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Abstract

A predictive, forward-dynamic model and computer simulation of human gait has im-

portant medical and research applications. Most human simulation work has focused on

inverse dynamics studies to quantify bone on bone forces and muscle loads. Inverse dy-

namics is not predictive - it works backwards from experimentally measured motions in an

effort to find the forces that caused the motion. In contrast, forward dynamics determines

how a mechanism will move without the need for experimentation. Most of the forward

dynamic gait simulations reported consider only one step, foot contact is not modeled, and

balance controllers are not used. This thesis addresses a few of the shortcomings of current

human gait simulations by contributing an experimentally validated foot contact model, a

model-based stance controller, and an experimentally validated model of the relationship

between foot placement location and balance.

The goal of a predictive human gait simulation is to determine how a human would walk

under a condition of interest, such as walking across a slippery floor, using a new lower

limb prosthesis, or with reduced leg strength. To achieve this goal, often many different

gaits are simulated and the one that is the most human-like is chosen as the prediction for

how a person would move. Thus it is necessary to quantify how ‘human-like’ a candidate

gait is. Human walking is very efficient, and so, the metabolic efficiency of the candidate

gait is most often used to measure the performance of a candidate gait. Muscles consume

metabolic energy as a function of the tension they develop and the rate at which they are

contracting. Muscle tension is developed, and contractions are made in an effort generate

torques about joints in order to make them move. To predict human gait, it is necessary

for the simulation to be able to walk in such a way that the simulated leg joints use similar

joint torques and kinematics as a human leg does, all while balancing the body. The joint

torques that the legs must develop to propel the body forward, and balance it, are heavily

influenced by the ground reaction forces developed between the simulated foot and the

ground. A predictive gait simulation must be able to control the model so that it can

walk, and remain balanced while generating ground reaction force profiles that are similar

to experimentally observed human ground reaction force profiles.

Ground reaction forces are shaped by the way the foot interacts with the ground, making

it very important to model the human foot accurately. Most continuous foot contact

models present in the literature have been experimentally validated using pendulum impact
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methods that have since been shown to produce inaccurate results. The planar foot contact

model developed as part of this research was validated in-vivo using conventional force

plates and optical tracking markers. The experimental data was also highly useful for

developing a computationally efficient foot model by identifying the dominant contact

properties of a real foot (during walking), without the complexity of modelling the 26

bones, 33 joints, over 90 ligaments, and the network of muscles that are in a real foot.

Both ground reaction forces and the balance of the model are heavily influenced by

the way the stance limb is controlled. Anthropomorphic multibody models typically have

a fragile sense of balance, and ground reaction force profiles that do not look similar to

experimentally measured human ground reaction force profiles. In contrast, the simple

point-mass spring-loaded-inverted-pendulum (SLIP) can be made to walk or run in a bal-

anced manner with center-of-mass (COM) kinematics and ground reaction force profiles

that could be mistaken for the equivalent human data. A stance limb controller is proposed

that uses a planar SLIP to compute a reference trajectory for a planar anthropomorphic

multibody gait model. The torso of the anthropomorphic model is made to track the com-

puted trajectory of the SLIP using a control system. The aim of this partitioned approach

to gait simulation is to endow the anthropomorphic model with the human-like gait of the

simpler SLIP model.

Although the SLIP model-based stance-controller allows an anthropomorphic gait model

to walk in more human-like manner, it also inherits the short comings of the SLIP model.

The SLIP can walk or run like a human, but only at a fixed velocity. It cannot initiate

or terminate gait. Fall preventing movements, such as gait termination and compensatory

stepping, are of particular relevance to kinesiologists and health care professionals. Ki-

nesiologists have known for nearly a decade that humans restore their balance primarily

by systematically altering their foot placement location. This thesis presents a human

experimental validation of a planar foot placement algorithm that was originally designed

to restore the balance of bipedal robots. A three-dimensional (3D) theoretical extension

to the planar foot placement algorithm is also presented along with preliminary human

experimental results. These models of foot placement can be used in the future to improve

the capabilities of gait simulations by giving simple models human-like compensatory step-

ping abilities. The theoretical extension also provides some insight into how instability and

balance performance can be quantified. The instability and balance performance measures

have important applications for diagnosing and rehabilitating balance problems.
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Despite all of the progress that has been made, there is still much work to be done. Work

needs to be continued to find methods that allow the anthropomorphic model to emulate

the SLIP model more faithfully. Experimental work needs to be completed to realize the

potential diagnostic and rehabilitation applications of the foot placement models. With

continued effort, a predictive, balanced, multi-step gait simulation can be developed that

will give researchers the time-saving capability of computerized hypothesis testing, and

medical professionals improved diagnostic and rehabilitation methods.
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s
)

νy Desired vertical acceleration of the torso of the multibody models (m
s2

)

Ky Penalty term for the torso vertical position error ( 1
s2

)

Dy Penalty term for the torso vertical velocity error (1
s
)

γiSS Joint angles of the single stance control model (rad)

τ iSS Joint torques of the single stance control model leg (Nm)

τSW The hip torque that the swing limb applies to the pelvis of the single stance control

model (Nm)

~FSW The force that the swing limb applies to the pelvis of the single stance control model

(N)

γiDS Joint angles of the double stance control model (rad)

τ iDS Joint torques of the double stance control model (Nm)

F i
DS The force vector that the each leg of the double stance model applies to the hip joint

(N,N)

ψiSW Joint angles of the swing control model (rad)

τ iSW Joint torques of the swing control model (Nm)

(Ax,Ay) The vector between the COM and the ankle of the rigid foot used in the single

and double stance control models (m,m)
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(Cx,Cy) The vector between the COM and the revolute joint (which represents the COP)

used in the single and double stance control models (m,m)

xCOP The location of the revolute joint (which represents the COP) of the stance control

models (m)

ẋCOP The translational velocity of the revolute joint (which represents the COP) of the

stance control models (m)

[MSS],[MDS], [MSW ] The mass matrix of the single stance, double stance, and swing

control models

~CSS,~CDS, ~CSW The vector of Coriolis, centripetal and gravitational forces applied to the

single stance, double stance and swing models

[PSS],[PDS],[PSW ] The matrix that transforms applied joint torques into generalized forces

for the single stance, double stance and swing control models

[QSS] The matrix that transforms the hip force and torque the swing limb applies to the

pelvis into generalized forces

[TSS] The matrix that maps joint angular accelerations into ẍ,ÿ, and θ̈ of the torso COM

~DDS The vector of position constraints, applied at the two hips, in the double stance

control model

[BSS] The matrix that transforms the Lagrange multipliers (of the hip joint constraints)

into reaction forces

~λ The vector of Lagrange multipliers associated with the hip joint constraint equations

used in the double stance control model

~F i
DS The force vector that is applied at hip i of the multibody model (N,N)

Ch. 6 Discrete Planar Balance Corrections using Foot Placement

FPE Foot placement estimator

HFP Human foot placement location

FPE-HFP Error Distance between the FPE and the HFP
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MT Distal 5th metatarsal head

C Fibular trochlea of the calcaneus

LM Lateral malleolus

FH Proximal fibular head

GT Greater trochanter

AP Acromion process

εLM Horizontal distance between the FPE and LM during contact onset (cm)

εMT Horizontal distance between the FPE and MT (when foot is flat) during contact

onset (cm)

µ Average

σ Standard deviation

ρ Correlation coefficient

g The acceleration due to gravity (9.81 m/s2)

h COM height (m)

hpeak Peak height the COM can reach with 1 foot on the ground (m)

Ho1 Angular momentum about contact point o, prior to contact (kg m2/s)

Ho2 Angular momentum about contact point o, after contact (kg m2/s)

HLMGP Angular momentum about the ground projection of the LM (kg m2/s)

Jcom Moment of inertia about the COM (kg m2)

Ji Inertia of the ith segment (kg m2)

m Mass (kg)

mi Mass of the ith segment (kg)

L Leg length (m)

~ri Vector to the COM of the ith segment (m)

~rCOM Vector to the entire body’s COM (m)

~rLM Vector to the LM (m)
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~rLMGP Vector to the LM ground projection (m)

T Kinetic energy of the body (J)

T + V System energy (J)

tC Time of contact onset (s)

V Potential energy of the body (J)

~v(t)i Linear velocity of the COM of the ith segment (m/s)

vx X component of the pre-contact COM velocity (m/s)

vy Y component of the pre-contact COM velocity (m/s)

X(φ) The location of the FPE on the floor (m)

φ Angle between the vertical and the lead leg (rad)

sφ sin(φ)

cφ cos(φ)

∂X(φ)
∂HLMGP

Rate of change of X(φ) w.r.t HLMGP (m/[kg m2/s])

∂X(φ)
∂JCOM

Rate of change of X(φ) w.r.t JCOM (m/[kg m2])

∂X(φ)
∂L

Rate of change of X(φ) w.r.t L (m/m)

∂X(φ)
∂(T+L)

Rate of change of X(φ) w.r.t T + L (m/J)

~ωi Angular velocity of the ith segment about its COM (rad/s)

θ̇1 Angular speed of the body before contact (rad/s)

θ̇2 Angular speed of the body after contact (rad/s)

Ch. 7 Discrete Spatial Balance Corrections using Foot Placement

3DFPE Three dimensional Foot Placement Estimator

Euler Pendulum

p The point of contact between the contact ring and the ground

q The center of mass of the Euler pendulum
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1̂ 2̂ 3̂ The local coordinate frame of the Euler pendulum. Note that the Euler pen-

dulum can spin relative to this local axis in the 1̂ direction

ẑ The vertical unit direction vector

r̂ The horizontal unit vector created by crossing the 2̂ and ẑ axes

~ω123 The angular velocity of the 1̂ 2̂ 3̂ frame ( rad
s

)

ωrel The angular velocity of the Euler pendulum about the 1̂ axis in the inertial frame

( rad
s

)

m The mass of the Euler pendulum (kg)

[J ] The inertia matrix of the Euler pendulum (kg m2)

J1,J2 The entries of the main diagonal of the Euler pendulum inertia matrix (kg m2)

c The height of the Euler pendulum (m)

a The diameter of the base of the Euler pendulum (m)

β The rotation of the Euler pendulum relative to the 1̂ 2̂ 3̂ frame (rad)

α The rotation of the Euler pendulum about the 2̂ axis (rad)

θ The rotation of the 1̂ 2̂ 3̂ frame about the ẑ axis (rad)

~Lq The angular momentum

~τR The rolling resistance torque between the contact ring and the ground (Nm)

~τF The spin friction torque between the contact ring and the ground (Nm)

~F The reaction force vector at the point of contact p (N,N,N)

Lβ The rolling resistance terms that affect β̈ ( rad
s2

)

Lα The rolling resistance terms that affect α̈ ( rad
s2

)

Lθ The rolling resistance terms that affect θ̈ ( rad
s2

)

~rq/p The vector from point p, the contact point, to point q, the center of mass of the Euler

pendulum (m,m,m)

~rp/q The vector from point q, the center-of-mass, to point p, the contact point of the Euler

pendulum (m,m,m)
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~Hp0, ~Hp1, ~Hp2 The angular momentum of the Euler pendulum about point p a finite time

before contact, the instant prior to contact, and the instant following

contact while rocking (kgm
2

s
)

~ω0,~ω1,~ω2 The angular velocity of the Euler pendulum about point p a finite time before

contact, the instant prior to contact, and the instant following contact while

rocking ( rad
s

)

U ,U0,U1,U2 The potential energy of the Euler pendulum while spinning; while rocking

and a finite time prior to contact, the instant before contact, and the instant

after contact (J)

T ,T0,T1,T2 The potential energy of the Euler pendulum while spinning; while rocking and

a finite time prior to contact, the instant before contact, and the instant after

contact (J)

V ,V0,V1,V2 The potential energy of the Euler pendulum while spinning; while rocking and

a finite time prior to contact, the instant before contact, and the instant after

contact (J)

~vcm The velocity of the center-of-mass, point q, of the Euler pendulum (m
s

)

R The magnitude of the rolling resistance torque (Nm)

κ The coefficient of rolling resistance (ms2)

ω̂T The unit vector that is aligned with the angular velocity of the pendulum tangent to

the surface

S The magnitude of the spin friction torque (Nm)

µS The coefficient of spinning friction (ms)

ω̂N The unit vector that is aligned with the angular velocity of the pendulum normal to

the surface

hpeak The peak height of the center of mass of the pendulum with the contact ring still

touching the ground (m)

~FC The average contact force during a rocking contact (N,N,N)

∆t The impulse duration during a rocking contact (s)
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µL The coefficient of translational friction

Modeling Foot Placement

~HGP The angular momentum of the inverted pendulum taken about the center-of-mass

ground-projection location (kgm
s

)

û The horizontal unit vector that is perpendicular to the horizontal components of the

angular momentum vector

ε The fraction of the angular momentum vector that is perpendicular to û (%)
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φ The FPE angle the leg must be held at (relative to the vertical) at contact to catch

the balance of the pendulum (rad)

h The height of the center of mass above the ground plane (m)

~v
||
1 The component of the translational velocity of the center-of-mass of the pendulum

projected into a vertical plane with unit vectors û and k̂ (m
s

)

~v
||
1xy The horizontal velocity component of ~v

||
1 (m

s
)

~v
||
1z The vertical velocity component of ~v

||
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s
)

ω⊥1 The angular velocity of the inverted pendulum that is perpendicular to both û and

k̂ ( rad
s

)

LFPE(φ) The coordinates of the 3DFPE on the floor relative to the center-of-mass ground

projection location (m,m,m)
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ground projection location (m,m,m)

kCAP The stiffness of the spring used in Pratt’s [82] equivalent linear inverted pendulum
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f0,CAP The pre-load placed on the spring used in Pratt’s [82] equivalent linear inverted
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Chapter 1

Introduction

A computer model and simulation system capable of predicting the kinetics and kinemat-

ics of human locomotion would be a useful tool in the many disciplines concerned with

assessing and improving the way people walk and balance. The quality of the solution

from such a system is intimately linked to the fidelity of the model, the access the control

system gives the model to the human motion space, and the definition that is used to mea-

sure how human-like a particular gait is. Each of these problem facets are only partially

understood; each contain active areas of research. While it is generally accepted that it

is reasonable to use idealized joints to approximate the hips, knees and ankles of a gait

model, there is no accepted way to model the foot-ground contact, nor an accepted way

to validate the foot contact model. The freedom of movement the control system gives to

the model is related to the means that are used to plan and manipulate the motion of the

model. If a purely optimization-based approach is used [5, 1, 2] then the access the model

has to the human motion space is limited by the tendency of the optimization routine to

become trapped by local minimum. If a control system is used to balance the biped [64],

the access it has to the human motion space is related to how easily the control system can

be manipulated to make functionally-relevant changes in the gait of the model. The ability

of a computer simulation to access the human motion space is typically not mentioned,

nor quantified in the literature. Finally, the kinds of solutions found by the system are

heavily influenced by the definition used to measure how human-like a particular gait is.

Although gaits which consume a minimum of metabolic energy are often defined as being

human-like [5, 1, 65], this definition is incomplete. It has been experimentally shown that
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humans select step-length and step-frequency combinations that coincide with metabolic

minima [113]. It has not been shown that humans choose muscle activation patterns that

consume a minimum of metabolic energy. Electromyographic (EMG) recordings of mus-

cle activity during walking [109] actually show that humans do not choose metabolically

minimal muscle activation patterns due to the presence of co-contraction of agonist and

antagonist muscle pairs. Despite the EMG evidence, cost functions that favour metaboli-

cally minimal muscle activation patterns are commonly used to quantify how human-like a

particular gait is [1, 2, 65, 4]. It is clear that the field of human gait simulation is fraught

with imperfect models, partial access to the human motion space, and incomplete measures

for how human-like a particular motion is.

The means used to find a human-like movements affect how useful the research is outside

of the computer. While optimization-based approaches [5, 2] and heuristic methods [97]

are sufficient to make a computer model walk in a human-like way, these methods do not

yield insight into how a human accomplishes this motion. Instead, if the model is used

to aid in the development and assessment of candidate locomotor control systems, it may

eventually be possible to not only simulate human locomotion in a computer, but also to

understand how humans control their gait in real life.

Computer models have been used to aid in the formulation and assessment of human-

like control systems of the upper limb for over twenty years. Beginning in the mid 1980s a

productive cycle of theoretical and experimental research began on the control of the upper

limb, enabled by haptic robots [40]. These haptic robots allowed researchers to apply force

fields to the human arm in motion [69], to observe and quantify motor learning, and also

to validate or refute their own mathematical models of upper limb control [89]. Bhushan

and Shadmehr’s planar upper limb motor control model [6] represents the current state of

the art which is quite sophisticated, taking into account muscle dynamics and signal delays

that are characteristic of the human body. Bhushan and Shadmehr’s model and control

system was able to exhibit similar learning behaviour and transient responses (when the

force field created by the haptic robot changed) as human subjects. These advanced models

of motor control have been judiciously used to develop robotic rehabilitation programs for

stroke victims that are at least as effective, and in some cases more effective [58], at upper

limb control rehabilitation than a therapist.

The study of human balance has not enjoyed the same productive cycle of theoretical

and experimental research. This cycle of research has not yet begun because haptic ma-

2



chines capable of applying a force field to the lower limb and torso during walking are still

quite novel [88, 77] making it very challenging to systematically validate or refute math-

ematical formulations for balance control. Correspondingly, diagnosing balance maladies,

and rehabilitating a patient’s balance after it has been damaged, are both very difficult.

Diagnosing balance problems is challenging because there is not yet an accepted way of

measuring how unstable a biped is, nor how effectively the biped restores its balance. While

there are rigorous mathematical definitions of balance used by the robotics and dynamic

walking community, balance cannot currently be assessed in a general manner because

these methods assume small perturbations (such as shifting a back pack) that do not dis-

turb the periodic motion of walking [15]. Humans, in contrast, are often subjected to

large perturbations (such as tripping), and catch their balance using a single, well-placed,

aperiodic, compensatory step. The rehabilitation of human walking is also limited. Cur-

rent approaches consist of supporting a patient’s body weight using a suspension system

while trained physiotherapists guide their legs through walking motions . Understandably

this therapy is both physically demanding on the physiotherapists and expensive for the

patients. Robotic therapy machines [45] designed to guide the patient’s legs through a

normal kinematic walking pattern do not appear to be as effective as similar therapy deliv-

ered by a physiotherapist [43, 106]. A recent advancement in rehabilitation technology [77]

takes a different approach. Instead of forcing the subject’s legs through a walking motion,

the machine catches the subject if they fall and applies support or perturbations to the

subject’s torso as they move. Although this new approach looks promising, it has not yet

been experimentally established if this new therapy is superior to previous attempts. It is

my hope that improvements in the simulation of human gait will lead to improvements in

balance diagnosis and balance rehabilitation.

1.1 Motivating Work: Predicting Human Gait using

Joint Trajectories

The first gait model and control system presented in Ch. 3 of this thesis controls the

periodic trajectory of the leg joints, then regulates the orientation of the torso to allow

the model to walk multiple steps without falling over. Although this model is one of

the very few humanoid models in the literature that can walk many steps without falling
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[65, 97, 112, 76, 25, 96], the formulation is not flexible enough to allow the trajectories of

the legs to be adjusted without causing the model to fall. In addition, the kinematics and

kinetics of this model compare poorly with experimental human data. The poor ground

reaction force profiles of this model inspired further work into foot contact modeling, and

the control of the stance phase in Chs. 4 and 5. The fragile sense of balance of this model

led to the work on foot placement and balance in Chs. 6 and 7.

1.2 Volumetric Foot Contact Model

To have a model that can walk like a human, it is necessary to accurately model the foot

because the foot heavily influences the kinetics of the model. The foot contact model affects

how the ground reaction force profile develops, which in turn affects joint torques, and thus

the metabolic energy consumption of the model. Interestingly, although there are many

different foot models in the literature, none have been validated in-vivo in a convincing

manner. Chapter 4 presents an analytical foot pad, and two-segment foot model formulated

using a lumped parameter volumetric contact model. Tangential forces are modeled using

a Coulomb friction model. A novel in vivo method was used to validate both the foot pad

and foot contact models.

1.3 Predicting Human Gait using Simple Models and

Torso Trajectories

The poor performance of the foot contact model used in Ch. 3 is only partially responsible

for the un-human ground reaction force profiles that the simulation predicted. Ground

reaction force profiles are created and shaped by not just the foot, but the way in which

the entire leg is controlled during the stance phase. Formulating a stance leg controller that

yields human-like ground reaction force profiles is very challenging because there are many

gaits that are humanly possible, yet experimental records suggest [109] that we choose

to walk in a very specific way. Finding the most likely gait a human would use is often

treated as an optimization problem. The most common formulation for predicting human

gait involves first deriving the equations of motion for a multibody musculo-skeletal model
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of a human, then formulating a cost function that has a minima at a likely solution, and

finally solving this problem using an optimization method.

The tractability of any optimization problem depends strongly on the selected optimiza-

tion variables. While it is understood what optimization variables are most appropriate

for some well-studied problems — such as finding fuel optimal flight paths for aircraft —

it is not clear what the most appropriate optimization variables are for human gait sim-

ulation. Muscle excitations are commonly used as optimization variables for high-fidelity

musculo-skeletal models [1]. Although systems that use muscle excitations as optimization

variables can find metabolically minimal gaits given a target trajectory, there is evidence

that the cost function space has many local minima [2] — two different metabolic minimas

were found with very similar joint kinematics — making it challenging to do something as

basic as changing the length of a stride, or the path of the torso during stance. In contrast,

the optimization variables used for simple point-mass, telescoping leg gait models are the

contact angle of the leg, and the linear force generated by the telescoping leg [95]. The

choice of optimization variables for the simple model makes it easy for the optimization

algorithm to change higher-level variables such as foot contact location and center-of-mass

trajectory because it can set these variables directly due to the greatly simplified swing

phase a massless leg affords. At the present time, simple models appear to be best suited

for finding desirable gross parameters of the stance phase — such as foot placement lo-

cation and center-of-mass (COM) trajectory — while detailed musculoskeletal models are

better suited to finding joint torques and muscle excitation profiles that realize a given

trajectory.

The intent of the research presented in Ch. 5 is to develop a control system that will

allow the optimization variables to be higher-level variables (such as torso trajectory) rather

than low-level variables (such as muscle activations), making it easy for the optimization

routine to make functionally relevant kinematic changes to the gait of the model. This will

be achieved by partitioning the difficult problem of simulating human walking into two

simpler problems. A relatively simple model will be used to find human-like torso COM

trajectories. The multibody model will emulate the simple models gait through the use of

a control system. This partitioned approach allows the optimization routine to adjust the

gait of the simple gait model, and then assess the quality of its solution by simulating the

multibody model; ideally avoiding many local minima in the process.

The stance phase will be the main focus of the control system development because it
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requires the highest torques — and therefore consumes the most metabolic energy — and

is responsible for controlling the state of the torso. The stance limb control system will

be developed to ensure that the torso of the multibody model converges to a candidate

torso trajectory. Candidate torso trajectories can be generated by any means, however, in

this thesis candidate torso trajectories will be generated by a simple spring loaded inverted

pendulum (SLIP) model because it is able to emulate human COM trajectory and ground

reaction force (GRF) profiles well. Introducing a control system for the stance limb has

several practical benefits: balance is guaranteed as long as the stance limb can fully control

the state of the torso, and it is relatively easy for an optimization routine to alter the target

path of the torso, the most massive body segment.

A series of planar gait models of increasing likeness to the human form will be used in

Ch. 5 to develop the input-output feedback linearization control systems [44] that will ulti-

mately allow a multibody gait model to emulate a SLIP model. The first model considered

is a bipedal extension of an existing monopedal, articulated SLIP (ASLIP) model [79].

The bipedal ASLIP model is closer to the human form than the SLIP model because it has

torso dynamics, though it retains the actuated massless prismatic legs of its predecessor.

The second model considered is the articulated leg ASLIP (LASLIP) model, which in-

cludes massless articulated legs that have hip, knee and ankle joints. Both the ASLIP and

the LASLIP simplified models interact with the ground through an instantaneous revolute

joint, have massless legs, and an instantaneous swing phase. The final model considered

is an 11 degree-of-freedom (DOF) multibody sagittal plane model that interacts with the

ground using a foot comprised of two spherical contacts (one for the heel and another for

the forefoot) attached to a foot model that is allowed to flex through the metatarsals.

The stance limb control systems presented in Ch. 5 are conceptually very different from

the one employed in Ch. 3. In Ch. 3, and in the vast majority of the literature, the end

goal of the control system is periodic leg motion that leads to balanced walking. In Ch.

5 the end goal of the control system is to use the legs to control the state of the torso

such that it moves in a human-like manner. By using the legs to control the state of the

torso, periodic leg movement ceases to be the goal of the control system, but becomes a

side effect of having legs of finite length. It should be noted that the state of the stance

leg is not directly controlled in this torso-centric control paradigm, but instead is allowed

to evolve throughout the stance phase.

The models used in Ch. 5 are of modest fidelity relative to their upper limb coun-
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terparts. Muscle dynamics and transmission delays are ignored, and so, both the control

system and joint actuators can respond far faster than their human counterparts. Although

bipedal models have been developed that include neuromuscular dynamics, rigorous non-

linear control systems have not yet been developed to allow these models to walk. These

higher-fidelity biomechanical models have been made to walk using experimental data to

provide a tracking reference [99], powerful optimization methods [5, 1], or heuristic control

techniques [97]. While tracking experimental data, using optimization, or heuristic control

systems may yield results for a particular simulation, none of these approaches will yield

insight into how, or why, a human accomplishes such motions. The model simplifications

used in Ch. 5 have been made in an effort to make the task of control system formulation

and analysis tractable. The control systems formulated in this chapter do not yet have any

clinical application but instead contribute to ongoing efforts to model human gait.

1.4 Sagittal Plane and Spatial Balance Corrections

using Foot Placement

In Ch. 5, a control system was used to allow a multibody model to emulate the SLIP, ideally

inheriting the human-like gait of the SLIP in the process. Similarly, the multibody model

also inherits the limitations of the SLIP model that it is emulating. Although the SLIP

can be made to run and walk with human-like COM and GRF profiles, it can only do so

at a fixed velocity. While the SLIP model can maintain a very consistent gait, the control

it has over its balance is poor because it cannot stop. Gait termination is of particular

interest to kinesiologists and clinicians, because humans use these types of movements to

prevent falls and ultimately injury. Clearly, the simple model that the multibody model

emulates needs to be able to catch its balance like a human.

In this thesis, the concept of balance is explored using two different paradigms: the

continuous balance control that the stance limb applies to the torso during ground contact

in Ch. 5 and the discrete changes of balance that occur when a swing limb becomes a

stance limb in Chs. 6 and 7. This paradigm division is necessary because experimental data

suggest that humans modulate both the location of their foot placement on the ground

plane [74] and the torques they apply to the hip, knee and ankle joints in response to

perturbations [19]. The connection between foot placement location and discrete balance
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correction is established theoretically using a Lyapunov stability analysis [44] applied to

simplistic planar [108] and spatial models in Chs. 6 and 7, respectively. Following the

stability analysis, a method for calculating a foot placement location that can restore

balance to the unstable model is presented. The accuracy of the foot placement models,

and their assumptions, are examined experimentally using human kinetic and kinematic

data. The resultant foot placement algorithms will be useful for simulating human gait

and may also be of clinical use to quantify imbalance and balance performance.
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Chapter 2

Literature Review

In this chapter we briefly review the literature associated with multi-step human gait

simulations, contact modeling of the feet, the discrete balance corrections created by foot

placement location, and continuous balance control provided by the stance limb.

