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Abstract

Today's data centers either provide critical applications to organizations or host computing 

clouds  used  by  huge  Internet  populations.  Their  size  and  complex  structure  make 

management  difficult,  causing  high  operational  cost.  The  large  number  of  servers  with 

various  different  hardware  and  software  components  cause   frequent  failures  and  need 

continuous recovery work. Much of the operational cost is from this recovery work. While 

there is significant research related to automatic recovery, from automatic error detection to 

different automatic recovery techniques, there is currently no automatic solution that can 

determine the exact fault, and hence the preferred recovery action. There is some study on 

how to automatically select a suitable recovery action without knowing the fault behind the 

error. 

In this thesis we propose an estimated-total-cost model based on analysis of the cost  

and  the  recovery-action-success  probability.  Our  recovery-action  selection  is  based  on 

minimal estimated-total-cost; we implement three policies to use this model under different 

considerations of failed recovery attempts. The preferred policy is to reduce the recovery-

action-success probability when it failed to fix the error; we also study different reduction 

coefficients  in  this  policy.  To evaluate  the  various  policies,  we design  and implement  a 

simulation  environment.  Our  simulation  experiments  demonstrate  significant  cost 

improvement over previous research based on simple heuristic models.
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Chapter 1  Introduction

Computers, networks, and their provided services are the essential in our life today.  The 

technology behind this has grown rapidly, from the mainframe with connected terminals, to 

the local-area network with a  client/server  environment,  to  the widely used browser  and 

Internet services. The usage has moved from restricted scientific and military research to 

everything in our life, personal or business, government, etc. 

1.1  Cloud Computing

As the web developed from the 70s, along with faster and more reliable networking, more 

and more information and services are provided over the Internet. People increasingly rely on 

these ubiquitous information and services. Web Services and Service-Oriented Architecture 

emerged to enable the infrastructure and framework to provide more functions  and services 

through the network. The large number of users and their requirements continuously moved 

the development  of the technology.  Cloud computing recently appeared to  provide more 

traditionally local services on the Internet. Cloud computing is defined as a Internet-based 

computing, whereby shared resources, software, and information are provided to computers 

and other devices on demand.[61] There are different types of cloud providing different level 

of services [23]:

• IaaS - Infrastructure as a Service

• PaaS - Platform as a Service

• SaaS - Software as a Service 

The IaaS cloud provides computer-infrastructure resources as an Internet service to 
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end users. Users then do not need to deploy local computers or other infrastructure resources. 

Services such as Amazon EC2 (Elastic Compute Cloud) provide such compute resources. 

The SaaS cloud provides an application as an Internet service to users. Users do not need to 

install the application locally; rather, they use it anywhere online. Examples of SaaS include 

Google applications and salesforce.com, which has been used for quite some time without 

explicitly being categorized as SaaS. The PaaS cloud is between IaaS and SaaS: it does not 

provide software ready to use,  nor just  a bare bones virtual-machine instance.  It  usually 

provides a stack of tools, server platform, and application-framework environment on top of 

a virtual-machine instance and exposes it  as an Internet service; users can customize the 

provided  environment  and  install  their  own  software  applications.  This  type  of  cloud 

includes  Amazon  S3,  Bungee  Connect  which  is  designed  for  Cloud  Application 

Development.

The cloud-computing approach brings more economic computing solutions. Since an 

enterprise  does  not  have  to  put  resources  into  building  and  maintaining  a  computer 

infrastructure and software applications, they can focus on their core business, such as sales, 
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logistics, banking, insurance, etc., which provides more value to them. While companies still 

need some infrastructure internally, they do not need build spare capacity just for occasional 

demands; such demand can be managed dynamically by an external cloud. This not only 

saves the initial building cost, but also the operational cost. This is similar to only paying for 

electric usage as needed without building and running a power generation system. There is 

no need to buy and instal software just for short-term or occasional use; likewise, there is no 

need to buy each newer version. Rather, cloud computing operates on a pay-as-you-go basis 

and always uses the latest version, unless a prior version is required.

As the benefits from cloud computing attract more users, more IaaS implementations 

appeared, both from commercial sources, such as Amazon EC2, and open-source solutions, 

such  as  Eucalyptus  [25][26].  Figure  1.1  shows  a  Eucalyptus-based  IaaS  cloud-

implementation structure [24][25].

The  Cloud  Controller  provides  a  management  interface  to  users,  collects  cloud-

system resource load and current-capacity information from cluster controllers, and selects 

the cluster controller for allocating virtual-machine instances. The Cluster Controller collects 

cluster-resource load and current-capacity information from node controllers, and selects the 

node  controller  for  allocating  virtual-machine  instances.  The  Node  Controller  discovers 

information  from the  physical  server  on  which  it  is  running,  and  initiates  and  runs  the 

required virtual-machine instances. The Storage Service provides file-level storage service to 

users to store virtual-machine images and snapshots, and allow node controllers to access 

these  files.  The  Storage  Controller  provides  remote  block  devices  to  virtual-machines 

instances running on the node controller. 

As an infrastructure-based service provided through the Internet, the reliability and 

performance is  critical  to  enterprise  users.  As such ecosystem, all  cloud components are 

scaled  to  ensure  both  scalable  and  reliable  infrastructure-service  provisioning  to  meet 

demands. This type of setup usually complicates and enlarges the entire system. 

3



1.2  Data-Center Environment

Like other critical enterprise software and other Internet applications, cloud services run in 

computer data centers. The data center could have hundreds to thousands or more servers, 

depending on the needs of running applications and the expected service consumption. Some 

large organizations may have huge data center infrastructures – e.g., Rackspace was reported 

to have 63,996 servers in Nov 2010 [59], Intel had about 100,000 servers in Feb 2010 [59], 

Microsoft had about half a million servers [59], and Google was estimated to have over a 

million servers in 2007 [60]. 

In many traditional data centers, the servers each run an individual operating system 

and application for different departments or different service purposes. More modern data 

centers, e.g., Amazon EC2, Microsoft Azure, etc., use a virtual data-center structure, where 

the servers usually run some virtual-machine hypervisor (e.g., VMWare ESXi, Xen, KVM, 

Hyper-V, etc.). On top of that there are virtual-machine instances running similar or different 

guest operating systems and applications (see Figure 1.2). This setup meets more flexible 

usage  requirements,  such  as  dynamic  computing  resource  provisioning,  run-time  online 

migration of the running virtual-machine instance and its application, etc.

4
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In  a  modern  data  center,  the  server  usually  has  multiple  multi-core  CPUs  with 

virtualization technology, such as Intel VT and AMD-V, enabled; memory size is ranging 

from 16GB to hundreds of gigabytes. The servers are placed in rows of racks, and each rack 

usually contains around 40-48 1U-size servers. These servers are connected to the rack-level 

switch;  rack-level  switches  are  connected  to  cluster-level  or  data-center-level  switches, 

which are usually modular and can support hundreds of ports and provide terabits per second 

(Tbps)  of  backbone network-switching  capacity.  These  servers  either  adopt  a  distributed 

local  storage  or  connect  to  a  NAS  (Network  Attached  Storage)  or  SAN  (Storage-Area 

Network) through high-speed network connections, such as fibre optical channel.

While the computing components are working, they all consume power and generate 

heat;  the  accumulated  heat  causes  many  hardware  problems,  and  eventually  kills  the 

equipments.  In  addition  to  fans  running  on  servers  and  racks,  there  are  other  cooling 

components: CRAC (Computer Room Air Conditioning), heat-rejection systems [57], etc.

A data center either hosts the organization own services or services for their clients. 

Hosted services have to meet defined Service-Level Agreements (SLA). Service downtime 

causes  business  loss.  Therefore  high  availability  is  required  in  data-center  design  and 

implementation. Not only is redundancy included in servers, clusters, and network setup, but 

also in cooling and power-support systems (see Figure 1.3).

1.3  Challenges and Solutions

Data-center infrastructure not only requires a large initial cost ($100 million for the Amazon 

data center in 2008 [53]; $500 million for a Microsoft data center in 2010 [52]), but also a 

high operational cost (ranging from $10 million to $14 million per year on a 125,000 sq-ft 

data center with 75 staff, from a 2006 survey [54]) for power consumption, service operation, 

and infrastructure repair.

Data  center  infrastructure  needs  considerable  human  resources  to  maintain  their 

operations;  an  interview with  Facebook  [62]  inferred  a  ratio  of  one  admin  staff  to  130 

servers. As technology develops, people need more advanced knowledge to provide proper 
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maintenance to systems. Compared to hardware cost, well-educated people are scarce and 

expensive. While hardware costs continually drop, people's salary and benefits continually 

increase.  To operate  data-center  services,  the needed people bring significant  operational 

cost. 

 To minimize cost, different research has focused on different aspects of the problem. 

Google [2] studied various service-request loads, the performance from cheaper commodity 

servers and expensive super servers, and TPC-C price/performance data; they suggest using 

commodity servers that  could reduce the initial  purchase cost and later  replacement  cost 

without impact to the provided service performance. Other than optimizing the operational 

process, the concept of Autonomic Computing [1][8][9][10][14] focuses on providing more 

automated  solutions  to  help  on  relieve  the  human  cost  involved  in  various  computer 

operation issues.

1.4  Automatic Recovery Problem

One of the key problems in data-center operation is to deal with server errors and failure. 

Bianca et al. [55] studied server failures in the Los Alamos National Laboratory. The failures 

they recorded only identify application interruption or server outage. Their result shows one 

system has almost 1200 failures per year. After the result is normalized by processor numbers 

in each system, it shows the average failures per year per processor is 0.3 and the worst was 

0.65. They observed the failures grow proportionally with the number of processors in the 

system. As their study data was collected from systems built over a 9-years time frame with 

different technologies,  they also observed that the failure rate has not changed over that 

period.

Translating this result to a data center with 50,000 servers each with 8 processors, it  

would average 120,000 processor failures each year. That means a failure would happen on 

average every 4.38 minutes. 

Daniel [56] studied Internet data centers with a performance and availability model. 

In the study, he illustrated an setup of 120 servers, each with Mean Time To Failure (MTTF) 
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of 500 minutes, and repair staff average take 20 minutes to recover the system; In order to 

maintain the performance standard in terms 100 out of 120 servers should be in operation, 10 

staffs are needed. Translating this example to a data center with 50000 servers and each with 

MTTF of 50000 minutes, to maintain the same performance, more than 40 repair staffs are 

needed. The average IT staff now cost $44.85 per hour [51], which translates to $93267 per 

year by counting 40 hours per week and 52 weeks per year. So all the repair staffs will cost 

about $3.73 million per year to maintain this type of data center, this is just the human cost 

dealing with the error fixing.

The  recovery is not only related with human cost, but also takes time to finish the 

fixing work that is represented by MTTR Mean Time To Repair, which is a downtime to the 

system that may even have many kinds of higher cost impacts – e.g. The lost business value 

($108,000  a  minute  in  lost  brokerage  operations,  $43,000  a  minute  in  lost  credit  card 

operations [58]), the penalty for SLA violation [4], or the cost induced by running the backup 

system or environment.

Target on the human workload and cost in recovery, Autonomic Computing, ROC 

[12]  and container based modular data center [28] proposed different solutions. However 

they  did  not  consider  the  situation  after  an  error  is  reported,  among  multiple  available 

recovery actions, which one should be choose from the overall recovery cost perspective.

The Microsoft Autopilot data center study [6] proposed a simple heuristic recovery 

action selection policy which simply escalate from the recovery action with minimal known 

MTTR to the one with highest known MTTR. It shows the consideration of the downtime 

cost but not specific target to the overall cost perspective. Our thesis designs a new model for 

automatic  recovery  action  selection  policies.  The  new model  should  be  able  to  select  a 

reasonable recovery action without the known MTTR of each recovery action, and it should 

based on a cost model.

1.5  Contribution

The work in this thesis makes the following contributions:
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• we proposed a minimum total-recovery-cost model for data-center self-management. 

Our  policy  is  a  self-adaptive  approach,  bootstrapping  by  itself  with  no  need  for 

historical information. It can also add and adapt to any new recovery actions. We 

study and provide suggestions to shorten the initial learning curve in the model and 

provide preferred policy parameters based on our simulation results.

• We  develop  different  policies  from  our  cost-based  model,  and  demonstrate  the 

advantage over the Autopilot heuristic policy.

1.6  Thesis Organization

The remaining thesis is organized as following: Chapter2 provides background knowledge of 

the computer error and recovery systems, together with auto-recovery information. It also 

introduces  discrete  event  simulation.  Chapter3  describes  our  cost-based  recovery-action 

selection  policy  and  illustrates  with  a  walk-through  example.  Chapter4  describes  our 

simulator  design  and  implementation,  as  well  as  the  simulation  test-data  generation. 

Chapter5 explains the evaluation criteria and objective policy, presents the test setup, and test 

results.  Chapter6  discusses  policy  improvement.  Chapter7  summarizes  our  studies  and 

suggests some directions for future work.
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Chapter 2  Background

This  Chapter  provides  the  background  information  needed  to  understand  our  automatic 

recovery-policy research. There is substantial related work regarding computer errors and 

how to fix them. After clarifying the definitions of computer fault,  failure and error, and 

related  terminology,  the  concepts  of  Autonomic  Computing  and  Recovery-Oriented 

Computing are introduced. These concepts provide ideas regarding management of computer 

failures and errors.  After that,  techniques used to  detect  and analyze errors,  followed by 

different  recovery  actions  are  presented.  Based on this  background knowledge,  recovery 

policy and related research is discussed. To help understand our experiment environment, 

discrete-event simulation is also described.

2.1  Fault, Error and Failure

The words  “Fault”,  “Error” and “Failure”  are  often  misused.  The IEEE [32]  has  clearly 

defined these, and associated terms, which we presented here for clarity.

• System:   An entity that interacts with other entities, i.e.,  other systems, including 

hardware,  software,  humans,  and the  physical  world  with  its  natural  phenomena. 

These other systems are the environment of the given system. The system boundary is 

the common frontier between the system and its environment. 

• Service: The service delivered by a system (in its role as a provider) is its behavior as 

it is perceived by its user(s); a user is another system that receives service from the 

provider. The part of the provider’s system boundary where service delivery takes 

place is the provider’s service interface. The part of the provider’s total state that is 

perceivable  at  the  service  interface  is  its  external  state;  the  remaining  part  is  its 

internal state. The delivered service is a sequence of the provider’s external states. 
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• Correct  Service:  Correct  service  is  delivered  when  the  service  implements  the 

system function. 

• Service Failure: A service failure, often abbreviated here to failure, is an event that 

occurs when the delivered service deviates from correct service. 

• Service Outage: The period of delivery of incorrect service is a service outage. 

