inferring the results from the Policy
Verifier objects and publishing them to the Blackboard which will remove policies from
the work-list, as appropriate.

As a conclusion, this chapter introduced a blackboard/repository architecture for the
proposed framework and illustrated how this framework works. The major advantage of the
framework is that it provides the foundation for dependency analysis on software systems.
It can be extended to incorporate a diversity of software system types, as long as the
extension provides the appropriate extensions to model the targeted software system with
the dependency multi-graph. Another major advantage of the framework is its separation
of concerns, due to the message passing interface that was described above.

28

Chapter 4

Dependency Modeling

This chapter discusses how the proposed framework models dependencies between software
artifacts in modern systems. It stands as an introduction to the next chapter that will
explain how these models are used for analyzing these dependencies with respect to software
maintenance operations.

Software contains dependencies between the entities that it is composed of, regardless
of the size of the source code of an application. Single source code files can demonstrate
dependencies between functions, e.g. using the same variables. Multiple source code file
software projects can demonstrate an even broader range of dependencies, between entities
of different source code files. It is also common for software systems to use configuration
artifacts, such as property files, to fine tune their behaviour. Configuration management
like this can inject even more dependencies into large scale software systems. And, of
course, this is intensified in the case of distributed software systems, such as service oriented
systems or cloud computing applications.

Each and every case of software system can demonstrate a wide variety and diversity
of dependencies between its entities. However, those dependencies can have common prop-
erties and be classified or handled based on those properties. This is the approach of the
current thesis as it tries to model those dependencies by using a common set of properties
and leverage those properties in the analysis of the dependencies during the maintenance
phase. This chapter is organized as follows.

The first section discusses the Dependency Multi-Graph Meta-Model which describes
all the possible dependencies between artifacts of a software system. Next, a Dependency
Tree Meta-Model is described, which contains only the dependencies that are interesting
to analyze when checking for a particular attribute of the software system. For example,

29

if the system has to be checked for interface compatibility, then the framework must check
for dependencies that have to do with invocation contracts (such as parameters and return
types) and not with the usage of configuration files. In order to build this specialized
dependency tree from the dependency graph a number of traversal policies are introduced.
Those traversal policies lead to the aforementioned dependency tree by using a generation
algorithm presented in the end of this chapter.

4.1 Dependency Multi-Graph Meta-Model

The first model used by the proposed framework is a Dependency Multi-Graph that tries
to model all types of dependencies that can be found in a software system of interest. Its
nodes (or vertexes) are modelling the software components (or artifacts) of the system
and its edges the relations between them. Therefore, because of the diversity of ways that
components/artifacts can be related/dependent to each other, the multi-graph was selected
as the first dependency model. The difference of a multi-graph from a graph is that two
nodes can be connected with more than one edge of the same direction and it fits the
modelling of the various ways that components can depend with each other in software.
Additionally, each multiple edge will be annotated with the exact relation which models
how exactly the source artifact depends on the target one.

Formally, the multi-graph used in this framework can be defined using three sets
DMG = {NG, EG, RG}, where:

NG : The set of nodes that model the software artifacts/components of interest.

EG : The multi-set of multiple or parallel edges.

RG : The set of relations. Each relation is an annotation to an edge, specifying how the
nodes depend on each other.

This dependency multi-graph is modelled using UML Class diagram, in order for the frame-
work to process it. The Dependency Multi-Graph Meta-Model can be seen in figure 4.1.
The top-level element is the MGraph class which represents the multi-graph. The MGraph
class is composed of a number of objects of the class MGraphElement, as shown by the
composition association between these two entities. The composition means that objects
of the type MGraphElement can exist only as a part of the MGraph class, i.e. multi-graph
elements cannot exist as autonomous entities outside the scope of a multi-graph. The mul-
tiplicity of this association dictates that one multi-graph can be composed of more than

30

+performVerification() : Boolean

VerificationPolicy

MMultiEdgeBranch

-Name : String
-ID : Integer

MGraphElement

RelationProperty

Antisymmetric

MMultiEdge

-Name : String

MGraph

SymmetricTransitive Reflective

MNode

RelationtargetNode

1

1..*

sourceNode

1 1..*

1..*

11..*

1

1..*1

1

1

11

Figure 4.1: Dependency Graph Meta-Model

one multi-graph elements, which is an obvious fact. An MGraphElement can be either a
node or a multi-edge, modelled by the MNode and the MMultiEdge classes, respectively.

MNode models a typical node of a graph. In the context of the proposed framework,
this class of objects is used to model software entities that can demonstrate dependencies
between them. For example, MNode can be a function of a source code file, because
functions in a program can depend, for example, on the results of other functions. In
service oriented software systems, MNode can model Web Services that can depend on the
results of other Web Services, potentially hosted in different servers. In general, the nodes
of a multi-graph model software artifacts that are important in software maintenance (i.e.
they can be removed, changed or deleted during a maintenance operation).

MMultiEdge models dependencies of one MNode to numerous other nodes. The purpose
of this class of objects is to model the parallel edges of multi-graphs. In multi-graphs, two
nodes can be connected by multiple edges, and that is why MMultiEdge can have one
source node (sourceNode) and multiple target nodes (targetNode via MMultiEdgeBranch).
The reason behind this design decision is the fact that one software artifact (node) in
modern systems might interact in various ways with another software artifact. As a result,
the two aforementioned artifacts may have more than one type of dependencies with each
other, hence, MMultiEdgeBranch is needed to illustrate this fact.

MMultiEdgeBranch depicts one of the parallel edges of the multi-graph. Its purpose is
to model one of the (possibly) many dependencies that two nodes have with each other.
As a result, it is the element that associates with the appropriate information for the
verification of the validity of the dependency during checking. In the model of figure 4.1,

31

Relation is the element which models dependencies between two software artifacts (nodes).
Each MMultiEdgeBranch associates with only one Relation as explained above.

Relation class is the general class that models the possible types of dependencies two
nodes can have. Such dependencies can be invocation, data dependency etc. Generally, the
framework doesn’t have to be aware of the exact type of the dependency or its semantics
for the designer of the system under maintenance. Instead, it has to be aware for a set of
general type of properties those dependencies should have.

These properties are modelled using the RelationProperty class, which can be one of
the following four:

Reflective: This type of Relation models self-dependency that a software component
might demonstrate. A practical example of such a dependency is recursive calls,
where a function invokes itself with another argument. This type of Relation is of
no significant interest during software maintenance (because when a node is changed
it is highly unlikely that it will cause problems to itself) but this RelationProperty
exists in the model for completeness.

Antisymmetric: This type of Relation models directed, “one-way” dependencies. If there
are two components, c1 and c2, and an antisymmetric Relation ra, then if there
is a dependency ra(c1, c2) the dependency ra(c2, c1) cannot exist. The framework
leverages this type of Relation in specifying a one-way verification strategy for the
VerificationPolicy attached to the Relation.

Symmetric: This type of Relation models bidirectional dependencies. If there are two
components, c1 and c2 and a symmetric Relation rs then the existence of the depen-
dency rs(c1, c2) guarantees the existence of the dependency rs(c2, c1). The framework
applies two-way verification strategy for this type of Relation.

Transitive: This is the type of dependency that can be transferred to the target nodes.
If there are two components, c1 and c2 and two dependencies rt(c1, c2) and rt(c2, c3),
then component c1 is dependent to component c3 with the same type of dependency,
i.e. rt(c1, c3). The framework links the verification policies of those type of depen-
dencies, as the next sections will demonstrate.

Figure 4.1 shows and association of the Relation class to objects of the type Verifica-
tionPolicy. These objects are responsible to verify or deny the dependency modelled by
the edge they are attached to. The aforementioned RelationProperty is used by the frame-
work to attach the correct verification strategies that will govern the correct triggering of
VerificationPolicy objects. Those strategies can be seen in the next dependency model.

32

4.2 Dependency Tree Meta-Model

Figure 4.2 depicts the Dependency Tree Meta-Model. Its purpose is to model Dependency
Trees that offer a view of the relations between software artifacts given a specific context
during the maintenance phase. Section 4.1 defined the Dependency Multi-Graph as three
sets.

The dependency tree that derives from a dependency multi-graph can be also defined
with three sets DT = {NT , ET , RT}, where NT is the set of nodes, ET is the set of edges
(two nodes can be connected with only one edge now) and RT is the set of relations attached
to each edge. Generally, it can be safely stated that equations (4.1a), (4.1b) and (4.1c)
are all true for every pair of dependency multi-graph and a (derived from it) dependency
tree. It’s worth to note that equations (4.1b) and (4.1c) dictate that the sets of edges and
relations of the tree should not be equal to their counterpart sets of the multi-graph. The
purpose for this decision is that the tree models one portion of the dependencies modelled
by the multi-graph. So, it will include a portion of multi-graph’s EG and RG sets.

NT ⊆ NG (4.1a)

ET ⊂ EG (4.1b)

RT ⊂ RG (4.1c)

The Dependency Tree consists of DTNodes. Each node corresponds to its counter-
part node of the multi-graph. Each node of the tree can be either an AtomicNode or a
CompositeNode. AtomicNodes do not have outgoing edges with any of the interesting de-
pendencies in the multi-graph. On the other hand, CompositeNodes depend on other nodes
of the multi-graph. In figure 4.2 the container design pattern, [34], is used for modelling
the CompositeNode which composes of other (atomic or composite) nodes.

The composition of a DTNode from other DTNodes can have two meanings. The first is
Disjunction and the second is Conjunction. In the first case, the parent DTNode depends
on only one of the children DTNodes at a specific point in time. In the second case it
depends on all the children DTNodes. This disjunction/conjunction dependency of the
parent to its children nodes is modelled via the BranchType class which is realized by the
Disjunction and Conjunction classes.

Similarly to the multi-graph, tree edges can be annotated with VerificationPolicies that
implement the appropriate function to verify or deny the dependency. However, the tree is
used for guiding the process of the verification, and therefore, it must contain the appro-
priate information. This information is modelled in the VerificationPolicyControlStrategy.

33

Instances of this class are attached to VerificationPolicy objects. There are three different
types of VerificationPolicyControlStrategy objects, each one corresponding to one of the
RelationProperty found in the aforementioned multi-graph, section 4.1.

Unidirectional: It corresponds to the Antisymmetric type of RelationProperty objects.
This verification strategy checks the directed edge, from the source node to the target
node. This is the reason why it associates with only one VerificationPolicy.

Bidirectional: Its counterpart is the Symmetric RelationProperty. If a dependency is
symmetric, then there are two policies to be checked, bidirectionally from source to
target node and the opposite, in order for symmetric dependency to be verified. As
a result, the corresponding type of strategy is associated with another one Verifi-
cationPolicyControlStrategy object, whose VerificationPolicy object is responsible to
verify the “opposite” relation.

Linked: It serves as the verification strategy for Transitive RelationProperty objects. For
the verification strategy, the policies are linked in a doubly linked list. The reason is
that if a dependency is transitive, then the framework must check all the dependency
edges that relate to the transitive closure of the Transitive relation on the multi-
graph.

More on the verification algorithm and the role that the aforementioned strategies play in
it, will be given in chapter 5.

4.3 Traversal Policies

Figures 4.1 and 4.2 show two object classes, RelationProperty and VerificationPolicyCon-
trolStrategy that highly relate with each other. They are used for guiding the generation of
the dependency tree from the multi-graph and guiding the verification process of the poli-
cies, respectively. This section will show how RelationProperty objects guide the traversal
of the multi-graph, in order to produce a dependency tree. Next section will demonstrate
the process by providing the algorithm and discussing examples of dependency tree gener-
ation.

