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Abstract

A volumetric contact dynamics model has been proposed by Gonthier et al. [1, 2, 3] for

the purpose of rapidly generating reliable simulations of space-based manipulator contact

dynamics. By assuming materials behave as a Winkler elastic foundation model, forces

and moments between two bodies in contact can be expressed in terms of the volume of

interference between the undeformed geometries of the bodies. Friction between bodies is

modelled by a dwell-time dependent bristle model for both tangential friction, and spinning

friction torque.

This volumetric model has a number of advantages. Unlike point-contact models, it

allows for the modelling of contact between complex geometries and scenarios where the

contact surface is relatively large, while being less computationally expensive than finite

element methods. Rolling resistance is included in the model through damping effects

across the volume of interference. The friction model accounts for dwell-time dependent

slip-stick effects, spinning friction torque, and the Contensou effect. In this thesis, an

experimental validation of the volumetric contact model is presented for the first time.

Models for simple geometries in contact (e.g. cylinder-on-plane, sphere-on-plane) have

been developed for stationary contact and for contact with motion normal and tangential

to the contact surface. Tangential motion is modelled with pure translation, pure rotation

about the normal axis, and combined motion, in order to separately consider friction forces,

spinning friction torque, and the Contensou effect, respectively.

An apparatus has been developed to experimentally validate these models for metal-on-

metal contact. The apparatus has two configurations, one for validating the normal contact

models and the other for the friction models. Experimental measurements of forces and

displacements are used to identify model parameters (e.g. volumetric stiffness, friction

coefficients, etc.).

For normal force experiments, modelling the contact forces as proportional to volume of

interference was found to be a reasonable approximation. A Hertzian model was compared

with the volumetric model for spherical payloads loaded quasi-statically. Using stiffnesses

estimated from spherical experiments, small misalignments of the cylindrical payloads were

estimated that corresponded well with measured results. Dynamic experiments suggest an

inverse relationship between impact velocity and the hysteretic damping coefficient.
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The high normal forces applied in the friction experiments were found to create signifi-

cant wear on the contact surfaces. Coefficients of friction between titanium and aluminum

were found to be consistent translationally and rotationally. Friction forces from combined

translation and rotation demonstrate that the Contensou effect is accurately described by

the volumetric contact model.

iv



Acknowledgements

I would like to thank my supervisor Prof. John McPhee, Dr. Yves Gonthier, the Cana-

dian Space Agency, Parallel Geometry, and NSERC for providing this project and for their

support of my work.

I would also like to thank my colleagues in the Motion Research Group for their help

and company, especially Matt, Willem, Aden, and Joydeep.

My roommates Aaron and Dave have been especially supportive and accommodating

in my final push to finish this document.

v



Dedication

I would like to dedicate this thesis to my fiancée, Kandace. Thanks for all your encour-

agement and support to finish this. I am very much looking forward to having you by my

side for the next one!

vi



Contents

List of Tables x

List of Figures xiii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contact Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Normal forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Friction forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Experimental Validation and Parameter Identification of Contact Models . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Normal Volumetric Contact Model 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 One Deformable Body Contact Model Properties . . . . . . . . . . . . . . 11

2.3 Normal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Rolling Resistance Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Two Deformable Body Contact Model Extension . . . . . . . . . . . . . . 13

2.6 Normal Contact Model Parameters . . . . . . . . . . . . . . . . . . . . . . 16

vii



3 Normal Contact Experiments 18

3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Volumetric stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Contact surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Specimen geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Volumetric stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Volumetric Friction Model 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Basic Friction Model Framework . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Stick-slip state and average surface velocity . . . . . . . . . . . . . 43

4.3 Bristle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Translational friction force . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Spinning friction torque . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Dwell-Time Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 The Contensou Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Friction Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Friction Experiments 51

5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



5.1.1 Pure translational motion . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Pure rotational motion . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.3 Translation and rotation . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Translational motion . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2 Rotational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Translation and rotation . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.4 Limitations of experiments . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusions and Future Research 84

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Normal Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.2 Friction Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

References 91

APPENDICES 92

A Equipment Specifications 93

ix



List of Tables

2.1 Volumetric normal contact model parameters. . . . . . . . . . . . . . . . . 16

2.2 Volumetric normal contact model measured quantities. . . . . . . . . . . . 17

3.1 Elastic properties for contact surface and specimen materials [24]. . . . . . 23

3.2 Hertzian and volumetric stiffnesses for spherical specimen. . . . . . . . . . 26

3.3 Volumetric stiffnesses for the cylindrical specimen. . . . . . . . . . . . . . . 30

4.1 Volumetric friction model parameters. . . . . . . . . . . . . . . . . . . . . . 49

4.2 Volumetric friction model states. . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Volumetric friction model measured quantities. . . . . . . . . . . . . . . . . 50

5.1 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.1 Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Computer hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Actuation equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Measurement equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



List of Figures

1.1 Depth of penetration δ between two spheres in contact. . . . . . . . . . . . 2

1.2 Friction coefficient as a function of velocity. . . . . . . . . . . . . . . . . . 5

1.3 Slip-stick experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 2D bristle model slip-stick experiment. . . . . . . . . . . . . . . . . . . . . 8

2.1 Volume of interference between two contacting bodies in a one deformable

body model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Volume of interference between two contacting bodies in a two deformable

body model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Normal force configuration of the experimental apparatus mounted with a

cylindrical specimen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Mechanical apparatus for contact experiments, shown in the normal config-

uration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Quasi-static force versus displacement for spherical contact on aluminum. . 27

3.4 Quasi-static force versus displacement for spherical contact on magnesium

alloy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Quasi-static force versus displacement for cylindrical contact on aluminum. 31

3.6 Quasi-static force verus displacement for cylindrical contact on magnesium

alloy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Misaligned cylindrical specimen, with deviation γfrom the normal. . . . . . 32

xi



3.8 Cylindrical wedge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Force and displacement measurements with static and dynamic models for

impact at 0.58 mm/s on magnesium alloy. . . . . . . . . . . . . . . . . . . 36

3.10 Estimated hysteretic damping factors from experimental results for magne-

sium versus impact velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Estimated hysteretic damping factors from experimental for aluminium re-

sults versus impact velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The Contensou effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Ratio of friction force to normal load for simulation of constant acceleration. 52

5.2 Diagram of apparatus for friction experiments. . . . . . . . . . . . . . . . . 55

5.3 Apparatus for friction experiments. . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Instantaneous coefficient of friction versus displacement for 0.1 mm/s2 ac-

celeration of 10 mm titanium specimen from rest. . . . . . . . . . . . . . . 57

5.5 Wear to the titanium flat surface left by the 10 mm titanium specimen. . . 58

5.6 Instantaneous coefficient of friction versus displacement for constant velocity

of 1 mm/s for 10 mm titanium specimen. . . . . . . . . . . . . . . . . . . 59

5.7 Instantaneous coefficient of friction versus displacement for 0.1 mm/s2 ac-

celeration of a 25.4 mm aluminum specimen from rest. . . . . . . . . . . . 60

5.8 Rotary encoder measurements from translational static friction experiment. 61

5.9 Peak coefficients of friction for various linear accelerations. . . . . . . . . . 62

5.10 Wear to the titanium surface from the 25.4 mm aluminum specimen. . . . 63

5.11 Estimate of bristle stiffness and damping parameters (σ0 and σ1). . . . . . 64

5.12 Coefficients of friction over time for motion at a constant speed of 1.8 mm/s. 66

5.13 Mean coefficients of friction versus constant velocity travelled. . . . . . . . 67

5.14 Simulated sticking state for oscillating motion starting from rest. . . . . . . 68

5.15 Measured coefficient of friction from oscillation of 0.25 Hz. . . . . . . . . . 70

xii



5.16 Reaction forces to spinning friction torque. . . . . . . . . . . . . . . . . . . 71

5.17 Instantaneous coefficient of friction versus angular displacement for 0.025

rad/s2 angular acceleration of a 25.4 mm aluminum specimen from rest. . 73

5.18 Peak coefficients of friction for various angular accelerations. . . . . . . . . 74

5.19 Large circular scratch pattern left by rotational experiments with aluminum

specimen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.20 Coefficients of friction over time for motion at a constant angular velocity

of 0.21 rad/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.21 Mean coefficients of friction versus constant angular velocity. . . . . . . . . 77

5.22 Translational friction measurements for constant velocity and accelerating

angular velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.23 Spinning friction measurements for constant velocity and accelerating angu-

lar velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.24 Angular velocity of specimen for Contensou experiment. . . . . . . . . . . 80

xiii



Chapter 1

Introduction

1.1 Background and Motivation

The Mobile Servicing System (MSS), Canada’s main contribution to the International

Space Station (ISS), consists of two robotic manipulators, the Space Station Remote Ma-

nipulator System (SSRMS) and the Special Purpose Dextrous Manipulator (SPDM). The

MSS is used for assembly and maintenance of the ISS [4]. Tele-operated space-based robotic

operations require careful task planning, verification and training on the ground. The com-

plexity and risk of these operations means that accurate real-time contact dynamics models

are required for on-earth simulation and astronaut training.

Many point contact models are unsuitable for situations involving complex or conform-

ing contacts, which may occur when handling orbital replacement units such as battery

packs. More complex models, such as finite element models, are too computationally

intensive for real-time simulation. The Canadian Space Agency has applied hardware-in-

the-loop simulations (HLS) to determine contact dynamics; however HLS can be expensive

and very difficult to implement [5].

A volumetric contact model has been proposed by Gonthier et al. [1] for generating

reliable simulations of space-based manipulator operations. This model is applicable to

complex and conforming geometries, and accounts for angular dynamics ignored by many

point contact models, including rolling resistance and spinning friction torque. However,

experimental validation of this model is required.
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1.2 Contact Modelling

1.2.1 Normal forces

Contact is often modelled using point-contact models — that is, the region of contact

is assumed to be very small relative to the geometries of the bodies, such that contact

may be assumed to occur at a single point. A common model used in relatively stiff

contact for robot modelling is the Kelvin-Voigt model, in which the contacting materials

are represented by a spring and damper in parallel [6], for which the normal force is given

by

fN = K(δ) +B(δ̇) (1.1)

where δ and δ̇ are the depth of penetration and rate of penetration of the geometries (as

depicted in Figure 1.1), and K and B are the stiffness and damping functions. However,

there are a number of limitations stemming from the damper including ‘stickiness’ during

lift-off and a discontinuous force at impact due to a non-zero normal velocity [7].

δ

Ri

Rj

Figure 1.1: Depth of penetration δ between two spheres in contact.

The contact model proposed by Hunt and Crossley is a normal force model similar to

spring-damper models, where the spring force is based on Hertz theory for linear elastic

solids and the damping is adjusted to avoid the limitations incurred by other models. The

Hertz model for contact force is the best known model for contact between two spheres
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of isotropic material [8]. To use this model, two assumptions must be made [1]. First, it

must be assumed that the contact patch is small relative to the geometries of the bodies.

This allows contact to be considered from a single point, where the depth of penetration

δ can be measured. Consequently, the surfaces must be non-conforming (i.e. not concave

relative to each other where they come into contact). Otherwise, contact might occur at

more than one location or be spread out over a wide area. Secondly, it is assumed that the

bodies are homogeneous isotropic, linearly elastic solids.

According to Hertz theory, the contact normal force is given by

fN = kδn (1.2)

The generalized stiffness k is dependent on the shapes and material properties of the

surfaces in contact. For two spheres in contact, n = 3
2
.

The Hertz theory formulation is applicable for spheres in contact under static condi-

tions. If pure Hertz theory were to be applied for dynamic contact situations (ignoring

friction), no energy would be dissipated in the process of contact. Thus some damping is

necessary [8].

Hunt and Crossley [9] adapted the Kelvin-Voigt model of Equation (1.1), proposing the

following model for the contact normal force:

fN = K(δ) +B(δ̇, δ) (1.3a)

= kδn + (λδn)δ̇ (1.3b)

where λ is the hysteretic damping factor. Equation (1.3b) is consistent with Hertzian

theory for contacting spheres under static conditions for n = 3
2
.

For low impact velocities and most linear elastic materials [10], the coefficient of resti-

tution can be approximated for a limited range of values by

e = 1− αvi (1.4)

where α is an empirically determined value and vi is the initial impact speed. Marhefka

and Orin showed [7] that

fN ≈ kδn(1 +
3

2
αδ̇) (1.5)
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However, the α parameter only holds for a limited range of impact velocities. Thus, the

model is limited only to scenarios with low impact velocites [11], such as those associated

with space robotic tasks [1].

Point contact models like Hunt-Crossley are fast and efficient; little effort is required to

compute the penetration depth and rate for simple geometries, as well as the contact forces.

In addition, the model is continuous in velocities and accelerations, which aids numerical

integration and should not introduce discontinuous disturbances for control. The static

contact force in this particular model is based on physical theory, yielding high fidelity for

low-speed impact and where assumptions about the size and shape of the contact region

hold.

However, not all contact scenarios involve relatively small contact patches or simple,

non-conforming geometries. In these cases, other models are required to accurately simulate

contact. In addition, point contact models ignore the rotational effects of contact. A

complete contact model should account for torques derived from rolling resistance and

spinning friction.