• Error: A service failure means that at least one (or more) external state of the system 

deviates from the correct service state. The deviation is called an error. The definition 

of an error is that part of the total state of the system that may lead to the system's 

subsequent service failure. It is important to note that many errors do not reach the 

system’s external state and cause a failure. 

• Fault: The adjudged or hypothesized cause of an error is called a fault. 

• Partial  Failure:  When the  functional  specification  of  a  system includes  a  set  of 

several  functions,  the  failure  of  one  or  more  of  the  services  implementing  the 

functions may leave the system in a degraded mode that still offers a subset of needed 

services to the user. The specification may identify several such modes, e.g., slow 

service, limited service,  emergency service,  etc.  Here,  we say that the system has 

suffered a partial failure of its functionality or performance. 

From these definitions, we know that error is defined in the entire system scope and 

may not cause a service failure which shows in the external state. In our research we assume 

an error detector which reports any errors in the system that may cause the service to deviate 

from the defined specification, causing either full or partial service outage. In this way, we 

simplified our discussion and the implementation of simulation just to two parties – error or 
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failure is what has been detected and cause service away from SLA, fault is what behind the 

error as the root cause.

2.2  Autonomic Computing

The  Autonomic  Computing  concept  was  created  by  IBM  researchers  [8]  to  address 

management costs in complex computer environments.   While computer systems provide 

more services, they have also become more complex and bulky. As systems continuously 

expand, the size and complexity is approaching or exceeding human management capability. 

System operation and management costs are significant to businesses. Autonomic computing 

believes the solution is to have the system self manage, with operators specifying policy. 

2.2.1  Autonomic Function Aspects

Autonomic  computing  defines  system  self-management  as  addressing  four  functional 

aspects: 

• Self-Configuring

• Self-Healing

• Self-Optimizing

• Self-Protecting

Self-Configuring

A computer-system environment in a data center is usually composed of different hardware 

(switch, router, firewall, server, load balancer, storage array, etc.) and software (operating 

system, database, web server, application server, framework utility, application, etc.).  The 

integration and configuration of these components is complex and error-prone.

A self-configuring system is one in which this work is done automatically by the 

system. New components register to the system, which can also discover,  configure,  and 

adapt to the existing components, meanwhile existing components can discover, configure, 
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and  adapt  to  new components.  They  automatically  melt  together  and  form new system 

capabilities. This adaptive process is continued for any environment changes at run time.

Self-Healing

The hardware and software components in a data center have errors. These errors have not 

only a cost to fix, but also the opportunity cost caused by system downtime. 

The idea of self-healing is to let system overcome any errors encountered by itself, 

without significant downtime. The system should be able to detect any errors, analyze the 

cause if necessary, and recover without noticeable service interruption. Recovery-oriented 

computing  provides  some  ideas  and  techniques  in  this  area.  Our  research  also  address 

solution for automatic recovery.

Self-Optimizing

As  many  parameters  exist  in  both  hardware  and  software  components,  adjusting  these 

parameters to achieve optimal performance introduces a lot of issues. The optimization of 

some parameters  in  a  system may  have  a  negative  impact  on  the  performance  of  other 

systems. Experts familiar with subsystem optimization are scarce and expensive. To optimize 

and balance the overall system performance is more complex still.

Self-optimizing requires  the system to  adjust  itself  for  the  best  performance.  The 

system should be able to identify optimization opportunities under a changing environment, 

analyze the impact, and optimize the system with minimal overhead.

Self-Protecting

Even  though  firewalls  and other  security  appliances  are  installed,  malicious  attacks  still 

happen. The consequence of a successful attack is loss to the organization. 

Self-protecting  has  the  system  anticipate,  detect,  and  defend  itself  against  wide 

attacks and cascade failures. It should also correct the whole system from any attacks that 

can not be recovered by self-healing. This capability further reduces operational cost.
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2.2.2  Autonomic-System Architecture

The  proposed  autonomic-computing  architecture  [8][11]  is  a  recursive  structure  of 

components  (see  Figure  2.1).  Each  component  is  called  an  Autonomic  Element.  Each 

element should implement the four autonomic-computing functions, making each element a 

small self-managed system. The Autonomic Element is the building block to form a larger 

self-managed system. The formed structure could be a tree or an arbitrary graph.

An Autonomic Element contains an Autonomic Manager and one or more Managed 
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Elements. Inside the Autonomic Manager there are sensors collecting data from the Managed 

Elements;  a  monitor  watches  the  data  collected  by  the  sensors  and  filters  the  data  for 

analysis; from the analyzed result an execution strategy is planned and executed; knowledge 

required for this is shared as necessary; finally the effectors execute the desired actions in the 

Managed Elements.

The autonomic-computing concept defines the desired system capability to address 

many issues in today's complex computing environment. Our cost-based automatic-recovery 

policy provides a practical solution for the self-healing aspect, as well as addressing some 

aspects of self-configuring and self-optimizing (e.g., it can adapt to new recovery actions, 

and it  continuously optimizing for  the selection of  the best recovery action).  Our policy 

implementation is similar to the autonomic-component structure.

2.3  Recovery-Oriented Computing

Another approach for dealing with computer failures, errors, and faults is Recovery-Oriented 

Computing (ROC), which focuses on fast recovery from failures and offers high availability 

for Internet services.

2.3.1  Motivation

In the past several decades, the price to purchase computers has dropped significantly. In 

contrast, the cost of human intervention is higher and higher. Meanwhile, the capabilities of 

hardware and software result in more users of these systems, and more system administration 

work is involved. As a result, more and more failures of systems are caused by human, such 

as system operators, or system administrators.  The surveys on public switched telephone 

network and three internet sites show that the operators cause 59% and 51% failures in those 

systems respectively [12][38]. Not surprisingly, the total cost of ownership (TCO) remains 

high, and a large portion of the TCO is from human operator error. ROC is hence motivated 

to achieve higher availability and lower TCO.
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2.3.2  Principal and Hypotheses

ROC states the following principal and hypotheses [33][12]:

• Failure modes are not predictable. Failures are caused by imperfect and incompletely 

modelled systems; thus they can not be foreseen. In addition, David Patterson et al. 

[12] stated ROC's guiding principle – the failures, faults, errors are facts to be coped 

with, not problems to be solved. 

• Recovery performance is more important than computing performance

• TCO is more important than software and hardware purchase cost

By concentrating on Mean Time to Repair (MTTR) rather than Mean Time to Failure 

(MTTF), ROC offers higher recovery performance and system availability. Faster recovery 

time  impacts  Total  Cost  of  Ownership  (TCO)  as  well,  so  that  it  improves  system 

dependability. 

2.3.3  ROC Techniques

Online Verification of Recovery in both development and production environments. Unlike 

functions that are well tested before put into production, recovery is hardly verified. This 

causes the case in which recovery is not working in production. However, it is difficult to test 

real  faults  in  these  environments.  FIG  (Fault  Injection  in  glibc)  [12][34]  provides  a 

lightweight, extensible tool for simulating, injecting, and logging errors in a running system. 

It not only can be used in development environments to make the system more robust, but 

also can be used in production environments to expose environment-related errors that are 

unable to be detected in the testing phase. The verified environment is then more likely to 

correctly recover from errors to achieve higher dependability.

Facilitate  diagnostic  support.  Complex  computing  environments  make  it 

challenging to detect system problems and identify their root causes quickly.  Traditional 

tools  rely  on  static  dependency  models  which  can  not  keep  up  with  the  changing 

16



environments.  Pinpoint  [12][36],  a  diagnostic  tool  implemented  in  J2EE,  enables  error 

detection and analysis without any knowledge of the systems being monitored or requests. It 

records  the  components  that  are  used  to  response  each individual  client  request,  detects 

internal  faulty  components  and external  end-to-end  failures,  and  distinguishes  the  faulty 

components based on the collected data. This greatly helps administrators to rapidly recover 

from system failure, resulting in lower TCO.

Partitioning for rapid recovery. To recover a large-scale system in one shot can be 

expensive,  resulting  in  service  disruption  and  long  downtime;  critical  systems  can  not 

tolerate this disruption. Partitioning the system to modular and lower coupling subsystems 

can contain the error locally, causing less impact to the overall running system. Microreboot 

[12][13][35][37]  adapts  this  technique  to  partially  restart  the  affected  components  of  a 

system without  interrupting  the  whole  system,  and  masks  failures  from end  users.  This 

practical ROC technique achieves low-cost recovery.

Undo  enabled  system  with  safety  margin.  Human  error  may  be  caused  by 

performing incorrect actions or performing actions correctly but not intentionally. This type 

of human error is usually hard to correct in ordinary systems. System with Undo capability 

enabled [12][35][40][41][42] support retroactive repair and recovery from human errors, thus 

improving system dependability.

Undo is  based  on three R's  of  rewind,  repair,  and replay.  In  the  rewind step,  all 

system state is reverted to the time before the error happened. In the repair step, the operator 

takes actions to correct the mistakes or prevent the errors. Finally, in the replay step, all the 

user interactions are executed again to make sure the information between the rewind point 

and the present would not be lost.

Defence  in  depth.  Cascading  failure  may  easily  crash  normal  protection 

mechanisms; with more levels of protection, a system may survive from even worse failure, 

that makes the system more dependable. For example, multiple levels of firewalls and virtual 

machines on top of real machines make systems safer and more robust [12].

Redundancy and fail fast. In the physical world, the production of physical objects 

involves non-negligible cost and time. However, in software systems, multiple component 

instances can be created with no substantial cost. Redundant component instances can avoid 
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a single point of failure. Moreover, when a component fails, kill it and start a new one is 

frequently much faster and cheaper than diagnosing the root cause and fixing it. [12]

2.4  Error Detection and Analysis

Being aware of an error in the system is the first step in automatic recovery. There is much 

research focused on error detection, and many approaches for figuring out the root cause 

behind the error. Some research also considers the overhead of doing error detection and 

analysis, and seeks solutions to minimize it.

2.4.1  Supercomputer System Log Study

Oliner et al. [19] studied system logs from five supercomputers in order to explore issues that 

should be considered in automatic error detection.  The log study itself  was done offline. 

After collecting the logs, alerts were identified by using regular expressions. Due to many 

duplicate alerts, a temporal-based filtering was performed. Finally, the modelling of failure 

timing was conducted.

From  this  study,  some  recommendations  were  provided  for  automatic-detection-

related research. The big issue for accurate error detection is missing operational context: this 

information  will  help  understanding  the  expected  system  behaviour.  There  are  more 

difficulties  in  finding  the  root  cause:  the  logging  system  itself  may  be  corrupt;  many 

duplicated or similar alerts could be triggered by one error; different categories of error have 

different  signatures;  the  system continuously  evolves;  filtering under  these issues  is  also 

difficult. To analyze the root cause accurately needs further research.

2.4.2  Early Warning Principles

Dorron et al. [18] studied alarms logged in telecom voice-mail systems. Due to the different 

customer-environment configurations, in stead of providing a rigid algorithm, they provided 
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three principles to achieve early warning of system failures.

The first  principle  is  to  simply  count  all  alarms  in the system. By averaging the 

counting number in a period, a stabilized number can represent the normal operation of the 

system;  an  increased  number  indicates  some  developing  problem,  whereas  a  decreased 

number shows some fixes were done. This principle can not point out the potential faulty 

sub-system, but gives early warning for the over all system which is still helpful for bringing 

attention and applying early actions.

The second principle is to count alarms for each sub-system individually, mix and 

rank them into a Pareto diagram. The stabilized Pareto ranking presents normalcy; ranking 

changes and an increased alarm counter of a sub-system indicates a potential failure of that 

sub-system. Also, a similar approach can be used to count alarms from different alarm IDs 

inside each sub-system; ranking changes for different alarm IDs indicates a problem with that 

sub-system. This principle provides more accurate warning to the sub-system level.

The third principle is to count clusters of some alarms. Application and operation 

experts can usually determine some appropriate grouping of alarms; the alarm count from 

these selected groups can provide a much earlier warning for the related sub-system.

These principles were applied to customer systems, and successfully demonstrated 

early warning for system failures. While this study is interesting, it is not a fully automatic 

solution and can not be directly used in a generic system.

2.4.3  Adaptive Monitoring With Statistical Models

A series of studies [15] [16] [20] were conducted by Munawar and Ward. They utilized linear 

regression  statistical  models  to  detect  errors  and  analyze  faults  in  a  generic  application 

environment (J2EE). They also utilized an adaptive-monitoring approach to minimize the 

monitoring and analysis cost.

This  monitoring  involves  three  phases.  The  first  phase  is  model  building.  It  is 

assumed there are no faults in this phase; the target system is run and metrics are collected.  

Based  on  those  metrics  linear  correlation  models  are  learned.  A  subset  of  the  most 

representative metrics and models are selected based on whether they are associated with a 

19



majority of the system components.  The system is then ready for minimal monitoring. This 

monitoring phase is based on a small subset of metrics and models, so the cost is minimal. In 

this phase, if deviation from the model is observed, an anomaly is deemed to be happening in 

the system. Then system gets into detailed monitoring, so as to determine if the anomaly is a 

glitch or significant. In this phase, system collects and studies all learned metrics and models 

related with those deviation metrics and outlier models. From the intensive data collections, 

the components associated with relative more outlier models were selected to a suspected 

faulty component list with rankings. This phase incurs relative higher cost to the system, 

however only happens in a short period when system is suffering error.

With a minimum impact to the system, the results show that errors generated by 28 of 

29 injected faults  are detected,  and the faulty  component  is  shortlisted 65% of the time. 

While this  is almost perfect for automatic error detection,  fault  analysis  only produces a 

suspected-faulty-component list, not the exact component and not the root cause behind that 

fault.

2.4.4  Integration of Monitoring Data

Munawar and Ward also proposed an architecture [17] to integrate monitoring data from all 

sub-systems. These heterogeneous systems have different monitoring data types and formats. 

The proposed solution adds parsers and other conversion engines to different sub-systems 

and  data  sources,  and  converts  the  source  data  to  the  Common  Base  Event  format  for 

problem analysis. Continuous monitoring data (e.g., CPU utilization) is not suitable for the 

discrete CBE data format; it is also not feasible to be continuously collected due to the high 

collection  cost.  By  utilizing  their  previous  adaptive-monitoring  work,  they  create  a 

continuous  data  monitoring  engine.  The  engine  keeps  monitoring  the  system  for  those 

numeric data at a minimum level; when a problem is detected, it is then reported using a 

behavioural model which is CBE compatible; detailed monitoring can be engaged for further 

analysis.  The engine  makes  the  conversion  of  continuous  monitoring  data  feasible.  This 

architecture integrates all types of data from all sources, providing a more comprehensive 

picture to the event analyzer for better system analysis.
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The previously described ROC PinPoint system is also an error-detection solution. 

