
Cost-Based Automatic Recovery Policy in Data Centers

by

Yi Luo

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

© Yi Luo 2011

Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Today's data centers either provide critical applications to organizations or host computing

clouds used by huge Internet populations. Their size and complex structure make

management difficult, causing high operational cost. The large number of servers with

various different hardware and software components cause frequent failures and need

continuous recovery work. Much of the operational cost is from this recovery work. While

there is significant research related to automatic recovery, from automatic error detection to

different automatic recovery techniques, there is currently no automatic solution that can

determine the exact fault, and hence the preferred recovery action. There is some study on

how to automatically select a suitable recovery action without knowing the fault behind the

error.

In this thesis we propose an estimated-total-cost model based on analysis of the cost

and the recovery-action-success probability. Our recovery-action selection is based on

minimal estimated-total-cost; we implement three policies to use this model under different

considerations of failed recovery attempts. The preferred policy is to reduce the recovery-

action-success probability when it failed to fix the error; we also study different reduction

coefficients in this policy. To evaluate the various policies, we design and implement a

simulation environment. Our simulation experiments demonstrate significant cost

improvement over previous research based on simple heuristic models.

iii

Acknowledgements

I would like to express my heartfelt thanks to all the people who provided kindly helps

during my research. Especially, I am deeply grateful to my supervisor, Professor Paul Ward,

for giving me this great research opportunity, also for his constant and kindly guidance,

encouragement and helps. He always points out new directions when I encountered

difficulties, encourages me when I felt frustrated. With his enthusiastic helps, my research

becomes much smoother and this thesis can be finished successfully.

Also, I greatly appreciate Professor Sagar Naik and Professor Krzysztof Czarnecki to

review my thesis and provide their opinions and corrections to me.

Last but not least, many thanks to my family - my beloved wife, my adorable kids

and my parents. I particularly thank my wife, for her material and spiritual supports to help

me go through the hard time, for her extreme patience to put up with me. Without their

unlimited and unconditional supports and love, I would not be able to achieve my goal.

iv

Table of Contents
List of Figures..vii
List of Tables...viii
Chapter 1 Introduction...1

1.1 Cloud Computing..1
1.2 Data-Center Environment...4
1.3 Challenges and Solutions..6
1.4 Automatic Recovery Problem...7
1.5 Contribution..8
1.6 Thesis Organization..9

Chapter 2 Background..10
2.1 Fault, Error and Failure...10
2.2 Autonomic Computing..12

2.2.1 Autonomic Function Aspects..12
2.2.2 Autonomic-System Architecture...14

2.3 Recovery-Oriented Computing...15
2.3.1 Motivation...15
2.3.2 Principal and Hypotheses..16
2.3.3 ROC Techniques..16

2.4 Error Detection and Analysis..18
2.4.1 Supercomputer System Log Study..18
2.4.2 Early Warning Principles...18
2.4.3 Adaptive Monitoring With Statistical Models...19
2.4.4 Integration of Monitoring Data...20

2.5 Recovery Actions..21
2.5.1 Reboot and Micro-Reboot...21
2.5.2 Re-Image...22
2.5.3 System Rejuvenation...22
2.5.4 Roll Back...22
2.5.5 Other Recovery Actions..23

2.6 Recovery Policy..23
2.6.1 Autopilot Recovery System...24
2.6.2 Autopilot variations and limitations ..26

2.7 System Simulation..27
Chapter 3 Total Cost Based Policy Design..28

3.1 Problem Modelling...28
3.1.1 Modelling Recovery Probabilities...28
3.1.2 Recovery-Action Cost...30

3.2 Generic Cost-Based Model...31
3.2.1 Estimated Total Cost of Recovery (2 actions case)...31
3.2.2 Estimated Total Cost of Recovery (3 actions case)...33
3.2.3 Minimum Estimated Total Cost of Recovery ...36

3.3 Recovery Probability and Cost Observation...38

v

3.3.1 Recovery-Probability Observation..38
3.3.2 Recovery-Cost Observation..39

3.4 Final Recovery Action..40
3.5 Programing Algorithm Representation...41
3.6 Policy Implementation..43

3.6.1 Policy P2...44
3.6.2 Policy P3...44
3.6.3 Policy P4...45

3.7 Example Illustration..46
3.7.1 Initial Value Setup...46
3.7.2 Example Walk Through...48

Chapter 4 Simulator Design..56
4.1 Simulation Test Data...56

4.1.1 Fault and Error..56
4.1.2 Recovery Action to Fault Effects..59
4.1.3 Recovery Action Execution Time...61

4.2 Simulator Implementation..62
4.2.1 Event Types...63
4.2.2 System State..64
4.2.3 Recovery Action Selector..65
4.2.4 Simulation Controller..65

Chapter 5 Experimental Analysis...71
5.1 Evaluation Criteria..71

5.1.1 Cost to Run-time Ratio..71
5.1.2 Optimal Expected Cost and Target Policy P0...72

5.2 Test setup and running environment...74
5.2.1 Running Environment...74
5.2.2 Test Setup..74

5.3 Results...75
5.3.1 Detailed Result for 10 servers with 10000 errors..78
5.3.2 Summarized Results from all configurations..79

Chapter 6 Policy Improvements...83
6.1 Inherent learning process and improvement...83
6.2 Observation of Attempts per Success Fix...85
6.3 Policy P4 Multiple Attempts Coefficient Study..90

Chapter 7 Conclusion and Future Work ...94
7.1 Future Work..95

References...97

vi

List of Figures
1.1 Eucalyptus Based Cloud Structure..2
1.2 Data Center Server Structure...4
1.3 Data Center Infrastructure...5
2.1 Autonomic Elements..14
2.2 Data Center Automatic Recovery..24
2.3 Server State Change...25
3.1 Recovery Action Selection..35
3.2 Recovery Action Downtime..39
4.1 Fault Distribution Table...57
4.2 Repeating Error and Fresh New Error...58
4.3 Recovery Action to Fault Effects...60
4.4 Base and Actual Execution Time...62
4.5 Simulator Implementation...63
4.6 run() Pseudo Code...66
4.7 ErrorEvent Processing Pseudo Code...67
4.8 RepairActionExecutedEvent Processing Pseudo Code...68
4.9 ProbationTimerEvent Processing Pseudo Code..69
5.1 Policy P0 Ratio R Detail Result...76
5.2 Policy P1 Ratio R Detail Result...76
5.3 Policy P2 Ratio R Detail Result...77
5.4 Policy P3 Ratio R Detail Result...77
5.5 Policy P4 Ratio R Detail Result...78
5.6 Policy P4 to P1 Ratio R Detail Comparison..80
5.7 10 Servers Summarized Result..81
5.8 100 Servers Summarized Result..81
6.1 Policy P0 Ratio R2 Detail Result...87
6.2 Policy P1 Ration R2 Detail Result...87
6.3 Policy P2 Ratio R2 Detail Result...88
6.4 Policy P3 Ratio R2 Detail Result...88
6.5 Policy P4 Ratio R2 Detail Result...89
6.6 Policy P4 Ratio R Coefficient Result..92
6.7 Policy P4 Ratio R2 Coefficient Result..92

vii

List of Tables
3.1 Initial Repair Action Cost Table..47
3.2 Initial Repair Action Success Probability Table..47
5.1 Ratio R Result Summary of 10 Servers With 10000 Errors..79
6.1 10 Servers Learning Comparison..84
6.2 100 Servers Learning Comparison..84
6.3 Ratio R2 Result Summary of 10 Servers With 10000 Errors..89
6.4 Policy P4 Coefficient 0.5 Comparison..90
6.5 Policy P4 Coefficient 0.0 Comparison..91
6.6 Policy P4 Coefficient 1.0 Comparison..91

viii

Chapter 1 Introduction

Computers, networks, and their provided services are the essential in our life today. The

technology behind this has grown rapidly, from the mainframe with connected terminals, to

the local-area network with a client/server environment, to the widely used browser and

Internet services. The usage has moved from restricted scientific and military research to

everything in our life, personal or business, government, etc.

1.1 Cloud Computing

As the web developed from the 70s, along with faster and more reliable networking, more

and more information and services are provided over the Internet. People increasingly rely on

these ubiquitous information and services. Web Services and Service-Oriented Architecture

emerged to enable the infrastructure and framework to provide more functions and services

through the network. The large number of users and their requirements continuously moved

the development of the technology. Cloud computing recently appeared to provide more

traditionally local services on the Internet. Cloud computing is defined as a Internet-based

computing, whereby shared resources, software, and information are provided to computers

and other devices on demand.[61] There are different types of cloud providing different level

of services [23]:

• IaaS - Infrastructure as a Service

• PaaS - Platform as a Service

• SaaS - Software as a Service

The IaaS cloud provides computer-infrastructure resources as an Internet service to

1

end users. Users then do not need to deploy local computers or other infrastructure resources.

Services such as Amazon EC2 (Elastic Compute Cloud) provide such compute resources.

The SaaS cloud provides an application as an Internet service to users. Users do not need to

install the application locally; rather, they use it anywhere online. Examples of SaaS include

Google applications and salesforce.com, which has been used for quite some time without

explicitly being categorized as SaaS. The PaaS cloud is between IaaS and SaaS: it does not

provide software ready to use, nor just a bare bones virtual-machine instance. It usually

provides a stack of tools, server platform, and application-framework environment on top of

a virtual-machine instance and exposes it as an Internet service; users can customize the

provided environment and install their own software applications. This type of cloud

includes Amazon S3, Bungee Connect which is designed for Cloud Application

Development.

The cloud-computing approach brings more economic computing solutions. Since an

enterprise does not have to put resources into building and maintaining a computer

infrastructure and software applications, they can focus on their core business, such as sales,

2

Figure 1.1: Eucalyptus Based Cloud Structure [24][25]

logistics, banking, insurance, etc., which provides more value to them. While companies still

need some infrastructure internally, they do not need build spare capacity just for occasional

demands; such demand can be managed dynamically by an external cloud. This not only

saves the initial building cost, but also the operational cost. This is similar to only paying for

electric usage as needed without building and running a power generation system. There is

no need to buy and instal software just for short-term or occasional use; likewise, there is no

need to buy each newer version. Rather, cloud computing operates on a pay-as-you-go basis

and always uses the latest version, unless a prior version is required.

As the benefits from cloud computing attract more users, more IaaS implementations

appeared, both from commercial sources, such as Amazon EC2, and open-source solutions,

such as Eucalyptus [25][26]. Figure 1.1 shows a Eucalyptus-based IaaS cloud-

implementation structure [24][25].

The Cloud Controller provides a management interface to users, collects cloud-

system resource load and current-capacity information from cluster controllers, and selects

the cluster controller for allocating virtual-machine instances. The Cluster Controller collects

cluster-resource load and current-capacity information from node controllers, and selects the

node controller for allocating virtual-machine instances. The Node Controller discovers

information from the physical server on which it is running, and initiates and runs the

required virtual-machine instances. The Storage Service provides file-level storage service to

users to store virtual-machine images and snapshots, and allow node controllers to access

these files. The Storage Controller provides remote block devices to virtual-machines

instances running on the node controller.

As an infrastructure-based service provided through the Internet, the reliability and

performance is critical to enterprise users. As such ecosystem, all cloud components are

scaled to ensure both scalable and reliable infrastructure-service provisioning to meet

demands. This type of setup usually complicates and enlarges the entire system.

3

1.2 Data-Center Environment

Like other critical enterprise software and other Internet applications, cloud services run in

computer data centers. The data center could have hundreds to thousands or more servers,

depending on the needs of running applications and the expected service consumption. Some

large organizations may have huge data center infrastructures – e.g., Rackspace was reported

to have 63,996 servers in Nov 2010 [59], Intel had about 100,000 servers in Feb 2010 [59],

Microsoft had about half a million servers [59], and Google was estimated to have over a

million servers in 2007 [60].

In many traditional data centers, the servers each run an individual operating system

and application for different departments or different service purposes. More modern data

centers, e.g., Amazon EC2, Microsoft Azure, etc., use a virtual data-center structure, where

the servers usually run some virtual-machine hypervisor (e.g., VMWare ESXi, Xen, KVM,

Hyper-V, etc.). On top of that there are virtual-machine instances running similar or different

guest operating systems and applications (see Figure 1.2). This setup meets more flexible

usage requirements, such as dynamic computing resource provisioning, run-time online

migration of the running virtual-machine instance and its application, etc.

4

Figure 1.2: Data Center Server Structure

5

Figure 1.3: Data Center Infrastructure [31]

In a modern data center, the server usually has multiple multi-core CPUs with

virtualization technology, such as Intel VT and AMD-V, enabled; memory size is ranging

from 16GB to hundreds of gigabytes. The servers are placed in rows of racks, and each rack

usually contains around 40-48 1U-size servers. These servers are connected to the rack-level

switch; rack-level switches are connected to cluster-level or data-center-level switches,

which are usually modular and can support hundreds of ports and provide terabits per second

(Tbps) of backbone network-switching capacity. These servers either adopt a distributed

local storage or connect to a NAS (Network Attached Storage) or SAN (Storage-Area

Network) through high-speed network connections, such as fibre optical channel.

While the computing components are working, they all consume power and generate

heat; the accumulated heat causes many hardware problems, and eventually kills the

equipments. In addition to fans running on servers and racks, there are other cooling

components: CRAC (Computer Room Air Conditioning), heat-rejection systems [57], etc.

A data center either hosts the organization own services or services for their clients.

Hosted services have to meet defined Service-Level Agreements (SLA). Service downtime

causes business loss. Therefore high availability is required in data-center design and

implementation. Not only is redundancy included in servers, clusters, and network setup, but

also in cooling and power-support systems (see Figure 1.3).

1.3 Challenges and Solutions

Data-center infrastructure not only requires a large initial cost ($100 million for the Amazon

data center in 2008 [53]; $500 million for a Microsoft data center in 2010 [52]), but also a

high operational cost (ranging from $10 million to $14 million per year on a 125,000 sq-ft

data center with 75 staff, from a 2006 survey [54]) for power consumption, service operation,

and infrastructure repair.

Data center infrastructure needs considerable human resources to maintain their

operations; an interview with Facebook [62] inferred a ratio of one admin staff to 130

servers. As technology develops, people need more advanced knowledge to provide proper

6

maintenance to systems. Compared to hardware cost, well-educated people are scarce and

expensive. While hardware costs continually drop, people's salary and benefits continually

increase. To operate data-center services, the needed people bring significant operational

cost.

 To minimize cost, different research has focused on different aspects of the problem.

Google [2] studied various service-request loads, the performance from cheaper commodity

servers and expensive super servers, and TPC-C price/performance data; they suggest using

commodity servers that could reduce the initial purchase cost and later replacement cost

without impact to the provided service performance. Other than optimizing the operational

process, the concept of Autonomic Computing [1][8][9][10][14] focuses on providing more

automated solutions to help on relieve the human cost involved in various computer

operation issues.

1.4 Automatic Recovery Problem

One of the key problems in data-center operation is to deal with server errors and failure.

Bianca et al. [55] studied server failures in the Los Alamos National Laboratory. The failures

they recorded only identify application interruption or server outage. Their result shows one

system has almost 1200 failures per year. After the result is normalized by processor numbers

in each system, it shows the average failures per year per processor is 0.3 and the worst was

0.65. They observed the failures grow proportionally with the number of processors in the

system. As their study data was collected from systems built over a 9-years time frame with

different technologies, they also observed that the failure rate has not changed over that

period.

Translating this result to a data center with 50,000 servers each with 8 processors, it

would average 120,000 processor failures each year. That means a failure would happen on

average every 4.38 minutes.

Daniel [56] studied Internet data centers with a performance and availability model.

In the study, he illustrated an setup of 120 servers, each with Mean Time To Failure (MTTF)

7

of 500 minutes, and repair staff average take 20 minutes to recover the system; In order to

maintain the performance standard in terms 100 out of 120 servers should be in operation, 10

staffs are needed. Translating this example to a data center with 50000 servers and each with

MTTF of 50000 minutes, to maintain the same performance, more than 40 repair staffs are

needed. The average IT staff now cost $44.85 per hour [51], which translates to $93267 per

year by counting 40 hours per week and 52 weeks per year. So all the repair staffs will cost

about $3.73 million per year to maintain this type of data center, this is just the human cost

dealing with the error fixing.

The recovery is not only related with human cost, but also takes time to finish the

fixing work that is represented by MTTR Mean Time To Repair, which is a downtime to the

system that may even have many kinds of higher cost impacts – e.g. The lost business value

($108,000 a minute in lost brokerage operations, $43,000 a minute in lost credit card

operations [58]), the penalty for SLA violation [4], or the cost induced by running the backup

system or environment.