2.1 Motivating Work: Predicting Human Gait using

Joint Trajectories

Forward-dynamic human gait simulations usually only simulate a single step [5, 24] in an

effort to avoid modelling foot contact and formulating balance control systems. The few

multi-step forward-dynamic simulations in the literature have used a relatively fixed gait

[65, 97, 112, 76, 25, 96]. In contrast, Peasgood et al ’s [76] forward dynamic simulation

is predictive: the simulated gait is altered in an effort to find metabolically efficient or

‘human-like’ gaits, allowing it to estimate how a person would walk in a new situation —

e.g. with a new lower-limb prosthesis.

A computer simulation that is able to reliably predict how a person would walk in a

new situation would be extremely useful to many health care professionals and researchers

studying human gait. Peasgood et al.’s system finds ‘human-like’ or metabolically min-

imal gaits by searching for joint trajectories of the hip, knee and ankle that minimize

metabolic cost per distance traveled. The model is not supported or balanced by any
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artificial means, and so, poorly chosen trajectories can overwhelm the balance controller,

causing the model to fall. Chapter 3 will evaluate and extend Peasgood et al.’s work, and

identify the shortcomings of current multi-step forward dynamic gait simulations.

2.2 Volumetric Foot Contact Model

The foot forms an important kinematic and kinetic boundary between the human body and

the ground. This is true both in the contexts of real and simulated human walking. If the

simulated foot-ground contact is not representative of a human’s, then the loads applied

to the simulated joints of the leg will also be different. The stance phase of a gait model

with an unrealistic foot will never simultaneously achieve human-like stance kinematics and

kinetics. The foot contact model used in Ch. 3 is not representative of a human foot, and is

partially responsible for the un-human ground reaction profiles generated during Peasgood

et al.’s [76], and Millard et al.’s [65], predictive forward-dynamic gait simulations. An

accurate model of the foot is a prerequisite for an accurate simulation of human walking.

Modelling the human foot is very challenging. The human foot is comprised of 26 bones

that are connected by over 90 flexible ligaments, actuated by a multitude of muscles,

and padded on the bottom by a layer of specialized fat to protect the skeleton during

foot-ground contact. The foot has been modeled using finite-element (FE) methods [33],

and lumped parameter continuous contact models [65, 1, 97, 76, 112]. While FE models

are capable of simulating the stress and strain distribution of the foot tissue to a high

level of detail, they are computationally intensive to solve. Although lumped parameter

models do not simulate the deformation of tissue, and thus can only be viewed as crude

approximations, their vastly superior computational efficiency makes them attractive when

the foot is not the entire focus of the numerical study.

When modelling the foot, it is important to accurately model the specialized fat tissue

that the foot pads are comprised of, as well as the structure and movement of the foot

as a whole. Studies to determine the stiffness and damping properties of human foot

pads have failed to produce consistent results. Traditionally in vivo experimental results

disagree by orders of magnitude from in vitro experiments. In the past, in vivo experiments

have measured the tissue compression and load by impacting an instrumented mass into

a subject’s heel [103, 51]. As long as the skeletal system of the body acts like a perfect
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ground, the deceleration of the mass will be entirely due to the compression of the heel pad.

Aerts et al [3] was able to experimentally demonstrate that this assumption is invalid: a

significant amount of energy is lost through the body, skewing the stiffness values reported

from in vivo pendular experiments to be nearly one-sixth the published in vitro values. In

vitro stiffness and damping estimates obtained using an Instron material testing machine

are also suspect because the tissue may not be representative of living foot pad tissue from

the general population.

While foot tissue models are often developed and validated in isolation from the multi-

body gait model, the same cannot be said for foot contact models [97, 112, 76]. This

approach is problematic: if the ground reaction force representation is poor, it is impos-

sible to know if it is due to an error in the foot contact model or due to the way the

foot is being used by the assumed control system. The only foot contact model that was

tested separately from the gait simulation [28] was validated in a naive way: ankle joint

torques and forces estimated from an inverse dynamics analysis were applied to a forward

dynamic simulation of the foot model; the fidelity of the foot model was evaluated by

comparing the kinematics of the simulated foot to the experimental data. This approach is

naive because the quantization and measurement error that is inherent in an experimental

inverse dynamics analysis will cause the forward dynamic simulation to diverge from the

experimental observations, even if the model is perfect. Chapter 4 will present a lumped

parameter tissue model and a novel means of validating the model in vivo.

2.3 Predicting Human Gait using Simple Models and

Torso Trajectories

Control of the stance leg simultaneously affects how human-like the ground reaction force

profiles are, and how well the model balances. The joint-trajectory based stance limb

controller used in Ch. 3 endowed Peagood et al.’s [76], and Millard et al.’s [65] gait models

with a fragile sense of balance, and created ground reaction force profiles that poorly match

human experimental data [109]. An improved stance limb controller is required if the model

of Ch. 3 is to simulate human walking accurately.

While much effort has been spent by both the robotics and kinesiology communities to

formulate bipedal gait controllers that result in periodic leg movements typical of walking
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(as in Ch. 3), relatively little effort has been spent investigating how the hip, knee and ankle

joint torques might instead be coordinated during stance to control the state of the torso.

The focus on the stability of periodic walking has led to the development of a rigorous

theoretical framework for analyzing periodic systems with applied impulses (the impulses

occur when the rigid foot models contact the ground), be they robot [32, 105] or human

[15]. Many heuristic controllers have also been developed on the assumption that the key

feature of walking is the periodicity of the legs [65, 97, 112, 76]. Controllers that regulate

the orientation of the torso have been formulated for passive walking machines [63, 111],

partial gait models [52], and more recently a sagittal plane walking model [25]. Each of

these models has its drawbacks when considered in the context of human walking: the

passive walking machines display a lot of torso sway relative to a human [109]; the partial

gait model [52] assumes that the hip torque applied to the torso does not change the

force vector applied to the hip; and the sagittal plane walking model [25] uses a heuristic

controller, which has unknown stability properties and exhibits more torso sway than a

human does while walking [109]. None of the human-like bipedal models in the literature

have used the legs to do more than regulate the orientation of the torso.

Recently, Poulakakis and Grizzle [79, 80] used input-output feedback linearization to

embed desirable torso dynamics into the controller of a simplified planar robot (Fig. 5.1B).

Their model, the asymmetric spring loaded inverted pendulum (ASLIP), consists of a

planar biped with massless, telescoping legs that attach at the hip joint of the torso. The

COM of the torso is not coincident with the hip joint, adding non-trivial torso dynamics

to the system equations of the biped. Poulakakis and Grizzle used the hip torque, and leg

force (the linear force generated by the telescoping leg) of the model to control the state

of the torso. This control was achieved by embedding the dynamics of the desired plant,

the spring loaded inverted pendulum (SLIP model) (Fig. 5.1A) into the control laws for

the hip torque and leg force using input-output feedback linearization [44].

Interestingly the similarities between human COM kinematics and ground reaction force

profiles to those of the SLIP model during both walking and running [26] are unmatched by

any other model in the literature. The COM kinematics and ground reaction force profiles

can be made to fit simultaneously within ±1 standard deviation of human profiles [109] if

the point contacts of the SLIP model are allowed to translate forward at a velocity that is

similar to the center of pressure (COP) velocity in humans [7]. The quality of fit between

the SLIP model and human walking and the illustration that this gait can be embedded in
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more elaborate models [79, 80] using input-output feedback linearization, compelled me to

see if SLIP dynamics could be embedded into a sagittal plane human gait model. The lower

dimensional SLIP model COM trajectory is embedded in a series of models of increasing

likeness to the human form in Ch. 5.

2.4 Discrete Planar Balance Corrections using Foot

Placement

Although the control systems presented in Ch. 5 allowed several models to emulate the

human-like gait of the SLIP model, this approach did nothing to improve upon the limi-

tations of the SLIP model. The SLIP model can walk or run in a manner that resembles

a human, but only at a fixed pace. The SLIP model cannot initiate, nor terminate gait.

Although the SLIP model has been used to study the control and stability properties of

a particular gait [92], this model has not shed light on how humans stop. Understanding

how balance is controlled during gait termination is of vital importance to kinesiologists

and health care professionals because humans use these actions to prevent falls and injury.

Balance control is a multi-faceted process that relies on state estimation, the prediction

of a desirable future state, the means to make the transition (through foot-placement,

center of pressure manipulation or some other mechanism), and the physical ability to

execute the desired action. Foot placement has been identified by some researchers as the

primary means that humans use to restore balance [74, 71]. Foot placement is an important

component of balance control because the location of the foot determines the origin and

possible directions of the ground reaction force vector which ultimately serves to balance

the body. Wight et al. [108] developed a relationship between foot placement and balance

— the foot placement estimator (FPE) — that calculates a foot contact location that will

restore balance to a simplified biped that is falling. The aim of the FPE is to restore

balance makes it well suited for analyzing human gait, because humans are unbalanced for

80% of the gait cycle [71]. The aim of Ch. 6 is to determine if the FPE can predict sagittal

plane human foot placement (HFP) during gait initiation, termination, and continuous

walking.

The biomechanics community has investigated foot placement for many years. Lee et al.

[56] were one of the first to conclude that foot placement location is carefully controlled
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when they observed the astonishingly small takeoff foot placement error (8 cm) of elite long

jumpers who were sprinting high speed (9 m/s). Patla extended Lee’s research by showing

that foot placement is guided by vision [73], modified by the presence of obstacles [72], and

contributes to dynamic balance [71] in everyday activities. Redfern et al. [87] characterized

foot placement as a function of velocity and vision. Redfern’s work has a limited scope

of applicability because it is based on heuristics. Townsend et al.[101] developed and

tested several foot placement algorithms using a computer simulation of gait. Townsend et

al.’s foot placement models were never validated using human experiments, nor were they

derived with the aim of restoring balance.

Balance and foot placement are also primary concerns of roboticists. Robotics re-

searchers have explored machine-learning techniques [46, 98], trajectory tracking [112, 76],

passive swing dynamics [63, 84, 55], approximate methods [85], and zero-moment point

(ZMP) [104] methods to balance bipedal robots. Little can be learned about human bal-

ance using machine learning techniques because they are based on numerical approximation

and curve fitting [46, 98]. Trajectory tracking bipeds [65, 112, 76] have a very fragile sense

of balance, which suggests that humans do not use this method. Passive swing dynam-

ics explain how humans might be choosing step lengths as a function of walking velocity

[54, 107] but cannot be applied to gait initiation and termination. The most popular bal-

ance definition is the ZMP [104] that is employed in Honda’s bipedal robot Asimo [39].

The ZMP is not well-suited for analyzing human gait because it requires that at least

one foot remains flat on the floor at all times. Humans rarely have one foot flat on the

ground while walking [110]. Chapter 6 will investigate the applicability of Wight et al.’s

foot placement estimator (FPE) [108] to human gait. Wight et al.’s FPE is unique because

it is accompanied by a stability proof, and does not require that the stance foot be flat on

the floor.

2.5 Discrete Spatial Balance Corrections using Foot

Placement

The planar FPE presented in Ch. 6 has assumptions that are compatible with mechanics of

human walking, and predicts locations that correspond well with experimentally measured

human foot placement locations. Humans, in contrast to the FPE, and models presented
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in this thesis, walk in 3 dimensions (3D). Before the human-gait simulation partitioned

approach detailed in Ch. 5 can be extended to 3D, the planar FPE presented in Ch. 6

needs to be extended to the spatial domain.

Although foot placement has been studied by both roboticists and kinesiologists, there

are few methods that have been developed for three-dimensional (3D) systems, accompa-

nied by a stability proof, and compatible with human gait. Few balance control methods

have been developed for 3D systems [84, 85, 104] with the vast majority of works applied

in the sagittal plane, or in 2 vertical perpendicular planes [62, 53, 83]. While extending

a planar foot placement method to 3D by using 2 perpendicular planes is appealing, the

approach is flawed for foot placement algorithms that assume energy conservation, since

energy is a scalar quantity and cannot be split up into components. Most works assume

that perturbations to the gait of the biped are small [65, 15, 112, 76, 84, 55, 85] with few

approaches being valid when large perturbations are applied [108, 104, 83]. A stability

proof is of great value to show that a method functions and also to clearly communicate

the assumptions and limits of the proposed method. The zero-moment-point (ZMP) and

linear-inverted pendulum [47] formulations are the only 3D balance theories that do not

assume that all perturbations are small, and are accompanied by a stability proof. The

ZMP is incompatible with human balance because it assumes that one foot remains flat

on the floor at all times yet humans rarely have one foot flat on the ground while walk-

ing [109] and are airborne for many common activities like running. The linear inverted

pendulum balance theory [47] assumes that the center of mass (COM) of the biped stays

at a constant height which is rarely true for human movement. Although Wight et al.’s

planar FPE is not the only foot placement algorithm in existence, it is a good starting

point for a 3D foot placement method because it is valid for small and large perturbations,

is accompanied by a stability proof, and is compatible with human gait [66]. A full 3D

theoretical extension to Wight et al.’s planar FPE (3DFPE) is presented in Ch.7 and is

accompanied by a preliminary experimental validation.

15



Chapter 3

Motivating Work: Predicting Human

Gait using Joint Trajectories

Peasgood et al.’s system represents the first attempt at developing a predictive, multi-

step gait simulation that searches for metabolically efficient gaits. Nearly 1000, 10-step

simulations were required to find a metabolically efficient, ‘human-like’ gait. Originally

the 1000 gait simulations took 10 days to perform on a single computer using the popular

mechanical modeling package MSC.Adams [68]. DynaFlexPro [60] (or MapleSim as it

is now called), another modeling package, developed since Peasgood et al.’s work, offers

substantial performance advantages over Adams: the updated version of Peasgood et al.’s

predictive system now takes only 8 hours to run. Peasgood et al.’s work was taken, carefully

examined, analyzed, improved, and implemented in DynaFlexPro.

3.1 Dynamic Model

Peasgood et al. developed a predictive gait simulation using a 2D, 7 segment, 9 degree of

freedom (dof), anthropomorphic model shown in Fig. 3.1 with a continuous foot contact

model. This is a fairly standard model topology for gait studies. The upper body is

simplified into a single body representing the head, arms and trunk (HAT); the thigh and

shank are each one segment, as is the foot [5, 1, 27]. An additional simplification has been

made in this model by fusing the HAT to the pelvis. There was an unintended error in
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Peasgood et al.’s original model: there was an extra body attached to the foot that had a

moment of inertia of 1.5 kg ·m2, which is comparable to the HAT segment. The various

model and control parameters associated with this implementation can be found in App.

A.

A convergence study was performed on both the DynaFlexPro and the corrected Adams

gait models by dropping both unactuated models onto the floor from the same initial

conditions. The convergence of each model was checked individually. The results from

the DynaFlexPro model converged for every simulation listed in Tbl. 3.1, whereas the

Adams model failed to converge with an integrator error tolerance of 10−5. The maximum

relative error between the Adams and DynaFlexPro result sets is shown in Table 3.1 for

the horizontal position of the left hip, the angle of the right ankle and the contact force

developed under the right heel. The relative error was computed by taking the largest

absolute difference between the two simulations and dividing it by the largest absolute

value from the DynaFlexPro result set. Interestingly, the simulations with an integrator

error tolerance of 10−7 had the smallest relative error, and allowed the DynaFlexPro model

Figure 3.1: Peasgood et al.’s 7 segment, 9 degree of freedom, planar gait model with a
2-point continuous foot contact model
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to simulate four times faster than the Adams model as shown in Table 3.1.

Table 3.1: Performance comparison between the Adams and DynaFlexPro 2D 7 segment
gait models for a 10 second simulation. The Adams simulation with an integrator error
tolerance of 10−5 failed to converge. The relative error increases from the hip position to
the foot angle: the large mass of the HAT attenuates position error of the hip, while foot
position is more sensitive to errors due to its light mass. The high stiffness of the heel
contact makes the simulated contact forces very sensitive to errors

Adams DynaFlexPro Maximum Relative Error (%)
Integrator GSTIFF (I3) ode15s (NDF) Left hip Right ankle Right heel
Error Tol. Simulation Time (s) disp. (x) angle contact force
10−5 29 4.1 3.02 5.65 14.30
10−7 33 7.3 0.09 0.16 0.27
10−9 36 30 0.24 0.48 0.73

3.2 Point Contact Foot Contact

Foot contact forces were calculated using a 2-point foot contact model, with a point con-

tact located at the heel and metatarsal. Normal forces were calculated using the Adams

implementation [68] of the continuous Hunt-Crossley [42] point contact model:

fn = −kyp − c(y)ẏ (3.1)

The Hunt-Crossley contact model calculates normal force (fn) as a function of penetra-

tion depth (y), penetration rate (ẏ), material stiffness (k, p), and material damping (c(y)).

The damping coefficient (c(y)) is increased from zero to its maximum value as a function

of penetration depth (y) using a cubic spline [68] to prevent an instantaneous normal force

that would be created using a simple damping term such as (cmaxẏ) (Fig. 3.2). A dry

Coulomb model was used to calculate the force of friction between the points and the

plane:

ff = µ(ẋ)fn (3.2)
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This friction model has stiction (µs) and dynamic friction (µd) coefficients that are

interpolated using a cubic step function [68] between the stiction velocity (vs) and the

sliding velocity (vd) using the tangential contact velocity (ẋ) as an input (Fig. 3.2). The

particular contact and friction parameters used for the gait simulation were chosen by the

pattern search routine (described later) to match the ground reaction forces created during

healthy gait [109].

Figure 3.2: Both the coefficient of damping (left panel) and the coefficient of friction (right
panel) were interpolated using cubic spline curves

3.3 Joint Trajectory Control

Pre-computed joint trajectories are used to define the nominal gait of the model at the

position level. Each joint is actuated using a proportional-derivative (PD) controller that

modifies and regulates the predefined joint trajectories. The initial joint trajectories were

taken from an existing experimental data set of a healthy gait of an average-sized male [109]

and interpolated using a 5-term Fourier series defined by the Fourier coefficients (Ak, Bk,

and C0) and period length (λ). The PD gains were chosen by hand initially to allow the
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model to walk. Once this initial gait was established, a pattern search routine was used to

find the PD gains that minimized the estimated muscle fatigue [12] of the model.

θj(t) = C0 +
5∑

k=1

[
Ak sin

(
2πkt

λ

)
+Bk cos

(
2πkt

λ

)]
(3.3)

Some adjustments were made to the trajectories in order to apply them to a sagittal

plane gait model: the swing phase of the ankle trajectory had to be altered to prevent

the foot from dragging on the ground. This makes sense because the 2D sagittal plane

model cannot use hip roll and body sway in the frontal plane to adjust the floor clearance

of the swing limb, unlike the subject used in the experiment data set. The interpolated

joint trajectories were applied to the PD joint controllers to achieve an initial simulated

gait. The optimization routine adjusts the values of the Fourier series coefficients for each

limb to search for new gaits. The same Fourier coefficients are used for each limb, offset

in phase by π radians, restricting the model to walk with a symmetric periodic gait.

3.4 Balance and Velocity Control

A balanced gait and a desired forward velocity is achieved by manipulating the pitch of

the HAT. The pitch controller works by monitoring the orientation of the HAT relative to

a desired set angle and speeding up or slowing down the progression of the legs through

the joint trajectories to keep the HAT at a desired angle. When the HAT pitches forward

(backward) beyond the desired set angle, the legs are driven faster (slower) to walk ahead

(behind) of the HAT. The velocity controller is very similar to the pitch controller: when

the model is moving too slowly (quickly), the reference angle for the pitch controller is

increased (decreased), causing the model to lean forward (backward), making the balance

controller force the model to walk faster (slower). A detailed account of the pitch and

velocity controllers can be found in Peasgood et al.’s original paper [76]. The pitch and

velocity controllers balanced the model, but only over a very narrow range: the model

could not initiate gait from a stand still, but had to begin the simulation with carefully

selected initial conditions. These initial conditions were used for every simulation.
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3.5 Pattern Search Optimization Routine

Peasgood et al. tuned the control system parameters and the joint trajectories using a

pattern search optimization routine. The algorithm is conceptually described below. A

more formal treatment of the material can be found in Lewis et al. [57].

1. Repeat for all parameters:

(a) Add amounts +∆ and - ∆ (called the grid size) to one parameter.

(b) Evaluate the objective function. Save parameter changes that improve the ob-

jective function for later use.

2. Update all parameters with the improved values from Step 1 .

3. Evaluate the objective function. If it improves, accept the new parameter set from

Step 2; else use the original parameter set.

4. Decrease ∆ by half, return to Step 1. Continue until ∆ is below a predefined tolerance.

The performance of this algorithm relies on the assumption that a set of individual

changes to the joint trajectories will collectively result in an improvement. This assump-

tion is valid if the set of parameters are independent. Peasgood et al.’s assumption of

independence does not hold when applied to joint trajectories: a beneficial change to the

hip joint trajectory may cause the model to fall when combined with a beneficial change

to the knee joint trajectory. Thus this search routine only ever improved the objective

function when a set of individual parameter changes was found that just happened to

collectively improve the simulated gait.

The pattern search optimization routine was used to find joint trajectories that min-

imized muscle fatigue [12] cost. Only once in an optimization run that included 717

simulations did all of the individual improvements found by the pattern search routine

result in a more efficient gait when used collectively. This one single improvement was

able to decrease the metabolic cost of the simulated gait by 21.5%. When I examined the

optimization log file it revealed that there were many individual parameter changes that

improved the objective function but were ignored. Further investigation showed that a set
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of individually beneficial parameter changes caused the model to fall when applied simul-

taneously. I adjusted the pattern search algorithm to take advantage of good individual

parameter changes immediately, resulting in a greedy pattern search routine. A further

adjustment was made by allowing the pattern search to continue making adjustments to a

single parameter that improved the objective function until the improvements ceased.

3.6 Results

The joint angles for the final simulated gait and a healthy human gait [109] are shown in

Fig. 3.3. The standard deviation of the joint angles, torques and ground reaction forces

for the current results are negligible, indicating that the gait is very consistent. The joint

trajectories of the knee and hip are similar between all three data sets, but the ankle

joint trajectories, and torques are quite dissimilar. The log file of the optimization routine

revealed that increasing the ankle extension led to a significant reduction in metabolic

cost. The adjusted pattern search routine was able to find a gait that resulted in 47.6%

less metabolic cost, a 26.1% improvement over Peasgood et al.’s original approach.
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Figure 3.3: Joint trajectory and torque comparison between Winter’s recordings of human
gait [109], and the current results

The foot contact model produced ground reaction forces that differ substantially from

those observed during normal human gait [109], as shown in Fig. 3.4. The poor performance
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Figure 3.4: Normal and friction force comparison between Winter’s recordings [109] and
the current 2-point foot contact model

of the foot contact model is partly responsible for the joint torque differences seen between

healthy human gait and the simulated results in Fig. 3.3. The kinematics of the foot

contact model also exhibited heel and metatarsal compressions exceeding 40.0 mm, far

greater than compression levels of real human heel [23] and metatarsal pads [10]. The

kinematics and kinetics of this gait differ from healthy human gait [109], and are highly

influenced by differences between the simulated foot contact model and a human foot.
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3.7 Discussion

The balance controller of this model is so sensitive to changes in gait parameters that

very little of the gait space can be searched without making the model fall. The latest

optimization run consisted of 721 simulations; 543 of these simulations resulted in the

model falling. As well, the current system is not well suited to making changes to single

parameters without having potentially disastrous effects: changing any one of the Fourier

coefficients will alter the entire gait cycle. A parameter change that improves the efficiency

of the stance phase, may cause the model to fall during the swing phase. A more advanced

balance control system that allows the swing and stance phases to be tuned separately

would be a great improvement to the current system.

The computationally efficient, but low-fidelity foot contact model produced ground re-

action forces and foot pad compressions that were drastically different than those observed

in healthy human gait, and negatively affected the simulated joint kinetics. A high-fidelity

foot contact model is especially important for a predictive gait simulation: contact forces

at the foot will affect the loads at the joints of the legs, and thus the metabolic cost of the

leg muscles. If the model does not have a realistic foot contact model, it will be impossible

to produce metabolic cost estimates that correspond to what one would expect from a

human [113]. A predictive gait simulation without a high-fidelity foot contact model could

not converge to a ‘human-like’ gait.

3.8 Conclusions

Multi-step, forward-dynamic human gait simulations do not yet have the fidelity to create

precise predictions of how humans would walk in new situations. Peasgood et al.’s [76]

system was a first attempt at developing a predictive human gait simulation using a control-

based approach. Although Peasgood et al.’s system was the first to show that prosthetic

gait has a greater metabolic cost than healthy gait in silico using a forward dynamic simu-

lation, the predicted kinetics of Peasgood et al.’s healthy model were significantly different

from published joint kinetics of human gait found using inverse dynamics analysis [110]. A

high-fidelity kinetic response is required for high-fidelity gait predictions since metabolic

cost is a function of muscle tension and thus joint torque: if the kinetic response of the
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model is poor, the model will not be able to converge to a human-like gait. Further work

is required to improve the kinetic response of the model by developing a more realistic foot

contact model, and stance limb controller.
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Chapter 4

Volumetric Foot Contact Model

In Ch. 3 a model and computer simulation was presented that searched for metabolically

efficient, or human-like gaits, in an effort to predict how a human might walk. Since

muscles consume energy as a function of the tension they develop, and their contraction

velocity [102], it is very important for the model to be able to walk with human-like muscle

activations and resultant joint torques. Ground reaction force profiles heavily influence the

torques that each joint must develop, and thus the energy consumed by the associated

musculature. The foot contact model affects the way ground reaction forces develop,

and thus how the model consumes metabolic energy. An accurate model of the foot is a

necessary component for a predictive gait simulation. The ground reaction force profiles of

the predictive gait simulation presented in Ch. 3 (Fig. 3.4) do not resemble experimentally

measured human ground reaction profiles during walking [109], in part, because the 2-point

foot contact model does not resemble a human foot.

The aim of the work presented in this chapter is to develop and validate a dynamic model

of the foot that simultaneously replicates the in vivo kinematics and kinetics observed at the

ankle [109] of human feet during the stance phase. Simulating contact is computationally

intensive, and so, a lumped parameter formulation is used in this chapter in the hopes of

finding a foot model that is both efficient and accurate. Although a lumped parameter

formulation will not simulate the deformation of the foot pad, and thus can only be viewed

as an approximation, it can calculate the net forces the foot pads exert on the foot (and

thus the ankle) in a computationally efficient manner. Gonthier et al.’s [31] volumetric

contact model is employed to calculate contact forces between the pads of the feet and the
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Figure 4.1: Marker array used for heel pad compression experiments

ground. A Coulomb friction model is used to calculate the shear forces between the foot

pads and the ground. Both the foot pad and the foot models are validated using a novel

in vivo approach.

4.1 Methods

The approach taken in the current work to assess candidate foot contact models is different

from previous attempts [27]: a contact model that was suitable for modeling heel tissue

was first identified, then candidate foot contact models were created using these contact

elements. Heel pad models were validated by comparing an experimentally collected bare

heel pad compression loop against the simulated version. The experimentally collected

compression loop was recorded by having one subject lower and raise their heel on a force

plate while the kinematics of the heel (markers placed at the medial, lateral and posterior

sides of the calcaneus) were recorded using Optotrak infrared diodes (IREDs) (Fig. 4.1.

The vertical displacement of the heel was used to infer the compression of the heel pad.

Similarly, the foot model was validated by comparing the simulated ground reaction forces

to the experimental profiles when the foot was driven through a kinematic path that
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matched the experimental foot. A simple experiment was undertaken to collect the data

required to test the candidate foot models: a subject’s ankle position, foot orientation, and

ground reaction force profiles during normal gait were recorded using Optotrak IREDs and

a force plate. The subject walked at three different subjective paces (slow, normal and

quickly) to assess the sensitivity of the model to different load rates typical of different

walking speeds. The following sections will detail work to create and validate a new foot

model based on volumetric contact.