4.3.1 Reflective

A relation is reflective according to the following definition.

34

+performVerification() : Boolean

VerificationPolicy

VerificationPolicyControlStrategy

-Name : String
-ID : Integer

DTNode

CompositeNodeAtomicNode

Bidirectional Unidirectional

-Name : String

DTree

Conjunction

BranchType

Disjunction

Linked

1..*1
next

1

1

previous
1

1

1..*

1

1

1

1

1

1

1

opposite

1

1

1..*

1

11

Figure 4.2: Dependency Tree Meta-Model

Definition 4.1 Assuming n1 ∈ NG is the node and rr ∈ RG the reflective relation, then
rr(n1, n1) is true if node n1 depends on itself.

The above case is not important for maintenance operations, as explained before. For the
completeness of verification algorithms, its case is handled as the case of an antisymmetric
relation, presented below.

4.3.2 Antisymmetric

A relation between two nodes is antisymmetric according to the following definition.

Definition 4.2 Assuming n1, n2 ∈ NG, are the nodes and ras(n1, n2) ∈ RG the antisym-
metric relation, then ras(n2, n1) /∈ RG.

The above definition means that only node n1 depends on node n2 and not the opposite.
During the multi-graph’s traversal this means that only the edge e(n1, n2) must be found in
the resulting tree. Moreover, the appropriate verification strategy will be “unidirectional”
from node n1 to node n2. Therefore, when the traversal algorithm visits such an edge in
the multi-graph, it adds the edge eas(n1, n2) and a Unidirectional verification strategy is
attached to it.

35

4.3.3 Symmetric

A relation between two nodes is symmetric according to the following definition.

Definition 4.3 Assuming n1, n2 ∈ NG are the nodes and rs(n1, n2) ∈ RG the symmetric
relation, then rs(n2, n1) ∈ RG.

As a result, when there is a symmetric dependency, if node n1 depends on node n2, then
node n2 depends on node n1, as well. For the graph traversal process, there will be only one
edge es(n1, n2). However, the algorithm will attach a bidirectional verification strategy on
that edge. As a result, the underlying framework will have to check both the dependency
of node n1 on node n2, as well as the opposite dependency. This will be done by using the
two VerificationPolicyControlStrategy objects that should be linked with each other.

4.3.4 Transitive

A relation between two nodes is transitive according to the following definition.

Definition 4.4 Assuming n1, n2, n3 ∈ NG are the nodes and rt(n1, n2), r
t(n2, n3) ∈ RG

the transitive relations, then rt(n1, n3) ∈ RG.

Transitive relations depict a more profound dependency. They show dependencies that can
span throughout the different components modelled in the multi-graph. In the verification
context, a transitive relation means that the strategy must cover the full path of edges of
the same transitive relation. As an example, let us consider a set of n1, n2, n3, n4, . . . , nm

nodes, a set of e1, e2, e3, e4, . . . , 3m−1 edges and the transitive relation rt. The transitive
dependencies can be seen in formula (4.2).

n1
e1−→
rt

n2
e2−→
rt

n3
e3−→
rt

n4
e4−→
rt

n5 . . . nm−1
em−1−−−→
rt

nm (4.2)

In the event that one of the above nodes changes due to a maintenance operation, the
verification strategy should check all the above path of edges, as well as the transitive
closure, in order to verify the validity of the change.

36

4.4 Dependency Tree Generation

Previous sections of the present chapter discussed and described the meta-models for the
dependency multi-graph and the dependency tree. As stated previously, the multi-graph
models all the dependencies that nodes of a system can have. The dependency tree allows
for a specific view of those dependencies, with respect to the verification analysis to be
done for the system under maintenance. This chapter describes how the dependency tree
derives from the dependency multi-graph and gives examples of the derivation process.

4.4.1 Algorithm

Algorithm 1 Dependency Tree Generation from Dependency Multi-Graph

Input: MultiGraph g, InitialNode nS, RelationSet relations
Output: Tree t

1: t.add(nS)
2: for all e ∈ nS.getMultiEdges do
3: for all b ∈ e.getBranches, where ((r = b.getRelation) ∈

relations and b.getTarget /∈ visited) do
4: if r.getRelationProperty=(Antisymmetric or Reflective) then
5: t.createEdge(nS, b.target)
6: attachUnidirectionalStrategy(b.getPolicy, nS, b.target)
7: else if r.getRelationProperty=Symmetric then
8: t.createEdge(nS, b.target)
9: attachBidirectionalStrategy(b.getPolicy, nS, b.target)

10: else if r.getRelationProperty=Transitive then
11: t.createEdge(nS, b.target)
12: attachLinkedStrategy(b.getPolicy, nS, b.target)
13: treegen(g, b.target, relations)
14: markV isited(b.target)
15: end if
16: return t
17: end for
18: end for

Algorithm 1 illustrates an abstraction of the process that is followed to generate a
dependency tree from the dependency multi-graph. Input of the algorithm is the multi-
graph, an initial node of it and a set of relations. Output is the generated tree. Essentially,

37

the algorithm iterates over all edges of the initial node that are annotated with one of
the relations found in the relations set. If such an edge exists, then a new edge between
the initial node and the target node is created. Function createEdge is responsible for
adding the new edge to the tree, along with the new node. After adding the new node,
a verification strategy is attached to the policy that verifies the edge. As explained in
section 4.3, there are three options in this case.

1. If the relation is Reflective, the attached policy is Unidirectional.

2. If the relation is Antisymmetric, the attached policy is Unidirectional.

3. If the relation is Symmetric, the attached policy is Bidirectional.

4. If the relation is Transitive, the attached policy is Linked.

In case number 4 there is one more step needed. As mentioned in section 4.3 all nodes that
are connected with the target node using the same transitive relation should be taken into
account. As a result, the same algorithm is recursively executed with the same relation set.
Function attachLinkedStrategy assures that if the strategy of the incoming edge to source
node is of type Lined, then the newly formed strategy will be linked to the doubly-linked
list.

Disjunctive Nodes

The Dependency Tree Meta-Model of figure 4.2 contains a feature that algorithm 1 does
not take into account. This feature is the Disjunction or Conjunction BranchType that a
CompositeNode can have in the dependency tree. This feature will assist the framework
to free resources when there is no need to check one of the two subtrees in a disjunctive
CompositeNode, as will be shown in chapter 5. All CompositeNodes created by algorithm 1
are of type Conjunction. TreeAnnotator sub-component of Modeller is responsible to attach
Disjunction nodes, when this is applicable. As an example, assuming one node n1 that
invokes methods offered by two other nodes, n2 and n3. Therefore, node n1 depends on the
other two, via two edges e12(n1, n2) and e13(n1, n3) and one type of relation/dependency,
rinvokes. Also, let us assume that the code in question of node n1 looks like in figure 4.3.

It is clear that at runtime, only one of the dependencies depicted by edges e12 and e13
will be present in the system, based on the value of the boolean expression “b”. In the
above example, algorithm 1 will create node n1 as a CompositeNode with Conjunction
BranchType. TreeAnnotator will identify, based on implementation information, that the

38

function n1(boolean b){

if(b){

n2()

}else{

n3()

}

}

Figure 4.3: Code sample for disjunctive dependency

dependencies are exclusive with each other and change the BranchType to Disjunction.
Figure 4.4a shows the tree as derived from the TreeGenerator and figure 4.4b the tree
after being processed by the TreeAnnotator sub-component. The former sub-component
identifies the two edges as exclusive with each other and creates a helper CompositeNode
that is unnamed, of type Disjunction and represented by a ‘•’ symbol.

n1

n2

e12

n3

e13

(a) Original Tree - Conjunction

n2

e12

n3

e13

n1

(b) Tree after TreeAnno-
tator execution - Disjunc-
tion

Figure 4.4: Conjunction to Disjunction node annotation from TreeAnnotator

In a more complex example, let us examine the case of node n1, when it has the following
relations with nodes n2···7: r1(n1, n2), r2(n1, n3), r2(n1, n4), r3(n1, n5), r3(n1, n6), r3(n1, n7).
Let us assume that multiple instances of relations r2 and r3 are exclusive with each other,
i.e. n1 can depend only on n3 or n4 for r2 and only one of n5, n6, n7 for r3. TreeAnnotator
should create two helper Disjunction nodes, one with nodes n3 and n4 as its children and

39

one with nodes n5, n6 and n7 as its children nodes. The two aforementioned helper nodes
and node n2 should be places as children of node n1. This is illustrated in figure 4.5.

n1

n2

r1

n3

r2

n4

r2

n5

r3

n6

r3

n7

r3

(a) Original Tree - Conjunction

n3

r2

n4

r2

n5

r3

n6

r3

n7

r3

n1

n2

r1

(b) Tree after TreeAnnotator execution - Disjunc-
tion

Figure 4.5: Conjunction to Disjunction node annotation from TreeAnnotator - Complex
Example

Next section will try to explain the aforementioned algorithm 1 by providing examples
of tree generations from multi-graphs.

4.4.2 Tree Generation Examples

This section will try to explain the process of the goal tree generation, by using examples.
First, three examples of simple cases will show how strategies are attached to dependency
tree. Then, complete examples will be given to demonstrate the generation of a tree from
a multi-graph of 10 nodes.

Simple Cases

Antisymmetric Relation. As a first simple example, let us consider a simple software
system that consists of two components, n1 and n2. The two components relate with each
other with the antisymmetric relation r1, r1(n1, n2). The multi-graph for such a system
can be seen in figure 4.6a. The resulting tree can be seen next to it, in figure 4.6b. There is
only one edge from node 1 to node 2. The rectangle named “S1” is the VerificationPolicy-
ControlStrategy object attached to node n1 (which depends on node n2). Additionally, the

40

rectangle named “P1” is the VerificationPolicy attached to the aforementioned strategy
object. In this simple case there is only one VerificationPolicy attached to a Unidirectional
strategy. This policy will check for the dependency of node 1 on node 2.

N1

N2

e1:r1

(a) Graph

N1

N2

e1:r1

S1 P1

(b) Tree

Figure 4.6: Multi-Graph and derived tree for system with one antisymmetric relation

Symmetric Relation. As a second example, let us consider the same simple software
system with the two components. The only thing that differs from the previous case is that
the two components are connected with a symmetric relation r2, r2(n1, n2). In this case, the
VerificationPolicyControlStrategy should maintain a link between the “straight” (n1 → n2)
and the “opposite” (n2 → n1) VerificationPolicy objects. The multi-graph and the result-
ing tree in this case are illustrated in figures 4.7a and 4.7b, respectively. It is worth to
note that in the case of symmetric relation there are two VerificationPolicyControlStrategy
objects created, one for node 1 and one for node 2. VerificationPolicyControlStrategy “S1”
that belongs to node 1 associates with VerificationPolicy “P1” which checks the depen-
dency of node 1 on node 2. It also associates with VerificationPolicyControlStrategy “S2”,
whose attached VerificationPolicy “P2” is responsible to check the dependency of node 2
on node 1 (the “opposite”). The exact opposite situation is true for VerificationPolicy-
ControlStrategy “S2” which has VerificationPolicy “P2” as the “straight” one, and “P1”
as the “opposite”. Note: Dotted lines in figure 4.7b depict opposite association between
two Bidirectional VerificationPolicyControlStrategy objects; see figure 4.2.

