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Abstract

In this study, the feasibility of using an organic Rankine cycle (ORC) in trigener-

ation plants is examined through thermodynamic modeling and thermoeconomic

optimization. Three novel trigeneration systems are considered. Each one of these

systems consists of an ORC, a heating-process heat exchanger, and a single-effect

absorption chiller. The three systems are distinguished by the source of the heat

input to the ORC. The systems considered are SOFC-trigeneration, biomass- tri-

generation, and solar-trigeneration systems. For each system four cases are con-

sidered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigen-

eration cases. Comprehensive thermodynamic analysis on each system is carried

out. Furthermore, thermoeconomic optimization is conducted. The objective of

the thermoeconomic optimization is to minimize the cost per exergy unit of the tri-

generation product. The results of the thermoeconomic optimization are used to

compare the three systems through thermodynamic and thermoeconomic analyses.

This study illustrates key output parameters to assess the trigeneration systems con-

sidered. These parameters are energy efficiency, exergy efficiency, net electrical

power, electrical to cooling ratio, and electrical to heating ratio. Moreover, exergy

destruction modeling is conducted to identify and quantify the major sources of ex-

ergy destruction in the systems considered. In addition, an environmental impact

assessment is conducted to quantify the amount of CO2 emissions in the systems

considered. Furthermore, this study examines both the cost rate and cost per exergy

unit of the electrical power and other trigeneration products.

This study reveals that there is a considerable efficiency improvement when tri-

generation is used, as compared to only electrical power production. In addition,

the emissions of CO2 per MWh of trigeneration are significantly lower than that
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of electrical power. It was shown that the exergy destruction rates of the ORC

evaporators for the three systems are quite high. Therefore, it is important to con-

sider using more efficient ORC evaporators in trigeneration plants. In addition, this

study reveals that the SOFC-trigeneration system has the highest electrical energy

efficiency while the biomass-trigeneration system and the solar mode of the solar-

trigeneration system have the highest trigeneration energy efficiencies. In contrast,

the SOFC-trigeneration system has the highest exergy efficiency for both electrical

and trigeneration cases. Furthermore, the thermoeconomic optimization shows that

the solar-trigeneration system has the lowest cost per exergy unit. Meanwhile the

solar-trigeneration system has zeroCO2 emissions and depends on a free renewable

energy source. Therefore, it can be concluded that the solar-trigeneration system

has the best thermoeconomic performance among the three systems considered.
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Chapter 1

Introduction and Background

1.1 Background

Availability of sources and global warming are the two main concerns for the sustainability

of energy production in the future. The demand for energy has been on a steady rise despite

the limited availability of non-renewable fuel resources. For example, the world energy

consumption is expected to increase by around 40% between 2006 and 2030 [1], while a

dramatic increase in greenhouse gas emissions is also foreseen. For instance, from 1990 to

2007, CO2 equivalent emissions increased 17% in the USA [2]. Therefore, finding more

efficient energy systems is more crucial now than at any time since the beginning of the

industrial revolution. The efficiency of conventional power plants that are based on single

prime movers is usually less than 39%. Thus, most of the energy is lost as waste heat.

Integrating cooling and heating subsystems in a conventional plant could increase the plant

efficiency significantly where the CHP efficiency could reach 80% [3, 4].

Trigeneration usually refers to the simultaneous production of cooling, heating, and

power based on a single energy source. It is also known as combined cooling, heating and

power (CCHP). Sometimes combined heating and power (CHP) refers to trigeneration.
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That is, if the heat produced from CHP is used for cooling, as well as heating, the plant

is called a trigeneration plant. CHP could refer to a cogeneration plant if it produces only

heat and power.

In a trigeneration plant, the waste energy from a generation unit, such as a gas turbine,

is used to drive both the heating and cooling systems. Therefore, the use of a trigeneration

plant results in an improvement of the overall thermal efficiency and a reduction of the

contamination to the environment. The degree of improvement of the plant is sensitive to

the performance of each unit in the trigeneration plant and the approach of integrating the

units of the plant.

Trigeneration plants are usually used as decentralized plants in order to keep the cool-

ing and heating demands at the needed temperatures. In other words, they are used as

decentralized plants since the production of the heating and cooling of the trigeneration

plants requires insulation to keep the cooling and/or heating production in a valuable bene-

fit. Therefore, the trigeneration plants are usually located close to the end user. The cooling

equipment of the trigeneration plants could include absorption chillers, adsorption chillers,

and/or reversible heat pumps.

As the literature review in this study shows, most of the research on trigeneration has

been conducted in the last few years. This huge increment in the research is a result of the

known benefits of using trigeneration, which lead to more demand on the energy produced

from trigeneration. In terms of electricity produced, CHP accounts for more than 11% of

the electricity produced in the G8 countries, as well as Brazil, China, India, Mexico, and

South Africa in 2008. This percentage is expected to increase to 15% in 2015 and to 24%

in 2030, [3]. In other words, the electricity produced by CHP is expected to reach around

430 GWe in 2015 and more than 830 GWe in 2030 [3]. Examples where trigeneration

plants could be used are chemical and food industries, airports, shopping centers, hotels,

hospitals, and houses.
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However, some barriers need to be resolved to increase the benefit of using CHP. These

barriers [3] include the lack of:

• A planned integration of CHP to urban areas;

• A flexibility in the regulations to connect CHP with the electricity grid;

• An awareness of the benefits of CHP; and

• A common standard and methodology with some metrics to measure energy savings

and environmental benefits.

A schematic that shows the components of a trigeneration plant is shown in Figure 1.1.

The figure shows that the trigeneration plant consists of four main units:

• A power generation unit, which is known as the plant’s prime mover, such as a gas

turbine;

• A cooling unit, such as a single-effect absorption chiller;

• A heating unit, such as the boiler of the plant; and

• An electrical generator.

The energy process in a trigeneration plant can be described as follows:

• Mechanical power is produced from a mechanical power generator unit, such as a

gas turbine.

• The mechanical power produced is used to rotate an electrical generator.

• Waste heat from the mechanical generator unit – which includes exhaust gases, lu-

brication oil, and jacket water – is recovered to partially or totally meet the cooling

and heating loads.
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Figure 1.1 Schematic of a typical trigeneration plant.

• The waste heat is used to totally or partially meet the heating load, such as a building

heating load.

• The waste heat is used to meet totally or partially the cooling load. The cooling

energy is obtained from, for example, a thermally activated single-effect absorption

chiller.

In some trigeneration plants, such as the plants used for residential purposes, the heating

system works during winter while the cooling system works during the summer.

To achieve a highly efficient and economic trigeneration plant, some criteria are recom-

mended. A report by the International Energy Agency [3] stated certain criteria that need

to be satisfied so that a CHP power plant can be utilized. These criteria are:

• A ratio of electricity to fuel costs of at least 2.5:1.

• Relatively high demands for heating and/or cooling. This demand should be at least

5,000 hours a year.

• The ability to connect to the grid, if possible, at an acceptable price.
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• The plant should be located close to the end user. This reduces the heating and/ or

cooling losses through piping.

To optimize the use of a trigeneration plant, two important points should be considered

in designing a trigeneration plant. A trigeneration plant should be flexible enough to meet

the variation in the heating and cooling demands. Also, since the heating and/or cooling

demand might be minimal for a specific time of the year, a storage system might be needed

as a subsystem of a trigeneration plant.

In this chapter, the benefits of trigeneration plants are presented. Then, a summary of

the prime mover types is presented with some guidelines on prime mover selection for tri-

generation. Lastly, the motivation, significance, and objectives of this study are presented.

1.2 Benefits of Trigeneration Plants

There are many benefits of trigeneration plants, including higher plant efficiency, reduced

thermal losses and waste heat, reduced operating cost, reduced greenhouse gas emissions,

better use of resources, short transmission lines, fewer distribution units, multiple genera-

tion options, increased reliability, and less grid failure. These benefits are discussed below.

First, trigeneration improves the overall efficiency of the plant and reduces operating

costs. The overall efficiency of conventional power plants that use fossil fuel with a single

prime mover is usually less than 39%. That is, more than 60% of the heating value of the

fuel entering a conventional power plant is lost. On the other hand, the overall efficiency of

a conventional power plant that produces electricity and heat separately is around 60% [4].

However, with the utilization of the waste heat from the prime mover, the efficiency of the

trigeneration plants could reach 80% [3,4]. In a trigeneration plant, the waste heat from the

power production is used to operate the cooling and heating systems without the need for

extra fuel, unlike a conventional power plant that requires extra fuel or energy resources.
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Thus, a trigeneration plant uses less fuel to produce the same output as a conventional

power plant. Therefore, the energy produced by a trigeneration plant costs less.

Second, trigeneration reduces greenhouse gas (GHG) emissions. Since a trigeneration

plant uses less fuel to produce the same output compared with a conventional power plant,

the amount of fuel burned is less for a trigeneration plant. Therefore, a trigeneration plant

produces lower GHG emissions. The expected reduction in CO2 emissions as a result of

using trigeneration and cogeneration plants will be 170 Mt/year in 2015, while in 2030 the

expected reduction will be 950 Mt/year [3]. Although the gas emissions from trigeneration

plants are less than that of conventional plants, there could be some restrictions in using

trigeneration plants as distribution plants because of their on-site gas emissions. When

using an on-site trigeneration plant, the gas emissions are highly concentrated on the end-

user site, unlike a centralized plant where the gas emissions are usually at a distance from

the end-user site.

Third, trigeneration reduces cost and energy losses since it needs significantly fewer

electricity transmission lines and distribution units. The conventional production of elec-

tricity is usually from a centralized plant that is generally located far away from the end

user. The electricity, produced from the centralized plant, is transferred through long trans-

mission lines and many distribution units. These long transmission lines and distribution

units are very costly. In addition, as a result of the long transmission lines, there are losses

in electricity from the lines. It was reported that the losses due to the transmission and

distribution of electricity from the centralized plants to the end user could reach 9% [3, 4].

Conversely, these losses are significantly lower for trigeneration plants compared with the

centralized plants.

Fourth, trigeneration produces energy as it is needed. The centralized plant is planned

to produce the electricity based on the history of power demand. However, in the case of

a trigeneration plant that is located in the end-user site, a better estimation of how much
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electricity is needed can be obtained. Therefore, the energy is produced as it is needed.

Fifth, trigeneration has a high reliability rate. For example, the 2003 blackout of the

Northeastern USA and Ontario cost billions of dollars and left millions of people in dark-

ness. Many hospitals in New York suffered from the electricity shortage because of this

blackout [5]. In another incident, electricity transmission lines and distribution poles suf-

fered from an ice storm in Canada and the USA in 1998. In this ice storm, the freezing rain

destroyed more than 30,000 distribution poles and 1,000 wooden high voltage transmission

towers. As a result of the storm, around 5.2 million people were without electricity [6].

However, using a trigeneration plant as a decentralized plant for a facility, improves the

reliability to the point where the chance of grid failure is negligible since the transmission

lines and distribution units are significantly reduced.

The benefits mentioned above have encouraged many researchers and engineers to de-

velop advanced trigeneration plants for trigeneration purposes. It should be noted that the

improvement in efficiency when trigeneration is used is in thermal efficiency. Further as-

sessments before selecting trigeneration plants, such as initial capital and operating costs,

are needed in addition to the recommended criteria for the highly efficient and economic

trigeneration plants, as mentioned in the previous section.

1.3 Prime Movers

Prime movers are the main components of trigeneration plants. Therefore, selecting a prime

mover of a trigeneration plant is a major concern. Examples of prime mover types are

internal combustion engines, external combustion engines (e.g. Stirling engines), steam

turbines, gas turbines, microturbines, and fuel cells. The characteristics of these prime

movers are shown in Table 1.1. By defining the electricity, heating, and cooling demands of

a trigeneration plant, this table can help to select the appropriate prime mover. In selecting

7



a prime mover, the following guidelines could be used:

1. The demand of the electricity load is determined by taking into consideration the

power efficiency and possibility of having more than one prime mover.

2. The total amount of heat needed for heating and/or cooling demands is determined.

Based on these demands, the power to cooling and heating ratios of the desired plant

are calculated.

3. The operating range of the prime movers can be extended. For example, a reheating

system for a multi-stage prime mover can be used for this purpose.

