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Abstract

The character theory of the symmetric group is a powerful method of studying enu-
merative questions about factorizations of permutations, which arise in areas including
topology, geometry, and mathematical physics. This method relies on having an encod-
ing of the enumerative problem in the centre Z(n) of the algebra C[Sn] spanned by the
symmetric group Sn. This thesis develops methods to deal with permutation factorization
problems which cannot be encoded in Z(n). The (p, q, n)-dipole problem, which arises in
the study of connections between string theory and Yang-Mills theory, is the chief problem
motivating this research.

This thesis introduces a refinement of the (p, q, n)-dipole problem, namely, the (a, b, c, d)-
dipole problem. A Join-Cut analysis of the (a, b, c, d)-dipole problem leads to two partial
differential equations which determine the generating series for the problem. The first
equation determines the series for (a, b, 0, 0)-dipoles, which is the initial condition for the
second equation, which gives the series for (a, b, c, d)-dipoles. An analysis of these equa-
tions leads to a process, recursive in genus, for solving the (a, b, c, d)-dipole problem for a
surface of genus g. These solutions are expressed in terms of a natural family of functions
which are well-understood as sums indexed by compositions of a binary string.

The combinatorial analysis of the (a, b, 0, 0)-dipole problem reveals an unexpected fact
about a special case of the (p, q, n)-dipole problem. When q = n− 1, the problem may be
encoded in the centralizer Z1(n) of C[Sn] with respect to the subgroup Sn−1. The algebra
Z1(n) has many combinatorially important similarities to Z(n) which may be used to find
an explicit expression for the genus polynomials for the (p, n− 1, n)-dipole problem for all
values of p and n, giving a solution to this case for all orientable surfaces.

Moreover, the algebraic techniques developed to solve this problem provide an alge-
braic approach to solving a class of non-central problems which includes problems such
as the non-transitive star factorization problem and the problem of enumerating Z1-
decompositions of a full cycle, and raise intriguing questions about the combinatorial
significance of centralizers with respect to subgroups other than Sn−1.
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Chapter 1

Introduction

An enumerative question about a permutation π for which the answer is a non-negative
integer f(π) is said to be central if the formal sum∑

π∈Sn

f(π)π

lies in the centre of the group algebra: that is, if it commutes with every element of the
symmetric group Sn. This thesis examines the extent to which two techniques used by
algebraic combinatorialists to solve central problems, namely, the character theory of the
symmetric group and Join-Cut analysis, may be generalized to approach non-central
problems. Central methods have been used to solve a number of important problems in
which the answer is the number of ways of decomposing a permutation π as a product
of factors with specified properties. Examples of this include enumerating embeddings
of graphs in orientable surfaces (in which products of a permutation and a fixed point
free involution are considered), and ramified covers of the sphere by a surface of genus
g (in which products of transpositions are considered). The attempt to generalize these
techniques is motivated primarily by the (p, q, n)-dipole problem, which was introduced by
Constable et al. [2] in 2002, and arises in the study of duality between gauge theory and
string theory. These dipoles appear as the summation indices in two-point functions for
Berenstein-Maldacena-Nastase operators which arise in Yang-Mills theory. The (p, q, n)-
dipole problem is demonstrably non-central, and will be employed throughout the thesis
to illustrate the techniques used to approach non-central problems.

The main contributions of this thesis to the development of approaches to non-central
problems are as follows. Chapter 5 describes how a combinatorial analysis of the (p, q, n)-
dipole problem leads to a pair of partial differential equations which determine the gener-
ating series for a more general problem (Theorems 5.3.1 and 5.3.2). Chapter 8 describes
a recursive method for solving these equations, which expresses the genus g solution as
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a linear combination of functions for which combinatorial formulas are known (Theorems
8.2.9 and 8.2.11). Chapter 6 formulates an algebraic approach for a special class of non-
central problems, namely, those which have encodings in C[Sn] which commute with Sn−1.
Chapter 7 applies this approach to the (p, n − 1, n)-dipole problem (Theorem 7.1.9), the
star factorization problem (Theorem 7.2.1), and a non-central generalization of the cycle
decomposition problem (Theorem 7.3.2). The detailed content of each chapter is as follows.

Chapter 2 gives a description of the centre Z(n) of the symmetric group algebra, and
an account of the known techniques which have been used to solve several enumerative
problems which may be expressed in terms of products of the standard basis elements of
Z(n). The relevant aspects of character theory of the symmetric group are introduced, and
the connection coefficients of Z(n) are expressed as sums of irreducible characters. Thus,
central factorization problems are reduced to the matter of evaluating irreducible charac-
ters. In many important cases, the characters which arise can be expressed in closed form.
Several known solutions to combinatorial problems are presented as an illustration of these
techniques, with a particular emphasis on the problem of enumerating 2-cell embeddings of
a dipole in an orientable surface. This problem generalizes to the (p, q, n)-dipole problem.

Chapter 3 describes the non-central permutation factorization problems used through-
out the thesis both to motivate and demonstrate the techniques being developed. It is
this chapter which contains a complete definition of each problem and an account of the
history of attempts at solving it. (a) The first such problem is the (p, q, n)-dipole prob-
lem mentioned above. (b) The second non-central problem is the problem of enumerating
factorizations of a permutation into “star-transpositions,” the set of all transpositions of
the form (i, n), which can be considered either with or without imposing the condition
that the factorization is transitive. The requirement that the symbol n be present in every
transposition disrupts the centrality of the problem. Though both the transitive and non-
transitive versions of the problem have been solved (the former by Goulden and Jackson
[11] and the latter by Lascoux and Thibon [30]), this problem is included because it raises
interesting questions about centrality; in particular, the transitive version of the problem
turns out to be unexpectedly central. This chapter also includes a discussion of Join-Cut
analysis, a non-character based approach to studying permutation factorization problems
used by Goulden and Jackson to solve the transitive star factorization problem (among
numerous other problems). In this approach, considering the effect of multiplication by
a transposition allows one to write down a partial differential equation for the generating
series. (c) This chapter also introduces a problem called the Z1-factorization problem.
This problem is included because it is a natural generalization of a central problem, and
it is natural to expect that a successful extension of central techniques should provide an
approach to the Z1-factorization problem.

Chapter 4 contains definitions and elementary results for the centralizers of the sym-
metric group algebra. The centralizers are subalgebras of the symmetric group algebra
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which are natural generalizations of the centre, and perform two functions in this thesis.
First, they serve as a metric of non-centrality; i.e. they provide a language to describe
“how non-central” a given problem is. Second, they serve as an algebraic framework for
approaching non-central problems. Of particular interest is the centralizer Z1(n) of C[Sn]
with respect to Sn−1. This algebra is the non-central algebra which is “closest” to being
central, while having enough structure to permit significant results to be obtained.

Chapter 5 contains a description of Join and Cut operators which determine the gener-
ating series for the (p, q, n)-dipole problem. (In fact, they determine the series for a slightly
more general problem, called the (a, b, c, d)-dipole problem.) The analysis is combinato-
rial in nature, and consists of considering how the face structure and the values of p and q
change when a new edge is added to a dipole. Two formal partial differential equations arise
from this analysis: the first determines the generating series Ψ′′ for the (a, b, c, d)-dipole
problem, and the second determines the initial condition Ψ′ for this equation. The series
Ψ′ corresponds to the special case of (p, 1, n)-dipoles, and is remarkable because the form
of the equation suggests that the (p, 1, n)-dipole problem, while still being non-central, is
in fact “less non-central” than it initially appears. This second observation is exploited in
Chapter 7, and the general (a, b, c, d) operators are analyzed in more detail in Chapter 8

Chapter 6 introduces a set of orthogonal idempotents for Z1(n) which are defined as
sums of Young’s semi-normal units over a restricted class of standard Young tableaux.
The coefficients of these idempotents in the standard basis for Z1(n) are the generalized
characters introduced by Strahov [42]. This allows the connection coefficients of Z1(n) to
be expressed in terms of generalized characters. Two methods of evaluating generalized
characters are then discussed. The first generalizes a technique used by Diaconis and
Greene [4] to evaluate ordinary characters. This technique reduces the computation of
generalized characters to a problem of evaluating a function, symmetric in all but one of
the indeterminates, at the contents of a tableau. The second is an application of Strahov’s
analogue of the Murnaghan-Nakayama rule for generalized characters.

Chapter 7 explains how the results of Chapter 6 can be applied to some of the problems
described in Chapter 3. The (p, n − 1, n)-dipole problem, the non-transitive star factor-
ization problem, and the general Z1-factorization problem can all be expressed as sums
over generalized characters. In the case of the (p, n− 1, n)-dipole problem, the generalized
characters appearing in the sum can all be evaluated explicitly, yielding a solution for the
(p, n−1, n)-dipole problem for all values of p, n, and for all orientable surfaces. In addition,
this chapter discusses the applicability of the material from Chapter 6 to other non-central
problems such as non-transitive star factorizations and Z1-factorizations of a full cycle. It
is evident that there is a Z1(n) combinatorial context that is analogous to the Z(n) case,
and whose structure and significant elements are known and understood.

Chapter 8 contains an analysis of the partial differential equations which give the gen-
erating series for the (a, b, c, d)-dipole problem. It gives a procedure, recursive in genus,
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for computing a series valid for all values of a, b, c and d, in which a substantial amount
of information about the face structure of the dipoles is recorded. The series obtained are
combinatorial in nature, being sums over objects called string compositions. This proce-
dure is then applied to find series solutions for the (a, b, c, d)-dipole problem on the torus
and double torus.

Finally, Chapter 9 discusses related unresolved questions, as well as some new questions
which follow from the work done in this thesis, and which form the basis for future work.
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Chapter 2

Combinatorial Applications of the
Centre of C[Sn]

This chapter gives an overview of combinatorial applications of the algebra C[Sn] spanned
by the symmetric group Sn, and the centre of this algebra. It is not intended to be a
comprehensive account of the representation theory of Sn; the emphasis is on presenting
results whose non-central analogues are described in Chapter 6, and doing so in such a way
that the generalizations of these results emerge naturally.

Elementary definitions and notation regarding the centre of Sn are given in Section
2.1. Section 2.2 contains descriptions of some of the combinatorial problems that have
been studied using the centre of C[Sn]. Two classes of problems are presented here: the
enumeration of maps embedded in an orientable surface, and the enumeration of ramified
covers of the sphere by a surface of genus g. This section explains how the solutions to
these problems may be expressed as a product of basis elements in the centre of C[Sn].
One example of a map enumeration problem, the problem of enumerating rooted dipoles,
is singled out for special attention, because the generalization of this problem described in
Chapter 3 is a major object of study in this thesis. Throughout this chapter, the rooted
dipole problem will be used as an example to illustrate the techniques being described.

Section 2.3 describes the techniques used to perform the central computations arising
in Section 2.2. In particular, it is an account of some standard results in the representa-
tion theory of Sn. It describes one method of constructing the irreducible representations
(and hence, the irreducible characters) of Sn, namely, Young’s semi-normal representation.
While there exist many different approaches to the construction of irreducible representa-
tions, this approach is presented here because Young’s semi-normal units have a key role
to play in Chapter 6. Young’s semi-normal units are used to derive expressions for the
connection coefficients of the centre as sums involving irreducible characters of the sym-

5



metric group; thus, the solutions to the problems described in Section 2.2 are reduced to
the problem of computing irreducible characters of Sn.

Section 2.4 addresses the question of how the irreducible characters of Sn may be
determined. Though explicit formulas for the characters of Sn are not known in general, in
many combinatorial applications the characters which arise can be determined explicitly.
This section gives some examples of cases in which explicit formulas for characters are
known, and gives a brief description of some of the techniques used to arrive at these
formulas. The section closes by demonstrating how these formulas have been used to
give an explicit solution to the rooted dipole problem, and giving an expression for the
generating series for this problem which is useful in Chapters 5 and 8.

2.1 The Group Algebra C[Sn] and its centre

The definitions and results in this section are classical, and appear in numerous sources,
such as James and Kerber [25], Sagan [39], and Macdonald [32]. Given a set T of positive
integers, let ST denote the group of permutations of the set T in which group multiplication
is composition of the permutations as functions; this is called the symmetric group on the
ground set T . When T = {1, 2, . . . , n}, the notation Sn is used in place of ST . Throughout
this thesis, a right-to-left convention is used, i.e. if π1 and π2 are permutations, then π1π2

is the permutation obtained by applying π2 followed by π1.

There are three commonly used notations to specify a permutation. The first is two-
line notation, in which the numbers 1, 2, . . . , n are written along the first line, and π(i)
is written below i; i.e.

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
.

The one-line notation for π is obtained by deleting the top row from the two-line notation
and regarding the permutation as the sequence π = π(1)π(2) · · · π(n).

The third notation for π is obtained by considering the functional digraph of π. This
is the directed graph whose vertices are {1, . . . , n}, in which there is an edge from i to
j if and only if π(i) = j. Since π is a permutation, every vertex has in-degree and out-
degree equal to one; the only such directed graphs are those in which every component is a
directed cycle. As an example, the functional digraph of π = 231465 is given in Figure 2.1.
A permutation may thus also be specified by listing the cycles of its functional digraph.
The cycle containing i may be written as (i, π(i), π2(i), . . . , πk−1(i)), where k is the length
of the cycle. (A cycle of length k can thus be represented in k different ways, depending on
which element is chosen to be the first element of the cycle.) Writing one representative for
each cycle of π gives a disjoint cycle representation for π; for example, if π = 231465,
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Figure 2.1: Functional digraph of the permutation whose one-line notation is 231465.

then one disjoint cycle representation of π would be (1, 2, 3)(4)(5, 6). Fixed points, which
give a cycle of length 1, are usually omitted from a disjoint cycle representation.

Permutations may be classified according to the lengths of cycles appearing in their
disjoint cycle representations. To make this notation more precise, the following notation
is used.

1. Let P denote the set of positive integers. A partition λ of n is an element (λ1, . . . , λm) ∈
Pm such that λ1 ≥ λ2 ≥ · · · ≥ λm and λ1 + λ2 + · · · + λm = n. The notation λ ` n
is used to indicate that λ is a partition of n.

2. Each λi is called a part of λ.

3. The multiplicity mi(λ) of i as a part in λ is the number of times i appears in λ.

4. The notation m(λ) denotes the total number of parts of λ, i.e. m(λ) =
∑

i≥1mi(λ).
In situations where sets consisting of partitions of any integer are being considered,
let n(λ) =

∑
1≤i≤m λi.

5. Partitions will often be specified by listing their parts and multiplicities, using ex-
pressions of the form λ = (1m1(λ)2m2(λ) · · · ).

6. The assertion i ∈ λ is equivalent to mi(λ) > 0.

7. If i ∈ λ, then λ \ i is the partition obtained by reducing mi(λ) by one. For any i,
λ ∪ i is the partition obtained by increasing mi(λ) by one.

The cycle type λ(π) of a permutation π is the partition given by the lengths of the cycles
of π in its disjoint cycle representation. The notation m(π) denotes the number of cycles
in the disjoint cycle representation of π, which is the number of parts of the partition λ(π).

Given two permutations π and σ, the conjugate of π with respect to σ is the per-
mutation σπσ−1. Conjugation has a natural combinatorial interpretation: the vertices of
the functional digraph of π are relabelled according to the permutation σ; i.e. the vertex
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i is replaced with σ(i). Consequently, the cycle type of π is invariant under conjugation.
Conversely, if two permutations π1 and π2 have the same cycle type, it is always possible
to find a permutation σ such that π1 = σπ2σ

−1. Thus, the sets

Cµ := {π ∈ Sn : λ(π) = µ}

are the conjugacy classes of Sn. By considering the size of the stabilizer of a conjugacy
class,

|Cλ| =
n!

|Aut(λ)|
,

where |Aut(λ)| =
∏

i≥1 i
mi(λ)mi(λ)!.

2.1.1 A basis for the centre of C[Sn]

Let C[Sn] be the group algebra of Sn over C. The group algebra is the complex span
of Sn, in which two basis elements are multiplied according to the multiplication in Sn.
This can be extended distributively to define multiplication of any two elements of C[Sn],
thereby giving a ring structure to C[Sn].

The group algebra of Sn is a natural algebraic context in which to study combinatorial
questions about factorizations of permutations. Given a set S ⊆ Sn, let

GS :=
∑
π∈S

π ∈ C[Sn].

If T ⊆ Sn is a second set of permutations, then

GSGT =

(∑
σ∈S

σ

)(∑
τ∈S

τ

)
=
∑
σ∈S,
τ∈T

στ.

Thus, the coefficient of a permutation σ in GSGT is the number of ways in which σ may
be obtained as a product of a permutation in S with a permutation T . Given an element
G ∈ C[Sn], let [π]G denote the coefficient of π in G; in other words, if G =

∑
σ∈Sn Gσσ,

then [π]G = Gπ. (The operation [π] is a linear functional on C[Sn].) With this notation,
the above observation reads as follows.

Lemma 2.1.1 (Encoding lemma for the Permutation Factorization Problem). Let S, T ⊆
Sn. The number of factorizations of a permutation π as π = στ such that σ ∈ S and
τ ∈ T is

[π]GSGT .
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(This lemma has an obvious generalization which allows for an arbitrary number of
factors.) This observation, while simple, is a fundamental bridge between the combinatorial
problem of enumerating factorizations, and the algebraic techniques which are used to study
them; it is the chief motivation for a combinatorialist to study the algebraic properties of
C[Sn]. This chapter describes some techniques that have been used when S and T are
conjugacy classes; the remainder of the thesis develops techniques to deal with situations
in which they are not.

To understand why the problem of computing GSGT is substantially more tractable
when S and T are conjugacy classes than when S and T are arbitrary, let Kλ = GCλ
denote the sum of elements in Cλ. For any permutation π ∈ Sn, πKλπ

−1 = Kλ, since Cλ
is a conjugacy class. Expressing this as πKλ = Kλπ, and observing that we may sum this
expression over an arbitrary linear combination of permutations in Sn, it is clear that Kλ

commutes with every element of C[Sn]. Let

Z(n) = {G ∈ C[Sn] : πG = Gπ for all π ∈ Sn}

denote the set of elements of C[Sn] which commute with everything in C[Sn] — this is the
centre of C[Sn]. (Equivalently, the centre is the set of elements which are invariant under
conjugation by Sn.) It is clear from the definition that Z(n) is a commutative subalgebra
of C[Sn]. The elements {Kλ}λ`n form a basis for Z(n), called the standard basis for
Z(n). It is clear that the set {Kλ}λ`n is linearly independent; to see that it spans Z(n), it
suffices to show that for any G ∈ Z(n), [π1]G = [π2]G whenever π1 is conjugate to π2. Let
σ be such that π1 = σ−1π2σ. Then

[π1]G = [π1]σGσ−1 = [π1]
∑
τ∈Sn

([τ ]G)στσ−1 = [σ−1π1σ]G = [π2]G;

hence, {Kλ}λ`n is a basis for Z(n). If G ∈ Z(n), let [Kλ]G denote the coefficient of Kλ in
G.

Recall that, as defined in the introduction, an enumerative problem about the permuta-
tion π whose answer is the non-negative integer f(π) is said to be central if

∑
π∈Sn f(π)π ∈

Z(n). The earlier discussion, in which conjugation of a permutation was interpreted com-
binatorially as a relabelling of the functional digraph of a permutation, provides some
combinatorial intuition about when a problem is central: for

∑
π∈Sn f(π)π to be invariant

under conjugation, the problem must not change if labels on the functional digraphs of the
pemutations involved are arbitrarily rearranged. Equivalently, none of the elements of the
ground set {1, 2, . . . , n} may be distinguished in any way. Thus, for example, a problem
which refers to the length of the cycle containing n is not central, since such a reference
distinguishes the label n.

It is helpful to introduce a stronger notion. A problem is said to be naturally central
if there exists an explicit expression for

∑
π∈Sn f(π)π as a monomial in the standard basis
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elements {Kλ}λ`n. When such an expression exists, the methods described in this chapter
may be used to approach the problem. The distinction between centrality and natural
centrality will be made clearer in Chapter 3, which contains an example of a problem (the
transitive star factorization problem) which is central, but not naturally central.

It is now possible to state the general form of a central factorization problem. All the
combinatorial problems described in the next section are special cases of this problem.

Problem 2.1.2 (The Central Factorization Problem). Given a permutation π ∈ Sn and
partitions λ, µ ` n, determine the number of pairs of permutations (σ1, σ2) such that

1. σ1σ2 = π,

2. σ1 has cycle type λ, and

3. σ2 has cycle type µ.

Since Z(n) is an algebra, the product KλKµ lies in Z(n), and since {Kλ}λ`n is a basis
for Z(n), there exist constants cνλ,µ such that

KλKµ =
∑
ν`n

cνλ,µKν .

The constants cνλ,µ are called the connection coefficients of Z(n). Computing these
coefficients gives, in principle, a solution to any naturally central enumerative question; in
particular, these coefficients give a solution to any combinatorial problem which can be
encoded using Lemma 2.1.1 such that S and T are conjugacy classes. It is worth recording
this observation in the following.

Corollary 2.1.3 (Encoding lemma for the Central Factorization Problem). Let µ, ν ` n.
The number of factorizations of a permutation π ∈ Sn as π = στ such that σ ∈ Cµ and
τ ∈ Cν is

[π]KµKν = [Kλ(π)]KµKν = cλ(π)
µ,ν ,

where cλµ,ν are the connection coefficients of Z(n).

The next section discusses some combinatorial problems which may be encoded in such
a manner, and Sections 2.3 and 2.4 discuss the techniques used to determine the connection
coefficients.
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2.2 Central Methods in Enumerative Combinatorics

This section introduces two classes of combinatorial problems to which central techniques
have been applied: enumeration of maps in orientable surfaces, and enumeration of ramified
coverings of the sphere. Each problem is defined, and an explanation of how it can be
encoded in Z(n) is provided. From a combinatorial perspective, there are broadly two
reasons for doing so:

1. In cases in which the central encoding can be explicitly evaluated, a closed form
solution to the problem can be obtained.

2. Algebraic relations may reveal previously unseen connections between two problems,
proving the existence of a bijection between sets of combinatorial objects. In such
cases, the problem of finding a natural bijection becomes an important problem in
its own right, the study of which often reveals further combinatorial structure.

Even in cases where the central encoding of a problem cannot be evaluated, it is still
useful for the purpose of providing a computational method of solving small cases of the
problem it encodes, which could be used to conjecture a solution to be proved using other
techniques.

2.2.1 Enumeration of Rooted Maps in Orientable Surfaces

The first major class of enumerative questions which have been solved using central tech-
niques is the question of enumerating maps in an orientable surface. A surface is a
compact, connected 2-manifold. Such surfaces are locally orientable; however, in this the-
sis, unqualified use of the term “surface” should be taken to refer to orientable surfaces.
It should be noted that maps in non-orientable surfaces are encoded not using the centre
of C[Sn] but rather the double coset algebra of the hyperoctahedral group, and thus do
not fit within the present framework of centrality and non-centrality. A brief discussion
regarding the possibility of extending the results of this thesis to the non-orientable case
appears in Chapter 9.

The Classification Theorem for Surfaces states that every orientable surface is homeo-
morphic to the connected sum of a sphere with g tori, for some g ≥ 0. The integer g is the
genus of the surface. A map is an embedding of a connected graph G into a surface Σ such
that if G is deleted, Σ decomposes into a union of regions, each of which is homeomorphic
to an open disc. Each of these regions is called a face of the embedding. Two maps M
and N are equivalent if there is a homeomorphism of Σ which takesM to N . Maps satisfy
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the Euler-Poincaré formula; i.e., if the map has v vertices, e edges, f faces, and is in a
surface of genus g, then

v − e+ f = 2− 2g.

Since v and e are determined by the underlying graph of the map, one of the main conse-
quences of this formula is that the surface in which the graph is embedded is completely
determined by the number of faces of the embedding, and vice versa. A rooted map is a
map in which an edge and one of the vertices to which it is incident are distinguished. In
diagrams, the root edge is indicated by an arrow pointing away from the root vertex.

The generating series for rooted maps has been given by Jackson and Visentin (see
[24] and [23]). They encode rooted maps in terms of rotation systems; this encoding is
summarized below, and may be found in detail in Chapter 10 of Tutte’s Graph Theory [43].
Given a rooted map, assign the label 1 to the root edge, and the labels 2, . . . , n to the non-
root edges in an arbitrary manner. Assign an arbitrary direction to each of the non-root
edges. (Observe that there are (n−1)!2n−1 ways of doing this, so the number of rooted maps
may easily be obtained by enumerating the number of maps decorated in this manner.)
For an oriented edge labelled i, mark the “head” of the edge with the symbol i+, and the
“tail” of the edge with i−. For each vertex, a counterclockwise tour of its neighbourhood
gives a cyclic ordering of the labels assigned to the ends of the edges incident to it. Regard
this as a cyclic permutation of these labels. This gives a permutation ν ∈ S2n, called the
rotation system of the decorated map. (This process is illustrated in Figure 2.2.) Let εn
denote the canonical fixed-point-free involution

εn := (1+1−)(2+2−) · · · (n+n−)

in S2n. Let φ = νεn. Then each cycle of φ represents the edge labels encountered during
a clockwise tour of one of the faces of the map. The cycle types λ(ν) and λ(φ) are the
vertex degree sequence and face degree sequence of the map, respectively. For the map
to be connected, it is necessary and sufficient for the group generated by ν and εn to act
transitively on {1+, 1−, . . . , n+, n−}. This gives the following encoding.

Lemma 2.2.1 (Encoding for decorated rooted maps). Let λv, λf ` n. Then the number of
decorated rooted maps with vertex degree sequence λv and face degree sequence λf is equal
to the number of pairs (ν, φ) such that

1. νεn = φ,

2. λ(ν) = λv and λ(φ) = λf , and

3. the group generated by φ and εn acts transitively on {1+, 1−, . . . , n+, n−}.
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Figure 2.2: Rotation system (1−, 3+, 6+)(1+, 5+)(2−, 5−)(2+, 3−)(4+, 4−, 6−) of a decorated
map. Multiplication by the canonical fixed-point-free involution ε6 gives the face permu-
tation ϕ = (1−, 5+, 2−, 3−, 6+, 4+, 6−)(1+, 3+, 2+, 5−)(4−).

When condition 3 is not enforced, the objects being enumerated are referred to as pre-
maps. Since the generating series for maps may be obtained by taking the logarithm of
the generating series for pre-maps, it suffices to solve the problem without condition 3.
Furthermore, since ν ∈ Cλv if and only if ν−1 ∈ Cλv , then the condition νεn = φ may be
replaced with νφ = εn. In light of Corollary 2.1.3, the problem reduces to the following.

Lemma 2.2.2. The number of decorated, rooted pre-maps with vertex degree sequence λv
and face degree sequence λf is

[K(2n)]KλvKλf = c
(2n)
λv ,λf

.

This Lemma allows the map enumeration problem to be approached using central methods.
In particular, it is the starting point for Jackson and Visentin’s [23] derivation of the general
form for the generating series for maps in orientable surfaces. Even when the connection
coefficients arising in Lemma 2.2.2 cannot be evaluated explicitly, algebraic relationships
between them can reveal combinatorial structure. A notable example of this is Jackson
and Visentin’s proof of the existence of a bijection between 4-face-regular maps and the
set of all maps in surfaces of lower genus, with some additional decoration.
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Rooted Dipoles

An important special class of maps in orientable surfaces is the class of rooted dipoles,
which are rooted maps with two vertices and no loops. It is of course possible to consider
two-vertex maps with loops, but for the purpose of this thesis the term “dipole” shall refer
to one without loops, unless otherwise specified. A labelled dipole is a dipole in which
the edges are labelled from the set {1, 2, . . . , n}, with the convention that the edge having
the label 1 is regarded as the root. Let D and D̂ denote the sets of all rooted dipoles,
and all labelled dipoles, respectively. Given a dipole D of either type, let n(D) denote its
number of edges, let g(D) denote the genus of the surface in which it is embedded. Let
dn,g denote the number of rooted dipoles with n edges in a surface of genus g, and let d̂n,g
denote the number of labelled dipoles with n edges in a surface of genus g. The number of
labelled dipoles in a given surface is equal to (n−1)! times the number of unlabelled rooted
dipoles, since this is the number of ways of labelling the non-root edges. An example of a
dipole with labelled edges is illustrated in Figure 2.3.

Dipoles, as a special case of the map enumeration problem, are of relevance to this
thesis for two reasons. First, the problem of enumerating dipoles is one in which central
methods give an explicit result; this problem is used as an example in the present chapter to
demonstrate central techniques. Second, a physically significant non-central generalization
of the dipole problem is defined in Chapter 3, and serves as motivation for the non-central
techniques developed in this thesis.

Kwak and Lee [28] describe a method of encoding a labelled dipole as a pair of per-
mutations (σ1, σ2) where each σi ∈ C(n); the encoding is a modification of the encoding
for all maps in terms of rotation systems, and relies on the fact that a dipole has exactly
two vertices and no loops. The permutation σ2 is the full-cycle permutation obtained by
reading the edge labels encountered in a counterclockwise circulation of the root vertex;
the permutation σ1 is the full-cycle permutation obtained by reading the edge labels en-
countered while moving counterclockwise around the non-root vertex. The pair (σ1, σ2)
shall be referred to as the vertex permutation pair of the dipole.

The edge labels induce a labelling of the half of the corners of the faces in the following
manner: if an edge has the label k, then the corner which is counterclockwise from that
edge around the root vertex also receives the label k. The face permutation of a dipole
is the permutation in which each cycle is the cyclic permutation obtained by reading the
root corner labels encountered during a clockwise boundary tour of a face. For example,
the face permutation of the dipole in Figure 2.3 is (1245)(36). The face permutation of a
dipole may be obtained algebraically as the product of the two vertex permutations. In a
loopless dipole, every face has even degree, so it is convenient to use the notation λ(D) to
denote the partition corresponding to half the degrees of the faces of a dipole D. If D is
encoded by the vertex permutation pair (σ1, σ2), then λ(D) = λ(σ1σ2).
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Figure 2.3: An example of a genus 2 labelled dipole with vertex permutations
((165423), (146253)) and face permutation (1245)(36).
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If m is the number of faces of a dipole on n edges, then the genus of the surface in
which it is embedded can be obtained using the Euler-Poincaré formula: g = 1

2
(n − m).

Consequently, it suffices to determine the number of dipoles with m faces. Therefore, the
dipole problem is encoded in Z(n) as follows:

Problem 2.2.3 (The labelled dipole problem). Determine the number of pairs (σ1, σ2) ∈ Sn

such that

1. σ1, σ2 ∈ C, and

2. σ1σ2 has n− 2g cycles.

Corollary 2.1.3 immediately expresses this as a problem in Z(n), namely,

dn,g =
∑
λ`n

m(λ)=n−2g

|Cλ|[Kλ]K
2
(n) =

∑
λ`n

m(λ)=n−2g

|Cλ|cλ(n),(n).

Section 2.4 gives an account of how a result of Jackson [21] on enumerating permutation
factorizations may be applied to determine the numbers dn,g explicitly.

2.2.2 Ramified Covers of the Sphere by a Surface of Genus g

A second major class of central problems is the enumeration of ramified covers of the
sphere by a connected surface of genus g — this is known as the Hurwitz problem. This
section discusses the Double Hurwitz problem, the combinatorics of which was studied
extensively by Goulden, Jackson and Vakil in [13], because a special case of this problem
can be solved explicitly using central methods. It also has connections to the transitive
star factorization problem discussed in Chapter 3.

The following terminology pertaining to ramified covers may be found in any of the
papers cited throughout this section, or in an introductory algebraic geometry text such
as [44]. Let f be a meromorphic function from a surface of genus g to the sphere, which
is regarded for these purposes as the compactification of the complex plane C via the
addition of the point ∞. All but a finite number of points on the sphere will have d
preimages under f , for some positive integer d — this is the degree of f . The finite set of
points with a preimage smaller than d are called the branch points of f . If z is a branch
point and f−1(z) = {a1, . . . , ak}, there is a partition α = (α1, . . . , αk) ` d such that αi
is the multiplicity of ai as a solution to f(ai) = z; this is called the branching type of
z. If αi > 1, then ai is a ramification point with ramification index αi. The various
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parameters of a cover of this type are related by the Riemann-Hurwitz formula: if the
ramification points of f are a1, . . . , ak with ai having ramification index αi, then

2g − 2 = −2d+
∑

1≤i≤k

(αi − 1).

The double Hurwitz problem deals with the enumeration of ramified covers in which
at most 2 of the branch points, typically taken to be the points 0 and ∞, have preimages
containing fewer than d − 1 points — let α = (α1, . . . , αm) and β = (β1, . . . , βn) be the
branching types of 0 and ∞, respectively. There are r additional branch points whose
preimage contains exactly d − 1 points — these are called simple branch points, and
they necessarily have branching type (2, 1d−2). In this case, the Riemann-Hurwitz formula
reduces to

2g − 2 = −m− n+ r.

The number of covers satisfying these conditions is denoted by Hg
α,β This problem was com-

binatorialized by Hurwitz in 1891 [18]. (An English translation of his combinatorialization
may be found in [13].) The encoding is as follows:

Problem 2.2.4 (Double Hurwitz Problem). Let α, β ` d with α = (α1, . . . , αm) and β =
(β1, . . . , βn). Then Hg

α,β is equal to 1
d!
α1! · · ·αm!β1! · · · βn! times the number of factorizations

(σ, τ1, . . . , τr, π) such that

1. σ ∈ Cβ, π ∈ Cα, and τi ∈ C(2,1d−2),

2. τ1 · · · τrσ = π,

3. r = m+ n+ 2g − 2, and

4. the group generated by {σ1, τ1, . . . , τr} acts transitively on {1, . . . , d}.

When β = (1d) (and hence σ is always the identity), this is known as the Single Hur-
witz Problem. Explicit expressions for the generating series for single Hurwitz numbers
have been given for the sphere [8], torus [10] and [12], and double torus [9]. Recursions
which determine the generating series for double Hurwitz numbers are also known [13].
Some of these results are obtained by the use of character theory, and others use a technique
called Join-Cut analysis. Consideration of the effect of multiplication by a transposition
on a permutation of cycle type λ leads to a partial differential equation for the generating
series for the problem, which is then either solved or, in cases where a closed form solution
is not known, analyzed to deduce information about the problem. An illustration of the
use of this technique appears in Chapter 3 as part of a discussion of the transitive star
factorization problem. Although Join-Cut analysis does not rely on the character theory
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of the symmetric group, central methods still play a role in providing computational data
which can lead to a conjectured form for the solution.

The special case of the double Hurwitz problem in which α = (d) merits additional
commentary, because in this case, an explicit formula can be derived using entirely central
methods, as is done in Section 3 of [13]. When π ∈ C(d), the factors involved in any
factorization of π will necessarily act transitively on {1, . . . , d}, since the group generated
by π alone acts transitively on this set. Consequently, there is no need to enforce condition
4 in Problem 2.2.4, so it suffices to compute

[Kβ](K(2,1d−2))
rK(d).

Various results appearing later in this chapter may be applied to this problem, yielding
the following.

Theorem 2.2.5 (Goulden, Jackson and Vakil [13]). Let r = n + 2g − 1, and let β ` d.
Then

Hg
(d),β = r!dr−1[t2g]

t/2

sinh(t/2)

∏
k≥1

(
sinh(kt/2)

kt/2

)mk(β)

.

Aside from the applications to topology and algebraic geometry described in detail
above, it should be noted that enumerative questions about permutation factorizations
arise in other areas as well. An example of an application to theoretical physics is dis-
cussed in Chapter 3. Permutation factorizations arise in computer science in the study of
sorting networks, which can be modelled as a factorization of a permutation into trans-
positions (see, for example, [1]). Permutation factorizations form the basis for a problem
in communication complexity which was studied by Harvey [17] and then used to find a
non-trivial lower bound on the number of queries made by an algorithm for the matroid
intersection problem.

2.3 Character Theory of Sn and the Connection Co-

efficients of Z(n)

This section addresses the question of how to compute the connection coefficients cλµ,ν . This
is done by constructing a basis for Z(n) consisting of elements which are orthogonal and
idempotent with respect to ring multiplication in C[Sn]. Such a basis is known to exist
because Z(n) is a commutative semi-simple algebra. Once this basis is constructed, the
familiar strategy for computing KµKν , where Kµ is the sum of permutations of cycle type
µ, is as follows.
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1. Express Kµ and Kν in terms of the basis of orthogonal idempotents.

2. Perform the (now trivial) multiplication in this basis.

3. Invert the basis change, expressing KµKν in the standard basis for Z(n).

An orthogonal idempotent basis for Z(n) may be constructed using the representation
theory of Sn. Section 2.3.1 contains definitions and elementary results related to the theory
of representations and irreducible characters of Sn. Section 2.3.2 gives an account of the
construction of an example of an irreducible representation, namely, Young’s semi-normal
representation. Section 2.3.3 demonstrates how these results are used to find expressions
for cλµ,ν in terms of irreducible characters. The combinatorial problems of Section 2.2 are
thereby reduced to the problem of computing irreducible characters of Sn.

2.3.1 Representations and Characters

Let GLd(C) denote the group of invertible d × d complex matrices. A representation
of Sn is a homomorphism ρ : Sn → GLd(C). The integer d is called the degree of the
representation, denoted by deg(ρ). Two representations ρ and ρ′ of degree d are said to be
equivalent if there exists a d× d matrix T such that ρ(π) = Tρ′(π)T−1 for all σ ∈ Sn.

A representation induces an Sn-action on the vector space Cd, namely, gv := ρ(g)v
for g ∈ Sn and v ∈ Cd. In other words, every matrix representation of Sn gives rise
to an Sn-module. Conversely, given a d-dimensional vector space which is also an Sn-
module, a matrix representation ρ can be constructed by defining ρ(g) to be the matrix
representation of the linear transformation v 7→ gv. Consequently, a representation may
be regarded as either a matrix representation or a module, depending on which perspective
is most convenient at the time.

Given a matrix representation ρ, define the character of ρ to be the function χρ :
Sn → C given by

χρ(π) := trace(ρ(π))

for π ∈ Sn. It will be convenient to regard the characters as elements of C[Sn], namely,

Xρ :=
deg(ρ)

n!

∑
π∈Sn

χρ(π)π.

For any σ, π ∈ Sn,

χρ(σπσ−1) = trace(ρ(σ)ρ(π)ρ(σ)−1) = trace(ρ(π)) = χρ(π),
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so χρ(π) depends only on the conjugacy class of π. Consequently, χρ(π) is written as χρµ
whenever λ(π) = µ, and Xρ is an element of Z(n), i.e.

Xρ =
deg(ρ)

n!

∑
λ`n

χρλKλ.

A representation is said to be irreducible if, when regarded as a Sn-module, it has
no proper nontrivial submodules. A character is said to be irreducible if its corresponding
representation is irreducible. There are two facts about irreducible characters that are
fundamental to the present approach to computing cλµ,ν . The first is that the number of
irreducible characters of Sn is equal to the number of conjugacy classes of Sn. Thus,
irreducible characters may be indexed by partitions of n; the notation χλµ = χρµ and Xλ =
Xρ will be used when ρ is the irreducible representation indexed by λ. Writing deg(ρ) = dλ
when ρ is the irreducible representation indexed by λ,

Xλ =
dλ
n!

∑
µ`n

χλµKµ.

The second fact pertains to the standard inner product 〈·, ·〉n on C[Sn] given by

〈F,G〉n =
1

n!

∑
π∈Sn

([π]F )([π]G),

where z denotes the complex conjugate of z. (In combinatorial applications, the coefficients
are often real numbers, and the conjugate is usually dropped from this definition when this
is the case.) With respect to this inner product, the irreducible characters of Sn are
orthonormal, i.e.

〈Xλ, Xµ〉 = δλ,µ,

where δi,j is the Kronecker delta. The fact that Xλ ∈ Z(n), the number of Xλ’s is equal
to the dimension of Z(n), and the Xλ’s are orthogonal (and hence linearly independent)
implies that {Xλ}λ`n forms a basis for Z(n), which will be called the character ba-
sis of Z(n). Since this basis is orthonormal, it is routine to invert the change of basis
transformation and express the standard basis in terms of the character basis, namely,

Kµ =
∑
λ`n

|Cµ|χλµ
dλ

Xλ. (2.1)
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1 3 4 6

2 7

5 9

8

Figure 2.4: A standard Young tableaux of shape (4, 2, 2, 1). Without the labels on the
boxes, this is the Ferrers diagram F(4,2,2,1).

2.3.2 Young’s Semi-normal Units

This section contains a description of Young’s semi-normal units, elements of C[Sn] from
which the irreducible representations and characters of Sn may be obtained. The method
presented here is singled out for two reasons. First, an obvious consequence of the con-
struction given here is that the basis {Xλ}λ`n is not only orthogonal with respect to the
inner product; it is also orthogonal with respect to ring multiplication. Furthermore, Xλ

is idempotent, so the character basis is the one which will allow the connection coefficients
of Z(n) to be computed according to the strategy laid out in the preamble of Section 2.3.
Second, the generalization of the character-theoretic approach appearing in Chapter 6 will
appear quite natural if the characters of Sn are constructed in the manner of this section.

Young’s semi-normal units are defined in terms of combinatorial objects called tableaux.
Given a partition λ ` n, the Ferrers diagram Fλ is a diagram consisting of n boxes
arranged in m(λ) rows such that, if the parts of λ are ordered such that λ1 ≥ λ2 ≥ · · · ≥
λm(λ), then there are λi boxes in row i, justified to the left margin. An illustration of a
Ferrers diagram is given in Figure . A standard Young tableau is a bijective assignment
of the integers {1, . . . , n} to the boxes of Fλ such that the labels on the boxes increase to
the right along rows, and down columns. The set of all standard Young tableaux of shape
λ is denoted by SYT(λ).

Given a tableaux T , let Ri denote the set of integers appearing in row i of T for
1 ≤ i ≤ m(λ), and let Cj denote the set of integers appearing in column j of T for
1 ≤ j ≤ λ1. Then the row group of T is

R(T ) := SR1 ×SR2 × · · · ×SRm(λ)
,

and the column group is

C(T ) := SC1 ×SC2 × · · · ×SCλ1
.
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Define the group algebra elements

RT :=
∑

π∈R(T )

π

and
CT :=

∑
π∈C(T )

sgn(π)π,

where sgn(π) is the signum of π, equal to 1 if π is a product of an even number of transpo-
sitions, and −1 otherwise. Let T ∗ be the tableau obtained by deleting the box with label n
from T . The approach to the representations of Sn presented here relies on the following
set of group algebra elements indexed by tableaux.

Definition 2.3.1 (Young’s semi-normal units). Let T be a standard Young tableau of
shape λ ` n. The semi-normal unit, e(T ), is given by

e(T ) =
dλ
n!
e(T ∗)RTCT e(T

∗)

when T has at least one box, and e(T ) = 1 if T is the tableau consisting of a single box.

The semi-normal units may be used to define the semi-normal basis for C[Sn]. The
basis elements corresponding to tableaux of shape λ can be used to describe a set of
irreducible Sn-modules, indexed naturally by λ, called the semi-normal representation.
However, the additional terminology and notation needed to describe this basis is not
needed in this thesis, and the reader is referred to James and Kerber [25] for details. The
facts about this representation and the semi-normal units which are used in this thesis are
as follows.

Lemma 2.3.2. Let λ ` n. Then the following results hold.

1. The degree of the irreducible representation indexed by λ is

dλ = |SYT(λ)|.

2. If T is a standard Young tableau of shape λ, then the coefficient of the identity
permutation in e(T ) is dλ/n!.

3. Let T, S be standard Young tableaux of shape λ. Then e(T )e(S) = δT,Se(T ).

4. Let λ ` n. Then

Xλ =
∑

T∈SYT(λ)

e(T ).
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−2 −1
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Figure 2.5: Contents of the boxes of a Young tableau of shape (4, 2, 2, 1).

An obvious corollary of this expression for Xλ given in this Lemma, and the orthogonal
idempotency of the semi-normal units is that {Xλ}λ`n is in fact a basis for Z(n) consisting
of orthogonal idempotents. There are two additional facts about the semi-normal units
which will be of use later.

The first has to do with the relationship between the Young idempotents and another
set of group algebra elements called the Jucys-Murphy elements Jn, defined as follows:

Jn :=
∑

1≤i≤n−1

(i, n).

The Jucys-Murphy elements, like any group algebra element, may be regarded as the
linear operator on C[Sn] given by g 7→ Jng. The semi-normal units are eigenvectors of
these operators, and their eigenvalues may be defined combinatorially. Given a standard
Young tableau T in which the element i appears in the box in row j and column k,
let cT (i) = k − j be the content of i in T . Figure 2.5 provides an illustration of this
definition.Then the following fact holds.

Lemma 2.3.3 (Murphy [34]). Let T be a standard Young tableau of shape λ ` n, and let
k ≤ n. Then

Jke(T ) = cT (k)e(T ).

It is often convenient to refer to the vector cT = (cT (1), cT (2), . . . , cT (n)) as the content
vector of T .

The second additional fact is that the semi-normal units in C[Sn−1] have a useful
description in terms of the semi-normal units in C[Sn], and this expression can be stated
in terms of the combinatorial operation of deleting a box from a tableau:

Lemma 2.3.4. If T is a tableau with n boxes, then e(T ∗) =
∑

S e(S), where the sum is
over all tableaux S such that T ∗ is obtained by deleting the box of S containing n.
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Now that the facts from representation theory which play a role in this thesis have been
identified, the next section will demonstrate how they may be used to solve combinatorial
problems which are naturally central.