4.2 Modelling Foot Pad Contact

Theoretical contact modelling is a very active research area [31] with relatively sparse

experimental work [11, 29]. Most continuous contact models assume that the geometry of

the contacting bodies does not deform, that the magnitude of the contact force is a function

of the interpenetration distance and velocity, and that the direction of the contact force is

a function of the normal direction of the surface geometry of each body. Contact models

defined based on surface geometry properties fail to compute stable normal direction vectors

[31] when the contacting bodies have discontinuous surface geometry (such as corners). A

new contact model based on interpenetration volumes [31] has been developed that has

a numerically stable means of calculating normal directions and is currently being used

by the Canadian Space Agency to simulate Canadarm operations. This contact model

was chosen as an ideal candidate for a new foot contact model because of its stable normal

direction calculation, and because it can be used in conjunction with complicated geometry.

Gonthier et al. [31] analytically derived expressions for the normal force ~fN (in direction

n̂ ), and rolling resistance ~τT (which is parallel to the tangential angular velocity of the two

bodies ~ωT ) for a linearly elastic Winkler foundation of stiffness k and damping a impacted

by a body with a normal velocity of vN :

~fN = kV (1 + avN) n̂ (4.1)

~τT = ka[Jc] · ~ωT (4.2)
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These very general expressions assume it is possible to calculate the volume of interpen-

etration (V ), and the second moment of area of the contact surface ([Jc], where square

brackets denote a matrix). These parameters can be very challenging to compute for ar-

bitrarily shaped bodies, and so analytical expressions for V and [Jc] were developed for

spherical primitives. The foot contact model was then created out of an array of spherical

elements. Spheres were used to model the pads of the feet because they are complicated

enough to approximate the geometry of the foot pads, and yet are simple enough in shape to

permit analytical expressions for the volumetric properties, [V ] and [Jc], to be symbolically

derived [30].

4.3 Modelling Foot Pad Friction

Every foot contact model developed to date has made use of a Coulomb friction model

without any experimental justification. There has not been any effort to date to develop

experiments to determine the shear and friction properties of human heel pad in vivo

or in vitro. Typically the tangential ground reaction forces found in simulated feet are

accompanied by unrealistically high initial transient forces, [27, 97], or in the very least

force profiles that deviate [76] from experimental ground reaction force recordings [109].

Initially a Coulomb model of Eqn.3.2 in Ch.3 was adopted to see how it would perform

with the new foot contact models.

4.4 Multibody Model of the Foot

Several foot contact model topologies were considered beginning from the very simple and

progressing in complexity (Fig. 4.2) to achieve the desired fidelity. Each two-dimensional

foot contact model was driven at the ankle through experimentally measured foot trajecto-

ries in order to generate a simulated ground reaction force profile. An optimization routine

was used to tune the geometry of the foot, contact properties of the pads (on a subset of

the data, termed the training data), and the stiffness of the midfoot joint (Fig. 4.2d), in an

effort to make the ground reaction force profile of the model match the experimental ground

reaction force and limit the predicted maximum compression of the heel (≈12 mm for the

test subject’s 22.8 mm thick heel pad [18]) and forefoot pads (≈7 mm [10] for the test
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Figure 4.2: Foot contact models consisting of 2,3, and 4 spheres shown in a., b., c., and d.
Models b. and c. have a flexible toe joint while model d. has a flexible metatarsal joint

subject’s 13.2mm 2nd metatarsal foot pad [18]) to realistic values. A linear spring-damper

element was used to model the flexibility of the midfoot as a simple first approximation for

the final foot model. It is unknown at the present time if a linear spring-damper element

is the most appropriate passive element to use.

The model was validated using a different set of ankle trajectories than the ones used to

tune the foot model. The simulated and experimental ground reaction force profiles were

compared to validate the foot model. This method of validation is very challenging because

the computed ground reaction forces are be very sensitive to errors in foot geometry and

foot pad contact properties. This approach is desirable because it will clearly show errors

in the model. Conversely, the more conventional validation method [27, 93] of applying

experimental ground reaction forces the the foot model and comparing the simulated and

experimental kinematics of the foot is insensitive and will hide performance differences

between the experimental and simulated feet.

4.5 Results

The heel pad compression loops (Fig. 4.3) show that a single volumetric spherical contact

element is able to achieve a good agreement with the experimental in vivo load curves in all

but one of the trials. The hysteresis loops obtained during the preliminary experiment have

energy losses ranging from 21%-37%. This level of energy dissipation is higher than the
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Figure 4.3: Compression load cycles of a tuned volumetric sphere vs experimental data
for a single subject. Stiffness and damping are constant. The label ‘BW’ stands for body
weight, and the load rate reported is the maximum normal velocity the heel achieves as it
contacts the floor

17%-19% reported by Gefen et al.’s in vivo study [23] and grossly lower than the 46.5%-

65.5% reported by Aerts et al. Since only one trial under each loading condition was

collected it is impossible to know if the ill-fitting trial is a consequence of the ‘memory’

of foot tissue observed in vitro [3], or skin movement artifact, or due to a fundamental

difference between the contact model and the contact properties of human heel pads.

The first three foot contact models (Fig. 4.2) feature a rigid foot with variations on the

toes. It proved difficult to adjust the properties of these foot models without excessive

forefoot pad compression, particularly at the end of stance. Human feet actually flex
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Figure 4.4: Simulated heel (dark grey) and metatarsal (light grey) pad compressions. The
thickness of each of the bands spans from ±1 standard deviation

slightly through the mid foot at the tarsal joints (10◦ is typical [9, 34]) during stance. This

additional flexibility between the forefoot and the heel was introduced in the final foot

contact model (Fig. 4.2 d.), making it possible to adjust the midfoot stiffness of the foot

such that the virtual heel and forefoot pads underwent a realistic amount of compression

(Fig. 4.4).

Tuning the geometric and contact properties of the final foot contact model (Fig.4.2

d.) such that the virtual and experimental ground reaction force profiles matched was

very challenging. Several different optimization approaches were employed using Matlab,

including a Newton-Levenburg search, the simplex method, and a genetic algorithm. The

best contact profile results (Fig. 4.5) were obtained by hand tuning the final parameters

(see App. B for details) returned by a genetic algorithm. Although the simulated heel and

forefoot pads underwent a plausible 50% compression during stance [10] (Fig. 4.4) — while

there is one in vivo recording of the compression of the 2nd metatarsal foot pad during

walking [10], there are not corresponding recordings of the compression of the heel pad

during walking in the literature — the vertical ground reaction force profiles only crudely

resemble the experimental data (Fig. 4.5). The simulated horizontal force profiles (Fig.

4.6) bare no resemblance the experimental profiles.
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Figure 4.5: Simulated (gray) and experimental (black) vertical ground reaction force pro-
files. The thickness of each of the bands spans ±1 standard deviation

Figure 4.6: Simulated (gray) and experimental (black) horizontal ground reaction force
profiles. The thickness of each of the bands spans ±1 standard deviation

4.6 Discussion

Insight into the poor performance of the foot contact model may be gained by closely

examining the properties of the simulated results. Since the experimental vertical and
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horizontal ground reaction force profiles have small standard deviations, the compression

and shear profiles of the experimental heel and forefoot pads (not measured) will likely also

have small standard deviations. In contrast, the standard deviation of the compression of

the simulated foot pads is quite large (Fig. 4.4). Since the model is identical during each

of the trials, the variation in foot pad compression originates from the kinematic data that

is being used to drive the foot. When the experimental foot pads deform and metatarsals

splay during stance, the skin covering the foot stretches and moves the optical markers

(relative to the foot bones) in the process. The distance between the lateral and medial

calcaneus markers, which should be constant, was examined to estimate skin stretch: the

distance of 68.0 mm changed by 2.0 mm on average during a load cycle, indicating that

skin stretch has likely skewed the data.

Videofluoroscopy is a cinematic X-ray technology that can capture both Optotrak IREDs

and the bones of the feet during the stance phase of walking. A unique video showing

both the bones of the foot, and Optotrak IREDs attached to the skin (courtesy of Prof.

Tom Jenkins [100]) clearly shows a significant amount of movement between the Optotrak

IREDs and the bones of the foot (Fig. 4.7). Several foot bone-marker pairs were registered

(using the outline of the bones) across twenty frames (recorded at 30 Hz) to reveal skin

movement on the order of 5-15 mm (Fig. 4.7) during stance. This level of kinematic noise is

unacceptable because the compression and shear of the experimental foot pads is equal to,

or less than the kinematic noise present in the Optotrak data. Although it is encouraging

that the vertical force and foot pad compression profiles crudely approximate a real foot,

the kinematic data used to drive the foot is not accurate enough to validate the contact

model definitively.

4.7 Conclusions

The joint torque profiles of the simulated gait are highly influenced by the ground reaction

forces applied at the foot. Foot contact models were created using spherical elements and

contact forces were calculated using Gonthier et al.’s volumetric contact model. The models

were validated by driving the heel through experimentally recorded calcaneus trajectories

and examining the quality of match between the ground reaction forces developed at the

simulated foot, and the human foot. Current modelling efforts indicate that it is important
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Figure 4.7: Videofluoroscopy of foot skin stretch during walking A). The movement of each
marker relative to the skeleton is apparent when each of the markers is registered using
the outline of the foot bones B). These images were reproduced with permission of Prof.
Tom Jenkins [100]

to represent the heel, and metatarsal foot pads in the contact model as well as the flexibility

of the mid-foot. The results of the contact and friction model validation were not ideal due

to excessive skin movement artifact present in the experimentally measured stance foot

kinematics. More accurate means of experimentally measuring the stance foot and foot

pad kinematics are required before the foot contact models can be validated thoroughly

using the methodology employed in this study.
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Chapter 5

Predicting Human Gait using Simple

Models and Torso Trajectories

As noted in Ch. 4, ground reaction force profiles affect the way the model consumes

metabolic energy, and ultimately the final gait the predictive system deems most human-

like. Ground reaction forces are not only influenced by the way the foot is modeled, but

by the way the stance leg is controlled. The ground reaction force profiles of the predictive

gait simulation presented in Ch. 3 (Fig. 3.4) do not resemble experimentally measured

human ground reaction profiles during walking [109] due to both the poor representation

of the foot, and the way the stance limb is controlled. Although there are a number of

multibody forward-dynamic gait simulations in the literature [2, 5, 96, 97, 112], a stance

limb controller that yields human-like ground reaction force profiles does not yet exist.

Multibody models walk poorly because it is difficult to formulate controllers for such sys-

tems due to their large, inherently unstable, nonlinear, and high-dimensional equations

of motion. In contrast, the simple spring-loaded inverted-pendulum (SLIP) model can be

tuned to emulate human COM and GRF profiles during steady state walking and running

with an accuracy that is unmatched by any other model [7, 26].

This chapter focuses on using control to embed the desirable COM and GRF profiles of

the SLIP model into an anthropomorphic multibody model to make its gait more human-

like. The intent of this approach is to partition the very difficult problem of simulating

human walking using an anthropomorphic model into two simpler problems. The low-

dimensional SLIP model is used to compute human-like torso kinematics that the control
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system of the anthropomorphic model uses to compute the hip, knee, and ankle torques

required to accomplish this motion on the multibody model. It should be noted that the

second part of this approach may seem like an inverse dynamics simulation, but it is still a

forward-dynamics simulation because only the desired kinematics of the torso are defined;

the kinematics of the legs are not. The state of the legs is not controlled, but allowed to

evolve during stance as the multibody model moves.

Torso tracking control systems are developed for a series of dynamic models, of increas-

ing likeness to a human (Fig. 5.1), to assess the feasibility of this approach. The tracking

controllers are formulated using input-output feedback linearization [49]. In this applica-

tion, input-output feedback linearization is identical to enforcing position and velocity-level

constraints (the trajectory of the torso in this case) at the acceleration level — making it

equivalent to a computed torque controller — using the actuators of the system. Penalty

terms for position and velocity errors are included in the acceleration constraint to ensure

that the model eventually satisfies the desired trajectory. The first model presented is

the standard SLIP model and Poulakakis and Grizzle’s monopedal (to simulate running)

asymmetric spring-loaded inverted-pendulum (ASLIP), an extension to the SLIP. A bipedal

extension (Fig. 5.1C) to Poulakakis and Grizzle’s monopedal ASLIP [79] is then presented.

Next, a torso tracking control system is developed to allow a model with massless an-

thropomorphic legs (Fig. 5.1D)— the legged asymmetric spring-loaded inverted-pendulum

(LASLIP) — to walk with a torso trajectory that matches the SLIP model. Finally, the

chapter concludes by developing a torso-tracking control system for an 11 DOF, bipedal

sagittal-plane gait model with simulated foot contact. In each case the control system

formulation is presented, followed by an evaluation using numerical simulation.

5.1 The SLIP and ASLIP models

The standard planar SLIP model (denoted with a subscript ‘S’ in equations) consists of a

point mass (m), with two massless linear springs with a fixed resting length (r0) and no

preload (Fig. 5.1A). Each leg behaves like a massless prismatic joint (actuated by forces

of magnitude pS,1 and pS,2) connected to the ground (during stance) with revolute joints.

Although the dynamic equations of the SLIP model, Eqns. 5.1-5.2 , are very simple, it

can be made to walk or run with human-like GRF and COM profiles [26] using optimized
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initial conditions selected to yield limit-cycle walking or running.

ẍS =
1

m
fSx (5.1)

ÿS =
1

m
(fSy −mg) (5.2)

The legs of the SLIP behave like linear springs attached to the ground through a revolute

joint at point (cxi, cyi) until the foot leaves the ground (when r0 + yS
sin(αS,i)

< 0, note αS,i is

negative) putting the leg into swing. The swing limb is held at a constant angle φS relative

to the stance limb until the foot contacts the ground (when r0+ yS
sin(αS,i)

≥ 0). It is assumed

that the spring freely rotates about both the mass and the ground during stance, and that

the contact end of the spring sticks and does not slip.

The net force acting on the point mass, (fSx, fSy), can be found using Eqns. 5.4 and 5.5

as the sum of the spring forces generated by each leg defined in Eqn. 5.3. The variable n is

used throughout the equations in this paper to denote the number of legs in contact with

the ground; n is set to 1 for single stance, and 2 for double stance.

pS,i = −ki(ri − r0) (5.3)

fSx =
n∑
i=1

−pS,i cos(αS,i) (5.4)

fSy =
n∑
i=1

−pS,i sin(αS,i) (5.5)

Substituting in Eqns. 5.3-5.5 into Eqns. 5.1-5.2 yields the dynamic equations of motion

for a monopedal SLIP (n set to 1) and the bipedal SLIP (n set to 2) during stance.

ẍS =
1

m

n∑
i=1

ki(ri − r0) cos(αS,i) (5.6)

ÿS =
1

m

(
n∑
i=1

ki(ri − r0) sin(αS,i)−mg

)
(5.7)
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Figure 5.1: The bipedal SLIP model is shown in panel A). The monopedal ASLIP [79]
is shown in panel B). The bipedal ASLIP developed in this work is in panel C). The
anthropomorphic LASLIP model is pictured in panel D). Not all of the angles and torques
have been drawn in the positive sense due to space restrictions. The sign of each angle and
torque follows the right hand rule

The ground reaction force profiles and COM kinematics of human gait and the gait of

the SLIP model can be very similar [26], which suggests that humans control their legs

to behave like linear springs during steady state walking and running. The similarity can

be further improved if the contact point is translating forward at a constant velocity that

is matched to the average center of pressure velocity of the human [7]. Sliding the SLIP

model forward at a constant velocity fortunately does not affect its equations of motion.

The SLIP model can be made to resemble the human form more closely by adding

a hip joint and a torso above the massless legs. Poulakakis and Grizzle introduced an

asymmetric monopedal (running) SLIP model (ASLIP, denoted with a subscript ‘A’) that
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included a torso, with the linear leg actuators terminating at a hip joint (Fig. 5.1B). The

equations of motion of the ASLIP, Eqns. 5.8-5.10, are very similar to those of the SLIP

but include torso (of mass m and inertia J) dynamics, which are a critical component for

an anthropomorphic gait model.

ẍA =
1

m
fAx (5.8)

ÿA =
1

m
(fAy −mg) (5.9)

θ̈A =
1

J
(L(fAx sin(θ)− fAy cos(θ)) + τA) (5.10)

The forces applied to the hip (horizontal fAx and vertical fAy forces) are no longer simply

spring forces, but are the sum of the forces generated by the linear actuator pA,i, and the

reaction force qA,i created by the applied hip torque τA, as shown in Eqns. 5.15-5.16.

Figure 5.2: Free body diagram of the ASLIP. The leg has been drawn to emphasize that
it behaves like a massless telescoping force actuator

A statics analysis (Fig. 5.2) of the massless leg can be used to obtain the expressions for

the forces and torques applied to the torso. In the local (x′, y′) axis parallel to the leg we
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have

∑
F · x̂′ = 0, qA − fA2 = 0 (5.11)∑
F · ŷ′ = 0, pA − fA1 = 0 (5.12)∑
τ = 0, −τA + qAl = 0 (5.13)

(5.14)

Solving Eqns. 5.11-5.13 for the net force applied to the torso (fA2x̂
′ + fA1ŷ

′) as a function

of the actuator outputs (pA and τA), and resolving the result into the global coordinate

frame yields

fAx =
n∑
i=1

−pA,i sin(θ + αA,i) +
τA,i
lA,i

cos(θ + αA,i) (5.15)

fAy =
n∑
i=1

pA,i cos(θ + αA,i) +
τA,i
lA,i

sin(θ + αA,i) (5.16)

Substituting in Eqns. 5.15-5.16 into Eqns. 5.8-5.10 gives the equations of motion of the

ASLIP during single stance (n=1) and double stance (n=2) phases. Note that since

Poulakakis and Grizzle’s ASLIP model is monopedal, it only makes use of the single stance

(n = 1) phase.

ẍA =
1

m

n∑
i=1

(
−pA,i sin(θ + αA,i) +

τA,i cos(θ + αA,i)

lA,i

)
(5.17)

ÿA =
1

m

n∑
i=1

(
pA,i cos(θ + αA,i) +

τA,i sin(θ + αA,i)

lA,i

)
− g (5.18)

θ̈A =
1

J

n∑
i=1

(
τA,i

lA,i − L sin(αA,i)

lA,i
− LpA,i cos(αA,i)

)
(5.19)
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5.2 ASLIP Single Stance Phase Control

Poulakakis and Grizzle developed the planar, monopedal ASLIP, an extension to the SLIP

model that includes a torso (Fig. 5.1 B). The ASLIP is able to run exactly like a SLIP

model using the control laws that Poulakakis and Grizzle formulated that embedded the

dynamics of the SLIP model into the closed-loop equations of the ASLIP. Poulakakis and

Grizzle chose the hip torque, τA, to regulate the orientation of the torso of their single stance

— single stance and monopedal are equivalent terms — model using input-output feedback

linearization [49]. This control law can be found by setting the angular acceleration of the

torso to an error term ν, as shown in Eqn. 5.20, and solving for τA as in Eqn. 5.21.

θ̈A = νθ (5.20)

The hip torque that regulates the orientation of the torso to the error term νθ that can be

found by substituting Eqn. 5.20 into Eqn. 5.10 and solving for τA.

τA = νθJ − L(fAx sin(θA)− fAy cos(θA)) (5.21)

After substituting in Eqns. 5.15-5.16 for the single stance phase, Eqn. 5.21 becomes

τA = lA
νJ + LpA cos(αA)

lA − L sin(αA)
(5.22)

where all of the above subscript A terms refer to quantities associated with the monopedal

ASLIP model (Fig. 5.1 B). Poulakakis and Grizzle formulated the feedback error term,ν,

for single stance, to render the desired orientation of the torso, θ0, to an exponentially

stable set point. The subscript A is left off the θ below, as this equation is used for the

ASLIP, LASLIP and multibody models.

νθ = −Kθ(θ − θ0)−Dθθ̇ (5.23)

After performing a coordinate transformation, Poulakakis and Grizzle arrived at a control

law for the leg force, pA, that renders the dynamic equations of the ASLIP identical to the

SLIP when νθ = 0.
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pA =
lA − L sin(αA)

rA
pS (5.24)

The nonlinear coordinate transformation required to map the state equations of the ASLIP

to those of the SLIP is quite involved because both the SLIP and ASLIP models are

underactuated (they have few actuators than degrees of freedom). Refer to Poulakakis’s

thesis [78] and Isidori [44](Ch. 4) for details.

Substituting Eqns. 5.22 and 5.24 into Eqns. 5.17-5.19 for the single stance phase case

(n = 1) results in the closed-loop equations of motion for the monopedal ASLIP model.

ẍA =
(lA − L sin(αA))(lA sin(θA + αA)− L cos(θA))

pS
r
− cos(θA + αA)νJ

m(L sin(αA)− lA)
(5.25)

ÿA =
(lA − L sin(αA))(−lA cos(θA + αA)− L sin(θA))

pS
r

m(L sin(αA)− lA)
(5.26)

+
mg(lA − L sin(αA))− νJ sin(θA + αA)

m(L sin(αA)− lA)

θ̈A = ν (5.27)

After making use of a trigonometric identity (detailed in Poulakakis thesis [78]), the closed

loop ASLIP equations become identical to the dynamic equations of the SLIP (Eqns. 5.6

and 5.7) but only when the torso of the ASLIP is being perfectly regulated (ν = 0). The

ASLIP and SLIP COM accelerations will differ when the torso of the ASLIP is not at the

desired set point (ν 6= 0 because θA 6= θ0 and/or θ̇A 6= 0) due to the extra hip torque that

is required to regulate the orientation of the torso to the desired set point.

5.3 ASLIP Double Stance Phase Control

Here we extend Poulakakis and Grizzle’s single stance ASLIP controller to function during

double stance. The bipedal ASLIP and SLIP models both have a single stance phase

as before, but now they also have a double stance phase which is necessary to simulate

walking. In order to emulate the SLIP model during double stance, a control law must
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be derived that renders the closed loop bipedal ASLIP dynamic equations identical to the

dynamic equations of the SLIP model.

ẍA = ẍS (5.28)

ÿA = ÿS (5.29)

θ̈A = νθ (5.30)

The expression for the two hip torques (τA,1 and τA,2) that satisfy Eqn. 5.30 can be found

by setting θ̈A = νθ in Eqn. 5.19 and solving for τA,1 and τA,2.

2∑
i

τA,i

(
lA,i − L sin(αA,i)

lA,i

)
= νJ +

2∑
i=1

LpA,i cos(αA,i) (5.31)

During double stance the ASLIP model is overactuated because Eqn. 5.31 shows that

there are four control variables to solve for (two hip torques τA,1, τA,2 and two leg forces pA,1,

pA,2) yet only three equations, Eqns. 5.28-5.30, that these leg forces and hip torques need

to satisfy. Although there is no unique solution to this system of equations, it can be solved

analytically if a fourth equation is introduced. Here we introduce a fourth equation that

constrains the torque generated by each hip to be proportional to the vertical component

of the ground reaction force beneath each corresponding telescoping leg (fLy,1 and fLy,2). A

physical interpretation of this heuristic is that torque is shared between each hip according

to how much traction is present under the respective foot, an important consideration given

that hip torques will usually create a relatively large horizontal ground reaction force. Note

that Eqn. 5.32 is a convenient heuristic, as it is not presently known how humans share

torque across their hips during double stance.

τA,1
fAy,1

− τA,2
fAy,2

= 0 (5.32)

Since the four equations (Eqns. 5.28- 5.32) are linear in the four unknowns of interest

(τA,1, τA,2, pA,1 and pA,2), they can be solved symbolically (using Maple [60]). The solution

yields expressions for the two hip torques (τA,1 and τA,2) and leg forces (pA,1 and pA,2) that

when substituted into the dynamic equations of the ASLIP will regulate the orientation of
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the torso and cause the COM trajectory of the ASLIP and SLIP models to match. The

solutions for the previously described leg forces and hip torques are not reproduced in

this manuscript due to their unwieldy size (the final expressions span several pages). As

a note, this system of four equations linear in 4 unknowns can also be solved numerically.

The performance differences between the symbolic and numeric solutions is presently not

known, and is left as a topic for future work.

Figure 5.3: Simulation results for a bipedal ASLIP model. The Euclidean distance between
the bipedal ASLIP COM and SLIP COM is shown in panel A). The hip torques of the
bipedal ASLIP during steady state walking are shown in panel B). The ground reaction
forces generated by Leg 2 are shown in panel C)

The bipedal ASLIP and a bipedal SLIP (Eqns. 5.1-5.2) models were simulated (using

ode45 in Matlab Simulink [61]) for comparison purposes. The bipedal ASLIP was simulated

by using Poulakakis and Grizzle’s closed loop expressions Eqns. 5.25-5.27 during single

stance, and then Eqns. 5.17-5.19 (n = 2) using the solutions to Eqns. 5.28- 5.32 for the hip

torques (τA,1,τA,2) and leg forces (pA,1, pA,2) during double stance. The bipedal SLIP model

was simulated using Eqns. 5.6-5.7. The parameters chosen for the models were consistent

with those of an 1.80m tall, 80 kg man walking at 1.2m/s. The mass and inertia of the

ASLIP and SLIP models represent the mass and inertia of the head, arms and trunk of

this person (in this case m = 54.2 kg, J = 3.6 kg m2) calculated using anthropometric

tables [110]. The legs of the bipedal SLIP model had a stiffness of 13 kN/m and were held

φSW = 0.6 radians apart during swing. The stiffness of the legs was chosen to be consistent

with the natural frequency (f =
√
k/m) of a translating SLIP model that closely matches

the COM and COP profiles of a human [26]. The swing angle of the ASLIP model,

φA,SW , was set so that the feet of both the SLIP and the ASLIP would coincide. The

initial conditions of the model and the swing angle were selected using optimization (using
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fminsearch in Matlab) to yield a gait with a stable limit cycle.

Simulation results show that that there are subtle but marked differences between the

gait of the bipedal ASLIP and human gait. The ASLIP is able to regulate its torso far

more accurately (within 2e-16 radians, of the desired orientation) than the 1◦− 2◦ of torso

sway that is typical of human gait [109] because its hip torques are not bandwidth limited.

The sharp change in hip torque as the leg transitions from single to double stance (and vice

versa) causes a subtle cusp in the horizontal ground reaction force profile (Fig. 5.3 C) that

is not present in human ground reaction force profiles. Despite these subtle differences, the

ground reaction force profiles closely emulate human profiles in contrast to the multibody

model presented in Ch. 3 (Fig. 3.4).

5.4 Bipedal Articulated Leg ASLIP Model

Here we present the articulated-leg bipedal ASLIP (LASLIP), an anthropomorphic exten-

sion of the bipedal ASLIP model. The main purpose of the LASLIP (Fig. 5.1D) is to

serve as a relatively simple test case to evaluate the quality of a partitioned approach to

simulating human gait. The LASLIP model is well suited for this task because it has the

same leg joints as an anthropomorphic multibody gait model (allowing the joint torques

of the LASLIP to be compared to human joint torques), yet relatively concise equations of

motion. The equations of motion of the model are kept to a manageable size by modeling

the legs as massless links, foot contact as a revolute joint or a unilateral constraint, and by

selectively locking the knee to ensure that each leg has only 3 degrees-of-freedom (DOF)

during stance. The knee was chosen to be locked (rather than the hip or ankle) during

heel-contact and toe-off because the hip joint is required to balance the torso at all times,

and the ankle is required for propulsion at toe-off [109]. These simplifications yield concise

equations of motion that greatly simplify the development and analysis of a bipedal SLIP

mapping for the anthropomorphic legs of the LASLIP model.