4. A prime mover that can operate with more than one fuel type adds flexibility to the

operation of the prime mover. On the other hand, the fuel type has an impact on the

greenhouse gas emission rate. For example, the greenhouse gas emissions from the

natural gas combustion are less than the emissions from diesel combustion.

5. The location of the plant may have a restriction on the acceptable noise level, on-site

emissions, and the trigeneration plant size. Therefore, the prime mover’s noise level,

emissions, and power density should be considered.

6. If a prime mover is to be used as a backup system for emergencies, the start-up time

should be considered.

7. The type of fuel has an impact on both operation and maintenance costs. The fuel

type may affect the internal coating life time of the prime mover, and, therefore, more

frequent maintenance may be needed.

After selecting a prime mover, thermal and economic analyses need to be conducted to

obtain detailed results of the feasibility of using the selected prime mover for the proposed

trigeneration plant.
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1.4 Motivation and Significance of the Study

Considering the issues of fossil fuel depletion and global warming, using efficient systems,

such as trigeneration systems, is becoming more crucial. Recently, trigeneration plants

for combined cooling, heating, and power production have received more attentions due

to their high thermal efficiency, low operating cost per energy output, and low greenhouse

gas (GHG) emissions. Organic Rankine cycle (ORC) is a potential subsystem that can be

integrated into trigeneration plants. However, using ORC as a power producer in trigen-

eration plants is one of the possible configurations that have not received attention by the

researchers. Therefore, this study will provide the industry and researchers with significant

knowledge on the performance of such trigeneration plants.

ORC is expected to play an important role in energy production in the near future. This

is mainly because the ORC can be integrated with a thermal system where a relatively

low- or medium-temperature waste heat is available from the thermal system. The litera-

ture review discussed in the next chapter shows that there has been no thermodynamic or

thermoeconomic studies that consider an ORC as a prime mover of a trigeneration plant.

The current study, intends to cover this gap. This study provides a comprehensive thermo-

dynamic modeling and thermoeconomic optimization of three novel trigeneration systems

using ORC as a prime mover. In this study, three different prime movers combined with

ORC for a trigeneration system are examined. These prime movers are: combined ORC

with solid oxide fuel cell (SOFC), combined ORC with biomass combustor, and combined

ORC with solar subsystem. The current study contributes to the assessment of the ORC as

a prime mover of a trigeneration plant through a comprehensive thermodynamic analysis,

GHG emissions assessment, thermoeconomic modeling, and thermoeconomic optimiza-

tion. To the best knowledge of the author, there is no study that has considered the thermoe-

conomic optimization of a trigeneration system. Hence, this type of analysis is considered

10



original, which will provide significant knowledge to the industry and researchers.

1.5 Objectives

The overall objective of the thesis is to provide a better understanding of the performance of

the three novel trigeneration systems considered, including their true efficiencies, exergy

losses, and GHG emissions, as well as the cost rate and cost per exergy unit of electri-

cal power and trigeneration using thermoeconomic optimization. The examined systems

are designed such that each one can produce 500 kW of electrical power. To assess the

improvement in the performance of each trigeneration system considered, as compared to

conventional systems, four cases are considered for each system: electrical-power, cooling-

cogeneration, and heating-cogeneration cases, as well as trigeneration case.

The specific objectives of this study are

• To propose three novel trigeneration systems;

• To conduct energy and exergy analyses of the trigeneration systems considered to

assess their performance;

• To develop an exergy destruction model to predict the quantities and locations of the

exergy destructions in the trigeneration systems considered;

• To carry out an environmental impact assessment to evaluate the GHG emissions

from the trigeneration systems considered;

• To develop thermoeconomic models to assess the thermoeconomic performance of

the trigeneration systems considered;

• To carry out thermoeconomic optimization to minimize the cost per exergy unit of

the combined cooling, heating, and electrical powers; and
11



• To compare the results of the thermoeconomic optimization of the three trigeneration

systems through thermodynamic modeling and thermoeconomic optimization.

12



Chapter 2

Literature Review

2.1 Introduction

The review of trigeneration plants can be classified based on the prime movers, cooling

systems, application type, or analysis type. However, what mainly distinguishes one tri-

generation plant from another is the prime mover of the plant. Therefore, the review of the

trigeneration plants in this section focuses on the prime movers of these plants. The catego-

rization of the sections and subsections are based on the type(s) of the prime movers. Under

each subsection that identifies the prime mover type(s), the review is classified based on the

type of analysis that has been conducted. The prime mover types are internal combustion

engines, external combustion engines, Rankine cycles, gas turbines, micro-turbines, and

fuel cells. The types of these analyses are energy, economic (excluding exergoeconomic),

environment, optimization, exergy, and exergoeconomic (thermoeconomic).

This chapter begins with the details of the literature review and then provides the sum-

mary of the literature review. The details of the literature review are organized as follows.

It starts with the review of the studies that conducted analyses with one and two types of

prime movers. Then, a review of the studies with more than two prime movers is presented.

13



Lastly, the review of the studies that did not specify a specific type of prime movers of the

trigeneration plant is presented.

2.2 Single Prime Mover

2.2.1 Internal Combustion Engine

Several studies have been conducted with internal combustion engines as the only prime

movers of trigeneration plants, e.g. [18–49]. A description of a trigeneration pilot plant

for two office buildings and measurement methodology to monitor them was discussed by

Cardona and Piacentino [26].

Studies where only energy analysis was carried out have been conducted by [27–32]. A

micro-scale building cooling, heating and power (BCHP) system with an adsorption chiller

was experimentally studied by Huangfu et al. [27]. The authors studied the performance

of the adsorption chiller under different heating conditions. They found that there was

almost a linear relation between the adsorption chiller and the change of hot water inlet

temperature for the two investigated models.

The energy analysis of trigeneration plants with heat pumps was examined by [28–

30]. Design and development of a trigeneration plant with a reversible heat pump were

performed by Miguez et al. [28]. In another study, Porteiro et al. [29] extended Miguez et

al. [28] study to compare different operating modes. They concluded that the heat pump

was important for plant efficiency enhancement. An experimental analysis of solid sorption

heat pumps was carried out by Vasiliev [30]. It was found that a saving of 15-20% can be

gained with the solid sorption heat pumps.

Pospisil et al. [31] compared cogeneration and trigeneration plants for energy supply

of tertiary buildings. They found that compared with the separated energy production of

power, heating, and cooling, the cogeneration plant consumed 31% less of the primary

14



energy source and the trigeneration plant consumed 39% less of the primary energy source.

In another study, the application of trigeneration plants in supermarkets was discussed by

Maidment and Tozer [32]. An energy analysis was performed on five schemes where each

scheme had a different absorption chiller. The study revealed that for the short to medium

term of time the trigeneration plant could result in significant primary energy savings and

reduction in CO2 emission compared to the production of energy that was based upon a

gas boiler and coal derived electricity.

Studies that included only energy and economic analyses were carried by [33–37].

Chicco and Mancarella [33] compared six different designs for cooling production where

one of the designs was not a trigeneration plant. They examined the effect of electricity and

gas price variation on the pay-pack time. This analysis provided a reasonably good picture

for comparing different trigeneration solutions. In a different study, Chicco and Mancar-

ella [34] proposed some energy indicators to assess the fuel efficiency of a trigeneration

plant as opposed to a conventional plant with separate production of cooling, heating, and

power. In another study, Chicco and Mancarella [35] applied these energy indicators to

introduce a planning criterion called equivalent gas price. The authors applied this plan-

ning criterion to several case studies. Also, in another study, Chicco and Mancarella [36]

used the trigeneration primary energy saving indicator as defined by [34]. They applied

the indicator on different scenarios where each scenario had different cooling, heating, and

power loading ratio.

A few papers investigated the pollution emission of the trigeneration plants with internal

combustion engines as prime movers, e.g. [38–41]. Lin et al. [38] compared experimen-

tally the thermal efficiency and pollution emission of a household size trigeneration plant

with another plant producing only power. The authors found an increase of total thermal

efficiency between 2 and 4.4 times compared with the plant that produced only power,

which is considered huge. The reduction of CO2 emissions per unit kWh in the trigener-
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ation plant were between 67.2% and 81.4%. In their analysis, the authors compared the

trigeneration plant with the power plant. However, ideally the trigeneration plant should be

compared with another plant that had a power generation unit, cooling system, and heat-

ing system where each one of these three systems operates independently using different

energy sources. In a different study, Chicco and Mancarella [39] defined poly-generation

primary energy saving and poly-generation CO2 emission reduction indicators. Godefroy

et al. [40] conducted experimental and mathematical analyses of a small-scale combined

heating, power, and cooling system. The cooling system contained ejector cycles which

is not the common case for trigeneration plants where either absorption and/or adsorption

chillers are used. It was found that using some of the electrical output to operate the cooling

cycle improved the cooling capacity. However, it did not improve overall efficiency and re-

sulted in an increase of CO2 emissions. In their study, the authors pointed out the effect of

using some of the electrical output for the cooling cycle but not the use of more power gen-

eration waste heat to increase the cooling cycle power. Therefore, the authors’ conclusion

should not be considered as a basis to judge the feasibility of using the trigeneration plant

with ejector cycles cooling system. In another study, Lindmark et al. [41] compared five

different configurations of absorption chillers. The plant prime movers were humidified in-

ternal combustion engines. The study aimed to investigate the effect of each configuration

on the electrical yield. In the humidified internal combustion engine, the vapor content of

the flue gas condensed in a pressurized condenser. It was found that utilizing a trigenera-

tion plant for extra electricity and cooling production, instead of mechanical chillers, could

decrease CO2 emissions. The study revealed that the humidified trigeneration plant was

profitable as long as the operating hours were more than 3500 hours per year.

Optimization of trigeneration plants with internal combustion engines as prime movers

have been conducted by [42–45]. Cho et al. [42] presented a linear programming formu-

lation of a typical trigeneration plant. The inputs consisted of electricity and fuel cost and
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the constraints consisted of the load demands of cooling, heating, and electricity. Several

scenarios with different operating conditions were examined. It was concluded that the

optimization of the trigeneration plant components will result in a significant economic

gain. Cardona et al. [43] carried out an optimization analysis of the design and operation

of trigeneration plants that have a heat pump. They used multi-objective criterion to select

the operation mode that was dependent on energy demand and price. The study showed a

complete match between economic and environmental choices was not feasible since this

match would require a special plan for each case study.

A few studies have applied an exergy analysis on trigeneration plants that contain in-

ternal combustion engines as prime movers, e.g. [44–49]. Huangfu et al. [46] performed

cost and exergy analyses on a micro-scale trigeneration plant with an adsorption chiller. It

was observed in both the combined operation mode of cooling and power, or heating and

power that the primary energy ratio and exergy efficiency were higher than the conven-

tional power generation without cooling or heating (not a combined mode). Also, it was

concluded from the exergy analysis, to get an improvement in the trigeneration plant, the

electrical efficiency of the internal combustion engine should be improved. Tracy and Or-

donez [47] conducted first and second law thermodynamic analyses of a trigeneration plant.

They studied the effect of splitting the waste heat proportionately between the heating and

cooling systems.

Exergy and exergoeconomic analyses were performed by [44, 45, 48, 49]. Deng et

al. [48] carried out an exergy cost analysis of a small-scale trigeneration plant using the

structural theory of thermoeconomics. They observed that as the electricity output in-

creases, the unit exergy cost of product for all plant components drops slowly. The authors

found that when the electricity output reaches above 10.3 kW, the production performance

of the adsorption chiller improved. In their study, the electrical output range is from 7 to

12 kW. In another study, Temir and Bilge [49] analyzed the exergoeconomics factor versus
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the unit exergetic cost of natural gas. They noticed that as the fuel cost increases, the ex-

ergoeconomics factor of the absorption chiller unit, internal combustion engine and waste

heat boiler decreases. The study showed that the exergoeconomics factor of the internal

combustion engine was the most sensitive to the fuel cost while the waste heat boiler was

the least sensitive.