A volumetric contact model has been proposed by Gonthier et al. [1, 2, 3]. Normal

contact forces depend on the volume of interference between the undeformed geometries

of the bodies, which allows a wide variety of contact geometries to be accounted for. The

model also is shown to naturally account for rolling resistance torque. This model is

described in detail in Chapter 2.

1.2.2 Friction forces

Once normal forces are determined, sliding friction forces are often characterized by a

Coulomb model,

ft = µfn (1.6)

where µ is the friction coefficient. Many dry friction models consider two primary regimes

dependent on the relative speed of the bodies, sticking and slipping [12], shown in Fig-

ure 1.2. During the sticking phase, forces build up to a maximum rate µs, the static

coefficient of friction, at which point slipping begins to occur. Slipping friction for dry

friction models settles to a constant rate of µd, the dynamic coefficient of friction.

4



μs

μd

μ

v

slipping

sticking

Figure 1.2: Friction coefficient as a function of velocity.

While friction forces are still poorly understood [13], it is generally accepted that dry

friction results from interference between the surface asperities and roughness of the bodies,

as well as molecular attractions [14, 15]. This helps to understand conceptually how sticking

and slipping occur. At rest, asperities between two bodies will begin to interlock with each

other. As forces are applied that would cause the bodies to slide over each other, these

asperities will begin to deflect. Static friction forces are the resistance to this deflection.

Finally, slipping occurs as the asperities break free of each other, and the lesser dynamic

sliding friction is a consequence of these asperities pushing past each other.

Lubricated friction models must account for the viscous effects of the fluid between

the surfaces. Armstrong-Helouvry et al. [16] identify four regimes in lubricated friction.

The first, stiction, corresponds to the stiction regime in dry friction. The second regime,

boundary lubrication, takes place as surface asperities are beginning to break free of each

other, but the velocity is insufficient for the lubricant to form a fluid film between the

surfaces. The lubricant between asperities will lead to a reduction in friction force called

the Stribeck effect. Third, the partial fluid lubrication regime takes place when a film

between the surfaces begins to form, but there is still contact between asperities. In the

fourth regime, full-fluid lubrication takes place when there is no solid contact between the

bodies, and resistance to motion is entirely viscous damping.

A point-contact friction model that accounts for the sticking and slipping of dry friction

through a bristle model, as well as lubricated viscous friction, was developed by Gonthier

et al. [5]. This model also includes a dwell-time dependency to describe the tendency for
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the maximum stiction force to be greater over time when bodies in contact have been at

rest [16].

Point-contact models can reasonably model friction if motion is purely tangential, but

they do not describe the friction torque that would resist spinning motions over the contact

surface area. In addition, they do not account for the phenomena discovered by Contensou

[17], where tangential and spinning friction are not independent, but tangential friction

may decrease as angular velocity is increased. This effect can be observed in the reduced

force required to push a floor polisher or sander while spinning. As a part of the volumetric

contact model, Gonthier et al. [2] developed a model for describing both tangential friction

force and spinning friction torque in terms of an average surface velocity that accounts for

both lateral and spinning motion.

Gonthier has combined the tangential dwell-time dependent bristle friction model into

the volumetric model to provide a comprehensive volumetric friction contact model [1]

which is described in detail in Chapter 4.

1.3 Experimental Validation and Parameter Identifi-

cation of Contact Models

Hertz contact theory has been well-established experimentally [10]. As the theory was

developed to study contact between lenses [18], the interference patterns created by lenses

in contact have been used to demonstrate its validity.

Due to its simplicity, a linear Kelvin-Voigt model, given by

fn = kδ + bδ̇ (1.7)

is frequently used in manipulator modelling [19, 20, 21]. Agar used this model to estimate

linear stiffness parameters for a variety of payload shapes made from both aluminum and

plastic [20]. Experimental results were gathered using a six degree-of-freedom serial ma-

nipulator over a force plate and compared against measurements taken from an Instron

machine. Differences between contact stiffness estimates revealed a high amount of er-

ror stemming from machine compliances and position repeatability, estimator convergence

problems, and datum estimation.
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Verscheure et al. performed similar experiments using a plastic sphere, a plastic cone,

a plastic pyramid, and an aluminum sphere [22], but identified parameters for a Hertzian

model, given by Equation (1.2). Using a row-wise total least squares estimation algorithm,

he found results that were consistent between the serial manipulator, the Instron machine,

and finite element contact models.

Diolaiti et al. performed experiments for parameter identification with both a linear

Kelvin-Voigt model and the Hunt-Crossley model with stiff polycarbonate and a silicon

gel [21]. A half-sphere was driven into the contact material with a sinusoidal motion. An

online recursive estimator was used to estimate contact parameters for the models. The

linear model did not provide good characterization of the flexible gel, but for the stiffer

polycarbonate, both the linear and Hunt-Crossley models were adequate.

For measuring stick-slip friction, a common setup is depicted in Figure 1.3. A slider is

attached to a fixed wall with a spring [13] or both a spring and damper in parallel [16].

The slider rests on a platform or conveyor underneath that moves away from the wall at a

set velocity.

k

b

Figure 1.3: Slip-stick experiment.

For low speeds, the slider will oscillate as the conveyor repeatedly drags the slider far

enough such that the spring force exceeds the maximum friction force and it recoils. When

the speed of the slider matches the conveyor, it will stick and be dragged forward again.

Knowing the stiffness of the spring, the maximum stiction friction can be estimated based

on the distance the slider is dragged before it is first pulled back. As the speed is increased,

the frequency of the oscillations will increase, while their magnitude will decrease due to

dwell-time dependency, as the slider has less time to stick to the conveyor. Eventually,

oscillations will cease entirely and the slider will slip continuously at a point where the

spring and kinetic friction forces are equally opposed.

Liang et al. extended this basic setup for testing a two-dimensional bristle model [23].
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A slider is placed on the edge of a turntable and mounted to orthogonal walls by two

springs, shown in Figure 1.4. This allowed for consideration of the bristles on the contact

surface deflecting in more than one direction. However, the slider rotates slightly about

one corner as it is dragged, and the model considered did not account for any spinning

friction torque or rotational effects that might occur on a rotating platform.

Figure 1.4: 2D bristle model slip-stick experiment.

Liang et al. also tested this 2D bristle model by launching a slider horizontally at a

set velocity over an inclined plane. The slider was pulled down the plane by gravity and

eventually slowed by friction before coming to rest. The simulation accurately predicted

the observed forces and stopping point.

Gonthier outlines some possible methods for friction parameter identification in his

thesis [1]. These methods are discussed in Chapter 5.

1.4 Contributions

The volumetric contact model proposed by Gonthier et al. [1, 2, 3] requires experimental

validation. The model must be demonstrated to describe real-world phenomena in order

to be used in simulation. In addition, since several model parameters cannot be derived

directly from theoretical material properties, experiments to identify these parameters are

required.
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While simple point contact models relating force to penetration depth have been vali-

dated for certain robotic operations, no other work to date has experimentally investigated

contact models where the normal force is proportional to volume of interference. Likewise,

while some aspects of the volumetric friction model such as bristle stiffness and coefficients

of friction have already been demonstrated experimentally by others, aspects of the model

that describe phenomena such as spinning friction torque and the Contensou effect have

yet to be tested.

This work presents a series of experiments designed to measure contact model param-

eters and to test and demonstrate the features of the model. Specifically, hard metal-on-

metal contact is investigated, as these materials are used in both spacecraft manipulators

and payloads, and will need to be simulated. An apparatus has been developed to experi-

mentally validate these models for contact between metals.

Experiments have been divided into those pertaining to normal forces and friction

forces. Chapter 2 outlines the volumetric contact normal force model. Experiments to

validate this aspect of the model are described in Chapter 3, along with the results of

those experiments. The volumetric friction model is presented in Chapter 4. Chapter 5

outlines experiments for validating models for friction force, spinning friction torque, and

the Contensou effect.
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Chapter 2

Normal Volumetric Contact Model

2.1 Introduction

A flexible volumetric contact dynamics model has been proposed by Gonthier et al. [3]. This

model allows for more complex and conforming geometries where point contact models may

be inadequate because contact surfaces are relatively large, or where closed-form solutions

from elastic theory are not available. It can be shown that the model also accounts for

angular dynamics such as rolling resistance and spinning friction torque.

For larger or conforming contact surfaces, a Winkler elastic foundation model [18] has

been used. The Winkler model assumes a pressure distribution from one surface deforming

as a ‘bed of springs’ to comply with the contacting surface. This model has been adapted to

contact dynamics; the forces and moments between two bodies in contact can be expressed

directly in terms of the volume of interference, V , between the undeformed geometries of

the bodies.

There are two methods of representing deformations in the volumetric model. The

first is a one-body deformation model, where one body is assumed solid and the other

deformable, as depicted in Figure 2.1. In this model, the contact surface is the outer

surface of the second solid body. The second, the two-body deformation model, assumes

both bodies are compliant. In this case, the contact surface lies somewhere between the two

solid geometries, in the volume of interference, and is dependent on the relative stiffnesses

of the objects.
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Figure 2.1: Volume of interference between two contacting bodies in a one deformable body

model.

2.2 One Deformable Body Contact Model Properties

In a one deformable body contact model, one of the bodies, Bi is flexible, while the other,

Bj is perfectly rigid. The contact surface S is assumed to be a flat surface on Bj.

The volume of interference, that is, the volume Bi is compressed by, is given by

V =

∫
S

δ(s)dS =

∫
V

dV (2.1)

where S is the contact surface and δ(s) is the depth of penetration at point s on the contact

surface, as depicted in Figure 2.1. The vector n is defined as unit vector normal to S.

The centroid of this volume is

pc =
1

V

∫
V

p dV (2.2)

where p is the position vector to a point in the volume.

The weighed surface centroid sc is given by

sc =
1

V

∫
S

s δ(s)dS . (2.3)

Gonthier demonstrates that the volumetric and surface centroids are collinear along the

unit vector n [1].
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Another relevant property is the contact surface second moment of area, Js, weighted

by penetration depth:

Js =

∫
S

[(ρs · ρs)I− ρsρs] δ(s)dS (2.4)

where ρs is a vector from the centroid pc to the point s on the surface and I is the identity

matrix. This can be approximated by the volume inertia tensor

Js ≈ JV =

∫
V

[(ρV · ρV )I− ρV ρV ] dV (2.5)

where ρV is a vector from the centroid pc to the point p in the volume. Inertia tensor JV

is easier to calculate for arbitrary geometries.

2.3 Normal Force

In this model, contact pressure is proportional to the depth of penetration at each point

on the surface S. Integrating over S, the contact normal force is related directly to the

size of the volume of interference through a volumetric stiffness kV , given in units of force

per unit volume. The normal force is given by [3]

fN = kV V (1 + avcn)n (2.6)

where a is a hysteretic damping parameter and vcn is the relative speed of the bodies in

the normal direction n, measured at the centroid pc. This force acts normal to the contact

surface, through the centroid of the volume.

It should be noted that Equation (2.6) is very similar in form to Equation (1.5) for

the point-based Hunt-Crossley model. For free collision, the parameter a can be shown to

depend on only the coefficient of restitution, e, and the initial impact velocity, vicn [5]:

a =
d

evicn
(2.7)

where d is related to e by
1 + d/e

1− d
= ed(1+1/e) (2.8)

or which can be approximated as,

d ≈ 1− e2 . (2.9)
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2.4 Rolling Resistance Torque

As motion in the normal direction is damped through the normal contact force, there will

also be resistance to tangential rolling, as tangential rolling causes parts of the contact

surface to move in the normal direction. Gonthier et al. [3] found that by integrating the

contact pressure distribution over the contact surface, the rolling resistance torque is

τ r = kV aJS · ωt (2.10)

where ωt is the component of the relative angular velocity between the bodies tangent to

the contact surface. This gives an expression for rolling resistance torque without the need

to introduce any new parameters to describe resistance to rolling.

2.5 Two Deformable Body Contact Model Extension

The one deformable body model can be extended so that both bodies in contact undergo

some deformation. In this case, the contact surface cannot be derived from the surface of

one of the bodies, but divides the volume of interference, as in Figure 2.2. The contact

surface is assumed to be an imaginary flat rigid plane between the two bodies with normal

vector n.

On either side of the contact surface are the volumes of interference for each body, Vi

and Vj:

Vi =

∫
S

δi(s)dS , Vj =

∫
S

δj(s)dS (2.11)

where δi(s) and δj(s) are the penetration depths of each body past the contact surface S

at point s. The two volumes can be summed to give the total volume of interference, V ,

V = Vi + Vj (2.12)

=

∫
S

δ(s)dS (2.13)

which is equivalent to Equation (2.1).
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The normal forces resisting compression of each body’s volume must be equal. Using

(2.6), the magnitudes of the contact normal forces in the quasi-static case are

fN,i = kV,iVi (2.14)

fN,j = kV,jVj (2.15)

where kV,iVi and kV,jVj are volumetric stiffnesses of Bi and Bj, respectively. Since the forces

are equal,

kV,iVi = kV,jVj . (2.16)

The two volumetric stiffnesses can be combined into a single equivalent stiffness parameter,

kV , in the same manner in which a stiffness can be determined for two linearly elastic springs

in series:

kV =

(
1

kV,i
+

1

kV,j

)−1
. (2.17)

Using this equivalent stiffness yields a singular expression for the normal force that is the

same as Equation (2.6), where vcn represents the velocity of the bodies relative to each

other, measured from the centroid of the contact surface, sc. This contact point lies at the

boundary between the two deformed volumes Vi and Vj and can be shown [1] to be

sc = pc +

(
kv,j − kv,i
kv,i + kv,j

)
hV
2

n (2.18)

where pc is the centroid of the entire volume of interference as in Equation (2.2), n is the

normal vector directed away from Bi, and hV is the average height of the volume measured

parallel to n. This height can be determined by

hV =
V

Ac
(2.19)

where Ac is the surface area of S.

