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Abstract

What tectonic processes were operating in the Archean, and whether they were similar to the
“modern-style” plate tectonics seen operating today, is a fundamental question about Archean
geology. The Superior Province is the largest piece of preserved Archean crust on Earth. As such it
provides an excellent opportunity to study Archean tectonic processes. Much work has been
completed in the southern part of the Superior Province. A well-documented series of discrete,
southward younging orogenies related to a series of northward dipping subduction zones, has been
proposed for amalgamating this part of the Superior Province. The tectonic evolution in the
northwestern Superior Province is much less constrained, and it is unclear if it is related to the series
of subduction zones in the southern part of the Superior Province, or if it is related to an entirely
different process. Such ideas need to be tested in order to develop a concise model for the Meso —

and Neoarchean tectonic evolution of the northwestern Superior Province.

To this end, a field mapping, U-Pb geochronology, Nd isotope, and lithogeochemistry study was
undertaken in the Island Lake greenstone belt. This granite-greenstone belt is part of the northern
margin of the North Caribou terrane, a larger reworked Mesoarchean crustal block located in the
northwestern Superior Province. U-Pb TIMS zircon geochronology data shows that the Island Lake
greenstone belt experienced a long and complex geological history that included the deposition of
three distinct volcanic assemblages at ca. 2897 Ma, 2852 Ma, and 2744 Ma, as well as a younger
clastic sedimentary group, the Island Lake group. All of these volcanic assemblages include felsic and
mafic volcanic rocks, as well as a suite of contemporaneous plutonic rocks. The U-Pb data set shows
that the Savage Island shear zone, a regional fault structure that transects the Island Lake greenstone
belt, is not a terrane-bounding feature as correlative supracrustal assemblages are observed on both

sides of it. The Nd isotope data shows that the volcanic assemblages and contemporaneous plutons



have been variably contaminated by an older ca. 3.0 Ga crustal source. The mafic volcanic rocks in
the assemblages have two distinct geochemical signatures, and show a pattern of decreasing crustal
contamination with decreasing age. Together these data suggests that the Meso — and Neoarchean
volcanic assemblages are part of an intact primary volcanic stratigraphy that were built on the same
ca. 3.0 Ga basement and have autochthonous relationships with each other. This basement is the

North Caribou terrane.

The youngest sedimentary group in the belt, the Island Lake group, was deposited between 2712
Ma and 2699 Ma. It consists of “Timiskaming-type” sedimentary rocks, and is the youngest clastic
sedimentary package in the belt. A detailed study of detrital zircons in units from the stratigraphic
bottom to the top of the sedimentary group indicates an age pattern of detrital zircons that is most
consistent with a scenario in which sediments were deposited in inter-diapiric basins created by
diapirism and sagduction (i.e., vertical tectonic) processes. During the diapiric ascent of the felsic
material, inter-diapiric basins were formed in the synclines between adjacent domes, into which

sediments were deposited.

U-Pb zircon TIMS geochronology identified two ages of deformation in the Island Lake greenstone
belt. Two dykes that crosscut an older, D; foliation place a minimum age of ca. 2723 Ma on the D,
deformation, and two syn-kinematic dykes date movement along two transpressional shear zones to

2700 Ma.

Together all these data indicate that the tectonic evolution in the Island Lake greenstone belt and in
the northwestern Superior Province took place in three main stages. The first two stages involved the
generation of Meso — and Neoarchean volcanic assemblages and contemporaneous plutonic rocks
due to southward dipping subduction under the North Caribou micro-continent. The third stage

involved the deposition of late “Timiskaming-type” sediments during vertical tectonic processes in



conjunction with horizontal tectonic movement along late transpressional shear zones at ca. 2.70 Ga.
At the end of this process the North Superior superterrane was terminally docked to the North
Caribou terrane along the North Kenyon fault. This study shows that while a version of horizontal or

“modern” style plate tectonics were operating in the Archean, vertical tectonic processes were also

occurring and that these processes operated synchronously in the Neoarchean.
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Chapter 1

Introduction

1.1 The Archean

Many aspects of Archean geology are not well understood, even though much research has been
focused on this time period in the Earth’s history. Many issues remain unresolved regarding what
geological and tectonic processes were operating during the Archean. Current issues in Archean
geology range from broad scale questions about the nature of the Earth (e.g. Was the Earth hotter at
the time?) to map scale questions about the primary relationships between rocks that have since been
altered (e.g. Do units have allochthonous or autochthonous relationships with each other?). One of the
most fundamental questions concerning the Archean is what style of tectonic processes were
occurring at the time. Were the same tectonic processes occurring as we see on the Earth today

(“modern” plate tectonics) or were they different?

Approximately 30 Archean cratons exists worldwide (Condie 2005). The largest and best-exposed
is the Superior Province, and as such it provides a natural laboratory in which to study geological and
tectonic processes in the Archean. The Superior province forms the nucleus of the Canadian Shield, in
which younger orogens were subsequently built on or sandwiched against (Figure 1.1). The Superior
Province was originally divided into roughly E-W trending subprovinces based on distinct geological
and tectonic characteristics (Stockwell 1982; Card and Ciesielski 1986). This concept has been
refined and now instead of subprovinces, the Superior Province is divided into domains, terranes and
superterranes (Figure 1.2). By definition, domains are rocks that have different geological histories
from rocks in adjacent domains, but have (para) autochthonous relationships with adjacent domains.
Terranes are fault-bounded units of rocks that have a common tectonic history that is different from
adjacent terranes, and superterranes are tectonic packages that formed by the juxtaposition of different

terranes prior to amalgamation of the Superior Province as a whole (Thurston et al. 1991b; Percival et
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al. 2006). A dominant feature in the northwestern part of the Superior Province is the North Caribou
terrane (NCT), a ca. 3.0 Ga crustal block, which terranes to the south and north were either built on or
juxtaposed against during final tectonic amalgamation. Granite-greenstone terranes and domains
proximal to the NCT have geological histories that include Meso — and Neoarchean volcano-plutonic
events and commonly show geochemical and/or isotopic evidence of recycling of an older crustal
component (e.g. the Island Lake greenstone belt; Stevenson and Turek 1992). Terranes and domains
distal to the North Caribou terrane have individual histories, some of which include the involvement
of unique, older crustal components (e.g. the Winnipeg River terrane; Tomlinson and Percival 2000),
and some that have younger Neoarchean volcano-plutonic histories and are isotopically juvenile in

nature (e.g. the Wawa-Abitibi terrane; Stott 1997; Ayer et al. 2002).

The domains/terranes/superterranes of the Superior Province were amalgamated during a sequence
of Neoarchean orogenies, which juxtaposed the tectonic elements to the south of the 3.0 Ga North
Caribou terrane via a series of northward-dipping, southward-younging subduction zones (termed
phases of the Kenoran orogeny by Stott (1997), now considered discrete orogenies by Percival et al.
(2006). This sequence of subduction and accretion is well documented to the south and on the
southern margin of the North Caribou terrane (Sanborn-Barrie 2000; Young et al. 2006; Percival et al.
2006 and references within). The tectonic evolution along the northern margin of the North Caribou
terrane is much less constrained. Recent studies have suggested that rocks in this area were generated
and/or amalgamated via southward-dipping subduction zones that were situated north of the northern
margin (Percival 2006; Parks et al. 20006), or by a northward-dipping subduction zone parallel to that
along the southern margin situated along the North Kenyon Fault (Greg Stott pers. comm. 2010).
These ideas need to be tested in order to develop a concise model of the tectonic evolution along the

northern margin of the North Caribou terrane.



1.2 The Island Lake greenstone belt

Greenstone belts are characteristic of the Archean, and as such are well suited to study when
investigating geological and tectonic processes during this time. Over the past 30 years models of
greenstone belt development have ranged from “modern” plate tectonic models that are
mobilistic/subduction based (Langford and Morin 1976; Kusky and Polat 1999), to models that
require coeval and interacting arc/plume systems (Hollings et al. 1999; Wyman et al. 2002), to models
that are driven by “catalytic” crustal delamination (Bedard 2006) and do not require horizontal plate

movement.

The Island Lake greenstone belt is one of the best-exposed greenstone belts in the northwestern
Superior Province (Figure 1.1) and records close to 300 Ma of crustal inheritance, plutonism,
volcanism, sedimentation and deformation (Turek et al. 1985; Stevenson and Turek 1992; Corfu and
Lin 2000; Parks et al. 2006). The Island Lake greenstone belt’s location within the Superior Province
makes it ideal to study both belt - and regional - scale questions about the nature of rocks and the
mechanisms of greenstone belt assembly in the northwestern Superior Province. This information will
help in determining the overall tectonic evolution of the area, and the results of this work can then be
extrapolated to answer larger questions about the Archean Earth, and may shed light on what style of

tectonic processes were occurring during this time.

1.2.1 Location and previous work

The Island Lake greenstone belt is located in northeastern Manitoba (Figure 1.1, and Figure 1.2, map
sheets NTS 53E15 and 16). The greenstone belt underlies approximately two 1:50,000 scale map
sheets. The area is accessible only by aircraft and winter roads, and the three native reserves in the
area (Garden Hill, St. Theresa Point and Waasagomach) and one town (Island Lake) are fly-in

communities.



The Island Lake greenstone belt was mapped at the scale of 1:63 360 by Godard (1963 a, b) and at
a scale of 1:20 000 by Neale (1981), Neale and Weber (1981), McGregor and Weber (1982), Neale et
al.(1982), Weber et al. (1982a,b), Gilbert et al. (1982, 1983), and Gilbert (1984 a, 1985 a, b). Lin et al.
(1998) studied the high strain zones in the belt. An Nd and Rb-Sr isotope study was carried out by
Stevenson and Turek (1992), and U-Pb geochronology studies were done by Turek et al. (1985),
Stevenson and Turek (1992), and Corfu and Lin (2000). The geology of mineral occurrences have

been described by Theyer (1998), Lin and Cameron, (1997) and Lin and Corfu (2002).

1.3 Thesis objectives

The research objectives and associated research questions of this thesis have been designed to
investigate the nature of the supracrustal and intrusive rocks in the belt and how they formed, the
mechanisms of greenstone belt assembly in this area, as well as this area’s importance with respect to
the tectonic evolution of the surrounding terranes in the northwestern Superior Province. These
objectives may shed light on larger issues about what tectonic processes were operating in the

Archean. Specifically, the main objectives of this thesis are to investigate:
1. the ages of volcano-plutonic events in the greenstone belt.

= Are the volcanic rocks part of the same or multiple assemblages? What are the ages
of plutonic rocks in the belt? What are the implications of these results for the

tectonic evolution of the greenstone belt and surrounding terranes?
2. the nature of the volcanic assemblage and correlative plutons.

=  What are the geochemical and Sm-Nd isotopic signatures of the volcanic rocks in the

belt and what do these signatures tell us about their geodynamic setting?

*  What are the implications of the above to the tectonic evolution of the Island Lake

greenstone belt and other belts along the north margin of the North Caribou terrane?
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3. the ages of deformation events and shear zone activity in the belt.

= Can the ages of syn-tectonic dykes place temporal constraints on the tectonic
evolution of the Island Lake greenstone belt and terminal collision in northwestern

Superior Province?

4. the distribution of ages of detrital zircons from the stratigraphic top to the bottom of the

Island Lake group.

= What do these data tell us about what tectonic processes were responsible for opening

the basin in which these sediments were deposited?

=  What implication does this tectonic setting have on the overall tectonic evolution of

the Island Lake greenstone belt and the northwestern Superior Province?

To achieve these objectives, approximately 6 months of geological field work were completed in the
Island Lake greenstone belt over the course of four summers. During this work, samples were
collected for geochemical, isotopic and geochronological analysis, and key areas were mapped to
better understand the stratigraphy of the volcanic assemblages. This work also resulted in a 1: 50, 000

map sheet published with the Manitoba Geological Survey (Appendix A).

1.4 Organization of Thesis

This thesis is presented as a series of three journal articles. The thesis is divided into three main
chapters (Chapters 2-4), each of which addresses one or two of the objectives discussed above. These
chapters are intended to be stand-alone journal papers. Each chapter is written in a format that
includes an introduction to the topic, presentation of data, and then a discussion of the results and a
conclusion. Some repetition occurs between the chapters, in particular in the introduction material
and where the regional and local geology are discussed. The chapters are presented in a particular

order so that the main ideas and conclusions build on previous chapters, and that no data or ideas are



referred to that have not already been presented. References and appendices for all of the chapters are

presented at the end of the thesis.

The second chapter addresses the first objective and presents U-Pb geochronology data that address
the age of the different volcanic assemblages, as well as key intrusive rocks. The results show that the
volcanic assemblages are chronologically unique and not structurally bound. The third chapter
addresses the 2™ and 3™ objectives, and presents whole rock lithogeochemical and eNd data from the
volcanic assemblages and contemporaneous plutons in the Island Lake greenstone belt as well as
geochronological results for four dykes that bracket the age of shear zone deformation in the belt.
These data are used to develop a tectonic model for the generation of these volcanic rocks, and for the
terminal collision of this part of the Superior Province. The fourth chapter addresses the 4™ objective
and presents U-Pb detrital zircon ages from the youngest stratigraphic group in the greenstone belt,
the Island Lake Group. The detrital zircons show a distinct distribution pattern from the stratigraphic
bottom to the top of the group. The implications of this pattern on the tectonic processes that created
the basin in which the sediments were deposited are discussed. Finally, the fifth chapter is an

integration of conclusions from all of the previous chapters.
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Figure 1.1 Precambrian tectonic domains for North America. Location of the Island Lake greenstone
belt is indicated by the red box. Abbreviations: QMB: Quebec Minto Block; EAO: East Alberta
orogen; MRV: Minnesota River valley gneiss; Mak-Ket: Makkovik-Ketilidean. CB: Cumberland
batholith; GF: Great Falls Tectonic Zone; GS: Great Slave Lake shear zone; NQ: New Quebec
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Percival et al. (2004).
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Chapter 2

New high-precision U-Pb ages for the Island Lake greenstone belt,
northwestern Superior Province: implications for regional

stratigraphy and the extent of the North Caribou Terrane'

2.1 Summary

A combined U-Pb and field mapping study of the Island Lake greenstone belt has led to the
recognition of three distinct supracrustal assemblages. These assemblages record magmatic episodes
at 2897 Ma, 2852 Ma, and 2744 Ma. Voluminous plutonic rocks within the belt range in age from
2894 Ma to 2730 Ma, with a concentration at 2744 Ma. U-Pb data also show that a regional fault that
transects the belt, the Savage Island shear zone, is not a terrane-bounding structure. The youngest
sedimentary group in the belt, the Island Lake Group, has an unconformable relationship with older
plutons. Sedimentation in this group is bracketed between 2712 Ma and 2699 Ma. This group and
others similar to it in the northwestern Superior Province are akin to Timiskaming-type sedimentary
groups found throughout the Superior Province and in other Archean cratons. These data confirm that
this belt experienced a complex geological history that spanned at least 200 m.y., which is typical of
greenstone belts in this area. Age correlations between the Island Lake belt and other belts in the
northwest Superior Province, in combination with Nd isotopic data, indicate that the Oxford-Stull and
Island Lake domains and the North Caribou terrane may have been part of a much larger reworked
Mesoarchean crustal block. The block has a core region bounded by northern and southern margins.
It appears that the Superior Province was assembled by accretion of such large independent crustal

blocks, whose individual histories involved extended periods of autochthonous development.

" Published as: Parks, J., Lin, S., Davis, D., and Corkery, M.T., 2006: New high-precision U-Pb ages for the
Island Lake greenstone belt, northwestern Superior Province: implications for regional stratigraphy and the
extent of the North Caribou Terrane. Canadian Journal of Earth Sciences. v 43, p.789-803 The version
presented here includes some minor modifications and editorial changes.
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2.2 Introduction

The Superior Province consists of linear to curved fragments of bimodal volcanic rocks that have
been built on, or sandwiched between, older continental crustal blocks. This pattern is seen on both
the belt and regional scales. The northwestern Superior Province is a relatively inaccessible and
poorly understood area compared to the southern Superior Province. It has been divided into various
domains, terranes and superterranes (Figure 2.1; see below; Thurston et al. 1999b; Stott 1997; Skulski
et al. 2000; Percival et al. 2004; Percival et al. 2006; Stott 2009). Many of the original subdivisions
into domains, terranes and superterranes were proposed based on limited data available at the time
(Thurston et al. 1999b). Understanding the geological evolution of each of the domains, terranes or
superterranes and the relationships between them can help to test if they are true domains, terranes or
superterranes, a first-order question concerning this part of the Superior Province. By definition,
domains are packages of rocks that have different geological histories from rocks in adjacent
domains, but have (para) autochthonous relationships with adjacent domains. Terranes are fault-
bounded packages of rocks that have a common tectonic history that is different from adjacent
terranes, and superterranes are tectonic packages that formed by the juxtaposition of different terranes
prior to amalgamation of the Superior Province as a whole (Thurston et al. 1999b; Percival et al.

2006).

This chapter reports on the results of a field mapping and geochronological study of the Island
Lake greenstone belt in the northwestern Superior Province, focusing on detailed dating of
supracrustal rocks. The greenstone belt is well exposed and is situated across the Savage Island shear
zone, the boundary between the Island Lake domain and the North Caribou terrane (Figure 2.1;
Thurston et al. 1999b). Our results show that the belt has a long and complex history that can be

correlated with volcanic events in adjacent domains and terranes. In combination with Nd isotope
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data, the results indicate that these domains and terranes were part of a single crustal entity and the
Savage Island shear zone is thus not a terrane-bounding structure. While not giving definitive
evidence on the nature of Archean tectonic processes, this study helps to define the extent and

composition of some of the fundamental tectonic building blocks of the Superior Province.

2.2.1 Regional Geological Setting

Terranes and domains in the northwestern Superior Province (Figure 2.1), from north to south, are
the Northern Superior superterrane (NSS, Skulski et al. 2000), the Oxford-Stull domain (OSD;
Thurston et al. 1991b; Stott 1997; Stott 2009), the Island Lake domain (ILD; Thurston et al. 1991b;
Percival et al. 2007;Stott 2009) and the North Caribou terrane (NCT, Thurston et al. 1991b). The last
is part of the larger North Caribou -La Grande-Goudalie superterrane that extends into northern
Quebec (Stott 1997; Corfu and Stone 1998; Percival et al. 2001; Percival et al. 2004 and references
therein). Together these comprise the Sachigo and Berens subprovinces formerly defined by Card and

Ciesielski (1986), as well as part of the Minto block (Percival et al. 2001) in northern Quebec.

The Northern Superior superterrane consist of ancient, ca. >3.5 Ga granitic rocks that have been
strongly overprinted by later metamorphic, magmatic, and deformational events (Skulski et al. 2000,
Bohm et al. 2000, Bohm et al. 2003, and Percival et al. 2006). The North Kenyon fault separates the
North Superior superterrane from the Oxford-Stull domain to the south (Skulski et al. 2000). The
Oxford-Stull domain consists of ca. 2.84 Ga oceanic (Syme et al. 1999; Corkery et al. 2000) volcanic
rocks, which show only a few instance of Nd inheritance (Rayner and Stott 2005). The Island Lake
domain lies south of the Oxford-Stull domain, and consists of the previously defined Munro Lake and
Island Lake terranes of Thurston et al. (1991, for the location of the original Island Lake terrane and
the Munro Lake terrane, see Figure 1 of Parks et al. 2006). Since this division, work has shown that

both the Island Lake terrane and Munro Lake terrane have both been influenced by an older crustal
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source (Stevenson and Turek 1992; Corfu and Lin 2000; Skulski et al. 2000; Parks et al. 2006). It has
been suggested that this crust is the northern extension of the North Caribou terrane (Skulski et al.
2000; Sanborn-Barrie et al. 2001). As such, the terms Island Lake and Munro Lake domain were
introduced (Percival et al. 2006; Percival and Easton 2007). More recent work by Stott (2009) groups
both of these domains into one, the Island Lake domain, and refines the boundaries of both the Island
Lake domain and Oxford-Stull domain (Figure 2.1). This idea needs to be tested, as it is possible that
the Savage Island shear zone is indeed a terrane bounding fault as originally suggested by Thurston et
al. (1991) that juxtaposes the North Caribou terrane with an entirely different ~3.0 Ga crustal block
on which the Island Lake domain could have been built (the extent, geometry, and kinematics are
discussed more in section 3.2.3). The North Caribou terrane itself is interpreted to be an old proto-
continental nucleus that acted as a stable platform onto which other terranes were accreted during
terminal collision of the Superior Province in Neoarchean time (Thurston et al. 1991b; Skulski et al.

2000).

2.3 Results of geological and geochronological investigations

What follows is a description of geological relationships, including both previous age data and new
results. Sample locations are shown on Figure 2.2. Analytical data are given in Table 2.1 and

Concordia diagrams are shown on Figures 2.4 and 2.7. Analytical methods are given in Appendix B.

The geology of rocks in the belt are discussed below, and further details can be found in Parks et al.
(2001) Parks et al. (2002) and Parks et al. (2003). The rocks in the Island Lake greenstone belt are
variably metamorphosed from lower greenschist to lower amphibolite facies. Supracrustal rocks in
the belt are either intruded by, or have unconformable relationships with, various plutonic bodies in
the belt and have experienced multiple deformation events. Late shear zone deformation has produced

at least four spatially distinct shear zones and overprinted much of the early deformation fabrics (see
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Lin et al. 1998 for details on structure in the belt and the kinematics of shear zones). The shear zones
are shown in Figure 2.2. From south to north they are the Savage Island shear zone, the Harper Island

shear zone, the Whiteway Channel shear zone and the Chapin Bay shear zone.

2.3.1 Supracrustal rocks (samples 859, 839, 425, 289, 105, 02)

Supracrustal rocks in the region have traditionally been divided into the older volcanic and
volcanogenic rocks of the Hayes River Group (HRG), and the unconformably overlying younger
sedimentary rocks of the Island Lake Group (ILG). The term “Hayes River Group” has been applied
to all volcanic and volcanogenic rocks below the unconformity in the Island Lake greenstone belt
(Wright 1928) and more broadly within the northwest Superior Province in northern Manitoba. Lin et
al. (1998) and Corfu and Lin (2000) suggested that the rocks of the HRG in the Island Lake
greenstone belt could be subdivided into dissimilar, shear-bounded packages. This suggestion was
based on lithological differences seen in the basalts and the presence of high strain zones that separate
these packages into distinct shear zone-bounded panels. However, this study has observed that the
contacts between the panels are not observed directly in the field. These contact relationships are
discussed more in section 2.4.2. The HRG is sub-divided here into the Whiteway, Jubilee and

Loonfoot assemblages (Figure 2.2).

2.3.1.1 Whiteway assemblage

The Whiteway assemblage is located in the east — central part of the map area (Figure 2.2). This
assemblage consists predominantly of mafic volcanic rocks, large gabbroic intrusions and rare lenses
of volcanogenic sedimentary rocks. The basaltic rocks of the Whiteway assemblage are aphyric and
pillowed, the latter having thin selvages and commonly exhibiting rusty (iron sulphide?) alteration.

They are metamorphosed to greenschist facies and are strongly deformed in the Harper Island and
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Whiteway Channel shear zones. Away from the shear zones, they are only weakly deformed and
primary structures are locally well preserved. The gabbro that intrudes the basaltic package gave a U-
Pb zircon age of 2807 + 1 Ma (Corfu and Lin 2000), providing a minimum age constraint on

volcanism and sedimentation in the Whiteway assemblage.

Detrital zircons were dated from a sample of a volcanogenic sedimentary rock in this assemblage
(sample 859). The detrital zircon population in this sample consists of grains that are elongate to
acicular prisms, or broken fragments of larger prismatic crystals. The grains are light brown to
colourless, clear and commonly contain clear inclusions in the larger broken fragments. All grains
show little effects of natural mechanical abrasion suggesting they were not transported a long distance
and may have been only locally reworked. Five zircons were analyzed all of which gave slightly
discordant data but with quite similar **’Pb/***Pb ages. The **’Pb/***Pb age of the youngest grain gives
a maximum age for sedimentation at 2896.2 + 2.9 Ma (Figure 2.4A; Table 2.1). This is
indistinguishable from the average age of four overlapping data, 2897.0 + 1.4 Ma, while the fifth
zircon was only slightly older (unfilled ellipse, not used in average “*’Pb/***Pb age calculation). This
probably represents the age of the principal source. While this age strictly represents a maximum age
of sedimentation in the Whiteway assemblage, lack of evidence of rounding by transport in the
zircons and the uniform aged provenance could indicate a time of proximal felsic volcanism at ca.

2897 Ma. The interpretation of the age of these sediments is discussed further below.

The rocks found north of the Whiteway Channel shear zone are mafic and ultramafic volcanic
rocks that are metamorphosed to amphibolite facies and strongly deformed. It is unclear if these rocks
are higher grade equivalents of the basalt south of the shear zone, or whether they represent a distinct

assemblage. Accordingly, they are not differentiated here (Figure 2.2).
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2.3.1.2 Jubilee assemblage

The Jubilee assemblage is located in the south to southwest portion of the Island Lake greenstone
belt. A main aim of the fieldwork completed during this study was to determine the stratigraphy and
fold geometry of the area, and this work resulted in a schematic cross section (Figure 2.3). South of
Garden Hill a continuous supracrustal sequence of basalt (oldest) to felsic and sedimentary rocks
(youngest) is observed (between the two northmost sheared contacts in Figure 2.3). The basalt is both
pillowed and massive, has thin pillow selvages, and is aphyric. Locally there are well-preserved
primary structures such as well-rounded pillows with cusps and flow top breccias that define reliable
younging directions. A felsic volcanic unit overlies the basalts, and consists of tuffaceous beds as well
as quartz-feldspar phyric flows. Stratigraphically overlying this unit is a sedimentary unit that grades
from argillite through sandstone to conglomerate. The sequence of units is repeated by folding in this
area (Figure 2.3). South of this sequence is another package of metasedimentary rocks, which is
bound on its north and south margins by high-strain zones. This package contains greywacke,
siltstone and argillitic rocks. Further to the south (south of the southernmost sheared contact in Figure
2.3) a continuous sequence of basalt (older) to felsic volcanics (younger) is observed. The basalt here
is pillowed, aphyric and contains epidote and quartz-carbonate veining. The felsic volcanic unit
overlying the basalt is composed primarily of tuffaceous beds that have 1-2 mm rounded quartz and
feldspar crystals set in a buff to grey fine grained felsic matrix. The unit is generally well foliated
with pervasive chlorite alteration along foliation planes. This package is also repeated by folding
(Figure 2.3). Based on lithological similarities seen in the field, the volcanic units in the northern part
of the section appear to correlate with those in the southern part of the section shown in Figure 2.3.

This correlation needs to be tested (see Chapter 3).
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Felsic volcanic rocks (termed felsic volcanic unit in Figure 2.3) in the Jubilee assemblage were
previously dated at 2852 + 1.5 Ma (Corfu and Lin 2000) and 2861 + 12 Ma (Turek et al. 1986). Corfu
and Lin (2000) found that detrital zircons from the volcanogenic sedimentary rocks (termed middle
sedimentary unit in Figure 2.3) in this assemblage show a tight range in *’Pb/*”°Pb ages of 2858 -
2847 Ma, consistent with a provenance from the nearby felsic volcanic rocks. One felsic volcanic
sample from the northwest portion of the map area (samples 839) and another felsic volcanic sample
from north of the Savage Island shear zone (sample 425) were dated to test whether they could be
correlated with the Jubilee assemblage which is predominately observed to outcrop in the southeast

and south of the Savage Island shear zone.

The zircon population in sample 839 consists of abundant short, squat doubly terminated prisms
that are brown in colour, clear and have rod and round shaped inclusions. Three zircon grains were
analyzed, and gave slightly discordant data with overlapping **’Pb /*°Pb ages giving an average of

2852.5 £ 1.0 Ma (Figure 2.4B; Table 2.1). This is the most likely age of eruption.

The zircon population in sample 425 (Figure 2.4C) consists of elongate to squat euhedral prismatic
grains that are brown in colour and clear. Two concordant and one slightly discordant data points
have overlapping **’Pb /**°Pb ages with an average of 2854.5 +1.0 Ma, the probable age of eruption.
The 2852.5 + 1.0 Ma age from sample 839 (Figure 2.4B; Table 2.1) and the 2854.5 £ 1.0 Ma age
from sample 425 (Figure 2.4C; Table 2.1) are essentially identical to the other ages of volcanism in
the Jubilee assemblage. This confirms that the volcanic rocks within and on both sides of the Savage

Island shear zone are all part of the same assemblage.