More comprehensive studies that include exergy, exergoeconomics, and sensitivity anal-

yses were performed by [44, 45]. Cardona and Piacentino [44] proposed a modified exer-

goeconomics optimization approach to trigeneration plants. The approach was based on

the use of aggregate energy flow or average flow rates that can be derived from any trigen-

eration plants’ software. The authors examined the effect of the prime mover, which was

an internal combustion engine, and the absorption chiller size on different variables that in-

cluded unit exergy cost of streams, decision function, average unit cost of thermal exergy,

unit cost of cooling exergy, and unit cost of electricity. They showed at which prime mover

and absorption chiller sizes these variables have low exergy costs. A similar sensitivity

analysis to [44] was carried out by Cardona and Piacentino [45]. This analysis was applied

to a 300-bed hospital located in a Mediterranean area. The study helped to minimize the

overall annual cost of energy supply and to determine what energy outputs have margins of

profitability over the conventional generation plants.

2.2.2 External Combustion Engine (Stirling Engine)

To the author’s best knowledge, only a single paper has been published using a Stirling

engine as a prime mover for a trigeneration plant, [13]. Kong et al. [13] compared the

energy and economic efficiency of a trigeneration plant using a Stirling engine as a prime

mover with a conventional plant with separate production of cooling, heating and power.

They found that the trigeneration plant with the Stirling engine saved more than 33% of

the primary energy compared to the conventional plant. In their study, a double-effect
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absorption chiller was assumed. The study revealed that the absorption chiller thermal

performance had a large effect on the energy efficiency of the trigeneration plant.

2.2.3 Steam Turbines

Studies that discussed trigeneration plants operating with steam turbines were conducted

by [50–53]. Schroeder et al. [50] discussed ice water production in a centralized trigen-

eration plant. They recommended three different ways of co-operation of a single-effect

absorption chiller with an existing circulation of low-pressure steam and hot water. The

authors discussed the details of these three ways of co-operation.

Costa et al. [51] analyzed the economics of operating a trigeneration plant in a pulp mill.

The authors compared trigeneration, cogeneration, and absorption heat pump models. The

heat pump was included in the analysis to allow for examination of the maximal reduction

of the energy consumption without power production. They concluded that the trigenera-

tion model had the best overall net positive value. However, the cogeneration model did

not include a cooling load, and the absorption heat pump model did not produce power.

Therefore, their conclusion on the overall best value produced by the trigeneration model

was not precise.

Rong and Lahdelma [52] developed an optimization model for three energy compo-

nents. The objectives of this model were to minimize the production and purchase cost of

these energy components beside CO2 emissions cost. The authors applied the model on a

plant based on a steam turbine. The authors assumed power production and two heating

loads with no cooling load. This study focused on comparing the performance of the pro-

posed optimization model, which is called Tri-Commodity Simplex (TCS), with a linear

programming (LP) model. The study revealed that the proposed TCS model was much

faster to converge.

Poredos et al. [53] carried out an energy and exergy efficiency analyses of cooling
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chillers in a trigeneration plant. The study compared the efficiency of five cooling sys-

tems: four different absorption chillers and an electrical compressor. The analysis revealed

that the exergy efficiency of the absorption chillers increased when they were used in the

trigeneration plant compared to the exergy efficiency of the individual absorption chillers

operating without using the trigeneration plant. The exergy efficiency of the electrical com-

pressor remained the same.

2.2.4 Gas Turbines

Different studies have been carried out on trigeneration plants that have gas turbines as

prime movers, e.g. [54–64]. A study where only energy analysis was carried out was

conducted by [55]. Calva et al. [55] developed a simple model used to evaluate various

available gas turbine systems and showed how to design trigeneration plants based on the

results obtained from the model.

Energy and economic analyses were carried out by [56–60]. The use of a trigenera-

tion plant in Shanghai Hospital was discussed by Daolin and Shifei [56]. They presented

the plant commissioning issues and the accompanying problems, as well as an economic

assessment of the plant. Ziher and Poredos [57] addressed the economics of using a tri-

generation plant in a hospital. They provided the cooling, heating, and power price per

kWh on a monthly basis for one year. To obtain the cooling energy, the authors recom-

mended including steam absorption and compression chillers with a cold storage system

in the plant. Cardona et al. [58] analyzed typical energy demand profiles in airports and

assessed the feasibility of using trigeneration plants in the airports. Their analysis showed

a large potential for primary energy saving and reduction in the operating cost of the plant.

An environmental analysis was performed by [59]. Casten [59] analyzed the economic

and environmental impact of different trigeneration plants using ammonia chillers. The

author discussed how difficult to obtain both economic and environmental solutions at the
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same time.

Optimization studies were carried out by [60, 61]. The analysis of the influence of en-

ergy demand ratios on optimal capacity of facilities and feasibility indices were conducted

by Chao-zhen et al. [60]. The design variables of the optimization in this study were capaci-

ties, maximum purchased gas, and maximum purchased electricity. The objective functions

were annual cost, maintenance cost and operation cost, and the constraints were facility and

energy balance. Twenty five numerical cases were analyzed and in many of these cases the

cooling demands had more effect on the gas turbine capacity than the heating demands.

An exergy analysis on a trigeneration plant based on a gas turbine was conducted

by [61–64]. Khaliq and Kumar [62] and Khaliq [63] used similar trigeneration model

to study the performance assessment of a trigeneration plant based on a gas turbine. Both

studies examined the effect of the variation of the compressor pressure ratio and process

heat pressure on first law efficiency, second law efficiency, and electrical to thermal en-

ergy ratio. Khaliq [63] performed a further analysis that included the effect of variation

of turbine inlet temperature, pressure drop percentage of combustion chamber and heat

recovery steam generator, and evaporation temperature on first law efficiency, second law

efficiency and electrical to thermal energy ratio. The study revealed that more than 80% of

the total exergy destruction in the overall plant occurred during the combustion and steam

generation process.

Exergy and exergoeconomic analyses were carried out by [61, 64]. Cao [64] investi-

gated thermodynamic performance of building cooling, heating, and power (BCHP). The

study examined the effect of power load on the efficiencies of energy and exergy and the

exergetic costs in unit amount of power, steam , and cooling water versus power load rates.

It was concluded that the investigated model could be economical if its power load rates

were maintained higher than 50%. A study by Cao and Liu [61] used a model similar

to [64] to analyze the performance of a BCHP plant in China during air-conditioning sea-
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son. The authors studied the overall exergetic efficiency under different power loads, mass

proportion of steam, and compressor inlet temperatures. The optimization analysis used

the overall exergetic efficiency as the objective function, and the constraints were power

load, mass proportion of steam, and compressor inlet temperature. The authors found that

the plant produced positive benefits only at high power load rates.

2.2.5 Microturbines

Several studies on trigeneration plants, with microturbines as the only prime movers, have

been conducted, e.g. [65–81]. Studies where only energy analysis has been conducted were

presented by [68–72, 74]. A plant design of a novel trigeneration microturbine combined

cycle for ice production was proposed by Lear et al. [68]. The authors carried out heat and

performance analyses of a double-effect absorption chiller, and concluded that their pro-

posed design can increase the total thermal efficiency of the trigeneration plant, or can be

used to cool another system. Ryu et al. [69] performed dynamic modeling of ice production

to improve the load-leveling during the peak summer utility period using two single-effect

ammonia/water absorption chillers and a cooling storage system. Based on the application,

for example, air conditioning or ice making, they explained how to operate the plant for bet-

ter performance. In another study, the impact of some technological advancements, such as

thermally activated cooling systems on BCHP, was studied by Jalazadaeh-Azar [70]. The

author observed that a microturbine without a recuperator can have a negative impact on

the total primary energy consumption. The author provided the detail electricity output

and cost of the plant. Fairchild et al. [71] carried out an experimental and analytical per-

formance study of a microturbine used for a BCHP. In another study, Labinov et al. [72]

presented algorithms to predict the performance of a microturbine used as a prime mover

for a BCHP.

Energy and economic analyses studies were carried out by [73–79]. Jääskeläinen and
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Wallace [74] investigated a trigeneration plant that used a 240 kW microturbine as a prime

mover. The economic analysis of this plant revealed that it was not attractive to utilize due

to high natural gas prices and low electricity rates.

Environmental and economic analyses were performed by [75, 76]. Tassou et al. [75]

showed that as the absorption refrigeration system coefficient of performance increased

from 0.5 to 1, the payback period reduced from 4.5 to 3 years and the savings in CO2 emis-

sions increased from 0.2 to 1.4 tCO2. Also, it was observed that, with current installation

costs at the time of the study (2006-2007) of microturbine used in trigeneration plants, their

economic feasibility was very sensitive to the price of natural gas relative to the price of

grid electricity. To have a reasonable payback period, the ratio of the natural gas price to the

grid electricity price should be less than 0.3. In another study, Bruno et al. [76] investigated

the performance, emission, and economics of utilizing biogas into different trigeneration

plant systems. The authors used a sewage treatment plant as a case study. The best model

was the one that met the sewage treatment plant heating demands using all the available

biogas with additional natural gas.

A sensitivity analysis was conducted by [77, 78]. Campanari et al. [77] and Campa-

nari and Macchi [78] used the same sensitivity model that consisted of single-effect and

electrical chillers. They performed sensitivity and cost analyses of a trigeneration plant.

Campanari et al. [77] found that as a result of the large load variation, the optimum nom-

inal output of the microturbine was around 70% of the electric peak demand. Campanari

and Macchi [78] showed that with the improvement in microturbines performance pro-

ducing a net electrical efficiency of 35 to 40%, microturbines will be very competitive in

trigeneration plant applications.

Huang et al. [80] carried out multi-objective optimization and performance analysis us-

ing generic algorithms. The optimization was based on four load conditions that consisted

of annual average energy demand, variable thermal power rate, cooling power rate, and typ-
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ical monthly load demand. Their study was limited to certain load demands and equipment

integration. Therefore, further improvement is needed for the optimization algorithms.

Studies that applied exergy analysis on trigeneration plants that are based on microtur-

bines were carried out by [79, 81]. Liang and Wang [79] evaluated the exergy efficiency

of a trigeneration plant with a double-effect absorption chiller. They compared the exergy

efficiency of the trigeneration plant with another similar plant that used an electrical chiller,

which was not a trigeneration plant. They found that the trigeneration plant with the ab-

sorption chiller had a higher exergy efficiency. Medrano et al. [81] compared the exergy

efficiency of three trigeneration plants operated with a single-effect, a double-effect and

combined single and double-effect chillers. The authors found that the variation of the

exergy efficiency of the three plants was less than 1%, which is considered small.

2.2.6 Fuel Cells

A few studies have been conducted on trigeneration plants using fuel cells as prime movers,

e.g. [82–87]. Henderson et al. [83] developed a trigeneration plant model that combined a

fuel cell model with an hour-by-hour building simulation and described how to predict the

performance of the plant using their model.

Phosphoric acid fuel cells (PAFC) type was examined by [84–86]. Seifert [84] studied

experimentally a PAFC system that consisted of adsorption and electrical chillers, and a

cold storage. The heat recovery system did not succeed as expected and at low loading

the system had a low electricity efficiency. Bizzarri [85] examined different hybrid scenar-

ios of PACF trigeneration as applied to nine hospitals. The study included cost and CO2

emissions analyses and recommended a methodology to size the investigated plants. In

another study, Gamou et al. [86] carried out an optimization analysis to examine the effect

of uncertain load demands variation. The objective function was to minimize the predicted

annual cost. The study revealed that if the system was designed taking into consideration
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the uncertainty of demands, the optimal capacity of the fuel cell unit reduced.

Weber et al. [87] used SOFC as a prime mover for trigeneration plants. They carried

out detailed CO2 emissions and cost analyses of a trigeneration plant in an office building.

They found that the model produced 30% reduction in CO2 emissions at an approximate

increase in cost of 70% compared with a conventional plant.

2.2.7 A Prime Mover and Solar Energy

A few papers discussed the utilization of solar energy in trigeneration plants, e.g. [88–90].

Buck and Fredmann [88] studied experimentally the performance of a trigeneration plant

based on a microturbine and assessed by a small solar tower. The study assessed the eco-

nomics of using single and double-effect absorption chillers. The authors recommended

using the double-effect chiller since it showed better thermal performance and lower oper-

ating cost compared to the single-effect absorption chiller.

