

Parallel Pattern Search in Large,

Partial-Order Data Sets on

Multi-core Systems

by

Olufisayo Ekpenyong

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2011

© Olufisayo Ekpenyong 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract
Monitoring and debugging distributed systems is inherently a difficult problem. Events

collected during the execution of distributed systems can enable developers to diagnose

and fix faults. Process-time diagrams are normally used to view the relationships between

the events and understand the interaction between processes over time. A major difficulty

with analyzing these sets of events is that they are usually very large. Therefore, being

able to search through the event-data sets can enable users to get to points of interest

quickly and find out if patterns in the dataset represent the expected behaviour of the

system.

A lot of research work has been done to improve the search algorithm for finding

event-patterns in large partial-order datasets. In this thesis, we improve on this work by

parallelizing the search algorithm. This is useful as many computers these days have

more than one core or processor. Therefore, it makes sense to exploit this available

computing power as part of an effort to improve the speed of the algorithm. The search

problem itself can be modeled as a Constraint Satisfaction Problem (CSP). We develop a

simple and efficient way of generating tasks (to be executed by the cores) that guarantees

that no two cores will ever repeat the same work-effort during the search. Our approach is

generic and can be applied to any CSP consisting of a large domain space. We also

implement an efficient dynamic work-stealing strategy that ensures the cores are kept

busy throughout the execution of the parallel algorithm. We evaluate the efficiency and

scalability of our algorithm through experiments and show that we can achieve

efficiencies of up to 80% on a 24-core machine.

 iv

Acknowledgements
I would like to thank my supervisor Prof. David Taylor for his guidance and direction

during my research work. His diligence and attention to detail is greatly appreciated. I

would also like to thank the readers of my thesis, Dr. Paul Ward and Dr. Martin Karsten

for their insightful corrections and help towards perfecting this thesis.

Next, I would like to acknowledge Dr. Tim Brecht for his ever timely assistance

in providing me with the computing resources I needed to perform my experiments.

Without his help, the evaluation of the work in this thesis would have been limited.

Furthermore, I would like to thank the faculty and graduate students of the Shoshin Lab

at the University of Waterloo for providing an environment where I could share some of

my ideas. Their suggestions were useful during the course of my research work.

I would like to appreciate my family; my husband for constantly supporting me in

my academic pursuit, and my parents for being my inspiration. Your continuous interest

and helpful advice throughout my academic career is one I can always rely on. Thanks

also to my siblings who always helped me with errands so that I could spend more time

on my research work. All your help, love and prayers made it easier for me to focus on

my research.

Finally, I would like to thank God for inspiring me with the confidence I needed

to pursue my research efforts. You are my Rock and One that I would forever be grateful

to.

 v

Table of Contents
List of Figures.. vii

List of Tables .. ix

Chapter 1 Introduction .. 1

1.1. Problem Statement ... 1

1.2. Thesis Contributions .. 2

1.3. Thesis Overview .. 3

Chapter 2 Event Models in Distributed Systems....................................... 4

2.1. Debugging Distributed Systems .. 4

2.2. POET Architecture... 5

2.3. Event Precedence... 8

2.4. Pattern-Search in POET... 16

2.4.1. The Pattern Language ... 17

2.4.2. Convex Closure versus Re-written Patterns ... 21

Chapter 3 Related Work .. 24

3.1. Introduction.. 24

3.2. Parallelizing CSPs.. 26

3.2.1. Static Search Tree Distribution... 26

3.2.2. Dynamic Work-stealing.. 29

Chapter 4 Pattern-Search Parallelization .. 30

4.1. Introduction.. 30

4.2. Naïve Backtracking Algorithm.. 31

4.2.1. Cost Analysis .. 32

4.3. Parallel Algorithm.. 34

4.3.1. Task Generation .. 35

4.3.2. Rules for Task Generation .. 37

4.3.3. Task-Generation Implementation ... 44

4.3.4. Memory Localization.. 51

4.3.5. Cost Analysis of Task Generation .. 52

 vi

4.4. Optimization for Universal Quantifiers ... 53

4.5. Parallel Pattern-Search Architecture.. 54

Chapter 5 Experiments and Results.. 57

5.1. Test Setup... 57

5.2. Performance Evaluation... 60

5.2.1. Evaluation of Task-Generation Strategies and Optimizations........................ 63

5.2.2. Parallel-Algorithm Evaluation .. 68

5.2.3. Task-Size Analysis.. 71

5.3. Summary.. 72

Chapter 6 More Improvements and Experiments................................... 74

6.1. Dynamic Work-stealing Algorithm ... 74

6.1.1. Task Splitting.. 76

6.2. Performance Evaluation... 77

6.3. Scalability of the Parallel Algorithm ... 80

Chapter 7 Closing Remarks... 85

7.1. Conclusions.. 85

7.2. Future Work ... 86

7.2.1. Improvements to Variable Re-ordering .. 86

7.2.2. Improvements to the Backtracking Algorithm ... 87

7.2.3. Improvements Based on Re-written Patterns.. 87

7.2.4. Lower and Upper Bounds of Tasks ..87

7.2.5. Writing POET Patterns ... 88

Appendix A.. 89

Appendix B .. 91

References.. 92

 vii

List of Figures
Figure 2.1: The Architecture of POET ... 6

Figure 2.2: A Process-Time Diagram ... 7

Figure 2.3: Fidge/Mattern Timestamps Example ... 10

Figure 2.4: Abstract Events View... 12

Figure 2.5: Non-Convex Compound Event .. 14

Figure 2.6: Convex Compound Event .. 15

Figure 2.7: Grammar for the POET Pattern Language...18

Figure 2.8: Pattern Language Example... 21

Figure 2.9: Pattern Parse Tree... 22

Figure 3.1: Search Tree of a CSP.. 27

Figure 3.2: Task-Distribution Methods... 28

Figure 4.1: Grouped vs. Scattered Task-Generation Methods.. 36

Figure 4.2: Task-Generation Example.. 38

Figure 4.3: Task-Generation Example.. 39

Figure 4.4: Grouped Approach – Enforcing Rule 4.2... 45

Figure 4.5: Scattered Approach – Case 2 (S ≤ |Dd|) ... 49

Figure 4.6: Scattered Approach – Case 3 (S > |Dd|) ... 50

Figure 5.1: PVM Life Event Data Set... 58

Figure 5.2: Command-Line Parameters for POET Tools ... 59

Figure 5.3: Search-Tool Example... 59

Figure 5.4: PVM Patterns ... 61

Figure 5.5: µC++ Patterns... 62

Figure 5.6: Optimized Parallel Algorithm for Universal Quantifiers 65

Figure 5.7: Optimized Parallel Algorithm for Universal Quantifiers 66

Figure 5.8: Optimized Parallel Algorithm for Universal Quantifiers 67

Figure 5.9: Optimized Parallel Algorithm for Universal Quantifiers 68

Figure 5.10: Speed-up Grouped Approach (Sub-task Factor of 2)................................... 70

Figure 5.11: Speed-up Using Various Sizes of Tasks... 72

 viii

Figure 6.1: Task-splitting.. 77

Figure 6.2: “FinalDataTransfer” Pattern... 78

Figure 6.3: Random Patterns... 79

Figure 6.4: SendRecv - Speed-up on Multiple Cores ... 82

Figure 6.5: FinalDataTransfer - Speed-up on Multiple Cores .. 83

Figure 6.6: ConSendP1P9 - Speed-up on Multiple Cores .. 84

 ix

List of Tables
Table 2.1: ASCII Format of Pattern Language... 20

Table 4.1: Grouped Task Generation Example (Independent Work) 38

Table 4.2: Scattered Task Generation Example (Duplicate Work) 39

Table 4.3: Grouped Task Generation Example (Duplicate Work) 39

Table 5.1: Execution Time for Sequential and Parallel Algorithms on 2 Cores............... 63

Table 5.2: Execution Time for Sequential and Parallel Algorithms on 4 Cores............... 63

Table 5.3: Execution Time of Non-Optimized vs. Optimized Algorithms on 2 Cores 64

Table 5.4: Execution Time of Non-Optimized vs. Optimized Algorithms on 4 Cores 64

Table 5.5: Total time of the Parallel Algorithm.. 71

Table 6.1: Execution Time for Static vs. Dynamic Strategies on 4 Cores........................ 80

Table 6.2: Execution Time of Parallel Algorithm on Several Cores 81

Table 6.3: Speed-up of Parallel Algorithm on Several Cores... 81

 1

Chapter 1

Introduction

Applications developed to run with various components on several computers have been

around for many years. The benefits of such distributed applications are important to both

software engineers and end-users. To software engineers, distributed systems make it

possible to design applications in which components are decoupled. This makes software

maintenance and re-use more feasible. To the end-users, distributed systems are more

scalable and provide a lot of performance benefits. In addition, the prevalent use of multi-

core computers has also increased the desire for more applications to work seamlessly

across several cores.

1.1. Problem Statement

The benefits of distributed systems are accompanied by challenges. Such systems are

more complex than standalone applications and are more challenging to monitor and

debug. This complexity arises from the unpredictable behavior of the system, caused by

the execution of concurrent programs and the absence of any guarantees about the way

their execution will interleave. This makes it more difficult for developers to reproduce a

problem, thereby increasing the time and effort required to diagnose and fix a bug.

In order to aid the debugging of distributed systems, they are usually set up to

emit logging information that describes their execution. These logs are usually very large

containing a copious amount of events. This makes it more difficult to analyze and

 2

understand the execution history of the system when trying to fix faults. Another

difficulty with analyzing such logs is that distributed systems have no global clock.

Therefore, when comparing the timestamp of an event occurrence on one computer to

that of another event that occurred on another computer, one may come to erroneous

conclusions because these timestamps may not necessarily reflect the order in which the

events actually occurred. To this end, several tools have been developed to make

debugging of these systems easier. This thesis focuses on improving one such tool.

1.2. Thesis Contributions

In this thesis, we improve a monitoring and debugging tool called the Partial-Order Event

Tracer (POET). POET is capable of representing the execution history of distributed

systems in a partial-order using logical timestamps. It provides facilities for both offline

and online monitoring of the system, viewing process abstractions or clusters, and

viewing abstract or compound events. In addition, POET provides an expressive

language that enables users to specify complex patterns and search for them in large

event datasets. This can be useful when diagnosing faults such as performance

bottlenecks, race conditions or improper access of resources arising due to poor

synchronization among threads. Extensive research work has gone into the development

of this tool [8, 13, 22, 25, 32, 35, 36, 39, 42] but more improvements are needed.

Our work focuses on improving the search algorithm for finding event patterns of

interest by parallelizing the algorithm for execution on a shared-memory multi-core

system. As we will see later, the search problem in POET can be modeled as a Constraint

Satisfaction Problem (CSP) and we use this model as a basis for developing an efficient

parallel algorithm. The main thesis contributions are as follows:

a) We employ the technique introduced by Habbas et al. [20] for distributing the

search space (i.e., the large event dataset) into several tasks that can be handled by

various cores. We extend Habbas’ technique by developing a method for task

distribution that can be applied to CSPs with a large domain space. We include

 3

rules to be used during task generation in order to avoid duplicate work-effort

among the cores.

b) We analyze two approaches for search-space distribution and make a

recommendation as to which approach is more suitable for the pattern-search

problem in POET.

c) We provide optimizations to the parallel algorithm in order to deal with patterns

that have certain unique properties.

d) In order to ensure that all processors are busy throughout most of the algorithm’s

execution time, we develop a hybrid method of task distribution by initially

dividing the search space into tasks before processors begin the search and then

allowing processors to steal work from others as they become idle, otherwise

called dynamic work-stealing.

e) Finally, we show in experimental results that the parallel algorithm is scalable

providing efficiencies of up to 80% on 24 cores.

1.3. Thesis Overview

This thesis is organized as follows: Chapter 2 provides an overview of POET, detailing

its architecture and its major features. It includes the algorithm used for generating

logical timestamps, the language used for representing event patterns, and the algorithms

used in the search. Chapter 3 introduces related work in the area of parallelizing CSPs.

Chapter 4 describes in detail the approaches we developed for generating tasks, the rules

involved, and the optimizations to the parallel algorithm. Chapter 5 shows the

experimental results obtained from the parallel algorithm and makes recommendations on

the number of tasks to generate given a certain number of cores. Chapter 6 describes the

dynamic work-stealing algorithm used for load-balancing. It also includes some

experimental results of the work-stealing algorithm as well as tests showing the

scalability of the parallel algorithm. We conclude with Chapter 7, which provides a

summary of the results and identifies areas of future work.

 4

Chapter 2

Event Models in Distributed Systems

2.1. Debugging Distributed Systems

As previously mentioned, debugging distributed systems is a very hard problem

and several techniques have been explored in order to tackle this problem. Offline

approaches describe the situation where logs from the distributed system are analyzed

after the system’s execution has terminated. A common approach is for the various nodes

in the system to send log information to a central server. The logs can then be retrieved

from the server and analyzed for violations of specific properties. Certain tools like Pip

[34] make it possible to specify the requirements of the system beforehand using a

declarative language and then the logs can be checked for violations of these

requirements. Although there is only a small performance overhead due to local logging

with this kind of approach, it may be generally difficult for a programmer to specify the

requirements of the system using the language.

Another offline approach generally used is the replay technique [16, 28, 41, 42].

In this case, trace information is collected from the various nodes and the execution of the

system can be replayed in order to reproduce non-deterministic errors such as race

conditions. There is generally a lot more overhead in logging, as more information is

necessary in order to replay the execution path of the deployed system. It is also difficult

to replay certain events such as shared-memory access or thread scheduling. Another

approach to distributed debugging involves the use of virtual machines [21, 28]. In this

approach, there is a virtual machine located above the hardware, and between the

 5

application and the operating system. The nodes in the distributed system and any

network latencies are then simulated on the virtual machine. This approach provides

flexibility in debugging (for example, nodes in the system may be slowed down or

stopped when trying to reproduce a race condition), but it may be difficult to efficiently

simulate all the nodes in a large distributed system on one machine.

Online approaches to debugging usually involve first specifying properties of the

system that should not be violated and then checking the system for violations of these

properties during execution. This method usually involves taking a consistent snapshot of

the execution and checking for violations in the state recorded in a snapshot. One

challenge involved here is understanding what size of snapshot is adequate, i.e., a global

snapshot across all nodes in the system or just of neighbouring nodes [27, 40]. Also, a lot

of care must be taken in order not to introduce too much performance overhead that will

significantly alter the normal execution of the distributed system.

In this thesis we focus on the offline approach to distributed debugging by making

use of the Partial-Order Event Tracer (POET). POET is a tool that was developed to

collect and analyze large traces from distributed systems. POET supports both the offline

and online approaches to monitoring and debugging distributed systems. It was originally

developed in 1991 by the Shoshin Research Group, and the original implementation was

written in C and C++. An alternate implementation is written in Java as a plug-in to

Eclipse [1]. This thesis uses the Java version, called Eclipse POET. In the next section,

we discuss the architecture of POET in detail.

2.2. POET Architecture

POET itself is a distributed system consisting of several processes. The target

programs being instrumented submit events to the event server. These events provide a

good view of the execution history of the programs. The event server interacts with a

viewer and a checkpoint process (described below). The viewer communicates with the

event server to retrieve POET events and then timestamps the events in order to display

them on a process-time diagram.

 6

Figure 2.1: The Architecture of POET

In distributed systems, a process-time diagram is used to visually represent the

interaction between processes that occurs through message passing via “sends”,

“receives” or some other sort of messages. Figure 2.2 shows an example of such a

diagram. Each horizontal line referred to as a “trace” represents a process’s execution in

time advancing from left to right. A unary event as shown in the diagram is one that is

not involved in any interaction with other processes. A synchronous event is viewed as a

single event that occurs simultaneously on two processes with the message exchange

occurring at the same time on both processes. Vertical directed lines between two single

events are used to represent synchronous communication. Asynchronous events are

viewed as originating from one process and terminating on another, and they are used to

model asynchronous communication between two processes. Slanted directed lines

represent asynchronous communication.

Target

Program

Target

Program

Target

Program

Event Server

Checkpoint

Process

Viewer

Target Desc.

File

Raw Event

File

Checkpoint

Records

Terminal

 7

Figure 2.2: A Process-Time Diagram

In order for the viewer to draw the process-time diagrams, the events must first be

timestamped. Timestamping is done using vector timestamps (as introduced by Fidge

[15] and Mattern [29]) which grow in size as the number of processes increases. Though

more time-consuming, timestamping the events is done by the viewer because performing

it at the server would require a lot of disk space to store the timestamps. Due to the

runtime costs of timestamping at the viewer, the checkpointer process receives each event

from the server and timestamps it. It then periodically writes out a snapshot of the

internal state of the timestamping algorithm. These snapshots are subsequently used by

the viewer to speed up the process of timestamping the events when drawing the display.

POET was developed to be target-independent and this is achieved through the

use of target-descriptor files. These files are used to describe the native events emitted by

the target programs and map them to POET events. The event server converts the events

into binary raw-event format in EF files. These files can be converted into a more

portable format stored in ASCII text in a UEF file. As we will see later, these UEF files

can be imported into the viewer in Eclipse POET and displayed on the screen.

Time

unary event

receive event

send event

asynchronous
communication

synchronous
communication

P1

P3

P2

 8

2.3. Event Precedence

POET uses Fidge/Mattern vector timestamps in order to efficiently determine the

precedence relationships or causality between primitive events. Developed by Fidge [15]

and Mattern [29], vector timestamps make it possible to determine precedence

relationships between events in constant time. In this thesis, we focus on two precedence

relationships: the happened-before and concurrent relationships as introduced by Lamport

[26].

