Infinite graphs, graph-like spaces and B-matroids

by

Robin Christian

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2010
(C)Robin Christian 2010

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

The central theme of this thesis is to prove results about infinite mathematical objects by studying the behaviour of their finite substructures. In particular, we study B-matroids, which are an infinite generalization of matroids introduced by Higgs [13], and graph-like spaces, which are topological spaces resembling graphs, introduced by Thomassen and Vella [27].

Recall that the circuit matroid of a finite graph is a matroid defined on the edges of the graph, with a set of edges being independent if it contains no circuit. It turns out that graph-like continua and infinite graphs both have circuit B-matroids. The first main result of this thesis is a generalization of Whitney's Theorem that a graph has an abstract dual if and only if it is planar. We show that an infinite graph has an abstract dual (which is a graph-like continuum) if and only if it is planar, and also that a graph-like continuum has an abstract dual (which is an infinite graph) if and only if it is planar. This generalizes theorems of Thomassen ([25]) and Bruhn and Diestel ([3]). The difficult part of the proof is extending Tutte's characterization of graphic matroids ([28]) to finitary or co-finitary B-matroids. In order to prove this characterization, we introduce a technique for obtaining these B-matroids as the limit of a sequence of finite minors.

In [29], Tutte proved important theorems about the peripheral (induced and non-separating) circuits of a 3-connected graph. He showed that for any two edges of a 3-connected graph there is a peripheral circuit containing one but not the other, and that the peripheral circuits of a 3-connected graph generate its cycle space. These theorems were generalized to 3-connected binary matroids by Bixby and Cunningham ([1]). We generalize both of these theorems to 3 -connected binary co-finitary B-matroids.

Richter, Rooney and Thomassen [22] showed that a locally connected, compact metric space has an embedding in the sphere unless it contains a subspace homeomorphic to K_{5} or $K_{3,3}$, or one of a small number of other obstructions. We are able to extend this result to an arbitrary surface Σ; a locally connected, compact metric space embeds in Σ unless it contains a subspace homeomorphic
to a finite graph which does not embed in Σ, or one of a small number of other obstructions.

Acknowledgements

I am sincerely thankful to my supervisor, Dr R. Bruce Richter, for his tremendous contributions both to this thesis and to my training as a mathematician. It is a pleasure to work with someone who combines industriousness with enthusiasm, and precision with patience, as well as he does. I am also grateful to the other members of my thesis committee: Dr Jim Geelen, Dr Ian Goulden, Dr Douglas Park and Dr Neil Robertson for their kind support, and to Dr Henning Bruhn, Dr Bill Cunningham, Brendan Rooney and Dr Paul Wollan for helpful discussions.

Table of Contents

Author's Declaration iii
Abstract v
Acknowledgements vii
Table of Contents ix
1 Introduction 1
1.1 Overview 1
1.2 Preliminaries 2
1.2.1 Finite graphs and matroids 2
1.2.2 Tools for working with infinite objects 4
1.2.3 Topology 5
2 Graph-like spaces 7
2.1 Infinite graphs and compactifications 7
2.2 Edge spaces and graph-like spaces 8
3 B-matroids 11
3.1 Definition and background 11
3.2 Basic results 13
3.3 Strong circuit exchange for B-matroids 17
3.4 Connectivity 20
3.5 Binary B-matroids 24
3.6 Graphic B-matroids 26
3.7 Matroid intersection for B-matroids 29
4 Matroid and graph limits 33
4.1 Introduction 33
4.2 Matroid limits 33
4.3 Graph limits 38
4.4 Graph-like limits 41
4.5 Whitney's Theorem for B-matroids 46
5 Peripheral circuits 53
5.1 Two theorems of Tutte and their generalizations 53
5.2 Circuits and bridges in co-finitary binary B-matroids 54
5.3 Overlapping bridges and an extension lemma 56
5.4 Main theorems for 3-connected binary co-finitary B-matroids 63
5.5 Peripheral circuits in 3-connected graph-like continua 70
6 Embedding metric spaces in surfaces 73
6.1 Introduction 73
6.2 Combining finite graphs 75
6.3 Embedding extensions and the main result 77
7 Future work 85
Bibliography 87
Index 91

Chapter 1

Introduction

1.1 Overview

The first three chapters of this thesis are introductory. The remainder of this chapter introduces some relevant background material. In Chapter 2 we briefly survey the study of compactifications of infinite graphs, and introduce some classes of topological spaces that include but are more general than infinite graphs or their compactifications. Chapter 3 is an introduction to Higgs' infinite generalization of matroids, called B-matroids, and their properties.

The final three chapters contain the bulk of the original work in the thesis, and all of the main results. In Chapter 4, we introduce techniques for viewing a finitary or co-finitary B-matroid as the limit of a sequence of finite matroids, and a graph or graph-like space as the limit of a sequence of finite graphs. Using these techniques, we are able to show that finitary (resp. co-finitary) B-matroids whose every finite minor is graphic are the circuit matroids of graphs (resp. graphlike continua), and thereby obtain a version of Whitney's planarity criterion for infinite graphs and graph-like continua.

Chapter 5 is concerned with proving theorems about the peripheral circuits of 3 -connected binary co-finitary B-matroids. Tutte [29] proved that the peripheral circuits of a 3-connected graph generate its cycle space, and that for any edge in a 3-connected graph there are two peripheral circuits whose intersection is exactly that edge. We show analogues of both of these theorems for 3-connected binary co-finitary B-matroids. To prove our versions, we need to understand the behaviour of bridges of circuits in 3-connected binary co-finitary B-matroids, and our sequential technique is again useful in passing from results about bridges in 3 -connected binary matroids to the results we require.

Finally, Chapter 6 describes which locally connected, compact metric spaces have embeddings in a given surface. Richter, Rooney and Thomassen [22]
showed that a locally connected, compact metric space has an embedding in the sphere unless it contains a subspace homeomorphic to K_{5} or $K_{3,3}$, or one of a small number of other obstructions. We extend this result to arbitrary surfaces. Our approach is to attempt to embed the space M by first embedding subspaces of M homeomorphic to finite graphs. These have finitely many (combinatorial) embeddings. We find a finite graph G contained in M such that if a specific embedding Π of G in the desired surface does not extend to an embedding of all of M, then there is another finite graph H_{Π} contained in M, such that H_{Π} contains G and Π does not even extend to an embedding of H_{Π}. Then we show that, if every embedding, Π, of G fails to extend to an embedding of M, we can combine the finite graphs H_{Π} to obtain a finite graph contained in M that does not embed in the desired surface.

1.2 Preliminaries

1.2.1 Finite graphs and matroids

We will assume that the reader is familiar with the definitions and basic results of graph theory and matroid theory. Generally our terminology and notation will follow Diestel's graph theory textbook [10] and Oxley's matroid theory textbook [20].

The circuit matroid of a graph G, denoted $\mathcal{M}(G)$, is a matroid whose ground set is the edge set, $E(G)$, of G and whose independent sets are the subsets of $E(G)$ that do not contain the edge set of a circuit of the graph. The bases of $\mathcal{M}(G)$ are the edge-maximal spanning forests of G, and the co-circuits of $\mathcal{M}(G)$ are the bonds (minimal edge cuts) of G.

Finite graphs G and H are said to be abstract duals if there is a bijection between their edge sets such that a set of edges is a circuit in G if and only if it is a bond in H. This definition is symmetric in G and H, since it is equivalent to the statement $\mathcal{M}(G)=\mathcal{M}^{*}(H)$. Abstract duality is connected with planarity by the following fundamental result of Whitney.

Theorem 1.1

(Whitney [31]) A finite graph G has an abstract dual if and only if it is planar.

We will adopt a common notation for graph (and matroid) minors, which is that $G \prec H$ denotes that G is a minor of H.

Tutte gave a characterization by excluded minors of the graphic matroids the matroids that can be obtained as the circuit matroid of some graph. Let $\tau=\left\{\mathcal{M}^{*}\left(K_{5}\right), \mathcal{M}^{*}\left(K_{3,3}\right), U_{2,4}, F_{7}, F_{7}^{*}\right\}$.

Theorem 1.2

(Tutte [28]) A finite matroid M is graphic if and only if M has no minor in τ.

We will say that a matroid (or, later, a B-matroid) with no minor in τ has no Tutte minor. Similarly, we may say that a graph (resp. matroid), finite or otherwise, has no Kuratowski minor if it has no K_{5} or $K_{3,3}$ (resp. $\mathcal{M}\left(K_{5}\right)$ or $\left.\mathcal{M}\left(K_{3,3}\right)\right)$ minor. In general, we refer to the set of all matroids (or B-matroids) without any minor in some set χ of matroids as ex (χ).

A binary matroid is a matroid with a representation over the binary field. Several well-known characterizations of binary matroids are combined in the following theorem. Additional equivalent statements can be found in [20].

Theorem 1.3

Let M be a matroid. The following are equivalent:

1. M is binary;
2. (Tutte) M has no $U_{2,4}$ minor;
3. (Whitney) every symmetric difference of circuits of M can be expressed as a disjoint union of circuits of M;
4. every intersection between a circuit and a co-circuit of M contains an even number of elements; and
5. (Seymour) there is no pair C, C^{*} such that C is a circuit and C^{*} a co-circuit of M and $\left|C \cap C^{*}\right|=3$.

The cycle space $\mathcal{C}(G)$ of a graph G is the subspace of the vector space $\mathbb{Z}_{2}^{E(G)}$ generated by the characteristic vectors of circuits of G. Similarly, if M is a matroid with ground set S, the cycle space $\mathcal{C}(M)$ of M is the subspace of the vector space \mathbb{Z}_{2}^{S} generated by the characteristic vectors of the circuits of M.

Another fundamental result on planarity, MacLane's planarity criterion, characterizes planarity of a graph in terms of the algebraic properties of its cycle space.

Theorem 1.4

(MacLane [15]) A finite graph G is planar if and only if $\mathcal{C}(G)$ has a basis such that every $e \in E(G)$ is contained in at most two basis elements.

If G is a graph and H is a subgraph of G, then a non-degenerate bridge B of H is a component $N(B)$ of $G-H$, called the nucleus of the bridge, along with the edges incident with H and $N(B)$, and their endpoints in H. A degenerate bridge of H is an edge that is not in H but has both endpoints in H. A peripheral circuit of G is a circuit that is induced and non-separating or, equivalently, has no degenerate bridges and at most one non-degenerate bridge.

1.2.2 Tools for working with infinite objects

We will make frequent use of Zorn's Lemma, which is equivalent to the Axiom of Choice.

Lemma 1.5

(Zorn, [33]) Let (X, \leq) be a partially ordered set such that every chain in X has an upper bound in X. Then X contains at least one maximal element.

Another standard tool for proofs in infinite graph theory is the following lemma, known as König's infinity lemma. A proof in English can be found in [10].

Lemma 1.6

(König, [14]) Let V_{1}, V_{2}, \ldots be an infinite sequence of disjoint, finite sets. Let G be a graph on their union such that, for $i \geq 1$, every vertex in V_{i+1} has a neighbour in V_{i}. Either some V_{i} is empty, or G contains an infinite path $v_{1} v_{2} \ldots$ such that, for each $i \geq 1, v_{i} \in V_{i}$.

We will assume the reader is familiar with the definition of the ordinals, which we will denote \mathcal{O}. The set of countable ordinals will be denoted \mathcal{O}_{0}. We will need the following standard facts.

Theorem 1.7

If X is a countable subset of \mathcal{O}_{0}, then X has a least upper bound in \mathcal{O}_{0}.

Theorem 1.8

(Principle of transfinite induction) For each $\alpha \in \mathcal{O}_{0}$, let $S(\alpha)$ be a statement which is true or false. If the following statements hold:

1. $S(1)$ is true; and
2. if $\beta \in \mathcal{O}_{0}$ and $S(\alpha)$ is true for all $\alpha<\beta$, then $S(\beta)$ is also true, then $S(\alpha)$ is true for every $\alpha \in \mathcal{O}_{0}$.

1.2.3 Topology

We will assume that the reader is familiar with the basic concepts of point set topology; any terminology not defined here can be found in Munkres' textbook [18].

A topological space X is said to be locally connected if for every point $x \in X$, and every open neighbourhood U of x, there is a connected open neighbourhood V of x such that $V \subseteq U$.

A topological space X is weakly Hausdorff if, for any two points $x, y \in X$, there are open neighbourhoods U_{x} of x and U_{y} of y such that $U_{x} \cap U_{y}$ is finite.

A topological space X is zero-dimensional if for every pair $\{u, v\}$ of distinct points of X, there is a separation (U, V) of X such that $u \in U$ and $v \in V$.

An edge of a topological space is an open subset homeomorphic to $(0,1)$, and whose closure is homeomorphic to $[0,1]$.

A continuum is a topological space that is compact, connected and Hausdorff.
A surface is a connected, compact, Hausdorff topological space, such that each point has an open neighbourhood homeomorphic to the open unit disc in \mathbb{R}^{2}. The famous classification theorem states that every surface is homeomorphic to one of the following:

1. the sphere;
2. the connected sum of finitely many tori; or
3. the connected sum of finitely many real projective planes.

The first two types are the orientable surfaces. We say that the sphere has genus 0 and the connected sum of k tori has orientable genus k. The third type are the non-orientable surfaces. We say that the connected sum of k real projective planes has non-orientable genus k. The Euler genus of a surface Σ is $2 k$ if Σ has orientable genus k, and k if Σ has non-orientable genus k.

A graph G (finite or infinite) may be viewed as a topological space $T(G)$ as follows. The point set of $T(G)$ is $V(G) \cup \mathcal{E}(G)$, where $\mathcal{E}(G)$ consists of pairwise disjoint open arcs I_{e}, one for for each edge $e \in E(G)$. For $e=u v$, the closed arc $\overline{I_{e}}$ has u and v as its endpoints. The basic open neighbourhoods of a vertex v in $T(G)$ consist of v along with, for each e incident with v, an open subset of $\overline{I_{e}}$ that contains v. The topological space $T(G)$ is called the simplicial topology on G.

Embeddings of finite graphs in surfaces are discussed in detail in [17]. For any topological space T, a function $f: T \rightarrow \Sigma$ is an embedding of T in Σ if it is a homeomorphism between T and $f(T)$. If G is a graph, then an embedding of $T(G)$ in Σ is also called an embedding of G in Σ. A face of an embedding $f: T \rightarrow \Sigma$ is a component of $\Sigma \backslash f(T)$. An embedding is cellular if every face is homeomorphic to an open disc. Youngs [32] made the observation that every minimum genus embedding of a connected graph is cellular.

An embedding scheme is a combinatorial description of an embedding of a graph in a surface. If G is a graph and Σ is a surface, there are only finitely many possible embedding schemes for G in Σ. A theorem of Ringel [23] implies that every cellular embedding of G in Σ is determined up to homeomorphism by its embedding scheme. A detailed description of embedding schemes can be found in Section 3.3 of [17].

If Σ is a fixed surface, then there is a finite list $\operatorname{Forb}(\Sigma)$ of graphs, such that any graph G with no embedding in Σ has a subdivision of some graph in Forb (Σ) as a subgraph. This was first proven as part of the Robertson-Seymour graph minors project, but several more elementary direct proofs exist. In particular Mohar [16] gives a constructive proof that takes a similar approach to our argument in Chapter 6.

Chapter 2

Graph-like spaces

2.1 Infinite graphs and compactifications

If G is an infinite graph, the simplicial topology $T(G)$ on G need not be compact. For example, if $R=v_{0} v_{1} \ldots$ is a ray (a subgraph isomorphic to a one-way infinite path) in G, then the sequence v_{0}, v_{1}, \ldots of points in $T(G)$ fails to have a limit point in $T(G)$.

Many theorems that are essentially about the topology of finite graphs fail to generalize to the simplicial topology on infinite graphs for this reason. For example, the planarity criteria of MacLane and Whitney, and Tutte's theorem that the peripheral circuits of a 3-connected graph generate its cycle space all fail in this context. An expository paper of Diestel [9] contains several examples and lists other facts about the cycle space of a finite graph that do not hold for the simplicial topology on infinite graphs. For this reason, we may prefer to study the cycles of an infinite graph G by looking at some compactification of $T(G)$ rather than $T(G)$ itself.

Let G be an infinite graph, and let \mathcal{R} be the set of all rays in G. A tail of a ray R is any ray that is a subgraph of R. We define an equivalence relation \sim on \mathcal{R} by saying that $R_{1} \sim R_{2}$ if, for any finite subset U of $V(G), R_{1}$ and R_{2} have a tail in the same component of $G-U$. An end of G is an equivalence class of rays with respect to \sim. We denote the set of ends of G by $\Omega(G)$. We say that a vertex v dominates an end ω if, for any finite subset U of $V(G)$ not containing v, v is in the same component of $G-U$ as a ray $R \in \omega$.

For example, the double ladder is an infinite graph D defined as follows. Let $R_{1}=\ldots u_{-1} u_{0} u_{1} \ldots$ and $R_{2}=\ldots v_{-1} v_{0} v_{1} \ldots$ be two-way infinite paths (also called double rays). The graph D has vertices $V\left(R_{1}\right) \cup V\left(R_{2}\right)$ and edges $E\left(R_{1}\right) \cup E\left(R_{2}\right) \cup$ $\left\{u_{j} v_{j} \mid j \in \mathbb{Z}\right\}$. There are two ends of D, one consisting of all rays going to infinity in the positive direction, and one consisting of all rays going to infinity in the
negative direction.
For any infinite graph G, let $|G|$ be the space obtained by adding a point $x(\omega)$ to $T(G)$ for each $\omega \in \Omega(G)$. The basic open neighbourhoods in $|G|$ are given by $U \cup x(\Omega(U))$, where U is any open set in $T(G)$, and $\Omega(U)$ is the set of ends ω of G such that U contains a tail of every ray in ω. If G is locally finite, then $|G|$ is Hausdorff and compact, and is known as the Freudenthal compactification of G. The Alexandroff compactification, $\mathcal{A}(G)$, is obtained by identifying all of the ends in $|G|$.

We say that a graph G is finitely separable if no two vertices of G are joined by infinitely many edge-disjoint paths in G. In this case $|G|$ is compact, and we can form a compact Hausdorff space \widetilde{G} from $|G|$ by identifying each vertex with every end that it dominates. The space \widetilde{G} was introduced by Diestel and Kühn ([11]).

Given a compactification $C(G)$ of G, we can re-define the cycle space of G, saying that a set of edges of G is a circuit if it is exactly the set of edges contained in some homeomorphic image of the unit circle in $C(G)$. We can now attempt to generalize results about the cycle space of finite graphs to cycle spaces obtained in this way from compactifications. An initial result of this type was provided by Bonnington and Richter, who proved a version of MacLane's planarity criterion for $\mathcal{A}(G)$. More recently, Bruhn, Diestel, Kühn, Stein and others have generalized the bulk of the cycle space theory of finite graphs to $|G|$ for locally finite graphs, or to \widetilde{G} for finitely separable graphs (see, for example, [2], [3], [5], [9], [11]).

2.2 Edge spaces and graph-like spaces

An edge space (X, E) is a topological space X and a subset $E \subseteq X$ consisting of points e such that e is open but not closed, and the closure of e contains at most two additional points. Notice that all of the topological spaces in the previous section can be converted to edge spaces by taking the edges to be open singletons instead of open intervals. Vella and Richter [30] introduced edge spaces, in part to unify the separate approaches to cycle space theory of Bonnington and Richter (considering cycles in $\mathcal{A}(G)$) and Diestel and Kühn (considering cycles in \widetilde{G}).

We will use the following theorem from [30].

Theorem 2.1

(Vella, Richter [30]) Every edge cut in a compact weakly Hausdorff edge space is finite.

A graph-like space is a metric space \mathcal{G}, whose ground set is $E \cup V$, where E is a collection of pairwise disjoint edges and V is zero-dimensional. Graph-like spaces were introduced by Thomassen and Vella [27]. We will in particular be interested in graph-like continua, that is, compact, connected graph-like spaces.

The simplicial topology of an infinite graph is graph-like, and so is the Freudenthal compactification of a locally finite graph. We can obtain a graph-like continuum from any infinite graph by applying the \widetilde{G} construction from the previous section. Not all graph-like continua arise in this way. For example, additional graph-like continua can be obtained from the Freudenthal compactification of the double ladder by identifying the two ends (this is actually just the Alexandroff compactification of the double ladder), or adding an edge between them.

Graph-like spaces appeal as an object of study because they are more general than any class of compactifications of infinite graphs, yet they have more structure than edge spaces. The next two theorems are examples of fundamental facts about finite graphs that also hold for graph-like continua.

Theorem 2.2

(Thomassen, Vella [27]) Menger's Theorem holds for graph-like continua.

Theorem 2.3

(Rooney [24]) MacLane's Theorem holds for 2-connected graph-like continua.

Let \mathcal{G} be a graph-like continuum with edge-set $E(\mathcal{G})$ and vertex-set $V(\mathcal{G})$. Let X, Y be disjoint subsets of $E(\mathcal{G})$. The minor of \mathcal{G} obtained by contracting X and deleting Y, denoted $\mathcal{G} / X \backslash Y$, is defined as follows. Let \bar{X} be the closure in \mathcal{G} of the union of all the edges in X, and let Y^{\prime} be the union of all the (open) edges in Y. Let \sim_{X} be the equivalence relation on the points of \mathcal{G} defined by $x \sim_{X} y$ if x and y are both in the same component of \bar{X}. We obtain $\mathcal{G} / X \backslash Y$ by deleting the open set Y^{\prime} from \mathcal{G} to obtain $\mathcal{G} \backslash Y$, and then taking the quotient of the resulting space by the equivalence relation \sim_{X} (or vice versa; deletion and contraction commute). It is easy to check that the resulting space is a graph-like continuum with edge set $E(\mathcal{G}) \backslash(X \cup Y)$ and vertex set $(V(\mathcal{G}) \backslash V(\bar{X})) \cup \mathcal{C}(\bar{X})$ where $\mathcal{C}(\bar{X})$ is the set of components of \bar{X}.

Let \mathcal{G} be a graph-like continuum, and let \mathcal{H} be a closed subspace of \mathcal{G}. A bridge B of \mathcal{H} in \mathcal{G} is the closure of a component $N(B)$ of $\mathcal{G} \backslash \mathcal{H}$.

The following lemma summarizes some useful properties of graph-like continua.

Lemma 2.4

(Thomassen, Vella [27]) A closed subspace of a graph-like continuum is a graph-like continuum. Graph-like continua are locally connected and Hausdorff.

Suppose we take a graph-like continuum \mathcal{G} and replace each open edge with a single point. The resulting space is a compact, weakly Hausdorff edge space, and so we may apply Lemma 2.1. This shows that graph-like continua also have only finite edge cuts.

If \mathcal{G} is a graph-like continuum, a circuit of \mathcal{G} is the edge set of a homeomorphic image of the unit circle in \mathcal{G}.

Chapter 3

B-matroids

3.1 Definition and background

Perhaps the most natural way to define a matroid with an infinite ground set is simply to use the independence axioms for a finite matroid. A pre-independence space is a set S together with a set \mathcal{I} of subsets of S (independent sets) such that:
(i1) $\mathcal{I} \neq \emptyset$;
(i2) a subset of an independent set is independent; and
(i3) if I_{1} and I_{2} are finite independent sets with $\left|I_{2}\right|>\left|I_{1}\right|$, then there exists $x \in I_{2} \backslash I_{1}$ such that $I_{1} \cup\{x\} \in \mathcal{I}$.

A subset of S is dependent if it is not independent, a circuit is a minimal dependent set, and, for $X \subseteq S$, a basis of X is a maximal independent set contained in X. A spanning set is a set containing a basis of S and a hyperplane is a maximal non-spanning set.

If $M=(S, \mathcal{I})$ and $X \subseteq S$, the deletion of X from M is given by $M \backslash X=(S \backslash X,\{I \subseteq$ $S \backslash X \mid I \in \mathcal{I}\}$). If X is an independent set then the contraction of X from M is given by $M / X=(S \backslash X,\{I \subseteq S \backslash X \mid I \cup X \in \mathcal{I}\})$. If bases of S exist, the dual of M is given by $M^{*}=(S,\{I \subseteq S \mid S \backslash I$ spans S in $M\})$.

Circuits, bases, spanning sets and hyperplanes may fail to exist in pre-independence spaces, so for many purposes they are an unsatisfactory generalization of finite matroids. An independence space (also known as a finitary B-matroid) is a pre-independence space that also satisfies:
(i4) if $X \subseteq S$ and every finite subset A of X is independent, then X is independent.

Every dependent set in an independence space contains a circuit and every
circuit is finite. Bases, spanning sets and hyperplanes exist in independence spaces. Rado [21] showed that all of the bases of an independence space share the same cardinality.

The class of independence spaces is closed under deletion and contraction, but not under duality. The dual of an independence space is a pre-independence space, and such pre-independences spaces are known as cofinitary B-matroids.

Higgs [13] introduced a class of pre-independence spaces that includes independence spaces and is closed under duality. A B-matroid is a set S together with a set \mathcal{I} of subsets of S that satisfies (i1), (i2), and also:
(I3) if $T \subset X \subset S$ and T is independent, there is a maximal independent subset (basis) of X containing T; and
(I4) if $X \subset S, B_{1}$ and B_{2} are bases of X, and $x \in B_{1} \backslash B_{2}$, there is some $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\}$ is a basis of X.

It is easy to check that (I3) implies (i3), so every B-matroid is a pre-independence space. It is also easy to check that every independence space is a B-matroid.

Recent work of Bruhn, Diestel, Kriesell, Pendavingh and Wollan [4] shows that the class of B-matroids can be defined by four different axiom systems, one each for the bases, independent sets, circuits and the closure operator. These are similar to the finite matroid axioms, in each case including an appropriate maximality axiom along the lines of (I3).

Higgs showed that B-matroids satisfy some appealing properties of matroids, and Oxley showed that any class of pre-independence spaces that is closed under duality, deletion and contraction must consist of B-matroids.

Theorem 3.1

(Higgs, [13]) Duality is an involution on the class of B-matroids.

Theorem 3.2

(Higgs, [13]) If the Generalized Continuum Hypothesis holds, then all bases of a B-matroid are equicardinal.

Theorem 3.3

(Oxley, [19]) Let S be an infinite set, and let \mathcal{P} be a class of preindependence spaces such that each member of \mathcal{P} is a pre-independence space defined on a subset of S. If \mathcal{P} is closed under deletion and contraction, and duality is an involution on \mathcal{P}, then every pre-independence space in \mathcal{P} is a B-matroid.

3.2 Basic results

In this section we give proofs for B-matroids of some basic results from finite matroid theory. This section is based on joint work with Brendan Rooney.

We begin by proving that the minors of a B-matroid are well-defined Bmatroids. Let M be a B-matroid with ground set S, and let $X \subseteq S$. Let B_{X} be a basis of X. We define $M / X=M / B_{X} \backslash\left(X \backslash B_{X}\right)$ (recall that the independent sets of M / B_{X} are the sets I such that $I \cup B_{X}$ is independent in M)

Lemma 3.4

If M is a B-matroid with ground set S and $X \subseteq S$, then M / X is well-defined (does not depend on the choice of B_{X}) and is a B-matroid.

Proof We proceed by verifying the B-matroid axioms in M / X. Let B_{X} be a basis of X. We have that (i1) and (i2) carry over directly from M to M / X.

For (I3), suppose that T is independent in M / X, and $T \subseteq Z \subseteq S \backslash X$. We need to find a basis of Z containing T in M / X. By definition of contraction, $T \cup B_{X}$ is independent in M. Let B be a basis of $Z \cup B_{X}$ in M such that $T \cup B_{X} \subseteq B$. Let $B_{Z}=B \backslash B_{X}$. Since B is a basis of $Z \cup B_{X}$ in M, B_{Z} is a basis of Z in M / X.

For (I4), suppose that B_{1}, B_{2} are each bases of Z in M / X. We need to show that if $x \in B_{1} \backslash B_{2}$, there is some $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\}$ is also a basis of Z. This follows immediately from applying the same axiom to the bases $B_{1} \cup B_{X}$ and $B_{2} \cup B_{X}$ of $Z \cup B_{X}$ in M.

Finally, we need to show that if B_{X}^{1}, B_{X}^{2} are each bases of X in M, then $M / B_{X}^{1}=$ M / B_{X}^{2}. Suppose that $J \subseteq S \backslash X$ is an independent set in M / B_{X}^{1}, but not in M / B_{X}^{2}. In other words, $J \cup B_{X}^{1}$ is independent in M, but $J \cup B_{X}^{2}$ is dependent. In M, we may choose a basis of $J \cup B_{X}^{2}$ containing B_{X}^{2}. Let J^{\prime} be a subset of J such that
$J^{\prime} \cup B_{X}^{2}$ is a basis for $J \cup B_{X}^{2}$. Since B_{X}^{1} and B_{X}^{2} are both bases of X in $M, B_{1}=J \cup B_{X}^{1}$ and $B_{2}=J^{\prime} \cup B_{X}^{2}$ are each bases of $J \cup X$ in M. Choose $x \in J \backslash J^{\prime}$. By (I4), since $x \in B_{1} \backslash B_{2}$, there is some $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\{x\}\right) \cup y$ is a basis of $J \cup X$ in M. This is a contradiction, because $B_{2} \backslash B_{1} \subseteq B_{X}^{2}$. Therefore a set is independent in M / B_{X}^{1} if and only if it is independent in M / B_{X}^{2}, as required.

Next, we show that minors interact with duality in the same way as for finite matroids.

Lemma 3.5

(Higgs, [13]) If M is a B-matroid with ground set S, and X, Y are disjoint subsets of S, then $(M / X \backslash Y)^{*}=M^{*} / Y \backslash X$.

Proof It suffices to show that $(M / X)^{*}=M^{*} \backslash X$, for then by taking duals on both sides we have $(M \backslash X)^{*}=M^{*} / X$ and it follows that $(M / X \backslash Y)^{*}=((M / X) \backslash Y)^{*}=$ $(M / X)^{*} / Y=\left(M^{*} \backslash X\right) / Y=M^{*} / Y \backslash X$.

Suppose that J is an independent set in $(M / X)^{*}$. Then by the definition of duality, $(S \backslash J) \cap(S \backslash X)$ contains a basis B of M / X. If B_{X} is a basis of X in $M, B \cup B_{X}$ is a basis of M contained in $S \backslash J$. Therefore, again by the definition of duality, J is an independent set in M^{*}, and therefore an independent set in $M^{*} \backslash X$.

Conversely, suppose that J is an independent set in $M^{*} \backslash X$. Then since J is independent in $M^{*}, S \backslash J$ contains a basis B of M. Let B_{X} be a basis of X in M that contains $B \cap X$. Since $(B \backslash X) \cup B_{X}$ contains $B, B \backslash X$ contains some basis B^{\prime} of M / X. Since B^{\prime} is disjoint from J, this shows that J is independent in $(M / X)^{*}$.

The next several results show that the set of circuits of a B-matroid shares many properties of the set of circuits of a finite matroid.

Lemma 3.6

Every dependent set X in a B-matroid $M=(S, \mathcal{I})$ contains a circuit C_{X}. The set $\mathcal{C}(M)$ of circuits of M satisfies the finite circuit axioms:
(C1) $\emptyset \notin \mathcal{C}$;
(C2) if $C_{1} \in \mathcal{C}$ and $C_{2} \subset C_{1}$, then $C_{2} \notin \mathcal{C}$; and
(C3) if $C_{1}, C_{2} \in \mathcal{C}, x \in C_{1} \cap C_{2}$, then there is some $C \subseteq\left(C_{1} \cup C_{2}\right)-\{x\}$ with $C \in \mathcal{C}$.

