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ABSTRACT 
 

Approximately 80% of the population will experience low-back pain within their 

lifetime. Significant research efforts have focused on compressive loading as an injury 

mechanism that could lead to low-back pain and injury. However, the influence of shear 

loading, and its relationship to vertebral tissue tolerances as well as modulating factors 

for these tolerances have not been studied as extensively. The primary objective of this 

thesis was to produce a series of investigations that begin to determine the roles of 

different modulating factors such as posture, compression, bone density, bone 

morphology, and repetitive load magnitude on measured vertebral joint shear failure 

tolerances. 

The thesis comprises four independent studies using in vitro mechanical testing, 

imaging modalities, and finite element modeling. Each of the in vitro studies within this 

thesis used a validated porcine cervical model as a surrogate for the human lumbar spine. 

The first study employed in vitro mechanical testing to investigate the combined roles of 

flexion/extension postural deviation and compressive load on the measured ultimate shear 

failure tolerances. Peripheral quantitative computed tomography scans of the pars 

interarticularis and measurements of vertebral bone morphology were used in the second 

investigation along with in vitro mechanical testing to identify the morphological 

characteristics that can be used to predict ultimate shear failure tolerances. The influence 

of sub-maximal shear load magnitude on the cumulative shear load and number of 

loading cycles sustained prior to failure were investigated with in vitro mechanical testing 

in the third study. Finally, a finite element model of the porcine C3-C4 functional spinal 

unit was used to investigate the plausibility of hypotheses, developed from previous 



 iv 

research and the findings of the first investigation for this thesis, surrounding alterations 

in measured ultimate shear failure tolerances as a function of changes in facet interaction. 

Results from the first investigation showed that there was no statistically 

significant interaction between postural deviation and compressive force on ultimate 

shear failure tolerance. However, ultimate shear failure tolerance was reduced (compared 

to neutral) by 13.2% with flexed postures, and increased (compared to neutral) by 12.8% 

with extended postures. Each 15% increment (up to a maximum of 60% of predicted 

compressive failure tolerance) in compressive force was met with an average 11.1% 

increase in ultimate shear failure tolerance. It was hypothesized that alterations in 

flexion/extension posture and/or compressive force altered the location for the force 

centroid of facet contact. These changes in the location of facet contact were 

hypothesized to produce subsequent changes in the bending moment at the pars 

interarticularis that altered the measured ultimate shear failure tolerance. 

The three leading factors for calculating of measured ultimate shear failure 

tolerance were the pars interarticularis length for the cranial vertebra, the average facet 

angle measured in the transverse plane, and cortical bone area through the pars 

interarticularis. A bi-variate linear regression model that used the cranial vertebra’s pars 

interarticularis length and average facet angle as inputs was developed to non-

destructively calculate ultimate shear failure tolerances of the porcine cervical spine. 

Longer pars interarticularis lengths and facets oriented closer to the sagittal plane were 

associated with higher measured ultimate shear failure tolerances. Fractures observed in 

this investigation were similar to those reported for studies performed with human 

specimens and also similar to reported spondylolitic fractures associated with shear 
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loading in humans. This provided additional evidence that the porcine cervical spine is a 

suitable surrogate in vitro model for studying human lumbar spine mechanics. 

Altered sub-maximal shear load magnitude create a non-linear decrease in both 

the number of cycles and the cumulative shear load sustained prior to failure. These 

findings suggested that estimates of cumulative shear load should assign greater 

importance to higher instantaneous shear loads. This was due to an increased injury 

potential at higher instantaneous shear loads. Cumulative load sustained prior to failure 

was used to develop a tissue-based weighting factor equation that would apply non-

linearly increased weight to higher shear load magnitudes in estimates of cumulative 

shear load. 

 A finite element model of the porcine C3-C4 functional spinal unit was created, 

and simulations were performed using similar boundary conditions as the comparable in 

vitro tests, to assess the plausibility of the moment arm hypothesis offered within the first 

investigation of this thesis. Moment arm length between the force centroid of facet 

contact and the location of peak stress within the pars interarticularis was increased for 

flexed postures and decreased for extended postures. Alterations in moment arm length 

were larger for postural deviation than compressive force, suggesting a secondary 

mechanism to explain the observed increase in shear failure tolerance with higher 

compressive loads from the first investigation. One such possibility was the increase in 

the number of contacting nodes with higher compressive forces. Alterations in moment 

arm length were able to explain 50% of the variance in measured ultimate shear failure 

tolerances from the first study. Thus, the finite element model was successful in 

demonstrating the plausibility of moment arm length between the force centroid of facet 
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contact and the pars interarticularis as a modulator of measured ultimate shear failure 

tolerance. 

This thesis has developed the basis for understanding how failure of the vertebral 

joint exposed to shear loading can be modulated. In particular, this thesis has developed 

novel equations to predict the ultimate shear failure tolerance measured during in vitro 

testing, and to determine appropriate weighting factors for sub-maximal shear forces in 

calculations of cumulative shear load. Evidence presented within this thesis also provides 

support for the long-standing moment arm hypothesis for modulation of shear injury 

potential. 
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INTRODUCTION 
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1.1 GENERAL INTRODUCTION 
 

Typically, the risk of injury for an individual while performing a job is defined by 

examining three criteria: force, repetition and posture. Guidelines for risk of  low back 

injury have been well established for both compressive as well as shear loading. The 

influence of compressive loading has been studied extensively, and the in vitro 

relationship between compressive loading and low back injury has been well documented 

under a variety of acute (Oxland et al., 1991; Gunning et al., 2001) and repetitive loading 

scenarios (Smeathers and Joanes, 1988; Parkinson and Callaghan 2007b; Parkinson and 

Callaghan 2008) as well as loading and posture combinations (Gunning et al., 2001). 

The effects that shear loading and individual modifying factors such as 

flexion/extension posture or compressive load have on the incidence of tissue failure 

from shear loading have been studied independently (Dunlop et al., 194; Cripton et al., 

1995; Yingling and McGill, 1999; van Dieën et al. 2006). However, a series of 

investigations on the factors that may modulate shear failure tolerances of functional 

spinal unit (FSU) in vitro under acute and repetitive loading protocols has not been 

undertaken. 

 Peak shear loading was identified as one of four primary risk factors correlated 

with the likelihood of reporting low back pain in automobile assembly workers (Norman 

et al., 1998). Furthermore, it has been suggested that shear stress is an important variable 

in mechanical failure of the lumbar spine (Gracovetsky et al., 1981).  

 Agreement exists that osteoligamentous resistance to anteriorly directed shear 

applied to the cranial vertebra of a vertebral joint in the neutral posture is primarily 

provided by the interaction between the inferior facets of the cephalad vertebra and the 
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superior of the caudal vertebra and the intervertebral disc. Debate still exists regarding 

the relative importance of each tissue towards resisting shear loading. Yingling and 

McGill (1999) claimed that the intervertebral disc resisted upwards of 77% of the 

externally applied shear load. Meanwhile, Lu and colleagues (2005) demonstrated that 

removal of the posterior elements (i.e. leaving the disc as the only structure to resist shear 

loads) resulted in a 78% decrease in FSU stiffness while transection of the intervertebral 

disc led to a 23% decrease in FSU stiffness. Based upon these results, the authors 

concluded that the posterior elements were more efficient for resisting shear. Force 

applied in a posterior direction perpendicular to the superior facet’s surface of an isolated 

human lumbar vertebra leads to fractures of the pars interarticularis or the pedicle (Cyron 

et al., 1976). Furthermore, repetitive loading in the same manner as Cyron and colleagues 

(1976) also leads to fracture of the pars interarticularis of the isolated human lumbar 

vertebra (Cyron and Hutton, 1978) and human FSUs (Beadon et al., 2008). 

The response of the FSU to externally applied loads is influenced by the load rate, 

postural orientation and morphological characteristics of the vertebrae comprising the 

FSU. Examples of such modulating factors in the case of externally applied shear loading 

are applied compressive loads as well as alterations in the FSU’s flexion/extension 

posture. Applied compressive load decreases the height of the intervertebral disc, which 

will subsequently alter the contact area between the articulating facets of the FSU during 

applied shear loading (Dunlop et al., 1984). Applied compressive load has also been 

shown to increase the FSU stiffness in all six of the rotational and translational degrees of 

freedom for a single joint (Gardner-Morse and Stokes, 2003). Furthermore, facet 
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articulation area decreases from an extended posture to flexed postures that alter the role 

of the facet joints for bearing loads (Dunlop et al., 1984).  

Adams and colleagues (Adams et al., 2002) provide an example of the 

interdependence between shear loading and the modulating factors of compression and 

posture. Consider a person whose trunk is partially flexed (Figure 1.1A).  

 

Figure 1.1 – A hypothetical scenario of a person whose trunk is partially flexed (A). The 
gravitational force from the mass of the trunk (above the L4-L5 point), arms and head is 
the only external force (Fg) acting on the body above L4-L5 (B). This force creates a 
flexion moment that must be counteracted by an equal and oppositely directed extensor 
moment generated by muscular force that imposes additional vertebral joint compression 
(C). The labels C and S (C.) respectively refer to the L4-L5 vertebral joint compressive 
and shear axes. 
 
 

The gravitational force acting downwards on the upper body’s center of mass 

requires an upward reaction force and an extensor moment at the L4-L5 joint to maintain 

static equilibrium (Figure 1.1B). The extensor moment is generated by muscle forces 

within the low-back extensor musculature (Figure 1.1C). In a neutral posture, the low-

back extensor muscles have a line of action that would counteract shear forces. Spine 
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flexion causes the low-back extensor muscle line of action to become more aligned with 

the compressive axis (McGill et al., 2000). Therefore, extensor muscular force required to 

counteract the moment generated by the gravitational force acting on the mass of the 

upper body also increases the L4-L5 joint compression. This example illustrates how 

shear force, vertebral joint compression, and vertebral flexion/extension posture can be 

related. 

Studying flexion/extension posture and applied compression, independent of one 

another, is not the most desirable means for determining the influence that each of these 

factors has on the mechanical response of the FSU under applied shear loading. Instead 

flexion/extension posture and applied compressive load must be considered together in 

order to elucidate their combined effects on failure tolerances and load distributions 

within the vertebral joint under externally applied shear loading. Once the macroscopic 

mechanical response of the FSU to externally applied shear loading has been thoroughly 

investigated and injuries resulting from destructive testing have been documented, it is 

important to determine the internal tissue stress and strain, through appropriate models, 

that occurs during the in vitro tests. Linking the documented damage of the FSU during 

in vitro testing to internal tissue stress and strain may assist in describing injury 

mechanisms for tissues of the low back. 
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1.2 THESIS QUESTIONS AND OBJECTIVES 
 

The global purpose of the thesis is to develop a framework for understanding how 

failure properties of the porcine FSU under acute and repetitive shear loading are 

modulated. Specifically, the thesis will investigate 5 questions: 

 

1. How does the combination of compressive load and flexion/extension posture 

influence the ability of the porcine FSU to resist external acute shear loads? 

2. How does bone density through the pars interarticularis and vertebral morphology 

affect ultimate shear failure of the porcine FSU and can these factors be used to 

determine ultimate shear failure tolerances without loading? 

3. How does the magnitude of repeatedly applied external shear load influence 

failure of the porcine FSU and the cumulative load sustained prior to failure? 

4. How do altered flexion/extension postures and compressive force modulate stress 

within the pars interarticularis?  

5. How do the model results help explain results and hypotheses derived from the 

comparable in vitro work in Question #1? 

 

A series of four focused studies will be performed in an attempt to answer the 

questions that are listed above (Figure 1.2).  
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Figure 1.2 – Flowchart outlining the logical connections and titles of the studies for this 
thesis. 
 

1.3 THESIS HYPOTHESES 
 

The general hypothesis for this thesis is that the mechanical response of the FSU 

under shear loading will be influenced by a combination of flexion/extension postures, 

compressive loads, bone density, vertebral morphology, and the submaximal loading 

magnitude (for repetitive loading scenarios). The following are the null hypotheses for 

the questions listed in Section 1.1. 

 

1. Ultimate failure load and displacement of the porcine FSU as well as shear 

stiffness and energy stored until failure under acute external shear load will not be 

influenced by varying compressive loads or flexion/extension postures. 
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2. Combinations of bone mineral density and morphological factors of the posterior 

elements will not provide appropriate estimates of the ultimate failure load under 

shear loading. 

3. The magnitude of external shear loading will not influence the cumulative shear 

load experienced by the porcine cervical FSU prior to failure. 

4. Flexion/extension postures as well as compressive loads will not influence the 

internal stress developed at the pars interarticularis under shear loading. 

5. Model results will not be related to any hypotheses derived from the comparable 

in vitro work performed in Study 1. 
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2.1 BASIC ANATOMY OF THE HUMAN LUMBAR VERTEBRAL JOINT 
 
 

A human, osteoligamentous, vertebral joint is comprised of two adjacent 

vertebrae, the intervertebral disc between them and a series of ligaments. Within the 

literature, an isolated vertebral joint has been called a functional spinal unit (FSU) 

(Oxland et al., 1991; Cripton et al. 1995; Parkinson et al., 2005). The defining bony 

features of a single human vertebra are the vertebral body, spinous process, transverse 

process, lamina, pedicle, accessory process as well as the superior and inferior facets 

(Figure 2.1).  

 

 

Figure 2.1 – Bony landmarks of a human lumbar vertebra. (Image taken from McGill, 
2007). 
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Vertebrae are primarily composed from cancellous bone that is organized into a network 

of vertical and horizontal trabeculae. This cancellous bone is surrounded by a thin shell 

of cortical bone that bears between 34% of applied compressive load at the level of the 

endplate and 63% at the midtransverse plane of the vertebral body (Cao et al., 2001).  

Junctions between adjacent vertebrae occur at the superior and inferior surfaces of 

the vertebral bodies as well as the surfaces of the superior and inferior facets. The 

superior and inferior surfaces of the vertebral body are covered with hyaline cartilage 

called the endplate (Adams et al., 2002). Endplates are the attachment location between 

the vertebral body and the intervertebral disc. The superior and inferior facet surfaces are 

also covered with articular cartilage (Adams et al., 2002). Junctions between the superior 

facets of the caudal vertebra and the inferior facets of the cephalad vertebra (facet joints) 

of an FSU are also surrounded by viscoelastic tissue creating a synovial joint capsule 

(Hukins and Meakin, 2000; Kalichman and Hunter 2007).  

Ligaments also provide connections between adjacent vertebrae in the 

osteoligamentous FSU. The complete set of ligaments for an FSU are the anterior 

longitudinal ligament, posterior longitudinal ligament, ligamentum flavum, interspinous 

ligament, supraspinous ligament and the intertransverse ligament (Figure 2.2).  
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Figure 2.2 – Ligaments of the lumbar spine. SSL = Supraspinous ligament, ISL = 
Interspinous ligament, LF = Ligamentum flavum, PLL = Posterior longitudinal ligament, 
ALL = Anterior longitudinal ligament. (Image taken from Adams et al., 2002) 
 

 The composition for each of these structures (intervertebral disc, facets and 

ligaments) is discussed in sections 2.3.1, 2.3.2 and 2.3.3 along with the innervation 

(sensory) of these structures and their specific roles in resisting shear loads applied to the 

osteoligamentous FSU.  

 
 
2.2 USE OF THE PORCINE CERVICAL SPINE AS A SURROGATE FOR THE 
HUMAN LUMBAR SPINE 
 

 Human FSU’s used for in vitro structural testing are typically acquired from older 

cadavers with variable specimen age, lifetime exposure to load, modes of death and 
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degrees of tissue degradation (Yingling et al., 1999). Controlling potential confounding 

factors such as FSU age and load exposure prior to death as well as the means by which 

death occurs may help improve inter-specimen homogeneity for in vitro testing (Smit, 

2002; Schmidt et al., 2005). Animal FSU models have been used as a surrogate for 

human FSU’s in an attempt to control some of these confounding factors (Yingling et al., 

1999). Selection of a feasible animal model that properly mimics the response of human 

specimens is necessary to enhance the link between results derived from in vitro testing 

using an animal model and human tissue properties and further linking these results to 

potential injury mechanisms (Alini et al., 2008). 

The porcine cervical spine is morphologically similar to the human lumbar spine. 

Endplate width and depth of the porcine cervical spine are smaller than the human lumbar 

spine specimens (Yingling et al., 1999) (Table 2.1). These differences in endplate 

dimensions have been shown to produce a discrepancy of approximately 500 mm2 in 

endplate area between porcine cervical and human lumbar specimens (Yingling et al., 

1999). Porcine cervical specimens have also been shown to have a smaller pars 

interarticularis (Yingling et al., 1999). The facet orientation of the porcine cervical spine 

has been qualitatively documented to be similar to the human lumbar spine (Oxland et al., 

1991) (Table 2.1).  

Smit (2002) stated that trabecular architecture of the porcine vertebral bodies is 

predominantly vertically oriented which is similar to the trabecular architecture of human 

vertebral bodies. It has been suggested that the similarity in cancellous bone structure and 

the bone mineral density of the porcine specimens is a function of the rooting behaviour 
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and compressive loads imposed upon the cervical spine for supporting the cantilevered 

head of a quadruped (Yingling et al., 1999; Smit, 2002). 

 

Table 2.1 – Comparison of morphology and structural properties between human lumbar 
and porcine cervical specimens. The asterisk indicates that all ranges of motion are based 
on pure moment loading with ±2 – 2.5 Nm applied to the specimen. 
 

Measurement Human Lumbar Porcine Cervical 
Upper Endplate Depth 

(mm) 32.7 – 34.71 22.281 

Lower Endplate Depth 
(mm) 33.9 – 34.91 22.531 

Pedicle Width (mm) 6.9 – 16.21-3 8.67 – 8.911 

Pars Interarticularis Height 
(mm) 44.8 – 49.11 28.81 – 29.341 

Pars Interarticularis Width 
(mm) N/A 8.35 – 8.481 

Sagittal Facet Angle 
(degrees) 40.88 – 62.31,4,5 44.5 – 48.51,11 

Transverse Facet Angle 
(degrees) 87.2 – 901 81.2 – 81.71 

Spinal Canal Depth (mm) 12.1 – 18.11,2 9.781 

Spinal Canal Width (mm) 16.1 – 17.11,2 17.921 

Flexion/Extension Range of 
Motion* (degrees) 3 – 86-9 22.4 – 23.912,13 

Lateral Bend Range of 
Motion* (degrees) 4.5 – 6.96-9 27 – 35.212,13 

Axial Rotation Range of 
Motion* (degrees) 1 – 26-9 4.5 – 8.512,13 

Anterior Shear Stiffness 
(N/mm) 15510 139 – 2121,11 

Ultimate Anterior Shear 
Force (N) 1710 – 289410 1980 – 35381,11 

Ultimate Anterior Shear 
Displacement (mm) 1310 10 – 1811,14 

1. Yingling et al., 1999. 8. Panjabi et al., 1994. 
2. Zhou et al., 2000. 9. Busscher et al., 2010. 
3. McLain et al., 2004. 10. Cripton et al., 1995. 
4. Masharawi et al., 2004. 11. Gallagher et al., 2010. 
5. Panjabi et al., 1993 12. Schmidt et al., 2005. 
6. Kettler et al., 2007. 13. Goertzen et al., 2004. 
7. Oxland and Panjabi, 1992. 14. Yingling and McGill, 1999. 
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 The porcine cervical spine can withstand similar dynamic compressive load as the 

human lumbar spine (Yingling et al., 1997; Yingling et al., 1999). Likewise, Yingling 

and colleagues (1999) found close agreement between the acute failure loads of porcine 

cervical and human lumbar specimens under applied shear loading (Table 2.1). 

 

2.3 COMPONENTS OF THE FUNCTIONAL SPINAL UNIT THAT RESIST 
SHEAR 
 

2.3.1 Intervertebral disc 
 

2.3.1.1 Structure and composition of the intervertebral disc 
  

Each intervertebral disc of the human lumbar spine is approximately 10 mm thick 

(Adams et al., 2002). The intervertebral disc is a structure of three components; annulus 

fibrosus, nucleus pulposus and the endplates. The nucleus pulposus is contained within 

the innermost layer of the annulus fibrosus while the endplates provide the superior and 

inferior boundaries of the intervertebral disc (Figure 2.3). 

 
 

 
 

 
 
 

 
 
 
 
 
Figure 2.3 – Sagittal section showing the nucleus pulposus (NP), anterior and posterior 
portions of the annulus fibrosus (AF) and the superior and inferior endplates (EP). (Image 
taken from Adams et al., 2002) 
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The annulus of the human and porcine intervertebral disc is arranged into a series 

of 15-25 lamellar layers (Tampier, 2006). The inner layers of the annulus are composed 

primarily from type I collagen and proteoglycans while the outer layers of the annulus are 

composed primarily of type II collagen. Water constitutes 60-70% of the annulus weight 

in the human intervertebral disc which is due to the presence of proteoglycans within the 

inner lamellar layers (Bogduk & Twomey, 1991). The collagenous fibers of each lamellar 

layer for both porcine cervical and human lumbar intervertebral discs are oriented 

approximately 45-65 degrees from vertical (Figure 2.4 A-B) and the fibers between 

adjacent layers are oriented approximately 130 degrees relative to each other (Figure 2.4 

C) (Cramer and Darby, 1995; Tampier, 2006).  

 

A.)  
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B.)  

C.)  

Figure 2.4 - Annular fiber angles for the anterior (A) and posterior (B) portions of the 
annulus fibrosus from the porcine cervical spine as well as the angle between adjacent 
lamellar layers (C). Angles for individual lamellar layers (A and B) are measured with 
respect to the vertical axis. (Images taken from Tampier, 2006) 
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For the porcine cervical intervertebral disc, the angle of the lamellar fibers has been 

shown to decrease from the outer layers to the inner layers and the angle between 

adjacent layers increases (Tampier, 2006). 

The second structure that makes up the intervertebral disc is the nucleus pulposus. 

The nucleus has been modeled primarily as either an inviscid fluid or poroelastic solid 

(Belytschko et al., 1974; Argoubi and Shirazi-Adl, 1996). This is a function of the 

nucleus’ composition which is primarily proteoglycans, which again contributes to the 

nucleus’ high water content (70-90%) (Bogduk and Twomey, 1991). 

Human vertebral endplates are approximately 1-3 mm thick (Cramer and Darby, 

1995) and are composed of hyaline cartilage (Adams et al., 2002). The endplates contain 

channels that allow for fluid flow in and out of the disc (van der Veen et al., 2007). 

 

 2.3.1.2 Innervation and sensory function of the intervertebral disc 
 

 The human intervertebral disc has been cited as a potential source of low back 

pain (Adams et al., 2002). Nerve fibers are present in the outer third of the annulus that 

provide pain sensation as well as proprioceptive output (Bodguk et al., 1981). 

 

2.3.1.3 Mechanical properties of the interverterbral disc under external shear loading 
 

 Markolf (1972) was one of the first researchers to investigate the mechanical 

properties of the isolated human interverterbral disc under applied shear loading. In this 

work, he demonstrated that the force-displacement relationship, under applied shear 

loading, of the middle vertebra from a human thoracolumbar specimen of three vertebrae 

and the two intervening intervertebral discs was approximately linear. Recent literature is 
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divided on the relative importance of the intervertebral disc for resisting shear loads. 

Yingling and McGill (1999) showed that the intervertebral disc of the porcine cervical 

FSU carried 62.5% of the ultimate failure shear load. Conversely, transsection of the 

intervertebral disc in human lumbar FSUs produced a 22% reduction in FSU stiffness 

while sectioning of the posterior elements through the pedicles, independent of disc 

transection, resulted in a 78% reduction in FSU stiffness (Lu et al., 2005). Removal of the 

posterior elements has been shown to reduce the time to failure by approximately 87% 

compared to intact porcine thoracolumbar specimens under repeated external shear 

loading of the porcine lumbar FSU (van Dieën et al., 2006). However, no comparison of 

the time to failure was made between intact specimens, specimens that had their posterior 

elements removed, and specimens that had their disc transected with posterior elements 

left intact. These authors also concluded that flexed postures did not alter the time to 

failure of porcine thoracolumbar specimens under repeated external shear loading with a 

single static compressive load of 1600 N. This investigation did not test the role of shear 

load magnitude on the time to failure of their porcine specimens, nor did they investigate 

the effects of varying the compressive load as well as flexion/extension posture on the 

acute anterior-posterior ultimate shear load. 

 
 
2.3.2 Facet joints 
 

2.3.2.1 Structure of facets and facet joints 
 

The superior facets of the caudal vertebra and the inferior facets of the cephalad 

vertebra provides surfaces of interaction between vertebrae of an FSU. The joint between 
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these facets is called a facet joint, apophyseal joint or zygapophyseal joint. Facet joints 

will be the terminology used for the remainder of this document. For the purposes of this 

review and the remainder of this document, the distinction will be made between the 

facets and the facet joints.  

The facets of the human lumbar spine are oriented vertically while the inferior 

facets maintain a medial facing direction and the superior facets have a lateral facing 

direction (Figure 2.5) (Taylor and Twomey, 1986).  

 

Figure 2.5 – Transverse MRI slice through the L4 vertebra of the human lumbar spine. 
The image on the left shows the lateral and anterior facing orientation of the inferior 
facets from L3 and the medial and posterior facing orientation of the superior facets from 
L4. (Image taken from Kalichman and Hunter, 2007) 
 

The facets of the human lumbar spine become more aligned with the sagittal 

plane from cephalad (L1) to caudal (L5) (Panjabi et al., 1993). Likewise, the estimated 

facet surface area for human lumbar vertebrae increases in the same direction with the 

superior and inferior facets that make up a single facet joint (for example, the superior 

facets of L4 and the inferior facets of L3) having a similar estimated surface area (Panjabi 
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et al., 1993). Human lumbar superior facets are comprised of cancellous bone whose 

trabecular orientation has been shown to be similar to a plate-like structure (i.e. in the 

transverse plane) that has been associated, according to Wolff’s Law, with the primary 

loading direction of the facet joints (Drews et al., 2008). The trabecular density of the 

human L2 superior facets has also been shown to be smaller than the trabecular density of 

the human S1 superior facets and has been attributed to higher axial strain of the superior 

facets for the S1 vertebra than the L2 vertebra (Drews et al., 2008). 

A thin layer of hyaline articular cartilage covers the surface of each facet (Bogduk 

and Twomey, 1991; Cramer and Darby, 1995). The facet joint has been described as a 

true synovial joint containing menisci, synovial fluid and an articular capsule (Bogduk 

and Engel, 1984; Hukins and Meakin, 2000; Kalichman and Hunter, 2007). The articular 

capsule is bounded laterally by the ligamentum flavum and medially by an extension of 

the articular cartilage (Cramer and Darby, 1995). The primary function of the menisci is 

to create a space between the articulating facets of the facet joint and they have been 

implicated in the production of low back pain (Figure 2.6) (Bogduk and Engel, 1984). 

 

 

 

 

 

 

 
Figure 2.6 – Transverse image of a facet joint illustrating the two articulating facets being 
distracted by forceps to reveal the meniscus (m). (Image taken from Bogduk and Engel, 
1984) 
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2.3.2.2 Innervation of the facet capsule 
 

Facet joints have been cited as a potential source for low-back pain (Mooney and 

Robertson, 1976; Yang and King, 1984; Cavanaugh et al., 2006). Each facet joint of the 

human lumbar spine is innervated by the posterior rami at the joint’s level (Cramer and 

Darby, 1995; Cohen and Raja, 2007). Histological analysis has shown that the human 

facet joint capsule contains Pacinian corpuscles, Ruffini and free nerve endings that 

suggests both nociceptive and proprioceptive functions of the facet innervations 

(Cavanaugh et al., 1996). Referred pain patterns have also been generated in humans by 

injection of hypertonic saline into the facet joint capsule (Mooney and Robertson, 1976). 

These pain patterns were observed to be indistinguishable from pain complaints that are 

often associated with discogenic pain (Mooney and Robertson, 1976). 

Mechanical theories and data have been presented for how pain signals are 

generated from the facet joint capsule. Yang and King (1984) theorized that compression 

of the facet joint capsule causes contact between the tip of the inferior facet from the 

cephalad vertebra and the pars interarticularis of the caudal vertebra, in a lumbar 

vertebral joint. This causes backward rotation leading to stretching of the facet joint 

capsule that may be a mechanical basis for the generation of low back pain from the 

facets. Cavanaugh and colleagues (2006) demonstrated that the nociceptive neural 

discharge from the facets of anethetized female goats indeed increases upon facet capsule 

stretching that partially confirms the hypothesis of Yang and King (1984).  
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2.3.2.3 Mechanical resistance of the facet joints to shear loading 
 

 The orientation of the facets of the lumbar spine as well as the small distance 

between articulating facets enables the facets to resist anterior shear displacement of the 

cephalad vertebra relative to the caudal vertebra (Tencer and Mayer, 1983; Adams, 

2002). The average ultimate failure loads of superior facets from human lumbar vertebrae 

under load applied perpendicularly to the facet surface and directed posteriorly, for slow 

(0.05 cm/s) and fast (5 cm/s) rates of displacement were 1860 N and 1480 N respectively 

(Cyron et al., 1976). This is similar to documented acute shear failure loads of human 

lumbar FSU’s (Cripton et al., 1995), porcine cervical (Yingling and McGill, 1999) and 

porcine thoracolumbar osteoligamentous FSU’s in a neutral posture (van Dieën et al., 

2006). Loading of the superior facet, perpendicularly to the facet surface and directed 

posteriorly leads to spondylytic fracture of the pars interarticularis in isolated human 

lumbar vertebrae (Cyron et al., 1976; Cyron, 1978). 

Markolf (1972) studied the force-displacement characteristics of multisegmental 

human lumbar specimens with three vertebrae and two intervening discs under shear 

loading with the posterior elements removed. Their rationale for removing the posterior 

elements was that a previous investigation (Hirsch and Nachemson, 1954) had deemed 

them to be unimportant for resisting applied compressive load. Recently, Lu and 

colleagues (2005) showed that human lumbar FSU stiffness under shear loading 

decreased by 78% when the posterior elements were removed compared to a 22% 

reduction in stiffness when the intervertebral disc had been transected. Likewise, van 

Dieën et al. (2006) have shown that porcine thoracolumbar specimens failed 

approximately 87% sooner with repeated shear loading when the posterior elements had 
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been removed. Due to the contact that occurs between the facets in shear loading, disc 

strain using a finite element model of the human lumbar vertebral joint was found to be 

approximately 50% relative to the disc strain under posterior-shear loading (Tencer and 

Mayer, 1983). The results from this finite element model also showed that anterior 

displacement of the cephalad vertebra under the same 90 N of shear load increased the 

displacement, which suggests that the facets act as a mechanical stop for the vertebrae 

under shear loading. 

 

2.3.3 Ligaments 
 

2.3.3.1 Structure and composition of ligaments 
 

The majority of ligaments in the human lumbar spine are composed of collagen 

fibers (Hukins and Meakin, 2000). Microscopic investigation of collagen fiber 

arrangements in the interspinous and supraspinous ligaments demonstrate a crimped 

pattern that is consistent with ligaments of other joints such as the anterior cruciate 

ligament of the knee (Yahia et al., 1990). Typically, ligaments surrounding the lumbar 

spine (the specific ligaments are listed in section 2.1) are able to resist motion only when 

elongated from their resting length. The sole exception to the previous statement is the 

ligamentum flavum that contains primarily elastin fibers (Yahia et al., 1990). 

 

2.3.3.2 Innervation and sensory function of ligaments 
 

 Investigators have documented the presence of free nerve endings in the human 

anterior and posterior longitudinal ligaments along with a lack of nerve endings in the 
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interspinous and supraspinous ligaments as well as the ligamentum flavum (Jackson et 

al., 1966). However, these investigators were unable to document the specific role of 

these free nerve endings within the ligaments. More recently, Cavanaugh and colleagues 

(1997) have suggested that the nociceptive nerve endings of the ligaments in New 

Zealand white rabbits are mechanosensitive or chemosensitive which signal for low-back 

pain. 

 
2.3.3.3 Mechanical properties of ligaments under shear loading 
 

Due to their crimped structural nature, ligaments will only resist motion of the 

bones to which they attach after having been elongated outside their toe region 

(Mycklebust et al., 1988). In vivo, elongation of ligaments occurs by changing the 

relative orientation and/or position of vertebrae. Modeled attachment locations for the 

ligaments surrounding the human L4-L5 vertebral joint (Cholewicki and McGill, 1996) 

indicate that elongation of the ligaments rarely occur when L4 is displaceed anteriorly 

relative to L5, in the model’s initial and neutral (zero degrees of flexion/extension, lateral 

bend and axial twist) configuration, along the L4-L5 joint shear axis (Table 2.2).  
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Table 2.2 - Strain in ligaments surrounding the L4-L5 human lumbar joint as a function 
of flexion/extension posture with 0 mm of shear (S), 25 mm of shear (E) and the change 
(C = E - S) in strain from 0 mm shear to 25 mm of shear. Elongation is presented as 
positive strain while shortening is presented as negative strain. Positive values indicating 
elongation from the ligament lengths determined with 0 mm shear and in neutral posture 
are highlighted in grey. ALL = Anterior Longitudinal Ligament; PLL = Posterior 
Longitudinal Ligament; LF = Ligamentum Flavum; IT = Inter-transverse Ligament; 
ISP1-3 = Interspinous Ligament Sections 1-3; LC = Lateral Capsular Ligament; MC = 
Medial Capsular Ligament; SS = Supraspinous Ligament. 
 

 NEUTRAL FLEXED EXTENDED 
 S E C S E C S E C 

ALL 0 -0.17 -0.17 -10.59 -10.61 -0.02 4.76 4.77 0.01 
PLL 0 -0.91 -0.91 14.12 14.07 -0.06 -8.69 -8.69 0.00 
LF 0 -0.86 -0.86 25.66 25.62 -0.04 -14.40 -14.39 0.01 
IT 0 -1.49 -1.49 15.69 15.63 -0.06 -10.21 -10.26 -0.05 

ISP1 0 -9.55 -9.55 53.58 53.29 -0.29 -34.03 -34.48 -0.45 
ISP2 0 -11.65 -11.65 25.92 25.54 -0.38 -21.06 -21.55 -0.49 
ISP3 0 -9.53 -9.53 7.38 7.03 -0.35 -11.50 -11.88 -0.38 
LC 0 -15.72 -15.72 19.44 18.97 -0.47 -26.46 -27.15 -0.69 
MC 0 3.08 3.08 27.97 28.15 0.18 8.82 9.01 0.19 
SS 0 -1.46 -1.46 61.51 61.42 -0.08 -33.13 -33.14 0.00 

 

This evidence, suggests that the spinal ligaments may not provide much resistance to 

shear loading while the vertebral joint is in a neutral posture. Moreover, serial transection 

of the ligaments surrounding the human FSU does not significantly influence the force-

displacement relationship of the FSU under shear loading (Lee and Evans, 2000). 

Nonetheless, ligaments have been shown to improve stability of the human lumbar spine 

and resist motion in flexed postures (Sharma et al., 1995). Sharma and colleagues (1995) 

also demonstrated, using a finite element model of the human L3-L4 vertebral joint that 

the presence of ligaments may alter the shear force-displacement relationship in a flexed 

posture. 
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2.4 MECHANICAL PROPERTIES OF THE SPINE UNDER EXTERNAL SHEAR 
LOAD 
 

The typical mechanical variables of interest during in vitro testing of FSU’s and 

isolated biological tissues are stiffness, ultimate failure load, ultimate failure 

displacement, stress, strain, energy to failure, strength, toughness and modulus of 

elasticity (Woo et al., 2000). Figure 2.7 demonstrates the hypothetical force-displacement 

relationship for a structure (a.) as well as stress-strain (b.) relationship of a hypothetical 

material .The figures illustrate each of the structural and/or material properties that have 

been previously listed. 