5.4.1 Leg Kinematics

The bipedal SLIP and ASLIP models are used as geometry references to help determine

the hip, knee and ankle angles of the articulated legs of the LASLIP. The leg posture of the
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Figure 5.4: LASLIP foot placement relative to the contact point of the SLIP in A). During
stance the posture of the legs are found by solving a series of triangles B). The knee remains
at a fixed angle when the leg is in swing, or underactuated stance (in contact at a point),
and is free to vary during (flat-footed) stance as described in C)

LASLIP model is calculated at every time step using its hip joint (xHip, yHip) location, foot

geometry and knee angle (which is sometimes fixed); the location of the contact point of the

SLIP model (xEND, yEND); and the sine and cosine laws. The unloaded length of the SLIP

and ASLIP legs (ri and li) have to be matched (prior to simulation) to the anthropometry

of the legs of the LASLIP, and the range of the hip angles limited, to ensure that the SLIP

and ASLIP contact points are always in the workspace of the articulated leg.

The knee of the LASLIP is locked during certain parts of the gait cycle to ensure that

each leg has only 3 DOF. The state of the leg is used to determine if the knee should

be locked, and at what angle it should be fixed. The leg can be in one of 3 states (Fig.

5.4C): swing, underactuated stance (u.stance) and actuated stance (a.stance). The leg is

underactuated when the foot is in contact with the ground at a single point (at either the

toe or the heel) since the contact point acts like a revolute joint. The leg is fully actuated

when the foot is flat on the ground (and the COP of the foot is between the heel and toe)

because the model has 3 DOF, and 3 actuated joints (hip, knee and ankle). The knee is

locked in the underactuated leg states, and free to rotate when the leg is fully actuated.

The knee is also locked to βMIN before it is perfectly straight (βL = 0) to avoid a singularity

in the forces applied to the hip joint (described later in Eqns. 5.37 and 5.38).

The hip, knee and ankle angles are computed geometrically by applying the sine and

cosine laws to the triangles between the hip, knee, ankle and a contacting point on the foot
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(Fig. 5.4B). It is assumed that the heel (toe) is in contact with the ground when the COM

is behind (ahead) the ankle. During swing, the knee is fixed and the heel of the LASLIP

model is placed so that it aligns with the SLIP contact points (Fig. 5.1D), satisfying Eqn.

5.33.

(xHeel, yHeel)
T = (xEND, yEND)T (5.33)

The hip and ankle angles can be solved for during swing and heel contact by applying

the sine and cosine laws to triangles ∆A and ∆B (Fig. 5.4B), because the knee is fixed

at a predefined angle βSW . The predefined angle for the knee during swing just prior to

contact, βSW , must be chosen prior to simulation. The hip, knee and ankle angles can be

solved for during actuated stance by applying the sine and cosine laws to triangles ∆A

and ∆B if the COM is behind the ankle, or ∆B and ∆C if the COM is ahead of the

ankle. It is necessary to use different pairs of triangles to solve for the hip, knee and ankle

angles because the area of triangles ∆A and ∆C will be zero in some postures, but not

simultaneously. When the actuated stance phase has ended, the knee is locked at its last

valid angle if it has not reached βMIN . During toe-off, the hip and ankle angles can be

found by applying the sine and cosine laws to triangle ∆C (Fig. 5.4C).

5.4.2 Torso Dynamics

The dynamic equations of the torso are identical to those of the ASLIP (Eqns. 5.8-5.10),

though the applied forces and torques (fLx, fLy, τL) are different.

ẍL =
1

m
fLx (5.34)

ÿL =
1

m
(fLy −mg) (5.35)

θ̈L =
1

J
(L(fLx sin(θ)− fLy cos(θ)) + τL) (5.36)

The forces applied to the hips of the LASLIP are nonlinear functions of the torques applied

at the hip, ankle and knee joints. Different equations are used when the knee is locked that

only depend on the hip and ankle joint torques. Since the legs are massless, the equations
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for fLx and fLy only depend on the torques applied to each joint and the posture of the

leg. Despite these simplifications, the equations for fLx and fLy (derived using MapleSim

[60]) have to be left in functional form because they are too large to print.

fLx =
2∑
i=1

Fx(τ
1
L,i, τ

2
L,i, τ

3
L,i, θ, αL,i, βL,i, φL,i) (5.37)

fLy =
2∑
i=1

Fy(τ
1
L,i, τ

2
L,i, τ

3
L,i, θ, αL,i, βL,i, φL,i) (5.38)

τL =
2∑
i=1

τL,i (5.39)

The force applied at the hip joint is not a function of the foot contact force because

foot-ground contact is being modeled using unilateral constraints. The contact is modeled

as an instantaneous revolute joint when the foot is rotating about the heel or toe. When

the foot is flat on the ground, the foot is assumed to be fixed to the ground, and the ankle

is free to rotate as long as the COP stays within the base of the foot. It is assumed that

the foot does not slip in the horizontal direction, as is conventionally done with the SLIP

and ASLIP models.

5.4.3 Mapping Linear Leg Forces onto Articulated Massless Legs

In order to make the LASLIP torso COM track the SLIP COM path, the hip, knee and

ankle torques of the articulated legs of the LASLIP model satisfy the emulation equations

shown below.

ẍL = ẍS (5.40)

ÿL = ÿS (5.41)

θ̈L = νθ (5.42)

As with the ASLIP model, a fourth equation is introduced during double stance to make
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it possible to solve for a set of joint torques in this overactuated pose.

τ 1L,1
fLy,1

−
τ 1L,2
fLy,2

= 0 (5.43)

Several different mappings were developed because the topology of the model changes

between single and double stance, and when the knee is locked (Fig. 5.5). Each leg can be

in one of 4 different topological states: swing (S), underactuated stance with toe contact

(Ut), fully actuated stance (F) and underactuated stance with heel contact (Uh). Two legs

thus have 16 different state combinations they can be in, though only 5 are used during

walking (Fig. 5.5). The mappings required to emulate the ASLIP model are developed for

each of these different topologies.

Figure 5.5: Relevant leg postures during walking. A different mapping to make the bipedal
LASLIP emulate the bipedal ASLIP is required for each phase of gait. Capital letters
indicate the state of the leg: ‘U’ indicates a leg is underactuated (foot is rotating about
point), ‘F’ that the leg is fully actuated (foot is flat on the ground), and ‘S’ that the leg
is in swing. When a leg is underactuated, the point the foot is rotating about is indicated
with lower case letters: ‘t’ for the toe, and ‘h’ for the heel

Mapping ASLIP hip forces and torques is most challenging during toe-off (UtS in Fig.

5.5A) because the model is underactuated. It may be possible to use the same approach

employed by Poulakakis and Grizzle [79] to find a nonlinear transformation that embeds

the dynamics of the SLIP in the LASLIP, though the size and complexity of the LASLIP

equations of motion have thus far thwarted attempts to find such a transformation. For the

present investigation, hip and ankle torques that satisfy Eqns. 5.40 and 5.42 are applied

to the model, while Eqn. 5.41 is ignored.
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The double stance pose (UtUh in Fig. 5.5B) where both feet are contacting the ground

at points has two hip torques and two ankle torques as control inputs. The three SLIP

emulation equations (Eqns. 5.40,5.41 and 5.42) and the fourth hip torque sharing equation

(5.43) can be solved to yield an analytical solution for each torque required.

The mapping for an over-actuated double-stance (UtF in Fig. 5.5C) does not have a

unique solution because there are five actuated joints, and the model has only three degrees

of freedom. For the purposes of this investigation, a two-stage mapping is used: the torque

that is applied to one of the ankles is first computed, then the three SLIP emulation

equations and the extra hip torque sharing equation are used to solve for the remaining

knee, ankle and two hip torques. The ankle torque of the foot which is flat on the ground

(the foot to the right in Fig. 5.5C) is calculated by solving the three SLIP emulation

equations as if the other leg, which is in push-off, is in swing.

The hip, knee and ankle torques during mid-stance (FS in Fig.5.5D) are most easily

mapped using the SLIP emulation equations because there are 3 joint torques to solve 3

emulation equations (Eqn. 5.40-5.42). This set of equations can be solved analytically,

though the solution is too large to be included in this manuscript (solved using MapleSim

[60].

During slow walking, it is possible that the lead heel contacts the ground before the

stance limb moves into toe-off (FUh in Fig. 5.5E). This yields an over-actuated system

that is similar to the over-actuated double stance with toe-off previously discussed. The

same two-stage mapping that was described for the previous over-actuated state (UtF) was

used for this phase of gait.

5.4.4 LASLIP Mapping Evaluation via Simulation

The bipedal LASLIP and SLIP models were simulated for comparison purposes using

exactly the same parameters used for bipedal ASLIP simulation (Sec. 5.3). The lengths

of the thigh and leg (L1 = 48cm, L2 = 48cm) were found using anthropometric tables

[110]. The foot geometry was estimated (AnkleY = 6.8cm, HeelX = 6.8cm and ToeX =

13.7cm), as no suitable anthropometric table of the foot could be found. The knee angle

during swing, βSW , was set to −12◦, the angle a human knee reaches when the foot flattens

on the floor [109] during early stance. The minimum knee angle, βMIN , was set to −1◦ to

avoid a singularity that occurs in Eqns. 5.37- 5.38 when the knee is straight (β = 0).
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Figure 5.6: Simulation results of the LASLIP. The Euclidean distance between the COM
of a bipedal SLIP and LASLIP model is shown in panel A). Panel B) shows an illustration
of the kinematics of the gait of the LASLIP. The ground reaction force profiles beneath leg
2 are shown in panel C) with human ground reaction force envelope covering ±1 standard
deviation [109] shown in gray. Panels D), E) and F) show the hip, knee and ankle torques of
the LASLIP in black with the corresponding human torque envelopes covering ±1 standard
deviation shown in gray

The simulation results show that the torso tracking control system drove the COM

kinematics of the SLIP and the LASLIP model to match to a very high precision (Fig.

5.6A) and regulate the torso orientation very precisely (average error of −1×10−16 radians).

The LASLIP has retained the characteristic human-like ground reaction forces of the SLIP

model (Fig. 5.6C), though with some small cusps at the moment the model makes the

transition from single to double stance. Further examination reveals that the hip, knee

and ankle torques of the LASLIP model are similar to estimated human hip, knee and ankle

torques [109]. The discontinuities present in the LASLIP joint torque profiles are due to the

changes in stance limb topology when the knee locks. The phase and magnitude differences

between the LASLIP torque curves and the human joint torque curves are likely caused by

the large model differences between a full human model and the simplified LASLIP model.

The quality of match between the LASLIP joint torques and human data (Fig. 5.6) is very
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encouraging, and indicates that a partitioned approach to predicting human kinematics and

kinetics is worthy of further study. The LASLIP also indicates that it is very important to

carefully define how the load is shared between the two legs during double stance. Although

it was possible to define double stance heuristics (Eqn. 5.43 and those detailed in Sec. 5.4.3)

that produced good results, it is highly unlikely that these heuristics will work well in all

situations.

5.5 Mapping SLIP Torso Dynamics onto an Anthro-

pomorphic Multibody Gait Model

An 11-dof anthropomorphic gait model (Fig. 5.7) actuated by joint torques calculated from

a torso-tracking controller was developed to apply the proposed partitioned simulation

approach to a more realistic model. Joint coordinates were used at the knee, ankle and

midfoot joints, while the hips were modeled using position constraints to ensure that the

contact force at the hip joint — a required quantity by the torso tracking control system —

would be a part of the system equations of the model. The model is controlled using 6 joint

torques applied at both hips, knees and ankles. The model interacts with the ground using

the foot contact model detailed in Ch. 4 consisting of two spherical volumetric contact

elements [31] to represent the heel and metatarsal pads. The midfoot is not rigid, but is

allowed to flex slightly at a revolute joint that has a spring damper in parallel with it.

Several control laws were developed to calculate the joint torques required to satisfy the

emulation equations for this model, listed below. The viscoelastic foot pads used in the

multibody model makes it impossible [17] to apply input-output feedback linearization to

this model. Instead, an input-output feedback linearization control law is calculated for an

approximate model (detailed in Sec. 5.5.1) which has a simplified foot. Since the control

model is an approximation of the gait model, feedback control — supplied by the error

terms (νx,νy and νθ) — is necessary to ensure that the orientation of the torso is regulated

and its position converges with the COM location of the SLIP model.
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Figure 5.7: The multibody model

ẍM = ẍS + νx (5.44)

ÿM = ÿS + νy (5.45)

θ̈M = νθ (5.46)

Hip, knee and ankle torques that satisfy Eqns. 5.44-5.46 are computed for the multibody

gait model using a series of control models (Fig. 5.8) that have a simplified foot, making

it possible to use input-output feedback linearization [44]. As with the LASLIP model, a

set of three additional heuristic equations are introduced during double stance to permit a

unique set of joint torques to be computed to satisfy Eqns. 5.44-5.46 in this overactuated

pose (here the torso has 3 dof, and there are 6 joint torques that can be applied).

Since the legs now have mass (in contrast to the previous models) a swing controller is

required to guide the leg from its final push-off position to its contact position in a specific

amount of time. The SLIP model is used to precompute the swing length (∆X) and time

since only constant cadence walking is being considered. Guiding the leg from push-off to

heel-contact in a set amount of time, in a manner that requires modest torque magnitudes,
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and keeps the foot from scuffing the ground is a formidable two-point boundary value

problem. A traditional optimal control approach used in robotics [94] was used to find

a swing trajectory with these properties. This pre-computed swing trajectory was used

as a reference for a computed-torque controller to guide the swing limb on the multibody

model. The following subsections detail the approach that was used to control the model

during stance (Sec. 5.5.1) and swing (Sec. 5.5.3).

5.5.1 Single Stance Control

Figure 5.8: The stance model A), the swing model B) and the double stance model C)
used by the control system to compute the hip, knee and ankle torques. The actual foot
contact model consists of a 2-part model that includes volumetric foot contact pads D),
while the abstraction used by the control system treats the foot as a rigid link that rotates
about a pin joint that is translating along a prismatic joint E)

While the importance of modeling the compliance of the human foot accurately has been

noted by many in the gait modeling research community [5, 1, 65], a flexible and compliant

foot complicates the control of the torso substantially. There is little information available

in the literature on controlling bipeds that interact with the ground using a compliant foot.

The compliance of the foot limits the forces that the leg can apply to the torso. The heel
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pad load cycles (Fig. 4.3 of Ch. 4) suggest that human foot pads behave like nonlinear

springs between the bones of the foot and the ground. When the foot pads are touching

the ground, but have not reached steady state compression, the foot pads behave like a

spring of low stiffness. The transient low stiffness of the foot pads greatly limits the ability

of the leg to apply a desirable force and torque to the hip joint. As the pads of the foot

compress, their apparent stiffness significantly increases and can be approximated as being

rigid giving the leg greater control authority over the torso. While a compliant foot is

used for the dynamic model (Fig. 5.8.D), a geometrically equivalent but rigid foot is used

for the control model (Fig. 5.8.E). During the transient contact phase when the apparent

stiffness of the foot pads is quite low, the control model and the dynamic model differ.

The two models are made to converge to one and other as the foot pads reach steady

state compression by using feed-back control to augment the desired torso accelerations

(Eqns. 5.44- 5.46). Each of the feedback error terms (νx,νy and νθ) take the form of a state

feedback PD controller:

νx = −Kx(xM − xS)−Dx(ẋM − ẋS) (5.47)

νy = −Ky(yM − yS)−Dy(ẏM − ẏS) (5.48)

νθ = −Kθ(θM − θ0)−Dθ(θ̇M) (5.49)

Input-output feedback linearization [44] is used to compute the hip, knee, and ankle

torques required to accelerate the torso of the multibody model such that Eqns. 5.44-

5.46 are satisfied. The input-output feedback linearization control expressions are not

formulated using the multibody model (Fig. 5.7) — due to the difficulties the full foot

model introduces — but with an approximate single stance model (Fig. 5.8A) that includes

a simplified foot. To form the control law, we first begin with the equations of motion of

the stance control model (Fig. 5.8A) in functional form (using square brackets to denote

matrices).

~̈γSS = [MSS]−14×4

(
−~CSS + [PSS]4×3 {~τSS}3×1 + [QSS]4×3

{
~FSW

~τSW

}
3×1

)
(5.50)

In Eqn. 5.50 ~γSS is the vector of joint angles (and respective derivatives) of the single
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stance (SS) control model (Fig. 5.8A), [MSS] is the mass matrix, ~CSS the vector of Coriolis,

centripetal and gravitational forces; [PSS]4×3 is the matrix that transforms the joint torques

{~τSS}3×1 into generalized forces; and [QSS]4×3 is the matrix that transforms the reaction

force, and vector
{
~FSW , ~τSW

}
3×1

that the swing limb applies to the pelvis into generalized

forces. The variables used to describe the general multibody terms in Eqn. 5.50 are used

throughout this chapter. The accelerations of the torso (ẍM , ÿM , θ̈M) can be expressed as

a linear combination of the joint accelerations of the stance model. After substituting the

Eqns. 5.44-5.45, the SLIP emulation equations, the mapping from the accelerations of the

torso to the angular accelerations of the joints of the leg becomes:


ẍS + νx

ÿS + νy

θ̈S + νθ

 = [TSS]3×4

{
~̈γSS

}
(5.51)

Substituting Eqn. 5.50 into Eqn. 5.51 yields a set of three equations that is linear in the

three joint torques ~τSS.


ẍS + νx

ÿS + νy

θ̈S + νθ

 = [TSS]3×4 [MSS]−14×4

(
−~CSS + [PSS]4×3 {~τSS}3×1 + [QSS]4×3

{
~FSW

~τSW

}
3×1

)
(5.52)

Once the state of the multibody model has been mapped to an equivalent state of the

stance model, Eqn. 5.52 becomes a system of three equations with three unknowns (the

three components of ~τSS) making it possible to compute values of the hip, knee and ankle

torques that will satisfy Eqns. 5.44-5.46. The hip, knee and ankle states can be mapped

directly from the multibody model to the stance control model.
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γ1SS = −(θM −
π

2
+ αM) (5.53)

γ2SS = −βM (5.54)

γ3SS = −γM (5.55)

γ̇1SS = −(θ̇M + α̇M (5.56)

γ̇2SS = −β̇M (5.57)

γ̇3SS = −γ̇M (5.58)

The geometry of the foot of the control model (Fig. 5.8A) — the length of the link

between the COM of the foot and the revolute joint attached to the ground — is adjusted

so that the revolute joint that attaches to the ground at a location that coincides with the

COP of the foot of the multibody model (Fig. 5.7). The angular velocity of the stance

model foot, and the translational velocity of the COP of the stance model (γ̇4SS in Fig.

5.8A and ẋCOP in Fig. 5.8E) are computed such that the translational velocity of the ankle

joints of the stance control and multibody gait model match.

5.5.2 Double Stance Control

Figure 5.9: The single and double stance control models are switched as a function of foot
contact A). The gait model is controlled by the multibody swing and stance models which
use the SLIP and swing reference kinematics as desirable trajectories B)
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Once the swing foot comes into contact with the ground, the controller changes its

internal state from single stance to double stance (Fig. 5.9), and employs a completely

different control model (Fig. 5.8C), for which a new control law must be derived. As

before, input-output feedback linearization is applied to an approximate double stance

model to yield hip, knee and ankle torques for both legs that will satisfy Eqns. 5.44-5.46.

The derivation begins by computing the net force and torque that the two legs must apply

to the torso to satisfy Eqns. 5.44-5.46.

fMx = m(ẍM + νx) (5.59)

fMy = m(ÿM + νy + g) (5.60)

τM = Jνθ − L(fMx sin(θM)− fMy cos(θM)) (5.61)

Where fMx,fMy, and τM are the net force and torque that the two legs must apply to the

torso (of mass m, inertia J at an orientation of θM as before) to satisfy Eqns. 5.44-5.46.

The net force and torque applied to the torso is simply the sum of the force and torque

that each leg applies to the hip joint.

fMx = (~F 1
DS + ~F 5

DS) · ı̂ (5.62)

fMy = (~F 1
DS + ~F 5

DS) · ̂ (5.63)

τM = τ 1DS + τ 5DS (5.64)

Since the net force and torque that is applied to the torso is only comprised of three

variables, yet is a function of six joint torques (τ 1−3DS and τ 5−7DS ), there is no unique solution

to this system of equations. As before with the LASLIP model, extra heuristic equations

are introduced to divide the load between the two legs in proportion to the contact force

beneath the respective foot of the multibody model.
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~F 1
DS · ı̂
fy1M

+
~F 5
DS · ı̂
fy2M

= 0 (5.65)

~F 1
DS · ̂
fy1M

−
~F 5
DS · ̂
fy2M

= 0 (5.66)

τ 1DS
fy1M

− τ 5DS
fy2M

= 0 (5.67)

The system of six equations (Eqns. 5.62-5.64 and Eqns. 5.65-5.67) can be solved for the

forces and torques that each leg must apply to hip joint of the torso to satisfy Eqns. 5.59-

5.61 and Eqns. 5.62-5.64. The force and torque that each leg applies to the hip joint of the

torso can be used in combination with the equations of motion of the double stance model

(Fig. 5.8C) to compute the remaining knee and ankle torques that each leg must generate.

The equations of motion of the double stance model in functional form are

[MDS]9×9

{
~̈γDS

}
+ ~CDS +

{
05×1
~λ4×1

}T {
05×1
~DDS,4×1

}
= [PDS]9×6 {~τDS}6×1 (5.68)

Position constraint equations ~DDS have been used to model the hip joints (rather than

using joint coordinates) to make it possible to solve for the force that the legs apply at this

joint. The reaction force at the hip can now be expressed as

{
~F 1
DS

~F 5
DS

}
4×1

= [BDS]4×4

{
~λ4×1

}
(5.69)

where matrix [B]4×4 is a matrix that transform the Lagrange multipliers into reaction

forces. After solving Eqn. 5.69 for the Lagrange multipliers that yield the desired joint

reaction forces and substituting the result into Eqn. 5.68 we have
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[MDS]9×9

{
~̈γDS

}
+ ~CDS +


05×1

[BDS]−1

{
~F 1
DS

~F 5
DS

}
4×1


T {

05×1
~DDS,4×1

}
= [PDS]9×6 {~τDS}6×1

(5.70)

Since the two hip torques (τ 1DS and τ 5DS) and forces (f 1
DS and f 5

DS) are known from the

solution to Eqns. 5.62-5.64 and Eqns. 5.65-5.67, Eqn. 5.70 has embedded in it a set of

four equations (the constraint equations) that are linear in four unknowns (τ 2DS, τ 3DS, τ 6DS,

and τ 7DS). After the state of the multibody model (Fig. 5.7) is mapped to the equivalent

state of the double stance control model (Fig. 5.8) — using the same procedure detailed

in Sec. 5.5.1 — Eqn. 5.69 can be solved for the remaining knee and ankle torques required

to satisfy Eqns. 5.59-5.61.

5.5.3 Swing Control

The swing phase has been a topic of robotics research for many years and has resulted

in a number of standard approaches: active trajectory tracking [39, 105], passive swing

[62, 111], and a combination of passive and active swing techniques [81]. Although a lot of

research has been done on the topic of swing, little of it is directly applicable to simulating

a human swing phase. A purely passive swing is quite limiting because the swing frequency

of the limb is fixed by the geometrical and inertial properties of the limb. In addition, it

has been shown that a purely passive swing is incompatible with the human swing phase

[107]. A purely trajectory driven approach is convenient, however, great care must be

taken to choose a trajectory that does not require joint torques that would be impossible

for a human to generate. Beginning the swing phase passively and finishing with trajectory

tracking [81] seems ideal, though care must be taken to blend the two phases in a manner

that does not cause torque transients.

For this preliminary investigation, optimization was used to pre-compute a human-like

swing trajectory. During the multibody simulation, the swing limb was driven to follow the

pre-computed optimal swing trajectory using a computed torque controller with feedback.

Human-like swing kinematics that fit the swing phase of the target SLIP model were

found by searching for a trajectory that minimized a convex function of joint work for the
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Figure 5.10: Swing phase simulation results. Model and human joint kinematics (in gray)
are shown in A), a stick figure diagram is presented in B) and plots of model and human
joint torques (in gray) are shown in C). Human data [109] is presented as a gray band that
encompasses ±1 s.d.

swing model (Fig. 5.8B). A convex function of joint work was employed to crudely emulate

the increased metabolic cost of eccentric and concentric contractions relative to isometric

contractions [91]. Note that the joint angles of the swing model are represented using the

variables ψ1
SW ,ψ2

SW ,ψ3
SW in the place of αM ,βM and γM for convenience.

min

3∑
i=1

∫ tf

t0

(τ iSW ψ̇
i
SW )2dt (5.71)

Unlike the stance model, bandwidth-limited joint torque actuators were used during

the optimization process. It was critical to use bandwidth-limited joint torque actuators

to prevent the optimization algorithm from converging on a solution that required sharp
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changes of joint torque outside of human capabilities. Each torque actuator was modeled

as having a second-order, critically damped (ζ = 1, ωN = 8Hz× 2π rad) impulse response

to a torque demand µi to crudely approximate the behavior of an equivalent set of muscles

[110].

τ̈ i = ω2
Nµ

i − 2ζωN τ̇
i − ωNτ i (5.72)

Direct collocation [86] was used to solve this constrained problem to find solutions that

satisfied the equations of motion,

[MSW ]3×3

{
~̈ψSW

}
+ ~CSW = [PSW ]3×3 {~τSW}3×1 (5.73)

prevented the heel and toe from touching the ground during the swing period,

{
yHEEL

yTOE

}
> 0 (5.74)

and finished with the heel at the desired contact location.

{
xHEEL

yHEEL

}
=

{
∆X

0

}
(5.75)

The accelerations of the hip, required in Eqn. 5.73, were set to the vertical and horizontal

accelerations of the SLIP model.

The kinematics and torques of the minimal joint work swing trajectory reveal differences

from human swing (Fig. 5.10). Although the hip and knee initial positions are very similar,

the final position of the model requires more flexion at the hip and knee than is typical

of a human swing [109]. The hip torque of the model is markedly different from human

hip torques [109] (estimated using inverse dynamics analysis), taking on a sinusoidal form.

These differences are likely due to both model differences — none of the passive muscle

properties are being modeled — and cost function differences. For the present study this

plausible, but clearly un-human swing trajectory will be used to guide the swing leg to its

final position at heel contact.

64



Once the swing trajectory was established, the swing limb was controlled to follow this

trajectory using a standard computed torque controller [94] as shown in Eqn. 5.76.

{~τSW}3×1 = [PSW ]−13×3

(
[MSW ]3×3

{
~̈ψ∗SW

}
+ ~CSW

)
(5.76)

Since the actual hip acceleration of the multibody model may differ from the desired vertical

and horizontal accelerations of the target SLIP model, the state feedback controller shown

in Eqn. 5.77 was used to ensure that the swing limb would converge to its desired trajectory

over time.


ψ̈∗1SW
ψ̈∗2SW
ψ̈∗3SW

 =


ψ̈1
SW

ψ̈2
SW

ψ̈3
SW

−KSW


αM − ψ1

SW

βM − ψ2
SW

γM − ψ3
SW

−DSW


α̇M − ψ̇1

SW

β̇M − ψ̇2
SW

γ̇M − ψ̇3
SW

 (5.77)

5.5.4 Multibody Control Mapping Evaluation via Simulation

Figure 5.11: Multibody gait simulation results. SLIP tracking works very well during single
stance but fails at the end of swing

The multibody model and control system was numerically simulated. At each timestep

Eqns. 5.76 and 5.77 were used to apply torques to the hip, knee and ankle of the swing

limb to ensure that it tracked the desired swing trajectory. The reaction force and torque,

FSW and τSW , that the swing limb applied to the hip joint, along with the desired torso

accelerations from Eqns. 5.44-5.46 were substituted into Eqn. 5.52 prior to solving for the
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stance limb control torques τ 1SS,τ 2SS and τ 3SS during single stance; and Eqn. 5.70 during

double.

