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Abstract 

This research investigates the realization of parametric amplification in superconducting 

circuits and structures where nonlinearity is provided by Josephson junction (JJ) elements. 

We aim to develop a systematic analysis over JJ-based devices toward design of novel 

traveling-wave Josephson parametric amplifiers (TW-JPA). Chapters of this thesis fall into 

three categories: lumped JPA, superconducting periodic structures and discrete Josephson 

transmission lines (DJTL).  

The unbiased Josephson junction (JJ) is a nonlinear element suitable for parametric 

amplification through a four-photon process. Two circuit topologies are introduced to 

capture the unique property of the JJ in order to efficiently mix signal, pump and idler 

signals for the purpose of signal amplification. Closed-form expressions are derived for 

gain characteristics, bandwidth determination, noise properties and impedance for this kind 

of parametric power amplifier. The concept of negative resistance in the gain formulation is 

observed. A design process is also introduced to find the regimes of operation for gain 

achievement. Two regimes of operation, oscillation and amplification, are highlighted and 

distinguished in the result section. Optimization of the circuits to enhance the bandwidth is 

also carried out. 

Moving toward TW-JPA, the second part is devoted to modelling the linear wave 

propagation in a periodic superconducting structure. We derive closed-form equations for 

dispersion and s-parameters of infinite and finite periodic structures, respectively. Band gap 

formation is highlighted and its potential applications in the design of passive filters and 

resonators are discussed. The superconducting structures are fabricated using YBCO and 

measured, illustrating a good correlation with the numerical results.  

A novel superconducting Transmission Line (TL), which is periodically loaded by 

Josephson junctions (JJ) and assisted by open stubs, is proposed as a platform to realize a 

traveling-wave parametric device. Using the TL model, this structure is modeled by a 

system of nonlinear partial differential equations (PDE) with a driving source and mixed-

boundary conditions at the input and output terminals, respectively. This model 

successfully emulates parametric and nonlinear microwave propagation when long-wave 
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approximation is applicable. The influence of dispersion to sustain three non-degenerate 

phased-locked waves through the TL is highlighted. 

A rigorous and robust Finite Difference Time Domain (FDTD) solver based on the 

explicit Lax-Wendroff and implicit Crank-Nicolson schemes has been developed to 

investigate the device responses under various excitations. Linearization of the wave 

equation, under small-amplitude assumption, dispersion and impedance analysis is 

performed to explore more aspects of the device for the purpose of efficient design of a 

traveling-wave parametric amplifier. 

Knowing all microwave characteristics and identifying different regimes of operation, 

which include impedance properties, cut-off propagation, dispersive behaviour and shock-

wave formation, we exploit perturbation theory accompanied by the method of multiple 

scale to derive the three nonlinear coupled amplitude equations to describe the parametric 

interaction. A graphical technique is suggested to find three waves on the dispersion 

diagram satisfying the phase-matching conditions. Both cases of perfect phase-matching 

and slight mismatching are addressed in this work. The incorporation of two numerical 

techniques, spectral method in space and multistep Adams-Bashforth in time domain, is 

employed to monitor the unilateral gain, superior stability and bandwidth of this structure. 

Two types of functionality, mixing and amplification, with their requirements are 

described. These properties make this structure desirable for applications ranging from 

superconducting optoelectronics to dispersive readout of superconducting qubits where 

high sensitivity and ultra-low noise operation is required.   
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1 Introduction 

Chapter 1  

Introduction  

Due to the unique advantages such as ultra-low dissipation, high sensitivity and intrinsic 

accuracy that superconducting materials offer, they have found niche applications in 

instrumentation, standards, sensors and detectors. Certain applications such as axion 

detectors [1], radio astronomy amplification [2], nuclear magnetic resonance [3],[4] and 

quantum information processing devices require high frequency amplifiers with very low 

noise temperature.  

Recently, superconducting circuits have been one of the salient candidates for the 

implementation and realization of the quantum bits (qubits) which are the basis for 

quantum information processors whose operation is based on Quantum Electrodynamics 

(QED). Macroscopic electrical circuits face two related difficulties. First, they are strongly 

coupled to their environment and they do not behave quantum mechanically. Secondly, any 

measurement disturbs the quantum state associated with the qubit. However, the Josephson 

Junction (JJ) was demonstrated as a unique candidate to overcome these difficulties, since 

it remains both a non-dissipative and a nonlinear inductor at arbitrary low temperatures. 

Therefore, the future development of quantum information processing using 

superconducting circuits requires Josephson qubits with long coherence times combined 

with a high-fidelity read-out section. As a result, superconducting qubits become excellent 

test-beds for studying the fundamental properties of mesoscopic quantum measurement. As 

mentioned, one of the outstanding issues in superconducting qubit circuits is to read out the 

quantum state without introducing excessive noise. Such a read-out scheme requires speed 

(single-shot read-out), sensitivity and minimal disturbance to the qubit state.  

The best performance of a semiconductor amplifier to date is based on High Electron 

Mobility Transistor (HEMT) which operates at frequencies up to 500 GHz [5] and achieves 

noise temperatures as low as 1K when cooled down to liquid helium temperature [6]. 
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However, cooling to lower temperatures does not reduce the noise temperature further, as 

their noise performance is limited by heating of the electrons in the FET channel and 

recombination noise.  

In this regard, substantial progress has been recently achieved using alternative 

superconductive amplifiers embedded in a microwave on-chip transmission lines. They 

include superconducting cavity parametric amplifiers [7], [8], microstrip dc SQUID 

amplifiers [9],[6], Josephson bifurcation amplifiers (JBA) [10], and Josephson parametric 

amplifiers (JPA) [11],[12].  

The mechanism of amplification in dc SQUID amplifiers is based on the flux-to-voltage 

transfer function of the SQUID. The input signal is converted into the flux and coupled to 

the SQUID by a superconducting spiral input coil which is a  microstrip resonator above 

the dielectric layer on top of the square-washer SQUID to take advantage of the coil's 

capacitance. The current-and flux-biased SQUID produces an output voltage in response to 

a small input flux . The hysteresis in the JJs of the SQUID reduces the performance of the 

device; therefore a shunt resistor is added to remove the hysteresis effect. This resistor is 

the source of noise, which has been calculated in [13],[14].  

A Josephson bifurcation amplifier consists of a Josephson junction, which behaves as a 

nonlinear oscillator. The JBA is driven very close to the bifurcation point in order to switch 

between two states leading to amplification. The advantage of the JBA over the dc SQUID 

amplifier stems from the fact that no source of dissipation is involved in the latching 

mechanism. The JBA is a high-speed and ultra-low noise device for application such as 

readout of the superconducting qubits and microwave magnetometry [15]. In spite of these 

promising results, they suffer from two main disadvantages. As a consequence of their 

small dynamic range and narrow-band gain, they are well suited to amplify signals only in 

a narrow range in both power and frequency, limiting their applications. The JBA is a 

dispersive biastable detector[15], this limits its performance as a real amplifier .  

    Josephson parametric amplifier (JPA) is another alternative with different mechanism 

to realize an ultra-low noise amplifier. JPA is an ultra-low noise microwave amplifier and it 

has been operated with near quantum-limited sensitivity, less than half a noise above the  

quantum limit, and it can also used to squeeze both thermal and vacuum noise [11],[12].  
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As  parametric amplification in Josephson junction circuits and transmission lines is the 

main subject of this thesis, we devote the next section to explain this device.  

1.1 Josephson Parametric Amplifiers 

Due to inherent nonlinearities in the JJ-based circuits and their similarities to the nonlinear 

optical crystals, they are potentially suitable for performing nonlinear phenomena similar to 

ones observed in quantum optics, such as down-conversion and parametric amplification. 

The name parametric amplifier, in microwave context, has become associated with a class 

of amplifiers utilizing a nonlinear or time-varying reactance [16],[17], [18]. The 

semiconductor varactor diode with a nonlinear capacitance was the most widely used 

parametric amplifier and they are discussed at length in other texts [16],[17].  

Travelling wave amplifier is the distributed version of the cascade amplifier. As the 

name implies the stages of amplifiers are distributed uniformly along a specific waveguide 

to increase the amplitude of the signal during its travelling. In this case, usually a set of 

three electromagnetic waves exist in which nonlinear interactions between any two of them 

resonantly force the third. These three phase-locked waves (or signals) which are referred 

to as resonant triad are associated with the nonlinearities in the system. In the language of 

quantum optics, when the media has a quadratic nonlinearity, such an interaction is usually 

called three photon process [19]. Depending on the nonlinearity of the medium, there is a 

resonant condition between the wavevectors of triad as well as their frequencies. In a 

lossless nonlinear media, the power associated with each of triad satisfies the Manley-Rowe 

relations [16]. This behavior occurs in any parametric amplifier such as optical, mechanical 

and microwave waves [16],[19],[20]. The nonlinearly-coupled equations for the amplitudes 

of the three waves can be driven based on slowly varying wave amplitude [21]. 

In other words, power is supplied by the large pumping signal at frequency    (pump) 

and a small amplitude signal at frequency    (signal) is also applied simultaneously to the 

same port, and the output of the amplifier is the amplified signal at frequency    and also 

another extra output (idler) at a linear combination of frequencies    and    depending on 

the type of nonlinearity which is denoted by   . In the so-called four-wave or four-photon 

arrangement, the frequencies are related by          . In the three-wave or three-
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photon operation, the relation between the frequencies is         . The possible types 

of interaction fall into the categories: parametric amplification and parametric frequency 

conversion. The idler signal is undesirable in amplifiers, but it is the center of attention in 

the case of down-conversion which is realized in mixers.  

To the best of our knowledge, the only theoretical explanation for Josephson parametric 

amplifier (JPA) is done in frequency domain [22], so we are planning to continue and 

develop the theoretical framework of parametric amplification in an array of Josephson 

junctions for traveling microwave signal in a very systematic manner, both in frequency 

and time domain, leading to a precise design rule to be utilized for integration with either 

superconducting qubit or the superconductive single photon detector (SSPD). 

1.2 Thesis Contribution and  Organizations 

Although a number of experiments in all varieties of JPAs have been reported, but 

theoretical part was poorly raised by previous research endeavors. Indeed, this PhD 

orientation is aimed to provide a systematic approach for the concept of parametric 

interaction in Josephson junction circuits and transmission lines in order to be used in 

specific applications through some proposed design rules. Hence, we conduct this research 

by inclusive study on parametric amplification in lumped and traveling-wave structures to 

provide a good opportunity to extend the scale of analysis, modeling and developing a set 

of design rules particularly for TW-JPAs application. By conceptual advances in this area, 

we come out at the end of this PhD program with some prototype designs that may be 

utilized in further research projects on related domains.  

The major contributions presented in this thesis are as follows and the references in this 

part are chosen from published papers of the author in his PhD program till time of the 

thesis writing.    

The theoretical framework based on the Manley-Rowe relationship is presented for the 

case of lumped JPA in full details and clarifications. This suggests two topologies, current- 

and voltage-based arrangement, for realization of parametric devices. Appropriate model of 

JJ is chosen and two systematic approaches are used to solve these parametric circuits. In 

first method, JJ is modeled by the simplified nonlinear equation. The circuit is solved and 
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satisfaction of Manley-Rowe is shown. In the second method, small-signal analysis are 

used which leads to a time-varying inductor [23]. Doing this method, all frequency 

components of signal and idler are captured but this method doesn't satisfy Manley-Rowe 

equation as pump's frequency components are not completely obtained. They are applied to 

both current- and voltage-based circuits and closed-form equations including voltage-

current relationship and device's figure of merits such as transducer power gain, input and 

output impedance, relative bandwidth and noise temperatures are derived and numerical 

results are displayed. The distinction between two regimes of operations, oscillation and 

amplifications are also highlighted [24].  

The frequency characteristics of linear microwave propagation in a periodic 

superconducting TL are studied in the next part and all aspects of microwave engineering is 

addressed. Due to the lack of availability of any fast CAD (Computer Aid Design) tool in 

accessible commercial software to account for superconductor plates in design process, a 

rigorous CAD tool is provided to find all distributed circuit parameters of superconducting 

TLs [25]. Although we restrict our attention to a specific type of periodic TL, we provide a 

general, systematic and accessible method of treatment that can be applicable to any 

linear/nonlinear and infinite/finite periodic waveguide by using transmission line theory in 

frequency domain. Concepts of complex propagation constant input impedance and 

scattering parameters of the linear infinite/finite periodic structure have been discussed. 

Both linear infinite and finite periodic structures have been analyzed in closed form, and 

the solution has been expressed in a tidy and succinct form [26], [27] . Finally, the 

prototype of this device is fabricated by YBCO and experimental results are compared with 

those of our simulations which demonstrates a good agreement.   

The nonlinear wave propagation in a series-connected Discrete Josephson Junction 

Transmission Line (DJTL) is investigated [28]. Having a significant number of junctions 

per wavelength, the discrete transmission line (TL) can be considered as a uniform 

nonlinear transmission line. The nonlinear wave equations are solved numerically by Finite 

Difference Time Domain (FDTD) method with mixed boundary conditions and based on 

the explicit Lax-Wendroff and implicit Crank-Nicolson schemes. Features and 

characteristics such as cut-off propagation, dispersive behavior and shock wave formation, 

which are expected from wave propagation through the nonlinear DJTL, are discussed in 
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this thesis  [29]. This nonlinear TL is proposed as a platform to investigate the aspects of 

traveling-wave parametric interaction and amplification. The dispersion analysis is made to 

ensure the existence of three non-degenerate time-harmonic waves interacting with each 

other through the phase matching condition which is imposed by the cubic nonlinearity 

associated with each junction. As a result, open stubs is periodically added in order to 

support phase-matching condition. Having weak nonlinearity and slow varying 

assumptions, we exploit the powerful perturbation theory with the multiple scale technique 

to derive the three coupled nonlinear partial differential equations to describe their spatial 

and temporal amplitude variations in this parametric interaction. Cases of perfect phase-

matching and slight mismatching are addressed in this work. The numerical analysis based 

on the spectral method in space and finite difference based on multistep Adams-Beshforth 

scheme in time domain are used to monitor the gain enhancement, superior stability and 

bandwidth improvement of the proposed structure. This structure can be used as a 

mesoscopic platform to study the creation of squeezed states of the microwave radiation. 

These properties make this structure desirable for applications ranging from 

superconducting optoelectronics to dispersive readout of superconducting qubits where 

high sensitivity, fast speed and low-noise operation is required.  

The outlook and some suggested areas of research are given in the last chapter to 

further develop upon the contribution.  
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2 Lumped Josephson Parametric Amplifiers 

Chapter 2  

Lumped Josephson Parametric 

Amplifiers 

2.1 Introduction 

Emerging applications of Josephson junction (JJ) devices in superconducting integrated 

circuits relies on its interesting quantum behaviors e.g. nonlinearity with ultra-low 

dissipation. The development in nanofabrication technology gives rise to the employment 

of JJs in qubit circuits, circuit cavity quantum electrodynamics and ultra-low noise 

electromagnetic radiation detectors, oscillators and amplifiers. Among these different 

devices, Josephson parametric amplifiers (JPA) were a topic of active research with a great 

interest in microwave applications in the 1960‘s and 70‘s [30], [17], [31], [32], [33], 

[22],[34], [35]. Early microwave solid state amplifiers were dominated by two-terminal 

devices such as varactor diodes where the parametric amplification stems from varactor‘s 

capacitance nonlinearity. Thus, the theory of parametric interaction including frequency 

conversion and amplification has been developed and fully studied [16], [36], [17], [30], 

[21], [37], [38], [39]. However, due to the development of high frequency semiconductor 

transistors, interest in parametric devices declined, and applications of this kind of devices 

have been merely limited to optical and terahertz devices where no transistor exists at this 

range of frequencies [19], [40]. Today, due to the inherent advantage of parametric devices 

particularly low-noise performance, they found a renewed interest in both semiconductor 

[41],[42],[43] and superconductor technologies [44], [12],[11], [8], [45].  

To the best of our knowledge, the first demonstration of JPA is experimentally reported  

by [31], [46], [32], [47],[34] for doubly and single degenerate mode of a single junction and 

theoretically followed by [48], [49] for a dc biased Josephson junction. Continuous 
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improvements were made by two-idler JPA with a SQUID configuration [47]. A neat 

configuration of an array of JJs over a microstrip transmission line was investigated in [22]. 

Progress was fuelled by introducing traveling-wave JPA in [50], [8], [11] to achieve a 

broadband distributed JPA. In addition to JPA in which the physics of amplification is 

based on the concept of negative resistance, different mechanisms for amplification have 

been also investigated which leads to the SQUID amplifiers [51],[14] and Josephson 

bifurcation amplifiers [44].     

In this chapter, we systematically analyze the parametric amplification in current- and 

voltage-based JJ circuits where a stable pump signal is used to amplify a low-power signal 

in the presence of JJ inductor nonlinearity. After reviewing the Manley-Rowe relation for a 

parametric process in section 2.2, the flux-based model of JJ is explained in section  2.3. 

The two circuit arrangements for Josephson parametric amplification, namely current- and 

voltage-based are introduced in section 2.4 and 2.5, respectively. Analysis of these circuits 

are performed and closed-form equations for the gain characteristics, bandwidth 

determination and noise temperature are derived. By proposing a design procedure for JJ 

parametric amplifier, we briefly carry out a numerical simulation of a current-based JPA 

based on a typical Aluminum JJ in section VI. 

2.2 Implementation of Manley-Rowe Relationship in JJ-

based Parametric Process 

Manley-Rowe relation concisely describes a parametric process between signal, pump and 

idler based on a lossless nonlinear element. It shows how their power magnitudes and 

transfer directions are changing. In fact, the Manley-Rowe relation is the manifestation of 

the energy conservation law for a classical or quantum parametric systems [16], [19],[52], 

[53].  

The Manley-Rowe relations are given in the form of a set of two following equations 

   
    

       

 

    

 

   

    (2.1) 
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   (2.2) 

where   and   are integers,         is the harmonic frequency generated by mixing 

two essential frequencies  and     represents the reactive power at this harmonic. This 

chapter is focused on the realization of a parametric process based on the inherent 

nonlinearity of JJ in current-based and voltage-based configurations as shown in Fig. ‎2-1 

(a) and (b), respectively. These circuits are referred to as typical Josephson parametric 

amplifiers, since they provide amplification of the signal in the load branch. Power is 

supplied by two sources, signal and pump, at the frequencies of    and   , respectively. 

Fig. ‎2-1 (a) depicts a signal, pump, idler and resistive load in series with the ideal band-pass 

filters, to make unwanted harmonics open-circuited, and all are connected in shunt with a 

basic Josephson junction which is treated as a lossless nonlinear inductor. However, in Fig. 

‎2-1 (b), all four essential parts of the circuit are connected in series with the JJ; in addition, 

filters are set in parallel with circuit components to short-circuit other harmonics generated 

by the nonlinearity associated with the JJ. Based on the Manley-Rowe equation, the 

parametric circuit can accommodate an unspecified number of idlers, however, in Fig. ‎2-1 

(a) or (b) only one idler at        harmonic is incorporated into the parametric design. 

Simple manipulation with the Manley-Rowe equations for the circuits in Fig. ‎2-1 gives the 

power gain and power added efficiency [54], [55] as  

   
    

   
   

  

   

  

   
 (2.3) 

     
        

  
 

  

   
 (2.4) 

where    ,     ,    and    are input-signal, output-signal, pump and idler powers, 

respectively. Equation (2.3) gives the maximum power gain possible in the parametric 

circuit. According to (2.3) the variation of the output-signal versus input-signal is 

illustrated in Fig. ‎2-2. As seen in this figure, the line never passes the origin in general; 

however, by choosing a resistive load (not reactive) and proper design of circuit 

components, particularly idler impedance and resonators, the parameter        might 

become independent of circuit variables, and equation (2.3) becomes constant over an 
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interval of     . Saturation effect is not seen in (2.3), as ideal models are used to describe 

the Josephson junction and resonators. 
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Fig. ‎2-1 Schematic of a general Josephson parametric amplifier: (a) current-based and (b) voltage-based JPA. 
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Fig. ‎2-2 Output-signal power versus input-signal power in a general parametric amplifier shows a jump 

(nonlinearity) in the gain formula.  
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Note that when no signal is applied to the circuit (     ), pump's photons cannot be 

broken into the idler and signal photons, as a result, the pump's power would be zero 

(    ) and the step seen in Fig. ‎2-2 does not appear. However, once the input signal is 

applied, this jump is observed. Moreover, in the presence of a white noise source in the 

circuit, its frequency component corresponding to    can be combined with the pump 

signal and break the pump's photons at the rate corresponding to               where 

   is the power available at the signal branch.  

Closer look at (2.3) shows that the higher gain can be achieved for the smaller input-

signal power. Thus, this type of amplifier has a better performance for much lower input 

power. This fact can be also inferred from Fig. ‎2-2, where a sharp step jump is observed at 

zero input-signal power. Therefore, this circuit at low input power acts like a detector rather 

than an amplifier.  

As the parametric process in an unbiased JJ is based on the four photon process, 

relationship           has to be satisfied. This implies that     in (2.4) is less than 

50% when         , and it is above the 50% when         . 

2.3 Flux-based Model of the Josephson Junction 

Before any parametric analysis, an appropriate JJ model is required to fully and accurately 

describe the nonlinear operation of the JJ. If the current running through the junction is less 

than its critical current    ), the junction can be represented by a nonlinear inductor 

[22],[56], [28] . The most familiar description of a nonlinear element for the purpose of 

circuit simulation is in terms of current-voltage characteristics that mathematically written 

in the form of         . To obtain such a relationship, the most fundamental description 

of the junction must be used as a starting point to avoid any possible mistake and 

unrealistic results. Thus, we employ the primary flux-current (   ) description of the JJ, 

equation (2.5), instead of using the inductance-current (   ) equation. In the flux-based 

model of JJ, the development begins by considering the JJ as a device whose flux is a 

function of the current   flowing through it, as given by  

                 
 

  
  (2.5) 
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where    is the critical current of the JJ,     is a linear inductance (zero-current) associated 

with the JJ defined by                and    is the flux quanta with the value of 

                    . Since the excitations are sinusoidal, we use the phasor 

notation in the form of 

       
 

 
           

                          (2.6) 

to study the steady-state behaviour of the circuit. Basically in (2.6),       is a typical 

circuit variable such as current, voltage, flux,...,    is the complex amplitude of      ,    

is the phase and index   stands for signal (  or 1), pump (  or 3) and idler (  or 2).  

2.4 Current-based JPA 

2.4.1 Circuit Arrangement 

Fig.  2-3 represents a circuit containing a JJ with three sections corresponding to the signal, 

pump and idler for the purpose of parametric amplification of the signal. Each signal, pump 

and idler sections have a voltage source and a simple ideal LC pass-band filter with the 

center frequency of    ,    and   , respectively. In the signal part of the circuit, the load 

impedance is chosen to be either    or   . Furthermore, having an auxiliary impedance 

provide more flexibility to adjust the input impedance in order to avoid possible instability.    
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Fig. ‎2-3 Schematic of the current-based JPA. The JJ with the pump circuit acts like a time-varying inductance. 
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2.4.2 Voltage-Current Relationship 

Using the node analysis at the point A in  

Fig. ‎2-3, the current       through the junction is found to be                        , 

where   ,    and    are currents through the signal, pump and idler in time-domain. 

Therefore, only three frequency components of    ,    and    can be sustained in the 

current through the junction. In order to avoid resistive channel of the JJ,  the total current 

      should be less than the critical current of the junction. As    consists of three 

components at three different frequencies and phases, this results in the condition of 

                  in frequency-domain, where     ,      and      are their corresponding 

maximum amplitudes. Then, these frequencies are mixed up due to the nonlinearity of the 

Josephson junction producing a voltage with all harmonics. Nevertheless, because of the 

filters in the circuit, only    ,    and    components of this voltage can be dropped on the 

signal, pump and idler branches to proceed the rest of the parametric interaction. To 

analyze the circuit, the JJ can be treated in two ways: as an independent nonlinear element 

or combined with the pump to introduce a time-varying reactance.  

Method 1: JJ as a nonlinear inductor 

The total current                        , which is less than the critical current of 

the JJ, has to satisfy equation (2.5), we expand the inverse-sinusoidal function in Taylor 

series about the zero and keep the first two polynomial terms to truncate the series and 

monitor the harmonic-mixing. Considering frequency relation of          , which is 

the result of cubic nonlinearity associated with the unbiased JJ, using phasor notation in 

(2.6), and defining    as a voltage on the JJ as a time-derivative of the flux, all lead to  

       
     

  
 

 

  
               

   

   
 
          

 
   (2.7) 

Using (2.6), complex amplitude of the signal (  ), pump (  ) and idler (  ) components 

of    in terms of the their associated complex currents   ,    and   , which all are shown in 

Fig. ‎2-3, are given by 

                     
  
 

   
 
  
   (2.8) 
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   (2.9) 

                     
    
   

 
  
    (2.10) 

Accordingly, the time-average real power with associated reference direction at the pair 

of signal, idler and pump sections are obtained by 

    
 

 
       

   
     

    
 

      
   

   
   (2.11) 

    
 

 
       

   
     

    
 

      
   

   
   (2.12) 

    
 

 
       

   
      

   
 

      
   

   
   (2.13) 

which certainly satisfies the Manley-Rowe equations. 

Method 2: JJ as a time-varying inductor 

Assuming that the pump current is larger than signal and idler currents, i.e.       

           , a Taylor series approximation about    can be made on (2.5) to conduct the 

small-signal analysis [23]. Thus, the voltage dropped on the junction is found by  

       
      

  
 

 

  
          

  
 
    

         (2.14) 

and the time-varying differential inductance is defined by  

 

         

  
 
    

 
   

       
  
  

 
 

     
  
  

 
 

             

  
(2.15) 

where      and    are the amplitude and phase of the pump current   . Since       is a 

periodic function with the period    , Fourier expansion can be applied on the       by 

                       

 

    

                      (2.16) 

The real-value parameters    and    are the first two Fourier terms of       which 

depends on the amplitude  pump current. They are calculated by closed-form equations and 

also polynomial approximation as follows [57] 
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      (2.17) 

 

    
    

 
 

 

  
     

 

 
     

    

   
  

 

 
   

     
 

 
   

 

  
      

(2.18) 

where   is the ratio of the pump's maximum amplitude to the critical current of the junction 

          ,   
 

 
    and   

 

 
    are the complete elliptic integral of the first and second 

kinds, respectively. The second term in the Taylor series of equation (2.14) is responsible 

for mixing term and provides power transferring between signal, pump and idlers. This also 

leads to the necessary condition of parametric amplification which is described by     

     , as pointed out before. Even though we have truncated the Taylor series in (2.14) 

for the purpose of small-signal analysis, the strength of this method lies on the fact that the 

second term in (2.14) contains all frequency components of    and    due to the 

nonlinearity in (2.14) and           relation. However, to find the exact voltage 

component at   , we need all other eliminated terms in Taylor series of (2.14) as they still 

generate    component based on          . This is the reason that powers calculated 

by small-signal analysis don't satisfy the Manley-Rowe relations. Therefore, the exact 

current-voltage characteristics at frequencies    and    of the parametric configuration in   

Fig. ‎2-3 can be presented in a linear matrix form  

  
      
  

     
   

      

      
  

      
  
     

  (2.19) 

where       ,       ,        and        are displayed in  

Fig. ‎2-3,           ,           
    ,            

     ,             and 

   is the phase of the pump current which can be set to zero as a reference for other phases. 

It should be noted that the coefficients    ,    ,     and     are pump-dependent and are 

controlled by      as seen in (2.15) and (2.16) which is expected in a typical parametric 

interaction. Closer look at the definitions of    ,    ,    ,     and comparing equation 

(2.19) with (2.8) and (2.9) demonstrates that these methods lead to the same  voltage-

current characteristics, if we approximate    and    by keeping only the first term in (2.17) 

and (2.18). The complex voltage component at pump frequency    can be found by a 
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better approximation if the quadratic term in the Taylor expansion of       about    is also 

taken into account. Fourier analysis of       in (2.16) and its derivative yields 

 

                   
      

  
  

 
         

  

 
        

 

 
  

 
        

   

(2.20) 

where 

    
    

    
 
  

 
 

   

    
   

 

 
      (2.21) 

2.4.3 Gain, Input and Output Impedance  

To find the power gain, the signal and idler sources must be incorporated into the voltage-

current characteristics in either (2.8)-(2.10) or (2.19). According to the schematic in Fig. 