 

Figure 2.7 – Hypothetical load-elongation (a) and stress-strain (b) curves with 
characteristic features. The curves are derived from tensile loading of ligaments, the 
definition of the structural properties attained from each of these curves is consistent with 
all in vitro material and structural testing. (Image taken from Woo et al., 2000) 
 

The following sections describe, and outline the specific consequences that three 

factors (rates of load and/or displacement, compressive loads and flexion/extension 

postures) have on altering the mechanical response of biological tissues and FSUs in 

vitro. 
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2.4.1 Effect of load and or displacement rate on mechanical properties of biological 
tissues and FSU’s 
 

 The dependence of a material or structure on loading or displacement rate is 

defined as viscoelasticity. Given the description from section 2.1, the osteoligamentous 

FSU contains bone, ligaments, cartilage and a collagenous intervertebral disc that each 

has their own specific responses to different loading and displacement or stress and strain 

rates. Human cancellous bone has demonstrated higher modulus of elasticity, ultimate 

stress and less plastic deformation with increasing compressive load rates (McElhaney, 

1966). A viscoelastic model of the anterior longitudinal ligament of the porcine spine has 

been applied to determine the effects of temperature on ligament compliance (Bass et al., 

2007). The compressive stiffness of the human lumbar intervertebral disc also increases 

linearly with increasing compressive load rate (Kemper et al., 2007). Ultimate 

compressive failure load of human and porcine cervical FSU’s increased (Hutton et al., 

1979; Yingling et al., 1997) while ultimate vertical displacement decreased in porcine 

cervical FSU’s with increases in compressive load rate (Yingling et al., 1997). Ochia and 

colleagues (2003) have demonstrated that the ultimate compressive failure load of both 

the human lumbar vertebral body and the vertebral endplates increases together with 

compressive load rate.  

It has been suggested that the mode of tissue failure under higher loading rates 

may not be a consequence of tissue tolerances and instead could be due to altered load 

sharing at the higher loading rates (Ochia et al., 2003). The failure pattern of bone varies 

according to the compressive load rate (Nordin and Frankel, 2001). Shear loading at a 

rate of 10 810 N/s has been shown to cause fractures of the pars interarticularis as well as 
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avulsion of the endplate whereas slower shear loading rates have been shown to only 

create fractures of the pars interarticularis in porcine cervical specimens (Yingling and 

McGill, 1999). Recently, Drake and Callaghan (in press), using porcine cervical 

specimens, have shown that axial rotation at a rate of 10 degrees/s caused both facet and 

endplate fractures compared to only fractures of the facets under axial rotation at a rate of 

2 degrees/s. Similarly, increasing compressive load rate between 100 N/s and 16 000 N/s 

has been shown to alter the mode of failure in porcine cervical FSU’s from endplate 

fractures at low (100 N/s) loading rates to failure of the vertebral body higher (> 1000 

N/s) loading rates (Yingling et al., 1997). 

 

2.4.2 Effect of compression on mechanical properties of FSU’s 
 

 In vivo, compressive loads are applied to the vertebral joints through loads applied 

externally to the body, loads due to the body mass above the vertebral joint of interest, 

the combined force resulting from muscle activation and elongation of passive tissues and 

inertial effects of the movement. Large compressive loads (2200 N and 4400 N) have 

been shown to increase the stiffness about each of the three rotational and in the three 

translational degrees of freedom of human lumbar FSU’s (Janevic et al., 1991). Stokes 

and colleagues (2003) demonstrated that human lumbar FSU stiffness increases in a non-

linear asymptotic manner, about each of the three rotational and in the three translational 

degrees of freedom with smaller compressive preloads (0 N, 200 N and 400 N). 

Likewise, Lin and colleagues (1978) showed that human lumbar FSU anterior-posterior 

displacement decreased under a maximum of 150 N of shear force with subsequent 

increases in compressive load (0-440 N). These authors suggested two mechanisms by 
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which anterior-posterior stiffness was increased with added compressive load. The first 

proposed mechanism is increased pressurization of the nucleus pulposus that causes 

bulging of the annular fibers and changes their orientation to resist shear loading while 

the second mechanism is that compressive load removes the space separating the 

articulating facets of the vertebral joint (Lin et al., 1978).   

In vitro testing has shown that 60% of the increase, associated with applied 

compressive loading, in human lumbar FSU anterior-posterior stiffness is attributed to the 

disc while the remaining 40% of the increase in FSU stiffness is attributed to the 

posterior elements (Gardner-Morse et al., 2003). The same investigators also 

demonstrated that linearity of the anterior-posterior force-displacement relationship 

increased with 400 N of compressive load with intact human lumbar FSU’s as well as 

FSU’s that had their posterior elements removed (Gardner-Morse et al., 2003).  

Vibration resulting in repetitive compressive loads applied in vivo to humans in a 

seated posture leads to a reduction in spine height (Sullivan and McGill, 1990). The 

reduction in spine height as a result of compressive loading has been attributed to the 

expulsion of fluid from the intervertebral disc in caprine lumbar spines (van der Veen et 

al., 2007). Increased disc height within the human lumbar spine (5 mm) has reduced facet 

joint articulation overlap by 30% at L4-L5 (Liu et al., 2006). Dunlop and colleagues 

(1984) determined the peak facet contact pressure in human lumbar FSUs with 1000 N of 

applied compressive load with 400 N of shear load. The specimens for this investigation 

were separated into groups that had their specimen height reduced by 0 mm, 1 mm, and 4 

mm. The results showed that reducing specimen height by 1 mm and 4mm respectively 

led to a 36% and 61% increase in peak facet contact pressure under the combined 



 31 

compressive and shear loads relative to specimens that had not undergone disc height 

reduction. Increasing compressive load has shown to increase the contact area between 

articulating facets of the human lumbar spine (Lorenz et al., 1983). Thus, increased facet 

articulation overlap and interaction of the inferior facet of the cephalad vertebra with the 

pars interarticularis of the caudal vertebra in a vertebral joint (Yang and King, 1984) with 

additional compressive load are feasible mechanisms by which shear stiffness of an FSU 

is increased. 

 

2.4.3 Effect of posture on mechanical properties of FSU’s 
 

Maximum flexed postures have been shown to reduce the passive stiffness of the 

lumbar spine in axial twist while maximum extended postures have been shown to 

increase in vivo passive resistance of the lumbar spine to axial twist moments (Drake and 

Callaghan, 2008). Altering the flexion/extension angle of the vertebral joint will cause 

changes to the orientation of the passive tissues. Flexion of a lumbar vertebral joint 

results in elongation of the ligaments and reorientation of the intervertebral disc’s annular 

fibers (Adams et al., 2002). Furthermore, flexion of the vertebral joint is achieved by 

reorientation of the vertebrae that comprise the vertebral joint. Vertebral flexion increases 

the gap between the inferior facets of the cephalad vertebra and the superior facets of the 

caudal vertebra in the porcine FSU (Drake et al., 2008). Increased distance between the 

articulating facet surfaces of a lumbar vertebral joint allows for a larger range of axial 

twist motion (Drake et al., 2008) and will also likely influence the passive response of an 

isolated FSU to shear loading.  
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 Adams and Hutton (1980) attempted to determine the percentage of compressive 

load that was borne by the facets in extended, neutral and flexed postures of human 

lumbar FSU’s. These authors found that the facets provided no resistance to compressive 

load when the specimens were flexed 2 degrees while the facets resisted 4% of the 

compressive load when the specimens were extended 2 degrees. Reducing specimen disc 

height following sustained compressive loading increased the percentages of compressive 

load resisted by the facets to 1% in the 2 degree flexed posture and 16% in the 2 degree 

extended posture (Adams and Hutton, 1980). In extended postures, it has been 

hypothesized that the articulating facets of the FSU come into contact with each other 

(i.e. ‘kiss’) that provides an avenue for resisting or transferring compressive load across 

the joint (Dunlop et al., 1984).  

Shear loading of flexed (10 degrees) porcine cervical specimens demonstrated an 

increase in the ultimate failure load, but does not increase the FSU stiffness (Yingling 

and McGill, 1999). These authors suggested that the ultimate shear failure load increased 

due to an increase in the moment arm length of the pars interarticularis that was the 

location of fracture following destructive shear loading. Modeling of the human L4-L5 

facet surface orientation showed that the gap between articulating facet surfaces would 

increase by 0.4 mm with 10 degrees of flexion at L4-L5 (Yingling and McGill, 1999). 

Van Dieën and colleagues (2006) on porcine thoracolumbar FSUs showed that flexing 

porcine lumbar FSU’s by 10 degrees when compared to FSU’s in a neutral posture did 

not influence the time to failure, under repeated shear loading. The lack of change in 

specimen anterior-posterior stiffness observed by Yingling and McGill (1999) in flexed 

porcine cervical FSUs may be a reason why the time to failure did not increase in the 



 33 

study performed by van Dieën and colleagues (2006). Drake and colleagues (2008) 

showed that the gap between articulating facets of the porcine cervical FSU increases 

with flexion which suggests that anterior translation of the cephalad vertebra may 

increase as a result of applied shear loading. However, van Dieën and colleagues (2006) 

did not show an increase in initial shear amplitude between the neutral and flexed porcine 

thoracolumbar specimens. Drake and colleagues (2008) compared the facet gaps of a 

single MRI slice at the same depth for each of their porcine cervical specimens. It is 

possible that the facet gap does not change appreciably at the nearest point of contact 

between the articulating facets in the neutral and flexed postures which would assist in 

explaining the lack of differences observed during repeated shear testing in neutral as 

well as flexed postures. 

Lastly, porcine cervical specimens that underwent shear loading in a neutral 

posture fractured the pars interarticularis whereas specimens that were tested in a flexed 

posture (10 degrees) fractured the pars interarticularis and had their endplates avulsed 

(Yingling and McGill, 1999). 

 
 
2.5 EFFECTS OF FREEZING ON THE MECHANICAL PROPERTIES OF FSU’S 
 

 Conflicting evidence has been presented regarding the effects of freezing and 

subsequent thawing on the mechanical properties of biological tissues. Freezing and 

subsequent thawing of human lumbar FSU’s has been shown to not significantly alter the 

creep response of the intervertebral disc under 20 minutes of static compressive load 

followed by a 40 minute recovery period in a saline bath (Dhillon et al., 2001). Freezing 

does not affect the tensile properties of the human annulus fibrosus (Hirsch and Galante, 
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1967), or the mechanical properties of human femoral cortical bone (Sedlin and Hirsch, 

1966). Panjabi and colleagues (1985) showed that anterior displacement of the human 

thoracic FSU cephalad vertebra and rotation (axial rotation and lateral bending) did not 

change significantly for each of the 14 testing days following thawing. The compressive 

stiffness and hysteresis of human FSU’s have been shown to be altered by less than 1% 

between fresh and thawed specimens under repetitive sub-acute failure compressive loads 

(Smeathers and Joanes, 1988). However, the compressive loads tested in this 

investigation (750 ± 250 N) were much smaller than published ultimate compressive 

loads of porcine cervical FSU’s (Gunning et al., 2001). Callaghan and McGill (1995) 

showed that the ultimate compressive load of thawed porcine cervical FSUs increased by 

24% relative to the ultimate compressive load of fresh FSUs. Freezing human lumbar 

FSUs has been shown to increase intervertebral disc height, but that disc height recovers 

to pre-frozen values upon thawing (Dhillon et al., 2001). The permeability and swelling 

pressures are also lower in frozen immature porcine specimens (Bass et al., 1997). 

Differences in the compressive creep response of the intervertebral disc were more 

pronounced during the 5th creep cycle than the 1st creep cycle (Bass et al., 1997). These 

authors suggested that freezing biological tissue may cause tissue microdamage that leads 

to differences in the mechanical response to compressive loading. 

Specimens thawed from a frozen state are predominantly used for in vitro 

biomechanical testing despite the continuing controversy regarding the adequacy of these 

specimens for biomechanical in vitro testing. The evidence suggests that mechanical 

properties of frozen human specimens are not affected under sub-acute failure loads 

(Panjabi et al., 1985; Smeathers and Joanes, 1988). Conversely, acute failure tolerances 
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of porcine cervical FSUs may be significantly affected by the freezing process (Callaghan 

and McGill, 1995). Acknowledgement of this limitation and the potential affects that 

freezing tissue for in vitro testing may have on the mechanical response of FSUs is 

necessary. The only study to investigate the effecs of freezing on human FSU response to 

shear loading did not find any difference in anterior displacement of frozen and thawed 

specimens (Panjabi et al., 1985). 

 

2.6 USE OF QUANTITATIVE COMPUTED TOMOGRAPHY AND BONE 
MINERAL DENSITY MEASURES FOR ESTIMATION AND PREDICTION OF 
FAILURE TOLERANCES 
 

Quantitative computed tomography (QCT) is a non-invasive method for 

estimating the trabecular bone content and density (Reinbold et al., 1986; Eriksson et al., 

1989; Edmondston et al., 1994). Previous investigations have attempted to relate 

trabecular (from QCT) and total bone density (from dual energy x-ray absorptiometry 

(DXA)) to the ultimate compressive load/stress in human (Hansson et al., 1980; 

Biggemann et al., 1988; Brinckmann et al., 1989; Eriksson et al., 1989; Edmondston et 

al., 1994; Edmondston et al., 1997; Ebbesen et al., 1999), monkey (Dickerson et al., 

2008) as well as porcine vertebrae (Parkinson et al., 2005). Each of the previously cited 

studies used a linear regression to estimate ultimate compressive load/stress from 

measures of trabecular or total bone density with the exception of Ebbesen and 

colleagues (1999) who used both linear and power law curve fits and found little 

difference in the regression coefficient between the two curve fitting approaches. 

Ebbessen and colleagues (1999) also concluded that trabecular bone density of the human 

lumbar vertebral body is better correlated with ultimate compressive stress than with 
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ultimate compressive load. Other investigations have shown that bone mineral content or 

bone mineral density of the human lumbar vertebral body were good (0.62 ≤ r2 ≤ 0.68, 

standard error = 1.4 kN) predictors of compressive strength (Biggemann et al., 1988; 

Brinckmann et al., 1989). Predictive equations of ultimate compressive load/stress for the 

human lumbar spine, based on bone mineral content have been developed and can be 

used for scaling load magnitudes for in vitro analyses. Average errors in predicted 

ultimate compressive load have been reported as high as 1.4 kN (Biggemann et al., 1988). 

Inclusion of morphometric parameters in the predictive equations for determining 

ultimate compressive load/stress may improve the estimate accuracy (Biggemann et al., 

1988; Eriksson et al., 1989; Dickerson et al., 2008). In particular, Biggemann and 

colleagues (1988) showed that correlating the product of vertebral body bone mineral 

density and endplate cross-sectional area with ultimate compressive load reduced the 

standard error of the estimated ultimate compressive load by 44% in human lumbar 

vertebrae. Furthermore, the relationship between the ultimate compressive load and the 

product of endplate area and bone mineral density improved to r2 = 0.91 from r2 = 0.68 

when the relationship was determined between ultimate compressive load and bone 

mineral density. Bone mineral density within the human lumbar spine changes very little 

in the cephalad to caudal direction of the spine while endplate area increases in the same 

direction (Figure 2.8) (Brinckmann et al., 1989).  
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Figure 2.8 – Bone density exhibits minimal change from cranial vertebrae (T10 in this 
example) to caudal vertebrae (L5 in this case). However, endplate area does increase in 
more caudal vertebrae. Increased endplate area of more caudal vertebrae has been 
associated with increased ultimate compressive load of vertebral bodies. (Image taken 
from Brinckmann et al., 1989) 
 

These authors suggested that the increase in ultimate compressive load at more caudal 

vertebral levels is a function of the increased endplate area. Edmondston and colleagues 

(1997) showed that morphological characteristics of the human lumbar vertebral body 

such as anterior/middle/posterior vertebral body heights, vertebral wedging and concavity 

added very little to explained variance in ultimate compressive load. Error in predicting 

compressive strength of an independent sample of porcine cervical specimens was 11% 

when using endplate area versus 13% when using the combination of bone density and 

endplate area (Parkinson et al., 2005). However, these authors suggested that the anterior 

processes of the porcine cervical spine may have influenced bone mineral density 

measures which could have altered the reliability of the results. Although inclusion of 

morphometric parameters in the predictive equations may improve the accuracy of 
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predicted ultimate compressive load, consideration must be given to the specific type of 

parameters that are included (Dickerson et al., 2008).  

The utility of these predictive models is in their ability to provide estimates of in 

vivo compressive tolerances (Biggemann et al., 1988; Brinckmann et al., 1989) as well as 

their utility for normalizing loads applied in vitro to allow for comparisons between 

specimens and between species for submaximal repeated testing (Parkinson et al., 2005). 

 

2.7 OVERVIEW OF THE FINITE ELEMENT METHOD 
 

2.7.1 General overview 
 

The finite element (FE) method divides a structure or material into a particular 

finite number of smaller constituent elements that are defined to interact at their adjoining 

points called nodes (Goel and Gilbertson, 1995; Brown, 2004). Initially the FE method 

was developed for testing aircraft designs (Fagan et al., 2002a). The mathematical 

formulations for the FE method have been well established throughout the years and can 

be used to examine nearly a limitless number of mechanical problems (Gallagher et al., 

1982). 

 The FE method allows for approximation of stress and strain distributions 

throughout a structure by simultaneously solving a system of equations governing a 

structure’s behavior using numerical methods (Brown, 2004). Individual nodal 

displacements resulting from forces applied to each node that comprises a single element 

are dependent upon the defined element stiffness. This generates the global formulation 
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of the FE problem, which involves solving for the undefined nodal forces and 

displacements (Equation 2.1). 

 

! 

F{ } = K[ ] U{ }(2.1) 

 

This is where {F} is the global set of nodal forces, [K] is the global stiffness matrix for 

the structure and {U} is the global set of nodal displacements (Brown, 2004). 

 

Finite element analyses require the definition of: 

1. Structural geometry  

2. Individual material/elemental properties 

3. Boundary conditions  

Structural geometry incorporates defining the number of elements that make up the 

structure, the element type as well as the interpolation functions used to derive 

continuous mechanical variables throughout the structure. Properties defined for each 

material in the structure are the modulus of elasticity as well as the Poisson ratio. 

Elements belonging to different materials must have the appropriate material properties 

applied to them. The modulus of elasticity may include properties that define the 

anisotropic behavior a material. Boundary conditions involve the definition of external 

loads (magnitude and direction of point and/or distributed loads) as well as particular 

nodal constraints (for example, displacement or velocity constraints on nodes located at 

an edge of the structure). Each of these components is discussed in the following sections 

with specific relevance to spine biomechanics. 



 40 

2.7.2 Utility of the finite element method for spine modeling 
 

The utility of the FE method in biomechanics for calculating the distribution of 

stress and strain throughout a structure under almost an unlimited number of external 

load, postural and damage scenarios has been widely acknowledged (Simon et al., 1985; 

Lu et al., 1996; Fagan et al., 2002a; Pitzen et al., 2002). Detailed FE models of the 

spine/FSU will include the proper geometry and relevant material properties for the 

individual materials that make up structures such as ligaments, vertebrae and 

intervertebral disc (Goel and Gilbertson, 1995). Fagan and colleagues (2002a) in a review 

paper stated four uses of the FE method for spine biomechanics: 

1. Assessment of spine health 

2. Assessment of the degenerated or damaged spine 

3. Assessment of mechanical changes following insertion of spinal instrumentation. 

4. Development of spinal instrumentation. 

Provided that appropriate boundary conditions have been implemented and the geometry 

and material properties of the structure’s constituent materials have been properly 

modeled, the FE method can be useful for predicting failure loads as well as failure 

patterns leading to mechanical explanations for the process of damage and tissue injury 

(Silva et al., 1998). Finite element models of the lumbar spine have been used to 

compliment in vitro work by mimicking the experimental testing conditions to determine 

internal tissue stress and strain distributions and predict the biomechanical behavior of 

the spine as well as the potential implications from implantation of spinal instrumentation 

(Graham et al., 2000; Pitzen et al., 2002). Validation of the FE results may be performed 

by comparison with in vitro results (Pitzen et al., 2002). Comparison between in vitro 
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work and FE results is relevant provided the geometry, testing conditions and material 

properties of the model match the in vitro specimen geometry, testing conditions and 

material properties (Sharma et al., 1998). 

Spine biomechanics has made extensive use of the FE method. Models have been 

developed to study fluid flow within the intervertebral disc under static compressive 

loading as it is related to the creep response of the FSU (Simon et al., 1985). Lu and 

colleagues (1996) developed a viscoelastic finite element model of a lumbar FSU for 

studying the effects that bending, twisting and changing the fluid content of the nucleus 

pulposus would have on the annular fiber stress as it pertained to generation of 

intervertebral disc prolapse by movement of nuclear material. Finite element analyses 

have also been applied to study the stress distribution throughout the neural arch under 

point forces applied in a posterior direction to the inferior facet surfaces (Inoue et al., 

1998).  

The FE method can also be used to obtain estimates of structural loading and 

stress/strain distributions throughout a structure that may not be easily or possibly 

accessible by in vitro or in vivo methods without damaging either the specimen or 

participant. The problem of determining facet contact areas and stresses are two such 

examples. Sharma and colleagues (1998) have modeled the contact between facets of 

vertebral joints as a non-linear moving contact problem to show that the facet contact 

area in the modeled FSU is dependent upon both the orientation and gap between 

articulating facets of the vertebral joint. Likewise, the loads imposed upon the facets have 

been determined using FE models under many different combinations of external load 

and vertebral joint posture (Shirazi-Adl, 1991). 
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Finite element models are also useful for determining the consequences from 

removal (i.e. transection) or addition of structures. For example, Sharma and colleagues 

(1995) modeled the changes in the force-displacement relationship of the FE model of the 

human L3-L4 FSU by iteratively removing the facets and ligaments from their FE model 

of the L3-L4 FSU. Eberlein and colleagues (2001) have also developed a detailed model 

of the intervertebral disc and implemented it with a model of the human L2-L3 vertebral 

body. Their intention was to use this model for predicting the redistribution of loads 

within the vertebral joint upon artificial disc implantation. Knowledge of the load sharing 

between implants and biological structures and changes in the stress distribution 

throughout a structure following implantation is important and can be done with a FE 

model that appropriately models the geometry and individual material properties of the 

intact FSU. 

 

2.7.3 Geometry modeling 
 

 As previously stated in section 2.7.1, proper modeling of the structure’s geometry 

is a preliminary requirement for enhancing accuracy of the FE model ouputs and for 

allowing comparison of the FE results to in vitro and in vivo studies (Sharma et al., 

1998). Narrowing the gap between articulating facets in a FE model of the human L3/L4 

FSU increased load transmission to 2%, 17.5% and 71.2% (from 0%, 3.5% and 32.3%) 

through the facets under 400 N of compressive load, 6 Nm of applied extension moment 

and 6 Nm of applied axial twist moment respectively (Sharma et al., 1998). Meanwhile 

altering facet orientation in either the sagittal or transverse planes did not produce 

equivalent changes in load transmission through the facets. 
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The structure’s geometry is modeled using a series of connected nodes to define a 

mesh (Brown, 2004). Each element in the mesh is defined by a subset of nodes and the 

connectivity between the nodes in each subset (Figure 2.9).  

 

 

Figure 2.9 – Definition of a generic element to be used in a finite element model. Nodes 
are sequentially numbered and the edges are defined by the connectivity between 
specifically numbered nodes. (Image taken from Brown, 2004) 
 

The mesh density (number of elements in a given area/volume), element size, element 

shape and the method of mesh generation can greatly influence the results from FE 

models. Each of these factors is covered in the following sections. Computational 

efficiency can be enhanced by assuming some geometrical symmetries in the FE model at 

the expense of FE solution accuracy (Belytschko et al., 1974; Shirazi-Adl, 1989; Suwito 

et al., 1992). 
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2.7.3.1 Mesh density, element size and convergence 
 

 Increasing the number of elements in a FE model will improve the resolution of 

the model’s solution (Figure 2.10) (Brown, 2004).  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.10 – Increasing the number of elements improves the model’s geometrical 
resolution and can improve the resolution of the finite element model’s solution. A coarse 
model is depicted on the left while a fine model is depicted on the right. (Image taken 
from Crawford et al., 2003) 
 

However, increasing the number of elements also increases the computational time 

required to generate a solution. Thus, studies, called convergence studies, are required to 

determine the minimum number of elements required for properly modeling the 

structure’s geometry. Convergence is achieved when a particular FE output changes by 

less than a predefined tolerance upon refining the FE mesh by adding elements. For 

example, Liebschner and colleagues (2003) considered their model of the vertebral body 

to have converged when stiffness changed by less than 2% with the addition of a higher 

number of elements.  

Element size is directly related to the number of elements for a given volume. 

Stiffness and strength of the vertebral body calculated from a FE model showed that 

reducing the element size from 64 mm3 to 8 mm3 (subsequently increasing the number of 
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elements) changed the stiffness and strength predictions by 23% and 18% respectively 

(Jones and Wilcox, 2007). Further reduction of element size from 8 mm3 to 1 mm3 

produced changes in stiffness and strength of only 6.1% and 1.6% respectively (Jones 

and Wilcox, 2007). Linearity of the relationship between FE model stiffness and fracture 

strength of the vertebral body was not improved (r2 = 0.94 small elements, r2 = 0.92 large 

elements) by reducing element size from 27 mm3 to 1.5 mm3 (Crawford et al., 2003). 

Jones and Wilcox (2007) suggest that an element size of 8 mm3 (2 x 2 x 2 mm) is 

sufficient for modeling the human lumbar vertebral body (Jones and Wilcox, 2007). 

Similarly, differences between a coarse (3690 elements) and fine (8018 elements) mesh 

of a human L2/L3 FSU have shown no real difference in the flexion/extension moment 

versus angle relationship or modeled intradiscal pressure (Eberlein et al., 2004). 

Likewise, coarse (24 elements) and fine (48 elements) meshes of the intervertebral disc 

have shown little difference in FE model stress and strain outputs (Eberlein et al., 2001). 

 Another method whereby FE solutions can be improved in areas of interest is by 

regional definition of element densities. Most commercial FE software will allow the 

investigator to specify the element density for the whole structure or by region. Regional 

definition of element density is particularly useful for analyses with known areas of stress 

concentrations and where better resolution is desired. This will reduce the total number of 

elements in the FE model, which will also reduce the solution time. Beltyschko and 

colleagues (1974) developed a FE model of the vertebral body and intervertebral disc 

with the intent of performing a stress analysis of the intervertebral disc. Since the disc 

was of primary importance to their investigation, higher element density was used to 

model the disc geometry than the vertebral body (Figure 2.11). 
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Figure 2.11 – Regional definition of element densities can improve the model’s 
resolution in areas that are of primary interest while also enhancing computational 
efficiency by minimizing the total number of elements in the model. In this example, the 
element density of the intervertebral disc is modeled with a larger number of elements 
because the disc was the structure of primary importance for this study. (Image taken 
from Belytschko et al., 1974) 
 

However, regional definition of element densities is not typically used in biomechanical 

FE models. 

  

2.7.3.2 Element type and mesh generation 
 

Mesh generation for FE models requires selection of the element type for each of 

the structure’s components. Three examples of element types used for modeling bone in 

biomechanics are brick, tetrahedral and shell elements while ligaments are generally 

modeled as elastic beam elements (Breau et al., 1991). Brick and tetrahedral elements are 

typically used for modeling the vertebral cancellous core (Figure 2.12) (Breau et al., 

1991; Crawford et al., 2003; Wong et al., 2003; Jones and Wilcox, 2007) while the shell 

elements can be used to model the cortical shell surrounding the cancellous bone 

(Kumaresan et al., 1999).  
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Figure 2.12 – Examples of a brick (shown on the left) and a tetrahedral element (shown 
on the right). (Image taken from Brown, 2004) 
 

Complex geometries, such as that of an FSU, can be generated by reconstructive 

methods using a series of computed tomography (CT) scans (Breau et al., 1991). 

Computer routines have been implemented to generate specimen specific finite element 

meshes from CT scans in a ‘semi-automatic’ manner that greatly reduces the time for 

generating a mesh for individual specimens (Kaminsky et al., 2005). However, 

specimen/subject specific meshing is still computationally intensive and requires some 

investigator intervention (Wilcox, 2007). It has been suggested that automated meshing, 

without separately meshing individual components of the vertebra, may only be 

performed using tetrahedral elements due to its non-isoparametric nature (Eberlein et al., 

2004). Generation of specimen specific meshes can be important for effectively 

estimating the effects that disc implants or posterior instrumentation would have on an 

individual (Eberlein et al., 2001). The selected element type and element size for the 

model may not identically fit the contours of the complex vertebral geometry causing 

volume distortion (Kaminsky et al., 2005). Improper modeling of the vertebral volume by 

selection of different element types or element sizes may be a source of discrepancy 

between FE outputs of the same structure (Jones and Wilcox, 2007). Recent literature has 

focused on reducing volume distortion caused by semi-automatic mesh generation 
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methods with smoothing routines (Kaminsky et al., 2005). Some smoothing routines may 

cause elements within the mesh to deform prior to applying the boundary conditions that 

may create errors in the final FE stress and strain distribution (Figure 2.13). 

 

 

Figure 2.13 – Images depicting a pixel representation from a section of MRI scanned 
geometry (a) and three mesh generators (b-d) with various levels of geometrical 
smoothing to reduce volume distortion of the final finite element model geometry. 
(Image taken from Kaminsky et al., 2005) 
 

2.7.4 Material property modeling 
 

 Material properties have been identified as one of the most sensitive parameters 

for FE models (Suwito et al., 1992). For a linear isotropic material, the Young’s modulus 

and Poisson’s ratio are the required material properties for FE models. Anisotropic 

materials require explicit definition of moduli pertaining to the response of the material to 

different directions of loading (Crawford et al., 2003; Liebschner et al., 2003). Biological 

tissues are anisotropic, but FE models have differed on whether or not material 

anisotropy is modeled (Belytschko et al., 1974; Kumaresan et al., 1999). Alterations in 

the anisotropic ratio (compressive modulus to modulus along a horizontal axis of loading) 

of cancellous bone (from 3 to 1 with 3 being the typical anisotropic ratio) have been 

shown to increase the shell force fraction by 100% under modeled compressive loading 
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(Silva et al., 1997). Finite element models of structures containing many different 

materials require definition of the properties for each material in the structure.  

Many studies have been performed to test the sensitivity of biomechanical FE 

models of FSUs, intervertebral discs and vertebral bodies to changes in material 

properties (Suwito et al., 1992; Shirazi-Adl, 1994; Silva et al., 1997; Kumaresan et al., 

1999; Fagan et al., 2002b; Liebschner et al., 2003; Jones and Wilcox, 2007; Wilcox, 

2007). Kumaresan and colleagues (1999) showed that increased and decreased moduli for 

the intervertebral disc and ligaments respectively had the largest increase and decrease in 

rotational motion in a FE model of the cervical spine (Table 2.3).  

 

Table 2.3 – Changes in rotational motion accompanied by changes in the modulus of 
elasticity for the intervertebral disc and ligaments of a cervical FE model. (Data from this 
table are taken from Kumaresan et al., 1999) 
 

 Intervertebral disc Ligament 

Change in modulus 29% ↓ 294% ↑ 50% ↓ 200% ↑ 

Change in rotational motion with 
change in modulus 93% ↑ 46% ↓ 41% ↑ 32% ↓ 

 

The same authors also demonstrated that changes in the endplate and cancellous bone 

moduli resulted in the largest changes in vertebral body centrum stress. Increased 

vertebral body modulus and yield strength in a FE model of the vertebral body have been 

shown to result in increased model compressive stiffness and strength outputs while 

changes to the Poisson ratio had little effect (Table 2.4) (Jones and Wilcox, 2007).  
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Table 2.4 – Changes in the elastic modulus for bone altered the finite element model 
stiffness while subsequent changes in the yield strength led to changes in finite element 
model strength. Alterations to the Poisson ratio had a minimal effect on each of the 
stiffness and strength of the finite element model. (Data from this table are taken from 
Jones and Wilcox, 2007) 
 

Increase 
Elastic modulus 

10 20 50 
Constant 

Increase 
Yield strength Constant 

10 20 50 
Constant 

Poisson ratio 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.4 

Increase in 
stiffness 10.1 19.2 49.6 0.0 0.0 0.0 -0.7 0.4 

Increase in 
strength 0.6 5.0 5.1 9.8 26.0 56.5 -0.4 5.2 

 

However, Suwito and colleagues (1992) have identified the endplate and annulus Poisson 

ratios as input parameters that are among the most sensitive for FE solutions of the FSU 

under compressive load. Comparison between the results of these two studies is likely 

difficult due to differences in the moduli used for the cancellous bone as well as the 

differences in models (vertebral body versus whole FSU). Silva and colleagues (1997) 

have also shown that the load sharing relationship between the modeled cortical shell and 

cancellous centrum increased by 130% simply by changing the cancellous Poisson ratio 

from 0.3 to 0.1. Cancellous as well as cortical bone is typically modeled using Poisson 

ratios near 0.3 (Suwito et al., 1992; Silva et al., 1997; Jones and Wilcox, 2007). 

Differences in cancellous bone compliance have shown differences in rotation of a FE 

model of a human FSU (Shirazi-Adl, 1994). 
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A goal of some FE investigations is to provide a specimen/subject specific model 

for predicting tissue failure. Prediction of failure properties is limited by the 

multidirectional nature of failure for bone (Silva et al., 1998). Since FE model outputs are 

sensitive to material property inputs, accuracy of specimen specific FE model outputs is 

dependent on the agreement between specimen material properties and the modeled 

properties of individual materials within the FE model (Fagan et al., 2002b). Eberlein and 

colleagues (2001) also state that ‘state-of-the-art’ material properties need to be used for 

enhancing the accuracy of FE models. 

 

2.7.5 Boundary condition definition 
 

 Boundary conditions are considered to be constraints placed upon nodal 

displacements and/or velocities as well as the external loading parameters. For example, 

Inoue and colleagues (1998) defined the boundary conditions for their FE model by 

constraining displacements of the superior and inferior surfaces of the vertebral body in 

all directions and applying a static 285 N force in the posterior direction to the inferior 

facets of the L4 vertebra. Jones and Wilcox (2007) also stated that predictions of 

vertebral body compressive strength are highly sensitive to the representation of 

boundary conditions and in particular application of load to the FE model of the vertebral 

body. For their FE model, a rigid plate was attached to the top of their model that was 

allowed to rotate in the sagittal and frontal planes to maintain consistency with the in 

vitro testing conditions. Displacement was applied to the model according to 

displacements that were observed during in vitro testing. The inferior surface of the 

manually generated FE models was constrained from moving in all degrees of freedom to 
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match the in vitro testing conditions. The FE models generated with semi-automatic 

meshing had a second rigid plate affixed to flatten the bottom surface of the model and 

this rigid plate was constrained from moving in all degrees of freedom. Finally, it has 

been suggested that differences between studies using FE models is likely due to 

differences in boundary condition definition (Overaker et al., 1999). 
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CHAPTER 3 
 

COMBINED INFLUENCE OF COMPRESSION 
AND POSTURE ON SHEAR FAILURE 

MECHANISMS FOR THE PORCINE CERVICAL 
SPINE 
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3.1 INTRODUCTION 
 

Reporting of occupational low-back pain has been significantly correlated to peak 

anterior shear load (Norman et al., 1998). Despite this finding, limited attention has been 

given towards studying in vitro shear loading as a mechanism for low-back injury 

(Potvin, 2008). Interaction between articulating facet surfaces, that governs shear failure 

tolerance, changes as a result of applied compression and postural deviation (Adams and 

Hutton, 1980; Lorenz et al., 1983; Dunlop et al., 1984; Drake et al., 2008). Independent 

researchers have quantified shear failure tolerance of the vertebral joint under different 

levels of constant compressive load (Cripton et al., 1995) as well as postural deviations 

(Yingling and McGill, 1999). However, there have been no investigations on the 

combined effect that altering compressive load and posture may have on anterior shear 

failure tolerances of the vertebral joint. The current investigation studies the combined 

roles of compressive load and postural deviation in altering the vertebral joint’s shear 

failure tolerance.  

 In vitro tests have demonstrated that the most common fracture location for 

vertebral functional spinal units (FSUs) exposed to anterior shear loading is the cranial 

vertebra’s pars interarticularis (Yingling and McGill, 1999; Beadon et al., 2008). This 

fracture is a consequence of interaction between the superior and inferior facets of 

adjacent vertebrae that is thought to generate a moment about the cranial vertebra’s pars 

interarticularis (Cyron et al., 1976; Yingling and McGill, 1999). Linking changes in facet 

articulation to alterations in shear failure tolerance could enhance our understanding of 

shear failure mechanisms. 
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Previous literature has shown that FSU stiffness increases about each of the three 

rotational and in the three translational degrees of freedom by increasing compressive 

loads (Janevic et al., 1991; Gardner-Morse and Stokes, 2003). Increased stiffness as a 

result of increased compressive load has been attributed to changes in facet interaction as 

well as pressurization of the nucleus pulposus causing increased disc and overall FSU 

stiffness (Lin et al., 1978; Dunlop et al., 1984; Yang and King, 1984). Higher 

compressive loads as a secondary mode of loading, when combined with a primary mode 

of loading, have been shown to alter the primary loading mode’s failure tolerance for the 

vertebral joint (Callaghan and McGill, 2001). 