The simulation results (Fig. 5.10) indicate that the swing and stance controllers per-

formed well, but problems were encountered during the transition between these phases.

The stance controller limited the (Euclidean) distance error between the torso of the multi-

body model and the SLIP reference model to less than 1mm, though relatively high levels of

feedback were required (Kx = Ky = Dx = Dy = 103 N
m

and Ns
m

respectively;Kθ = Dθ = 104

Nm
rad

and Nms
rad

respectively) to make the SLIP and the multibody torso trajectories converge.

During this time, the stance foot moved from being flat on the ground to rotating about

the toe smoothly. When the swing limb reached its final posture, the target accelerations

ψ̈iM,W and velocities ψ̇iM,W were set to zero. This sudden change in desired acceleration

and velocity caused the swing controller of Eqn. 5.76 to apply large torques to the swing

limb. These large control torques resulted in correspondingly large reaction forces at the

hip joint, causing the stance controller to go unstable (Fig. 5.11). Double stance was never

reached.

The failure of this control system highlights a fundamental challenge of controlling the

state of the torso during stance, and then controlling the state of the leg during swing:

blending these two different control paradigms smoothly is difficult. Since the state of

the leg is not controlled during stance (the state of the torso is), the posture of the leg

at the end of stance is not known a priori. The state feedback terms (Eqn. 5.77) in the

present swing controller (Eqn. 5.76) compute large control torques if the state of the leg

was different from the pre-computed swing trajectory. It is likely that similar spurious

control torques would be observed during the transition from stance to swing.

5.6 Conclusions

Although SLIP models have human-like running and walking gaits, it is challenging to

map this behavior to an anthropomorphic model. A bipedal extension of Poulakakis and

Grizzle’s ASLIP monopedal model and control laws was presented. The presented control

laws for the bipedal ASLIP make its state equations identical to the bipedal SLIP model.

The LASLIP model, an anthropomorphic extension to the bipedal ASLIP model, was

presented along with preliminary work to map SLIP leg forces into the joint torque space
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of the LASLIP. The LASLIP model regulated the orientation of its torso very effectively

and closely tracked the trajectory of the target SLIP model (Fig. 5.6). The joint torque

profiles of the LASLIP were similar in shape and magnitude to human joint torque profiles

[109] estimated using inverse dynamics analysis, with the exception of a small discontinuity

in the ankle torque profile. The LASLIP model indicates that the approach of partitioning

the task of defining human-like kinematics and kinetics into two different models is worthy

of further investigation, and in addition, that care must be taken when defining how

the two legs are coordinated during double stance. Mapping the torso dynamics of the

SLIP model onto the joint torque space of a full multibody sagittal plane model with

simulated foot contact proved challenging. Although a new stance controller formulation

was developed that functions smoothly when the stance foot transitions from multiple to

single point contact, the transition from swing to stance (and likely vice-versa) resulted in

large control torques, eventually causing the model to fall. Future work should concentrate

on determining how best to coordinate the legs during double stance, and on developing

controllers that allow the multibody model to emulate the SLIP while ensuring smooth

transitions stance to swing.
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Chapter 6

Discrete Planar Balance Corrections

using Foot Placement

In Ch. 5 control systems that allowed several models to emulate a SLIP were developed,

giving the anthropomorphic models the human-like gait of the SLIP [7, 26]. Similarly,

the anthropomorphic models also inherit the limitations of the SLIP model that they are

emulating. Although the SLIP can be made to run and walk with human-like COM and

GRF profiles, it can only do so at a fixed cadence. While the SLIP model can maintain

a very consistent gait, the control it has over its balance is poor because it cannot stop.

Gait termination and compensatory stepping movements are of particular interest to ki-

nesiologists and clinicians, because human use these types of movements to prevent falls.

Clearly the simple model that the multibody model emulates needs to be able to catch its

balance in a single step like a human [13].

Foot placement has long been recognized as the primary mechanism that humans use

to restore balance [71]. While the continuous control of balance that occurs during stance

is critical, as mentioned in Ch. 5, the chosen foot placement location is equally important

because it determines the family of forces that the stance limb can apply to the torso. Many

biomechanists have examined where humans place their feet during gait, perturbations, and

during athletic events. Roboticists have also used foot placement as a means of control,

but with limited success. Recently Wight et al. introduced a planar foot placement

estimator (FPE) algorithm that will restore balance to a simplified biped that is falling. In

this chapter, the 2D FPE is explained and tested as a candidate function for sagittal-plane
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human-foot-placement (HFP). The kinematics of 14 healthy subjects while they performed

10 walking trials at three paces were recorded in order to calculate the FPE and compare

it to HFP locations at heel contact.

People might not step on the location calculated by the FPE for a variety of reasons.

Wight et al. proved that a simplified biped becomes statically balanced in a single step if

it steps directly on the FPE (Fig. 6.2c). Subjects might not step on the FPE because they

do not behave like the simplified biped. A sensitivity analysis will be used to determine

how closely humans behave like Wight et al.’s simplified biped. Subjects also may not step

at the FPE location when they do not want to become statically balanced (Fig. 6.2).

While people may not always step on the FPE when walking, we expect they will place

their feet in locations that allow them to stop within a single step. The simplified biped

has a contact point (Fig. 6.1), whereas a human foot has a contact area giving people some

flexibility about where they choose to place their feet. The center of pressure (COP) is the

closest physical analogue to the simplified biped’s contact point because, like the contact

point, moments of the ground reactions about this location sum to zero. As long as the

FPE lies within the contact area of the foot, the subject would be guaranteed of stopping

by moving their COP on or ahead of the FPE (Fig. 6.2b). This constraint means that the

FPE should fall behind the leading edge of the foot when forward motion is desired.

6.1 Model

Wight et al. developed the FPE to restore balance to a simplified biped (Fig 6.1) because

more complicated bipeds — such as humans — have unmanageably large equations of

motion. The biped consists of a single body with 3 degrees of freedom (planar translation

and rotation), and two infinitely small contact points that represent feet attached to the

body with rigid massless links. The FPE will calculate where the biped should place its

contact point so that after impact it has just enough kinetic energy to transition to a

standing position (Fig. 6.2c). The derivation for the final expression of the FPE for a

simplified biped is shown below. It is assumed that angular momentum (H) is conserved

during contact about the point of contact o (Fig. 6.1). The instant before contact is denoted

with a subscript 1, the instant after contact with a subscript 2.
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Figure 6.1: The simplified biped before and after foot contact, assuming the foot sticks to
the ground and momentum is conserved [108]

Figure 6.2: The simplified biped stepping relative to the FPE [108]. (a) Stepping closer
than the FPE causes the biped to fall forward. (b) Stepping further than the FPE causes
the biped to fall back onto the swing leg. (c) Stepping precisely at the FPE will perfectly
balance the COM above the standing foot
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Ho1 = Ho2 (6.1)

The expression for planar angular momentum (using sφ, cφ for sinφ, cosφ) can be ex-

panded using the biped’s mass (m), moment of inertia about the system COM (Jcom), leg

length (L) and its current COM linear (vx,vy) and angular (θ̇) speed.

mL(vx cφ+ vy sφ) + Jcom θ̇1 = (mL2 + Jcom) θ̇2 (6.2)

Whole-body average angular speed (θ̇1 above) is calculated using the equivalent momentum

[20] of the tracked body segments.

θ̇Avg =

∑n
i=1 Jiθ̇i∑n
i=1 Ji

(6.3)

Leg length is described in terms of the current height h to allow for variable leg lengths.

L =
h

cφ
(6.4)

Defining leg length (L) in this manner means that the FPE can find locations that might

not be reachable by a human leg at a given moment in time. The post-impact angular

speed of the biped θ̇2 can be found by substituting Eqn. 6.4 into Eqn. 6.2.

θ̇2 =
mh(vx cφ+ vy sφ)cφ+ Jcom θ̇1 c

2φ

mh2 + Jcom c2φ
(6.5)

The FPE is the contact location where the biped’s post-contact system energy is equal

to its peak potential energy. Peak potential energy is reached when the COM is at its

maximum height (hpeak) with one contact point still on the ground. System energy refers

to the sum of kinetic (T ) and potential (V ) energy.

T2 + V2 = mghpeak (6.6)
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Since the simplified biped is in pure rotation after contact, Eqn. 6.6 becomes:

1

2
(Jcom +mL2)θ̇22 +mgL cφ = mgL (6.7)

Substituting Eqn. 6.5 into Eqn. 6.7 results in the nonlinear FPE equation to calculate φ,

the angle at which the leg should be placed.

0 =
[mh(vx cφ+ vy sφ)cφ+ Jcomθ̇1 c

2φ]2

mh2 + Jcom c2φ
+ 2mgh cφ(cφ− 1) (6.8)

Simple trigonometry can be used to find X(φ), the location on the floor where the foot

should be placed relative to the COM position.

X(φ) = h tanφ (6.9)

6.2 Experimental Methods

Figure 6.3: Sagittal plane marker layout
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Fourteen healthy subjects (7 males and 7 females) with a wide range of heights (1.42 -

1.92m) and masses (69.5 - 114.5 kg) were instrumented with OptoTrak IRED markers to

track the movements of 7 body segments (2 feet, shanks, legs and 1 lumped HAT) for 8

seconds at 200 Hz in the sagittal plane and record heel contact locations while they walked.

IREDs were placed on the distal head of the 5th metatarsal (MT), fibular trochlea of the

calcaneus (C), the lateral malleolus (LM), the proximal fibular head (FH), the greater

trochanter (GT) and the acromion process (AP). Subjects walked with their arms crossed

(eliminating the need to track arm movements) through the (approximately) 5 m long

collection volume for 10 trials at 80%, 100%, and 120% of their natural pace, using a

metronome to cue step timing. Two trial types were recorded: constant cadence walking,

and walking that included gait initiation and termination. Anthropometric tables [110]

were used to estimate each of the 7 segment masses and inertias (2 feet, shanks, legs and

1 HAT). The FPE’s prediction was compared to the subject’s lateral malleolus location

during contact onset. The difference between these two locations, εLM , was studied using

a 14 × 2 × 3 (subject by trial type by pace) repeated measures ANOVA. Contact was

identified kinematically (Sec. 6.2.1) to allow a larger number of steps to be analyzed than

could be done with a limited number of force plates.

At contact onset (tC), the horizontal location of the lateral malleolus marker (
−−→
LM(tC) ·

(x̂)) was subtracted from X(φ) (Eqn. 6.9) to obtain the FPE-HFP error (εLM). Similarly,

the flat-footed horizontal location of the 5th metatarsal (
−−→
MT (tC) ·(x̂)) was subtracted from

the FPE (forming εMT ) to determine if the FPE was ahead of the contact area of the foot.

These differences are shown in Eqn. 6.10, where the letter ‘A’ has been used to replace

marker identifiers LM and MT.

εLM = X(φ(tC))−
−−→
LM(tC) · x̂ (6.10)

εMT = X(φ(tC))−
−−→
MT (tC) · x̂

The lateral malleolus was chosen as the reference point for analysis because of its ease of

identification across subjects. Contact onset was used because it allowed a simultaneous

measurement of human foot placement and the state of the body before it was affected by

ground reaction forces.

73



6.2.1 Kinematically Identifying Contact Onset

Accurately measuring the time of contact onset using foot kinematics was challenging.

Thresholding the height of the foot can only identify contact with an accuracy of 100 ms

[48], which is too crude for the present study. Ground reaction forces develop very quickly

during heel contact and affect the velocity of the foot. Different velocity signatures of

contact onset were investigated: the vertical and horizontal speeds of the three markers on

the foot, and the angular velocity of the foot.

Contact onset was identified using a combination of thresholding and velocity signature

analysis. Heel-first contacts caused the horizontal speed of the LM marker to increase when

the heel gripped the ground and pitched the foot forwards. Unfortunately, two subjects

often contacted the ground flat-footed, eliminating the LM velocity signature. Flat-footed

contacts could be identified by the large differences in the contact times estimated by the

thresholding method [48] and the LM velocity signature. These two methods were used

to measure foot contact time with a high temporal resolution and ignore steps where they

disagreed.

A trial was collected with both kinematic and force plate data to validate the foot contact

identification algorithm. The force plate measured the true time of contact onset when its

vertical load exceeded twice the standard deviation (σ = 2.11N) of the resting noise of the

plate. The kinematic contact time lagged the estimate of the force plate by 0− 10ms, at

which time the load on the plate was between 2.86−16.3N . The effect of the delay on the

FPE-HFP error (εLM) was estimated by multiplying the FPE-HFP velocity (dLMx

dt
− dX(φ)

dt
)

by the maximum 10ms time lag.

6.2.2 Validation of Assumptions

Violations of the assumptions of the FPE were quantified using a sensitivity analysis. The

FPE makes four assumptions: that momentum is conserved during contact, and that the

leg length, moment of inertia, and system energy (the sum of kinetic and potential energy)

are constant after contact. Since the FPE is continuously differentiable it is possible to

take partial derivatives of X(φ) of the FPE with respect to the quantities that are assumed

to be constant. The change in angular momentum (∆Ho), leg length (∆L), moment of

inertia (∆JCOM) and kinetic and potential energy sum (∆(T +V )) was calculated between
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foot contact and the time the COM passes over the lateral malleolus (Fig. 6.5) — the

moment when Wight et al.’s simplified biped comes to rest when it steps on the FPE. The

error of the FPE due to the observed violations was estimated by taking the product of

the partial derivatives and the observed differences.

Examining the assumption that angular momentum is conserved during heel strike is

difficult because the simplified biped has a fixed contact point whereas the human foot

has a moving contact area. The center of pressure (COP) could be analyzed because it

is the closest physical analogue to the contact point of the simplified biped. Calculating

angular momentum about the COP (Eqn. 6.11) produces misleading results because the

COP movement has a dramatic effect on the angular momentum profile.

~Horef (t) =
7∑
i=1

Ji ~ωi(t) + (~ri(t)− ~rCOP )×mi(~vi(t))− ~vCOP (t)

(6.11)

Since the magnitude of the Ji~ωi terms of the angular momentum of the body are minimal

[38], the cross product terms (~ri − ~rCOP ) × m(~vi − ~vCOP ) dominate. In early stance the

COP moves forward quickly, making the (~vi−~vCOP ) term small, resulting in small angular

momentum values. The COP slows down in mid-stance making the cross product terms

significantly larger, increasing the calculated angular momentum. The large variation in

angular momentum is misleading because it is being caused by the movement of the COP,

rather than the contact event.

A fixed point of reference is required to determine if angular momentum is conserved

during foot contact. The ground projection of the LM at mid stance (when the COM is over

the LM) was chosen as a reference point. This location was chosen because it approximates

the final location of the COP if the person stopped as the simplified biped does. Whole body

angular momentum was calculated by summing the angular momentum of each segment

about its own COM (Ji ~ωi) and then about the reference point (~ri− ~rLMGP )×mi(~vi) as in

Eqn. 6.12.

75



~HLMGP (t) =
7∑
i=1

Ji ~ωi(t) + (~ri(t)− ~rLMGP )×mi(~vi(t))

(6.12)

Leg length was measured using the Euclidean distance between the whole body center of

mass (COM) and the LM ground projection of the contacting foot to be consistent with

Wight et al.’s FPE [108]:

L(t) = |~rCOM(t)− ~rLM(t)| (6.13)

The moment of inertia of the body (JCOM) was calculated about the COM of the body

using the parallel axis theorem:

J(t)com =
7∑
i=1

Ji +mi|~ri(t)− ~rCOM(t)|2 (6.14)

The sum of kinetic and potential energy was calculated for each segment as:

T (t) + V (t) =
7∑
i=1

1

2
mi|~vi(t)|2 +

1

2
Ji|~ωi(t)|2 +mighi(t) (6.15)

Changes in each of these quantities (∆A), except angular momentum (Ho), were calculated

by taking the maximum difference that occurred between foot contact and the time the

COM of the body passed over the lead ankle.

∆A = max(A(t))−min(A(t)) (6.16)

Unlike the changes in the quantities listed above, the change in angular momentum (∆HLMGP )

was calculated by taking a local maximum difference using its value at contact onset

(HLMGP (tC)) as a reference. Contact onset must be used as a reference because the model

assumes that angular momentum is conserved during contact. After contact, angular mo-

mentum is free to vary, and in the case of the model decreases to zero when the biped

becomes balanced.
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The required differentials were calculated numerically at the time of foot contact:

∂X(φ)

∂HLMGP

=
X(φ, (1 + δ)HLMGP )−X(φ,HLMGP )

δHLMGP

(6.17)

∂X(φ)

∂JCOM
=

X(φ, (1 + δ)JCOM)−X(φ, JCOM)

δJCOM
(6.18)

∂X(φ)

∂L
=

X(φ, (1 + δ)L)−X(φ, L)

δL
(6.19)

∂X(φ)

∂(T + V )
=

X(φ, (1 + δ)(T + V ))−X(φ, (T + V ))

δ(T + V )
(6.20)

Each partial derivative was assessed for numerical stability by calculating the relative error

between each partial using progressively smaller values of δ (0.01, 0.001, and 0.0001). The

largest discrepancy between any of the partial derivatives was a mere 0.37%, indicating

that an appropriately small value of δ had been chosen for each partial derivative. These

sensitivity equations can also be computed symbolically by taking a partial derivatives of

Eqn. 6.8.

6.3 Results

The 4257 step locations recorded (on average just over 5 steps were recorded per trial)

in this study are highly correlated with the predictions of the FPE (ρ ≥ 0.997 in Tbl.

6.1). In addition, the standard deviation σLM of the FPE-HFP error (here we are using

µ to indicate a mean, and σ to indicate a standard deviation) is much smaller than the

stride length standard deviation, σSL (Tbl. 6.1), suggesting that the model is successfully

capturing the important dynamics of the foot placement process. Subjects appear to place

the leading edge of their foot ahead of the FPE during natural and slower paced walks (see

µ(εMT ) and σ(εMT ) in Tbl. 6.1), allowing them to stop without taking an extra step if they

behave like Wight et al.’s inverted pendulum. Only 212 of the 4257 steps analyzed had

the MT behind the FPE, with nearly half (95 steps) generated by subject 6 whose natural

cadence was a brisk 112 steps per minute, far faster than the rest of the subjects (who

averaged 100±7.71 steps per minute). The remaining exceptional steps were generated by
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Figure 6.4: Box and whisker plots of the error between the FPE and each subject’s lateral
malleolus at foot contact. Whiskers run between the 5th and 95th percentiles, boxes between
the 25th and 75th percentiles with a hash at the 50th percentile. Natural paced trials align
with the subject number; slow trials are immediately to the left and fast trials are to the
right. Subjects are motivated by not only balance but pace and acceleration since they step
further behind the FPE as they walk faster, and with more variation when they initiate
and terminate gait. I failed to collect constant cadence trials for subject 1
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other subjects during the fast paced trials (111 steps), with very few occurring in natural

paced trials (4 steps).

Init. and Term. Cont. Walking
Slow Nat. Fast Slow Nat. Fast

ρ 0.999 0.999 0.999 0.997 0.997 0.998
µ(εLM) 3.27 -2.02 -6.85 2.57 -4.12 -8.28
σ(εLM) 2.40 3.18 4.43 1.60 1.50 1.45
σSL 7.36 10.5 17.6 2.96 2.73 2.15
µ(εMT ) 16.2 10.8 5.72 16.2 8.85 3.55
σ(εMT ) 2.57 3.34 4.54 1.92 1.64 1.80

Table 6.1: The FPE and HFP are highly correlated (ρ). The FPE-HFP error means µ(εLM)
and standard deviations σ(εLM) change systematically with trial type and pace. The FPE
is capturing important dynamics of the foot placement since FPE-HFP error standard
deviations σ(εLM) are much smaller than the stride length standard deviations σSL. The
mean µ(εMT ) and standard deviation σ(εMT ) of the distance between the FPE and the
flat-footed position of the MT marker εMT indicate that subjects place their MT ahead of
the FPE, allowing them to stop in a single step if desired. All quantities except ρ are in
units of cm

The FPE-HFP (εLM) error appears to vary systematically for different walking paces

(Fig. 6.4). The spread of the FPE-HFP error also appears to vary systematically between

trials that included gait initiation and termination, compared to constant cadence trials

(Fig. 6.4). A 12 × 2 × 3 (subject by trial type by pace) repeated measures ANOVA

analysis was used to study the apparent systematic changes of εLM in detail. The repeated

measures ANOVA analysis was completed on the means of each subject, trial type, and

pace combination using a subset of 20 εLM measurements per combination. The analysis

found significant interaction between pace and trial type (F (2, 22) = 18.82, p < 0.0001).

The strong interaction between trial type and pace indicates that subjects are coordinating

their foot placements with both changes in pace and acceleration (constant velocity walking

requires no acceleration, while the trial with gait initiation and termination does require

acceleration). There are also significant main effects for trial type (F (1, 11) = 50.52,

p < 0.0001), and pace (F (2, 22) = 373.04, p < 0.0001) though these main effects are not

independent due to their significant interaction. These conclusions do not change if all

εLM measurements are used to compute the subject, trial, and pace combination means

used in the ANOVA analysis rather than a subset of 20 measurements per combination.
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The data does not satisfy the assumptions of the ANOVA because only 49 out of 72 of the

FPE-HFP error distributions are normal (using Kolmogorov-Smirnov, Cramer-Von Mises

and Anderson-Darling tests), and the variances are not equal (using Levene’s test). The

findings should be unaffected by these assumption violations because the differences are

so strong, and a repeated measures ANOVA is robust against such errors [90]. I failed to

collect constant cadence walking trials for subject 1, and the fast constant cadence trial

for subject 14. I chose to exclude the data of subject 1 and 14 in the analysis to permit a

repeated measures ANOVA to be used for analysis.

W
∂X(φ)

∂W
± σ ∆W ± σ

∂X(φ)

∂W
∆W ± σ

Ho 0.27 ± 0.0046 7.31 ± 2.3 2.18 ± 0.64
J -0.10 ± 0.0056 0.45 ± 0.036 -0.050 ± 0.0054
L -0.077 ± 0.47 1.12 ± 0.13 -0.11 ± 0.016
T+V 1.25e-4 ± 7.49e-6 15.33 ± 7.25 0.21 ± 0.097
dεLM

dt
-35.6 ± 5.52 cm

s
∆tmax 0.010 -0.36 ± 0.06

∆εLM ± σ -2.20 ±0.96

Table 6.2: The sensitivity analysis summary statistics indicate that violating the assump-
tion of conservation of momentum could affect the FPE calculation by 2.18 cm on average,
which cannot account for the observed -2.2 cm FPE-HFP error. The small changes in leg
length, inertia and system energy would only influence the FPE-HFP error on the order of
millimeters or less. All quantities in the final column are in units of cm

The velocity-dependent changes of the FPE-HFP error could be caused by a systematic

violation of the assumptions of the FPE as described in Section 6.2. Most of the assump-

tions of Wight et al.’s model are met (Fig. 6.5), and affect the FPE calculation and the

FPE-HFP error very little (Tbl. 6.2). In addition, the temporal error of the kinematic

contact estimation technique could have affected the results only by 3.6 ± 0.6mm (Tbl.

6.2). The assumption that angular momentum ( ~Ho) is conserved during contact is bro-

ken; angular momentum actually increases, due to a coordinated weight acceptance and

push-off phase [16]. When the extra momentum is taken into account, the FPE predicts

that the subjects should have stepped 2−3 cm further ahead (Tbl. 6.2 and Tbl. 6.3), when

in reality they stepped further behind the FPE as they walked faster. Based on the data

and the analysis of the assumptions of the model we suggest that the velocity-dependent

FPE-HFP error is volitional rather than being the result of a systematic violation of the
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Figure 6.5: Group ensemble plots of dimensionless normalized Ho, L, J , and T +V profiles
between heel strike and the moment the COM passes over the LM. Means are drawn with
a solid line while ±1 standard deviation is shown with a dotted line. The natural paced
constant cadence trial is shown. The assumption that angular momentum is conserved is
violated since it increases. The assumptions of constant L, J and T + V are reasonable.
Note that the sum of kinetic and potential energy (T+V ) plot does not change appreciably
because potential energy (V ) dominates and remains relatively constant

81



FPE assumptions.

Init. & Term. Slow:-20% Natural Fast: 20%
εLM

δHLMGP
∆HLMGP 2.77±1.03 2.68±1.29 2.62±1.55

εLM 3.27±2.40 -2.02±3.18 -6.85±4.43
Cont. Walking Slow:-20% Natural Fast: 20%
δX(φ)

δHLMGP
∆HLMGP 2.85 ± 0.62 2.70± 0.87 2.67± 1.04

εLM 2.57± 1.60 -4.12± 1.50 -8.28± 1.45

Table 6.3: Linear approximation of the effect of the velocity-dependent violation of
∆HLMGP on X(φ). Although the magnitudes are similar to the observed error between
∆X(φ) and human foot placement, in almost all cases the systematic violation of the con-
servation of momentum assumption would make the FPE-HFP error larger than observed.
Thus the observed systematic change in FPE-HFP error is likely volitional rather than due
to a violation of the assumptions of the model. The final column is in units of cm

6.4 Discussion

The simplified biped used by the FPE serves as a useful tool to interpret the functional

relevance of the unmodeled velocity and acceleration adjustments that subjects appear

to be making. Subjects stepped further behind the FPE as they walked faster (Fig. 6.4).

Stepping a constant distance behind the FPE would allow the simplified biped, and thus the

person, to maintain a set forward speed rather than stopping (Fig. 6.2). Similarly, stepping

further and further behind (ahead) the FPE on each step would cause the simplified biped

to accelerate (decelerate) explaining the increased variation in trials with gait initiation

and termination.

Most subjects step behind the FPE on average whereas subjects 5 and 6 step ahead;

σ(εLM) of subjects 3, 5, 11 and 12 hardly changes between continuous walking and trials

with gait initiation and termination, whereas it increases appreciably for other subjects.

Wight et al.’s simplified biped would suggest that those who on average step ahead of

the FPE walk conservatively because they are guaranteed of being able to stop within a

single step (Fig. 6.2). Subject-specific biases can also be explained with anthropometric

parameter errors. The FPE calculation is dependent on an accurate calculation of whole

body angular momentum. The cross product term ((~r(t)i − ~r(t)LMGP ) × mi~v(t)i) of the
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HAT segment makes up 83.6% ± 1.03% of the whole body angular momentum (across

all subjects and trials), making it important to estimate the mass of each subject’s HAT

segment accurately. The FPE calculation would change by 2-3 cm for a plausible 10% error

[50] in the estimate of the mass of the HAT segment. This error is large enough to account

for some subject-specific biases, but not all. Accurate means to measure or estimate subject

segment masses are needed to interpret the observed subject-specific FPE-HFP biases.

Although the statistical analysis of the FPE-HFP error (εLM) indicates that the predic-

tions of the model correspond well with the experimental data, it does not explain why

the simplified model works so well. The model the FPE is based on (Fig. 6.1) bears lit-

tle physical resemblance to the human form, yet the quantities the model assumes to be

constant also appear to be constant during human walking (Fig. 6.5). The normalized

group ensemble plots show that three of the four quantities assumed to be constant by the

FPE — leg length (∆L), moment of inertia about the system COM (∆JCOM) and system

energy (∆(T + V )) — do remain relatively constant during human walking, varying by

a few percent at most, and affect the calculated FPE location by millimeters (Tbl. 6.2).