2.3.3 Expressing Connection Coefficients in terms of Characters

The results of the two preceding sections can be combined to express the connection coef-
ficients of Z(n) in terms of characters. By Equation (2.1),

KµKν =

(∑
ρ`n

|Cµ|χρµ
dρ

Xρ

)(∑
κ`n

|Cν |χκν
dκ

Xκ

)
.

Since XρXκ = δρ,κ, then

KµKν = |Cµ||Cν |
∑
ρ`n

χρµχ
ρ
ν

d2
ρ

Xρ.

By the definition of Xρ,

KµKν =
|Cµ||Cν |
n!

∑
λ`n

∑
ρ`n

χρµχ
ρ
νχ

ρ
λ

dµ′
Kλ.

This gives the following expression for the connection coefficients of the centre of C[Sn].

Lemma 2.3.5 (Connection coefficients of Z(n)). Let cλµ,ν be such that KµKν =
∑

λ`n c
λ
µ,νKλ.

Then

cλν,µ =
|Cµ||Cν |
n!

∑
ρ`n

χρµχ
ρ
νχ

ρ
λ

dρ
.

This lemma provides the solution to any naturally central problem for which the char-
acters arising in the expression for cλν,µ can be evaluated. Explicit expressions for characters
are only known for special choices of λ, µ and ν. Some instances of these are given in the
next section, leading to explicit expressions for the solution to a number of combinatorial
problems.

2.4 Methods for Determining Characters

This section contains an account of two methods which may be used to compute the
values of irreducible characters in various special, combinatorially-relevant cases. One
method, described in Section 2.4.2, uses properties of the Jucys-Murphy elements to express
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characters as evaluations of symmetric polynomials at the contents of a Ferrers diagram.
Another method, described in Section 2.4.3, uses the Frobenius formula to translate the
problem of evaluating characters into a question about symmetric functions, and then
uses the Jacobi-Trudy formula to give an expression for the Schur symmetric functions
introduced by this method. Both methods use the terminology of symmetric functions,
which is given in Section 2.4.1. This chapter closes, in Section 2.4.4, with an illustration of
how these results have been used to find an explicit solution to the loopless dipole problem.

2.4.1 The Ring of Symmetric Functions

The definitions and results in this section are standard, and may be found in many sources
such as Macdonald [32]. Results are stated here without proof, and the reader is referred
to Macdonald for details. Let C[[x1, x2, . . .]] denote the ring of formal power series in a
countable number of indeterminates. For any bijection σ of the positive integers, define an
action of σ on C[[x1, x2, . . .]] by

σf(x1, x2, . . .) := f(xσ(1), xσ(2), . . .).

If σf = f for all such σ, then f is a symmetric function . Let Λ[[x1, x2, . . .]] denote the
set of symmetric functions; this is a subalgebra of C[[x1, x2, . . .]]. It is also useful to discuss
symmetric functions on a finite set of indeterminates; these may be obtained by evaluating
a symmetric function at xi = 0 for i > n, where n is the desired number of indeterminates.
In this case, f(x1, . . . , xn) is written instead of f(x1, x2, . . .). The subalgebra of symmetric
functions in n indeterminates is denoted by Λ[[x1, . . . , xn]], and the notation Λ[x1, . . . , xn]
denotes the algebra of symmetric polynomials.

There are many sets of symmetric functions which generate Λ and are algebraically
independent. Those which are most relevant to the present topic are:

1. Elementary symmetric functions: Let E(t) :=
∏

i≥1(1 + txi), and define ek :=

[tk]E(t). Alternatively,

ek :=
∑

1≤i1<i2<···<ik

xi1xi2 · · ·xik .

2. Complete symmetric functions: Let H(t) :=
∏

i≥1(1 − txi)−1, and define hk :=

[tk]H(t). Alternatively,

hk :=
∑

1≤i1≤i2≤···≤ik

xi1xi2 · · ·xik .
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3. Power sum symmetric functions: Let pk :=
∑

i≥1 x
k
i . The generating series

P (t) =
∑

k≥1 pkt
k−1 for power sum symmetric functions may be expressed in terms

of the generating series for complete symmetric functions, i.e.

P (t) =
d

dt
log(H(t)) =

H ′(t)

H(t)
. (2.2)

Taking f to be one of e, h or p, and λ ` n, let fλ =
∏

i≥1 fλi . In this notation, {fλ}, where
λ ranges over all partitions of non-negative integers, forms a linear basis for Λ in each of
these three cases.

A fourth important class of symmetric functions, which forms a linear basis for Λ, is
the class of Schur symmetric functions. Given a partition λ, a semi-standard Young
tableau of shape λ is a (not necessarily bijective) assignment of positive integers to the
cells of the Ferrers diagram Fλ which is strictly increasing from left to right, and weakly
increasing down columns. Let SSYT(λ) denote the set of semi-standard Young tableaux
of shape λ. Given T ∈ SSYT(λ), let xT be the product of xi where i ranges over the labels
in the cells of T . The final type of symmetric function used in this thesis is the following.

4. Schur symmetric function: Let

sλ :=
∑

T∈SSYT(λ)

xT .

2.4.2 Using Jucys-Murphy elements to evaluate characters

The method for computing characters presented in this subsection is due to Diaconis and
Greene [4]. It relies on the following fact which reduces the problem of evaluating the
character χµ to the problem of evaluating a symmetric function at the contents of a tableau
of shape µ.

Lemma 2.4.1. Let λ ` n and let f ∈ Λ[x1, . . . , xn] be such that Kλ = f(J1, J2, . . . , Jn).
Then

χµλ =
dµ
|Cλ|

f(cµ),

where cµ denotes the content vector of any tableau of shape µ.

This may be proven in a manner similar to the proof of Lemma 6.2.2, which appears
later in this thesis. While this lemma does not appear explicitly in [4], it is a convenient
way to summarize the Diaconis-Greene approach. The method relies on having an explicit
expression for the symmetric function f ; the existence of f is guaranteed by the following
result.
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Theorem 2.4.2 (Jucys [26]).

Z(n) = Λ[J1, J2, . . . , Jn].

One containment is obvious: when evaluated at the Jucys-Murphy elements, the ele-
mentary symmetric functions become

ek(J1, . . . , Jk) =
∑

2≤i1<i2<···<ik

Ji1Ji2 · · · Jik

=
∑
π∈Sn,
m(π)=k

π,

which is an element of Z(n). Since the elementary symmetric functions generate Λ[x1, . . . , xn],
then Λ[x1, . . . , xn] ⊆ Z(n). The other containment has a more substantial proof, which
may be found in [26].

Diaconis and Greene are able to obtain explicit formulas for special cases of evaluations
of characters in the following cases. These results are most easily stated by introducing
the following notation. For λ ` n, fix a tableau T of shape λ and define

σ(λ) :=
∑

1≤j≤n

cT (j) =
1

2

∑
1≤i≤m(λ)

(
λ2
i − (2i− 1)λi

)
,

the sum of contents of a tableau of shape λ. Let

σ(2)(λ) :=
∑

1≤j≤n

cT (j)2 =
∑

1≤i≤m(λ)

(
λi(i

2 − i+ 1) + 3

(
λi
2

)
+ 2

(
λi
3

)
− iλ2

i

)
,

the sum of squares of contents of a tableau of shape λ. (Observe that both quantities
depend only on the shape of T .)

Lemma 2.4.3. Let µ = (µ1, µ2, . . . , µk) ` n. Then:

1. χµ(n) =

{
(−1)k if µ = (n− k, 1k),
0 otherwise.

2. χµ(2,1n−2) =
(
n
2

)−1
dµσ(µ).

3. χµ(3,1n−3) = 1
2

(
n
3

)−1
dµ
(
σ(2)(µ)−

(
n
2

))
4. χµ(2,2,1n−4) = 1

6

(
n
4

)−1
dµ
(
σ(λ)2 − 3σ(2)(λ) + 2

(
n
2

))
.
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These results are also obtainable using the non-central refinement of the Diaconis-
Greene method described in Chapter 7. All these character evaluations may be obtained
as a corollary of later results. The first of these character evaluations is notable because it
implies that in sums involving characters indexed by a full cycle, many terms vanish. The
non-vanishing terms correspond to partitions of the form (n− k, 1k), which are referred to
as hook partitions.

2.4.3 Using the Jacobi-Trudy identity to evaluate characters

A second method for evaluating characters relies on the following result, which expresses
the irreducible characters of Sn as change-of-basis coefficients in the ring of symmetric
functions:

Theorem 2.4.4 (Frobenius). Let λ ` n. Then

sλ =
∑
µ`n

χλµ
|Aut(µ)|

pµ.

This method involves resolving the Schur functions in the power sum basis, and ex-
tracting the coefficients in this basis to obtain the irreducible characters. It is a classical
method which may be found in many sources; a convenient summary of the technique,
together with examples of characters which may be computed using this method, appears
in a paper by Jackson [21]. One of the primary methods of resolving Schur functions in
terms of power sum symmetric functions is the following:

Theorem 2.4.5 (Jacobi-Trudy identity). Let λ = (λ1, . . . , λm) ` n. Then

sλ = det[hλi−i+j]m×m,

where [ai,j]m×m denotes the m×m matrix whose entry in the ith row and jth column is ai,j.

Integrating and exponentiating Equation 2.2 allows complete symmetric functions to
be expressed in terms of the power sum basis, namely,

hk =
∑
λ`k

pλ
|Aut(λ)|

.

Consequently, for any partitions for which the determinant in Theorem 2.4.5 can be eval-
uated explicitly, Theorem 2.4.4 allows the irreducible characters indexed by that partition
to be evaluated. One important special case, evaluation of characters corresponding to
hook partitions, plays an important role in this thesis and appears in [21]:
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Figure 2.6: Illustration of a skew diagram λ/µ where λ = (5, 4, 3, 1) and µ = (3, 2, 1, 1).
This is a rim hook of height 2.

Lemma 2.4.6. Let λ = (λ1, . . . , λm) ` n, and let 0 ≤ k ≤ n− 1. Then

χ
(n−k,1k)
λ = [xk](1 + x)−1

∏
1≤j≤m

(1− (−x)λj).

Since the series appearing in this Lemma is used often in this thesis, it is convenient to
denote it by

Hλ(x) := (1 + x)−1
∏

1≤j≤m

(1− (−x)λj).

Lemma 2.4.6 may also be proven inductively using the Murnaghan-Nakayama rule.
In order to state this rule, some additional terminology is needed. Given two partitions
λ, µ ` n such that Fµ ⊆ Fλ, the skew diagram λ/µ is the diagram obtained from Fλ by
removing the boxes corresponding to Fµ. A skew diagram is a rim hook if it is connected
and contains no 2× 2 box as a subdiagram. The height of a rim hook λ/µ is equal to one
less than number of rows occupied by λ/µ, and is denoted by 〈λ/µ〉. These concepts are
illustrated in Figure 2.6. Then the following is true.

Theorem 2.4.7 (Murnaghan-Nakayama Rule). Let λ, µ ` n, and let i be a part of µ.
Then

χλµ =
∑
ρ

(−1)〈λ/ρ〉χρµ\i,

where the sum is over ρ ` n− i such that λ/ρ is a rim hook.

(This rule appears in numerous sources. See, for example, Chapter 4 of Sagan [39] for a
particularly clear account.)

2.4.4 The number of loopless dipoles in a surface of genus g

As a demonstration of how the algebraic techniques described in this chapter may be used
to solve a concrete combinatorial problem, this section gives an explicit expression for the
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generating series for the number of loopless dipoles with n edges in a surface of genus g,
as well as a more refined generating series which keeps track of half-face-degree sequence.
The formula for this number may be found explicitly in the literature in [28], or as an
obvious corollary of the following result.

Theorem 2.4.8 (Jackson, [21]). For a partition λ ` n, let eλk denote the number of per-
mutations with k cycles which are the product of a permutation of cycle type λ and the
cycle (1, 2, . . . , n). Let xλ =

∏
1≤i≤m(λ) xi, and let φz denote the linear operator defined by(

z
k

)
7→ zk. Then

z +
∑
k,n≥1

∑
λ`n

eλkxλ
yn

n!
φz(z

k) = z exp

(∑
i≥1

yixi
i

((1 + z)i − zi)

)
.

Jackson also gave a generalization of this formula to the case in which there is an
arbitrary number of factors — specifically, for the number of factorizations of the form
π = σ1 . . . σr where π ∈ Cλ, σ1 ∈ C(n) and σi has ti cycles, for a given sequence of positive
integers (t2, . . . , tr). This formula appears in [22].

The analysis presented here for the special case of rooted dipoles gives a more refined
result than the one obtainable as a corollary of this theorem since it gives a generating
series which keeps track of the full face-degree sequence instead of just the number of faces;
however, the proof techniques used are essentially the same as the ones used in the proof
of Theorem 2.4.8.

By the encoding used in Section 2.2 and Lemma 2.3.5, the number of labelled dipoles
with half-face-degree sequence λ is given by

|Cλ|cλ(n),(n) =
|Cλ|(n− 1)!

n

∑
ν`n

χν(n)χ
ν
(n)χ

ν
λ

dν
.

Applying part 1 of Lemma 2.4.3,

|Cλ|cλ(n),(n) =
|Cλ|(n− 1)!

n

∑
0≤k≤n−1

1

d(n−k,1k)

χ
(n−k,1k)
λ .

Since d(n−k,1k) is the number of standard Young tableaux of shape (n− k, 1k), then

|Cλ|cλ(n),(n) =
|Cλ|(n− 1)!

n

∑
0≤k≤n−1

1(
n−1
k

)χ(n−k,1k)
λ .
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Applying Lemma 2.4.6,

|Cλ|cλ(n),(n) =
|Cλ|(n− 1)!

n

∑
0≤k≤n−1

1(
n−1
k

) [yk]Hλ(y).

At this point, it is convenient to introduce the linear functional Ln defined by

Ln : yk 7→ 1

(n+ 1)
(
n
k

)
so that the expression for the number of dipoles of face type λ becomes

|Cλ|cλ(n),(n) = |Cλ|(n− 1)!Ln−1Hλ(y).

Given a partition λ, let fλ denote the product of indeterminates fi corresponding to the
parts of λ, i.e.

fλ :=
∏

1≤i≤m(λ)

fi.

Consider the generating series for unlabelled rooted dipoles in which a face of degree 2i is
marked by the indeterminate fi, namely,

ΨD :=
∑
D∈D

xn(D)

n(D)!
u2g(D)fλ(D)

=
∑
n≥1

∑
λ`n

xn

n!(n− 1)!
un−m(λ)fλ|Cλ|cλ(n),(n)

=
∑
n≥1

xn

n!
Ln−1

∑
λ`n

un−m(λ)fλ|Cλ|Hλ(y).

(Recall that the number of unlabelled rooted dipoles differs from the number of labelled
dipoles by a factor of (n− 1)!.) Define the linear operator L by

L =
∑
n≥1

xnLn−1[xn];

in other words, L : xnyk 7→ n−1
(
n−1
k

)−1
xn. Then the generating series becomes

ΨD = L

(∑
n≥1

xn

n!

∑
λ`n

un−m(λ)fλ|Cλ|Hλ(y)

)
.

Since

un−m(λ)fλHλ(y) = un(1 + y)−1
∏

1≤j≤m(λ)

fλj
u

(1− (−y)λi),
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the series to which L is applied is just, up to a factor of (1 + y)−1, the generating series
for permutations of {1, . . . , n} in which n is recorded exponentially in xu, and a cycle of
length i is recorded ordinarily with u−1fi(1− (−y)i). Thus, the following holds true.

Lemma 2.4.9. The generating series for unlabelled rooted dipoles is given by

ΨD = L

(
(1 + y)−1

(
exp

(∑
i≥1

xiui−1

i
fi(1− (−y)i)

)
− 1

))
.

In addition to serving as a demonstration of central techniques, this series, in the
general form given here, makes an appearance in Chapters 5 and 8 as the initial condition
for differential equations which determine the solution to the (p, q, n)-dipole problem. To
address the problem of determining dn,g, set fi = z for all i to “forget” information about
degree sequence and record only the number of faces. Since genus may be determined from
the number of edges and number of faces, to determine dn,g, calculations may be simplified
by setting u = 1 and extracting the coefficient of zn−2g instead of u2g. In other words,

dn,g = n![xnzn−2g]L

(
(1 + y)−1

(
exp

(∑
i≥1

xi

i
z(1− (−y)i)

)
− 1

))
= n![xnzn−2g]L

(
(1 + y)−1

(
exp

(
z log(1− x)−1 − z log(1 + xy)−1

)
− 1
))

= n![xnzn−2g]L

(
(1 + y)−1

(
1 + xy

1− x

)z
− (1 + y)−1

)
.

This expression may be simplified using an integral representation of the linear operator
L. Such a representation may be found by considering the integral∫ 1

0

sa(1− s)bds =
a!b!

(a+ b+ 1)!
=

1(
a+b
b

) 1

a+ b+ 1
.

The operation

f(x, y) 7−→
∫ 1

0

s−1f

(
xs,

1− s
s

)
ds

satisfies

xnyk 7−→
∫ 1

0

s−1(xs)n
(

1− s
s

)k
ds

= xn
∫ 1

0

sn−k−1(1− s)kds

=
xn

n
(
n−1
k

)
= L(xnyk).

Extending linearly gives the following.
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Lemma 2.4.10. Let f(x, y) be a formal power series in the indeterminates x, y. Then

L(f(x, y)) =

∫ 1

0

s−1f

(
xs,

1− s
s

)
ds.

Applying the integral form of L, the expression for the number of dipoles in a surface
of genus g becomes

dn,g = n![xnzn−2g]

∫ 1

0

(
1 +

x

1− xs

)z
− 1ds

= n![xnzn−2g]
∑
i≥1

(
z

i

)
xi
∫ 1

0

(
1

1− xs

)i
ds

= n![xnzn−2g]

(
z log((1− x)−1) +

∑
i≥2

(
z

i

)
xi−1

i− 1

(
1

(1− x)i−1
− 1

))

= [zn−2g]

(
(n− 1)!z +

∑
2≤i≤n

(
z

i

)
n!

i− 1

(
n− 1

i− 2

))

= [zn−2g](n− 1)!

(
z

1

)
+ [zn−2g]

∑
2≤i≤n

(
z

i

)
(n− 1)!

(
n

i− 1

)
= (n− 1)![zn−2g]

∑
1≤i≤n

(
z

i

)(
n

i− 1

)
.

Thus, the loopless dipole problem is an example of a problem which can be solved explicitly
using character theory. The proof of Theorem 2.4.8 makes use of the fact that evaluating
the sum of all characters indexed by partitions with a given number of cycles is easier than
evaluating one specific character, and this is what allows for such an explicit form of the
solution when it is only the number of cycles of the factors that is of concern. This is
a natural specialization in applications such as map enumeration, since summing over all
permutations with a fixed number of cycles corresponds to summing over all maps in a
given surface.

2.4.5 Central decompositions of a full cycle

Central methods can also be applied to deal with the more refined case in which the cycle
type of the factors is specified. The cases in which the most explicit results are possible
are those in which at least one of the factors is a full cycle, since in this case Lemma 2.4.3
allows the character sums involved to be simplified considerably.
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A complete solution to Problem 2.1.2 in the case when π is a full cycle, i.e., determining
the connection coefficient c

(n)
λ,µ = [K(n)]KλKµ, was determined by Goupil and Schaeffer [15]

using central methods. In the following, the notation (i1, . . . , i`) |= g1 indicates that
(i1, . . . , i`) is a composition of g1, i.e. (i1, . . . , i`) is a sequence of non-negative integers
which sum to g1.

Theorem 2.4.11 (Goupil and Schaeffer [15]). Let λ = (λ1, . . . , λ`) and let µ = (µ1, . . . , µm)
be partitions of n, and let 2g = n+ 1−m(λ)−m(µ). Then

c
(n)
λ,µ = n

∑
g1+g2=g

(`+ 2g1 − 1)!(m+ 2g2 − 1)!

|Aut(λ)||Aut(µ)|22g

∑
(i1,...,i`)|=g1
(j1,...,jm)|=g2

∏
1≤k≤`

(
λk

2ik + 1

) ∏
1≤k≤m

(
µk

2jk + 1

)
.

Alternatively,

c
(n)
λ,µ =

n∏
imi(λ)!mi(µ)!22g

∑
g1+g2=g

Sg1(λ)Sg2(µ).

where

Sg(x1, . . . , xk) = (k + 2g − 1)!
∑

(i1,...,ik)|=g

∏
1≤j≤k

1

2ij + 1

(
xj − 1

2ij

)
is a symmetric polynomial.

A combinatorial proof of this result, in the special case g = 0, was given by Goulden
and Jackson [7] in 1992 by establishing a bijection between the factorizations under consid-
eration and a class of two-coloured rooted trees. Extensions of the Goupil-Schaeffer result
to deal with an arbitrary number of factors were given by Poulalhon and Schaeffer [38] in
2002 and by Irving [19] in 2006. In 2008, Schaeffer and Vassilieva [40] gave a combinatorial
proof of Jackson’s [22] formula in the case of decomposing a full cycle into two factors with
a specified number of cycles. This is an example of a situation in which an enumerative
formula, derived algebraically, pointed the way towards a bijective proof of formula and
revealed the combinatorial structure of the objects being enumerated.

The interplay between algebraic and combinatorial enumeration is further illustrated by
the history of the Harer-Zagier [16] formula for the number of representations of a genus g
surface as a polygon with 2n sides, which arose in their study of the Euler characteristic of
the moduli space of curves. In the terminology of maps, this is the problem of enumerating
maps with n edges and a single face in a surface of genus g. Harer and Zagier’s original
proof used an integral over the space of hermitian matrices, and a second proof using
character theory was given by Jackson [21]. Subsequently, a purely combinatorial proof of
the same result was given by Goulden and Nica [14]. Given the history of the relationship
between algebraic and combinatorial approaches to permutation factorization problems, it
is reasonable to expect that the algebraic study of non-central problems will lead to similar
combinatorial insights in the future.
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2.4.6 Concluding comments

There are three essential facts about the centre of C[Sn] which make it possible to find
such an explicit form for the solution to the rooted dipole problem (and, more generally,
to prove Theorem 2.4.8):

1. there is an expression for the connection coefficients in terms of the irreducible char-
acters of Sn, namely, Lemma 2.3.5;

2. irreducible characters, when evaluated at the conjugacy class of full-cycle permuta-
tions, vanish unless they are the characters indexed by hook partitions — see Lemma
2.4.3;

3. the evaluation of an irreducible character indexed by a hook at an arbitrary class is
known, and can be expressed as the coefficient of a polynomial generating series —
see Lemma 2.4.6.

In the context of developing techniques to deal with non-central problems, one of the main
results of this thesis is that there is a class of non-central problems for which statements
analogous to all three of these facts hold true. These statements will be given and proven
in Chapter 6, and these results will be applied to solve some combinatorial problems
in Chapter 7. First, however, the next chapter discusses some examples of non-central
problems which serve to motivate the development of non-central techniques.
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Chapter 3

Non-central Permutation
Factorization Problems

This chapter describes some permutation factorization problems which can be encoded as
elements of C[Sn], but to which the techniques described in Chapter 2 cannot be applied.
Section 3.1 describes a non-central problem, the (p, q, n)-dipole problem, for which solu-
tions are only known for surfaces of genus at most two. This problem serves as the chief
motivation for developing methods to deal with non-central problems. Section 3.2 contains
a description of the transitive star factorization problem and a natural generalization, the
G-factorization problem, which is parametrized by a graph G. (The star factorization
problem is the case in which G is the complete bipartite graph K1,n−1.) The problem of
enumerating transitive star factorizations was fully solved by Goulden and Jackson [11].
While it is not obvious from the statement of this problem that it is central, the formula
given by Goulden and Jackson depends only on the cycle type of the permutation being
factorized. In other words, this is a central problem which is not “naturally central.”
Though this problem has been solved, it is of relevance to this thesis since the non-central
approach used to solve it has inspired the approach to the (p, q, n)-dipole problem described
in Chapter 5. Furthermore, since the non-transitive version of the star factorization prob-
lem is non-central, the solution to this problem raises questions about the relationship
between centrality and transitivity. Finally, Section 3.3 introduces the Z1-factorization
problem, which is a natural generalization of Problem 2.1.2. Like the (p, q, n)-dipole prob-
lem, the role of the Z1-factorization problem in this thesis is to motivate and demonstrate
the non-central techniques which are developed.
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3.1 The (p, q, n)-dipole problem

The (p, q, n)-dipole problem is a combinatorial problem arising in mathematical physics,
and it is one of the primary motivators for the development of non-central techniques in
this thesis. A combinatorial definition of the (p, q, n)-dipole problem is given in Section
3.1.1. Section 3.1.2 gives an encoding of the problem in C[Sn] and demonstrates that
the problem is non-central. Section 3.1.3 gives an account of the history of the problem,
including the motivation from mathematical physics behind its introduction together with
descriptions of the methods that have been previously applied to the problem.

3.1.1 Definition of the Problem

The (p, q, n)-dipole problem is about rooted dipoles with a second distinguished edge. (In
diagrams, the root edge will be denoted by an arrow on the edge, pointing away from the
root vertex. The distinguished edge will be denoted by a dashed line.) Given such a dipole,
the neighbourhoods of each vertex can be partitioned into four regions as follows.

• Region 1 is the part of the neighbourhood of the root vertex encountered while
travelling counterclockwise from the root edge to the distinguished edge.

• Region 2 is the remainder of the neighbourhood of the root vertex.

• Region 3 is the part of the neighbourhood of the non-root vertex encountered while
travelling counterclockwise from the root edge to the distinguished edge.

• Region 4 is the remainder of the neighbourhood of the non-root vertex.

These regions are illustrated in Figure 3.1.

The partition of the neighbourhoods of the root vertices into these four regions permits
the following definition to be made.

Problem 3.1.1 ((p, q, n)-dipole problem). Let D be a rooted dipole with an additional
distinguished edge. The p-value of D, denoted by p(D), is one plus the number of edges
intersecting the interior of Region 1. The q-value of D, denoted by q(D), is one plus the
number of edges intersecting the interior of Region 3. A dipole with specified values for p,
q, and number of edges n is referred to as a (p, q, n)-dipole. Determine the number dp,qn,g
of of (p, q, n)-dipoles in a surface of genus g.

As an example, the dipole shown in Figure 3.1.1 is a (3, 4, 6)-dipole. Some additional
terminology which will be useful is as follows. An edge which is neither the root edge nor
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Region 1 Region 2 Region 3 Region 4

Figure 3.1: Illustration of the definitions of the regions into which the neighbourhoods of
the vertices of a rooted dipole with a second distinguished edge are divided.

the second distinguished edge shall be referred to as an ordinary edge. The root edge
/ vertex pair uniquely identifies a root face, namely, the face encountered when moving
counterclockwise from the root edge around the root vertex. (The corner of the root face
which is incident with the root edge and vertex is called the root corner.)

There are two natural bijections from the set of rooted dipoles to itself which lead to
simple relations among the numbers dp,qn,g. The first bijection, interchanging the vertices of
the dipole, exchanges the role of p and q; in other words,

dp,qn,g = dq,pn,g. (3.1)

The second bijection interchanges the root edge and the second distinguished edge. If a
dipole has p−1 edges in Region 1, then its image under this bijection has (n−2)−(p−1) =
n− p− 1 edges in Region 1. A similar argument about the q-value of the dipole yields the
following:

dp,qn,g = dn−p,n−qn,g . (3.2)

Given these relations, it suffices to solve the (p, q, n)-dipole problem when p ≤ q and
p+ q ≤ n.

In some cases it will be more convenient to enumerate (p, q, n)-dipoles in which each of
the ordinary edges has been assigned a unique label from the set {1, 2, . . . , n−2}. A dipole
in which the ordinary edges are labelled shall be referred to as a labelled (p, q, n)-dipole.
Let d̂p,qn,g denote the number of labelled (p, q, n)-dipoles in a surface of genus g. Clearly,

dp,qn,g =
1

(n− 2)!
d̂p,qn,g.
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Figure 3.2: An example of a (3, 4, 6)-dipole.

3.1.2 Non-Centrality of the (p, q, n)-dipole Problem

The labelled (p, q, n)-dipole problem may be encoded as an element of C[Sn] as a straight-
forward refinement of Kwak and Lee’s encoding (Section 2.2.1). Assign the label n to the
root edge, and n−1 to the second distinguished edge. Consequently, any pair of vertex per-
mutations (σ1, σ2) which corresponds to a (p, q, n)-dipole must also satisfy the requirement
that σq1(n) = n− 1 and σp2(n) = n− 1. Applying Lemma 2.1.1 proves the following.

Lemma 3.1.2 (Encoding of the labelled (p, q, n)-dipole problem in C[Sn]). Let π ∈ Sn,
and let 1 ≤ p, q ≤ n−1. Then the number of labelled (p, q, n)-dipoles with face permutation
π is given by

[π]

 ∑
σ1∈C(n)

σq1(n)=n−1

σ1


 ∑

σ2∈C(n)
σp2(n)=n−1

σ2

 .

Since neither the left nor right factor in this expression commutes with Sn, this encoding
does not lie in the centre of the group algebra. To answer the question of whether or not an
alternate central encoding of this problem exists, consider the specific case of computing
(1, q, 4)-dipoles for various values of q. The face permutations for (1, q, 4)-dipoles are given
in Table 3.1.
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σ1 σ2 = (1243) σ2 = (1432)
q = 1 (1243) (14)(23) (134)(2)

(1432) (1)(234) (13)(24)
q = 2 (1423) (134)(2) (124)(3)

(1324) (142)(3) (1)(234)
q = 3 (1342) (1)(2)(3)(4) (123)(4)

(1234) (132)(4) (1)(2)(3)(4)

Table 3.1: Face permutations of (1, q, 4)-dipoles for various values of q

In the case of (1, 2, 4)-dipoles, for example, the group algebra element encoding the face
permutations is

(134) + (124) + (142) + (234).

In this element, four members of C(3,1) appear with coefficient one, and four appear with
coefficient 0; consequently, it does not lie in Z(4). Thus, the (p, q, n)-dipole problem is
fundamentally non-central, in contrast to problems such as the transitive star factoriza-
tion problem discussed in Section 3.2 which is central without having an explicit central
encoding.

3.1.3 Previous Approaches to the Problem

The (p, q, n)-dipole problem was first introduced in a physical context by Constable, Freed-
man, Headrick, Minwalla, Motl, Postnikov and Skiba [2]. Maps arise in this context as
embeddings of Feynman diagrams in an orientable surface. Particle interactions are mod-
elled as sums of terms indexed by these diagrams. From a combinatorial point of view,
this is an evaluation of the generating series of these diagrams.

The particular case of (p, q, n)-dipoles corresponds physically to the free two-point func-
tions of the Berenstein-Maldacena-Nastase operators

On
k :=

∑
0≤`≤n

x`Tr(φZ`ψZn−`)

and
O
n

k′ :=
∑

0≤`≤n

y`Tr(Z
`
ψZ

n−`
φ),

where n is a positive integer, k, k′ are integers, x = exp(2πik/n), y = exp(−2πik′/n), and
Z, ψ and φ are N ×N hermitian matrices. The two-point functions are given by

(xy)−1
∑
σ∈Sn,
σ(1)=1

Nm(σ−1C−1σC)
∑

2≤i≤n

xi−1yσ(i)−1, (3.3)
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where C = (12 . . . n) is the canonical full cycle in Sn. The equivalence of this problem
with the description of the (p, q, n)-dipole problem given in Definition 3.1.1 and Lemma
3.1.2 can be seen by observing that

{σ−1C−1σ : σ ∈ Sn, σ(1) = 1} = C(n).

Thus, the pair (σ−1C−1σ,C) is just the vertex permutation pair encoding a rooted dipole
in which the edges have been given a canonical labelling. (The root is given the label 1, and
the other edges are labelled 2, 3, . . . , n in counterclockwise order around the root vertex.)
The exponent of z in Expression (3.3) records the number of faces of such a dipole. The
exponent of x is i − 1 = Ci(1); in other words, regarding i as the second distinguished
edge of the dipole, the exponent of x records the p-value of the dipole. The q-value may
be determined by identifying the location of the distinguished edge label i on the cycle

(1, σ−1(n), σ−1(n− 1), . . . , σ−1(2))

which encodes the non-root vertex. If j = σ(i), then σ−1(j) = i is the (n− j+ 1)th element
following 1 on this cycle. Thus, n− q = σ(i)− 1, so the exponent of y records n− q. Thus,
up to a change in notational convention, determining the coefficients of Expression 3.3 is
equivalent to the statement of the (p, q, n)-dipole problem given in Problem 3.1.1.

Constable et al. give an explicit expression for Expression (3.3) as a sum over block-
reduced permutations. A permutation π ∈ Sn is said to be block-reduced if it satisfies
the following conditions:

1. π(1) = 1,

2. π−1(i+ 1) 6= π−1(i) + 1 for 1 ≤ i ≤ n− 1, and

3. π(n) 6= n.

Block-reduced permutations have a natural combinatorial interpretation in terms of dipoles.
Consider the dipole with vertex permutation pair (πC−1π−1, C). If π−1(i+ 1) = π−1(i) + 1
and 1 ≤ i ≤ n− 1, then

πC−1π−1C(i) = πC−1π−1(i+ 1) = πC−1(π−1(i) + 1) = i;

thus, i is a fixed point of the face permutation of the dipole, when 1 ≤ i ≤ k−1. (Similarly,
the condition π(n) 6= n ensures that n is not a fixed point of the face permutation.) Thus,
a block-reduced permutation corresponds to a dipole having no faces of degree 2. (A face
of degree two is referred to as a digon.) The set of block-reduced permutations in Sk

corresponding to a dipole of genus g is denoted by BRg
k.
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The method used by Constable et al. is to construct the set of all dipoles from the set
of block-reduced permutations by replacing each edge in a dipole having no digons with
some number bi of digons, while keeping track of how the insertion of edges changes the p-
and q-values of the dipole. They give the following expression for the generating series for
(p, q, n)-dipoles.

Theorem 3.1.3 (Constable et al [2]). The coefficient in (3.3) corresponding to dipoles of
genus g is given by∑

k≥1

∑
π∈BRgk

∑
1≤i≤k+1

(∑
xb1+···+bi−1yb

′
1+···b′

π(i)−1
1− (xy)bi+1

1− xy

)
,

where the inner summation is over all sequences b1, . . . , bk+1 satisfying b1, bk+1 ≥ 0, bi > 0
for 2 ≤ i ≤ k, b1 + · · · bk+1 = n+ 1, b′i = bπ−1(i) for 1 ≤ i ≤ k and b′k+1 = bk+1.

Results about the cardinality of BRg
k give an idea of how many terms arise in the

expression given in this theorem.

Lemma 3.1.4 (Constable et al [2]). If π ∈ BRg
k, then k ≤ 4g. Furthermore,

|BRg
4g| =

(4g − 1)!!

2g + 1

and

|BRg
4g−1| =

4g − 1

3
|BRg

4g|.

Constable et al. use Theorem 3.1.3 to solve the (p, q, n)-dipole problem asymptotically
for genus 1 and 2. (In the asymptotic case, the only terms arising in the formula of Theo-
rem 3.1.3 are those for which k = 4g.) Subsequently, Visentin and Wieler [45] gave exact
expressions for the coefficients of Expression (3.3) on the torus and double torus. Their
method is combinatorial: they perform a case analysis, one case for each dipole with no
digons, and determine the coefficients of the expression in Theorem 3.1.3 by enumerat-
ing the integer compositions indexing the innermost summation of this expression which
correspond to particular choices of p and q. This results in sums of products of binomial
coefficients, which, when simplified using Maple, yield the following.

Theorem 3.1.5 (Visentin and Wieler [45]). Suppose p ≤ q and p + q ≤ n. Then the
number of (p, q, n)-dipoles on the torus is

pq(n− p− q) +
p(p− 1)(3q − p− 1)

6
if p+ q < n,(

p+ 1

4

)
+

(
q + 1

4

)
+
p(p− 1)(3q − p− 1)

6
if p+ q = n.
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Theorem 3.1.6 (Visentin and Wieler [45]). Suppose p ≤ q and p + q < n. Then the
number of (p, q, n)-dipoles on the double torus is

1

12
pq(n− p− q)

((
n− p− 1

2

)(
2

(
n− p− q

2

)
+ (q − 2)(q + 1)

)
+

(
n− q − 1

2

)(
2

(
n− p− q

2

)
+ (p− 2)(p+ 1)

))
+

∑
1≤i≤p−1

(p− i)(q − i)
(
n− i

4

)
+

1

4
pq

(
n− p− q + 1

3

)
(2(p− 1)(q − 1)− (n− p− q)(n− p− q − 2))

−
(
p

3

)(
3n

(
q

3

)
+

1

280
p4 − 11

280
p3 +

1

120
p3q +

1

40
p2 − 1

20
p2q2 +

1

10
p2q

+
17

20
pq2 − 91

120
pq − 1

4
pq3 +

43

280
p+

7

30
q2 +

3

4
q3 − 17

20
q − 1

3
q4 +

3

35

)
.

Theorem 3.1.7 (Visentin and Wieler [45]). Suppose p ≤ q and p + q = n. Then the
number of (p, q, n)-dipoles on the double torus is

1

336

(
p+ 1

5

)
(21p3 − 155p2 + 338p+ 456) +

1

8

(
q + 1

6

)
(3q2 − q − 6)

+
1

2880
pq(p− 1)(84p3q − 132p3 − 281p2q + 5p2q3 + 10p2q2 + 458p2 − 102p

− 210pq2 + 209pq + 55pq3 + 214q + 440q2 − 692− 310q3 + 60q4).

These formulas will be used in this thesis as a means of verifying the results appearing
in Chapters 5, 7 and 8.

3.2 Powers of Jucys-Murphy Elements and

G-Factorizations

This section discusses some results pertaining to a seemingly non-central problem, the
transitive star factorization problem.

Problem 3.2.1 (Transitive Star Factorization Problem). Let π ∈ Sn and let r ≥ 1.
Determine the number of sequences (τ1, . . . , τr) ∈ Sr

n which satisfy

1. τ1τ2 · · · τr = π,

2. each τi is a transposition of the form (n, j) for some 1 ≤ j ≤ n− 1, and
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3. the group generated by {τ1, . . . , τr} acts transitively on {1, . . . , n}.

This problem is typically regarded as encoding a ramified cover of the sphere by a
surface of genus g in the manner described in Section 2.2. By the Riemann-Hurwitz
formula, r = n + m − 2 + 2g, and thus the problem may be regarded as parametrized
by either the number of factors or the genus of the covering surface. Based solely on the
statement of this problem, it does not appear that the problem is central. Indeed, given
the distinguished role played by the symbol n, one would expect that an element of C[Sn]
encoding this problem would not commute with permutations for which n is not a fixed
point. However, Goulden and Jackson [11] have shown that this problem is in fact central.
The history of results pertaining to this problem, and a discussion of the questions raised
by Goulden and Jackson’s result is given in Section 3.2.1

A problem closely related to Problem 3.2.1 is the following.

Problem 3.2.2 (Non-transitive Star Factorization Problem). Let π ∈ Sn and let r ≥ 1.
Determine the number of sequences (τ1, . . . , τr) ∈ Sr

n which satisfy

1. τ1τ2 · · · τr = π, and

2. each τi is a transposition of the form (n, j) for some 1 ≤ j ≤ n− 1.

To solve the non-transitive version of the problem, it suffices to compute the rth power of
the Jucys-Murphy element Jn. (Consequently, Problem 3.2.1 is referred to as the problem of
computing transitive powers of Jucys-Murphy elements.) Problem 3.2.2 is relevant
to this thesis as an example of a problem which is clearly non-central; indeed, J1

n does not
commute with permutations which do not fix n. Thus, the transitivity condition is essential
to the centrality of Problem 3.2.1. The problem of determining Jrn has, in principle, been
solved. Results of Lascoux and Thibon [30] related to computing power sums of Jucys-
Murphy elements may be used to do this. These results are discussed in Section 3.2.2.

Finally, Section 3.2.3 introduces the G-factorization problem, which generalizes the
(transitive) star factorization problem.

3.2.1 Transitive Star Factorizations

The problem of enumerating transitive star factorizations was first introduced by Pak
[37]. He solved the problem for the special case in which n = km + 1 for some k and
m, π(n) = n, π is of cycle type (km, 1), and in which the number of factors is minimal.
(Minimal factorization correspond to the genus 0 case.) Pak did not explicitly require the
factorizations to be transitive, though for permutations of this sort, any factorization into
star transpositions is necessarily transitive. Indeed, as long as π has no fixed points other
than n, any star factorization is transitive. His result is as follows.
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Theorem 3.2.3 (Pak [37]). Let n = km + 1, and k ≥ 2. Let π ∈ C(km,1) be such that
π(n) = n. The minimal number of factors in a star factorization of π is (k+ 1)m, and the
number of minimal star factorizations (and minimal transitive star factorizations) of π is

km(km+m)!

(km+ 1)!
.

This result was generalized by Irving and Rattan [20] to deal with minimal transitive
factorizations of an arbitrary permutation:

Theorem 3.2.4 (Irving and Rattan [20]). Let λ = (λ1, . . . , λm) ` n, and let π ∈ Cλ. The
minimal number of factors in a transitive star factorization of π is n + m − 2, and the
number of minimal transitive star factorizations of π is

(n+m− 2)!

n!

∏
1≤i≤m

λi.

Irving and Rattan also make the observation that the non-transitive version of the
problem can be solved by disregarding the fixed points of π and regarding the problem as
taking place in the symmetric group on a smaller group of symbols, obtaining the following.

Theorem 3.2.5 (Irving and Rattan [20]). Let λ = (λ1, . . . , λm) ` n, and let π ∈ Cλ be
such that π has exactly k fixed points among the symbols {1, . . . , n − 1}. The number of
minimal star factorizations of π is

(n+m− 2(k + 1)))!

(n− k)!

∏
1≤i≤m

λi.

The approaches of both Pak, and of Irving and Rattan are combinatorial. The proofs
involve establishing a bijection between the sets of factorizations and certain sets of two-
coloured plane-planted trees, and then enumerating these trees. What is particularly inter-
esting about the result of Irving and Rattan is that the solution to the minimal transitive
star factorization problem does not treat the length of the cycle containing the distin-
guished element n differently from the lengths of the other cycles. That is, despite the
non-central appearance of the statement of the problem, the solution is in fact central.

The transitive star factorization problem was solved for all genera by Goulden and
Jackson [11] in 2007. Let Cλ,i denote the set of permutations in Cλ such that the element n
appears on a cycle of length i. Let cg,λ,i denote the number of transitive factorizations of
π ∈ Cλ,i into n+m(λ)− 2 + 2g star transpositions. The method of Goulden and Jackson
is to derive a differential equation for the generating series

Ψ :=
∑
n≥i≥1,
m,g≥0

ntn
un+m−2+2g

(n+m− 2 + 2g)!
x2gzi

∑
λ`n,

m(λ)=m

|Cλ,i|cg,λ,iyλ\i,
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and then to obtain a solution of the equation. In this series, the indeterminates have the
following meaning:

• t marks the size of the set on which the symmetric group acts,

• u marks the number of factors,

• x marks twice the genus of the covering surface,

• zi marks a cycle of length i containing n, and

• yi marks a cycle of length i not containing n.

The method used to obtain the differential equation for this series is called a Join-Cut
analysis because it is based on the observation that multiplication of a permutation by
a transposition (i, j) has the effect of either joining the cycles containing i and j into one
cycle, or splitting a cycle containing both i and j into two smaller cycles. Specifically,
multiplying the permutation π by (i, j), the effect on the cycle(s) containing i and j is
either

(i, j)(i, π(i), . . . , π−1(i))(j, π(j), . . . , π−i(j)) = (i, π(i), . . . , π−1(i), j, π(j), . . . , π−1(j))
(3.4)

or

(i, j)(i, π(i), . . . , π−1(j), j, π(j), . . . , π−1(i)) = (i, π(i), . . . π−i(j))(j, π(j), . . . π−1(i)). (3.5)

For the particular case of transitive star factorizations, Goulden and Jackson obtain
the following.

Theorem 3.2.6 (Goulden and Jackson [11]). Let

∆ = t
∂

∂t
t
∑
i≥1

zi+1
∂

∂zi
+
∑
i,j≥1

ziyj
∂

∂zi+j
+ x2

∑
i,j≥1

jzi+j
∂2

∂zi∂yj
.

Then

∆Ψ =
∂Ψ

∂u
.

This equation is obtained by considering how the addition of the final factor in a
transitive star factorization affects the various parameters of the factorization. Suppose
(k, n) is the final factor in a transitive star factorization. One of the following three cases
occurs.
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1. The element k does not appear in any of the other factors in the factorization. In this
case, the removal of (k, n) results in a non-transitive factorization; however, it may
be regarded as a transitive star factorization in the symmetric group on the symbols
{1, . . . , n} \ {k}. Multiplying by (k, n) increases the length of the cycle containing n
by one, so this case corresponds to the term t ∂

∂t
t
∑

i≥1 zi+1
∂
∂zi

.

2. The element k does appear in one of the other factors, and when it is removed the
result is a transitive star factorization in which k and n appear on the same cycle. In
this case, multiplication by (k, n) cuts the cycle into two smaller cycles, one containing
k and the other containing n. This case corresponds to the term

∑
i,j≥1 ziyj

∂
∂zi+j

.

