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Abstract 

 

Unglazed transpired solar collectors (UTSCs) preheat makeup ventilation air for buildings, 

thereby reducing energy used for heating. The performance of the UTSC is dependent on the 

heat loss from the absorber plate, which is strongly affected by the wind speed.  To date, 

correlations to determine UTSC heat loss are limited to flat or sinusoidal plate corrugations. In 

reality, trapezoidal corrugations have been added to UTSCs to provide them with structural 

stiffness. These corrugations prevent the attachment of the flow to the absorber plate and cause 

flow separation which increases the heat loss.  

 

In this study, a numerical simulation of a UTSC with trapezoidal shape corrugation has been 

performed to investigate the heat loss in the developing region due to wind on the UTSCs. It has 

been found that heat loss from new configuration is up to three times greater than the heat loss 

from a perforated flat absorber plate. A correlation of heat loss due to the wind speed and suction 

velocity was developed.  

 

This study also includes an evaluation of the effectiveness in the asymptotic region. In this case, 

wind speed had no effect. A correlation was derived in terms of suction velocity. 
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Chapter 1 

 

Introduction 

 

1.1 Energy and Environmental Concerns 

The majority of global energy requirements are met through the combustion of fossil fuels. For 

space and water heating, people burn a variety of fuels such as natural gas, propane, fuel oil, coal 

and wood. Even if electric-based heating sources are used, much of that energy ultimately is 

produced from power plants that burn fossil fuels. This energy demand is ever increasing. 

According to BP’s Statistical Review of World Energy (2009), global electrical demand 

increased by 66% between 1990 and 2008.  

 

The combustion of fossil fuels from any source has a number of negative consequences. First and 

foremost, it results in a release of chemicals into the air and water, such as hydrochloric and 

sulfuric acids. These chemicals can be harmful to human health and to the environment. For 

humans, pollution causes respiratory diseases, cardiovascular diseases, and skin irritations. In 

China, an estimated 656,000 people die prematurely each year because of air pollution (The New 

York Times 2007). With respect to the environment, sulfur dioxide causes acid rain, which 
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lowers the PH value of the soil, and creates smog and haze that obscures sunlight. An additional 

concern related to fossil fuel combustion, is Green House Gas emissions (GHGs) and the climate 

change that GHGs are causing. The increase in human activities since pre-industrial times is one 

of the major causes of GHGs. The International Panel on Climate Change (IPCC 2007) reported 

that GHGs increased 70% due to human activities between 1970 and 2007. Carbon dioxide 

(CO2) is the predominant GHG, and its emissions increased by 80% during that period. 

According to the IPCC (2007), the resulting warming of the climate is unequivocal because 

evidence from other countries shows that oceans and forests are being affected by the 

temperature increase. Many adverse effects will result from a global temperature rise. 20% to 

30% of animals and plants will face the danger of extinction if the global temperature increases 

by 1.5 to 2.5 
o
C above 1990 levels. The risks of extreme weather events such as heat waves and 

floods will also increase as well as their negative impacts (IPCC 2007).  

 

In Canada, a lot of effort has been made to measure the amount of GHGs resulting from space 

heating, since it accounts for the largest amount of consumed energy. Figure 1.1 shows the total 

amount of energy used and GHGs produced in the residential and commercial institutional 

sectors (Statistics Canada 2007). Since the amount of usage accounts for approximately 50% of 

the total demand, efficient use of energy in this sector will make a significant contribution 

towards alleviating our energy and GHG problems.  
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Figure 1.1: Energy Consumed (a) and GHG Emissions (b) in Canadian Residential and 

Institutional Sectors (Statistics Canada 2007). 
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1.2 Solutions 

Solutions that lead to reductions in the production of GHGs related to space heating are divided 

into two groups: those that reduce heating demand, and those that replace heating energy 

supplies with less polluting sources. Reducing the amount of energy used for space heating can 

be accomplished through the use of better insulating materials and practices in buildings, the 

sealing of air gaps inside the walls, and through the use of high performance HVAC equipment. 

Replacing energy sources with something less polluting generally leads to the use of renewable 

sources. These include wind, geothermal, and solar. Solar energy in particular is an excellent 

alternative. The Earth receives a significant amount of solar energy every day which is available 

everywhere, and solar thermal heating systems offer a cost effective and efficient means of 

collecting it. 

 

1.3 Background  

1.3.1 Availability of Solar Energy 

Earth receives around 174 PW of solar energy radiation each year with a mean extraterrestrial 

irradiance of 1.36 kW/m
2 

(Duffie and Beckman 2006).
 
Roughly 52% of this radiation reaches the 

surface of the earth (land and sea). The other portions are reflected or absorbed by the 

atmosphere. A world population of 10 billion with a total personal need of 10 kW per capita 

would require 10
11 

kW. Just 1% of the available solar energy collected at an efficiency of 10% 

will fulfill these needs (Goswami and Kreider 2000). 
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1.3.2 Solar Energy Technologies and Applications 

Solar energy applications transform solar radiation into useful energy. This energy could be heat 

or electricity. Applications of solar energy include (Garg 1982): 

• Water heating for domestic, commercial and industrial usage. 

• Residential and institutional outdoor pool heating  

• Agricultural product drying  

• Ventilation air pre-heating  

• Mechanical power production  

• Solar refrigeration  

• Electricity production 

 

The general classifications of solar technologies are: 

• Passive Thermal Systems are those systems that require little or no active mechanical 

device for operation. Examples include Trombe Walls, windows and shades, and 

sunspaces.  

• Active Thermal Systems are solar heaters and coolers that involve the use of a 

mechanical device such as a pump or fan. Examples include solar domestic water and 

air heaters, and solar assisted chiller systems 

• Photovoltaic cells convert sunlight directly to electricity. Typical commercially 

available systems have efficiencies ranging between 6% - 15%, depending on the 

type of the cell (Duffie and Beckman 2006). 
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Of particular interest to the present work are active thermal systems. These include concentrating 

collectors, evacuated tube collectors, flat plate collectors (glazed and unglazed), and transpired 

air collectors. Each is discussed. 

 

Concentrating Collectors  

Concentrating collectors are designed to deliver energy at high temperatures. These collectors 

usually have a parabolic shape to reflect the solar energy and concentrate it to a certain point 

(focusing) or area (non-imaging). They are often designed to produce steam used to run an 

electric generator or electricity, and the receiver is. usually a pipe containing a heat transfer fluid, 

a photovoltaic cell, or both. Manufacturing these collectors is expensive and they very often must 

be designed to track the sun. Figure 1.2 is a photo of a typical concentrating collector. 

 

 
Figure 1.2: A Concentrating Collector (Sandia 2007).  
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Evacuated Tube Solar Collectors 

Evacuated tube collectors are constructed from a number of evacuated glasses that have an 

absorber plate within the glass. This evacuation provides excellent insulation which allows high 

temperatures to be achieved in the absorber. These collectors are better than flat plates in colder 

weather due to their lower heat loss, but worse during the summer months due to lower optical 

efficiency (Ramlow and Nusz 2006). Figure 1.3 is a photo of this kind of absorber. 

 

 

Figure 1.3: An Evacuated Tube Solar Collector (Green Terra Firma 2007). 

 

Glazed Flat Plate Collectors 

Flat plate collectors are generally of two types: Solar Water Heaters (SWHs), and Solar Air 

Heaters (SAHs). Both types generally consist of a frame, insulated back, and absorber plate, and 

many also have a glazing cover. The absorber plate is usually a finned heat exchanger which 

facilitates transfer of solar energy to the working fluid. It is located beneath the glazing and 
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usually has two manifolds for the fluid inlet and outlet. A glazing is used in many collectors to 

minimize the heat loss to the environment, where glass is the most common material used in 

covering since its lower transmittance in longer wavelength solar radiation (Goswami and 

Kreider 2000). Figures 1.4 and 1.5 show photos of a typical SWH system and SAH system, 

respectively. 

 

 

Figure 1.4: A Flat Plate Solar Water Heater (Solar Panels Plus, 2007). 

 

SAHs come in many forms depending on their application. They are commonly used for space 

heating and drying applications. For crop drying, their basic advantages appear to be their low 

sensitivity to leakage and that they do not need external drying equipment.  
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Flat plate collectors have many advantages over concentrating or evacuated tube collectors. They 

have no requirement for tracking, are simpler in design and cheaper to construct, and have little 

need for maintenance (Duffie and Beckman 2006). 

 

 

Figure 1.5: A Flat Plate Solar Air Heater (AltE Store 2010). 

 

Unglazed Transpired Solar Collectors 

The use of Unglazed Transpired Solar Collectors (UTSCs) is considered to be one of the most 

effective methods of reducing HVAC loads in buildings. They provide high efficiency and low 

cost preheated air.  

 

This technology is relatively simple. Generally, a perforated black painted metal sheet (absorber 

plate) is placed on a southern building facade. As air is sucked through perforations in the 
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absorber plate and into the plenum, and heat energy from the absorber is transferred to it. The 

plenum is a gap of 15 -20 cm behind the absorber plate. This pre-warmed air makes a significant 

contribution towards decreasing the energy used for heating. Figures 1.6 is a photo of a typical 

UTSC. Figure 1.7 shows a UTSC in operation. 

 

 
Figure 1.6: An Unglazed Transpired Solar Collector (NRCan 2009). 

 

The main advantage of this type of solar collector is twofold. The air is sucked directly through 

the perforations which make the surface of the absorber operate at a relatively low temperature. 

Consequently, heat loss will be decreased. Moreover, because there is no need for a glazing 

cover, its cost and installation is easier than other types of solar heaters. 
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Figure 1.7: An Unglazed Transpired Solar Collector (Sustainable Design Update 2008). 

 

One commercially available version of these collectors is made by Conserval Engineering. This 

system, called Solarwall™, has been installed in more than 25 countries. Many studies have been 

made on UTSCs. These studies include calculating collector effectiveness, flow distribution, heat 

transfer coefficient and plate shape effect.  
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1.4 Motivation and Objective of the Thesis  

All previous studies on UTSCs were based on flat plates or plates with sinusoidal corrugations. 

Commercially available products, and in particular, SolarWall™, have a trapezoidal design to 

provide structural stiffness. Evaluating the heat transfer coefficient and the wind heat loss will 

assist in better design of systems that use these collectors.  

 

The objective of the current work is to:  

• Determine the average heat transfer coefficient between the absorber and the intake air;  

• Determine the heat loss due to wind, and;  

• Compare the results with the previous experimental and numerical results. 

The study will be performed numerically. 

 

1.5 Thesis Outline 

This thesis is divided in 5 chapters;  

• Chapter 1 is an introduction and background information. 

• Chapter 2 contains a literature review of previous studies. First, studies related to flow 

characteristics and heat transfer on perforated absorber plates will be examined. 

Secondly, a review is performed of the previous studies on UTSC’s in terms of their 

convective heat loss and effectiveness.  

• Chapter 3 describes the computational model that has been developed for this simulation. 

• Chapter 4 shows and discusses the simulation results. 

• Chapter 5 contains the conclusions and recommendations resulting from this work.  
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Chapter 2 

 

Literature Review 

 

2.1 Introduction  

Since the design of UTSCs consist of both perforations and corrugations, it is vital to study the 

effect of both features on the air flow and heat transfer. This chapter reviews previous studies 

related to these geometric aspects of UTSC design. 

 

Section 2.2 will present the governing physical equations and theory of perforated plates and the 

effect of perforations on the temperature and velocity profiles. Section 2.3 presents the previous 

studies conducted on perforated plates, while Section 2.4 and 2.5 present previous experimental 

and numerical studies conducted on corrugated plates and on backward facing steps, 

respectively. Studies that focused specifically on UTSC performance are of particular interest. 

These studies will be reviewed in Section 2.6. 
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2.2 Flow and Heat Transfer Theory Over Perforated Plates  

2.2.1 Velocity Profile and the Starting Length  

When considering forced flow over a flat plate (without suction), velocity boundary layer growth 

can be characterized generally. At the fluid-plate interface, the fluid is assumed to have zero 

velocity. This fluid layer restricts fluid motion in the adjacent layer through shear stresses. 

Therefore, the fluid velocity increases as one moves away from the plate to such a point where 

the plates influence is negligible, and the free stream velocity is attained. The point at which the 

fluid velocity reaches 99% of the free stream velocity defines the velocity boundary layer. 