‎2-3, the relation between sources and circuit currents and voltage can be written as  

                  
  

        
       (2.22) 

                         (2.23) 

                         (2.24) 

where    ,     and     are total impedances at signal ,idler and pump sections of the 

circuit, respectively, seen from the pair terminals of the JJ given by           

                            ,                        and     

                . Voltage sources and their series resistance are denoted by   ,   , 

  ,   ,    and    for signal, idler and pump parts, respectively. Equations (2.22)-(2.24) 

together with either (2.8)-(2.10) (method 1) or (2.19)-(2.20) (method 2) constitute a system 

of six nonlinear equations with six complex unknowns of   ,   ,   ,   ,   , and    which 

can be solved numerically to find all variables. Nevertheless,    and    can be presented 

linearly with respect to    and    with the coefficients parametrically controlled by pump 

current    as follows 

  
          

          
   

      

  
     

   

        

        

  
     

   (2.25) 
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Coefficients    ,    ,     and     are those found based on either method 1 or 2.  

Despite of optical systems, in microwave circuits the amount of the power delivered 

from the source depends on the two-port network that this source is connected to. 

Transducer power gain [58] at the frequency    is defined as the ratio of power delivered to 

the load to the power available from the source which happens when the source is 

conjugately matched to the two-port network. The maximum transducer gain occurs when 

the load is conjugately matched to the circuit, which in case is referred to as available gain. 

Transducer gain is less than the power and available gain [59], and it depends on the real 

part of the impedance of both source and load as  

    
  

   
 

 
 

    
       

 
 

    
 

      

 
                 

 

    
 

 (2.26) 

where    is the load and    is the current following through the load. Removing the idler 

source by substituting      in (2.25), a relation between    and    is found. Then, by 

applying current division on the common node between    and    in Fig. ‎2-3, we can find 

the current running through    or   . Depending on which one is the load,    or   , 

transducer power gain in (2.26) is given by which of two following equations 

          
               

  
                          

          
               

 

 

 (2.27) 

 

         

               
                                  

          
               

 

 

  
(2.28) 

The term                     
   is interpreted as equivalent negative impedance 

[16], [17], and this type of amplifier is called as a negative resistance Josephson parametric 

amplifier.  

The benefit of this definition lies on the fact that the negative resistance can be 

determined such that the gain in (2.27) and (2.28) becomes very large. There are two 

regimes of operation: oscillation and amplification. By proper design of pump and idler 

sections, the denominator of the gain can be zero which gives an infinite gain. In this case, 

the circuit operates in oscillation mode as input signal can be removed. If the gain is 

bounded, but above the unity, the parametric circuit is in the amplification mode.  
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When instead of one single junction, an array of   identical junctions is placed in the JJ 

branch in Fig. ‎2-3, the only modification which must be applied into the final results is to 

multiply     in (2.8)-(2.13), (2.15), (2.17)-(2.18), (2.19) and (2.21) by a factor of  . The 

input and output impedances seen from the signal source and the load, as illustrated in Fig. 

‎2-3 are 

     
                           

 

                              
 
 (2.29) 

            
 

                          

                         
    (2.30) 

            
                                   (2.31) 

2.4.4 Bandwidth  

In previous gain calculation, all filters are assumed to be tuned at the corresponding 

resonant frequency and negative resistance JPA is designed for the maximum gain 

achievement, therefore, the bandwidth over which the high gain can be attained is very 

small. To analyze the bandwidth properties, we consider the circuit arrangement in Fig. ‎2-3 

and also we assume the high-  filters with certain quality factors that are more realistic 

compared to the infinite-  filters. In our analysis we change the signal and idler frequency 

from    and    to           and           in an attempt to calculate the new 

gain formula which includes all filters' quality factors as well as signal bandwidth. 

According to the           and          , it is straightforward to conclude 

        . Additionally, we use the relative bandwidth for the signal and idler section 

of the circuit in our calculation. They are defined by           and          , 

respectively, and satisfy             . It simply shows that     can be eliminated in 

the formulation and all equations can be solely expressed in terms of the signal bandwidth. 

Pump has no influence on the bandwidth, because its role is to convert the JJ into the time-

varying inductor whose parameters are determined by the amplitude of the pump. Then, we 

are able to find the 3-dB bandwidth based on the definition. Afterward, the bandwidth    is 

found by solving a 4th degree polynomial given by  

     
      

      
             (2.32) 
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The coefficients of the polynomial are  

            (2.33) 

                  (2.34) 

 
                                      

 

      
        

(2.35) 

                       (2.36) 

               
  (2.37) 

where    and    are loaded quality factors associated with the signal and idler filters 

defined by  

      

     

               
 

 

                   
 (2.38) 

      

     

  
 

 

      
  (2.39) 

These filters at their resonant frequency are modeled by an LC circuit with resonance 

conditions of   
              and   

             . Moreover, parameters   and   

are given by  =      and                                
                       

where         in Fig. ‎2-3 . Equation (2.32) have four real solutions at most, however, the 

true bandwidth will be the interval including    and the lowest positive answer at right and 

the first negative answer at left.  

In any circumstance, except when    , there exist at least two plausible real solutions, 

one positive and one negative, for polynomial (2.32), because      and      . 

According to equation (2.27) or (2.28), the maximum gain condition can be achieved when 

          , because the denominator becomes zero. Evidently, this condition 

corresponds to the case of      As explained, this condition occurs when all resonators 

and filters have been tuned at single frequencies which means their bandwidths would be 

zero. By plugging     into (2.33)-(2.37), it is obvious that we obtain      which is 

completely matched by the preceding  qualitative explanation. Moreover, by increasing    

or   , the coefficients of the polynomial (2.32) corresponding to the higher power terms 

increase, then the root of the polynomial approaches zero which is expected as explained 

early. Another interesting point is observed when     or       (degenerate). In this 
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case, the odd powers of (2.32) disappear and symmetric positive and negative solutions  are 

obtained.     

In the derivation of the above formula, we assume that the condition of conjugate 

matching at the input port is always held unchanged within the whole bandwidth. More 

importantly, by using the phasor notation, we examine all circuits in our study in the steady 

state. We have found the bandwidth on the basis of the fact that the frequency of the signal 

source remains constant, and only at the end of the calculation we allow it to change.  

Therefore, by changing the frequency of the signal source, we assume that the system has 

enough time to reach its steady state. In other words, the internal characteristics time of the 

circuit must be much less than the external time over which the signal frequency changes. 

This kind of treatment is referred as adiabatic process [60].    

2.4.5 Noise Characteristics  

In any circuit that internal components dispense noise to the output, noise figure is the best 

measure to describe the noise performance of such a system. Noise figure associated with 

the circuit is the ratio of the signal-to-noise ratio at the input to the signal-to-noise ratio at 

the output [58], provided the input source is matched to the circuit and held at the room 

temperature,           . Noise figure can be found by another consistent expression as 

follows [17] 

   
      

       
 (2.40) 

where        is the total noise power available at the output,    is the transducer gain of the 

system,                   is the Boltzmann's constant,           is the room 

temperature and   is the bandwidth of the system. To compute noise figure or equivalent 

noise temperature of the JPA, we must first recognize the main sources that produce the 

noise and then we must obtain the available noise power at the output of the JPA. The noise 

produced by the JPA is the thermal noise in the resistors of the circuits. The first noise is 

the input noise from    at temperature           and frequency of   . The second 

source is the noise contributed by the JPA due to the resistor    at the idler frequency    

and temperature   . With reference to Fig. ‎2-4., these noisy resistors are replaced with a 

Thevenin equivalent circuit consisting of noiseless resistors and noise sources shown by 
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voltage sources. The rms value of the voltage noise associated with a resistance   at 

temperature   in a system with the bandwidth   is given by [58] 

   
              (2.41) 

Therefore, the maximum noise power that this resistor delivers to the circuit (matched 

load) is          Using the linear impedance matrix in (2.25), we obtain following 

equations for the noise power    and    at the output due to noise sources at signal and 

idler branches, respectively,  
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Fig. ‎2-4  Circuit model used for the thermal noise calculation.   

Since these two noises are uncorrelated, the total noise power is the addition of each 

individual noise power, i.e.             . Substituting the total noise and also the 

transducer gain in (2.40), and considering the matching condition of      , it yields 

   
 

        

        
      

           
    

     

        
   

  (2.44) 

According to (2.41), we replace     
      and    

       by the proper expression, noise figure reduces 

to 

     
     

     

        
       

  (2.45) 

  Further simplification is made based on the resonance condition at the idler loop and 

definition of the negative resonance for (2.45) results in 

    
        

   

                  
          

 
     

      (2.42) 

    
     

 

                  
          

 
     

       (2.43) 
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  (2.46) 

where      is removed. Assuming temperatures and resistances    ,     and    ,    for the 

filters, as shown in Fig. ‎2-4, we can generalize (2.46) and get following equation for the 

noise figure 

 

    
  

  

   

  
 

  

  

  

  

  
     

            
 

 
  

  

  

  

         

          
 
  

(2.47) 

 

 If the JPA has been designed and optimized for the high-gain achievement, the 

negative resistance in equations (2.46) and (2.47) can be replaced by            

   .   

2.5 Voltage-based JPA 

2.5.1 Circuit Arrangement  

Fig. ‎2-5 displays a circuit in which the pump and JJ are connected in series, instead of 

parallel arrangement. Also, filters associated with signal, pump and idler are modeled by a 

parallel LC circuit that has been discussed in section 2.2. This schematic fits with the 

Manley-Rowe configuration illustrated in Fig. ‎2-1 (b). Writing the KVL around the simple 

loop containing the JJ implies that     , for harmonics other than signal, pump, and idler. 

This is the reason that this kind of arrangement is called a voltage-based JPA, and the 

topology is considered as a dual configuration for the current-based JPA in the last section. 

Similar to the current-based JPA, there also exist two admittance    and     in Fig. ‎2-5 to 

provide general study on the position of the load, as well as adjust the bandwidth of the 

JPA, as explained later.  
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Fig. ‎2-5 Schematic of the voltage-based JPA. 

2.5.2 Voltage-Current Relationship 

As pointed out, the voltage of the junction is allowed to only have three frequency 

components of    ,    and   , and it can be written by                         . 

According to (2.6), the complex amplitude, angular frequency and initial phase of the 

signal, pump and idler voltages, respectively, are denoted by   ,   ,   ,   ,   ,   ,   ,    

and   . According to the Farady's law, we can assign a flux variable to each of      ,       

and       voltages. Scaling the flux by the factor        we define a phase variable for 

each of      ,       and       voltages, similar to the phase difference of two 

superconductors in a JJ. This is mathematically described by                     
 

 
. 

In steady-state, this integral leads to 

       
   

    
    

       
         

      

    
            (2.48) 

where   stands for  ,   and   ,    is the initial phase, and    is the complex amplitude of 

      based on (2.6). The phase difference across the junction can be written as       

                  . If the current flowing through the junction is restricted to be less 

than critical current of the JJ, it will be found by the nonlinear phase-current equation of  

             (2.49) 

Like the current-based JPA, two methods can be used to relate the current and voltage 

of each component.  
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Method 1: JJ as a nonlinear inductor 

Expanding the sinusoidal function in (2.49) and keeping the two leading terms, we obtain a 

nonlinear relation between phase (or flux by scaling factor      ) and current associated 

with the JJ. Inserting    in terms of its components, it gives  

                              
  
 

                    
 
  (2.50) 

Following the procedure described in previous section and using (2.48),   ,    and    

components of the current are obtained by  

           
      
    

   
     

  
   

   

  
   

  (2.51) 

           
      
    

   
     

  
   

   

  
   

  (2.52) 

           
      
    

   
      

  
       

  
       (2.53) 

when            , as seen in Fig. ‎2-5, and                   . The direction of the 

currents in Fig. ‎2-5 are chosen  such that all signal, pump and idler terminals have the same 

reference polarity rule which is important in power calculation. Moreover, the complex 

current amplitude is defined by      
 

 
            , as (2.48) implies, where      

stands for complex conjugate. Real powers for each section satisfy the Manley-Rowe 

relation and are given by 

    
 

 
       

   
     

   
   

   

      
   

   
   (2.54) 

    
 

 
       

   
     

   
   

   

      
   

   
   (2.55) 

    
 

 
       

   
    

  
       

      
   

   
    (2.56) 

 

Method 2: JJ as a time-varying inductor 

Like the current-based JPA, the amplitude of the sinusoidal pump source is intended to be 

much larger than those of the signal and idler, therefore, by expressing the current as a 

function of phase, equation (2.6), the first two terms of the Taylor expansion about the 

pump signal are 
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         (2.57) 

This yields 

                                                         (2.58) 

where    
      

    
,    

      

    
 ,    

      

    
,          ,           and        

  . Expanding            and            in terms of Bessel functions [57], we deduce 

the condition of           which evidently results in           and        

  . The linear admittance matrix between the current and voltage of the 2-port 

configuration in Fig. ‎2-5, is obtained by  

  
      
  
     

   
      

      
  

      
  

     
  (2.59) 

where               ,          
          ,         

           ,     

          which are more general than those calculated in [22]. Parameters           

and           are Bessel's functions of the first kind of order 0 and 2, respectively, for 

the argument of    which can be simplified by polynomial series as 

          
  

 

 
 

  
 

  
 

  
 

    
   (2.60) 

         
  

 

 
 

  
 

  
 

  
 

    
   (2.61) 

Since    is a real number, the values of the Bessel's functions are also less than one. 

Furthermore, Bessel's function has zeros in a oscillatory fashion and the first zeros of 

       and        are located in        and       , respectively. 

2.5.3 Gain, Input and Output Impedance 

Using the same procedure for the case of current-based JPA to include the current sources 

in Fig. ‎2-5 results in  

                  
  

        
       (2.62) 

                         (2.63) 

                         (2.64) 
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which can be used in corporation with current-voltage characteristics obtained in the 

previous part to solve the circuit. Parameters    ,     and      are the total signal, idler and 

pump conductance seen from the ports illustrated in Fig. ‎2-5 They are equal to      

         

          
              ,                      and              

       . Focusing on the voltage and current of signal and idler, they can be presented in 

a matrix format with pump-dependent coefficients given by 

  
          

          
   

      
  

     
   

        

        

  
     

  (2.65) 

Disabling the idler source, the transducer gain at the load (           ) in the form of 

                       
  is obtained by  

 

 

         

               
  

                          

          
               

 

 

 
(2.66) 

 

         

               
                                  

          
               

 

 

 
(2.67) 

The expression                      
   in (2.64) and (2.65) introduces the concept 

of the negative admittance that can be used for oscillation and gain enhancement in 

amplification mode. The input and output admittance in Fig. ‎2-5 are given by 

     
                           

 

                              
 
 (2.68) 

            
 

                          

                         
    (2.69) 

            
                                   (2.70) 

In the case of array of   JJs in series, the    in equations (2.51)-(2.56) and     in 

entries of (2.59) must be multiplied by  , and all equations remain unchanged. 



27 

 

2.5.4 Bandwidth  

With the reference to the section 2.4.4, we pursue the same argument and calculation which 

finally leads to the 8-degree polynomial to find the bandwidth    of the circuit in Fig. ‎2-5 

The polynomial has the form of  

     
      

      
      

      
      

      
            (2.71) 

where coefficients are given by  

            (2.72) 

                      (2.73) 

 
                                

       

          
                   

(2.74) 

 

                                    

                  
                

 

               

(2.75) 

 

                            
              

                     
 

                   
            

(2.76) 

 
                             

   
 

                  
                 

  
(2.77) 

 
               

   
                  

            
             

  
(2.78) 

                
   

  (2.79) 

          
   

   (2.80) 

and         and                               . The signal and idler filters 

are tuned at the resonant frequencies   
                     and   

       

             , respectively, and the loaded Q-factors    and    are  

      

  

       
 

                      

                  
 (2.81) 

      

  

       
 

        
         

  (2.82) 
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2.5.5 Noise Characteristics 

Fig. ‎2-6 illustrates the voltage-based JPA to study its noise performance. The temperature 

of each resistor and filter is shown in this figure. The noise sources associated with the 

generator and idler conductance,    and   , are displayed based on the Norton equivalent 

model. Noise powers at the output due to the contribution of    and    are given by  

    
        

   

                  
          

 
     

      (2.83) 

    
     

 

                  
          

 
     

      (2.84) 
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Fig. ‎2-6 Simplified circuit model of voltage-based JPA for the noise analysis. 

Consequently, by the same method that we used for the case of current-base JPA, the noise 

figure can be found through following equation 

   
 

        
    

       
   

       
  

 

   
       (2.85) 

Substituting noise sources by (2.41), including the filter temperatures into the noise figure 

based on the Fig. ‎2-6 and simplifying it according to the resonance condition, the general 

noise figure for the topology shown in Fig. ‎2-6 is found by 

     
  

  

  

  
 

  

  

  

  

      
 

         
 

 
  

  

  

  

        

         
 
  (2.86) 

when      is neglected. By ignoring the filters' resistor s we can simplify (2.86) to get  

     
  

  

  

  

    

  
  (2.87) 
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2.6 Design Procedure 

The analysis of current- and voltage-based JPA in two preceding sections has been finally 

simplified by the gain formulations given by (2.27)-(2.28) and (2.66)-(2.67), respectively. 

In addition to the signal frequency   , signal source, load and LC filter impedances which 

emerge in these equations, other parameters such as idler impedance, the current flowing 

through (or voltage dropped on) the pump section and its frequency implicitly exist in the 

gain formulas. Due to the presence of the  negative resistance (or conductance) in their 

denominators, the design target is to maximize the gain by setting the denominator to zero, 

that  leads to the proper pump source design and idler impedance. Although dealing with 

nonlinear equations are complicated, this effort can be easily carried out by plotting the 

gain contours (in dB) on a 2D graph with pump current (or voltage) vs. pump frequency for 

different idler impedance. Based on this plot, we are prompted to choose desirable values 

for the pump frequency, pump current/voltage and idler impedance. Using this information, 

we can solve the circuit by finding the signal and idler current/voltage based on equation  

(2.25) or (2.65), depending on the type of JPA configuration. Then, we used (2.10) or 

(2.53) to compute the total voltage dropped on (or current flowing through) the pump. The 

design procedure is accomplished, when the pump source amplitude is obtained by (2.24) 

or (2.64). According to the restriction of                   on the currents, this 

condition must be always checked.  

Denominators in the gain formula must become real in order to be cancelled by the 

negative resistance. Hence, the resonant condition for the filter parts are modified to 

  
             ,   

              for the current-based and   
       

             ,   
                     for the voltage-based configuration. By proper 

design of filters, these conditions can be satisfied.   

2.7 Numerical Results 

We use Nb-AlOx-Nb junction with the size of         fabricated by small current 

density process of          by HYPRES; therefore, the junction‘s critical current is 

          and its linear inductance is              [61]. Assuming given signal 
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source and load, the design process for maximum gain achievement leads to the 

determination of   ,    and    for the current-based and   ,    and    for the voltage-based 

JPA, as discussed in design procedure section. The variation of the gain versus amplitude 

and frequency of the pump are displayed in Fig. ‎2-7 and Fig. ‎2-8 for the current-based and 

the voltage-based configuration, respectively. The source frequency and impedance for 

both cases are assumed to be           and        . Both x and y axes of the graphs 

have been normalized for the purpose of comparison. The contours in Fig. ‎2-7 and  Fig. ‎2-8 

are calculated based on the maximum gain.  

 Due to the importance of        factor in the gain and power added efficiency 

relations in (2.2) and (2.3), it is desirable to choose the higher value for this factor. 

Comparison between Fig. ‎2-7 and Fig. ‎2-8 reveals the fact that the high-gain curves in 

current-based configuration are nicely separated in the regime of      , however, in the 

case of voltage-based these figures are very dense which is not suitable for design purposes.  

Fig. ‎2-9 illustrates the effect of number of in-series JJs on the high-gain performance of the 

current-based JPA. As seen, by increasing the number of JJs the high-gain contours are 

pushed to the low-current regions with higher value of         which results in higher 

efficiency.  
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Fig. ‎2-7 Power gain (dB) of the current-based JPA for different idler impedances for a 50 JJs in series. Other 

parameters: Zs = ZL =50 Ω, Z1 = ZL, Z2=   Ω,  fs =10 GHz and Ic = 2.7 µA.     

 
Fig. ‎2-8 Power gain (dB) of the voltage-based JPA for different idler impedances for 10 JJs in series. . Other 

parameters are Zs = Z0 = ZL =50 Ω, Y1= YL,  Y2 = , fs =10 GHz and Ic = 2.7 µA. 
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Fig. ‎2-9 Power gain (dB) for different number of JJs in a current-based JPA, Zs = ZL =50 Ω, fs=10 GHz, Zi 

=0.01 Zs. 

 

As explained in the previous section, these figures can be used to design a parametric 

amplifier. We select point A in Fig. ‎2-7 which is located in low-current and high-efficiency 

operation region. Then, we follow all steps described in the design procedure section to 

determine the pump source. Table I contains all calculated variables and parameters related 

to point A by method 1 which have been discussed in section 2.4.2. According to this table, 

all pump, signal and idler currents are less than the critical current of the JJ. Also, 

comparison between the values of   ,    and    in Table I,  shows that small-signal analysis 

is not a suitable method for this circuit. As a phase has not been assigned to the current 

following through the pump branch, the pump source contains a phase part. This phase can 

be eliminated by considering a phase for     and sweeping this phase to see when the phase 

of    vanishes. 
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Fig. ‎2-10 Power gain (dB) versus pump‘s current and its frequency for different signal frequencies when an 

array of 50 JJs is placed and Zi =0.01 Zs.    

 
Fig. ‎2-11 Relative bandwidth (%) of a current-based JPA with Z2=  Ω for 50 Nb-AlOx-NB junctions in 

series.  
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 TABLE I 

CURRENT-BASED PARAMETERS FOR MAXIMUM GAIN  

        2.7    ( or   ) 0.4   = 1.08 

   (  ) 5         6.09 (50 JJs) 

      50        6.36  

        10         0.1386 

      50         0.0045 

      50        0.0002 

  50        j382 

      0.01   = 0.5        j7.65 

        0.8   = 8 GHz        -j4.6 

        6 GHz        -j230 

       9.81        0.16 

       15.66        1.5       

       9.39        65.7 

       44.64        357 

       1.9        330      

       200        335     

 

 Relative bandwidth, which is defined by           to sustain the gain within 

3dB below its maximum value, is depicted in Fig.  2-11 for a current-based JPA. By proper 

design of filter parameters, the resonant conditions for the signal and idler filters occurs at 

          and             . This plot reveals that the bandwidth is very narrow 

which is suitable for oscillator design and the device operates in oscillation mode. Based on 

this fact, Fig.  2-12 demonstrates a pump-controlled oscillator that frequency of oscillation 

can be adjusted by the amplitude of the AC signal of the pump (  ) to acquire a 

subharmonic oscillation from            to          when frequency of the pump is 

set at          . 
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Fig. ‎2-12 Pump controlled Josephson oscillator demonstration for the current-based configuration when 50 

junctions are in series to each other and Zfit =   Ω.   

 Oscillation mode happens when the condition of           or            is 

satisfied. As in our simulation, the source impedance is        , therefore,     must be 

      in order that the circuit operates in the oscillation mode. Comparison between Fig. 

‎2-8 and Fig. ‎2-13 confirms this fact that the condition           takes place exactly 

where the pump source and idler impedance are designed for the maximum gain 

achievement. This condition causes instability at the signal part of the circuit with a very 

high gain and extremely narrow bandwidth. In order to change this condition and achieve 

amplifier mode, the impedance    in Fig. ‎2-3 (or    in Fig. ‎2-5) can play the role of a 

fitting impedance (or admittance) in the signal part of the circuit to drift the input 

impedance slightly from       and decrease the quality factor of the filters at the cost of 

lowering the gain. Fig. ‎2-14 illustrates the profile of the gain with respect to the signal 

frequency for different values of   . This result shows when          we obtain a 

doubly degenerate amplifier (        ) with the gain of 14 dB at               and the 
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bandwidth of 3MHz. The noise characteristics of these two arrangements don't differ , and 

the noise temperature of the voltage-based device is depicted in Fig. ‎2-15 when the device 

is held at 4K temperature.  

 

 
Fig. ‎2-13 The locus of Zin = -50 Ω for the input impedance with respect to the pump's amplitude and 

frequency. 
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Fig. ‎2-14 Gain-frequency diagram of a voltage-based JPA, Zfit=Z2. 

 

Fig. ‎2-15 Noise Figure and equivalent temperature for the current-based JPA when the idler is held at 4K.  
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2.8 Conclusion 

In this paper, we studied parametric interaction in two different circuit arrangements 

containing a series of identical Josephson junctions. We presented a general and systematic 

method to analyze parametric circuits. Proper modeling of JJ, which is based on the flux-

current relation and leads to a linear impedance matrix in a parametric circuit, has been 

presented. Two methods of analysis have been carried out and their results were compared. 

One is based on the pure nonlinear treatment of the junction and another is small-signal 

analysis which leads to the time-varying modeling of the junction. Gain characteristics, the 

concept of negative impedance and the input/output impedance were discussed. All 

formulations have been derived in closed-forms and the design rule for two regimes of 

oscillation and amplification has been addressed.    

 



39 

 

3 Periodic Superconducting Waveguides 

Chapter 3  

Periodic Superconducting Waveguides 

3.1 Introduction 

Electromagnetic periodic structures remain a subject of great interest, both due to the virtue 

of the basic theory and numerical computation for the study of the propagation of 

electromagnetic waves, and because of the potential for practical devices in microwave 

circuits, antenna systems and photonic components [62],[63],[64], [65][64][66][67] 

[68][69], [70]. The existence of a discrete set of pass-bands separated by stop-bands in 

periodically loaded transmission lines and guided-wave structures has presented the 

opportunity of using them for filter purposes [16],[58]. Of these structures, the coplanar 

waveguide (CPW) has the unique advantages of being uniplanar, requiring simple 

fabrication processes, and allowing the straightforward connection of series and shunt 

elements. Moreover, they are suitable for microwave integrated circuits, with the ability to 

design for a wide range of impedances [71],[72]. 

High temperature superconductor (HTS) thin-film technology has demonstrated a 

significant impact on the performance of passive microwave components [14], [73] ,[74].  

HTS thin-films support demanding microwave applications by the virtue of their low 

resistance at high frequencies and extremely low signal dispersion, which are key aspects in 

microwave circuits[25], [75]. New advances in the technology of cost effective on-site 

cryogenic refrigeration systems, virtually transparent to the end user, make HTS-based 

devices highly stable in the temperature range of liquid nitrogen (77 °K or -196 °C) for 

practical long-term operation.  

Superconducting planar resonators have been used to realize filters that provide very 

low insertion loss with extremely high quality factors, and very sharp frequency roll-off 

characteristics which is determined by the steepness of the filter skirts and out-of-band 
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rejection [56],[76],[77]. This superior performance can only be realized using conventional 

filters that are about two orders of magnitude larger in volume and one order of magnitude 

larger in mass [14],[78],[79],[80]. Therefore, HTS thin-film technology offers reliable 

products with a lightweight and small form factor. They provide a high-performance 

platform suitable for microwave integrated circuits for the wide variety of applications such 

as the front-end receivers in wireless communication systems [81], [76], Josephson 

parametric conversion/amplification [22],[82],[49],[56], and superconducting terahertz and 

optoelectronics [83],[84].  

In this chapter, we design, analyze, simulate and experimentally characterize an HTS 

CPW transmission line periodically loaded by dielectric gaps. We develop Computer Aided 

Design (CAD) equations to model the conventional superconducting CPW [25]. The small 

dielectric gap is modeled by three capacitors in  -configuration [85],[86], [87],[88]. For an 

infinitely long periodic structure (open), the method of analysis is based on the ABCD 

matrix representation of each unit cell in conjunction with the Floquet theorem. Dispersion 

analysis on the traveling wave and also input impedance calculation for the infinite periodic 

structure are carried out. In practice, when the periodic structure is finite (closed) and 

consists of a limited number of unit cells, conventional Floquet theorem does not apply.  