Bizzarri and Fabiano [89] compared the monthly primary energy consumption and the

predicted monthly CO2 emissions of four plants. Two plants were trigeneration plants

where one of them was based on a PAFC and the other was based on a solar thermal system.

The other two plants were a conventional plant with electricity from a grid and a similar

plant to the conventional plant with integrated photovoltaic solar cells. They found that

the plant with the PAFC had constant pollution reduction whereas the other plant operating

with the solar thermal system showed favorable pollution reduction in summer. On the

other hand, the solar thermal system has the most energy saving.

Medrano et al. [90] used thermal collectors to support the cooling and heating produc-

tion of a trigeneration plant that had an internal combustion engine as a prime mover. The

study revealed that there were a significant saving in energy, as well as reduction in CO2

emissions.

25



2.3 Two Prime Movers

2.3.1 Internal Combustion Engine and Gas Turbine

A number of studies discussed within the same study both internal combustion engines and

gas turbines, e.g. [91–98]. Li et al. [92] studied a trigeneration plant based on an internal

combustion engine and another plant based on a gas turbine. The authors compared the

electrical and thermal efficiency of both plants under different electric power loads. Also,

they compared the fuel energy saving ratio with the variation of the electrical power load of

both plants when each plant operated under heating or cooling mode. The study revealed

that, both plants at high electric power demands, had more energy savings compared to low

electric power demands. Also, the study showed that the trigeneration plant with the gas

turbine had less energy saving potential compared to the trigeneration plant based on the

internal combustion engine. A detailed analysis and design of thermal storage as part of

a trigeneration project was examined by Dharmadhikari et al. [93]. The author compared

different equipments and capital costs with and without a thermal storage subsystem. It

was concluded that the thermal storage subsystem reduced the required capacity of the

plant chiller. Consequently, the initial chiller cost and plant power load demands reduced.

Therefore, the authors recommended including in the plant design, the thermal storage

system for economic and environmental reasons.

An optimization analysis was carried out by [94–97]. Colonna and Gabrielli [94] car-

ried out optimization on two plants. The first plant has an internal combustion engine as a

prime mover and the other plant has a gas turbine. The optimization constraints were the

temperatures at different locations of each plant. The authors analyzed the waste heat from

the prime movers using Cycle-Tempo software. The study revealed that the plant with the

internal combustion engine was economically better than the plant with the gas turbine.

Environmental analysis and optimization were conducted by [95–97]. Arcuri et al.
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[95] presented a mixed integer programming optimization model for energy management

of a hospital complex. The objective of the short term optimization was to optimize the

gross operation margin while the objective of the long term optimization was to maximize

the net positive value. On the other hand, the constraints for both short and long terms

were the performance of both compression and absorption heat pumps, as well as energetic

balance of different variables. The authors found that the integration of the heat pumps

into the trigeneration plant had significant economic, energy, and environmental gains.

The trigeneration plant based on the internal combustion engine showed better economic

benefits compared to the plant based on the gas turbine.

A thermoeconomic optimization of a proposed trigeneration plant at an urban residen-

tial area in Beijing, to assess the economic and emission criteria of the trigeneration plant,

was performed by Li et al. [96]. The analysis included a mixed integer and non-linear

programming, and was solved with a generic algorithm optimizer. The objective was to

maximize the plant net present value. The authors examined the effect of changing the

emission taxes of CO2 and NOx and they found that four trigeneration plant configura-

tions were optimum since they had the lowest emission tax levels. Three of these four

plant configurations were based on gas turbines, and the fourth one was based on an inter-

nal combustion engine. In a different study, a hybrid optimization approach was presented

by Piacentino and Cardona [97]. The objective was to obtain a minimum primary energy

saving factor of less than 0.1 on an annual basis. The analysis showed the effectiveness

of using this optimization approach to increase the plant profits and reduce the pollution

emission.

Exergy and exergoeconomic analyses of two trigeneration plants, where each one was

based on a different prime mover, were conducted by Ziher and Poredos [98]. The first plant

had a gas turbine and the other one had two internal combustion engines. The study com-

pared the cost of using different cooling devices under different cooling loading demands
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from March to October. The cooling devices were single and double-effect absorption

chillers and a compressor chiller. The study demonstrated that in almost the entire cooling

season, it was more efficient to produce cooling from the compression chiller. In the low

cooling demand period, March, April, September, and October, the cooling power from the

plant based on the internal combustion engine that used the single effect absorption chiller

had the lowest cost.

2.3.2 Internal Combustion Engine and Microturbine

Analyzing trigeneration plants with internal combustion engines and microturbines as prime

movers was carried out by [99–101]. Chicco and Mancarella [100] applied the trigeneration

primary energy saving indicator as presented by [34]. The authors examined this indicator

under different trigeneration plants topology and operational points. They recommended

carrying out a sensitivity study considering both partial load and off-design models of the

cooling, heating, or power generation equipment.

Exergy and exergoeconomic analyses of different BCHP trigeneration plants were car-

ried out by Huang et al. [101]. In this study, one of the plants was based on an internal

combustion engine whereas the other plants were based on microturbines. The authors

showed that the exergy efficiency of the trigeneration plants was much higher than the con-

ventional plant with separate generation of cooling, heating, and electricity. However, this

gain in efficiency was a function of the load. On the other hand, the trigeneration plant that

was based on the internal combustion engine showed better payback periods and economic

exergy rates compared to the trigeneration plants that were based on the microturbines.
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2.3.3 Gas Turbine and Steam Turbine

Combined cycles, gas turbine and steam turbine, as prime movers of trigeneration plants

were carried out by [102–106]. As a result of the study conducted by Cardona et al. [58],

Cardona et al. [105] extended the analysis to apply it at Malpensa International Airport.

The trigeneration plant is based on a combined cycle consisting of three gas turbines with

two steam turbines. It was recommended doing minor changes to the operation mode of

the airport to reduce energy consumption and pollution’s emission. In another study, a

comparison between a cogeneration plant based on a gas turbine and a trigeneration plant

based on a combined cycle was presented by Santoyo and Sanchez-Cifuentes [106]. It was

shown that the trigeneration plant had less fuel consumption compared to the cogeneration

plant.

2.3.4 Gas Turbine and Fuel Cells

A comparison between a trigeneration plant using a fuel cell as a prime mover with another

three plants powered by a gas turbine was conducted by Kowalski and Zenouzi [107]. The

refrigeration device of the plant based on the fuel cell was a vapor compression whereas the

refrigeration devices for the plants based on the gas turbine were a vapor compression cycle,

absorption cycle, or combined absorption/vapor compression cycle. For large refrigeration

to total thermal load ratios, the combined vapor compression/absorption refrigeration for

the gas turbine-based plant had larger first law utilization factors and a lower carbon dioxide

production rate. On the other hand, the fuel cell based system performed better than the

gas turbine based system at high refrigeration load applications.

A system that combined both SOFC with a gas turbine as a prime mover of a trigen-

eration plant was analyzed by Burer et al. [108]. The system consisted of half, single and

double-effect chillers, a compression chiller, a heat recovery boiler, an auxiliary boiler, a
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cooling system, and a heat pump. The authors performed first and second law efficiencies

of the potential on integrating the heat pump into the trigeneration plant. The study was

mainly focused on cost and CO2 emissions analysis using multi-criteria optimization that

was based on multi-objective evolutionary algorithm. The optimization objectives were the

annual total cost of power, heating, and cooling generation, and the annual CO2 emission

rates. The analysis demonstrated that the combined system of SOFC and gas turbine was

an attractive economical and environmental solution when high electricity and natural gas

prices were encountered.

2.3.5 Microturbine and Fuel Cells

An analysis of a hybrid system of microturbine and fuel cell as a prime mover of trigen-

eration plants was carried out by [109]. Saito et al. [109] carried out energy demand and

consumption analyses of apartments, offices and hotels in Japan with the use of the hybrid

system. They found that the annual fuel consumption dropped by 32%, 36% and 42% for

the apartments, offices, and hotels, respectively.

2.4 Multi Prime Movers

Wang et al. [110] developed a fuzzy multi-criteria decision making model. They applied

the model to five different trigeneration plants. For all the five plants, lithium bromide

absorption water heater/chiller cooling equipment was assumed. The prime movers for the

first four plants were a Stirling engine, gas turbine, internal combustion engine and SOFC.

The fifth plant used electricity from an electricity grid. The cooling and heating loads of the

fifth plant were produced by a direct-fired lithium bromide absorption water heater/chiller

equipment operated by a gas fuel. The trigeneration plant with the internal combustion

engine showed the best match to different criteria assigned by the Chinese government.
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On the other hand, from the environmental perspective, the SOFC showed the best prime

mover.

Mancarella and Chicco [111] used the trigeneration CO2 emissions reduction indicator

as introduced by [112] to examine its effectiveness on different trigeneration plants. Five

trigeneration plants with different prime movers were considered. These prime movers

were a combined gas turbine and steam turbine cycles, internal combustion engine, and

gas turbine and microturbine, as well as integrated fuel cells with a gas turbine. In their

analysis, the authors showed the effect of the electrical and thermal efficiencies on CO2

emissions.

Bing et al. [113] carried out a multi-objective optimization of trigeneration plants. The

authors applied the optimization to five different schemes where two schemes had microtur-

bines as prime movers and the other schemes had a Stirling engine, an internal combustion

engine and a PAFC as prime movers. The study revealed that the microturbine was the

optimal prime mover because of its economic, energy conservation, environmental, and re-

liability outcomes compared to the other prime movers. The study showed that PAFC was

not an economical prime mover; however, its energy conservation, environmental protec-

tion, and reliability were very high.

2.5 Studies Without Specifying Prime Movers

Several studies were conducted without identifying a type of a prime mover, e.g. [112,

114–125]. Studies that have been conducted with only energy analysis of trigeneration

plants were carried out by [116–118]. Plura et al. [116] compared the performance of

different absorption chiller configurations as integrated into a trigeneration plant. These

configurations were double and single-effect chillers without direct coupling and the oth-

ers had different chiller coupling configurations. One of the configurations was selected
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to be the best design since only minor modifications were required to the standard plant

technology. In this coupling, only one low temperature generator was needed unlike the

other coupling that required either two or three generators. In another study, a methodol-

ogy for the selection and management of trigeneration plants was introduced by Cardona

and Piacentino [117]. The proposed methodology was based on thermal and cooling con-

sumption data obtained from several European hotels. In another analysis, Chicco and

Mancarella [118] presented a characterization and planning approach to distributed multi-

generation plants. They introduced trigeneration system lambda analysis that was based on

the cooling power generation impact over the thermal and electrical demand. In another

study, Chicco and Mancarella [119] applied lambda analysis to evaluate multi-generation

alternatives.

An economic analysis of trigeneration plants was conducted by [120, 121]. Henning et

al. [120] discussed the use of a desiccant air cooling system in a Mediterranean climate,

where the climate was characterized by high humidity. One type of cooling system, which

contained sorptive wheels and cooling coils, was recommended among other configurations

that had been considered. It was estimated that the electricity saving in the trigeneration

plant was more than 30% as compared to a conventional air handling unit.

An environmental analysis was performed by [112, 122]. Chicco and Mancarella [112]

introduced a trigeneration CO2 emission reductions indicator. The indicator used to assess

trigeneration and cogeneration plants CO2 emission reductions as compared to a conven-

tional plant with separate production of cooling, heating, and power. In another study,

Chevalier and Meunier [122] applied a life cycle analysis methodology to assess the envi-

ronmental impact of biogas co- or tri-generation plants. The authors demonstrated the pos-

itive impact of the trigeneration plants on environment compared to a conventional plant

with a separate production of the cooling, heating, and power. They pointed out that as

the efficiency of a trigeneration plant increased, the positive impact on the environment
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increased.

An optimization was carried out by [121, 123, 124]. Rong et al. [121] introduced a

Lagrangian relaxation based algorithm for trigeneration planning with storage subsystems.

The objective of the optimization of the trigeneration plant was to minimize the overall net

acquisition costs. The study focused on explaining the methodology of using the introduced

optimization model.

