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Abstract

Color plays a vitally important role in the world we live in. It surrounds us everywhere

we go. Achromatic life, restricted to black, white and grey, is extremely dull. Color fascinates

artists, for it adds enormously to aesthetic appreciation, directly invoking thoughts, emotions

and feelings. Color fascinates scientists. For decades, scientists in color imaging, printing and

digital photography have striven to satisfy increasing demands for accuracy in color reproduc-

tion.

Fluorescence is a very common phenomenon observed in many objects such as gems and

corals, writing paper, clothes, and even laundry detergent. Traditional color imaging algo-

rithms exclude fluorescence by assuming that all objects have only an ordinary reflective com-

ponent. The first part of the thesis shows that the color appearance of an object with both

reflective and fluorescent components can be represented as a linear combination of the two

components. A linear model allows us to separate the two components using independent

component analysis (ICA). We can then apply different algorithms to each component, and

combine the results to form images with more accurate color.

Displaying color images accurately is as important as reproducing color images accurately.

The second part of the thesis presents a new, practical model for displaying color images on

self-luminous displays such as LCD monitors. It shows that the model accounts for human

visual system’s mixed adaptation condition and produces results comparable to many existing

algorithms.
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Chapter 1

Introduction

Color plays a vitally important role in the world we live in. It surrounds us everywhere we

go. Achromatic life with only black, white and grey would be extremely dull. Color fascinates

artists, for it adds enormously to aesthetic appreciation. Artists manipulate color in their design

to provoke thoughts, convey emotions and induce feelings. Color also fascinates scientists. For

decades, scientists in color imaging, printing and digital photography have striven to satisfy

increasing demands for accuracy in color reproduction. As a researcher in computer graphics,

my goal is to explore how to reproduce the color of objects realistically on computer displays.

To achieve such a goal, two questions must be considered: how to reproduce color accurately

and how to display color accurately.

Fluorescence in color imaging

For decades, researchers in computational color constancy have proposed many algorithms

and models to predict the true color of objects in images [2, 16, 10]. Researchers in image repro-

duction and realistic rendering strive to reproduce objects with accurate color under arbitrary

illumination conditions [23, 41]. While algorithms for computing color appearance vary greatly,

they share a common assumption: none of the objects in the scene exhibit fluorescence. Fluo-

rescence is the emission of visible light by objects that are exposed to a source light covering

the ultraviolet range (e.g. sunlight and ultraviolet light). In reality, fluorescence is a common
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Figure 1.1: Fluorescent objects: gems and corals, clothes, banana and fluorescent sheets.
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phenomenon observed in many objects, from gems and corals, to different kinds of writing

paper and our clothes (Figure 1.1). Therefore, to handle color accurately, computer vision and

image synthesis algorithms ought to take fluorescence into account.

By experimentation, I discovered that a composite object with both ordinary reflective and

fluorescent components has the color appearance that is the sum of the two components in-

teracting with illumination differently. To handle the two components correctly, it is necessary

to separate them. This motivated me to develop a method for separating fluorescence from

reflectance. Then assume in an ordinary color camera, the color of a generic pixel pc on the

captured image is a linear contribution

pc = ac pc, O + bc pc, F,

where c = {R, G, B}, pc, O and pc, F are the color of the ordinary reflective and fluorescent com-

ponents. Let ac and bc be the coefficients to represent the amount of contribution from each

component to the pixel color pc. ac and bc depend on the interactions between each component

and the illuminant1. Since we do not know the illumination condition under which pc is taken,

we need to solve for pc, O and pc, F when only the pixel colors, pc, are known. To make this

hard problem solvable, I assume that the reflective and fluorescent components of an image

are statistically independent. The assumption is reasonable because, in the absence of image

interpretation, the spatial distribution of fluorescent component is uncorrelated with the spatial

distribution of the reflective component. Based on the linear contribution model, I show that

given the complete set of pixels {pc} for two images taken under different illuminants, pc, O and

pc, F can be effectively recovered using independent component analysis (ICA).

This thesis describes an attempt at separating the reflective and fluorescent components of

an image. It makes the following contributions in the area of realistic color imaging:

• providing a theory of fluorescent phenomenon,

• showing that the color of a fluorescent surface is not affected by the color of its illuminant,

in which it differs from an ordinary reflective surface, and
1The light source that illuminates the object.
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• proposing a method for separating the reflective and fluorescent components of an image

using ICA, and an improved method for relighting images under an arbitrary illuminant.

Display color accurately

When we view images on a self-luminous display such as an LCD monitor, our percep-

tion of color depends partly on sources of illumination portrayed by the scene, and partly on

sources of illumination in the viewing environment. When the viewing environment changes,

our perception of color changes, causing an undesirable discrepancy in our viewing experience.

To solve such problems, color appearance models have been created to predict how perception

changes with the viewing environment. These models aim to provide viewers with a viewing

experience independent of illumination. The display industry now provides adaptive displays

that use color appearance models to compensate for achromatic changes in the viewing envi-

ronment. However, existing full-blown color appearance models have the complexity that is

more than needed to support adaptive displays. In this thesis, I propose a simple model for

adaptive displays based on the von Kries hypothesis, a fundamental theory for human color

vision. It takes into account the chromatic adaptation mechanism that occurs in addition to

achromatic adaptation when viewers look at images on displays. Compared to existing color

appearance models, my model is more efficient and suitable for adaptive displays. My contri-

butions to the science of adaptive displays are:

• proposing a practical model for adaptive displays based on the von Kries hypothesis,

• showing that the model accounts for chromatic adaptation to the illumination condition

in the image and to the viewing environment,

• showing that the model is simpler than other existing full-blown color appearance mod-

els, yet produces comparable results.

The rest of the thesis is structured as follows. Chapter 2 summarizes research in spectral

rendering of fluorescent objects, color perception, and adaptive displays. Chapter 3 presents

a theory and experimental results on how fluorescent surfaces interact with their illuminants,
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and a method for separating the ordinary reflective and fluorescent components of an image.

Chapter 4 presents the derivation of my color appearance model for adaptive displays. The

results, including image separation, relighting, and evaluations of the proposed color appear-

ance model are presented in Chapter 5. Contributions, limitations and future directions of my

research are discussed in Chapter 6.
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Chapter 2

Related Work

The importance of reproducing color accurately and faithfully is apparent in many areas of

computer science. In computer graphics, the color of illuminated objects must be rendered

accurately. Computer vision and color imaging use the color appearance of objects under the

current illumination to identify objects, and to predict their appearance under other illumina-

tion conditions. This chapter starts by summarizing previous research in spectral rendering of

fluorescent objects.

2.1 Spectral Rendering and Fluorescence

Achieving realism is an important goal of rendering. Faithful reproduction of the color of

objects compared to their real-world counterparts is an important determinant of realism. The

perceived color of an object is determined by the spectral composition of the light leaving it.

The makeup of this light is a combination of the illuminant (the light source that illuminates the

object), and the object’s reflectance (the way the object modifies the illuminant). Most common

rendering techniques and platforms such as basic raytracing, OpenGL [31] and RenderMan [42]

parametrize the perceived color by only three numbers, each conceived as the excitation of

an RGB channel. In other words, the illuminant and reflectance are approximated by three
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Figure 2.1: Energy-level diagram illustrating fluorescence.

color channels. To improve accuracy, researchers have often proposed spectral rendering, which

parametrizes color by a discrete spectrum, the energy density at each of many wavelengths in

the visible spectrum. A non-fluorescent object absorbs photons in the visible range, 380 nm to

720 nm. The electrons in the molecules are excited to a higher energy level but immediately

drop back to the original energy state, releasing energy in the form of emitting a photon of equal

wavelength. Therefore, for a non-fluorescent object, we specify its reflectance corresponding to

each wavelength of the illuminant. The observed spectrum Φ(λ) of a non-fluorescent object is

Φ(λ) = I(λ)R(λ), (2.1)

where I(λ) is the spectrum of the illuminant and R(λ) is the reflectance of the object.

Fluorescent objects interact with illuminants differently than non-fluorescent objects. Most

fluorescent objects absorb light in the near ultraviolet (UV) range, 200 nm to 380 nm, and re-emit

visible light 380 nm to 720 nm. A few objects absorb short-wavelength visible light, 380 nm to

500 nm, and re-emit longer-wavelength visible light. The difference is explained by theories in
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molecular physics [27] (Figure 2.1). Initially, the molecules of a fluorescent object are structured

as a lattice in equilibrium in the ground energy state A. When the lattice is irradiated with

incident light, the electrons are excited from the ground state A to a higher energy state B. After

the transition, a re-arrangement of the ions in the lattice takes place and the system assumes

an equilibrium state C. Some energy is dissipated within the lattice during the transition

from B to C. From the equilibrium state C, light is emitted when electrons drop back to the

ground state D. From D, the structure of the lattice is re-arranged again to reach the stable

equilibrium ground state A. The lifetime of the excitation from state A to state B is 105 times

longer than the period of lattice re-arrangement (B to C). Thus no matter how the electrons

reach the excited state B, the system comes to an equilibrium state (C) before emission. This

implies that the intensity of the emitted spectra of a fluorescent object depends on the incident

light, but the frequency distribution does not. The excitation spectrum of a fluorescent object

shows how much energy from the illuminant is absorbed at each wavelength; it is a function

of the wavelength of the illuminant. For each wavelength in an excitation spectrum, there is

a corresponding emission spectrum that shows the frequency distribution and intensity of the

emitted light. Usually the emission spectrum is a function of wavelength covering the visible

range. The frequency distribution of all emission spectra is constant, but the intensity varies.

The properties of fluorescent objects are well shown with experimental results. Figure 2.2(a)

shows the measured emission spectra of a red-orange fluorescent sheet. Each colored spectrum

corresponds to the illuminant at different wavelength, and have the same frequency distribution

as one another. Figure 2.2(b) shows the normalized 1 excitation (dotted line) and emission (solid

line) spectra of the sheet. From the emission spectrum we can see that the sheet appears reddish

orange when it is illuminated by light in the range of 380 nm to 650 nm.

Based on the molecular physics of fluorescent objects, researchers in computer graphics de-

veloped algorithms for rendering fluorescent objects [41, 23]. To obtain the observed spectrum

of a pure fluorescent surface, we must consider the overall contribution from its illuminant,

excitation and emission. Suppose the illuminant is I and its intensity at wavelength λi is I(λi).

1Spectral power distribution is normalized so that the minimum intensity is 0 and the maximum intensity is 1.0.
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(a) Measured emission spectra of a red-orange fluorescent sheet. Each

colored spectrum corresponds to the illuminant at a particular wavelength.

(b) Normalized excitation (dotted line) and emission (solid line) spectra of a red-orange

and green-yellow fluorescent sheet.