However, the problem can be solved in a closed form for an arbitrary N unit cells.  

S-parameters or the ABCD matrix of the entire structure can be expressed in terms of 

the parameters associated with a single unit cell. The results obtained by this analysis 

(closed), is a good approximation for the infinite (open) periodic structure, as demonstrated 

in this paper. Several devices are fabricated with YBCO and characterized up to 50 GHz. 

Experimental data for S-parameter measurements are in a good agreement with the 

analytical results. Multiple band gap formation and rapid roll off filtering properties are 

highlighted. This device functions as a perfect DC blocker and can also be optimized as a 

multiple pass-band filter for applications such as the Josephson parametric amplifier, where 

pass-band filters in different frequency ranges are demanded. Moreover, due to the 

frequency selectivity in the reflection this device demonstrates, it can be employed as a 

Distributed Bragg Reflector (DBR) at the ends of a microwave resonator to propose a 

MASER system. 
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3.2 Structure 

Fig. ‎3-1 shows a periodically loaded superconducting CPW with dielectric gaps. Each unit 

cell is comprised of the superconducting transmission line section and a dielectric gap. In 

this figure, the width of the center strip of the CPW is " " or " ", the separation between 

the two semi-infinite ground planes is  , the distance between the outer edges of two 

ground plates is " ", and the spacing between the center strip and the ground plane which is 

referred as a slot width is shown by " ". The height of the dielectric spacer is  , and the 

thickness of the superconductor film is  . Also, the length of each unit cell and the width of 

the series gap is denoted by   and  , respectively. Indeed, there are various configurations 

for coplanar waveguides[72], and in this work we study the conventional CPW, where the 

ground plane is of semi-infinite extent on either side. Although the ground planes of actual 

CPWs cannot be infinite, if the ratio of     is around 3, the CPW with the finite ground 

plane is considered as a conventional CPW [71]. 

 

g : Dielectric Gap 

l : Length of the Unit Cell 

Superconductor

    b   s=a

w

w

t = 100 nm

h

Dielectric

    c 

 

 

Fig. ‎3-1. A periodically loaded CPW by dielectric gap.   
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3.3 Simulation Model  

3.3.1 Circuit Parameters of Superconducting CPW 

 

The electromagnetic characteristics of any TEM transmission line such as the phase 

constant, attenuation constant and characteristic impedance can be determined in terms of 

the distributed circuit parameters associated with the transmission line [25].  Therefore, the 

circuit parameters play a significant role into the knowledge of wave propagation, 

dispersion, and distortion through a transmission line. For fast calculation of distributed 

circuit parameters it is necessary to develop a CAD tool. For a superconducting CPW 

transmission line, equations which yield the shunt capacitance and conductance per unit 

length are taken from [72], as they do not differ from the case when a normal conductor is 

replaced by superconductor materials [75]. For calculating the capacitance, it is required to 

use the complete elliptical integral of the first kind as demonstrated in [72]. Since the CPW 

transmission line is an inhomogeneous transmission line, the effective dielectric constant 

has to be defined with the consideration of the thickness of the superconducting plates as 

well as the dispersion behavior of the line, as explained in [85],[89]. The kinetic inductance 

per unit length for a superconducting CPW is given in [90] and [91]. By calculating the real 

and imaginary parts of the surface impedance associated with the superconductor plates, the 

series ohmic resistance per unit length of the line is found [25].  Full details of all equations 

and other related discussions can be found in [25]. 

3.3.2 Small Dielectric Gap in CPW 

As seen in Fig. ‎3-2, the discontinuity created by the symmetric series gap can be modeled 

by a  -capacitive circuit when the gap is small enough compared to the wavelength. The 

gap on the center strip results in sharp edges at both sides of the discontinuity causing 

electrical charge accumulation at the corners. Thus, a series capacitor    and two shunt 

capacitors    are needed to capture these extra charges, as illustrated in the Fig. ‎3-2.  

 



43 

 

There are a number of verified CAD expressions in order to calculate the equivalent 

capacitors even for the general case of a non-symmetric gap [85],[86],[87], [88]. According 

to [87] a small coplanar series gap is a dual problem for the twin strip transmission line 

when they are connected by a shunt narrow strip. We use the relation in [87]to calculate the 

series coupling capacitance, and choose the closed-form formulation in [88] to determine 

the parallel capacitors in the  -network. Comparison with the full-wave analysis in [86] 

reveals that these equations are valid and reliable when the dielectric height is greater than 

 .  

 

w
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Fig. ‎3-2 Typical CPW gap and its equivalent  -network model.    

3.4 Infinite Periodic Superconducting CPW with Dielectric 

Gap 

3.4.1 Floquet Analysis of the Structure   

The circuit representation of the unit cell of the structure is shown in Fig. ‎3-3. It consists of 

a cascade connection of two successive sections, a transmission line and the gap. The 

length of the dielectric gap is  , therefore the length of the transmission line will be 
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      . Considering the small length of the dielectric gap in comparison to the 

wavelength, this discontinuity can be characterized by an equivalent π-network at the end 

of the line, as pointed out in previous sections and depicted in Fig. ‎3-3. Microwave 

characteristics of the structure can be mathematically described by the ABCD matrix 

associated with an individual unit cell. This matrix is obtained by multiplying the two 

ABCD matrices of the constituent sections of the unit cell. The first accounts for the 

transmission line section and the second represents the π-network [16],[58]. The final 

ABCD parameters representing the unit cell is given by 
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(3.2) 

 
     

  

  
 

          

   
   

  
       

  
           

(3.3) 

 
  

          

       
    

  

  
            

(3.4) 

where    and     are the complex propagation constant and characteristic impedance 

associated with the superconducting CPW, respectively. All circuit parameters in (3.1)-

(3.4) are shown in Fig. ‎3-3. Parameter " ", which is the length of the gap, has been 

absorbed in    and    [87],[88].  It can be verified that the determinant of this matrix is 

equal to unity (       ), and also     which shows the basic structure is 

reciprocal but not symmetric [16], as expected.  

Z0s, γs, ls=l-g 
CpCp

Cs

Zin Z’in Zin

l = Length of the unit cell

Transmission line section Dielectric gap

))(( lzjAe  
zjAe )( 

g

 

Fig. ‎3-3 A unit cell‘s equivalent transmission line model for the infinite periodic structure. 

 

From a theoretical standpoint, the analysis of an open periodic structure, which is 

formed by the infinite repetition of the unit cell, can be dramatically simplified by applying 
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the Floquet theorem [16], [58]. Applying this theorem, the closed-form dispersion relation 

for the propagation constant is found by 

 

        
 

 
          

  

  
           

   
   

         
    

   

       
             

(3.5) 

which includes necessary information for the wave propagation through the periodic 

structure under study. In equation (3.5) parameters   (    ),   (     ) and   (     ) 

are attenuation constant, phase constant and angular frequency of the driven TEM 

electromagnetic wave, respectively. Other parameters in (3.5) have been already explained 

and illustrated in figures. 

3.4.2 Impedance Calculation 

Floquet analysis in the previous subsection yields essential information about the wave 

nature of the periodic structure. As seen, this study results in a dispersion analysis that has 

been expressed by a closed-form relation (3.5). However, TEM transmission lines can be 

represented by circuit theory. Also, the structure is ultimately to be connected to other 

peripheral microwave circuits. Therefore, another source of data such as impedance 

matching, wave reflection and transmission can be obtained by its input impedance. For the 

case of an infinitely long periodic structure, the input impedance seen from any interface of 

two subsequent unit cells is identical as illustrated in Fig. ‎3-3. This impedance is found by 

the following quadratic equation 

     
               (3.6) 

where  ,  ,   and   are ABCD parameters given by equations (3.1)-(3.4). This quadratic 

equation always has two solutions for     with opposite signs in the real parts. Since no 

active element exists in this structure, the input impedance is the one with the positive real 

part.  
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3.5 Finite Periodic Superconducting CPW with Insulator 

Gap 

3.5.1 Finite vs. infinite periodic structures  

The number of unit cells in real periodic structures such as filters and metamaterials [92] is 

always finite, so an open infinite periodic structure is an ideal model which can never exist. 

However, if the number of unit cells is large enough, a closed finite periodic structure 

resembles the open infinite periodic structure. The beauty of the Floquet analysis of an 

infinite periodic structure is that the result of the overall system can be extracted only by 

considering one single unit cell [16]. Similar to its infinite counterpart, a finite periodic 

structure with arbitrary number of unit cells and any boundaries at the ends can be solved 

analytically by a closed-form expression in terms of the parameters of only one single unit 

cell, provided each unit cell can be represented mathematically by a unitary matrix 

[93],[69].  

A typical periodic structure consisting of N number of unit sections with two 

boundaries at the ends is depicted in  Fig. ‎3-4 with S-matrix representation. This structure 

can be regarded as a cavity resonator, and instead of having a continuous dispersion 

diagram, a set of discrete phase constants is expected [26]. These discrete points on the 

dispersion diagram are located at the resonant frequencies of the structure.  The resonant 

frequencies can be found by the Transverse Resonance Method or by oscillation condition 

relation including reflection coefficients. Obviously, a finite periodic transmission line 

cannot support traveling waves; instead, due to the reflection at the ends, standing waves 

exist inside of the structure. Hence, the phase constant () can be thought of as a 

wavenumber for the standing waves in this structure. Although the concept of standing 

waves has been defined for homogenous media, those types of waves can be viewed as 

Floquet (or Bloch) standing waves. This kind of analysis has been already introduced for 

optical wave propagation in optical multilayered media [69], superconducting 

microstripline with metal grating [26], multiple quantum well structures [69], multi-layer 

stack of Josephson junctions [94] and comprehensive survey was reported in [93].    
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Fig. ‎3-4 General representation of a finite periodic structure in microwave using S-Matrix.   

Basically, the rigorous way of analyzing a closed finite periodic structure in any 

microwave system is achieved by cascading multiple identical units with two boundaries at 

the two ends of the network. Similar to any finite electromagnetic structure, the well-known 

mathematical representation of the ABCD matrix, T-Matrix (Transfer-Matrix) or even S-

Matrix (scattering matrix) should be employed. In the following, we use s-parameter 

analysis to study the microwave characteristics of the finite periodic structure.  

3.5.2 Scattering parameter Analysis 

As explained before, each unit cell is reciprocal, and as a result its ABCD matrix (or T-

Matrix) is unitary. Therefore, the total ABCD matrix of the structure is the nth power of the 

individual matrix, and it can be expressed in terms of the ABCD matrix associated with the 

unit cell and periodicity of the system by using the Chebyshev identity [69]. After a little 

manipulation, the total scattering matrix of the cascading N unit cells can also be found in 

terms of the scattering parameters of each unit cell in a set of tidy closed-form equations as 

follows 
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As illustrated in Fig. ‎3-4,    ,    ,    ,     and    
   ,    

   ,    
   ,    

    in equations (3.7)-

(3.10) are scattering parameters associated with each unit cell and the entire structure, 

respectively. Parameter    is a parameter defined by  

    
             

        
  (3.11) 

In equation (3.11),   is the spatial period of the periodic CPW shown in Fig. ‎3-4 and   is 

a Floquet propagation constant  defined by  

   
 

 
       

               

    
       (3.12) 

Resonant frequencies can be obtained by applying boundary conditions which are 

shown in Fig. ‎3-4. This gives the following constraint equation 

       
    

   
       

      

     
      

     (3.13) 

Equation (3.13) depends only on the angular frequency  , and its solution can be a 

general complex frequency at which the real part represents the resonant frequency and the 

imaginary part accounts for the loss of the system [26].      

3.5.3 Impedance Calculation 

The input impedance of a finite structure can be found by several techniques. When the 

total ABCD matrix or S-Matrix of the structure has been calculated, we can simply use 

 

    
                    

                  
 (3.14) 

or the following equations in terms of scattering parameters 

       
    

   
       

      

     
      

  (3.15) 

      

     

     
  (3.16) 

Another approach is an iterative method as illustrated in Fig. ‎3-5. We can start 

calculating the input impedance from the last unit cell at the right end of the structure and 

continue the calculation one after another to reach the first unit cell at the left of the 

structure.  
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Fig. ‎3-5 The illustration of the way of calculation the input impedance of N connected unit cells. 

3.6 Numerical Results  

In this section, YBCO is selected as the HTS material for our simulations since it is one of 

the most extensively studied HTS, and its existing widespread use in commercial 

microwave applications.  Moreover, firmly established thin film deposition and lithography 

processing are available for YBCO. The data for this HTS material is taken from the 

technical data sheet of THEVA [95]. We used the following parameters for YBCO: critical 

temperature          , the penetration depth at zero temperature             , and 

the DC conductivity of a normal channel           . The thickness of the HTS film for 

the center and ground plates of the CPW transmission line is         . Liquid nitrogen 

is used to cool down the structure, so the temperature is held at        . The dielectric 

material is LaAlO3 (Lanthanum aluminate) with the relative dielectric constant of    

     and loss tangent of          at      . The height of the dielectric substrate is 

        . 

To design a CPW with the characteristic impedance of        , we fix the spacing 

between two ground planes at              . Based on the above information, we 

draw the characteristic impedance versus aspect ratio     of the CPW structure in Fig. 

‎3-6at a frequency of 25 GHz. Circuit parameters, propagation constant, attenuation constant 

and phase velocity have been mentioned in the caption of Fig. ‎3-6. As a result, a      CPW 

can be achieved with dimensions of         and         . This will be the platform 

used to periodically implement dielectric gaps, as illustrated in Fig. ‎3-7.     

 



50 

 

 

Fig. ‎3-6 Characteristic impedance of a CPW as a function of aspect ratio for the purpose of 50Ω CPW design 

at       . Other parameters associated with this CPW are                ,                 , 

          ,             ,            ,               .  
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Fig. ‎3-7 Geometry and all dimensions for a 50Ω CPW with YBCO superconductor on the LaAlO3 substrate. 
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Two periodically loaded structures with different period lengths will be examined, 

          and          . In Fig. 8, the first two Brillion zones of the dispersion 

diagram or variation of phase constant verses frequency (  v.s. ) associated with the main 

mode of propagation (TEM mode) are depicted for the two different periods. These curves 

are drawn based on the results from equation (3.5). Due to the periodic dielectric gaps in 

the superconducting CPW, the existence of a band-gap is expected as seen in Fig. ‎3-8. It is 

obvious that at lower frequencies where the line is disconnected, the structure does not 

support wave propagation. However, at certain frequencies, wave propagation is allowed. 

According to Fig. ‎3-8, the wave suppression occurs at cut-off frequencies of      , 

          and           for          . This result can be verified by computing the 

Bragg frequency given by            , where    is the frequency corresponding to the 

band-edge of the gap,    is the phase velocity,   is the length of the unit cell (spatial period) 

and   is an integer number starting from 0. The phase velocity value can be obtained by 

dividing   by   for the CPW transmission line as stated in the caption of Fig. ‎3-6. 

Substituting this in             for the case of          , results in the sequence of 

Bragg frequencies of      ,            and          , which are close to marked points 

in Fig. ‎3-8. The slight deviation in the cut-off frequencies calculated using both methods is 

due to the dielectric gaps in the CPW. The phase velocity is not a straight line in the pass-

band as seen in the dispersion diagram of Fig. ‎3-8, therefore assuming a constant value is 

an approximation.  This figure also shows that by increasing the width of series gap, the 

bandwidth associated with the pass-band decreases. Therefore, to have a wider frequency 

range in the pass-band, the series gap must be made smaller. As a simple justification for 

this, the gap can be viewed between two limits. One is the complete separation between 

two parts of the center strip of the CPW such that no frequency component can be passed. 

The opposite limit is the complete connection such that all frequency components are 

allowed to pass. By going from the former to the latter limit, the gap width shrinks and the 

bandwidth of the pass-band is enlarged.  
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Fig. ‎3-8 Band diagram of an infinite periodic CPW in Fig. 6. By changing the series gap width, pass-band 

width can be controlled. Penetration depth is 120nm. (a) period is 1500µm, (b) period is 1250µm,   

Using equations (3.5) and (3.6), the attenuation constant (distortion analysis), input 

reflection coefficient and input impedance (resonance study) of an infinite periodic CPW 

for varying gap widths and period of           are shown in Fig. ‎3-9.  Comparison 

between the curves in this figure reveals that the stop-band in the phase constant occurs 

exactly where the attenuation constant dramatically increases due to the constitutive 
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reflection at Bragg frequencies or where the input impedance rapidly decreases at resonant 

frequencies. This figure shows that within the bandgap, there is a total reflection and within 

the pass-band the TEM wave is partially transmitted. Interesting point is that all concepts of 

band-edge in the phase constant diagram, Bragg frequencies in the attenuation constant or 

reflection coefficient curve, and resonant frequencies in the input impedance profile, 

coincide with the same frequency which is referred to as a cut-off frequency. 

Although the CPW platform is designed to be used in a      system, numerical 

calculations in Fig. ‎3-9 (c) shows that by grating the CPW with dielectric gaps the 

impedance seen at the beginning of the structure is dramatically changed from     . The 

input impedance is noticeably greater than      creating a mismatching problem when 

driving this structure. The profile of the input impedance of the infinite periodic structure is 

depicted in Fig. ‎3-10, for all possible aspect ratios of     when        . This figure 

demonstrates that for lower aspect ratios the input impedance is very large, in addition, the 

width of the pass-band is narrow. However, for higher aspect ratios, the input impedance 

decreases closer to     , improving the mismatching issue and providing a wider pass-

band. Two pass-band channels are clearly seen in Fig. ‎3-10. As for our case with the aspect 

ratio of         , based on Fig. ‎3-9 and Fig. ‎3-10 we encounter a high mismatching 

issue with a      system which we address in the s-parameter results in following 

paragraphs.  
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Fig. ‎3-9 (a) Attenuation constant, (b) Reflection coefficient and (c) Input impedance of an infinite periodic 

superconducting CPW.  
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Fig. ‎3-10 Input impedance of the infinite periodic superconducting CPW when b=274nm, l=1500nm and 

λL=120nm.  

Now we consider the finite periodic CPW with 7 or   unit cells. Fig. ‎3-11 shows the 

forward transmission coefficient or     in terms of dB for different geometries.  As 

mentioned earlier, due to the large input impedance for an aspect ratio of         , we 

encounter a mismatching condition with the reference impedance of the system set at     .  

By selecting an aspect ratio of 0.9 as illustrated in Fig. ‎3-10, we can provide a better match 

to a      system.  The resulting S-parameters for a periodically loaded CPW with an aspect 

ratio of 0.9 is shown in Fig. ‎3-11. The insertion loss is improved to under 1dB, and the 

ripples in the pass-band are abated with an increase in the number of unit cells.   
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Fig. ‎3-11 S21 and S11 for the finite periodic CPW with aspect ratio a/b of 0.9 

This mismatch to the       system manifests itself as a greater insertion loss in the 

pass-band regime of    .  Fig. ‎3-12 illustrates this issue by plotting     with a reference 

impedance of           and           .  By increasing the reference impedance the 

insertion loss is greatly improved and approaches the zero axis.   

Comparison between the results in Fig. ‎3-8, Fig. ‎3-9or Fig. ‎3-12 reveals that the pass- 

and stop-bands fall exactly on the same interval on the frequency axes, regardless of the 

analysis performed based on the dispersion diagram, reflection coefficient study, 

attenuation constant drawing, input impedance behavior or s-parameter analysis. 

Furthermore, Fig. ‎3-12 (a) shows that by increasing the number of unit cells, the ripples in 

pass-band will be modified. Therefore, having a larger number of unit cells is a good 

implementation for an infinite periodic structure. Moreover, by increasing the penetration 

depth of the superconductor from              to             , a leftward shift in 

pass-band occurs which we address this issue in experimental section. 
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Fig. ‎3-12 The amplitude of S21 for the finite periodic CPW exhibited in Fig. 3.7 with λL=120nm and with the 

load impedance of ZL=50Ω, but different reference impedance. (a) l=1500nm, gap= 10µm (b) l=1500nm, 

gap= 20µm (c) l=1500nm, gap= 20µm (d) l=1500nm, gap= 35µm. 

3.7 Fabrication  

100 nm thick YBCO films have been deposited on (001) LAO substrates by reactive 

thermal co-evaporation at a temperature of 680C at THEVA [95]. Details of the deposition 

process have been described elsewhere [96]. The composition of the film has been 

optimized to get very smooth films with good superconducting properties.  Surface 

roughness is less than 5nm as measured by AFM (Atomic Force Microscopy).  Transition 
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temperature and critical current density is 87 K and 4 MA/cm , respectively. Fig. ‎3-13 

shows the resistance vs. temperature curve for this film. After cool-down in oxygen 

atmosphere a 200nm gold layer was deposited in situ to serve as contacts.   

The YBCO/Au films on LAO substrates were patterned using a resist mask and Ar ion 

milling. To cool the films during milling, the substrates were clamped to an aluminum puck 

filled with a salt that undergoes a solid-to-liquid phase change at 38◦ . The salt keeps the 

temperature of the puck at the melting temperature during the milling process. To improve 

thermal contact with the chuck, the substrates are greased to the chuck using a small 

amount of thermal grease. After milling through the YBCO/Au film stack, the resist mask 

is stripped, and a new resist mask is prepared to pattern the top Au layer. The exposed Au 

is etched using a KI solution. After etching, the Au and resist mask is stripped.  Fig. ‎3-14 

shows the four devices to be measured. Two devices with a period          , one with 

a gap width of       and the other with      . Another two with a period of   

       , one with a gap width of       and the other with       

 

 

Fig. ‎3-13 Resistance vs. temperature for 100nm YBCO thin film 
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Fig. ‎3-14 Device images of finite periodic CPWs with (a) period of           and gap      , (b) period 

of           and gap      , (c) period of           and gap      , and (d) period of           

and gap      . 

3.8 Experimental Setup and Measurement  

The microwave devices are measured in a vacuum cryogenic probe station as seen Fig. 

‎3-15.  It is designed to be used with micro-manipulated coplanar waveguide microwave 

probes with the frequency capability of 50GHz.   The coplanar probes provide a reliable 

and accurate measurement system for on-wafer characterization of microwave devices, 

avoiding the need for device packaging or wire bonding.  Appropriate considerations 

should be taken into account when calibrating the network analyzer for on wafer 

microwave measurements at cryogenic temperatures. The typical Short-Open-Load-

Through or SOLT calibration method works well at room temperature, however at 

cryogenic temperatures the value of the matched load, which consists of a pair of precision 

100 ohm thin film resistors, will drift due to its temperature coefficient. A Through-Reflect-

Line or TRL calibration is more appropriate at cryogenic temperature, since it does not 

require the measurement of a matched load. It utilizes the measurements taken from 

standards based on geometry such as transmission lines of varying lengths. However, due 
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to line dispersion, this calibration method limits the accuracy at the lower frequency range. 

By using a modified calibration substrate from GGB Industries, namely the CS-5 substrate, 

we have trimmed the precision loads such that they are exactly 50 ohm at 77K. This 

provides a more accurate platform to calibrate the network analyzer for cryogenic 

microwave measurements. 

 

Fig. ‎3-15 Microwave cryogenic probe station used to measure the YBCO samples. 

 

The s-parameters of the CPW transmission line with dimensions illustrated in Fig. 

‎3-6 are measured using the setup shown above and equation (17) is used to extract the 

attenuation constant.  Fig. ‎3-16 shows an overlay of the experimental results with the 

theoretical values. It is shown that increasing the    from 120nm to 240nm in the 

theoretical simulations provides a better match to the experimental results.   

  
         

       
  

  
 (3.17) 

Fig. ‎3-17 and Fig. ‎3-18 shows the overlay results of S21 and S11 of all four devices 

introduced in Fig. ‎3-14.  We notice a left shift in the passband of the simulated results by 

adjusting the    from 120nm to 240nm, as seen in Fig. ‎3-17.  This adjustment improves the 

overlap of the pass-band between the measured and simulated results to approximately 

80%. The insertion loss in the pass-band of these devices is roughly 8-10dB.  As stated 

before, this loss is due to the mismatching issue addressed in section 3.6.  By selecting an 

aspect ratio of 0.9 as illustrated in Fig. ‎3-10,  and Fig. ‎3-11 we can provide a better match 

to a      system.   
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Fig. ‎3-16 Experimental and theoretical attenuation constant for the YBCO CPW. 
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Fig. ‎3-17 Overlays of S21 for the finite periodic CPW with varying λL=120nm and 240nm with experimental 

results. 
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Fig. ‎3-18 Overlays of S11 for the finite periodic CPW with varying λL=120nm and 240nm with experimental 

results. 

3.9 Conclusion  

We design, simulate, fabricate and charcterized a periodic superconducting CPW based on 

the transmission line model. Infinite and finite periodic superconducting CPW dielectric 

gap grating is investigated. Each unit cell is modeled by a simple 2-by-2 matrix. For the 

case of infinite periodic CPW the Floquet theorem is invoked, and both dispersion diagram 

and input impedance are obtained. However, for the case of finite periodic CPW, two 

arbitrary boundary conditions have applied and S-parameters are calculated. The influence 

of mismaching between the input impedance and refrence impedance is highlighted. All 
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results obtained by dispersion, impedance and S-parameter analysis are completely 

matched to each other. The beginning of the bandgap occures exactly at Bragg‘s frequenies. 

The finite case goes to the case of infinity, when there is enough number of unit cells. The 

periodic CPW with dielectric gap demonestrates the filter ptoperty that canbe used to reject 

low frequenct signals, have multiple band-passes and produce selective reflections in many 

applications.   
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4 Dispersion Engineering of Parametric Interaction in DJTL 

Chapter 4  

Dispersion Engineering for Parametric 

Interaction in DJTL Structures 

4.1 Introduction 

Dispersion is one of the aspects of materials and waveguides which might cause either  

undesirable or desirable effects on the wave propagation. Separation of the white light into 

a color spectrum, wave chirping, temporal spreading and shape deformation of the wave 

pulse are most common consequences of the dispersion that make it a limiting factor in 

optical imaging and telecommunication applications.   

On the other hand, due to its crucial influence on the wave propagation, there are other 

applications that dispersion is cleverly managed to achieve desired responses. The ability to 

design a medium with a specific dispersion suggests that one may custom-tailor the wave 

properties to allow the full control of wave propagation to any requirement. This is because 

of the strong role that material properties and geometrical parameters of the structured 

media play on the dispersion relation. The maneuvering of dispersive properties by 

artificially fabricated structures, which is referred to as dispersion engineering, is similar to 

the semiconductor technology in which semiconductor materials provide an excellent 

platform in order to control electrons mobility. They realize highly efficient, compact, easy-

to-fabricate, and easy-to integrate microwave and optical devices. 

Recent examples of engineered materials include photonic band gap crystals, double 

negative materials, magnetic metamaterials, electromagnetic band gap structured materials, 

frequency selective surfaces and complex surfaces such as high-impedance ground plate. 

Another example, which we refer to Chapter 6, is the traveling-wave parametric amplifier 

[97]. The case that we studied in this research is a set of three electromagnetic waves at 
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frequencies    (signal),    (pump) and    (idler) with corresponding phase constants   , 

   and    that propagate through a nonlinear waveguide. The aim is to amplify the signal 

wave with the aid of interaction with the pump and idler waves such that energy transfers to 

the signal from pump and idler. Firstly, nonlinear interaction between these waves 

generates unwanted higher order harmonics which must be prevented from propagation to 

increase the efficiency of propagation and enhance the gain. Therefore, transmission lines 

with a linear dispersion equation is not suitable for the purpose of parametric amplification 

because this supports all linear combinations of signal, pump and idler waves. Nonetheless, 

dispersion engineering enable us to design a proper waveguide to resolve this issue. 