41

N1

N2

e1:r2

(a) Graph

N1

N2

e1:r2

S1 P1

S2 P2

(b) Tree

Figure 4.7: Multi-Graph1 and derived tree for system with one symmetric relation

Transitive Relation. The third simple example involves a system whose components
all relate via a transitive dependency. The system consists of four components that all re-
late with each other with the transitive relation r3, as shown in figure 4.8a. The traversal
of this multi-graph results in the tree shown in figure 4.8b. The notation for this exam-
ple is a little different from the previous figures, because of its complexity. For example,
VerificationPolicyControlStrategy “S12” refers to the dependency that node 1 and node 2
have. Furthermore, links between nodes and policy/strategy objects are not shown, but
each strategy/policy bundle corresponds to the node in the same height in the figure, e.g.
“S13” and “S34” belong to node n3. It is worth noting that there are some VerificationPol-
icyControlStrategy and VerificationPolicy objects like “S13” and “P13” refer to imaginary
edges that can be found in the transitive closure (e.g. node 1 and node 3 are not connected
in the multi-graph or tree, but they relate because of the transitivity of the relation r3).

42

N1

N2

e1:r3

N3

e2:r3

N4

e3:r3

(a) Graph

null

null

1

2

e1:r3

S12 P12

S23 P23

3

e2:r3

S13 P13

4

e3:r3

S34 P34

S14 P14 S24 P24

(b) Tree

Figure 4.8: Multi-Graph and derived tree for system with one transitive relation

Reflective Relation. The forth example involves a software component which has a
dependency on itself. An example of such a dependency is a recursive call. As seen in
figure 4.9a, component 1 has a recursive relation with itself, r4. The tree generated in
this case is similar to the one illustrated in figure 4.9b. The attached VerificationPolicy-
ControlStrategy is Unidirectional and contains the proper VerificationPolicy to check the
recursive call (or the reflective relation, for that matter).

43

1 e1:r4

(a) Reflective Relation -
Graph

1 e1:r4S1 P1

(b) Reflective Relation - Tree

Figure 4.9: Multi-Graph and derived tree for system with one reflective relation

Complete Tree Generation Example

Previous section illustrated the simple cases of tree generation when the system contains
only one relation and there are a few (2 or 4) components. This section will provide a
complete example of tree generation from a multi-graph. The setting for this example is
as follows.

Let us assume a hypothetical software system S which consists of ten components,
C1, C2, . . . , C10. The types of dependencies that components of this software system can
have are six and can be found in table 4.1. There are two symmetric relations (r1 and r2),
two transitive relations (r3 and r4) and two antisymmetric relations (r5 and r6). Addition-
ally, the dependency multi-graph for the aforementioned hypothetical software system is
illustrated in figure 4.10.

In this example, algorithm 1 is called with the same multi-graph of figure 4.10, node
n2 and the relation set R = r2, r4, r6 as the input. The output in this case is illustrated in
figure 4.11.

For figure 4.11 only the strategies are presented and the corresponding policies attached
to it are not illustrated, but they exist in the actual model. Each strategy is named after
the source and target node in the multi-graph of figure 4.10 as S{X}−{Y }. For example,
VerificationPolicyControlStrategy named S6−7 refers to the dependency that nodes 6 and
7 have and is modelled with edge e7. If there are more than one VerificationPolicyControl-
Strategy with the same source and target nodes, then a symbol is appended to the name,
for illustrative purposes. This happens with nodes 2 and 6. They relate directly via edge

e6, but also indirectly via the transitive closure of the path n2
e11−−→
r4

n5
e12−−→
r4

n6. Therefore,

the second relation is named S2− 6a.

The VerificationPolicyControlStrategy objects are attached to the nodes in the same
“row”. If it is not obvious from the figure, then arrows connect the VerificationPolicy-
ControlStrategy object with the corresponding node. This is done for nodes n7 and n10.
Furthermore, adjacent VerificationPolicyControlStrategy objects denote that they are part

44

�� ��
�����

��

�����

��

������

��

��	���

�

�
���

�����

��

�����

��	

�����

������

��

������

�����

�

����������

����������

Figure 4.10: Dependency Multi-Graph for the “complete” example

45

Table 4.1: Relations used for the tree generation examples

Relations
Name Property
r1 Symmetric
r2
r3 Transitive
r4
r5 Antisymmetric
r6

of the list, e.g. S2-7, S5-7 and S7-8 they are all part of the Linked VerificationPolicyCon-
trolStrategy list for the transitive closure of relation r4. S5-7 is the “next” VerificationPol-
icyControlStrategy of S2-7, and the “previous” of S7-8 etc.

This example contains examples from all three major categories of relation types be-
tween nodes. VerificationPolicyControlStrategy S6 − 9 is Unidirectional because of the
antisymmetric nature of relation r6. There are two Bidirectional VerificationStrategyCon-
trolPolicy objects, namely S6 − 10 and S10 − 6. The reason for that is the dependency
between nodes n6 and n10 via the edge e12. The relation modelled with this edge is r2 and
according to the table 4.1, relation r2 is symmetric.

Additionally, here is a big linked list of VerificationPolicyControlStrategy objects. This
is a result of the path linked with the transitive relation r4, n2

e11−→
r4

n5
e12−→
r4

n6
e7−→
r4

n7
e8−→
r4

n8
e9−→
r4

n10. The aforementioned lined list contains all the implicit and explicit relationships

that are found in the transitive closure of the path.

46

Dependency Tree Strategies/Policies

n2

n5

e11:r4

n6

e6:r4

n6

e12:r4

n7

e7:r4

n9

e15:r6

n10

e13:r2

n8

e8:r4

n10

e9:r4

S2-6a S6-7

S2-7 S5-7 S7-8

S6-9S6-10

S10-6

S2-5

S5-6 null

S2-6

S2-8 S5-8 S6-8 S8-10

S2-10 S5-10 S6-10a S7-10

null

Figure 4.11: Resulting dependency tree for the “complete” example

47

Chapter 5

Dependency Analysis

Chapters 3 and 4 explained how the proposed framework is structured and how it models
dependencies between the artifacts of a software system. This chapter discusses how this
dependency modelling can be leveraged to check consistency of maintenance operations
(artifact update).

Generally the process of the dependency analysis consists of two steps. The first step
is to identify the affected portion of the dependency tree model in the event of a change
in the software system. During this step, the framework decides which policies should be
triggered in order to verify dependencies that are possibly affected by the aforementioned
change. Based on the type of the VerificationPolicyControlStrategy objects of the portion
that is changed, an appropriate number of policies is triggered and put in the work-list.

The second step is to trigger the appropriate sensors or artifacts that have the ability
to verify or deny the policies in the current work-list. In general, this process is handled
by the Policy Manager and the Monitoring Subsystem. Policy Manager guides the process
of the policies verification, while Monitoring Subsystem leverages its sensors to feed the
framework with information that can help the verification process.

This chapter presents the algorithms associated with the aforementioned steps and gives
an example of their execution, based on the hypothetical software system of chapter 4.

48

5.1 Dependency Tree Analysis

5.1.1 Policy Triggering

The approach that the framework follows to trigger new policies to be verified is very
simple. As mentioned earlier in this text, nodes of the dependency tree denote artifacts of
the software system and edges dependencies between these artifacts. Upon the update of
one artifact, the framework identifies the node of the dependency tree that was changed.
Afterwards it gathers all its incoming edges, i.e. all the components that depend to it, and
all the VerificationPolicy objects attached to it, i.e. all the dependencies the changed node
has to other nodes/components. For each incoming edge there are three possibilities, based
on the type of the relation that the edge models.

Antisymmetric: When an edge is antisymmetric, then only one policy is triggered, the
one that verifies the dependency between the source and the target node.

Symmetric: When an edge is symmetric, then the verification strategy assures that there
will be two policies triggered, one to check the dependency of the source node to the
target node, and one for the opposite dependency.

Transitive: As mentioned in chapter 4, transitive relations are all linked into one doubly-
linked list of verification strategies. If an incoming or outgoing edge of the changed
node belongs into such a nested strategy, then the full path of the policy ”nest”
should be taken into account during the verification process.

Additionally, the framework triggers all VerificationPolicy objects that are attached to the
node which represents the component that changed. In this case, there is the additional
complexity of the Disjunction helper nodes that are children of the changed node. In such
a case, the framework should perform path selection, in order to choose which Verification-
Policy in a Disjunction to be triggered. Generally, this involves knowledge of the system
at runtime, like variable values. In algorithm 2, function pathSelection is responsible to
choose which VerificationPolicy to be triggered. Algorithm 2 depicts how VerificationPol-
icy objects are inserted into the framework’s work-list, when the component modelled by
node nc, has changed. The algorithm starts by triggering all the VerificationPolicy objects
attached to the node which models the changed component. In this case, if a Verification-
Policy (which is attached on a VerificationPolicyControlStrategy object) is on a Disjunction
helper node, then path selection is performed, to choose which one will be triggered. Oth-
erwise, the attached VerificationPolicy is triggered. Second part of algorithm 2 triggers

49

Algorithm 2 Policy Triggering

Input: Tree t, NodeChanged nc

Output: Correct VerificationPolicy Objects are triggered
1: for all VerificationPolicyControlStrategy v ∈ nc.getStrategies() do
2: if v belongsTo Disjunction node then
3: pathSelection(v)
4: else
5: triggerHelper(v)
6: end if
7: end for
8: for all edge e ∈ (nc.incomingEdges) do
9: triggerHelper(e.getSourceNode())

10: end for

all the VerificationPolicy objects attached to parents of the “changed” node. Path selec-
tion in this case is not required, because the correct path is dictated by the “changed”
node. Algorithm 1 shows how triggerHelper function works in triggering the appropriate
VerificationPolicy objects, based on the type of the VerificationPolicyControlStrategy. In

Algorithm 3 Policy Triggering - Helper

Input: VerificationPolicyControlStrategy v
Output: Trigger VerificationPolicy objects

1: if v = Unidirectional then
2: trigger(v.getPolicy())
3: else if v = Bidirectional then
4: trigger(v.getPolicy())
5: trigger(v.getOpposite().getPolicy())
6: else if v = Linked then
7: triggerTransitive(v)
8: end if

case of line 1, only the VerificationPolicy attached to the argument VerificationPolicyCon-
trolStrategy is triggered. In case of a bidirectional VerificationPolicyControlStrategy as in
line 3, then both the VerificationPolicy attached to it and the one attached to the “op-
posite” VerificationPolicyControlStrategy are triggered. Function triggerTransitive, in the
block of line 6, is responsible for identifying and triggering all the policies inside the path of
the linked strategy. In algorithm 4, function trigger(V erificationPolicyControlStrategy)

50

Algorithm 4 Transitive Trigger

Input: VerificationPolicyControlStrategy vcontrol(of type “Linked”)
Output: All appropriate policies are triggered

1: vprevious ← vcontrol
2: {Add all previous strategies}
3: while (vcurrent = vprevious.getPrevious) 6= null do
4: trigger(vcurrent)
5: vprevious ← vcurrent
6: end while
7: trigger(vcontrol)
8: vprevious ← vcontrol
9: {Add all next strategies}

10: while (vcurrent = vprevious.getParent) 6= null do
11: trigger(vcurrent)
12: vprevious ← vcontrol
13: end while

is responsible to add the argument policy to the work-list in the blackboard component.
The algorithm has two parts, one traverses all policies backwards until a null “previous”
is found and triggers all the policies found. The second part traverses all the policies for-
wards, triggering all “next” policies. It is worth noting that there should not be duplicates
of the policies in the blackboard’s work-list. This can be guaranteed by using appropriate
data structures that do not allow duplicates.