The results from this research are encouraging. We noticed that most research did well on 

error  detection; however  they are not  reliable  on determining the root  cause.  No current 

solution is able to point out the exact fault behind an error; they usually can only give a range 

of faults.

Our research is not focusing on the error-detection area; instead, we use the error-

detection  result.  We  rely  on  a  good  error  detector  which  not  only  notices  every  error 

requiring  recovery,  but  also  provides  feedback on whether  or  not  the  previous  recovery 

succeeded by noticing if anew error happens shortly. 

2.5  Recovery Actions

After an error is detected, we need a recovery action to solve the problem. We describe some 

automatic recovery actions in this section.

2.5.1  Reboot and Micro-Reboot

One of the automatic recovery actions is reboot. Desktop computer systems were not very 

stable in the past, they may hang in a couple hours. Pressing the reset button is a quick and 

effective way to make the system work again. In the automatic approach, we just need to 

send a reset signal if the system has completely hung, or send a reboot command if the 

system is still responding at a certain level.

During the restart process, if the system needs load too many libraries and drivers, set  

up the environment, and run batch jobs for loading many applications, the reboot may still 

take  a  long  time  which  means  high  cost.  Micro-reboot  [12]  [13]  realizes  the  ROC 

partitioning technique by rebooting a part of the system not the whole system. For example, 

it may restart certain processes or components. However, this approach may require some 

fault information to be provided regarding where the fault is: in which process or component.
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2.5.2  Re-Image

Another automatic recovery action is to re-image the system. After the system has run for a 

long period it may show problems caused by corrupt files or minor disk errors. The re-image 

approach  [6]  is  to  format  the  disk,  reinstall  the  Operating  System,  and  then  reinstall 

applications. The freshly reinstalled system usually makes those problems go away. Virtual-

machine  technology  makes  re-imaging  even  simpler.  Since  the  whole  virtual-machine 

instance, including OS and applications, is just a virtual disk, either an ordinary file or a disk 

file; replacing that file can achieve the same re-imaging result as the traditional way. 

2.5.3  System Rejuvenation

For  long  running  systems,  the  phenomenon  of  software  aging  usually  leads  to  system 

degradation, possibly crash the entire system. The causes of this degradation may be software 

bugs or unexpected errors, memory leaks, data corruption, unreleased file locks, etc. Unlike 

Reboot,  which  takes  action  after  a  system failure,  Software  Rejuvenation  [44]  prevents 

system degradation and failures in the future by proactively terminating the system, cleaning 

its  internal  states,  and then restarting the system. This  can be done at  a scheduled time, 

potentially resulting in lower cost. 

The methods to determine and optimize the rejuvenation schedule vary. For example, 

some studies [44][45] used a time-based rejuvenation model, Bobbio et al. [48] optimized the 

rejuvenation policies by using fine-grained software degradation models, Garg et  al.  [47] 

considered  the  time  and  workload  as  the  factors  to  model  the  rejuvenation  policies, 

Vaidyanathan et al. [46] used Stochastic Reward Nets (SRNs) for the rejuvenation model 

under a cluster environment.

2.5.4  Roll Back

The rollback recovery action takes a checkpoint (also called a log) of the system state at 

various times when the system is assumed to be healthy. When errors are detected, a recent 
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checkpoint can be used to restore the system to a healthy state.

A typical utilization is the database check pointing mechanism [49][50]. It takes a 

snapshot of a healthy database and log the data at a given time interval; when the database is 

crashed, it will restore and restart the database using those checkpoints, which can limit the 

recovery time and restore the most recent user data, hence avoiding significant business loss.

2.5.5  Other Recovery Actions

Other than the actions we described above, there are still  other recovery actions such as: 

release disk space by deleting or moving files in directories that can fix system failure due to 

a disk-space shortage; this may be a lower cost recovery action compared to reboot; upgrade 

operating systems and install other software patches to fix some software bugs.

2.6  Recovery Policy

After errors has been detected and reported, the question to be addressed by the recovery 

policy is what action should be used? If we know what is the fault behind the error, and what 

actions can fix which faults, what is the cheaper action among them, it would be easy to 

select the action. Without knowing exactly the fault, what is the best action among several 

candidates? So far just a couple research papers have focused on this area.

The recovery action done by a human expert usually has the most expensive recovery 

cost, although it is assumed they can always fix any problems. We want to save the cost by 

reducing request to a human. By way of analogy, in our life, if any glitches happen in our car 

we go and see the mechanic; that would cost a significant amount of money for an old car or 

we may not even be able to afford it. The usual solution is to try a couple of easy and cheap 

techniques we know; only the remaining unsolvable problems will go to the mechanic. This 

way we can avoid a lot of unnecessary visits to the mechanic and hence save money and 

time. A similar idea can be applied to computer system recovery: let the computer system 

apply several low-cost automatic recovery actions to the error, and observe the result; if the 
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problem still exists, the operator will  finally be notified for further action. The Autopilot 

solution [6] adopts this concept.

2.6.1  Autopilot Recovery System

The Microsoft  Autopilot  system provides  a complete  automated data  center  management 

solution, which includes automatic software deployment and provisioning management, as 

well as automatic recovery management. As our study is focusing on automatic recovery 

policy, we only show that in Figure 2.2.

In  the  system,  each server  is  monitored  by  one  or  more  watchdog.  Some of  the 

watchdogs monitor different functions on the server, such as memory, disk, etc. Some of the 

watchdogs monitor different applications on the server. A watchdog can report “error”, “OK” 
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or “warning” to the central Device Manger. The Device Manger deems a server has an error 

as long as there is one watchdog associated with that server which reports an error.

The Device Manager maintains the status of all servers (Figure 2.3). When an error is 

detected on a server, the server is marked as “Failed”. After a recovery action is selected and 

performed  on  the  server,  the  sever  state  is  moved  to  Probation.  If  no  error  happens  in 

probation for a defined period, the server is deemed healthy. If an error happens while the 

server is in the probation state, the server state is moved back to Failure.

The Device Manager selects a recovery action from the list: Do-Nothing, Reboot, Re-

Image,  Replace/Go  Operator.  The  decision  is  based  on the  error  type  and  recent  server 

history. If the error is a fatal error, like disk or other hardware error, the recovery action 

Replace/Go Operator will be selected. If the error is non-fatal, and the server has had no error 

for a long period, the Do-Nothing action will be selected based on the assumption that the 

error is temporary. However, the server will be placed in probation. If there is another error 

on the server in a short period (while it is in probation) the Device Manager will escalate the 

selected  recovery  action  from  Do-Nothing  to  Reboot,  to  Re-Image,  and  eventually  to 

Replace/Go Operator. These selected recovery actions will be performed by Repair Service 
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on the problematic server.

2.6.2  Autopilot variations and limitations

Moises et  al.  [3]  added the recovery actions (non-destructive re-imaging, destructive re-

imaging, software upgrade, etc.) but still used the Autopilot recovery action selection policy, 

refining it with a survival analysis and statistical machine learning. Guy et al.  [5] took a 

similar approach but their refinement used a Partially Observable Markov Decision Process. 

These techniques provided a refinement on a base policy but did not provide any new policy 

model. However the base policy has the following problems:

1. In the  recovery action escalation ladder, the higher  recovery action can resolve all 

issues the lower action can resolve.  This may not always be true,  particularly when 

more  recovery actions  are  available; the  potential  effects of  various  actions may 

overlap or may be completely unrelated.

2. It  assumes  that the higher  recovery action will cost more than the lower one. This 

may not be true, when more actions are available.

3. These assumptions imply the recovery cost and effect are clearly known in advance. 

This restricts the initial adoption and future dynamic expansion of the policy.

4. Another implication from the above assumptions shows the cost and recovery effect 

has linear relationship. This may not always be true, one recovery action may cost the 

same  or less  but  can  resolve  more problems  comparing  to  another  action. For 

example, in virtual machine environment, the re-image could be as fast as reboot but 

with more recovery effects.

5. Moreover, the initial choice is always fixed with Do-Nothing, this may be a waste of 

time in terms of cost. 

Autopilot solution does consider to select the recovery action based on the lowest 

cost,  however  the selection  is  not  adjusted  on the real  recovery action cost  and without 

considering the real recovery effects. We will address these problems and provide a new base 

policy model. 
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2.7  System Simulation

To  study  different  policies,  the  best  environment  is  a  real  computer  data  center  with 

thousands  of  servers  and  running  different  policies  for  long  periods  to  collect  data  for 

comparison. Due to the quantity of the servers involved and the critical services they support, 

this kind of environment is not feasible for our experimental purpose. A simulation approach 

is therefore preferred.

While there are several cloud simulation systems, such as the Open Cirrus Testbed 

[30], CloudSim Toolkit [21] [27], SPECI [22], and others [29],  they do not focus on, or even 

consider, automated recovery in their  designs. We  therefore  decided to  design a  discrete-

event simulator for our research, hoping it could also benefit other similar research.
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Chapter 3  Total Cost Based Policy Design

Following the Autopilot approach, without knowing the exact fault or any fault information 

at all, we wish to select the best recovery action among a list of recovery actions. While still 

using  the  Autopilot  three-state  recovery  mechanism,  is  there  a  better  policy  than  the 

Autopilot simple heuristic policy? Can we know the recovery-action cost more accurately 

than just guessing? Can a policy be made based on a generic cost model and reduce the 

overall recovery cost? Our automatic recovery-action selection policy research is focused on 

these questions. First we create a cost-based model for recovery-action selection. Then we 

define policies to use that model. Finally, we walk through a concrete example to show how 

it works.

3.1  Problem Modelling

Our approach to the problem is to model the effects of recovery actions on errors. We do so 

by modelling the probability that any given recovery action will fix a fault. We then study the 

problem of recovery action cost.

3.1.1  Modelling Recovery Probabilities

Suppose  a  system  has  faults  f_1,  f_2,  ...  f_n  and  recovery  actions  R_1,  R_2,  ...  R_r. 

Recovery action R_i has some probability P_i_j of fixing fault f_j.  There are different ways 

to model this.  One way is to say that R_i either succeeds or fails.  Thus, the probability that  

R_i fixes f_j is one of {0,1}, and nothing else.  In such a model, there is no point in trying  

recovery action R_i twice.  It either succeeds or it cannot.  Alternately, a recovery action may 

have  some  non-perfect,  but  non-zero  probability  of  success,  in  which  case  it  might  be 

reasonable to retry the recovery action.

Examples  of  the  first  case  are  any  system in  which  faults  are  deterministic.  For 
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example, a car will not move. The underlying fault is that the car is out of gas. Filling up the 

tires with air has zero probability of solving the problem; adding gas to the car has 100% 

probability  of solving the problem. Filling up the tires with air  twice will  not  make the 

situation any better.  

Examples of the latter case are any system in which faults are non-deterministic. For 

example, a loose electrical connection in a plug; pulling out the plug and putting it back in 

may succeed with some probability that is less than 1 but more than zero.  Retrying this 

procedure a few times may be a reasonable course of action.

Similarly,  there  are  examples  in  software  for  deterministic  faults.  For  example,  a 

service fails to run properly. The underlying fault is that there is a file corrupted. Rebooting 

the system has no chance to solve the issue at all; re-imaging the system can always solve 

this issue.

There are non-deterministic fault examples in software as well. For example, a web 

application will display newly added customer data in the last 5 minutes in one page; some 

times the page can not be displayed. The underlying fault is there is not enough processing 

memory for producing all the data in one page. Doing nothing some times works, because 

there is less customer data added in the previous 5 minutes. Some times it does not work 

because  more  customer  data  is  added  suddenly.  A similar  result  happens  with  reboot. 

However, rollback to a previous version may make the system work better, because there is  

more memory allocated in the previous version. Although it works better, it still may fail 

under extreme customer data input volume. Upgrading to a newer version with a paging 

function built-in can completely resolve the issue. So the Do-Nothing, Reboot, and Rollback 

recovery actions have a certain probability to make the problem disappear for a period of 

time, but will not always succeed.

In the situation where the fault behind an error is unknown, suppose a system has 

recovery actions R_1, R_2, ... R_r and recovery action R_i has some probability  PRi  of 

fixing errors in the system. This probability is the overall recovery-action success probability 

in the system. From a deterministic fault perspective, this system-wide success probability 

actually  represents  the fault  distribution;  the success  probability  is  the percentage  of  the 

encountered  errors  with  faults  which  the  recovery  action  can  always  fix.  Conversely,
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1−PRi is the percentage of the encountered errors with faults which the recovery action 

can never fix. From a non-deterministic fault perspective, the  PRi  system-wide success 

probability  is  the combination of fault  distribution and the recovery action effectiveness. 

Without  more fault  specific  information,  it  is  not  possible  to  know what  fraction  of  the 

probability is due to the fault distribution and what is due to non-determinism.

3.1.2  Recovery-Action Cost

In order to create a cost-based model, first we want to look at what is the cost of the fault and 

what types of cost are involved in recovery. As mentioned in the introduction, the service 

outage in terms of downtime may cause many types of cost, such as business loss, human 

cost,  etc;  however,  they  are  all  a  consequence  of  the  service  outage.  They  may  have  a 

different  relationship  with  the  service  downtime  in  different  organizations.  Due  to  the 

dependency to the individual organization and the derivation from service downtime, we 

simplify the cost as service downtime, and assume this includes the recovery cost as well as 

the cost due to the downtime.

When recovery action Ri is applied to an error, it may succeed or fail. The different 

results  will  introduce  different  costs:  CsRi cost  of  recovery  action  Ri  succeeded  and 

Cf Ri cost of recovery action Ri failed.

For the average cost of using recovery action Ri and it succeeds, the recovery action 

success unit cost UCsRi :

UCsRi=

∑
m=0

AsRi

CsRim 

AsRi

Where AsRi is how many attempts the recovery action Ri succeeds.

For the average cost of using recovery action Ri and it fails, the recovery action fail  

unit cost  UCf Ri :
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UCf Ri=

∑
n=0

Af Ri

Cf Ri n

Af Ri

Where Af Ri is how many attempts the recovery action Ri fails.

Therefore, the average cost of a recovery action is:

UC Ri=PRi∗UCs Ri1−PRi ∗UCf Ri (3.1)

3.2  Generic Cost-Based Model

As we know the average cost of each recovery action, and the probability they may succeed 

in the system, we are able to choose a recovery action with the least cost. However, the 

recovery action unit cost does not represent the total cost to fix the problem. The recovery 

action may fail; if it fails, we may try it again or introduce another recovery action. What 

then is the total cost to fix a problem by using various recovery actions? 