Secondly, depending on the type of nonlinearity associated with the waveguide specialized 

for the parametric interaction, there is a resonant condition between their frequencies as 

well as their phase constants which are together referred to as the phase-matching 

conditions. Phase-matching condition, in their perfect form, implies that three points on the 

dispersion curve must satisfy two phase-matching equations simultaneously. Unfortunately, 

these equations might not have a solution in general. Nonetheless, by designing an 

appropriate waveguide to harness the dispersion, the phase-matching condition can be 

fulfilled.      

In this chapter we introduce  the series-connected DJTL as the simplest and the most 

natural way to incorporate JJs in a typical superconducting transmission line to make a 

nonlinear waveguide. In section 2, assuming long-wave approximation, nonlinear wave 

equations are derived to display the nonlinear wave propagation through the structure. 

However, when the amplitude of driving signals is small enough such that the current 

flowing into the junctions is much less than the critical current, DJTL can be regarded as a 

linear waveguide and dispersion characteristics of the structure can be used to extract         

propagation characteristics and features. Also, by using a graphical technique, we  verified 

that this structure is not suitable to achieve non-degenerate parametric interaction. In 

section 3, we introduced an additional open stub to each unit cell to support non-degenerate 

phase-matching equations based on four-photon interaction. Cut-off condition and input 

impedance is derived in closed-form expression by using Floquet theorem. Although, we 

are performing forward engineering, we explore Tichmarsh's theorem to assess the DJTL 

from analycity, causality and Karmers-Kronig relation. It is demonstrated that our model is 
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achievable and realistic. In section 4, we conduct a design example by tuning the dispersion 

diagram by realistic Josephson junction and superconducting transmission line parameters.  

4.2 Series-Connected DJTL 

The structure proposed for the study of parametric interaction in this section is referred to 

as series-connected discrete Josephson transmission line (DJTL). To realize this device, a 

superconducting TL, either microstrip line or CPW, is periodically loaded by series of 

unbiased JJ blocks, as sketched in Fig. ‎4-1. and Fig. ‎4-2. This block can be a single 

junction, N-fold stacked Josephson junctions, array of trilayer junctions or any other 

combination of junctions with circuit elements such as capacitors and even resistors so that 

we attain the desired response expected from the structure. The circuit model of the block 

which is used in our simulation part is depicted in Fig. ‎4-1. (b). It consists of an array of   

identical unbiased junction in parallel to a fit capacitor      and also fit shunt resistance 

    . These extra fit elements are used to control the resistance, capacitance and plasma 

frequency associated with the junction.  

   

Fig. ‎4-1 (a) Series-connected DJTL on microstrip line  (b) JJ block with RCSJ model of each junction can be 

presented by a single effective junction. 

     

Fig. ‎4-2 (a) Series-connected DJTL on CPW   (b) Unit cell of periodically loaded series-connected DJTL. 
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The critical currents, capacitances, normal-state junction resistances, and self-

inductances are taken to be identical for all junctions. Moreover, like an array of Josephson 

junction, this Josephson junction block can be represented by a single effective junction.  

4.2.1 Transmission Line Model and Wave Equation 

The transmission line model of the unit cell of  this structure with all variables and circuit 

parameters are illustrated in Fig 4.2.(b). If the period of the structure (    ) is much less 

than the wavelength (   of the microwave signal, i.e        , we can exploit the long 

wave approximation (        to form a set of differential equations to elucidate the 

nonlinear microwave propagation through this structure. Therefore, in a low frequency 

limit, this structure can be described by a system of partial differential equations in the 

form of  
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where        is the current passing through the series inductor associated with the TL; 

       is the voltage dropped on the shunt capacitor of the line;         is the voltage 

dropped on the Josephson junction;         is the flux related to the nonlinear inductor of 

the junction and the constant                      is the flux quanta . Note that     

and     are lumped elements, but   and   are distributed elements. This is the reason of 

appearance      in equation (4.2). Also, effective parameters associated with an  -array 

of JJ are found by                          and                        . 

These equations are derived in a similar manner which is usually used to form state 

equations in circuit theory.    

Equations (4.1) -(4.4) can be reduced to a single equation by eliminating all variables 

except flux associated with the JJ. Then, by expanding the nonlinear sinusoidal terms in 
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Taylor series, truncating this expansion and scaling the flux by a dimensionless parameter   

as        , all result in   

 

    
  

  
     

 

  
                       

 
   

  
     

 

  
           

(4.5) 

where      include all nonlinear terms and it is given by  

 

     
      

    
      

 

  
      

 
      

    
      

  
 

  
         

(4.6) 

It is evident that by changing      and     , all terms remain unchanged except 

dissipation terms which is simply consistent with time reversal property. We will explain 

more about this important property in the realizibilty section.  

It should be noted that the basic model of JJ can be employed by setting      and 

    . In this case, the nonlinear expression (4.6) will not change and equation (4.5) 

reduces to  

     
  

  
     

 

  
           (4.7) 

4.2.2 Dispersion Relation  

Equation (4.5) is a nonlinear dispersive wave equation which includes dissipation terms. 

However, supposing      , the parameter   becomes very small such that   becomes 

comparable to   . As a result, the nonlinear term       on the right hand side of  the wave 

equation (4.5) can be negligible and we get a linear wave equation in order to perform the 

dispersion analysis under the small amplitude assumption. Then by substitution of 

elementary solution in the form of sinusoidal wave, which is often so-called time-harmonic 

waveform,               into the linear wave equation dispersion characteristics is 

found. We denote the amplitude by  , angular frequency by   and complex propagation 

constant by   that includes both phase and attenuation constantans,   and   respectively, in 

the form of       .  We can also linearize the original system of equations (4.1)-(4.4) 
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by letting                     . Then, we insert harmonic solutions given by 

      
         ,            for all variables of  ,  ,    and    into the (4.1)-(4.4). This 

procedure yields a homogenous matrix equation in terms of complex coefficients of   ,   , 

   and   . The determinant of this matrix should vanish in order to have a nontrivial 

solution. Finally, both methods result in a dispersion relation between complex propagation 

constant         and angular frequency   given by  

    

       
       

  

  
     

    

  
  

     
     

  

  
 

  (4.8) 

As we restricted ourselves in the limit of small amplitude, the normal channel in high-

quality-fabricated JJ doesn't play a significant role in the device performance. Therefore, 

loss can be ignored (    ) and the phase constant is given by   

 
  

  
 

   
 

    
   

  

  
   

   
 

    

  (4.9) 

According to the dispersion relation (4.9), the group velocity is calculated in a closed-

form expression by   

    
  

  
 

 

   
 

    
 

    
 

 

    
 

    
 

 

 
 

      
 

  (4.10) 

The generic phase constant and group velocity for the lossless case, are plotted in Fig. 

‎4-4 and Fig. ‎4-5.  As frequency increase, both dispersion and group velocity asymptotically 

resemble the behavior of a regular LC transmission line without the junctions. As shown in 

Fig. ‎4-4, there is a clear bandgap between plasma frequency of the JJ which is    

         and                              . This occurs when the right 

side of equation (4.9) becomes negative. Obviously, the group velocity in this region must 

be zero as illustrated in Fig. ‎4-5. It should be noted that for a lossless waveguide the 

propagation constant   would be either real or pure imaginary.  The former gives the 

propagation condition and the latter situation is referred to as stopband region, bandgap, 

cut-off condition, or evanescent wave. Taking    , the propagation constant also 
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approaches zero as seen in Fig. ‎4-4. However, Fig. ‎4-5 shows that the group velocity is 

nonzero for this case which is consistent with that fact that this structure can support the 

DC currents.     

By taking the shunt resistance    into the account, the real and imaginary parts of the 

propagation constant are illustrated in Fig. ‎4-3. As the Josephson junction block is modeled 

by a resonant circuit, the resonance behavior is expected at plasma frequency. At the low 

frequency domain, the inductive part of the Josephson junction block behaves as a short 

circuit and at high frequencies the capacitive part of the block exhibits the same behavior. 

Therefore, in both regimes the effect of the resistive part reduced and we expect low 

attenuation. On the other hand, at the resonant frequency occurring at plasma frequency, 

inductor and capacitor components of each block cancel each (open circuit), and the 

resistance part becomes more prominent by inducing large attenuation. Furthermore, 

according to Fig. ‎4-3, we observe nondispersive behavior below plasma frequency (low 

frequency) and also far above it (high frequency). At low frequencies the inductor elements 

are dominant components; however, at high frequencies the capacitors of each block 

become dominant elements. Thus, slow wave propagation is expected at low frequencies in 

comparison to high frequencies. All the above expectations are observed clearly in the 

dispersion diagram of Fig. ‎4-4.  
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Fig. ‎4-3 Dispersion Diagram, variation of phase and attenuation constants vs. frequency, of series-connected 

DJTL with normalized parameters of  LJ=1, CJ=0.5, RJ=1, L=C=1, h=0.01. 

 

 

Fig. ‎4-4 Typical dispersion diagram of a lossless series-connected DJTL  
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Fig. ‎4-5 Typical group velocity for a lossless series-connected DJTL. 

4.2.3 Supporting Phase-Matching Condition for TW- JPA  

Traveling-wave parametric amplification in its simplest form involves the transfer of power 

between three phase-locked waves in a nonlinear waveguide. A wave with a phase    

interacts with a wave with phase    to generate a wave with phase   , where        

    for        ,    and    are angular frequency and propagation constant associated 

with each wave. Each of the waves is a normal mode of propagation satisfying the 

dispersion relation and all are copropagating along the same direction. Referring to the 

dispersion equation (4.9) as         , therefore, three nonlinear equations are obtained 

            (4.11) 

            (4.12) 

             (4.13) 

Due to the cubic nonlinearity observed in the wave equation (4.6), one can realize that 

the phase-matching condition for such a resonant interaction between signal, pump and 

idler waves in the unbiased DJTL is in the kind of four-photon process satisfying the 

relation           which leads to the following phase-matching conditions  
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           (4.14) 

            (4.15) 

We will return to details of the derivation of the phase-matching condition in chapter 6 

section 6.5.4. Assuming the frequency of the signal is given, equation (4.11)-(4.15) forms a 

system of five nonlinear equations with five unknowns which must be solved. It is clear 

that solutions in the form of                   always satisfy the phase-

matching condition (4.14)-(4.15). This case is referred to as a doubly-degenerate parametric 

amplifier.  

To find any possible non-degenerate solution, we eliminate all variables except the 

pump's frequency. Thus, a polynomial with degree of ten with respect to    is obtained to 

evaluate the frequency of pump for any given signal's frequency. The roots of this 

polynomial must be positive and real. They must also fall in the proper domain such that all 

corresponding  s become real. By considering all foregoing facts and solving the 

polynomial, the DJTL cannot achieve any non-degenerate parametric interaction in 

accordance with the phase-matching condition (4.14)-(4.15).  

Another way to realize if the structure supports the non-degenerate case of phase-

matching or not is the graphical visualization by transforming the dispersion diagram in the 

(   ) plane. First, we set the point (     ) on the dispersion curve corresponding to the 

signal wave. Then we renovate all (   ) points in the dispersion curve based on the 

transformation of               ) to find a new curve. Since this transformation is 

consistent with the phase-matching equations (4.14)-(4.15), this curve would be the locus 

for idler wave. On the other hand, the frequency and phase constant of idler, denoted by 

      ),  must satisfy the dispersion relation, therefore, the idler characteristics can be 

found by intersection of the new transformed curve with the original dispersion diagram.  

This procedure has been applied for two different signal waves in a typical DJTL and 

the results are illustrated in Fig. ‎4-6. The solid line is the dispersion curve on which a point 

corresponding to the signal wave is highlighted. The dashed line is the locus of the idler 

wave that only intersects the dispersion diagram at the point corresponding to the signal. 

This confirms the fact that the doubly degenerate case is the only solution satisfying the 

phase-matching condition for the series-connected DJTL.  
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Fig. ‎4-6 Phase-matching condition cannot be satisfied for three distinct wave characteristics. 

If the basic model of JJ is employed,      and     , the dispersion equation 

becomes linear  

          
  

  
  (4.16) 

and the phase matching relation can be achieved. However, this structure is not suitable for 

parametric interaction because all harmonics of signal, pump and idler generated due to the 

nonlinearity can be propagated through the TL.       

4.3 Series-Connected DJTL Assisted by Open Stubs 

Using dispersion analysis in the preceding section, it was demonstrated that the regular 

series-connected DJTL is not suitable to guide a non-degenerate resonant triads for 

parametric amplification. In order to modify the dispersion relation for this purpose two 

proposals are offered. First, one can replace the host waveguide from TEM transmission 

line to another microwave waveguide such as ridge waveguides [98], and then embed 

periodic JJs to create the nonlinearity. Second solution is to insert additional distributed 
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elements such as inclusions to change the wave property of the TL. Due to the simplicity 

and quick modification that second solution implies, we put a single open-circuited stub at 

each unit cell. Fig. ‎4-7 and Fig. ‎4-8 illustrate the implementation of this structure over a 

microstrip line and CPW, respectively.  

 

 

 

Fig. ‎4-7 Series-connected DJTL assisted by open-circuited stubs over a microstrip  line. 

 

 

Fig. ‎4-8 Series-connected DJTL assisted by open-circuited stubs over a CPW. 

4.3.1  Wave Equation in Time Domain 

Fig. ‎4-9 shows the circuit model of the DJTL assisted by open stubs. Physically, an open 

stub is a segment of transmission line with open-circuited end that can be modeled as a 

shunt impedance. Depending on the length of the stubs, stubs behave like a capacitor, 

inductor or even resonator. If the characteristic impedance and phase constant associated 

with the stub's TL are denoted by    and   , the impedance of the open stub is given by 

                    (4.17) 
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where          ,            and   ,    are inductance and capacitance per unit 

length associated with the stub's TL.  

 

Fig. ‎4-9 TL model of the series-connected DJTL assisted by open stubs, open stubs are modeled by a shunt 

impedance. 

    Equation (4.17) displays the impedance of the open stub in frequency domain which 

cannot be used in time domain. To describe the wave equation of the structure in time 

domain, equation (4.17) must be converted in time domain. If the voltage and current seen 

at the beginning of the stub are denoted by   and  , (4.17) can be revisited as   

      
    

    
   

        

        
 (4.18) 

where                   and it has half the time required that the TEM wave travels 

across the stub and returns. Taking the inverse Fourier transform, (4.18) is written in time 

domain by 

                               (4.19) 

in which the time delay is the impact of the stub in the structure.  

Having all variables displayed in Fig. ‎4-9 and doing the same procedure carried out in 

section 4.2.1, a system of five nonlinear partial differential equations is obtained   
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    (4.24) 

These equations can be converted into one partial differential equation in terms of  one 

single variable. After sinusoidal terms are expanded in a Taylor series and extra terms are 

eliminated, equations (4.20)-(4.24) are reduced to a time-delayed PDE as 

 

     
  

  
  

 

    
     

 

  
    

 

   
   

  

  
   

           
   

  
 

   

  
                

 
 

  
          

  

  
  

 

    
    

       

 
 

  
   

      
 

 

   
   

  

  
   

       

         
       

   
   

  
 

   

  
     

       

       
 

  
    

       
       

(4.25) 

where          is the flux associated with the JJ at time     . In equation (4.25), the flux 

has been scaled through       , where   is a dimensionless parameter. This parameter 

is used to examine the order of nonlinearity with respect to the amplitude of flux. The left 

hand side of (4.25) consists of linear terms, however, the right hand side consists of  

nonlinear       given by  
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4.3.2 Dispersion Relation 

Under the small amplitude assumption, the parameter   would be very small and the 

nonlinearity in (4.25) becomes very weak. Thus, by using the methods described in section 

4.2.2, the dispersion characteristics for the lossy structure is found as  

 

  

 

       
       

  

  
     

    

  
    

   

     
        

     

   
        

 
   

   
  

  
       

     
     

   

  

  
(4.27) 

where       . Supposing that    is large enough in the regime of small amplitude, loss 

is removed and equation (4.27) is reduced to  

 

  

  

 

   
 

    
        

 
    

   
  

  
    

 
        

   
  

  
       

   
 

    

  

(4.28) 

Open stubs can be eliminated when we substitute     into the (4.28) which must be 

consistent with the (4.9) when there was no stubs. Doing this, we obtain the dispersion 

relation in (4.9) as expected.  

Derivative of dispersion relation (4.28) gives the group velocity as 

 
   

  

  
 

  

  
 

    
 

    
 

 

    
 

(4.29) 

where      stands for the denominator of the group velocity.      is a lengthy expression 

as follows 

 

         
 

    
                       

 
   

    
 

 

  
   

    
  

  
  

 
  

        

                    

(4.30) 

The dispersion diagram corresponding to (4.28), is displayed in Fig. ‎4-10. The first 

asymptotic line and the first bandgap is the result of plasma frequency of JJs.  However, 
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due to the asymptotic behavior of tangent function, additional branches and bandgaps are 

generated. All asymptotic lines and zero-crossing have been calculated in a closed-form 

expression and written in Fig. ‎4-10. Removing all stubs by taking    , all vertical 

asymptotes stemming from tangential functions, go to the leftmost infinite and we get the 

dispersion diagram of Fig. ‎4-4.  Having extra branches in the dispersion diagram increases 

the chance of finding three points that satisfies phase-matching conditions (4.14)-(4.15). 

This is primary benefit of adding open-stubs into the DJTL.  

 

Fig. ‎4-10 General dispersion diagram of DJTL assisted by open-circuited stubs. 
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Any engineered electromagnetic medium and waveguides with sophisticated frequency 

properties must be realistic and physically realizable. To study such a condition, we define 

the complex unilateral refractive index as          , where            is the free-

space wavenumber. The realizability criteria are conjugate symmetry, passivity and 
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negative and gain is observed. All physical systems must obey the causality which simply 

says that the response of the system cannot precede the input. According to the 

Titchmarsh's theorem, the three concepts of causality, analyticity and Hilbert transform 

pairs for a linear system are interconnected, assuming one implies the other two [100]. 

Therefore, the first constraint that causality puts on the system is the analyticity of      in 

the upper half-plane of the complex variable   in addition to being uniformly square 

integrable. As a results,      approaches to a limit (usually 1) when    . The second 

constraint stems from the Hilbert transform or equivalently the Kramers–Kronig relations 

that control the relationship between the real and imaginary parts of constitutive parameters 

such as       and      , effective refractive index     , and even the impedance of a 

circuit resonator [101]. We focused on the behaviour of             for our structure 

which satisfy the Kramers-Kronig equation 
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(4.32) 

According to the dispersion equation  (4.28) and definition of effective refractive index, 

the asymptotic value of     at large frequencies and its DC value at zero frequency are 

evaluated as  

       
  

    
   

  

  
    

 

    
  (4.33) 

       
  

    
  (4.34) 

The loss is related to the imaginary part of the refractive index, therefore, loss is always 

present in the dispersive materials (or waveguides) but it can be vanishingly small [102]. In 

other words, any lossless and dispersive medium that has no loss at any frequency interval 

is a non-causal medium. In [103], a closed-form equation on the bandwidth limitation for 

both lossy and lossless dispersive media has been discussed, but it is also shown that there 

are no severe restrictions if just the condition of causality is employed [103],[104].  

It should be noted that according to the  Titchmarch's theorem the validity of Kramers-

Kronig relations depends on the analyticity of the function in the upper half-plane. 
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Regarding the function of our interest, one pole is present as seen in the dispersion equation 

(4.9) and (4.28). Due to the different notations used for time harmonic analysis in physics 

and engineering disciplines, the imaginary unit   must be replaced by    in our equation 

which shows that this singularity is located in the lower half-plane.  

Fig. ‎4-11 displays the variation of the real and imaginary parts of       for the DJTL 

without stubs. When the real part of       decreases around the plasma frequency of JJ, a 

resonance at the same area occurs in the imaginary part. This phenomenon is shown in Fig. 

‎4-11. and called an "anomalous dispersion". Despite the Fourier transform which relates the 

time domain to the frequency domain, the Hilbert transform is defined in one domain and 

its effect is seen at the same location where its Hilbert counterparts changes noticeably. 

Real and imaginary parts of the refractive index is illustrated in Fig. ‎4-12.   

 

 

Fig. ‎4-11 Real and imaginary parts of n2(ω) verses frequency for DJTL without stubs. 
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Fig. ‎4-12 The refractive index of DJTL satisfies the Karmers-Kronig relation and the waveguide is causal. 

4.3.4   Floquet Analysis 

DJTL falls in the category of one-dimensional periodic structures, in the sense that an 

array of identical JJs are placed along a TL at equal distance. In this section, we employed 

the Floquet theorem which is the basis paradigm for the study of linear periodic structures 

in steady state and in frequency domain to investigate the microwave properties of DJTLs.  

The goal of this study is the characterization of mode propagation, determination the cut-

off condition and inspection of impedance matching. To take a general stand, we begin 

with the distributed circuit whose unit cell is illustrated in Fig. ‎4-9. The unit cell consists of 

a series impedance connected to a shunt admittance. The amount of the series impedance 
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Fig. ‎4-13 Simplified model of the unit cell of series-connected DJTL. 

The total ABCD matrix representing the unit cell is given by 

  
  
  

   
   
           (4.35) 

As the determinant of the matrix is unity and the unit cell is reciprocal, application of 

the Floquet theorem into the structure yields [16],[58].  

          
   

 
 

      

 
  (4.36) 

Using a mathematical identity, equation (4.36) is reduced to 

        
  

 
        (4.37) 

In the case of the lossless structure, attenuation constant is zero,      , and the 

hyperbolic function is replaced by regular trigonometric function as 

       
  

 
         (4.38) 

Equation (4.38) is the dispersion relation which governs the DJTL. However, closer 

look at the value of sinusoidal function in a trigonometric tables [57] reveals that if the 

argument of the sine function is less than 0.3, it can be crudely replaced by its argument. 

Therefore, in the case of long-wave approximation which can be written as          or 

      , equation (4.38) reduced to 

         (4.39) 

It should be noted that the same treatment can be given to the            , when the 

absolute value of      is small enough. For the DJTL waveguides shown in Fig. ‎4-9, the 

series impedance and shunt admittance per unit length are  
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       (4.41) 

Supposing the lossless case by taking      and substituting (4.40) and (4.41) into 

equation (4.39), following dispersion equation is obtained  

    
   

   

      
     

 
     

 
    

   
  

  
  

   
 

    

  (4.42) 

Equation (4.42) is the same as the dispersion equation found in section 4.3.2. from 

time-domain analysis. Multiplicative format of this equation is useful to find the zero 

crossing frequencies and also bandgaps in the dispersion diagram.  

Considering two equations (4.38) and (4.39), another limitation on the wave 

propagation emerges which is because of the discreetness nature of the DJTL. The 

sinusoidal function in (4.38) is always less than unity, therefore          . On the 

other hand,        which can be incorporated with the inequality offering another 

condition for propagation which is       or         and is called as a Bragg cut-off 

condition [92],[28]. Another proof for cut-off condition is addressed in the appendix A 

which is based on the spatial discretization of the structure.      

4.3.5 Impedance Analysis 

Essential information about the wave propagation through any electromagnetic structure is 

provided by modal analysis which has been carried out in the previous sections entitled as 

dispersion analysis.  However, when a microwave structure is implemented with a 

transmission line platform, another source of information for the design purposes can be 

obtained by the input impedance which inherently is a circuit parameter. Input impedance 

is a key parameter for calculating the amount of reflection which is a limiting factor in 

microwave power transfer.  

For the case of infinitely long periodic structure, the input impedance is one of the two 

roots of the following quadratic equation in which its real part is positive 

     
                (4.43) 

Parameters  ,  ,   and   are entries of the ABCD matrix representing the unit cell. For 

DJTL with open stubs, these parameters are given by (4.35) when the series impedance and 
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shunt impedance per unit length are substituted by (4.40) and (4.41). Therefore, equation 

(4.43) reduced to 

      
                (4.44) 

Considering the fact that       , the discriminant of the equation becomes 

                which is always positive as long as cut-off condition       is 

satisfied.   

Another approach for any impedance calculation of the structure is to define the 

characteristic impedance associated with the DJTL as        . Therefore, the input 

impedance of the DJTL ended by an arbitrary load can be found by using the conventional 

input impedance formula for a regular TEM transmission line [58].  

4.3.6 Stubs' Role for Parametric Interaction 

It was demonstrated in section 4.2.3. that a typical DJTL cannot support non-degenerate 

resonant triad waves satisfying the phase-matching equations (4.14) and (4.15). To 

overcome this problem, open stubs have been added to the DJTL to change the dispersion 

diagram. Following the same procedure leading to the graphical illustration in dispersion 

diagram explained in section 4.2.3., we can verify that embedding open stubs into the DJTL 

enables this structure to support the phase matching equations described by  

           (4.45) 

            (4.46) 

 

This technique is carried out on a typical dispersion diagram of the DJTL with open 

stubs and is shown in Fig. ‎4-14. The signal wave is chosen by               and 

              and we intend to find out the pump and idler waves. All parameters have 

already been normalized, so they are dimensionless. The normalization rule will be 

explained in the next section. The dispersion diagram is transformed by 

  
    

    
    

    

    
    

  

  
  (4.47) 

in order that the locus of idler is obtained. As demonstrated in Fig. ‎4-14, this new curve 

which is highlighted by the dashed-line crosses the dispersion diagram at two points. One is 

located exactly at the same position where the original signal point is, and the second one is 
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a separate solution which has been pointed by an arrow in Fig. ‎4-14 and designated by 

(      . if signal and pump points are connected by a segment, the middle of this segment 

is inevitably located on the dispersion diagram and marks the pump wave. This procedure 

is also applied to another dispersion diagram for a different DJTL as shown in Fig. ‎4-15. 

The existence of two sets of none-degenerate resonant triads satisfying the phase-matching 

condition is verified in this figure.      

Another virtue that dispersion brings to the DJTL structure for traveling-wave 

parametric amplification relies on the filter property of the dispersion which prevents other 

unwanted harmonics from propagating through the structure. If the wave propagation 

through the structure is ruled out by a linear dispersion relation, any combinations of the 

resonant triad waves generated by the nonlinearity of the waveguide are allowed to 

propagate and carry energy. This might result in an inefficient parametric amplifier.  

 

Fig. ‎4-14 Existence of the non-degenerate resonant triad waves in a DJTL with open stubs. LJ=1, CJ=0.5, L=1, 

C=1, Cs=1, Ls=0.5, ls=0.1, h=0.01. 
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Fig. ‎4-15 Existence of the non-degenerate resonant triad waves in a DJTL with open stubs. LJ=1, CJ=1, L=1, 

C=1, Cs=1, Ls=0.5, ls=1, h=0.1. 

4.4 Design Considerations  

In previous sections the possibility of supporting phase-matching equations (4.14) and 

(4.15) in a DJTL assisted with open stubs has been discussed. Nonetheless, there are some 

assumptions and conditions made at the beginning of our analysis that must be taken into 

account in the design procedure. Otherwise, the output of the design procedure is not 

consistent with the early assumptions. The aim of the design scheme in this part, is to find 

out the proper pump and idler waves for a given signal wave for a feasible DJTL. 

Moreover, practical limitations in implementing all physical parameters and circuit 

elements involved in the structure introduce technical restrictions that also need careful 
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attention. Furthermore, fabrication process and their design rules is another restriction for 

the design flexibility.  

4.4.1 Normalization Rule 

In order to have more flexibility in design process, all physical parameters and variables  

are normalized by some arbitrary factors. After getting the desired response in the 

simulation, then these factors are chosen on the basis of feasibility of the device 

implementation. In addition, for numerical simulations, when very small or very big 

numbers are involved, it is often helpful to normalize all parameters and variables to special 

values. The scaling rules used in our analysis of DJTL are described in Table II.  

The concept and formal manipulation by normalizing methods is easy, but the ideas 

involved seem to be rather deep. Basically, any scaling rule must have this important 

property that when we substitute new normalized variables and parameters into the set of 

master equations for the problem, these equations hold the same form as they have for the 

non-normalized variables and parameters. Hence, in order to establish a normalization rule 

in our problem, we choose four arbitrary constants namely,   ,   ,    and   , to normalize 

frequency, wavenumber, impedance and current by dividing them by these constants, 

respectively. Then, all other remaining parameters and variables are normalized into the 

proper form by using these four assumed parameters, as described in Table II. By putting 

new normalized variables into the wave equations (4.1)-(4.4), (4.5) or the dispersion 

relation (4.9),  and trying to keep the former format of the equation, we realize that   ,   , 

   and    can be taken as arbitrary constants, as long as corresponding parameters are 

physically realizable. Summary of above process is shown in Table II. 