Policy Triggering Examples

The functionality of the two aforementioned algorithms will be demonstrated by using three
examples all based on the example multi-graph and dependency tree of section 4.4.2. The
multi-graph of that examples is illustrated in figure 4.10 and the derived tree in figure 4.11.

Example 1. For the first example the case of an update of the node 9 will be discussed.
In the event that node 9 changes, the Policy Manager component will trigger the correct
policies using algorithm 2. Node 9 does not depend on other components (no outgoing
edges from it in figure 4.11), but Node 6 depends on it, as modelled by the e15 edge.
Algorithm 2 will take into account the incoming edge to node 9 and it will trigger the
related VerificationPolicy P6-9, that is attached to the VerificationPolicyControlStrategy

51

object S6-9. Figure 5.1 show the changed node in red and the triggered policies/strategies
in green. Because relation that relates nodes 6 and 9 is r6 and antisymmetric, the Verifi-
cationPolicyControlStrategy is Unidirectional and the triggered Policy is one.

Example 2. For the second example the case of an update of node 10 will be presented.
Node 10 relates to node 6, as seen by edge e13, via the Symmetric Relation r2. As a result
the VerificationPolicyControlStrategy objects attached to nodes 6 and 10 are Bidirectional
and connected with each other. The update of node 10 will trigger both the Policy objects
attach to the two aforementioned VerificationPolicyControlStrategy objects, as seen in
figure 5.2. The framework will understand that VerificationPolicyControlStrategy S10-6
is Bidirectional and will traverse its “opposite” S6-10. Finally, there will be two Policy
objects triggered, P10-6 for the dependency of 10 on 6 and P6-10 for the dependency of 6
on 10.

Example 3. The third example for this section will demonstrate the case when a node
who relates on other nodes via a Transitive Relation is updated. As figure 5.3 depicts, if
node 5 changes due to a maintenance operation, then the corresponding Policy attached to
the VerificationPolicyControlStrategy object S5-6 must be triggered. This Policy verifies
the relation that node 5 has with node 6 based on edge e12 and Relation r4. Because r4
is Transitive, the corresponding VerificationPolicyControlStrategy is of type Linked. The
framework will traverse all the previous and next VerificationPolicyControlStrategy objects
in the doubly linked list and will trigger all the attached policies. This will guarantee that
there is no transitive dependencies that are not checked upon the update of node’s 5
component.

Example 4. The last example for this section will demonstrate how pathSelection func-
tion works. This example assumes a software system with four nodes, n1, n2, n3 and n4

that relate with each other with relations r1(n1, n2), r2(n1, n3) and r3(n1, n4), where at
each point in time only one of the relations of n1 to nodes n3 and n4 can be active. This
is why the example assumes that relation r2 is an invocation relation and the code of
the component that node n1 models, looks like in figure 5.4. Obviously, this system will
be modelled by a dependency tree where there will be a Disjunctive helper node with
n3 and n4 as its children and this helper node, along with node n2 will be children of the
Conjunctive node n1. This example will demonstrate two cases.

52

Dependency Tree Strategies/Policies

n2

n5

e11:r4

n6

e6:r4

n6

e12:r4

n7

e7:r4

n9

e15:r6

n10

e13:r2

n8

e8:r4

n10

e9:r4

S2-6a S6-7

S2-7 S5-7 S7-8

S6-9S6-10

S10-6

S2-5

S5-6 null

S2-6

S2-8 S5-8 S6-8 S8-10

S2-10 S5-10 S6-10a S7-10

null

Figure 5.1: Triggering an antisymmetric relation

53

Dependency Tree Strategies/Policies

n2

n5

e11:r4

n6

e6:r4

n6

e12:r4

n7

e7:r4

n9

e15:r6

n10

e13:r2

n8

e8:r4

n10

e9:r4

S2-6a S6-7

S2-7 S5-7 S7-8

S6-9S6-10

S10-6

S2-5

S5-6 null

S2-6

S2-8 S5-8 S6-8 S8-10

S2-10 S5-10 S6-10a S7-10

null

Figure 5.2: Triggering a symmetric relation

54

Dependency Tree Strategies/Policies

n2

n5

e11:r4

n6

e6:r4

n6

e12:r4

n7

e7:r4

n9

e15:r6

n10

e13:r2

n8

e8:r4

n10

e9:r4

S2-6a S6-7

S2-7 S5-7 S7-8

S6-9S6-10

S10-6

S2-5

S5-6 null

S2-6

S2-8 S5-8 S6-8 S8-10

S2-10 S5-10 S6-10a S7-10

null

Figure 5.3: Triggering a transitive relation

55

function n1(boolean b){

if(b){

n3()

}else{

n4()

}

}

Figure 5.4: Code for exclusive calls

Dependency Tree Strategies/Policies

n1

n2

r1

n3

r2

n4

r2

S1-2S1-3S1-4

(a) Example 4a - No path selection needed

Dependency Tree Strategies/Policies

n1

n2

r1

n3

r2

n4

r2

S1-2S1-3S1-4

(b) Example 4b - Path selection needed

Figure 5.5: Example 4 - Triggering dependencies near Disjunction nodes

Example 4a. In this example, the component that node n4 models, is changed. In
this case, there is no need to select a path, as it is straightforward that the VerificationPolicy
that verifies the relation r2(n1, n4) should be triggered, because this is the relation risky
to cause problem in the system. This is illustrated in figure 5.5a.

Example 4b. In this example, the component that node n1 models, is changed. In
this case, there has to be a path selection. This is why node n1, depending on the runtime
state of the system, depend on either node n3 or n4. Assuming that b = true, then the
VerificationPolicy that refers to the dependency of node n1 on node n3 should be selected.
This is illustrated in figure 5.5b. Of course, the VerificationPolicy that corresponds to the
relation of node n1 on node n2 should be triggered.

56

5.1.2 Verifying Triggered Policies

The previous section demonstrated how the framework identifies the correct policies to be
triggered, based on the verification strategies in the dependency tree. This section will
show how these policies are verified by the Policy Verifier sub-component of the Policy
Manager, shown in figure 3.1.

During the tree generation process, each node is attached with a number of Verification-
PolicyControlStrategy and VerificationPolicy objects, based on the types of the Relations
it has with other nodes. Each VerificationPolicy object is responsible for verifying the
dependency of the node to other nodes, i.e. the VerificationPolicy objects attached to each
node verify it’s “outgoing” relations. Modeller component adds the appropriate Verifica-
tionPolicy object during the tree generation phase. Based on the type of the Relation on
which it is attached, the VerificationPolicy object must execute different methodology on
verifying it. As a result, the VerificationPolicy object is designed using the Adapter De-
sign Pattern, [34], as illustrated in 5.6. Each VerificationPolicy object contains a reference
to objects of type PolicyAdaptee, which is the object that actually implements the algo-
rithm/methodology to perform the verification. Upon its initialization using the default
constructor, VerificationPolicy’s “adaptor” reference is bound to a specific PolicyAdaptee
instance which can verify the type of the Relation. When the policy is triggered, the
method performVerification is invoked to deny or verify the dependency. As depicted in
figure 5.6, this invocation actually invokes the performVerification of the PolicyAdaptee
object, therefore the correct verification code is executed. This allows for flexibility in the
framework’s implementation, as the VerificationPolicy object is not obliged to implement
the performVerification method and the actual implementation of the performVerification
method can be changed at runtime, simple by changing the “adaptor” reference in the
appropriate VerificationPolicy object.

The previous paragraph demonstrated the mechanics behind the verification of an in-
dividual VerificationPolicy. The purpose of the present chapter is to present how Policy
Manager component provides the verdict for a node update. Section 5.1.1 already demon-
strated which VerificationPolicy objects are triggered upon the update of a node. During
each update, Policy Manager keeps track which VerificationPolicy objects have been trig-
gered by assigning a key to all VerificationPolicy objects that relate to a specific node
update and instantiating a new Policy Verifier sub-component for each node update. All
the VerificationPolicy objects invoke their performVerification method and the boolean
result is populated to Policy Verifier sub-component. The later sub-component awaits for
all the triggered policies to populate their result. Afterwards, it provides its final verdict
based on the results it collects from the individual VerificationPolicy objects. If one or

57

+performVerification() : Boolean

PolicyAdaptee

-performVerification() : Boolean

VerificationPolicy

class VerificationPolicy{

private PolicyAdaptee adaptor;

public VerificationPolicy(PolicyAdaptee pa){

this.adaptor = pa;

}

private boolean performVerification(){

return this.adaptor.performVerification();

}

}

adaptor

11

Figure 5.6: VerificationPolicy Adapter pattern

58

more VerificationPolicy return false then the final verdict is that the node change is denied,
otherwise the change is verified.

Although the actual implementation is event-driven, algorithm 5 shows all the logic
behind the verification process of a node’s update. The algorithm’s input is the list of
triggered policies, as constructed by the Policy Trigger sub-component. The result is a
boolean value regarding the verification or denial of the node’s update.

Algorithm 5 Verification

Input: List of triggered VerificationPolicy objects, vplist
Output: Boolean verdict

1: for all VerificationPolicy vp ∈ vplist do
2: if vp.performV erification() =false then
3: return false
4: end if
5: end for
6: return true

5.2 Example

This section will present a complete example of policy triggering and policy verification.
This example assumes the same dependency tree as the examples of section 5.1.1 and that
nodes n5 and n9 are changed. Based on the previous discussion, the triggered policies can
be seen in figure 5.7. The policies triggered as a result of n5 node’s update are painted
in green and those that are affected by the change in node n9, in blue. In this example,
Policy Manager component would have instantiated two Policy Verifier objects, one for
the “green” VerificationPolicy objects and one for the “blue” VerificationPolicy objects.
Policy Verifier named PV1 is assigned for the “green” ones and Policy Verifier named
PV2 is assigned for the “blue” one. If the results of each individual VerificationPolicy
is like the ones stated in table 5.1, then PV1 will output false and deny the change of
node’s n5 component and PV2 will provide verdict true, verifying the change of node’s
n9 component.

59

Table 5.1: Results from VerificationPolicy objects of section’s 5.2 example

Policy Verifier VerificationPolicy Result

PV1

S2-5 true
S5-6 true
S2-6a true
S6-7 false
S2-7 true
S5-7 true
S7-8 true
S2-8 true
S5-8 true
S6-8 true
S8-10 true
S2-10 true
S5-10 true
S6-10a true
S7-10 true

PV2 S6-9 true

60

Dependency Tree Strategies/Policies

n2

n5

e11:r4

n6

e6:r4

n6

e12:r4

n7

e7:r4

n9

e15:r6

n10

e13:r2

n8

e8:r4

n10

e9:r4

S2-6a S6-7

S2-7 S5-7 S7-8

S6-9S6-10

S10-6

S2-5

S5-6 null

S2-6

S2-8 S5-8 S6-8 S8-10

S2-10 S5-10 S6-10a S7-10

null

Figure 5.7: Dependency Tree and triggered policies for section 5.2

61

Chapter 6

Case Studies

This chapter discusses the usage of the proposed framework and methodologies as presented
in chapters 3, 4 and 5, by applying them to a case-study pertaining to a SOA application
and by providing a performance evaluation.