Flexed postures have been shown to reduce the ultimate compressive load 

sustained by a porcine cervical FSU (Gunning et al., 2001). Altering flexion/extension 

(F/E) posture has been shown to bilaterally alter the contact area between the superior 

and inferior facets of an FSU (Dunlop et al., 1984).  Specifically, extension brings the 

facets closer into contact (Adams and Hutton, 1980) while flexion causes stretching of 

the facet joint capsule and increases the gap between the articulating facet surfaces 

(Yingling and McGill, 1999; Drake et al., 2008). Furthermore, flexed postures have been 

postulated to increase the moment arm length of facet contact forces relative to the pars 

interarticularis by lengthening the distance from the center of pressure occurring on the 

facet surface to the location of the pars interarticularis (Yingling and McGill, 1999). This 

hypothesis suggests that postural deviation may also alter the vertebral joint’s anterior 

shear failure tolerance. Conflicting evidence has shown that repetitively applied anterior 

shear loads did not cause differences in the time to failure of porcine specimens that had 

been flexed 10 degrees when compared to specimens tested in a neutral posture (van 
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Dieën et al., 2006). These contradictory statements demonstrate that the role of deviated 

flexion/extension postures in modulating shear failure tolerance of the vertebral joint is 

not yet well understood. 

 The purpose of the current investigation was to quantify acute shear failure loads, 

stiffness, displacement and energy stored prior to failure for vertebral joints that were 

simultaneously exposed to different magnitudes of compressive load in extended, neutral 

and flexed postures. It was hypothesized that higher compressive forces would cause 

increased shear failure tolerance, stiffness, energy stored until failure and would decrease 

shear displacement at failure. Flexed postures were hypothesized to decrease shear failure 

tolerance, stiffness and energy stored until failure while increasing shear displacement at 

failure. 

 

3.2 METHODS 
 

3.2.1 Specimen preparation and assessment 
 

Ninety-six FSUs (48 C3-C4 and 48 C5-C6) were excised from forty-eight frozen 

porcine cervical spines obtained from a local abattoir. Specimens were thawed overnight 

prior to removal of muscle and fat leaving an osteoligamentous FSU comprised of two 

vertebrae, the intervertebral disc and ligaments. Following dissection, quality of the 

exposed superior and inferior intervertebral disc was assessed using the grading scale 

outlined by Galante (1967). Only specimens with disc quality of Grade 1 were used for 

this investigation. Measurements of endplate anterior-posterior depth (D) and 

mediolateral width (W) were obtained using digital calipers for both exposed endplates. 
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Area of each exposed endplate was calculated using the equation for area of an ellipse 

! 

"WD /4( )  (Callaghan and McGill, 1995). The area of the FSUs intervertebral disc was 

estimated as the average area between the two exposed endplates (Parkinson et al., 2005). 

Bilateral facet angles and tropism between left and right facet joints were also quantified 

(Boden et al., 1996) using ImageJ (National Institutes of Health, USA) from an x-ray 

taken in the transverse plane (Figure 3.1). 

 

 

 

 

 

 

 

 

 

Figure 3.1 – X-ray of a specimen taken in the transverse plane. Left and right facet angles 
(θL and θR) were measured as the angle between a line parallel to the posterior aspect of 
the vertebral body and a line parallel to the gap between the facets. 
 

Specimens were mounted between a set of two custom aluminum cups using a 

combination of steel wire, screws and dental plaster. Two screws were partially inserted 

so that they protruded from the anterior aspect of the cranial vertebral body. One screw 

was inserted through the bottom of each cup so that each screw pierced the center of the 

exposed superior and inferior endplates. An additional six screws (three for each 

vertebra) were inserted through threaded holes in the aluminum cups so that they were 



 58 

sunk approximately 5 mm into the anterior and lateral aspects of the vertebral bodies. A 

single length of 18 gauge galvanized steel wire was looped around the caudal vertebra’s 

spinous process, threaded through two holes in the bottom of the aluminum cup and 

tightened by twisting the two ends together. Lastly, non-exothermic dental plaster 

(Denstone, Miles, IN, USA) was poured into the cups, and allowed to harden, so that the 

exposed screws were completely immersed and that any space between the specimen and 

the aluminum cup was filled. 

 

3.2.2 Instrumentation 
 

 Complete three-dimensional kinematics of the vertebrae as well as the aluminum 

cups were measured during all tests with a single optoelectronic camera (Optotrak Certus, 

Northern Digital Inc., Waterloo, ON, Canada) and a series of infrared light emitting 

diodes (IREDs) affixed to rigid metal plates. Four IREDs were mounted to each rigid 

plate with a quick drying adhesive. The geometrical configuration for the markers affixed 

to a single rigid plate was characterized and used to define the three-dimensional position 

and orientation of the rigid plate within the camera’s predefined coordinate system. Each 

rigid plate measured the three-dimensional kinematics for either a single aluminum cup 

or a single vertebra through a rigid coupling (Figure 3.2).  
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Figure 3.2 – Experimental setup for all shear testing protocols. IREDs = infrared light 
emitting diodes. 
 

Prior to loading, three specific locations within the camera’s global coordinate 

system for each vertebra and cup were digitized with a manufactured probe that had a 

predefined geometrical relationship between the probe’s tip and a series of four IREDs 

arranged in a known geometrical configuration. Global coordinates for each digitized 

location were continuously measured as a virtual marker during all tests using a fixed 

geometrical relationship between the reference rigid body’s orientation and position and 

the location of the probe’s tip within the camera’s global coordinate system. The digitized 

locations for each component (vertebra or cup) were selected to determine a local 

coordinate system representing their anatomical position and orientation. For each 

component, the first two digitized positions defined a mediolateral anatomical axis (i.e. 

flexion/extension) while the third digitized point was used in conjunction with the first 

two points to define a plane that was subsequently used to calculate the structure’s 

anteroposterior (lateral bend) and vertical (axial twist) axes. Three additional locations on 
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the linear actuator were also digitized and expressed within the camera’s coordinate 

system using the same probe. These locations were used to construct a coordinate system 

whose anteroposterior axis was coincident with the direction of applied displacement 

(and force) during all shear tests. Kinematics for all markers and digitized locations were 

continuously sampled at a rate of 128 Hz. 

Analog data from two load cells (MLP-500, Transducer Technologies, Temecula, 

CA, USA) that measured applied force during all shear tests, and a torque cell (T120-

106-1K, SensorData Technologies Inc., Sterling Heights, MI, USA) that measured applied 

flexion/extension moment during all tests were temporally synchronized with the 

kinematic data and digitally sampled at a rate of 1024 Hz using a 16-bit analog to digital 

conversion (Optotrak Data Acquisition Unit II, Northern Digital Inc., Waterloo, ON, 

Canada). 

 

3.2.3 Loading protocol 
 

Following fixation, the cup containing the FSUs cranial vertebra was secured to a 

servohydraulic material testing system (Instron 8872, Instron Canada, Burlington, ON, 

Canada) that had been coupled to a brushless servomotor (AKM23D; 

Kollmorgen/Danaher Motion, Radford, VA, USA) capable of simultaneously applying 

flexion/extension moments to the specimen (Figure 3.2). First, a compressive preload of 

300 N was applied under load control for a 15-minute duration to counter the effects of 

post-mortem swelling (Callaghan and McGill, 2001). The flexion/extension posture was 

continuously adjusted by monitoring the torque cell feedback loop and driving the 

servomotor in position control to reduce the joint moment throughout the 15-minute 
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duration in order to determine the position where zero or the smallest moment possible 

was recorded by the torque cell. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 – Schematic drawing of the in vitro testing setups for the unconstrained (A.) 
flexion/extension tests, and the constrained (B.) shear tests. 
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Following the preload, five continuous repeats of position controlled passive 

flexion/extension were performed at a rate of 0.5 degrees/second, and under a constant 

load controlled compressive force of 300 N (Callaghan and McGill, 2001) to determine 

the specimen’s neutral zone for rotational loading about the flexion/extension axis. The 

cup containing the FSU’s caudal vertebra was allowed to translate freely in the horizontal 

plane during the preload and passive flexion/extension tests on metallic ball bearings that 

provided a near-frictionless surface (Figure 3.3A). Flexion and extension angles where 

the moment versus angle relationship deviated from linear for the last three repeats were 

defined as endpoints of a linear region similar to the neutral zone (Panjabi, 1992; 

Callaghan and McGill, 2001).  

The neutral position defined at the end of the 15-minute preload identified a 

position within the specimen’s neutral zone that satisfies a zero flexion/extension 

moment. However, there are many flexion/extension angles within the neutral zone that 

simultaneously satisfy the zero moment condition. The first position that satisfies the zero 

flexion/extension moment condition is defined as the first approximation of the neutral 

posture. Using data provided under similar load and testing conditions (Callaghan and 

McGill, 2001), the neutral posture was set to be 36% of the neutral zone length from the 

selected extension limit (Equation 3.1). 

 

! 

"neutral = "ext + 0.36 " flex #"ext( )  (3.1) 

 

This was performed so that each specimen received the same approach for 

determining the neutral posture. The flexion and extension limits determined from the 
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passive test were redefined in reference to the calculated neutral posture. 

For shear testing, the cup containing the specimen’s caudal vertebra (either C4 or 

C6) was rigidly interfaced with two linear actuators (RSA24, Tolomatic Inc., Hamel, 

MN, USA) driven by a pair of brushless servomotors (AKM22E, Danaher Motion Inc., 

Radford, VA, USA) (Figure 3.2). This constrained sliding of the caudal vertebra to allow 

only the imposed anterior/posterior displacements applied by the linear actuators during 

all shear tests (Figure 3.3B). The linear actuators were equidistant from the specimen’s 

mid-sagittal plane in order to prevent application of an axial twisting moment and were 

controlled in parallel to insure equal movement profiles. A uniaxial load cell (MLP-500, 

Transducer Technologies, Temecula, CA, USA) mounted in series to each linear actuator 

was used to measure applied shear force during all tests.  

In addition to the flexion/extension passive tests, specimens were also 

preconditioned in anterior/posterior shear under position control prior to the acute failure 

protocol. Displacement during anterior/posterior shear preconditioning was applied at a 

constant rate of 0.05 mm/second using a continuous motion control algorithm (Appendix 

A.1). The targets were ±400 N (positive force being anterior shear and negative force 

being posterior shear) of applied shear force for preconditioning. This target was 

approximately 14% of the ultimate anterior shear failure load (van Dieën et al., 2006; 

Gallagher et al., 2010). 

 Following the conditioning test, each specimen was randomly assigned to one of 

twelve different combinations of predicted compressive failure tolerance (15% (1446.8 ± 

25.1 N), 30% (2932.0 ± 52.8 N), 45% (4498.1 ± 94.2 N) or 60% (5964.8 ± 110.1 N)) and 

flexion/extension posture (extended (-4.39 ± 0.13 degrees), neutral (0 degrees) or flexed 
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(7.89 ± 0.23 degrees)) to be applied during the acute shear failure protocol. Compressive 

failure tolerance for each specimen was determined using average endplate area as the 

input to a previously determined linear regression equation (Parkinson et al., 2005). 

Flexion and extension limits were used as test flexion or extension angles for acute 

failure tests performed in either flexed or extended postures. The reference posture 

determined from the flexion/extension passive test was used for acute failure tests 

performed in the neutral posture. Shear failure was induced for each specimen by 

applying shear displacement under position control at a constant rate of 0.15 mm/second 

(Appendix A.2). This displacement rate was consistent with a previous acute shear failure 

protocol (van Dieën et al., 2006) and was targeted to apply shear load at a rate that was 

consistent with shear loading rates while lifting a load deemed safe for 99% of the 

population from the floor to waist height (Howarth et al., 2009). 

Following the shear failure protocol, the specimen was returned to the neutral 

position and uncoupled from the linear actuators. A second flexion/extension passive test 

was performed using the same load and displacement conditions as the test performed 

prior to the acute failure protocol. 

 

3.2.4 Post-failure analysis 
 

 Specimens were removed from their fixation upon completion of the loading 

protocol. A sagittal plane x-ray was taken of the specimen to identify possible locations 

of bone failure. Due to irregular geometry of the vertebral joint, specimen positioning for 

the x-ray was controlled to the unloaded and neutral posture by placing the specimen’s 

right side onto a formed impression created in a 25.4 mm thick block of extruded 
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polystyrene foam. Each specimen was carefully sectioned into individual vertebrae and 

photographed. An investigator also visually documented bone failure.  

 

3.2.5 Data processing and analysis 
 

Three-dimensional orientation and position of the coordinate system for each 

vertebra and cup were transformed from the camera’s global coordinate system into the 

local actuator-based coordinate system for the complete duration of the shear failure test. 

Vertebral shear displacement was calculated at each instant as the difference in position 

between the origins of each vertebra-based coordinate system with respect to the 

orientation of the actuator-based coordinate system. 

 Digitally sampled voltages from each load cell on the shear actuators were 

calibrated to force and filtered using a second order dual-pass Butterworth digital filter 

with a cutoff frequency of 3.5 Hz. Filtered forces were also downsampled to 128 Hz in 

order to match the kinematic sampling rate. Measured shear forces and kinematics were 

transformed into the specimen’s local joint coordinate system for all acute failure tests. 

Total applied shear force was calculated as the sum of the forces recorded from the two 

load cells. Kinematic data from the virtual markers were also filtered using a second 

order dual-pass Butterworth digital filter with a cutoff frequency of 2.5 Hz. Filter cutoff 

frequencies were determined from residual analyses conducted on data collected during 

shear failure tests using the conditions for acute failure testing outlined in Chapter 4 

(Appendix B.1). 

Shear stiffness for each specimen was calculated using the maximum slope on the 

force versus displacement relationship, over a 0.5 mm region, that satisfied a 95% 
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linearity criterion (Figure 3.4). Ultimate shear force was defined as the maximum shear 

force achieved throughout the failure test and ultimate displacement was the shear 

displacement that coincided with the ultimate shear force (Figure 3.4). Two additional 

definitions of failure (elastic limit and initial failure) were also determined (Figure 3.4). 

Initial failure force was defined as the instant where a 3.25% decrease in total applied 

shear force occurred over a 0.5 second window (Gunning et al., 2001). The initial failure 

point was set to be equivalent to the ultimate failure point in the event that no points on 

the force versus displacement relationship satisfied the defined initial failure criterion. 

The elastic limit was calculated using a 2% deviation of linearity in the shear 

displacement versus force relationship from the calculated stiffness. 

 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 – Sample shear displacement versus force curve obtained from an ultimate 
shear failure tests (C3-C4). The calculated linear stiffness (k), elastic limit (A), initial 
failure point (B) and ultimate failure point (C) are illustrated.  
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Shear displacements at initial failure and the elastic limit were also determined. 

Energy stored in the passive tissues during the acute failure test was also calculated by 

integrating the force versus displacement relationship between the starting location (zero 

shear displacement) and the displacements at each of the three determined failure points. 

 

3.2.6 Statistical analysis 
 

Randomization of the specimens into each of the twelve different acute shear 

failure testing conditions was assessed using a three factor (LEVEL, COMPRESSION 

and POSTURE) analysis of variance (ANOVA) for measurements of endplate area, 

average facet angle and facet tropism (SAS 9.1, SAS Institute Inc., Cary, NC, USA). 

Similarly, a three factor ANOVA was used to test for statistically significant differences 

in each of the three shear failure tolerances, their corresponding displacements and stored 

energy values as well as the linear stiffness. Tukey’s post-hoc analyses were performed 

for any significant main effects or interactions. The level of statistical significance was 

set to p < 0.05 for all tests. Effect sizes for all statistically significant differences between 

pairs of means were evaluated using Cohen’s d. 

 

 
 
 
 
 
 
 
 
 
 
 



 68 

3.3 RESULTS 
 

3.3.1 Specimen randomization 
 

Facet surfaces for specimens assigned to the 45% compressive load had smaller 

angles relative to the frontal plane than either of the 30% and 60% groups by 2.5° (p = 

0.0234, d = 0.82) and 2.2° (p = 0.0459, d = 0.69) respectively (Table 3.1). There were no 

other statistically significant differences in any of the specimen specific measurements or 

characteristics across the different compressive loads and postures (p ≥ 0.0526) (Table 

3.2).
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Table 3.1 – Characteristics of specimens assigned to each compressive load group for acute shear failure. Standard error of each mean 
is presented in parentheses. Asterisks indicate measures that contain statistically significant differences between the compressive load 
magnitudes. Means within a single measure and with the same letter are statistically similar. 
 

 

Compression 
Extension Limit 

(degrees) 
Flexion Limit 

(degrees) 
Endplate Area 

(mm2) 

Average Facet 
Angle 

(degrees) 

Facet Tropism 
(degrees) 

Specimen 
Height Loss 

(mm) 

15% 
-4.5 
(0.1) 

8.0 
(0.2) 

657.7 
(12.1) 

45.4 
(0.5) 

A,B 
3.1 

(0.4) 
0.85 

(0.05) 
A 

30% 
-4.4 
(0.2) 

7.9 
(0.3) 

667.2 
(12.8) 

47.0 
(0.6) 

A 
4.3 

(0.5) 
1.85 

(0.07) 
B 

45% 
-4.4 
(0.1) 

8.0 
(0.2) 

683.1 
(15.4) 

44.5 
(0.7) 

B 
3.8 

(0.4) 
2.74 

(0.07) 
C 

60% -4.5 
(0.1) 

8.0 
(0.2) 

678.8 
(13.1) 

46.7 
(0.7) A 3.3 

(0.5) 
3.88 

(0.17) D 

p 0.9383 0.9898 0.5498 0.014* 0.0526 < 0.0001* 
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Table 3.2 – Characteristics of specimens assigned to each posture group for acute shear failure. Standard error of each mean is 
presented in parentheses. Asterisks indicate measures that contain statistically significant differences between the compressive load 
magnitudes. Means within a single measure and with the same letter are statistically similar. 
 
 

Posture 
Extension Limit 

(degrees) 
Flexion Limit 

(degrees) 
Endplate Area 

(mm2) 

Average Facet 
Angle 

(degrees) 

Facet Tropism 
(degrees) 

Specimen 
Height Loss 

(mm) 

Extended 
-4.4 
(0.1) 

7.8 
(0.2) 

665.8 
(11.3) 

46.3 
(0.6) 

4.2 
(0.4) 

2.19 
(0.19) 

A 

Neutral 
-4.5 
(0.1) 

8.2 
(0.2) 

658.9 
(12.2) 

45.8 
(0.5) 

3.2 
(0.4) 

2.49 
(0.22) 

B 

Flexed 
-4.4 
(0.1) 

7.9 
(0.2) 

690.4 
(10.7) 

45.5 
(0.5) 

3.4 
(0.4) 

2.31 
(0.24) 

A,B 

p 0.7682 0.489 0.1495 0.5713 0.3527 0.0467* 
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3.3.2 Vertebral level 
 

All three measurements obtained at ultimate failure were smaller (22% decrease 

in ultimate force, 21% decreased in ultimate displacement and 36% decrease in energy 

stored until ultimate failure) for the C3-C4 specimens than the C5-C6 specimens (p ≤ 

0.001, 0.71 ≤ d ≤ 1.00) (Table 3.3). 

 

Table 3.3 – Ultimate force, displacement and energy stored during acute shear failure for 
specimens from each vertebral level. Standard error of each mean is presented in 
parentheses. Asterisks indicate a statistical difference between means for a single 
measure. 
 

Vertebral Level 
Ultimate Force 

(N) 
Ultimate Displacement 

(mm) 
Ultimate Energy 

(J) 

C3-C4 
2095.2 
(75.3) 

5.3 
(0.4) 

8.2 
(0.8) 

C5-C6 
2648.6 
(86.0) 

6.8 
(0.3) 

12.8 
(0.7) 

p 0.0001* < 0.0001* < 0.0001* 
 

Displacement at the elastic limit for C3-C4 specimens was 0.38 ± 0.09 mm smaller than 

C5-C6 specimens (p < 0.0001, d = 1.79). 

 

3.3.3 Compression 
 

Each level of compressive load produced greater reductions in specimen height (p 

< 0.0001, 1.84 ≤ d ≤ 6.72) (Table 3.1). Ultimate force and initial failure force at the 15% 

compressive load were smaller than failure loads at either the 45% (ultimate force p = 
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0.0055, d = 0.78; initial failure force p = 0.0032, d = 0.79) or 60% (ultimate force p < 

0.0001, d = 1.44; initial failure force p < 0.0001, d = 1.73) compressive loads (Table 3.4).  

 
Table 3.4 – Measures of the elastic limit, initial and ultimate acute shear failure loads for 
each compressive load group. Standard error of each mean is presented in parentheses. 
Means within a single measure and with the same letter are statistically similar.  
 

Compression 
Elastic Limit 

(N) 
Initial Failure Force 

(N) 
Ultimate Failure Force 

(N) 

15% 
935.7 
(62.1) 

A 
1711.3 
(103.7) 

A 
2003.3 
(79.5) 

A 

30% 
1235.6 
(90.9) 

B 
2006.3 
(116.6) 

A,B 
2310.8 
(108.9) 

B 

45% 
1335.4 
(72.4) 

B 
2169.9 
(135.4) 

B 
2431.7 
(140.3) 

B,C 

60% 
1549.0 
(59.0) 

C 
2582.6 
(144.5) 

C 
2741.9 
(129.1) 

C 

 

Likewise, ultimate failure force and initial failure force at the 30% compressive load were 

smaller than at the 60% compressive load (ultimate force p = 0.0051, d = 0.75; initial 

failure force p = 0.0001, d = 0.92) (Table 3.4). Initial failure force was also smaller at the 

45% compressive level when compared to the 60% compressive level (p = 0.0095, d = 

0.61) (Table 3.4). Force at the elastic limit was smaller at the 15% compressive load than 

all other compressive loads (p ≤ 0.0017, 0.80 ≤ d ≤ 2.11) (Table 3.4). Force at the elastic 

limit was also higher at the 60% compressive load than all other compressive loads (p ≤ 

0.042, 0.67 ≤ d ≤ 2.11) (Table 3.4). Force at the elastic limit at the 15% compressive load 

was smaller than at the 30% compressive load (p = 0.0027, d = 0.77) (Table 3.4). 
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Displacement at the elastic limit was 0.34 ± 0.15 mm smaller for specimens under 45% 

compressive force than the 30% compressive force (p = 0.0326, d = 0.68). Linear shear 

stiffness of the specimens under 15% compressive load were smaller than linear stiffness 

at all three other compressive loads (p ≤ 0.0136, 0.89 ≤ d ≤ 1.81) while linear stiffness of 

specimens exposed to the 30% compressive load were also smaller than stiffness of 

specimens at the 60% compressive load (p = 0.0004, d = 1.08) (Figure 3.5). Lastly, 

energy stored until initial failure for the 60% compressive load was higher than energy 

stored at all other compressive loads (p ≤ 0.0025, 0.56 ≤ d ≤ 0.77) (Figure 3.6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 – Linear shear stiffness increases with static compressive load. Error bars 
represent the standard error of the mean. Means with different letters are statistically 
different from one another. 
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Figure 3.6 – Energy stored until the initial failure point with increased static compressive 
load. Error bars represent the standard error of the mean. Means with different letters are 
statistically different from one another. 
 

3.3.4 Posture 
 

Specimens tested in flexed postures had greater height loss than those tested in 

extended postures (p = 0.0374, d = 0.27) (Table 3.2). Ultimate force decreased for each 

posture condition with the highest ultimate force being sustained in the extended posture 

(p ≤ 0.0176, 0.51 ≤ d ≤ 1.08) (Figure 3.7).   
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Figure 3.7 – Ultimate shear force sustained in each of the extended, neutral and flexed 
postures. Error bars represent the standard error of the mean. Means with different letters 
are statistically different from one another. 
 

The flexed posture had lower shear stiffness than either the extended (p = 0.0012, d = 

0.71) or neutral (p = 0.0009, d = 0.82) postures (Figure 3.8). Flexed postures also had 

reductions in energy stored until ultimate failure (p = 0.0205, d = 0.65) when compared 

to the extended postures (Figure 3.9). 
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Figure 3.8 – Linear shear stiffness in each of the extended, neutral and flexed postures. 
Error bars represent the standard error of the mean. Means with different letters are 
statistically different from one another. 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.9 – Energy stored until ultimate shear failure in each of the extended, neutral 
and flexed postures. Error bars represent the standard error of the mean. Means with 
different letters are statistically different from one another. 
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Displacement at the elastic limit was 0.36 ± 0.13 mm smaller for specimens tested 

in flexed versus extended postures (p = 0.0026, d = 0.69). Force and energy stored 

demonstrated statistically significant interactions between vertebral level and posture for 

both the elastic limit and initial failure point (p ≤ 0.0171). Initial failure displacement also 

demonstrated a statistically significant interaction between vertebral level and posture (p 

= 0.0484). Initial failure displacement and energy stored until initial failure were smaller 

for the C3-C4 than C5-C6 specimens in both the extended (p < 0.0001, 1.76 ≤ d ≤ 1.97) 

and neutral (p ≤ 0.0012, 1.16 ≤ d ≤ 1.36) postures (Figure 3.10A-B).  
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C.) 

Figure 3.10 – Displacement (A.), energy stored (B.) and force (C.) at initial failure for 
both C3-C4 and C5-C6 specimens tested in each of the extended, neutral and flexed 
postures. Error bars represent the standard error of the mean. Means with different letters 
are statistically different from one another. 
 

Energy stored until the elastic limit (p < 0.0001, d = 1.23) was smaller for the C3-C4 than 

C5-C6 specimens in the extended posture (Figure 3.11A).  
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A.) 

 

 

 

 

 

 

 

 

B.) 

Figure 3.11 – Energy stored (A.) and force (B.) at the elastic limit for both C3-C4 and 
C5-C6 specimens tested in each of the extended, neutral and flexed postures. Error bars 
represent the standard error of the mean. Means with different letters are statistically 
different from one another. 
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Initial failure force and force at the elastic limit decreased at each posture 

condition for the C5-C6 specimens with the highest forces being sustained in the 

extended posture (p ≤ 0.0347, 0.95 ≤ d ≤ 2.27) (Figures 3.10C, 3.11B). C5-C6 specimens 

tested in the flexed posture also had smaller initial failure displacements than C5-C6 

specimens tested in extended postures (p = 0.0066, d = 1.22) (Figure 3.10A). 

Furthermore, C5-C6 specimens tested in the flexed posture also stored less energy until 

initial failure than either the extended (p = 0.0004, d = 1.38) or neutral (p < 0.0225, d = 

0.89) postures (Figure 3.10B).  

 
 
3.3.5 Post-failure analysis 
 

The predominant posterior element injury (65% of all specimens) was a bilateral 

fracture of the cranial vertebra’s pars interarticularis (Table 3.5, Figure 3.12). Other 

common injuries that occurred were bilateral and unilateral fractures of the caudal 

vertebra’s pars interarticularis (18% bilateral; 21% unilateral) and/or unilateral facet 

fractures (Table 3.5, Figure 3.13).  

 

 
 
 
 
 
 
 
 
 
 

Figure 3.12 – Transverse image of a C3 vertebra following acute shear failure. The black 
arrows indicate the bilateral pars interarticularis fracture that was the predominant injury 
present in shear failure. 
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Figure 3.13 – Images of a bilateral pars interarticularis fracture of the caudal vertebra (A), 
unilateral pars interarticularis fracture (B), and a unilateral facet fracture (C). 
Incidence rate of bilateral cranial pars interarticularis fracture was much higher for C3-C4 

specimens than C5-C6 specimens (41.6% difference) (Table 3.5). Increasing compression 

also increased the incidence of bilateral fracture of the cranial pars interarticularis with 

88% of specimens demonstrating this failure pattern at the 60% compressive load 

magnitude (Table 3.5). Flexed postures had lower incidence rates of bilateral fracture of 

the cranial pars interarticularis than either the extended (28.1% difference) or neutral 

(25% difference) postures (Table 3.5). Instead, flexed postures exhibited higher incidence 

of caudal bilateral pars interarticularis fractures than either the extended or neutral 

postures (Table 3.5, Figure 3.13A).
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Table 3.5 – Post-failure observations of tissue damage arranged within vertebral level, compressive load, posture and overall. Values 
are reported as a percentage of all specimens in each group. 

 

 Pars Interarticularis Facet Endplate 
 Cranial Caudal Superior Inferior   
 Bilateral Unilateral Bilateral Unilateral Bilateral Unilateral Bilateral Unilateral Superior Inferior 

C3-C4 85.4 0.0 8.3 6.3 0.0 0.0 0.0 0.0 0.0 4.2 
C5-C6 43.8 6.3 27.1 35.4 4.2 22.9 0.0 0.0 2.1 0.0 

           
15% 37.5 4.2 25.0 37.5 0.0 16.7 0.0 0.0 0.0 0.0 
30% 58.3 8.3 16.7 20.8 0.0 20.8 0.0 0.0 0.0 4.2 
45% 75.0 0.0 12.5 12.5 8.3 4.2 0.0 0.0 0.0 4.2 
60% 87.5 0.0 16.7 12.5 0.0 4.2 0.0 0.0 4.2 0.0 

           
Extended 75.0 6.3 6.3 21.9 0.0 15.6 0.0 0.0 0.0 3.1 
Neutral 71.9 0.0 15.6 15.6 6.3 3.1 0.0 0.0 0.0 0.0 
Flexed 46.9 3.1 31.3 25.0 0.0 15.6 0.0 0.0 3.1 3.1 

           
Overall 64.6 3.1 17.7 20.8 2.1 11.5 0.0 0.0 1.0 2.1 
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3.4 DISCUSSION 
 

Results from this investigation demonstrate that facet interaction modulates shear 

failure tolerance for the vertebral joint. Interaction between articulating facets is altered 

by both compressive force and postural deviation and will influence shear injury potential 

during activities such as manual materials handling. Increasing compression enhanced 

shear failure tolerance and stiffness while vertebral joint flexion reduced these measures. 

There was no statistical interaction between compression and posture as they related to 

shear failure tolerance. Extension produced an average increase of 12.8% while flexion 

produced an average decrease of 13.2% in ultimate shear failure tolerance. Meanwhile, 

ultimate shear failure tolerance increased by an average of 11.1% with each 15% 

increment in compressive force. Based on these results, compression and postural 

deviations have a similar magnitude of influence on ultimate shear failure tolerance. 

However, posture must carefully be considered since flexion can diminish the vertebral 

joint’s capacity to withstand shear loads. 

 Similar to the current investigation, previous studies have shown that linear shear 

stiffness increases with larger compressive forces (Janevic et al., 1991; Gardner-Morse 

and Stokes, 2003). In contrast to the findings of this investigation, Cripton and colleagues 

(1995) found that increasing compression generated very small changes in ultimate shear 

failure tolerance.  These investigators applied a maximum compressive force of 2200 N, 

which is smaller than average compressive loads used for specimens assigned to the 30%, 

45% and 60% of compressive failure tolerance groups in our investigation. It is possible 

that the difference between compressive loads used by Cripton and colleagues (1995) was 

not large enough to generate a difference in shear failure tolerance. 
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Compression causes reductions in overall specimen height (van der Veen et al., 

2007) and has been hypothesized to decrease the space between articulating facets (Lin et 

al., 1978). The intervertebral disc provides increases in linear shear stiffness with higher 

compressive forces (Gardner-Morse and Stokes, 2003). Meanwhile, contact area between 

articulating facets changes with alterations in specimen height (Lorenz et al., 1983; Liu et 

al., 2006). Specifically, facet contact area increases by as much as 36% and 61% with 

1mm and 4 mm reductions in disc height respectively (Dunlop et al., 1984). Reducing 

specimen height alters facet contact area and may also change the center of facet contact 

pressure, which may directly lead to increases in linear shear stiffness and shear failure 

tolerance. The moment arm between the center of facet contact pressure and the location 

of the pars interarticularis has been implicated as a modulator of anterior shear failure 

tolerance (Cyron et al., 1976; Yingling and McGill, 1999). A theory for modulation of 

ultimate shear failure tolerance that has been supported by the results of this investigation 

is that reducing vertebral joint height and increasing facet contact area with higher 

compressive forces may also reduce the moment arm of facet contact force relative to the 

pars interarticularis. This theory implies that larger applied shear forces would be 

required to generate a critical bending moment for fracturing the pars. 

Flexed postures increase the gap between articulating facets while extended 

postures have been found to decrease the gap (Drake et al., 2008). Results from this 

investigation showed that vertebral joint shear failure tolerance and linear shear stiffness 

is reduced for flexed postures while extended postures did not significantly influence 

failure loads. Investigators had previously found an increase in shear failure tolerance and 

no significant change in linear stiffness between specimens tested in flexed and neutral 
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postures (Yingling and McGill, 1999). These authors attributed their findings to increases 

in the moment arm length of the facet contact force relative to the pars interarticularis 

(the primary site of failure). However, for two identical specimens, increasing the 

moment arm length of the facet contact force relative to the pars interarticularis by 

flexing one specimen should in theory reduce the force required to generate the same 

bending moment at the pars interarticularis. Thus, if the bending moment at the pars 

interarticularis is the primary factor governing shear failure, a larger moment arm 

(created by flexed postures) will require less shear force to produce failure. This theory is 

more congruent with the findings of the current study. Thus, it is our hypothesis that 

decreases in measured shear failure tolerance with flexed postures may be directly related 

to an increased moment arm length between the centroid of facet contact force and the 

pars interarticularis (Figure 3.14B). Conversely, increases in measured shear failure 

tolerance may be a direct result of decreases in the moment arm length (Figure 3.14C-D). 

It is possible that differences in loading protocols and experimental setup as well as 

failure criteria between the current investigation and the work of Yingling and McGill 

(1999) could account for the differences in results. 

 In vivo loading of the lumbar spine involves a complex combination of forces in 

all three rotational and translational degrees of freedom. Furthermore, tissue damage can 

occur due to excessive loading in any of these six degrees of freedom. Similar to the 

results of this study that found decreased shear failure tolerance with flexion, Gunning 

and colleagues (2001) have also shown that a flexed posture reduced the vertebral joint’s 

compressive failure tolerance. While in a flexed posture, any possible increase in shear 

failure tolerance resulting from higher compressive loads also increases the risk of injury  
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Figure 3.14 – Illustration of how posture and compressive force may alter the moment 
arm length between the centroid of facet contact force and the pars interarticularis 
between the neutral (A), flexed (B), extended (C), and compressed (D) conditions. 
Flexion may produce an increase in moment arm length while extension and compression 
may decrease the moment arm length, which would respectively require decreased and 
increased measured shear failure forces. 
 

due to excessive compressive loading. Flexed postures have more influence on injury 

thresholds for the lumbar spine since these postures decrease the failure tolerance of the 

vertebral joint in multiple degrees of freedom.  

Ascribed compressive load for each specimen was based on an estimate of the 

specimen’s compressive failure tolerance in the neutral posture (Parkinson et al., 2005). 

In a flexed posture, the compressive failure tolerance of the porcine vertebral joint is 
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approximately 68% of the failure tolerance in the neutral posture (Gunning et al., 2001). 

Thus, compressive load magnitudes for the 60% group in the flexed posture approached 

the flexed compressive failure tolerance. Despite this limitation, only 4% of specimens 

exposed to the 60% compressive load and 3% of the flexed specimens had endplate 

fractures that are consistent with compressive failure. Furthermore, examination of the 

compressive force versus time profiles did not indicate signs of compressive failure prior 

to shear load application. 

The shear displacement versus force relationship illustrated in Figure 3.4 

demonstrates three points at which structural damage is occurring to the FSU. These three 

points corresponded to the elastic limit, initial failure, and ultimate failure points 

calculated in this study. Acute failure under shear was imposed to a porcine cervical 

vertebral joint by applying a backward displacement to the caudal vertebra at a constant 

rate. At the start of the acute shear failure test, there is a gap between the articulating 

inferior and superior facets of the cranial and caudal vertebrae respectively. Also at the 

start of the acute failure test, a ligamentous facet capsule connects the medial and lateral 

sides of each articulating facet to complete the facet joint capsule. Articulating facet 

surfaces are also covered by a layer of cartilage. The space between these articulating 

surfaces is also filled with synovial fluid. As shear displacement is applied, the 

articulating facet surfaces attempt to interact with each other, building up pressure within 

the facet joint capsule. The elastic limit, calculated in this study, is possibly linked to 

excessive stretching of the facet joint capsular ligaments. It is hypothesized that the initial 

failure point occurs when the ligaments surrounding the facet joint capsule rupture as a 

result of this pressure build-up. Following the initial failure point, the cartilaginous facet 
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surfaces continue to become engaged, leading to bone deformation, and subsequent 

fracture, of the vertebral posterior elements and ultimate vertebral joint failure under 

shear loading. 