3.2.1  Estimated Total Cost of Recovery (2 actions case)

We start from a simple case with recovery action R1 and recovery action R2 only, and their 

unit cost and success probability are known. The total cost to recover a problem by selecting 

recovery action R1 depends on the cost if it succeeds and the cost if it fails. We first consider 

deterministic faults, so if action R1 fails, it is not worth retrying it. Therefore, the estimated 

total cost of selecting action R1 first is:

ETC R1=UCsR1∗PR1UCf R1ETC R2∗1−PR1

= UCsR1∗PR1UCf R1∗1−PR1ETCR2∗1−PR1 (3.2)
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When action R1 fails UCf R1 is incurred, and further recovery actions need to be 

used to finish the recovery. Under the failed case, as R1 has zero probability of success, the 

other recovery action R2 needs to be involved, and the similar ETC R2 total recovery cost 

of recovery action R2 is incurred. According to Equation 3.1, the final  ETC R1 estimated 

total cost of recovery action R1 can be simply expressed as Equation 3.3. 

ETC R1=UCR1ETC R2∗1−PR1
(3.3)

However, since R1 has been tried and failed, only action R2 is left. In this situation, 

recovery action R2 has:

ETC R2=UC R2

Hence, the estimated total recovery cost of selecting action R1 first becomes:

ETC R1=UCR1UC R2∗1−PR1
(3.4)

 

Similarly, the estimated total recovery cost of selecting action R2 first is:

ETC R2=UC R2UC R1∗1−PR2 (3.5)

The decision can be made to select action R1 first if 

ETC R1ETCR2
(3.6)

UC R1UCR2∗1−PR1UC R2UC R1∗1−PR2

UC R1UCR2−UCR2∗PR1UC R2UC R1−UCR1∗PR2

−UC R2∗PR1−UCR1∗PR2

UC R2∗PR1UC R1∗PR2
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The simple cases of this comparison are: if both action R1 and R2 have the same 

success  probability,  then  the  action  with  lower  average  unit  cost  will  be  selected  first. 

Conversely, if both actions have the same average unit cost, the one with higher success 

probability will be selected first. 

No matter  which recovery action is  selected first,  after  both actions are tried and 

failed, a same failed chance is still left:

1−PR1∗1−PR2

In this case, the order of selection is irrelevant to the actual cost, since the cost will be 

UCf R1UCf R2 . However, in general some recovery actions should succeed, in which case 

their costs and probabilities of success do affect the preferred order of action selection.

In addition, the success probability when both recovery actions are applied is:

1−1−PR1∗1−PR2

3.2.2  Estimated Total Cost of Recovery (3 actions case)

We now consider a more complex case. Where there are 3 recovery actions, so there are more 

choices if R1 has failed. Instead of the only estimated total recovery cost of selecting action 

R1 first  in previous example,  there are various estimated total  recovery cost of selecting 

action R1 first according to rest selection sequence in this case.

R1 -> R2 -> R3

Or

R1 -> R3 -> R2

When R1 is first selected and has failed, there is a choice to further try R2 or R3 

secondly: 
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ETC R1=UCR1ETC R2∗1−PR1

Or

ETC R1=UCR1ETC R3∗1−PR1

Clearly, to get the lowest ETC R1
, the minimum between ETC R2

 and ETCR3
 under 

R1 failed situation will be chosen. Assume R2 is chosen as second action and also fails, then 

R3 could be last tried.

ETC R2=UC R2ETC R3∗1−PR2 

At this point, both R1 and R2 has been tried and failed, so no more action if R3 will  

also fail, then the recovery action R3 has:

ETC R3=UCR3

Hence,  After  recovery  action  R1  has  failed,  the  estimated  total  recovery  cost  of 

selecting R2 as second action becomes:

ETC R2=UC R2UC R3∗1−PR2

Similarly, After recovery action R1 has failed, the estimated total recovery cost of 

selecting R3 as second action becomes:

ETC R3=UCR3UCR2∗1−PR3

The decision can be made to select R2 as second action if:

ETC R2ETCR3

UC R3∗PR2UCR2∗PR3

As the second recovery action with minimum recovery cost  selected,  the  ETC R1
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estimated total recovery cost of selecting action R1 first will have the lowest cost among its 

varieties. The same procedures also apply to deal with the various estimated total recovery 

costs  of  selecting  action  R2  and  R3  first.  After  their  second  recovery  action  selected 

respectively, the best estimated total recovery costs of selecting R1, R2, and R3 first are also 

generated. By comparing these best values of  ETCR1
,  ETC R2

, and  ETC R3
, the recovery 

action with the lowest cost will be selected to use first. These choices are illustrated in Figure 

3.1. To determine the minimum estimated cost, we must search this tree.

Again, no matter which recovery action is selected first, and second, after all three 

actions are tried and failed, a same failed chance is still left:

1−PR1∗1−PR2∗1−PR3
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And, the success probability when all three recovery actions are applied is:

1−1−PR1∗1−PR2∗1−PR3

3.2.3  Minimum Estimated Total Cost of Recovery 

We now extend the recovery actions to  an arbitrary number.  The estimated total  cost  of 

recovery will vary according to recovery action selection sequence (see Figure 3.1). In two 

actions case, there is one level of decision to make. In three actions case, there are two levels 

of decision to make. When more recovery actions are available, it will have more levels of 

decision to make. However, in each level of decision, it is the same approach to select the 

minimal estimated total cost among the candidate recovery actions under the same condition 

that the recovery actions thus far have failed.  Therefore,  we solve this  using a recursive 

search on the tree, the minimum estimated total recovery cost based action selection process 

can be summarized as:

min
Rx∈A

ETC Rx=UCsRx∗PRxUCf Rx min
Ry∈A , Ry≠Rx

ETC Ry∗1−PRx (3.7)

             = UC Rx min
Ry∈A ,Ry≠Rx

ETCRy∗1−PRx

This  formula  hence  becomes  our  generic  cost-based  model  for  recovery-action 

selection. Among a set of recovery actions, the one with minimum estimated total cost is the 

choice for recovery with lowest cost consequence.

This formula is derived from a deterministic perspective. The action recovery success 

probability is actually the fault distribution of encountered errors, and either some action will 

succeed or none will succeed:

Pnone=∏
i
1−PRi

Cnone=∑
i

UCf Ri
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If one succeeds, it depends on the recovery action selection sequence as to what the 

total estimated recovery cost is. The selection sequence is based on probability of success 

(i.e., fault distribution) and recovery action cost.

Along with  the  recovery  action  unit  cost  and recovery  action  success  probability 

modelling, to simplify this generic cost-based model, the following assumptions were made:

• The model and policy only deal with non-fatal errors.

This  assumption  is  the  same  as  in  the  Autopilot  heuristic  model.  The  different 

selections in their model are only for non-fatal errors; as for fatal hardware errors, there is no 

real fix choice other than to go to the operator.

• The model is based on deterministic types of fault and recovery actions.  

The second assumption  is  to  simplify  the  recursive  selection  –  under  a  recovery 

action failed case,  that recovery action is not worth trying again, because we are modelling it 

as  either  succeeding  at  recover  the  fault  with  probability  100%  or  failing  with  0% 

probability. This makes the recovery action itself not be the candidate recovery action when 

it  fails,  the  further  selection  under  its  failed  situation  will  have  less  recovery  actions  to 

choose; and until a level there is no more choice for candidate recovery actions, the recursive 

selection then ends. 

If it is based on non-deterministic model, there are two complicated issues here: the 

first issue is that the recursive selection becomes unlimited and will not end, because there is 

always a chance to retry the same recovery action even if it has failed; the second issue is 

that  the  accurate  success  probability  of  the  recovery  action  under  its  failed  situation  is 

unknown and hard to know. Assume an example based on independent recovery probability, 

fault f_i causes 50% errors in a system, and recovery action R_i has 80% probability to 

recover fault f_i and 0% probability to recover other faults; fault f_j causes other 50% errors 

in the system, and every other recovery action R_j has 0% probability to recover fault f_i; 
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assume there are 100 errors in the system, if R_i is selected in the first round, then 40 errors 

with fault f_i can be recovered, and the R_i probability of success in the first round attempts 

is 40%; there are 60 errors left, 10 with fault f_i and 50 with fault f_j, and R_i can recover 8 

out of those 10 errors with fault f_i in second round, so the R_i probability of success is 8/60 

(13.3%) in the second round attempts. The effect of recovery action on the second attempt 

will become more complex in complicated relationships between faults and recovery actions 

even though it  is  under  the  independent  probability  situation.  The dependent  probability 

situation  is  further  complicated  due  to  unknown  dependency  and  unknown  probability 

changes.  However,  we  will  consider  the  non-deterministic  cases  in  our  policy 

implementations.

This generic cost-based model to select the recovery action is based on the minimum 

total estimated recovery cost, which includes both the success case and fail case. The model 

also  requires  recovery-action  success  probability  data  and  recovery  cost  data.  We  now 

address the problem of how to acquire this data. 

3.3  Recovery Probability and Cost Observation

Our  generic  cost-based  model  is  built  on  the  recovery  action  success  probability  and 

recovery action cost. How these values can be collected? We created an observation model 

based on the Autopilot three-state recovery mechanism.

3.3.1  Recovery-Probability Observation

In the Autopilot recovery system, when an error is reported, the underlying fault is unknown; 

thus, we are not able to collect data on the probability of the recovery action successfully 

fixing a particular fault.  However,  we can track AtRi how many times we attempt each 

recovery action Ri to fix errors in the system and AsRi how many attempts it succeeds. 

Then, the probability that a given recovery action is successful in the system is:
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PRi=
AsRi

At Ri

3.3.2  Recovery-Cost Observation

What is included in service downtime? We assume every service error is detected within a 

small  time period in  the Autopilot  recovery system. Starting from detection,  the error  is 

reported to the central management service; a recovery action will be selected and executed; 

after the execution is finished, the service is in a probation state. From this process, we notice 

there is an error-reporting period, a recovery-action selection and execution period, and a 

probation period,  during which we do not know if  the recovery is successful or not (see 

Figure 3.2).

The error reporting and recovery-action selection period are likely negligible and so 

we ignore them. If  this  was not the case,  their  cost  can be absorbed by the cost of  the 
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recovery action execution and probation period, as discussed below.

The recovery action execution period is  potentially  significant.  Different  recovery 

actions may have different costs. Further, the use of different recovery actions is a direct 

consequence of the selection of different automatic recovery policies. We will capture the 

recovery action execution period as the service downtime DeRi .

The last  cost is probation. During probation, an error may happen that causes the 

server to return to the failure state; if this happens, it means the previously selected recovery 

action did not fix the error and the server is assumed to be still down. This duration is treated 

a service downtime.  We count duration  Df Ri  from the time a recovery action has been 

executed and server is in probation to the time an error happens while still in probation. In 

such a case,  we deem that  the recovery action has failed and the cost of attempting the 

recovery action was Cf Ri=DeRiDf Ri . Conversely, the recovery action succeeded and the 

system has no additional error during the probation period, we deem that the recovery action 

was successful and had a cost of CsRi=DeRi .

We define  Af Ri=At Ri−AsRi as the number of times Ri fails.  Therefore,  we can 

calculate the average cost of using recovery action Ri, which we call the recovery action unit 

cost UC Ri as:

UC Ri=

∑
m=0

AsRi

CsRi m∑
n=0

Af Ri

Cf Ri n

At Ri

In this case, we can simply track and calculate recovery action unit cost instead of 

tracking and calculating both success unit cost and fail unit cost.

3.4  Final Recovery Action

There is a problem with our generic cost-based model: it always has certain probability that a 

recovery action could fail,  so it  always needs other  recovery actions  to  finish the failed 
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recovery work. Even if all recovery actions are used, there is still a chance of failure. This 

makes the model calculation incomplete.

In reality, the problem could always be resolved by an operator and other second line 

or even third line support people. After their thorough analysis, they may make a patch to the 

system,  or  replace  some  hardware  components,  even  replace  the  whole  server.  In  our 

recovery-action selection policy, human recovery is still a choice but it usually is the last 

choice, and it can always fix any problems, so we define it as “Final Recovery Action”.

The Final Recovery Action has the following characteristics:

• It always succeeds in fixing any error (P=1.0).

• It has highest unit cost.

• Human involvement in the recovery action is assumed.

• It  could terminate the recursive selection calculation early,  depending on the cost 

associated with the action.

Because the final recovery action will be a choice in each recovery action selection 

chain, it makes the selection complete with no remaining chance of failure.  After the final 

recovery action is applied, because it is deemed successful, no probation period is assigned 

for it. The system moves to healthy immediately. Any error which happens after the applying 

final recovery action is deemed a new error.

3.5  Programing Algorithm Representation

Our generic cost-based recovery action selection model can be defined with the following 

pseudo code, which performance a depth first search over the recovery-action selection tree.
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Cost_And_Action minimal_Estimated_Total_Cost (Candidate_Actions set A)
{

Cost_And_Action result;
result.cost = 0;

while (set A is not empty)
{

Ri = retrieve next item from set A;

            UC_Ri = lookup_UnitCost (Ri);

P_Ri = lookup_RecoverySuccessProbability (Ri);

set B = remove Ri from set A;

if (result.action is empty OR UC_Ri < result.cost)
{

if (P_Ri == 1)
   mETC_Ri = UC_Ri;

else
mETC_Ri=UC_Ri+(1-

P_Ri)*minimal_Estimated_Total_Cost(set B).cost;

if (result.action is empty OR mETC_Ri < result.cost)
{

result.action = Ri;
result.cost = mETC_Ri;

}
}

} /while

Return result;
}

The recursive minimal_Estimated_Total_Cost function takes the passed in candidate 

recovery action set A and returns the result that contains the recovery action with associated 

minimal estimated total cost. The unit cost and recovery success probability lookup functions 

look up data  from a table  which is  updated when a recovery action is  executed  and its 

consequence is known. The judgment of unit cost UC_Ri and recovery success probability 

P_Ri could end the recursive calculation earlier  thus making it  more efficient.  However, 

further improving search performance is out of our scope.
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3.6  Policy Implementation

We define different policies to implement the generic cost-based model in different ways. 

The difference is focused on different considerations when the previous recovery action is 

failed.  When the  recovery  action  failed,  an  error  will  be  reported.  We assume this  is  a 

repeating error and is caused by the same fault as the previous error. While we do not know 

exactly which fault is, we assume it is the same fault as caused the previous error and we 

know which  recovery  action  was applied for  that  error  and that  it  failed.  Based on this 

information, we are able to adjust the probability of the previously used recovery action.

However,  as  required  by  estimated  total  cost  model,  policy  P2,  P3  and  P4  all 

implement the following basic functions:

• Recording the recovery action success attempts and total attempts

• Calculating and updating the recovery action success probability whenever there is a 

change

• Recording the recovery action accumulated cost

• Calculating and updating the recovery action unit cost whenever there is a change

• Calculation and selection based on the estimated total cost model from a candidate 

recovery action set  and based on the latest  recovery action unit  cost and success 

probability.