Definition 2.1:

The happened-before relation is denoted by →, and a primitive event is said to happen

before another primitive event if any of the following holds:

1. If a and b are events on the same process and a occurs before b, then a → b.

2. If a is the send event representing the sending of a message by one process and b

is the receive event representing the receipt of that message on another process,

then a → b.

3. The happened-before relation is transitive, i.e., if a → b and b → c then a → c.

Definition 2.2:

The concurrent relation is denoted by ||, and a primitive event, a, is concurrent with

another primitive event, b, if a does not happen before b and b does not happen before a

(i.e., a !→ b ∧ b !→ a).

Definition 2.3:

Where a pair of events indicates a synchronous or asynchronous communication between

two traces, we say that one event is the partner of the other. Partner events are denoted

by a.b.

 9

The above definitions are sufficient to define the relationship between primitive

events. It is however useful to note that when determining precedence relationships, we

are mostly interested in comparing primitive events that are not equal. A primitive event

is uniquely identified by a trace number and an event number, so an event denoted as a ,

implies that this is the second event that occurred on the first trace (i.e., the subscript is

the trace number and the superscript is the event number). To determine precedence

relationships, associated with each primitive event is a timestamp vector, V, of n integers,

where n is the number of traces in the distributed system being monitored. Each process,

Pi, maintains a local clock vector denoted by Ci of size n which is used for timestamping

primitive events. In POET, primitive events are timestamped following the algorithm

proposed by Fidge as shown below:

1. Each clock vector, Ci is initialized to zero at the beginning of the computation for

each process Pi.

2. Whenever process Pi performs a unary event a, its local clock is incremented by 1

and the timestamp of the event Va is equivalent to Ci, i.e.,

Ci [i] = Ci [i] + 1

Va = Ci

3. When a process Pi sends an asynchronous message represented by the event a, it

updates its local clock and timestamp as for unary events and attaches the

timestamp to the message.

4. When a process Pj receives the asynchronous message with the timestamp (now

denoted as Ci
’), it increments position i of Ci

’ and position j of its local clock, Cj,

by 1 and update the entries in Cj to the maximum of its current value and the new

values in Ci
’. If b is the receive event then its timestamp Vb, will be set to the

updated value of Cj. Formally

Ci
’[i] = Ci

’[i] + 1

Cj [j] = Cj [j] + 1

∀p ∈ {1,...,n}, Cj[p] = max(Cj [p], Ci
’[p])

Vb = Cj

2
1

 10

5. If a is a synchronous send event of Pi and b is the corresponding receive event on

Pj, then the local clocks Ci and Cj are set to the maximum of each of the entries in

Ci and Cj. This can be achieved by the receiver sending a confirmation message

with its local vector clock back to the sender so that the sender can update its local

clock.

Ci [i] = Ci [i] + 1, sender updates local clock upon sending message

Cj [j] = Cj [j] + 1, receiver updates local clock upon receipt

∀p ∈ {1,...,n}, Va [p] = Vb [p] = max(Ci [p] , Cj[p])

As an extension to Fidge’s algorithm, Cheung [13] proposed that in preparation

for the next event, the processes involved in the synchronous communication

should increment the element in its local clock of the partner process, i.e.,

Ci [j] = Ci [j] + 1

Cj [i] = Cj [i] + 1

Figure 2.3: Fidge/Mattern Timestamps Example

Time

P1

P2

P3

a 1

1 (1,0,0) a
1

(2,2,0)

1

2
(0,1,0) a

a 1

3 (0,0,1) a
3 (0,0,2)

a

3

1 (3,2,3)

a 3 (3,2,3)

a
2 (0,2,0)

a 4
3 (4,3,4)

2

2

2

3

 11

Figure 2.3 shows an example of a process-time diagram with the vector

timestamps following the algorithm above. Here we see that a is an example of a unary

event and following Step 2 of the algorithm, its timestamp will be (1,0,0). According to

Step 4, when P1 receives the asynchronous message from P2 it will increment its local

clock to (2,0,0) and the timestamp from P2 to (0,2,0). Taking the maximum of both

clocks will yield a timestamp of (2,2,0) for the receive event a . For the synchronous

message from P1 to P3, Step 5 will be applied. The local clock at P1 upon sending the

message is (3,2,0). Upon receipt of the event at P3, its clock will be set to (0,0,3). Taking

the maximum of each entry of the two clocks at P3 (i.e., maximum of (3,2,0) and (0,0,3))

will yield a timestamp of (3,2,3) for the receive event, a . P3 will send a confirmation

message to P1 along with its local clock enabling P1 to update the timestamp for a to

(3,2,3). Both P1 and P3 will increment the other’s entry in their local clocks according to

the rule by Cheung. Hence, the receive event a at P3 is (4,3,4) and not (3,3,4).

The vector timestamps enable us to determine the precedence relationships

between primitive events in constant time. To determine if an event, a, occurring on

process Pi happens before another event, b, occurring on process Pj, we simply need to

check if Va[Pi] < Vb[Pi]. If this is the case then a happens before b. If this is not the case

and Vb[Pj] < Va[Pj], then b happens before a. To test for concurrency between a and b,

then we simply need to check that the tests Va[Pi] < Vb[Pi] and Vb[Pj] < Va[Pj] are both

false. To check if two primitive events, a and b are equal we would need to compare their

trace and event numbers. In the example above, we can determine that a happens before

a because Va [P3] = Va [3] = 2 < 3 = Va [1] = Va [P1]. Similarly, we compute that

a and a are concurrent because 2 ≮ 0 and 1 ≮ 0.

Process-time diagrams are helpful in enabling the developer to visually inspect

the interaction between processes and therefore provide useful information when

monitoring and debugging distributed systems. The size of the event data-set however

makes it impossible to fit the entire execution on the screen and scrolling through it is

also cumbersome. Several approaches have been investigated in order to deal with this

problem. One approach is through event abstraction and the other is by searching for

event patterns in the data-set (otherwise known as pattern-search).

1
1

1
2

3
3

1

1
3

2
3

2 3
1

3

4
3

3
2

3

1

1
3

1 2
3

 12

In event abstraction, primitive events are grouped together into a meaningful unit

called an abstract or compound event and displayed graphically. Kunz [25] developed an

approach to automatically combine a number of primitive events, possibly from various

processes, into a single abstract event. Other manual or semi-automatic approaches that

allow the user to specify which events to abstract away were investigated by Seeleman

[35] and Seuren [36]. Graphically, an abstract event in POET is represented by a vertical

rectangle that stretches over all the processes involved in the event. The intersection

between the rectangle and a process that is part of this abstract event will be filled,

otherwise an open intersection signifies that no event from the process belongs to this

abstract event. For example, in Figure 2.4 primitive events from processes P1, P2, and P5

make up the first abstract event.

Figure 2.4: Abstract Events View

Certain complications arise when defining precedence relationships between

abstract or compound events. In event modeling for distributed systems the following

have been proposed for defining the precedence relationships between compound events

[22, 25].

Time

P3

P2

P1

P4

P5

P6

 13

Definition 2.4:

A compound event, A, happens before another compound event, B, if all the primitive

events in A happen before all the primitive events in B. Formally

 A → B ⇔ ∀a ∈ A, ∀b ∈ B, a → b.

Definition 2.5:

A compound event, A, happens before another compound event, B, if there exists a

primitive event in A that happens before another primitive event in B. Formally

 A → B ⇔ ∃a ∈ A, ∃b ∈ B, a → b.

Definition 2.6:

A compound event, A, is concurrent with another compound event, B, if neither event

precedes the other, i.e.,

A || B ⇔ A !→ B ∧ B !→ A

The first definition of the happened-before relationship (Definition 2.4) was found

to be easier to deal with as it maintains the partial order relationship between both

primitive and compound events. It was however found to be too restrictive as it was

sometimes impossible to define happened-before relationships between compound events

that were clearly related. The second happened-before definition (Definition 2.5) was

found to be more intuitive though it requires more work to deal with as it breaks the

transitivity property, i.e., if A → B and B → C, it does not necessarily mean that A → C.

The definition also contradicts the partial-order relationship as it is possible for a

compound event A to happen before B and for B to happen before A. In order to deal with

these problems, Kunz [25] introduced the idea of compound events that are convex.

 14

Definition 2.7:

A compound event made up of a set of primitive events E is said to be convex if and only

if ∀x, y ∈ E, x → z → y ⇒ z ∈ E.

Definition 2.8:

Event sets A and B are disjoint ⇔ A ∩ B = ∅

Definition 2.7 implies that in a convex event set there are no intervening events

that are not included in the set. In Figure 2.5, the set of open-circled events is a non-

convex compound event as the dark-filled event is an intervening event. By including the

dark-filled event, the compound event set becomes convex (See Figure 2.6).

Figure 2.5: Non-Convex Compound Event

Time

P1

P3

P2

 15

Figure 2.6: Convex Compound Event

By restricting compound events to the set of events that are convex and disjoint

(see Definition 2.8), it is possible to maintain the partial-order relationship between

compound events (except for transitivity) for event sets that do not cross each other (see

Definition 2.9 [32]). In other words, given two convex compound event sets A and B, it is

still possible for A → B and B → A to both be true if A and B cross each other.

Definition 2.9:

The event set A crosses another event set B ⇔∃x0 ∈ A, ∃y0 ∈ B ∧ x0 → y0 ∧ ∃x1 ∈ A,

∃y1 ∈ B ∧ y1 → x1 ∧ A is disjoint from B.

Definition 2.10:

The event set A overlaps the event set B ⇔ A ∩ B ≠ ∅

Following Definitions 2.9 and 2.10, two event sets are said to be entangled if they either

cross or overlap each other. The entanglement operator ս is used to specify that event

sets are entangled [32].

Time

P1

P3

P2

 16

Definition 2.11:

A ս B ⇔ A crosses B ∨ A overlaps B

Definition 2.12:

A ֗ B ⇔ A does not cross B ∧ A is disjoint from B

By ensuring that event sets are not entangled, the following modification to the

happens-before relationship between compound events have been proposed [32].

Definition 2.13:

A → B ⇔ ∃a ∈ A, ∃b ∈ B ∧ a → b ∧ A ֗ B

The introduction of compound events is not only useful when abstracting away

primitive events to aid visualization of the process-time diagrams, but also when

searching for event patterns. Pattern-search is another approach used to cope with the

large set of events emitted by distributed systems. Pattern-search allows the user to

specify event patterns that are of interest using a pattern language and then a search

algorithm finds these patterns in the data-set and displays them to the user. Pattern-search

essentially allows the user to jump to points of interest on the screen. The next sections

discuss in detail the pattern language used for defining a pattern and the algorithms used

to find matches to the pattern.

2.4. Pattern-Search in POET

Before being able to search for events, there must be a well defined way of specifying

what is to be found. This is achieved using a pattern language. There has been extensive

research work focusing on defining pattern languages that can be used to search for

events from distributed systems [22, 32]. The common parts of the proposed languages

are the need for a way to specify attributes of an event, compound events or event classes,

 17

precedence and concurrency relationships, and a way to combine various pattern

components. The following sub-section describes the pattern language used in POET.

2.4.1. The Pattern Language

In the POET pattern language, the most basic element of the pattern is the event class. An

event class is represented by a 3-tuple that describes the process in which the event

occurs, the type of the event (e.g., send or receive) and an additional text for including

useful information. The tuple is represented as [“<process>”, “<type>”, “<text>”]. For

example, a tuple with all entries empty, [“”, “”, “”], would capture all the primitive events

in the data-set while a tuple such as [“P1”, “”, “”] represents all the events occurring on

process “P1”. An event class that has a partner event class would be represented by two

3-tuples separated by a period.

The operators in the language are the happened-before or precedence (→),

concurrent (||), and entanglement (ս) operators and they specify the constraints between

the event classes forming a clause. Another element in the language is the logical

operators OR (∨) and AND (∧). These are used to combine the clauses to specify more

restrictions on the pattern. For example, a simple pattern such as (A → B) || C ∧ (B → C)

implies that the search algorithm would find the events from event class A that happen

before events from B and are concurrent with events from C. Moving on to the next

clause, the search algorithm would then find events from B that happen before those from

C. Note that the set of events from B and C that satisfy the second clause do not

necessarily have to be the same set of events from B and C that satisfy the first clause.

Most of the initial building blocks of the pattern language were introduced by Jaekl [22].

 18

Figure 2.7: Grammar for the POET Pattern Language

 predicates ⇒ (predicate “;”)*

 predicate ⇒ id “:=” clause

 | id variable (“,” variable)*

clause ⇒ term basicOperator term

 ⇒ term “!” basicOperator term

 | term booleanOperator term

basicOperator ⇒ “→”

 | “||”

 | “ս”

 booleanOperator ⇒ “∧”

 | “∨”

term ⇒ id

 | variable

 | class

 | class.class

 | “(” clause “)”

class ⇒ “[”process “,” type “,” text “]”

 variable ⇒ [“$”, “*”, “~”]id

 id ⇒ alpha(alnum)*

alpha ⇒ [“a” – “z”, “A” – “Z”, “_”]

alnum ⇒ [“a” – “z”, “A” – “Z”, “_”, “0” – “9”]

string ⇒ [“a” – “z”, “A” – “Z”, “_”, “0” – “9”, “:”, “ ”, “\ t”,

“*”, “.”, “’”, “(”, “)”]+

 19

Nichols [32] introduced the use of variables to the pattern language, which affect

how the pattern-search algorithm works. A dollar-sign, $, is used to specify a variable

belonging to an event class and allows the search algorithm to bind the primitive events

from that class to the variable. This enables the primitive events to be used as the search

progresses. To illustrate further, in the previous example, we could replace the event class

B with a variable $b resulting in the pattern (A → $b) || C ∧ ($b → C). For this pattern,

the search algorithm will behave differently. Here, the primitive events belonging to B

that satisfied the constraints in the first clause must be used in satisfying the second

constraint. This is more intuitive for the user and is probably more desirable.

Variables could be marked with a universal quantifier (*). This implies that the

chosen primitive event in the given clause must satisfy all the primitive events associated

with the variable marked with the universal quantifier. For example, given a pattern

$a → *b, with $a and *b taken from event classes A and B respectively, implies that the

event assigned to $a should precede all the events from event class B. Variables could

also be marked with a tilde, ~, which indicates that the events associated with such

variables should not be returned as part of the match. So for example, the pattern ~a → B,

associated with event classes A and B respectively, implies that the search algorithm

should find events from A that happen before events from B but only return the events

from B to the user or the next level of the pattern matching process.

The limited operator which was created much earlier by Jaekl is no longer used

because the introduction of variables and universal quantifiers is sufficient to replace the

limited operator. The limited operator given in an example by A → B, means that the

search algorithm should return only events in A that precede events in B, where no

occurrence of an event matching C happens both after the match to A and before the

match to B. With universal quantifiers, this pattern can now be written as ($a → $b) ∧

($a !→ *c ∨ *c !→ $b). Figure 2.7 shows the grammar for the current pattern language

used in POET.

C

 20

In POET, patterns are specified in an ASCII plain-text file called the pattern file.

The following table shows a mapping between the formal notation of the language and its

ASCII format.

Table 2.1: ASCII Format of Pattern Language

 Formal ASCII

Happens-before → -->

Concurrent || ||

AND ∧ &

Limited A → B A - (C) -> B

Next, we discuss certain features provided by the pattern language that simplify

writing the pattern file and make it easier to read and follow. Consider a distributed

application consisting of a server and two clients communicating using TCP sockets. The

clients establish a connection with the server and then begin sending messages to the

server. Each client sends 20 consecutive messages to the server (to fill up a buffer) and

then waits until there is space in the buffer before sending more messages. The clients

can also receive messages from the server. The clients close the connection after a certain

number of messages have been sent. A programmer monitoring or debugging this

application can verify the connections made to the server using the patterns defined in

Figure 2.8.

In this figure, it is seen that in writing patterns, one can “declare” variables in

much the same way as is done in most programming languages. Such declarations make

it easier to refer to patterns in another more complex pattern. For example, we see that

“StartConnect” and “DoneConnect” are event classes represented by a 3-tuple as

described earlier. “StartConnect” given by [“”, “Accept”, “”] means that this event class

would match any events occurring on any process with an event type of “Accept” and

with any associated description. The following tuple after the period describes the partner

event type “Accept_stream” that is associated with each “Accept” event. Line 3 in the

figure declares variables $sc and *sc_all as associated with the “StartConnect” event

C

 21

class. “ConnectionEstablished” is a pattern that is made up of $sc, $dc and *sc_all

variables. Much like “StartConnect”, after “ConnectionEstablished” is defined, it can

represent a “type” for declaring other variables as is seen in Line 6 where *ce_all and $ce

are declared. The *ce_all and $ce variables can then be used in another pattern as in

“FirstConnectionEstablished”. The patterns in Lines 5, 7 and 8 enable one to determine

how many clients established connections to the server, the first connection established

and the last connection established, respectively. This is just an example of what the

pattern language allows users to specify and it also shows that the language is flexible

enough to allow writing very complex patterns that contain compound events.

Figure 2.8: Pattern Language Example

2.4.2. Convex Closure versus Re-written Patterns

We discussed earlier the need to introduce convex events in order to maintain the partial-

order relationships between compound events. In this section, we will see the implication

of searching for events that make use of patterns involving compound events. We

consider two approaches to pattern-search: one that takes the convex closure of the

compound events during pattern matching and another approach that reduces complex

patterns into a simpler format.