4.4.2 Design Example 

Presence of separate branches in the dispersion diagram of DJTL assisted by open-circuited 

stubs provides a platform to realize the three distinguished waves to satisfy the phase 

matching equations (4.14) and (4.15). On the other hand, two restrictions on the wavelength 

and the size of the device's unit cell have been addressed in section 4.3.4. First restriction 

indicates that no wave can propagate at a phase constant greater than     due to the 
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discreteness of DJTL. Second assumption is that the size of the unit cell should be small 

enough in order that long-wave approximation becomes reasonable. This implies that the 

phase constant of the wave should be less than      . For DJTL with the spatial period of 

        , these two borders have been sketched by thick horizontal lines on the 

dispersion diagram of Fig. ‎4-16. Evidently, the design area is below the dashed line as 

illustrated in the Fig. ‎4-16.   

TABLE II 

 NORMALIZATION RULE 

Parameters and variables 
Normalization rule 

Frequency         , i.e.              

Propagation constant          ,          ,  i.e.         

Space        , i.e.         

Time         

Impedance         ,         

Inductance            

Capacitance           

Inductance per unit length                 

Capacitance per unit length              

Current         ,  i.e.       

Voltage              

Flux                

Velocity                    

Permittivity              

Permeability                 

 

Since the performance of microwave TEM transmission line is degraded at higher 

frequencies, we focus on the first three branches to conceive signal, pump and idler waves. 

Each branch is characterized by a vertical asymptotic line and a zero-crossing point that are 

expressed in terms of the waveguide's parameters as illustrated in Fig. ‎4-10 from section 

4.3.2.. The first asymptotic line is related to the JJ's plasma frequency,           , that 
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is to be determined by fabrication process. The second branch has a crossing-point and an 

asymptotic line at               and                       , respectively. 

Likewise, the third branch has one zero-crossing denoted by     and evaluated by the 

equation               in addition to one asymptotic line referred to by      

                    .  

The graphical technique explained in section 4.2.3. is used to find three points, 

corresponding to three waves, on the dispersion diagram satisfying the phase-matching 

conditions (4.14) and (4.15). If these branches become closer to each other, the chance of 

getting solutions increases as transformed dispersion curve crosses the original dispersion 

curve. Thus, as    and   are fixed,   can be small in order to decrease the distance between 

   and   . Moreover, by increasing  , which leads to an increase in   ,    and   , the 

asymptotic          moves to the left. Due to the size constraint,    cannot be 

arbitrarily large, but larger values for    and    are desirable. The roots of equation 

              which gives the zero-crossing points will be shifted to the left when   

or    increases. As a result, lower value of    and larger values for    and   are desirable to 

make branches closer to each other that gives rise to better chance of having solution for 

phase-matching equations.      

The signal wave is given at frequency          and phase constant          . It is 

located on the first branch as seen in Fig. ‎4-16. Considering above discussions, following 

parameters are chosen to have a solution in the limit of long-wave approximation;        , 

        ,              ,          ,        ,       ,          ,           

and            where     and    is the characteristic impedance of LC transmission line 

given by          and           . As demonstrated in Fig. ‎4-16., these parameters 

result in pump and idler waves with frequencies          ,           and phase 

constants          ,          . According to Fig. ‎4-16, there is another set of solution 

as the curves cross each other at another point, but it is outside the region where solutions 

are acceptable.  

To find the parameters from normalized values, we just need to find proper scaling 

factors   ,   ,    and    to be used based on the normalization rules of Table II. The 

scaling factor for length and phase constant is chosen as         . Concerning practical 
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implementation, we have already set         ,        . For applications such as 

superconducting qubits, we used                to cover the frequency range between 

      and       . Therefore, signal, pump and idler waves are characterized by     

         ,            ,              ,             ,              and 

            . Also, plasma frequency of JJ blocks is evaluated as              or  

            . In order to practically realize the TLs, we use the scaling factor    

     which leads to          ,          ,                         ,     

      ,              ,              ,            .  By  using  Al-Al2O3-Al 

junctions with parameters [10], [105]         ,         ,        ,            , 

an array of 10 junctions and a fit capacitance             as illustrated in Fig. ‎4-1, are 

needed to realize the values of    and   . The shunt resistance associated with an array of 

JJs reaches        which can be regarded as open-circuited and ignored. 

 

Fig. ‎4-16 Verification of existence of solutions for phase-matching equations, LJ=0.2, CJ=0.05, L=250, C=70, 

Ls=100, Cs=10, ls=0.002, h=0.0005. 
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The plot of characteristics impedance, inductance and capacitance per unit length 

associated with a superconducting TL made of Nb versus aspect ratio     is shown in Fig. 

‎4-17. Parameter   refers to the width of the center strip and parameter   denotes the 

distance between two grounds in the CPW configuration. This figure demonstrates that all 

values mentioned above are realizable over a CPW configuration.  

Characteristic impedance associated with the DJTL assisted with open stubs are 

depicted in Fig. ‎4-18 and compared with the phase constant profile. When a band gap 

appears in dispersion diagram, the real part of the impedance dropped to zero which simply 

shows that maximum reflection occurs in this regime. This graph shows that three different 

impedances exist at signal, pump and idler frequencies which should be taken into account 

for impedance matching circuit design.   

 

Fig. ‎4-17 Profiles of circuit parameters of a superconducting CPW made of Nb with thickness o3 400nm. 

Dielectric constant and thickness are εr=9 and 300µm.   
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Fig. ‎4-18 Characteristic impedance (real part) and phase constant of a DJTL with open stubs. JJ blocks consist 

of 10 array. LJ0=1.8nH, Cfit=380 fF, L=2.36µH/m, C=0.54nF/m, Cs=0.077 nF/m, Ls=0.94 µH/m, ls=2mm, 

h=0.5mm. 

4.5 Conclusion 

Superconducting transmission line periodically loaded by Josephson junctions was 

proposed as a nonlinear medium to provide a platform for investigation of nonlinear 

interaction to achieve a traveling-wave Josephson parametric amplifier. Long-wave 

assumption was applied to treat the structure as an effectively uniform waveguide and 

describe it by a nonlinear wave equation based on the transmission line model. In small 

amplitude regime, this structure, which is referred to as DJTL, exhibited linear behavior. 

The dominant TEM mode of this structure was engineered to give microwave band gaps. 

Realizablility of the dispersion relation based on Titchmarsh's theorem has also been 

assessed. As DJTL is a periodic structure, Floquet theorem has been applied to this 
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structure which gave the cut-off condition and the limit for long-wave assumption. A 

graphical technique has been described to inspect the support of non-degenerate phase-

matching condition based on the four-photon process. As a result, open-circuited stubs have 

been added to change the dispersion relation in order that DJTL support the phase-matching 

condition. Concerning microwave implementation of this structure, impedance analysis has 

been conducted to avoid impedance mismatch issues in practical design stage. A design 

example leading to realizable parameters was carried out which is useful in fabrication 

process.         
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5 Finite Difference Time Domain Analysis of Series-Connected DJTL 

Chapter 5  

Finite Difference Time Domain Analysis 

of Series-Connected DJTL 

5.1 Introduction 

Using transmission line model in the preceding chapter, the series-connected DJTL is 

modeled by a set of partial differential equations (PDE) which is boiled down to a single 

nonlinear wave equation. This system of PDEs with a driving source at the beginning and 

mixed-boundary condition at the end offers a complete system of PDEs to display the 

device's performance. As discussed in the previous chapter, by driving DJTL below a 

limiting frequency, this model is accurate enough to describe the behavior of microwave 

propagation through the DJTL. This provides a mathematical foundation to investigate the 

microwave characteristics of the structure to develop devices such as traveling-wave 

Josephson parametric amplifier.  

Due to the nonlinear equations arising from JJs, analytical and also frequency-domain 

methods fail to provide a solution for this problem, and employing a time-domain analysis 

is necessary to investigate the response of the device in various circumstances. Finite 

difference time domain (FDTD) method is a powerful technique to provide a numerical tool 

to evaluate the temporal and spatial evolution of the DJTL and compute both transient and 

steady state responses for all kinds of zero, weak, mild and strong nonlinearity associated 

with the structure [106],[107]. Although enormous computations can be carried out in using 

FDTD, this method is never regarded as a ―brute force‖ technique, because employing 

FDTD requires subtle thinking and careful consideration of crucial issues such as choosing 

a proper scheme, consistency, degree of accuracy, stability criteria, gridding, excitation, 

numerical boundary conditions, fictitious boundary points and numerical dispersion.  
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We introduce a systematic approach to develop a rigorous one-dimensional FDTD 

solver based on the Lax-Wendroff explicit scheme to study the features of DJTL structures 

[108]. The validity of this tool is justified by comparing the results to those produced by 

implicit Crank-Nicolson technique, in addition to verifying limiting cases.  With this 

method, one can monitor the time evolution of an incoming signal with any shape such as 

sinusoidal and Gaussian, during its trip along the DJTL and its interaction with other 

signals. Also, transient, steady state response of the line, and shape forming/deforming of 

any pulse can be investigated.    

The rest of this chapter is organized as follows. After a brief introduction to FDTD 

technique in section 2, the numerical implimentation of FDTD accompanying the 

meticulous algorithm is fully described in section 3. DJTLs with open-stubs, DJTLs with 

the resistive-capacitive shunted junction (RCSJ) model and DJTLs with the basic model of 

bare JJ are solved with the robust explicit and implicit schemes of FDTD. Section 4 reports 

our simulation results based on the FDTD technique. With this new approach, we observe 

all the features associated with a typical nonlinear TL. They include cut-off propagation, 

controllable dispersive behavior, and shock wave formation. The propagation of resonant 

triads designed in previous chapter for signal, pump and idler is also verified in this section. 

Experimental demonstration of shock-waves in a nonlinear superconducting TL is 

addressed in section 5.     

5.2 Finite Difference Time Domain Method 

Finite Difference Time Domain (FDTD) method is a general numerical technique which 

provides a powerful approach to solve wave propagation in electromagnetic structures and 

media. These problems are mathematically modeled by a set of Partial Differential 

Equations (PDE) in terms of time and space variables with proper initial data and necessary 

boundary conditions, which is usually referred to as initial-boundary value problem [108]. 

FDTD method proceeds by replacing the derivatives in the differential equations by finite 

difference approximations on a grid staggered in time and space. Then by time marching, 

this gives a large number of algebraic equations to be solved in place of the differential 

equation, something that is easily solved by a computer.  
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Despite its inherent approximation, there exists some attractive features that arise 

considerable interest in the FDTD approach. The source of errors in FDTD calculations are 

well understood, so it can be controlled to permit an accurate model. Furthermore, 

implementation of  FDTD can be done in a systematic approach in a sense that it can be 

easily applied to other problems.  Using wideband sources, the FDTD method can compute 

a wideband response in one run, whereas frequency domain methods must obviously 

recompute the system response for each frequency point. Since the method makes no 

assumption regarding the nature of the solution, both transient and steady-state solution 

parts of the problem are included in the FDTD method. When the PDE contains 

nonlinearity, analytical and also frequency-domain methods often fail to provide a solution, 

but a numerical solution of nonlinear PDE is obtained by FDTD. Moreover, when the 

region is complex or the boundary conditions are of mixed types, FDTD is a good 

candidate to solve the problem [107],[106]. 

FDTD methods can be carried out by either explicit or implicit scheme. Both are based 

on time stepping on updated equations. In an explicit scheme, the solution at successive 

time step at each point can be obtained directly in terms of present values or previously 

computed values of that point and its neighbors. For a one-dimensional problem, an explicit 

finite difference scheme can be written in the form  

   
                           

               (5.1) 

where   
  is a discretized value of variable        with time and space step of      and 

     according to the relation [108] 

   
            (5.2) 

With an implicit scheme, the next value at a point is a function not only of the current 

and past values at this and surrounding points, but also the next values of some or all of 

these points. An implicit method requires the solution of a set of simultaneous equations in 

order to evaluate the unknowns which generally lead to a highly sparse matrix equation.  

Explicit methods don‘t require matrix solution, so it is computationally simple, but has one 

serious drawback. The time step      must be necessarily very small, because if it 

exceeds the certain amount, it produces instability. According to Courant-Friedrichs-Lewy 

(CFL) theorem [108], for an explicit scheme for the hyperbolic system of equations in the 

form  
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   (5.3) 

a necessary condition for the stability is  

         (5.4) 

for all eigenvalues    of the matrix  , where       and   is a vector containing all 

variables. As eigenvalues    are the slopes of characteristic lines of the PDE (5.3), they are 

regarded as phase velocities of the wave propagation in the medium [109]. Note that CFL 

expresses a necessary, but not sufficient, condition for stability, since numerical boundary 

conditions can also cause instabilities [108]. Notice that CFL theorem does not extend to 

implicit schemes, and they are unconditionally stable for every value of  . Nonetheless, 

choosing   arbitrary large for an implicit scheme, we might lose the accuracy of the 

solution, unless   is restricted to reasonable values [108].  

In addition to the stability issue, a numerical algorithm such as FDTD can introduce 

numerical dispersion and dissipation, even when waves are propagating in a distortionless 

and nondissipative medium. They are undesirable effects with numeric origin, but they can 

be controlled by making the mesh sufficiently fine. On the other hand, the price to be paid 

is a large number of equations which dramatically reduce the speed of computation. This 

becomes prohibitive for large practical problems. However, there is another tractable way 

to avoid such a trouble which is called as a magic time-step [106]. As a general principle, 

for hyperbolic partial differential equations (5.3), it is best to run the FDTD code as close to 

the CFL stability limit (take      close to the one)  as possible to keep the dispersion and 

dissipation small. If we are interested in a particular frequency, say   , then we should 

chose time step   , so that    is much less than   to get accurate results, both in the speed 

of the wave (dispersion) and in the amplitude (dissipation).  

Numerical boundary condition is another topic in FDTD. In addition to initial data and 

boundary conditions, many schemes also require additional boundary conditions called 

numerical boundary conditions to make the PDE well-posed and determine the solution 

uniquely. Sometimes this can be achieved by inserting extra fictitious points beyond the 

boundaries. This is due to the fact that the number of equations and unknowns must be 

equal to each other. It is very important to clearly distinguish between real-imposed and 

numerical boundary conditions to avoid solving overdetermined or underdetermined 
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problems. As mentioned in the preceding paragraphs, the numerical boundary condition 

coupled with a particular scheme can give rise to instability, so care should be taken when 

we want to embed a numerical boundary condition into the problem [108].  

5.3 Numerical Implementation of Nonlinear FDTD for 

Series-Connected DJTLs  

In this part, the details of FDTD technique that has been developed to solve various types 

of DJTL is explained.   

5.3.1 DJTL Assisted by Open Stubs 

The governing equations representing the physical behavior of the DJTL structure with 

open stubs, shown in Fig. ‎4-9, consist of five delay differential equations. Referring to 

section 4.3.1, there exist five reactive elements in the unit cell depicted in Fig. ‎4-9,  so the 

state of the structure is determined by five variables satisfying five coupled equations as 

follows 
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   (5.6) 

 
   

  
    (5.7) 

                
  

  
    

   

  
 

  

  
 (5.8) 

 
                                

                       
(5.9) 

All variables and parameters have been described in section 4.3.1.. Putting a voltage 

source       with an associated series resistance    and a load impedance    at two ends of 

the DJTL and setting all variables to zero before    , a set of complete well-posed 

equations are obtained. This includes a system of partial differential equations (5.5)-(5.9) 

with mixed boundary conditions and zero initial values in the form of     
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                       (5.10) 

                       (5.11) 

                                                 (5.12) 

The first step in establishing an FDTD solver is to set up a regular grid in space and 

time. Time and space steps are denoted by   and   respectively, and the total number of 

temporal and spatial grids in the interior computational domain is referred by   and  . 

Because of the  modeling approach we chose, the space step   must be equal to the unit cell 

length of DJTL. The next step is to approximate the differential equations with proper finite 

difference scheme. We used explicit Lax-Wendroff scheme [110],[108] which can fit well 

to our problem. This scheme provides a second order accuracy by itself, so there is no need 

to complicate the implementation by defining additional grids points at half-time and half-

space [107],[106],[111]. Using Lax-Wendroff scheme and discrete notation defined by 

  
          , this gives five update equations as follows 

 

  
    

 

   
      

   

   
  

 

  
     

      
   

  

   
     

     
      

  

 
  

    
      

       

   
 

   
      

  

(5.13) 

 

  
    

 

   
   

   

   
  

 

  
     

      
   

  

   
     

     
      

  

 
  

   
         

          
   

 

   
    

  

(5.14) 

 

 
 

   
  
       

 

     
    

    
   
   

      
   

   

  
 

    
 

     
    

  
 

   
  
  

   
   

      
   

 

  
  

(5.15) 

    

    
 

 
   

       

  
 

 
   

  (5.16) 

   
            

      
               

       (5.17) 



102 

 

where    is the number of time steps between zero and     defined by          . The 

bracket indicates the integer part of the variable. They are necessary in computing the value 

of variables for the next time step, since a delay differential equation exists in the 

governing equations.  It can be perceived that (5.13)-(5.17) involve five unknowns that are 

entangled to each other through five nonlinear equations, so at each grid in the 

computational domain we should solve a system of nonlinear simultaneous equations. By 

putting all five variables in a vector such as   
     

   
    

    

       
 

 
 
, 

equations (5.13)-(5.17) can be expressed by an implicit nonlinear function such as 

    
      

      
      

    
         . The goal is to solve   

    when all   
 ,     

 , 

    
  and    

       are known. This connection is shown by the computational molecule 

in Fig. ‎5-1.     

 

Fig. ‎5-1 Computational molecule of explicit FDTD for analyzing the DJTL assisted by open stubs. 

Fig. ‎5-2 sheds more light on the implementation of FDTD for DJTL structures. Time and 

space grids are assigned for each of the five variables, and they are classified into four 

domains; interior computational domain, initial-value grids, boundary grids, and extra 

fictitious points. Computational molecule of Fig. ‎5-1 starts the act of computation at the 

time step        from the top-left point       in the interior grids and moves to the 

right direction up to the last point corresponding to    . As inferred from the 

computational molecule, Fig. ‎5-1 ,the initial-value points at time step     is involved in 

evaluation grids at time step       . Then, it goes to the lower and upper boundary 

points located at     and       to update their values. At the boundaries, there 
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exists mixed boundary conditions as pointed out in (5.10) and (5.11). They are discretized 

by 

   
                 

    (5.18) 

     
          

     (5.19) 

Computing the values of   vector at the boundaries, variable   at time step     must 

be replaced by the expressions in (5.18) and (5.19) that boundary conditions imposes for 

the beginning and the end boundary points, respectively.     

 

Fig. ‎5-2 A system of five simultaneously PDEs with five unknowns are descretisized in time-space plane. 

Four different types of grids are shown: interior computation domain, boundary grids, initial-value grids and 

extra fictitious points. 

Obviously, by applying this computational molecule at points on two boundaries, two 

fictitious points appear at each time step. Due to the possibility of generating instability, as 

mentioned before, care should be taken to compute such points. We use the following 

relations to calculate extra-left and extra-right points respectively [108] 
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Complete and detailed procedure is illustrated in the flowchart of Fig. ‎5-3. 

 

 

Fig. ‎5-3 Flowchart including all details for explicit implementation of FDTD to analyze the DJTL. 

5.3.2 DJTL without Open Stubs 

Equations (5.5)-(5.9) that describe the microwave characteristics of a DJTL without open 

stubs (   ) are restated in the matrix form  
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where column vectors  ,      and       are defined as            ,       

            and 

      

 
 
 
 
 
 

 
  

  
  

 

  
  

 

    
   

  
  

       
  

  
 

   
 
 
 
 
 

  (5.23) 

Note that      is a nonlinear function of     Applying Lax-Wendroff scheme, update 

equation can be obtained as follows 

 

  
      

  
 

 
       

         
    

 
  

 
    

  
 
 

         
       

   

    
  

 
 

       
         

    

  
 

 
       

      
        

      
  

 
 

 
   

      
   

(5.24) 

where      ,   
  is the value of matrix   evaluated at      and       and     

   

is the 4-by-4 Jacobian matrix whose entries are defined by 

      
   

   
                      (5.25) 

where   and    are ith and jth element in column vectors   and  . To avoid midpoint 

evaluations, the Jacobian matrices can be found by 
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  (5.27) 

Equation (5.24) involves four unknowns that are coupled to each other through four 

nonlinear equations, so at each grid in the computational domain, as shown in Fig. ‎5-2, a 

system of nonlinear simultaneous equations must be solved. Also, the computational 

molecule reduces to one illustrated in Fig. ‎5-4. Boundary conditions and extra points that 



106 

 

numerical scheme imposes on the computation process are the same as those mentioned in 

the previous section through equations (5.18) and (5.19).  

 

Fig. ‎5-4 Computational molecule of explicit FDTD for analyzing the DJTL. 

It should be noted that by setting      or      the shunt resistance associated with 

JJ becomes open-circuited  or short-circuited, respectively, and the two extreme cases are 

taken into account. The former is the lossless TL and the latter is a linear and normal TL 

without JJ blocks.   

5.3.3 DJTL with the Basic Modeling for JJ  

By lowering the temperature far below the critical temperature of superconductors, the 

normal resistive channel of the junction can be removed, and the basic model of the JJ can 

be used, provided the flowing current is restricted less than the critical current   . The 

schematic of distributed circuit is shown in Fig. ‎5-5. Therefore by removing the capacitive 

and resistive channel in JJ, the nonlinear equations that characterize the propagation of the 

voltage and current is obtained as  
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As mentioned in the previous section, instead of a single junction, there exists an array 

of   junctions at each unit cell, such that the effective mounted inductance will be      

instead of   , as illustrated in Fig. ‎4-1(b). Eliminating one of these two coupled variables, 

i.e. voltage, results in the following nonlinear wave equations for the current 
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Fig. ‎5-5 Distributed circuit model of series-connected DJTL with basic  JJ (a) and its nonlinear inductor 

model (b), respectively, for an array of N junctions. The period of the transmission line is denoted by Δx=h. 

 The system of nonlinear equations in (5.28) can be rewritten in the form  
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where      is a nonlinear function of  . Moreover,   and      are column vectors with 

two components as follows 
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To simplify the formulation, we have used an auxiliary variable  , instead of current, 

with the relation  

            
  

 
        

 

  
   (5.33) 

In fact,   represents flux per unit length stored in inductors associated with both 

transmission lines and Josephson junctions. Hence, based on the inverse relation of 

        , current at any time and location can be calculated when   is known.  

Using explicit Lax-Wendroff scheme, it gives the update equations as follows  
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where     
   represents a Jacobian matrix that for this problem is a 2-by-2 matrix 

evaluated by 

      

 
 
 
 
 
 
 

  

 

   
     

     
      

  
 

 

 

 
 
 
 
 
 
 

  (5.35) 

To avoid midpoint evaluations, the Jacobian matrices in the update equation (5.34) is 

found by equations (5.26) and (5.27) in the previous section. The rest of the explicit FDTD 

implementation will be similar to what was explained in the previous sections.  

Dispersion relation for this structure is  

        
  

 
     (5.36) 

and Bragg cut-off frequency and the condition for propagation are given by   

   
 

           
  (5.37) 

Long-wave approximation explained in section 4.4.2 can be obtained by following 

inequality  

   
   

           
  (5.38) 

5.3.4 Implicit FDTD Scheme for DJTL   

The execution of the explicit method centers on the way of forming a system of equations 

whose solution includes all values of variables at all spatial grids at a certain time. 

Although our explicit method is completely accurate and stable, we tried to solve our 

problem with the implicit method as well, to demonstrate the validity of our results.  

For DJTL with the basic modeling of JJ and M spatial points in the computational domain, 

we construct a new 2M-by-1 vector at each time step, called  , by putting all   vectors 

together as shown in  

      
     

   
      

   
    (5.39) 
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and described in Table III. Then we apply the Crank-Nicolson scheme [108] to (5.30) in 

order to derive a discretized expression. This attempt gives 

 

 

 
      

       
    

 

 
      

    

 
  

 
      

     
  

 

 
      

   

(5.40) 

 

TABLE III 

DEFINING UNKNOWN VECTOR IN IMPLICIT FDTD METHOD 

Elements of 

X vector in 

implicit scheme 

Corresponding 

U vectors in 

explicit method 

Corresponding flux 

and voltage 

variables 

        
       

  

        
       

  

… … … 

… … … 

             
         

  

             
         

  

           
       

  

         
       

  

             
         

  

             
         

  

… … … 

… … … 

           
       

  

         
       

  

 Relation between variables, vectors used in explicit and implicit FDTD  method for DJTL:               

      
     

   
      

   
   . 

By applying this equation to interior points          ,      equations can be 

obtained. As the number of unknowns are   , four more equations are required to 

construct a consistent system of equations with 2M unknowns and 2M equations. Boundary 

conditions at two ends provides two equations as written in (5.18)-(5.19) and we need two 

numerical boundary conditions similar to (5.20)-(5.21) to have a system of consistent 
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equations. The flowchart in Fig. ‎5-6 illustrates the computation flow of this implicit FDTD 

algorithm.  

 

 

Fig. ‎5-6 Flowchart describing the full details of the implicit FDTD algorithm to analyze the DJTL. 

5.4 Numerical Results 

For a     ´     Josephson junction constructed by Nb-AlOx-Nb technology offered by 

HYPRES  in high current density process, the junction‘s parameters are          , 

        ,        ,             and         [61], [112], which yields zero-

current inductance            , plasma frequency                 and Stewart-

McCumber parameter        . Considering another junction made of Pb-PbO-Pb, the 

measured junction‘s parameters are          ,          ,        ,        , 

       , so          which is so small [39], [113]. Therefore, arrays or stacks of   

identical Josephson junctions are used to increase the total inductance of the structure. This 

array can be represented by a single junction with   times larger inductance,   times larger 
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resistance, and   times smaller capacitance compared to a single junction. This equivalent 

model is correct when all junctions are identical. explaining more, there exists three distinct 

channels for current flow in a typical Josephson junction: inductive channel for cooper 

pairs, resistive channel for normal electron and capacitive channel for displacement current.  

The current in the inductive channel, for an array doesn't change as these JJs are in series. 

The inductive channel can be modeled by a single equivalent JJ by assuming a magnetic 

flux quanta in all equations which is   times larger than the magnetic flux quanta when 

only one junction is the case [114]. 

We consider Al-Al2O3-Al Josephson junctions as they have small critical current which 

leads to the larger inductance. For Al technology, typically        ,            and 

        and        . As mentioned in section 4.2,  it is possible to put an extra shunt 

capacitance with the JJ to increase the capacitance and reduce the plasma frequency. Doing 

this, the plasma frequency of junctions fabricated by Al-Al2O3-Al technology reduces to the 

order of 20-100Grad/s; which is suitable for microwave superconducting electronics. 

Fig. ‎5-7 shows the voltage wave propagation over time and space axes for a DJTL with 

basic modeling for JJs. The physical parameters of the DJTL for simulation are chosen as 

       ,         ,        and a sinusoidal voltage source by        .,       

drives the DJTL. These values can be converted to the real physical parameters by setting 

            ,         and         for normalization constants in the Table II in 

chapter four which results in having one aluminum JJ in a period of       , lossless 

transmission line with circuit parameters          ,          and a voltage source 

with amplitude         , series impedance          and frequency           . The 

line is ended with a load impedance of       . The effective distributed JJ inductance 

can be expressed in the unit      by expression       which yields        . Using the 

right hand side of the inequality (5.37), Bragg cut off frequency is found to be    

         which is above the signal frequency, i.e.      , and signal propagates through 

the DJTL as demonstrated in Fig. ‎5-7.   
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Fig. ‎5-7 Propagation of sinusoidal wave in a DJTL, L=C=1, LJ=0.01, h=0.01, k=0.001, Ic=1, Vs=0.1, fs=4. 

