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Abstract 
Monitoring and debugging distributed systems is inherently a difficult problem. Events 

collected during the execution of distributed systems can enable developers to diagnose 

and fix faults. Process-time diagrams are normally used to view the relationships between 

the events and understand the interaction between processes over time. A major difficulty 

with analyzing these sets of events is that they are usually very large. Therefore, being 

able to search through the event-data sets can enable users to get to points of interest 

quickly and find out if patterns in the dataset represent the expected behaviour of the 

system. 

A lot of research work has been done to improve the search algorithm for finding 

event-patterns in large partial-order datasets. In this thesis, we improve on this work by 

parallelizing the search algorithm. This is useful as many computers these days have 

more than one core or processor. Therefore, it makes sense to exploit this available 

computing power as part of an effort to improve the speed of the algorithm. The search 

problem itself can be modeled as a Constraint Satisfaction Problem (CSP). We develop a 

simple and efficient way of generating tasks (to be executed by the cores) that guarantees 

that no two cores will ever repeat the same work-effort during the search. Our approach is 

generic and can be applied to any CSP consisting of a large domain space. We also 

implement an efficient dynamic work-stealing strategy that ensures the cores are kept 

busy throughout the execution of the parallel algorithm. We evaluate the efficiency and 

scalability of our algorithm through experiments and show that we can achieve 

efficiencies of up to 80% on a 24-core machine. 
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Chapter 1 

Introduction 

Applications developed to run with various components on several computers have been 

around for many years. The benefits of such distributed applications are important to both 

software engineers and end-users. To software engineers, distributed systems make it 

possible to design applications in which components are decoupled. This makes software 

maintenance and re-use more feasible. To the end-users, distributed systems are more 

scalable and provide a lot of performance benefits. In addition, the prevalent use of multi-

core computers has also increased the desire for more applications to work seamlessly 

across several cores.  

 

1.1. Problem Statement 

The benefits of distributed systems are accompanied by challenges. Such systems are 

more complex than standalone applications and are more challenging to monitor and 

debug. This complexity arises from the unpredictable behavior of the system, caused by 

the execution of concurrent programs and the absence of any guarantees about the way 

their execution will interleave. This makes it more difficult for developers to reproduce a 

problem, thereby increasing the time and effort required to diagnose and fix a bug. 

In order to aid the debugging of distributed systems, they are usually set up to 

emit logging information that describes their execution. These logs are usually very large 

containing a copious amount of events. This makes it more difficult to analyze and 
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understand the execution history of the system when trying to fix faults. Another 

difficulty with analyzing such logs is that distributed systems have no global clock. 

Therefore, when comparing the timestamp of an event occurrence on one computer to 

that of another event that occurred on another computer, one may come to erroneous 

conclusions because these timestamps may not necessarily reflect the order in which the 

events actually occurred. To this end, several tools have been developed to make 

debugging of these systems easier. This thesis focuses on improving one such tool.  

 

1.2. Thesis Contributions 

In this thesis, we improve a monitoring and debugging tool called the Partial-Order Event 

Tracer (POET). POET is capable of representing the execution history of distributed 

systems in a partial-order using logical timestamps. It provides facilities for both offline 

and online monitoring of the system, viewing process abstractions or clusters, and 

viewing abstract or compound events. In addition, POET provides an expressive 

language that enables users to specify complex patterns and search for them in large 

event datasets. This can be useful when diagnosing faults such as performance 

bottlenecks, race conditions or improper access of resources arising due to poor 

synchronization among threads. Extensive research work has gone into the development 

of this tool [8, 13, 22, 25, 32, 35, 36, 39, 42] but more improvements are needed.  

Our work focuses on improving the search algorithm for finding event patterns of 

interest by parallelizing the algorithm for execution on a shared-memory multi-core 

system. As we will see later, the search problem in POET can be modeled as a Constraint 

Satisfaction Problem (CSP) and we use this model as a basis for developing an efficient 

parallel algorithm. The main thesis contributions are as follows: 

a) We employ the technique introduced by Habbas et al. [20] for distributing the 

search space (i.e., the large event dataset) into several tasks that can be handled by 

various cores. We extend Habbas’ technique by developing a method for task 

distribution that can be applied to CSPs with a large domain space. We include 



 3 

rules to be used during task generation in order to avoid duplicate work-effort 

among the cores. 

b) We analyze two approaches for search-space distribution and make a 

recommendation as to which approach is more suitable for the pattern-search 

problem in POET. 

c) We provide optimizations to the parallel algorithm in order to deal with patterns 

that have certain unique properties. 

d) In order to ensure that all processors are busy throughout most of the algorithm’s 

execution time, we develop a hybrid method of task distribution by initially 

dividing the search space into tasks before processors begin the search and then 

allowing processors to steal work from others as they become idle, otherwise 

called dynamic work-stealing. 

e) Finally, we show in experimental results that the parallel algorithm is scalable 

providing efficiencies of up to 80% on 24 cores. 

 

1.3. Thesis Overview 

This thesis is organized as follows: Chapter 2 provides an overview of POET, detailing 

its architecture and its major features. It includes the algorithm used for generating 

logical timestamps, the language used for representing event patterns, and the algorithms 

used in the search. Chapter 3 introduces related work in the area of parallelizing CSPs. 

Chapter 4 describes in detail the approaches we developed for generating tasks, the rules 

involved, and the optimizations to the parallel algorithm. Chapter 5 shows the 

experimental results obtained from the parallel algorithm and makes recommendations on 

the number of tasks to generate given a certain number of cores. Chapter 6 describes the 

dynamic work-stealing algorithm used for load-balancing. It also includes some 

experimental results of the work-stealing algorithm as well as tests showing the 

scalability of the parallel algorithm. We conclude with Chapter 7, which provides a 

summary of the results and identifies areas of future work. 
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Chapter 2 

Event Models in Distributed Systems 

2.1. Debugging Distributed Systems 

As previously mentioned, debugging distributed systems is a very hard problem 

and several techniques have been explored in order to tackle this problem. Offline 

approaches describe the situation where logs from the distributed system are analyzed 

after the system’s execution has terminated. A common approach is for the various nodes 

in the system to send log information to a central server.  The logs can then be retrieved 

from the server and analyzed for violations of specific properties. Certain tools like Pip 

[34] make it possible to specify the requirements of the system beforehand using a 

declarative language and then the logs can be checked for violations of these 

requirements. Although there is only a small performance overhead due to local logging 

with this kind of approach, it may be generally difficult for a programmer to specify the 

requirements of the system using the language. 

Another offline approach generally used is the replay technique [16, 28, 41, 42]. 

In this case, trace information is collected from the various nodes and the execution of the 

system can be replayed in order to reproduce non-deterministic errors such as race 

conditions. There is generally a lot more overhead in logging, as more information is 

necessary in order to replay the execution path of the deployed system. It is also difficult 

to replay certain events such as shared-memory access or thread scheduling. Another 

approach to distributed debugging involves the use of virtual machines [21, 28]. In this 

approach, there is a virtual machine located above the hardware, and between the 
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application and the operating system. The nodes in the distributed system and any 

network latencies are then simulated on the virtual machine. This approach provides 

flexibility in debugging (for example, nodes in the system may be slowed down or 

stopped when trying to reproduce a race condition), but it may be difficult to efficiently 

simulate all the nodes in a large distributed system on one machine. 

Online approaches to debugging usually involve first specifying properties of the 

system that should not be violated and then checking the system for violations of these 

properties during execution. This method usually involves taking a consistent snapshot of 

the execution and checking for violations in the state recorded in a snapshot. One 

challenge involved here is understanding what size of snapshot is adequate, i.e., a global 

snapshot across all nodes in the system or just of neighbouring nodes [27, 40]. Also, a lot 

of care must be taken in order not to introduce too much performance overhead that will 

significantly alter the normal execution of the distributed system. 

In this thesis we focus on the offline approach to distributed debugging by making 

use of the Partial-Order Event Tracer (POET). POET is a tool that was developed to 

collect and analyze large traces from distributed systems. POET supports both the offline 

and online approaches to monitoring and debugging distributed systems. It was originally 

developed in 1991 by the Shoshin Research Group, and the original implementation was 

written in C and C++. An alternate implementation is written in Java as a plug-in to 

Eclipse [1]. This thesis uses the Java version, called Eclipse POET. In the next section, 

we discuss the architecture of POET in detail.  

 

2.2. POET Architecture 

POET itself is a distributed system consisting of several processes. The target 

programs being instrumented submit events to the event server. These events provide a 

good view of the execution history of the programs. The event server interacts with a 

viewer and a checkpoint process (described below). The viewer communicates with the 

event server to retrieve POET events and then timestamps the events in order to display 

them on a process-time diagram.  
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Figure 2.1: The Architecture of POET 

 

In distributed systems, a process-time diagram is used to visually represent the 

interaction between processes that occurs through message passing via “sends”, 

“receives” or some other sort of messages. Figure 2.2 shows an example of such a 

diagram. Each horizontal line referred to as a “trace” represents a process’s execution in 

time advancing from left to right. A unary event as shown in the diagram is one that is 

not involved in any interaction with other processes. A synchronous event is viewed as a 

single event that occurs simultaneously on two processes with the message exchange 

occurring at the same time on both processes. Vertical directed lines between two single 

events are used to represent synchronous communication. Asynchronous events are 

viewed as originating from one process and terminating on another, and they are used to 

model asynchronous communication between two processes. Slanted directed lines 

represent asynchronous communication. 
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Figure 2.2: A Process-Time Diagram 

 

In order for the viewer to draw the process-time diagrams, the events must first be 

timestamped. Timestamping is done using vector timestamps (as introduced by Fidge 

[15] and Mattern [29]) which grow in size as the number of processes increases. Though 

more time-consuming, timestamping the events is done by the viewer because performing 

it at the server would require a lot of disk space to store the timestamps. Due to the 

runtime costs of timestamping at the viewer, the checkpointer process receives each event 

from the server and timestamps it. It then periodically writes out a snapshot of the 

internal state of the timestamping algorithm. These snapshots are subsequently used by 

the viewer to speed up the process of timestamping the events when drawing the display.  

POET was developed to be target-independent and this is achieved through the 

use of target-descriptor files. These files are used to describe the native events emitted by 

the target programs and map them to POET events. The event server converts the events 

into binary raw-event format in EF files. These files can be converted into a more 

portable format stored in ASCII text in a UEF file. As we will see later, these UEF files 

can be imported into the viewer in Eclipse POET and displayed on the screen. 
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2.3. Event Precedence 

POET uses Fidge/Mattern vector timestamps in order to efficiently determine the 

precedence relationships or causality between primitive events. Developed by Fidge [15] 

and Mattern [29], vector timestamps make it possible to determine precedence 

relationships between events in constant time. In this thesis, we focus on two precedence 

relationships: the happened-before and concurrent relationships as introduced by Lamport 

[26]. 

 

Definition 2.1: 

The happened-before relation is denoted by →, and a primitive event is said to happen 

before another primitive event if any of the following holds: 

1. If a and b are events on the same process and a occurs before b, then a → b. 

2. If a is the send event representing the sending of a message by one process and b 

is the receive event representing the receipt of that message on another process, 

then a → b. 

3. The happened-before relation is transitive, i.e., if a → b and b → c then a → c. 

 

Definition 2.2:  

The concurrent relation is denoted by ||, and a primitive event, a, is concurrent with 

another primitive event, b, if a does not happen before b and b does not happen before a 

(i.e., a !→ b ∧ b !→ a).  

 

Definition 2.3:  

Where a pair of events indicates a synchronous or asynchronous communication between 

two traces, we say that one event is the partner of the other. Partner events are denoted 

by a.b. 
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The above definitions are sufficient to define the relationship between primitive 

events. It is however useful to note that when determining precedence relationships, we 

are mostly interested in comparing primitive events that are not equal. A primitive event 

is uniquely identified by a trace number and an event number, so an event denoted as a  , 

implies that this is the second event that occurred on the first trace (i.e., the subscript is 

the trace number and the superscript is the event number). To determine precedence 

relationships, associated with each primitive event is a timestamp vector, V, of n integers, 

where n is the number of traces in the distributed system being monitored. Each process, 

Pi, maintains a local clock vector denoted by Ci of size n which is used for timestamping 

primitive events. In POET, primitive events are timestamped following the algorithm 

proposed by Fidge as shown below:  

 

1. Each clock vector, Ci is initialized to zero at the beginning of the computation for 

each process Pi. 

2. Whenever process Pi performs a unary event a, its local clock is incremented by 1  

and the timestamp of the event Va is equivalent to Ci, i.e., 

Ci [i] = Ci [i] + 1  

Va = Ci 

 
3. When a process Pi sends an asynchronous message represented by the event a, it 

updates its local clock and timestamp as for unary events and attaches the 

timestamp to the message. 

4. When a process Pj receives the asynchronous message with the timestamp (now 

denoted as Ci
’), it increments position i of Ci

’  and position j of its local clock, Cj, 

by 1 and update the entries in Cj to the maximum of its current value and the new 

values in Ci
’. If b is the receive event then its timestamp Vb, will be set to the 

updated value of Cj. Formally 

Ci
’[i] =  Ci

’[i] + 1 

Cj [j] =  Cj [j] + 1 

∀p ∈ {1,...,n}, Cj[p] = max(Cj [p], Ci
’[p]) 

Vb = Cj 

2 
1 
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5. If a is a synchronous send event of Pi and b is the corresponding receive event on 

Pj, then the local clocks Ci and Cj are set to the maximum of each of the entries in 

Ci and Cj. This can be achieved by the receiver sending a confirmation message 

with its local vector clock back to the sender so that the sender can update its local 

clock.  

Ci [i] = Ci [i] + 1, sender updates local clock upon sending message 

Cj [j] =  Cj [j] + 1, receiver updates local clock upon receipt  

∀p ∈ {1,...,n}, Va [p] = Vb [p] = max(Ci [p] , Cj[p]) 

  

As an extension to Fidge’s algorithm, Cheung [13] proposed that in preparation 

for the next event, the processes involved in the synchronous communication 

should increment the element in its local clock of the partner process, i.e., 

Ci [j] =  Ci [j] + 1 

Cj [i] =  Cj [i] + 1 

 

 

Figure 2.3: Fidge/Mattern Timestamps Example 

 

Time 

P1 

P2 

P3 

a 1 

1 (1,0,0) a 
1 

(2,2,0) 

1 

2 
(0,1,0) a 

a 1 

3 (0,0,1) a 
3 (0,0,2) 

a 

 

3 

1 (3,2,3) 

a 3 (3,2,3) 

a 
2 (0,2,0) 

a 4 
3 (4,3,4) 

 

2 

 

2 

 

2 
 

3 



 11 

Figure 2.3 shows an example of a process-time diagram with the vector 

timestamps following the algorithm above. Here we see that a  is an example of a unary 

event and following Step 2 of the algorithm, its timestamp will be (1,0,0). According to 

Step 4, when P1 receives the asynchronous message from P2 it will increment its local 

clock to (2,0,0) and the timestamp from P2 to (0,2,0). Taking the maximum of both 

clocks will yield a timestamp of (2,2,0) for the receive event a . For the synchronous 

message from P1 to P3, Step 5 will be applied. The local clock at P1 upon sending the 

message is (3,2,0). Upon receipt of the event at P3, its clock will be set to (0,0,3). Taking 

the maximum of each entry of the two clocks at P3 (i.e., maximum of (3,2,0) and (0,0,3)) 

will yield a timestamp of (3,2,3) for the receive event, a . P3 will send a confirmation 

message to P1 along with its local clock enabling P1 to update the timestamp for a  to 

(3,2,3). Both P1 and P3 will increment the other’s entry in their local clocks according to 

the rule by Cheung. Hence, the receive event a   at P3 is (4,3,4) and not (3,3,4). 

The vector timestamps enable us to determine the precedence relationships 

between primitive events in constant time. To determine if an event, a, occurring on 

process Pi happens before another event, b, occurring on process Pj, we simply need to 

check if Va[Pi] < Vb[Pi]. If this is the case then a happens before b. If this is not the case 

and Vb[Pj] < Va[Pj], then b happens before a. To test for concurrency between a and b, 

then we simply need to check that the tests Va[Pi] < Vb[Pi] and Vb[Pj] < Va[Pj] are both 

false. To check if two primitive events, a and b are equal we would need to compare their 

trace and event numbers. In the example above, we can determine that a   happens before 

a   because Va   [P3]  = Va  [3] = 2 < 3 = Va   [1]  = Va  [P1]. Similarly, we compute that      

a   and a   are concurrent because 2 ≮ 0 and 1 ≮ 0.  