A tonalitic intrusion (sample 289) that is observed locally to dyke into and cut the basaltic rocks
was also dated. The zircon population in this sample consists of euhedral prismatic grains that are

clear, brown to light brown in colour, exhibit a high lustre and occasionally contain small clear
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inclusions. Three zircons were analyzed from this sample (Figure 2.4D). One datum is lightly
discordant, and one is slightly reversely discordant, possibly because of incomplete dissolution. The
average of 2”’Pb /*°°Pb ages is 2851.0 + 0.9 Ma but the data scatter slightly outside of error. The 2852
+ 2 Ma age of the concordant datum gives the best estimate for the age of emplacement. It is identical
to the volcanic ages and indicates that the intrusion is subvolcanic and could have acted as a feeder

for the Jubilee assemblage felsic volcanism.

2.3.1.3 Loonfoot assemblage

The Loonfoot assemblage is located in the east portion of the map area. This assemblage contains
voluminous massive basalt and minor amounts of dacitic lapilli tuff. This assemblage is
metamorphosed to greenschist facies. The basalt is light green to grey, pillowed or massive and
aphyric. The dacitic lapilli tuff is interlayered with the basalt. In places it contains rounded clasts of
felsic volcanic material, as well as locally derived basalt detritus (Figure 2.5). A sample was taken
from the tuff to constrain the age of volcanism in the assemblage (sample 105). The zircon
population in this sample consists of euhedral prisms and fragments of larger grains that are pink to
brown in colour and clear. Two concordant and one slightly discordant data have overlapping **’Pb
/**Pb ages with an average of 2744.0 + 1.3 Ma (Figure 2.4E; Table 2.1). This is likely the age of
volcanism and shows that the Loonfoot assemblage is significantly younger than the Jubilee

assemblage that outcrops to the south.

2.3.1.4 Island Lake Group

The Island Lake Group (ILG) is the youngest supracrustal package in the Island Lake greenstone
belt. It has an unconformable relationship with the underlying HRG (Lin et al 1998, this study),

however in many places this relationship is overprinted and the contact is marked by a high strain
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zone (the Savage Island shear zone). The lowest unit exposed in the Island Lake Group north of this
high strain zone is a thin, blue quartz bearing mixed sandstone/shale unit that grades into an extensive
sandstone and polymictic conglomerate unit that marks the base of the Island Lake Group in most
other locations. The group then grades into a cross bedded sandstone unit, which in turn grades into
the upper greenish mixed sandstone/mudstone unit (Lin et al. 1998; Corfu and Lin 2000; this study).
The group as a whole is weakly to moderately deformed and metamorphosed to greenschist grade.
Well-preserved primary features such as graded bedding, cross bedding, and flame structures define
younging directions, from which reversal infer macroscopic folds (Lin et al. 1998). Clasts in the
polymictic conglomerate are locally derived and some are observed to contain a tectonic (including
mylonitic) fabric, indicating that the belt had experienced at least one deformational event before the

deposition of the Island Lake Group (Lin et al. 1998; Corfu and Lin 2000).

The ILG outcrops in both the eastern and western portion of the map area and is spatially separated
by the Bella Lake Pluton (Figure 2.2). Detrital zircon dating by Corfu and Lin (2000) on samples
from the upper mixed sandstone/shale sequences in the east and west part of the belt show similar age
distributions. Detrital zircons analyzed in the eastern mixed sandstone/shale (n=10) range in age
from 2920 Ma to 2712 Ma, whereas those analyzed from the western mixed sandstone/shale (n=8)
range in age from 2938 Ma to 2722 Ma. The blue quartz bearing mixed sandstone/shale from the base
of the ILG in the east part of the belt was also analyzed by Corfu and Lin (2000). Detrital zircons
from this unit (n=8) range in age from 2896 Ma to 2821 Ma, a very different age pattern from that of

the younger mixed sandstone/shale.

These data, and the interpretation of previous workers that the 2744 Ma Bella Lake pluton intruded
the lower part of the ILG (Turek et al. 1986; Lin et al. 1998; Corfu and Lin 2000), suggest that the

ILG was deposited over an extended period of time (at least 30 m.y.). During this study, a critical
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outcrop showing the contact relationship between the Bella Lake pluton and the sandstone and
polymictic conglomerate unit of the ILG was cleaned and re-examined. The contact, previously
interpreted as intrusive, is seen to be an unconformity where locally derived clasts of the Bella Lake
pluton have filled in paleo-topographic depressions on the pluton surface (Figure 2.6). Three detrital
zircon grains from a sandy layer above the contact at the cleaned outcrop (sample 02) range from well
preserved multifaceted elongate prisms to well rounded, mechanically abraded and pitted zircons. The
zircons are slightly brown to colourless, clear and contain small clear inclusions. Near-concordant
data from three detrital zircon grains give *”’Pb/***Pb ages of 3015 + 2 Ma, 2934 + 2 Ma and 2717 + 2
Ma (Figure 2.4F; Table 2.1). The youngest age is an older limit on deposition at the base of the ILG
and confirms the unconformable relationship observed in the field between the Island Lake Group

and the Bella Lake pluton.

2.3.2 Plutonic Rocks (samples 04, 176, 067, 899)

Batholiths surround the supracrustal rocks in the Island Lake greenstone belt and range in age from
2894 Ma to 2699 Ma (Turek et al. 1986; Stevenson and Turek 1992; Corfu and Lin 2000; this study).
In the Cochrane Bay area a leucotonalite and a foliated diorite are exposed. The diorite contains mafic
xenoliths and is locally seen to be the source of large (>30 cm) clasts in the ILG. The leucotonalite
gave a previous age of 2886 £12 Ma (Turek et al. 1986). A sample was collected from the diorite for
this study (sample 04). The zircon population in this sample consists of equant euhedral grains with
double terminated prisms that are orange to pale brown in colour, clear, and contain minor clear and
opaque inclusions. Three zircon grains were analyzed from this sample and gave overlapping near-
concordant data with an average *"’Pb/**Pb age of 2894.1 + 1.0 Ma (Figure 2.7A; Table 2.1). This
age is interpreted as the time of crystallization for the diorite and is the oldest intrusive U-Pb age yet

recorded in the Island Lake greenstone belt.
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A batholith south of the belt has an age of 2825 £ 2 Ma (Corfu and Lin 2000), while plutons in the
northwest portion of the belt have younger ages of 2778 + 5 Ma (Wassagomach Tonalite, Stevenson
and Turek 1992), and 2748 £ 3 Ma (Chapin Bay Tonalite, Stevenson and Turek 1992). A deformed
tonalite with S/C fabric and rotated porphyroblasts outcrops in Chapin Bay and was dated as part of
this study (sample 176). The zircons in this sample are euhedral, short, stubby, doubly terminated
prismatic grains that are pink to brown in colour and internally clear. Inclusions and fractures are
common in most grains, and were avoided during picking. Three zircons gave overlapping near-
concordant data with an average **’Pb/***Pb age of 2747.2 + 1.2 Ma (Figure 2.7B; Table 2.1). This is
the likely crystallization age of the tonalite, which agrees with the previous age on the Chapin Bay
tonalite sampled to the north and places a maximum age on the deformational fabric developed in the

tonalite.

The Bella Lake pluton outcrops in the middle of the Island Lake greenstone belt. The eastern part
of the Bella Lake pluton was dated at 2744 £ 2 Ma by Corfu and Lin (2000), who suggested, along
with others, that this pluton could be traced westward to the Cochrane Bay area. Sample (067) was
taken to test this, and the zircon population in this sample consists of equant and elongate euhedral
prisms and broken tips of larger prisms that are light to dark brown in colour. Larger grains tend to be
more heavily fractured, and small clear inclusions are rare in all grains. Three zircon grains gave
concordant or near-concordant data with variable precision. The three define an average **’Pb/*”°Pb
age of 2741 = 1.0 Ma but the most precise datum is slightly older than the others (unfilled ellipse, not
used in average *’Pb/*°Pb age calculation). A very discordant datum (63%) not shown in Figure
2.7C is listed in Table 2.1, and also shows evidence of a slightly older age. These zircons define an
age for the pluton of 2741 £ 1.0 Ma (Figure 2.7C; Table 2.1), which is essentially identical to the age

of the Bella Lake Pluton.
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In the Pipe Point Island area (near sample location 899), Turek et al. (1986) reported ages of
porphyry intrusion at 2729 + 2 Ma, however the discordia line that defines this age gave a negative
lower intercept. A high-level quartzofeldspathic porphyry (sample 899) that cuts volcanics of the
Jubilee assemblage contains a zircon population that consists of euhedral elongate prisms and broken
tips of larger grains. The zircons range in colour from orangey-pink to colorless and rarely contain
clear inclusions. Five zircons gave overlapping concordant data with an average **’Pb/*°Pb age of
2729.6 £ 1.0 Ma (Figure 2.7D; Table 2.1). This age is the best estimate for crystallization of the
porphyry. A younger 2699 Ma porphyry crosscuts the ILG (Turek et al. 1986). This represents the
youngest known age of magmatic activity in the belt and puts a younger age limit on deposition of the

ILG.

2.4 Discussion

2.4.1 Composition and history of the Island Lake greenstone belt

Stevenson and Turek (1992) carried out anNd isotopic study in the western portion of the Island
Lake greenstone belt. Dacite tuffs in the 2852 Ma Jubilee assemblage and granites associated with the
2744 Ma Loonfoot assemblage (located north of the Savage Island shear zone) have negative
(enriched) eNd values (t=2.85 Ga and 2.74 Ga, respectively) that range from —2.0 to -0.4 and Nd
model ages that range from 2.97 Ga to over 3.0 Ga, suggesting involvement of a Mesoarchean crustal
component in both of these volcanic assemblages. This evidence and the presence of 3.0 Ga age
detrital zircon in the ILG suggests that there was continual involvement of an older crustal component

throughout the development of the greenstone belt.

Strictly speaking, the 2897 Ma age of detrital zircons in the Whiteway assemblage (sample 859)

represents a maximum age for sedimentation in this assemblage but, as suggested above, the age
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could record felsic volcanism and deposition in the assemblage. The second interpretation is favored
here for several reasons. First, the rocks in this assemblage are lithologically distinct from other
volcanic assemblages in the belt (Lin et al. 1998; this study). Second, the presence of volcanic
material associated with 2.9 Ga plutons has been previously documented in the belt. In the Cochrane
Bay area, a 2886 £12 Ma (Turek et al. 1986) leucotonalite (similar in age to the diorite, sample 04,
dated in this study), cuts a mafic to intermediate fragmental volcanic rock (Corfu and Lin 2000; Turek
et al. 1986). Thirdly, in the Jubilee assemblage, the age of detrital zircons reflects the age of felsic
volcanism in the assemblage. Detrital zircons (n=6) dated by Corfu and Lin (2000) give near
concordant **’Pb/*°°Pb ages that form a tight cluster of ages in the range 2858-2847 Ma. These ages
are similar to the four ages of felsic volcanism of ca. 2852 Ma obtained in the assemblage (Corfu and
Lin 2000; this study). This pattern supports the suggestion of Corfu et al. (1998) that the absence of
younger components in volcanogenic sediments can be taken as an indication that deposition pre-
dated the younger periods of volcanism, and that the ages of detrital zircons are likely close to that of
deposition of the unit. All these observations suggest that the 2897 Ma detrital zircon in sample 859
reflects the age of volcanism and deposition in the assemblage. If so, the Whiteway assemblage is the
oldest dated felsic volcanic unit in the Island Lake greenstone belt. The age of 2894 Ma for the diorite
from Cochrane Bay (sample 04) is quite similar and suggests that the Cochrane Bay diorite represents

an intrusive component of the Whiteway assemblage.

The Jubilee assemblage preserves the most voluminous volcanism in the belt. The data from this
study and others indicate that the assemblage is continuous along strike in the belt and records a ca.

2852 Ma period of bimodal volcanism and associated plutonism that lasted only a few million years.

The Loonfoot assemblage represents a previously unknown period of 2744 Ma volcanism that was

coeval with emplacement of major plutons around Bella Lake and Chapin Bay. Except for
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volumetrically minor porphyries, this appears to be the youngest significant period of volcanic and
plutonic activity. Although only minor exposures of supracrustal rocks from this assemblage are

preserved in the area, the assemblage contains the largest exposures of subvolcanic intrusions.

2.4.1.1 Contact relationships between the volcanic assemblages

The new geochronology presented in this paper confirms the sub-division of rocks of the HRG into
three distinct volcanic assemblages with ages of 2897 Ma, 2852 Ma, and 2744 Ma (Lin et al.,1998;
Corfu and Lin, 2000; this study). This study, however, questions the significance of faults between
the assemblages. In several places the assemblages were thought to be bound by later shear zones
(Lin et al., 1998, Corfu and Lin, 2000), however identically aged rocks are present on both sides of
the shear zones (e.g. in the Jubilee assemblage, samples 425 and 839). This leads to the conclusion
that the original contact relationships between the volcanic assemblages of the HRG are not the fault
structures, and as such the contacts are not directly observed in the field. It is clear that these

assemblages are not fault-bounded panels as described by Lin et al. (1998) and Corfu and Lin (2000).

Given that the contacts are not directly observed in the field, nor are they tectonic as previously
interpreted, they can only be inferred from other field observations and the currently available U-Pb
ages and Nd isotope data. All three of the volcanic assemblages are observed in the field to be
intruded by plutons that are close in age to that of the volcanic assemblage in which they intrude. The
Whiteway assemblage is intruded by the York Lake granodiorite (Parks et al., 2003), which has not
been directly dated, but is inferred to be the eastern extension of the 2894Ma Cochrane Bay Diorite
(sample 04, this study). The Jubilee assemblage is intruded by the 2851 Ma Jubilee Tonalite (sample
289, this study), as well as the younger southern tonalite gneiss (Corfu and Lin, 2000). The Loonfoot
assemblage is intruded by the Loonfoot pluton, which is currently not dated, however it is interpreted

to have a similar age as the 2.744 Ga Bella Lake pluton.
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The limited Nd isotope data set of Stevenson and Turek (1992) summarized above indicate that two
of the volcanic assemblages (the Jubilee and Loonfoot assemblages) have been influenced by an older
~3.0 Ga crustal source. If the Whiteway assemblage has also been influenced by an older crustal
source, it is possible that the ages of the plutons observed in the field to be in contact with each
volcanic assemblage represent local, (pene) contemperoaneous reworking of older Mesoarchean
crust. In such a scenario, the volcanic assemblages could have autochthonous relationships with each
other. A possible stratigraphic reconstruction that would account for the intrusive contacts observed
in the field is presented in Figure 2.8. In this reconstruction, an “uneven” intrusive surface that is not
at the same stratigraphic level within all three of the volcanic assemblages would produce the contact
relationships seen in the field. This original geometry was subsequently modified by folding and late
shear zones, and the whole stratigraphic section was eroded to result in the outcrop pattern observed
today. This proposed original stratigraphy needs to be tested by further Nd and geochemical work

(see chapter 3).

Regardless of their original geometry with respect to each other, the volcanic rocks in the Island
Lake greenstone belt include lithologically distinct assemblages that have discrete ages spanning
nearly 200 m.y. Therefore they cannot all be considered as part of a single “Hayes River Group”.
Chronological divisions of the HRG are also being made in other greenstone belts in the
Northwestern Superior Province in Manitoba (such as in the Oxford Lake-Knee Lake-Gods Lake
greenstone belt; Corkery et al. 2000; Lin et al., 2006). It is clear that the use of this term in the
northwestern Superior Province needs to be re-evaluated and that the term “Hayes River Group” be

abandoned.
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2.4.1.2 Contact relationships between the Island Lake group and plutons in the Island Lake

greenstone belt

U-Pb data confirm new field observations that the relationship between the ILG and Bella Lake
Pluton is unconformable (Figure 2.6). Based on available data, the age of deposition of the Island
Lake Group is bracketed between 2712 Ma (the age of the youngest detrital zircon dated, Corfu and
Lin 2000) and ca. 2699 Ma (the age of a crosscutting intrusion, Turek et al. 1986). This group is
similar in geological character and age of deposition to sedimentary sequences that occur in the Stull
Lake (<2713 + 5 Ma, Skulski et al. 2000), Gods Lake (<2711 £+ 2 Ma, Lin et al. 2006), Cross Lake
(<2709 Ma, Corkery et al. 1992), Knee Lake (<2707 £ 9 Ma, Corkery et al. 2000), and Oxford Lake
(2705 £ 2 Ma, Lin et al. 2006) greenstone belts. Moreover, these groups in the northwestern Superior
Province are similar in geological character to groups deposited in late orogenic basins in the southern
part of the Superior Province, such as the Timiskaming Group in the Abitibi greenstone belt. The
groups in the northwest Superior occupy similar stratigraphic positions within their respective belts,
have similar lithologies and contact relationships with underlying rocks, and are also spatially related
to late faults and mineralization. Such similarities may also indicate similar tectonic environments of
their deposition. The groups in the northwest Superior, however, show a contribution of deep water
sediments, and are distinctly older than those in the southern Superior Province, which were
deposited in the period 2.68-2.67 Ga (Corfu et al. 1991; Davis 2002). Despite these two differences,
the interpretation that these groups are akin to Timiskaming type groups and were deposited in late
orogenic basins is supported by recent proposals that collision occurred ca. 20-40 m.y. earlier in the
northwestern Superior Province. (i.e. Figs. 10 and 11 of Percival et al. 2004; Percival et al. 2006; Lin

et al. 2006). The tectonic significance of these basins are discussed in detail in Chapter 4.
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2.4.2 Regional correlations

The Island Lake terrane (now the Island Lake domain) was originally considered distinct from the
North Caribou terrane to the south due to the presence of the Savage Island shear zone. Thurston et al.
(1991D) interpreted this structure to be responsible for juxtaposing the Island Lake “terrane” to the 3.0
Ga North Caribou terrane. However, more recent work has shown that the Island Lake greenstone belt
was built on ca. 3.0 Ga crust (Stevenson and Turek 1992; Corfu and Lin 2000), as was the once
subdivided Munroe Lake domain to the north (Skulski et al. 2000). As a result, the northern margin of
the North Caribou terrane has been drawn in different locations by different authors (Thurston et al.
1991b; Stott 1997; Skulski et al. 2000; Beaumont-Smith et al. 2003; Percival et al. 2004). The true
location of this boundary, and the importance of the Savage Island shear zone as a terrane bounding

fault have never been tested.

A goal of this study was to determine where the North Caribou terrane boundary should be drawn,
and to determine the affinity of the Island Lake domain. New field mapping and geochronology show
the continuity of supracrustal assemblages across the Savage Island shear zone, and clearly indicates
that this structure is not a regionally important feature that juxtaposed geologically distinct terranes.
This evidence, and the ca. 3.0 Ga Nd model ages of Stevenson and Turek (1991) on either side of the
shear zone leads to the conclusion that the old crustal source in the Island Lake greenstone belt is in

fact the North Caribou terrane.

In the once subdivided Munro Lake domain to the north, U-Pb ages of 2855 + 5 Ma and 2848 £+ 7
Ma and ca. 3.0 Ga Nd model ages were reported for tonalite gneisses by Skulski et al. (2000). These
are similar to ages of volcanism and plutonism in the Jubilee assemblage, and have led to the Munro
Lake domain now being considered as part of the Island Lake domain (Stott 2009). A rifted margin

sequence at Ponask Lake in the once subdivided Munro Lake domain is not yet directly dated, but its
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detrital zircons gave a uniform age of 2865 Ma, while a porphyry intruded into basalts gave 2857 + 2
Ma (D. W. Davis and M. Moore, Geochronology in the western Superior Province, unpublished

report, Royal Ontario Museum 1991, with interpretations by Skulski et al. 2000).

The Oxford-Stull domain consists of ca. 2.84 Ga oceanic (Syme et al. 1999, Corkery et al. 2000)
volcanic rocks, which show local Nd inheritance and contains detrital zircons as old as 2.94 Ga in a
sedimentary group that is unconformable on the volcanic rocks (Stott, pers comm. 2006). These ages
are close, although not identical, to the age of the Jubilee assemblage in the Island Lake greenstone
belt. North of this domain, no other events of similar ages or geological environment are found, with
the exception of an age of 2846 + 5 Ma measured for a granitoid pluton in the Northern Superior
superterrane (Skulski et al. 2000). This has a Nd mantle extraction age of 3.57 Ga (op. cit) and
therefore formed by melting of much older crust than that beneath the Island Lake domain or North

Caribou terranes.

Volcanic rocks similar in age to those at Island Lake can also be found in areas to the south of
Island Lake. The most striking age correlations are with volcanic sequences in the Red Lake
greenstone belt in the Uchi domain on the southern margin of the North Caribou terrane (Figure 2.9,
Red Lake ages summarized by Sanborn-Barrie et al. 2001). The Red Lake belt is dominated by 2.99-
2.92 Ga volcanics of the Balmer and Ball assemblages (Corfu and Wallace 1986; Corfu and Andrews
1987). The Balmer assemblage is disconformably overlain by a thin sequence of intermediate
volcaniclastic rocks and overlying sediments called the Bruce Channel assemblage, which gave two
identical ages of 2894 Ma for felsic tuffs (Corfu and Wallace 1986; Corfu and Andrews 1987). These
are close to the age from the Whiteway assemblage. The Trout Bay assemblage is in tectonic contact
with the Ball assemblage. It contains a lower sequence of basalt overlain by clastic, intermediate

volcanic rocks and chert-magnetite iron formation. Zircon from an intermediate tuff gave an age of
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2853 = 1 Ma (Sanborn-Barrie et al. 2001). Both the age and general stratigraphy are similar to the
Jubilee assemblage. The calc-alkalic McNeely volcanic sequence of the Confederation Lake
assemblage lies with an angular unconformity over the Balmer assemblage and gives ages of 2745-

2742 Ma, similar to the Loonfoot assemblage.

This continuity is also supported by ages of small greenstone belts in the Berens River subprovince
(the area now termed the North Caribou terrane core), situated in the middle of the North Caribou
terrane (Corfu et al. 1998; Sanborn-Barrie et al. 2001). The Favourable Lake, Hornby Lake and
Mclnnes Lake belts are the largest of a series of north-south trending greenstone slivers extending
northward from the Red Lake belt (Figure 2.1). Felsic volcanics from the Hornby Lake belt gave an
age of 2901 + 2 Ma (Corfu et al. 1998), close to ages from the Whiteway and Bruce Channel
assemblages, while three volcanic units from the McInnes Lake belt gave ages ranging from 2974 Ma
to 2928 Ma (Corfu et al. 1998), a range similar to that of the Balmer and Ball assemblages at Red
Lake. A felsic tuff from the Favourable Lake belt gave an age of 2858 +5/-4Ma (Corfu and Ayers

1991), an almost identical age to the Jubilee and Trout Bay assemblages.

The similarity of ages for all three periods of magmatism in the Island Lake belt with greenstone
belts to the south suggests that the region from Red Lake to Island Lake may have acted as a
continuous crustal block over distances of at least 400 km, a scenario previously proposed by Corfu et
al. (1998) and Sanborn-Barrie et al. (2001). The two new volcanic ages of 2897 Ma and 2744 Ma
reported here extend the duration of this continuity to at least ca. 200 m.y., and provide evidence for
continuity at times younger than those proposed by other workers. The age correlations among all
these belts suggest the existence of a regionally important and paraconformable volcanic
“megasequence” (Figure 2.9) (Corfu et al. 1998; Sanborn-Barrie et al. 2001; this study). The term

“megasequence” is used here to mean a volcanic package that is continuous, volumetrically large, and
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includes more than one assemblage. The Red Lake belt apparently preserves all of the volcanic
episodes of this megasequence, whereas the Hornby Lake and Mclnnes Lake belts contain remnants

of the lower volcanic units, and the Island Lake greenstone belt, remnants of the upper volcanic units.

The distribution of this volcanic megasequence, as well as the evidence presented above, shows a
clear commonality across the entire width of the North Caribou terrane and into the areas originally
differentiated as the Munro Lake terrane and the Island Lake terrane (now the Island Lake domain),
and possibly as far north as the Oxford-Stull domain (Percival et al. 2006). The North Caribou
terrane is now used to describe all areas in the northwestern Superior Province that show evidence of
reworked ca. 3.0 Ga Mesoarchean crust. This would make the North Caribou terrane a continuous
reworked crustal block that extends from at least the Gods Lake Narrows-Stull Lake-Wunnummin
Lake fault zone (which separates the Oxford-Stull domain from the Island Lake domain), to possibly
as far north as the North Kenyon Fault (which separates the Northern Superior superterrane from the
Oxford-Stull) domain over 400 km southward (Pervical et al. 2006). The crustal block is divided into
3 components, a northern margin which consists of the Island Lake domain and possibly the Oxford-
Stull domain, a core region occupies the area originally defined by Thruston et al. (1991) as the North
Caribou terrane, and the southern margin which consists of the Uchi domain (Figure 2.1; Stott 2009).
The southern boundary of this terrane is proposed to be the southern boundary of the Red Lake
greenstone belt. It may extend as far south as the Sydney Lake-St. Joseph Fault, which separates the
Uchi domain and English River subprovince (Figure 2.1; Thurston et al. 1991b; Stott 1997; Percival

et al. 2004 and references therein).

The Berens subprovince (the area now termed the North Caribou terrane core) greenstone belts are
now engulfed by younger 2750-2680 Ma granitoid plutons. These plutons extensively reworked the

lower crust in what is interpreted to be an Andean-type margin developed during Neoarchean
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subduction of oceanic crust along the southern margin of the North Caribou terrane (Stott and Corfu
1991; Corfu and Stone 1998; Sanborn-Barrie et al. 2001). This interpretation is supported by seismic
data (White et al. 2003), where north dipping seismic reflectors are interpreted to be a product of
northward subduction of parautochthonous terrane(s) that have subsequently been telescoped
(Percival et al. 2004). The age correlations presented above may indicate that similar tectonic
processes were occurring on the north margin of the North Caribou terrane. South dipping seismic
reflectors are observed near the north margin of the North Caribou terrane (White et al. 2003), as well
as north vergent structures such as the Savage Island shear zone in this area (Lin et al. 1998) and the
Gods Lake Narrows shear zone in the OSD (Lin et al. 2006). These data, along with the geometry and
kinematics of shear zones led Lin et al. (2006) to suggest the existence of a southward dipping
subduction zone on this margin. The true nature of the northern margin of the North Caribou terrane
and the Island Lake greenstone belt can only be decided after more extensive geochemical, isotopic
and structural study. In any case, geochronology supports the notion that the Superior Province was
assembled by accretion of large independent crustal blocks, even though the individual histories of

these blocks involved extended periods of autochthonous greenstone development.

2.5 Conclusions

The Island Lake greenstone belt experienced a long and complex geological history. Three distinct
ages of volcanism are observed at ca. 2897 Ma, 2852 Ma, and 2744 Ma. These ages occur in what
was previously considered as one supracrustal group, the Hayes River Group. This study and others,
which are also showing new chronological subdivisions, indicate that the term “Hayes River Group”
should no longer be used for all volcanic rocks in the northwestern Superior Province. The youngest
supracrustal group in the belt, the Island Lake Group, unconformably overlies the 2744 Ma old Bella

Lake Pluton. Sedimentation in the ILG is bracketed between 2712 Ma and 2699 Ma, similar to the
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ages of sedimentation found in other late sedimentary packages in the northwestern Superior
Province. These groups in the northwestern Superior Province are analogous to the late orogenic

Timiskaming groups located in the southern Superior Province.

The Savage Island shear zone, a regional fault structure that transects the Island Lake greenstone
belt, is not a terrane-bounding feature as correlative supracrustal assemblages are observed on both
sides of it. Igneous rocks of all ages within the Island Lake greenstone belt were influenced by
Mesoarchean crust whose source is likely to have been the North Caribou terrane. The volcanic
sequences at Island Lake can be correlated on the basis of age with rocks in the adjacent Munro Lake
and North Caribou terranes, and possibly in the Oxford-Stull domain, as well. Similar ages of
volcanism are also found in the Favourable Lake, Mclnnes Lake, Hornby Lake, and in particular the
Red Lake greenstone belts, suggesting the presence of a large volcanic megasequence. Based on
these data, the Island Lake domain, and North Caribou terranes, and possibly the Oxford-Stull

domain, are suggested to be part of a larger reworked Mesoarchean crustal block.
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Figure 2.1 Regional terrane map of the northwestern Superior Province. The proposed extent of the
North Caribou terrane, its northern margin, southern margin and core are shown (Percival et al. 2006;
Stott 2009; this study). Locations of the greenstone belts cited in text and relevant terrane boundaries
are shown. Boxed area is the location of the map shown in Figure 2.2. Abbreviations for faults: NKF,
North Kenyon fault; GSWF, Gods Lake Narrows-Stull Lake-Wunnummin Lake fault zone; SISZ,
Savage Island shear zone; SSF, Sydney Lake, St. Joseph fault. Abbreviations for greenstone belts: IL,
Island Lake; RL, Red Lake; GL, Gods Lake; SL, Stull-Edmound Lake; HL, Hornby Lake; ML,
Mclnnes Lake; FL, Favourable Lake. Modified from Thurston et al. (1991); Stott (1997); Percival et

al. (2004); Parks et at. (2006); and Stott (2009).
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Figure 2.2 Simplified geology of the Island Lake greenstone belt. Locations of samples analyzed in this study are shown. Abbreviations used for

CBSZ, Chapin Bay shear zone. U-Pb ages from Turek et al.
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teway Channel shear zone
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(1986), Stevenson and Turek (1992), and Corfu and Lin (2000). Map modified from Lin et al. (1998).
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Jubilee assemblage, south of the Garden Hill area. See text for more details.
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Figure 2.4 Concordia diagrams showing zircon data for samples in the Island Lake greenstone belt.
The unshaded datum for sample 859 is not included in the average **’Pb/**Pb age calculation.
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Figure 2.5 Photograph of the dacitic lapilli tuff in the Loonfoot assemblage. The dacite is interlayered
with the basalt and in places it contains rounded clasts of felsic volcanic material, as well as locally
derived basalt detritus. Camera lens for scale.
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Figure 2.6 Photograph of the contact between the Bella Lake pluton and the Island Lake group
(dashed lines). Locally derived clasts of the Bella Lake pluton infill paleo-topographic depressions on
the pluton surface. Pen for scale
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Figure 2.7 Concordia diagrams showing zircon data for samples from plutonic rocks in the Island
Lake greenstone belt. The unshaded datum for sample 067 is not included in the average
207Pb/206Pb age calculation.