Similarly, it can be shown that rolling resistance torque is also identical for both the

one and two body deformable cases. The total surface inertia tensor, Js, is the same as in

Equation (2.4), and the rolling resistance torque, τ r is given by Equation (2.10).

The normal vector n defining the orientation of the contact surface is an eigenvector

of the volume inertia tensor JV . This does not necessarily correspond to the normals of

either surface.
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Gonthier demonstrates that by assuming that the contact plate is a rigid flat surface,

no new forces or torques are introduced as compared to other flexible contact plate shapes

that also satisfy the constraints of balanced forces [1]. It is also shown that by making one

body completely rigid, (i.e. kV,j � kV,i), the equations governing normal forces and rolling

resistance torque are identical to those of the one body deformable model.

2.6 Normal Contact Model Parameters

The parameters of the volumetric normal contact model proposed by Gonthier et al. are

listed in Table 2.1.

Parameter Description Units

kV
Volumetric stiffness N/m3

(kV,i, kV,j)

a Damping coefficient (may depend on e for free collision) s/m

e Coefficient of restitution

Table 2.1: Volumetric normal contact model parameters.

Table 2.2 lists model values that must be computed from geometries and measured

displacements.
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Value Description Type Units

V Volume of interference scalar m3

pc Volume centroid vector m

sc Surface centroid vector m

Js Surface inertia tensor 2nd order tensor m5

JV Volume inertia tensor 2nd order tensor m5

n Normal vector vector

vcn Relative velocity normal to n scalar m/s

vicn Initial impact velocity normal to n scalar m/s

ωt Relative angular velocity tangent to n vector rad/s

Table 2.2: Volumetric normal contact model measured quantities.
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Chapter 3

Normal Contact Experiments

3.1 Experiments

The purpose of the experiments is to determine parameters for the volumetric contact

model and to validate that model. Parameters to be determined include a volumetric

stiffness constant, a hysteretic damping factor, and friction parameters. Of interest for

validation are the volume-normal force relationship, bristle-friction model, spinning friction

torque model, and the Contensou effect [2]. The experiments have been divided into those

pertaining to the normal contact forces and those for the friction forces. In this section,

the normal force experiments are described.

For the contact normal force model, measurements of the displacement and forces in the

normal direction are required. Two experiments, one static and one dynamic, are used to

determine and validate both the volumetric stiffness and damping parameters separately.

Two different contact specimens were designed to be used against a flat plate. The first

is spherical, and the results from volumetric contact simulation can be compared directly

with those from Hertz theory. The second is cylindrical, with a flat end forming one of the

contact surfaces with the opposing plane. This specimen does not satisfy the assumptions

in Hertz theory of a small contact patch and non-conforming geometries, which allows

testing of the volumetric model in cases where Hertz theory does not apply.
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3.1.1 Volumetric stiffness

The specimen is mounted horizontally relative to a vertical contact surface, shown in

Figure 3.1. Starting from rest, with the specimen touching the contact surface with no

forces between them, the force driving the specimen is gradually increased so that the

force sensors are loaded quasi-statically. The rate in displacement was limited to 12 µm/s,

pausing for one second at each programmed position, such that the effect of damping was

negligible. Without the effects of damping for the quasi-static case of the volumetric model,

the magnitude of force in Equation (2.6) becomes:

FQS = kV V (3.1)

The measured displacement was used to find the volume of interference, so that a volu-

metric stiffness constant, kV , could be estimated through a linear fit of force to volume

measurements. To estimate the value of the stiffness parameter, the following cost function

was minimized for kV :

cvol =
∑
k

[
F k
meas − kV V (δk)

]2
(3.2)

where F k
meas are the sampled force measurements and V (δk) are estimates of the volume

of interference derived from position measurements, δk, and dependent on the specimen

volume chosen. However, the exact point of contact (δ = 0) is also unknown, since the

experiment will begin with the specimen and contact surface separated. Thus, the point

of contact, p0, must be also be estimated from the raw position measurements, pk,

δk = pk − p0 (3.3)

giving a non-linear optimization problem for minimizing cvol in two parameters, kV and p0,

cvol =
∑
k

[
F k
meas − kV V (pk − p0)

]2
(3.4)

For spherical specimens, results can also be compared with Hertz theory. From Equa-

tion (1.2) and n = 3
2
, a different cost function can be determined:

cHertz =
∑
k

[
F k
meas − k(δk)3/2)

]2
(3.5a)

=
∑
k

[
F k
meas − k(pk − p0)3/2)

]2
(3.5b)

giving a nonlinear least-squares minimization problem for k and p0.
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Figure 3.1: Normal force configuration of the experimental apparatus mounted with a

cylindrical specimen.

3.1.2 Damping

Equation (2.7) shows that the hysteretic damping factor a in free collision depends on the

initial normal velocity at impact, vin, and a kinematic coefficient of restitution, e. With a

known volumetric stiffness and measured displacements, velocities, and forces, the damping

factor and coefficient of restitution can be estimated.

Many experiments for determining the coefficient of restitution in free collision rely

on drop testing. For the purposes of these experiments, very low contact velocities of

no more than a few millimetres per second, as might be expected in complex robotic

space operations, are desired. In order for collisions to be limited to such velocities, drop

heights of less than a micron above the contact surface would be required. It would

be extremely difficult to position and measure such an experiment with any reasonable

precision accurately.

In the case of these experiments, the specimen is connected to an actuator to regulate

the speed of collision. Thus, the experiments do not involve free collision, and the notion

of a coefficient of restitution, either kinetic or kinematic, does not apply. Thus, we cannot

use Equation (2.7) to determine a.

The specimen is brought into contact with the force plate at different motor-driven
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velocities and the subsequent forces and displacements are measured. For each case, the

damping factor, a is estimated. A relationship between a and vin will be established, but

this relationship cannot be compared back with a coefficient of restitution as with Gonthier

[1].

To estimate the hysteretic damping parameter from measured results, the forces mea-

sured during quasi-static experiments can be compared with those measured when the

specimen is in motion. The force under damping should be given by

Fdamped = FQS(1 + avcn) (3.6)

where FQS is the estimated force with no damping from Equation (3.1). To estimate the

value of the damping parameter, the following cost function must be minimized:

cdamp =
∑
k

(
F k
meas − F k

QS(1 + avkcn)
)2

(3.7)

where F k
meas are the sampled force measurements and F k

QS are the quasi-static force esti-

mates from the position data, calculated using Equation (3.1). The speeds vkcn are estimated

using a first-order central finite difference approximation of the position data:

vkcn =
dδk

dt
≈ δk+1 − δk−1

tk+1 − tk−1
(3.8)

3.2 Apparatus

An apparatus has been developed to experimentally validate these models, as shown in

Figure 3.2. The apparatus has two configurations, one for validating the normal contact

models and the other for the friction models. The normal configuration uses a linear

actuator to drive a rigidly mounted specimen into a normal contact surface, which is

mounted to a force transducer with a configured resolution of 0.1 N . specimen position

relative to the contact surface is measured through a linear encoder with a resolution of

up to 1.22 nm. For the friction configuration, the same linear actuator and encoder are

employed for translational motion. The friction configuration will be explained later in

Chapter 5.

The normal configuration with a cylindrical specimen is depicted in Figure 3.1. A 316

stainless steel specimen is rigidly clamped to the linear actuator. Also rigidly attached to
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Figure 3.2: Mechanical apparatus for contact experiments, shown in the normal configu-

ration.
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the actuator is a linear encoder which measures the position of the specimen relative to a

glass reference grating. This reference is mounted to the force sensor.

3.2.1 Contact surfaces

Different deformable contact surfaces can be mounted in front of the piezoelectric force

sensor. Metal contact surfaces were employed, an aluminum plate and an AZ31 magnesium

alloy. The aluminum (6061) plate was 25.4 mm thick and polished to 1200 grit. The AZ31

magnesium alloy was 22 mm thick and loaded perpendicular to the extruded direction.

The magnesium surface was polished to 1500 grit, but quickly dulled due to oxidation.

The magnesium alloy was found to have a higher modulus of elasticity in the extruded

direction than the transverse directions, meaning the material is anisotropic. Experimental

results for point contact with this material may not follow Hertz law, as the theory assumes

isotropy [18].

These materials are more compliant than the specimen, so it is assumed that the ma-

jority of the deformation will take place in the contact surface rather than the specimen.

Using Young’s Modulus (listed in Table 3.1) for each material as a rough measure of rela-

tive stiffness, it is estimated that the specimen will account for approximately one-fourth of

the compliance when applied to aluminum and one-sixth with magnesium AZ31. However,

we can still use Equation (2.6) for the normal force, since it retains the same form if both

bodies are deformable [1].

Material Modulus of Elasticity Possion’s Ratio

E (GPa) ν

Magnesium 35− 40 0.35

Aluminum 69 0.33

316 stainless steel 200 0.27

Table 3.1: Elastic properties for contact surface and specimen materials [24].
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3.2.2 Specimen geometries

Both a spherical and a flat cylindrical specimen were employed. The two contact specimens

were constructed from 316 stainless steel.

Spherical specimen

The spherical specimen has the advantage of being largely indifferent to alignment due to

its shape, having a sphericity of 2.5 µm over a diameter of 19.05 mm. Results from the

validation can also be compared with those of Hertz theory for sphere-on-plane contact.

The Hertzian contact force is given by Equation (1.2). A theoretical value for Hertzian

stiffness, k, can be determined by [18]:

k =
4

3
E∗r1/2 (3.9)

where r is the radius of the sphere, which in this case was 9.52 mm. E∗ is defined by the

elastic properties of the materials:

1

E∗
=

1− ν2i
Ei

+
1− ν2j
Ej

(3.10)

where Ei and Ej are the elastic moduli and νi and νj are the Poisson’s ratios of the bodies,

found in Table 3.1.

For the volumetric model, the volume of interference between a sphere and a plane is

a spherical cap, assuming that the midpoint of the sphere does not surpass the boundary

of the plane. The magnitude of this volume can also be expressed in terms of depth of

penetration, δ [25]:

V =
π

3
δ2(3r − δ) (3.11)

where r is the radius of the sphere.

Cylindrical specimen

For the second specimen, a cylinder was selected because it provided a relatively large

conforming contact surface that would demonstrate the usefulness of the model in cases

where point contact could not be assumed. Also, because contact pressure is spread over a
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larger surface area than with sphere-on-sphere or sphere-on-plane, there is less risk of plastic

deformation from a highly concentrated point load. Finally, assuming the specimen and

the contact surface are perfectly aligned, the volume of interference between the cylinder

and the plane can easily be expressed in terms of the depth of penetration, δ:

V = πr2δ (3.12)

where r is the radius of the cylinder, which is 5 mm in this case. Thus, the volume of

interference and consequently, the normal force in the model, have a linear relationship

with the displacement. In the quasi-static case,

fN = kV πr
2δ (3.13)

In this specific perpendicular case, the quantity kV πr
2 could be reduced to a single constant,

however for these experiments, kV is retained as separate constant to remain consistent

with the general volumetric model.

While Hertz point contact models cannot be used for a flat cylinder in contact with a

plane, other classical solutions exist. Sneddon [26] determined the relation between force

and displacement for a rigid cylindrical punch on an elastic half-space:

fN = 2rE∗δ (3.14)

where r is the radius of the cylindrical punch and E∗ is defined by the elastic properties

of the half space:

E∗ =
E

1− ν2
(3.15)

where E and ν are the elastic modulus and Poisson’s ratio, respectively. In the case

where the punch is also compliant (as it is in the case of these experiments), we can use

Equation (3.10) to find E∗ in terms of the properties of both bodies.

When Equations (3.13) and (3.14) are compared, we note that both models are linear

in terms of δ. From these equations, a theoretical value for the volumetric stiffness can

also be determined:

kV =
2E∗

πr
(3.16)

Experimental results can be compared with this theoretical value. In this case, kV is

dependent on the radius of the specimen. This suggests that volumetric stiffness may not

be invariant with respect to geometry, but may have an inverse relationship with the size

of the contact patch.
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3.3 Results and Discussion

3.3.1 Volumetric stiffness

Spherical specimen

The spherical specimen was applied to each of the contact surfaces with up to 20 N of force.

Using non-linear optimization, contact points and stiffness parameters were determined for

both the Hertzian and volumetric models. Stiffness values are presented in Table 3.2 and

measured values and model fits are shown in Figures 3.3 and 3.4. Measured Hertzian

contact stiffnesses were about 2/3 of theoretical values determined using Equation (3.9)

for both contact surfaces. Note that in the figures, the zero point along the horizontal axis

does not correspond to the point of contact, but to the relative position with respect to

the initial position of the experiment. Contact points are found by fitting the model to the

data.