1. StartConnect := ["", "Accept", ""].["", "Accept_stream",""];

2. DoneConnect := ["", "Accept_done", ""].["", "Accept_done_stream",""];

3. StartConnect $sc, *sc_all;

4. DoneConnect $dc;

5. ConnectionEstablished := ($sc --> $dc) & ((*sc_all !--> $dc) | ($sc !--> *sc_all));

6. ConnectionEstablished *ce_all, $ce;

7. FirstConnectionEstablished := (*ce_all !--> $ce);

8. LastConnectionEstablished := $ce !--> *ce_all;

 22

Earlier work in POET about searching for patterns that contain compound events

involved finding the convex closure of the matching set of events during the search

algorithm [8, 39]. Recall that a set of events is said to be convex if there is no intervening

event not included in the set that happens before an event in the set and after another

event in the set. If such an intervening event exists then it must be included in the set of

events to make it convex. It is clear from the previous section that working with convex

event sets that do not cross each other enables us to make meaningful precedence tests

between compound events and avoid situations where a compound event happens both

before and after another compound event. We now move on to examine searching for

event patterns that contain compound events.

Figure 2.9: Pattern Parse Tree

Given the pattern (A → B) || (C → D) as represented by the pattern parse tree

shown in Figure 2.9, the search algorithm begins by assigning primitive events associated

with event classes A and B at the leaves of the tree. These events are then filtered keeping

only those that satisfy A → B. The algorithm would then find the convex closure of these

remaining pairs of events. Similarly, the algorithm would find events that match C → D

and then find their convex closure. With the convex event sets from the left-hand and

||

→

A B C D

→

 23

right-hand side of the tree, the algorithm would then determine which events satisfy the

concurrent operator according to Definition 2.6 and return this set to the user.

Experiments showed that finding the convex closure is the most expensive part of the

search algorithm [8, 32].

Nichols [32] showed that it is possible to eliminate the need for the finding the

convex closure by rewriting the pattern (based on certain rules) into a simpler format that

consists of at most a 2-level hierarchy. The rewritten pattern would consist of a set of

happens-before relations in conjunctive normal form (CNF). Rewriting is done using

Definition 2.5 of compound events. For example, given the pattern (A → B) || (C → D)1,

we begin from left to right and rewrite the pattern as follows. The first component,

A → B, will be assigned variables and re-written as $a → $b. The same will be done for

the next component to get $c → $d. Then by definition of concurrency between

compound events (Definition 2.6), we can expand the pattern and add the following

restrictions: $a !→ $c, $a !→ $d, $c !→ $a, $d !→ $a, $b !→ $c, $b !→ $d, $d !→ $b,

$c !→ $b, $a ≠ $c, $a ≠ $d, $b ≠ $c, and $b ≠ $d. The conjunction of all these

constraints will form the re-written pattern.

Furthermore, patterns containing variable modifiers or logical operators like *, ~,

!, ∨, and ∧ can be rewritten by applying the definition for compound events, De

Morgan’s laws, and the mathematical methods for converting boolean expressions into

CNF form. Though re-written patterns tend to be very verbose, experiments showed that

pattern-search using this approach is substantially faster than finding the convex closure

[32]. For this reason, we only consider re-written patterns in this thesis.

Having gone through some background information that describes the application

used in this thesis, we move on to previous research work that is more closely related to

the focus of this thesis. We formally define the pattern-search problem and provide a

good theoretical background that will enable us to better understand how to parallelize

the pattern-search algorithm.

1 Example taken from page 101 of Matthew Nichols’ thesis [32].

 24

Chapter 3

Related Work

Several problems such as the pattern-search problem in POET can be formalized as

Constraint Satisfaction Problems (CSPs). In this section, we define CSPs, and then

briefly describe current sequential algorithms used for solving these problems. Finally,

we discuss how to parallelize the algorithms for solving this class of problems.

3.1. Introduction

A CSP is defined by a set of variables X, a set of constraints C, and a set of domains D.

Each domain is associated with a variable and contains the allowable values for the

variable. Solving a CSP involves finding an assignment of values to the variables in order

to satisfy the given set of constraints. More formally, a CSP is given by the following

definition [31].

Definition 3.1:

A Constraint Satisfaction Problem P is given as a tuple P = (X, D, C, R) where

� X = {x1, x2, ..., xn} is a set of n variables.

� D = {D1, D2, …, Dn} is a set of n domains and each Di is associated with Xi.

� C = {C1, C2, …, Cm} is a set of m constraints where each constraint Ci is defined

by a set of variables {xi1, x i2, ..., xin } ⊆ X. i

 25

� R = {R1, R2, ..., Rm} is a set of m relations where each relation Ri defines a set of

ni-tuples on Di1 x Di2 x ... x Din compatible with respect to Ci. In other words, a

relation Ri defines the combination of values for each of the variables that satisfy

a constraint Ci.

CSPs are NP-complete [12] because they require an exhaustive search to find a solution

and the most basic approach is to use a naïve backtracking algorithm. In this algorithm,

the first step is to find a valid value to assign to the current variable. Once a value is

found, the algorithm picks the next variable and finds a valid value to assign to it that

does not conflict with the previously assigned variable(s). If a valid value cannot be

found, the algorithm backtracks to the last variable and assigns another value hoping that

this new value will lead to a successful assignment of the next variable. This process is

repeated until all variables have been assigned. The major limitation of the basic

backtracking algorithm is that it is exponential in the number of variables, therefore

several optimizations have been proposed. For example, a heuristic that uses a static

reordering of variables so that a “good” variable is chosen as the first variable for

assignment has the effect of reducing the runtime of the search algorithm [38].

Another more intelligent approach to solving CSPs is called back-jumping [17]

This approach is similar to the naïve backtracking algorithm except that during the

backtrack step, the algorithm jumps to the variable that is hindering the algorithm from

moving forward. This results in cost savings as the algorithm quickly picks the next value

of the variable that is the point of failure as opposed to simply choosing the next value of

the last variable that was assigned. The naïve algorithm that chooses the last variable that

was assigned may slow down the progress of the algorithm towards finding a solution.

Another approach called dynamic backtracking [17] is a variation of back-

jumping but instead of losing all the work done after the point of failure, dynamic

backtracking preserves this work. In other words, when the algorithm “jumps” over

variables that have already been assigned, and then re-assigns a new value to the variable

that is the point of failure, it does not change the values of the variables that have already

been assigned if they are not in conflict with the new value. Several other optimizations

and techniques that exist for solving CSPs [6, 7, 23] are beyond the scope of this thesis.

i

 26

3.2. Parallelizing CSPs

In addition to optimizing the sequential algorithms, additional research work has

focused on parallelizing such algorithms as a way to improve performance [10, 11, 24,

30, 33, 37]. The increased use of multi-core computers has made it beneficial to

understand how to parallelize current solutions in order to make use of the available

computing power and improve performance. The goal of most parallelized solutions has

been to distribute the problem among several cores/processors ensuring that they are

efficiently utilized in order to get close to a linear-speed up as the number of cores

increases.

One of the factors that influences the parallel-algorithm design is the hardware

architecture of the system. When designing a parallel algorithm to run on systems with

shared memory and several cores or processors, the focus is usually to prevent

simultaneous access to the shared memory by the working threads as this usually results

in performance degradation. On the other hand, for parallel algorithms designed to run on

traditional distributed systems where the computers are connected via a network and as

such have distributed memory, the design focus is usually to minimize the message-

passing overhead that occurs during the computation. In this thesis, we focus on work

done on systems with shared memory and investigate the search-tree approach for CSP

parallelization. This approach is currently the most promising method of achieving

parallelization. Other approaches such as domain decomposition [19] which involves

splitting the CSP into several easier sub-problems do not scale well.

3.2.1. Static Search Tree Distribution

Static search-tree-distribution methods of parallelizing CSPs involve modeling the

problem as a tree and splitting it up into sub-trees a priori. The sub-trees are then

assigned to different threads. In this thesis, we refer to the sub-trees as tasks. In this

approach, each thread has the entire initial CSP problem and uses an existing sequential

algorithm to solve the problem on a smaller search space. Research by Habbas et al. [20,

 27

24], explored this approach in common CSP problems like the Langford and Golomb

ruler problems [9, 20].

The search tree represents all possible combinations of values in the domains. A

node in the tree represents a value of a variable and each level of the tree corresponds to a

variable. The l-th level of the tree represents all the possible values of the l-th variable.

Therefore, given a CSP with n variables, the height of the search tree is n and the values

of variables traversed when going down the tree from the root node to the leaf node

represent a potential solution to the CSP. Figure 3.1 shows an example of the search tree

of a CSP with 3 variables a, b, and c. Assuming each variable has a domain size of k,

then the cost of finding all solutions is at most the cost of visiting all nodes in the search

tree which is O(k3).

Figure 3.1: Search Tree of a CSP

Habbas et al. [20] proposed a generic method of generating tasks for parallelism

from the search tree. In their method, they chose to explore the search tree up to a certain

depth level d, which would result in up to kd independent tasks (assuming again that the

domain size of each variable is k). These tasks are then assigned to the processors using

one of the various task-distribution strategies discussed next.

Task Distribution

In distributing the tasks among processors, the main challenge is load balancing, which

ensures that all the processors are busy throughout the execution of the search algorithm.

The difficulty with load balancing is that the work-effort involved in analyzing each task

a1

b1

c2 ck ...

b2

c1 c2 ck ... c1 c2 ck ...

bk ...

a2

b1

c2 ck ...

b2

c1 c2 ck ... c1 c2 ck ...

bk ...

c1

ak ...
Variable a

Variable b

Variable c

c1

 28

usually varies. As such, the tasks are said to be imbalanced. More specifically, when

traversing a particular sub-tree in a depth-first manner, it is possible that the constraints

between variables at shallow points of the tree fail, in which case the backtracking

algorithm does not need to go further down into the tree. On the other hand, in another

sub-tree the algorithm may need to go deep into the tree before needing to backtrack.

This results in an imbalanced work-effort when solving various tasks.

Figure 3.2: Task-Distribution Methods

There are various approaches to task distribution. The simplest method is the

basic approach whereby the tasks are evenly distributed among the processors a priori

(i.e., each processor gets NumberOfTasks / NumberOfProcessors tasks). The problem

here is that it assumes the work-effort of each task is quite similar; as such this method

usually results in poor performance for CSP problems with imbalanced sub-trees. Figure

3.2 shows the basic task-distribution method with four processors.

Variable X1

Variable X2

Variable X3

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Processor 1 Processor 2 Processor 3 Processor 4

P
ro

ce
ss

or
 1

P
ro

ce
ss

or
 2

P
ro

ce
ss

or
 3

P
ro

ce
ss

or
 4

P
ro

ce
ss

or
 1

P
ro

ce
ss

or
 2

P
ro

ce
ss

or
 1

P
ro

ce
ss

or
 4

P
ro

ce
ss

or
 3

P
ro

ce
ss

or
 2

P
ro

ce
ss

or
 4

P
ro

ce
ss

or
 3

Tasks

d

Basic

Modulo

 29

 Another approach called “Modulo Number of Processors” aims at balancing the

tasks among processors better and is shown in Figure 3.2. Here, task T1 is assigned to

Processor 1, T2 to Processor 2 and continuing until all processors have been given a task

and then the assignment is repeated beginning from the first processor [20]. In the third

approach called dynamic task distribution, there is a server or shared resource holding all

the tasks and each thread simply requests a new task when it has completed its current

task. Habbas et al. compared the last two task-distribution approaches on the Langford’s

problem and the dynamic approach performed better. In general, what approach works

best depends on the particular CSP. Basic task-distribution methods incur less overhead

but perform miserably for imbalanced search trees while dynamic approaches perform

better, but with some overhead in task distribution.

3.2.2. Dynamic Work-stealing

Even with dynamic task-distribution strategies, it is still possible to have load-balancing

issues where one processor is busy for an undesirable amount of time while the others are

idle. Therefore, a lot of research has focused on dynamic work-stealing in which a

processor can give away some of its work to an idle processor after the search has begun

[14, 30, 33]. Obviously, this method incurs a lot more overhead and so it is important to

have an efficient implementation when using any form of dynamic work-stealing in order

to improve the overall performance of the algorithm. In Chapter 6, we develop a work-

stealing strategy for the pattern-search problem in POET.

 30

Chapter 4

Pattern-Search Parallelization

In this chapter we begin by representing the pattern-search problem in POET as a CSP

and then we discuss the current sequential algorithm used. We then describe the

algorithm used to parallelize the search.

4.1. Introduction

Re-written patterns in POET are represented in Conjunctive Normal Form (CNF) which

is a set of disjunctions joined together by zero or more logical-AND operators. So for

example, a pattern-search problem in POET given by ($a → $b ∨ $b → $c) ∧ ($c !→ $d)

∧ ($a → $c) is a CSP consisting of four variables $a, $b, $c and $d associated with event

classes A, B, C, and D respectively. There are four constraints: $a happens-before $b, $b

happens-before $c, $c does not happen-before $d, and $a happens-before $c. The set of

relations here are all the values in event classes A and B that satisfy the first constraint,

and all the values in B and C, C and D, and A and C that satisfy the second, third and

fourth constraints respectively.

In POET, a solution to a pattern-search problem is an assignment of events to all

or some of the variables in the pattern. POET allows the user to specify the set of

variables for which values are to be returned. As discussed earlier, a variable marked with

a tilde (~) implies that the primitive events associated with that variable should not be

 31

returned to the user. Also, given a pattern that includes a variable marked by a universal

quantifier (*), the search algorithm would only return events for the other variables not

marked by the asterisk (or a tilde if present).

The pattern-matching algorithm used by POET is the naïve backtracking

algorithm. Next, we discuss the details of this algorithm in relation to the pattern-search

problem in POET and expand on the techniques discussed in Section 3.2.1 to achieve

parallelism.

4.2. Naïve Backtracking Algorithm

Given a large set of primitive events belonging to various event classes and a pattern, the

pattern-search problem involves finding the set of primitive events that satisfy the

constraints in the pattern. For example, using the previous example ($a → $b ∨ $b → $c)

∧ ($c !→ $d) ∧ ($a → $c), the naive backtracking algorithm walks through the pattern

from left to right assigning values to the variables and checking the constraints. If a

constraint is satisfied, it moves on to the next constraint and assigns new values to

unassigned variables. If a constraint is not satisfied with the current assignment, it picks

the next value in that event class and keeps checking until a value that satisfies the

constraint is found. If a value is not found, it backtracks to the variable that was last

assigned and chooses the next value.

Therefore in this example, the algorithm initially starts out by looking at the first

happens-before pair, ($a → $b), and assigns a primitive event from A to the variable $a,

and a primitive event from B to the variable $b. It then checks if the event chosen from A

happens before the event from B. Assuming that this constraint is satisfied, the algorithm

skips over the second happens-before pair (since this is a disjunction, only one happens-

before pair needs to be satisfied) and moves on to the only happens-before pair,

($c !→ $d), in the second disjunction. The algorithm then finds events from C and D that

satisfy the constraint and moves on to the last happens-before pair ($a → $c). Since $a

and $c have been previously assigned, the algorithm simply checks if their current values

 32

satisfy the constraint. Assuming this is not the case, the algorithm backtracks to the

previous happens-before pair ($c !→ $d) and chooses the next value for $d. The

algorithm would have to exhaust all the values from D before going on to pick the next

value for $c. It would then check for an event from D that happens after the new value of

$c. When this occurs, the algorithm would move on to the last constraint hoping that the

current value for $a now happens before the new assignment for $c.

Note that there are some inefficiencies with this algorithm, as on the first

backtrack step, it would pick the next primitive event from D that satisfies the third

constraint and then move to the last constraint repeating the precedence check with the

same value assigned to $a and $c. It is only after it has backtracked to the third constraint

several times and exhausted all the values from D for the current assignment of $c that it

can pick the next value from C and move forward in the search. For now, we ignore this

inefficiency and simply focus on the basic principles behind the search and how to

achieve performance improvements through parallelization. Algorithm 4.1 shows a

listing of the algorithm.

4.2.1. Cost Analysis

The backtracking algorithm is an exhaustive search that tries all variable-value

combinations in searching for solutions that match the pattern. It is easy to see that the

algorithm costs O(kn) where k is the maximum number of primitive events in an event

class and n is the number of variables in the pattern.

 33

Algorithm 4.1 : Existing Naïve Backtracking Algorithm for Pattern Search

1. // Begin with the first disjunction

2. position = 0

3. disjunction = conjunction.list.get(position)

4.

5. // Get the first happens-before pair in this disjunction

6. hbpPos = 0

7. hbpPair = disjunction.list.get(hbpPos)

8. loop forever
9. if hbpPair.first.isAlreadyAssigned

10. firstValue = hbpPair.first.current()
11. else
12. firstValue = hbpPair.first.next()
13. // No more events for this variable

14. if firstValue is null break
15. end if
16.
17. loop forever
18. if hbpPair.second.isAlreadyAssigned
19. secondValue = hbpPair.second.current()
20. else
21. secondValue = hbpPair.second.next()
22. if secondValue is null break
23. end if
24.
25. // Check if happens-before relationship is satisfied
26. if isSatisfied(firstValue, secondValue)
27. //store values
28. matches.push(firstValue)

29. matches.push(secondValue)

30. if position == conjunction.list.size()
31. // No more disjunctions, end of search

32. return matches

33. end if
34. position = position + 1
35. goto line 3
36. else // constraint not satisfied
37. // Get next happens-before pair in the disjuction
38. if hbpPos < disjunction.list.size()
39. hbpPos = hbpPos + 1
40. goto line 6
41. end if
42. end if
43. end loop
44. end loop

 34

4.3. Parallel Algorithm

Given a pattern-search problem in CNF, one approach to parallelizing this problem is to

divide the pattern into several sub-problems and assign each sub-problem to a different

thread (i.e., assign disjunctions to different threads). The partial solutions from each

thread can then be combined into the final solution. Ideally, the sub-problems should be

independent of each other, allowing each thread to work independently and avoid

communication.