39



I ca. 2744 Ma Loonfoot assemblage
- ca. 2852 Ma Jubilee assemblage
\: ca. 2897 Ma Whiteway assemblage

Location of shear zones

Figure 2 8. Proposed original stratigraphy of the volcanic assemblages and intrusive rocks in the
Island Lake greenstone belt. The uneven surface of the intrusive suite accounts for the contact
relationships observed in the Island Lake greenstone belt.
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Chapter 3
Meso — and Neoarchean evolution of the Northwestern Superior
Province: evidence from lithogeochemistry and Nd isotope data of
volcanic and plutonic rocks and U-Pb dyke ages from the Island

Lake greenstone belt

3.1 Introduction

The Superior Province covers 1,572,000 km? (Goodwin 1991) and is the largest piece of preserved
Archean crust on Earth. Work here in the past few decades has involved using a multi-disciplinary
approach including field mapping, U-Pb geochronology, Nd isotopes, lithogeochemistry and
structural studies to refine the subdivisions of rocks within the Superior Province, as well as to
generate regional tectonic models for the Superior Province. Recent models for the generation of
greenstone belts and the tectonic evolution of different regions in the Superior Province have included
step-wise northward dipping subduction-based models for the western and southern part of the
Superior Province (Percival et al. 2006 and references within), and models that are driven by catalytic

crustal delamination for the north eastesrn part of the Superior Province in Quebec (Bedard 2006).

The Superior Province is divided into distinct superterranes, terranes and domains that all have
different geological histories (Figure 3.1, Card and Ciesielski 1986; Card 1990; Stott 1997; Percival et
al. 2006; Stott 2009). The granite-greenstone elements in the northwestern Superior Province consist
of the North Caribou terrane, which is composed of a 3.0 Ga core region, and a northern and southern
margin (Figure 3.1). Magmatism in greenstone belts in these areas include both Mesoarchean and

Neoarchean events, and most volcanic rocks show geochemical and isotopic evidence of recycling of
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an older crustal component (Thurston and Chivers 1990; Stott 1997; Percival et al. 2006; Parks et al.

2006 and references within).

The southern part of the Superior Province contains the Abitibi greenstone belt (Figure 3.1), which
is the most continuous and arguably the most studied belt in the Superior Province. In contrast to the
northwestern Superior Province, volcanism in the Abitibi is restricted to juvenile oceanic Neoarchean
events (2760-2670 Ma, Stott 1997; Ayer et al 2002), and is interpreted to represent island arc or
oceanic plateau sequences (Stott 1997; Ayer et al 2002). Tectonic amalgamation south of the North
Caribou terrane core region occurred via a series of northward dipping, southward younging,
subduction zones that accreted the domains, terranes and basins to the south of the North Caribou
terrane; a processes that ended with the accretion of the Wawa-Abitibi terrane and the Minnesota

River Valley (Thurston et al. 1991; Stott 1997; Percival et al. 2006 and references within).

In contrast, detailed models for the generation of volcanic assemblages and tectonic amalgamation
along the northern margin of the North Caribou terrane are not as well documented. It is not clear if
the northern margin is also related to a northward dipping subduction zone and is potentially the first
and oldest event in this step-wise model (Stott 1997), or if it is related to subduction with opposite
(southward) polarity as suggested by recent work (Lin et al. 2006; Parks et al. 2006; Percival et al.

2006).

The Island Lake greenstone belt is located on the northern margin of the North Caribou terrane, and
as such is well situated to investigate the tectonic affinity of the northern margin. Three
chronologically distinct volcanic assemblages have been identified in the belt, and the contacts
between the assemblages are proposed to be unconformable/autochthonous in nature (Chapter 2;

Figure 2.8; Parks et al. 2006). Nd isotope studies by Stevenson and Turek (1992) suggest that the belt
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has been variably influenced by an older crustal source, however the newly identified volcanic
assemblages were not sampled in this previous study, and the Nd isotope data set needs to be
expanded to test if an older crustal source is seen to influence all of the volcanic assemblages. This
chapter investigates the geochemical and isotopic nature of packages of Mesoarchean and Neoarchean
volcanic rocks, as well as the timing of deformation events in the Island Lake greenstone belt in
Northern Manitoba. The lithogeochemical and Nd isotopic characteristics of the Mesoarchean and
Neoarchean volcanic assemblages and contemporaneous plutons in the belt are examined in order to
determine the geodynamic settings in which these rocks formed and to test if the contacts between
them truly juxtapose autochthonous terranes. The timing of movement along two regionally important
shear zones is also investigated in order to place timing constraints on deformation and tectonic
amalgamation in this part of the Superior Province. These data are considered in a regional context
and a tectonic setting in which these volcanic rocks were generated is proposed. Together with timing
constraints from shear zones, Meso — and Neoarchean episodes of southward dipping subduction
along the northern margin of the North Caribou terrane are proposed for the tectonic evolution of this

part of the northwestern Superior Province.

3.2 Geological setting

3.2.1 Regional Geology

As discussed above, the Superior Province is divided into roughly E-W trending domains, terranes
and superterranes with distinct geological and tectonic characteristics (Figure 3.1, Card and Ciesielski
1986; Card 1990; Stott 1997; Stott 2009). In the northwestern Superior Province, the terranes and

domains are separated by regionally continuous fault structures and the last episode(s) of movement
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on these faults, and structures that parallel them, are related to the last stages of terminal collision (the
D, structures discussed in section 3.2.3, Thurston et al. 1991). The most recent update to the
subdivision of terranes in the Superior Province is that by Stott (2009; Figure 3.1). The divisions in
the northwestern Superior Province (Figure 3.1) include the Northern Superior superterrane (NSS), a
ca. 3.7 Ga crustal block that is bound to the south by the northern margin of the North Caribou terrane
via the North Kenyon fault (Skulski et al. 2000; Percival et al. 2006). The northern margin of the
North Caribou terrane consists of the Oxford-Stull domain (OSD) and the Island Lake domain (ILD).
The OSD is a granite-greenstone domain of isotopically juvenile affinity (Skulski et al. 2000),
however new data suggests evidence of an older crustal component (e.g. 2.92 tonalities and negative
eNd data of Rayner and Stott (2005)). The OSD is separated from the Island Lake domain (ILD) via
the Gods Narrows-Stull -Wunnummin fault zone (GSWF, Lin et al. 2006). The ILD consists of
greenstone belts of dominantly continental affinity (eg. the Island Lake greenstone belt, Stevenson
and Turek. 1992; Corfu and Lin 2000; Parks et al.2006; the Ponask Lake — Sachigo Lake greenstone
belt, Skulski et al. 2000), and includes the previously recognized Munro Lake domain (Stott 2009).
South of the northern margin is the core region of the North Caribou terrane, which contains the 3.0
Ga cratonic block in the centre of the North Caribou terrane (Figure 3.1, Stott 2009; Thurston et al.
1991). The Uchi domain sits on the southern margin of the North Caribou terrane (Stott 2009;
Percival et al. 2006). The North Caribou terrane as a whole is the oldest stable craton onto which the
Northern Superior superterrane and the southern part of the Superior Province were juxtaposed during

terminal collision (Thurston 1991; Stott 1997; Percival et al. 2006).
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3.2.2 Geology of the Island Lake greenstone belt

The Island Lake greenstone belt is composed of volcanic, plutonic and sedimentary rocks that range
in age from 2.900 to 2.699 Ga (Figure 3.2; Turek et al. 1986; Corfu and Lin 2000; Parks et al. 2006).
The rocks in the belt are divided into three broad packages; (1) Mesoarchean and (2) Neoarchean
packages of volcanic and plutonic rocks; and (3) a 2.71-2.70 Ga clastic sedimentary group. All of
these rocks have been variably metamorphosed to either greenschist or lower amphibolite facies, and

the prefix “meta” is implied for most of the rock names in the Island Lake greenstone belt.

The Mesoarchean package includes two episodes of volcanism and associated sedimentation and
plutonism in the belt (Figure 3.2, the 2.897 Ga Whiteway assemblage and 2.852 Ga Jubilee
assemblage of Parks et al. 2006), as well as a younger 2.825 Ga gneiss (Corfu and Lin 2000). The
Neoarchean package includes the 2.744 Ga Loonfoot assemblage and related intrusive suite, and a
suite of 2.73 Ga and 2.70 Ga volumetrically small porphyries (Turek et al. 1986; Parks et al. 2006).
The lithologies of these packages are described in detail in Chapter 2, and discussed briefly below.
Although not directly observed in the field, recent work (this study; Parks et al. 2006) shows that the
contacts between the volcanic assemblages are most likely unconformable and are not the shear zones
found in the belt as originally described by Lin et al. (1998). The third and youngest package in the
belt is the sedimentary Island Lake group. It consists of fluvial-alluvial conglomerates, sandstones and
turbidites that were deposited between 2.712 Ga and 2.699 Ga (described in more detail in Chapter 4,
Corfu and Lin 2000; Parks et al. 2006). This group has unconformable relationships with the older

volcanic assemblages and the older plutonic rocks in the belt (Parks et al. 2006; Chapter 2)
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3.2.3 Deformation

The Island Lake greenstone belt has experienced at least two distinct episodes of deformation. The
first event (D,) produced a foliation (S;) in the belt, which is most likely related to large scale folds in
the volcanic and volcanogenic assemblages, and a second, younger event (D,), related to late
movement along the shear zones in the belt and terminal collision (Figure 3.2; Figure 3.3). The older
D, event(s) in the belt is best expressed in the 2.852 Ga Jubilee assemblage, where it occurs as a set of
upright tight to isoclinal folds that have an axial planar foliation (S,;) that strikes roughly east-west

and dips near vertically or steeply to the south (Chapter 2; Parks et al. 2006).

The second event (D») is related to movement along the shear zones located in the belt and terminal
collision in the NW Superior Province. The most prominent structure in the belt is the Savage Island
shear zone (SISZ), a D, fault structure which extends for >65 km within the belt and is observed to
continue further to the east and west on regional scale maps. The SISZ is a wide, 1-3 km wide zone of
intensely deformed rocks that trends east-south-east, and in the eastern part of the belt is parallel to
sub-parallel to two smaller shear zones, the Harper Island and Whiteway Channel shear zones (HISZ
and WCSZ respectively) (Figure 3.2; Figure 3.3). The HISZ and WCSZ are both discrete, narrow
zones that are intensely deformed and are not observed to be continuous on regional scale maps

(Percival et al. 2006; Stott 2009).

Detailed kinematic work on all three of these shear zones was completed by Lin et al. (1998), and
the western portion of the SISZ is described in more detail in Parks et al. (2001). The rocks in the
SISZ contain a well developed foliation (S,) that strikes east to south-east and dips steeply with
lineations that plunge steeply eastward. The S, foliation in the SISZ is seen to transpose an older S,

foliation thought to have been produced by the D; folding events in the volcanic assemblages to the
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south of the SISZ (Figure 3. 4; this study; Lin et al. 1998).Shear sense indicators show evidence for
south-over-north dip slip and dextral strike slip movement (Lin et al. 1998). This shear sense is
similar to other major shear zones to the north of the Island Lake greenstone belt, including the
Southern Knee Lake shear zone (Lin and Jiang 2001) and the Gods Lake Narrows shear zone (Lin et
al. 2006). Rocks in the Harper Island shear zone contain a well developed foliation that strikes
casterly and dips steeply. Lineations plunge steeply and shear sense indicators show evidence of
dextral movement on horizontal surfaces (Lin et al. 1998). The Whiteway Channel shear zone
outcrops north of the HISZ. Lineations plunge steeply and shear indicators show north-over-south dip

slip (Lin et al. 1998).

3.3 Nature of Volcanic Assemblages and contemporaneous plutonic rocks:

Lithogeochemistry and Nd isotope results

The lithological, geochemical and Nd isotopic characteristics of the Meso — and Neoarchean
volcanic and plutonic rocks are discussed below. Geochemical analysis was performed on extrusive
mafic and felsic volcanic rocks from each volcanic assemblage as well as contemporaneous plutons to
help classify them and to investigate their tectonic origin. Nd isotopic analysis was completed on
selected samples of mafic and felsic volcanic rocks as well as plutonic rocks that are
contemporaneous with the volcanic assemblages to investigate the influence or lack of influence of an
older crustal source in their origin. Below, these data are presented for each of the different ages of
rocks, and then the implications of each data set are discussed. Nd model ages quoted are calculated
based on the depleted mantle values of DePaolo (1981). Details of the analytical techniques are

outlined in Appendix C.
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3.3.1 Mesoarchean rocks

3.3.1.1 - 2.89 Ga Whiteway assemblage and contemporaneous plutonic rocks

The volcanic rocks in this assemblage consist primarily of pillowed flows, with rare occurrences of
volcanogenic sediments and gabbroic intrusions. Based on similar geochemical patterns, it is
observed to outcrop on either side of the Harper Island shear zone in the eastern part of the belt. The
mafic volcanics plot in the basalt field on a Zr/TiO, vs Nb/Y diagram and as tholeiites on AFM and
Zr vs. Y diagrams (Figure 3.5). The basaltic tholeiites have SiO, contents ranging from 48-58 wt.%,
MgO of 3-10 wt.%, Fe,Os of 9-15 wt.%, and Mg #’s of 33-63. (Table 3.1). On a multi-element
diagram normalized to primitive mantle of Sun and McDonough (1989, Figure 3.6), this assemblage
shows a strong enrichment in Th ((Nb/Th)py=0.13-0.36) and light REE ((La/Sm)py=1.3-2.6) with a
flat to slightly depleted heavy REE profile ((Gd/Yb)pyw=1.09-1.38). The rocks have strong negative
Nb and Ta anomalies and moderately negative Ti anomalies (Figure 3.6). Two basalts have positive

eNd** 9 values of 0.58 & 0.86 (Table 3.2 & A.1, Figure 3.7).

This volcanic assemblage is contemporaneous with the oldest plutonic rocks in the belt, the 2.894
Ga Cochrane Bay diorite (Chapter 2; Parks et al. 2006) and 2.886 Ga Cochrane Bay leucotonalite
(Turek et al. 1986). These plutons plot in the calc-alkaline field on an AFM diagram, and have SiO,
contents ranging from 72 to76 wt.%, Mg#’s of 23-32, and a on multi element diagram normalized to
primitive mantle (Sun and McDonough 1989), show positive Hf and Zr, and negative Nb ,Ti and Eu
anomalies (Table 3.1; Figure 3.9). These rocks are strongly light REE enriched ((La/Sm)py=4.3-5.6),
have slight heavy REE fractionation ((Gd/Yb)py=1.11-1.19), and show moderate overall REE
fractionation ((La/Yb)py=6-8) (Table 3.1; Figure 3.9). Both of the old plutons have Tpy ages over 3.1

Ga, and eNd*** ® values of -0.63 & 0.39 (Table 3.2 & A.1, Figure 3.7).
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3.3.1.2 - 2.85 Ga Jubilee assemblage and contemporaneous plutonic rocks

The supracrustal rocks in the Jubilee assemblage include units of volcanogenic sediments, felsic
volcanic layers and mafic volcanic flow. An original stratigraphy for this group has been proposed in
Chapter 2 and by Parks et al. (2006), and two basaltic suites have been identified: a northern and a
southern suite. Both suites have identical ages (Chapter 2; Parks et al. 2006), while the

lithogeochemistry presented here shows that they have different chemical signatures.

The volcanic rocks in the southern suite consist of pillowed flows that plot in the basalt field on a
Z1/TiO, vs Nb/Y diagram and as tholeiites on AFM and Zr vs. Y diagrams (Figure 3.5. The basaltic
tholeiites have contents of SiO, ranging from 49-54 wt.%, MgO of 5-10 wt.%, Fe,O; of 10-14 wt. %,
and Mg #’s of 35-46 (Table 3.1). On a multi-element diagram normalized to primitive mantle of Sun
and McDonough (1989, Figure 3.6), the suite shows moderate to strong Th and LREE enrichment
((La/Sm)py= 1.01-2.77), and negative Nb and Ti anomalies. La and Ce are enriched relatively
compared to the middle REE, and the heavy REE are slightly depleted ((La/Yb)py= 1.11-4.04). Two
basalts from the southern suite have eNd*** % values of -1.17 & -0.29 (Table 3.2; Table A.1; Figure

3.7).

Two intermediate tuffs in the southern suite plot in the calc-alkaline field on an AFM diagram and
have SiO; contents ranging from 63-65 wt.% and Mg #’s of 60 and 53 (Table 3.1; Figure 3.8). On a
multi element diagram normalized to primitive mantle of Sun and McDonough (1989), they show Nb
and Ti anomalies and lack a Eu anomaly (Figure 3.9). The tuffs are enriched in light REE
((La/Sm)py=3.14-3.28), and show moderate heavy REE fractionation ((Gd/Yb)py=1.67-2.15) and

overall REE fractionation ((La/Yb)py=8-10) (Table 3.1; Figure 3.9).
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The mafic volcanic rocks in the northern suite consist of both pillowed and massive flows that plot
in the basalt field on a Zr/TiO, vs Nb/Y diagram and as tholeiites on AFM and Zr vs. Y diagrams
(Figure 3.5). The basaltic tholeiites have contents of SiO, of 49-53 wt.%, MgO of 7-10 wt.%, Fe,O;
of 8-11 wt. %, and Mg #’s of 60-65 (Table 3.1) . On a multi element diagram normalized to
primitive mantle (Figure 3.6, Sun and McDonough, 1989), the suite has a low total REE abundance at
2 to 3 times primitive mantle, two distinctly different Nb signatures and erratic light REE and middle
REE profiles. The erratic profiles and Nb anomalies do not follow any other chemical, isotopic,
lithological, stratigraphic or structural trends. Four basalts from the northern suite have a wide range

of eNd*¥ % values from -1.83 to 0.91 (Table 3.2; Table A.1; Figure 3.7).

Eight extrusive felsic volcanic samples from the northern suite plot in the calc-alkaline field on an
AFM diagram and have SiO, contents of 64-74 wt.%, and Mg #’s of 23 to 67 (Table 3.1; Figure 3.8).
On a multi element diagram normalized to primitive mantle of Sun and McDonough (1989), they
show positive Zr and Hf anomalies, negative Nb and Ti anomalies, and lack an Eu anomaly (Figure
3.9). The tuffs are light REE enriched ((La/Sm)py=3.63-6.34), moderately heavy REE fractionated
((Gd/Yb)py=1.68-3.34), and are slightly to heavily fractionated in overall REE ((La/Yb)py=9-42)
(Table 3.1, Figure 3.9). Five tuffs and one dacite in the supracrustal assemblage have negative to

d2A85 Ga

positive eN values close to zero and range from (-0.72 to 0.14), and Tpy ages of 3.1 Ga.

A contemporaneous 2.852 Ga granodiorite (Parks et al. 2006) plots in the calc-alkaline field on an
AFM diagram, has an SiO, content of 69 wt. % and Mg # of 45 (Table 3.1, Figure 3.8). On a multi
element diagram normalized to primitive mantle of Sun and McDonough (1989), it has just positive
Zr and Hf anomalies, negative Nb and Ti anomalies, and lacks an Eu anomaly (Figure 3.9). The

sample is light REE enriched ((La/Sm)py=5.69) and shows moderate overall and heavy REE
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fractionation ((La/Yb)py=24, and (Gd/Yb)p=2.59) (Table 3.1; Figure 3.9). The granodiorite has an

eNd*® @ 0f-0.75 and Tpy of 3.19 Ga (Table 3.2; Table A.1; Figure 3.7).

3.3.1.3 - 2.825 Ga Plutons

Two samples from a 2.825 Ga tonalite gneiss (Corfu and Lin 2000) with a pre- shear zone foliation
plot in the calc-alkaline field on an AFM diagram, have SiO, contents of 73-75wt%, and Mg # of 36
to 51 (Table 3.1; Figure 3.8). On a multi element diagram normalized to primitive mantle of Sun and
McDonough (1989), the tonalites have negative Nb and Ti anomalies, and lack an Eu anomaly. They
are light REE enriched ((La/Sm)py=5.72-7.23) and show moderate overall and heavy REE

fractionation ((La/Yb)py=21-34 and (Gd/Yb)py=1.93-2.65) (Figure 3.9).

3.3.2 Neoarchean rocks

3.3.2.1 - 2.74 Ga Loonfoot assemblage and contemporaneous plutonic rocks

The volcanic rocks of this assemblage consist of voluminous basalt flows and a subordinate amount
of dacitic tuff. The mafic volcanics are both pillowed and massive, and they plot in the basalt field on
a Zr/TiO, vs Nb/Y diagram and as tholeiites on an AFM diagram and a plot of Zr vs. Y (Figure 3.5).
The basaltic tholeiites have contents of SiO, of 50-58 wt.%, MgO of 4-16 wt.%, Fe,O3 of 8-15 wt. %
and Mg #’s of 38-72 (Table 3.1). The basalt chemistry shows a relatively flat profile on a multi-
element diagram normalized to primitive mantle (Figure 3.6, Sun and McDonough, 1989), with minor
depletion in the heavy REE ((La/Yb)py= 0.83-1.63)). A basalt from this assemblage has a eNd*’* % of

2.08 (Table 3.2; Table A.1; Figure 3.7).

The felsic rocks in this assemblage include a rare tuff and a voluminous plutonic suite that is

dominantly tonalite. Three samples from the suite plot in the calc-alkaline field on an AFM diagram
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and have SiO, contents of 68-71 wt.% and Mg #’s of 35-48 (Table 3.1; Figure 3.8). On a multi
element diagram normalized to primitive mantle of Sun and McDonough (1989), they have negative
Nb and Ti anomalies, strong light REE enrichment ((La/Sm)py=5.32-10.82), and moderate to high
overall and heavy REE fractionation ((Gd/Yb)py=1.97-2.57 and (La/Yb)py=24-59) (Table 3.1; Figure
3.9). The tuff also plots in the calc-alkaline field on an AFM diagram and has an SiO, content of 71
wt % and an Mg # of 43 (Table 3.1; Figure 3.8). On a multi element diagram, the tuff is light REE
enriched ((La/Sm)py=5.92), has negative Nb and Ti anomalies, and shows moderate overall and
heavy REE fractionation ((Gd/Yb)py=1.80 and (La/Yb)py=20) (Table 3.1; Figure 3.9). Six plutons
and the tuff have negative eNd*’*“* values ranging from -1.80 to -0.48, with Tpy model ages that

range from 3.17 Ga to 3.01 Ga (Table 3.2; Table A.1; Figure 3.7).

3.3.2.2 —Younger porphyries

The young plutons in the belt are dominated by quartz feldspar porphyries, and are either 2.730 Ga
or 2.699 Ga in age and all plot in the calc-alkaline field on an AFM diagram (Figure 3.8; Turek et al.
1986; Parks et al. 2006). A 2.730 Ga porphyry has an SiO, content of 66 wt. % and an Mg # of 49
(Table 3.1). On a multi element diagram normalized to primitive mantle of Sun and McDonough
(1989), the porphyry shows negative Nb and Ti anomalies, only moderate light REE enrichment
((La/Sm)py=2.17), negative Nb and Ti anomalies, and slight to moderate overall and heavy REE
fractionation ((La/Yb)py=10.30 and (Gd/Yb)py=2.79) (Table 3.1; Figure 3.9). Two 2.700 Ga
porphyries have SiO, contents of 71-72 wt % and Mg #s of 34-38 (Table 3.1). On a multi element
diagram, the samples have negative Nb and Ti anomalies, are enriched in light REE
((La/Sm)py=6.43-6.93), highly REE fractionated ((La/Yb)py=47-30) and show moderate heavy REE

fractionation ((Gd/Yb)py=2.07-2.11) (Table 3.1, Figure 3.9). Four of five young porphyries in the belt
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have eNd*" 279 yalues of 0.68 to 2.06, while one has a eNd*”> % of -1.35. The Tpy ages range

from 2.91 to 3.09 Ga (Table 3.2; Table A.1; Figure 3.7).

3.4 Timing of Deformation in the Island Lake greenstone belt: U-Pb Dyke

Dating

3.4.1 Sample Description

Four dykes were sampled in the field to provide constraints on the timing of D, and D, in the Island
Lake greenstone belt. Two samples (sample 684 and 06, Figure 3.3) place timing constraints on the
early pre- shear zone foliation (S)) in the belt, while samples taken from two prominent shear zones in
the southeastern part of the belt will place timing constraints on the movement of these young D,
shear zones (sample 103 and sample 106, Figure 3.3). All analytical methods are described in

Appendix C.

3.4.1.1 Post-D+, Pre- D, samples

Sample 684 is from a post D; aplite dyke in the Harper Island shear zone. The presence of a
xenolith of foliated mafic host rock in the dyke indicates the dyke was emplaced after the event that
caused the S; foliation in the mafic country rock (Figure 3.10A). The dyke itself contains a weak
internal foliation most likely attributed to the D, event (Figure 3.10A). The age of this sample places a

minimum age on the D, event.

Sample 06 is from a post D; quartzo-feldspathic porphyry dyke that crosscuts a pre- shear zone
foliation (S;) in a mafic mylonite (Figure 3.10B). This sample was dated in order to obtain a

minimum age on the deformation event that caused the D, foliation cut by this dyke.
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3.4.1.2 D, Shear zone samples

Sample 103 is from a pre- or early syn-kinematic aplite dyke in the Harper Island shear zone. The
dyke is folded within the sheared mafic rocks it intrudes (Figure 3.10C). The age of this sample will

constrain the timing of shear zone movement on the Harper Island shear zone.

Sample 106 is from a weakly boundinaged post or late syn-kinematic quartz-feldspar porphyry
dyke that crosscuts the foliation (S;) developed in the Savage Island shear zone (Figure 3.10D). The

age of this sample will constrain the timing of shear zone movement on the Savage Island shear zone.
3.4.2 Results

3.4.2.1 Post-D+, Pre- D, samples

The zircons in sample 684 are of one morphology and are doubly terminated 2:1 to 4:1 prismatic
grains that are clear and colourless to slightly orange in colour (Figure 3.11A). Some larger grains
contain fractures that are parallel to the crystal faces and some have small clear or opaque inclusions.
Sample 684 produced three overlapping near concordant analyses that define an average **’Pb/**Pb
age of 2722 + 1.3 Ma (Figure 3.12; Table 3.3). This age is interpreted as the age of the post D, aplite

dyke.

There are two zircon populations in sample 06 (Figure 3.11B). The first population consists of
small (~100-200 um) clear, colourless, subhedral, elongate 2:1 to 5:1, doubly terminated prismatic
zircons. Some of these grains contain clear round inclusions, and internal fractures. The second, less
dominant population in this sample consists of large (> 300 um) rounded to stubby, multi-faceted
brown to pink zircons. Some of the latter contained clear and orange inclusions and some show heavy

internal fracturing. Six TIMS analyses yielded three different age populations in this sample (Figure
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3.12; Table 3.3), which have no correlation with the different zircon morphologies. Three analyses
give near identical and concordant 207pp,2%pp ages of 2749 + 2 Ma, 2747 £ 2 Ma, 2741 + 3 Ma,
while one analysis gave a *’Pb/**Pb age of 2734 + 2 Ma, and two slightly younger concordant or
near concordant grains gave near identical *’Pb/**Pb ages of 2725 + 5 Ma and 2723 + 3 Ma. Seven
zircons analyzed by LA-MC-ICP-MS yielded discordant *’Pb/**Pb ages between 2893 and 2728 Ma,
none of which are younger than the youngest, concordant TIMS ages of 2725+ 5 Ma & 2723 £ 3 Ma
(Figure 3.12; Table 3.3). Two interpretations are possible to explain these data; 1) the two youngest,
essentially identical TIMS ages at ca. ~2723 Ma represent the true crystallization age of the post D,
quartz-feldspathic porphyry dyke, or 2) all of the zircon grains in the dyke are inherited, and instead
this age represent the maximum age of the dyke. Given that the age of sample 684 is essentially
identical to the age of the sample 06, the preferred interpretation here is that this age is in fact a

crystallization age for sample 06.