Proof Firstly, suppose that X is a dependent set. Consider a basis B_{X} of X. Since X is dependent there is some $x \in X \backslash B_{X}$. Since B_{X} is a basis, $B_{X} \cup\{x\}$ is a dependent subset of X. Let $C=\left\{y \in B_{X} \cup\{x\} \mid\left(B_{X} \cup\{x\}\right)-\{y\} \in \mathcal{I}\right\}$. We claim that C is a circuit.

Suppose that C is independent. We have that $x \in C \subseteq B_{X} \cup\{x\}$. Since C is independent we can extend C to a basis of $B_{X} \cup\{x\}, B_{X}^{\prime}$. We know that B_{X} is a basis of $B_{X} \cup\{e\}, B_{X}^{\prime} \backslash B_{X}=\{x\}$ and, since $B_{X} \cup\{x\}$ is dependent, there is some $y \in B_{X} \backslash B_{X}^{\prime}$. Therefore by (I4), for $y \in B_{X} \backslash B_{X}^{\prime},\left(B_{X}-\{y\}\right) \cup\{x\}$ is a basis of $B_{X} \cup\{e\}$. However we have by definition that if $\left(B_{X}-\{y\}\right) \cup\{x\} \in \mathcal{I}$, then $y \in C$ so $y \in B_{X}^{\prime}$ and therefore $y \notin B_{X} \backslash B_{X}^{\prime}$, a contradiction. Therefore C is a dependent set. Suppose y is an element of C. Then by definition $B_{X} \cup\{x\}-\{y\}$ is independent so, since $C \subseteq B_{X} \cup\{x\}, C-\{y\}$ is independent. Therefore C is a circuit.

We have that $\emptyset \in \mathcal{I}$, so $\emptyset \notin \mathcal{C}$ and therefore (C1) holds. If $C_{1} \in \mathcal{C}$ and $C_{2} \subset C_{1}$, then, by definition, C_{2} must be independent, so (C2) holds.

For (C3), suppose for a contradiction that $\left(C_{1} \cup C_{2}\right)-\{x\}$ is independent. Extend $C_{1} \cap C_{2}$ to a basis B_{1} of $C_{1} \cup C_{2}$, and notice that $B_{2}=\left(C_{1} \cup C_{2}\right)-\{x\}$ is also a basis of $C_{1} \cup C_{2}$. Applying (I4), since $x \in B_{1} \backslash B_{2}$ there must be some $y \in B_{2} \backslash B_{1}$ so that $B_{1} \backslash\{x\} \cup\{y\}$ is a basis of $C_{1} \cup C_{2}$. Since $y \notin B_{1}$, suppose without loss of generality that $y \in C_{1} \backslash C_{2}$. Since C_{2} is a circuit it cannot be contained in B_{1}, so there must be some $z \in C_{2} \backslash B_{1}$. We have $\left(B_{1} \backslash\{x\}\right) \cup\{y, z\} \subseteq B_{2}$, contradicting the fact that $\left(B_{1} \backslash\{x\}\right) \cup\{y\}$ is a basis.

Lemma 3.7

Suppose that S is any set and \mathcal{C} is a set of finite subsets of \mathcal{C} satisfying (C1), (C2) and (C3). Then \mathcal{C} is the set of circuits of a B-matroid with ground set S.

Proof Let $\mathcal{I}(C)$ be the set of subsets of S that do not contain an element of \mathcal{C}. We want to show that these are the independent sets of an independence space (finitary B-matroid) on S. The axioms (i1), (i2) and (i4) are immediate. For (i3), let I_{1}, I_{2} be finite sets in $\mathcal{I}(C)$ with $\left|I_{2}\right|>\left|I_{1}\right|$. Let \mathcal{C}^{\prime} be the set of elements of \mathcal{C}^{\prime} that are contained in $I_{1} \cup I_{2}$, and notice that \mathcal{C}^{\prime} also satisfies (C1), (C2) and (C3). Therefore it is the set of circuits of a finite matroid with ground set $I_{1} \cup I_{2}$, and we may apply (i3) to this finite matroid to obtain $x \in I_{2} \backslash I_{1}$ such that $I_{1} \cup x \in \mathcal{I}$, as required.

Lemma 3.8

Let $M=(S, \mathcal{I})$ be a B-matroid. If C is a circuit of M and C^{*} is a circuit of M^{*}, then $\left|C \cap C^{*}\right| \neq 1$.

Proof Assume that we have $C \in \mathcal{C}, C^{*} \in \mathcal{C}^{*}$, so that $\left|C \cap C^{*}\right|=1$. Let $C \cap C^{*}=\{x\}$. Then $C-\{x\}$ is independent and $C^{*}-\{x\}$ is independent in M^{*}, which implies that $S \backslash\left(C^{*}-\{x\}\right)$ is a spanning set in M. Therefore we may extend $C-\{x\}$ to a basis B of M that is contained in $S \backslash\left(C^{*}-\{x\}\right)$. Since C is a circuit, $x \notin B$, so $B \subseteq\left(S \backslash C^{*}\right)$. This implies that $S \backslash B$ is a basis of M^{*} and contains C^{*}, a contradication. Thus $\left|C \cap C^{\prime}\right| \neq 1$.

Lemma 3.9

Let M be a B-matroid. If C is a circuit of M and $x, y \in C$, then there is some co-circuit C^{*} of M so that $C \cap C^{*}=\{x, y\}$.

Proof Let B be a basis of M containing $C-\{x\}$. Consider the basis $S \backslash B$ of M^{*}. Since it is a basis, $(S \backslash B) \cup\{y\}$ contains a circuit C^{*} of M^{*} that contains y. Consider $C \cap C^{*}$. We know that $\left|C \cap C^{*}\right| \neq 1$, so $C \cap C^{\prime} \neq\{y\}$. We also know that $C^{*}-\{y\} \subseteq S \backslash B$, and $(S \backslash B) \cap C=\{x\}$. Therefore $C \cap C^{*}=\{x, y\}$, as required.

Lemma 3.10

Let C be a dependent set in a B-matroid M. Then C is a circuit of M if and only if, for every distinct $x, y \in C$, there is a co-circuit $C_{x, y}^{*}$ of M such that $C \cap C_{x, y}^{*}=\{x, y\}$.

Proof The forward implication is immediate by Lemma 3.9. Conversely, suppose that C is not a circuit. Then some proper subset K of C is a circuit. Choose $x \in K$, $y \in C \backslash K$. If there were a co-circuit $C_{x, y}^{*}$ with $C \cap C_{x, y}^{*}=\{x, y\}$, then it would follow that $K \cap C_{x, y}^{*}=\{x\}$, a contradiction.

Lemma 3.11

Let M be a B-matroid, and let $N=M / X \backslash Y$ be a minor of M. If C is a circuit of N, there is a subset C_{X} of X so that $C \cup C_{X}$ is a circuit of M. If K is a co-circuit of N, there is a subset K_{X} of X so that $K \cup K_{X}$ is a co-circuit of M.

Proof Suppose that C is a circuit of N. Then by definition of deletion, C is a circuit of M / X. By definition of contraction, $C \cup B_{X}$ is dependent in M for any basis B_{X} of X. Therefore, there is a circuit $C^{\prime} \subseteq C \cup B_{X}$. Now, $C^{\prime} \cap C$ is dependent in M / X so, since C is a circuit, we must have $C \subseteq C^{\prime} \subseteq C \cup B_{X}$. Therefore, if $C_{X}=C^{\prime} \cap B_{X}, C \cup C_{X}$ is a circuit of M, as required. The claim about co-circuits follows immediately by duality (i.e. applying Lemma 3.5).

3.3 Strong circuit exchange for B-matroids

In this section we give a proof of the strong circuit exchange axiom for B matroids. That is, we prove that if C_{1}, C_{2} are circuits of a B-matroid, $x \in C_{1} \cap C_{2}$ and $y \in C_{2} \backslash C_{1}$, then there is a circuit C_{3} such that $y \in C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{x\}$. This is a standard result for finite matroids. Work in this section is again joint with Brendan Rooney.

For a matroid M with ground set S, we define the closure operator $\mathrm{cl}: 2^{S} \rightarrow 2^{S}$ by $\operatorname{cl}(X)=X \cup\{x \mid$ there is a circuit C of M such that $x \in C \subseteq\{x\} \cup X\}$. We call $X \subseteq S$ closed in the matroid M if $\operatorname{cl}(X)=X$.

Lemma 3.12

Let M be a B-matroid. The hyperplanes of M are closed.

Proof Let H be a hyperplane of M. If there is some $x \in \mathrm{cl}(H)-H$, then there is a circuit C with $x \in C \subseteq H \cup\{x\}$. However, $S \backslash H$ is a co-circuit and $C \cap(S \backslash H)=\{x\}$, which is a contradiction by Lemma 3.8.

Lemma 3.13

If $X_{1}, X_{2} \subseteq S$ are closed sets in a B-matroid M with ground set S, then $X_{1} \cap X_{2}$ is closed.

Proof Suppose that $X_{1} \cap X_{2}$ is not closed. Then $\operatorname{cl}\left(X_{1} \cap X_{2}\right)-\left(X_{1} \cap X_{2}\right) \neq \emptyset$. So there is some $x \in S \backslash\left(X_{1} \cap X_{2}\right)$ such that $\left(X_{1} \cap X_{2}\right) \cup\{x\}$ contains a circuit through x. This circuit is contained in $X_{1} \cup\{x\}$ and $X_{2} \cup\{x\}$. But X_{1} and X_{2} are both closed, so $x \in X_{1}$ and $x \in X_{2}$. Thus $x \in X_{1} \cap X_{2}$, contradicting our choice of x. Thus $\operatorname{cl}\left(X_{1} \cap X_{2}\right)=X_{1} \cap X_{2}$.

Lemma 3.14

If C is a closed set in a B-matroid M and $x, y \notin C$, then $x \in \operatorname{cl}(C \cup\{y\})$ if and only if $\{x, y\}$ is a circuit of M / C.

Proof Since $x, y \notin C, C \cup\{x\}$ does not contain a circuit through x and $C \cup\{y\}$ does not contain a circuit through y, which is to say that $\{x\}$ and $\{y\}$ are both independent in M / C. Now we have that $x \in \operatorname{cl}(C \cup\{y\})$ if and only if $C \cup\{x, y\}$ contains a circuit through both x and y or, in other words, if and only if $\{x, y\}$ is a circuit of M / C.

Lemma 3.15

If C is a closed set in a B-matoid $M, x, y \notin C$ and $y \in \operatorname{cl}(C \cup\{x\})$, then $x \in$ $\operatorname{cl}(C \cup\{y\})$.

Proof This follows immediately from Lemma 3.14.
Suppose that C is a closed subset of S. Then we define the relation \sim_{c} on the elements of $S \backslash C$ as $x \sim_{c} y$ if and only if $y \in \operatorname{cl}(C \cup\{x\})$. It is clear that $x \in$ $\operatorname{cl}(C \cup\{x\})$ and that if $y \in \operatorname{cl}(C \cup\{x\})$ and $z \in \operatorname{cl}(C \cup\{y\})$, then $z \in \operatorname{cl}(C \cup\{y\}) \subseteq$ $\operatorname{cl}(C \cup\{x\})$. Thus \sim_{c} is both reflexive and transitive. We also have by Lemma 3.15 that \sim_{c} is symmetric, thus \sim_{c} is an equivalence relation.

Indeed, by Lemma 3.14, the \sim_{c} equivalence classes are just the parallel classes of M / C.

Lemma 3.16

Let M be a B-matroid with ground set S. For any set C and any $X \subseteq S \backslash C$, $\mathrm{cl}_{M}(C \cup X)=C \cup \mathrm{cl}_{M / C}(X)$. In particular, if H is a hyperplane of M / C, then $C \cup H$ is a hyperplane of M.

Proof Suppose $x \in \operatorname{cl}_{M}(C \cup X)$ with $x \notin C \cup X$. Let B_{C} be a basis of C and let B be a basis of $C \cup X$ with $B_{C} \subseteq B$. Since $x \in \operatorname{cl}_{M}(C \cup X), B$ is also a basis of $C \cup X \cup\{x\}$. Therefore, in $M / C, B \backslash B_{C}$ is a basis of X and also of $X \cup\{x\}$, and thus $x \in \mathrm{cl}_{M / C}(X)$. Conversely, if $x \in \mathrm{cl}_{M / C}(X)$, let B_{X} be a basis of X in M / C. Then, in $M / C, B_{X}$ is also a basis of $X \cup\{x\}$. So $B_{C} \cup B_{X}$ is a basis in M of $C \cup X$ and also of $C \cup X \cup\{x\}$, and therefore $x \in \operatorname{cl}_{M}(C \cup X)$.

If H is a hyperplane of M / C, we have $\mathrm{cl}_{M}(C \cup H)=C \cup \mathrm{cl}_{M / C}(H)=C \cup H$, so $C \cup H$ is closed. In addition, for $e \notin C \cup H, \mathrm{cl}_{M}(C \cup H \cup\{e\})=C \cup \mathrm{cl}_{M / C}(H \cup\{e\})=$ $C \cup(S-C)=S$. So $C \cup H$ is a hyperplane of M.

Lemma 3.17

If C is a closed set in a B -matroid M, and $y \notin C$, then there is a hyperplane H of M with $y \notin H$ and $C \subseteq H$.

Proof By Lemma 3.16, it suffices to find a hyperplane H^{\prime} of M / C with $y \notin H^{\prime}$. Since C is closed, M / C has no loops. So we may choose a basis B of M / C that contains y. Clearly $H^{\prime}=\mathrm{cl}_{M / C}(B-\{y\})$ is a hyperplane of M / C not containing y, as required.

Lemma 3.18

Let M be a B-matroid with ground set S. If C_{1} and C_{2} are circuits of M, $x \in C_{1} \cap C_{2}$ and $y \in C_{2} \backslash C_{1}$, then $\left.y \notin \mathrm{cl}^{*}\left(\left(S \backslash C_{1}\right) \cap\left(S \backslash C_{2}\right)\right) \cup\{x\}\right)$.

Proof Suppose that $\left.y \in \operatorname{cl}^{*}\left(\left(S \backslash C_{1}\right) \cap\left(S \backslash C_{2}\right)\right) \cup\{x\}\right)$. Then $x \in \mathrm{cl}^{*}\left(\left(S \backslash C_{1}\right) \cap(S \backslash\right.$ $\left.\left.\left.C_{2}\right)\right) \cup\{y\}\right) \subseteq \mathrm{cl}^{*}\left(S \backslash C_{1}\right)$. Since $S \backslash C_{1}$ is a hyperplane of M^{*} it is closed, so this is a contradiction.

Theorem 3.19

Let M be a B-matroid with ground set S. Let C_{1}, C_{2} be circuits of M, with $x \in C_{1} \cap C_{2}$ and $y \in C_{2} \backslash C_{1}$. Then there is some circuit $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-\{x\}$ with $y \in C_{3}$.

Proof We have that $S \backslash C_{1}$ and $S \backslash C_{2}$ are hyperplanes of M^{*} and, by Lemma 3.18, that $y \notin \mathrm{cl}^{*}\left(\left(\left(S \backslash C_{1}\right) \cap\left(S \backslash C_{2}\right)\right) \cup\{x\}\right)$. Since $\mathrm{cl}^{*}\left(\left(\left(S \backslash C_{1}\right) \cap\left(S \backslash C_{2}\right)\right) \cup\{x\}\right)$ is closed, Lemma 3.17 implies that there exists a hyperplane H of M^{*} with $y \notin H$ and $\left(\left(S \backslash C_{1}\right) \cap\left(S \backslash C_{2}\right)\right) \cup\{x\} \subseteq H$. Then $C_{3}=S \backslash H$ is the required circuit.

3.4 Connectivity

Bruhn and Wollan [6] introduced a concept of B-matroid connectivity that extends finite matroid connectivity without using rank functions. Except where otherwise stated, the proofs in this section are those of Bruhn and Wollan (with some small modifications) but are included for completeness.

Let M be a B-matroid with ground set S, and let (X, Y) be a partition of S. If B_{X} is a basis of X and B_{Y} is a basis of Y, define $\operatorname{del}_{(X, Y)}\left(B_{X}, B_{Y}\right)=\min \{|F|: F \subseteq$ $\left.X,\left(B_{X} \cup B_{Y}\right)-F \in \mathcal{I}\right\}$. The following basic facts are from [6].

Lemma 3.20

(Bruhn, Wollan [6]) If B, B^{\prime} are bases of M with $\left|B-B^{\prime}\right|<\infty$, then $\left|B^{\prime}-B\right|=$ $\left|B-B^{\prime}\right|$.

Proof We proceed by induction on $\left|B-B^{\prime}\right|$. In the base case $\left|B-B^{\prime}\right|=1$, let $B-B^{\prime}=\{x\}$. Then, by (I4), there is an element of $B^{\prime}-B$ so that $B-\{x\} \cup\{y\}$ is a basis. However, $B-\{x\} \cup\{y\} \subseteq B^{\prime}$ so we must have $B^{\prime}=B-\{x\} \cup\{y\}$ and therefore $\left|B^{\prime}-B\right|=1$.

Now suppose the result holds whenever $\left|B-B^{\prime}\right| \leq k$. If $\left|B-B^{\prime}\right|=k+1$, choose any $x \in B-B^{\prime}$. By (I4), there is some $y \in B^{\prime}-B$ so that $B^{\prime \prime}=B-\{x\} \cup\{y\}$ is a basis. Now $\left|B^{\prime \prime}-B^{\prime}\right|=k$, so $\left|B^{\prime}-B^{\prime \prime}\right|=k$ and therefore $\left|B^{\prime}-B\right|=k+1$.

Lemma 3.21

(Bruhn, Wollan [6]) Let M be a B-matroid with ground set S. Let (X,Y) be a partition of S, B_{X} a basis of X and B_{Y} a basis of Y. Then:

1. $\operatorname{del}\left(B_{X}, B_{Y}\right)=|F|$, for all $F \subseteq B_{X}$ so that $\left(B_{X} \cup B_{Y}\right)-F$ is a basis of M;
2. $\operatorname{del}_{(X, Y)}\left(B_{X}, B_{Y}\right)=\operatorname{del}_{(Y, X)}\left(B_{Y}, B_{X}\right)$; and
3. $\operatorname{del}\left(B_{X}, B_{Y}\right)=\operatorname{del}\left(B_{X}^{\prime}, B_{Y}^{\prime}\right)$ for every basis B_{X}^{\prime} of X and every basis B_{Y}^{\prime} of Y.

Proof First, notice that, by Lemma 3.20, if $\left(B_{X} \cup B_{Y}\right)-F_{1}$ and $\left(B_{X} \cup B_{Y}\right)-F_{2}$ are both bases of M, then $\left|F_{1}\right|=\left|F_{2}\right|$.

From this the first two claims are immediate. For the third, choose $F \subseteq X$ so that $\left(B_{X} \cup B_{Y}\right)-F$ is a basis. Then $B_{X}-F$ is a basis of M / Y, and therefore $\left(B_{X} \cup B_{Y}^{\prime}\right)-F$ is also a basis of M. By the first claim, there is an $F^{\prime} \subseteq Y$ so that $\left(B_{X} \cup B_{Y}^{\prime}\right)-F^{\prime}$ is a basis, and $|F|=\left|F^{\prime}\right|$. Now $B_{Y}^{\prime}-F$ is a basis of M / X and therefore $\left(B_{X}^{\prime} \cup B_{y}^{\prime}\right)-F^{\prime}$ is a basis of M and therefore $\operatorname{del}\left(B_{X}, B_{Y}\right)=\operatorname{del}\left(B_{X}^{\prime}, B_{Y}^{\prime}\right)$.

Therefore we may set $\lambda_{M}(X)=\lambda_{M}(X, Y)=\operatorname{del}_{(X, Y)}\left(B_{X}, B_{Y}\right)$. For an integer k we say that (X, Y) is a k-separation of M if $\lambda_{M}(X, Y) \leq k-1$ and $|X|,|Y| \geq k$. A B-matroid M is k-connected if it has no ℓ-separation for any $\ell<k$.

For disjoint subsets X, Y of the ground set of M, we define the connectivity between X and $Y, \lambda_{M}(X, Y)$, to be the minimum of $\lambda_{M}\left(X^{\prime}\right)$ over all X^{\prime} such that $X \subseteq X^{\prime}$ and $X^{\prime} \cap Y=\phi$.

The connectivity function for B-matroids retains some key properties of the connectivity function for finite matroids. In particular, it is closed under duality, and the univariate (partition) connectivity function is submodular.

Lemma 3.22

(Bruhn, Wollan [6]) If $\lambda_{M}(X, Y)$ is finite, then

$$
\lambda_{M}(X, Y)=\lambda_{M^{*}}(X, Y) .
$$

Lemma 3.23

(Bruhn, Wollan [6]) For all $X, Y \subseteq S, \lambda(X)+\lambda(Y) \geq \lambda(X \cap Y)+\lambda(X \cup Y)$.

Let M be a B-matroid with ground set S. We may define a relation \sim on S by saying that $x \sim y$ if there is a circuit of M that contains x and y.

Lemma 3.24

(Bruhn, Wollan [6]) The relation \sim is an equivalence relation. There is a single \sim equivalence class if and only if M is 2 -connected.

The main result in [6] is that Tutte's linking theorem holds for finitary or co-finitary B-matroids.

Theorem 3.25

(Bruhn, Wollan [6]) Let M be a finitary or co-finitary B-matroid with ground set S, and let X, Y be disjoint subsets of S. There is a partition (C, D) of $S \backslash(X \cup Y)$ such that $\lambda_{M / C \backslash D}(X, Y)=\lambda_{M}(X, Y)$

It is unknown whether Tutte's linking theorem holds for general B-matroids. The rest of this section consists of a proof (joint with Brendan Rooney) that the Bixby-Coullard inequality holds for B-matroids. The Bixby-Coullard inequality states that for a matroid M with ground set S, for any $e \in S$, and any disjoint $C, D \subseteq S$ not containing $e, \lambda_{M / e}(C)+\lambda_{M \backslash e}(D) \geq \lambda_{M}(C \cap D)+\lambda_{M}(C \cup D \cup\{e\})-1$. For finite matroids, it is easy to prove Tutte's linking theorem from the Bixby-Coullard inequality, but this is not true for B-matroids.

Suppose that M is a B-matroid with ground set $S, e \in S, C, D \subseteq S-\{e\}$, and $\lambda(C)$ and $\lambda(D)$ are finite. Define $\lambda_{M \backslash e}(D)=\lambda_{M}(D)-1+k_{1}, \lambda_{M / e}(C)=$ $\lambda_{M}(C)-1+k_{2}$ and $\lambda_{M}(C \cup D \cup\{e\})=\lambda_{M}(C \cup D)+1-k_{3}$. Then $\lambda_{M / e}(C)+$ $\lambda_{M \backslash e}(D)=\lambda_{M}(C)+\lambda_{M}(D)+k_{1}+k_{2}-2$. By submodularity, this is at least $\lambda_{M}(C \cap D)+\lambda_{M}(C \cup D)+k_{1}+k_{2}-2=\lambda_{M}(C \cap D)+\lambda_{M}(C \cup D \cup\{e\})+k_{1}+k_{2}+$ $k_{3}-3$. So provided $k_{1}+k_{2}+k_{3} \geq 2$ we will have the Bixby-Coullard inequality: $\lambda_{M / e}(C)+\lambda_{M \backslash e}(D) \geq \lambda_{M}(C \cap D)+\lambda_{M}(C \cup D \cup\{e\})-1$.

Also, define $\lambda_{M^{*} \backslash e}(C)=\lambda_{M^{*}}(C)-1+k_{1}^{*}, \lambda_{M^{*} / e}(C)=\lambda_{M^{*}}(C)-1+k_{2}^{*}$ and $\lambda_{M^{*}}(C \cup D \cup\{e\})=\lambda_{M^{*}}(C \cup D)+1-k_{3}^{*}$. Notice that the definition of k_{i}^{*} is the same as the definition of k_{i} except that M is replaced with M^{*} and C is swapped with D. By taking duals, we have $k_{1}^{*}=k_{2}, k_{2}^{*}=k_{1}$ and $k_{3}^{*}=k_{3}$. In particular, $k_{1}^{*}+k_{2}^{*}+k_{3}^{*}=k_{1}+k_{2}+k_{3}$.

Claim $k_{1}=0$ if and only if e is a co-loop of $M \backslash D$ but not a co-loop of M. Otherwise, $k_{1}=1$.

Proof Suppose first that e is not a co-loop of $M \backslash D$. Then choose B_{S-D} to be a basis of $S-D$ avoiding e, and choose B_{D} to be a basis of D. Choose $T \subseteq B_{D}$ so that $B=\left(B_{D} \cup B_{S-D}\right)-T$ is a basis of M. Then in $M \backslash e, B_{D}$ is a basis of D, B_{S-D} is a basis of $(S-D)-\{e\}$ and B is a basis of $M \backslash e$. So $\lambda_{M \backslash e}(D)=\lambda_{M}(D)$ and therefore $k_{1}=1$.

Now suppose that e is a co-loop of $M \backslash D$. Then every basis B_{S-D} of $S-D$ contains e. Choose one such basis, and also choose B_{D} to be a basis of D. Choose
$T \subseteq B_{D}$ so that $B=\left(B_{D} \cup B_{S-D}\right)-T$ is a basis of M. In $M \backslash e, B_{D}$ is a basis of D, $B_{S-D}-\{e\}$ is a basis of $(S-D)-\{e\}$ and B is a basis of $M \backslash e$ if and only if e is not a co-loop of M. If e is a co-loop of M, then $B_{D} \cup\left(B_{S-D}-\{e\}\right)-T=B-\{e\}$, so $\lambda_{M \backslash e}(D)=\lambda_{M}(D)$ and therefore $k_{1}=1$. Otherwise, since $B-e$ is independent and $B_{D} \cup\left(B_{S-D}-\{e\}\right)$ is spanning, there is a basis B^{\prime} of $M \backslash e$ with $B-e \subseteq B^{\prime} \subseteq$ $\left(B_{S-D}-\{e\}\right)$. Then $B-B^{\prime}=\{e\}$ and therefore $B^{\prime}-B=\{f\}$ for some $f \in T$. Since $B_{D} \cup\left(B_{S-D}-\{e\}\right)-(T-\{f\})=B^{\prime}$, we have $\lambda_{M \backslash e}(D)=\lambda_{M}(D)-1$ and therefore $k_{1}=0$.

Claim $k_{2}=0$ if and only if e is not a loop of M and not a co-loop of $C \cup\{e\}$. Otherwise, $k_{2}=1$.

Proof Since $k_{2}=k_{1}^{*}$, by the previous claim we have that $k_{2}=0$ if and only if e is a co-loop of $M^{*} \backslash C$ but not a co-loop of M^{*}. Now, e is a co-loop of $M^{*} \backslash C$ if and only if it is a loop of M / C if and only if e is contained in some circuit in $C \cup\{e\}$, or in other words is not a co-loop of $C \cup\{e\}$.

Claim $k_{3} \geq 0$. If $k_{1}=0$, then $k_{3} \geq 1$. If $k_{1}=k_{2}=0$, then $k_{3}=2$.
Proof By submodularity, $\lambda_{M}(C \cup D \cup\{e\}) \leq \lambda_{M}(C \cup D)+1$, so $k_{3} \geq 0$. If $k_{1}=0$, then e is a co-loop of $S-D$, and therefore also a co-loop of $S-(C \cup D)$, but not a co-loop of M. Let $B_{C \cup D}$ be a basis of $C \cup D$. Extend $B_{C \cup D}$ to a basis B of $M \backslash e$ which since e is not a co-loop of M is also a basis of M. Now extend $B \cap S-(C \cup D)$ to a basis $B_{S-(C \cup D)}$ of $S-(C \cup D)$, which must contain e. Then $B=B_{C \cup D} \cup B_{S-(C \cup D)}-T$, where $e \in T$ and $\lambda(C \cup D)=|T|$.

Now, $B_{S-(C \cup D)}-\{e\}$ is a basis of $(S-(C \cup D))-\{e\}$. Either $B_{C \cup D}$ or $B_{C \cup D} \cup\{e\}$ is a basis of $C \cup D \cup\{e\}$. If $B_{C \cup D} \cup\{e\}$ is a basis of $C \cup D \cup\{e\}$, then $\left(B_{S-(C \cup D)}-\{e\}\right) \cup$ $\left(B_{C \cup D} \cup\{e\}\right)-T=B$ which implies that $\lambda(C \cup D \cup\{e\})=|T|$ and therefore $k_{3}=1$. If $B_{C \cup D}$ is a basis of $C \cup D \cup\{e\}$, then $\left(B_{S-(C \cup D)}-\{e\}\right) \cup\left(B_{C \cup D}\right)-(T-\{e\})=B$ which implies that $\lambda(C \cup D \cup\{e\})=|T|-1$ and therefore $k_{3}=2$.

If $k_{2}=0$, then e is not a co-loop of $C \cup\{e\}$ and hence not a co-loop of $C \cup D \cup\{e\}$. Therefore $B_{C \cup D}$ is a basis of $C \cup D \cup\{e\}$ and $k_{3}=2$.

Lemma 3.29

The Bixby-Coullard inequality, $\lambda_{M / e}(C)+\lambda_{M \backslash e}(D) \geq \lambda_{M}(C \cap D)+\lambda_{M}(C \cup D \cup$ $\{e\})-1$, holds for a B-matroid M with ground set $S, C, D \subseteq S, e \notin(C \cup D)$.

Proof By the above discussion, we need to show that $k_{1}+k_{2}+k_{3} \geq 2$. We know that each $k_{i} \geq 0$. If $k_{1}=k_{2}=1$, we are done. If not, we may assume that $k_{1}=0$
(if $k_{1}=1$, then $k_{1}^{*}=k_{2}=0$ and we prove that $k_{1}^{*}+k_{2}^{*}+k_{3}^{*} \geq 2$ in exactly the same way). By Claim 3.28, $k_{3} \geq 1$. Therefore if $k_{2}=1$ we are done. On the other hand, if $k_{1}=k_{2}=0$, then, again by Claim 3.28, we have $k_{3}=2$ and we are done.

3.5 Binary B-matroids

This section incorporates joint work with Paul Wollan. The following lemma describes a way of extending results about classes of finite matroids defined by excluded minors to classes of B-matroids.

Lemma 3.30

Let \mathcal{P} be a B-matroid property, and \mathcal{X} a set of finite matroids. If:

1. for finite matroids $M, M \in \operatorname{ex}(\mathcal{X})$ if and only if $M \in \mathcal{P}$;
2. \mathcal{P} is closed under minors; and
3. for a B-matroid $M \notin \mathcal{P}$, there is a finite minor N of M such that $N \notin \mathcal{P}$, then $\mathcal{P}=\operatorname{ex}(\mathcal{X})$.

Proof Suppose that $M \in \mathcal{P}$. Then, by (2), every finite minor N of M is also in \mathcal{P} and therefore, by (1), in $\operatorname{ex}(\mathcal{X})$. Since \mathcal{X} is a set of finite matroids, this implies that $M \in \operatorname{ex}(\mathcal{X})$.

Conversely, suppose that $M \notin \mathcal{P}$. Then, by (3), there is a finite minor N of M such that $N \notin \mathcal{P}$. By (1), $N \notin \operatorname{ex}(\mathcal{X})$, and therefore $M \notin \operatorname{ex}(\mathcal{X})$.

Generalizing the standard definition of a binary matroid will yield only finitary matroids. We will instead call a B-matroid binary if it has no $U_{2,4}$ minor.

The following result makes it easier to apply Lemma 3.30 to prove that certain B-matroid properties are equivalent to being binary.

Lemma 3.31

Suppose that M is a B-matroid with finite rank. Then either the simplification of M is finite or M has a $U_{2,4}$ minor.