Angular momentum however (∆Ho), does vary during contact and affects the accuracy of

the FPE calculation on the order of centimeters (Tbl. 6.2). Although the FPE-HFP error

(εLM) is small despite the observed changes in angular momentum, the accuracy of the

FPE may change depending on the movement being analyzed. In the case of walking, the

assumptions of the FPE appear to be well met, but further study is required to determine

what other movements could be analyzed using this algorithm.

6.5 Conclusions

A mathematical understanding of the mechanics of balance control in humans is highly

desirable for both its potential to improve gait simulations and also as a clinical diagnostic

tool. Foot placement has long been recognized as a critical component of the human

balance system, yet relatively little work has been done to find and validate mathematical

models to describe this relationship. Wight et al.’s FPE is unique in that it was derived

with the sole goal of stabilizing a simplified biped. Importantly, this work has shown that

the vast majority of a human step is described by the FPE, and that the differences that

do exist are due to an un-modeled adjustment people are making in an effort to maintain
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velocity or to accelerate through the stance phase. In addition, during slow and naturally

paced gaits, subjects place their metatarsals ahead of the FPE, allowing them to stop

without taking an extra step if they desire. Subject-specific differences exist and can be

explained using human behavior or anthropomorphic parameter errors. Better means of

estimating segment inertial properties are needed before these subject-specific differences

can be interpreted properly. This model has great potential to illuminate many areas

of gait ranging from quantifying bipedal instability and balance performance, identifying

people with compromised balance, and improving forward dynamic gait simulations.
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Chapter 7

Discrete Spatial Balance Corrections

using Foot Placement

The planar FPE presented in Ch. 6 is able to compute a foot placement location that

will allow a human to catch its balance. The FPE has assumptions that are compatible

with the mechanics of human walking, and predicts locations that correspond well with

experimentally measured human foot placement during both continuous walking and gait

termination. The FPE is an important contribution both for the analysis of experimental

human data — to determine whether or not a subject is balanced, and if not, how off

balance they are — and also for its potential to make human gait simulations more life-

like. Although FPE appears to be extremely useful, it can only be applied to planar

motion. This is a rather severe restriction because humans, in contrast to the FPE, walk

in three dimensions (3D). The FPE theory must be extended to 3D before the potential

clinical and simulation benefits of the FPE can be realized.

A 3D extension of Wight et al.’s planar foot placement estimator (FPE) [108] is a

promising candidate to help understand the relationship between foot placement and 3D

bipedal balance. The FPE calculates where a biped should place its swing foot in the

sagittal plane at that instant to transition from an unstable state to a statically stable

state in a single step without any additional control inputs (Fig. 7.1). The FPE assumes

that mass, inertia, system energy and leg length are constant after contact; the foot sticks

and does not slip; and that momentum is conserved during foot contact. Leg length is

defined as the distance between the contact point ‘p’ (Fig. 7.1) and the pendulum’s center

85



Figure 7.1: The 3DFPE calculates a lo-
cation that will cause an unstable inverted
pendulum (shown in black) to transition to
a statically stable pose (shown in white).
Human imagery courtesy of Dover [70]

Figure 7.2: The 3DFPE is useful for de-
termining when a biped needs to take a
step (or some other action) to stabilize it-
self (a.) and when center of pressure ma-
nipulations (b. and c.) are sufficient to
stay upright . Human imagery courtesy of
Dover [70]

of mass. The 3DFPE relies on the assumptions of the planar FPE, which have been shown

to be reasonable for human gait initiation, termination and walking [66].

The assumption that leg length is fixed may not always be reasonable as human legs have

been observed [37], and modeled [26], to behave like compression springs during running

and walking. The stiffness of human legs has been observed to vary widely depending on

the task [21]. To address this varying compliance, both the rigid leg FPE, and another

balance point, Pratt et al.’s capture point (CAP) [82] are considered. The CAP is the

foot placement location that restores balance to a pendulum with a telescoping leg that

maintains its COM at a constant height. The constant height pendulum is a convenient

tool for analysis because it has linear dynamic equations, and so, was coined the ‘linear-

inverted-pendulum’ [47]. Pratt et al. showed that the force the leg would have to generate

to maintain the COM at a fixed height could be modeled by a precisely preloaded nonlinear

spring. The stiffness of the spring used in the CAP model is more compliant than the

apparent stiffness of human legs [26] during walking. It is assumed that the true human

foot placement location is bounded by the CAP and FPE locations since human legs are

stiffer than the nonlinear spring of the CAP, and more compliant than the rigid leg FPE.

The 3DFPE, the CAP, the center of pressure (COP), and the contact patch of the feet
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of the biped can be used to determine when the biped is balanced. The contact point for

both the linear and rigid leg inverted pendulums behaves like an instantaneous spherical

joint in 3D. The COP beneath the foot of the biped is the closest physical analogy to the

contact point of the pendulum, because moments of the GRF about the COP and the

contact point of the pendulum sum to zero. If the 3DFPE and CAP locations are within

the contact area of the feet of the biped, the biped is balanced because it can shift its

center of pressure to match the 3DFPE or CAP, or some point in between depending on

its leg stiffness. Conversely, if both the 3DFPE and CAP points are outside the convex

hull (smallest single convex region that encloses the human-ground contact area) of the

foot (or feet during double stance), the biped will fall unless a step (or some other action)

is taken to capture the 3DFPE again.

It is not necessary to step within the 3DFPE and CAP region to prevent a fall, provided

another step can be taken. The 3DFPE and CAP region may not always be physically

reachable, especially during high velocity activities like running (Fig. 7.1). There are many

other locations a biped could place its foot in order to maintain or change its velocity. Raib-

ert identified the neutral step [85] that allowed a 3D inverted hopping robot to maintain a

desired horizontal velocity. Assuming that a neutral step location can be identified for any

biped, the biped should only need to step on the line connecting the neutral step and the

3DFPE-CAP points in order to slow down, yet maintain its heading. Provided that the

foot sticks and does not slip, and that each step decreases the system energy of the biped,

a series of steps between the neutral step and the 3DFPE-CAP points will eventually stop

the biped.

Before the 3DFPE can be derived, it must be proven that an inverted pendulum has

regions in its state space that can be stabilized using foot placement alone. An inverted

pendulum model that has a finite foot contact area, similar to a person and most robots,

is derived in Sec. 7.1. Lyapunov’s direct method is used to establish the stability of the

inverted pendulum in Sec. 7.2 along with regions of stability. Regions of validity are

presented in Sec. 7.3. The 3DFPE is derived in Sec. 7.4. A preliminary experimental

validation of the 3DFPE for use in analyzing human balance is presented in Sec. 7.5.
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7.1 Stability of an Euler Pendulum

A simplified model is used to define the conditions under which a 3D monoped could

transition from a dynamic state to a metastable pose using foot placement alone. Legged

locomotion requires at least one limb, and this limb should have a foot with a non-zero

contact area (in the case of a human) to ensure that a metastable standing pose exists.

The simplified model resembles a monoped with a disk-shaped foot. A disk-shaped foot

has been chosen in an effort to strike a balance between model complexity and fidelity: a

disk-shaped foot yields equations of motion of a manageable size, yet will share regions of

stability with its human counterpart, particularly when its geometry and inertia parameters

are of human proportions. The simplified model is a useful tool for determining broadly

what regions of the state space can be stabilized using a single foot placement, but it is

not useful for gleaning the fine details of how the geometry of our feet, or our variable

whole-body inertia, affect our balance.

The size of the equations-of-motion of the simplified model can be further reduced if

the disk-shaped foot is perpendicular to the leg axis, and the inertia matrix has an axis of

symmetry about the leg. The resulting model is referred to as an Euler pendulum due to

its similarity to the Euler disk [59] (Fig. 7.3 and 7.4). The proposed model differs from an

Euler disk by including rolling resistance and spin friction to make the model more realistic,

and also to ensure that it is Lyapunov stable. In addition, rigid contact is modeled (using

the conservation of angular momentum) to allow the pendulum to rock back and forth

between opposing edges.

Of course, the simplified model is valid only when its assumptions are met. This model,

and the 3DFPE, assumes that leg length, mass, and inertia are constant. In addition,

it is assumed that the contact point sticks to the ground and does not slip. Finally,

impacts between the contact ring and the ground are assumed to be plastic and momentum-

conserving. These assumptions are very similar to Wight et al.’s planar FPE, shown to be

reasonable when used to analyze human walking [66], and are expected to hold when 3D

human gait is analyzed. Before the validity of the assumptions of the model are examined,

the equations of motion of the Euler pendulum must be derived. The Euler pendulum can

interact with the ground at a single point, by rolling without slipping, or it can interact

with the ground at multiple points if the contact ring flattens on the ground when the

pendulum is rocking from side to side.

88



Figure 7.3: Inverted pendulum parame-
ters. A body with mass and inertia is
held up by a massless rigid leg and disc-
shaped foot. The ring is always touching
the ground. Note that ~F is caused by con-
tact and frictional forces while ~τR and ~τF
are due to rolling resistance and spin fric-
tion, respectively.

Figure 7.4: The 3DOF Euler pendulum
has a disc-shaped foot that is tilted rela-
tive to the plane at an angle of α about
the 2̂ axis. The vector ~rp/q rotates with

angular velocity β̇ about the 1̂ axis. Note
that frame q is a body-fixed frame centered
on the COM of the pendulum

7.1.1 Rolling without Slipping (α 6= 0)

The 3D equations of motion (rotating about axis 1̂ , 2̂ and 3̂ ) of an Euler pendulum

with rolling resistance and spin friction when it is rolling without slipping are shown in

Eqns. 7.1, 7.2 and 7.3. This motion may be similar to real world bipedal locomotion when

the COP is moving around the edge of the foot — as it might during corner turning. While

the pendulum is rolling without slipping it is assumed that the contact ring touches the
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ground only at a single point. The accelerations β̈, α̈ are aligned with the 1̂ and 2̂

axes. The reference frame is oriented such that the 1̂ axis intersects the COM and is

perpendicular to the disc, while the 3̂ axis passes through the point of contact. The 2̂

axis can be found by crossing the 3̂ axis with the 1̂ axis.

Means of energy dissipation through rolling resistance and spin friction have been in-

cluded in the model to ensure that it is stable in the sense of Lyapunov [49]. Details of the

Euler pendulum equations of motion, the rolling resistance, and spin friction models can

be found in Appendix C.

β̈ = α̇
cam(J1 + J2)β̇ + amJ2(c cos(α)− a sin(α))θ̇

J1J2 +m(J2a2 + J1c2)
+ Lβ (7.1)

α̈ = θ̇2
(cam(1− cos2 α) + (mc2 + 2J2) sinα cosα)

m(a2 + c2) + J2

+θ̇β̇
(ma2 + J1 + J2) sinα + cam cosα

m(a2 + c2) + J2

+
mg(c sinα− a cosα)

m(a2 + c2) + J2
+ Lα (7.2)

θ̈ = −α̇ θ̇ ((3J1J2 + 3J2ma
2 + 2c2mJ1) cosα + cmaJ1 sinα)

(J1J2 + J2ma2 + c2mJ1) sinα

−α̇ β̇ (J1J2 +ma2(J1 + J2) + J2
1 )

(J1J2 + J2ma2 + c2mJ1) sinα
+ Lθ (7.3)

Parameters c and a are the height of the pendulum, and radius of the contact ring

respectively (Fig. 7.3). The pendulum has mass m, and a diagonal inertia matrix with

scalar entries J1 and J2 (Fig. 7.3). This simplified inertia matrix has been chosen to keep

the size of the equations small enough to print, though the analysis that follows has been

tested on a general inertia matrix. Rolling resistance and spin friction terms are expressed

in Eqns. 7.1, 7.2 and 7.3 as Lβ, Lα and Lθ for brevity.

The equations of motion of Wight et al.’s 2D model is embedded in the Euler pendulum

equations presented above. Wight et al.’s model equations can be found by projecting the
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above model onto the X̂ Ẑ plane. This is achieved easily by setting θ = β = 0 which

makes the 2̂ axis parallel to the Ŷ axis. The projected term is shown below, with the

rolling resistance torque set to zero.

α̈ = θ̈W =
mg(c sinα− a cosα)

m(a2 + c2) + J2
+�
�>

0
Lα (7.4)

=
mgL sin(θW − 1

2
βW )

Icom +mL2
(7.5)

Wight et al.’s L is the length of the hypotenuse between the perpendicular vectors ~a and ~c

of the Euler pendulum. Also Wight et al.’s Icom is equivalent to J2. Wight et al.’s βW/2 is

the angle between the leg of the pendulum and the contact ring (tan(βW
2

) = a
c
) of the Euler

pendulum. The simple trigonometric substitution sin(α±β) = sinα cos β± cosα sin β can

be used to show that the 2D projection of the Euler pendulum equations and Wight et

al.’s 2D model are identical.

7.1.2 Rocking (α = 0)

In the special case where the pendulum is in pure rotation about the 2̂ axis and α = 0,

Eqns. 7.1, 7.2, and 7.3 are invalid when the ring flattens on the ground, thereby touching

multiple ground points. This motion may be similar to real world bipedal locomotion

when the COP begins at one edge of the foot and transitions rapidly across the foot to the

opposing edge of the foot — as is the case during normal walking and gait termination.

It should be noted that α approaches zero only if β̇ = θ̇ = 0, else Eqn. 7.3 computes a

very high value for θ̈, quickly increasing θ̇, and forcing α̈ in Eqn. 7.2 positive with a large

centripetal acceleration. The state of the pendulum after contact can be calculated by

assuming that the impact is perfectly plastic and momentum-conserving; momentum is

represented by the vector ~Hp, taken about point p (the point of contact) at the time 1

prior to contact, and the time 2 just after contact.

~Hp1 = ~Hp2 (7.6)

Since β̇ = θ̇ = 0, when the contact ring flattens on the ground, it is assumed that the new
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contact point is located opposite the current one, that is located at c 1̂ − a 3̂ from the

COM.

~Hp1 = [J ] · ~ω1 + ~rq/p ×m(~ω1 × ~rq/p) (7.7)

= [J ] ~ω1 + (−c 1̂ − a 3̂ )×m(~ω1 × (c 1̂ − a 3̂ ))

Before ~Hp1 is calculated, however, ~ω1 must be expressed in the post-contact reference

frame. The post-contact reference frame is rotated π radians about the 1̂ axis so that

the 3̂ axis passes through the new contact point, changing the signs of the 2̂ and 3̂

components.

~ω1 =
{
β̇1 1̂ − α̇1 2̂ + θ̇1 sin��*

0α1 3̂
}

(7.8)

The angular momentum of the pendulum prior to contact, expressed in the post-contact

reference frame can now be computed.

~Hp1 =

(
(J1 −ma2)β̇1 − (mca)���:

0
sinαθ̇1

)
1̂

+
(
(m(a2 −mc2)− J2)α̇1

)
2̂

+

(
(J2 + c2m)���:

0
sinαθ̇1 − (mca)β̇1

)
3̂ (7.9)

After contact, the pendulum has an angular velocity of ~ω2,

~ω2 =
{
β̇2 1̂ + α̇2 2̂ − θ̇2����:

0
sinα2 3̂

}
(7.10)

and angular momentum about its new contact point that is nearly identical to Eqn. 7.7.

~Hp2 = [J ] · ~ω2 + ~rq/p ×m(~ω2 × ~rq/p) (7.11)

= [J ] ~ω2 + (−c 1̂ − a 3̂ )×m(~ω2 × (−c 1̂ − a 3̂ )) (7.12)
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The angular velocity of the pendulum about the new contact point can be found by sub-

stituting Eqns. 7.9 and 7.12 into Eqn. 7.6 and solving for β̇2, α̇2 and θ̇2.

~ω2 = −α̇1

(
J2 +m(c2 − a2)
J2 +m(a2 + c2)

)
2̂ (7.13)

Equation 7.13 can be converted into Wight et al.’s Eqn. 7 using the cosine law.

By using the equations of motion associated with rolling detailed in Sec. 7.1.1 and 7.1.2,

the movements of the pendulum can be predicted using integration when the COP is on

the edge of the foot, or is moving from edge to edge through the contact patch of the foot.

7.2 Defining Stable Regions

The definitions for stable regions are very similar to those that Wight et al. [108] defined:

Definition: The Euler pendulum has fallen if α̇ = 0 and any point other than

the set of points that make up the circular contact area is touching the ground.

Definition: The Euler pendulum is stable if α̇ = 0 and it has not fallen.

Definition: The Euler pendulum is balanced if, for a given set of initial condi-

tions, and no further energy inputs to the system, it eventually becomes stable.

Once stable, a small, impulsive, non-zero external disturbance should result in

motion that converges to a stable state.

The model will first be shown to be stable in the sense of Lyapunov before the regions

of stability are formally expressed. The candidate energy function of choice is simply the

system energy, the sum of kinetic and potential energy.

U = T + V (7.14)

= (
1

2
m~vTcm~vcm +

1

2
~ω · [J ]~ω)

+mg(a sinα + c cosα) (7.15)
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If U̇ < 0 for a ball centered in the state space about the equilibrium point of interest

(α = β̇ = α̇ = θ̇ = 0), then according to Lyapunov’s Direct Method the equilibrium point

is asymptotically stable.

U̇ = m(~vTcm~̇vcm) +
1

2

(
~̇ω · [J ]~ω + ~ω · [J ]~̇ω + ~ω · (~ω × ([J ]~ω))

)
+α̇mg(a cosα− c sinα) (7.16)

After substituting in Eqns. 7.1, 7.2, 7.3, C.9, C.11, C.12, C.13, C.15, C.19, and C.25 and

significant simplification (using Maple), an equation for U̇ in terms of the state vector

(β,α,θ,β̇,α̇,θ̇) is yielded. Direction vectors of angular velocity vector normal (ω̂N) and

tangential (ω̂T ) to the horizontal plane are expressed using subscripts. The scalar quantity

ωrel is defined in App. C, Eqn. C.10. The positive scalar terms R and S are the magnitudes

of the rolling resistance and friction torques defined in App. C, Eqns. C.19 and C.25).

U̇ = (−Rω̂T · ω̂T )
(
ω2
rel sin

2 α + α̇2
)

(−Sω̂N · ω̂N)
(
ωrel cosα− θ̇

)2
≤ 0 (7.17)

Equation 7.17 is always less than or equal to zero provided that the contact ring is touching

the ground (~F · ẑ > 0). The expression for U̇ may be zero at a location other than the

origin if the magnitude of the angular velocity, |~ω| = 0, is zero (physically this corresponds

to the Euler pendulum being balanced on its contact ring at a single point).

When the pendulum is rocking rather than rolling without slipping, a difference of U

before contact (U1) and after contact (U2) are be used in the place of U̇ . Substituting in

Eqns. 7.8 and 7.13, and simplifying to solve for U2 and U1 yields:

U2 − U1 = −2
α̇2ma2(J2 +mc2)

J2 +m(a2 + c2)
(7.18)

Equation 7.18 is always negative (except at the origin); thus the Euler pendulum loses

energy every time it flattens out on the ground.
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We have now shown that U̇ ≤ 0 everywhere in the state space. If the Lyapunov can-

didates are limited to the range of α < arctan(a/c) then U is positive-definite. Using

Barbashin’s theorem [49], the origin is an asymptotically stable equilibrium point in the

sense of Lyapunov. The Lyapunov stability proof and Barbashin’s theorem also holds for

the Euler pendulum with any arbitrary inertia matrix (tested using Maple), though the

intermediate expressions are far larger.

A phase portrait for an Euler pendulum with low rolling resistance and spin friction

(κ = 0.001, µS = 0.01 for the rolling resistance and spin friction models, see App. C for

details) of human-scale dimensions (m = 75kg, J1 = 12kg m2, J2 = 13kg m2, c = 1.0m,

a = 0.10m) is shown in Fig. 7.5 for a variety of initial conditions over α and α̇ with θ̇ = 0

and θ̇ = 5. The greyed out regions indicate unstable trajectories while the white areas

contain trajectories that terminate in an upright standing pose.

Although human feet and robotic feet do not resemble the contact ring of the Euler

pendulum, the Euler pendulum is useful for understanding how foot placement affects 3D

balance. The phase portraits (Fig. 7.5) show that there exists a set of initial conditions

that allow an unstable inverted Euler pendulum to transition to a statically stable standing

pose. In addition, a region of stability exists (the 3rd region of stability, defined in Sec.

7.2.3) with the COM outside its base of support if the pendulum has negligible amounts

of angular momentum about a vertical axis. As angular momentum about the ẑ (t) axis

increases, the size of the region of stability outside of the foot’s contact area decreases,

and eventually disappears (Fig. 7.5). This makes intuitive sense: if angular momentum

about the vertical is negligible, the 3D model behaves like Wight et al.’s [108] 2D model.

In addition, all regions of stability increase in size as the rate of energy loss through rolling

resistance or spin friction increases.

Foot contact can be used as a state change mechanism to allow the pendulum to tran-

sition from an unstable state to a statically stable standing pose. Provided that a human

or robot being analyzed behaves like the model presented, there exists a family of initial

conditions that can be stabilized using foot placement alone. The following sections de-

scribe the regions of stability of the Euler pendulum and the regions of state space where

the model is valid.
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Figure 7.5: Phase portraits of a human-sized Euler pendulum (a=0.1m, c=1m, m=75kg)
over α and α̇. Regions of stability are shown in white and light grey, while regions of
instability are shown in dark gray. The regions of stability are defined in Sec. 7.2.1-7.2.3.
The first, and to a lesser degree the second, region of stability (below α = 0.1) are relatively
large. The 3rd region of stability (above α = 0.1) shrinks as θ̇ increases, vanishing in this
case before θ̇ = 0.125. The regions of stability increase in size as rate of energy dissipation
(due to rolling resistance and spin friction) increase. The solutions of the 3DFPE are
illustrated with the diagonal black line (using the method presented in Sec. 7.4). Note
that the contact location of the 3DFPE would balance the biped when θ̇ = 0, but not
when θ̇ = 5

7.2.1 Stable Region 1

The system is stable if α < arctan(a/c) and the total system energy T + V is less than

the peak potential energy. The pendulum has insufficient energy to escape the energy well

created by the foot. All of the expressions for the various regions of stability are derived

assuming that energy losses due to rolling resistance are insignificant.
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mghpeak ≥ U0 = T0 + V0 (7.19)

mg
√
a2 + c2 ≥

(
1

2
m~vTcm,0~vcm,0 +

1

2
~ωT0 (J~ω0)

)
+mg(a sinα0 + c cosα0) (7.20)

Rearranging to isolate separate potential and kinetic energy terms:

2mg
(√

a2 + c2 − c cosα0 − a sinα0

)
≥ α̇2

0

(
m (a2 + c2) + J2

)
+ (θ̇0 sinα)2

(
mc2 + J2

)
+2β̇0θ̇0mca sinα0 + β̇2

0

(
ma2 + J1

)
(7.21)

Provided β̇0, α̇0 and θ̇0 lie in the ellipsoid specified in Eqn. 7.21, α̇ will have an orbit that

decays towards the equilibrium point at α = 0 and the pendulum will transition to a stable

state. The simple trigonometric substitution cos(α ± β) = cosα cos β ∓ sinα sin β can be

used to show that the 2D projection of Eqn. 7.21 (achieved by setting θ̇ = β̇ = 0) is

identical to Wight et al.’s Eqn. 26.

7.2.2 Stable Region 2

If the energy losses during impacts are taken into account when the contact ring flattens

on the ground (θ̇ = β̇ = 0), a higher initial system energy is allowed than in stable region

1. As in stable region 1, rolling resistance losses are assumed to be insignificant.

mg
√
a2 + c2 > T2 + V2 (7.22)

mg
√
a2 + c2 >

1

2
m~vTcm,2~vcm,2 +

1

2
~ωT2 ([J ]~ω2)

+mg(c cos(α) + a sin(α)) (7.23)

Substituting Eqn. 7.13 (the relationship between the pre- and post-contact angular velocity

of the pendulum) into Eqn. 7.23 and solving for α̇1 yields:
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α̇2
1 < 2mg(

√
a2 + c2 − c)

(
J2 +m(a2 + c2)

(J2 +m(c2 − a2))2

)
(7.24)

The system energy of the pendulum just prior to contact is given by

T1 + V1 =
1

2
(J2 +m(a2 + c2))α̇2

1 +mgc (7.25)

Provided the inequality of Eqn. 7.24 is satisfied, after contact the pendulum will not have

enough kinetic energy to escape the stable region, and will approach the equilibrium point

of (β̇, α̇, θ̇, β, α, θ) = 0. Prior to contact, the pendulum may have any angular velocity

α0 2̂ , provided that it is in the statically stable region (α < arctan(a/c)) and has a

system energy (T0 + V0) that does not exceed its maximum system energy just prior to

contact given in Eqn. 7.25.

T0 + V0 ≤ T1 + V1 (7.26)

Substituting in Eqn. 7.24 and 7.25 into Eqn. 7.26 and solving for α̇0 yields an inequality

that must be satisfied for the pendulum to stay in the stable region.

α̇2
0 < 2mg(

√
a2 + c2 − c) J2 +m(a2 + c2)

(J2 +m(c2 − a2))2

−2mg
a sinα0 + c(cosα0 − 1)

m (a2 + c2) + J2
(7.27)

This region of stability is equivalent to Wight et al.’s Eqn. 37 denoting the second region

of stability and can be verified using the cosine law and the addition and subtraction

trigonometric identities. Note that Wight et al.’s Eqns. 38 and 39 have the incorrect sign

associated with the cos β/2 term.

7.2.3 Stable Region 3

The pendulum may transition into stable regions 1 and 2 even if it begins outside of them

(α0 > arctan(a/c)). This is possible only if the system loses energy once it enters the stable
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region through rolling resistance or rocking. Since the foot, and thus the stable region,

has a finite area there are many trajectories that enter the stable region. Many of these

solutions would be curved by gravity, and cannot be found analytically. This is further

complicated by the finite foot area: as the trajectory is curved by gravity, the contact point

touching the ground changes. If, however, the pendulum rotates in a vertical plane

~Hp2 · ~g = ~Hp1 · ~g = 0 (7.28)

and perpendicular to the leg vector (Eqn. 7.28 and 7.29),

~Hp2 · ~rp/q = ~Hp1 · ~rp/q = 0 (7.29)

the trajectory of the COM will rotate in a plane — because the contact point will not

move — that intersects the contact patch of the foot. As is shown in App. C.1, Eqns. C.29

and C.31 are satisfied if the there is no angular momentum about the vertical axis prior

to contact (~ω1 · ~rp/q = 0); the pre-contact angular velocity vector is perpendicular to the

leg vector (~ω1 · ~rp/q = 0); and the horizontal components of the linear velocity and the leg

vector are parallel.

There are curved trajectories that do not satisfy Eqns. 7.28 and 7.29 yet lead the COM

into a statically stable pose. The size of the family of curved trajectories that violate Eqns.

7.28 and 7.29 yet lead to the region of stability is related to the ratio of the diameter of

the foot to the height of the pendulum. In one extreme the height of the pendulum is

insignificant in comparison to its foot size and the system behaves like an Euler disk [59],

with many curved trajectories that stabilize the pendulum and few that cause it to flip. In

the other extreme, the foot shrinks to a point contact and there are no curved trajectories

that lead to the region of stability, which has been reduced to an unstable saddle point.

The family of curved trajectories that lead to a statically stable pose will be ignored for

the remainder of the paper because they are dependent on system geometry and cannot

be found without simulation.