Initially, the boundary flow exhibits laminar behavior, and the velocity boundary layer growth is 

proportional to ��
� where � is the distance from the leading edge of the plate. Transition to 

turbulence occurs further downstream, depending on the flow velocity and fluid properties, at 

which point the velocity boundary layer grows proportional to ��
� (Bejan 1984). 

 

The situation where there is homogenous suction at the fluid-plate interface was studied 

analytically by Schlichting (1979). When homogenous suction occurs, the velocity boundary 

layer is ‘sucked’ through the plate. As a result, the velocity boundary layer thickness is decreased 

depending on the ratio of free stream velocity to suction velocity. If the suction velocity is great 

enough, the transition to turbulence will not occur and boundary layer growth stops completely 

(called the asymptotic region). Schlichting defined the critical Reynolds number for transition, 

Rec, based on the boundary layer thickness at transition, δ(xc), and free stream velocity, U∞, to 

be: 

��	 = ρ��
���� 
�             (2.1) 
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where ρ and µ are the fluid density and dynamic viscosity, respectfully. He showed the minimum 

suction velocity, Vo, for asymptotic behavior to occur to be: 

�� = 1.24 × 10���∞           (2.2) 

where the suction velocity is the average velocity of air flowing through the plate in relation to 

its entire surface area, and not the velocity through any particular hole. He showed that Rec 

increased by a factor of 130 for cases where the minimum suction velocity was applied. Figure 

2.1 shows the velocity boundary layer over a flat plate with suction.  

 

 
Figure 2.1: Thermal and Velocity Boundary Layer Development over a Perforated Plate 

(Kutscher et al. 1993). 
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Schlichting (1979) was also able to develop an equation for the velocity profile. By assuming a 

relatively small suction velocity and relatively large distance downstream of the plates’ leading 

edge, the momentum equation becomes: 

−��
� 
�! = " �� 

�!�           (2.3) 

where u = u(y) is the velocity profile for fluid flowing in the x-direction, y is the distance 

perpendicular from the plate, and " is the kinematic viscosity. Applying the boundary conditions 

of u = 0 at the wall (y = 0) and a free stream velocity of u = �∞ at y = ∞, and integrating Eqn. 2.3, 

the flow velocity profile becomes: 

#�$� = �∞�1 − �%&'(
) �          (2.4) 

 

Schlichting’s (1979) analysis was based on the assumption of uniform or homogenous suction at 

the plate. In difference to this, discrete suction is said to occur when the perforation spacing of 

the plate is larger than the boundary layer thickness (Arulanandam et al. 1999). When discrete 

suction exists, the velocity boundary layer thickness will vary near to the locations of the 

perforations, and appear ‘dimpled’ in nature. It is likely that the situation studied in this work 

will classify as discrete suction. This point will be revisited in Chapter 3. 

 

Arpaci and Larson (1984) also analytically examined flow over a perforated plate with suction. 

By assuming a parabolic velocity profile in the momentum equation, they found that the velocity 

boundary layer thickness in the asymptotic region, *+, was given by: 

*+ = ,-
./

           (2.5) 
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Using this, Kutscher (1992) showed that flow over a plate will reach the asymptotic region after 

a specific velocity starting length,  12 , given by: 

12 = 0.96 �∞-
./�

≅ �∞-
./�

          (2.6) 

This starting length corresponds to the point where the boundary layer has reached 87% of *+. 

 

2.2.2 Temperature Profile and the Equivalent Starting Length 

If a temperature difference exists between a flat plate (without suction) and the fluid flowing 

over it, then a thermal boundary layer will also develop. Heat transfer is via conduction at the 

surface (where the fluid is assumed to be stationary), and via conduction and advection as one 

moves further from the plate surface. The point at which the temperature ratio 678 − 79/�78 −
7+� reaches 99%, defines the thermal boundary layer. Here 7∞ is the free stream or wind 

temperature, and Tp is the plate temperature. The nature of the flow will have a significant impact 

on the heat transfer rate and temperature distribution within this boundary layer. In the turbulent 

regime, mixing is enhanced, and boundary layer growth occurs more quickly than it does in the 

laminar regime.  

 

As was previously mentioned, the situation where there is homogenous suction at the fluid-plate 

interface was studied analytically by Kutscher et al. (1993). When homogenous suction occurs, 

the thermal boundary layer is also ‘sucked’ through the plate. As a result, the thermal boundary 

layer thickness is decreased depending on the ratio of stream velocity to suction velocity. As was 

also mentioned, since the flow is less likely to change to turbulence, boundary growth is 

significantly retarded. Kutscher assumed that if asymptotic behavior existed with the flow, then 

it also existed with the thermal boundary layer. 
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Kutscher et al. (1993) developed an equation for the thermal profile. By assuming a relatively 

small suction velocity and relatively large distance downstream of the plate leading edge, the 

energy equation becomes:  

��
�;
�! = < ��;

�!�            (2.7) 

where T = T(y) is the temperature profile at some distance x from the plate leading edge, and < is 

the thermal diffusivity of the fluid. This equation can be integrated after the application of 

constant heat flux boundary condition (dT/dy = q”/k) on the wall (y = 0), and free stream 

boundary condition, 7 = 7∞ at y = ∞. Here =" is the radiant heat flux to the plate, and ? is the 

thermal conductivity of air. The integration yields the temperature profile: 

7�$� = 7∞ + AB"
C.'

��&/
D !

            (2.8) 

 

Kutcsher et al. (1993) followed an equivalent procedure to that used by Arpci and Larson (1984) 

to determine a thermal starting length for asymptotic behavior in the thermal boundary layer. By 

assuming the thermal boundary layer thickness to be equivalent to velocity boundary layer, the 

thermal boundary layer thickness Δ+ will be: 

Δ+ = 2 A
./

= 
�
FG           (2.09) 

where HI is the Prandtl number and is given by:  

HI = J
A            (2.10) 

The equivalent heat loss starting length 1K is approximated by: 

1K = LM
FGNFG�            (2.11) 
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2.3 Previous Studies on Perforated Plates  

Literature related to the characterization of heat loss from a perforated plate is limited, and only 

considered heat loss from perforated flat plates.  

 

Iglish (1944) gives an explanation of the flow behavior of a flat plate with homogenous suction 

in the developing region, and determined the point at which the flow could be assumed to be 

asymptotic. His model was improved by Maddaeus (1983), who developed a 3-D solution for the 

boundary layer, and a series solution for the boundary layer in the asymptotic region.  

 

One of the earliest experimental studies of heat loss from a perforated plate was performed by 

Sparrow and Ortiz (1982). They tested a number of perforated plates consisting of a hexagonal 

area containing 19 holes in a staggered pattern. They then filled this area with naphthalene, and 

used a sleeve to protect the naphthalene edges. The plate was weighed at this stage, and then 

exposed the plate to air flow for a period of time. During this time, the weight of naphthalene 

decreased due to sublimation. Finally, the plate was weighed again to find the amount of 

naphthalene lost. By knowing the amount of naphthalene loss, the relationship between the 

Nusselt, Nu, number and Prandtl number could be determined.  

 

Sparrow and Ortiz (1982) produced an expression of Nusselt number for two hole pitch to hole 

diameter ratios. The best fit of Nusselt number from their experiments was: 

O# = 0.881���.�QRHIS TU          (2.12) 
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where: 

O# =  VF
C              (2.13) 

Here, h is the heat transfer coefficient, and P is the hole pitch. Sparrow and Ortiz’s experiment 

was performed on Reynolds numbers (based on the hole diameter) ranging from between 2000 

and 20000, and porosity ratios between 14% and 22%. It is noted that these porosity ratios are 

much higher than the ones considered in the present study, which are in the range of 0.5 and 2%. 

 

2.4 Previous Studies on Corrugated Plates  

The main purpose of using corrugations in plates is to enhance the structural stiffness of the 

plate. These corrugations, however, also serve to enhance the convective heat transfer between 

the plate and the fluid in that they result in interruptions in the viscous sub-layer. The flow over a 

plate with corrugations is characterized by the extent of the recirculation zone upstream and 

downstream of the obstacle (Abdalla et al. 2009). Separation and reattachment enhances heat 

transfer between the plate and the fluid flow and increases mixing of the fluid particles.  

 

Corrugated plates have been extensively reported on in the literature. Previous studies cover the 

effect of corrugation shape and their arrangement on the plate, Reynolds number, and channel 

height. Since this area is very broad, only studies related to solar air heaters and early numerical 

simulations will be discussed in this chapter.  
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Prasad (1983) experimentally studied solar air heaters used for drying purposes. He used wires 

on the underside of the absorber plate to trip the turbulent boundary layer and significantly 

enhance the convective heat transfer coefficients. Following his earliest experiment, he studied 

the effect of roughness and pitch (Prasad and Saini 1988). He found that increased roughness 

resulted in an increase in convective heat transfer and friction factor. Increasing the pitch 

resulted in a decrease in the heat transfer rate and friction factor. 

 

Sunden and Trollheden (1989) performed a numerical investigation of laminar flow in two 

dimensional channels. He developed a 2D model for a channel with stream-wise periodic 

variation at different cross sectional areas. The channel wall was exposed to a uniform heat flux 

and the simulation was performed at Reynolds numbers (based on the maximum distance 

between the upper and lower walls) between 50 and 1250, and Prandtl numbers between 0.7 and 

5. The simulation resulted in lower heat transfer rates for low Prandtl numbers, and higher heat 

transfer for higher Prandtl numbers, when compared to smooth channels. He theorized that these 

phenomena likely occurred due to the low intensity of the recirculation zone between 

corrugations. 

 

Karwa et al. (1999) performed comprehensive experimental studies on the effects of rib 

roughness on surfaces. He used a rectangular duct with repeated chamfered ribs on the horizontal 

surfaces of the duct. The ranges of parameters for his experiment were: Reynolds numbers 

(based on the duct hydraulic diameter) between 3000 and 20,000, relative roughness heights 

from 0.041 to 0.0328, relative roughness pitch to the duct hydraulic diameter ratios of 4.5, 5.8. 7 

and 8.5, and rib chamfer angles of -15, 0, 5, 10, 15 and 18 deg. Figure 2.2 shows the arrangement 

of these ribs on the plate.  
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Figure 2.2: Rib Shape on the Test Plate used in the Experimental Study by Karwa et al. 

(1999). 
 

The goal of the experiment of Karwa et al. (1999) was to find the effect of these ribs on the 

friction factor and heat transfer. He found that at low Reynolds numbers, the friction factors and 

Stanton number (the ratio between the heat transfer to the fluid to the heat capacity of the fluid) 

for a roughened surface were close to those found for smooth surfaces. It was surmised that this 

occurred because the roughed elements lay within the laminar sub-layer. When Reynolds 

numbers increased, however, these roughed elements interrupt this layer, which in turn enhanced 

the convective heat transfer rate. However, this increase in friction factor and heat transfer 

reached a maximum value in spite of increasing Reynolds numbers. This happens because the 

thickness of laminar boundary sub layer becomes quite small, and the energy loss due to vortices 

became constant. He also found that increasing the chamfers angle and rib height enhanced the 

heat transfer and friction factor while increasing the pitch decreased them (confirming the 

conclusions of Prasad (1983)). Based on this result, Karwa et al. (2001) performed further 

studies. Of the chamfer angles tested, 15
o
 had the best performance. He developed a 

mathematical model and performed experimental studies on a wider range of parameters using 
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this chamfer angle. The thermal efficiency of solar collectors was enhanced by up to 40% with 

this roughness in comparison to smooth plates, while friction increased by as much as 29%. 

 

Lee and Abdelmoneim (2001) developed a 2D CFD model for predicting the turbulent heat 

transfer coefficient over a surface which has ribs with different pitch to height ratios. This 

simulation was performed for wind velocities of 27 m/s and 30 m/s with pitch to height ratios of 

21.33 and 53.33. Figure 2.3 shows a schematic of the ribbed plate used in Lee’s model. The goal 

of the study was to estimate the extent of the recirculation zone behind the rib, and to estimate 

the heat transfer coefficient over the plate.  

 

 
Figure 2.3: Schematic of the Test Plate used in the Numerical Study by Lee and 

Abdelmoneim (2001).  