Target on the human workload and cost in recovery, Autonomic Computing, ROC

[12] and container based modular data center [28] proposed different solutions. However

they did not consider the situation after an error is reported, among multiple available

recovery actions, which one should be choose from the overall recovery cost perspective.

The Microsoft Autopilot data center study [6] proposed a simple heuristic recovery

action selection policy which simply escalate from the recovery action with minimal known

MTTR to the one with highest known MTTR. It shows the consideration of the downtime

cost but not specific target to the overall cost perspective. Our thesis designs a new model for

automatic recovery action selection policies. The new model should be able to select a

reasonable recovery action without the known MTTR of each recovery action, and it should

based on a cost model.

1.5 Contribution

The work in this thesis makes the following contributions:

8

• we proposed a minimum total-recovery-cost model for data-center self-management.

Our policy is a self-adaptive approach, bootstrapping by itself with no need for

historical information. It can also add and adapt to any new recovery actions. We

study and provide suggestions to shorten the initial learning curve in the model and

provide preferred policy parameters based on our simulation results.

• We develop different policies from our cost-based model, and demonstrate the

advantage over the Autopilot heuristic policy.

1.6 Thesis Organization

The remaining thesis is organized as following: Chapter2 provides background knowledge of

the computer error and recovery systems, together with auto-recovery information. It also

introduces discrete event simulation. Chapter3 describes our cost-based recovery-action

selection policy and illustrates with a walk-through example. Chapter4 describes our

simulator design and implementation, as well as the simulation test-data generation.

Chapter5 explains the evaluation criteria and objective policy, presents the test setup, and test

results. Chapter6 discusses policy improvement. Chapter7 summarizes our studies and

suggests some directions for future work.

9

Chapter 2 Background

This Chapter provides the background information needed to understand our automatic

recovery-policy research. There is substantial related work regarding computer errors and

how to fix them. After clarifying the definitions of computer fault, failure and error, and

related terminology, the concepts of Autonomic Computing and Recovery-Oriented

Computing are introduced. These concepts provide ideas regarding management of computer

failures and errors. After that, techniques used to detect and analyze errors, followed by

different recovery actions are presented. Based on this background knowledge, recovery

policy and related research is discussed. To help understand our experiment environment,

discrete-event simulation is also described.

2.1 Fault, Error and Failure

The words “Fault”, “Error” and “Failure” are often misused. The IEEE [32] has clearly

defined these, and associated terms, which we presented here for clarity.

• System: An entity that interacts with other entities, i.e., other systems, including

hardware, software, humans, and the physical world with its natural phenomena.

These other systems are the environment of the given system. The system boundary is

the common frontier between the system and its environment.

• Service: The service delivered by a system (in its role as a provider) is its behavior as

it is perceived by its user(s); a user is another system that receives service from the

provider. The part of the provider’s system boundary where service delivery takes

place is the provider’s service interface. The part of the provider’s total state that is

perceivable at the service interface is its external state; the remaining part is its

internal state. The delivered service is a sequence of the provider’s external states.

10

• Correct Service: Correct service is delivered when the service implements the

system function.

• Service Failure: A service failure, often abbreviated here to failure, is an event that

occurs when the delivered service deviates from correct service.

• Service Outage: The period of delivery of incorrect service is a service outage.

• Error: A service failure means that at least one (or more) external state of the system

deviates from the correct service state. The deviation is called an error. The definition

of an error is that part of the total state of the system that may lead to the system's

subsequent service failure. It is important to note that many errors do not reach the

system’s external state and cause a failure.

• Fault: The adjudged or hypothesized cause of an error is called a fault.

• Partial Failure: When the functional specification of a system includes a set of

several functions, the failure of one or more of the services implementing the

functions may leave the system in a degraded mode that still offers a subset of needed

services to the user. The specification may identify several such modes, e.g., slow

service, limited service, emergency service, etc. Here, we say that the system has

suffered a partial failure of its functionality or performance.

From these definitions, we know that error is defined in the entire system scope and

may not cause a service failure which shows in the external state. In our research we assume

an error detector which reports any errors in the system that may cause the service to deviate

from the defined specification, causing either full or partial service outage. In this way, we

simplified our discussion and the implementation of simulation just to two parties – error or

11

failure is what has been detected and cause service away from SLA, fault is what behind the

error as the root cause.

2.2 Autonomic Computing

The Autonomic Computing concept was created by IBM researchers [8] to address

management costs in complex computer environments. While computer systems provide

more services, they have also become more complex and bulky. As systems continuously

expand, the size and complexity is approaching or exceeding human management capability.

System operation and management costs are significant to businesses. Autonomic computing

believes the solution is to have the system self manage, with operators specifying policy.

2.2.1 Autonomic Function Aspects

Autonomic computing defines system self-management as addressing four functional

aspects:

• Self-Configuring

• Self-Healing

• Self-Optimizing

• Self-Protecting

Self-Configuring

A computer-system environment in a data center is usually composed of different hardware

(switch, router, firewall, server, load balancer, storage array, etc.) and software (operating

system, database, web server, application server, framework utility, application, etc.). The

integration and configuration of these components is complex and error-prone.

A self-configuring system is one in which this work is done automatically by the

system. New components register to the system, which can also discover, configure, and

adapt to the existing components, meanwhile existing components can discover, configure,

12

and adapt to new components. They automatically melt together and form new system

capabilities. This adaptive process is continued for any environment changes at run time.

Self-Healing

The hardware and software components in a data center have errors. These errors have not

only a cost to fix, but also the opportunity cost caused by system downtime.

The idea of self-healing is to let system overcome any errors encountered by itself,

without significant downtime. The system should be able to detect any errors, analyze the

cause if necessary, and recover without noticeable service interruption. Recovery-oriented

computing provides some ideas and techniques in this area. Our research also address

solution for automatic recovery.

Self-Optimizing

As many parameters exist in both hardware and software components, adjusting these

parameters to achieve optimal performance introduces a lot of issues. The optimization of

some parameters in a system may have a negative impact on the performance of other

systems. Experts familiar with subsystem optimization are scarce and expensive. To optimize

and balance the overall system performance is more complex still.

Self-optimizing requires the system to adjust itself for the best performance. The

system should be able to identify optimization opportunities under a changing environment,

analyze the impact, and optimize the system with minimal overhead.

Self-Protecting

Even though firewalls and other security appliances are installed, malicious attacks still

happen. The consequence of a successful attack is loss to the organization.

Self-protecting has the system anticipate, detect, and defend itself against wide

attacks and cascade failures. It should also correct the whole system from any attacks that

can not be recovered by self-healing. This capability further reduces operational cost.

13

2.2.2 Autonomic-System Architecture

The proposed autonomic-computing architecture [8][11] is a recursive structure of

components (see Figure 2.1). Each component is called an Autonomic Element. Each

element should implement the four autonomic-computing functions, making each element a

small self-managed system. The Autonomic Element is the building block to form a larger

self-managed system. The formed structure could be a tree or an arbitrary graph.

An Autonomic Element contains an Autonomic Manager and one or more Managed

14

Figure 2.1: Autonomic Elements

Elements. Inside the Autonomic Manager there are sensors collecting data from the Managed

Elements; a monitor watches the data collected by the sensors and filters the data for

analysis; from the analyzed result an execution strategy is planned and executed; knowledge

required for this is shared as necessary; finally the effectors execute the desired actions in the

Managed Elements.

The autonomic-computing concept defines the desired system capability to address

many issues in today's complex computing environment. Our cost-based automatic-recovery

policy provides a practical solution for the self-healing aspect, as well as addressing some

aspects of self-configuring and self-optimizing (e.g., it can adapt to new recovery actions,

and it continuously optimizing for the selection of the best recovery action). Our policy

implementation is similar to the autonomic-component structure.

2.3 Recovery-Oriented Computing

Another approach for dealing with computer failures, errors, and faults is Recovery-Oriented

Computing (ROC), which focuses on fast recovery from failures and offers high availability

for Internet services.

2.3.1 Motivation

In the past several decades, the price to purchase computers has dropped significantly. In

contrast, the cost of human intervention is higher and higher. Meanwhile, the capabilities of

hardware and software result in more users of these systems, and more system administration

work is involved. As a result, more and more failures of systems are caused by human, such

as system operators, or system administrators. The surveys on public switched telephone

network and three internet sites show that the operators cause 59% and 51% failures in those

systems respectively [12][38]. Not surprisingly, the total cost of ownership (TCO) remains

high, and a large portion of the TCO is from human operator error. ROC is hence motivated

to achieve higher availability and lower TCO.

15

2.3.2 Principal and Hypotheses

ROC states the following principal and hypotheses [33][12]:

• Failure modes are not predictable. Failures are caused by imperfect and incompletely

modelled systems; thus they can not be foreseen. In addition, David Patterson et al.

[12] stated ROC's guiding principle – the failures, faults, errors are facts to be coped

with, not problems to be solved.

• Recovery performance is more important than computing performance

• TCO is more important than software and hardware purchase cost

By concentrating on Mean Time to Repair (MTTR) rather than Mean Time to Failure

(MTTF), ROC offers higher recovery performance and system availability. Faster recovery

time impacts Total Cost of Ownership (TCO) as well, so that it improves system

dependability.

2.3.3 ROC Techniques

Online Verification of Recovery in both development and production environments. Unlike

functions that are well tested before put into production, recovery is hardly verified. This

causes the case in which recovery is not working in production. However, it is difficult to test

real faults in these environments. FIG (Fault Injection in glibc) [12][34] provides a

lightweight, extensible tool for simulating, injecting, and logging errors in a running system.

It not only can be used in development environments to make the system more robust, but

also can be used in production environments to expose environment-related errors that are

unable to be detected in the testing phase. The verified environment is then more likely to

correctly recover from errors to achieve higher dependability.

Facilitate diagnostic support. Complex computing environments make it

challenging to detect system problems and identify their root causes quickly. Traditional

tools rely on static dependency models which can not keep up with the changing

16

environments. Pinpoint [12][36], a diagnostic tool implemented in J2EE, enables error

detection and analysis without any knowledge of the systems being monitored or requests. It

records the components that are used to response each individual client request, detects

internal faulty components and external end-to-end failures, and distinguishes the faulty

components based on the collected data. This greatly helps administrators to rapidly recover

from system failure, resulting in lower TCO.

Partitioning for rapid recovery. To recover a large-scale system in one shot can be

expensive, resulting in service disruption and long downtime; critical systems can not

tolerate this disruption. Partitioning the system to modular and lower coupling subsystems

can contain the error locally, causing less impact to the overall running system. Microreboot

[12][13][35][37] adapts this technique to partially restart the affected components of a

system without interrupting the whole system, and masks failures from end users. This

practical ROC technique achieves low-cost recovery.

Undo enabled system with safety margin. Human error may be caused by

performing incorrect actions or performing actions correctly but not intentionally. This type

of human error is usually hard to correct in ordinary systems. System with Undo capability

enabled [12][35][40][41][42] support retroactive repair and recovery from human errors, thus

improving system dependability.

Undo is based on three R's of rewind, repair, and replay. In the rewind step, all

system state is reverted to the time before the error happened. In the repair step, the operator

takes actions to correct the mistakes or prevent the errors. Finally, in the replay step, all the

user interactions are executed again to make sure the information between the rewind point

and the present would not be lost.

Defence in depth. Cascading failure may easily crash normal protection

mechanisms; with more levels of protection, a system may survive from even worse failure,

that makes the system more dependable. For example, multiple levels of firewalls and virtual

machines on top of real machines make systems safer and more robust [12].

Redundancy and fail fast. In the physical world, the production of physical objects

involves non-negligible cost and time. However, in software systems, multiple component

instances can be created with no substantial cost. Redundant component instances can avoid

17

a single point of failure. Moreover, when a component fails, kill it and start a new one is

frequently much faster and cheaper than diagnosing the root cause and fixing it. [12]

2.4 Error Detection and Analysis

Being aware of an error in the system is the first step in automatic recovery. There is much

research focused on error detection, and many approaches for figuring out the root cause

behind the error. Some research also considers the overhead of doing error detection and

analysis, and seeks solutions to minimize it.

2.4.1 Supercomputer System Log Study

Oliner et al. [19] studied system logs from five supercomputers in order to explore issues that

should be considered in automatic error detection. The log study itself was done offline.

After collecting the logs, alerts were identified by using regular expressions. Due to many

duplicate alerts, a temporal-based filtering was performed. Finally, the modelling of failure

timing was conducted.

From this study, some recommendations were provided for automatic-detection-

related research. The big issue for accurate error detection is missing operational context: this

information will help understanding the expected system behaviour. There are more

difficulties in finding the root cause: the logging system itself may be corrupt; many

duplicated or similar alerts could be triggered by one error; different categories of error have

different signatures; the system continuously evolves; filtering under these issues is also

difficult. To analyze the root cause accurately needs further research.

2.4.2 Early Warning Principles

Dorron et al. [18] studied alarms logged in telecom voice-mail systems. Due to the different

customer-environment configurations, in stead of providing a rigid algorithm, they provided

18

three principles to achieve early warning of system failures.

The first principle is to simply count all alarms in the system. By averaging the

counting number in a period, a stabilized number can represent the normal operation of the

system; an increased number indicates some developing problem, whereas a decreased

number shows some fixes were done. This principle can not point out the potential faulty

sub-system, but gives early warning for the over all system which is still helpful for bringing

attention and applying early actions.

The second principle is to count alarms for each sub-system individually, mix and

rank them into a Pareto diagram. The stabilized Pareto ranking presents normalcy; ranking

changes and an increased alarm counter of a sub-system indicates a potential failure of that

sub-system. Also, a similar approach can be used to count alarms from different alarm IDs

inside each sub-system; ranking changes for different alarm IDs indicates a problem with that

sub-system. This principle provides more accurate warning to the sub-system level.

The third principle is to count clusters of some alarms. Application and operation

experts can usually determine some appropriate grouping of alarms; the alarm count from

these selected groups can provide a much earlier warning for the related sub-system.

These principles were applied to customer systems, and successfully demonstrated

early warning for system failures. While this study is interesting, it is not a fully automatic

solution and can not be directly used in a generic system.

2.4.3 Adaptive Monitoring With Statistical Models

A series of studies [15] [16] [20] were conducted by Munawar and Ward. They utilized linear

regression statistical models to detect errors and analyze faults in a generic application

environment (J2EE). They also utilized an adaptive-monitoring approach to minimize the

monitoring and analysis cost.

This monitoring involves three phases. The first phase is model building. It is

assumed there are no faults in this phase; the target system is run and metrics are collected.

Based on those metrics linear correlation models are learned. A subset of the most

representative metrics and models are selected based on whether they are associated with a

19

majority of the system components. The system is then ready for minimal monitoring. This

monitoring phase is based on a small subset of metrics and models, so the cost is minimal. In

this phase, if deviation from the model is observed, an anomaly is deemed to be happening in

the system. Then system gets into detailed monitoring, so as to determine if the anomaly is a

glitch or significant. In this phase, system collects and studies all learned metrics and models

related with those deviation metrics and outlier models. From the intensive data collections,

the components associated with relative more outlier models were selected to a suspected

faulty component list with rankings. This phase incurs relative higher cost to the system,

however only happens in a short period when system is suffering error.

With a minimum impact to the system, the results show that errors generated by 28 of

29 injected faults are detected, and the faulty component is shortlisted 65% of the time.

While this is almost perfect for automatic error detection, fault analysis only produces a

suspected-faulty-component list, not the exact component and not the root cause behind that

fault.

2.4.4 Integration of Monitoring Data

Munawar and Ward also proposed an architecture [17] to integrate monitoring data from all

sub-systems. These heterogeneous systems have different monitoring data types and formats.

The proposed solution adds parsers and other conversion engines to different sub-systems

and data sources, and converts the source data to the Common Base Event format for

problem analysis. Continuous monitoring data (e.g., CPU utilization) is not suitable for the

discrete CBE data format; it is also not feasible to be continuously collected due to the high

collection cost. By utilizing their previous adaptive-monitoring work, they create a

continuous data monitoring engine. The engine keeps monitoring the system for those

numeric data at a minimum level; when a problem is detected, it is then reported using a

behavioural model which is CBE compatible; detailed monitoring can be engaged for further

analysis. The engine makes the conversion of continuous monitoring data feasible. This

architecture integrates all types of data from all sources, providing a more comprehensive

picture to the event analyzer for better system analysis.