Proof Let B be a basis of the simplification of M. For each $e \notin B$ in the simplification of M, let C_{e} denote the fundamental circuit for e with respect to B. We claim that for $e \neq f, C_{e} \cap B \neq C_{f} \cap B$, from which the result follows because B has only finitely many subsets.

Suppose otherwise that $C_{e} \cap B=C_{f} \cap B=B_{e f}$. Let $x \in B_{e f}$, and apply circuit elimination to C_{e}, C_{f} and $x \in C_{e} \cap C_{f}$ to obtain a circuit $C_{1} \subseteq C_{e} \cup C_{f}$ such that $x \notin C_{1}$. Since $C_{1} \subseteq B \cup\{e, f\}$ and C_{1} is distinct from C_{e} and C_{f}, we must have $\{e, f\} \subseteq C_{1}$. Since we are considering a simple matroid, $\{e, f\}$ is not a circuit, so we may choose $y \in C_{1} \backslash\{e, f\}$. Now apply circuit elimination to C_{e}, C_{f} and $y \in C_{e} \cap C_{f}$ to obtain another circuit $C_{2} \subseteq C_{e} \cup C_{f}$ such that $y \notin C_{2}$. Since C_{1} and C_{2} are both circuits and $C_{1} \backslash C_{2}$ is non-empty, $C_{2} \backslash C_{1}$ is also non-empty. Let $z \in C_{2} \backslash C_{1}$.

Note that among the elements $\{e, f, y, z\}: C_{e}$ contains exactly $\{e, y, z\} ; C_{f}$ contains exactly $\{f, y, z\} ; C_{1}$ contains exactly $\{e, f, y\}$; and C_{2} contains exactly $\{e, f, z\}$. We obtain a $U_{2,4}$ minor of M by taking the restriction of M to $C_{e} \cup C_{f}$ then contracting all of the elements except for $\{e, f, y, z\}$. We have already shown that the three element subsets are dependent, and all of the two element subsets except for $\{e, f\}$ are obviously independent. To see that $\{e, f\}$ is independent, note that if it is dependent there is a circuit C_{3} contained in $\left(C_{e} \cup C_{f}\right) \backslash\{y, z\}$, but then applying circuit elimination to C_{1}, C_{3} and e yields a circuit contained in $C_{f} \backslash\{z\}$, a contradiction.

Lemma 3.32

The following are equivalent for a B-matroid M :

1. M is binary $\left(M \in \operatorname{ex}\left(\left\{U_{2,4}\right\}\right)\right)$;
2. Property \mathcal{P}_{1} : For every circuit C and co-circuit C^{*} of $M,\left|C \cap C^{*}\right|$ is either infinite or even;
3. Property \mathcal{P}_{2} : For every circuit C and co-circuit C^{*} of $M,\left|C \cap C^{*}\right| \neq 3$; and
4. Property \mathcal{P}_{3} : For every pair of distinct circuits C_{1}, C_{2} of M, if $C_{1} \cap C_{2}$ is finite, then $C_{1} \Delta C_{2}$ is dependent.

Proof By Theorem 1.3, these statements are all equivalent for finite matroids. We will first show that, for $i \in\{1,2,3\}, \mathcal{P}_{i}$ is closed under taking minors, and then that, for $i \in\{1,2,3\}$, for any $M \notin \mathcal{P}_{i}$, there is a finite rank (or corank) minor N of
M such that $N \notin \mathcal{P}_{i}$, which implies by Lemmas 3.31 and 3.30 that \mathcal{P}_{i} is equivalent to being binary.

Let $N=M / C \backslash D$ be a minor of M such that C is independent in M. Suppose that $N \notin \mathcal{P}_{1}$. Then there exist a circuit K and a co-circuit K^{*} of N such that $\left|K \cap K^{*}\right|$ is odd. Then there exist $C_{K} \subseteq C$ such that $K \cup C_{K}$ is a circuit of M, and $D_{K^{*}} \subseteq D$ such that $K^{*} \cup D_{K^{*}}$ is a co-circuit of M. Then $\left|\left(K \cup C_{K}\right) \cap\left(K^{*} \cup D_{K^{*}}\right)\right|=\left|K \cap K^{*}\right|$ is odd and therefore $M \notin \mathcal{P}_{1}$. So \mathcal{P}_{1} is closed under taking minors, and evidently so is \mathcal{P}_{2} by the same argument.

Suppose that $N \notin \mathcal{P}_{3}$. Let K_{1} and K_{2} be circuits of N such that $K_{1} \Delta K_{2}$ is independent. Then there exist $C_{K_{1}}, C_{K_{2}} \subseteq C$ such that $K_{1} \cup C_{K_{1}}$ and $K_{2} \cup C_{K_{2}}$ are circuits of M. Since $K_{1} \Delta K_{2}$ is independent in M / C, and C is independent in M, we must have $\left(K_{1} \cup C_{K_{1}}\right) \Delta\left(K_{2} \cup C_{K_{2}}\right) \subseteq\left(K_{1} \Delta K_{2}\right) \cup C$ independent in M, showing that $M \notin \mathcal{P}_{3}$. Therefore, \mathcal{P}_{3} is also closed under taking minors.

Suppose that $M \notin \mathcal{P}_{1}$. Then there is a circuit C and a co-circuit C^{*} of M such that $\left|C \cap C^{*}\right|$ is odd. Choose $x \in C \cap C^{*}$. Then $C \backslash\{x\}$ is independent, so we may extend it to a basis B of M avoiding the co-independent set $C^{*} \backslash C$. Consider $N=M /\left(B \backslash\left(C \cap C^{*}\right)\right)$. Observe that $\left(C \cap C^{*}\right) \backslash\{x\}$ is a basis for N, so N has finite rank. Clearly C^{*} is still a co-circuit of N (since it is disjoint from the elements of M that were contracted), and $C \cap C^{*}$ is a circuit of N because $C \cap C^{*} \subseteq B \cup x$, and C is the fundamental circuit for x with respect to B. Therefore N is a finite rank minor of M with $N \notin \mathcal{P}_{1}$. The argument is identical for \mathcal{P}_{2}.

Finally, suppose that $M \notin \mathcal{P}_{3}$. Then there are circuits C_{1}, C_{2} of M with $C_{1} \cap C_{2}$ finite and $C_{1} \Delta C_{2}$ independent. Since $C_{1} \Delta C_{2}$ is independent, we may find a cobasis B disjoint from $C_{1} \Delta C_{2}$. Since $C_{1} \cap C_{2}$ is finite, we may delete $B \backslash\left(C_{1} \cap C_{2}\right)$ to obtain a finite corank minor of M, in which C_{1} and C_{2} are still circuits and $C_{1} \Delta C_{2}$ is still independent.

3.6 Graphic B-matroids

The lemmas in this section describe B-matroid analogues of the circuit matroid of a graph. Both infinite graphs and graph-like continua have circuit matroids. Since infinite graphs have only finite circuits, their circuit matroids will be finitary, and since graph-like continua have only finite bonds, their circuit matroids will be co-finitary.

Let G be a finite graph. A k-Tutte-separation is a partition $\left(E_{1}, E_{2}\right)$ of the edges of G, such that $\left|E_{1}\right|,\left|E_{2}\right| \geq 3$ and $\left|V\left(G\left[E_{1}\right]\right) \cap V\left(G\left[E_{2}\right]\right)\right|=k$. A finite graph is k-Tutte-connected if it has no ℓ-Tutte-separation for any $\ell<k$. Note that a finite graph with at least four edges is k-Tutte-connected if and only if it is k-connected and has girth at least k. We will use these definitions of Tutte-separations and Tutte-connectivity for both infinite graphs and graph-like continua.

Lemma 3.33

Let G be an infinite graph. There is a finitary B-matroid $\mathcal{M}(G)$ whose circuits, co-circuits and bases are the circuits, bonds and edge-maximal spanning forests of G, respectively. If, for any $k \geq 2, G$ is k-Tutte-connected, then $\mathcal{M}(G)$ is also k-connected.

Proof By Lemma 3.7, the circuits of G are the circuits of a B-matroid, $\mathcal{M}(G)$. The bases of $\mathcal{M}(G)$ are the maximal circuit avoiding sets of edges of G. A set K is a co-circuit of $\mathcal{M}(G)$ if it is a minimal set that meets every basis. We claim that these sets are exactly the bonds of G. Suppose that X is a set of elements of $\mathcal{M}(G)$ that does not contain any bond of G. Then each component of G is still connected in $G-X$, so any edge-maximal spanning forest of $G-X$ is an edge-maximal spanning forest of G. So any such set X is disjoint from some basis and is therefore co-independent. On the other hand, an edge-maximal spanning forest of G cannot be disjoint from a bond of G. Therefore the co-circuits of $\mathcal{M}(G)$ are exactly the bonds of G.

It remains to show that $\mathcal{M}(G)$ is k-connected. For some $\ell<k$, let (X, Y) be a partition of $E(G)$ with $|X|,|Y| \geq \ell$. We need to show that $\lambda_{\mathcal{M}(G)}(X, Y) \geq \ell$. We define two equivalence relations \sim_{X} and \sim_{Y} on the vertices of G, by saying that, for $u, v \in V(G), u \sim_{X} v$ if there is a $u v$-path in $G[X]$, and $u \sim_{Y} v$ if there is a $u v$-path in $G[Y]$. We now consider two cases.

First, suppose that for every pair u, v of vertices of G, at least one of $u \sim_{X} v$ or $u \sim_{Y} v$ holds. We claim that in this case either there is only one \sim_{X} equivalence class, or there is only one \sim_{Y} equivalence class. Suppose that there is more than one \sim_{X} equivalence class, and let u and v be any pair of vertices of G. If they are in different \sim_{X} equivalence classes, then we are supposing that $u \sim_{Y} v$, and if they are in the same \sim_{X} equivalence class there is some w in a different \sim_{X} equivalence class from either, whence $u \sim_{Y} w$ and $v \sim_{Y} w$ imply that $u \sim_{Y} v$. Therefore the claim holds, and we may suppose without loss of generality that there is only one \sim_{X} equivalence class. It follows that any basis B_{X} for X in $\mathcal{M}(G)$ (a spanning tree for $G[X]$) is in fact a spanning tree for G and therefore a basis for $\mathcal{M}(G)$. Let B_{Y} be any basis for Y. Suppose that $\left|B_{Y}\right|<\ell$. Since $|Y| \geq \ell, Y \backslash B_{Y}$ is non-empty. Let $y \in Y \backslash B_{Y}$, and consider the fundamental circuit through y with respect to B_{Y}. It has at most $\left|B_{Y}\right|+1 \leq \ell<k$ elements, contradicting the fact that G has girth k. Therefore, for any basis B_{Y} of $Y, \lambda_{\mathcal{M}(G)}(X, Y) \geq\left|B_{Y}\right| \geq \ell$, as required.

Now suppose that there is a pair u, v of vertices of G such that neither $u \sim_{X} v$
nor $u \sim_{Y} v$ holds. By Menger's Theorem, there are k internally disjoint $u v$-paths $P_{1}, P_{2}, \ldots, P_{k}$ in G. Let $F=\bigcup_{i=1}^{k} E\left(P_{i}\right)$. No path consists entirely of edges of X or entirely of edges of Y, so $F \cap X$ and $F \cap Y$ are both independent. Let B_{X} be a basis of X containing $F \cap X$ and B_{Y} be a basis of Y containing $F \cap Y$. Since $F \subseteq B_{X} \cup B_{Y}$, and no independent subset of F can be obtained by deleting fewer than $k-1$ edges, $\lambda_{\mathcal{M}(G)}(X, Y) \geq k-1 \geq \ell$, as required.

Lemma 3.34

Let \mathcal{G} be a graph-like continuum. There is a co-finitary B-matroid $\mathcal{M}(\mathcal{G})$ whose circuits, co-circuits and bases are the circuits, bonds and spanning trees of \mathcal{G}, respectively. If, for any $k \geq 2, \mathcal{G}$ is k-connected, then $\mathcal{M}(\mathcal{G})$ is also k-connected.

Proof The bonds of \mathcal{G} are finite, by Lemma 2.1. They also satisfy the finite circuit axioms. For (C3), suppose that X_{1}, X_{2} are closed subsets of \mathcal{G} such that $X_{1} \cup X_{2}=\mathcal{G}$ and $X_{1} \cap X_{2}$ is contained in the edges of a bond K_{1}, and Y_{1}, Y_{2} are closed subsets of \mathcal{G} such that $Y_{1} \cup Y_{2}=\mathcal{G}$ and $Y_{1} \cap Y_{2}$ is contained in the edges of another bond K_{2}, and $e \in K_{1} \cap K_{2}$. Without loss of generality, suppose that e has one endpoint in $X_{1} \cap Y_{1}$ and the other endpoint in $X_{2} \cap Y_{2}$. Then $X_{1} \cap Y_{2} \backslash\{e\}$ and $X_{2} \cup Y_{1} \cup\{e\}$ are both closed subsets of \mathcal{G}, their union is \mathcal{G} and their intersection is contained in $\left(K_{1} \cup K_{2}\right) \backslash\{e\}$. Therefore there is a bond of \mathcal{G} contained in $\left(K_{1} \cup K_{2}\right) \backslash\{e\}$, as required.

Since the bonds of \mathcal{G} are all finite, and satisfy the finite circuit axioms, they are the circuits of a B-matroid by Lemma 3.7. The dual of this B-matroid, $\mathcal{M}(\mathcal{G})$, has the bonds of \mathcal{G} for its co-circuits. Let B be a basis of $\mathcal{M}(\mathcal{G})$. Then B is a minimal subset of $E(\mathcal{G})$ that meets every co-circuit. Every circuit of \mathcal{G} clearly meets every bond at least twice, so B cannot contain a circuit. On the other hand, suppose that there is some $e=x y \in E(\mathcal{G})$ such that $B \cup\{e\}$ does not contain a circuit. Let C_{x} and C_{y} be the components of the closure of B containing x and y respectively. Since there is no arc between x and y in the closure of B, C_{x} and C_{y} cannot be the same component. Let C_{x}^{\prime} be a closed subset of \mathcal{G} containing C_{x} but disjoint from C_{y}. Then the set of edges with one endpoint in C_{x}^{\prime} and one endpoint not in C_{x}^{\prime} is an edge cut of \mathcal{G} and it therefore contains a bond disjoint from B, a contradiction. Therefore B is a maximal circuit avoiding subset of $E(\mathcal{G})$. This also shows that the circuits of $\mathcal{M}(\mathcal{G})$ are the circuits of \mathcal{G}.

The proof that $\mathcal{M}(\mathcal{G})$ is k-connected is as above, but considering arcs instead of paths, and using Theorem 2.2.

Lemma 3.35

Let G be a graph or a graph-like continuum. Then $\mathcal{M}(G / C \backslash D)=\mathcal{M}(G) / C \backslash D$.

Proof First, suppose that G is a graph. Let B_{C} be an edge-maximal spanning forest of $G[C]$. Suppose that J is independent in $\mathcal{M}(G / C \backslash D)$. Then J is disjoint from D and does not contain any circuits of G / C. We need to show that $J \cup B_{C}$ does not contain any circuits of G, so that J is independent in $\mathcal{M}(G) / C \backslash D$. This is clear, because if $J \cup B_{C}$ contains a circuit K of G, then $K \backslash B_{C} \subseteq J$ is still the edge set of a closed walk in G / C, and therefore contains a circuit.

Conversely, if J is dependent in $\mathcal{M}(G / C \backslash D)$, then J does contain a circuit K of G / C. Each of the finitely many vertices v of K is either a vertex of G, or can be replaced by a finite path in B_{C} to yield a circuit of G contained in $J \cup B_{C}$. This shows that J is dependent in $\mathcal{M}(G) / C \backslash D$.

Now, suppose that G is a graph-like continuum. We will show that the cocircuits of $\mathcal{M}(G / C \backslash D)$ are the same as the co-circuits of $\mathcal{M}(G) / C \backslash D$. Suppose that K is a co-circuit of $\mathcal{M}(G) / C \backslash D$. Then, by Lemma 3.11, there is some subset D^{\prime} of D such that $K \cup D^{\prime}$ is a co-circuit of $\mathcal{M}(G)$. Therefore $K \cup D^{\prime}$ is a bond of G, so G is the union of two closed sets X_{1} and X_{2} intersecting only in $J \cup D^{\prime}$. Since C is disjoint from $J \cup D^{\prime}$, each of the components of the closure of C is entirely contained in X_{1} or X_{2} and therefore, in $G / C, X_{1}$ and X_{2} are still closed sets. Every edge in K still has one endpoint in each of X_{1} and X_{2}, so K is a bond of $G / C \backslash D$, as required.

Conversely, suppose that K is a co-circuit of $\mathcal{M}(G / C \backslash D)$. Then K is a bond of $G / C \backslash D$, so there are closed sets X_{1} and X_{2} in $G / C \backslash D$ whose union is $G / C \backslash D$ and whose intersection is contained in the edges of K. Let X_{1}^{\prime} and X_{2}^{\prime} be the closed sets in $G \backslash D$ formed by including a whole component of the closure of C in X_{i}^{\prime} if its contracted image is contained in X_{i}. Then X_{1}^{\prime} and X_{2}^{\prime} are closed sets in G also. The set of edges with one endpoint in each of X_{1}^{\prime} and one endpoint in X_{2}^{\prime} is a bond in G, contains K, and is otherwise contained in D, so there is some finite subset D^{\prime} of D such that $K \cup D^{\prime}$ is a co-circuit of $\mathcal{M}(G)$ and therefore K is a co-circuit of $\mathcal{M}(G) / C \backslash D$, as required.

3.7 Matroid intersection for B-matroids

In this section, we will prove a version of the matroid intersection theorem for B-matroids.

Note that Lemma 3.20 implies that, if any subset of a B-matroid has a finite basis, then all of its bases are the same size. Therefore, if M is a B-matroid with ground set S, we can define the rank function of $M, r_{M}: 2^{S} \rightarrow \mathbb{Z} \cup\{\infty\}$, by saying that $r_{M}(X)=k$, if every basis of X has size k, and $r_{M}(X)=\infty$, if X has no finite basis.

We will begin by proving the following lemma, which is a verbatim generalization of Edmonds' matroid intersection theorem ([12]) to B-matroids.

Lemma 3.36

Let M_{1} and M_{2} be two B-matroids with the same countable ground set S. For any integer k, M_{1} and M_{2} have a common independent set of size k if and only if, for each partition (X, Y) of $S, r_{M_{1}}(X)+r_{M_{2}}(Y) \geq k$.

Proof Suppose first that M_{1} and M_{2} have a common independent set J of size k. Then for any partition (X, Y) of $S, J \cap X$ is an independent subset of X in M_{1} and $J \cap Y$ is an independent subset of Y in M_{2}. Therefore, $r_{M_{1}}(X)+r_{M_{2}}(Y) \geq$ $|J \cap X|+|J \cap Y|=|J|=k$.

Now suppose that M_{1} and M_{2} have no common independent set of size k. Let $S=\left\{e_{1}, e_{2}, \ldots\right\}$. For each $i \in\{1,2\}$, and each integer j, let $M_{i}^{j}=\left.M_{i}\right|_{\left\{e_{1}, \ldots e_{j}\right\}}$. Independent sets in M_{i}^{j} are also independent in M_{i} so, for every integer j, M_{1}^{j} and M_{2}^{j} have no common independent set of size k. For each j, applying the matroid intersection theorem to M_{1}^{j} and M_{2}^{j}, there is at least one partition $\left(X_{j}, Y_{j}\right)$ of $\left\{e_{1}, \ldots e_{j}\right\}$ such that $r_{M_{1}^{j}}\left(X_{j}\right)+r_{M_{2}^{j}}\left(Y_{j}\right)<k$. For each j, let V_{j} be the set of all such partitions. Form a graph G on the union of the V_{j} by saying that (X_{j}, Y_{j}) is adjacent to (X_{j-1}, Y_{j-1}) if $X_{j-1} \subseteq X_{j}$ and $Y_{j-1} \subseteq Y_{j}$. Applying König's infinity lemma to G yields sequences $X_{1} \subseteq X_{2} \subseteq \ldots$ and $Y_{1} \subseteq Y_{2} \subseteq \ldots$ such that $\left(X_{j}, Y_{j}\right) \in V_{j}$. Let X be the union of the X_{j} and let Y be the union of the Y_{j}. Then (X, Y) is a partition of S and $r_{M_{1}}(X)+r_{M_{2}}(Y)<k$, because any finite independent set in X is eventually an independent set in some X_{j} and any finite independent set in Y is a eventually an independent set in some Y_{j}.

Theorem 3.37

Let M_{1} and M_{2} be two B-matroids with the same countable ground set S. The following are equivalent:

1. M_{1} and M_{2} have a countable common independent set;
2. for every positive integer k, M_{1} and M_{2} have a common independent set of size k; and
3. there is no partition (X, Y) of S such that X has a finite basis in M_{1} and Y has a finite basis in M_{2}.

Proof It is obvious that the first statement implies the second, and Lemma 3.36 shows that the second implies the third. It remains to show the third implication: that if there is no partition (X, Y) of S such that X has a finite basis in M_{1} and Y has a finite basis in M_{2}, then M_{1} and M_{2} have a countable common independent set.

Suppose that there is no partition (X, Y) of S such that X has a finite basis in M_{1} and Y has a finite basis in M_{2}. We first claim that if J is any finite common independent set of M_{1} and M_{2}, there is some $t \in S$ such that $J \cup\{t\}$ is a common independent set. Suppose otherwise, and let $X^{\prime}=J \cup\{t \in S \backslash J \mid J \cup\{t\}$ is dependent in $\left.M_{1}\right\}$ and $Y^{\prime}=J \cup\left\{t \in S \backslash J \mid J \cup\{t\}\right.$ is dependent in $\left.M_{2}\right\}$. Then $X^{\prime} \cup Y^{\prime}=S$ and J is a finite basis of both X^{\prime} and Y^{\prime}, so any partition (X, Y) of S such that $X \subseteq X^{\prime}$ and $Y \subseteq Y^{\prime}$ provides a contradiction.

Therefore we may start with the empty set and add one element at a time to obtain a sequence $\left\{J_{0}, J_{1}, \ldots\right\}$ of common independent sets such that, for each $k>0,\left|J_{k}\right|=k$. Let J be the union over $k>0$ of the J_{k}. Every finite subset of J is a common independent set. Suppose that J is dependent in M_{1}. Then there is at least one circuit of M_{1} contained in J. Let C be any such circuit. If C were finite it would be independent, so C is countable. Choose any element x of C. Then $C \backslash\{x\}$ is countable, is independent in M_{1}, and every finite subset of $C \backslash\{x\}$ is a common independent set. If $C \backslash\{x\}$ is not already a common independent set, then it contains a circuit C^{\prime} of M_{2}, which, as for C, must be countable. In this case, for any $x^{\prime} \in C^{\prime}, C^{\prime} \backslash\left\{x^{\prime}\right\}$ is a countable common independent set.

Chapter 4

Matroid and graph limits

4.1 Introduction

In the first section of this chapter, we introduce a technique for viewing a finitary or co-finitary B-matroid as the limit of a sequence of finite matroids. We show that any finitary or co-finitary B-matroid can be obtained in this way. In the following two sections we show that, given a sequence of finite graphs, we can obtain a limit graph that has the same circuits as the finitary limit matroid obtained from the sequence of circuit matroids of the graphs, and a limit graph-like continuum that has the same circuits as the co-finitary limit matroid obtained from the sequence of circuit matroids. It follows that, given a finitary or co-finitary B-matroid, M, whose every finite minor is graphic, we can first construct M as the limit of a sequence of finite matroids then, viewing these matroids as graphs, we can obtain a graph or graph-like continuum with the same circuits as M. This allows us to extend Tutte's characterization of graphic matroids by excluded minors to finitary and co-finitary B-matroids. In the final section, we use this result to obtain a version of Whitney's planarity criterion for infinite graphs and graph-like continua.

4.2 Matroid limits

A sequence $\left\{M_{i}\right\}, i \geq 0$ of matroids such that, for each $i \geq 0, M_{i} \prec M_{i+1}$, will be called a minor sequence of matroids.

Let $\left\{M_{i}\right\}$ be a minor sequence of matroids and, for each i, let $M_{i}=\left(S_{i}, \mathcal{I}_{i}\right)$. Let $S=\cup_{i \in \mathbb{N}} S_{i}$ and let A be any finite subset of S. There is some $N(A) \in \mathbb{N}$ such that for all $j>N(A), A \subseteq S_{j}$. If A is independent in M_{k} for some $k>N(A)$, then it follows immediately from the definition of contraction that A is independent in
M_{l} for every $l>k$. Therefore, either:

1. for all $j>N(A), A$ is dependent in M_{j}; or
2. there is some $N^{\prime}(A) \in \mathbb{N}$ such that for all $j>N^{\prime}(A), A$ is independent in M_{j}.

In the first case A is eventually dependent and in the second case A is eventually independent.

The finitary limit of $\left\{M_{i}\right\}$ is given by $\left[\left\{M_{i}\right\}\right]=(S,\{I \in S \mid$ every finite subset A of I is eventually independent $\}$). The following lemma describes the basic properties of $\left[\left\{M_{i}\right\}\right]$.

Lemma 4.1

Let $\left\{M_{i}\right\}$ be a minor sequence of matroids. Then:

1. $\left[\left\{M_{i}\right\}\right]$ is a finitary B-matroid;
2. a subset C of S is a circuit of $\left[\left\{M_{i}\right\}\right]$ if and only if there is some $N(C) \in \mathbb{N}$ such that, for all $j>N(C), C \subset S_{j}$ and C is a circuit of M_{j}; and
3. if A is a finite subset of S and B is a basis for A in $\left[\left\{M_{i}\right\}\right]$, then there is some $N(A) \in \mathbb{N}$ such that, for all $j>N(A), A \subseteq S_{j}$ and B is a basis for A in M_{j}.

Proof We need to prove the axioms (i1), (i2), (i3) and (i4). Since any independent set of M_{1} is eventually independent, (i1) holds, while (i2) follows immediately from (i2) for the matroids M_{i}. Since every eventually independent set is in \mathcal{I}, (i4) follows from the definition of $\left[\left\{M_{i}\right\}\right]$. Finally, suppose that I_{1} and I_{2} are finite independent sets with $\left|I_{2}\right|>\left|I_{1}\right|$. Since I_{1} and I_{2} are both eventually independent, there is some $j \in \mathbb{N}$ such that both I_{1} and I_{2} are independent sets in M_{j}. Since (i3) holds for M_{j}, there is $x \in I_{2} \backslash I_{1}$ such that $I_{1} \cup x$ is independent in M_{j}, and hence independent in [$\left.\left\{M_{i}\right\}\right]$ as required for (i3).

If there is some $N(C) \in \mathbb{N}$ such that, for all $j>N, C \subset S_{j}$ and C is a circuit of M_{j}, then it is clear that C is finite, C is eventually dependent, and every proper subset of C is eventually independent, so C is a circuit of $\left[\left\{M_{i}\right\}\right]$. Conversely, suppose C is a circuit of $\left[\left\{M_{i}\right\}\right]$. Then by (i4), C is finite, hence eventually dependent. There is a finite number of proper subsets of C, each of which is eventually independent. Therefore eventually C is dependent and every proper subset of C is independent, so C is eventually a circuit, as required.

Let A be a finite subset of S and let B be a basis for A. Since for every $x \in A \backslash B$, $B \cup\{x\}$ is eventually dependent, as soon as $A \subseteq S_{j}, B \cup\{x\}$ is dependent in M_{j} for every $x \in A \backslash B$. On the other hand, B itself is eventually independent, and therefore eventually a maximal independent subset of A, as required.

Example 4.1

Let $\left\{M_{i}\right\}$ be a minor sequence such that, for each positive integer i, M_{i} is a circuit with i elements. Let S be the union of the ground sets of the M_{i}. Every finite subset of S is eventually independent in some M_{i}, so $\left[\left\{M_{i}\right\}\right]$ is a free matroid (every element is a co-loop).

Example 4.2

Let $\left\{M_{i}\right\}$ be a minor sequence such that, for each positive integer i, M_{i} is isomorphic to $U_{2, i}$. Let S be the union of the ground sets of the M_{i}. Every subset of S consisting of two elements is eventually independent, and every subset of S consisting of three elements is eventually a circuit, so $\left[\left\{M_{i}\right\}\right]$ is $U_{2, \infty}$.

Lemma 4.2

Suppose that E and F are finite subsets of S. Then $\left[\left\{M_{i}\right\}\right] \backslash E / F=$ $\left[\left\{M_{i} \backslash E / F\right\}\right]$.

Proof Let B be any basis of F in $\left[\left\{M_{i}\right\}\right]$. Consider any $A \subseteq S \backslash E / F$. Then by the definitions of deletion and contraction, A is independent in $\left[\left\{M_{i}\right\}\right] \backslash E / F$ if and only if $A \cup B$ is independent in [\{$\left.\left.M_{i}\right\}\right]$. If A is independent in $\left[\left\{M_{i}\right\}\right] \backslash E / F$, then $A \cup B$ is independent in [\{ $\left.\left.M_{i}\right\}\right]$, so for every finite subset A^{\prime} of A, B is eventually a basis of F and $A^{\prime} \cup B$ is eventually independent. So every such A^{\prime} is eventually independent in $M_{j} \backslash E / F$, and hence A is independent in [$\left\{M_{i} \backslash E / F\right\}$]. On the other hand, if A is dependent in $\left[\left\{M_{i}\right\}\right] \backslash E / F$, then $A \cup B$ is dependent in [\{M $\left.M_{i}\right\}$], so there is some finite subset A^{\prime} of A such that $A^{\prime} \cup B$ is dependent in $\left[\left\{M_{i}\right\}\right]$. Eventually $A^{\prime} \cup B \subset S_{j}$ and B is a basis of F in M_{j}, so A^{\prime} is dependent in $M_{j} \backslash E / F$, and therefore A^{\prime} and A are dependent in $\left[\left\{M_{i} \backslash E / F\right\}\right]$.

Lemma 4.3

Every countable finitary B-matroid M is the finitary limit of some sequence of matroids $\left\{M_{i}\right\}$.

Proof Let $S=\left\{e_{1}, \ldots\right\}$. For each $i \geq 1$, let $M_{i}=\left.M\right|_{\left\{e_{1}, \ldots, e_{i}\right\}}$. Since any circuit C of M is finite, it is also a circuit of $\left[\left\{M_{i}\right\}\right]$. On the other hand, any finite independent set in M is independent in every M_{i} for which it is contained in S_{i}, so by (i4) every independent set in M is independent in $\left[\left\{M_{i}\right\}\right]$. So $M=\left[\left\{M_{i}\right\}\right]$, as required.

Lemma 4.4

Let M be a countable finitary binary B-matroid with ground set S, and let $S=C \cup D$ where C is a basis of M and D is its complementary co-basis. Let $\left\{C_{i}\right\}$ and $\left\{D_{i}\right\}$ be arbitrary increasing sequences of finite subsets of C and D respectively, whose unions are C and D. Then $M=\left[\left\{M_{i}\right\}\right]$ where $M_{i}=M /\left(C \backslash C_{i}\right) \backslash\left(D \backslash D_{i}\right)$.