Typically reaction shear forces computed from linked segment models are directly 

related to flexed postures (McGill et al., 1998; Gregory et al., 2006; Howarth et al., 

2009). McGill and colleagues (1998) defined action limits and maximum permissible 

limits of 500 N and 1000 N respectively for shear which is approximately 25-50% of the 

shear failure tolerance for specimens collected in a flexed posture from this investigation 

and is much lower than shear failure tolerances for specimens tested in the neutral 

posture. These limits are very conservative and likely are also applicable to reduced shear 

failure tolerance in a flexed posture. For example, lifting in a flexed posture requires 

extensor muscle activity to generate an internal extensor moment for returning the spine 

to an upright position. In a neutral posture, vertebral joint shear is modulated by a 

component of the extensor muscular arrangement in direct opposition to reaction shear 

forces (Potvin et al., 1991). Flexed postures cause the extensor muscle line of action to 

become more aligned with the vertebral joint’s compressive axis, thus negating the direct 

muscular contributions to resisting shear loads (McGill et al., 2000). However, this 

realignment likely maintains shear failure tolerance while lifting in a flexed posture by 

increasing the vertebral joint compression. Thus, the hypothesis that previously defined 

shear action and maximum permissible limits are applicable for postural deviations is 

supported by findings in the current investigation demonstrating that shear failure 

tolerance of flexed specimens is increased with higher compressive loads. 
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However, flexed postures, typically associated with larger calculated reaction 

shear forces, reduce the vertebral joint’s compressive tolerance by approximately 33% 

(Gunning et al., 2001). Thus, protection from shear-related injuries provided by muscular 

compressive force would increase vertebral joint compression that may increase the 

change for a vertebral joint compressive injury. This demonstrates how a scenario where 

protective mechanisms for shear injuries alters low-back injury potential in other modes 

of loading. 

 This study has comprehensively shown that both compressive force and postural 

deviation modulate shear failure tolerance of the vertebral joint. In particular, increasing 

compression and flexed postures respectively lead to increased and reduced vertebral 

joint shear failure tolerance. The hypothesized mechanism for modulation of vertebral 

shear failure tolerance is alteration in the moment arm length between the center of facet 

contact pressure and the pars interarticularis location. Due to the relationship between 

peak shear and low-back pain reporting, both compression and postural deviation should 

be considered while assessing the shear injury potential of an occupational task. 
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CHAPTER 4 
 

INFLUENCE OF VERTEBRAL MORPHOLOGY 
AND PARS INTERARTICULARIS BONE DENSITY 

AS FACTORS FOR CALCULATING ANTERIOR 
SHEAR FAILURE TOLERANCE FOR THE 

PORCINE CERVICAL SPINE: DEVELOPMENT OF 
A MATHEMATICAL MODEL 
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4.1 INTRODUCTION 
 

Normalization of sub-maximal loads relative to estimated failure limits during in 

vitro testing enhances comparison of results between animal and human specimens and 

can also reduce the effects of biological variability. The normalization process is 

particularly useful during in vitro studies using a cyclical loading paradigm whereby each 

specimen can be loaded to a percentage of its estimated tolerance in a specific mode of 

loading. The current investigation develops and tests errors associated with a 

mathematical model for predicting ultimate anterior shear failure tolerances of the 

porcine cervical spine.  

 Regression equations have been developed, tested and validated for predicting the 

ultimate compressive load of human (Hansson et al., 1980; Biggemann et al., 1988; 

Brinckmann et al., 1989) and porcine FSUs (Parkinson et al., 2005). Typically these 

regression equations provide a prediction of ultimate compressive load from bone 

mineral density and/or morphological characteristics such as endplate area. Bone mineral 

density can be measured using non-destructive imaging techniques such as quantitative 

computed tomography (QCT) (Biggemann et al., 1988; Brinckmann et al., 1989; Ebbesen 

et al., 1999) or dual energy x-ray absorptiometry (DXA) (Edmondston et al., 1994; 

Edmondston et al., 1997; Ebbesen et al., 1999; Parkinson et al., 2005). Inclusion of 

morphological characteristics with bone mineral density has traditionally improved the 

estimate of predicted ultimate compressive loads in human vertebral bodies and monkey 

FSUs (Biggemann et al., 1988; Dickerson et al., 2008). 

The regression equations for predicting ultimate compressive load primarily use 

the bone mineral density from a section of the vertebral body. Since the primary bony 
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structures that resist anterior shear loads are the facets (Lu et al., 2005) and the pars 

interarticularis (Cyron et al., 1976; Yingling and McGill, 1999; Beadon et al., 2008; 

Gallagher et al., 2010), measures of the vertebral body bone mineral density are not 

appropriate for estimating vertebral ultimate shear load. Thus, new equations and 

methods are required to estimate anterior shear failure tolerances for the vertebral joint. 

As outlined by Parkinson and colleagues (2005), the method for obtaining any measures 

that predict failure tolerances must be non-destructive and provide accurate predictions. 

Destructive measurements would alter the specimen’s mechanical response, failure 

tolerances and negates further testing. Accuracy of predicted shear failure tolerance is 

necessary for enhancing comparison of results obtained between human and animal 

models and for improving homogeneity of load exposure during sub-maximal in vitro 

repetitive loading protocols (Parkinson et al., 2005). In this regard, measurements of 

posterior element morphology and/or bone density are likely to be more appropriate for 

predicting anterior shear failure tolerances. 

 The purpose of this investigation was to identify specimen-specific parameters 

that can be measured using non-destructive methods for calculating anterior shear failure 

tolerances of the porcine cervical spine without loading. Accuracy of the mathematical 

models developed from this investigation will also be determined from an independent 

sample. It is hypothesized that combining measurements of bone mineral density from 

the posterior vertebral elements with morphological measures will produce the most 

feasible mathematical model for determining anterior shear failure tolerance. A 

secondary purpose of this investigation will be to identify critical morphological 

parameters that are linked to fracture risk from shear loading. 
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4.2 METHODS 
 

4.2.1 Specimen preparation and assessment 
 

4.2.1.1 Specimen assessment 
 

Forty FSUs (20 C3-C4 and 20 C5-C6) were excised from twenty frozen porcine 

cervical spines obtained from a local abattoir. Specimens were thawed overnight prior to 

removal of muscle and fat leaving an osteoligamentous FSU comprised of two vertebrae, 

the intervertebral disc and ligaments. Following dissection, quality of the exposed 

superior and inferior intervertebral disc was assessed using the grading scale outlined by 

Galante (1967). All specimens met the disc quality criterion of Grade 1 and were 

included in this investigation. Measurements of endplate anterior-posterior depth (D) and 

mediolateral width (W) were obtained using digital calipers for both exposed endplates. 

Area of each exposed endplate was calculated using the equation for area of an ellipse 

! 

"WD /4( )  (Callaghan and McGill, 1995) (Table 4.1). The area of the FSUs intervertebral 

disc was estimated as the average area between the two exposed endplates (Parkinson et 

al., 2005). Bilateral morphological measurements of the vertebral posterior elements were 

also made using digital calipers (Table 4.1). Bilateral facet angles and tropism between 

left and right facet joints were also quantified (Boden et al., 1996) using ImageJ (National 

Institutes of Health, USA) from a transverse plane x-ray (Table 4.1)(Figure 4.1). 
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Table 4.1 – Morphological measurements, and the respective measurement device/source, 
for each specimen. 
 

Meaurement Source 

Endplate Area (mm2) 
Equation of ellipse  

Major diameter = endplate width 
Minor diameter = endplate depth 

Facet Area (mm2) 
Equation of ellipse 

Major diameter = facet width 
Minor diameter = facet height 

Average Facet Angle (degrees) Transverse plane x-ray 
Facet Tropism (degrees) Transverse plane x-ray 

Superior Facet Height (mm) Digital calipers 
Superior Facet Width (mm) Digital calipers 

Superior Inside Interfacet Width (mm) Digital calipers 
Superior Outside Interfacet Width (mm) Digital calipers 

Inferior Facet Height (mm) Digital calipers 
Inferior Facet Width (mm) Digital calipers 

Inferior Inside Interfacet Width (mm) Digital calipers 
Inferior Outside Interfacet Width (mm) Digital calipers 

Cranial Pedicle Height (mm) Digital calipers 
Caudal Pedicle Height (mm) Digital calipers 
Cranial Pedicle Width (mm) Digital calipers 
Caudal Pedicle Width (mm) Digital calipers 
Cranial Lamina Height (mm) Digital calipers 
Caudal Lamina Height (mm) Digital calipers 
Cranial Lamina Width (mm) Digital calipers 
Caudal Lamina Width (mm) Digital calipers 

Cranial Pars Interarticularis Length (mm) Digitized locations from sagittal plane x-ray 
Caudal Pars Interarticularis Length (mm) Digitized locations from sagittal plane x-ray 
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Figure 4.1 – X-ray of a specimen taken in the transverse plane. Left and right facet angles 
(θL and θR) were measured as the angle between a line parallel to the posterior aspect of 
the vertebral body and a line parallel to the gap between the facets. 

 

4.2.1.2 Imaging of the pars interarticularis 
 

Four metal pins (diameter = 0.5 mm) were inserted to mark the inferior and 

superior borders of the pars interarticularis for each of the cranial and caudal vertebrae on 

the specimen’s left side. The superior border was defined as the lateral junction between 

the superior facet and the lamina while the inferior border was defined as the medial 

junction between the inferior facet and the pedicle. The pars interarticularis (and 

subsequent fracture plane after acute shear failure) for each respective vertebra was 

assumed to lie in the cutting plane created by connecting each pair of pins defining the 

superior and inferior borders. This line is also consistent with previously identified 

fracture lines in specimens following exposure to direct facet loading (Cyron et al., 1976) 

and acute shear failure (Yingling and McGill, 1999; Gallagher et al., 2010; Chapter 3). 

Two additional pins were inserted to the most inferior points on the exposed endplate and 
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left inferior facet of the caudal vertebra. One metal nail (diameter = 1.25 mm) was also 

inserted to the spinous process of the cranial vertebra. 

 A sagittal plane x-ray was taken that included the specimen with the metal pins 

and nail as well as a 20 mm calibration frame. Calibration between pixels and distance 

was identical for both the width and length of the x-ray image. Due to irregular geometry 

of the vertebral joint, specimen positioning for the x-ray was controlled to the unloaded 

and neutral posture by placing the specimen’s right side onto a formed impression created 

in a 25.4 mm thick block of extruded polystyrene foam. The sagittal plane x-ray was 

digitally developed (Kodak DirectView CR500, Carestream, Toronto, ON, Canada) and 

planar coordinates on the image corresponding to each pinhead, nail and calibration 

frame endpoint were manually digitized (ImageJ, National Institutes of Health, USA) 

(Figure 4.2 A). Angles for the plane of the pars interarticularis (of both the cranial and 

caudal vertebrae) were calculated relative to the line connecting the digitized pinhead 

locations on the exposed inferior endplate and facet (Figure 4.2 B). Distances from the 

nail tip inserted into the spinous process of the cranial vertebra to the superior border for 

each of the cranial and caudal pars interarticularis were also determined from the 

digitized locations (Figure 4.2 B). Pars interarticularis lengths for the cranial and caudal 

vertebrae were calculated as the distance between digitized locations for the respective 

superior and inferior borders of the pars interarticularis. 
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A.)               B.) 
 
Figure 4.2 – (A.) Sagittal plane x-ray of a vertebral specimen that illustrates digitized 
locations (B.) for determining the pars interarticularis length (l), angle (α) and reference 
distance (d) for computed tomography scanning of the pars interarticularis. 
 

Metal pins were removed from the specimen following the sagittal plane x-ray, 

but the nail remained as a reference point for subsequent peripheral computed 

tomography scanning (pQCT) (XCT200L, Stratec Medizintechnik GmbH, Pforzheim, 

Germany). The specimen was wrapped in saline soaked gauze and then wrapped with 

cellophane in order to prevent specimen drying during pQCT imaging. Prior to specimen 

scanning a cone phantom containing material of known density was scanned in order to 

calibrate individual voxel intensities to measurements of tissue density. Plastic zip ties 

were used to rigidly mount the specimen to a custom-built plastic jig that could have the 

angle between two rectangular plastic plates adjusted and fixed (Figure 4.3).  
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Figure 4.3 – Experimental setup for the computed tomography imaging protocol. 
 

The specimen was positioned on the jig’s surface so that the dihedral angle between the 

specimen’s mid-sagittal plane and the plane of the jig’s surface was 90 degrees. In order 

to align the plane of the pars interarticularis with the pQCT scan plane, the jig’s angle 

was set to the measured pars interarticularis angle from the sagittal plane x-ray. The 

specimen and jig were affixed between two posts on either side of the pQCT’s gantry so 

that the pars interarticularis plane and the jig’s plastic surface, not in contact with the 

specimen, were both parallel to the scan plane. This mounting protocol was performed 

once for scanning the pars interarticularis for each of the cranial and caudal vertebrae. 

Both the cranial and caudal pars interarticularis for each specimen were scanned 

with 5 contiguous slices consisting of 15 scans per slice (i.e. rendering 12 degrees of each 

slice per scan) at a scan speed of 10 mm/second, slice thickness of 1.1 mm and a voxel 

size of 0.2 mm. First, the reference location (nail) for scanning the pars interarticularis 

was determined from a scout scan (40 mm/sec) of the specimen (Figure 4.4). The gantry 

position of the third slice (corresponding to the location of the pars interarticularis) was 
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determined by adding the distance calculated between the nail and the superior border of 

the pars interarticularis from the sagittal plane x-ray to the reference location. This 

distance was greater than twice the slice thickness in order to ensure that the nail was not 

present in any of the slices to prevent beam-hardening artifact caused by the metal. 

 

 
 
 
 
 
 
 
 
Figure 4.4 – Scout scan of a specimen. The reference location for the nail is illustrated as 
the intersection of the two red lines. This reference location was used to define the gantry 
position for computed tomography scanning of the pars interarticularis. 
 

4.2.3 Specimen fixation 
 

For the failure testing specimens were mounted between a set of two custom 

aluminum cups using a combination of steel wire, screws and dental plaster. Two screws 

were partially inserted so that they protruded from the anterior aspect of the superior 

vertebral body. One screw was inserted through the bottom of each cup so that each 

screw pierced the center of the exposed superior and inferior endplates. An additional six 

screws (three for each vertebra) were inserted through threaded holes in the aluminum 

cups so that they were sunk approximately 5 mm into the anterior and lateral aspects of 

the vertebral bodies. A single length of 18 gauge galvanized steel wire was looped around 

the caudal vertebra’s spinous process, threaded through two holes in the bottom of the 

aluminum cup and tightened by twisting the two ends together. Lastly, non-exothermic 
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dental plaster (Denstone, Miles, IN, USA) was poured into the cups, and allowed to 

harden, so that the exposed screws were completely immersed and that any space 

between the specimen and the aluminum cup was filled. 

 

4.2.4 Instrumentation 
 

 Complete three-dimensional kinematics of the vertebrae as well as the aluminum 

cups were measured during all tests with a single optoelectronic camera (Optotrak Certus, 

Northern Digital Inc., Waterloo, ON, Canada) and a series of infrared light emitting 

diodes (IREDs) affixed to rigid metal plates. Four IREDs were mounted to each rigid 

plate with a quick drying adhesive (Figure 4.5).  

 
 

 
 
 
 

 
 

 
 

 
 
 

 
Figure 4.5 – Experimental setup for all shear protocols. IREDs = infrared light emitting 
diodes. 
 

The geometrical configuration for the markers affixed to a single rigid plate was 

characterized and used to define the three-dimensional position and orientation of the 

rigid plate within the camera’s predefined coordinate system. Each rigid plate measured 
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the three-dimensional kinematics for either a single aluminum cup or a single vertebra 

through a rigid coupling. Prior to loading, three specific locations within the camera’s 

global coordinate system for each vertebra and cup were digitized with a manufactured 

probe that had a predefined geometrical relationship between the probe’s tip and a series 

of four IREDs arranged in a known geometrical configuration. Global coordinates for 

each digitized location were continuously measured as a virtual marker during all tests 

using a fixed geometrical relationship between the reference rigid body’s orientation and 

position and the location of the probe’s tip within the camera’s global coordinate system. 

The digitized locations for each component (vertebra or cup) were selected to determine a 

local coordinate system representing their anatomical position and orientation. For each 

component, the first two digitized positions defined a mediolateral anatomical axis (i.e. 

flexion/extension) while the third digitized point was used in conjunction with the first 

two points to define a plane that was subsequently used to calculate the structure’s 

anteroposterior (lateral bend) and vertical (axial twist) axes. Three additional locations on 

the linear actuator were also digitized and expressed within the camera’s coordinate 

system using the same probe. These locations were used to construct a coordinate system 

whose anteroposterior axis was coincident with the direction of applied displacement 

(and force) during all shear tests. Kinematics for all markers and digitized locations were 

continuously sampled at a rate of 128 Hz. 

Analog data from two load cells (MLP-500, Transducer Technologies, Temecula, 

CA, USA) that measured applied force during all shear tests, and a torque cell (T120-

106-1K, SensorData Technologies Inc., Sterling Heights, MI, USA) that measured 

applied flexion/extension moment during all tests were temporally synchronized with the 



 102 

kinematic data and digitally sampled at a rate of 1024 Hz using a 16-bit analog to digital 

conversion (Optotrak Data Acquisition Unit II, Northern Digital Inc., Waterloo, ON, 

Canada). 

 

4.2.5 Loading protocol 
 

Following fixation, the cup containing the FSUs cranial vertebra was secured to a 

servohydraulic material testing system (Instron 8872, Instron Canada, Burlington, ON, 

Canada) that had been coupled to a brushless servomotor (AKM23D; 

Kollmorgen/Danaher Motion, Radford, VA, USA) capable of simultaneously applying 

flexion/extension moments to the specimen (Figure 4.5). First, a compressive preload of 

300 N was applied under load control for a 15-minute duration to counter the effects of 

post-mortem swelling (Callaghan and McGill, 2001). The flexion/extension posture was 

continuously adjusted by monitoring the torque cell feedback loop and driving the 

servomotor in position control to reduce the joint moment throughout the 15-minute 

duration in order to determine the position where zero or the smallest moment possible 

was recorded by the torque cell. 

  Following the preload, five continuous repeats of position controlled passive 

flexion/extension were performed at a rate of 0.5 degrees/second, and under a constant 

load controlled compressive force of 300 N (Callaghan and McGill, 2001) to determine 

the specimen’s neutral zone for rotational loading about the flexion/extension axis. The 

cup containing the FSU’s caudal vertebra was allowed to translate freely in the horizontal 

plane during the preload and passive flexion/extension tests on metallic ball bearings that 

provided a near-frictionless surface (See Figure 3.3A). Flexion and extension angles 
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where the moment versus angle relationship deviated from linear for the last three repeats 

were defined as endpoints of a linear region similar to the neutral zone (Panjabi, 1992; 

Callaghan and McGill, 2001).  

The neutral position defined at the end of the 15-minute preload identified a 

position within the specimen’s neutral zone that satisfies a zero flexion/extension 

moment. However, there are many flexion/extension angles within the neutral zone that 

simultaneously satisfy the zero moment condition. The first position that satisfies the zero 

flexion/extension moment condition is defined as the first approximation of the neutral 

posture. Using data provided under similar load and testing conditions (Callaghan and 

McGill, 2001), the neutral posture was set to be 36% of the neutral zone length from the 

selected extension limit (Equation 4.1). 

 

! 

"neutral = "ext + 0.36 " flex #"ext( )  (4.1) 

 

This was performed so that each specimen received the same approach for 

determining the neutral posture. The flexion and extension limits determined from the 

passive test were redefined in reference to the calculated neutral posture. 

For shear testing, the cup containing the specimen’s caudal vertebra (either C4 or 

C6) was rigidly interfaced with two linear actuators (RSA24, Tolomatic Inc., Hamel, 

MN, USA) driven by a pair of brushless servomotors (AKM22E, Danaher Motion Inc., 

Radford, VA, USA) (Figure 4.5). This constrained sliding of the caudal vertebra to allow 

only the imposed anterior/posterior displacements applied by the linear actuators during 

all shear tests (See Figure 3.3B). The linear actuators were equidistant from the 
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specimen’s mid-sagittal plane in order to prevent application of an axial twisting moment 

and were controlled in parallel to insure equal movement profiles. A uniaxial load cell 

(MLP-500, Transducer Technologies, Temecula, CA, USA) mounted in series to each 

linear actuator was used to measure applied shear force during all tests.  

In addition to the flexion/extension passive tests, specimens were also 

preconditioned in anterior/posterior shear under position control prior to the acute failure 

protocol. Displacement during anterior/posterior shear preconditioning was applied at a 

constant rate of 0.05 mm/second using a continuous motion control algorithm (Appendix 

A.1). The targets were ±400 N (positive force being anterior shear and negative force 

being posterior shear) of applied shear force for preconditioning. This target was 

approximately 14% of the ultimate anterior shear failure load (van Dieën et al., 2006; 

Gallagher et al., 2010). 

 A load controlled compressive force equal to 15% (1546.8 ± 22.7 N) of each 

specimen’s predicted compressive failure tolerance was applied during the acute failure 

test. Compressive failure tolerance for each specimen was determined using average 

endplate area as the input to a previously determined linear regression equation 

(Parkinson et al., 2005). The chosen compressive load for this study was similar to prior 

investigations of acute shear failure tolerances (van Dieën et al., 2006; Gallagher et al., 

2010). The reference posture determined from the flexion/extension passive test was used 

as the neutral posture for acute shear failure tests. Shear failure was induced for each 

specimen by applying shear displacement under position control at a constant rate of 0.15 

mm/second (Appendix A.2). This displacement rate was consistent with a previous acute 

shear failure protocol (van Dieën et al., 2006) and was targeted to apply shear load at a 
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rate that was consistent with shear loading rates while lifting a load deemed safe for 99% 

of the population from the floor to waist height (Howarth et al., 2009). 

 Following the shear failure protocol, the specimen was returned to the neutral 

position and uncoupled from the linear actuators. A second flexion/extension passive test 

was performed using the same load and displacement conditions as the test performed 

prior to the acute failure protocol. 

 
 
4.2.6 Post-failure analysis 
 

Specimens were carefully removed from their fixation upon completion of the 

loading protocol. A sagittal plane x-ray was taken of the specimen to identify possible 

locations of bone failure. Sinking the specimen into a 25.4 mm thick block of extruded 

polystyrene foam controlled positioning of the specimen within the x-ray suite. Each 

specimen was carefully sectioned into individual vertebrae and photographed. Bone 

failure was re-assessed both manually and visually by an investigator.  

 

4.2.7 Data processing and analysis 
 

4.2.7.1 Force versus displacement data 
  

Digitally sampled voltages from each load cell were calibrated to shear force and 

filtered using a second order dual-pass Butterworth digital filter with a cutoff frequency 

of 3.5 Hz. Filtered forces were also downsampled to 128 Hz in order to match the 

kinematic sampling rate. Total applied shear force was calculated as the sum of the forces 

recorded from the two load cells. Kinematic data from the virtual markers were also 
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filtered using a second order dual-pass Butterworth digital filter with a cutoff frequency 

of 2.5 Hz. Filter cutoff frequencies were determined from residual analyses conducted on 

data collected during each shear failure test (Appendix B.1). 

Three-dimensional orientation and position of the coordinate system for each 

vertebra and cup were transformed from the camera’s global coordinate system into the 

local actuator-based coordinate system for the complete duration of the shear failure test. 

Vertebral shear displacement was calculated at each instant as the difference in position 

between the origins of each vertebra-based coordinate system with respect to the 

orientation of the actuator-based coordinate system. Ultimate shear force was defined as 

the maximum shear force achieved throughout the failure test and ultimate displacement 

was the shear displacement that coincided with the ultimate shear force.  

 

4.2.7.2 pQCT image processing 
  

The third slice from each series of 5 contiguous slices was chosen for analysis of 

pars interarticularis bone density and area. The following was performed for both the 

cranial and caudal vertebrae of each specimen so that a total of 80 pQCT images (40 

specimens x 2 slices per specimen (1 cranial and 1 caudal)) were analyzed for this 

investigation. The third slice contained the pars interarticularis by definition of the 

previously described specimen mounting procedures and pQCT scanning parameters. 

Two raters independently analyzed each of the selected slices using the Stratec 

Medizintechnik software (Stratec Medizintechnik v. 6.0B, Stratec Medizintechnik 

GmbH, Pforzheim, Germany). 
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 Each rater manually selected regions of interest corresponding to the left and right 

pars interarticularis (Total area r2 = 0.686 and Difference = 8.8 mm2, Total density r2 = 

0.984 and Difference = 0.7 mg/cm3, Appendix B.2) (Figure 4.6).  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 – Computed tomography scan illustrating the region of interest defined as the 
pars interarticularis. Density and area measures were made on the selected region of 
interest. 
 

A threshold-based algorithm built into the analysis software (Contour Mode = 1, Peel 

Mode = 2) was used to separate soft tissue, trabecular bone and cortical bone using two 

user defined threshold values (Ashe et al., 2006). The defined threshold between soft 

tissue and trabecular bone was set to 260 mg/cm3 and the threshold between trabecular 

bone and cortical bone was 754 mg/cm3. These threshold values were determined by each 

rater using Half Maximum Height (HMH) values (Spoor et al., 1993) on a subset of 20 

randomly selected pQCT slices of the pars interarticularis (r2 = 0.233 and 0.483, 

Threshold difference = 7.3 and 10.6 mg/cm3 respectively for threshold between soft 

tissue and trabecular bone and threshold between trabecular bone and cortical bone, 

Appendix B.3). Briefly, the HMH method determines maximum voxel density 

individually for cortical bone, trabecular bone and soft tissue. The cutoff is determined as 

the midpoint between the maximum densities for successive tissue types. 
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Analysis of each region of interest selected from the pQCT images provided 

measures of total bone density, trabecular bone density, cortical bone density, pars 

interarticularis cross-sectional area (total bone area), trabecular bone area and cortical 

bone area. Values obtained for these measures were averaged between the two raters due 

to moderate high inter-rater reliability (r2 ≥ 0.686, Appendix B.2). Furthermore, the 

measures were also averaged between left and right sides since the primary mode of shear 

failure is a bilateral fracture of the pars interarticularis (Yingling and McGill, 1999; 

Beadon et al., 2008; Gallagher et al., 2010; Chapter 3).  

 

4.2.8 Development and testing of a mathematical model for non-destructively 
calculating ultimate shear force 
 

 

Following mechanical testing, data (ultimate failure loads, morphological 

measurements and measures obtained from pQCT scanning) for 20 specimens (10 C3-C4 

and 10 C5-C6) were randomly assigned to a group used to develop linear regression 

models that calculated ultimate anterior shear force of the porcine cervical spine. Data for 

the remaining 20 specimens (10 C3-C4 and 10 C5-C6) were assigned to a group used to 

test the accuracy of these mathematical models.  

Stepwise linear regression was performed using the data from the mathematical 

model generation group to develop equations that attempted to determine ultimate shear 

failure of the porcine cervical spine from combinations of the morphological 

measurements and measures obtained from the pQCT slices of the pars interarticularis. A 

maximum of three iterations in the stepwise regression model was used since a small 

sample size of 20 specimens was used to develop these equations. Ultimate shear failure 
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loads were computed for all specimens in the model testing group and for each iteration 

of the stepwise linear regression. Absolute and relative discrepancies (Equation 4.2) 

between measured and calculated ultimate anterior shear failure tolerances were 

determined for each specimen in the model testing group. 
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A two factor (LEVEL, MODEL GROUP) analysis of variance (ANOVA) was 

used to analyze the data, with the exception of the width and height for the pedicle and 

lamina as well as the pars interarticularis length, entered into the stepwise regression for 

differences between vertebral levels and also to assess the random assignment of 

specimens to either the prediction generation or testing groups (SAS 9.1, SAS Institute 

Inc., Cary, NC, USA). A separate three factor (LEVEL, MODEL GROUP, VERTEBRA) 

ANOVA was used to analyze statistical differences for pedicle, lamina and the pars 

interarticularis measurements. A single factor (REGRESSION MODEL) ANOVA was 

used to analyze differences in absolute and relative error for each mathematical model 

generated by the stepwise regression. Tukey’s post-hoc tests were performed for any 

significant main effects or interactions. The level of statistical significance for the 

ANOVA and post-hoc tests was set to p < 0.05. All statistical techniques were approved 

by a statistical consultant at the University of Waterloo. 
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4.3 RESULTS 
 

4.3.1 Specimen randomization 
 

There were no statistically significant differences between the mathematical 

model generation and testing groups for ultimate force, pQCT measurements or 

morphological measurements (p ≥ 0.1319) (Tables 4.2 & 4.3). 

 
Table 4.2 – Ultimate failure tolerance, bone density and morphological measurements 
made for specimens assigned to each of the model generation and testing groups. 
Standard error of the mean is presented in parentheses.  
 

 Generation Testing 

N 20 20 
p 

Ultimate Force (N) 2262.0 (91.5) 2144.7 (103.1) 0.8209 
Total Density (mg/cm3) 560.4 (20.0) 546.0 (18.8) 0.3613 

Total Area (mm2) 117.2 (4.5) 115.9 (6.1) 0.4829 
Trabecular Density (mg/cm3) 472.8 (16.6) 452.4 (13.5) 0.1177 

Trabecular Area (mm2) 77.4 (3.6) 78.7 (5.3) 0.7981 
Cortical Density (mg/cm3) 733.6 (15.4) 733.2 (17.4) 0.8471 

Cortical Area (mm2) 39.8 (3.4) 37.2 (2.7) 0.3942 
Endplate Area (mm2) 713.6 (16.8) 705.6 (14.9) 0.5189 

Facet Area (mm2) 124.9 (4.2) 130.3 (5.0) 0.7888 
Average Facet Angle (degrees) 45.4 (1.1) 45.8 (0.9) 0.4198 

Facet Tropism (degrees) 2.9 (0.5) 3.1 (0.5) 0.8133 
Superior Facet Height (mm) 13.7 (0.3) 13.5 (0.3) 0.2154 
Superior Facet Width (mm) 13.2 (0.3) 12.7 (0.3) 0.1805 

Superior Inside Interfacet Width (mm) 23.3 (0.6) 24.0 (0.7) 0.4096 
Superior Outside Interfacet Width (mm) 43.8 (0.6) 43.2 (0.9) 0.1403 

Inferior Facet Height (mm) 11.9 (0.2) 12.1 (0.3) 0.1599 
Inferior Facet Width (mm) 12.5 (0.3) 12.2 (0.2) 0.0592 

Inferior Inside Interfacet Width (mm) 23.1 (0.3) 23.8 (0.4) 0.1562 
Inferior Outside Interfacet Width (mm) 41.3 (0.6) 41.4 (0.7) 0.8295 
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Table 4.3 – Measured height and width of the pedicle and lamina, as well as the pars 
interarticularis length for specimens assigned to each of the model generation and testing 
groups. Standard error of the mean is presented in parentheses. 
 

 Generation Testing 
N 40 40 

p 

Pedicle Height (mm) 12.3 (0.2) 12.2 (0.2) 0.7771 
Pedicle Width (mm) 9.5 (0.2) 9.5 (0.2) 0.7945 
Lamina Height (mm) 12.5 (0.2) 12.2 (0.2) 0.4245 
Lamina Width (mm) 7.1 (0.2) 6.8 (0.2) 0.1482 
Pars Length (mm) 14.8 (0.4) 15.2 (0.5) 0.4784 

 

4.3.2 Vertebral level 
 

Morphologically, the C5-C6 specimens had longer pars interarticularis’, facets 

that were oriented closer to the sagittal plane, larger distances between facets and thinner 

pedicles. These morphological differences likely contributed to higher ultimate shear 

forces observed for the C5-C6 specimens than the C3-C4 specimens. Ultimate force was 

27.6% higher for C5-C6 specimens than C3-C4 specimens (p < 0.0001, d = 1.60) (Table 

4.4). Total and trabecular bone densities measured from the pQCT were smaller by 9.3% 

and 9.9% respectively for C5-C6 specimens (total density p = 0.0474, d = 0.67; 

trabecular density p = 0.0198, d = 0.77) (Table 4.4). Facet surfaces were 9.6% smaller (p 

= 0.0498, d = 0.67) for C5-C6 specimens, oriented 3.1 degrees closer to the sagittal plane 

(p = 0.0283, d = 0.75) and had larger distances between left and right facets by 17.9% 

and 5.2% respectively (superior inside facet width p < 0.0001, d = 2.05; inferior inside 

facet width p = 0.0141, d = 0.81) (Table 4.4). 
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Table 4.4 – Ultimate failure tolerance, bone density and morphological measurements 
made for specimens from each vertebral level. Standard error of the mean is presented in 
parentheses. Measurements that achieved statistical significance between vertebral levels 
have their p-values reported in a bold font. 
 

 

Pedicle width was larger by 8.8% (p = 0.0004, d = 0.86) and pars interarticularis 

length was shorter by 21.2% (p < 0.0001, d = 1.14) for C3-C4 specimens (Table 4.5). 

Caudal vertebrae (C4 and C6) had a 6.8% increase in pedicle height (p  = 0.0005, d = 

0.81), a 5.9% decrease in lamina height (p = 0.0211, d = 0.54), and a 16.7% increase in 

pars interarticularis length (p < 0.0001, d = 1.07) compared to the cranial vertebrae (C3 

and C5) (Table 4.5). Lamina width demonstrated a significant interaction between 

 C3-C4 C5-C6 
N 20 20 

p 

Ultimate Force (N) 1935.8 (72.9) 2470.9 (80.6) < 0.0001 
Total Density (mg/cm3) 580.3 (18.9) 526.1 (18.0) 0.0474 

Total Area (mm2) 112.3 (5.8) 120.9 (4.7) 0.2666 
Trabecular Density (mg/cm3) 486.7 (15.4) 438.5 (13.0) 0.0198 

Trabecular Area (mm2) 72.1 (4.8) 84.0 (3.9) 0.0662 
Cortical Density (mg/cm3) 748.7 (13.6) 718.1 (18.1) 0.1984 

Cortical Area (mm2) 40.2 (3.2) 36.8 (2.9) 0.451 
Endplate Area (mm2) 694.9 (13.3) 724.3 (17.5) 0.1977 

Facet Area (mm2) 134.1 (4.4) 121.1 (4.4) 0.0498 
Average Facet Angle (degrees) 44.0 (1.0) 47.1 (0.9) 0.0283 

Facet Tropism (degrees) 2.8 (0.4) 3.2 (0.5) 0.5725 
Superior Facet Height (mm) 13.9 (0.3) 13.2 (0.3) 0.0756 
Superior Facet Width (mm) 13.3 (0.3) 12.6 (0.3) 0.101 

Superior Inside Interfacet Width (mm) 21.7 (0.4) 25.6 (0.5) < 0.0001 
Superior Outside Interfacet Width (mm) 42.0 (0.7) 45.0 (0.7) 0.0065 

Inferior Facet Height (mm) 12.3 (0.2) 11.8 (0.3) 0.1826 
Inferior Facet Width (mm) 12.6 (0.3) 12.1 (0.3) 0.1593 

Inferior Inside Interfacet Width (mm) 22.8 (0.4) 24.0 (0.3) 0.0141 
Inferior Outside Interfacet Width (mm) 42.2 (0.6) 40.5 (0.5) 0.0573 
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individual vertebrae of the two vertebral levels (p < 0.0001). Specifically, the lamina 

width of C6 was larger than each of C3 (p = 0.0004, d = 1.37), C4 (p < 0.0001, d = 1.95), 

and C5 (p <0.0001, d = 1.94) by 21.7%, 34.7%, and 25.3% respectively (Table 4.5). 

 

Table 4.5 – Measured height and width of the pedicle and lamina, as well as the pars 
interarticularis length for individual (C3, C4, C5, and C6) vertebrae. Standard error of the 
mean is presented in parentheses. Statistically significant differences between vertebral 
levels are shown below each measure in a bold font. Statistically significant differences 
between caudal and cranial vertebrae are shown to the right in a bold font. The asterisk 
indicates that a significant interaction between individual vertebrae occurred for the 
lamina width. Means with the same letter (for lamina width) are statistically similar.  
 