20

The previously described ROC PinPoint system is also an error-detection solution.

The results from this research are encouraging. We noticed that most research did well on

error detection; however they are not reliable on determining the root cause. No current

solution is able to point out the exact fault behind an error; they usually can only give a range

of faults.

Our research is not focusing on the error-detection area; instead, we use the error-

detection result. We rely on a good error detector which not only notices every error

requiring recovery, but also provides feedback on whether or not the previous recovery

succeeded by noticing if anew error happens shortly.

2.5 Recovery Actions

After an error is detected, we need a recovery action to solve the problem. We describe some

automatic recovery actions in this section.

2.5.1 Reboot and Micro-Reboot

One of the automatic recovery actions is reboot. Desktop computer systems were not very

stable in the past, they may hang in a couple hours. Pressing the reset button is a quick and

effective way to make the system work again. In the automatic approach, we just need to

send a reset signal if the system has completely hung, or send a reboot command if the

system is still responding at a certain level.

During the restart process, if the system needs load too many libraries and drivers, set

up the environment, and run batch jobs for loading many applications, the reboot may still

take a long time which means high cost. Micro-reboot [12] [13] realizes the ROC

partitioning technique by rebooting a part of the system not the whole system. For example,

it may restart certain processes or components. However, this approach may require some

fault information to be provided regarding where the fault is: in which process or component.

21

2.5.2 Re-Image

Another automatic recovery action is to re-image the system. After the system has run for a

long period it may show problems caused by corrupt files or minor disk errors. The re-image

approach [6] is to format the disk, reinstall the Operating System, and then reinstall

applications. The freshly reinstalled system usually makes those problems go away. Virtual-

machine technology makes re-imaging even simpler. Since the whole virtual-machine

instance, including OS and applications, is just a virtual disk, either an ordinary file or a disk

file; replacing that file can achieve the same re-imaging result as the traditional way.

2.5.3 System Rejuvenation

For long running systems, the phenomenon of software aging usually leads to system

degradation, possibly crash the entire system. The causes of this degradation may be software

bugs or unexpected errors, memory leaks, data corruption, unreleased file locks, etc. Unlike

Reboot, which takes action after a system failure, Software Rejuvenation [44] prevents

system degradation and failures in the future by proactively terminating the system, cleaning

its internal states, and then restarting the system. This can be done at a scheduled time,

potentially resulting in lower cost.

The methods to determine and optimize the rejuvenation schedule vary. For example,

some studies [44][45] used a time-based rejuvenation model, Bobbio et al. [48] optimized the

rejuvenation policies by using fine-grained software degradation models, Garg et al. [47]

considered the time and workload as the factors to model the rejuvenation policies,

Vaidyanathan et al. [46] used Stochastic Reward Nets (SRNs) for the rejuvenation model

under a cluster environment.

2.5.4 Roll Back

The rollback recovery action takes a checkpoint (also called a log) of the system state at

various times when the system is assumed to be healthy. When errors are detected, a recent

22

checkpoint can be used to restore the system to a healthy state.

A typical utilization is the database check pointing mechanism [49][50]. It takes a

snapshot of a healthy database and log the data at a given time interval; when the database is

crashed, it will restore and restart the database using those checkpoints, which can limit the

recovery time and restore the most recent user data, hence avoiding significant business loss.

2.5.5 Other Recovery Actions

Other than the actions we described above, there are still other recovery actions such as:

release disk space by deleting or moving files in directories that can fix system failure due to

a disk-space shortage; this may be a lower cost recovery action compared to reboot; upgrade

operating systems and install other software patches to fix some software bugs.

2.6 Recovery Policy

After errors has been detected and reported, the question to be addressed by the recovery

policy is what action should be used? If we know what is the fault behind the error, and what

actions can fix which faults, what is the cheaper action among them, it would be easy to

select the action. Without knowing exactly the fault, what is the best action among several

candidates? So far just a couple research papers have focused on this area.

The recovery action done by a human expert usually has the most expensive recovery

cost, although it is assumed they can always fix any problems. We want to save the cost by

reducing request to a human. By way of analogy, in our life, if any glitches happen in our car

we go and see the mechanic; that would cost a significant amount of money for an old car or

we may not even be able to afford it. The usual solution is to try a couple of easy and cheap

techniques we know; only the remaining unsolvable problems will go to the mechanic. This

way we can avoid a lot of unnecessary visits to the mechanic and hence save money and

time. A similar idea can be applied to computer system recovery: let the computer system

apply several low-cost automatic recovery actions to the error, and observe the result; if the

23

problem still exists, the operator will finally be notified for further action. The Autopilot

solution [6] adopts this concept.

2.6.1 Autopilot Recovery System

The Microsoft Autopilot system provides a complete automated data center management

solution, which includes automatic software deployment and provisioning management, as

well as automatic recovery management. As our study is focusing on automatic recovery

policy, we only show that in Figure 2.2.

In the system, each server is monitored by one or more watchdog. Some of the

watchdogs monitor different functions on the server, such as memory, disk, etc. Some of the

watchdogs monitor different applications on the server. A watchdog can report “error”, “OK”

24

Figure 2.2: Data Center Automatic Recovery

or “warning” to the central Device Manger. The Device Manger deems a server has an error

as long as there is one watchdog associated with that server which reports an error.

The Device Manager maintains the status of all servers (Figure 2.3). When an error is

detected on a server, the server is marked as “Failed”. After a recovery action is selected and

performed on the server, the sever state is moved to Probation. If no error happens in

probation for a defined period, the server is deemed healthy. If an error happens while the

server is in the probation state, the server state is moved back to Failure.

The Device Manager selects a recovery action from the list: Do-Nothing, Reboot, Re-

Image, Replace/Go Operator. The decision is based on the error type and recent server

history. If the error is a fatal error, like disk or other hardware error, the recovery action

Replace/Go Operator will be selected. If the error is non-fatal, and the server has had no error

for a long period, the Do-Nothing action will be selected based on the assumption that the

error is temporary. However, the server will be placed in probation. If there is another error

on the server in a short period (while it is in probation) the Device Manager will escalate the

selected recovery action from Do-Nothing to Reboot, to Re-Image, and eventually to

Replace/Go Operator. These selected recovery actions will be performed by Repair Service

25

Figure 2.3: Server State Change

on the problematic server.

2.6.2 Autopilot variations and limitations

Moises et al. [3] added the recovery actions (non-destructive re-imaging, destructive re-

imaging, software upgrade, etc.) but still used the Autopilot recovery action selection policy,

refining it with a survival analysis and statistical machine learning. Guy et al. [5] took a

similar approach but their refinement used a Partially Observable Markov Decision Process.

These techniques provided a refinement on a base policy but did not provide any new policy

model. However the base policy has the following problems:

1. In the recovery action escalation ladder, the higher recovery action can resolve all

issues the lower action can resolve. This may not always be true, particularly when

more recovery actions are available; the potential effects of various actions may

overlap or may be completely unrelated.

2. It assumes that the higher recovery action will cost more than the lower one. This

may not be true, when more actions are available.

3. These assumptions imply the recovery cost and effect are clearly known in advance.

This restricts the initial adoption and future dynamic expansion of the policy.

4. Another implication from the above assumptions shows the cost and recovery effect

has linear relationship. This may not always be true, one recovery action may cost the

same or less but can resolve more problems comparing to another action. For

example, in virtual machine environment, the re-image could be as fast as reboot but

with more recovery effects.

5. Moreover, the initial choice is always fixed with Do-Nothing, this may be a waste of

time in terms of cost.

Autopilot solution does consider to select the recovery action based on the lowest

cost, however the selection is not adjusted on the real recovery action cost and without

considering the real recovery effects. We will address these problems and provide a new base

policy model.

26

2.7 System Simulation

To study different policies, the best environment is a real computer data center with

thousands of servers and running different policies for long periods to collect data for

comparison. Due to the quantity of the servers involved and the critical services they support,

this kind of environment is not feasible for our experimental purpose. A simulation approach

is therefore preferred.

While there are several cloud simulation systems, such as the Open Cirrus Testbed

[30], CloudSim Toolkit [21] [27], SPECI [22], and others [29], they do not focus on, or even

consider, automated recovery in their designs. We therefore decided to design a discrete-

event simulator for our research, hoping it could also benefit other similar research.

27

Chapter 3 Total Cost Based Policy Design

Following the Autopilot approach, without knowing the exact fault or any fault information

at all, we wish to select the best recovery action among a list of recovery actions. While still

using the Autopilot three-state recovery mechanism, is there a better policy than the

Autopilot simple heuristic policy? Can we know the recovery-action cost more accurately

than just guessing? Can a policy be made based on a generic cost model and reduce the

overall recovery cost? Our automatic recovery-action selection policy research is focused on

these questions. First we create a cost-based model for recovery-action selection. Then we

define policies to use that model. Finally, we walk through a concrete example to show how

it works.

3.1 Problem Modelling

Our approach to the problem is to model the effects of recovery actions on errors. We do so

by modelling the probability that any given recovery action will fix a fault. We then study the

problem of recovery action cost.

3.1.1 Modelling Recovery Probabilities

Suppose a system has faults f_1, f_2, ... f_n and recovery actions R_1, R_2, ... R_r.

Recovery action R_i has some probability P_i_j of fixing fault f_j. There are different ways

to model this. One way is to say that R_i either succeeds or fails. Thus, the probability that

R_i fixes f_j is one of {0,1}, and nothing else. In such a model, there is no point in trying

recovery action R_i twice. It either succeeds or it cannot. Alternately, a recovery action may

have some non-perfect, but non-zero probability of success, in which case it might be

reasonable to retry the recovery action.

Examples of the first case are any system in which faults are deterministic. For

28

example, a car will not move. The underlying fault is that the car is out of gas. Filling up the

tires with air has zero probability of solving the problem; adding gas to the car has 100%

probability of solving the problem. Filling up the tires with air twice will not make the

situation any better.

Examples of the latter case are any system in which faults are non-deterministic. For

example, a loose electrical connection in a plug; pulling out the plug and putting it back in

may succeed with some probability that is less than 1 but more than zero. Retrying this

procedure a few times may be a reasonable course of action.

Similarly, there are examples in software for deterministic faults. For example, a

service fails to run properly. The underlying fault is that there is a file corrupted. Rebooting

the system has no chance to solve the issue at all; re-imaging the system can always solve

this issue.

There are non-deterministic fault examples in software as well. For example, a web

application will display newly added customer data in the last 5 minutes in one page; some

times the page can not be displayed. The underlying fault is there is not enough processing

memory for producing all the data in one page. Doing nothing some times works, because

there is less customer data added in the previous 5 minutes. Some times it does not work

because more customer data is added suddenly. A similar result happens with reboot.

However, rollback to a previous version may make the system work better, because there is

more memory allocated in the previous version. Although it works better, it still may fail

under extreme customer data input volume. Upgrading to a newer version with a paging

function built-in can completely resolve the issue. So the Do-Nothing, Reboot, and Rollback

recovery actions have a certain probability to make the problem disappear for a period of

time, but will not always succeed.

In the situation where the fault behind an error is unknown, suppose a system has

recovery actions R_1, R_2, ... R_r and recovery action R_i has some probability PRi of

fixing errors in the system. This probability is the overall recovery-action success probability

in the system. From a deterministic fault perspective, this system-wide success probability

actually represents the fault distribution; the success probability is the percentage of the

encountered errors with faults which the recovery action can always fix. Conversely,

29

1−PRi is the percentage of the encountered errors with faults which the recovery action

can never fix. From a non-deterministic fault perspective, the PRi system-wide success

probability is the combination of fault distribution and the recovery action effectiveness.

Without more fault specific information, it is not possible to know what fraction of the

probability is due to the fault distribution and what is due to non-determinism.

3.1.2 Recovery-Action Cost

In order to create a cost-based model, first we want to look at what is the cost of the fault and

what types of cost are involved in recovery. As mentioned in the introduction, the service

outage in terms of downtime may cause many types of cost, such as business loss, human

cost, etc; however, they are all a consequence of the service outage. They may have a

different relationship with the service downtime in different organizations. Due to the

dependency to the individual organization and the derivation from service downtime, we

simplify the cost as service downtime, and assume this includes the recovery cost as well as

the cost due to the downtime.

When recovery action Ri is applied to an error, it may succeed or fail. The different

results will introduce different costs: CsRi cost of recovery action Ri succeeded and

Cf Ri cost of recovery action Ri failed.

For the average cost of using recovery action Ri and it succeeds, the recovery action

success unit cost UCsRi :

UCsRi=

∑
m=0

AsRi

CsRim

AsRi

Where AsRi is how many attempts the recovery action Ri succeeds.

For the average cost of using recovery action Ri and it fails, the recovery action fail

unit cost UCf Ri :

30

UCf Ri=

∑
n=0

Af Ri

Cf Ri n

Af Ri

Where Af Ri is how many attempts the recovery action Ri fails.

Therefore, the average cost of a recovery action is:

UC Ri=PRi∗UCs Ri1−PRi ∗UCf Ri (3.1)

3.2 Generic Cost-Based Model

As we know the average cost of each recovery action, and the probability they may succeed

in the system, we are able to choose a recovery action with the least cost. However, the

recovery action unit cost does not represent the total cost to fix the problem. The recovery

action may fail; if it fails, we may try it again or introduce another recovery action. What

then is the total cost to fix a problem by using various recovery actions?

3.2.1 Estimated Total Cost of Recovery (2 actions case)

We start from a simple case with recovery action R1 and recovery action R2 only, and their

unit cost and success probability are known. The total cost to recover a problem by selecting

recovery action R1 depends on the cost if it succeeds and the cost if it fails. We first consider

deterministic faults, so if action R1 fails, it is not worth retrying it. Therefore, the estimated

total cost of selecting action R1 first is:

ETC R1=UCsR1∗PR1UCf R1ETC R2∗1−PR1

= UCsR1∗PR1UCf R1∗1−PR1ETCR2∗1−PR1 (3.2)

31

When action R1 fails UCf R1 is incurred, and further recovery actions need to be

used to finish the recovery. Under the failed case, as R1 has zero probability of success, the

other recovery action R2 needs to be involved, and the similar ETC R2 total recovery cost

of recovery action R2 is incurred. According to Equation 3.1, the final ETC R1 estimated

total cost of recovery action R1 can be simply expressed as Equation 3.3.

ETC R1=UCR1ETC R2∗1−PR1
(3.3)

However, since R1 has been tried and failed, only action R2 is left. In this situation,

recovery action R2 has:

ETC R2=UC R2

Hence, the estimated total recovery cost of selecting action R1 first becomes:

ETC R1=UCR1UC R2∗1−PR1
(3.4)

Similarly, the estimated total recovery cost of selecting action R2 first is:

ETC R2=UC R2UC R1∗1−PR2 (3.5)

The decision can be made to select action R1 first if

ETC R1ETCR2
(3.6)

UC R1UCR2∗1−PR1UC R2UC R1∗1−PR2

UC R1UCR2−UCR2∗PR1UC R2UC R1−UCR1∗PR2

−UC R2∗PR1−UCR1∗PR2

UC R2∗PR1UC R1∗PR2

32

The simple cases of this comparison are: if both action R1 and R2 have the same

success probability, then the action with lower average unit cost will be selected first.

Conversely, if both actions have the same average unit cost, the one with higher success

probability will be selected first.

No matter which recovery action is selected first, after both actions are tried and

failed, a same failed chance is still left:

1−PR1∗1−PR2

In this case, the order of selection is irrelevant to the actual cost, since the cost will be

UCf R1UCf R2 . However, in general some recovery actions should succeed, in which case

their costs and probabilities of success do affect the preferred order of action selection.

In addition, the success probability when both recovery actions are applied is:

1−1−PR1∗1−PR2

3.2.2 Estimated Total Cost of Recovery (3 actions case)

We now consider a more complex case. Where there are 3 recovery actions, so there are more

choices if R1 has failed. Instead of the only estimated total recovery cost of selecting action

R1 first in previous example, there are various estimated total recovery cost of selecting

action R1 first according to rest selection sequence in this case.

R1 -> R2 -> R3

Or

R1 -> R3 -> R2

When R1 is first selected and has failed, there is a choice to further try R2 or R3

secondly:

33

ETC R1=UCR1ETC R2∗1−PR1

Or

ETC R1=UCR1ETC R3∗1−PR1

Clearly, to get the lowest ETC R1
, the minimum between ETC R2

 and ETCR3
 under

R1 failed situation will be chosen. Assume R2 is chosen as second action and also fails, then

R3 could be last tried.