Process-time diagrams are helpful in enabling the developer to visually inspect 

the interaction between processes and therefore provide useful information when 

monitoring and debugging distributed systems. The size of the event data-set however 

makes it impossible to fit the entire execution on the screen and scrolling through it is 

also cumbersome. Several approaches have been investigated in order to deal with this 

problem. One approach is through event abstraction and the other is by searching for 

event patterns in the data-set (otherwise known as pattern-search).  
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In event abstraction, primitive events are grouped together into a meaningful unit 

called an abstract or compound event and displayed graphically. Kunz [25] developed an 

approach to automatically combine a number of primitive events, possibly from various 

processes, into a single abstract event. Other manual or semi-automatic approaches that 

allow the user to specify which events to abstract away were investigated by Seeleman 

[35] and Seuren [36]. Graphically, an abstract event in POET is represented by a vertical 

rectangle that stretches over all the processes involved in the event. The intersection 

between the rectangle and a process that is part of this abstract event will be filled, 

otherwise an open intersection signifies that no event from the process belongs to this 

abstract event. For example, in Figure 2.4 primitive events from processes P1, P2, and P5 

make up the first abstract event. 

 

 

Figure 2.4: Abstract Events View 

 

Certain complications arise when defining precedence relationships between 

abstract or compound events. In event modeling for distributed systems the following 

have been proposed for defining the precedence relationships between compound events 

[22, 25]. 
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Definition 2.4:  

A compound event, A, happens before another compound event, B, if all the primitive 

events in A happen before all the primitive events in B. Formally 

 A → B ⇔ ∀a ∈ A, ∀b ∈ B, a → b. 

 

Definition 2.5:  

A compound event, A, happens before another compound event, B, if there exists a 

primitive event in A that happens before another primitive event in B. Formally 

 A → B ⇔ ∃a ∈ A, ∃b ∈ B, a → b. 

 

Definition 2.6:  

A compound event, A, is concurrent with another compound event, B, if neither event 

precedes the other, i.e., 

A || B ⇔ A !→ B ∧ B !→ A 

 

The first definition of the happened-before relationship (Definition 2.4) was found 

to be easier to deal with as it maintains the partial order relationship between both 

primitive and compound events. It was however found to be too restrictive as it was 

sometimes impossible to define happened-before relationships between compound events 

that were clearly related. The second happened-before definition (Definition 2.5) was 

found to be more intuitive though it requires more work to deal with as it breaks the 

transitivity property, i.e., if A → B and B → C, it does not necessarily mean that A → C. 

The definition also contradicts the partial-order relationship as it is possible for a 

compound event A to happen before B and for B to happen before A. In order to deal with 

these problems, Kunz [25] introduced the idea of compound events that are convex.  
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Definition 2.7:  

A compound event made up of a set of primitive events E is said to be convex if and only 

if ∀x, y ∈ E,  x → z → y ⇒ z ∈ E. 

 

Definition 2.8:  

Event sets A and B are disjoint ⇔ A ∩ B = ∅ 

  

Definition 2.7 implies that in a convex event set there are no intervening events 

that are not included in the set. In Figure 2.5, the set of open-circled events is a non-

convex compound event as the dark-filled event is an intervening event. By including the 

dark-filled event, the compound event set becomes convex (See Figure 2.6).  

 

Figure 2.5: Non-Convex Compound Event 
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Figure 2.6: Convex Compound Event  

 

By restricting compound events to the set of events that are convex and disjoint 

(see Definition 2.8), it is possible to maintain the partial-order relationship between 

compound events (except for transitivity) for event sets that do not cross each other (see 

Definition 2.9 [32]). In other words, given two convex compound event sets A and B, it is 

still possible for A → B and B → A to both be true if A and B cross each other.  

 

Definition 2.9:  

The event set A crosses another event set B ⇔∃x0 ∈ A, ∃y0 ∈ B ∧  x0 → y0  ∧ ∃x1 ∈ A, 

∃y1 ∈ B ∧   y1 → x1  ∧ A is disjoint from B. 

 

Definition 2.10:  

The event set A overlaps the event set B ⇔ A ∩ B ≠ ∅ 

 

Following Definitions 2.9 and 2.10, two event sets are said to be entangled if they either 

cross or overlap each other. The entanglement operator ս is used to specify that event 

sets are entangled [32]. 

Time 

P1 

P3 
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Definition 2.11:  

A ս B ⇔ A crosses B ∨ A overlaps B 

 

Definition 2.12:  

A ֗ B ⇔ A does not cross B ∧ A is disjoint from B 

 

By ensuring that event sets are not entangled, the following modification to the 

happens-before relationship between compound events have been proposed [32]. 

 

Definition 2.13:  

A → B ⇔ ∃a ∈ A, ∃b ∈ B ∧ a → b ∧ A ֗ B 

 

The introduction of compound events is not only useful when abstracting away 

primitive events to aid visualization of the process-time diagrams, but also when 

searching for event patterns. Pattern-search is another approach used to cope with the 

large set of events emitted by distributed systems. Pattern-search allows the user to 

specify event patterns that are of interest using a pattern language and then a search 

algorithm finds these patterns in the data-set and displays them to the user. Pattern-search 

essentially allows the user to jump to points of interest on the screen. The next sections 

discuss in detail the pattern language used for defining a pattern and the algorithms used 

to find matches to the pattern. 

 

2.4. Pattern-Search in POET 

Before being able to search for events, there must be a well defined way of specifying 

what is to be found. This is achieved using a pattern language. There has been extensive 

research work focusing on defining pattern languages that can be used to search for 

events from distributed systems [22, 32]. The common parts of the proposed languages 

are the need for a way to specify attributes of an event, compound events or event classes, 
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precedence and concurrency relationships, and a way to combine various pattern 

components. The following sub-section describes the pattern language used in POET. 

 

2.4.1. The Pattern Language 

In the POET pattern language, the most basic element of the pattern is the event class. An 

event class is represented by a 3-tuple that describes the process in which the event 

occurs, the type of the event (e.g., send or receive) and an additional text for including 

useful information. The tuple is represented as [“<process>”, “<type>”, “<text>”]. For 

example, a tuple with all entries empty, [“”, “”, “”], would capture all the primitive events 

in the data-set while a tuple such as [“P1”, “”, “”] represents all the events occurring on 

process “P1”. An event class that has a partner event class would be represented by two 

3-tuples separated by a period. 

The operators in the language are the happened-before or precedence (→), 

concurrent (||), and entanglement (ս ) operators and they specify the constraints between 

the event classes forming a clause. Another element in the language is the logical 

operators OR (∨) and AND (∧). These are used to combine the clauses to specify more 

restrictions on the pattern. For example, a simple pattern such as (A → B) || C ∧ (B → C) 

implies that the search algorithm would find the events from event class A that happen 

before events from B and are concurrent with events from C. Moving on to the next 

clause, the search algorithm would then find events from B that happen before those from 

C. Note that the set of events from B and C that satisfy the second clause do not 

necessarily have to be the same set of events from B and C that satisfy the first clause. 

Most of the initial building blocks of the pattern language were introduced by Jaekl [22]. 
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Figure 2.7: Grammar for the POET Pattern Language 

     predicates ⇒   (predicate “;”)* 

      predicate  ⇒   id “:=” clause 

 |      id variable (“,” variable)* 

clause ⇒    term basicOperator term 

   ⇒    term “!” basicOperator term 

    |      term booleanOperator term 

basicOperator ⇒    “→” 

    |      “||” 

    |      “ս” 

       booleanOperator  ⇒    “∧” 

    |      “∨” 

term ⇒    id 

    |      variable 

    |      class 

    |      class.class 

    |      “(” clause “)” 

class ⇒    “[”process “,” type “,” text “]”     

        variable ⇒     [“$”, “*”, “~”]id 

    id ⇒    alpha(alnum)* 

alpha ⇒    [“a” – “z”, “A” – “Z”, “_”] 

alnum ⇒    [“a” – “z”, “A” – “Z”, “_”, “0” – “9”] 

string   ⇒    [“a” – “z”, “A” – “Z”, “_”, “0” – “9”, “:”, “ ”, “\ t”,           

“*”, “.”, “’”, “(”, “)”]+ 
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Nichols [32] introduced the use of variables to the pattern language, which affect 

how the pattern-search algorithm works. A dollar-sign, $, is used to specify a variable 

belonging to an event class and allows the search algorithm to bind the primitive events 

from that class to the variable. This enables the primitive events to be used as the search 

progresses. To illustrate further, in the previous example, we could replace the event class 

B with a variable $b resulting in the pattern (A → $b) || C ∧ ($b → C). For this pattern, 

the search algorithm will behave differently. Here, the primitive events belonging to B 

that satisfied the constraints in the first clause must be used in satisfying the second 

constraint. This is more intuitive for the user and is probably more desirable. 

Variables could be marked with a universal quantifier (*). This implies that the 

chosen primitive event in the given clause must satisfy all the primitive events associated 

with the variable marked with the universal quantifier. For example, given a pattern       

$a → *b, with $a and *b taken from event classes A and B respectively, implies that the 

event assigned to $a should precede all the events from event class B. Variables could 

also be marked with a tilde, ~, which indicates that the events associated with such 

variables should not be returned as part of the match. So for example, the pattern ~a → B, 

associated with event classes A and B respectively, implies that the search algorithm 

should find events from A that happen before events from B but only return the events 

from B to the user or the next level of the pattern matching process. 

The limited operator which was created much earlier by Jaekl is no longer used 

because the introduction of variables and universal quantifiers is sufficient to replace the 

limited operator. The limited operator given in an example by A → B, means that the 

search algorithm should return only events in A that precede events in B, where no 

occurrence of an event matching C happens both after the match to A and before the 

match to B. With universal quantifiers, this pattern can now be written as ($a → $b) ∧      

($a  !→ *c  ∨ *c !→ $b). Figure 2.7 shows the grammar for the current pattern language 

used in POET. 

C 
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In POET, patterns are specified in an ASCII plain-text file called the pattern file. 

The following table shows a mapping between the formal notation of the language and its 

ASCII format. 

 

Table 2.1: ASCII Format of Pattern Language  

 Formal ASCII 

Happens-before → --> 

Concurrent || || 

AND ∧ & 

Limited A → B A - (C) -> B 

 

Next, we discuss certain features provided by the pattern language that simplify 

writing the pattern file and make it easier to read and follow. Consider a distributed 

application consisting of a server and two clients communicating using TCP sockets. The 

clients establish a connection with the server and then begin sending messages to the 

server. Each client sends 20 consecutive messages to the server (to fill up a buffer) and 

then waits until there is space in the buffer before sending more messages. The clients 

can also receive messages from the server. The clients close the connection after a certain 

number of messages have been sent. A programmer monitoring or debugging this 

application can verify the connections made to the server using the patterns defined in 

Figure 2.8.  

In this figure, it is seen that in writing patterns, one can “declare” variables in 

much the same way as is done in most programming languages. Such declarations make 

it easier to refer to patterns in another more complex pattern. For example, we see that 

“StartConnect” and “DoneConnect” are event classes represented by a 3-tuple as 

described earlier. “StartConnect” given by [“”, “Accept”, “”] means that this event class 

would match any events occurring on any process with an event type of “Accept” and 

with any associated description. The following tuple after the period describes the partner 

event type “Accept_stream” that is associated with each “Accept” event. Line 3 in the 

figure declares variables $sc and *sc_all as associated with the “StartConnect” event 

C 



 21 

class. “ConnectionEstablished” is a pattern that is made up of $sc, $dc and *sc_all 

variables. Much like “StartConnect”, after “ConnectionEstablished” is defined, it can 

represent a “type” for declaring other variables as is seen in Line 6 where *ce_all and $ce 

are declared. The *ce_all and $ce variables can then be used in another pattern as in 

“FirstConnectionEstablished”. The patterns in Lines 5, 7 and 8 enable one to determine 

how many clients established connections to the server, the first connection established 

and the last connection established, respectively. This is just an example of what the 

pattern language allows users to specify and it also shows that the language is flexible 

enough to allow writing very complex patterns that contain compound events. 

 

 

Figure 2.8: Pattern Language Example 

 

2.4.2. Convex Closure versus Re-written Patterns 

We discussed earlier the need to introduce convex events in order to maintain the partial- 

order relationships between compound events. In this section, we will see the implication 

of searching for events that make use of patterns involving compound events. We 

consider two approaches to pattern-search: one that takes the convex closure of the 

compound events during pattern matching and another approach that reduces complex 

patterns into a simpler format.   

 

1. StartConnect := ["", "Accept", ""].["", "Accept_stream",""]; 

2. DoneConnect := ["", "Accept_done", ""].["", "Accept_done_stream",""]; 

3. StartConnect $sc, *sc_all; 

4. DoneConnect $dc; 

5. ConnectionEstablished := ($sc --> $dc) & ((*sc_all !--> $dc) | ($sc !--> *sc_all)); 

6. ConnectionEstablished  *ce_all, $ce; 

7. FirstConnectionEstablished := (*ce_all !--> $ce); 

8. LastConnectionEstablished := $ce !--> *ce_all; 
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Earlier work in POET about searching for patterns that contain compound events 

involved finding the convex closure of the matching set of events during the search 

algorithm [8, 39]. Recall that a set of events is said to be convex if there is no intervening 

event not included in the set that happens before an event in the set and after another 

event in the set. If such an intervening event exists then it must be included in the set of 

events to make it convex. It is clear from the previous section that working with convex 

event sets that do not cross each other enables us to make meaningful precedence tests 

between compound events and avoid situations where a compound event happens both 

before and after another compound event. We now move on to examine searching for 

event patterns that contain compound events. 

 

 

Figure 2.9: Pattern Parse Tree 

 

Given the pattern (A → B) || (C → D) as represented by the pattern parse tree 

shown in Figure 2.9, the search algorithm begins by assigning primitive events associated 

with event classes A and B at the leaves of the tree. These events are then filtered keeping 

only those that satisfy A → B. The algorithm would then find the convex closure of these 

remaining pairs of events. Similarly, the algorithm would find events that match C → D 

and then find their convex closure. With the convex event sets from the left-hand and 

|| 

→ 

A B C D 

→ 



 23 

right-hand side of the tree, the algorithm would then determine which events satisfy the 

concurrent operator according to Definition 2.6 and return this set to the user. 

Experiments showed that finding the convex closure is the most expensive part of the 

search algorithm [8, 32]. 

Nichols [32] showed that it is possible to eliminate the need for the finding the 

convex closure by rewriting the pattern (based on certain rules) into a simpler format that 

consists of at most a 2-level hierarchy. The rewritten pattern would consist of a set of 

happens-before relations in conjunctive normal form (CNF). Rewriting is done using 

Definition 2.5 of compound events. For example, given the pattern (A → B) || (C → D)1, 

we begin from left to right and rewrite the pattern as follows. The first component,          

A → B, will be assigned variables and re-written as $a → $b. The same will be done for 

the next component to get $c → $d. Then by definition of concurrency between 

compound events (Definition 2.6),  we can expand the pattern and add the following 

restrictions: $a !→ $c, $a !→ $d, $c !→ $a, $d !→ $a, $b !→ $c, $b !→ $d, $d !→ $b, 

$c !→ $b, $a ≠ $c, $a ≠ $d, $b ≠ $c, and $b ≠ $d. The conjunction of all these 

constraints will form the re-written pattern. 

Furthermore, patterns containing variable modifiers or logical operators like  *, ~, 

!, ∨, and ∧ can be rewritten by applying the definition for compound events, De 

Morgan’s laws, and the mathematical methods for converting boolean expressions into 

CNF form. Though re-written patterns tend to be very verbose, experiments showed that 

pattern-search using this approach is substantially faster than finding the convex closure 

[32]. For this reason, we only consider re-written patterns in this thesis.  