 

To justify the validity of the FDTD code, we remove the JJ block by letting     , put a 

    matched load at the end, and drive the DJTL by the matched source at frequency 

          . The regular response of linear transmission line is expected, with no 

reflection at the end. Also, the amplitude of the voltage wave traveling through the 

waveguide must be one half of the amplitude of the voltage source. Moreover, according to 

the        formula, wavelength is obtained as         . These are in excellent 

agreement with the result in Fig. ‎5-8.  
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Fig. ‎5-8 The wave pattern of a regular transmission line (without JJs) connected to the matched load with 

parameters, L=C=1, LJ=0.01, h=0.01, Ic=1, Vs=0.1, fs=4. 

 

Fig. ‎5-9 Comparison of results obtained by explicit and implicit method with the same parametrs for the 

voltage along the TL length, L=C=1, LJ=0.01, h=0.02, Ic=1, Vs=0.1, fs=4.  
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The profile of voltage along the series DJTL is depicted in Fig. ‎5-9. This graph 

compares the solution of FDTD in two different approaches, explicit and implicit. 

Evidently, both of these approaches provide the same solution, as seen in Fig. ‎5-9. In such a 

profile it is seen that the solution consists of transient and steady parts. The transient 

response is broadened since the phase velocity and group velocity have different values. 

The leading edge of the signal travels with the group velocity; on the other hand, the crest 

of the signal travels with phase velocity. The difference between these two speeds gives 

rise to a dispersive solution which manifest itself by broadening the transient response. This 

dispersion in transient response is more prounounced in for the case of a Gaussian pulse.  

 

Fig. ‎5-10 The wave propagation in a DJTL analyzed by the RCSJ model, L=C=1, LJ=1, CJ=0.5, RJ= Rs= 

RL=1,  h=0.01, Ic=1, Vs=0.1, fs=4. 

Fig. ‎5-11 illustrates the voltage wave propagation in a series-connected DJTL over both 

space and time axis when complete RCSJ model is used. We used an array of 100 JJs with 
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components) are excited; hence, we observe dispersive behavior in the forefront of the 

wave as more clearly shown in Fig. ‎5-11 which is the top perspective of Fig. ‎5-10. 

   

Fig. ‎5-11 Group and phase velocity for wave propagation in a DJTL based on the RCSJ model.  

Because of the normal resistive channel   , the wave will attenuate gradually as 

sketched in the voltage profile of Fig. ‎5-12. By measuring the distance between two 

successive crests of the wave depicted in Fig. ‎5-12 the phase constant of the wave is found 

to be             . Moreover, by simple algebraic calculation based on the data of Fig. 

‎5-12, the attenuation constant is given as             . Both   and   are in agreement 

with the result shown in dispersion diagram of Fig. ‎4-3.  The magnitude of the voltage at 

the beginning of the line is half of the magnitude of the voltage source, as seen in Fig. ‎5-12, 

because of the impedance matching between source and the line.  
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Fig. ‎5-12 The profile of the voltage pattern in series-connected DJTL. Attenuation and phase constant can be 

found from this figure. 

The study of wave packet introduces another interesting aspect of DJTL. In the 

generalized RCSJ model of the Josephson junction, the capacitive element causes the 

dispersion behavior which has already been seen in Fig. ‎5-10 and Fig. ‎5-11. This dispersive 

behavior can be monitored by the wave packet. The wave packet that we use is in the form 

of 

                          (5.41) 

where      . The wave           is a relatively smooth function and plays the role of 

an envelope for the wave function         . The envelope travels at the group velocity and 

the crests of the wave function moves with phase velocity. As observed in Fig. ‎5-13, at 

different zero-crossing points of the envelope, the phase of the wave function changes, this 

is evidence of dispersive behavior.  

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05 X: 0.22
Y: 0.04169

Normalized z

V
/V

m
a
x

X: 2.32
Y: 0.01785

X: 2.02
Y: 0.02043



117 

 

 

Fig. ‎5-13 Wave packet propagation in DJTL fs=32, fn=2.  

As extensively discussed in chapter four, two kinds of cut-off conditions can occur in 

DJTL structures. One kind of cut-off condition happens when the DJTL is driven by 

frequencies within the band gap such as those in the dispersion diagrams of Fig. ‎4-3 or Fig. 

‎4-4. For instance around plasma frequency of JJs, resonance occurs in the series JJ blocks 

and the line becomes very lossy; therefore, the wave decays very fast. Fig. ‎5-14 shows cut 

off propagation when the frequency of the voltage source is              . This 

frequency is located in the interval of the dispersion curve, Fig. ‎4-3, where attenuation is 

large.  
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Fig. ‎5-14 When driving frequency is close enough to plasma frequency, DJTL reveals cut-off propagation. 

Another type of cut-off is an effect of spatial discreteness which happens at the Bragg's 

frequency. This observation is similar to the cut off propagation in the parallel-connected 

DJTL which has been described by the discreteness factor [115], [116], [117]. This fact has 

been fully explained in chapter four by using Floquet theorem. We consider the basic 

model for JJ and we set,        ,       ,        and sinusoidal source with 

frequency      , these parameters fail to satisfy (5.37) and instead of propagation we have 

a cut-off propagation in the steady state solution of the analysis as illustrated in Fig. ‎5-15 

for         . According to the cut-off condition (5.37), at a given frequency, by increasing 

  ,   or    the cut-off  frequency decreases, so for large values of circuit parameters we 

encounter blocking in wave propagation at lower frequencies. This phenomena has been 

also reported for parallel-connected DJTL [115],[117]. 
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Fig. ‎5-15 Stopped-propagation of voltage wave through a DJTL, L=C=1, LJ=10, h=0.02, k=0.02, Vs=0.2, fs=4. 

According to the definition of the current dependent Josephson inductance [28], the 

nonlinear Josephson inductance increases with increasing current, so we expect that high-

current sections of the waveform to propagate slower than the low-current sections. 

Qualitatively, as time evolves the peak of a current (or voltage since both have the same 

profile) leaves behind the bottom. As a result, a wave with a steeping end can develop 

which eventually leads to a jump discontinuity [118] as represented in Fig. ‎5-16. This type 

of wave which takes the form of a very sharp change is called as a shock wave. Shock-

wave formation occurs when the DJTL is excited such that the flowing current is very close 

to the critical current of the junctions. 

To see this, the voltage source is chosen to be a Gaussian pulse in the form of  

                     
    

  
     (5.42) 

The FWHM (Full Wave Half Maximum) of the Gaussian pulse has the relation 
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We chose            [119] where      is a normalized time step which is      

     and some other parameters are mentioned under Fig. We have reduced the effect of 

the numerical dispersion as displayed in Fig. ‎5-16, by having fine gridding and also running 

at a rate very close to the stability condition of Courant-Friedrichs-Lewy (CFL).  

 

Fig. ‎5-16 Sketch of the formation of a shock wave in a nonlinear Josephson junction transmission line, h = 

2×10-4 , FWHM=0.0053, L=C=1, LJ/h=1, k=2.82×10-4 such that k/ h=λ=[C(L+ LJ/h)]½. 

The propagation of sinusoidal wave along a lossless DJTL assisted by open-stubs is 

investigated in Fig. ‎5-17. The structure is driven by a source at frequency         , 

amplitude        and series resistance      . The dispersion diagram and the profile of 

characteristic impedance beside the time-domain response are depicted in Fig. ‎5-17. 

Measuring the distance between two successive crest in Fig. ‎5-17 leads to the phase 

constant      which is in a good agreement with the data in dispersion diagram of Fig. 

‎5-17. Also, impedance analysis in a loop consisting of the source and the input impedance 

of the DJTL leads to the wave transfer by the factor 1/3 based on               formula. 

This is also demonstrated by looking at the maximum amplitude of the wave shown in Fig. 

‎5-17.     

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

z (in terms of number of space step)

V
o
lt
a
g
 /

 V
s

t
4
=9.3 FWHM

t
5
=12 FWHM

t
3
=6.7 FWHM

t
2
=4 FWHM

t
1
=1.4 FWHM



121 

 

 

Fig. ‎5-17 Wave propagation along a DJTL with open stubs driven at  ω=4.97with parameters, LJ=1, CJ=1, 

L=1, C=1, Cs=1, Ls=0.5, ls=1, h=0.1, Rs=1, Vs=0.1. Time-domain propagation, dispersion diagram and 

characteristics of impedance are shown. 

After justification of the validity of the numerical tool, we return to the design example 

carried out in section 4.4.2. for realization of non-degenerate parametric interaction in a 

DJTL. FDTD tool has run for all signal, pump and idler at frequencies          , 

          and          , respectively. We used a source with amplitude          and 

series impedance        , based on the normalizing impedance of         to be 

matched with the input impedance of the signal as seen in Fig. ‎4-18. Therefore, half the 
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signal is transferred to the structure as demonstrated in Fig. ‎5-18. The wavelength of the 

signal is calculated           based on the phase constant shown in the dispersion 

diagram of Fig. ‎4-16, which is in accordance with the distance of two maxima in Fig. ‎5-18.   

 

 

Fig. ‎5-18 Wave propagation for signal, pump and idler designed in Fig 4.16. with parameters ω0=3×109 

Rad/s, Vg0 = 3×109m/s, Vs =3.5 µV, Rs=80  .  
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5.5 Observation of Shock-Wave in Experiments 

In this part, the shock wave generation is demonstrated in an array of HTS weak-links 

which are implanted on a CPW transmission line. The geometry of the weak-link with all 

dimensions of CPW are illustrated in Fig. ‎5-19. Since we had an access to the facilities of 

HTS fabrication in THEVA [95], we made the device by YBCO film with the 100nm 

thickness deposited on a (001) LAO substrate by reactive thermal co-evaporation at a 

temperature of 680 C. Details of the deposition process have been described in [96]. The 

composition of the film has been optimized to get very smooth films with good 

superconducting properties. Surface roughness is less than 5 nm as measured by AFM. The 

transition temperature and critical current density is 87 K and 4 MA/cm , respectively. 

After cool-down in an oxygen atmosphere, a 200-nm gold layer was deposited in situ. 

Fifteen number of such a weak-link are connected periodically to make a DJTL. Since 

the typical value of the coherence length of YBCO is around 2nm, such a HTS weak-link 

hardly shows Josephson tunneling. However, a strip of the narrow and thin film of 

superconductor material exhibit strong nonlinear kinetic inductance as explained in 

appendix B. This nonlinearity takes the place of the basic JJ in the DJTL which gives rise 

to the same nonlinear behavior. Moreover, no capacitive element contributes in the weak-

link, so the transmission line is dispersionless. Such a lossless, nonlinear and dispersionless 

waveguide is suitable for making a shock wave, because higher generated harmonics 

travels at the same velocity as that of the main harmonic and they develop a shock 

wave[21].  

Fig. ‎5-21 shows deformation of a Gaussian pulse while it travels along the DJTL which 

finally results to the shock-wave. The DJTL structure is excited with a microwave Gaussian 

pulse with amplitude of 360mV and FWHM of roughly 50ns.  The right pulse shows the 

Gaussian pulse from the source, and the left trace in Fig. ‎5-21 shows the pulse after the 

DJTL structure.  All measurements were performed on wafer in the probe station shown in 

Fig. ‎5-20 which has been explained in the experimental section of chapter three.  
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Fig. ‎5-19 A typical weak-link made of 100nm YBCO (right picture). Dimensions and the real device is shown 

on the left picture. 

 

 

Fig. ‎5-20 Photograph of probe station for microwave-photonic HTS measurement with the sample stage and 

probe tips.  
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Fig. ‎5-21 Shock-wave formation in an array of YBCO weak-links. Right is the Gaussian pulse at the 

beginning and left is the deformed pulse at the end. 

5.6 Conclusion 

In this chapter, a rigorous time-domain analysis was carried out to investigate microwave 

characteristics of DJTLs. DJTLs have been proposed in chapter four as a platform to realize 

parametric interaction in microwave signals. Frequency-domain methods such as dispersion 

analysis performed in chapter four leads to the dispersive behavior, band-gap determination 

and the cut-off condition arises from discreteness. All have been verified in this chapter 

under weak nonlinear regime. Nevertheless, frequency-domain techniques are not able to 

capture some other features of DJTLs such as shock wave formation which is a result of 

excitation of dispersonless DJTL in a highly nonlinear regime. This sheds light to search 

for regimes where shock-waves are not built, because shock-wave formation destroys the 

parametric amplification [21],[120]and mixing.  In the next chapter we starts the analysis of 

four-photon parametric interaction under proper regimes to prevent shock-wave formation. 
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6 Traveling-wave Josephson Parametric Devices 

Chapter 6  

Traveling-wave Josephson Parametric 

Amplifiers  

6.1 Introduction 

The lumped Josephson parametric devices studied in chapter two, basically used 

microwave filters and resonators for parametric interaction. As discussed, these devices 

suffer from certain drawbacks such as dynamic range, stability, gain and bandwidth. The 

dynamic range issue is an inherent drawback of all parametric amplifiers, as explained by 

the Manley-Rowe relations in chapter two. However, cascading identical modules of 

Josephson junctions and replacing microwave filters with suitable waveguides, brings the 

promise of unilateral gain achievement with improved stability and bandwidth. 

In chapters four and five, frequency and time domain analyses have been carried out to 

study microwave behaviors of a DJTL structure. Microwave compatibility of DJTLs 

enables design flexibility, impedance and dispersion engineering to realize soliton 

propagators [121] and traveling wave parametric amplifiers and mixers [50],[12].  

Traditional analysis of parametric interaction in a transmission line, periodically loaded 

by nonlinear elements such as varactor diodes, have been carried out for the simple 

dispersionless and lossless configurations [21], [21], [122], [123], [124],[125]. These 

structures consist of a simple LC TLs in which the capacitance (or inductors) are replaced 

by a nonlinear capacitors (or nonlinear inductors). When the pump wave has a strong 

power, the effect of the pump is reflected by replacement of nonlinear elements, i.e. 

unbiased JJ, with the time-varying elements in the analysis. Since the pump power is 

assumed to be constant along the TL, this results in an exponentially unbounded gain with 
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an exponent of                which can be physically valid within bounded distance. 

Parameters    and    are coefficients in the time-varying model of Josephson junctions. 

Moreover,    and    are signal and idler phase constant, respectively. The analysis is 

improved [21] by letting the pump wave propagate and vary its amplitude along the TL 

which leads to the bounded hyperbolic gain. However, in both analyses the total solution is 

imposed by a summation of only signal, pump and idler waves while ignoring all other 

harmonics. This assumption is justified based on the fact that higher order harmonics are 

negligible. This is due to having a strong pump in comparison with the signal and idler, and 

supposing only these three waves are initially injected into the TL. Another approach is 

based on the normal mode representations of TL. In this approach, coupled conjugate 

modes are introduced to investigate the parametric interaction [36] which can be extended 

to the quantum treatment [7]. Modeling each nonlinear element by a pump-modulated time-

varying element, the effect of dispersion due to the discreteness has been also taken into 

account [126],[127] for parametric interaction. Parametric interaction in a TL consisting of  

both shunt nonlinear capacitor and series nonlinear inductor has been explored when both 

forward and backward waves exist in the TL [128].  In addition, experimental attempts  for 

observation of parametric interaction have been also reported [50].   

A nondispersive waveguide allows all harmonics to propagate. However, dispersive 

media prevent higher order harmonics from propagating, which leads to high efficiency. 

Basically, dispersion limits the bandwidth of the traveling wave-based devices, because 

dispersion plays the same role as filters in lumped parametric devices. However, it is quite 

manageable by proper design of dimensions and elements of the structures. More 

importantly, the dispersion engineering is more pronounced for DJTL structures, where 

three waves have to obey the phase-matching condition imposed by the cubic nonlinearity 

associated with the junction. As discussed in chapter four, dispersion of the DJTL was 

engineered to ensure the existence of three non-degenerate time-harmonic TEM waves 

interacting with each other through the phase-matching condition.  

Another benefit leveraged by dispersion is related to the occurrence of shock waves that 

were demonstrated in the previous chapter. Each level of the wave propagates at different 

speeds, and gradually they are deformed into shock waves which do not allow steady-state 

waves to be sustained through the nonlinear dispersionless structure [21]. In [120], it was 
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mathematically explained that the shock waves can form in distances shorter than those 

where parametric amplification occurs, and impossibility of parametric amplification is 

concluded in dispersionless TLs. It should be noted that our numerical results in chapter 

five regarding the shock wave generation were based on the dispersionless DJTL for which 

the basic model of JJs  was used. Moreover, shock wave formation has been observed in 

our simulation when the DJTL was excited, such that the flowing current was very close to 

the critical current of the junctions. Therefore, dispersion and weak nonlinearity are crucial 

properties that a nonlinear TL are required to have for parametric amplification purposes. 

These assumptions increase the efficiency, provide stability, satisfy the phase-matching 

conditions, and prevent shock wave formation. Conventional analysis of parametric 

interaction in a nonlinear media is based on the harmonic balancing between all generated 

harmonics and keeping only the most significant harmonics. However, this method seems 

to be too complicated when applied to the more sophisticated and engineered nonlinear 

TLs. Assuming weak nonlinearity, perturbation collocation methods are the most legitimate 

techniques to solve the parametric interaction with absolute authority over all 

approximations and full control on entire harmonics [20],[129], [130].  

In this chapter, the well-known Manley-Rowe relation is proposed as a most succinct 

platform to study parametric interaction in traveling-wave devices. The ideal gain with the 

power flow of signal, idler and pump are addressed in this section. Then, the basis of the 

regular perturbation technique and the method of multiple scales are explained as a 

selection of mathematical methods to study the parametric interaction in the engineered 

DJTL structures. The spectral method is then introduced as one of the  powerful numerical 

tools to solve nonlinear differential equations which have already been obtained by 

perturbation methods. All massive calculations by the perturbation technique are finally 

distilled to three coupled amplitude equations with the condition of phase-matching. These 

equations describe the evolution of the amplitudes of three phase-locked waves over time 

and space. Details of these calculation besides important steps are outlined in subsections 

and some appendices. The coupled amplitude equations are then extended from the perfect 

phase-matching condition to the slight mismatching in frequency and/or wavenumber 

equations. These equations are necessary for bandwidth characteristics of the parametric 

device. Satisfaction of the energy conservation law is shown as a criterion for the validity 
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of coupled amplitude derivation. The numerical tool based on the spectral FDTD with the 

multistep Adams-Bashforth scheme is developed to solve the nonlinear coupled differential 

equations with complex variables in time and space. Numerical results are shown in the last 

section for two different designs which demonstrate superior stability, gain enhancement 

and bandwidth improvement. Moreover, the significance of the dispersion on the 

bandwidth and the importance of proper design are highlighted in this section. 

6.2 Manley-Rowe Relation for Traveling-wave Interaction 

Manley and Rowe [131] developed a mathematical description to show the balance 

between the energies of all frequencies generated by a nonlinear element. In their original 

derivation, they used a circuit model for this purpose. However, the Manley-Rowe relation 

is generally applicable to many nonlinear situations when different photons are present. 

Fig. ‎6-1 illustrates three-wave mixing or resonant triads due to the nonlinearity associated 

with unbiased Josephson junctions in a lossless microwave structure such as DJTL with 

length  . Each wave is recognized by its frequency and wavenumber (or phase constant) 

obeying the two phase-matching conditions  

           (6.1) 

            (6.2) 

We will address their derivation later in the section 6.5.4. Subscripts  ,   and   are 

designated for three signal, pump and idler waves, respectively.  The configuration in Fig. 

‎6-1 resembles the lumped JPA shown in Fig. ‎2-1. Having weak nonlinearity, the dispersion 

of the waveguide plays the role of microwave filters, because the waveguide is designed 

such that only three waves are preserved in the structure and other harmonics are supressed 

in order to enhance the efficiency. We have addressed this topic in chapter four. Therefore, 

for the structure shown in the Manley-Rowe relations are reduced to 

 
  

  
 

   

  
   (6.3) 

 
  

  
 

  

  
   (6.4) 
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where   ,    and    denote the net powers of electromagnetic waves associated with signal, 

pump and idler respectively. They can also be written in the form of               , 

               and                to maintain the same sign convention. As the 

signal is the wave to be amplified, the input and output of the structure are defined just at 

the signal frequency. Thus, the signal power can also be written by               . 

Eliminating the idler power in equations (6.3)-(6.4) and substituting aforementioned power 

expressions, the power gain at position   is obtained by 

      
       

   
    

  

   
  

           

   
   (6.5) 

This formula introduce an upper bound for the maximum achievable gain and is 

regarded as a figure of merit for the traveling-wave parametric amplifiers. As seen in (6.5), 

the maximum gain is obtained at position where the pump is completely depleted, i.e. 

       . Moreover, when the pump is reconstructed to its original value, i.e.       

     , gain becomes unity. When no signal is injected into the waveguide, the power of the 

pump doesn't change, i.e.            , and no gain can be observed.  

 

 

Fig. ‎6-1 Illustration of Manley0Rowe relation in a general schematic pf three-wave interaction. The 

dispersion plays the role of the filters.  
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Parametric interaction and the Manley-Rowe relation can also be viewed from optics 

and photonics perspective. Two photons are pumped into a virtual energy level above the 

ground state and then a photon at the signal frequency gives rise to stimulated emission. 

Therefore, two photons at pump frequency are annihilated and two photons are created, one 

photon at the signal frequency and one at the idler frequency. The energy diagram for the 

four-photon parametric process is depicted in Fig. ‎6-2. For such a photonic process, three 

conservation laws of "energy", "momentum" and "photon-number" must hold which are 

reflected by two phase-matching conditions (6.1)-(6.2) and two Manley-Rowe relations  

(2.1)-(2.2).  

Since waves in optics have spatial distribution, Manley-Rowe relations are stated in 

terms of wave intensity        rather than power which is mostly used in the context of 

microwave  networks [19], [53]. Intensity is denoted by   and is classically defined as the 

electromagnetic power per area. It is translated in photonic description by equation  

     , where   is the photon flux density with the unit of photons/s/m
2
. Regarding 

DJTL which is governed by a four-photon process as explained, we can start by using 

photon-number conservation law over an incremental length in the nonlinear waveguide. 

Two photons at frequency of    are broken to produce one photon at frequency    and one 

photon at   . Therefore, the rate of annihilation is twice the speed of creation which leads 

to 

  
   

  
  

   

  
  

   

  
  (6.6) 

Substituting the photon flux density in (6.6) by       , this yields 

  
 

  
 

  
  

   
 

  
 

  
  

   
 

  
 

  
  

   (6.7) 

Supposing the same cross-sectional are for all three waves and integrating over       

results in the same Manley-Rowe relations mentioned in (6.3) and (6.4). 
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Fig. ‎6-2 Energy diagram for the four-photon parametric process by 2ωp= ωs+ ωi. 

6.3 Perturbation Theory  and Method of Multiple Scale  

Perturbation theory is a collective name for a group of mathematical methods that are 

used to derive approximate solutions to a problem which may otherwise not solvable 

analytically. This is performed by starting from the exact solution of a closely related 

problem. Perturbation techniques are applicable only to those problems in physics and 

engineering where an additional small term exists in the mathematical description of a 

solvable problem. The solutions of such problems evolve smoothly out of the exact initial 

solution. In contrast, perturbation techniques can fail when a strong transition, rapid 

evolution or acute deviation occurs in the system. Nonetheless, in many cases, they have 

highly accurate predictive capability even beyond the range of conditions for which the 

method is justified. They are beneficial in understanding the underlying process in simple 

terms and they can serve as references for fully numerical solutions.  

In perturbation theory, the solution of the perturbed system is expressed as a series 

expansion in terms of the powers of a small parameter, denoted by  , that quantifies the 

deviation from the exactly solvable problem. Indeed, perturbation parameter   acts as a 

book-keeper to hold the order of each deviation and facilitate comparison for possible 

approximation. The perturbation parameter   should also exist in the governing equation to 

connect higher-order deviation to the lower-order terms. If the perturbation solution is 

denoted by  , then 

                               (6.8) 

The leading term in this power series, i.e.     , is the solution of the exactly solvable 

problem, while higher-order terms     ,           represent the deviation in the solution 

and they can be found iteratively by a particular systematic procedure. In brief, perturbation 

series (6.8) is substituted into the governing equation, and terms of like powers of   are 

2ωp

ωs

ωi
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collected to provide a set of equations referred to as      corresponding to the  th power of 

 . The solution of each      depends on the solution of the lower order terms. In many 

circumstances, these higher-order terms shrink successively and an approximate 

perturbation solution is obtained by truncating the series, and usually consists of only the 

first two terms. 

In some perturbative differential equations such as time domain nonlinear cases as  seen 

in a simple pendulum, the solution of the first-order equation, for instance, includes a 

forcing term which is the resonant solution of the corresponding homogenous problem. 

Therefore, the total solution contains a secular term which grows in time. For example, 

when    is the natural frequency of the zeroth-order term, the        becomes its resonant 

solution and emerges in the solution as            . If      (or       ) is present as a 

forcing term in the first-order equation, the complete solution includes particular solution in 

the form of                . In this notation, we have ignored the unknown 

coefficients in front of each terms. Therefore, the total perturbative solution can be roughly 

written as  

                           (6.9) 

It is obvious that the left hand side of (6.9) is a poor approximation to   when   is as 

large as    . If         , the second perturbation term, i.e.      , grows over the time 

and becomes greater than the first term     . In other words, these effects could be 

insignificant on short time scales but become important for long times. This leads to a 

divergent series which is against our basic assumption that successive terms in perturbation 

series should become smaller. Therefore, the perturbation expansion fails. The problematic 

"       " term, which is called secular term, arose from the presence of forcing term 

"      " on the right hand side of equation     , which is the so-called resonant forcing 

term.  

One way to modify the perturbation scheme to resolve this issue is the incorporation of 

regular perturbation technique with the method of multiple scale. The method of multiple 

scale is useful when the system under study is described by disparate time scales, such as 

an oscillator or a waveguide where weak nonlinearity or dissipation is modeled by a slow-

varying amplitude. Consider a differential equation of the form             which 

models a physical system, where   is a function satisfying the equation and   is a small 
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parameter. Also, suppose the application of regular perturbation theory fails to solve the 

system over a long time interval due to the appearance of secular terms. If introducing two 

time scales, e.g. fast for      and slow for     , captures the physics of the system and fits 

properly to the problem, this engagement to the regular perturbation theory often solves the 

problem. The procedure is followed by defining a slow time scale "    ", involved into 

the problem and treating it as an independent variable. Then, perturbation series to be 

inserted into the original master equation is given by 

                                                  (6.10) 

This leads to a sequence of equations for      by equating the coefficients of like 

powers of   to zero. A pedagogical example is the simple pendulum when nonlinearity 

results in a slight change in the frequency of oscillation which the leading-order solution in 

regular perturbation technique cannot capture. However, the method of multiple scale 

addresses this effect [132],[133].  

6.4 Spectral Method 

Spectral methods are numerical techniques to solve certain PDEs by focusing on spatial 

discretization. There are three classes of approaches for the numerical solution of PDEs, 

which are followed in chronological order of discovery: Finite Difference, Finite Element 

and Spectral methods. If the PDE is defined on a simple domain and the data attached to 

the problem is smooth, spectral methods offers high accuracy solutions with excellent 

speed in convergence which is referred to as an "exponential convergence". Since the 

numerical precision of spectral methods is so high, the number of spatial grids can be 

chosen low enough for reasonable computation. Therefore, they are generally less intensive 

in terms of required computer resources such as memory and CPU time [134]. This 

property, demanding less computer memory, can be crucial, as the memory allocation of a 

numerical tool has a significant effect on its performance and runtime. Moreover, there 

exists many powerful built-in subroutines in many numerical libraries such as Fast Fourier 

Transform in MATLAB which are required in robust implementation of  spectral methods. 

Another benefit of the spectral methods over FDTD techniques is that the solution from the 

spectral method remains coherent and clean, but those generated from finite difference 
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discretization rarely look nice. The absence of spurious dispersion, which is inherently a 

numerical error, is another conspicuous aspect of spectral method.    