ETC R2=UC R2ETC R3∗1−PR2

At this point, both R1 and R2 has been tried and failed, so no more action if R3 will

also fail, then the recovery action R3 has:

ETC R3=UCR3

Hence, After recovery action R1 has failed, the estimated total recovery cost of

selecting R2 as second action becomes:

ETC R2=UC R2UC R3∗1−PR2

Similarly, After recovery action R1 has failed, the estimated total recovery cost of

selecting R3 as second action becomes:

ETC R3=UCR3UCR2∗1−PR3

The decision can be made to select R2 as second action if:

ETC R2ETCR3

UC R3∗PR2UCR2∗PR3

As the second recovery action with minimum recovery cost selected, the ETC R1

34

estimated total recovery cost of selecting action R1 first will have the lowest cost among its

varieties. The same procedures also apply to deal with the various estimated total recovery

costs of selecting action R2 and R3 first. After their second recovery action selected

respectively, the best estimated total recovery costs of selecting R1, R2, and R3 first are also

generated. By comparing these best values of ETCR1
, ETC R2

, and ETC R3
, the recovery

action with the lowest cost will be selected to use first. These choices are illustrated in Figure

3.1. To determine the minimum estimated cost, we must search this tree.

Again, no matter which recovery action is selected first, and second, after all three

actions are tried and failed, a same failed chance is still left:

1−PR1∗1−PR2∗1−PR3

35

Figure 3.1 Recovery Action Selection

And, the success probability when all three recovery actions are applied is:

1−1−PR1∗1−PR2∗1−PR3

3.2.3 Minimum Estimated Total Cost of Recovery

We now extend the recovery actions to an arbitrary number. The estimated total cost of

recovery will vary according to recovery action selection sequence (see Figure 3.1). In two

actions case, there is one level of decision to make. In three actions case, there are two levels

of decision to make. When more recovery actions are available, it will have more levels of

decision to make. However, in each level of decision, it is the same approach to select the

minimal estimated total cost among the candidate recovery actions under the same condition

that the recovery actions thus far have failed. Therefore, we solve this using a recursive

search on the tree, the minimum estimated total recovery cost based action selection process

can be summarized as:

min
Rx∈A

ETC Rx=UCsRx∗PRxUCf Rx min
Ry∈A , Ry≠Rx

ETC Ry∗1−PRx (3.7)

 = UC Rx min
Ry∈A ,Ry≠Rx

ETCRy∗1−PRx

This formula hence becomes our generic cost-based model for recovery-action

selection. Among a set of recovery actions, the one with minimum estimated total cost is the

choice for recovery with lowest cost consequence.

This formula is derived from a deterministic perspective. The action recovery success

probability is actually the fault distribution of encountered errors, and either some action will

succeed or none will succeed:

Pnone=∏
i
1−PRi

Cnone=∑
i

UCf Ri

36

If one succeeds, it depends on the recovery action selection sequence as to what the

total estimated recovery cost is. The selection sequence is based on probability of success

(i.e., fault distribution) and recovery action cost.

Along with the recovery action unit cost and recovery action success probability

modelling, to simplify this generic cost-based model, the following assumptions were made:

• The model and policy only deal with non-fatal errors.

This assumption is the same as in the Autopilot heuristic model. The different

selections in their model are only for non-fatal errors; as for fatal hardware errors, there is no

real fix choice other than to go to the operator.

• The model is based on deterministic types of fault and recovery actions.

The second assumption is to simplify the recursive selection – under a recovery

action failed case, that recovery action is not worth trying again, because we are modelling it

as either succeeding at recover the fault with probability 100% or failing with 0%

probability. This makes the recovery action itself not be the candidate recovery action when

it fails, the further selection under its failed situation will have less recovery actions to

choose; and until a level there is no more choice for candidate recovery actions, the recursive

selection then ends.

If it is based on non-deterministic model, there are two complicated issues here: the

first issue is that the recursive selection becomes unlimited and will not end, because there is

always a chance to retry the same recovery action even if it has failed; the second issue is

that the accurate success probability of the recovery action under its failed situation is

unknown and hard to know. Assume an example based on independent recovery probability,

fault f_i causes 50% errors in a system, and recovery action R_i has 80% probability to

recover fault f_i and 0% probability to recover other faults; fault f_j causes other 50% errors

in the system, and every other recovery action R_j has 0% probability to recover fault f_i;

37

assume there are 100 errors in the system, if R_i is selected in the first round, then 40 errors

with fault f_i can be recovered, and the R_i probability of success in the first round attempts

is 40%; there are 60 errors left, 10 with fault f_i and 50 with fault f_j, and R_i can recover 8

out of those 10 errors with fault f_i in second round, so the R_i probability of success is 8/60

(13.3%) in the second round attempts. The effect of recovery action on the second attempt

will become more complex in complicated relationships between faults and recovery actions

even though it is under the independent probability situation. The dependent probability

situation is further complicated due to unknown dependency and unknown probability

changes. However, we will consider the non-deterministic cases in our policy

implementations.

This generic cost-based model to select the recovery action is based on the minimum

total estimated recovery cost, which includes both the success case and fail case. The model

also requires recovery-action success probability data and recovery cost data. We now

address the problem of how to acquire this data.

3.3 Recovery Probability and Cost Observation

Our generic cost-based model is built on the recovery action success probability and

recovery action cost. How these values can be collected? We created an observation model

based on the Autopilot three-state recovery mechanism.

3.3.1 Recovery-Probability Observation

In the Autopilot recovery system, when an error is reported, the underlying fault is unknown;

thus, we are not able to collect data on the probability of the recovery action successfully

fixing a particular fault. However, we can track AtRi how many times we attempt each

recovery action Ri to fix errors in the system and AsRi how many attempts it succeeds.

Then, the probability that a given recovery action is successful in the system is:

38

PRi=
AsRi

At Ri

3.3.2 Recovery-Cost Observation

What is included in service downtime? We assume every service error is detected within a

small time period in the Autopilot recovery system. Starting from detection, the error is

reported to the central management service; a recovery action will be selected and executed;

after the execution is finished, the service is in a probation state. From this process, we notice

there is an error-reporting period, a recovery-action selection and execution period, and a

probation period, during which we do not know if the recovery is successful or not (see

Figure 3.2).

The error reporting and recovery-action selection period are likely negligible and so

we ignore them. If this was not the case, their cost can be absorbed by the cost of the

39

Figure 3.2: Recovery Action Downtime

recovery action execution and probation period, as discussed below.

The recovery action execution period is potentially significant. Different recovery

actions may have different costs. Further, the use of different recovery actions is a direct

consequence of the selection of different automatic recovery policies. We will capture the

recovery action execution period as the service downtime DeRi .

The last cost is probation. During probation, an error may happen that causes the

server to return to the failure state; if this happens, it means the previously selected recovery

action did not fix the error and the server is assumed to be still down. This duration is treated

a service downtime. We count duration Df Ri from the time a recovery action has been

executed and server is in probation to the time an error happens while still in probation. In

such a case, we deem that the recovery action has failed and the cost of attempting the

recovery action was Cf Ri=DeRiDf Ri . Conversely, the recovery action succeeded and the

system has no additional error during the probation period, we deem that the recovery action

was successful and had a cost of CsRi=DeRi .

We define Af Ri=At Ri−AsRi as the number of times Ri fails. Therefore, we can

calculate the average cost of using recovery action Ri, which we call the recovery action unit

cost UC Ri as:

UC Ri=

∑
m=0

AsRi

CsRi m∑
n=0

Af Ri

Cf Ri n

At Ri

In this case, we can simply track and calculate recovery action unit cost instead of

tracking and calculating both success unit cost and fail unit cost.

3.4 Final Recovery Action

There is a problem with our generic cost-based model: it always has certain probability that a

recovery action could fail, so it always needs other recovery actions to finish the failed

40

recovery work. Even if all recovery actions are used, there is still a chance of failure. This

makes the model calculation incomplete.

In reality, the problem could always be resolved by an operator and other second line

or even third line support people. After their thorough analysis, they may make a patch to the

system, or replace some hardware components, even replace the whole server. In our

recovery-action selection policy, human recovery is still a choice but it usually is the last

choice, and it can always fix any problems, so we define it as “Final Recovery Action”.

The Final Recovery Action has the following characteristics:

• It always succeeds in fixing any error (P=1.0).

• It has highest unit cost.

• Human involvement in the recovery action is assumed.

• It could terminate the recursive selection calculation early, depending on the cost

associated with the action.

Because the final recovery action will be a choice in each recovery action selection

chain, it makes the selection complete with no remaining chance of failure. After the final

recovery action is applied, because it is deemed successful, no probation period is assigned

for it. The system moves to healthy immediately. Any error which happens after the applying

final recovery action is deemed a new error.

3.5 Programing Algorithm Representation

Our generic cost-based recovery action selection model can be defined with the following

pseudo code, which performance a depth first search over the recovery-action selection tree.

41

Cost_And_Action minimal_Estimated_Total_Cost (Candidate_Actions set A)
{

Cost_And_Action result;
result.cost = 0;

while (set A is not empty)
{

Ri = retrieve next item from set A;

 UC_Ri = lookup_UnitCost (Ri);

P_Ri = lookup_RecoverySuccessProbability (Ri);

set B = remove Ri from set A;

if (result.action is empty OR UC_Ri < result.cost)
{

if (P_Ri == 1)
 mETC_Ri = UC_Ri;

else
mETC_Ri=UC_Ri+(1-

P_Ri)*minimal_Estimated_Total_Cost(set B).cost;

if (result.action is empty OR mETC_Ri < result.cost)
{

result.action = Ri;
result.cost = mETC_Ri;

}
}

} /while

Return result;
}

The recursive minimal_Estimated_Total_Cost function takes the passed in candidate

recovery action set A and returns the result that contains the recovery action with associated

minimal estimated total cost. The unit cost and recovery success probability lookup functions

look up data from a table which is updated when a recovery action is executed and its

consequence is known. The judgment of unit cost UC_Ri and recovery success probability

P_Ri could end the recursive calculation earlier thus making it more efficient. However,

further improving search performance is out of our scope.

42

3.6 Policy Implementation

We define different policies to implement the generic cost-based model in different ways.

The difference is focused on different considerations when the previous recovery action is

failed. When the recovery action failed, an error will be reported. We assume this is a

repeating error and is caused by the same fault as the previous error. While we do not know

exactly which fault is, we assume it is the same fault as caused the previous error and we

know which recovery action was applied for that error and that it failed. Based on this

information, we are able to adjust the probability of the previously used recovery action.

However, as required by estimated total cost model, policy P2, P3 and P4 all

implement the following basic functions:

• Recording the recovery action success attempts and total attempts

• Calculating and updating the recovery action success probability whenever there is a

change

• Recording the recovery action accumulated cost

• Calculating and updating the recovery action unit cost whenever there is a change

• Calculation and selection based on the estimated total cost model from a candidate

recovery action set and based on the latest recovery action unit cost and success

probability.

While Policy P1 is the implementation of the Autopilot simple heuristic policy, we do

not further elaborate it. It is merely used for comparison.

43

3.6.1 Policy P2

Policy P2 implements the cost-based model. However, Policy P2 tracks the recent recovery

history for recovery actions and their results for repeat errors; makes adjustments to the

candidate recovery action set accordingly. The used recovery actions for a repeat error are

excluded from further attempts. This policy thus assumes deterministic faults. The

adjustment process is as follows:

• First, find all recovery actions that have been tried and failed to fix the same

repeating error.

• Excludes those recovery actions from the original set A to form a new set A.

• Apply formula with new set A to the new recovery-action selection.

Policy P2 makes the following assumptions:

• A recovery action has no chance to succeed in the second and more attempts for an

error which is not fixed in the first attempt; i.e., the success probability after the first

attempt is 0%.

• A recovery action success probability in the first attempt equals the overall average

success probability of this recovery action.

3.6.2 Policy P3

Policy P3 is a basic implementation to directly use the formula of Minimum Estimated Total

Cost (minETC) in Recovery Action Set A under all circumstances. It always uses the current

system-wide recovery action success probability and no adjustment is made to it. It assumes

non-deterministic faults but it does not distinguish the first attempt to use a recovery action

44

from the second attempt, third attempt, etc. Hence, it never tracks the result of the recovery

attempts to the same error.

 In addition to assuming non-deterministic faults, Policy P2 assumes that a recovery

action success probability for all is the same, and always equals the overall average success

probability of this recovery action. This assumption is clearly false, but sets a baseline for

comparison.

3.6.3 Policy P4

Policy P4 tracks the recent recovery history. Like Policy P3, it considers failed recovery

actions for further attempts in cases of repeated errors; however, it lowers the success

probability of any failed action for the further attempts. This more accurately takes into

consideration non-deterministic faults. The adjustment process is as follows:

• First, find out the number of attempts for each recovery action which has been tried

and has failed to fix the same repeating error.

• Reduce the system-wide success probability of those tried and failed recovery actions

by multiplying by a coefficient (0<X<1); we use Xn , where n is the number of

attempts, the more attempts made, the more the probability is reduced. Note that the

adjusted probability is not written back to the system-wide success probability record;

it is only used to calculate and select the recovery action under the multiple-attempts

situation.

• Apply formula with set A and the adjusted recovery actions success probabilities to

the new recovery action selection.

Policy P4 makes the following assumptions:

45

• A recovery action has less and less chance to recover the system in the second and

subsequent attempts for the same error which is not fixed in the first attempt.

• A recovery action success probability in the first attempt equals the overall average

success probability of this recovery action.

3.7 Example Illustration

We demonstrate with a virtual example to see how the policies based on minimum estimated

total cost work and the different results from their different implementations. We also discuss

the important initial value before the example walk through.

3.7.1 Initial Value Setup

There are some initial values which have to be setup to make a policy bootstrap and run

properly. These values are located in three areas: defining recovery actions; recovery action

cost table; recovery action success probability table.

In order to make the example clear and simple, we define four recovery actions: R1,

R2, R3, and the final recovery action R4. As mentioned in section 3.4, the final recovery

action is required to ensure the recovery action selection calculation terminates.

The next step is to setup the values in the recovery action cost table (see Table3.1)

and probability table (see Table 3.2). The initial values should not only be able to bootstrap

the algorithm, but also give a fair chance to all recovery actions. The initial success

probability given to all recovery actions is 100% and the initial recovery action unit cost

given to all actions is 0. After one recovery action is selected, the cost must be greater than 0,

so no matter whether its probability is still 100% or not, it will not be the best choice

compared to the untried recovery actions. By using these initial values, the algorithm will

select each recovery action in the first four errors so that they each get an initial execution.

Then, based on the observed recovery success rate and recovery action unit cost, the

46

algorithm will continue select the lowest total recovery cost action.

The initial recovery action unit cost 0 and success probability 100% enable the

bootstrap. What are reasonable values for the remaining variables? As the recovery action

unit cost is 0, the accumulated recovery action cost must be 0. The total attempts could be

any number; however, if the number other than 0 is set, the next time the unit cost calculation

will be low.

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 0 0 0

R2 0 0 0

R3 0 0 0

R4 (final) 0 0 0

Table 3.1: Initial Recovery Action Cost Table

Recovery

Action

Total

Attempts

Success Attempts Success Probability (%)

R1 10 10 100

R2 10 10 100

R3 10 10 100

R4 (final) 10 10 100

Table 3.2: Initial Recovery Action Success Probability Table

There is a similar question for setting up the total attempts and success attempts

values in recovery action success probability table. As the initial success probability is 100%,

the total attempts and success attempts must be the same. As there is no observation yet, we

could give both variables 0. It could bootstrap in the first step; however, in the first step if the

47

recovery action failed, the total attempts becomes 1 and success attempts is still 0, and thus

the success probability becomes 0%; as such, this recovery action will never be selected

again. Similarly, we could set both variables to 1, then in the first step if the recovery action

failed, the total attempts becomes 2 and success attempts is still 1; the success probability

drops to 50%, meaning this recovery action may have much less chance to be selected. As a

reasonable alternative, we initialize both variables to 10. In order to quickly drop to 50%, it

must fail for 10 times in the first 10 attempts. In this case the probability will not drop too

fast and give the model enough opportunity to learn each recovery action in a reasonable

time frame. We investigate alternatives to this approach in Chapter 6.

3.7.2 Example Walk Through

We walk through the first six errors to see how the different policies work, trace their cost

table and probability table changes, and calculate the selection to see different results. Policy

P2, P3 and P4 each start from the same initial values. For the purpose of this example R1 is

very cheap, and subsequent recovery actions are more expensive. Our algorithm does not

know this.