Material Experimental

Hertzian stiff-

ness ( N
m1.5 )

Theoretical

Hertzian stiff-

ness ( N
m1.5 )

Volumetric

stiffness ( N
m3 )

Magnesium 3.02× 109 4.66× 109 3.82× 1013

Aluminum 4.79× 109 7.34× 109 7.59× 1013

Table 3.2: Hertzian and volumetric stiffnesses for spherical specimen.

Both models provide good fits of the measured forces and displacements. For the alu-

minum, the Hertzian model provides a closer fit of the data compared with the volumetric

model, with root mean square values of 0.158 and 0.221, respectively. For the magnesium,

the volumetric model provides a closer fit with a root mean square error of 0.645 compared

with 0.837 for the Hertzian model. However, it should be recalled that the magnesium

alloy is orthotropic, so the surface cannot be expected to behave according to Hertz law,

as predicted earlier.

Figure 3.3 and Fig. 3.4 show that the estimated contact point is different for the volu-

metric and Hertzian models. For the metals, this difference is less than half a micron, which

should not significantly impact the simulation of larger robotic tasks. The expressions for
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Figure 3.3: Quasi-static force versus displacement for spherical contact on aluminum.
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force have different orders with respect to displacement around the point of contact for the

models. Using ‘Big O’ notation for the Hertzian model,

F = O(δ1.5) as δ → 0 (3.17)

and for the volumetric model,

F = O(δ2) as δ → 0 (3.18)

Thus, near the contact point, the estimated force will rise more rapidly for the Hertzian

model than for the volumetric model.1 Since the force-displacement slope for the volumetric

profile is numerically shallower, the nonlinear least squares fitting operation will tend to

estimate the contact point occurring for the volumetric model slightly ahead of the Hertzian

model.

Another feature of this difference in order between the two models is the impact these

will have on the magnitude of the stiffness parameters estimated. For example, let us

assume that according to classical elastic theory, the Hertz model accurately describes the

relationship between force and displacement. If the force range applied were to be extended,

to say 100 N , the estimated volumetric stiffness would be less than for a maximum force

of 20 N , as the volumetric model has a higher order than Hertz law for low values of δ.

Thus, the volumetric stiffness determined is more dependent on the range of forces being

measured.

The ‘actual’ measured point of contact, (based on where contact forces are first de-

tected), differs from points of contact estimated from non-linear optimization with the

magnesium sample (Figure 3.4). There is an initial region of lower slope for the first few

microns in the force-displacement curve that is not accounted for in either model. How-

ever, it should be recalled that the magnesium alloy is anisotropic, so the surface cannot

be expected to behave according to Hertz law, as predicted earlier.

The initial contact region for magnesium may be accounted for by the asperities of the

contact surface. The surface of the magnesium sample was smoothed to a reflective 1500

grit, or 3 µm, but rapidly became dull. These surface asperities reduce the surface area of

1It should be noted that if kV is not assumed to be constant, but varies with the size of the contact

patch as predicted by Equation (3.16) in the cylindrical case in Section 3.2.2, the two models may in fact

share the same order in δ. If the volumetric stiffness is inversely related to the radius of the contact area,√
2rδ in this case, both the Hertzian and volumetric models share the same order.
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the contact patch, leading to a much lower force-displacement slope until these asperities

have been flattened. In addition, the elastic properties of the oxidized magnesium surface

is unknown, and may account for this initial difference.

A small amount of hysteresis is observed in the measurements for both materials, such

that there is slightly less contact force when the specimen is being reversed as compared to

when it is applied. Since the specimen is allowed to rest after reaching each servo encoder

count, this hysteresis cannot be attributed to damping forces in the model. The amount

of hysteresis will increase with higher maximum loads, suggesting some small amount of

permanent deformation is taking place. There was no visible damage to the surface.

Cylindrical specimen

Measurements using a cylindrical specimen are shown in Figures 3.5 and 3.6. Attempts

at a linear fit of the data are shown as a solid line, labelled ‘Perpendicular fit.’ The

results do not conform well to a linear fit, which the volumetric model would call for.

Classical elastic theory would also suggest a linear fit between displacement and force for

a perpendicular cylinder on a plane. This suggests that there are non-negligible surface

asperities on the cylindrical specimen, or that the surfaces are misaligned. Additionally,

estimated stiffness values (Table 3.3) are two orders of magnitude less than theoretical

predicted in Equation (3.16).

Material Experimental volumetric

stiffness ( N
m3 )

Theoretical volumetric

stiffness ( N
m3 )

Magnesium 7.88×1010 5.17×1012

Aluminum 1.24×1011 8.82×1012

Table 3.3: Volumetric stiffnesses for the cylindrical specimen.

Sources of misalignment in the experiment may include the mounting of the specimen

to the ball screw (along the horizontal axis in the plane of the contact surface), and the

relative alignments of the ball screw and the force sensor (along the vertical axis).

For the purpose of modelling the contact in the misaligned case, it is assumed that angle

from the normal, γ, (shown in Figure 3.7) does not change significantly over the the loading
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Figure 3.5: Quasi-static force versus displacement for cylindrical contact on aluminum.
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Figure 3.6: Quasi-static force verus displacement for cylindrical contact on magnesium

alloy.

γ

Figure 3.7: Misaligned cylindrical specimen, with deviation γfrom the normal.
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and unloading sequence. Unfortunately, no analytical solution exists in classical contact

theory for the relationship between force and displacement for an inclined cylinder on a

plane with incomplete contact [27]. For the volumetric model, the volume of a cylindrical

wedge [25] can be used to estimate volume of interference:

V =
δr3

3b

[
2 sinφ− cosφ

(
3φ− 1

2
sin 2φ

)]
(3.19)

where δ, b, and φ are shown in Figure 3.8. Wedge length b is given by

b =
δ

tan γ
(3.20)

while φ can be determined by

φ = cos−1
(
r − b
r

)
(3.21)

Substituting these into (3.19) gives a formula for volume solely in terms of r, δ, and γ. In

terms of parameter identification from the experimental results, this volume model requires

an additional angle misalignment term in addition to the volumetric stiffness and contact

boundary unknowns for the perpendicular case.

!
r

b

δ

Figure 3.8: Cylindrical wedge.

The stiffness parameter can be treated as known by substituting the values determined

from the theoretical estimates for perpendicular contact in Table 3.3, which were calculated
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using Equation (3.16). Non-linear optimization of cvol in Equation (3.4) was used to find

unknowns p0 and γ with the ‘Trust-Region’ method of the MATLAB Curve-Fitting Toolbox.

The resulting displacement-force curves for the aluminum and magnesium surfaces are

shown as dashed lines in Figures 3.5 and 3.6. This off-normal model agrees well with the

experiments. The estimated off-normal angles were determined to be 0.46◦ and 0.32◦ for

the magnesium and aluminum, respectively. In both cases, the misalignment is less than

half a degree.

Misalignments of this small a magnitude would be very difficult to perceive visually.

However, it is also possible that the machined specimen has non-negligible surface asperi-

ties.

3.3.2 Damping

Experiment execution and processing

As spherical specimens offered results in quasi-static testing that agreed well with the

model, spherical specimens were employed for the dynamic tests. The hard metallic contact

surfaces were impacted at speeds ranging from 0.1 to 1 mm/s. The motor controller was

programmed to track the desired velocity using the signal from the internal encoder of the

servo. The servo encoder, when connected to the ball screw system, had a resolution of

1.25 µm per encoder count. With a frequency of 16 kHz, the LabVIEW controller was

observed to maintain the desired velocity to within about 0.1 mm/s, due to the small

number of servo encoder counts between time intervals.

Measurements of force and position commenced prior to contact, with a sampling fre-

quency of 1 kHz. Accurate measurements of the position of the specimen came from the

high resolution linear encoder. Once contact had occurred, the motor would continue to

attempt to track the desired velocity. Due to the compliance in the ball screw system

and the apparatus, the actual velocity of the specimen itself relative to the contact surface

slowed down, even though the speed of the motor was maintained.

Control and data collection loops were executed on separate processes in the real-time

system. The control loop (which provided commands to the motion controller, operating

at a much higher frequency), operated at a frequency of 10 Hz, and the data loop operated

at 1 Hz, loading 1000 force and position samples at a time from the capture cards into
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memory. The control loop would monitor the latest force measurements in memory to

determine if contact had occurred, at which point it would instruct the motor to stop and

reverse and toggle a flag that would instruct the data collection loop to stop. Thus, at

least a second worth of sample data following contact would be collected.

A subset of the sampled data was then selected for comparison with the model with the

following methodology. For each collision, the position contact where contact first occurred

was estimated from the force data. The preprocessor then selects 0.1 s of data, beginning

at a point 2 servo encoder counts (2.5 µm) prior to contact. An example of such a sample

is shown in Figure 3.9.

With the position data, the volume of interference can be determined, allowing the con-

tact force without damping effects to be estimated for each sampled position. Volumetric

stiffness values determined with the spherical specimen in Section 3.3.1 are used. These

estimated force values in the case of Figure 3.9 are shown as a dashed line in the lower

force graph. It is observed that these estimates are lower than the sampled force values,

indicating that damping has occurred.

The final force estimated using position data, with damping included, is shown in

Figure 3.9 as a solid line. The line appears noisy due to the poor speed estimates. At very

low speeds, there is only a small number of encoder counts between sample intervals. The

effect of the error in speed estimates on the magnitude of the estimated force is increased

as the penetration depth increases. Nevertheless, the agreement between the model and

experiments is still quite good.

Measured damping factors

Measured values of the hysteretic damping factor for the magnesium alloy and aluminum

are shown in Figures 3.10 and 3.11, respectively. It is observed that the damping factor

can be inversely related to the initial impact velocity as predicted in Equation (2.7). A

least-squares fit of an inverse relation shown in the figures as a solid line.

Since the impact is driven and not free collision, the notion of a coefficient of restitution

does not apply. However, the inverse relationship between the hysteretic damping factor

a and the impact velocity observed is similar to Equation (2.7), as long as the coefficient

of restitution e is assumed to be constant with respect to vicn. This coefficient e was found

to be 0.134 for aluminum and 0.114 for magnesium.
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impact at 0.58 mm/s on magnesium alloy.
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3.3.3 Sources of error

Alignment

As discussed in the cylindrical specimen results, it possible that the apparatus is not well

aligned. In the spherical specimen case, this minor misalignment should have negligible im-

pact on results. However, in the case of the cylindrical specimen, even small misalignments

may result in incomplete contact over the course of the experiment.

Surface roughness

Surface asperities can result in incomplete contact [28] and have been shown to be a

significant factor in the reduction of contact stiffness, both theoretically and experimentally

[22]. This leads to lower than predicted contact stiffnesses, as there is less material being

compressed after initial contact. In terms of the volumetric model, this means there is

an unknown volume of interference that would be less than that for ideal geometries, and

depends on the surface roughness.

The aluminum surface was polished with 1200 grit sandpaper, while the magnesium

was polished with 1500 grit sandpaper. These surfaces should have surface asperities no

greater than 5 µm and 3 µm, respectively. Note that the magnesium dulled quickly after

polishing (as expected). It is not known what impact this oxidation had on the properties

of the magnesium surface.

The spherical specimen was constructed from a stainless steel ball-bearing with a

sphericity of 2.5 µm. The cylindrical specimen was specified to have a surface roughness

of 0.8 µm.

Linear encoder distortion

Compliance in the apparatus under higher loads would cause the linear encoder to deflect

away from the encoder reference. This deflection created a distortion in the position

measurements that grew with increased pressure. Forces in the quasi-static experiments

were limited to 20 N so that deflection of the position equipment was negligible.
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Other compliances

The apparatus was designed such that the displacement measurements would capture pri-

marily the strain within the contacting materials. Thus, the position encoder was placed

in proximity to the specimen mounting hardware and the reference was mounted directly

behind the contact surface. However, there is the possibility of some compliance within

the specimen mounting bracket and the bolts holding it in place. These compliances would

serve to decrease the magnitude of the stiffness parameters estimated, and could in part

explain why estimated Hertzian stiffnesses were less than theoretical values.

Dynamic response of the force sensor

It was important that the dynamic behaviour of the force transducer not affect the mea-

surements during the dynamic experiments. The resonant frequencies of the transducer

with the contact surfaces mounted were determined to be 4.08 kHz for aluminum and 4.46

kHz for magnesium. The force transducer will act to attenuate oscillations above these

frequencies. The experiments used a sampling frequency of 1 kHz, which is below the

dynamic response for either material.

Sensor noise and drift

Measurements from piezoelectric force transducer at constant load were observed to have a

standard deviation of 0.085 N . The specified repeatability of the charge amplifiers was 0.1

N . This represents 0.5% of the force range measured during the quasi-static experiments

and 0.1% during the dynamic experiments.

The force transducer and charge amplifier were determined to have a drift of up to 0.1

N/s after about an hour of warm-up. This drift was determined to remain consistent over

several minutes. In order to compensate for this drift, the force measured at the end of the

experiment, when the specimen was withdrawn, was used to determine the average drift.

The modelled drift was then subtracted from the force measurements.
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Chapter 4

Volumetric Friction Model

4.1 Introduction

Gonthier proposes a seven-parameter friction model to be used in conjunction with the

volumetric normal contact model [1]. This chapter outlines the elements of this model

that will be tested in Chapter 5.

