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ABSTRACT 

 

The high prevalence of food insecurity experienced by remote First Nation (FN) communities partially 

results from dependence on an expensive import-based food system that typically lacks nutritional 

quality and further displaces traditional food systems.  In the present study, the feasibility of import 

substitution by Agroforestry Community Gardens (AFCGs) as socio-ecologically and culturally 

sustainable means of enhancing food security was explored through a case study of Fort Albany First 

Nation (FAFN) in subarctic Ontario.  Agroforestry is a diverse tree-crop or tree-livestock agricultural 

system that has enhanced food security in the developing world, as low input systems with high yields 

of diverse food and material products, and various ecological services.   

 

Four study sites were selected for biophysical analysis: two Salix spp. (willow)-dominated AFCG test 

plots in an area proposed by the community; one “no tree” garden control test plot; and one 

undisturbed forest control test plot.  Baseline data and a repeatable sampling design were established to 

initiate long-term studies on the productive capacity of willow AFCGs as a means to enhance food 

security in subarctic FN communities.  Initial soil and vegetative analysis revealed a high capacity for 

all sites to support mixed produce with noted modifications, as well as potential competitive and 

beneficial willow-crop interactions.   

 

Identification of barriers to food security and local food production in FAFN revealed a need for a 

locally-run Food Security Program (FSP) in partnership with the AFCGs to provide the personnel, 

knowledge and leadership necessary to increase local food autonomy and local food education and to 

manage the AFCG as a reliable food supply. Continued research on AFCGs and the FSP may allow 

wide-scale adoption of this strategy as an approach to enhance community food security and food 

sovereignty in remote FNs across Canada.  An integration of conventional crops and native species in 
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the AFCGs is recommended as a bicultural approach to enhance social, cultural and ecological 

resiliency of FN food systems.  As an adaptable and dynamic system, AFCGs have potential to act as a 

more reliable local food system and a refuge for culturally significant plants in high-latitude FN socio-

ecological systems, which are particularly vulnerable to rapid cultural and ecological change. 
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A) INTRODUCTION 

A 1) BACKGROUND 

 Canada's First Nation (FN) people are known to have a disproportionately high prevalence of health 

conditions linked to poor diet, including obesity, tooth decay, heart disease, Type 2 diabetes and hearing 

impairments, among other health conditions (Fagot-Campagna, 2000; Young et al., 2000; Bowd, 2005; 

Willows, 2005; Ho et al., 2008).  The diet of Canadian Aboriginals is said to be low in fruits and 

vegetables (Willows, 2005), while high in fat and sugar (Willows, 2005; Ho et al., 2008).  As Willows 

(2005) emphasizes, food selection is not necessarily indicative of food preference; poor dietary habits 

ubiquitous to FN communities are related to their high risk of experiencing food insecurity (INAC, 

2004; Willows, 2005; Skinner et al., 2006; Stroink and Nelson, 2009).     

 

Food Security can be defined as “access by all people at all times to enough food for an active, healthy 

life, including availability of nutritionally adequate and safe foods that can be acquired in socially 

acceptable ways” (INAC, 2004).  Food security in remote FN communities of northern Canada is 

challenged by a modern dependence on an unreliable, import-based food system that sometimes lacks 

nutritional quality, bears high transportation costs and results in loss of traditional food systems and 

associated knowledge, ultimately degrading individual and community health (INAC, 2004; Willows, 

2005; Skinner et al., 2006; Willows et al., 2008). This modern system is also extremely resource-

intensive, while, it simultaneously perpetuates absolute reliance on the unstable fossil-fuel industry and 

global food economy (Bellows and Hamm, 2001; Polack et al., 2008).  Modern food systems, 

therefore, prevent these historically vulnerable populations from regaining self-reliance, traditional 

culture, healthy livelihoods and sense of individual and community empowerment (Skinner et al., 

2006; People’s Food Policy, 2010). 
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 These limitations characteristic of modern FN food systems have been well-recognized for some time.  

Only within the past seven years, however, have political bodies and NGOs throughout Canada 

directed significant efforts towards local and autonomous subsistence food production as a holistic 

means to remedy this (Section B 4).  Efforts have been much more prevalent in southern FNs where 

growing conditions are more hospitable, despite the much more limited access to healthy foods 

experienced by geographically isolated communities of the north.  However, the capacity for food 

production in subarctic and arctic zones continues to increase with a warming climate; researchers 

predict an increase in the length of the growing season, enhanced plant growth rates and greater soil 

nutrient availability in the north, and in turn, more hospitable conditions for growing a greater variety 

of edible plants (Shuur et al., 2008).  Although increased productivity will subsequently increase 

carbon sequestration in biomass in high-latitude systems, the net effect will be a positive feedback 

towards warming due to significant levels of carbon release from permafrost thawing in the arctic 

(Oelbermann et al., 2008; Shuur et al., 2008).   

 

The spread of conventional agriculture to the north could perpetuate the climate change problem.  

Modern agricultural methods release large amounts of CO2 and N2O through heavy use of industrial 

machinery and chemical fertilizers (Robertson, 2004); they also result in extensive forest clearing 

followed by intensive land management that result in losses of carbon stores from both above-ground 

biomass and soil organic carbon (Gordon and Newman, 1997).  Conventional agriculture is also 

characterized by replacement of diverse ecosystems with monoculture crops, pollution by high use of 

pesticides, fertilizers and herbicides, reduced ground water levels, soil degradation and pollution of 

surrounding undisturbed ecosystems (Gordon and Newman, 1997; Young, 1997; Robertson, 2004).  Yet 

as FN populations continue to increase (Statistics Canada, 2001), climate change provides more 

hospitable temperatures for northern crop production (Shuur et al., 2008) and food insecurity of 
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northern communities gains political attention (Section B 4), we should anticipate, and indeed 

encourage, an agricultural movement in the northern areas of Canada as an import-substitution strategy. 

 

Previous efforts by European Missionaries to establish agrarian societies in northern indigenous 

communities during the 20
th

 century did not endure to present day and in the process impacted 

traditional food systems and the current dependency on modern foods and government subsidies 

(Loring and Gerlach, 2010; People’s Food Policy, 2010).  In consideration of this, as well as the 

aforementioned dangers associated with conventional agricultural, enhancement of food security via 

food localization in remote FN communities requires a thoughtful investigation of socially, culturally, 

ecologically and economically sustainable means of agricultural production.   

 

Agroforestry (AF) is an alternative land-use system to conventional agriculture that has been utilized as 

a socioeconomically and ecologically sustainable means to establish long-term food security in 

impoverished areas, mainly within the sub-tropic and tropic regions (Vogl et al., 2004; Huai and 

Hamilton, 2009).  It is a relatively recent term for an ancient practice of agriculture, which, by 

definition, is a land-use system that combines woody perennials (trees, shrubs, etc.) with crops and/or 

livestock in spatial and temporal arrangements that optimize beneficial biological interactions and 

economic outputs (Gordon and Newman, 1997; Young, 1997).  In the present study, I will explore the 

feasibility of introducing AF to isolated, northern FN communities as a sustainable food localization 

strategy to enhance food security in the light of climate change.   

A 2) THESIS PROPOSAL: Agroforestry Community Gardens (AFCGs) as a Sustainable Import-

Substitution Strategy for Enhancing Food Security in Remote FN Communities of Subarctic Canada 
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A 3) RATIONALE 

In contrast to conventional agriculture, the use of multiple components and multiple species in AF 

systems maintains ecological diversity and allows for diversification of food and economic products 

(Gordon and Newman, 1997) through a practice that is resource efficient and ecologically sustainable 

(Jose and Gordon, 2008).  AF systems in the tropics, sub-tropics and temperate China have played a 

substantial role in enhancing food security, as low input systems with diverse and complementary food 

products (Ninez, 1987; Gordon and Newman, 1997; Boncodin et al., 2005; FAO, 2010).  The reduced 

mechanical intervention allows for maintenance soil integrity and more closed nutrient-cycling (Young, 

1997), subsequently, reducing the need for expensive and ecologically-damaging chemical inputs 

(Quinkenstein, et al., 2009).  As potential carbon sinks and diverse agroecosystems, northern AFCGs 

may act as a strategic response to climate change in contrast to conventional agriculture, in both 

mitigating carbon dioxide and adapting to anticipated ecological changes (Kumar et al., 2009; 

Quinkenstein et al., 2009). 

 

AF is much more prevalent in the tropics and sub-tropics, though it has been recently incorporated into 

conventional agricultural practices of temperate regions, primarily to enhance economic and ecological 

sustainability of crop production (Gordon and Newman, 1997).   Even in temperate systems, inclusion 

of trees in agriculture has proven to enhance total output per unit area, increase yield via wind 

protection, provide financial diversity and flexibility, mitigate non-point source pollution, control soil 

erosion and create wildlife habitat (Gordon and Newman, 1997).  However, it has not been widely 

applied in temperate regions as a means to address food security and no known use of AF in the 

subarctic or arctic regions has been documented.  According to Gordon and Newman (1997), research 

of feasibility of transferring these systems to other regions is necessary.   

 



5 

 

Current food localization strategies in FNs of Canada are exploring community gardens to achieve 

simultaneous benefits of food security and community fellowship over the land (Section B 4).  The 

present study seeks to bridge FN community garden initiatives with AF, a strategy that has proven to 

enhance food security in an ecological sustainable manner.  However, AF literature identifies 

homegardens as the only AF system designed to support subsistence food production (Fernandes and 

Nair, 1986).  There is currently no term for a community, subsistence AF system, thus, the concept of 

an “Agroforestry Community Garden” (AFCG)  has been coined here.    

 

The present study is intended to initiate a long-term investigation of the following novel research areas: 

1. AF systems as a strategy to address food security issues in subarctic Canada, with potential 

application to temperate and arctic regions. 

2. The transferability of subsistence AF designs to meet the needs of a region with drastically 

different ecological challenges than tropic and sub-tropic regions. 

3. The transferability of subsistence AF designs to meet the needs of isolated FN communities 

which have a unique history of food systems and food security challenges. 

4. The capacity of AF systems, in contrast to conventional agriculture, to sequester carbon and 

reduce the effects of unpredictable climate changes for high-latitude ecosystems. 

5. A new form of AF that embodies agroecological design of the tree-crop component, while, 

promoting food security and community fellowship with each other and the land. 

A 4) OBJECTIVES 

To initiate this long-term investigation, the present study will focus on the following objectives: 

1) Investigate the effect of Missionary settlement on indigenous food systems and landscapes, 

and highlight social and biophysical considerations for successful and sustainable 

reintroduction of agriculture to the north. 
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2) Begin assessing the feasibility of utilizing AFCGs as an import substitution strategy to 

enhance food security in remote FN communities and to assist these ecologically and 

culturally sensitive areas in responding to rapid cultural and environmental change. 

3) Develop an AFCG test plot and sampling design for long-term studies to explore the 

capacity of subarctic AFCGs to act as food producers and ecological and cultural refuge 

 

A 5) INTRODUCTION TO CASE STUDY: FORT ALBANY FIRST NATION 

Fort Albany First Nation (FAFN), situated in the James Bay Lowlands of northern Ontario, Canada, is 

an isolated FN community that was used as a case study to implement the aforementioned study 

objectives.  FAFN is located along the south coast of the Albany River about 20 km inland from the 

west coast of James Bay.  In a population of 850, most FAFN residents inhabit Sinclair Island of the 

Albany River, nearby the mainland.  FAFN has been selected as a case study for investigating the 

potential role of AFCG local food production in remote FN communities for several reasons.  It is a 

geographically isolated community of subarctic Canada (52
o
 15` N; 81

o
 35` W; Tsuji, 1996) that is 

currently experiencing disproportionate effects from climate change (Hori, 2010).  Despite successful 

(yet unsustainable) agricultural production by Christian missionaries in the mid-20
th

 century in FAFN, 

this community is currently battling barriers of food cost and availability of fresh, good-quality, 

perishable foods (Skinner et al., 2006).  Although the Mission's agricultural movement was not a viable 

long-term approach to food security, it does act as witness to the area's potential ecological capacity to 

support basic fruit and vegetable cultivation. 

 

FAFN is situated in the western portion of the James Bay Lowlands, which is nestled in the Hudson 

Bay Lowlands, the largest extensive area of wetlands in the world (MSSC, 1996).  The James Bay 

ecoregion is thus mainly flat and dominated by poorly drained muskeg or peat moss (Hanson, 1953; 
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Kataquapit, 2006).  The area is subject to abundant rain and cool, short summers (Kataquapit, 2006), 

with a mean annual temperature of -2
o
C, and mean annual precipitation of 700-800 mm (MSSC, 1996).  

It is considered a perhumid high boreal ecoclimate and is an area of transition between the coniferous 

and mixed forests of the clay belt to the south and the tundra to the north (MSSC, 1996).   
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B) LITERATURE REVIEW 

The ultimate purpose of this section is to explore the potential role of local food production in enabling 

Aboriginal (First Nations, Inuit and Metis) peoples of Canada to gain greater ownership and more 

diverse opportunities in their food systems by creating food systems that are ecologically and 

economically prosperous, as well as socially and culturally enriching. 

 

B 1) ETHNOHISTORY OF FIRST NATION FOOD SYSTEMS 

B 1.2) Traditional Indigenous Food Systems 

Traditional foods can be defined as culturally acceptable foods from the local, natural environment 

(Kuhnlein and Receveur, 1996; Willows, 2005).  The traditional diet of north Canadian Aboriginals 

prior to European colonization was composed mainly of wild meats including fish, ungulates, small 

mammals and waterfowl and a small portion of wild berries and other plant products (Guyot et al., 

2006); thus it required an intimate and reciprocal relationship with the land and each other, creating a 

community-oriented society that valued cooperation, sharing, generosity and respect (Milburn, 2004; 

Willows, 2005).  Traditional foods continue to have nutritional, cultural and spiritual value to 

community members (Guyot et al., 2006); the acquisition and preparation of traditional foods remains 

closely related to life satisfaction and social capital in indigenous communities (Stroink and Nelson, 

2009; Trull 2009).  Recent studies have also shown that sense of aboriginal identity is related to sense 

of community, emotional well-being and connectedness to nature, a trait valued by aboriginal cultures 

(Trull, 2009).  Thus, traditional indigenous food systems have substantial social, cultural and nutritional 

value and have significant relations to individual and community well-being.   
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B 1.3) Degradation of Traditional Food Systems 

In the mid-20
th

 century, indigenous children were sent to residential schools, separated from their elders 

and prevented from speaking their native tongue or practising traditional ceremonies (Tsuji, 1996).  

These nomadic peoples were forced into sedentary communities of the agrarian lifestyle, thereby 

decreasing time and energy available for harvesting (Kuhnlein and Receveur, 1996).  Similarly, 

neighbouring Alaskan natives were discouraged from sourcing locally-available foods and products 

because their dynamic, ecologically-based food system was interpreted as unreliable and nutritionally 

inadequate (Loring and Gerlach, 2010).  With the introduction of a cash-based economy, the traditional 

indigenous lifestyle was impacted by employment and introduction of new foods (Kuhnlein and 

Receveur, 1996).  Consequently, a loss of knowledge of harvest, preparation and preservation of 

traditional foods is evident in current populations of northern communities (Ohmagari and Berkes, 

1997; INAC 2004; Willows, 2005; Stroink and Nelson, 2009). 

 

Morrison (2008) of the BC Food Systems Network recognizes several factors contributing to the 

degradation of the health and abundance of culturally important indigenous foods including 

contamination, genetically engineered plants, as well as movement (either expansion or contraction of 

distributional range) of plant and animal species in response to global climate change.  Contamination 

or displacement of local foods by continuous resource development and unpredictable climate changes 

appear to be the predominant threats to northern regions.  Traces of heavy metals, organochlorides and 

other environmental contaminants are continually being found in natural resources utilized by 

indigenous communities (Kuhnlein and Receveur, 1996; Tsuji et al. 2001; Cooper et al. 2005; Tsuji and 

Martin, 2009).  The impact of this contamination is not only degradation of individual health, but 

ultimately, restricted harvest of local, traditional foods (Kuhnlein and Receveur 1996).   
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Aboriginal peoples of sub-arctic and arctic regions are noticing changes in climate that are affecting 

traditional food harvest: changes in species composition, abundance, and migration (Guyot et al., 

2006).  These changes are considered to positively or negatively affect food harvest (Guyot et al., 

2006). However, the unpredictability of climate change has been the only consistent factor (Guyot et 

al., 2006).  Shorter ice-freeze in northern Canada, due to increasing temperature, has also limited 

accessibility to traditional foods (Ford et al., 2008).  As northern ecosystems are highly dynamic, they 

are vulnerable to global climate change (Elmqvist et al., 2004).  Thus, climate change can be expected 

to further retard accessibility to local, traditional foods of the north.  While acculturation caused severe 

degradation of traditional food systems, resource contamination and global climate change assist in 

perpetuating the loss and limiting its regeneration.  

 

B 1.4) Introduction of Agriculture to the North 

Agriculture was eagerly introduced to indigenous communities of the far north, because educators, 

administers and bureaucrats deemed Aboriginal diets as far less diverse and reliable than they truly 

were (Loring and Gerlach, 2010).  Waisberg and Holzkamm (1993) report the success of an agricultural 

boom by the Ojibwa of northwestern Ontario, initially for commercial sale, and later as subsistence 

production as the population increased.  The Canadian government provided the Ojibwa with farming 

equipment and livestock. In fact, Ojibwa depended primarily on fish and garden produce during the 

1880s, with 467 acres dedicated to agricultural land.  The gardens ranged in size from 0.7 to 2.03 acres 

where corn, pumpkins, potatoes, carrots, wheat and peas were grown.  This agricultural initiative was 

challenged by provision of inadequate equipment, inferior livestock and insufficient training by the 

Canadian government.  Further, the Canadian government discouraged Aboriginal cultivation and held 

tight control over the agricultural operations.  Indeed, in 1881, the government prohibited Indians from 

selling their agricultural products to non-Indians, deeming the land unprofitable to its owners.  
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Eventually, the arable reserve land was appropriated for Euro-Canadian settlers.   

 

Similarly, a long history of farming in Alaska has been ignored, because it too was never a sole means 

of subsistence for the population (Loring and Gerlach, 2010).  Crop cultivation as well as family, 

community, and school gardens were components of a “flexible and diversified subsistence strategy” in 

Alaska during the mid-20
th

 century.  Despite the fact that indigenous Alaskans were gardening as early 

as 1765, prior to cultivation by Europeans in the area, state officials became frustrated by a lack of 

progressive transition to agriculture as a primary subsistence activity.  They labelled the “garden 

outreach” program a failure and appropriated much of the land.   

 

As a result indigenous agriculture never really established in the 20
th

 and 21
st
 centuries (Waisberg and 

Holzkamm, 1993), because communities of the subarctic and arctic Americas had to deal with 

unpredictable frosts, short growing seasons and a clear lack of self-determination over their land.  Thus, 

these communities became dependent on social assistance to acquire expensive imports (Loring and 

Gerlach, 2010). 

 

B 1.5) Modern Food Systems of Remote First Nations 

Presently, traditional foods have been replaced by market foods in dominant food systems of FN 

communities.  Stroink and Nelson's (2009) study in a FN of northwestern Ontario revealed that the 

communities did not value whether their food connected them to the land or not, rarely gathered berries 

and almost never grew vegetables, making grocery stores and convenient stores the most frequented 

sources for food.  Within the market, fruits and vegetables are among the least purchased foods in 

subarctic communities of northwestern Ontario (INAC, 2004). Perishable foods make up a small 

fraction of the diet in these communities; the little fruit and vegetables they do eat are typically 
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purchased frozen or canned, or come in the cheaper form of sugary juice crystals (INAC, 2004).   

 

It has repeatedly been found that the greatest barriers to healthy eating in northern communities of 

Canada are costly and poor quality produce of little variety (Willows, 2005; Skinner, 2006; Skinner et 

al., 2006; INAC, 2009a; INAC, 2009b).  Fly-in northern towns of Ontario are dependent on imported 

perishables that are expensive and more often than not, bruised and rotting (Skinner, 2006). Despite 

partial subsidization of produce transportation by the Canadian Food Mail Program, fruits and 

vegetables can be five to ten times more costly than in southern Ontario (Skinner, 2006).  With high 

levels of poverty and greater reliance on social assistance, factors known to be associated with food 

insecurity, Aboriginal Canadians are further impeded from accessing these pricey imported foods 

(Willows et al., 2008).  According to Tarasuk (2001), the primary indicator of hunger in Canada has 

been the use of charitable food assistance programs, known as food banks.  It is therefore difficult to 

estimate the level of food insecurity in isolated northern communities who lack access to such 

programs. However, numerous studies have identified the persistence of food insecurity in northern 

aboriginal communities of Canada (INAC 2004, Skinner et al., 2006, Stroink and Nelson, 2009; 

Willows, 2005). 

 

Most studies of remote FN food insecurity attributed this state to their dependence on unaffordable, 

poor-quality produce (INAC, 2004; Willows, 2005; Skinner et al.2006; Willows et al., 2008).  

However, a deeper investigation of values and behaviours of FN consumers reveals that this 

dependency may be rooted in a common experience of social insecurity and continuous environmental 

change (Stroink and Nelson, 2009).  A study of FN community members in north-western Ontario 

reported health, ease, taste, familiarity, convenience, and affordability as factors driving their choice of 

food (Stroink and Nelson, 2009).  Yet the authors note the greater frequency of bananas and oranges 
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being consumed over blueberries and raspberries, despite the abundance of the latter in the wild 

(Stroink and Nelson, 2009).  Contrary to self-reported values, such cases do not reveal affordability and 

abundance as forces that drive food choice behaviour in practice, making convenience and getting food 

from the grocery store more valuable to the citizens (Stroink and Nelson, 2009).  Where previous 

literature on food security in FN is often based on self-reported claims of values and accessibility, these 

recent findings provide new insights to underlying causes of food insecurity in northern communities.  

Stroink and Nelson’s (2009) study, suggests that remote FN communities feel more secure about the 

dominant food system than the local food system, and were comforted by the consistent convenience.  

INAC (2004, pp. 74) argues that “socio-economic status is a less important risk factor for chronic 

disease than stability in the physical and social environment, an individual’s sense of understanding of 

his/her environment and control over events affecting his or her life”.  They report such known risk 

factors in FN communities as unemployment, extreme concern about alcohol and drug abuse, family 

violence and high food costs (INAC, 2004).  Food localization strategies must therefore consider 

additional factors influencing food choice. 

 

B 2) THE GLOBAL INDUSTRIALIZED FOOD SYSTEM 

B 2.1) Impacts of Imports 

In the past thirty years, the industrialized global food system has been recognized as unsustainable: 

globalization externalizes costs, disconnects producers from consequences of resource extraction and 

human resource abuse, eliminates ecological and social diversity, eliminates small business and makes 

local communities susceptible to collapse (Korten, 1995; Korten, 1999; Daly, 2002; Dale, 2005).  North 

American food systems of the 20
th

 century were marked by an increase in crop specialization, 

production and petroleum-based transportation and a decrease in small, localized farms (Polack et al., 

2008).   Food security and fossil-fuel supply are thus tightly linked, making nutritional acquisition 
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subject to fluctuations in oil production and pricing. However, global oil field discovery has been in 

decline since the early 1960s, while global demand and prices continue to increase and the future of 

alternative energy sources remains uncertain (Polack et al., 2008).  Northern communities are impacted 

by high costs of gasoline, particularly for hunting (Guyot et al., 2006, Stroink, Personal Comm., 2010); 

even traditional food systems are now dependent on petroleum and feeling the effects of its depletion.  

In addition to local impacts, this fossil-fuel dependent food system is exhausting a limited resource and 

making significant contributions to air pollution and carbon dioxide emissions, from which the entire 

globe suffers.  

 

By relying on the industrialized food system, northern communities are both enablers of the globalized 

food system and victims of its impacts.  In addition to being incredibly vulnerable to market 

fluctuations (Bellows and Hamm, 2001) and petroleum-related issues (Polack et al., 2008), such local 

communities suffer losses in local self-sufficiency, alternative knowledge systems, cultural and 

ecological diversity, social and ecological resilience; thus, a capacity for locally based food security 

(Holling, 1995; Gibson et al., 2007; Polack et al., 2008).  