First Error Detected

Because all policies have the same initial table values, and there is no previous failed

recovery history, there is no adjustment made to Policy P2 and P4. All Policies calculate

based on the basic model with the same values, and get the same result set:

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1 = 0 min
Rx∈A , Rx≠R1

ETC Rx∗1−1 = 0

min
R2∈A

ETC R2 = UC R2 min
Rx∈A , Rx≠R2

ETC Rx∗1−PR2 = 0 min
Rx∈A , Rx≠R2

ETC Rx∗1−1 = 0

min
R3∈A

ETCR3 = UC R3 min
Rx∈A , Rx≠R3

ETC Rx∗1−PR3 = 0 min
Rx∈A , Rx≠R3

ETC Rx∗1−1 = 0

48

min
R4∈A

ETC R4 = UC R4 min
Rx∈A , Rx≠R4

ETC Rx∗1−PR4 = 0 min
Rx∈A , Rx≠R4

ETC Rx∗1−1 = 0

Because all results are the same, and we simply select them in sequence, recovery action R1

is selected. R1 is then executed, and the server is back to running. The 10 seconds execution

time of R1 is then added to R1's accumulated cost (AC), and R1's unit cost (UC) is then

calculated. The cost table for all policies changes to:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 1 10 10

R2 0 0 0

R3 0 0 0

R4 (final) 0 0 0

Second Error Detected

After the server is back to running for just 20 seconds, a second error is reported. It is then

assumed that the previous recovery action R1 failed to fix the first error. Thus 20 seconds

downtime is counted to recovery action R1's cost. The cost table and success probability

table are updated accordingly for all policies:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 1 30 30

R2 0 0 0

R3 0 0 0

R4 (final) 0 0 0

49

Recovery

Action

Total

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 10 10 100

R3 10 10 100

R4 (final) 10 10 100

Policy P3 does the same estimated total cost calculation and selection based on these new

values. R2, R3, R4 are still 0, so R2 is selected by P3. Because recovery action R1 was failed

to fix the previous error, Policy P2 removes R1 from the candidate recovery actions, and

does the calculation and selection from the rest; the same result as P3 is produced: R2 is

selected by P2. Policy P4 first lowers the R1 success probability to (90.9% * 0.5 = 45.45%),

then does calculation and selection based on the adjusted value; the same result as P2 and P3

is produced: R2 is selected by P4. R2 is then executed for all policies; the server is back to

running. The 50 seconds execution time of R2 is then added to R2's accumulated cost (AC),

and R1's unit cost (UC) is then calculated. So the cost table for all policies changes to:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 1 30 30

R2 1 50 50

R3 0 0 0

R4 (final) 0 0 0

After two hours, the predefined probation period, there is no error detected. So server is

assumed healthy. Policy P2 and P4 clear their recent recovery history. The recovery action

success probability table is updated accordingly for all policies:

50

Recovery

Action

Total

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 11 11 100

R3 10 10 100

R4 (final) 10 10 100

Third Error Detected

After a long period a third error is detected. According to the latest values in cost and

probability tables, after calculation R3 and R4 both cost 0, and so R3 is selected by all

policies. R3 is then executed; the server is back to running. The 600 seconds execution time

of R3 is then added to R3's accumulated cost (AC), and R3's unit cost (UC) is then

calculated. So the cost table for all policies changes to:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 1 30 30

R2 1 50 50

R3 1 600 600

R4 (final) 0 0 0

After the two hours predefined probation period there is no error detected, so the server is

assumed healthy. Policy P2 and P4 clear their recent recovery history. The recovery action

success probability table is updated accordingly for all policies:

51

Recovery

Action

Total

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 11 11 100

R3 11 11 100

R4 (final) 10 10 100

Fourth Error Detected

R4 is selected by all policies as it is the only action currently without cost. No error happens

in probation, so the cost and probability tables for all policies are updated to:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 1 30 30

R2 1 50 50

R3 1 600 600

R4 (final) 1 7200 7200

Recovery

Action

Total

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 11 11 100

R3 11 11 100

R4 (final) 11 11 100

Fifth Error Detected

52

After a long period, the fifth error is detected; since there is no recent failed-recovery history,

all policies do the same calculation and selection based on the same table values.

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1 = 30 min
Rx∈A ,Rx≠R1

ETCRx∗1−0.909 = 34.5

min
R2∈A

ETC R2 = UC R2 min
Rx∈A , Rx≠R2

ETC Rx∗1−PR2 = 50 min
Rx∈A ,Rx≠R2

ETC Rx∗1−1 = 50

min
R3∈A

ETCR3 = UC R3 min
Rx∈A , Rx≠R3

ETC Rx∗1−PR3 = 600 min
Rx∈A ,Rx≠R3

ETC Rx∗1−1 = 600

min
R4∈A

ETC R4 = UC R4 min
Rx∈A , Rx≠R4

ETC Rx∗1−PR4 = 7200 min
Rx∈A, Rx≠R4

ETC Rx∗1−1 = 7200

Recovery action R1 is selected by all policies; R1 is then executed, and the server is back to

running. The 12 seconds execution time of R1 is then added to R1's accumulated cost (AC),

and R1's unit cost (UC) is then calculated. So the cost table for all policies changes to:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 2 42 21

R2 1 50 50

R3 1 600 600

R4 (final) 1 7200 7200

Sixth Error Detected

After server is back to running for just 28 seconds, an error is reported. It is assumed the

previous recovery action R1 failed to fix the fifth error. Thus 28 seconds downtime is

counted to recovery action R1's cost. The cost table and success probability table are updated

53

accordingly for all policies:

Recovery

Action

Total

Attempts

Accumulated Cost

(seconds)

Unit Cost

(seconds)

R1 2 70 35

R2 1 50 50

R3 1 600 600

R4 (final) 1 7200 7200

Recovery

Action

Total

Attempts

Success Attempts Success Probability (%)

R1 12 10 83.3

R2 11 11 100

R3 11 11 100

R4 (final) 11 11 100

Each policy does the same estimated total cost calculation and selection based on these new

values. R2, R3, and R4 calculation results have no change; they are still 50, 600, and 7200,

respectively. However, R1 changes:

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1 = 35 min
Rx∈A ,Rx≠R1

ETCRx∗1−0.833 = 43.3

R1 is selected by P3. Policy P2, by contrast, remove R1 from consideration because it failed

to fix the previous error. Therefore, R2 is selected by Policy P2. Policy P4 first lowers the R1

success probability to (83.3% * 0.5 = 41.65%), and then does a calculation and selection

based on the adjusted value:

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1 = 35 min
Rx∈A ,Rx≠R1

ETCRx∗1−0.4165 = 64.17

54

R2 is 50, so R2 has minimum estimated total cost, thus R2 is also selected by P4. After R1 is

executed by Policy P3 and R2 executed by Policy P2 and P4, the respective cost and

probability tables for each policy will be updated accordingly. This example demonstrates

how different policies use the estimated total cost model in different approaches, and how the

initial value setup is used.

55

Chapter 4 Simulator Design

In this chapter, we describe different simulation test data, including fault and error data, the

effect of recovery actions on faults, and recovery action execution times. We then illustrate

our simulator implementation, the different components, and how they work together.

4.1 Simulation Test Data

Reasonable test data generation is key in a simulation test environment. We carefully

examined the various data and how it should be generated. First we looked at how errors

should be generated, what the relationship between errors and faults are, and what a

reasonable error interval is. Then we studied what recovery action data is needed and how it

should be generated, and what the relationship is between recovery actions and faults.

4.1.1 Fault and Error

In the real data center many errors happen. After analyzing those errors, find the faults

behind them and fixing them, a report can usually show the percentage of each fault type.

Each data center has different environments and different types of employee, they usually

have different fault distribution as well. Before we generate any errors for our simulation

test, we first generate a fault distribution for each run of the test (See Figure 4.1). Based on

maximum faults predefined in test configuration file, a pseudo-random number generator

with a passed-in seed generates a random number between 0 to 100 for each fault. The

number for each fault is then summed up to get the total. The number for each fault will

finally be divided by the total to get the percentage of each fault among total faults. After

each fault gets its percentage, a translated fault distribution table will be created in order to

facilitate the error generation. As fault ID followed one by one, the translated percentage of

each fault is its original percentage plus all percentage numbers from prior faults.

56

During the simulation testing, the error is generated in real time based on fault

distribution data. When an error is needed to be generated in our simulator, a fault is also

assigned. A pseudo-random number generator with a passed-in seed generates a random

number between 0 and 1. This number is used to look up the translated fault table starting

from the first fault ID which has the smallest translated percentage number. Along the fault

ID increasing, the percentage number is also increased. By following the fault ID, a fault will

eventually shows a bigger translated percentage number than the random number, that fault

is now assigned to the error. As long as enough errors can be generated, this approach can

guarantee those errors' fault following the generated fault distribution, meanwhile any error's

specific fault is not predictable.

After recovery action is applied to an error, our simulator implementation will know

exactly whether the previous error has been fixed. If the previous error was fixed

successfully, the automatic recovery policy will judge the server to have passed from the

probation state into the Health state, which means no new error in probation period.

However, in real environment a fresh new error of any fault type could happen at any time, it

should not be based on policy defined probation period. When we simulate the error interval,

57

Figure 4.1: Fault Distribution Table

we predefined an maximum server health time in configuration file. The maximum health

time is set as double of the average health time, which can be considered similarly to the

MTTF mean time to failure. Based on above consideration, a reasonable maximum health

time can be set and adjusted to a similar known data center characteristic. Thus the random

fresh new error interval between 0 and maximum health time is generated from a pseudo-

random number generator. The fresh new error with random fault will then be set to happen

after the random error interval elapsed from the time previous recovery action was executed

(see Figure 4.2).

When a recovery action is applied to fix an error but failed, usually we can see a

similar error happened shortly after the recovery action is applied in real world, and the

similar error should have the same fault which was not fixed. What that short period could

be? It is difficult to know. This is also the question from the policy judgement of recovery

success. Since both simulation and policy implementation are looking for the same answer,

58

Figure 4.2: Repeating Error and Fresh New Error

we just align them together, so the short period for repeating error in both cases will be

probation period. A random shorter error time interval is then generated from a pseudo-

random number generator which generates a random number between 1 second and

probation period threshold.

This simulated error and fault generation also minimizes the misjudgement impact

caused from improperly defined policy probation period. Because the simulated repeating

error is generated exactly within the defined probation period by which the policy judges if

the recovery success - if probation period is defined as two hours, the repeating error will be

generated within two hours, and so on. So probation period definition does no longer have

significant impact to our research. However in reality, the fresh new error may happen within

probation and the repeating error may happen after probation. This is also achieved in our

simulation. Because the generated new error could happen in any arbitrary time, it may fall

in probation period. Also because the generated new error could be of arbitrary fault type, it

may have the repeating fault just after probation period. This greatly mimics the real

environment which causes imperfect judgement of recovery success in real policy

implementation.

4.1.2 Recovery Action to Fault Effects

As each error has real fault behind, which reflects the root cause behind the error. In real

world, the recovery action applied to each error also has result – fixed or not fixed, that

reflects the effect of the recovery action to the fault behind the error. Following the real

world mechanism, the test data of the recovery action effect to each fault is generated before

each test. Also as observed from real world , a recovery action does not have average effect

to all faults. A recovery action is usually designed to target certain faults and not for all

faults. For the targeted faults the recovery action usually has very high effect, but minimal

effect for the rest faults. Thus we applied a 80/20 rule to generate the recovery action effects.

For a given recovery action, the effect to targeted faults is higher than 80% chance to

success, and the effect for rest faults is lower than 20% chance to success.

The recovery action effects test data generation uses three pseudo-random number

59

generators (see Figure 4.3). It uses the first pseudo-random number generator to generate a

random number of how many faults this recovery action will target to, which is a number

between 0 and the predefined maximum faults in configuration file. It then runs in a loop for

number of target faults, and uses the second pseudo-random number generator to generate

the random targeted fault IDs. It finally uses the third pseudo-random number generator to

generate a random number between 0.8 and 1 for selected target faults and 0 to 0.2 for the

rest faults. After these steps, the recovery action gets effect probability for each fault. By

repeating those processes for each recovery action, all recovery actions get effect probability

for all faults.

These pre-generated recovery action to fault effects data before each test running is

then used by simulator to generate real time recovery success or fail effects. Because it is

60

Figure 4.3: Repair Action to Fault Effects

simulated environment, the simulator knows exact fault behind each error. After a recovery

action Ri is applied to an error, simulator will look for the recovery action Ri to faults effect

table and find the effect probability EP(Ri, F) to the fault F which is behind the applied error.

Then simulator will generate a random number between 0 and 1. At last the simulator will

compare the random number with EP(Ri, F): if the random number is less than EP(Ri, F) – it

falls in the success probability and the error should be fixed, a fresh new error with arbitrary

fault and random period will be generated; if the random number is greater than EP(Ri, F) –

it is outside the success probability and the error should not be fixed, a repeating error with

same fault F and random shorter period within probation will be generated.

4.1.3 Recovery Action Execution Time

Another important recovery action data to be generated is the recovery action execution time.

As observed from real world, a same recovery action may take different lengths when it is

executed every time. However different recovery actions have their own range of the

recovery action execution time. For example, the restart recovery action may take 10 seconds

in one recovery attempt, sometimes it takes 6 seconds or 20 seconds in other attempts, it

however would not take 10 hours, a day or two. The human trouble shooting may take 2

hours in one recovery attempt, sometimes it takes half hour or 48 hours, it would never take

couple seconds to fix an error. Our recovery action execution time generation hence

accommodates these two characters - each recovery action has its own range of recovery

execution time and each time the recovery action take different execution time within its

range.

The recovery action execution time is generated in two phases (see Figure 4.4).

Before each test run, the base recovery execution time is generated for each recovery action

by a pseudo-random number generator, which generates the random number between

minimum and maximum base recovery execution time predefined in the configuration file.

The final recovery action base execution time is predefined and retrieved from configuration

file directly. With maximum recovery execution time and the final recovery action base

execution time defined appropriately, final recovery action can make proper distance from

61

other recovery action base execution time. During the test running, every time a recovery

action is executed, its actual execution time is randomly generated by a pseudo-random

number generator within a predefined floating range around its base execution time.

4.2 Simulator Implementation

As mentioned in Background chapter, due to the restricted situation, we test our policy model

in simulation environment. And we implement a similar Autopilot data center environment

with discrete event simulation. We describe different components in our simulator

implementation (see Figure 4.5), from the different event type to system state component,

then the recovery action selector component, finally the core component – simulation

controller, in which we also illustrate how it process different events and how it works with

other components.

62

Figure 4.4: Base and Actual Execution Time

4.2.1 Event Types

To simulate different events in data center, we defined three types of events in the simulator:

Error Event, Recovery Action Executed Event and Probation Timer Event. Other than the

most essential field – event time, all event types also contain Server ID as they are all server

63

Figure 4.5: Simulator Implementation

dependent events.

• Error Event - As described in Autopilot, whenever an error is detected on a server, the

error is reported to device manager. The error event mimics that reported error. A

special field – Fault is also defined in error event. This field is not contained in the

real data center error report, neither used by any recovery action selection policy.

This is solely used for the simulator to generate recovery success or fail effect (see

section 4.1.2).

• Recovery Action Executed Event - After recovery action is selected and applied, the

sever notices device manager that it is done. We thus defined it as the Recovery

Action Executed Event. Also for simulation purpose, this event contains the executed

recovery action, error happen time and fault.

• Probation Timer Event - The device manager will set the server from probation to

health if no error happens in probation period. We defined it as the Probation Timer

Event to deal with this scenario.

4.2.2 System State

The system state component stores four system state related tables, and these state tables are

kept updated along the system running.

• Server State Table - This table is used to track each server status, whether they are in

Health, Failure or Probation state and when the state is changed. This table contains

server ID as the key and server state and state change time as the value.

• Recent Server Recovery History - This table is used by certain policies to record and

update the recent recovery action history for each server, it is used as a tool to

64

understand what recovery actions have been applied before a server returns to health

state. This table contains server ID as the key and a series of recently used recovery

actions for the specified server as the value.

• Recovery Action Cost Table - This table is used by our policy to track the cost for

each recovery action. (see section 3.7 for details)

• Recovery Action Success Probability Table - This table is used by our policy to track

the success probability for each recovery action. (see section 3.7 for details)

4.2.3 Recovery Action Selector

This Recovery Action Selector component is implemented by different policies. This

component defines the only function selectRA(), which needs to return a selected recovery

action for a specified server. Different policies implement this function with their own

algorithm. This structure makes it easily extend to any new policy implementations.