3.4.2.2 D, Shear zone samples

Sample 103 from the Harper Island shear zone contained zircons that are euhedral 2:1 to 3:1 multi-
faceted sharply and doubly terminated prisms that are clear and brown in colour (Figure 3.11C). Most
grains contain clear or orange coloured inclusions. One near concordant analysis and three
overlapping, less concordant analyses together define an average *’Pb/*”°Pb age of 2701 + 1.7 Ma
(Figure 3.12; Table 3.3). This age is interpreted to represent the age of this pre- or early syn D, aplite

dyke.

Sample 106 was taken from the Savage Island shear zone. The zircons in this sample are thin,
acicular, needle like prisms and fragments of larger prisms (Figure 3.11D). Some zircons have opaque

inclusions and fractures parallel to crystal faces. The smaller prisms are colourless to brown in colour,
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and the larger fragments are often browner in colour and are internally turbid. Two overlapping
analyses and one less concordant zircon analysis together give an average *’Pb/**°Pb age of 2700 +
1.9 Ma (Figure 3.12; Table 3.3). This date is interpreted to represent the age of this post or late syn D,

dyke.

3.5 Discussion

3.5.1 Lithogeochemical signatures

3.5.1.1 Mafic volcanic rocks

The major element geochemistry of all of the volcanic assemblages in the Island Lake greenstone
belt are similar; however, the multi-element diagrams presented above show a large variation in the
trace element composition of the assemblages. In general, both the Whiteway assemblage and the
southern suite of the Jubilee assemblage are enriched in Th and LREE and have negative Nb, Ta, Ti
anomalies. The mafic volcanic rocks in these two packages are here termed Th-LREE-enriched
tholeiitic basalts (TLT basalts). These rocks have markedly different signatures from the northern
suite of the Jubilee assemblage and the Loonfoot assemblage which show broadly flat REE patterns.

The latter rocks are here termed flat profile tholeiitic basalts (FPT basalts).

On a plot of Nb/Th vs. La/Sm (Figure 3.13, Piercy 2002; Macdonald 2005) the TLT basalts and the
FPT basalts plot in different areas. Values for N-MORB, E-MORB, OIB, and primitive mantle on the
diagram are from Sun and McDonough (1989), and values for Archean upper crust are from Condie
(1993). The data as a whole falls on a array from N-MORB that trends through primitive mantle and
to a proposed composition of Archean Upper Crust (AUC), and falls below the E-MORB and OIB

data points. The FPT basalts plot near N-MORB and primitive mantle data points, whereas the TLT
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basalts plot away from these points, closer to the proposed composition of AUC. This pattern and the
overall Th-LREE-Nb systematics of the TLT basalts indicate they have been contaminated to a higher
degree by a crustal source, where as the FPT are relatively less contaminated or uncontaminated. This
transition from most to least contaminated in the basalt geochemistry correlates with the age of the
basalts from the older TLT basalts that are part of the 2.89 Ga Whiteway assemblage, to the youngest
FPT basalts that are part of the 2.74 Ga Loonfoot assemblage. The 2.85 Ga Jubliee assemblage
appears to be a transitional assemblage, where the basalts in the southern suite have the TLT pattern,
and the basalts from northern suite have the FPT pattern. Overall, this pattern shows decreasing

contamination with decreasing age.

This transition from a contaminated to uncontaminated signature with decreasing age can be
explained by 1) progressive trace element depletion of the continental basement underneath the
volcanic complexes, reducing its effect of contamination over time; 2) the same magma conduits
being exploited by subsequent volcanic eruptions, and over time the conduits developed chilled
margins and became “sealed” which prevented any further wall/rock interaction and contamination
(Hollings and Kerrich 1999; and Lesher and Arndt 1995); 3) extension in the basement, resulting in
the magma travelling through a crust that is becoming thinned over time, reducing the amount of
contact between the magma and crust, resulting in reduced contamination or 4) or a combination of
these factors. In any case, given that the transition in basaltic geochemistry from TLT to FPT shows a
correlation with age and the lack of any observed tectonic contacts between the volcanic assemblages
in the field (Chapter 2; Parks et al. 2006), it is possible that the volcanic assemblages represent a

(relatively) intact primary volcanic stratigraphy (see Figure 2.8).
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3.5.1.2 Felsic extrusive and intrusive rocks

The felsic extrusive and intrusive rocks have broadly similar trace element patterns on multi-element
diagrams with variable amounts of Th-LREE enrichment, and negative Nb and Ti anomalies (Figure
3.9), all which are characteristics of subduction related magmatism. The samples also all plot in the

volcanic arc granite field on a plot of Y+Nb vs. Rb (Figure 3.14).

3.5.2 Nd isotopic signatures

Two patterns of particular interest are observed in the Nd isotopic data. First is a trend in the felsic
rocks in the Meso — and Neoarchean volcanic assemblages and contemporaneous intrusive rocks that
shows a transition from positive to negative eNd values with decreasing age. Two of three felsic rocks
associated with the 2.89 Ga Whiteway assemblage have slightly positive eNd** values (0.47&0.39,
Table 3.2; Table A.1), and the third is slightly negative (-0.63, Table 3.2; Table A.1). All of these
rocks have Nd model ages over 3.14 Ga. In the younger 2.85 Ga Jubilee assemblage, tuffs and plutons
have both positive and negative eNd**’ ® values, however the majority of values (6 of 8 values, Table
3.2; Table A.1) are negative, and all of the felsic rocks have Nd model ages between 3.13 Ga to 3.18
Ga. In the 2.74 Ga Loonfoot assemblage, one tuff and six contemporaneous plutons all have negative
eNd*7* % values and >3.01 Ga model ages (Table 3.2; Table A.1). In addition, all data except one (of
20) cluster around or fall below an evolution line for a sample with a 3.0 Ga model age and eNd*’*
of -0.48 (Figure 3.7). These data show that all of the chronologically and geochemically distinct
volcanic assemblages in the Island Lake greenstone belt were sourced from a ca. 3.0 Ga crustal source
(this study; Stevenson and Turek 1992). The most likely candidate for this source is the 3.0 Ga crust
of the core region of the North Caribou terrane (this study; Stevenson and Turek 1992). Together

with the lack of observed tectonic contacts, and the geochemical data above, it appears that the Meso -
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and Neoarchean volcanic assemblages represent an original stratigraphy, as suggested in chapter 2
(Figure 2.8), which was built on the same basement and have autochthonous relationships with each

other.

A second pattern observed in the data is from the youngest porphyry intrusions in the belt. Three
young, volumetrically small porphyries have model ages of 2.9 Ga, and four of the five éNd values
are positive. The change from > 3.0 Ga model ages observed in the Meso — and Neoarchean rocks to
the 2.9 Ga model ages and positive eéNd values reflects that these young plutons were not as strongly
influenced by the Mesoarchean crust of the North Caribou terrane as the older rocks in the belt were,
or they were extracted from a more depleted mantle source. This signature could be related to the

changing geochemical signatures seen in the basaltic geochemistry.

3.5.3 Timing of deformation

The age of the post D, aplite dyke (sample 684) places a minimum age constraint of 2722 + 1.3 Ma
on the deformation event that caused the foliation in the xenoliths contained in the dyke. The age of
ca. 2.723 Ga for the post D; quartzo-feldspathic porphyry dyke (sample 06) represents either a
crystallization age or a maximum age of the dyke. As discussed above, the preferred interpretation
here is that this age is in fact a crystallization age for sample 06, and the age places a minimum age
constraint on the event that created the foliation that the dyke crosscuts. Together both of these dates
confirm that at least one episode of deformation occurred in the Island Lake greenstone belt before ca.

2.722 Ga.

The ages of sample 103, a pre- or early syn-kinematic dyke, and sample 106, a post or late syn-
kinematic dyke concisely bracket an episode of deformation to between 2701 + 1.7 Ma and 2700 +

1.9 Ma. Thus, two ages of deformation have been identified in this belt; a D; event, most likely
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related to folding in the supracrustal rocks that produced an early foliation at ca. 2.722 Ga, and a D,

event related to the last stages of shear zone movement and terminal collision at 2.700 Ga.

3.5.4 Regional Implications

The new data from this study is here discussed together with data from other areas in the northern
margin of the North Caribou terrane, in order to put forward a spatial and temporal tectonic model for
this part of the northwestern Superior Province. To this end, three areas will be discussed; 1) The
northern extent of the 3.0 Ga North Caribou crust as basement in the northwestern Superior Province,
2) regional correlations of Meso — and Neoarchean events in the northern part of the northwestern

Superior Province, and 3) regional timing constraints on deformation.

3.5.4.1 Northern extent of 3.0 Ga North Caribou crust as basement in the northwestern

Superior Province

The North Caribou terrane has long been considered as a ca 3.0 Ga continental cratonic block onto
which greenstone belts and domains to the north and south were built (Thurston et al. 1991). The eNd
and geochemical data from this study agrees with previous work in the area and supports the
conclusion that the Island Lake greenstone belt has been variably influenced by ca. 3.0 Ga North
Caribou crust during the generation of the Meso — and Neoarchean volcanic assemblages (Chapter 2;
Stevenson and Turek 1992; Corfu and Lin 2000; Parks et al. 2006). While the Island Lake greenstone
belt contains ample evidence of being built on an older continental basement, evidence that the
Oxford-Stull domain to the north should be included in this terrane has been inconclusive. The
Oxford-Stull domain contains dominantly juvenile Nd signatures and was proposed to have developed
on either a very thin continental margin or in an oceanic setting (Skulski et al. 2000). More recent

work shows evidence of older crust in the Oxford-Stull domain with inherited zircon ages of >2.9 Ga
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on gneisses that have negative eNd values (e.g. location 9 of Rayner and Stott 2005). Given this new
data, the interpretation that the Oxford-Stull domain was developed on a thin continental margin, and
that this continental margin was that of the ca 3.0 Ga North Caribou crust is preferred here. The ca.
3.0 Ga North Caribou crust acted as basement to both the Island Lake and Oxford- Stull domains, and
the northern limit of the 3.0 Ga North Caribou crust in the northwestern Superior Province is the

northern limit of the Oxford- Stull domain, the North Kenyon Fault (Figure 3.1).

3.5.4.2 Regional correlation of Mesoarchean and Neoarchean events in the northern margin

of the North Caribou terrane, northwestern Superior Province.

Greenstone belts in the northwestern Superior Province contain both Mesoarchean and Neoarchean
magmatic events (Figure 3.1; Figure 3.15) and in order to successfully reconstruct a tectonic history
for the area, it is instructive to first review high precision U-Pb ages of intrusive and volcanic rocks in

the area. The locations of the greenstone belts discussed below are show in Figure 3.1.

In the Mesoarchean, the oldest observed event in the Island Lake domain is the volcanism and
plutonism in the 2.894 Ga Whiteway assemblage in the Island Lake greenstone belt (Figure 3. 15;
Parks et al. 2006; Chapter 2). Two younger tonalites have ages of 2.855 Ga and 2.848 Ga south of the
Stull Lake-Edmund Lake greenstone belt (located in the Island Lake domain, Skulski et al. 2000),
which are identical to the age of volcanism in the Jubilee assemblage in the Island Lake greenstone
belt. Farther north in the Oxford-Stull domain, three dacitic tuffs in the Knee Lake greenstone belt
indicate a period of volcanism at 2.832 Ga (Corkery et al. 2000). The youngest Mesoarchean
granitoid ages in the Island Lake domain are a 2.825 Ga gneiss (in the Island Lake greenstone belt,

Corfu and Lin 2000), while the youngest age in the Oxford-Stull domain is a 2.813 Ga granodiorite
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gneiss near Kasabonika Lake (Rayner and Stott 2005). The youngest mafic intrusive in the domain is

a2.807 = 1 Ga gabbro in the Island Lake greenstone belt (Corfu and Lin, 2000).

In the Neoarchean, again the oldest events are observed in the Island Lake greenstone belt (Island
Lake domain; Figure 3.15). These oldest Neoarchean events are the eruption of the Loonfoot
assemblage volcanics and emplacement of a voluminous plutonic suite at 2.750 Ga -2.740 Ga
(Stevenson and Turek 1992; Corfu and Lin 2000; Parks et al. 2006). In the Oxford-Stull domain to the
northeast, the oldest Neoarchean age observed to date is a 2.737 Ga intermediate volcanic rock in the
McFaulds Lake area (Rayner and Stott 2005). In the Island Lake domain, two younger quartz-
feldspar porphyries were emplaced at 2.730 Ga in the Island Lake greenstone belt, which are similar
in age to a 2.732 Ga granodiorite dated in the Ponask Lake — Sachigo Lake greenstone belt to the east
(Skulski et al 2000). In the Oxford-Stull domain, a younger 2.728 Ga granodiorite has also been
dated in McFaulds Lake, which has an essentially identical age to a 2.727 Ga granodiorite at
Kasabonika Lake (Rayner and Stott 2005). The next youngest event in the Oxford-Stull domain is a
period of volcanism which is defined by two essentially identical ages of dacitic tuffs in the Knee
Lake greenstone belt at 272243 Ma (Corkery et al. 2000), and in the Gods Lake greenstone belt at
2719+1.4Ma (Lin et al. 2006). A contemporaneous tonalite has been dated at 2721 £1.2 Ma in the
Gods Lake greenstone belt (Lin et al. 2006). The youngest Neoarchean intrusive unit recognized in
the Island Lake domain is a 2.699 Ga porphyry in the Island Lake greenstone belt (Stevenson and
Turek 1992). A range of younger Neoarchean intrusive ages are observed in the Oxford-Stull domain

from 2.715-2.683 Ga (Figure 3.15; Lin et al. 2006 and Rayner and Stott 2005).

Of particular interest in the regional geochronology data set presented above is that in both the

Meso - and Neoarchean, a pattern of northeastward younging of volcanic and plutonic ages from the
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Island Lake domain into the Oxford-Stull domain is observed. In each domain and during both eras, a
predictable sequence of volcano-plutonic events is observed. The start of the sequence (ie. the oldest
component) is marked by the eruption of volcanic rocks which may be accompanied by plutonism
(Figure 3.15). In some areas this inital sequence is followed by other extrusive and/or intrusive
sequences. The last stage of the sequence (i.e. the youngest component) is marked by the
emplacement of the youngest plutonic suite, which has a characteristic lack of an extrusive volcanic
component (Figure 3.15). This sequence of events begins first in the Island Lake domain in both the
Meso — and Neoarchean, and the last stage is always observed last in the Oxford-Stull domain (Figure

3.15).

This sequence of events and the trend of the oldest sequences occurring in the Island Lake domain
most likely reflects the movement of an active volcanic front towards the northeast in both the Meso —
and Neoarchean. The location of the active front is marked by the presence of volcanic rocks, and as
volcanism ceases and the front moves northeast ward, plutons are emplaced where the active volcanic

front previously was.

3.5.4.3 Regional timing constraints on deformation

Few ages of deformation exist for the northwestern Superior Province, although there is little doubt
that the greenstone belts there have experienced multiple episodes of deformation over their evolution
from ca 3.0 Ga to 2.7 Ga. The older episodes of deformation are commonly overprinted by younger
events making them difficult to identify in the field, and generally impossible to precisely date. The
oldest ages in the area are based on the age of intrusions which cross cut pre-existing foliations. These
dates broadly bracket deformation events and place minimum age constraints on the deformation

event that created these foliations. These ages include pre-2.87 Ga deformation in the North Caribou
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greenstone belt (Thurston et al. 1991), a pre- 2.76 Ga G1 foliation in the Cross Lake greenstone belt
(Parmenter et al. 2006), and pre- 2.73 Ga tectonism in the Stull Lake - Edmond lake greenstone belt
(Skulski et al. 2000). It is unknown if these ages support three distinct episodes of deformation, or if

the two younger plutons are also dating the pre-2.87 Ga event.

Evidence for pre-2.700 Ga deformation is the age of a 2.721 Ga dyke in the Gods Lake greenstone
belt that is interpreted to be contemporaneous with early folds and shearing in the belt (Lin et al.
2006). This age agrees with the ages of the “pre D,-shear zone” samples from this study, and also
places timing constraints on the early folding in the belt. This event most likely represents the timing

of initial collision and compression during Neoarchean subduction.

The youngest episode(s) of deformation in greenstone belts in this part of the Superior Province are
associated with movements along fault structures that are parallel to and similar in nature to the
Savage Island shear zone, as well as deposition of “Timiskaming type” sedimentary groups (Thurston
and Chivers 1990). Determining the timing of movement along these structures has been done
indirectly in the northwestern Superior Province by assuming the movement is contemporaneous with
the ages of deposition of these sedimentary groups. Deposition of these groups in the northwest
Superior Province range from <2.713 Ga (at Stull Lake, Skulski et al. 2000) to 2.705 Ga (at Oxford
Lake, Lin et al. 2006). Although these ages are indirect, they are within a few million years of the two
direct ages of ca. 2.700 Ga for the syntectonic dykes dated in the Island Lake greenstone belt.
Together these data and the age of ca. 2.700 Ga are interpreted as the age of final movement along

shear zones and terminal collision in the northwestern Superior Province.
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3.6 Tectonic synthesis

Based on all of the evidence presented above, the following scenarios are proposed for the tectonic
evolution along the northern margin of the North Caribou terrane in the northwestern Superior

Province in the Meso — and Neoarchean.

3.6.1 Mesoarchean Events

The volcano-plutonic events in the Mesoarchean started at ca. 2.9 Ga, with south dipping
subduction under the North Caribou terrane, along a trend that parallels the present day position of the
north Kenyon fault (Figure 3.16). During the first stages of subduction, the 2.89 Ga Whiteway
volcanic assemblage and related intrusive rocks were deposited onto and into the 3.0 Ga basement of
the North Caribou terrane. The volcanic eruptions through the North Caribou terrane crust generated
the TLT enriched basalts of the Whiteway assemblages, and the negative eNd values and >3.0 Ga

model ages of the 2.894 Ga granodiorite and leucotonalite in the belt.

As subduction continued, the mafic and felsic volcanic rocks of the 2.85 Ga Jubilee assemblage
were deposited unconformably on top of the Whiteway assemblage and North Caribou terrane
basement (Figure 3.16). Contemporaneous plutons were emplaced in the Island Lake greenstone belt
and in the Pierce Lake area to the east (Skulski et al. 2000), all of which have negative eNd values and
ca. 3.0 Ga model ages (this study; Skulski et al. 2000). During the initial stages of volcanism at 2.85
Ga, the contaminated TLT basalts of the southern suite (Jubilee assemblage) were deposited. As
volcanism continued, the crust either started to thin, or the magma conduits became chilled and/or
depleted of Th and LREE. This resulted in the chemical signature of the basalts being erupted
changing to the FPT basalts observed in the northern suite of the Jubilee assemblage, while the Nd

isotopic evidence shows that the northern suite were still being influenced by the North Caribou
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basement. Starting at ca. 2.83 Ga, the active volcanic front migrated northward, possibly due to
waning subduction (Figure 3.16). This produced the ca. 2.834 Ga volcanic rocks observed in the Knee
Lake area (Corkery et al. 2000). Post volcanic plutons were emplaced at 2.825 Ga (Corfu and Lin
2000) in the Island Lake greenstone belt. The youngest granitoid was emplaced at 2.813 Ga in
Kasabonika Lake in the Oxford-Stull domain. The youngest Mesoarchean intrusive age is that of a
2.807 Ga gabbro in the Island Lake greenstone belt (Corfu and Lin 2000), and could reflect crustal
thinning, extension, and/or local rifting. The Mesoarchean subduction event would have terminated

before the emplacement of this gabbro.

3.6.2 Neoarchean Events

The Neoarchean tectonic evolution starts at 2.75 Ga (Figure 3.16), when a southward dipping
subduction was re-initiated along the north Kenyon fault on the northern margin of the North Caribou
terrane. This subduction was eventually responsible for the final juxtaposition of the Northern
Superior superterrane and the North Caribou terrane. At the beginning of this renewed subduction,
the 2.75-2.74 Ga plutonic suite was emplaced and the volcanic rocks of the 2.744 Ga Loonfoot
assemblage were deposited in the Island Lake greenstone belt. Nd isotope data suggests the Loonfoot
assemblage and contemporaneous plutons were still being influenced by the North Caribou basement.
The basalts were erupted on top of the Mesoarchean volcanic pile over a thinned continental crust,
possibly using the same Th and LREE depleted magma conduits as previous eruptions, resulting in an
FPT geochemical signature (Figure 3.16). The volcanic front moved northward into the OSD,
producing the 2.737 to 2.721 Ga volcanic packages in the Knee Lake, Gods Lake and McFaulds Lake
area. Minor porphyries were emplaced further inboard in the Island Lake greenstone belt (e.g. 2.729

Ga Pipe Point porphyry; Parks et al. 2006). As the volcanic front moved northward, an influx of a
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depleted mantle underneath the Island Lake domain could explain the ~2.9 Ga Nd model ages and

positive eNd values seen in the youngest porphyries in the Island Lake greenstone belt.

Initial collision and compression during subduction resulted in folding and thrusting in the
supracrustal rocks in the northwestern Superior Province, related to the pre 2.72 Ga event dated in the
Island Lake greenstone belt and in the Gods Lake greenstone belt (this study; Lin et al. 2006).
Plutons were emplaced throughout the Island Lake domain and Oxford-Stull domain from 2.72 to
2.70 Ga. “Timiskaming” type sediments were deposited, and a last episode of movement occurred on
the major fault structures in the area at 2.700 Ga. At the end of this process the North Superior
superterrane was terminally docked to the North Caribou terrane along the North Kenyon fault.
Plutons continued to be emplaced in the northern margin of the North Caribou terrane until ~2.680 Ga
due to post orogenic processes (such as orogenic collapse and the addition of heat from upwelling

asthenosphere during slab break off).

Chapter 2 and Parks et al. (2006) defined a megasequence based on a commonality of ages across
the southern margin, core region and parts of the northern margin of the North Caribou terrane. This
package, however, cannot be a “megasequence” deposited by the same tectonic process given the
tectonic synthesis presented above. The rocks in the northern margin were generated by a southward
dipping subduction zone, while the rocks along the southern margin were generated by a northward

dipping subduction zone (Sanborn-Barrie et al. 2001; Percival et al. 2006).

The Mesoarchean sequence of events suggested above represents the author’s first attempt to
explain the generation of rocks of this age along the northern margin of the North Caribou terrane.
The second stage of tectonic evolution in this model broadly follows the sequence of tectonic

evolution suggested by Percival et al. 2006) for the western Superior Province (Figure 9A of Percival

71



et al. (2006)). A zone of high mantle resistivity defined by magnetotelluric studies (Figure 3 of
Percival et al. 2006) extends to a depth of ~100 km directly under the North Caribou terrane and
could be a relic of the Mesoarchean subduction slab. The existence of a Neoarchean subduction zone
with a southward dipping polarity was also suggested by Lin et al. (2006) based on north-vergent
structures and south dipping seismic reflectors near the north margin of the North Caribou terrane
(White et al. 2003). As well, a second zone of high mantle resistivity defined by magnetotelluric
studies (Figure 3 of Percival et al. 2006) dips to the south and extends to a depth of ~200 km which is

most likely a relic of the Neoarchean subducting slab beneath the North Caribou terrane.

3.7 Conclusions

Geochemical and €Nd isotopic data indicates that the Meso —and Neoarchean volcanic assemblages
in the Island Lake greenstone belt are most likely part of an intact primary volcanic pile, and have
been variably contaminated by an older crustal source. This ca. 3.0 Ga older crustal source acted as
basement and contaminant in the Island Lake and Oxford-Stull domains, and is the crust of the core of
the North Caribou terrane. U-Pb zircon TIMS geochronology identified two ages of deformation in
the Island Lake greenstone belt. Two dykes that crosscut an older D, foliation place a minimum age
of ca. 2.722 Ga on the D, and two dykes in shear zones in the belt both date movement along the D,
structures to 2.700 Ga. It appears that Meso — and Neoarchean periods of southward dipping
subduction were responsible for generating the rocks along the northern margin of the North Caribou
terrane. At the end of Neoarchean subduction, terrane accretion was complete and the North Caribou

terrane was terminally juxtaposed to the Northern Superior superterrane at 2.70 Ga.
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Figure 3.4 Transposition of an older foliation (S; — solid line) into the orientation of the foliation
associated with the Savage Island shear zone (S, — dashed line). Camera lens for scale.
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Figure 3.10 Field photos showing field setting of U-Pb samples. A - Sample 684, a post kinematic
dyke that cross cuts an early foliation (S; indicated by dashed line) and contains a xenolith of foliated
mafic country rock. Camera lens for scale. B - Sample 06 from the Savage Island shear zone, a post-
tectonic quartz porphyry dyke running from the top to the bottom of the photo, cross cutting foliation
in the mafic host rock (S, indicated by dashed line). Hammer for scale. C — Sample 103, a pre-to
early syn-kinematic quartz porphyry dike that is strongly internally sheared and folded with the
sheared mafic country rock (S, indicated by dashed line). D — Sample 106 from the Savage Island
shear zone, a post- to late syn-kinematic quartz porphyry dyke that cuts S,, indicated by dashed line.
Contact between dyke and country rock indicated by solid line. Hammer and feet at top of photo for
scale.
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Figure 3.11 Unabraded zircon populations from each dyke. 200um scale bar on each photo.
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Figure 3.12 Concordia diagrams showing zircon data for dyke samples in the Island Lake greenstone
belt. Inset histogram on sample 06, *°°?’Pb Laser ablation ages.
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Figure 3.13 Nb/Th vs. La/Sm plot for all of the mafic volcanic rocks in the Island Lake greenstone
belt. The data falls on an array from N-MORB through Primitive mantle to a proposed composition of
Archean upper crust, and falls below the E-MORB and OIB data points. Values for N-MORB, E-
MORB, OIB, and primitive mantle from Sun and McDonough (1989). Value for Archean upper crust
from Condie (1993).
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Figure 3.14 Tectonic discrimination diagram for the felsic intrusive and extrusive rocks in the Island
Lake greenstone belt. Fields on diagram after Pearce et al. 1984.
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Figure 3.15 A timeline showing age relationships of volcanic and plutonic rocks in the northern part
of the northwestern Superior Province. Ages from Stevenson and Turek (1992); Corfu and Lin
(2000); Corkery et al. (2000); Skulski et al. (2000); Rayner and Stott (2005); and Lin et al. (2006).