Having gone through some background information that describes the application 

used in this thesis, we move on to previous research work that is more closely related to 

the focus of this thesis. We formally define the pattern-search problem and provide a 

good theoretical background that will enable us to better understand how to parallelize 

the pattern-search algorithm.  

                                                 
1 Example taken from page 101 of Matthew Nichols’ thesis [32]. 
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Chapter 3 

Related Work 

Several problems such as the pattern-search problem in POET can be formalized as 

Constraint Satisfaction Problems (CSPs). In this section, we define CSPs, and then 

briefly describe current sequential algorithms used for solving these problems. Finally, 

we discuss how to parallelize the algorithms for solving this class of problems. 

 

3.1. Introduction 

A CSP is defined by a set of variables X, a set of constraints C, and a set of domains D. 

Each domain is associated with a variable and contains the allowable values for the 

variable. Solving a CSP involves finding an assignment of values to the variables in order 

to satisfy the given set of constraints. More formally, a CSP is given by the following 

definition [31]. 

 

Definition 3.1:  

A Constraint Satisfaction Problem P is given as a tuple P = (X, D, C, R) where 

� X = {x1, x2, ..., xn} is a set of n variables. 

� D = {D1, D2, …, Dn} is a set of n domains and each Di is associated with Xi. 

� C = {C1, C2, …, Cm} is a set of m constraints where each constraint Ci is defined 

by a set of variables {xi1, x i2, ..., xin  } ⊆ X. i 
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� R = {R1, R2, ..., Rm} is a set of m relations where each relation Ri defines a set of 

ni-tuples on Di1 x Di2 x ... x Din   compatible with respect to Ci. In other words, a 

relation Ri defines the combination of values for each of the variables that satisfy 

a constraint Ci. 

 

CSPs are NP-complete [12] because they require an exhaustive search to find a solution 

and the most basic approach is to use a naïve backtracking algorithm. In this algorithm, 

the first step is to find a valid value to assign to the current variable. Once a value is 

found, the algorithm picks the next variable and finds a valid value to assign to it that 

does not conflict with the previously assigned variable(s). If a valid value cannot be 

found, the algorithm backtracks to the last variable and assigns another value hoping that 

this new value will lead to a successful assignment of the next variable. This process is 

repeated until all variables have been assigned. The major limitation of the basic 

backtracking algorithm is that it is exponential in the number of variables, therefore 

several optimizations have been proposed. For example, a heuristic that uses a static 

reordering of variables so that a “good” variable is chosen as the first variable for 

assignment has the effect of reducing the runtime of the search algorithm [38]. 

Another more intelligent approach to solving CSPs is called back-jumping [17] 

This approach is similar to the naïve backtracking algorithm except that during the 

backtrack step, the algorithm jumps to the variable that is hindering the algorithm from 

moving forward. This results in cost savings as the algorithm quickly picks the next value 

of the variable that is the point of failure as opposed to simply choosing the next value of 

the last variable that was assigned. The naïve algorithm that chooses the last variable that 

was assigned may slow down the progress of the algorithm towards finding a solution.  

Another approach called dynamic backtracking [17] is a variation of back-

jumping but instead of losing all the work done after the point of failure, dynamic 

backtracking preserves this work. In other words, when the algorithm “jumps” over 

variables that have already been assigned, and then re-assigns a new value to the variable 

that is the point of failure, it does not change the values of the variables that have already 

been assigned if they are not in conflict with the new value.  Several other optimizations 

and techniques that exist for solving CSPs [6, 7, 23] are beyond the scope of this thesis. 

i 
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3.2. Parallelizing CSPs 

In addition to optimizing the sequential algorithms, additional research work has 

focused on parallelizing such algorithms as a way to improve performance [10, 11, 24, 

30, 33, 37]. The increased use of multi-core computers has made it beneficial to 

understand how to parallelize current solutions in order to make use of the available 

computing power and improve performance.  The goal of most parallelized solutions has 

been to distribute the problem among several cores/processors ensuring that they are 

efficiently utilized in order to get close to a linear-speed up as the number of cores 

increases.  

One of the factors that influences the parallel-algorithm design is the hardware 

architecture of the system. When designing a parallel algorithm to run on systems with 

shared memory and several cores or processors, the focus is usually to prevent 

simultaneous access to the shared memory by the working threads as this usually results 

in performance degradation. On the other hand, for parallel algorithms designed to run on 

traditional distributed systems where the computers are connected via a network and as 

such have distributed memory, the design focus is usually to minimize the message-

passing overhead that occurs during the computation. In this thesis, we focus on work 

done on systems with shared memory and investigate the search-tree approach for CSP 

parallelization. This approach is currently the most promising method of achieving 

parallelization. Other approaches such as domain decomposition [19] which involves 

splitting the CSP into several easier sub-problems do not scale well. 

 

3.2.1. Static Search Tree Distribution 

Static search-tree-distribution methods of parallelizing CSPs involve modeling the 

problem as a tree and splitting it up into sub-trees a priori. The sub-trees are then 

assigned to different threads. In this thesis, we refer to the sub-trees as tasks. In this 

approach, each thread has the entire initial CSP problem and uses an existing sequential 

algorithm to solve the problem on a smaller search space. Research by Habbas et al. [20, 
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24], explored this approach in common CSP problems like the Langford and Golomb 

ruler problems [9, 20].  

The search tree represents all possible combinations of values in the domains. A 

node in the tree represents a value of a variable and each level of the tree corresponds to a 

variable. The l-th level of the tree represents all the possible values of the l-th variable. 

Therefore, given a CSP with n variables, the height of the search tree is n and the values 

of variables traversed when going down the tree from the root node to the leaf node 

represent a potential solution to the CSP. Figure 3.1 shows an example of the search tree 

of a CSP with 3 variables a, b, and c. Assuming each variable has a domain size of k, 

then the cost of finding all solutions is at most the cost of visiting all nodes in the search 

tree which is O(k3).  

 

Figure 3.1: Search Tree of a CSP 

 

Habbas et al. [20] proposed a generic method of generating tasks for parallelism 

from the search tree. In their method, they chose to explore the search tree up to a certain 

depth level d, which would result in up to kd independent tasks (assuming again that the 

domain size of each variable is k). These tasks are then assigned to the processors using 

one of the various task-distribution strategies discussed next. 

 

Task Distribution 

In distributing the tasks among processors, the main challenge is load balancing, which 

ensures that all the processors are busy throughout the execution of the search algorithm. 

The difficulty with load balancing is that the work-effort involved in analyzing each task 
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usually varies. As such, the tasks are said to be imbalanced. More specifically, when 

traversing a particular sub-tree in a depth-first manner, it is possible that the constraints 

between variables at shallow points of the tree fail, in which case the backtracking 

algorithm does not need to go further down into the tree. On the other hand, in another 

sub-tree the algorithm may need to go deep into the tree before needing to backtrack. 

This results in an imbalanced work-effort when solving various tasks. 

 

 

Figure 3.2: Task-Distribution Methods 

 

There are various approaches to task distribution. The simplest method is the 

basic approach whereby the tasks are evenly distributed among the processors a priori 

(i.e., each processor gets NumberOfTasks / NumberOfProcessors tasks). The problem 

here is that it assumes the work-effort of each task is quite similar; as such this method 

usually results in poor performance for CSP problems with imbalanced sub-trees. Figure 

3.2 shows the basic task-distribution method with four processors. 
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 Another approach called “Modulo Number of Processors” aims at balancing the 

tasks among processors better and is shown in Figure 3.2. Here, task T1 is assigned to 

Processor 1, T2 to Processor 2 and continuing until all processors have been given a task 

and then the assignment is repeated beginning from the first processor [20]. In the third 

approach called dynamic task distribution, there is a server or shared resource holding all 

the tasks and each thread simply requests a new task when it has completed its current 

task. Habbas et al. compared the last two task-distribution approaches on the Langford’s 

problem and the dynamic approach performed better. In general, what approach works 

best depends on the particular CSP. Basic task-distribution methods incur less overhead 

but perform miserably for imbalanced search trees while dynamic approaches perform 

better, but with some overhead in task distribution. 

 

3.2.2. Dynamic Work-stealing 

Even with dynamic task-distribution strategies, it is still possible to have load-balancing 

issues where one processor is busy for an undesirable amount of time while the others are 

idle. Therefore, a lot of research has focused on dynamic work-stealing in which a 

processor can give away some of its work to an idle processor after the search has begun 

[14, 30, 33]. Obviously, this method incurs a lot more overhead and so it is important to 

have an efficient implementation when using any form of dynamic work-stealing in order 

to improve the overall performance of the algorithm. In Chapter 6, we develop a work-

stealing strategy for the pattern-search problem in POET. 
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Chapter 4 

Pattern-Search Parallelization  

In this chapter we begin by representing the pattern-search problem in POET as a CSP 

and then we discuss the current sequential algorithm used. We then describe the 

algorithm used to parallelize the search. 

 

4.1. Introduction 

Re-written patterns in POET are represented in Conjunctive Normal Form (CNF) which 

is a set of disjunctions joined together by zero or more logical-AND operators. So for 

example, a pattern-search problem in POET given by ($a → $b ∨ $b → $c) ∧ ($c !→ $d) 

∧ ($a → $c) is a CSP consisting of four variables $a, $b, $c and $d associated with event 

classes A, B, C, and D respectively. There are four constraints: $a happens-before $b, $b 

happens-before $c, $c does not happen-before $d, and $a happens-before $c. The set of 

relations here are all the values in event classes A and B that satisfy the first constraint, 

and all the values in B and C, C and D, and A and C that satisfy the second, third and 

fourth constraints respectively.  

In POET, a solution to a pattern-search problem is an assignment of events to all 

or some of the variables in the pattern. POET allows the user to specify the set of 

variables for which values are to be returned. As discussed earlier, a variable marked with 

a tilde (~) implies that the primitive events associated with that variable should not be 
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returned to the user. Also, given a pattern that includes a variable marked by a universal 

quantifier (*), the search algorithm would only return events for the other variables not 

marked by the asterisk (or a tilde if present).  

The pattern-matching algorithm used by POET is the naïve backtracking 

algorithm. Next, we discuss the details of this algorithm in relation to the pattern-search 

problem in POET and expand on the techniques discussed in Section 3.2.1 to achieve 

parallelism. 

 

4.2. Naïve Backtracking Algorithm 

Given a large set of primitive events belonging to various event classes and a pattern, the 

pattern-search problem involves finding the set of primitive events that satisfy the 

constraints in the pattern. For example, using the previous example ($a → $b ∨ $b →  $c)  

∧ ($c !→ $d) ∧ ($a → $c), the naive backtracking algorithm walks through the pattern 

from left to right assigning values to the variables and checking the constraints. If a 

constraint is satisfied, it moves on to the next constraint and assigns new values to 

unassigned variables. If a constraint is not satisfied with the current assignment, it picks 

the next value in that event class and keeps checking until a value that satisfies the 

constraint is found. If a value is not found, it backtracks to the variable that was last 

assigned and chooses the next value.  

Therefore in this example, the algorithm initially starts out by looking at the first 

happens-before pair, ($a → $b), and assigns a primitive event from A to the variable $a, 

and a primitive event from B to the variable $b. It then checks if the event chosen from A 

happens before the event from B. Assuming that this constraint is satisfied, the algorithm 

skips over the second happens-before pair (since this is a disjunction, only one happens-

before pair needs to be satisfied) and moves on to the only happens-before pair,            

($c !→ $d), in the second disjunction. The algorithm then finds events from C and D that 

satisfy the constraint and moves on to the last happens-before pair ($a → $c). Since $a 

and $c have been previously assigned, the algorithm simply checks if their current values 
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satisfy the constraint. Assuming this is not the case, the algorithm backtracks to the 

previous happens-before pair ($c !→ $d) and chooses the next value for $d. The 

algorithm would have to exhaust all the values from D before going on to pick the next 

value for $c. It would then check for an event from D that happens after the new value of 

$c. When this occurs, the algorithm would move on to the last constraint hoping that the 

current value for $a now happens before the new assignment for $c.  

Note that there are some inefficiencies with this algorithm, as on the first 

backtrack step, it would pick the next primitive event from D that satisfies the third 

constraint and then move to the last constraint repeating the precedence check with the 

same value assigned to $a and $c. It is only after it has backtracked to the third constraint 

several times and exhausted all the values from D for the current assignment of $c that it 

can pick the next value from C and move forward in the search. For now, we ignore this 

inefficiency and simply focus on the basic principles behind the search and how to 

achieve performance improvements through parallelization. Algorithm 4.1 shows a 

listing of the algorithm. 

 

4.2.1. Cost Analysis 

The backtracking algorithm is an exhaustive search that tries all variable-value 

combinations in searching for solutions that match the pattern. It is easy to see that the 

algorithm costs O(kn) where k is the maximum number of primitive events in an event 

class and n is the number of variables in the pattern. 
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Algorithm 4.1 :  Existing Naïve Backtracking Algorithm for Pattern Search 

1. // Begin with the first disjunction 

2. position = 0 

3. disjunction = conjunction.list.get(position) 

4.  

5. // Get the first happens-before pair in this disjunction 

6. hbpPos = 0 

7. hbpPair = disjunction.list.get(hbpPos) 

8. loop forever 
9.       if hbpPair.first.isAlreadyAssigned 

10.             firstValue = hbpPair.first.current() 
11.       else 
12.             firstValue = hbpPair.first.next() 
13.             // No more events for this variable 

14.             if firstValue is null break 
15.       end if 
16.        
17.       loop forever 
18.             if hbpPair.second.isAlreadyAssigned 
19.                    secondValue = hbpPair.second.current() 
20.             else 
21.                    secondValue = hbpPair.second.next() 
22.                    if secondValue is null break 
23.             end if 
24.        
25.             // Check if happens-before relationship is satisfied 
26.             if isSatisfied(firstValue, secondValue) 
27.                    //store values 
28.                    matches.push(firstValue) 

29.                    matches.push(secondValue) 

30.                    if position == conjunction.list.size() 
31.                            // No more disjunctions, end of search 

32.                            return matches 

33.                    end if 
34.                    position = position + 1 
35.                    goto line 3 
36.             else   // constraint not satisfied 
37.                    // Get next happens-before pair in the disjuction 
38.                    if hbpPos < disjunction.list.size() 
39.                           hbpPos = hbpPos + 1 
40.                           goto line 6 
41.                    end if 
42.             end if 
43.       end loop 
44. end loop 
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4.3. Parallel Algorithm 

Given a pattern-search problem in CNF, one approach to parallelizing this problem is to 

divide the pattern into several sub-problems and assign each sub-problem to a different 

thread (i.e., assign disjunctions to different threads). The partial solutions from each 

thread can then be combined into the final solution. Ideally, the sub-problems should be 

independent of each other, allowing each thread to work independently and avoid 

communication.  

Unfortunately, it is difficult to create independent sub-problems as re-written 

patterns usually have a lot more constraints than variables, which makes it difficult to 

have sub-problems that do not share variables. Another problem is that it is difficult to 

estimate the work-effort of each sub-problem and so one sub-problem could be solved 

quickly while another could take a very long time. Such imbalance in work-effort could 

leave some threads busy and others idle, which does not fulfill one of the goals of 

parallelization. For the aforementioned reasons, it is reasonable to quickly conclude that 

dividing the pattern into sub-problems is not a promising approach. Therefore, we focus 

on employing the static search-tree-distribution methods as discussed in Section 3.2.1 in 

order to achieve parallelism.  

In static search-tree distribution, the event-data set is divided into disjoint sub-

trees or tasks that are assigned to the working threads. Each thread has the entire pattern 

and executes the naive backtracking algorithm on its own subset of the event data set. 

When a thread finds a solution it submits it to a master thread and then continues 

searching the current task for more solutions. Upon completion of the current task, the 

thread picks up another task. This process is repeated until all the tasks have been 

completed. The main issues we look at are how to divide the data set into tasks, the 

number of tasks to generate, and ensuring that memory access is localized. As mentioned 

before, the main goal is to keep the threads busy while minimizing the communication 

between threads in order to achieve a high level of parallelism. 
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4.3.1. Task Generation 

In this thesis, we generate tasks by combining the search-tree distribution and task-

distribution techniques described in the previous-work section. Given a search tree, we 

explore two approaches for task generation. The first approach which we call grouped, 

starts out by splitting the variables in the pattern into two sets. The first set is called fixed 

while the other set is called unfixed. Recall that the search-tree-distribution approach 

creates tasks by exploring certain variables up to a particular depth d of the search-tree. 