Figure 2.2: Measured spectra of a red-orange and green-yellow fluorescent sheet.
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Let K and J represent the normalized excitation and emission spectrum, respectively. Then the

observed spectrum, Φ(λ, λi), resulting from the illuminant at λi is

Φ(λ, λi) = I(λi)K′(λi)J(λ), (2.2)

where K′(λi) ≡ K(λi)∫
K(λi)dλi

is the relative intensity of the excitation caused by the illuminant

at wavelength λi. Since I(λi)K′(λi) is a scalar, all Φ(λ, λi)’s have the same shape as J(λ).

Considering the illuminant at all wavelengths, the overall observed spectrum is computed by

summing up Φ(λ, λi)’s for all wavelength λi, i.e.,

Φ(λ) =

(∫
I(λi)K′(λi)dλi

)
J(λ). (2.3)

Note that the range of λi depends on the illuminant, and the range of λ is the range of the

observed light we wish to measure. Equations 2.2 and 2.3 are not exact representations of the

molecular physics of fluorescent objects, whose units are written in Watts instead of relative

density. However, the results in Sun’s [41] and Johnson’s [23] work showed that the equations

capture the properties of fluorescent objects well enough to improve the accuracy of object

rendering.

2.2 Color Perception

Presenting an image to viewers with accurate color information is as important as producing

an image with accurate colors. To properly present an image to viewers, we must understand

how people perceive color.

Müller’s zone theory is the current accepted theory of human color vision [33]. The process

of perceiving color is divided into three zones. In the first zone, light is absorbed and converted

into neural activity. The second zone is neural interaction on the retina, which consists of

bipolar, horizontal and ganglion cells in addition to photoreceptors. This process generates

neural signals, conveyed to the brain by the optical nerves. The third zone is located in the

brain where the neural signals are interpreted, producing perception and action.
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2.2.1 Chromatic Adaptation and Color Appearance Models

As mentioned in Section 2.1, the color of an object depends on the distribution of the spectrum

it emits. Each emission spectrum covers a range of wavelengths, so the set of physical colors

is thought of as an infinite dimensional space. Physiologically, each human cone cell is one of

three types of photoreceptors, responding to light of relatively long (L), medium (M) and short

(S) wavelengths (Figure 2.3). Therefore, we reduce the dimension of physical colors and model

perceived colors using three cone responses: the extents to which each of the three types of

cones is stimulated. Each cone response L, M or S, is a linear combination of three additive

primaries called tristimulus values. Tristimulus values are the results of integrating emission

spectrum with a set of color matching functions that specify the “unit amount" of tristimulus

values at each wavelength. The computation of tristimulus values is outlined in Appendix B.

Cone responses are generated in the first zone in Müller’s zone theory. Researchers dis-

covered that these responses, or gain on the photoreceptors, are self-adjusted according to

illumination conditions of the viewing environment. The process is called chromatic adaptation.

Chromatic adaptation allows us to adapt to varying illumination conditions, thereby approx-

imately preserve perceived color. The most widely accepted theory on chromatic adaptation

was hypothesized by Johanne von Kries in 1890s, which states that during chromatic adap-

tation, the gain for each type of receptor scales independently. The physical change in the

photoreceptors causes viewers’ perception of color to change. To compensate for chromatic

adaptation, researchers introduced color appearance models (CAMs), which modify the displayed

color of an image to provide the appearance adaptation would produce.

CAMs are based on a parameterized description of the viewing environment. For example,

CIELAB [40], Hunt [21], Nayatani et al. [34], RLAB [11] and Fairchild’s model [12] are earlier

CAMs proposed by different researchers. von Kries hypothesis on chromatic adaptation is an

important part of all these models. Fairchild studied the models in detail, comparing their

performance under viewing conditions with different sources of illumination, luminous and

background, etc. [6]. He concluded that, even though von Kries hypothesis is rudimentary

and not usually known as a color appearance model itself, its predictions on changes in color
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Figure 2.3: Response curves for human cone cell photoreceptors [23].

appearance are not much different than complex color appearance models. Luo et al. conducted

a quantitative study on color appearance involving human subjects [30]. The result of the study

was the LUTCHI data set containing 43,332 color appearance data points obtained under many

viewing environments with different illuminants and luminance. Since then, most of the newly

proposed CAMs, such as CIECAM02 [32], have been tuned to match the LUTCHI data set.

CIECAM02 was created by a technical committee reporting to the International Commission

on Illumination (CIE) in 2002. It is a unified model that supersedes the previous models. It

is a complex model with many equations taking into account chromatic adaptation, surround

luminance, brightness of illuminant, etc. , to predict the appearance of reproduced colors. Kim

proposed a new CAM, also based on modified von Kries chromatic-adaptation model [26].

Even though Kim’s model takes a different approach than CIECAM02 and their derivatives, its

goal is still to match with LUTCHI data set as well as possible. The parameters in the model

were obtained by curve-fitting, and the validity of the model when applying to displays were

13



shown using experiments. Lee’s model [29] is another CAM based on curve-fitting the LUTCHI

data set. Both Kim’s and Lee’s models are shown to match the LUTCHI color appearance data

well.

2.2.2 Color Constancy

After chromatic adaptation, cone responses are conveyed to the brain by optical nerves. In the

third zone in Müller’s zone theory, the responses are interpreted. An important phenomenon

that occurs during the interpretation is color constancy, in which the effect of illuminant por-

trayed within the displayed image is discounted from the perceived color. The term color

constancy also refers to the mechanism for the discount of illuminant. The human color con-

stancy mechanism consists of two components: estimating the illuminant and revising per-

ceived color values based on the estimate. Color constancy is of great interest to researchers in

realistic image reproduction for two reasons. First, color constancy algorithms can be used to

remove unwanted color casts caused by illuminant; such process is called white balance in digital

photography. Secondly, color constancy algorithms can be used to compute the constant color

descriptor of an image under some reference illuminant. Such descriptor can be used to identify

objects, or produce images of the same scene under other illuminants without re-rendering the

scene. Existing color constancy algorithms are models of the human color constancy mecha-

nism, and mainly differ in estimating the illuminant portrayed in the image. Some examples

are

White-patch Retinex: Assume there is a white patch in the scene. The color of the illuminant

is the color of the white patch [19].

Gray World: Assume that on average, the world is gray. The color of the illuminant is

estimated as the average of the RGB channels for all pixels [20].

Gamut mapping: The set of all possible RGB (i.e., gamut) due to surfaces in the scene under

canonical illuminant is computed first. The color of the unknown illuminant is estimated as

factors that map the gamut under this illuminant to the gamut under canonical illuminant [16,

14



15].

Statistics and machine learning: This group of methods uses techniques from machine learn-

ing and statistics such as Baysian network and neural network. They assume that the set of

possible illuminants is known. To estimate the illuminant in a given image, every pixel is used

to vote for the likelihood of each illuminant in the set [17, 18].

Many studies on comparing existing color constancy algorithms were done [10, 4, 5, 2],

concluding that the algorithms all have significantly different approaches and performance.

However, they share an important assumption: none of the objects in the image are fluores-

cent. In other words, the generic reflectance model in Equation 2.1 was used in all algorithms.

Recently, researchers realized that such assumption limits the accuracy of color constancy al-

gorithms. Barnard proposed ways to improve color constancy algorithms by including spectral

data of several fluorescent objects [3]. His work was mainly based on experimental measure-

ments and did not provide comprehensive models for fluorescent surfaces. Part of my research

is to extend Barnard’s work. By taking fluorescence into account, I am able to predict the color

of objects under arbitrary illuminants more accurately than existing color constancy algorithms,

and achieve better realism in color imaging.

2.3 Adaptive Displays

Once we have an image with accurate color information, we can consider implementing a color

appearance model to display it accurately on self-luminous displays such as mobile phones,

LCD monitors and TV’s. Many color appearance models (CAMs) have been adopted by re-

searchers in the display industry for building adaptive displays. An adaptive display has built-in

sensors to detect changes in the viewing environment [1, 28]. For example, the LCD screen of

an iMac G5TM has a built-in ambient light sensor that detects changes in the brightness of the

ambient. The screen is automatically dimmed when the ambient illumination decreases so that

viewers do not experience a sudden contrast increase between screen brightness and surround

brightness. However, this adaptive screen does not adjust the color of the displayed images to
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account for chromatic adaptations, which makes it less perfect.

Many researchers studied how chromatic adaptation mechanism works when viewing adap-

tive displays with various surrounding conditions. In particular, Katoh et al. [25] and Seok et

al. [39] pointed out that when looking at images on self-luminous displays, viewers are par-

tially adapted to the displayed color image and partially to the ambient. As a result, a good

CAM for adaptive displays must take into consideration both sources of adaptation.

It is also important to evaluate the performance of a CAM on actual displays. Park et al. [35]

provided an evaluation of the original CIECAM02, as well as a refined version of CIECAM02

on a mobile display with seven human observers. He showed that the refined version had

significant improvement in visual evaluation. Lee et al. [28] evaluated their own model on

an HDTV with RGB sensors. They provided the schematics of integrated RGB sensors and

concluded that the adjusted images had better visual quality. Lee et al. ’s design of RGB sensors

can be easily implemented in LCD displays, to work with other CAMs.
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Chapter 3

Fluorescence in Color Images

Previous research in realistic color imaging discussed in Chapter 2 showed that traditional

image reproduction algorithms have significant limitations, especially when dealing with fluo-

rescent objects or surfaces. For instance, Figure 3.1(a) is an image seen under white light. The

image consists of two fluorescent sheets (the flowers) on top of a non-fluorescent background

image with ordinary reflective surfaces. If we want to predict what objects look like under

green light without re-rendering the entire scene, we can relight the image using traditional

relighting algorithms. For example, if we apply straightforward white-balance algorithm by

adding green color cast to the entire image, we obtain an image in which the color of fluores-

cent objects, in particular, is not reproduced accurately (Figure 3.1(b) vs. Figure 3.1(c)). Other

relighting or color constancy algorithms in previous research take similar approaches: various

green cast would be added to the entire image without distinguishing between fluorescent and

non-fluorescent objects.

The example above clearly shows that a pigmented surface’s reflective and fluorescent com-

ponents interact with illuminants differently. To achieve accurate relighting, it is necessary to

separate the two components and process each component separately. This chapter presents

a method for separating the reflective and fluorescent components of an image using unique

properties of fluorescent surfaces.
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(a) Test image under white light.

(b) Test image under green light predicted

by traditional relighting algorithms.

(c) Test image under green light. (Ground

truth).