The pendulum is in the 3rd region of stability if Eqns. 7.28 and 7.29 are satisfied and

the pendulum has enough kinetic energy to enter, but not escape, the metastable pose.

The pendulum must have a system energy that is larger than the peak potential energy to

enter the stable region.
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mg
√
a2 + c2 < T2 + V2 (7.30)

mg
√
a2 + c2 <

(
1

2
m~vTcm,2~vcm,2 +

1

2
~ωT2 ([J ]~ω2)

)
+mg(a sinα2 + c cosα2) (7.31)

Note that this is simply Eqn. 7.20 except the pendulum must have at least this system

energy in order to enter the region of stability. An expression of the value for the minimum

angular velocity, α̇0,LB, to enter the stable region can be found using Eqn. 7.31 if Eqns.

7.28 and 7.29 are satisfied.

α̇2
0 >

2mg
(√

a2 + c2 − c cosα0 − a sinα0

)
(m (a2 + c2) + J2)

(7.32)

The pendulum may enter the region of stability with more kinetic energy when purely

rotating about the 2̂ axis because it will rock, and lose energy (due to the plastic impact)

every time the contact ring flattens out. The expression for this upper bound is identical

to Eqn. 7.27 for the 2nd region of stability except the pendulum may begin outside the

region of stability.

α̇2
0 < 2mg(

√
a2 + c2 − c) J2 +m(a2 + c2)

(J2 +m(c2 − a2))2

−2mg
a sinα0 + c(cosα0 − 1)

m (a2 + c2) + J2
(7.33)

This region of stability is equivalent to Wight et al.’s Eqn. 45 (with the sign error on the

cos β/2 term corrected) denoting the 3rd region of stability.

7.3 Region of Validity

The model assumes that the foot sticks and does not slip, but these assumptions are not

reasonable in all situations. When the magnitude of the horizontal contact force exceeds
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the allowable force of friction or when the contact force goes below zero, the results of the

model are invalid. Impulse-momentum equations can be used to calculate the average size

and direction of the ground impulse during contact (~FC). After contact, Euler pendulum

equations can be used to determine if the contact point slips, or if the pendulum loses

contact with the ground.

During contact the ground impulse is given by:

~FC∆t = m(~v2 − ~v1) (7.34)

= m(~ω2 × ~rq/p − ~v1) (7.35)

The post-contact COM velocity (~v2 with ~v1 being the pre-contact COM velocity) can be

found by assuming that the contact is momentum-conserving and that the pendulum is

moving in a pure rotation about the contact point.

~Hp1 = ~Hp2 (7.36)

[J ] ~ω1 + ~rq/p ×m~v1 = [J ] ~ω2 + ~rq/p ×m(~ω2 × ~rq/p) (7.37)

In general, symbolic solutions for ~ω2 in Eqn. 7.37 are quite complicated. The expression

for (~FC) becomes simple if cross product terms dominate the angular momentum of the

pendulum (as is the case with human walking [38]). After setting the [J ]ω terms to zero,

assuming that ~ω2 ⊥ ~rp/q (consistent with our assumption for the 3rd region of stability),

and making use of the double vector product, the expression for the impulse becomes

~FC∆t = −m
(
~rq/p · ~v1
~rq/p · ~rq/p

)
~rq/p (7.38)

Since the direction of ~FC in Eqn. 7.38 is identical to the direction vector of the leg, the

foot will not slip provided the ratio of the horizontal to vertical component of the vector

of the leg is less than the coefficient of friction (~rq/p · ı̂/~rq/p · ̂ ≤ µL).

After contact, Eqn. C.16 can be rearranged to calculate the contact forces between the

pendulum and the ground (~FR) when it is rolling without slipping.
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~F = m
d2~rq/p
dt2

+mg ẑ (7.39)

The assumption that the pendulum remains in contact with the ground after contact can

be found by examining the magnitude of the ẑ component of ~F .

0 < ~F · ẑ (7.40)

0 < (a cosα− c sinα)mα̈

−(c cosα + a sinα)mα̇2 +mg (7.41)

The 2D projection of Eqn. 7.41 (achieved by setting θ̈ = θ̇ = β̈ = β̇ = 0) matches Wight

et al.’s normal force equation (Eqn. 52) after minor corrections of Wight et al.’s Eqn. 50.

The gravitational force mg term in Wight et al.’s Eqn. 50 should have not have been scaled

by cos(θ + β/2).

The assumption that the contact point sticks and does not slip after contact is only

valid if the ratio of the horizontal to vertical ground reaction forces does not exceed the

coefficient of friction (µL) when the Euler pendulum is rolling without slipping. Note that

the 2̂ , and the r̂ = 2̂ × ẑ (Fig. 7.4) axes span the horizontal plane.

|~F · ( r̂ + 2̂ )|
~F · ẑ

< µL (7.42)

The expanded version of Eqn. 7.42 has been omitted for brevity, though it can be found by

substituting in Eqns. 7.42, C.3, C.7 and C.16. The 2D projection of Eqn. 7.42 (achieved

by setting θ̈ = θ̇ = β̈ = β̇ = 0) matches Wight et al.’s Eqn. 60.

7.4 Modeling Foot Placement

Now that it has been shown that foot placement can be used to stabilize a 3D inverted

pendulum with a foot (in certain regions of its state space) we will concentrate on deriving

a method to find a desirable foot placement location given the state of the pendulum.
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The 3DFPE is an estimate of a good location to place a point contact foot to cause a

3D inverted pendulum with a rigid leg (Fig. 7.6) to transition from a dynamic state to

a static standing pose. We assume that the plant to which the 3DFPE is being applied

can maintain its balance once the ground projection of the COM is within the convex hull

of its foot — as is the case for the Euler pendulum (Fig. 7.5). The assumptions of the

3DFPE are very similar to those of the Euler pendulum: mass, inertia and leg length are

constant; the foot sticks and does not slip; and that the contact is momentum-conserving.

In addition, the 3DFPE assumes that a foot placement location that satisfies Eqns. 7.28

and 7.29 can be found.

Figure 7.6: The 3D foot placement estima-
tor searches for a foot placement location
for an unstable body (Fig. a) that causes
the body to enter the 3rd region of stability
(Fig. b) and not exit.

The pendulum will rotate in a plane that intersects with the foot location if ~Hp1 and ~Hp2

are perpendicular to a vertical plane containing ~r, thereby satisfying Eqns. 7.28 and 7.29.

If such a projection plane can be found, then there exists a location, along the line formed

by the intersection of the projection plane and the ground, that will cause the pendulum

to transition into the 3rd region of stability detailed in Sec. 7.2.3. A candidate plane can

be formed by using two vectors, one parallel to gravity and the other a horizontal direction

vector û that is perpendicular to the angular momentum vector of the body ( ~HGP ), taken

about the COM ground projection location. Angular momentum is being taken about the

COM ground projection ~HGP to approximate the direction of ~Hp1 after contact because

the point p1, the 3DFPE location, has not yet been solved for. If the pendulum can enter

the 3rd region of stability, the direction of ~HGP and ~Hp1 will be parallel before and after

contact, and have matching û vectors.

 ux

uy

0

 =
1

| ~HGP · (ı̂ + ̂)|

 − ~HGP · ̂
~HGP · ı̂

0

 (7.43)
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If it is not possible to satisfy Eqns. 7.28 and 7.29 exactly, a measure of the error, ε, associ-

ated with a particular choice of ux and uy can be calculated by computing the normalized

angular momentum component that is parallel to ~g and ~r (where ~r is the leg vector as in

Fig. 7.6, and equivalent to ~rp/q of the Euler pendulum).

ε = 1−
~Hp1

| ~Hp1|
·

 ux

uy

0

 (7.44)

As ε approaches zero the assumption that the plant rotates in a vertical plane after contact

becomes better, making it possible to transition the biped into the 3rd region of stability.

Exactly how small ε needs to be for the 3DFPE to be accurate remains an open question.

The answer will likely be system-dependent and highly influenced by the ratio of the length

of the leg to the size of the foot.

We assume that steps taken along the line where the plane intersects the ground cause

the pendulum to rotate in a vertical plane with a trajectory that leads the COM over the

plant foot (satisfying Eqns. 7.28 and 7.29). All that remains is to choose the appropriate

step length in order to stop the pendulum just as it becomes vertical. If the leg is well

approximated as a rigid link that plastically impacts the ground, Wight et al.’s [108] FPE

equation, shown below (with sφ and cφ representing sinφ and cosφ for brevity), can be

solved for φ (using a numerical method such as bisection) to yield the angle the swing limb

should be held at just prior to contact.

0 =
[mh(v

||
1xy cφ+ v

||
1z sφ)cφ+ Jcomω

⊥
1 c

2φ]2

mh2 + Jcom c2φ
+ 2mgh cφ(cφ− 1)

Equation 7.45 uses the translational velocity components of the COM of the biped that

are parallel (~v
||
1 )

~v
||
1xy = (~v1 · û ) û (7.45)

~v
||
1z = (~v1 · k̂ ) k̂ (7.46)

~v
||
1 = ~v

||
1xy + ~v

||
1z (7.47)
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and angular velocity components that are perpendicular (ω⊥1 ) to the vertical projection

plane.

ω⊥1 = ~ω1 · ( û × k̂ ) (7.48)

Trigonometry can be used to find LFPE(φ), the location on the floor where the foot should

be placed relative to the COM ground projection location.

LFPE(φ) = h tanφ û (7.49)

If the leg is compliant, however, Wight et al.’s FPE [108] may not stop the biped in

a single step. Leg compliance is particularly relevant for biomechanists, as human legs

have been observed [37] and modeled [26] to behave like linear compression springs during

walking and running. A foot placement method for a leg with a specific stiffness has been

developed by Pratt et al. [82], who calculated the step length LCAP (coined the capture

point) required to balance Kajita et al.’s [47] linear inverted pendulum model (so named

because its equation of motion are linear when the COM stays at a constant height h).

LCAP = v
‖
1xy

√
h

g
û (7.50)

Pratt et al. showed that a linear inverted pendulum can be modeled as a point mass

attached to the ground by a compliant leg with a spring of stiffness kCAP ,

kCAP = −mg
h

(7.51)

pre-loaded to a force of f0,CAP = (mg/h)
√
L2
CAP + h2. This is a non-standard compression

spring in the sense that it exerts less force as it is compressed. A leg with this force-

compression profile will exert a constant vertical force of mg on the body (and a varying

horizontal force) as the COM of the biped rotates over the leg. If the biped has no vertical

velocity at contact, and takes a step of length LCAP , the biped will come to rest just as its

body passes over its foot [82].

We conjecture that if both the CAP and the FPE can be covered with the landing foot,

the biped can have any smoothly changing leg stiffness that is bounded from below by the
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nonlinear spring associated with the CAP and from above by the FPE rigid leg assumption.

Equivalently, the leg can have any smooth stiffness and damping characteristic provided

the COM height does not decrease during step, the leg does not exceed its pre-contact

length, and the foot can cover both the FPE and the CAP. This conjecture is important

for biomechanists and roboticists alike: leg compliance influences balance, and both need

to be controlled to prevent the biped from falling.

7.5 Experimental Methodology

Figure 7.7: The panel on the left shows the calibration (markers on the joints) and rigid
body marker sets (clusters of 4 markers). The panel on the right shows the author shortly
after the data collection

A preliminary experimental validation of the 3DFPE was conducted to determine if the

3DFPE corresponded well with human foot placement and to see if the assumptions of the

3DFPE were reasonable during a range of activities (walking, gait termination and landing

from a jump). Full body kinematics of one male subject of average height (1.75m) and

mass (78kg), were tracked in 3D using Vicon marker arrays placed on the feet, shanks, legs,

the torso, the head, the upper and lower arms, and hands. Inverse kinematics were used

to make measurements of the position and orientation of each segment using Visual3D
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[8]. Translational and angular segment velocities and accelerations were extracted from

the position data after it was filtered using a dual-pass Butterworth filter with a 30 Hz

cutoff frequency. The subject’s movements were recorded (at 60 Hz) while they walked in a

straight line, terminated gait, and performed a standing long jump. A force plate was also

used to record (at 2400 Hz) the ground reaction forces during a single step of the walking

experiment, and the final steps of the gait termination and jumping trials.

The state of an equivalent single body (see App. C.2 for details) was calculated at every

time step using de Leva’s anthropometric tables [14] and Eqns. C.32-C.36. The state vector

of the single body representation was projected onto a plane that passed through the COM

and was perpendicular to ~HCOMGP (as in Eqn. 7.43), the angular momentum vector of the

body about the COM ground projection location. Equation 7.44 was used at contact onset

to calculate ε, the amount of normalized momentum lost by projecting the state of the 3D

biped onto a vertical plane.

Balance-restoring foot placement locations were calculated using the FPE (Eqn. 7.49)

and CAP (Eqn. 7.50) algorithms, with steps taken along the intersection of the projection

plane and the ground. At contact onset the distance between the subject’s heel (~rHeel) was

compared to the 3DFPE (~LFPE(φ)) and CAP (~LCAP ) point locations (DFPE,H , DCAP,H).

DFPE,H = |LFPE(φ)− ~rHeel| (7.52)

DCAP,H = |LCAP − ~rHeel| (7.53)

The time of foot contact was estimated to occur at the time of maximum heel acceleration

using Hreljac et al.’s heel-strike and toe-off detection algorithm [41]. The time reported

by Hreljac et al.’s algorithm was validated for the steps that fell on the force plate used in

the study.

Since leg compliance affects foot placement location, apparent leg stiffness was estimated

in order to interpret the subject’s foot placement. The leg was assumed to behave like a

linear spring [26] (with no preload) between the center-of-pressure (~rCOP ) and the COM

(~rCOM). The direction of the leg force (~rs) was defined to take place between the COP

(measured using a force plate) and the COM, with force components not in this direction

ignored.
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~rs = ~rCOM − ~rCOP (7.54)

The unloaded length of the leg spring (L0) was estimated to be its maximum length during

ground contact. The stiffness of the leg is given by the magnitude of the ground reaction

force vector through the COM divided by the change in leg length.

k =

~FGRF ·
~rs
|~rs|

L0 − |~rs|
(7.55)

The average and standard deviation of k beginning at single leg stance and ending at mid-

stance — when the 3DFPE and CAP models come to rest — was calculated. Leg stiffness

estimates were computed only for the steps that fell on the force plate used in the study.

The FPE and CAP algorithms make assumptions that are not met during human move-

ment, degrading the accuracy of each algorithm. The error caused by violations of the

assumptions of the FPE was estimated by multiplying observed changes in leg length

(∆L), moment of inertia about the COM (∆JCOM), system energy (∆(T +V )), and angu-

lar momentum magnitude about the contact point (∆( ~Hp · (ı̂ + ̂))) by the corresponding

numerically calculated partial derivative of the location of the FPE at the time of contact

(∂LFPE(φ)
∂L

, ∂LFPE(φ)
∂JCOM

, ∂LFPE(φ)
∂(T+V )

, ∂LFPE(φ)

∂ ~Hp
) as in Millard et al. [66].

AL =
∂LFPE(φ)

∂L
∆L (7.56)

AJCOM
=

∂LFPE(φ)

∂JCOM
∆JCOM (7.57)

AT+V =
∂LFPE(φ)

∂(T + V )
∆(T + V ) (7.58)

AHp =
∂LFPE(φ)

∂( ~Hp · (ı̂ + ̂))
∆( ~Hp · (ı̂ + ̂)) (7.59)

The mean squared error of the assumptions of the FPE are reported for brevity.

AMSE =
√
A2
L + A2

JCOM
A2
T+VA

2
Hp

(7.60)
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The CAP algorithm assumes that orbital energy EORB is a conserved quantity [82].

EORB =
1

2
~v1xy · ~v1xy −

g

2(~rs · ̂)
(~rs · ı̂)2 (7.61)

The percent change in orbital energy AORB from heel strike (t1) to mid-step (t2) was used

to measure how well the assumptions of the CAP were being met.

AORB =
EORB,t2 − EORB,t1

EORB,t1
(7.62)

7.6 Experimental Results

The 3DFPE and CAP corresponded very well with human foot placement (HFP) choices

(Fig. 7.8). The assumptions of the 3DFPE would have only affected the predicted location

by 1-3 cm (column AMSE in Tbl. 7.1) for each of the tasks. The assumption of the CAP

that the biped conserves orbital energy was generally poor, though its predicted location

corresponded well to the HFP location for every task except jumping. The assumption that

the state vector of the subject could be well approximated by a 2D vertical projection was

very accurate: the largest recorded value for ε — the percentage of the system’s angular

momentum vector not in the chosen vertical plane — was just a fraction of a percent.

The legs behaved like linear compression springs best during walking tasks, and exhibited

nonlinearities during the gait termination and jumping tasks. The compliance of the legs

depended on the task: the legs were stiffest during gait termination and most compliant

when landing from a jump. The estimated leg stiffness was always bounded from above

by a rigid leg and from below by the nonlinear spring of an equivalent linear inverted

pendulum (kCAP ranged from −797N/m during walking to −956N/m during the jump

trial, calculated using Eqn. 7.51). Thus, it appears reasonable to assume that the true

balance point for the subject is bounded by the 3DFPE and CAP locations. Although

little experimental work has been done to measure leg stiffness during walking, the stiffness

values found during the straight walking trials were close to one of the values reported in

a simulation study by Geyer et al. [26]. The combined stiffness of both legs when landing

from a jump was very close to the value reported for a single stance leg during running
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[37]. Leg stiffness during gait termination has not been previously studied, and the values

observed in this study were far higher than both continuous walking and jumping.

Figure 7.8: The subject’s foot falls, COM and 3DFPE trajectories and the 3DFPE and
CAP locations (at the time of contact) are shown for the walking, gait termination and
jumping tasks. The position of each foot print was recorded by the Vicon marker cluster,
while the size of the subject’s foot print was measured after the trials with a ruler. The
convex hull between the feet during double stance is shown in grey.

During the continuous walking trial, the HFP was close to both the 3DFPE and CAP

locations (left pane of Fig. 7.8). Even though the subject did not step on the CAP nor

3DFPE locations, both of these points were within the convex hull formed by the striking

heel and the rear foot during double stance. Thus, if the subject had wanted to stop,

both the linear and rigid pendulum models predict that stopping would have been possible

without taking an extra step. The subject placed their foot just to the outside of the 3DFPE

and CAP points, presumably to maintain a characteristic sway in the medio-lateral plane.

An increase in the subject’s angular momentum about their foot during push-off caused

the largest 3DFPE error — accounting for approximately 90% of the AMSE — consistent

with Millard et al.’s planar FPE results [66]. Orbital energy, a conserved quantity of the

linear inverted pendulum, fluctuated by 32-40% of its value at heel strike during the stance

phase.
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Table 7.1: Data for each step of the subject’s walking, gait termination, and jumping trials.
The leg stiffness value (k) is reported after each step that landed on the force plate

Step ε DFPE,H AMSE DCAP,H AORB

Walk % cm cm cm %
1 2.61e-3 7.15 2.12 12.7 40.8
2 1.13e-3 8.45 1.88 13.7 32.3

k 19.6 ± 0.3 kN/m

Stop % cm cm cm %
1 1.35e-5 12.3 1.96 18.3 19.7
2 6.42e-3 5.81 0.99 5.30 -39.5

k 43.9 ± 9.4 kN/m
3 4.12e-2 16.4 2.41 17.4 -150
Jump % cm cm cm %
1 1.91e-3 20.0 7.47 37.3 -102

k 10.1 ± 3.2 kN/m

During the gait termination trial, both the 3DFPE and the CAP points were enclosed

by the contact area formed by the two feet (middle pane of Fig. 7.8) during steps 1-

2 and 2-3. Both the linear and rigid pendulum models predict that the subject could

have stopped without taking an extra step — which is what happened. The subject’s leg

stiffens during step 2, presumably as it straightens. Similar to the previous trials, the

assumption that angular momentum is conserved during the contact is the worst of the

five assumptions of the 3DFPE. Orbital energy increasingly varied as the subject slowed

down. The assumption that the subject’s state vector could be projected onto a vertical

plane was the worst for step 3 of this trial. In the seconds after the 3rd step, when the

subject was standing quietly, the vertical angular momentum component (taken about the

COM ground projection location) accounted for 4.2% of the subject’s angular momentum.

The increase of out-of-plane angular momentum suggests that the assumption of planar

dynamics is worst during quiet standing, and best when the body is translating.

During the jumping trial the subject landed directly on the location predicted by the

3DFPE, and was nearly 10 cm short of the CAP (right pane of Fig. 7.8). It was expected

the subject would land closer to the CAP location because the legs are at least twice

as compliant during this task than any other, having a combined stiffness of only 10.1 ±
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3.2 kN/m. The foot is physically large enough to cover both the 3DFPE and CAP locations,

yet the subject favored the 3DFPE location. Nearly all of the assumptions of the 3DFPE

were broken appreciably during this task, in contrast to the other trials. Examining the

error values, it appears that many of them could cancel out if summed: AL was 4.69 cm,

AJCOM
was -0.61 cm, AT+V was -2.15 cm, and AHP

was -5.36 cm which together sums

to an error of -3.43 cm, half the value of AMSE. The proximity of the subject’s feet to

the 3DFPE and the canceling of errors suggests that the subject compensated their foot

placement location to accommodate for the anticipated loss of angular momentum, system

energy and leg length caused by the landing.

7.7 Discussion

The 3DFPE and CAP together form a powerful tool to find a foot placement line that

could restore balance to a human with compliant legs. The data suggest that the stiffness

of human legs is bounded by a rigid leg and the nonlinear spring of the linear inverted

pendulum and that the assumptions of the 3DFPE are reasonable for analyzing human

motion. These models, however, have not been formulated to take into account momentum

inputs and the compliance range that is characteristic of human legs. Also, despite having

very compliant legs when landing from a jump, the subject favored the location predicted by

the rigid pendulum model. It is possible that the subject was anticipating and accounting

for future momentum inputs and assumption violations that neither the 3DFPE nor CAP

locations currently account for. It is also possible that the observed differences were due

to error in the anthropometric model. Both models require an accurate calculation of

the COM location, which depends on body kinematics and an anthropometry model. As

noted in Millard et al. [66], a plausible 10% error [50] in estimating the mass of the trunk

would change the predicted location of the 3DFPE by 2-3cm forwards or backwards in the

projection plane. The CAP is also affected by anthropometry errors because it requires

the height of the COM. For the subject analyzed, a 1 cm error in the estimate of the COM

height would result in an error of nearly 1 cm in the CAP location in any of the trials.

Anthropometry likely affected the results, but it is unlikely that anthropometry errors were

responsible for the large differences between the HFP, CAP and 3DFPE locations observed

during the jumping task. The authors suggest that humans coordinate the placement of

their feet, the stiffness of their legs, and anticipated future momentum inputs to change
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the position and velocity of their body in a desirable manner.

7.8 Conclusions

An understanding of the mechanics of balance is highly important for its potential diag-

nostic and rehabilitation applications in humans, and in the design of advanced bipedal

robots. Foot placement is a critical component of balance that humans exploit during loco-

motion. The work presented in this paper is unique because we have formally shown that

an Euler pendulum, a simplified model of a biped, has regions of stability far outside its

base of support, but only if its state vector can be projected onto a vertical plane without

loss of information. Although this restriction seems severe, experimental data of human

walking, stopping, and jumping suggests that this assumption is reasonable.

Foot placement is affected by not only a desired future state but also in response to the

stiffness of the stance limb. Two planar methods, Wight et al.’s FPE [108] based on a

rigid pendulum, and Pratt et al.’s CAP point [82] based on a compliant pendulum, were

extended to provide 3D estimates by projecting the state vector of the human subject onto

a vertical plane passing through the COM and perpendicular to the angular momentum

vector of the body (taken about the COM ground projection). The human experiments

showed that these two locations were often very close to each other, giving the subject

the freedom to choose a leg stiffness bounded by the two models if they could cover both

points with their plant foot. The jump trial illustrated that the predictions of each of

the models sometimes differ substantially. These differences may be due to the human

taking into account assumption violations that foot placement models currently ignore.

These differences may also be due to inaccurate anthropometric data. The accuracy of

the 3DFPE and CAP models are limited to a few centimeters until anthropometry can be

estimated more accurately as indicated in column AMSE in Tbl. 7.1, and in Millard et al.

[66].
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Chapter 8

Conclusions

It is ironic that the mechanics and control of the first steps Neil Armstrong took on the

moon — or during any day of his life on earth — are more poorly understood than the

means to actually travel to the moon. The intent of this thesis was to bridge some of the

physical, and philosophical differences between how humans walk, and how we simulate

walking. The present time, however, finds us still with many basic problems that prevent

both the modeling and control of humanoid bipedal gait from matching human perfor-

mance faithfully. Peasgood et al.’s gait model was one of the first attempts at developing a

predictive human gait simulation using a controls-based approach. The poor ground reac-

tion force profiles and fragile sense of balance of Peasgood et al.’s formulation are endemic

in current forward dynamic simulations.

The work presented in this thesis is an attempt to address these two problems. Since the

ground reaction force profile is intimately linked to the foot model, an improved foot contact

model was formulated and developed. Since the stance limb controller simultaneously

affects both the ground reaction force profiles, and the balance of the model, some effort

was spent investigating candidate algorithms for how humans might control the torques in

their legs during stance. A partitioned approach was used to control the stance limb of a

series of models of increasing likeness to the human form. A simple SLIP model was used

to compute a target torso COM trajectory, while an input-output feedback linearization

controller was used to allow the anthropomorphic model to track the desired trajectory.

While this approach appears to be a good one, it will not overcome the limitations of the

SLIP model. In particular, the SLIP can walk only at a fixed pace and cannot stop. The
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relationship between foot placement and balance was studied in order to give the simple

model (of the partitioned approach) more control over its movements. Kinesiologists have

long recognized that foot placement location is very important to restoring human balance.

This topic has received little theoretical attention, and so a theoretical and experimental

treatment of the subject was presented. Each of these topics has been investigated using

simplified models that assume the state of the model can be measured perfectly, that nerves

have no transmission delays, and that torque sources do an adequate job of representing

muscles. In real life, the human sensory system is noisy, nerves have significant transmission

delays and the musculature of the body is far more complicated than a torque source.

Clearly there is still much work to be done.

8.1 Contributions

There are four major contributions in this thesis, and each relate to either improving

the modelling or balance control of human gait simulation. The first major contribution is

related to the development and preliminary experimental validation of a novel two segment

foot model as presented in Ch. 4. This model differs from several in the literature because

it includes flexibility at the midfoot. The validation method was novel because it was

completed in the context of walking and took into consideration the compression of the

heel and metatarsal foot pads.

The second contribution of this thesis is the partitioned approach to simulating human

gait, and the torso-centric stance control systems presented in Ch. 5. Whereas the vast

majority of bipedal control systems in the robotics and kinesiology literature focus on

controlling the periodic motions of the legs during walking, the proposed control systems

use the legs to control the state of the torso. Using this new formulation, the periodic

movements of the legs are merely a side effect of having legs of finite length. This approach

has the benefit of ensuring the stability of the trajectory of the torso, and imparting the

human-like gaits of simpler models onto more useful anthropomorphic models. In addition,

this formulation should simplify the task of searching for gaits as kinematic torso profiles

of human gait are far simpler in form than any of the joint angle profiles of the leg.

The third and final contributions of this thesis are the experimental validation of Wight

et al.’s planar foot placement algorithm, and the extension of this algorithm to the spatial
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domain. Humans adeptly vary their foot placement location when walking, and partic-

ularly when stopping. Humans prevent falls and restore balance by using well-executed

compensatory steps. Prior to the work presented in Chs. 6 and 7 there was no theoreti-

cally grounded foot placement algorithm that had been experimentally validated. As the

experimental data in Chs. 6 and 7 shows, the assumptions of the FPE models are compati-

ble with human legged locomotion, and the predicted foot placement location corresponds

well with human foot placement, even when the assumptions of the model are violated.