87



"J[ney UoAuSY YHON - 3N {9U0Z J[neJ e UIIunuun p\ -3  [[MS-SMOLIBN 3. SPoD) - JASD (9U0Z I8ays
pue[s] a5eAes - ZSIS ‘Urewop [[S PIOJXO - SO oq 2u0ISuaI3 oxeT pues] - gOT] ‘oueirorradns Jouodng UIOYMON - SSN OURII) hoqLIR))
UUON - IDN :SUOIRIAQIQQY ‘UBIYIIBOIN PUB OSIJA[ A} Ul OUIAOL] JOLIdANS UIO)SIMU}IOU JUf} JO UOTINJOAD JTU0II9) O} JOJ [opowl  9T'E 84nbi-

qgeys Bunonpgns jo uonisod snoieid, -~ uibuo ulepasun jo HmEom,.”.....”.w.”__,u
gejs BunoNpPgns Jo JUSWaAOW JO UONJBIIP <— auelayuadng Jouadng WayUoN eo 9'¢|
apuewWw Jo Xnyul §, aueus) noqued yuoN eo 0'¢ [N
uojnid D dnoib adfy Buiweysiwi]
\\\\IV *
< 4 - V

97

DN IMSD ZsIs

s
BO o%m-_\ﬁm BO 08'¢-€8°¢~

S

e9cL¢€ELe BO G8'¢C~

N aso 8971 s Z S
s  eOVLT6LT~ Sz eo 692~
SJusA3 ueaydleosp SJuaA3 ueayoleosan

88



Table 3-1 Lithogeochemical results

Assemblage/Rock name Whiteway Assemblage
102-98- 52-|L-98- 52-IL-98- 52-IL-98- 52-1L-98- 52-|L-98-
Sample name 692 30 31 32 34 36
Rock or Basalt type TLT TLT TLT TLT TLT TLT
age (Ma) 2897 2897 2897 2897 2897 2897
UTM easting 418350 415275 414800 414700 418525 424400
UTM northing 5965250 5966200 5966650 5966950 5968000 5968450
SiO, (wt %) 48.39 50.77 52.94 51.87 52.01 57.20
Al,O3 15.48 13.42 14.55 15.37 15.42 13.57
Fe,03 14.25 14.89 13.83 11.90 11.87 10.67
MnO 0.23 0.33 0.23 0.21 0.20 0.20
MgO 4.02 5.07 3.48 7.25 7.26 5.80
Ca0O 13.43 9.45 8.06 8.99 9.03 8.33
Na,O 2.22 3.70 4.70 2.80 2.77 2.36
K20 0.39 0.44 0.40 0.76 0.84 0.93
TiO, 1.45 1.75 1.67 0.77 0.78 0.87
P20s 0.14 0.18 0.16 0.08 0.08 0.09
LOI 1.22 0.69 0.76 1.00 2.76 1.83
Total 99.33 99.87 99.99 99.00 99.40 100.16
Mg# 36 40 33 55 55 52
Cr (ppm) 172 77 97 120 113 28
Co 42 37 35 44 43 39
Ni 72 30 44 78 81 47
Rb 4.00 8.46 7.41 14.10 13.94 17.36
Sr 279.2 137.7 149.5 122.7 120.2 71.2
Cs b.d. 0.52 b.d. b.d. b.d. b.d.
Ba 117 178 278 352 348 201
Sc 40 44 42 39 38 36
\Y 287 289 275 179 176 221
Ta 0.29 0.38 0.37 0.27 0.26 0.34
Hf 2.87 3.53 3.35 2.21 2.14 2.66
Nb 3.33 4.57 4.35 2.64 2.56 3.25
Zr 101.97 134.25 125.20 81.00 78.33 91.11
Th 1.45 1.93 1.91 2.60 247 2.95
U 0.38 0.52 0.51 0.84 0.70 0.91
Y 30.23 38.12 35.66 20.28 19.99 21.82
Cu 13.6 35.5 20.2 99.6 95.1 62.3
Zn 68 130 111 77 73 93
Mo b.d. 212 b.d. 4.01 3.00 3.03
Pb 8.30 b.d. 5.02 7.09 9.33 7.64
Bi b.d. b.d. b.d. b.d. b.d. b.d.
La 9.92 9.43 7.66 9.27 9.40 12.96
Ce 23.44 23.19 20.66 20.42 19.45 28.91
Pr 2.98 3.06 2.85 2.40 2.32 3.30
Nd 13.76 14.68 13.72 10.20 9.76 13.64
Sm 3.84 4.21 418 2.47 2.50 3.24
Eu 1.33 1.42 1.26 0.83 0.84 0.93
Gd 5.34 5.42 5.35 2.96 2.93 4.02

&9




Assemblage/Rock name Whiteway Assemblage
102-98- 52-IL-98- 52-1L-98- 52-|L-98- 52-IL-98- 52-1L-98-
Sample name 692 30 31 32 34 36
Rock or Basalt type TLT TLT TLT TLT TLT TLT
age (Ma) 2897 2897 2897 2897 2897 2897
UTM easting 418350 415275 414800 414700 418525 424400
UTM northing 5965250 5966200 5966650 5966950 5968000 5968450
Tb 0.98 0.99 0.98 0.56 0.54 0.71
Dy 5.79 6.34 6.12 3.52 3.41 4.37
Ho 1.21 1.36 1.28 0.73 0.72 0.90
Er 3.51 3.78 3.65 212 2.07 2.61
Tm 0.55 0.57 0.54 0.32 0.32 0.38
Yb 3.36 3.79 3.56 213 2.05 2.48
Lu 0.48 0.57 0.54 0.32 0.31 0.36
(La/Sm)pm 1.67 1.45 1.19 243 243 2.58
(Th/La)pm 1.18 1.66 2.01 2.27 212 1.84
(Nb/La)pm 0.32 0.47 0.55 0.27 0.26 0.24
(Gd/Yb)pm 1.31 1.18 1.24 1.15 1.18 1.34
(Nb/Th)pm 0.27 0.28 0.27 0.12 0.12 0.13
(La/Yb)pm 212 1.79 1.54 3.12 3.29 3.75
eNd
T

notes: pm values are from Sun and McDonough, 1989

samples were recalculated to an anhydrous basis

b.d.=below detection limits

All UTM's are zone 15, NAD 27.
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Assemblage/Rock name Whiteway Assemblage
JP02- JP02- JP02- JP02- JP02-
Sample name 52-|L-98-38  52-1L-98-39 556 557 559 560 562
Rock or Basalt type TLT TLT TLT TLT TLT TLT TLT
age (Ma) 2897 2897 2897 2897 2897 2897 2897
UTM easting 428950 428850 415134 414057 414365 418052 422522
UTM northing 5967825 5966500 5966521 5967070 5966693 5965207 5967552
SiO; (wt %) 58.05 51.50 48.60 49.27 52.06 51.55 51.45
AlL,O3 13.62 13.68 15.09 15.37 13.74 14.23 13.70
Fe,O3 9.86 13.40 15.14 13.85 10.10 12.24 15.05
MnO 0.19 0.27 0.38 0.19 0.22 0.26 0.29
MgO 5.29 4.93 5.68 5.49 8.93 10.36 5.26
Ca0 9.82 11.26 9.41 10.55 8.99 6.79 8.76
Na,O 1.96 2.88 2.61 2.52 2.36 3.37 3.32
K20 0.27 0.11 112 1.16 2.91 0.47 0.24
TiO, 0.86 1.78 1.72 1.46 0.65 0.67 1.75
P2Os 0.09 0.18 0.25 0.13 0.05 0.06 0.18
LOI 1.74 3.38 1.60 1.65 4.09 2.70 2.84
Total 99.83 99.55 100.40 99.43 99.68 100.32 99.83
Mg# 52 42 43 44 64 63 41
Cr (ppm) 27 77 101 160 404 516 75
Co 40 44 31 45 42 50 42
Ni 50 37 67 70 108 146 37
Rb 4.39 2.06 2412 33.97 103.73 8.43 5.66
Sr 7.7 149.9 111.8 235.3 176.9 123.9 106.2
Cs b.d. b.d. 0.92 0.46 1.75 0.54 0.25
Ba 91 103 487 325 816 144 89
Sc 36 42 42 Y| 36 38 44
\ 228 334 287 269 175 185 306
Ta 0.34 0.36 0.36 0.29 0.17 0.18 0.37
Hf 2.56 3.55 3.1 2.77 1.54 1.54 3.10
Nb 3.27 4.37 5.34 4.73 3.08 3.10 5.10
Zr 92.60 125.30 117.63 95.34 53.93 54.21 106.93
Th 2.84 1.78 1.93 1.57 1.58 1.60 1.93
U 0.84 0.45 0.54 0.41 0.42 0.46 0.51
Y 21.69 36.37 38.43 30.05 14.71 15.53 35.18
Cu 88.7 149.6 41.0 66.0 114.0 33.0 106.0
Zn 85 130 89 77 65 98 109
Mo 4.45 2.96 6.00 b.d. 9.00 11.00 4.00
Pb b.d. b.d. b.d. 7.00 b.d. b.d. b.d.
Bi b.d. b.d. b.d. b.d. 6.76 b.d. b.d.
La 14.04 11.37 9.03 8.47 6.72 6.43 10.29
Ce 29.87 28.01 20.96 18.91 13.59 13.21 22.79
Pr 3.39 3.66 2.89 2.56 1.62 1.62 3.1
Nd 13.94 16.68 13.93 12.23 7.10 7.15 15.13
Sm 3.31 4.72 4.33 3.72 1.98 1.94 4.37
Eu 1.06 1.67 1.15 1.12 0.66 0.55 1.43
Gd 3.98 6.57 5.16 4.48 2.26 2.26 5.09
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Assemblage/Rock name Whiteway Assemblage
JPO2- JPO2- JP02- JP02- JP02-
Sample name 52-|L-98-38  52-1L-98-39 556 557 559 560 562
Rock or Basalt type TLT TLT TLT TLT TLT TLT TLT
age (Ma) 2897 2897 2897 2897 2897 2897 2897
UTM easting 428950 428850 415134 414057 414365 418052 422522
UTM northing 5967825 5966500 5966521 5967070 5966693 5965207 5967552
Tb 0.70 1.20 1.02 0.87 0.43 0.44 0.98
Dy 4.19 6.95 6.38 5.26 2.62 2.68 6.29
Ho 0.84 1.46 1.40 1.13 0.55 0.58 1.33
Er 248 4.21 3.97 3.27 1.63 1.65 3.86
Tm 0.36 0.61 0.61 0.51 0.26 0.26 0.61
Yb 2.38 3.97 3.89 3.15 1.53 1.56 3.74
Lu 0.34 0.59 0.59 0.50 0.24 0.26 0.58
(La/Sm)pm 2.74 1.56 1.35 1.47 2.19 2.15 1.52
(Th/La)pm 1.64 1.27 1.73 1.50 1.90 2.02 1.51
(Nb/La)pm 0.22 0.37 0.57 0.54 0.44 0.46 0.48
(Gd/Yb)pm 1.39 1.37 1.10 1.18 1.22 1.20 1.13
(Nb/Th)pm 0.14 0.29 0.33 0.36 0.23 0.23 0.32
(La/Yb)pm 4.24 2.05 1.66 1.93 3.14 2.95 1.97
eNd 0.86 0.58
T N/A N/A
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Assemblage/Rock name Whiteway Assemblage Jubilee Assemblage - southern suite
Sample name JP02-563 JP02-564 JP02-565 JP02-566 52-1L-98-02 52-IL-98-10
Rock or Basalt type TLT TLT TLT TLT TLT TLT
age (Ma) 2897 2897 2897 2897 2852 2852
UTM easting 422916 423492 426889 429535 419050 426733
UTM northing 5968000 5968530 5968308 5967658 5957550 5957828
SiO; (wt %) 57.48 53.23 55.01 50.88 49.91 50.59
AlLO; 13.35 14.76 14.11 13.70 15.46 14.92
Fe,0s 9.47 11.04 11.98 15.22 13.26 14.11
MnO 0.17 0.20 0.22 0.26 0.18 0.26
MgO 4.92 6.97 6.12 4.73 6.93 6.84
Ca0 13.01 10.18 9.35 10.32 10.70 8.17
Na,O 0.46 2.15 1.85 2.86 2.29 3.95
K20 0.21 0.62 0.34 0.16 0.19 0.03
TiO, 0.87 0.77 0.92 1.72 1.03 1.03
P20s 0.09 0.08 0.09 0.16 0.08 0.09
LOI 2.28 2.08 2.39 3.54 5.30 2.56
Total 100.18 100.27 100.12 99.30 100.26 99.48
Mg# 51 56 50 38 51 49
Cr (ppm) 26 110 32 90 215 174
Co 34 42 40 43 49 55
Ni 42 62 46 37 131 129
Rb 4.62 13.79 8.30 5.48 5.40 b.d.
Sr 78.8 127.9 109.9 94.5 159.4 65.9
Cs b.d. b.d. 0.11 0.28 85.72 0.47
Ba 81 162 99 99 45 53
Sc 35 38 38 41 39 46
\ 203 192 224 281 269 288
Ta 0.34 0.29 0.34 0.37 0.18 0.16
Hf 2.39 2.15 2.58 2.98 1.62 1.70
Nb 4.63 3.90 5.02 4.85 2.71 2.54
Zr 85.04 72.23 95.69 117.93 50.53 51.96
Th 3.36 2.71 3.74 1.93 0.61 0.80
U 0.93 0.80 1.04 0.51 0.13 0.20
Y 20.99 19.21 24.58 35.72 2117 22.55
Cu 66.0 83.0 98.0 108.0 199.9 1441
Zn 52 57 65 75 93 101
Mo 3.91 7.00 2.00 6.00 6.16 b.d.
Pb b.d. 7.00 b.d. b.d. b.d. 8.72
Bi b.d. b.d. b.d. b.d. b.d. b.d.
La 10.72 9.81 13.70 9.50 4.51 4.85
Ce 22.04 19.26 26.92 21.01 10.77 10.73
Pr 2.62 2.32 3.1 3.38 1.51 1.49
Nd 10.98 9.85 13.31 15.06 7.45 7.29
Sm 2.82 2.59 3.32 4.05 2.37 2.33
Eu 0.85 0.82 0.94 1.49 1.14 0.80
Gd 3.12 2.83 3.53 5.32 3.25 3.43
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Assemblage/Rock name Whiteway Assemblage Jubilee Assemblage - southern suite
Sample name JP02-563 JP02-564 JP02-565 JP02-566 52-1L-98-02 52-IL-98-10
Rock or Basalt type TLT TLT TLT TLT TLT TLT
age (Ma) 2897 2897 2897 2897 2852 2852
UTM easting 422916 423492 426889 429535 419050 426733
UTM northing 5968000 5968530 5968308 5967658 5957550 5957828
Tb 0.61 0.56 0.68 0.97 0.60 0.66
Dy 3.62 3.38 4.1 6.38 3.62 3.92
Ho 0.78 0.74 0.88 1.33 0.77 0.86
Er 2.27 213 2.50 3.76 2.20 2.58
Tm 0.35 0.33 0.40 0.57 0.33 0.39
Yb 2.21 2.04 2.40 3.52 217 241
Lu 0.34 0.33 0.37 0.55 0.33 0.38
(La/Sm)pm 245 244 2.66 1.52 1.23 1.34
(Th/La)pm 2.54 2.23 2.21 1.64 1.10 1.34
(Nb/La)pm 0.42 0.38 0.35 0.49 0.58 0.51
(Gd/Yb)pm 1.17 1.15 1.22 1.25 1.24 1.17
(Nb/Th)pm 0.16 0.17 0.16 0.30 0.53 0.38
(La/Yb)pm 3.48 3.46 4.09 1.94 1.49 1.44
eNd
T
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Assemblage/Rock name

Jubilee Assemblage - southern suite

52-1L-98- 52-1L-98- JP01-82- JP02- JP02-
Sample name 44 46 G 463 549
Rock or Basalt type TLT TLT TLT TLT TLT
age (Ma) 2852 2852 2852 2852 2852
UTM easting 400350 397100 386468 383992 397856
UTM northing 5958100 5960550 5974061 5976927 5960896
SiO; (wt %) 51.50 50.70 53.98 54.45 51.20
Al,O3 14.78 13.16 11.94 12.99 13.72
Fe,O3 13.10 11.20 10.86 11.49 11.56
MnO 0.19 0.18 0.21 0.30 0.33
MgO 5.68 9.99 7.92 8.21 8.48
CaO 11.06 11.85 12.23 9.11 12.21
Na,O 2.07 1.88 1.92 2.71 1.39
K,0 0.46 0.34 0.25 0.05 0.36
TiO, 1.07 0.64 0.62 0.65 0.69
P,0s 0.08 0.06 0.06 0.06 0.06
LOI 1.55 1.54 2.08 10.89 1.87
Total 100.25 100.10 99.39 99.06 100.39
Mg# 46 64 59 59 59
Cr (ppm) 233 965 594 341 425
Co 55 65 53 41 45
Ni 124 280 138 117 131
Rb 9.16 7.30 5.79 b.d. 10.18
Sr 1415 106.7 247.8 119.7 142.8
Cs 0.25 0.41 1.16 0.30 0.30
Ba 78 85 98 6 97
Sc 43 35 38 36 36
Vv 312 210 217 184 199
Ta 0.17 0.18 0.21 0.23 0.15
Hf 1.78 1.54 1.48 1.67 1.36
Nb 2.79 2.71 2.56 2.86 2.62
Zr 53.77 50.62 49.11 56.40 46.25
Th 0.41 1.71 1.93 2.76 1.53
U 0.10 0.41 0.57 0.80 0.45
Y 23.31 1717 15.28 14.22 15.24
Cu 152.3 107.1 102.9 71.0 84.0
Zn 105 83 75 59 49
Mo b.d. 3.42 b.d. 3.00 5.00
Pb 8.70 713 b.d. 8.00 10.00
Bi b.d. b.d. b.d. b.d. b.d.
La 3.82 5.40 6.92 8.07 6.80
Ce 9.49 11.33 12.95 15.18 12.96
Pr 1.41 1.43 1.54 1.73 1.58
Nd 7.39 6.34 6.48 7.16 7.33
Sm 2.43 1.92 1.83 1.88 2.03
Eu 1.00 0.69 0.65 0.57 0.70
Gd 3.52 2.56 2.42 212 2.30
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Assemblage/Rock name

Jubilee Assemblage - southern suite

52-1L-98- 52-IL-98- JP01-82- JP02- JP02-
Sample name 44 46 G 463 549
Rock or Basalt type TLT TLT TLT TLT TLT
age (Ma) 2852 2852 2852 2852 2852
UTM easting 400350 397100 386468 383992 397856
UTM northing 5958100 5960550 5974061 5976927 5960896
Tb 0.67 0.48 0.44 0.41 0.45
Dy 4.03 2.82 2.57 2.54 2.64
Ho 0.87 0.62 0.56 0.54 0.58
Er 2.57 1.82 1.58 1.52 1.66
Tm 0.39 0.27 0.24 0.24 0.26
Yb 2.47 1.70 1.48 1.43 1.59
Lu 0.39 0.27 0.22 0.23 0.25
(La/Sm)pm 1.02 1.82 244 2.77 217
(Th/La)pm 0.87 2.57 2.25 2.76 1.81
(Nb/La)pm 0.70 0.48 0.36 0.34 0.37
(Gd/Yb)pm 1.18 1.24 1.35 1.23 1.19
(Nb/Th)pm 0.81 0.19 0.16 0.12 0.20
(La/Yb)pm 1.1 227 3.35 4.05 3.07
eNd -1.17 -0.29
T N/A N/A
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Assemblage/Rock name

Jubilee Assemblage - northern suite

Sample name 102-98-809  102-98-812  JP01-246-G  JP02-266 JP02-362 JP02-375
Rock or Basalt type FPT FPT FPT FPT FPT FPT
age (Ma) 2852 2852 2852 2852 2852 2852
UTM easting 385495 385085 388341 381228 381490 390401
UTM northing 5967628 5966441 5966995 5969270 5968387 5965761
SiO; (wt %) 51.74 51.40 52.56 49.91 53.46 51.80
AlLO; 15.11 14.83 15.51 15.25 14.86 14.36
Fe,0s 9.14 10.76 8.73 11.16 8.87 9.61
MnO 0.21 0.13 0.10 0.18 0.17 0.18
MgO 7.91 8.16 7.74 9.71 8.39 8.93
Ca0 13.63 11.33 12.23 11.63 11.11 12.40
Na,O 1.64 2.19 243 1.59 244 217
K20 0.07 0.72 0.16 0.05 0.16 0.08
TiO, 0.46 0.45 0.48 0.48 0.48 0.44
P20s 0.07 0.05 0.04 0.04 0.04 0.04
LOI 1.78 1.60 1.93 1.95 1.57 4.63
Total 99.71 99.93 100.20 99.61 99.99 99.17
Mg# 63 60 64 63 65 65
Cr (ppm) 416 407 433 435 412 403
Co 40 35 31 45 49 43
Ni 102 76 101 84 98 86
Rb 1.13 33.96 5.77 1.82 5.98 b.d.
Sr 87.3 112.9 120.8 79.7 78.6 157.2
Cs b.d. 0.52 0.17 b.d. 0.30 b.d.
Ba 13 99 23 25 48 3
Sc 48 47 48 47 46 44
\ 221 218 226 225 213 189
Ta 0.08 0.07 0.06 0.06 0.06 0.05
Hf 0.66 0.67 0.74 0.79 0.72 0.64
Nb 1.29 1.23 1.26 3.85 3.28 2.59
Zr 19.77 20.92 23.53 28.04 26.06 21.37
Th 0.22 0.21 0.25 0.25 0.25 0.18
U 0.06 0.14 0.21 0.06 0.09 0.06
Y 12.38 12.86 12.38 12.30 11.75 10.61
Cu 9.9 b.d. b.d. 84.0 100.0 b.d.
Zn 73 50 60 49 42 42
Mo 3.90 4.98 3.15 b.d. 9.00 2.00
Pb 22.48 b.d. b.d. b.d. b.d. b.d.
Bi 0.22 0.32 0.20 b.d. b.d. 0.47
La 1.91 2.20 1.51 1.12 1.69 0.88
Ce 4.21 5.12 3.81 3.09 4.10 217
Pr 0.57 0.67 0.56 0.47 0.57 0.32
Nd 2.94 3.15 2.95 2.48 2.86 1.76
Sm 1.02 1.06 1.05 0.88 0.97 0.64
Eu 0.37 0.55 0.45 0.36 0.39 0.24
Gd 1.54 1.65 1.61 1.43 1.35 1.08
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Assemblage/Rock name

Jubilee Assemblage - northern suite

Sample name 102-98-809  102-98-812  JP01-246-G  JP02-266 JP02-362 JP02-375
Rock or Basalt type FPT FPT FPT FPT FPT FPT
age (Ma) 2852 2852 2852 2852 2852 2852
UTM easting 385495 385085 388341 381228 381490 390401
UTM northing 5967628 5966441 5966995 5969270 5968387 5965761
Tb 0.31 0.32 0.33 0.31 0.29 0.25
Dy 1.98 2.07 2.05 1.90 1.88 1.67
Ho 0.44 0.46 0.45 0.44 0.42 0.39
Er 1.33 1.38 1.33 1.31 1.25 1.18
Tm 0.21 0.22 0.20 0.22 0.20 0.19
Yb 1.35 1.37 1.29 1.38 1.26 1.22
Lu 0.22 0.21 0.20 0.21 0.20 0.19
(La/Sm)pm 1.22 1.34 0.92 0.82 1.12 0.89
(Th/La)pm 0.94 0.78 1.35 1.82 1.18 1.67
(Nb/La)pm 0.65 0.54 0.81 3.32 1.87 2.83
(Gd/Yb)pm 0.95 1.00 1.03 0.85 0.88 0.73
(Nb/Th)pm 0.69 0.69 0.60 1.83 1.58 1.70
(La/Yb)pm 1.02 1.16 0.84 0.58 0.96 0.52
eNd 0.91 -1.83
T N/A N/A
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Assemblage/Rock name

Loonfoot Assemblage

52-1L-98- 52-1L-98- 52-1L-98- 52-1L-98- 52-1L-98- 52-1L-98- JP02-
Sample name 11 12 13 24 25 26 569
Rock or Basalt type FPT FPT FPT FPT FPT FPT FPT
age (Ma) 2744 2744 2744 2744 2744 2744 2744
UTM easting 426750 426950 427200 426750 428325 428075 427441
UTM northing 5958650 5958850 5959925 5963700 5964750 5964925 5965228
SiO; (wt %) 53.93 56.17 58.21 52.16 55.10 52.24 51.37
Al,O3 15.54 14.19 15.89 14.31 15.73 14.54 14.83
Fe,O3 8.82 11.53 8.34 15.00 11.66 13.20 13.45
MnO 0.19 0.23 0.16 0.21 0.19 0.21 0.20
MgO 4.69 6.26 4.74 4.70 5.90 6.96 8.56
CaO 13.30 7.65 9.04 9.74 7.39 8.85 10.36
Na,O 2.62 3.12 2.68 2.06 2.94 2.91 0.46
K,O b.d. b.d. b.d. 0.63 0.14 b.d. 0.02
TiO, 0.88 0.80 0.91 1.08 0.90 1.03 0.69
P,0s 0.08 0.06 0.07 0.10 0.08 0.10 0.05
LOI 7.01 4.69 3.97 10.59 8.73 4.84 8.01
Total 100.19 99.80 100.21 99.77 99.64 98.87 99.10
Mg# 51 52 53 38 50 51 56
Cr (ppm) 189 173 193 28 190 153 288
Co 47 46 55 56 54 49 48
Ni 108 119 134 50 140 118 147
Rb b.d. b.d. b.d. 20.46 3.94 b.d. b.d.
Sr 136.5 69.8 114.5 66.6 78.9 126.1 238.1
Cs 0.26 0.30 0.21 1.00 0.78 0.19 0.36
Ba 33 30 26 192 44 16 5
Sc 44 39 44 37 44 43 39
Vv 284 248 282 272 291 323 221
Ta 0.11 0.12 0.12 0.20 0.11 0.16 0.08
Hf 1.29 1.14 1.35 1.86 1.25 1.63 0.85
Nb 1.87 1.78 2.01 2.82 1.90 2.58 1.94
Zr 38.70 35.63 40.74 60.97 39.83 51.31 27.73
Th 0.21 0.18 0.27 1.48 0.21 0.31 0.14
U 0.05 0.06 0.16 0.40 0.06 0.09 0.05
Y 18.38 17.39 18.11 19.36 20.62 23.71 14.77
Cu 159.4 135.7 160.3 166.5 164.7 109.9 141.0
Zn 66 114 96 102 105 102 58
Mo b.d. 5.02 5.56 b.d. 4.35 3.01 7.00
Pb b.d. b.d. b.d. b.d. b.d. b.d. b.d.
Bi b.d. b.d. b.d. b.d. b.d. b.d. b.d.
La 2.70 2.15 2.96 5.09 2.62 3.51 1.75
Ce 6.84 5.51 7.49 10.76 6.69 8.79 4.60
Pr 1.04 0.85 1.12 1.38 1.00 1.32 0.72
Nd 5.51 4.49 5.82 6.36 5.40 7.02 3.95
Sm 1.89 1.64 1.95 1.97 1.93 2.39 1.40
Eu 0.79 0.60 0.72 0.72 0.79 0.63 0.72
Gd 2.80 2.37 2.84 2.75 2.86 3.36 1.86
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Assemblage/Rock name

Loonfoot Assemblage

52-1L-98- 52-1L-98- 52-1L-98- 52-1L-98- 52-1L-98- 52-1L-98- JP02-
Sample name 11 12 13 24 25 26 569
Rock or Basalt type FPT FPT FPT FPT FPT FPT FPT
age (Ma) 2744 2744 2744 2744 2744 2744 2744
UTM easting 426750 426950 427200 426750 428325 428075 427441
UTM northing 5958650 5958850 5959925 5963700 5964750 5964925 5965228
Tb 0.54 0.46 0.52 0.54 0.55 0.65 0.39
Dy 3.20 2.85 3.16 3.33 3.42 3.95 2.46
Ho 0.69 0.63 0.68 0.73 0.76 0.86 0.54
Er 2.01 1.83 1.95 2.19 2.22 2.48 1.54
Tm 0.30 0.28 0.29 0.34 0.34 0.39 0.25
Yb 1.88 1.78 1.83 2.23 2.16 2.40 1.51
Lu 0.29 0.28 0.28 0.35 0.34 0.38 0.23
(La/Sm)pm 0.92 0.85 0.98 1.67 0.88 0.95 0.81
(Th/La)pm 0.62 0.67 0.75 2.35 0.63 0.71 0.65
(Nb/La)pm 0.67 0.80 0.66 0.53 0.70 0.71 1.07
(Gd/Yb)pm 1.23 1.10 1.28 1.02 1.10 1.16 1.02
(Nb/Th)pm 1.08 1.20 0.88 0.23 1.1 1.00 1.63
(La/Yb)pm 1.03 0.87 1.16 1.64 0.87 1.05 0.83
eNd 2.08
T N/A
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Assemblage/Rock name

Loonfoot Assemblage

Cochrane Bay

jubilee southern suite

102-98-
Sample name JP02-570  JPo2-571 | JPO0-31  JP00-33-G 617G 52-IL-98-08
diorite leucotonalite andesitic mass:ive
Rock or Basalt type FPT FPT tuff dacite
age (Ma) 2744 2744 2894 2894 2852 2852
UTM easting 426153 424720 394203 398318 430535 427002
UTM northing 5963553 5962919 5977216 5979790 5956498 5956774
SiO, (wt %) 50.12 52.98 75.72 72.21 62.73 64.88
Al,O3 8.67 14.27 12.72 13.34 15.53 15.40
Fe,03 12.05 12.82 243 4.21 6.64 6.28
MnO 0.20 0.21 0.04 0.07 0.09 0.07
MgO 16.17 6.78 0.37 1.01 4.97 3.51
Ca0 10.93 9.61 1.04 2.19 5.52 4.79
Na,O 1.11 2.26 3.84 3.77 3.16 4.18
K20 0.08 0.08 3.51 2.62 0.64 0.31
TiO, 0.62 0.93 0.28 0.48 0.57 0.46
P,0s 0.04 0.07 0.06 0.11 0.17 0.12
LOI 3.13 10.18 1.1 0.82 2.74 1.98
Total 99.23 99.66 100.35 100.29 100.25 100.07
Mg# 73 51 23 32 60 53
Cr (ppm) 1590 128 b.d. b.d. 166 112
Co 62 44 3 7 23 21
Ni 317 103 b.d. b.d. 136 93
Rb b.d. 3.42 84.59 65.65 6.33 8.52
Sr 104.0 99.3 90 135 419 467
Cs 0.35 1.16 2.16 4.56 b.d. b.d.
Ba 27 24 591 677 132 143
Sc 52 44 5 8 15 12
\Y 220 259 13 41 106 78
Ta 0.06 0.10 1.13 1.10 0.24 0.23
Hf 0.90 1.27 5.76 8.58 2.61 2.78
Nb 1.64 2.42 9.18 9.76 2.09 2.29
Zr 27.94 41.88 207 337 99 110
Th 0.17 0.24 23.26 14.12 1.49 1.23
U 0.16 0.08 5.79 3.54 0.38 0.35
Y 11.65 15.64 25.49 34.68 10.26 8.94
Cu 68.0 193.0 b.d. 171 34.2 18.7
Zn 50 71 b.d. 50 80 34
Mo b.d. 5.00 8.00 4.09 4.31 2.20
Pb b.d. b.d. 20.00 6.72 8.07 b.d.
Bi b.d. b.d. b.d. b.d. b.d. b.d.
La 1.61 2.32 31.83 38.04 15.58 10.27
Ce 4.19 6.00 61.17 77.69 37.01 23.13
Pr 0.65 0.92 6.34 8.02 4.45 2.71
Nd 3.62 4,92 20.89 28.98 18.02 10.98
Sm 1.26 1.63 3.70 5.68 3.20 2.02
Eu 0.47 0.71 0.80 1.05 1.05 0.70
Gd 1.76 2.14 4.00 5.73 2.82 1.88
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Assemblage/Rock name