A comparison of exergy and energy efficiencies of a plant with an electric chiller and

two trigeneration plants one with a single-effect chiller and the other with a double-effect

chiller was conducted by Rosen et al. [125]. The analysis revealed that the overall vari-

ation of energy efficiencies for the three plants was from 83% to 94% while the exergy

efficiencies variation was from 28% to 29%.

Exergoeconomic analysis and optimization were conducted by [123, 124]. Piacentino

and Cardona [123] discussed exergoeconomic analysis of systems that were under unsteady

case. Also, they introduced a new optimization algorithm using the Lagrange multipliers

method and a multi-objective decision function. The proposed optimization method was

applied to a trigeneration plant operating in a large hotel. However, the proposed opti-

mization method was limited to only simple layout of trigeneration plants. In another

study, Piacentino and Cardona [124] conducted optimization using mixed integer linear

programming model. The objective of the optimization was the net present value of the tri-

generation plants. The authors showed how to integrate the exergoeconomic analysis into

the optimization model and applied the optimization model into a large hotel and hospital

trigeneration plants as case studies.
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2.6 Summary of Literature Review

The summary of the literature review is presented in Table 2.1. In this table, the studies

are tabulated according to the prime mover type. For each study, usually the prime mover,

absorption chiller, and fuel type are specified. However, in some studies, one or more of

these three types is not specified in the studies. Therefore, the corresponding box in the

table is left blank. That is, each box in the table is checked if there is an indication to it in

the corresponding study.

In summary, the studies on the feasibility of trigeneration plants are growing fast and

most of the studies have been conducted in the last few years. It is observed that there

are several studies that used internal combustion engines as prime movers; however, there

are fewer studies on gas turbines and microturbines. On the other hand, there is less re-

search on the other three prime movers: fuel cells, Rankine cycles, and Stirling engines. In

terms of analysis type, most of the studies have been conducted using energy and economic

analyses. On the other hand, less attention has been given to environmental, exergy, and

exergoeconomic analyses of trigeneration plants. In different studies that compared gas

turbines with internal combustion engines, it was shown that internal combustion engines

are more economical. Also, a few studies, showed that fuel cells are less harmful to the

environment as compared to other prime movers.

The literature review shows that there has been no thermodynamic modeling done on

ORC as a prime mover of a trigeneration plant. Therefore, the current study has a signifi-

cant contribution by assessing the use of ORC as a prime mover for a trigeneration plant.
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Chapter 3

Thermodynamic Modeling and

Thermoeconomic Optimization

3.1 Thermodynamic Equations of Control Volume Systems

3.1.1 Mass Balance

The conservation of mass principle is a fundamental principle in analyzing any thermody-

namic system. This principle is defined for a control volume, as shown in Figure 3.1, as

follows:

Total mass flow rate
entering the control
volume

- Total mass flow rate
leaving the control
volume

= Net change in mass
flow rate

or

∑
k

ṁi −
∑
k

ṁe =
dmcv

dt
(3.1)

where m and ṁ are the mass and mass flow rate, respectively, and the subscripts i and e

refer to the inlet of the control volume and exit of the control volume, respectively. The

subscript cv indicates the control volume.
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Figure 3.1 Control volume.

3.1.2 Energy Balance

The energy principle of a control volume deals with all the energy components of a selected

control volume. The conservation of energy principle, which is known as the first law of

thermodynamics, is defined as

Net rate at
which energy
is being trans-
ferred in by heat
transfer

- Net rate at
which energy
is being trans-
ferred out by
work

+ Net rate of
energy transfer
into the control
volume accom-
panying mass
flow

= Time rate of
change of the
energy con-
tained within
the control
volume

or

Q̇− Ẇ +
∑
i

ṁi(hi +
V2
i

2
+ gzi)−

∑
e

ṁe(he +
V2
e

2
+ gze) =

dEcv

dt
(3.2)

where E, Q̇, Ẇ and t are the energy, heat transfer rate, power and time, respectively. The

other symbols, h, V, g and z, stand for specific enthalpy, velocity, gravity, and elevation,
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respectively.

3.1.3 Entropy Balance

Entropy generation is associated with the losses in the system. The entropy generated

within a process is called entropy generation and it is denoted by Sgen. The entropy gener-

ation rate for a control volumes is defined as

Ṡgen =
∑
i

ṁese −
∑
i

ṁisi −
∑
k

Q̇k

Tk
+
dSCV

dt
(3.3)

where S is the entropy and s is the specific entropy.

3.1.4 Exergy Balance

Unlike energy, exergy is not conserved. It is defined as the maximum work that could be

obtained from a system at a given state. To understand the exergy, reversible work should

be defined first. Reversible work is the maximum useful work that can be obtained as a

system goes through a process between two defined states. Another exergy terminology is

the exergy destruction. It is defined as the potential work lost due to irreversibility. The

exergy balance of a control volume system is defined as

Rate of exergy
change

= Rate of exergy
transfer

- Rate of exergy destruction

or

dExcv
dt

=
∑
j

(1− T0
Tj

)Q̇j − (Ẇcv − p0
dVcv
dt

) +
∑
i

ṁiexi −
∑
e

ṁeexe − Ėxd (3.4)

where T , p, V , ex and Ėxd are, temperature, pressure, volume, specific exergy, and rate

of exergy destruction, respectively. The subscript j is the property value at state j and the
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subscript 0 is the value of a property at the surrounding. The physical exergy, exph, at a

given state is defined as

exph = (h− h0)− T0(s− s0) +
V2 − V2

0

2
+ g(z − z0) (3.5)

The chemical exergy of an ideal gas is defined as [128]

exCH
j = xj · ēxCH

j +R · T0 · xj · ln (xj) (3.6)

where ēxCH
j is the standard chemical exergy value of species j

3.1.5 Energy Efficiency

The energy efficiency is a measure of the useful energy from a system to the input energy

for this system. The energy efficiencies of different systems are defined in the following

text. The thermal efficiency of a thermal cycle is defined as

ηcycle =
Ẇcycle

Q̇i

= 1− Q̇e

Q̇i

(3.7)

The isentropic thermal efficiency of work-producing devices is defined as

ηis =
Ẇac

Ẇis

(3.8)

On the other hand, the isentropic thermal efficiency of work-consuming devices is defined

as

ηis =
Ẇis

Ẇac

(3.9)

The performance of refrigerators is known as the coefficient of performance (COP). It is

defined as

COPR =
desired output
required input

=
QL

QH −QL

=
1

QH

QL
− 1

(3.10)
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where the subscripts is, ac, R, H , and L indicate isentropic, actual, refrigerator, high

temperature reservoir, and low temperature reservoir, respectively.

3.1.6 Exergy Efficiency

The exergy efficiency is defined as the ratio of the actual thermal efficiency to the maximum

reversible thermal efficiency when both are under the same conditions. In general, the

exergy efficiency can be defined as

ηex =
Exergy recovered
Exergy supplied

= 1− Exergy destroyed
Exergy supplied

(3.11)

The exergetic efficiencies of different systems are defined as follows. For heat engines

the exergetic efficiency is defined as

ηex =
ηth
ηrev

(3.12)

The exergetic efficiency of work-producing devices is defined as

ηex =
Ẇcv

Ẇrev

=
Ẇcv

Ėxi − Ėxe
(3.13)

For work-consuming devices, the exegetic efficiency is defined as

ηex =
Ẇrev

Ẇcv

=
Ėxi − Ėxe

Wcv

(3.14)

For heat exchanger, the exergetic efficiency is defined as

ηex =
Ėxcold,e − Ėxcold,i
Ėxhot,i − Ėxhot,e

(3.15)

3.2 Thermoeconomics

The term thermoeconomics is defined usually as the methodologies combing exergy and

economics to obtain a better design and operation of a thermal system. Since thermoeco-

nomics is based on exergy and cost, it is sometimes called exergoeconomics.
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For a kth component receiving heat transfer, q, and generating power, w, the thermoe-

conomic balance equation of this component is

∑
e

(Ċe,k) + Ċw,k = Ċq,k +
∑
i

(Ċi,k) + Żk (3.16)

where Ż is the levelized cost rate to own, maintain, and operate the kth component. Here

Ċ is the cost rate in $ per hour, for example. For exergy costing, Ċ is defined as

Ċ = cĖxj (3.17)

where c is the cost per unit of exergy in $ per kW/h, or $ per GJ, for instance, and Ėx is

the exergy transfer rate.

Thermoeconomics can be best explained through an example. The example on ther-

moeconomics from Moran and Shapiro [128] is adopted to explain it. Assume that a sim-

ple cogeneration system consists of a boiler and turbine, as in Figure 3.2. Apply the cost

analysis on the boiler to get

Ċ1 + ĊP = ĊF + Ċa + Ċw + Żb (3.18)

where Ċ is the cost rate and Żb is the cost rate associated with owning and operating the

boiler each in $ per hour, for instance. The subscripts 1, p, F , a, w and b indicate stream

at the exit of the boiler, combustion products, fuel, air, feed-water, and boiler, respectively.

For simplicity, the exergy and cost of the feed-water and combustion air that enter the boiler

are assumed to be negligible. Using this assumption, substitute Equation 3.17 into Equation

3.18 to obtain

c1Ėxf1 = cF ĖxfF + Żb (3.19)

Similarly, apply cost analysis on the turbine to obtain
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Figure 3.2 Simple cogeneration system, modified from [128].

Ċel + Ċ2 = Ċ1 + Żt (3.20)

where the subscripts el and 2 refer to electricity and low-pressure steam exit, respectively.

The letter Żt refers to the cost rate of the operating and owing the turbine. Now, redefine

Equation 3.20 in terms of cost and exergy to obtain

celẆel + c2Ėxf2 = c1Ėxf1 + Żt (3.21)

3.2.1 The SPECO Method

The SPECO method refers to specific exergy costing. In this study, the SPECO method

is used to carry out the thermoeconomic analysis, see Figure 3.3. The SPECO method is

selected in this study since it is the most widely accepted thermoeconomic method in the

literature. An overview of the SPECO method was presented in [129]. The discussion of

the SPECO method in this section is based on this reference. This method consists of the
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Figure 3.3 SPECO method [130].

following three steps.

1- Identification of exergy streams:

In this step, all exergy streams associated with the entering and existing exergy streams

of each component are identified and calculated. These exergy streams are in the power

unit and not in power per mass flow rate.

2- Definition of fuel and product costs:

The product cost is defined to be equal to the sum of

• All the exergy values at the exit, plus

• All the exergy increases between inlet and exit.

Likewise, the fuel cost is defined to be equal to

• All the exergy values at the inlet, plus
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• All the exergy decreases between inlet and exit, minus

• All the exergy increases between the inlet and exit of a component that are not related

to the component purpose.

3- Identification of cost equations

Cost equations are the cost rate and cost per exergy unit equations, as defined above at

the beginning of this section and through Equations 3.16-3.21.

The F (Fuel) and P (Product) rules

When carrying thermoeconomic analysis using the SPECO method, usually further auxil-

iary equations are needed. These equations are obtained using the F and P rules. The F

and P rules, according to [129], are cited below.

The F rule for a considered component refers to the removal of exergy from an exergy

stream within the component when, for this stream, the exergy difference between inlet and

outlet is considered in the definition of the fuel. The F rule states that the specific cost (cost

per exergy unit) associated with this removal of exergy from a fuel stream must be equal to

the average specific cost at which the removed exergy was supplied to the same stream in

upstream components.

The P rule for a considered component refers to the supply of exergy to an exergy

stream within the component. The P rule states that each exergy unit is supplied to any

stream associated with the product at the same average cost.

3.3 Optimization

Optimization is an essential tool for many engineering designs. Using optimization model-

ing, one can find an optimum design, for instance, without the need to examine all possible
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cases and how each case affects the desired optimum design. That is, optimization will

ensure an optimum case and reduce simulation time. To carry out optimization, some el-

ements of optimization formulation need to be explained. These elements include system

boundaries, optimization criteria, variables, and mathematical model.

System boundaries

The system boundaries are simply the boundaries of the system to be optimized. These

boundaries are real or imaginary surfaces that isolate the system from the surrounding. In

the case of a complex system, the system could be divided into subsystems. The opti-

mization could be done on each subsystem independently and the optimization of these

subsystems is called sub-optimization.