These foot placement algorithms are useful because they can improve the capabilities of

the simple model — used in the partitioned approach to simulating human gait — by giv-

ing it the capability to stop in a human-like manner. These foot placement algorithms are

also important because they also suggest candidate metrics to quantify how off-balance a

subject is, and importantly, a means to quantify their balance performance. These metrics

may be of clinical use for diagnosing balance problems in the future.

8.2 Future Work

While a few aspects of foot contact modeling and human balance have been investigated,

there is still much to do. Improved methods need to be developed to validate foot contact

models in vivo. The spatial foot placement algorithm need further experimental validation

with a greater number of subjects. Although the FPE algorithms can compute a good

location to place the swing leg, these algorithms do not offer any hints about how to execute

such a move in a human-like way. Control of the swing phase deserves further investigation.

Finally, while the control formulation presented in Ch. 5 was successfully applied to the

multibody model during single stance, the performance of this controller could be improved.

Finally, it will eventually be necessary to improve the control system formulation to take

into account the imprecise nature of human sensory data, the transmission delays associated

with nerves, and the neuromuscular dynamics. These general problems are important areas

for future work related to this thesis. The following sections present these problems and

some possible research approaches to solving them.
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8.2.1 Volumetric Foot Contact Model

Validating a foot contact model convincingly has proven to be more difficult than formulat-

ing a foot contact model. In this thesis, the foot contact model was validated by driving the

simulated foot through an experimentally collected kinematic path, and then judging the

quality of the model based on how well the foot pad compressions matched those reported

in the literature, and how well the simulated ground reaction force profiles matched the

experimental profiles. By design, this validation method is sensitive to any errors present

in the experimentally collected kinematic foot paths. Unfortunately the skin on the foot

can move up to 1 cm relative to the bones. This amount of error is unacceptable for the

purposes of validation because it is nearly equal to the amount of compression that the

heel and metatarsal pads [10] undergo during stance.

The validation process used in this thesis can be improved by making better measure-

ments of the kinematics of the foot bones, and foot pad strains during stance. Videofluo-

roscopy [100] offers the exciting capability of being able to make cinematic recordings of

the bones of the foot in vivo during stance. By employing two or more such cameras, it

should be possible to make 3D measurements of the kinematics of the foot bones during

stance. Other means of measuring foot kinematics are desirable since videofluoroscopy

cameras are quite expensive, somewhat scarce, and expose the subject to radiation. One

alternative would be to track features of the foot that are invariant to skin movement. The

shape of the bony areas of the foot (medial and lateral malleolus, top of the metatarsals),

and thus the shadows cast on those areas, should not change as the skin of the foot moves

over them during stance. It may be possible to track the kinematics of the bony parts of

the foot by tracking the shadows cast by a known lighting source across those parts of the

foot that have invariant geometry. Although tracking the kinematics of the foot bones is

somewhat difficult, measuring foot pad strains in vivo is not as difficult. An ultrasound

scanner which is embedded into a force plate [10] can provide some of the kinematic and

kinetic data required to validate the contact model. It may also be possible to use the

recorded ultrasound images to measure foot pad shear, a quantity that has not yet been

recorded. Since most ultrasound scanners would not be large enough to scan the entire

foot, but rather a small area, it is not likely that this approach would be able to yield the

kinematics of all of the foot pads simultaneously.

Alternate validation methodologies should also be pursued because of the difficulty of
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accurately measuring the kinematics of the foot bones during stance. One alternative

method is to compare the experimental and simulated roll-over-shape (ROS) of the foot

[35]. The ROS is the shape traced out by the COP during stance as measured in a reference

frame attached to the leg. Using a ROS approach, the foot model would be attached to

a model of the leg. The modelled leg would be driven through the same kinematic path

as the experimentally measured leg. The quality of the foot model would then be assessed

by comparing the ROS of the simulated foot to the experimental foot. In addition, if the

data are clean enough, it may also be possible to compare the simulated and experimental

ground reaction forces and foot pad compressions. This method may be a better form of

validation than the previously described method because the computed angles of the shank

will be less sensitive to skin artifact — because markers between the knee and ankle are

physically farther apart than markers at the ankle and calcaneus — than the computed

angles of the foot. The main draw back of using ROS as a means of validation is that

the ankle torque now needs to be included in the simulation. The ankle torque could be

estimated using inverse dynamics from the experiment, or the simulated ankle could have

a spring-damper included in the model [22].

8.2.2 Stance Phase Control

The multibody gait simulation presented in Ch. 5 can be improved by updating the control

system to require less feedback gain, by indexing of both the stance and swing kinemat-

ics, and by smoothly integrating these two phases together. The stance limb controller

presented in Ch. 5 requires relatively high feedback gain to function. There is no experi-

mental data to suggest that these gains (10 N
mm

and of linear position error, and 175Nm◦ of

orientation error) are unreasonable for stance legs; however experimental and simulation

work done on the motor control of the upper limb [6] suggests that humans have to use low

gain feedback control to prevent controller instability from arising due to the transmission

delays associated with the nervous system. Improving the control system to function with

lower feedback gain is desirable for future models, even if they are not including neural

transmission delays. Lower gain feedback will likely be possible if the current control model

of the foot is improved. Presently the foot is approximated as a rigid link that begins at the

ankle and terminates with a revolute joint attached to a horizontal prismatic joint located

at the COP of the foot (Fig. 5.8). Updating the foot abstraction to a ROS representation
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[35] as in [96] would be a good start.

The torso and swing limb target kinematics of the multibody gait models presented

in Ch. 5 are functions of time. The stability of the model, and the tractability of it to

analysis can be improved if the target kinematics of the model are functions of a time-

invariant quantity such as body lean angle [105]. Referencing the stance and swing limb

kinematics with respect to body lean angle is common in the simulation of bipedal robots

[105] and has recently been applied to a simplified human gait model [96]. Improvements

can be made to the existing lean-angle referenced formulations to make them more human-

like. Whereas humans take larger steps when perturbed, models being controlled using lean

angle referenced trajectories do not. Instead, many steps will be taken until the orbit of the

gait of the model converges to its reference orbit. A more human-like control formulation

might instead reference the swing limb with respect to the lean angle and velocity, allowing

the model to take one large step to catch its balance when the model perturbed, rather

than many shorter steps.

Incorporating a body-angle and velocity-referenced leg kinematics in a multibody gait

model similar to the one in Ch. 5 will not be easy. To date, these control methods have

been applied to models and robots that have rigid feet, with model switching being used to

avoid simulating contact [96], and particularly to avoid defining lean angle during double

stance. Thus, difficulties will likely be encountered when applying the aforementioned

control techniques to a model with continuous foot contact that has a double stance phase.

In addition, care will have to be taken when switching between stance limb, and swing

limb kinematic references to avoid the high control torques that were observed in the

model presented in Ch. 5. These notions are just the beginnings of a human-like feedback

control law that may allow a model to guide its swing limb as adeptly as a human.

The capabilities of the simple models (which are used as guides for anthropomorphic

models in the partitioned gait simulation approach) also need to improve in order to simu-

late movements other than steady state walking. The SLIP was used as the simple model

in Ch. 5, but it is limited because it can walk in a human-like way only at a fixed velocity.

This restriction suggests that the likeness of the SLIP gait to human walking is perhaps

a coincidence. Srinivasan [95] recently presented a low-dimensional model that had an

energy-optimal gait that was very similar to both human and SLIP walking. The force

actuators used for this model were not linear springs (as are used in the SLIP), but rather

developed force such that both the first and second derivatives had finite limits (similar
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to a 2nd order low pass filter). The resemblance of these force actuators to a crude mus-

cle model [110] is likely not a coincidence. Srinivasan’s simple model suggests that the

bandwidth limitations of human muscle are the dominating phenomenon that give human

gait its characteristic COM and GRF profiles [109]. Planar and spatial simple models that

incorporate bandwidth limited telescoping leg actuators, and movable contact points [7]

should be developed and experimentally validated for transient movements such as gait

initiation, gait termination, and compensatory stepping.

Although a feedback control approach could be used to make a model walk in a human-

like manner, adapting such a control system to a new model (such as one with a prosthesis),

or a new movement, will likely prove difficult. An approach that easily accommodates

different models (ranging from dinosaurs to people) and motions (walking, stone stepping

and jumping in 3D) has been developed by a group of computer animation researchers

[67] for a bipedal human model with flat feet. Mordatch et al. used the partitioned

approach mentioned in Ch. 5 (developed in parallel to the work in this thesis) but they

use optimization to give their simple model greater capabilities than the SLIP, and their

anthropomorphic model the ability to move smoothly. They are able to achieve a wide

range of life-like 3D motions using a low-dimensional model (an approximate linear version

of the SLIP) to plan all of the COM and COP profiles for 2 physical steps in the future at

every integration time step. Torques are applied to the multibody model so that it tracks

the path the low dimensional path planner has computed. A specialized optimization

routine is used in both the low dimensional path planner and in the control of the multibody

model [36], giving the system the flexibility to be used on different models and motions.

Although it is not clear that it will be possible to expand this idea to a high fidelity human

model — particularly one with muscles — the capabilities of the system to generate life-like

animations of many motions make it worthy of further exploration.

8.2.3 Balance Corrections using Foot Placement

The FPE theory may prove to be a powerful tool in improving simple gait models and

analyzing human balance because it is valid for both small and large perturbations and

is not accompanied by restrictive assumptions. The FPE can be used to improve gait

simulations by computing the target foot placement location rather than using optimization

to solve for this parameter. This may be an important step to reducing the computational
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demands of solving for energy optimal walking trajectories, which are high, even for the

simple models that Srinivasan proposes [95]. The most important practical applications

of the FPE research lie in improving balance assessment and rehabilitation. Metrics for

bipedal instability and balance performance based on the 3DFPE theory may allow a

patient’s balance to be assessed accurately, allowing both the patient and the health care

professional to take preventative action before the patient becomes prone to falling. The

distance between the foot contact area of the biped and the 3DFPE is a good candidate for

a measure of bipedal instability. Normalizing this distance with respect to leg length should

produce a dimensionless measure of bipedal instability. Alternately, the angle between a

vector passing through the COM and the FPE and the vertical could be used to quantify

bipedal instability.

Experimental and theoretical work needs to be completed to realize the aforementioned

diagnostic and rehabilitation applications of the 3DFPE. Compensatory stepping exper-

iments with 3D perturbations need to be completed to compare the instability measures

of the 3DFPE to existing measures. Perturbation experiments using different population

groups will need to be completed to determine if these new measures would be useful di-

agnostic tools. The details of how best to formulate instability and balance performance

metrics using the FPE requires experimental validation and potentially further theoret-

ical development. Another key application of this research is in balance rehabilitation.

The 3DFPE point could be projected on the floor to act as a target for the swing limb.

The foot placement target, shown to a person while they are walking, could be used as a

rehabilitation aid to help people guide their swing foot to an appropriate location.
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Appendix A

Chapter 3 Model Parameters

The anthropometric parameters used in Ch.3 and in Peasgood et al.’s model are listed in

Tbl. A.1. The anthropometric values from Peasgood et al.’s work originate from a gait

model produced by LifeMod. These parameters are compared to the equivalent parameters

calculated using the methods presented by Winter [110] in Tbl. A.1.

The relative difference between the two parameter sets was calculated by dividing the

absolute difference by the average value of the two parameters in question. The comparison

showed that the relative difference between the parameter lists was on the range of 10-20%

which is acceptable given that the data sets came from different studies. However, the

values for the moment of inertia of the HAT and the mass of the foot were grossly different.

Peasgood et al.’s parameters were used in Ch.3 for the purposes of model validation, while

more conventional values [110] were used for the final simulations.
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Gross LifeMod Model Parameters
Mass (M) in kg Length (L) in m

Body (B) 64.740 1.696
HAT (H) 37.810 0.347* *HL: vertical distance between
Thigh (T) 7.876 0.440 the greater trochanter and the
Shin (S) 3.537 0.376 glenohumeral joint.
Foot (F) 2.052 0.220
LifeMod vs. conventional anthropometric data

LifeMod Relative Conventional Conventional
values Difference (%) values formula [110]

Hat
mH 37.810 14.9 43.893 0.678 BM
Jzz H 2.190 64.5 1.122 HM (HL 0.496)2

dHr 0.279 19.7 0.229 0.66 HL
Right Thigh
mTr 7.876 19.5 6.474 0.100 BM
Jzz Tr 0.149 6.8 0.159 TM (TL 0.323)2

pTr 0.205 7.3 0.191 0.433 TL
dTr 0.235 6.0 0.250 0.567 TL
Right Shin
mSr 3.537 16.1 3.010 0.0465 BM
Jzz Sr 0.040 14.0 0.046 SM (SL 0.302)2

pSr 0.166 2.1 0.163 0.433 SL
dSr 0.210 1.7 0.213 0.567 SL
Right Foot
mFr 2.052 74.5 0.939 0.0145 BM
Jzz Fr 0.010 4.4 0.01 FM (FL 0.690)2

†pFr 0.1 4.9 0.110 0.5 FL
†dFr 0.1 4.7 0.110 0.5 FL
†Not actually a model parameter, just included for comparison

Table A.1: A comparison between LifeMod’s model parameters and conventional anthro-
pometric data. The geometry of the foot is not present because there is no conventional
anthropometric data on feet of which the author is aware.
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All of the parameters associated with foot contact model used in Ch.3 are listed in Tbl.

A.2. The foot is modeled using a Hunt-Crossley contact model of Eqn. 3.1 and a Coulomb

friction model of Eqn. 3.2. The coefficient of damping, and the coefficient of friction

are interpolated using cubic splines (Fig. 3.2). The contact parameters listed below are

identical to the ones used in Peasgood et al.’s work [75].

Foot Contact Parameters
Name Units Value Description
kL N/m 800000 Linear foot tissue stiffness factor
p 2.2 Exponential stiffness factor
y1 m 0.01 Distance of maximum dampening
cmax

Ns
m

1000 Damping factor
µS 0.8 Coefficient of static friction
µd 0.2 Coefficient of dynamic friction
vs

m
s

0.05 Stiction velocity
vd

m
s

2 Dynamic friction velocity

Table A.2: Contact and friction model parameters.
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All of the control parameters used in the model are shown in Tbl. A.3.1. The joint

controller coefficients were taken directly from Peasgood’s thesis [75]. The pitch controller

and velocity controller coefficients had to be found for the nominal gait. These coefficients

were found using a brute force grid search that tested every combination of pitch controller

coefficient within a given grid size. The best performing pair was chosen, and then the

grid size was reduced by a factor of two. This process was continued until the grid size was
1

1024

th
of its initial size. Note that no velocity controller values actually reduced the velocity

error of the model for the nominal gait until simulation times were extended beyond 20

seconds.

Joint Controller Coefficients from [75]
Joint stiffness (Nm

rad
) Joint dampening (Ns

m
)

Kankle 1996 Kdankle 27.5
Khip 2625 Kdhip 19.4
Kknee 1984 Kdknee 12.5
Optimal Balance Controller Coefficients for the Nominal Gait

Pitch Controller Velocity Controller
Ki ( s

rad
) 3.0012 0.16389

Kp ( 1
rad

) 0.1592 0.87827

Table A.3: Control parameters for the joint controllers, the balance controller and the
velocity controller. Note that no velocity controller was found to improve the velocity error
of the new implementation of the 2D gait model until the simulation time was extended
beyond 20 seconds
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Appendix B

Chapter 4 Model Parameters

Figure B.1: The geometry, contact and inertial foot model parameters

All of the parameters associated with foot contact model used in Ch. 4 are listed in

Tbl. B.1. The foot pads are modeled using Gonthier et al.’s volumetric contact model [31]

with spherical contact elements. Coulomb friction of Eqn. 3.2 is used to model tangential

forces with the coefficient of friction being interpolated using cubic splines (Fig. 3.2). The

geometry of the foot, foot pad contact properties, and the stiffness and damping of the

revolute joint at the metatarsal were all found using optimization as described in Ch. 4.

The the geometry of the foot is reported with the tarsal joint relaxed. The mass and inertia
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properties of the entire foot were found using conventional anthropomorphic tables [110],

and equally split between the hind and forefoot segments.

Foot Contact Parameters
Name Units Value Description
mH 0.500 kg Mass of the hind foot
JH 5.50× 10−3 kg m2 Inertia of the hind foot
~rA (-5.08, 3.59) (cm, cm) Ankle location w.r.t. tarsal joint
~rH (-5.74,0) (cm, cm) Heel location w.r.t. tarsal joint
∅H 9.18 cm Heel contact sphere diameter
kH 3.72× 107 N/m3 Heel contact sphere stiffness
dH 0.0648 Heel contact sphere

dimensionless damping

mF 0.500 kg Mass of the forefoot located
at the center of ~rF

JF 5.50× 10−3 kg m2 Inertia of the forefoot
~rF (9.28,-1.18) (cm, cm) Distal metatarsal head location

w.r.t. tarsal joint
∅F 3.30 cm Forefoot contact sphere diameter
kF 4.06× 108 N/m3 Forefoot contact sphere stiffness
dF 4.12× 10−3 Forefoot contact sphere

dimensionless damping

kT 343 Nm/rad Tarsal joint stiffness
dT 1.03 Nm s/rad Tarsal joint damping

µd 0.5 Coefficient of dynamic friction
µs 0.6 Coefficient of static friction
vd 0.01 m/s Dynamic friction velocity
vs 0.005 m/s Static friction velocity

Table B.1: Two-segment, volumetric foot model parameters
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Appendix C

Euler Pendulum Equations of Motion

The equations of motion for rolling without slipping for the Euler pendulum (Fig. 7.3 and

7.4) are found by taking moments about the contact point to eliminate reaction forces. First

equations for the linear and angular acceleration of the COM are kinematically derived,

then substituted into into the dynamic equation for angular acceleration. The dynamic

equations for the COM linear acceleration are used to eliminate the unknown contact force
~F .

To begin, the total angular velocity of the pendulum is composed of two components:

that of a moving reference frame (~ω123), and that of the pendulum relative to the reference

frame (β̇):

~ω = ~ω123 + ωrel 1̂ (C.1)

As shown in Fig. 7.4 the frame 1̂ 2̂ 3̂ rotates at θ̇ ẑ + α̇ 2̂ :

~ω123 = θ̇ ẑ + α̇ 2̂ = −θ̇ cosα 1̂ + α̇ 2̂ − θ̇ sinα 3̂ (C.2)

Noting that

ẑ = − cosα 1̂ − sinα 3̂ (C.3)
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The time derivatives of the local axes are:

d 1̂

dt
= ~ω123 × 1̂ = −θ̇ sinα 2̂ − α̇ 3̂ (C.4)

d 2̂

dt
= ~ω123 × 2̂ = θ̇ sinα 1̂ − θ̇ cosα 3̂ = −θ̇ r̂ (C.5)

d 3̂

dt
= ~ω123 × 3̂ = α̇ 1̂ + θ̇ cosα 2̂ (C.6)

Where the second horizontal unit vector r̂ (the first being 2̂ ) is defined by:

r̂ = 2̂ × ẑ = − sinα 1̂ + cosα 3̂ (C.7)

Thus,

d r̂

dt
= θ̇ 2̂ (C.8)

Combining Eqns. C.1 and C.2 total angular velocity is given by:

~ω = β̇ 1̂ + α̇ 2̂ − θ̇ sinα 3̂ (C.9)

where

β̇ = ωrel − θ̇ cosα (C.10)

The angular acceleration can be found by taking a time derivative of Eqn. C.9, substituting

in Eqns. C.4, C.5, C.6, and collecting 1̂ 2̂ 3̂ components:

ω̇ =


β̈

α̈− β̇θ̇ sinα− θ̇2 sinα cosα

−θ̈ sinα− 2α̇θ̇ cosα− β̇α̇

 (C.11)

The velocity of the center of mass of the disk contact is calculated using the nonholonomic

constraint that the disk rolls without slipping:
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~vp = ~vq + ~ω × (a 3̂ + c 1̂ ) = 0 (C.12)

The acceleration of the center of mass of the Euler pendulum can be found by taking the

derivative of Eqn. C.12 and substituting in expressions for ˙̂1 , ˙̂2 and ˙̂3 from Eqns. C.4,

C.5 and C.6.

d2~rq
dt2

=


−aα̈ + (aβ̇ + cθ̇ sinα)θ̇ sinα + α̇2c

aβ̈ + cθ̈ sinα + 2cθ̇α̇ cosα + aα̇θ̇ sinα

α̈c+ aα̇2 − (aβ̇ + cθ̇ sinα)(θ̇ cosα)

 (C.13)

Expressions for the translational and angular acceleration of the COM (located at point q)

of the Euler pendulum in the 1̂ 2̂ 3̂ frame can be calculated by taking time derivatives

of angular momentum (~Lp about the contact point p) and combining it with Eqn. C.13.

~Lp = [J ] ~ω (C.14)

d~Lp
dt

= [J ] ~̇ω + ~ω123 × ~Lp (C.15)

The size of expression for d~Lp/dt can be greatly reduced if [J ] is allowed to be symmetrical

about the 1̂ axis. For the purposes of this analysis it is assumed that the inertia matrix

has an axis of symmetry about the 1̂ axis (as Fig. 7.3 suggests).

The equations of motion can now be found by examining the dynamics of the Euler

pendulum. The only forces and torques acting on the inverted pendulum are due to gravity

−mgẑ, contact forces ~F , rolling resistance torque ~τR, and spin friction torque ~τF .

m
d2~rq
dt2

= ~F −mg ẑ (C.16)

The angular acceleration equations are also quite similar to an those of an Euler disk [59]

with the addition of τR, a rolling resistance term, and τF , a spinning friction term:
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d~Lp
dt

= (c 1̂ + a 3̂ )× ~F + τR ω̂ t + τF ω̂ n (C.17)

The unknown contact force ~F can be eliminated using Eqn. C.16 and by taking moments

about point p.

d~Lp
dt

= (c 1̂ + a 3̂ )× (m
d2~rq
dt2

+mg ẑ )

+τR ω̂ t + τF ω̂ n (C.18)

The rolling resistance torque ~τR is assumed to be of positive magnitude R in the direction

opposite the tangential angular velocity vector ω̂T .

~τR = −Rω̂T (C.19)

~ωT = (~ωq · r̂ ) r̂ + (~ωq · 2̂ ) 2̂ (C.20)

= ωrel sin
2 α 1̂ + α̇ 2̂ − ωrel sinα cosα 3̂ (C.21)

ω̂ T =
~ωT

|~ωT |+ δ
(C.22)

For the purposes of simulation, the rolling resistance torque is assumed to be proportional

to the product of the normal force and the horizontal angular speed of the contact ring; (κ

is a positive coefficient of rolling resistance).

~τR = −κ~F · ẑ (~ωT · ~ωT ) ω̂ T (C.23)

(C.24)

The spin friction torque, ~τF , is assumed to be of positive magnitude S in the direction

opposite to the normal angular velocity vector ω̂N .
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~τF = −Sω̂N (C.25)

For the purposes of simulation, the spin friction torque is assumed to be proportional to

the product of the contact force and the rate the contact point is spinning normal to the

surface; (µS is a positive coefficient of spinning friction).

~τF = −µS(~F · ẑ )(~ω · ẑ ) ẑ (C.26)

The equations of motion can be found by substituting Eqns. C.15, C.13, C.19, and C.25

into Eqn. C.18 and solving for β̈, α̈, and θ̈. Note that for Eqns. 7.1, 7.2, and 7.3 all of

the terms associated with rolling resistance torques and spinning friction torques in Eqns.

C.19, and C.25 are lumped into the Lβ, Lα and Lθ terms.

C.1 3DFPE Conditions

Equations 7.28 and 7.29 must be satisfied for a 3DFPE point, a single-step balance point,

to exist. These constraints can only be satisfied in a few specific cases, which are described

mathematically in the following text. Prior to contact, the angular momentum of the

pendulum — with mass m, inertia [J ], the leg vector ~rp/q and initial conditions ~v1 and ~ω1

(the translational and angular velocity of the COM prior to contact)— is given by:

~Hp1 = [J ]~ω1 + ~rp/q ×m~v1 (C.27)

After contact, angular momentum can be calculated by assuming that the pendulum is

purely rotating about its contact point.

~Hp2 = [J ]~ω2 + ~rp/q ×m(~ω2 × ~rp/q) (C.28)

If angular momentum is assumed to be conserved ( ~Hp1 = ~Hp2), the post-contact angular

velocity of the pendulum can be expressed in terms of the pre-contact linear velocity,

angular velocity and leg length. Equations 7.28 and 7.29 can be evaluated symbolically

to determine if these conditions are satisfied. If the inertia matrix [J ] is diagonal, and all
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entries are equal in magnitude (to keep the size of the expressions to a manageable size),

Eqns. 7.28 and 7.29 become:

0 = ~Hp2 · ~rp/q = ω1xrx + ω1yry + ω1zrz (C.29)

0 = ~Hp2 · ~g (C.30)

=
J1ω1z +mrz (ω1xrx + ω1yry + ω1zrz)

m(r2x + r2y + r2z) + J1

+
m (v1,yrx − v1,xry)
m(r2x + r2y + r2z) + J1

(C.31)

Where subscripts x, y, z are used to denote the components of the vector quantities ~rp/q,

~ω1 and ~v1. Equations C.29 and C.31 are satisfied if there is no angular momentum about

the vertical axis prior to contact (~ω1 · ~rp/q = 0); the pre-contact angular velocity vector is

perpendicular to the leg vector (~ω1 ·~rp/q = 0); and the horizontal components of the linear

velocity and the leg vector are parallel.

C.2 Applying the 3DFPE to Multibody Systems

The utility of the 3DFPE lies in analyzing the balance of humans and as a part of the

balance control system of a bipedal robot. Both of these applications involve articulated

actuated mechanisms that are more complicated than an inverted pendulum, and do not

necessarily meet the underlying assumptions of the 3DFPE. The 3DFPE can be applied

at an instant in time to an equivalent inverted pendulum representation of these more

complicated mechanisms. The mass of the equivalent inverted pendulum (me) is simply

the sum of the segment masses (mi),

m =
n∑
i

mi (C.32)

while the center of mass location ~rcm and average velocity ~vcm are calculated using weighted

sums.
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~rcm =
1

m

n∑
i

mi ~ri (C.33)

~vcm =
1

m

n∑
i

mi ~vi (C.34)

The moment of inertia [J ] is calculated relative to the center of mass location using the

parallel axis theorem.

[J ] =
n∑
i

([R0,i][Ji] +mi((~ri − ~rcm) · (~ri − ~rcm))[I]) (C.35)

Where [R0,i], [Ji], and ~ri is the rotation matrix, inertia matrix, and COM location of the

ith body respectively. The matrix [I] is used to designate the identity matrix. Finally, the

whole-body angular momentum about the COM, [J ]~ωcm, can be calculated as

[J ]~ωcm =

(
n∑
i

[R0,i][Ji]~ωi + (ri − rcm)×mi(~vi − ~vcm)

)
(C.36)

The single body equivalent parameters and states can be projected onto a plane using

Eqn. 7.43 prior to using the FPE or the CAP to calculate the location of a stabilizing

step. The quality of the estimate of the FPE or the CAP is dictated by how closely

the complicated mechanism meets the assumptions of either of the methods. The effect

of assumption violations on foot placement location can be calculated using a numerical

sensitivity analysis as in Millard et al. [66]. For walking movements the FPE is highly

insensitive to changes in leg length, moment of inertia and system energy. The FPE is

sensitive to changes in whole body angular momentum about the contact point ( ~Hp).
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