Loonfoot Assemblage

Cochrane Bay

jubilee southern suite

102-98-
Sample name JP02-570  JPo2-571 | JP00-31  JP00-33-G 617G 52-IL-98-08
diorite leucotonalite andesitic mass:ive
Rock or Basalt type FPT FPT tuff dacite
age (Ma) 2744 2744 2894 2894 2852 2852
UTM easting 426153 424720 394203 398318 430535 427002
UTM northing 5963553 5962919 5977216 5979790 5956498 5956774
Tb 0.36 0.43 0.67 1.05 0.40 0.29
Dy 2.24 2.85 3.98 6.23 2.12 1.62
Ho 0.48 0.62 0.89 1.31 0.40 0.32
Er 1.31 1.77 2.95 3.96 1.16 0.91
Tm 0.20 0.28 0.47 0.63 0.16 0.14
Yb 1.13 1.71 2.98 3.99 1.08 0.93
Lu 0.17 0.27 0.47 0.60 0.16 0.14
(La/Sm)pm 0.83 0.92 5.56 4.33 3.15 3.28
(Th/La)pm 0.85 0.82 5.91 3.00 0.77 0.97
(Nb/La)pm 0.98 1.00 0.28 0.25 0.13 0.21
(Gd/Yb)pm 1.29 1.03 1.11 1.19 2.15 1.67
(Nb/Th)pm 1.16 1.22 0.05 0.08 0.17 0.22
(La/Yb)pm 1.02 0.97 7.68 6.84 10.31 7.91
eNd -0.63
T 3.14
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Assemblage/Rock name

jubilee - northern suite

Sample name 102-98-807 102-98-816 52-1L-98-50 52-1L-98-53 JP02-389
Rock or Basalt type tuff tuff dacite tuff tuff
age (Ma) 2852 2852 2852 2852 2852
UTM easting 385156 385085 399858 396842 384198
UTM northing 5968280 5966441 5963964 5964236 5966544
SiO, (wt %) 69.83 63.84 69.54 70.76 66.29
Al,O3 17.09 17.32 15.74 16.30 16.75
Fe 03 1.68 4.51 3.13 2.81 4.90
MnO 0.08 0.09 0.02 0.05 0.06
MgO 1.69 1.44 2.25 0.43 2.02
CaO 2.35 5.71 0.65 2.33 2.29
Na,O 3.47 4.34 5.65 5.12 5.98
K,0O 3.46 2.07 2.60 1.67 0.97
TiO, 0.26 0.54 0.35 0.42 0.62
P,0s 0.09 0.15 0.10 0.10 0.13
LOI 2.6 3.5 1.34 29 2.15
Total 100.05 99.92 99.77 100.25 100.3
Mg# 67 39 59 23 45
Cr (ppm) b.d. b.d. b.d. b.d. 26
Co 3 12 8 7 11
Ni b.d. b.d. b.d. b.d. 27
Rb 70.15 57.51 59.50 41.69 22.72
Sr 130 350 151 110 358
Cs 1.02 1.81 3.31 1.63 0.69
Ba 366 533 693 516 394
Sc 4 6 6 6 7
Vv 34 46 45 54 48
Ta 0.23 0.32 0.46 0.38 0.47
Hf 2.44 3.67 3.08 2.84 3.47
Nb 1.53 2.98 3.32 3.09 4.84
Zr 94 134 116 107 136
Th 5.31 3.96 5.80 6.14 7.57
U 1.94 1.43 1.83 1.27 1.99
Y 3.48 13.18 5.76 6.48 8.41
Cu b.d. 26.7 23.3 33.9 46.0
Zn 62 76 37 39 78
Mo 2.52 2.23 b.d. b.d. 4.00
Pb 16.46 14.38 b.d. 712 11.00
Bi b.d. b.d. b.d. b.d. b.d.
La 16.84 16.86 20.10 20.23 18.17
Ce 31.77 34.17 37.10 37.68 36.32
Pr 3.14 3.67 3.57 3.73 3.64
Nd 10.88 14.09 12.20 13.19 12.41
Sm 1.75 3.00 2.09 2.24 2.31
Eu 0.58 1.03 0.68 0.72 0.87
Gd 1.18 3.00 1.68 1.79 2.07
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Assemblage/Rock name

jubilee - northern suite

Sample name 102-98-807 102-98-816 52-1L-98-50 52-1L-98-53 JP02-389
Rock or Basalt type tuff tuff dacite tuff tuff
age (Ma) 2852 2852 2852 2852 2852
UTM easting 385156 385085 399858 396842 384198
UTM northing 5968280 5966441 5963964 5964236 5966544
Tb 0.15 0.47 0.24 0.26 0.29
Dy 0.71 2.55 1.19 1.35 1.57
Ho 0.12 0.49 0.21 0.23 0.31
Er 0.33 1.42 0.62 0.67 0.81
Tm b.d. 0.21 0.08 0.09 0.11
Yb 0.29 1.30 0.52 0.57 0.71
Lu 0.04 0.18 0.07 0.08 0.11
(La/Sm)pm 6.21 3.63 6.22 5.83 5.07
(Th/La)pm 2.55 1.90 2.33 2.45 3.37
(Nb/La)pm 0.09 0.17 0.16 0.15 0.26
(Gd/Yb)pm 3.34 1.91 2.68 2.60 2.41
(Nb/Th)pm 0.03 0.09 0.07 0.06 0.08
(La/Yb)pm 41.37 9.33 27.79 25.47 18.32
eNd
T
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Assemblage/Rock name Jubilee - northern suite Jubilee
Sample name JP02-425 JP02-807 JP02-839 JP02-289
Rock or Basalt type tuff felsic extrusive tuff granodiorite
age (Ma) 2852 2852 2852 2852
UTM easting 383881 385023 379818 385602
UTM northing 5977554 5968322 5978878 5967142
SiO; (wt %) 74.27 68.32 71.37 68.98
Al,O4 16.18 15.94 16.04 16.02
Fe 05 1.77 3.89 2.27 3.29
MnO 0.02 0.09 0.06 0.04
MgO 1.04 2.18 1.42 1.34
Ca0 2.34 2.39 1.48 2.95
Na,O 1.86 5.28 2.26 4.84
K20 1.92 1.40 4.55 2.09
TiO, 0.49 0.40 0.46 0.37
P,0s 0.10 0.10 0.11 0.08
LOI 2.01 2.05 3.55 1.67
Total 99.75 99.54 100.26 100.25
Mg# 54 53 55 45
Cr (ppm) b.d. 35 26 b.d.
Co 3 10 12 8
Ni b.d. 22 22 b.d.
Rb 47.88 34.70 64.26 71.16
Sr 109 351 33 337
Cs 5.31 1.1 1.69 3.01
Ba 232 455 638 645
Sc 8 6 7 5
\ 29 51 59 45
Ta 0.81 0.49 0.33 0.36
Hf 5.15 3.22 3.26 2.80
Nb 7.80 4.52 3.70 4.02
Zr 205 124 136 101
Th 10.49 7.29 7.06 7.65
U 3.15 2.04 1.93 1.88
Y 14.89 7.45 8.39 6.14
Cu b.d. 15.0 20.0 86.0
Zn b.d. 182 37 46
Mo 6.00 4.00 4.00 6.00
Pb b.d. 20.00 b.d. 15.00
Bi b.d. b.d. b.d. b.d.
La 24.46 23.44 22.88 16.89
Ce 46.25 40.10 40.29 28.29
Pr 4.80 3.82 3.87 2.95
Nd 16.20 13.27 13.15 10.93
Sm 2.7 2.39 2.44 1.92
Eu 1.1 0.73 0.76 0.56
Gd 2.74 1.76 2.05 1.58
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Assemblage/Rock name Jubilee - northern suite Jubilee
Sample name JP02-425 JP02-807 JP02-839 JP02-289
Rock or Basalt type tuff felsic extrusive tuff granodiorite
age (Ma) 2852 2852 2852 2852
UTM easting 383881 385023 379818 385602
UTM northing 5977554 5968322 5978878 5967142
Tb 0.44 0.27 0.30 0.23
Dy 242 1.45 1.54 1.1
Ho 0.53 0.25 0.30 0.22
Er 1.55 0.68 0.82 0.55
Tm 0.22 0.10 0.11 0.08
Yb 1.35 0.61 0.74 0.50
Lu 0.22 0.09 0.11 0.08
(La/Sm)pm 5.82 6.34 6.05 5.69
(Th/La)pm 3.47 2.52 249 3.66
(Nb/La)pm 0.31 0.19 0.16 0.23
(Gd/Yb)pm 1.68 2.40 2.30 2.59
(Nb/Th)pm 0.09 0.07 0.06 0.06
(La/Yb)pm 13.03 27.76 22.29 24.08
eNd -0.32 0.14 -0.75
T 3.17 3.13 3.19
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Assemblage/Rock name southern pluton Loonfoot Bella Lake
S 52.L-98-01  JP02-419 JP01-105 JP01-176-  JPO1-67-
ample name G G
R tona‘hte tona‘hte tuff tonalie tonalite
ock or Basalt type gneiss gneiss
age (Ma) 2825 2825 2744 2744 2744
UTM easting 417463 417458 425563 387261 390580
UTM northing 5956678 5956678 5961134 5982855 5975736
SiO, (wt %) 75.00 73.41 70.97 68.40 69.22
Al,O3 13.08 14.65 15.12 15.37 15.13
Fe,03 3.30 2.02 2.98 3.51 3.70
MnO 0.04 0.04 0.07 0.06 0.06
MgO 1.72 0.56 1.15 1.61 1.65
Ca0 1.00 2.55 3.73 2.76 2.59
Na,O 3.00 4.81 1.36 4.26 4.27
K,0O 2.37 1.69 4.22 3.47 2.83
TiO, 0.40 0.21 0.30 0.39 0.40
P,0s 0.09 0.07 0.11 0.16 0.14
LOI 1.2 0.57 4.91 0.83 1.99
Total 100.19 99.89 99.17 99.64 100.28
Mg# 51 36 43 48 47
Cr (ppm) 82 b.d. 44 b.d. b.d.
Co 12 3 4 7 8
Ni 45 b.d. b.d. b.d. b.d.
Rb 72.47 49.84 149.84 89.43 65.11
Sr 167 397 95 503 535
Cs 3.86 2.14 16.27 3.54 473
Ba 489 578 934 1170 1110
Sc 7 4 5 6 7
\Y 43 15 38 49 57
Ta 0.58 0.35 0.39 0.52 0.56
Hf 4.29 2.47 2.95 3.96 452
Nb 5.19 3.83 5.07 412 4.28
Zr 176 86 109 143 168
Th 10.40 4.63 6.71 13.92 11.25
U 3.38 1.08 2.06 1.96 2.54
Y 10.74 4.00 8.49 10.26 10.47
Cu 40.6 0.0 17.0 38.1 111
Zn 81 52 94 48 56
Mo 3.46 5.00 11.00 38.31 3.08
Pb 25.60 18.00 169.00 15.40 16.93
Bi 0.47 b.d. b.d. 0.70 0.41
La 31.76 15.05 21.73 42.53 34.11
Ce 64.02 28.13 39.37 82.58 69.52
Pr 6.59 2.98 4.03 8.45 7.30
Nd 23.70 10.03 14.49 30.00 26.21
Sm 3.59 1.35 2.37 4.53 414
Eu 0.82 0.44 0.74 1.19 1.02
Gd 2.51 1.03 1.79 2.61 2.43
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tonalite tonalite . .
Rock or Basalt type gneiss gneiss tuff tonalie tonalite
age (Ma) 2825 2825 2744 2744 2744
UTM easting 417463 417458 425563 387261 390580
UTM northing 5956678 5956678 5961134 5982855 5975736
Tb 0.37 0.14 0.25 0.37 0.35
Dy 1.91 0.73 1.40 1.96 1.96
Ho 0.37 0.14 0.27 0.34 0.35
Er 1.07 0.39 0.80 0.98 0.99
Tm 0.17 0.05 0.13 0.14 0.15
Yb 1.07 0.32 0.82 0.97 1.02
Lu 0.16 0.05 0.12 0.14 0.15
(La/Sm)pm 5.72 7.23 5.93 6.06 5.32
(Th/La)pm 2.65 2.48 2.49 2.65 2.66
(Nb/La)pm 0.16 0.24 0.22 0.09 0.12
(Gd/Yb)pm 1.93 2.65 1.81 2.23 1.97
(Nb/Th)pm 0.06 0.10 0.09 0.04 0.05
(La/Yb)pm 21.21 33.79 19.03 31.45 23.97
eNd -0.49 -1.71 -1.80
T 3.11 3.19 3.14
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Bella

Assemblage/Rock name Lake Pipe Point Linklater and hoseshoe stock
Sample name JP02-420 JP01-45 JP01-116-G JP01-217-G
Rock or Basalt type tonalite quartz-feldspar porphyry | quartz-feldspar porphyry  quartz-feldspar porphyry
age (Ma) 2744 2730 2700 2700
UTM easting 427592 383615 385763 391571
UTM northing 5960965 5979444 5974486 5978687
SiO; (Wt %) 70.82 65.83 71.67 72.33
AlLO; 15.28 16.36 15.22 14.72
Fe 0, 3.30 4.76 217 2.29
MnO 0.05 0.07 0.04 0.04
MgO 0.90 2.30 0.67 0.61
CaO 2.47 3.92 2.65 2.20
Na,O 3.18 4.18 4.68 4.60
K20 3.48 1.99 2.58 2.86
TiO, 0.41 0.47 0.24 0.22
P,0s 0.12 0.12 0.08 0.12
LOI 3.29 2.62 2.81 1.41
Total 99.96 100.06 99.93 100.28
Mg# 35 49 38 34
Cr (ppm) b.d. 20 b.d. b.d.
Co 3 9 3 2
Ni b.d. b.d. b.d. b.d.
Rb 144.58 41.78 55.76 52.64
Sr 199 615 387 526
Cs 12.33 6.07 2.34 1.41
Ba 1010 363 745 1160
Sc 3 8 4 3
\Y 31 74 25 16
Ta 0.46 0.15 0.33 0.47
Hf 5.38 2.84 2.66 3.48
Nb 6.23 3.73 2.69 419
Zr 224 101 101 130
Th 16.80 1.02 30.06 8.52
U 1.32 0.29 3.63 1.75
Y 7.71 6.67 5.86 5.93
Cu 46.0 b.d. 11.0 b.d.
Zn 64 51 38 41
Mo 5.00 3.00 243 b.d.
Pb 6.00 13.00 8.42 15.58
Bi b.d. b.d. b.d. b.d.
La 53.13 7.83 20.79 34.13
Ce 88.39 20.39 39.46 66.85
Pr 8.25 2.75 3.97 6.80
Nd 26.68 12.20 13.90 23.29
Sm 3.17 2.33 2.09 3.18
Eu 0.92 0.89 0.63 0.83
Gd 2.01 1.84 1.29 1.31
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Bella

Assemblage/Rock name Lake Pipe Point Linklater and hoseshoe stock
Sample name JP02-420 JP01-45 JP01-116-G JP01-217-G
Rock or Basalt type tonalite quartz-feldspar porphyry | quartz-feldspar porphyry  quartz-feldspar porphyry
age (Ma) 2744 2730 2700 2700
UTM easting 427592 383615 385763 391571
UTM northing 5960965 5979444 5974486 5978687
Tb 0.28 0.24 0.19 0.19
Dy 1.38 1.24 1.02 1.10
Ho 0.25 0.22 0.18 0.19
Er 0.75 0.61 0.53 0.53
Tm 0.10 0.09 0.07 0.08
Yb 0.65 0.55 0.51 0.52
Lu 0.10 0.08 0.08 0.08
(La/Sm)pm 10.82 217 6.43 6.93
(Th/La)pm 2.55 1.05 11.69 2.02
(Nb/La)pm 0.11 0.46 0.12 0.12
(Gd/Yb)pm 2.57 2.79 2.1 2.07
(Nb/Th)pm 0.04 0.44 0.01 0.06
(La/Yb)pm 58.90 10.30 29.45 46.72
eNd 0.68 1.00
T 3.03 2.91
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Table 3-2 Nd isotope data summary

Sample Rock type/Unit Age (Ma) eNd TDM
Italic sample names - recalculated data from Stevenson and Turek, 1992
Felsic rocks
102-98-859 Volcanogenic sediments 2897 0.47 3.27
999 Cochrane Bay tonalite 2894 0.39 3.16
JP00-33 Cochrane Bay diorite 2894 -0.63 3.14
JP02-425 Jubilee assemblage tuff 2854 -0.32 3.17
110 Knight Lake tuff (Jubilee assemblage) 2852 -0.04 3.17
158 Bigstone Lake tuff (Jubilee assemblage) 2852 -0.72 N/A
3114 Jubilee assemblage dacite 2852 -0.52 3.18
3115 Jubilee assemblage crystal tuff 2852 -0.68 3.16
3140 Nickel Island tuff (Jubilee assemblage?) 2852 1.19 N/A
JP02-289 Jubilee assemblage granodiorite 2852 -0.75 3.19
JP02-839 Jubilee assemblage tuff 2852 0.14 3.13
JP02-419 Southern tonalite gneiss 2825 -0.49 3.11
JP02-424 York Lake pluton 2825 -1.99 3.27
3116 Wassagomach tonalite 2778 -0.37 3.05
3141 Chapin Bay tonalite 2748 -1.77 3.17
372 Cochrane Bay (Bella Lake) tonalite 2747 -1.00 3.09
35 Bella Lake pluton 2744 -0.48 3.01
JPO1-105 Loonfoot assemblage tuff 2744 -1.71 3.19
JPO1-67 Cochrane Bay (Bella Lake) pluton 2744 -1.80 3.14
815 Beemingi porphyry 2743 -0.98 3.08
983 Linklater porphyry 2743 -1.80 3.16
44 Pipe Point porphyry 2730 2.06 2.93
140 Pipe Point tonalite 2730 -1.35 3.09
143 Pipe Point quartz diorite 2730 2.42 291
JPO1-45 Pipe Point porphyry 2730 0.68 3.03
217G Horesehoe Island porphyry 2700 1.00 291
Basalts

JP02-559 Whiteway assemblage basalt 2897 0.58 N/A
JP02-557 Whiteway assemblage basalt 2897 0.86 N/A
349 Bigstone Lake basalt (Jubilee assemblage) 2852 1.73 N/A
3117 Gabbro (Jubilee assemblage) 2852 0.79 N/A
860 Gabbro (Jubilee assemblage) 2852 1.89 N/A
1 Stevenson Lake amphibolite (Jubilee assemblage) 2852 0.27 3.17
JP01-246G Jubilee assemblage — northern suite basalt 2852 0.91 N/A
JP02-266 Jubilee assemblage — northern suite basalt 2852 -1.83 N/A
52-1L-98-44 Jubilee assemblage — southern suite basalt 2852 -1.17 N/A
JP02-463 Jubilee assemblage — southern suite basalt 2852 -0.29 N/A
52-1L-98-12 Loonfoot assemblage basalt 2744 2.08 N/A
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Chapter 4
Archean tectonics and basin formation: Constraints from U- Pb
detrital zircon dating by LA-MC-ICP-MS in a “Timiskaming-type”

sedimentary group in the Superior craton

4.1 Introduction

Vertical tectonics has been revisited as an important tectonic process in Archean terranes and recent
papers have focused on the structural, geometric, geophysical and metamorphic aspects of vertical
tectonics in Archean terranes (Dhawar craton — Choukroune et al. 1997; Pilbara craton- Van
Kranendonk et al. 2007 and references therein; Superior Province — Bedard et al. 2003; Bedard 2006;
Lin 2005; Parmenter et al. 2006; Robin 2009). In “modern-style” or horizontal tectonics, tectonism
involves the organized movement of plates, and the motion of these plates is driven by slab pull
and/or push. In vertical tectonics, tectonism involves movement via the diapiric ascent of underlying
buoyant felsic material into domes, and the sagging, or “sagduction,” of volcanic and volcaniclastic
supracrustal material into the flanks or synclines between the domes. This style of tectonism is driven
by heat and/or density contrast in the crust. Upwelling heat is generated by mantle plumes or by
delamination of the lower crust, and density contrasts occur when mafic rocks overlie felsic rocks in
thickened crustal sections (Van Kranendonk et al. 2007; Lin 2005; Parmenter et al. 2006; Robin and

Bailey 2009).

Most authors see vertical and horizontal tectonism as separate processes that would have operated
exclusively from each other (e.g. De Wit 1998 vs. Hamilton 1998), although recent work has
indicated that these two processes could be contemporaneous (Lin 2005). The Superior Province is
the largest piece of exposed Archean crust in the world, and has long been referred to as the best
example of horizontal tectonics in the Archean. Recent studies show that vertical tectonics may have

played an important (but overlooked) part in the geological evolution of greenstone belts built on
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smaller, cratonic blocks in the province (Bedard 2003; Lin 2005; Parmenter et al. 2006), which are
closer in size to other Archean cratons (i.e. the Pilbara and Dhawar cratons). As such, greenstone belts
in the Superior province offer good opportunities to look for evidence of vertical tectonism, and the

possible interaction of vertical and horizontal tectonic processes.

One approach to investigating the tectonic processes operating in the Archean is to investigate the
formation of what are thought to be tectonically controlled basins. This study investigates
“Timiskaming” type sediments; young, clastic, sedimentary packages characteristic of Neoarchean
greenstone belts that are traditionally interpreted to have been deposited in strike-slip related basins
(Thurston and Chivers 1990). We suggest these sediments can be explained as being deposited in
inter-diapiric basins created by diapirism and sagduction processes. During the diapiric ascent of the
felsic material, inter-diapiric basins are formed in the synclines between adjacent domes, into which
sediments are deposited (Van Kranendonk et al. 2004; Lin 2005; Parmenter et al. 2006). This study
was accomplished by examining the distribution of U-Pb detrital zircon ages at different stratigraphic
levels in a “Timiskaming type” sedimentary succession located in the Island Lake greenstone belt,

Superior Province, Manitoba, Canada (Figure 4.1).

4.2 Geological Setting

4.2.1 The Superior Province and Timiskaming-type sedimentary sequences

The Superior Province is subdivided into east-west trending domains, terranes, and superterranes
that all have distinct tectonic histories prior to amalgamation of the province. The Island Lake
greenstone belt is part of the northern margin of the North Caribou terrane, a granite-greenstone
terrane which is juxtaposed to the Northern Superior superterrane to the north along the North
Kenyon Fault (Figure 4.1, Card and Ciesielski, 1980, Percival et al. 2006; Stott 2009). In the North

Caribou terrane, as with other granite greenstone terranes in the Archean, a dome and keel pattern is
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seen on the regional scale (Figure 4.1), with greenstones representing a keel structure between
surrounding granitoid domes (e.g. in the Pilbara, Van Kranendonk et al. 2004). Greenstone belts in
the Superior Province consist of two different types of supracrustal packages: older volcanogenic
assemblages and a young clastic fluvial-alluvial sedimentary group. The older volcanic assemblages
typically consist of Archean style bimodal volcanic units and volcanogenic sedimentary rocks, and
belts in the northwestern Superior Province typically contain two or more volcanic assemblages that
represent chronologically distinct episodes of volcanism (Figure 4.1; Corfu and Lin 2000; Corkery et

al. 2000; Parks et al. 2006; Lin et al. 20006).

Young, clastic, fluvial-alluvial sedimentary units are common and characteristic of Archean
greenstone belts. In the Superior Province these units are referred to as “Timiskaming-type” groups
after the type locality of this group in the Abitibi greenstone belt (Thurston and Chivers 1990). These
groups are the youngest in the greenstone belt stratigraphy and are composed of clastic fluvial-alluvial
sedimentary rocks and typically include “Archean style” turbidites (mixed sandstone/shales), arenites,
conglomerates, and sandstones. In some belts they also contain subordinate alkaline volcanic rocks
(Thurston and Chivers 1990). When observed, the contacts between these groups and the older
plutons and volcanic sequences in the belt are unconformable. The groups show a synformal
geometry and are situated in the “middle” of the keel structures formed by the greenstone belts they
occur in (see Figure 4.2 and Figure 2 of Lin 2005). In the Abitibi greenstone belt, these groups are
commonly spatially associated with late strike-slip or transpressional shear zones as well as gold
mineralization (Thurston and Chivers 1990). The timing of the deposition of these sediments is
constrained by either the age of the youngest detrital zircon in the group, or the age of co-eval alkalic
volcanism. In the northwest Superior province these ages range from <2713 Ma (at Stull Lake,

Skulski et al. 2000) to 2705 Ma (at Oxford Lake, Lin et al. 2006) (Figure 4.1).
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4.2.2 Geology of the Island Lake greenstone belt

The Island Lake greenstone belt of Northern Manitoba can be divided into three distinct volcanic
assemblages; the 2.897 Ga Whiteway assemblage, the 2.852 Ga Jubilee assemblage and the 2.744 Ga
Loonfoot assemblage, as well as the unconformably overlying younger clastic rocks of the Island Lake
Group (Lin et al. 1998; Parks et al. 2006). The primary contact relationships between the volcanic
assemblages are not clear in the field; previous work had proposed that the shear zones in the belt
represented the primary contacts between the different assemblages (e.g. the Savage Island shear zone,
Lin et al. 1998). Recent field work and new geochronological results that are part of this study have
shown that the volcanic assemblages cross the shear zones in the belt, and as such cannot be the primary
contacts between assemblages (Parks et al. 2006). These data as well as evidence of contamination by
older crustal material in the bulk rock composition and Nd isotopes of the volcanic assemblages suggest
the volcanic packages have autochthonous relationships with each other and were built on older 3.0 Ga
crust (Stevenson and Turek 1992; Parks et al. 2006; Chapter 2; Chapter 3). It is very likely that the
volcanic assemblages are in conformable contact with each other, represent an intact primary volcanic
stratigraphy, and that the assemblages were deposited on a Mesoarchean basement that has been
pervasively reworked by Neoarchean plutonism and deformation (Chapter 3). This leads to a schematic
stratigraphic column presented here for the supracrustal rocks in the Island Lake greenstone belt (Figure

43).

Plutonic rocks in the belt range in age from 2894 Ma to 2699 Ma, with a concentration of Neoarchean
magmatic activity at 2.75-2.74 Ga (Turek et al. 1986; Stevenson and Turek 1992; Corfu and Lin 2000;
Parks et al. 2006). All of the rocks in the belt are metamorphosed from lower greenschist to lower
amphibolite facies and have experienced multiple deformation events. At least two episodes of
deformation have been identified in the belt, a D, event related to folding in the older volcanic

assemblages dated at 2.723 Ga (Chapter 2 and Chapter 3) and a D, event related to final movement along
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the Savage Island shear zone and Harper Island shear zone (see Figure 3.2), and terminal collision in the

NW Superior Province dated at 2.70 Ga (Chapter 3).

4.2.2.1 Sedimentary Rocks of the Island Lake Group

The Timiskaming-type sequence in the Island Lake greenstone belt is called the Island Lake Group
(ILG) (Lin et al. 2006; Parks et al. 2006). The ILG is observed to have an unconformable relationship
(see Figure 2.6) with older plutonic and supracrustal rocks in the belt. The group has a synformal
geometry, with facing directions consistently point away from the contacts with the older plutonic and
supracrustal rocks (Figure 4.2). It has been metamorphosed to greenschist facies and is only weakly
deformed. Well preserved primary features such as graded bedding, cross bedding, and flame structures
define younging directions and provide excellent control on the stratigraphic sequence within the group
(Figure 4.2 and Figure 4.3). Sedimentation in this group is bracketed between 2712 Ma (the age of the
youngest detrital zircon dated by thermal ionization mass spectrometry (Corfu and Lin 2000) and ca. 2699

Ma (the age of a crosscutting intrusion, Turek et al. 1986).