   C3-C4 C5-C6 
  N 20 20 

p 

Caudal 12.3 (0.2) 13.0 (0.3) 
Cranial 11.7 (0.2) 11.9 (0.2) 

0.0005 Pedicle Height 
(mm) 

p 
20 

0.0576  
Caudal 9.7 (0.2) 8.9 (0.2) 
Cranial 10.1 (0.2) 9.2 (0.3) 

0.1397 Pedicle Width 
(mm) 

p 
20 

0.0004  
Caudal 12.1 (0.3) 11.9 (0.3) 
Cranial 13.0 (0.3) 12.4 (0.3) 

0.0211 Lamina Height 
(mm) 

p 
20 

0.1669  
Caudal 6.2 A (0.3) 8.4 B (0.3) 
Cranial 6.9 A (0.2) 6.3 A (0.2) 

 *Lamina Width 
(mm) 

p 
20 

  
Caudal 14.8 (0.5) 17.9 (0.6) 
Cranial 12.3 (0.3) 15.0 (0.4) 

< 0.0001 Pars Interarticularis 
Length 
(mm) p 

20 
< 0.0001  
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4.3.3 Post-failure analysis 
 

The predominant posterior element injury (68% of all specimens) was a bilateral 

fracture of the cranial vertebra’s pars interarticularis (Table 4.6, Figure 4.7). Other 

common injuries that occurred were bilateral and unilateral fractures of the caudal 

vertebra’s pars interarticularis (10% bilateral; 25% unilateral) (Table 4.6). Incidence rate 

of bilateral cranial pars interarticularis fracture was higher for C3-C4 specimens than C5-

C6 specimens (35% difference) (Table 4.6). Failure patterns were consistent between 

specimens assigned to the mathematical model generation and testing groups (Table 4.6). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 – Transverse image of a C3 vertebra following acute shear failure. The black 
arrows indicate the bilateral pars interarticularis fracture that was the predominant injury 
caused by shear failure. 
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Table 4.6 – Post-failure observations of tissue damage arranged within vertebral level, model group and overall. Values are reported as 
a percentage of all specimens in each group. Percentages within a single block of vertebral level or model group since a specimen may 
have multiple injuries following acute shear failure testing. 

 

 

 Pars Interarticularis Facet Endplate 

 Cranial Caudal Superior Inferior   

 Bilateral Unilateral Bilateral Unilateral Bilateral Unilateral Bilateral Unilateral Superior Inferior 

C3-C4 85 0 0 15 5 5 0 0 0 0 

C5-C6 50 10 20 35 0 20 0 10 0 0 

           

Generation 70 10 10 30 0 10 0 5 0 0 

Testing 65 0 10 20 5 15 0 5 0 0 

           

Overall 67.5 5 10 25 2.5 12.5 0 5 0 0 



 116 

4.3.4 Regression model development 
 

Stepwise linear regression identified the cranial pars interarticularis length 

measured from the sagittal plane x-ray as the dominant measurement (p = 0.0014, 44.3% 

explained variance) for mathematically calculating ultimate shear failure (Table 4.7). 

Longer cranial pars interarticularis lengths generated higher calculated ultimate shear 

failure tolerances. The second and third predictive factors respectively were the average 

facet angle relative to the coronal plane (p = 0.0418, 12.3% explained variance) measured 

from the transverse plane x-ray and the cortical bone area (p = 0.0254, 11.9% explained 

variance) measured from the pQCT (Table 4.7). Increasing average facet angles and 

cortical bone density generated larger calculated ultimate shear failure tolerances. An 

average facet angle of 0 degrees was equivalent to the facets being coincident with the 

coronal plane while an average facet angle of 90 degrees meant that the facets were 

coincident with the sagittal plane. Standardized regression coefficient estimates showed 

that changes in superior pars interarticularis length was consistently the largest 

determinant of changes in calculated ultimate shear failure tolerance (Table 4.7). None of 

the morphological measurements made using the digital calipers were identified as 

significant factors for mathematically determining ultimate shear failure tolerance. 
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Table 4.7 – Factors, coefficient estimates and explained variance for each model developed by the stepwise linear regression analysis. 
The final equation for calculating ultimate shear failure tolerance has the form 

! 

F = aX
1

+ bX
2

+ cX
3

+ I . The standardized estimate 
illustrates the relative importance of each variable in each mathematical model (i.e. a higher standardized estimate indicates that 
changing the value of the parameter’s corresponding variable creates a larger change in calculated ultimate shear failure tolerance). 
 

 STEP 1 STEP 2 STEP 3 

 Parameter 
Estimate 

Standardized 
Estimate 

Parameter 
Estimate 

Standardized 
Estimate 

Parameter 
Estimate 

Standardized 
Estimate 

Intercept 
(I) 

181.12171 0 -1566.61338 0 -1981.47622 0 

Cranial Pars Length 
(X1) 

(mm) 
144.29936 0.666 140.84439 0.650 137.88987 0.636 

Facet Angle 
(X2) 

(degrees) 
  39.19734 0.352 38.57859 0.346 

Cortical Area 
(X3) 

(mm2) 
    12.97971 0.346 

Partial R2 0.4432 0.1234 0.1194 

Model R2 0.4432 0.5666 0.686 

p 0.0014 ≤ 0.0418 ≤ 0.0254 
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4.3.5 Regression model error testing 
 

Despite a trend towards decreasing error with increasing mathematical model 

complexity, neither absolute nor relative errors were statistically different for any of the 

three linear regression models developed from this investigation (Absolute error – p = 

0.3313, Figure 4.8 A; Relative error – p = 0.2608, Figure 4.8 B). Calculating ultimate 

shear failure from only the cranial pars interarticularis length had an average absolute 

error of 273.5 ± 44.5 N (equivalent to 13.4 ± 2.3% of the measured shear failure 

tolerance). However, including measurements of the average facet angle and the cortical 

bone area respectively reduced the absolute error of calculating ultimate failure tolerance 

to 232.1 ± 42.1 N and 184.4 ± 39.3 N (equivalent to 10.8 ± 1.7% and 8.8 ± 1.7%) (Figure 

4.8). 

 

 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
A.) 
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B.) 
Figure 4.8 – Absolute (A.) and relative (B.) errors in calculated ultimate shear failure 
tolerance produced by each mathematical model generated by first three iterations of the 
stepwise regression analysis. Error bars indicate the standard error of the mean 
calculation error. 
 

4.4 DISCUSSION 
 

This investigation was the first to develop and test a mathematical model for 

calculating ultimate shear failure tolerance of the porcine cervical spine and also 

identified critical morphological parameters that influence the risk of vertebral injury 

from shear loading. Cranial pars interarticularis length, average facet angle and cortical 

bone area were identified using stepwise linear regression as the three most prominent 

factors for calculating ultimate anterior shear failure tolerance. Calculated ultimate shear 

failure tolerances, for each regression model, increased with longer cranial pars 

interarticularis lengths, average facet angles that were oriented closer to the sagittal plane 
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(i.e. an angle of 0 degrees = frontal plane; an angle of 90 degrees = sagittal plane), and 

higher cortical bone area. Increasing the number of variables in the regressive model 

produced successive reductions in relative calculated shear tolerance errors but without 

statistical significance. 

Results from this investigation show that the shorter length of the cranial 

vertebra’s pars interarticularis make this structure the most likely site of failure under 

shear loading. Bilateral fractures of the cranial pars interarticularis that was observed 

following acute shear failure in this investigation were similar to documented shear-

related injuries for isolated human lumbar vertebrae (Cyron et al., 1976) and were also 

consistent with in vivo shear-related injuries in humans (Farfan et al., 1976). The use of 

the porcine cervical spine as a surrogate animal model for the human lumbar spine is 

further validated since failure patterns observed in this study are congruent with 

observations of shear-related injuries in humans. Thus, the deterministic morphological 

characteristics that modulate shear injury tolerances for the porcine cervical spine are also 

likely to be modulators of shear injury tolerances in the human lumbar spine. 

Furthermore, hypotheses developed regarding modulation of failure tolerance from in 

vitro studies conducted using the porcine cervical spine are likely to be relevant to the 

human lumbar spine. 

Acute and repetitive shear loading of the vertebral joint has been demonstrated to 

result in fracture of primarily the pars interarticularis of the most cranial vertebra in an 

FSU pairing (Yingling and McGill, 1999; Beadon et al., 2008; Gallagher et al., 2010; 

Chapter 3). This primary mode of vertebral bony fracture, following acute shear failure, 

was corroborated by the current investigation. Direct application of force to the inferior 
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facets of a single vertebra has been shown to cause fractures across the narrowest section 

of the pars interarticularis (Cyron et al., 1976). Furthermore, notching of the cranial 

vertebra’s pars interarticularis leads to bilateral fracture of the pars interarticularis 

following exposure to repetitive shear loading (Beadon et al., 2008). These findings 

support the inclusion, as found in this investigation, of the cranial vertebra’s pars 

interarticularis length as the primary factor in any mathematical model for calculating 

vertebral ultimate shear failure tolerance.    

Backward shearing of the caudal vertebra (effectively producing anterior shear of 

the cranial vertebra) in a vertebral joint also causes direct interaction between the inferior 

and superior facets of the cranial and caudal vertebrae respectively. The amount of shear 

force from linear actuator displacement that is transmitted through the facet contact to the 

pars interarticularis is likely influenced by the facet orientation in the transverse plane. 

Transverse orientation of facets closer to the sagittal plane are more likely to provide 

direct resistance for axial twisting while frontal plane orientation provides more direct 

resistance to shear loading (Serhan et al., 2007). Previous investigations have also 

demonstrated that isthmic spondylolysis is more prevalent when facet orientation is 

closer to the frontal plane (Masharawi et al., 2007; Don and Robertson, 2008). 

Orientation of the facets closer to the frontal plane has also been linked to increased 

resistance of anterior shear that may increase force concentration at the pars 

interarticularis (Don and Robertson, 2008). These findings coincide with results from the 

stepwise regression that found increasing ultimate shear failure tolerance with increasing 

facet angles (i.e. more sagittally oriented facets) and also support the inclusion of average 

facet angle as a factor for calculating ultimate shear failure tolerance. 
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Lastly, cortical bone is stronger than trabecular bone. Thus, larger cortical bone 

area through the pars interarticularis may also be associated with increased ultimate shear 

failure tolerances. Dickerson and colleagues (2008) identified a positive correlation of 

0.84 between cortical bone area and ultimate load for acute compressive failure of 

vertebral bodies. This supports our finding from the stepwise regression identifying 

cortical bone area through the pars interarticularis as the third most predominant factor 

for calculating ultimate shear failure tolerance.  

Contrary to our hypothesis, bone density through the pars interarticularis was not 

identified by stepwise linear regression as a factor for calculating ultimate shear failure 

tolerance. This indicates that bone density through the pars interarticularis has diminished 

utility towards calculating ultimate shear failure tolerance. The range in total density for 

all specimens in this investigation through the pars interarticularis spanned 350 mg/cm3 

despite the fact that the porcine specimens were obtained from a common source that 

controlled for diet, age, weight and activity level. This is larger than the range of density 

values reported for predictions of compressive failure tolerance for human vertebral 

bodies (Ebbesen et al., 1999). Therefore, the authors believe that density measures used 

for this investigation spanned a sufficient range to be entered into the stepwise regression 

analysis. Furthermore, the range of trabecular (314.8-605.1 mg/cm3) and cortical (500.2-

868.4 mg/cm3) densities from this investigation spanned comparable values to previous 

studies using a porcine model (Inui et al., 2004). Bone density measures from this 

investigation were also larger than previously reported values for human specimens 

(Mosekilde and Danielsen, 1987; Ebbesen et al., 1999; Schmidt et al., 2005). Low to 

moderate inter-rater reliability in developing the HMH thresholds as well as measuring 
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bone density and cross-sectional area from the pQCT scans may have also limited these 

measurements from being stronger factors for calculating ultimate shear failure strength. 

Previous research has developed similar mathematical models for compressive 

failure tolerance. These investigations have used different combinations of vertebral body 

trabecular bone density and/or measurements of endplate area to calculate compressive 

failure tolerance (Hansson et al., 1980; Biggemann et al., 1988; Brinckmann et al., 1989; 

Parkinson et al., 2005; Dickerson et al., 2008). Parkinson and colleagues (2005) tested 

errors for their mathematical model using an independent sample of specimens and 

obtained a mean error of 11% in compressive failure tolerance. Results from this 

investigation demonstrate that at minimum a bivariate regressive model is required in 

order to achieve a similar magnitude of relative error in calculated shear failure tolerance. 

Both bivariate and trivariate models developed in this investigation reflect the higher 

ultimate shear failure tolerance found in the C5-C6 specimens since these specimens had 

greater pars interarticularis length and the facet surfaces were oriented closer to the 

sagittal plane. Greater pars interarticularis length and facets oriented closer to the sagittal 

plane resulted in larger calculated ultimate shear failure tolerances.  

Based on methodological considerations, the authors propose that the bivariate 

model is most suitable for future in vitro research that requires non-destructive 

calculation of ultimate shear failure tolerance (Equation 4.3).  

 

! 

F
ultimate

= "1566.61338 +140.84439x
1

+ 39.19734x
2
 (4.3) 
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This is where x1, and x2 respectively correspond to the pars interarticularis length (in 

millimeters) of the cranial vertebra, and the average facet angle (in degrees) measured in 

the horizontal plane. The trivariate regression model uses cortical bone area as the third 

factor for calculating ultimate shear failure tolerance. Non-destructive quantification of 

cortical bone density and area requires access to an imaging modality (e.g. pQCT, DXA, 

magnetic resonance imaging) that may not be possible for all researchers and would 

require additional specimen preparation time prior to loading. However, quantification of 

average facet angle and superior pars interarticularis length (the two required variables 

for the bivariate model) uses standard x-ray technology or may even be possible by using 

digital photography and/or digital caliper measurements. Furthermore, calculation errors 

between the bivariate and trivariate regression models were not statistically different 

which means that neither model would necessarily provide a better calculation of ultimate 

shear failure tolerance. Therefore, the combination of improved calculation error 

(compared to calculation errors from similar regression models calculating ultimate 

compressive load) and facilitated implementation makes the bivariate regression model 

most suitable (absolute error = 232.1 ± 42.1 N; relative error = 10.8 ± 1.7% of the 

ultimate shear failure tolerance) for calculating ultimate shear failure tolerance of the 

healthy and intact vertebral joint. 
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CHAPTER 5 
 

INVESTIGATING THE NON-LINEAR 
RELATIONSHIP BETWEEN SUB-MAXIMAL 

SHEAR LOAD AND CUMULATIVE SHEAR LOAD 
SUSTAINED PRIOR TO FAILURE: 

DEVELOPMENT OF A TISSUE-BASED 
WEIGHTING ALGORITHM FOR DETERMINING 

CUMULATIVE SHEAR LOAD 
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5.1 INTRODUCTION 
 

Evidence exists that cumulative compressive load exposure is linked to in vivo 

tissue damage (Seidler et al., 2001; Seidler et al., 2003). Moreover, sub-maximal 

compressive load magnitude is non-linearly related to incidence of tissue damage 

accumulated from cyclic compressive loading (Hansson et al., 1987; Brinckmann et al., 

1988; Parkinson and Callaghan, 2007b). Findings from studies on repetitive compressive 

loading support the idea that correspondence between cumulative load and vertebral 

tissue injury is enhanced with non-linearly weighted estimates of cumulative exposure 

(Seidler et al,. 2001: Seidler et al., 2003; Parkinson and Callaghan 2007a). This has led to 

development of a tissue-based non-linear weighting method for sub-maximal loads while 

determining cumulative compressive load (Parkinson and Callaghan, 2007a). 

Potvin (2008) recently identified quantifying the cumulative tolerance of the 

vertebral joint to shear as one of the next areas for understanding occupational low-back 

injury. The current investigation determined the relationship between shear load 

magnitude and the fatigue life of the vertebral joint exposed to repetitive shear loading. A 

novel tissue-based weighting method for shear load was also developed for application 

while calculating cumulative shear load and enhancing injury prediction.  

 Vertebral tissue injury and failure tolerances resulting from shear loading have 

been primarily studied using an acute loading paradigm. These studies have identified the 

pars interarticularis as the primary site of failure and that acute ultimate shear failure 

tolerance is approximately 2000 N (Cyron et al., 1976; Cripton et al., 1995; Yingling and 

McGill, 1999; van Dieën et al., 2006; Gallagher et al., 2010; Chapters 3-4). The first 

study of this thesis also demonstrated that acute ultimate shear failure tolerance of the 
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vertebral joint is modulated by the presence of compressive load and joint or functional 

spinal unit (FSU) posture. Fewer in vitro research efforts have been directed towards 

understanding vertebral injury thresholds and mechanisms resulting from cyclically 

applied sub-maximal shear loads. Cyron and Hutton (1978) first identified the pars 

interarticularis as the primary structure being damaged from cyclically applied load 

directly to the inferior facets of isolated single vertebra. More recently, van Dieën and 

colleagues (2006) demonstrated that time to failure under repetitive shear loading 

decreased when the posterior elements were removed from porcine lumbar FSUs 

compared to intact specimens, indicating the facet joints were a key component in 

resisting shear loading. Beadon and colleagues (2008) found that cyclic shear loading to a 

maximum of 600 N (equivalent to approximately 27% of ultimate shear failure tolerance) 

for a minimum of 7200 loading cycles did not cause significant forward displacement but 

that impulse loading to 1500 N produced significant forward slip and fracture of the pars 

interarticularis after only 4 cycles. This provides evidence that, similar to compressive 

loading, the magnitude of repetitively applied sub-maximal shear load may also be 

related to the incidence of shear failure.  

The purpose of this investigation was to determine if the magnitude of sub-

maximal shear load influences cumulative shear load sustained prior to failure of porcine 

cervical FSUs. Based on work presented by Parkinson and Callaghan (2007a; 2007b) as 

well as prior results from Beadon and colleagues (2008), it is hypothesized that 

cumulative shear failure tolerance will be non-linearly related to repetitive shear load 

magnitude. This investigation also presents a weighting scheme for sub-maximal shear 
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loads when calculating cumulative shear load exposures to correct for the corresponding 

non-linear injury risk associated with load magnitude.  

 

5.2 METHODS 
 

5.2.1 Specimen preparation and assessment 
 

Thirty-two FSUs (16 C3-C4 and 16 C5-C6) were excised from sixteen frozen 

porcine cervical spines obtained from a local abattoir. Specimens were thawed overnight 

prior to removal of muscle and fat leaving an osteoligamentous FSU comprised of two 

vertebrae, the intervertebral disc and ligaments. Following dissection, quality of the 

exposed cranial and caudal intervertebral disc was assessed using the grading scale 

outlined by Galante (1967). Only specimens with disc quality of Grade 1 were used for 

this investigation. Measurements of endplate anterior-posterior depth (D) and 

mediolateral width (W) were obtained using digital calipers for both exposed endplates. 

Area of each exposed endplate was calculated using the equation for area of an ellipse 

! 

"WD /4( )  (Callaghan and McGill, 1995). The area of the FSUs intervertebral disc was 

estimated as the average area between the two exposed endplates (Parkinson et al., 2005). 

Bilateral facet angles and tropism between left and right facet joints were also quantified 

(Boden et al., 1996) using ImageJ (National Institutes of Health, USA) from an x-ray 

taken in the transverse plane (Figure 5.1). 
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Figure 5.1 – X-ray of a specimen taken in the transverse plane. Left and right facet angles 
(θL and θR) were measured as the angle between a line parallel to the posterior aspect of 
the vertebral body and a line parallel to the gap between the facets. 
 

Pars interarticularis length for the cranial vertebra was also quantified since the 

linear regression equation developed in Chapter 4 requires this input as well as the 

average facet angle. Cranial pars interarticularis length was determined from an x-ray 

taken in the specimen’s sagittal plane. Prior to x-raying, two metal pins (diameter = 0.5 

mm) were inserted to mark the inferior and superior borders of the pars interarticularis for 

the cranial vertebra on the specimen’s left side. The superior border was defined as the 

lateral junction between the superior facet and the lamina while the inferior border was 

defined as the medial junction between the inferior facet and the pedicle. The pars 

interarticularis (and subsequent fracture plane after acute shear failure) for each 

respective vertebra was assumed to lie in the cutting plane created by connecting each 

pair of pins defining the superior and inferior borders. This line is also consistent with 

previously identified fracture lines in specimens following exposure to direct facet 

loading (Cyron et al., 1976) and acute shear failure (Yingling and McGill, 1999; 
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Gallagher et al., 2010; Chapters 3-4).  

The sagittal plane x-ray produced an image of the specimen with the metal pins as 

well as a 20 mm calibration frame. Calibration between pixels and distance was identical 

for both the width and length of the x-ray image. Due to irregular geometry of the 

vertebral joint, specimen positioning for the x-ray was controlled to the unloaded and 

neutral posture by placing the specimen’s right side onto a formed impression created in a 

25.4 mm thick block of extruded polystyrene foam. The sagittal plane x-ray was digitally 

developed (Kodak DirectView CR500, Carestream, Toronto, ON, Canada) and planar 

coordinates on the image corresponding to each pinhead and calibration frame endpoint 

were manually digitized (ImageJ, National Institutes of Health, USA) (Figure 5.2). Pars 

interarticularis length for the cranial vertebra was calculated as the distance between 

digitized locations for the superior and inferior borders of the pars interarticularis. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 – Sagittal plane x-ray of the specimen used to digitize locations for the pars 
interarticularis of the cranial vertebra as well as the calibration frame. 
 

Specimens were then mounted between a set of two custom aluminum cups using 

a combination of steel wire, screws and dental plaster. Two screws were partially inserted 

so that they protruded from the anterior aspect of the cranial vertebral body. One screw 
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was inserted through the bottom of each cup so that each screw pierced the center of the 

exposed superior and inferior endplates. An additional six screws (three for each 

vertebra) were inserted through threaded holes in the aluminum cups so that they were 

sunk approximately 5 mm into the anterior and lateral aspects of the vertebral bodies. A 

single length of 18 gauge galvanized steel wire was looped around the caudal vertebra’s 

spinous process, threaded through two holes in the bottom of the aluminum cup and 

tightened by twisting the two ends together. Lastly, non-exothermic dental plaster 

(Denstone, Miles, IN, USA) was poured into the cups, and allowed to harden, so that the 

exposed screws were completely immersed and that any space between the specimen and 

the aluminum cup was filled. 

 

5.2.2 Loading protocol 
 

Following fixation, the cup containing the FSUs cranial vertebra was secured to a 

servohydraulic material testing system (Instron 8872, Instron Canada, Burlington, ON, 

Canada) that had been coupled to a brushless servomotor (AKM23D; 

Kollmorgen/Danaher Motion, Radford, VA, USA) capable of simultaneously applying 

flexion/extension moments to the specimen (Figure 5.3). First, a compressive preload of 

300 N was applied under load control for a 15-minute duration to counter the effects of 

post-mortem swelling (Callaghan and McGill, 2001). The flexion/extension posture was 

continuously adjusted by monitoring the torque cell feedback loop and driving the 

servomotor in position control to reduce the joint moment throughout the 15-minute 

duration in order to determine the position where zero or the smallest moment possible 

was recorded by the torque cell. 
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  Following the preload, five continuous repeats of position controlled passive 

flexion/extension were performed at a rate of 0.5 degrees/second, and under a constant 

load controlled compressive force of 300 N (Callaghan and McGill, 2001) to determine 

the specimen’s neutral zone for rotational loading about the flexion/extension axis. The 

cup containing the FSU’s caudal vertebra was allowed to translate freely in the horizontal 

plane during the preload and passive flexion/extension tests on metallic ball bearings that 

provided a near-frictionless surface (See Figure 3.3A). Flexion and extension angles 

where the moment versus angle relationship deviated from linear for the last three repeats 

were defined as endpoints of a linear region similar to the neutral zone (Panjabi, 1992; 

Callaghan and McGill, 2001).  

The neutral position defined at the end of the 15-minute preload identified a 

position within the specimen’s neutral zone that satisfies a zero flexion/extension 

moment. However, there are many flexion/extension angles within the neutral zone that 

simultaneously satisfy the zero moment condition. The first position that satisfies the zero 

flexion/extension moment condition is defined as the first approximation of the neutral 

posture. Using data provided under similar load and testing conditions (Callaghan and 

McGill, 2001), the neutral posture was set to be 36% of the neutral zone length from the 

selected extension limit (Equation 5.1). 

 

! 

"neutral = "ext + 0.36 " flex #"ext( )  (5.1) 

 

This was performed so that each specimen received the same approach for 

determining the neutral posture. The flexion and extension limits determined from the 
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passive test were redefined in reference to the calculated neutral posture. 

For shear testing, the cup containing the specimen’s caudal vertebra (either C4 or 

C6) was rigidly interfaced with two linear actuators (RSA24, Tolomatic Inc., Hamel, 

MN, USA) driven by a pair of brushless servomotors (AKM22E, Danaher Motion Inc., 

Radford, VA, USA) (Figure 5.3). This constrained sliding of the caudal vertebra to allow 

only the imposed anterior/posterior displacements applied by the linear actuators during 

all shear tests (See Figure 3.3B). The linear actuators were equidistant from the 

specimen’s mid-sagittal plane in order to prevent application of an axial twisting moment 

and were controlled in parallel to insure equal movement profiles. A uniaxial load cell 

(MLP-500, Transducer Technologies, Temecula, CA, USA) mounted in series to each 

linear actuator was used to measure applied shear force during all tests. Shear 

displacement was measured using a linear potentiometer with a 50 mm stroke that was 

mounted in parallel with the linear actuators (TS50, Novotechnik U.S. Inc., 

Southborough, MA, USA). Voltages from the load cells and linear potentiometer were 

digitally sampled at a rate of 64 Hz using a 16-bit analog to digital conversion board for 

all shear loading protocols (PCI 6034E, National Instruments Inc., Austin, TX, USA). 

In addition to the flexion/extension passive tests, specimens were also 

preconditioned in anterior/posterior shear under position control prior to the acute failure 

protocol. Displacement during anterior/posterior shear preconditioning was applied at a 

constant rate of 0.05 mm/second using a continuous motion control algorithm (Appendix 

A.1). The targets were ±400 N (positive force being anterior shear and negative force 

being posterior shear) of applied shear force for preconditioning. This target was 

approximately 14% of the ultimate anterior shear failure load (van Dieën et al., 2006; 
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Gallagher et al., 2010). 

 
 

 
 

 
 
 

 

 
 

 
 
 

 
Figure 5.3 – Experimental setup for all shear loading protocols. 
 

A constant load controlled compressive force equal to 15% (1454.1 ± 23.1 N) of 

each specimen’s predicted compressive failure tolerance was applied during the repetitive 

failure test. Compressive failure tolerance for each specimen was determined using 

average endplate area as the input to a previously determined linear regression equation 

(Parkinson et al., 2005). The chosen compressive load for this study was similar to prior 

investigations of acute shear failure tolerances (van Dieëen et al., 2006; Gallagher et al., 

2010). The reference posture determined from the flexion/extension passive test was used 

as the neutral posture for repetitive shear failure tests.  

Specimens were randomly assigned to be repetitively loaded to one of four 

percentages of calculated ultimate shear failure tolerance (20%, 40%, 60% or 80% of 

predicted ultimate shear load). Ultimate shear failure force for each specimen was a 

priori calculated by entering the length of the cranial pars interarticularis (x1, given in 



 135 

millimeters) and the average facet angle (x2, given in degrees) into the linear regression 

equation developed in Chapter 4 (Equation 5.2). 

 

! 

F
ultimate

= "1566.61338 +140.84439x
1

+ 39.19734x
2
 (5.2) 

 

Specimens were repetitively loaded and unloaded to their targeted percentage of 

ultimate shear failure force at a targeted rate of 1 Hz until failure occurred or until the 

specimen had undergone 21600 loading cycles (equivalent to 6 hours of loading). The 

maximum number of loading cycles is equivalent to the maximum number of cycles for a 

similar investigation with compressive loading (Parkinson and Callaghan, 2007b). The 

selected loading frequency is identical to one other protocol that has studied failure of the 

vertebral joint exposed to repetitive submaximal shear loading (van Dieën et al., 2006) 

and studies of disc herniation resulting from repetitive flexion/extension (Callaghan and 

McGill, 2001; Drake et al., 2005). Failure was identified as a step change in the cycle-by-

cycle shear displacement, average shear and hysteresis (Figure 5.4). A custom algorithm 

written in the GALIL motion control language (DMC-1800, Galil Motion Control Inc., 

Rocklin, CA, USA) controlled repetitive loading for each specimen (Appendix A.3) 

(Figure 5.5). The algorithm used shear force feedback from the load cells to adjust the 

controlled displacement rate in an attempt to generate a triangular force versus time 

waveform that loaded the specimen at a constant rate (Equation 5.3) whereby the ascribed 

submaximal shear load was achieved in a period of 0.5 seconds and returning to a 

position where zero shear force was recorded in another 0.5 seconds (Figure 5.6).  
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! 

R =
p 2Fultimate( )
100

 (5.3) 

 

Where R is the targeted constant loading rate (N/s), p is the percentage of shear failure 

given as a value between 0 and 100, and Fultimate is the a priori calculated ultimate force 

(N).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 – Example of cycle-by-cycle average stiffness, shear displacement and 
hysteresis indicating the point of shear fatigue failure shown by the vertical dashed line. 
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Figure 5.5 – Outline of the control algorithm for the repetitive shear loading protocol. 
Dashed lines represent feedback from the load cells that measure shear force, and is used 
to continuously update linear actuator displacement rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6 – Filtered shear force versus time profile (for the first 10 cycles) 
demonstrating the triangular loading/unloading waveform used for this investigation. The 
dashed black line shows the target shear load. Vertical lines indicate half-second intervals 
that were the targeted loading and unloading durations. The shear force versus time 
profile stabilized during the repetitive shear loading protocol. 
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The targeted force versus time profile was achieved by symmetrically adjusting 

the displacement rate (at an approximate rate of 140 updates per second) for both linear 

actuators throughout the loading and unloading phases. Displacement rate adjustment 

was based on the error between the expected and measured loading/unloading rates. 

Algorithm performance for all specimens tested in this study is summarized in Appendix 

C.1. 

Following the shear failure protocol, the specimen was returned to the neutral 

position and uncoupled from the linear actuators. A second flexion/extension passive test 

was performed using the same load and displacement conditions as the test performed 

prior to the acute failure protocol. 

 

5.2.3 Post-failure analysis 
 

Specimens were carefully removed from their fixation upon completion of the 

loading protocol. Due to irregular geometry of the vertebral joint, specimen positioning 

for the x-ray was controlled to the unloaded and neutral posture by placing the 

specimen’s right side onto a formed impression created in a 25.4 mm thick block of 

extruded polystyrene foam. Each specimen was carefully sectioned into individual 

vertebrae and photographed. Bone failure was re-assessed both manually and visually by 

an investigator.  
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5.2.4 Data processing and analysis 
 

 Digitally sampled voltages from each load cell and the linear actuator were 

calibrated to shear force and displacement and filtered using a second order dual-pass 

Butterworth digital filter with respective cutoff frequencies of 3.5 and 4.25 Hz (Appendix 

B.1). Total applied shear force was calculated as the sum of the forces recorded from the 

two load cells. Cycle by cycle displacement, average loading stiffness and hysteresis 

were calculated from the calibrated force and displacement signals in order to assess the 

occurrence of failure. Measures of cumulative shear were obtained by integrating the 

force versus time profile from the start of the repetitive loading protocol until the end of 

the failure cycle or until the maximum number of cycles in the event that failure did not 

occur.  

 
 
5.2.5 Statistical analysis and weighting factor generation 
 

5.2.5.1 Statistical analysis 
 

Randomization of specimens into loading magnitude groups was assessed using a 

two-factor (LEVEL and LOADING MAGNITUDE) analysis of variance (ANOVA) on 

the measured endplate area, cranial pars interarticularis length, average facet angle, facet 

tropism and calculated ultimate shear force (SAS 9.1, SAS Institute Inc., Cary, NC, 

USA). A single factor (LOADING MAGNITUDE) ANOVA was used to test for 

difference in cumulative load sustained for all failed specimens. Tukey’s post-hoc tests 

were performed for all significant main effects and interactions. The level of significance 

was set to p < 0.05 for all statistical analyses. 
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5.2.5.2 Weighting factor generation 
 

 Weighting factors were generated using a similar protocol described by Parkinson 

and Callaghan (2007a). Cumulative shear loads for specimens that failed prior to the 

maximum cycle limit were used for weighting factor generation. Data from specimens in 

the 20% shear load magnitude group were not used for determining weighting factors 

since all of the specimens in this group survived for the entire 21600 cycles. The number 

of data points (cumulative shear loads) at the 60% and 80% shear load magnitudes were 

reduced to match the number of failed specimens (three) at the 40% shear load magnitude 

in order to ensure equal weighting of data between all load magnitudes during curve 

fitting. Cumulative shear loads sustained prior to failure for each of the eight specimens 

in both the 60% and 80% groups were randomly assigned to one of three smaller groups 

at each load magnitude (i.e. two groups of three specimens and one group of two 

specimens at each load magnitude). Average cumulative shear load was calculated within 

each of the six smaller groups yielding three data points for each of the 60% and 80% 

load magnitudes. A continuous relationship between shear load magnitude (expressed as 

a percentage of ultimate shear failure tolerance) and cumulative shear load sustained prior 

to failure was obtained by fitting a power law function to the nine remaining cumulative 

shear load values.  

The minimum weighting factor was set to a value of 1. Applying this weighting 

factor would neither enhance nor denigrate the importance of submaximal shear loads 

receiving this weighting factor when determining cumulative shear loads in subsequent 

investigations. Average cumulative shear load for the five survivor specimens exposed to 

the 40% shear load magnitude was used to define a threshold shear load magnitude for 
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assigning weighting factors above the minimum weighting factor. Shear load magnitudes 

at and below this threshold were assigned the minimum weighting factor. The threshold 

was determined by substituting the average cumulative shear load sustained by the 

survivors at the 40% shear load magnitude into the derived power law function relating 

submaximal shear load to sustained cumulative shear load and solving for the 

corresponding submaximal shear load magnitude. Weighting factors for each shear load 

magnitude from 1-100% were determined using a piecewise function (Equation 5.4). 
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 (5.4) 

 

Where w is the derived weighting factor function for a given shear load magnitude i 

(expressed as a percentage of ultimate shear failure), T is the defined threshold (expressed 

as a percentage of calculated shear failure tolerance), and 

! 

"  and 

! 

"  are coefficients from 

the derived power law function relating submaximal shear load magnitude to the 

cumulative load sustained prior to failure. 

 

5.3 RESULTS 
 

5.3.1 Specimen randomization and vertebral level 
 

The cranial pars interarticularis length for the C5-C6 specimens was 14% larger 

for C5-C6 than C3-C4 specimens (p = 0.0002, d = 1.49) (Table 5.1). This was reflected 

by 18.0% higher calculated ultimate shear tolerance for the C5-C6 specimens than the 
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C3-C4 specimens (p = 0.0003, d = 1.55) (Table 5.1). Facet tropism of specimens 

assigned to the 20% and 40% sub-maximal load magnitudes were smaller than the 

specimens assigned to the 80% load magnitude group by 2.8 (p = 0.0192, d = 1.54) and 

2.5 (p = 0.0408, d = 1.29) degrees respectively (Table 5.2). There were no other 

statistically significant differences between sub-maximal load magnitudes for any of the 

other morphological measures (p ≥ 0.3073) (Table 5.2). 

 
Table 5.1 – Morphological measurements and the resulting calculated ultimate shear 
failure tolerance for specimens from each vertebral level. An asterisk indicates a 
statistically significant difference between vertebral levels. 
 

Level 
Endplate 

Area 
(mm2) 

Cranial 
Pars 

Length 
(mm) 

Average 
Facet 
Angle 

(degrees) 

Facet 
Tropism 
(degrees) 

Calculated 
Ultimate Shear 

Failure Tolerance 
(N) 

C3-C4 
669.4 
(16.8) 

12.56 
(0.30) 

44.0 
(0.9) 

3.7 
(0.5) 

1925.2 
(60.3) 

C5-C6 
658.9 
(15.6) 

14.32 
(0.32) 

46.5 
(1.0) 

3.1 
(0.5) 

2271.7 
(55.4) 

P 0.6688 0.0002* 0.0882 0.3117 0.0003* 
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Table 5.2 – Morphological measurements and the resulting calculated ultimate shear 
failure tolerance for specimens assigned to each shear loading magnitude. An asterisk 
indicates a statistically significant effect of loading magnitudes. Means with the same 
letter are statistically similar. 
 