Unfortunately, it is difficult to create independent sub-problems as re-written

patterns usually have a lot more constraints than variables, which makes it difficult to

have sub-problems that do not share variables. Another problem is that it is difficult to

estimate the work-effort of each sub-problem and so one sub-problem could be solved

quickly while another could take a very long time. Such imbalance in work-effort could

leave some threads busy and others idle, which does not fulfill one of the goals of

parallelization. For the aforementioned reasons, it is reasonable to quickly conclude that

dividing the pattern into sub-problems is not a promising approach. Therefore, we focus

on employing the static search-tree-distribution methods as discussed in Section 3.2.1 in

order to achieve parallelism.

In static search-tree distribution, the event-data set is divided into disjoint sub-

trees or tasks that are assigned to the working threads. Each thread has the entire pattern

and executes the naive backtracking algorithm on its own subset of the event data set.

When a thread finds a solution it submits it to a master thread and then continues

searching the current task for more solutions. Upon completion of the current task, the

thread picks up another task. This process is repeated until all the tasks have been

completed. The main issues we look at are how to divide the data set into tasks, the

number of tasks to generate, and ensuring that memory access is localized. As mentioned

before, the main goal is to keep the threads busy while minimizing the communication

between threads in order to achieve a high level of parallelism.

 35

4.3.1. Task Generation

In this thesis, we generate tasks by combining the search-tree distribution and task-

distribution techniques described in the previous-work section. Given a search tree, we

explore two approaches for task generation. The first approach which we call grouped,

starts out by splitting the variables in the pattern into two sets. The first set is called fixed

while the other set is called unfixed. Recall that the search-tree-distribution approach

creates tasks by exploring certain variables up to a particular depth d of the search-tree.

The fixed set consists of the variables that are initially explored and hence the size of this

set is d. The remaining variables in the pattern make up the unfixed set. As discussed

previously, the size of the tasks generated by this approach is at most kd, where k is the

size of the largest event class. In POET, the value of k could be over 100,000 events, and

so this approach easily leads to an unmanageable number of tasks that consumes too

much memory. There could also be a noticeable performance overhead as threads are

synchronized when picking up their next task. To avoid this, we extend Habbas’

approach by grouping the initial set of tasks into larger tasks. We start out with a pre-

configured desired number of tasks S and group the initial set of tasks into approximately

equal sizes in order to produce S tasks. Note that this approach is similar to the static

method of task distribution, except that S is not always equivalent to the number of

processors.

The grouped approach of task generation divides the search tree into relatively

equal sub-trees; however, the work-effort involved in running the pattern search

algorithm on each sub-tree usually differs, leading to idling threads. Since one of our

goals is to keep all threads busy, we experiment with a variation of the “Modulo Number

of Processors” task-distribution approach. We call this method scattered and here we

start out by having S buckets and assign the first task to the first bucket, the second task

to the next bucket, and so on, until the last bucket is filled. The process is repeated by

assigning the next task to the first bucket until all tasks have been assigned to buckets.

The “buckets” then represent the tasks that are assigned to each thread. Figure 4.1

illustrates the grouped and scattered task-generation methods.

 36

Figure 4.1: Grouped vs. Scattered Task-Generation Methods

In our experiments, we compare the two approaches and find that on average the

grouped method performs better because each task maintains the ordering of events as

they occurred in the target application. For most of the patterns used, maintaining this

ordering in each task appears to be more favourable to the pattern-search algorithm than

striving for more balanced tasks using the scattered approach. More details about the

experimental setup and results are given in Chapter 5.

With the approaches discussed, certain questions arise, such as how to choose the

fixed variables, and what are “good” values for S and d. In POET, Nichols [32]

introduced a technique for re-ordering the variables in the pattern. The variable with the

most constraints is placed at the beginning of the pattern. Using variable re-ordering

resulted in better performance during the pattern-search. Therefore, we maintain this

Variable X1

Variable X2

Variable X3

T1 T2 T3 T4

B
uc

ke
t 1

B
uc

ke
t 2

B
uc

ke
t 3

B
uc

ke
t 4

B
uc

ke
t 1

B
uc

ke
t 2

B
uc

ke
t 1

B
uc

ke
t 4

B
uc

ke
t 3

B
uc

ke
t 2

B
uc

ke
t 4

B
uc

ke
t 3

Grouped

d

T1 T2 T3 T4

Scattered

 37

ordering during parallelization by choosing the first d variables as the fixed variables

after the pattern has been reordered.

In theory, a “good” value of S is one that is greater than the number of processors

in order to ensure that there are always tasks available to keep the processors busy. In our

experiments, S is set to the number of processors, twice the number of processors, four

times the number of processors, and eight times the number of processors. Note that the

cost of generating the tasks increases slightly as S increases, so it cannot be arbitrarily

large. Finally, we begin by setting d to 1 and noting that at this point the number of tasks

would be equivalent to the domain size of the first fixed variable. If this size is less than

our desired number of tasks S, we simply increase the depth level until we can generate

up to approximately S tasks.

There is a minor note about choosing the fixed variables when dealing with

patterns that contain universal quantifiers. Recall that when a variable is qualified with a

universal quantifier (*), then it means the constraint must be satisfied for all primitive

events of the variable marked by the universal quantifier. Therefore, universally

quantified variables cannot be fixed variables because each task must contain all the

primitive events of the universally quantified variable.

4.3.2. Rules for Task Generation

The task-generation methods discussed involve taking the sub-trees at depth-level d and

grouping them into larger-sized tasks. Certain rules must be followed when creating these

groups in order to avoid “duplicate work-effort” when the backtracking algorithm is

executed. Here, “duplicate work-effort” refers to the scenario where more than one thread

visits the same set of nodes (i.e., primitive event values) from a top level node to a leaf

node in the search tree. Note that the nodes here represent the primitive event values.

 38

Figure 4.2: Task-Generation Example

(Grouped: Independent Tasks, Scattered: Duplicate Work)

For example, Figure 4.2 represents the search tree up to the second depth-level for

a pattern consisting of three variables $a, $b, and $c belonging to event classes A, B, and

C. The search-tree portion for variable $c is not shown in the figure. The figure shows

that event class A contains two primitive events a1 and a2, while that of B contains three

events b1, b2, and b3. If the pre-defined number of tasks to be generated, S, is 2, then a

valid set of tasks using the grouped approach is shown in the Table 4.1. Note that with

these tasks, when the backtracking algorithm is run, the sub-tree of task T1 is completely

independent of T2 as the thread assigned to work on task T1 will never visit a node that is

already visited or will be visited by the other thread working on task T2.

Table 4.1: Grouped Task Generation Example (Independent Work)

Tasks / Variables $a $b $c

T1 a1 b1, b2, b3 All events in C

T2 a2 b1, b2, b3 All events in C

In the scattered approach, the two tasks end up consisting of the entire search tree

so both threads end up repeating the exactly the same amount of work. Table 4.2 shows

the set of tasks in the scattered approach.

a1

b1 b2 b3

a2

b1 b2 b3

T1 T2

T1 T2 T1 T2 T1 T2

Grouped

Scattered

 39

Table 4.2: Scattered Task Generation Example (Duplicate Work)

Tasks / Variables $a $b $c

T1 a1, a2 b1, b2, b3 All events in C

T2 a1, a2 b1, b2, b3 All events in C

Now, assuming S is 3, the grouped and scattered methods will generate the tasks

as shown in Figure 4.3.

Figure 4.3: Task-Generation Example

(Grouped: Duplicate Work, Scattered: Independent Work)

Following the figure, in the grouped approach, the primitive events will be distributed

into the three tasks as shown in Table 4.3. In this table, different threads working on tasks

T1 and T2 will end up both exploring values a1 and b1. Also, the threads working on tasks

T2 and T3 will end up both exploring values a2 and b3. Obviously, splitting the search tree

in this manner will result in duplicate work-effort thereby degrading the performance of

the parallel algorithm. Using 3 tasks for the scattered approach does not result in

duplicate work in this case. The examples show that for both approaches, duplicate work-

effort is possible when generating the tasks.

Table 4.3: Grouped Task Generation Example (Duplicate Work)

Tasks / Variables $a $b $c

T1 a1 b1, b2 All values in C

T2 a1, a2 b1, b3 All values in C

T3 a2 b2, b3 All values in C

a1

b1 b2 b3

a2

b1 b2 b3

T1 T2 T3

T1 T2 T3 T1 T2 T3 Scattered

Grouped

 40

In order to avoid such duplicate effort when using either approach for task-

generation, we follow certain rules when generating tasks. Note that these rules are

generic enough to be applied to any parallel search-tree implementation of CSPs with a

large domain space that employs the backtracking algorithm. Previous work mainly

looked at eliminating useless tasks when it has been determined that a path up to a certain

depth-level has failed. As such, any other tasks beginning with those initial fixed

variables can be skipped [24]. In our approach, we focus on eliminating duplicate work

that could exist in a task when the backtracking algorithm is executed. In addition, these

rules are applied during task-generation and not when the threads have started working.

First, we propose the following definitions that simplify the discussion of the rules.

Definition 4.1:

A fixed node in the search-tree is a node associated with a fixed variable. For example,

from Figure 4.3, the nodes with values a1, a2, and b1 are fixed nodes.

Definition 4.2:

A fixed leaf node is a fixed node at depth-level d of the search tree.

Definition 4.3:

An ancestor node is any fixed node at level 1 to level d - 1. So fixed leaf nodes are not

considered ancestor nodes.

Definition 4.4:

An ancestor node of a given node n1 at level l, (1 < l ≤ d) is any fixed node along the

path to n1 from level 1 to l - 1.

Definition 4.5:

A node n1 is a perfect sibling of another node n2 if n1 and n2 are on the same level of the

search-tree and each have child nodes with exactly the same set of values. Note that when

 41

looking at an entire search-tree, all the nodes on the same level are perfect siblings of

each other. This is not necessarily the case for sub-trees as we will see shortly.

Definition 4.6:

A node n1 is an imperfect sibling of another node n2 if n1 and n2 are on the same level of

the search-tree with each having a set of values C1 and C2 respectively associated with

their child nodes and there exists a value in C1 that is not in C2, or vice versa. In other

words, n1 and n2 do not have exactly the same set of values associated with their child

nodes. Imperfect siblings only occur when looking at sub-trees.

Given a task Ti, let Fi represent the set of values of the fixed nodes in Ti and let Fil

represent the set of values for the fixed nodes in Ti at level l.

Definition 4.7:

Two tasks Ti and Tj developed with sub-trees up to depth level d are disjoint if there exists

a level l, (1 ≤ l ≤ d), where the intersection of the sets of values of the fixed nodes at that

level is empty i.e., Fil ∩ Fjl = ∅.

With the above definitions, one rule we need to apply when generating tasks in order to

avoid duplicate work when the backtracking algorithm is executed is as follows:

Rule 4.1:

In the set of tasks generated from the entire search tree, each task must be disjoint from

every other task.

The following theorem proves that if Rule 4.1 is followed then it is not possible to have

duplicate work.

 42

Theorem 4.1:

If two tasks Ti and Tj are disjoint then the threads Pi and Pj assigned to tasks Ti and Tj

respectively will never visit exactly the same set of primitive events from level 1 to n of

the search tree, where n is the height of the tree.

Proof: We prove this by contradiction. Assume the tasks Ti and Tj are disjoint but it is

possible for Pi and Pj to visit the same set of primitive events from level 1 to n, then it

means that at each level l in Ti and Tj there is a primitive event e that is present in Fil and

Fjl that can be visited by both threads. This implies that Fil ∩ Fjl ≠ ∅, ∀l ∈ {1, ..., n},

and as such the tasks Ti and Tj cannot be disjoint based on Definition 4.7. Therefore, it

must be the case if Ti and Tj are disjoint, then Pi and Pj cannot visit the same set of

primitive events from level 1 to n, which implies there is no duplicate work. ∎

Based on the premise that the set of tasks for a search tree covers the entire tree (i.e.,

there is no missing work), the next theorem postulates that if a sub-tree representing a

task has certain properties then it is possible to have duplicate work.

Theorem 4.2:

If a task Ti has fixed leaf nodes with values z1 and z2 (where z1 and z2 can be equal) that

have ancestor nodes with different values h1 and h2, respectively, that are imperfect

siblings, then there must exist another task Tj from the search tree such that Ti and Tj are

not disjoint.

Proof: Since the ancestor nodes with values h1 and h2 are imperfect siblings, in task Ti

either there is a node with primitive event value e that is a child of the ancestor node with

value h1 but not a child of the ancestor node with value h2 or there is a node with

primitive event value f that is a child of the ancestor node with value h2 but not a child of

the ancestor node with value h1 (Definition 4.6). We prove only one case as the proof for

the other case is similar.

 43

Case 1: We consider the case where in Ti there is a node with primitive event e that is a

child of the ancestor node with value h1 but not a child of the ancestor node with value h2.

To show that Ti and Tj are not disjoint, we simply need to show that Fil ∩ Fjl ≠ ∅, ∀l ∈

{ 1, ..., d}. Let the path with node values ni1 → ni2 → → (nim = h1) → (ni(m+1) = e) →

ni(m+2) → → (nid = z1) be present in Ti. It is easy to see that there must exist another

task Tj that contains the path with node values (nj1 = ni1) → (nj2 = ni2) → → (nj(m-1) =

ni(m-1)) → (njm = h2) → (ni(m+1) = nj(m+1) = e) → (nj(m+2) = ni(m+2)) → → (njd = nid = z1) as

each node on each level in the search tree contain exactly the same child node values

(i.e., are perfect siblings of each other) and all tasks combined cover the entire search tree

(i.e., there is no missing work). Note that on the m-th level, we already know that h2 is in

Ti and Tj so Fim ∩ Fjm ≠ ∅. Therefore, in tasks Ti and Tj, Fi1 ∩ Fj1 = ni1, Fi2 ∩ Fj2 = ni2,

..., Fi(m-1) ∩ Fj(m-1) = ni(m-1), Fim ∩ Fjm = h2, Fi(m+1) ∩ Fj(m+1) = e, Fi(m+2) ∩ Fj(m+2) = ni(m+2),

..., Fid ∩ Fjd = z1 and hence Ti and Tj are not disjoint. ∎

Taking note of the above theorem, we employ the following rule when generating

tasks.

Rule 4.2:

During task-generation, there should not be any task that has a pair of fixed leaf nodes

with ancestor nodes (with different values) that are imperfect siblings.

Next, we propose the following lemmas that will enable us to prove that our task-

generation implementation (described in the next section) ensures that no duplicate work-

effort occurs.

Lemma 4.1:

There is a unique path from level 1 to each node at any level l in the search-tree, where

1 ≤ l ≤ n (n is the last level in the search-tree).

 44

Proof: This can be easily verified based on the way the search tree is constructed. ∎

Lemma 4.2:

Given two unique paths pi and pj from levels 1 to l in a search-tree, there exists a level m

(1 ≤ m ≤ l) such that the primitive event values representing the nodes at nim and njm are

not equal.

Proof: Again, this can be easily verified based on the search-tree structure. ∎

4.3.3. Task-Generation Implementation

In this section, we describe the algorithms used for generating tasks in the grouped and

scattered approaches. Each algorithm takes as input a desired number of tasks to be

generated, S, and based on the search-tree generates a set of tasks whose size is as close

to S as possible. The goal is to generate a number of tasks as close to S as possible

without violating Rules 4.1 and 4.2.

Recall that the total number of tasks possible at depth level d is given by |D1| *

|D2| * ...* |Dd|, where |Di| is the domain size of the variable at level i. Using this

information, we can determine the depth level needed in order to generate up to S tasks

by simply going down one more level if the current total number of tasks possible is not

up to S. Now, given a certain depth level d, we describe each algorithm for task

generation and prove that the algorithms avoid duplicate work-effort among the threads.

Grouped Approach

I. Case 1: If d is 1, then we simply divide the total number of nodes at this level (we

call this M), by S to get the number of nodes in each group (otherwise called the

group size), g. The algorithm then assigns the nodes at level 1 from positions 1 to g

to task T1, positions g + 1 to 2g to task T2, positions 2g + 1 to 3g to task T3, ...,

positions (C-1) g + 1 to Cg to task TS-1, and positions Cg + 1 to M to task TS.

 45

It is easy to see that the sets of tasks generated above are disjoint from each

other as the nodes in level 1 are unique and there is no overlap of nodes during the

task assignment. Therefore, Fi1 ∩ Fj1 = ∅, ∀i, j ∈ {1, ..., S}, so there is no

duplicate work-effort.

Case 2: If d is greater than 1, we again set the group size, g, to the ceiling of M / S,

and then we adjust this value to a new value g’ in order to generate a set of

relatively equal-sized tasks whose size is as close to S as possible. To understand

why this adjustment is necessary, we first note that to enforce Rule 4.2 the

algorithm creates a new task when it gets to the first leaf node under the next sub-

tree rooted at level d -1. This implies that the last task generated from the previous

sub-tree may not contain up to g’ fixed leaf nodes. This restriction is needed in

order to avoid generating tasks with fixed leaf nodes that have different ancestor

nodes that are imperfect siblings (see Figure 4.4).

Figure 4.4: Grouped Approach – Enforcing Rule 4.2

y1

z2 z|Dd|

y2

z1 z2

T1

In order to ensure that nodes y1 and y2 in Ti are not imperfect siblings, the

last task, Ti, under sub-tree rooted at y1 ends with the last fixed leaf node

and has a smaller task of size g’’, and a new task is started at the next sub-

tree. This ensures that Rule 4.2 is not violated.