Figure 3.1: Ground truth vs. relighted image produced by traditional relighting algorithm.
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3.1 Properties of Fluorescent Surfaces

Section 2.1 showed that the emission spectrum of a fluorescent surface is, up to a constant,

independent of its illuminant. Thus fluorescent surfaces have constant chromaticity when illu-

mination condition varies. The proof of this property can be shown mathematically. We can

compute the tristimulus values (see Appendix B) of a fluorescent surface from Equation 2.3 as

X =
∫

I(λi)K′(λi)dλi ·
∫

x̄(λ)J(λ)dλ, (3.1)

Y =
∫

I(λi)K′(λi)dλi ·
∫

ȳ(λ)J(λ)dλ, (3.2)

Z =
∫

I(λi)K′(λi)dλi ·
∫

z̄(λ)J(λ)dλ, (3.3)

where x̄(λ), ȳ(λ), z̄(λ) are the CIE color matching functions that specify the “unit amount" of

tristimulus values at each wavelength, λi is integrated over the range of illuminant wavelength,

λ is integrated over the range of visible light wavelength (380 nm to 720 nm), and K′(λi) is

defined in Equation 2.2. Let

X0 =
∫

x̄(λ)J(λ)dλ,

Y0 =
∫

ȳ(λ)J(λ)dλ,

Z0 =
∫

z̄(λ)J(λ)dλ,

be the reference tristimulus values of the normalized emission spectrum J. Substituting X0, Y0 and

Z0 into Equations 3.1 to 3.3, we have X = kX0, Y = kY0, and Z = kZ0 with k =
∫

I(λi)K′(λi)dλi.

Note that k is a scalar and its value depends on the spectral power distribution of the illuminant

and the excitation spectrum.

Now define reference chromaticities as

x0 =
X0

X0 + Y0 + Z0
,

y0 =
Y0

X0 + Y0 + Z0
.
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Figure 3.2: Fluorescent and non-fluorescent test surfaces. Left to right: red-orange,

green-yellow, yellow-orange, cyan, yellow, red, green, purple.

Then the x-chromaticity of the object under an arbitrary illuminant becomes

x =
X

X + Y + Z

=
kX0

kX0 + kY0 + kZ0

=
X0

X0 + Y0 + Z0

= x0.

Similarly, y = y0. Thus the chromaticity of the fluorescent material is independent of both the

illuminant and excitation spectrum; it only depends on the emission spectrum.

The claim of constant chromaticity was verified with experiments. The chromaticities of

eight fluorescent and non-fluorescent surfaces (Figure 3.2) were measured under sixteen dif-

ferent illuminants using a spectrometer. The illuminants include four CIE standard daylights

(Figure 3.3 Top), five indoor lights (Figure 3.3 Middle) and six random colored illuminants (Fig-

ure 3.3 Bottom). Table 3.1 shows the correlated color temperatures (CCT) of the CIE standard

daylights and indoor lights.

Figure 3.4 shows the chromaticities-vs-illuminants plots of the experiments. The color of

each line corresponds to the color of a test surface under white light. The plots show that as

illuminants change, the chromaticities of fluorescent surfaces do not change as dramatically as

reflective surfaces. Table 3.2 provides a more quantitative comparison. Under standard day-

lights, both x- and y-chromaticities of non-fluorescent surfaces on average vary twice as much

as fluorescent surfaces. Table 3.3 shows that under random colored illuminants, the variation

in x-chromaticities of non-fluorescent surfaces is twice as much as fluorescent surfaces, and the
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Figure 3.3: Illuminants used in verifying constant chromaticity. Top: four CIE standard

daylights (D50, D55, D65, D75). Middle: five indoor lights (E, A, F1, F2, F3). Bottom: random

colored lights.
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(a) Chromaticities of fluorescent surfaces

vs. standard illuminants.

(b) Chromaticities of reflective surfaces

vs. standard illuminants.

(c) Chromaticities of fluorescent surfaces

vs. colored illuminants.

(d) Chromaticities of reflective surfaces

vs. colored illuminants.

Figure 3.4: x-chromaticities (top) and y-chromaticities (bottom) plots for test surfaces under

various illuminants.
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Illuminant Description CCT(Kelvin)

E Equal-energy white 5454

A Incandescent/Tunsten 2856

D50 Horizon light 5003

D55 Mid-morning daylight 5503

D 65 Noon daylight 6504

D75 North sky daylight 7504

F1 Daylight fluorescent 6430

F2 Cool white fluorescent 4230

F3 White fluorescent 3450

Table 3.1: Descriptions and CCT’s of CIE standard illuminants.

y-chromaticities varies more than five times. The fluorescent green-yellow surface has a greater

variance than red-orange and yellow-orange surfaces because its excitation spectrum covers a

narrower wavelength range; it exhibits strong fluorescence only for illuminants with much en-

ergy between 450 nm and 525 nm (Figure 2.2(b)). Some colored illuminants in the experiments

have weaker intensity in the 450 nm to 520 nm range. Therefore, fluorescent green-yellow sur-

face has a greater variance in color change than red-orange and yellow-orange surfaces.

The property of having constant chromaticity gives us a great way to distinguish fluores-

cence from reflectance. In the next section, a method for separating fluorescence from re-

flectance is presented.
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Surfaces Maximum Difference (x,y) Standard Deviation (x,y)

Fluorescent

Red-orange (0.03, 0.01) (0.008, 0.004)

Green-yellow (0.11, 0.07) (0.032, 0.018)

Yellow-orange (0.05, 0.03) (0.014, 0.006)

Average (0.06, 0.04) (0.018, 0.010)

Non-fluorescent

Cyan (0.12, 0.13) (0.042, 0.025)

Yellow (0.12, 0.03) (0.032, 0.010)

Red (0.21, 0.07) (0.054, 0.023)

Green (0.12, 0.07) (0.038, 0.020)

Purple (0.16, 0.12) (0.046, 0.036)

Average (0.15, 0.08) (0.042, 0.025)

Table 3.2: Variations in the chromaticities under CIE standard daylights and indoor lights.
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Surfaces Maximum Difference (x,y) Standard Deviation (x,y)

Fluorescent

Red-orange (0.02, 0.04) (0.007, 0.020)

Green-yellow (0.15, 0.14) (0.057, 0.055)

Yellow-orange (0.01, 0.08) (0.004, 0.036)

Average (0.06, 0.09) (0.023, 0.037)

Non-fluorescent

Cyan (0.23, 0.55) (0.076, 0.247)

Yellow (0.16, 0.42) (0.068, 0.169)

Red (0.14, 0.46) (0.052, 0.205)

Green (0.24, 0.52) (0.079, 0.226)

Purple (0.21, 0.56) (0.073, 0.259)

Average (0.12, 0.50) (0.069, 0.221)

Table 3.3: Variations in the chromaticities under random colored illuminants.
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3.2 Separating Reflective and Fluorescent Components of an Image

Most relighting algorithms work on RGB-specified images rather than spectrally-specified ones.

Therefore it is important to have a method for identifying the fluorescent component of an

image taken by regular cameras. A regular charged-couple device (CCD) camera has three

color channels: Red (R), Green (G) and Blue (B). The color of each pixel on the image taken by

a CCD camera, p, is computed as the sum of the colors for all three channels, i.e.,

p = pR + pG + pB.

Let pc be the color of a pixel for channel c where c = {R, G, B}. Then for an image of objects

with both reflective and fluorescent components, pc is computed as the sum of the color for

reflective component pc, O and the fluorescent component pc, F, i.e.,

pc = ac pc, O + bc pc, F. (3.4)

As the illumination changes, the contribution to the appearance of the object from the reflective

and fluorescent components changes. Let ac and bc be the coefficients to represent the amount

of contribution from each component to the pixel color pc. ac and bc depend on the interactions

between each component and the illuminant. Now the color of a pixel for each channel, pc, is

represented as a linear combination of the reflective component pc, O and fluorescent component

pc, F. Both are unknown. The spectral distribution of the illuminant under which p is taken, is

also unknown. To tackle the problem of blindly separating the two components when only the

set of pixel colors, {p} are known, I assume that the two components are independent. This

assumption is reasonable since in the absence of image interpretation, the spatial distribution

of the fluorescent component is uncorrelated to the spacial distribution of the reflective com-

ponent. Farid and Adelson proposed an effective algorithm for blind component separation of

an image: they used independent component analysis (ICA) [22] to separate a painting from

a reflection on the glass covering the painting [14]. The fluorescent component of an image is

analogous to the painting itself in Farid and Adelson’s problem, and the reflective component

is analogous to the reflection of an observer off the glass. By applying ICA 1, I successfully
1The FastICA package in MATLAB is used in the experiments.
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separated the reflective and fluorescent component of an image using images of the scene

taken under two different illuminants. The algorithm is applied independently to each of the

three RGB channels of the input images. The separation results are six images: three for each

component. The examples are shown in Chapter 5.

3.3 New Approach in Relighting Images

The ability to separate the ordinary reflective and fluorescent components of an image provides

an improved method for relighting images. Traditional relight algorithms relight an image

uniformly, i.e.,

original image
relighting−−−−−→ new image.

The new approach, on the other hand, relights only the reflective component and preserves the

fluorescent component, i.e.,

original image

 reflective component
relighting−−−−−→ new reflective component

fluorescent component

 new image

Figure 3.5 shows the result produced by the new approach. Compared to the result produced

by traditional relighting algorithms (Figure 3.1) at the beginning of the chapter, it is evident

that the new approach produces an output image with more accurate color.
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(a) Test image under white light.

(b) Test image under green light predicted

by the new approach.

(c) Test image under green light. (Ground

truth).

Figure 3.5: Ground truth vs. relighted image produced by the new approach.
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Chapter 4

Adaptation and a New Model for

Adaptive Displays

The previous chapter discussed how to improve the presentation of images that are partly

fluorescent. In this chapter, I will show my research in how to present the images on self-

luminous displays accurately. As mentioned in Chapter 2, many color appearance models

have been proposed for preserving the color appearance of displayed images. However, these

models are both complicated and focusing on fitting experimental data. In this chapter, I

propose a model which takes into account viewers’ adaptation of the displayed content itself in

addition to the ambient illumination. The model is developed in three stages. First, we consider

how viewers look at and adapt to the displayed image. Then, we take chromatic adaptation

into account. Last, we apply the inverse of von Kries model, adjusting the displayed image to

maintain its color appearance.

Many matrices, square and rectangular, are used in deriving the model. To simplify the

notation, this chapter uses the Einstein notation (Appendix A).
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4.1 Internal Illumination

Suppose the reflectance at point x on the image is Rλ(x), where Rλ(x) is a continuous function

on the wavelength domain, and suppose the scene illuminant, Iµ is similar. λ and µ are usually

sampled in the visible light range, 380 nm to 720 nm, since human eyes respond to lights in

this range. For convenience, write the reflectance as a diagonal matrix, Rλ
µ(x). Then the light

emitted from the image at point x is Rλ
µ(x)Iµ. Then the tristimulus values at point x, Xi(x), are

Xi(x) = x̄i
λRλ

µ(x)Iµ,

where x̄i
λ are the color matching functions for i = {X, Y, Z}.