The lowest unit at the base of the ILG is the lower mixed sandstone/shale unit (sample I, Figure 4.4A).
The base of this unit consists of a layer of black shale that grades into a repeating sequence of 5 to 10 cm
thick layers of graded sediment. These layers consist of blue-quartz-rich very coarse to coarse sand at the
base that grades up to a thin (<5cm) silty dark pelitic layer at the top that is similar in lithology to the
“black shale” layer at the base of the unit (Figure 4.4A). Identifiable grains at the base of each layer
include bluish quartz, feldspar, felsic and mafic volcanic grains. The layers are internally well sorted and
the grains are moderately well rounded. The sandy layer becomes more conglomeratic in discrete lenses,
and the clasts in this conglomerate exhibit poor rounding and sorting. The clasts are the same composition
as the grains in the base of the sandy layers. This unit grades into a layer of blue quartz sandstone, which

in turn grades into the next unit up sequence (Lin et al. 1998).
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The next unit is the interbedded sandstone-polymictic conglomerate unit (sample 11, Figure 4.4B). This
unit is interbedded on the decimeter to meter scale. The conglomerate layers are well sorted, dominantly
clast supported, and heterolithic. The clasts range in size from pebbles to boulders and are subangular to
rounded. The clast size is consistent within each layer, and differs from layer to layer. The clast
population includes mafic and felsic volcanic rocks, mylonite, gneiss, tonalite, quartz and chert. The
sandstone layers are medium to coarse grained, and the grains are very well sorted and rounded. Primary

structures in this unit include graded bedding and cross bedding in the sandstone layers.

This unit grades into a massive sandstone unit (sample III, Figure 4.4C), which is medium to coarse
grained, massive and lithic in composition. The grains are very well sorted and well rounded. Primary
structures in this bed include load structures and well-developed cross-beds with local concentrations of

heavy minerals such as sulphides at the base of each cross-bed.

This grades into the upper mixed sandstone/shale unit (sample IV, Figure 4.4D). This unit is greenish in
colour and is bedded on the centimeter scale. The grains in each bed range in size from silt to medium
sand sized. The smaller grain sizes are dominantly mafic in composition, while the larger are dominantly
felsic in composition. Primary features include graded bedding and load structures such as flame and ball

and pillow structures (Lin et al. 1998; Parks et al. 2006).

4.3 Results

Photographs of zircons for each sample are presented in Figure 4.5. Details on the analytical methods
used for this can be found in Appendix D. To examine how the detrital zircon population changes from
unit to unit, the *’Pb/**°Pb age was calculated for each grain using Isoplot 3.0. (Ludwig 2003), and the
297pp/2%Ph age histograms were constructed for each of the four samples using AgeDisplay (Sircombe
2004) (Table 4.1 and Figure 4.6). In the lower mixed sandstone/shale (sample I, Figure 4.6), a few ages
(n=6) are observed at 2.76-2.70 Ga, and a large peak (n=80) is observed in the data between 2.78-2.86

Ga. No detrital zircon ages older than 2.90 Ga is observed in these data. In the conglomerate (sample II,
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Figure 4.6), a larger spread of ages are observed. A small population of zircons have *’Pb/**Pb ages
between 2.76 and 2.70 Ga (n=17), as well as a larger peak at 2.90-2.98 Ga (n=56). This sample also
shows input from a ca. 3.0 Ga source (n=11). In the massive sandstone (sample III, Figure 4.6), a large
peak is observed at 2.70-2.78 Ga (n=65), as well as a small contribution of material that is older than 2.80
Ga (n= 17). In the upper mixed sandstone/shale (sample 1V, Figure 4.6), a large peak is observed around
2.74-2.72 Ga (n=42), which itself is set in a broader peak that ranges from 2.70-2.80 Ga (n=89). Only a

very small amount of older material (n=5) is present in this sample.

Very distinct detrital zircon ages or strong "age signatures" are recorded in each of the four samples
and these vary from sample to sample. Two such signatures are the 2.78-2.86 Ga ages seen in sample I
and the 2.90-2.98 Ga signature seen in sample II (Figure 4.6). Another trend in the data is the steady
increase in the size of a ca. 2.70-2.76 Ga signature coupled with a decrease in size of a signature older

than 2.80 Ga. This trend is seen from the lowermost sample to the upper most sample in the stratigraphy.

These dominant age signatures correspond well with known volcanic and plutonic ages in the Island
Lake greenstone belt and surrounding terranes. The detrital zircon ages in the two lowermost units
correlate to the age of the two oldest volcanic assemblages in the belt. The largest age signature in sample
I, correlates well with the 2.85 Ga Jubilee assemblage in this greenstone belt (Parks et al. 2006; Corfu and
Lin 2000), and similar younger ages of the 2.83 Ga “Hayes River” Group in greenstone belts to the north
(Lin et al. 2006 and references within). The next sample up stratigraphy, sample II, has a distinctively
older age signature which correlates well with the 2.89 Ga Whiteway Assemblage and older components
in the Island Lake greenstone belt (Corfu and Lin 2000; Parks et al. 2006). The 2.70 to 2.76 Ga signature
seen to increase up-stratigraphy corresponds to the age of youngest porphyry intrusions and the

voluminous ca. 2.75-2.74 Ga plutons in the belt (Corfu and Lin 2000; Parks et al. 20006).
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4.4 Discussion

A few detrital zircon in this study (n=17/360) have **’Pb/*”°Pb ages that overlap within error of, or are
just younger (within 1 to 2 Ma) than the age of the youngest detrital zircon analyzed by Corfu and Lin
(2000) that provides a maximum age constraint for the deposition of the Island Lake group. The analysis
of Corfu and Lin is a concordant datum obtained by TIMS, whereas the ages in this study are discordant
(-2.26 to 0.57). It is unclear if these ages provide a more accurate but less precise, younger, maximum
age for the deposition of the Island Lake group. Regardless, these ages support interpretation of Corfu and

Lin (2000) that the Island Lake greenstone belt was deposited over a relatively short period of time.

The sediment being deposited in a basin at any given time is a reflection of what rocks are available for
erosion, which is related to the pre-basin geometry and the processes that are responsible for the opening
of the basin. As such, if the original geometry is known, and there is good control on the ages of the rocks
in the area, the provenance of the sediments can be traced back to their source by determining the age of
the detrital zircons in the sediment. This can be done for each stratigraphic level within a sedimentary
group, and then used to constrain what tectonic processes were responsible for opening the basin. Using
detrital zircons to track provenance in a sedimentary sequence biases the data towards whatever zircon
bearing rocks are available to be eroded in the source region. In the Island Lake greenstone belt, the
potential zircon bearing rocks being sourced for the detritus are the felsic volcanic and volcanogenic
sedimentary rocks which have been used to successfully date each assemblage, and the voluminous
plutons in the belt which are contemporaneous with the volcanic assemblages (Chapter 2; Parks et al.

2006).

The original pre-basin geometry in the Island Lake greenstone belt is presented in Figure 4.7 A, and is
identical to the geometry of the older volcanic assemblages presented in Figure 4.3 with the exception

that the 2.744 Ga Loonfoot assemblage is not included. This is because this assemblage consists

121



dominantly of mafic volcanics with limited present day extent, and as such is not expected to be a source
of detrital zircon for the Island Lake group. It is also possible that if there was a detrital zircon
contribution from the Loonfoot assemblage, it would have feed the detritus at the bottom of the Island

Lake group that is not observed on surface and not sampled in this study.

One model proposed to explain how the basins form into which these Timiskaming-type sediments are
deposited is the inter-diapiric basin model. This model invokes the opening of basins during the diapiric
ascent of the buoyant felsic material into domes, and the sagduction of the denser volcanic and
volcaniclastic supracrustal material into the keels in between adjacent domes (stages B-D in Figure 4.7;
Bleeker 2000; Van Kranendonk et al. 2004; Lin 2005; Parmenter et al. 2006). In the inter-diapiric basin
model, the material that is available for erosion during the different stages of basin development is
dictated by what material is above the “erosional surface” (controlled by what is on the surface of the
earth, dashed line in Figure 4.7). In the first stage of basin development, the supracrustal assemblages at
surface are the major source of detritus (stages B-C in Figure 4.7). As sagduction/diapirism continues the
supracrustal rocks either become completely eroded away, or are suffocated below the erosional surface.
At this point in the evolution of the basin, the younger felsic domes are unroofed and become the major
source of detritus to the basin (Stage D in Figure 4.7). Thus, two important criteria for sediments
deposited in different stages of a basin formed by this model are 1) evidence of detritus from “at surface”
supracrustal assemblages lowest in the stratigraphy (i.e. deposited in the first stages of sedimentation into
the basin), and 2) evidence of detritus from unroofing felsic domes towards the top of the stratigraphy (i.e.

deposited in the latter stages of sedimentation into the basin).

The two lowermost samples from this study clearly show a pattern of downward erosion through two
distinct supracrustal units. The first material available for erosion and deposition in the lowest unit in the
stratigraphy (sample 1) is the younger of the two volcanic assemblages, the ca. 2.85 Ga Jubilee

assemblage and related volcanic rocks (corresponding to stage B in Figure 4.7). This material is then
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eroded away or buried beneath the erosional surface during unroofing. The next material available for
erosion and deposition in the subsequent unit up sequence (sample II) is the underlying ca. 2.89
Whiteway assemblage and older equivalents of the belt (corresponding to stage C in Figure 4.7). As
diapiric movement continues, the volcanic rocks are either completely eroded away or are suffocated
below the erosional surface, and the younger plutonic rocks are unroofed and then become the main
source of detritus (corresponding to stage D in Figure 4.7). This is reflected in the strong 2.70 to 2.76 Ga

signature that is only observed in the two uppermost samples (III and IV) of the stratigraphy.

The detrital zircon data from this study fulfills the two criteria listed above and are consistent with the
development of an inter-diapiric basin and related sedimentation. A striking signature which fits the
model presented above is the presence of the oldest volcanic assemblage, the 2.89 Ga Whiteway
assemblage, and older components in sample II, and an almost complete absence of this age signature in
samples stratigraphically above or below it. Such a distribution of this age signature reflects that it was
only available for erosion during a very short and specific period of time within the stages of basin
development, and represents the transition from stages C to D (Figure 4.7). The data from this study
agrees well with the predicted pattern of downward erosion through a supracrustal pile in the early stages
of basin formation and sedimentation, and an unroofing of underlying plutons in the later stages. We

suggest therefore that the Island Lake group was deposited in an inter-diapiric basin.

4.5 Synchronous Vertical and Horizontal Processes in the Neoarchean

In the western Superior Province, there is much evidence for horizontal tectonism being responsible for
producing deformation events on the belt and regional scale (e.g. the development of large D,
transpressional shear zones and the amalgamation of terranes in the area via a series of subduction zones;
Percival et al. 2006 and references within; Chapter 3). The diapiric structures in the northwestern Superior

Provinces, although related to vertical tectonic processes, are also thought to be related to the same late
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regional shear zones (Lin 2005 and Parmenter et al. 2006). Detailed kinematic work on the D, structures
in the Carrot River and Cross Lake greenstone belts (locations in Figure 4.1 ) have been completed by Lin
(2005) and Parmenter et al. (2006). These studies have shown that the strike-slip component of these
structures are related regional horizontal shearing as a result of horizontal tectonism, while the dip-slip
component is related to diapirism/sagduction processes (vertical tectonism). Both Lin (2005) and
Parmenter at al. (2006) use this data to suggest that vertical and horizontal tectonism occurred

synchronously in the northwestern Superior Province.

In the Island Lake greenstone belt the D, event is expressed as the last episode of movement along the
Savage Island shear zone (SISZ, Chapter 3). Shear sense indicators in the SISZ show evidence for south-
over-north dip slip and dextral strike slip movement (This study, Lin et al. 1998), and has similar
geometric and kinematic characteristics as shear zones in the Carrot River and Cross Lake greenstone
belts (locations in Figure 4.1; Lin 2005; Parmenter et al. 2006). Given the similarities in the shear zones
between these belts in the northwestern Superior Province, it is likely that the diapiric structures in the
Island Lake greenstone belt are also related to D, dip-slip movement on the SISZ due to vertical tectonic

processes.

The synchronous development of horizontal and vertical tectonics is also suggested by U-Pb ages in
the Island Lake greenstone belt. U-Pb zircon dating of cross cutting dykes (Chapter 3) and detrital zircons
(from this contribution) show that movement on spatially related D, 2.70 Ga strike-slip shear zones and
formation of inter-diapiric basins are contemporaneous events at ca. 2.70 Ga. These age data agree with
the work of Lin (2005) and Parmenter et al. (2006) detailed above that conclude that both vertical and
horizontal tectonic processes were operating synchronously in the same geodynamic setting in the

Superior Province.
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A summary of age/space (craton)/tectonic regime is presented in Figure 4.8. It is clear that the Archean
is a time of evolution in tectonic regimes, and both vertical and horizontal tectonism operated in both the
Mesoarchean and Neoarchean. It is evident from this diagram that vertical tectonism is still an active
tectonic regime at the end of the Neoarchean, and it is active in at least two cratons (Figure 4.8, the
Superior and Dharwar). Perhaps the transition between vertical to horizontal tectonic regimes as proposed
by Lin (2005) in fact occurred at different times in different cratons. When this transition occurred in a
craton could be dependent on the amount of heat available underneath each craton, and the presence and
thickness of continental crust (influencing the ductility of felsic crust via diapirs and density contrasts
within the crust, respectively). It is clear that horizontal or “modern style” plate tectonics did not become

the dominant tectonic process until sometime during the Proterozoic.

4.6 Conclusions

Data from this study indicates that the ages of detritus change from unit to unit up sequence in this
sedimentary group, and are easily correlated to ages of volcanism and plutonism in the belt. The age
pattern of detritus revealed by detrital zircons best fits a scenario that involves vertical tectonic processes
being active during basin evolution and sedimentation. We suggest that vertical tectonic processes played
an important, but overlooked, role in the development of these sedimentary basins and in the tectonic
evolution of Archean cratons. Furthermore, vertical and horizontal tectonic processes were synchronous
and both operated in the Neoarchean, and the timing of transition between the two tectonic regimes might
have taken place at different times and rates in different Archean cratons. Horizontal or “modern style”

tectonics did not become the dominant tectonic process until sometime during the Proterozoic.
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Figure 4-1 Location of the Island Lake greenstone belt and distribution of “Timiskaming” type
groups in the northwestern Superior Province. All of the greenstone belts in the that have a
“Timiskaming” type group are shown. Box in inset map shows location within the larger Superior
Province. The relative positions of the Northern Superior superterrane, the North Caribou terrane, and
the location of the North Kenyon Fault (dashed line) are shown. The dome and keel structure is
evident across the whole North Caribou terrane, and is particularly well developed in the Oxford and
Gods Lake area as well as the Muskrat Dam and North Caribou lake area. Abbreviations of
greenstone belts: IL - Island Lake; CL - Cross Lake; CR - Carrot River; OL - Oxford Lake, KL -
Knee Lake; GL - God's Lake; ST - Stull Lake; ML - Muskrat Dam Lake; NC - North Caribou Lake;
FL - Favourable Lake; NST - North Spirit Lake; NTL - North Trout Lake. Ages from Corkery et al.
1992; Corfu et al. 1998; Skulski et al. 2000; Corkery et al. 2000; Corfu and Lin 2000; Lin et al. 2006.
Modified after Stott (2009).
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IV - Upper mixed sandstone/shale

| 11 - Massive sandstone
’..G'. VGV }
@‘?’,%":_,-.;BQ‘- Il - Sandstone-conglomerate

_ — _1- Lower mixed sandstone/shale

: Loonfoot
Bella Lake oonioo

Pluton |- Jubilee

Whiteway

= Tonalite & older

Figure 4.3 Schematic stratigraphic column for the Island Lake greenstone belt. The sample locations
within the Island Lake Group are noted.
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A- Sample I} B- Sample I
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Figure 4.4 Photographs of units in the Island Lake Group. A - Lower mixed sandstone/shale unit
(sample I), pen at bottom of picture for scale. B- Interbedded sandstone —polymictic conglomerate
unit (sample 1), pen at bottom of picture for scale. C- Massive sandstone unit (sample III), pen at
bottom of picture for scale. D- Upper mixed sandstone/shale unit (sample I'V), pen at top right of
picture for scale.
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Figure 4.5 Photographs of representative zircon populations from each sample.
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Figure 4.6 *’Pb/**Pb age frequency- probability histograms for four samples from the Island Lake
Group. “n” indicates the number of analysis used to construct each histogram. Analysis that were
more than +/-10% discordant, showed evidence of “mixed ages” during runs, or had anomalously
high ***Pb counts during analysis are not included in the final data.
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| |~2.85Ga volcanics ? 2.74- 2.70 porphries and dykes
- >2.9 Ga volcanics
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...... erosional surface
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Figure 4.7 Cartoon diagrams of the stages of evolution of an inter-diapiric basin. Stage A - original
stratigraphy of greenstone belt, stage B though D - progressive stages of basin development. In stages
B and C, the supracrustal pile is eroded from top to bottom, and is the major supply of detritus to the
basin until a time at which they are either completely eroded away, or they lie below the “erosional
surface”, represented by the dashed line. In stage D, the underlying plutons and youngest porphyries
and dykes are eroded and supply detritus to the basin.
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Figure 4.8 A summary of age/space (craton)/tectonic regime operating in the Archean. Position of
dashed arrow on time line indicates when evidence for regime being active has been documented.
Data from this study; Calvert et al. 1995; Choukroune et al. 1997; Bedard et al. 2003; Van
Kranendonk et al. 2004; Wang et al. 2004; Lin 2005; Percival et al. 2006; Van Kranendonk et al.

2007.
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Chapter 5

Summary of Conclusions

5.1 Summary of Findings

U-Pb TIMS zircon geochronology data presented in the second chapter address the age of the
different volcanic assemblages, as well as key intrusive rocks. The data shows that the Island Lake
greenstone belt experienced a long and complex geological history. Three distinct ages of volcanism
are observed at ca. 2897 Ma, 2852 Ma, and 2744 Ma. These ages occur in what was previously
considered as one supracrustal group, the Hayes River Group. This study and others (Lin et al. 2006),
indicate that the term “Hayes River Group” should no longer be used for all volcanic rocks in the
northwestern Superior Province. The Savage Island shear zone, a regional fault structure that
transects the Island Lake greenstone belt, is not a terrane-bounding feature, as correlative supracrustal
assemblages are observed on both sides of it. The volcanic sequences at Island Lake can be correlated
on the basis of age with rocks in other areas within the Island Lake domain (and possibly the Oxford-
Stull domain) to the north and within the North Caribou terrane to the south. Similar ages of
volcanism are reported in the Favourable Lake, Mclnnes Lake, Hornby Lake, and Red Lake
greenstone belts. Based on these data the Island Lake domain and North Caribou terrane, and possibly

the Oxford-Stull domain, are suggested to be part of a larger reworked Mesoarchean crustal block.

Chapter three builds on the ideas presented in the second chapter. The first part of the chapter
presents lithogeochemical and Nd isotope data from the volcanic assemblages and associated plutonic
rocks to investigate the tectonic affinity of the assemblages, and the second part of the chapter
presents U-Pb ages for syn— and post tectonic dykes in order to place age constraints on the tectonic

amalgamation in the northwestern Superior Province. The mafic volcanic rocks have two distinct
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geochemical signatures, and show a pattern of decreasing crustal contamination with decreasing age.
The Nd isotope data shows that the volcanic assemblages have been variably contaminated by an
older crustal source. Together these data suggests that the Meso — and Neoarchean volcanic
assemblages are part of an intact primary volcanic pile that was built on the same basement and has
autochthonous relationships with each other. U-Pb zircon TIMS geochronology identified two ages of
deformation in the Island Lake greenstone belt. Two dykes that crosscut an older, D; foliation place a
minimum age of ca. 2723 Ma on the D, deformation, and two syn-kinematic dykes date movement
along two different structures to 2700 Ma. Regional age correlations in the northwestern Superior
Province and data from this study indicate that Meso — and Neoarchean periods of southward dipping
subduction with a northward moving volcanic front were responsible for generating the rocks in the
northern margin of the North Caribou terrane. At the end of Neoarchean subduction, terrane accretion
was complete and the North Caribou terrane was terminally juxtaposed to the Northern Superior

superterrane at 2.70 Ga.

Chapter four presents U-Pb detrital zircon data from the youngest sedimentary group in the
greenstone belt, the Island Lake group. The Island Lake group consists of “Timiskaming” type
sediments, which are the youngest clastic sedimentary packages present in many Neoarchean
greenstone belts. These sediments are traditionally interpreted to have been deposited in strike-slip
basins (Thurston and Chivers 1990), however new work suggests that these sediments can be
explained as being deposited in inter-diapiric basins created by diapirism and sagduction processes.
During the diapiric accent of the felsic material, inter-diapiric basins are formed in the synclines
between adjacent domes, into which sediments are deposited (Parmenter et al. 2006; Lin 2005; Van
Kranendonk et al. 2004). About ~100 detrital zircons were dated using in situ laser ablation multi

collector ICP-MS for each of the four units from the stratigraphic bottom to the top of the Island Lake
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group. Data from this study indicates that the ages of detritus change from unit to unit up sequence in
this sedimentary group, and are easily correlated to ages of volcanism and plutonism in the belt. The
age pattern is most consistent with a scenario in which vertical tectonic processes were active during
basin evolution and sedimentation. It is clear that vertical tectonic processes played an important, but
overlooked, role in the development of these sedimentary basins and in the tectonic evolution of
Archean cratons. Furthermore, vertical and horizontal tectonic processes were synchronous and both
operated in the Neoarchean, and the timing of transition between the two tectonic regimes might have
taken place at different times and rates in different Archean cratons. Horizontal or “modern style”

plate tectonics did not become the dominant tectonic process until sometime during the Proterozoic.

5.2 Tectonic evolution of the northwestern Superior Province

The tectonic evolution in the Island Lake greenstone belt and along the northern margin of the
North Caribou terrane involved two periods of southward dipping subduction underneath the ca. 3.0
stable cratonic core of the North Caribou terrane. This evolution occurred in three main stages. The
first two stages involved the generation of Meso — and Neoarchean volcanic assemblages and
contemporaneous plutonic rocks due to southward dipping subduction (details in Chapter 2 and 3).
The third stage involved the deposition of late clastic sediments during vertical tectonic processes in
conjunction with horizontal tectonic movement along the late shear zones at ca. 2.70 Ga. (details in
Chapter 4). Plutons continued to be emplaced in the northern margin until ~2.680 Ga (Rayner and
Stott 2005). At the end of this process the North Superior superterrane was terminally docked to the

North Caribou terrane along the North Kenyon fault.
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5.3 Scientific Contributions

This thesis made the following main contributions to the understanding of the geology and

geochronology of the Island Lake greenstone belt, the tectonic evolution of northwestern Superior

Province, and Archean tectonics:

1.

Subdividing the volcanic rocks in the Island Lake greenstone belt, previously considered part
of the “Hayes River Group”, into three chronologically and geochemically distinct assemblages

that have conformable relationships with each other;

Refining the domains, terranes and superterranes in the northwestern Superior Province, and
contributing to defining the extent and composition of the northern margin of the North

Caribou terrane;

Proposing a model for the generation of Timiskaming type basins that suggests vertical tectonic
processes were operating in the Neoarchean, and with evidence from U-Pb dating of syn -

tectonic dykes suggesting the interplay of vertical and horizontal tectonics in the Neoarchean;

Proposing a detailed model for the Meso — and Neoarchean tectonic evolution of the
northwestern Superior Province that involves two episodes of southward dipping subduction

underneath the North Caribou terrane.

5.4 Future Studies

1.

In the second chapter, the age of detrital zircons in the Whiteway assemblage is interpreted to
be the age of volcanism in the assemblage, which is ca. 40 M.y. older than the Jubilee
assemblage. In the third chapter, the trace element chemistry of the Whiteway assemblage and
the Jubilee assemblage — southern basaltic suite are very similar. It cannot be ruled out that the

interpretation of the age of the Whiteway assemblage is incorrect. It is possible that the two
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assemblages are correlative and form opposite limbs of a synclinal structure in the eastern
portion of the Island Lake greenstone belt. Such a structure would have interesting implications
to the vertical tectonic model presented for the deposition of the Island Lake group in Chapter
4. Focused structural mapping and more detailed isotopic and geochemical studies of the

Whiteway and Jubilee assemblage would help to test this possibility.

It would be interesting to use the geochemisty and eNd data from the Th-LREE enriched
basalts to determine if the chemical signature is truly the result of crustal contamination, or a
product of arc enrichment. In either case, it would also be instructive to quantify the extent to

which each processes has influenced the geochemistry.

It would be interesting to quantify the diapiric rise of the plutons and/or sagduction of the
volcanic assemblage. One approach would be to take samples across one of the dome structures

and use geobarometery techniques to investigate any differential uplift along the structure.

Based on the tectonic model presented here and in Percival et al. (2006) the North Kenyon fault
is a significant structure and is a major suture between the North Caribou terrane and northern
Superior superterrane. Little detailed work has been conducted on this structure, partially due

to its lack of exposure. This structure needs to be investigated.
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Appendix B
Analytical Methods - Chapter 2

U/Pb Geochronology

Single grain zircon U-Pb analysis was done at the Jack Satterly Laboratory, Royal Ontario Museum
(now at the University of Toronto) using standard methods (Krogh, 1973, 1982; Davis et al., 1982).
Samples were crushed and separated using standard methods and the zircon grains were examined
and selected under a binocular microscope. Selected grains were air abraded (Krogh, 1982) for 8 to
40 hours before chemical dissolution. The dissolution and isotope dilution methods of Krogh (1973)
were followed with reduced bomb and column sizes. lon exchange chromatography to separate U and
Pb was only carried out on grains larger than 4 ng. Common lead blanks are essentially equivalent to
total common Pb measured in the samples (Table 2.1). All analyses were carried out using a VG354
equipped with a Daly pulse counting detector at the Jack Satterly Laboratory, with the exception of
lab numbers JP01-067-A and JP01-067-B. These analyses were carried out using the sample type of
mass spectrometer at the Radiogenic Isotope Facility at the University of Alberta (see Heaman et al.
2002 for analytical techniques). Data were calculated, regressed and plotted using ROMAGE
software with the regression program of Davis (1982). Sample locations are shown on Figure 2.2.

Analytical data are given in Table 2.1 and Concordia diagrams are shown on Figures 2.4 and 2.7.
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Appendix C
Analytical Techniques — Chapter 3

Lithogeochemical analysis

Lithogeochemical analysis was completed on selected samples in the belt to better understand the
nature and tectonic affinity of the rocks in the belt. Samples were taken from the basaltic units in the
different volcanic assemblages and from each of the plutonic suites and felsic volcanic units that were
dated by U-Pb ID-TIMS in Chapter 2. Clean (i.e. no weathered surfaces or xenocrystic material)
samples were crushed by a jaw crusher and powdered by a disk mill at the Manitoba Geological
Survey in Winnipeg, Manitoba. The powders were sent to ACTLABS in Hamilton, Ontario where
analysis for major and trace element were completed under accordance with their “4E-Research”
package of analysis. The analytical methods used at ACTLABS are detailed below'. Data is
presesented in Table 3.1 and Figure 3.5; Figure 3.6 Figure 3.8; and Figure 3.9. Standard

reproducibility data is listed in Table A.1

Major Elements
A 0.2 g sample is mixed with a mixture of lithium metaborate/lithium tetraborate and fused in
a graphite crucible. The molten mixture is poured into a 5% nitric acid solution and shaken until
dissolved (~ 30 minutes). The samples are run for major oxides and selected traces on a combination
simultaneous/sequential Thermo Jarrell-Ash Enviro Il ICP. Calibration is achieved using a variety of
international reference materials. Independent control standards are also analyzed.