............

g’

y|Dd-1|

g’

g’

g’

x1

z|Dd|

Level 1

Level d-2

Level d-1

Level d

g’’ g’

T2 Ti Ti - 1 Ti +1

z1

 46

Without adjusting the group size, we note two problems that occur as a result

of this restriction. Firstly, we see that if g is greater than half of |Dd|, there will be

exactly two tasks generated under each sub-tree rooted at level d -1 as the algorithm

generates a new task starting at the following sub-tree. This produces a set of tasks

whose size is almost two times the value of S in the worst case. As mentioned

previously, having too many tasks could reduce the efficiency of the parallel

algorithm. Secondly, we see that exactly half of the set of tasks generated would

potentially have a much smaller size than the other half. Having too many unequal-

sized tasks increases the likelihood of introducing a work imbalance among the

threads which may have been avoided with relatively even-sized tasks (though there

is no guarantee of this). To avoid the aforementioned problems, when g is greater

than half of |Dd|, we adjust g using the following technique:

Let λ represent a number between 0.5 and 1 (exclusive) such

that λ*|Dd| is a threshold value. When g is greater than this

threshold, it is adjusted to |Dd|; otherwise it is adjusted to half

of |Dd|. Note that higher values of λ result in a set of tasks

whose size is much greater than S.

In our implementation, λ was set to 0.707 which ensures that the actual size of

tasks generated, denoted by S’, is at most 1.414 times the initial desired size, S (see

Appendix A for details on the relationship between λ, S and S’). Note that when g is

less than half of |Dd|, it is not adjusted because though we can still have uneven-

sized tasks, the number of tasks with equal sizes will be more than the number of

tasks with unequal sizes. In fact, it is easy to see that in the worst case, at least 66%

(i.e., at least 2 under each sub-tree, hence 2 of 3 tasks) of the tasks generated will

have equal sizes. Also, with the grouped approach, it is impossible for the initial

group size, g, to be greater than |Dd| as this implies that there was no point going as

far down as level d in the search tree in order to generate the desired number of

tasks. Having discussed why and how the group size is adjusted, we move on to

 47

proving that the tasks generated using this grouped approached are always disjoint

from each other.

Proof (Case 2a): If g’ ≤ 0.5|Dd|, then there are two or more tasks whose fixed leaf

nodes have the same parent node at level d – 1. Consider any two tasks Ti and Tj, if

their set of fixed leaf nodes both have the same parent node, then we can easily

conclude that Fid ∩ Fjd = ∅ as there are no overlapping values when assigning

fixed leaf nodes to a task.

If the set of fixed leaf nodes in Ti and Tj do not have the same parent node

then either both tasks have no common value in their set of fixed-leaf-node values

i.e., Fid ∩ Fjd = ∅ or both tasks contain exactly the same set of values associated

with their fixed leaf nodes, i.e., (Fid ≡ Fjd) ⊂ Dd. This is because the parent nodes

are perfect siblings and the algorithm always starts a new task when it gets to the

first fixed leaf node under a new sub-tree and continues the task-generation with a

group size of g’. Therefore, in the former case when Fid ∩ Fjd = ∅, the tasks Ti and

Tj are disjoint based on Definition 4.7.

We now show that when (Fid ≡ Fjd) ⊂ Dd (the latter case), the algorithm

ensures that Ti and Tj are disjoint. According to Lemmas 4.1 and 4.2, we know that

there is a unique path to each of the parent nodes of the set of fixed leaf nodes in Ti

and Tj, as such there is a level m with different node values on each of these paths.

Therefore, Ti is disjoint from Tj at level m (Fim ∩ Fjm = ∅). ∎

Proof (Case 2b): If g’ = = = = |Dd|, then any two tasks Ti and Tj have exactly the same set

of fixed leaf nodes, i.e., Fid ∩ Fjd ≡ Dd and different parent nodes. We see that the

proof is the same as the latter case of second scenario in Case 2a above and so Ti

and Tj are disjoint. Therefore, there is no duplicate work-effort based on Theorem

4.1. ∎

 48

Scattered Approach

I. Case 1: If d is 1, the algorithm simply assigns the nodes (at level 1) at position 1 to

task T1, position 2 to task T2, position 3 to task T3, ..., position S to TS, and then

repeats the process by assigning the node at position S + 1 to task T1. Since all the

nodes at each level in the search tree have unique values then it follows that Ti and

Tj are disjoint as Fi1 ∩ Fj1 = ∅, ∀i, j ∈ {1, ..., S}. Therefore, there will be no

duplicate work-effort.

II. Case 2: If d >1 and S ≤ |Dd|, the algorithm generates the tasks as follows. For

similar reasons discussed previously, we first adjust S in exactly the same manner

as the group size in the grouped approach to get the new task size S’. The algorithm

then assigns the fixed leaf nodes at positions 1 to S’ to the buckets B1 to BS’

associated with tasks T1 to TS’. It then repeats the process again filling bucket B1 at

the next fixed leaf node at position S’ + 1. In order to enforce Rule 4.2, we ensure

that the first fixed leaf node under a new sub-tree rooted at level d -1 is assigned to

bucket B1. This ensures that the set of fixed leaf nodes assigned to each task

remains the same as the algorithm progresses (see Figure 4.5).

Now we prove that the algorithm guarantees that the tasks generated are

disjoint from each other.

Proof: As noted before, the algorithm ensures that each task Ti has exactly the same

set of fixed leaf nodes. Therefore, task Ti is disjoint from another task Tj as

Fid ∩ Fjd = ∅, ∀i, j ∈ {1, ..., S’} and so there will be no duplicate work-effort. ∎

 49

Figure 4.5: Scattered Approach – Case 2 (S ≤≤≤≤ |Dd|)

Case 3: If d >1 and S > |Dd|, the algorithm generates the tasks as follows. First, we

adjust S according to Algorithm 4.2 to get the new task size S’. This algorithm sets

S’ to the total number of fixed leaf nodes (closest to S) under a sub-tree. In this case,

this adjustment is even more important in order to avoid duplicate work-effort as we

will see in the proof shortly. The algorithm then fills the buckets B1 to BS’ as in Case

2. We now prove that this algorithm ensures that there is no duplicate work-effort.

Algorithm 4.2: Adjusting the desired number of tasks (S)

1. // Initialize variables

2. S’ = 0, Y = |Dd|

3. // Loop through each level moving towards the root of the tree

4. for i = (d - 1) ... 1
5. Y’ = Y

6. Y = Y * |Di|

7. if S ≤ Y break

8. end
9. // The method closerTo would return the number Y or Y’ that is closer

10. // to S
11. S’ = closerTo(S, Y’, Y)

y1

z1 z|Dd|

y2

z1

In order to ensure that in T1, nodes y1 and y2 are not imperfect siblings, the

first leaf node under y2 is assigned to task T1 and not T4. This ensures that

Rule 4.2 is not violated.

.....

y|Dd-1|

....

x1

Level 1

Level d-2

Level d-1

Level d

T1

z2

T2 Ts’

zs’

T1 T2 T1 T3

zs’+1 zs’+2

T4

z|Dd| zs’-1 zs’
T3

zs’-2
T1 T2

....

....

....

 50

Figure 4.6: Scattered Approach – Case 3 (S > |Dd|)

Proof: If S’ = |Dd| then the proof is same as Case 2 above. If S’ > |Dd| then

S’ = |Dd| * ...* |Dr|, 1 ≤ r ≤ d – 1 based on Algorithm 4.2. If we consider any two

buckets Bi and Bj associated with tasks Ti and Tj in the first sub-tree rooted at the

first node on level r – 1 (see Figure 4.6), we see that this sub-tree contains the first

paths pi and pj that are assigned to the buckets Bi and Bj respectively. From Lemma

4.1, we know that pi and pj are unique and so according to Lemma 4.2, there is a

level m, (m ≥ r), where there are unequal nodes on each of these paths. As the

algorithm moves through each node rooted at level r - 1 and fills the buckets

associated with T1 to TS’ again, we note that the next paths assigned to each bucket

will each contain the same sequence of nodes from level r to d since all the sub-

a1

b1

g1 g|Dr|

...

a2

Level d-2

Level d-1

Level d

Level 1

Level 2

f1 Level r -1

Level r

1st
sub-tree under

first node on level
r -1

S’

....

f2

2nd
sub-tree identical

to the first one

g1 g|Dr|

b|D2|

a|D1|

......................

..........

 51

trees rooted at level r - 1 are identical. Therefore, Ti and Tj are disjoint at level m

(Fim ∩ Fjm = ∅) and so there is no duplicate work-effort, based on Theorem 4.1. ∎

4.3.4. Memory Localization

As previously mentioned, this thesis focuses on parallelization on a multi-core or multi-

processor machine with shared memory. As such, in order to avoid the huge performance

degradation that occurs when multiple threads access the same memory location, we

create local objects that are accessed by each thread while the search is running.

Algorithm 4.3: Creating a copy of the Conjunction object for each task

1. // Create a new Conjunction object containing the same number of

// Disjunction, HappensBeforePair and Factor objects.

2. Conjunction newConj = origConj.copy()

3. // Lines 4 and 5 are the results of the task-generation step

4. fixedFactors = getFixedFactors()

5. unfixedFactors = getUnfixedFactors()

6. for i = 0 ... origConj.list.size() //Number of disjunctions

7. disj = origConj.list.get(i)

8. newDisj = newConj.list.get(i)

9. for j = 0 ... newDisj.list.size() //Number of happen-before pairs

10. hbp = disj.list.get(j)

11. for k = 0 ... fixedFactors.size()
12. if fixedFactors.get(k) is hbp.first
13. newDisj.list.get(j).first = fixedFactors.get(k).copy()
14. else if fixedFactors.get(k) is hbp.second
15. newDisj.list.get(j).second = fixedFactors.get(k).copy()
16. end if
17. end for
18. for k = 0 ... unfixedFactors.size()
19. if unfixedFactors.get(k) is hbp.first
20. newDisj.list.get(j).first = unfixedFactors.get(k).copy()
21. else if unfixedFactors.get(k) is hbp.second
22. newDisj.list.get(j).second = unfixedFactors.get(k).copy()
23. end if
24. end for
25.
26. end for
27. end for

 52

In the POET class structure, the Conjunction object contains the pattern in CNF

form. As such it consists of a list of Disjunction objects and the constraints between

variables are represented by a HappensBeforePair object. Each HappensBeforePair

object contains two variables, each represented by a Factor object that holds the list of

PrimitiveEvent objects (representing the primitive events) associated with the variable.

Each task generated has a separate “deep” copy of the Conjunction object and separate

lists of primitive events. Though the PrimitiveEvent objects associated with the unfixed

variables would be shared by various threads, we avoid copying these objects as they are

read-only and do not require thread synchronization. Algorithm 4.3 shows the steps for

creating a copy of the Conjunction object that contains a subset of the search tree.

Another object that was localized is a map that contains the timestamp cache.

POET maintains a list of vector timestamps for each primitive event. This cache is loaded

into memory before the search algorithm runs and is used to determine the precedence

relationship between two variables. Therefore, to avoid performance degradation, each

thread is given a shallow copy of the timestamp cache. Since we are not making copies of

the timestamp objects, the memory cost here is negligible.

4.3.5. Cost Analysis of Task Generation

As discussed previously, the cost of task generation is equivalent to the cost of traversing

the search tree up to a certain depth level d, i.e., O(kd), where k is the size of the largest

event class. Therefore, it is important to keep d reasonably low in order to reduce the cost

of task generation. Another additional cost is the cost of creating copies of the

Conjunction object and the timestamp cache. The cost of making a copy of a Conjunction

object depends on the number of disjunctions, l, the number of happens-before pairs (i.e.,

the constraints), m, and the number of variables, n. The cost of going through the outer

for-loop is l, the cost of the first nested for-loop is m, and the cost of the two innermost

for-loops is n (i.e., going through the fixed and unfixed variables). Thus the total cost is

O(l ∗ m ∗ n). From the experiments, we see that the cost of creating the tasks is

 53

insignificant compared to the cost of running the search algorithm, so it is usually

beneficial to run the parallel algorithm over the sequential one.

4.4. Optimization for Universal Quantifiers

Nichols [32] describes an optimization to the search algorithm for patterns containing

universal quantifiers, since evaluating such patterns can be very time-consuming. In

evaluating the pattern ($a → *b), and assuming that $a and *b are associated with event

classes A and B, the search algorithm would pick a value for $a from A and check if this

value happens-before each value of *b. If the algorithm finds that this value of $a does

not happen-before a value of *b, then it moves on to the next value for $a and repeats the

search beginning with the first value of *b. Nichols hypothesized that due to the ordering

of primitive events, it is more likely that the next value of $a will fail at the same point or

a point close to the value of *b which caused the previous value of $a to fail. Based on

this hypothesis, Nichols proposed that the value of *b that failed should be moved to the

start of the list of events so that when the next value of $a is picked, the precedence

check will fail earlier. Experiments showed that this re-ordering of the primitive events

associated with the universally quantified variable gave a huge performance boost for

evaluating certain patterns.

Though this optimization works well in the sequential algorithm, its benefit is not

fully realized when running the proposed parallel algorithm. This is because the task-

generation phase divides the list of events into various subsets which are handled by

different threads, so this optimization becomes localized to each task. Following the

previous example, when a value of *b is moved to the start of the event list, only the

thread handling this task “sees” the benefit by quickly failing on the next value of $a.

When the thread picks up its next task, it loses this information and begins with the first

value of $a and the first value of *b in its new sub-tree search space.

In order to improve the parallel algorithm when running patterns with universally-

quantified variables, we propose certain changes to the task-distribution algorithm. To

 54

simplify the discussion of these changes, let Y = {*y1, *y2, ..., *yn} be the set of universally

quantified variables in the pattern and Z = {Z1, Z2, ..., Zn} be the set of domains for these

universally quantified variables, i.e., each Zi represents the sequence of primitive events

associated with variable *yi. Now, after a thread completes a task, let Zi’ represent the new

sequence of primitive events for variable *yi that is produced due to the optimization for

universally quantified variables proposed by Nichols. The changes to the task-distribution

algorithm are as follows:

1. First, we divide the set of |T| tasks into |T| / t subsets, where t is the number of

threads. Each thread is then assigned a subset of the tasks.

2. Each thread begins by selecting a task from its own subset and running the

backtracking algorithm as usual.

3. When a thread completes a task, it selects the next task in its subset (or if there is not

one, it would select the next available task from another thread’s subset), and for each

universally quantified variable *yi, the thread would set the variable’s domain Zi to Zi’.

The thread would then proceed to run the backtracking algorithm on this task using

the re-ordered set of domains.

Note that because this optimization relies on the order of the primitive events in each

domain, it naturally favours the grouped task-generation approach. Section 5.2, evaluates

the benefits of this optimization for patterns containing universal quantifiers.

4.5. Parallel Pattern-Search Architecture

In this section, we describe the overall architecture of the parallel pattern-search feature,

the co-ordination among threads, and how this new feature fits into the existing POET

pattern-search application.

Some parameters that can be used to configure the parallel algorithm were added

into the existing poet.properties. The first parameter, poet.core.searcher.mode, is used to

specify whether to run the sequential algorithm and return one match at a time (value:

 55

“default”), or to run the parallel algorithm and return one match at a time (value:

“parallelOneMatch”), or to run the sequential algorithm and return all matches at once

(value: “nonParallelAllMatches”), or to run the parallel algorithm and return all matches

at once (value: “parallelAllMatches”).

The next parameter, poet.core.searcher.parallel.subtaskfactor (otherwise called

sub-task factor), is used to determine how many tasks to generate and is specified as a

factor by which the number of processors/cores should be multiplied. The default value is

eight meaning that the number of tasks the algorithm should generate is eight times the

number of cores. The poet.core.searcher.parallel.numthreads parameter specifies the

number of threads to use and the default value is equivalent to the number of cores

available. The poet.core.searcher.parallel.taskcreationtype parameter is used to specify

the technique to be used for task-generation, i.e., the grouped or scattered approach.

In POET, the pattern-search application begins by parsing a predicate file

containing the list of patterns. It then populates the timestamp cache and loads the

primitive events into memory. The user then selects a pattern and the search algorithm is

invoked. Once a match is found, it is displayed to the user and the user can select a button

in order to retrieve the next match. When running the sequential algorithm, displaying a

match to the user is achieved using two threads. The main thread initializes the pattern-

search class, FindFlattenedMatch.java, and creates a search thread that begins the

pattern-matching algorithm. The main thread then goes to sleep on a semaphore. When

the search thread finds a match, it wakes up the main thread and then goes to sleep. The

main thread then displays the match to the user, and if the user requests another match,

the search thread will be woken up to continue the search from where it left off.

In the parallel mode (i.e., parallelOneMatch), we achieve a similar execution

sequence by making use of several threads and counting semaphores. The main thread

initializes the pattern-search class, ParallelMatchFinder.java, and creates a master thread

to begin the search. The main thread then goes to sleep in a similar manner. The master

thread starts out by splitting the variables in the given pattern into fixed and unfixed sets.

The thread then generates the tasks, with each task containing a copy of the pattern and

two counting semaphores. The first semaphore, called the master semaphore, is used by

the master thread and each task has a reference to this semaphore. The second semaphore

 56

is used only by the thread executing the task. The master thread then creates the required

number of searcher threads and goes to sleep on its semaphore. The searcher threads then

begin executing the backtracking algorithm on their own event-data set.

 When one of the searcher threads finds a match to the pattern, it acquires a “put”

lock, inserts the match into a list, inserts its semaphore into a list of semaphores, wakes

up the master thread, and then releases the “put” lock before going to sleep on its own

semaphore. The awoken master thread then wakes up the main thread and goes to sleep

until the user asks for another match. When the user asks for another match, the main

thread wakes up the master thread which in turn wakes up the search thread whose

semaphore is at the front of the list of semaphores. If other threads have returned more

matches, the master thread informs the main thread about it as before, otherwise, it goes

back to sleep. The use of a semaphore per task resulted in a slight improvement in

performance relative to when one semaphore was used as the latter approach caused the

searcher threads to block for longer periods of time when submitting a match.