 

B 2.2) Conventional Agriculture in North America   

A sustainable approach to food security must critique modern approaches to food production; as 

Bellows and Hamm (2001) explain, conventional agricultural techniques may not be suitable as part of 

a sustainable, local import substitution strategy.  Prior to the 1960s, North American forests were relied 

upon for wood fuel, building materials, sugar, nuts, berries, wild game, woodash fertilizer, mushrooms, 

herbs and as a source of clean water for both European settlements and First Nations tribes (Gordon 

and Newman, 1997; Young, 1997). Government subsidies from 1960-1980 encouraged intensive 

agriculture to displace natural areas; even poorly productive lands were farmed with the intense 
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management allowed by subsidization (Gordon and Newman, 1997).  With the loss of woodlands, 

wetlands, windbreaks and hedgerows - and the rapid mechanical manipulation of the land - extreme 

land and water degradation occurred (e.g., loss of soil fertility, excessive soil erosion, soil compaction; 

Gordon and Newman, 1997; Young, 1997).  Accompanied by the use of crop monocultures, 

conventional agricultural production on increasingly degraded lands became increasingly dependent on 

high use of pesticides, fertilizers and herbicides, further degrading natural resources and displacing 

native biodiversity (Gordon and Newman, 1997; Bellows and Hamm, 2001).  Monocropping systems 

also created biological dependency on expensive, non-local technologies and inputs resulting in 

unsustainable working conditions and inconsistent labour requirements (Bellows and Hamm, 2001).     

 

B 3) Towards Sustainable Food Systems in Remote First Nation Communities  

B 3.1) Import Substitution via Local Food Production 

Since the early 1980s, the concept of a more local, ecologically sustainable, and democratically 

controlled food system, as an alternative to a globalized food system run by large agribusinesses, has 

gained popularity in academic literature (Feenstra, 1997).  Polack et al. (2008), for example, ask for re-

localization of agriculture at the community and regional levels to ensure long-term food security.  

Bellows and Hamm (2001, pp. 271) define “import substitution” as a process where “community food 

security efforts lead to substituting local production for what has previously been imported”.  

According to the literature, import substitution may allow: 

 Economic localization, encouraging good working relationships, creation of new local jobs and 

re-circulation of household food budgets back through the community (Korten, 1999; Bellows 

and Hamm, 2001)  

 Establishment of self-reliance and loss of vulnerability to fluctuations and inequities of the 

global market (Korten, 1999; Bellows and Hamm, 2001; Vaidyanathan, 2002)  
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 Maintenance of resource efficiency, protection of local human and natural resources and 

reduced pollution generated by import transportation (Nozick, 1992; Korten, 1999; Bellows and 

Hamm, 2001).  

 Increased food freshness and choice over food variety (Bellows and Hamm, 2001) 

 Maintenance of traditional lifestyle and unique community culture (Vaidyanathan, 2002) 

 

Bellows and Hamm (2001) argue, however, that there is no certainty that local food systems will 

produce local autonomy and sustainable development.  These authors define local autonomy as “the 

political capacity of a diverse public to negotiate its food needs both locally and vis-a-vis non-local 

food system actors” (pp. 281) and sustainable development as “the ability of the more local-based food 

systems to contribute to the future integrity and health of human and non-human environments” (pp. 

281).  They identify autonomy and sustainable development as characteristics for which potential local 

food systems should be analyzed.  According to these authors, when determining whether a local 

import substitution inspires these characteristics, it is imperative to consider potential consequences of 

displaced and unsustainable labour outcomes, unequal participation in the benefits or compromises of 

non-human environments, human livelihoods and political capacity.  Since these authors examine 

American food systems, the applicability of their considerations to remote communities of Canada may 

need to be further examined.  These considerations do, however, warrant a cautious approach to 

localization in the north and ask for a more relevant examination of potential risks and adaptive 

management plans to northern food localization.  

 

B 3.2) Beyond Food Security: Community Food Security and Food Sovereignty 

Polack et al. (2008) characterize a sustainable, local food system as one using ecologically sound 

production and distribution practices, and enhancing social equity and democracy for all community 
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members.  Referring specifically to poor communities, Ekin (1990) argues that such communities need 

to meet their own needs from their own resources in order to take an independent stand, become self-

determining and make their own contribution to the common good.  As Feenstra (1997) emphasizes, 

the role of food extends beyond nutritional acquisition, affecting environmental, social, spiritual and 

economic well-being.  

 

Like food security, Community Food Security (CFS) ensures that all households have nutritionally 

adequate and safe food, acquired in socially acceptable ways (Winne, 2010).  It differs, however, with 

an emphasis on community self-reliance, empowerment, social justice, and democratic decision making 

(Hamm and Bellows, 2003; Winne 2010). It involves decreasing the distance that food needs to travel, 

ensuring food security and adequate wage earning and working conditions, and inclusion of all food 

system participants in decision making about availability, cost, price, quality and attributes of their 

food.  Hamm and Bellows (2003, pp. 37) sum CFS as: “a situation in which all community residents 

obtain a safe, culturally acceptable, nutritionally adequate diet through a sustainable food system that 

maximizes community self-reliance and social justice”. 

 

By contrast to simplistic food assistance and emergency food distribution programs of North America, 

Community Food Security Coalition claims to address the underlying causes of hunger and food 

insecurity, reaching for long-term system-based solutions (Winne, 2010).  The complex history of 

northern food systems and inter-related socio-economic issues call for the systems-based approach of 

CFS, as opposed to food security initiatives alone.  

 

Food sovereignty is also a recent term for a systems approach to food security.  It is defined by the 

Working Group on Indigenous Food Sovereignty as the “newest and most innovative approach to 
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addressing the complex issues impacting the ability of individuals, families and communities to 

respond to their own needs for healthy culturally adapted Indigenous foods” (Morrison, 2008, pp. 11).  

The major contrast to CFS is its specialized representation of indigenous food systems and their unique 

complexities.  The Working Group coined the term, food sovereignty, in 2007 and began engaging 

Aboriginal communities in discussion that would enable the group to support their work on increasing 

food security.  From these discussions, the group highlights four key principles of Indigenous food 

sovereignty (Morrison, 2008, pp. 12):  

  1) Sacredness: nurturing healthy, interdependent relationships with the land, plants and animals 

  2) Self-determination: responding to their own needs and freedom from dependence on grocery 

       stores or corporately controlled food production and distribution in market economies 

  3) Participatory- maintaining traditional food strategies 

  4) Policy- impacting traditional land and food systems 

They also concluded that indigenous food systems are best described in ecological rather than 

neoclassical economic terms: “indigenous food systems include all of the: land, soil, water, air, and 

culturally important plant, fungi, and animal species that have sustained Indigenous peoples over 

thousands of years or participating in the world” (Morrison, 2008, pp. 5).  Values of interdependency, 

respect, reciprocity and ecological sustainability were identified (Morrison, 2008).  Consideration of 

these indigenous perspectives and values, which were notably lacking during the Missions of the 20
th

 

century, is vital to successful introduction and sustainability of local food systems in FNs. 

 

B 4) Current Food Localization Initiatives in First Nation Communities  

Canadian FN communities are showing recent interest in local garden initiatives as holistic means to 

encourage individual and community health.  Within the past eight years, political bodies and NGOs 

throughout Canada have directed significant support towards local and autonomous subsistence food 
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production: 

 

Working throughout North America, the Working Group on Indigenous Food Sovereignty has included 

food box programs, community gardens, ethno-botany tours, greenhouses and kitchens as part of their 

mission to encourage food sovereignty (Morrison, 2008).  They have a heavy community education 

focus on topics such as traditional food, cooperation between generations, healthy food choices, social 

networking and community development, which they deliver through workshops, booklets and 

magazines.   

 

British Columbia appears to be the leading province on the FN gardening initiative. The FN 

Agricultural Association of BC builds capacity for large-scale agricultural production to enhance 

economic development in FNs.  The FN Community Food Systems for Healthy Living Project has been 

providing food gardens to FNs since 2005 as a means to provide better access to local, fresh and 

healthy foods, create opportunities to connect with the land and to build community connections (BC 

Ministry of Healthy Living and Sport, 2010).  The group has received extended funding from the 

provincial government's ActNow Incentive Fund to promote the connection between fresh food and 

good health, create local, sustainable food systems that simultaneously increase employment, preserve 

the integrity of the land and promote self-reliance (Ministry of Agriculture and Lands, 2007).  In 

addition to local food provision, the group acknowledges additional benefits to human health including 

physical activity, outdoor therapy and maintenance of “traditional connection to land-tenure”.  FN 

communities continue to receive funding from ActNow for clearing, fencing, seeds, small machinery 

and root cellars.  

 

From 2003 to 2008, almost 40 communities in British Columbia have “received grants through the 
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Aboriginal Agriculture Initiative (AAI) to establish community and allotment gardens, build 

greenhouses and water systems, and buy tools, bedding plants and seeds” (Levenston, 2008).  For 

example, the Eniyud Health Services Root Cellar and Greenhouse Project of the Xeni Gwet'in FN 

community provides “healthy, clean, locally-grown vegetables and contributes to the ecological 

integrity of the local bioregion” (Levenston, 2008).  The Neskonlith Indian Band near Chase, BC, uses 

AAI funding to support their “Promoting Healthy Food and Healthy Families by Allotment Gardening” 

project to grow nutritious food and create an aesthetically pleasing community gathering space 

(Levenston, 2008).  The AAI also supports the BEADS (Building Economics through Agricultural 

Diversity & Sustainability) project in Canim Lake, B.C., which teaches horticultural techniques and 

traditional gathering and preserving of indigenous foods (Levenston, 2008).  The AAI strives to enable 

FN communities to become self-sustaining in the area food production and to create employment for 

Band members (Levenston, 2008).   

 

The Okanagan Indian Band in BC receives funding from Health Canada to teach environmental 

education through their community garden project (BC First Nations Head Start, 2002).  The indoor 

garden allows children, parents and elders to learn about and experiment with plants and also provides 

a supply of a variety of vegetables to be donated to elders.   At the University of British Columbia, the 

UBC Farm has developed a Musqueam Community Kitchen Garden which supplies produce to the 

Musqueam community kitchen to address nutrition concerns, such as diets compatible with diabetes 

(UBC Farm, 2010). 

 

Within northern Ontario, The Lakehead University Food Security Research Group (2010) has been 

introducing community and backyard gardens in three different remote, FN communities of northern 

Ontario.  The project includes works with community members of all cohorts to build and maintain 
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gardens, compost bins, paths and root cellars and educating the community on food preparation and 

preservation.  The anticipated benefits of establishing community gardens in these FN communities are  

maintenance of traditional knowledge, healthier eating through access to fresh vegetables, increased 

self-esteem through community accomplishment, increased physical activity, and greater connection of 

the community with each other, their traditional culture and the land; in other words, to promote overall 

health and well-being.   

 

 The Indian Agricultural Program of Ontario (IAPO), a non-profit organization owned by Status Indian 

farmers, holds the mission to “cultivate sustainable economic growth of Ontario FN People through a 

loans program, advisory service and a youth training program geared towards agricultural projects” 

(IAPO, 2010).  Beyond Factory Farming (2010) works to promote livestock production that is “safe, 

fair and healthy for the environment, farmers, workers, animals, neighbours, communities and 

consumers”.   They promote the protection of FN land from environmental consequences of factory 

farming and industrial agriculture.  Acting as an information hub for other FN agricultural 

organizations, they highlight several non-profits currently working to promote sustainable food systems 

in FN communities of British Columbia, Manitoba, Saskatchewan and Ontario. 

 

Local food action in Canadian FNs can also be found throughout the prairies; Muskoday Organic 

Workers Co-op of the Muskoday First Nation in Saskatchewan initiated several organic community 

gardens in 2008, with the intention of making the reserve more ecologically and economically 

sustainable, and has already observed the benefits of community unification over the gardens (The 

StarPhoenix, 2008).  The Waywayseecappo First Nation of Manitoba has rehabilitated old rodeo 

grounds into a community garden and walking trail and planted around 200 hills of vegetables (Healthy 

Together Now Chronic Disease Prevention, 2010); as a result of their community planting workshop 
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and nutrition bingo, they have observed greater interest creating their own flower and vegetable 

gardens. 

 

In summary, a variety of institutions in Canada have turned to food localization as a means to achieving 

a variety of desirable outcomes, including economic diversity and development, employment, 

preservation of ecological integrity of FN lands, community resilience and self-reliance, connection to 

the land and each other, preservation of traditional culture, inter-generational cooperation and 

socialization, self-esteem, physical activity and overall health and well-being.  These are commonly 

being sought through provision of nutritional, clean, locally-grown foods via sustainable agricultural 

practices and education on harvest, preparation and preservation of traditional and other nutritional 

foods. 

 

B 5) AGROFORESTRY 

B 5.1) Socioeconomic and Cultural Services of Agroforestry 

AF systems in the tropics, sub-tropics and temperate China have played a significant role in enhancing 

food security as diverse, resilient and reliable local food systems (Ninez, 1987; Gordon and Newman, 

1997; Boncodin et al., 2005; FAO, 2010).  By incorporating multiple species in production systems, AF 

adds diversity at field, farm and landscape levels (Gordon and Newman, 1997); thereby, reducing risk 

of devastating crop losses from environmental catastrophe (Vogl-Lukasser and Vogl, 2004; Jose and 

Gordon, 2008). 

 

The mix of annuals and perennials increases land-use efficiency, resulting in long- and short-term 

returns and multiple outputs that provide a sustainable and stable flux of diverse products (Gordon and 



23 

 

Newman, 1997).  Crops may provide short-term return, while, the less labour-intensive tree component 

can provide timber in the long-run (Gordon and Newman, 1997).  The tree component may also 

provide more immediate services, such as, fodder for livestock, decreased soil erosion and 

improvement in soil organic matter, nutrient status and soil structure, thereby enhancing agricultural 

sustainability (Gordon and Newman, 1997).  The tree component also acts to modify microclimate, 

protect crops from winds, reducing evaporation and transpiration, increasing soil moisture and 

humidity, minimizing natural disasters and, subsequently, increasing crop yield (Gordon and Newman, 

1997).  Having flexible management options and low requirements for expensive fertilizers and 

pesticides, subsistence AF can provide long-term food security for vulnerable communities.  Diverse 

AF systems of the tropics, particularly homegardens, are also known to have played a role in 

conservation of crop germplasm resources (Huai and Hamilton, 2009); thus, providing refuge for 

culturally significant plants from rapid environmental change (Huai and Hamilton, 2009). 

 

B 5.2) Ecological Services of Agroforestry 

The use of trees and multiple species in AF systems maintains ecological diversity year-round, 

providing refuge and corridors for local wildlife (Gordon and Newman, 1997).  The tree component of 

AF systems is also known to assist in mitigating non-point-source pollution, reducing wind erosion and 

improving water and air quality (Gordon and Newman, 1997).  In contrast to conventional agriculture, 

the presence of trees with diverse crops results in less soil erosion and runoff of sediment and nutrients 

(Young, 1997).  Less mechanical intervention and enhanced biological diversity also allow for 

maintenance of natural nutrient-cycling and soil integrity (Young, 1997) and reduces dependence on 

fossil fuels and ecologically-damaging chemical inputs (Quinkenstein, et al., 2009), and emissions of 

N2O and CO2 (Robertson, 2004).    
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These agroecosystems can be more resource efficient because they require fewer inputs and 

productivity per unit area of land tends to be greater (Jose and Gordon, 2008). Further, nutrients and 

moisture are better maintained by greater synchronization between diverse components with diverse 

temporal resource use (Schroth and Sinclair, 2003; Jose and Gordon, 2008).  

 

B 5.3) Agroforestry in North America 

While formal study of AF as a science began relatively recently, the practice itself is more than 6000 

years old (Gordon and Newman, 1997).  Before the European settlement of North America, First 

Nations utilized AF systems much like subsistence farmers in other parts of the world (Gordon and 

Newman, 1997); they manipulated the environment through fire, seeding and transplanting and created 

AF systems to produce diverse food and material products and as a means to control soil erosion 

(Gordon and Newman, 1997).  Soil management was a strong component of indigenous AF systems 

(Young, 1997) and became a major incentive for modern agriculturalists to return to AF strategies 

(Gordon and Newman, 1997).   

 

AF started re-appearing in North America in the 1980s with the realization of the economicaly, socially 

and ecologically unsustainable nature of conventional agriculture (Gordon and Newman, 1997).  The 

main drivers were economic diversification, environmental impact mitigation, land and water 

rehabilitation and restoration, habitat enhancement, and profitability (Gordon and Newman, 1997).  

However, AF practices in temperate, industrialized countries tend to focus on few, highly-valued crops 

as to improve the economic profitability of farms, rather than meeting subsistence needs (Long and 

Nair, 1999).   

B 5.4) Agroforestry and Climate Change 

Fossil fuel depletion and rapid climate change have been recent instigators expanding interest in 
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agroforestry (Quinkenstein et al., 2009).  In response to climate change, Shuur et al. (2008) predict that 

local ecological changes in high-latitude ecosystems may either offset or accelerate the effects of 

carbon release.  Permafrost thawing is predicted to release substantial levels of organic carbon into the 

atmosphere, while, increased productivity create more carbon sinks in northern biomass.  According to 

Schuur et a.l (2008), however, the net effect will be a positive feedback towards a warming climate.  

Lengthening of the growing season, enhanced plant growth rates and increased soil nutrient availability 

are suspected to forge more hospitable conditions for growing a greater variety of edible plants over a 

longer period of time (Shuur et al., 2008).  While this is promising for local food production in 

northern communities, traditional ecological resources continue to be threatened by the rapid rates of 

these climatic and ecological changes (Guyot et al., 2006). 

 

AF systems offer relief, particularly in contrast to conventional agriculture, in their capacity to both 

mitigate atmospheric carbon dioxide and adapt to anticipated ecological changes.  The AF sector has 

received recent attention for its potential to mitigate atmospheric carbon dioxide in the cold climate 

Trans-Himalayan region and in temperate Europe (Kumar et al., 2009; Quinkenstein et al., 2009).  AF 

systems have high potential as carbon sequesters because of their inclusion of the tree component, high 

levels of soil organic carbon and low mechanical tillage (Kumar et al., 2009; Quinkenstein et al., 

2009).  Being more diverse, and thus more resilient to environmental disturbance than conventional 

agriculture, they have potential to act as a more reliable local food system (Ninez, 1987; Boncodin et 

al., 2005), a refuge for culturally significant plants (Huai and Hamilton, 2009) and habitat for 

conservation of local wildlife (Gordon and Newman, 1997).  These assets are vital to climate change 

resilience in high-latitude communities, which are already vulnerable to rapid cultural and ecological 

change and experience patchy and inconsistent resource availability (Elmqvist et al., 2004).   
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B 5.5) Agroforestry Design 

Agrisilvicultural (tree-crop) AF systems are designed to emulate natural conditions by using perennial 

and annual mixtures, contrasting the linear design of annual monocultures used in conventional 

agricultural (Young, 1997).  Similar to ecological systems, AF systems allow disturbance to provide a 

periodic window for annuals (Jose and Gordon, 2008) and maintain fertility via internal recycling 

between plants and soil in a naturalized equilibrium (Young, 1997).  Use of the right species 

combinations in the right locations with the correct spatial and temporal configurations can encourage 

biological interactions between wildlife and farming systems, as well as between crops and tree species 

that optimize desired ecological and socioeconomic services (Gordon and Newman, 1997).  The most 

common types of AF systems and their services are briefly described below:  

 Shelterbelts (Windbreaks): linear plantings of trees or shrubs that provides wind and snow 

protection to adjacent fields and changes microclimate in these fields, resulting in improved 

crop quality and yields or improved health of livestock (Gordon and Newman, 1997).  They can 

also be used to protect homes, filter airborne sediment, buffer waterways and serve as wildlife 

corridors (Gordon and Newman, 1997). 

 Silvopastoral Systems: intentional maintenance of tree and livestock components for the 

purposes of sheltering livestock and diversifying income (Gordon and Newman, 1997; AFTA, 

2010). 

 Tree-based Intercropping (Alley-cropping): planting crops between rows of trees to control wind 

erosion, create sheltered microclimates to improve crop yield and quality, create wildlife 

habitat, and diversify income (Gordon and Newman, 1997; AFTA, 2010).   

 Riparian Forest Buffers: planting strips of trees, shrubs and grass between cropland or pasture 

and surface water courses to protect water quality and reduce erosion and flooding (AFTA, 

2010).  



27 

 

 Forest Farming Systems: utilizing existing forested or wooded areas to produce timber and 

other economically valued products on a regular or annual basis (Gordon and Newman, 1997). 

 Plantation Systems: cultured trees grown on former agricultural sites to improve soil structure, 

increase organic matter content, slow erosion and improve nutrient status, while also buffering 

adjacent areas from negative impacts of agricultural activities (Gordon and Newman, 1997).  

Trees may be used for biomass production for fuel, fibre, fodder and waste management 

(Gordon and Newman, 1997). 

 Homegardens: association of multipurpose trees and shrubs with annual and perennial crops, 

and sometimes livestock, within the compounds of individual houses (Fernandes and Nair, 

1986).  These highly diverse, multistrata systems are the primary AF system for subsistence 

production because of their ability to produce diverse products, including nutrient rich foods, 

timber, medicine and spices, in small areas (Huai and Hamilton, 2009). 

  

Selection of a particular AF system is entirely dependent on social, ecological and economic needs 

(Huai and Hamilton, 2009).   As previously mentioned, no term for a community garden style of AF 

currently exists in the literature.  Thus, homegarden, tree-based intercropping and shelterbelt system 

designs are further explored below for their potential contribution to AFCGs.  The benefits of 

subsistence production of diverse, nutritious foods by homegardens, and the ability of tree-based 

intercropping and shelterbelt systems to protect crops from harsh weather conditions, act as wildlife 

habitat and sequester carbon, are functions desirable for AFCGs in remote FN communities of the 

north.   
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 i) Homegardens 

In agroforestry literature, the term “homegarden” refers to “landuse practices involving deliberate 

management of multipurpose trees and shrubs in intimate association with annual and perennial 

agricultural crops and, invariably, livestock, within the compounds of individual 

houses, the whole crop-tree-animal unit being intensively managed by family labour'” (Fernandes and 

Nair, 1986, pp. 281).  While the term is often used in other literature to describe any gardens adjacent 

the household, homegarden will be used here strictly to refer to gardens that include the tree or shrub 

component.  Homegardens are the primary AF system used for subsistence production for enhancing 

food security, especially in areas where food cost and distribution are barriers to proper nutrition 

(Fernandes and Nair, 1986; Ninez, 1987).  The FAO (2010) emphasizes the role of homegardens in 

producing direct access to a diversity of nutrient rich foods and complementary food sources during 

seasonal lean periods.  Thus, homegardens may support traditional food systems of the north if crops 

complement seasonal hunting and fishing.   

 

Homegardens include ecologically adapted and complementary species and are marked by low capital 

and labour input, simple technology and high productivity (Ninez, 1987; Huai and Hamilton, 2009).  

They have become increasingly popular as an ecologically sustainable means to improve income, food 

production and family nutrition, maintain soil fertility and soil structure and contribute to biodiversity 

by displacing commercial monocultures and acting as germplasm banks for indigenous and endemic 

plants (Boncodin et al., 2005; Huai and Hamilton, 2009).  They provide diverse products which have 

been used as timber, shade, forage, medicine, fruits, vegetables and spices (Huai and Hamilton, 2009).   

 

Emulating natural systems, homegardens are dense, multistoried and inherently dynamic, maintaining 

overall structure and function of the system over time (Fernandes and Nair, 1986; Gordon and 
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Newman, 1997). Homegarden success is prominent in tropical areas, where there is greater sun 

exposure and a longer growing season; however, vegetation layering is not a functional adaptation for 

household gardens in cooler, sun-poor regions of the world (Ninez, 1987). Thus, despite the common 

experience of vegetable gardens in homesteads of Canada, significantly less research has been 

conducted on homegardens in temperate climates (Vogl et al., 2004).  However, Ninez (1987) describes 

general homegarden design appropriate for temperate or high-altitude areas; in contrast to tropical 

homegardens, trees and bushes are well-spaced with ground-covering species left unshaded.  Since 

annual seed culture is prominent in northern hemisphere due to distinct warm and cool seasons, annual 

seed cultures which can easily be rotated will dominate.  There is also reduced inter- and mixed-

cropping, resulting in a more open vegetation canopy for full use of solar radiation; unlike tropical 

systems, northern ecosystems lack the “erosive torrential rain patterns” that require dense canopies to 

protect the understory.  Spontaneous soil regeneration takes place to a minor degree, with less organic 

matter production, slower decomposition rates and increased surface exposure to wind and rain. 

ii) Shelterbelts 

Shelterbelts, or windbreaks, are linear plantings of trees or shrubs that provide wind and snow 

protection to, and changes microclimate in, adjacent crop or livestock fields (Gordon and Newman, 

1997; AFTA, 2010).  Within the protected area, this results in improved crop quality and yields, or 

improved animal health and feed efficiency (Gordon and Newman, 1997; AFTA, 2010).  Shelterbelts 

are useful in semi-arid regions to improve crop water use efficiency and in cold climates to protect crop 

and livestock from wind stress (Gordon and Newman, 1997).  In northern areas, properly designed 

shelterbelts can assist in uniform snow distribution across a field, making more moisture available to 

crops (Gordon and Newman, 1997; AFTA, 2010).  They can also be used to protect homes from 

extreme weather conditions, filter airborne sediment, buffer waterways and serve as wildlife corridors 

(Gordon and Newman, 1997).  The tree component may also provide timber, fuel, fodder, specialty 
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foods or decorative products (AFTA, 2010).  Shelterbelts can also be used as significant carbon sinks; a 

0.4 ha field windbreaks is said to store over 21 metric tons of carbon dioxide in the trees by age 20 

(AFTA, 2010). 