 

Chaube et al. (2006) developed a 2D CFD model of a surface mounted with artificial roughness 

to find the best turbulent model for numerical simulation. The numerical results were compared 

with the experimental results of Karwa et al. (2003). Reasonable agreement was found by using 

the standard ? − W model.  
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2.5 Previous Studies on Backward Facing Steps  

Since the corrugations of the absorber plate considered in the present work has a shape (Figure 

2.4), literature related to flow over backward facing step is considered. Literature related to this 

problem is extensive. As such, only a brief overview will be considered here.  

 

 
Figure 2.4: Corrugation Shape of the Plate Examined in the Current Study.  

 

One of the earliest studies on this topic was performed by Armaly et al. (1983) who used a laser 

doppler anemometry to measure the velocity distribution over accounted with vertical step. His 

experimental setup ran at Reynolds numbers (based on the height of the step) between 100 and 

10000. It showed the three kinds of flow behavior and the Reynolds numbers at which they 

occurred: laminar (Re < 1200), transition (1200 < Re < 6600), and turbulent (Re > 6600). 

Several numerical and experimental studies followed this work. Of note, Chiang and Sheu 

(1999) studied the geometry examined by performing a 2D numerical simulation. They worked 

with the assumption of laminar flow, and only considered Reynolds numbers ranging from 100 

to 1000. They found a good agreement with the experimental results.  

 

The only study that was found on inclined backward steps was by Chen et al. (2006). They 

performed 3D numerical simulation to test the effect of the inclination of the step on the flow 

behavior. Figure 2.5 shows the domain of the numerical model. Four inclination angles were 

tested: 15
o
, 30

o
, 45

o
 and 90

o
. The Reynolds number used in this study was 343 for all the tested 
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angles. Separation and recirculation zones were observed in all angles testes except 15
o
 (Figure 

2.6). It is noted that in difference to the current work, surface z/L = 0 is a wall. Still, surface z/L 

= 0.5 might offer insight into flow behavior at low suction velocities.  

 
Figure 2.5: Domain of the Numerical Model Studied by Chen et al. (2006). 

 

 

 

Figure 2.6: Results for Flow over a Backward Facing Sloped Surface (Chen et al. 2006). 
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2.6 Previous Studies on UTSCs 

As was previously noted, studies that specifically examined UTSC performance have been 

reviewed separately due to their obvious relevance to the current work. The first work that 

focused specifically on UTSCs was performed by Kutscher et al. (1991, 1993), Kutscher (1992, 

1994), Dymond and Kuscher (1997), Gawlik and Kuscher (2002), and Gawlik et al. (2005). This 

work was both experimental and numerical in nature, and considered system aspects such as 

geometry, absorber porosity, and wind and suction velocity. Subsequently, studies were 

conducted at the University of Waterloo by Cao et al. (1993), Golneshan (1994), Gunnewiek et 

al. (1996), Arulanandam et al. (1999), and Van Decker et al. (2001). Again, these studies were 

both experimental and numerical in nature, and focused on the design and development of the 

SolarWall transpired air collector (Conserval 2010). The only other study found was an 

analytical model developed by Summers (1995). 

 

The aforementioned research will be divided into two sections. First, studies which considered 

radiative and convective heat loss from UTSC’s will be reviewed. Then, those studies that 

examine plate effectiveness will be considered. 

 

2.6.1 UTSC Heat Loss  

Kutscher (1992), Kutscher, Christensen, and Barker (1993) 

Kutscher was the first to develop heat loss theory for UTSC’s (Kutscher 1992, Kutscher et al. 

1993). By considering a flat plate absorber with homogenous suction, the basic heat transfer 

equation of the unglazed transpired solar collector was given by: 

Z[8�\]^_2�7\ ` − 7+� = ="]^_2<^_2 − =	\a- − =G^�     (2.14) 



27 

 

where [8 is the specific heat of air, ]^_2 is the absorber surface area, 7\ ` is the outlet 

temperature from the absorber (temperature entered to the space), 7+ is the ambient temperature, 

and <^_2  is the absorber absorptance.  

 

Radiation heat loss from the absorber plate, =G^�, can occur from both sky and ground, 

depending on the tilt of the absorber plate. By assuming an adiabatic wall behind the absorber 

plate (the other side of the Plenum), and that the absorber is grey and diffuse, radiation heat 

losses become: 

=G^� = b^_2cde]^_267̂ _2� − f2C!72C!� − fgG�7gG�� 9     (2.15) 

where b^_2 is the emissivity of the absorber, cde is the Stefan Boltzmann constant, 7̂ _2,
72C! and  7gG� are the collector, sky and ground temperatures respectively, f2C! and fgG� are 

viewfactors expressed as a function of collector slope and given as: 

f2C! = SN	\2hijM
,           (2.16) 

fgG� = S�	\2hijM
,           (2.17) 

where k^_2 is the inclination angle of the absorber . 

 

Kutscher initially considered convective heat loss, =	\a-, from the UTSC under no wind (natural 

convection) conditions (Kutscher et al. 1993). To do so, he applied the same procedure used by 

Arpaci (1984) for determining the velocity and thermal boundary layers, as outlined in Section 

2.2.1. The momentum equation for the natural convection is: 

−�\
� 
�! = kl�7 − 7+� + " �� 

�!�         (2.18) 
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where k is the thermal expansion coefficient, and l is the acceleration due to gravity. The 

boundary conditions for this equation are: at $ = 0, u = 0 and m7 m$ = ="/?⁄ . At $ = ∞, u 

= �+ , 7 = 7+. The temperature profile is the same for the forced convection Figure 2.7. Thus, 

the velocity profile for the free convection will be: 

# = hgA�B"
.'pC�FG�S� q� %

rs
&/(

D − �&/(
D t         (2.19)  

Using the known profiles for the velocity and boundary layers, the equation for the heat loss for 

the natural convection will be Kutscher et al. (1993) found:  

=a^` = hgApB"�u
.'�C�FG�S� q FG

FGNS − S
,t        (2.20) 

where =a^` is the that loss due to natural convection, and W is the width of the plate. For the 

suction velocity of 0.01 m/s, a radiant heat flux of 1000 v w,⁄ , and air properties at 27 C
o
, heat 

loss due to natural convection will be less that 1 W/m. Therefore, the heat loss due to natural 

convection will be negligible.  

 

Kutscher also considered heat losses as a result of wind (Kutscher et al. 1993). Based on an 

assumption of homogenous suction and laminar flow over the absorber, they showed analytically 

that the flow over the absorber plate should become asymptotic after a certain starting length. In 

the asymptotic region, there is no net convective heat flux because the boundary layer is sucked 

through the perforations, stopping the growth of the boundary layer, and so convective heat 

losses occur in the starting length only. Kutscher et al. (1991) derived an expression for the 

convective heat loss to the ambient to be:  

ℎ	\a- = �∞J yz{
LijM./

          (2.21) 

where 1^_2 is the length of the absorber plate. 
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Figure 2.7: Velocity and Thermal Boundary Layer Profiles for Natural Convection 

(Kutscher et al. 1993). 
 

Gawlik and Kutscher (2002) 

The previous analysis was performed on a flat plate absorber. Commercially available products, 

however, are not flat. They contain some corrugations to provide structural stiffness. The 

presence of this corrugation changes the flow behavior over the plate, and typically creates a 

turbulent recirculation region.  
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Gawlik and Kutscher (2002) performed both experimental and numerical investigations of 

UTSCs with sinusoidal corrugations. Experimentally, they used hot wire anemometry to 

calculate the heat transfer from four sinusoidal shaped plates with a variety of aspect ratios (i.e. 

the ratio of pitch to amplitude). They used out numerical investigations to cover wider aspect 

ratios. Figure 2.8 shows a diagram of their test plate with amplitude and pitches of the 

corrugations. 

 
Figure 2.8: Diagram of the Sinusoidal Plate used by Gawlik and Kutscher (2002). 

 

By assuming a uniform suction and wind velocity over the plate, Gawlik and Kutscher (2002) 

found that an asymptotic boundary layer still developed after a certain distance, depending on the 

ratio between the wind and suction velocity, and that this starting length was greater than those 

found for a flat plate absorber exposed to the same flow and suction conditions. They assumed 

that the flow could be attached or separated, and that the expression for heat loss could be built 

on the aspect ratio. For the attached flow they used:  

O#^`` = O#|}^` ~1 + 0.81 q�
Ft�.��        (2.22) 
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where A is the amplitude of corrugation, and H is the pitch. O#^`` is the Nusselt number for the 

attached flow, and O#|}^`  is the Nusselt Number for the flat plate. For separated flow: 

O#2K8 = 2.05 q�
FtS.� ��2S.RT         (2.23) 

Here, ��2 is the suction parameter which is given by 

��2 = �∞
./

           (2.24) 

 

2.6.2 UTSC Effectiveness  

Kutscher (1994) 

The first experimental works on UTSCs were performed by Kutscher (1994) in an effort to 

determine the heat exchanger effectiveness. He designed a number of plates with circular 

perforations arranged in a triangular pattern (Figure 2.9). The plates were placed in a wind tunnel 

and exposed to arrays of heat lamps. The asymptotic region was examined at air speeds of 1, 2 

and 4 m/s, and suction velocities between 0.02 and 0.08 m/s. A correlation for Nusselt number 

was found to be:  

O# = 2.75 ~qF
�t�S., ����.�T + 0.011c��� q�∞

.'
t�.���     (2.25) 

where ��� is the Reynolds number based on the suction velocity and perforation diameter, � is 

the hole (hydraulic) diameter, c is the porosity of the plate (the ratio between the area of the 

holes and the total area of the plate). This Nusselt number takes into account heat transfer from 

all three regions of the hole: the front, sides, and back. The correlation is valid for ��� from100 

to 2000 and c from 0.1% to 5%. 
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Figure 2.9: a) Square Pattern Studied by Arulanandam et al. (1999) b) Triangular Pattern 

Studied by Kutscher (1992). 
 

In that same work, Kutscher also numerically modeled the flow through a single perforation of a 

UTSC (Kutscher 1994). He assumed the perforation could be treated as an orifice if the air flow 

was perpendicular to the plate. This assumption was limited to zero wind conditions. He modeled 

5 plates; different in their pitch to diameter ratio. He chose the laminar model since it better 

handled the boundary layer near to the perforation. A schematic of the stream lines from his 

model is shown in Figure 2.10. 

 
Figure 2.10: Streamlines of Flow Through a Perforation (Kutscher 1992). 

 

To model the heat transfer, the perforation was assumed to have a uniform temperature, and the 

regions of heat transfer were divided into front, back and perforation. The effect of each region 

was simulated separately, and then combined into one relation to be: 

O# = 9.075 qF
�t�S.T�� ����.,�,T        (2.26) 
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Kutscher combined his numerical results with experiential data from his previous research 

(Kutscher 1992). He found that the numerical results under predicted the effectiveness for high 

suction flow rates, and that he had better agreement for high porosity plates.  

 

Cao, Hollands, and Brundrett (1993), Golneshan (1994) 

Several studies conducted in the Solar Thermal Research Lab at the University of Waterloo followed the 

work done by Kutscher and investigated effectiveness for different plate designs. Cao et al. (1993) and 

Golneshan (1994) studied plates perforated with long narrow rectangular perforations. 

 

Cao et al. (1993) conducted a two-dimensional numerical analysis. They assumed the flow to be 

transverse to the perforations but parallel to the absorber. They found the velocity and temperature at the 

entrance of a perforation and expressed the plate effectiveness as a combination of the heat transfer 

occurring at the front and in the holes (they neglected heat transfer from the back). Their results showed 

that 20% of the total heat transfer occurred in the perforation. 

 

Golneshan (1994) studied the same geometry both analytically and experimentally. The 

analytical work was performing using a two dimensional momentum integral analysis. 

Experimentally, he tested four different absorber plates in the asymptotic region. He found a 

relation between the absorber effectiveness and six dimensionless parameters.  