3. The element k does appear in one of the other factors, and when it is removed the
result is a transitive star factorization in which k and n appear on different cycles.
In this case, multiplication by (k, n) joins the cycle into one cycle containing both n
and k. This case corresponds to the term x2

∑
i,j≥1 jzi+j

∂2

∂zi∂yj
.

Goulden and Jackson solve the problem by exhibiting a solution to the equation in
Theorem 3.2.6 in terms of the series ξ(x) = 2x−1 sinh(x/2).

Theorem 3.2.7 (Goulden and Jackson [11]). Let

W (z) =
∑
`≥1

z`ξ(`ux)ξ(ux)`−2u`−1t`,

and let Z = t ∂
∂t
W (z), and Y = ξ(ux)2u2W (y). Then

Ψ = ZeY .

The coefficients of this series may be expressed in terms of the functions φλ defined by

φλ(x) :=
xn(λ)+m(λ)−2ξ(x)n(λ)−2

n(λ)!

∏
i≥1

ξ(λix)

as follows:

Theorem 3.2.8 (Goulden and Jackson [11]). Let λ ` n be a partition with m parts, and
let i be a part of λ. Let r = n+m− 2 + 2g. Then

cg,λ,i = r!
∏
i≥1

λi[x
r]φλ(x) (3.6)

=
r!

n!

∏
i≥1

λi
∑
β`g

ξ2βq2β(λ)

1m1(β)m1(β)!2m2(β)m2(β)! · · ·
, (3.7)

where ξj = [xj] log(ξ(x)), qj is the symmetric function defined by qj = pj + p1 − 2, and 2β
is the partition obtained from β by multiplying every part by 2.
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(The function φλ often appears in the literature scaled by a factor of |Aut(λ)|−1; how-
ever, for the purpose of the present discussion it is more convenient to omit this factor from
the definition.) The formula obtained by Goulden and Jackson is particularly notable be-
cause it does not depend on i: in other words, the transitive star factorization problem is
in fact a central problem. Goulden and Jackson posed the problem of finding a simple,
a priori proof of centrality of this problem; that is, a proof that does not rely on explicit
evaluation of the coefficients of the generating series. Such a proof is given in Chapter 4.
(A second proof was given independently by Féray [5].)

3.2.2 Non-transitive Powers of Jucys-Murphy Elements

A differential operator for the non-transitive star factorization problem may be obtained by
a straightforward adjustment of Goulden and Jackson’s argument for the transitive case.
Let ĉr,λ,i denote the number of factorizations of π ∈ Cλ,i into r factors, and let

Ψ̂ :=
∑
r≥0,
n≥1

xr

r!

∑
λ`n,
i∈λ

|Cλ,i|ĉr,λ,igifλ\i

be the generating series in which x records the number of factors, gi records the length of
the cycle containing n, and the f -type indeterminates record the lengths of the cycles not
containing n. Since the first case in the proof of Theorem 3.2.6 only arises when transitivity
is required, this series satisifes the differential equation

∂Ψ̂

∂x
= ∆̂Ψ̂,

where

∆̂ :=
∑
i,j≥1

gifj
∂

∂gi+j
+
∑
i,j≥1

jgi+j
∂2

∂gi∂fj
. (3.8)

The initial condition for this equation is

Ψ̂|x=0 =
∑
n≥1

g1f
n−1
1 =

g1

1− f1

,

since the only factorizations having zero factors are factorizations of the identity. The
non-transitive analogue of the star factorization problem is important not only because it
is an example of a non-central problem, but also because in Chapter 5 it is shown that the
Join-Cut operator corresponding to a special case of the (p, q, n)-dipole problem bears a
striking similarity to the operator for non-transitive star factorizations.
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The non-transitive star factorization problem may be solved by using a result of Las-
coux and Thibon [30] which expresses power sum symmetric functions evaluated at Jucys-
Murphy elements in the standard basis for Z(n). The group algebra element encoding the
non-transitive star factorization problem is

Jrn = pr(J2, . . . , Jn)− pr(J2, . . . , Jn−1).

The expansion for power sums of Jucys-Murphy elements in terms of the standard basis
for Z(n) is as follows.

Theorem 3.2.9 (Lascoux and Thibon [30]). Let n ≥ 2 and r ≥ 1. Then

pr(J2, . . . , Jn) =
∑

1≤k≤r+1

∑
λ`k,

m(λ)≤r−k+2

r!
∏
i≥1

λi

(
n− k +m1(λ)

m1(λ)

)
[xr]φλ(x)Kλ∪1n−k . (3.9)

Lascoux and Thibon prove this result by analyzing a differential operator which corre-
sponds to multiplication by a power sum of Jucys-Murphy elements. (This method differs
from analyzing the operator given in (3.8) because the problem of computing pr(J2, . . . , Jn),
being central, only requires one set of indeterminates, in contrast to the problem of comput-
ing Jrn via differential methods which requires both “f” and “g” indeterminates.) Chapter 7
contains an approach to computing Jrn that is an alternative to taking the difference of two
sums of the form given in Equation (3.9).

3.2.3 The G-factorization problem

A natural generalization of the (transitive) star factorization problem is the following.

Problem 3.2.10 ((Transitive) G-factorization problem). Let G be a graph on vertex set
{1, . . . , n}, let π ∈ Sn, and let r ≥ 1. Determine the number of sequences (τ1, . . . , τr) ∈ Sr

n

which satisfy

1. τ1τ2 · · · τr = π,

2. (the group generated by {τ1, . . . , τr} acts transitively on {1, . . . , n}), and

3. each τk is a transposition of the form (i, j) where {i, j} is an edge of G.

Taking G to be the graph in which vertex n has degree n − 1 and every other vertex
has degree 1, this gives the (transitive) star factorization problem. There are two other
notable special cases of this problem. Setting G to be the complete graph on n vertices
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Complete graph Star graph Path
Transitive Central Central Non-central

Non-transitive Central Non-central Non-central

Table 3.2: Centrality / non-centrality of various versions of the G-factorization problem.

gives the problem of factorizations into transpositions which has been well-studied both in
its transitive form (see [8], [10], [9] and [12], for example) and its non-transitive form (see
[6], [22], [3] and [33], for example). Setting G to be a path gives the problem of enumerating
factorizations into adjacent transpositions, which was studied in its non-transitive form by
Stanley [41].

It is clear that, in the non-transitive case, the G-factorization problem is non-central
unless G is the complete graph. In the transitive case, given the centrality of the transitive
star factorization problem, the answer to whether or not the problem is central is less clear.
Table 3.2 summarizes the answer to the question of centrality for various special graphs,
and for both the transitive and non-transitive cases.

An elementary argument may be used to show that, for many graphs G, the transitive
G-factorization problem is non-central. A complete characterization of the graphs G for
which the transitive G-factorization is central is not yet known. At present, the only graphs
for which this problem is known to be central are the complete graph and the star graph.

Theorem 3.2.11 (S.). Let G be a connected graph. If the complement of G contains a
Hamilton path, then the transitive G-factorization is non-central.

Proof. It suffices to show that there exists a full-cycle permutation which has a transitive
G-factorization into n − 1 transpositions, and another full-cycle permutation which does
not. In other words, the solution to this problem (regarded as an element of C[Sn]) is not
constant on the class C(n). Since G is connected, it has a spanning tree T containing n− 1
edges. Let τ1, . . . , τn−1 be the transpositions corresponding to the edges of T . Since each
transposition in this list is a “join,” then the product of this list of transpositions is a full
cycle.

Suppose, without loss of generality, that the Hamilton path in the complement visits
the vertices in the order 1, 2, 3, . . . , n. It suffices to show that the full-cycle permutation
(1, 2, . . . , n) admits no G-factorizations with n−1 factors. To prove this, it suffices to show
that if τ1, . . . , τn−1 is a factorization of (1, 2, . . . , n), then at least one of the τk must be of
the form (i, i + 1) for some 1 ≤ i ≤ n − 1 — and this edge does not lie in the graph G.
This is proven in the following.
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Lemma 3.2.12. Let n ≥ 3. Suppose π ∈ C(n) = τ1 · · · τn−1 is a factorization of a full cycle
into transpositions. Then there are at least two transpositions τa = (ia, ja) and τb = (ib, jb)
such that π(ia) = ja and π(ib) = jb.

Proof. This result may be proven using induction on n. When n = 3, suppose that
π = (a, b, c). Then the only three factorizations of π into two transpositions are

(a, b, c) = (a, b)(b, c),

(a, b, c) = (c, a)(a, b),

and

(a, b, c) = (b, c)(c, a),

each of which satisfy the conclusion of the lemma.

Next, suppose that n ≥ 4, and that π = τ1 · · · τn−1 is a factorization into n − 1 trans-
positions. Let τ1 = (i, j). Every transposition in this factorization must be a “join.” In
order for τ1 to be a join, the disjoint cycle representation of τ2 · · · τr must consist of exactly
two cycles, one of which contains i, and the other of which contains j. These cycles are
denoted by Ci = (i, c2, . . . , ck) and Cj = (j, d2, . . . dn−k) respectively, with the notational
convention that c1 = i and d1 = j. Then

π = (i, j)CiCj = (i, c2, . . . , ck, j, d2, . . . , dn−k). (3.10)

None of the transpositions τ` for 2 ≤ ` ≤ n−1 can be of the form (ca, db), since the existence
of a transposition of this form would require some other factor to be a cut because ca and
db end up on different cycles of τ2 · · · τn−1. Thus, without loss of generality, we may assume
that

Ci = τ2τ3 · · · τk
and

Cj = τk+1 · · · τn−1.

Furthermore, the number of factors in each of these two expressions is one less than the
length of the corresponding cycle.

If both Ci and Cj have length greater than 3, then by induction, there is at least one
transposition of the form (ca, ca+1) among the transpositions {τ2, . . . , τk}, and at least one
transposition of the form (db, db+1) among {τk+1, . . . , τn−1}. In light of the expression for
π given in Equation (3.10), the result is proven in this case.

To finish the proof, the three remaining cases are examined as follows:
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• If one of the cycles, say Cj, has length 1, then Ci must have length at least 3.
Applying the inductive hypothesis to Ci yields one of the desired transpositions, and
the second is τ1 = (j, i) since π = (i, j)(i, c2, . . . cn−1) = (j, i, c2, . . . cn−1).

• If both Ci and Cj are both of length 2, then the factorization of π is of the form

π = (i, j)(i, c2)(j, d2) = (i, c2, j, d2),

so (i, c2) and (j, d2) are the desired transpositions.

• If one of the cycles, say Cj, is of length 2 and Ci has length strictly greater than 2,
then

π = (i, j)(i, c2, . . . cn−2)(j, d2) = (i, c2, . . . cn−2, j, d2),

so (j, d2) is one of the desired transpositions; the other is obtained by applying
induction to Ci.

Applying this Lemma, at least one of the factors in a factorization of (1, 2, . . . , n) must
be of the form (i, i + 1), and since the edge {i, i + 1} lies in the complement of G, there
are no G-factorizations of (1, 2, . . . , n).

This result demonstrates that for many graphsG, the transitiveG-factorization problem
is a source of properly non-central problems.

3.3 Z1-factorizations

This section introduces a natural non-central generalization of the Central Factorization
Problem (Problem 2.1.2), called the Z1-factorization problem. The reason for selecting
this name will be made apparent in Chapter 4.

Problem 3.3.1 (The Z1-factorization problem). Given a permutation π ∈ Sn, partitions
λ, µ ` n and parts i, j of λ and µ respectively, determine the number of pairs of permuta-
tions (σ1, σ2) such that

1. σ1σ2 = π,

2. σ1 has cycle type λ, with n appearing on a cycle of length i, and

3. σ2 has cycle type µ, with n appearing on a cycle of length j.
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There are two main reasons for interest in this problem. First, as a natural general-
ization of Problem 2.1.2, it is important as a test of the effectiveness of the non-central
techniques developed in this thesis. Specifying the length of the cycle containing n is
the simplest non-central generalization of the central factorization problem; therefore, one
would expect that the problem would retain enough structure to be interesting. In this
respect, the Z1-factorization problem is the “next step up” from the central factorization
problem, and if the methods generalizing central techniques presented in this thesis are to
be considered successful, they should at the very least yield an approach to solving this
problem that is comparable to central methods. Given that the central version of Prob-
lem 3.3.1 is considerably simplified when factorizations of a full cycle are being considered,
this is also a natural specialization to consider in the non-central case. Thus, it is natural to
ask whether there is a non-central analogue of Theorem 2.4.11. This question is addressed
in Chapter 7.

The second reason for interest in an algebraic solution to the Z1-factorization problem
is that it is reasonable to expect that the solution to such a problem will hint at future
combinatorial results on permutation factorization. Much like Shaeffer and Vassilieva’s
combinatorial proof [40] of a special case of Theorem 2.4.8, and Goulden and Jackson’s
combinatorial proof [7] of a special case of Theorem 2.4.11, it is reasonable to expect that
non-central analogues of these combinatorial constructions also exist. Giving an algebraic
solution to Problem 3.3.1 (particularly in the case when π is a full cycle) would provide an
important hint of what these analogues might be.

53



Chapter 4

Centralizers of C[Sn]

The first step in developing an algebraic approach to the non-central problems described in
the preceding chapter is to identify algebras which can play a role analogous to that played
by Z(n) in the case of central problems. The algebras which play this role are the centralizer
algebras of C[Sn]. Section 4.1 uses the problems described in Chapter 3 to motivate this
choice, and presents definitions and elementary results pertaining to centralizer algebras.
Section 4.2 describes some important properties of these algebras. In particular, it contains
a description of how to construct the basis for a centralizer algebra in general, and gives
explicit constructions of the bases of two specific centralizers which play a prominent role
in this thesis. The problems of Chapter 3 are then encoded as products of these basis
elements. Finally, Section 4.3 shows how the language of centralizers can be used to give
an a priori proof of centrality of the transitive star factorization problem.

4.1 Motivation and Definition

To motivate the choice of centralizers as the algebraic context for approaching non-central
problems, recall that Problem 3.3.1 can be solved by evaluating products of elements of
the form ∑

σ∈Cλ,
n is on a cycle of σ of length i

σ. (4.1)

From a combinatorial point of view, given any permutation σ ∈ Cλ such that n appears
on a cycle of length i, any relabelling of its functional digraph that does not relabel the
element n will preserve both the cycle type and the length of the cycle containing n. In
algebraic terms, if π ∈ Sn is such that π(n) = n, then the expression (4.1) is invariant
under conjugation by π. Of course, the set of permutations fixing n form a subgroup of
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Sn, namely, Sn−1. Consequently, it is natural to consider the subset of C[Sn] consisting
of elements invariant under conjugation by a specified subgroup:

Definition 4.1.1 (Centralizer). Let T be a finite set, and let H be a subgroup of ST .
The centralizer of C[ST ] with respect to H is the set

ZH(T ) := {g ∈ C[ST ] : σgσ−1 = g for all σ ∈ H}.

As a notational shorthand, if T = {1, . . . , n}, then ZH(T ) is denoted by ZH(n). If, in
addition, H = S{1,...,k} for some k ≤ n, then ZH(T ) is denoted by Zn−k(n). The following
observations follow immediately from the definition of ZH(T ) and are thus stated without
proof.

Lemma 4.1.2. 1. ZH(T ) is a subalgebra of C[ST ].

2. Z0(n) is the centre of C[Sn].

3. Z0(n) ⊆ Z1(n) ⊆ · · · ⊆ Zn(n) = C[Sn].

The study of this subalgebra is motivated by the observation that the the problems of
Chapter 3 may be encoded by elements of ZH(T ) for appropriate choices of T and H.

Example 4.1.3 ((p, q, n)-dipoles). Recall that in order to solve the (p, q, n)-dipole problem,
it suffices to find an expression for the element

g :=
∑

π1∈C(n),
πq1(n)=n−1

∑
π2∈C(n),

πp1(n)=n−1

π1π2.

For any σ ∈ S{1,...,n−2}, note that

σgσ−1 =
∑

π1∈C(n),
πq1(n)=n−1

∑
π2∈C(n),

πp1(n)=n−1

σπ1σ
−1σπ2σ

−1.

Since (σπ2σ
−1)p = σπp2σ

−1 and both n and n−1 are fixed points of σ, then (σπ2σ
−1)p(n) =

n−1 if and only if πp2(n) = n−1. Similarly, (σπ1σ
−1)q(n) = n−1 if and only if πq1(n) = n−1,

so σgσ−1 = g. Consequently, g ∈ Z2(n).
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Example 4.1.4 (G-factorizations). Let G be a graph with vertex set {1, . . . , n}. To solve
the G-factorization problem, it suffices to find an expression for

g :=
∑

τi=(u,v),
{u,v}∈E(G)

τ1 · · · τr.

Let σ ∈ Aut(G). Since σ(u, v)σ−1 = (σ(u), σ(v)), and {u, v} ∈ E(G) if and only if
{σ(u), σ(v)} ∈ E(G), then σgσ−1 = g. Consequently, g ∈ ZAut(G)(n).

Example 4.1.5 (Powers of Jucys-Murphy elements). As an important special case of
Example 4.1.4, take G to be the graph in which vertex n has degree n− 1, and every other
vertex has degree 1. Then the element g is the rth power of the Jucys-Murphy element Jn.
Since Aut(G) = Sn−1, then Jrn ∈ Z1(n).

In addition to the combinatorial applications listed above, centralizers of C[Sn] are of
interest because of the role they play in an alternative derivation of the irreducible repre-
sentations of the symmetric group due to Okounkov and Vershik [35]. In their approach,
centralizers are used to prove the Branching Rule and the Murnaghan-Nakayama rule.

4.2 Properties of Centralizers

Having identified an appropriate algebraic context for studying the problems of Chapter 3,
the next step is to study the elementary properties of this algebra. The first task is
to identify a natural linear basis for ZH(n). This basis is natural in the sense that the
problems of Chapter 3 have a simple encoding as products of basis elements. Following the
construction of this basis is a description of some combinatorially natural transformations
relating various centralizers of the form ZSα(n).

4.2.1 A Basis for ZH(n)

Recall that sums over Sn-conjugacy classes form a basis for the centre of the group algebra.
This idea may be generalized as follows. Let ? denote the action of conjugation by H on
Sn, i.e. ? is defined by h ? π = hπh−1 for h ∈ H, π ∈ Sn. Let O1, . . . ,Om denote the
orbits of Sn with respect to this action. Define the elements Ωi by

Ωi :=
∑
π∈Oi

π
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for 1 ≤ i ≤ m. A useful alternative expression for Ωi is

Ωi =
|Oi|
|H|

∑
h∈H

h ? π

where π is a fixed element of Oi. (The notation Oπ and Ωπ will be used to denote the
orbit and group algebra sum, respectively, corresponding to the orbit containing π.) First,
observe that for any h ∈ H,

hΩih
−1 =

∑
π∈Oi

hπh−1 =
∑
π∈Oi

h ? π =
∑
π∈Oi

π = Ωi,

so that Ωi ∈ ZH(n). Furthermore, since the orbits partition Sn, the set {Ωi}1≤i≤m is
linearly independent.

To show that {Ωi}1≤i≤m spans ZH(n), it suffices to show that for any g ∈ ZH(n), if π1

and π2 are in the same orbit, then [π1]g = [π2]g. Let h ∈ H be such that π2 = h ? π1.
Write g as

g =
∑
π∈Sn

gππ.

Since hgh−1 = g, then

[π2]g = [π2]hgh−1 = [π2]
∑
π∈Sn

gπh ? π = gπ1 = [π1]g.

This result is summarized in the following.

Lemma 4.2.1. Let H be a subgroup of Sn. Let O1, . . . ,Om be the orbits of Sn with respect
to the action of H given by h ? π = hπh−1. For 1 ≤ i ≤ m, let

Ωi =
∑
π∈Oi

π.

Then the set {Ωi}1≤i≤m is a linear basis for ZH(n).

The set {Ωi}1≤i≤m will be referred to as the standard basis for ZH(n). By taking
H = Sn, this result specializes to the known basis for the centre of C[Sn], since in this
case, the orbits of Sn with respect to the action ? are conjugacy classes. Since many of
the problems of interest lie in Z1(n) and Z2(n), the bases for these algebras will now be
described more explicitly.
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Standard basis for Z1(n)

For Z1(n), the orbits of Sn with respect to Sn−1 are of the following form.

Definition 4.2.2. Let λ ` n, and let i be a part of λ. Define Cλ,i by

Cλ,i := {σ ∈ Cλ : n is on a cycle of length i}.

Consequently, the basis elements of Z1(n) are of the following form.

Definition 4.2.3. Let λ ` n and let i be a part of λ. Let

Kλ,i :=
∑
π∈Cλ,i

π.

By Lemma 4.2.1,

Lemma 4.2.4. The set {Kλ,i}λ`n,i∈λ is a basis for Z1(n).

Notably, this basis for Z1(n) contains the Jucys-Murphy element Jn; specifically, K(2,1n−2),2 =
Jn; hence, the non-transitive star factorization problem may be encoded in Z1(n) as
Kr

(2,1n−2),2. Furthermore, Problem 3.3.1 may be naturally encoded in Z1(n) as well. Let

[Kλ,i]G denote the coefficient of Kλ,i in the element G ∈ Z1(n). Then the following state-
ment is true.

Corollary 4.2.5. Let λ, µ, ν ` n, and let i, j and k be parts of λ, µ and ν respectively. If
π ∈ Cν,k, then the solution to Problem 3.3.1 is given by

[π]Kλ,iKµ,j = [Kν,k]Kλ,iKµ,j.

A further consequence of Lemma 4.2.4 is that it leads to an elementary proof that Z1(n)
is commutative. Define the operator Inv : C[Sn] → C[Sn] by Inv(π) = π−1 for π ∈ Sn,
extending linearly to C[Sn]. If G =

∑
π∈Sn Gππ and H =

∑
σ∈Sn Hσσ are arbitrary

elements of C[Sn], then

Inv(GH) =
∑
π∈Sn

∑
σ∈Sn

GπHσInv(πσ)

=
∑
π∈Sn

∑
σ∈Sn

GπHσσ
−1π−1

=
∑
σ∈Sn

Hσσ
−1
∑
π∈Sn

Gππ
−1

= Inv(H)Inv(G).

Considering the action of Inv on the standard basis for Z1(n) leads to the following.
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Lemma 4.2.6. For any G ∈ Z1(n), Inv(G) = G. Consequently, Z1(n) is commutative.

Proof. Taking the inverse of a permutation does not change its cycle type, nor does it
change the length of the cycle containing n, so Inv(Kλ,i) = Kλ,i. Extending linearly to
Z1(n), we find that Inv(G) = G for all G ∈ Z1(n). Thus, if G,H ∈ Z1(n),

GH = Inv(GH) = Inv(H)Inv(G) = HG.

Commutativity of Z1(n) is important, because it permits the construction of a basis
of orthogonal idempotents from which the connection coefficients for Z1(n) may be deter-
mined. This is done in Chapter 6.

It will, of course, prove useful to know the size of each Sn−1-orbit as well.

Lemma 4.2.7.

|Cλ,i| =
(n− 1)!imi(λ)

|Aut(λ)|
.

Proof. For each element in Cλ,i, there are
(
n−1
i−1

)
choices for the elements on the cycle

containing n other than n, and (i − 1)! ways to order them on the cycle. There are |Cλ\i|
ways to choose the remaining cycles, so the total number of elements in Cλ,i is(

n− 1

i− 1

)
(i− 1)!|Cλ\i| =

(n− 1)!imi(λ)

|Aut(λ)|
.

Standard basis for Z2(n)

The orbits of Sn with respect to conjugation by Sn−2 may be categorized into one of the
two types, depending on whether or not n and n− 1 lie on the same cycle. The two types
of basis elements are defined as follows.

Definition 4.2.8. Let λ ` n, let i be a part of λ, and let 1 ≤ j < i. Define the set

Aλ(i, j) := {σ ∈ Cλ : n and n− 1 are on the same cycle of length i, σj(n) = n− 1},

and let
Aλ(i, j) :=

∑
σ∈Aλ(i,j)

σ,

with the notational convention that Aλ(i, j) = 0 if i is not a part of λ, or if j ≥ i.
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Definition 4.2.9. Let λ ` n, and let i and j be parts of λ such that either i 6= j or
mi(λ) ≥ 2. Define the set

Bλ(i, j) := {σ ∈ Cλ : n is on a cycle of length i and n−1 is on a different cycle of length j}

and let
Bλ(i, j) =

∑
σ∈Bλ(i,j)

σ,

with the convention that Bλ(i, j) = 0 if i and j do not satisfy the condition stated above.

With these definitions, the following Lemma is true.

Lemma 4.2.10. The set {Aλ(i, j)}λ`n,i∈λ,1≤j<i ∪ {Bλ(i, j)}λ`n;i,j∈ λ is a basis for Z2(n).

Bases for Zk(n) for k ≥ 3 may be defined in a similar manner (see [35]), though centralizers
corresponding to larger values of k are not used in this thesis.

With this notation in hand, it is now possible to express the solution to Problem 3.1.1
as a product of standard basis elements for Z2(n).

Corollary 4.2.11. Let π ∈ Sn, and let 1 ≤ p, q ≤ n − 1. Then the number of labelled
(p, q, n)-dipoles with face permutation π is given by

[π]A(n)(n, q)A(n)(n, p).

It is worth noting that Z2(n) is not commutative. For example,

A(5)(5, 2)A(2,13)(2, 1) = [(51423) + (51432) + (52413) + (52431) + (53412) + (53421)](45)

= (14)(235) + (14)(253) + (24)(135) + (24)(153) + (34)(125) + (34)(152)

= B(3,2)(3, 2),

but

A(2,13)(2, 1)A(5)(5, 2) = (45)[((51423) + (51432) + (52413) + (52431) + (53412) + (53421)]

= (234)(15) + (243)(15) + (134)(25) + (143)(25) + (124)(35) + (142)(35)

= B(3,2)(2, 3).

The fact that Z2(n) is not commutative means that it does not have a basis of orthogonal
idempotents, so one of the main techniques used to study the connection coefficients of
the centre does not have an analogue in Z2(n). The effect of interchanging the order of
multiplication in Z2(n) can be determined by considering he action of Inv on the standard
basis, as follows.
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Lemma 4.2.12. Inv(Aλ(i, j)) = Aλ(i, i− j) and Inv(Bλ(i, j)) = Bλ(i, j).

Proof. To invert a permutation in disjoint cycle notation, reverse the cycles. Consequently,
if π ∈ Bλ(i, j) then π−1 ∈ Bλ(i, j), and if π ∈ Aλ(i, j) then π−1 ∈ Aλ(i, i− j), from which
the result follows.

Lemma 4.2.13. The following relations among the basis elements of Z2(n) hold.

1. Aλ(i, j)Aµ(i′, j′) = Inv(Aµ(i′, i′ − j′)Aλ(i, i− j)),

2. Aλ(i, j)Bµ(i′, j′) = Inv(Bµ(i′, j′)Aλ(i, i− j)), and

3. Bλ(i, j)Bµ(i′, j′) = Inv(Bµ(i′, j′)Bλ(i, j)).

Proof. For the first relation, we have

Aλ(i, j)Aµ(i′, j′) = InvInv(Aλ(i, j)Aµ(i′, j′))

= Inv(Inv(Aµ(i′, j′))Inv(Aλ(i, j)))

= Inv(Aµ(i′, i′ − j′)Aλ(i, i− j)).

The other relations are proven similarly.

The size of the orbits of Sn with respect to conjugation by S{1,...,n−2} may be obtained
in a manner similar to the proof of Lemma 4.2.7, so a proof has been omitted.

Lemma 4.2.14.

|Aλ(i, j)| =
(n− 2)!

Aut(λ \ i)
and

|Bλ(i, j)| =
(n− 2)!

Aut(λ \ i \ j)
.

4.2.2 Relationships between different centralizers

This section discusses some of the natural relationships between centralizers of various
types. Although many results in this section may seem intuitively obvious, detailed proofs
are given because having precise definitions of the operators involved can be used to give
an a priori proof of centrality for the transitive star factorization problem. For any α ⊆
{1, . . . , n} such that |α| = k, there is a natural isomorphism between ZSα(n) and Zn−k(n)
obtained by “relabelling” the elements of the set α to {1, . . . , k}. Consequently, in order to
study centralizers with respect to subgroups of the form Sα, it suffices to study Zn−k(n).
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To make this notion more precise, suppose the elements of α are α1 < α2 < · · · < αk,
and that the elements of {1, . . . , n} \ α are β1 < β2 < · · · < βn−k. Given a permutation
π ∈ Sn−k, define the permutation σα,π in one-line notation by

σα,π = α1α2 . . . αkβπ(1) · · · βπ(n−k),

and let Tα,π : C[Sn]→ C[Sn] be the linear transformation defined by

Tα,π(ρ) = σα,πρσ
−1
α,π

for ρ ∈ Sn. This operator preserves group multiplication, and it is clear that this is
invertible (indeed, T−1

α,π(ρ) = σ−1
α,πρσα,π), so Tα,π is an algebra automorphism of C[Sn].

To show that ZSα(n) is isomorphic to Zn−k(n), it suffices to show that the image of
Zn−k(n) under any Tα,π is ZSα(n), and that the image of ZSα(n) under T−1

α,π is Zn−k(n).
Each basis element of Zn−k(n) is of the form

Ω =
∑
ρ∈Sk

ρρ0ρ
−1

for some permutation ρ0. Then

Tα,πΩ =
∑
ρ∈Sk

σα,πρρ0ρ
−1σ−1

α,π

=
∑
ρ∈Sk

(
σα,πρσ

−1
α,π

) (
σα,πρ0σ

−1
α,π

) (
σα,πρσ

−1
α,π

)−1

Let ρ′ = σα,πρσ
−1
α,π. Since ρ fixes {k + 1, . . . , n} if and only if ρ′ fixes {1, . . . , n} \ α, then

Tα,πΩ =
∑
ρ′∈Sα

ρ′
(
σα,πρ0σ

−1
α,π

)
ρ′−1,

which is a basis element of ZSα(n). Showing the reverse inclusion is similar, thus the
following result holds.

Lemma 4.2.15. Let 1 ≤ k ≤ n and let α ⊆ {1, . . . , n}, with k = |α|. Then

Tα,π : Zn−k(n)→ ZSα(n)

is an algebra isomorphism for any π ∈ Sn−|α|.

Since Tα,π is an isomorphism for any choice of π, it is useful to also consider the trans-
formation obtained by “averaging” over all choices of π, namely, the linear transformation

Tα :=
1

(n− |α|)!
∑

π∈Sn−|α|

Tα,π.

This leads to the following result.
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Corollary 4.2.16. Let α ⊆ {1, . . . , n}, with |α| = k. Then

Tα : Zn−k(n)→ ZSα(n)

is a vector space isomorphism.

It should be noted that when |α| > k, the operators Tα,π and Tα are still well-defined,
although they are not isomorphisms.

Recall that centralizers with respect to a given subgroup H are naturally included in
the centralizers with respect to any subgroup of H. In particular,

Z(n) ⊂ Z1(n) ⊂ Z2(n) ⊂ · · ·Z0(n) = C[Sn].

Any Sn-orbit can be partitioned into Sk-orbits for any k ≤ n — thus, an element of
Z(n) can be regarded as an element of Zn−k(n) which is the sum of the Sk-orbits forming
said partition. Conversely, there is a natural linear transformation from Zn−k(n) to Z(n)
obtained by sending the basis element of Zn−k(n) corresponding to the Sk-orbit O to the
basis element of Z(n) corresponding to the Sn-orbit containing O. This transformation
can be described in terms of the transformations Tα as follows.

Suppose that

Ωπ =
|Oπ|
k!

∑
σ∈Sk

σπσ−1

is a basis element of Zn−k(n). Under the transformation described in the preceding para-
graph, if π has cycle type λ, this element maps to

Kλ =
|Cλ|
n!

∑
ρ∈Sn

ρπρ−1

in Z(n). A standard result from bijective combinatorics associates a permutation ρ ∈ Sn

with a triple (α, ρ1, ρ2) where α is the k-element subset of {1, . . . , n} obtained by applying
ρ to {1, . . . , k}, ρ1 is the permutation of Sk which gives the ordering of α in the first k
positions of the one-line notation for ρ, and ρ2 gives the ordering of {1, . . . , n} \ α among
the last n− k positions of the one-line notation for ρ. Under this bijection, ρ = σα,ρ2ρ1, so
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that

Kλ =
|Cλ|
n!

∑
ρ∈Sn

ρπρ−1

=
|Cλ|
n!

∑
α⊂{1,...,n},
|α|=k

∑
ρ1∈Sk

∑
ρ2∈Sn−k

σα,ρ2ρ1πρ
−1
1 σ−1

α,ρ2

=
|Cλ|
n!

∑
α⊂{1,...,n},
|α|=k

∑
ρ2∈Sn−k

Tα,ρ2

( ∑
ρ1∈Sk

ρ1πρ
−1
1

)

=
|Cλ|(n− k)!k!

n!|Oπ|
∑

α⊂{1,...,n},
|α|=k

Tα(Ωπ).

Consequently, defining the operator Tk by

Tk =
∑

α⊂{1,...,n}
|α|=k

Tα,

permits the following statement relating the centralizers with respect to Sn−k to the centre
of C[Sn].

Lemma 4.2.17. Let k ≤ n, and let g ∈ Zn−k(n). Then Tk(g) ∈ Z(n). In particular, if Oπ
is the Sn−k-orbit containing π and Ωπ =

∑
σ∈Oπ σ, then

Tk(Ωπ) =

(
n

k

)
|Oπ|
|Cλ|

Kλ,

where λ is the cycle type of π.

One special case of this Lemma is worth additional attention. If λ ` k for some k ≤ n,
then the elementKλ of the centre Z(k) may also be regarded as an element of the centralizer
Zn−k(n). Applying the preceding lemma to Kλ yields the following.

Corollary 4.2.18. Let λ ` k ≤ n. Then

Tk(Kλ) =
(m1(λ) + n− k)!

(n− k)!m1(λ)!
Kλ1n−k .
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4.3 Centrality of the Transitive Star Factorization Prob-

lem

The elementary results regarding centralizer algebras which were developed in the preceding
two sections may be used to provide an a priori proof of the centrality of the transitive
star factorization problem. This proof uses a more general definition of the Jucys-Murphy
elements than that given in Section 2.3. Let α ⊆ {1, . . . , n− 1}. Define

Jn(α) =
∑
i∈α

(i, n).

In this notation, Jn = Jn({1, . . . , n−1}). The proof begins with the observation, appearing
in Goulden and Jackson’s paper [11], that the principle of Inclusion-Exclusion may be used
to obtain the following expression for transitive powers of Jucys-Murphy elements:∑

α∈{1...,n−1}

(−1)|α|Jn({1, . . . , n− 1} \ α)r. (4.2)

Recall that a factorization into star transpositions is transitive if and only if it involves
every star transposition at least once. The element Jn({1, . . . , n − 1} \ α)r gives all fac-
torizations which fail to include every (in) for i ∈ α; thus, Expression (4.2) corresponds
to factorizations which include every star transposition. These are precisely the transitive
factorizations. By a change of index, Expression (4.2) can also be written as∑

α∈{1...,n−1}

(−1)n−1−|α|Jn(α)r. (4.3)

The element Jn(α) lies in ZSα(n); thus, so does Jn(α)r. By Corollary 4.2.16, if |α| = k,
Jn(α)r can be regarded as the image under Tα of an element of Zn−k(n). Indeed, for any
π ∈ Sk, Jn(α) = Tα∪{n},π(Jk+1), so (4.3) becomes∑

1≤k≤n−1

∑
α∈{1...,n−1},
|α|=k

(−1)n−1−kTα∪{n}J
r
k+1.

However, Jrk+1 may be expressed as the difference of two power sum symmetric functions
in the Jucys-Murphy elements. Hence, this expression becomes∑

1≤k≤n−1

∑
α∈{1...,n−1}
|α|=k

(−1)n−1−kTα∪{n} (pr(J2, . . . , Jk+1)− pr(J2, . . . , Jk)) ,
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adopting the notational convention that when k = 1, pr(J2, . . . , Jk) = 0. Rearranging this
sum gives

T{1,...,n}(pr(J2, . . . , Jn))

+
∑

1≤k≤n−2

(−1)n−1−k

 ∑
α⊆{1,...,n−1}
|α|=k

Tα∪{n} +
∑

β⊆{1,...,n−1}
|β|=k+1

Tβ∪{n}

 pr(J2, . . . , Jk+1).

Since pr(J2, . . . , Jk+1) ∈ Z(k+ 1), it is an element of Zn−k−1(n). Thus, if |β| = k+ 1, then
Tβ∪{n}pr(J2, . . . , Jk+1) = Tβpr(J2, . . . , Jk+1). Indeed, if β = {β1 < β2 < · · · < βk+1}, then
for any i ≤ k + 1,

TβJi = Jβi({β1, . . . , βi−1}) = Tβ∪{n}Ji.

Consequently, the expression for transitive star factorizations becomes∑
1≤k≤n−1

(−1)n−1−kTk+1(pr(J2, . . . , Jk+1)).

By Lemma 4.2.17, this expression lies in the centre of C[Sn].

A second a priori proof of centrality of the transitive star factorization problem was
given independently by Féray [5] using the semigroup algebra of partial permutations
introduced by Ivanov and Kerov [27]. This algebra is spanned by pairs of the form (π,A)
where A is a set of positive integers and π is a permutation of A. Multiplication in this
algebra is done according to the rule

(π1, A1)(π2, A2) = (π1π2, A1 ∪ A2).

Feray defines analogues of the Jucys-Murphy elements in this algebra, called partial Jucys-
Murphy elements, and shows that symmetric functions in these elements are invariant under
the group action

τ ? (π,A) = (τπτ−1, τ(A)).

Centrality is then deduced by applying the transformation (π,A) 7→ π. An advantage of
Féray’s approach over the one presented in this chapter is that it allows the formula for
the number of transitive star factorizations to be deduced from Lascoux and Thibon’s [30]
expression (see Theorem 3.2.9) for power sums of Jucys-Murphy elements.
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Chapter 5

Differential Operators for the
(p, q, n)-dipole problem

This chapter begins the development of techniques to solve the non-central problems de-
scribed in Chapter 3. It is an account of how a Join-Cut argument may be used to determine
a partial differential equation whose solution, in turn, can be used to determine the gener-
ating series for the (p, q, n)-dipole problem. The approach developed here is a result of the
synthesis of two ideas. The first, due to Kwak and Shim [29], is a Join-Cut approach to the
ordinary dipole problem; this is described in Section 5.1. The second idea, originating in
Goulden and Jackson’s approach to enumerating transitive star factorizations as described
in Section 3.2, is to record non-central information via the introduction of an additional
set of indeterminates.

Section 5.2 gives the differential equation corresponding to a specific case of the (p, q, n)-
dipole problem when q is fixed to be n− 1. The form of this differential equation suggests
that, although the general (p, q, n)-dipole problem is encoded as an element of Z2(n),
the special case of (p, n− 1, n)-dipoles may be encoded in Z1(n). This observation is then
given an algebraic explanation in addition to the combinatorial one by providing an explicit
encoding of the problem in Z1(n).

Section 5.3 is an account of a generalization of the approach used in Section 5.2 to deal
with the (p, q, n)-dipole problem in general. This section introduces a refinement of the
problem, namely, the (a, b, c, d)-dipole problem, and describes a pair of differential equa-
tions. The first equation determines the generating series for (a, b, 0, 0)-dipoles, which is
used as the initial condition for the second equation, which then determines the generating
series for the (a, b, c, d)-dipole problem.
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5.1 The differential approach to ordinary dipoles

The technique for analyzing (p, q, n)-dipoles used in this chapter is based on a technique
used by Kwak and Shim [29] to analyze ordinary dipoles in locally orientable surfaces.
This section contains an overview of their method when restricted to to the orientable
case. Given a partition λ = (λ1, . . . , λm) ` n, recall that fλ =

∏
1≤i≤m fλi . Let D̂n denote

the set of labelled dipoles on n edges, and define the polynomial Dn by

Dn =
∑
D∈D̂n

u2g(D)fλ(D).

(Recall that λ(D) is the half-face-degree sequence of D.) Kwak and Shim relate the
polynomial Dn to the polynomial Dn−1 by observing that every dipole with n edges may
be obtained by adding an edge to a dipole with n− 1 edges, possibly with the addition of
a “handle” to the underlying surface.

Suppose D is a dipole with n− 1 edges, with half-face-degree sequence λ. If an edge is
to be added to D, its position is determined by selecting one of the n− 1 corners incident
with the root vertex, and one of the n−1 corners incident with the non-root vertex. There
are two cases to consider. If these two corners are part of the same face (having degree
j) then the new edge lies entirely within that face and cuts it into two smaller faces, say
of degree i and j − i + 1 for some 1 ≤ i ≤ j. There are mj(λ) choices for the face of
half-degree j, and j choices for the corner to which the one end of the edge is added. (The
location of the other end is then determined by the choice of i.) The two faces may be
distinguished, for example, by identifying the face of degree i as the face encountered when
moving counterclockwise from the new edge around the root vertex. Thus, edges which
cut a face in two correspond to the linear operator

Cdipoles : fλ 7→
∑
j≥1

mj(λ)j
fλ
fj

∑
1≤i≤j

fifj−i+1.

The second case occurs if the two corners are on different faces, say of degrees i and j.
Adding an edge whose ends lie in two different faces necessitates the addition of an extra
handle to the surface in which the dipole is embedded, increasing the genus by two. The
two faces are then joined to form a larger face of half-degree i + j + 1. If i and j are
different, there are mi(λ)mj(λ) choices for the two faces, and ij choices for the position of
the ends of the new edge. If i = j, the condition that the faces be distinct means there
are mi(λ)(mi(λ)− 1) choices for the two faces, and i2 choices for the position of the ends
of the new edge. Thus, edges which join two faces correspond to the linear operator

Jdipoles : fλ 7→
∑
i,j≥1,
i 6=j

mi(λ)mj(λ)ij
fλfi+j+1

fifj
+
∑
i≥1

mi(λ)(mi(λ)− 1)i2
fλf2i+1

f 2
i

.
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In this notation,
Dn = (Cdipoles + u2Jdipoles)Dn−1

when n ≥ 2. Starting with the initial condition D1 = f1, Kwak and Shim give explicit
expressions for Dn for small values of n by repeatedly applying the transformation Cdipoles+
Jdipoles.

While Kwak and Shim regarded C and J as algebraic substitutions, these operations are
more conveniently expressed as differential operators. The cut operator can be expressed
as

Cdipoles =
∑
j≥1

(∑
1≤i≤j

fifj−i+1

)
j
∂

∂fj
,

and the join operator can be expressed as

Jdipoles =
∑
i,j≥1

ijfi+j+1
∂2

∂fi∂fj
.

The formal power series D =
∑

n≥0Dn+1
xn

n!
then satisfies the partial differential equation

∂D

∂x
= (Cdipoles + u2Jdipoles)D,

which is obtained by multiplying the equation (Cdipoles + u2Jdipoles)Dn−1 = Dn by xn−2

(n−2)!

and summing over n ≥ 2. The initial condition is D|x=0 = D1.

5.2 Differential Operators for the (p, n − 1, n)-dipole

problem

The Join-Cut analysis of ordinary dipoles may be extended to deal with (p, q, n)-dipoles by
introducing indeterminates to keep track of extra “non-central” information. It is necessary
to consider how these indeterminates are affected by the addition of an edge to a dipole.
This section concentrates on a special case, in which q is fixed at n− 1. By the symmetry
of the problem, this is equivalent to enumerating (n− p, 1, n)-dipoles (which is the version
of the problem which satisfies Visentin and Wieler’s [45] condition that p+ q ≤ n), though
it is more convenient for the present purpose to adopt the convention that q = n− 1. An
alternative perspective on (p, n− 1, n)-dipoles is that they are, in the language introduced
in Chapter 3, the set of all dipoles having no edges with an end in Region 4. (The diagram
illustrating the definition of the various regions has been copied to this chapter as Figure
5.1 for the reader’s convenience.)
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Region 1 Region 2 Region 3 Region 4

Figure 5.1: Notation for the regions into which the neighbourhoods of the vertices of a
rooted dipole with a second distinguished edge are divided.

The root face of a rooted dipole is the face encountered when moving counterclockwise
from the root edge around the root vertex, and the root corner is the corner of this face
which is incident with both the root edge and root vertex. Let r(D) denote half the degree
of the root face of the rooted dipole D. The case of (p, n − 1, n)-dipoles is important for
two reasons. First, it provides useful clues about how to proceed with the more general
analysis. Second, the form of the differential equation for (p, n−1, n)-dipoles suggests that
the problem is “less non-central” than it initially appears.

Let

Ψ =
∑
D∈D,

q(D)=n(D)−1

yp(D)−1

(p(D)− 1)!

xn(D)−p(D)

(n(D)− p(D))!
u2g(D)gr(D)fλ(D)\r(D)

be the generating series for all (p, n− 1, n)-dipoles in which gi marks a root face of degree
2i, and fi marks a non-root face of degree 2i. Let

Ψp = (p− 1)![yp−1]Ψ

be the generating series corresponding to a specified value of p. Deleting the edge of a
(p, n−1, n)-dipole which is nearest to the root edge in a counterclockwise circulation of the
root vertex results in a (p−1, n−2, n−1)-dipole, possibly in a surface of lower genus. Thus,
all (p, n− 1, n)-dipoles may be obtained by adding a single edge to a (p− 1, n− 2, n− 1)-
dipole such that one end of the new edge lies in the root corner. The other end of the new
edge must lie in Region 3, for otherwise the result would be a (p, n− 2, n)-dipole. Thus, in
order to determine Ψp from Ψp−1, it suffices to classify the dipoles resulting from this edge
addition according to the degree of their root face and the degree sequence of the non-root
faces.