The case study involves a web application designed and implemented using the Service
Component Architecture (SCA) paradigm. This case study will demonstrate how the
components of the framework presented in chapter 3 can be specialized for a specific type
of software systems and how the algorithms presented in chapters 4 and 5 can be leveraged
for dependency analysis in SCA systems.

This chapter will close by providing experimental results on the performance of the
algorithms mentioned in chapters 4 and 5. The results demonstrate that the proposed
methodology of this thesis can be applied in the maintenance phase of real-world applica-
tions.

The first section of this chapter discusses the internal structure and the characteristics
of the system under maintenance, as well as the extensions made to the framework to
incorporate the SCA system. Next section provides the case studies related to the SCA
system under maintenance and the chapter concludes with the performance measurements
for the policy verification algorithms.

6.1 System Under Maintenance

The sample SCA system that was chosen as being the system under maintenance is a
Java Travel Sample application, originally presented in [62], which is a part of the Apache

62

Figure 6.1: SCA Tours Travel Sample home page

Tuscany, SCA Java project, [63]. This travel sample application is a web based system
which allows users to search for flights, hotel bookings and car rentals and plan a trip,
either pre-packaged or customized by the user choosing the three aforementioned compo-
nents individually. It features an ‘html’ page where the customer can insert departure
and destination location for the flight. The system searches for available flights with the
specified criteria and proposes packaged trips or customized options to the user. The home
web-page of the sample application is illustrated in figure 6.1, while the SCA design of the
corresponding system is depicted in figure 6.2.

The SCA application consists of 8 composites and 15 components in total. These
composites and components are as follows:

1. fullapp-ui: This composite contains the front-end component of the system. It is
responsible for getting input from the user, initiating the search for the appropriate
trip(s), notifying the user of the search results and managing purchase of trips from
the user. It contains two components, TuscanySCAToursUI and SCATours.

(a) TuscanySCAToursUI is the user’s entry-point to the system, the web-page
shown in figure 6.2. It is implemented as a “widget”, i.e. via html and javascript

63

TuscanySCA
ToursUI TravelCatalog

TripBooking

ShoppingCart

Hotel
Partner

Flight
Partner

Car
Partner

Currency
Converter

Trip
Partner

Java

Java

Java

Java

Java

widget

(8080)

fullapp-coordination fullapp-packagedtrip

fullapp-bespoketrip

fullapp-currency

fullapp-shoppingcart

Java

Java

Java

CartStore

Java

>ls -lsa
SCATours

Java

LoggingQuoteCurrency
Code

TravelCatalog
Search

TripBooking

SCATours
Booking

SCATours
Cart

SCATours
Search

Search

Search

Search

Search

Book

Book

Book

Book

Currency
Converter

Cart
Updates

Cart
Initialize

CartStore

trip
Search

hotel
Search

flight
Search

car
Search

currency
Converter

trip
Book

hotel
Book

flight
Book

car
Book
car
Book

cart
Update

SCATours
Search

SCATours
Booking

SCATours
Cart

travelCatalog
Search

tripBooking

cartInitialize

payment

cartStore

cartCheckout

Cart
Checkout

(8085)

fullapp-ui

(8084) (8083)

(8086)

(8087)

 Payment
CreditCard
Payment

EmailGateway
Spring

Java

creditcard

Java

payment

Authentication

Payment

Email
Gateway

CreditCard
Payment

creditCard
Payment

email
Gateway

CustomerRegistry

Java
Customer
Registry

customer
Registry

transactionFee

(8081)

(8082)

Authentication

Figure 6.2: Travel Sample SCA design, [62]

64

code. This component has three references to the second component of the
fullapp-ui composite, SCATours. Being the front-end, TuscanySCAToursUI
component forwards user’s requests for travel search, travel booking and cart
management to the SCATours component which is responsible to call other
component to perform the three operations.

(b) SCATours is the component with the Java code that implements the logic behind
the user’s requests and data received from the html forms of widget component
TuscanySCAToursUI. It offers the three aforementioned services, by forward-
ing the invocations to the corresponding composite each time. This compo-
nent serves as an intermediate between the presentation of the data to the user
(TuscanySCAToursUI) and the components and composites that implement the
system’s business logic.

2. fullapp-coordination: This composite contains the appropriate components that
coordinate the process of booking a custom-made or pre-packaged trip for the user,
from search to actual booking. It consists of two components, TravelCatalog and
TripBooking.

(a) TravelCatalog component handles search requests from the user. It provides
one service, TravelCatalogSearch and references five other services. It refer-
ences the search services from TripPartner component (for pre-packaged trips)
and from HotelPartner, CarPartner and FlightPartner components (*Partner
components), for custom-made trips. It also references the CurrencyConverter
service for currency conversion during the display of the trip’s cost.

(b) TripBooking component handles booking requests from the user. It offers one
service, TripBooking, and references the Book services from the four aforemen-
tioned *Partner components, for booking a pre-packaged trip or a user-compiled
trip. It also references the CartUpdates service from ShoppingCart component,
to update the cart of the user with new trip bookings.

3. fullapp-packagedtrip: The composite which is responsible to search and book pre-
packaged trips for the user. It consists of only one component, the TripPartner
component.

(a) TripPartner. The component offers two services, search and book, for users to
search for or book pre-packaged trips, respectively.

4. fullapp-bespoketrip: The composite which is responsible to search and book indi-
vidual parts (flight,hotel,car) of a user-made trip. It consists of three components:

65

FlightPartner, HotelPartner and CarPartner. If users do not want a pre-packaged
trip, they use the services offered by this composite’s components to create their trip.

(a) FlightPartner. This component offers search and book services for flights.

(b) HotelPartner. This component offers search and book services for hotel book-
ings.

(c) CarPartner. This component offers search and book services for car rentals.

5. fullapp-currency: This composite is responsible for converting the currency of the
trip packages posted by the two aforementioned composites to the currency requested
by the user. It consists of only one component, the CurrencyConverter component.

(a) CurrencyConverter. This component offers a service with the exact same name.
The service takes an amount of money and converts it from its currency to a
desired currency. The desired currency is configured through the QuoteCurren-
cyCode property of the TravelCatalog component.

6. fullapp-shoppingcart: This composite handles and maintains the shopping cart of
the customer. It consists of the ShoppingCart and the CartStore components.

(a) ShoppingCart is the main component to handle updates, creation or removal
of shopping carts. It offers three services, CartInitialize, CartCheckout and
CartUpdate. The first service is invoked when the user initiates a search for
trips. The second is invoked when the user chooses to purchase the pre-packaged
or custom-made trip and the last one is invoked when there is an update to the
cart (user chose a new trip, removed a trip from the cart etc.). Furthermore,
the component references two services, CartStore to store the shopping cart of
a user and Payment to process the payment for a shopping cart the user wishes
to purchase.

(b) CartStore is a component that stores the shopping cart during the customer’s
browsing through the website. The life-cycle of a shopping cart that is stored in
the CartStore component starts when the user initiates a search for a trip. The
CartStore component follows the updates to the cart as the customer chooses
trips they want to add to the cart or remove from the cart. Finally, the life-cycle
of a shopping cart ends when the user decides to purchase the trips that exist
inside a cart.

7. payment: This composite is responsible for handling payment of the booked trips
from the user. It consists of three components, Payment, CustomerRegistry and
EmailGateway.

66

(a) Payment. This component handles payment processing from the customer. It
offers the payment service and references the creditCardPayment service to pro-
cess credit card payments, the CustomerRegistry service to register the user as
a customer and the EmailGateway service to e-mail the invoice to the customer.

(b) CustomerRegistry. This component is responsible to store customer information.
It stores names, e-mail addresses and credit card information for customers of
the SCATours system.

(c) EmailGateway. This component provides one service, the EmailGateway service
which sends e-mails to the customers about the status of their payment(s).

8. creditcard: This composite is responsible for “simulating” the processing of credit
card payments from the customer. It consists of one component, the CreditCardPay-
ment component.

(a) CreditCardPayment. This component offers the CreditCardPayment service
which authorizes or not a credit card payment, based on the information of
the credit card (type, number etc.). It is worth to note that the wiring of this
service with the reference from the Payment component must comply to the
authentication policy, so every communication of sensitive data (credit card) is
done only with legitimate parties.

The aforementioned discussion describes a system of approximately 3.2 KLOC found
in 80 Java classes contained in 40 Java packages (plus a few more written in other pro-
gramming languages, such as html or javascript). It functionality can be summarized
with the next steps:

(a) The user visits the web-site where the SCATours application resides. A cart is
initialized for the user.

(b) The user searches for departure and destination locations for the trip. The
search is forwarded to the TravelCatalog component which in turn forwards the
request to the *Partner components. Via a callback interface, TravelCatalog
informs the two components of the fullapp-ui composite of the results and the
web-page is refreshed.

(c) The user has the opportunity to select either a pre-packaged trip or make a
custom-made trip. When user hits the “book” button, TripBooking updates
the cart with the trips the customer wishes to purchase. The user is presented
with the final price and requested to confirm the purchase (checkout).

67

(d) The user can hit the check-out and when it does so the payment is processed, an
e-mail is send to the customer about the purchase, the TripBooking component
books the trip’s elements (by calling the appropriate “Book” services from the
*Partner components) and CartStore component removes the cart. The web-
page is refreshed and ready to get a new order from the customer.

The system that was briefly described above will be used as the system under maintenance
for the proposed framework and the proposed approach of this thesis.

6.2 Case Study - Web Services Dependency Analysis

on SCA Models

This case study views services offered by SCA systems as “first class citizens”. Nodes of the
dependency multi-graph and dependency tree will model services offered by the SCATours
web application, as seen in figure 6.2. The following dependencies between services were
chosen to modelled.

1. Synchronous Invocation, r1. This dependency denotes the case where a service has a
reference to another service and invokes the other service synchronously via a specific
interface. It is a transitive dependency. The VerificationPolicy objects that verify
this kind of dependencies checks the interface that the called method implements,
versus the actual call statement in the callee service (number and type of parameters,
type of result).

2. Asynchronous Invocation, r2. This dependency denotes the case where a service calls
asynchronously another service and implements a specific callback interface in order
to receive the result in the future. It is a transitive and symmetric dependency
(two strategies will be created for this type of dependencies). The VerificationPolicy
objects that verify this kind of dependencies will check the interface and the callback
interface as described for the r1 type of dependencies.

3. Binding, r3. This dependency denotes the binding of two services with each other. It
means if the protocol, address and port of two wired services match. For example, if
service s1 uses service s2, then service s1 should use the protocol service b implements
for receiving messages and know the address and port where s2 can be reached at.
It is an asymmetric dependency.

68

-intentName : String

IntentServiceInterface

ServiceWiringAsyncInvoke

-type : String

ReturnValue

PolicyIntentSyncInvoke

-type : String

Parameter

-URL : String

Address

-number : int

Port

Relation

0..*

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.3: Relations for Case Study

4. Policy Requirement, r4. This dependency models the case where a service requires
a specific SCA policy intent to be applied to the communication channel. This
is the case of the Payment service that requires authentication of messages. This
dependency is antisymmetric.