The fixed set consists of the variables that are initially explored and hence the size of this 

set is d. The remaining variables in the pattern make up the unfixed set. As discussed 

previously, the size of the tasks generated by this approach is at most kd, where k is the 

size of the largest event class. In POET, the value of k could be over 100,000 events, and 

so this approach easily leads to an unmanageable number of tasks that consumes too 

much memory. There could also be a noticeable performance overhead as threads are 

synchronized when picking up their next task. To avoid this, we extend Habbas’ 

approach by grouping the initial set of tasks into larger tasks. We start out with a pre-

configured desired number of tasks S and group the initial set of tasks into approximately 

equal sizes in order to produce S tasks. Note that this approach is similar to the static 

method of task distribution, except that S is not always equivalent to the number of 

processors. 

The grouped approach of task generation divides the search tree into relatively 

equal sub-trees; however, the work-effort involved in running the pattern search 

algorithm on each sub-tree usually differs, leading to idling threads. Since one of our 

goals is to keep all threads busy, we experiment with a variation of the “Modulo Number 

of Processors” task-distribution approach. We call this method scattered and here we 

start out by having S buckets and assign the first task to the first bucket, the second task 

to the next bucket, and so on, until the last bucket is filled. The process is repeated by 

assigning the next task to the first bucket until all tasks have been assigned to buckets. 

The “buckets” then represent the tasks that are assigned to each thread. Figure 4.1 

illustrates the grouped and scattered task-generation methods.  
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Figure 4.1: Grouped vs. Scattered Task-Generation Methods 

 

In our experiments, we compare the two approaches and find that on average the 

grouped method performs better because each task maintains the ordering of events as 

they occurred in the target application. For most of the patterns used, maintaining this 

ordering in each task appears to be more favourable to the pattern-search algorithm than 

striving for more balanced tasks using the scattered approach. More details about the 

experimental setup and results are given in Chapter 5. 

With the approaches discussed, certain questions arise, such as how to choose the 

fixed variables, and what are “good” values for S and d. In POET, Nichols [32] 

introduced a technique for re-ordering the variables in the pattern. The variable with the 

most constraints is placed at the beginning of the pattern. Using variable re-ordering 

resulted in better performance during the pattern-search. Therefore, we maintain this 
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ordering during parallelization by choosing the first d variables as the fixed variables 

after the pattern has been reordered. 

In theory, a “good” value of S is one that is greater than the number of processors 

in order to ensure that there are always tasks available to keep the processors busy. In our 

experiments, S is set to the number of processors, twice the number of processors, four 

times the number of processors, and eight times the number of processors. Note that the 

cost of generating the tasks increases slightly as S increases, so it cannot be arbitrarily 

large. Finally, we begin by setting d to 1 and noting that at this point the number of tasks 

would be equivalent to the domain size of the first fixed variable. If this size is less than 

our desired number of tasks S, we simply increase the depth level until we can generate 

up to approximately S tasks.  

There is a minor note about choosing the fixed variables when dealing with 

patterns that contain universal quantifiers. Recall that when a variable is qualified with a 

universal quantifier (*), then it means the constraint must be satisfied for all primitive 

events of the variable marked by the universal quantifier. Therefore, universally 

quantified variables cannot be fixed variables because each task must contain all the 

primitive events of the universally quantified variable. 

 

4.3.2. Rules for Task Generation 

The task-generation methods discussed involve taking the sub-trees at depth-level d and 

grouping them into larger-sized tasks. Certain rules must be followed when creating these 

groups in order to avoid “duplicate work-effort” when the backtracking algorithm is 

executed. Here, “duplicate work-effort” refers to the scenario where more than one thread 

visits the same set of nodes (i.e., primitive event values) from a top level node to a leaf 

node in the search tree. Note that the nodes here represent the primitive event values.  
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Figure 4.2: Task-Generation Example  

(Grouped: Independent Tasks, Scattered: Duplicate Work) 

 

For example, Figure 4.2 represents the search tree up to the second depth-level for 

a pattern consisting of three variables $a, $b, and $c belonging to event classes A, B, and 

C. The search-tree portion for variable $c is not shown in the figure. The figure shows 

that event class A contains two primitive events a1 and a2, while that of B contains three 

events b1, b2, and b3. If the pre-defined number of tasks to be generated, S, is 2, then a 

valid set of tasks using the grouped approach is shown in the Table 4.1. Note that with 

these tasks, when the backtracking algorithm is run, the sub-tree of task T1 is completely 

independent of T2 as the thread assigned to work on task T1 will never visit a node that is 

already visited or will be visited by the other thread working on task T2.   

 

Table 4.1: Grouped Task Generation Example (Independent Work) 

Tasks / Variables $a $b $c 

T1 a1 b1, b2, b3 All events in C 

T2 a2 b1, b2, b3 All events in C 

 

In the scattered approach, the two tasks end up consisting of the entire search tree 

so both threads end up repeating the exactly the same amount of work. Table 4.2 shows 

the set of tasks in the scattered approach. 
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Table 4.2: Scattered Task Generation Example (Duplicate Work) 

Tasks / Variables $a $b $c 

T1 a1, a2 b1, b2, b3 All events in C 

T2 a1, a2 b1, b2, b3 All events in C 

 

Now, assuming S is 3, the grouped and scattered methods will generate the tasks 

as shown in Figure 4.3.  

 

Figure 4.3: Task-Generation Example  

(Grouped: Duplicate Work, Scattered: Independent Work) 

 

Following the figure, in the grouped approach, the primitive events will be distributed 

into the three tasks as shown in Table 4.3. In this table, different threads working on tasks 

T1 and T2 will end up both exploring values a1 and b1. Also, the threads working on tasks 

T2 and T3 will end up both exploring values a2 and b3. Obviously, splitting the search tree 

in this manner will result in duplicate work-effort thereby degrading the performance of 

the parallel algorithm. Using 3 tasks for the scattered approach does not result in 

duplicate work in this case. The examples show that for both approaches, duplicate work-

effort is possible when generating the tasks. 

 

Table 4.3: Grouped Task Generation Example (Duplicate Work) 

Tasks / Variables $a $b $c 

T1 a1 b1, b2 All values in C 

T2 a1, a2 b1, b3 All values in C 

T3 a2 b2, b3 All values in C 
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In order to avoid such duplicate effort when using either approach for task- 

generation, we follow certain rules when generating tasks. Note that these rules are 

generic enough to be applied to any parallel search-tree implementation of CSPs with a 

large domain space that employs the backtracking algorithm. Previous work mainly 

looked at eliminating useless tasks when it has been determined that a path up to a certain 

depth-level has failed. As such, any other tasks beginning with those initial fixed 

variables can be skipped [24]. In our approach, we focus on eliminating duplicate work 

that could exist in a task when the backtracking algorithm is executed. In addition, these 

rules are applied during task-generation and not when the threads have started working. 

First, we propose the following definitions that simplify the discussion of the rules. 

 

Definition 4.1:  

A fixed node in the search-tree is a node associated with a fixed variable. For example, 

from Figure 4.3, the nodes with values a1, a2, and b1 are fixed nodes. 

 

Definition 4.2:  

A fixed leaf node is a fixed node at depth-level d of the search tree. 

 

Definition 4.3:  

An ancestor node is any fixed node at level 1 to level d - 1. So fixed leaf nodes are not 

considered ancestor nodes. 

 

Definition 4.4:  

An ancestor node of a given node n1 at level l, (1 < l ≤ d) is any fixed node along the 

path to n1 from level 1 to l - 1. 

 

Definition 4.5:  

A node n1 is a perfect sibling of another node n2 if n1 and n2 are on the same level of the 

search-tree and each have child nodes with exactly the same set of values. Note that when 
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looking at an entire search-tree, all the nodes on the same level are perfect siblings of 

each other. This is not necessarily the case for sub-trees as we will see shortly. 

 

Definition 4.6:  

A node n1 is an imperfect sibling of another node n2 if n1 and n2 are on the same level of 

the search-tree with each having a set of values C1 and C2 respectively associated with 

their child nodes and there exists a value in C1 that is not in C2, or vice versa. In other 

words, n1 and n2 do not have exactly the same set of values associated with their child 

nodes. Imperfect siblings only occur when looking at sub-trees. 

 

Given a task Ti, let Fi represent the set of values of the fixed nodes in Ti and let Fil 

represent the set of values for the fixed nodes in Ti at level l. 

 

Definition 4.7:  

Two tasks Ti and Tj developed with sub-trees up to depth level d are disjoint if there exists 

a level l, (1 ≤ l ≤ d), where the intersection of the sets of values of the fixed nodes at that 

level is empty i.e., Fil ∩ Fjl = ∅. 

 

With the above definitions, one rule we need to apply when generating tasks in order to 

avoid duplicate work when the backtracking algorithm is executed is as follows: 

 

Rule 4.1:  

In the set of tasks generated from the entire search tree, each task must be disjoint from 

every other task. 

 

The following theorem proves that if Rule 4.1 is followed then it is not possible to have 

duplicate work. 
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Theorem 4.1: 

If two tasks Ti and Tj are disjoint then the threads Pi and Pj assigned to tasks Ti and Tj 

respectively will never visit exactly the same set of primitive events from level 1 to n of 

the search tree, where n is the height of the tree. 

 

Proof: We prove this by contradiction. Assume the tasks Ti and Tj are disjoint but it is 

possible for Pi and Pj to visit the same set of primitive events from level 1 to n, then it 

means that at each level l in Ti and Tj there is a primitive event e that is present in Fil and 

Fjl that can be visited by both threads. This implies that Fil ∩ Fjl ≠ ∅, ∀l ∈ {1, ..., n}, 

and as such the tasks Ti and Tj cannot be disjoint based on Definition 4.7. Therefore, it 

must be the case if Ti and Tj are disjoint, then Pi and Pj cannot visit the same set of 

primitive events from level 1 to n, which implies there is no duplicate work. ∎ 

 

Based on the premise that the set of tasks for a search tree covers the entire tree (i.e., 

there is no missing work), the next theorem postulates that if a sub-tree representing a 

task has certain properties then it is possible to have duplicate work.  

 

Theorem 4.2: 

If a task Ti has fixed leaf nodes with values z1 and z2 (where z1 and z2 can be equal) that 

have ancestor nodes with different values h1 and h2, respectively, that are imperfect 

siblings, then there must exist another task Tj from the search tree such that Ti  and Tj are 

not disjoint. 

 

Proof: Since the ancestor nodes with values h1 and h2 are imperfect siblings, in task Ti 

either there is a node with primitive event value e that is a child of the ancestor node with 

value h1 but not a child of the ancestor node with value h2 or there is a node with 

primitive event value f that is a child of the ancestor node with value h2 but not a child of 

the ancestor node with value h1 (Definition 4.6). We prove only one case as the proof for 

the other case is similar. 
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Case 1:  We consider the case where in Ti there is a node with primitive event e that is a 

child of the ancestor node with value h1 but not a child of the ancestor node with value h2. 

To show that Ti and Tj are not disjoint, we simply need to show that Fil ∩ Fjl ≠ ∅, ∀l ∈ 

{ 1, ..., d}.  Let the path with node values ni1 → ni2 → .... → (nim = h1) → (ni(m+1)  = e) → 

ni(m+2) →  .... → (nid = z1) be present in Ti. It is easy to see that there must exist another 

task Tj that contains the path with node values (nj1 = ni1) → (nj2 = ni2)  →  .... →  (nj(m-1) = 

ni(m-1)) → (njm = h2) → (ni(m+1) =  nj(m+1) = e) → (nj(m+2) = ni(m+2)) →  .... → (njd = nid = z1) as 

each node on each level in the search tree contain exactly the same child node values 

(i.e., are perfect siblings of each other) and all tasks combined cover the entire search tree 

(i.e., there is no missing work). Note that on the m-th level, we already know that h2 is in 

Ti and Tj so Fim ∩ Fjm ≠ ∅. Therefore, in tasks Ti and Tj, Fi1 ∩ Fj1 = ni1, Fi2 ∩ Fj2 = ni2, 

..., Fi(m-1) ∩ Fj(m-1) = ni(m-1), Fim ∩ Fjm =  h2, Fi(m+1) ∩ Fj(m+1) = e, Fi(m+2) ∩ Fj(m+2) = ni(m+2), 

..., Fid ∩ Fjd = z1 and hence Ti and Tj are not disjoint.  ∎ 

 

Taking note of the above theorem, we employ the following rule when generating 

tasks. 

 

Rule 4.2:  

During task-generation, there should not be any task that has a pair of fixed leaf nodes 

with ancestor nodes (with different values) that are imperfect siblings. 

 

Next, we propose the following lemmas that will enable us to prove that our task- 

generation implementation (described in the next section) ensures that no duplicate work-

effort occurs. 

 

Lemma 4.1: 

There is a unique path from level 1 to each node at any level l in the search-tree, where   

1 ≤ l ≤ n (n is the last level in the search-tree).   
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Proof: This can be easily verified based on the way the search tree is constructed. ∎ 

 

Lemma 4.2:  

Given two unique paths pi and pj from levels 1 to l in a search-tree, there exists a level m 

(1 ≤ m ≤ l) such that the primitive event values representing the nodes at nim and njm are 

not equal.   

Proof: Again, this can be easily verified based on the search-tree structure. ∎ 

 

4.3.3. Task-Generation Implementation 

In this section, we describe the algorithms used for generating tasks in the grouped and 

scattered approaches. Each algorithm takes as input a desired number of tasks to be 

generated, S, and based on the search-tree generates a set of tasks whose size is as close 

to S as possible. The goal is to generate a number of tasks as close to S as possible 

without violating Rules 4.1 and 4.2.  

Recall that the total number of tasks possible at depth level d is given by |D1| * 

|D2| * ...* |Dd|, where |Di| is the domain size of the variable at level i. Using this 

information, we can determine the depth level needed in order to generate up to S tasks 

by simply going down one more level if the current total number of tasks possible is not 

up to S. Now, given a certain depth level d, we describe each algorithm for task 

generation and prove that the algorithms avoid duplicate work-effort among the threads. 

 

Grouped Approach 

I.  Case 1: If d is 1, then we simply divide the total number of nodes at this level (we 

call this M), by S to get the number of nodes in each group (otherwise called the 

group size), g. The algorithm then assigns the nodes at level 1 from positions 1 to g 

to task T1, positions g + 1 to 2g to task T2, positions 2g + 1 to 3g to task T3, ..., 

positions (C-1) g + 1 to Cg to task TS-1, and positions Cg + 1 to M to task TS.  
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It is easy to see that the sets of tasks generated above are disjoint from each 

other as the nodes in level 1 are unique and there is no overlap of nodes during the 

task assignment. Therefore, Fi1 ∩ Fj1 = ∅, ∀i, j ∈ {1, ..., S},  so there is no 

duplicate work-effort. 

 

Case 2: If d is greater than 1, we again set the group size, g, to the ceiling of M / S, 

and then we adjust this value to a new value g’ in order to generate a set of 

relatively equal-sized tasks whose size is as close to S as possible. To understand 

why this adjustment is necessary, we first note that to enforce Rule 4.2 the 

algorithm creates a new task when it gets to the first leaf node under the next sub-

tree rooted at level d -1. This implies that the last task generated from the previous 

sub-tree may not contain up to g’ fixed leaf nodes. This restriction is needed in 

order to avoid generating tasks with fixed leaf nodes that have different ancestor 

nodes that are imperfect siblings (see Figure 4.4).  

 

 

Figure 4.4: Grouped Approach – Enforcing Rule 4.2 
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Without adjusting the group size, we note two problems that occur as a result 

of this restriction. Firstly, we see that if g is greater than half of |Dd|, there will be 

exactly two tasks generated under each sub-tree rooted at level d -1 as the algorithm 

generates a new task starting at the following sub-tree. This produces a set of tasks 

whose size is almost two times the value of S in the worst case. As mentioned 

previously, having too many tasks could reduce the efficiency of the parallel 

algorithm. Secondly, we see that exactly half of the set of tasks generated would 

potentially have a much smaller size than the other half. Having too many unequal-

sized tasks increases the likelihood of introducing a work imbalance among the 

threads which may have been avoided with relatively even-sized tasks (though there 

is no guarantee of this). To avoid the aforementioned problems, when g is greater 

than half of |Dd|, we adjust g using the following technique: 

 

Let λ represent a number between 0.5 and 1 (exclusive) such 

that λ*|Dd| is a threshold value. When g is greater than this 

threshold, it is adjusted to |Dd|; otherwise it is adjusted to half 

of |Dd|. Note that higher values of λ result in a set of tasks 

whose size is much greater than S.   