 

Arulanandam, Hollands and Brundrett (1999), Van Decker, Hollands and Brunger (2001) 

Arulanandam et al. (1999) and Van Decker et al. (2001) used CFD and experiments, 

respectively, to extend the work of Kutscher (1994). 
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Arulanandam et al. (1999) developed a 3D model to examine the effectiveness on a plate with 

circular holes in a square array (Figure 2.9). The work covered a wider range of parameters than 

those previously investigated such as plate thickness and thermal conductivity. They considered 

only the heat transfer occurring at the front of the plate and in the hole, modeling the back of the 

plate as adiabatic, and did not take the wind into account. The relation obtained was in agreement 

with Kutscher’s work for the same conditions. 

 

Van Decker et al. (2001) used experiments to cover a wider range of parameters. They tested 

nine different plates of varied porosity, thickness and materials, using the same experimental 

setup used by Golneshan (1994). Using their experimental data and the previous work of 

Arulanandam et al. (1999) and Golneshan (1994), a correlation for the effectiveness of UTSCs 

with holes laid out on a square pitch was developed by splitting the total effectiveness into three 

parts: the effectiveness at the front face, εf , at the sides of the holes, εh, and at the back face, εb. 

b�� = 1 − 61 − b|9�1 − bV��1 − b_�       (2.27) 

where 

b| = q S
SN�KM��� �S.Q,�K�%/.�,�.�R���t        (2.28) 

b_ = 1 − S
SNT.��Kj

%�/p          (2.29) 

bV = 1 − ��� q−0.0204 F
� − ,�.R,`

�K�� t        (2.30) 

and 

��+ = ��F
-   ��2 = .'F

-   ��_ = .'F
-�   ��V = .'�

-�  

where tabs and kabs are the absorber thickness and thermal conductivity. They found that their 

model could also be applied to plates with a triangular pitch by multiplying P by a scaling factor 
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corresponding to 1/1.6. Using this factor, they were able to compare their model to the one of 

Kutscher (1994) and found that both models were giving similar results for the same conditions 

and plate geometry. Van Decker’s model was, however, applicable for a wider number of plates, 

being valid for the following ranges of variables: 0.028 ≤ Vo ≤ 0.083 m/s, 0 ≤ U∞ ≤ 5 m/s, 7 ≤ P 

≤ 24 mm, 0.8 ≤ D ≤ 3.6 mm, 0.6 ≤ tabs ≤ 6.5 mm, 0.15 ≤ kabs ≤ 200 W/mK. 

 

2.6.3 Other UTSC Studies 

Gawlik, Christensen and Kutscher (2005) 

The research conducted on UTSCs heat exchange effectiveness by Golneshan and Hollands 

(1998), Arulanandam et al. (1999) and Van Decker et al. (2001) demonstrated that plate 

conductivity had an important effect on the effectiveness, but only slightly influenced the 

collector efficiency. The effect of the plate conductivity was studied in depth by Gawlik et al. 

(2005) who compared numerically and experimentally the performance of a plate of high-

conductivity (aluminum) and a plate of low-conductivity (styrene). Both panels were flat and 

perforated with holes on a triangular layout. The two plates showed comparable efficiencies 

under similar conditions. This result was explained by the fact that the holes on the plate are so 

close to each other that a large temperature gradient between the perforations cannot be 

supported. They extended their result to corrugated plates, by suggesting that the plate 

conductivity would not affect the performance of these kinds of panels since the height of a 

corrugation and the distance between two corrugations were much larger than the hole pitch. 

This was of great interest, because using materials of low conductivity could significantly 

decrease the cost of UTCs.  
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Gunnewiek, Brundrett and Hollands (1996) 

Gunnewiek et al. (1996) numerically modeled flow in the plenum behind the UTSC, and 

considered the effect of six dynamic and geometrical parameters. The wall of the absorber plate 

was modeled as having homogenous suction. He found that a significant amount of heat transfer 

occurred in the plenum, and at low suction flow velocities, reverse flow could occur. The 

minimum suction velocity needed for preventing the reverse flow was studied by Gunnwiek 

(2002). He found that the suction velocity should increase in the presence of wind from 0.0125 

m/s to 0.02 m/s. 

 

Dymond and Kutscher (1997) 

Dymond and Kutscher (1997) designed a computer model to find the effectiveness and the flow 

distribution for UTSCs using the pipe network analogy. The computer model they made allowed 

the designer to change the geometric parameters for the required design. The model included the 

friction pressure drop through the system, friction across the collector, friction in the plenum, 

and the acceleration of the fluid in the plenum. For the energy balance, they included solar 

radiation, convection heat loss, radiation heat loss to the sky and ground and the energy delivered 

to the air. They called their computer model TCflow and it was used by Conserval Engineering 

for their design of the solar wall. 
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Summers (1995) 

Other studies were performed using other commercial software like TRNSYS (SEL 2005), such 

as the model developed by Summers (1995). His model solves a set of energy balance equations 

to predict the collector performance and to find the optimal amount of auxiliary energy needed 

for air going into the collector. 
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Chapter 3  

 

Computational Domain Description 

 

3.1 Introduction 

In this chapter, the development of a numerical model of an actual Unglazed Transpired Solar 

Collector (UTSC) is described and validated. Initially, a general description of the problem to be 

studied is explained, followed by a description of the componential domain and boundary 

conditions. Then, a description of the meshing procedure is presented. The chapter also contains 

a study of mesh independence and initial comparisons to related studies.  

 

3.2 Problem Description  

The system which will be discussed here is a representation of the UTSC system Solarwall
TM

; 

produced by Conserval Engineering Inc (2010). Figure 3.1 shows the whole UTSC system, 

which consists of a perforated and blackened absorber plate and a plenum (the area between the 

back wall and the plate).  
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The system operation of the UTSC is relatively simple. The absorber plate is installed in a 

location where it is exposed to solar radiation; heating the plate and surrounding air. This air is 

sucked through the perforations, through the plenum, and into the HVAC system where it is 

delivered to a traditional HVAC system before being supplied to the internal space. The flow is 

usually driven by a fan that is already a part of the existing HVAC system. 

 

The present research is focused on examination of the flow and heat transfer around the front and 

the back sides of the absorber plate, with the intention of developing better models to be used for 

system design. The absorber is to be examined at different wind speeds and suction flow 

velocities to evaluate absorber plate heat losses in the entry region, and effectiveness in the 

asymptotic region. The wind is assumed to flow horizontally and parallel to the plate. Analysis 

of flow in the plenum is outside of the scope of this work. 

 
Figure 3.1: An Unglazed Transpired Solar Collector System in Operation. 
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3.3 Absorber Plate Geometry 

As was previously mentioned, the geometry to be studied here reflects the Solarwall
TM

 product 

produced by Conserval Engineering Inc (2010). Figure 3.2 shows a photo drawing of the 

geometry to be studied. To analyze this system, a CFD model was developed. Figure 3.3 is a 

rendering of the computation domain to be studied. Perforations were placed in an aligned 

position; three on the bottom plate and one on each side of the corrugation. As can be seen, the 

perforations consist of a semi-circular piece that is open on both ends. The arrangement of the 

perforations and their dimensions are presented in Figure 3.4.  

 

Figure 3.2: Photo and Rendering of Current Solarwall
TM

 System. 
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Figure 3.3: Rendering of Solarwall
TM

 System. 

 

 

 

Figure 3.4: Horizontal (top) and Vertical (bottom) Cross Sections of Solarwall
TM

 System. 
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3.4 Numerical Model 

3.4.1 Governing Equations  

The governing equations used in the numerical simulation are the steady-state conservation of 

mass equation (Eqn. 3.1), momentum equations (Eqns. 3.2 to 3.4), and energy equation (Eqn. 

3.5).  
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Through the absorber plate itself, heat transfer is via conduction, so the governing equation is: 

�����
��� + �����

��� + �����
�
� = 0         (3.6) 

Here, u, v, and w represent the fluid velocities in the x, y, and z directions respectively. P is the 

pressure.  

 

A number of assumptions were made in formulating this model. It was assumed that the flow 

was laminar, air properties were constant, the viscous dissipation terms could be neglected, and 

that gravity could be neglected since the heat loss due to natural convention is very small as 

stated in Section 2.6.1.  
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Laminar Flow: The assumption of laminar flow was justified in two ways. First, as was 

discussed in Section 2.2.1, the work of Schlichting (1979) suggested that given sufficient 

suction, turbulent transition would not occur, and the flow would achieve asymptotic behavior. 

He derived Eqn. 2.2 to find the minimum suction velocity required to achieve these conditions. 

Considering the maximum wind velocity considered in this study (2.0 m/s), the minimum suction 

velocity needed to stabilize the flow would be 2.48 × 10&' )/+. This is well below the 

minimum suction velocity considered of 0.01 )/+. It is noted that Schlichting’s analysis was for 

homogenous suction through a flat plate; neither of which exists for the system being considered. 

More important are the previous experimental studies which showed that laminar and asymptotic 

behavior occurs (discussed in Section 2.6). In particular, the study conducted on sinusoidal plates 

by Gawlik and Kutscher (2002), observed that the flow followed a linear pattern of separation 

and reattachment (asymptotic flow). When they compared their results with numerical 

simulation, turbulent assumptions did not replicate flow behavior, while laminar assumptions 

did. It is noted that the models from the present work were also run using k-ω and k-ε models. 

Those models did not replicate the expected flow behavior either. 

 

Constant Fluid Properties: The maximum temperature differences experienced in the system 

was on the order of 15-25
o
C. Differences in air properties within this range were considered to 

be negligible. 

 

Viscous Dissipation: The flow velocities considered in this work were small, and viscous 

dissipation terms were 2
nd

 order. These terms were therefore deemed to have negligible impact 

on the model results. 
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3.4.2 Solution Domain and Boundary Conditions  

The domain of the numerical simulation had two regions (Figure 3.5). Region (1) is the upper 

region where the plate was exposed to the environment, while Region (2) (Plenum) is located 

under the plate. Both regions were divided into a set of virtual volumes to facilitate the use of a 

structured mesh. Separating these two regions was the absorber plate. The absorber is a solid 

region of 1 mm thickness with a thermal conductivity equivalent to aluminum 

�� = 202 , ). �⁄ �. Air is sucked through the perforations in the absorber plate from Region (1) 

to Region (2).  

 

Two versions of the numerical simulation were used in the present analysis. The first was used to 

consider heat loss and effectiveness when wind was present (Figure 3.5). To get an accurate 

indication of the flow behavior before and after the corrugations, one of the perforations was 

placed before the corrugation, and the other two were placed after. The second was used to 

evaluate effectiveness under no-wind conditions (Figure 3.6). In this situation, the corrugation 

would have a negligible effect, and the solution domain could be simplified.  
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Figure 3.5: Solution Domain of the Numerical Model for Cases where Wind was Present. 
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Figure 3.6: Solution Domain of the Numerical Simulation for Cases where No Wind was 

Present. 
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3.4.2.1 Boundary Conditions: Wind 

Referring to Figure 3.5, the boundary conditions for analyzing heat loss and effectiveness when 

wind was present are as follows: 

• Planes x=0 and x=0.2 in Region 1 are assigned periodic boundaries. This means that the 

inlet and outlet temperature and velocity profiles must be the same. This allows for 

simulation of the asymptotic region. This option requires that the user set the mass flow 

rate between the periodic boundaries. This was done and adjusted to achieve the desired 

ambient flow velocity. In Region 2, these planes are specified as symmetry. This means 

that there is no heat transfer or fluid flow across these boundaries. 

• At plane y=0.1, an ambient pressure inlet boundary is used to allow for the entrainment 

of ambient air at a specified temperature of 300K. It is noted, as discussed in Section 

2.2.1, that the work of Arpaci and Larson (1984) can be used to estimate the velocity 

boundary layer thickness in the asymptotic region (i.e. its maximum thickness). Using 

Eqn. 2.5 with the minimum suction velocity considered of 0.01 m/s shows that the 

boundary layer thickness would be less than 1 mm. This was, however, for a flat plate. If 

the ‘hump’ in the absorber is considered, the boundary layer would protrude as much as 7 

cm above y = 0. The outer domain of 10 cm was set ensure that the upper boundary did 

not interfere with the numerical solution.  

• Plane y=-0.1 is modeled as a velocity outlet with the velocity set to match the desired 

suction velocity.  

• Planes z=0 and z=0.024 are specified as symmetry.  

• The absorber plate is modeled as a solid with a heat generation rate of 500 ,/).. 