At point x on the display, the light emitted is Sλ(x), which is the sum of the normalized

primaries, Pλ
a , where a = {R, G, B}, times the excitations1, ea(x):

Sλ(x) = Pλ
a ea(x).

The corresponding tristimulus values are

Yi(x) = x̄i
λPλ

a ea(x) = pi
aea(x),

where we define pi
a as the primary chromaticities, the property of a self-luminous display which

can be found when calibrating the display [9].

Assume that there is no excess chromatic adaptation. In other words, the viewer’s chro-

matic adaptation is determined by the illuminant in the scene (Figure 4.1). We want to choose

excitations ea(x) so that the light entering the viewer’s eyes has the same tristimulus values as

the colors of the image. In other words,

Xi(x) = Yi(x),

which entails

Xi(x) = x̄i
λRλ

µ(x)Iµ = pi
aea(x). (4.1)

1e.g. ,the “amount" of primaries
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Xi(x) are known from the image and pi
a from display calibration. The unknown excitations,

ea(x), are

ea(x) = (p−1)a
i x̄i

λRλ
µ(x)Iµ, (4.2)

where pi
a(p−1)a

j = δi
j defines the inverse matrix of primary chromaticities. δi

j is the Kronecker

delta2.

4.2 Chromatic Adaptation

In the previous section, we assumed that the viewer is adapted to the illumination in the scene

from which the image was generated. We apply the zone theory in Section 2.2 to compute

the color in the presence of adaptation. The zone theory of color vision asserts that there is

a cone response matrix, Mi
r, where r = {L, M, S} and i = {X, Y, Z}, that maps the tristimulus

values (XYZ) to cone signals (LMS) in the photoreceptors. The entries in the matrix Mi
r were

determined experimentally decades ago by various researchers. A standardized matrix is used

in the CIECAM02 color appearance model [32]. Since tristimulus values are linear functions

of color matching functions, we can assume that the same cone response matrix is used to

transform color matching functions into spectral sensitivities of cones with respect to light at

the surface of the cornea. Define spectral sensitivities of cones to be

c̄r
λ = Mr

i x̄i
λ.

In the case where the illumination of the viewing environment is different from the scene

illuminant, the state of adaptation of the viewer is jointly determined by the two illuminants.

We use the von Kries model [13] to capture the effect of adaptation. According to the von

Kries model, the effect of chromatic adaptation is to scale the gain at the each type of cone cell

receptor. Thus we have

c̄r
λ = αr

s c̄
s
λ, (4.3)

2δi
j = 1 if i = j, δi

j = 0 otherwise.
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where αr
s is the diagonal von Kries adaptation matrix. In most color appearance models, the

diagonal entries of α are computed as Lmax2/Lmax1, Mmax2/Mmax1 and Smax2/Smax1, where the nu-

merators are the cone responses for white point3 of the illuminant in the adapted viewing

environment, and the denominators are the cone responses for the white point of the original

viewing condition [12].

The original color matching functions x̄i
λ then change to new adapted color matching functions,

x̄˜i
λ, where

x̄˜i
λ = (M−1)i

rαr
s Ms

j x̄j
λ,

with the inverse matrix defined by (M−1)i
s Ms

j = δi
j.

Using the adapted color matching functions, the adapted tristimulus values, Zi(x), of the

light emitted from the display at point x are

Zi(x) = (M−1)i
rαr

s Ms
j x̄j

λPλ
a ea(x)

= (M−1)i
rαr

s Ms
j pj

aea(x)

= p˜i
aea(x),

where the adapted primary chromaticities are

p˜i
a = (M−1)i

rαr
s Ms

j pj
a. (4.4)

Thus, p˜i
a can be computed from the primary chromaticities. The excitations ea(x) can be com-

puted with Equation 4.2 in the previous section.

In Section 4.1, the tristimulus values of point x on the image were computed to be Xi(x) =

pi
aea(x). But the viewer perceives the adapted tristimulus values Zi(x), a different color than

the tristimulus values on the image Xi(x) (Figure 4.2). Therefore achieving constancy in color

appearance requires the new excitation e˜a(x) such that

p˜i
ae˜a(x) = pi

aea(x). (4.5)

The new tristimulus values of the light emitted from the display are pi
ae˜a(x), which are called

the adjusted tristimulus values (Figure 4.3).
3The tristimulus values of a “white" surface under the illuminant.
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Figure 4.1: The illuminant in the viewing environment is the same as the scene illuminant. No

adaptation occurs. The color perceived by our brain is the same as the displayed color (Yi), so

we can observe the true color (Xi).
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Figure 4.2: When the illuminant in the viewing environment is not the same as the scene

illuminant, chromatic adaption causes the color perceived by our brain (Zi) to be different

from the displayed color (Yi), so we cannot observe the true color (Xi).
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Figure 4.3: To compensate for adaptation, we must adjust the displayed color (to Y′i) so that

the color received by our brain (Zi) is the same as the true color (Xi).

4.3 von Kries Model

The goal is to solve for the new excitations e˜a(x) such that Equation 4.5 holds. By substituting

the adapted primary chromaticities in Equation 4.4, we obtain

(M−1)i
rαr

s Ms
j pj

ae˜a(x) = pi
aea(x).

Thus

e˜a(x) = (p−1)a
j (M−1)

j
s(α
−1)s

r Mr
i pi

aea(x). (4.6)

Substituting Equation 4.1, we have

e˜a(x) = (p−1)a
j (M−1)

j
s(α
−1)s

r Mr
i Xi(x),

and the adjusted tristimulus values are

pi
ae˜a(x) = pi

a(p−1)a
j (M−1)

j
s(α
−1)s

r Mr
i Xi(x) (4.7)

= (M−1)
j
s(α
−1)s

r Mr
i Xi(x). (4.8)

Equation 4.8 shows that the adjusted tristimulus values at point x can be easily computed

by applying an inverse von Kries adaptation matrix to our cone responses to the original image.
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The proof in the next section shows that this model is valid when used to adjust the displayed

image to provide a uniform viewing experience.

4.4 Validity of von Kries Model

As mentioned in Section 4.2, the viewer’s state of adaptation is controlled jointly by the illumi-

nation of the viewing environment and the scene illuminant. Therefore to show the validity of

von Kries model, we reformulate the problem to take into account the scene illuminant as well.

4.4.1 Reformulation of the Problem

In Section 4.3, we substituted one equality Xi(x) = pi
aea(x) in Equation 4.1 into Equation 4.6 to

derive the von Kries model which only involves primary chomaticities and excitations. If we

substitute the other equality Xi(x) = x̄i
λRλ

µ(x)Iµ in Equation 4.1 to Equation 4.5, we obtain

p˜i
ae˜a(x) = x̄i

λRλ
µ(x)Iµ. (4.9)

Paralleling Equation 4.2, e˜a(x) is

e˜a(x) = (p−1)a
i x̄i

λRλ
µ(x)I˜µ,

where I˜µ is a new scene illuminant, chosen so that the tristimulus values on the display undo

the effect of the viewer’s adaptation to the illuminant in the viewing environment.

Substitute p˜i
a in Equation 4.4 and e˜a(x) to Equation 4.9

(M−1)i
rαr

s Ms
j pj

ae˜a(x) = x̄i
λRλ

µ(x)Iµ (4.10)

(M−1)i
rαr

s Ms
j pj

a(p−1)a
i x̄i

λRλ
µ(x)I˜µ = x̄i

λRλ
µ(x)Iµ (4.11)

(M−1)i
rαr

s Ms
j x̄j

λRλ
µ(x)I˜µ = x̄i

λRλ
µ(x)Iµ (4.12)

αr
s Ms

j x̄j
λRλ

µ(x)I˜µ = Mr
i x̄i

λRλ
µ(x)Iµ (4.13)
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In the equation above, the known values are the coefficients in the von Kries adaptation

matrix αr
s, the cone response matrix Ms

j (and Mr
i ), and the color matching functions x̄j

λ (and

x̄i
λ). The reflectance, Rλ

µ(x), is unknown since we cannot always predict what object is shown in

the image. Iµ is the original scene illuminant. We have no way to predict it; however later on,

we are able to show that by making reasonable assumptions, it is irrelevant. I˜µ and Rλ
µ(x) are

the unknowns. We assume the image is uniformly illuminated and it is impossible to obtain

the reflectance Rλ
µ for every single point x on the image. Thus the goal is to find a new scene

illuminant, I˜µ, that is independent of the reflectance Rλ
µ(x) so that Equation 4.13 holds.

4.4.2 Solve for a New Scene Illuminant

To solve for a new scene illuminant I˜µ, we first write Iµ and I˜µ as a linear combination of basis

functions for illuminants. Judd et al. [24] and Romero et al. [37] showed that there exist basis

functions for illuminants that cover most outdoor (daylight) and indoor lights, such that any

illuminant can be written as a linear combination of the basis functions. Thus we have

Iµ = mk Iµ
k , I˜µ = m˜ k Iµ

k , (4.14)

where Iµ
k is the k

th
basis function for illuminants. mk and m˜ k are the k

th
coefficients for k =

{1, 2, 3}.

Cohen [8] showed that there exist basis functions for the Munsell color chips with 1296

colors. The Munsell color chips are considered to span the set of reproducible colors in most

images [38]. Therefore we can write the reflectance at point x of an image as a linear combina-

tion of the basis functions for the Munsell color chips, i.e.,

Rλ
µ(x) = nl(x)(Rl)

λ
µ,

where (Rl)
λ
µ is the l

th
basis function for the Munsell color chips, and nl(x) is the l

th
coefficient

for l = {1, 2, 3}. Now Equation 4.13 can be written as

αr
s Ms

j x̄j
λ

(
nl(x)Rλ

l,µ

) (
m˜ k Iµ

k

)
= Mr

i x̄i
λ

(
nl(x)Rλ

l,µ

) (
mk Iµ

k

)
.
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Let Qλ
l,k = Rλ

l,µ(x)Iµ
k be the spectral power distribution of the l

th
reflectance basis interacting

with the k
th

illuminant basis. Then we have

αr
s Ms

j x̄j
λnl(x)Qλ

l,km˜ k = Mr
i x̄i

λnl(x)Qλ
l,kmk,

αr
sΨ

s
km˜ k = Ψr

kmk,

if Ψs
k = Ms

j x̄j
λnl(x)Qλ

l,k and Ψr
k = Mr

i x̄i
λnl(x)Qλ

l,k. Therefore

m˜ k = (Ψ−1)k
b(α
−1)b

r Ψr
kmk, (4.15)

where Ψs
k(Ψ

−1)k
b = δs

b and αr
s(α
−1)b

r = δb
s . By finding m˜ k, we can use Equation 4.14 to find I˜µ.