 Different tree species and densities can be used in windbreaks to complement the cropping 

system through soil, pest and crop protection, as well as to provide any of the aforementioned services 

(Gordon and Newman, 1997).  For crop protection, usually one or two rows of trees should be located 

perpendicular to the prevailing or most troublesome winds (Gordon and Newman, 1997). Wind speed is 

reduced in an area directly proportional to the height of the windbreak, called the “protected zone” 

(Gordon and Newman, 1997).  Windspeed reductions occur on the leeward side of the windbreak to a 

distance of the height of the windbreak, and to a lesser degree, also on the windward side (Gordon and 

Newman, 1997).  For wind and snow protection, the most windward row of the windbreak should be 

30-60 m from areas needing protection (Gordon and Newman, 1997). 

iii) Tree-based Intercropping 

Tree-based intercropping, or “alley cropping”, involves planting several crops together in strips or 

alleys between hedgerows of trees and shrubs (Gordon and Newman, 1997; Quinkenstein et al., 2009).  

The trees can be used to modify micro-climate, protect crops from winds (reducing water loss), 

minimize natural disasters, reduce soil erosion and provide habitat connectivity for local wildlife 

(Gordon and Newman, 1997; Schroth and Sinclair, 2003; Quinkenstein et al., 2009).  Tree-based 

intercropping differs from shelterbelts, however, in that the trees themselves provide products of 

socioeconomic value, such as fruit, biofuel, fodder or timber, and thus may differ in species, location 

and density (Gordon and Newman, 1997).  Several rows of trees can also provide litter to protect the 

soil surface, prevent night chilling and frost damage, recycle nutrients, replenish soil organic matter 

and provide carbon substrates for soil biota (Schroth and Sinclair, 2003; Anderson and Ingram, 1989).   
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The tree row is capable of extracting nutrients at deeper horizons that would have otherwise been 

leached, and return them back to the soil through leaf litter for use by crops.  They also play a role in 

purifying air and water (Gordon and Newman, 1997).  However, intercropping trees may also compete 

for radiation or soil moisture (Anderson and Ingram, 1989).   

B 6) COLD CLIMATE SUBSISTENCE GARDENING 

Subsistence gardens are similar to homegardens, but lack the tree component; they often include staple 

leaf vegetables, tubers, herbs, spices, fruit and animals, and are grown to supplement permanent or 

shifting field production of few staple foods, such as grains, in areas where easily accessible and 

dependable, or affordable retail markets are lacking (Ninez, 1987).  In temperate regions, garden 

staples can nutritionally supplement field staples for most of the year and provide a daily supply of 

high quality carbohydrates, such as tubers, between the period at the end of stored field staple supply 

and new harvest (Ninez, 1987).  According to Ninez (1987), animals are typically included in 

subsistence production and are fed by garden and kitchen waste, fodder and pasture. 

 

Vogl-Lukasser and Vogl (2004) describe the success of cold-climate, high altitude communities in 

Eastern Tyrol, Austria, in producing a variety of crops through subsistence gardens.  Vegetables were 

grown in 12-220 m
2
 plots with ordered raised beds on moderate slopes, located next to farmhouses.  

Solanum tuberosum (potato) dominated the gardens, though Brassica oleracea var. capitatata alba 

(white cabbage), Phaseolus vlugaris ssp. vulgaris var. Nanus (French bean), Pisum sativum ssp. 

Sativum (snow pea), Frageria vesca var. vesca (woodland strawberry) and Rubus idaeus (raspberry) 

were also introduced.  Dairy cattle, pigs, hens and sheep were also kept in meadows.  This community 

used manure for fertilizers and rarely applied synthetic fertilizers, pesticides or herbicides.  Prior to the 

1960s, this area also kept subsistence gardens for herbs, vegetables, cereals and fodder, forests for 

timber, fodder, bedding and firewood and even fruit tree pastures, complementing hunting and 
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gathering.  Vogl-Lukasser and Vogl (2004) describe the area as “an experimental plot to test species and 

techniques under the process of human adaptive response and innovation”. 

 

Isolated fishing communities in northern Newfoundland have relied heavily on “lazy-bed potato 

gardening” to meet basic nutritional requirements.  These communities are unable to produce field 

agriculture due to unpredictable weather, pronounced seasonality, short growing season and marginal 

soils, and competition with peak fishing times (Omohundro, 1985).  The growing season is 90-100 days 

and the only frost-free month, July, averages 10.5
o
C.  However, at a high latitude of 5

o
N, intense solar 

radiation compensates for a brief summer by stimulating rapid growth.  Potato production was 

considered necessary to support the growing population in 1945, thriving in opposite weather 

conditions from peak fishing times and providing calorie and income sources when fishing failed.  In 

poor fishing years of the19
th

 century, potatoes and dairy products assisted in increasing population and 

decreasing the threat of scurvy and other nutrient deficiencies.  The potato fields were located in grass 

meadows, forests, or on islands and were complemented by “kitchen gardens” located next to the 

house.  Kitchen gardens hosted a variety of root vegetables as well as herbs, domestic berries and 

flowers.  However, since potatoes require little care, grow in poor soil, provide large nutrient 

content/hectare and store well, they made up to 90% of the vegetable produce.  Omohundro (1985) 

attributes the ability of these communities to meet nutritional requirements in a challenging 

environment to their concentration on few, reliable gardening techniques, limited gardening investment, 

sharing of labour and diversification into foraging, animal husbandry and wage work.   
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C) CASE STUDY PART 1: ENVIRONMENTAL CONTEXT  

C1) INTRODUCTION 

The above review of FN food systems, food localization, sustainable local food systems, AF systems 

and cold climate subsistence gardens, provides considerations for implementation of AFCGs in the 

subarctic.  The following case study of historical and modern food systems of Fort Albany First Nation 

(FAFN) provides a deeper examination how the food system components discussed in previous 

literature may be applied realistically as AFCGs in an isolated FN community. 

 

From the literature review, it was determined that food security initiatives need to be viewed through 

the more holistic lenses of Community Food Security and Food Sovereignty. Several authors agree that 

sustainable local food systems are those that maximize self-reliance, democratic decision making, 

empowerment, self-determination and participatory action (Ekin, 1990; Hamm and Bellows, 2003; 

Morrison, 2008; Polack et al., 2008; Winne, 2010).  Therefore, a critical review of previous studies and 

interviews with FAFN community members were seen as the necessary first steps in assessing the 

viability of AFCGs into the community of FAFN. 

C 2) OBJECTIVES  

1) Explore historical and modern food systems in FAFN and identify barriers to food security and 

local food production in FAFN. 

2) Determine acceptability and suitability of AFCGs for subsistence food production in FAFN. 

3) Develop considerations for implementation of AFCGs in FAFN and other isolated FNs, based 

on Objectives 1 and 2. 

4) Determine the potential areas in FAFN for introducing an AFCG community garden according 

community preferences and experiences, and subsequently select sites for long-term biophysical 
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research of subarctic AFCGs. 

5) Guide AF design and thereby sampling design for initial biophysical analysis of the potential 

AFCG test plots.  

C 3) METHODS  

Interviews of community members (n=8) and a brief survey of the land were completed in the initial 

visit to FAFN in June 2010 to meet the aforementioned objectives.  Community members were selected 

purposively for knowledge on past community agricultural initiatives: community members who had 

experience working with the Mission; gardening within the community; and working on food security-

related projects in FAFN.  Interviewees were kept anonymous and identified as FN#. 

 

Interview questions were open-ended and verified by closed-ended questions, allowing interviewees to 

provide personally and culturally important information.  Interviewees were asked about historical 

land-use by FAFN, the Mission, and local traditional foods and associated knowledge.  They were also 

consulted on whether or not they found an AFCG favourable and/or feasible, where they might like to 

have it located, previous successes and failures growing food in the community, as well as any potential 

concerns with local food production.  Interviewees who worked the land with the Mission (FN 1; FN 6) 

identified historical agricultural land-use on a satellite image of the area.  The land-use map was 

created using ArcMAP, verified by the same interviewees and then modified accordingly.  The 

historical map (Appendix 1) should be treated as a reference; slight discrepancies were found between 

interviewees’ recollections and a full land-use history analysis is beyond the scope of the present study.  

In addition to community interviews, a literature review was utilized to meet the above objectives.   
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C 4) RESULTS 

C 4.1) Traditional Food Systems in Fort Albany First Nation 

Prior to Mission Settlement of FAFN, indigenous peoples survived primarily by hunting and trapping 

wild game, including Castor canadensis (beaver), Alces alces (moose), Rangifer tarandus (caribou), 

fish, and waterfowl, and harvesting berries such as Vaccinium macrocarpon (cranberries), Rubus ideaus 

(raspberries), Fragaria ananassa (strawberries), Ribes grossularia (gooseberries), Viburnum edule 

(moooseberries), Vaccinium uliginosum (blueberries) and Gaultheria procumbens (ground berries) (FN 

1; FN 2; Tsuji et al., 2005).  Cladonia rangiferina (caribou moss) and Larix laricina (tamarack) root 

were also prepared as food (FN 3).  Picea spp. Spruce and Thuja occidentalis Cedar bows were taken 

as tea, while a variety of other flora was used as medicines (FN 2; FN 3).  In fact, any food eaten by the 

moose was considered good food and so the stomach contents of a fresh kill would be boiled as food or 

medicine (FN 3).  In Attawapiskat, a community north of FAFN in the James Bay region, Honigmann 

(1961) observed consumption of several other traditional foods, during his visit in 1948: Rhododendron 

s. (labrador tea), “gull” eggs, bud of Juniperus spp. (juniper), Salix spp. (willow) and Rosa spp. (wild 

rose), sap of Picea spp. (spruce), Populus (poplar) and Larix laricina (tamarack), “long-reed” or 

“kitciika miwask”, root of tamarack and Alium spp. (wild onion), Rheum rhabarbarum (rhubarb), 

mosses and honey.  

 

C 4.2) Degradation of Traditional Fort Albany First Nation Foods 

Christian Missionaries settled the mainland of Fort Albany, while most indigenous locals settled the 

adjacent island, Sinclair Island.  The Missionaries destroyed indigenous artefacts and suppressed 

indigenous behaviours that were considered integral to FAFN traditions, weakening their spiritual and 

physical well-being (FN 3).  The grandfather of a modern FAFN elder was told that his traditions 

followed the works of the Devil (FN 3).  Consequently, this grandson “grew up not knowing anything 
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at all”; he explains that “it took a long time for everybody to wake up, especially when you're put to 

sleep some more in residential school. There was the abuse of the autonomous person” (FN 3).  While 

one other respondent was grateful to the Mission in providing her with the opportunity to learn in 

school and get a job, she still regrets that she lost her culture and does not remember how to prepare 

traditional foods (FN 1).  Time-consuming jobs and high gasoline prices are blamed for preventing 

frequent hunts (FN 1); “Everyone was kept busy” working six days a week clearing the fields, farming 

and constructing buildings, so they did not have time to go fishing or to fix the boat, motor or snow 

shoes (FN 1; FN 3).   

 

FAFN residents are weary of local contamination by the abandoned Mid-Canada Radar Line (FN 1; FN 

4).  Site 050 of the Radar Line is located near Fort Albany and has contaminated local, traditional food 

sources and exposed FA citizens to relatively high levels of organochlorides (Tsuji et al. 2001; Tsuji et 

al., 2005, Tsuji et al., 2006).  Community members are also concerned about changes in the climate and 

the subsequent changes to the local ecosystem.  They report specifically that the winters from 1982-

1988 reached lows of -40
o
C and then began to change, now averaging only -24

o
C and reaching a low of 

-30
o
C (FN 3).  Less precipitation and fewer berries have also been observed over the past few decades 

(FN 3; FN 4). The ability to re-introduce certain traditional food strategies, such as burying meat in the 

ground as preservation, is questioned by one resident who notices the temperature rising (FN 2).  As 

previously discussed, both degradation of the environment and abundance of culturally and 

nutritionally important foods, as a consequence of resource development and climate change, stand to 

further threaten food security in northern communities such as FAFN.   

 

C 4.3) Introduction of Agriculture to Fort Albany First Nation 

The Mission introduced agriculture to FAFN in 1930 (FN 3; FN 5; FN 6), directing most produce to the 
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residential schools (FN 6).  Produce was appreciated by families of school children: “My dad always 

said it helped him quite a bit because there (were) a lot of us and he couldn't feed us all if the school 

wasn't there.  Those were hard times” (FN 1). 

 

Areas of the mainland were cleared for a barn, chicken-coup, grazing lands and crop land, which 

supported inclusion of cows, horses, pigs and egg-laying chickens (Appendix 1) (FN 1; FN 5; FN 6).  

The majority of acreage was dedicated to field production of Solanum tuberosum (potato), Brassica 

rapa (turnip) and hay (FN 11), but Beta vulgaris (beet), Daucus carota (carrot), Raphanus sativus 

(radish), Lactuca sativa (lettuce), Fragaria ananassa (strawberry), Brassica oleracea var. capitata 

(cabbage), Solanum lycopersicon (tomato) and Allium spp. (onion) were also grown (FN 1; FN 2; FN 5; 

FN 6; FN 7).  Small gardens beside the school supplied most of the diverse produce as well as flowers 

(FN 1; FN 7).  A couple of respondents also recall growth of rice and some sort of grain that supplied 

flour (FN 4; FN 6). 

 

Drainage ditches were dug around the fields to maintain suitable soil moisture; during rare dry periods, 

pails of water from the lake would be used to irrigate (FN 1; FN 4; Honigmann, 1961).  Two 

respondents recall having to throw “some powdery stuff” over the fields to control the bugs or worms 

(FN 4; FN 1).   Respondents did not recall the Mission taking soil, such as peat, from other land to fix 

the local soil: “they just cleared up the land.  They fixed it, ploughed it and everything” (FN 1).  Land 

productivity was enhanced by the use of cattle manure as fertilizer (FN 1; FN 4) and farm machinery, 

such as ploughs and potato diggers (FN 1).  Honigmann (1961) recalled the small addition of coastal 

suckers to the soil prior to potato planting in Attawapiskat, yet residents in FAFN who had worked in 

the fields do not recall the addition of fish to soil (FN 1; FN 4).  However, it seems that many of the 

Mission's techniques may have gone unnoticed by the local people. FN 1, who at the residential school 
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and recalled much of the farming period, explained: “They did a lot of things, the Brothers.  They did a 

lot of things, but I didn't see them.”   

 

According to Honigmann (1961), the gardening season in Attawapiskat started when ice blocks melted 

off the land, the earth thawed at least two feet, which was about the beginning of June.  The area that 

was devoted to field production is known to flood approximately every 10 years.  In years of flood, the 

Mission would wait until after break-up, when the floods receded, to seed or transplant crops (FN 6).  

 

The Mission started seedlings of carrots, lettuce, turnips, onions and tomatoes in a greenhouse and 

transplanted them into the gardens (FN 4; FN11).  Tomatoes did particularly well in the greenhouse 

(FN 4).  Turnips, potatoes and carrots were stored in underground structures earlier in the agricultural 

movement (FN 1; FN 4) and later stored in the basement of the school where it was cool all year (FN 

1).  FN 2 says that he does not know how they preserved food, but remembers hearing that they had it 

all year-round. 

 

During his time in Attawapiskat, Honigmann (1961) observed that the “native” people had lacked 

motivation to garden and attributed this to the absence of a tradition of plant cultivation and its 

associated slow return for labour.  This might suggest that the common European belief that native 

cultural values or means of food acquisition were inferior, as exemplified in NW Ontario and Alaska 

(Waisberg and Holzkamm, 1993; Loring and Gerlach, 2010), were also prevalent in the James Bay 

region.  However, Honigmann did encourage experimentation with palatable dishes from wild willow, 

wild rose and other buds and claimed that people were not aware of the health values of berries.  

Honigman (1961) also showed concern as early as 1948 about the decline in wild vegetation and berry 

harvest over the previous one to two decades and attributed this loss to the increase in imported food.    
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Large-scale agriculture by the Mission came to an end around 1970 (FN 3; FN 5; FN 6) when Indian 

Affairs took over the residential school (FN 1) and the grocery store was introduced (FN 5).  The 

government removed the residential school and most of the mission followed (FN 6), halting large-

scale agriculture.  People got jobs and sourced the local store for food (FN 1).  Although Fort Albany 

never established as an agrarian society, the Mission did have some residual impacts on future 

cultivation in the area.  Some elders kept their own potato and strawberry patches nearby (FN 2).  The 

“Old Post” (old Hudson’s Bay Company fur trading post), or “Old Settlement”, was also travelled to by 

FAFN residents to grow potatoes, and possibly other crops, up until about twenty years ago (FN 1; FN 

2; FN 4).  FN 2 recalls of the Post that “It was all clear and the earth was just dark”.  Up until about two 

years ago, one couple maintained large potato gardens utilizing skills learned from the Mission (FN 1).  

Another individual used to keep a potato patch on what is now called “Potato Island” (FN 2).  He 

travelled there by boat, cut up seed potatoes and planted them around June or July after the ground was 

thawed.  He did not return until late September or October as the patch required no maintenance, but 

stopped his garden when children began vandalizing it. 

 

C 4.4) Current Food System in Fort Albany First Nation 

Although older members of FAFN were raised on canned food during the Mission (FN 3), they try to 

maintain traditional food harvest and consumption (FN 1).  One resident explained that few people 

harvest or hunt because few have the money to afford a boat and fuel (FN 3).  The community tradition 

is to share the kill, but after spending about $600 per trip, many will eat only for a short period of time 

(FN 3).  Community members explain that most people get their food from the store, especially the 

new generation which consumes a lot of junk food, particularly pop and chips, and do not care for 

traditional foods (FN 1; FN 3; FN 7).  A previous study of food security in FAFN by Skinner et al. 

(2006) reports that healthy eating is impeded by the isolation of the community and the subsequent 
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high cost, limited variety and poor quality of fresh produce.   

 

However, a tendency of people to shy away from a variety of novel fruits and vegetables has been 

observed in the grocery store and the school's farmer's market (FN 4).  One resident explains that, “life 

is busy, too busy to experiment with foreign foods”, demonstrating knowledge of food usage as a 

barrier to consumption of the already “limited variety” that exists (FN 4).  She explains: “I'll be 

standing in the produce section and someone will say, 'what is that?' and 'how do you make it'?”.  

Though she acknowledges cost and availability as limiting, FN 4 also identifies personal choice or 

preference as perhaps a more limiting factor: “The education is all around, but sometimes I think we 

limit ourselves here with those excuses that the cost of food is too expensive at the store.  A head of 

broccoli is the same price as a bag of chips” (FN 4).  Skinner et al. (2006) noted that FAFN youth were 

capable of differentiating between healthy and unhealthy foods, and that it was both access and desire 

that were lacking.  One lifetime FAFN resident who is food secure has described this common 

situation: with the same income every two weeks and no bank to store cash, people use their money 

quickly, playing cards, poker or bingo (FN 3).  They buy on credit from the only store in town which 

charges 19% interest so that by the time the next cheque comes, half of it may be owed to the store: 

“they are always indebted to the store” (FN 3).  He sums the issue by stating: “If you don't have the 

means, the knowledge, the education, that's where you're stuck”.  Therefore, the capacity of citizens to 

purchase healthy foods may be limited not only by the by the availability and cost of those foods, but 

also by the behaviours of the consumers themselves.  

 

C 4.5) Towards Sustainable Food Systems in Fort Albany First Nation 

The FAFN community has expressed a desire to: 

 Improve dietary habits of its population and become food secure (Skinner et al., 2006) 
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 Bring back and protect traditional knowledge necessary for subsistence lifestyle and 

transmission of their culture (Minkin, 2008)  

 Regain connection with the land (Minkin, 2008)  

 Regain traditional values of land responsibility and community mutualism with respect to 

resources (Minkin, 2008) 

These desires are demonstrated by the school snack initiative which is designed to introduce FAFN 

children to nutritional snacks.  However, according to Skinner (2006), the program is not sufficient and 

could be complemented by community gardens and increased resources (personnel, time, money and 

food variety). 

 

Since the Mission ended their agriculture program in 1970, FAFN community members have yet to 

participate in large-scale agriculture or community gardens.  A few elders have maintained family 

potato gardens until very recently (FN1; FN 6).  One elder recalled the work involved in successful 

potato gardening on the mainland: he used a shovel to remove the grass and then tilled the earth.  He 

planted the potatoes about five or six inches below, covering them later on in the season as they started 

to come up and recalled the intensive weeding requirements. A garden of 50x100 ft produced about 

1000-1500 lbs of potatoes from 100 lbs of potato seedlings. 

 

Two other known gardens of greater diversity are being kept by one long-time resident and one 

relatively new resident to FAFN.  FN 8 has kept her outdoor garden at her home on the outskirts of 

town for six years.  She successfully grows potato, turnip, beet, carrot, radish, lettuce, strawberry, 

tomato and yellow and green onion, Cucurbita spp. (squash), Leguminosae spp.(beans), Pisum sativum 

var. saccharatum (snow peas), Solanum melongena (eggplant), Apium graveolens (celery), Piper spp. 

(peppers), Brassica oleracea var. gemmifera (brussel sprouts) and Brassica oleracea var. botrytis 

http://en.wikipedia.org/wiki/Cucurbita
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(broccoli).  She roto-tilled the garden prior to planting, transplanted tomatoes, peppers, broccoli, onions 

and grew the rest from seed.  She also has a successful garden dedicated only to potatoes.   

 

FN 4 started her first outdoor garden this year at her home in the heart of town.  She tilled the land and 

constructed a raised bed.  She had success in growing small snow pea and bean plants, but found her 

soil to be very clayey and stony.  Her garden was also disrupted by curious people and dogs.  She also 

potted flowers, herbs and tomatoes which were somewhat successful.  She was concerned about 

contamination in her garden because of the historical garbage dumps and outhouses of unknown 

locations.  

 

However, they felt restricted by a lack of knowledge, funds, time, resources and support necessary to 

implement the plant (FN 1; FN 4).  They also found difficulty coming to consensus on garden location 

and thus found personal gardens seemed more appealing (FN 4).    

 

C 4.6) Community Thoughts on Community Gardens  

Several respondents liked the idea of a community garden to grow food in Fort Albany (FN 1; FN 3), 

stating, “It was done before, why not do it again?” (FN 1).  Respondents who were around during the 

Mission settlement stressed the amount of work that would be needed to garden, especially weeding 

(FN 1; FN 6).  One interviewee  demonstrated some hesitation, stating, “you gotta really pick up the 

weeds.  It's an all day thing you really have to look after...one with less maintenance would be better” 

(FN 1).   

 

Gardens were regarded by community members as a means to acquire produce at a cheaper price, 

especially potatoes, which are favoured and very expensive (FN 1).  Others viewed a community 
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garden as a means to bring youth and elders together to share stories of the past, to conserve traditional 

knowledge and to unify the community (FN 3; FN 7).  Two participants expressed concern for a loss of 

traditional medicinal knowledge and agree that the garden could host culturally important medicinal 

plants (FN 7).  FN 3 explains that Abies spp. (balsam) aroma is healing and would be a nice 

contribution to community gardens (FN 3).  FN 4 would like to see flowers in addition to food because 

they “do something else holistically and spiritually”.  FN 4 also saw community gardens as an 

opportunity for healing oneself from the land, referring to horticultural therapy concepts introduced at 

the Food Security Conference; she notes specifically that the community suffers from a lot of post-

traumatic stress disorder, which is “getting in the way of being able to lead productive lives” and thinks 

it may be relieved through land-tenure. 

 

While attempting to develop a community garden committee, FN 4 commonly found that people would 

rather have personal gardens, closer to their homes because they like to “do their own thing” and feel 

they can better protect something close by (FN 4).  Although FN 3 felt confident in the capacity of a 

community garden to grow food in Fort Albany, he also felt it is better for a family to have their own 

private fields.  FN 3 added, however, that the community currently lacks enough motivation for private 

subsistence production to take start.  Yards are not commonly landscaped because, as FN 4 explains, 

“there isn't that pressure, that peer pressure to keep your lawn” and “equipment gets stolen and people 

become apathetic” (FN 4).  FN 3 agreed that a community garden would be an effective way to initiate 

home-gardening in the area: “You have to start first.  You have to teach people by having something in 

common, how to care for the community garden and then eventually (they) will say, 'well I am going to 

move a bit further away from here and have my own garden, my own field...I want this and that'.  It 

will spread.  You're just planting a seed....they'll talk about the best seed they have found...They'll start 

experimenting with the local things, and watch them grow (in) what kind of soil they like.  And they 
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develop (as) an expert.  It's also a good way, I think, for developing a community, a cohesive 

community, a sociable community, from talking about something in common: our garden” (FN 3). 