While Policy P1 is the implementation of the Autopilot simple heuristic policy, we do 

not further elaborate it. It is merely used for comparison.
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3.6.1  Policy P2

Policy P2 implements the cost-based model. However, Policy P2 tracks the recent recovery 

history for recovery actions and their  results  for repeat  errors;  makes adjustments to the 

candidate recovery action set accordingly. The used recovery actions for a repeat error are 

excluded  from  further  attempts.  This  policy  thus  assumes  deterministic  faults.  The 

adjustment process is as follows:

• First,  find  all  recovery  actions  that  have  been  tried  and  failed  to  fix  the  same 

repeating error.

• Excludes those recovery actions from the original set A to form a new set A.

• Apply formula with new set A to the new recovery-action selection.

Policy P2 makes the following assumptions:

• A recovery action has no chance to succeed in the second and more attempts for an 

error which is not fixed in the first attempt; i.e., the success probability after the first 

attempt is 0%. 

• A recovery action success probability in the first attempt equals the overall average 

success probability of this recovery action.

3.6.2  Policy P3

Policy P3 is a basic implementation to directly use the formula of Minimum Estimated Total 

Cost (minETC) in Recovery Action Set A under all circumstances. It always uses the current 

system-wide recovery action success probability and no adjustment is made to it. It assumes 

non-deterministic faults but it does not distinguish the first attempt to use a recovery action 
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from the second attempt, third attempt, etc. Hence, it never tracks the result of the recovery 

attempts to the same error. 

 In addition to assuming non-deterministic faults, Policy P2 assumes that a recovery 

action success probability for all is the same, and always equals the overall average success 

probability of this recovery action. This assumption is clearly false, but sets a baseline for 

comparison.

3.6.3  Policy P4

Policy P4 tracks the recent recovery history. Like Policy P3, it considers failed recovery 

actions  for  further  attempts  in  cases  of  repeated  errors;  however,  it  lowers  the  success 

probability  of any failed action for  the further  attempts.  This  more accurately takes  into 

consideration non-deterministic faults. The adjustment process is as follows:

• First, find out the number of attempts for each recovery action which has been tried 

and has failed to fix the same repeating error.

• Reduce the system-wide success probability of those tried and failed recovery actions 

by multiplying by a coefficient (0<X<1); we use Xn , where n is the number of 

attempts, the more attempts made, the more the probability is reduced. Note that the 

adjusted probability is not written back to the system-wide success probability record; 

it is only used to calculate and select the recovery action under the multiple-attempts 

situation.

• Apply formula with set A and the adjusted recovery actions success probabilities to 

the new recovery action selection.

Policy P4 makes the following assumptions:
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• A recovery action has less and less chance to recover the system in the second and 

subsequent attempts for the same error which is not fixed in the first attempt.

• A recovery action success probability in the first attempt equals the overall average 

success probability of this recovery action.

3.7  Example Illustration

We demonstrate with a virtual example to see how the policies based on minimum estimated 

total cost work and the different results from their different implementations. We also discuss 

the important initial value before the example walk through.

3.7.1  Initial Value Setup

There are some initial values which have to be setup to make a policy bootstrap and run 

properly. These values are located in three areas: defining recovery actions; recovery action 

cost table; recovery action success probability table.

In order to make the example clear and simple, we define four recovery actions: R1, 

R2, R3, and the final recovery action R4. As mentioned in section 3.4, the final recovery 

action is required to ensure the recovery action selection calculation terminates.

The next step is to setup the values in the recovery action cost table (see Table3.1) 

and probability table (see Table 3.2). The initial values should not only be able to bootstrap 

the  algorithm,  but  also  give  a  fair  chance  to  all  recovery  actions.  The  initial  success 

probability given to all recovery actions is 100% and the initial recovery action unit cost 

given to all actions is 0. After one recovery action is selected, the cost must be greater than 0, 

so no matter  whether  its  probability  is  still  100% or  not,  it  will  not  be  the  best  choice 

compared to the untried recovery actions. By using these initial values, the algorithm will 

select each recovery action in the first four errors so that they each get an initial execution. 

Then,  based  on  the  observed  recovery  success  rate  and  recovery  action  unit  cost,  the 
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algorithm will continue select the lowest total recovery cost action.

The  initial  recovery  action  unit  cost  0  and  success  probability  100% enable  the 

bootstrap. What are reasonable values for the remaining variables? As the recovery action 

unit cost is 0, the accumulated recovery action cost must be 0. The total attempts could be 

any number; however, if the number other than 0 is set, the next time the unit cost calculation 

will be low.

 

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 0 0 0

R2 0 0 0

R3 0 0 0

R4 (final) 0 0 0

Table 3.1: Initial Recovery Action Cost Table

 

Recovery 

Action

Total 

Attempts

Success Attempts Success Probability (%)

R1 10 10 100

R2 10 10 100

R3 10 10 100

R4 (final) 10 10 100

Table 3.2: Initial Recovery Action Success Probability Table

There is  a similar  question for  setting up the total  attempts and success attempts 

values in recovery action success probability table. As the initial success probability is 100%, 

the total attempts and success attempts must be the same. As there is no observation yet, we 

could give both variables 0. It could bootstrap in the first step; however, in the first step if the 
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recovery action failed, the total attempts becomes 1 and success attempts is still 0, and thus 

the success probability becomes 0%; as such, this recovery action will never be selected 

again. Similarly, we could set both variables to 1, then in the first step if the recovery action 

failed, the total attempts becomes 2 and success attempts is still 1; the success probability 

drops to 50%, meaning this recovery action may have much less chance to be selected. As a 

reasonable alternative, we initialize both variables to 10. In order to quickly drop to 50%, it 

must fail for 10 times in the first 10 attempts. In this case the probability will not drop too 

fast and give the model enough opportunity to learn each recovery action in a reasonable 

time frame. We investigate alternatives to this approach in Chapter 6.

3.7.2  Example Walk Through

We walk through the first six errors to see how the different policies work, trace their cost  

table and probability table changes, and calculate the selection to see different results. Policy 

P2, P3 and P4 each start from the same initial values. For the purpose of this example R1 is 

very cheap, and subsequent recovery actions are more expensive. Our algorithm does not 

know this.

First Error Detected

Because  all  policies  have  the  same  initial  table  values,  and  there  is  no  previous  failed 

recovery history, there is no adjustment made to Policy P2 and P4. All Policies calculate 

based on the basic model with the same values, and get the same result set:

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1  = 0 min
Rx∈A , Rx≠R1

ETC Rx∗1−1 = 0

min
R2∈A

ETC R2 = UC R2 min
Rx∈A , Rx≠R2

ETC Rx∗1−PR2  = 0 min
Rx∈A , Rx≠R2

ETC Rx∗1−1 = 0

min
R3∈A

ETCR3 = UC R3 min
Rx∈A , Rx≠R3

ETC Rx∗1−PR3  = 0 min
Rx∈A , Rx≠R3

ETC Rx∗1−1 = 0
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min
R4∈A

ETC R4 = UC R4 min
Rx∈A , Rx≠R4

ETC Rx∗1−PR4  = 0 min
Rx∈A , Rx≠R4

ETC Rx∗1−1 = 0

Because all results are the same, and we simply select them in sequence, recovery action R1 

is selected. R1 is then executed, and the server is back to running. The 10 seconds execution 

time of R1 is then added to R1's accumulated cost (AC), and R1's unit cost (UC) is then 

calculated. The cost table for all policies changes to:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 1 10 10

R2 0 0 0

R3 0 0 0

R4 (final) 0 0 0

Second Error Detected

After the server is back to running for just 20 seconds, a second error is reported. It is then 

assumed that the previous recovery action R1 failed to fix the first error. Thus 20 seconds 

downtime is counted to recovery action R1's cost. The cost table and success probability 

table are updated accordingly for all policies:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 1 30 30

R2 0 0 0

R3 0 0 0

R4 (final) 0 0 0
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Recovery 

Action

Total 

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 10 10 100

R3 10 10 100

R4 (final) 10 10 100

Policy P3 does the same estimated total cost calculation and selection based on these new 

values. R2, R3, R4 are still 0, so R2 is selected by P3. Because recovery action R1 was failed 

to fix the previous error, Policy P2 removes R1 from the candidate recovery actions, and 

does the calculation and selection from the rest; the same result as P3 is produced: R2 is 

selected by P2. Policy P4 first lowers the R1 success probability to (90.9% * 0.5 = 45.45%), 

then does calculation and selection based on the adjusted value; the same result as P2 and P3 

is produced: R2 is selected by P4. R2 is then executed for all policies; the server is back to  

running. The 50 seconds execution time of R2 is then added to R2's accumulated cost (AC), 

and R1's unit cost (UC) is then calculated. So the cost table for all policies changes to:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 1 30 30

R2 1 50 50

R3 0 0 0

R4 (final) 0 0 0

After two hours, the predefined probation period, there is no error detected. So server is 

assumed healthy. Policy P2 and P4 clear their recent recovery history. The recovery action 

success probability table is updated accordingly for all policies:
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Recovery 

Action

Total 

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 11 11 100

R3 10 10 100

R4 (final) 10 10 100

Third Error Detected

After  a  long period  a  third  error  is  detected.  According to  the  latest  values  in  cost  and 

probability  tables,  after  calculation R3 and R4 both cost  0,  and so R3 is  selected by all 

policies. R3 is then executed; the server is back to running. The 600 seconds execution time 

of  R3  is  then  added  to  R3's  accumulated  cost  (AC),  and  R3's  unit  cost  (UC)  is  then 

calculated. So the cost table for all policies changes to:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 1 30 30

R2 1 50 50

R3 1 600 600

R4 (final) 0 0 0

After the two hours predefined probation period there is no error detected, so the server is 

assumed healthy. Policy P2 and P4 clear their recent recovery history. The recovery action 

success probability table is updated accordingly for all policies:
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Recovery 

Action

Total 

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 11 11 100

R3 11 11 100

R4 (final) 10 10 100

Fourth Error Detected

R4 is selected by all policies as it is the only action currently without cost. No error happens 

in probation, so the cost and probability tables for all policies are updated to:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 1 30 30

R2 1 50 50

R3 1 600 600

R4 (final) 1 7200 7200

Recovery 

Action

Total 

Attempts

Success Attempts Success Probability (%)

R1 11 10 90.9

R2 11 11 100

R3 11 11 100

R4 (final) 11 11 100

Fifth Error Detected

52



After a long period, the fifth error is detected; since there is no recent failed-recovery history, 

all policies do the same calculation and selection based on the same table values.

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1  = 30 min
Rx∈A ,Rx≠R1

ETCRx∗1−0.909 = 34.5

min
R2∈A

ETC R2 = UC R2 min
Rx∈A , Rx≠R2

ETC Rx∗1−PR2  = 50 min
Rx∈A ,Rx≠R2

ETC Rx∗1−1 = 50

min
R3∈A

ETCR3 = UC R3 min
Rx∈A , Rx≠R3

ETC Rx∗1−PR3  = 600 min
Rx∈A ,Rx≠R3

ETC Rx∗1−1 = 600

min
R4∈A

ETC R4 = UC R4 min
Rx∈A , Rx≠R4

ETC Rx∗1−PR4  = 7200 min
Rx∈A, Rx≠R4

ETC Rx∗1−1 = 7200

Recovery action R1 is selected by all policies; R1 is then executed, and the server is back to 

running. The 12 seconds execution time of R1 is then added to R1's accumulated cost (AC), 

and R1's unit cost (UC) is then calculated. So the cost table for all policies changes to:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 2 42 21

R2 1 50 50

R3 1 600 600

R4 (final) 1 7200 7200

Sixth Error Detected

After server is back to running for just 28 seconds, an error is reported. It is assumed the 

previous  recovery  action  R1  failed  to  fix  the  fifth  error.  Thus  28  seconds  downtime  is 

counted to recovery action R1's cost. The cost table and success probability table are updated 
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accordingly for all policies:

Recovery 

Action

Total 

Attempts

Accumulated  Cost 

(seconds)

Unit  Cost 

(seconds)

R1 2 70 35

R2 1 50 50

R3 1 600 600

R4 (final) 1 7200 7200

Recovery 

Action

Total 

Attempts

Success Attempts Success Probability (%)

R1 12 10 83.3

R2 11 11 100

R3 11 11 100

R4 (final) 11 11 100

Each policy does the same estimated total cost calculation and selection based on these new 

values. R2, R3, and R4 calculation results have no change; they are still 50, 600, and 7200, 

respectively. However, R1 changes:

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1  = 35 min
Rx∈A ,Rx≠R1

ETCRx∗1−0.833 = 43.3

R1 is selected by P3. Policy P2, by contrast, remove R1 from consideration because it failed 

to fix the previous error. Therefore, R2 is selected by Policy P2. Policy P4 first lowers the R1 

success probability to (83.3% * 0.5 = 41.65%), and then does a calculation and selection 

based on the adjusted value:

min
R1∈ A

ETCR1 = UC R1 min
Rx∈A ,Rx≠R1

ETCRx∗1−PR1 = 35 min
Rx∈A ,Rx≠R1

ETCRx∗1−0.4165 = 64.17
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R2 is 50, so R2 has minimum estimated total cost, thus R2 is also selected by P4.  After R1 is 

executed  by  Policy  P3  and  R2  executed  by  Policy  P2  and  P4,  the  respective  cost  and 

probability tables for each policy will be updated accordingly. This example demonstrates 

how different policies use the estimated total cost model in different approaches, and how the 

initial value setup is used.
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Chapter 4  Simulator Design

In this chapter, we describe different simulation test data, including fault and error data, the 

effect of recovery actions on faults, and recovery action execution times. We then illustrate 

our simulator implementation, the different components, and how they work together.

4.1  Simulation Test Data

Reasonable  test  data  generation  is  key  in  a  simulation  test  environment.  We  carefully 

examined the various data and how it should be generated. First we looked at how errors 

should  be  generated,  what  the  relationship  between  errors  and  faults  are,  and  what  a 

reasonable error interval is.  Then we studied what recovery action data is needed and how it  

should be generated, and what the relationship is between recovery actions and faults.

4.1.1  Fault and Error

In the real  data  center  many errors  happen.  After  analyzing those errors,  find the faults 

behind them and fixing them, a report can usually show the percentage of each fault type. 