Section 4.2 describes a general framework for friction forces and torques, as well as con-

cepts of average surface velocity and sticking state [2]. A bristle friction model, developed

for point contact models [5] and extended to spinning friction torque [1], is described in

Section 4.3. Section 4.4 and Section 4.5 cover the inclusion of dwell-time dependency [5]

and the Contensou effect [2, 1], respectively.

4.2 Basic Friction Model Framework

4.2.1 Forces

For point contact models, friction is often modelled with Equation (1.6), where the friction

coefficient µ depends on the nature of the motion of the bodies at the point of contact.

The friction force generally resists motion, so a vector expression for friction force can be

of the form

ft = −µfn
vt
|vt|

(4.1)
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where vt is the relative velocity between the bodies at the point of contact, and µ in this

case is a friction coefficient dependent on the model implementation.

In the volumetric normal contact model described in Chapter 2, contact takes place

over a surface within the volume of interference, rather than at a single point. Gonthier et

al. [2] considered the infinitesimal friction element dft:

dft = −µ vt
|vt|

dfn (4.2)

Integrating over the contact surface yields

ft = −µfn
vsct
|vsct|

(4.3)

where vsct is the relative velocity between the bodies in contact at the centroid of the

contact surface sc, tangent to the contact surface S.

Further, since friction can take place over an area, the relative velocity between the

bodies may not be uniform over all points along the surface, leading to a friction torque.

This torque acts to resist the relative angular motion of the bodies and is known as the

spinning friction torque. The infinitesimal torque dτ s is

dτ s = −ρs × dft (4.4)

which when integrated becomes

τ s = −µfn
V

Js ·
ωn
|ωn|

(4.5)

where ωn is the relative angular velocity about n at the contact centroid. As with the

normal model, the surface inertial tensor Js can be closely approximated with the volume

inertia tensor JV .

It can be shown that

n · Js · n = n · JV · n = r2gyrV (4.6)

where rgyr is the radius of gyration of the volume about the normal. This allows us to

rewrite Equation (4.5) as

τ s = −µr2gyrfn
ωn
|ωn|

(4.7)
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4.2.2 Stick-slip state and average surface velocity

Whether two bodies in contact are sticking or slipping is determined by the rate of tangen-

tial motion between the surfaces of the bodies. The average surface velocity vavg is defined

by the average relative tangential velocity of all points on the contact surface, and can be

expressed in terms of translational and angular speeds, vsct and ωn:

v2avg = vsct · vsct + ωn ·
Js
V
· ωn

= vsct · vsct + (rgyr|ωn|)2 (4.8)

A function s is used to determine the ‘sticking state’, that is, the degree to which the

bodies are either sticking or sliding across each other.

s = e
−

v2avg

v2s (4.9)

where vs is the velocity where the Stribeck effect occurs, that is, transition between sticking

and slipping. When s ≈ 1, the bodies are not moving tangentially relative to each other,

but when s ≈ 0, the bodies are slipping freely. Intermediate values between 0 and 1

indicate that friction is transitioning between sticking and slipping. Slipping will occur if

the bodies are translating or rotating relative to each other.

4.3 Bristle Model

4.3.1 Translational friction force

As with the point contact friction model described by Gonthier et al. [5], the volumetric

friction model assumes that the surface asperities of the bodies in contact act as flexible

‘bristles’ that push against and rub past each other. The amount of deformation is modelled

as zsc, a vector along the contact surface called the bristle state. For the volumetric model,

this deformation is measured from the centroid of the contact surface, sc. The friction

force acts to oppose the deformation of the bristles:

fbr = −fn(σ0zsc + σ1żsc) (4.10)
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where σ0 is the bristle stiffness, and σ1 is the bristle damping.

The bristle deformation rate żsc is further divided into two sub-models for sticking and

slipping, żst and żsl respectively. The sticking state s is used to determine the effect of

each on the overall deformation rate

żsc = sżst + (1− s)żsl (4.11)

During the sticking phase, the bristles deform at the same rate as the bodies translate

relative to each other,

żst = vsct (4.12)

While slipping, a Coulomb friction model is assumed:

fc = −µdfndir(vsct) (4.13)

where µd is the kinetic friction coefficient, and dir(vsct) is a function that gives a unit vector

in the direction of vsct. Gonthier assumes that żsc ≈ żsl and combines Equation (4.10)

with Equation (4.13) to yield

żsl =
µd
σ1

dir(vsct)−
σ0
σ1

zsc (4.14)

Combining Equation (4.12) and Equation (4.14) into Equation (4.11) gives

żsc = svsct + (1− s)
(
µd
σ1

dir(vsct)−
σ0
σ1

zsc

)
(4.15)

The friction force ft is limited by the maximum friction coefficient µmax

ft ≤ µmaxfn (4.16)

The friction coefficient is determined by the sticking state:

µmax = µd + s(µs − µd) (4.17)

where µs is the maximum static (i.e. sticking) friction coefficient. In order to bound the

magnitude of the friction force, Gonthier defines a saturation function

sat(u, umax) =

{
u ; |u| ≤ umax
u
|u|umax ; |u| > umax

(4.18)
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allowing ft to be expressed as

ft = sat(fbr, µmaxfn) (4.19)

Adding a term proportional to relative tangential velocity for viscous friction, Gonthier

finds a combined expression for ft:

ft = −fn[sat(σ0zsc + σ1żsc, µmax) + σ2vsct] (4.20)

where σ2 is the viscous damping coefficient.

As the friction force is bounded, the bristle deformation rate is also bounded [1]:

ż =
1

σ1
sat(σ0zsc + σ1żsc, µmax)−

σ0
σ1

zsc (4.21)

4.3.2 Spinning friction torque

This subsection only considers the case where the bodies are rotating in the normal di-

rection relative to each other, but not moving tangentially. Combined translation and

rotation are discussed in Section 4.5.

If two bodies in contact are spinning relative to each other in a direction normal to

the contact surface, then not all bristles across the surface deform in the same direction.

Gonthier [1] observes that during the sticking phase, the local bristle deformation rate ż

moves according to the relative body motion at sc, and thus, the relative local deformation

z is shown to be

z = zsc + θnn× ρt (4.22)

where θn is the relative angular displacement of the bristles about the normal and ρt is a

vector from sc to the point on the contact surface.

With a local bristle deformation, the infinitesimal bristle friction element can be con-

sidered,

dfbr = dfn(σ0z + σ1ż) = σ0zdfn + σ1żdfn (4.23)

giving an infinitesimal torque element about sc of

dτ br = ρs × dfbr (4.24)
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Integrating over the contact surface gives

τ br = −r2gyrfn(σ0θn + σ1θ̇n)n (4.25)

which allows us to use θn as an angular bristle state. Gonthier derives the angular bristle

state dynamics similar to the tangential dynamics of Equation (4.15),

θ̇n = sωn + (1− s)
(

µd
σ1rgyr

sgn(ωn)− σ0
σ1
θn

)
(4.26)

with a saturation of

θ̇n =
1

σ1
sat

(
σ0θn + σ1θ̇n,

µmax
rgyr

)
− σ0
σ1
θn (4.27)

The spinning bristle torque can then be computed as

τ s = −r2gyrfn
[
sat

(
σ0θn + σ1θ̇n,

µmax
rgyr

)
+ σ2ωn

]
n (4.28)

4.4 Dwell-Time Dependency

It has been observed that static friction increases the longer the two objects in contact have

been at rest [13]. It is possible that the asperities between the two surfaces begin to adhere

to each other over time, requiring that these bonds be broken before sliding may resume.

Gonthier et al. attempts to model this effect by including a dwell-time dependency [5].

A second sticking state sdw is introduced to include the influence of how long the bodies

have been at rest. This state follows the original sticking state s as follows:

sdw =

{
1
τdw

(s− sdw) ; s− sdw ≥ 0
1
τbr

(s− sdw) ; s− sdw < 0
(4.29)

where τdw is a dwell-time dynamics time constant and τbr is the bristle dynamics time

constant, that is, σ1/σ0. Thus, when the bodies come to rest, sdw will gradually approach

1, but quickly go to zero when the bodies begin moving again.

Equation (4.17) is replaced to include the dwell-dependent sticking state:

µmax = µd + sdw(µs − µd) (4.30)
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4.5 The Contensou Effect

The force, torque, and bristle state models in Section 4.3 are presented with the assumption

that the bodies are moving either tangentially or rotationally, but not both. However, it

is known that tangential motion impacts friction torque and rotational motion impacts

tangential friction force.

Contensou discovered that tangential sliding friction diminishes as spinning speed in-

creases [17]. This effect is most observable in a spinning floor polisher; it is difficult to

push when the machine is turned off, but when the polisher is spinning against the ground,

it glides easily. A circular contact surface of radius r is shown in Figure 4.1 undergoing

both rotation and translation. The diagram on the left side shows that when the product

of angular speed and the radius, ωnr is much greater than the tangential velocity vc, the

angular motion dominates the trajectories of the edge points A and B. In this case, the

resistance to motion from friction on the surface will ‘cancel out’ in the tangential direction.
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Figure 4.1: The Contensou effect.

Conversely, on the right side of Figure 4.1, it is evident that when vc is much greater

than ωnr, the tangential motion has the dominant effect on the trajectories of the outer

points. Thus, most spinning friction torque will be ‘cancelled out.’

Gonthier includes this effect in the volumetric model by introducing a set of dimension-

less factors to model the effect of combined translation and rotation [2]. The first Contensou
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factor, Cv, is defined as the ratio of tangential speed to average surface velocity:

Cv =
|vsct|
vavg

(4.31)

This factor is used to affect the magnitude of the tangential friction force, so that Equa-

tion (4.3) becomes

ft = −µfn
vsct
|vsct|

Cv (4.32)

Thus, if |vsct| � rgyr|ωn|, full tangential friction is experienced, but if |vsct| � rgyr|ωn|,
tangential friction goes to zero.

The second factor, Cω is used to affect the magnitude of the spinning friction torque

and is given by

Cω =
rgyr|ωn|
vavg

(4.33)

Including this factor in Equation (4.7) gives

τ s = −µr2gyrfn
ωn
|ωn|

Cω (4.34)

Thus, if |vsct| � rgyr|ωn|, full spinning friction torque is experienced, but if |vsct| �
rgyr|ωn|, friction torque goes to zero.

These factors are applied when the bodies are slipping, but it does not make sense to

apply the factors when the bodies are sticking. Thus, Gonthier introduces new terms, Cv,s

and Cω,s [1], which are defined as follows:

Cv,s = s+ (1− s)Cv (4.35)

Cω,s = s+ (1− s)Cω (4.36)

Equation (4.20) is revised to include Cv,s

ff = −fn [sat (σ0zsc + σ1żsc, µmaxCv,s) + σ2vsct] (4.37)

Likewise, Cω,s is included in Equation (4.28) to give

τ s = −r2gyrfn
[
sat

(
σ0θn + σ1θ̇n,

µmaxCω,s
rgyr

)
+ σ2ωn

]
n (4.38)
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The bristle dynamics functions, Equation (4.15) and Equation (4.26) must also be

updated:

żsc = svsct + (1− s)
(
µd
σ1

dir(vsct)Cv,s −
σ0
σ1

zsc

)
(4.39)

θ̇n = sωn + (1− s)
(
µdCω,s
σ1rgyr

sgn(ωn)− σ0
σ1
θn

)
(4.40)

along with their corresponding saturations, Equation (4.21) and Equation (4.27):

żsc =
1

σ1
sat(σ0zsc + σ1żsc, µmaxCv,s)−

σ0
σ1

zsc (4.41)

θ̇n =
1

σ1
sat

(
σ0θn + σ1θ̇n,

µmaxCω,s
rgyr

)
− σ0
σ1
θn (4.42)

The complete volumetric friction model developed by Gonthier [1] has now been pre-

sented.

4.6 Friction Model Parameters

The seven parameters of the volumetric friction model proposed by Gonthier et al. are

listed in Table 4.1. State values that are not directly measurable are listed in Table 4.2

Parameter Description Units

µs Coefficient of static friction

µd Coefficient of kinetic friction

σ0 Bristle stiffness m−1

σ1 Bristle damping s/m

σ2 Viscous damping s/m

τdw Dwell-time dependent time constant s

vs Stribeck velocity m/s

Table 4.1: Volumetric friction model parameters.

Table 4.3 lists model values in addition to those from the normal contact model (Ta-

ble 2.2) that must be computed from geometries and measured forces and displacements.
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State Description Units

zsc Bristle state vector m

θn Angular bristle state rad

sdw Dwell-time dependent stick-slip state

Table 4.2: Volumetric friction model states.

Value Description Units

fn Normal force N

vsct Contact surface velocity tangent to n m/s

ωn Angular velocity about the normal n rad/s

vavg Average surface velocity m/s

rgyr Radius of gyration m

Table 4.3: Volumetric friction model measured quantities.
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Chapter 5

Friction Experiments

5.1 Experiments

From the contact model described in the previous chapter, there are three primary modes

of motion under friction: pure translational, pure rotational, and combined translation

and rotation. In order to simplify the experiments and allow for parameter identification,

the experiments have been planned so as to conduct independent translation and rotation

first, before observing the Contensou effect under combined translation and rotation.

5.1.1 Pure translational motion

The purpose of using pure translational motion is to determine the seven bristle friction

model parameters and to validate that model for the surfaces in contact.