As in the case with ordinary dipoles, two cases must be considered. Suppose that a
(p − 1, n − 2, n − 1)-dipole is marked with the monomial gifλ. The end of the new edge
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which is affixed to the root corner is necessarily on the root face, marked by gi. Suppose
that the other end of the new edge is also affixed to a corner of the root face. In this case,
the root face is cut into two smaller faces — a replacement root face of half-degree j + 1,
and a new non-root face of half-degree i − j for some 1 ≤ j ≤ i − 1. (The case in which
the replacement root face has half-face-degree 1 is absent because the root face could only
be a digon if the new edge had one end in Region 4, which is forbidden by the restriction
that q = n− 1.) Hence, this case corresponds to the cut operator

C :=
∑
i≥2

∑
1≤j≤i−1

gj+1fi−j
∂

∂gi
=
∑
i≥1

∑
j≥1

gi+1fj
∂

∂gi+j
.

The second case to consider is the one in which the ends of the new edge are affixed to
a corner on the root face (say, of half-degree i) and a non-root face (say, of half-degree j).
The location of the end affixed to the root face is determined by the restriction that the
new edge be added at the root corner. On the other hand, there are j choices of a corner
to which to affix the other end. The addition of the new edge necessitates the addition of
a handle to the underlying surface, and joins these two faces into one larger root face, of
half-degree i+ j + 1. Thus, this case corresponds to the join operator

J :=
∑
i≥1

∑
j≥1

jgi+j+1
∂2

∂gi∂fj
.

Let ∆ = C + u2J . Then
Ψp = ∆Ψp−1 (5.1)

when p ≥ 2. The p = 1 case forces the root face to have half-degree 1, so that

Ψ1 = Ψ|y=0 =
∑
D∈D,

q(D)=n(D)−1,
p(D)=1

xn(D)−1

(n(D)− 1)!
u2g(D)g1fλ(D)\1.

Since the root face may be contracted to a single edge, which may then be designated as
a root edge, this series becomes

Ψ1 = Ψ|y=0 = g1

∑
D∈D

xn(D)

n(D)!
u2g(D)fλ(D),

the series for ordinary dipoles, which was determined in Chapter 2 using central methods
(see Lemma 2.4.9). Multiplying Equation (5.1) by yp−2/(p− 2)!, summing over p ≥ 2, and
using the fact that ∂Ψ1/∂y = 0 yields the following.
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Theorem 5.2.1 (S.). The generating series for (p, n− 1, n)-dipoles is the unique solution
to the partial differential equation

∆Ψ =
∂Ψ

∂y
,

with initial condition

Ψ|y=0 = g1L

(
(1 + y)−1

(
exp

(∑
i≥1

xiui−1

i
fi(1− (−y)i)

)
− 1

))
.

(Here, and in proofs of other similar results, uniqueness follows from the fact that the
coefficients of Ψ are completely determined from the initial condition and the recurrence
of Equation (5.1).)

An unexpected consequence of this result it that the recurrence given in Equation (5.1)
relies on only one piece of non-central information — the degree of the face containing
the corner labelled with n. In other words, despite initially appearing to lie in Z2(n),
Theorem 5.2.1 suggests that the (p, n− 1, n)-dipole problem is closer to being central than
it seems, and that there should be a method to solve it using Z1(n). This observation
is significant, because the commutative algebra Z1(n) is substantially easier to work with
than the non-commutative Z2(n). Of course, although Theorem 5.2.1 suggests that there
exists a Z1(n) encoding for the (p, n − 1, n)-dipole problem, it does not provide such an
encoding explicitly.

A Z1(n)-encoding of the (p, n−1, n)-dipole problem can be found by revisiting the proof
of Lemma 3.1.2. The strategy is to encode a dipole not by its pair of vertex permutations,
but rather by the vertex permutation ν corresponding to the non-root vertex and the
face permutation ρ, isolating those pairs for which νρ−1 gives a root vertex permutation
corresponding to a specified value of p. In this approach, it is notationally more convenient
to consider dipoles in which the ordinary edges are not labelled, and which can therefore
be given a canonical labelling. Specify a canonical cycle Cp for the vertex permutation at
the root vertex with the property that Cp

p(n) = n− 1, say

Cp = (n, 1, . . . , p− 1, n− 1, p, . . . , n− 2).

Using the encoding of a dipole as a pair of vertex permutations, the number of (p, n−1, n)-
dipoles with face permutation π is given, in the notation of Definition 4.2.8, by

[π]A(n)(n, n− 1)Cp.

What makes this expression “close” to being in Z1(n) is the fact that

A(n)(n, n− 1) =
∑

σ∈C(n),
σ−1(n)=n−1

σ =
∑

σ∈C(n−1,n),

σ(n)=n

σ(n, n− 1) = K(n−1,1),1(n, n− 1).
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The presence of the permutation Cp is still a barrier to doing this computation in Z1(n),
but this can be rectified via the observation that

[π]A(n)(n, n− 1)Cp = [C−1
p ]π−1A(n)(n, n− 1).

(This is the algebraic statement corresponding to the combinatorial observation that en-
coding dipoles as a face/vertex permutation pair is equivalent to encoding them as a pair
of vertex permutations.) Thus, if S ⊂ Sn, then the number of (p, n− 1, n)-dipoles whose
face permutation is an element of S is given by

∑
π∈S

[π]A(n)(n, n− 1)Cp =
∑
π∈S

[C−1
p ]π−1A(n)(n, n− 1) = [C−1

p ]

(∑
π∈S

π−1

)
K(n−1,1),1(n, n− 1).

Thus, whenever the set S is invariant under conjugation by Sn−1, the product(∑
π∈S

π−1

)
K(n−1,1),1

may be computed within Z1(n), instead of Z2(n).

It remains to determine the effect on Z1(n) basis elements of multiplication by the
transposition (n, n− 1) and extraction of the coefficient of C−1

p . Since every basis element
of Z1(n) can be expressed as a sum of basis elements in Z2(n),

[C−1
p ]Kλ,i(n, n− 1) = [C−1

p ]
∑

1≤j≤i−1

Aλ(i, j)(n, n− 1) + [C−1
p ]

∑
j∈λ\i

Bλ(i, j)(n, n− 1).

If n and n− 1 are on the same cycle, multiplication by (n, n− 1) cuts this cycle in two. In
particular, no full cycles can appear in the product Aλ(i, j)(n, n − 1), so the first sum in
this expression is zero. If n and n− 1 are on different cycles, multiplication by (n, n− 1)
will join them into one cycle, i.e.

Bλ(i, j)(n, n− 1) = Aλ\{i,j}∪(i+j)(i+ j, j).

Thus,

[C−1
p ]Kλ,i(n, n− 1) = [C−1

p ]Aλ\{i,j}∪(i+j)(i+ j, j)

=

{
1 if λ = (p, n− p) and i = p,

0 otherwise

= [K(p,n−p),p]Kλ,i.

Combining these facts gives the following encoding for the (p, n − 1, n)-dipole problem in
Z1(n).
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Lemma 5.2.2 (S.). Let λ ` n, and let i be a part of λ. Then the number of (p, n− 1, n)-
dipoles (with unlabelled ordinary edges) having face degree sequence 2λ in which the root
face has degree 2i is given by

[K(p,n−p),p]Kλ,iK(n−1,1),1.

The existence of this encoding for the (p, n−1, n)-dipole problem indicates that a more
thorough study of Z1(n) is warranted, in order to develop the tools necessary to analyze
the product K(n−1,1),1Kλ,i. These tools are developed in Chapter 6, and in Chapter 7 they
are used to solve the (p, n− 1, n)-dipole problem for all orientable surfaces.

Although the Z1(n) encoding of the (p, n− 1, n)-dipole problem given in Lemma 5.2.2
is the most useful one for solving the problem algebraically, there are some questions which
it does not answer. Typically, Join-Cut behaviour is observed when iterated multiplica-
tion by transpositions is involved, and Lemma 5.2.2 does not involve transpositions. The
resemblance between the operator C+u2J for the (p, n−1, n)-dipole problem and the oper-
ator given in Equation (3.8) for the non-transitive star factorization problem suggests that
there should be an encoding for the (p, n − 1, n)-dipole problem involving Jucys-Murphy
elements. The relationship between Jucys-Murphy elements and the (p, n − 1, n)-dipole
problem may be identified by determining an algebraic recursion for the (p, n−1, n)-dipole
problem, which can be used to give a second proof of Theorem 5.2.1, as sketched below.
The verification of each of the following facts is routine.

• The element A(n)(n, n− 1) may be obtained from A(n−1)(n− 1, n− 2) by relabelling
n − 2 to n − 1, relabelling n − 1 to n, and then multiplying by the Jucys-Murphy
element Jn−2. Thus,

A(n)(n, n− 1) = Jn−2Rn(A(n−1)(n− 1, n− 2))

where Rn is the linear relabelling operator defined by

Rn(π) = (n− 2, n− 1, n)π(n, n− 1, n− 2).

• The element A(n)(n, p) may be obtained from A(n−1)(n − 1, p − 1) by relabelling
according to Rn, multiplying on the right by (n − 2, n) to insert the symbol n − 2
immediately after n on the cycle. This results in an element of Z3(n). Thus, summing
over relabellings of n− 2 to j for 1 ≤ j ≤ n− 2 gives an element of Z2(n):

A(n)(n, p) = T
(
Rn(A(n−1)(n− 1, p− 1))(n− 2, n)

)
,

where T is the linear operator defined by

T (π) =
∑

1≤j≤n−2

(j, n− 2)π(j, n− 2).
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• Since A(n)(n, n− 1) ∈ Z2(n), then

A(n)(n, n− 1)A(n)(n, p)

= T (A(n)(n, n− 1)Rn(A(n−1)(n− 1, p− 1))(n− 2, n))

= T (Jn−2Rn(A(n−1)(n− 1, n− 2)A(n−1)(n− 1, p− 1))(n− 2, n)),

which expresses the algebraic encoding for (p, n−1, n)-dipoles in terms of the algebraic
encoding for (p− 1, n− 2, n− 1)-dipoles.

• Equation (5.1) can then be obtained by applying the transformation

Φ1,n : π 7→ gr(π)f`(π)\r(π),

where r(π) is the length of the cycle of π containing n, to this recursion. A second
proof of Theorem 5.2.1 can now be obtained by using the fact that Φ1,nT = Φ1,n

since the conjugations done by T do not change the length of the cycle containing n,
and making an argument similar to the one for non-transitive star factorizations.

5.3 Differential Operators for the (p, q, n)-dipole prob-

lem

5.3.1 A refinement of the problem: (a, b, c, d)-dipoles

In order to enumerate (p, q, n)-dipoles, it will be helpful to consider a refinement of the
problem which classifies the non-root, non-distinguished edges of a dipole D into one of
four possible types, defined as follows.

• An a-edge is an edge whose ends lie in Regions 2 and 3.

• A b-edge is an edge whose ends lie in Regions 1 and 3.

• A c-edge is an edge whose ends lie in Regions 2 and 4.

• A d-edge is an edge whose ends lie in Regions 1 and 4.

These definitions are illustrated in Figure 5.3.1. Let a(D), b(D), c(D) and d(D) denote the
number of a, b, c and d-edges of D, respectively. The p and q values of a dipole can be
recovered from this information via the observation that

p(D) = b(D) + d(D) + 1

75



a-edge b-edge c-edge d-edge

Figure 5.2: Classification of the ordinary edges, indicated by thickened lines, of a rooted
dipole with a second distinguished edge.

and
q(D) = a(D) + b(D) + 1.

The total number of edges in a dipole is

n(D) = a(D) + b(D) + c(D) + d(D) + 2.

To enumerate dipoles with respect to the number of a, b, c and d edges, label the corners
of the dipole in Region 1 with a black dot, •, and the corners in Region 2 with a white
dot, ◦. This associates a unique binary string R(D) to the root face, namely, the string
encountered during a counterclockwise boundary walk of the root face, starting at the root
corner. Given an element S ∈ {•, ◦}∗, let (S) denote the multiset of cyclic shifts of S. For
example,

(◦•◦•) = (•◦•◦) = {2◦•◦•, 2•◦•◦}.
Such a set shall be referred to as a cyclic binary string. Let S(•, ◦) denote the set of
all cyclic binary strings on the symbols • and ◦. Each non-root face of a dipole may be
associated with the cyclic binary string encountered during a counterclockwise boundary
walk of the face. Let Λ(D) denote the multiset of cyclic binary strings corresponding to
the non-root faces of D.

Consider two infinite sets of indeterminates: {gS}S∈{•,◦}∗ , indexed by binary strings,
and {f(S)}(S)∈S(•,◦), indexed by cyclic binary strings. Let fΛ(D) =

∏
(S)∈Λ(D) f(S). The

generating series for (a, b, c, d)-dipoles is

Ψ′′ :=
∑
D∈D

xa(D)+1

(a(D) + 1)!

yb(D)

b(D)!

vc(D)+d(D)

(c(D) + d(D))!
wd(D)u2g(D)gR(D)fΛ(D).

The number of (p, q, n)-dipoles may be recovered from this series as a sum of coefficients.
Since c+ d = n− q − 1, p = b+ d+ 1, and a = q − b− 1, the sum over all values of a, b, c
and d corresponding to fixed p and q is∑

0≤b≤p−1

(n− q − 1)!b!(q − b)![vn−q−1ybwp−1−bxq−b]Ψ′′.
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5.3.2 Differential equations for the (a, b, c, d)-dipole problem

The strategy for analyzing the generating series Ψ′′ is as follows.

1. By considering the deletion of edges having an end in Region 4, obtain a differential
equation for Ψ′′ whose initial condition is the series Ψ′ for (a, b, 0, 0)-dipoles, namely,

Ψ′ =
∑
D∈D,

c(D)=d(D)=0

xa(D)+1

(a(D) + 1)!

yb(D)

b(D)!
u2g(D)gR(D)fΛ(D).

2. By considering the deletion of b-edges, obtain a differential equation for the (a, b, 0, 0)-
series Ψ′ whose initial condition is the series for (a, 0, 0, 0)-dipoles.

3. Since (a, 0, 0, 0)-dipoles can be regarded as a regular rooted dipoles with a “doubled”
edge, this series may be computed using central methods.

The partial differential equation which determines Ψ′ may be obtained by an argument
similar to that of the proof of Theorem 5.2.1. The resulting equation is as follows.

Theorem 5.3.1 (S.). The generating series Ψ′ for (a, b, 0, 0)-dipoles is the unique solution
to the partial differential equation

(C ′ + u2J ′)Ψ′ =
∂Ψ′

∂y
,

where

C ′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

gR1···Rif(R1Ri+1···R`(R))

 ∂

∂gR

and

J ′ =
∑

R∈{◦,•}∗

∑
(S)∈S(◦,•)

∑
S∈(S)

gRR1S

 ∂2

∂gR∂f(S)

,

with initial condition

Ψ′|y=0 = g•
∑
D∈D

xn(D)

n(D)!
u2g(D)fλ′(D)

where λ′(D) = (◦λ1 , ◦λ2 , . . . , ◦λm(λ)) when D has face degree sequence (2λ1, 2λ2, . . . , 2λm(λ)).
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Figure 5.3: A new b-edge, indicated by the thickened edge, is added to an (a, b, 0, 0)-dipole
in a way that cuts the root face, marked by the indeterminate g•◦◦••◦ into two faces, one of
which is a new root face marked by g•◦◦, and the other of which is a non-root face marked
by f(••◦•). The dotted lines indicate other possible valid choices for the new b-edge.

Proof. Let Ψ′b = b![yb]Ψ′. As with the proof of Theorem 5.2.1, it suffices to show that

Ψ′b = (C ′ + u2J ′)Ψ′b−1

for b ≥ 1. The set of all (a, b, 0, 0)-dipoles is generated uniquely from the set of (a, b−1, 0, 0)-
dipoles by adding a b-edge e such that one end of e is affixed to the root vertex at the root
corner of the dipole. Suppose that D is a (a, b− 1, 0, 0)-dipole encoded by the monomial

u2ggR
∏
i

f(S(i)),

where R = R1 . . . R`(R). The operators C ′ and J ′ may be obtained by considering how this
monomial changes when e is added to D. The analysis splits into two cases depending on
whether the non-root end of e is added to a corner of the root face, or to a corner of a
non-root face.

In the first case, the non-root end of e is attached to a corner of the root face. Thus, the
root face is cut into a smaller root face and a non-root face, and the genus is unchanged.
(This case is illustrated in Figure 5.3.) The edge e also divides the root corner into two
corners each labelled with the symbol R1, one of which is the new root corner, and the other
of which is a new non-root corner. To determine the monomial which encodes the resulting
(a, b, 0, 0) dipole, consider the symbols encountered on a counterclockwise boundary tour
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of the root face starting at the root corner. The non-root end of e was added to a corner
immediately followingRi for some 2 ≤ i ≤ `(R). (It cannot be added to the corner following
R1, since otherwise it would be a d-edge.) Thus, on a boundary tour of the root face, once
the symbol Ri is encountered, the edge e completes the boundary tour, so the root face of
the resulting dipole is encoded by gR1···Ri . To determine the encoding of the new non-root
face, consider a counterclockwise boundary tour starting at the newly-created non-root
corner, marked by R1. The first edge encountered is e, and the next symbol encountered
will be Ri+1, after which the boundary tour visits the remaining corners of the former
root face, ending when the newly-created non-root corner is reached. Hence, this face
is encoded by f(R1Ri···R`(R)). The differential operator corresponding to replacing gR with
gR1···Rif(R1Ri···R`(R)) for some 2 ≤ i ≤ `(R) is

C ′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

gR1···Rif(R1Ri+1···R`(R))

 ∂

∂gR
.

In the second case, illustrated in Figure 5.4, the non-root end of e is attached to a
corner of a non-root face, marked by f(S), where S = S1 · · ·S`(S) is some fixed representative
element of (S). (For any given (S), the number of choices for a face with (S) as the sequence
of symbols encountered on a counterclockwise boundary walk is equal to the degree of f(S)

in
∏

i f(S(i)).) To join e to corners of two different faces, it is necessary to add a handle to
the surface, increasing genus by 1. Adding the edge e joins the two faces marked by gR
and f(S) into a larger root face. Consider a counterclockwise boundary tour of this new
face, starting at the root corner. Since the non-root end of e was added to a non-root
face, this tour will first visit corners marked by R1, R2, . . . , R`(R) before visiting the newly-
created non-root corner, marked by R1, followed by the edge e. The boundary walk then
continues around the face marked by f(S), with the sequence of symbols encountered given
by some element of the set (S). In terms of the fixed representative S, the sequence is
Si · · ·S`(S)S1 · · ·Si−1 for some 1 ≤ i ≤ `(S), followed by the edge e which returns to the
root corner, ending the boundary tour. Thus, the new root face is encoded by

gRR1Si···S`(S)S1···Si−1
.

Summing over all cyclic shifts of S gives the following operator corresponding to this case.

J ′ =
∑

R∈{◦,•}∗

∑
(S)∈S(◦,•)

∑
S∈(S)

gRR1S

 ∂2

∂gR∂f(S)

,
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Figure 5.4: A new b-edge, indicated by the thickened line, is added to an (a, b, 0, 0)-dipole
such that the root face, marked by g•◦◦••, is joined to a non-root face, marked by f(◦◦◦•).
The resulting face is marked by g•◦◦••••◦◦◦, and this operation requires the addition of a
handle to the surface in which the dipole is embedded.
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As for the initial condition,

Ψ′y=0 =
∑
D∈D,

b(D)=c(D)=d(D)=0

xa(D)+1

(a(D) + 1)!
u2g(D)g•fΛ(D)

= g•

∑
D∈D

xn(D)

n(D)!
u2g(D)fλ′(D),

since contracting the root face of a (a, 0, 0, 0) dipole results in an ordinary rooted dipole
with a(D) + 1 edges.

While the initial condition may be written more explicitly by replacing fi with f(◦i) in
Lemma 2.4.9, it is often convenient for later analysis of the series Ψ′ to leave the initial
condition in the form given in the statement of this Theorem. The series Ψ′ is the initial
condition for a partial differential equation for the series Ψ′′ corresponding to the full
(a, b, c, d)-dipole problem. A similar analysis gives the following equation for Ψ′′.

Theorem 5.3.2 (S.). The generating series Ψ′′ for (a, b, c, d)-dipoles is the unique solution
to the partial differential equation

(C ′′ + u2J ′′)Ψ′′ =
∂Ψ′′

∂v

where

C ′′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

wδRi,•gR1Ri···R`(R)
f(R2···Ri) + wgR1f(R)

 ∂

∂gR

and

J ′′ =
∑

R∈{◦,•}∗

∑
(S)∈S(◦,•)

 ∑
S1S2···S`(S)∈(S)

wδS1,•gR1S1···S`(S)S1R2···R`(R)

 ∂2

∂gR∂f(S)

,

with initial condition Ψ′′|v=0 = Ψ′.

Proof. Let Ψ′′m = m![vm]Ψ′′ be the generating series for (a, b, c, d)-dipoles in which c+ d =
m. In other words, this is the series for dipoles in which there are m edges having an
end in Region 4. The set of dipoles having m edges in Region 4 is uniquely generated
by adding an edge e, with one end in Region 4, to a dipole D having m − 1 edges in
Region 4 in a canonical way. This edge will be added so that its non-root end is added to
the corner which is the first one encountered as one travels clockwise around the non-root
vertex starting from the root edge. Placing the new edge in this manner ensures that it
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Figure 5.5: A d-edge is added to an (a, b, c, d)-dipole in a manner which cuts the root face,
originally marked by g•◦◦••◦, into a new root face, marked by g••◦, and a non-root face,
marked by f(◦◦••). This edge is known to be a d-edge, as opposed to a c-edge, since its
root end is added to a corner marked by •. Thus, this case also adds a factor of w to the
monomial encoding the dipole.

will be part of the root face, being the next edge encountered after the root edge on a
counterclockwise boundary tour of the root face. The root end of e will be added to a
corner which is marked either with a • or with a ◦. If it is added to a corner marked with
a •, then it is a d-edge. If it is added to a corner marked with a ◦, then it is a c-edge.
Suppose that D is encoded by the monomial

u2ggR
∏
i

f(S(i)),

where R = R1 · · ·R`(R). As before, the analysis splits into two cases depending on whether
the root end of e is added to a corner of the root face, or of a non-root face.

First, consider the case when the root end of e is added to a corner of the root face,
say, the corner marked by Ri where 1 ≤ i ≤ `(R). (This case is illustrated in Figure 5.5.)
In this case, the root face is cut into two faces, one of which is the new root face, and one
of which is a non-root face. When i = 1, the addition of e is a d edge, and creates a new
root face which is a digon marked by R1. In this case, the corners of the non-root face are
marked by the same sequence of symbols as the old root face, so the contribution in this
case is

wgR1f(R)

∏
i

f(S(i)).
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Figure 5.6: A c-edge is added to an (a, b, c, d)-dipole such that the root face is joined to a
non-root face. Originally, the two faces were marked by g•◦◦•• and f(◦••◦), and the resulting
face is marked by g•◦••◦◦◦◦••. This edge is known to be a c-edge, as opposed to a d-edge,
since its root end was added to a corner marked by ◦, so no additional factor of w is
contributed.

The general case occurs if 2 ≤ i ≤ `(R). Consider a counterclockwise boundary tour of
the new root face, starting at the root corner (marked by R1). After travelling along the
root edge, the edge e is encountered, which goes to the corner marked by Ri. Continuing
the boundary walk, the symbols Ri+1, . . . R` are encountered, after which the boundary
walk is complete. As for the newly-created non-root face, since non-root faces are encoded
up to cyclic equivalence any starting point for the boundary walk may be chosen. It is
convenient to start at the corner counterclockwise from the non-root end of e. Starting
from this corner, the corners encountered are marked by R2, R3, . . . , Ri, upon which the
edge e is encountered, returning to the starting point. Thus, the contribution from this
case is

wδRi,•gR1Ri···R`(R)
f(R2···Ri)

∏
i

f(S(i)).

Summing over all cases, the differential operator corresponding to a cut edge is

C ′′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

wδRi,•gR1Ri···R`(R)
f(R2···Ri) + wgR1f(R)

 ∂

∂gR
.

Next, consider the case when the root end of e is added to a corner of a non-root face,
as illustrated in Figure 5.6. Suppose this non-root face is marked by f(S). (The number
of choices for a given (S) is equal to the degree of f(S) in

∏
i f(S(i)).) The choice of corner

of the non-root face picks out one specific string from the set of cyclic binary strings (S),
say, the string S1 · · ·S`(S) such that S1 is the corner to which e is added. Then, on a
counterclockwise boundary tour of the new root face, the corner labels are encountered in
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the order
R1, S1, S2, . . . , S`(S), S1, R2, R3, . . . , R`(R).

If S1 = •, e is a d-edge and an additional power of w is needed. If S1 = ◦, e is a c-edge
and the power of w remains the same. Summing over all choices of a cyclic binary string
in S, the differential operator corresponding to this case is.

J ′′ =
∑

R∈{◦,•}∗

∑
(S)∈S(◦,•)

 ∑
S1S2···S`(S)∈(S)

wδS1,•gR1S1···S`(S)S1R2···R`(R)

 ∂2

∂gR∂f(S)

.

The combinatorial analysis of the (p, q, n)-dipole problem presented in this Chapter
leads to two natural questions, which are the subject of the remainder of the thesis.

1. How can the revelation that the (p, n− 1, n)-dipole problem lies in the algebra Z1(n)
as opposed to Z2(n) (Lemma 5.2.2) be used to approach this special case of the
(p, q, n)-dipole problem? The algebra needed to do this is developed in Chapter 6,
leading to a full solution of the (p, n− 1, n)-dipole problem for all orientable surfaces
in Chapter 7.

2. What information about the general (p, q, n)-dipole problem can be gleaned from
analysis of the partial differential equations in Theorems 5.3.1 and 5.3.2? This anal-
ysis is conducted in Chapter 8, and while it does not lead to a closed-form expression
for Ψ′′, it provides a process, recursive in g, for determining the generating series for
(a, b, c, d)-dipoles in a surface of genus g, from which the number of (p, q, n)-dipoles
in the surface can be determined.
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Chapter 6

Connection Coefficients for Z1(n)

This chapter contains a detailed examination of the connection coefficients of Z1(n). The
additional attention given to this algebra is warranted because of the observation made in
the preceding chapter that a special case of the (p, q, n)-dipole problem, the case in which
p = n − 1, may be solved using the algebra Z1(n) rather than Z2(n). Given that Z1(n)
is commutative, one would expect to be able to make substantially more progress using
algebraic techniques in the p = n− 1 case than in the general case.

The results of this chapter may be summarized as follows: the algebra Z1(n) possesses
properties analogous to the three “essential” properties of the centre which are summarized
at the end of Chapter 2. First, Section 6.1 contains a combinatorially natural definition
of a basis of orthogonal idempotents for Z1(n). This basis is shown to be related to the
generalized characters defined by Strahov [42]; hence, the connection coefficients of Z1(n)
may be computed in terms of generalized characters. Second, Section 6.2 shows how
the Diaconis-Greene [4] method for evaluating characters may be extended to evaluate
generalized characters. In particular, much like ordinary characters, generalized characters
indexed by non-hook partitions vanish when evaluated at full cycles. Finally, Section 6.3
shows how Strahov’s generalization of the Murnaghan-Nakayama Rule may be used to
evaluate generalized characters indexed by hook partitions.

6.1 Orthogonal Idempotents for Z1(n)

6.1.1 Defining the Z1-idempotents

Recall that a basis of orthogonal idempotents for Z(n) is given by

Xλ =
∑

T∈SYT(λ)

e(T ),
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where e(T ) is the semi-normal unit corresponding to the tableau T . Since the standard
basis for Z1(n) is indexed by pairs (λ, i) where λ ` n and i is a part of λ, in order to find
elements of Z1(n) which play a role analogous to the role played by Xλ, it is natural to
look for elements which are indexed by the same set. Given a tableau of shape λ, consider
the placement of the symbol n. Since it is the greatest symbol, it must appear at the end
of a row and the bottom of a column. Thus, the placement of n identifies a part of λ, and
conversely, given a part i of λ, there is a unique row of length i in which n may be placed.
Let SYT(λ, i) denote the set of standard Young tableaux of shape λ in which n appears at
the end of a row of length i. This permits the following definition to be made.

Definition 6.1.1 (Z1-idempotents). Let λ ` n and let i be a part of λ. The Z1-
idempotents are the elements in C[Sn] given by

Γλ,i :=
∑

T∈SYT(λ,i)

e(T ).

The following facts about Γλ,i are immediate from the definition, and they justify the
choice of Γλ,i as a natural candidate in the search for a useful basis for Z1(n):

1. They are indeed idempotent, and are orthogonal with respect to ring multiplication.
This follows from the fact that the elements e(T ) are orthogonal and idempotent.

2. The set {Γλ,i}λ`n,i∈λ has the same cardinality as the standard basis {Kλ,i}λ`n,i∈λ for
Z1(n). Furthermore, this set is linearly independent, due to the linear independence
of the set {e(T )} as T ranges over all tableaux with n boxes.

3. The Z1-idempotents can be viewed as a “partition” of the central idempotents in the
following sense:

Xλ =
∑
i∈λ

Γλ,i.

This is analogous to the obvious fact that the standard bases for Z(n) and Z1(n) are
related by

Kλ =
∑
i∈λ

Kλ,i.

It is not immediately obvious from the definition of the Z1-idempotents that they in fact
lie in Z1(n). Once this is shown, combined with the second observation above, it will prove
that {Γλ,i}λ`n,i∈λ is a basis for Z1(n). In fact, it is possible to find an explicit expression for
the Z1-idempotents as a product of an idempotent in Z(n) and an idempotent in Z(n−1).
In the following, the notation i−(λ) denotes the partition (λ \ i∪ (i− 1)) if i is a part of λ.

86



Lemma 6.1.2. Let λ ` n and i be a part of λ. Then

Γλ,i = XλX i−(λ),

where the product is taken in C[Sn] and every element in the support of X i−(λ) is regarded
as having the element n as a fixed point. Consequently, Γλ,i ∈ Z1(n), and {Γλ,i}λ`n,i∈λ is
a basis for Z1(n).

Proof. By Lemma 2.3.2,

XλX i−(λ) =

 ∑
T∈SYT(λ)

e(T )

 ∑
S∈SYT(i−(λ))

e(S)

 .

For a fixed S ∈ SYT(i−(λ)), apply Lemma 2.3.4 and then use the fact that the e(T )’s are
orthogonal idempotents to obtain∑

T∈SYT(λ)

e(T )e(S) =
∑

T∈SYT(λ)

∑
S0∈SYT(λ),

S∗0=S

e(T )e(S0)

=
∑

T∈SYT(λ),
T ∗=S

e(T ).

(Recall that, given a tableau T , the tableau T ∗ is obtained by deleting the box containing
n.) Summing over all S ∈ SYT(i−(λ)) gives

XλX i−(λ) =
∑

S∈SYT(i−(λ))

∑
T∈SYT(λ),
T ∗=S

e(T ).

Since the tableaux T ∈ SYT(λ) with the property that T ∗ ∈ SYT(i−(λ)) are those in
which the symbol n appears at the end of a row of length i, then

XλX i−(λ) =
∑

T∈SYT(λ,i)

e(T ) = Γλ,i.

Since Γλ,i ∈ Z1(n), there exist coefficients γλ,iµ,j such that

Γλ,i =
dλ
n!

∑
µ`n,
j∈µ

γλ,iµ,jKµ,j,

This is enshrined in the following.
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C(3),3 C(2,1),1 C(2,1),2 C(13),1

Size of class 2 1 2 1

6Γ(3),3 1 1 1 1
3Γ(2,1),1 −1

2
1 −1

2
1

3Γ(2,1),2 −1
2

−1 1
2

1

6Γ(13),1 1 −1 −1 1

Table 6.1: Coefficents of scaled Z1-idempotents for S3, n!
dλ

Γλ,i.

C(4),4 C(3,1),3 C(3,1),1 C(2,2),2 C(2,1,1),2 C(2,1,1),1 C(1,1,1,1),1

Size of class 6 6 2 3 3 3 1

24Γ(4),4 1 1 1 1 1 1 1
8Γ(3,1),3 −2

3
1
3

−1 −2
3

4
3

0 2
8Γ(3,1),1 −1

3
−1

3
1 −1

3
−1

3
1 1

12Γ(2,2),2 0 −1 −1 2 0 0 2
8Γ(2,1,1),2 1

3
−1

3
1 −1

3
1
3

−1 1
8Γ(2,1,1),1 2

3
1
3

−1 −2
3

−4
3

0 2
24Γ(1,1,1,1),1 −1 1 1 1 −1 −1 1

Table 6.2: Coefficients of scaled Z1-idempotents for S4, n!
dλ

Γλ,i.

Definition 6.1.3. Let λ, µ ` n and let i and j be parts of λ and µ, respectively. Define

γλ,iµ,j :=
n!

dλ
[Kµ,j]Γ

λ,i.

(The scaling factor n!/dλ is included for later convenience.)

As an example, the various values of γλ,iµ,j for Z1(3) and Z1(4) are given in Tables 6.1
and 6.2, respectively. The values given here were computed in two ways: using Definition
6.1.1 and using the expression from Lemma 6.1.2.

For the Z1-idempotents to be useful from a combinatorial point of view, it is necessary
to also know how to express Kµ,j as a linear combination of the Z1-idempotents. An
examination of Tables 6.1 and 6.2 suggests that the idempotent basis is orthogonal not only
with respect to ring multiplication, but also with respect to the standard inner product on
C[Sn]. If true in general, this fact would make it routine to express Kµ,j in terms of the
idempotent basis. Thus, the next task is to prove orthogonality.
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6.1.2 Generalized Characters of the Symmetric Group

Orthogonality of the Z1-idempotents with respect to the inner product can be proven via
an application of a result of Strahov regarding generalized characters of the symmetric
group [42]. Strahov uses the term generalized character to refer to the zonal spherical
functions of the Gelfand pair (Sn × Sn−1, diag(Sn−1)), where the diagonal diag(G) of a
group G is defined by

diag(G) = {(g, g) : g ∈ G}.
Strahov gives the following expression for generalized characters in terms of ordinary char-
acters.

Definition 6.1.4 (Generalized character). Let λ ` n, and let i be a part of λ. Let π ∈ Sn.
The generalized character indexed by (λ, i) evaluated at π is given by

γλ,i(π) =
di−(λ)

(n− 1)!

∑
σ2∈Sn−1

χλ(πσ−1
2 )χi−(λ)(σ2).

(Strahov’s usage of the term “generalized character” is different from other uses of this
term appearing in the literature, such as those in which the term refers to any integral
combination of characters.) Generalized characters are in fact the scaled coefficients of
Γλ,i; specifically,

Lemma 6.1.5. Let λ ` n and let i be a part of λ. Let π ∈ Cµ,j. Then

γλ,i(π) = γλ,iµ,j.

Proof. This may be proved routinely using Lemma 6.1.2.

γλ,iµ,j =
n!

dλ
[Kµ,j]X

λX i−(λ)

=
di−(λ)

(n− 1)!
[π]

∑
σ1∈Sn

∑
σ2∈Sn−1

χλ(σ1)χi−(λ)(σ2)σ1σ2

=
di−(λ)

(n− 1)!

∑
(σ1,σ2)∈Sn×Sn−1,

σ1σ2=π

χλ(σ1)χi−(λ)(σ2)

=
di−(λ)

(n− 1)!

∑
σ2∈Sn−1

χλ(πσ−1
2 )χi−(λ)(σ2)

= γλ,i(π).

89



The equivalence of Definition 6.1.3 and Definition 6.1.4 means that the coefficients of
Γλ,i satsify the properties of zonal spherical functions. (A list of these properties may be
found in Chapter VII of Macdonald [32].) Of particular relevance to the present task is
the fact that these coefficients are orthogonal with respect to the standard inner product
on C[Sn]. This is the content of the following result.

Corollary 6.1.6. Let λ, µ ` n and let i, j be parts of λ and µ, respectively. Then

1

n!

∑
σ∈Sn

γλ,i(σ)γµ,j(σ) =
1

n!

∑
ν`n,k∈ν

|Cν,k|γλ,iν,kγ
µ,j
ν,k =

di−(λ)

dλ
δλ,µδi,j

These relations permit Kλ,i to be written in the Z1-idempotent basis. Let T be the
operator

T =
∑

λ`n,i∈λ

∑
µ`n,j∈µ

dλ
n!
γλ,iµ,jKµ,j[Kλ,i] =

∑
λ`n,i∈λ

Γλ,i[Kλ,i]

so that
Γλ,i = TKλ,i.

Define T ∗ by

T ∗ =
∑

ν`n,k∈ν

∑
ρ`n,`∈ρ

|Cρ,`|
dk−(ν)

γν,kρ,`Kν,k[Kρ,`].

Then

T ∗T =
∑

ν`n,k∈ν

∑
ρ`n,`∈ρ

|Cρ,`|
dk−(ν)

γν,kρ,`Kν,k

∑
λ`n,i∈λ

dλ
n!
γλ,iρ,` [Kλ,i]

=
∑

ν`n,k∈ν

∑
λ`n,i∈λ

dλ
dk−(ν)

(
1

n!

∑
ρ`n,`∈ρ

|Cρ,`|γν,kρ,` γ
λ,i
ρ,`

)
Kν,k[Kλ,i]

=
∑

ν`n,k∈ν

∑
λ`n,i∈λ

dλ
dk−(ν)

〈Γν,k,Γλ,i〉Kν,k[Kλ,i]

=
∑

λ`n,i∈λ

Kλ,i[Kλ,i]

= I,

the identity operator on Z1(n). Since Z1(n) is finite dimensional, then TT ∗ = I and
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T ∗ = T−1. The Kλ,i basis can be expressed in terms of the Γµ,j basis as follows:

Kλ,i = TT−1Kλ,i

= T
∑

µ`n,j∈µ

|Cλ,i|
dj−(µ)

γµ,jλ,iKµ,j

=
∑

µ`n,j∈µ

|Cλ,i|
dj−(µ)

γµ,jλ,i Γ
µ,j.

Thus, the following has been proven.

Lemma 6.1.7. Let λ ` n and let i be a part of λ. Then

Kλ,i =
∑

µ`n,j∈µ

|Cλ,i|
dj−(µ)

γµ,jλ,i Γ
µ,j.

Of particular interest in later applications is the specialization of this result which
expresses the identity permutation 1 in terms of the generalized character basis. Since the
coefficient of the identity permutation in e(T ) is dλ/n! when T is of shape λ, then

γµ,j(1n),1 =
n!

dµ
[K(1n),1]Γµ,j = |SYT(µ, j)|.

However, the number of tableaux of shape µ in which n is at the end of a row of length j
is the same as the number of tableaux of shape j−(µ), so

γµ,j(1n),1 = dj−(µ).

Consequently,

Corollary 6.1.8.

1 = K(1n),1 =
∑

µ`n,j∈µ

Γµ,j.

The preceding results allow the connection coefficients for Z1(n) to be expressed in terms
of generalized characters. Let λ, µ ` n and let i and j be parts of λ and µ respectively.
The product Kλ,iKµ,j may be written in the Z1-idempotent basis as

Kλ,iKµ,j = |Cλ,i||Cµ,j|
∑

ν`n,k∈ν

∑
ρ`n,`∈ρ

γν,kλ,i
dk−(ν)

γρ,`µ,j
d`−(ρ)

Γν,kΓρ,`.

By orthogonal idempotency of the Z1-idempotents, this may be written as

Kλ,iKµ,j = |Cλ,i||Cµ,j|
∑

ρ`n,`∈ρ

γρ,`λ,iγ
ρ,`
µ,j

d2
`−(ρ)

Γρ,`.

Extracting the coefficient of Kν,k yields the following.
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Theorem 6.1.9 (S.). Let λ, µ, ν ` n and let i, j and k be parts of λ, µ and ν, respectively.
Let the constants cν,kλ,i,µ,j be defined by

Kλ,iKµ,j =
∑

ν`n,k∈ν

cν,kλ,i,µ,jKν,k.

Then

cν,kλ,i,µ,j =
|Cλ,i||Cµ,j|

n!

∑
ρ`n,`∈ρ

γρ,`λ,iγ
ρ,`
µ,jγ

ρ,`
ν,k

d`−(ρ)

dρ
d`−(ρ)

.

6.2 Evaluating Generalized Characters at Special Or-

bits

6.2.1 Generalizing the Diaconis-Greene technique

From a combinatorial point of view, the usefulness of the expression for the connection
coefficients of Z1(n) given in Theorem 6.1.9 depends on having explicit expressions for the
generalized characters appearing in the sum. This section demonstrates that the technique
used by Diaconis and Greene [4] to evaluate ordinary characters by evaluating symmetric
polynomials at the contents of a tableau (i.e. applying Lemma 2.4.3) may be extended to
evaluate generalized characters at particular types of orbits, such as those corresponding to
transpositions, cycles of length 3, cycles of length n and cycles of length n− 1. This tech-
nique relies on Lemma 2.3.3, which states that the semi-normal unit e(T ) is an eigenvector
of the Jucys-Murphy element Jk, and its eigenvalue is the content of the box containing k
in the tableau T .

Let Λ(1)[x2, . . . , xn] denote the ring polynomials that are invariant under permutations
of x2, . . . , xn−1. Such a polynomial will be called an almost symmetric polynomial,
and may be regarded as a polynomial in xn whose coefficients are symmetric polynomials
in the variables x2, . . . , xn−1. Suppose that f ∈ Λ(1)[x2, . . . , xn] is an almost symmetric
polynomial such that

f(J2, . . . , Jn) =
∑
λ`n
i∈λ

aλ,iKλ,i.
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Expressing the identity element K(1n),1 of Z1(n) in terms of generalized characters,∑
λ`n,
i∈λ

aλ,iKλ,i = f(J2, . . . , Jn)K(1n),1

=
∑
µ`n
j∈µ

f(J2, . . . , Jn)Γµ,j.

By the definition of Γµ,j,

f(J2, . . . , Jn)Γµ,j =
∑

T∈SYT(µ,j)

f(J2, . . . , Jn)e(T )

=
∑

T∈SYT(µ,j)

f(cT (2), cT (3), . . . , cT (n))e(T )

=
∑

T∈SYT(µ,j)

f(cj−(µ), cµ,j)e(T ),

where cλ denotes the content vector of any tableau of shape λ, and cµ,j is the content of
the box containing n in any tableau in SYT(µ, j). The quantity cµ,j depends only on µ
and j, and is given by

cµ,j = j −
∑
k≥j

mk(µ).

The quantity f(cj−(µ), cµ,j) is well-defined since f is symmetric in x2, . . . , xn−1. Thus,

f(J2, . . . , Jn)Γµ,j = f(cj−(µ), cµ,j)Γ
µ,j,

and ∑
λ`n,
i∈λ

aλ,iKλ,i =
∑
µ`n
j∈µ

f(cj−(µ), cµ,j)Γ
µ,j.

On the other hand, by Lemma 6.1.7, the standard basis for Z1(n) may also be expressed
in the generalized character basis as follows:∑

λ`n,
i∈λ

aλ,iKλ,i =
∑
λ`n
i∈λ

aλ,i
∑
µ`n
j∈µ

|Cλ,i|
dj−(µ)

γµ,jλ,i Γ
µ,j.

Comparing coefficients gives the following:

Lemma 6.2.1 (S.). Let µ ` n and let j be a part of µ. Let f ∈ Λ(1)[x2, . . . , xn] be such that
f(J2, . . . , Jn) =

∑
λ`n
i∈λ

aλ,iKλ,i. Then Γµ,j is an eigenvector of f(J2, . . . , Jn) with eigenvalue

f(cj−(µ), cµ,j), and ∑
λ`n,
i∈λ

aλ,i
|Cλ,i|
dj−(µ)

γµ,jλ,i = f(cj−(µ), cµ,j).
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An important special case of this lemma is as follows.

Corollary 6.2.2 (S.). Let λ, µ ` n and let i and j be parts of λ and µ, respectively. Let
f ∈ Λ(1)[x2, . . . , xn] be such that f(J2, . . . , Jn) = Kλ,i. Then the generalized characters are
given by the formula

γµ,jλ,i =
dj−(µ)

|Cλ,i|
f(cj−(µ), cµ,j)

This provides a more precise notion of the “special” orbits referred to in the title of
this section. It is possible to evaluate generalized characters at any orbit for which there
is an explicit expression for that orbit’s standard basis element as an almost-symmetric
polynomial in J1, . . . , Jn. The existence of an almost symmetric polynomial satisfying the
condition f(J2, . . . , Jn) = Kλ,i is guaranteed by the following result.

Theorem 6.2.3 (Olshanski [36]). Let Jk be the Jucys-Murphy element
∑

1≤i<k(i, k). Then

Λ(1)[J2, . . . , Jn] = Z1(n).