• The surfaces of the absorber plate are modeled as no slip walls. 
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3.4.2.2 Boundary Conditions: No-Wind 

Referring to Figure 3.6, the boundary conditions for analyzing effectiveness from the absorber 

when no wind is present are as follows: 

• Planes x=0 and x=0.062 in Regions 1 and 2 are specified as symmetry.  

• At plane y=0.1, an ambient pressure inlet boundary is used to allow for the entrainment 

of ambient air at a specified temperature of 300K.  

• Plane y=-0.1 is modeled as a velocity outlet with the velocity set to match the desired 

suction velocity.  

• Planes z=0 and z=0.024 are specified as symmetry.  

• The absorber plate is modeled as a solid with a heat generation rate of 500 ,/).. 

• The surfaces of the absorber plate are modeled as no slip walls. 

 

3.4.3 Meshing Procedure  

The grid generation software (Gambit 2005) was used to mesh the solution domain.  

 

Originally, an unstructured mesh was used with the application of a size function. This approach, 

however, was problematic. If the mesh was refined to provide adequate detail inside and around 

the perforations, the resulting mesh density elsewhere would result in too many mesh elements to 

allow reasonable run times.  
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Body Fitted Co-ordinates (BFC) was used to produce the mesh. The method of using BFC 

depends on splitting the domain into hexagonal volumes, and then mapping the surfaces of these 

volumes. This approach allows for good geometric representation, the possibility of refinement 

study near surfaces and high gradient places (like perforations), and appropriate meshing of 

curved surfaces and boundary layers with wall functions.  

 

Discretization of the numerical simulation can result in errors in the model results. Too course a 

mesh, can result in lack of convergence or inaccurate solutions, while too fine a mesh results in 

excessive solution times. To determine an adequate mesh density, therefore, a mesh refinement 

study is required. Often, this study is performed by doubling number of grids repeatedly until 

such time that further grid refinements produce no appreciable change in simulation results. For 

the current work, however, this procedure was found to be prohibitive. For the three dimension 

domain, the number of grids will be doubled in three directions. In this case, however, the 

refinement was performed in high gradient flow regions such as perforations and at fluid-solid 

interfaces.  

 

To evaluate the required mesh density for heat loss analysis, a high wind velocity (2 m/s) and 

low suction velocity (0.01 m/s) was chosen. This case should result in separated flow, and a 

fairly complex flow structure. The average temperature and heat losses across the periodic 

boundaries were compared. Table 3.1 shows these parameters as a function of the mesh density. 
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Table 3.1: Heat Loss and Wind Outlet Temperature versus Mesh Density. 

Number of grid elements Wind temperature (K) Heat loss (W/m) 

1041379 300.73 349 

1972139 300.92 463 

2489851 300.96 490 

 

As can be seen, the calculated heat loss is very sensitive to minute changes in outlet temperature. 

As such 1972139 elements were chosen. This mesh was also applied to the effectiveness models. 

 

The same mesh densities were used to compare the calculated effectiveness in the no-wind 

model. In case, a suction velocity of 0.01 m/s was used. Table 3.2 shows the results of this 

analysis.  

Table 3.2: Calculated Effectiveness versus Mesh Density. 

Number of grid elements Effectiveness 

181440 84.2 

316480 85.1 

488960 85.3 

 

Figures 3.7 and 3.8 show the final mesh at the absorber surface for the periodic boundaries and 

over the perforations. Black lines show the fluid regions (ambient flow and perforation), while. 

gray regions represent the absorber surface.  
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Figure 3.7: Meshing Scheme at the Absorber Surface for the Periodic Boundaries. 
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Figure 3.8: Meshing Scheme at the Absorber Surface over the Perforation. 
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3.4.4 Solution Methodology   

The governing equations were solved numerically with the specified boundary conditions using 

Fluent software (FLUENT 2005). The numerical model was executed using the following steps 

• Build the solution domain as per Section 3.4.2. 

• Generate the mesh as per Section 3.4.3.  

• Set the fluid and solid properties. All properties were taken at 300 K.  

• Selection of laminar flow behavior as justified in Section 3.4.1.  

• Selection of the method of accuracy for the discretization. For all of the simulations, a 

second order upwind scheme was chosen. 

• Selection of the solution tolerance. The convergence criteria was set to be 10
-3

 for the 

mass and momentum equations, and 10
-6

 for the energy equation. Fluent States these 

values are sufficient for most of the fluid problems (FLUENT 2005). 

Appendix A describes the procedure for solving the numerical domain used in FLUENT. 

 

Both heat loss in the entry region, and effectiveness in the asymptotic region, were determined 

from these results. Heat loss can be determined by considering the thermal energy contained in 

the boundary layer. Convective heat loss will contribute to thermal boundary layer growth. 

Therefore, with reference to Figure 3.9, the difference in the energy at the start of the asymptotic 

region, and at the leading edge of the absorber plate, will be the heat loss. These numbers can be 

obtained directly from the results using the FLUENT post processing software (FLUENT 2005). 

This heat loss was assumed to occur over the same starting length given by Kutscher (1992) in 

Eqn. 2.6. 
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Effectiveness was easily determined from the numerical simulation. It was calculated using: 

/ = �012&�3
����&�3

            (3.7) 

where �4�5 is the air temperature leaving the plenum. 

 

 

 

 

Figure 3.9: Boundary Layer Developing over a Sinusoidal Absorber Plate (Gawlik and 

Kutscher 2002). 
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3.5 Model Validations 

To create confidence in the numerical simulation, numerical output was compared to similar 

studies found in the literature. A comparison with experimental studies of effectiveness 

(Kutscher 1992) and wind heat loss (Gawlik and Kutscher 2002) were selected. Further, flow 

structures produced could be compared to the work of Chen et al. (2006) for flow over a 

backward facing step. 

 

3.5.1 Comparisons to Kutscher (1992) 

Kutscher’s (1992) experimental study of USTC effectiveness was described in Section 2.6.1. In 

that work, he tested flat UTSCs with circular perforations with porosities from 0.5% to 2%. The 

absorber plate modeled in the present work has a porosity of 1%. Hence, a comparison at the 

same porosity could be made. The comparison was limited to the no wind condition because the 

modeled absorber was corrugated. In the absence of wind, the corrugation should not play any 

role. The only difference between the numerical and experimental results is in the shape of the 

perforations. 

 

The comparison of effectiveness is shown in Figure 3.10. The results from the current numerical 

simulation slightly underestimate the effectiveness of the absorber plate with around 3%. Given 

the difference in perforation shape, however, this was deemed acceptable. 
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Figure 3.10: Effectiveness Comparison Between Present Numerical Analysis and the 

Experimental Results of Kutscher (1992). 

 

3.5.2 Comparisons to Gawlik and Kutscher (2002) 

Gawlik and Kutscher’s (2002) experimental study of UTSC heat loss was described in Section 

2.6.1. They evaluated heat loss from a sinusoidally corrugated absorber plate, and produced a 

correlation that included the pitch and amplitude of the corrugation. Their correlation was also a 

function of the heat loss from a flat and corrugated plate, which includes porosity, wind speed, 

and suction velocity.  
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Numerical results were obtained for the following conditions:  

• porosity of 1% 

• pitch of 200 mm 

• amplitude of 28.3 mm 

• a wind speed of 2 m/s 

• suction velocity of 0.01 m/s 

The only difference in the comparison, therefore, is the shape of the corrugation (Figure 3.11). 

 

 

Figure 3.11: Corrugation Shape (a) Gawlik and Kutscher (2002) (b) Present Study.  

 

Using the given conditions, wind heat loss from the numerical work is 488 W/m, compared to 

432 W/m from Gawlik and Kutscher’s (2002) model. Given the difference in geometry, 

however, this was deemed acceptable. 
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3.5.3 Comparisons to Chen et al. (2006) 

Chen et al. (2006) numerically simulated flow over backward facing steps; including one at a 45 

deg tilt (see Section 2.5). There are significant differences between the present work and the 

work of Chen et al. (2006). They did not examine a perforated surface with suction, and their 

flow was ducted. Further, in the current system, the will flow up a forward facing step, and 

therefore have some vertical momentum at the top of the step. Still, if the numerical model is run 

without suction, and with an imposed uniform velocity profile at the entrance, similar flow 

structures should result. 

 

Figure 3.12 shows the numerical results for a wind speed of 2 m/s and without suction. The 

results are qualitatively comparable. 

 

 

Figure 3.12: Velocity Vectors for 2 m/s Wind Velocity without Suction. Inset shows the 

results from Chen et al. (2006) 
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Chapter 4  

 

Results and Discussion 

 

4.1 Introduction 

In this chapter, the numerical model developed in Chapter 3 will be used to examine UTSC 

performance. Initially, a general analysis of the effects of the corrugation and suction velocity or 

flow characteristics will be considered. These comparisons mainly focus on the formation of 

separated or attached flows, and the conditions at which they occur. Next, heat loss in the entry 

region (when wind is present) will be examined. Finally, the effectiveness of the absorber for a 

number of flow and suction conditions will be considered. A correlation for heat exchanger 

effectiveness is developed and presented. The correlation is compared to the accepted correlation 

of Van Decker et al. (2001). 

 

UTSC performance is considered under realistic operating conditions. Wind velocities of 0, 0.5, 

1 and 2 m/s, and suction velocities of 0.01, 0.02, 0.03, and 0.04 m/s were chosen to represent the 

typical values found in a real installation.  
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4.2 Attached and Separated Flows 

One of the main issues observed in the flow behavior is the occurrence of separation and 

reattachment of the flow. The extent of the separation and reattachment, and its effect, depends 

on the wind and suction velocities, and the absorber plate geometry. 

 

To examine the extent at which separation might occur, a no-suction case was first examined. It 

is noted that this condition is purely for comparative purposes, and the situation where no suction 

is present in the plate is of no value to typical UTSC operation. Furthermore, under these 

circumstances the flow will constantly develop as it flows over the absorber, and it will 

eventually transition to turbulence. As such, uniform wind velocity profiles of 0.5, 1 and 2 m/s 

were considered at the absorbers leading edge (i.e. the periodic boundaries described in Section 

3.4.2.2 were not used), and laminar flow behavior was used. These velocities correspond to 

Reynold’s numbers (based on wind speed and corrugation height) of 878, 1756, and 3513. 

Figures 4.1 to 4.3 show the velocity vectors predicted by the numerical model. 

 

At all three of the tested wind speeds, separation of the flow occurred downstream of the 

corrugation. As would be expected, the recirculation zone varied in shape and size. At a wind 

speed of 0.5 m/s (Figure 4.1), a small recirculation zone occurs at the point where the flow leaves 

the peak of the corrugation (Zone 1). At a wind speed of 1 m/s (Figure 4.2), the same phenomena 

takes place, and a small recirculation zone occurs at the point where the flow leaves the peak of 

the corrugation (Zone 1). Moreover, a second recirculation zone is seen to occur just above the 

surface of the absorber plate (Zone 2). This recirculation zone occurs due to the velocity gradient 
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Figure 4.1: Flow Behavior at a Wind Speed of 0.5 m/s and with No Suction. 
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Figure 4.2: Flow Behavior at a Wind Speed of 1.0 m/s and with No Suction. 
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Figure 4.3: Flow Behavior at a Wind Speed of 2.0 m/s and with No Suction. 
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near to the surface of the absorber plate. At a wind speed of 2 m/s (Figure 4.3), three 

recirculation zones are seen to develop. The recirculation zones located behind the corrugation 

(Zones 1 and 2) were again seen to develop, where the recirculation at Zone 2 has increased in 

size due to the higher gradient of velocity that exists near to the absorber plate. In addition, a 

third separation occurs at the peak of the corrugation (Zone 3). 

 

The application of suction on corrugated surfaces should have a stabilizing effect on the flow. 

The work of Gawlik and Kutscher (2002), however, showed that while laminar behavior was 

present, flow separation could still occur. As such, wind velocities of 0.5, 1 and 2 m/s were 

considered in the asymptotic region at suction velocities of 0.01, 0.02, 0.03, ad 0.04 m/s.  

 

Figures 4.4 to 4.7 show examples of the difference in the recirculation zones at various suction 

velocities and wind speeds. A complete set of vector plots are given in Appendix B. Table 4.1 

summarizes separated versus attached behavior. 