Base Metals and Selected Trace Elements

! From http://www.actlabs.com/page.aspx?page=518&app=226&cat1=549&tp=12&lk=no&menu=64
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A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of
nitric and perchloric acids, heated using precise programmer controlled heating in several ramping
and holding cycles which takes the samples to dryness. After dryness is attained, samples are
brought back into solution using hydrochloric acid. With this digestion certain phases may be only
partially solubilized. These phases include zircon, monazite, sphene, gahnite, chromite, cassiterite,
rutile and barite. Ag greater than 100 ppm and Pb greater than 5,000 ppm should be assayed as high
levels may not be solubilized. Only sulphide sulfur will be solubilized. An in-lab standard (traceable
to certified reference materials) or certified reference materials are used for quality control. Samples

are analyzed using a Perkin Elmer Optima 3000 ICP.
Trace Elements

For each sample, a 1 g aliquot is encapsulated in a polyethylene vial and irradiated with flux
wires and an internal standard (1 for 11 samples) at a thermal neutron flux of 7 x 10 12ncm-2s-1.
After a 7-day decay to allow Na-24 to decay the samples are counted on a high purity Ge detector
with resolution of better than 1.7 KeV for the 1332 KeV Co-60 photopeak. Using the flux wires, the
decay-corrected activities are compared to a calibration developed from multiple certified
international reference materials. The standard present is only a check on accuracy and is not used
for calibration purposes. From 10-30% of the samples are rechecked by re-measurement. One
standard is run for every 11 samples. One blank is analyzed per work order. Duplicates are analyzed
when samples are provided. Gamma-ray energies are listed in Hoffman, E.L., 1992. Instrumental

Neutron Activation in Geoanalysis. Journal of Geochemical Exploration, volume 44, pp. 297-319.
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Nd isotopic analysis

Nineteen new samples were analyzed as part of this study, and were added to the existing Nd
isotope data set of Stevenson and Turek, (1992, 20 samples). The new samples were analyzed at the
Radiogenic Isotope Facility at the University of Alberta were run on the samples powdered at the
Manitoba Geological Survey that the geochemical analyses was performed on, and in some cases
were re-powdered to ensure the grain size was small enough for proper sample dissolution. See
Creaser et al. (1997) for details on the analytical protocols. Model ages based on DePolo’s depleted
mantle evolution curve (1981) and eNd values were calculated for 19 new samples analyzed, as well
as for the Nd isotopic results from Stevenson and Turek (1992) using the new geochronology results
present in Chapter 2. The data is found in Table A.2, and a summary is presented in Table 3.2 and

Figure 3.7.

U-Pb geochronology

Single grain zircon U-Pb analysis for the four samplers was done at the Jack Satterly Laboratory,
Royal Ontario Museum (now at the University of Toronto) using standard methods (Krogh, 1973,
1982; Davis et al., 1982). Samples were crushed and separated using standard methods and the zircon
grains were examined and selected under a binocular microscope. Selected grains were air abraded
(Krogh, 1982) for 8 to 24 hours before chemical dissolution. The dissolution and isotope dilution
methods of Krogh (1973) were followed with reduced bomb and column sizes. lon exchange
chromatography to separate U and Pb was only carried out on grains larger than 4 pg. Common lead
blanks are essentially equivalent to total common Pb measured in the samples (Table 3). Analyses
were carried out using a VG354 equipped with a Daly pulse counting detector. Data were calculated,
regressed and plotted using ROMAGE software with the regression program of Davis (1982).

Analytical data are given in Table 3.3, and Concordia diagrams are shown in Figure 3.12.
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Additional MC-ICP-MS analysis was completed on 12 zircon grains from sample JP00-06 in order
to resolve the age of the sample after conflicting TIMS ages were obtained. This analysis was done
using the laser ablation multi collector-ICP-MS at the Radiogenic Isotope Facility at the University of
Alberta. The instrument configuration employed consisted of a UP213 laser ablation system coupled
to a multicollector- ICP-MS equipped with a cup collector array that includes three ion counters and
12 Faraday buckets (Simonetti et al., 2005). This set up allows for the simultaneous detection of ion
signals from 238U to 203TI, permitting for highly precise and reproducible Pb-Pb and Pb/U ratio, as
well as being able to measure low Pb signals resulting from the ablation of small sample volumes
(single ablation spots <40um, Simonetti et al., 2005; See Simonetti et al., 2005 for more details on
analytical protocol). Spot sizes of analysis ranged from 30-40 um, and were dependent on the size
and Pb content of the zircon (i.e. low Pb content zircons usually require larger spot sizes). The data
were reduced and common Pb corrections were carried out following Simonetti et al. (2005). U/Pb
normalization was monitored by repeat measurements of an internal zircon standard LH94-15 (with
an age of 1830 Ma, Ashton et al., 1999). Analyses that were more than +/-10% discordant, had
“mixed ages” during runs (i.e. a core and an overgrowth of different ages were both sampled during
the analysis), or had anomalously high ***Pb counts during analysis were not included in the final data
set. The data was then plotted using AgeDisplay, and is presented in Figure 3.12. External
reproducibility during analyses time was: *’Pb/**Pb = 0.5%; **Pb/***U=1.5%; and **’Pb/*°U =

1.5%.
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Table A.2 Geochemistry standard reproducibility during analyses

underlined, bracked or starred value = reccomended value for standard

negative values = below detection limit

SAMPLE Si02 AI203 Fe203 MnO MgO CaO
% % % % % %
SY3 CERT (syenite - known) 59.62 11.75 6.49 0.32 2.67 8.26
SY-3/20 (measured) 59.57 11.66 6.41 0.326 2.64 8.30
NIST 694 CERT (western phosphate rock - known) 11.20 1.80 0.79 0.01 0.33 43.60
NIST 694/B98 (measured) 1098 1.87 0.72 0.011 0.33 4357
W-2 CERT (diabase - known) 52.44 15.35 10.74 0.163 6.37 10.87
W-2/162 (measured) 52.47 1520 10.69 0.164 6.46 10.92
DNC-1 CERT (dolerite - known) 47.04 18.30 9.93 0.149 10.05 11.27
DNC-1/12 (measured) 46.88 18.37 9.72 0.144 1021 11.23
BIR-1 CERT (basalt - known) 47.77 1535 11.26 0.171 9.68 13.24
BIR-1/B34 (measured) 47.55 15.41 11.16  0.169 9.65 13.08
GBW 07113 CERT (rhyolite - known) 72.78 12.96 321 0.140 0.16 0.59
GBW 07113/152 (measured) 72.47 12.88 3.16  0.143 0.16 0.59
NBS 1633b CERT (fly ash - known) 49.24 2843 1113 0.020 0.799 2.11
NBS 1633b/180 (measured) 49.37 2857 1142 0.018 0.78 212
STM-1 CERT (syenite - known) 59.64 18.39 5.22 0.22 0.101  1.09
STM-1/108 (measured) 59.63 18.35 5.16  0.219 0.10 1.13
IF-G CERT (iron from sample - known) 4120 0.15 55.85 0.042 1.89 1.55
IF-G/B28 (measured) 40.88 0.14 56.12 0.038 1.87 1.50
MICA-Fe CERT (Biotite - known) 34.40 19.50 25.65 0.350 4.55 043
MICA-Fe/224 (measured) 3414 1928 25,69 0.344 4.58 0.41
SAMPLE Na20 K20 Ti0O2 P205 Sc Be
% % % % ppm ppm
SY3 CERT (syenite - known) 412 4.23 0.15 0.54 6.8 20
SY-3/20 (measured ) 4.11 423 0.146 0.54 8 20
NIST 694 CERT (western phosphate rock - known) 0.86 0.51 0.11  30.20
NIST 694/B98 (measured) 0.90 0.50 0.115 28.06 3 2
W-2 CERT (diabase - known) 2.14 0.627 1.06 0.131 35 1.3
W-2/162 (measured) 229 064 1.073 0.14 36 1
DNC-1 CERT (dolerite - known) 1.87 0.229 0.48 0.085 31 1
DNC-1/12 (measured) 198 025 0.488 0.08 31 -1
BIR-1 CERT (basalt - known) 1.75 0.027 0.96 0.05 44  0.58
BIR-1/B34 (measured) 1.85 -0.01 0.968 0.03 44 -1
GBW 07113 CERT (rhyolite - known) 2.57 5.43 0.30 0.05 52 4.09
GBW 07113/152 (measured) 257 543 0.283 0.05 5 4
NBS 1633b CERT (fly ash - known) 0.271 2.26 1.32 0.53 41
NBS 1633b/180 (measured) 0.28 2.33 1.300 0.53 41 12
STM-1 CERT (syenite - known) 894 428 0.135 0.158 0.61 9.6
STM-1/108 (measured) 8.87 428 0.137 0.16 -1 9
IF-G CERT (iron from sample - known) 0.032 0.012 0.014 0.063 0.38 4.7
IF-G/B28 (measured) 0.04 0.02 0.005 0.06 -1 4
MICA-Fe CERT (Biotite - known) 0.300 8.750 2.500 0.450 14.8 4.5
MICA-Fe/224 (measured) 025 892 2513 0.39 15 4
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Sample Ge As Rb Sr Y Zr Ba La

ppm __ ppm ppm ppm ppm ppm__ ppm  ppm
Blank -0.5 -5 -1 -2 -0.5 -1 -3 -0.05
Control Material W2 (measured) 1.8 -5 21 197 21.9 87 181 111
Certified W2 (known) (1.0) 1.2 20* 194* 24* 94*  182* 11.4*
Control Material WMG-1 (measured) 1.8 10 3 41 13.6 50 114 8.1
Certified WMG-1 (known) (7) (4) (41) (12) (43) (114) (8.2)
Calibration Standard MAG1 (measured) 1.8 13 152 145 271 111 509 433
Certified MAG1 (known) 9.2 149* 146* 28* 126* 479* 43*
Calibration Standard BIR1 (measured) 1.8 -5 -1 112 15.9 15 7 0.72
Certified BIR1 (known) 1.5 (04) 0.25% 108* 16* 155 7 0.62%
Calibration Standard DNC1 (measured) 1.3 -5 4 142 17.0 32 104 3.88
Certified DNC1 (known) (1.3) (0.2) (4.5) 145* 18 41* 114 3.8*
Calibration Standard GXR-2 (measured) 1.1 33 77 154 16.9 226 2,240 256
Certified GXR-2 (known) 25 78 160 17 269 2,240 25.6
Calibration Standard LKSD-3 (measured) 1.2 32 78 253 29.6 165 683 50.8
Certified LKSD-3 (known) 27 78 240 30 178 680 52
Calibration Standard MICA Fe (measured) 3.2 -5 2,380 4 47.0 837 150 201
Certified MICA Fe (known) 3.2 3 2200* 5* 48 800 150 200*
Calibration Standard GXR1 (measured) 3 425 3 306 32 26 691 7.8
Certified GXR1 (known) 427 (14) 275 32 (38) 750 7.5
Calibration Standard SY3 (measured) 3 20 210 301 719 355 435 1,330
Certified SY3 (known) 14 18.8 206* 302  718* 320 450 1340*
Calibration Standard STM1 (measured) 14 -5 117 708 45.0 1,210 589 150
Certified STM1 (known) (1.4) 4.6 118* 700* 46* 1210 560 150*
Calibration Standard IFG1 (measured) 24.8 -5 -1 4 9.3 2 -3 3.01
Certified IFG1 (known) 24 1.5 0.4 3 9* 1 1.5 2.8*
Sample Nb Mo Ag In Sn Sb Cs Ce

ppm__ ppm ppm ppm ppm ppm__ ppm _ ppm
Blank -0.2 -2 -0.5 -0.1 -1 -0.2 -0.1  -0.05
Control Material W2 (measured) 7.9 -2 -0.3 -0.1 2 0.8 1.0 228
Certified W2 (known) 7.9 (0.6) (0.046) 0.79 0.99* 24>
Control Material WMG-1 (measured) 5.7 -2 12.7 -0.1 2 2.3 04 159
Certified WMG-1 (known) 6) (1.4) (2.7) (22) (1.8) (0.48) (16)
Calibration Standard MAG1 (measured) 14.4 -2 -0.5 -0.1 3 1.0 9.0 84.1
Certified MAG1 (known) 12 1.6 0.08 (0.18) 3.6 0.96* 8.6* 88*
Calibration Standard BIR1 (measured) 0.5 -2 -0.5 -0.1 -1 0.5 -0.1 1.96
Certified BIR1 (known) 0.6 (0.5) (0.036) 0.65 0.58 0.005 1.95%
Calibration Standard DNC1 (measured) 1.3 -2 -0.5 -0.1 -1 0.7 0.2 848
Certified DNC1 (known) 3 (0.7) (0.027) 0.96* (0.34) 10.6
Calibration Standard GXR-2 (measured) 10.0 -2 16.5 -0.1 2 36.7 52 50.2
Certified GXR-2 (known) 11 (2.1) 17 (0.252) 1.7 49 52 514
Calibration Standard LKSD-3 (measured) 8.4 -2 6.0 -0.1 2 1.1 23 91.0
Certified LKSD-3 (known) 8 (<5) 2.7 3 1.3 23 90
Calibration Standard MICA Fe (measured) 286 -2 -0.5 0.6 70 -0.2 180 440
Certified MICA Fe (known) 270* 1.2 0.60 70* 180*  420*
Calibration Standard GXR1 (measured) 1.1 18 363 0.8 55 122 31 145
Certified GXR1 (known) (0.8) 18 31 0.77 54 122 3 17
Calibration Standard SY3 (measured) 157 -4 2 -0.2 6 0.4 2.8 2240
Certified SY3 (known) 148 (1.0) (1.5) (6.5) 0.31 2.5 2230*
Calibration Standard STM1 (measured) 250 6 6.9 -0.1 7 1.2 1.6 243
Certified STM1 (known) 268* 5.2 0.079* (0.12) 6.8 1.66* 1.54* 259*
Calibration Standard IFG1 (measured) -0.2 -2 -0.5 -0.1 -1 0.7 -0.1  3.99
Certified IFG1 (known) 0.1* 0.7 0.2 0.3 0.63 0.06 4*
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Sample Ta W Tl Pb Bi Th U Pr|
ppm __ ppm ppm ppm pbpm___ppm __ ppm __ ppm
Blank -0.01 -0.5 -0.05 -5 -0.1  -0.05 -0.01 -0.01
Control Material W2 (measured) 0.50 -0.5 0.14 8 -0.1 221 053 287
Certified W2 (known) 0.5 (0.3) (0.2) 9 (0.03) 22 053 (5.9)
Control Material WMG-1 (measured) 0.35 4.7 0.05 14 0.4 114 064 2.00
Certified WMG-1 (known) (0.5) (1.3) (15) (1.1) (0.65)
Calibration Standard MAG1 (measured) 1.17 1.5 0.22 8 -0.1 116 287 9.36
Certified MAG1 (known) 1.1 1.4  (0.59) 24 0.34 11.9* 2.7* 9.3
Calibration Standard BIR1 (measured) 0.04 -0.5 -0.05 -5 -0.1  -0.02 0.02 0.38
Certified BIR1 (known) 0.04 0.07 (0.01) 3 (0.02) 0.03 0.01 0.38*
Calibration Standard DNC1 (measured) 0.07 -0.5 -0.05 -5 -0.1 025 0.06 1.09
Certified DNC1 (known) 0.098* (0.2) (0.026) 6.3 (0.02) (0.2) (0.1) 1.3
Calibration Standard GXR-2 (measured) 0.83 1.4 0.21 28 -0.1 836 290 5.15
Certified GXR-2 (known) 0.9 1.9 1.03 690 (0.69) 8.8 2.9
Calibration Standard LKSD-3 (measured) 0.67 1.1 0.24 -5 -0.1 10.8 459 115
Certified LKSD-3 (known) 0.7 (<4) 29 11.4 4.6
Calibration Standard MICA Fe (measured) 34.6 7.9 16.0 12 0.4 166 86.3 49.0
Certified MICA Fe (known) 35* 15 16 13* 2 150 80* 49*
Calibration Standard GXR1 (measured) 0.06 166 0.5 731 1380 26 349 184
Certified GXR1 (known) 0.175 164  (0.39) 730 1,380 244 349
Calibration Standard SY3 (measured) 20.9 1 1.6 76 -0.2 1,000 650 210
Certified SY3 (known) 30* 1.1* 1.50 133* (0.8) 1003* 650 223*
Calibration Standard STM1 (measured) 19.7 3.3 0.23 11 -0.1 311 9.0 243
Certified STM1 (known) 18.6* 3.6* 0.26 17.7* 0.13 31*  9.06* 19*
Calibration Standard IFG1 (measured) 0.19 220 -0.05 -5 -0.1 0.03 0.03 044
Certified IFG1 (known) 0.2 220 0.02 4 01 0.02 0.4
Sample Gd Tb Dy Ho Er Tm Yb Nd
ppm __ ppm ppm ppm bpm___bpm _ ppm __ ppm
Blank -0.01  -0.01 -0.01 -0.01  -0.01 -0.005 -0.01 -0.05
Control Material W2 (measured) 349 0.67 3.89 0.81 227 0358 2.07 126
Certified W2 (known) 3.6* 0.63 3.8 0.76* 25 0.4 205 14.0
Control Material WMG-1 (measured) 237 043 245 0.50 140 0.220 1.30 9.08
Certified WMG-1 (known) (0.4) (2.8) (0.5) (0.2) (1.3) 9)
Calibration Standard MAG1 (measured) 577  0.97 5.20 1.02 281 0432 260 36.9
Certified MAG1 (known) 5.8 0.96* 5.2  1.02* 3 043 26* 38*
Calibration Standard BIR1 (measured) 1.82  0.41 2.68 0.62 1.74 0286 1.71 249
Certified BIR1 (known) 1.85* 0.36* 2.5*  0.57* 1.7 0.26* 1.65 2.5*
Calibration Standard DNC1 (measured) 199 042 2.81 0.65 194 0329 1.97 4.91
Certified DNC1 (known) 2 041* 2.7 0.62 2* (0.33) 2.01* 4.9*
Calibration Standard GXR-2 (measured) 294  0.50 2.87 0.60 1.75 0285 1.76 191
Certified GXR-2 (known) (3.3) 048 3.3 (0.3) 204 (19)
Calibration Standard LKSD-3 (measured) 6.29 0.97 5.19 1.06 299 0468 276 443
Certified LKSD-3 (known) 1.0 4.9 2.7 44
Calibration Standard MICA Fe (measured) 211 271 10.9 1.53 381 0563 343 180
Certified MICA Fe (known) 21* 2.7 11* 1.6* 3.8~ 048 3.5~ 180*
Calibration Standard GXR1 (measured) 3.91 0.85 5.06 1.03 2.82 044 2.31 8.4
Certified GXR1 (known) 42 0.83 4.3 (0.43) 19 (18)
Calibration Standard SY3 (measured) 113 220 133 29.7 86.2 13.2 67.8 701
Certified SY3 (known) 105* 18 118  29.5* 68 11.6* (62) 670
Calibration Standard STM1 (measured) 8.8 1.51 8.12 1.60 443 0713 440 784
Certified STM1 (known) 9.5* 1.55* 8.1* 1.9 4.2 0.69 4.4 79*
Calibration Standard IFG1 (measured) 0.66 0.12 0.81 0.21 0.63 0.097 057 1.76
Certified IFG1 (known) 0.74* 0.11* 0.8* 0.2~ 0.63* 0.09* 0.6* 0.2
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Sample Lu Hf Sm Eu Vv Cr Co Ni
ppm __ ppm ppm ppm ppm __ ppm _ppm _ppm
Blank -0.002 -0.1 -0.01  -0.005 -5 -20 -1 -20
Control Material W2 (measured) 0.318 2.4 3.33 1.15 263 93 44 120
Certified W2 (known) 0.33* 2.56*  3.25* 1.1*  262* 93* 44* 70*
Control Material WMG-1 (measured) 0.202 1.5 233 0.757 158 765 201 2,490
Certified WMG-1 (known) (0.21) (1.3) (2.3) (0.8) (149) (770) (200) (2700)
Calibration Standard MAG1 (measured) 0.391 3.3 7.43 1.54 134 96 21 49
Certified MAG1 (known) 0.40*  3.7* 7.5* 1.55*  140* 97+ 20.4* 53*
Calibration Standard BIR1 (measured) 0.262 0.6 1.16  0.561 313 403 53 167
Certified BIR1 (known) 0.26*  0.6* 11* 0.54* 313* 382 51.4* 166*
Calibration Standard DNC1 (measured) 0.302 1.0 144 0.614 140 284 55 247
Certified DNC1 (known) 0.32* 1.01* 1.38* 0.59* 148 285" 54.7* 247
Calibration Standard GXR-2 (measured) 0.277 6.3 3.71  0.754 46 36 8 -20
Certified GXR-2 (known) (0.27) 8.3 3.5 0.81 52 36 8.6 21
Calibration Standard LKSD-3 (measured) 0.439 4.5 8.53 1.55 75 82 30 46
Certified LKSD-3 (known) 0.4 4.8 8.0 1.50 82 87 30 47
Calibration Standard MICA Fe (measured) 0.502 26.7 35.3 0.650 131 93 26 38
Certified MICA Fe (known) 0.5* 26* 33" 0.7 135* 90* 23* 35*
Calibration Standard GXR1 (measured) 0.322 0.7 2.99 0.67 77 -40 8 83
Certified GXR1 (known) 0.28 0.96 2.7 0.69 80 12 8.2 41
Calibration Standard SY3 (measured) 862 105 127 19.0 51 -40 7 -40
Certified SY3 (known) 790 9.70 109 17* 50 (11) 8.8 1
Calibration Standard STM1 (measured) 0.649 274 12.6 3.62 -5 -20 -1 -20
Certified STM1 (known) 0.60 28  12.6* 3.6 (8.7) (4.3) 0.9 (3)
Calibration Standard IFG1 (measured) 0.093 -0.1 042 0.383 9 -20 29 26
Certified IFG1 (known) 0.09* 0.04 0.4*  0.39* 2 4 29 23
Sample Cu Zn Ga
ppm __ ppm ppm
Blank -10 -30 -1
Control Material W2 (measured) 107 85 19
Certified W2 (known) 103* 7 20%
Control Material WMG-1 (measured) 5,480 125 10
Certified WMG-1 (known) (5900) (110) (10.3)
Calibration Standard MAG1 (measured) 28 75 21
Certified MAG1 (known) 30 130 20.4%
Calibration Standard BIR1 (measured) 126 80 16
Certified BIR1 (known) 126* 71* 16
Calibration Standard DNC1 (measured) 91 58 14
Certified DNC1 (known) 96* 66* 15
Calibration Standard GXR-2 (measured) 64 52 36
Certified GXR-2 (known) 76 37
Calibration Standard LKSD-3 (measured) 31 55 15
Certified LKSD-3 (known) 35 152
Calibration Standard MICA Fe (measured) -10 1,260 98
Certified MICA Fe (known) 5* 1300* 95*
Calibration Standard GXR1 (measured) 1,110 812 13
Certified GXR1 (known) 1,110 760 13.8
Calibration Standard SY3 (measured) -20 246 34
Certified SY3 (known) 17  244* 27%
Calibration Standard STM1 (measured) 78 234 36
Certified STM1 (known) (4.6) 235* 36*
Calibration Standard IFG1 (measured) 11 -30 -1
Certified IFG1 (known) 13* 20* 0.7
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Table A.2 All Sm-Nd Data

uncert.

Sample number Smppm Ndppm 147Sm/144Nd 143Nd/144Nd 25m +- TDM Age (Ma) &NdT at t=Age Nd Correction 145Nd/144Nd
New data from this study
JP02 559 1.83 7.02 0.1579 0.511924 0.000005 N/A 2899 0.6 Nu Alpha=0.512249 0.348414
JP02 557 3.67 12.69 0.1748 0.512263 0.000005 N/A 2899 0.9 Nu Alpha=0.512249 0.348414
102-98-859 2.68 13.17 0.1232 0.511254 0.000007 3.19 2899 0.5 Nu Alpha=0.512285  0.348422
52-IL 98-37 0.99 2.89 0.2078 0.512939 0.000008 N/A 2897 18 Nu Alpha=0.512250  0.348416
00-33 5.69 28.71 0.1199 0.511138 0.000006 3.27 2894 -0.6 0.348409
02-425 3.60 19.97 0.1090 0.510969 0.000005 3.17 2854 -0.3 0.348413
52-1L-98-44 2.58 7.82 0.1994 0.512629 0.000021 N/A 2852 -1.2 0.348407
JP01-246G 1.13 3.18 0.2158 0.513043 0.000012 N/A 2852 0.9 0.348421
JP02-266 1.45 3.81 0.2296 0.513164 0.000011 N/A 2852 -1.8 0.348425
JP02-463 1.57 5.90 0.1606 0.511943 0.000006 N/A 2852 -0.3 0.348411
02-839 2.39 13.52 0.1069 0.510954 0.000004 3.13 2852 0.1 0.348418
02-289 1.93 11.14 0.1048 0.510869 0.000006 3.19 2852 -0.7 0.348416
02-419 1.53 10.28 0.0901 0.510625 0.000007 3.1 2825 -0.5 0.348413
02-424 3.75 24.46 0.0927 0.510545 0.000005 3.27 2825 -3.0 0.348414
52-1L-98-12 1.26 3.74 0.2039 0.512875 0.000018 N/A 2744 21 0.348421
01-105 219 13.51 0.0982 0.510767 0.000007 3.14 2744 -1.7 0.348414
jp01-67 4.02 25.48 0.0955 0.510714 0.000005 3.14 2744 -1.8 0.348406
jp01-45 214 10.58 0.1222 0.511330 0.000004 3.03 2730 0.7 Nu Alpha=0.512285 0.348404
Recalculated data from Stevenson and Turek, 1992
999 4.58 243 0.1138 0.511074 3.16 2894 0.39
158 1.26 3.69 0.2062 0.51278 N/A 2852 -0.72
3115 222 137 0.09779 0.510741 3.16 2852 -0.68
3140 223 8.95 0.1504 0.511827 N/A 2852 1.19
110 3.3 17.2 0.1158 0.511113 3.17 2852 -0.04
3114 1.68 9.44 0.1076 0.510934 3.18 2852 -0.52
349 0.56 1.93 0.1744 0.512306 N/A 2852 1.73
3117 24 7.57 0.1917 0.512584 N/A 2852 0.79
860 2.38 10 0.1439 0.51174 N/A 2852 1.89
1 1.99 9.77 0.123 0.511264 3.17 2852 0.27
3116 1.4 9.95 0.08526 0.510576 3.05 2778 -0.37
3141 3.07 176 0.1056 0.510896 3.17 2748 -1.77
372 3.16 19.7 0.09684 0.510777 3.09 2747 -1.00
35 2.49 19.4 0.07771 0.510459 3.01 2744 -0.48
983 173 103 0.1015 0.510823 3.16 2743 -1.80
815 1.76 111 0.09538 0.510754 3.08 2743 -0.98
44 2.35 11 0.1282 0.511509 2.93 2730 2.06
143 1.58 7.07 0.1354 0.511657 2.91 2730 242
140 3.84 254 0.09232 0.510689 3.09 2730 -1.35
217G 3.02 20.2 0.0904 0.510796 2.91 2699 1.00
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Appendix D
Analytical Techniques — Chapter 4

U-Pb LA-MC-ICP-MS

A sample was taken from each of the four lithological units in the Island Lake group to examine the
detrital zircon population up-sequence in the group. This study was completed using a laser ablation
multi collector-ICP-MS at the Radiogenic Isotope Facility at the University of Alberta. This method
is a fast, efficient, and reliable method to date a large number of detrital zircons. Rock samples were
crushed using a jaw crusher and disc mill and the heavy minerals were then concentrated using a
Wilfley table. Initial passes through a Franz magnetic separator concentrated the least magnetically
susceptible heavy minerals. The sample was passed through methyl iodine which further separated
the sample based on specific gravity. Minerals with a specific gravity > 3.3 where collected and
passed through the Frantz to further concentrate high quality zircon from the sample. In order not to
age bias the zircon population, zircon grains of various visual and magnetic qualities, morphologies,

and grain size were chosen for analysis. Grains were mounted in epoxy prior to ablation.

The instrument configuration employed consisted of a UP213 laser ablation system coupled to a
multicollector- ICP-MS equipped with a cup collector array that includes three ion counters and 12

Faraday buckets (Simonetti et al., 2005). This set up allows for the simultaneous detection of ion

238 203
signals from U to  TI, permitting for highly precise and reproducible Pb-Pb and Pb/U ratio, as

well as being able to measure low Pb signals resulting from the ablation of small sample volumes
(single ablation spots <40um, Simonetti et al., 2005; See Simonetti et al., 2005 for more details on
analytical protocol). Spot sizes of analysis ranged from 30-40 um, and were dependent on the size

and Pb content of the zircon (i.e. low Pb content zircons usually require larger spot sizes). The data
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were reduced and common Pb corrections were carried out following Simonetti et al. (2005). U/Pb
normalization was monitored by repeat measurements of an internal zircon standard LH94-15 (with
an age of 1830 Ma, Ashton et al., 1999). Over 100 detrital zircons were analysed from each of the
four samples. Analyses that were more than +/-10% discordant, had “mixed ages” during runs (i.e. a
core and an overgrowth of different ages were both sampled during the analysis), or had anomalously
high ***Pb counts during analysis were not included in the final data set. The data is presented in

Table 4.1 and Figure 4.4.
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