Optimization criteria

After selecting the system boundaries, optimization criteria are selected. These criteria

could be for the purpose of having the best economical design and/or operating parameters

of the system. Other criteria could be the best design/operating thermal efficiency and/or

the lowest air pollution.

Variables

The third element is selecting the optimization independent variables. It is important in

selecting these variables to put into consideration the optimization boundaries and criteria.

If the criterion of the optimization is to have the lowest operating cost, all major indepen-

dent variables that affect the operating cost need to be selected. Also, in selecting these

variables, the reasonable range where these variables are operated needs to be identified.
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The Mathematical model

The Mathematical model of optimization is the mathematical description of the optimiza-

tion criteria and variables within the system boundaries. The mathematical model consists

of

• Optimization criteria: objective function(s) to be minimized or maximized; and

• Equality and inequality constraints.

3.3.1 The Direct Search Optimization Method

Several optimization methods have been proposed in the literature. Each method has its

advantages and limitations. In Engineering Equations Solver (EES), four search methods

for multi-variables optimization are available: direct search, variable metric, generic, and

Nelder-Mead simplex methods. For the trigeneration systems considered in this study, the

direct search method was the appropriate one since it provides a good design criteria and

has a converged solution. In EES, when there are two or more degrees of freedom (inde-

pendent variables), as in the considered trigeneration systems in this study, direct search

optimization method executes in two steps. First, EES uses Brent’s method to find the min-

imum or maximum along a particular direction. Second, the direction of the optimization

path is determined through Powell’s method. These two methods are summarized below.

As indicated in the EES manual, the direct search method that are implemented in the EES

code is based on [131, 132]. Therefore, these two references are selected to be the main

sources of optimization discussion in this section.

Brent’s optimization method

Brent’s method is considered a root-finding algorithm that combines root bracketing, bisec-

tion, and inverse quadratic interpolation [133]. The description of the Brent method below
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is based on [132].

This method is characterized by tracking six function points, say a, b, u, v, w, and x

but are not necessarily all distinct. These function points are defined next. The minimum

solution is bracketed between a and b; x is the point with the very least function value found

so far; w is the point with the second least function value; v is the previous value of w; and

u is the point where the function most recently evaluated. The midpoint between a and b is

denoted as xm. The flowchart of the Brent method is shown in Figure 3.4.

Powell’s direct search optimization method

Search optimization methods differ in the path (direction) the optimization function de-

cides in the next simulation step. One of the most successful direct search methods is the

method developed by Powell [131,134]. The Powell’s direct search method was originally

developed by Powell as in [135] and its description can be found in different optimiza-

tion books. The Powell’s direct search method is considered as an extension of the basic

search method and it depends on successive line minimization. A contours plot that shows

how this method works is in Figure 3.5. Powell’s method is a quadratic model and, thus,

represents one of the simplest types of nonlinear functions to minimize [131]. Also, near

the optimum, all nonlinear functions can be approximated by a quadratic function. The

direction of Powell’s method depends on a research direction called conjugate direction.

The definitions of quadratic functions and conjugate direction that are explained below are

based on [131].

Quadratic function

Using a quadratic function, the optimum function can be found after N single-variable

searches one with respect to each of the transformed function. This can be performed if a

quadratic function in N variables can be transformed. An example of a quadratic function
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Brent (ax, bx, cx,f,tol,xmin)

if(abs(x-xm) <=(tol2-.5*(b-a)))

a=min(ax,cx); b=max(ax,cx); v=bx; w=v; x=v; e=0.; fx=f(x); fv=fx; fw=fx,

xm=0.5(a+b); tol1=tol*abs(x)+ZEPS; tol2=2.*tol1

yes

d=p/q; u=x+d

if(abs(p) > =abs(.5*q*etemp) or if  P <= q*(a-x)   or if p >= q*(b-x)) 

If   q > 0.  then p=-p; q=abs(q); etemp=e;  e=d

if(u-a < tol2   or if  b-u < tol2) 

d=sign(tol1,xm-x)

if(x >= xm) then e=a-x else e=b-x

if(abs(e) > tol1) then r=(x-w)*(fx-fv); q=(x-v)*(fx-fw); p=(x-v)*q-(x-w)*r; q=2.*(q-r)

yes

If     fu <= fx

yesno

If     u >=  x; then  a=x else  b=x

v=w; fv=fw; w=x; fw=fx; x=u; fx=fu

If  u <  x; then  a=u; else  b=u

if(fu <= fw; or  w= x) then 

v=w; fv=fw; w=u; fw=fu

if(fu<= fv; or  v =x or  v =w) 

then v=u; fv=fu

yesno

xmin=x

brent=fx

ITMAX=1000;  CGOLD=.3819660;  ZEPS=1.0e-10

If do 11 = ITMAX

Pause and Print ‘Exceed maximum iterations’

do 11

d=CGOLD*e

if(abs(d) >= tol1) then u=x+d else u=x+sign(tol1,d)

fu=f(u)

no

no

no

yes

Figure 3.4 The Brent’s method.
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Figure 3.5 Schematic of Powell’s method [134].

is

f(x) = a+ bTx+
1

2
xTCx (3.22)

To transfer this function into a sum of a perfect square, is similar to finding a transfor-

mation matrix T , such that the quadratic term is reduced to a diagonal form. This transfor-

mation process is shown below. Assume the quadratic form to be

F (x) = xTCx (3.23)
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Thus, the desired transformation is

x = Tz (3.24)

This will yield

F (x) = zTT TCT = zTDz (3.25)

where D is a diagonal matrix. Now, assume that tj to be the jth column of T . In this case,

the transformation in Equation 3.24 shows each vector x as a linear combination of the

column vectors tj . That is,

x = Tz = t1z1 + t2z2 + .....tNzN (3.26)

This equation shows that x can be expressed in a new coordinate system given by the set

of vectors tj .

Conjugate directions

For a given symmetric matrix C with N × N size, the directions s1, s2, ....., sr, where

r ≤ N , are said to be C conjugate if the directions are linearly independent, and

s(i)TCsj = 0, for all i 6= j (3.27)

Considering the quadratic function as in Equation 3.22, the points along the direction d

from x1 can be represented by

x = x1 + λd (3.28)

The minimum value of function f(x) along d is obtained by finding λ∗ such that ∂f/∂λ =

0. The partial derivative is calculated using the chain rule as
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∂f

∂λ
=
∂f

∂x

∂x

∂λ
= (bT + xTC)d (3.29)

Assume the minimum value occurs at y(1), therefore,

[((y(1))TC + bT )]d = 0 (3.30)

Likewise, because the minimum value of f(x) along d from x(2) is attained at y(2), we have

[((y(2))TC + bT )]d = 0 (3.31)

Subtracting Equation 3.30 from Equation 3.31 to have

(y(2) − y(1))TCd = 0 (3.32)

As a result, the directions d and y(2) − y(1) are C conjugate.

The flow chart of Powell’s method is shown in Figure 3.6. Powell’s method depends

on finding a line minimization function as a subroutine in this method, which could be

called linmin. This function works as follows [132]: for given input vectors P and n, and

a function f , the scalar λ is found that minimizes f(P + λn). Then, replace P by P + λn

and replace n by λn.

3.4 Thermoeconomic Optimization

Thermodynamic optimization is minimizing the thermodynamic inefficiencies in the sys-

tem [136]. The thermodynamic inefficiencies are the exergy destruction and exergy loss.

On the other hand, thermoeconomic optimization is minimizing the costs, including the

cost of the thermodynamic inefficiencies. Thermoeconomics can be considered as exergy-

aided cost minimization. The optimal design of a system is characterized by a maximum
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powell (ax, bx, cx,f,tol,xmin)

pt(j)=p(j)

fret=func(p)

j=1 to n

i=1,n

fp=fret; ibig=0; del=0.

iter=iter+1

j=1,n

xit(j)=xi(j,i)

iter=0

if(2.*(fp-fret) <= ftol*(abs(fp)+abs(fret))+TINY) return linmin

if(iter = ITMAX) pause ’powell exceeding maximum iterations’

j=1,n 

if(fptt >= fp)

NMAX= 20; ITMAX=1000;  TINY=1.0e-25

ptt(j)=2.*p(j)-pt(j) ; xit(j)=p(j)-pt(j);  pt(j)=p(j)

do 11

fptt=fret

linmin(p,xit,n,fret)

if(fptt-fret > del) then 

del=fptt-fret;  ibig=i

1

do 13

do 12

do 14

fptt=func(ptt)

t=2.*(fp-2.*fret+fptt)*(fp-fret-del)**2-

del*(fp-fptt)**2

if(t >= 0.)

yes

j=1,n

xi(j,ibig)=xi(j,n)

xi(j,n)=xit(j)

Do 15

no

linmin(p,xit,n,fret)

yes

no

Figure 3.6 The Powell’s flowchart.
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or minimum value of one or more selected criteria. The other criteria (the non-selected

criteria) are considered as problem constraints [136].

Different criteria can be selected for optimization. For example, when the overall ther-

mal exergy efficiency of a plant is selected as an optimization criterion, the optimization

will provide the best operating conditions within the simulation constraint(s) that results in

the highest exergy efficiency. However, this optimization criterion does not consider the

cost effect and it could result in high operating cost conditions. Similarly, finding the best

operating condition(s) for the lowest operating cost could result in a low exergy efficiency.

Therefore, there is a need to find a parameter that takes into consideration both the cost and

exergy of the plant considered for optimization. This parameter can be obtained through

thermoeconomic analysis [136]. As mentioned in [136], the cost per exergy unit of of the

final product (trigeneration) is an important parameter to optimize. Therefore, it is consid-

ered in this study as the thermoeconomic optimization objective. For an electrical power

plant with a constant electrical power output, a main parameter to optimize is the product

cost rate, [136]. That is,

Ċproduct,total = Ċfuel,total + Żtotal (3.33)

3.5 Summary

In this chapter, the thermodynamic modeling and optimization are presented. The mass,

energy, entropy, exergy, and efficiency equations are given. Also, thermoeconomic and

optimization modelings are discussed. For the optimization, Brent’s and Powell’s methods

are used. For the thermoeconomic analysis, the SPECO method is used. An overview chart

of the modeling equations used in this study is shown in Figure 3.7.
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systems with set of nonlinear equations

Constraints 

Figure 3.7 Overview of the modeling steps in the thermoeconomic optimization.
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Chapter 4

Case Studies

4.1 Introduction

ORC is similar to the steam Rankine cycle but uses an organic working fluid instead of

water. A steam Rankine cycle can be used when a high-temperature waste heat is available

while ORC can be used when low- or medium-temperature waste heat is available. The

input heat to ORC can be from a non-renewable or renewable energy source. ORC can be

integrated with a microturbine or SOFC, as an example of a system that is based on a non-

renewable energy source. Also, ORC can be integrated with solar collectors, biomass, or

geothermal energy, as an example of a system that is based on a renewable energy source.

As discussed earlier, there has been no thermodynamic modeling conducted using an ORC

as a prime mover of a trigeneration system. This study helps in evaluating the feasibility of

using ORC in trigeneration systems.

This chapter is organized as follow. First, introduction to the systems considered

is presented. Then, organic fluid selection for the ORC is discussed. Next, thermody-

namic modeling of the ORC, single-effect absorption chiller, SOFC-trigeneration system,

biomass-trigeneration system, and solar-trigeneration system are illustrated. Lastly, ther-
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moeconomic modeling and thermoeconomic optimization of the systems considered are

demonstrated.

4.2 Systems Studied

The ORC can be used as a prime mover for a trigeneration system or it can be combined

with another prime mover. In this study, three systems are examined. These systems are

combined SOFC with ORC, combined biomass combustor with ORC, and combined solar

collectors with ORC. Schematic diagrams of these systems are shown in Figures 4.1- 4.3.

SOFC has a potential application in the future since it has higher efficiency and less air

pollution compared with fossil fuel systems. Therefore, a trigeneration system based on

SOFC and ORC is selected. Biomass fuel and solar energy are renewable energy sources

that can be combined with ORC. Recent potential research that examines the feasibility of

these two renewable energy sources is on ongoing. Therefore, trigeneration systems based

on biomass combustor and solar collectors are selected in this study.