Proof It suffices to show that a finite set X is independent in M if and only if it is independent in $\left[\left\{M_{i}\right\}\right]$. Firstly, suppose that X is a finite independent subset of M. Either X is independent in $\left[\left\{M_{i}\right\}\right]$, or there is some subset X^{\prime} of X that is a circuit of $\left[\left\{M_{i}\right\}\right]$. Then there is some $N\left(X^{\prime}\right)$ such that X^{\prime} is a circuit in every $M_{i}, i>N\left(X^{\prime}\right)$. Let $j>N\left(X^{\prime}\right)$. By definition of contraction, there is a circuit K of M such that $X^{\prime} \subseteq K \subseteq X^{\prime} \cup\left(C \backslash C_{j}\right)$. Since M is finitary, K is finite, and hence contained in the ground set of M_{k} for some $k>j$. Since $k>j>N\left(X^{\prime}\right), X^{\prime}$ is a circuit in M_{k}, so applying the definition of contraction again we obtain a circuit K^{\prime} of M such that $X^{\prime} \subseteq K^{\prime} \subseteq X^{\prime} \cup\left(C \backslash C_{k}\right)$. Recall that K is contained in the ground set of M_{k}, so $K \cap K^{\prime} \subseteq X^{\prime}$. By Lemma $3.32, K \Delta K^{\prime}$ is dependent, but by choice of K and K^{\prime}, and because $K \cap K^{\prime} \subseteq X^{\prime}, K \Delta K^{\prime} \subseteq C$, a contradiction. Therefore X must indeed be independent in $\left[\left\{M_{i}\right\}\right]$.

Now suppose that X is a finite dependent subset of M. Then X contains a circuit X^{\prime} of M. For a sufficiently large j, X^{\prime} is contained in the ground set of M_{j}, and since M_{j} is a minor of M, X^{\prime} is dependent in M_{j}. Therefore X is dependent in $\left[\left\{M_{i}\right\}\right]$.

The cofinitary limit of $\left\{M_{i}\right\}$ is given by $\left[\left\{M_{i}^{*}\right\}\right]^{*}$. This is a cofinitary B-matroid.

Example 4.3

As in Example 4.1, let $\left\{M_{i}\right\}$ be a minor sequence such that, for each positive integer i, M_{i} is a circuit with i elements. Let S be the union of the ground sets of the M_{i}. Since M_{i} is a circuit, M_{i}^{*} consists of i parallel elements (each element is independent and each pair of elements is a circuit). Therefore $\left[\left\{M_{i}^{*}\right\}\right]$ also consists of parallel elements, and it follows that $\left[\left\{M_{i}^{*}\right\}\right]^{*}$ is a circuit.

Example 4.4

As in Example 4.2, let $\left\{M_{i}\right\}$ be a minor sequence such that, for each positive integer i, M_{i} is isomorphic to $U_{2, i}$. Let S be the union of the ground sets of the M_{i}. Since M_{i} is isomorphic to $U_{2, i}, M_{i}^{*}$ is isomorphic to $U_{i-2, i}$. Every finite subset of S is eventually independent in M_{i}^{*}, so [$\left.\left\{M_{i}^{*}\right\}\right]$ consists entirely of co-loops. Therefore $\left[\left\{M_{i}^{*}\right\}\right]^{*}$ is simply a collection of loops.

The remaining lemmas of this section describe the relationship between the circuits of $\left[\left\{M_{i}^{*}\right\}\right]^{*}$ and the circuits of M_{i}, for each i.

If $\left\{S_{i}\right\}$ is a sequence of subsets of some set S, we will say that $x \in S$ is eventually in $\left\{S_{i}\right\}$ if there is some $N(x)$ such that, for any $j>N(x), x \in S_{j}$. We will say that $x \in S$ is infinitely often in $\left\{S_{i}\right\}$ if there is no $N(x)$ such that, for any $j>N(x)$, $x \notin S_{j}$. We will denote the set of elements eventually in $\left\{S_{i}\right\}$ by $\left\{S_{i}\right\}_{e v}$ and the set of elements infinitely often in S_{i} by $\left\{S_{i}\right\}_{i n f}$.

Lemma 4.5

Let $\left\{M_{i}\right\}$ be a minor sequence of matroids. Let $j_{1}<j_{2}<\ldots$ be an infinite increasing sequence of integers, and let C_{i} be a circuit in $M_{j_{i}}$. If the set $C=\left\{C_{i}\right\}_{\text {inf }}$ is non-empty, then it is dependent in $\left[\left\{M_{i}^{*}\right\}\right]^{*}$. Furthermore, C is a circuit of $\left[\left\{M_{i}^{*}\right\}\right]^{*}$ if and only if for every distinct pair $e, f \in C$ there is a co-circuit K of $\left[\left\{M_{i}^{*}\right\}\right]^{*}$ such that $C \cap K=\{e, f\}$.

Proof Suppose for contradiction that C is independent. Then C is contained in some basis B of $\left[\left\{M_{i}^{*}\right\}\right]^{*}$, and disjoint from $B^{\prime}=S-B$, which is a basis of $\left[\left\{M_{i}^{*}\right\}\right]$. Since C is non-empty, we may choose some $e \in C$. Since B^{\prime} is a basis, there is a circuit K of $\left[\left\{M_{i}^{*}\right\}\right]$ so that $e \in K \subset B^{\prime} \cup e$. Since K is a circuit of $\left[\left\{M_{i}^{*}\right\}\right]$ it is finite and, since $K \subset B^{\prime} \cup e, C \cap K=\{e\}$. Each of the finite number of elements of $K \backslash\{e\}$ is not in C, so may be in $C_{j_{i}}$ for only finitely many i. Therefore there are infinitely many i such that $C_{j_{i}} \cap K=\{e\}$. Since K is a circuit of M_{j}^{*} for sufficiently large j, there is some i so that K is a co-circuit of $M_{j_{i}}$ and $C_{j_{i}} \cap K=\{e\}$, a contradiction. So C is dependent.

If C is a circuit and $e, f \in C$ are distinct, there is a co-circuit K with $C \cap K=$ $\{e, f\}$, by Lemma 3.9. Conversely, suppose the property holds. If C is not a circuit, then since we have already shown C to be dependent, there is a circuit C^{\prime} strictly contained in C. Choose $e \in C^{\prime}, f \in C \backslash C^{\prime}$. There is a co-circuit K with $C \cap K=\{e, f\}$. However, this implies that $C^{\prime} \cap K=\{e\}$, which is not possible.

Lemma 4.6

Let C be a circuit of $\left[\left\{M_{i}^{*}\right\}\right]^{*}$. There is an infinite increasing sequence of integers $j_{1}<j_{2}<\ldots$ and circuits C_{i}, such that C_{i} is a circuit in $M_{j_{i}}$, and $C=\left\{C_{i}\right\}_{\text {inf }}=\left\{C_{i}\right\}_{e v}$.

Proof Choose an arbitary $e \in C$. Since e is contained in a circuit of $\left[\left\{M_{i}^{*}\right\}\right]^{*}$, it is not a loop of $\left[\left\{M_{i}^{*}\right\}\right]$. Therefore for some sufficiently large j_{1}, e is in $S_{j_{1}}$, but is not a co-loop of $M_{j_{1}}$. Hence e is contained in some circuit $C_{j_{1}}$ of $M_{j_{1}}$.

Now assume we have chosen j_{1}, \ldots, j_{k} and C_{1}, \ldots, C_{k} for some $k \geq 1$. Let $E_{k}=\left(\cup_{i} C_{i}\right) \backslash C$, the set of elements not in C that have been used in some C_{i}, and let $F_{k}=(C \backslash e) \cap\left(\cup_{i} C_{i}\right)$, the set of elements of $C \backslash e$ that have been used in some C_{i}.

Consider the matroid $N_{k}=\left[\left\{M_{i}^{*}\right\}\right]^{*} \backslash E_{k} / F_{k}$. Clearly $C \backslash F_{k}$ is a circuit of N_{k} containing e. Furthermore, we have $\left[\left\{M_{i}^{*}\right\}\right]^{*} \backslash E_{k} / F_{k}=\left(\left[\left\{M_{i}^{*}\right\}\right] / E_{k} \backslash F_{k}\right)^{*}=$ $\left[\left\{M_{i}^{*} / E_{k} \backslash F_{k}\right\}\right]^{*}=\left[\left\{\left(M_{i} \backslash E_{k} / F_{k}\right)^{*}\right\}\right]^{*}$, where the outer equalities are properties of duality and the inner equality holds by an earlier lemma because E_{k} and F_{k} are finite. Since e is contained in a circuit of N_{k}, it is not a loop of $N_{k}^{*}=\left[\left\{\left(M_{i} \backslash E_{k} / F_{k}\right)^{*}\right\}\right]$. Therefore for some sufficiently large $j_{k+1}, j_{k+1}>j_{k}$ and e is not a co-loop of $M_{j_{k+1}} \backslash E_{k} / F_{k}$. Hence e is contained in some circuit C_{k+1}^{\prime} of $M_{j_{k+1}} \backslash E_{k} / F_{k}$, which is contained in some circuit C_{k+1} of $M_{j_{k+1}} \backslash E_{k}$.

Clearly we have integers $j_{1}<j_{2}<\ldots$ and circuits C_{i}, such that C_{i} is a circuit in $M_{j_{i}}$, and $\left\{e \mid e \in C_{i}\right.$ for infinitely many $\left.i\right\} \subset C$. By the above lemma, $\left\{C_{i}\right\}_{\text {inf }}$ is dependent, so since C is a circuit we must have $C=\left\{C_{i}\right\}_{\text {inf }}$.

Finally, suppose some $f \in C$ (distinct from e which we used in the construction and which is in every C_{i}) is not in $\left\{C_{i}\right\}_{e v}$. Then applying the above lemma to the infinitely many C_{i} avoiding f we find that $C \backslash f$ is dependent, contradicting the fact that C is a circuit. So every element in C is in all but finitely many of the C_{i}.

4.3 Graph limits

Suppose that $\left\{G_{i}\right\}$ is a countable sequence of graphs such that $G_{i} \prec G_{i+1}$. Then we will say that $\left\{G_{i}\right\}$ is a minor sequence of graphs.

For simplicity, we will assume that G_{1} is a single isolated vertex, and that G_{i} is obtained by deleting or contracting a single edge e of G_{i+1}. Then we may identify the edges and vertices of G_{i} with those of G_{i+1}, so that $E\left(G_{i+1}\right)=E\left(G_{i}\right) \cup\{e\}$ and there is a surjection $f_{i}: V\left(G_{i+1}\right) \rightarrow V\left(G_{i}\right)$, which is the constant function if e is
deleted, and, if $e=x y$ is contracted, takes x and y to v_{e} and fixes every other vertex. Let f be the union of all of the functions f_{i}.

The limit graph, $\left[\left\{G_{i}\right\}\right]$ is obtained as follows. Its vertices are the sequences $\left\{v_{i}\right\}$ such that $v_{i} \in V\left(G_{i}\right)$ and $f_{i}\left(v_{i+1}\right)=v_{i}$. Its edges are $\cup_{i} E\left(G_{i}\right)$. An edge e is incident with a vertex $\left\{v_{i}\right\}$ if for every i such that $e \in E\left(G_{i}\right), v_{i}$ is incident with e.

Suppose that $e=x_{j} y_{j}$ is an edge of G_{j}. Then either $f^{-1}\left(x_{j}\right)=x_{j}$, or $f^{-1}\left(x_{j}\right)=$ $\left\{x_{j}^{1}, x_{j}^{2}\right\}$ and, say, $e=x_{j}^{1} y_{j}$ in G_{j+1}. In the first case, let $g_{e}\left(x_{j}\right)=x_{j}$, and in the second case let $g_{e}\left(x_{j}\right)=x_{j}^{1}$. The following is an immediate consequence of the relevant definitions.

Lemma 4.7

If $e=x_{j} y_{j}$ with $x_{j} \neq y_{j}$ in some G_{j}, then e is incident with exactly two vertices of $\left[\left\{G_{i}\right\}\right]$, namely $\left\{\ldots, f^{2}\left(x_{j}\right), f\left(x_{j}\right), x_{j}, g_{e}\left(x_{j}\right), g_{e}^{2}\left(x_{j}\right), \ldots\right\}$ and $\left\{\ldots, f^{2}\left(y_{j}\right), f\left(y_{j}\right), y_{j}, g_{e}\left(y_{j}\right), g_{e}^{2}\left(y_{j}\right), \ldots\right\}$. If e is a loop at x_{j} in G_{j} and is still a loop in every G_{i} with $i>j$, then it is a loop at $\left\{\ldots, f^{2}\left(x_{j}\right), f\left(x_{j}\right), x_{j}\right.$, $\left.g_{e}\left(x_{j}\right), g_{e}^{2}\left(x_{j}\right), \ldots\right\}$ in $\left[\left\{G_{i}\right\}\right]$.

Therefore $G=\left[\left\{G_{i}\right\}\right]$ is a well-defined infinite graph.

Example 4.5

For each non-negative integer i, we define H_{i} as follows. The vertices of H_{i} are $x_{-i}, \ldots, x_{0}, \ldots x_{i}, y_{-i}, \ldots, y_{0}, \ldots y_{i}$, and z. The edges of H_{i} consist of a path $x_{-i} \ldots x_{0} \ldots x_{i}$; a path $y_{-i} \ldots y_{0} \ldots y_{i}$; for each $-i \leq j \leq i$, an edge $x_{j} y_{j}$; and the edges $z x_{-i}, z x_{i}, z y_{-i}$ and $z y_{i}$. For each positive integer i, H_{i-1} is obtained as a minor of H_{i} by deleting the edges $x_{-i} y_{-i}$ and $x_{i} y_{i}$, and contracting the four edges incident with z. The limit graph $\left[\left\{H_{i}\right\}\right]$ consists of two double rays $\ldots x_{-1} x_{0} x_{1} \ldots$ and $\ldots y_{-1} y_{0} y_{1} \ldots$, and rungs $x_{j} y_{j}$ for each integer j, forming a double ladder, along with an isolated vertex z.

Lemma 4.8

$\mathcal{M}\left(\left[\left\{G_{i}\right\}\right]\right)=\left[\left\{\mathcal{M}\left(G_{i}\right)\right\}\right]$.

Proof Suppose that C is a circuit of $\left[\left\{\mathcal{M}\left(G_{i}\right)\right\}\right]$. Then by the definition of the finitary limit of a sequence of matroids, there is some $N(C)$ such that C is a circuit
of $\mathcal{M}\left(G_{i}\right)$ for each $i>N(C)$, which is to say it is the edge set of a circuit of G_{i} for each $i>N(C)$. Let $j>N(C)$, and let v_{j} be a vertex of the circuit of G_{j} whose edge set is C. If C is not a loop, there are two edges $e, f \in C$ incident with v_{j} in G_{j}. Since C is also the edge set of a circuit of G_{j+1}, we must have $g_{e}\left(v_{j}\right)=g_{f}\left(v_{j}\right)$. Applying the same argument repeatedly shows that e and f are incident with a common vertex $\left\{\ldots, f^{2}\left(x_{j}\right), f\left(x_{j}\right), x_{j}, g_{e}\left(x_{j}\right), g_{e}^{2}\left(x_{j}\right), \ldots\right\}$ in $\left[\left\{G_{i}\right\}\right]$. Therefore, applying this argument to all possible choices of v_{j}, we see that C is the edge set of a circuit in $\left[\left\{G_{i}\right\}\right]$, and therefore C is a circuit of $\mathcal{M}\left(\left[\left\{G_{i}\right\}\right]\right)$.

Conversely, suppose that C is a circuit of $\mathcal{M}\left(\left[\left\{G_{i}\right\}\right]\right)$ and therefore the edge set of a circuit in $\left[\left\{G_{i}\right\}\right]$. Suppose that C is not a loop. Let $e=\left\{u_{i}\right\}\left\{v_{i}\right\}$ be an edge of C. Then $\left\{u_{i}\right\} \neq\left\{v_{i}\right\}$, so we may choose N_{e} so that, for $j>N_{e}, e$ is an edge of G_{j} and $u_{j} \neq v_{j}$. For such j, e is an edge of G_{j} with endpoints u_{j} and v_{j}. Note that C will be the edge set of a circuit of G_{j} (and hence will be a circuit of $\left.\mathcal{M}\left(G_{j}\right)\right)$ for every j large enough that $j>N_{e}$ for every edge e of C. Therefore C is a circuit of [\{M(Gi) $)$].

If v_{j} is a vertex of G_{j} and v_{i} a vertex of G_{i} such that $f^{j-i}\left(v_{j}\right)=v_{i}$, then call v_{j} a forward image of v_{i} in G_{j}, and v_{i} the projection of v_{j} in G_{i}. Similarly, for a vertex $\left\{v_{i}\right\}$ of $G,\left\{v_{i}\right\}$ is a forward image of v_{i} in the limit, and v_{i} is the projection of $\left\{v_{i}\right\}$ in G_{i}.

Let B be a finite set of edges of G. Then, for sufficiently large $j, B \subset E\left(G_{j}\right)$. Suppose that C is some component of $G_{j}-B$. If $G_{j}=G_{j+1}-e$, then obviously C is contained in some component $\alpha_{j}(C)$ of $G_{j+1}-B$. If $G_{j}=G_{j+1} / e$, then if the vertex in G_{j} that e contracts to, v_{e}, is not in C, then C is identical to a component $\alpha_{j}(C)$ of $G_{j+1}-B$, while if v_{e} is in C, then $C=\alpha_{j}(C) / e$ for the component $\alpha_{j}(C)$ of $G_{j+1}-B$ containing both ends of e.

Clearly α_{j} is a surjection, and $G_{j}-B$ has finitely many components, so for sufficiently large $k=k(B), \alpha_{k}$ is a bijection. Furthermore, it is easy to check that if C is a component of $G_{k}-B$, then $C \prec \alpha_{k}(C)$. For each component C of G_{k}, the limit graph $\left[\left\{C, \alpha_{k}(C), \alpha_{k+1}\left(\alpha_{k}(C)\right), \ldots\right\}\right]$ is a limit B-component, $\alpha(C)$ of G. The limit B-components are not the components of $G-B$: for example, if every G_{i} is connected, then there is only one limit \emptyset - component, but G itself is not guaranteed to be connected.

Lemma 4.9

Let $\left\{G_{i}\right\}$ be a minor sequence of graphs, and let $G=\left[\left\{G_{i}\right\}\right]$. For any finite set B of edges of G, every vertex of G and every edge in $E(G)-B$ is contained in exactly one limit B-component.

Proof Let $k=k(B)$ be defined, as above, such that α_{j} is a bijection for every $j \geq k$. Let e be any edge in $E(G)-B$. Let C be the component of $G_{k}-B$ that contains e. Then e is contained in $\alpha(C)$, and in no other limit B-component. Let $\left\{v_{i}\right\}$ be a vertex of G. Let C_{k} be the component of $G_{k}-B$ that contains v_{k}. It is easy to see that, for every $j \geq k$, if v_{j} is in the component C_{j} of $G_{j}-B$, then v_{j+1} is in $\alpha_{j}\left(C_{j}\right)$. So $\left\{v_{i}\right\}$ is also contained in exactly one limit B-component, $\alpha\left(C_{k}\right)$.

Lemma 4.10

Let $\left\{G_{i}\right\}$ be a minor sequence of graphs, and let $G=\left[\left\{G_{i}\right\}\right]$. Let B_{1} and B_{2} be finite subsets of edges of G. If C_{1} is a limit B_{1}-component and C_{2} a limit B_{2}-component, then $C_{1} \cap C_{2}$ is a union of limit $\left(B_{1} \cup B_{2}\right)$-components.

Proof It suffices to show that every limit $\left(B_{1} \cup B_{2}\right)$-component is contained in $C_{1} \cap C_{2}$ or disjoint from it. Choose k to exceed $k\left(B_{1}\right), k\left(B_{2}\right)$ and $k\left(B_{1} \cup B_{2}\right)$. Then, for any $j \geq k$, the B_{1}, B_{2} and ($B_{1} \cup B_{2}$)-components of G_{j} correspond bijectively with the limit components. Let C be a limit $\left(B_{1} \cup B_{2}\right)$-component. Then $C=\alpha\left(C_{k}\right)$ for some ($B_{1} \cup B_{2}$)-component C_{k} of G_{k}. Some B_{1}-component C_{k}^{1} of G_{k} contains C_{k}, and therefore $C=\alpha\left(C_{k}\right) \subseteq \alpha\left(C_{k}^{1}\right)$. If $\alpha\left(C_{k}^{1}\right)$ is C_{1}, then $C \subseteq C_{1}$, while if $\alpha\left(C_{k}^{1}\right)$ is some other limit B_{1}-component, then $C \cap C_{1}=\emptyset$. Similarly, $C \subseteq C_{2}$ or $C \cap C_{2}=\emptyset$. Therefore, C is either contained in $C_{1} \cap C_{2}$ or disjoint from it, as required.

4.4 Graph-like limits

We now move to the more difficult task of constructing a graph-like continuum from a minor sequence of graphs, in a way that is consistent with the matroid limit.

Let $\left\{G_{i}\right\}$ be a minor sequence of graphs. The finite edge cut topology (FECT) on $\left\{G_{i}\right\}$ will be denoted $\left|\left\{G_{i}\right\}\right|$ and is defined as follows. The ground set is $V(G) \cup E(G)$ where $G=\left[\left\{G_{i}\right\}\right]$. A basis for the topology is given by sets of the form $\{e\}$, for any $e \in E(G)$, and $C \cup B$, for any finite set $B \subseteq E(G)$ and limit B-component C.

Example 4.6

For each non-negative integer i, let H_{i} be as defined in Example 4.5. Let B be any finite set of edges of $\left[\left\{H_{i}\right\}\right]$. Let j be sufficiently large that $B \subseteq E\left(H_{j}\right)$. The limit B-component C_{z} that contains z also contains every forward image of the projection of z in H_{j}. It follows that if we choose any infinite set of vertices in $\left|\left\{H_{i}\right\}\right|$, it meets every basic open neighbourhood of
z. Therefore every ray in $\left|\left\{H_{i}\right\}\right|$ converges to z, and $\left|\left\{H_{i}\right\}\right|$ is the Alexandroff compactification of the double ladder.

Lemma 4.11

$\left|\left\{G_{i}\right\}\right|$ is compact.

Proof By Alexander's Lemma ([7]), it suffices to show that any basic cover has a finite subcover. Equivalently, every collection of complements of basic open sets that has the finite intersection property has non-empty intersection.

Let \mathcal{C} be a collection of complements of basic open sets that has the finite intersection property. There are countably many finite sets of edges each with finitely many limit components, so there are countably many basic open sets, and therefore we may enumerate $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots\right\}$. Let B_{i} be the finite set of edges determining the basic open set that is the complement of C_{i}. By definition, C_{i} is a union of limit B_{i}-components.

We will show that, for each $i \geq 1$, we can choose $\left\{C_{1}^{\prime}, \ldots C_{i}^{\prime}\right\}$ such that:

1. for each $1 \leq j \leq i, C_{j}^{\prime} \subset C_{j}$;
2. for each $1 \leq j \leq i-1, C_{j+1}^{\prime} \subset C_{j}^{\prime}$; and
3. $\left\{C_{1}^{\prime}, \ldots C_{i}^{\prime}, C_{i+1}, C_{i+2}, \ldots\right\}$ has the finite intersection property.

Let $C_{1}=C_{1}^{1} \cup \ldots \cup C_{1}^{k}$ such that, for each $1 \leq j \leq k, C_{1}^{j}$ is a limit B_{1}-component. For each finite subset \mathcal{C}^{\prime} of $\left\{C_{2}, C_{3}, \ldots\right\}$, let $J\left(\mathcal{C}^{\prime}\right)=\{j \mid 1 \leq j \leq k$ and the intersection of C_{1}^{j} and all of the elements of \mathcal{C}^{\prime} is non-empty\}. Suppose that no j, $1 \leq j \leq k$, is in $J\left(\mathcal{C}^{\prime}\right)$ for every \mathcal{C}^{\prime}. Then, for each $j, 1 \leq j \leq k$, there is some \mathcal{C}^{j} such that $j \notin J\left(\mathcal{C}^{j}\right)$. However, in that case, the intersection of C_{1} with all of the elements in any of the \mathcal{C}^{j}, for all $j, 1 \leq j \leq k$, must be empty, which is impossible because \mathcal{C} has the finite intersection property. Therefore there is some j such that $j \in J\left(\mathcal{C}^{\prime}\right)$ for every choice of \mathcal{C}^{\prime}, which implies that $\left\{C_{1}^{j}, C_{2}, C_{3}, \ldots\right\}$ has the finite intersection property. Let $C_{1}^{\prime}=C_{1}^{j}$.

Now suppose we have chosen $\left\{C_{1}^{\prime}, \ldots C_{i-1}^{\prime}\right\}$ as required. By Lemma 4.10, $C_{1}^{\prime} \cap \ldots \cap C_{i-1}^{\prime} \cap C_{i}$ is a union of limit $B_{1} \cup \ldots \cup B_{i-1} \cup B_{i}$-components. Let $C_{1}^{\prime} \cap \ldots \cap$ $C_{i-1}^{\prime} \cap C_{i}=C_{i}^{1} \cup \ldots \cup C_{i}^{k}$ such that, for each $1 \leq j \leq k, C_{1}^{j}$ is a limit $B_{1} \cup \ldots \cup B_{i-1} \cup B_{i}-$ component. Since, by the inductive assumption, $\left\{C_{1}^{\prime}, \ldots C_{i-1}^{\prime}, C_{i}, C_{i+1}, \ldots\right\}$ has the finite intersection property, we may proceed exactly as in the base case to find a j such that $\left\{C_{1}^{\prime}, \ldots C_{i-1}^{\prime}, C_{i}^{j}, C_{i+1}, \ldots\right\}$ still has the finite intersection property. Let $C_{i}^{\prime}=C_{i}^{j}$.

Therefore, by induction, we can obtain $\left\{C_{1}^{\prime}, C_{2}^{\prime} \ldots\right\}$ so that, for $i \geq 1, C_{i+1}^{\prime} \subset C_{i}^{\prime}$, $C_{i}^{\prime} \subset C_{i}$, and each C_{i}^{\prime} is a limit component of some finite set of edges. Since $C_{i}^{\prime} \subset C_{i}$, it suffices to show that this collection has non-empty intersection.

For $v \in V\left(G_{i}\right)$, let \mathcal{P} be the property "has a forward image in C_{j}^{\prime} for every (or, equivalently, infinitely many) $j>i$ ". Clearly v_{1}, the single vertex of G_{1}, has this property. Given $v_{k} \in G_{k}$ with property \mathcal{P}, since v_{k} has only one or two forward images in G_{k+1}, we may choose one of them, v_{k+1}, to also have property \mathcal{P}. Therefore we obtain a vertex $\left\{v_{i}\right\}$ of G such that each of its projections has property \mathcal{P}.

Let B_{j}^{\prime} be such that C_{j}^{\prime} is a limit B_{j}^{\prime}-component. Choose i sufficiently large that $B_{j}^{\prime} \subset E\left(G_{i}\right)$ and the B_{j}^{\prime}-components of G_{i} are in bijection with the limit B_{j}^{\prime}-components. Every vertex in G_{i} has every forward image in the same limit B_{j}^{\prime}-component, and therefore either has every forward image in C_{j}^{\prime} or no forward image in C_{j}^{\prime}. Since v_{i} has property \mathcal{P}, all of its forward images are in C_{j}^{\prime}, including $\left\{v_{i}\right\}$. So $\left\{v_{i}\right\}$ is in every C_{j}^{\prime}, and therefore $\left\{C_{1}^{\prime}, C_{2}^{\prime} \ldots\right\}$ has non-empty intersection, as required.

Lemma 4.12

Let $\left\{G_{i}\right\}$ be a minor sequence of graphs, and let $G=\left[\left\{G_{i}\right\}\right]$. Two vertices $u, v \in V(G)$ are in the same limit B-component for each finite set of edges B if and only if they are in the same component of $V(G)$ (considered as a subspace of $\left|\left\{G_{i}\right\}\right|$ with the finite edge cut topology).

Proof If u and v are in the same limit B-component for each finite set of edges B, then every basic open set either contains both of u and v or neither. Let C_{u} be the component of $V(G)$ containing u. Then C_{u} is closed in the subspace topology on $V(G)$, so there is an open set V such that $V \cap V(G)=V(G) \backslash C_{u}$. Since V is an open set not containing u, it does not contain v, so $v \in C_{u}$, as required.

Conversely, if u and v are in different limit B-components, let C_{u} be the limit B-component containing u and C^{\prime} be the union of all the other (finitely many) limit B-components. Then $C_{u} \cup B$ (basic) and $C^{\prime} \cup B$ (finite union of basic open sets) are each open, so their intersections with $V(G)$ are a separation with u in one part and v in the other.

Our next goal is to define a graph-like continuum $\left\|\left\{G_{i}\right\}\right\|$ based on $\left|\left\{G_{i}\right\}\right|$. We will start by replacing the singleton edges with open intervals to obtain $\left|\left\{G_{i}\right\}\right|^{\prime}$. For each edge e of G, let I_{e} be an open unit interval, and let \mathcal{E} be the union of all the I_{e}. The point set of $\left|\left\{G_{i}\right\}\right|^{\prime}$ is $V(G) \cup \mathcal{E}$. If $e=u v$, then the closure \bar{I}_{e} of I_{e} will
be $I_{e} \cup\{u, v\}$, where u and v are arbitrarily assigned to the endpoints of the unit interval. If e is a loop at u, then the closure \bar{I}_{e} of I_{e} will be the circle $I_{e} \cup\{u\}$.

A basis for the topology on $G=\left|\left\{G_{i}\right\}\right|$ is obtained as follows:

1. for each $e \in E(G)$, every open subinterval of I_{e} is in the basis; and
2. for each finite subset B of $E(G)$ and each limit B-component C, for each $e \in B$, let u_{e} be the end of e in C. The set consisting of C together with, for each $e \in B$, a half-open subinterval of \bar{I}_{e} containing u_{e} is in the basis.

We do not yet have a graph-like continuum because, whenever $u, v \in V(G)$ are in the same limit B-component for each finite set of edges B, there is no open set of $\left|\left\{G_{i}\right\}\right|$ that contains u but not v. The space $\|\left\{G_{i}\right\}| |$ is obtained from $\left|\left\{G_{i}\right\}\right|^{\prime}$ by identifying all such pairs of points.

Lemma 4.13

Provided it is connected, $\left\|\left\{G_{i}\right\}\right\|$ is a graph-like continuum.

Proof We need to show that $\left\|\left\{G_{i}\right\}\right\|$ is compact (it is obviously Hausdorff).
Let \mathcal{O} be a basic open cover of $\left\|\left\{G_{i}\right\}\right\|$. For any open set O of $\left\|\left\{G_{i}\right\}\right\|$, let $V^{\prime}(O)$ be the set of vertices of G whose image in $\left\|\left\{G_{i}\right\}\right\|$ is in O, and let $E^{\prime}(O)$ be the set of edges of G that have non-empty intersection with O. Then we can form an open cover of $\left|\left\{G_{i}\right\}\right|$ by replacing every $O \in \mathcal{O}$ with $f(O)=V^{\prime}(O) \cup E^{\prime}(O)$. Since $\left|\left\{G_{i}\right\}\right|$ is compact, this cover has a finite subcover \mathcal{F}. Let \mathcal{O}^{\prime} consist of all $O \in \mathcal{O}$ such that $f(O) \in \mathcal{F}$. Note that \mathcal{O}^{\prime} must cover all of the vertices of $\left\|\left\{G_{i}\right\}\right\|$. Note that each basic open set of $\left\|\left\{G_{i}\right\}\right\|$ only contains finitely many vertices without containing the whole of all of their incident edges. Since \mathcal{O}^{\prime} consists of finitely many basic open sets and covers all of the vertices, it must fail to cover only finitely many edges. However, the part of each edge not covered by \mathcal{O}^{\prime} is closed, and hence the set of points not covered by \mathcal{O}^{\prime} is compact. Therefore, finitely many more elements of \mathcal{O} suffice to form a finite subcover.

The final theorem of this section shows that the cofinitary matroid limit is consistent with the graph-like limit. This result is used in the following section to show that co-finitary B-matroids whose finite minors are graphic are the circuit matroids of graph-like continua.