4.2.4 Simulation Controller

This is the core discrete event simulation processing component. We implemented the typical

init(), run() and statisticReport() functions. We also implemented generate() and other helper

functions.

• generate() - This function generates three static reference tables and associated data.

Those tables contain fault distribution data, recovery action effect to each fault, and

recovery action base execution time data.

• init() - This function first initializes system state which contains server state table,

server recovery action history table, recovery action cost table, recovery action

65

success probability table. This function then sets or resets all counters and statistic

report data to initial values. Next, this function instantiates all pseudo-random

number generators and sets corresponding seeds generated from generate() function.

Finally a priority queue is instantiated, initial error events are generated based on

predefined number of servers and put into priority queue for further processing.

• run() - This is the event processing function. (see Figure 4.6) The major structure is a

while loop which checks if there is any event in the priority queue. If there is no event

in the priority queue, the while loop is ended and the run() function is also finished. If

there is event in the priority queue, the event with earliest event time will be returned

by the priority queue. Based on different event types, the event will then be processed

by different logic blocks within the while loop.

66

Figure 4.6: run() Pseudo Code

public void run(RepairActionSelector repairActionSelector)
{

while (PriorityQueue is not empty && errorCounter <= maxTestErrors)
{
CurrentEvent = PriorityQueue.poll();
CurrentServerID = CurrentEvent.getServerID();
CurrentEventTime = CurrentEvent.getTime();

if (CurrentEvent is ErrorEvent)
{

 ...
 }else if (CurrentEvent is RepairActionExecutedEvent)
 {
 ...
 }else if (CurrentEvent is ProbationTimerEvent)
 {

 }

 }
}

If next event is Error Event (see Figure 4.7), the process does the following:

firstly it finds current server status from system state; secondly it checks if server is

not in Health which means previous recovery action was failed, it then updates

success probability table and cost table for previous recovery action (it finds the

previous recovery action from Recent Server Recovery History table; the recovery

action success probability will be recalculated and updated by increasing the total

67

Figure 4.7: ErrorEvent Processing Pseudo Code

if (CurrentEvent is ErrorEvent)
{

Get CurrentServerState from ServerState Table for CurrentServerID;

if (CurrentServerState is Health)
{
find previous RA from RA history in ServerRAHistory Table;

//update RA probability Table with:

 totalAttempts+1;
 probability = successAttempts / totalAttempts;

 //update RA cost Table with:
 accumulatedCost += probation duration;
 unit cost = accumulatedCost / totalAttempts;

}
// update ServerState Table with:
 server state = Failure;

 state time = current event time;

SelectedRA = RepairActionSelector.selectRA(serverID);

raee = new RepairActionExecutedEvent ;
raee.AppliedRA(SelectedRA);
raee.EventTime = CurrentEventTime+ Random RAExecutionTime;

...

insert RepairActionAppliedEvent to PriorityQueue;
}

attempts but not the success attempts; the recovery action unit cost will also be

recalculated and updated by adding the probation additional cost.); thirdly it changes

server state to Failure and set state time to current event time; next it computes

preferred recovery action from Recovery Action Selector; finally it generates a future

68

Figure 4.8: RepairActionExecutedEvent Processing Pseudo Code

else if (CurrentEvent is RepairActionAppliedEvent)
{

// update ServerState Table with:
 server state = Probation;

 state time = current event time;

Add applied repair action in RecentServerRepairHistory table;

RepairExecutionTime = CurrentEventTime - ErrorHappenTime;
//update RepairAction cost table with:

 accumulatedCost += RepairExecutionTime;
 totalAttempts+=1;
 unit cost = accumulatedCost / totalAttempts;

Generate random number between 0 and 1.
Get RepairActionEffectProbability(applied repair action, error fault);
if (random number < RepairActionEffectProbability)
{
nextErrorFault = generate random fault;
nextErrorPeriod = generate random error period;
}else
{
nextErrorFault = the current error fault type;
nextErrorPeriod = generate random short error period;
}
Generate new ErrorEvent (next Error Fault, next Error Period);
insert ErrorEvent to PriorityQueue;

Generate new ProbationTimerEvent PTE;
PTE.EventTime = CurrentEventTime + probationThreshold;
insert ProbationCheckerEvent to PriorityQueue;

}

Recovery Action Executed Event which is set to current event time plus a random

recovery action execution time and put the event into Priority Queue.

If next Event is Recovery Action Executed Event(see Figure 4.8), the process

does the following: firstly it changes the server state to Probation and sets the state

time to current event time; secondly it records the executed recovery action to Recent

Server Recovery History table; thirdly it computes recovery action execution time

and updates recovery action cost table; next it determines if recovery action success

or fail and generates next Error Event accordingly with proper fault type and Error

Event time (see 4.2.2 for details); then it puts the next Error Event into Priority

Queue; finally it generates a Probation Timer Event which is set to current event time

plus the probation threshold and puts the event into Priority Queue.

If next Event is Probation Timer Event (see Figure 4.9), the process verifies if

69

Figure 4.9: ProbationTimerEvent Processing Pseudo Code

else if (CurrentEvent is ProbationCheckerEvent)
{

Get CurrentServerState and CurrentStateTime from ServerState Table for
CurrentServerID;

if (CurrentServerState is Probation

 && (CurrentEventTime - CurrentStateTime) == probationThreshold)
{
 // update ServerState Table with:
 server state = Health;

 state time = current event time;

 //update RA probability Table with:
 totalAttempts++;
 success++;
 probability = successAttempts / totalAttempts;

 clear repair action history in ServerRepairActionHistory Table;
}

}

latest recovery action is success by checking two conditions: the server is in

Probation and current probation checking event time subtract server state time equals

probation threshold, that means no error happened in probation period namely

recovery is deemed success. Then it does the following: it changes server state to

Health and sets state time to current event time; the recovery action success

probability will be recalculated and updated by increasing the total attempts and

increasing the success attempts; it finally clears recent server recovery history.

To sum it up, the different event type processing usually updates server state

for the event related server, records or clears the recent server recovery history table,

updates recovery action cost table and recovery action success probability table

accordingly, generates necessary future events and put into the priority queue. The

recovery action cost is updated immediately after recovery action is applied in

Recovery Action Executed Event processing, and gets further updated for additional

cost if there is error happened during probation in Error Event processing. The

recovery action success probability is updated when we know the recovery action is

either succeed - checked in Probation Timer Event processing, or failed - checked in

Error Event processing.

• statisticReport() - During the processing of events, whenever there is update to the

recovery action cost table, the statistic total server cost is also updated. And the total

server run-time is updated when the last error event is processed. When simulation

running finishes, this function simply calculates the ratio of total server cost to total

server run time and returns that ratio along with raw data.

This simulation implementation has considered many automatic recovery related aspects in

real data center, and is carefully designed so that a reasonable test can be conducted.

70

Chapter 5 Experimental Analysis

In this chapter, we present how the test is conducted. The evaluation criteria is first clarified,

the cost to run-time ratio is defined, the idea of optimal expected cost and the target virtual

policy is described. Then the test environment and test setup is elaborated. Finally the test

result is presented and analyzed.

5.1 Evaluation Criteria

In order to fairly compare different policy implementations and clearly know which one is

better, we defined a simple cost to run-time ratio evaluation criteria. We further studied

whether there is a way to always make the best recovery action selection, namely to achieve

the best cost to run-time ratio. An optimal expected cost model is defined and associated

policy is implemented. Comparing to the best result produced from the optimal policy with

the evaluation criteria, we can easily know the performance of each policy.

5.1.1 Cost to Run-time Ratio

Our target is to find a policy with minimal total cost. When comparing different policies,

they must be running under the same condition. Obviously, the longer a policy is running, the

more cost will be generated. So our comparison is based on the total cost Ct under same total

run time RTt, we name it ratio R in our research.

R=
Ct
RTt

71

R=
Ct
RTt

=

∑
i=1

n

CSi

∑
i=1

n

RT Si

The total cost is composed of CSi the cost from each server Si, and total run time is

composed of RT Si the run time from each server Si. In our experiment, we assume that all

(n) servers are kept in operation. They are either in the normal servicing, or in the trouble

under fixing or trying in probation. We also assume that all servers start from the same time

and end at the same time for our experiment, so each server has the same experiment run

time RTe. As described in our recovery cost modelling, the cost from each server is

composed of the recovery execution downtime and the partial servicing by failed recovery.

Both costs are actually counted on each recovery action accumulated cost ACRi , thus the

total cost can be represented by the total accumulated cost from all (m) recovery actions. We

can then simplify the data collection and calculation of the ratio R:

R=
∑
i=1

m

AC Ri

n∗RTe

The minimal ratio R represents the minimal total cost under the same run time condition. It's

easily to find the best policy by simply selecting the policy with lowest ratio R.

5.1.2 Optimal Expected Cost and Target Policy P0

The initial idea for evaluation was to see how much improvement our policy made

comparing to the simple heuristic autopilot base policy. The issue is that we can only know

relatively how good or bad the policies are. Even if the result would show which policy is

good and which one is bad, and how far they are from each other, we still do not know

72

whether their difference is significant and how far they are from becoming perfect.

In order to find out the absolute position of each policy's total cost result, we need to

find either the ultimate worst result or the ultimate best result. The ultimate worst result is

hard to answer, the ultimate best result is possible however. Since we make the simulator, we

can generate and know all the detailed data behind the scene, such as what is the fault behind

each error, what are recovery action properties etc. Thus we can make the best decision for

which recovery action should be chosen to have the minimal total recovery cost, which is the

best total cost under the current running situation. We call this cost – Optimal Expected Cost.

The calculation of the optimal expected cost among all recovery actions are based on:

• The fault F behind the error

• The recovery action effect probability to above fault

• The unit cost of each recovery action

We do have these data, and they are all generated to form the simulation environment

hence the most accurate data in that environment, not the observed data from some policies.

So there are no observation errors, no guess work. Thus the best calculation and decision we

can make:

OEC
Rx∈A

=min
Rx∈A

UC Rx

PRxToF

Based on this formula, we implement policy P0 – our target policy. Because it can

always make the best decision, it will produce the best ratio R. We can compare ratio R

produced from other policies with policy P0 and improve them continuously to approach

perfect. This policy is a virtual policy, as it is based on knowledge of exact fault behind error,

exact recovery action effect probabilities to the fault. No policy in real world could know

these information. This policy can only exist in a simulator. This is the other advantage of

our simulator.

73

5.2 Test setup and running environment

We setup our experiment on a virtual machine and carefully set the values to the simulation

parameters to mimic the real data center characteristics. Then we conducted test in different

configurations of simulated servers and total errors.

5.2.1 Running Environment

The physical experiment environment is set on a modern PC with quad core CPU and 4 GB

memory. This PC is shared by other tasks. To make the experiment more stable and

consistent, we create virtual machine on this PC and run our test inside the virtual machine.

The virtual machine is allocated with 1 dedicated processor and 1GB memory and is running

in Linux operating system. All simulation code is written in Java and running in a JVM.

The logical environment which is the simulated data center is configured as: total 50

different faults in terms of 50 fault IDs; maximum health time is set to 7200000 seconds

which is 2000 hours or 83.33 days on each server; probation length is set to 3600 seconds or

1 hour; number of recovery action is set to 7; minimum recovery action base execution time

is set to 5 seconds; maximum recovery action base execution time is set to 36000 seconds in

terms of 10 hours; the final recovery action base execution time is set to 360000 seconds in

terms of 100 hours, run-time random recovery action execution time floating range is set to

within +/-50% of base recovery action execution time.

5.2.2 Test Setup

The test was conducted under different number of simulated servers and total errors, the

configurations with different combinations are: 1 server, 100 errors; 1 server, 1000 errors; 1

server, 10000 errors; 10 servers, 100 errors; 10 servers, 1000 errors; 10 servers, 10000 errors;

100 servers, 1000 errors; 100 servers, 10000 errors; 1000 servers, 10000 errors. In order to

get statistical meaningful result, the Test Main program is set to have 100 test runs for each

configuration.

74

For each test run, the Test Main creates a new Simulation Controller. Then it

generates seeds for all pseudo-random number generators and generates three system static

data tables - fault distribution table, recovery action effect table, recovery action base

execution time table. After that, there are five sections following, one for each policy. Under

each policy section, the simulator along with system state are first initialized. The initialized

system state object then is passed into a new created recovery action selector which

implements a specified policy. The simulator starts running with that recovery action

selector. Finally the simulator reports the result data – total cost to total runtime ratio for that

policy. So for one test run, simulation is done five times - one for each policy, and all policies

are using exactly the same pseudo-random number generator seeds set and the static data

tables. Each policy is running under the same new initialized system state. In other words,

each policy is running under the same condition in one test run, thus the result comparison is

fair and meaningful. Under one test run, the ratio R of each policy is collected, and the

improvement percentage from policy P1, P2, P3, P4 to policy P0 are also collected

respectively.

Each test run has new random number generator seeds and new static table data. After

100 times test runs, the statistic result is calculated and reported. The ratio R mean and

standard deviation for each policy are calculated. The improvement percentage mean and

standard deviation for each pair of policy P1-P4 to policy P0 are also calculated.

5.3 Results

We illustrate the detailed result from one configuration, and summarize results from all

configurations. Although our calculation considered both population standard deviation and

sample standard deviation [39], the difference is negligible due to the enough test run of 100

times. For clarity, the results only show the population standard deviation.

75

76

Figure 5.1: Policy P0 Ratio R Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

P0 Ratio R Cost/Total

Figure 5.2: Policy P1 Ratio R Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

P1 Ratio R Cost/Total

77

Figure 5.3: Policy P2 Ratio R Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

P2 Ratio R Cost/Total

Figure 5.4: Policy P3 Ratio R Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

P3 Ratio R Cost/Total

5.3.1 Detailed Result for 10 servers with 10000 errors

The following diagrams [Figure 5.1, 5.2, 5.3, 5.4, 5.5] show the total cost to total runtime

ratio results from the setup of 10 servers and 10000 errors. Summarized in Table 5.1, other

than the virtual perfect policy P0, the mean value of policy P4 ratio R is the lowest among

other policies, the standard deviation is also the lowest among other policies. The mean value

of policy P4 improvement over policy P0 is the best -100.03% whereas the policy P1

improvement over policy P0 is -197.76%, the improvement standard deviation is also the

lowest among all other comparable policies. This statistic result clearly demonstrates the

lowest total cost advantage of policy P4.

To be more convincing, we not only look at the statistic result but also observe the

detailed result from each test run. This will tell us if a policy always has the advantage under

the same condition. The Figure 5.6 shows the policy P4 comparing to policy P1, where the

result of policy P4 is in the lower line. Under each test run – same condition (same X axis

value), the policy P4 in almost all cases has the lower total cost to total runtime ratio (Y axis

78

Figure 5.5: Policy P4 Ratio R Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

P4 Ratio R Cost/Total

value) comparing to policy P1. This detailed comparison further convinces the advantage of

policy P4.

Policy P0 Policy P1 Policy P2 Policy P3 Policy P4

Mean of ratio R (%) 0.49% 1.38% 1.31% 1.55% 0.97%

Standard deviation

of ratio R (%)

0.23% 0.56% 0.50% 0.84% 0.45%

Mean of ratio R

Improvement to

policy P0 (%)

N/A -197.76% -187.25% -216.09% -100.04%

Standard deviation

of ratio R

Improvement to

policy P0 (%)

N/A 77.98% 82.04% 86.56% 30.65%

Table 5.1: Ratio R Result Summary of 10 Servers With 10000 Errors

5.3.2 Summarized Results from all configurations

After all configurations of the server and error combinations have been tested, we have found

there are some combinations in which the ratio R of policy P4 is worse than policy P1. By

analyzing all results in those cases, policy P4 are worse than policy P1 only when there are

less errors per server. The Figure 5.7 and 5.8 show the comparison and trends. In the 10

servers setup, when total errors is 10, the total cost to total runtime ratio mean value of policy

P4 is very high at 2.50%, and dropping significantly to 1.33% after the total errors reach 100,

and further down to 1.10% after the total errors reach 1000, then slowly down to 0.97%

when the total errors reach 10000. The policy P1 however is in different trend. Initially, it has

79

80

Figure 5.6: Policy P4 to P1 Ratio R Detail Comparison

81

Figure 5.7: 10 Servers Summarized Result

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

0.0200

0.0220

0.0240

0.0260

P4 Cost/Total P3 Cost/Total P2 Cost/Total P1 Cost/Total P0 Cost/Total

Total Errors - 10 Servers

Figure 5.8: 100 Servers Summarized Result

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

0.0200

0.0220

0.0240

0.0260

P4 Cost/Total P3 Cost/Total P2 Cost/Total P1 Cost/Total P0 Cost/Total

Total Errors - 100 Servers

quite low total cost to total runtime ratio mean value at 0.77% when it has just total 10 errors,

and significantly rises to 1.26% when it just reaches total 100 errors, then further rises to

1.44% when it encounters total 1000 errors, and stays around that ratio even it encounters

total 10000 errors. This similar trend can also be observed from 100 servers setup.