 

C 4.7) Proposed Garden Area 

Most respondents identified the old Mission fields on the mainland as an ideal location for a 

community garden because of the known productivity of the land, the man-made drainage ditches and 

the proximity to a freshwater lake (FN 1; FN 2; FN 4).  During her community garden project, FN 4 

received a high interest in the area, but was concerned about the ability of the garden to act as an 

educational tool for elders or children who have a more difficult time accessing it (FN 4).  However, 

while experimenting with her own garden in the heart of town she had many difficulties with dogs, 

theft and vandalism disturbing her garden and her equipment.  Community members have been hesitant 

to invest in town gardens for fear of contamination by the Mid-Canada radar line or old dumps and 

outhouses in unknown locations of the town core and because much of the soil in the community is 

thought to be either clayey or boggy (FN 4).  They were also concerned about the financial and labour 

investments needed to develop suitable soil (FN 1; FN 4).  “Potato Island”, however, is described as 

having good soil and being a good place for future potato gardens, which require little care.  Since a 

boat is required to access the island, FN 2 suggests that other crops which require more care should be 

grown closer to the community in the old Mission fields.  Although FN 2 did mention that dust is 

carried by wind from the airstrip, which is located on the southern portion of the proposed garden area, 

and may be problematic for crop production. 

 

C 5) DISCUSSION  

C 5.1) Fort Albany First Nation Food Systems 

Information revealed from interviews with FAFN community members converged with findings from 
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the literature review of isolated FN communities of the far north.  Staple traditional foods include wild 

game and fish and were complemented by several plant species, mainly as teas, medicine, and berries.  

Agricultural produce provided by the Mission was welcomed and appreciated by community members.  

However, the Mission’s relatively large-scale agricultural efforts were directly tied to operation of the 

residential school; thus, the initiative lacked respect for the traditional culture and the importance of 

traditional foods.  A lack of equality during the Mission settlement meant that FAFN residents lacked 

autonomy and self-determination over local food production and that knowledge sharing of agricultural 

strategies with the people was restricted impacting the local food production effort after 1970.   

Consequently, traditional harvest and associated knowledge was weakened by the residential schools 

and time-consuming farm work, and continues to be threatened by rising economic costs and climate 

change.  

C 5.2) Barriers to Food Security 

Unhealthy food consumption in FAFN is not entirely attributed to a lack of access due to availability, 

cost, and a profit-driven food supply.  Consumption of healthy market produce may also be impacted 

by personal choice or preference, lack of food usage familiarity, and monetary issues not directly 

related to cost of consumables.  These additional findings are extremely important to consider in this 

study if the ultimate agenda is to facilitate healthier food systems in northern communities.  

Replacement of grocery store produce with gardens will not eliminate limitations of familiarity of food 

usage, personal preference (choice) and time availability as barriers; they are likely to persist unless 

proper support and education are provided in conjunction with local food production. 

It is significant that the additional barriers discovered in the present study are congruent with what 

Skinner et al. (2006) identify as the central issue related to healthy eating in FAFN: empowerment.  In 

their study, empowerment was defined by Wallerstein (1992) “social action process that promotes 

participation of people, organizations, and communities towards the goals of increased individual and 
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community control, political efficiency, improved quality of community life and social justice” 

(Skinner et al., 2006, pp. 157).  Participants in the Skinner et al. (2006) study felt dis-empowered by a 

lack of access to healthy foods, a lack of capacity to influence grocery store stock and pricing, as well 

as a lack of trust in the grocery store management and company.  Yet in the present study, FN 4 recalls 

the grocery store manager claiming that his previous attempts to stock more produce were not met with 

greater purchase of produce, and that as a result, these foods did not sell.  While many residents desire 

greater control and ability to make choices for healthy eating (Skinner et al. 2006), the amount of 

people not making healthy food choices may be sufficient enough in a small population to deem greater 

produce abundance and diversity unprofitable to a private market.  However, local food production 

would allow the citizens who are interested in having greater food democracy and variety to escape the 

demand of unhealthy consumers.  Provision of relatively inexpensive produce through local gardening 

would also partially mitigate cost as an access issue; thus, providing another incentive for people to 

choose healthy foods over imports, despite food preference.  It would also help relieve perpetual cycles 

of store debt and monetary management as barriers to nutritious food.  Lack of trust in the grocery store 

company was also expressed in Skinner et al. (2006), emphasizing the need for local food autonomy.   

 

C 5.3) Suitability and Acceptability of Agroforestry Community Gardens  

In the present study, community members responded positively to the idea of an AFCG as a means to 

enhance FAFN food security.  Consistent with findings by Minkin (2008), FAFN residents 

demonstrated a fondness towards traditional values of community mutualism over resources.  However, 

a preference for personal gardens over community gardens was also observed in the present study, due 

to logistical and other concerns, which was identified as a barrier in previous attempts to introduce a 

community garden in FAFN.  Still, several respondents view the community garden as an important 

initial step towards food localization that is needed to gain community interest in local food production 
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and to educate the community on gardening strategies.  Community plantings and workshops have 

proven to initiate greater interest in personal gardening in FN communities (Healthy Together Now 

Chronic Disease Prevention, 2010).  FAFN community members also view the gardening initiative as a 

means to bring the community together, heal oneself from working with the land, share traditional 

ecological knowledge and preserve traditional ecological knowledge of culturally significant plant 

species, as well as provide healthy food.   

 

FAFN members report reduced access to wild game and berries due to increasing harvesting  activity 

costs and rapid climatic changes.  Thus, AFCGs may assist in augmenting traditional foods impacted 

by climate change.   The nutritional, cultural and social benefits of traditional foods in remote FN 

communities are evident (Willows, 2005; Stroink and Nelson, 2009; Trull, 2009).  Taking lessons from 

previous food security initiatives by the Mission, future local food developments should complement, 

and not replace, traditional food systems.   

 

C 5.4) Introduction of a Food Security Program  

Previous attempts by FAFN residents to introduce community gardens have been challenged by a lack 

of leadership and knowledgeable personnel devoted fully to local food production and food security as 

a whole.  A few programs within the Peetabek Health Unit are able to address individual components of 

the food security issue in FAFN, but a lack of cohesive community effort and common vision have 

been barriers to successful project implementation.   A central body with the necessary knowledge, 

experience and resources for developing community food security and food sovereignty is required to 

bridge the associated programs and disseminate complementary projects.  FAFN would benefit from 

government support of a Food Security Program (FSP) lead by trained community members who can 

devote themselves completely to enhancing food security and unifying current efforts towards similar, 
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mutually reinforcing goals.  Considering results of Section C, the program should provide education, 

support and resources for local food production, local food preparation, food budgeting, financial 

planning and traditional plant uses.   

  

C 5.5) Barriers to Local Food Production 

FAFN residents showed concern for the amount of work and time necessary for a successful 

community garden; thus, emphasizing the importance of a low maintenance community initiative.  In 

the past, time devoted to agriculture and jobs had interrupted their ability to harvest and prepare 

traditional foods.  Community gardens may limit time devoted to traditional food acquisition, but the 

seasonality of community gardens may also complement traditional food efforts, temporally.  Low-

maintenance potato gardens in Newfoundland have supported fishing communities during off seasons 

or periods of low fielding yield (Omohundro, 1985).  Further characterization of traditional food 

seasonality in FAFN would highlight complementary crops.  However, cold climates will make for easy 

storage of root crops all year, which is known to have been a successful strategy by the Mission in 

FAFN. 

 

FAFN community members fear contamination of the land by the Mid-Canada Radar Line and old 

outhouses and landfill in unknown locations, making them more reluctant to initiate local food 

production.  Recalling precautions by Bellows and Hamm (2001), localization of food may not inspire 

sustainable development and local autonomy if the local area is contaminated.   The uncertainty 

demonstrated by FAFN citizens, indicates that resource development is another factor driving a greater 

confidence in market foods over local foods, as found by Stroink and Nelson (2009).  Soil contaminant 

analysis of potential gardening areas of FAFN is also necessary to determine if local food production is 

safe, and if so, to encourage greater confidence in the local land to provide.   



49 

 

C 5.6) Import Substitution Strategy  

FAFN has seen successful growth of a variety of garden crops by the Mission until 1970, and by local 

residents up to present day.  The University of Waterloo has provided a greenhouse to FAFN, which is 

almost completed.  Once the greenhouse, which is located on the 100-year flood plain, is completely 

finished, it will play an important role in starting early crops such as carrots, lettuce, turnips, onions 

and tomatoes, especially in years when the community garden area floods in early spring.  The 

greenhouse may also play an important role in garden education, notably for schoolchildren and 

residents who have difficulty accessing the community garden. 

 

The old Mission fields were selected by FAFN members as the proposed garden area for the AFCG 

because of the historical productivity of the land, the existing man-made drainage ditches and the 

proximity to a freshwater lake.  Gardeners in the town are concerned about soil contamination from old 

waste sites and soil fertility, and have had difficulty protecting their plants from being destroyed or 

stolen by vandals or dogs.  Located on the mainland, the proposed garden area is located away from the 

village proper (but close by), and known to have been protected from waste disposal.  Fencing was 

used by the Mission to exclude children and dogs (Honignmann, 1961), and can be used for the 

community garden to enhance protection.   

 

The known success and low-maintenance of potato gardens on the islands of the region’s rivers and the 

capacity of low-maintenance potato gardens to support the bulk of the diet of cold climate communities 

in Newfoundland and Austria (Omohundro, 1985; Vogl-Lukasser and Vogl, 2004), begs their re-

introduction to FAFN.  As FN 2 suggested, the majority of potatoes can be left to grow on the islands, 

while production of diverse crops which require more care can be grown in personal gardens. 
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Personal AF homegardens are presently not a suitable means of import substitution in FAFN to enhance 

food security; at present, residents seem to lack interest and education of food production and are 

challenged by poor soil quality and potential soil contamination within the FAFN town centre.  

Expansion of food localization in FAFN towards personal home gardens will require soil testing 

followed by research of inexpensive soil amendments prior to large-scale promotion.    

 

C 5.7) Selection of Study Sites 

Based on the community preferences and experiences, as well as the study objectives and literature 

review of AF, four sites were chosen for biophysical analysis (Appendix 2): 

i) Site A, “AFCG” and Site B, “AFCG” 

These two sites are located within the proposed garden area on the mainland, easily accessed by road 

and already support growth of maturing Salix spp. (willow) trees.  The willows which now dominate 

the old drainage ditches, border these two sites, allowing for immediate introduction of the AFCG, and 

the use of naturally existing and adapted tree species.  With parallel rows of willow tree species, this 

location is ideal for research on tree-based intercropping or shelterbelt community gardens.  The use of 

two sites will allow for long-term research of different management strategies for optimal crop 

production, particularly because the trees rows appeared to differ in terms of willow maturity and 

density.  Initial assessment of soil properties, species composition and willow tree row composition will 

be discussed in Part 2 of the case study. 

ii) Site C, “No Tree” 

A site within the proposed garden area that lacks invasion of willow trees was selected as a control.  No 

trees or shrubs are growing within a 58 m radius of this site.  Introduction of a community garden on 

this site, followed by continued research of productivity in this “No Tree” site and the ÀF sites will 
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provide valuable information on the effect of willow trees in subarctic gardens; this will assist in 

determining the suitability of AFCGs in the subarctic over the long-term.  Initial soil sampling of this 

site will also assist in characterizing the land cultivated by the Mission and identifying any major 

differences within the proposed garden area. 

iii) Site D, “Undisturbed Forest” 

A section of forest near the proposed garden area, which remains intact since before Mission 

settlement, was selected to characterize the more common, undisturbed boreal forest conditions for 

wider application of AFCGs and to act as a control in determining Mission land modifications.  Over 

long-term studies, this site will also be useful in comparing soil properties to that of the working 

AFCGs for further research of ecosystem dynamics in AF systems of subarctic regions: tropical and 

subtropical AF systems are described to have nutrient inputs, outputs and circulation patterns 

intermediate to that of  natural forests and agriculture (Young, 1997).  Long-term studies may indicate 

whether subarctic AF systems behave similarly and thus, if they are a sustainable means of food 

production.  

C 5.8) Land-use of Study Sites and Surrounding Area 

Land-use of the selected sites and surrounding area from 1930 to 1970 is described in Section C 4.3, 

“Introduction to Agriculture in Fort Albany” and geographically shown in Appendix 1: “Land-use 

During Mission Settlement of Mainland FAFN”.   Little information was revealed about land-use in the 

proposed garden area and its surroundings since the end of agricultural production in 1970.  Residents 

claim that the land has been abandoned; however, some areas are dominated by early succession 

species that appear younger than forty years; ecological land survey of the area is described in Part 2 

Section D 4.1.  Appendix 2 shows observed land-use in 2010 as well as the location of the study sites.  

No development can be seen within the proposed garden area, except for the airstrip which runs along 
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the southern portion of the area.  In the midst of the proposed garden area, one resident has begun 

working the land to build a running race track.  East of the general site area, “Dike Road” is bordered 

by a cemetery, residential development, the airport, and a few amenities that have expanded since the 

Mission’s settlement.  Dike Road intersects with a road leading to the Fort Albany First Nation Reserve 

on the island (not shown in map).  Areas immediately north, west and south of the proposed garden 

area remain as relatively undisturbed forest.  A freshwater lake, St. Anne's, is located west of the 

proposed garden area.  An access road running from Dike Road to St. Anne's Lake was created for the 

construction of a log house along the lake; it allows for easy access to these study sites.  The house is 

located just west of the proposed garden area and is accompanied by a nearby potato garden located 

just within the proposed garden area, next to Site A. Construction of the home, including use of nearby 

trees and land excavation, may have caused some recent disturbance to the study sites. 
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D) CASE STUDY PART 2: BIOPHYSICAL ASSESSMENT IN FAFN 

D 1) INTRODUCTION  

Considering the meat-based traditional diet of northern FN communities (Guyot et al., 2006; FN 1; FN 

2) and low diversity and productivity of high-latitude ecosystems (Elmqvist et al., 2004), it is evident 

that subarctic environments are not naturally conducive to producing large amounts of diverse edible 

plants.  Analysis of site-specific vegetative and soil composition in both undisturbed subarctic 

ecosystems and previously cultivated lands would provide insight on the potential for these challenging 

environments to be manipulated into the type of diverse food production sites witnessed in 20
th

 century 

FAFN.   

 

Extensive analysis and spatial classification of Ontario's northern soils is lacking.  The Geological 

Survey of Canada characterizes all of northern Ontario’s soils around James Bay as peatlands (Natural 

Resources Canada, 2008).  Peatlands are known to have low pH, high levels of organic matter and high 

levels of stored nutrients due to low decomposition rates (Gardiner and Miller, 2008).  The high soil 

organic matter provides a high water-holding capacity, but this stagnant water results in low root 

aeration, limiting growth of many plants (Gardiner and Miller, 2008).  Soils in the James Bay ecoregion 

are characterized as predominantly organic Mesisols and Fibrisols with some organic Cryosols and 

limited areas of dystric and eutric Brunisolic soils on upland sands; they experience sporadic and 

discontinuous permafrost (MSSC, 1996).  Organic Mesisols are composed mainly of organic materials 

at an intermediate state of decomposition, with some identifiable plant fibres (Soil Classification 

Working Group, 1998).  Organic Fibrisols are composed mainly of relatively undecomposed, well-

preserved fibric organic material that can be identified by its botanical origin (Soil Classification 

Working Group, 1998).  Cryosols predominate north of the tree line and experience permafrost within 1 
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m of the surface (Soil Classification Working Group, 1998).  Dystric and eutric brunisols lack a well-

developed mineral-organic surface horizon and are found under forest vegetation (Soil Classification 

Working Group, 1998).   

 

With wetlands comprising 50-75% of the James Bay ecoregion, the dominant vegetation consists of 

Cyperaceae (sedges), Bryophyta (mosses), lichens, Picea mariana (black spruce), Larix laricina 

(tamarack), Juniperus spp. (juniper), Salix spp. (willow), Populus spp. (aspen), Rubus spp. (brambles), 

Myrica gale (sweet gale), Alnus spp. (alders), Betula spp. (white birch and bog birch), Cornus 

(dogwood), Arctostaphylos spp. (bearberry) and Vaccinium oxyoccos (small cranberry) (MSSC, 1996; 

Hanson, 1953).   

 

Information on soil and vegetative composition of the region is very general, while soil and vegetative 

conditions of cultivated areas within the region are not documented at all.  The following biophysical 

analysis in FAFN is a site-specific inventory of soil and vegetative composition that will be used to 

meet the following objectives: 

D 2) OBJECTIVES  

1)  Determine if soil in the proposed garden area (Sites A, B and C) is capable of supporting 

diverse garden produce and identify if selected soil properties need modification prior to 

garden implementation 

2)  Observe spatial variation of soil properties in the crop area in relation to distance to willow 

trees and identify potential tree-crop competition, as a means to identify ideal crop placement 

and soil management strategies needed to enhance crop productivity 

3)  Characterize vegetative and soil composition on each site (Sites A, B, C and D) to make 

inferences on historical land-use and establish more detailed information on Ontario’s 

http://en.wikipedia.org/wiki/Arctostaphylos
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subarctic soils necessary for wide-scale adoption of AFCGs to subarctic communities of the 

James Bay Ecoregion 

4) Establish and analyze baseline soil and vegetative composition to characterize initial site 

conditions for long-term studies of: 

 Soil property dynamics resulting from use of willow in AF community gardens of the 

subarctic (Sites A and B) compared to gardens in an area of similar historical land-use 

history, but lacking the tree component (Site C) and an undisturbed forest of the 

subarctic (Site D) 

 The effect of willow tree rows of various geometry and densities (Sites A and B) on 

spatial and temporal variability of soil properties and on crop success, as a means to 

determine 1) the suitability of willow AFCGs for subarctic food production, and 2) best 

willow management practices for optimal production of crop and willow products or 

services  

Refer to Section C 5, parts i, ii and iii for description of Sites A, B, C and D 

D 3) METHODS  

D 3.1) VEGETATIVE STUDY 

D 3.1.1) Species Composition: Sites A, B, C and D 

Plant species within the sites were identified to characterize undisturbed and disturbed ecology of the 

area, provide insight on management history and characterize initial site conditions (Anderson and 

Ingram, 1989) prior to garden implementation and long-term AFCG studies. Dominant species 

surrounding these sites were also identified to characterize local ecosystem (Anderson and Ingram, 

1989).  

 



56 

 

D 3.1.2) Willow Tree Inventory: Sites A and B 

Further vegetative analysis was performed on the potential AF plots, Sites A and B.  Within the tree 

rows, tree height and width, surface water width, and tree shoot density and shoot basal area, were 

measured.  Typically, AF site characterization includes measurement of stem density and basal area 

instead of shoot density and basal area, and also includes calculation of wood biomass (Anderson and 

Ingram, 1989).  Willows in these plots developed shoots as low as the base of the tree, making stems a 

minor proportion of the woody biomass; thus, shoots were a better indicator of willow density and 

basal area.  Calculation of biomass, however, requires destructive willow sampling and more extensive 

laboratory and statistical analysis than was available in this study.   

 

The adjacent AF plots, Sites A and B were bordered by two willow tree rows and divided by a third 

willow tree row, each running in the direction from southwest to northeast (Figure 1 and Appendix 2).  
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Figure 1: Soil Sampling Design of Proposed Agroforestry Community Garden Sites (Sites A and 

B), a “No Tree” Control Site (Site C) and an Undisturbed Boreal Forest Control Site (Site D) in 

Fort Albany First Nation, Ontario. Note: scales differ for A-B versus C-D. 
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“Row 1” bordered the southeast (SE) length of Plot A; Row 2 was shared by Plots A and B, acting as 

the northwest (NW) tree row for Plot A and the SE tree row for Plot B; Row 3 bordered the NW length 

of Plot B (Appendices 2 and 3).  Tree height and maturity of Rows 2 and 3 appeared very homogenous 

within each.  Row 1, however, had two distinct generations of willow trees, with taller, more mature 

trees towards the inside of Site A, labelled stratum 1b, and shorter, less mature trees on the outside, 

next to the access road, labelled stratum 1a. 

 

A 4-m section along the length of each tree row was sampled for above-ground biomass, tree density 

and row width.  Each tree row was relatively homogenous in width and density and resulted in the 

selection of a section representative of the majority of the row.  Few but large differences in tree height 

meant that minimum and maximum tree heights were observed from the entirety of each tree row and 

measured in order to obtain a range of tree height per row.  Most trees in a given row were the same 

height and thus a “majority” tree height was also included.  Tree height was measured using an Abney 

Level and measuring tape, then calculated using trigonometric functions. 

D 3.2) SOIL STUDY 

D 3.2.1) Sampling Design 

a) Sampling Design of Site A and Site B: “AF Plots” 

Inventory Study 

An inventory study is a general type of soil testing to measure the amount of a property(s) under study 

and is used in AF research to determine if soil properties are suitable for growing specific crops (Carter 

and Gregorich, 2008).  An inventory study could be random, where coordinates for each sample 

location are selected using random numbers, or systematic, where the sample sites are selected in a 

systematic way, typically in a grid pattern (Schroth and Sinclair, 2003).  To prepare for long-term 
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studies, flexibility and repeatability were important in the sampling design of Sites A and B and thus, 

systematic sampling was used; in this way sampling would have greater precision than random 

sampling, could be replicated within the plots in future studies and would represent the entire plot for 

continuous studies on soil dynamics over time and space (Schroth and Sinclair, 2003).   

Pattern Study 

A pattern study can be used to explain spatial and temporal properties of patterns (Carter and 

Gregorich, 2008).  Elements of a pattern study design were included to quantify spatial, and eventually 

temporal variability of soil properties to measure the effect of the tree row on soil properties and to 

provide more accurate data for crop placement.   

 

The following is a rationale for selection of a patterned inventory study using systematic sampling: 

 Known sample points are necessary for repeatability of the study. Therefore, haphazard and 

random sampling were avoided (Schroth and Sinclair, 2003; Carter and Gregorich, 2008) 

 Homogeneity within the plot suggests that representative sampling is not necessary (Carter and 

Gregorich, 2008).  

 Although the AF plots appear homogeneous within, they are bordered by trees and thus distance 

to tree effect must be analyzed, especially for long-term studies on the effect of incorporating 

willow trees in community gardens.   

 Spatial variation of soil characteristics within the entire plot must be determined for garden 

design and crop placement.  Thus, smallest representative unit sampling (Schroth and Sinclair, 

2003) is insufficient as it would not capture potential gradients along transects parallel to tree 

row.  

 Intercropping plots require stratification of areas from distance to tree row (Schroth and 
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Sinclair, 2003).  This will allow measurement of the spatial variation of soil properties caused 

by the trees by collecting at different distances from the tree line.   

 Future studies may test different crop species and land management practices for optimal 

production in subarctic AF with willows, and thus broad coverage will provide baseline data of 

the uniform area. 

Type of Inventory and Pattern Studies Used 

A grid design is a common type of systematic sampling used in inventory studies that allows for highly 

detailed information in a smaller area (Schroth and Sinclair, 2003); this extensive sampling style will 

allow for repeated sampling over a broad area for unknown potential AF studies.  The spacing of 

transects within the grid, however, was dependent on the needs of the pattern study. 

 

Since distance-to-tree effect and overall spatial gradients of soil properties are also sought, a stratified 

approach was also incorporated in the design (Carter and Gregorich, 2008).  In stratification, each plot 

is divided into homogeneous regions called “strata” (Schroth and Sinclair, 2003).  Within each stratum, 

samples are chosen randomly or systemically.  Although a grid provided the basic structure for the 

design, a stratified approach directed the distance between transects and which grid nodes would 

actually be sampled in order to measure: the effect of willow at various distances along the width of the 

plot (horizontal direction) and the effect of unknown factors on soil properties along the length of the 

plot (vertical direction).  The following two paragraphs describe how sampling design was created to 

satisfy these two measurements; a map of sampling design (Figure 1) and a satellite image of the sites 

(Appendix 2), can be used as visual aids. 

 

1) Unknown Effect: “Vertical Distances” 

This stratified systemic division of vertical distances was used to measure geographic variability of soil 
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properties from potential, unidentified environmental and anthropogenic influences over the entire 

length of the plots.  The length of each plot, 35 m, was divided into six equally spaced “vertical 

distance” (VD) transects, each 5 m apart: VD1-6 for Site A; VD7-12 for Site B.  Down the centre of 

each plot, all six vertical distances were selected as sample points in order to obtain soil property data 

for non-statistical observation of the variability along the entire length of the plot; this provided one 

sample point per vertical distance.  Due to soil transportation restrictions, only three of these distances 

within each plot were selected randomly for more extensive sampling sufficient for statistical 

comparison of vertical distance.  This created three single sampling VD points per plot (VD2, VD4, 

VD6, VD7, VD9, VD12) and three VD transects with five sampling points in each plot (VD1, VD3, 

VD5 for Site A; VD8, VD10, VD11 for Site B) running perpendicular to tree row.  The distance 

between these five sampling points was dependent on the needs of Distance-to-tree Effect study in 

order to overlap sampling coordinates on the grid and minimize required number of samples.   