Those dependencies all extend the general Relation class defined in chapter 4. Figure 6.3
illustrates how this extension happens. SyncInvoke relation refers to the transitive relation
r1 and AsyncInvoke refers to relation r2. Those two relations associate with a ServiceIn-
terface object. The semantics of this object are straightforward, as it models the return
type and number of methods and parameters used for the invocation of a web service from
another. It is the information that will be passed to the VerificationPolicy objects after
the generation of the tree, in order to check the invocation dependencies. ServiceWiring
refers to r3 type of relations. As it checks for wiring of the services, it maintains the
information of URL Address and port where a service can be reached. This information
is used also for checking the service wiring by VerificationPolicy objects. Finally, Poli-
cyIntent refers to r4 type of relations and the associated Intent object keeps the name
of the required intent (also to be checked by the VerificationPolicy objects). For these
dependencies to be identified, the Modeller component of the framework must read the
appropriate xml files that configure the composites of the SCA application and extract

69

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://tuscanyscatours.com/"

name="fullapp-coordination">

<component name="TravelCatalog">

<implementation.java class="com.tuscanyscatours.travelcatalog

.impl.TravelCatalogImpl"/>

<service name="TravelCatalogSearch"/>

<reference name="hotelSearch">

<binding.ws uri="http://localhost:8086/Hotel/Search"/>

<callback>

<binding.ws name="callback"

uri="http://localhost:8084/Hotel/SearchCallback"/>

</callback>

</reference>

.

.

.

</composite>

Figure 6.4: Excerpt from the composite xml file of fullapp-coordination

the appropriate information from them. During the generation of the tree, the Modeller
component must read implementation information to attach the appropriate policies to
each node of the dependency tree. For example, in figure 6.4 an excerpt from the SCDL
file of fullapp-coordination composite is shown. It features the TravelCatalog component
and the TravelCatalogSearch service it offers. Furthermore it has a reference to the ho-
telSearch service with a web service binding to it and a callback interface, showing that
the invocation is asynchronous. The corresponding multi-graph will contain two edges
from node “TravelCatalogSearch” to node “HotelPartner/Search”, one edge modelling the
r2 dependency between these elements and one modelling the r3. The multi-graph of the
system with respect to the four aforementioned relations between web services can be seen
in figures 6.5, 6.6 and 6.7. The separation of the multi-graph was done for illustration
purposes. In figure 6.5 we can see that all search requests are asynchronous and the called
services use a callback interface to communicate the results back to the callee. Another
significant example is service Payment in figure 6.7 which requires authentication policy to
be applied and that is the reason why CartCheckout service and Payment service also de-
pend via a r4 relation. It is worth noting that although two nodes are connected only with

70

one line in these figures, they are actually multiple/parallel edges. To clarify this, let us
consider the Payment and CreditCardPayment services in figure 6.7. Although it appears
that two edges connect these two edges, the fact is that there are three edges that connect
those two services, each one for one relation from r1, r3 and r4. In the figure they appear
as one edge to avoid overwhelming the figure from redundant illustrative information.

SCAToursUI

SCAToursSearch

TravelCatalogSearch

r2,r3

TripPartner/Search

r2,r3

HotelPartner/Search

r2,r3

FlightPartner/Search

r2,r3

CarPartner/Search

r2,r3

CurrencyConverter

r1,r3

Figure 6.5: Multi-Graph for Case Study (1 of 3)

SCAToursUI

SCAToursBooking

TripBooking

r1,r3

CartUpdate

r1,r3

TripPartner/Book

r1,r3

HotelPartner/Book

r1,r3

FlightPartner/Book

r1,r3

CarPartner/Book

r1,r3

Figure 6.6: Multi-Graph for Case Study (2 of 3)

There are three interesting dependency trees that can be generated from the aforemen-
tioned multi-graph. The first tree relates to relations r1 and r2 and can be used to guide
checks of invocation/interface compatibility between the web services. The second tree

71

SCAToursUI

SCAToursCart

CartInit

r1,r3

CartCheckout

r1,r3

CartUpdate

r1,r3

CartStore

r1,r3

CartStore

r1,r3

Payment

r1,r3

CartStore

r1,r3

CustomerRegistry

r1,r3

EmailGateway

r1,r3

CreditCardPayment

r1,r3 r4

Figure 6.7: Multi-Graph for Case Study (3 of 3)

relates to relation r3 and can be used to check the wiring and binding of the web services
with each other. Finally, the third tree takes into account relation r4 and involves only the
nodes corresponding to services Payment and CreditCardPayment.

6.2.1 Invocation/Interface Dependency Process and Analysis

Process

In order for the framework to facilitate in dependency checking for web services the fol-
lowing process is followed:

1. Modeller component reads SCDL xml files and identifies dependencies between SCA
services offered by different components, allowing it to create the dependency multi-
graph.

2. Modeller generates the dependency tree based on the set of the aforementioned syn-
chronous and asynchronous invocation relations, r1 and r2.

72

3. Tree Annotator annotates disjunction nodes, as explained before.

4. Upon the change of an SCA component, the framework has to identify the list of
services that belong to it, in order to pinpoint the nodes that are changed from the
dependency tree and execute the algorithms mentioned in chapter 5. This process
can be seen in algorithm 6.

Algorithm 6 Identification of the changed SCA service nodes

Input: componentChanged: SCA Component
Output: Nodes corresponding to the change, n

1: serviceList = componentChanged.getServices()
2: n = new list of nodes
3: for Service:s in serviceList do
4: n.add(getCorrespondingNode(s))
5: end for
6: return n

Analysis

Taking into account only relations r1 and r2 from the aforementioned multi-graph, one
can check for invocation dependencies between web services, as the latter evolve through
maintenance procedures. For demonstrating this aspect of the case study, let us consider
the part of the SCA system that provides the functionality of searching and booking for
the trip. The two parts of the derived dependency tree with respect to this functionality
are illustrated in figures 6.8 and 6.9. Those two trees can be used by the framework to
guide the verification policy in the event that a component (and its offered services) gets
updated during the maintenance phase of SCA Travel Sample.

In figure 6.9, there is a Disjunction node, because each point in time the system cannot
book both a pre-packaged trip and a user tailor-made trip. The invocation of the book
service in TripPartner component and any of the book service in the other *Partner com-
ponents is done in different blocks of code and that is why the dependency tree of this
figure has this specific layout. Each node in the trees of figures 6.8 and 6.9 is attached with
two strategies, one for the transitive property of r2 and the other for the symmetric part
of it. As a result, when the component that offers a service gets updated, the strategies
that relate to all the search calls through the system, as well as the callback interface
calls, are triggered. The algorithm for identifying which policies to be triggered in a SCA

73

SCAToursUI

SCAToursSearch

TravelCatalogSearch

r2

TripPartner/Search

r2

HotelPartner/Search

r2

FlightPartner/Search

r2

CarPartner/Search

r2

CurrencyConverter

r1

Figure 6.8: Dependency tree for relations r1 and r2 of case study - (1 of 2)

component update is algorithm 6. For the component that is changed, the algorithm gets
all the services offered by it. Consequently, it identifies the node in the tree that each of
these services belong. It returns this list of nodes and the strategies of the nodes in the
returned list are triggered using the algorithm presented in chapter 5.

For example, if TravelCatalog component gets updated, then the framework matches
this update with the update of node TravelCatalogSearch, because this service is of-
fered by the aforementioned component. Based on the discussion of chapter 5, in the
event of an update of TravelCatalog component, the transitive closure of the paths SCA-
ToursSearch → TravelCatalog → *Partner/Search will be taken into account, along with
the dependency TravelCatalog → CurrencyConverter and the “opposite” dependencies
*Partner/Search → TravelCatalog.

6.2.2 SCA Policy dependencies analysis

As discussed earlier in this chapter, Payment service has to provide “authentication” of
the outgoing messages, because CreditCardPayment service requires it to protect sensitive
data of credit cards for the users. An excerpt from the composite xml file of the credticard
composite that shows this requirements can be seen in figure 6.10. This composite file de-
fines the creditcard composite with its internal CreditCardPayment component, as shown in
figure 6.2. The CreditCardPayment component offers one service, namely the CreditCard-
Payment and as seen in figure 6.10 it requires the“ authentication” intent. This service is
referenced by the Payment service of the Payment component. Therefore, the Payment
component should provide authenticated outgoing messages. This relation between the
two services is modelled via the r4 relation presented earlier in the present text.

The corresponding tree, that derives from the multi-graph of figures 6.5, 6.6 and 6.7

74

SCAToursUI

SCAToursBooking

TripBooking

r1

CartUpdate

r1

TripPartner/Book

HotelPartner/Book FlightPartner/Book CarPartner/Book

r1

bespoketirp

r1 r1 r1

Figure 6.9: Dependency tree for relations r1 and r2 of case study - (2 of 2)

with respect to relation r4 can be seen in figure 6.11. The dependency tree contains only
two nodes, the Payment and CreditCardPayment. The edge that connects them in this
case models only the relation r4. The VerificationPolicy objects that will be attached to
node Payment will have the responsibility to check whether the node Payment conforms
to the policy intent requirements of CreditCardPayment.

6.3 Performance

The previous sections outlined how the framework can be specialized and used for the
analysis of numerous dependencies SCA artifacts in a medium-range SOA application can
demonstrate. This section presents performance data obtained during experimentation
with the code that implements the algorithms presented in chapter 5. The reason behind
the decision of choosing those algorithms is their importance for the framework’s func-
tionality and the frequency that they are executed compared to the other functions of
the framework. It is obvious that the policy triggering and policy verification algorithms
presented in chapter 5 are the ones that will be executed more intensively than the others

75

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://tuscanyscatours.com/"

name="creditcard">

<component name="CreditCardPayment">

<implementation.java class="com.tuscanyscatours.payment.creditcard

.impl.CreditCardPaymentImpl" />

<service name="CreditCardPayment">

<interface.wsdl interface=". . ." />

<binding.ws uri=". . ." requires="authentication"/>

. . .

</service>

</component>

</composite>

Figure 6.10: Excerpt from creditcard.composite xml file

Payment

CreditCardPayment

r4

Figure 6.11: Tree derived for Case Study I, with respect to r4

during the framework’s lifetime. This is true as the multi-graph generation algorithms and
the dependency tree generation algorithm will be executed once, during the framework’s
initialization and in rare cases where a change to those two models needs to be done (e.g.
when the user of the framework wishes to take more dependency types into account).

6.3.1 Experimentation process and results

Using a set of randomly generated dependency trees we measured the performance of the
verification algorithm, in order to calculate the overhead it adds to the classic tree traversal
algorithms. A number of trees of various complexities were generated. Two parameters
were taken into account for generating the dependency trees: (a) number of nodes and

76

(b) number of strategies/policies attached per node. Those two factors are the important
ones that affect the system’s performance during policy triggering and verification. In the
simulation that took place, all the strategies/policies attached to all the nodes of the tree
were triggered and requested verification. In order to simulate the worst case scenario
for the framework’s performance, the strategies and policies were manufactured to always
return “true”, therefore the process of policy verification did not stop in the middle of
the tree’s strategies/policies to pinpoint a faulty dependency, but rather went through all
of them, that is the worst case scenario.