82

Chapter 6 Policy Improvements

In this chapter, different policy improvements and observations are described. The learning

curve observed in our initial experiment results are illustrated and the solution to setup initial

value to shorten the learning process is proposed and the improvement is verified in further

test. A new observation regarding Attempts per Success Fix is discussed and a test is

conducted. Our best policy P4 still shows a good number on this ratio. Finally, we studied the

policy P4 multiple attempts coefficient, the results from different coefficient values are

analyzed, the best value is suggested.

6.1 Inherent learning process and improvement

As found from the initial experiments, when those servers encounter less errors the total cost

to total runtime ratio R of the policy P4 is not better than the ratio R of policy P1. As errors

increase to certain amount, the ratio R of policy P4 becomes better and better and exceeds

the ratio R of policy P1. This is deemed a learning curve of policy P4, as it needs to learn

recovery action unit cost and success probability from recovery attempts to errors, and the

selected recovery action output is based on what it learned from those data. The more data it

learned the better understanding and selection output it could have. It is observed about 10

errors per server has to be learned. Although the learning process is not that long, any

improvement to shorten the learning is still encouraged. That can leverage the benefit from

policy P4 as soon as possible and further improve the overall system.

The essence of the idea to shorten the learning is to borrow the knowledge from

somewhere instead of learning from the very beginning by itself. As the recovery action unit

cost and success probability data are the knowledge the policy has to learn and use, those

data can be borrowed from previous running experience – for example from the 1000 errors

per server testing run or from data center historical reporting data in real data center

situation.

83

In order to get those statistic recovery action knowledge, our original simulation

environment has to be modified. There is a problem in original implementation. For an

example of six recovery actions, the recovery action RA1 may have the shortest recovery

execution time in one test run but have the longest in another test run, which actually means

a different recovery action in real world. The statistic result for recovery action RA1 from

different test runs will not make any sense. Hence the recovery action base execution time

generator was modified to let recovery action RA1 always have the shortest base recovery

execution time and RA6 always have the longest one, and let other recovery actions be fixed

in proper order. Therefore, when learning from 100 test runs, the specific recovery action is

comparable among different test runs.

Mean of ratio R

improvement to Policy P0

10 servers,

10 errors

10 servers,

100 errors

10 servers,

1000 errors

10 servers,

10000 errors

Policy P1 -163.24% -220.03% -184.79% -197.76%

Policy P4-Before -1485.92% -242.30% -108.34% -100.04%

Policy P4-After -97.95% -107.66% -114.34% -111.66%

Table 6.1: 10 Servers Learning Comparison

Mean of ratio R

improvement to Policy P0

100 servers,

100 errors

100 servers,

1000 errors

100 servers,

10000 errors

Policy P1 -155.27% -194.53% -203.12%

Policy P4-Before -399.43% -131.64% -99.98%

Policy P4-After -96.29% -117.65% -115.58%

Table 6.2: 100 Servers Learning Comparison

After modification, the test of 10 servers and total 10000 errors was conducted. Then

the recovery action RA1 to RAn was learned and their unit cost, accumulated cost, total

84

attempts, success attempts and success probability were summarized from those 100 test

runs, their statistic means were collected and input to policy P4 as initial recovery action unit

costs and initial success probabilities. After these knowledge data gets input to policy P4,

another set of tests was conducted.

The result comparison (Table 6.1 and 6.2) clearly demonstrates the improvement on

learning curve. In the 10 servers setup testing, without the learning knowledge, the ratio R of

policy P4 improvement to policy P0 in less errors case is clearly worse than policy P1's

result, until 1000 errors encountered the policy P4 shows its advantage. After putting the

knowledge, the difference is significant. From the initial 10 errors, the result shows the ratio

R of policy P4 improvement to policy P0 changed from -1485.92% to -97.95%. Then, for

100 errors, the policy P4 result also changes from -242.3% to -107.66%. Similar results are

also shown in the 100 servers setup. In both setup, the policy P4 shows better result than

policy P0 from 10 errors. The results clearly demonstrate that our approach significantly

improves the policy P4 in the early learning stage, the advantage of total cost to total runtime

ratio of policy P4 immediately shows from the beginning.

6.2 Observation of Attempts per Success Fix

While the policy P4 is demonstrated as the best from the total cost perspective. The question

is raised about if there is any other impacts. We know if the final recovery action is selected,

any error can always be fixed successfully in terms of just one attempt, however that will

introduce the highest cost. While a policy maintains a low total cost, can it also have a low

average attempts per success fix (we name it R2)?

How to calculate this ratio? For example, an error happens, and an recovery action is

applied however failed, another error happens in probation, another recovery action is

applied and failed again, once more an error happens in probation, third recovery action is

applied and does a successful fix. After a long period a new error happens, and a recovery

action is applied and succeed. As the above example there are two original errors, the other

two happen because of failed recovery action attempts. Hence there are total four errors and

85

total four recovery action attempts, and two successful fixes. So that example has average 2

attempts per success fix – 4 attempts divided by 2 successful fix. The total recovery action

attempts (TA) is simply equals total errors (TE), because there is always a recovery action

selected for an error. The total success fix number (TF) can be inferred from total original

errors which is hard to track and distinguish, or can count from how many times a server

changes state to Health which simply and clearly means a success fix happened. The ratio R2

should be counted from all (n) servers, while each server can collect the ASi recovery

action attempts (A) on that server (Si) and collect the FSi success fix number (F) on that

server (Si), see formula 6.1A and 6.1B.

R2=
TA
TF

=

∑
i=1

n

ASi

∑
i=1

n

F Si

(6.1 A)

R2=
TE
TF

=
TE

∑
i=1

n

FSi

(6.1 B)

We further modified the simulator to capture this ratio R2, and did test from the setup

of 10 servers and 10000 errors. The detailed results are showed in Figure 6.1, 6.2, 6.3, 6.4,

6.5. The summarized result in Table 6.3 shows the mean value of attempts per success fix

ratio of policy P4 is similar as policy P0, and is close to but slightly worse than policy P1, the

ratio R2 standard deviation of policy P4 is also close and slightly worse than policy P1. The

ratio R2 of policy P2 is also close to policy P1, however shows small improvement. The ratio

R2 of policy P3 is significant worse than policy P1, and is the worst among all policies. This

statistic result shows: while policy P4 maintains the lowest total cost advantage, it also

maintains a comparable attempts per success fix ratio and does not have significant impact to

that.

86

87

Figure 6.1: Policy P0 Ratio R2 Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

P0 Ratio R2
Attempts/Fix

Figure 6.2: Policy P1 Ration R2 Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

P1 Ratio R2 Attempts/Fix

88

Figure 6.3: Policy P2 Ratio R2 Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

P2 Ratio R2 Attempts/Fix

Figure 6.4: Policy P3 Ratio R2 Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

P3 Ratio R2 Attempts/Fix

Policy P0 Policy P1 Policy P2 Policy P3 Policy P4

Mean of ratio R2 2.82 2.47 2.21 7.76 2.81

Standard deviation

of ratio R2

2.41 0.42 0.31 3.25 0.61

Mean of ratio R2

Improvement to

policy P0 (%)

N/A -19.67% -6.34% -237.22% -29.34%

Standard deviation

of ratio R2

Improvement to

policy P0 (%)

N/A 50.32% 41.12% 114.37% 42.05%

Table 6.3: Ratio R2 Result Summary of 10 Servers With 10000 Errors

89

Figure 6.5: Policy P4 Ratio R2 Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

P4 Ratio R2 Attempts/Fix

6.3 Policy P4 Multiple Attempts Coefficient Study

As mentioned in the policy implementation, the policy P3 has the basic implementation of

our total cost based solution. It never considers the difference of second and multiple

recovery attempts with the same recovery action. Policy P2 considers this by eliminating the

second and multiple recovery attempts with the same recovery action. And policy P4

considers this by reducing the success probability of the second and multiple recovery

attempts with the same recovery action. The policy P4 reduces the success probability by

multiplying additional multiple (n) attempts coefficient 0.5^n to the original recovery action

success probability. Through further analysis, the policy P2 and policy P3 are actually the

extreme cases of policy P4. Policy P3 is actually the same as setting the policy P4 coefficient

to 1^n, so there is no difference of second or multiple recovery attempts, their coefficients

are all equal to 1 namely their success probability always equals to the original recovery

action success probability. Policy P2 is actually the same as setting the policy P4 coefficient

to 0^n, so there is no chance for the second or more recovery attempts, their coefficients are

all equal to 0 namely 0 success probability. We modified the policy P4 coefficient to 1 and 0

respectively and did tests for 10 servers and total 1000 errors. As expected it shows exactly

same result to policy P2 and P3 respectively. See Table 6.4, 6.5 and 6.6. The verified results

also demonstrate our implementation did give fair chance to each policy and our

implementation was built correctly from another angle.

Coefficient=0.5^n Policy P4 Policy P3 Policy P2

Mean of Cost/Total 1.10% 1.48% 1.42%

Standard deviation of Cost/Total 0.55% 0.70% 0.62%

Mean of Attempts/Fix 2.83 5.66 2.28

Standard deviation of Attempts/Fix 0.67 2.09 0.37

Table 6.4: Policy P4 Coefficient 0.5 Comparison

90

Coefficient=0.0^n Policy P4 Policy P3 Policy P2

Mean of Cost/Total 1.37% 1.36% 1.37%

Standard deviation of Cost/Total 0.60% 0.65% 0.60%

Mean of Attempts/Fix 2.27 5.79 2.27

Standard deviation of Attempts/Fix 0.43 2.16 0.43

Table 6.5: Policy P4 Coefficient 0.0 Comparison

Coefficient=1.0^n Policy P4 Policy P3 Policy P2

Mean of Cost/Total 1.37% 1.37% 1.41%

Standard deviation of Cost/Total 0.63% 0.63% 0.65%

Mean of Attempts/Fix 5.81 5.81 2.30

Standard deviation of Attempts/Fix 1.86 1.86 0.42

Table 6.6: Policy P4 Coefficient 1.0 Comparison

Based on our simulation platform, we further studied the policy P4 multiple attempts

coefficient to find the impacts to both total cost to total runtime ratio R and attempts per

success fix ratio R2, and also to find the best coefficient value. To avoid the variations among

different tests, the simulation platform is modified to run and collect the results from

different coefficient setups in each test run. The studied coefficients are from 0.0 to 1.0 in 0.1

stepping. A test was conducted in 10 servers and total 10000 errors configuration. Both ratios

are collected and presented to show their trends respectively.

The summarized results for ratio R are shown in Figure 6.6. When coefficient value

equals 0, the policy P4 gets the high total cost to total runtime ratio R as 0.013142. The ratio

R decreases gradually and reach the lowest ratio R 0.00938 when coefficient value equals

91

0.7, then the ratio R slightly increases. After the coefficient value passes 0.9 the ratio

significantly increases and reaches the highest ratio R 0.0154528 when coefficient value

equals 1.

92

Figure 6.6: Policy P4 Ratio R Coefficient Result

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

P4 Cost/Total Mean

Coefficient

Figure 6.7: Policy P4 Ratio R2 Coefficient Result

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

P4 Attempt/Fix Mean

Coefficient

The summarized results for ratio R2 are shown in Figure 6.7. When coefficient value

equals 0, the policy P4 gets the lowest attempts per success fix ratio R2 as 2.212857. The

ratio R2 gradually increases to 4.1801468 until coefficient value increases to 0.9. After that

point the ratio significantly increases and reaches the highest ratio 7.760022 when coefficient

value equals 1.

If the lowest total cost to total runtime is the only target, the coefficient value of 0.7 is

the best to choose. The coefficient value of 0.0 is the best for reaching minimum attempts per

success fix. And the coefficient value around 0.5 is the reasonable compromise to both.

93

Chapter 7 Conclusion and Future Work

This thesis studies the automatic recovery policy problem - how to select a proper recovery

action without knowing fault information. The target is to achieve minimal total cost. We

also study the cost from the recovery action execution down time and the partial service

caused by failed recovery. The recovery action success probability is studied as well. We

propose an estimated total cost ETC model to select the recovery action. This generic cost

based model utilizes the dynamic updated statistic data (recovery action unit cost and success

probability), and selects the recovery action with minimal estimated total cost from a set of

recovery action candidates. Based on this model, three policies are implemented. These

policies make different adjustments to the recovery action success probability based on the

recovery action failed attempts. Our generic cost based policy implementation is self

adaptive to the system, it can bootstrap reasonably and adjust itself automatically.

In addition, this thesis analyzes the fault distribution and recovery action to fault

effect probability, and the recovery action execution time variation. Based on these analyses,

we implement a discrete event simulator to properly mimic the data center automatic

recovery operation environment.

As our simulation implementation, we are able to define an optimal expected cost and

implement a virtual perfect policy based on that calculation. Our experiment results

eventually show that we have achieved our goal to reduce the total recovery cost. Comparing

to a similar research with heuristic model, our policy to the virtual perfect policy

improvement is only -100% whereas the heuristic policy is -198%, the result shows big

improvement made by our policy.

We further provide improvement solution to shorten the learning curve in our model

by inputting reasonable knowledge in advance. We also study Attempts per Success Fix ratio,

and our policy shows minimal impacts on this ratio. Finally we carefully study the multiple

attempts coefficient and give a recommended value. The optimized coefficient makes the

total cost to run-time ratio even better.

94

7.1 Future Work

Our model is a recursive model, and we have simplified the model not to include the

repeating recovery actions and deal with that issue in policy by reducing repeating recovery

action success probability. However there is still deep recursive calculation, we would like to

find better simplified calculation algorithm. Also we simply select the power formula to

reduce success probability for multiple attempts of failed recovery actions. We would like to

study other alternatives for improvement.

We have also mentioned different cost scenarios like human cost, business loss,

contract penalty and other monetary or non monetary based cost etc. But we have not made

further researches on this area. The potential solution could be to build a cost formulation

according to real environment and feed the translated cost back to our model. As mentioned

in ROC, not all downtime are equal, and they are not always linear relationship [12]. By

plugging in the organization dependent cost formulation, the weight on downtime could be

more realistic and the recovery action selection will be more suitable for the organization.

Another improvement that could be made to the policy is to extend it to take more

dimensions or parameters such as: different failure events, computer configuration signature

– OS version, HW configuration etc. In real data center, machines may be updated every year

and both operating systems and application softwares are kept updating. These changes

inhere with different statistic characteristics. In order to capture the impacts from those

dimensions in the real environment, the policy could be extended. The generic cost based

model could be still kept the same. The recovery action unit cost and success probability

recording and calculation could be modified. They could be extended to also record the unit

cost and success probability under other dimensions (e.g. hardware configuration signature

and software versions) on top of the existing overall average unit cost and success

probability. Both recovery action unit cost and success probability calculation can be

modified to consider the more specific recovery action unit cost and success probability

values versus the generic overall values. The calculation could: 1) always utilize the specific

values; 2) use percentage from overall generic value and percentage from specific values; 3)

dynamically switch between above two approaches - by considering the early phase of a

95

change, there is no enough sampling to conclude a mature value; then we can take percentage

from overall generic value and percentage from specific values when the sampling is less

than certain amount (e.g. 1000); after enough sampling is collected, we can use the more

accurate specific values. The dimension could be easily extended as the recovery action

could be extended, and the specific recovery action unit cost and success probability values

are automatically collected and updated. Consequently the policy also automatically adopts

the changing values, and the system is automatically optimized from the added dimensions.

Finally, we would like to run our policy in a real data center for a long period if such

arrangement is allowed. After enough simulation, we would like to verify and improve our

model in the real world.

96

References

[1] Amina Khalid, Mouna Abdul Haye, Malik Jahan Khan, and Shafay Shamail. Survey of

Frameworks, Architectures and Techniques in Autonomic Computing. In IEEE Computer

Society, 220-225, 2009

[2] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers, 2009 .