 

In our implementation, λ was set to 0.707 which ensures that the actual size of 

tasks generated, denoted by S’, is at most 1.414 times the initial desired size, S (see 

Appendix A for details on the relationship between λ, S and S’). Note that when g is 

less than half of |Dd|, it is not adjusted because though we can still have uneven-

sized tasks, the number of tasks with equal sizes will be more than the number of 

tasks with unequal sizes. In fact, it is easy to see that in the worst case, at least 66% 

(i.e., at least 2 under each sub-tree, hence 2 of 3 tasks) of the tasks generated will 

have equal sizes. Also, with the grouped approach, it is impossible for the initial 

group size, g, to be greater than |Dd| as this implies that there was no point going as 

far down as level d in the search tree in order to generate the desired number of 

tasks. Having discussed why and how the group size is adjusted, we move on to 
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proving that the tasks generated using this grouped approached are always disjoint 

from each other. 

 

Proof (Case 2a): If g’ ≤ 0.5|Dd|, then there are two or more tasks whose fixed leaf 

nodes have the same parent node at level d – 1. Consider any two tasks Ti  and Tj, if 

their set of fixed leaf nodes both have the same parent node, then we can easily 

conclude that Fid ∩ Fjd = ∅ as there are no overlapping values when assigning 

fixed leaf nodes to a task.  

If the set of fixed leaf nodes in Ti  and Tj  do not have the same parent node 

then either both tasks have no common value in their set of fixed-leaf-node values 

i.e.,  Fid ∩ Fjd = ∅ or both tasks contain exactly the same set of values associated 

with their fixed leaf nodes, i.e., (Fid ≡ Fjd) ⊂ Dd. This is because the parent nodes 

are perfect siblings and the algorithm always starts a new task when it gets to the 

first fixed leaf node under a new sub-tree and continues the task-generation with a 

group size of g’. Therefore, in the former case when Fid ∩ Fjd = ∅, the tasks Ti and 

Tj are disjoint based on Definition 4.7.  

We now show that when (Fid ≡ Fjd) ⊂ Dd (the latter case), the algorithm 

ensures that Ti  and Tj  are disjoint. According to Lemmas 4.1 and 4.2, we know that 

there is a unique path to each of the parent nodes of the set of fixed leaf nodes in Ti 

and Tj, as such there is a level m with different node values on each of these paths. 

Therefore, Ti is disjoint from Tj  at level m (Fim ∩ Fjm = ∅). ∎ 

 

Proof (Case 2b): If g’ = = = = |Dd|, then any two tasks Ti and Tj have exactly the same set 

of fixed leaf nodes, i.e., Fid ∩ Fjd ≡ Dd and different parent nodes. We see that the 

proof is the same as the latter case of second scenario in Case 2a above and so Ti 

and Tj are disjoint.  Therefore, there is no duplicate work-effort based on Theorem 

4.1. ∎ 
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Scattered Approach 

I.  Case 1: If d is 1, the algorithm simply assigns the nodes (at level 1) at position 1 to 

task T1, position 2 to task T2, position 3 to task T3, ..., position S to TS, and then 

repeats the process by assigning the node at position S + 1 to task T1. Since all the 

nodes at each level in the search tree have unique values then it follows that Ti and 

Tj are disjoint as Fi1 ∩ Fj1 = ∅, ∀i, j ∈ {1, ..., S}. Therefore, there will be no 

duplicate work-effort. 

 

II.  Case 2: If d >1 and S ≤ |Dd|, the algorithm generates the tasks as follows. For 

similar reasons discussed previously, we first adjust S in exactly the same manner 

as the group size in the grouped approach to get the new task size S’. The algorithm 

then assigns the fixed leaf nodes at positions 1 to S’ to the buckets B1 to BS’ 

associated with tasks T1 to TS’. It then repeats the process again filling bucket B1 at 

the next fixed leaf node at position S’ + 1. In order to enforce Rule 4.2, we ensure 

that the first fixed leaf node under a new sub-tree rooted at level d -1 is assigned to 

bucket B1. This ensures that the set of fixed leaf nodes assigned to each task 

remains the same as the algorithm progresses (see Figure 4.5).  

Now we prove that the algorithm guarantees that the tasks generated are 

disjoint from each other. 

 

Proof: As noted before, the algorithm ensures that each task Ti has exactly the same 

set of fixed leaf nodes. Therefore, task Ti is disjoint from another task Tj as            

Fid ∩ Fjd = ∅, ∀i, j ∈ {1, ..., S’} and so there will be no duplicate work-effort. ∎ 
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Figure 4.5: Scattered Approach – Case 2 (S ≤≤≤≤ |Dd|) 

 

Case 3: If d >1 and S > |Dd|, the algorithm generates the tasks as follows. First, we 

adjust S according to Algorithm 4.2 to get the new task size S’. This algorithm sets 

S’ to the total number of fixed leaf nodes (closest to S) under a sub-tree. In this case, 

this adjustment is even more important in order to avoid duplicate work-effort as we 

will see in the proof shortly. The algorithm then fills the buckets B1 to BS’ as in Case 

2. We now prove that this algorithm ensures that there is no duplicate work-effort. 

 

Algorithm 4.2: Adjusting the desired number of tasks (S) 

1. // Initialize variables 

2. S’ = 0, Y = |Dd| 

3. // Loop through each level moving towards the root of the tree 

4. for i = (d - 1) ...  1 
5.    Y’ = Y 

6.    Y = Y * |Di| 

7.    if S ≤ Y break 

8. end 
9. // The method closerTo would return the number Y or Y’ that is closer 

10. // to S  
11. S’ =  closerTo(S, Y’, Y) 

y1 

z1 z|Dd| 

y2 

z1 

In order to ensure that in T1, nodes y1 and y2 are not imperfect siblings, the 

first leaf node under y2 is assigned to task T1 and not T4. This ensures that 

Rule 4.2 is not violated. 
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Figure 4.6: Scattered Approach – Case 3 (S > |Dd|) 

 

Proof: If  S’ = |Dd| then the proof is same as Case 2 above. If S’ > |Dd| then                  

S’ = |Dd| * ...* |Dr|, 1 ≤ r ≤ d – 1 based on Algorithm 4.2. If we consider any two 

buckets Bi and Bj associated with tasks Ti  and Tj in the first sub-tree rooted at the 

first node on level r – 1 (see Figure 4.6), we see that this sub-tree contains the first 

paths pi and pj that are assigned to the buckets Bi and Bj respectively. From Lemma 

4.1, we know that pi and pj are unique and so according to Lemma 4.2, there is a 

level m, (m ≥ r ), where there are unequal nodes on each of these paths. As the 

algorithm moves through each node rooted at level r - 1 and fills the buckets 

associated with T1 to TS’ again, we note that the next paths assigned to each bucket 

will each contain the same sequence of nodes from level r to d since all the sub-
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trees rooted at level r - 1 are identical. Therefore, Ti and Tj are disjoint at level m 

(Fim ∩ Fjm = ∅) and so there is no duplicate work-effort, based on Theorem 4.1. ∎ 

 

4.3.4. Memory Localization 

As previously mentioned, this thesis focuses on parallelization on a multi-core or multi-

processor machine with shared memory. As such, in order to avoid the huge performance 

degradation that occurs when multiple threads access the same memory location, we 

create local objects that are accessed by each thread while the search is running.  

 

Algorithm 4.3: Creating a copy of the Conjunction object for each task 

1. // Create a new Conjunction object containing the same number of        

// Disjunction, HappensBeforePair and  Factor objects. 

2. Conjunction  newConj = origConj.copy() 

 

3. // Lines 4 and 5 are the results of the task-generation step 

4. fixedFactors = getFixedFactors() 

5. unfixedFactors = getUnfixedFactors() 

6. for i = 0 ... origConj.list.size()         //Number of disjunctions 

7.     disj = origConj.list.get(i) 

8.     newDisj = newConj.list.get(i) 

9.     for j = 0 ... newDisj.list.size()   //Number of happen-before pairs 

10.         hbp = disj.list.get(j) 
 

11.         for k = 0 ... fixedFactors.size() 
12.             if fixedFactors.get(k) is hbp.first  
13.                 newDisj.list.get(j).first = fixedFactors.get(k).copy() 
14.            else if fixedFactors.get(k) is hbp.second  
15.                 newDisj.list.get(j).second = fixedFactors.get(k).copy() 
16.            end if 
17.         end for 
18.         for k = 0 ... unfixedFactors.size() 
19.             if unfixedFactors.get(k) is hbp.first  
20.                 newDisj.list.get(j).first = unfixedFactors.get(k).copy() 
21.            else if unfixedFactors.get(k) is hbp.second  
22.                 newDisj.list.get(j).second = unfixedFactors.get(k).copy() 
23.            end if 
24.        end for 
25.  
26.     end for 
27. end for 



 52 

In the POET class structure, the Conjunction object contains the pattern in CNF 

form. As such it consists of a list of Disjunction objects and the constraints between 

variables are represented by a HappensBeforePair object. Each HappensBeforePair 

object contains two variables, each represented by a Factor object that holds the list of 

PrimitiveEvent objects (representing the primitive events) associated with the variable. 

Each task generated has a separate “deep” copy of the Conjunction object and separate 

lists of primitive events. Though the PrimitiveEvent objects associated with the unfixed 

variables would be shared by various threads, we avoid copying these objects as they are 

read-only and do not require thread synchronization. Algorithm 4.3 shows the steps for 

creating a copy of the Conjunction object that contains a subset of the search tree. 

Another object that was localized is a map that contains the timestamp cache. 

POET maintains a list of vector timestamps for each primitive event. This cache is loaded 

into memory before the search algorithm runs and is used to determine the precedence 

relationship between two variables. Therefore, to avoid performance degradation, each 

thread is given a shallow copy of the timestamp cache. Since we are not making copies of 

the timestamp objects, the memory cost here is negligible.  

 

4.3.5. Cost Analysis of Task Generation 

As discussed previously, the cost of task generation is equivalent to the cost of traversing 

the search tree up to a certain depth level d, i.e., O(kd), where k is the size of the largest 

event class. Therefore, it is important to keep d reasonably low in order to reduce the cost 

of task generation. Another additional cost is the cost of creating copies of the 

Conjunction object and the timestamp cache. The cost of making a copy of a Conjunction 

object depends on the number of disjunctions, l, the number of happens-before pairs (i.e., 

the constraints), m, and the number of variables, n.  The cost of going through the outer 

for-loop is l, the cost of the first nested for-loop is m, and the cost of the two innermost 

for-loops is n (i.e., going through the fixed and unfixed variables). Thus the total cost is 

O(l ∗ m ∗ n). From the experiments, we see that the cost of creating the tasks is 



 53 

insignificant compared to the cost of running the search algorithm, so it is usually 

beneficial to run the parallel algorithm over the sequential one. 

 

4.4. Optimization for Universal Quantifiers 

Nichols [32] describes an optimization to the search algorithm for patterns containing 

universal quantifiers, since evaluating such patterns can be very time-consuming. In 

evaluating the pattern ($a → *b), and assuming that $a and *b are associated with event 

classes A and B, the search algorithm would pick a value for $a from A and check if this 

value happens-before each value of *b. If the algorithm finds that this value of $a does 

not happen-before a value of *b, then it moves on to the next value for $a and repeats the 

search beginning with the first value of *b. Nichols hypothesized that due to the ordering 

of primitive events, it is more likely that the next value of $a will fail at the same point or 

a point close to the value of *b which caused the previous value of $a to fail. Based on 

this hypothesis, Nichols proposed that the value of *b that failed should be moved to the 

start of the list of events so that when the next value of $a is picked, the precedence 

check will fail earlier. Experiments showed that this re-ordering of the primitive events 

associated with the universally quantified variable gave a huge performance boost for 

evaluating certain patterns. 

Though this optimization works well in the sequential algorithm, its benefit is not 

fully realized when running the proposed parallel algorithm. This is because the task-

generation phase divides the list of events into various subsets which are handled by 

different threads, so this optimization becomes localized to each task. Following the 

previous example, when a value of *b is moved to the start of the event list, only the 

thread handling this task “sees” the benefit by quickly failing on the next value of $a. 

When the thread picks up its next task, it loses this information and begins with the first 

value of $a and the first value of *b in its new sub-tree search space.  

In order to improve the parallel algorithm when running patterns with universally-

quantified variables, we propose certain changes to the task-distribution algorithm. To 
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simplify the discussion of these changes, let Y = {*y1, *y2, ..., *yn} be the set of universally 

quantified variables in the pattern and Z = {Z1, Z2, ..., Zn} be the set of domains for these 

universally quantified variables, i.e., each Zi  represents the sequence of primitive events 

associated with variable *yi. Now, after a thread completes a task, let Zi’ represent the new 

sequence of primitive events for variable *yi that is produced due to the optimization for 

universally quantified variables proposed by Nichols. The changes to the task-distribution 

algorithm are as follows: 

 

1. First, we divide the set of |T| tasks into |T| / t subsets, where t is the number of 

threads. Each thread is then assigned a subset of the tasks. 

2. Each thread begins by selecting a task from its own subset and running the 

backtracking algorithm as usual. 

3. When a thread completes a task, it selects the next task in its subset (or if there is not 

one, it would select the next available task from another thread’s subset), and for each 

universally quantified variable *yi, the thread would set the variable’s domain Zi to Zi’. 

The thread would then proceed to run the backtracking algorithm on this task using 

the re-ordered set of domains. 

 

Note that because this optimization relies on the order of the primitive events in each 

domain, it naturally favours the grouped task-generation approach. Section 5.2, evaluates 

the benefits of this optimization for patterns containing universal quantifiers. 

 

4.5. Parallel Pattern-Search Architecture 

In this section, we describe the overall architecture of the parallel pattern-search feature, 

the co-ordination among threads, and how this new feature fits into the existing POET 

pattern-search application.  

Some parameters that can be used to configure the parallel algorithm were added 

into the existing poet.properties. The first parameter, poet.core.searcher.mode, is used to 

specify whether to run the sequential algorithm and return one match at a time (value: 
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“default”), or to run the parallel algorithm and return one match at a time (value: 

“parallelOneMatch”), or to run the sequential algorithm and return all matches at once 

(value: “nonParallelAllMatches”), or to run the parallel algorithm and return all matches 

at once (value: “parallelAllMatches”).  

The next parameter, poet.core.searcher.parallel.subtaskfactor (otherwise called 

sub-task factor), is used to determine how many tasks to generate and is specified as a 

factor by which the number of processors/cores should be multiplied. The default value is 

eight meaning that the number of tasks the algorithm should generate is eight times the 

number of cores. The poet.core.searcher.parallel.numthreads parameter specifies the 

number of threads to use and the default value is equivalent to the number of cores 

available. The poet.core.searcher.parallel.taskcreationtype parameter is used to specify 

the technique to be used for task-generation, i.e., the grouped or scattered approach. 

In POET, the pattern-search application begins by parsing a predicate file 

containing the list of patterns. It then populates the timestamp cache and loads the 

primitive events into memory. The user then selects a pattern and the search algorithm is 

invoked. Once a match is found, it is displayed to the user and the user can select a button 

in order to retrieve the next match. When running the sequential algorithm, displaying a 

match to the user is achieved using two threads. The main thread initializes the pattern-

search class, FindFlattenedMatch.java, and creates a search thread that begins the 

pattern-matching algorithm. The main thread then goes to sleep on a semaphore. When 

the search thread finds a match, it wakes up the main thread and then goes to sleep. The 

main thread then displays the match to the user, and if the user requests another match, 

the search thread will be woken up to continue the search from where it left off.  