Loading 
Magnitude 

Endplate 
Area 

(mm2) 

Cranial 
Pars 

Length 
(mm) 

Average 
Facet 
Angle 

(degrees) 

Facet 
Tropism 
(degrees) 

Calculated 
Ultimate Shear 

Failure Tolerance 
(N) 

20% 
652.3 
(17.3) 

13.91 
(0.75) 

44.7 
(2.0) 

2.3 
(0.4) 

A 
2145.9 
(145.9) 

40% 
656.2 
(24.3) 

13.06 
(0.36) 

44.7 
(1.0) 

2.6 
(0.5) 

A 
2023.5 
(67.5) 

60% 
688.3 
(24.6) 

13.04 
(0.55) 

45.3 
(0.7) 

3.6 
(0.7) 

A,B 
2043.9 
(88.4) 

80% 
659.9 
(25.7) 

13.75 
(0.41) 

46.2 
(1.5) 

5.1 
(0.9) 

B 
2180.5 
(98.7) 

p 0.7154 0.3073 0.8625 0.017* 0.4709 
 

 
5.3.2 Post-failure analysis 
 

There were no specimens that had bone failure at the 20% load magnitude (Table 

5.3). Bilateral fracture of the cranial pars interarticularis was the predominant injury, 

occurring in 78.9% of all failed specimens (Table 5.3). This injury was particularly 

consistent (10/11 = 90.9% of specimens) amongst specimens that failed at the 40% and 

60% loading magnitudes (Table 5.3). Specimens loaded to 80% of their calculated 

ultimate shear failure tolerance demonstrated bilateral fracture of the cranial pars 

interarticularis in a less consistent manner (5/8 = 62.5% of specimens). Instead, 

specimens exposed to the 80% loading magnitude demonstrated a higher likelihood of 
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injury to a combination of structures such as unilateral fractures of either the cranial or 

caudal pars interarticularis, bilateral fracture of the caudal pars interarticularis, and 

endplate avulsion.  Qualitatively, injury patterns at the 80% loading magnitude were also 

less consistent than either of the 40% or 60% loading magnitudes (Table 5.3).  

 
Table 5.3 – Observed tissue damage for specimens that did not survive the entire 
repetitive shear loading duration of 21,600 cycles. 
 

Loading 
Magnitude 

Vertebral 
Level Fracture/Damage Location 

40% C3-C4 Bilateral cranial pars interarticularis fracture 
40% C5-C6 Bilateral cranial pars interarticularis fracture 
40% C5-C6 Bilateral cranial pars interarticularis fracture 
60% C3-C4 Bilateral cranial pars interarticularis fracture 
60% C3-C4 Bilateral cranial pars interarticularis fracture 
60% C3-C4 Bilateral cranial pars interarticularis fracture 
60% C3-C4 Bilateral cranial pars interarticularis fracture 
60% C5-C6 Bilateral caudal pars interarticularis fracture 
60% C5-C6 Bilateral cranial pars interarticularis fracture 
60% C5-C6 Bilateral cranial pars interarticularis fracture 

60% C5-C6 Bilateral cranial pars interarticularis fracture, left caudal 
pars interarticularis fracture 

80% C3-C4 Bilateral cranial pars interarticularis fracture 
80% C3-C4 Bilateral cranial pars interarticularis fracture 

80% C3-C4 Bilateral cranial pars interarticularis fracture, inferior 
endplate avulsion 

80% C3-C4 Bilateral cranial pars interarticularis fracture 

80% C5-C6 Right caudal pars interarticularis fracture, left superior 
facet fracture 

80% C5-C6 Right cranial pars interarticularis fracture, left caudal pars 
interarticularis fracture 

80% C5-C6 Right caudal pars interarticularis fracture 

80% C5-C6 Bilateral cranial and caudal pars interarticularis fracture, 
inferior endplate avulsion 
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5.3.3 Cumulative load and cycles sustained prior to failure 
 

The relationships between sub-maximal shear loading magnitude and cumulative 

shear as well as the number of loading cycles sustained prior to failure was non-linear. 

Cumulative shear sustained by the failed specimens at the 40% was higher than 

cumulative shear sustained at either the 60% (difference = 2.52 MN*s, p < 0.0001, d = 

12.0) or 80% (difference = 2.63 MN*s, p < 0.0001, d = 15.90) levels (Figure 5.7). There 

was no statistical difference between cumulative shear sustained by failed specimens at 

the 60% and 80% load magnitudes (p = 0.297) (Figure 5.7). However, the number of 

shear loading cycles sustained by specimens at each shear loading magnitude was 

statistically different from one another (p < 0.0001, d > 2.0, Figure 5.8) 

 

 

 

 

 

 

 

 

 

Figure 5.7 – Cumulative shear sustained by specimens that survived (black) and failed 
during (gray) the repetitive shear failure protocol. Different letters illustrates cumulative 
shear for specimens that failed during the repetitive shear failure protocol with 
statistically different means. The number above each bar (N) represents the number of 
specimens that either failed or survived at each loading magnitude. Error bars represent 
the standard error of the mean. 
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Figure 5.8 – The number of shear loading cycles sustained prior to failure for specimens 
in the 40%, 60% and 80% loading magnitude groups. The vertical axis is logarithmic. 
Statistical differences between means are given with different letters. The number above 
each bar (N) denotes the number of specimens that were injured during the repetitive 
shear loading protocol. Error bars represent the standard error of the mean. 
 

5.3.4 Weighting factor generation 
 

Data from the failed specimens at the 40%, 60% and 80% load magnitudes were 

used for generating weighting factors. The power law relationship between sub-maximal 

load magnitude and cumulative shear (Equation 5.5) explained 98.2% of the variance for 

the reduced dataset (Figure 5.9). 

 

! 

C
shear

= 4 "10
12( )x#7.595 (5.5) 

 

Where Cshear is the cumulative shear (Ns) sustained prior to failure and x is a sub-

maximal shear load expressed as a percentage (0-100%) of the calculated acute shear 

failure tolerance. The submaximal load threshold of 35.6% for applying the minimum 
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weighting was determined by substituting the cumulative shear sustained by specimens 

that survived the entire 21,600 loading cycles at the 40% sub-maximal load magnitude 

(6.53 ± 0.35 MN*s) into the power law relationship and then solving for the 

corresponding sub-maximal shear load magnitude. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 – Power law relationship between sub-maximal load magnitude and 
cumulative shear. Circles indicate cumulative shear sustained by individual specimens 
assigned to each loading magnitude. Crosses indicate cumulative shear values used for 
obtaining the power law relationship. 
 

The final piecewise continuous weighting factor function is given by equation 5.6, and 

illustrated by figure 5.10. 
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This is where i is a percentage of the calculated shear failure tolerance given as a real 

number between 0 and 100. 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
Figure 5.10 – Piecewise continuous weighting factor function of shear loading 
magnitude. 
 

5.4 DISCUSSION 
 

The current study clearly shows that load magnitude is a non-linear modifier of 

the fatigue life for the porcine vertebral joint exposed to repetitive submaximal shear 

loads. Results from this study imply that higher instantaneous shear load magnitudes 

should receive additional importance when determining cumulative shear loads in an 

occupational environment. A non-linear weighting method for instantaneous shear forces 

was also developed within this investigation based on cumulative shear load sustained 
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prior to failure with higher weighting factors being assigned to larger shear load 

magnitudes to compensate for the differing injury potential related to higher load 

magnitudes. 

Isthmic spondylolytic fractures of the pars interarticularis are commonly 

associated with sub-maximal repetitive shear loading. Despite this association, limited 

research efforts have focused on biomechanical failure of the vertebral joint exposed to 

repetitive shear loading. Cyron and Hutton (1978) found that repetitive loading of the 

inferior facet in isolated human vertebrae caused bilateral fracture of the pars 

interarticularis. This is consistent with injuries observed for acute shear failure of isolated 

human vertebrae (Cyron et al., 1976) as well as porcine vertebral joints (Yingling and 

McGill, 1999; Gallagher et al., 2010; Chapters 3-4) and also consistent with the 

predominant injury of failed specimens from this investigation. However these authors 

(Cyron and Hutton, 1978) loaded specimens using a sinusoidal waveform with a peak-to-

peak amplitude of 380 N and an average load of 570 N. This is approximately equivalent 

to a range from 19-38% of the acute failure tolerance determined by Cyron and 

colleagues in a prior study (Cyron et al., 1976). The findings from this investigation show 

that the load magnitude selected by Cyron and Hutton (1978) approached the threshold 

where this study has shown the injury potential associated with the applied shear loads 

increases non-linearly. Van Dieën and colleagues (2006) also found that posterior 

elements were compromised following repetitive shear loading between 20-80% of 

ultimate shear failure. Again only a single load magnitude was evaluated since their 

primary question focused on posterior element involvement in resisting repetitive shear 

loads. Lastly, Beadon and colleagues (2008) found that spondylytic failure occurred only 
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after intermittent peak load magnitude had been increased to 1500 N (approx. 75% of 

shear failure tolerance) from 600 N (approx. 30% of shear failure tolerance). While the 

work of Beadon and colleagues (2008) demonstrated that load magnitude may influence 

the onset of shear failure under submaximal load magnitudes, their work was not 

motivated to determine a relationship between load magnitude and shear fatigue life of 

the vertebral joint. Similar to injuries observed in the current investigation, Beadon and 

colleagues (2008) also identified bilateral fracture of the cranial vertebra’s pars 

interarticularis as the predominant injury from exposure to repetitive submaximal shear 

loads.  

Injuries observed from specimens in this investigation varied as a result of 

different loading magnitudes. For this investigation, specimens assigned to higher shear 

loading magnitudes were also exposed to larger loading rates since the frequency of 

loading was controlled at 1 Hz. Specimens exposed to the 40% and 60% loading 

magnitude consistently showed bilateral failure of the cranial pars interarticularis with 

minimal occurrence of secondary injuries. Conversely, bilateral fracture of the cranial 

pars interarticularis was less common for specimens assigned to the 80% loading 

magnitude. Instead, combined injuries to the pars interarticularis, facets and endplates 

were observed at the highest loading magnitude. This may also be attributed to the 

increased facet tropism for specimens that were randomly assigned to the 80% loading 

magnitude. Similar to findings of this investigation, occurrence of endplate avulsions 

with higher shear loading rates has been previously documented by Yingling and McGill 

(1999). Similar investigations have also demonstrated that sub-maximal compressive load 

magnitude alters injury type and location (Parkinson and Callaghan, 2007b). However, 
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contrary to prior findings (Cripton et al., 1995; Yingling and McGill, 1999) for an acute 

failure protocol with higher shear load/displacement rates, the occurrence of bilateral 

cranial pars interarticularis fracture was less common at the highest loading magnitude 

for the current investigation. This difference is possibly attributed to the termination 

conditions for either the acute and repetitive loading protocols. Loading protocols for 

acute failure often use displacement limits (Gallagher et al., 2010) or decreases in force 

(Yingling and McGill, 1999; Gunning et al., 2001) to detect failure. Failure of the 

vertebral joint under either compressive or shear repetitive loading paradigms is more 

difficult to detect and has required manual detection following inspection of the collected 

data (van Dieën et al., 2006; Parkinson and Callaghan, 2007a; Parkinson and Callaghan, 

2007b).  

The algorithm that controlled the repetitive loading protocol used for this 

investigation matched displacement rates of the linear actuators using feedback from the 

load cells to targeted loading rates defined by the investigator. Prescribed displacement 

rates at the initiation of each loading cycle were dependent upon a function of the 

previous loading cycle’s initial actuator displacement rate and the discrepancy between 

the achieved shear force and the targeted force (Appendix A.3). This allowed the initial 

displacement rate to stabilize throughout the repetitive loading protocol. However, rapid 

changes in specimen properties such as stiffness and hysteresis (as observed at the point 

of failure) would cause instability within the control algorithm leading to large 

fluctuations in actuator displacement and rate of displacement. This behavior was 

particularly evident at the 80% shear loading magnitude. As a protective measure for the 

instrumentation (load cells) and equipment (linear actuator, servomotors), the repetitive 
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loading protocol was terminated by the investigator upon detection of sudden increases in 

linear actuator displacement. Since unilateral pars interarticularis fractures were more 

common amongst specimens assigned to the 80% shear loading magnitude, investigator 

initiated termination of the repetitive loading protocol at the highest loading magnitude 

may have disrupted the injury process that eventually would have led to bilateral 

fractures of the pars interarticularis. 

The current investigation is the first to directly quantify the relationship between 

shear load magnitude and cumulative shear load sustained prior to failure. Results from 

this investigation clearly indicate that the vertebral joint’s fatigue life (both sustained 

cumulative load and the number of loading cycles sustained prior to failure) rapidly 

decays in a non-linearly fashion with increasing shear load magnitude. Previous research 

for compressive loading using both human and porcine specimens has also demonstrated 

that increasing load magnitude non-linearly decreases the number of compressive cycles 

(Brinckmann et al., 1987; Hansson et al., 1987) and cumulative compressive load 

(Parkinson and Callaghan, 2007b) sustained prior to failure. Findings from this 

investigation and the work of Parkinson and Callaghan (2007a) support the use of a 

tissue-based approach for determining appropriate weighting factors when calculating 

cumulative load exposure. 

Different non-linear methods for weighting of compressive loads in estimates of 

cumulative exposure have been previously presented (Jager et al., 2000; Seidler et al., 

2001; Parkinson and Callaghan, 2007a). Initial attempts of force weighting by raising 

instantaneous compressive load values by an arbitrarily chosen exponent to represent 

higher injury potential with higher compressive load were performed by Jager and 
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colleagues (2000) and Seidler and colleagues (2001). Parkinson and Callaghan (2007a) 

improved upon the methods for deriving weighting factors by relating their weighting 

factors directly to accumulated tissue damage from in vitro tests. The reciprocal of a 

power-law function was used to define a piecewise continuous weighting factor function 

in the current investigation. Parkinson and Callaghan (2007a) found that compressive 

loads below 37.5% of the failure tolerance did not require additional weighting when 

calculating cumulative compressive load. Congruently, the current investigation found 

that shear loads below 35.6% did not require additional weighting when determining 

cumulative shear load. Weighting factors derived from this investigation are directly 

related to sustained tissue damage that provides a biological basis for their development 

and implementation. 

In order to enhance transference of the results from a porcine model to human 

vertebral joints, load magnitude for each group was scaled to a proportion of the 

calculated ultimate shear failure tolerance. Ultimate shear failure tolerance was calculated 

using a previously developed regression equation that used cranial pars interarticularis 

length and average facet angle as input (Chapter 4). The error associated with this 

equation was found to be ±232 N (equivalent to approximately 10.9% of the ultimate 

shear failure tolerance). Since load magnitudes used in this investigation were separated 

by 20% intervals, error induced from the calculation of acute ultimate shear failure 

tolerance likely did not cause overlap in the relative loads experienced by specimens 

assigned to each group. 

Using a deceased in vitro model eliminates the possibility of regenerative 

processes from influencing the onset of tissue damage (Cyron and Hutton, 1978). Periods 
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of rest can lead to tissue healing and regeneration of bone that may influence the 

vertebral joint’s fatigue life (Cowin and Hegedus, 1976) and can also affect the 

cumulative load sustained prior to failure (Parkinson and Callaghan, 2007a). Initiation of 

bone fracture repair within the rat tibia has been shown to occur after a period of one 

week (Garavello-Freitas et al., 2003). However, stress fracture repair of the pars 

interarticularis, as observed in this investigation, is possibly limited by the presence of a 

synovial pseudoarthrosis in the pars interarticularis (Shipley and Beukes, 1998). Thus, the 

lack of regenerative processes when using a deceased in vitro model may have a minimal 

impact on the results of the current investigation. Cumulative shear load, the number of 

loading cycles sustained prior to failure and weighting factors derived in this 

investigation should be viewed as a conservative (i.e. worst case scenario) estimate of the 

increased tissue damage that may be inflicted by higher shear loads. 

This investigation is the first to demonstrate the non-linear relationship between 

varying shear load magnitude and the fatigue life of the vertebral joint exposed to 

repetitive anterior shear loading. Both cumulative shear load and the number of loading 

cycles sustained prior to failure are non-linearly related to the magnitude of sub-maximal 

shear loading. This study demonstrates that shear loads that are higher than or equal to 

60% (equivalent to approximately 1325 N from Chapter 3 and 4) of the ultimate shear 

failure tolerance carry greater injury potential. Injuries resulting from repetitive sub-

maximal shear loading were to the cranial pars interarticularis, which is consistent with 

injuries observed for acute shear failure testing. Thus, the results from this investigation 

demonstrate that higher shear loads should receive additional importance when 

calculating cumulative shear exposure to evaluate injury risk. This enhances the 
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relationship between cumulative load estimates and low-back tissue injury. The 

piecewise continuous function presented here to derive appropriate weighting factors can 

be easily implemented within any assessment of occupational cumulative exposure to 

shear load. Similar to what has been done for compressive loading, future efforts should 

expand the weighting factor to a multivariate function of load magnitude and work to rest 

ratio. 
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CHAPTER 6 
 

USE OF FINITE ELEMENT ANALYSIS FOR 
QUANTITATIVELY INVESTIGATING THE 

MOMENT ARM HYPOTHESIS FOR ALTERED 
SHEAR FAILURE TOLERANCES UNDER 

COMBINED COMPRESSIVE LOADING AND 
FLEXION/EXTENSION POSTURES 
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6.1 INTRODUCTION 
 

Previous in vitro studies have clearly shown that the pars interarticularis is the 

primary site of failure under acute (Cyron et al., 1976; Cripton et al., 1995; Yingling and 

McGill, 1999; van Dieën et al., 2006; Gallagher et al., 2010; Chapters 3-4) as well as 

repetitive shear loading (Cyron and Hutton, 1978; Beadon et al., 2008; Chapter 5). The 

proposed mechanism for this fracture under shear loading is a bending moment generated 

about the pars interarticularis caused by contact between the articulating inferior and 

superior facets of the respective cranial and caudal vertebrae of a vertebral joint (Cyron et 

al., 1976; Yingling and McGill, 1999; Chapter 3). Evidence also exists that shows the 

vertebral joint’s ultimate failure tolerance under acute shear failure is altered by both 

postural deviation (Yingling and McGill, 1999) and joint compression (Chapter 3). These 

studies (Yingling and McGill, 1999; Chapter 3) have both hypothesized that alterations in 

moment arm length between the force centroid on the articulating facet and the pars 

interarticularis play a role in modulating ultimate shear failure tolerance under different 

vertebral joint postural deviations and compressive loads. This investigation examines 

alterations in facet contact and the inherent changes in moment arm length that has been 

hypothesized to alter a vertebral joint’s ultimate shear failure tolerance using a finite 

element model of the porcine C3-C4 functional spinal unit that has also been used in 

comparable in vitro testing (Chapters 3-5).  

The finite element method is a useful tool for determining internal stress and 

strain distributions throughout a structure and can also allow for serial investigation of a 

large number of injury mechanisms (Brown, 2004). The finite element method has been 

used to demonstrate that the pars interarticularis of the human L4-L5 vertebral joint is the 
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weakest structure in the non-pathologic lumbar spine (Chosa et al., 2004). Moreover, 

finite element models have shown that increased stress is observed in the pars as a result 

of forces generated by facet contact (Schulitz and Niethard, 1980; Chosa et al., 2004). 

Finite element models of the human lumbar spine have also demonstrated that complex 

loading that involves vertebral joint postural deviation and compressive force will 

influence the stress distributions within and contact locations on the articulating facets 

(Shirazi-Adl, 1991). Specifically, recent finite element results from a model of the L5-S1 

joint have shown that contact pressures within the facet are higher with extension than 

flexion (El-Rich et al., 2009). 

In vitro investigations have also demonstrated altered facet articulation with 

compressive force and postural deviation. Using pressure sensitive film placed in 

between articulating facets of an in vitro human lumbar functional spinal unit, Lorenz and 

colleagues (1983) showed that the magnitude of facet contact force increases both in 

extended postures and with higher compressive forces. Furthermore, this study also 

demonstrated that left facetectomy almost eliminated facet contact pressure of the intact 

right facet. In addition Dunlop and colleagues (1984) used pressure sensitive film in 

human lumbar cadaveric functional spinal units to illustrate that the location of contact 

pressure moved cranially on the facet surface with flexed postures and caudally with 

extended postures. Their study also showed that reducing disc height increased the area 

of facet contact. Other in vitro results have shown that the facets bear higher forces in 

extended postures than flexed postures (Adams and Hutton, 1980). Recently, Drake and 

colleagues (2008) demonstrated that interfacet spacing increased with flexed postures and 

decreased with extended postures. The combined implications from these in vitro 
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investigations demonstrate that facet articulation is modified by compressive force and 

postural deviation.  

Results from Chapter 3 showed that ultimate shear failure tolerance of the porcine 

cervical spine increased with higher compressive forces and decreased from an extended 

to flexed posture. It was postulated that alterations in failure tolerances resulting from 

different compressive forces and/or flexion/extension postures are a function of changes 

in facet articulation. In particular the centroid of facet contact force that occurs during 

shear loading was hypothesized from Chapter 3 to change with compressive loading and 

postural deviation. Consequently, changes in facet contact location would also alter the 

moment arm length for the bending moment applied about the pars interarticularis which 

has been implicated as a primary factor that modulates shear failure tolerance (Cyron et 

al., 1976; Yingling and McGill, 1999; Chapter 3). Injury documentation from Chapter 3 

also indicates that the caudal pars interarticularis is fractured more frequently when the 

vertebral joint is exposed to shear displacement in a flexed posture. This information 

suggests that alterations in facet interaction resulting from postural deviations may also 

alter the site of failure.  

Alterations in facet contact resulting from postural deviation and compressive 

force have not been linked to changes in the magnitude of stresses developed within the 

pars interarticularis and the moment arm length from the force centroid of facet contact to 

the location of maximum stress within the pars interarticularis. The goal of this 

investigation was to employ the finite element method to quantify internal changes in 

stress through the pars interarticularis as a function of the compressive load and postural 

deviation and to link changes in stress concentration to alterations in the force centroid of 
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facet contact. Based on prior in vitro investigation, it was hypothesized that the moment 

arm length would increase for flexed postures and decrease for extended postures. With 

regards to compressive force, it was hypothesized that increased compression would lead 

to a reduction of the moment arm length. It was also hypothesized that compressive 

forces and extended postures would increase facet contact area while flexed postures 

would decrease facet contact area. Lastly, it was hypothesized that alterations in facet 

contact location and area would be reflected in congruent changes in stress through the 

pars interarticularis. Larger moment arm lengths were hypothesized to create a 

mechanical advantage that would result in a larger applied moment at the pars 

interarticularis. The increase in applied moment, as a result of increased moment arm 

length, would subsequently increase the stress observed at the pars interarticularis for two 

identical backward displacements of the inferior vertebra for a single vertebral joint. 

 

6.2 METHODS 
 
 
6.2.1 Geometry generation 
 
 
6.2.1.1 Individual vertebrae 
 

The exterior surface geometries for a C3 and C4 vertebra from the same porcine 

functional spinal unit (FSU) were independently created from point clouds generated by a 

pair of white light scanners (StarCam FW-3R 3D, VX Technologies Inc., Calgary, AB, 

Canada). Prior to scanning, each vertebra was coated with liquid developer (SKD-S2 

Developer, Magnaflux, Glenview, IL, USA) to enhance contrast between the vertebra’s 

exterior surface and its background. Each vertebra was posed on a black rotating tabletop 
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that contained a fixed set of white dots. These white dots were used as control points in 

subsequent steps for scan alignments within a single pose. Both scanners took a single 

scan of the specimen simultaneously by sequentially projecting light in coarse and fine 

patterns onto the specimen and table to construct independent point clouds from the 

reflective surfaces (sprayed bone or white dots) within each scanner’s local coordinate 

system (Figure 6.1). The coarse pattern of dots was set with 20 by 20 pixel spacing 

between dots, dot radius of 3 pixels, and a resolution of 10 by 10 dots. Point clouds for 

each scanner and from a single scan were imported into a surface development software 

package (Geomagic Studio 9, Geomagic, Research Triangle Park, NC, USA). For a 

single scan, the point clouds (expressed in each scanner’s respective local coordinate 

system) generated by each scanner were aligned to a set of points representing identical 

control points (white dots) that were present in both camera’s point clouds (Figure 6.1). 

The end result from each scan was a merged point cloud from the two independent 

scanners. While ensuring that the specimen did not move relative to the table’s surface, 

the table was carefully rotated approximately between 45-90 degrees in preparation for 

the next scan. Another scan was taken with the table in the rotated position and the same 

process of aligning the independent scans from each scanner was repeated. Each newly 

aligned scan was then added to the existing merged point cloud for that pose (Figure 6.1). 

Scans were taken with the specimen in a single pose until the table had been rotated by 

360 degrees with the final result being a point cloud of the specimen in a single pose. The 

specimen’s pose was then changed and the process of generating a single point cloud was 

repeated for the new pose. Each vertebra was scanned in four sequential poses (pose 1 = 

laying on inferior surface, pose 2 = laying on superior surface, pose 3 = laying on anterior 
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surface and pose 4 = laying on tip of spinous process that was embedded in black non-

reflective molding clay).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1 – Flowchart illustrating the step-by-step process of generating the vertebral 
geometry, meshing the functional spinal unit, defining simulation boundary conditions 
and analyzing results from the simulations. 
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For each vertebra, the final point clouds from each pose were sequentially aligned 

using identical anatomical landmarks. Point clouds from the first two poses (respectively 

laying on the inferior and superior surfaces) were aligned. This merged cloud was then 

aligned with the point cloud from the third pose (laying on the anterior surface) and the 

resulting merged cloud was then aligned with the point cloud from the fourth pose (laying 

on tip of spinous process that was embedded in black non-reflective molding clay). The 

final results were two point clouds representing each vertebra’s exterior surface geometry 

(Figure 6.1). 

Noise reduction using the built-in functions within Geomagic was performed on 

the vertebral point clouds prior to surfacing. The final C3 and C4 point clouds were then 

independently fit with a series of triangular polygons to create the exterior vertebral 

surfaces. Holes in each of the vertebral surfaces were patched using the built-in tools 

from the Geomagic software with the end results being watertight surface representations, 

consisting of triangular polygons, of the scanned C3 and C4 vertebrae. The polygons of 

the watertight surfaces for the C3 and C4 vertebra were smoothed and a non-uniform 

rational basis spline (NURBS) surface representation of the exterior was constructed 

from this surface (Figure 6.1). These NURBS surfaces were individually saved as initial 

graphics exchange specification (IGES) files that were used for meshing and disc 

geometry generation in Hypermesh (Hypermesh 10.0, Altair Engineering, Troy, MI, 

USA). 
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6.2.1.2 Functional spinal unit (FSU) 
 

The surface representations for the C3 and C4 vertebrae were imported into 

Hypermesh. The two vertebrae were manually aligned so that their relative orientations 

reflected the geometry of an intact porcine C3-C4 functional spinal unit (Figure 6.2).  

 

Figure 6.2 – Comparison of the stacked vertebrae (left) used to define the geometry of the 
modeled functional spinal unit (right). 
 

Specifically, the C3 vertebra was adjusted so that the caudal surface of the vertebral body 

was directly above the cranial surface of the C4 vertebra. The caudal surface of the C3 

vertebra and the cranial surface of the C4 vertebra were separated by an average vertical 

distance of 4.69 ± 0.08 mm. This intervertebral disc space was chosen to mimic the 

intervertebral disc space (4.72 ± 0.64 mm), measured from sagittal plane x-rays of C3-C4 

specimens taken in Chapter 4, at the midpoint between the anterior and posterior corners 

for each of the C3 and C4 vertebrae. Furthermore, the ratio of intervertebral disc space to 

average vertebral body height was similar between the model (21.3%) and the in vitro 

measurements (21.2 ± 3.1%). The relative orientation between vertebrae also allowed for 

a space of approximately 1.01 mm between the articulating inferior facets of C3 and the 
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superior facets of C4. This gap was chosen to mimic previously used gaps between 

articulating facets in vertebral finite element models of human functional spinal units 

(Shirazi-Adl et al., 1986; Sharma et al., 1995), and were derived from in vitro 

measurements. Geometry for the intervertebral disc was constructed within Hypermesh to 

lie in between the caudal surface of the C3 vertebral body and the cranial surface of the 

C4 vertebral body. The surfaces for the caudal and cranial aspects of the intervertebral 

disc were taken directly from the C3 and C4 vertebrae respectively and contained a set of 

14 smaller subsurfaces (Figure 6.1) arranged so that each subsurface on the cranial aspect 

of the intervertebral disc had a matching partner on the caudal aspect. Therefore, each 

intersection point between two or more subsurfaces for the cranial aspect of the disc had 

a matching partner on the caudal aspect of the disc. Furthermore, the intervertebral disc 

shared connection points with both the C3 and C4 vertebrae. Lines were constructed to 

connect the perimeters for the two surfaces as well as the matching pairs of interior 

intersection points. Using these lines, separate sets of surfaces were constructed for the 

disc’s exterior surface and interior volume. 

 

6.2.2 Element type, material properties and mesh refinement 
 

The modeled FSU consisted of cortical bone, trabecular bone, endplates and a 

disc material. Each of these materials was modeled as linear, isotropic and homogeneous. 
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6.2.2.1 Components 
 
 
6.2.2.1.1 Cortical bone 
 

 Geometry for the cortical shell on each vertebra’s exterior was defined by the 

surface geometry generated from the white light scanning procedure that was previously 

described. The caudal surface of C3 and cranial surface of C4 were meshed with 

quadrilateral shell elements. Nodes for these elements were shared with the cranial and 

caudal portions of the intervertebral disc respectively. The remaining vertebral cortical 

shell was meshed with triangular shell elements. All shell elements were modeled with a 

constant thickness of 0.45 mm (Kato et al., 1998; Akahoshi et al., 2005), modulus of 

19,400 MPa and Poisson’s ratio of 0.34 (Kato et al., 1998). 

 

6.2.2.1.2 Trabecular bone 
 

The nodes comprising the shell elements of the cortical bone defined the exterior 

geometry for the trabecular bone. An automated meshing algorithm was executed within 

Hypermesh to generate a set of tetrahedral solid elements to represent the vertebral 

trabecular bone. Porcine trabecular bone was assigned a modulus of 229 MPa (Teo et al., 

2006) and a Poisson’s ratio of 0.3 (Kumaresan et al., 1999). 

 

6.2.2.1.3 Endplates 
 

 The inferior endplate of C3 and the superior endplate of C4 were modeled with 

quadrilateral shell elements with a constant thickness of 0.45 mm. Endplate elements 
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were assigned a modulus of 50 MPa and a Poisson ratio of 0.4 (Kumaresan et al., 1999). 

Nodes defining these elements were also used to define connections between the 

vertebrae and the intervertebral disc.  

 

6.2.2.1.4 Intervertebral disc 
 

Geometry for the intervertebral disc was defined by the quadrilateral shell 

elements on the caudal surface of the C3 vertebra and the cranial surface of the C4 

vertebra. Hexahedral elements consisting of 8 nodes and a single integration point were 

created so that nodes were shared between the cranial aspect of the disc and the caudal 

surface of the C3 vertebra and likewise for the caudal disc surface with the cranial C4 

surface.  

The intervertebral disc is often modeled as a composite structure of the annulus fibers 

and nucleus pulposus (Stokes et al., 2010). A ground substance can also be included in 

the finite element representation of the intervertebral disc (Rao and Dumas, 1991). 

However, the intervertebral disc was modeled as a single uniform material for the current 

investigation with parameters that represented the combined influence of the three 

aforementioned materials. The intervertebral disc modulus was set to 25 MPa and a 

Poisson ratio of 0.49 was assigned (Aziz et al., 2008). The modulus used for the current 

model was similar to approximated moduli computed using measurements made from 

Chapter 3 (Table 6.1). 
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Table 6.1 – Estimates of the elastic modulus for the entire intervertebral disc using compressive forces, disc area, disc height changes 
from Chapter 3 (shown with a superscript ‘a’), and an average height for the unloaded porcine cervical intervertebral disc reported by 
Yates (2009) (shown with a superscript ‘b’). 
 
 

Compression 
(%) 

Actual 
Compressive Forcea 

(N) 

Initial Disc 
Heightb 

(mm) 

Disc Height 
Changea 

(mm) 

Disc 
Areaa 
(mm2) 

Stress at Max. 
Height Change 

(MPa) 

Strain at 
Max. Height 

Change 

Elastic 
Modulus 

(MPa) 

15% 1374 9 0.66 625 2.1984 0.073 29.978 

30% 2897 9 1.77 661 4.3828 0.197 22.285 

45% 4564 9 2.91 697 6.5481 0.323 20.252 

60% 5720 9 3.9 652 8.7730 0.433 20.245 
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6.2.2.2 Determining appropriate mesh size 
 

A convergence study was conducted in order to identify an appropriate number of 

elements that would improve computational efficiency while not degrading the 

consistency of solutions for the subsequently described simulations. Mesh convergence 

was identified by refining the triangular shell and vertebral tetrahedral meshes. Three 

meshes of each vertebra were constructed with increasing mesh refinement (Table 6.2). 

Each of these meshes was subjected to an identical simulation in order to determine 

convergence of mesh refinement. The conditions for the convergence simulations were 

backward shear displacement of the C4 vertebra at a constant velocity of 0.15 mm/s with 

no compressive force and no postural deviation for a period of 20 seconds. The C3 

vertebral body was held in its initial position during these simulations. Maximum stress 

developed within the cortical shell on the right cranial pars interarticularis at the end of 

each simulation was used as the variable for determining convergence. Convergence was 

achieved if less than 1% difference in the peak stress occurred between two successively 

refined meshes (Kotha et al., 2004). 
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Table 6.2 – The number of nodes, elements, the magnitude of stress at the location of peak stress within the pars interarticularis and 
the percent change in stress between each of the three meshes constructed to identify convergence. 
 

CORTICAL 
BONE ENDPLATES TRABECULAR 

BONE DISC 

 Number 
of Nodes 

Total 
Number of 
Elements 

Number of 
Triangular 

Shell 
Elements 

Number of 
Quadrilateral 

Shell 
Elements 

Number of 
Tetrahedral 

Elements 

Number of 
Hexahedral 

Brick 
Elements 

Stress 
(MPa) 

Percent 
Change 

(%) 

Mesh 1 5051 25293 6710 112 18359 112 109.98  

Mesh 2 16849 88952 18912 112 69816 112 134.64 22.42 

Mesh 3 69546 377557 66359 112 310974 112 134.58 0.04 
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6.2.3 Simulation conditions 
 

Each simulation was performed in a sequence of three phases (compression, 

rotation and shear displacement). The following is a description of the loads and 

boundary conditions required to perform each phase of the simulations. All simulations 

were conducted in ABAQUS CAE 6.9 (SIMULIA, Providence, RI, USA). 

 

6.2.3.1 Loads 
 

Compressive forces were applied at 0%, 15%, 30%, 45% or 60% of the model 

specimen’s predicted compressive strength. A linear regression equation relating average 

endplate area to compressive failure tolerance was used to predict compressive strength 

(Parkinson et al., 2005). The previously mentioned percentages translated into 

compressive force magnitudes of 0 N, 813.2 N, 1626.4 N, 2439.6 N and 3252.8 N for the 

model specimen. In order to appropriately mimic the boundary conditions of the in vitro 

tests, the compressive forces were transformed into constant pressures in the model. The 

pressure was applied to the outer surface of the shell elements defining the C3 vertebra’s 

cranial surface. Compressive forces were transformed into pressures of 0 MPa, 2.776 

MPa, 5.551 MPa, 8.327 MPa and 11.102 MPa using the cranial surface area (292.98 

mm2) for the C3 vertebra. 

 

6.2.3.2 Boundary conditions 
 

Prior to application of backward shear displacement of the C4 vertebra, the model 

was subjected to the compressive pressure and a postural deviation about the model’s 
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flexion/extension (Z) axis. Since the modeled specimen was approximately 29% smaller 

than specimens tested in Chapter 3, and considering that larger flexion angles would not 

have allowed the facets of the modeled specimens to come into contact with each other 

during shear displacement, simulated flexed (5.67 degrees) and extended (3.15 degrees) 

postures were scaled to be 29% smaller than those reported in Chapter 3. These postural 

deviations fell within the respective range (flexion = 3.7 – 11.1 degrees; extension = 2.1 – 

6.2 degrees) of neutral zone limits derived from the in vitro flexion/extension passive 

tests conducted for each specimen in Chapter 3. Nodes for shell elements covering 

approximately 25% of the C4 vertebral body and part of the exposed inferior facets were 

constrained from moving in all degrees of freedom during this step. From the compressed 

and rotated state, backward displacement of the C4 vertebra was performed at a constant 

displacement rate of 0.15 mm/s to mimic the in vitro test conditions during acute shear 

failure. This was performed for a simulated period of 20 seconds producing a total shear 

displacement of 3 mm for the C4 vertebra. Displacement of the C4 vertebral body was 

constrained to be entirely in the anterior-posterior direction in order to properly simulate 

the in vitro fixation and test conditions from Chapter 3 that physically constrained this 

axis of motion. The position of the C3 vertebral body was fixed during the backward 

displacement phase, again replicating the in-vitro testing configuration. 