When a searcher thread completes a task, it acquires a “get” lock in order to

retrieve the next available task. Each time a task is completed, a counter is incremented.

Using this counter, a thread is able to know when it has completed the last task (i.e.,

when the counter is equal to the number of tasks), at which point it wakes up the master

thread which informs the main thread that there are no more matches.

 57

Chapter 5

Experiments and Results

5.1. Test Setup

The parallel algorithm is implemented in Eclipse POET which was developed as an

Eclipse plug-in using Eclipse 3.3 or later [1]. It also requires the Eclipse Graphical

Editing Framework (GEF) 3.3 or later and a database that stores the event-data set. The

databases currently supported are hsqldb [2], MySQL [3], and PostgreSQL [4]. Our

experiments were performed using the MySQL database. Eclipse POET supports

importing UEF data sets which are plain text files that contain the events from the target

environment. Eclipse POET also provides a user interface for viewing the data sets and

searching for patterns. To import a data set into the database, we start up a second

instance of Eclipse by choosing “Run” → “Open Run Dialog ...” and then double-clicking

on “Eclipse Application”. Clicking on “Run” in the pop-up dialog will automatically

include any plug-ins and source-code packages in the workspace.

To import a new partial-order data set, a new project must be created via “File” →

“New Project”. We can then import a new data set by right-clicking on the new project

and selecting POET’s event-database wizard. The wizard asks for the database to connect

to, some database credentials, the UEF file, and the target-descriptor file. The target-

descriptor file contains the information needed to map events from the target application

 58

into POET events. Once all this information has been entered, the data set is imported

into the database and we can view the data set on the screen.

To search for a pattern, we click on the “POET” → “FindPatterns” menu-item

which brings up a dialog box that enables us to select the pattern file to be used. Figure

5.1 shows POET’s view of the PVM Life partial-order data set (located at

poet/model/data/life.8.19.ef.uef). The application that produced this data set consists of

eight processes. The simulation starts out with a parent process spawning seven processes

and then sending a message to all these processes. Each child process then selects a

neighbour and forwards the message to it. The figure shows a “spawn(started)” event and

then a “spawn(done)” event which signifies that all child processes were started and

spawned successfully. The “send” and “recv” events represent the events for sending and

receiving messages respectively. The circled patterns in the figure show the first result

returned by searching for the “Spawn” pattern. This pattern checks for every

“spawn(started)” event that happens-before a “spawn(done)” event.

Figure 5.1: PVM Life Event Data Set

SpawnStart := [“”, “spawn(started)”, “”];

SpawnDone := [“”, “spawn(done)”, “”];

Spawn := SpawnStart --> SpawnDone;

 59

In order to conveniently run batch tests, we use command-line tools to import the

event data sets and search for patterns instead of the user interface described above. The

poet.model.importer.UEFImporter tool imports an event data set while the

poet.core.pattern.Searcher tool is used for pattern matching. The parameters used to

invoke these tools are shown in Figure 5.2. Note that we used re-written patterns in all the

experiments.

Figure 5.2: Command-Line Parameters for POET Tools

Figure 5.3: Search-Tool Example

Figure 5.3 shows the results from using the search tool when searching for the

pattern in Figure 5.1 on the PVM Life data set. The tool displays one matched event per

line, as a sequence of vector timestamps, as well as the time taken to find that match. The

Preloading cache: 32 milliseconds (not included in total time)
==
Mode [ParallelOneMatch]
Pattern Init: 8 milliseconds (included in total time)
Number of threads - 2
Number of subtasks - 4, time - 6 milliseconds
1. 96 milliseconds [[0,8], [0,1]]
2. 0 milliseconds [[0,8], [0,3]]
3. 0 milliseconds [[0,8], [0,2]]
4. 0 milliseconds [[0,8], [0,4]]
5. 1 milliseconds [[0,5], [0,8]]
6. 0 milliseconds [[0,7], [0,8]]
7. 0 milliseconds [[0,6], [0,8]]
Number of timestamps 7
Total 7 matches found in 107 milliseconds.
<5 seconds: 7
<10 seconds: 0
<30 seconds: 0
<60 seconds: 0
<300 seconds: 0

UEFImporter: java poet.model.importer.UEFImporter <dbname> <username> -p<password> <UEF>

<target desc. file>

Searcher: java poet.core.pattern.Searcher <dbname> <pattern_file> <pattern_name> <mode> <opt>

 where <mode> is “flat” for re-written patterns OR “no_flat” for the original pattern format

 and <opt> is “true” to use the optimization for universal quantifiers or “false” otherwise

 60

tool also displays the total number of timestamps needed to find all the matches, and the

total time taken. The last few lines show how many matches were found within 5, 10, 30,

60, or 300 seconds. Note that the tool finds all matches by simulating the user requesting

the “next” match so the response time would be similar to the response time when using

the user interface (assuming the user could click the “next” button very fast).

5.2. Performance Evaluation

In this section, we compare the performance of the sequential algorithm with the parallel

version. We also evaluate the performance of the two task-creation strategies.

Performance is measured based on how long it takes for the algorithm to return all the

matches for a given pattern. For all the results shown, we deduct the time it takes to

retrieve the events from the database. In these tests, we use four different data-sets and

eight different patterns. Several of the patterns are taken from Nichols’ thesis [32]; a few

additional patterns and larger data sets were also used. We describe the patterns used in

order to illustrate how pattern matching can guide a developer when diagnosing faults in

a distributed system. Also, we use larger data sets in order to evaluate the performance of

the search algorithm as many real-world applications could have up to 100,000 events.

The first two data sets are taken from the PVM environment. The first one is

obtained from the distributed merge-sort application containing 16 traces and 138 events

(binarymerge.16.29.ef.uef). The first pattern from this set is “ConSend8” which finds

how many instances of eight concurrent “send” events there are in the data set. The

results show that there are 32 matches. Given that there are 16 traces, it is plausible to

still find eight concurrent sends with the other eight processes being on the receiving end

of the message. This type of pattern gives us a sense of how much concurrency the

application achieves and could help diagnose performance problems. The next pattern is

“ConSend9” which finds out if there are nine concurrent “send” events during the

program execution. We expect that this should be impossible and the results return 0

matches.

 61

Figure 5.4: PVM Patterns

The next data set is from the PVM life application whose operation was described

in the previous section. The data set used here is much larger than the previous one,

containing 128 traces and 31,098 events, and with a file size of 332 KB. The third

pattern, “SendSend” which contains a universal quantifier when it is re-written searches

for two consecutive “send” events. Here, we see the use of the limited operator excluding

any event between the two “send” events. This pattern returns 127 matches, as expected,

since the only time consecutive sends occur is at the beginning of the program when the

parent process sends a message to all the other processes. Any other “send” event from a

child process would be followed by a “recv” event as the child process must wait to

receive a message before sending it out to a neighbour. The fourth pattern taken from this

data set is “SendRecv” and it also contains a universal quantifier when it is re-written.

This pattern simply counts how many successful data transfers occurred during the

execution of the program. In this case there are 7678 matches.

The third data set used was collected from a µC++ application containing an

intentional bug. The bug sometimes allows a method that should be mutually exclusive to

be accessed by more than one thread. The data set contains more than 177,735 events

over eleven traces and is 4.3 MB in size. The fifth pattern is called “ConcurrentMonitors”

and it checks the number of times more than one thread is present in the method. There

are 65 occurrences, therefore the bug is discovered. The sixth pattern “StartStop”, verifies

that threads are started and stopped correctly by counting how many times a “thread

start” precedes a “thread stop”.

Send := ["", "send", ""];

Recv := ["", "recv", ""];

ConSend9 := (Send || Send || Send || Send || Send || Send || Send || Send || Send);

ConSend8 := (Send || Send || Send || Send || Send || Send || Send || Send);

SendRecv := (Send -(ANY) -> Recv);

SendSend := (Send -(ANY) -> Send);

 62

Figure 5.5: µC++ Patterns

The final data set used was collected from the TCP-socket application as

described in Section 2.4.1. This data set contains 240,561 events and is about 21MB in

size. The “FirstConnectionEstablished” and “LastConnectionEstablished” patterns are the

seventh and final patterns respectively (see Figure 2.8).

The experiments were run on a Linux Ubuntu SMP server with four 1.8-GHz Six-

Core AMD Opteron processors, for a total of 24 cores, and 66 GB of RAM. L1, L2, and

L3 cache sizes are 128 KB, 512 KB, and 6144 KB respectively. Each test was repeated

five times and the results of all patterns (except Patterns 1 and 2) were not more than 5%

from the average result. Some results from Patterns 1 and 2 differed by up to 10% and

25% respectively from the average. It is important to note that in both the sequential and

parallel modes the variable re-ordering algorithm could produce different orderings of the

same pattern that have very different execution times. This was seen in Pattern 6. For this

reason, we selected only the test runs that had the same variable ordering.

The tables below show the average time taken for the existing sequential

algorithm and the parallel algorithm using two and four cores with a sub-task factor of

two, as well as the results of the two task-creation strategies.

EnterMonitor1 := ["M1(0x0x9ac5730)", "thread received", ""];

EnterMonitor2 := ["M1(0x0x9ac5684)", "thread received", ""];

ConcurrentMonitors := EnterMonitor1 || EnterMonitor2;

ANY := ["", "", ""];

ThreadStart := ["", "thread start", ""];

ThreadStop := ["", "thread stop", ""];

StartStop := (ANY --> ThreadStart) --> ThreadStop;

 63

Table 5.1: Execution Time for Sequential and Parallel Algorithms on 2 Cores

Pattern Sequential Grouped Scattered Grouped Speed-up Scattered Speed-up

1 41.1 26.5 35.4 1.54 1.15

2 66.6 42.3 50.1 1.57 1.32

3 117.6 107.2 129.9 1.09 0.90

4 305.7 172.6 186.9 1.77 1.63

5 9.5 5.4 5.3 1.73 1.78

6 9.8 5.5 5.0 1.78 1.95

7 24.8 0.9 1.1 27.10 22.54

8 29.8 1.0 1.1 27.93 26.53

Table 5.2: Execution Time for Sequential and Parallel Algorithms on 4 Cores

Pattern Sequential Grouped Scattered Grouped Speed-up Scattered Speed-up

1 41.1 20.8 23.3 1.97 1.83

2 66.6 20.6 37.0 3.22 1.79

3 117.6 61.0 75.5 1.92 1.55

4 305.7 106.2 108.0 2.87 2.83

5 9.5 3.4 3.4 2.78 2.78

6 9.8 2.8 2.9 3.41 3.33

7 24.8 0.6 0.6 37.12 37.12

8 29.8 0.6 0.6 44.46 44.46

5.2.1. Evaluation of Task-Generation Strategies and

Optimizations

From the results above, it is seen that for Patterns 1 to 3, the grouped task

generation method performs better than the scattered method by about a 20% decrease in

execution time on average. For Pattern 2, the results on four cores show greater

performance degradation when using the scattered method. This is because this approach

results in a more imbalanced search tree where the first thread finishes within the first 15

seconds and so is left idle for the remaining 20 seconds. For Patterns 4 to 8, the two

methods performed similarly. These results suggest that on average, the grouped method

performs better than the scattered approach. This is most likely because maintaining the

initial ordering of the primitive events as they occurred on their target applications is

 64

more favourable to the pattern-matching algorithm than scattering this order in an attempt

to achieve more balanced tasks. We also suspect that the grouped approach performs

better because within each task, memory locations in close proximity are accessed within

the same time period (i.e., it favours spatial locality).

For Pattern 3, which contains universal quantifiers, the results of the parallel

algorithm are not very good especially when the scattered method is used. For the

grouped method on two and four cores, we see a speed up of only about 1.09 and 1.92

respectively. For the scattered method on four cores, the speed-up achieved by the

parallel algorithm is only 1.55 and on two cores the parallel algorithm is actually slower

than the sequential one. These poor results occur because the optimization of the

sequential algorithm for the universal quantifiers (see Section 4.4) outperforms the

parallel algorithm. Using the optimized parallel algorithm for universal quantifiers

discussed in Section 4.4, we repeated the tests for Patterns 3 and 4, and the results are

shown in Tables 5.3 and 5.4.

Table 5.3: Execution Time of Non-Optimized vs. Optimized Algorithms on 2 Cores

Pattern Grouped Scattered Grouped
Speed-up

Scattered
Speed-up

 Non-Opt Opt Non-Opt Opt Non-Opt Opt Non-Opt Opt
3 107.2 94.6 129.9 107.1 1.08 1.24 0.90 1.09

4 172.6 164.2 186.9 177.5 1.77 1.86 1.63 1.72

Table 5.4: Execution Time of Non-Optimized vs. Optimized Algorithms on 4 Cores

Pattern Grouped Scattered Grouped
Speed-up

Scattered
Speed-up

 Non-Opt Opt Non-Opt Opt Non-Opt Opt Non-Opt Opt
3 61.0 59.0 75.5 62.8 1.92 1.99 1.55 1.87

4 106.2 90.5 108.0 95.2 2.87 3.37 2.83 3.21

The results for Pattern 3 (see Figures 5.6 to 5.7), show that the optimized parallel

algorithm is about 12% faster than the non-optimized version when using the grouped

method. On four cores, the grouped method of the optimized and non-optimized versions

perform similarly for this pattern. Using the scattered method on both two and four cores,

the optimized parallel algorithm is about 15% faster than the non-optimized version. Note

 65

that each point on the graph is the average speed-up while the top and bottom points of

each bar represent the maximum and minimum speed-up (respectively) of the five runs.

Figure 5.6: Optimized Parallel Algorithm for Universal Quantifiers

(Pattern 3 - Grouped)

 66

Figure 5.7: Optimized Parallel Algorithm for Universal Quantifiers

(Pattern 3 - Scattered)

For Pattern 4 (see Figures 5.8 to 5.9), when using the grouped and scattered

methods on four cores, we see that the optimized parallel algorithm is about 15% and

12% faster respectively than the non-optimized version. There is not much performance

difference between the optimized and non-optimized versions of both methods when this

pattern is run on two cores. The graphs in Figures 5.6 to 5.9 show the speed-up achieved

when using the optimized parallel algorithm on these patterns and we see that in certain

cases the optimization does improve performance.

 67

Figure 5.8: Optimized Parallel Algorithm for Universal Quantifiers

(Pattern 4 - Grouped)

 68

Figure 5.9: Optimized Parallel Algorithm for Universal Quantifiers

(Pattern 4 - Scattered)

5.2.2. Parallel-Algorithm Evaluation

In this section, we evaluate the speed-up of the parallel algorithm by considering

only the grouped method. We focus on the results on four cores referring back to Table

5.2 for Patterns 1, 2, and 5 to 8, and Table 5.4 for Patterns 3 and 4. For the first pattern,

we see that the speed-up achieved is only 1.97. The second pattern, “ConSend9” which is

similar to “ConSend8”, has a much better speed-up of 3.22. It is useful to point out that

one of the five runs for this pattern had a speed-up of 2.40 (i.e., about 25% worse). It

should be noted here that of all the patterns tested, this was the only pattern that showed

this much disparity in execution time. A closer look at the “ConSend9” pattern in its re-

written form shows that though there are 9 distinct variables, each variable refers to the

same domain space i.e., send primitive events. “ConSend8” has similar properties. This

 69

leads us to suspect that the reason for the poor performance in “ConSend8” and much

disparity in runtimes in “ConSend9” may be attributed to memory allocation and access

patterns that influence cache hit or miss rates.

For Pattern 3 (“SendSend”), a speed-up of 1.99 is not very encouraging and it

shows that for this pattern, the optimization for universal quantifiers is not sufficient to

achieve a much better speed-up. On the other hand, the next pattern, “SendRecv”, has a

speed-up of 3.37 indicating that for this pattern, the optimization of universal quantifiers

does a much better job of improving the speed-up.

For Patterns 5 and 6, a speed-up of 2.78 and 3.41 is achieved which is quite good

considering that these patterns only run for about three seconds on four cores.

For Patterns 7 and 8 we see that the result from the parallel algorithm is about 40

times as fast as the sequential algorithm. The reason for the tremendous speed up peculiar

to these patterns is some inefficiency in the sequential algorithm that is avoided in the

parallel algorithm. When Pattern 7 is re-written (see Appendix B), it consists of fourteen

disjunctions with the first eleven disjunctions each consisting of eight happens-before

pairs. The second to the eighth set of disjunctions are exactly the same except for the last

happens-before pair. Similarly, the ninth to twelfth disjunctions are exactly the same

except for the last happens-before pair. The similarity among the disjunctions contributes

significantly to the tremendous speed-up achieved.

In finding a match for this pattern, the backtracking algorithm starts out as usual.

After finding the only match, the algorithm backtracks to the ninth disjunction and picks

the next value of the variable that was last assigned. This variable is the “DoneConnect”

variable and it is assigned to its next value. At this step, the new value assigned to this

variable is not bound during the evaluation of the disjunction because a happens-before

pair that contains other variables satisfies the disjunction. These other variables have the

same values that had been found in the first match and so the resulting match that occurs

due to this step is a duplicate result. Note that because of the similarity of the

disjunctions, a similar scenario is repeated at each disjunction resulting in a lot of

unnecessary work. On the other hand, the parallel algorithm is able to avoid this work

because it selects the “DoneConnect” variable as one of the fixed variables; as such, its

domain is split into a set of one (as the initial size of the domain is two). Therefore, after

 70

the first match is found, there are no more values to be assigned to this variable and so all

the unnecessary work that led to duplicate results in the sequential algorithm is avoided.