A further consequence of Corollary 6.2.2 is that it reveals a useful symmetry property
of generalized characters. Consider the following.

Definition 6.2.4. Let λ ` n. The conjugate of λ is the partition λ∗ whose Ferrers
diagram Fλ∗ is the reflection of Fλ in the line y = −x. Let i ∈ λ. The conjugate of the
marked partition (λ, i) is the pair (λ∗, i∗), where i∗ is the number of parts of λ greater than
or equal to i.

Then the following relation holds.

Corollary 6.2.5 (S.). Let λ ` n have m parts, and let i be a part of λ. Let µ ` n, and
j ∈ µ. Then

γµ
∗,j∗

λ,i = (−1)n−mγµ,jλ,i .

Proof. Let f(x2, . . . , xn) be an almost symmetric function such that f(J2, . . . , Jn) = Kλ,i.
Since the degree of any monomial in f is equal to the number of transpositions in some
permutation of cycle type λ, then every monomial must either have even degree (if n−m
is even), or odd degree (if n−m is odd). Since the contents of any tableau of shape (µ, j)
are the negative of the contents of a tableau of shape (µ∗, j∗), then

γµ
∗,j∗

λ,i =
dj∗−(µ∗)

|Cλ,i|
f(cj∗−(µ∗), cµ∗,j∗)

=
dj−(µ)

|Cλ,i|
f(−cj−(µ),−cµ,j)

= (−1)n−mγµ,jλ,i .
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6.2.2 Some explicit evaluations of generalized characters

The following are some examples of standard basis elements of Z1(n) for which there are
explicit expressions as almost-symmetric polynomials in J2, . . . , Jn.

Lemma 6.2.6. Let ≥ 3. Then

1. K(2,1n−2),2 = Jn.

2. K(2,1n−2),1 = p1(J2, . . . , Jn−1) = J2 + J3 + · · ·+ Jn−1.

3. K(3,1n−3),3 = J2
n − (n− 1)K(1n),1.

4. K(2,2,1n−4),2 = p1(J2, . . . , Jn−1)Jn − J2
n + (n− 1)K(1n),1.

5. K(3,1n−3),1 = p2(J2, . . . , Jn−1)−
(
n−1

2

)
K(1n),1.

6. K(2,2,1n−4),1 = 1
2
(p1(J2, . . . , Jn−1)2 − 3p2(J2, . . . , Jn−1)) +

(
n−1

2

)
K(1n),1.

7. K(n),n = en−1(J2, . . . , Jn) = J2J3 · · · Jn.

8. K(n−1,1),1 = en−2(J2, . . . , Jn−1) = J2J3 · · · Jn−1.

Proof. Expressions 1, 2, 7 and 8 are obvious. For Expression 3, observe that

J2
n =

∑
1≤i<n

∑
1≤j<n

(i, n)(j, n)

=
∑

1≤i,j<n
i 6=j

(j, i, n) + (n− 1)K(1n),1

= K(3,1n−3),3 + (n− 1)K(1n),1,

from which the result follows. To prove expression 4, first observe that

p1(J2, . . . , Jn−1)Jn =
∑

{i,j}⊂{1,...,n−1}

∑
1≤k<n

(i, j)(k, n)

=
∑

1≤k<n−1

 ∑
{i,j}⊂{1,...,n−1}\k

(i, j)(k, n) +
∑

i∈{1,...,n−1}\k

(k, i, n)


= K(2,2,1n−4),2 +K(3,1n−3),3.
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The result follows after applying part 3. For expression 5,

p2(J2, . . . , Jn−1) =
∑

1≤k≤n−1

∑
1≤i,j<k

(i, k)(j, k)

=
∑

1≤k≤n−1

∑
1≤i,j<k
i 6=j

(j, i, k) +
∑

1≤k≤n−1

∑
1≤i<k

K(1n),1

= K(3,1n−3),1 +

(
n− 1

2

)
K(1n),1,

from which the result follows. For expression 6,

(J2 + · · ·+ Jn−1)2 =
∑

{i,j}⊂{1,...,n−1}

(i, j)

(i, j) +
∑

k∈{1,...,n−1}\{i,j}

(i, k) +
∑

k∈{1,...,n−1}\{i,j}

(j, k)

+
∑

{k,`}⊂{1,...,n−1}\{i,j}

(k, `)


=

(
n− 1

2

)
K(1n),1 + 3

∑
{i,j,k}⊂{1,...,n−1}

((i, k, j) + (i, j, k)) + 2K(2,2),1

=

(
n− 1

2

)
K(1n),1 + 3K(3,1n−3),1 + 2K(2,2),1.

The result then follows by applying expression 5.

Using these results, together with with Lemma 6.2.1, gives expressions for some eval-
uations of the generalized characters. Recall that σ(λ) denotes the sum of contents of a
tableau of shape λ, and that σ(2)(λ) denotes the sum of squares of contents of a tableau of
shape λ. The expressions given in Lemma 6.2.6 lead to the following.

Theorem 6.2.7. Let n ≥ 3, µ ` n, and let j be a part of µ. Then

1.

γµ,j(2,1n−2),2 =
1

n− 1
cµ,jdj−(µ).

2.

γµ,j(2,1n−2),1 =

(
n− 1

2

)−1

σ(j−(µ))dj−(µ).

3.

γµ,j(3,1n−3),3 =
1

2

(
n− 1

2

)−1

(c2
µ,j − n+ 1)dj−(µ).
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4.

γµ,j(2,2,1n−4),2 =
1

n− 1

(
n− 2

2

)−1

(σ(j−(µ))cµ,j − c2
µ,j + n− 1)dj−(µ).

5.

γµ,j(3,1n−3),1 =
1

2

(
n− 1

3

)−1(
σ(2)(j−(µ))−

(
n− 1

2

))
dj−(µ).

6.

γµ,j(2,2,1n−4),1 =
1

6

(
n− 1

4

)−1

(σ(j−(µ))2 − 3σ(2)(j−(µ)) + (n− 1)(n− 2))dj−(µ)

7.

γµ,j(n),n =


(−1)k n−k−1

n−1
if µ = (n− k, 1k), j = n− k;

(−1)k k
n−1

if µ = (n− k, 1k), j = 1;

0 otherwise.

8.

γµ,j(n−1,1),1 =


(−1)k if µ = (n− k − 1, 2, 1k−1) and j = 2;

(−1)k if µ = (n− k, 1k) and j = n− k;

(−1)k−1 if µ = (n− k, 1k) and j = 1;

0 otherwise.

Proof. Formulas 1 through 6 are immediate from Lemma 6.2.1 and Lemma 6.2.6. The
value γµ,j(n),n is proportional to the product of contents of a tableau of shape µ. Since a box

in row 2 and column 2 will have a content of zero, then γµ,j(n),n = 0 unless µ is of the form

(n− k, 1k) for some 0 ≤ k ≤ n− 1. If 0 ≤ k ≤ n− 2 and j = n− k, then there are
(
n−2
k

)
standard Young tableaux of shape j−(µ). The product of contents of a tableau of shape
(n− k, 1k) is k!(−1)k(n− k − 1)!. Thus,

γ
(n−k,1k),n−k
(n),n =

(
n−2
k

)
k!(−1)k(n− k − 1)!

(n− 1)!
= (−1)k

n− k − 1

n− 1
.

If 1 ≤ k ≤ n− 1 and j = 1, then there are
(
n−2
k−1

)
standard Young tableaux of shape j−(µ).

Thus,

γ
(k,1n−k),1
(n),n =

1

(n− 1)!

(
n− 2

k − 1

)
k!(−1)k(n− k − 1)! = (−1)k

k

n− 1
.

The value of γµ,j(n−1,1),1 is proportional to the product of contents the boxes containing

labels 2 through n− 1 in a tableau of type (µ, j). This result will be zero unless any label
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Cycle type (µ, j) dj−(µ)

∏
2≤i≤n−1 cT (i)

(n− k − 1, 2, 1k−1), 2
(
n−2
k

)
(n− k − 2)!(−1)kk!

(n− k, 1k), n− k
(
n−2
k

)
(n− k − 2)!(−1)kk!

(n− k, 1k), 1
(
n−2
k−1

)
(n− k − 1)!(−1)k−1(k − 1)!

Table 6.3: Calculations needed to evaluate γµ,j(n−1,1),1.

other than n occupies a box in the second row and second column. Thus, the only tableaux
giving a nonzero result are either hook tableaux or tableaux of shape (n− k − 1, 2, 1k) in
which n appears at the end of the row of length 2. Determining the number of tableaux
in each case, as well as the product of their contents, can be done as in the case for γµ,j(n),n;
the resulting values are given in Table 6.3, and they yield the results in the statement of
the theorem.

6.2.3 Relationships between generalized characters and ordinary
characters

In addition to evaluating generalized characters, the technique used in this section may also
be used to prove two identities relating the generalized characters and ordinary characters
of the symmetric group. The first such identity results from the observation that for any
λ ` n, ∑

i∈λ

Kλ,i = Kλ.

Let fλ,i ∈ Λ(1)[x2, . . . , xn] be such that fλ,i(J2, . . . , Jn) = Kλ,i, and let fλ ∈ Λ[x2, . . . , xn]
be a symmetric polynomial in x2, . . . , xn such that fλ(J2, . . . , Jn) = Kλ. Thus,∑

i∈λ

fλ,i(J2, . . . , Jn) = fλ(J2, . . . , Jn).

For any µ ` n and j ∈ µ, let T ∈ SYT(µ, j). Then

fλ(cµ)e(T ) = fλ(J2, . . . , Jn)e(T )

=
∑
i∈λ

fλ,i(J2, . . . , Jn)e(T )

=
∑
i∈λ

fλ,i(cj−(µ), cµ,j)e(T ),
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so
fλ(cµ) =

∑
i∈λ

fλ,i(cj−(µ), cµ,j).

Applying Lemma 2.4.1 and Corollary 6.2.2 yields the following.

Lemma 6.2.8 (S.). Let λ, µ ` n and let j be a part of µ. Then

χµλ =
dµ

|Cλ|dj−(µ)

∑
i∈λ

|Cλ,i|γµ,jλ,i .

This result, along with Theorem 6.2.7, may be used to obtain the character evaluations
given in Lemma 2.4.3. This is not the ideal method of obtaining the results of Lemma 2.4.3,
since these results are more easily obtained directly using Lemma 2.4.1; rather, this ob-
servation is useful as a verification of the evaluations of generalized characters appearing
in Theorem 6.2.7. This observation is a further justification that the theory developed in
this chapter is a natural non-central refinement of character theory, since it is possible to
recover results about characters from results about generalized characters.

A second relationship between generalized characters and ordinary characters may be
obtained from the observation that

Xλ =
∑
i∈λ

Γλ,i,

which follows from Lemma 2.3.2 and Definition 6.1.1. Since Xλ is central, [Kµ,j]X
λ =

[Kµ]Xλ for all j, and comparing coefficients on both sides of this equation yields the
following.

Lemma 6.2.9. Let λ, µ ` n. For any j ∈ µ,

χλµ =
∑
i∈λ

γλ,iµ,j.

(Although these coefficients are scaled, the scaling factor of dλ
n!

is the same on both
the left and right side of this equation.) This relationship is of particular interest because
different choices of j yield different, but equal, expressions for χλµ. For example, if µ =
(2, 1n−2), taking j = 1 yields

χλ(2,1n−2) =

(
n− 1

2

)−1∑
i∈λ

σi−(λ)di−(λ).

99



However, taking j = 2 yields

χλ(2,1n−2) =
1

n− 1

∑
i∈λ

cλ,idi−(λ).

These expressions are both equal to the quantity given in Lemma 2.4.3, resulting in the
following unexpected combinatorial identity.

Corollary 6.2.10. For any λ ` n,(
n

2

)−1

dλσλ =
1

n− 1

∑
i∈λ

cλ,idi−(λ) =

(
n− 1

2

)−1∑
i∈λ

σi−(λ)di−(λ).

It is not immediately clear whether there is a direct combinatorial explanation for this
identity. Similar, but more complicated, identities may be obtained from Theorem 6.2.7
by making other choices of µ and j. Lemma 6.2.9, along with part 8 of Theorem 6.2.7,
may be used to give a new derivation of an old result: the formula for evaluating ordinary
characters at the conjugacy class indexed by (n− 1, 1) is as follows.

Corollary 6.2.11. Let λ ` n. Then

χλ(n−1,1) =


1 if λ = (n),

(−1)n if λ = (1n),

(−1)k if λ = (n− k − 1, 2, 1k−1),

0 otherwise.

Proof. The only choices for λ for which γλ,i(n−1,1),1 is non-zero are λ = (n− k− 1, 2, 1k−1) or

λ = (n− k, 1k). If λ = (n− k − 1, 2, 1k−1), then

χλ(n−1,1) = γ(n−k−1,2,1n−k),n−k−1 + γ(n−k−1,2,1n−k),2 + γ(n−k−1,2,1n−k),1 = 0 + (−1)k + 0.

If λ = (n), then the only term arising in the sum is γ
(n),n
(n−1,1),1 = 1. If λ = (1n), then the

only term arising in the sum is γ
(1n),1
(n−1,1),1 = (−1)n. If λ = (n − k, 1k) and 1 ≤ k ≤ n − 2,

then
χλ(n−1,1) = γ

(n−k,1k),n−k
(n−1,1),1 + γ

(n−k,1k),1
(n−1,1),1 = (−1)k + (−1)k−1 = 0,

proving the result.

This result is of interest because it is not clear how to obtain χλ(n−1,1) via an application
of Lemma 2.4.1, since there is not a sufficiently simple expression for K(n−1,1) in terms
of Jucys-Murphy elements. (Diaconis and Greene [4] compute it instead by using the
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branching rule for ordinary characters.) In other words, this is a case in which a non-
trivial evaluation of an ordinary character may be obtained in a fairly simple manner by
considering the theory of generalized characters.

Having determined χµ(n−1,1) and γµ,j(n−1,1),1, it is now possible to determine the generalized

character γµ,j(n−1,1),n−1 by applying Lemma 6.2.8. The result is as follows.

Corollary 6.2.12. Let µ ` n and let j be a part of µ. Then

γµ,j(n−1,1),n−1 =



1 if µ = (n), j = n,

(−1)n if µ = (1n), j = 1,
(−1)k+1

n−1
if µ = (n− k, 1k), 1 ≤ k ≤ n− 2, j = n− k,

(−1)k

n−1
if µ = (n− k, 1k), 1 ≤ k ≤ n− 2, j = 1,

(−1)k

k(n−k−2)
if µ = (n− k − 1, 2, 1k−1), j = 2,

0 otherwise.

Proof. Rearranging the equation in Lemma 6.2.8 gives

γµ,j(n−1,1),n−1 =
1

n− 1

(
ndj−(µ)

dµ
χµ(n−1,1) − γ

µ,j
(n−1,1),1

)
.

Substituting the known values for χµ(n−1,1) and γµ,j(n−1,1),1 gives the result.

6.3 Evaluation of Generalized Characters Correspond-

ing to Hook Partitions

6.3.1 The Murnaghan-Nakayama Rule for Generalized Charac-
ters

One of the combinatorially important results in the theory of ordinary characters of the

symmetric group is Lemma 2.4.6, which gives the generating series for χ
(n−k,1k)
λ . The next

step in developing the theory of generalized characters is to find a result which is analogous
to this lemma. In light of parts 7 and 8 of Theorem 6.2.7, it is natural to look for generating

series for three types of generalized characters: those of the form γ
(n−k,1k),n−k
µ,j , γ

(n−k,1k),1
µ,j

and γ
(n−k−1,2,1k−1),2
µ,j . The generalized characters in S5 of these types are given in Table 6.4.

The method used in this section to evaluate these characters relies on a theorem, due to
Strahov [42], which expresses the generalized characters of Sn in terms of the ordinary
irreducible characters of symmetric groups of lower order.

101



Lemma C(5),5 C(4,1),4 C(4,1),1 C(3,2),3 C(3,2),2 C(3,1,1),3

6.3.2 120 Γ(5),5 1 1 1 1 1 1
30 Γ(4,1),4 −3

4
1
4

−1 −3
4

−3
4

5
4

20 Γ(3,1,1),3 1
2

−1
4

1 −1
2

3
4

0
30 Γ(2,1,1,1),2 −1

4
1
4

−1 1
4

1
4

−1
4

6.3.3 30 Γ(4,1),1 −1
4

−1
4

1 −1
4

−1
4

−1
4

20 Γ(3,1,1),1 1
2

1
4

−1 1
2

−3
4

0
30 Γ(2,1,1,1),1 −3

4
−1

4
1 3

4
3
4

5
4

120 Γ(15),1 1 −1 −1 −1 −1 1

6.3.4 24 Γ(3,2),2 0 −1
2

−1 0 3
2

−1
24 Γ(2,2,1),2 0 1

2
1 0 −3

2
−1

Lemma C(3,1,1),1 C(2,2,1),2 C(2,2,1),1 C(2,1,1,1),2 C(2,1,1,1),1 C(15),1

6.3.2 120 Γ(5),5 1 1 1 1 1 1
30 Γ(4,1),4 0 1

4
−1 9

4
1 3

20 Γ(3,1,1),3 0 −1 −1 3
2

−1 3
30 Γ(2,1,1,1),2 1 −1

4
1 1

4
−1 1

6.3.3 30 Γ(4,1),1 1 −1
4

1 −1
4

1 1
20 Γ(3,1,1),1 0 −1 −1 −3

2
1 3

30 Γ(2,1,1,1),1 0 1
4

−1 −9
4

−1 3

120 Γ(15),1 1 1 1 −1 −1 1

6.3.4 24 Γ(3,2),2 0 1 −1 0 1 3
24 Γ(2,2,1),2 0 1 −1 0 −1 3

Table 6.4: Evaluations of generalized characters of S5 corresponding to results appearing
in this section.

102



D

D

D
D

S

S

Figure 6.1: Illustration of the terminology used in the Murnaghan-Nakayama Rule for
generalized characters. This broken border strip has two components, one having height
3 and the other having height 1. The height of the entire diagram is 4. Sharp corners are
indicated with an S, and dull boxes are indicated by a D.

Strahov uses the following terminology in the statement of his theorem. These defini-
tions are illustrated in Figure 6.1. A skew partition λ/ν is called a broken border strip
if it contains no 2 × 2 boxes. (Thus, a broken border strip which is also connected is a
rim hook. Two boxes in a Ferrers diagram whose corners touch are not considered to be
connected.) A sharp corner in a skew diagram is a box which has a box both below it
and to the right. A dull box has boxes neither to the right nor below it. Let SC(λ/ν) and
DB(λ/ν) denote the set of sharp corners and dull boxes of λ/ν, respectively. Recall that
the height of a rim hook λ/ν, denoted by 〈λ/ν〉, is equal to the greatest row occupied by
λ/ν minus the least row occupied by λ/ν. If λ/ν is a broken border strip, 〈λ/ν〉 is defined
to be the sum of heights of its connected components. Given a skew diagram λ/ν and a
part i of λ, the number ϕλ/ν,i is defined by

ϕλ/ν,i = (−1)〈λ/ν〉
∏

s∈SC(λ/ν)

[cλ,i − c(s)]
∏

d∈DB(λ/ν)
d 6=λ/i−(λ)

[cλ,i − c(d)]−1

when λ/ν is a broken border strip, and zero otherwise.

Strahov’s result is as follows.

Theorem 6.3.1 (Murnaghan-Nakayama Rule for Generalized Characters). Let λ, ρ ` n.
Let i be a part of λ, and let j be a part of ρ. Then

γλ,iµ,j =
∑

ν⊆i−(λ)
ν`n−j

ϕλ/ν,iχ
ν
µ\j.

The reason this theorem is particularly useful for evaluating γ
(n−k,1k),n−k
µ,j , γ

(n−k,1k),1
µ,j and

γ
(n−k−1,2,1k−1),2
µ,j is that in all three cases, i−(λ) is a hook partition. Thus, every ν ⊆ i−(λ)

is also a hook partition, and χνµ\j may be evaluated using Lemma 2.4.6.
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6.3.2 Evaluation of γ
(n−k,1k),n−k
µ,j and γ

(n−k,1k),1
µ,j

To determine the values of γ
(n−k,1k),n−k
µ,j and γ

(n−k,1k),1
µ,j , it is helpful to deal with the cases

when λ = (n) or λ = (1n) separately; the reason is that in these cases, there are no
sharp corners and the only dull box corresponds to the distinguished part of λ, so the
product appearing in the definition of ϕ is empty. If λ = (n), the height of λ/ν is 0,
and thus ϕ(n/ν),n = 1. If λ = (1n) and ν = (1n−j), the height of λ/ν is j − 1, and thus
ϕ(1n/ν),1 = (−1)j−1. Thus,

γ
(n),n
µ,j = χ

(n−j)
µ\j = 1

and
γ

(1n),1
µ,j = (−1)j−1χ

(1n−j)
µ\j = (−1)n−m(µ).

The general case occurs if the partition (n − k, 1k) is a proper hook, i.e. if 1 ≤ k ≤
n − 2. To compute γ

(n−k,1k),n−k
µ,j in this case, consider the partitions ν ` n − j satisfying

ν ⊆ (n−k− 1, 1k). These are all of the form ν = (n− j− `, 1`) for some 0 ≤ ` ≤ n− j− 1.
However, in some cases, not all partitions of this form will contribute to the sum. For
large values of n− j, the values of ` for which there is a contribution to the expression for

γ
(n−k,1k),n−k
µ,j are limited by the restriction that ν ⊆ (n − k − 1, 1k). Thus, there are three

cases to consider: if n− j is small enough that none of the choices for ν can hit either end
of the hook (n−k−1, 1k), if the size of n− j permits exactly one end of the hook to be hit
by some ν, and if n− j is large enough that for each end of the hook there is some ν which
hits it. These cases are stated in Table 6.5, and the range of validity for ` is indicated for
each.

As for the value of ϕλ/ν,i, the height of (n− k, 1k)/(n− j − `, 1`) is equal to k − `− 1
when ` < k, and 0 when ` = k. The partition (n − k, 1k)/(n − j − `, 1`) has exactly two
dull boxes: one at the end of the first row, and one at the bottom of the first column.
Providing ` < k, both boxes remain in (n− k, 1k)/(n− j − `, 1`), and thus

ϕ(n−k,1k)/(n−j−`,1`),n−k =
(−1)k−`−1

(n− k − 1)− (−k)
=

(−1)k−`−1

n− 1
.

There is one exceptional value of `, namely, ` = k, for which the dull box at the bottom
of the first column is removed with ν. When this occurs, ϕ(n−k,1k)/(n−j−k,1k),n−k = 1. The
cases in which this applies are indicated in Table 6.5. Collecting the cases and applying

Theorem 6.3.1 gives the following expressions for γ
(n−k,1k),n−k
µ,j .

Lemma 6.3.2 (S.). Suppose 0 ≤ k ≤ n − 2 and 1 ≤ j ≤ n − 1. Let µ ` n and let j be a
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k ≤ n− k − 1 k ≥ n− k − 1
ν can hit Occurs when n− j ≤ k Occurs when n− j < n− k

neither end of λ Valid range: 0 ≤ ` ≤ n− j − 1 Valid range: 0 ≤ ` ≤ n− j − 1

to to
ν can hit exactly Occurs when k < n− j < n− k Occurs when n− k ≤ n− j ≤ k

one end of λ Valid range: 0 ≤ ` ≤ k Valid range: k − j < ` ≤ n− j − 1
Exceptional case: ` = k

to to
ν can hit Occurs when n− j ≥ n− k Occurs when n− j > k

both ends of λ Valid range: k − j < ` ≤ k Valid range: k − j < ` ≤ k
Exceptional case: ` = k Exceptional case: ` = k

to to

Table 6.5: Ranges of validity `, where ν = (n−j−`, 1`), in the computation of γ
(n−k,1k),n−k
µ,j .

The diagrams illustrate the extreme points of the range in each case: shaded boxes indicate
ν, and the black box is the distinguished box.

105



part of µ. If k ≤ n− k − 1, then

γ
(n−k,1k),n−k
µ,j =


∑

0≤`≤n−j−1
(−1)k−`−1

n−1
χ

(n−j−`,1`)
µ\j if (n− j) ≤ k,∑

0≤`<k
(−1)k−`−1

n−1
χ

(n−j−`,1`)
µ\j + χ

(n−j−k,1k)
µ\j if k < (n− j) < n− k,∑

k−j<`<k
(−1)k−`−1

n−1
χ

(n−j−`,1`)
µ\j + χ

(n−j−k,1k)
µ\j if n− k ≤ (n− j).

If k ≥ n− k − 1, then

γ
(n−k,1k),n−k
µ,j =


∑

0≤`≤n−j−1
(−1)k−`−1

n−1
χ

(n−j−`,1`)
µ\j if (n− j) < n− k∑

k−j<`≤n−j−1
(−1)k−`−1

n−1
χ

(n−j−`,1`)
µ\j if n− k ≤ (n− j) ≤ k∑

k−j<`<k
(−1)k−`−1

n−1
χ

(n−j−`,1`)
µ\j + χn−j−k,1

k

µ\j if k < (n− j).

(Although the argument used to derive these formulas assumed that k ≥ 1, they also

agree with the special case when k = 0.) The expressions for γ
(n−k,1k),1
µ,j may be derived in

two different ways. The first method is to use Theorem 6.3.1, in the same manner as the
proof of Lemma 6.3.2. (This is the method used in the proof below.) The second method
is to use Lemma 6.3.2 along with the symmetry property of Corollary 6.2.5. Using either
method gives the following.

Lemma 6.3.3. Suppose 1 ≤ k ≤ n− 1 and 1 ≤ j ≤ n− 1. Let µ ` n and let j be a part
of µ. If k ≤ n− k − 1, then

γ
(n−k,1k),1
µ,j =


∑

0≤`≤n−j−1
(−1)k−`

n−1
χ

(n−j−`,1`)
µ\j if (n− j) ≤ k,∑

0≤`<k
(−1)k−`

n−1
χ

(n−j−`,1`)
µ\j if k < (n− j) < n− k,∑

k−j<`<k
(−1)k−`

n−1
χ

(n−j−`,1`)
µ\j + (−1)j−1χ

(n−k,1k−j)
µ\j if (n− j) ≥ n− k.

If k ≥ n− k − 1, then

γ
(n−k,1k),1
µ,j =


∑

0≤`≤n−j−1
(−1)k−`

n−1
χ

(n−j−`,1`)
µ,j if (n− j) < n− k∑

k−j<`≤n−j−1
(−1)k−`

n−1
χ

(n−j−`,1`)
µ\j + (−1)j−1χ

(n−k,1k−j)
µ\j if n− k ≤ (n− j) ≤ k∑

k−j<`<k
(−1)k−`

n−1
χ

(n−j−`,1`)
µ\j + (−1)j−1χ

(n−k,1k−j)
µ\j if (n− j) > k.

Proof. The case analysis is summarized in Table 6.6. For values of ` for which the removal
of ν does not remove the box at the end of the first row,

ϕ(n−k,1k)/(n−j−`,1`),1 =
(−1)k−`−1

(−k)− (n− k − 1)
=

(−1)k−`

n− 1
.

The exceptional case, in which the box at the end of the first row is removed, occurs when
` = k − j; in these cases, ϕ(n−k,1k)/(n−k,1k−j),1 = (−1)j−1.
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k ≤ n− k − 1 k ≥ n− k − 1
ν can hit Occurs when n− j ≤ k Occurs when n− j < n− k

neither end of λ Valid range: 0 ≤ ` ≤ n− j − 1 Valid range: 0 ≤ ` ≤ n− j − 1

to to
ν can hit exactly Occurs when k < n− j < n− k Occurs when n− k ≤ n− j ≤ k

one end of λ Valid range: 0 ≤ ` < k Valid range: k − j ≤ ` ≤ n− j − 1
Exceptional case: ` = k − j

to to
ν can hit Occurs when n− j ≥ n− k Occurs when n− j ≥ k

both ends of λ Valid range: k − j ≤ ` < k Valid range: k − j ≤ ` < k
Exceptional case: ` = k − j Exceptional case: ` = k − j

to to

Table 6.6: Ranges of validity for `, where ν = (n − j − `, 1`), in the computation of

γ
(n−k,1k),1
µ,j .
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6.3.3 Evaluation of γ
(n−k−1,2,1k−1),2
µ,j

The generalized characters γ
(n−k−1,2,1k−1),2
µ,j for 1 ≤ k ≤ n−3 may be evaluated in a manner

similar to the generalized character evaluations done in the preceding section. Prior to

stating the formula for γ
(n−k−1,2,1k−1),2
µ,j in the general case, two exceptional cases must be

dealt with. Let λ = (n − k − 1, 2, 1k−1). First, suppose j = 1. In this case, the only
partition ν ⊆ (n− k − 1, 1k) such that ν ` n− j is (n− k − 1, 1k). Removing this from λ
leaves only a single box, so ϕλ/ν,2 = 1 in this case. Thus,

γ
(n−k−1,2,1k−1),2
µ,j = χ

(n−k−1,1k)
µ\j .

Second, suppose j = n. In this case, the formula for γλ(n),n has already been given by
Lemma 6.2.7, namely,

γ
(n−k−1,2,1k−1),2
(n),n = 0.

The formula in the general case is as follows.

Lemma 6.3.4 (S.). Let µ ` n and let j be a part of µ. Suppose 1 ≤ k ≤ n − 3 and

2 ≤ j ≤ n− 1. If k ≤ n− k − 2, then γ
(n−k−1,2,1k−1),2
µ,j is equal to

∑
0≤`≤n−j−1

(−1)k−`χ
(n−j−`,1`)
µ\j

k(n−k−2)
if (n− j) ≤ k,∑

0≤`<k
(−1)k−`χ

(n−j−`,1`)
µ\j

k(n−k−2)
−

χ
(n−j−k,1k)
µ\j
n−k−2

if k < (n− j) < (n− k − 1),∑
k−j+1<`<k

(−1)k−`χ
(n−j−`,1`)
µ\j

k(n−k−2)
+

(−1)jχ
(n−k−1,1k−j+1)
µ\j

k

−
χ
(n−j−k,1k)
µ\j
n−k−2

if (n− j) ≥ (n− k − 1).

If k ≥ n− k − 2, then γ
(n−k−1,2,1k−1),2
µ,j is equal to

∑
0≤`≤n−j−1

(−1)k−`χ
(n−j−`,1`)
µ\j

k(n−k−2)
if (n− j) ≤ (n− k − 2),∑

k−j+1<`≤n−j−1

(−1)k−`χ
(n−j−`,1`)
µ\j

k(n−k−2)
+

(−1)jχ
(n−k−1,1k−j+1)
µ\j

k
if (n− k − 2) < (n− j) ≤ k,∑

k−j+1<`<k

(−1)k−`χ
(n−j−`,1`)
µ\j

k(n−k−2)
+

(−1)jχ
(n−k−1,1k−j+1)
µ\j

k

− 1
n−k−2

χ
(n−j−k,1k)
µ\j if (n− j) ≥ (k + 1).

Proof. The proof is by a case analysis similar to the proofs of Lemmas 6.3.2 and 6.3.3.
Throughout the following, λ = (n− k− 1, 2, 1k−1). Each case is illustrated with a diagram
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in which grey boxes indicate ν, the black box indicates the distinguished box, and white
boxes indicate 2−(λ)/ν. Sharp corners and dull boxes of λ/ν are indicated on diagrams by
S and D, respectively, with the exception of the distinguished box, which is always a dull
box.

The cases k = 1 and k = n− 3 are treated differently than 2 ≤ k ≤ n− 4, but give the
same result. Suppose k = 1. (The k = n − 3 case is nearly identical.) If j = n − 1, then
(n− j) ≤ k, and a typical diagram is of the following form.

S D

In this case, the formula in the statement of the Theorem gives

γ
(n−2,2),2
(n−1,1),n−1 =

(−1)k

k(n− k − 2)
=

(−1)k

n− 3
,

which agrees with the value computed in Corollary 6.2.12. When 3 ≤ j ≤ n − 2, then
k < (n− j) < (n− k − 1). In this case, the only partitions ν ` n− j which are contained
in (n− 2, 1) are (n− j) and (n− j − 1, 1):

D

and

D

.

In both cases, λ/ν has height 0, no sharp corners, and one dull box (of content n− 3)
aside from the dull box corresponding to the distinguished part 2, so

ϕλ/ν,2 =
1

0− (n− k − 2)
= − 1

n− 3
,

which agrees with the stated formula for this case. When j = 2, (n− j) ≥ (n− k− 1), and
the diagrams corresponding to the two possibilities for ν are

and

D

.

The argument proceeds as in the case when 3 ≤ j ≤ n− 2, with the exception that when
ν = (n− j), λ/ν has no dull boxes, so ϕλ/ν,2 = 1. This agrees with the stated formula.

For the general case, k ≤ 2 ≤ n − 4, there are six cases to consider. As they are
all similar, one case is singled out here for a detailed presentation. This case has been
selected because it illustrates all the peculiarities which must be taken into account when
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computing γ
(n−k−1,2,1k−1),2
µ,j , but did not arise when computing γ

(n−k,1k),n−k
µ,j and γ

(n−k,1k),1
µ,j .

Suppose k ≥ n−k−2 and (n−k−2) < (n−j) ≤ k. Let ν = (n−j−`, 1`). The range of `
for which ν ⊆ 2−(λ) is k−j+1 ≤ ` ≤ n−j−1. When ` = k−j+1, ν = (n−k−1, 1k−j+1),
so λ/ν has height j, no sharp corners, and one dull box (of content −k) aside from the
distinguished dull box, as illustrated here:

D

Thus, in this case,

ϕλ/ν,2 =
(−1)j

k
.

When ` = n − j − 1, ν = (1n−j), so λ/ν has height k − `, one sharp corner of content 1,
and two dull boxes aside from the distinguished box, having contents (n− k − 2) and −k.

D

DS

Thus,

ϕλ/ν,2 =
(−1)k−`(0− 1)

0− (−k))(0− (n− k − 2)
=

(−1)k−`

k(n− k − 2)
.

Finally, when k − j + 1 < ` < n− j − 1, λ/ν has height k − `− 1, no sharp corners, and
two dull boxes aside from the distinguished box, having contents (n− k − 2) and −k.
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D

D

.

Thus,

ϕλ/ν,2 =
(−1)k−`−1

(0− (−k))(0− (n− k − 2)
=

(−1)k−`

k(n− k − 2)
.

Combining these cases gives the formula in the statement of the Theorem.
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Chapter 7

Combinatorial Applications of Z1(n)

This chapter explores some of the combinatorial consequences of the results given in Chap-
ter 6. Three applications of the theory of Z1(n) and generalized characters are given
here. The first, given in Section 7.1, is a solution to the (p, n − 1, n)-dipole problem for
all orientable surfaces, using the Z1(n)-encoding of this problem from Chapter 5. Much
like the case for ordinary diploles, the genus polynomials for (p, n − 1, n)-dipoles can be
expressed as linear combinations of binomial coefficients of the form

(
t+i
j

)
, where t is an

indeterminate. The second application, given in Section 7.2, is a new approach to deter-
mining non-transitive powers of Jucys-Murphy elements. The third application, given in
Section 7.3, gives an approach to the Z1-factorization problem in the special case when
the permutation being factorized is a full cycle. This is a refinement of previous work
decomposing a full cycle into permutations of specified cycle types in that it also allows
the length of the cycle containing n in each factor to be specified.

7.1 The number of (p, n − 1, n)-dipoles in a genus g

surface

7.1.1 A general form for the generating series

Recall from Lemma 5.2.2 that the number of (p, n−1, n)-dipoles having face degree sequence
2λ and a root face of degree 2i is given by

dp,n−1
λ,i = [K(p,n−p),p]Kλ,iK(n−1,1),1.
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The material from Chapter 6, specifically, Theorem 6.1.9, allows this quantity to be ex-
pressed in terms of generalized characters as follows.

dp,n−1
λ,i =

|Cλ,i|(n− 2)!

n!

∑
ρ`n,
`∈ρ

γρ,`λ,iγ
ρ,`
(n−1,1),1γ

ρ,`
(p,n−p),p

d`−(ρ)

dρ
d`−(ρ)

.

Applying the formula for γρ,`(n−1,1),1 given in Lemma 6.2.7, the terms of this summation vanish

unless (ρ, `) is one of three types: ((n−k, 1k), n−k), ((n−k, 1k), 1), or ((n−k−1, 2, 1k−1), 2).
The expression for dp,n−1

λ,i splits into a sum over these three cases, as given in the following.

Theorem 7.1.1 (S.). Let λ ` n and let i ∈ λ. Let 1 ≤ p ≤ n − 1. Then the number of
(p, n− 1, n)-dipoles (with unlabelled ordinary edges) having face degree sequence 2λ and a
root face of degree 2i is given by

dp,n−1
λ,i =

|Cλ,i|(n− 2)!

n!

(
Aλ,in,p +Bλ,i

n,p + Cλ,i
n,p

)
,

where

Aλ,in,p =
∑

0≤k≤n−2

(−1)kγ
(n−k,1k),n−k
λ,i γ

(n−k,1k),n−k
(p,n−p),p

d(n−k−1,1k)

n− 1

n− k − 1
,

Bλ,i
n,p =

∑
1≤k≤n−1

(−1)k−1γ
(n−k,1k),1
λ,i γ

(n−k,1k),1
(p,n−p),p

d(n−k,1k−1)

n− 1

k
,

and

Cλ,i
n,p =

∑
1≤k≤n−3

(−1)kγ
(n−k−1,2,1k−1),2
λ,i γ

(n−k−1,2,1k−1),2
(p,n−p),p

d(n−k−1,1k)

nk(n− k − 2)

(n− k − 1)(k + 1)
.

The ratios dρ
d`−(ρ)

have been determined by a routine determination of the number of

standard Young tableaux in each case. Although the quantity d`−(ρ) appearing in the de-
nominator of each summand could be evaluated similarly, it is convenient for later purposes
to leave it as it stands.

Much like the case of ordinary dipoles, the expression given in Theorem 7.1.1 has a
more explicit form when summed over all partitions having m parts. By the Euler-Poincaré
formula, this gives the number of (p, n−1, n)-dipoles in an orientable surface of genus n−m

2
.

Let
dp,n−1
m =

∑
λ`n,

m(λ)=m,i∈λ

dp,n−1
λ,i .
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Define Fn,p by

Fn,p :=
1

n!

∑
λ`n,

m(λ)=m,i∈λ

|Cλ,i|F λ,i
n,p

where F is either A,B or C. Then

dp,n−1
m = (n− 2)!(An,p +Bn,p + Cn,p).

This expression may be simplified by evaluating expressions of the form

∑
λ`n,

m(λ)=m,i∈λ

|Cλ,i|γρ,`λ,i
d`−(ρ)

(7.1)

In light of Lemma 6.2.8, the quantity is just, up to to scaling, the sum∑
λ`n

|Cλ|χρλ
dρ

.

Consequently, the expression in Equation (7.1) may be determined from known results
regarding sums of ordinary characters. However, it may also be derived from the theory
developed in Chapter 6 in the following manner.

Lemma 7.1.2. Let ρ ` n and let ` be a part of ρ. Let T be any standard Young tableau of
shape ρ. Then ∑

λ`n,
m(λ)=m,i∈λ

|Cλ,i|
d`−(ρ)

γρ,`λ,i = en−m(cρ) = [tm]
∏

1≤i≤n

(t+ ci(T )).

Proof. It is routine to show that the elementary symmetric polynomial en−m(x2, . . . , xn)
evaluated at the Jucys-Murphy elements is given by

en−m(J2, . . . , Jn) =
∑
λ`n

m(λ)=m

Kλ =
∑
λ`n

m(λ)=m,i∈λ

Kλ,i.

Thus, by Lemma 6.2.1, ∑
λ`n

m(λ)=m,i∈λ

|Cλ,i|
d`−(ρ)

γρ,`λ,i = en−m(cρ).

The result then follows by using the generating series for elementary symmetric functions.
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The two cases of interest to the (p, n− 1, n)-dipole problem are as follows.

Corollary 7.1.3. Let ρ = (n− k, 1k), and let ` ∈ {1, n− k}. Then∑
λ`n,

m(λ)=m,i∈λ

|Cλ,i|
d`−(ρ)

γρ,`λ,i = [tm]n!

(
t+ n− k − 1

n

)
.

Proof. The contents along the first row of a tableau of shape (n−k, 1k) are 0, 1, 2, . . . , n− k − 1,
and the contents in the first column (excluding the box in the first row) are −1,−2, . . . ,−k.
Thus, ∏

1≤i≤n

(t+ ci(T )) =
∏

−k≤i≤n−k−1

(t+ i),

from which the result follows.

Corollary 7.1.4. Let ρ = (n− k − 1, 2, 1k−1) and let ` ∈ {n− k − 1, 2, 1}. Then∑
λ`n,

m(λ)=m,i∈λ

|Cλ,i|
d`−(ρ)

γρ,`λ,i = [tm](n− 1)!t

(
t+ n− k − 2

n− 1

)
.

Proof. This is obtained in a similar manner to the preceding Corollary, except there is an
additional box of content 0 (the one at the end of the row of length 2), and one box of
content n− k − 1 has been removed.

Combining these Corollaries with Theorem 7.1.1, along with routine simplification,
gives the following expression for the generating series for (p, n − 1, n)-dipoles as a linear
combination of binomial coefficients in the indeterminate t.

Theorem 7.1.5 (S.). The number of (p, n− 1, n)-dipoles (with unlabelled ordinary edges)
in an orientable surface of genus g is given by

dp,n−1
n−2g = (n− 2)![tn−2g]Dn,p(t)

where

Dn,p(t) =

(
t+ n− 1

n

)
+

∑
1≤k≤n−2

(−1)k(n− 1)

γ(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k

(t+ n− k − 1

n

)

+

(
t

n

)
+

∑
1≤k≤n−3

(−1)k
k(n− k − 2)γ

(n−k−1,2,1k−1),2
(p,n−p),p

(n− k − 1)(k + 1)
t

(
t+ n− k − 2

n− 1

)
.
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7.1.2 Genus polynomials for (p, n− 1, n)-dipoles

While the generating series given in Theorem 7.1.5 is most compactly expressed with some
of the generalized characters left unevaluated, in order to obtain series for specific values of
p it is necessary to evaluate the generalized characters which arise. In this section, formulas
for these generalized characters are provided.

The first case to consider is when p = 1. Although (1, n−1, n)-dipoles are simply rooted
dipoles on n − 1 edges in which the root has been “doubled,” and this problem may be
solved using central methods, it is useful to record the form of the series in Theorem 7.1.5
when p = 1 both for completeness and as a verification of its correctness. When p = 1, all
the generalized characters appearing in the series may be computed using Theorem 6.2.7.
The result is as follows:

Dn,1(t) =

(
t+ n− 1

n

)
+

∑
1≤k≤n−2

(n− 1)2

k(n− k − 1)

(
t+ n− k − 1

n

)
+

(
t

n

)
+

∑
1≤k≤n−3

k(n− k − 2)

(n− k − 1)(k + 1)
t

(
t+ n− k − 2

n− 1

)
.

When 2 ≤ p ≤ n − 1, the values of γ
(n−k,1k),n−k
(n−p,p),p , γ

(n−k,1k),1
(n−p,p),p and γ

(n−k−1,2,1k−1),2
(n−p,p),p which

arise in the expression for the number of (p, n− 1, n)-dipoles can be evaluated using Lem-
mas 6.3.2, 6.3.3, 6.3.4 and 2.4.3. Taking µ = (n−p, p) and j = p, the partition µ\j arising

in these expressions is just (n− p). Thus, χ
(n−j−`,1`)
µ\j = (−1)`. After routine simplification,

the expressions for these generalized characters reduce to the following.

Lemma 7.1.6 (S.). Let 0 ≤ k ≤ n− 2 and 1 ≤ p ≤ n− 1. If k ≤ n− k − 1, then

γ
(n−k,1k),n−k
(n−p,p),p =


(−1)k−1 n−p

n−1
if (n− p) ≤ k,

(−1)k n−k−1
n−1

if k < (n− p) < n− k,
(−1)k n−p

n−1
if n− k ≤ (n− p).

If k ≥ n− k − 1, then

γ
(n−k,1k),n−k
(n−p,p),p =


(−1)k−1 n−p

n−1
if (n− p) < n− k,

(−1)k−1 n−k−1
n−1

if n− k ≤ (n− p) ≤ k,

(−1)k n−p
n−1

if k < (n− p).

Lemma 7.1.7 (S.). Let 1 ≤ k ≤ n− 1, and let 1 ≤ p ≤ n− 1. If k ≤ n− k − 1, then

γ
(n−k,1k),1
(n−p,p),p =


(−1)k n−p

n−1
if (n− p) ≤ k,

(−1)k k
n−1

if k < (n− p) < n− k,
(−1)k−1 n−p

n−1
if n− k ≤ (n− p).
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If k ≥ n− k − 1, then

γ
(n−k,1k),1
(n−p,p),p =


(−1)k n−p

n−1
if (n− p) < n− k,

(−1)k−1 k
n−1

if n− k ≤ (n− p) ≤ k,

(−1)k−1 n−p
n−1

if k < (n− p).

Lemma 7.1.8 (S.). Let 1 ≤ k ≤ n− 3, and let 2 ≤ p ≤ n− 1. If k ≤ n− k − 2, then

γ
(n−k−1,2,1k−1),2
(n−p,p),p =


(−1)k n−p

k(n−k−2)
if (n− p) ≤ k,

0 if k < (n− p) < n− k − 1,

(−1)k+1 n−p
k(n−k−2)

if (n− p) ≥ n− k − 1.