Assume a set of grid points      and a data set         corresponding to the function values 

on the grid, are given. The fundamental principle behind all of the spectral collocation 

methods is to interpolate data by a global interpolant, then evaluate the derivative of the 

interpolant at the grid points and finally substitute the proper matrix operator for the spatial 

differential operators in the PDE. For a finite grid      with   points and its corresponding 

data     , consider   as a single continuous function such that          for all  . Then, 

set  
 

  
          

    and find a differentiation matrix    to relate      to      by 

     . The choice for function   is arbitrary as long as it fits all the data. Nevertheless, 

there is only one band-limited interpolant   satisfying all aforementioned conditions, which 

is the topic of sampling theorem and aliasing issue.  

There are two classes of spectral methods, Fourier and Chebyshev methods. For domains 

with periodic boundaries, the natural choice for   are trigonometric interpolants on an 

equispaced points, so-called regular grid, and Fourier analysis, which is one of the most 

extensively worked branches of mathematics, are employed to find differentiation matrix. 

Table IV summarizes all Fourier techniques including Discrete Fourier Transform (DFT) 

that is mostly used in spectral methods. For non-periodic problems, algebraic polynomials 

in uneven spaced points, so-called irregular grid, are the right choice for interpolants, and 

Chebyshev methods are used for these type of problems.   
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TABLE IV 

FOURIER METHODS 

Fourier 

Methods 

Physical 

variables  

Fourier 

variables 

Fourier 

Analysis 

Fourier  

Synthesis 

Fourier 

transform 

Continuous 

Unbounded 

    

Unbounded 

Continuous 

    

       

          
 

  

   

     
 

  
  

          
 

  

   

Semi-discrete 

Fourier 

Transform 

Discrete 

Unbounded 

     

Bounded 

Continuous 

   
  

 
 
 

 
  

       

        

 

    

   

   
 

  
  

           

 
 

  
 

   

Fourier Series 

Continuous 

Bounded 

   
  

 
 
 

 
  

Unbounded 

Discrete 

  
  

 
  

    
 

 
  

             

 
 

  
 

 

    

      

      

 

    

    

 

Discrete Fourier 

Transform 

Discrete 

Bounded 

  (even) points 

with distance   

in       , 
 

 
 

 

 
  

Bounded 

Discrete 

  points at 
  

 
   

  

 
 

     
 

 
  or 

   
  

 
 
 

 
  

     

        

 

   

   

 

   
 

  
  

      

   

   
 
   

    

        

  

At first glance, a periodic boundary condition at the ends of a domain may suggest that 

the Fourier spectral method has limited applications. However, a periodic grid resembles an 

infinite grid and it is useful in practice in a sense that many phenomena in physics are either 

unrelated to the boundaries, described by periodic boundaries or have a geometry which are 

physically periodic. Furthermore, where real problems in physics are usually studied over a 

finite range, we consider a bounded periodic domain defined over        interval. This 

interval is discretised by even number of points,   points, at equal distances of separation 

of  , so         and DFT can be applied. As mentioned in Table IV, DFT maps out  

the data set     corresponding to   number of discrete points      with spacing   in the 
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interval        or              to the spectrum of       at    distinct wavenumbers     

with spacing as   in the Fourier interval of            or               . Note 

that by increasing the number of discrete points in physical space, i.e.  , we expand the 

span of the spectrum in the Fourier space. The band-limited interpolant is defined as a 

continuous function over the inverse DFT of       by 

      
 

  
        

    

      

 (6.11) 

where   indicates that the terms        are multiplied by     to give the same inverse 

DFT as the one mentioned in Table IV. Although (6.11) at discrete points      , 

           resembles the exact values of the inverse Fourier transform, this change has 

been done for holding symmetry at end points so that derivative of (6.11) always gives real 

numbers [134]. Therefore, the interpolant      is a trigonometric polynomial of degree 

   , at most.   

To calculate the band-limited interpolate      for a grid function    , we can express   

as a linear combination of the translated Kronecker delta functions   . Then we need to 

calculate the DFT of Kronecker delta function based on the formulation in Table IV which 

gives       . Then using (6.11), the band-limited interpolant corresponding to the delta 

function would be a periodic sinc function as follows 

       
         

              
  (6.12) 

As the original signal is written in the form           
 
   , and by using the linear 

property of Fourier transform, the general band-limited interpolant (6.11) can be written in 

terms of    in (6.12) as 

                 

 

   

  (6.13) 

After a small calculation to find derivative of       and       and inserting grid points 

into them, the     spectral differentiation matrix is found to be 
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  (6.14) 

Another way to find the spectral differentiation matrix for a give data     is to start 

computing the Fourier transform     , then find              at grid points which 

corresponds to the r
th

 derivative of the signal, and finally perform an inverse Fourier 

transform to find   at grid points. Note that for odd derivatives, symmetry cannot hold at 

the point    , and we must set       zero to get a real function. The calculation of DFT 

can be accomplished by Fast Fourier Transform (FFT) which is provided by powerful built-

in tools in MATLAB.      

6.5 Derivation of Nonlinear Coupled Amplitude Equation  

In this section, we apply the perturbation technique to derive a system of three PDEs 

describing the evolution of the complex amplitudes associated with signal, pump and idler.  

6.5.1 Weak Nonlinearity and Regular Perturbation Theory 

Fig. ‎6-3 shows a circuit model for a lossless DJTL with open stubs. In chapter four, a 

series-connected DJTL assisted by stubs was finally  modeled by a nonlinear single 

variable PDE which describes the temporal and spatial evolution of the flux associated with 

the JJs. Assuming small amplitude for the traveling wave solution of the equation of order 

     , weak nonlinearity is preserved which leads to the engagement of parameter   into 

the wave equation as follows 
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(6.15) 

where all parameters and variables have been defined in chapter four and the nonlinear 

term      is given by 

 

     
      

    
      

 

  
    

 

    
     

 
      

    
      

  
 

  
        

 
      

    
     

      
 

 

  
   

       
 

 

    
  

       
          

 

 
      

    
     

       
 
 

 
 

  
   

       
 
 
          

(6.16) 

 

Fig. ‎6-3 Lossless DJTL assisted by open stubs. 

Having weak nonlinearity in the governing equation allows one to use a perturbation 

scheme to study the parametric interaction. The nonlinearity stems from the sinusoidal 

phase-current description of JJ, which manifest itself by term              in TL 

equations (4.21) of DJTL. Taylor expansion gives rise to the presence of cubic nonlinearity 

in      as seen in (4.21). Note that      is independent of    . Furthermore, by      
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this nonlinearity will be removed from all equations and the structure becomes linear. Also, 

     can be divided into smaller terms as  

      
      

    
 

                    (6.17) 

where  
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 (6.20) 

         
       

 
 

 
 

  
   

       
 

 
          (6.21) 

Since nonlinearity      is of order     , it can be regarded as a small perturbation to the 

linear equation and regular perturbation technique can be applied. Now, the dependent 

variable   is assumed to be expanded in an asymptotic series of powers of the small 

parameter    

                       (6.22) 

                                   (6.23) 

For our analysis here, only the first two terms      and      are employed to conduct 

the perturbation technique with a quite good approximation. This series should be 

substituted into   in the governing equation (6.15). Then, the resultant equation must be 

arranged in terms of powers of   such that  all terms belonging to the same power of   are 

collected and equated to zero. This process yields a sequence of PDEs in terms of       and 

    ,...  

The zeroth-order solution      can be easily found by substituting     into the 

original equation (6.15). In this case, the nonlinear term      is eliminated and a linear 

wave equation is obtained in the form  
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(6.24) 

As three time-harmonic waves are initially used in the DJTL to study their interaction, 

the solution for the linear wave equation will be in the form of  

      
 

 
     

                

 

   

 (6.25) 

where    is the complex amplitude, pairs (  ,   ) satisfy the dispersion equation (4.28) 

calculated in chapter four, and      stands for the complex conjugate. 

6.5.2 Method of Multiple Scale 

In reality, the effect of a weak nonlinearity in the solution of the problem is just a slight 

deviation from the linear solution. For the problem of our interest, the nonlinear term 

results in slow variation in the complex amplitude. Therefore, the solution consists of two 

parts, slow-varying in amplitude and fast-varying in phase component. Hence, the method 

of multiple scale should be incorporated with the regular perturbation technique in order to 

capture this effect and provide a concrete perturbation scheme as explained in section.  

We begin with defining new slow-varying variables   and   in the order       

           (6.26) 

which modifies the zeroth-order solution (6.25) to   

      
 

 
                          

 

   

  (6.27) 

Dependence of the complex amplitudes on the spatial variable   is a result of weak 

nonlinearity that makes the solution slightly deviate from the linear solution. Besides, its 
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dependence on the temporal variable   is due to the excitation of DJTL by amplitude 

modulated waves. As a result, four variables         are involved in the problem and 

original   is described by these variables           . Time delay parameter   is also 

multiplied by   and yields a slow time delay by      which apperas in the equation. The 

connection between these variables and   is shown in Fig. ‎6-4.  Getting insight from Fig. 

‎6-4, derivatives of    are computed as 

 
  

  
        (6.28) 

 
  

  
         (6.29) 

 
  

  

           

   
           

    
           

 (6.30) 

 
  

  

           

   
           

    
           

 (6.31) 

Other higher derivative of   are given in the appendix C which are necessary in our 

analysis. 

 

Fig. ‎6-4 Interconnection between φ and four slow- and fast-varying variables.  

Slow time delay    which appears in the equation is in order of      and it can be 

eliminated by simple Taylor expansion as follows  

                            
        

                  
        

  (6.32) 

This Taylor expansion is incorporated in the asymptotic series (6.23) to give the 

resultant asymptotic expression by keeping only the first two terms 

                                  
           

                (6.33) 

Combining asymptotic and derivative expansions that all include small parameter   and 

keeping only the first two terms gives expressions such as 

      
   

     
   

   
   

  (6.34) 

φ
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   (6.37) 

The complete list is given in appendix D. Substituting expressions (6.34)-(6.37) and the 

rest of  those appendix into the governing equation (6.15) yields 

 

   
  

  

      
   

     
   

      
   

  
 

  

    
   

      
   

     
   

  

          
   

       
   

         
   

      
   

  

 
   

  

     
   

       
   

      
   

  

            
   

        
   

        
   

  

 
 

   
   

  

  

    
   

    
   

    
   

  

     
  

  

     
           

          
           

     
           

    
           

  

 
 

  

    
           

       
           

       
           

    
           

  

          
           

         
           

       
           

         
           

      
             

 
   

  

     
           

        
           

        
           

     
           

  

            
           

         
           

         
           

      
           

  

 
 

   
   

  

  

    
           

     
           

      
           

   
           

             

(6.38) 
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The zeroth-order term      gives the solution for the linearized form of the master 

equation (6.15). The equation and its solution has been mentioned in (6.24) and (6.25), 

respectively. The next order      terms are arranged such that the right and left hand side 

of the equation are expressed in terms of zeroth-order     and first-order      solutions, 

respectively  

 

   
  

  
     

   
 

 

  
   

   
         

   
 

   

  
    

   
           

   

 
 

   
   

  

  
   

   
 

     
  

  
    

           
 

 

  
    

           
         

           
 

 
   

  
    

           
           

           
 

 

   
   

  

  
   

           
 

             
  

  
     

   
  

 

  
   

   
           

   
      

   
 

 
    

  
    

   
             

   
 

 

   
   

  

  
   

   

      
  

  
        

           
    

           
  

 
  

  
    

           
      

           
 

           
           

      
           

        
           

  

 
   

  
      

           
        

           
 

              
           

        
           

 

 
 

   
   

  

  
    

           
      

           
   

(6.39) 

Closer look at (6.39) reveals this fact that the derivatives in the left hand side are with 

respect to the fast-varying variables   and    Moreover, the derivatives relative to the slow-

varying variables   and   are first-order derivatives that only seen in the right-hand side. 

Also, nonlinear term         which only depends on      appears in the right hand side of 
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(6.39). From now on we focus on the first-order perturbation equation (6.39),  particularly 

on its right hand side to extract all information regarding parametric interaction.  

By defining the phase of each wave as           ,        , the solution of       

can be restated as 

      
 

 
     

         

 

   

 (6.40) 

where    is a function of slow-varying variables   and  . Also, the time delay    in 

             gives rise to a phase shift as follows 

              
 

 
            

         

 

   

  (6.41) 

Solutions in the form of (6.40) and (6.41) must be replaced for      and             at 

the left hand side of (6.39).  This substitution into the right hand side of (6.39) can be done 

for the linear and nonlinear parts separately. 

6.5.3 Substitution of Zeroth-Order Solution to the First-
Order Equation  

In order to substitute (6.40) and (6.41) into the right hand side of (6.39), all derivatives of 

     with respect to       and   must be calculated. Appendix E summarizes all necessary 

derivatives for this substitution. After substitution and simplification, the right hand side of 

(6.39) is written as 

                     
   

  
       

   

  
      

 

   

 (6.42) 

where  

                      
 

  
         

     (6.43) 
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(6.44) 

The nonlinear part         is very important as this is the only place where three waves 

mixing with each other being responsible for phase-matching condition and parametric 

interaction. The mathematical treatment of the nonlinear term will be presented in the next 

section.    

6.5.4 Phase-Matching Condition 

As (6.16) implies, the nonlinearity associated with the structure is a cubic-type nonlinearity. 

As mentioned in section 6.5.1, the nonlinear         is divided into four parts. The solution 

of zeroth-order perturbation terms which is a summation of three waves must be replaced in 

the         which causes these terms to be mixed and produce 54 higher order terms, 

including their complex conjugate, such as   ,   ,   ,         ,        ,        , 

   ,    ,    ,.....  

In order to have energy transferred between these waves, if some simple relations 

between the phases of these three waves are preserved, some of higher harmonics become 

equal to one of the original waves. This kind of relation is called "phase-matching" relation 

which is crucial for the purpose of parametric interaction and these three phased-locked 

waves are referred to as "resonant triads" [20],[130]. For DJTL this relation is in the form 

of  

           (6.45) 

which cause harmonics         ,       ,       become   ,    and   , 

respectively. Condition (6.45) must hold for all   and  , so it can be expressed in terms of 

frequency and phase constant as stated before in chapter four 
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             (6.46) 

              (6.47) 

In quantum description of a parametric process, this process is called a "four-photon 

process", since two photons from pump interact with one photon from signal and one from 

idler frequency.   

6.5.5 Nonlinear Interaction of Three Waves 

Application of phase-matching relation to the coefficients of harmonics generated from 

nonlinear interaction leads to the new coefficients for the resonant forcing terms of   ,    

and   . These coefficients are presented in tabular format in appendix F. They are 

combined based on the relation 

         
     

     
 

                        (6.48) 

which yields 

 
                                              

                    
(6.49) 

where 

                   
         

         
    

   
   (6.50) 

                    
        

         
       

     (6.51) 

                    
         

        
    

   
   (6.52) 

and  

    
     

     
   

  
 

  
   

  
   

    
          

  
 

  
   

  
   

    
   (6.53) 

for        .  

6.5.6 Elimination of Resonant Forcing Terms 

When we explained the method of multiple scale in section 6.3, we mentioned that 

existence of resonant forcing terms in the      of perturbation scheme results in secular 

terms in the solution of      which are unphysical in long term processes. These terms exist 

in the right hand side of      in equation (6.39) as follows 
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(6.54) 

where         can be either          ,          or           depending on the 

index  . All of the resonant forcing terms can be eliminated by setting their coefficients 

equal to zero, separately, as follows 

 
      

   

  
       

   

  
           

. 

(6.55) 

It should be noted that if the media were not dispersive, all higher order harmonics 

would become resonant forcing terms and their coefficients must then be set to zero which 

makes the analysis more complicated.     

6.5.7 Coupled Amplitude Equations 

Vanishing all resonant forcing terms, as stated in above paragraph, leads to a three 

nonlinear coupled equations with complex amplitude which shows the temporal and spatial 

evolution of complex amplitudes associated with the three waves: 

 
   

  
    

   

  
          

         
         

      
   

   (6.56) 

 
   

  
    

   

  
           

        
         

         
     (6.57) 

 
   

  
    

   

  
           

         
        

      
   

   (6.58) 

where    ,     and     are group velocities satisfying  (4.29) for the waves traveling 

through a DJTL with open stubs. Parameters    for         are real and given by two 

following equivalent equations 

 
   

  

       
   

  
   

    
 

    
     

 
    

   
  

  
  

  
(6.59) 
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Looking at the system of governing wave equations in chapter four, one realizes that the 

origin of nonlinearity which is the term             in equations (4.20)-(4.24), can be 

removed by setting      . This is another view to the small amplitude assumption that 

the ratio of      becomes very small. Therefore, the parameter    and the right hand side 

of (6.56)-(6.58) originate from the nonlinearity in the DJTL, because    goes to zero when 

     as seen in (6.59). The left hand side of (6.56)-(6.58) simply shows that the 

amplitude of the wave is travelling at the speed of group velocity    . The right hand side, 

which result from nonlinearity, acts as a source in evolution of the amplitude. The 

parameter    is very important for amplification and we will discuss more about this in 

results section of this chapter.  

Fig. ‎6-5 Group velocity vg and nonlinear parameter ξ versus frequency. The top is related to the DJTL (case1) 

with parameters  LJ = 1,CJ = 0.5,L = 1,C = 1,Ls = 0.5,Cs = 1,ls = 0.1, h = 0.01; and the bottom is for DJTL 

(case2) with parameters LJ = 0.2,CJ = 0.05,L = 250,C = 70,Ls = 100,Cs = 10,ls = 0.002,h = 0.0005.  

In addition, the right hand side of each equation consists of two parts. For instance, the 

first part of (6.56) is             
       

       
   and only changes the phase of    

by 90 degree. The second part is       
   

  which is the mixing term between pump and 

idler. This term changes the amplitude of the signal    and is responsible for the gain 
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achievement. As a result, pump's and signal's photons mixed together to generate the idler 

photon and, in turn, the idler and pump are combined to produce the signal's photon.  

Closer look at the coupled amplitude equation (6.56)-(6.58), reveals the fact that by 

initially setting any two of the waves zero, the third wave can propagate. This is because of 

the first three terms on the right hand side which makes a 90 degree phase change. These 

terms don't exist in the case of quadratic nonlinearity [19].  Variation of group velocity and 

nonlinear parameter   over frequency are depicted in Fig. ‎6-5. for two example cases 

explained in chapter four. 

6.6 Conservation of Energy in Parametric Amplification 

In section 6.2, Manley-Rowe relations have been explained as an alternative form for the 

conservation of photon numbers. In addition to the conservative quantity of photon 

numbers, energy conservation law is also satisfied in parametric interaction in DJTL. 

According to the PDEs (4.20)-(4.24), the first order voltage      and current      associated 

with the DJTL can be found in terms of the flux solution of      in equation (6.24) as 

follows 

      
 

 
  

   

    
 
  

  
         

     
         

 

   

 (6.61) 

 

     
 

 
   

 

  
     

     
         

 

   

  

(6.62) 

Defining electrical power as           , we get power associated with each resonant 

triad    as  

          
 ,              (6.63) 

where    is a coefficient defined by  

    
 

 

   

  
   

         
     

  

  
       

   (6.64) 
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to be multiplied by     
  in order to give the power. Taking conjugate from each coupled 

equation, multiplying by corresponding    or   
 , adding them together and a little 

mathematical manipulation yields 

 

 

  
 

  

   

    
  

  

   

    
  

  

   

    
  

 
 

  
       

        
        

  

  
  

      
 
                  

      

(6.65) 

where the right hand side is zero because of the phase-matching condition. Equation (6.65) 

can be interpreted as  

 
 

  
                                   

 

  
          (6.66) 

which is another statement for the energy conservation law. The energy per unit length is 

referred to as "energy density". Multiplying both sides of equations by    and taking 

integral with respect to   over the whole interval of        , we extract the simple form 

of energy conservation law that energy is constant over time. We assumed that the power at 

positions      is zero. Satisfaction of energy conservation law is a necessary condition 

to verify the validity of our derivation as well as simulation. When there exist a slight 

mismatch such that            , above procedure leads to the equation of   

 

              
 
 

   

    
  

 
 

   

    
  

 
 

   

    
 

  
  

      
 
                    

  
   

 

  

 

 

      

(6.67) 

According to [20], the total energy oscillates periodically with frequency           

  .   

6.7 Slight Phase Mismatch 

The perturbation analysis that led to the coupled wave equations (6.56)-(6.58) in the 

previous sections was based on the assumption of exact phase-matching condition. In this 

section, a slight mismatch in order of   is considered in phase constant or/and frequency to 

perform a general treatment and study the bandwidth of the DJTL. In many cases, the 
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phase-matching condition corresponding to the frequency is exactly held but the phase 

mismatch is considered only in the phase constant as follows 

               (6.68) 

              (6.69) 

When idler is set zero at the starting time, any slight frequency shift in the signal 

frequency leads to the same frequency shift with opposite sign about the idler frequency 

and they canceled each other. Doing the same perturbation procedure which is carried out 

for the perfect phase matching condition, following modified coupled amplitude equations 

are obtained 
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        (6.72) 

 where    is a parameter defined in (6.59) or (6.60) and    is a real parameter defined by          
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6.8 Numerical Basis to Solve Nonlinear Coupled Amplitude 

Equations 

Coupled amplitude equations (6.56)-(6.58) and (6.70)-(6.72) describes the interaction of 

three waves in a nonlinear DJTL in time and space. Because of the nonlinearity, there is no 

analytical or frequency domain method to solve this system of PDEs. We numerically solve 

equations by using spectral differentiation in space and finite differences in time. 

Moreover, we carry out the time stepping by using explicit four-step Adams-Bashforth 

scheme. In implementation of finite difference by multistep methods the values of the 

function   that already computed in previous time steps are reused to obtain higher order 

accuracy and better numerical stability [135]. The Adams-Bashforth formula for 

numerically computation of  the autonomous equation            can be written in a 

four-step finite difference as 

           
 

  
                            (6.76) 

where         .  

To obtain a numerical formulation for solving coupled amplitude equations, they are 

written in the form of three equations  

 
   

  
    

   

  
                (6.77) 

where    is the algebraic function of   . Then we decompose all complex variables to real 

and imaginary parts as            and              for        . Hence, the 

system of the complex amplitude equations reduces to a real system with six equations and 

six unknowns written in a matrix representation form of   

 
  

  
   

  

  
   (6.78) 

where                  ,                  and    is a 

six-by-six diagonal matrix containing group velocities. For the case of perfect phase 

matching condition, components of   are given by  

 
    

 
   

      
       

       
       

       
      

         

     
   

(6.79) 
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and this can be generalized to other cases with the phase mismatch. 

If the number of spatial and temporal grids are denoted by    and   , a three dimensional 

global matrix   with the size of 6-by-  -by-   is defined to hold all values of the six 

variables. Combining spectral and Adams-Bashforth schemes leads to the update equation 

in the form of  

 

          
  

  
               

 
                   

 
 
 

                  
 

 
 

                  
 

 
   

(6.85) 

where the time and space steps are denoted by    and         , and   is the   -by-   

spectral differentiation matrix obtained by the spectral methods.  

The coupled wave equations (6.56)-(6.58) are first order partial differential equations, 

therefore one initial condition and one boundary condition is sufficient to avoid an 

overdetermined system of equations during the numerical computation. As the observation 

of parametric interaction is a major goal of this chapter, we excite the structure by initial 

condition at some point of the waveguide and we use the periodic boundary condition in 

order to resolve numerical issues related to the transient response and reflections at the end. 

The periodic boundary condition can be physically realized by a circle-shape transmission 

line or an infinitely long transmission line.     
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6.9 Numerical Results and Discussions 

(1) Wave Mixing (Down-Conversion) 

The structure that we used to study the parametric interaction of three phase-matched 

waves is a DJTL with open stubs with the dispersion diagram illustrated in Fig. ‎4-14 of 

chapter four. The normalized TL, stubs and JJ parameters associated with this structure are 

     ,     ,         ,         ,       ,         ,       ,         . The three 

non-degenerate signal, pump and idler waves satisfying the phase-matching conditions are 

found in Fig. ‎4-14 with angular frequencies                         , phase constants 

                        and group velocities                               , respectively. 

Applying the normalization rule described in chapter four and using normalizing factors 

         ,             ,         and           , these parameters are 

converted to the real physical parameters as           ,             ,            , 

             ,              ,          ,           ,           . By using a 

lumped array of  Al-Al2O3-Al junctions with the current density around 1   per 1    area 

[136] and adding a fit capacitance in parallel with the JJ, these parameters are physically 

realizable as explained in chapter four. Moreover, the normalized flux quanta is obtained as 

         . We have assumed at the beginning that the structure is driven in a weakly 

nonlinear regime in order to apply perturbation method. The order of nonlinearity is  , 

whereas the order of small amplitude assumption is    , therefore we always limit the 

driving signals less than        in order to have an accurate perturbation scheme.  
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Fig. ‎6-6 Propagation of a Gaussian pulse modulated at ω=62.37ω0 over a DJTL with parameters LJ = 1,CJ = 

0.5,L = 1,C = 1,Ls = 0.5,Cs = 1,ls = 0.1, h = 0.01; 

 

Fig. ‎6-6 shows the propagation of a Gaussian pulse modulated at the pump frequency 

         and traveling at the group velocity            when both signal and pump 

waves are set to zero. As explained in section 6.5.7,  if two of the three waves are zero, the 

third one can propagate as demonstrated in this figure. When the pulse reaches the end, it 

returns at the beginning which is the demonstration of a periodic boundary condition.  
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Fig. ‎6-7 Pulse generation over the signal wave by parametric interaction between three phase-locked pulses of 

signal (φs), pump (φp) and idler (φi).  

Fig. ‎6-7 shows the interaction of pump and idler pulses which leads to the pulse 

generation  over the signal wave. After all pulses pass each other, the grown signal travels 

with the amplified value. Each pulse consists of a Gaussian envelope in the form of   

                    
               (6.86) 

modulated at signal, pump or idler frequencies. Since the tails of a Gaussian pulse 

extend to infinity, a half-wave sinusoidal term has been multiplied to satisfy the periodic 

boundary conditions and prevent numerical error which finally leads to the instability in the 

spectral method. The coefficient   determines the width of the pulse. The FWHM (Full 

Wave Half Maximum) of the pulse is evaluated by the simple formula of      

         . Choosing      in Fig. ‎6-7., we obtain spatial            . The width 

of the pulse in time can be easily found by multiplying the corresponding space span by the 

group velocity. Therefore, the temporal      is obtained as 0.0026. Between signal, 

pump and idler waves, the group velocity of the signal is the lowest and the group velocity 

of the idler is the highest, so the signal pulse travels slower compared with pump and idler 
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pulse.  

 

Fig. ‎6-8 Parametric interaction between a pulse at signal‘s frequency, continuous wave at pump‘s frequency 

and another pulse at the idler frequency which cause the signal pulse to grow with the amplitude gain =14 dB. 

Leading edge of pulses travels at idler's group velocity.  

In Fig. ‎6-8. the pump is replaced by a continuous wave with the amplitude of    

      and the idler is Gaussian pulses with the same FWHM as the one in Fig. ‎6-7. The 

amplitude of the pulse generated over the signal has a 4dB improvement compared with the 

pulse interactions in Fig. ‎6-7. At the points they start to interact with each other, the level of 

the pump slightly decreases which give rise to the grow in signal pulse. The left rising edge 

and the right falling edge of the signal pulse is traveling at two different speeds. The former 

travels at the group velocity of the signal wave, but the latter travels at the group velocity of 

the idler wave.  
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Fig. ‎6-9 The signal pulse propagate without amplification when idler is zero. 

In Fig. ‎6-9 we investigate the parametric interaction by considering a zero idler at the 

beginning. The signal pulse has an initial amplitude of        and the pump consists of a 

continuous wave with a constant envelop of      . According to the coupled amplitude 

equations (6.56)-(6.58), interaction between the signal and the pump generates an idler 

wave and interaction between the pump and the idler must also result in increasing the 

signal. However, the generated idler wave does not attain enough power to contribute in the 

signal gain. As a result, the signal pulse is propagating with the same amplitude through the 

DJTL, as shown in Fig. ‎6-9. We will explain more about this later in this section.  