All the systems examined consist of an ORC as a prime mover to produce the electrical

power, single-effect absorption chiller to supply the cooling load, and a heat exchanger to

supply the heating load. It can be noticed that in these systems there are two cycles: ORC

and cooling cycles. The flow stream in the ORC is described first and then the flow stream

in the cooling cycle.

The flow in the ORC according to Figure 4.1 is described as follows. The fluid exits the

generator (desorber) (state 1) as saturated liquid. Next, the pump increases the pressure of

the saturated liquid (state 2). Then, the working fluid enters the evaporator in a liquid state

and exits as vapor (state 3). Next, the organic fluid expands through the turbine to produce

the mechanical energy. The mechanical energy is used to rotate the electrical generator

which is connected to the turbine. Then, the working fluid exits the turbine (state 4) and

62



supplies heat to the heating-process heat exchanger. The heating-process heat exchanger

rejects heat to supply the heating load. After that, the organic fluid enters the generator

(state 5) as saturated vapor. The generator absorbs heat to supply the cooling load for the

single-effect absorption chiller. Then, the organic fluid exits from the generator again as

saturated liquid (state 1).

The heat rejected to the generator is the input energy to the single-effect absorption

chiller. The flow streams transport between the components of this cooling cycle as either

water or a mixture of lithium-bromide (LiBr) and water. As a result of the input heat

into the generator, water evaporates from the mixture of the LiBr and water and enters the

condenser (state 6). In the condenser, the heat is rejected. Therefore, the water cools down

and exits the condenser as saturated liquid (state 7). After that, the water is throttled before

entering the evaporator (state 8) at low temperature. The evaporator supplies the cooling

load. After that, water exits the evaporator and enters the absorber (state 9). The water

mixes with the mixture of the LiBr and water. The mixture exits the absorber (state 10) and

is pumped to the heat exchanger (state 11). Then, the mixture exits from the heat exchanger

and enters the generator (state 12). The mixture is heated in the generator and part of the

water in the mixture evaporates and exits the generator (state 6). As a result of the water

evaporation, the mixture exits the generator with a higher LiBr concentration in the mixture

to enter the heat exchanger (state 13) to gain heat. After that, it exits the heat exchanger

(state 14) and is throttled into the absorber (state 15). This discussion in this paragraph

summarizes the fluids cycle in the single-effect absorption chiller.
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4.3 Fluid Selection for the Organic Rankine Cycle

Many types of organic fluids can be used for ORC. However, only the organic fluids that

operate with a high temperature are efficient for ORC. A typical working fluid that has a

high critical temperature and, thus, high ORC efficiency is n-octane. Therefore, this fluid

is selected for the ORC [137, 138]. The properties of n-octane are shown in Table 4.1.

4.4 Thermodynamics Modeling of the ORC and Cooling

Cycles

The ORC and cooling cycle in all the systems considered are similar. Therefore, the ther-

modynamic modeling of the ORC and cooling cycle are presented first in this section.

Then, the thermodynamic modeling of the SOFC, biomass combustor, and solar collectors

is presented in the subsequent sections.

The thermodynamic modeling of the ORC and cooling cycle presented in this section is

for the system shown in Figure 4.1. The analysis is carried out by applying the governing

equations to the control volumes enclosing each component of the system. For each com-

ponent, mass, energy, and exergy balance equations are presented. The analysis starts with

the ORC and then the cooling cycle. Some assumptions were made to carry out the analy-

sis. It was assumed that the system is at steady state and pressure drops are neglected except

in pumps, valves, and the turbine. Also, the kinetic and potential energies were neglected.

Further assumptions for specific components are mentioned later where appropriate.

Mass balance equations of the ORC

The mass flow rate is constant throughout the ORC. The mass balance equations are
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Table 4.1 Thermodynamic properties of n-octane

Substance name n-octane

Mol. formula C8H18

Mol. weight 114.231

Freeze point (oC) -56.77

Boiling point (oC) 125.68

Crit. temp. (oC) 295.68

Crit. pressure (bar) 24.86

Crit. volume (cm3/mol) 492.1

Crit. density (g/cm3) 0.2322

Crit. compressibility 0.259

Accentric factor 0.396

Source: [139]

ṁ1 = ṁ2 = ṁ3 = ṁ4 = ṁ5 = ṁo

where the subscripts 1−5 refer to the states shown in Figure 4.1 and the subscript o indicates

the flow inside the organic Rankine cycle.

ORC pump

The energy and exergy balance equations of the ORC pump are

Ẇop = ṁo · (h2 − h1)

Ėxd,op = Ẇop + ṁo · (ex1 − ex2)
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where the subscript op indicates the ORC pump. The isentropic efficiency of the pump is

defined as

ηop,is = Ẇop,is/Ẇop

where Ẇop,is is defined as

Ẇop,is = ṁo · (hs,2 − h1)

where the subscript is refers to isentropic.

ORC evaporator: SOFC

The energy and exergy balance equations of the ORC evaporator in the case of the trigen-

eration system, using the SOFC are

Qoe = ṁo · (h3 − h2) = NFC ·
(
Ḣ28 − Ḣ29

)
Ėxd,oe = NFC ·

(
Ėx28 − Ėx29

)
+ ṁo · (ex2 − ex3)

where NFC is the total number of cells, ṁo is the mass flow rate of the organic fluid in the

ORC, and the subscript oe indicates the ORC evaporator. The effectiveness of the ORC

evaporator is defined as

εoe =
ṁo · (h3 − h2)

NFC · Ḣ28 − ṁo · h2

ORC evaporator: biomass

The energy and exergy balance equations of the ORC evaporator in the case of the trigen-

eration system, using the biomass combustor as shown in Figure 4.2, are

Q̇oe = ṁo · (h3 − h2) =
(
Ḣ19 − Ḣ20

)
69



Ėxd,oe = Ėx19 − Ėx20 + ṁo · (ex2 − ex3)

ORC evaporator: solar subsystem

The energy and exergy balance equations of the ORC evaporator in the case of the trigen-

eration system, using the solar subsystem as shown in Figure 4.3, are presented below. For

evaporator-a, the energy and exergy equations are

Q̇oe =
(
Ḣ26 − Ḣ27

)
Ėxd,ev,a =

(
Ėx26 − Ėx27 + ṁo · (ex2 − ex3)

)
· ∆thdhst

24 [hr]

For evaporator-b, the energy and exergy equations are

Q̇oe =
(
Ḣ17 − Ḣ18

)
Ėxd,ev,b =

(
Ėx17 − Ėx18 + ṁo · (ex2 − ex3)

)
·
(

24 [hr]−∆thdhst
24 [hr]

)
where ∆thdhst is the total discharging time from the hot storage tank.

ORC turbine

The energy and exergy balance equations of the ORC turbine are

Ẇot = ṁo · (h3 − h4)

Ėxd,ot = −Ẇot + ṁo · (ex3 − ex4)

where the subscript ot indicates the ORC turbine. The isentropic efficiency of the turbine

is

ηt,is = Ẇot/Ẇot,is
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where Wot,is is defined as

Ẇot,is = ṁo · (h3 − hs,4)

Heating process

The energy and exergy balance equations of the heating process are

Q̇hp = ṁo · (h4 − h5) = ṁhp · (hhp,2 − hhp,1)

Ėxd,hp = ṁhp · (exhp,1 − exhp,2) + ṁo · (ex4 − ex5)

where the subscript hp indicates the heating process.

The mass, energy, and exergy balance equations of the single-effect absorption chiller

are presented next.

4.4.1 Single-Effect Absorption Chiller (SEAC)

The performance analysis applied to the single-effect absorption chiller is similar to the

approach used by ASHRAE [140] and Herold et al. [141]. The assumptions used in the

single-effect absorption chiller are [141]

• The refrigerant is considered pure water (States 6-9).

• States 7, 10, and 13 are considered saturated liquid.

• State 9 is considered saturated vapor.

• The pressure in the generator and condenser is considered equal.

• The pressure in the evaporator and the absorber is considered equal.
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The mass, energy, and exergy equations of each component in the single-effect absorp-

tions chiller are derived next.

Generator

The mass balance equations of the generator are

ṁ12 = ṁ13 + ṁ6

ṁ12 · x12 = ṁ13 · x13

The energy balance equation of the generator is

h12 · ṁ12 − h13 · ṁ13 − h6 · ṁ6 + Q̇g = 0

where Q̇g is defined as

Q̇g = ṁ5 · (h5 − h1) = LMTDg · UAg

where LMTDd of the generator is defined as

LMTDg =
T 5 − T 13 − T 1 + T 6

ln ((T5 − T13))− ln ((T1 − T6))

The exergy balance equation is defined as

Ėxd,d = ṁ12 · ex12 − ṁ6 · ex6 − ṁ13 · ex13 + ṁo · (ex5 − ex1)

where LMTD is the log mean temperature difference, x is the concentration of the lithium-

bromide into the LiBr/water mixture, and the subscript d indicates the generator.
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Condenser of the SEAC

The mass, energy, and exergy balance equations of the condenser of the cooling cycle are

ṁ7 = ṁ6

Q̇cond = ṁ6 · (h6 − h7) = ṁcond · (hcond,2 − hcond,1) = LMTDcond · UAcond

Ėxd,cond = ṁcond · (excond,1 − excond,2) + ṁ6 · (ex6 − ex7)

where the subscript cond indicates the condenser. The effectiveness and LMTD of this

condenser are

εcond =
T cond,1 − T cond,2

Tcond,1 − T7

LMTDcond =
T 7 − T cond,1 − T 6 + T cond,2

ln ((T7 − Tcond1))− ln ((T6 − Tcond2))

Refrigerant Valve

The mass, energy, and exergy balance equations of the second throttling valve (10-11) are

ṁ8 = ṁ7

h8 = h7

Ėxd,rv = ṁ7 · (ex7 − ex8)

Evaporator

The mass, energy, and exergy balance equations of the evaporator are

ṁ9 = ṁ8
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Q̇ev = ṁ8 · (h9 − h8) = ṁev · (hev,1 − hev,2) = LMTDev · UAev

Ėxd,ev = ṁev · (exev,1 − exev,2) + ṁ8 · (ex8 − ex9)

where the subscript ev indicates the evaporator. The effectiveness and LMTD of this

evaporator are

εev =
T ev,1 − T ev,2

Tev,1 − T9

LMTDev =
T ev,1 − T 9 − T ev,2 + T 8

ln ((Tev1 − T9)/(Tev2 − T8))

Absorber

The energy balance equation of the absorber is

ṁ9 · h9 + ṁ15 · h15 − Q̇ab − ṁ10 · h10 = 0

where

Q̇ab = ṁab · (hab,2 − hab,1) = LMTDab · UAab

The exergy balance equation of the absorber is

Ėxd,ab = ṁab · (exev,1 − exev,2) + ṁ8 · (ex8 − ex9)

where the subscript ab indicates the absorber. The effectiveness and LMTD of this ab-

sorber are

εab =
T ab,2 − T ab,1

T15 − Tab,1

LMTDab =
T 15 − T ab,2 − T 10 + T ab,1

ln
(

T15−Tab2
T10−Tab,1

)
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Solution pump

The mass, energy, and exergy balance equations of the solution pump are

ṁ11 = ṁ10

Ẇsp = ṁ10 · v10 · (Phigh − Plow) = ṁ10 · (h11 − h10)

Ėxd,sp = Ẇsp + ṁ14 · (ex14 − ex15)

where the subscript sp indicates the solution pump.

Heat Exchanger

The mass balance equations of the heat exchanger are

ṁ12 = ṁ11

ṁ14 = ṁ13

The energy and exergy balance equations are

Q̇hx = ṁ10 · (h12 − h11) = ṁ13 · (h13 − h14) = LMTDHxUAHx

Ėxd,hx = ṁ13 · (ex13 − ex14) + ṁ11 · (ex11 − ex12)

The effectiveness and LMTD of this heat exchanger are

εHx =
T 13 − T 14

T13 − T11

LMTDHx =
(T 13 − T 12)− (T 14 − T 11)

ln
(

T13−T12

T14−T11

)
where εHx and UA are effectiveness of the heat exchanger and overall heat transfer coef-

ficient multiplies by the area, respectively. The subscript hx indicates the heat exchanger.
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Solution expansion valve

The mass, energy, and exergy balance equations of the solution expansion valve are

ṁ15 = ṁ14

h15 = h14

Ėxd,sev = ṁ14 · (ex14 − ex15)

where the subscript sev indicates the solution expansion valve.