To find the coefficient of static friction, µs, the applied force can be increased until

the specimen begins to move. The coefficient of static friction is the peak friction force

measured at the instant before movement divided by the contact normal force. This should

be performed at several different applied normal loads for a more reliable estimate [1].

Gonthier also provides a means of estimating the bristle stiffness parameter [1]. During

the initial sticking phase in the model,

ft = −fn(σ0z + σ1ż + σ2vt) (5.1)
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If speeds are very low,

ft ≈ −fn(σ0z) (5.2)

Thus, if a specimen is slowly accelerated from rest, the bristle stiffness can be estimated

as

σ0 ≈
µs
dz

(5.3)

where dz is the displacement at the point of peak friction force.

Figure 5.1 shows the ratio of friction force versus normal load for a simulation of the

friction model under constant gradual acceleration. Parameters used for the simulation are

listed in Table 5.1. It is shown that the peak force ratio comes close to the value used for

the static coefficient of friction in the model.

µ
d

µ
s

Figure 5.1: Ratio of friction force to normal load for simulation of constant acceleration.

The kinetic Coulomb friction coefficient µd and viscous damping coefficient σ2 can be

determined through experiments where the specimen is driven at various different constant

velocities [1]. A linear regression of friction force versus applied speeds can be used to
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µs µd vs σ0 σ1 σ2

0.5 0.4 10−4 m/s 104 1/m
√

105 s/m 0 s/m

Table 5.1: Simulation parameters.

estimate the coefficients, where the slope of the line yields σ2, and the y-intercept can be

used to find µd.

To determine the dwell-time dependency of the materials in contact, the specimen can

be driven with sinusoidal velocity profiles of various frequencies, emulating the behaviour

of the experiment depicted in Figure 1.3. Peak friction forces will be measured in order to

estimate the dwell-time dynamics time constant, τdw.

Gonthier [1] provides suggestions as to how to find the bristle stiffness and damping

parameters, which may be difficult. These values, along with the Stribeck velocity will likely

need to be determined through parameter tuning from experiments where the specimen is

forced to enter into slipping from rest.

5.1.2 Pure rotational motion

The spinning friction torque model uses the same parameters as those determined by the

translational experiments. The main purpose of the rotational experiments is to validate

this torque model. Thus, similar experiments can be applied where the specimen is rotated

instead of translated to determine if the model fits the data.

5.1.3 Translation and rotation

The purpose of this experiment is to validate the model’s description of the Contensou

effect. This is achieved by slowly increasing rotational speed while holding the tangen-

tial speed constant and measuring the resulting friction forces and torques. The model

Contensou factors can then be compared with the measured ones.
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5.2 Apparatus

The friction experiments require an apparatus that controls both tangential motion and

normal rotation, in addition to applying a contact normal force. The apparatus depicted in

Figures 5.2 and 5.3 has been designed to accommodate this. A linear actuator (consisting

of a DC brushless motor connected to a ball screw) drives the translational motion, while

a small brushless DC motor drives rotation. The specimen is mounted to the shaft of the

small motor, the frame of which is mounted through a vertical linear guide to the carriage

of the linear actuator to permit free motion in the normal direction.

The specimen was originally intended to be mounted to the motor via a flexible servo

coupling of known stiffness which would ensure level contact with the surface. However, it

was discovered early on in the experiments that the coupling did not operate as intended.

The specimen would lose its vertical orientation as its edge would catch and slip on the

surface during translational experiments. The flexible coupling was replaced with a solid

aluminum coupling.

As the system is under gravity, the normal force on the specimen is determined from the

masses of the motor and specimen. The properties of the volume of interference between

the specimen and the contact surface are estimated using the stiffness of the materials and

the normal contact model. Since the rotational motor is connected to control and feedback

cables, the weight applied to the specimen may shift slightly when the rotational motor is

moved by the linear motor, so the applied load must be continuously measured throughout

the experiment.

Two 3-DOF (x,y,z) force sensors beneath the contact plate connect it to the ground.

These are aligned so that the sensors are centred in the plane of motion of the specimen.

The normal force can be measured through the sum of the z-forces, the tangential fric-

tion force through the sum of the y-forces, and the spinning friction torque through the

difference of the x-forces multiplied by the distance between them.

Alternative designs were considered. A four-axis CNC would enable the desired motion;

however, concerns over control and real-time position measurement made such a choice un-

feasible. In addition, many CNC designs would require the contact plate to be moved to

enable relative motion with respect to the specimen, the accelerations of which would reg-

ister on the force sensors. Parallel manipulators were also considered, but were considered
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Figure 5.2: Diagram of apparatus for friction experiments.

to be limited in their range of motion and might require more effort to ensure independent

translational and rotational experiments.

5.3 Results and Discussion

5.3.1 Translational motion

Static friction experiment

As described in 5.1.1, determining the static parameters of the model requires taking

measurements while driving a 10 mm diameter titanium specimen from rest. For this

experiment, the linear motor was commanded to give a constant acceleration of 0.1 mm/s2,

while the smaller motor did not rotate.

For the purposes of analysis, the ratio of friction force to normal force magnitudes,

given by

µ =
ft
fn

(5.4)
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Figure 5.3: Apparatus for friction experiments.
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will be referred to as the instantaneous coefficient of friction. The instantaneous coefficient

of friction over 0.5 mm of motion is presented in Figure 5.4.
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Figure 5.4: Instantaneous coefficient of friction versus displacement for 0.1 mm/s2 accel-

eration of 10 mm titanium specimen from rest.

Peak friction occurs at 144 µm of displacement with an instantaneous coefficient of 0.51.

Following Equation (5.3), which assumes a linear fit, the bristle stiffness σ0 is estimated to

be 3.5 × 103 1/m. The slope of the curve in Figure 5.4 decreases significantly around 50

µm.

From Equation (5.2), it is expected that the relationship between displacement and

instantaneous coefficient be close to linear prior to peaking. This expectation is not met

by the experimental results. If bristle stiffness were measured from an earlier point before

the peak, the estimate would be an order of magnitude higher.

Moving the specimen over the contact surface resulted in scratches to both surfaces,

shown in Figure 5.5. Small pits and markings appeared along the wear lines, indicating that

the surface was not consistent along the line of motion. Figure 5.6 shows the instantaneous
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coefficient of friction over 8 mm of travel at a constant velocity of 1 mm/s from one

experiment. The amount of friction is not constant but fluctuates as the specimen ‘catches’

on the pits and scratches. Thus, some of the measured friction forces are not the result of

the interaction between microscopic ‘bristles’, but of larger and more visible imperfections

in the surfaces.

Figure 5.5: Wear to the titanium flat surface left by the 10 mm titanium specimen.

Additionally, as new scratches are formed with each motion, the interactions between

the surfaces are not entirely elastic, but partially plastic. This may explain the reduction of

slope in the friction coefficient curve in Figure 5.4, as the contact surfaces strain plastically.

To reduce the likelihood of plastic deformation, it was necessary to reduce the force

concentration on the contact surface. Little could be done to reduce the normal load

on the specimen, since most of the weight was in the rotational motor to which it was

mounted. Increasing the diameter of the specimen from 10 mm to 25.4 mm would increase

the contact surface area by over a factor of six and reduce pressure by the same factor. A

25.4 mm diameter specimen was made from aluminium. Aluminium was selected because

it was more compliant than the titanium testbed so that if plastic deformation did take

place, it would occur in the specimen, which was easier to replace.
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Figure 5.6: Instantaneous coefficient of friction versus displacement for constant velocity

of 1 mm/s for 10 mm titanium specimen.
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Using the same acceleration of 0.1 mm/s2, the experiment was repeated with the alu-

minum specimen. Results are shown as a solid line in Figure 5.7. It is first observed that

there is substantially less friction for this larger aluminum specimen than with the smaller

titanium one. Aluminum is more compliant than titanium, so it is not surprising that the

‘bristles’ in the aluminum surface give less resistance. Additionally, the wear that resulted

in the experiments with the smaller specimen suggests that visible imperfections, in ad-

dition to microscopic bristles were having to deform so that the titanium specimen could

move.
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Force measurements

Force measurements adjusted by rotation

Figure 5.7: Instantaneous coefficient of friction versus displacement for 0.1 mm/s2 accel-

eration of a 25.4 mm aluminum specimen from rest.

It is noted that the ‘peak’ also occurs 0.5 mm from rest. However, after the friction

peaks and declines slightly, the friction forces rise gradually as the specimen continues to

accelerate. This trend in Figure 5.7 is distinct from the trend with the smaller specimen in

Figure 5.4, as friction increases linearly with displacement during the stick-slip transition

and there is an observable decline following the peak.
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Encoder measurements from the rotational motor were also taken. These measurements

indicated the specimen would rotate up to 2 degrees during stick-slip transition. (The mo-

tor could not be locked, but was commanded to maintain a ‘zero’ position. If a disturbance

was introduced, following error could occur.) Angular positions from the above experimen-

tal run are shown in Figure 5.8. Since there is rotation taking place during the transition,

one might expect the Contensou effect to reduce the amount of friction experienced.
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Figure 5.8: Rotary encoder measurements from translational static friction experiment.

The dimensionless Contensou factor Cv can be applied, where

ft = µfnCv (5.5)

to give a new expression for µ:

µ =
ft

fnCv
(5.6)

The adjusted coefficient of friction calculated with (5.6) is presented as a dashed line

in Figure 5.7. Compared with the ‘raw’ coefficient of friction, there is a clearer peak

61



followed by tapering and leveling off as static friction is overcome and slip begins. For this

experiment, the volumetric contact model’s Contensou factor provides a good description

of friction behaviour when slight rotation occurs during translation.

Experimental plans called for testing with different normal force loads. However, the

setup only allowed for increasing the load, and it was thought that further increasing the

normal force pressure would lead to greater wear of the contact surface. Instead, different

accelerations were tested.

Experiments were repeated for accelerations ranging from 0.1 to 0.5 mm/s2. Each

experiment yielded similar coefficient of friction profiles to that of Figure 5.7. The peak

coefficients were recorded and are shown in Figure 5.9. The mean coefficient of static

friction was 0.204.
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Figure 5.9: Peak coefficients of friction for various linear accelerations.

There is a significant amount of variability in measuring the static coefficient of friction.

As the experiments progressed, the testbed surface appeared increasingly scratched, though

not as deeply as with the smaller specimen. The extent of the wear is shown in Figure 5.10.
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Thus, the contact surfaces changed with each experiment due to permanent deformations

that were taking place. Further experiments are therefore required, with lowered contact

pressure so that visible surface changes do not occur.

Figure 5.10: Wear to the titanium surface from the 25.4 mm aluminum specimen.

Using Equation (5.3), the bristle stiffness σ0 could be estimated for each of the experi-

ments. The average distance travelled before peak force was achieved was 46 µm, and the

average bristle stiffness was 4500 m−1.

With an estimate for σ0, the bristle damping parameter σ1 could be estimated. During

the sticking phase, the bristle state zsc and speed żsc are approximately equivalent to the

total displacement and speed of the specimen, respectively. Thus, we can write the model

friction coefficient during this phase as

µ ≈ σ0dt + σ1vt (5.7)

where dt is the tangential displacement of the specimen from the rest position. A bristle

damping coefficient σ1 was estimated using measurements prior to friction peaking for

each experiment. Figure 5.11 shows the measured friction alongside model values with and

without damping for an acceleration of 0.1 mm/s2. There is good agreement between the

model and results when bristle damping is introduced. The average bristle damping σ1

was 300 s/m.
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Figure 5.11: Estimate of bristle stiffness and damping parameters (σ0 and σ1).
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Since increasing the weight on the specimen would only lead to further damage to

the contact surface, experiments with different applied normal forces were not performed.

The stainless steel spherical specimen was also not used, as it was assumed that the small

contact patch and resulting concentrated high pressures would lead to even deeper scratches

to the surface.

Dynamic friction experiments

The larger aluminum specimen was driven at different constant velocities, ranging from

0.5 mm/s to 2.5 mm/s to estimate coefficients of kinetic friction, µd, and viscous friction,

σ2. For the slipping case,

ft = fn(µd + σ2vt) (5.8)

Combining Equation (5.4) with Equation (5.8) gives a linear relation between µ and vt:

µ = µd + σ2vt (5.9)

This allows the slipping friction parameters to be estimated through linear regression of

measured coefficients of friction and velocity.

As with the static friction experiments, wear to the contact surface with the larger

specimen was still observed. In addition, great variability in the measured coefficient of

friction was observed, as shown in Figure 5.12. The peaks in friction coefficients were

assumed to represent points where the visible scratches in the two contact surfaces would

catch on each other, while the declines that follow represent when the scratches break free

of each other.

Averages of measured coefficients are plotted by speed in Figure 5.13. A linear regres-

sion is shown as a solid line. The y-intercept and slope, which are our estimates for µd and

σ2, are 0.187 and 10.4 s/m, respectively. However, the quality of the regression is poor,

as the coefficient of determination, R2, is only 0.085. Thus, it is difficult to give a certain

value for the kinetic coefficient between the aluminum and titanium that is more precise

than 0.2, or to say definitively that viscous friction is taking place.

The variability in the measurements of the coefficient of friction likely stem from the

plastic deformations to the metallic surfaces over the course of the experiments. Thus, the

surfaces did not remain the same between experiments. These changes in surface roughness
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Figure 5.12: Coefficients of friction over time for motion at a constant speed of 1.8 mm/s.
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Figure 5.13: Mean coefficients of friction versus constant velocity travelled.
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led to changes in observed coefficients of restitution. In this case where wear takes place,

the static and kinetic coefficients of friction are difficult to measure as distinct parameters.