 

Table 4.1: Observation of Attached and Separated Flow Regimes. 
 

Suction Velocity 

Wind Speed 0.01 m/s 0.02 m/s 0.03 m/s 0.04 m/s 

0.5 m/s Separated Separated Attached Attached 

1.0 m/s Separated Separated Separated Separated 

2.0 m/s Separated Separated Separated Separated 

 

In difference to the observations of Gawlik and Kutscher (2002), separated flow is the norm for 

the conditions studied. Only at the lowest wind speed, in combination with the two highest 

suction velocities, was attached flow seen to occur. When separation did occur, the size and 

position of the recirculation region was consistent between flow cases.  
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Figure 4.4: Flow Behavior at a Wind Speed of 0.5 m/s and Suction Velocity of 0.01 m/s. 

 

 

 

Figure 4.5: Flow Behavior at a Wind Speed of 0.5 m/s and Suction Velocity of 0.04 m/s. 
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Figure 4.6: Flow Behavior at a Wind Speed of 1.0 m/s and Suction Velocity of 0.04 m/s. 

 

 

 

Figure 4.7: Flow Behavior at a Wind Speed of 2.0 m/s and Suction Velocity of 0.04 m/s. 

  



67 
 

4.3 Wind Heat Loss 

As was discussed in Section 2.2, heat loss from the absorber plate occurs only in the entrance 

region where the velocity and thermal boundaries are developing. When the velocity boundary 

layer reaches the asymptotic region, there is no net convective heat loss from the absorber plate 

to the ambient, as indicated by the fact that the boundary layer is no longer increasing in size, 

and the free stream air temperatures entering and leaving the section have the same velocity and 

temperature profiles. Wind heat loss is a function of wind speed and suction velocity. 

 

It is this later fact that allows for the estimation of heat loss in the entry region. By comparing the 

energy, q, in the flow that crosses the boundaries in the asymptotic region (perpendicular to the 

absorber and wind), to the energy crossing the ambient boundary at the leading edge, the energy 

loss can be determined. In both cases, this calculation is performed automatically by the Fluent 

Software (Fluent 2005) using: 

� = ���� � �(
)�(
)

�.��
�         (4.1) 

Therefore, the energy loss in the developing region, ����, is given by: 

���� = ���� �� �(
)�(
)

����������
�.��

� − � �(
)�(
)

������  �� �
�.��

� "  (4.2) 

In terms of the unit absorber width, the wind induced heat loss is expressed as:  

�′��� = $%&'
(            (4.3) 

It is assumed that this heat loss occurs over the same distance predicted by the equation of 

Kutscher (1992): 

)� ≅ +∞�
,-.

           (2.6) 
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Figures 4.8 and 4.9 are contour plots of heat loss per unit width for a flat perforated plate, and for 

the corrugated perforated plate, respectively. Both have been presented as a function of wind 

speed and suction velocity. The plot for the flat plate has been produced using a correlation 

produced by Kutscher (1992). 

�′���,0��� = 12345+6
,-

7 8
9:;9:.<         (4.4) 

 

 

Figure 4.8: Contour Plot for Heat Loss from a Perforated Flat Plate in the Developing 

Region. (adapted from Kutscher 1992). 
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Figure 4.9: Contour Plot for Heat Loss from a Corrugated Perforated Plate in the 

Developing Region. The Approximate Location of the Attached Flow Region is 

Noted. 

 

The difference in heat transfer rates exhibited in these plots is best described in terms of 

separated and attached flow behavior. For the flat perforated plate, all of the flow is attached. For 

the corrugated perforated plate, however, only the top left hand corner exhibits attached 

behavior. The heat transfer rate in this region is comparable between the two situations. For the 

corrugated plate, however, significant heat transfer enhancement occurs in the separated region. 

Attached 

Flow 
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Following the methodology of Gawlik and Kutscher (2002), discussed in Section 2.6.1, it is 

possible to build correlations that predict developing region heat loss for the specific absorber 

plate being considered. 

 

Developing Region, Attached Flow: In terms of the Nusselt number, heat loss for flow over a 

flat plate is given by: 

=>0��� = $?%&',@ABC
D∆F = 12345+6

D∆5,-
7 8

9:;9:.<       (4.5) 

 

Gawlik and Kutscher (2002) developed their correlation after recognizing that, given attached 

flow behavior, surface geometry could be considered by simply scaling Eqn. 4.5 using least 

square linear regression. (see Eqn 2.22).  

=>��� = C=>0���          (4.6) 

 

In this situation, however, it is not productive to build a correlation for attached flow. Primarily, 

only 2 of the 12 cases examined exhibited attached flow behavior. Therefore, there are only two 

points on which to base a correlation. If developed, it would only be valid for suction velocities 

between 0.03 and 0.04 m/s, and for wind speeds of about 0.05 m/s. Furthermore, the attached 

flow region is approximate (see Table 4.1 and Figure 4.9), so it may be difficult to determine 

exactly when to apply any correlation that is developed. Instead, a single unified correlation will 

be based on the entire data set. 
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Developing Region, Separated Flow: Gawlik and Kutscher (2002) developed their correlation 

for heat loss in the developing region (see Eqn. 2.23) in terms of the suction parameter HI�: 

HI� = +∞
,-

           (2.24) 

 

In difference to their work, only a single geometry is being considered, and therefore a much 

simpler correlation can be produced. Using a least square power fit analysis to fit the numerical 

data, the Nusselt number correlation for separated flow becomes: 

=>��� = 0.0081HI�
N.�ONP         (4.7) 

This correlation is only valid for wind speeds ranging from 0.5 to 2 m/s, and suction velocities of 

0.01 to 0.04 m/s. 

 

Table 4.2 and Figure 4.10 compare the quality of the correlations to numerically predicted 

results. 

 

Figure 4.10: Comparison of Numerical Results with Correlation (Eqn. 4.7). 
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Table 4.2: Comparison between Numerical and Correlations Results for Nusselt Numbers 

in the Developing Region. 

 

Wind 

Speed 

(m/s) 

Suction 

Velocity 

(m/s) 

∆T 

(
o
C) 

Res 

Numerical Correlation 

q’dev 

(W/m) 
Nu Nusep %err 

0.5 

0.01 48.3 50 25.1 19.8 28.0 8.3 

0.02 30.2 25 3.5 4.4 6.6 2.2 

0.03 23.1 17 1.2 2.0 2.8 0.9 

0.04 19.6 13 1.0 1.9 1.6 0.4 

1.0 

0.01 54.9 100 105.0 72.7 118.7 45.9 

0.02 31.9 50 26.7 31.8 28.0 3.8 

0.03 23.8 33 7.2 11.5 12.0 0.5 

0.04 19.6 25 2.7 5.2 6.6 1.4 

2.0 

0.01 54.7 200 463.0 321.8 502.7 180.9 

0.02 32.5 100 136.0 159.1 118.7 40.5 

0.03 25.3 67 67.3 101.1 51.0 50.2 

0.04 19.6 50 39.0 75.7 28.0 47.7 

 

Fluid Properties at 300K: ρ = 1.16 kg/m3, ν = 0.0000159 m2/s, Pr = 0.7, k = 0.0263 W/mK, and Cp = 1007 J/kgK 

Grey represents attached flow. All others are separated. 

 

It can be seen that the resulting correlation is not of great quality. Particularly, the assumption 

that the fit can be based on the form used by Gawlik and Kutscher (2002) does not appear to be 

adequate in that a secondary function of wind speed is not being represented. However, given 

that there are only 12 points on which to base the correlation, it was not deemed useful to attempt 

to produce a more detailed form of the fit equation. Furthermore, the required accuracy of the 

correlation is not stringent. In practice, the manufacturer needs heat loss information only for 

interests’ sake, and it is understood that in reality, any correlation would only produce a 

‘ballpark’ estimate. As such, it was decided to keep the equation developed.  
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4.4 Heat Exchanger Effectiveness 

Before discussion can commence regarding absorber effectiveness, it is important to consider 

what we expect to see in the results (and why). The effectiveness is being determined in the 

asymptotic region, where it has been established that no convective losses are occurring. The 

model presented has been decoupled from radiative heat exchange, and therefore, solar input to 

the absorber must be captured entirely. In theory, wind speed should have no impact on the 

calculated heat exchanger effectiveness.  

 

4.4.1 Numerical Results 

4.4.1.1 No Wind Model 

Using the no-wind model, air flow and heat transfer was modeled at suction velocities of 0.01, 

0.02, 0.03, and 0.04 m/s. Figures 4.11 to 4.14 shows numerically obtained velocity vectors and 

temperature contours at these velocities. A Complete set of plots are contained in Appendix B. 

 

In the absence of wind, flow structures are not appreciably altered by changes in suction 

velocity. In fact, the only significant difference between the cases is the temperatures 

experienced behind the absorber plate. As would be expected, the temperature behind the 

absorber drops as the suction velocity increases. This point should show up in the qualitative 

results. Lower temperatures (at higher suction velocities) should result in higher heat transfer 

rates behind the absorber, as well as lower effectiveness numbers for the absorber in general.  

 

These points will be examined quantitatively in a later section.  
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Figure 4.11: Velocity Vectors for the No Wind Case at a Suction Velocity of 0.01 m/s. 

 

 

Figure 4.12: Temperature Contours for the No Wind Case at a Suction Velocity of 0.01 m/s. 
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Figure 4.13: Velocity Vectors for the No Wind Case at a Suction Velocity of 0.04 m/s. 

 

 

Figure 4.14: Temperature Contours for the No Wind Case at a Suction Velocity of 0.04 m/s. 
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4.4.1.2 Wind Effect Model 

Using the full model, air flow and heat transfer was modeled at suction velocities of 0.01, 0.02, 

0.03, and 0.04 m/s, and at wind speeds of 0.5, 1,0, and 2.0 m/s. Figures 4.15 to 4.20 show 

numerically obtained temperature contours at selected wind speeds and suction velocities. A 

Complete set of plots are contained in Appendix B. 

 

Figures 4.15 and 4.19 represent cases were flow separation was seen to occur. The separation of 

flow is also clearly visible in the corresponding temperature contour plots (Figures 4.16 and 

4.20). As was discussed in Section 4.2, the flow structures are seen to strengthen and grow with 

increased wind velocity. It is noted, however, that the temperature behind the absorber does not 

seem to have changed significantly between the two cases shown (0.5 and 2.0 m/s wind speed at 

0.01 m/s suction velocity). This supports the premise that wind speed should play little or no role 

in the effectiveness. Where the heat transfer is occurring in these plots has obviously changed, 

but the magnitude of total heat transfer has essentially remained the same. 

 

Figure 4.17 shows one of the two cases where attached flow was seen to occur. The 

corresponding temperature profile (Figure 4.18) suggests that the flow was near to separation. 

Comparing Figures 4.16 and 4.18, the temperature behind the absorber is seen to drop as suction 

velocity increases. As with the no wind analysis, this point should show up in the qualitative 

results. Lower temperatures (at higher suction velocities) should result in higher heat transfer 

rates behind the absorber, as well as lower effectiveness numbers for the absorber in general.  

 

These points will be examined quantitatively in a later section.  
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Figure 4.15: Velocity Vectors at a Wind Speed of 0.5 m/s and Suction Velocity of 0.01 m/s. 

 

 
Figure 4.16: Temperature Contours at a Wind Speed of 0.5 m/s and Suction Velocity of 

0.01 m/s. 
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Figure 4.17: Velocity Vectors at a Wind Speed of 0.5 m/s and Suction Velocity of 0.04 m/s. 

 

 
Figure 4.18: Temperature Contours at a Wind Speed of 0.5 m/s and Suction Velocity of 

0.04 m/s. 
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Figure 4.19: Velocity Vectors at a Wind Speed of 2.0 m/s and Suction Velocity of 0.01 m/s. 

 

 
Figure 4.20: Temperature Contours at a Wind Speed of 2.0 m/s and Suction Velocity of 

0.01 m/s. 
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4.4.2 Effectiveness 

The main purpose of this work is to derive a correlation to predict the effectiveness of the 

Solarwall™ transpired solar air heater. In this section, the development of that correlation is 

described. The new effectiveness equation is compared to the results of the currently employed 

correlation from Van Decker et al. (2001). 