If k ≥ n− k − 2, then

γ
(n−k−1,2,1k−1),2
(n−p,p),p =


(−1)k n−p

k(n−k−2)
if (n− p) ≤ n− k − 2,

0 if n− k − 2 < (n− p) ≤ k,

(−1)k+1 n−p
k(n−k−2)

if (n− p) > k.

These generalized character evaluations can be used to give explicit expressions for the
generating series for (p, n− 1, n)-dipoles with respect to the number of faces, as follows.

Theorem 7.1.9 (S.). Let n ≥ 4. When 2 ≤ p ≤ n−1
2

, the generating series for (p, n−1, n)-
dipoles is

Dn,p(t) =

(
t+ n− 1

n

)
+

∑
p≤k≤n−p−1

(n− 1)(n− p)
k(n− k − 1)

(
t+ n− k − 1

n

)
+

(
t

n

)
−

∑
p−1≤k≤n−p−1

(n− p)
(n− k − 1)(k + 1)

t

(
t+ n− k − 2

n− 1

)
.

When max{2, n−1
2
} ≤ p ≤ n− 1, the generating series for (p, n− 1, n) dipoles is

Dn,p(t) =

(
t+ n− 1

n

)
−

∑
n−p≤k≤p−1

(n− 1)(n− p)
k(n− k − 1)

(
t+ n− k − 1

n

)
+

(
t

n

)
+

∑
n−p≤k≤p−2

(n− p)
(n− k − 1)(k + 1)

t

(
t+ n− k − 2

n− 1

)
.
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Proof. The proof proceeds by evaluating the generalized characters appearing in Theorem
7.1.5 using Lemmas 7.1.6, 7.1.7 and 7.1.8. First, consider the case when 2 ≤ p ≤ n−1

2
. In

this case, when 1 ≤ k < p,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k
=

(−1)k

n− 1
− (−1)k

n− 1

= 0.

When p ≤ k ≤ n− p− 1,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k
=

(−1)k(n− p)
(n− 1)(n− k − 1)

− (−1)k−1(n− p)
(n− 1)k

=
(−1)k(n− p)
k(n− k − 1)

.

When n− p ≤ k ≤ n− 2,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k
=

(−1)k−1

n− 1
− (−1)k−1

n− 1

= 0.

When k < p− 1 or k ≥ n− p, then γ
(n−k−1,2,1k−1),2
(p,n−p),p = 0. For p− 1 ≤ k ≤ n− p− 1,

γ
(n−k−1,2,1k−1),2
(n−p,p),p =

(−1)k−1(n− p)
k(n− k − 2)

.

Combining these facts gives the result in the statement of the Theorem.

Next, consider the case when max{2, n−1
2
} ≤ p ≤ n−1. In this case, when 1 ≤ k < n−p,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k
=

(−1)k

n− 1
− (−1)k

n− 1

= 0.

When n− p ≤ k ≤ p− 1,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k
=

(−1)k−1(n− p)
(n− 1)(n− k − 1)

− (−1)k(n− p)
(n− 1)k

=
(−1)k−1(n− p)
k(n− k − 1)

.
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When p ≤ k ≤ n− 2,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−
γ

(n−k,1k),1
(p,n−p),p

k
=

(−1)k−1

n− 1
− (−1)k−1

n− 1

= 0.

When k < n− p or k > p− 2, then γ
(n−k−1,2,1k−1),2
(p,n−p),p = 0. For n− p ≤ k ≤ p− 2,

γ
(n−k−1,2,1k−1),2
(n−p,p),p =

(−1)k(n− p)
k(n− k − 2)

.

Combining these facts gives the result in the statement of the Theorem.

Expressions for these series at small values of n are given in Appendix A. Examination
of these tables suggests an unexpected symmetry in (p, n− 1, n)-dipoles:

Conjecture 7.1.10. Let p, p′ ≥ 2 and let p+ p′ = n+ 1. Then

Dn,p(t) = Dn,p′(t).

In other words, the number of (p, n − 1, n)-dipoles in a surface of genus g is equal to the
number of (p′, n− 1, n)-dipoles in the same surface.

This observation cannot be explained by either of the “obvious” symmetries of Equa-
tions (3.1) and (3.2). Theorem 7.1.9 provides a useful starting point to providing an
algebraic proof of this conjecture, and naturally, the more difficult problem of finding a
combinatorial proof remains an interesting open problem.

Although Theorem 7.1.9 gives a full solution to the (p, n− 1, n)-dipole problem for all
orientable surfaces, there is an intermediate specialization of Theorem 7.1.1 which has a
particularly interesting form. Let

dn,pλ =
∑
i∈λ

dp,n−1
λ,i

be the number of (p, n− 1, n) dipoles with face degree sequence 2λ. In other words, this is
a specialization which “forgets” the degree of the face containing the label n, but retains
all other information about the face degree sequence. Let

F λ
n,p =

∑
i∈λ

|Cλ,i|F λ,i
n,p
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when F is one of A, B or C. By Theorem 7.1.9,

dn,pλ =
(n− 2)!

n!
(Aλn,p +Bλ

n,p + Cλ
n,p).

The terms in this sum may be simplified by using Lemma 6.2.8, which relates sums of
generalized characters to ordinary characters according to the formula∑

i∈λ

|Cλ,i|γµ,jλ,i =
|Cλ|dj−(µ)

dµ
χµλ.

Thus,

Aλn,p = |Cλ|
∑

0≤k≤n−2

(−1)kγ
(n−k,1k),n−k
(p,n−p),p

n− 1

(n− k − 1)d(n−k,1k)

χ
(n−k,1k)
λ ,

Bλ
n,p = |Cλ|

∑
1≤k≤n−1

(−1)kγ
(n−k,1k),1
(p,n−p),p

n− 1

kd(n−k,1k)

χ
(n−k,1k)
λ ,

and

Cλ
n,p = |Cλ|

∑
1≤k≤n−3

(−1)kγ
(n−k−1,2,1k−1),2
(p,n−p),p

nk(n− k − 2)

(k + 1)(n− k − 1)d(n−k−1,2,1k−1)

χ(n−k−1,2,1k−1).

The generalized characters remaining in these expressions are the same generalized char-
acters which were evaluated as part of the proof of Theorem 7.1.9. These generalized
character evaluations lead to the following result.

Theorem 7.1.11 (S.). Let n ≥ 4 and λ ` n. When 2 ≤ p ≤ n−1
2

, the number of
(p, n− 1, n)-dipoles with face degree sequence 2λ is

dp,n−1
λ =

|Cλ|
n(n− 1)

(
1 +

∑
p≤k≤n−p−1

(n− p)(n− 1)

k(n− k − 1)

χn−k,1
k

λ

d(n−k,1k)

+(−1)n−m(λ)+1 −
∑

p−1≤k≤n−p−1

n(n− p)
(k + 1)(n− k − 1)

χ
(n−k−1,2,1k)
λ

d(n−k−1,2,1k−1)

)
.

When max{2, n−1
2
} ≤ p ≤ n−1, the number of (p, n−1, n)-dipoles with face degree sequence

2λ is

dp,n−1
λ =

|Cλ|
n(n− 1)

(
1−

∑
n−p≤k≤p−1

(n− p)(n− 1)

k(n− k − 1)

χn−k,1
k

λ

d(n−k,1k)

+(−1)n−m(λ)+1 +
∑

p−1≤k≤n−p−1

n(n− p)
(k + 1)(n− k − 1)

χ
(n−k−1,2,1k)
λ

d(n−k−1,2,1k−1)

)
.
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The most notable aspect of this Theorem is that, although it was derived by working
in the algebra Z1(n), the formula it gives involves not generalized characters, but ordi-
nary characters of the symmetric group. Moreover, it is not known how to obtain this
expression by working only within the centre of C[Sn]. Because irreducible characters are
linearly independent, one consequence of Theorem 7.1.11 is to demonstrate that the sym-
metry suggested by Conjecture 7.1.10 does not exist when information about face degree
sequence is retained. (For example, when p ≤ n−1

2
, the coefficients of characters of the

form χ
(n−k,1k)
λ are positive, but their coefficients are negative when p ≥ n−1

2
.) On the other

hand, the binomial coefficients appearing in Theorem 7.1.9 are not linearly independent as
polynomials in z. Thus, the conjectured symmetry of (p, n − 1, n)-dipoles is only present
when summing over all dipoles in a given surface.

7.2 Non-transitive powers of Jucys-Murphy elements

Though the problem of enumerating non-transitive factorizations into star transpositions
may be derived from Theorem 3.2.9, the results of Chapter 6 provide an alternative ap-
proach to this problem. Jrn may be computed by regarding Jrn as a linear operator on
C[Sn] applied to the identity element, which can be written in the Z1-idempotent basis
using Corollary 6.1.8 as follows:

Jrn = JrnK(1n),1 = Jrn
∑
µ`n
j∈µ

Γµ,j.

Since Jn = K(2,1n−2),2, then by Lemma 6.2.1, Γµ,j is an eigenvector of Jn with eigenvalue
cµ,j. Thus,

Jrn =
∑
µ`n
j∈µ

crµ,jΓ
µ,j.

By the definition of γλ,iµ,j, this may be written in the standard basis as

Jrn =
∑
λ`n
i∈λ

∑
µ`n
j∈µ

dµ
n!
γµ,jλ,i c

r
µ,jKλ,i.

Extracting coefficients yields the following expression for powers of Jucys-Murphy elements
in terms of generalized characters.

Theorem 7.2.1 (S.). Let λ ` n and let i be a part of λ. For π ∈ Cλ,i, the number of
factorizations of π into r star transpositions is given by

[Kλ,i]J
r
n =

∑
µ`n
j∈µ

dµ
n!
γµ,jλ,i c

r
µ,j.
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[K(4)] [K(3,1),3] [K(3,1),1] [K(2,2),2] [K(2,1,1),2] [K(2,1,1),1] [K(14),1]
r = 0 0 0 0 0 0 0 1
r = 1 0 0 0 0 1 0 0
r = 2 0 1 0 0 0 0 3
r = 3 1 0 0 0 5 2 0
r = 4 0 8 3 4 0 0 15
r = 5 15 0 0 0 31 20 0

Table 7.1: Coefficients of Jr4 for small values of r.

As a verification of this result, the values of generalized characters given in Table 6.2
may be used to obtain explicit expressions when n = 4, as follows.

Example 7.2.2 (Powers of J4). When n = 4 and r ≥ 1, the expression for Jr4 in the
Z1-idempotent basis becomes the following:

Jr4 = 3rΓ(4),4 + 2rΓ(3,1),3 + (−1)rΓ(3,1),1 + Γ(2,1,1),2 + (−2)rΓ(2,1,1),1 + (−3)rΓ(1,1,1,1),1.

Extracting coefficients gives

[K(4),4]Jr4 =
1

24
(3r − 2r+1 + (−1)r+1 + 1− (−2)r+1 − (−3)r),

[K(3,1),3]Jr4 =
1

24
(3r + 2r + (−1)r+1 − 1 + (−2)r + (−3)r),

[K(3,1),1]Jr4 =
1

24
(3r − 3 · 2r + 3(−1)r + 3− 3(−2)r + (−3)r),

[K(2,2),2]Jr4 =
1

24
(3r − 2r+1 + (−1)r+1 − 1 + (−2)r+1 + (−3)r),

[K(2,1,1),2]Jr4 =
1

24
(3r + 2r+2 + (−1)r+1 + 1− (−2)r+2 − (−3)r),

[K(2,1,1),1]Jr4 =
1

24
(3r + 3(−1)r − 3− (−3)r),

[K(14),1]Jr4 =
1

24
(3r + 3 · 2r+1 + 3(−1)r + 3− 3(−2)r+1 + (−3)r).

Table 7.1 gives values of these coefficients for small values of r. These values agree with
those obtained by direct computation of Jr4 .

While Theorem 7.2.1 is the most general statement that can be made with regards to
non-transitive star factorizations, the presence of the generalized character γµ,jλ,i means that
it does not give an explicit formula in general. However, several specializations of this
theorem do lead to more explicit results. The remainder of this section will describe the
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results arising from three specializations: first, restricting to (λ, i) for which γµ,jλ,i is known
explicitly; second, summing the result over all permutations in a given conjugacy class,
and third, summing the result over all permutations having k cycles.

Special Sn−1 conjugacy classes

Theorem 7.2.1 can be used to give more explicit expressions for the coefficients of Jrn in
cases when the generalized characters arising in the expression for Jrn can be evaluated. For
example, Theorem 6.2.7 gives simple expressions for γµ,j(n),n and γµ,j(n−1,1),1, while Corollary

6.2.12 gives a simple expression for γµ,j(n−1,1),n−1. Thus, Theorem 7.2.1 gives the following
expressions for the number of factorizations of a full cycle into star transpositions in these
three special cases.

Corollary 7.2.3. Let r ≥ 1. The number of factorizations of a full cycle of length n into
r star transpositions is given by

[K(n),n]Jrn =
2n(r + 1)!

n!(n− 1)
[xr+1] sinh

(
(n− 1)x

2

)
sinh

(x
2

)n−1

. (7.2)

The number of factorizations of a permutation π ∈ C(n−1,1),1 into r star transpositions is
given by

[K(n−1,1),1]Jrn =
2nr!

n!
[xr] sinh

(
(n− 1)x

2

)
sinh

(x
2

)n−1

. (7.3)

The number of factorizations of a permutation π ∈ C(n−1,1),n−1 into r star transpositions is
given by

[K(n−1,1),n]Jrn =
r!

n!(n− 1)
[xr]

(
n(e(n−1)x + (−1)ne−(n−1)x)− 2n sinh

(
(n− 1)x

2

)
sinh

(x
2

)n−1
)
.

(7.4)

Proof. As the proof is similar in all three cases, details are provided only for Equation
(7.4), which is the most complicated of the three. By Corollary 6.2.12, the only marked
partitions (µ, j) which make a non-zero contribution to the formula of Theorem 7.2.1 are
those of the form ((n−k, 1k), n−k), ((n−k, 1k), 1) and ((n−k−1, 2, 1k−1), 2). For marked
partitions of the form ((n−k−1, 2, 1k−1), 2), the quantity cµ,j is zero, so when r ≥ 1, these
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partitions do not contribute to the sum. Thus,

[K(n−1,1),n−1]Jrn =
1

n!
(n− 1)r +

1

n!
(−1)n(1− n)r

+
∑

1≤k≤n−2

(
n− 1

k

)
(−1)k+1

n!(n− 1)
(n− k − 1)r

+
∑

1≤k≤n−2

(
n− 1

k

)
(−1)k

n!(n− 1)
(−k)r

=
r!

n!(n− 1)
[xr]

(
(n− 1)e(n−1)x + (−1)n(n− 1)e−(n−1)x

+ (1− e(n−1)x)
∑

1≤k≤n−2

(
n− 1

k

)
(−e−x)k

)
.

By the binomial theorem,∑
1≤k≤n−2

(
n− 1

k

)
(−e−x)k = (1− e−x)n−1 − 1 + (−1)ne−(n−1)x.

Substituting this into the expression for [K(n−1,1),n−1]Jrn and simplifying gives

[K(n−1,1),n−1]Jrn =
r!

n!(n− 1)
[xr]

(
ne(n−1)x + (−1)nne−(n−1)x + (1− e(n−1)x)(1− e−x)n−1

)
.

(Constant terms may be disregarded when extracting the coefficient of xr, since r ≥ 1.)
Finally, the observation that

(1− e−x)n−1 = e−
(n−1)x

2

(
e
x
2 − e−

x
2

)n−1
= 2n−1e−

(n−1)x
2 sinh

(x
2

)n−1

gives the stated result.

Since factorizations of a full cycle are necessarily transitive, the formula given in Equa-
tion (7.2) must coincide with the formula given by Goulden and Jackson (Theorem 3.2.6)
for the same problem. Indeed, in the case of factorizations of a full cycle, the Goulden-
Jackson formula reduces to the following:

[K(n),n]Jrn =
2n−1r!

n!
[xr] sinh

(nx
2

)
sinh

(x
2

)n−2

.
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The equivalence of this expression with the expression given in Corollary 7.2.3 follows from
the fact that (r + 1)[xr+1] = [xr] ∂

∂x
. Star factorizations of a permutation in C(n−1,1),1 are

also always transitive, and Equation (7.3) also agrees with the formula given by Goulden
and Jackson [11]. Equation (7.4) is notable for corresponding to a case in which not all the
factorizations which are enumerated by this formula are transitive. Thus, Equation (7.4)
is a result which is not obtainable from Theorem 3.2.6.

Sums over all permutations in a Sn conjugacy class

The presence of the term sinh
(

(n−1)x
2

)
sinh

(
x
2

)n−1
in both Equations (7.3) and (7.4), to-

gether with the observation that C(n−1,1),1 ∪ C(n−1,1),n−1 = C(n−1,1), suggests that the gen-
erating series for the sum of [π]Jrn over all π ∈ C(n−1,1) will simplify considerably. Indeed,
this quantity is given by∑

π∈C(n−1,1)

[π]Jrn = |C(n−1,1),1|[K(n−1,1),1]Jrn + |C(n−1,1),n−1|[K(n−1,1),n−1]Jrn

=
r!

n− 1
[xr](e(n−1)x + (−1)ne−(n−1)x)

=

{
2

n−1
r![xr] sinh((n− 1)x) if n is odd,

2
n−1

r![xr] cosh((n− 1)x) if n is even.

=

{
2(n− 1)r−1 if n+ r is even,

0 otherwise.

The remarkable simplicity of this expression suggests that a direct combinatorial explana-
tion should exist, though one is not currently known. This example suggests that using
known results about sums of generalized characters may be used to find the following
specialization of Theorem 7.2.1.

Theorem 7.2.4 (S.). Let λ ` n, and r ≥ 1. The number of sequences (τ1, . . . , τr) such
that each τi is a star transposition and

∏
1≤i≤r τi ∈ Cλ is given by

|Cλ|
n!

∑
µ`n

χµλ

(∑
j∈µ

dj−(µ)c
r
µ,j

)
.

Proof. The number of sequences satisfying the stated properties is∑
i∈λ

|Cλ,i|[Kλ,i]J
r
n.
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By Theorem 7.2.1, this expression is equal to∑
i∈λ

|Cλ,i|
∑
µ`n,
j∈µ

dµ
n!
γµ,jλ,i c

r
µ,j.

Interchanging the order of summation, this becomes∑
µ`n,
j∈µ

dµ
n!
crµ,j
∑
i∈λ

|Cλ,i|γµ,jλ,i .

By Lemma 6.2.8, for any j ∈ µ,∑
i∈λ

|Cλ,i|γµ,jλ,i =
|Cλ|dj−(µ)

dµ
χµλ,

from which the result follows.

Like Theorem 7.1.11, this is another example of a result in which an expression involving
only ordinary characters has been obtained as a result of working in the algebra Z1(n).
Again, it is not clear how to obtain this result by working only in the centre of C[Sn].

Sums over all permutations with a specified number of cycles

As a further specialization, Lemma 7.1.2 suggests that the formula for products of Jucys-
Murphy elements has a particularly elegant form, in terms of evaluation of symmetric
functions at the contents of tableaux, when we are only concerned with the number of
cycles of permutations appearing in the product, as opposed to their cycle type. (Since
the factorizations involved in this case are not necessarily transitive, this is a new result
which is not given by the Goulden-Jackson formula.) In other words, Lemma 7.1.2 gives
the following natural generalization of Corollary 7.2.3.

Corollary 7.2.5 (S.). The number of sequences (π, τ1, . . . , τr) such that π has k cycles,
τi = (j, n) for some 1 ≤ j ≤ n− 1, and π = τ1 · · · τr is given by∑

µ`n,
j∈µ

dµdj−(µ)c
r
µ,j

n!
en−k(cµ) = [tk]

∑
µ`n,
j∈µ

dµdj−(µ)c
r
µ,j

n!

∏
�∈Fµ

(t+ c(�)).
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Proof. This number is given by∑
λ`n

m(λ)=k

∑
i∈λ

|Cλ,i|[Kλ,i]J
r
n =

∑
λ`n

m(λ)=k

∑
i∈λ

|Cλ,i|
∑
µ`n
j∈µ

dµ
n!
γµ,jλ,i c

r
µ,j

=
∑
µ`n
j∈µ

dµdj−(µ)c
r
µ,j

n!

 ∑
λ`n

m(λ)=k

∑
i∈λ

|Cλ,i|
dj−(µ)

γµ,jλ,i

 ,

from which the result follows by an application of Lemma 7.1.2.

7.3 Z1-decompositions of a full cycle

While the general solution to the Z1-factorization problem (Problem 3.3.1) is given by the
formula for the connection coefficients of Z1(n) in Theorem 6.1.9, the solution may be
made much more explicit in the special case of Z1-factorizations of a full cycle. Much like
the central case, this is made possible by the fact that there is a simple, explicit formula
for a generalized character evaluated at a full cycle.

To state the generating series for Z1-factorizations of a cycle concisely, it is first helpful
to express the generating series for generalized characters corresponding to hook partitions
in a form analogous to the generating series for ordinary hook partition characters, namely,

Hλ(x) = (1 + x)−1
∏

1≤i≤m(λ)

(1− (−x)λi).

These expressions are as follows.

Lemma 7.3.1 (S.). Let µ ` n and let j be a part of µ. Define Rn,j by

Rn,j(x) :=
(n− 1) + nx+ (−x)j

1 + x
.

Then, for 0 ≤ k ≤ n− 2,

γ
(n−k,1k),n−k
µ,j =

1

n− 1
[xk]Rn,j(x)Hµ\j(x). (7.5)

Define Sn,j by

Sn,j(x) := (−1)j−1 (−1)jx+ nxj + (n− 1)xj+1

1 + x
.
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Then, for 1 ≤ k ≤ n− 1,

γ
(n−k,1k),1
µ,j =

1

n− 1
[xk]Sn,j(x)Hµ\j(x). (7.6)

Proof. This result may be proven by using the fact, from Lemma 2.4.6, that

χ(n−k,1k)
µ = [xk]Hµ(x),

together with the formulas for generalized characters given in Lemmas 6.3.2 and 6.3.3.

Details are provided for the evaluation of γ
(n−k,1k),n−k
µ,j when k ≤ n− k − 1.

The series Rn,j(x) may be expanded as

(n− 1) +
∑

0<`<j

(−1)`+1x`.

Based on the expression for γ
(n−k,1k),n−k
µ,j given in Lemma 6.3.2, it is natural to split the

proof into three subcases: when (n − k) ≤ (n − j), when k < (n − j) < n − k, and when
(n− j) ≤ k. First, when k ≥ j,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = [xk]Hµ\j(x) +

∑
0<`<j

(−1)`+1

n− 1
[xk−`]Hµ\j(x)

= χ
(n−j−k,1k)
µ\j +

∑
0<`<j

(−1)`+1

n− 1
χ

(n−j−k+`,1k−`)
µ\j

= χ
(n−j−k,1k)
µ\j +

∑
k−j<`<k

(−1)k−`+1

n− 1
χ

(n−j−`,1`)
µ\j

= γ
(n−k,1k),n−k
µ,j .

In the other two cases, the range 0 < ` < j on the index of summation is truncated due
to the fact that the summand is zero for certain values of `. When k < (n − j) < n − k,
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since j > k,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = [xk]Hµ\j(x) +

∑
0<`<j

(−1)`+1

n− 1
[xk]x`Hµ\j(x)

= [xk]Hµ\j(x) +
∑

0<`≤k

(−1)`+1

n− 1
[xk−`]Hµ\j(x)

= χ
(n−j−k,1k)
µ\j +

∑
0<`≤k

(−1)`+1

n− 1
χ

(n−j−k+`,1k−`)
µ\j

= χ
(n−j−k,1k)
µ\j +

∑
0≤`<k

(−1)k−`+1

n− 1
χ

(n−j−`,1`)
µ\j

= γ
(n−k,1k),n−k
µ,j .

The final subcase, when (n − j) ≤ k, relies on the fact that Hµ\j(x) is a polynomial of
degree n − j − 1, so [xi]Hµ\j(x) = 0 when i ≥ n − j. In particular, [xk]Hµ\j(x) = 0.
Furthermore, j ≥ n− k > k. Thus, in this case,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = [xk]Hµ\j(x) +

∑
0<`<j

(−1)`+1

n− 1
[xk]x`Hµ\j(x)

=
∑

k−n+j+1≤`≤k

(−1)`+1

n− 1
[xk−`]Hµ\j(x)

=
∑

k−n+j+1≤`≤k

(−1)`+1

n− 1
χ

(n−j−k+`,1k−`)
µ,j

=
∑

0≤`≤n−j−1

(−1)k−`+1

n− 1
χ

(n−j−`,1`)
µ,j

= γ
(n−k,1),n−k
µ,j .

Thus, when k ≤ n− k − 1, for all values of j,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = γ

(n−k,1k),n−k
µ,j .

The case when k ≥ n− k − 1, as well as the expression for γ
(n−k,1k),1
µ,j may be verified in a

similar manner.

This lemma may be used to simplify the generating series for Z1-factorizations of a full
cycle. By Lemma 6.1.9, the number of pairs (σ1, σ2) such that σ1 ∈ Cλ,i, σ2 ∈ Cµ,j and σ1σ2
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is a full cycle is given by

[K(n),n]Kλ,iKµ,j =
|Cλ,i||Cµ,j|

n!

∑
ρ`n,`∈ρ

γρ,`λ,iγ
ρ,`
µ,jγ

ρ,`
(n),n

d`−(ρ)

dρ
d`−(ρ)

.

By part 7 of Theorem 6.2.7,

[K(n),n]Kλ,iKµ,j =
|Cλ,i||Cµ,j|

n!

( ∑
0≤k≤n−2

γ
(n−k,1k),n−k
λ,i γ

(n−k,1k),n−k
µ,j (−1)k(
n−2
k

)
+

∑
1≤k≤n−1

γ
(n−k,1k),1
λ,i γ

(n−k,1k),1
µ,j (−1)k(
n−2
k−1

) )
.

Using Lemma 7.3.1,

[K(n),n]Kλ,iKµ,j =
|Cλ,i||Cµ,j|
(n− 1)2n!

( ∑
0≤k≤n−2

(−1)k(
n−2
k

) [xkyk]Rn,i(x)Hλ\i(x)Rn,j(y)Hµ\j(y)

+
∑

1≤k≤n−1

(−1)k(
n−2
k−1

) [xkyk]Sn,i(x)Hλ\i(x)Sn,j(y)Hµ\j(y)

)
.

This has proven the following.

Theorem 7.3.2 (S.). Let λ, µ ` n. Let i be a part of λ and let j be a part of µ. The
number of factorizations of a full cycle C = σ1σ2 such that σ1 ∈ Cλ,i and σ2 ∈ Cµ,j is given
by

|Cλ,i||Cµ,j|
(n− 1)2n!

∑
1≤k≤n−1

(−1)k−1(
n−2
k−1

) [xkyk]Tn,i,j(x, y)Hλ\i(x)Hµ\j(y),

where
Tn,i,j = xyRn,i(x)Rn,j(y)− Sn,i(x)Sn,j(y),

and Rn,i and Sn,j are given in Lemma 7.3.1.

For comparison, the analogous expression for the central version of the problem is

[K(n)]KλKµ =
|Cλ,i||Cµ,j|

n!

∑
0≤k≤n−1

(−1)k(
n−1
k

) [xkyk]Hλ(x)Hµ(y). (7.7)

The similarity between these two expressions suggests that further analysis of the series in
Theorem 7.3.2 could lead to non-central analogues of the results about central decomposi-
tions of the full cycle which were proven using Equation (7.7).
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Chapter 8

Analysis of the differential operators
for the (p, q, n)-dipole problem

Although the algebraic techniques developed in the two preceding chapters can be used to
solve the (p, n− 1, n)-dipole problem, an effective algebraic approach to the (p, q, n)-dipole
is not yet known. In this chapter, an analysis of the differential equations developed in
Chapter 5 is used to find partial information about the generating series for (a, b, c, d)-
dipoles. While a closed form solution to these equations is not yet known, this chapter
describes a process, recursive in g, for determining the generating series for (a, b, c, d)-
dipoles in a surface of genus g. This process is then used to obtain expressions for these
series for small values of g.

This chapter begins with a differential analysis of the (p, n − 1, n)-dipole problem.
Although this problem has been solved in Chapter 7, this analysis is valuable because the
relative simplicity of the equation for (p, n − 1, n)-dipoles makes it possible to determine
solutions more easily than in the general case. Since partial differential equations arising
in algebraic combinatorics are often solved by conjecturing a solution and demonstrating
that it satisfies the equation, the analysis of the (p, n − 1, n)-dipole equation is useful for
developing conjectures about the general case.

Using the analysis of (p, n−1, n)-dipoles as motivation, Section 8.2 describes analogues
of the functions arising in Section 8.1 which correspond to the cases of (a, b, 0, 0)-dipoles and
(a, b, c, d)-dipoles. Section 8.3 demonstrates how these functions may be used to give ex-
plicit expressions for the generating series for (a, b, c, d)-dipoles in surfaces of small genus.
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8.1 Analysis of the partial differential equation for

(p, n− 1, n)-dipoles

8.1.1 Overview of the General Strategy

The solution to the (p, n− 1, n)-dipole problem is given by Theorem 5.2.1, namely,

(C + u2J)Ψ =
∂Ψ

∂y
,

where

C =
∑
i≥2

∑
1≤j≤i−1

gj+1fi−j
∂

∂gi
=
∑
i≥1

∑
j≥1

gi+1fj
∂

∂gi+j
.

and

J =
∑
i≥1

∑
j≥1

jgi+j+1
∂2

∂gi∂fj
.

The standard approach to solving any equation of the form

∆Ψ =
∂Ψ

∂t
,

where ∆ is a linear differential operator, is to determine the eigenvectors of ∆, and then
to write the initial condition as a linear combination of these eigenvectors. The analysis of
the differential equation for (p, n−1, n)-dipoles is made difficult by the fact that (C+u2J)
has no eigenvectors. Indeed, defining I(gifλ) to be the sum of indices of gifλ, applying
(C + u2J) to any power series F in the indeterminates {gi} and {fj} causes the quantity

min{I(gifλ) : gifλ appears with nonzero coefficient in F}

to increase strictly. Thus, a different approach is needed.

The approach to determining Ψ used in this section is to find a recurrence which
determines the part of the series corresponding to (p, n−1, n)-dipoles in a surface of genus
g, namely, Ψ(g) := [u2g]Ψ. While this process will not determine Ψ completely, it can be
used to solve the problem for surfaces of small genus.

Applying [u2g] to the differential equation for Ψ when g ≥ 1,(
∂

∂y
− C

)
Ψ(g) = JΨ(g−1). (8.1)
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When g = 0, there is only one dipole on n edges, and it is a (1, n − 1, n)-dipole in which
every face has half-degree 1. Thus,

Ψ(0) =
∑
n≥2

xn−1

(n− 1)!
g1f

n−1
1 = g1(exp(f1x)− 1).

Approaching the problem by using the recurrence in Equation 8.1 simplifies the analysis
by reducing the problem of solving a second-order partial differential equation to solving
a first-order partial differential equation, at the cost of adding the inhomogeneous term
JΨ(g−1) to the equation.

A second technique to simplify the analysis is to subtract the constant term from the
generating series so that Equation 8.1 may be considered with respect to a vanishing initial
condition. Define Ψ̂(g) = Ψ(g) − Ψ(g)|y=0, so that Ψ̂(g)|y=0 = 0. Since Ψ(g)|y=0 is the series
corresponding to dipoles in which p = 1 (and hence the root face has half-degree 1),(
∂
∂y
− C

)
Ψ(g)|y=0 = 0. Thus,(

∂

∂y
− C

)
Ψ(g) =

(
∂

∂y
− C

)
Ψ̂(g)

The analysis of the operator ∂
∂y
− C is facilitated by two observations. First, both the

indeterminate x and all the indeterminates fi are constant with respect to ∂
∂y
−C. Second,

∂
∂y
−C is linear. Thus, if Ψ(g−1) is known, in order to solve Equation 8.1, it suffices to solve

equations of the form (
∂

∂y
− C

)
Ψ(g) = gkh(y), (8.2)

where h(y) is an element of some suitably chosen family of functions F . In order to apply
the recursion in Equation 8.1 repeatedly, the class F must be chosen such that solutions
to Equation 8.2 are also expressable in terms of F .

8.1.2 The Sequence {φi}

A suitable choice for the class F is the sequence of functions {φi}i≥0 defined by φ0(y) = 1,
and

φj(y) = exp(f1y)

∫ y

0

exp(−f1ξ)φj−1(ξ)dξ (8.3)

for j ≥ 1. These functions satisfy the following properties.

Lemma 8.1.1. 1. φj(0) = 0 for all j ≥ 1.
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2.
∂φj(y)

∂y
= φj−1(y) + f1φj(y) for all j ≥ 1.

3. φj(y) = [ζj]Φ(ζ), where Φ(ζ) is the series given by

Φ(ζ) =
f1 + ζ exp((f1 + ζ)y))

f1 + ζ
.

4.
∂φj(y)

∂f1
= jφj+1(y).

5. [yk]φj(y)|f1=1 = 1
k!

(
k−1
j−1

)
.

Proof. The first statement is obvious from the definition of φj. For the second statement,
differentiating Equation (8.3) with respect to y gives

∂φj
∂y

= f1 exp(f1y)

∫ y

0

exp(−f1ξ)φj−1(ξ)dξ + exp(f1y) exp(−f1y)φj−1(y)

= f1φj(y) + φj−1(y).

To prove the third statement, define Φ =
∑

j≥0 φj(y)ζj. Multiplying the equation from

statement 2 by ζj and summing over j ≥ 1,

∂Φ

∂y
= (ζ + f1)Φ− f1

with Φ(0) = 1. It is routine to check that f1+ζ exp((f1+ζ)y)
f1+ζ

is the unique solution to this
differential equation and initial condition.

To prove the fourth statement, first note that

∂Φ

∂f1

=
1 + yζ exp((f1 + ζ)y)

f1 + ζ
− f1 + ζ exp((f1 + ζ)y)

(f1 + ζ)2

and
∂Φ

∂ζ
=

exp((f1 + ζ)y) + ζy exp((f1 + ζ)y)

f1 + ζ
− f1 + ζ exp((f1 + ζ)y)

(f1 + ζ)2
.

Thus,

∂φj
∂f1

= [ζj]
∂Φ

∂f1

= [ζj]
∂Φ

∂ζ
− [ζj]

exp((f1 + ζ)y)− 1

f1 + ζ

= (j + 1)[ζj+1]Φ− [ζj+1]
ζ exp((f1 + ζ)y)− ζ

f1 + ζ
.
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Since

Φ− ζ exp((f1 + ζ)y)− ζ
f1 + ζ

=
f1 + ζ

f1 + ζ
= 1,

then for j ≥ 0, [ζj+1] ζ exp((f1+ζ)y)−ζ
f1+ζ

= [ζj+1]Φ. Thus,

∂φj
∂f1

= (j + 1)[ζj+1]Φ− [ζj+1]Φ = jφj+1,

proving statement 4.

Proving the fifth statement is now a straightforward computation:

[yk]φj|f1=1 = [ykζj]
1 + ζ exp((1 + ζ)y)

1 + ζ

= [ζj−1]
(1 + ζ)k

k!(1 + ζ)

=
1

k!

(
k − 1

j − 1

)
.

Part 2 of Lemma 8.1.1 is a key feature of the sequence {φi} which allows the operator
∂
∂y

to be dealt with in a fairly simple manner. To make this notion more precise, consider
the umbral composition ◦φ defined as follows: let

si ◦ φ = φi,

and extend linearly to any formal power series in s. Using property 2 from Lemma 8.1.1,

∂

∂y
(si ◦ φ) =

∂φi
∂y

= φi−1 + f1φi

= si−1 ◦ φ+ f1s
i ◦ φ

= ((s−1 + f1)si) ◦ φ.

Extending linearly to the whole ring yields the following.

Lemma 8.1.2. For any formal power series H(s),

∂

∂y
(H(s) ◦ φ) = ((s−1 + f1)H(s)) ◦ φ.

In light of this lemma, working in the pre-image of the umbral composition effectively
removes one of the differential operators from the equation and replaces it with an algebraic
operation, namely, multiplication by (s−1 + f1).
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8.1.3 Preimage of gj+1φk under ∂
∂y − C

The umbral composition ◦φ may be used to define a generating series for the solutions to(
∂

∂y
− C

)
Ψ = gj+1φk(y).

Define the series Fj(t) and Gj(t) by

Fj(t) =
∑
i≥1

fi+jt
i

and
Gj(t) =

∑
i≥1

gi+jt
i.

Let
T = Ξ (sG1 exp((r + vF1)s)) ◦ φ,

where Ξ is the linear functional defined by Ξ(vi) = i!. Then the following holds.

Theorem 8.1.3 (S.). The series T satisfies(
∂

∂y
− C

)
T = G1 exp(rs) ◦ φ.

Proof. First, an application of Lemma 8.1.2 gives

∂T

∂y
= Ξ((s−1 + f1)sG1 exp((r + vF1)s)) ◦ φ.

Since C commutes with both Ξ and ◦φ,

CT = Ξ

(∑
i≥1

∑
j≥1

gi+1fj
∂

∂gi+j
sG1 exp((r + vF1)s)

)
◦ φ

= Ξ

(∑
i≥1

∑
j≥1

gi+1fjt
i+j−1s exp((r + vF1)s)

)
◦ φ

= Ξ

(
s
∑
i≥1

gi+1t
i
∑
j≥1

fjt
j−1 exp((r + vF1)s)

)
◦ φ

= Ξ (sG1(F1 + f1) exp((r + vF1)s)) ◦ φ.
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Thus, (
∂

∂y
− C

)
T = Ξ (G1(1− sF1) exp((r + vF1)s)) ◦ φ

= Ξ

(
1− ∂

∂v

)
G1 exp((r + vF1)s) ◦ φ.

To complete the proof, it suffices to determine the action of Ξ
(
1− ∂

∂v

)
on any power series

H(v). Consider the action of Ξ(1− ∂
∂v

) on monomials vj. When j = 0,

Ξ

(
1− ∂

∂v

)
v0 = Ξ(v0) = 1.

When j ≥ 1,

Ξ

(
1− ∂

∂v

)
vj = Ξ(vj − jvj−1)

= j!− j(j − 1)!

= 0.

Extending linearly, Ξ
(
1− ∂

∂v

)
H(v) = H(0). Thus, the stated result is obtained by evalu-

ating the series
G1 exp((r + vF1)s) ◦ φ

at v = 0.

Define τj,k = k![tjrk]T . These coefficients are the functions which are needed in order
to apply the recurrence of Equation 8.1. More precisely, the following statement is true.

Corollary 8.1.4. Let j ≥ 1, k ≥ 0. The series τj,k is the unique solution to the partial
differential equation (

∂

∂y
− C

)
τj,k = gj+1φk

with initial condition τj,k|y=0 = 0.

Proof. By Theorem 8.1.3,(
∂

∂y
− C

)
τj,k = k![tjrk]

(
∂

∂y
− C

)
T

= k![tjrk]G1 exp(rs) ◦ φ
= gj+1φk.
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To check that the initial condition is satisfied, first note that (si ◦ φ)|y=0 = 0 when i ≥ 1,
and (s0 ◦ φ)|y=0 = 1. Thus, f(s) ◦ φ|y=0 = f(0), so

τj,k|y=0 = k![tjrk]Ξ(sG1 exp(r + vF1)s)|s=0 = 0.

8.1.4 The number of (p, n−1, n)-dipoles in surfaces of small genus

This section demonstrates how the functions τj,k may be used to find solutions to the
(p, n− 1, n)-dipole problem for small genus but arbitrary p and n. To obtain the series for
(p, n−1, n)-dipoles without keeping track of face degree, set all f and g type indeterminates
to 1. For any formal power series F , let 〈F 〉 denote the series obtained by setting all f
and g indeterminates to 1. In order to extract coefficients to find formulae for the number
of (p, n− 1, n)-dipoles, the following lemma is useful.

Lemma 8.1.5. Setting fi = 1 and gi = 1 for all i ≥ 1, the series τj,k becomes

〈τj,k〉 = sk+1(1 + s)j−1 ◦ φ|f1=1.

Consequently,

(p− 1)![yp−1]〈τj,k〉 =
∑

0≤i≤j−1

(
j − 1

i

)(
p− 2

k + i

)
.

Proof. This is a straightforward computation using the definition of τj,k:

〈τj,k〉 = k![tjrk]Ξ

(
st

1− t
exp

((
r +

vt

1− t

)
s

))
◦ φ|f1=1

= [tj]Ξ

(
tsk+1

1− t
∑
i≥0

(vts)i

i!(1− t)i

)
◦ φ|f1=1

= [tj−1]

(
sk+1

1− t
1

1− ts
1−t

)
◦ φ|f1=1

= [tj−1]
sk+1

1− (1 + s)t
◦ φ|f1=1

= sk+1(1 + s)j−1 ◦ φ|f1=1.
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Extracting the coefficient of [yp−1],

(p− 1)![yp−1]〈τj,k〉 = [yp−1]
∑

0≤i≤j−1

(
j − 1

i

)
sk+1+i ◦ φ|f1=1

=
∑

0≤i≤j−1

(
j − 1

i

)(
p− 2

k + i

)
,

following an application of property 5 in Lemma 8.1.1.

(p, n− 1, n)-dipoles in the torus

The functions τj,k form a natural family of functions in which to express the generating
series for (p, n − 1, n)-dipoles, as illustrated in the following example. To determine the
genus 1 solution, first compute

JΨ(0) = g3x exp(f1x) = x exp(f1x)g3φ0.

In order to solve (
∂

∂y
− C

)
Ψ̂(1) = x exp(f1x)g3φ0,

apply Corollary 8.1.4 to obtain

Ψ̂(1) = x exp(f1x)τ2,0.

Thus,
Ψ(1) = x exp(f1x)τ2,0 + [u2]Ψ0.

Lemma 8.1.5 may be used to find the number of (p, n − 1, n)-dipoles on the torus when
p ≥ 2, namely,

(p− 1)!(n− p)![yp−1xn−p]〈Ψ(1)〉 = (p− 1)!(n− p)![yp−1xn−p] exp(x)〈τ2,0〉

= (n− p)
((

1

0

)(
p− 2

0

)
+

(
1

1

)(
p− 2

1

))
= (n− p)(p− 1).

This result agrees with the formula given by Visentin and Wieler (Theorem 3.1.5) for the
equivalent problem of (n− p, 1, n)-dipoles. The generating series for (p, n− 1, n)-dipoles in
surfaces of higher genera may be computed in a similar manner. Details of the calculations
for the equivalent problem of (a, b, 0, 0)-dipoles on the double torus are given in Section 8.3
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8.2 τ-type functions for the (a, b, 0, 0)- and (a, b, c, d)-

dipole problems

The main barrier in generalizing the preceding analysis of the differential operators for the
(p, n − 1, n)-dipole problem to the more refined (a, b, 0, 0)- and (a, b, c, d)-dipole problems
is that no function is known which can play a role analogous to the function T from the
(p, n − 1, n) case. However, a closer examination of the functions τj,k provides valuable
insight about how the analysis for the (p, n − 1, n) case may be generalized. By the
definition of τj,k,

τj,k = k![rktj]T

= [tj]Ξ
(
sk+1G1 exp(vsF1)

)
◦ φ

= [tj]

(
sk+1G1

∑
i≥0

siF i
1

)
◦ φ

= [tj]
∑
i≥0

φi+k+1G1F
i
1

= [tj]
∑
i≥1

φk+i

∑
a1,...,ai≥1

ta1+···+aiga1+1

∏
2≤`≤i

fa`+1.

Let Ci(j) be the set of compositions of the integer j into i positive parts. Then the functions
τj,k may be regarded as the following sum indexed by these combinatorial objects.

Lemma 8.2.1.
τj,k =

∑
i≥1

φk+i

∑
(a1,...,ai)∈Ci(j)

ga1+1

∏
2≤`≤i

fa`+1.

This section will define analogous τ -like functions, indexed not by integers but by
binary strings, for the (a, b, 0, 0)- and (a, b, c, d)-dipole problems. This generalization is
combinatorial in nature in that it proceeds by replacing the set indexing the summation
in Lemma 8.2.1 with a different set of combinatorial objects called string compositions,
which are defined as follows.

Definition 8.2.2. Let R ∈ {•, ◦}∗ be a binary string. An ordered sequence (ρ1, ρ2, . . . , ρi)
such that each ρi ∈ {•, ◦}∗ \ ε and ρ1ρ2 · · · ρi = R is called a string composition of R into
k parts. Let Ci(R) denote the set of string compositions of R into i parts.

(The symbol ε ∈ {•, ◦}∗ denotes the empty string.) Before the generalized τ -functions
can be defined, it is first necessary to define generalizations of the φ functions which are
indexed by binary strings. This is done in Section 8.2.1. Following that, the τ -like functions
for the (a, b, 0, 0)-dipole problem are defined in Section 8.2.2, and for the (a, b, c, d)-dipole
problem in Section 8.2.3.
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8.2.1 φ-functions

The following family of functions provides an appropriate generalization of the sequence
{φi} arising in the analysis of the (p, n− 1, n)-dipole problem.