 

2) Distance-to-tree Effect: “Horizontal Distances” 

The horizontal distance gradient was used to measure the effect of the tree component on soil 

properties at various distances along the width of the plots.  For soil analysis within a tree-based 

intercropping system, Schroth and Sinclair (2003) recommend sampling at three strata according to 

how far each point is from the nearest tree: “maximum tree effect”, closest to the tree, “no tree effect”, 

furthest from the tree, and “intermediate effect”, at one or two intermediate distances between the tree 

and the “no tree effect” strata.  Tree effect analysis was done for each tree row on each plot, with the 

shared row (Row 2) having an effect on both plots: Row 1 and Row 2 effect on Site A, Row 2 and Row 

3 effect on Site B.  With two effect analyses per plot, the centre of a given plot was used as the “no tree 

effect” stratum for both tree rows.  Each tree row within a plot also had a “maximum tree effect” 

stratum located 1 m from the tree row and an “intermediate effect” stratum, located halfway between 
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the “maximum tree effect” stratum and the centre of the plot.  These five strata, two “maximum effect”, 

two “intermediate effect” and one shared “no effect”, in each plot provided a total of ten “horizontal 

distance” (HD) transects to be sampled (Table 1).  Thus, starting from the SW tree row of each plot, 

HD transects were placed at 1 m, 4 m, 7 m, 10 m and 13 m from Row 1 in Site A and 1 m, 4.5 m, 8 m, 

11.5 m and 15 m from Row 2 in Site B (Figure 1).   

 

Table 1:  Horizontal Distance Transects (HD1-HD10), as shown in Figure 1, and Used to Test for 

Various “Tree Effects” of Rows 1 and 2 of Site A and Rows 2 and 3 of Site B 

 

 

Tree Effect 

Site A Site B 

Row 1 Row 2 Row 2 Row 3 

Maximum Tree Effect HD1 HD5 HD6 HD10 

Intermediate Tree Effect HD3 HD3 HD8 HD8 

No Tree Effect HD2 HD4 HD7 HD9 

 

 

HD transects were placed progressively closer together with decreasing distance to tree row because 

soil properties tend to change most rapidly closest to the tree (Schroth and Sinclair, 2003).  Each HD 

transect, except for the centre transects HD3 and HD 8, contained three sample points; the centre 

transects of each plot had six sample points because of the needs of the vertical gradient study; 

however, this conveniently provided an equal number of six sample points per tree effect of each plot 

(Table 2). 

 

b) Sampling Design of Site C and Site D: “No Tree Plot” and “Forest Plot” 

Site C, “no tree plot”, appeared uniform and homogeneous, yet lacked trees for plot borders and 

therefore would be very difficult to be repeatedly sampled systematically in the future (Schroth and 

Sinclair, 2003).  Site D, the “forest plot”, was uniform throughout and lacked distinctive physical 

borders, again making systematic sampling less appropriate.  Grid sampling, often used in these 
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instances for broad coverage, was not realistic considering logistics.  Additionally, the soil property 

spatial dynamics of Site C and Site D are not the focus of the study and therefore extensive pattern 

inventory was not required, allowing greater allocation of effort to sampling AF plots. Thus, both of 

these sites were sampled randomly, which assisted in eliminating bias and allowed for a general site 

inventory with low costs (Schroth and Sinclair, 2003; Carter and Gregorich, 2008).  Three random 

sample points per plot were deemed sufficient for general characterization and comparison of sites: R1, 

R2, R3 for Site C and R4, R5, R6 for Site D (Table 3). Lacking distinct physical borders, a 20 m
2
 area 

was chosen for each of these sites.  These 20 m
2
 plots were divided into 20 one-square-metre 

quadrants, from which three quadrants were randomly chosen as sample points.  From the centre of the 

site, Site C was located 58 m from any tree or shrub species and Site D was located 55 m from the 

westernmost edge of Site B. 

D 3.2.2) Sample Collection Methods 

As standard procedure for agricultural research, soil samples were taken in the topsoil, up to 20 cm in 

depth (Anderson and Ingram, 1989; Estefan, and Rashid, 2001; Schroth and Sinclair, 2003).  It is 

relevant to this study to cover more surface layer than depth of soil because the topsoil is where most 

available nutrients are found and where the soil is manipulated by tillage (Schroth and Sinclair, 2003; 

Gardiner and Miller, 2008), providing information relevant to crop production.  Organic decomposition 

and soil development is known to be much slower in cool climate soils (Havlin et al., 2005), making 

topsoil conditions less susceptible to change since the Mission stopped cultivation.  Since sampling 

equipment needed to be transported a long distance via airplane, a small, lightweight soil corer was 

used. The corer extracted cylindrical samples 20 cm in height by 4.5 cm in diameter.  According to 

Estefan and Rashid (2001), a soil sample should be composed of several sub-samples representing a 

seemingly uniform area with similar management history (Estefan, and Rashid, 2001). While 5 to 25 

sub-samples per composite sample are common, Estefan and Rashid (2001) suggest that fewer sub-
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samples are needed where little to no fertilizer has been used.  At each sample point, therefore, three 

soil core samples within a 0.5 m radius were removed and bulked in a plastic Ziploc bag to make one 

composite sample per sample point (Tables 2 and 3).   

 

At each sample point, an additional soil sample was taken with a bulk density ring (Schroth and 

Sinclair, 2003) within the same 0.5 m radius of each composite sample (Tables 2 and 3).  Cylindrical 

dimensions of the bulk density sample were 5.2 cm in height and 4.5 cm in diameter.  A hole was dug 

about 10 cm from the soil surface and the ring was driven horizontally into the soil about 5 cm below 

the surface.  The ring was carefully extracted and the exposed sides of the ring were trimmed of excess 

soil to get an exact volumetric sample (Schroth and Sinclair, 2003).  Soil from each ring was removed 

on site and placed into separate bags, labelled with the corresponding sample point ID.   

 

All soil samples were immediately placed in a freezer (Estefan, and Rashid, 2001) in Fort Albany and 

later transported in coolers to the University of Waterloo for analysis.  Samples taken during the crop 

growth period may give more accurate information about the nutrient status of the soil in which plants 

are drawing nutrients (Estefan, and Rashid, 2001).  Thus, samples were taken from August 6-10, 2010, 

when the ground was not frozen or water-logged and the growing season appeared to peak.   
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Table 2:  The Number of Sample Points in each Vertical Distance (VD), Horizontal Distance (HD) 

Transect and Sites A and B, where: 

n=Number of Sampling Points, c=Number of Soil Cores, cs=Number of Composite Samples, and 

b=Number of Bulk Density Ring Samples 

 

Transect  n c cs b Transect  N c cs b 

VD1 5 15 5 5 VD7 1 15 1 1 

VD2 1 3 1 1 VD8 5 3 5 5 

VD3 5 15 5 5 VD9 1 15 1 1 

VD4 1 3 1 1 VD10 5 3 5 5 

VD5 5 15 5 5 VD11 5 15 5 5 

VD6 1 3 1 1 VD12 1 3 1 1 

HD1 3 9 3 3 HD6 3 9 3 3 

HD2 3 9 3 3 HD7 3 9 3 3 

HD3 6 18 6 6 HD8 6 18 6 6 

HD4 3 9 3 3 HD9 3 9 3 3 

HD5 3 9 3 3 HD10 3 9 3 3 

Total Site A 18 54 18 18 Total Site B 18 54 18 18 

 

 

Table 3: The Number of Sample Points in Site C and D, where: 

n=Number of Sampling Points, c=Number of Soil Cores, cs=Number of Composite Samples, and 

b=Number of Bulk Density Ring Samples 

 

Sample Point n c cs b Sample Point N c cs b 

R1 1 3 1 1 R4 1 3 1 1 

R2 1 3 1 1 R5 1 3 1 1 

R3 1 3 1 1 R6 1 3 1 1 

Total Site C 3 9 3 3 Total Site D 3 9 3 3 

 

D 3.2.3) Soil Analysis 

At the University of Waterloo, all samples were allowed to defrost in coolers and then to reach room 

temperature for analysis.   The composite soil samples were removed from the bags and spread into 

shallow aluminum trays to air dry (Anderson and Ingram, 1989).  Soil samples were mixed every other 

day to speed up drying process.  About 50 g of dry samples were sent to the Soil and Nutrient Analysis 
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Lab at the University of Guelph, Ontario for analysis (Appendix 3). Total nitrogen (N), extractable 

phosphorus (P), potassium (K), and magnesium (Mg), pH, organic carbon (SOC) and inorganic carbon 

(IC) content were determined for all composite soil samples (n=18 for Sites A, n=18 for Site B, n=3 for 

Sites C, n=3 for Site D).   

 

Grain size analysis is used to characterize soil texture (percent sand, silt and clay particles) within an 

area of similar treatment and vegetation (Schroth and Sinclair, 2003).  Characterization of soil texture 

in the undisturbed and modified sites was important since this information is not available for the 

James Bay area, but less relevant for pattern studies, as it is slow to change temporally and spatially 

(Schroth and Sinclair, 2003).  Thus, only three samples per plot were sent to the Soil and Nutrient 

Analysis Lab for grain size analysis (Appendix 3).  All three composite samples from Sites C and D 

were analyzed while one vertical distance transect was randomly selected from Sites A and B (VD1 for 

Plot A and VD8 for Plot B) to obtain three samples per plot.   

 

Bulk density ring samples were used to determine percent soil moisture (SM) and bulk density (BD).  

SM was determined using the gravimetric method (Gardiner and Miller, 2003): wet samples were 

removed from the bags, weighed, dried at 105
o
C for 48 hours and then re-weighed for determination of 

percent soil moisture (Schroth and Sinclair, 2003).  The dry soil mass was also used to calculate BD 

from the known sample volume (Schroth and Sinclair, 2003). 

 

Soil organic matter (SOM), carbon to nitrogen ratio (C:N), organic nitrogen (ON) and inorganic 

nitrogen (IN) were estimated from SOC and total N under the assumption that more than 95% of total 

N in topsoil is organic (Schroth and Sinclair, 2003) and that 58% of SOM is SOC (Schroth and Sinclair, 

2003).  Structural integrity (s) was determined from percent SOM, silt and clay (Schroth and Sinclair, 
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2003). 

D 3.3) Statistical Analysis  

D 3.3.1) Site Characterization 

Minimum, mean and maximum levels of various soil properties were compared to known or estimated 

levels of soil properties needed for optimum growth of mixed garden produce.  Known optimal values 

of soil P, K, Mg and pH and fertilizer N were taken from the Agriculture Analytical Services Lab 

(AASL) of Penn State University (2010) (Appendix 4).  Optimal values of other soil properties were 

estimated from various literature and are referred to by in-text citations throughout discussion of 

results.  

D 3.3.2) Comparison of Means 

PASW Statistics 18 software was used for all statistical analysis.  A Test of Homogeneity of Variances 

and a One-Sample Kolmogorov-Smirnov Test were used to test homogeneity and normality of data 

within transects and sites, for which on a One-Way ANOVA was used to compare means.  Where data 

were not normal or homogeneous, a non-parametric Kruskal-Wallis Test was used.  Soil properties 

were treated as response variables, site and transect were treated as factors of analysis, and each site or 

transect was treated as a treatment level.  A P-value of 0.05 was used to test for significant differences.  

A comparison of means was used to determine the amount of variability between Sites A, B, C and D 

and between transects of AF Sites A and B for select soil properties.  Where significant differences 

were found, post-hoc analysis using a Tukey's Test was followed to compare sites and transects pair-

wise.  Box-plots were used to show the distribution of data within each site and Means Plots were used 

to show the distribution of data within transects.   
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D 4) RESULTS 

D 4.1) VEGETATIVE STUDY 

D 4.1.1) Species Composition: Sites A, B, C and D 

Three visually distinctive strata of vegetation were observed and considered separately for vegetative 

inventory of Site A: 

 Stratum 1: within 1.5 m from SE tree row (1.5 m x 35 m) 

 Stratum 2: area between first and third strata (11 m x 35 m) 

 Stratum 3: within 1.5 m from NW tree row (1.5 m x 35 m) 

Vegetation within these strata of Site A consisted of a mix of early pioneer species (Table 4) reaching 

up to 45 cm in height, with a few dominant species.  Vegetation within Site B was a spatially 

heterogeneous mixture of early pioneer species (Table 4) reaching up to 86 cm in height, with a few 

dominant species. The top of Site B, the southwest edge, was dominated by the early pioneer, 

Epilobium angustifolium (fireweed).  Site C was composed of a spatially heterogeneous mixture of 

early pioneer species in approximately equal proportions (Table 4). The dominant overstory species of 

Site D were identified (Table 4) and were characteristic of a late succession boreal forest.  

 

Surrounding vegetation 

In addition to the tree species found in Site D, Betula papyrifera (white birch), Picea glauca (white 

spruce), Thuja occidentalis (white cedar) and Abies balsamea (balsam fir) were common tree species 

found in undisturbed forests surrounding the study sites.  Aspen was common on the outer edges of the 

forest.  Willows dominated disturbed areas such as roadsides and backyards.  The most common tree 

species in the proposed garden area, outside of the study sites, were willow and alder. 
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Table 4: Vegetative Species Identified in Proposed Agroforestry Community Garden Sites (Sites A 

and B), a “No Tree” Control Site (Site C) and an Undisturbed Boreal Forest Control Site (Site D) 

in Fort Albany First Nation, Ontario, where: 

A1-A3=Strata 1-3 in Site A, %=percent coverage and *denotes non-native species 

Site Dominant Vegetation Other Vegetation 

% Species Name % Species Name 

A1 

80 
Agrostis Stolinifera* 

 (creeping bentgrass) 

10 

Solidago spp. (goldenrod), 

Taraxacum officianales* 

(dandelion), 

Symphyotrichum novae-angliae 

(New England aster) 
10 

Symphyotrichum lanceolatum 

(panicled aster) 

A2 90 

Galeopsis tetrahit* (hemp nettle), 

Erysimum cheiranthoides* (wormseed) 10 

Taraxacum officianales* 

(dandelion), 

Chenopodium album* (pigweed) 

A3 

85 

Symphyotrichum lanceolatum 

(panicled aster) 

5 

Vicia cracca*  (cow vetch), 

Solidago spp. (goldenrod), 

Galeopsis tetrahit* (hemp nettle), 

Erysimum cheiranthoides* 

(wormseed) 10 Cirsium arvense* (Canada thistle) 

B 80 

Symphyotrichum lanceolatum 

(panicled aster) 

Cirsium arvense* (Canada thistle) 
20 

Solidago spp.  (goldenrod), 

Vicia cracca* (cow vetch), 

Galeopsis tetrahit* (hemp nettle), 

Erysimum cheiranthoides* 

(wormseed), 

Taraxicum officianales* (dandelion) 

C 

 

Symphyotrichum lanceolatum (panicled aster) 

Solidago spp. (goldenrod) 

Taraxicum officianales* (dandelion) 

Vicia cracca* (cow vetch) 

Cirsium arvense* (Canada thistle) 

Agrostis Stolinifera* (creeping bentgrass) 

Eupatorium maculatum (spotted Joe-Pye 

weed) 

N/A 

D 

 

Picea mariana (black spruce) 

Populus tremuloides (trembling aspen) 

Alnus viriclis (green alder) 

Viburnum edule (mooseberry) 

Larix larcina (tamarack) 

N/A 

http://www.agf.gov.bc.ca/cropprot/weedguid/canthist.htm
http://www.agf.gov.bc.ca/cropprot/weedguid/canthist.htm
http://www.agf.gov.bc.ca/cropprot/weedguid/canthist.htm
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D 4.1.2) Willow Tree Inventory: Sites A and B 

Various measurements of willow tree rows were made (Table 5) and used to calculate total willow 

density at each site (Table 6).  Compared to Stratum 1b, Stratum 1a was composed of shorter and fewer 

willows with shorter branch length and a higher density of thinner shoots.  Row 1 was characterized as 

a relatively wide tree row at its base with a high shoot and tree density and low branch overhang.  The 

shoot basal area of Row 1 was much smaller than that of Rows 2 and 3.  Thus, the relatively large 

branch and base width of Row 1 can be attributed to a higher number of trees with a high density of 

thin shoots.  In comparison to Row 1, Row 3 had a much higher branch width but similar base width, 

due to much longer branch overhang of Row 3 into Site B.  Row 3 had smaller tree and shoot densities 

compared to Row 1, but a mean shoot basal area 30 times larger.  Thus, the larger width of Row 3 can 

be attributed to a composition of thick shoots and longer branch overhang, despite the smaller number 

of trees and shoots.  

 

Row 2 had a much smaller base width, but similar branch width, as Rows 1 and 3.  Row 2 had a larger 

overhang into Sits A and B than either of the other two rows.  Row 2 had a moderate shoot density and 

tree density, as well as an intermediate majority tree height and mean shoot basal area; the values of 

tree height, trees/ha and shoots/ha were closer to that of Row 3, while the value of shoots/tree and mean 

shoot basal area were much closer to that of Row 1. 
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Table 5: Salix sp. (willow) Tree Row Measurements in the Proposed Agroforestry Community 

Garden Sites (Sites A and B) of Fort Albany First Nation, Ontario, where: 

Width (Branch) = Width of row measured from branch tip to branch tip 

Row Width (Base) = Width of row measured from tree stem base to tree stem base 

Branch Overhang = Distance from branch tip to tree base 

Width of Water = Width of water present in the tree row with “consistent” representing a continuous 

flow of water, and “inconsistent” representing discontinuous patches of water, along 

the 35 m row length 

Shoot Basal Area= Area of shoot measured at the base of the shoot where it meets the stem 

Shoots/Tree and Shoots/ha=Number of shoots, counted were base of the shoots meet the stem 

 

Measurement Row 1 Row 2 Row 3 

Stratum  

1a 

Stratum 

1b 

Whole Row 

1 

Row Length (m) 35.00 35.00 35.00 35.00 35.00 

Row 

Width 

(m) 

Branch 4.00 7.50 11.50 10.30 15.50 

Base  3.60 5.60 9.20 5.20 9.50 

Tree 

Height 

(m) 

Min 1.40 1.79 1.40 1.99 3.35 

Max 1.51 2.89 2.89 5.17 5.89 

Majority 1.51 2.89 2.84 5.17 5.89 

Branch 

Overhang 

(m) into: 

Site A N/A 1.3-3 1.3-3 3.0-4.5 N/A 

Site B N/A N/A N/A 3.0-4.5 1.0-3.0 

Width of Water  4 m consistent 1 m inconsistent 

pools 

1.4 m consistent 

# Trees/ha 4861.11 4910.71 4891.3 3846.15 3421.05 

# Shoots/ha 28472.22 38461.54 65760.87 38461.54 7368.42 

# Shoots/ 

Tree 

Min 3.00 5.00 3.00 1.00 1.00 

Mean 5.86 18.27 13.44 10.00 2.15 

Max 9.00 48.00 48.00 25.00 5.00 

Shoot 

Basal 

Area 

(cm
2
)

 

Min  1.40 0.72 0.72 1.27 0.72 

Mean 3.24 4.16 3.93 19.89 92.00 

Max 3.90 9.63 9.63 103.13 336.21 
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Table 6: Salix spp. (willow) Tree and Shoot Density in Proposed Agroforestry Community Garden 

Sites (Sites A and B) of Fort Albany First Nation, Ontario 

Measurement Site A Site B 

Site Area 994 m
2 

1074.5 m
2 

Trees/ha* 291.75 trees/ha 223.6 trees/ha 

Shoots/ha* 3239.44 trees/ha 1005.12 shoots/ha 

*Row 2 was included in the area of both Site A and Site B.  Half the number of trees and shoots in Row 2 was used to 

calculate for density measurements in each site since only half the biomass of Row 2 can contribute to each site.   

 

D 4.2) SOIL STUDY 

D 4.2.1) Inventory Study: Sites A, B, C and D 

D 4.2.1 a) Productivity of Proposed Garden Area (Sites A, B and C) 

Measured and estimated values of soil properties (Appendix 5) from each sample point (Figure 1) were 

used to calculate minimum, mean and maximum levels of soil properties at Sites A, B, C and D (Table 

7 and Table 8).  The soil in each site was classified as a silt loam by the University of Guelph Soil 

Analysis Laboratory.  Compared to the ideal loam texture, the sites of the proposed garden area (Sites 

A, B and C) had much lower sand content, more silt, and near the optimal proportion of clay (Table 7).  

The entire range of soil P, K, Mg and pH levels of each site were compared to known optimal levels 

determined by the AASL (Appendix 4): K and P levels were too low, Mg levels were too high and pH 

levels were slightly too high, for optimal mixed garden productivity (Table 7).  When compared to 

optimal range of IN fertilizer additions recommended by the AASL, the range of estimated IN levels in 

each site were much higher than crop requirements (Table 7).  The estimated “s” value”, structural 

integrity, for each site was well above the critical level, indicating sufficient SOM, and thereby SOC, to 

maintain soil structure (Table 7).  The range of C:N and BD values of each site were sufficiently lower 

than the maximum critical values crop production (Table 7).  Mean moisture levels of each site were 

much higher than estimated levels for agricultural production in a silt loam soil (Table 7).  Optimal 

values for total N could not be found (Section D 5.2.1a.ii).  



73 

 

D 4.2.1 b) Comparison of Sites A, B, C and D 

The forest had slightly higher levels of sand and clay and slightly lower levels of silt, compared to the 

previously cultivated sites (Table 7).  Significant differences among sites were found for all soil 

properties except K.  Post-Hoc Analysis revealed that Site D, the undisturbed forest, had significantly 

higher levels of N, Mg, SOC and SM (Appendix 6: Figures 1, 4, 8, 9) and significantly lower levels of 

P, pH and BD (Appendix 6: Figures 2, 5, 6), than the cultivated sites.   

Sites A, B and C showed similar levels of K, Mg, BD, SM and SOC.  Extractable P was 

significantly different between all cultivated sites: Site A had significantly higher levels than all other 

sites, while Site B had significantly higher levels than Site C.  Site A had significantly higher levels of 

N than both Sites B and C, which had similar N levels.   
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Table 7: Minimum, Mean and Maximum Values of Measured Soil Properties in Proposed 

Agroforestry Community Garden Sites (Sites A and B), a “No Tree” Control Site (Site C) and an 

Undisturbed Boreal Forest Control Site (Site D) in Fort Albany First Nation, Ontario, Compared 

to Optimal Values of these Soil Properties for Agriculture 

Soil Property Site n Minimum Mean Maximum Optimal 

Sand (%) 

Site A 3 16.40 19.03 21.50 

40% 
Site B 3 17.50 19.80 22.30 

Site C 3 13.30 17.23 22.80 

Site D 3 19.90 20.73 21.90 

Silt (%) 

Site A 3 59.20 66.80 71.30 

40% 
Site B 3 61.10 62.10 62.70 

Site C 3 65.80 66.40 67.60 

Site D 3 49.80 57.03 66.30 

Clay (%) 

Site A 3 10.90 14.17 19.30 

20% 
Site B 3 15.00 18.10 20.10 

Site C 3 11.30 16.37 19.10 

Site D 3 13.60 22.17 28.20 

N (ppm) 

Site A 18 5700.00 7400.00 8800.00 

N/A 
Site B 18 5200.00 6522.22 7600.00 

Site C 3 2800.00 5766.67 7900.00 

Site D 3 8100.00 10900.00 13500.00 

P (ppm) 

Site A 18 8.40 15.61 27.00 

35-70 
Site B 18 7.70 12.68 19.00 

Site C 3 7.60 8.17 9.20 

Site D 3 5.70 6.13 6.90 

K (ppm) 

Site A 18 32.00 40.11 50.00 

70-200 
Site B 18 31.00 37.50 49.00 

Site C 3 27.00 32.67 38.00 

Site D 3 33.00 37.33 40.00 

Mg (ppm) 

Site A 18 200.00 292.22 340.00 

100-120 
Site B 18 200.00 278.89 370.00 

Site C 3 240.00 313.33 370.00 

Site D 3 820.00 960.00 1200.00 

pH 

Site A 18 7.60 7.68 7.90 

7 
Site B 18 7.60 7.74 8.00 

Site C 3 7.60 7.77 7.90 

Site D 3 7.10 7.40 7.60 

BD (g/cm
3
) 

Site A 18 0.56 0.66 0.74 

<1.4 
Site B 18 0.52 0.65 0.80 

Site C 3 0.60 0.68 0.73 

Site D 3 0.24 0.39 0.57 

SOC (ppm) 

Site A 18 72600.00 101638.89 127000.00 

N/A 
Site B 18 67700.00 93227.78 110000.00 

Site C 3 43600.00 82000.00 110000.00 

Site D 3 127000.00 211000.00 292000.00 

SM (%) 

Site A 18 74.95 92.22 105.92 

~40-45 
Site B 18 71.88 87.57 96.85 

Site C 3 89.73 94.45 102.94 

Site D 3 118.20 182.59 256.25 
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Table 8: Minimum, Mean and Maximum Values of Estimated Soil Properties in Proposed 

Agroforestry Community Garden Sites (Sites A and B), a “No Tree” Control Site (Site C) and an 

Undisturbed Boreal Forest Control Site (Site D) in Fort Albany First Nation, Ontario, Compared 

to Optimal Values of these Soil Properties for Agriculture 

Soil Property Site n Minimum Mean Maximum Optimal 

IN (ppm) 

Site A 18 285.00 370.00 440.00 

17.5-100 
Site B 18 260.00 326.11 380.00 

Site C 3 140.00 288.33 395.00 

Site D 3 405.00 545.00 675.00 

C:N 

Site A 18 13.40 14.46 15.34 

<35 
Site B 18 13.58 15.05 16.68 

Site C 3 14.65 14.97 16.39 

Site D 3 16.50 20.38 22.77 

SOM (%) 

Site A 18 14.00 17.52 21.90 

N/A 
Site B 18 11.67 16.07 18.97 

Site C 3 7.52 14.14 18.97 

Site D 3 21.90 36.38 50.34 

s 

Site A 18 15.46 21.64 25.77 

>9 
Site B 18 14.55 20.04 22.36 

Site C 3 9.08 17.08 22.91 

Site D 3 27.65 45.93 63.57 

 

 D 4.2.2) Pattern Study: Sites A and B 

No significant differences between VD transects were found within Site A for any of the soil properties.  