Figure 6.12 presents the graph of the time taken (in milliseconds) to verify all the
policies, versus the number of nodes in the tree. The figure contains four graphs, based
on the policies attached to each node for every simulation ran. The simulation ran for
dependency trees of 10 to 1000 nodes and 5, 10, 50, 100 policies attached per node. The
data from the simulation prove that the proposed approach can be used for dependency
verification in medium to large scale systems. The obtained data indicate that it takes less
than 10 seconds to complete the verification process for trees with up to 1000 nodes and 10
strategies/policies attached per node (approximately 10000 policies). This is a promising
result that the framework can work with much more complex SOA systems. The only
discouraging result is a “spike” in the case of 100 policies per node in a tree of 1000
nodes. This scenario involves 100000 policies to be triggered and verified which forces the
framework to allocate a huge amount of memory and use swap space heavily. Generally, the
complexity of the algorithm grows with the number of nodes in the tree and even more with
the number of policies attached to the nodes. Therefore, the proposed approach cannot be
used in a fine-grained manner (i.e. the trees cannot be abstract syntax trees where each
node is a program statement in Java), but it is applicable for interface compatibility and
configuration management analysis in modern, real-world web applications.

77

Figure 6.12: Simulation Data

78

Chapter 7

Epilogue

7.1 Summary

This thesis presented a methodology and a supporting framework to leverage component
dependency modelling as well as, system relation properties to guide the verification process
during the maintenance phase of a software application. Work found in the technical
literature reveals that components in large software systems can demonstrate a vast number
and type of dependencies with each other, yet those dependencies are usually modelled
uniformly. The proposed approach is to maintain two dependency models for the system,
a dependency multi-graph and a dependency tree. The former is used to model all types
of dependencies that software components in a system can have with each other. The
latter is a subset of the former and takes into account only types of dependencies that are
relevant in a specific software maintenance context, e.g. there is no need to check for data
dependencies when someone changed only the interface of a component. Based on this
concept, the thesis was founded in three pillars.

First, a generic architecture framework to incorporate the modelling and verification
algorithms was proposed. The architecture is hybrid, using elements from the Pub-
lish/Subscribe and Blackboard architectural styles. All the components of the framework
were designed to be as much independent as the framework’s functionality dictated. A
Blackboard component contains the two dependency models and the information on which
policies are triggered for verification. Other components can poll Blackboard to learn about
the state of the verification process and/or retrieve information from the dependency mod-
els. A PublishSubscribe component is used for components to subscribe to specific types
of events and to notify those components when such an event occurs. An EventHandler

79

component manages logging and recording of the events occurred in the system under
maintenance or in the framework. A PolicyManager component manages the verification
process and the triggering of specific policies in the context of a specific maintenance op-
eration in the system under maintenance. A Monitoring component is proposed last, to
facilitate information harvesting from the system under maintenance.

Second, the thesis presented two dependency models, namely the dependency multi-
graph model and the dependency tree model. The former is used to represent every possible
type of dependency that components of a specific type of software system can demonstrate.
For example, in an SCA application, the multi-graph might contain dependencies caused
by invocations of services from other services, by wiring the services together or by the
requirements in authentication or security in messages exchanged between services. The
dependency tree, on the other hand, reflects one view of the multi-graph and contains
only a specific set of relations that are relative to one type of dependency analysis to be
performed in the system under maintenance. For example, interface compatibility analysis
in the aforementioned system relates only to the first two types of dependencies and not
on the third one. Furthermore, an algorithm for generating dependency tree(s) from the
dependency multi-graph was presented, along with examples to illustrate its functionality.

Third, the thesis presented a methodology to trigger specific policies and verify confor-
mance with the corresponding dependencies, when a software system undergoes mainte-
nance operation. More specifically, in the event of an update or a change in a specific com-
ponent of the system, the algorithms presented can pinpoint the exact node that changed
in the two dependency models. Based on the verification policies attached to the nodes
of the tree and the types of the relations involved (transitive, symmetric, antisymmet-
ric, reflective), an algorithm to trigger the appropriate verification policies is proposed.
Consequently, the verification process is presented, up to the point where PolicyManager
component deducts the final “verdict” for the update operation.

Finally, the proposed approach has been evaluated for its performance and tractability.
First, the reference architecture was extended to accommodate all the necessary algorithms
and artifacts needed to perform dependency checking in the medium scale SCA system,
SCA Travel Sample. The former was checked for consistency of dependencies between
its web services and deployment configuration artifacts, during maintenance phase. The
complete process to adapt the framework and its underlying concepts to the case of SCA
systems was presented, along with the concrete example of the SCA Travel Sample. Ad-
ditionally, a simulation took place to evaluate the performance of the proposed approach
in systems with complexity of up to a thousand services and a few hundred components.

80

7.2 Conclusion

As a conclusion, the proposed approach showed that it is possible to maintain a “global-
view” of a wide-spectrum of dependency types among the components of a system, while
having the ability to extract only a subset of this “global-view” and perform dependency
checks during the maintenance phase. Being able to maintain a “global-view” model of
the system is quite important, as it enhances software comprehension and reduces the
time that developers or designers have to consume in understanding dependencies in large
software systems that consist of thousands of lines of code. However, dependency checking
requires detailed information on how the software code works. The proposed work is a step
toward this.

Additionally, the proposed approach demonstrated how the knowledge of generic types
of relations (symmetric, transitive . . .) can assist in preparing governing strategies for
the dependency verification process. The proposed approach combines the aforementioned
dependency models with a generic methodology to trigger dependency verification policies,
based on characteristics of dependencies that are not tied to a specific platform, technology,
programming language or type of software system under maintenance.

Furthermore, this thesis demonstrated how the framework can be specialized in order
to incorporate all the appropriate information needed for the verification process in the
case of SOA applications that are designed and developed under the SCA paradigm. The
basic framework was enhanced by an identification process (algorithm 6) to allow for the
population of a list of nodes corresponding to the changed SCA components. The proposed
framework is independent of such a selection process. This case study showed that the
proposed approach can function for specific type of software systems, with some effort
from experts in those types of systems.

Finally, the proposed approach can be used from software designers or developers that
require a system which provides “global-view” of the dependencies and has the ability to
guide the software verification process, or by software maintainers to perform “what-if”
analysis when a software maintenance induced change is planned or applied. The sole
requirement needed from the stakeholders of this approach is to substantiate the types
of relations that can exist in their software systems of interest and provide the appropri-
ate methodologies for building the dependency models and verifying the aforementioned
relations.

81

7.2.1 Limitations

As mentioned in chapter 6 there are some limitations in this proposed approach. The major
one is the combined number of nodes and policies the framework can handle. Figure 6.12
show that there is a “spike” in the performance of the triggering and verification of 100
policies per node and 1000 nodes. The implication of this result is that the approach would
be impractical to be used in a fine-grained level, for example where the dependency models
will try to model program statements as nodes of the multi-graph or the tree. Nevertheless,
in a more coarse-grained level, where the two dependency models will encode large software
components, the approach works fine and it is safe to state that it performs well.

Another limitation of the system is that it requires the user of the framework to extend
the “relation” class of objects in order for it to perform the identification and verification
process. Regardless the fact that this approach makes the framework much more ex-
pendable and ready to accommodate specific types of software systems, a list of common,
well-known and generic relation types could be given in advance, along with the relation
properties (symmetric, antisymmetric, transitive . . .) they have.

7.3 Future Work

There are different avenues this work can be improved or extended in the future.

First, one can extend the breadth of types of relations being considered, as well as
the scope of the analysis of such relations. In modern systems, there are also ways that
dependency types can interact with each other. For example the existence of one type
of dependency between two components might exclude the existence of another type of
dependency between the two same nodes. One type of dependencies might imply the
existence of another type of dependencies. Research on this area might extend the current
framework and its policy verification properties.

In the governance of the policy verification, a number of reasoning tools can be leveraged
for identifying the policies to be triggered and verifying the triggered policies. Such tools
might involve SAT solvers, caching of previous results for performance improvement and
using program slicing techniques to identify verification work-flows that can be executed
in parallel.

Finally, in the area of systems and tooling, effort can be put into integrating the afore-
mentioned framework and its extension for SCA systems to existing SCA runtimes such
as Apache Tuscany, OW2 Frascati and fabric3. Work that would extend the framework

82

into software paradigms such as Cloud Computing can be of significant value for providing
feedback for the proposed framework and applying the methodology to a wider range of
software products.

83

References

[1] Micha Antkiewicz and Krzysztof Czarnecki. Design space of heterogeneous synchro-
nization. In Generative and Transformational Techniques in Software Engineering II:
International Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised
Papers, pages 3–46. Springer-Verlag, 2008. 11

[2] Michal Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineering of
framework-specific modeling languages. IEEE Trans. Software Eng., 35(6):795–824,
2009.

[3] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D.T. Dupre.
Enhancing web services with diagnostic capabilities. In Web Services, 2005. ECOWS
2005. Third IEEE European Conference on, page 10 pp., nov. 2005.

[4] Y. Asnar, P. Giorgini, and J. Mylopoulos. Risk modelling and reasoning in goal
models. University of Trento, Tech. Rep. DIT-06-008, 2006.

[5] R. Aydogan and H. Zirtiloglu. A Graph-Based Web Service Composition Technique
Using Ontological Information. In Web Services, 2007. ICWS 2007. IEEE Interna-
tional Conference on, pages 1154–1155, july 2007.

[6] Siddharth Bajaj, Don Box, Dave Chappell, Phillip Hallam-Baker Maryann Hondo
Francisco Curbera, Glen Daniels, Chris Kaler, Dave Langworthy, Anthony Nadalin,
Nataraj Nagaratnam, Hemma Prafullchandra, Claus von Riegen, Daniel Roth, Jeffrey
Schlimmer, Chris Sharp, John Shewchuk, Asir Vedamuthu, and mit Yalinalp. Web
services policy framework 1.2, 2006. 9

[7] S. Basu, F. Casati, and F. Daniel. Toward web service dependency discovery for soa
management. In Services Computing, 2008. SCC ’08. IEEE International Conference
on, volume 2, pages 422–429, july 2008.

84

[8] Philip A Bernstein. Applying model management to classical meta data problems. In
Proc. Conf. on Innovative Database Research,, pages 209– 220, 2003. 11

[9] E. Bertino, E. Ferrari, and G. Guerrini. An approach to model and query Event-
Based temporal data. In Proceedings of the Fifth International Workshop on Temporal
Representation and Reasoning, page 122. IEEE Computer Society, 1998. 14

[10] Russel C. Bjork. An example of object-oriented design: An atm simulation, 2004.

[11] F. Budinsky, S.A. Brodsky, and E. Merks. Eclipse modeling framework. Addison-
Wesley Boston;, 2003. 6

[12] A. Chakrabarti, L. De Alfaro, T. Henzinger, M. Jurdziński, and F. Mang. Interface
compatibility checking for software modules. In Computer Aided Verification, pages
654–663. Springer, 2002.

[13] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-functional
requirements in software engineering. Kluwer Publishing, Dordrecht, 2000. 11

[14] Krzysztof Czarnecki. Variability modeling: State of the art and future directions. In
VaMoS, page 11, 2010.

[15] Ian J. Davis and Michael W. Godfrey. Clone detection by exploiting assembler. In
Proceedings of the 4th International Workshop on Software Clones, IWSC ’10, pages
77–78, New York, NY, USA, 2010. ACM. 11

[16] J. Davis. Open source SOA. Manning, 2009. 8

[17] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(3):319–349, 1987. 12

[18] B. Ganter, G. Stumme, and R. Wille. Formal Concept Analysis: foundations and
applications. Springer, 2005. 13

[19] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal reasoning tech-
niques for goal models. Journal on Data Semantics, pages 1–20, 2003.

[20] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented requirements analy-
sis and reasoning in the Tropos methodology. Engineering Applications of Artificial
Intelligence, 18(2):159–171, 2005.