Figure 4.4(a) shows that when the viewing condition changes from equal-energy illuminant

(E) to incandescent light (A), the values of the new illuminant computed from 1296 different

colors from the Munsell color chips converge to the same number. The routine can be easily

implemented in MATLAB R© (Appendix E). The solution to solving for new scene illuminant,

written in full matrix form, can be found in Appendix C.

The result shows that we can find a single, uniform illuminant to re-illuminate the scene

so that the color appearance of the image is preserved. Figure 4.4(b) shows a similar plot

for new scene illuminant when the viewing condition changes from E to cyan light (RGB=

[94, 243, 255]). In other words, applying an inverse von Kries model has the same effect as

theoretically re-illuminating the image to compensate for viewer’s adaptation. The proposed

model was shown to be suitable for adaptive displays.

37



I
~I

(a) Illuminant changes from illuminant E to A

I

I
~

(b) Illuminant changes from illuminant E to cyan

light

Figure 4.4: Values of the new scene illuminant computed from 1296 Munsell color chips (black

dots), for different changes in viewing conditions. The values converge to a single value.
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Chapter 5

Results and Discussion

5.1 Image Separation and Relighting

Independent component analysis (ICA) is used to separate and relight several test images of

fluorescent objects taken by an ordinary CCD camera. The first image consists of colored

sheets. The sheets contain different amount of fluorescence and reflectance (Figure 5.1 Top).

The two flowers at the top are fluorescent, appearing green-yellow and red-orange under white

illumination. The flower in the middle and the leaves at the bottom are non-fluorescent, with

dark red and dark green reflectances.

The fluorescent and reflective components were recovered from images taken under a blue

illuminant and a yellow illuminant (Figure 5.2(a)). The recovered fluorescent component (Fig-

ure 5.2(b)) shows that the color of fluorescent component of the green-yellow fluorescent sheet

is in fact green. The measured emission spectrum of the sheet (Figure 2.2(b)) suggests that the

color of the fluorescent component is indeed green. Furthermore, images of the fluorescent

flowers were taken under UV light, which provided ground truth for the color of the fluo-

rescent component (Figure 5.1 Bottom). The recovered appearance agrees with experimental

results, as well as the ground truth. The dark red and dark green sheets used in making the

scene have ordinary reflectance only since the color of the middle flower and the leaves in the
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Figure 5.1: Top: colored sheets under white light. Bottom: fluorescent sheets under UV light.

recovered reflective component ( Figure 5.2(c)) is the same as the color under white illuminant

(flower and leaves at the bottom of Figure 5.1). It is also worth noting that the green-yellow

fluorescent flower appears to be reddish orange in the recovered image of the reflective compo-

nent. Combining the reddish orange color with the green color in the fluorescent component

gives the flower its yellow appearance.

ICA is effective on scenes with complex color patterns, and scenes that consist of real objects.

Figure 5.3 consists of two fluorescent flowers placed over a non-fluorescent background image

with complex color patterns. The proposed method succeeds in identifying the green and

red-orange color of the fluorescent sheets. The recovered image of the fluorescent component
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(a) Input test images (under blue and yellow illuminants).

(b) Image of the fluorescent component. (c) Image of the reflective component.

Figure 5.2: Recovered fluorescent and reflective components using images taken under blue

and yellow illuminants.
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(a) Test Image under white light.

(b) Input test images (under green and pink illuminants).

(c) Image of the fluorescent component. (d) Image of the reflective component.

Figure 5.3: Fluorescent and reflective components of an image with complex color patterns.

42



(a) Test image under white light. (b) Fluorescent sticks (with different orientation) under

UV light.

(c) Input test images (under yellow and purple illuminants).

(d) Recovered images of the fluorescent and reflective components.

Figure 5.4: Fluorescent and reflective components of an image with real objects.
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(Figure 5.3(c)) excludes the background image completely, which demonstrates the correctness

and effectiveness of the separation. Figure 5.4 shows the recovered results for a scene consisting

of real objects. The fluorescent sticks and non-fluorescent jar are separated into two images.

The color of the sticks (Figure 5.4(d)) matches with the ground truth (Figure 5.4(b)).

5.2 Comparison of New Model for Adaptive Displays with Existing

Models

An application was written to simulate an adaptive display, so as to compare the proposed

model for adaptive displays with other color appearance models (Figure 5.5(a)). The standard

illuminant is equal-energy white illuminant (E). The color of the new illuminant is changed

using sliders (Figure 5.5(b)). Four models, CIECAM02, Fairchild’s model, CIELAB, and our

model (von Kries) are compared under two sets of illuminant changes. First, the illuminant

changes from equal-energy (E) to incandescent (A), which has orange-yellow color. Then the

illuminant changes from E to cyan. The algorithms for the four models are provided in Ap-

pendix D.

Nine colors were selected to compare the adjusted colors under the new illumination. Fig-

ure 5.6 shows the results for four colors: red, green, blue and yellow. Figure 5.7, 5.8 and 5.9

show the adjusted colors on the u′v′ diagram. Visually the adjusted colors from CIECAM02,

Fairchild’s model and von Kries model are similar. The u′v′ plots (Figure 5.10) show the close-

ness in chromaticities of the adjusted colors. The adjusted images produced by CIELAB appear

different than the others, which agrees with the conclusions of other studies [6].

In my study, I focused on comparing the predictions of the proposed model with existing

models. The comparison of von Kries model with psychophysical data was previously done by

Fairchild [13]. Fairchild compared the predictions of von Kries model with the experimental

data obtained by Breneman [7]. The vector fields (i.e., direction of arrows) of Fairchild’s results

(Figure 5.11) agree with the results of my simulation (Figure 5.7, 5.8 and 5.9), implying that

von Kries model produces comparable results both in theory and in practice.
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(a) User interface of the adaptive display simulation system.

(b) Panels showing color of illuminants.

The color of the original illuminant and

the new illuminant can be modified

using sliders.

Figure 5.5: Adaptive display simulation system.
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Figure 5.6: Color changes predicted by four models (Top to bottom: von Kries, Fairchild’s,

CIELAB, CIECAM02). Left column: colors under E. Middle column: adjusted colors for

displaying under A. Right column: adjusted colors for displaying under cyan illuminant.
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Figure 5.7: Color changes predicted by CIECAM02 and von Kries model on the CIE u′v′

diagram. Red dots: original illuminant. Gray dots: new illuminant. Black dots: predictions of

CIECAM02. Blue dots: predictions of von Kries model.

The results computed by four models were also compared for input images with more

complex color patterns. Figure 5.12 shows the original images under illuminant E. Figure 5.13

to Figure 5.16 are the adjusted images under illuminant A and the cyan illuminant. It is evident

that when input images are more colorful and complex, it is no longer possible to see significant

difference between images predicted by different models.

Figures 5.7, 5.8 and 5.9 show that when the illuminant changes, the changes in tristimulus

values are large, many times larger than visual thresholds. Thus, when accurate color appear-

ance is important, such as while reading this paper, taking these adaptation effects into account

is important.
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Figure 5.8: Color changes predicted by Fairchild’s model and von Kries model on the CIE u′v′

diagram. Red dots: original illuminant. Gray dots: new illuminant. Black dots: predictions of

Fairchild’s model. Blue dots: predictions of von Kries model.

Figure 5.9: Color changes predicted by CIELAB and von Kries model on the CIE u′v′ diagram.

Red dots: original illuminant. Gray dots: new illuminant. Black dots: predictions of CIELAB.

Blue dots: predictions of von Kries model.
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(a) Plots of u′v′ values for illuminant changes from E to A.

(b) Plots of u′v′ values for illuminant changes from E to cyan light.

Figure 5.10: Plots of u′v′ values for predicted color changes.
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Figure 5.11: Predictions of corresponding-colors data using the von Kries model for

illuminants changing from simulated daylight (D65) to incandescent light (A). Open triangles:

visual data. Filled triangles: model predictions.

50



Figure 5.12: Test images under illuminant E.

Figure 5.13: Adjusted images for displaying under illuminant A. Top left: CIECAM02. Top

right: Fairchild’s. Bottom left: CIELAB. Bottom right: von Kries.
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Figure 5.14: Adjusted images for displaying under illuminant A. Top left: CIECAM02. Top

right: Fairchild’s. Bottom left: CIELAB. Bottom right: von Kries.
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Figure 5.15: Adjusted images for displaying under cyan illuminant. Top left: CIECAM02. Top

right: Fairchild’s. Bottom left: CIELAB. Bottom right: von Kries.

53



Figure 5.16: Adjusted images for displaying under cyan illuminant. Top left: CIECAM02. Top

right: Fairchild’s. Bottom left: CIELAB. Bottom right: von Kries.
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Chapter 6

Conclusions

6.1 Contributions

This thesis presents research that examined fluorescence and adaptation in color images. It

makes the following contributions:

• It provides a model of fluorescence and of the difference in color appearance between

fluorescence and reflectance under arbitrary illuminants.

• It shows how to separate the fluorescent and reflective components of an image using

independent component analysis. The separation provides an improved method for re-

lighting images under arbitrary illuminants.

• It proposes a practical model for adaptive displays based on a von Kries model of chro-

matic adaptation. The model takes into account the mixed adaptation that occurs when

viewers observe images on self-luminous displays. Examples show that the model is

simple, efficient, and produces results comparable to existing models.
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6.2 Limitations and Future Work

Fluorescence in color images

Using independent component analysis (ICA) for separating reflective and fluorescent com-

ponents of an image is novel in color imaging. Its limitations remain to be explored. First, ICA

assumes that there are no correlations between the spatial distributions of the reflective and

fluorescent components. Some statistical evidence should be obtained to support or disprove

this assumption. Second, ICA is used to separate the fluorescent and reflective components

because the required separation strongly resembles the work of Farid and Adelson [14]. The

thesis presents results for applying ICA to the reflectance-fluorescence separation problem, but

omits a mathematical model of the separation process. In future work, I will work on a formal

model for the separation problem.

The originality of the work, on the other hand, provides insights useful in other research ar-

eas. My study shows that the intensity of fluorescence varies with the intensity of illumination.

This finding may be useful in color constancy for discovering methods that extract information

about illuminants from the intensity of the observed fluorescence. The constant chromaticity

property of fluorescent materials should make them ideal colorants for products that require

unchanging color when the illumination varies, such as color-coded labels and barcodes.

Adaptation in color images and adaptive displays

The model for adaptive displays proposed in this thesis is based on several assumptions.