 

4.4.2.1 Correlation Development 

Using the numerical model, it is possible to calculate the effectiveness of the absorber directly 

from the free stream air temperature, T∞, average absorber plate temperature, Tabs, and from the 

average temperature leaving the plenum, Tin, using: 

� = ������
��	
���

           (4.8) 

where 0 < � < 1. To assess the proper form of the effectiveness correlation, however, a slightly 

more complex approach is followed. 

 

The effectiveness correlation will be determined by first considering convective heat transfer 

from the absorber plate. It can be described using the general relation: 

��� = �����           (4.9) 

where  

��� = ���
�            (4.10) 

��� = ����
�            (4.11) 
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In Eqns. 4.10 and 4.11, ��, is the hydraulic diameter: 

�� = ��
�            (4.12) 

where �� and  !  are the area and perimeter length of the perforations, respectively. For the 

absorber being studied here, �� = 0.000327 m
2
 and  ! = 0.01 m, giving �� = 0.0327 &. 

 

In Eqn. 4.10, the thermal transmission, U, is based on the logarithmic mean temperature 

difference 

'� �()��∞
*+, -./01-∞

-./01-()2 = &3 4�(67+ − 6∞)        (4.13) 

Here, &3 = :�;<=>?, and A = 2AABC to account for heat transfer from both sides of the absorber 

plate. Equation 4.13, therefore becomes 

' = D��EF
G ln J ��	
��∞

��	
����
K         (4.14) 

 

By combining Eqn. 4.14 with Eqns. 4.9 to 4.12, we are now able to produce a plot of NuD vs 

ReD. Coefficients a and m in Eqn. 4.9 can then be determined using least squares regression. The 

resulting correlation is: 

��� = 4.647RePQ.RGST          (4.15) 

The results of this process are given in Table 4.3 and Figure 4.21. Fluid properties were 

determined at 300 K. Equation 4.15 is valid only for suction velocities between 0 and 0.04 m/s. 
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Figure 4.21: NuD vs ReD based on Numerical Results. 
 

Table 4.3: Comparison of Numerically Determined Heat Transfer Versus Correlation 

Predictions. 

 
wind 

speed 

(m/s) 

suction 

velocity 

(m/s) 

T∞ 

(K) 

Tmid 

(K) 

Tin 

(K) 

Tabs 

(K) 

U 

(W/m
2
K) 

ReD 
NuD 

Numerical 

NuD 

Eqn 4.15 
%error 

0.0 

0.01 300.0 350.2 362.0 367.8 14.4 20.6 17.9 16.9 5.7 

0.02 300.0 325.4 335.6 343.7 19.7 41.2 24.4 22.7 7.0 

0.03 300.0 312.8 319.7 328.5 20.5 61.7 25.5 27.0 5.9 

0.04 300.0 308.7 314.9 322.0 26.5 82.3 32.9 30.6 7.1 

0.5 

0.01 300.0 340.0 350.0 354.7 14.4 20.6 17.9 16.9 5.5 

0.02 300.0 318.0 325.4 332.5 17.8 41.2 22.1 22.7 2.8 

0.03 300.0 311.1 317.0 325.3 19.6 61.7 24.3 27.0 11.2 

0.04 300.0 308.7 312.7 319.6 24.5 82.3 30.5 30.6 0.2 

1.0 

0.01 300.0 341.8 348.6 354.9 12.7 20.6 15.8 16.9 7.3 

0.02 300.0 320.4 325.3 331.9 18.3 41.2 22.8 22.7 0.3 

0.03 300.0 312.5 317.0 323.8 21.9 61.7 27.2 27.0 0.6 

0.04 300.0 308.4 312.8 319.6 24.7 82.3 30.7 30.6 0.5 

2.0 

0.01 300.0 340.0 342.7 348.3 12.6 20.6 15.7 16.9 7.9 

0.02 300.0 320.5 324.5 330.2 19.6 41.2 24.3 22.7 6.6 

0.03 300.0 313.4 316.6 323.1 22.3 61.7 27.8 27.0 2.7 

0.04 300.0 309.8 312.5 319.6 23.8 82.3 29.6 30.6 3.2 

 

Fluid Properties at 300K: ρ = 1.16 kg/m3, ν = 0.0000159 m2/s, Pr = 0.7, k = 0.0263 W/mK, and Cp = 1007 J/kgK 
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In order to derive a correlation for absorber plate effectiveness, we start with the heat exchanger 

effectiveness equation: 

� = 1 − �
1UV
W3 .XF           (4.16) 

This particular equation is applicable because one side of the heat exchanger is a radiative 

process, thereby making the &3 .4� product of one side equal to infinity. 

 

Combining Eqns. 4.10 and Eqn. 4.16, inserting the heat transfer correlation (Eqn. 4.15), and 

expanding the mass flow rate term, results in: 

� = 1 − �
1Y.ZY[\]_̂.[Z`ab

cd�^�XF          (4.17) 

 

Finally, by recognizing that Eqn. 4.17 is to be applied to a specific absorber plate, and by 

assuming constant fluid properties at 300K, the effectiveness correlation can be reduced to a 

function of suction velocity only. Equation 4.17 reduces to: 

� = 1 − ��Q.TeeG��1_.f`ZY
         (4.18) 

 

As was stated at the beginning of this section, Eqn. 4.8 allows for the calculation of effectiveness 

directly from the numerical results. As such, it is possible to test the quality of the effectiveness 

correlation (Eqn. 4.18). Figure 4.22 and Table 4.4 show the quality of the correlation. As can be 

seen, the fit is very good. 
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Figure 4.22: Comparison of Numerically Determined Effectiveness Values Versus 

Correlation. 
 

Table 4.4: Comparison of Numerically Determined Effectiveness Versus Correlation 

Predictions. 

 
Suction 

Velocity 

(m/s) 

T∞ 

(K) 

Tmid 

(K) 

Tin 

(K) 

Tabs 

(K) 
Numerical Eqn 4.18 %error 

0.01 

300.0 350.2 362.0 367.8 0.92 0.90 1.41 

300.0 340.0 350.0 354.7 0.91 0.90 1.35 

300.0 341.8 348.6 354.9 0.89 0.90 1.88 

300.0 340.0 342.7 348.3 0.88 0.90 2.05 

0.02 

300.0 325.4 335.6 343.7 0.81 0.79 2.87 

300.0 318.0 325.4 332.5 0.78 0.79 1.15 

300.0 320.4 325.3 331.9 0.79 0.79 0.13 

300.0 320.5 324.5 330.2 0.81 0.79 2.72 

0.03 

300.0 312.8 319.7 328.5 0.69 0.71 2.97 

300.0 311.1 317.0 325.3 0.67 0.71 5.72 

300.0 312.5 317.0 323.8 0.71 0.71 0.32 

300.0 313.4 316.6 323.1 0.72 0.71 1.37 

0.04 

300.0 308.7 314.9 322.0 0.68 0.65 3.98 

300.0 308.7 312.7 319.6 0.65 0.65 0.10 

300.0 308.4 312.8 319.6 0.65 0.65 0.28 

300.0 309.8 312.5 319.6 0.64 0.65 1.81 

  



 

4.4.2.2 Comparison to Van Decker et al. (2001)

Currently, the correlation produced experimentally by Van Decker et al. (2001) is used in 

industry standard software to determine solar absorber effectiveness. It is therefore useful to 

compare Eqn. 4.18 to Eqn. 2.27. Figure 4.23 shows the results of this comparison.

Figure 4.23:  Overall Effectiveness of the 

Suction Velocities

Dashed Lines. 

 

Van Decker et al.’s (2001) results are significantly different than those produced in th

study. There are a number of possible reasons for this. As was previously noted, for example, the 

absorber plate considered here is corrugated, while theirs was flat. The fact that their correlation 

is dependent on wind velocity, however, indicat

present study, the asymptotic region was considered. The experimental study of Van Decker et 

al. (2001), however, was conducted on a 2’ by 2’ absorber. His correlation is undoubtedly based 

on results obtained in the developing region. This, however, does not discredit their work. The 

correlation of Van Decker et al.

present work is more suited to larger ones. The two correlations can provide bou

expected performance of a system installation.
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4.4.2.3 Heat Transfer 

It was noted at the beginning of Section 4.4 that theory predicts that effectiveness (and therefore 

the total heat transfer) should not be a function of wind speed. Preliminary examination of 

temperature contours support this in that the average temperature behind the absorber seems to 

be similar for cases with the same suction velocity, but different wind speeds. Velocity vector 

and temperature contour plots, however, clearly suggest that the location at which the heat 

transfer is occurring moves more strongly to the outward side of the absorber as wind speed 

increases. 

 

To gain a better understanding of the heat transfer that is taking place, it is convenient to 

determine the effectiveness of the outward or inward faces of the absorber. Using Eqn. 4.8, we 

define 

�g = �h�i���
��	
���

           (4.19) 

�< = �����h�i
��	
���

           (4.20) 

where εf and εb are the outward (front) and inward (back) effectiveness, respectively. The 

subscript mid indicated the fluid just after it has passed through the perforations.  

 

Tables 4.5 and 4.6 shows the percentage of total effectiveness, and therefore heat transfer, 

occurring on the outward and inward faces of the absorber as a function of suction velocity.  
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Table 4.5: Percentage of Heat Transfer from the Outward Face of the Absorber at 

Different Suction Velocities and Wind Speeds. The Results of Van Decker et al. 

(2001) are in Brackets. 
Suction 

Velocity 

(m/s) 

Wind Speed (m/s) 

0 0.5 1 2 

0.01 
81.0% 

(67.7%) 

80.0% 

(69.8%) 

85.9% 

(72.8%) 

93.7% 

(75.1%) 

0.02 
71.7% 

(62.7%) 

71.0% 

(65.5%) 

80.7% 

(69.9%) 

83.7% 

(73.4%) 

0.03 
65.4% 

(58.4%) 

65.2% 

(61.9%) 

73.4% 

(67.1%) 

80.7% 

(71.6%) 

0.04 
58.1% 

(54.7%) 

68.4% 

(56.9%) 

65.9% 

(64.7%) 

78.3% 

(69.8%) 

 

 

 

Table 4.6: Percentage of Heat Transfer from the Inward Face of the Absorber at Different 

Suction Velocities and Wind Speeds. The Results of Van Decker et al. (2001) are 

in Brackets. 
Suction 

Velocity 

(m/s) 

Wind Speed (m/s) 

0 0.5 1 2 

0.01 
19.0% 

(32.2%) 

20.0% 

(30.2%) 

14.1% 

(27.2%) 

6.3% 

(24.9%) 

0.02 
28.3% 

(37.3%) 

29.0% 

(34.5%) 

19.3% 

(30.1%) 

12.3% 

(26.5%) 

0.03 
34.6% 

(41.6%) 

34.8% 

(38.1%) 

26.6% 

(32.8%) 

19.3% 

(28.4%) 

0.04 
41.9% 

(45.1%) 

31.6% 

(43.1%) 

34.1% 

(35.3%) 

22.7% 

(30.3%) 

 

As can be seen in the tables, the majority of heat transfer occurs from the outward face of the 

absorber. This is expected because this is where the greatest temperature difference between the 

fluid and absorber is experienced, and because the fluid motion is greater. Increasing the wind 

speed, therefore, results in better mixing at the surface and better effectiveness from the outward 

face of the absorber. As suction increases, however, the proportion of this heating begins to shift 

in favor of greater heating from the back side of the absorber. This is due to the fact that higher 

suction results in faster air flow, and colder temperatures behind the absorber.  
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It is noted that Van Decker et al. (2001) also noticed this trend. In fact, the correlation for 

effectiveness that was produced in their study actually considered heat transfer from the outward 

face, inward face, and perforation separately. The results of Van Decker et al. (2001) have been 

included in Tables 4.3 and 4.4 for comparison. His results confirm the same general trends 

discussed previously: increased wind speed increases heat transfer from the outward side, and 

increased suction increases it to the inward side. It is noted, however, that the geometry study in 

that work was different that what is considered in the present study. The reader is therefore 

cautioned from attempting to draw further parallels between these results.  
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Chapter 5  

 

Conclusions and Recommendations 

 

5.1 Conclusions 

A 3-D CFD model was created to evaluate the effectiveness and heat loss of an unglazed 

transpired solar collector with a trapezoidal corrugation.  