Each data center has different environments and different types of employee, they usually 

have different fault distribution as well. Before we generate any errors for our simulation 

test, we first generate a fault distribution for each run of the test (See Figure 4.1). Based on 

maximum faults  predefined in test  configuration file,  a pseudo-random number generator 

with a passed-in seed generates a random number between 0 to  100 for each fault.  The 

number for each fault is then summed up to get the total. The number for each fault will 

finally be divided by the total to get the percentage of each fault among total faults. After 

each fault gets its percentage, a translated fault distribution table will be created in order to 

facilitate the error generation. As fault ID followed one by one, the translated percentage of 

each fault is its original percentage plus all percentage numbers from prior faults.
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During  the  simulation  testing,  the  error  is  generated  in  real  time  based  on  fault 

distribution data. When an error is needed to be generated in our simulator, a fault is also 

assigned.  A pseudo-random number  generator  with  a  passed-in seed  generates  a  random 

number between 0 and 1. This number is used to look up the translated fault table starting 

from the first fault ID which has the smallest translated percentage number. Along the fault 

ID increasing, the percentage number is also increased. By following the fault ID, a fault will 

eventually shows a bigger translated percentage number than the random number, that fault 

is now assigned to the error. As long as enough errors can  be generated, this approach can 

guarantee those errors' fault following the generated fault distribution, meanwhile any error's 

specific fault is not predictable.

After recovery action is applied to an error, our simulator implementation will know 

exactly  whether  the  previous  error  has  been  fixed.  If  the  previous  error  was  fixed 

successfully, the automatic recovery policy will judge the server to have passed from the 

probation  state  into  the  Health  state,  which  means  no  new  error  in  probation  period. 

However, in real environment a fresh new error of any fault type could happen at any time, it 

should not be based on policy defined probation period. When we simulate the error interval, 
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we predefined an maximum server health time in configuration file. The maximum health 

time is set as double of the average health time, which can be considered similarly to the 

MTTF mean time to failure. Based on above consideration, a reasonable maximum health 

time can be set and adjusted to a similar known data center characteristic. Thus the random 

fresh new error interval between 0 and maximum health time is generated from a pseudo-

random number generator. The fresh new error with random fault will then be set to happen 

after the random error interval elapsed from the time previous recovery action was executed 

(see Figure 4.2).

When a recovery action is applied to fix an error but failed, usually we can see a 

similar error happened shortly after the recovery action is  applied in real world,  and the 

similar error should have the same fault which was not fixed. What that short period could 

be? It is difficult to know. This is also the question from the policy judgement of recovery 

success. Since both simulation and policy implementation are looking for the same answer, 
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Figure 4.2: Repeating Error and Fresh New Error



we just  align them together,  so the short period for repeating error in both cases will  be 

probation period.  A random shorter  error  time interval  is  then generated from a pseudo-

random  number  generator  which  generates  a  random  number  between  1  second  and 

probation period threshold.

This simulated error and fault generation also minimizes the misjudgement impact 

caused from improperly defined policy probation period. Because the simulated repeating 

error is generated exactly within the defined probation period by which the policy judges if 

the recovery success - if probation period is defined as two hours, the repeating error will be 

generated within two hours, and so on. So probation period definition does no longer have 

significant impact to our research. However in reality, the fresh new error may happen within 

probation and the repeating error may happen after probation. This is also achieved in our 

simulation. Because the generated new error could happen in any arbitrary time, it may fall 

in probation period. Also because the generated new error could be of arbitrary fault type, it 

may  have  the  repeating  fault  just  after  probation  period.  This  greatly  mimics  the  real 

environment  which  causes  imperfect  judgement  of  recovery  success  in  real  policy 

implementation.

4.1.2  Recovery Action to Fault Effects

As each error has real fault behind, which reflects the root cause behind the error. In real 

world, the recovery action applied to each error also has result – fixed or not fixed, that 

reflects the effect of the recovery action to the fault behind the error. Following the real 

world mechanism, the test data of the recovery action effect to each fault is generated before 

each test. Also as observed from real world , a recovery action does not have average effect 

to all  faults. A recovery action is usually designed to target certain faults and not for all 

faults. For the targeted faults the recovery action usually has very high effect, but minimal 

effect for the rest faults. Thus we applied a 80/20 rule to generate the recovery action effects. 

For  a  given  recovery  action,  the  effect  to  targeted  faults  is higher  than  80% chance  to 

success, and the effect for rest faults is lower than 20% chance to success. 

The recovery action effects test data generation uses three pseudo-random number 
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generators (see Figure 4.3). It uses the first pseudo-random number generator to generate a 

random number of how many faults this recovery action will target to, which is a number 

between 0 and the predefined maximum faults in configuration file. It then runs in a loop for 

number of target faults, and uses the second pseudo-random number generator to generate 

the random targeted fault IDs. It finally uses the third pseudo-random number generator to 

generate a random number between 0.8 and 1 for selected target faults and 0 to 0.2 for the 

rest faults. After these steps, the recovery action gets effect probability for each fault. By 

repeating those processes for each recovery action, all recovery actions get effect probability 

for all faults.

These pre-generated recovery action to fault effects data before each test running is 

then used by simulator to generate real time recovery success or fail effects. Because it is 
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simulated environment, the simulator knows exact fault behind each error. After a recovery 

action Ri is applied to an error, simulator will look for the recovery action Ri to faults effect 

table and find the effect probability EP(Ri, F) to the fault F which is behind the applied error. 

Then simulator will generate a random number between 0 and 1. At last the simulator will 

compare the random number with EP(Ri, F): if the random number is less than EP(Ri, F) – it 

falls in the success probability and the error should be fixed, a fresh new error with arbitrary 

fault and random period will be generated; if the random number is greater than EP(Ri, F) – 

it is outside the success probability and the error should not be fixed, a repeating error with 

same fault F and random shorter period within probation will be generated.

4.1.3  Recovery Action Execution Time

Another important recovery action data to be generated is the recovery action execution time. 

As observed from real world, a same recovery action may take different lengths when it is 

executed  every  time.  However  different  recovery  actions  have  their  own  range  of  the 

recovery action execution time. For example, the restart recovery action may take 10 seconds 

in one recovery attempt, sometimes it takes 6 seconds or 20 seconds in other attempts, it 

however would not take 10 hours, a day or two. The human trouble shooting may take 2 

hours in one recovery attempt, sometimes it takes half hour or 48 hours, it would never take 

couple  seconds  to  fix  an  error.  Our  recovery  action  execution  time  generation  hence 

accommodates these two characters - each recovery action has its own range of recovery 

execution time and each time the recovery action take different execution time within its 

range. 

The  recovery  action  execution  time  is  generated  in  two phases  (see  Figure  4.4). 

Before each test run, the base recovery execution time is generated for each recovery action 

by  a  pseudo-random  number  generator,  which  generates  the  random  number  between 

minimum and maximum base recovery execution time predefined in the configuration file. 

The final recovery action base execution time is predefined and retrieved from configuration 

file  directly.  With  maximum recovery  execution  time and the  final  recovery  action  base 

execution time defined appropriately, final recovery action can make proper distance from 
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other recovery action base execution time. During the test running, every time a recovery 

action is  executed,  its  actual  execution time is  randomly generated  by a  pseudo-random 

number generator within a predefined floating range around its base execution time.

4.2  Simulator Implementation

As mentioned in Background chapter, due to the restricted situation, we test our policy model 

in simulation environment. And we implement a similar Autopilot data center environment 

with  discrete  event  simulation.  We  describe  different  components  in  our  simulator 

implementation (see Figure 4.5), from the different event type to system state component, 

then  the  recovery  action  selector  component,  finally  the  core  component  –  simulation 

controller, in which we also illustrate how it process different events and how it works with 

other components.
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4.2.1  Event Types

To simulate different events in data center, we defined three types of events in the simulator: 

Error Event, Recovery Action  Executed Event and Probation  Timer Event. Other than the 

most essential field – event time, all event types also contain Server ID as they are all server 
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Figure 4.5: Simulator Implementation



dependent events.

• Error Event - As described in Autopilot, whenever an error is detected on a server, the 

error is reported to device manager. The error event mimics that reported error. A 

special field – Fault is also defined in error event. This field is not contained in the 

real data center error report, neither used by any recovery action selection policy. 

This is solely used for the simulator to generate recovery success or fail effect (see 

section 4.1.2).

• Recovery Action Executed Event - After recovery action is selected and applied, the 

sever notices device manager  that it  is  done.  We thus defined it  as the Recovery 

Action Executed Event. Also for simulation purpose, this event contains the executed 

recovery action, error happen time and fault.

• Probation Timer Event - The device manager will set the server from probation to 

health if no error happens in probation period. We defined it as the Probation Timer 

Event to deal with this scenario. 

4.2.2  System State

The system state component stores four system state related tables, and these state tables are 

kept updated along the system running.

• Server State Table - This table is used to track each server status, whether they are in 

Health, Failure or Probation state and when the state is changed. This table contains 

server ID as the key and server state and state change time as the value. 

• Recent Server Recovery History - This table is used by certain policies to record and 

update  the  recent  recovery  action  history  for  each server,  it  is  used  as  a  tool  to 
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understand what recovery actions have been applied before a server returns to health 

state. This table contains server ID as the key and  a series of recently used recovery 

actions for the specified server as the value.

• Recovery Action Cost Table - This table is used by our policy to track the cost for 

each recovery action. (see section 3.7 for details)

• Recovery Action Success Probability Table - This table is used by our policy to track 

the success probability for each recovery action. (see section 3.7 for details)

4.2.3  Recovery Action Selector

This  Recovery  Action  Selector  component  is  implemented  by  different  policies.  This 

component defines the only function selectRA(),  which needs to return a selected recovery 

action  for  a  specified  server.   Different  policies  implement  this  function  with their  own 

algorithm. This structure makes it easily extend to any new policy implementations.

4.2.4  Simulation Controller

This is the core discrete event simulation processing component. We implemented the typical 

init(), run() and statisticReport() functions. We also implemented generate() and other helper 

functions.

• generate() - This function generates three static reference tables and associated data. 

Those tables contain fault distribution data, recovery action effect to each fault, and 

recovery action base execution time data.

• init() - This function first initializes system state which contains server state table, 

server  recovery  action  history  table,  recovery  action  cost  table,  recovery  action 
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success probability table. This function then sets or resets all counters and statistic 

report  data  to  initial  values.  Next,  this  function  instantiates  all  pseudo-random 

number generators and sets corresponding seeds generated from generate() function. 

Finally a priority queue is instantiated, initial error events are generated based on 

predefined number of servers and put into priority queue for further processing. 

• run() - This is the event processing function. (see Figure 4.6) The major structure is a 

while loop which checks if there is any event in the priority queue. If there is no event 

in the priority queue, the while loop is ended and the run() function is also finished. If 

there is event in the priority queue, the event with earliest event time will be returned 

by the priority queue. Based on different event types, the event will then be processed 

by different logic blocks within the while loop.
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Figure 4.6: run() Pseudo Code

public void run(RepairActionSelector repairActionSelector) 
{ 

while (PriorityQueue is not empty && errorCounter <= maxTestErrors) 
{ 
CurrentEvent = PriorityQueue.poll(); 
CurrentServerID = CurrentEvent.getServerID(); 
CurrentEventTime = CurrentEvent.getTime(); 
 
if (CurrentEvent is ErrorEvent) 
{ 

                           ...
                        }else if (CurrentEvent is RepairActionExecutedEvent)
                        {
                           ...
                        }else if (CurrentEvent is ProbationTimerEvent)
                        {
                           ....
                        }

  }
}



If next event is Error Event (see Figure 4.7), the process does the following: 

firstly it finds current server status from system state; secondly it checks if server is 

not  in  Health  which  means  previous  recovery  action  was  failed,  it  then  updates 

success  probability  table  and cost  table  for  previous  recovery  action  (it  finds  the 

previous recovery action from Recent Server Recovery History table; the recovery 

action success probability will  be recalculated and updated by increasing the total 
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Figure 4.7: ErrorEvent Processing Pseudo Code

if (CurrentEvent is ErrorEvent) 
{ 

Get CurrentServerState from ServerState Table for CurrentServerID; 

if (CurrentServerState is Health) 
{ 
find previous RA from RA history in ServerRAHistory Table;

 
//update RA probability Table with:

                          totalAttempts+1;
                          probability = successAttempts / totalAttempts; 

                       //update RA cost Table with: 
                          accumulatedCost += probation duration;
                          unit cost = accumulatedCost / totalAttempts;

} 
// update ServerState Table with:  
    server state = Failure;

                state time = current event time; 

SelectedRA = RepairActionSelector.selectRA(serverID); 
 

raee = new RepairActionExecutedEvent ; 
raee.AppliedRA(SelectedRA); 
raee.EventTime = CurrentEventTime+ Random RAExecutionTime; 

...
 

insert RepairActionAppliedEvent to PriorityQueue;  
} 



attempts  but  not  the  success  attempts;  the  recovery  action  unit  cost  will  also  be 

recalculated and updated by adding the probation additional cost.); thirdly it changes 

server  state  to  Failure  and set  state  time to current  event  time;  next  it  computes 

preferred recovery action from Recovery Action Selector; finally it generates a future 
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Figure 4.8: RepairActionExecutedEvent Processing Pseudo Code

else if (CurrentEvent is RepairActionAppliedEvent) 
{ 

// update ServerState Table with:  
    server state = Probation;

                state time = current event time; 

Add applied repair action in RecentServerRepairHistory table;

RepairExecutionTime = CurrentEventTime - ErrorHappenTime; 
//update RepairAction cost table with: 

             accumulatedCost += RepairExecutionTime; 
             totalAttempts+=1;
             unit cost = accumulatedCost / totalAttempts; 

Generate random number between 0 and 1. 
Get RepairActionEffectProbability(applied repair action, error fault); 
if (random number < RepairActionEffectProbability) 
{ 
nextErrorFault = generate random fault; 
nextErrorPeriod = generate random error period; 
}else 
{ 
nextErrorFault = the current error fault type; 
nextErrorPeriod = generate random short error period; 
} 
Generate new ErrorEvent (next Error Fault, next Error Period); 
insert ErrorEvent to PriorityQueue; 

 
Generate new ProbationTimerEvent PTE; 
PTE.EventTime = CurrentEventTime + probationThreshold; 
insert ProbationCheckerEvent to PriorityQueue; 

}



Recovery Action Executed Event which is set to current event time plus a random 

recovery action execution time and put the event into Priority Queue.

If next Event is Recovery Action Executed Event(see Figure 4.8), the process 

does the following: firstly it changes the server state to Probation and sets the state 

time to current event time; secondly it records the executed recovery action to Recent 

Server Recovery History table; thirdly it  computes recovery action execution time 

and updates recovery action cost table; next it determines if recovery action success 

or fail and generates next Error Event accordingly with proper fault type and Error 

Event  time (see  4.2.2  for  details);  then  it  puts  the  next  Error  Event  into  Priority 

Queue; finally it generates a Probation Timer Event which is set to current event time 

plus the probation threshold and puts the event into Priority Queue.