First, the displayed image is assumed to have a single illuminant in the scene portrayed. This

assumption restricts the application of the model, because many images contain multiple scene

illuminants. Second, while the model considers the color of the illuminants in the scene and

the viewing environment, it does not take into account other factors such as viewing angles,

brightness of the surround, contrast of lighting in the viewing environment and so on. Third,

like all color appearance models, the proposed model accounts only for post-receptoral pro-

cesses. Pre-receptoral changes to color appearance, such as metamerism, are not included in

the model. Moreover, issues of display calibration, such as gamma correction, are overlooked
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during derivation of the model. Since the model is designed to be practical, it will be inter-

esting to build an adaptive display based on the model, so as to perform user studies and

psychophysical evaluations.
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Appendix A

Einstein Notation

Einstein notation or Einstein summation convention is very powerful and useful in linear alge-

bra and physics. In Einstein notation, when an index variable appears twice in a single term,

once as superscript and once as subscript, it implies that we are summing over all of its possible

values. For example in three dimensions, y = cixi means

y = ∑
i

cixi =
3

∑
i=1

cixi = c1x1 + c2x2 + c3x3.

The inner product of a row vector v and a column vector u is a scalar viui.

For a matrix A, the element for the mth row and nth column is Am
n . The result of matrix A

multiplied by a column vector v, Av, becomes Ai
jv

j.

Matrix multiplication can be represented as

Ci
k = Ai

jB
j
k

which is the equivalent to the conventional (less compact) notation

Cik = (AB)jk =
N

∑
j=1

AijBjk.

The Kronecker delta can be written as δi
j, so δi

j is 1 if i = j and 0 otherwise.
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Appendix B

Tristimulus Values

Suppose the spectral power distribution (the intensity and distribution of the spectrum) for a

color at point x over a range of wavelength λ is E(λ). Then its tristimulus values are defined

as

X =
∫ ∞

0
x̄(λ)E(λ)dλ,

Y =
∫ ∞

0
ȳ(λ)E(λ)dλ,

Z =
∫ ∞

0
z̄(λ)E(λ)dλ.

where x̄(λ), ȳ(λ), z̄(λ) are the CIE color matching functions. Usually, the range of λ is taken

to be the visible spectrum, [380 nm, 720 nm], rather than (0, ∞).

In Einstein notation (Appendix A), the tristimulus values of the color at point x can be

represented in a compact way as

Xi(x) = x̄i
λEλ(x),

where i = {X, Y, Z}.
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Appendix C

Dimension Analysis for Solving New

Scene Illumination

In Einstein notation, the equation we are trying to solve is

αr
s Ms

j x̂j
λRλ

µ(x)I˜µ = Mr
i x̂i

λRλ
µ(x)Iµ.

In practice, the matrices have the form


∗11 0 0

0 ∗22 0

0 0 ∗33



∗11 ∗12 ∗13

∗21 ∗22 ∗23

∗31 ∗32 ∗33



∗11 ∗12 · · · ∗1N

∗21 ∗22 · · · ∗2N

∗31 ∗32 · · · ∗3N



∗11 0 · · · 0

0 ∗22 · · · 0
...

. . .
...

0 0 · · · ∗NN




∗1

∗2
...

∗N



=


∗11 ∗12 ∗13

∗21 ∗22 ∗23

∗31 ∗32 ∗33



∗11 ∗12 · · · ∗1N

∗21 ∗22 · · · ∗2N

∗31 ∗32 · · · ∗3N



∗11 0 · · · 0

0 ∗22 · · · 0
...

. . . · · ·

0 0 · · · ∗NN




∗1

∗2
...

∗N

 ,

where N is the number of samples for wavelength λ and µ. The subscripts and superscripts

representing dimensions are omitted for simplicity.
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Simplify using cr
λ = Mr

i x̂i
λ,

LHS =


∗11 0 0

0 ∗22 0

0 0 ∗33



∗11 ∗12 · · · ∗1N

∗21 ∗22 · · · ∗2N

∗31 ∗32 · · · ∗3N



∗11 0 · · · 0

0 ∗22 · · · 0
...

. . . · · ·

0 0 · · · ∗NN




∗1

∗2

..

∗N


= [ α ][ c ]

[
R

][
I˜
]

RHS =


∗11 ∗12 · · · ∗1N

∗21 ∗22 · · · ∗2N

∗31 ∗32 · · · ∗3N



∗11 0 · · · 0

0 ∗22 · · · 0
...

. . . · · ·

0 0 · · · ∗NN




∗1

∗2
...

∗N


= [ c ]

[
R

][
I
]

Decompose the reflectance as[
R

]
= n1

[
R1

]
+ n2

[
R2

]
+ n3

[
R3

]
,

where ni is the ith coefficients. Ri are the basis functions for illuminant.

Similarly, the illuminant can be decomposed as[
I
]
= m1

[
I1

]
+ m2

[
I2

]
+ m3

[
I3

]
,
[

I˜
]
= m˜ 1

[
I1

]
+ m˜ 2

[
I2

]
+ m˜ 3

[
I3

]
,

where mi and m˜ i are the ith coefficients. Ii are the basis functions for illuminants.

Substitute in the decompositions, we have

LHS = [ α ][ c ]

(
n1

[
R1

]
+ n2

[
R2

]
+ n3

[
R3

])(
m˜ 1

[
I1

]
+ m˜ 2

[
I2

]
+ m˜ 3

[
I3

])
= [ α ][ c ]

(
n1m˜ 1

[
R1

][
I1

]
+ n1m˜ 2

[
R1

][
I2

]
+ · · ·+ n3m˜ 3

[
R3

][
I3

])

RHS = [ c ]

(
n1

[
R1

]
+ n2

[
R2

]
+ n3

[
R3

])(
m1

[
I1

]
+ m2

[
I2

]
+ m3

[
I3

])
= [ c ]

(
n1m1

[
R1

][
I1

]
+ n1m2

[
R1

][
I2

]
+ · · ·+ n3m3

[
R3

][
I3

])
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Define a “3× 3" block matrix (a matrix of matrices) Q that has the form

Q =

[ [] [] [][] [] [][] [] []
]

,

where each block is an N × 1 matrix. Qij represents the spectral power distribution of the ith

reflectance basis, Ri with dimension N × N, interacting with the jth illuminant basis, Ij with

dimension N × 1. Q can be pre-computed since the basis functions are all known beforehand.

Now the original equation C.1 has the matrix form

[ α ][ c ][ n1 n2 n3 ]

[
Q
] 

m˜ 1

m˜ 2

m˜ 3

 = [ c ][ n1 n2 n3 ]

[
Q
] 

m1

m2

m3

 .

Suppose we have a set of values for [ n1 n2 n3 ]. Then we can compute the product of

[ c ] [ n1 n2 n3 ]

[
Q
]

. The dimension of the product is a 3× 3 matrix because [ c ] is 3 × N,

[ n1 n2 n3 ] is 1× 3, and
[

Q
]

is 3× 3 with each entry N × 1. Let Ψ be the 3× 3 matrix, then

[ α ][ Ψ ]


m˜ 1

m˜ 2

m˜ 3

 = [ Ψ ]


m1

m2

m3

 ,


m˜ 1

m˜ 2

m˜ 3

 = [ Ψ ]−1[ α ]−1[ Ψ ]


m1

m2

m3

 .
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Appendix D

Color Appearance Models

D.1 CIELAB

User Input: (Xi, Yi, Zi), tristimulus values of the testing patch.

Input Parameters:

• (Xw, scene, Yw, scene, Zw, scene), tristimulus values of the white point of the scene illuminant.

• (Xw, view, Yw, view, Zw, view), tristimulus values of the white point of the view illuminant.

Onput: (Xo, Yo, Zo), tristimulus values of the test patch after compensation.

Forward Model:

Step 1: Normalize the tristimulus values of the white point of the scene illuminant.

Xn, scene =
Xw, scene√

X2
w, scene + Y2

w, scene + Z2
w, scene

Yn, scene =
Yw, scene√

X2
w, scene + Y2

w, scene + Z2
w, scene

Zn, scene =
Zw, scene√

X2
w, scene + Y2

w, scene + Z2
w, scene
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Step 2: Compute CIELAB values.

L = 116 f (Yi/Yn, scene)− 16

a = 500[ f (Xi/Xn, scene)− f (Yi/Yn, scene)]

b = 200[ f (Yi/Yn, scene)− f (Zi/Zn, scene)],

where

f (t) =

 t1/3 ift > ( 6
29 )

3

1
3 (

29
6 )

2t + 4
29 otherwise

 .

Reverse Model:

Compute the tristimulus values (Xo, Yo, Zo) of the output.

Xo = Xn, view f−1
(

L + 16
116

+
a

500

)
Yo = Yn, view f−1

(
L + 16

116

)
Zo = Zn, view f−1

(
L + 16

116
− b

200

)

where

f−1(t) =

 t3 ift > 6
29

3( 6
29 )

2(t− 4
29 ) otherwise

 .

D.2 CIECAM02

User Input: (Xi, Yi, Zi), tristimulus values of the testing patch.

Input/Scene Parameters:

• (Xw, scene, Yw, scene, Zw, scene), relative tristimulus values of the white point of the scene illu-

minant. Yw, scene is always set to 100.

• (Xw, view, Yw, view, Zw, view), relative tristimulus values of the white point of the scene illu-

minant. Yw, scene is always set to 100.
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• Yb, relative luminance of the background. Assume “grey world". 20% of Yw so it is always

set to 20.

• LA, adapting field luminance. Always set to 64cd/m2 in my model because it is the

most commonly used value. I experimented with a few values, but none seemed to have

significant impact on the results.

• c, F, Nc, relative luminance level of the surround. All set to “average" in my model for

now. c = 0.69, F = 1.0, Nc = 1.0.

Onput: (Xo, Yo, Zo), tristimulus values of the test patch after compensation.

Step 1: Compute intermediate variables used when calculating perceptual attributes.

k =
1

5LA + 1
FL = 0.2k4(5LA) + 0.1(1− k4)2(5LA)

n =
Yb

Yw

Ncb = Nbb = 0.725(
1
n
)

1
2

z = 1.48 +
√

n

Step 2: Chromatic adaptation. Convert tristimulus values to CAT02 (chromatic adaptation

transform) space. For CAT02 space, Xw = Yw = Zw = 100.0; i.e., “equal-energy".
R

G

B

 = MCAT02


Xi

Yi

Zi

 ,


Rw

Gw

Bw

 = MCAT02


Xw, scene

Yw, scene

Zw, scene

 ,

where

MCAT02 =


0.7328 0.4286 −0.1624

−0.7036 1.6975 0.0061

0.0030 0.0136 0.9834

 .

Step 3: Determine degree of adaptation.

D = F[1− (
1

3.6
e
−LA−42

92 )]
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For my model, D is suggested to be set to 1.0 for self-illuminated displays.

Step 4: Chromatic adaptation transform 1.