Site B showed significant differences between VD transects for K, but not for any of the other soil 

properties.  In Site A, significant differences were found between HD transects for N, P, Mg and SOC; 

each of these properties decreased towards either tree row (Appendix 7: Figures 1-4).  The SE tree row 

and NW tree row within each site did not appear to have the same effect on N, P, Mg and SOC levels, 

indicated by a lack of symmetry in means plot curve under each site for each of these properties 

(Appendix 7: Figures 1-4).  Although no significant differences were found between HD transects for 

the other soil properties, K tended to decrease towards the tree row, while pH tended to increase 

towards the tree row (Appendix 7: Figures 5, 6).  No obvious pattern of BD and SM levels from 

distance-to-tree could be determined (Appendix 7: Figures 7, 8). 

 

In Site B, significant differences were found between HD transects for N, P, Mg, SOC, BD and SM.  N, 
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P, Mg and SOC decreased towards either tree row (Appendix 7: Figures 1-4).  BD levels appeared to 

increase towards either tree row, but were much higher 1m from the NW tree row than 1 m from the SE 

tree row (Appendix 7: Figure 7).  The SM pattern is somewhat inconsistent, but showed a general 

decreasing trend towards the NW tree row (Appendix 7: Figure 8).  Potassium and pH levels were not 

significantly different between HD transects and do not show any obvious patterns (Appendix 7: 

Figures 5, 6). 

 

D 5) DISCUSSION 

D 5.1) VEGETATIVE STUDY 

D 5.1.1) Species Composition: Sites A, B, C and D 

The grasses and forbs that dominated the old Mission fields, hemp nettle, wormseed, Canada thistle, 

panicled aster and creeping bentgrass, are all pioneer species commonly found on recently exposed 

sites, such as roadsides, wastelands and cultivated fields as well as the shores of water bodies 

(Chmielewski and Semple, 2001; Government of Saskatchewan, 2008; OMAFRA, 2010; USDA, 

2011a; USDA, 2011b).  Being tolerant of a wide variety of soil types and environmental conditions, 

including high moisture soils, most of these species are highly competitive, with the exception of 

panicled aster which is moderately competitive (Chmielewski and Semple, 2001; Government of 

Saskatchewan, 2008; OMAFRA, 2010; USDA, 2011a; USDA, 2011b).  Hemp nettle, wormseed and 

Canada thistle are non-native and known to be “weedy” or invasive competitors to crops (Government 

of Saskatchewan, 2008; OMAFRA, 2010; USDA, 2011b).  Creeping bentgrass, has been naturalized in 

North America since 1750 and used as important forage for livestock; it has become “weedy” or 

invasive in some areas and can often be found with willows as the dominant overstory (USDA, 2011a).  

The non-native species which dominated this area may have been introduced by the Mission as forage 

or garden flowers.  As highly competitive species, these grasses and forbs may become a threat to 
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successful crop production, especially without the use of chemical herbicides.  Weeds that rapidly 

spread vegetatively, such as creeping bentgrass and Canada thistle (Government of Saskatchewan, 

2008; USDA, 2011a), may be controlled by tillage to break up the perennial roots.  The maximum 

height of vegetation in Site A was 41 cm shorter than that of Site B; however, Site A was covered 

largely by wormseed and hemp nettle, which were short in both sites.  The dominance of these species 

in Site A, compared to Site B, may be related to the significantly higher P levels in Site A.  It may also 

suggest that Site A has been more recently disturbed, and that the taller pioneer species have yet to 

colonize Site A.  Fireweed at the top (or SW side) of Site B colonized a pile of soil which appeared to 

have been graded from the area between St. Anne’s Lake and Site B, demonstrating recent disturbance 

by construction in the area.   

 

The mature vegetation found in the forest canopy (black spruce, trembling aspen, green alder and 

highbush cranberry) was characteristic of mature boreal forests in the James Bay Ecoregion (Hanson, 

1953; MSSC, 1996) and no mature non-native species were identified, confirming a lack of disturbance 

in Site D compared to cultivated sites.     

 

D 5.1.2) Willow Tree Inventory: Sites A and B 

Greater tree height and stem basal area, and lower shoot densities, of Rows 2 and 3 may indicate that as 

the willows age, shoots increase in basal area and decrease in number.  Rows 1 and 2 were more similar 

in number of shoots/tree and mean basal area, while, Rows 2 and 3 were more similar in height, shoot 

density and tree density; this may suggest that the growth rate of shoot length is greater than that of 

shoot diameter in younger willow trees and that either growth of shoot diameter is more rapid than tree 

height in older trees, or shoot diameter continues to increase after tree height stabilizes.  This 

interpretation is supported by Mäkelä’s (1986) claim that stem basal area may continue to grow 
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considerably after height grow rates have ceased.   

 

However, a more recent study has identified soil moisture as the major determinant of willow stand 

composition structure, growth and architecture (or geometry); Rodriguez-Gonzaleza et al. (2010) 

reported that soils with higher moisture content supported willow stands with a higher density of 

smaller stems, a lower density of larger stems, shorter trees and lower stem basal area. Similarly, other 

research shows inhibition of stem radial growth (basal area) in some trees with onset of spring rainfall 

(Oliveira et al., 1994).  Row 1 had the most continuous water, 4 m wide, Row 3 had less continuous 

water, 1.4 m wide, and Row 2 had inconsistent 1 m pools of water; the high density, thin shoots and 

short height of Row 1 may be a sign of differential growth caused by high soil moisture, rather than a 

representation of willow age.  While the driest row, (Row 2) was slightly shorter and had a lower mean 

basal area than the most saturated row (Row 3), it must be considered that the surface water of Row 2 

was patchy; also, because Row 3 is wider, only 14.7% of Row 3 base width was covered in surface 

water, while 19.2% of Row 2 base width was covered with surface water.  Contrary to findings by 

Oliveira et al. (1994), the surface water within Row 1was found in Stratum 1b and not in Stratum 1a, 

despite higher shoot density and tree height in the latter.  Thus, Stratums 1a can be considered a distinct 

generation of willows, while, Stratum 1b shoot growth may be limited by the effects of soil saturation.   

 

Overall, the results suggest either that as shoot diameter growth rates increase, tree height growth rates 

decrease and the number of shoots decrease, as willows age, or that the growth patterns of variables 

measured in these willows are highly controlled by soil moisture.  Results also suggest that the outer 

stratum of Row 1, near the access road, is a younger generation of willows.  It is important to consider 

that the rows may be comprised of slightly different willow species or varieties, which may also cause 

differential tree geometry and growth patterns.  Willow species were difficult to identify in August 
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when flowers were not present; it is recommended that future studies identify the willow species within 

these rows in late June or July when flowers may be present.  Within the tree rows, some trees had dark 

green and dull upper leaves, while, others had bright green and shiny leaves; this may indicate that the 

rows are composed of different willow species or varieties.   

 

Reduced sunlight exposure to the crop area and limited crop production has been observed as a 

consequence of tree shading in some AF systems (Reid and Ferguson, 1992; Clinch et al. 2009).  The 

long branch overhang of Row 2 may inhibit growth near this tree row, particularly the crops of Site B 

that lie NW of Row 2.  The shortest willows are conveniently located on the SE row of Site A which 

will allow greater sun exposure to crops in this site.  This is particularly important in high-latitudes of 

the northern hemisphere; for example, Omohundro (1985) found that the intense solar radiation of high 

latitude Newfoundland was able to compensate for a short growing season by stimulating rapid growth. 

Lower sunlight exposure to the crop area can also be expected to reduce soil temperatures and thereby 

suppress nutrient mineralization and availability (Chapin et al., 1985; Smith et al., 1998).   Tree height 

and branch overhang will need to be controlled in order to make efficient use of high solar radiation in 

FAFN.   

 

D 5.2) SOIL STUDY 

D 5.2.1) Inventory Study: Sites A, B, C and D 

D 5.2.1 a) Productivity of Proposed Garden Area 

i) Soil Texture 

The ideal soil class for agriculture is a loam, which has 40% sand, 40% silt and 20% clay, allowing for 

optimal aeration, drainage and root movement (Oelbermann, Personal Comm., 2010).  All soil samples 

from cultivated sites, Sites A, B and C, were classified as silt loam (Table 7); thus, the percentage of 
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each soil separate (sand, silt, clay) was similar between these three sites.  Compared to ideal conditions 

for agriculture, Sites A, B and C had much lower sand content, between 13.3-22.8%, more silt, 55.0-

71.3%, and near the optimal proportion of clay, 10.9-20.1% (Table 7).  Although this is not the ideal 

soil class, silt is a moderately sized soil separate between that of clay and sand, and thus would have a 

moderate effect on soil porosity, drainage, root movement and aeration.  However, in contrast to clay, 

silt has low cohesion and adsorptive capacity (Brady and Weil, 2000); higher proportions of silt in this 

soil may allow leaching of nutrients.  A moderate to optimal clay content is beneficial in this wet area 

because heavy clay soils are impervious and may easily become waterlogged, leading to surface runoff 

and loss of nutrients (Turtola and Paajanen, 2000).  Dust is made up of very small soil particles, such as 

silts, fine sands and tiny clay aggregates (Gardiner and Miller, 2008); higher proportions of silt may 

have drifted from the nearby airstrip.  Low sand content in this soil is compensated by a low BD 

(discussed below), providing the soil with loam-like drainage (Havlin et al.2005).   

ii) Soil Fertility (N, P, K, Mg, pH) 

Nitrogen (N) 

 Total N includes the organic form (ON) tied up in SOM and the mineralized forms (IN) usable to 

plants, as ammonium (NH4
+
) or nitrate (NO3

-
) (Gardiner and Miller, 2008).  No literature on sufficient 

amounts of soil N for a given crop, either total or usable forms, could be found; instead, The Ontario 

Ministry of Food and Agriculture and other Canadian agricultural resources only provide the amount of 

N fertilizer that needs to be added to soil for given crops.  The AASL, which provide optimum values 

for P, K and Mg, do not address existing N forms, thus, do not have soil optimum soil-N standards; 

they explain that N is always changing form in the soil, due to moisture and microbe and plant use, and 

can leach out from one season to the next (Stecko, P.  Personal Comm., 2010).  Cain et al. (1998) 

confirm the high spatial and temporal variability of N forms within the soil, albeit in coastal dune soils.  

Therefore, the AASL makes recommendations on optimal N-fertilizer additions, based on the amount 
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of N a given crop requires for the growing season.  It appears that conventional agricultural 

associations in North America assume N deficiencies and thus provide a standard amount of N-

fertilizer required, regardless of current soil conditions.  This is likely the norm because N is so 

frequently the limiting growth factor in conventional agricultural systems (Estefan and Rashid, 2001; 

Schroth and Sinclair, 2003).  

 

Although no comparisons of existing values to optimal values of total N in the soil can be made, initial 

values can provide useful information about N dynamics in subarctic AF systems over long-term 

studies.  Additionally, an estimate of usable IN in the samples can be compared to recommended N-

fertilizer applications required for a given crop to give an approximation of sufficiency of current soil 

N levels in each plot.   

 

The AASL recommends about 39-224 kg/ha, or 17.5-100 ppm, of N-fertilizer for a mixed variety of 

garden crops for one growing season.  Measured total N values of the soil samples ranged from 2800-

8800 ppm in the cultivated sites (Table 7), and 8100-13500 ppm in the undisturbed forest site (Table 

7and Appendix 6: Figure 1).  However, fertilizers provide N in the mineralized form (IN), which is 

available for immediate uptake by plants, while total N includes both mineral IN and stored ON.  Since 

more than 95% of total N in topsoil tends to be organic (Schroth and Sinclair, 2003), the range of 

usable, mineral IN is estimated to be at most 140-440 ppm for the cultivated sites and 405-675 ppm for 

the forest site (Table 8), much higher than the recommended fertilizer additions of 17.5-100 ppm.   

 

Excessive levels of mineralized N are hazardous in high-input agricultural systems where N may leach 

into groundwater, causing eutrophication of water bodies or contamination of potable water sources 

(Spiertz, 2010).  However, hazardous levels of mineralized N are not probable in the study sites, 
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considering that agricultural production halted about forty years ago and that manure was not added to 

the forest plot.  The estimated mineral IN values may be much higher than the optimum N-fertilizer 

values for several reasons.  First, it is likely that these soils have more than 95% of their N tied up in 

SOM because soils of subarctic regions and boreal forests have shown slower decomposition of SOM 

and lower mineralization of nitrogen due to low temperatures (Chapin et al., 1985; Smith et al., 1998).  

Nutrient mineralization can be further retarded in highly saturated soils (Rodriguez-Gonzaleza et al., 

2010), such as those in the forest and proposed garden area.  Higher proportions of ON would equate 

lower levels of available IN in the samples, making IN estimates higher than actual IN content.  This is 

further supported by high levels of N in the forest site, which had a mean total N value more than 

double that of any of the cultivated sites, despite the forest site never receiving manure fertilization.  

Further, all sites also have relatively high levels of SOM (discussed in Section iv).  Secondly, the N-

fertilizer values were reported as a mass (kg/ha) and converted to a volume (ppm), while, the measured 

N values were initially reported as a mass (% dry) and converted volume (ppm). Inaccuracies may have 

resulted during conversion because different soils have different bulk densities (mass per volume).  

Third, N-fertilizer values are additions to soil that presumably already contains some mineralized N.  

Thus, these findings should be treated as loose estimates of “optimum N levels”.   

 

With these considerations, the results suggest that usable N in all four sites is likely near that of 

“optimum N levels” for diverse crop production, or that excessive amounts of N are stored as SOM.  If 

too much of the N is tied up in the organic form, it may create deficiencies and causes poor plant yields 

(Gardiner and Miller, 2008).  Northern ecosystems are known to have low levels of nitrogen 

mineralization due to low temperatures and short growing seasons (Flanagan and Van Cleve, 1983; 

Moore, 1984) and thus natural SOM decomposition in the gardens may be too slow to support mixed 

garden produce after several years of harvest.  
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Further soil analysis can be used to determine proportions of soil ON and IN, although annual soil N 

tests will still be very rough estimates considering that N is always changing form in the soil (Cain et 

al., 1998; Stecko, P.  Personal Comm. 2010).  Seasonal studies, or at least annual studies at the same 

time every year, would help reduce this uncertainty.  Test plots of various crops may the best indicators 

of seasonal N-deficiencies; crops will show yellow colour of older leaves and slow or stunted growth 

(Schroth and Sinclair, 2003).   

Phosphorus (P) 

The entire range of inorganic P levels in cultivated sites, 7.6-27 ppm, was less than the optimal range of 

inorganic P, 35-70 ppm, determined by the AASL (Appendix 4).  Low levels of P are common as P is 

the second most highly deficient plant nutrient (Gardiner and Miller, 2008; Schroth and Sinclair, 2003).  

Cold, wet springs often retard P absorption (Gardiner and Miller, 2008) and P mineralization is reduced 

in cold climate regions (Smith et al., 1998), making low P levels in this study site particularly 

challenging.  To optimize P uptake, additions of fresh organic material in the soil can release 

phosphorus as it decomposes and mitigate P fixation to insoluble forms (Gardiner and Miller, 2008), 

but Schroth and Sinclair (2003) suggest that P fertilizer is necessary for permanent agriculture.   

Phosphorus-deficiencies will be indicated by darker green leaf colour, reduced leaf extension and 

higher root:shoot ratio (Schroth and Sinclair, 2003).   

Potassium (K) 

High quantities of soil K is common, however, the exchangeable supply required by most plants is 

often small (Gardiner and Miller, 2008).  Such was the case for the proposed garden area, where even 

maximum exchangeable K levels (50, 49 and 38 ppm for Sites A, B and C) were much lower than the 

“optimal” range of exchangeable K levels (70-200 ppm) provided by the AASL (Appendix 4).   

Insufficient exchangeable K reduces plant growth and crop quality (Havlin et al., 2005) and may be 

particularly detrimental to high K users such as potato (Appendix 4), a highly desirable food in the 
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FAFN community (FN 1).  Deficiencies are expected in soils low in clay, resulting from few exchange 

sites (Gardiner and Miller, 2008).  Low clay content found in about half of the samples within the 

garden sites (Table 7) may be a problem for K availability.  Available K can be enhanced by recycling 

crop residues and manures (Singh et al., 2002).     

Magnesium (Mg) 

According to Gardiner and Miller (2008), Mg deficiency is unlikely in soils with moderate to high pH, 

as found in all potential garden sites.  Mean Mg levels for cultivated sites, 292.22 ppm, 278.89 ppm 

and 313.33 ppm for Sites A, B and C, more than double the upper limit of the optimum range of Mg 

levels (100-120 ppm) suggested by the AASL for optimum growth of garden produce (Appendix 4).  

Similar to K, Mg deficiencies are more common in acidic soil with low clay content and high leaching 

potential (Foth and Ellis, 1997).  No negative consequences of excessive Mg could be found in the 

literature, thus Mg levels in the proposed garden sites appear to be sufficient. 

 pH 

The mean soil pH of sites in the proposed garden area were slightly higher than the optimal of 7 

(Appendix 4), with a mean pH of 7.68, 7.74 and 7.77 in Sites A, B and C respectively, but most crops 

grow well between 5.5 and 8.5 (Gardiner and Miller, 2008).  However, maximum efficiency of 

phosphorus occurs in soils with a pH between 6 and 7, while a pH of 6-6.5 is ideal for potassium 

uptake (Gardiner and Miller, 2008).  Therefore, soil pH in the proposed garden area is likely slightly 

higher than optimal, but sufficient for a successful mixed garden.  Soil acidity increases over time with 

agricultural use due to loss of cations from leaching and crop removal (Schroth and Sinclair, 2003), 

which may bring pH to optimal levels.  However, AF techniques may decrease soil acidity by 

decreasing leaching losses and increasing soil organic matter (Schroth and Sinclair, 2003).  Monitoring 

of soil pH in the AFCG test plot over long-term studies can examine this effect.   
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iii) Bulk Density (BD) 

BD represents the density of a known volume of soil as it exists in the study site (Scroth and Sinclair, 

2003; Gardiner and Miller, 2008).  For good plant growth, BD should be below 1.4 g/cm
3
 for clays and 

1.6 g/cm
3
 for sands (Gardiner and Miller, 2008).  The entire range of BD values for each site was well 

below these limits, with mean BD values of  0.66 g/cm
3
, 0.65 g/cm

3
 and 0.68 g/cm

3
 for Sites A, B and 

C (Table 7).  These low BD levels create sufficient pore space to allow penetration of tiny crop roots 

and movement of air, water and soluble nutrients (Gardiner and Miller, 2008).  If BD is too low, 

however, it could allow too much leaching of soluble nutrients (Schroth and Sinclair, 2003).  A low BD 

is common in fine-textured soils like silt loams, especially those with higher organic matter, because 

pores exist both between and within the granules (Brady and Weil, 2000).  While cultivated loam soils 

tend to have an average BD of about 1.1 g/cm
3
 to 1.4 g/cm

3
, greenhouse potting mixtures support plant 

growth with BDs as low as 0.1 g/cm
3
 to 0.4 g/cm

3 
(Gardiner and Miller, 2008).  The range of BD 

values for all sites within the proposed garden area, 0.52g/cm
3 

to 0.80g/cm
3
(Appendix 5) falls between 

that of loose potting mixtures and cultivated loams. Therefore, the proposed garden area has suitable 

levels of BD for crop cultivation.   

iv) Soil Organic Carbon (SOC) and Soil Organic Matter (SOM) 

Mean SOM was estimated to be 17.52% (Site A), 16.07% (Site B) and 14.14% (Site C) (Table 8).  

Natural soils of the James Bay Region below the tree line are very high in SOM (MSSC, 1996; Natural 

Resources Canada, 2008).  A critical level of SOM for a given soil can be calculated as “s” based on 

percent SOM, silt and clay; an s>9 indicates soils with sufficient amounts of organic matter to maintain 

soil structure (Schroth and Sinclair, 2003).  All soil samples in the proposed garden area had s values 

well above 9 (Table 7 and Appendix 5).  Despite 40 years of cultivation by the Mission, the proposed 

garden area has maintained relatively high levels of SOM in Sites A, B and C.  The high levels of SOM 

make these sites capable of supporting further cultivation without compromising soil structure and 
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other functions of SOM, including regulation of nutrient availability, acidity and water-holding 

capacity, provision of substrate for biota and acting as a carbon sink (Schroth and Sinclair, 2003). 

 

High levels of SOC relative to ON can reduce SOM mineralization and nutrient availability (Foth and 

Ellis, 1997).  A sufficiently low C:N ratio for SOM ensures that mineral N is produced in excess of the 

N needs of bacteria involved in the mineralization process (Foth and Ellis, 1997).  Substrates with a 

C:N ratio greater than 35 do not leave sufficient mineral N for plant needs (Foth and Ellis, 1997).  With 

the assumption of at least 95% ON from total N, Sites A, B and C had mean C:N of 14.46, 15.05 

and14.97, respectively (Table 8).  Thus, SOM and SOC content appear more than suitable for long-term 

crop cultivation in the proposed garden area. 

v) Soil Water Content (SM) 

With a mean SM of 92.22%, 87.52% and 94.46%, for Sites A, B and C (Table 7), competition by trees 

for soil water does not appear to be of concern in the proposed garden sites.  No optimal soil moisture 

values could be found in the literature.  According to Crop Advisor, John Hussack (Personal Comm., 

2011), soil moisture is highly dependent on environmental conditions, particularly soil type.  Hussack 

(2011) estimated that the ideal soil moisture for crop production in silt loam soils is around 40-45%.  

Soil moisture is highly spatially and temporally variable (Western et al., 2002), making the one-time 

sample very limited in characterizing moisture content within these sites throughout the growing 

season.  However, these sites are expected to experience even higher levels of SM; FAFN residents 

identified early spring as the wettest period in the proposed garden area, particularly during years of 

floods (FN 1; FN 6).   

 

The high SM found in the proposed garden area is related to the silt loam texture and high SOM 

content.  SOM increases infiltration capacity and retains 20 times its weight in water (Havlin et al., 
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2005).  The optimal water-holding capacity, “field-capacity”, is found in loam soils and is reached 

when soil is holding the maximal amount of water useful to plants; water in excess will reduce aeration, 

retarding microbial activity and growth of most plants, and be lost to lower horizons, leaching nutrients 

from the topsoil (Brady and Wiel, 2000).  Silt loams have the highest water-holding capacity, beyond 

that of field capacity, partially accounting for high SM content.  Silt loam texture and high drainage 

may also be causing low levels of nutrients due to high leaching after floods.  Levels of SM measured 

in early August of 2010 are twice the suggested percentage suitable for crop production in a silt loam 

soil.  It is thus predicted that without modifications to these sites, they will become over-saturated at 

some point in the season, limiting soil aeration and causing loss of nutrients from leaching and surface 

runoff (Brady and Weil, 2000; Turtola and Paajenan, 2000).   

D 5.2.1 b) Comparison of Sites A, B, C and D 

 The higher clay content of the forest (Site D) gives this soil better cohesion and adsorptive capacity 

(Brady and Weil, 2000), which may contribute to the higher nutrient content of forest soils (discussed 

below).  Located much closer to the airstrip, and lacking forest canopy, the cultivated sites (Sites A, B 

and C) may be accumulating silt from high-silt dust blown from the airstrip.    