Theorem 4.14

Let $\left\{G_{i}\right\}, i \in \mathbb{N}$ be a sequence of connected finite graphs such that, for each $i \geq 0, G_{i} \prec G_{i+1}$. The two B-matroids $\mathcal{M}\left(\left\|\left\{G_{i}\right\}\right\|\right)$ and $\left[\left\{M\left(G_{i}\right)^{*}\right\}\right]^{*}$ are the same.

Proof It suffices to show that the co-circuits of the two B-matroids are the same. We claim that both are equal to the sets B for which there exists an integer $N(B)$ such that, for every $i>N(B), B$ is a bond of G_{i}. That these are the co-circuits of $\left[\left\{M\left(G_{i}\right)^{*}\right\}\right]^{*}$ follows directly from Lemma 4.1.

Suppose that B is eventually a bond in G_{i}. Then there are two limit $B-$ components, C_{1} and C_{2}, and $C_{1} \cup B, C_{2} \cup B$ are each open sets covering $\left|\left\{G_{i}\right\}\right|$. They extend in the obvious way to open sets covering $\left\|\left\{G_{i}\right\}\right\|$ and intersecting only in the interior of the edges of B. Therefore, B is an edge cut in $\left\|\left\{G_{i}\right\}\right\|$. It remains to show that every edge cut in $\left\|\left\{G_{i}\right\}\right\|$ contains some eventual bond of G_{i}.

Now suppose that U, V are open subsets of $\left\|\left\{G_{i}\right\}\right\|$ that intersect only in some set of edges F. Since $\left\|\left\{G_{i}\right\}\right\|$ is a graph-like continuum, F is finite. Suppose that F does not contain any set of edges that is eventually a bond of G_{i}. Then there is only one limit F-component. Let $\left\{u_{i}\right\} \in U,\left\{v_{i}\right\} \in V$. Then there is some $N_{u v}$ such that, for any $i>N_{u v}, F$ is contained in $E\left(G_{i}\right)$ and $G_{i}-F$ contains a path P_{i} between u_{i} and v_{i}. We can choose these paths so that, for each $i>N_{u v}, P_{i} \prec P_{i+1}$. Let $P=\left|\left\{P_{i}\right\}\right|$, and let P^{\prime} be the subspace of $\left\|\left\{G_{i}\right\}\right\|$ consisting of the vertices and edges of P. Note that P^{\prime} is closed, because it is the union of the closures of its edges - no vertex of P^{\prime} has a basic open neighbourhood avoiding all of the edges of P^{\prime}. Therefore $A=P \cap U, B=P \cap V$ is a partition of P into two open sets.

Let e_{A} be any edge in A and e_{B} be any edge in B. Choose i so that P_{i} contains e_{A} and e_{B}. Then P_{i} contains a vertex v_{i} incident with an edge e_{A}^{i} of A and an edge e_{B}^{i} of B. For any $j>i$, there is a forward image of v_{i} in P_{j} incident with e_{A}^{i} and a forward image of v_{i} in P_{j} incident with e_{B}^{i}. Therefore (because the forward images of v_{i} in P_{j} form a path) there is a forward image of v_{i} in P_{j}, such that v_{j} is incident with an edge e_{A}^{j} of A and an edge e_{B}^{j} of B. Therefore there is a vertex of $P,\left\{v_{i}\right\}$, such that infinitely often v_{i} is incident with edges of both A and B. Therefore every basic open set containing $\left\{v_{i}\right\}$ contains edges in both A and B, a contradiction because $\left\{v_{i}\right\}$ must belong to one of the disjoint open sets A and B. \square

4.5 Whitney's Theorem for B-matroids

Since infinite graphs have finite circuits but infinite bonds, they are not naturally closed under duality. Thomassen [25] solved this problem by ignoring the infinite bonds and saying that H is a dual of G if there is a bijection between their edge sets such that a finite set of edges is a circuit in G if and only if it is a bond in H. If this condition obtains, then we will say that H is a Thomassen dual of G. This definition is not symmetric in G and H (G is said to be a pre-dual of H). Thomassen showed that an infinite graph has a Thomassen dual if and only if it is planar and finitely separable.

Bruhn and Diestel [3] restored symmetry, by saying that G is a dual of H if there is a bijection between their edge sets such that a set of edges is a circuit in \widetilde{G} if and only if it is a bond in H (the symmetry is not obvious from the definition). We will say that such G and H are Bruhn-Diestel duals. Since a Bruhn-Diestel dual is also a Thomassen dual, their theory has the same restriction to finitely separable graphs. They showed that a finitely separable graph has a dual (also finitely separable) if and only if it is planar.

Notice that infinite graphs have finite circuits but infinite bonds, while graphlike continua have infinite circuits but finite bonds. If we allow general graph-like continua as our duals, there is no need for the restriction to finitely separable graphs. Let G be a graph and H be a graph-like continuum. We will say that G and H are dual if there is a bijection between their edge sets such that a set of edges is a circuit in G if and only if it is a bond in H. In other words, $M(G)=M^{*}(H)$.

For finite graphs, Whitney's Theorem follows immediately from Kuratowski's Theorem and Tutte's characterization of graphic matroids, which together imply that a graphic matroid is also co-graphic if and only if it has no Kuratowski minor. We will prove a version of Whitney's theorem that refers to Kuratowski minors, rather than directly to the planarity of the graph (graph-like continuum) G, but is equivalent to the usual form of Whitney's Theorem by a result of Richter, Rooney and Thomassen [22]. We first need to generalize Tutte's characterization to B-matroids.

Theorem 4.15

Let M be a countable B-matroid. Then M is the circuit matroid of a graph G if and only if M is finitary and every finite minor of M is graphic.

Proof Suppose that M is finitary and every finite minor of M is graphic. By Lemma 4.3, we can write $M=\left[\left\{M_{i}\right\}\right]$ where M_{i} is a finite minor of M with i elements and $M_{i}=M_{i+1} \backslash e_{i+1}$. Suppose that the ground set of each M_{i} is $\{1, \ldots, i\}$. Let \mathcal{G}_{i} be the set of graphs G_{i} with unlabelled vertices, no isolated vertices, and edges labelled $\{1, \ldots, i\}$ such that the (labelled) circuits of G_{i} are exactly the circuits of M_{i}. Then each \mathcal{G}_{i} is finite and non-empty and, for any $G_{i+1} \in \mathcal{G}_{i+1}$, we have $G_{i+1} \backslash e_{i+1} \in \mathcal{G}_{i}$. Therefore, König's Infinity Lemma implies that we may choose a sequence $\left\{G_{i}\right\}$ so that, for every $i, G_{i}=G_{i+1} \backslash e_{i+1}$. Then $G=\left[\left\{G_{i}\right\}\right]$ is an infinite graph and, by Lemma 4.8, $\mathcal{M}(G)=\left[\left\{\mathcal{M}\left(G_{i}\right)\right\}\right]=M$ so M is the circuit matroid of a graph, as required.

Conversely, suppose that M is the circuit matroid of a graph. Then M is finitary and, by Lemma 3.35, every finite minor of M is graphic.

Theorem 4.16

Let M be a countable B-matroid. Then M is the circuit matroid of a graphlike continuum G if and only if M is co-finitary and every finite minor of M is graphic.

Proof Suppose that M is co-finitary and every finite minor of M is graphic. Then M^{*} is finitary, so by Lemma 4.3, we can write $M^{*}=\left[\left\{M_{i}^{*}\right\}\right]$ where M_{i}^{*} is a finite minor of M^{*} with i elements and $M_{i}^{*}=M_{i+1}^{*} \backslash e_{i+1}$. Then each $M_{i}=\left(M_{i}^{*}\right)^{*}$ is a finite minor of M. Suppose that the ground set of each M_{i} is $\{1, \ldots, i\}$. Let \mathcal{G}_{i} be the set of graphs G_{i} with unlabelled vertices, no isolated vertices, and edges labelled $\{1, \ldots, i\}$ such that the (labelled) circuits of G_{i} are exactly the circuits of M_{i}. Then each \mathcal{G}_{i} is finite and non-empty, and for any $G_{i+1} \in \mathcal{G}_{i+1}$ we have $G_{i+1} / e_{i+1} \in \mathcal{G}_{i}$. Therefore, König's Infinity Lemma implies that we may choose a sequence $\left\{G_{i}\right\}$ so that, for every $i, G_{i}=G_{i+1} / e_{i+1}$. Then $G=\left\|\left\{G_{i}\right\}\right\|$ is a graph-like continuum and, by Theorem 4.14, $\mathcal{M}(G)=\left[\left\{\mathcal{M}\left(G_{i}\right)^{*}\right\}\right]^{*}=\left[\left\{M_{i}^{*}\right\}\right]^{*}=M$, so M is the circuit matroid of a graph-like continuum, as required.

Conversely, suppose that M is the circuit matroid of a graph-like continuum. Then M is co-finitary and, by Lemma 3.35, every finite minor of M is graphic.

Theorem 4.17

A graph G with countably many edges has no K_{5} or $K_{3,3}$ minor if and only if G is dual to a graph-like continuum H. A graph-like continuum G with
countably many edges has no K_{5} or $K_{3,3}$ minor if and only if G is dual to a graph H.

Proof Let G be a graph with countably many edges. Then Theorem 4.15 implies that $\mathcal{M}(G)$ is a finitary B-matroid with no Tutte minor. It follows $\mathcal{M}^{*}(G)$ is a co-finitary B-matroid with no Tutte minor if and only if G (and hence $\mathcal{M}(G)$) has no Kuratowski minor. By Theorem 4.16, there is a graph-like continuum H with $\mathcal{M}(H)=\mathcal{M}^{*}(G)$ exactly when $\mathcal{M}^{*}(G)$ is a co-finitary B-matroid with no Tutte minor, completing the proof. The proof of the second statement is identical.

We now discuss how this relates to Thomassen and Bruhn-Diestel duality.
Let M be a B-matroid. The set of finite circuits of M determines a new Bmatroid, fin(M). Similarly, the set of finite co-circuits of M determines a new B-matroid, $\operatorname{cofin}(M)$.

Lemma 4.18

If N is a finite minor of $\operatorname{fin}(M)$ or $\operatorname{cofin}(M)$ it is also a minor of M.

Proof Let $N=\operatorname{fin}(M) / C \backslash D$, and consider a dependent set J in N. Let B_{C} be a basis for C in fin (M). Then by the definition of contraction, $J \cup B_{C}$ is dependent in fin (M) and therefore there is a finite circuit $C(J)$ of $M, C(J) \subseteq J \cup B_{C}$. Let C^{\prime} be the union of $C(J) \cap B_{C}$ as J ranges over all of the dependent sets of N.

We claim that $N=M / C^{\prime} \backslash\left(D \cup\left(C \backslash C^{\prime}\right)\right)$. Firstly, let J be a dependent set in N. Then $C(J) \subseteq C^{\prime}$, so J is also dependent in $M / C^{\prime} \backslash\left(D \cup\left(C \backslash C^{\prime}\right)\right)$. Now let J be a dependent set in $M / C^{\prime} \backslash\left(D \cup\left(C \backslash C^{\prime}\right)\right)$, and let $B_{C^{\prime}}$ be a basis for C^{\prime} in M. Then $J \cup B_{C^{\prime}}$ contains a circuit of M and therefore, since both J and C^{\prime} are finite, $J \cup B_{C^{\prime}}$ contains a circuit of fin (M). It follows, because $B_{C^{\prime}} \subseteq C^{\prime} \subseteq B_{C}$, that $J \cup B_{C}$ contains a circuit of fin (M). Therefore, J is dependent in N.

Therefore N is also a minor of M as required. The other part of the lemma follows immediately by duality, since cofin $(M)=\left(\operatorname{fin}\left(M^{*}\right)\right)^{*}$.

Suppose that \mathcal{G} is a graph-like continuum. The underlying graph G of \mathcal{G} has the same vertices and edges as \mathcal{G}, and an edge e is incident with a vertex v in G if, in \mathcal{G}, the closure of e contains v. In other words, G has the same incidence structure as \mathcal{G}, but no information about where rays of \mathcal{G} converge.

Lemma 4.19

Let G be a graph. The following are equivalent:

1. G is finitely separable;
2. G is the underlying graph of a graph-like continuum; and
3. $\mathcal{M}(\widetilde{G})=\operatorname{cofin}(\mathcal{M}(G))$ and $\mathcal{M}(G)=\operatorname{fin}(\mathcal{M}(\widetilde{G}))$.

Proof We will first show that the first two statements are equivalent, and then that the first statement is equivalent to the third. If G is finitely separable, then \widetilde{G} is a graph-like continuum and, by construction, has G as its underlying graph. Conversely, let x, y be two vertices in the underlying graph G of a graph-like continuum \mathcal{G}. Then x and y are separated by a bond K in \mathcal{G} (this follows from the fact that \mathcal{G} is Hausdorff), and therefore they are also separated by K in G. Since graph-like continua have only finite bonds, the underlying graph of a graph-like continuum is always finitely separable.

Now suppose that G is finitely separable. Then, since G is the underlying graph of \widetilde{G}, the finite circuits of \widetilde{G} are exactly the circuits of G. A finite set of edges separates \widetilde{G} if and only if it separates G, so $\mathcal{M}(\widetilde{G})=\operatorname{cofin}(\mathcal{M}(G))$.

Conversely, suppose that both $\mathcal{M}(\widetilde{G})=\operatorname{cofin}(\mathcal{M}(G))$ and $\mathcal{M}(G)=\operatorname{fin}(\mathcal{M}(\widetilde{G}))$. Let u and v be any two vertices in the same component of G, and let P be any path in G between u and v. Since $\mathcal{M}(G)=\operatorname{fin}(\mathcal{M}(\widetilde{G})$), and P is independent in $\mathcal{M}(G)$, it must also be independent $\operatorname{in} \operatorname{fin}(\mathcal{M}(\widetilde{G}))$. Since P is a finite independent set in $\operatorname{fin}(\mathcal{M}(\widetilde{G}))$, it is also an independent set in $\mathcal{M}(\widetilde{G})$. Therefore, for any edge e of P, there is a co-circuit K of $\mathcal{M}(\widetilde{G})$ that meets P exactly in e. Since $\mathcal{M}(\widetilde{G})=$ $\operatorname{cofin}(\mathcal{M}(G)), K$ is also a finite co-circuit of $\mathcal{M}(G)$. Therefore K is a bond of G that meets P exactly in e, from which it follows that K is a finite set of edges separating u from v.

Lemma 4.19 does not imply that all graph-like continua are of the form \widetilde{G} for some finitely separable G. For example, the Alexandroff compactification of the double ladder is a graph-like continuum, \mathcal{G}. Its underlying graph G is the double ladder, which is finitely separable, and both of the statements $\mathcal{M}(\widetilde{G})=$ $\operatorname{cofin}(\mathcal{M}(G))$ and $\mathcal{M}(G)=\operatorname{fin}(\mathcal{M}(\widetilde{G}))$ hold. However, $\mathcal{G} \neq \widetilde{G}(\widetilde{G}$ is the Freudenthal compactification), they just have the same finite circuits.

Recall that H is a Thomassen dual of G if there is a bijection between their edge sets so that the circuits of G are the finite bonds of H. In other words, H is a Thomassen dual of G if $\mathcal{M}(G)=\operatorname{fin}\left(\mathcal{M}^{*}(H)\right)$. We can use our version of

Whitney's Theorem to prove Thomassen's version, although we will assume the following result from [25].

Lemma 4.20

(Thomassen [25]) A graph that is not finitely separable has no Thomassen dual.

Theorem 4.21

(Thomassen [25]) G has a Thomassen dual if and only if it is planar and finitely separable.

Proof Firstly, suppose G is planar and finitely separable. Since $\mathcal{M}(G)$ has no Kuratowski minor, Lemma 4.18 implies that $\operatorname{cofin}(\mathcal{M}(G))$ has no Kuratowski minor. Therefore, by Lemma 4.19, $\mathcal{M}(\widetilde{G})$ has no Kuratowski minor. Therefore, by Theorem 4.17, there is a graph H with $\mathcal{M}(\widetilde{G})=\mathcal{M}^{*}(H)$. By Lemma 4.19 again, $\mathcal{M}(G)=\operatorname{fin}(\mathcal{M}(\widetilde{G}))=\operatorname{fin}\left(\mathcal{M}^{*}(H)\right)$, so H is a Thomassen dual of G.

Conversely, suppose that $\mathcal{M}(G)=\operatorname{fin}\left(\mathcal{M}^{*}(H)\right)$ for some graph H. Equivalently, by taking duals on both sides, $\mathcal{M}^{*}(G)=\operatorname{cofin}(\mathcal{M}(H))$. Since $\mathcal{M}(H)$ has no Tutte minor, Lemma 4.18 implies that $\operatorname{cofin}(\mathcal{M}(H))$ does not have a Tutte minor. Therefore, by Lemma 4.16, $\operatorname{cofin}(\mathcal{M}(H))$ is the circuit matroid of a graph-like continuum, \mathcal{H}. Thus we have $\mathcal{M}^{*}(G)=\mathcal{M}(\mathcal{H})$ which shows, by Theorem 4.17, that G is planar. Lemma 4.21 implies that G is also finitely separable.

Let G be a finitely separable graph. Recall that H is Bruhn-Diestel dual to G if there is a bijection between their edge sets so that the circuits of \widetilde{G} are exactly the bonds of H. In other words, H is a Bruhn-Diestel dual of G if $\mathcal{M}(\widetilde{G})=\mathcal{M}^{*}(H)$.

Lemma 4.22

Let G be a finitely separable graph. Then H is a Bruhn-Diestel dual of G if and only if G is Thomassen dual to H.

Proof By definition, G is Thomassen dual to H if $\mathcal{M}(H)=\operatorname{fin}\left(\mathcal{M}^{*}(G)\right)$ or, equivalently, $\mathcal{M}^{*}(H)=\operatorname{cofin}(\mathcal{M}(G))$. On the other hand, H is Bruhn-Diestel dual to
G if $\mathcal{M}^{*}(H)=\mathcal{M}(\widetilde{G})$. By Lemma 4.19, since G is finitely separable, $\mathcal{M}(\widetilde{G})=$ $\operatorname{cofin}(\mathcal{M}(G))$, so the result is immediate.

Theorem 4.23

(Bruhn, Diestel [3]) Suppose G is a countable finitely separable graph. Then G has a Bruhn-Diestel dual if and only if it is planar. Furthermore, the dual graph H is also finitely separable, and G is a Bruhn-Diestel dual of H.

Proof First suppose that G does have a Bruhn-Diestel dual H. Then Lemmas 4.22 and 4.21 imply that H is planar and finitely separable. Applying Lemma 4.19 to H, we have $\mathcal{M}(\widetilde{H})=\operatorname{cofin}(\mathcal{M}(H))=\left(\operatorname{fin}\left(\mathcal{M}^{*}(H)\right)\right)^{*}$. Since $\mathcal{M}(\widetilde{G})=\mathcal{M}^{*}(H)$, it follows by applying Lemma 4.19 to G that $\mathcal{M}(\widetilde{H})=\left(\operatorname{fin}(\mathcal{M}(\widetilde{G}))^{*}=\mathcal{M}^{*}(G)\right.$, and therefore that G is also a Bruhn-Diestel dual of H. Now Lemmas 4.22 and 4.21 imply that G is also planar.

Conversely, suppose that G is planar. Since $\mathcal{M}(G)$ has no Kuratowski minor, Lemma 4.18 implies that $\operatorname{cofin}(\mathcal{M}(G))$ has no Kuratowski minor. Therefore, by Lemma 4.19, $\mathcal{M}(\widetilde{G})$ has no Kuratowski minor. Now Theorem 4.17 implies that there is a graph H with $\mathcal{M}(\widetilde{G})=\mathcal{M}^{*}(H)$. Evidently H is a Bruhn-Diestel dual of G, as required.

We proved Theorem 4.17 using the fact that a B-matroid with no Tutte minor also has no Kuratowski minor if and only if its dual has no Tutte minor. This is true for any B-matroids with no Tutte minor, not just finitary or co-finitary ones. It might be hoped that there is a characterization of the B-matroids with no Tutte minor as being the circuit matroids of some class of objects including both graphs and graph-like continua. In that case we ought to be able to show that objects in this class are planar if and only if they have abstract duals from the same class. The final result of the chapter shows that, at least, B-matroids with no Tutte minor are related to graphs and graph-like continua.

Lemma 4.24

If M is a countable B-matroid such that $M \in \operatorname{ex}(\mathcal{T})$, there is a minor sequence $\left\{G_{i}\right\}$ of finite graphs, such that $\operatorname{fin}(M)=\mathcal{M}\left(\left[\left\{G_{i}\right\}\right]\right)$ and $\operatorname{cofin}(M)=\mathcal{M}\left(\left\|\left\{G_{i}\right\}\right\|\right)$.

Proof Let C be a basis and D be the complementary co-basis of M. Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be an enumeration of the elements of M, and for each $i \geq 1$, let $C_{i}=C \cap\left\{e_{1}, \ldots e_{i}\right\}$ and $D_{i}=D \cap\left\{e_{1}, \ldots e_{i}\right\}$. For each $i \geq 1$, let $M_{i}=M /\left(C \backslash C_{i}\right) \backslash\left(D \backslash D_{i}\right)$. Since M has no Tutte minor, there exists, for each i, a finite graph G_{i} such that $M_{i}=$ $\mathcal{M}\left(G_{i}\right)$. Note that Lemma 4.4 does not really require M to be finitary - it simply shows that $\operatorname{fin}(M)=\left[\left\{M_{i}\right\}\right]$. Therefore we may apply it to the M_{i} to show that fin $(M)=\left[\left\{M_{i}\right\}\right]$, and apply it to the $M_{i}^{*}=M^{*} /\left(D \backslash D_{i}\right) \backslash\left(C \backslash C_{i}\right)$ to show that fin $\left(M^{*}\right)=\left[\left\{M_{i}^{*}\right\}\right]$ and therefore that $\operatorname{cofin}(M)=\left[\left\{M_{i}^{*}\right\}\right]^{*}$. Finally, Lemma 4.8 and Theorem 4.14 imply that $\operatorname{fin}(M)=\mathcal{M}\left(\left[\left\{G_{i}\right\}\right]\right)$ and $\operatorname{cofin}(M)=\mathcal{M}\left(\left\|\left\{G_{i}\right\}\right\|\right)$, as required.

Chapter 5

Peripheral circuits

5.1 Two theorems of Tutte and their generalizations

Tutte proved the following well-known theorems about the peripheral circuits of a finite graph (recall that a peripheral circuit in a connected finite graph G is an induced circuit C so that $G-C$ remains connected).

Theorem 5.1

(Tutte [29]) If e is an edge of a 3-connected graph G, there are two peripheral circuits of G whose intersection is exactly e and the endpoints of e.

Theorem 5.2

(Tutte [29]) The peripheral circuits of a 3-connected graph generate its cycle space.

If M is a matroid with ground set S, and $T \subseteq S$, then a bridge B of T is a component of M / T. A peripheral circuit of M is a circuit C such that M / C is connected.

Bixby and Cunningham generalized Tutte's theorems to 3-connected binary matroids. Note that a verbatim generalization of the Theorem 5.1 to matroids is not possible - for example every pair of circuits in F_{7}^{*} meet in two elements.

Theorem 5.3

(Bixby, Cunningham [1]) Let e and f be elements of a finite 3-connected binary matroid M. There is a peripheral circuit of M containing e but not f.

Theorem 5.4

(Bixby, Cunningham [1]) The peripheral circuits of a 3-connected binary matroid generate its cycle space.

Let $M=(S, \mathcal{I})$ be a B-matroid, and let $T \subseteq S$. A T-bridge is a component of M / T. A peripheral circuit is a circuit with exactly one bridge. The cycle space $\mathcal{C}(M)$ of M is the space generated by thin sums of circuits of M. A thin sum is allowed to have infinitely many summands, but each element of S can appear only finitely often in these summands.

In this chapter we show that the results of Bixby and Cunningham are also true for 3-connected binary B-matroids, provided that they are countable and co-finitary. The co-finitary assumption is necessary, since the theorems fail for 3 -connected infinite graphs. Our proofs require countability (in particular it is crucial for our proof of Theorem 5.13), but we have no examples to show that the theorems fail in the uncountable case.

Let \mathcal{G} be a graph-like continuum. The cycle space $\mathcal{C}(\mathcal{G})$ is the space generated by thin sums of circuits of \mathcal{G}. A consequence of our theorems about 3-connected co-finitary binary B-matroids is that Tutte's theorems generalize to 3 -connected graph-like continua. Previously, Bruhn and Stein generalized Theorem 5.1 to compactifications of (some) 3-connected infinite graphs in [5], and Bruhn showed that Theorem 5.2 holds for Freudenthal compactifications of 3-connected locally finite graphs in [2].

5.2 Circuits and bridges in co-finitary binary B-matroids

This section is concerned with the basic properties of circuits and bridges in binary co-finitary B-matroids. The proof of the following lemma uses the same argument used by Vella and Richter in [30] to prove the analogous result for edge spaces.

Lemma 5.5

If $M=(S, \mathcal{I})$ is a co-finitary binary B-matroid, and $X \subseteq S$ has even intersection with every co-circuit of M, then X is a disjoint union of circuits of M.

Proof Let \mathcal{S} be the set of all sets of disjoint circuits contained in X, ordered by set inclusion. We will use Zorn's Lemma to show that \mathcal{S} has a maximal element, and then show that any maximal element must be a set of disjoint circuits whose union is all of X. Let $S_{1} \subseteq S_{2} \subseteq \ldots$ be an increasing sequence of elements of \mathcal{S}, and let $S=\cup_{i} S_{i}$. Since any two circuits in S are contained in some S_{i} together, S is also a set of disjoint circuits contained in X, so $S \in \mathcal{S}$. By Zorn's Lemma, \mathcal{S} has a maximal element, \mathcal{C}.

Let X^{\prime} be the set of elements of X not contained in any member of \mathcal{C}. By maximality of \mathcal{C}, X^{\prime} is independent. Let K be any co-circuit of M. By Lemma 3.32, $K \cap X$ is even, as is $K \cap C$ for every $C \in \mathcal{C}$, and therefore $K \cap X^{\prime}$ is also even. Every non-empty independent set has intersection of size 1 with some co-circuit, so X^{\prime} must be empty, as required.

Lemma 5.6

If M is a binary co-finitary B-matroid, C is a subset of the ground set of \mathcal{M}, and K is a circuit, then $K \backslash C$ is a disjoint union of circuits of \mathcal{M} / C.

Proof By Lemma 3.32, K has even intersection with each co-circuit of M. Since the co-circuits of M / C are those co-circuits of M that are disjoint from $C, K \backslash C$ has even intersection with each co-circuit of M / C. By Lemma $5.5, K \backslash C$ is a disjoint union of circuits of M / C.

Lemma 5.7

If M is a binary co-finitary B-matroid, and C_{1}, C_{2} are disjoint unions of circuits of M, then $C_{1} \Delta C_{2}$ is a disjoint union of circuits of M.

Proof Let K be a co-circuit of M. Then $K \cap C_{1}$ and $K \cap C_{2}$ are even, so $\left(C_{1} \Delta C_{2}\right) \cap K$ is even. The result follows by Lemma 5.5.

Lemma 5.8

Let M be a co-finitary binary B-matroid with ground set $S, T \subseteq S$, and B a T-bridge. If $T^{\prime} \subseteq S$ is disjoint from B, then B is contained in a T^{\prime}-bridge.

Proof It suffices to show that any two distinct elements x and y of B are in a common circuit of M / T^{\prime}. Certainly there is a circuit C of M / T with $x, y \in C$. It follows that there is some $U \subseteq T$ such that $C \cup U$ is a circuit of M. By Lemma 5.6, $(C \cup U) \backslash T^{\prime}$ is a disjoint union of circuits of M / T^{\prime}, so we may choose $C_{x} \subseteq C \cup U$ to be a circuit of M / T^{\prime} containing x. Now it follows that there is some $U^{\prime} \subseteq T^{\prime}$ such that $C_{x} \cup U^{\prime}$ is a circuit of M. By Lemma 5.6 again, $\left(C_{x} \cup U^{\prime}\right) \backslash T$ is a disjoint union of circuits of M / T, so we may choose $C_{x}^{\prime} \subseteq\left(C_{x} \cup U^{\prime}\right)$ to be a circuit of M / T containing x. Note that C_{x}^{\prime} is contained in $C \cup T \cup T^{\prime}$, so $C_{x}^{\prime} \cap B \subseteq C$. However, since B is a T-bridge, any circuit of M / T that meets B must be contained in B, so $C_{x}^{\prime} \subseteq C$, and therefore $C_{x}^{\prime}=C$. This implies that $C \subseteq\left(C_{x} \cup U^{\prime}\right)$ and thus, since $C \cap U^{\prime}=\emptyset, C \subseteq C_{x}$, which implies that in particular $y \in C_{x}$ and C_{x} is the required circuit of M / T^{\prime}.

5.3 Overlapping bridges and an extension lemma

In this section, we prove an extension lemma that will be crucial in the proofs of our main theorems.

Suppose C is a circuit of a co-finitary binary B-matroid M. If B is a C-bridge, a B-segment is a series class consisting of elements of C in $\left.M\right|_{C \cup B}$. The B-segments form a partition of C, which we will denote $\pi(C, B)$. Two C-bridges C_{1} and C_{2} avoid one another if $C=S_{1} \cup S_{2}$, for some B_{1}-segment S_{1} and some B_{2}-segment S_{2}. Bridges that do not avoid one another overlap.

If C is a circuit in a B-matroid, we may define its overlap graph $\mathcal{O}(C)$ as follows. The vertices of $\mathcal{O}(C)$ are the bridges of C, and two vertices are adjacent if they overlap.

Lemma 5.9

If M is a 3-connected binary co-finitary B-matroid, and C is a circuit of M, then $\mathcal{O}(C)$ is a connected graph.

Proof Suppose otherwise, and let \mathcal{B}_{1}^{\prime} be some component of $\mathcal{O}(C)$. Fix a bridge B_{2} not in \mathcal{B}_{1}^{\prime}. Consider two overlapping bridges $B_{1}, B_{1}^{\prime} \in \mathcal{B}_{1}^{\prime}$. They both avoid B_{2}. Suppose there exist B_{1} - and B_{2}-segments S_{1}, S_{2} respectively so that $S_{1} \cup S_{2}=C$, and B_{1}^{\prime} - and B_{2}-segments $S_{1}^{\prime}, S_{2}^{\prime}$ respectively so that $S_{1}^{\prime} \cup S_{2}^{\prime}=C$. If S_{2}^{\prime} is not the same B_{2}-segment as S_{2}, then $S_{2}^{\prime} \subseteq S_{1}$, so $S_{1} \cup S_{1}^{\prime}=C$, which is not possible because B_{1} and B_{1}^{\prime} overlap. Therefore there is a single B_{2}-segment S_{2} so that every bridge $B_{1} \in \mathcal{B}_{1}^{\prime}$ has a segment $f\left(B_{1}\right)$ such that $f\left(B_{1}\right) \cup S_{2}=C$.

Let A_{2} be the intersection over every $B_{1} \in \mathcal{B}_{1}^{\prime}$ of $f\left(B_{1}\right)$, and let $A_{1}=C \backslash A_{2}$. We claim that every C-bridge either has a segment that contains A_{1}, or has a segment that contains A_{2}. Let B be any C-bridge with no segment containing A_{2}. Clearly B cannot be in \mathcal{B}_{1}^{\prime} so, as with B_{2} above, there is a fixed B-segment S so that, for each $B_{1} \in \mathcal{B}_{1}^{\prime}$, there is a B_{1}-segment S_{1} such that $S_{1} \cup S=C$. However, for any $B_{1} \in \mathcal{B}_{1}^{\prime}$, the only B_{1}-segment meeting A_{2} is $f\left(B_{1}\right)$, so we must have $f\left(B_{1}\right) \cup S=C$ for every $B_{1} \in \mathcal{B}_{1}^{\prime}$. For every $x \in A_{1}$ there is some $f\left(B_{1}\right)$ avoiding x, so S contains all of A_{1}.