 

6.2.3.3 Contact formulation 
 

Contact between the adjacent vertebrae was modeled as frictionless and non-

linear (Chosa et al., 2004; El-Rich et al., 2009), with node-to-surface contact defined 

between the cortical shell elements for both C3 and C4 (El-Rich et al., 2009).  



 173 

6.2.4 Post-processing 
 

Output measurements extracted from the C3 vertebra for each simulation were the 

location of initial facet contact, the number of nodes in contact with the C4 vertebra, 

contact force, force centroid for facet contact, location of peak stress within the pars 

interarticularis and the magnitude of the stress at this location (Figure 6.3). The moment 

arm length between the force centroid for facet contact and the location of peak stress 

was also calculated. These output measurements were extracted for all iterations (i.e. time 

step) of the backward C4 displacement phase. Time points of interest during the 

displacement phase were the end of the shear displacement phase and a point at which 

identical strain was produced for each posture within a single compressive load. The 

moment arm lengths produced at the end of the shear displacement phase for all 

simulations with greater than 0% compressive force were also correlated with the 

ultimate shear failure tolerances quantified in vitro from Chapter 3 in order to determine 

the potential influence of moment arm length on ultimate shear failure. 
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Figure 6.3 – The defined location for the pars interarticularis (A.), stress distribution 
following 3 mm of C4 backward shear displacement illustrating the location of peak 
stress within the pars interarticularis (B.), and the contacting node locations as well as the 
moment arm length between the force centroid of facet contact and the location of peak 
stress within the pars interarticularis (C.) for the C3 vertebra. 
 

6.2.5 Model verification and validation 
 

 Verification of the meshing procedure, and the utility of tetrahedral elements was 

evaluated by comparing the finite element model results of a cantilevered beam meshed 

with tetrahedral elements to the beam’s analytical solution. For the verification, a beam 
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of uniform thickness (10 mm), height (10 mm), and length (15 mm) was analyzed. An 

encastre boundary condition was applied to one end of the modeled beam along its 

length. This is equivalent to rigidly affixing the beam to a wall so that it cantilevers away 

from the wall. In both the analytical formulation, and the model’s formulation, a 2000 N 

downward force was applied to the beam’s opposite end. The three-dimensional structure 

of the beam in the finite element model was composed of 3519 tetrahedral elements. The 

beam was assigned the same linear, isotropic and homogeneous material properties as 

was used for trabecular bone in this study (E = 229 MPa, Poisson’s Ratio = 0.3). The 

maximum in-plane stress at the beam’s top line affixed to the wall was analyzed between 

both analytical and modeled solutions. 

 The model’s implementation (e.g. choice of material properties and/or boundary 

conditions) was validated by comparing calculated vertebral reaction forces from the 

modeled FSU in each simulated condition with data from comparable in vitro tests 

conducted in Chapter 3. The 95% confidence interval limits from the in vitro data were 

calculated after 3 mm of shear displacement for each of the 12 tested combinations of 

compressive force and postural deviation from Chapter 3. These limits were compared to 

the modeled reaction forces from the FSU in the current investigation under similar 

imposed conditions after 3 mm of shear displacement. 
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6.3 RESULTS 
 

6.3.1 Convergence study 
 

The location that was selected for testing convergence was similar between each 

of the three mesh densities and was chosen since this was the location of maximum stress 

within the pars interarticularis following the 3 mm of shear displacement with no 

compressive force and the vertebral joint in its neutral position. Stress at this location 

changed by 22.4% from the coarse mesh to the intermediate mesh, but only changed by 

0.4% between the intermediate and fine meshes (Table 6.2). The intermediate mesh 

satisfied our convergence criterion of a 1% change in stress at the location of peak stress 

within the pars interarticularis and was used for all further simulations. 

 

6.3.2 Model verification and validation 
 

 The cantilevered beam’s analytical solution produced a maximum in-plane stress 

of 180 MPa at the beam’s constrained end (see Appendix D.1 for calculation). The 

modeled solution produced a maximum in-plane stress of 174.6 MPa at the same location 

for a discrepancy of 3.0% between the modeled and analytical solutions. 

 On average, reaction forces calculated from simulations conducted in the 

extended and neutral postures consistently exceeded the 95% confidence interval’s upper 

limit (by respective averages of 49.7% and 38.5%), for shear force after 3 mm of 

displacement, calculated from the in vitro data collected in Chapter 3 (Table 6.3). The 

maximum discrepancy of 110.3% occurred for the extended posture with a compressive 

load equal to 15% of the calculated compressive tolerance. Reaction forces calculated 
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from simulations conducted in the flexed posture were consistently within the 95% 

confidence interval limits for shear force after 3 mm of displacement from comparable in 

vitro tests (Table 6.3). 

 

Table 6.3 – Comparison of simulated reaction forces and the 95% confidence interval of 
measured shear forces, from comparable in vitro tests conducted in Chapter 3, following 
3 mm of posterior shear displacement of an FSUs caudal vertebra. 
 

Force at 3 mm Displacement 
(N) 

95% Confidence Interval Compression Posture 

Model Cranial 
Vertebra 

Reaction Force 
(N) 

Lower Upper 

Extended 3809.6 1543.1 1811.5 

Neutral 3012.2 1373.2 2242.5 15% 

Flexed 1556.7 1195.8 1590.7 

Extended 3950.6 1894.0 2722.7 

Neutral 3289.8 1762.9 2101.4 30% 

Flexed 1716.5 1256.3 1917.2 

Extended 4077.1 1257.7 3659.5 

Neutral 3509.7 2178.7 2815.8 45% 

Flexed 1990.2 1234.7 2247.2 

Extended 4223.8 2294.4 3198.2 

Neutral 3699.7 1818.8 2670.8 60% 

Flexed 2268.9 1832.2 2623.2 
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6.3.3 Simulation results following 3 mm of shear displacement 
 

6.3.3.1 Compression 
 

Each 15% increment in compressive force generated a reduction in intervertebral 

disc height of 0.24 mm equivalent to 5.1% of the original disc height. Thus, a maximum 

intervertebral disc height reduction of 0.96 mm (or 20.4%) was evident at the 60% 

compressive force magnitude. Separation between the articulating inferior facets of C3 

and superior facets of C4 decreased with increasing compressive force magnitude. In the 

neutral posture, compression that was greater than 45% of the predicted compressive 

tolerance brought the facets into contact prior to beginning the shear displacement (Table 

6.4). Stress and strain at the location of peak stress within the pars after 3 mm of shear 

displacement both increased respectively by an average of 21.2 ± 2.0% and 23.6 ± 1.9% 

with each successive 15% increase in compressive force (Figures 6.4 & 6.5).  
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Table 6.4 – Shear displacement applied prior to initial facet contact for the left and right 
facets and for each simulation condition. 
 

Shear Displacement Until Facet Contact 
Compression 

(%) Posture Left 
(mm) 

Right 
(mm) 

Extended 0 0 
Neutral 1.09 0.94 0% 
Flexed  2.89 

Extended 0 0 
Neutral 0.64 0.64 15% 
Flexed 3.00 2.44 

Extended 0 0 
Neutral 0 0.34 30% 
Flexed 2.29 2.14 

Extended 0 0 
Neutral 0 0 45% 
Flexed 1.69 1.84 

Extended 0 0 
Neutral 0 0 60% 
Flexed 1.09 1.54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4 – Magnitude of stress at the location of peak stress within the C3 left and right 
pars interarticularis at the end of the 3 mm shear displacement phase for each simulation. 
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Figure 6.5 – Strain at the locations of peak stress within the C3 left and right pars 
interarticularis at the end of the 3 mm shear displacement phase for each simulation. 
 

The number of nodes on the C3 inferior facets that came into contact with the C4 superior 

facets at the end of the 3 mm shear displacement increased by an average of 18.5 ± 2.8% 

with each 15% increment in compressive force (Figure 6.6).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6 – The number of C3 cortical shell nodes, divided into left and right sides, in 
contact with the C4 cortical shell at the end of the 3 mm shear displacement phase for 
each simulation. 
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Increased compressive force lead to an upward and anterior translation for the force 

centroid of facet contact on the left inferior C3 facet surface by 0.24 mm and 0.12 mm 

respectively per 15% increment in compressive force (Table 6.5). The force centroid of 

facet contact on the right inferior facet only had an average superior and anterior 

migration of 0.05 mm and 0.06 mm for each 15% increment in compressive force (Table 

6.5). 
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Table 6.5 – Center of facet contact force location at the end of each simulation for both left and right facets. The center of force 
location for the 0% compression and neutral posture served as the reference location for all other simulations. Values reported in this 
table are derived from the non-deformed nodal coordinates of nodes that were in contact at the end of each simulation. This ensures 
that the location for the center of facet contact force shown in this table is presented in the same context for each simulation. Anterior, 
upward, and medial migrations are given by positive values while posterior, downward and lateral migrations are given by negative 
values. 
 

LEFT 
(mm) 

RIGHT 
(mm) Compression 

(%) Posture 
Anterior/Posterior Vertical Medial/Lateral Anterior/Posterior Vertical Medial/Lateral 

Extended 0.64 0.62 0.13 0.11 0.40 -0.13 
Neutral 0 0 0 0 0 0 0% 
Flexed    0.50 -0.96 1.15 

Extended 0.71 0.87 0.08 0.15 0.44 -0.09 
Neutral 0.16 0.15 0.04 0.02 0.07 -0.02 15% 
Flexed 0.10 -0.53 0.36 0.18 -0.64 0.58 

Extended 0.83 1.12 0.07 0.22 0.47 -0.02 
Neutral 0.36 0.36 0.09 0.10 0.07 0.08 30% 
Flexed -0.03 -0.50 0.27 0.09 -0.54 0.40 

Extended 0.97 1.36 0.09 0.30 0.46 0.07 
Neutral 0.53 0.63 0.06 0.16 0.05 0.18 45% 
Flexed -0.44 -0.41 -0.04 0.20 -0.51 0.50 

Extended 1.04 1.69 0.06 0.39 0.40 0.22 
Neutral 0.52 0.92 -0.05 0.21 0.12 0.19 60% 
Flexed -0.40 -0.24 -0.11 0.19 -0.49 0.49 
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Superior and anterior migration, after 3 mm of shear displacement, for the force centroid 

of facet contact contributed to an average decrease of 1.9 ± 1.4% in the moment arm 

length between the force centroid of facet contact and the location of peak stress within 

the pars interarticularis (Figure 6.7). The largest change in the moment arm length was 

3.7% and occurred between the 15% and 30% compressive forces. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7 – Moment arm length between the center of facet contact force location on the 
left and right C3 facets and the locations of peak stress within the left and right pars 
interarticularis after the 3 mm shear displacement phase for each simulation. 
 
 
6.3.3.2 Posture 
 

Initial separation between the facets increased by an average of 1.82 mm with 

flexed postures compared to neutral (Table 6.4). There was no relationship between facet 

gap and extended postures since the extended posture immediately brought both the left 

and right facets into contact (Table 6.4). Compared to neutral postures, and after 3 mm of 

shear displacement, stress and strain for simulations performed in flexed postures were 

reduced by an average of 62.8 ± 2.8% and 70.4 ± 5.2% respectively (Figures 6.4 & 6.5). 
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Conversely, extended postures, compared to neutral postures, generated an average 38.2 

± 8.7% and 38.7 ± 8.7% increase in stress and strain respectively after 3 mm of shear 

displacement (Figures 6.4 & 6.5). 

Flexed postures had an average decrease, compared to neutral postures, in the 

number of contacting nodes of 80.6 ± 6.8% (Figure 6.6). Meanwhile, extended postures 

had an average increase, relative to neutral postures, in the number of contacting nodes 

by 43.8 ± 5.6% (Figure 6.7). Flexed postures also generated an inferior and posterior shift 

in the force centroid of facet contact on the C3 inferior facets by an average of 0.66 mm 

and 0.18 mm respectively (Table 6.5). Extended postures produced a superior and 

anterior migration for the force centroid of facet contact by 0.46 mm and 0.27 mm (Table 

6.5). Alterations in the force centroid of facet contact contributed to an 11.9 ± 2.9% 

increase and a 4.1 ± 0.1% decrease in the moment arm length to the location of peak 

stress within the pars interarticularis for flexed and extended postures respectively 

(Figure 6.7).  

 

6.3.4 Simulation results at consistent strain 
 

A separate analysis was conducted for the maximum stress, moment arm length 

and the number of facet surface nodes in contact at the identical strain level. The 

reference strain for the extended and neutral postures at a single compressive load was 

the strain produced at the location of maximum stress (Figure 6.5) for the flexed posture 

after 3mm of shear displacement. The flexed posture was chosen for the reference strain 

since this posture consistently had smaller strain values than either the neutral or 

extended postures. Furthermore, this analysis was performed only for cases where both 
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facets had come into contact when the target strain had been achieved. Simulations with 

no added compressive force were omitted from the analysis since both the left and right 

inferior facets of C3 had not come into contact with the superior facets of C4 for the 

flexed posture. 

Maximum stress and the moment arm length were reduced while the number of 

contact nodes increased for both extended and neutral postures respectively (Figure 6.8). 

Furthermore, higher stresses were developed along an oblique line through the pars 

interarticularis as a result of facet interaction during the shear displacement phase (Figure 

6.8). In order to achieve the same strain, maximum stress was reduced for both the 

extended (on average by 19.0 ± 7.1%) and neutral postures (on average by 16.9 ± 5.9%), 

relative to the flexed posture, at each compressive load (Table 6.6). The magnitude of 

reduction in maximum stress decreased with increasing compressive force with the 

largest (34.9%) and smallest (3.1%) reductions occurring at the 15% and 60% 

compressive force magnitudes respectively (Table 6.6).  
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Figure 6.8 – Alterations in stress distribution and the number of facet nodes in contact 
with extended, neutral and flexed postures with 15% of compressive force applied to the 
superior surface of the C3 vertebra for identical strain. Note that the color of stress near 
the marked location of peak stress within the pars interarticularis changes from green to 
yellow to orange with extended, flexed, and neutral postures respectively. This indicates 
that stress within the pars interarticularis increases from an extended posture to a flexed 
posture for a given strain. 
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Table 6.6 – Magnitude of stress, moment arm length, and the number of contacting nodes for the identical strain of each posture 
within a single compressive load.  
 
 

Stress 
(Mpa) 

Moment Arm 
Length 
(mm) 

Number of Contacting 
Nodes  

(#) 
Target Strain 

(%) 
Compression 

(%) 
Posture 

Left Right Left Right Left Right 

Extended 35.5 55.9 9.6 12.9 2 9 
Neutral 36.0 60.4 10.8 13.3 1 5 0.17469 15% 

Flexed 67.3 75.5 14.5 15.4 1 2 

Extended 82.3 74.0 9.3 12.8 2 8 

Neutral 79.9 75.8 10.6 13.3 2 6 0.39824 30% 

Flexed 94.3 90.4 12.0 15.4 2 2 

Extended 136.6 103.6 9.4 12.8 3 12 
Neutral 135.8 104.3 10.4 13.2 2 9 0.67538 45% 

Flexed 139.7 113.2 12.4 14.3 2 4 

Extended 199.0 137.8 9.4 12.9 3 14 

Neutral 197.5 138.0 10.4 13.1 3 11 1.0004 60% 

Flexed 202.0 144.2 12.3 14.4 4 7 
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A similar trend was observed whereby the relative number of contact nodes at identical 

strain values increased with the extended (195.8 ± 73.8%) and neutral (106.5 ± 49.8%) 

postures when compared to the flexed posture (Table 6.6). Again, the largest (383.6%) 

and smallest (25.9%) increase in the number of contact nodes at the identical strain also 

occurred at the 15% and 60% compressive force magnitudes respectively (Table 6.6). 

Extended postures also had an average 19.0 ± 1.6% reduction in the moment arm length, 

compared to flexed postures, in order to achieve the same strain (Table 6.6). Likewise, 

neutral postures had an average 13.7 ± 1.5% reduction in moment arm length, compared 

to flexed postures, in order to achieve the same strain (Table 6.6). Reduction of moment 

arm length for extended (range = 16.8% - 24.9% reduction) and neutral (range = 12.0% - 

19.7%) postures was not influenced by the magnitude of compressive force (Table 6.6).  

 

6.3.5 Relationship of moment arm length changes with ultimate failure from in vitro 
testing 
 

Changes in moment arm lengths that were derived from the finite element model 

and produced by the varying simulation conditions (changing compressive forces and 

flexion/extension postures) were analyzed for their relationship to measured ultimate 

shear failure tolerances of the porcine cervical functional spinal unit exposed to similar 

boundary and loading conditions. Positive changes in moment arm length produced 

primarily by flexed postures and smaller compressive loads, and negative changes in 

moment arm length produced primarily by extended postures were negatively correlated 

(r = -0.71) to smaller ultimate shear failure tolerances measured in vitro from vertebral 

functional spinal units exposed to similar boundary and loading conditions (Figure 6.9). 
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This implies that for the identical strain, increasing the moment arm length as a function 

of flexion/extension postural deviation leads to reductions in ultimate shear failure 

tolerance. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9 – The change in moment arm length, relative to the simulation with 15% 
compression and in the neutral posture, for each simulation versus the quantified ultimate 
shear failure tolerances for the identical test conditions in Chapter 3. Black, white, and 
gray symbols represent simulations/in vitro tests conducted in extended, neutral, and 
flexed postures respectively. Diamonds, circles, squares, and triangles represent 
simulations/in vitro tests conducted under 15%, 30%, 45%, and 60% compressive force 
respectively. Error bars represent the standard error of the mean ultimate shear failure 
tolerance calculated in Chapter 3. 
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6.4 DISCUSSION 
 

The primary goal of this investigation was to use a finite element model of the 

porcine cervical functional spinal unit to investigate the hypothesis that ultimate shear 

failure of the vertebral joint under different compressive force and flexion/extension 

postures is modulated by the moment arm length between the force centroid of facet 

contact and the location of peak stress within the pars interarticularis. This study showed 

that vertebral flexion and extension respectively produced increased and decreased 

moment arm lengths and also created larger and smaller gaps between articulating facets. 

Although compressive loads lead to a small cranial migration of the force centroid of 

facet contact, the moment arm length between this location and the location of peak stress 

within the pars interarticularis was not substantially affected by compressive force. For 

an identical strain, results from this study indicate that stress within the pars 

interarticularis is smaller when the moment arm length is reduced by extension, and that 

stress is larger when the moment arm length is increased by flexion. These results 

provide quantitative evidence that the moment arm length between the force centroid of 

facet contact and the location of peak stress within the pars interarticularis is a critical 

factor that influences shear failure tolerance of the vertebral joint. Qualitatively, higher 

stresses were observed along an oblique line through the pars interarticularis during the 

shear displacement phase. Lastly, increased moment arm length, as a result of postural 

deviation and compressive force, explained 50% of the variance in ultimate shear failure 

load from the comparable in vitro tests conducted in Chapter 3. This indicates that the 

moment arm length between the force centroid of facet contact and the location of peak 
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stress within the pars interarticularis is a dominating factor that modulates anterior shear 

ultimate failure tolerances. 

In vitro investigations using pressure sensitive films have shown that facet contact 

area and the location of facet contact is modulated by altered flexion/extension postures 

(Lorenz et al., 1983; Dunlop et al., 1984). In particular, extended postures were shown to 

increase the facet contact area (Lorenz et al., 1983) and lead to caudal migration for the 

area of facet contact while flexed postures reduced facet contact area and led to cranial 

migration for the area of facet contact (Dunlop et al., 1984). Findings regarding the 

effects of postural deviation on facet contact area and the location of facet contact as 

demonstrated by Dunlop and colleagues (1984) were congruent with the simulations 

performed for the current investigation. Simulations conducted in the current 

investigation showed that flexed postures caused the force centroid of facet contact to 

migrate cranially and also reduced the number of facet nodes that were in contact. 

Conversely, extended postures caused the force centroid of facet contact to migrate 

caudally and also increased the number of facet nodes that were in contact. These 

findings are also congruent with similar in vitro tests conducted using pressure sensitive 

film in between the articulating facets (Lorenz et al., 1983; Dunlop et al., 1984).  

Disc height reduction produced by compression has also been shown to not 

substantially alter the location of facet contact (Dunlop et al., 1984), but did manage to 

increase the area of contact (Lorenz et al., 1983). The current investigation also 

demonstrated that the location of facet contact force did not change with additional 

compressive force. Previous in vitro research has shown that facet contact area increases 

by as much as 36% and 61% with disc height reductions of 1 mm and 4 mm 
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(approximately 11% and 44% of the total disc height) respectively (Dunlop et al., 1984). 

Disc height reductions reported for this investigation were equivalent to 0.24 mm (or 

5.1% of initial disc height) for each 15% increment in compressive force applied in the 

simulations. Results from this investigation show that the number of nodes on the C3 

facets that were in contact after 3 mm of shear displacement (a surrogate measure for 

contact area) increased by 18.5% with each successive 15% increment in applied 

compressive force. These findings indicate that the reported increased contact area 

reported by Dunlop and colleagues (1984) would have been achieved in this investigation 

at the 30% and 60% compressive force magnitudes. However, percentage of disc height 

change observed in this investigation does not mimic the estimated percentage of disc 

height (1 mm and 4 mm reductions that were approximately 11% and 44% of total disc 

height) change reported by Dunlop and colleagues (1984). This may be due to the use of 

a single material for the intervertebral disc.  

Flexion/extension posture has also been shown to alter the gap between 

articulating facets. Drake and colleagues (2008) showed that flexion increases the gap 

between articulating facet while extension decreases the gap between articulating facets. 

These authors concluded that alterations in the gap between articulating facets create an 

injury mechanism that depends on postural deviation for scenarios where the facets are 

forced to come into contact with one another. The current study also demonstrated that 

the gap between articulating facets increases with flexion and decreases with extension. 

Furthermore, simulations performed in the current study showed that the gap between 

articulating facets is also decreased by additional compressive force. Relative changes in 
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the space between articulating facets with postural deviations reported in this 

investigation correspond to results from previous in vitro research (Drake et al., 2008). 

Studies investigating the mechanism of vertebral joint failure under acute as well 

as repetitive shear loading have consistently identified a bilateral failure of the cranial 

pars interarticularis as the location of failure (Cripton et al., 1995; Yingling and McGill, 

1999; van Dieën et al., 2006; Beadon et al., 2008; Gallagher et al., 2010; Chapters 3-5). 

Images produced by Yingling and McGill (1999) and failure patterns noted from sagittal 

plane x-rays and physical observation of specimens following acute as well as repetitive 

shear failure (Chapters 3-5) demonstrate that the line of fracture within the cranial 

vertebra’s pars interarticularis, and for the functional spinal unit exposed to shear loading, 

travels obliquely from the superior and medial border of the inferior facet to the inferior 

and lateral border of the superior facet. Based on this observation within Chapter 3, the 

pars interarticularis length was defined within Chapter 4 as the distance between these 

two points as identified from an x-ray of a specimen taken in the sagittal plane. 

Qualitative results presented in this investigation demonstrate that the inferior 

anterolateral portion of the pars interarticularis  develops a high concentration of stress 

during facet interaction resulting from backward shear displacement of the caudal 

vertebra. This is consistent with reports that pars interarticularis fractures resulting from 

shear load initiate within the inferior anterolateral portion of the pars interarticularis 

(Cyron et al., 1978). Evidence of stress concentrations within the region defined by the 

superior and medial border of the inferior facet and the inferior and lateral border of the 

superior facet for the cranial vertebra are coincident with the line of fracture observed 

from in vitro testing that uses similar boundary conditions, indicating that fracture 
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patterns observed following acute and repetitive shear loading are most likely a result of 

stress concentrations developed along this oblique line. Furthermore, this fracture pattern 

is likely a result of a bending moment generated about the pars interarticularis by the 

interacting facet contact force. 

Cyron and colleagues (1976) initially stated that failure of the pars interarticularis 

from direct facet loading is resultant from the moment generated by this contact force 

about the pars interarticularis. Finite element results have indicated that the stress 

distribution within the vertebral joint is influenced by postural deviations when studying 

complex loading scenarios (Shirazi-Adl, 1991). Yingling and McGill (1999) 

hypothesized that the moment arm length increases with flexed postures and is a 

modulator of ultimate shear failure tolerances for the vertebral joint. Yingling and McGill 

(1999) concluded that increased moment arm length contributed to higher ultimate shear 

failure forces when specimens were flexed. This conclusion does not correspond to the 

findings of Chapter 3 from this thesis or with the results presented within the current 

investigation. Results from Chapter 3 demonstrate that ultimate shear failure tolerance in 

a flexed posture was reduced, relative to failure tolerance in a neutral posture, by an 

average of 12.8% (or 303.5 N). Furthermore, results from the finite element model 

demonstrate that, in order to achieve the same strain, stress within the pars interarticularis 

and moment arm length are both increased with flexed postures. These findings indicate 

that the increased moment arm length produced by flexion is more likely to reduce the 

ultimate shear failure tolerance measured from in vitro studies. Conversely, results from 

Chapter 3 demonstrated that ultimate shear failure tolerance in extended postures was 

increased by 13.2% compared to failure tolerances in a neutral posture. Simulations from 
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the current investigation provide evidence that, in order to achieve the same strain, stress 

and the moment arm length are both decreased in extension. These findings indicate that 

decreased moment arm length produced by extension is more likely to increase ultimate 

shear failure tolerance of the verterbral joint as measured during the in vitro tests.  

Changes in moment arm length produced primarily by altered flexion/extension 

posture in the current investigation demonstrated a negative correlation with the ultimate 

shear failure values from in vitro investigation under similar boundary conditions. Thus, 

results from the simulations conducted in this investigation provide quantitative support 

for the hypothesis that moment arm length between the center of facet contact force and 

the location of peak stress within the pars interarticularis is a modulator for the magnitude 

of stress developed within the pars interarticularis that can eventually lead to failure. The 

results from this investigation also indicate that increased ultimate shear failure 

tolerances quantified during in vitro testing with increased compressive forces may not be 

a direct result of reduced moment arm lengths as originally hypothesized. Instead a 

secondary mechanism whereby the increase in facet contact area with additional 

compression distributes the facet contact pressure over a larger area that ultimately 

requires a larger force, and consequently higher measured ultimate shear failure forces of 

the joint, in order to create failure of the pars interarticularis. 

Finite element models of biological structures require the investigator to define a 

set of assumptions regarding the properties and behavior of materials, model geometry, as 

well as the loads and boundary conditions to be applied within the simulations. These 

assumptions provide a set of limitations for the finite element model. The geometry for 

the finite element model in the current investigation was constructed from the C3 and C4 
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vertebrae of a porcine C3-C4 functional spinal unit since the simulations performed in the 

current investigation were designed to mimic in vitro tests conducted using a porcine 

cervical model. The geometrical and functional similarities between the porcine cervical 

spine and the human lumbar spine have been documented (Yingling et al., 1999) and 

discussed in more detail within the previous three studies as a limitation. The approach 

used to develop the current model’s geometry may create a more simplified 

representation of the real vertebral geometry than other studies that have developed 

geometries directly from computed tomography scans (Aziz et al., 2008; Pahr and Zysset, 

2008; Young et al., 2008). Furthermore, the use of computed tomography scans might 

have allowed for a variable cortical thickness to be applied instead of the constant 

thickness used for the current investigation. However, the thickness of the cortical shell 

elements was taken from previously published finite element models (Kato et al., 1998; 

Akahoshi et al., 2005).  

The current investigation presents the first iteration of this finite element model 

and was created to be a reasonable simplification of the porcine cervical functional spinal 

unit. In order to simplify the model, ligaments, surface cartilage covering the facets, and 

the facet joint capsule were not modeled for this initial investigation. Ligaments have 

been shown to provide negligible resistance to shear loading scenarios (Sharma et al., 

1995) such as the ones imposed in the simulations for the current investigation. Inclusion 

and proper modeling of the facet cartilage may be able to improve the biofidelity of a 

vertebral finite element model (Womack et al., 2008). Since the model used for this 

investigation was the initial iteration, the cartilage surfaces were omitted. Further 

simulations that are performed with this model and involving facet contact should include 
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a material representation of the facet cartilage surface. Modeling the facet joint capsule 

and the synovial fluid within this capsule can add another level of biofidelity to this finite 

element model (Kumaresan et al., 1998). This level of detail can also be included in 

future iterations of this finite element model. These biological simplifications enhanced 

implementation while maintaining the biofidelity of the most critical structures (the 

vertebrae) and to provide a base on which future iterations of the model can build. 

Thirdly, the material properties for all components within the model used for this 

investigation were linear, isotropic and homogenous. Material properties were literature-

based values, with the exception of the lumped properties for the intervertebral disc, 

obtained from studies conducted on porcine vertebrae and functional spinal units. Elastic 

moduli used in this investigation for the cortical and trabecular bone were larger than 

values commonly used for modeling the same materials in finite element models of 

human vertebrae (Kumaresan et al., 1999; Fantigrossi et al., 2007). Differences in elastic 

moduli are primarily derived from the fact that porcine trabecular and cortical bone have 

a higher density than human trabecular and cortical bone (Inui et al., 2004). The 

intervertebral disc is often modeled with three separate components (annulus fibers, 

ground substance, and nucleus pulposus) (Natarajan et al., 2004; Stokes et al., 2010). The 

primary focus of the simulations performed in the current investigation was within the 

pars interarticularis and not the intervertebral disc. The intervertebral disc allowed for 

specimen height reduction with added compressive load and also provided resistance to 

flexion/extension postural deviations. Thus, the disc satisfied its primary purpose for the 

current investigation. However, future investigations should focus on developing an 

improved disc model. 
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Linear tetrahedral elements were chosen to model the trabecular bone due to the 

complexity of a vertebra’s three-dimensional geometry. Hexahedral elements are 

typically favored in finite element modeling due to their ability to create ‘good’ quality 

elements and meshes (Cifuentes and Kalbag, 1992) that deform in a manner that 

maintains the mesh quality. Maintaining mesh quality is important for ensuring that the 

solution produced by the finite element model is computationally reliable. However, 

meshing of complex geometries with hexahedral elements can be a difficult and time-

consuming process (Cifuentes and Kalbag, 1992). Ramos and colleagues (2006) 

demonstrated that linear tetrahedral elements performed equally as well as their 

hexahedral counterparts in a finite element model of the proximal femur. The loading 

conditions for their model were designed to mimic the most strenuous phase of walking 

and produced maximum strain values of 1693 microstrain (equivalent to 1.693%). This 

strain is comparable to strains observed at the element of peak stress within the pars 

interarticularis for simulations performed in this investigation and supports the use of 

tetrahedral elements within the current investigation. Furthermore, the utility of linear 

tetrahedral elements for the current model was verified by comparing the modeled and 

analytical solutions from a cantilevered beam with dimensions assigned to mimic the 

inferior facet and its connection with the pars interarticularis. The verification procedure 

found that the modeling procedure only underestimated the analytical solution by 3.0%, 

suggesting that the choice of tetrahedral elements for the FSU model was feasible. 

The validation procedure found that reaction forces calculated from simulations 

conducted in extended and neutral postures consistently overestimated measured shear 

forces from comparable in vitro tests following 3 mm of shear displacement. Conversely, 
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the reaction forces calculated for simulations conducted in flexed postures were within 

the 95% confidence interval limits for measured shear forces from comparable in vitro 

tests. The two primary factors that could account for these discrepancies are the choice of 

material properties and/or boundary conditions (including choice of nodal sets) imposed 

upon the model. Material properties were obtained primarily from studies conducted on 

vertebrae of different races and/or species of pigs. While the race and species of pig may 

influence the measured material properties, it is more likely that choice of boundary 

conditions was the largest contributor to discrepancies between the modeled reaction 

forces and measured shear forces from comparable in vitro tests. The procedure for 

affixing the cranial and caudal vertebrae within the aluminum cups initially requires that 

their exposed superior and inferior facets be removed. This ensures the cup can be 

mounted flush with each vertebra’s exposed endplate. However, the remaining vertebral 

posterior elements (e.g. lamina, pars interarticularis, articulating facets, spinous process) 

are not constrained by the potting procedure, allowing these elements to bend more 

readily with applied loads through the articulating facets. Conversely, the modeled 

boundary conditions may have been more similar to in vivo conditions where the exposed 

superior and inferior facets respectively from the FSUs cranial and caudal vertebra were 

not removed, but instead were constrained from movement. In vivo, each pair of superior 

facets for a single vertebra articulates with the inferior facets of the immediately cranial 

vertebra that may limit bending of the posterior elements during shear loading. This may 

increase stiffness in vivo, and subsequently measured shear forces for a given 

displacement. Thus, the choice of nodal sets for the imposed boundary conditions may 

not have not allowed the pars interarticularis of the modeled FSU to bend as easily as in 
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the comparable in vitro tests. Consequently, this may have led to the large discrepancy 

between measured shear forces from in vitro tests and simulated reaction forces 

calculated from the model. In particular, this is a plausible explanation for larger 

discrepancies observed during simulations conducted in extended and neutral postures 

where the facets would have been in contact over larger displacements. In order to 

achieve better representation of the in vitro testing conditions, the set of nodes that are 

constrained within the model likely need to be refined. This may improve correspondence 

between the measured and simulated forces for comparable sub-failure displacements. 

In a recent review of spine biomechanics, Adams and Dolan (2005) stated that 

biomechanical testing and finite element modeling should compliment one another. The 

primary findings from this investigation compliment the results from Chapter 3 and 

support the hypothesis that altered flexion/extension postures and compressive forces 

applied to the vertebral joint can alter the moment arm length between the location for the 

force centroid of facet contact and the location of peak stress within the pars 

interarticularis during shear displacement. Specifically, flexion increased, while 

extension decreased, the moment arm length on average by 11.9% and 4.1% respectively. 

Increasing compressive force also produced a small average decrease of 1.4% in the 

moment arm length. Altered flexion/extension posture had a larger effect on the moment 

arm length compared to compressive force and may explain the more pronounced effect 

of flexion/extension posture on the ultimate shear failure tolerance observed in Chapter 3. 

Based on the results from this investigation, it is further hypothesized that compressive 

force acts in a secondary manner, perhaps by increasing facet contact area, to increase the 

shear failure tolerance of the vertebral joint. 
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CHAPTER 7 
 

THESIS SUMMARY AND CONTRIBUTIONS 
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7.1 THESIS SUMMARY 
 

The global purpose of the thesis was to develop a framework for understanding 

how failure properties of the functional spinal unit (FSU) under acute and repetitive shear 

loading are modulated. In particular, the studies of this thesis investigated the following 

four issues: 

i.) The combined influence that flexion/extension postural deviation and 

compressive load had on the ultimate shear failure tolerance of the vertebral 

joint  

ii.) The respective roles of bone density and vertebral morphology on ultimate 

shear failure tolerances 

iii.)  The ability of sub-maximal shear load to modulate cumulative shear load and 

the number of loading cycles sustained prior to failure 

iv.)  The influence of altered flexion/extension posture and compressive force on 

stress, strain, facet interaction and the length of the moment arm between the 

pars interarticularis and the force centroid of facet contact during anterior joint 

shear in a finite element model of a single vertebral joint. 

Porcine cervical FSUs consisting of two vertebrae, the intervening intervertebral 

disc, and all surrounding ligaments were used for the three in vitro investigations in this 

thesis. Shear displacement in these investigations was imposed to the caudal vertebra of 

each FSU through a pair of linear actuators attached to brushless electrical servomotors. 

Compressive force was applied through a separate servo-hydraulic actuator while 

flexion/extension postural orientation was controlled via a separate electrical servomotor. 

A fourth investigation used a finite element model of the porcine C3-C4 vertebral joint to 
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study the influence of flexion/extension postural deviation and compressive force on 

facet contact and internal stress/strain distribution during anterior joint shear. The three in 

vitro studies contributed tissue-based insights into modulation of shear failure thresholds 

for the vertebral joint while the finite element model provided a way of explaining results 

observed in the first in vitro investigation. 

 The respective influence of flexion/extension postural deviation and compressive 

force was investigated in Chapter 3. Results showed that there was no statistically 

significant interaction between postural deviation and compressive force on ultimate 

shear failure tolerance. However, ultimate shear failure tolerance was significantly 

different with a reduction of 13.2% for flexed postures (compared to neutral), and 

increased (compared to neutral) by 12.8% with extended postures. This finding 

contrasted previous results showing that ultimate shear failure tolerance either increased 

(Yingling and McGill, 1999) or showed no change (van Dieën et al., 2006) with flexion. 