Rc = [(
YwD
Rw

) + (1.0− D)]R

Gc = [(
YwD
Gw

) + (1.0− D)]G

Bc = [(
YwD
Bw

) + (1.0− D)]B

Rwc = [(
YwD
Rw

) + (1.0− D)]Rw

Gwc = [(
YwD
Gw

) + (1.0− D)]Gw

Bwc = [(
YwD
Bw

) + (1.0− D)]Bw

Step 5: Convert to Hunt-Pointer-Estevez space.
R′a

G′a

B′a

 = MH M−1
CAT02


Rc

Gc

Bc

 ,


R′wa

G′wa

B′wa

 = MH M−1
CAT02


Rwc

Gwc

Bwc

 ,

where

MH M−1
CAT02 =


0.7410 0.2180 0.0410

−0.2854 0.6242 0.0904

−0.0096 −0.0057 1.0153

 .

1The technical report from CIE does not explicitly give the equations for computing Rwc, R′wa, Aw, etc. . I derived

the calculations myself from Rc, R′c, A, etc. .
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Step 6: Non-linear response compression. “Essential for working in perceptual space".

R′a = [
400( FLR′a

100 )0.42

27.13 + ( FLR′a
100 )0.42

] + 0.1

G′a = [
400( FLG′a

100 )0.42

27.13 + ( FLG′a
100 )0.42

] + 0.1

B′a = [
400( FLB′a

100 )0.42

27.13 + ( FLB′a
100 )0.42

] + 0.1

R′wa = [
400( FLR′wa

100 )0.42

27.13 + ( FLR′wa
100 )0.42

] + 0.1

G′wa = [
400( FLG′wa

100 )0.42

27.13 + ( FLG′wa
100 )0.42

] + 0.1

B′wa = [
400( FLB′wa

100 )0.42

27.13 + ( FLB′wa
100 )0.42

] + 0.1

If any of the values of R′a, G′a, B′a, R′wa, G′wa, B′wa are negative, their absolute values are used,

and then the quotient is multiplied by negative 1 before adding to 0.1.

Step 7: Calculate perceptual attributes. The most important values are J(Lightness), C(Chroma)

and h(Hue).

A = (2.0R′a + G′a + 0.05B′a − 0.305)Nbb

Aw = (2.0R′wa + G′wa + 0.05B′wa − 0.305)Nbb

J = 100(
A

Aw
)cz

a = R′a −
12G′a

11
+

B′a
11

, b = (
1
9
)(R′a + G′a − 2B′a)

h = tan−1(
b
a
), 0 ≤ h ≤ 360

e = 0.25[cos(
hπ

180
+ 2) + 3.8]

t =
( 50,000

13 )NcNcbe(a2 + b2)0.5

R′a + G′a + ( 21
20 )B′a

C = t0.9(
J

100
)0.5(1.64− 0.29n)0.73
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If two color patches have the same [J, C, h], we perceive them as having the same color,

regardless of surrounding environment.

Reverse Model:

Step 1: Compute intermediate variables k, FL, n, Nbb, Ncb, z. Same equations from the forward

model are used. The input/scene parameters are replaced by the input/view parameters.

Step 2 - 6: Same as forward model, except that only reference white is considered and all the

scene parameters are replaced by view parameters.

Step 7: Compute temporary variables t, et, A, p1, p2, p3, hr, a, b.

t = (
C√

J
100 (1.64− 0.29n)0.73

)
1

0.9

et =
1
4
(cos(h(

π

180
) + 2) + 3.8)

p1 =
(50000/13)NcNcbet

t

p2 = (
A

Nbb
) + 0.305

hr = h(
π

180
)

if |sin(hr)| ≥ |cos(hr)|,

p3 =
p1

sin(hr)

b =
p2(2.0 + (21/20))(460/1403)

p3 + (2.0 + (21/20))(220/1403)[cos(hr)/sin(hr)]− (27/1403) + (21/20)(6300/1403)

a = b[cos(hr)/sin(hr)]

else

p3 =
p1

cos(hr)

a =
p2(2.0 + (21/20))(460/1403)

p3 + (2.0 + (21/20))(220/1403)− [(27/1403)− (21/20)(6300/1403)][sin(hr)/cos(hr)]

b = a[sin(hr)/cos(hr)]
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Step 8: Compute R′a, G′a, B′a.

R′a = (460/1403)p2 + (451/1403)a + (288/1403)b

G′a = (460/1403)p2 − (891/1403)a− (261/1403)b

B′a = (460/1403)p2 − (220/1403)a− (6300/1403)b

Step 9: Compute R′, G′, B′.

R′ = (
100
FL

)(
27.31|R′a − 0.1|
400− |R′a − 0.1| )

1
0.42

G′ = (
100
FL

)(
27.31|G′a − 0.1|
400− |G′a − 0.1| )

1
0.42

B′ = (
100
FL

)(
27.31|B′a − 0.1|
400− |B′a − 0.1| )

1
0.42

If any of the values of (R′a − 0.1), (G′a − 0.1) or (B′a − 0.1) are negative, the corresponding

R′, G′ or B′ will be made negative.

Step 10: Compute Rc, Gc, Bc. 
Rc

Gc

Bc

 = MCAT02M−1
H


R′

G′

B′

 ,

where

MCAT02M−1
H =


1.559 −0.5447 −0.01448

−0.7143 1.8503 −0.1360

0.01078 0.00522 0.9840

 .

Step 11: Compute R, G, B.

R =
Rc

[(YwD
Rw ) + (1.0− D)]

G =
Gc

[(YwD
Gw ) + (1.0− D)]

B =
Bc

[(YwD
Bw ) + (1.0− D)]
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Step 12: Compute Xo, Yo, Zo. 
Xo

Yo

Zo

 = M−1
CAT02


R

G

B

 ,

where

M−1
CAT02 =


1.096124 −0.278869 0.182745

0.454396 0.473533 0.072098

−0.009628 −0.005698 1.015326

 .

D.3 Fairchild’s Model

User Input: (Xi, Yi, Zi), tristimulus values of the test patch.

Input Parameters:

• (Xw, scene, Yw, scene, Zw, scene), tristimulus values of the white point of the scene illuminant.

• Yw, scene is always set to 100.0 (normalized).

• (Xw, view, Yw, view, Zw, view), tristimulus values of the white point of the view illuminant.

• Yw, view is always set to 100.0.

Onput: (Xo, Yo, Zo), tristimulus values of the test patch after compensation.

Forward Model:

Step 1: Compute the initial cone response (L, M, S) to the input.
L

M

S

 = M


Xi

Yi

Zi

 ,

where

M =


0.400 0.708 −0.081

−0.226 1.165 0.046

0.000 0.000 0.918

 .
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Step 2: Compute the maximum cone response (Lw, scene, Mw, scene, Sw, scene) to the scene illumi-

nant. i.e., the cone response to the white point of the scene illuminant, as well as the maximum

cone response (Lw, E, Mw, E, Sw, E) to the equal-energy illuminant.
Lw

Mw

Sw

 = M


Xw, scene

Yw, scene

Zw, scene

 ,


Lw, E

Mw, E

Sw, E

 = M


Xw, E

Yw, E

Zw, E

 ,

Xw, E = Yw, E = Zw, E = 100.0

Step 3: Compute the post-adaptation cone response (La, Ma, Sa) to the input. Fairchild’s Model

takes into consideration of how adapting luminance level may affect the state of adaptation

(incomplete vs complete).

Step 3.1: Compute the intermediate post-adaptation cone response (Li, Mi, Si) to the input.
Li

Mi

Si

 = A


L

M

S

 ,

where

A =


aL 0 0

0 aM 0

0 0 aS

 =


pL/Lw, scene 0 0

0 pM/Mw, scene 0

0 0 pS/Sw, scene

 ,

pL =
1 + Y1/3

n, scene + me

1 + Y1/3
n, scene + (1/me)

, me =
3(Lw, scene/Lw, E)

(Lw, scene/Lw, E) + (Mw, scene/Mw, E) + (Sw, scene/Sw, E)
,

pM =
1 + Y1/3

n, scene + me

1 + Y1/3
n, scene + (1/me)

, me =
3(Mw, scene/Mw, E)

(Lw, scene/Lw, E) + (Mw, scene/Mw, E) + (Sw, scene/Sw, E)
,

pS =
1 + Y1/3

n, scene + me

1 + Y1/3
n, scene + (1/me)

, me =
3(Sw, scene/Sw, E)

(Lw, scene/Lw, E) + (Mw, scene/Mw, E) + (Sw, scene/Sw, E)
.

Notes:

• Yn, scene is the luminance of the adapting stimulus in cd/m2. This is a variable we could

experiment in simulations.
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• When cognitive discount-illuminant occurs: pL = pM = pS = 1.0.

• pL, pM and pS depart from 1.0 as adaptation becomes incomplete.

• As adapting chromaticity moves further and further away from equal-energy illuminant

E, adaptation becomes less complete.

Step 3.2: Compute the post-adaptation cone response (La, Ma, Sa) to the input.
La

Ma

Sa

 = C


Li

Mi

Si

 ,

where

C =


1 c c

c 1 c

c c 1

 , c = 0.219− 0.0784log10(Yn, scene)

Reverse Model:

Step 1: Compute the maximum cone response (Lw, view, Mw, view, Sw, view) to the view illuminant.

i.e., the cone response to the white point of the view illuminant.
Lw, view

Mw, view

Sw, view

 = M


Xw, view

Yw, view

Zw, view

 ,

Step 2: From the post-adaptation cone response, compute initial cone response (L, M, S) to the

output.

Step 2.1: Compute the intermediate cone response (Li, Mi, Si) to the output.
Li

Mi

Si

 = C′−1


La

Ma

Sa

 ,
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where

C′ =


1 c′ c′

c′ 1 c′

c′ c′ 1

 , c′ = 0.219− 0.0784log10(Yn, view)

Note: Yn, scene is the luminance of the adapting stimulus in cd/m2. This is a variable we

could experiment in simulations.

Step 2.2: Compute the initial cone response (L′, M′, S′) to the output.
L′

M′

S′

 = A′−1


Li

Mi

Si

 ,

where

A′ =


a′L 0 0

0 a′M 0

0 0 a′S

 =


p′L/Lw, view 0 0

0 p′M/Mw, view 0

0 0 p′S/Sw, view

 ,

p′L =
1 + Y1/3

n, view + me

1 + Y1/3
n, view + (1/me)

, me =
3(Lw, view/Lw, E)

(Lw, view/Lw, E) + (Mw, view/Mw, E) + (Sw, view/Sw, E)
,

p′M =
1 + Y1/3

n, view + me

1 + Y1/3
n, view + (1/me)

, me =
3(Mw, view/Mw, E)

(Lw, view/Lw, E) + (Mw, view/Mw, E) + (Sw, view/Sw, E)
,

p′S =
1 + Y1/3

n, view + me

1 + Y1/3
n, view + (1/me)

, me =
3(Sw, view/Sw, E)

(Lw, view/Lw, E) + (Mw, view/Mw, E) + (Sw, view/Sw, E)
.