Let \mathcal{B}_{1} be the set of C-bridges with a segment containing A_{2}, and let \mathcal{B}_{2} be the remaining C-bridges (which all have a segment containing A_{1}). Let X be the union of A_{1} and all of the bridges in \mathcal{B}_{1} and let Y be the union of A_{2} and all of the bridges in \mathcal{B}_{2}. Extend A_{1} to a basis S_{X} of X and extend A_{2} to a basis S_{Y} of Y. We will now show that $S_{X} \cup S_{Y}$ contains no circuit except for $C\left(C=A_{1} \cup A_{2}\right.$, $A_{1} \subseteq S_{X}$ and $A_{2} \subseteq S_{Y}$, so $C \subseteq S_{X} \cup S_{Y}$), and hence that (X, Y) is a 2-separation.

Suppose on the contrary that C^{\prime} is a circuit other than C in $S_{X} \cup S_{Y}$. By Lemma 5.6, $C^{\prime} \backslash C$ is a disjoint union of circuits of M / C. Let $C^{\prime \prime}$ be one of these circuits, and let B be the C-bridge that contains $C^{\prime \prime}$. There exists some $S \subseteq C$ so that $C^{\prime \prime} \cup S$ is a circuit of M. Suppose that $B \in \mathcal{B}_{1}$ (the argument when $B \in \mathcal{B}_{2}$ is identical). Since $C^{\prime \prime} \cup S$ is a circuit in $C \cup B$, by definition S is a union of B-segments. The only B-segment not contained in S_{X} is $f(B)$; since S_{X} is independent, we must have $A_{2} \subseteq f(B) \subseteq S$. Therefore $\left(C^{\prime \prime} \cup S\right) \Delta C$ is contained in $B \cup A_{1}$ and hence in S_{X}, but by Lemma 5.7 it is a disjoint union of circuits. Since $\left(C^{\prime \prime} \cup S\right) \Delta C$ is non-empty, this is a contradiction.

If B is a C-bridge, a primary arc in B is a circuit of M / C that is contained in B and is not a circuit of M. If A is a primary arc, then a primary segment for A is a subset S of C such that $A \cup S$ is a circuit of M. A circuit composed of a primary arc in B and a primary segment is called a primary circuit through B.

Lemma 5.10

Let M be a 3-connected, binary, co-finitary B-matroid. Let C be a circuit and B a C-bridge in M. If S is a primary segment for a primary $\operatorname{arc} A$ in B, then:

1. $C \backslash S$ is a primary segment for A;

2. no other subset of C is a primary segment for A; and
3. exactly three subsets of $C \cup A$ are circuits: $C, A \cup S$ and $A \cup(C \backslash S)$.

Proof By Lemma 5.7, $(A \cup S) \Delta C=A \cup(C \backslash S)$ is a disjoint union of circuits. No circuit contained in $A \cup C$ can contain a proper, non-empty, subset of A, because A is a circuit of M / C. Therefore $A \cup(C \backslash S)$ is a circuit, as required.

Suppose that some subset T of C not equal to S or $C \backslash S$ is a primary segment for A. Then $(A \cup S) \Delta(A \cup T)=S \Delta T$ is a disjoint union of circuits by Lemma 5.7, which is a contradiction because $S \Delta T$ is a proper non-empty subset of C.

Finally, since A is a circuit of M / C, every circuit of $C \cup A$ contains all of A or none of it, and therefore there are no other circuits.

Lemma 5.11

Let M be a 3-connected, binary, co-finitary B-matroid. Let C be a circuit and B be a C-bridge in M. For two distinct B-segments S_{1}, S_{2}, there is a primary segment for some primary arc of B that contains S_{1} but not S_{2}.

Proof Let $x \in S_{1}$ and $y \in S_{2}$. Let K be a co-circuit that meets C in exactly x and y. Let C_{1} be a circuit of M in $C \cup B$ that contains S_{1} but not S_{2}. Since K is finite and meets $C_{1} \cap C$ exactly once, K must meet $C_{1} \cap B$ an odd number of times. As $C_{1} \backslash C=C_{1} \cap B$ is a disjoint union of circuits of M / C, there is a primary $\operatorname{arc} A$ in B that meets K an odd number of times. Thus one of the primary segments for A must contain x and the other must contain y.

It follows that every B-segment is an intersection of primary segments for primary arcs of B.

Let M be a B-matroid, C be a circuit of M, and let B_{1}, B_{2} be C-bridges. Then B_{1} and B_{2} are skew if, for a primary B_{1}-segment S and a primary B_{2}-segment T, all of $S \cap T, S \backslash T, T \backslash S$ and $C \backslash(S \cup T)$ are non-empty. Also, B_{1} and B_{2} are k-equipartite if they both partition C into the same k segments.

Our next goal is to show that overlapping bridges are either skew or 3equipartite. This is a standard and easy result for finite graphs, and it was generalized to binary matroids by Tutte [28]. We do not know how to prove

Theorem 5.13 directly for B-matroids, so we use the techniques developed in the previous chapter to deduce it from Tutte's theorem on finite binary matroids.

Theorem 5.12

(Tutte [28]) Let M be a finite binary matroid, C a circuit of M and B_{1}, B_{2} overlapping bridges of C. Then B_{1} and B_{2} are either skew or 3-equipartite.

Theorem 5.13

Let M be a countable cofinitary binary B-matroid, C a circuit of M and B_{1}, B_{2} overlapping bridges of C. Then B_{1} and B_{2} are either skew or 3-equipartite.

Proof Let F be a basis of M so that $|C \backslash F|=1$. Enumerate the elements of F as $F=\left\{e_{1}, e_{2}, \ldots\right\}$ and let F^{i} be the first i elements of F. Let M_{i} be the simplification of $M /\left(F \backslash F^{i}\right)$. Note that M_{i} has finite rank (F^{i} is a basis) so, by Lemma 3.31, M_{i} is finite. Since M is cofinitary, M^{*} is finitary, and we may apply Lemma 4.4 to M^{*} and $\left[\left\{M_{i}^{*}\right\}\right]$ to verify that $M=\left[\left\{M_{i}^{*}\right\}\right]^{*}$. Let C^{i} be the set of elements of C present in the ground set of M_{i}. Then C^{i} is a circuit of M_{i}, because C is the unique circuit in $C^{i} \cup\left(F \backslash F^{i}\right)$. Choose arbitrarily an element e^{1} of B_{1} and an element e^{2} of B_{2}, and let B_{1}^{i} and B_{2}^{i} be the bridges of C^{i} containing e^{1} and e^{2} respectively. Notice that, because M_{i} / C^{i} is a minor of $M / C, B_{1}^{i} \neq B_{2}^{i}$.

If B_{1}^{i} and B_{2}^{i} avoid one another for some fixed i, then so will B_{1}^{j} and B_{2}^{j} for any $j<i$, because the bridges of C^{j} in M_{j} are minors of the bridges of C^{i} in M_{i}. Therefore, either B_{1}^{i} and B_{2}^{i} avoid one another for every i, or there is some N so that B_{1}^{i} and B_{2}^{i} overlap whenever $i>N$. Combining this observation with Theorem 5.12, it is apparent that at least one of the following occurs: there is some N so that, for $i>N$ both of B_{1}^{i} and B_{2}^{i} are 3-equipartite; B_{1}^{i} and B_{2}^{i} avoid one another for every i; there is some i for which B_{1}^{i} and B_{2}^{i} are skew. To complete the proof, we show that: B_{1}^{i} and B_{2}^{i} must overlap for some i (since B_{1} and B_{2} do); that if they are 3-equipartite for every sufficiently large i, then B_{1} and B_{2} are 3-equipartite; and finally, that if they are skew for some value of i, then B_{1} and B_{2} are skew.

Claim 1 Two elements x and y of C are in the same B_{1}-segment of C in M if and only if they are in the same B_{1}^{i}-segment of C^{i} in M_{i}, for sufficiently large i.

Proof of Claim 1. Since $C^{i} \cup B_{1}^{i}$ is a minor of $C \cup B_{1}$, it is clear that if x and y are in the same B_{1}-segment of C, then they are in the same B_{1}^{i}-segment of C^{i}, for every i large enough that they are elements of M_{i}. For the converse, suppose that x and y are in different B_{1}-segments of C. By Lemma 5.11 , there is a primary segment for some primary arc A in B_{1} that contains x but not y. Let K be a co-circuit of M that meets C exactly in $\{x, y\}$.

Note that, since K has even intersection with both primary circuits formed by A, it has odd intersection with A. Now choose a sufficiently large i that K is a co-circuit of M_{i}, and suppose for a contradiction that x and y are in the same B_{1}^{i}-segment of C^{i}. In that case, $\{x, y\}$ is a co-circuit of $B_{1}^{i} \cup C^{i}$. Thus, there is a co-circuit K^{\prime} of M_{i} containing x, y and otherwise disjoint from $B_{1}^{i} \cup C^{i}$; clearly $K^{\prime} \neq K$. Since M_{i} is a finite binary matroid, $K \Delta K^{\prime}$ is a disjoint union of co-circuits. Note that $\left(K \Delta K^{\prime}\right) \cap C^{i}=\emptyset$. Since $K \cap A$ is non-empty and disjoint from K^{\prime}, one co-circuit of the disjoint union of co-circuits contains some $w \in K \cap A$, and, since $K \cap A$ is a proper subset of K, it must also contain some $z \notin B_{1}^{i} \cup C^{i}$. This implies that w and z are in the same component of M_{i} / C^{i}, contradicting the fact that w and z are in different C^{i}-bridges and completing the proof of Claim 1.

Claim 2 If B_{1}^{i} and B_{2}^{i} are k-equipartite for every sufficiently large i, then B_{1} and B_{2} are k-equipartite.

Proof of Claim 2. Suppose that B_{1}^{i} and B_{2}^{i} are k-equipartite for every $i>N$. Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be elements of C^{N+1}, one from each of the k segments determined by both bridges. For $i>N$ and $j \in\{1, \ldots, k\}$, let S_{j}^{i} be the B_{1}^{i}-segment (and B_{2}^{i}-segment) of C^{i} containing e_{j}. For each $j \in\{1, \ldots, k\}$, let S_{j} be the union over $i>N$ of S_{j}^{i}. We claim that $\left\{S_{1}, \ldots, S_{k}\right\}$ are exactly the B_{1}-segments of C. It is apparent that $\left\{S_{1}, \ldots, S_{k}\right\}$ are pairwise disjoint and that every element of C is contained in some S_{j}. By Claim 1, to check that each S_{j} is a B_{1}-segment we need only show that, for a fixed j and increasing $i>N,\left\{S_{j}^{i}\right\}$ is increasing by containment. This follows from the fact that $C^{i} \cup B_{1}^{i}$ is a minor of $C^{i+1} \cup B_{1}^{i+1}$, but B_{1}^{i} has the same number of segments as B_{1}^{i+1}. Therefore $\left\{S_{1}, \ldots, S_{k}\right\}$ are indeed the B_{1}-segments of C, and by the same argument they are also the B_{2}-segments of C, establishing the claim.

Claim 3 There is some i so that B_{1}^{i} and B_{2}^{i} overlap.
Proof of Claim 3. Suppose for contradiction that B_{1}^{i} and B_{2}^{i} avoid one another for every i. Since B_{1} and B_{2} overlap, they are not 2-equipartite, so Claim 2 shows that there is some i for which B_{1}^{i} and B_{2}^{i} are not 2-equipartite; choose some such i. Let S_{1}^{i} and S_{2}^{i} be B_{1}^{i} - and B_{2}^{i}-segments respectively whose union is C^{i}. Now
choose $j>i$ so that B_{1}^{j} and B_{2}^{j} are again not 2-equipartite, and choose S_{1}^{j} and S_{2}^{j} to be B_{1}^{j} - and B_{2}^{j}-segments respectively whose union is C^{j}. Since the restrictions of S_{1}^{j} and S_{2}^{j} to C^{i} are still B_{1}^{i} - and B_{2}^{i}-segments respectively, they are candidates to be S_{1}^{i} and S_{2}^{i}, and, since B_{1}^{i} and B_{2}^{i} are not 2-equipartite, they must actually be S_{1}^{i} and S_{2}^{i}. Repeating this process, we obtain a sequence $\left\{S_{1}^{i}, S_{2}^{i}\right\}$ where S_{1}^{i} and S_{2}^{i} are B_{1}^{i} - and B_{2}^{i}-segments respectively whose union is C^{i}, and, for $j>i, S_{1}^{i}$ and S_{2}^{i} are the restrictions of S_{1}^{j} and S_{2}^{j} to C^{i}. By Claim 1, the union over all i of S_{1}^{i} is contained in a B_{1}-segment S_{1}, and the union over all i of S_{2}^{i} is contained in a B_{2}-segment S_{2}, so B_{1} and B_{2} avoid one another, the desired contradiction.

Claim 4 If B_{1}^{i} and B_{2}^{i} are skew for some value of i, then B_{1} and B_{2} are skew.
Proof of Claim 4. Suppose that B_{1}^{i} and B_{2}^{i} are skew, and let A_{1}^{i}, A_{2}^{i} be primary arcs through B_{1}^{i} and B_{2}^{i} so that the four intersections of a primary segment for A_{1}^{i} with a primary segment for A_{2}^{i} are all non-empty. Let S_{1}^{i} be a primary segment for A_{1}^{i}. Then $A_{1}^{i} \cup S_{1}^{i}$ is a circuit of M_{i}, and therefore there is a set X of elements of F so that $A_{1}^{i} \cup S_{1}^{i} \cup X$ is a circuit of M. By Lemma 5.6, $\left(A_{1}^{i} \cup S_{1}^{i} \cup X\right) \backslash C$ is a disjoint union of circuits of M / C. At least one of these, A_{1}, intersects A_{1}^{i} and is therefore contained in B_{1} because B_{1} is a component of M / C. By definition, A_{1} is a primary arc in B_{1}.

Let S_{1} be a primary segment with respect to A_{1}. By Lemma 5.6 again, the elements of $A_{1} \cup S_{1}$ contained in the ground set of M_{i} are a disjoint union of circuits. Since these elements are contained in $C^{i} \cup B_{1}^{i}$ and contain an element of A_{1}^{i}, they must be exactly one of the primary circuits through A_{1}^{i}. The same argument applies with $C \backslash S_{1}$ in place of S_{1}, so each of the primary segments with respect to A_{1} contains one of S_{1}^{i} and $C^{i} \backslash S_{1}^{i}$. Obtaining A_{2} in the same way as A_{1}, we see that every intersection of primary segments for A_{1} and A_{2} contains an intersection of primary segments for A_{1}^{i} and A_{2}^{i}, and is thus non-empty, which proves the claim.

Now we can prove the required extension lemma.

Lemma 5.14

Let M be a countable 3-connected binary co-finitary B-matroid. Let C be a circuit of M that is not peripheral and B be a C-bridge. Either :

1. there exist circuits C_{1}, C_{2} with $C_{1} \Delta C_{2}=C$, such that, for $i \in\{1,2\}$, there is a C_{i}-bridge B_{i} that properly contains B; or
2. there exist circuits C_{1}, C_{2}, C_{3} with $C_{1} \Delta C_{2} \Delta C_{3}=C$, such that, for $i \in\{1,2,3\}$, there is a C_{i}-bridge B_{i} that properly contains B.

Proof Let C be a circuit and B be a C-bridge. By Lemma 5.9, if C is not already peripheral, then there is another C-bridge B^{\prime} that overlaps B.

First suppose that we may choose B^{\prime} skew to B. There exist primary $\operatorname{arcs} A$ and A^{\prime}, through B and B^{\prime} respectively, so that none of the four intersections between a primary segment for A and a primary segment for A^{\prime} is empty. Let S_{1}, S_{2} be the primary segments for A^{\prime}. We claim that $C_{1}=A^{\prime} \cup S_{1}$ and $C_{2}=A^{\prime} \cup S_{2}$ have the required properties. Certainly $C_{1} \Delta C_{2}=C$. So it remains to check that there is a C_{1}-bridge B_{1} with $B \subset B_{1}$ (and, by the same argument, that there is a C_{2}-bridge B_{2} with $B \subset B_{2}$).

First note that, by Lemma $5.8, B$ is contained in a single bridge, B_{1}, of C_{1}. We will first show that S_{2} is a circuit of M / C_{1}, and then that there is a circuit in M / C_{1} that meets both B and S_{2}, so that B_{1} strictly contains B.

Let $x \in S_{2}$. By Lemma 5.6, S_{2} is a disjoint union of circuits of M / C_{1}. Let C_{x} be a circuit of M / C_{1} containing x, so $x \in C_{x} \subseteq S_{2}$. Then there is some $T \subseteq C_{1}$ such that $C_{x} \cup T$ is a circuit of M. By Lemma 5.10, $C_{x} \cup T$ is either C or C_{2}, and therefore $C_{x}=C_{2}$.

Finally, let the primary segment for A containing x be S. By Lemma 5.6, $(A \cup S) \backslash C_{1}$ is a disjoint union of circuits of M / C_{1}. Let C_{x}^{\prime} be a circuit of M / C_{1} containing x, so $x \in C_{x}^{\prime} \subseteq(A \cup S) \backslash C_{1}$. Then there is some $T \subseteq C_{1}$ such that $C_{x}^{\prime} \cup T$ is a circuit of M. By choice of A and $A^{\prime}, C_{x}^{\prime} \cup T$ contains x but not all of C_{1} and therefore, by Lemma 5.10, $C_{x}^{\prime} \cup T$ cannot be contained in $C \cup A^{\prime}$. Thus C_{x}^{\prime} meets A, as required.

In the other case, no other C-bridge B^{\prime} is skew to B. Since at least one other C-bridge overlaps B, this implies that C partitions into three B-segments, say S_{1}, S_{2} and S_{3}. In fact, each of S_{1}, S_{2} and S_{3} must consist of a single element. Suppose otherwise that $x, y \in S_{1}$. Let \mathcal{B}_{1} be the set of all C-bridges that have a segment containing $C \backslash S_{1}$, and let \mathcal{B}_{2} be the set of all C-bridges that have a segment containing S_{1}. Since every C-bridge is either 3 -equipartite with B or avoids it, $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ includes every C-bridge. Let X be the union of S_{1} and all of the bridges in \mathcal{B}_{1}, and Y be the union of $S_{2} \cup S_{3}$ and all of the bridges in \mathcal{B}_{2}. As in the proof of Lemma 5.9, we can show that (X, Y) is a 2 -separation by extending S_{1} to a basis B_{X} of X and S_{2} to a basis B_{Y} of Y, and checking that no circuit exists in $B_{X} \cup B_{Y}$ except for C. This is a contradiction, so each segment has exactly one element.

Any primary arc for B will have S_{i} and $C \backslash S_{i}$ as its primary segments, for some
$i \in\{1,2,3\}$. By Lemma 5.11 , at least two of S_{1}, S_{2}, S_{3} must be primary segments for B. Let B^{\prime} be a C-bridge 3-equipartite with B. Similarly, at least two of S_{1}, S_{2}, S_{3} must be primary segments for B^{\prime}, so we can assume without loss of generality that S_{1} is a primary segment for both B and B^{\prime}. Let A^{\prime} be a primary arc in B^{\prime} with S_{1} as one of its primary segments. Let $C^{\prime}=A^{\prime} \cup S_{2} \cup S_{3}$, and $C_{1}=A^{\prime} \cup S_{1}$. As above, there is a C_{1}-bridge B_{1} strictly containing B. By Lemma 5.8, there is a C^{\prime}-bridge B^{\prime} with $B \subseteq B^{\prime}$. Since $A^{\prime} \cup S_{1}$ is a circuit and $\left|S_{1}\right|=1$, we have $\left|A^{\prime}\right|>1$, and therefore, $\left|C^{\prime}\right| \geq 4$. This implies that either C^{\prime} is already peripheral, in which case we have the first outcome of the lemma with $C_{2}=C^{\prime}$, or there is a C^{\prime}-bridge $B^{\prime \prime}$ skew to B^{\prime} and we may apply the first part of the argument to C^{\prime} and B^{\prime} to obtain C_{2} and C_{3} as required.

5.4 Main theorems for 3-connected binary co-finitary B-matroids

Our goal in this section is to prove the main theorems of the chapter. Our main tools will be Lemma 5.14 and the following result.

Lemma 5.15

Let $M=(S, \mathcal{I})$ be a countable binary co-finitary B-matroid. Let $\left\{C_{i}, B_{i}\right\}, i \in \mathbb{N}$, be a sequence in which each C_{i} is a disjoint union of circuits of M and each B_{i} is a C_{i}-bridge, such that $B_{i} \subset B_{i+1}$. Let $C_{e v}=\left\{C_{i}\right\}_{e v}$, and let $C_{i n f}=\left\{C_{i n f}\right\}$. For any finite set $X \subseteq C_{e v}$, there exists a disjoint union C_{X} of circuits of M, such that $X \subseteq C_{X} \subseteq C_{i n f}$. Furthermore, C_{X} has a bridge B_{X} that properly contains every B_{i}.

Proof Suppose that Y is a maximal subset of X such that there exists C_{Y} with $Y \subseteq C_{Y} \subseteq C_{i n f}$, and C_{Y} is a disjoint union of circuits of M. We will show that in fact $Y=X$. Suppose otherwise that $x \in X \backslash Y$. If there is a circuit C_{x} containing x and contained in $C_{i n f} \backslash Y$, then $C_{x} \Delta C_{Y}$ is a disjoint union of circuits by Lemma 5.7, which contradicts the maximality of Y. If no such circuit C_{x} exists, then x is a co-loop in the restriction of M to $C_{i n f} \backslash Y$. Therefore there is co-circuit K of M contained in $\{x\} \cup Y \cup\left(S \backslash C_{i n f}\right)$. Since $\{x\} \cup Y \subseteq C_{e v}$, we may choose N so that for every $i>N,\{x\} \cup Y \subseteq C_{i}$. Furthermore, since K is finite and every element of $S \backslash C_{i n f}$ is eventually disjoint from C_{i}, we may choose some $i>N$ so that $C_{i} \cap K=\{x\} \cup Y$. However, $C_{Y} \cap K=Y$, and it follows that $\left(C_{i} \Delta C_{Y}\right) \cap K=\{x\}$, a contradiction to Lemma 5.7.

It remains to check that C_{X} has a bridge strictly containing every B_{i}. It suffices
by Lemma 5.8 to check that $C_{X} \cap B_{i}=\emptyset$ for every i, which is clearly true because any element of B_{i} is in every B_{j} for $j>i$ and thus cannot be in $C_{i n f}$.

Theorem 5.16

Let e and f be distinct elements of a countable 3-connected binary co-finitary B-matroid M. There is a peripheral circuit of M containing e but not f.

The proof of Theorem 5.16 will proceed by transfinite induction. We begin with a circuit C_{1} containing e but not f and a C_{1}-bridge B_{1} that contains f. For successor ordinals $\alpha+1$, assume we have already defined (C_{α}, B_{α}) such that C_{α} is a circuit, $e \in C_{\alpha}$ and B_{α} is a C_{α}-bridge. Then if C_{α} is not already peripheral we will define $\left(C_{\alpha+1}, B_{\alpha+1}\right)$ so that $C_{\alpha+1}$ is a circuit, $e \in C_{\alpha+1}$, and $B_{\alpha+1}$ is a $C_{\alpha+1}$-bridge such that $B_{\alpha} \subset B_{\alpha+1}$. For limit ordinals β, assume we have already defined (C_{α}, B_{α}) as above, for every $\alpha<\beta$. We will define (C_{β}, B_{β}) so that C_{β} is a circuit, $e \in C_{\beta}$, and B_{β} is a C_{β}-bridge such that $B_{\alpha} \subset B_{\beta}$, for every $\alpha<\beta$. Eventually the successor step must be impossible, and therefore we will have a peripheral circuit containing e but not f.
Proof Let S denote the ground set of M. We proceed by transfinite induction. For each ordinal β, if we have not yet found the desired peripheral circuit, we will define $\left(C_{\beta}, B_{\beta}\right)$ such that C_{β} is a circuit, $e \in C_{\beta}, B_{\beta}$ is a C_{β}-bridge, and $B_{\beta} \supset B_{\alpha}$ for every ordinal $\alpha<\beta$. It follows from Lemma 1.7 that it is impossible to have a strictly increasing (by inclusion) sequence $\left\{B_{\alpha}\right\}$ of elements of 2^{S} where α ranges over all of the countable ordinals, so the desired peripheral circuit must exist. Let C_{1} be any circuit of M containing e but not f, and let B_{1} be the C_{1}-bridge containing f.

Successor step. Let $\alpha=\beta-1$. Assume we have already defined (C_{α}, B_{α}) such that C_{α} is a circuit, $e \in C_{\alpha}$ and B_{α} is a C_{α}-bridge. If C_{α} is not already peripheral, then we may apply Lemma 5.14 to C_{α} and B_{α}. Regardless of which case in the lemma holds, there is an i so that C_{i} contains e, and we may set (C_{β}, B_{β}) to be $\left(C_{i}, B_{i}\right)$.

Limit step. Assume we have already defined $\left(C_{\alpha}, B_{\alpha}\right)$ as above for every $\alpha<\beta$. Let $\left\{\alpha_{i}\right\}$ be a countable sequence of ordinals so that $\alpha_{i}<\beta$, for each i, and every $\alpha<\beta$ has $\alpha<\alpha_{i}$, for some i. Applying Lemma 5.15 to the sequence $\left\{C_{\alpha_{i}}, B_{\alpha_{i}}\right\}$ and noting that e is in every $C_{\alpha_{i}}$, we obtain a circuit C_{β} with $e \in C_{\beta}$ and a C_{β}-bridge B_{β} that strictly contains every $B_{\alpha_{i}}$ and therefore strictly contains every B_{α} for $\alpha<\beta$.

The proof that the peripheral circuits generate the cycle space of a 3-connected binary co-finitary B-matroid is somewhat more complicated than the proof of Theorem 5.16 . We will start with an arbitrary cycle space element \mathcal{Z}, and show that \mathcal{Z} can be expressed as a thin sum of peripheral circuits. In order to do this, we will work with a fixed enumeration $\left\{e_{1}, e_{2}, \ldots\right\}$ of the elements of M. Starting with $\mathcal{Z}_{0}=\mathcal{Z}$ and an arbitrary \mathcal{Z}_{0}-bridge B_{0}, we will define $\left(\mathcal{Z}_{i}, B_{i}\right)$ for each i so that B_{i} is a \mathcal{Z}_{i}-bridge, $\left\{e_{1}, \ldots, e_{i}\right\} \subseteq B_{i}$, and $\mathcal{Z}_{i}=\mathcal{Z}_{i-1} \Delta P_{i}^{1} \Delta \ldots \Delta P_{i}^{k}$ where each $P_{i}^{j}, 1 \leq j \leq k$, is a peripheral circuit disjoint from B_{i-1}. Since every e_{i} is contained in all B_{l} for $l \geq i$, it will be disjoint from all of the P_{l}^{j} with $l>i$. Therefore the set of all P_{i}^{j} is thin, and its sum is \mathcal{Z}.

To ensure that e_{i} is absorbed into B_{i}, we will choose a co-circuit K so that $e_{i} \in K$ and $K \cap B_{i-1} \neq \emptyset$. We prove a lemma showing that we can choose $P_{i}^{1}, \ldots, P_{i}^{k}$, disjoint from B_{i-1}, so that $\left(P_{i}^{1} \Delta \ldots \Delta P_{i}^{k}\right) \cap K=\mathcal{Z}_{i-1} \cap K$, whence it is easy to check that we can set $\mathcal{Z}_{i}=\mathcal{Z}_{i-1} \Delta P_{i}^{1} \Delta \ldots \Delta P_{i}^{k}$ and find a \mathcal{Z}_{i}-bridge containing $B_{i-1} \cup K$ for B_{i}.

The proof of the lemma uses a similar idea to the proof of Theorem 5.16, in the sense that we obtain peripheral circuits by starting from an original circuit (actually, a disjoint union of circuits) and modifying it so that a chosen bridge grows. However, since we need to obtain peripheral circuits with a fixed symmetric difference on the elements in K, a more complex approach is required. Instead of a linear chain of extensions, one for each ordinal, as in the proof of Theorem 5.16, we build at each ordinal an extension tree whose leaves are labelled with circuits (or disjoint unions of circuits) so that the symmetric difference of the circuits on all of the leaves is correct on K. We define a new extension tree at each ordinal, and show that there must be an ordinal where all of the leaves are peripheral circuits.

Our proof borrows heavily from Bruhn's proof of the same result for 3connected locally finite graphs in [2]. In particular, where we locally generate our current cycle space element on a co-circuit K, Bruhn did the same thing with the finite set of edges incident with a chosen vertex. The idea of using an extension tree to obtain a locally generating set of peripheral circuits is also from Bruhn's argument.

Let M be a countable 3-connected co-finitary binary B-matroid with ground set S. Let K be a co-circuit of M. An extension tree with respect to K is a finite rooted tree, T, whose vertices are lists of subsets of K (that is, finite sequences of subsets of K), along with a label (C_{L}^{T}, B_{L}^{T}) for each vertex of T, satisfying the following conditions.

1. The root of T is $L_{r}=\left(K_{0}\right)$, a list of length one, where $K_{0} \subseteq K$.
2. Let $L=\left(K_{l}, K_{l-1}, \ldots K_{0}\right)$ be a node of T. If L is not a leaf, then, for
some integer $k \geq 2$, L has k children, and they are of the form $L^{i}=$ $\left(K_{l+1}^{i}, K_{l}, K_{l-1}, \ldots K_{0}\right), 1 \leq i \leq k$. The K_{l+1}^{i} are distinct and non-empty, their symmetric difference is K_{l}, and no proper subset has the symmetric difference K_{l}.
3. Let $L=\left(K_{l}, K_{l-1}, \ldots K_{0}\right)$ be a node of T. Then C_{L}^{T} is a disjoint union of circuits of $M, C_{L}^{T} \cap K=K_{l}$, and B_{L}^{T} is a C_{L}^{T}-bridge.
4. If L^{\prime} lies on the path from L to L_{r}, then $B_{L^{\prime}}^{T} \subset B_{L}^{T}$.

A good extension tree is an extension tree T with the additional property that, for every $L \in V(T), L$ contains no repeated elements. Therefore a good extension tree is finite. Let T be a good extension tree with root $\left(K_{0}\right)$. Let L_{1}, \ldots, L_{r} be the leaves of T, with the corresponding first terms of their lists being $K_{1}, K_{2}, \ldots, K_{r}$. Then it follows from the second property of extension trees that K_{0} is the symmetric difference of $K_{1}, K_{2}, \ldots, K_{r}$. If C_{L}^{T} were a peripheral circuit for every leaf L of T, we would have a set of peripheral circuits whose symmetric difference was K_{0}. Notice also that every vertex L in T is a list of length $l+1$, where l is the length of the path from L to L_{r}, and that the path from L to L_{r} consists of all of the non-empty tails of L.

We define a partial order \prec on the set of all good extension trees with respect to K. If T, T^{\prime} are good extension trees with respect to K, let $T \prec T^{\prime}$ if the following conditions hold:

1. for every $L \in V(T)$, either $L \in V\left(T^{\prime}\right)$ and $B_{L}^{T} \subseteq B_{L}^{T^{\prime}}$ or there is some tail L^{\prime} of L so that $L^{\prime} \in V\left(T^{\prime}\right)$ and $B_{L^{\prime}}^{T} \subset B_{L^{\prime}}^{T^{\prime}}$; and
2. there is some $L \in V(T)$ such that $L \in V\left(T^{\prime}\right)$ and $B_{L}^{T} \subset B_{L}^{T^{\prime}}$, or $V\left(T^{\prime}\right) \backslash V(T) \neq$ \emptyset.