Definition 8.2.3 (General φ-function). Let i ≥ 1, and let v, x1, . . . , xi be indeterminates.
Define

φ(v, x1, . . . , xi) =
∑
n≥i

hn−i(x1, . . . , xi)
vn

n!
,

where hj(x1, . . . , xk) is the complete symmetric function of total degree j in k indetermi-
tates. The function φ(v) shall denote the constant function φ(v) = 1, corresponding to the
case i = 0.

(If j < 0, the convention hj(x1, . . . xk) = 0 is used.) The usefulness of these functions lies
in the fact that they satisfy the following property, which generalizes part 2 of Lemma
8.1.1.

Lemma 8.2.4. For i ≥ 1,

∂

∂v
φ(v, x1, . . . , xi)− xiφ(v, x1, . . . , xi) = φ(v, x1, . . . , xi−1).

Proof. For n ≥ i, xihn−i(x1, . . . , xi) is the sum over monomials of degree n−i+1 in the vari-
ables x1, . . . , xi such that xi appears with degree at least 1. However, hn−i+1(x1, . . . , xi)−
hn−i+1(x1, . . . , xi−1) is the sum over the same set of monomials. When n = i − 1, both
hn−i+1(x1, . . . , xi) and hn−i+1(x1, . . . , xi−1) are equal to 1, and xihn−i(x1, . . . , xi) = 0. Mul-
tiplying the equation

xihn−i(x1, . . . , xi) = hn−i+1(x1, . . . , xi)− hn−i+1(x1, . . . , xi−1)

by vn

n!
and summing over n ≥ i− 1 yields the desired result.

An alternative form of this Lemma expresses these functions as an integral recursion,
which is parallel to the definition of the sequence {φi} from Section 8.1.

Lemma 8.2.5. For i ≥ 1,

φ(v, x1, . . . , xi) = exp(vxi)

∫ v

0

exp(−ξxi)φ(ξ, x1, . . . , xi−1)dξ,

with φ(v) = 1 when i = 0.
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Proof. When i ≥ 1,

exp(vxi)

∫ v

0

exp(−ξxi)φ(ξ, x1, . . . , xi−1)dξ

= exp(vxi)

∫ v

0

exp(−ξxi)
(
∂

∂ξ
φ(ξ, x1, . . . , xi)− xiφ(ξ, x1, . . . , xi)

)
dξ

= exp(vxi)

∫ v

0

∂

∂ξ
exp(−ξxi)φ(v, x1, . . . , xi)dξ

= φ(v, x1, . . . , xi).

This Lemma implies that the sequence {φi} from Section 8.1 may be recovered from
the general φ-functions by defining φi = φ(y, f1, . . . , f1), where there are i copies of the
indeterminate f1.

Two specializations of φ are used in the analysis of the differential operators corre-
sponding to (a, b, c, d)-dipoles and (a, b, 0, 0)-dipoles. Let S ∈ {•, ◦}i, say, S = S1S2 · · ·Si.
Define the function φS(v) to be the evaluation of φ(v, x1, . . . , xi) at

xj =

{
f(◦) if Sj = ◦,
wf(•) if Sj = •.

Of course, since φ is symmetric in x1, . . . , xi, in order to specify φS(v), only two parameters
are needed — let φi,j(v) = φS(v) whenever S is a string consisting of i white dots and j
black dots. (Nevertheless, in many cases it will often be more natural to index φ by S
instead of i and j; thus, both notations are used.) The specialization of Lemma 8.2.4 to
φS(v) is as follows.

Corollary 8.2.6. Let i ≥ 1 and let S ∈ {◦, •}i−1. Let Si ∈ {◦, •}. If Si = ◦, then

∂φSSi(v)

∂v
− f(◦)φSSi(v) = φS(v).

If Si = •, then
∂φSSi(v)

∂v
− f(•)wφSSi(v) = φS(v).

A further specialization is the functions φi(y), defined to be the evaluation of φ(v, x1, . . . , xi)
at v = y and xj = f(•) for all j. (These functions are just the sequence {φi} from Section
8.1 in which f1 has been replaced by f(•). From this point onward, φi(y) always denotes
the specialization obtained by evaluating xj at f(•), and the functions from Section 8.1 are
no longer used.) In this case, Lemma 8.2.4 specializes as follows.
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Corollary 8.2.7. Let i ≥ 0. Then

∂φi+1

∂y
− f(•)φi+1 = φi.

8.2.2 Preimage of gRφi under the operator ∂
∂y − C

′

Recall that the cut operator C ′ corresponding to the (a, b, 0, 0)-dipole problem is given by

C ′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

gR1···Rif(R1Ri+1···R`(R))

 ∂

∂gR
.

Define the function τR,k(y) to be the unique solution to the partial differential equation(
∂

∂y
− C ′

)
τR,k = g•Rφk(y), (8.4)

with initial condition τR,k(0) = 0. Theorem 8.2.9 gives an expression for these functions
as a sum over string compositions. This theorem is proven by conjecturing an expression
for τR,k, and then demonstrating that the conjectured formula satisfies Equation (8.4).

In order to motivate the expression for τR,k given in Theorem 8.2.9, consider that the
functions τR,k satisfy the following recursion. (In this recursion, no initial condition is
needed, since when `(R) = 1, the following formula completely determines τR,k.)

Lemma 8.2.8. Let R = R1R2 · · ·R`(R) ∈ {◦, •}∗ \ ε, and k ≥ 0. Then

τR,k = g•Rφk+1 +
∑

1≤i≤`(R)−1

f(•Ri+1···R`(R))τR1···Ri,k+1. (8.5)

Proof. Applying ∂
∂y
− C ′ to g•Rφk+1,

(
∂

∂y
− C ′

)
g•Rφk+1 = g•R

∂φk+1

∂y
− φk+1

 ∑
1≤i≤`(R)

g•R1···Rif(•Ri+1···R`(R))

 .

By the definition of τR,k,(
∂

∂y
− C ′

) ∑
1≤i≤`(R)−1

f(•Ri+1···R`(R))τR1···Ri,k+1 =
∑

1≤i≤`(R)−1

f(•Ri+1···R`(R))g•R1···Riφk+1.
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Summing these equations,

(
∂

∂y
− C ′

)g•Rφk+1 +
∑

1≤i≤`(R)−1

f(•Ri+1···R`(R))τR1···Ri,k+1


= g•R

∂φk+1

∂y
− g•Rf(•)φk+1

= g•Rφk.

Since the right side of Equation (8.5) vanishes when y = 0, then it must be the unique

solution to
(
∂
∂y
− C ′

)
τR,k = g•Rφk.

Although, strictly speaking, Lemma 8.2.8 is not needed to prove Theorem 8.2.9, it is
helpful in conjecturing the expression for τR,k appearing in the statement of the theorem.
To motivate the form of the answer, consider the following non-deterministic algorithm for
producing a monomial in the g and f indeterminates.

1. Start with a string R ∈ {0, 1}∗, whose bits are R1, R2, . . . , R`(R).

2. Select one of two operations: a “g-cut” or an “f -cut.”

3. If an f -cut was selected, select a number i between 1 and the length of R. Add the
factor f(•Ri+1···R`(R)) to the monomial, and remove the bits Ri+1, . . . , R`(R) from R.
Go back to Step 2.

4. If a g-cut was selected, add the factor g•R to the monomial. Multiply by φk+j, where
j is the total number of cuts performed, and end the algorithm.

According to the recursive formula given in Lemma 8.2.8, the sum over all possible outcomes
of this algorithm should give τR,k. This motivates the following, more explicit, expression
for τR,k.

Theorem 8.2.9 (S.). Let R ∈ {•, ◦}∗ \ ε, and k ≥ 0. Then

τR,k =
∑
i≥1

φk+i

∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1
∏

2≤j≤i

f(•ρj). (8.6)
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Proof. Let ρ1,1, ρ1,2, . . . , ρ1,`(ρ1) be the bits of ρ1. Applying C ′ to the right side of Equation
(8.6) gives∑

i≥1

φk+i

∑
(ρ1,...,ρi)∈Ci(R)

∑
1≤n≤`(ρ1)

g•ρ1,1···ρ1,nf(•ρ1,n+1···ρ1,`(ρ))
∏

2≤j≤i

f(•ρj)

= f(•)

∑
i≥1

φk+i

∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1

∏
2≤j≤i

f(•ρj)

+
∑
i≥1

φk+i

∑
(ρ1,...,ρi)∈Ci(R)

∑
1≤n≤`(ρ1)−1

g•ρ1,1···ρ1,nf(•ρ1,n+1···ρ1,`(ρ))
∏

2≤j≤i

f(•ρj)

= f(•)

∑
i≥1

φk+i

∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1

∏
2≤j≤i

f(•ρj)

+
∑
i≥1

φk+i

∑
(ρ1,...,ρi+1)∈Ci+1(R)

g•ρ1

∏
2≤j≤i+1

f(•ρj),

by relabelling ρ1,1 · · · ρ1,n to be ρ1, and ρ1,n+1 · · · ρ1,`(ρ) to be ρi+1. Thus,(
∂

∂y
− C ′

)∑
i≥1

φk+i

∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1

∏
2≤j≤i

f(•ρj)

=
∑
i≥1

(
∂φk+i

∂y
− f(•)φk+i

) ∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1

∏
2≤j≤i

f(•ρj)

−
∑
i≥1

φk+i

∑
(ρ1,...,ρi+1)∈Ci+1(R)

g•ρ1

∏
2≤j≤i+1

f(•ρj)

=
∑
i≥1

φk+i−1

∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1

∏
2≤j≤i

f(•ρj)

−
∑
i≥2

φk+i−1

∑
(ρ1,...,ρi)∈Ci(R)

g•ρ1

∏
2≤j≤i

f(•ρj)

= φkg•R.

Since the right side of Equation (8.6) vanishes when x = 0, then by uniqueness of the
solution to the partial differential equation, it must be equal to τR,k.

There is a natural bijection between i-part compositions of the string R, and i-part
compositions of the integer `(R), namely,

(ρ1, . . . , ρi)↔ (`(ρ1), . . . , `(ρi)).

Consequently, specializing the series τR,k by making the substitutions gR 7→ g`(R) and
f(S) 7→ f`(S) gives the function∑
i≥1

φk+i(x)
∑

(ρ1,...,ρi)∈Ci(R)

g`(ρ1)+1

∏
2≤j≤i

f`(ρj)+1 =
∑
i≥1

φk+i(x)
∑

(a1,...,ai)∈C`(R),i

ga1+1fa2+1 · · · fai+1,
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which is the analogue τj,k of τR,k which arises in Section 8.1 in the analysis of the “simplifed”
Join-Cut operator for (p, n− 1, n)-dipoles.

8.2.3 Preimage of gRφS(v) under the operator ∂
∂v − C

′′

Recall that the cut operator for (a, b, c, d)-dipoles is given by

C ′′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

wδRi,•gR1Ri···R`(R)
f(R2···Ri) + wgR1f(R)

 ∂

∂gR
.

Define the function τR,S to be the unique solution to the partial differential equation(
∂

∂v
− C ′′

)
τR,S = g•RφS(v)

which satisfies the initial condition τR,S|v=0 = 0. (Notationally, these are distinguished
from the τ -functions in the preceding section by the fact that they are indexed by a pair
of binary strings, as opposed to a binary string and an integer.) The functions τR,S may
be determined using the following recursion.

Lemma 8.2.10. Let R, S ∈ {◦, •}∗, and let t ∈ {◦, •}. Let R = R1R2 · · ·R`(R). Then

τtR,S(v) = φtS(v)g•tR +
∑

1≤i≤`(R)

f(tR1···Ri)w
δRi,•τRi···R`(R),tS + wf(•tR)τε,tS, (8.7)

and
τε,S = g•φ•S.

Proof. For the case of τε,S,(
∂

∂v
− C ′′

)
g•φ•S = g•

∂

∂v
φ•S − wg•f(•)φ•S(v)

= g•φS(v),

applying Corollary 8.2.6. Since g•φ•S(0) = 0, then τε,S = g•φ•S.
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For the general case, apply
(
∂
∂v
− C ′′

)
to the right side of Equation 8.7 to obtain(

∂

∂v
− C ′′

)φtS(v)g•tR +
∑

1≤i≤`(R)

f(tR1···Ri)w
δRi,•τRi···R`(R),tS + wf(•tR)τε,tS


= g•tR

∂

∂v
φtS(v)− φtS(v)

wδt,•g•tRf(t) +
∑

1≤i≤`(R)

wδRi,•g•Ri···R`(R)
f(tR1···Ri) + wg•f(•tR)


+

∑
1≤i≤`(R)

f(tR1···Ri)w
δRi,•g•Ri···R`(R)

φtS(v) + wf(•tR)g•φtS(v)

= g•tR
∂

∂v
φtS(v)− φtS(v)f(t)w

δt,•g•tR

= g•tRφS(v),

by Corollary 8.2.6. Since τtR,S(0) = 0, then the left side of Equation 8.7 is the unique
solution to

(
∂
∂v
− C ′′

)
τtR,S(v) = g•tRφS(v) which vanishes at v = 0, proving the lemma.

The first six τ functions, computed using the recursive formula of Lemma 8.2.10, are
as follows.

τ•,S = g••φ•S + wg•f(••)φ••S

τ◦,S = g•◦φ◦S + wg•f(•◦)φ•◦S

τ••,S = g•••φ•S + (wg••f(••) + wg•f(•••))φ••S + w2g•f
2
(••)φ•••S

τ◦•,S = g•◦•φ◦S + (wg••f(•◦) + wg•f(•◦•))φ•◦S + w2g•f(••)f(◦•)φ••◦S

τ•◦,S = g••◦φ•S + wg•f(••◦)φ••S + g•◦f(•◦)φ◦•S + wg•f
2
(•◦)φ•◦•S

τ◦◦,S = g•◦◦φ◦S + wg•f(•◦◦)φ•◦S + g•◦f(◦◦)φ◦◦S + wg•f(◦◦)f(•◦)φ•◦◦S

Based on the experience with the functions τR,k, it is natural to attempt to conjecture
a similar closed form for the functions τR,S. Given a string composition (ρ1, . . . , ρk), define
the non-negative integer c(ρ1, . . . , ρk) by

c(ρ1, . . . , ρk) = |{i ≥ 2 : the first bit of ρi is •}|.

Theorem 8.2.11 (S.). Let R ∈ {•, ◦}∗ \ ε. Let S ∈ {•, ◦}∗. Given a string composition
(ρ1, . . . , ρk), let ρj,1 denote the first bit of ρj. Then

τR,S =
∑
k≥1

∑
(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)(g•ρkφρk,1···ρ1,1S(v)+wg•f(•ρk)φ•ρk,1···ρ1,1S(v))
∏

1≤j≤k−1

f(ρjρj+1,1).

(8.8)
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Proof. Let

A1,k =
∑

(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)g•ρkφρk,1···ρ1,1S
∏

1≤j≤k−1

f(ρjρj+1,1)

and
A2,k =

∑
(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)+1g•f(•ρk)φ•ρk,1···ρ1,1S
∏

1≤j≤k−1

f(ρjρj+1,1)

so that the right side of Equation (8.8) becomes∑
k≥1

(A1,k + A2,k).

Applying C ′′ to the first of these expressions gives

C ′′A1,k = B1,k +B2,k +B3,k,

Where
B1,k =

∑
(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)+1g•f(•ρk)φρk,1···ρ1,1S
∏

1≤j≤k−1

f(ρjρj+1,1),

B2,k =
∑

(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)+δρk,1,•g•ρkf(ρk,1)φρk,1···ρ1,1S
∏

1≤j≤k−1

f(ρjρj+1,1),

and

B3,k =
∑

(ρ1,...,ρk)∈Ck(R)

∑
2≤i≤`(ρk)

wc(ρ1,...,ρk)+δρk,i,•g•ρk,i···ρk,`(ρk)
f(ρk,1···ρk,i)φρk,1···ρ1,1S

∏
1≤j≤k−1

f(ρjρj+1,1).

Applying Corollary 8.2.6,

∂

∂v
A1,k −B2,k =

∑
(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)g•ρk

(
∂

∂v
φρk,1···ρ1,1S

− wδρk,1 ,•f(ρk,1)φρk,1···ρ1,1S

) ∏
1≤j≤k−1

f(ρjρj+1,1)

=
∑

(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)g•ρkφρk−1,1···ρ1,1S
∏

1≤j≤k−1

f(ρjρj+1,1).

To analyze Bk,3, given any (ρ1, . . . , ρk) ∈ Ck(R) and 2 ≤ i ≤ `(ρk), define the string
composition (ρ′1, . . . , ρ

′
k, ρ
′
k+1) ∈ Ck+1(R) by ρ′j = ρj when 1 ≤ j ≤ k− 1, ρ′k = ρk,1 · · · ρk,i−1

and ρ′k+1 = ρk,i · · · ρk,`(ρk). Since c(ρ′1, . . . , ρ
′
k+1) = c(ρ1, . . . , ρk) + δρk,i,•, then

B3,k =
∑

(ρ′1,...,ρ
′
k+1)∈Ck+1(R)

wc(ρ
′
1,...,ρ

′
k+1)g•ρ′k+1

φρ′k,1···ρ′1,1S
∏

1≤j≤k

f(ρ′jρ
′
j+1,1).
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In other words, for k ≥ 2,
∂

∂v
A1,k −B2,k −B3,k−1 = 0.

Next, apply
(
∂
∂v
− C ′′

)
to A2,k and use Corollary 8.2.6 to obtain(

∂

∂v
− C ′′

)
A2,k =

∑
(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)+1g•f(•ρk)

(
∂

∂v
φ•ρk,1···ρ1,1S

−wf(•)φ•ρk,1···ρ1,1S
) ∏

1≤j≤k−1

f(ρjρj+1,1)

=
∑

(ρ1,...,ρk)∈Ck(R)

wc(ρ1,...,ρk)+1g•f(•ρk)φρk,1···ρ1,1S
∏

1≤j≤k−1

f(ρjρj+1,1)

= B1,k.

Consequently, applying
(
∂
∂v
− C ′′

)
to the right side of Equation (8.8) yields(

∂

∂v
− C ′′

)∑
k≥1

A1,k + A2,k =
∑
k≥1

(
∂

∂v
A1,k −B1,k −B2,k −B3,k +

(
∂

∂v
− C ′′

)
A2,k

)
=

∂

∂v
A1,1 −B2,1

= g•R
∂

∂v
φR1S − wδR1,•g•Rf(R1)φR1S

= g•RφS,

again using Corollary 8.2.6. Since the right side of Equation (8.8) vanishes when v = 0, it
is the unique solution to

(
∂
∂v
− C ′′

)
τR,S = g•RφS.

This formula demonstrates that τR,S depends on S only through the φ functions. Since
the φ functions depend only on the number of occurrences of • and ◦ in S, the notation
τR,i,j is sometimes used to denote τR,S when S is a binary string consisting of i occurrences
of ◦ and j occurrences of •. The contributions to τR,S from various compositions of small
strings is given in Table 8.1. By way of verification, this table agrees with the earlier
expressions for τR,S, which were computed recursively.

The importance of the functions τR,S is that, because of the linearity of ∂
∂v
− C ′′, the

solution to any equation of the form(
∂

∂v
− C ′′

)
F = G
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String Composition Contribution to τR,S
(•) g••φ•S + wg•f(••)φ••S

(◦) g•◦φ◦S + wg•f(•◦)φ•◦S

(••) g•••φ•S + wg•f(•••)φ••S

(•, •) w(g••φ••S + wg•f(••)φ•••S)f(••)

(◦•) g•◦•φ◦S + wg•f(•◦•)φ•◦S

(◦, •) w(g••φ•◦S + wg•f(••)φ••◦S)f(◦•)

(•◦) g••◦φ•S + wg•f(••◦)φ••S

(•, ◦) (g•◦φ◦•S + wg•f(•◦)φ•◦•S)f(•◦)

(◦◦) g•◦◦φ◦S + wg•f(•◦◦)φ•◦S

(◦, ◦) (g•◦φ◦◦S + wg•f(•◦)φ•◦◦S)f(◦◦)

Table 8.1: Contributions to τR,S from various small string compositions.

can be expressed as a linear combination of {τR,S}R,S∈{•,◦}∗ , provided G is expressed as a
linear combination of terms of the form gRφS(v). Moreover, Theorem 8.2.11 demonstrates
that the τ -functions can in turn be expressed as a linear combination of terms of the
from gRφS(v), allowing this process to be iterated. Thus, {τR,S}R,S∈{•,◦}∗ is a natural
family of functions in which to express the genus g solutions the (a, b, c, d)-dipole problem.
These expressions are finite linear combinations of τ -functions in which the coefficients are
polynomials with non-negative integer coefficients. The next section is a demonstration of
how this may be done for surfaces of small genus.

8.3 Solutions for Small Genus

This section contains a demonstration of how the results of Section 8.2 can be used to find
the generating series for (a, b, 0, 0)-dipoles on the torus and double torus, and (a, b, c, d)-
dipoles on the torus. The series for (a, b, c, d)-dipoles on the double torus appears in
Appendix B.

8.3.1 (a, b, 0, 0)-dipoles on the torus and double torus

Much like the strategy used in Section 8.1, the genus g solution to the (a, b, 0, 0)-dipole
problem, Ψ′(g) = [u2g]Ψ′, may be determined by solving the equation(

∂

∂y
− C ′

)
Ψ′(g) = JΨ′(g−1) (8.9)
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when g ≥ 1. When g = 0,

Ψ′(0) = g•

∑
a≥0

xa+1

(a+ 1)!
fa+1

(◦) = g•(exp(xf(◦))− 1).

Let Ψ̂′(g) = Ψ′(g) − Ψ′(g)|y=0. When y = 0, the series Ψ′ corresponds to dipoles with no
b-edges, for which the root face is a digon. Thus, C ′Ψ′(g)|y=0 = 0, so solving Equation (8.9)
is equivalent to solving (

∂

∂y
− C ′

)
Ψ̂′(g) = JΨ′(g−1) (8.10)

with the initial condition Ψ̂′(g) = 0.

When solving for the genus 1 solution, Equation 8.10 becomes(
∂

∂y
− C ′

)
Ψ′(1) = Jg•(exp(xf(◦))− 1)

= g••◦x exp(xf(◦)),

with initial condition Ψ̂′(1)|y=0 = 0. By Theorem 8.2.9, the solution to this equation is

Ψ̂′(1) = τ•◦,0x exp(xf(◦)),

where
τ•◦,0 = φ1(y)g••◦ + φ2(y)g••f(•◦).

The series Ψ′(1)|y=0 can be obtained from the initial condition given in Theorem 5.3.1.
Using the fact that genus 1 dipoles with n edges must have half face degree sequence either
(3, 1n−3) or (2, 2, 1n−4),

Ψ′(1)|y=0 = [u2]g•

∑
D∈D

xn(D)

n(D)!
u2g(D)fλ′(D)

= g•

(∑
n≥3

xn

n!
D(3,1n−3)f(◦◦◦)f

n−3
(◦) +

∑
n≥4

D(2,2,1n−4)f
2
(◦◦)f

n−4
(◦)

)
,

where Dλ is the number of rooted dipoles with face degree sequence 2λ. Although Dλ is
a known quantity which can be computed by central methods, it simplifies computations
if it is left unevaluated while solving the differential equations for (a, b, c, d)-dipoles. One
additional benefit of this is that the results obtained will appear as “linear combinations
of central problems,” and identify which parts of the solutions arise from the central initial
condition and which parts arise from the non-central aspects of the problem. Since Ψ′(1) =
Ψ̂′(1) + Ψ′(1)|y=0, the following result has now been proven.

151



Theorem 8.3.1 (S.). The generating series for (a, b, 0, 0)-dipoles on the torus is

Ψ′(1) = τ•◦,0x exp(xf(◦)) + g•

(∑
n≥3

xn

n!
D(3,1n−3)f(◦◦◦)f

n−3
(◦) +

∑
n≥4

D(2,2,1n−4)f
2
(◦◦)f

n−4
(◦)

)

In order to determine the genus 2 solution for Ψ′, the first step is to determine J ′Ψ′(1).
Since Ψ′(1) is expressed in terms of the functions φi, it is first necessary to determine the
action of ∂

∂f(•)
on φi. The coefficients of φi are, from definition, given by[

yn

n!

]
φi = [tn−i](1− tf(•))

−i

Computing the derivative with respect to f(•) gives

∂

∂f(•)

[
yn

n!

]
φi = [tn−i−1]i(1− tf(•))

−(i+1)

= i

[
yn

n!

]
φi+1(x).

Since this holds for all n ≥ i, then the following result has been proven.

Lemma 8.3.2. Let i ≥ 1. Then
∂φi
∂f(•)

= iφi+1.

Using this lemma, the following computation may be done:

J ′Ψ′(1) = x exp(xf(◦))(g••◦••φ2(x) + xg••◦•◦φ1(x) + 2g••••f(•◦)φ3(x) + g••••◦φ2(x)

+ g•••◦•φ2(x) + xg•••◦f(•◦)φ2(x))

+
∑
n≥3

xn

n!
D(3,1n−3)(3g••◦◦◦f

n−3
(◦) + (n− 3)g••◦f(◦◦◦)f

n−4
(◦) )

+
∑
n≥4

xn

n!
D(2,2,1n−4)(4g••◦◦f(◦◦)f

n−4
(◦) + (n− 4)g••◦f

2
(◦◦)f

n−5
(◦) ).

Proceeding as in the genus 1 case leads to the following.
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Theorem 8.3.3 (S.). The generating series for (a, b, 0, 0)-dipoles on the double torus is

Ψ′(2) = x exp(xf(◦))(τ•◦••,2 + xτ•◦••,1 + 2f(•◦)τ•••,3 + τ•••◦,2 + τ••◦•,2 + xf(•◦)τ••◦,2)

+ 3τ•◦◦◦,0
∑
n≥3

xn

n!
D(3,1n−3)f

n−3
(◦) + τ•◦,0f(◦◦◦)

∑
n≥4

(n− 3)xn

n!
D(3,1n−3)f

n−4
(◦)

+ 4τ•◦◦,0f(◦◦)

∑
n≥4

xn

n!
D(2,2,1n−4)f

n−4
(◦) + τ•◦,0f

2
(◦◦)

∑
n≥5

(n− 4)xn

n!
D(2,2,1n−4)f

n−5
(◦)

+ [u4]g•
∑
D∈D

xn(D)

n(D)!
u2g(D)fλ′(D).

Extracting Coefficients from the (a, b, 0, 0)-dipole series

In order to extract coefficients from the series appearing in Theorems 8.3.1 and 8.3.3, the
first step is to determine the coefficients of 〈τS,k〉. The functions 〈τS,k〉 are expressed in
terms of 〈φi〉, whose coefficients are, from definition, given by[

yn

n!

]
〈φi〉 = [tn−i](1− t)−i =

(
n− 1

n− i

)
,

with the convention that
(
n
k

)
= 0 when k < 0. When setting the f - and g-type indetermi-

nates to 1, τR,k has the following more explicit form.

Corollary 8.3.4. Let R ∈ {•, ◦}∗ \ ε, and k ≥ 0. Then

〈τR,k〉 =
∑
i≥1

(
`(R)− 1

i− 1

)
〈φk+i(x)〉

and [
yn

n!

]
〈τR,k〉 =

(
`(R) + b− 2

`(R) + k − 1

)
.

Proof. The first expression follows from Theorem 8.2.9, along with the observation that
the number of string compositions of R into i parts is equal to the number of integer
compositions of `(R) into i parts, which is

(
`(R)−1
i−1

)
. Extracting the coefficient of yn

n!
,[

yn

n!

]
〈τR,k〉 =

∑
i≥1

(
`(R)− 1

i− 1

)(
n− 1

n− k − i

)
=

(
`(R) + n− 2

`(R) + k − 1

)
,

by Vandermonde’s identity.
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This result may be used, along with Theorem 8.3.1, to determine the number of
(a, b, 0, 0)-dipoles on the torus when b ≥ 1:[

yb

b!

xa+1

(a+ 1)!

]
〈Ψ′(1)〉 = 〈τ•◦,0〉x exp(x) = b(a+ 1).

This agrees with the computation of the number of (p, n− 1, n)-dipoles on the torus done
in Section 8.1, since a (p, n − 1, n)-dipole has p − 1 b-edges, and n − p − 1 a-edges. The
coefficients for (a, b, 0, 0) dipoles on the double torus may be obtained in a similar manner:[

yb

b!

xa+1

(a+ 1)!

]
〈Ψ′(2)〉 = 3(a+ 1)

(
b+ 2

5

)
+ a(a+ 1)

(
b+ 2

4

)
+ 2(a+ 1)

(
b+ 1

5

)
+ a(a+ 1)

(
b+ 1

4

)
+

(
3

(
b+ 2

3

)
+ (a− 2)b

)
d(3,1a−2)

+

(
4

(
b+ 1

2

)
+ (a− 3)b

)
d(2,2,1a−3),

adopting the convention that d(3,1a−2) = 0 when a < 2, and d(2,2,1a−3) = 0 when a < 3.

8.3.2 (a, b, c, d)-dipoles on the torus

Again, let Ψ′′(g) = [u2g]Ψ′′ so that(
∂

∂v
− C ′′

)
Ψ′′(g) = J ′′Ψ′′(g−1) (8.11)

when g ≥ 1, with

Ψ′′(0) =
∑
a≥0

∑
d≥0

xa+1

(a+ 1)!

(vw)d

d!
g•f

d
(•)f

a+1
(◦)

= g•(exp(xf(◦))− 1)(wf(•)φ•(v) + 1),

using the fact that, from the definition,

φ•(v) =
1

wf(•)

(
exp(wvf(•))− 1

)
.

In order to convert Equation (8.11) to a differential equation whose initial condition is
zero, let

Ψ̂′′(g) = Ψ′′(g) −Ψ′′(g)|v=0 = Ψ′′(g) −Ψ′(g).
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Then Ψ̂′′(g) is the solution to the equation(
∂

∂v
− C ′′

)
Ψ̂′′(g) = J ′′Ψ′′(g−1) + C ′′Ψ′(g). (8.12)

In order to compute J ′′Ψ′′(g−1), it is first necessary to determine the action of ∂
∂f(◦)

and
∂

∂f(•)
on φS. If S is a string of with i instances of ◦ and j instances of •,[

vn

n!

]
φS =

[
vn

n!

]
φi,j

= [tn−i−j](1− tf(◦))
−i(1− twf(•))

−j.

If i = 0, then
∂φ0,j
∂f(◦)

= 0. For i > 1, and any n ≥ i,[
vn

n!

]
∂φi,j
∂f(0)

= [tn−i]
∂

∂f(◦)

(1− tf(◦))
−i(1− tyf(•))

−j

= i[tn−i−1](1− tf(◦))
−(i+1)(1− tyf(•))

−j

= i

[
vn

n!

]
φi+1,j.

Thus,
∂φi,j
∂f(◦)

= iφi+1,j

when i > 0. A similar argument may be used to determine ∂
∂f(•)

φi,j, leading to the following.

Lemma 8.3.5. Let i, j ≥ 0. Then

∂φi,j
∂f(◦)

= iφi+1,j

and
∂φi,j
∂f(•)

= jwφi,j+1.

To determine the generating series for (a, b, c, d)-dipoles on the torus, first, determine
J ′′Ψ′′(0) + C ′′Ψ′(1). Using Lemma 8.3.5,

J ′′Ψ′′(0) = g•◦◦(wf(•)φ•(v) + 1)x exp(xf(◦))

+ g•••(w
2φ•(v) + w3f(•)φ••(v))(exp(xf(◦))− 1).
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Using the expression for Ψ′(1) given in Theorem 8.3.1,

C ′′Ψ′(1) = (wg•f(••◦) + wg••◦f(•) + g•◦f(•◦))φ1(y)x exp(xf(◦))

+ (wg•f(••) + wg••f(•))f(•◦)φ2(y)x exp(xf(◦))

+ wg•f(•)

(∑
n≥3

xn

n!
D(3,1n−3)f(◦◦◦)f

n−3
(◦) +

∑
n≥4

xn

n!
D(2,2,1n−4)f

2
(◦◦)f

n−4
(◦)

)
.

Expressing the solution to Equation (8.12) in terms of the functions τR,S (using the fact
that τε,S = g•φ•S(v) and adding the initial condition gives the following.

Theorem 8.3.6 (S.). The generating series for (a, b, c, d)-dipoles on the torus is

Ψ′′(1) = (wf(•)τ◦◦,• + τ◦◦,ε)x exp(xf(◦))

+ (w2τ••,• + w3f(•)τ••,••)(exp(xf(◦))− 1)

+ (wf(••◦)g•φ•(v) + wf(•)τ•◦,ε + f(•◦)τ◦,ε)φ1(y)x exp(xf(◦))

+ (wf(••)g•φ•(v) + wf(•)τ•,ε)f(•◦)φ2(y)x exp(xf(◦))

+ wf(•)g•φ•(v)

(∑
n≥3

xn

n!
D(3,1n−3)f(◦◦◦)f

n−3
(◦) +

∑
n≥4

xn

n!
D(2,2,1n−4)f

2
(◦◦)f

n−4
(◦)

)
+ Ψ′(1),

where the functions τR,S are given in Table 8.1.

Extracting Coefficients from the (a, b, c, d)-dipole series

Suppose c + d > 0. Then the term Ψ′(1) in Ψ′′(1) may be disregarded. When information
about face structure is forgotten,

〈Ψ′′(1)〉 = xex(〈φ1,0〉+ 〈φ2,0〉+ 2w〈φ1,1〉+ 2w〈φ2,1〉+ w2〈φ1,2〉+ w2〈φ2,2〉)
+ (ex − 1)(w2〈φ0,2〉+ 3w3〈φ0,3〉+ 3w4〈φ0,4〉+ w5〈φ0,5〉)
+ xex〈φ1(y)〉(〈φ1,0〉+ 2w〈φ0,1〉+ 2w〈φ1,1〉+ w2〈φ0,2〉+ w2〈φ1,2〉)
+ xex〈φ2(y)〉(2w〈φ0,1〉+ w2〈φ0,2〉)

+ w〈φ0,1〉

(∑
n≥3

xn

n!
D(3,1n−3) +

∑
n≥4

xn

n!
D(2,2,1n−4)

)
.
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Extracting the coefficients of xa+1 and yb may be done as in the (a, b, 0, 0) case:[
xa+1yb

(a+ 1)!b!

]
〈Ψ′′(1)〉 = (a+ 1)δb,0(〈φ1,0〉+ 〈φ2,0〉+ 2w〈φ1,1〉+ 2w〈φ2,1〉+ w2〈φ1,2〉+ w2〈φ2,2〉)

+ δb,0(w2〈φ0,2〉+ 3w3〈φ0,3〉+ 3w4〈φ0,4〉+ w5〈φ0,5〉)
+ (a+ 1)(1− δb,0)(〈φ1,0〉+ 2w〈φ0,1〉+ 2w〈φ1,1〉+ w2〈φ0,2〉+ w2〈φ1,2〉)
+ (a+ 1)(1− δb,0)(b− 1)(2w〈φ0,1〉+ w2〈φ0,2〉)
+ w〈φ0,1δb,0〉(D(3,1a−2) +D(2,2,1a−3)).

To continue, it is necessary to extract coefficients of the form[
wd

vc+d

(c+ d)!

]
wk〈φi,j〉.

From the definition,
[
vc+d

(c+d)!

]
〈φi,j〉 is just the complete symmetric function hc+d−i−j in i+ j

indeterminates, with i indeterminates set to 1 and j indeterminates set to w. Thus,[
wd

vc+d

(c+ d)!

]
wk〈φi,j〉 = [wd−k][tc+d−i−j](1− t)−i(1− wt)−j

= [tc+k−i−j](1− t)−i
(
d− k + j − 1

d− k

)
=

(
c+ k − j − 1

c+ k − j − i

)(
d− k + j − 1

d− k

)
.

This leads to the following.

Theorem 8.3.7 (S.). When c + d > 0, the number of (a, b, c, d)-dipoles on the torus is
given by

(a + 1)δb,0

((
c− 1

c− 1

)(
d− 1

d

)
+

(
c− 1

c− 2

)(
d− 1

d

)
+ 2

(
c− 1

c− 1

)(
d− 1

d− 1

)
+ 2

(
c− 1

c− 2

)(
d− 1

d− 1

)
+

(
c− 1

c− 1

)(
d− 1

d− 2

)
+

(
c− 1

c− 2

)(
d− 1

d− 2

))
+ δb,0

((
c− 1

c

)(
d− 1

d− 2

)
+ 3

(
c− 1

c

)(
d− 1

d− 3

)
+ 3

(
c− 1

c

)(
d− 1

d− 4

)
+

(
c− 1

c

)(
d− 1

d− 5

))
+ (a + 1)

(
b− 1

b− 1

)((
c− 1

c− 1

)(
d− 1

d

)
+ 2

(
c− 1

c

)(
d− 1

d− 1

)
+ 2

(
c− 1

c− 1

)(
d− 1

d− 1

)
+

(
c− 1

c

)(
d− 1

d− 2

)
+

(
c− 1

c− 1

)(
d− 1

d− 2

))
+ (a + 1)

(
b− 1

b− 2

)(
2

(
c− 1

c

)(
d− 1

d− 1

)
+

(
c− 1

c

)(
d− 1

d− 2

))
+ δb,0

(
c− 1

c

)(
d− 1

d− 1

)
(D

(3,1a−2)
+D

(2,2,1a−3)
).

8.3.3 Concluding comments on the differential approach to (a, b, c, d)-
dipoles

Although closed form solutions to the equations given in Theorems 5.3.1 and 5.3.2 are not
known, this chapter has demonstrated that the differential operators C ′+u2J ′ and C ′′+u2J ′′
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are sufficiently well-understood that they can be used to develop a process, recursive in
genus, for determining the generating series for (a, b, c, d) dipoles in a specified surface.
While this process could, in principle, be applied to determine the solution for surfaces
other than the surfaces considered by Visentin and Wieler, in practice the calculations
needed to do this are quite lengthy, albeit simple. Nevertheless, the Join-Cut approach has
several appealing features.

• The differential approach is more likely to lead to a proof technique for the gen-
eral case than a combinatorial case analysis. If solutions to the partial differential
equations can be conjectured, then it suffices to demonstrate that the conjectured
solutions satisfy the equations.

• The differential approach records more data about the dipoles than existing methods.
Specifically, it allows us to keep track of the numbers of four different types of edges,
as opposed to tracking only p, q and n.

• The solutions are expressed as sums over combinatorial objects, namely, string com-
positions. As a result, the coefficients of the series computed using differential meth-
ods are expressed naturally as sums of non-negative integers.
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Chapter 9

Concluding Comments and Areas for
Future Work

This thesis has examined the extent to which two of the techniques used to solve central
problems, character-based methods and Join-Cut analysis, can be generalized to deal with
non-central problems, with the (p, q, n)-dipole problem (or more precisely, its refinement
to the (a, b, c, d)-dipole problem) as a motivating example. The Join-Cut analysis of the
(a, b, c, d)-dipole problem conducted in Chapter 5 resulted in two partial differential equa-
tions which determine the generating series for the problem. Non-central information was
handled through the introduction of additional classes of indeterminates to keep track of
the additional information. Moreover, this analysis identified a special case of the (p, q, n)-
dipole problem, the case when q = n− 1, as one that is “less non-central” than the general
problem, in the sense of having an encoding in Z1(n) as opposed to Z2(n). In Chapter 8,
an analysis of these partial differential equations led to a method, recursive in genus, for
determining the generating series for (a, b, c, d)-dipoles.

With regards to generalizing character-based methods, Chapters 6 and 7 demonstrated
that the algebra Z1(n) can be used to solve a class of non-central problems much in the
same manner as Z(n) is used to solve central problems. Orthogonal idempotents for Z1(n)
were constructed, and techniques used to evaluate their coefficients in the standard basis
were developed. A key combinatorial insight which made this possible was the interpreta-
tion of Strahov’s generalized characters of Sn as the coefficients of a group algebra sum
indexed by the set of standard Young tableaux in which the position of the symbol n is
specified. These techniques were then used to give a full solution to an open problem (the
(p, n−1, n)-dipole problem), to give an alternative solution to a previously-solved problem
(the non-transitive star factorization problem), and to provide an avenue to approach a
new problem which is a natural non-central generalization of a well-studied central prob-
lem (Z1-decompositions of a full cycle). Because ordinary characters can be recovered from
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generalized characters by summing over all choices of a distinguished part of the indexing
partition, specializations of the (p, n − 1, n)-dipole problem and the transitive star fac-
torization problem which “forget” non-central information lead to expressions which are
linear combinations of ordinary characters. It is not known how to obtain such expressions
by working only within the centre of C[Sn].

The research done in this thesis has led to a number of further questions to form the
basis of future research. Several of these have already been commented on in the thesis,
and are collected here for convenience.

1. Find algebraic and combinatorial proofs of Conjecture 7.1.10.

2. Find a closed form solution to the partial differential equations in Theorems 5.3.1
and 5.3.2.

3. Find a combinatorial explanation for the identities which arise as a consequence
of the relationship between generalized characters and ordinary characters, such as
Corollary 6.2.10.

4. Solve the problem of Z1-decompositions of a full cycle. An analysis of the expression
given in Theorem 7.3.2 is a likely starting point for approaching this problem.

5. Study the asymptotics of generalized characters, and consequently, the asymptotics of
the combinatorial problems whose solutions can be expressed in terms of generalized
characters.

In addition to these questions, there are three areas for future research that warrant a more
extensive discussion. These are discussed in the following sections.

9.1 Study of other Centralizer Algebras

A natural extension of the work done in this thesis is to perform an analysis of centralizer
algebras other than Z1(n), analogous to what was done in Chapters 6 and 7. The algebra
Z2(n) is an obvious candidate for further study, not only because it is the “next step up”
from the study of Z1(n), but also because an understanding of Z2(n) would lead to a
complete solution of the (p, q, n)-dipole problem. The main difficulty in the study of Z2(n)
is that it is not commutative, and thus cannot have a basis of orthogonal idempotents.
Determining the centre of Z2(n) would be an important first step.

An additional line of inquiry would be to study centralizers of the form ZH(n) whereH is
not a subgroup of the form Sk. One particularly appealing example isH = 〈Sn−2, (n− 1, n)〉
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(or, more generally, taking H to be a Young subgroup of the form 〈S{1,...,k},S{k+1,...,n}〉). It
is clear that the conjugacy classes with respect to H are unions of Sn−2-conjugacy classes.
Specifically, there are two types of conjugacy classes with respect to H:

Aλ(i, j) ∪ Aλ(i, i− j)

and
Bλ(i, j) ∪ Bλ(j, i).

Consequently, the elements of the form

Aλ(i, j) + Aλ(i, i− j)

and
Bλ(i, j) +Bλ(j, i)

form a basis for ZH(n). Notably, the conjugacy classes with respect to H are closed under
taking inverses, and thus the proof of Lemma 4.2.6 may be used to show that ZH(n)
is a commutative subalgebra of Z2(n). Hence, the avenue of studying ZH(n) via the
construction of a basis of orthogonal idempotents is available. The study of ZH(n) would
be an important first step in the study of Z2(n), since the centre of Z2(n) lies in ZH(n).
Indeed, since (n, n− 1) = A(2,1n−2)(2, 1), in any central element of Z2(n), the coefficient of
Aλ(i, j) must equal the coefficient of Aλ(i, i− j), and the coefficient of Bλ(i, j) must equal
the coefficient of Bλ(j, i). This containment is strict: the element A(5)(5, 3) + A(5)(5, 2) of
ZH(5) does not commute with the element A(5)(5, 3) of Z2(5).

The algebra ZH(n) is of combinatorial interest for several reasons. First, for any n, the
element

A(2n)(2n, n)2

lies in ZH(2n). Thus, a special case of the (p, q, n)-dipole problem, the case of (n, n, 2n)-
dipoles, may be encoded in ZH(2n). Second, instances of the non-transitive G-factorization
problem (Problem 3.2.10) for which H is the automorphism group of G may be encoded
in ZH(n). Examples of graphs which have H as their automorphism group include:

1. The complete graph, Kn, with the edge {n− 1, n} removed.

2. The complete bipartite graph K2,n−2.

3. The complete bipartite graph K2,n−2 with an edge added between the two vertices of
degree n− 2.

Taking G to be either the second or third graph defines a problem which could be viewed
as a natural generalization of the star factorization problem, since star factorizations cor-
respond to the graph K1,n−1. Taking G to be the first graph defines a problem which has
a particularly simple combinatorial description:

161



Problem 9.1.1 (Forbidden Transposition Problem). Let π ∈ Sn and r ≥ 0. Determine
the number of sequences (τ1, . . . , τr) such that:

1. Each τi is a transposition,

2. τi 6= (n− 1, n),

3. and
∏

1≤i≤r τi = π.

A combinatorial analysis of the G-factorization problem for these three graphs could pro-
vide an important first step in the study of ZH(n).

9.2 Further study of the relationship between the character-

based and differential approaches to non-central

problems

The fact that both algebraic and differential approaches may be used to approach the same
problem suggests that there is a relationship between the two methods which should be
more well-understood. Each of the two methods has its own strengths and weaknesses.
The algebraic approach is very effective at fully solving special cases, such as the (p, n −
1, n)-dipole problem, but does not appear to be easy to extend to the (p, q, n)-case. The
differential approach applies to the (p, q, n)-problem for arbitrary p and q, but it relies on
the introduction of a more difficult problem, the (a, b, c, d)-dipole problem. Furthermore,
it provides only a recursive method for computing solutions for a surface of genus g, as
opposed to giving solutions for all orientable surfaces. The strengths of one method could
be used to hint at ways of rectifying the weaknesses of the other method. Some specific
instances where further inquiry is warranted are discussed in the following.