Step 3: Compute the tristimulus values (Xo, Yo, Zo) of the output.
Xo

Yo

Zo

 = M−1


L′

M′

S′


Summary: 

Xo

Yo

Zo

 = M−1


a′L 0 0

0 a′M 0

0 0 a′S


−1

C′−1C


aL 0 0

0 aM 0

0 0 aS

M


Xi

Yi

Zi


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or

C′


a′L 0 0

0 a′M 0

0 0 a′S

M


Xo

Yo

Zo

 = C


aL 0 0

0 aM 0

0 0 aS

M


Xi

Yi

Zi



D.4 von Kries Model

User Input: (Xi, Yi, Zi), tristimulus values of the test patch.

Input Parameters:

• (Xw, scene, Yw, scene, Zw, scene), tristimulus values of the white point of the scene illuminant.

• Yw, scene is always set to 100.0 (normalized).

• (Xw, view, Yw, view, Zw, view), tristimulus values of the white point of the view illuminant.

• Yw, view is always set to 100.0.

Onput: (Xo, Yo, Zo), tristimulus values of the test patch after compensation.

Forward Model:

Step 1: Compute the initial cone response (L, M, S) to the input.
L

M

S

 = M


Xi

Yi

Zi

 ,

where

M =


0.400 0.708 −0.081

−0.226 1.165 0.046

0.000 0.000 0.918

 .
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Step 2: Compute the maximum cone response (Lw, scene, Mw, scene, Sw, scene) to the scene illumi-

nant. i.e., the cone response to the white point of the scene illuminant.
Lw

Mw

Sw

 = M


Xw, scene

Yw, scene

Zw, scene


Step 3: Compute the post-adaptation cone response (La, Ma, Sa) to the input. von Kries Model

assumes that the process is linear. 
La

Ma

Sa

 = K


L

M

S

 ,

where

K =


kL 0 0

0 kM 0

0 0 kS

 =


1/Lw, scene 0 0

0 1/Mw, scene 0

0 0 1/Sw, scene

 .

Reverse Model:

Step 1: Compute the maximum cone response (Lw, view, Mw, view, Sw, view) to the view illuminant.

i.e., the cone response to the white point of the view illuminant.
Lw, view

Mw, view

Sw, view

 = M


Xw, view

Yw, view

Zw, view

 ,

Step 2: Compute the initial cone response (L′, M′, S′) from post-adaptation cone response.
L′

M′

S′

 = K−1


La

Ma

Sa

 ,
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where

K =


kL 0 0

0 kM 0

0 0 kS

 =


1/Lw, view 0 0

0 1/Mw, view 0

0 0 1/Sw, view

 .

Step 3: Compute the output tristimulus values (Xo, Yo, Zo) of the test patch after compensation.
Xo

Yo

Zo

 = M−1


L′

M′

S′

 .

Summary: 
Xo

Yo

Zo

 = M−1


k′L 0 0

0 k′M 0

0 0 k′S


−1 

kL 0 0

0 kM 0

0 0 kS

M


Xi

Yi

Zi


or 

k′L 0 0

0 k′M 0

0 0 k′S

M


Xo

Yo

Zo

 =


kL 0 0

0 kM 0

0 0 kS

M


Xi

Yi

Zi


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Appendix E

MATLAB R© Code for Computing New

Scene Illuminant

The following MATLAB R© routine can be used to compute the new scene illuminant I˜λ in

Section 4.4.2. In this routine, the original illuminant is assumed to be daylight D65. The new

illuminant is assumed to be incadescent light A .

The basis functions for illuminant are provided the paper from Judd et al. [24]. The basis

functions for reflectance are provided in the paper from Parkkinen et al. [36].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Compute New Scene Illuminant %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Wavelength is taken from 400nm to 700nm, at 10nm inverval

lambda = daylight_basis_ChengLin(3:33,1); %400-700nm

% Read in the basis for daylight illuminant

I1 = daylight_basis_ChengLin(3:33,2);
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I2 = daylight_basis_ChengLin(3:33,3);

I3 = daylight_basis_ChengLin(3:33,4);

% Read in the basis for reflectance

R1 = reflectance_basis_Parkkinen(1:31,2);

R2 = reflectance_basis_Parkkinen(1:31,3);

R3 = reflectance_basis_Parkkinen(1:31,4);

R_basis = [R1 R2 R3];

% Read in CIE color matching functions, 10 degree observer

x_hat = color_matching_1964_10deg (5:35, 2);

y_hat = color_matching_1964_10deg (5:35, 3);

z_hat = color_matching_1964_10deg (5:35, 4);

% Decompose original scene illuminant. The scalars are from Cheng & Lin

m = [1;-0.343;-0.664];

I = m(1,1)*I1+m(2,1)*I2+m(3,1)*I3;

% Find chromaticities of the old illuminant estimated with basis

x_I_estimate = dot(x_hat,I)/(dot(x_hat,I)+dot(y_hat,I)+dot(z_hat,I));

y_I_estimate = dot(y_hat,I)/(dot(x_hat,I)+dot(y_hat,I)+dot(z_hat,I));

% Decompose reflectance

x_est(1,1) = 0;

y_est(1,1) = 0;

x_tilda(1,1) = 0;

y_tilda(1,1) = 0;
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% Read from Munsell reflectance data at 10nm interval

for i=0:30,

munsell_10nm(i+1,:) = munsell(2*i+1,: );

end

% for j=2:25, <= uncomment this for testing Macbeth checker pattern

for j=1:1250,

% R = reflectance_macbeth_10nm(1:31,j); <= uncomment this for testing

% Macbeth checker pattern

R = munsell_10nm(1:31,j);

N = (R_basis\R)';

x = dot(x_hat,R)/(dot(x_hat,R)+dot(y_hat,R)+dot(z_hat,R));

y = dot(y_hat,R)/(dot(x_hat,R)+dot(y_hat,R)+dot(z_hat,R));

R_estimate = R_basis*N';

x_estimate = dot(x_hat,R_estimate)/(dot(x_hat,R_estimate)

+dot(y_hat,R_estimate)+dot(z_hat,R_estimate));

y_estimate = dot(y_hat,R_estimate)/(dot(x_hat,R_estimate)

+dot(y_hat,R_estimate)+dot(z_hat,R_estimate));

% Find chromaticities of the reflectance estimated with basis

x_est(j,1) = x_estimate;

y_est(j,1) = y_estimate;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Main computation %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%alpha => von Kries, M =>cone response

alpha = [100.0/110.0 0 0; 0 100.0/100.0 0; 0 0 100.0/34.0];

alpha_inv = inv(alpha);

M = [0.4 0.708 -0.081; -0.226 1.165 0.046; 0 0 0.918];

M_inv = inv(M);

%Q = IR

%LHS = BxNRI

Q11 = prod([R1'; I1'])';

Q12 = prod([R1'; I2'])';

Q13 = prod([R1'; I3'])';

Q21 = prod([R2'; I1'])';

Q22 = prod([R2'; I2'])';

Q23 = prod([R2'; I3'])';

Q31 = prod([R3'; I1'])';

Q32 = prod([R3'; I2'])';

Q33 = prod([R3'; I3'])';

%NQ (1x3) = N(1x3)*Q(3x3)

NQ11 = N(1,1)*Q11 + N(1,2)*Q21 + N(1,3)*Q31;

NQ12 = N(1,1)*Q12 + N(1,2)*Q22 + N(1,3)*Q32;

NQ13 = N(1,1)*Q13 + N(1,2)*Q23 + N(1,3)*Q33;

%A(3X3) = x(3x"1")*NQ ("1"x3)

A11 = sum(prod([x_hat'; NQ11'])');

A12 = sum(prod([x_hat'; NQ12'])');

A13 = sum(prod([x_hat'; NQ13'])');
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A21 = sum(prod([y_hat'; NQ11'])');

A22 = sum(prod([y_hat'; NQ12'])');

A23 = sum(prod([y_hat'; NQ13'])');

A31 = sum(prod([z_hat'; NQ11'])');

A32 = sum(prod([z_hat'; NQ12'])');

A33 = sum(prod([z_hat'; NQ13'])');

A = [A11 A12 A13; A21 A22 A23; A31 A32 A33];

A_inv = inv(A);

B = A_inv*M_inv*alpha_inv*M*A;

m_tilda = B*m;

% Find new illuminant I_tilda

I_tilda = m_tilda(1,1)*I1+m_tilda(2,1)*I2+m_tilda(3,1)*I3;

x_I_tilda = dot(x_hat,I_tilda)/(dot(x_hat,I_tilda)

+dot(y_hat,I_tilda)+dot(z_hat,I_tilda));

y_I_tilda = dot(y_hat,I_tilda)/(dot(x_hat,I_tilda)

+dot(y_hat,I_tilda)+dot(z_hat,I_tilda));

x_tilda(j,1) = x_I_tilda;

y_tilda(j,1) = y_I_tilda;

% LHS with real reflectance and estimated reflectance
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I_tilda_R = prod([I_tilda'; R'])';

x_out = dot(x_hat,I_tilda_R)/(dot(x_hat,I_tilda_R)+dot(y_hat,

I_tilda_R)+dot(z_hat,I_tilda_R));

y_out = dot(y_hat,I_tilda_R)/(dot(x_hat,I_tilda_R)+dot(y_hat,

I_tilda_R)+dot(z_hat,I_tilda_R));

I_tilda_R_estimate = prod([I_tilda'; R_estimate'])';

x_out_estimate = dot(x_hat,I_tilda_R_estimate)/(dot(x_hat,

I_tilda_R_estimate)+dot(y_hat,I_tilda_R_estimate)

+dot(z_hat,I_tilda_R_estimate));

y_out_estimate = dot(y_hat,I_tilda_R_estimate)/(dot(x_hat,

I_tilda_R_estimate)+dot(y_hat,I_tilda_R_estimate)

+dot(z_hat,I_tilda_R_estimate));

% RHS with real reflectance and estimated reflectance

I_R = prod([I'; R'])';

x_in = dot(x_hat,I_R)/(dot(x_hat,I_R)+dot(y_hat,I_R)+dot(z_hat,I_R));

y_in = dot(y_hat,I_R)/(dot(x_hat,I_R)+dot(y_hat,I_R)+dot(z_hat,I_R));

I_R_estimate = prod([I'; R_estimate'])';

x_in_estimate = dot(x_hat,I_R_estimate)/(dot(x_hat,I_R_estimate)

+dot(y_hat,I_R_estimate)+dot(z_hat,I_R_estimate));

y_in_estimate = dot(y_hat,I_R_estimate)/(dot(x_hat,I_R_estimate)

+dot(y_hat,I_R_estimate)+dot(z_hat,I_R_estimate));

end
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