In the parallel mode (i.e., parallelOneMatch), we achieve a similar execution 

sequence by making use of several threads and counting semaphores. The main thread 

initializes the pattern-search class, ParallelMatchFinder.java, and creates a master thread 

to begin the search. The main thread then goes to sleep in a similar manner. The master 

thread starts out by splitting the variables in the given pattern into fixed and unfixed sets. 

The thread then generates the tasks, with each task containing a copy of the pattern and 

two counting semaphores. The first semaphore, called the master semaphore, is used by 

the master thread and each task has a reference to this semaphore. The second semaphore 
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is used only by the thread executing the task. The master thread then creates the required 

number of searcher threads and goes to sleep on its semaphore. The searcher threads then 

begin executing the backtracking algorithm on their own event-data set. 

 When one of the searcher threads finds a match to the pattern, it acquires a “put” 

lock, inserts the match into a list, inserts its semaphore into a list of semaphores, wakes 

up the master thread, and then releases the “put” lock before going to sleep on its own 

semaphore. The awoken master thread then wakes up the main thread and goes to sleep 

until the user asks for another match. When the user asks for another match, the main 

thread wakes up the master thread which in turn wakes up the search thread whose 

semaphore is at the front of the list of semaphores. If other threads have returned more 

matches, the master thread informs the main thread about it as before, otherwise, it goes 

back to sleep. The use of a semaphore per task resulted in a slight improvement in 

performance relative to when one semaphore was used as the latter approach caused the 

searcher threads to block for longer periods of time when submitting a match. 

When a searcher thread completes a task, it acquires a “get” lock in order to 

retrieve the next available task. Each time a task is completed, a counter is incremented. 

Using this counter, a thread is able to know when it has completed the last task (i.e., 

when the counter is equal to the number of tasks), at which point it wakes up the master 

thread which informs the main thread that there are no more matches.  
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Chapter 5 

Experiments and Results 

5.1. Test Setup 

The parallel algorithm is implemented in Eclipse POET which was developed as an 

Eclipse plug-in using Eclipse 3.3 or later [1]. It also requires the Eclipse Graphical 

Editing Framework (GEF) 3.3 or later and a database that stores the event-data set. The 

databases currently supported are hsqldb [2], MySQL [3], and PostgreSQL [4]. Our 

experiments were performed using the MySQL database. Eclipse POET supports 

importing UEF data sets which are plain text files that contain the events from the target 

environment. Eclipse POET also provides a user interface for viewing the data sets and 

searching for patterns. To import a data set into the database, we start up a second 

instance of Eclipse by choosing “Run” → “Open Run Dialog ...” and then double-clicking 

on “Eclipse Application”. Clicking on “Run” in the pop-up dialog will automatically 

include any plug-ins and source-code packages in the workspace.  

To import a new partial-order data set, a new project must be created via “File” → 

“New Project”. We can then import a new data set by right-clicking on the new project 

and selecting POET’s event-database wizard. The wizard asks for the database to connect 

to, some database credentials, the UEF file, and the target-descriptor file. The target-

descriptor file contains the information needed to map events from the target application 
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into POET events. Once all this information has been entered, the data set is imported 

into the database and we can view the data set on the screen.  

To search for a pattern, we click on the “POET” → “FindPatterns” menu-item 

which brings up a dialog box that enables us to select the pattern file to be used. Figure 

5.1 shows POET’s view of the PVM Life partial-order data set (located at 

poet/model/data/life.8.19.ef.uef). The application that produced this data set consists of 

eight processes. The simulation starts out with a parent process spawning seven processes 

and then sending a message to all these processes. Each child process then selects a 

neighbour and forwards the message to it. The figure shows a “spawn(started)” event and 

then a “spawn(done)” event which signifies that all child processes were started and 

spawned successfully. The “send” and “recv” events represent the events for sending and 

receiving messages respectively. The circled patterns in the figure show the first result 

returned by searching for the “Spawn” pattern. This pattern checks for every 

“spawn(started)” event that happens-before a “spawn(done)” event. 

 

 

 

Figure 5.1: PVM Life Event Data Set 

 

SpawnStart := [“”, “spawn(started)”, “”]; 

SpawnDone := [“”, “spawn(done)”, “”]; 

Spawn := SpawnStart --> SpawnDone; 
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In order to conveniently run batch tests, we use command-line tools to import the 

event data sets and search for patterns instead of the user interface described above. The 

poet.model.importer.UEFImporter tool imports an event data set while the 

poet.core.pattern.Searcher tool is used for pattern matching. The parameters used to 

invoke these tools are shown in Figure 5.2. Note that we used re-written patterns in all the 

experiments. 

 

 

 

 

 

 

Figure 5.2: Command-Line Parameters for POET Tools 

 

 

Figure 5.3: Search-Tool Example 

 

Figure 5.3 shows the results from using the search tool when searching for the 

pattern in Figure 5.1 on the PVM Life data set. The tool displays one matched event per 

line, as a sequence of vector timestamps, as well as the time taken to find that match. The 

Preloading cache: 32 milliseconds (not included in total time) 
============================================== 
Mode [ParallelOneMatch] 
Pattern Init: 8 milliseconds (included in total time) 
Number of threads - 2 
Number of subtasks - 4, time - 6 milliseconds 
1.    96 milliseconds    [[0,8], [0,1]] 
2.    0 milliseconds    [[0,8], [0,3]] 
3.    0 milliseconds    [[0,8], [0,2]] 
4.    0 milliseconds    [[0,8], [0,4]] 
5.    1 milliseconds    [[0,5], [0,8]] 
6.    0 milliseconds    [[0,7], [0,8]] 
7.    0 milliseconds    [[0,6], [0,8]] 
Number of timestamps 7 
Total 7 matches found in 107 milliseconds. 
<5 seconds: 7 
<10 seconds: 0 
<30 seconds: 0 
<60 seconds: 0 
<300 seconds: 0 

UEFImporter: java poet.model.importer.UEFImporter <dbname> <username> -p<password> <UEF> 

<target desc. file> 

 

Searcher:  java poet.core.pattern.Searcher <dbname> <pattern_file> <pattern_name> <mode> <opt> 

   where <mode> is “flat” for re-written patterns OR “no_flat” for the original pattern format 

     and <opt> is “true” to use the optimization for universal quantifiers or “false” otherwise   
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tool also displays the total number of timestamps needed to find all the matches, and the 

total time taken. The last few lines show how many matches were found within 5, 10, 30, 

60, or 300 seconds. Note that the tool finds all matches by simulating the user requesting 

the “next” match so the response time would be similar to the response time when using 

the user interface (assuming the user could click the “next” button very fast). 

 

5.2. Performance Evaluation 

In this section, we compare the performance of the sequential algorithm with the parallel 

version. We also evaluate the performance of the two task-creation strategies. 

Performance is measured based on how long it takes for the algorithm to return all the 

matches for a given pattern. For all the results shown, we deduct the time it takes to 

retrieve the events from the database. In these tests, we use four different data-sets and 

eight different patterns. Several of the patterns are taken from Nichols’ thesis [32];  a few 

additional patterns and larger data sets were also used. We describe the patterns used in 

order to illustrate how pattern matching can guide a developer when diagnosing faults in 

a distributed system. Also, we use larger data sets in order to evaluate the performance of 

the search algorithm as many real-world applications could have up to 100,000 events.  

The first two data sets are taken from the PVM environment. The first one is 

obtained from the distributed merge-sort application containing 16 traces and 138 events 

(binarymerge.16.29.ef.uef). The first pattern from this set is “ConSend8” which finds 

how many instances of eight concurrent “send” events there are in the data set. The 

results show that there are 32 matches. Given that there are 16 traces, it is plausible to 

still find eight concurrent sends with the other eight processes being on the receiving end 

of the message. This type of pattern gives us a sense of how much concurrency the 

application achieves and could help diagnose performance problems. The next pattern is 

“ConSend9” which finds out if there are nine concurrent “send” events during the 

program execution. We expect that this should be impossible and the results return 0 

matches. 
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Figure 5.4: PVM Patterns 

 

The next data set is from the PVM life application whose operation was described 

in the previous section. The data set used here is much larger than the previous one, 

containing 128 traces and 31,098 events, and with a file size of 332 KB. The third 

pattern, “SendSend” which contains a universal quantifier when it is re-written searches 

for two consecutive “send” events. Here, we see the use of the limited operator excluding 

any event between the two “send” events. This pattern returns 127 matches, as expected, 

since the only time consecutive sends occur is at the beginning of the program when the 

parent process sends a message to all the other processes. Any other “send” event from a 

child process would be followed by a “recv” event as the child process must wait to 

receive a message before sending it out to a neighbour. The fourth pattern taken from this 

data set is “SendRecv” and it also contains a universal quantifier when it is re-written. 

This pattern simply counts how many successful data transfers occurred during the 

execution of the program. In this case there are 7678 matches.  

The third data set used was collected from a µC++ application containing an 

intentional bug. The bug sometimes allows a method that should be mutually exclusive to 

be accessed by more than one thread. The data set contains more than 177,735 events 

over eleven traces and is 4.3 MB in size. The fifth pattern is called “ConcurrentMonitors” 

and it checks the number of times more than one thread is present in the method. There 

are 65 occurrences, therefore the bug is discovered. The sixth pattern “StartStop”, verifies 

that threads are started and stopped correctly by counting how many times a “thread 

start” precedes a “thread stop”. 

 

Send := ["", "send", ""]; 

Recv := ["", "recv", ""]; 

ConSend9 := (Send || Send || Send || Send || Send || Send || Send || Send || Send); 

ConSend8 := (Send || Send || Send || Send || Send || Send || Send || Send); 

SendRecv := (Send -(ANY) -> Recv); 

SendSend := (Send -(ANY) -> Send); 
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Figure 5.5: µC++ Patterns 

 

The final data set used was collected from the TCP-socket application as 

described in Section 2.4.1. This data set contains 240,561 events and is about 21MB in 

size. The “FirstConnectionEstablished” and “LastConnectionEstablished” patterns are the 

seventh and final patterns respectively (see Figure 2.8).  

The experiments were run on a Linux Ubuntu SMP server with four 1.8-GHz Six-

Core AMD Opteron processors, for a total of 24 cores, and 66 GB of RAM. L1, L2, and 

L3 cache sizes are 128 KB, 512 KB, and 6144 KB respectively. Each test was repeated 

five times and the results of all patterns (except Patterns 1 and 2) were not more than 5% 

from the average result. Some results from Patterns 1 and 2 differed by up to 10% and 

25% respectively from the average. It is important to note that in both the sequential and 

parallel modes the variable re-ordering algorithm could produce different orderings of the 

same pattern that have very different execution times. This was seen in Pattern 6. For this 

reason, we selected only the test runs that had the same variable ordering. 

The tables below show the average time taken for the existing sequential 

algorithm and the parallel algorithm using two and four cores with a sub-task factor of 

two, as well as the results of the two task-creation strategies. 

 

 

 

 

EnterMonitor1 := ["M1(0x0x9ac5730)", "thread received", ""]; 

EnterMonitor2 := ["M1(0x0x9ac5684)", "thread received", ""]; 

ConcurrentMonitors := EnterMonitor1 || EnterMonitor2; 

ANY := ["", "", ""]; 

ThreadStart := ["", "thread start", ""]; 

ThreadStop := ["", "thread stop", ""]; 

StartStop := (ANY --> ThreadStart) --> ThreadStop; 
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Table 5.1: Execution Time for Sequential and Parallel Algorithms on 2 Cores 

Pattern Sequential Grouped Scattered Grouped Speed-up Scattered Speed-up 

1 41.1 26.5 35.4 1.54 1.15     

2 66.6 42.3 50.1 1.57 1.32  

3 117.6 107.2 129.9 1.09 0.90 

4 305.7 172.6 186.9 1.77 1.63 

5 9.5 5.4 5.3 1.73 1.78 

6 9.8 5.5 5.0 1.78 1.95 

7 24.8 0.9 1.1 27.10 22.54 

8 29.8 1.0 1.1 27.93 26.53 

 

Table 5.2: Execution Time for Sequential and Parallel Algorithms on 4 Cores 

Pattern Sequential Grouped Scattered Grouped Speed-up Scattered Speed-up 

1 41.1 20.8 23.3 1.97 1.83 

2 66.6 20.6 37.0 3.22 1.79 

3 117.6 61.0 75.5 1.92 1.55 

4 305.7 106.2 108.0 2.87 2.83 

5 9.5 3.4 3.4 2.78 2.78 

6 9.8 2.8 2.9 3.41 3.33 

7 24.8 0.6 0.6 37.12 37.12 

8 29.8 0.6 0.6 44.46 44.46 

 

5.2.1. Evaluation of Task-Generation Strategies and 

Optimizations 

From the results above, it is seen that for Patterns 1 to 3, the grouped task 

generation method performs better than the scattered method by about a 20% decrease in 

execution time on average. For Pattern 2, the results on four cores show greater 

performance degradation when using the scattered method. This is because this approach 

results in a more imbalanced search tree where the first thread finishes within the first 15 

seconds and so is left idle for the remaining 20 seconds. For Patterns 4 to 8, the two 

methods performed similarly. These results suggest that on average, the grouped method 

performs better than the scattered approach. This is most likely because maintaining the 

initial ordering of the primitive events as they occurred on their target applications is 
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more favourable to the pattern-matching algorithm than scattering this order in an attempt 

to achieve more balanced tasks. We also suspect that the grouped approach performs 

better because within each task, memory locations in close proximity are accessed within 

the same time period (i.e., it favours spatial locality).  

For Pattern 3, which contains universal quantifiers, the results of the parallel 

algorithm are not very good especially when the scattered method is used. For the 

grouped method on two and four cores, we see a speed up of only about 1.09 and 1.92 

respectively. For the scattered method on four cores, the speed-up achieved by the 

parallel algorithm is only 1.55 and on two cores the parallel algorithm is actually slower 

than the sequential one. These poor results occur because the optimization of the 

sequential algorithm for the universal quantifiers (see Section 4.4) outperforms the 

parallel algorithm. Using the optimized parallel algorithm for universal quantifiers 

discussed in Section 4.4, we repeated the tests for Patterns 3 and 4, and the results are 

shown in Tables 5.3 and 5.4. 

 

Table 5.3: Execution Time of Non-Optimized vs. Optimized Algorithms on 2 Cores 

Pattern Grouped Scattered Grouped 
Speed-up 

Scattered 
Speed-up 

 Non-Opt Opt Non-Opt Opt Non-Opt Opt Non-Opt Opt 
3 107.2 94.6 129.9 107.1 1.08 1.24 0.90 1.09 

4 172.6 164.2 186.9 177.5 1.77 1.86 1.63 1.72 

 

Table 5.4: Execution Time of Non-Optimized vs. Optimized Algorithms on 4 Cores 

Pattern Grouped Scattered Grouped 
Speed-up 

Scattered 
Speed-up 

 Non-Opt Opt Non-Opt Opt Non-Opt Opt Non-Opt Opt 
3 61.0 59.0 75.5 62.8 1.92 1.99 1.55 1.87 

4 106.2 90.5 108.0 95.2 2.87 3.37 2.83 3.21 

 

The results for Pattern 3 (see Figures 5.6 to 5.7), show that the optimized parallel 

algorithm is about 12% faster than the non-optimized version when using the grouped 

method. On four cores, the grouped method of the optimized and non-optimized versions 

perform similarly for this pattern. Using the scattered method on both two and four cores, 

the optimized parallel algorithm is about 15% faster than the non-optimized version. Note 
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that each point on the graph is the average speed-up while the top and bottom points of 

each bar represent the maximum and minimum speed-up (respectively) of the five runs.  