If next Event is Probation Timer Event (see Figure 4.9), the process verifies if 
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Figure 4.9: ProbationTimerEvent Processing Pseudo Code

else if (CurrentEvent is ProbationCheckerEvent) 
{ 

Get CurrentServerState and CurrentStateTime from ServerState Table for 
CurrentServerID; 

 
if (CurrentServerState is Probation 

                && (CurrentEventTime - CurrentStateTime) == probationThreshold) 
{ 
      // update ServerState Table with:  
          server state = Health;

                      state time = current event time; 

       //update RA probability Table with:
                      totalAttempts++;
                      success++;
                      probability = successAttempts / totalAttempts; 

                   clear repair action history in ServerRepairActionHistory Table; 
} 

} 



latest  recovery  action  is  success  by  checking  two  conditions:  the  server  is  in 

Probation and current probation checking event time subtract server state time equals 

probation  threshold,  that  means  no  error  happened  in  probation  period  namely 

recovery is deemed success. Then it does the following: it changes server state to 

Health  and  sets  state  time  to  current  event  time;  the  recovery  action  success 

probability  will  be  recalculated  and  updated  by  increasing  the  total  attempts  and 

increasing the success attempts; it finally clears recent server recovery history.

To sum it up, the different event type processing usually updates server state 

for the event related server, records or clears the recent server recovery history table, 

updates  recovery  action  cost  table  and  recovery  action  success  probability  table 

accordingly, generates necessary future events and put into the priority queue. The 

recovery  action  cost  is  updated  immediately  after  recovery  action  is  applied  in 

Recovery Action Executed Event processing, and gets further updated for additional 

cost  if  there  is  error  happened  during  probation  in  Error  Event  processing.  The 

recovery action success probability is updated when we know the recovery action is 

either succeed - checked in Probation Timer Event processing, or failed - checked in 

Error Event processing.

• statisticReport() - During the processing of events, whenever there is update to the 

recovery action cost table, the statistic total server cost is also updated. And the total 

server run-time is updated when the last error event is processed. When simulation 

running finishes, this function simply calculates the ratio of total server cost to total 

server run time and returns that ratio along with raw data.

This simulation implementation has considered many automatic recovery related aspects in 

real data center, and is carefully designed so that a reasonable test can be conducted.
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Chapter 5  Experimental Analysis

In this chapter, we present how the test is conducted. The evaluation criteria is first clarified, 

the cost to run-time ratio is defined, the idea of optimal expected cost and the target virtual 

policy is described. Then the test environment and test setup is elaborated. Finally the test 

result is presented and analyzed.

5.1  Evaluation Criteria

In order to fairly compare different policy implementations and clearly know which one is 

better,  we defined a  simple  cost  to  run-time ratio  evaluation criteria.  We further  studied 

whether there is a way to  always make the best recovery action selection, namely to achieve 

the best cost to run-time ratio. An optimal expected cost model is defined and associated 

policy is implemented. Comparing to the best result produced from the optimal policy with 

the evaluation criteria, we can easily know the performance of each policy.

5.1.1  Cost to Run-time Ratio

Our target is to find a policy  with minimal total cost. When comparing different policies, 

they must be running under the same condition. Obviously, the longer a policy is running, the 

more cost will be generated. So our comparison is based on the total cost Ct under same total 

run time RTt, we name it ratio R in our research.

R=
Ct
RTt
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R=
Ct
RTt

=

∑
i=1

n

CSi

∑
i=1

n

RT Si

The total  cost  is  composed of  CSi the cost  from each server  Si,  and total  run time is 

composed of RT Si the run time from each server Si. In our experiment, we assume that all 

(n) servers are kept  in  operation. They are either in the normal servicing, or in the trouble 

under fixing or trying in probation. We also assume that all servers start from the same time 

and end at the same time for our experiment, so each server has the same experiment  run 

time  RTe.   As  described  in  our  recovery  cost  modelling,  the  cost  from  each  server  is 

composed of the recovery execution downtime and the partial servicing by failed recovery. 

Both costs are actually counted on each recovery action accumulated cost ACRi , thus the 

total cost can be represented by the total accumulated cost from all (m) recovery actions. We 

can then simplify the data collection and calculation of the ratio R:

R=
∑
i=1

m

AC Ri

n∗RTe

The minimal ratio R represents the minimal total cost under the same run time condition. It's 

easily to find the best policy by simply selecting the policy with lowest ratio R.

5.1.2  Optimal Expected Cost and Target Policy P0

The  initial  idea  for  evaluation  was  to  see  how  much  improvement  our  policy  made 

comparing to the simple heuristic autopilot base policy. The issue is that we can only know 

relatively how good or bad the policies are. Even if the result would show which policy is 

good and which one is bad, and how far they are from each other, we still  do not know 
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whether their difference is significant and how far they are from becoming perfect.

In order to find out the absolute position of each policy's total cost result, we need to 

find either the ultimate worst result or the ultimate best result. The ultimate worst result is 

hard to answer, the ultimate best result is possible however. Since we make the simulator, we 

can generate and know all the detailed data behind the scene, such as what is the fault behind 

each error, what are recovery action properties etc. Thus we can make the best decision for 

which recovery action should be chosen to have the minimal total recovery cost, which is the 

best total cost under the current running situation. We call this cost – Optimal Expected Cost.

The calculation of the optimal expected cost among all recovery actions are based on:

• The fault F behind the error

• The recovery action effect probability to above fault

• The unit cost of each recovery action

We do have these data, and they are all generated to form the simulation environment 

hence the most accurate data in that environment, not the observed data from some policies. 

So there are no observation errors, no guess work. Thus the best calculation and decision we 

can make:

OEC
Rx∈A

=min
Rx∈A

UC Rx

PRxToF

Based on this formula, we implement policy P0 – our target policy. Because it can 

always make the best decision, it  will produce the best ratio R. We can compare ratio R 

produced from other policies with policy P0 and improve them continuously to approach 

perfect. This policy is a virtual policy, as it is based on knowledge of exact fault behind error,  

exact recovery action effect probabilities to the fault. No policy in real world could know 

these information. This policy can only exist in a simulator. This is the other advantage of 

our simulator.
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5.2  Test setup and running environment

We setup our experiment on a virtual machine and carefully set the values to the simulation 

parameters to mimic the real data center characteristics. Then we conducted test in different 

configurations of simulated servers and total errors.

5.2.1  Running Environment

The physical experiment environment is set on a modern PC with quad core CPU and 4 GB 

memory.  This  PC  is  shared  by  other  tasks.  To  make  the  experiment  more  stable  and 

consistent, we create virtual machine on this PC and run our test inside the virtual machine. 

The virtual machine is allocated with 1 dedicated processor and 1GB memory and is running 

in Linux operating system. All simulation code is written in Java and running in a JVM.

The logical environment which is the simulated data center is configured as: total 50 

different faults in terms of 50 fault IDs; maximum health time  is set to 7200000 seconds 

which is 2000 hours or 83.33 days on each server; probation length is set to 3600 seconds or 

1 hour; number of recovery action is set to 7; minimum recovery action base execution time 

is set to 5 seconds; maximum recovery action base execution time is set to 36000 seconds in 

terms of 10 hours; the final recovery action base execution time is set to 360000 seconds in 

terms of 100 hours, run-time random recovery action execution time floating range is set to 

within +/-50% of base recovery action execution time. 

5.2.2  Test Setup

The test  was conducted under different number of simulated servers and total errors, the 

configurations with different combinations are: 1 server, 100 errors; 1 server, 1000 errors; 1 

server, 10000 errors; 10 servers, 100 errors; 10 servers, 1000 errors; 10 servers, 10000 errors; 

100 servers, 1000 errors; 100 servers, 10000 errors; 1000 servers, 10000 errors. In order to 

get statistical meaningful result, the Test Main program is set to have 100 test runs for each 

configuration.
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For  each  test  run,  the  Test  Main  creates  a  new  Simulation  Controller.  Then  it 

generates seeds for all pseudo-random number generators and generates three system static 

data  tables  -  fault  distribution  table,  recovery  action  effect  table,  recovery  action  base 

execution time table.  After that, there are five sections following, one for each policy. Under 

each policy section, the simulator along with system state are first initialized. The initialized 

system  state  object  then  is  passed  into  a  new  created  recovery  action  selector  which 

implements  a  specified  policy.  The  simulator  starts  running  with  that  recovery  action 

selector. Finally the simulator reports the result data – total cost to total runtime ratio for that 

policy. So for one test run, simulation is done five times - one for each policy, and all policies 

are using exactly the same pseudo-random number generator seeds set and the static data 

tables. Each policy is running under the same new initialized system state. In other words, 

each policy is running under the same condition in one test run, thus the result comparison is 

fair and meaningful.  Under one test run, the ratio R of each policy is collected, and the 

improvement  percentage  from  policy  P1,  P2,  P3,  P4  to  policy  P0  are  also  collected 

respectively.

Each test run has new random number generator seeds and new static table data. After 

100 times test  runs,  the statistic  result  is  calculated and reported.  The ratio  R mean and 

standard deviation for each policy are calculated. The improvement percentage mean and 

standard deviation for each pair of policy P1-P4 to policy P0 are also calculated.

5.3  Results

We illustrate  the  detailed  result  from one  configuration,  and summarize  results  from all 

configurations. Although our calculation considered both population standard deviation and 

sample standard deviation [39], the difference is negligible due to the enough test run of 100 

times. For clarity, the results only show the population standard deviation.
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Figure 5.1: Policy P0 Ratio R Detail Result
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Figure 5.2: Policy P1 Ratio R Detail Result
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Figure 5.3: Policy P2 Ratio R Detail Result
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Figure 5.4: Policy P3 Ratio R Detail Result
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5.3.1  Detailed Result for 10 servers with 10000 errors

The following diagrams [Figure 5.1, 5.2, 5.3, 5.4, 5.5] show the total cost to total runtime 

ratio results from the setup of 10 servers and 10000 errors. Summarized in Table 5.1, other 

than the virtual perfect policy P0, the mean value of  policy P4 ratio R is the lowest among 

other policies, the standard deviation is also the lowest among other policies. The mean value 

of  policy  P4  improvement  over  policy  P0 is  the  best  -100.03% whereas  the  policy  P1 

improvement over policy P0 is -197.76%, the improvement standard deviation is also the 

lowest  among all  other  comparable policies.  This  statistic result  clearly demonstrates the 

lowest total cost advantage of policy P4. 

To be more convincing, we not only look at the statistic result but also observe the 

detailed result from each test run. This will tell us if a policy always has the advantage under 

the same condition. The Figure 5.6 shows the policy P4 comparing to policy P1, where the 

result of policy P4 is in the lower line. Under each test run – same condition (same X axis 

value), the policy P4 in almost all cases has the lower total cost to total runtime ratio (Y axis  
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Figure 5.5: Policy P4 Ratio R Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

P4 Ratio R Cost/Total



value) comparing to policy P1. This detailed comparison further convinces the advantage of 

policy P4.

Policy P0 Policy P1 Policy P2 Policy P3 Policy P4

Mean of ratio R (%) 0.49% 1.38% 1.31% 1.55% 0.97%

Standard  deviation  

of ratio R (%)

0.23% 0.56% 0.50% 0.84% 0.45%

Mean  of  ratio  R  

Improvement  to  

policy P0 (%)

N/A -197.76% -187.25% -216.09% -100.04%

Standard  deviation  

of  ratio  R  

Improvement  to  

policy P0 (%)

N/A 77.98% 82.04% 86.56% 30.65%

Table 5.1: Ratio R Result Summary of 10 Servers With 10000 Errors

5.3.2  Summarized Results from all configurations

After all configurations of the server and error combinations have been tested, we have found 

there are some combinations in which the ratio R of policy P4 is worse than policy P1. By 

analyzing all results in those cases, policy P4 are worse than policy P1 only when there are 

less errors per server. The Figure 5.7 and 5.8 show the comparison and trends. In the 10 

servers setup, when total errors is 10, the total cost to total runtime ratio mean value of policy 

P4 is very high at 2.50%, and dropping significantly to 1.33% after the total errors reach 100, 

and further down to 1.10% after the total errors reach 1000, then slowly down to 0.97% 

when the total errors reach 10000. The policy P1 however is in different trend. Initially, it has 
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Figure 5.6: Policy P4 to P1 Ratio R Detail Comparison
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Figure 5.7: 10 Servers Summarized Result
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Figure 5.8: 100 Servers Summarized Result
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quite low total cost to total runtime ratio mean value at 0.77% when it has just total 10 errors, 

and significantly rises to 1.26% when it just reaches total 100 errors, then further rises to 

1.44% when it encounters total 1000 errors, and stays around that ratio even it encounters 

total 10000 errors. This similar trend can also be observed from 100 servers setup.
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Chapter 6  Policy Improvements

In this chapter, different policy improvements and observations are described. The learning 

curve observed in our initial experiment results are illustrated and the solution to setup initial 

value to shorten the learning process is proposed and the improvement is verified in further 

test.  A new  observation  regarding  Attempts  per  Success  Fix  is  discussed  and  a  test  is 

conducted. Our best policy P4 still shows a good number on this ratio. Finally, we studied the 

policy  P4  multiple  attempts  coefficient,  the  results  from different  coefficient  values  are 

analyzed, the best value is suggested.

6.1  Inherent learning process and improvement

As found from the initial experiments, when those servers encounter less errors the total cost 

to total runtime ratio R of the policy P4 is not better than the ratio R of policy P1. As errors  

increase to certain amount, the ratio R of policy P4 becomes better and better and exceeds 

the ratio R of policy P1. This is deemed a learning curve of policy P4, as it needs to learn 

recovery action unit cost and success probability from recovery attempts to errors, and the 

selected recovery action output is based on what it learned from those data. The more data it 

learned the better understanding and selection output it could have. It is observed about 10 

errors  per  server  has  to  be  learned.  Although the  learning  process  is  not  that  long,  any 

improvement to shorten the learning is still encouraged. That can leverage the benefit from 

policy P4 as soon as possible and further improve the overall system.

The essence of  the idea to shorten the learning is to borrow the knowledge from 

somewhere instead of learning from the very beginning by itself. As the recovery action unit 

cost and success probability data are the knowledge the policy has to learn and use, those 

data can be borrowed from previous running experience – for example from the 1000 errors 

per  server  testing  run  or  from  data  center  historical  reporting  data  in  real  data  center 

situation. 