One would expect that it would be difficult to predict when splitting the search tree in

order to achieve parallelism would result in this kind of performance boost; however, it

may be possible to optimize the sequential algorithm by looking at the properties of the

re-written pattern and eliminating unnecessary work while the algorithm is running.

Figure 5.10: Speed-up Grouped Approach (Sub-task Factor of 2)

The graph in Figure 5.10 shows the speed-up obtained as the number of cores

increases when using the grouped task-generation methods with a sub-task factor of 2.

Note that the graph shows the results for Patterns 1, 2, and 4 to 6. In order to clearly

visualize the average performance, we excluded Pattern 3 where the optimization of

universal quantifiers did not help much, and Patterns 7 and 8 where the parallel algorithm

outperformed the sequential one by over a factor of 30. From the graph, we see that the

average speed-up for the grouped method on two cores and four cores is about 1.70 and

 71

3.0 which is equivalent to an efficiency of 85% and 75% respectively. Note that the

efficiency refers to the utilization of the cores and is given by the speed-up divided by the

number of cores.

5.2.3. Task-Size Analysis

Next we consider how the number of tasks generated affects performance. We ran

the parallel algorithm using 4, 8, 16 and 32 tasks on four cores (i.e., a sub-task factor of 1,

2, 4 and 8, respectively), and found that for all the patterns, it took less than 1 second to

create the tasks. Table 5.5 shows the average time taken to run the parallel algorithm on

four cores using the grouped method. Note that there are no results for 16 and 32 tasks

for Patterns 7 and 8 as the search tree could not be split into more tasks. From the table, it

is seen that using four tasks performs 40% worse (on average) for Patterns 1 and 2 than

when 8 tasks were used. This is the most noticeable difference between 4 and 8 tasks

among all the patterns. The reason for this poorer performance when using 4 tasks is that

the task distribution of Patterns 1 and 2 is very unbalanced with the first thread finishing

in under a second and then becoming idle for the remainder of the execution time.

Table 5.5: Total time of the Parallel Algorithm

Pattern 4 Tasks 8 Tasks 16 Tasks 32 Tasks

1 30.7 20.8 22.0 20.0

2 38.4 20.6 19.0 18.9

3 57.1 59.0 48.5 49.1

4 88.7 90.5 92.6 83.7

5 3.5 3.4 3.3 3.3

6 2.8 2.8 2.9 2.9

7 0.8 0.6 - -

8 0.9 0.6 - -

For Pattern 3, we see that the execution time between 4 and 8 tasks is similar

whereas using 16 tasks performs 17% better than when 8 tasks are used. Again, this is

because the threads are idle for a shorter time period when more tasks are used. For all

the other patterns, the execution time between the various tasks sizes differed by not

 72

more than 10% from each other. In summary, Figure 5.11 shows that as the number of

tasks increases, the speed-up achieved remains at relatively the same level. Therefore, we

suggest that using a sub-task factor of 8 may be sufficient for most patterns in order to

avoid thread starvation.

Figure 5.11: Speed-up Using Various Sizes of Tasks

5.3. Summary

Based on the results from the performance experiments, we can make certain

recommendations on how to configure the parameters in order to achieve optimum

performance of the parallel algorithm. Because the search algorithm is CPU-intensive

with no I/O-bound operations, the number of threads should be equal to the number of

cores on the computer. Obviously, using fewer threads will not fully utilize all the cores

 73

and initial experiments using more threads showed no performance improvement. The

number of tasks generated should be about eight times the number of cores as generating

fewer tasks creates a higher chance of having idle threads for longer periods of time. On

the other hand, it is not recommended to have a task size of more than eight times the

number of cores, as this is not expected to produce a significant performance

improvement. Finally, the experiments have shown that for most patterns, using the

grouped approach for task-generation performs better than the scattered approach.

To conclude, the graphs shown in Figures 5.6 to 5.11 reveal that the parallel

algorithm does not achieve linear speed-up. This is probably unattainable for many

parallel algorithms; however, attaining an efficiency of up to 75% (on average) on four

cores is quite good. In the next chapter, we take a look at an approach to dynamic work-

stealing in the pattern-search algorithm and also investigate the scalability of the parallel

algorithm as the number of cores increases.

 74

Chapter 6

More Improvements and Experiments

In the previous chapter, we showed that generating a set of tasks that is eight times the

number of processors (i.e., a sub-task factor of 8) is recommended as there was no

significant improvement as the number of tasks increased. In addition, for all the patterns

analyzed, using a size of tasks that is eight times the number of processors was sufficient

in keeping all the threads busy throughout most of the algorithm’s execution. In this

chapter, we discuss a hybrid implementation of dynamic work-stealing in the pattern-

search algorithm in order to further improve its performance. We illustrate the usefulness

of this technique by introducing some patterns that reveal that even when a subtask-factor

of eight is used, thread starvation is still possible.

6.1. Dynamic Work-stealing Algorithm

As previously mentioned, one of the challenges of any dynamic work-stealing strategy is

to ensure that the cost of moving work from busy to idle threads is very small. To avoid

this cost initially, our algorithm begins with a static approach with the size of tasks being

eight times the number of processors. We further divide this set of tasks into |T|/t groups,

where t is the number of threads, and assign each group to a thread. As such, each thread

has a local queue of tasks and when this queue is empty, it checks its neighbours for an

available task. Stealing from neighbours first has the advantage of ensuring spatial

locality thereby improving cache performance. If an idle thread finds a task from a

 75

neighbour, it marks itself as SLOW_BY_STEALING and marks the neighbour it stole

from as SLOW. If no task is found, the thread decrements a finished counter (initially set

to the number of threads), and goes to sleep.

In this algorithm, the idle thread is initially responsible for looking for more work,

but as tasks get depleted, the busy threads become responsible for splitting their work and

giving it to idle threads. This is done mainly for efficiency of the algorithm as allowing

idle threads to get work from busy threads would require a lot of synchronization effort.

Also, experiments showed that the total cost polling to determine when to split a task and

the cost of task-splitting itself by busy threads is insignificant compared to the execution

time of the algorithm. Therefore, placing this extra burden on busy threads does not cause

a significant performance overhead.

A busy thread periodically determines whether to split its work by checking if it is

marked SLOW or SLOW_BY_STEALING, or if there are any idle threads (i.e., if the

finished counter is less than the number of threads). If either of these conditions holds and

the number of available tasks is less than the number of threads, the busy thread would

split its work into two tasks if possible. The thread would put one task in a global queue,

and then wake up an idle thread. The idle thread simply picks the work from the global

queue and continues working. We suggest that the algorithm is efficient for the following

reasons:

a) Initially, only busy threads that are marked SLOW or SLOW_BY_STEALING

split their work. This ensures that the portions of the tree that are “difficult” are

split into smaller tasks and given to other threads. Without this condition, threads

could end up splitting tasks that do not take long to complete which could cause

unnecessary overhead.

b) The previous condition in (a) is relaxed when there are idle threads, at which time

any busy thread can split its work. This ensures that threads are not idle for too

long.

c) Finally, tasks are split only when the total number of available tasks is less than

the number of threads. This ensures that busy threads do not start splitting work

unnecessarily when there is still enough available. It also ensures that the global

 76

queue starts getting filled as other less busy threads complete their work thereby

preventing threads from being idle for too long.

The algorithm determines that there is no more work when the finished counter reaches

zero. The thread that decrements the counter to zero would notify the master thread and

wake up all sleeping threads which then terminate.

6.1.1. Task Splitting

As previously mentioned, a busy thread periodically checks whether it should split its

task. This is done using a counter configured by the poet.core.searcher.parallel.peektime

parameter in the #poet.properties file. This counter is equivalent to the number of nodes a

thread should visit when executing the backtracking algorithm before checking to see if

the conditions for task-splitting hold. This parameter is perturbed a little for each thread

to further ensure that task-splitting occurs at different times among the threads.

Task-splitting occurs closest to the root of the search tree in order to ensure that

the work is large enough. The algorithm begins with the first level of the tree and splits

the unvisited set of nodes into two (assuming that this level does not correspond to a

universally quantified variable). If this is not possible because the thread is currently on

the last node at this level, the algorithm moves down to the next level and tries to split the

unvisited nodes at this level. Figure 6.1 shows task-splitting at various levels when the

initial search tree is divided into two tasks that are handled by two threads.

 77

Figure 6.1: Task-splitting

6.2. Performance Evaluation

We evaluate the performance of the dynamic work-stealing approach by comparing it

with the static approach using a subtask factor of eight. We suggest that an efficient

dynamic work-stealing algorithm is one that performs as well as the static approach in

cases where thread starvation does not occur and one that performs better otherwise. In

addition to our existing patterns, we introduce a ninth pattern called “FinalDataTransfer”

operating on the TCP-socket application dataset. This pattern finds the last data transfer

that occurred from one of the clients to the server and is shown in Figure 6.2.

Nodes on the current path of running thread

Visited nodes

Unvisited nodes

Splitted task put on global queue

Thread 1’s Task Thread 2’s Task

 78

Figure 6.2: “FinalDataTransfer” Pattern

We also include a fifth dataset taken from the random-communication

application. This MPI [4] application generates communication events with no specific

regularities. The dataset contains 53,248 events, consists of 251 processes and is 1.5 MB

in size. Each process in this application repeatedly selects at random another process to

send a message to. The first pattern from this dataset (the tenth overall) is called

“FourSendSendP1” and finds the instances of four consecutive send events that occur on

the first process. There are only five matches returned out of 100 send events on this

process. The second pattern, “TwoSendRecvP1”, finds instances of two consecutive send

and receive pairs that occur on the first process. There are 17 matches found of a total of

201 send and receive events. The final pattern from this data set, “ConSendP1P9” checks

for two consecutive receive events on the ninth process that could potentially have come

from two consecutive send events on the first process. The pattern “SendSendP1” checks

for two consecutive sends on Process 1 while “RecvRecvP9” checks for two consecutive

receive events on Process 9. “ConSendP1P9” then consists of these two patterns. There

are total of 552 matches returned for this pattern. All these patterns aim at verifying that

the communication application is indeed random with no form of regularities. The

patterns are shown in Figure 6.3.

DataTransferC1 := ["Process9771", "Send", ""].["Closed44194", "Send_stream", ""];

DataTransferC2 := ["Process9777", "Send", ""].["Closed44200", "Send_stream", ""];

DataTransferC1 *alldtc1;

DataTransferC2 *alldtc2, $dtc2;

FinalDataTransfer := ($dtc2 !--> *alldtc1) & ($dtc2 !--> *alldtc2);

 79

Figure 6.3: Random Patterns

The table below shows the execution time of the static task-distribution method

using a sub-task factor of eight (i.e., 32 tasks, except patterns 7 and 8 which use 8 tasks)

versus the dynamic approach. For the dynamic approach, we use a peek-time of 100. The

tests were executed on four cores and each test was run five times except for Patterns 9

and 12 that were run three times due to their long execution times. For Patterns 3 to 11

and Pattern 12 each run time did not differ by more than 5% and 7% from the average

respectively. Some results from Patterns 1 and 2 differed by up to 10% and 25%

respectively from the average.

We see that for Patterns 1 to 4, and 6 to 9 the results from both strategies differ by

less than 10%. So we can conclude that the two strategies perform similarly for these

patterns. For Pattern 5, the static strategy performs about 15% better than the dynamic

approach. Since the execution time of this pattern is less than 4 seconds, the overhead of

the dynamic approach outweighs performance improvement. For Patterns 10 to 12, the

execution time of the dynamic approach is 15% to 25% faster than the static method. And

we see that the running times for these are between 30 and 1100 seconds. Therefore, we

can summarize that the dynamic approach performs reasonably well compared to the

static approach without introducing too much overhead, provided the execution time is

not very short (i.e., a few seconds).

ANY := ["", "", ""];

P1Send := ["Process 1", "send", ""];

P1Recv := ["Process 1", "receive", ""];

P9Recv := ["Process 9", "receive", ""];

P1Send $p1, $p2, $p3, $p4;

P1Recv $r1, $r2;

FourSendSendP1 := ($p1 -(ANY)-> $p2) & ($p2 -(ANY)-> $p3) & ($p3 -(ANY)-> $p4) ;

TwoSendRecvP1 := ($p1 -(ANY)-> $r1) & ($r1 -(ANY)-> $p2) & ($p2 -(ANY)-> $r2);

SendSendP1 := (P1Send -(ANY)-> P1Send);

RecvRecvP9 := (P9Recv -(ANY)-> P9Recv);

ConSendP1P9 := SendSendP1 --> RecvRecvP9;

 80

Table 6.1: Execution Time for Static vs. Dynamic Strategies on 4 Cores

Pattern Sequential Static Dynamic Static Speed-up Dynamic Speed-up

1 41.1 20.0 19.8 2.05 2.06

2 66.6 18.9 18.9 3.51 3.51

3 117.6 49.1 46.2 2.39 2.54

4 305.7 83.7 82.3 3.65 3.71

5 9.5 3.3 3.8 2.83 2.44

6 9.8 2.9 3.2 3.30 2.98

7 24.8 0.6 0.7 37.12 35.14

8 29.8 0.6 0.7 44.46 42.11

9 2150 569.8 567.9 3.77 3.78

10 103.6 39.4 29.5 2.62 3.50

11 221.5 77.2 61.9 2.86 3.57

12 3994.4 1296.4 1082.5 3.08 3.69

6.3. Scalability of the Parallel Algorithm

In this section we evaluate the level of parallelism we achieve as the number of cores is

increased. Although POET would generally not be run on large servers with hundreds of

processors, we include this section in order to measure the scalability of the algorithm to

a modest number of cores. We select patterns that run for several minutes in order to

justify the need for more cores. We select Pattern 5, SendRecv, which takes 5 minutes to

run in the sequential mode. We also include Patterns 9 and 12 (“FinalDataTransfer” and

“ConSendP1P9” patterns respectively) that run for 35 and 65 minutes in the sequential

mode. We compare the scalability of the static versus dynamic task-distribution strategies

in the results in Tables 6.2 and 6.3.

The tables show the time in seconds and speed-up of these patterns using the

parallel algorithm with both the static and dynamic approach to task distribution. We use

a sub-task factor of eight and a peek-time of 100. Patterns 4 and 9 were run five and

three times respectively and the result from each run did not differ by more than 5% of

the average. Pattern 12 was run three times and the result from each run did not differ by

more than 10% from the average. From the table, we see that for both the dynamic and

static strategies, the “SendRecv” pattern (Pattern 4) is about 80% efficient up to 8 cores,

 81

and then drops to 50% efficiency at 16 cores and is only about 40% efficient at 24 cores.

This is most likely because for a pattern that runs for 30 seconds on 16 cores, adding

more cores means that there is probably not much work to keep them busy. On the other

hand, for both approaches, the “FinalDataTransfer” (Pattern 9) and the “ConSendP1P9”

(Pattern 12) patterns, which take a much longer time to run, are still up to 80% efficient

at 24 cores. This suggests that the parallel algorithm is scalable for patterns that run for

longer time periods.

Table 6.2: Execution Time of Parallel Algorithm on Several Cores

Number of cores
Pattern Strategy

1 2 4 8 12 16 20 24

4 Static 305.7 158.6 83.7 47.5 36.0 34.5 34.7 31.7

4 Dynamic 305.7 155.6 82.3 47.3 37.7 30.2 27.4 25.7

9 Static 2150 1012.7 569.8 282.2 198.5 160.3 135.2 110.7

9 Dynamic 2150 1002.9 567.9 264.7 192.8 148.8 128.4 115.6

12 Static 3994.4 2480.6 1296.4 682.3 358.7 277.6 245.8 208.8

12 Dynamic 3994.4 2176.8 1082.5 505.9 377.9 290.4 229.4 201.6

Table 6.3: Speed-up of Parallel Algorithm on Several Cores

Number of Cores
Pattern Strategy

1 2 4 8 12 16 20 24

4 Static 1 1.92 3.65 6.42 8.47 8.83 8.80 9.64

4 Dynamic 1 1.96 3.71 6.45 8.09 10.10 11.15 11.88

9 Static 1 2.12 3.77 7.61 10.82 13.41 15.89 19.41

9 Dynamic 1 2.14 3.78 8.12 11.15 14.44 16.73 18.58

12 Static 1 1.61 3.08 5.85 11.13 14.38 16.24 19.12

12 Dynamic 1 1.83 3.69 7.89 10.56 13.75 17.40 19.80

The tables above and the following graphs compare the speed-up of the dynamic

versus static work distribution strategies. In Figure 6.4, we see that for the “SendRecv”

pattern, the dynamic approach shows a significant improvement in speed-up relative to

the static approach beyond 12 cores.

 82

Figure 6.4: SendRecv - Speed-up on Multiple Cores

In Figure 6.5, the dynamic approach appears to show a slightly better speed-up on

16 and 20 cores (about 6% on average). On 24 cores, however, the static approach

performs better by about 5%. In this case, we notice that there was no need for work-

stealing as by time certain threads became idle, it was not possible for the busy threads to

split their task any further. As such the dynamic work-stealing algorithm resulted in a

slight performance overhead in this case.