85

[21] B. Gonzales Baixauli, P. Leite, and J. Mylopoulos. Visual variability analysis for
goal models. In Requirements Engineering Conference, 2004. Proceedings. 12th IEEE
International, pages 198–207. IEEE, 2005.

[22] Denis Gracanin, Shawn A. Bohner, and Michael Hinchey. Towards a model-driven
architecture for autonomic systems. Engineering of Computer-Based Systems, IEEE
International Conference on the, 0:500, 2004.

[23] T.J. Grose, G.C. Doney, S.A. Brodsky, and Inc Books24x7. Mastering XMI: Java
Programming with XMI, XML, and UML. John Wiley & Sons, 2002. 6

[24] John Grundy, John Hosking, and Warwick B. Mugridge. Inconsistency management
for Multiple-View software development environments. IEEE Trans. Softw. Eng.,
24(11):960–981, 1998. 14

[25] P. Hazy and R. E. Seviora. Automatic failure detection with separation of concerns.
In Availability, Reliability and Security, 2007. ARES 2007. The Second International
Conference on, pages 173 –181, april 2007. 14

[26] J.L. Hennessy and D.A. Patterson. Computer architecture: a quantitative approach.
Morgan Kaufmann, 2003.

[27] J.L. Hennessy, D.A. Patterson, and J.R. Larus. Computer organization and design.
Kaufmann, 1994. 12

[28] R. Holmes and D. Notkin. Identifying Program, Test, and Environmental Changes
That Affect Behaviour. In Proceedings of the International Conference on Software
Engineering (ICSE), volume 10, 2011.

[29] IBM. IBM Service Oriented Architecture (SOA). http://www-01.ibm.com/

software/solutions/soa/. [Online; Last accessed: April-2011]. 7

[30] I. Ivkovic and K. Kontogiannis. Tracing evolution changes of software artifacts through
model synchronization. 2004. 13

[31] Igor Ivkovic and Kostas Kontogiannis. Using formal concept analysis to establish
model dependencies. In ITCC (2), pages 365–372, 2005. 13

[32] Igor Ivkovic and Kostas Kontogiannis. A framework for software architecture refactor-
ing using model transformations and semantic annotations. In CSMR, pages 135–144,
2006.

86

http://www-01.ibm.com/software/solutions/soa/
http://www-01.ibm.com/software/solutions/soa/

[33] Igor Ivkovic and Kostas Kontogiannis. Towards automatic establishment of model
dependencies using formal concept analysis. International Journal of Software Engi-
neering and Knowledge Engineering, 16(4):499–522, 2006. 13

[34] R. Johnson, E. Gamma, R. Helm, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1:1–2, 1995. 33, 57

[35] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a QVT-like
transformation language. In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications, pages 719–720.
ACM, 2006. 6

[36] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence graphs
and compiler optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’81, pages 207–218, New York,
NY, USA, 1981. ACM. 12

[37] Terence C. Lau, Tack Tong, Ross McKegney, Kostas Kontogiannis, Igor Ivkovic, Philip
Liew, Ying Zou, Qi Zhang, and Maokeng Hung. Model synchronization for efficient
software application maintenance. In ICSM, page 499, 2004.

[38] Bixin Li. Managing dependencies in component-based systems based on matrix model.
In Proc. Of Net.Object.Days 2003, pages 22–25, 2003.

[39] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulos. On goal-based variabil-
ity acquisition and analysis. In Requirements Engineering, 14th IEEE International
Conference, pages 79–88. IEEE, 2006.

[40] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application
software maintenance. Commun. ACM, 21:466–471, June 1978. 1

[41] Lei Liu, Stefan Thanheiser, and Hartmut Schmeck. A reference architecture for self-
organizing service-oriented computing. In Proceedings of the 21st international con-
ference on Architecture of computing systems, ARCS’08, pages 205–219, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[42] Jim Marino and Michael Rowley. Understanding SCA. Pearson Education, 1 edition,
July 2009. 8

[43] Microsoft. Understanding service-oriented architecture. http://msdn.microsoft.

com/en-us/library/aa480021.aspx. [Online; Last accessed: April-2011]. 7

87

http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://msdn.microsoft.com/en-us/library/aa480021.aspx

[44] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst Ellmer.
Flexible consistency checking. ACM Trans. Softw. Eng. Methodol., 12(1):28–63, 2003.

[45] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Making inconsistency
respectable in software development. Journal of Systems and Software, 58(2):171–180,
September 2001.

[46] OASIS. Service Component Architecture Policy Framework Specification. http://

docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf,
November 2007. [Online; Last retrieved: April-2011]. 8

[47] OASIS. Service Component Architecture Assembly Model Specification. http:

//docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf,
January 2011. [Online; retrieved: April-2011]. 8

[48] Object Management Group. Meta Object Facility. http://www.omg.org/mof/. [On-
line; Last accessed: April-2011]. 6

[49] Object Management Group. Unified modelling language. http://www.uml.org/.
[Online; Last accessed: April-2011]. 6

[50] Abrehet Mohammed Omer and Alexander Schill. Dependency based automatic service
composition using directed graph. In Proceedings of the 2009 Fifth International
Conference on Next Generation Web Services Practices, NWESP ’09, pages 76–81,
Washington, DC, USA, 2009. IEEE Computer Society.

[51] A. Razavi and K. Kontogiannis. Pattern and policy driven log analysis for software
monitoring. In Computer Software and Applications, 2008. COMPSAC ’08. 32nd
Annual IEEE International, pages 108 –111, 28 2008-aug. 1 2008.

[52] Steven P. Reiss. Incremental maintenance of software artifacts. IEEE Trans. Softw.
Eng., 32(9):682–697, 2006. 14

[53] Mehrdad Sabetzadeh and Steve Easterbrook. View merging in the presence of incom-
pleteness and inconsistency. Requir. Eng., 11(3):174–193, 2006. 11

[54] Mehrdad Sabetzadeh, Shiva Nejati, Steve Easterbrook, and Marsha Chehik. Global
consistency checking of distributed models with TReMer+. In Proceedings of the 30th
international conference on Software engineering, pages 815–818, Leipzig, Germany,
2008. ACM.

88

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf
http://www.omg.org/mof/
http://www.uml.org/

[55] Rick Salay, John Mylopoulos, and Steve Easterbrook. Managing models through
macromodeling. In 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, pages 447–450, L’Aquila, Italy, 2008. 11

[56] Vivek Sarkar. A concurrent execution semantics for parallel program graphs and
program dependence graphs. In Proceedings of the 5th International Workshop on
Languages and Compilers for Parallel Computing, pages 16–30, London, UK, 1993.
Springer-Verlag. 12

[57] S.R. Schach. Object-oriented and classical software engineering. McGraw-Hill, 2002.
x, 1, 2

[58] Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos. Simple and Minimum-Cost
Satisfiability for Goal Models. In Anne Persson and Janis Stirna, editors, Advanced
Information Systems Engineering, volume 3084 of Lecture Notes in Computer Science,
pages 675–693. Springer Berlin Heidelberg, 2004. 10.1007/978-3-540-25975-6 4.

[59] Janusz Sosnowski and Marek Poleszak. On-line monitoring of computer systems. In
Proceedings of the Third IEEE International Workshop on Electronic Design, Test
and Applications, pages 327–331. IEEE Computer Society, 2006. 14

[60] N. Synytskyy, R.C. Holt, and I. Davis. Browsing software architectures with lsedit. In
Program Comprehension, 2005. IWPC 2005. Proceedings. 13th International Work-
shop on, pages 176 – 178, may 2005. 11

[61] J. Thai, B. Pekilis, A. Lau, and R. Seviora. Aspect-oriented implementation of soft-
ware health indicators. In Software Engineering Conference, 2001. APSEC 2001.
Eighth Asia-Pacific, pages 97 – 104, dec. 2001. 14

[62] The Apache Software Foundation. SCA Java Travel Sample 1.0. http://tuscany.

apache.org/sca-java-travel-sample-1x-releases.html, June 2010. [Online;
Last accessed April-2011]. xi, 62, 64

[63] The Apache Software Foundation. Tuscany SCA Java. http://tuscany.apache.

org/sca-java.html, June 2010. [Online; Last accessed April 2011]. 63

[64] A. van Lamsweerde. Goal-oriented requirements engineering a guided tour. In Re-
quirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium on,
pages 249–262, 2001.

89

http://tuscany.apache.org/sca-java-travel-sample-1x-releases.html
http://tuscany.apache.org/sca-java-travel-sample-1x-releases.html
http://tuscany.apache.org/sca-java.html
http://tuscany.apache.org/sca-java.html

[65] Shuying Wang and M.A.M. Capretz. A dependency impact analysis model for web
services evolution. In Web Services, 2009. ICWS 2009. IEEE International Conference
on, pages 359–365, july 2009.

[66] R. Weaver. The Business Value of the Service Component Architecture (SCA) and
Service Data Objects (SDO). IBM Whitepaper, November, 2005.

[67] J. Wu and R.C. Holt. Linker-based program extraction and its uses in studying
software evolution. In Proceedings of the International Workshop on Foundations of
Unanticipated Software Evolution, pages 1–15. Citeseer. 11

[68] S. Yacoub, B. Cukic, and H.H. Ammar. A scenario-based reliability analysis ap-
proach for component-based software. Reliability, IEEE Transactions on, 53(4):465–
480, 2004.

[69] Il-Chul Yoon, A. Sussman, A. Memon, and A. Porter. Prioritizing component compat-
ibility tests via user preferences. In Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 29 –38, sept. 2009. 13

[70] Il-Chul Yoon, Alan Sussman, Atif M. Memon, and Adam A. Porter. Direct-
dependency-based software compatibility testing. In ASE, pages 409–412, 2007. 13

[71] Yijun Yu, Nan Niu, Bruno Gonzlez-Baixauli, William Candillon, John Mylopoulos,
Steve Easterbrook, Julio Cesar Sampaio do Prado Leite, and Gilles Vanwormhoudt.
Tracing and validating goal aspects. In Requirements Engineering, IEEE International
Conference on, volume 0, pages 53–56, Los Alamitos, CA, USA, 2007. IEEE Computer
Society. 11

90

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Problem Description
	Thesis Contributions
	Organization of the Thesis

	Related Work
	Modelling Frameworks
	Modelling Software Systems with EMF
	SOA systems and SCA
	Systems Modelling and Modelling Management

	Software Maintenance
	Impact and Dependency Analysis
	Model Driven Engineering for Software Maintenance
	Software Monitoring

	System Architecture
	Major Components
	Description of Components and Interfaces
	Blackboard
	Event Handler
	PublishSubscribe
	Monitoring Component
	Policy Manager
	Modeller

	Overall Process

	Dependency Modeling
	Dependency Multi-Graph Meta-Model
	Dependency Tree Meta-Model
	Traversal Policies
	Reflective
	Antisymmetric
	Symmetric
	Transitive

	Dependency Tree Generation
	Algorithm
	Tree Generation Examples

	Dependency Analysis
	Dependency Tree Analysis
	Policy Triggering
	Verifying Triggered Policies

	Example

	Case Studies
	System Under Maintenance
	Case Study - Web Services Dependency Analysis on SCA Models
	Invocation/Interface Dependency Process and Analysis
	SCA Policy dependencies analysis

	Performance
	Experimentation process and results

	Epilogue
	Summary
	Conclusion
	Limitations

	Future Work

	References