83



In  order  to  get  those  statistic  recovery  action  knowledge,  our  original  simulation 

environment  has  to  be  modified.  There  is  a  problem in  original  implementation.  For  an 

example of six recovery actions, the recovery action RA1 may have the shortest recovery 

execution time in one test run but have the longest in another test run, which actually means 

a different recovery action in real world. The statistic result for recovery action RA1 from 

different test runs will not make any sense. Hence the recovery action base execution time 

generator was modified to let recovery action RA1 always have the shortest base recovery 

execution time and RA6 always have the longest one, and let other recovery actions be fixed 

in proper order. Therefore, when learning from 100 test runs, the specific recovery action is 

comparable among different test runs. 

Mean  of  ratio  R 

improvement to Policy P0

10 servers, 

10 errors

10 servers,

100 errors

10 servers, 

1000 errors

10 servers,

10000 errors

Policy P1 -163.24% -220.03% -184.79% -197.76%

Policy P4-Before -1485.92% -242.30% -108.34% -100.04%

Policy P4-After -97.95% -107.66% -114.34% -111.66%

Table 6.1: 10 Servers Learning Comparison

Mean  of  ratio  R 

improvement to Policy P0

100 servers, 

100 errors

100 servers,

1000 errors

100 servers, 

10000 errors

Policy P1 -155.27% -194.53% -203.12%

Policy P4-Before -399.43% -131.64% -99.98%

Policy P4-After -96.29% -117.65% -115.58%

Table 6.2: 100 Servers Learning Comparison

After modification, the test of 10 servers and total 10000 errors was conducted. Then 

the recovery action RA1 to RAn was learned and their unit  cost, accumulated cost,  total 
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attempts,  success attempts and success probability were summarized from those 100 test 

runs, their statistic means were collected and input to policy P4 as initial recovery action unit  

costs and initial success probabilities. After these knowledge data gets input to policy P4, 

another set of tests was conducted.

The result comparison (Table 6.1 and 6.2) clearly demonstrates the improvement on 

learning curve. In the 10 servers setup testing, without the learning knowledge, the ratio R of 

policy P4 improvement to policy P0 in less errors case is clearly worse than policy P1's 

result,  until 1000 errors encountered the policy P4 shows its advantage. After putting the 

knowledge, the difference is significant. From the initial 10 errors, the result shows the ratio 

R of policy P4 improvement to policy P0 changed from -1485.92% to -97.95%. Then, for 

100 errors, the policy P4 result also changes from -242.3% to -107.66%. Similar results are 

also shown in the 100 servers setup. In both setup, the policy P4 shows better result than 

policy P0 from 10 errors.  The results clearly demonstrate that our approach significantly 

improves the policy P4 in the early learning stage, the advantage of total cost to total runtime 

ratio of policy P4 immediately shows from the beginning.

6.2  Observation of Attempts per Success Fix

While the policy P4 is demonstrated as the best from the total cost perspective. The question 

is raised about if there is any other impacts. We know if the final recovery action is selected, 

any error can always be fixed successfully in terms of just one attempt, however that will 

introduce the highest cost. While a policy maintains a low total cost, can it also have a low 

average attempts per success fix (we name it R2)?

How to calculate this ratio? For example, an error happens, and an recovery action is 

applied  however  failed,  another  error  happens  in  probation,  another  recovery  action  is 

applied and failed again, once more an error happens in probation, third recovery action is 

applied and does a successful fix. After a long period a new error happens, and a recovery 

action is applied and succeed. As the above example there are two original errors, the other 

two happen because of failed recovery action attempts. Hence there are total four errors and 
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total four recovery action attempts, and two successful fixes. So that example has average 2 

attempts per success fix – 4 attempts divided by 2 successful fix. The total recovery action 

attempts (TA) is simply equals total errors (TE), because there is always a recovery action 

selected for an error. The total success fix number (TF) can be inferred from total original 

errors which is hard to track and distinguish, or can count from how many times a server 

changes state to Health which simply and clearly means a success fix happened. The ratio R2 

should be counted from all (n) servers, while each server can collect the  ASi  recovery 

action attempts (A) on that server (Si) and collect the FSi  success fix number (F) on that 

server (Si),  see formula 6.1A and 6.1B. 

R2=
TA
TF

=

∑
i=1

n

ASi

∑
i=1

n

F Si

(6.1 A)

R2=
TE
TF

=
TE

∑
i=1

n

FSi

(6.1 B)

We further modified the simulator to capture this ratio R2, and did test from the setup 

of 10 servers and 10000 errors. The detailed results are showed in Figure 6.1, 6.2, 6.3, 6.4, 

6.5. The summarized result in Table 6.3 shows the mean value of attempts per success fix 

ratio of policy P4 is similar as policy P0, and is close to but slightly worse than policy P1, the 

ratio R2 standard deviation of policy P4 is also close and slightly worse than policy P1. The 

ratio R2 of policy P2 is also close to policy P1, however shows small improvement. The ratio 

R2 of policy P3 is significant worse than policy P1, and is the worst among all policies. This 

statistic  result  shows: while  policy  P4 maintains  the  lowest  total  cost  advantage,  it also 

maintains a comparable attempts per success fix ratio and does not have significant impact to 

that. 
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Figure 6.1: Policy P0 Ratio R2 Detail Result
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Figure 6.2: Policy P1 Ration R2 Detail Result
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Figure 6.3: Policy P2 Ratio R2 Detail Result
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Figure 6.4: Policy P3 Ratio R2 Detail Result

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

P3 Ratio R2 Attempts/Fix



Policy P0 Policy P1 Policy P2 Policy P3 Policy P4

Mean of ratio R2 2.82 2.47 2.21 7.76 2.81

Standard deviation 

of ratio R2

2.41 0.42 0.31 3.25 0.61

Mean  of  ratio  R2 

Improvement  to  

policy P0 (%)

N/A -19.67% -6.34% -237.22% -29.34%

Standard deviation 

of  ratio  R2 

Improvement  to  

policy P0 (%)

N/A 50.32% 41.12% 114.37% 42.05%

Table 6.3: Ratio R2 Result Summary of 10 Servers With 10000 Errors
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Figure 6.5: Policy P4 Ratio R2 Detail Result
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6.3  Policy P4 Multiple Attempts Coefficient Study

As mentioned in the policy implementation, the policy P3 has the basic implementation of 

our  total  cost  based  solution. It never  considers the  difference  of  second  and  multiple 

recovery attempts with the same recovery action. Policy P2 considers this by eliminating the 

second  and  multiple  recovery  attempts  with  the  same  recovery  action.  And  policy  P4 

considers  this  by  reducing  the  success  probability  of  the  second  and  multiple  recovery 

attempts with the same recovery action. The policy P4 reduces the success probability by 

multiplying additional multiple (n) attempts coefficient 0.5^n to the original recovery action 

success probability. Through further analysis, the policy P2 and policy P3 are actually the 

extreme cases of policy P4. Policy P3 is actually the same as setting the policy P4 coefficient 

to 1^n, so there is no difference of second or multiple recovery attempts,  their coefficients 

are all equal to 1  namely their success probability  always  equals  to  the original recovery 

action success probability. Policy P2 is actually the same as setting the policy P4 coefficient 

to 0^n, so there is no chance for the second or more recovery attempts, their coefficients are 

all equal to 0 namely 0 success probability. We modified the policy P4 coefficient to 1 and 0 

respectively and did tests for 10 servers and total 1000 errors. As expected it shows exactly 

same result to policy P2 and P3 respectively. See Table 6.4, 6.5 and 6.6. The verified results 

also  demonstrate  our  implementation  did  give  fair  chance  to  each  policy  and  our 

implementation was built correctly from another angle.

Coefficient=0.5^n Policy P4 Policy P3 Policy P2

Mean of Cost/Total 1.10% 1.48% 1.42%

Standard deviation of Cost/Total 0.55% 0.70% 0.62%

Mean of Attempts/Fix 2.83 5.66 2.28

Standard deviation of Attempts/Fix 0.67 2.09 0.37

Table 6.4: Policy P4 Coefficient 0.5 Comparison
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Coefficient=0.0^n Policy P4 Policy P3 Policy P2

Mean of Cost/Total 1.37% 1.36% 1.37%

Standard deviation of Cost/Total 0.60% 0.65% 0.60%

Mean of Attempts/Fix 2.27 5.79 2.27

Standard deviation of Attempts/Fix 0.43 2.16 0.43

Table 6.5: Policy P4 Coefficient 0.0 Comparison

Coefficient=1.0^n Policy P4 Policy P3 Policy P2

Mean of Cost/Total 1.37% 1.37% 1.41%

Standard deviation of Cost/Total 0.63% 0.63% 0.65%

Mean of Attempts/Fix 5.81 5.81 2.30

Standard deviation of Attempts/Fix 1.86 1.86 0.42

Table 6.6: Policy P4 Coefficient 1.0 Comparison

Based on our simulation platform, we further studied the policy P4 multiple attempts 

coefficient to find the impacts to both total cost to total runtime ratio R and attempts per 

success fix ratio R2, and also to find the best coefficient value. To avoid the variations among 

different  tests,  the  simulation  platform  is  modified  to  run  and  collect  the  results  from 

different coefficient setups in each test run. The studied coefficients are from 0.0 to 1.0 in 0.1 

stepping. A test was conducted in 10 servers and total 10000 errors configuration. Both ratios 

are collected and presented to show their trends respectively.

The summarized results for ratio R are shown in  Figure 6.6. When coefficient value 

equals 0, the policy P4 gets the high total cost to total runtime ratio R as 0.013142. The ratio 

R decreases gradually and reach the lowest ratio R 0.00938 when coefficient value equals 

91



0.7,  then  the  ratio  R  slightly  increases.  After  the  coefficient  value  passes  0.9  the  ratio 

significantly increases and reaches the highest  ratio  R 0.0154528 when coefficient  value 

equals 1. 
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Figure 6.6: Policy P4 Ratio R Coefficient Result
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Figure 6.7: Policy P4 Ratio R2 Coefficient Result
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The summarized results for ratio R2 are shown in Figure 6.7. When coefficient value 

equals 0, the policy P4 gets the lowest attempts per success fix ratio R2 as 2.212857. The 

ratio R2 gradually increases to 4.1801468 until coefficient value increases to 0.9. After that 

point the ratio significantly increases and reaches the highest ratio 7.760022 when coefficient 

value equals 1. 

If the lowest total cost to total runtime is the only target, the coefficient value of 0.7 is 

the best to choose. The coefficient value of 0.0 is the best for reaching minimum attempts per 

success fix. And the coefficient value around 0.5 is the reasonable compromise to both.
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Chapter 7  Conclusion and Future Work
 

This thesis studies the automatic recovery policy problem - how to select a proper recovery 

action without knowing fault information. The target is to achieve minimal total cost. We 

also study the cost from the recovery action execution down time and the partial service 

caused by failed recovery. The recovery action success probability is studied as well.  We 

propose an estimated total cost ETC model to select the recovery action. This generic cost 

based model utilizes the dynamic updated statistic data (recovery action unit cost and success 

probability), and selects the recovery action with minimal estimated total cost from a set of 

recovery  action  candidates.  Based  on this  model,  three  policies  are  implemented.  These 

policies make different adjustments to the recovery action success probability based on the 

recovery  action  failed  attempts.  Our  generic  cost  based  policy  implementation  is  self 

adaptive to the system, it can bootstrap reasonably and adjust itself automatically.

In addition,  this  thesis  analyzes  the fault  distribution and recovery action to fault 

effect probability, and the recovery action execution time variation. Based on these analyses, 

we  implement  a  discrete  event  simulator  to  properly  mimic  the  data  center  automatic 

recovery operation environment.

As our simulation implementation, we are able to define an optimal expected cost and 

implement  a  virtual  perfect  policy  based  on  that  calculation.  Our  experiment  results 

eventually show that we have achieved our goal to reduce the total recovery cost. Comparing 

to  a  similar  research  with  heuristic  model,  our  policy  to  the  virtual  perfect  policy 

improvement  is  only -100% whereas  the heuristic  policy is  -198%, the result  shows big 

improvement made by our policy.

We further provide improvement solution to shorten the learning curve in our model 

by inputting reasonable knowledge in advance. We also study Attempts per Success Fix ratio, 

and our policy shows minimal impacts on this ratio. Finally we carefully study the multiple 

attempts coefficient and give a recommended value. The optimized coefficient makes the 

total cost to run-time ratio even better.
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7.1  Future Work

Our  model  is  a  recursive  model,  and  we  have  simplified  the  model  not  to  include  the 

repeating recovery actions and deal with that issue in policy by reducing repeating recovery 

action success probability. However there is still deep recursive calculation, we would like to 

find better  simplified calculation algorithm. Also we simply select  the power formula to 

reduce success probability for multiple attempts of failed recovery actions. We would like to 

study other alternatives for improvement.

We  have  also  mentioned  different  cost  scenarios  like  human  cost,  business  loss, 

contract penalty and other monetary or non monetary based cost etc. But we have not made 

further researches on this area. The potential solution could be to build a cost formulation 

according to real environment and feed the translated cost back to our model. As mentioned 

in ROC,  not all downtime are equal,  and  they are not always linear relationship [12]. By 

plugging in the organization dependent cost formulation, the weight on downtime could be 

more realistic and the recovery action selection will be more suitable for the organization.

Another improvement that could be made to the policy is to extend it to take more 

dimensions or parameters such as: different failure events, computer configuration signature 

– OS version, HW configuration etc. In real data center, machines may be updated every year 

and  both  operating  systems  and  application  softwares  are  kept  updating.  These  changes 

inhere  with  different  statistic  characteristics.  In  order  to  capture  the  impacts  from those 

dimensions in the real environment, the policy could be extended. The generic cost based 

model could be still kept the same. The recovery action unit cost and success probability 

recording and calculation could be modified. They could be extended to also record the unit 

cost and success probability under other dimensions (e.g. hardware configuration signature 

and  software  versions)  on  top  of  the  existing  overall  average  unit  cost  and  success 

probability.  Both  recovery  action  unit  cost  and  success  probability  calculation  can  be 

modified to consider  the more specific  recovery action unit  cost  and success  probability 

values versus the generic overall values. The calculation could: 1) always utilize the specific 

values; 2) use percentage from overall generic value and percentage from specific values; 3) 

dynamically switch between above two approaches - by considering the early phase of a 
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change, there is no enough sampling to conclude a mature value; then we can take percentage 

from overall generic value and percentage from specific values when the sampling is less 

than certain amount (e.g. 1000); after enough sampling is collected, we can use the more 

accurate  specific  values.  The dimension could be  easily  extended as  the recovery  action 

could be extended, and the specific recovery action unit cost and success probability values 

are automatically collected and updated. Consequently the policy also automatically adopts 

the changing values, and the system is automatically optimized from the added dimensions.

Finally, we would like to run our policy in a real data center for a long period if such 

arrangement is allowed. After enough simulation, we would like to verify and improve our 

model in the real world.
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