 

Lower levels of N in the cultivated areas were expected due to nutrient loss from harvest.  Potatoes, 

which have high N requirements (Appendix 4), were heavily planted in the old Mission fields and thus 

may have assisted in depleting soil N in the cultivated sites.  However, potatoes are also heavy K users, 

yet no difference in K was seen between cultivated and undisturbed sites.   

 

High levels of N in Site D are suspected to be a result of high SOM and low decomposition rates of 

subarctic boreal forest (Chapin et al., 1985; Smith et al., 1998).  With high proportions of nutrients 

stored in SOM, inorganic P levels of the forest were low in Site D, but unmeasured organic P reserves 
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may be higher in this site.  Low levels of P, however, are common in natural soils that lack fertilizer or 

additions (Schroth and Sinclair, 2003; Gardiner and Miller, 2008).  Mean Mg of the undisturbed forest 

was more than three times that of cultivated sites, suggesting high Mg use by cultivated plants or high 

leaching of this cation in low clay soils of the cultivated sites.       

 

Low BD levels are common in organic soils with higher carbon, especially if the area is not cultivated 

(Brady and Weil, 2000; Havlin et al., 2005).  Conventional cultivation increases BD and reduces soil 

porosity through compaction by machinery, and by replacement of trees and other diverse flora with 

crops that have smaller root systems (Yamoah et al., 1986; Schroth and Sinclair, 2003).   

 

Higher SOC and SOM in the undisturbed forest were expected due to the lack of cultivation; SOM 

decreases rapidly within the first 10 years of tillage (Brady and Weil, 2000) and is reduced by 

approximately 50% after 40-70 years of continuous cultivation (Havlin et al., 2005).  With an overall 

mean SOM of 15.91% in the cultivated sites and a mean value of 36.38% SOM in the undisturbed site, 

it is estimated that SOM was reduced in the proposed garden area by about 56.27% after the 40 years of 

cultivation by the Mission.  The presence of more trees in the forest site will also contribute to higher 

SOC, since trees have high net primary production of plant carbon (Young, 1997).  The multiple layers 

of vegetation found in the forest are an additional source of SOC through litterfall.  Soils high in 

organic matter have very high water-holding capacities, thus, much higher SM in Site D can be related 

to the high water-holding capacity of SOM (Hudson, 1994) and the absence of drainage ditches.  The 

proximity of the forest site to the Sites A and B (Appendix 2) lessens the possibility of differential 

flooding as a cause. 

 

While mean forest pH was significantly higher than that of cultivated sites, all of the soils were above 
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neutral pH (Table 7).  Typically, subarctic forest soils are acidic, due to dominance of conifers that 

lower soil pH (Abrahamsen and Miller, 1987) and the presence of organic soils, which tend to have low 

pH (Dunfield et al., 1993; Rodriguez-Gonzaleza et al., 2010).   Higher pH in the forest site may be 

attributed to the presence of inorganic carbon (IC), which has a buffering effect on soils (Yong et al., 

1990).  Inorganic carbon (IC) does not play a role in plant productivity and is not expected to be found 

in soil of the western James Bay region, where the Canadian Shield is absent and where organic soils 

predominate.  The source of IC in this area is likely fluvial deposits from James Bay, left by the floods 

of the Albany River.  The proximity of FAFN to James Bay meant that the Mission did not need to 

significantly modify soil pH prior to crop production. 

 

The range of Mg, BD, SOC and SM levels in the forest samples were also much wider compared to the 

cultivated sites (Appendix 6: Figures 4, 6, 8, 9); these cultivated sites have been subject to more 

consistent management and colonized by a more uniform composition of species.  The wide range of 

Mg, BD, SOC and SM levels in the forest is likely a consequence of relatively higher diversity in 

species and topography, and lack of monotonous anthropogenic influence.   

 

With similar soil textures and BD between the cultivated sites, differential leaching of nutrients 

between sites is not a probable cause of significant differences in N and P.  Lower levels of N and P in 

Site B, compared to Site A, may be attributed to higher tree and shoot densities in Site B (Table 6), 

larger pioneer species in Site B (Section 4.1.1) and larger willows in Row 3 compared to Row 1 (Table 

5).  Greater biomass in Site B would equate to more nutrients stored in this biomass.  Higher levels of P 

in Site B than Site C, may suggest that willows assist in cycling of P.  Significant differences in N and P 

between sites may also be attributed to variable rotation of crops and manure by the Mission.  If only 
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one AFCG can be introduced in FAFN due to restrictions in funds or labour, it should be placed in Site 

A which is known to be more fertile than Sites B and C.  Long-term analysis will provide better 

insights on the effect of willow presence. 

D 5.2.2) Pattern Study: Sites A and B 

a) Unknown Effect: Vertical Distance Comparison 

Potassium levels were significantly higher in the centre of Site B, however, a Box-plot of K within VD 

transects shows three outliers and a very wide range of data in each transect (Appendix 6: Figure 10).  

This distribution of data was not common for other soil properties and not observed for K within VD 

transects of Site A.  Significant differences between K levels in VD transects, therefore, do not indicate 

any geographic trends in soil K along the length of the plots. 

 

b) Distance-to-tree Effect: Horizontal Distance Comparison 

 Tree-crop interactions, including changes in soil properties, may be complementary, neutral or 

competitive in AF systems (Young, 1997).  Young (1997) refers to several AF studies around the globe 

where a variety of tree species have increased soil N, P, K and SOC content; under trees, SOC or SOM 

are nearly always higher, N is often considerably higher and P, K and other exchangeable ions are 

sometimes higher, as compared to soils beyond the influence of the trees.  However, general findings 

from the current study show that nutrients and SOC increased with distance from willow trees.  Post-

hoc analysis revealed that N, P, Mg and SOC were significantly lower at “maximum tree effect”, 1 m 

from the tree row, than at “no tree effect” for each tree row-plot interaction.  While there were no 

significant differences in K levels between HD transects of either site, a general decreasing trend 

towards Row 1 and Row 2 of Site A can be observed.   
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It appears that the willow trees may have high N, P and Mg requirements and may compete with crops 

for nutrients.  Young (1997) argued that substantial competition for nutrients is not common.  Nwaigbo 

et al., (1997) reported an increase in total N, percent carbon and organic matter with horizontal distance 

to Scots pine in grazed plots, using treeless grazed plots as a control.  Jose et al. (2000) observed tree-

crop competition for N fertilizer, but explain that differences in phenology and temporal nutrient uptake 

between the tree species and crops can minimize nutrient competition.  However, other studies show 

that trees can access nutrients from deep soil horizons, returning leached nutrients back into the system 

(Rao et al, 1998), exemplified by higher nutrient concentrations near tree canopy (Gallardo, 2002).  

Trees can also reduce nutrient losses by protecting the crop area from wind and water erosion (Rao et 

al., 1998), providing long-term maintenance of nutrient levels in the system.   

 

Typically, SOM and SOC tend to increase near trees, where litterfall is greater (Young, 1997; Rhoades 

et al., 1998; Gallardo, 2002).  Contrary findings in the present study may suggest that the pioneer 

species within the plots make a greater contribution to soil SOC and SOM.  It is important to consider 

that most AF studies observe soil conditions in developed AF systems where the understory or interior 

of the system is dominated by crops; within these systems, crops, and thereby organic matter, are 

removed each year.  Sites A and B have been naturalized for about 40 years; while the organic mass of 

willows remains relatively intact as woody material each year, the grasses and forbs are cycled back 

into the system.  Previous studies have observed an increase in SOM with annual manure application of 

about 2.5 t/ha (Havlin et al., 2005); additions of manure by the Mission may have maintained SOM 

levels better in the middle of the plot compared to areas closer to the tree row, where the drainage 

ditches would have lacked manure additions.  It is predicted that long-term studies will observe a much 

greater decrease in SOC and SOM in the “no tree effect” stratum than in the “maximum tree effect” 

stratum over time, once grasses and forbs are replaced with crops. 
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With confirmation of the presence of IC in all soil samples, IC levels along HD transects were plotted.  

Interestingly, IC and SOC had a completely inverse relationship to the tree rows in both AF sites: IC 

was much higher at “maximum tree effect” than at “no tree effect” for both sites (Appendix 7: Figures 

4, 9).  Since IC was deposited by flood, higher IC levels near the tree rows may be a consequence of 

greater water accumulation and IC deposition in and near the ditches (tree rows).  Rivers can deposit 

substantial amounts of N, P and C (Meybeck, 1982); the presence and distinct distribution trends of IC 

suggest that flooding of the cultivated area may play a significant role in the quantity and distribution 

of N and P.   

 

No significant differences in pH were found between HD transects of either site and no consistent 

patterns could be observed (Appendix 7: Figure 5).  Trees in cool climates can sometimes acidify soil, 

but this is more common of coniferous varieties (Abrahamsen and Miller, 1987).  In Sites A and B, SM 

did not appear to have a consistent trend with respect to tree rows (Appendix 7: Figure 8).  High spatial 

variability of soil water content has been observed in previous studies (Western et al., 2002).  

Significant differences in SM were found between HD transects of Site B: SM showed a general 

decrease from Row 2 to Row 3, perhaps due to larger tree size and moisture requirements in Row 3 

(Table 5).  However, this does not account for low SM in the centre of the plot.  Row 3 was situated in 

a 1.4 m wide ditch with consistent water along the row, while the ditch of Row 2 had inconsistent pools 

of water only 1 m in width, contrasting what would be expected from higher moisture requirements by 

Row 3.  The deep ditch of Row 3 and variation in topography may be causing accumulation of water 

into Row 3 from the plot.  Previous literature shows that trees may enhance soil moisture through 

deeper and more extensive root systems, shade effects and protection of understory from wind 

(Yamoah et al., 1986; Young, 1997; Rao et al. 1998; Clinch et al., 2009).  Others demonstrate crop 

yield reductions resulting from moisture competition by certain tree species (Singh and Kohli, 1992; 
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Huxley et al., 1994).  Trees can access water during periods when crops are not present or when crops 

have little roots (Schroth and Sinclair, 2003); the presence of willows may mitigate high soil moisture, 

compensating for short growing seasons and flooding in the AFCG plots.   

Elevation surveys followed by continuous monitoring of soil moisture regimes and tree row water 

content are needed to determine the effect of willow on soil moisture.   

 

Few studies have looked at the effect of trees on physical soil properties, but lower BD under trees has 

been documented (Yamoah et al.,1986).  Bulk density is known to vary considerably both temporally 

and spatially (Schroth and Sinclair, 2003).  Although significant differences were found between HD 

transects in Site B, mean BD in Sites A and B appears to fluctuate sporadically within the range of 0.58 

g/cm
3
 to 0.68 g/ cm

3
, with the exception of the HD 10 which reaches 0.76 g/ cm

3 
(Appendix 7: Figure 

7).  Post-hoc analysis confirmed that HD 10 caused significant differences in between HD transects of 

Site B.  Within this transect, two of the three samples had a BD of 0.79 and 0.8 (Appendix 5), lessening 

the possibility of sampling error within this transect.  According to Schroth and Sinclair (2003) change 

in BD is an indicator of changes in soil structure from agricultural management, root growth or soil 

flora/fauna activity.  Having thicker shoots, and subsequently thicker roots, the more mature trees of 

Row 3 may be increasing BD at their “maximum effect” range.  If this is the case, an increase in BD 

will be greater in “maximum tree effect” compared to the “no tree effect” stratum over time, as the 

willows age and roots thicken. 
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E) FINAL DISCUSSION AND RECOMMENDATIONS 

Introduction of three gardens, two AFCG test plots and one “no tree” test plot, in the area proposed by 

the community of FAFN is feasible with a few modifications to the sites, including: enhancement of 

drainage ditches, additions of peat from the forest, tillage of the garden area, and potentially, pruning of 

mature willows.   

 

While the higher N, Mg, clay and sand content and lower pH of the forest soils appear to be more 

conducive to mixed crop production, the shading of understory, low soil temperatures, low 

decomposition rates and high soil moisture of the forest will not support high crop yields.  The forest’s 

organic soils, however, are recommended for use as an inexpensive, local soil amendment for the 

AFCG, the “no tree” test plot, and future personal gardens.  The higher N and Mg and slightly lower 

pH of the forest amendment will increase soil fertility of garden soils, which currently have low N and 

Mg and slightly high pH compared to optimal values.  Low nutrient levels in the proposed garden area 

may be attributed to high silt content, low BD and over-saturated soils.  According to Brady and Weil 

(2000), soil texture can be altered by mixing it with another soil of a different textural class.  Addition 

of forest soils to previously cultivated sites can improve drainage with higher proportions of sand and 

yet improve nutrient adsorption, reducing nutrient loss from drainage, through increased proportions of 

clay.   

 

Drying of forest soil amendments will reduce the high moisture content.  It is recommended that these 

dry soil amendments are tilled into the garden plots to increase decomposition of SOM and nutrient 

availability to plants.  Soil analysis results suggest that natural decomposition rates in the area may not 

be sufficient to support crop produce after several years of harvest.  Tillage of organic soils at the 
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beginning of the season, however, can provoke nutrient release before the crops are mature enough to 

absorb them (Schroth and Sinclair, 2003).  Since nutrient release is faster from soil incorporated 

materials rather than surface applied (Schroth and Sinclair, 2003), it is recommended that some of the 

soil amendments are tilled into the garden site prior to planting and that more are added to the surface 

once crops begin to mature.  While tillage will increase release of atmospheric carbon (Gordon and 

Newman, 1997), assisted mineralization of forest soil amendments is likely necessary for optimal crop 

production; high productivity of local foods will reduce high carbon emissions associated with food 

imports from the south, likely more than compensating carbon release from tillage.   

 

Tillage may also be a strategy to increase BD and reduce SOM (Havlin et al., 2005; Brady and Weil, 

2000), thereby reducing nutrient loss and risk of crop failure from over-saturated soils.  Current levels 

of BD and SOM in the proposed garden site suggest that soil structural integrity can be maintained for 

many years.  Monitoring of BD and the “s” value (soil structure) over long-term studies will ensure that 

optimal BD and SOM levels maintained at suitable levels.  Inclusion of the tree component and lack of 

large machinery use in AFCGs should allow maintenance of sufficiently low BD and high SOM levels.  

If field production is expanded and livestock are introduced to FAFN, SOM and BD levels can be 

maintained by adding manure or crop residues and by rotating crops (Havlin et al., 2005).  However, 

initiation of crop rotation in the community gardens is recommended after the first year of cropping due 

its additional benefit of weed control (Wright, 1984; Liebman and Dyck, 1993) and the presence of 

highly competitive weeds found in the proposed garden area.  Initial tillage of the AFCG sites will 

reduce competition by these weeds.   Further control measures for weeds and other pests will need to 

be explored during the first few years of cropping when major pests are identified.   

 

Forest soil samples reveal that mineral P levels are naturally low in the area ;therefore, fertilizers or 
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manure may need to be added to the community gardens.  However, tillage of forest amendments may 

potentially release unmeasured organic P.  When compared to the proposed garden area, the forest 

samples also indicate that mission cultivation reduced N, P, and K in the topsoil.  Test plots of various 

crops are needed to identify potential deficiencies of N, P and K or other nutrients in the proposed 

garden area.  AF systems often need fertilizer additions to replace nutrient loss from crop removal (Jose 

et al., 2000; Schroth and Sinclair, 2003).   

 

Vegetative and soil analysis of the study sites revealed that willows in the AFCGs have a high potential 

for directly and indirectly competing with crops through shading and nutrient uptake.  The willows are 

expected to reduce soil temperature, soil nutrient mineralization, soil nutrient availability and crop 

sunlight exposure, in the crop areas immediately adjacent the tree row.  Schroth and Sinclair (2003) 

explain that management can enhance complementary and facilitative interactions between trees and 

crops and reduce their competitive interactions.  Garcia-Barrios and Ong (2004) identify density, 

spatio-temporal arrangement, fertilization, weeding and shoot and root pruning as means to reduce 

competition in AF systems.  In addition to tillage, weeding of competitive grasses and forbs in the 

AFCGs may be necessary to reduce competition in the crop area.  Pruning of willows may be necessary 

to reduce light competition, though additions of willow prunings to the crop area can enhance nutrient 

availability to crops, depending on the tree species, environmental factors and synchrony between 

organic matter decomposition and crop requirements (Palm, 1995).  Considering low decomposition 

rates in the area, however, it is recommended that prunings are composted separately, rather than added 

directly to the crop area. 

 

To avoid light, moisture and nutrient competition between trees and crops, Clinch et al. (2009) 

recommend a 2 m wide buffer between trees and crops in willow intercropping systems with tree rows 
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that are 15 m apart.  In the present study, nutrient levels were significantly lower 1 m from the tree row.  

With AFCG plot widths of 14 m and 16 m, it is therefore recommended that crops in these plots are 

placed about 2 m from the willow tree rows.  In consideration of the high latitude of FAFN, crops may 

need to be placed further than 2 m from the SE tree row of a given plot.  However, initial placement of 

diverse crops 2 m from the tree rows may help identify ideal willow management for optimal crop 

success in subarctic systems and provide a better understanding of willow-crop interactions in this area. 

 

The presence of a tree-crop buffer allows crops to benefit from the trees without competing with the 

trees themselves.  Willows have a deep root system and extensive branching (Kuzovkina and Volk, 

2009); in the AFCG system, they are expected to retrieve nutrients leached from highly porous topsoils, 

access nutrients inaccessible to crops, enhance nutrient cycling and protect crops from wind, snow and 

drift of particulates such as airport dust. 

 

The long vegetative season of willow equates to a long period of photosynthetic activity and nutrient 

uptake as well as a long period of soil protection (Kuzovkina and Volk, 2009), all of which are assets in 

subarctic regions which have short growing seasons.  Therefore, the combination of willows with short-

season crops in the AFCG plots is expected to increase annual organic matter production and nutrient 

acquisition in the system, reduce soil erosion of the crop area and mitigate flooding and high soil 

moisture, as compared to the no tree control plot.    

 

Periodic flooding helps willow outcompete other tree species, particularly non-native species (Sher et 

al., 2002), but greater flooding can also reduce growth and increase sensitivity to nutrient limitation in 

willows (Rodriguez-Gonzaleza et al., 2010).  Management of soil moisture in the tree rows may be an 

important strategy for regulating tree row density and permeability to wind and snow and limiting 
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willow competition for nutrients, thereby optimizing crop production in the AFCGs.  Reduced willow 

growth may require less labour needed to prune willows and prevent light competition with crops.    

 

Without proper management of soil moisture in the test plots, excessive water in the crop area is 

predicted to reduce aeration, retard microbial activity and growth of most plants, and cause loss of 

nutrients from surface runoff, and leaching to lower horizons (Brady and Wiel, 2000; Turtola and 

Paajenan, 2000).  Deepening of drainage ditches within the tree rows, as well as at the top and bottom 

of the plots, may be necessary to assist the willows in drawing moisture from the crop area.  The 

addition of drainage ditches in the no tree plot will be necessary. 

 

The possibility of FAFN soils being contaminated requires that they are tested for organochlorines prior 

to any garden introduction.  Willows are also known to be resistant to chemical contaminants in soil 

and water, including chlorinated compounds (Kuzovkina and Volk, 2009).  If the site is contaminated 

with organochlorines, further propagation of willow could be useful for remediation prior to garden 

introduction.  Future research may explore the potential of willows to provide additional products to 

FAFN, including biomass or biofuel, fibre, timber and fodder (for cattle or sheep) (Kuzovkina and 

Volk, 2009).  It is recommended that future research explores the potential of subarctic AFCGs to 

provide additional services of carbon sequestration and wildlife habitat that have been witnessed in 

tropical, subtropical and temperate regions (Quinkenstein et al., Kumar et al., 2009; Gordon and 

Newman, 1997).  

 

Overall, long-term studies of crop productivity and soil property dynamics between sites, relative to 

distance-to-tree and relative to tree geometry and density are necessary to determine best management 

strategies for optimal crop and willow production and services, and to determine suitability of willows 
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in subarctic AFCGs.  According to Garcia-Barrios and Ong (2004, pp. 234), “managing [AF] systems 

has to be based more on monitoring, diagnosis, remediation, mitigation and adaptation, rather than on a 

blueprint predictability of the behaviour of the agroecosystem”. 

 

Soil and vegetative management recommendations of the present study may not be applicable to other 

subarctic FNs, particularly those that lack a history of settlement and land management by the Mission; 

decades of manure application and tillage converted boreal forest soils into present conditions of the 

proposed garden area of FAFN.  In the present study, it was found that boreal forest soil fertility and 

texture are conducive to optimal crop production, but that soil structure is too porous, moisture is too 

high and P levels are too low, for optimal crop production.  With proper tillage and drainage, the 

implementation of AFCGs in undisturbed areas of the boreal subarctic is feasible and can be expected 

to become increasingly so with warming climate and subsequently higher soil nutrient availability 

(Shuur et al., 2008).  

 

Local areas of subarctic forests can be partially cleared as to make use of existing trees in AFCGs, 

maintaining natural resilience and adaptability.  Tree species and AF design in various FN communities 

will depend on the needs of the area based on local microclimate, soil conditions, cultural and 

socioeconomic factors, as well as wildlife and carbon sequestration services.  With up to 500 species of 

willow worldwide, predominantly in temperate and arctic zones (Kuzovkina and Volk, 2009), use of 

willow in other remote FNs communities is highly probable; these willow varieties are adapted to a 

broad range of climates and site conditions and are suitable for a variety of geographic regions 

(Kuzovkina and Volk, 2009).  The use of conifers, common to the James Bay ecoregion (Hanson, 1953; 

MSSC, 1996), may make soil in the crop area acidic (Abrahamsen and Miller, 1987).  Although this 

was not the case in the forest site of FAFN, neutral pH in this site is attributed to the presence of IC.    
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Crop production in subarctic forests that lack oceanic alluvial deposits may be challenged by low pH, 

particularly in areas dominated by acidic peat bogs (or mushkeg).  Inclusion of cattle in subarctic 

agricultural initiatives can provide manure amendments capable of increasing soil pH and the 

availability of P and K in acidic soils (Whalen et al., 1999). 

 

Nitrogen-fixing trees can increase available N in immediately surrounding soils, benefitting growth of 

non-fixing crops in the same system (Young, 1997; Rhoades et al., 1998).  Alder, a N-fixing tree 

(Young, 1997), was found sporadically throughout proposed garden area, the undisturbed forest and 

flood plains of the FAFN region.  Planting rows of native Alder in the proposed garden area of FAFN 

for long-term research of Alder AFCGs is recommended.   

 

Long-term studies of different tree species in different areas of the subarctic are needed especially in 

areas where the Mission has not settled and prepared the land.  Anderson and Ingram (1989) 

recommend extensive inventory of land-use within a 5 km radius of an AF system over the previous 20 

years.  More extensive land use research is recommended for AFCG research in FAFN.   

 

The Mission successfully modified subarctic ecosystems to produce large quantities of diverse foods in 

a challenging subarctic environment.  However, their lack of appreciation for traditional indigenous 

culture and lack of knowledge sharing with the indigenous community have resulted in devastating 

losses of autonomy and traditional ecological knowledge in FAFN and other FN communities.  

Consequently, a lack of leadership, personnel, knowledge and resources were barriers to community 

garden introduction in FAFN.  In addition to food cost, food preference and a lack of food-usage 

familiarity and time for food preparation were identified as limitations to nutritional food consumption 

in FAFN.  While the AFCG may act as a source of inexpensive and diverse foods, the present study 
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recommends introducing a Food Security Program (FSP), in partnership with the AFCGs, as a holistic 

means to address the aforementioned barriers.  As a means to regain food system autonomy, the FSP 

needs to be lead by community members and proper educational tools for these leaders need to be 

provided.  The FSP focus should be on community food security and food sovereignty, rather than food 

security alone.   

 

The present study also revealed that the benefits of healthy foods and knowledge of their use may help 

community members over-come store convenience during times of social insecurity. The lack of a 

social security and control experienced by many indigenous peoples should be acknowledged by the 

FSP.  First, the FSP can support the current school snack initiative to increase familiarity of, and 

confidence in, local foods over exotic imports. Second, the FSP also needs to provided personnel, 

knowledge and leadership to manage the AFCGs and ensure that they act as a reliable food supply.  

Continued research on the success and adaptive management of the AFCGs and FSP partnership in 

FAFN may allow wide-scale adoption of this strategy as a systems approach to community food 

security and food sovereignty in remote FNs across Canada. 

 

A reintroduction of the potato gardens on “potato” island and Old Fort is recommended for large 

production of nutritional crop that is easily stored and expensive to import.  Potato fields have played a 

dominant role in local food production of some cold climate communities Austria (Vogl-Lukasser and 

Vogl, 2004), eastern Canada (Omohundro, 1985) and FAFN, accompanied by smaller subsistence 

gardens of mixed crops.  Similarly, the AFCG can be used in conjunction with mass potato production.  