This makes any attempt to determine the Stribeck velocity vs difficult, as there is no clear

distinction between slipping and sticking.

Dwell-time dependency experiments

As both static and dynamic experiments yielded similar estimates for static and kinetic

coefficients of friction for the aluminum specimen on the titanium surface, and measured

values yielded a high degree of variability, it was not anticipated that dwell-time depen-

dency for these materials could be observed or measured. However, the proposed dwell-time

experiments were still conducted.

The experiment involved applying a sinusoidal motion pattern to the specimen at vari-

ous frequencies. Figure 5.14 shows the sticking state function s and dwell-dependent state

sdw in simulation, with an arbitrary dwell-time constant τdw of 0.3. From Equation (4.30),

if sdw is close to 1, (i.e. sticking), the effective coefficient of friction will be closer to the

higher value of µs, while if it is close to 0, (i.e. slipping), the coefficient will be closer to µd.

Figure 5.14: Simulated sticking state for oscillating motion starting from rest.

From these simulated results, it is apparent that for a lower frequency like 0.25 Hz, the

peak friction forces with each oscillation will be roughly halfway between the maximum

static friction µsfn and kinetic friction µdfn. For higher frequencies such as 2 Hz, there is

insufficient time when the specimen comes to rest for it to begin sticking again, so peak

friction forces will barely exceed kinetic friction levels. Thus, higher frequencies should
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yield lower peak friction values, while lower frequencies should lead to greater amounts of

friction.

The linear motor was directed to follow a sinusoidal motion at frequencies of 0.25, 0.5,

1, and 2 Hz, achieving a maximum speed of 2 mm/s. Since the specimen was moving back

and forth, each subsequent cycle would be along the ‘same’ surface (though it is understood

from the previously observed wear that the surface does in fact change).

Actual measurements reveal that the amount of friction experienced by the specimen

actually increases above the initial peak, instead of decreasing, as might be expected from

the dwell-time dependent model. Figure 5.15 shows the measured coefficients of friction

for 0.25 Hz. Friction in the initial stick-slip transition achieves a peak coefficient of 0.2,

but can exceed 0.4 in later oscillations. This effect was also observed at higher frequency

oscillations.

Increased forces under oscillation are often attributed to resonance at natural frequen-

cies. However, position measurements closely track the commanded motion, so instability

is unlikely. In addition, the oscillating frequencies are very low compared to the natural

frequencies of the sensors (3.6 kHz).

Wear to the surface is also considered as a possible cause of the observed increase

in friction forces. It was thought that the specimen might be ‘digging’ grooves into the

contact surface, which could lead to greater friction with each pass. However, the initial

peak friction always began around 0.2 when experiments were repeated at the same location

on the contact surface, so whatever the effect, it is not permanent.

Temperature at the contact site was also considered, though it could not be directly

measured. It is likely that the friction was generating some heat, especially as the specimen

was moving back and forth over a small area. This added heat could serve to increase the

adhesiveness of the surfaces. There was sufficient time to cool between experiments, which

would restore the maximum friction coefficient to around 0.2.

It can therefore be hypothesized that friction forces between metals are dependent

on the temperature of the surfaces in contact, including the heat generated by the same

friction between the bodies.
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Figure 5.15: Measured coefficient of friction from oscillation of 0.25 Hz.
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5.3.2 Rotational motion

As with the translation experiments, the larger aluminum specimen was used for measure-

ments with rotational motion. The larger specimen provided a larger radius of gyration

which should serve to increase the magnitude of the friction torque measured, yielding

more reliable results.

Friction torque is measured through the reaction forces along the x-direction (Fig-

ure 5.2) at the two force transducers rigidly mounted to the contact surface. These sensors

are rigidly fixed to the ground, allowing the contact plate to be modelled as a beam fixed

at both ends. Reaction forces, which can be measured directly, are shown in Figure 5.16 as

Fx1 and Fx2. Moments M1 and M2 are reactions required to prevent the contact plate from

rotating at the mounting points, which cannot be directly measured through the sensors.

Using beam theory, the friction torque can be given by [24]

τs =
L3

12y(L− y)
(Fx1 − Fx2) (5.10)

where y is the distance from sensor 1 to the centre of rotation for the specimen, as shown

in Figure 5.16.

L

!
s

Fx1 Fx2

M
2M

1

y

P

Figure 5.16: Reaction forces to spinning friction torque.

For the case where the specimen is at the midpoint between the sensors,

τs =
L

3
(Fx1 − Fx2) (5.11)

Equation (5.11) will be used for the rotational friction experiments, since the specimen will

be situated at the centre of the apparatus and will not be moving laterally. Equation (5.10)

71



can be used in the following section on Contensou effect experiments, where the specimen

is undergoing both rotational and translational motion.

For rotation, Equation (4.28) can be simplified to give the effective coefficient of friction

τs = rgyrµfn (5.12)

This can be rearranged to give

µ =
τs

rgyrfn
(5.13)

The encoder from the motor provided very coarse measurements, as was seen in Fig-

ure 5.8. Resolution was 0.087◦ per encoder step. This was unsatisfactory for small rota-

tions, such as in the static friction experiments, so angular measurements were smoothed

using a moving average of the nearest 100 samples.

Static friction experiments

The specimen was put through angular accelerations from 0.005 to 0.025 rad/s2. The

measured coefficient of friction was found to peak within the first 1◦ of rotation. Figure 5.17

shows results from one experiment, with an acceleration of 0.025 rad/s2.

From the figure, a peak in friction is seen soon after the specimen begins to move.

The relationship between rotation and friction does not appear to be linear in the initial

sticking phase, though it should be noted that the peak occurs after only about 2 encoder

steps of motion. Once slip occurs, the decrease in friction torque appears more significant

than that of the translational friction forces in Figure 5.7 of the previous section.

Lateral displacement of the specimen was also measured, but was determined to be too

low (i.e. less than 10 µm/s) to produce any measurable impact on friction torque through

the Contensou effect.

Peak friction coefficients µs determined from accelerations of 0.005 to 0.025 rad/s2

are shown in Figure 5.18. As with the translational friction, there is a high amount of

variability in the measurements. The mean coefficient of friction was found to be 0.205,

which is close to the value of 0.204 found for translational friction.

Due to the coarseness of the angular measurements during the sticking phase, estimates

for the parameters σ0 and σ1 were not determined. Peak friction appears to occur near

0.01 rad/s in most cases.
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Figure 5.17: Instantaneous coefficient of friction versus angular displacement for 0.025

rad/s2 angular acceleration of a 25.4 mm aluminum specimen from rest.
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Figure 5.18: Peak coefficients of friction for various angular accelerations.
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As with the translational experiments, wear to the contact surfaces took place when

the specimen was rotated. Scratch marks can be seen as the larger arcs in Figure 5.19.

There is also significant marring to the surface at the end of the lower arc. The surface

is still undergoing significant changes between experiments, explaining the variability in

results. The deeper scratches may also explain the rapid decline in friction observed in

Figure 5.17. As the specimen is forced by the motor to rotate, it breaks free of the grooves

in the surface.

Figure 5.19: Large circular scratch pattern left by rotational experiments with aluminum

specimen.

Dynamic friction experiments

The larger aluminum specimen was driven at different constant angular velocities, ranging

from 0.05 to 0.25 rad/s to estimate coefficients of kinetic friction µd and viscous friction

σ2. Considering Equation (4.28) for pure slipping,

τs = r2gyrfn

(
µd
rgyr

+ σ2ωn

)
(5.14)
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Combining Equation (5.12) and Equation (5.14), we find a linear equation in ωn, yielding

the effective coefficient of restitution,

µ = µd + (rgyrσ2)ωn (5.15)

As with the previous experiments, scratches to the contact surface with the larger

specimen were still observed. In addition, great variability in the measured coefficient of

friction was observed, as shown in Figure 5.20. The peaks in friction coefficients were

assumed to represent points where the visible scratches in the two contact surfaces would

catch on each other, while the declines that follow represent when the scratches break free

of each other.
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Figure 5.20: Coefficients of friction over time for motion at a constant angular velocity of

0.21 rad/s.

Average measured coefficients are plotted by speed in Figure 5.21. A linear regression is

shown as a solid line. The y-intercept and slope, which are our estimates for µd and rgyrσ2,

are 0.177 and 0.154 s, respectively. This gives an estimate for σ2 of 17.1 s/m, which is of
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the same order of magnitude as for the tangential experiments, 10.4 s/m. The estimate

for µd is also very close to that of the tangential case, 0.187.
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Figure 5.21: Mean coefficients of friction versus constant angular velocity.

However, the quality of the regression is poor, as the coefficient of determination, R2,

is only 0.11. As with tangential friction, it is difficult to give a certain value for the kinetic

coefficient between the aluminum and titanium that is more precise than 0.2, or to say

definitively that viscous friction is taking place.

5.3.3 Translation and rotation

The Contensou effect was already observed in Section 5.3.1. The following experiment

explored this effect further. The aluminum specimen was driven at a constant tangential

velocity of 2 mm/s, while undergoing an angular acceleration of 0.1 rad/s2. Normal and

friction forces and spinning friction torques were measured to determine coefficients of

friction during the experiment. Tangential and angular speeds were also measured in order
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to determine the impact of the Contensou effect.

The observed frictional coefficient in the tangential direction, measured using Equa-

tion (5.4), is shown in Figure 5.22. The specimen was undergoing translational motion

with a coefficient of about µ = 0.4 when the angular motor began to accelerate. The

tangential Contensou factor Cv was determined with the velocity and angular velocity

measurements using Equation (4.31). The model value µCv is shown as a dashed line in

the figure. The Contensou factor is shown to provide a very close estimate of the impact

of rotation on the tangential friction experienced.
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Figure 5.22: Translational friction measurements for constant velocity and accelerating

angular velocity.

Coefficients of friction were also measured from the torque measurements, and are shown

in Figure 5.23. The angular Contensou factor Cω was determined using Equation (4.33).

The model value µCω is shown as a dashed line in the figure. The model provides a

reasonable estimate of friction for the first two seconds of angular acceleration. Between 2-

5 s, the measured coefficients fluctuate quickly compared with the model. From Figure 5.24,
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which shows measured angular velocities for the experiment, it is clear that the angular

velocity also fluctuate rapidly during this period of time. These rapid changes in velocity

may be affecting friction forces in a manner that the Contensou model does not account

for.
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Figure 5.23: Spinning friction measurements for constant velocity and accelerating angular

velocity.

The Contensou effect is clearly observed from this experiment. The Contensou factors

Cv and Cω are shown to provide reasonable estimates of the impact of combined rotation

and translation on the friction forces experienced.

5.3.4 Limitations of experiments

Plastic deformation of contact surfaces

As noted in Figure 5.5 and Figure 5.19, a significant amount of plastic deformation took

place over the course of the experiments in the form of scratches to the contact surfaces.
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Figure 5.24: Angular velocity of specimen for Contensou experiment.
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This meant that the surfaces changed from experiment to experiment. Replacement of the

contact surfaces between experiments would have required expensive manufacture of tita-

nium components. Also, as the linear encoder reference was mounted to the lower contact

surface, reconfiguration and recalibration with each replacement of contact components

would be required.

It was discovered that the wear on the contact surfaces generated a fine metallic dust.

This dust was wiped away with a cloth between each experiment.

Alignment

Alignment of the specimen with the contact surface was initially attempted using a flexible

coupling. This coupling presented two significant limitations. First, it failed to keep the

specimen perfectly flat, instead causing the orientation of the specimen to change as it

dragged across the contact surface, so that part of the time it was only catching on one edge.

Second, it introduced flexibility between the contact site and the position measurements.

This compliance interfered with the measuring of the bristle stiffness and damping.

For the experiments, the flexible coupling was replaced with a solid aluminum coupling.

This allowed bristle parameters to be measured more accurately, while maintaining a fixed

vertical orientation. The mounting of the rotary motor was manually configured such that

the specimen would rest flat on the surface. However, since the wear was not uniform on

the contact surface and was more prevalent on the one side, (Figure 5.5), it is apparent

that the pressure from the normal force was not uniform across the surface of the specimen.

Compliances

The apparatus was designed such that the displacement measurements would capture pri-

marily the strain within the contacting materials. Thus, the position encoder was placed

in proximity to the specimen mounting hardware and the reference was mounted directly

behind the contact surface. However, there is the possibility of some compliance within

the mounting bracket of the rotary motor and in the motor axis itself. These compliances

could serve to decrease the magnitude of the bristle stiffness parameters estimated.
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Dynamic response of the force sensor

It was important that the dynamic behaviour of the force transducer not affect the mea-

surements during the dynamic experiments. The natural frequency of the transducers was

3.6 kHz, above which the force transducer will act to attenuate oscillations. The friction

experiments involved steady speeds or gradual accelerations, so high frequency dynamics

were not of concern. Additionally, the experiments only used a sampling frequency of 1

kHz.

Sensor noise and drift

Measurements from piezoelectric force transducers at constant load were observed to have

a standard deviation of about 0.13 N . The specified repeatability of the charge amplifiers

was 0.1 N . This represents 0.5% of the normal force range (26 N) measured during the

friction experiments.