 

 

Figure 5.6: Optimized Parallel Algorithm for Universal Quantifiers  

(Pattern 3 - Grouped) 
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Figure 5.7: Optimized Parallel Algorithm for Universal Quantifiers  

(Pattern 3 - Scattered) 

 

 

For Pattern 4 (see Figures 5.8 to 5.9), when using the grouped and scattered 

methods on four cores, we see that the optimized parallel algorithm is about 15% and 

12% faster respectively than the non-optimized version. There is not much performance 

difference between the optimized and non-optimized versions of both methods when this 

pattern is run on two cores. The graphs in Figures 5.6 to 5.9 show the speed-up achieved 

when using the optimized parallel algorithm on these patterns and we see that in certain 

cases the optimization does improve performance.  
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Figure 5.8: Optimized Parallel Algorithm for Universal Quantifiers  

(Pattern 4 - Grouped) 
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Figure 5.9: Optimized Parallel Algorithm for Universal Quantifiers  

(Pattern 4 - Scattered) 

 

5.2.2. Parallel-Algorithm Evaluation 

In this section, we evaluate the speed-up of the parallel algorithm by considering 

only the grouped method. We focus on the results on four cores referring back to Table 

5.2 for Patterns 1, 2, and 5 to 8, and Table 5.4  for Patterns 3 and 4. For the first pattern, 

we see that the speed-up achieved is only 1.97. The second pattern, “ConSend9” which is 

similar to “ConSend8”, has a much better speed-up of 3.22. It is useful to point out that 

one of the five runs for this pattern had a speed-up of 2.40 (i.e., about 25% worse). It 

should be noted here that of all the patterns tested, this was the only pattern that showed 

this much disparity in execution time. A closer look at the “ConSend9” pattern in its re-

written form shows that though there are 9 distinct variables, each variable refers to the 

same domain space i.e., send primitive events. “ConSend8” has similar properties. This 
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leads us to suspect that the reason for the poor performance in “ConSend8” and much 

disparity in runtimes in “ConSend9” may be attributed to memory allocation and access 

patterns that influence cache hit or miss rates. 

For Pattern 3 (“SendSend”), a speed-up of 1.99 is not very encouraging and it 

shows that for this pattern, the optimization for universal quantifiers is not sufficient to 

achieve a much better speed-up. On the other hand, the next pattern, “SendRecv”, has a 

speed-up of 3.37 indicating that for this pattern, the optimization of universal quantifiers 

does a much better job of improving the speed-up. 

For Patterns 5 and 6, a speed-up of 2.78 and 3.41 is achieved which is quite good 

considering that these patterns only run for about three seconds on four cores. 

For Patterns 7 and 8 we see that the result from the parallel algorithm is about 40 

times as fast as the sequential algorithm. The reason for the tremendous speed up peculiar 

to these patterns is some inefficiency in the sequential algorithm that is avoided in the 

parallel algorithm. When Pattern 7 is re-written (see Appendix B), it consists of fourteen 

disjunctions with the first eleven disjunctions each consisting of eight happens-before 

pairs. The second to the eighth set of disjunctions are exactly the same except for the last 

happens-before pair. Similarly, the ninth to twelfth disjunctions are exactly the same 

except for the last happens-before pair. The similarity among the disjunctions contributes 

significantly to the tremendous speed-up achieved. 

In finding a match for this pattern, the backtracking algorithm starts out as usual. 

After finding the only match, the algorithm backtracks to the ninth disjunction and picks 

the next value of the variable that was last assigned. This variable is the “DoneConnect” 

variable and it is assigned to its next value. At this step, the new value assigned to this 

variable is not bound during the evaluation of the disjunction because a happens-before 

pair that contains other variables satisfies the disjunction. These other variables have the 

same values that had been found in the first match and so the resulting match that occurs 

due to this step is a duplicate result. Note that because of the similarity of the 

disjunctions, a similar scenario is repeated at each disjunction resulting in a lot of 

unnecessary work. On the other hand, the parallel algorithm is able to avoid this work 

because it selects the “DoneConnect” variable as one of the fixed variables; as such, its 

domain is split into a set of one (as the initial size of the domain is two). Therefore, after 
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the first match is found, there are no more values to be assigned to this variable and so all 

the unnecessary work that led to duplicate results in the sequential algorithm is avoided. 

One would expect that it would be difficult to predict when splitting the search tree in 

order to achieve parallelism would result in this kind of performance boost; however, it 

may be possible to optimize the sequential algorithm by looking at the properties of the 

re-written pattern and eliminating unnecessary work while the algorithm is running.  

 

 

Figure 5.10: Speed-up Grouped Approach (Sub-task Factor of 2) 

 

The graph in Figure 5.10 shows the speed-up obtained as the number of cores 

increases when using the grouped task-generation methods with a sub-task factor of 2. 

Note that the graph shows the results for Patterns 1, 2, and 4 to 6. In order to clearly 

visualize the average performance, we excluded Pattern 3 where the optimization of 

universal quantifiers did not help much, and Patterns 7 and 8 where the parallel algorithm 

outperformed the sequential one by over a factor of 30. From the graph, we see that the 

average speed-up for the grouped method on two cores and four cores is about 1.70 and 
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3.0 which is equivalent to an efficiency of 85% and 75% respectively. Note that the 

efficiency refers to the utilization of the cores and is given by the speed-up divided by the 

number of cores. 

 

5.2.3. Task-Size Analysis 

Next we consider how the number of tasks generated affects performance. We ran 

the parallel algorithm using 4, 8, 16 and 32 tasks on four cores (i.e., a sub-task factor of 1, 

2, 4 and 8, respectively), and found that for all the patterns, it took less than 1 second to 

create the tasks. Table 5.5 shows the average time taken to run the parallel algorithm on 

four cores using the grouped method. Note that there are no results for 16 and 32 tasks 

for Patterns 7 and 8 as the search tree could not be split into more tasks. From the table, it 

is seen that using four tasks performs 40% worse (on average) for Patterns 1 and 2 than 

when 8 tasks were used. This is the most noticeable difference between 4 and 8 tasks 

among all the patterns. The reason for this poorer performance when using 4 tasks is that 

the task distribution of Patterns 1 and 2 is very unbalanced with the first thread finishing 

in under a second and then becoming idle for the remainder of the execution time.  

 

Table 5.5: Total time of the Parallel Algorithm  

Pattern 4 Tasks 8 Tasks 16 Tasks 32 Tasks 

1 30.7 20.8 22.0 20.0 

2 38.4 20.6 19.0 18.9 

3 57.1 59.0 48.5 49.1 

4 88.7 90.5 92.6 83.7 

5 3.5 3.4 3.3 3.3 

6 2.8 2.8 2.9 2.9 

7 0.8 0.6 - - 

8 0.9 0.6 - - 

 

For Pattern 3, we see that the execution time between 4 and 8 tasks is similar 

whereas using 16 tasks performs 17% better than when 8 tasks are used. Again, this is 

because the threads are idle for a shorter time period when more tasks are used. For all 

the other patterns, the execution time between the various tasks sizes differed by not 



 72 

more than 10% from each other. In summary, Figure 5.11 shows that as the number of 

tasks increases, the speed-up achieved remains at relatively the same level. Therefore, we 

suggest that using a sub-task factor of 8 may be sufficient for most patterns in order to 

avoid thread starvation. 

 

 

 

Figure 5.11: Speed-up Using Various Sizes of Tasks 

  

5.3. Summary 

Based on the results from the performance experiments, we can make certain 

recommendations on how to configure the parameters in order to achieve optimum 

performance of the parallel algorithm. Because the search algorithm is CPU-intensive 

with no I/O-bound operations, the number of threads should be equal to the number of 

cores on the computer. Obviously, using fewer threads will not fully utilize all the cores 
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and initial experiments using more threads showed no performance improvement. The 

number of tasks generated should be about eight times the number of cores as generating 

fewer tasks creates a higher chance of having idle threads for longer periods of time. On 

the other hand, it is not recommended to have a task size of more than eight times the 

number of cores, as this is not expected to produce a significant performance 

improvement. Finally, the experiments have shown that for most patterns, using the 

grouped approach for task-generation performs better than the scattered approach. 

To conclude, the graphs shown in Figures 5.6 to 5.11 reveal that the parallel 

algorithm does not achieve linear speed-up. This is probably unattainable for many 

parallel algorithms; however, attaining an efficiency of up to 75% (on average) on four 

cores is quite good. In the next chapter, we take a look at an approach to dynamic work-

stealing in the pattern-search algorithm and also investigate the scalability of the parallel 

algorithm as the number of cores increases. 
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Chapter 6 

More Improvements and Experiments 

In the previous chapter, we showed that generating a set of tasks that is eight times the 

number of processors (i.e., a sub-task factor of 8) is recommended as there was no 

significant improvement as the number of tasks increased. In addition, for all the patterns 

analyzed, using a size of tasks that is eight times the number of processors was sufficient 

in keeping all the threads busy throughout most of the algorithm’s execution. In this 

chapter, we discuss a hybrid implementation of dynamic work-stealing in the pattern-

search algorithm in order to further improve its performance. We illustrate the usefulness 

of this technique by introducing some patterns that reveal that even when a subtask-factor 

of eight is used, thread starvation is still possible. 

 

6.1. Dynamic Work-stealing Algorithm 

As previously mentioned, one of the challenges of any dynamic work-stealing strategy is 

to ensure that the cost of moving work from busy to idle threads is very small. To avoid 

this cost initially, our algorithm begins with a static approach with the size of tasks being 

eight times the number of processors. We further divide this set of tasks into |T|/t groups, 

where t is the number of threads, and assign each group to a thread. As such, each thread 

has a local queue of tasks and when this queue is empty, it checks its neighbours for an 

available task. Stealing from neighbours first has the advantage of ensuring spatial 

locality thereby improving cache performance. If an idle thread finds a task from a 
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neighbour, it marks itself as SLOW_BY_STEALING and marks the neighbour it stole 

from as SLOW. If no task is found, the thread decrements a finished counter (initially set 

to the number of threads), and goes to sleep. 

In this algorithm, the idle thread is initially responsible for looking for more work, 

but as tasks get depleted, the busy threads become responsible for splitting their work and 

giving it to idle threads. This is done mainly for efficiency of the algorithm as allowing 

idle threads to get work from busy threads would require a lot of synchronization effort. 

Also, experiments showed that the total cost polling to determine when to split a task and 

the cost of task-splitting itself by busy threads is insignificant compared to the execution 

time of the algorithm. Therefore, placing this extra burden on busy threads does not cause 

a significant performance overhead.  

A busy thread periodically determines whether to split its work by checking if it is 

marked SLOW or SLOW_BY_STEALING, or if there are any idle threads (i.e., if the 

finished counter is less than the number of threads). If either of these conditions holds and 

the number of available tasks is less than the number of threads, the busy thread would 

split its work into two tasks if possible. The thread would put one task in a global queue, 

and then wake up an idle thread. The idle thread simply picks the work from the global 

queue and continues working. We suggest that the algorithm is efficient for the following 

reasons: 

a) Initially, only busy threads that are marked SLOW or SLOW_BY_STEALING 

split their work. This ensures that the portions of the tree that are “difficult” are 

split into smaller tasks and given to other threads. Without this condition, threads 

could end up splitting tasks that do not take long to complete which could cause 

unnecessary overhead. 

b) The previous condition in (a) is relaxed when there are idle threads, at which time 

any busy thread can split its work. This ensures that threads are not idle for too 

long. 

c) Finally, tasks are split only when the total number of available tasks is less than 

the number of threads. This ensures that busy threads do not start splitting work 

unnecessarily when there is still enough available. It also ensures that the global 
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queue starts getting filled as other less busy threads complete their work thereby 

preventing threads from being idle for too long.  

The algorithm determines that there is no more work when the finished counter reaches 

zero. The thread that decrements the counter to zero would notify the master thread and 

wake up all sleeping threads which then terminate.  

 

6.1.1. Task Splitting 

As previously mentioned, a busy thread periodically checks whether it should split its 

task. This is done using a counter configured by the poet.core.searcher.parallel.peektime 

parameter in the #poet.properties file. This counter is equivalent to the number of nodes a 

thread should visit when executing the backtracking algorithm before checking to see if 

the conditions for task-splitting hold. This parameter is perturbed a little for each thread 

to further ensure that task-splitting occurs at different times among the threads.  

Task-splitting occurs closest to the root of the search tree in order to ensure that 

the work is large enough. The algorithm begins with the first level of the tree and splits 

the unvisited set of nodes into two (assuming that this level does not correspond to a 

universally quantified variable). If this is not possible because the thread is currently on 

the last node at this level, the algorithm moves down to the next level and tries to split the 

unvisited nodes at this level. Figure 6.1 shows task-splitting at various levels when the 

initial search tree is divided into two tasks that are handled by two threads. 
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Figure 6.1: Task-splitting  

 

6.2. Performance Evaluation 

We evaluate the performance of the dynamic work-stealing approach by comparing it 

with the static approach using a subtask factor of eight. We suggest that an efficient 

dynamic work-stealing algorithm is one that performs as well as the static approach in 

cases where thread starvation does not occur and one that performs better otherwise. In 

addition to our existing patterns, we introduce a ninth pattern called “FinalDataTransfer” 

operating on the TCP-socket application dataset. This pattern finds the last data transfer 

that occurred from one of the clients to the server and is shown in Figure 6.2.  

Nodes on the current path of running thread 

Visited nodes 

Unvisited nodes 

Splitted task put on global queue 

Thread 1’s Task Thread 2’s Task 
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Figure 6.2: “FinalDataTransfer” Pattern 

 

We also include a fifth dataset taken from the random-communication 

application. This MPI [4] application generates communication events with no specific 

regularities. The dataset contains 53,248 events, consists of 251 processes and is 1.5 MB 

in size. Each process in this application repeatedly selects at random another process to 

send a message to. The first pattern from this dataset (the tenth overall) is called 

“FourSendSendP1” and finds the instances of four consecutive send events that occur on 

the first process. There are only five matches returned out of 100 send events on this 

process. The second pattern, “TwoSendRecvP1”, finds instances of two consecutive send 

and receive pairs that occur on the first process. There are 17 matches found of a total of 

201 send and receive events. The final pattern from this data set, “ConSendP1P9” checks 

for two consecutive receive events on the ninth process that could potentially have come 

from two consecutive send events on the first process. The pattern “SendSendP1” checks 

for two consecutive sends on Process 1 while “RecvRecvP9” checks for two consecutive 

receive events on Process 9. “ConSendP1P9” then consists of these two patterns. There 

are total of 552 matches returned for this pattern. All these patterns aim at verifying that 

the communication application is indeed random with no form of regularities. The 

patterns are shown in Figure 6.3. 

DataTransferC1 := ["Process9771", "Send", ""].["Closed44194", "Send_stream", ""]; 

DataTransferC2 := ["Process9777", "Send", ""].["Closed44200", "Send_stream", ""]; 

 

DataTransferC1 *alldtc1; 

DataTransferC2 *alldtc2, $dtc2; 

 

FinalDataTransfer := ($dtc2 !--> *alldtc1) & ($dtc2 !--> *alldtc2); 
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Figure 6.3: Random Patterns 

 

The table below shows the execution time of the static task-distribution method 

using a sub-task factor of eight (i.e., 32 tasks, except patterns 7 and 8 which use 8 tasks) 

versus the dynamic approach. For the dynamic approach, we use a peek-time of 100. The 

tests were executed on four cores and each test was run five times except for Patterns 9 

and 12 that were run three times due to their long execution times. For Patterns 3 to 11 

and Pattern 12 each run time did not differ by more than 5% and 7% from the average 

respectively. Some results from Patterns 1 and 2 differed by up to 10% and 25% 

respectively from the average.  

We see that for Patterns 1 to 4, and 6 to 9 the results from both strategies differ by 

less than 10%. So we can conclude that the two strategies perform similarly for these 

patterns. For Pattern 5, the static strategy performs about 15% better than the dynamic 

approach. Since the execution time of this pattern is less than 4 seconds, the overhead of 

the dynamic approach outweighs performance improvement. For Patterns 10 to 12, the 

execution time of the dynamic approach is 15% to 25% faster than the static method. And 

we see that the running times for these are between 30 and 1100 seconds. Therefore, we 

can summarize that the dynamic approach performs reasonably well compared to the 

static approach without introducing too much overhead, provided the execution time is 

not very short (i.e., a few seconds). 