Lemma 5.17

Every transfinite sequence $\left\{T_{\alpha}\right\}$, such that every T_{α} is a good extension tree with respect to K for every countable ordinal α, and $T_{\alpha} \preceq T_{\beta}$ for every pair of countable ordinals $\alpha<\beta$, is eventually constant.

Proof For convenience, for any list L and ordinal α, let $B_{L}^{\alpha}=B_{L}^{T_{\alpha}}$. Let l be the maximum length of a list of subsets of K. For each $i \leq l+1$, we will show that there exists an ordinal α_{i} such that, for every $\beta>\alpha_{i}, L$ is a vertex of T_{β} whose
path to the root is of length less than i if and only if it is a vertex of $T_{\alpha_{i}}$ whose path to the root is of length less than i, in which case $B_{L}^{\beta}=B_{L}^{\alpha_{i}}$.

Choose any ordinal α_{0}, and let (K_{0}) be the root of $T_{\alpha_{0}}$. Since a list of length one has no non-empty tails, it must also be the root of every T_{β} for $\beta>\alpha_{0}$, by definition of \prec. Consider the set \mathcal{O}_{0}^{\prime} of ordinals $\beta>\alpha_{0}$ such that $B_{\left(K_{0}\right)}^{\beta}$ strictly contains $B_{\left(K_{0}\right)}^{\gamma}$ for every $\gamma<\beta$. Then $\left\{B_{\left(K_{0}\right)}^{\beta}\right\}, \beta \in \mathcal{O}_{0}^{\prime}$, is a strictly increasing sequence of subsets of a countable set, which implies by Lemma 1.7 that \mathcal{O}_{0}^{\prime} is bounded above by a countable ordinal. Let α_{1} be the successor of some upper bound for $\mathcal{O}^{\prime}{ }_{0}$. Notice that, by the definition of \prec and the second property of extension trees, α_{1} has the required properties.

Suppose that, for some $i \geq 1$, we have defined α_{i}. Let $L=\left(K_{i}, K_{i-1}, \ldots K_{0}\right)$ be any vertex in $T_{\alpha_{i}}$ whose path to the root is of length i. Since every non-empty tail of L satisfies $B_{L}^{\alpha_{i}}=B_{L}^{\beta}$ for every $\beta>\alpha_{i}, L$ must also be in $V\left(T_{\beta}\right)$ for every $\beta>\alpha_{i}$, by definition of \prec. Now consider the set $\mathcal{O}^{\prime}{ }_{i}$ of countable ordinals $\beta>\alpha_{i}$ such that, for any vertex L in $T_{\alpha_{i}}$ whose path to the root is of length i, B_{L}^{β} strictly contains B_{L}^{γ} for every $\gamma<\beta$. There are only finitely many such vertices L, so again $\mathcal{O}^{\prime}{ }_{i}$ is bounded, and we may define α_{i+1}. Again, α_{i+1} has the required properties, by the definition of \prec and the second property of extension trees.

By definition of $\alpha_{l+1}, T_{\beta}=T_{\alpha_{l+1}}$ for every $\beta>\alpha_{l+1}$, so the sequence is constant, as required.

We are now ready to show that only a finite number of peripheral circuits are needed to "clear" a co-circuit.

Lemma 5.18

Let \mathcal{Z} be a cycle space element, B a \mathcal{Z}-bridge and K a co-circuit. There is a set P^{1}, \ldots, P^{k} of peripheral circuits disjoint from B so that $\left(P^{1} \Delta \ldots \Delta P^{k}\right) \cap K=$ $K \cap \mathcal{Z}$.

Proof We proceed by transfinite induction. For each countable ordinal β, if we have not yet found the desired set of peripheral circuits, we will define T_{β} to be a good extension tree with respect to K, with root $L_{r}^{\beta}=(\mathcal{Z} \cap K)$, such that $B \subseteq B_{L}^{T_{\beta}}$ for every $L \in V\left(T_{\beta}\right)$. We will define these trees so that for every $\alpha<\beta, T_{\alpha} \prec T_{\beta}$. Since, by Lemma 5.17, it is impossible to have a strictly increasing sequence $\left\{T_{\alpha}\right\}$ where α ranges over all of the countable ordinals, there is some β for which we cannot define T_{β} as described, and therefore the desired peripheral circuits must exist.

For convenience, for any list L and ordinal α, let $B_{L}^{\alpha}=B_{L}^{T_{\alpha}}$ and $C_{L}^{\alpha}=C_{L}^{T_{\alpha}}$. Let T_{1} be a tree with one node, $L_{r}^{1}=(\mathcal{Z} \cap K)$, let $C_{L_{r}^{1}}^{1}=\mathcal{Z}$, and let $B_{L_{r}^{1}}^{1}$ be the bridge of \mathcal{Z} containing B. This is a good extension tree with respect to K.

Successor step. If β is a successor ordinal, let $\alpha=\beta-1$. Assume we have already defined T_{α}. If C_{L}^{α} is a peripheral circuit for every leaf L of T_{α}, we may set P^{1}, \ldots, P^{k} to be this set of peripheral circuits and we are done. Otherwise we may choose some leaf L, such that C_{L}^{α} is not a peripheral circuit.

We know that C_{L}^{α} is either a circuit that is not peripheral, or a disjoint union of circuits. If C_{L}^{α} is a non-peripheral circuit, apply Lemma 5.14 to C_{L}^{α} and B_{L}^{α}. Of the two or three circuits in the outcome of the lemma, one or more contains elements of K. If C_{L}^{α} is a disjoint union of circuits, partition it into circuits, and note that finitely many of these circuits contain elements of K. Either way, we obtain a finite set C_{1}, \ldots, C_{ℓ} of circuits such that, for $1 \leq i \leq \ell, C_{i}$ has a bridge B_{i} containing B_{L}^{α}.

If $\ell=1$, then $C_{1} \cap K=C_{L}^{\alpha} \cap K$ and we may set T_{β} to be the same tree with the same labels as T_{α} except for $C_{L}^{\beta}=C_{1}$ and $B_{L}^{\beta}=B_{1}$. Since its vertex set is the same, T_{β} is still a good extension tree, and since $B_{L}^{\alpha} \subset B_{L}^{\beta}, T_{\alpha} \prec T_{\beta}$. If $\ell>1$, then, for each such i, let L_{i} be formed by adding $C_{i} \cap K$ as the first element of L. We may obtain a new extension tree T_{β} by starting with T_{α} and adding each L_{i} as a child of L, with labels $C_{L_{i}}^{\beta}=C_{i}$ and $B_{L_{i}}^{\beta}=B_{i}$. If no L_{i} has a repeated element, this is a good extension tree with $T_{\alpha} \prec T_{\beta}$. Otherwise, choose any $L_{i}=\left(C_{i} \cap K=K_{t}, K_{t-1}, \ldots K_{0}\right)$, and $j \neq t$, such that $K_{j}=C_{i} \cap K$. Then $L^{\prime}=\left(C_{i} \cap K=K_{j}, K_{j-1}, \ldots K_{0}\right)$ is a vertex of T_{β} on the path between L_{i} and L_{r}^{β}. In this case, we obtain a good extension tree T_{β} by deleting every vertex apart from L^{\prime} whose path to the root contains L^{\prime}, and setting $C_{L^{\prime}}^{\beta}=C_{i}, B_{L^{\prime}}^{\beta}=B_{i}$. Since T_{α} was an extension tree, $B_{L^{\prime}}^{\alpha} \subset B_{L}^{\alpha} \subset B_{i}$, and we therefore have $T_{\alpha} \prec T_{\beta}$ as required.

Limit step. Assume we have already defined T_{α} for every $\alpha<\beta$. Let $\left\{\alpha_{i}\right\}$, $i \in \mathbb{N}$, be a sequence of ordinals so that $\alpha_{i}<\beta$ for each i, and every $\alpha<\beta$ has $\alpha<\alpha_{i}$ for some i. Let l be the maximum length of a list of subsets of K. For each $0 \leq i \leq l+1$, we will either obtain a T_{β} such that $T_{\alpha} \prec T_{\beta}$ for every $\alpha<\beta$, as required, or we will define j_{i} such that, for every $k>j_{i}, L$ is a vertex of $T_{\alpha_{k}}$ whose path to the root is of length less than i if and only if it is a vertex of $T_{\alpha_{j_{i}}}$ whose path to the root is of length less than i, in which case $B_{L}^{\alpha_{k}}=B_{L}^{\alpha_{j_{i}}}$.

Recall that $(\mathcal{Z} \cap K)$ is the root of every T_{α}. Consider the set N_{1} of integers i such that $B_{(\mathcal{Z} \cap K)}^{\alpha_{i}}$ strictly contains $B_{(\mathcal{Z} \cap K)}^{\alpha_{i-1}}$. If N_{1} is infinite, let T_{β} have root $(\mathcal{Z} \cap K)$ and no other vertices, and apply Lemma 5.15 to the sequence $\left(C_{(z \cap K)}^{\alpha_{i}}, B_{(z \cap K)}^{\alpha_{i}}\right)$,
and the set $\mathcal{Z} \cap K$, to get $\left(C_{(\mathcal{Z} \cap K)}^{\beta}, B_{(\mathcal{Z} \cap K)}^{\beta}\right)$. Then because $B_{(\mathcal{Z} \cap K)}^{\beta}$ strictly contains every $B_{(\mathcal{Z} \cap K)}^{\alpha_{i}}$ and hence every $B_{(\mathcal{Z} \cap K)}^{\alpha}$, and $(\mathcal{Z} \cap K)$ is a tail of every vertex of every T_{α}, we have $T_{\alpha} \prec T_{\beta}$ for every $\alpha<\beta$, as required. If instead N_{1} is finite, let j_{1} be larger than any element of N_{1}.

Suppose that, for some $i \geq 1$, we have defined j_{i} as required. Let $L=$ ($K_{i}, K_{i-1}, \ldots K_{0}$) be any vertex in $T_{\alpha_{j_{i}}}$ whose path to the root is of length i. Since every non-empty tail of L satisfies $B_{L}^{\alpha_{j i}}=B_{L}^{\alpha_{k}}$ for every $k>j_{i}, L$ must also be in $V\left(T_{\alpha_{k}}\right)$ for every $k>j_{i}$. Now consider the set N_{i+1} of integers $k>j_{i}$ such that, for any vertex L in $T_{\alpha_{j_{i}}}$ whose path to the root is of length $i, B_{L}^{\alpha_{k}}$ strictly contains $B_{L}^{\alpha_{k-1}}$.

If N_{i+1} is infinite, let the vertices of T_{β} be the vertices of $T_{\alpha_{j_{i}}}$ whose path to the root is of length at most i. For vertices L whose path to the root is of length less than i, let $B_{L}^{\beta}=B_{L}^{\alpha_{j_{i}}}$ and $C_{L}^{\beta}=C_{L}^{\alpha_{j_{i}}}$. For vertices L whose path to the root is of length i, one possibility is that $B_{L}^{\alpha_{k}}$ is eventually constant for all $k \geq N(L)$. In that case, let $C_{L}^{\beta}=C_{L}^{\alpha_{N(L)}}$ and $B_{L}^{\beta}=B_{L}^{\alpha_{N(L)}}$. The other possibility (which occurs for at least one L, because N_{k+1} is infinite) is that $B_{L}^{\alpha_{k}}$ is not eventually constant, and then we may apply Lemma 5.15 to the sequence ($C_{L}^{\alpha_{k}}, B_{L}^{\alpha_{k}}$) and the set K_{L} (the first term of L) to get $\left(C_{L}^{\beta}, B_{L}^{\beta}\right)$. Then because, for every such L, B_{L}^{β} strictly contains every $B_{L}^{\alpha_{k}}$ and hence every B_{L}^{α}, we have $T_{\alpha} \prec T_{\beta}$ for every $\alpha<\beta$, as required. If instead N_{i+1} is finite, let j_{i+1} be larger than any element of N_{i+1}.

Suppose that j_{l+1} exists, then $T_{\alpha_{k}}=T_{\alpha_{l_{+1}}}$ for every $k>j_{l+1}$, contradicting the fact that our sequence is strictly increasing. Therefore j_{l+1} does not exist, and therefore there is some $i \leq l+1$ for which we fail to define j_{i} and instead find T_{β} as required.

Theorem 5.19

The peripheral circuits of a countable 3 -connected binary co-finitary Bmatroid generate its cycle space.

Proof Let \mathcal{Z} be an arbitrary element of the cycle space of M. We will show that \mathcal{Z} can be expressed as a thin sum of peripheral circuits. Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be a fixed enumeration of the elements of M. Starting with $\mathcal{Z}_{0}=\mathcal{Z}$ and an arbitrary \mathcal{Z}_{0}-bridge B_{0}, we will define $\left(\mathcal{Z}_{i}, B_{i}\right)$ for each i so that B_{i} is a \mathcal{Z}_{i}-bridge, $\left\{e_{1}, \ldots, e_{i}\right\} \subseteq B_{i}$, and $\mathcal{Z}_{i}=\mathcal{Z}_{i-1} \Delta P_{i}^{1} \Delta \ldots \Delta P_{i}^{k}$ where each $P_{i}^{j}, 1 \leq j \leq k$, is a peripheral circuit disjoint from B_{i-1}. Since e_{i} is contained in all B_{l}, for $l \geq i$, it will be disjoint from all of the P_{ℓ}^{j} with $\ell>i$. Therefore the set of all P_{i}^{j} is thin, and its sum is \mathcal{Z}.

Let K be a co-circuit so that $e_{i} \in K$ and $K \cap B_{i-1} \neq \emptyset$. Lemma 5.18 implies that there exist peripheral circuits $P_{i}^{1}, \ldots, P_{i}^{k}$, disjoint from B_{i-1}, so that $\left(P_{i}^{1} \Delta \ldots \Delta P_{i}^{k}\right) \cap$ $K=\mathcal{Z}_{i-1} \cap K$. Let $\mathcal{Z}_{i}=\mathcal{Z}_{i-1} \Delta P_{i}^{1} \Delta \ldots \Delta P_{i}^{k}$. Since \mathcal{Z}_{i} is disjoint from B_{i-1}, Lemma 5.8 implies that there exists a \mathcal{Z}_{i}-bridge B_{i} containing B_{i-1}. Finally, observe that K is a co-circuit of M / \mathcal{Z}_{i} and therefore, since $\left(K \cap B_{i}\right) \neq \emptyset$, we have $K \subseteq B_{i}$ and therefore $e_{i} \in B_{i}$ as required.

5.5 Peripheral circuits in 3-connected graph-like continua

In this section we will show that our results for 3-connected co-finitary binary B-matroids imply generalizations of Tutte's theorems to graph-like continua.

Theorem 5.20

If e is an edge of a 3-connected graph-like continuum \mathcal{G}, there are two peripheral circuits of G whose intersection is exactly e.

Proof Let \mathcal{G} be a 3-connected graph-like continuum. Then, by Lemma 3.34 and an easy argument, there is a 3-connected co-finitary binary B-matroid $\mathcal{M}(\mathcal{G})$ with the same circuits and, therefore, the same cycle space as \mathcal{G}. Therefore, it is only necessary to show that peripheral circuits in $\mathcal{M}(\mathcal{G})$ are peripheral circuits of \mathcal{G}. Suppose that C is a peripheral circuit of $\mathcal{M}(\mathcal{G})$. By definition, $\mathcal{M}(\mathcal{G}) / C$ is connected, and by Lemma $3.35 \mathcal{M}(\mathcal{G}) / C=\mathcal{M}(\mathcal{G} / C)$, so the latter is also connected. Therefore each pair of edges of \mathcal{G} / C is in a common cycle, which implies that \mathcal{G} / C has no cutpoints and therefore that, if c is the point to which C is contracted, there is a path between any two points $x, y \in(\mathcal{G} / C)-\{c\}$ that avoids c. Such a path is also a path between x and y in $\mathcal{G} \backslash C$, and thus C is a peripheral circuit of \mathcal{G}.

Notice that our proof of Theorem 5.16 implies that if $e=u v$ is an element of a countable 3 -connected co-finitary binary B-matroid M, C is a circuit of M with $e \in C$ and B is a C-bridge, there is a peripheral circuit of M containing e and disjoint from B. Let \mathcal{G} be a 3-connected graph-like continuum. Let e be an edge of \mathcal{G}, and apply Theorem 5.16 to obtain one peripheral circuit C_{1} through e. Let N_{u} be a neighbourhood of u avoiding v, and N_{v} be a neighbourhood of v avoiding u. Since \mathcal{G} is 3 -connected, N_{u} contains either part of an edge P_{u} between u and w_{u}, where $w_{u} \notin V\left(C_{1}\right)$, or a vertex $w_{u} \notin V\left(C_{1}\right)$ and an $\operatorname{arc} P_{u}$ between u and w_{u} that avoids C_{1}. Define w_{v} and P_{v} in a similar way. Since C_{1} is peripheral, w_{u} and w_{v} are in the interior of the same C_{1}-bridge, and there is therefore an
$\operatorname{arc} P_{u v}$ between them that avoids C. The union of P_{u}, P_{v} and $P_{u v}$ contains an arc between u and v that avoids C_{1} which, along with e, forms a circuit C_{2}. Now, since $C_{1}-e$ is connected in $\mathcal{G}-C_{2}$, it is all contained in one bridge B of C_{2}. By the form of Theorem 5.16 mentioned above, we may now start with C_{2} to obtain a second peripheral circuit that meets C_{1} in exactly e and its endpoints.

Theorem 5.21

The peripheral circuits of a 3-connected graph-like continuum generate its cycle space.

Proof Let \mathcal{G} be a 3-connected graph-like continuum. By Theorem 5.19, the peripheral circuits of $\mathcal{M}(\mathcal{G})$ generate its cycle space. As observed at the beginning of the proof of Theorem 5.20, the peripheral circuits of $\mathcal{M}(\mathcal{G})$ are peripheral circuits of \mathcal{G}. By Lemma 3.34, the circuits of \mathcal{G} and the circuits of $\mathcal{M}(\mathcal{G})$ are the same and therefore by definition \mathcal{G} and $\mathcal{M}(\mathcal{G})$ have the same cycle space. It follows that the peripheral circuits of \mathcal{G} generate its cycle space, as required.

Chapter 6

Embedding metric spaces in surfaces

6.1 Introduction

In this chapter we give a characterization, for each surface Σ, of the locally connected, compact metric spaces that have an embedding in Σ. The characterization when Σ is the sphere is a result of Richter, Rooney and Thomassen [22]. We show that the general case follows from their result.

We will say that a topological space M contains another topological space N if there is an embedding $f: N \rightarrow M$. The following is a result of Claytor [8] from 1934, independently rediscovered in 2004 by Thomassen [26].

Theorem 6.1

(Claytor [8], Thomassen [26]) A 2-connected, locally connected, compact topological space M has an embedding in the sphere if and only if M is metrizable and does not contain K_{5} or $K_{3,3}$.

The reason that 2 -connection is required in the theorem is as follows. Consider the space T formed by the closed unit disc D along with an $\operatorname{arc} A$, such that A is disjoint from D except at one of its endpoints, which is the center of D. The thumbtack space T is locally connected, compact and metric, but does not embed in the sphere. Indeed, it does not embed in any surface, because the point at the center of D has no planar neighbourhood.

Let M be a compact, locally connected metric space, and let N be any subspace of M. An N-bridge of M is the closure B of a component of $M \backslash N$. The attachments of B are the elements of $B \cap N$, and the residual arcs of B are the closures in N of
the components of $N \backslash B$. If C is a circuit, then two distinct C-bridges, B_{1} and B_{2}, overlap if they are skew or 3-equivalent.

In [22], Richter, Rooney and Thomassen define a family of spaces that resemble the thumbtack space sufficiently closely that they also fail to embed in any surface. These spaces are the generalized thumbtacks.

A generalized thumbtack consists of a web with centre w and a line segment, one end of which is w, and which is otherwise disjoint from the web. A web W with centre w is a closed connected space in which there is a sequence of disjoint circles C_{0}, C_{1}, \ldots satisfying the following two properties:

1. for each $i>0$, there are two overlapping C_{i}-bridges in W, one containing C_{0}, \ldots, C_{i-1} and the other containing C_{i+1}, C_{i+2}, \ldots;
2. every neighbourhood of w contains all but finitely many of the C_{i}.

After explicitly excluding generalized thumbtacks, Claytor's and Thomassen's result can be extended to spaces that are not 2 -connected and, after further excluding the disjoint union of the sphere and a point, it extends to all compact, locally connected metric spaces, whether they are connected or not.

Theorem 6.2

(Richter, Rooney, Thomassen [22]) Let M be a compact, locally connected metric space that does not contain a generalized thumbtack or the disjoint union of a sphere and a single point. Then either M embeds in the sphere, or M contains K_{5} or $K_{3,3}$.

They conjecture that a similar result holds for higher surfaces, and indeed it does. The main result of this chapter is that, for a fixed surface Σ, if M is a compact, locally connected metric space that does not contain: a generalized thumbtack; the disjoint union of Σ and a point; any surface of lower Euler genus than Σ or any member of $\operatorname{Forb}(\Sigma)$, then M embeds in Σ.

An outline of the proof is as follows. Let Σ be a surface. Let M satisfy the hypotheses of the theorem, and let $\mathcal{G}(M)$ be the set of all finite graphs contained in M. If some $G \in \mathcal{G}(M)$ does not embed in Σ, M contains some $G \in \operatorname{Forb}(\Sigma)$ and we are done. Otherwise, if Σ is orientable, let Σ^{\prime} be the lowest genus orientable surface in which every $G \in \mathcal{G}(M)$ embeds. If Σ is non-orientable, let Σ^{\prime} be the lowest Euler genus surface, orientable or not, in which every $G \in \mathcal{G}(M)$ embeds. We will show that in fact M embeds in Σ^{\prime}, and that this implies that M also
embeds in Σ (we use here the fact that M does not contain Σ^{\prime}), completing the proof.

Let $H \in \mathcal{G}(M)$ be a graph that embeds in Σ^{\prime} but not in any surface of lower Euler genus that was a candidate to be Σ^{\prime}. Then every embedding of H in Σ^{\prime} is cellular ([32], see Section 1.2.3). Furthermore, there are only finitely many embedding schemes that may describe the embedding of H in Σ^{\prime}. Recall from Section 1.2.3 that embeddings with the same embedding scheme are equivalent up to homeomorphism by a result of Ringel [23], so, for a fixed embedding scheme, either every embedding of H in Σ^{\prime} realizing that embedding scheme extends to an embedding of M or no embedding of H in Σ^{\prime} realizing that embedding scheme extends to an embedding of M.

We proceed by proving two key lemmas. The first of these says that if H is contained in M, then either a fixed embedding of H in a surface can be extended to an embedding of M in the same surface, or there is a finite graph G containing H and contained in M such that the embedding of H cannot even be extended to an embedding of G. The second says that if we can find embeddings of several different finite graphs $G_{1}, \ldots G_{k}$ in M, all of which (in some sense) use the same copy of H in M, then we can find an embedding of a finite graph G that contains all of $G_{1}, \ldots G_{k}$ as subgraphs. The result follows from these two lemmas by trying to extend every possible embedding of H.

6.2 Combining finite graphs

Lemma 6.3

Let M be a locally connected, compact metric space, let H be a finite graph, and let $f: H \rightarrow M$ be an embedding. Let $G_{1}, G_{2}, \ldots G_{k}$ be finite graphs. For each $i, 1 \leq i \leq k$, let H_{i} be a subgraph of G_{i} that is a subdivision of H and let $f_{i}: G_{i} \rightarrow M$ be an embedding such that $\left.f_{i}\right|_{H_{i}}=f$. Then:

1. there is a finite graph G such that, for each i, G contains a subgraph G_{i}^{\prime} isomorphic to a subdivision of G_{i};
2. the intersection in G of all of the subgraphs G_{i}^{\prime} contains a subdivision H^{\prime} of H;
3. there is an embedding $f^{\prime}: G \rightarrow M$ such that $\left.f^{\prime}\right|_{H^{\prime}}=f$; and
4. for an H^{\prime}-bridge B in $G, f^{\prime}(B) \subseteq B_{M}$ for some $f(H)$-bridge B_{M} in M. For each $f(H)$-bridge B_{M} in M there is at most one H^{\prime}-bridge B in G such that $f^{\prime}(B) \subseteq B_{M}$.

Proof We will prove the existence of G and f^{\prime} satisfying the first three claims of the lemma by induction on k. These claims are:

1. There is a finite graph G such that, for each i, G contains a subgraph G_{i}^{\prime} isomorphic to a subdivision of G_{i};
2. The intersection in G of all of the subgraphs G_{i}^{\prime} contains a subdivision H^{\prime} of H; and
3. There is an embedding $f^{\prime}: G \rightarrow M$, such that $\left.f^{\prime}\right|_{H^{\prime}}=f$.

First, suppose that $k=1$. Then $G=G_{1}$ and $f^{\prime}=f_{1}$ satisfy the claims.
Now suppose that the first three claims of the lemma hold for any smaller value of k. Apply this induction hypothesis to $G_{1}, \ldots G_{k-1}$. This yields a finite graph $G^{(k)}$ such that, for each $i, 1 \leq i \leq k-1, G^{(k)}$ contains a subgraph $G_{i}^{(k)}$ isomorphic to a subdivision of G_{i}. The intersection in $G^{(k)}$ of all of the $G_{i}^{(k)}$ contains a subdivision $H^{(k)}$ of H, and there is an embedding $f^{(k)}: G^{(k)} \rightarrow M$ such that $\left.f^{(k)}\right|_{H^{(k)}}=f$.

We will define a graph G^{\prime}. The vertices of G^{\prime} are all of the vertices of $G^{(k)}$, all of the vertices of G_{k}, and an additional vertex for each point in the intersection of $f_{k}\left(E\left(G_{k}\right) \backslash E\left(H_{k}\right)\right)$ with $f^{(k)}\left(V\left(G^{(k)}\right)\right)$. The edges of G^{\prime} are all of the edges of $G^{(k)}$, along with a path P_{e} for each edge $e \in E\left(G_{k}\right) \backslash E\left(H_{k}\right)$. For each $e=u v$, the path P_{e} is a $u v$-path, and its interior vertices are the points of $f_{k}(e) \cap f^{(k)}\left(V\left(G^{(k)}\right)\right)$, in the order in which they are encountered on the arc $f_{k}(e)$ between u and v. All of these paths form a subdivision $G_{k}^{\prime \prime}$ of G_{k}. Notice that f_{k} also describes an embedding f_{k}^{\prime} of $G_{k}^{\prime \prime}$ in M.

It is easy to check that G^{\prime} satisfies the first two conditions in the induction hypothesis, but the embeddings of $G_{k}^{\prime \prime}$ and $G^{(k)}$ cannot immediately be combined, because they may intersect in interior points of edges. Since f_{k}^{\prime} and $f^{(k)}$ are embeddings, for each pair of edges $e \in E\left(G_{k}^{\prime \prime}\right)$ and $f \in E\left(G^{(k)}\right)$, there are open sets U_{e} and U_{f} of M such that U_{e} does not meet $f_{k}^{\prime}\left(G_{k}^{\prime \prime}\right)$ except in $f_{k}^{\prime}(e)$ and U_{f} does not meet $f^{(k)}\left(G^{(k)}\right)$ except in $f^{(k)}(f)$. Therefore $U_{e} \cap U_{f}$ is an open set of M that only meets the embeddings in $f_{k}^{\prime}(e) \cup f^{(k)}(f)$.

Since M is compact and locally connected, $U_{e} \cap U_{f}$ has only finitely many components. Let K be one of these components. If K is not disjoint from $f_{k}^{\prime}(e) \cap$
$f^{(k)}(f)$, we consider the intersection of K with the closed arc $f_{k}^{\prime}(\bar{e})$. Arbitrarily labelling the (images under f_{k}^{\prime} of the) endpoints of e to be the beginning and the end of the closed arc $f_{k}^{\prime}(\bar{e})$, there is a first and last point of the arc that intersects K. Label these points x and y respectively. We can subdivide the edge e, and replace the arc in $f_{k}^{\prime}(\bar{e})$ between x and y with an arc in K between x and y. Doing this for every pair e, f, we obtain the desired graph G and embedding f^{\prime}.

Finally, we need to modify G so that the fourth condition also holds. Let B_{1} and B_{2} be H-bridges of G such that $f\left(B_{1}\right)$ and $f\left(B_{2}\right)$ are contained in the same $f(H)$-bridge B_{M} of M. We can find an arc starting in $f\left(B_{1}\right)$ and ending in $f\left(B_{2}\right)$, and otherwise contained in the interior of B_{M}. Adding a vertex to G for each endpoint of the arc (subdividing an edge of B_{1} or B_{2} if necessary), and an edge between the two endpoints, we have combined B_{1} and B_{2} into a single H-bridge of G. Repeating this as many times as necessary, we can ensure that G and f also satify the fourth condition, as required.

6.3 Embedding extensions and the main result

We will need the following lemma about distinct bridges of a fixed subspace.

Lemma 6.4

Let M be a compact, locally connected metric space that does not contain $K_{3, \infty}$, and let N be any closed subspace of M. Suppose that $\left\{B_{1}, B_{2}, \ldots\right\}$ is any set of countably many distinct N-bridges of M. There is a unique point $x \in N$ such that if, for each $i \geq 1, x_{i} \in B_{i} \backslash N$, then $\left\{x_{i}\right\}$ converges to x.

Proof Let $\left\{x_{i}\right\}$ be a fixed sequence of points such that, for each $i \geq 1, x_{i} \in B_{i} \backslash N$. Since M is compact, there is at least one point x such that $\left\{x_{i}\right\}$ converges to x. Since M is locally connected, x has a connected neighbourhood. If $x \notin N$, this contradicts the fact that each x_{i} is in a distinct N-bridge, so $x \in N$.

Suppose that there are distinct points $x, y \in N$, and sequences $\left\{x_{i}\right\},\left\{y_{i}\right\}$ converging to x and y respectively, such that, for each $i \geq 1, x_{i}, y_{i} \in B_{i} \backslash N$. Let P_{i} be an arc in B_{i} between x_{i} and y_{i}. Let ρ be the metric of M, and let z_{i} be a point on P_{i} such that $\rho\left(x_{i}, z_{i}\right) \geq(1 / 2) \rho\left(x_{i}, y_{i}\right)$ and $\rho\left(y_{i}, z_{i}\right) \geq(1 / 2) \rho\left(x_{i}, y_{i}\right)$. Since $x \neq y$, the distances between x_{i} and y_{i} are not approaching zero, and therefore no subsequence of $\left\{z_{i}\right\}$ can converge to either x or y, and instead some subsequence of $\left\{z_{i}\right\}$ must converge to a third distinct point $z \in N$.

Let $N(x), N(y), N(z)$ be disjoint connected neighbourhoods of x, y and z respectively. Let I be the set of indices i for which $x_{i} \in N(x), y_{i} \in N(y)$ and
$z_{i} \in N(z)$. For each $i \in I$, there is an arc between x and x_{i} in $N(x)$, an arc between y and y_{i} in $N(y)$, and an arc between z and z_{i} in $N(z)$. The union of these three arcs and P_{i} yields a $K_{1,3}, Z_{i} \subseteq B_{i}$, with vertices z_{i}, x, y, z and edges between z_{i} and each other vertex. Since I is infinite, $\bigcup_{i \in I} Y_{i}$ is a $K_{3, \infty}$ in M, the desired contradiction.

Suppose that N is a subspace of M, and we have an embedding $\Pi: N \rightarrow \Sigma$. In order to extend Π to an embedding of M, we need to describe how each of the bridges of N are embedded. In particular, each bridge will be embedded in some closed face of Π. We can break up the problem of extending Π to an embedding of all of M into separate problems of embedding a set of bridges in each closed face of Π. The following key lemma shows that for each of these subproblems, either we can embed the chosen bridges in the given face of Π, or M contains a homeomorph of a finite graph proving otherwise.