 83

Figure 6.5: FinalDataTransfer - Speed-up on Multiple Cores1

Finally, in Figure 6.6, the dynamic approach performs significantly better on four

and eight cores (15% and 25% better respectively) as it reduces any thread-starvation that

occurs with the static approach. On 12 cores, we notice that the static approach is about

5% better on average because one of the runs finished in 332 seconds (i.e., 10% faster

than the other two runs), and hence this resulted in a much better average performance

than the dynamic approach. On 16 cores, the static approach is 5% better than the

dynamic approach as the work-effort involved is more evenly distributed among the

threads. Furthermore, we find that the dynamic approach in this case results in slight

performance overhead where some busy threads were unable to split their work further

and there was more contention for the few remaining tasks in the cases where tasks could

be split. On 20 and 24 cores, the dynamic approach is 5% better as there is now a

noticeable benefit to task-splitting. This suggests that even with more tasks (which is the

1 In this graph, we omit the bars at each point as the two approaches have similar performance.

 84

case as the number of cores increases), it is still possible to have a work-effort imbalance

among the threads making dynamic work-stealing more favourable in such situations.

Figure 6.6: ConSendP1P9 - Speed-up on Multiple Cores

In summary, the dynamic approach does better than the static approach which is

expected as threads are not left idle for long time periods. We also see that the dynamic

approach scales equally well. One would expect that as the number of cores increases,

thread starvation would be less likely as the search-tree would be divided into more tasks

of smaller sizes. We see, however, that for the “SendRecv” pattern, the dynamic

approach still results in a better performance improvement even beyond 12 cores which

further highlights the benefits of this approach even when using several cores.

 85

Chapter 7

Closing Remarks

7.1. Conclusions

Analyzing large event datasets emitted from distributed systems continues to be an area

of research as proper analysis can enable developers to diagnose and fix faults faster. We

showed how POET achieves this goal by providing a search algorithm that enables users

to find event-patterns in large datasets. In this thesis, we developed an efficient and

scalable parallel algorithm that improves the search process, making analysis of these

datasets faster.

We have introduced techniques for distributing the search tree associated with the

pattern-matching problem into several smaller tasks that can be independently handled by

several cores. We have proved that the set of tasks is disjoint ensuring that cores are not

repeating the same work-effort. We performed experiments with the grouped and

scattered approaches of task-generation and showed that the grouped approach is more

suited for the pattern-search problem in POET. This is because it maintains the ordering

of the primitive events as they occurred in their target applications and it also improves

the computer’s hardware-cache performance due to ensuring spatial locality during

memory accesses.

Patterns containing universal quantifiers are more challenging as they require

comparing one event with all the events in an event class. Though the optimization for

 86

universal quantifiers for the sequential algorithm is inherently difficult to parallelize, we

introduced a simple optimization to the parallel algorithm that achieved up to 15%

performance improvement over the generic parallel algorithm. We also showed that the

static approach to task generation is not always sufficient even when we start out initially

with a large number of tasks. As such, we introduced an efficient dynamic work-stealing

algorithm that prevents processors from starving. Finally, our experimental results show

that the parallel algorithm is scalable, providing efficiencies of up to 80% on 24 cores.

7.2. Future Work

The following are areas of further research that would improve the pattern-search feature

of POET.

7.2.1. Improvements to Variable Re-ordering

The variable re-ordering algorithm in POET has been shown to improve the performance

of the pattern-matching algorithm. However, the current heuristic used to determine the

final ordering of a pattern needs to be improved. This is because the algorithm sometimes

produces an ordering that performs significantly faster than another ordering it returned.

Specifically, more work needs to be done to improve the method for breaking ties when

selecting which disjunction should be chosen next in the final ordering. In the current

scheme, ties are broken by choosing the disjunction with the fewest unassigned variable

and then selecting the unassigned variables that occurs most frequently in the pattern. The

problem is that there could be more than one disjunction that satisfies this condition. The

current scheme simply picks the disjunction that is found first which could lead to

different orderings (during different executions on the same pattern) that have varying

execution times. A possible improvement may be to introduce a method that determines

the probability of a variable being assigned. This may be useful for disjunctions with

more than one happens-before pair where only the variables in one pair will actually be

assigned when the search algorithm runs. Another possible improvement may be to break

 87

ties by choosing disjunctions with fewer happens-before pairs as this indicates that such

disjunctions may be satisfied with a smaller amount of work than those with more

happens-before pairs.

7.2.2. Improvements to the Backtracking Algorithm

POET still uses a naïve backtracking algorithm which tends to go through a lot of steps

repeatedly as demonstrated by an example in Section 4.1. A simple improvement that

could be applied is the back-jumping technique described in Section 3.1.

7.2.3. Improvements Based on Re-written Patterns

The verbosity of re-written patterns can be used to improve the search algorithm as it

reveals to some extent the steps the backtracking algorithm will follow. During some of

our experiments we found that the search algorithm would find the same result as many

as one hundred thousand times! This was seen with the “ConSend8”,

“FirstConnectionEstablished” and “LastConnectionEstablished” patterns. We see that the

rules used to transform a pattern into its re-written form usually results in a lot of

repetitions in constraints in the re-written pattern. We believe that initial analysis of the

re-written pattern can be used to guide the search algorithm in order to avoid the

unnecessary work of finding duplicate results that are later discarded.

7.2.4. Lower and Upper Bounds of Tasks

In Chapter 4, we presented the algorithm for task generation that avoids duplicate work-

effort and generates a number of tasks approximately equal to the desired number S. It

may be useful for the algorithm to have certain guarantees as to how “close” the actual

number of tasks generated is to the initial desired number. In other words, can the

algorithm guarantee that the number of tasks generated will be within a certain range of

S? A lower bound may not be so important as if the number of tasks generated is not

 88

large enough, dynamic work-stealing would help keep the processors busy. On the other

hand, an upper bound may be more important as we want to avoid degrading the

performance of the parallel algorithm by generating too many tasks.

7.2.5. Writing POET Patterns

More work needs to be done in developing methods that make it easier for POET users to

construct a pattern. Most developers diagnosing faults would find it difficult to translate a

fault (such as a performance bottleneck) into a POET pattern. One might think of

developing a higher-level language that can be easily understood by POET users and can

be translated into the current pattern language. A starting point may be to identify

common faults (such as performance bottlenecks or race conditions) and see if suitable

techniques can be found to map subsets of these to POET patterns.

 89

Appendix A

In the grouped-approach implementation discussed in Section 4.3.3, we mentioned the

importance of adjusting the group size, g when generating tasks. We introduced a

variable λ such that when g is above λ*|Dd|, it is adjusted to the domain size of the

variable at depth level d, i.e., |Dd|; otherwise, it is adjusted to half of |Dd|. Here we show

the mathematical relationship between λ, the actual number of tasks generated, S’, and

the initial desired number of tasks, S.

Equation (1) represents the actual number of tasks generated when g is adjusted to

half of |Dd|, where M is the total number of nodes at level d.

S’ = (1)

Equation (2) represents the initial desired number of tasks. Note that the exact value of S

is the ceiling of M/g, but this has been omitted from the equation for simplicity.

S = (2)

Let σ be a factor that represents by how much S’ is greater than S, i.e.,

S’ = σS (3)

Note that the maximum value of g for Equation (1) to hold is λ*|Dd|; when g is above this

threshold S’ is M/|Dd|. Substituting this maximum value, as well as Equations (1) and (2)

in (3), gives Equation (4).

 = (4)

When Equation (4) is resolved we get Equation (5).

σ = 2λ (5)

λ|Dd|

|Dd|

2M

 g
M

σM

|Dd|

2M

 90

In the scattered approach, the initial task size, S (see Equation 6) is increased when

it is greater than λ*|Dd|. Equation (7) shows the new task size S’ in this scenario.

Substituting both equations in Equation (3) gives Equation (8). The scattered approach is

opposite to the grouped one in that when S is greater than λ*|Dd|, the new task size is

greater.

S > λ|Dd| (6)

S’ = |Dd| (7)

σ = 1/λ (8)

From equations (5) and (8), we see that the optimum value of λ that minimizes σ for both

the grouped and scattered approaches is given in equation (9). This value can be used in

the task-generation algorithm or λ can be set to some other value taking into

consideration the initial desired tasks size, the number of cores available, and the task-

generation approach employed.

 (σ = 1/λ = 2λ) ⇒ λ = √0.5 ≈ 0.707 (9)

 91

Appendix B

The following shows the re-written pattern for the “FirstConnectionEstablished” pattern.

It consists of 14 disjunctions. The second to eighth disjunctions are the same except for

the last happens-before pair. The same holds for the ninth to twelfth disjunctions.

(*sc_all !→ $sc1 | *sc_all !→ *dc | $dc → *sc_all | $sc2 → *sc_all | $sc1 → *dc |
$dc → *dc | $sc2 → *dc | *dc !→ $sc2) &

1

2 ($sc1 → *dc | *sc_all !→ $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |

$sc2 → *sc_all | $sc2 → *dc | *dc !→ $dc) &

3 ($sc1 → *dc | *sc_all !→ $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |
$sc2 → *sc_all | $sc2 → *dc | *sc_all !→ $sc2) &

4 ($sc1 → *dc | *sc_all !→ $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |

$sc2 → *sc_all | $sc2 → *dc | *sc_all !→ $dc) &

5 ($sc1 → *dc | *sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |
$sc2 → *sc_all | $sc2 → *dc | *dc !→ $sc2) &

6 ($sc1 → *dc | *sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |
$sc2 → *sc_all | $sc2 → *dc | *dc !→ $dc) &

7 ($sc1 → *dc | *sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |
$sc2 → *sc_all | $sc2 → *dc | *sc_all !→ $sc2) &

8 ($sc1 → *dc | *sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc |
$sc2 → *sc_all | $sc2 → *dc | *sc_all !→ $dc) &

9 (*sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc | $sc2 → *sc_all |
$sc2 → *dc | *dc !→ $sc2) &

10 (*sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc | $sc2 → *sc_all |
$sc2 → *dc | *dc !→ $dc) &

11 (*sc_all → $sc1 | *sc_all !→ *dc | $dc --> *sc_all | $dc --> *dc | $sc2 --> *sc_all |
$sc2 → *dc | *sc_all !→ $sc2) &

12 (*sc_all → $sc1 | *sc_all !→ *dc | $dc → *sc_all | $dc → *dc | $sc2 → *sc_all |
$sc2 → *dc | *sc_all !→ $dc) &

13 ($sc2 → $dc) &

14 (*sc !→ $dc | $sc2 !→ *sc)

 92

References

[1] Eclipse.org home. http://www.eclipse.org.

[2] HSQLDB home. http://www.hsqldb.org.

[3] mySQL home. http://www.mysql.com.

[4] MPI home. http://www.mcs.anl.gov/research/projects/mpi/

[5] PostgreSQL home. http://www.postgresql.org.

[6] Saswat Anand, Wei-Ngan, and Chin Siau-Cheng Khoo. A lazy divide and conquer

approach to constraint solving. In Proceedings of the 14th IEEE International

Conference on Tools with Artificial Intelligence, pages 91-98, Washington, DC,

USA, 2002.

[7] Fahiem Bacchus. Extending forward checking. In Proceedings of the 6th

International Conference on Principles and Practice of Constraint Programming,

pages 35–51, Singapore, September 2000.

[8] Dwight S. Bedasse. An Efficient Computation of Convex Closure on Abstract

Events. Master’s thesis, University of Waterloo, Department of Electrical and

Computer Engineering, Waterloo, Ontario, Canada, 2004.

[9] Gary S. Bloom and Solomon W. Golomb. Applications of numbered unidirected

graphs. In Proceedings of the IEEE, pages 562–570, April, 1977.

[10] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded

computations by work stealing. In Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, pages 356–368, New Mexico, USA, November

1994.

[11] Lucas Bordeaux, Youssef Hamadi, and Horst Samulowitz. Experiments with

massively parallel constraint solving. In Proceedings of the 21st International Joint

Conference on Artificial Intelligence, pages 443-448, California, USA, July 2009.

[12] Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In

Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science,

page 321-330, Ottawa, Canada, June 2003.

 93

[13] Wing H. Cheung. Process and Event Abstraction for Debugging Distributed

Programs. PhD thesis, University of Waterloo, Department of Computer Science,

Waterloo, Ontario, Canada, 1989.

[14] Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. Confidence-based work

stealing in parallel constraint programming. In Proceedings of the 15th

International Conference on Principles and Practice of Constraint Programming,

pages 226-241, Lisbon, Portugal, September 2009.

[15] Colin J. Fidge. Logical time in distributed computing systems. In IEEE Computer,

vol. 24(8), pages 28-33, August 1991.

[16] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging

for distributed applications. In USENIX Annual Technical Conference, pages 27–

27, Boston, USA, May 2006.

[17] Matthew L. Ginsberg. Dynamic backtracking. In Journal of Artificial Intelligence

Research, vol. 1, pages 25-46, August 1993.

[18] Zineb Habbas, Micahel Krajecki, and Daniel Singer. Parallelizing combinatorial

search in shared memory. In Proceedings of the 4th European Workshop on

OpenMP, pages 1-14, Roma, Italy, September 2002.

[19] Zineb Habbas, Michael Krajecki and Daniel Singer. Domain decomposition for

parallel resolution of constraint satisfaction problems with OpenMP. In

Proceedings of the 2nd European Workshop on OpenMP, Edinburgh, Scotland,

UK, September 2000.

[20] Zineb Habbas, Michael Krajecki, and Daniel Singer. The Langford’s Problem: A

challenge for parallel resolution of CSP. In Proceedings of the 4th International

Conference on Parallel Processing and Applied Mathematics, pages 789-797

Naleczow Poland, September 2001.

[21] Alex Ho and Steven Hand. On the design of a pervasive debugger. In Proceedings

of the 6th International Symposium on Automated Analysis-Driven Debugging,

pages 117–122, California, USA, September 2005.

[22] Christian E. Jaekl. Event-Predicate Detection in the Debugging of Distributed

Applications. Master’s thesis, University of Waterloo, Department of Computer

Science, Waterloo, Ontario, Canada, 1996.

 94

[23] George Katsirelos and Fahiem Bacchus. Unrestricted nogood recording in CSP

search. In Proceedings of the 9th International Conference on Principles and

Practice of Constraint Programming, pages 873-877, Kinsale, Ireland, September

2009.

[24] Michael Krajecki, Christophe Jaillet and Alain Bui. Parallel tree search for

combinatorial problems: A comparative study between OpenMP and MPI. In Studia

Informatica Universalis, pages 151-190, December 2005.

[25] Thomas Kunz. Abstract Behaviour of Distributed Executions with Applications to

Visualization. PhD thesis, Fachbereich Informatik, Technische Hochschule,

Darmstadt, 1994.

[26] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In

Communications of the ACM, pages 558-565, July 1978.

[27] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,

Ming Wu, M. Frans Kaashoek and Zheng Zhang. D3S: Debugging deployed

distributed systems. In Proceedings of the 5th USENIX Symposium on Networked

Systems Design and Implementation, pages 423–437, San Francisco, USA, April

2008.

[28] Nicolas Loriant and Jean-Marc Mernaud. The case for distributed execution replay

using a virtual machine. In Proceedings of the 15th International Workshop on

Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 181-

186, Manchester, UK, June 2006.

[29] Friedemann Mattern. Virtual time and global states in distributed systems. In

Proceedings of the International Workshop on Parallel and Distributed Algorithms,

pages 215-226, Chateau de Bonas, France, October 1989.

[30] Laurent Michel, Andrew See, and Pascal Van Hentenryck. Parallelizing constraint

programs transparently. In Proceedings of the 13th International Conference on

Principles and Practice of Constraint Programming, Lecture Notes in Computer

Science, pages 514–528, Rhode Island, USA, September 2007.

[31] Ugo Montanari. Network of constraints: Fundamental properties and applications to

picture processing. In Information Sciences, vol. 7, pages 95–132, 1974.

 95

[32] Matthew Nichols. Efficient Pattern Search in Large Partial-Order Data Sets. PhD

thesis, University of Waterloo, Department of Computer Science, Waterloo,

Ontario, Canada, 2008.

[33] Vasco Pedro and Salvador Abreu. Distributed work stealing for constraint solving.

In Online Proceedings of the Joint Workshop on Implementation of Constraint

Logic Programming Systems and Logic-based Methods in Programming

Environments, Edinburgh, Scotland, U.K., July, 2010.

[34] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffery C. Mogul, Mehul A.

Shah and Amin Vahdat. Pip: Detecting the unexpected in distributed systems. In

3rd USENIX Symposium on Networked Systems Design and Implementation, pages

115–128, California, USA, May 2006.

[35] Ilene Seeleman. Application of Event-Based Debugging Techniques to Object-

Oriented Executions. Master’s thesis, University of Waterloo, Department of

Computer Science, Waterloo, Ontario, Canada, 1995.

[36] Michiel F. H. Seuren. Design and Implementation of an Automatic Event

Abstraction Tool. Master’s thesis, University of Waterloo, Department of Computer

Science, Waterloo, Ontario, Canada, 1996.

[37] Marius-calin Silaghi and Boi Faltings. Parallel proposals in asynchronous search.

Technical Report (TR-01/371), Swiss Federal Institute of Technology (EPFL),

Lausanne, Switzerland, August 2001.

[38] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, London

and San Diego, pages 157 -180, 1993.

[39] Ping Xie. Convex-Event based Offline Event-Predicate Detection. Master’s thesis,

University of Waterloo, Department of Computer Science, Waterloo, Ontario,

Canada, 2003.

[40] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak.

CrystalBall: Predicting and preventing inconsistencies in deployed distributed

systems. In Proceedings of the 6th USENIX Symposium on Networked Systems

Design and Implementation, pages 229-244, Massachusetts, USA, April, 2009.

 96

[41] Yuh M. Yong and David J. Taylor. Performing replay in an OSF DCE environment.

In Proceedings of the 1995 CAS Conference. IBM Canada Ltd. Laboratory, Centre

for Advanced Studies, pages 52-62, Toronto, Canada, November 1995.

[42] Yuh M. Yong. Replay and Distributed Breakpoints in an OSF DCE Environment.

Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada. June 1995.