The force transducers and charge amplifiers were determined to have a drift of up to 0.1

N/s after about an hour of warm-up. For each individual sensor, the drift was determined

to remain consistent over several minutes. Drift was compensated by taking measurements

while the apparatus was at rest for 10 s before initiating motion in order to measure the

drift of each sensor. The estimated drift was then applied against the measurements.

Speed

The motors, sensors, and computer equipment generated a large amount of electromag-

netic interference (EMI) that created a significant amount of drift in the timer card that

performed data capture for the linear encoder. Proper grounding and shielding of cables

did not do enough to remove this interference. The bandwidth of the encoder was there-

fore limited so that the high-frequency EMI would be ignored. Unfortunately, this meant

that position measurements were constrained to motions of less than 6 mm/s before the

encoder bandwidth would saturate, limiting the range for which the experiments could be

conducted.

82



Temperature and humidity

Experiments were not conducted in a temperature controlled area. Ambient air temper-

atures and relative humidities were recorded for each experiment, and were found to be

within 21.9 − 23.4◦C and 24 − 30%, respectively. Typically, temperature did not vary by

more than 0.2◦ over a single set of experiments.

Measuring equipment responds to changes in temperature typically through scale error.

The linear encoder glass scale had a total growth of about 0.001%/1◦C, or about 10 nm

over 1 mm of travel, which is negligible. Force transducers had a temperature sensitivity

of 0.02%/◦C, which is negligible when compared to other force measurement errors.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

6.1.1 Normal Contact

A volumetric contact dynamics model based on the Winkler elastic foundation model is

presented for validation. Forces are expressed in terms of the properties of the volume of

interference between the solid geometries of the bodies in contact.

A series of experiments and an apparatus have been presented to validate the model

of the normal contact force in static and dynamic conditions and to identify volumetric

stiffness and hysteretic damping factors. Experiments were performed using a spherical

specimen on a planar surface in order to compare with more commonly used Hertzian

models. A cylindrical specimen was also tested on a planar surface in order to provide

a relatively large contact surface area and so that the relationship between volume of

interference and measured displacement should be linear according to the model. Contact

surfaces of magnesium alloy and aluminum were used against stainless steel specimens.

Quasi-static experiments were used to determine and validate Hertzian and volumet-

ric stiffness. For spherical specimen experiments, Hertzian stiffnesses were about 2/3 of

theoretical values, which is reasonable given that surface asperities tend to reduce mea-

sured contact stiffness. Volumetric stiffnesses were determined to be 3.82×1013 N/m3 and

7.59×1013 N/m3 for magnesium and aluminum, respectively. For the cylindrical specimen,
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assuming perpendicular contact resulted in volumetric stiffness estimates several orders of

magnitude lower than with the spherical specimens or theoretical values. Using stiffnesses

determined from classical elastic theory, small misalignments in the apparatus were esti-

mated that corresponded well with measured results. Partial contact with an off-angle

cylinder has no classical elastic theory solution, so this demonstrates the applicability of

the volumetric model to unusual geometries.

Damping experiments were also performed with the spherical specimen to measure

hysteretic damping. As anticipated, contact forces increased with greater impact speed.

The hysteretic damping for the volumetric model was determined to be inversely related

to impact speed. For this constrained motion where the specimen is driven by the linear

motor, the coefficient of restitution then remains constant.

6.1.2 Friction Contact

A seven-parameter bristle-friction model is also presented for validation. This model ac-

counts for slip-stick transitions and dwell-time dependent effects. For bodies rotating

relative to each other about the normal, the moments caused by friction across the contact

surface area can be integrated to give a spinning friction torque. Additionally, the Con-

tensou effect is modelled, where spinning friction can ‘cancel out’ some friction forces that

would normally resist tangential motion (as with a floor polishing machine).

Experiments to validate this friction model are described. These experiments separate

tangential and rotational motion in order to identify coefficients of friction, bristle dynam-

ics, and dwell-time dependency, and combine motions to investigate the Contensou effect.

An apparatus to conduct these experiments was designed and built. Experiments were

conducted with the flat end of an aluminum cylinder on a titanium plane.

The weight on the specimen was determined to be excessive, as moving it produced

significant wear to the contact surfaces. Friction measurements at stick-slip transition

were observed to be lower than during slipping during experiments designed for tangential

motion only. However, the specimen was observed to rotate slightly as it began to move.

Using the angular velocity measurements, the reduction in friction force at stick-slip tran-

sition was found to correspond with what was predicted by the Contensou factors in the

model. Estimates for the static coefficient of friction µs averaged 0.2 and ranged from 0.17
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to 0.26. Bristle stiffness and damping parameters were estimated at 4500 m−1 and 300

s/m, respectively.

The specimen was driven at tangential speeds of 0.5 — 2.5 mm/s and the mean kinetic

coefficient of friction µk was measured to be 0.2. Since measurements for both static

and kinetic friction are both similar and highly variable (likely due to wear), the point

of transition from static to kinetic friction was not found, and thus an estimate for the

Stribeck velocity could not be made.

Experiments with sinusoidal motions were also conducted to investigate dwell-time de-

pendency of the stiction force. Instead of decreasing after the first oscillation, the maximum

friction force doubled over several oscillations. This adhesion effect occurred for several

different frequencies, and is likely a consequence of the heat generated by metal moving

repeatedly over a small area.

As the tangential experiments made a linear wear pattern in the contact surface, rota-

tion experiments created a circular wear pattern. Static and kinetic coefficients of friction

were determined to be similar for rotation as for translation. The resolution of the in-

struments was insufficient to estimate bristle dynamics parameters to compare with the

tangential model.

To evaluate the model’s characterization of the Contensou effect, the specimen was

driven at constant tangential velocity with accelerating angular velocity. The model accu-

rately accounted for the decline in the friction force. The model for spinning friction torque

also correlated well with the measured results, except during periods where the angular

speed was seen to change rapidly.

6.2 Future Research

The volumetric friction model has been described and validated experimentally. While

these experiments demonstrate several aspects of the model, there are several improvements

that can be made in order to better estimate parameters and observe phenomena described

by the model.

The normal force experiments were limited by the force range of the apparatus. This

limitation stemmed from the encoder reference plate deflecting away from the encoder
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when a large amount of pressure was applied to the contact surface. A different position

measurement solution, such as a laser interferometer, might be better suited to this appli-

cation so that the deformation of the contact plate does not move the encoder reference.

This would enable testing at higher normal force loads.

Improved alignment with the contact surface for the cylindrical specimens is required

in order to test contact with a large flat surface area. This would enable demonstration of

the model for large contact patches where point-contact models cannot easily be applied.

Close alignment would be guaranteed if the specimen were mounted with a flexible coupling,

though the stiffness of that coupling would require accurate characterization to ensure the

integrity of position measurements for the specimen.

All of the impact experiments took place while under constrained motion from the ball-

screw linear motor. As the specimen could not bounce off the contact surface, the concept

of a coefficient of restitution was physically meaningless. Experiments should be performed

with the specimen decoupled from the actuator and driven freely into the contact surface.

The speeds of the damping and dynamic friction experiments were limited by the band-

width of the linear encoder, as higher bandwidths were very susceptible to EMI from the

other instruments. Lower resolution encoders would enable faster speeds to be measured for

the same bandwidth and should be used for higher-speed impact and friction experiments.

One aspect of the model not yet investigated experimentally is rolling resistance torque.

This could be validated by taking a cylinder or sphere with known volumetric contact

properties (stiffness and damping) and rolling it on a level plane until it comes to rest.

The amount of deceleration could be measured and compared with the torque predicted

by the model.

When the normal force of the volumetric contact model is compared directly with nor-

mal forces of classical elastic models, it appears that the volumetric stiffness parameter

can be described in terms of its elastic properties and is inversely related to the radius

of the contact area. Of course, the volumetric stiffness is intended to be independent of

the specific geometry of contact, but it may be possible to adapt the model if the stiff-

ness can be described in terms of the other volumetric properties already being generated

for simulation, such as radius of gyration. Further investigation of this relationship is

recommended.

From the friction experiments, it is apparent that the weight of the rotary motor on
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the specimen is excessive and leads to significant wear. Contact pressure could be further

reduced with a smaller motor, partially supporting the weight of the motor, or a signifi-

cantly larger specimen (and contact plate). With less wear, the contact surfaces would not

be changing and more repeatable measurements for static and kinetic friction coefficients

may be obtained. If static and kinetic friction coefficients can be distinguished, then a

value for the Stribeck velocity may be estimated.

The unusual adhesion effect observed during the dwell-time dependency experiments

is not accounted for in the volumetric friction model. This merits further investigation.

It also merits further investigation of dwell-time dependency as this phenomena was not

observed in the experiments.

For the tangential motion experiments, a fixed orientation of the specimen is required

so that stick-slip transition can be observed without being influenced by the Contensou

effect. This should also lead to more reliable estimates of maximum static friction.

Sensitivity analysis of parameters identified for the model and investigation of other

methods of online and offline system identification is recommended.

Finally, now that an apparatus and framework have been developed for contact dy-

namics experiments, more geometries and materials should be tested in order to develop a

database of material contact properties for the volumetric model.
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dans la théorie de la toupie,” in Kreiselprobleme und Gyrodynamics (H. Ziegler, ed.),

IUTAM Symposium Celerina, 1962, pp. 201–216, Springer-Verlag, Berlin, 1963.

[18] K. Johnson, Contact Mechanics. London: Cambridge University Press, 1985.

[19] M. Weber, O. Ma, and I. Sharf, “Identification of contact dynamics model parameters

from contstrained robotic operations,” in Proceedings of DETC’02 ASME 2002 Design

90



Engineering Technical Conferences and Computer and Information in Engineering

Conference, (Montreal, Canada), Sept. 29–Oct. 2 2002. DETC2002/MECH-34357.

[20] J. Agar, I. Sharf, C. Lange, and Y. Gonthier, “Contact parameter estimation with

a space robot verification facility,” ASME Design Engineering Technical Conferences

and 5th International Conference on Multibody Systems, Nonlinear Dynamics and

Control, pp. 433–442, 2005.

[21] N. Diolaiti, C. Melchiorri, and S. Stramigioli, “Contact impedance estimation for

robotic systems,” IEEE Transactions on Robotics, vol. 21, pp. 925–935, Oct. 2005.

[22] D. Verscheure, I. Sharf, H. Bruyninckx, J. Swevers, and J. D. Schutter, “Identification

of contact dynamics parameters for stiff robotic payloads,” IEEE Transactions on

Robotics, vol. 25, pp. 240–252, April 2009.

[23] J. Liang, S. Fillmore, and O. Ma, “A 2d bristle friction force model for general contact

dynamics simulation,” in The 1st Joint International Conference on Multibody System

Dynamics, May 2010.

[24] E. P. Popov, Engineering Mechanics of Solids. Upper Saddle River, New Jersey:

Prentice Hall, 2nd ed., 1998.

[25] J. W. Harris and H. Stocker, Handbook of Mathematics and Computational Science,

pp. 104, 107. New York: Springer-Verlag, 1998.

[26] I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussi-

nesq problem for a punch of arbitrary profile,” International Journal of Engineering

Science, vol. 3, no. 1, pp. 47 – 57, 1965.

[27] R. L. Munisamy, D. A. Hills, and D. Nowell, “The solution of the contact between a

tilted circular rigid punch and an elastic half-space,” Wear, vol. 184, no. 1, pp. 93 –

95, 1995.

[28] M. Bahrami, M. M. Yovanovich, and J. R. Culham, “A compact model for spherical

rough contacts,” Journal of Tribology, vol. 127, pp. 884–889, Oct. 2005.

91



APPENDICES

92



Appendix A

Equipment Specifications

The following tables list the software and equipment used as part of the contact dynamics

experimental apparatus.

Vendor Package Version

Kollmorgen S200 OC Tools 3.0.0

Kollmorgen DriveGUI 2.00 0074

National Instruments LabVIEW with RealTime Module 8.5

National Instruments Measurement and Automation Explorer 8.5

Kistler ManuWare 1.0

Table A.1: Software.

Vendor Part Description

National Instruments PXI-1042Q 8-Slot PXI Chassis

National Instruments PXI-8106 Controller with RealTime Embedded SW

Dell Optiplex 760 Desktop computer

Table A.2: Computer hardware.
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Vendor Part Description

Kollmorgen AKM43 DC Brushless Servo Motor

Kollmorgen S30661 DC Brushless Servo Drive 6 A

Kollmorgen 2RB12G0N0262 Ball-Screw Linear Actuator

Kollmorgen AKM23C DC Brushless Servo Motor

Kollmorgen S20260 DC Brushless Servo Drive 1.5 A

National Instruments PXI-7342 2-Axis Stepper/Servo Motion Controller

National Instruments UMI-7772 Universal Motion Interface

Table A.3: Actuation equipment.

Vendor Part Description Quantity

Kistler 9347 3-Component Force Link 5 kN 2

Kistler 5073A311 3-Channel Charge Amplifier 2

National Instruments PXI-6123 Multifunction DAQ Device 1

MicroE Systems MII4800 Linear Encoder 1.2 nm 1

MicroE Systems MIIL130 Glass Linear Reference Grating 1

National Instruments PXI-6602 Counter/Timer DAQ Device 1

Table A.4: Measurement equipment.
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