0

50

100

150

200

0

20

40

60

80

100

0

0.5

1

x 10
-3

time steps

space steps


s
/

0



160 

 

 

Fig. ‎6-10  Two sinusoidal pump and idler with φp = 0.4 0, φi = 0.4 0 interact  that generate a sinusoidal 

signal wave at the signal frequency . The profile of the signal and pump are shown on the left and the time-

varying phase of the generated signal in the right side.  

The profile of the signal and pump are depicted in Fig. ‎6-10 when all three waves are 

continuous waves with the constant envelope. The signal grows and reaches its maximum, 

then it returns to its initial value and this process continues. It should be noted that at points 

when signal reaches its maximum, the pump has its minimal value which is expected by the 

Manley-Rowe relations as discussed by (6.5) in section 6.2. Moreover, the quadratures of 

the signal (the real and imaginary parts of the signal) are depicted on the right part of Fig. 

‎6-10. The starting point is highlighted in this figure. The variation on the quadratures starts 

from this point and traces continuously in the anti-clockwise direction at circles with a 

growing radius, until it approaches the starting point and this process repeats. The growing 

radius is an indication for the gain in amplitude and tracing in a circle in an anti-clockwise 

is due to the first three terms on the right hand side of the coupled amplitude equations 
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(6.56)-(6.58) which impose a rotation at -90 degree. This results shows that the quadratures 

are not increasing by the same factor.  

The total energy of the three waves is depicted in Fig. ‎6-11 versus time for several cases 

of mismatching conditions. In the case of the perfect matching condition the total energy of 

the system is a constant for all time, as seen in equation (6.67). For the  case of mismatch 

condition, energy oscillates with frequency of               [53], and this fact can 

be clearly seen in Fig. ‎6-11.   

 

 

Fig. ‎6-11 Total energy in the DJTL for cases of perfect matching condition and several cases of mismatching 

conditions, Time step is dt=0.0314. 
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(2) Amplification: 

In the case of amplification, two waves at signal frequency    and pump frequency    are 

traveling through the DJTL and the idler wave is initially zero.  The complex amplitude of 

the signal, pump and idler waves are   ,    and   . The interaction between the pump and 

the signal through the   
   

  term on the right side of (6.58) produces the idler wave at 

frequency   . The idler wave grows over time and space, so that it becomes significant in 

amplitude to increase the signal wave through the mixing    
   

  term on the right hand side 

of (6.56). However, the term   
   

  should be significant compared with the term     
    

     
         

   , which only change the phase of    at -90 degree, to make signal's 

amplitude    grow. To satisfy this condition, the coefficients    and    must be quite large 

in order to influence    and   . In the above case, with normalized parameters       ,    

  ,          ,          ,        ,          ,        ,          , the variation of   versus 

frequency, depicted in Fig. ‎6-5, shows that    is very small. Therefore, the idler wave 

remains small and doesn't give rise to the signal amplification. Therefore, we reconsider 

another design with the following normalized parameters       ,       ,         , 

         ,        ,        ,           ,           . By setting the scaling factors    

       ,                ,         and        , we obtain physical parameters 

of             ,             ,         ,              ,               , 

          ,          ,            . 
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Fig. ‎6-12 Dispersion diagram of , LJ =0.25, CJ = 0.5, L = 1, C = 0.5, Ls = 0.5, Cs = 1, ls = 1, h = 0.1. Two sets 

of three phase-matched waves are found in this diagram. 

The dispersion diagram with three phase-matched waves are shown in Fig. ‎6-12. The 

group velocity and nonlinear parameter   are depicted in Fig. ‎6-13. For resonant triads with 

       ,          and         , we find           ,           and          

which are much better than the previous case. 
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Fig. ‎6-13 Parameter ξ and group velocity of a DJTL with following parameters LJ =0.25, CJ = 0.5, L = 1, C = 

0.5, Ls = 0.5, Cs = 1, ls = 1, h = 0.1. 

Fig. ‎6-14 displays the results of parametric amplification of the Gaussian pulse with 

FWHM=0.5266 modulated at the signal frequency by interaction with the continuous-wave 

pump with an amplitude of         . The signal grows and shrinks to its initial level 

and this process repeats, as illustrated in Fig. ‎6-14. At those locations where the signal is 

amplified, the pump wave is depleted and the idler reaches its maximum. The results of  

parametric amplification for the Gaussian pulses are illustrated in Fig. ‎6-15 and Fig. ‎6-16 

with respect to time and space. The contour of Fig. ‎6-15 is related to the Fig. ‎6-14. The 

FWHM of the wider Gaussian pulse of Fig. ‎6-16 is 2.35. Both pulses receive the same 

amplification factor, a gain of 8.2 dB. The ratio of the vertical (along y-axis) and horizontal 

(along x-axis) length of each pulse equals  the normalized group velocity at the signal 

frequency which is 0.116 as seen in Fig. ‎6-13. Moreover, by dividing the total distance and 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

X: 3.571

Y: 76.15

 / 
0


X: 1.641

Y: 49.02

X: 5.665

Y: 53.76
X: 5.835

Y: 41.49

X: 5.498

Y: 68.42

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1

0.15

0.2

X: 1.641

Y: 0.04134

 / 
0

v g
 /

 v
g
0

X: 3.571

Y: -0.05761

X: 5.498

Y: 0.1162

X: 5.835

Y: 0.1156

X: 5.665

Y: 0.1243



165 

 

the total time over which the signal travels, the normalized group velocity of 0.116 is 

confirmed.    

 

Fig. ‎6-14 Amplification of the Gaussian signal pulse with FWHM=0.5266 initially at φs=0.05Φ0, with the 

continuous-wave pump at φp=0.8Φ0 leads to a gain of 8.2dB.  
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Fig. ‎6-15 The contour of the Gaussian signal pulse, corresponding to Fig. ‎6-14 with respect to time and space. 

The process of amplification occurs in a periodic fashion.  

 

Fig. ‎6-16 The result of parametric amplification for a Gaussian signal pulse with FWHM=2.35 leads to a gain 

of 8.2dB.  
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Fig. ‎6-17 The effect of the pump on amplification gain for the sinusoidal signal wave with an amplitude of  

φs=0.05Φ0. 

In Fig. ‎6-17, the signal and pump waves are assumed sinusoidal and the gain for 

different pump waves are plotted over the length of the DJTL. As we increase the pump 

level, the length of the amplifier to achieve the maximum gain becomes smaller, in 

addition, the gain increases. In other words, the gain density which is the ratio of the 

maximum gain to the length of maximum gain achievement is increased when the level of 

the pump wave increases.  

Dynamic range is investigated in Fig. ‎6-18. In this figure for a fixed continuous-wave 

pump wave at         , the gain of the continuous-wave signal wave for different 

levels are depicted. As the Manley-Rowe relation (6.5) predicts, when the amplitude of the 

signal increases, its corresponding gain decreases. If we design the length of the amplifier 

at the normalized length       , the dynamic rage based on the 1-dB compression point 

covers signals from           to           which is very limited. For this length. 11 

unit cells are necessary and each contributes 0.74dB in the total gain.    
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Fig. ‎6-18 Investigation on the dynamic range of the TW-JPA. The signal gain for different signal levels are 

depicted and compared. 

 

Fig. ‎6-19 Bandwidth calculation for a TW-JPA leads to the study of the mismatch effect.   
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Fig. ‎6-19 studies the bandwidth of the amplifier. Signal and pump waves are continuous 

waves with amplitudes of           and         , respectively. According to this 

figure the relative bandwidth for this design is about 7%.  

The bandwidth characteristic of traveling-wave parametric device can be studied by 

fixing the length of the device (particularly amplifier) and calculating the gain dropped at 

this point by assuming a certain mismatch. As mentioned in section 6.7, when the pump is 

fixed in frequency, the slight frequency shift at the signal is compensated by a similar 

opposite shift at idler, and there is only mismatch of the phase constant. The solid line is the 

gain profile for the perfect matching case that a gain of 8.6dB is achieved at      . This is 

the time interval between the initial interaction and the maximum gain achievement. 

Multiplying this time interval by the group velocity of the signal wave, the time duration 

       can be converted into the length over which this gain is achieved. This yields 

          which is the length of the device. Since the length of each unit cell is      , 

this parametric device consists of 14 numbers of unit cells. Each unit cell contributes a gain 

of 0.6143 dB so that the total gain with 14 unit cells becomes 8.6 dB.  

Bandwidth is related to the mismatch caused by a deviation from the perfect phase-

matching condition, therefore, bandwidth is determined by the dispersion diagram of the 

structure. As seen in Fig. ‎6-12, the bandwith is limited by two bandgaps just before and 

after the branch where the resonant triads are located. According to the dispersion diagram 

of Fig. ‎4-14, the signal wave is located at the very sharp part of the dispersion curve, so a 

slight deviation from this point results in a large deviation in the phase constant which 

destroys the bandwidth. However for the structure with the dispersion diagram in Fig. ‎4-15 

of chapter four with the three non-degenerate waves at frequencies 

                         , the signal wave is located in a linear-like part of the dispersion 

curve and typical values for the phase constant are rather high. Therefore, by a slight 

change around the signal point, the relative variation in the phase constant becomes small. 

To have a more accurate analysis, the frequency mismatch should be on the order of   as 

our derivation for the formula (6.70)-(6.75) was based on this assumption. The pump signal 

is set at      , therefore we limit the frequency variation to       .  
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6.10 Conclusion 

A mathematical treatment based on the regular perturbation technique and method of 

multiple scales has been applied to the nonlinear wave equation which describes 

microwave propagation through DJTL structures assisted by open stubs. DJTLs have been 

driven in a weakly nonlinear regime, so perturbation methods are applicable. This process 

leads to three coupled amplitude equations which describe the spatial and temporal 

evolution of the complex amplitudes of the three phased-locked signal, pump and idler 

waves. Assuming a slight phase mismatch in frequency and phase constants, more general 

coupled wave equations have been obtained. The incorporation of two numerical 

techniques: the spectral method in space and the multistep Adams-Bashforth scheme in 

time domain, have been employed to solve the coupled amplitude equations. Based on the 

coupled amplitude equations, we have investigated different aspects of the parametric 

interaction of the resonant triads in a TW-JPA such as energy conservation, gain, stability, 

dynamic range and the bandwidth. Designing proper DJTL structures, numerical results 

have shown that DJTLs act as parametric amplifier and they exhibit superior stability, 

unilateral gain and a large bandwidth. 
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7 Concluding Remarks 

Chapter 7  

Concluding Remarks 

7.1 Summary and Conclusion 

Investigation of different aspects of parametric interactions and amplifications between 

microwave signals in structures involving Josephson junctions is the main theme of this 

thesis. Conceptual framework, basic ideas and common terminology around the parametric 

process and amplification have been briefly explained in the first introductory chapter.  

We began our study with the lumped JPA with two configurations, which are referred 

to as current- and voltage-based. Manley-Rowe relation predicted the ideal gain and also 

the "power added efficiency" of the system. Application of Manley-Rowe relations to the 

JPA, revealed that parametric amplifiers can have serious issue regarding the dynamic 

range which might limit their performance. For both cases, the transducer power gain was 

obtained in a closed-form and the negative resistance was observed in the denominators of 

the gain formula. When gain is very large, the circuit is unstable, the bandwidth is very 

small and the JPA operates in the oscillation regime. Having a new design for the 

maximum gain achievement and using an additional fit resistor, the regime of the device 

operation moved to the stable amplification regime where gain decreased and bandwidth 

was improved. The bandwidth of the lumped JPA was hindered by microwave filters and 

resonators. The thermal noise analysis of the device has been carried out and it was shown 

that it was reduced to as low as 35 photons above the quantum limit when the device was 

held at 4K. We concluded that a current-based configuration seems more promising as it is 

less sensitive to the pump source. A design procedure with an example for the current-

based JPA was outlined, which led to the proper pump source and filter characteristics.  

In chapter three, we presented our analytical and experimental work regarding the filter 

properties of a superconducting periodic structure where a series of dielectric gaps were 
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periodically placed on the TL. We have assumed both an finite and infinite number of unit 

cells. Each requires a different method of analysis, but as the number of unit cells increases, 

it was shown that both approaches would merge to the same result. Due to the lack of 

availability of any CAD (Computer Aid Design) tool in accessible commercial software to 

account for superconductor plates, a rigorous CAD tool was provided to find all distributed 

circuit parameters of superconducting transmission lines such as parallel plate, microstrip 

line and CPW (Coplanar Waveguide) [25]. The Dispersion diagram, attenuation constant, 

s-parameters, input impedance and filter properties of the periodic TL were discussed. It is 

quite interesting that for both finite and infinite periodic structures, all wave and circuit 

variables such as propagation constant, s-parameters, input impedance and resonant 

frequencies are expressed in closed-form equations in terms of the parameters of a single 

unit cell. Different designs have been fabricated in the film of YBCO on LAO substrate and 

characterized. The experimental results were in good agreement with those of theoretical 

treatment.     

In order to improve the stability, gain and bandwidth of  Josephson parametric 

amplifiers, we proposed a traveling wave structure called DJTL, for realizing of parametric 

interaction. DJTL is an assembly of JJs in a periodic fashion over a superconducting TL. 

The incremental section of DJTL includes a segment of a superconducting transmission 

line and a lumped block of Josephson junctions. In chapter four, assuming long-wave 

approximation, the nonlinear PDE in time and space have been derived to describe the 

nonlinear wave propagation through the DJTL. Under the small amplitude assumption, 

DJTLs were in a linear regime and dispersion analysis was performed to see different 

regimes of propagation, such as bandgap and slow-wave propagation. It was demonstrated 

that series-connected DJTL cannot satisfy the perfect phase-matching condition which was 

necessary for the purpose of parametric interaction. Using dispersion engineering, open-

stubs were added to overcome this issue. The wave equation in space and time has been 

derived again and satisfaction of the phase-matching condition has been demonstrated for 

several designs of DJTL structures assisted by open-stubs. Floquet analysis predicted 

another cut-off condition which was the consequence of the discrete nature of the structure. 

In other words, those waves with a wavelength greater than     can propagate through the 

DJTL. Realizability assessment based on Tichmarch‘s theorem has been successfully 
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examined for this type of structure. Considering all criteria such as cut-off and long-wave 

approximation, a design example over a realistic DJTL structure has been carried out and 

the support of three phased-matched waves has been highlighted in the dispersion diagram. 

Impedance analysis, which was necessary in microwave implementation and excitation, has 

also been performed to compare the input impedance of each signal, pump and idler waves.   

In chapter five, microwave behaviour of DJTLs (Discrete Josephson Transmission 

Line) have been investigated by time domain methods. As the governing equation was a 

system of nonlinear partial differential equations with mixed boundary conditions, the 

method of Finite Difference Time Domain (FDTD) was used to solve the equations 

numerically. Systematically achievable nonlinear FDTD solvers have been achieved with 

high stability and robustness to monitor the wave propagation through different DJTL 

structures. The details and numerical schemes have been fully described in this chapter. 

Features and characteristics such as cut-off propagation, dispersive behaviour and shock 

wave formation, which are expected from the wave propagation through the nonlinear 

DJTL, have been addressed and discussed in this section. The propagation of signal, pump 

and idler waves for a particular design have been also examined in this chapter. The shock 

wave formation was shown as a direct result of operating at in highly nonlinear regime. 

Shock wave examination is the simplest way to determine the nonlinearity of a waveguide. 

Experimental results for DJTL with HTS weak links are shown in the last section and 

observation of shock waves have been carried out.   

With the vast knowledge of all microwave characteristics and by identifying different 

regimes of operation, which include impedance properties, cut-off propagation, dispersive 

behavior and shock-wave formation, we moved toward the study, analysis and design of a 

TW-JPA in chapter six. We used perturbation theory accompanied with the method of 

multiple scale to derive the three nonlinear coupled amplitude equations to describe the 

parametric interaction. The case of the phase-matching condition with slight deviation has 

also been addressed. The conservation of energy law has been successfully examined. The 

incorporation of two numerical techniques, spectral method in space and multistep Adams-

Bashforth in time domain was employed to solve the complex coupled nonlinear equations. 

The interaction of three Gaussian pulses modulated at signal, pump and idler frequencies 

have been studied and led to the growth of the signal pulse. Gain enhancement has been 
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shown when the pump is replaced by a continuous wave instead of a pulse. When 

contrasting the quadratures of the signals, the results show that the non-degenerate TW-JPA 

acts as a phase-sensitive amplifier. The TW-JPA improved the bandwidth compared to the 

lumped counterpart, provided the signal wave is not located at sharp-curvature parts of the 

dispersion diagram. Phase mismatch downgrades the performance of TW-JPA by gain 

degradation, bandwidth reduction and amplifier's length extension. Another effect of the 

phase-mismatch was seen in oscillation on the total energy profile of the DJTL. The 

contribution of each unit cell in gain achievement has been also addressed. In general, 

different aspects of the parametric amplifier such as gain, bandwidth and stability have 

been improved by proposing TW-JPA.  

7.2 Future Directions 

Having gained the knowledge about parametric interaction in JJ-based microwave networks 

and clear understanding of the functionality of the parametric devices studied in this thesis, 

the followings are suggestions to expand upon the research presented in this thesis.  

Keeping with lumped parametric topology, it is desirable to implement parametric 

devices on a microwave platform. Thus, designing intricate microwave filters and 

combiners over planner transmission line structures including JJs is an essential step toward 

utilizing these devices in real applications.  

A further improvement in gain enhancement can be achieved by cascading successive 

JPAs. To improve the efficiency of the device, the idler signal generated from the previous 

stage is to be used as a pump signal for the next JPA. Incorporation of the shunt resistance 

of JJ element into our analytical modeling influences the gain of the circuit and also enables 

one to calculate the thermal noise arising from JJs into the system.  

Mixing, down-conversion, up-conversion and sub-harmonic pumping are other regimes 

of operation with certain applications that can be followed by parametric devices. 

Moreover, configurations such differentially pumped scheme improve the noise 

characteristics and also reduce the need for the pump filters. Further designs of elaborate 

lumped devices, their verification with jSPICE, and simulation of their corresponding 
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microwave implementations with a full-wave simulator can be done before fabrication and 

experimental set-up to ensure their functionality. 

Using biased JJs, the phase-matching condition will change from a four photon process 

to a three photon process. This might suggest another types of parametric devices, lumped 

or particularly traveling-wave, with improved performance. Moreover, using nonlinear 

devices such as SQUIDs instead of a single JJ offers another topic of investigation since 

they increase the capacity of the structure to inject a higher power of pump waves.  

Instead of TL modeling, the matrix representation of each unit cell of TW-JPA with the 

multiplication property to find the matrix description of the total structure is another 

attempt to pursue. Also, by numerical methods such as Chebyshef spectral method, 

boundary conditions including the source of excitation can be captured into the simulation. 

Integration of JPAs with sensitive devices including superconducting qubits and 

superconductive single photon detectors are other area of research than one can explore. 

Finally, investigation of the traveling-wave parametric devices with a quantum 

description could open up a variety of applications and research directions, including the 

study of generating squeezed quantum states  and microwave entangled photons in circuit 

QED, as well as the study of photon-photon interactions suitable for quantum signal 

generation and detection, and quantum information processing. Having quantum 

description, we can capture the issue of the quantum zero-point fluctuation which becomes 

significant at ultra-low temperatures.  
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Appendix A 

Ladder Network Equations for DJTL 

By dividing a series-connected DJTL into N identical unit cells, we can have another view 

of DJTL as illustrated in Fig.A.1. Instead of continuous variable z, index n designated for 

each unit cell.  

 

Fig. A.1. Discrete circuit model of DJTL. 

To the analogy of parallel-connected [116], we attain the following equation to express 

flux propagation in the structure 
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where    is the flux associated to the Josephson junction in the nth segment. In above 

equation the first, second, third and fourth derivatives of   with respect to time are denoted 

by    ,    ,   
   

and   
   

, respectively. Considering a particular harmonic solution    

   
         and small amplitude approximation (        ), substituting this into the 

equation (A-1), this yields following dispersion relation 
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If   and   are distributed inductance and capacitance associated to the transmission 

line, they must be multiplied by the factor    before substitution in equations (A-1) and (A-

2). Parameter   in (A-2) is a complex number accounting for the attenuation and phase 

difference between two subsequent cells. If the phase constant and period of the uniform 

structure is   and   , parameter   will be equal to      This equation is a modified version 

of equation (4.8) in a sense that the effect of equi-spaced discrete Josephson element is 

taken into account. However, the uniform model of DJTL is a very good approximation in 

low frequency regime. As frequency approaches the Bragg cut-off frequency,           

 , the wave becomes dispersive, and these two dispersion relations deviate from each other. 

If the long wave approximation (        holds,   is very small and by using 

                two dispersion relations in (4.8) and (A-2) match very well. Note that 

when we are in a small amplitude approximation and temperature is low enough, most of 

the current mostly consists the Cooper pairs, so the normal and displacement currents are 

very small, so      and     . By this assumption, the fluxon dynamics given by 

equation (A-1) and dispersion relation of (A-2) reduces to  

                              
    

   
   

  

   
        (A-3)  

           
 

 
            (A-4)  

Therefore, to have a wave propagation condition, the following condition must be met  

 
  

 

             

 
(A-5)  

as distributed elements   and   have been substituted by     and    , respectively. 

The right hand side of this inequality is the Bragg cut off frequency. The phase constant 

corresponding to Bragg cut off frequency is        and this is in a quite good 

agreement with the fact that the first stopped band edge in periodic structures occurs at the 

half wavelength of the wave.   
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Appendix B 

Nonlinear Kinetic Inductance 

It has been demonstrated that the kinetic inductance associated with a superconducting 

film is a function of applied current, I. The current dependence of the kinetic inductance 

can be derived by Ginzburg-Landau theory for the case of uniform current distribution 

[137], [138]. The relation describing the kinetic inductance of a superconducting film is 

given by  

        
 

        
  (B-1)  

where     is the kinetic inductance of the film in the absence of current. For 

superconducting thin film (    ) with thickness  , width  , and penetration depth   , the 

zero-current kinetic inductance is typically equal to         
         Parameter   is the 

ratio of the current density to the critical current density, i.e.       , and   is an implicit 

function of   , given  by 

                           (B-2)  

Parameter   indicates how fast the order parameter is adjusted by the velocity of 

Cooper pairs. At two extreme cases,   is 1 with the assumption of instant relaxation time 

and 1/3 with the assumption of infinite relaxation time. Since     , it can be shown that 

equation (B-2) always has three solutions for   , but only one of them falls between -1 and 

1. This is the acceptable value to be substituted for in (B-1). The typical value of critical 

current density Jc for YBCO superconductor material with              is 10
6
 A/cm

2
 

[90]. Therefore, the critical current for a film of YBCO with cross area of 100 nm ´ 100 nm 

would be 0.1 A. 

A nonlinear guiding system in frequency domain can be modeled by an iterative 

procedure using a suitable linear analysis tool as a basic routine [139]. The equivalent 

linear model and the original nonlinear structure are related to each other by an elementary 
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self-consistency relation. The flowchart of Fig B.1. describes the procedure of 

implementation of this nonlinear method. 
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Fig. B.1 The general flowchart of analyzing a nonlinear system by the self-consistent method. 
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Appendix C 

Multiple Scale Derivatives  

In this appendix, the derivative of the function with respect to slow-varying variables are 

presented. They are obtained based on the chain rule in differentiation. The relation 

between each variables is sketched in Fig C.1.. In following formula parameter   is equal to 

    . 

 

Fig. C.1. Interconnection between φ and four slow- and fast-varying variables.  

 

            (C-1)  

                      (C-2)  

                                  (C-3)  

                                                (C-4)  

            (C-5)  

                      (C-6)  

                                                (C-7)  

 
                                                   

                          
(C-8)  

    
           

   
           

    
           

 (C-9)  

     
           

    
           

      
           

      
           

 (C-10)  

 
     

           
     

           
       

           
        

           

       
           

 
(C-11)  

φ

T xtX



181 

 

 
      

           
      

           
        

           
         

           

         
           

        
           

 
(C-12)  

    
           

   
           

    
           

 (C-13)  

     
           

    
           

      
           

      
           

 (C-14)  

 

     
           

     
           

        
           

     
           

 

        
           

      
           

        
           

 

(C-15)  

 

      
           

      
           

         
           

      
           

 

         
           

       
           

      
           

 

          
           

      
           

         
           

  

(C-16)  

 



182 

 

Appendix D 

Combination of Asymptotic and 

Derivative Expressions  
This appendix includes the simplified expressions for the derivatives of   after asymptotic series 

and multiple scale derivatives are inserted. Only first order of each are substituted.      
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Appendix E 

Derivatives of the Zero-Order Solution 

   
   

 
 

 
        

         

 

   

 (E-1)  

   
   

 
 

 
  

   

  
          

 

   

 (E-2)  

    
   

 
 

 
     

    
         

 

   

 (E-3)  

    
   

 
 

 
     

   

  
          

 

   

 (E-4)  

     
   

 
 

 
     

 
   

  
          

 

   

 (E-5)  

      
   

 
 

 
      

    

  
          

 

   

 (E-6)  

   
   

 
 

 
         

         

 

   

 (E-7)  

    
   

 
 

 
     

    
         

 

   

 (E-8)  

    
   

 
 

 
      

   

  
          

 

   

 (E-9)  

      
   

 
 

 
     

   

   

  
          

 

   

 (E-10)  



185 

 

      
   

 
 

 
        

 
   

  
          

 

   

 (E-11)  

   
           

 
 

 
      

         
         

 

   

 (E-12)  

   
           

 
 

 
         

   

  
          

 

   

 (E-13)  

    
           

 
 

 
     

           
         

 

   

 (E-14)  

    
           

 
 

 
      

      
   

  
          

 

   

 (E-15)  

     
           

 
 

 
     

        
   

  
          

 

   

 (E-16)  

      
           

 
 

 
      

        
   

  
          

 

   

 (E-17)  

       
           

 
 

 
    

        
   

  
          

 

   

 (E-18)  

   
           

 
 

 
       

         
         

 

   

 (E-19)  

    
           

 
 

 
     

           
         

 

   

 (E-20)  

     
           

 
 

 
     

        
   

  
          

 

   

 (E-21)  

    
           

 
 

 
       

      
   

  
          

 

   

 (E-22)  

      
           

 
 

 
     

    
      

   

  
          

 

   

 (E-23)  



186 

 

       
           

 
 

 
    

   
        

   

  
          

 

   

 (E-24)  

      
           

 
 

 
        

        
   

  
          

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 



187 

 

Appendix F 

Coefficients of the Main Harmonics 

Generated by Cubic Nonlinearity 

The nonlinear term         in equation (6.48) of  chapter 6 consists of four nonlinear terms 

as follows 

         
     

     
 

                         (F-1)  

In this appendix, we present the coefficients of resonant forcing terms for each 

nonlinear    ,    .     and     term, after applying phase-matching relation. All 

expressions have been calculated by applying the phase matching conditions.  
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 First nonlinear term     is  
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TABLE F.1 

COEFFICIENTS OF SIGNAL, PUMP AND IDLER HARMONICS AFTER MIXING DUE TO THE FIRST 

NONLINEAR TERM 
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Second nonlinear term     is 
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TABLE F.2 

COEFFICIENTS OF SIGNAL, PUMP AND IDLER HARMONICS AFTER MIXING DUE TO THE SECOND 

NONLINEAR TERM 
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Third Nonlinear Term : 

         
           

 
 

  
   

           
 

 

    
  

           
               

 
  (F-4)  

 

TABLE F.3 

COEFFICIENTS OF SIGNAL, PUMP AND IDLER HARMONICS AFTER MIXING DUE TO THE THIRD 

NONLINEAR TERM 
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Fourth Nonlinear Term:         
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TABLE F.4 

COEFFICIENTS OF SIGNAL, PUMP AND IDLER HARMONICS AFTER MIXING DUE TO THE FOURTH 

NONLINEAR TERM 
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