Although the (p, q, n)-dipole problem can be encoded as a product of basis elements
in Z2(n), currently there is no known partial differential equation which describes the
generating series for (p, q, n)-dipoles using only a “Z2” amount of information. Currently,
the Join-Cut analysis of the (p, q, n)-dipole problem requires the introduction of an ancillary
problem, the (a, b, c, d)-dipole problem which is significantly more non-central than the
(p, q, n)-dipole problem. Indeed, the introduction of (a, b, c, d)-dipoles is a map-theoretic
refinement of the problem for which there is no known algebraic refinement, i.e. an encoding
of the (a, b, c, d)-dipole problem as a product of basis elements in some centralizer algebra.
Finding a combinatorial argument leading to a partial differential equation for (p, q, n)-
dipoles which relies only on the cycle type of the dipole and the positions of n and n −
1 would be an important step forward in solving the (p, q, n)-dipole problem. If such
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operators could be found, they would likely be much easier to analyze than the operators
for the (a, b, c, d)-dipole problem, since their indeterminates would be indexed by integers
as opposed to combinatorial objects.

Although the (p, n−1, n)-dipole problem can be solved by algebraic means, the solution
given in Theorem 7.1.1 does not yet lead to a closed-form generating series which is a
solution to the partial differential equation given in Theorem 5.2.1. The main barrier is

the lack of a k-independent generating series for the generalized characters γ
(n−k−1,2,1k−1),2
µ,j

similar to the series given in Lemma 7.3.1. If such a series were known, then algebraic
manipulations similar to the ones used in the proof of Lemma 2.4.9 could be used to
write down a closed form for Ψ. Having a closed form expression for Ψ would assist in
conjecturing closed forms for the generating series Ψ′ and Ψ′′ for (a, b, 0, 0)-dipoles and
(a, b, c, d)-dipoles, respectively.

Another method of gaining greater understanding of the relationship between the alge-
braic and differential approaches is through the introduction of a non-central generalization
of the Frobenius transformation. One possible definition of a non-central Frobenius trans-
formation is

Φ1 : π 7→ gr(π)fλ(π)\r(π), (9.1)

where π ∈ Sn, r(π) is the length of the cycle of π containing n, and gr and fλ are power
sum symmetric functions in two different sets of indeterminates. With this definition, if
∆̂ is the differential operator for the non-transitive star factorization problem given by
Equation 3.8, then

∆̂Φ1(Γµ,j) = cµ,jΦ1(Γµ,j). (9.2)

In other words, the Z1-idempotents give the eigenfunctions of ∆̂. A study of the functions
Φ1(Γ(µ,j)) would provide a non-central analogue of the differential approaches to central
problems due to Goulden [6] and Lascoux and Thibon [30]. From a combinatorial point of
view, this is of interest because of the similarity between ∆̂ and the operator (C + J) for
the (p, n− 1, n)-dipole problem, given in Theroem 5.2.1. More precisely, if G+ denotes the
operator given by G+(gr) = gr+1, then when restricted to the space of functions which are
linear in the g-indeterminates,

(C + J) = G+∆̂.

Thus, studying the action of G+ on the functions Φ1(Γµ,j) would provide an alternative
approach to the (p, n− 1, n)-dipole problem, since the action of ∆̂ is well-understood.

It should be noted that Strahov [42] introduces a different notion of a non-central
Frobenius transform, namely

π 7→ tr(π)−1fλ(π)\r(π).

Using this definition, Strahov is able to convert the Murnaghan-Nakayama rule for gener-
alized characters into a Z1-analogue of the Jacobi-Trudi formula. However, this definition
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does not satisfy Equation (9.2), so there is still value in studying the transformation given
in (9.1).

9.3 The non-orientable version of the (p, q, n)-dipole

problem

A natural extension of the (p, q, n)-dipole problem in orientable surfaces is to consider
the problem for all surfaces. Some care must be taken in defining the (p, q, n)-dipole
problem for a non-orientable surface, since the values of p and q are defined with respect
to an orientation on each vertex. This difficulty may be rectified by taking an open set
containing the root edge and both vertices, and uniformly choosing an orientation on this
set.

Some work on the non-orientable version of the (p, q, n)-dipole problem has been done
by Liu and Yang [31] using topological methods. (Although the definition of (p, q, n)-dipoles
used in this paper is not made explicit, it appears to be the one described in the preceding
paragraph.) They are able to determine the number of (p, q, n)-dipoles on the projective
plane and the Klein bottle. Their method is to embed the dipole in a 2n-sided polygonal
representation of the surface such that each side of the 2n-gon is bisected by an edge of the
dipole. This induces an identification of the edges of the 2n-gon, which can be expressed
as a sequence over the alphabet {ai, a−1

i }1≤i≤n in which each symbol appears exactly once.
The values of p and q force the symbols corresponding to the second distinguished edge
to appear in fixed locations in this sequence. The surface can then be identified by deter-
mining whether or not this sequence contains certain excluded subsequences; for example,
if the surface is the projective plane, then there are no subsequences of the form xyx−1y.
The number of dipoles on the surface is then determined by enumerating the number of
sequences which correspond to the given surface.
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Appendix A

Generating Series for
(p, n− 1, n)-dipoles

n p Dn,p

4 1 t2 + t4

4 2 2t2

4 3 2t2

5 1 5t3 + t5

5 2 3t+ 3t3

5 3 2t2 + 4t3

5 4 3t+ 3t3

6 1 8t2 + 15t4 + t6

6 2 20t2 + 4t4

6 3 18t2 + 6t4

6 4 18t2 + 6t4

6 5 20t2 + 4t4

7 1 84t3 + 35t5 + t7

7 2 40t+ 75t3 + 5t5

7 3 32t+ 80t3 + 8t5

7 4 36t+ 75t3 + 9t5

7 5 32t+ 80t3 + 8t5

7 6 40t+ 75t3 + 5t5
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n p Dn,p

8 1 180t2 + 469t4 + 70t6 + t8

8 2 504t2 + 210t4 + 6t6

8 3 460t2 + 250t4 + 10t6

8 4 468t2 + 240t4 + 12t6

8 5 468t2 + 240t4 + 12t6

8 6 460t2 + 250t4 + 10t6

8 7 504t2 + 210t4 + 6t6

9 1 3044t3 + 1869t5 + 126t7 + t9

9 2 1260t+ 3283t3 + 490t5 + 7t7

9 3 1080t+ 3318t3 + 630t5 + 12t7

9 4 1140t+ 3255t3 + 630t5 + 15t7

9 5 1104t+ 3304t3 + 616t5 + 16t7

9 6 1140t+ 3255t3 + 630t5 + 15t7

9 7 1080t+ 3318t3 + 630t5 + 12t7

9 8 1260t+ 3283t3 + 490t5 + 7t7

10 1 8064t2 + 26060t4 + 5985t6 + 210t8 + t10

10 2 24352t2 + 14952t4 + 1008t6 + 8t8

10 3 22568t2 + 16366t4 + 1372t6 + 14t8

10 4 22872t2 + 16002t4 + 1428t6 + 18t8

10 5 22800t2 + 16100t4 + 1400t6 + 20t8

10 6 22800t2 + 16100t4 + 1400t6 + 20t8

10 7 22872t2 + 16002t4 + 1428t6 + 18t8

10 8 22568t2 + 16366t4 + 1372t6 + 14t8

10 9 24352t2 + 14952t4 + 1008t6 + 8t8

11 1 193248t3 + 152900t5 + 16401t7 + 330t9 + t11

11 2 72576t+ 234540t3 + 53865t5 + 1890t7 + 9t9

11 3 64512t+ 232832t3 + 62832t5 + 2688t7 + 16t9

11 4 66528t+ 231252t3 + 62181t5 + 2898t7 + 21t9

11 5 65664t+ 232320t3 + 61992t5 + 2880t7 + 24t9

11 6 66240t+ 231500t3 + 62265t5 + 2860t7 + 25t9

11 7 65664t+ 232320t3 + 61992t5 + 2880t7 + 24t9

11 8 66528t+ 231252t3 + 62181t5 + 2898t7 + 21t9

11 9 64512t+ 232832t3 + 62832t5 + 2688t7 + 16t9

11 10 72576t+ 234540t3 + 53865t5 + 1890t7 + 9t9
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n p Dn,p

12 1 604800t2 + 2286636t4 + 696905t6 + 39963t8 + 495t10 + t12

12 2 1932480t2 + 1529000t4 + 164010t6 + 3300t8 + 10t10

12 3 1811808t2 + 1610640t4 + 201474t6 + 4860t8 + 10t10

12 4 1829664t2 + 1590600t4 + 203112t6 + 5400t8 + 24t10

12 5 1825488t2 + 1596140t4 + 201684t6 + 5460t8 + 28t10

12 6 1826640t2 + 1594500t4 + 202230t6 + 5400t8 + 30t10

12 7 1826640t2 + 1594500t4 + 202230t6 + 5400t7 + 30t10

12 8 1825488t2 + 1596140t4 + 201684t6 + 5460t8 + 28t10

12 9 1829664t2 + 1590600t4 + 203112t6 + 5400t8 + 24t10

12 10 1811808t2 + 1610640t4 + 201474t6 + 4860t8 + 18t10

12 11 1932480t2 + 1529000t4 + 164010t6 + 3300t8 + 10t10

13 1 68428800t2 + 292271616t4 + 109425316t6 + 8691683t8 + 183183t10 + 1001t12 + t14

13 2 6652800t+ 25152996t3 + 7665955t5 + 439593t7 + 5445t9 + 11t11

13 3 6048000t+ 24798840t3 + 8498050t5 + 563640t7 + 8250t9 + 20t11

13 4 6168960t+ 24736932t3 + 8421435t5 + 580041t7 + 9405t9 + 27t11

13 5 6128640t+ 24779392t3 + 8422480t5 + 576576t7 + 9680t9 + 32t11

13 6 6148800t+ 24752420t3 + 8429575t5 + 576345t7 + 9625t9 + 35t11

13 7 6134400t+ 24773496t3 + 8421930t5 + 577368t7 + 9750t9 + 36t11

13 8 6148800t+ 24752420t3 + 8429575t5 + 576345t7 + 9625t9 + 35t11

13 9 6128640t+ 24779392t3 + 8422480t5 + 576576t7 + 9680t9 + 32t11

13 10 6168960t+ 24736932t3 + 8421435t5 + 580041t7 + 9405t9 + 27t11

13 11 6048000t+ 24798840t3 + 8498050t5 + 563640t7 + 8250t9 + 20t11

13 12 6652800t+ 25152996t3 + 7665955t5 + 439593t7 + 5445t9 + 11t11
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Appendix B

Generating Series for (a, b, c, d)-dipoles
on the double torus

In order to determine the generating series for (a, b, c, d)-dipoles on the double torus, it is
first necessary to compute C ′′Ψ′(2) and J ′′Ψ′′(1), where

C ′′ =
∑

R∈{◦,•}∗

 ∑
2≤i≤`(R)

wδRi,•gR1Ri···R`(R)
f(R2···Ri) + wgR1f(R)

 ∂

∂gR
,

Ψ′(2) = x exp(xf(◦))(τ•◦••,2 + xτ•◦••,1 + 2f(•◦)τ•••,3 + τ•••◦,2 + τ••◦•,2 + xf(•◦)τ••◦,2)

+ 3τ•◦◦◦,0

∑
n≥3

xn

n!
D(3,1n−3)f

n−3
(◦) + τ•◦,0f(◦◦◦)

∑
n≥4

(n− 3)xn

n!
D(3,1n−3)f

n−4
(◦)

+ 4τ•◦◦,0f(◦◦)

∑
n≥4

xn

n!
D(2,2,1n−4)f

n−4
(◦) + τ•◦,0f

2
(◦◦)

∑
n≥5

(n− 4)xn

n!
D(2,2,1n−4)f

n−5
(◦)

+ [u4]g•

∑
D∈D

xn(D)

n(D)!
u2g(D)fλ′(D),

J ′′ =
∑

R∈{◦,•}∗

∑
(S)∈S(◦,•)

 ∑
S1S2···S`(S)∈(S)

wδS1,•gR1S1···S`(S)S1R2···R`(R)

 ∂2

∂gR∂f(S)

,
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and

Ψ′′(1) = (wf(•)τ◦◦,• + τ◦◦,ε)x exp(xf(◦))

+ (w2τ••,• + w3f(•)τ••,••)(exp(xf(◦))− 1)

+ (wf(••◦)g•φ•(v) + wf(•)τ•◦,ε + f(•◦)τ◦,ε)φ1(y)x exp(xf(◦))

+ (wf(••)g•φ•(v) + wf(•)τ•,ε)f(•◦)φ2(y)x exp(xf(◦))

+ wf(•)g•φ•(v)

(∑
n≥3

xn

n!
D(3,1n−3)f(◦◦◦)f

n−3
(◦) +

∑
n≥4

xn

n!
D(2,2,1n−4)f

2
(◦◦)f

n−4
(◦)

)
+ Ψ′(1),

To compute C ′′Ψ′(2), the functions τR,j arising in Ψ′(2) may be determined, using The-
orem 8.2.9, by listing the string compositions of R and determining the contribution each
one makes to τR,j. This is done in the following tables. The action of C ′′ on each contribu-
tion is also determined. Thus, to obtain τR,j, sum the terms in the second column of each
of the following tables. To obtain C ′′τR,j, sum the terms in the third column.

R = •◦••

String composition Contribution to τ•◦••,j Contribution to C ′′τ•◦••,j

•◦•• φj+1g••◦•• φj+1(wg••◦••f(•) + g•◦••f(•◦) + wg•••f(•◦•)

+wg••f(•◦••) + wg•f(••◦••))
•, ◦•• φj+2g••f(•◦••) φj+2f(•◦••)(wg••f(•) + wg•f(••))
•◦, •• φj+2g••◦f(•••) φj+2f(•••)(wg••◦f(•) + g•◦f(•◦) + wg•f(••◦))
•◦•, • φj+2g••◦•f(••) φj+2f(••)(wg••◦•f(•) + g•◦•f(•◦)

+wg••f(•◦•) + wg•f(••◦•))
•, ◦, •• φj+3g••f(•◦)f(•••) φj+3f(•◦)f(•••)(wg••f(•) + wg•f(••))
•, ◦•, • φj+3g••f(•◦•)f(••) φj+3f(•◦•)f(••)(wg••f(•) + wg•f(••))
•◦, •, • φj+3g••◦f

2
(••) φj+3f

2
(••)(wg••◦f(•) + g•◦f(•◦) + wg•f(••◦))

•, ◦, •, • φj+4g••f(•◦)f
2
(••) φj+4f(•◦)f

2
(••)(wg••f(•) + wg•f(••))

R = •••

String composition Contribution to τ•••,j Contribution to C ′′τ•••,j

••• φj+1g•••• φj+1(wg••••f(•) + wg•••f(••) + wg••f(•••) + wg•f(••••))
•, •• φj+2g••f(•••) φj+2f(•••)(wg••f(•) + wg•f(••))
••, • φj+2g•••f(••) φj+2f(••)(wg•••f(•) + wg••f(••) + wg•f(•••))
•, •, • φj+3g••f

2
(••) φj+3f

2
(••)(wg••f(•) + wg•f(••))
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R = •••◦

String composition Contribution to τ•••◦,j Contribution to C ′′τ•••◦,j

•••◦ φj+1g••••◦ φj+1(wg••••◦f(•) + wg•••◦f(••) + wg••◦f(•••)

+g•◦f(•••◦) + wg•f(••••◦))
•, ••◦ φj+2g••f(•••◦) φj+2f(•••◦)(wg••f(•) + wg•f(••))
••, •◦ φj+2g•••f(••◦) φj+2f(••◦)(wg•••f(•) + wg••f(••) + wg•f(•••))
•••, ◦ φj+2g••••f(•◦) φj+2f(•◦)(wg••••f(•) + wg•••f(••)

+wg••f(•••) + wg•f(••••))
•, •, •◦ φj+3g••f(••)f(••◦) φj+3f(••)f(••◦)(wg••f(•) + wg•f(••))
•, ••, ◦ φj+3g••f(•••)f(•◦) φj+3f(•••)f(•◦)(wg••f(•) + wg•f(••))
••, •, ◦ φj+3g•••f(••)f(•◦) φj+3f(••)f(•◦)(wg•••f(•) + wg••f(••) + wg•f(•••))
•, •, •, ◦ φj+4g••f

2
(••)f(•◦) φj+4f

2
(••)f(•◦)(wg••f(•) + wg•f(••))

R = ••◦•

String composition Contribution to τ••◦•,j Contribution to C ′′τ••◦•,j

••◦• φj+1g•••◦• φj+1(wg•••◦•f(•) + wg••◦•f(••) + g•◦•f(••◦)

+wg••f(••◦•) + wg•f(•••◦•))
•, •◦• φj+2g••f(••◦•) φj+2f(••◦•)(wg••f(•) + wg•f(••))
••, ◦• φj+2g•••f(•◦•) φj+2f(•◦•)(wg•••f(•) + wg••f(••) + wg•f(•••))
••◦, • φj+2g•••◦f(••) φj+2f(••)(wg•••◦f(•) + wg••◦f(••)

+g•◦f(••◦) + wg•f(•••◦))
•, •, ◦• φj+3g••f(••)f(•◦•) φj+3f(••)f(•◦•)(wg••f(•) + wg•f(••))
•, •◦, • φj+3g••f(••◦)f(••) φj+3f(••◦)f(••)(wg••f(•) + wg•f(••))
••, ◦, • φj+3g•••f(•◦)f(••) φj+3f(•◦)f(••)(wg•••f(•) + wg••f(••) + wg•f(•••))
•, •, ◦, • φj+4g••f

2
(••)f(•◦) φj+4f

2
(••)f(•◦)(wg••f(•) + wg•f(••))

R = ••◦

String composition Contribution to τ••◦,j Contribution to C ′′τ••◦,j

••◦ φj+1g•••◦ φj+1(wg•••◦f(•) + wg••◦f(••) + g•◦f(••◦) + wg•f(•••◦))
•, •◦ φj+2g••f(••◦) φj+2f(••◦)(wg••f(•) + wg•f(••))
••, ◦ φj+2g•••f(•◦) φj+2f(•◦)(wg•••f(•) + wg••f(••) + wg•f(•••))
•, •, ◦ φj+3g••f(••)f(•◦) φj+3f(••)f(•◦)(wg••f(•) + wg•f(••))
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R = •◦◦◦

String composition Contribution to τ•◦◦◦,j Contribution to C ′′τ•◦◦◦,j

•◦◦◦ φj+1g••◦◦◦ φj+1(wg••◦◦◦f(•) + g•◦◦◦f(•◦) + g•◦◦f(•◦◦)

+g•◦f(•◦◦◦) + wg•f(••◦◦◦))
•, ◦◦◦ φj+2g••f(•◦◦◦) φj+2f(•◦◦◦)(wg••f(•) + wg•f(••))
•◦, ◦◦ φj+2g••◦f(•◦◦) φj+2f(•◦◦)(wg••◦f(•) + g•◦f(•◦) + wg•f(••◦))
•◦◦, ◦ φj+2g••◦◦f(•◦) φj+2f(•◦)(wg••◦◦f(•) + g•◦◦f(•◦) + g•◦f(•◦◦) + wg•f(••◦◦))
•, ◦, ◦◦ φj+3g••f(•◦)f(•◦◦) φj+3f(•◦)f(•◦◦)(wg••f(•) + wg•f(••))
•, ◦◦, ◦ φj+3g••f(•◦◦)f(•◦) φj+3f(•◦)f(•◦◦)(wg••f(•) + wg•f(••))
•◦, ◦, ◦ φj+3g••◦f

2
(•◦) φj+3f

2
(•◦)(wg••◦f(•) + g•◦f(•◦) + wg•f(••◦))

•, ◦, ◦, ◦ φj+4g••f
3
(•◦) φj+4f

3
(•◦)(wg••f(•) + wg•f(••))

R = •◦

String composition Contribution to τ•◦,j Contribution to C ′′τ•◦,j

•◦ φj+1g•◦• φj+1(g•◦•f(◦) + wg••f(◦•) + wg•f(•◦•))
•, ◦ φj+2g••f(•◦) φj+2f(•◦)(wg••f(•) + wg•f(••))

R = •◦◦

String composition Contribution to τ•◦◦,j Contribution to C ′′τ•◦◦,j

•◦◦ φj+1g••◦◦ φj+1(wg••◦◦f(•) + g•◦◦f(•◦) + g•◦f(•◦◦) + wg•f(••◦◦))
•, ◦◦ φj+2g••f(•◦◦) φj+2f(•◦◦)(wg••f(•) + wg•f(••))
•◦, ◦ φj+2g••◦f(•◦) φj+2f(•◦)(wg••◦f(•) + g•◦f(•◦) + wg•f(••◦))
•, ◦, ◦ φj+3g••f

2
(•◦) φj+3f

2
(•◦)(wg••f(•) + wg•f(••))

J ′′Ψ′′(1) may be computed by using the expressions for τ -functions given in Table 8.1.
The result of applying J ′′ to each term of Ψ′′(1) is given in the following table; to obtain
J ′′Ψ′′(1), sum the third column.
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τ Contributions to Ψ′′(1) Action of J ′′

τ◦◦,• wxexf(◦)g•◦◦f(•)φ1,1 w2xexf(◦)g•••◦◦f(•)(φ1,1 + wf(•)φ1,2)
+wxexf(◦)g•◦◦◦◦(xφ1,1 + φ2,1)

w2xexf(◦)g•f(•)f(•◦◦)φ1,2 w3xexf(◦)g•••f(•◦◦)(φ1,2 + 2wf(•)φ1,3)
+w2xexf(◦)g•◦◦f(•)f(•◦◦)(xφ1,2 + φ2,2)
+w2xexf(◦)f(•)φ1,2(wg••◦◦• + g•◦◦•◦ + g•◦•◦◦)

wxexf(◦)g•◦f(•)f(◦◦)φ2,1 w2xexf(◦)g•••◦f(◦◦)(φ2,1 + wf(•)φ2,2)
+wxexf(◦)g•◦◦◦f(•)f(◦◦)(xφ2,1 + 2φ3,1)
+2wxexf(◦)f(•)φ2,1g•◦◦◦◦

w2xexf(◦)g•f(•)f(◦◦)f(•◦)φ2,2 w3xexf(◦)g•••f(◦◦)f(•◦)(φ2,2 + 2wf(•)φ2,3)
+w2xexf(◦)g•◦◦f(•)f(◦◦)f(•◦)(xφ2,2 + 2φ3,2)
+2w2xexf(◦)f(•)f(•◦)φ2,2g•◦◦◦

+w2xexf(◦)f(•)f(◦◦)φ2,2(wg••◦• + g•◦•◦)
τ◦◦,ε xexf(◦)g•◦◦φ1,0 xexf(◦)g•◦◦◦◦(xφ1,0 + φ2,0)

wxexf(◦)g•f(•◦◦)φ1,1 wxexf(◦)g•◦◦f(•◦◦)(xφ1,1 + φ2,1)
+w3xexf(◦)g•••f(•◦◦)φ1,2

+wxexf(◦)φ1,1(wg••◦◦• + g•◦◦•◦ + g•◦•◦◦)
xexf(◦)g•◦f(◦◦)φ2,0 xexf(◦)g•◦◦◦f(◦◦)(xφ2,0 + 2φ3,0)

+2xexf(◦)g•◦◦◦◦φ2,0

wxexf(◦)g•f(•◦)f(◦◦)φ2,1 wxexf(◦)g•◦◦f(•◦)f(◦◦)(xφ2,1 + 2φ3,1)
+w3xexf(◦)g•••f(•◦)f(◦◦)φ2,2

+wxexf(◦)f(•◦)φ2,1(wg••◦• + g•◦•◦)
+2wxexf(◦)f(◦◦)φ2,1g•◦◦◦

τ••,• w2(exf(◦) − 1)g•••φ0,2 2w4(exf(◦) − 1)g•••••φ0,3 + xw2exf(◦)g•◦◦••φ0,2

w3(exf(◦) − 1)g•f(•••)φ0,3 3w5(exf(◦) − 1)g•••f(•••)φ0,4 + w3xexf(◦)g•◦◦f(•••)φ0,3

+3w4(exf(◦) − 1)g•••••φ0,3

w3(exf(◦) − 1)g••f(••)φ0,3 3w5(exf(◦) − 1)g••••f(••)φ0,4 + w3xexf(◦)g•◦◦•f(••)φ0,3

+2w4(exf(◦) − 1)g•••••φ0,3

w4(exf(◦) − 1)g•f
2
(••)φ0,4 4w6(exf(◦) − 1)g•••f

2
(••)φ0,5 + w4xexf(◦)g•◦◦f

2
(••)φ0,4

+4w5(exf(◦) − 1)g••••f(••)φ0,4
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τ Contributions to Ψ′′(1) Action of J ′′

τ••,•• w3(exf(◦) − 1)g•••f(•)φ0,3 w4(exf(◦) − 1)g•••••(φ0,3 + 3wf(•)φ0,4)
+w3xexf(◦)g•◦◦••f(•)φ0,3

w4(exf(◦) − 1)g•f(•••)f(•)φ0,4 w5(exf(◦) − 1)g•••f(•••)(φ0,4 + 4wf(•)φ0,5)
w4xexf(◦)g•◦◦f(•••)f(•)φ0,4

+3w5(exf(◦) − 1)g•••••f(•)φ0,4

w4(exf(◦) − 1)g••f(••)f(•)φ0,4 w5(exf(◦) − 1)g••••f(••)(φ0,4 + 4wf(•)φ0,5)
+w4xexf(◦)g•◦◦•f(••)f(•)φ0,4

+2w5(exf(◦) − 1)g••••f(•)φ0,4

w5(exf(◦) − 1)g•f
2
(••)f(•)φ0,5 w6(exf(◦) − 1)g•••f

2
(••)(φ0,5 + 5wf(•)φ0,6)

+w5xexf(◦)g•◦◦f
2
(••)f(•)φ0,5

+4w6(exf(◦) − 1)g••••f(••)f(•)φ0,5

τ•◦,ε φ1(y)xexf(◦)wg••◦f(•)φ0,1 xexf(◦)w2g••••◦(f(•)φ2(y)φ0,1 + φ1(y)φ0,1

+wf(•)φ1(y)φ0,2)
+φ1(y)x2exf(◦)wg•◦◦•◦f(•)φ0,1

φ1(y)xexf(◦)w2g•f(••◦)f(•)φ0,2 xexf(◦)w3g•••f(••◦)(f(•)φ2(y)φ0,2 + φ1(y)φ0,2

+2wf(•)φ1(y)φ0,3)
+φ1(y)x2exf(◦)w2g•◦◦f(••◦)f(•)φ0,2

+φ1(y)xexf(◦)w2f(•)φ0,2(wg•••◦• + wg••◦•• + g•◦••◦)
φ1(y)xexf(◦)wg•◦f(•◦)f(•)φ1,1 xexf(◦)w2g•••◦f(•◦)(f(•)φ2(y)φ1,1 + φ1(y)φ1,1

+wf(•)φ1(y)φ1,2)
+φ1(y)xexf(◦)wg•◦◦◦f(•◦)f(•)(xφ1,1 + φ2,1)
+φ1(y)xexf(◦)wf(•)φ1,1(wg••◦•◦ + g•◦•◦◦)

φ1(y)xexf(◦)w2g•f
2
(•◦)f(•)φ1,2 xexf(◦)w3g•••f

2
(•◦)(φ2(y)f(•)φ1,2 + φ1(y)φ1,2

+2wφ1(y)f(•)φ1,3)
+φ1(y)xexf(◦)w2g•◦◦f

2
(•◦)f(•)(xφ1,2 + φ2,2)

+2φ1(y)xexf(◦)w2f(•◦)f(•)φ1,2(wg••◦• + g•◦•◦)
τ◦,ε xexf(◦)φ1(y)g•◦f(•◦)φ1,0 wxexf(◦)φ2(y)g•••◦f(•◦)φ1,0

+xexf(◦)φ1(y)g•◦◦◦f(•◦)(xφ1,0 + φ2,0)
+xexf(◦)φ1(y)φ1,0(g•◦•◦◦ + wg••◦•◦)

wxexf(◦)φ1(y)g•f
2
(•◦)φ1,1 w2xexf(◦)g•••f

2
(•◦)(φ2(y)φ1,1 + wφ1(y)φ1,2)

+wxexf(◦)g•◦◦f
2
(•◦)φ1(y)(xφ1,1 + φ2,1)

+2wxexf(◦)f(•◦)φ1,1φ1(y)(g•◦•◦ + wg••◦•)
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τ Contributions to Ψ′′(1) Action of J ′′

τ•,ε wxexf(◦)φ2(y)g••f(•)f(•◦)φ0,1 w2xexf(◦)g••••f(•◦)(2f(•)φ3(y)φ0,1 + φ2(y)φ0,1

+wf(•)φ2(y)φ0,2)
+wx2exf(◦)φ2(y)g•◦◦•f(•)f(•◦)φ0,1

+wxexf(◦)φ2(y)φ0,1f(•)(g•◦•◦• + wg••◦••)
w2xexf(◦)φ2(y)g•f(•)f(•◦)f(••)φ0,2 w3xexf(◦)g•••f(•◦)f(••)(2f(•)φ3(y)φ0,2 + φ2(y)φ0,2

+2wf(•)φ2(y)φ0,3)
+w2x2exf(◦)φ2(y)g•◦◦f(•)f(•◦)f(••)φ0,2

+w2xexf(◦)φ2(y)φ0,2f(•)f(••)(g•◦•◦ + wg••◦•)
+2w3xexf(◦)φ2(y)φ0,2g••••f(•)f(•◦)

The remaining terms contributing to Ψ′′(1) are:

Contributions to Ψ′′(1) Action of J ′′

wxexf(◦)φ1(y)g•f(••◦)φ0,1 w2xexf(◦)g•••f(••◦)(φ2(y)φ0,1 + wφ1(y)φ0,2)
+wx2exf(◦)φ1(y)g•◦◦f(••◦)φ0,1

+wxexf(◦)φ1(y)φ0,1(wg•••◦• + wg••◦•• + g•◦••◦)
wxexf(◦)φ2(y)g•f(••)f(•◦)φ0,1 w2xexf(◦)g•••f(••)f(•◦)(2φ3(y)φ0,1 + wφ2(y)φ0,2)

+wx2exf(◦)φ2(y)g•◦◦f(••)f(•◦)φ0,1

+wxexf(◦)φ2(y)φ0,1(2wg•••• + wg••◦• + g•◦•◦)
wg•f(•)f(◦◦◦)f

n−3
(◦) φ0,1 w2g•••f(◦◦◦)f

n−3
(◦) (φ0,1 + wf(•)φ0,2)

+wf(•)φ0,1(3g•◦◦◦◦f
n−3
(◦) + (n− 3)g•◦◦f(◦◦◦)f

n−4
(◦) )

wg•f(•)f
2
(◦◦)f

n−4
(◦) φ0,1 w2g•••f

2
(◦◦)f

n−4
(◦) (φ0,1 + wf(•)φ0,2)

+wf(•)φ0,1(4g•◦◦◦f(◦◦)f
n−4
(◦) + (n− 4)g•◦◦f

2
(◦◦)f

n−5
(◦) )

Finally, the contributions from Ψ′(1) are:

Term of Ψ′(1) Action of J ′′

xexf(◦)g••◦φ1(y) xexf(◦)(xg•◦◦•◦φ1(y) + wg••••◦φ2(y))
xexf(◦)g••f(•◦)φ2(y) xexf(◦)(xg•◦◦•f(•◦)φ2(y) + wg••◦••φ2(y) + g•◦•◦•φ2(y) + 2wg••••f(•◦)φ3(y))
g•f(◦◦◦)f

n−3
(◦) 3g•◦◦◦◦f

n−3
(◦) + (n− 3)g•◦◦f(◦◦◦)f

n−4
(◦)

g•f
2
(◦◦)f

n−4
(◦) 4g•◦◦◦f(◦◦)f

n−4
(◦) + (n− 4)g•◦◦f

2
(◦◦)f

n−5
(◦)

The generating series Ψ′′(2) may be obtained from the above results by replacing g•Rφi,j
with τR,i,j whenever it appears. In order to simplify the presentation, 〈Ψ′′(2)〉 is given below,
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instead of Ψ′′(2). In the following tables, the following definitions are used:

D3 :=
∑
n≥3

D(3,1n−3)

xn

n!
,

D2,2 :=
∑
n≥4

D(2,2,1n−4)

xn

n!
,

D∗3 :=
∑
n≥4

(n− 3)D(3,1n−3)

xn

n!
,

D∗2,2 :=
∑
n≥5

(n− 4)D(2,2,nn−4)

xn

n!
.
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The coefficients of each τ function appearing in 〈Ψ′′(2)〉 are as follows.

τ -function Coefficient in 〈Ψ′′(2)〉
〈τε,0,0〉 wxex(5〈φ6〉+ (13 + 2x)〈φ5〉+ (11 + 5x)〈φ4〉+ (3 + 4x)〈φ3〉+ x〈φ2〉)

+3w(〈φ1〉+ 3〈φ2〉+ 3〈φ3〉+ 〈φ4〉)D3 + w(〈φ1〉+ 〈φ2〉)(D∗3 +D∗2,2)

+4w(〈φ1〉+ 2〈φ2〉+ 〈φ3〉)D2,2 + w[u4]
∑

D∈D u
2g(D) xn(D)

n(D)!

〈τ◦,0,0〉 xex(〈φ5〉+ (2 + x)〈φ4〉+ (1 + 2x)〈φ3〉) + 3(〈φ1〉+ 2〈φ2〉+ 〈φ3〉)D3

+4(〈φ1〉+ 〈φ2〉)D2,2

〈τ•,0,0〉 wxex(5〈φ6〉+ (12 + 2x)〈φ5〉+ (9 + 4x)〈φ4〉+ (2 + 2x)〈φ3〉+ x〈φ2〉)
+3w(〈φ2〉+ 2〈φ3〉+ 〈φ4〉)D3 + w(〈φ1〉+ 〈φ2〉)(D∗3 +D∗2,2)
+4w(〈φ2〉+ 〈φ3〉)D2,2

〈τ◦◦,0,0〉 3(〈φ1〉+ 〈φ2〉)D3 + 4〈φ1〉D2,2 +D∗3 +D∗2,2
〈τ◦◦,0,1〉 wx2ex(〈φ1〉+ 〈φ2〉) + w(D∗3 +D∗2,2)
〈τ◦◦,0,2〉 w2x2ex(〈φ1〉+ 〈φ2〉)
〈τ◦◦,0,3〉 w3xex

〈τ◦◦,0,4〉 2w4xex

〈τ◦◦,0,5〉 w5xex

〈τ◦◦,1,1〉 wx2ex(1 + 〈φ1〉)
〈τ◦◦,1,2〉 w2x2ex(1 + 〈φ1〉)
〈τ◦◦,2,1〉 wxex(1 + 〈φ1〉) + wx2ex

〈τ◦◦,2,2〉 w2xex(1 + 〈φ1〉) + w2x2ex

〈τ◦◦,3,1〉 2wxex

〈τ◦◦,3,2〉 2w2xex

〈τ◦•,0,0〉 xex(〈φ4〉+ (1 + x)〈φ3〉) + 〈φ1〉(D∗3 +D∗2,2)
〈τ•◦,0,0〉 wxex(〈φ5〉+ (2 + x)〈φ4〉+ (1 + 2x)〈φ3〉) + 3w(〈φ2〉+ 〈φ3〉)D3

+4w〈φ2〉D2,2

〈τ••,0,0〉 wxex(4〈φ5〉+ (5 + x)〈φ4〉+ 〈φ3〉+ x〈φ2〉)
〈τ••,0,1〉 w2xex(〈φ2〉+ 2〈φ3〉) + w2(D3 +D2,2)
〈τ••,0,2〉 2w3xex(〈φ1〉+ 2〈φ2〉+ 2〈φ3〉) + w3(D3 +D2,2)
〈τ••,0,3〉 2w4xex(〈φ1〉+ 〈φ2〉)
〈τ••,0,4〉 4w5(ex − 1)
〈τ••,0,5〉 9w6(ex − 1)
〈τ••,0,6〉 5w7(ex − 1)
〈τ••,1,1〉 w2xex〈φ2〉
〈τ••,1,2〉 (2 + 2〈φ1〉+ 〈φ2〉)w3xex

〈τ••,1,3〉 2w4xex(1 + 〈φ1〉)
〈τ••,2,2〉 2w3xex

〈τ••,2,3〉 2w4xex

177



τ -function Coefficient in 〈Ψ′′(2)〉
〈τ◦◦◦,0,0〉 3w〈φ1〉D3 + 4D2,2

〈τ◦◦◦,0,1〉 4wD2,2

〈τ◦◦◦,1,0〉 x2ex〈φ1〉
〈τ◦◦◦,1,1〉 wx2ex〈φ1〉
〈τ◦◦◦,2,0〉 x2ex + xex〈φ1〉
〈τ◦◦◦,2,1〉 wx2ex + (2 + 〈φ1〉)wxex
〈τ◦◦◦,2,2〉 2w2xex

〈τ◦◦◦,3,0〉 2xex

〈τ◦◦◦,3,1〉 2wxex

〈τ◦◦•,0,0〉 x2ex〈φ2〉
〈τ◦◦•,0,1〉 wx2ex〈φ2〉
〈τ◦◦•,0,3〉 w3xex

〈τ◦◦•,0,4〉 w4xex

〈τ◦•◦,0,1〉 wxex〈φ2〉
〈τ◦•◦,0,2〉 w2xex〈φ2〉
〈τ◦•◦,1,1〉 2wxex〈φ1〉
〈τ◦•◦,1,2〉 w2xex〈φ1〉
〈τ◦•◦,2,1〉 wxex

〈τ◦•◦,2,2〉 w2xex

〈τ•◦◦,0,0〉 3w〈φ2〉D3 + 4w〈φ1〉D2,2

〈τ◦••,0,0〉 xex(〈φ3〉+ x〈φ2〉)
〈τ•◦•,0,0〉 wxex(〈φ4〉+ (1 + x)〈φ3〉)
〈τ•◦•,0,1〉 w2xex〈φ2〉
〈τ•◦•,0,2〉 w3xex〈φ2〉
〈τ•◦•,1,1〉 2w2xex〈φ1〉
〈τ•◦•,1,2〉 2w3xex〈φ1〉
〈τ•◦•,2,1〉 w2xex

〈τ•◦•,2,2〉 w3xex

〈τ••◦,0,0〉 wxex(〈φ4〉+ (1 + x)〈φ3〉)
〈τ••◦,1,0〉 wxex〈φ2〉
〈τ••◦,1,1〉 w2xex(〈φ1〉+ 〈φ2〉)
〈τ••◦,1,2〉 w3xex〈φ1〉
〈τ••◦,2,1〉 w2xex

〈τ••◦,2,2〉 w3xex

〈τ•••,0,0〉 wxex(2〈φ3〉+ 3〈φ4〉)
〈τ•••,0,1〉 w2xex(3〈φ2〉+ 2〈φ3〉)
〈τ•••,0,2〉 3w3xex〈φ2〉
〈τ•••,0,4〉 10w5(ex − 1)
〈τ•••,0,5〉 8w6(ex − 1)
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τ -function Coefficient in 〈Ψ′′(2)〉
〈τ◦◦◦◦,0,0〉 3D3

〈τ◦◦◦◦,0,1〉 3wD3

〈τ◦◦◦◦,1,0〉 x2ex

〈τ◦◦◦◦,2,0〉 3xex

〈τ◦◦◦◦,1,1〉 wx2ex

〈τ◦◦◦◦,2,1〉 3wxex

〈τ◦◦•◦,0,0〉 x2ex〈φ1〉
〈τ◦◦•◦,0,1〉 wx2ex〈φ1〉
〈τ◦◦•◦,1,1〉 wxex

〈τ◦◦•◦,1,2〉 w2xex

〈τ◦◦••,0,2〉 xw2ex

〈τ◦◦••,0,3〉 w3xex

〈τ◦•◦◦,1,0〉 xex〈φ1〉
〈τ◦•◦◦,1,1〉 wxex(1 + 〈φ1〉)
〈τ◦•◦◦,1,2〉 w2xex

〈τ◦•◦•,0,0〉 xex〈φ2〉
〈τ◦•◦•,0,1〉 wxex〈φ2〉
〈τ◦••◦,0,1〉 wxex〈φ1〉
〈τ◦••◦,0,2〉 w2xex〈φ1〉
〈τ•◦◦◦,0,0〉 3〈φ1〉D3

〈τ•◦◦•,1,1〉 w2xex

〈τ•◦◦•,1,2〉 w3xex

〈τ•◦•◦,1,0〉 wxex〈φ1〉
〈τ•◦•◦,1,1〉 w2xex〈φ1〉
〈τ•◦••,0,0〉 wxex(〈φ3〉+ (1 + x)〈φ2〉)
〈τ•◦••,0,1〉 w2xex(〈φ1〉+ 〈φ2〉)
〈τ•◦••,0,2〉 w3xex〈φ1〉
〈τ••◦◦,1,1〉 w2xex

〈τ••◦◦,1,2〉 w3xex

〈τ••◦•,0,0〉 wxex(〈φ2〉+ 〈φ3〉)
〈τ••◦•,0,1〉 w2xex〈φ1〉
〈τ••◦•,0,2〉 w3xex〈φ1〉
〈τ•••◦,0,0〉 wxex〈φ3〉
〈τ•••◦,0,1〉 w2xex(〈φ1〉+ 〈φ2〉)
〈τ•••◦,0,2〉 w3xex〈φ1〉
〈τ••••,0,3〉 8w4(ex − 1)
〈τ••••,0,4〉 6w5(ex − 1)
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(a, b, c, d)-dipoles, 75
τ -functions for, 146, 147
generating series, 76
partial differential equation for, 81
solution on the torus, 156

almost symmetric polynomial, 92

branch point, 16
simple, 17

central enumerative problem, 9
central factorization problem, 10
centralizer, 55

standard basis, 57
centre, 9

as symmetric polynomials in Ji, 27
character basis, 20
connection coefficients, 10, 24
standard basis, 9

character, 19
irreducible, 20

as a symmetric function evaluated at
contents, 26

explicit formulae, 28
known explicit formulae, 29

coefficient extraction operator, 8
composition

integer, 34
of a binary string, 140

conjugacy class
of the symmetric group, 8

conjugate
of a complex number, 20
of a marked partition, 94
of a permutation, 7

content, 23
cyclic binary string, 76

degree
of a ramified cover, 16
of a representation, 19

Diaconis-Greene method, 26
dipole, 14

encoding in Z(n), 16
generating series, 32
Join-Cut operators, 68
labelled, 14
number in a surface of specified genus,

33

Euler-Poincaré formula, 12

face, 11
Ferrers diagram, 21
forbidden transposition problem, 161
Frobenius’ Theorem, 28
functional digraph, 6

G-factorization problem, 49
encoding in a centralizer, 56
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Hurwitz problem, 16
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Jacobi-Trudy identity, 28
Jucys-Murphy element, 23

eigenvalues, 23

map, 11
encoding as rotation system, 12
encoding in Z(n), 13
rooted, 12

Murnaghan-Nakayama Rule
for generalized characters, 103
for ordinary characters, 29

naturally central, 9

ordinary edge, 38

(p, n− 1, n)-dipoles
τ -functions for, 137, 140
encoding in Z1(n), 74
Join-Cut operators, 70
partial differential equation for, 72
solution

in terms of binomial coefficients, 117
in terms of generalized characters, 113
in terms of irreducible characters, 121

symmetry conjecture, 119
partition, 7

hook, 28
permutation

block-reduced, 41
cycle type, 7
notation, 6

permutation factorization problem
central specialization, 10
encoding in C[Sn], 9
solution for full cycles, 30, 34

φ-function, 141
(p, q, n)-dipole, 37

as summation indices of a two-point func-
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encoding in C[Sn], 39
encoding in Z2(n), 55, 60
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labelled, 38
number on the double torus, 43
number on the torus, 43
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pre-map, 13

ramification point, 16
Region i, 37
representation, 19

irreducible, 20
Riemann-Hurwitz formula, 17
root corner, 38

semi-normal units, 22
star factorization problem
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encoding in Z1(n), 56
for special conjugacy classes, 123
in terms of content polynomials, 126
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in terms of generalized characters, 122
in terms of irreducible characters, 125
Join-Cut operators, 48

transitive, 44
a priori proof of centrality, 66
Join-Cut operators, 46
solution, 47

surface, 11
symmetric function, 25
symmetric group, 6

algebra generated by, 8
inner product, 20

tableau
semi-standard, 26
standard, 21
with a distinguished box, 86

vertex permutation pair, 14

Z1-factorization problem
generating series for full cycles, 130

Z1(n)
as almost symmetric polynomials in Jucys-

Murphy elements, 94, 95
commutativity, 59
connection coefficients, 92
orthogonal idempotent basis, 86
sizes of orbits, 59
standard basis, 58

expressed in terms of idempotents, 91
Z1-factorization problem, 53

encoding in Z1(n), 58
Z2(n)

noncommutativity, 60
sizes of orbits, 61
standard basis, 59
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