Shear stiffness also decreased significantly with flexed postures. Each 15% increment in 

compressive force was met with an average 11.1% increase in ultimate shear failure 

tolerance and while shear stiffness also increased with added compressive force. It was 

hypothesized that alterations in flexion/extension posture and/or compressive force 

altered the location for the force centroid of facet contact. These changes in the location 

of facet contact were hypothesized to produce subsequent changes in the bending 

moment at the pars interarticularis that altered the measured ultimate shear failure 

tolerance. 

The roles of vertebral morphology and pars interarticularis bone density in 

modulating ultimate shear failure tolerance were studied in Chapter 4. Digital calipers 



 204 

and x-rays were used to make measurements of vertebral morphology while 

measurements of bone density were made using peripheral quantitative computed 

tomography. The three leading factors for calculating ultimate shear failure tolerance 

were the pars interarticularis length for the cranial vertebra (44.3% explained variance), 

the average facet angle measured in the transverse plane (12.3% explained variance), and 

cortical bone area through the pars interarticularis (11.9% explained variance). Results 

from this investigation provide critical insight into the morphological characteristics that 

could influence vertebral failure under shear loading. Fractures observed in this 

investigation were similar to those reported for studies performed with human specimens 

(Cyron et al., 1976) and also similar to reported spondylolitic fractures resulting from 

shear loading in humans (Farfan et al., 1976). This provides additional evidence that the 

porcine cervical spine is a suitable surrogate in vitro model for studying human lumbar 

spine mechanics. Evidence from this study also showed that cranial pars interarticularis 

fractures are the dominant injury mechanism occurring in anterior joint shear. This 

fracture was linked to the shorter relative length of the cranial vertebra’s pars 

interarticularis compared to those of the caudal vertebra. Furthermore, this was the first 

study that presented a mathematical model for determining ultimate shear failure 

tolerance. The regression model had similar errors (10.9% of shear failure tolerance) to a 

previously developed regression equation that predicts compressive failure tolerance 

(Parkinson et al., 2005). The mathematical model was used in the repetitive loading 

protocol to control sub-maximal load magnitude as a percentage of each specimen’s 

calculated ultimate shear failure tolerance. 
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The relationship between sub-maximal shear load magnitude and vertebral joint 

fatigue life under repetitive shear loading was investigated in Chapter 5. Both the number 

of cycles and the cumulative shear load sustained prior to failure decreased in a non-

linear manner with increasing sub-maximal shear load magnitude. These findings mirror 

results presented for similar investigations using repetitive compressive loading 

(Brinckmann et al., 1988; Parkinson and Callaghan, 2007b). Consequently, the findings 

of this study also suggested that estimates of cumulative shear load should assign greater 

importance to higher instantaneous shear loads. This was due to an increased injury 

potential at higher instantaneous shear loads. Cumulative load sustained prior to failure 

was used to develop a tissue-based weighting factor equation that would apply non-

linearly increased weight to higher normalized shear load magnitudes in estimates of 

cumulative shear load. Specimens exposed to repetitive shear loading to 80% of their 

calculated ultimate failure tolerances demonstrated a higher likelihood of injury to a 

combination of structures such as unilateral fractures of either the cranial or caudal pars 

interarticularis, bilateral fracture of the caudal pars interarticularis and endplate avulsion. 

Injury patterns observed at the highest load magnitude (80% of the calculated ultimate 

shear failure tolerance) were less consistent than injuries observed at the two lower 

loading magnitudes (40% and 60%). 

 The final study in Chapter 6 investigated the hypothesis that the moment arm 

length between the force centroid of facet contact and the pars interarticularis was altered 

with flexed/extended postures and compressive force. Secondly, alterations in the 

moment arm length would be reflected in congruent changes in stress observed within the 

pars interarticularis. These hypotheses were derived from the in vitro results of the first 



 206 

investigation (Chapters 3-5). A finite element model of the porcine C3-C4 functional 

spinal unit was created, and simulations were performed using similar boundary 

conditions as the comparable in vitro tests, to assess the plausibility of these hypotheses. 

Moment arm length was increased by 11.9% for flexed postures and decreased by 4.1% 

for extended postures. Alterations in moment arm length were larger for postural 

deviation than compressive force (average decrease of 1.4%) suggesting a secondary 

mechanism to explain the observed increase in shear failure tolerance with higher 

compressive loads from the first investigation (Chapter 3). One such possibility was the 

increase in the number of contacting nodes on the facet articular surfaces with higher 

compressive forces. Flexed postures also demonstrated higher stress in the pars 

interarticularis than either extended or neutral postures when the identical level of strain 

was considered. Lastly, alterations in moment arm length were able to explain 50% of the 

variance in measured ultimate shear failure tolerances from the first study (Chapter 3). 

Thus, the finite element model was successful in demonstrating the plausibility of 

moment arm length between the force centroid of facet contact and the pars 

interarticularis as a modulator of measured ultimate shear failure tolerance. 

 

7.2 HYPOTHESES REVISITED 
 

As stated in Section 1.2, the general hypothesis for this thesis was that the 

mechanical response of the FSU under anterior shear loading will be influenced by a 

combination of flexion/extension postures, compressive loads, bone density, vertebral 

morphology, and the submaximal loading magnitude (for repetitive loading scenarios). 

The findings from this thesis clearly indicate that all of the aforementioned factors do 
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indeed modulate measured shear failure tolerances under both acute and repetitive 

loading paradigms. The following are the null-hypotheses that were listed in Section 1.2, 

and decisions regarding rejection of each null-hypothesis. 

 

1. Ultimate failure load and displacement of the porcine FSU as well as shear 

stiffness and energy stored until failure under acute external shear load will not be 

influenced by varying compressive loads or flexion/extension postures. 

 

DECISION: Null hypothesis rejected for ultimate failure tolerance, shear 

stiffness, and energy stored until failure. Null hypothesis retained for ultimate 

displacement. Extension and flexion respectively increased and reduced measured 

ultimate shear failure tolerances, shear stiffness, and energy stored until failure. 

Increasing magnitude of compressive force also increased measured ultimate 

shear failure tolerances, shear stiffness, and energy stored until failure. Ultimate 

shear displacement was not influenced by either flexion/extension postural 

deviation or compressive force. 

 

2. Combinations of bone mineral density and morphological factors of the posterior 

elements will not provide appropriate estimates of the ultimate failure load under 

shear loading. 

 

DECISION – Null hypothesis retained. Bone mineral density had a smaller 

contribution to mathematical models for non-destructively calculating ultimate 
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shear failure tolerance than other morphological factors. However, facet angles 

measured in the transverse plane and the pars interarticularis length were 

identified as predictors of ultimate shear failure tolerance. 

 

3. The magnitude of external shear loading will not influence the cumulative shear 

load experienced by the porcine cervical FSU prior to failure. 

 

DECISION – Null hypothesis is rejected. Larger magnitudes of repetitively 

applied sub-maximal shear load reduced the cumulative shear load sustained prior 

to failure in a non-linear manner. 

 

4. Flexion/extension postures as well as compressive loads will not influence the 

internal stress developed at the pars interarticularis under shear loading. 

 

DECISION – Null hypothesis is rejected. Although not statistically evaluated, for 

a similar strain, extended postures reduced stress developed at the pars 

interarticularis compared to neutral and flexed postures under shear loading. 

Increasing compressive force also increased stress developed within the pars 

interarticularis under shear loading.  

 

5. Model results will not be related to any hypotheses derived from the comparable 

in vitro work performed in Study 1. 
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DECISION – Null hypothesis rejected. Model derived moment arm lengths 

between the force centroid of facet contact and the location of peak stress within 

the pars interarticularis were able to explain 50% of the variance and were 

negatively correlated with ultimate shear failure tolerances measured from 

comparable in vitro testing performed in Study 1. 

 

7.3 CONCEPTUAL MODEL FOR MODULATION OF ANTERIOR JOINT 
SHEAR FAILURE 
 

Potvin (2008) stated in a recent review of occupational spine biomechanics that 

while spine injury mechanisms from compressive loading have been studied extensively, 

there is a need for further basic research into vertebral tissue tolerances under shear as 

well as complex loading scenarios. Norman and colleagues (1998) also determined that 

peak shear load was a strong predictor for the incidence of low-back pain reporting. 

Results presented within this thesis address both of these statements and can be used to 

lay the groundwork for a basic conceptual model of vertebral shear injury potential. 

As illustrated in this thesis, the primary mechanism for injury as a result of shear 

loading is a bending moment applied about the pars interarticularis by facet contact 

forces derived from interaction between the inferior facets of a cranial vertebra and the 

superior facets of the adjacent caudal vertebra. Thus, changes in facet interaction are the 

most likely mechanical means for altering injury potential of the vertebral joint under 

shear loading. Modulation of facet interaction and subsequent vertebral injury potential 

resulting from shear loading can be understood using an approach that is similar to the 

principal factors (force, repetition, and posture) for determining injury potential within 
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occupational biomechanics (Figure 7.1). In addition to these three factors, the conceptual 

model includes vertebral morphology as a fourth factor that modulates facet interaction 

and possible injury under shear loading. Each of the four primary factors has the potential 

to interact with the other three primary factors in order to change facet interaction and 

subsequent injury potential. Each of these factors has been addressed within the thesis, 

however considerable work remains to uncover potential interactions between each of the 

factors as they relate to vertebral injury during shear loading exposures. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1 – Conceptual model for modulation of vertebral injury potential as a result of 
shear loading. The model consists of four primary factors that were addressed by the 
respectively shown chapters. Each of the primary factors has the potential to interact with 
any or all of the other three primary factors. The possibilities for some of these 
interactions were investigated within this thesis and are shown here. The dashed arrow 
indicates that Chapter 6 addressed the interaction between physical characteristics of the 
vertebra and the influence of compressive force on facet interaction. 
 

Flexion and extension respectively decreased and increased while compressive 

force increased the measured ultimate shear failure tolerances (Chapter 3). Based on 
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previously offered hypotheses (Cyron et al., 1976; Yingling and McGill, 1999), these 

alterations in shear failure tolerance were hypothesized to be linked to changes in the 

moment arm length between the force centroid of facet contact on the inferior facet and 

the location of peak stress within the pars interarticularis for the cranial vertebra. 

Increased measured ultimate shear failure forces were the consequence of decreased 

moment arm lengths. Conversely, decreased measured ultimate shear failure forces were 

the consequence of increased moment arm lengths. Plausibility for the moment arm 

hypothesis for postural deviation was presented from finite element model results that 

showed the force centroid of facet contact on the inferior facet of the cranial vertebra 

shifted caudally while the force centroid of facet contact shifted cranially as a result of 

changes in facet interaction (Chapter 6). Consequently, the moment arm length was 

reduced for extended postures and increased for flexed postures lending support for the 

moment arm hypothesis of altered shear injury potential resulting from postural 

deviation. The combined results from the in vitro testing and the finite element modeling 

also demonstrate how the interaction between physical characteristics of the vertebrae 

and postural deviation were investigated within this thesis. 

Conversely, compressive force did not ascribe to the same moment arm 

hypothesis as postural deviation. Increased compressive forces did not demonstrate 

reductions in moment arm lengths as determined from finite element simulations 

(Chapter 6). Instead a second mechanism whereby measured ultimate shear failure 

tolerances are increased as a result of increased facet contact area with higher 

compressive forces was proposed from the finite element model simulations (Chapter 6). 

Increases in contact area with higher compressive forces were similar to in vitro findings 



 212 

using pressure sensitive film (Dunlop et al., 1984). The new hypothesis proposes that 

distributing facet contact forces over a larger area with higher compressive loads 

modulates facet interaction that subsequently reduces stress within the pars and increases 

measured ultimate shear failure tolerances. It is also possible that increases in measured 

ultimate shear failure tolerance with higher compressive forces may be a result of 

changes in load sharing between the articulating facets and the intervertebral disc. 

Interestingly, there was no statistically significant interaction between postural 

deviation and compressive force on the measure ultimate shear failure forces. Postural 

deviation to the flexion and extension limits of the neutral zone’s linear region also 

demonstrated similar changes in measured ultimate shear failure tolerances as a 15% 

increase in applied compressive force. 

Morphological characteristics of the facets can also play a role in modulating 

measured ultimate shear failure tolerances (Chapter 4). The primary morphological 

characteristic used for predicting measured ultimate shear failure tolerance was the length 

of cranial vertebra’s pars interarticularis. However, facets that were oriented closer to the 

sagittal plane also demonstrated higher ultimate shear failure tolerances. Forces 

transmitted to the pars interarticularis as a result of facet contact are likely to be smaller 

when the facets are oriented closer to the sagittal plane with direct shear loading. This 

implies that more direct shear force would be required to generate the critical force 

required to create fracture of the pars interarticularis when the facets are oriented closer 

to the sagittal plane. 

Lastly, increasing magnitude of sub-maximal shear load generates a non-linear 

decrease in the shear fatigue life of the vertebral joint (Chapter 5). In vitro results of 



 213 

specimens tested in the neutral posture (Chapters 3 & 4) indicate that the shear yield 

force is approximately 72% of the measured ultimate shear failure tolerance with a range 

of 35% – 97%. Higher sub-maximal shear loads that approach or exceed the shear yield 

force may generate residual deformation and microdamage that could influence facet 

interaction that subsequently contributes to the non-linear decay in shear fatigue life. 

 

7.4 GLOBAL LIMITATION 
 

Individual limitations that are specific to each of the studies presented within this 

thesis are discussed within their respective chapters. One common limitation with each of 

the studies in this thesis is the use of the porcine cervical spine as a surrogate model for 

the human lumbar spine. 

Appropriate selection of an animal model is very important for linking results to 

human tissues (Alini et al., 2008; Busscher et al., 2010). The porcine cervical spine is 

smaller, but morphologically similar to the human lumbar spine (Yingling et al., 1999). 

In particular, the porcine cervical vertebrae have smaller pars interarticularis compared to 

the human lumbar vertebrae (Yingling et al., 1999). Despite this, ultimate shear failure 

loads have been previously shown to be similar between porcine cervical and human 

lumbar FSUs (Yingling et al., 1999). Facet orientation of the porcine cervical spine is 

similar to the human lumbar spine (Oxland et al., 1991).  

Using the porcine model allowed for control of confounding factors such as age 

and load exposure prior to death as well as the means by which death occurs in an 

attempt to improve inter-specimen homogeneity (Smit, 2002; Schmidt et al., 2005). 

Moreover, the porcine cervical spine was used to develop the finite element model 
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geometry in order to allow for a direct comparison between in vitro testing results and the 

model simulations. Fractures observed from the in vitro studies in this thesis are similar 

to observed in vivo shear related injuries. This finding adds further support for using the 

porcine cervical spine as a surrogate model for the human lumbar spine. Data from this 

thesis also showed that facet and spinal canal dimensions of the porcine cervical spine are 

congruent with similar measurements made on the human lumbar spine (Table 7.1). In 

particular, facet angle in the horizontal plane, spinal canal depth and width, interfacet 

distances, and ratios between facet width and length were found to be congruent between 

porcine cervical and human lumbar specimens. Larger measured shear stiffness and 

smaller measured ultimate failure displacements may be attributed to differences in 

displacement measuring protocols between studies. 

 

Table 7.1 – Comparison of morphology and structural properties between human lumbar 
and porcine cervical specimens from previous studies as well as this thesis. The asterisk 
indicates that all ranges of motion are based on pure moment loading with ±2 – 2.5 Nm 
applied to the specimen. 
 

Current Thesis 
Measurement Human 

Lumbar 

Previous 
Porcine 
Cervical Study 1 Study 2 Study 3 

Upper Endplate 
Depth (mm) 32.7 – 34.71 22.281 24.2 24.6 24.4 

Lower Endplate 
Depth (mm) 33.9 – 34.91 22.531 26.0 26.1 25.7 

Pedicle Width (mm) 6.9 – 16.21-3 8.67 – 8.911  9.5  
Pars Interarticularis 

Height (mm) 44.8 – 49.11 28.81 – 29.341    

Pars Interarticularis 
Width (mm) N/A 8.35 – 8.481    

Sagittal Facet Angle 
(degrees) 

40.88 – 
62.31,4,5 44.5 – 48.51,11 45.9 45.6 45.0 

Sagittal Facet 
Tropism (degrees)   3.6 3.0 3.2 
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Table 7.1 continued 

Current Thesis 
Measurement Human 

Lumbar 

Previous 
Porcine 
Cervical Study 1 Study 2 Study 3 

Transverse Facet 
Angle (degrees) 87.2 – 901 81.2 – 81.71    

Spinal Canal Depth 
(mm) 12.1 – 18.11,2 9.781  13.3  

Spinal Canal Width 
(mm) 16.1 – 17.11,2 17.921  18.7  

Superior Facet 
Length (mm) 

12.27 – 
15.3015  13.0 13.6 13.1 

Superior Facet Width 
(mm) 

10.36 – 
15.4515  12.5 13.0 12.7 

Inferior Facet Length 
(mm) 

13.27 – 
17.7915  11.2 12.0 10.8 

Inferior Facet Width 
(mm) 

10.05 – 
14.5615  11.9 12.4 12.1 

Inside Superior 
Interfacet Distance 

(mm) 
 23.4 23.7 23.9 

Outside Superior 
Interfacet Distance 

(mm)  

26.84 – 
35.2715 

 42.6 43.5 42.4 

Inside Inferior 
Interfacet Distance 

(mm) 
 23.6 23.4 24.6 

Outside Inferior 
Interfacet Distance 

(mm) 

24.99 – 
43.8215 

 41.0 41.4 41.7 

Superior Facet Width 
to Length Ratio 0.76 – 1.0115,16  0.96 0.95 0.97 

Inferior Facet Width 
to Length Ratio 0.68 – 0.9415,16  1.06 1.03 1.12 

Flexion/Extension 
Range of Motion* 

(degrees) 
3 – 86-9 22.4 – 23.912,13    

Lateral Bend Range 
of Motion* 

(degrees) 
4.5 – 6.96-9 27 – 35.212,13    

Axial Rotation 
Range of Motion* 

(degrees) 
1 – 26-9 4.5 – 8.512,13    
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Table 7.1 continued 

Current Thesis 
Measurement Human 

Lumbar 

Previous 
Porcine 
Cervical Study 1 Study 2 Study 3 

Anterior Shear 
Stiffness 
(N/mm) 

15510 139 – 2121,11 1051 842  

Ultimate Anterior 
Shear Force 

(N) 
1710 – 289410 1980 – 

35381,11 2372 2203  

Ultimate Anterior 
Shear Displacement 

(mm) 
1310 10 – 1811,14 6.0 6.6  

1. Yingling et al., 1999. 7. Oxland and Panjabi, 1992. 13. Goertzen et al., 2004. 
2. Zhou et al., 2000. 8. Panjabi et al., 1994. 14. Yingling and McGill, 1999. 
3. McLain et al., 2004. 9. Busscher et al., 2010. 15. Masharawi et al., 2005 
4. Masharawi et al., 2004. 10. Cripton et al., 1995. 16. Panjabi et al., 1992. 
5. Panjabi et al., 1993 11. Gallagher et al., 2010.  
6. Kettler et al., 2007. 12. Schmidt et al., 2005.  

 

7.5 FUTURE RESEARCH DIRECTIONS 
 

 As indicated in the literature review (Section 2.3.2.2), the facet joint capsule 

(consisting of two articulating facets, articular cartilage, capsular ligaments, synovial 

fluid and meniscus) has been implicated as a source of low-back pain signaling (Mooney 

and Robertson, 1976; Yang and King 1984; Cavanaugh et al., 2006) and involved with 

proprioception (Cavanaugh et al., 1996). Yang and King (1984) presented a mechanical 

theory for low-back pain signaling as a result of facet joint capsule compression while 

recent evidence has documented the neuromuscular response following facet joint 

capsule stretching (Azar et al., 2009). Future work should focus on the neuromuscular 

consequences as well as the nociceptive neural discharge resulting from scenarios such as 

vertebral shear loading that result in facet compression. 
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 A direct extension of work presented in this thesis and parallel to the direction of 

force-weighted estimates of cumulative compressive load (Parkinson and Callaghan, 

2008) would be to investigate the role that variable rest to work ratios have on the 

cumulative tolerance of the vertebral joint exposed to sub-maximal shear loading. This 

would make weighting factors derived from a bivariate mathematical model of sub-

maximal shear load magnitude and the rest to work ratio. Given the relationship between 

altered measured ultimate shear force and flexion/extension postural deviation that was 

presented in Chapter 3, it would be a logical subsequent step to determine the effect of 

flexion/extension postural deviation on the vertebral joint’s cumulative shear tolerance.  

Limitations of the finite element model presented in Chapter 6 should also be 

addressed in future studies. Most importantly, the intervertebral disc should consider the 

orientation and mechanical response of the annular fibers and nucleus pulposus. Findings 

from research recently presented on the relative importance of connections between the 

inter-lamellar and intra-lamellar matrices (Schollum et al., 2009; Schroeder et al., 2010; 

Gregory et al., in press) should be incorporated to future iterations of the intervertebral 

disc used in the finite element model presented in this thesis. These improvements are 

imperative for any investigations, such as herniation studies, where the site of injury or 

area of interest is within or surrounding the intervertebral disc. Other areas of 

improvement for the finite element model include the addition of ligaments surrounding 

the vertebral joint, improved facet joint capsule modeling by including capsular 

ligaments, articular cartilage covering the facet surfaces, and variable cortical bone 

thickness throughout each vertebra derived from computed tomography scans of each 

vertebra. 
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7.6 CONTRIBUTIONS OF THE THESIS 
 

 The following are the novel or supporting contributions from the work presented 

in this thesis. In vitro protocols used for this thesis employed a novel 6 degree of freedom 

material testing system for testing anterior vertebral joint shear (Chapters 3-5).  

Chapter 3 discovered that compression and flexion/extension postural deviation 

do not interact to modulate injury potential of the vertebral joint under acute shear failure. 

This chapter also was the first investigation to show that measured ultimate shear failure 

tolerance by 11.1% for each 15% increment in compressive force. Meanwhile, measured 

ultimate shear failure tolerance decreased by 13.2% for flexed postures, a finding that 

was in direct opposition to findings presented by Yingling and McGill (1999) and van 

Dieen and colleagues (2006), and increased by 12.8% for extended postures. Chapter 3 

also confirmed findings from previous investigations (Cripton et al., 1995; Yingling and 

McGill 1999; Beadon et al., 2008; Gallagher et al., 2010) that the cranial vertebra’s pars 

interarticularis as the dominant site of failure following acute and repetitive shear 

loading. This thesis also observed for the first time that caudal vertebra’s pars 

interarticularis fractured more frequently if vertebral joint is flexed (Chapter 3). 

Chapter 4 was the first study to systematically identify vertebral morphological 

characteristics that govern shear injury potential (cranial vertebra’s pars interarticularis 

length – 44.3% explained variance, average facet angle measured in the transverse plane 

– 12.3% explained variance, cortical bone area through pars interarticularis – 11.9% 

explained variance). This investigation was also the first to develop an equation for non-

destructively calculating ultimate vertebral shear failure tolerance (Chapter 4). 
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Furthermore, this investigation presented a novel measurement protocol for performing 

peripheral quantitative computed tomography scans of the pars interarticularis (Chapter 

4).  

A servomotor control algorithm for performing studies of repetitive anterior joint 

shear was developed for Chapter 5. This investigation was the first to quantify the non-

linear injury potential generated by larger sub-maximal shear forces (Chapter 5). The 

higher likelihood for multiple vertebral injury sites including unilateral fractures of either 

the cranial or caudal pars interarticularis, bilateral fracture of the caudal pars 

interarticularis and endplate avulsion at larger sub-maximal shear load magnitudes was 

also a novel observation. Similar methods to those used by Parkinson and Callaghan 

(2007a) for compressive loading, helped to develop the first tissue-based equation for 

determining appropriate weighting factors to be applied to sub-maximal shear loads in 

calculations of cumulative shear load (Chapter 5). 

A finite element model for the porcine C3-C4 vertebral joint was also completely 

developed within this thesis (Chapter 6). The methodology outlined a technique for using 

white light scanning to develop biological finite element model geometry (Chapter 6). 

Results from the finite element model confirmed the original hypothesis presented by 

Yingling and McGill (1999) that the moment arm length between the force centroid of 

facet contact and the cranial pars interarticularis increases (by 11.9%) for flexed postures 

and decreases (by 4.1%) for extended postures (Chapter 6). This investigation also 

confirmed that in order to achieve the same strain, increased stress and decreased contact 

area is observed with flexed postures compared to neutral and extended postures (Chapter 

6). The finite element model also demonstrated that compression reduced moment arm 
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length by an average of 1.4% (Chapter 6). Similar to in vitro findings (Dunlop et al., 

1984), this study demonstrated that compression increased facet contact area during 

anterior joint shear and that the location of contact force moved cranially with flexed 

postures and caudally with extended postures (Chapter 6). The finite element model also 

confirmed the original hypothesis generated by Cyron and colleagues (1976), and also 

suggested by results within Chapter 3, by demonstrating that alterations in the moment 

arm length were able to explain 50% of the variance in measured ultimate shear failure 

tolerance under similar in vitro testing conditions (Chapter 6). 

The final contribution of this thesis is the development of a novel framework, 

presented in Chapter 7, for understanding modulation of vertebral shear injury potential 

from the combined results of Chapters 3-6. 
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A. GALIL CODE 
 
A.1 Shear precondition 
 
CYCLE= 0 
FORCE= 0 
JOGSPEED= 39 
JG ,,0,0 
IPOSW= _TPW 
IPOSZ= _TPZ 
INITPOSN= IPOSW + IPOSZ 
BGWZ 
#INITPSH 
TARGET= 400 
CYCLE= CYCLE+1 
JP #ENDPROG,CYCLE=6 
JG ,,-JOGSPEED,-JOGSPEED 
#PUSH 
FORCEW= @AN[4] 
FORCEZ= @AN[5] 
FORCEW= (FORCEW + 0.0300929)*205.21 
FORCEZ= (FORCEZ - 0.00365714)*206.72 
FORCE= FORCEW + FORCEZ 
JP #INITPLL,TARGET<FORCE 
JP #PUSH 
#INITPLL 
TARGET= -400 
JG ,,JOGSPEED,JOGSPEED 
#PULL 
FORCEW= @AN[4] 
FORCEZ= @AN[5] 
FORCEW= (FORCEW + 0.0300929)*205.21 
FORCEZ= (FORCEZ - 0.00365714)*206.72 
FORCE= FORCEW + FORCEZ 
JP #INITPSH,TARGET>FORCE 
JP #PULL 
#ENDPROG 
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A.2 Acute shear failure 
 
VFLEX=-1 
#angflex 
JP#angflex,VFLEX=-1 
rate=444 
#shrrate 
JP#shrrate,rate=444 
zrate=-118 
wrate=zrate 
XQ #ASAMP,1 
v1=-1556 
#FLEX 
SETPOINT=v1 
SPX= 1000 
PAX= SETPOINT 
BGX 
WT 30720 
TARGET= 0 
JG ,,0,0 
BGWZ 
#S 
BEGIN= TIME 
#MOVING 
ANALOGW=@AN[4] 
ANALOGZ=@AN[5] 
TOTFORCE= ANALOGW + ANALOGZ 
JOGSPEED= 500*TOTFORCE 
JG ,,JOGSPEED,JOGSPEED 
CURRENT= TIME 
ELAPSE= CURRENT-BEGIN 
JP #MOVING,ELAPSE<10240 
#SHEAR 
JG ,,zrate,wrate 
BGWZ 
WT 190000 
#FINISH2 
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A.3 Repetitive shear failure 
 
TARGPCT=0.2 
FULLRATE=3192 
TRATE=@INT[TARGPCT*FULLRATE] 
IPUSH=(-9307.9*TARGPCT)+607.49 
IPULL=(7236.3*TARGPCT)-390.68 
CYCLE=0 
DUR=0 
FORCE=0 
CURSTF=0 
PREVSTF=0 
RATERR=0 
XQ #ASAMP,1 
JG,,0,0 
BGWZ 
WT1000 
#INITPSH 
JOGSPEED=@INT[IPUSH] 
PREVJOG=0 
CYCLE=CYCLE+1 
JP #FINISH2,CYCLE>21600 
FORCEW=(@AN[4] + 0.0300929)*205.21  
FORCEZ=(@AN[5] - 0.00365714)*206.21 
INITF=FORCEW + FORCEZ 
DISPW=_TPW*25.4/20000 
DISPZ=_TPZ*25.4/20000 
INITDISP=(DISPW+DISPZ)/2 
START=TIME 
#SPUSH 
JG,,JOGSPEED,JOGSPEED 
FORCEW=(@AN[4] + 0.0300929)*205.21 
FORCEZ=(@AN[5] - 0.00365714)*206.21 
FORCE=FORCEW+FORCEZ 
JP #CHKSTF,FORCE>.5*.95*TRATE 
CURRENT=TIME 
DUR=(CURRENT-START)/1000 
JP #CHKSTF,DUR>.475 
ERROR=FORCE-(TRATE*DUR) 
PREVJOG=JOGSPEED 
A=DUR/.475 
JOGSPEED=@INT[JOGSPEED + (.75*(1-A)*ERROR)] 
JP #ADJPUSH,ERROR>0 
JP #SPUSH 
#ADJPUSH 
JOGSPEED=PREVJOG 
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JP #SPUSH 
#CHKSTF 
DISPW=_TPW 
DISPZ=_TPZ 
DISP=(DISPW+DISPZ)/2*25.4/20000 
CURSTF=-(FORCE - INITF)/(DISP - INITDISP) 
PREVSTF=CURSTF 
RATERR=(TRATE - ((FORCE - INITF)/DUR))/TRATE 
JP #INITPUL,@ABS[RATERR]<0.05 
IPUSH=IPUSH*(1+(0.5*RATERR)) 
#INITPUL 
JOGSPEED=@INT[IPULL] 
PREVJOG=0 
FORCEW=(@AN[4] + 0.0300929)*205.21 
FORCEZ=(@AN[5] - 0.00365714)*206.21 
INITF=FORCEW + FORCEZ 
DISPW=_TPW*25.4/20000 
DISPZ=_TPZ*25.4/20000 
INITDISP=(DISPW+DISPZ)/2 
START=TIME 
#SPULL 
JG,,JOGSPEED,JOGSPEED 
FORCEW=(@AN[4] + 0.0300929)*205.21 
FORCEZ=(@AN[5] - 0.00365714)*206.21 
FORCE=FORCEW+FORCEZ 
JP #ENDPULL,FORCE<0 
CURRENT=TIME 
DUR=(CURRENT-START)/1000 
JP #ENDPULL,DUR>.48 
ERROR=FORCE-(TRATE*(.48-DUR)) 
PREVJOG=JOGSPEED 
A=DUR/.48 
JOGSPEED=@INT[JOGSPEED + (2*ERROR)] 
JP #ADJPULL,ERROR<0 
JP #SPULL 
#ADJPULL 
JOGSPEED=PREVJOG 
JP #SPULL 
#ENDPULL 
RATERR=(TRATE - ((INITF - FORCE)/DUR))/TRATE 
JP #INITPSH,@ABS[RATERR]<0.05 
IPULL=IPULL*(1+(0.5*RATERR)) 
JP #INITPSH 
#FINISH2 
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B. DATA PROCESSING CUTOFF DETERMINATION 
 
B.1 Digital filter cutoffs for Chapters 3-5 
 

Test Load 
Cell 

Optotrak 
Kinematics 

Linear 
Potentiometer Test Load 

Cell 
Optotrak 

Kinematics 
Linear 

Potentiometer 
1 5.04 3.04 4.36 21 2.25 1.99 4.50 
2 3.33 3.37 4.04 22 3.36 2.03 4.45 
3 4.18 3.13 4.31 23 2.52 1.82 4.20 
4 4.55 3.84 4.27 24 5.24 3.40 4.14 
5 5.08 3.21 4.22 25 2.79 2.11 4.21 
6 2.39 2.70 4.19 26 2.03 2.16 4.46 
7 3.31 2.09 4.12 27 3.82 2.43 4.14 
8 1.68 1.97 4.11 28 1.67 2.08 4.40 
9 2.96 2.09 4.14 29 4.59 4.00 4.43 
10 2.63 2.35 4.14 30 4.12 2.76 4.35 
11 2.64 1.98 4.21 31 3.31 4.56 4.16 
12 3.33 2.39 4.23 32 3.70 2.73 4.17 
13 2.96 2.13 4.01 33 4.20 3.17 4.17 
14 4.53 3.55 4.19 34 3.63 2.65 4.21 
15 5.96 4.02 4.22 35 4.57 3.52 4.20 
16 3.04 2.41 4.47 36 4.23 3.25 4.26 
17 4.07 3.79 4.20 37 4.11 3.80  
18 5.01 2.39 4.45 38 1.68 2.16  
19 1.83 1.99 4.54 39 2.16 1.95  
20 4.16 2.12 4.54 40 3.30 3.13  
   Average 3.50 2.76 4.26 
   Standard Error 0.17 0.12 0.02 
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B.2 Inter-rater reliability of measurements made from peripheral quantitative 
computed tomography 
 

 Inferior Superior 

 Rater 1 Rater 2 R2 Rater 1 Rater 2 R2 

Total Density 
(mg/cm3) 

504.1 
(11.8) 

504.8 
(11.6) 

0.984 
552.9 
(13.7) 

553.5 
(13.6) 

0.983 

Trabecular Density 
(mg/cm3) 

432.2 
(10.1) 

435.8 
(9.9) 

0.979 
462.0 
(10.7) 

463.2 
(10.6) 

0.994 

Cortical + 
Subcortical Density 

(mg/cm3) 

691.5 
(12.2) 

684.1 
(12.3) 

0.931 
735.2 
(11.3) 

731.6 
(11.7) 

0.974 

Total Area 
(mm2) 

121.7 
(4.0) 

112.9 
(3.7) 

0.686 
118.5 
(4.0) 

114.7 
(3.7) 

0.800 

Trabecular Area 
(mm2) 

89.8 
(3.6) 

83.3 
(3.3) 

0.762 
79.3 
(3.3) 

76.8 
(3.2) 

0.855 

Cortical + 
Subcortical Area 

(mm2) 

31.8 
(1.6) 

29.5 
(1.5) 

0.818 
39.2 
(2.4) 

37.9 
(2.0) 

0.887 
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B.3 Half maximum height (HMH) cutoff determination and inter-rater reliability 
 

 Rater 1 Rater 2 R2 Cutoffs 

Cortical Density 
(mg/cm3) 

1081.2 
(14.8) 

1091.2 
(14.0) 0.041  

Trabecular Density 
(mg/cm3) 

416.3 
(17.5) 

420.8 
(12.2) 0.245  

Soft Tissue Density 
(mg/cm3) 

117.4 
(7.9) 

91.9 
(6.7) 0.081  

Cortical Cutoff Density 
(mg/cm3) 

748.7 
(13.0) 

756.0 
(10.4) 0.233 754 

Trabecular Cutoff Density 
(mg/cm3) 

266.9 
(8.4) 

256.3 
(6.5) 0.483 260 
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C. CONTROL ALGORITHM PERFORMANCE 
 
C.1 Repetitive shear control algorithm performance 
 

Target Loading Magnitude  20% 40% 60% 80% 

Loading 0.457 
(0.004) 

0.467 
(0.004) 

0.483 
(0.001) 

0.493 
(0.003) Duration  

(sec.) 
Target = 0.5 sec. Unloading 0.396 

(0.012) 
0.473 

(0.004) 
0.481 

(0.002) 
0.474 

(0.004) 

Loading 6.07 
(1.07) 

2.97 
(0.34) 

3.59 
(0.96) 

6.44 
(1.20) 

Percent Load Error  
(%) 

Unloading 3.56 
(0.41) 

2.92 
(0.88) 

1.90 
(0.15) 

6.90 
(1.50) 

Loading 8.37 
(1.70) 

5.83 
(1.03) 

5.25 
(1.39) 

8.61 
(1.89) 

Percent Load Rate Error 
(%) 

Unloading 25.35 
(5.41) 

5.37 
(1.25) 

5.99 
(1.44) 

12.07 
(1.99) 
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D. CALCULATIONS 
 
D.1 Analytical solution for a cantilevered beam 
 
Beam dimensions (in meters): 

! 

l = 0.015, w = h = 0.01 
 
Applied force is 2000 N downward. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Stress at point A. 
 

! 

" =
My

I
 

 

Where 

! 

M = Fl, 

! 

y =
h

2
, and 

! 

I =
wh

3

12
. Substitute these expressions into the previous 

equation. 
 

! 

" =
6Fl

wh
2

 

 
Substitute values for F, l, w, and h. 
 

! 

" =
6 2000( ) 0.015( )

0.01( )
3

 

 

! 

" =180MPa  