Studies on the tree-potato interaction will be particularly important for subarctic AF systems.   

 

While personal gardens are not presently a realistic means of enhancing food security in FAFN, the 
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community garden is expected to increase interest and knowledge of local food production.  The 

accessibility of personal gardens would allow for experimentation with crops that require more care, 

provision of more diverse crops to complement AFCGs and potato gardens, and increase residents’ 

exposure to land-tenure.  Promotion of personal gardening and research on the feasibility of AF 

homegardens in FAFN are therefore recommended.   

 

Similar to impoverished communities of the tropics and subtropics, remote FN communities of 

northern Canada face problems of limited productive land and a lack of access to external markets.  In 

the southern hemisphere, AF homegardens are known to enhance food security and provide a larger 

return of diverse food products with little effort.  However, as diverse, multi-strata systems that are 

designed to emulate tropical and subtropical forests, the traditional AF homegarden design may not be 

ecologically feasible in subarctic environments, whose natural systems are characterized by relatively 

low diversity and few vertical vegetative layers.  While subarctic conditions will not enable the same 

level of productivity as tropical and subtropical regions, the underlying concepts behind the success of 

homegardens can be utilized in the AFCG and personal gardens.  Homegardens are described as a 

“harmonious existence of many species...that embrace(s) the dynamic nature of ecological systems” 

(Jose and Gordon, 2008).   The application of AF in the subarctic will require a better understanding of 

what areas in the local ecology are highly productive and how they might be emulated with a 

combination of conventional crops and native species in such a way as to optimize product output per 

unit area, whilst maintaining the dynamic and resilient nature of subarctic ecosystems in response to 

environmental change.   

 

 Traditional indigenous food systems of the north have been described as a dynamic and flexible 

response to a challenging and unpredictable environment (Loring and Gerlach, 2010).  Traditional 
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indigenous values that encourage resiliency of food systems and ecological systems are also evident in 

FAFN.  Minkin (2008) observed historical and contemporary values of environmental stewardship in 

FAFN: to never over-kill and to thank the Creator and protect the natural environment.  In the present 

study, one elder (FN 3) described the natural environment as being alive and having rhythm, a purpose 

and the capacity of being turned into food.  He describes indigenous people of James Bay as 

“harvesters”, saying that “they take what is there.  Their philosophy is, the Creator provides for 

us...(and) will put things on the planet we can use...we take what we need (but) we don't grab a 

handful” (FN 3).  “But we don't do that anymore”, he says:  

“We are changing behaviour because we have to.  It hasn't been the original behaviour of  the 

people here.  Now we are in settlement.  Back and forth, everybody had their own territory, 

harvesting off the land what was available and if they are out of that they move to another area 

within their territory.  (They would) harvest all the land eventually within a ten year period...go 

back to the original spot and by that time things were back.  So we just harvested different parts 

of the territory.  But now that we’re in settlements, we have to change in behaviour.  We cannot 

move away from this place.  This is where we are now”.   

The capacity of traditional food systems to meet nutritional needs and maintain resiliency has been 

irreversibly altered through settlement and anthropogenic modifications of local cultural and 

environment.  While traditional rotational hunting techniques allowed population replenishment 

(Elmzvist et al., 2004), the nomadic lifestyle has been replaced by sedentary communities.  Access to 

traditional foods is dependent on fossil-fuel-based transportation and thus traditional rotational harvest 

is most often not a viable option, resulting in local over-hunting or over-harvesting (Lakehead 

University Food Security Research Group, 2010).  

 

FN 3 asks for preservation of traditional values, foods and culture, but recognizes that some traditional 
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behaviours are no longer viable.  New means of maintaining resilience of food systems and ecosystems 

of the north are required for geographically fixed northern communities, yet it is also evident that 

maintenance of traditional food systems and values must be supported.  When discussing the 

interdependence of environmental change and food security, several authors urge towards, what Stroink 

and Nelson (2009) call, “biculturalism”: an integration of traditional knowledge and ecological 

(western) science (Elmqvist et al. 2004; Stroink and Nelson, 2009).  Stroink and Nelson (2009) 

encourage biculturally flexible, holistic, lifelong learning garden programs to help develop a strong 

local food system in FN communities.  In a time and place of ecological and economic uncertainty, 

sedentary indigenous communities may find resilience by embracing this bicultural approach, sourcing 

a variety of cultural strategies for securing food. 

 

Wild species associated with FAFN community traditions or a general sense of well-being, such as 

Labrador Tea, Balsam, flowers and a variety of berries, can be integrated into the community or 

personal gardens to increase access to the benefits of these plants within the settled community.  Native 

plant species that FAFN members observe to be threatened by climate change could also be integrated 

into the community garden system.  A much more extensive analysis of species composition in 

undisturbed areas surrounding FAFN is recommended, particularly of native, ecologically-adapted 

species with edible, medicinal or cultural significance.  This should be followed by more extensive 

research on traditional plant uses and traditional ecological knowledge as well as scientific research of 

these species to identify additional ecological and structural services that they might provide to AFCGs.  

Conventional produce of the AFCGs should complement traditional foods; education on meals that 

incorporate both conventional crop produce and traditional foods by the FSP is advised.   

 

Alaskan gardens of the 1900s are described by Loring and Gerlach (2010) as “innovative responses to 
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rapid ecological, climatic and socioeconomic change”; garden produce filled gaps of variable harvest 

from wild game and unpredictable food supply.  Large-scale introduction of managed AF systems to 

remote FNs with inclusion of both native and conventional species can complement traditional food 

systems and mitigate the socio-ecological effects of unpredictable climate change, contaminated 

ecosystems and the instability of petroleum-based imports.  The traditional indigenous values of FAFN 

described by Minkin (2008) and FN 3 allowed for a resilient and sustainable food system.  AFCGs may 

provide a space where these values can be applied as a means to regain a resilient food system within a 

sedentary community that is challenged by environmental and cultural change.   
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F) CONCLUSION 

Introduction of AFCG and control test plots in FAFN, for long-term studies of subarctic, subsistence 

AF systems, is ecologically feasible.  Initial site modifications necessary prior to planting were 

identified.  Vegetative and soil sampling methods and design for long-term studies were established.  It 

is anticipated that inclusion of willow trees in subarctic agricultural systems will enhance their long-

term productive capacity and that willow AFCG test plots in FAFN are highly transferable to other 

areas of the subarctic as part of an import substitution strategy to enhance food security in remote FN 

communities. Community garden initiatives in remote FNs may benefit from the addition of the 

ecological services, resiliency and dynamism offered by AF systems and the personnel, leadership and 

knowledge of a FSP, to create a more resilient, adaptable and reliable local food system.  Investigation 

of historical food production in FAFN by Missionaries highlighted the importance of the following: the 

AFCGs to complement, instead of replace, traditional foods and enhance traditional knowledge sharing 

opportunities; the FSP to be run autonomously by community members; and the inclusion of 

community members in the gardening process.  Through a bicultural combination of non-native and 

native plant species and cultivation techniques, AFCGs may provide a space for sedentary indigenous 

peoples to regain traditional ecological knowledge, tend to a traditional value of connecting 

harmoniously with the natural rhythms of the environment and nurture traditional forms of spiritual 

fulfillment, and, thereby, strengthen indigenous identity, connection to the land and sense of social 

security.  Ultimately, this may empower remote FNs to access healthy foods and make healthy food 

choices in a positively reinforcing, sustainable food system. 
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Appendix 1: Land-use During Mission Settlement of Mainland Fort Albany First Nation, Ontario (1930-1970) 
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Appendix 2:  Study Sites A, B, C and D in Mainland Fort Albany First Nation (2010) 
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Appendix 3: Methods of Soil Analysis by the University of Guelph Soil and Nutrient Lab 

(Burr, Personal Comm., 2010) 

 

Texture (Grain Size Analysis via pipette method): 
Particle size analysis measures the proportions of the various sizes of primary soil particles as 

determined by their capacities to pass through sieves of various sizes and by their rates of settling in 

water using the principle of sedimentation known as Stoke's Law. 

Sheldrick B.H., and Wang C. (1993). Particle Size Distribution. Pages 499-507 in M.R. Carter, (Ed.) 

Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers. 

 

pH: 
pH is read on a saturated paste, or on an 'as received' basis if the sample is sufficiently moist. Buffer pH 

is analyzed on soils having a pH of 6.0 or less and is used to determine how much lime is required on 

farm soils. The pH meter is Thermo Orion 4 Star. 

Hendershot,W.H, Lalande, H and Duquette M.1993. Soil Reaction and Exchangeable Acidity. Pages 

141 to 142 in M.R. Carter, (Ed.) Soil Sampling and Methods of Analysis. Canadian Society of Soil 

Science. Lewis Publishers. 

 

Potassium and Magnesium (extractable): 
Samples are extracted using 1.0N Ammonium Acetate solution, and the concentration of K, Mg, Ca and 

Na are determined using an atomic absorption spectrophotometer- Varian SpectraAA. Although 

primarily used for extracting soils, it can be used for wastes and other materials at the client's specific 

request. Analysis can be done on a mass or volume basis. Fertilizer recommendations are based on 

mg/L soil results and therefore Farm Fertility and other Farm tests are always done volumetrically. 

Simard, R.R.1993. Ammonium Acetate-Extractable Elements. Pages 39 to 42 in M.R. Carter, (Ed.) Soil 

Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers. 

 

Phosphorus: 
Sodium bicarbonate-extractable phosphorus, also referred to as olsen P, is commonly used to measure 

plant available P in Ontario soils. Samples are extracted using 0.5M sodium bicarbonate solution and 

the concentration of P in the extract is determined colourimetrically using a Seal Auto Analyser 3. 

 Reid, K. (Ed.) 1998. Soil Fertility Handbook. OMAFRA Publication. 

 

Carbon (total, organic and inorganic): 
The LECO SC444 is used to measure the total carbon content in soil, plant, waste and other samples. 

Inorganic carbon can be determined by ashing the sample at 475
0
C for three hours prior to LECO 

SC444 use. Organic carbon is calculated from the subtraction of the inorganic carbon result from the 

total carbon result. The Leco SC-444 method of carbon and sulphur determination is based on the 

combustion and oxidation of C and S to form CO2 and SO2 by burning the sample at 135
0
C or 145

0
C in 

a stream of purified O2.  The amount of evolved CO2 and SO2 is measured by infrared detection and 

used to calculate the percentages of C and S in the sample. 

 

Nitrogen (total LECO Nitrogen): 
This method, based on the Dumas Method, is routinely used by SNL for the analysis of total N in plant 

and soil samples. Samples are dried, and ground or sieved prior to analysis. The samples are combusted 

in a sealed system. Nitrogen compounds released are reduced to N2 gas, which is measured by a 

thermal conductivity cell using the LECO FP428.  LECO instruction/operations manual for the FP-428 

Nitrogen and Protein Determinator version 2.4 
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Appendix 4: Optimal Levels of Select Soil Properties for Mixed Garden Crops 

(AASL of Penn State University, 2010) 

          pH  Mg N P K 

  Asparagus (To Plant) 7 120 75 35-70 70-140 

  Asparagus (Maintain) 6.7 100 75 35-70 70-140 

  Beans (Kidney, Lima and Snap) 6.5 100 35 35-70 70-140 

  Beets 7 120 100 35-70 70-140 

  Broccoli 7 120 100 35-70 70-140 

  Brussels Sprouts 6.5 100 100 35-70 70-140 

  Cabbage (Fresh Market and Kraut) 7 120 100 35-70 70-140 

  Carrot 6.5 100 75 35-70 70-140 

  Cauliflower 7 120 100 35-70 70-140 

  Celery 7 120 100 35-70 70-140 

  Collards 6.5 100 100 35-70 70-140 

  Cucumbers 6.5 100 75 35-70 70-140 

  Diakon 6.5 100 35 35-70 70-140 

  Eggplant 6.5 100 75 35-70 70-140 

  Endive 6 100 75 35-70 70-140 

  Escarole 6 100 75 35-70 70-140 

  Garlic 6.5 100 75 35-70 70-140 

  Ginseng (To Plant) 5.5 100 50 35-70 70-140 

  Ginseng (To Maintain) 5.5 100 35 35-70 70-140 

  Gourd 6.5 100 75 35-70 70-140 

  Herbs 6.5 100 35 35-70 70-140 

  Kale 6.5 100 75 35-70 70-140 

  Kohlrabi 6.5 100 75 35-70 70-140 

  Leek 7 120 100 35-70 70-140 

  Lettuce (Head) 7 120 35 35-70 70-140 

  Lettuce (Leaf and Romaine) 7 120 75 35-70 70-140 

  Muskmelon (Cantaloupe) 7 100 75 35-70 70-140 

  Mustard Greens 6.5 100 35 35-70 70-140 

  Onion 7 120 100 35-70 70-140 

  Parsnip 7 120 75 35-70 70-140 

  Peas 6.5 100 45 35-70 70-140 

  Pepper (Hot and Sweet) 7 120 75 35-70 70-140 

  Popcorn 6.5 100 60 35-70 70-140 

  Potatoes  6 100 200 35-55 100- 200 

  Pumpkin 6.5 100 75 35-70 70-140 

  Radiccho 6 100 35 35-70 70-140 

  Radish 6.5 100 35 35-70 70-140 

  Rhubarb (To Plant) 6 120 200 35-70 70-140 

  Rhubarb (To Maintain) 6 120 140 35-70 70-140 

  Rutabaga 6.5 100 35 35-70 70-140 

  Scallions 6 100 100 35-70 70-140 

  Spinach 7 120 100 35-70 70-140 

  Squash (Summer, Winter) 6.5 100 75 35-70 70-140 

  Sweet Corn  6.5 100 50 35-70 70-140 

  Tomato (Fresh Market) 7 100 50 35-70 70-140 

  Turnip Roots 6.5 100 35 35-70 70-140 

  Tyfon 7 120 35 35-70 70-140 

  Watermelon 6 100 35 35-70 70-140 

  Mixed Vegetable Crops 7 100-120 35-200 35-70 70-200 
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Appendix 5: Measured and Estimated Values for All Soil Properties at Each Sample Point within Sites A, B, C and D 

 

Sample 

ID 

Site P 

(ppm) 

Mg  

(ppm) 

K 

(ppm)  

pH N       

(ppm) 

IN 

(ppm) 

ON    

(ppm) 

IC     

(ppm) 

SOC      

(ppm) 

M     

(%) 

BD 

(g/cm
3
)  

C:N s SOM 

(%) 

A1 A 14.00 200.00 32.00 7.80 5900.00 295.00 5605.00 34800.00 81200.00 105.92 0.64 14.49 17.29 14.00 

A2 A 24.00 320.00 36.00 7.70 7900.00 395.00 7505.00 27600.00 107000.00 83.07 0.65 14.26 22.78 18.45 

A3 A 18.00 330.00 40.00 7.60 8000.00 400.00 7600.00 27700.00 107000.00 94.27 0.64 14.08 22.78 18.45 

A4 A 16.00 310.00 39.00 7.60 8100.00 405.00 7695.00 25600.00 115000.00 94.98 0.68 14.94 24.49 19.83 

A5 A 11.00 250.00 37.00 7.80 6600.00 330.00 6270.00 28100.00 94900.00 84.79 0.70 15.14 20.21 16.36 

A6 A 16.00 320.00 42.00 7.70 8100.00 405.00 7695.00 27600.00 110000.00 89.82 0.69 14.29 23.42 18.97 

A7 A 8.40 230.00 34.00 7.80 6200.00 310.00 5890.00 33600.00 80400.00 81.03 0.73 13.65 17.12 13.86 

A8 A 27.00 330.00 43.00 7.70 7900.00 395.00 7505.00 27900.00 108000.00 80.90 0.70 14.39 23.00 18.62 

A9 A 18.00 340.00 40.00 7.70 7900.00 395.00 7505.00 27100.00 109000.00 87.63 0.74 14.52 23.21 18.79 

A10 A 16.00 340.00 45.00 7.60 8800.00 440.00 8360.00 24400.00 127000.00 102.25 0.56 15.19 27.04 21.90 

A11 A 14.00 270.00 43.00 7.60 7000.00 350.00 6650.00 28100.00 92900.00 101.16 0.65 13.97 19.78 16.02 

A12 A 15.00 340.00 41.00 7.70 7300.00 365.00 6935.00 28600.00 99400.00 90.65 0.66 14.33 21.17 17.14 

A13 A 9.30 210.00 35.00 7.60 5700.00 285.00 5415.00 33400.00 72600.00 93.81 0.65 13.41 15.46 12.52 

A14 A 15.00 290.00 44.00 7.60 7900.00 395.00 7505.00 27700.00 108000.00 91.42 0.63 14.39 23.00 18.62 

A15 A 21.00 320.00 49.00 7.60 7700.00 385.00 7315.00 27500.00 103000.00 74.95 0.68 14.08 21.93 17.76 

A16 A 15.00 320.00 50.00 7.60 8300.00 415.00 7885.00 23900.00 121000.00 104.36 0.61 15.35 25.77 20.86 

A17 A 9.20 240.00 39.00 7.60 6900.00 345.00 6555.00 28200.00 97800.00 105.32 0.61 14.92 20.83 16.86 

A18 A 14.00 300.00 33.00 7.90 7000.00 350.00 6650.00 26700.00 95300.00 93.67 0.68 14.33 20.29 16.43 

Mean A 15.61 292.22 40.11 7.68 7400.00 370.00 7030.00 28250.00 101638.89 92.22 0.66 14.46 21.64 17.52 
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Appendix 5 Continued: Measured and Estimated Values for All Soil Properties at Each Sample Point within Sites A, B, C and D 

 

Sample 

ID 

Site P 

(ppm) 

Mg  

(ppm) 

K 

(ppm)  

pH N       

(ppm) 

IN 

(ppm) 

ON    

(ppm) 

IC     

(ppm) 

SOC      

(ppm) 

M     

(%) 

BD 

(g/cm
3
)  

C:N s SOM 

(%) 

B1 B 12.00 240.00 39.00 7.60 6700.00 335.00 6365.00 26400.00 97600.00 89.69 0.52 15.33 20.98 16.83 

B2 B 9.00 200.00 36.00 7.70 6100.00 305.00 5795.00 33300.00 78700.00 91.29 0.66 13.58 16.92 13.57 

B3 B 9.70 230.00 39.00 7.70 6100.00 305.00 5795.00 29100.00 92900.00 96.69 0.65 16.03 19.97 16.02 

B4 B 16.00 290.00 32.00 7.70 7200.00 360.00 6840.00 24700.00 104000.00 96.52 0.54 15.20 22.36 17.93 

B5 B 14.00 270.00 35.00 7.70 6600.00 330.00 6270.00 27100.00 85900.00 89.09 0.62 13.70 18.47 14.81 

B6 B 9.20 230.00 36.00 7.70 5600.00 280.00 5320.00 29500.00 79500.00 88.55 0.69 14.94 17.09 13.71 

B7 B 13.00 310.00 49.00 7.60 7200.00 360.00 6840.00 25500.00 104000.00 77.39 0.61 15.20 22.36 17.93 

B8 B 10.00 220.00 36.00 8.00 6200.00 310.00 5890.00 30600.00 83400.00 90.61 0.72 14.16 17.93 14.38 

B9 B 15.00 320.00 42.00 7.60 7600.00 380.00 7220.00 23700.00 110000.00 96.46 0.60 15.24 23.65 18.97 

B10 B 17.00 300.00 44.00 7.70 7300.00 365.00 6935.00 25400.00 110000.00 91.70 0.64 15.86 23.65 18.97 

B11 B 14.00 350.00 42.00 8.00 7100.00 355.00 6745.00 23300.00 102000.00 84.58 0.74 15.12 21.93 17.59 

B12 B 9.60 250.00 43.00 8.00 5600.00 280.00 5320.00 27900.00 74100.00 72.54 0.79 13.93 15.93 12.78 

B13 B 11.00 230.00 31.00 7.60 6000.00 300.00 5700.00 30900.00 87100.00 96.79 0.63 15.28 18.72 15.02 

B14 B 12.00 270.00 35.00 7.60 6700.00 335.00 6365.00 25400.00 104000.00 96.85 0.64 16.34 22.36 17.93 

B15 B 17.00 350.00 31.00 7.70 7400.00 370.00 7030.00 26700.00 101000.00 79.68 0.63 14.37 21.71 17.41 

B16 B 13.00 370.00 38.00 8.00 6300.00 315.00 5985.00 23800.00 93200.00 92.22 0.63 15.57 20.04 16.07 

B17 B 7.70 230.00 34.00 7.80 5200.00 260.00 4940.00 29100.00 67700.00 71.88 0.80 13.70 14.55 11.67 

B18 B 19.00 360.00 33.00 7.60 6500.00 325.00 6175.00 27900.00 103000.00 73.81 0.58 16.68 22.14 17.76 

Mean B 12.68 278.89 37.50 7.74 6522.22 326.11 6196.11 27238.89 93227.78 87.57 0.65 15.05 20.04 16.07 

1 C 7.70 370.00 33.00 7.60 6600.00 330.00 6270.00 27600.00 92400.00 90.70 0.72 14.74 19.25 15.93 

2 C 9.20 330.00 38.00 7.90 7900.00 395.00 7505.00 26100.00 110000.00 102.94 0.60 14.66 22.91 18.97 

3 C 7.60 240.00 27.00 7.80 2800.00 140.00 2660.00 36300.00 43600.00 89.73 0.73 16.39 9.08 7.52 

Mean C 8.17 313.33 32.67 7.77 5766.67 288.33 5478.33 30000.00 82000.00 94.46 0.68 14.97 17.08 14.14 

1 D 5.80 1200.00 39.00 7.60 11100.00 555.00 10545.00 12300.00 214000.00 173.31 0.35 20.29 46.59 36.90 

2 D 6.90 860.00 33.00 7.10 13500.00 675.00 12825.00 8930.00 292000.00 256.25 0.24 22.77 63.57 50.34 

3 D 5.70 820.00 40.00 7.50 8100.00 405.00 7695.00 19500.00 127000.00 118.20 0.57 16.50 27.65 21.90 

Mean D 6.13 960.00 37.33 7.40 10900.00 545.00 10355.00 13576.67 211000.00 182.59 0.39 20.38 45.93 36.38 
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Appendix 6: Box-Plots of Soil Property Levels in Sites A, B, C and D and of K in  

Vertical Distance Transects in Site B (*denotes significant differences between sites) 

 
Figure 1: Box-plot of N (ppm) in Sites* A, B, C and D  Figure 2: Box-plot of P (ppm) in Sites* A, B, C and D 

Figure 3: Box-plot of K (ppm) in Sites* A, B, C and D  Figure 4: Box-plot of Mg (ppm) in Sites* A, B, C and D 

 

 

 

 

 

 

 

 

Figure 5: Box-plot of pH in Sites* A, B, C and D                Figure 6: Box-plot of BD (g/cm3) in Sites* A, B, C and D 
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Appendix 6 Continued: Box-Plots of Soil Property Levels in Sites A, B, C and D and of K in 

Vertical Distance Transects in Site B (*denotes significant differences between sites or transects) 

 
Figure 7: Box-plot of %SOM in Sites* A, B, C and D                Figure 8: Box-plot of SOC (ppm) in Sites* A, B, C and D 

 

 

 

 

 

 

 

 

Figure 9: Box-plot of SM (%) in Sites* A, B, C and D Figure 10: Box-plot of K (ppm) in Vertical Distance 

Transects* of Site B 
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Appendix 7: Means Plots of Soil Property Levels at Horizontal Distance (HD) Transects of        

Site A and Site B (where *denotes significant differences between transects) 

 

Figure 1: Means Plot of N (ppm) at    Figure 2: Means Plot of P (ppm) at  

HD Transects of Site A* and Site B*    HD Transects of Site A* and Site B* 

 

 

 

 

 

 

 

 

Figure 3: Means Plot of Mg (ppm) at    Figure 4: Means Plot of SOC (ppm) at  

HD Transects of Site A* and Site B*    HD Transects of Site A* and Site B* 

 

 

 

 

 

 

 

Figure 5: Means Plot of K (ppm) at    Figure 6: Means Plot of pH at  

HD Transects of Site A and Site B    HD Transects of Site A and Site B 
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Appendix 7 Continued: Means Plots of Soil Property Levels at Horizontal Distance (HD) 

Transects of Site A and Site B(where *denotes significant differences between transects) 

 

 

Figure 7: Means Plot of BD (g/cm3) at   Figure 8: Means Plot of SM (%) at  

HD Transects of Site A and Site B*    HD Transects of Site A and Site B* 

 

 

 

  

 

 

 

Figure 9: Means Plot of IC (ppm) at  

HD Transects of Site A and Site B 

 

 

 

 

 

 

 

 

 

 

 