[3] Moises Goldszmidt, Mihai Budiu, Yue Zhang, and Michael Pechuk. Toward Automatic Policy Refinement

in Repair Services for Large Distributed Systems. In SIGOPS Operating System Review, Volume 44, Issue 2,

April 2010

[4] Andreas Hanemann, David Schmitz, and Martin Sailer. A Framework for Failure Impact

Analysis and Recovery with Respect to Service Level Agreements. In Proceedings of the

IEEE International Conference on Services Computing (SCC 2005), Orlando, Florida, USA:

IEEE, July 2005.

[5] Guy Shani and Christopher Meek. Improving Existing Fault Recovery Policies. In

Advances in Neural Information Processing Systems 22, pages 1642-1650, 2009

[6] Michael Isard. Autopilot: Automatic Data Center Management. In Operating Systems

Review, 41:60–67, 2007.

[7] Moises Goldszmidt, Miroslaw Malek, Simin Nadjm-Tehrani, Priya Narasimhan, Felix

Salfner, Paul A.S. Ward, and John Wilkes. Wheels within Wheels: Making Fault

Management Cost-Effective. In Dagstuhl Seminar Proceedings 09201 , Combinatorial

Scientific Computing , Dagstuhl, Germany , May 10–15, 2009 .

[8] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. In IEEE

Computer, 36(1):41–50, January 2003.

[9] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O. Kephart.

An Architectural Approach to Autonomic Computing. In Proceedings of the International

Conference on Autonomic Computing (ICAC), 2004

[10] Olga Brukman, Shlomi Dolev, Yinnon Haviv, and Reuven Yagel. Self-Stabilization as a

Foundation for Autonomic Computing. In The Second International Conference on

97

Availability, Reliability and Security (ARES), pages 991–998, Vienna, April 2007.

[11] Pushkar Kumar. Autonomic Computing, A Seminar Report. Bachelor of Technology

thesis, September 2008.

[12] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James

Cutler, Patricia Enriquez, Armando Fox, Emre Kıcıman, Matthew Merzbacher, David

Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan Traupman, and Noah Treuhaft.

Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case

Studies. UC Berkeley Computer Science Technical Report UCB//CSD-02-1175, March 15,

2002.

[13] George Candea, Emre Kiciman, Shinichi Kawamoto, and Armando Fox . Autonomous

Recovery in Componentized Internet Applications. In Cluster Computing Journal, Vol. 9,

No. 2, April 2006.

[14] Xiaolin Li, Hui Kang, Patrick Harrington, and Johnson Thomas. Autonomic and Trusted

Computing Paradigms. In ATC 2006, LNCS 4158, pages 143-152, 2006

[15] Mohammad A. Munawar and Paul A.S. Ward. Leveraging many simple statistical

models to adaptively monitor software systems. In International Symposium on Parallel and

Distributed Processing with Applications (ISPA), 2007.

[16] Mohammad A. Munawar, Miao Jiang, Allen George, Thomas Reidemeister, and Paul A.

S. Ward. Adaptive monitoring with dynamic differential tracing- based diagnosis. In

Proceedings of the 19th IFIP/IEEE International Workshop on Distributed Systems:

Operations and Management (DSOM), 2008.

[17] Mohammad A. Munawar, Paul A.S. Ward, and Kevin Quan. Interaction analysis of

heterogeneous monitoring data for autonomic problem determination. In IEEE International

Symposium on Ubisafe Computing. IEEE Computer Society Press, 2007.

[18] Dorron Levy and Ram Chillarege. Early Warning of Failures through Alarm Analysis -

A Case Study in Telecom Voice Mail Systems. In ISSRE ’03: Proceedings of the 14th

International Symposium on Software Reliability Engineering, Washington, DC, USA, 2003.

IEEE Computer Society.

[19] Adam Oliner and Jon Stearley. What Supercomputers Say: A Study of Five System

Logs. In DSN ’07: Proceedings of the 37th Annual IEEE/IFIP International Conference on

98

Dependable Systems and Networks, pages 575–584, Washington, DC, USA, 2007. IEEE

Computer Society.

[20] Mohammad A. Munawar. Adaptive Monitoring of Complex Software Systems using

Management Metrics. PhD thesis, Electrical and Computer Engineering Division, University

of Waterloo, 2009. http://hdl.handle.net/10012/4797

[21] Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros. Modeling and Simulation of

Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and

Opportunities, Keynote Paper. In Proceedings of the 7th High Performance Computing and

Simulation (HPCS 2009) Conference, Leipzig, Germany (2009)

[22] Ilango Sriram. SPECI, a simulation tool exploring cloud-scale data centres. In

CloudCom 2009, LNCS 5931, pages 381-392, M.G. Jaatun, G. Zhao, and C. Rong (Eds.),

Springer-Verlag Berlin, Heidelberg 2009, http://arxiv.org/abs/0910.4568

[23] Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu . Cloud Computing and Grid Computing

360-Degree Compared. In Proceedings IEEE Grid Computing Environments Workshop,

pages 1-10, 2008.

[24] Simon Wardley, Etienne Goyer, and Nick Barcet. Technical White Paper Ubuntu

Enterprise Cloud Architecture.

http://www.ubuntu.com/system/files/UbuntuEnterpriseCloudWP-Architecture-20090820.pdf

[25] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,

Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-source Cloud Computing

System. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid 2009), Shanghai, China, pages124–131, 2009.

http://open.eucalyptus.com/documents/ccgrid2009.pdf

[26] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk , Graziano Obertelli, Sunil Soman,

Lamia Youseff, and Dmitrii Zagorodnov. Eucalyptus: a technical report on an elastic utility

computing architecture linking your programs to useful systems. Technical Report 2008-10,

Department of Computer Science, University of California, Santa Barbara, California, USA,

2008.

http://open.eucalyptus.com/documents/nurmi_et_al-eucalyptus_tech_report-august_2008.pdf

[27] Rodrigo N. Calheiros, Rajiv Ranjan, César A. F. De Rose, and Rajkumar Buyya.

99

CloudSim: A Novel Framework for Modeling and Simulation of Cloud Computing

Infrastructures and Services. Technical Report, Grid Computing and Distributed Systems

(GRIDS) Laboratory, Department of Computer Science and Software Engineering, The

University of Melbourne, 2009.

[28] Kashi Venkatesh Vishwanath, Albert Greenberg, and Daniel A. Reed. Modular data

centers: how to design them?. In Proceedings of the 1st ACM Workshop on LSAP, 2009.

[29] Guanying Wang, Ali R. Butt, Prashant Pandey, and Karan Gupta. A simulation approach

to evaluating design decisions in MapReduce setup. In International Symposium on

Modelling, Analysis and Simulation of Computer and Telecommunication Systems, London,

UK, September 2009.

[30] Christian Baun. Elastic Cloud Computing in the Open Cirrus Testbed implemented via

Eucalyptus. In ISGC 2009. Forthcoming 2009 LNCS, Springer, Heidelberg

[31] David Dyer. Current trends/challenges in datacenter thermal management - a facilities

perspective, presentation at ITHERM, San Diego, CA, June 1, 2006.

[32] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic

concepts and taxonomy of dependable and secure computing. In IEEE Transactions on

Dependable and Secure Computing, 1(1):11–33, 2004.

[33] Recovery-Oriented Computing Overview. http://roc.cs.berkeley.edu/roc_overview.html

[34] Pete Broadwell, Naveen Sastry, and Jonathan Traupman. FIG: A Prototype Tool for

Online Verification of Recovery Mechanisms. In Workshop on Self-Healing, Adaptive and

self-MANaged Systems (SHAMAN), New York, NY, June 2002.

[35] George Candea , Aaron B. Brown, Armando Fox, and David Patterson. Recovery-

Oriented Computing: Building Multitier Dependability . In IEEE Computer, 37(11):60–67,

2004.

[36] Mike Y. Chen, Emre Kıcıman, Eugene Fratkin, Armando Fox, and Eric Brewer.

Pinpoint: Problem determination in large, dynamic systems. In Proceedings 2002 Intl. Conf.

on Dependable Systems and Networks, pages 595–604, Washington, DC, June 2002.

[37] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox.

Microreboot – A Technique for Cheap Recovery . In Proceedings of the 6th Symposium on

Operating System Design and Implementation, December 2004.

100

[38] Aaron B. Brown and David A. Patterson. To Err is Human. In Proceedings of the First

Workshop on Evaluating and Architecting System dependability (EASY ’01), Goeteborg,

Sweden, July 2001.

[39] David Stone and Jon Ellis. Stats Tutorial – Mean, Variance and Standard Deviation.

University of Toronto, 2006.

http://www.chem.utoronto.ca/coursenotes/analsci/StatsTutorial/MeasMeanVar.html

[40] Aaron B. Brown and David A. Patterson. Undo for Operators: Building an Undoable E-

mail Store . In Proceedings of the 2003 USENIX Technical Conference, June 2003.

[41] Aaron Brown. A Recovery-Oriented Approach to Dependable Services: Repairing Past

Errors with System-Wide Undo. PhD thesis, Computer Science Division, University of

California, Berkeley, 2003.

[42] Aaron B. Brown and David A. Patterson. Rewind, Repair, Replay: Three R’s to

Dependability. In Proceedings 10th ACM SIGOPS European Workshop. St. Emilion, France,

2002.

[43] David Oppenheimer, Aaron Brown, James Beck, Daniel Hettena, Jon Kuroda, Noah

Treuhaft, and David A. Patterson. ROC-1: Hardware Support for Recovery-Oriented

Computing . In IEEE Transactions on Computers, vol. 51, no. 2, February 2002.

[44] Yennun Huang, Chandra Kintala, Nick Kolettis and N. Dudley Funton. Software

Rejuvenation: Analysis, Module and Applications. In Proceeding IEEE Int’l Symposium on

Fault Tolerant Computing, IEEE Computer Society Press, Los Alamitos, CA, 1995, pages

381–390.

[45] Tadashi Dohi, Katerina Goseva-Popstojanova, and Kishor S. Trivedi. Statistical Non-

Parametric Algorithms to Estimate the Optimal Software Rejuvenation Schedule. In

Proceeding International Pacific Rim Symposium on Dependable Computing, pages 77–84,

2000.

[46] Kalyanaraman Vaidyanathan, Richard E. Harper, Steven W. Hunter, and Kishor S.

Trivedi. Analysis and Implementation of Software Rejuvenation in Cluster Systems. In

Proceeding ACM SIGMETRICS Conf. Measurement and Modeling of Computer Systems,

pages 62– 71, 2001.

[47] Sachin Garg, Yennun Huang, Chandra Kintala, and Kishor S. Trivedi. Time and Load

101

Based Software Rejuvenation: Policy, Evaluation and Optimality. In Proceedings of the First

Fault- Tolerant Symposium, Madras, India, December 22–25, 1995.

[48] Andrea Bobbio, Matteo Sereno, and Cosimo Anglano. Fine grained software

degradation models for optimal rejuvenation policies . In Performance Evaluation, vol. 46,

no. 1, pages 45-62, 2001

[49] Theo Hearder and Andreas Reuter. Principles of Transaction-Oriented Database

Recovery. In ACM Computing Surveys 15, 4 (December 1983). Reprinted in M. Stonebraker,

Readings in Database Sys., Morgan-Kaufman, San Mateo, CA, 1988.

[50] Raymond A. Lorie. Physical Integrity in a Large Segmented Database. In ACM Trans

Database Syst 2, 1 (March 1977), 91-104.

[51] United States Department of Labor, Bureau of Labor Statistics, Employer Costs for

Employee Compensation. September 2010. http://www.bls.gov/news.release/ecec.t11.htm

[52] Nancy Gohring. Microsoft to build giant data center in Virginia, August 2010.

http://www.infoworld.com/d/the-industry-standard/microsoft-build-giant-data-center-in-

virginia-855

[53] Rich Miller. Amazon Building Large Data Center in Oregon, November 2008.

http://www.datacenterknowledge.com/archives/2008/11/07/amazon-building-large-data-

center-in-oregon/

[54] Matt Stansberry. Data center locations ranked by operating cost. July 2006.

http://searchdatacenter.techtarget.com/news/1204203/Data-center-locations-ranked-by-

operating-cost

[55] Bianca Schroeder and Garth A. Gibson. Understanding Failures in Petascale

Computers. In Journal of Physics: Conference Series, 78:012022 (11pp), 2007.

[56] Daniel A. Menascé. Performance and Availability of Internet Data Centers . In IEEE

Internet Computing, May/June 2004, Vol. 8, No. 3, 94-96

[57] TIA Standard, Telecommunications Infrastructure Standard for Data Centers, TIA-942 .

April 2005.

[58] Contingency Planning Research (http://www.contingencyplanningresearch.com), a

Division of Eagle Rock Alliance (http://www.eaglerockalliance.com)

[59] Rich Miller. Who Has the Most Web Servers? May 2009.

102

http://www.bls.gov/news.release/ecec.t11.htm

http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/

[60] Simon Mingay. Look Beyond Google's Plan to Become Carbon Neutral . Gartner

Publisher, June 2007.

[61] Wikipedia. Cloud computing. http://en.wikipedia.org/wiki/Cloud_computing

[62] Rich Miller. How Many Servers Can One Admin Manage? December 2009.

http://www.datacenterknowledge.com/archives/2009/12/30/how-many-servers-can-one-

admin-manage/

103

	Chapter 1 Introduction
	1.1 Cloud Computing
	1.2 Data-Center Environment
	1.3 Challenges and Solutions
	1.4 Automatic Recovery Problem
	1.5 Contribution
	1.6 Thesis Organization

	Chapter 2 Background
	2.1 Fault, Error and Failure
	2.2 Autonomic Computing
	2.2.1 Autonomic Function Aspects
	2.2.2 Autonomic-System Architecture

	2.3 Recovery-Oriented Computing
	2.3.1 Motivation
	2.3.2 Principal and Hypotheses
	2.3.3 ROC Techniques

	2.4 Error Detection and Analysis
	2.4.1 Supercomputer System Log Study
	2.4.2 Early Warning Principles
	2.4.3 Adaptive Monitoring With Statistical Models
	2.4.4 Integration of Monitoring Data

	2.5 Recovery Actions
	2.5.1 Reboot and Micro-Reboot
	2.5.2 Re-Image
	2.5.3 System Rejuvenation
	2.5.4 Roll Back
	2.5.5 Other Recovery Actions

	2.6 Recovery Policy
	2.6.1 Autopilot Recovery System
	2.6.2 Autopilot variations and limitations		

	2.7 System Simulation

	Chapter 3 Total Cost Based Policy Design
	3.1 Problem Modelling
	3.1.1 Modelling Recovery Probabilities
	3.1.2 Recovery-Action Cost

	3.2 Generic Cost-Based Model
	3.2.1 Estimated Total Cost of Recovery (2 actions case)
	3.2.2 Estimated Total Cost of Recovery (3 actions case)
	3.2.3 Minimum Estimated Total Cost of Recovery

	3.3 Recovery Probability and Cost Observation
	3.3.1 Recovery-Probability Observation
	3.3.2 Recovery-Cost Observation

	3.4 Final Recovery Action
	3.5 Programing Algorithm Representation
	3.6 Policy Implementation
	3.6.1 Policy P2
	3.6.2 Policy P3
	3.6.3 Policy P4

	3.7 Example Illustration
	3.7.1 Initial Value Setup
	3.7.2 Example Walk Through

	Chapter 4 Simulator Design
	4.1 Simulation Test Data
	4.1.1 Fault and Error
	4.1.2 Recovery Action to Fault Effects
	4.1.3 Recovery Action Execution Time

	4.2 Simulator Implementation
	4.2.1 Event Types
	4.2.2 System State
	4.2.3 Recovery Action Selector
	4.2.4 Simulation Controller

	Chapter 5 Experimental Analysis
	5.1 Evaluation Criteria
	5.1.1 Cost to Run-time Ratio
	5.1.2 Optimal Expected Cost and Target Policy P0

	5.2 Test setup and running environment
	5.2.1 Running Environment
	5.2.2 Test Setup

	5.3 Results
	5.3.1 Detailed Result for 10 servers with 10000 errors
	5.3.2 Summarized Results from all configurations

	Chapter 6 Policy Improvements
	6.1 Inherent learning process and improvement
	6.2 Observation of Attempts per Success Fix
	6.3 Policy P4 Multiple Attempts Coefficient Study

	Chapter 7 Conclusion and Future Work		
	7.1 Future Work

	References