Lemma 6.5

Let Σ^{\prime} be a surface. Let M be a connected, compact, locally connected metric space. Let H be a finite graph and let $f: H \rightarrow M$ be an embedding of H in M. Let Π be a cellular embedding of H in Σ^{\prime}. Let F be a face of Π and let H_{F} be the subgraph of H that bounds F. Let \mathcal{B} be a subset of the bridges of $f\left(H_{F}\right)$ in M, such that each bridge in \mathcal{B} has at least two attachments. One of the following holds:

1. Π can be extended to an embedding Π^{\prime} of $f(H)$ along with all of the bridges in \mathcal{B} such that, for every $B \in \mathcal{B}, \Pi^{\prime}(B) \subseteq F$;
2. M contains a generalized thumbtack; or
3. There is a finite graph G and an embedding $f^{\prime}: G \rightarrow M$ such that:
(a) H is a subgraph of G;
(b) $\left.f^{\prime}\right|_{H}=f$;
(c) for every H-bridge B_{G} of G, there is some $B \in \mathcal{B}$ so that $f^{\prime}\left(B_{G}\right) \subseteq$ B; and
(d) Π does not extend to an embedding Π^{\prime} of G in Σ^{\prime} so that, for every H-bridge B_{G} of $G, \Pi^{\prime}\left(B_{G}\right) \subseteq F$.

Proof Let W_{F} be the facial walk for the face F. We will proceed by induction on the difference between the number of vertices and edges in W_{F} and the number
of vertices and edges in H_{F}. In the base case, every edge and vertex in H_{F} occurs exactly once in W_{F} and so the difference is zero. Let M^{\prime} be the connected, compact, locally connected metric space formed by $f\left(H_{F}\right)$, the union of every $B \in \mathcal{B}$, and a disjoint open disc D with $f\left(H_{F}\right)$ as its boundary.

Suppose that M^{\prime} has an embedding $\Pi_{M^{\prime}}$ in the sphere. Then $\Pi_{M^{\prime}}\left(W_{F}\right)$ is a circle, and $\Pi_{M^{\prime}}(D)$ is an open disc with $\Pi_{M^{\prime}}\left(W_{F}\right)$ as its boundary. Therefore, for each $B \in \mathcal{B}, \Pi_{M^{\prime}}(B)$ is a subset of the face F^{\prime} of $\Pi_{M^{\prime}}\left(W_{F}\right)$ in which D is not embedded. Since $\Pi_{M^{\prime}}\left(W_{F}\right) \cup F^{\prime}$ is a closed disc, it is homeomorphic to $\Pi\left(W_{F}\right) \cup F$, and therefore we may extend Π to Π^{\prime} by using $\Pi_{M^{\prime}}(B)$ for each $B \in \mathcal{B}$.

By Theorem 6.2, if M^{\prime} does not have an embedding in the sphere, then it contains $K_{5}, K_{3,3}$, the disjoint union of a sphere and a point, or a generalized thumbtack. If M^{\prime} contains K_{5} or $K_{3,3}$, it is easy to see that we have a finite graph G, as required.

Suppose that M^{\prime} contains the disjoint union of a sphere S and a point x. Since M^{\prime} is connected, there is an arc in M^{\prime} between x and S, so M^{\prime} also contains a thumbtack. Now suppose that M^{\prime} contains a generalized thumbtack. The center of the thumbtack cannot be in D, and, if it is in some $B \in \mathcal{B}$, then M also contains a generalized thumbtack. Suppose that $x \in f\left(H_{F}\right)$ is the center of a generalized thumbtack T in M^{\prime}. The arc that forms the pin of the thumbtack must be contained in some $B \in \mathcal{B}$, and by assumption B has a second attachment y on $f\left(H_{F}\right)$. Using an arc in B between x and y, we can find a finite graph G, as required. This completes the argument in the base case.

Now suppose that the lemma holds whenever there are fewer than k repeated edges or vertices in W_{F}. Let x be an edge or vertex that is repeated in W_{F}, and let $\left\{x_{1}, \ldots, x_{\ell}\right\}$ be the list of occurences of x in W_{F}. Any sufficiently small open neighbourhood $U(x)$ of $\Pi(x)$ in Σ^{\prime} avoiding $\Pi^{\prime}(H) \backslash \Pi^{\prime}(x)$ partitions into $U_{1}, \ldots U_{\ell}$ where, for each $1 \leq i \leq \ell$, the distance in F between U_{i} and x_{i} is zero, but for $i \neq j$, the distance between U_{i} and x_{j} is not zero. We will say that a subset of Σ^{\prime} avoids x_{i} if it is disjoint from some such U_{i}. Fix some such $U(x)$ and let $U_{M}(f(x))$ be the open neighbourhood $f \circ \Pi^{-1}(U(x))$ of $f(x)$ in M (recall that f is an embedding of H in M).

We claim that only finitely many bridges of $f\left(H_{F}\right)$ have attachments in $f(x)$ but are not contained in $U_{M}(f(x))$. Suppose otherwise, and let y_{1}, y_{2}, \ldots be a countable set of points of M, outside $U_{M}\left(f(x)\right.$), and in different bridges of $f\left(H_{F}\right)$. Since M is compact, there is a limit point y of y_{1}, y_{2}, \ldots in M, and, since M is locally connected, it has a connected neighbourhood. If $y \notin f\left(H_{F}\right)$, this is a contradiction to each of the y_{i} being in different $f\left(H_{F}\right)$-bridges. If $y \in f\left(H_{F}\right)$, we have a contradiction to Lemma 6.4. Let $\chi(x, F)$ be the number of bridges with attachments in $f(x)$ that are not contained in $U_{M}(f(x))$.

For any subset \mathcal{B}^{\prime} of \mathcal{B}, we will say that a function $g: \mathcal{B}^{\prime} \rightarrow\{1,2, \ldots \ell\}$ is valid
if Π extends to an embedding Π^{\prime} of $f(H)$ along with all of the bridges in \mathcal{B}^{\prime}, such that for every $B \in \mathcal{B}^{\prime}, \Pi^{\prime}(B) \subseteq F$ and $\Pi^{\prime}(B)$ avoids every x_{i} for $i \neq g(B)$. Obviously if there is any valid function with domain \mathcal{B}, then there is an embedding Π^{\prime} with the properties required by the lemma.

Let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots\right\}$. Let V_{i} be the set of valid functions $g_{i}:\left\{B_{1}, \ldots, B_{i}\right\} \rightarrow$ $\{1,2, \ldots \ell\}$. Note that every $g_{i+1} \in V_{i+1}$ extends some $g_{i} \in V_{i}$. König's infinity lemma implies that either one of the V_{i} is empty, or there is a function $g: \mathcal{B} \rightarrow$ $\{1,2, \ldots \ell\}$ such that every restriction of g to a finite subset of its domain is valid. We claim that such a function must in fact be valid. This follows by applying the induction hypothesis to a space where x is replaced by distinct points $x_{1}, \ldots x_{\ell}$, and each neighbourhood of x_{i} is the intersection of a neighbourhood of x with the set of bridges $B \in \mathcal{B}$ such that $g(B)=i$. Therefore there is an embedding as required by the lemma, or some V_{i} is empty.

Choose i so that V_{i} is empty. Let $\left\{h_{1}, h_{2}, \ldots h_{k}\right\}$ be a list of all functions from $\left\{B_{1}, \ldots, B_{i}\right\}$ to $\{1,2, \ldots \ell\}$. For every h_{j}, since it is not valid, we apply the induction hypothesis to a space where x is replaced by distinct points $x_{1}, \ldots x_{\ell}$, and, for each $1 \leq k \leq \ell$, each neighbourhood of x_{k} is the intersection of a neighbourhood of x with the set of bridges $B \in\left\{B_{1}, \ldots, B_{i}\right\}$ such that $h_{j}(B)=k$. This yields a graph G_{j} for which h_{j} is not valid. By Lemma 6.3, we combine these to get a finite graph G for which no h_{j} is valid and an embedding f^{\prime} of G in M. If $x=x_{1} x_{2}$ is an edge, then we modify G by adding, for each bridge $B \in\left\{B_{1}, \ldots B_{i}\right\}$ such that $f^{\prime}(G) \cap B \neq \emptyset$, edges e_{1}, e_{2} to G in such a way that $f^{\prime}\left(e_{1}\right), f^{\prime}\left(e_{2}\right)$ are each arcs with one endpoint in B and the other endpoints as close on the arc $f(x)$ to $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ respectively as possible.

Now extend Π to an embedding Π_{G} of G in every possible way. We will show that, for each possible Π_{G}, either Π_{G} extends to the embedding required by the lemma, or there is a finite graph showing that it does not. If no Π_{G} can be extended, one final application of Lemma 6.3 suffices to prove the lemma.

Let Π_{G} be some fixed embedding of G. Consider the set \mathcal{F}^{\prime} of faces of Π_{G} that are subsets of F. Either each of these faces has fewer repetitions in its boundary than F, or at least one has the same number. If every face has fewer repetitions we proceed, as in the proof of Lemma 6.6, by trying allocations of the bridges of $f^{\prime}(G)$ that are subsets of the elements of \mathcal{B} to the faces in \mathcal{F}^{\prime}, applying the induction hypothesis to each face individually, and therefore showing that either Π_{G} extends to the embedding required by the lemma or that there is a finite graph showing otherwise.

Otherwise, suppose that $F_{1} \in \mathcal{F}^{\prime}$ has the same number of repetitions in its boundary as F. This must be because x is an edge and $W_{F_{1}}$ contains repetitions of an edge x_{1} such that x_{1} is part of the path in G that represents the edge x in H. Note that $\chi\left(x_{1}, F_{1}\right)<\chi(x, F)$, because our choice of G guarantees
that the $H_{F_{1}}$-bridges that attach on $f\left(x_{1}\right)$ are actually H_{F}-bridges. Repeat the process, with F_{1} and x_{1} in place of F and x, obtaining G_{1} in place of G. Again, if there is an embedding $\Pi_{G_{1}}$ of G_{1} with a face F_{2} that is a subset of F_{1} and has the same number of repetitions in its boundary, $W_{F_{2}}$ contains repetitions of an edge x_{2} such that x_{2} is part of the path in G_{1} that represents the edge x_{1} in G. Iterating this process, we either are eventually able to succeed by applying the induction hypothesis as described in the previous paragraph, or we obtain an infinite decreasing sequence of faces F, F_{1}, F_{2}, \ldots of embeddings of H, G, G_{1}, \ldots respectively. This is impossible because then $\chi\left(x_{i}, F_{i}\right)$ is an infinite decreasing sequence of non-negative integers.

Lemma 6.6

Let Σ^{\prime} be a surface. Let M^{\prime} be a connected, compact, locally connected metric space that does not contain a generalized thumbtack or the disjoint union of Σ^{\prime} and a point. Let H be a finite graph and let $f: H \rightarrow M^{\prime}$ be an embedding. Let Π be a cellular embedding of H in Σ^{\prime}. Either $\Pi \circ f^{-1}: f(H) \rightarrow \Sigma^{\prime}$ extends to an embedding of M^{\prime} in Σ^{\prime}, or there exists a finite graph G such that:

1. a subdivision H^{\prime} of H is a subgraph of G and Π does not extend to an embedding of G in Σ^{\prime}; and
2. there is an embedding $f^{\prime}: G \rightarrow M^{\prime}$ such that $\left.f^{\prime}\right|_{H^{\prime}}=f$.

Proof Let $\mathcal{F}(\Pi)$ be the set of faces of Π, and let $\mathcal{B}(H)$ be the set of all bridges of $f(H)$ in M^{\prime} with at least two attachments. For any $\mathcal{B} \subseteq \mathcal{B}(H)$, we will call a function $g: \mathcal{B} \rightarrow \mathcal{F}(\Pi)$ valid if, for all faces F of Π, Π extends to an embedding of $H \cup g^{-1}(F)$ so that every $B \in g^{-1}(F)$ is embedded in F. Notice that if there is a valid function with domain $\mathcal{B}(H)$, then combining the extensions of Π into each face F gives an extension of Π to an embedding of M^{\prime}.

Let $\mathcal{B}(H)=\left\{B_{1}, B_{2}, \ldots\right\}$. Let V_{i} be the set of valid functions $g_{i}:\left\{B_{1}, \ldots, B_{i}\right\} \rightarrow$ $\mathcal{F}(\Pi)$. Note that every $g_{i+1} \in V_{i+1}$ extends some $g_{i} \in V_{i}$. König's infinity lemma implies that either one of the V_{i} is empty, or there is a function $g: \mathcal{B}(H) \rightarrow \mathcal{F}(\Pi)$ such that every restriction of g to a finite subset of its domain is valid. We claim that such a g is itself valid. For each $F \in \mathcal{F}(\Pi)$, we apply Lemma 6.5 to F and the bridges in $g^{-1}(F)$. This gives us an embedding Π^{\prime} of all of M^{\prime} except for the bridges of $f(H)$ with only one attachment. Suppose that $x \in f(H)$ is the single attachment of some bridge B_{x}. Since M does not contain a generalized thumbtack, we can extend Π^{\prime} by embedding B_{x} in some face of Π^{\prime} incident with $\Pi^{\prime} \circ f^{-1}(x)$. Therefore either some V_{i} is empty, or there is a valid $g: \mathcal{B}(H) \rightarrow \mathcal{F}(\Pi)$.

Suppose that V_{i} is empty. That is, there is no valid function $g_{i}:\left\{B_{1}, \ldots, B_{i}\right\} \rightarrow$ $\mathcal{F}(\Pi)$. Let $\left\{h_{1}, h_{2}, \ldots h_{k}\right\}$ be a list of all functions from $\left\{B_{1}, \ldots, B_{i}\right\}$ to $\mathcal{F}(\Pi)$. For each $j, 1 \leq j \leq k$, for each $F \in \mathcal{F}(\Pi)$, we may apply Lemma 6.5 to F and the set of bridges $h_{j}^{-1}(F)$. For a fixed j, since M^{\prime} does not contain a generalized thumbtack, and h_{j} is not valid, there is at least one face F_{j} such that, when applying Lemma 6.5 to F_{j} and $h_{j}^{-1}\left(F_{j}\right)$, the third outcome of the lemma holds (if there is more than one such face, choose F_{j} arbitrarily among them).

Therefore, for each j, there is a finite graph G_{j}, such that H is a subgraph of G_{j} and Π does not extend to an embedding Π^{\prime} of G_{j} in Σ^{\prime} such that, for every H-bridge $B_{G_{j}}$ of $G_{j}, \Pi^{\prime}\left(B_{G_{j}}\right) \subseteq F_{j}$. There is an embedding $f_{j}: G_{j} \rightarrow M$ such that $\left.f_{j}\right|_{H}=f$ and, for every H-bridge $B_{G_{j}}$ of G_{j}, there is some $B_{\ell} \in h_{j}^{-1}\left(F_{j}\right)$ such that $f^{\prime}\left(B_{G_{j}}\right) \subseteq B_{\ell}$. We may apply Lemma 6.3 to $G_{1}, G_{2}, \ldots G_{k}$.

From Lemma 6.3, we obtain a finite graph G such that, for each i, G contains a subgraph G_{i}^{\prime} isomorphic to G_{i} and the intersection of all of the G_{i}^{\prime} contains a subdivision H^{\prime} of H; and an embedding $f^{\prime}: G \rightarrow M$ such that $\left.f^{\prime}\right|_{H}=f$. For each ℓ, there is at most one H^{\prime}-bridge B in G such that $f^{\prime}(B) \subseteq B_{\ell}$. Recall that G was formed by combining the G_{j}, which were obtained by applying Lemma 6.5 to the set of bridges $\left\{B_{1}, \ldots B_{i}\right\}$. Therefore, for any H^{\prime}-bridge B in G, there is some ℓ, $1 \leq \ell$, such that $f^{\prime}(B) \subseteq B_{\ell}$.

We claim that Π does not extend to an embedding of G. Suppose otherwise that Π^{\prime} is an embedding of G that extends Π. Let $h:\left\{B_{1}, \ldots, B_{i}\right\} \rightarrow \mathcal{F}(\Pi)$ be partially defined by setting $h\left(B_{\ell}\right)=F$ if there is an H-bridge B of G such that $f^{\prime}(B) \subseteq B_{\ell}$ and $\Pi^{\prime}(B) \subseteq F$.

Since $\left\{h_{1}, \ldots h_{k}\right\}$ is a complete list of functions from $\left\{B_{1}, \ldots, B_{i}\right\}$ to $\mathcal{F}(\Pi)$, there must be at least one $j, 1 \leq j \leq k$ such that h can be extended to h_{j}. Since G_{j}^{\prime} is a subgraph of G, and by the definition of G_{j}, there is an H^{\prime}-bridge $B_{G_{j}^{\prime}}$ of G_{j}^{\prime} such that $\Pi^{\prime}\left(B_{G_{j}^{\prime}}\right) \subseteq F^{\prime}$ for some $F^{\prime} \neq F_{j}$. Furthermore (still from the third outcome of Lemma 6.5), there is some $B_{\ell} \in h_{j}^{-1}\left(F_{j}\right)$ such that $f^{\prime}\left(B_{G_{j}^{\prime}}\right) \subseteq B_{\ell}$. Consider the H^{\prime}-bridge B of G that contains $B_{G_{j}^{\prime}}$. Since $f^{\prime}(B)$ is a subset of some $f(H)$-bridge of M^{\prime}, it must be a subset of B_{ℓ}, and (by the definition of G from Lemma 6.3) B must be the unique H^{\prime}-bridge with this property. Since $\Pi^{\prime}(B) \cap F^{\prime} \neq \emptyset$, we must have $\Pi^{\prime}(B) \subseteq F^{\prime}$ and therefore, by defintion of $h, h\left(B_{\ell}\right)=F^{\prime}$. This implies that $h\left(B_{\ell}\right)=F^{\prime} \neq h_{j}\left(B_{\ell}\right)$, so h cannot be extended to h_{j}, a contradiction. Therefore Π does not extend to an embedding of G.

We are now ready to prove the main result.

Theorem 6.7

Let Σ be a fixed surface and let M be a compact, locally connected metric space that does not contain:

1. a generalized thumbtack;
2. the disjoint union of Σ and a point; or
3. any surface of lower Euler genus than Σ.

Then either M embeds in Σ, or M contains some $G \in \operatorname{Forb}(\Sigma)$.

Proof We will first prove the result for connected M, and then deduce that it is true in general.

Let Σ be a surface. Let M be a connected, compact locally connected metric space that satisfies the hypotheses of the theorem, and let $\mathcal{G}(M)$ be the set of all finite graphs contained in M. If some $G \in \mathcal{G}(M)$ does not embed in Σ, M contains some $G \in \operatorname{Forb}(\Sigma)$ and we are done. Otherwise, if Σ is orientable, let Σ^{\prime} be the lowest genus orientable surface in which every $G \in \mathcal{G}(M)$ embeds. If Σ is non-orientable, let Σ^{\prime} be the lowest Euler genus surface, orientable or not, in which every $G \in \mathcal{G}(M)$ embeds. We will show that in fact M embeds in Σ^{\prime}, and that this implies that M also embeds in Σ (we use here the fact that M does not contain Σ^{\prime}), completing the proof.

Let $H \in \mathcal{G}(M)$ be a graph that embeds in Σ^{\prime} but not in any surface of lower Euler genus that was a candidate to be Σ^{\prime}. Since M is connected, we may suppose that every embedding of H in Σ^{\prime} is cellular ([32], see Section 1.2.3). Furthermore, there are only finitely many embedding schemes that may describe the embedding of H in Σ^{\prime}. Recall from Section 1.2.3 that embeddings with the same embedding scheme are equivalent up to homeomorphism by a result of Ringel [23], so for a fixed embedding scheme either every embedding of H in Σ^{\prime} realizing that embedding scheme extends to an embedding of M or no embedding of H in Σ^{\prime} realizing that embedding scheme extends to an embedding of M.

Let $\left\{\Pi_{1}, \Pi_{2}, \ldots \Pi_{k}\right\}$ be a set of embeddings of H in Σ^{\prime}, one realizing each possible embedding scheme. For each i, applying Lemma 6.6, either Π_{i} extends to an embedding of M in Σ^{\prime}, or there is a finite graph G_{i} and an embedding $f_{i}: G_{i} \rightarrow M$ as described in the lemma.

First, suppose that there is no i such that Π_{i} extends to an embedding of M in Σ^{\prime}. Then by Lemma 6.6 there are finite graphs $G_{1}, G_{2}, \ldots G_{k}$ such that, for each i, Π_{i} does not extend to an embedding of G_{i} in Σ^{\prime}. The graphs $G_{1}, G_{2}, \ldots G_{k}$ and
their embeddings $f_{1}, f_{2}, \ldots f_{k}$ satisfy the conditions of Lemma 6.3. Let G and f^{\prime} be the graph and embedding obtained from that lemma. We claim that G does not embed in Σ^{\prime}. Any embedding of G must extend some embedding Π_{i} of H^{\prime}, but, for each i, Π_{i} does not even extend to an embedding of G_{i}^{\prime} in Σ^{\prime}. So no embedding of G exists and since $G \in \mathcal{G}(M)$, we obtain a contradiction to the choice of Σ^{\prime}.

Therefore, there is some i such that Π_{i} extends to an embedding Π^{\prime} of M in Σ^{\prime}. If $\Sigma^{\prime}=\Sigma$, then we are done. Otherwise, since by assumption M does not contain Σ^{\prime}, there is an open neighbourhood U of Σ^{\prime} homeomorphic to the plane and avoiding the embedded image of M. Removing an open disc contained in U from Σ^{\prime} yields a space homeomorphic to a subset of Σ, so we are done.

Now we consider the general case. Let M be a compact locally connected metric space that satisfies the hypotheses of the theorem. Since M is compact and locally connected, it has only finitely many components, M_{1}, \ldots, M_{ℓ}. For each $i, 1 \leq i \leq \ell$, let Σ^{i} be the lowest genus orientable surface in which M_{i} embeds, and let Σ_{N}^{i} be the lowest genus non-orientable surface in which M_{i} embeds. The special case already proved implies that if Σ is orientable, then Σ^{i} has Euler genus equal to or lower than that of Σ, or M_{i} contains an element of $\operatorname{Forb}(\Sigma)$. Similarly, it implies that if Σ is non-orientable, then Σ_{N}^{i} has Euler genus equal to or lower than that of Σ, or M_{i} contains an element of $\operatorname{Forb}(\Sigma)$.

Assuming no M_{i} contains an element of $\operatorname{Forb}(\Sigma)$, let Π^{i} be an embedding of M_{i} in Σ^{i} and Π_{N}^{i} be an embedding of M_{i} in Σ_{N}^{i}. If $\Pi^{i}\left(M_{i}\right)=\Sigma^{i}$ (or, similarly, if $\Pi_{N}^{i}\left(M_{i}\right)=\Sigma_{N}^{i}$, then M contains the disjoint union of Σ^{i} and a point, which contradicts one of the assumptions on M. So we may suppose that there is some $x \in \Sigma^{i} \backslash \Pi^{i}\left(M_{i}\right)$ (and, similarly, some $x \in \Sigma_{N}^{i} \backslash \Pi_{N}^{i}\left(M_{i}\right)$). There must be an open neighbourhood of x that avoids $\Pi^{i}\left(M_{i}\right)$, because M_{i} is compact. Since Σ^{i} is a surface, we may choose U_{x} to be an open neighbourhood of x, homeomorphic to the plane, and avoiding $\Pi^{i}\left(M_{i}\right)$.

For each $i, 1 \leq i \leq \ell$, choose Π_{i} and Σ_{i} to be either Π^{i} and Σ^{i} or Π_{N}^{i} and Σ_{N}^{i}. Using the open neighbourhoods we found in the previous paragraph, we may combine these embeddings of M_{1}, \ldots, M_{ℓ} to get an embedding of M in the connected sum of $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{\ell}$. Either there is some choice of the Σ_{i} so that this connected sum is Σ (or can be made in to Σ by taking one more connected sum with a surface), in which case M embeds in Σ, or there is not. If not, then, for each $i, 1 \leq i \leq \ell$, let H^{i} be a graph contained in M_{i} that does not embed in a lower genus orientable surface than Σ^{i} and let H_{N}^{i} be a graph contained in M_{i} that does not embed in a lower genus non-orientable surface than Σ_{N}^{i}. Applying Lemma 6.3 to each pair H^{i}, H_{N}^{i}, to obtain H_{i}, and then taking the union of the graphs H_{i} yields a finite graph that does not embed in Σ, completing the proof.

Chapter 7

Future work

Several goals for future research suggest themselves. In particular, any of the following would be interesting.

- A proof of Tutte's Linking Theorem for B-matroids. For finite matroids, a form of the Matroid Intersection Theorem implies the Linking Theorem. Perhaps this is also true for B-matroids?
- An algebraic characterization of B-matroids with no $U_{2,4}-$ minor.
- A topological characterization of B-matroids with no Tutte-minor.
- A more substantial theory of planarity and duality for graphs and graphlike spaces including, for example, uniqueness of duality for 3-connected objects, uniqueness of duality up to Whitney flips for 2-connected objects, simultaneous drawings for dual pairs and straight-line embeddings of planar objects.

Bibliography

The numbers at the end of each entry list pages where the reference was cited. In the electronic version, they are clickable links to the pages.
[1] R.E. Bixby and W.H. Cunningham. Matroids, graphs, and 3-connectivity, pages 91-103. Academic Press, New York, 1977. v, 54
[2] H. Bruhn. The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits. J. Combin. Theory Ser. B, 92:235256, 2004. 8, 54, 65
[3] H. Bruhn and R. Diestel. Duality in infinite graphs. Combin. Probab. Comput., 15:75-90, 2006. v, 8, 46, 51
[4] H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh, and P. Wollan. Axioms for infinite matroids, 2010. Preprint. 12
[5] H. Bruhn and M. Stein. Maclane's planarity criterion for locally finite graphs. J. Combin. Theory Ser. B, 96:225-239, 2006. 8, 54
[6] H. Bruhn and P. Wollan. Finite connectivity in infinite matroids, 2010. Preprint. 20, 21, 22
[7] C.O. Christianson and W.L. Voxman. Aspects of topology. BCS Associates, Moscow, Idaho, second edition, 1998. 42
[8] S. Claytor. Topological immersion of peanian continua in a spherical surface. Ann. of Math., 34:809-835, 1934. 73
[9] R. Diestel. The cycle space of an infinite graph. Combin. Probab. Comput., 14:59-79, 2005. 7, 8
[10] R. Diestel. Graph theory. Springer-Verlag, Heidelburg, New York, third edition, 2006. 2, 4
[11] R. Diestel and D. Kühn. Topological paths, cycles and spanning trees in infinite graphs. Europ. J. Combin., 25:835-862, 2004. 8
[12] J. Edmonds. Submodular functions, matroids, and certain polyhedra, pages 69-87. Gordon and Breach, New York, 1970. 30
[13] D.A. Higgs. Matroids and duality. Colloq. Math., 20:215-220, 1969. v, 12, 14
[14] D. König. Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesselschaft, Leipzig, 1936. 4
[15] S. MacLane. A combinatorial condition for planar graphs. Fund. Math., 28:22-32, 1937. 4
[16] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math., 12:6-26, 1999. 6
[17] B. Mohar and C. Thomassen. Graphs on surfaces. Johns Hopkins University Press, Maryland, 2001. 6
[18] J.R. Munkres. Topology. Prentice Hall, Inc. Upper Saddle River, New Jersey, second edition, 2000. 5
[19] J.G. Oxley. Infinite matroids, pages 73-90. Cambridge University Press, 1992. 13
[20] J.G. Oxley. Matroid theory. Oxford University Press, USA, 2000. 2, 3
[21] R. Rado. Axiomatic treatment of rank in infinite sets. Can. J. Math., 1:337-343, 1949. 12
[22] C. Thomassen R.B. Richter, B. Rooney. On planarity of compact, locally connected, metric spaces. Combinatorica. to appear. v, 1, 46, 73, 74
[23] G. Ringel. The combinatorial map colour theorem. J. Graph Theory, 1:141155, 1977. 6, 75, 83
[24] B. Rooney. Maclane's theorem for graph-like spaces. Master's thesis, University of Waterloo, 2008. 9
[25] C. Thomassen. Planarity and duality of finite and infinite graphs. J. Combin. Theory, Ser. B, 29:244-271, 1980. v, 46, 50
[26] C. Thomassen. The locally connected compact metric spaces embeddable in the plane. Combinatorica, 24:699-718, 2004. 73
[27] C. Thomassen and A. Vella. Graph-like continua, augmenting arcs, and menger's theorem. Combinatorica, 28:595-623, 2008. v, 9, 10
[28] W.T. Tutte. atroids and graphs. Trans. Amer. Math. Soc., 90:527-552, 1959. v, 3, 58, 59
[29] W.T. Tutte. How to draw a graph. Proc. London Math. Soc., 13:743-768, 1963. v, 1, 53
[30] A. Vella and R.B. Richter. Cycle spaces in topological spaces. J. Graph Theory, 59:115-144, 2008. 8, 54
[31] H. Whitney. Planar graphs. Fund. Math., 21:73-84, 1933. 2
[32] J.W.T. Youngs. Minimal imbeddings and the genus of a graph. J. Math. Mech., 12:303-315, 1963. 6, 75, 83
[33] M. Zorn. A remark on method in transfinite algebra. Bull. Amer. Math. Soc., 41:667-670, 1935. 4

Index

abstract duals, 2
Alexandroff compactification, 8
attachments, 73
avoid, 56
B-matroid, 12
basis, 11
binary, 24
binary matroid, 3
bridge, 10, 53, 54, 73
bridges, 1
Bruhn-Diestel, 46
cellular, 6
circuit, 10, 11
circuit matroid, 2
closed, 17
closure operator, 17
cofin(M), 48
cofinitary B-matroids, 12
cofinitary limit, 36
connected, 21
continuum, 5
contraction, 11
copyright
author's declaration, iii
cycle space, 3,54
degenerate bridge, 4
deletion, 11
dependent, 11
dominates, 7
double rays, 7
dual, 11
edge, 5
edge space, 8
embedding, 6
embedding scheme, 6
end, 7
equipartite, 58
Euler genus, 6
eventually dependent, 34
eventually in, 37
eventually independent, 34
extension tree, 65
face, 6
fin(M), 48
finitary B-matroid, 11
finitary limit, 34
finitely separable, 8
Forb(Σ), 6
forward image, 40
Freudenthal compactification, 8
generalized thumbtacks, 74
genus, 6
good extension tree, 66
graph-like space, 9
graphic matroid, 3
hyperplane, 11
independence space, 11
independent, 11
infinitely often in, 37
König's infinity lemma, 4
Kuratowski minor, 3
limit B-component, 40
lists, 65
locally connected, 5
MacLane's planarity criterion, 4 minor, 9
minor sequence, 33 , 38
non-degenerate bridge, 4
non-orientable, 6
ordinals, 5
orientable, 6
overlap, 56
overlap graph, 56
peripheral circuit, 4, 53, 54
pre-independence space, 11
primary arc, 57
primary circuit, 57
primary segment, 57
projection, 40
rank function, 30
ray, 7
residual arcs, 73
segment, 56
separation, 21
simplicial, 6
skew, 58
spanning, 11
surface, 5
tail, 7
thin sums, 54
Thomassen dual, 46
thumbtack space, 73
transfinite induction, 5
Tutte minor, 3
Tutte-connected, 26
Tutte-separation, 26
underlying graph, 48
weakly Hausdorff, 5
web with centre $w, 74$
zero-dimensional, 5
Zorn's Lemma, 4