ANY := ["", "", ""]; 

P1Send := ["Process 1", "send", ""]; 

P1Recv := ["Process 1", "receive", ""]; 

P9Recv := ["Process 9", "receive", ""]; 

 

P1Send $p1, $p2, $p3, $p4; 

P1Recv $r1, $r2; 

FourSendSendP1 := ($p1 -(ANY)-> $p2) & ($p2 -(ANY)-> $p3) & ($p3 -(ANY)-> $p4) ; 

TwoSendRecvP1 := ($p1 -(ANY)-> $r1) & ($r1 -(ANY)-> $p2) & ($p2 -(ANY)-> $r2); 

 

SendSendP1 := (P1Send -(ANY)-> P1Send); 

RecvRecvP9 := (P9Recv -(ANY)-> P9Recv); 

ConSendP1P9 := SendSendP1 --> RecvRecvP9; 
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Table 6.1: Execution Time for Static vs. Dynamic Strategies on 4 Cores 

Pattern Sequential Static Dynamic Static  Speed-up Dynamic Speed-up 

1 41.1 20.0 19.8 2.05 2.06 

2 66.6 18.9 18.9 3.51 3.51 

3 117.6 49.1 46.2 2.39 2.54 

4 305.7 83.7 82.3 3.65 3.71 

5 9.5 3.3 3.8 2.83 2.44 

6 9.8 2.9 3.2 3.30 2.98 

7 24.8 0.6 0.7 37.12 35.14 

8 29.8 0.6 0.7 44.46 42.11 

9 2150 569.8 567.9 3.77 3.78 

10 103.6 39.4 29.5 2.62 3.50 

11 221.5 77.2 61.9 2.86 3.57 

12 3994.4 1296.4 1082.5 3.08 3.69 

 

6.3. Scalability of the Parallel Algorithm 

In this section we evaluate the level of parallelism we achieve as the number of cores is 

increased. Although POET would generally not be run on large servers with hundreds of 

processors, we include this section in order to measure the scalability of the algorithm to 

a modest number of cores. We select patterns that run for several minutes in order to 

justify the need for more cores. We select Pattern 5, SendRecv, which takes 5 minutes to 

run in the sequential mode. We also include Patterns 9 and 12 (“FinalDataTransfer” and 

“ConSendP1P9” patterns respectively) that run for 35 and 65 minutes in the sequential 

mode. We compare the scalability of the static versus dynamic task-distribution strategies 

in the results in Tables 6.2 and 6.3. 

The tables show the time in seconds and speed-up of these patterns using the 

parallel algorithm with both the static and dynamic approach to task distribution. We use 

a sub-task factor of eight and a peek-time of 100.  Patterns 4 and 9 were run five and 

three times respectively and the result from each run did not differ by more than 5% of 

the average. Pattern 12 was run three times and the result from each run did not differ by 

more than 10% from the average. From the table, we see that for both the dynamic and 

static strategies, the “SendRecv” pattern (Pattern 4) is about 80% efficient up to 8 cores, 
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and then drops to 50% efficiency at 16 cores and is only about 40% efficient at 24 cores. 

This is most likely because for a pattern that runs for 30 seconds on 16 cores, adding 

more cores means that there is probably not much work to keep them busy. On the other 

hand, for both approaches, the “FinalDataTransfer” (Pattern 9) and the “ConSendP1P9” 

(Pattern 12) patterns, which take a much longer time to run, are still up to 80% efficient 

at 24 cores. This suggests that the parallel algorithm is scalable for patterns that run for 

longer time periods. 

 

Table 6.2: Execution Time of Parallel Algorithm on Several Cores 

Number of cores 
Pattern Strategy 

1  2  4  8  12  16  20  24  

4 Static 305.7 158.6 83.7 47.5 36.0 34.5 34.7 31.7 

4 Dynamic 305.7 155.6 82.3 47.3 37.7 30.2 27.4 25.7 

9 Static 2150 1012.7 569.8 282.2 198.5 160.3 135.2 110.7 

9 Dynamic 2150 1002.9 567.9 264.7 192.8 148.8 128.4 115.6 

12 Static 3994.4 2480.6 1296.4 682.3 358.7  277.6 245.8 208.8 

12 Dynamic 3994.4 2176.8 1082.5 505.9 377.9 290.4 229.4 201.6 

 

Table 6.3: Speed-up of Parallel Algorithm on Several Cores 

Number of Cores 
Pattern Strategy 

1  2  4  8  12  16  20  24  

4 Static 1 1.92 3.65 6.42 8.47 8.83 8.80 9.64 

4 Dynamic 1 1.96 3.71 6.45 8.09 10.10 11.15 11.88 

9 Static 1 2.12 3.77 7.61 10.82 13.41 15.89 19.41 

9 Dynamic 1 2.14 3.78 8.12 11.15 14.44 16.73 18.58 

12 Static 1 1.61 3.08 5.85 11.13 14.38 16.24 19.12 

12 Dynamic 1 1.83 3.69 7.89 10.56 13.75 17.40 19.80 

 

The tables above and the following graphs compare the speed-up of the dynamic 

versus static work distribution strategies. In Figure 6.4, we see that for the “SendRecv” 

pattern, the dynamic approach shows a significant improvement in speed-up relative to 

the static approach beyond 12 cores.  
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Figure 6.4: SendRecv - Speed-up on Multiple Cores 

 

In Figure 6.5, the dynamic approach appears to show a slightly better speed-up on 

16 and 20 cores (about 6% on average). On 24 cores, however, the static approach 

performs better by about 5%. In this case, we notice that there was no need for work-

stealing as by time certain threads became idle, it was not possible for the busy threads to 

split their task any further. As such the dynamic work-stealing algorithm resulted in a 

slight performance overhead in this case. 
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Figure 6.5: FinalDataTransfer - Speed-up on Multiple Cores1 

 

Finally, in Figure 6.6, the dynamic approach performs significantly better on four 

and eight cores (15% and 25% better respectively) as it reduces any thread-starvation that 

occurs with the static approach. On 12 cores, we notice that the static approach is about 

5% better on average because one of the runs finished in 332 seconds (i.e., 10% faster 

than the other two runs), and hence this resulted in a much better average performance 

than the dynamic approach. On 16 cores, the static approach is 5% better than the 

dynamic approach as the work-effort involved is more evenly distributed among the 

threads. Furthermore, we find that the dynamic approach in this case results in slight 

performance overhead where some busy threads were unable to split their work further 

and there was more contention for the few remaining tasks in the cases where tasks could 

be split. On 20 and 24 cores, the dynamic approach is 5% better as there is now a 

noticeable benefit to task-splitting. This suggests that even with more tasks (which is the 

                                                 
1 In this graph, we omit the bars at each point as the two approaches have similar performance. 
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case as the number of cores increases), it is still possible to have a work-effort imbalance 

among the threads making dynamic work-stealing more favourable in such situations.  

 

 

Figure 6.6: ConSendP1P9 - Speed-up on Multiple Cores 

 

In summary, the dynamic approach does better than the static approach which is 

expected as threads are not left idle for long time periods. We also see that the dynamic 

approach scales equally well. One would expect that as the number of cores increases, 

thread starvation would be less likely as the search-tree would be divided into more tasks 

of smaller sizes. We see, however, that for the “SendRecv” pattern, the dynamic 

approach still results in a better performance improvement even beyond 12 cores which 

further highlights the benefits of this approach even when using several cores. 
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Chapter 7 
 

Closing Remarks 

7.1. Conclusions 

Analyzing large event datasets emitted from distributed systems continues to be an area 

of research as proper analysis can enable developers to diagnose and fix faults faster. We 

showed how POET achieves this goal by providing a search algorithm that enables users 

to find event-patterns in large datasets. In this thesis, we developed an efficient and 

scalable parallel algorithm that improves the search process, making analysis of these 

datasets faster.  

We have introduced techniques for distributing the search tree associated with the 

pattern-matching problem into several smaller tasks that can be independently handled by 

several cores. We have proved that the set of tasks is disjoint ensuring that cores are not 

repeating the same work-effort. We performed experiments with the grouped and 

scattered approaches of task-generation and showed that the grouped approach is more 

suited for the pattern-search problem in POET. This is because it maintains the ordering 

of the primitive events as they occurred in their target applications and it also improves 

the computer’s hardware-cache performance due to ensuring spatial locality during 

memory accesses. 

Patterns containing universal quantifiers are more challenging as they require 

comparing one event with all the events in an event class. Though the optimization for 
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universal quantifiers for the sequential algorithm is inherently difficult to parallelize, we 

introduced a simple optimization to the parallel algorithm that achieved up to 15% 

performance improvement over the generic parallel algorithm. We also showed that the 

static approach to task generation is not always sufficient even when we start out initially 

with a large number of tasks. As such, we introduced an efficient dynamic work-stealing 

algorithm that prevents processors from starving. Finally, our experimental results show 

that the parallel algorithm is scalable, providing efficiencies of up to 80% on 24 cores.   

 

7.2. Future Work 

The following are areas of further research that would improve the pattern-search feature 

of POET. 

 

7.2.1. Improvements to Variable Re-ordering 

The variable re-ordering algorithm in POET has been shown to improve the performance 

of the pattern-matching algorithm. However, the current heuristic used to determine the 

final ordering of a pattern needs to be improved. This is because the algorithm sometimes 

produces an ordering that performs significantly faster than another ordering it returned. 

Specifically, more work needs to be done to improve the method for breaking ties when 

selecting which disjunction should be chosen next in the final ordering. In the current 

scheme, ties are broken by choosing the disjunction with the fewest unassigned variable 

and then selecting the unassigned variables that occurs most frequently in the pattern. The 

problem is that there could be more than one disjunction that satisfies this condition. The 

current scheme simply picks the disjunction that is found first which could lead to 

different orderings (during different executions on the same pattern) that have varying 

execution times. A possible improvement may be to introduce a method that determines 

the probability of a variable being assigned. This may be useful for disjunctions with 

more than one happens-before pair where only the variables in one pair will actually be 

assigned when the search algorithm runs. Another possible improvement may be to break 
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ties by choosing disjunctions with fewer happens-before pairs as this indicates that such 

disjunctions may be satisfied with a smaller amount of work than those with more 

happens-before pairs.  

 

7.2.2. Improvements to the Backtracking Algorithm 

POET still uses a naïve backtracking algorithm which tends to go through a lot of steps 

repeatedly as demonstrated by an example in Section 4.1. A simple improvement that 

could be applied is the back-jumping technique described in Section 3.1.  

 

7.2.3. Improvements Based on Re-written Patterns 

The verbosity of re-written patterns can be used to improve the search algorithm as it 

reveals to some extent the steps the backtracking algorithm will follow. During some of 

our experiments we found that the search algorithm would find the same result as many 

as one hundred thousand times! This was seen with the “ConSend8”, 

“FirstConnectionEstablished” and “LastConnectionEstablished” patterns. We see that the 

rules used to transform a pattern into its re-written form usually results in a lot of 

repetitions in constraints in the re-written pattern. We believe that initial analysis of the 

re-written pattern can be used to guide the search algorithm in order to avoid the 

unnecessary work of finding duplicate results that are later discarded. 

 

7.2.4. Lower and Upper Bounds of Tasks 

In Chapter 4, we presented the algorithm for task generation that avoids duplicate work-

effort and generates a number of tasks approximately equal to the desired number S. It 

may be useful for the algorithm to have certain guarantees as to how “close” the actual 

number of tasks generated is to the initial desired number. In other words, can the 

algorithm guarantee that the number of tasks generated will be within a certain range of 

S? A lower bound may not be so important as if the number of tasks generated is not 
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large enough, dynamic work-stealing would help keep the processors busy. On the other 

hand, an upper bound may be more important as we want to avoid degrading the 

performance of the parallel algorithm by generating too many tasks. 

 

7.2.5. Writing POET Patterns 

More work needs to be done in developing methods that make it easier for POET users to 

construct a pattern. Most developers diagnosing faults would find it difficult to translate a 

fault (such as a performance bottleneck) into a POET pattern. One might think of 

developing a higher-level language that can be easily understood by POET users and can 

be translated into the current pattern language. A starting point may be to identify 

common faults (such as performance bottlenecks or race conditions) and see if suitable 

techniques can be found to map subsets of these to POET patterns.  
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Appendix A 

In the grouped-approach implementation discussed in Section 4.3.3, we mentioned the 

importance of adjusting the group size, g when generating tasks. We introduced a 

variable λ such that when g is above λ*|Dd|, it is adjusted to the domain size of the 

variable at depth level d, i.e., |Dd|; otherwise, it is adjusted to half of |Dd|. Here we show 

the mathematical relationship between λ, the actual number of tasks generated, S’, and 

the initial desired number of tasks, S. 

Equation (1) represents the actual number of tasks generated when g is adjusted to 

half of |Dd|, where M is the total number of nodes at level d. 

 

S’  =    (1) 

 

Equation (2) represents the initial desired number of tasks. Note that the exact value of S 

is the ceiling of M/g, but this has been omitted from the equation for simplicity. 

 

S  =     (2) 

 

Let σ be a factor that represents by how much S’ is greater than S, i.e., 

S’ = σS                (3) 

Note that the maximum value of g for Equation (1) to hold is λ*|Dd|; when g is above this 

threshold S’ is M/|Dd|. Substituting this maximum value, as well as Equations (1) and (2) 

in (3),  gives Equation (4). 

 

 =       (4) 

      

When Equation (4) is resolved we get Equation (5). 

σ = 2λ              (5) 

 

λ|Dd| 

|Dd| 

2M 

  g 
M 

σM 

|Dd| 

2M 
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In the scattered approach, the initial task size, S (see Equation 6) is increased when 

it is greater than λ*|Dd|. Equation (7) shows the new task size S’ in this scenario. 

Substituting both equations in Equation (3) gives Equation (8). The scattered approach is 

opposite to the grouped one in that when S is greater than λ*|Dd|, the new task size is 

greater. 

S  > λ|Dd|              (6) 

S’  = |Dd|   (7) 

σ = 1/λ               (8) 

From equations (5) and (8), we see that the optimum value of λ that minimizes σ for both 

the grouped and scattered approaches is given in equation (9). This value can be used in 

the task-generation algorithm or λ can be set to some other value taking into 

consideration the initial desired tasks size, the number of cores available, and the task-

generation approach employed. 

                     (σ = 1/λ = 2λ) ⇒ λ = √0.5 ≈ 0.707         (9) 
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Appendix B 

The following shows the re-written pattern for the “FirstConnectionEstablished” pattern. 

It consists of 14 disjunctions. The second to eighth disjunctions are the same except for 

the last happens-before pair. The same holds for the ninth to twelfth disjunctions. 

 

 

(*sc_all !→  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $sc2 →  *sc_all | $sc1 →  *dc | 
$dc →  *dc | $sc2 →  *dc | *dc !→  $sc2)  &  
 

1 

2 ($sc1 →  *dc | *sc_all !→  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  

$sc2 →  *sc_all | $sc2 →  *dc | *dc !→  $dc)  & 

3 ($sc1 →  *dc | *sc_all !→  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  
$sc2 →  *sc_all | $sc2 →  *dc | *sc_all !→  $sc2)  & 
 

4 ($sc1 →  *dc | *sc_all !→  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  

$sc2 →  *sc_all | $sc2 →  *dc | *sc_all !→  $dc)  & 

5 ($sc1 →  *dc | *sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  
$sc2 →  *sc_all | $sc2 →  *dc | *dc !→  $sc2)  &  
 

6 ($sc1 →  *dc | *sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  
$sc2 →  *sc_all | $sc2 →  *dc | *dc !→  $dc)  &  
 

7 ($sc1 →  *dc | *sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  
$sc2 →  *sc_all | $sc2 →  *dc | *sc_all !→  $sc2)  &  
 

8 ($sc1 →  *dc | *sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc |  
$sc2 →  *sc_all | $sc2 →  *dc | *sc_all !→  $dc)  &  
 

9 (*sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc | $sc2 →  *sc_all | 
$sc2 →  *dc | *dc !→  $sc2)  &  
 

10 (*sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc | $sc2 →  *sc_all | 
$sc2 →  *dc | *dc !→  $dc)  & 
 

11 (*sc_all →  $sc1 | *sc_all !→   *dc | $dc --> *sc_all | $dc --> *dc | $sc2 --> *sc_all | 
$sc2 →  *dc | *sc_all !→  $sc2)  &  
 

12 (*sc_all →  $sc1 | *sc_all !→  *dc | $dc →  *sc_all | $dc →  *dc | $sc2 →  *sc_all | 
$sc2 →  *dc | *sc_all !→  $dc)  &  
 

13 ($sc2 →  $dc)  & 
 

14 (*sc !→  $dc | $sc2 !→  *sc) 
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