 

The model successfully predicted the occurrence of separated or attached flows. Attached flows 

were seen to occur only for low wind speeds (0.5 m/s) and high suction velocities (0.03 and 0.04 

m/s). 

 

Heat loss in the entry region was evaluated and a correlation was developed. 

����� = 0.0081���
.��
�         (4.7) 

where 

��� = �∞

��
           (2.24) 

The correlation is valid for wind speeds from 0.5 to 2 m/s, and suction velocities between 0.01 

and 0.04 m/s. 
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The heat loss correlation was not of great quality, largely due to the few points on which it was 

based. Given that the required accuracy of the correlation is not stringent, however, it was not 

deemed useful to attempt to produce a more detailed form of the fit equation. In practice, the 

manufacturer needs heat loss information only for interests’ sake, and it is understood that in 

reality, any correlation would only produce a rough estimate.  

 

Effectiveness in the asymptotic region was also examined, and correlations for heat transfer and 

effectiveness were produced. Heat transfer can be predicted using: 

��� = 4.647Re��.�
��          (4.15) 

where 

��� = ���
�            (4.10) 

��� = � ��
!            (4.11) 

" = #� $%

 ln ()*+,-)∞

)*+,-)./
0          (4.14) 

and Dh = 0.0327 m. 

The correlation for effectiveness is: 

1 = 1 − �-�.�33
� 4�.5678           (4.18) 

Equations 4.15 and 4.18 produce accurate estimates of heat transfer and effectiveness for suction 

velocities from 0.01 to 0.04 m/s. 

 

It is noted that effectiveness and heat transfer were not a function of wind velocity. They were 

both determined in the asymptotic region, where it has been established that no convective losses 

are occurring. The numerical model has been decoupled from radiative heat exchange, and 
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therefore, solar input to the absorber must be captured entirely. In theory, wind speed should 

have no impact on the calculated heat exchanger effectiveness. 

 

The effectiveness correlation was compared to the correlation produced by Van Decker et al. 

(2001). While the two were of the same order of magnitude, they did not show good agreement. 

It is noted that that correlation was based on experiments conducted on a 2’ by 2’ absorber plate. 

It is very likely that the effectiveness values determined in that study were in the developing 

region. This is supported by the fact that Van Decker et al.’s (2001) correlation is dependent on 

the wind speed. In this regard, the correlation of Van Decker et al. (2001) is likely better suited 

to smaller installations, while the present work is more suited to larger ones. The two 

correlations can likely provide bounds on the expected performance of a system installation. 

 

5.2 Recommendations 

A number of recommendations have been made for further study. 

• A more accurae correlation of heat loss in the developing region would consist of 

separate relations for attached and separated flows. Unfortunately, too few situations 

were examined at which attached flow occurred. It is suggested that the numerical study 

by expanded to obtain more data points for attached flow, and to help assess exactly 

when the onset of separation can be predicted. 

• The presented work was limited to numerical simulation. It is vital to extend this work to 

include experimental work which would permit better validation of the numerical model.  

• Numerical software is limited in that either laminar or turbulent flow can be examined, 

but not both. While efforts were made to select a flow regime that replicated the flow 
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structures observed experimentally, this was far from definitive proof that the correct 

model was chosen. Direct numerical simulation (DNS) could be used model the system, 

but it is applicability is currently beyond computational abilities. Flow visualization 

would also assist in better defining the flow regime. 

• The numerical model can be used as a tool to optimize the current Solarwall™ design. 

Modifications can be made to the model could result in a better effectiveness and lower 

heat loss. These modifications include the arrangement of the holes on the plate 

(triangular array instead of square array), the inclination angle of the corrugation, and the 

distance between the peak and the base of the corrugations. All these factors could be 

tested and optimized. 
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Appendix A 

 

Description of the Computational Code 

In this section, a general description of the numerical software Fluent will be discussed which 

solve the governing equations used for describing the fluids flow. The software developer, 

ANSYS Inc, is the world’s largest provider of CFD software.  

Fluent is based on a control volume approach, which discetizes the solution domain into control 

volumes. It is based on using the cell centered method. The general scalar transport equation is 

given by the following formula:  

�  ��� 
���  �	 + � �
�� ∙ ��� = �Γ�∇ 
 ∙ ��� + � ���	�      (A.1) 

where 

� = density 

�� = velocity vector(= ��̂ + ��̂ in 2D) 

�� = surface area vector 

Γ� = diffusion coefficient of 
 

∇
 = gradiant of 
 �=  �
 ! �̂ +  �

 " �̂ in 2D# 

�� = source of 
 per unit volume 
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Then, Eqn. (A.1) is applied at each control volume as follows: 

���
�� 	 + ∑ �%��%
% ∙ ��% = ∑ Γ�∇
% ∙ ��% + ��	&'()*+

%
&'()*+
%      (A.2) 

where 

,%-./0 = number of faces enclosing cells 


% = value of 
 convicted at face 1 

�%��% ∙ ��% = mass flux through the face 

��% = area of face 1, |�| 4= 5�!�̂ + �"�̂5 in 2D6 

∇
%= gradient of 
 at face 1 

	 = cell volume 

This equation has an unknown scalar 
 at the cell center and the surrounding neighbor cells. This 

equation will be linearized and written in the following form  

78
 = ∑ 79:
9: + ;9:           (A.3) 

Where the subscript nb refers to neighbor cells and 78 and 79: are the linerized form for 
 

and 
9:.  

After applying the linearized equation to each cell, a set of equations are arranged in a matrix. 

Fluent solves these set of equations by Gauss Seidel method in conjunction with algebraic multi 

grid method (AMG). The residual is defined as the imbalance of the componential domain, and it 

is defined by the following equation  

< = ∑ |∑ 79:
9: + ; − 78
89: |>/?? @        (A.4) 

it is difficult to judge the convergence by Equation (A.4) since there is no scaling is employed. 

Therefore, a scaled residual is used to judge the convergence as follows 

< = ∑ @|∑ -AB�ABC:D-@�@AB |)*EE+
∑ @|-@�@|)*EE+

        (A.5) 



99 

  

Appendix B 

 

Numerical Results 

B.1 Examination of Flow Separation and Reattachment 

 

 

 

 

Figure B.1: Flow Behavior at a Wind Speed of 0.5 m/s with No Suction. 
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Figure B.2: Flow Behavior at a Wind Speed of 1.0 m/s with No Suction. 

 

 

Figure B.3: Flow Behavior at a Wind Speed of 2.0 m/s with No Suction. 
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Figure B.4: Flow Behavior at a Wind Speed of 0.5 m/s and Suction Velocity of 0.01 m/s. 

 

 

 

Figure B.5: Flow Behavior at a Wind Speed of 0.5 m/s and Suction Velocity of 0.02 m/s. 
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Figure B.6: Flow Behavior at a Wind Speed of 0.5 m/s and Suction Velocity of 0.03 m/s. 

 

 

 

Figure B.7: Flow Behavior at a Wind Speed of 0.5 m/s and Suction Velocity of 0.04 m/s. 
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Figure B.8: Flow Behavior at a Wind Speed of 1.0 m/s and Suction Velocity of 0.01 m/s. 

 

 

 

Figure B.9: Flow Behavior at a Wind Speed of 1.0 m/s and Suction Velocity of 0.02 m/s. 
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Figure B.10: Flow Behavior at a Wind Speed of 1.0 m/s and Suction Velocity of 0.03 m/s. 

 

 

 

Figure B.11: Flow Behavior at a Wind Speed of 1.0 m/s and Suction Velocity of 0.04 m/s. 
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Figure B.12: Flow Behavior at a Wind Speed of 2.0 m/s and Suction Velocity of 0.01 m/s. 

 

 

Figure B.13: Flow Behavior at a Wind Speed of 2.0 m/s and Suction Velocity of 0.02 m/s. 
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Figure B.14: Flow Behavior at a Wind Speed of 2.0 m/s and Suction Velocity of 0.03 m/s. 

 

Figure B.15: Flow Behavior at a Wind Speed of 2.0 m/s and Suction Velocity of 0.04 m/s. 
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B.2 Vector Plots and Temperature Contours for No-Wind Models 

 

Figure B.16: Velocity Vectors for the No Wind Case at a Suction Velocity of 0.01 m/s. 

 

 

Figure B.17: Temperature Contours for the No Wind Case at a Suction Velocity of 0.01 m/s. 
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Figure B.18: Velocity Vectors for the No Wind Case at a Suction Velocity of 0.02 m/s. 

 

 

Figure B.19: Temperature Contours for the No Wind Case at a Suction Velocity of 0.02 m/s. 
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Figure B.20: Velocity Vectors for the No Wind Case at a Suction Velocity of 0.03 m/s. 

 

 

Figure B.21: Temperature Contours for the No Wind Case at a Suction Velocity of 0.03 m/s. 



110 

  

 

Figure B.22: Velocity Vectors for the No Wind Case at a Suction Velocity of 0.04 m/s. 

 

 

Figure B.23: Temperature Contours for the No Wind Case at a Suction Velocity of 0.04 m/s. 
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B.3 Vector Plots and Temperature Contours for Wind Models  

 

Figure B.24: Velocity Vectors at a Wind Speed of 0.5 m/s and Suction Velocity of 0.01 m/s. 

 

 

Figure B.25: Temperature Contours at a Wind Speed of 0.5 m/s and Suction Velocity of 0.01 m/s. 
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Figure B.26: Velocity Vectors at a Wind Speed of 0.5 m/s and Suction Velocity of 0.02 m/s. 

 

 

Figure B.27: Temperature Contours at a Wind Speed of 0.5 m/s and Suction Velocity of 0.02 m/s. 
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Figure B.28: Velocity Vectors at a Wind Speed of 0.5 m/s and Suction Velocity of 0.03 m/s. 

 

 

Figure B.29: Temperature Contours at a Wind Speed of 0.5 m/s and Suction Velocity of 0.03 m/s. 
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Figure B.30: Velocity Vectors at a Wind Speed of 0.5 m/s and Suction Velocity of 0.04 m/s. 

 

 

Figure B.31: Temperature Contours at a Wind Speed of 0.5 m/s and Suction Velocity of 0.04 m/s. 
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Figure B.32: Velocity Vectors at a Wind Speed of 1.0 m/s and Suction Velocity of 0.01 m/s. 

 

 

Figure B.33: Temperature Contours at a Wind Speed of 1.0 m/s and Suction Velocity of 0.01 m/s. 
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Figure B.34: Velocity Vectors at a Wind Speed of 1.0 m/s and Suction Velocity of 0.02 m/s. 

 

 

Figure B.35: Temperature Contours at a Wind Speed of 1.0 m/s and Suction Velocity of 0.02 m/s. 
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Figure B.36: Velocity Vectors at a Wind Speed of 1.0 m/s and Suction Velocity of 0.03 m/s. 

 

 

Figure B.37: Temperature Contours at a Wind Speed of 1.0 m/s and Suction Velocity of 0.03 m/s. 
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Figure B.38: Velocity Vectors at a Wind Speed of 1.0 m/s and Suction Velocity of 0.04 m/s. 

 

 

Figure B.39: Temperature Contours at a Wind Speed of 1.0 m/s and Suction Velocity of 0.04 m/s. 
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Figure B.40: Velocity Vectors at a Wind Speed of 2.0 m/s and Suction Velocity of 0.01 m/s. 

 

 

Figure B.41: Temperature Contours at a Wind Speed of 2.0 m/s and Suction Velocity of 0.01 m/s. 
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Figure B.42: Velocity Vectors at a Wind Speed of 2.0 m/s and Suction Velocity of 0.02 m/s. 

 

 

Figure B.43: Temperature Contours at a Wind Speed of 2.0 m/s and Suction Velocity of 0.02 m/s. 
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Figure B.44: Velocity Vectors at a Wind Speed of 2.0 m/s and Suction Velocity of 0.03 m/s. 

 

 

Figure B.45: Temperature Contours at a Wind Speed of 2.0 m/s and Suction Velocity of 0.03 m/s. 
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Figure B.46: Velocity Vectors at a Wind Speed of 2.0 m/s and Suction Velocity of 0.04 m/s. 

 

 

Figure B.47: Temperature Contours at a Wind Speed of 2.0 m/s and Suction Velocity of 0.04 m/s. 