Validation of the single-effect absorption chiller model

The analysis of the single-effect absorption chiller is validated with Herold et al. [141], as

shown in Figure 4.4. The figure shows a very good agreement between the current single-

effect absorption chiller model and the Herold et al. model.

Input data for the ORC and single-effect absorption chiller

The input data for the ORC and single-effect absorption chiller is shown in Table 4.2.

4.5 Case Study I: Thermodynamic Modeling of the SOFC

4.5.1 Introduction

In this section, a brief introduction to solid oxide fuel cell (SOFC) is presented. A schematic

diagram of a SOFC is shown in Figure 4.5. The electricity is produced from the electro-

chemical reaction of air and a fuel that can be reformed into hydrogen, such as methane,

propane, butane, natural gas, or other similar hydrocarbons. In this study, methane, CH4,

is selected as a fuel for the SOFC.
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Figure 4.4 Validation of the single-effect absorption chiller model as compared to
Herold et al. model [141].; COP and evaporator heat rate versus generator inlet
temperature.

The production of electricity from the SOFC is described as follows. The air enters from

the cathode side and O2 diffuses through the cathode layer and interacts with the electron

e−. As a result of the reaction, O= ions are produced. The electrolyte layer allows only

O= ions to migrate from the cathode to the anode. On the other side of the cell, the fuel,

CH4, diffuses through the anode layer and reforms into hydrogen H2. The hydrogen reacts

with O= ions to produce water and electrons e−. The electrons that are produced from

the chemical interaction pass through the external electric circuit and, thus, the electrical

current is produced. The equations of the chemical reaction through the SOFC are shown

below.

The chemical equilibrium equations that occur within the anode and cathode of the fuel
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Table 4.2 Input data for the ORC and single-effect absorption chiller

ORC
ORC turbine isentropic efficiency 80%
ORC pump isentropic efficiency 80%
Effectiveness of the ORC evaporator 85%
Baseline turbine inlet pressure 2000 kPa
Organic pump inlet temperature 365 K
Electrical generator efficiency 95%
Electrical motor efficiency 95%

Cooling cycle
Overall heat transfer coefficient of the generator 70 kW/K
Overall heat transfer coefficient of the condenser 80 kW/K
Overall heat transfer coefficient of the evaporator 95 kW/K
Overall heat transfer coefficient of the absorber 75 kW/K
Effectiveness of solution heat exchanger 70%

Source: [142–145]

cell are

CH4 +H2O ↔ CO + 3H2 (4.1)

CO +H2O ↔ H2 + CO2 (4.2)

The overall electrochemical equilibrium equation is

H2 +
1

2
O2 → H2O (4.3)

The assumptions for this SOFC model are [146]

• Air that enters the SOFC consists of 79% N2 and 21% O2.

• Gas mixture at the exit of the fuel channel reaches at chemical equilibrium.

• Both air and fuel flows have the same temperature at the inlet to the SOFC.

• Both air and fuel flows have the same temperature at the exit of the SOFC.

• The radiation heat transfer between gas channels and solid structure is negligible.

• Contact resistances are negligible.
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Figure 4.5 Schematic diagram of SOFC.

4.5.2 SOFC Analysis

The cell voltage produced by the cell is the difference between the reversible cell voltage

and the sum of the voltage loss. It is defined as

Vc = VN − Vloss (4.4)

where Vc, VN and Vloss are cell voltage, reversible cell voltage, and voltage loss, respec-

tively. The equation of the reversible cell voltage is derived from Nernst equation and is

defined as

VN = −∆Ḡf

2 · F
−R · TFC,exit

2 · F
· ln
(

xH2O,27

xH2,27 ·
√
xO2,19

)
(4.5)

where Gf is the Gibs free energy, R is the universal gas constant (8.314 J/[mole-K]), and

F is the Faraday constant (96,485 coulombs/[g-mole]).

The voltage loss (Vloss) is the sum of three voltage losses, which include the ohmic,

activation polarization, and concentration losses. That is, the voltage loss is defined as
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Vloss = Vohm + Vact + Vcont (4.6)

where Vohm is defined by Bossel [147] as follows:

Vohm = (Rcontact + ρa · La + ρc · Lc + ρe · Le + ρint · Lint) · j (4.7)

where ρ is the electrical resistivity of cell components, L is thickness of a cell component,R

is resistivity contact and j is current density. The activation polarization losses are defined

by Kim [148] as follows:

Vact = Vact,a + Vact,c (4.8)

Vact,a =
R · TFC,exit

F
·
(

sinh−1

(
j

2 · joa

))
(4.9)

Vact,c =
R · TFC,exit

F
·
(

sinh−1

(
j

2 · joc

))
(4.10)

The concentration voltage loss is defined by Chan et al. [149] as follows:

Vcont = Vcont,a + Vcont,c (4.11)

Vcont,a = −R · TFC,exit

2 · F
· ln (1− j/jas) +

R · TFC,exit

2 · F
· ln
(

1 +
PH2,27 · j
PH2O,27 · jas

)
(4.12)

Vcont,c = −
(
R · TFC,exit

4 · F
· ln (1− j/jcs)

)
(4.13)

where jas is the exchange current density of anode and jcs is the exchange current density

of cathode and defined as

jas =

2·F ·PH2,27·Daeff

(R·TFC,exit·La)

1000000 [cm3/m3]
(4.14)

jcs =

4·F ·PO2,19·Dceff((
P00−PO2,19

P00

)
·R·TFC,exit·Lc

)
1000000 [cm3/m3]

(4.15)

where Dceff is effective gaseous diffusivity through the cathode and Daeff is effective

gaseous diffusivity through the anode. The subscripts ohm, act, cont, a, c, e, and int in-

dicate ohmic, activation, concentration, anode, cathode, electrolyte, and interconnect, re-

spectively. The electrical resistivity defined as [147]
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ρe = (C1e · exp (C2e/TFC,exit))
−1 (4.16)

ρa = (C1a/TFC,exit · exp (C2a/TFC,exit))
−1 (4.17)

ρc = (C1c/TFC,exit · exp (C2c/TFC,exit))
−1 (4.18)

ρint = (C1int/TFC,exit · exp (C2int/TFC,exit))
−1 (4.19)

where C1e-C2int are constants defined in [147]. The model used to carry out the equilib-

rium equations of the SOFC is based on a validated model developed by Colpan et al. [146],

assuming the methane is fully converted. The molar conversion rates of Equations 4.1- 4.3

are a, b, and c, respectively. The molar flow rates of the gases are derived next. The mo-

lar flow rates of the reactions Equations 4.1- 4.3 are given in Table 4.3. In this table, ṅ,

U̇f , and U̇O2 are molar flow rate, fuel utilization ratio, and oxygen utilization ratio, respec-

tively. The molar concentration of the elements are given in Table 4.4. In this table, x is a

concentration of an element in a stream.

The constants a and b are found using the equilibrium constant and current equations.

The equilibrium constant is defined as

Kwgs = exp

(
− ∆G0

R · TFC,exit

)
=
xCO2,27 · xH2,27

xCO,27 · xH2O,27

(4.20)

where Kwgs is the waste gas shift equation. The current and current density are defined

respectively as

I = j · Aa (4.21)

j =
2 · F · c
Aa

(4.22)

where I is the current and Aa is the active surface area. The work of the fuel cell, ẆFC , is

defined as
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Table 4.3 Molar flow rates of the gases

ṅH2O,26 = 2.5 · a

ṅCH4,26 = a

ṅH2,27 = 3 · a+ b− c

ṅCO,27 = a− b

ṅCO2,27 = b

ṅH2O,27 = 1.5 · a− b+ c

ṅO2,u = c/2

ṅO2,18 = ṅO2,19 + ṅO2,u

ṅO2,19 = c/2 · (1/UO2 − 1)

ṅN2,19 = 79/21 · c
2·UO2

ṅN2,18 = ṅN2,19

c = (3 · a+ b) · Uf

ṅanode,exit = ṅH2,27 + ṅCO,27+

ṅCO2,27 + ṅH2O,27

ṅcathode,exit = ṅO2,19 + ṅN2,19

ṅanode,inlet = ṅH2O,26 + ṅCH4,26

ṅcathode,inlet = ṅO2,18 + ṅN2,18

ẆFC = I · Vc (4.23)

Validation of the SOFC model

The SOFC model was validated with Tao et al. [150]. The model shows a good agreement

as presented in Figure 4.6.
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Table 4.4 Molar concentration of the elements

xO2,18 = ṅO2,18/ṅcathode,inlet

xN2,18 = ṅN2,18/ṅcathode,inlet

xO2,19 = ṅO2,19/ṅcathode,exit

xN2,19 = ṅN2,19/ṅcathode,exit

xCH4,26 = ṅCH4,26/ṅanode,inlet

xH2O,26 = ṅH2O,26/ṅanode,inlet

xH2,27 = ṅH2,27/ṅanode,exit

xCO,27 = ṅCO,27/ṅanode,exit

xCO2,27 = ṅCO2,27/ṅanode,exit

xH2O,27 = ṅH2O,27/ṅanode,exit

xN2,28 = ṅN2,28/ṅ28

xO2,28 = ṅO2,28/ṅ28

xCO2,28 = ṅCO2,28/ṅ28

xH2O,28 = ṅH2O,28/ṅ28

4.5.3 SOFC-Subsystem Components Analysis

The energy and exergy balance equations of the blowers, heat exchangers, after burner, and

boiler are derived next.

Blower 1

The energy and exergy balance equations of blower 1 are

Ẇb1 = Ẇb1,s/ηb1,is = NFC · ṅcathode,inlet · (h̄17 − h̄16)

Ėxd,b1 = Wb1 + ṅcathode,inlet · (ex16 − ex17)
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Figure 4.6 Validation of the SOFC model with Tao et al. [150]: cell voltage and
power density versus current density.

where NFC is the number of fuel cells and subscript b1 indicates blower 1. Ẇb1,s is defined

as

Ẇb1,s = NFC · ṅcathode,inlet · (h̄17,s − h̄16)

Blower 2

The energy and exergy balance equations of blower 2 are

Ẇb2 = Ẇb2,s/ηb2,is = NFC · ṅCH4,26 · (h̄21 − h̄20)

Ėxd,b2 = Ẇb2 + ṅCH4,26 · (ex20 − ex21)

where the subscript b2 indicates blower 2. Ẇb2,s is defined as
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Ẇb2,s = NFC · ṅCH4,26 · (h̄21,s − h̄20)

Water pump

The energy and exergy balance equations of the water pump are

Ẇwp = Ẇwp,s/ηwp,is = NFC · ṅH2O,26 · (h̄24 − h̄23)

Ėxd,wp = Ẇwp + ṅH2O,26 · (ex23 − ex24)

where the subscript wp indicates water pump. Ẇwp,s is defined as

Ẇwp,s = NFC · ṅH2O,26 · (h̄24,s − h̄23)

Air heat exchanger

The energy and exergy balance equations of the air heat exchanger are

ṅcathode,inlet · (h̄18 − h̄17) = Ḣ33 − Ḣ34

Ėxd,HEx,air = Ėx33 − Ėx34 + ṅcathode,inlet · (ex17)− Ėx18

Methane heat exchanger

The energy and exergy balance equations of the methane heat exchanger are

ṅCH4,26 · (h̄22 − h̄21) = Ḣ34 − Ḣ35

Ėxd,HEx,CH4,22 = Ėx34 − Ėx35 + ṅCH4,26 · (ex21 − ex22)

where H35 is defined as

Ḣ35 = ṅH2O,28 · h̄H2O,35 + ṅCO2,28 · h̄CO2,35 + ṅO2,28 · h̄O2,35 + ṅN2,28 · h̄N2,35
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Water heat exchanger

The energy and exergy equations of the water heat exchanger are

ṅH2O,26 · (h̄25 − h̄24) = Ḣ35 − Ḣ36

Ėxd,HEx,h2O = Ėx35 − Ėx36 + ṅH2O,26 · (ex25 − ex24)

After burner

The molar flow rate balance equations of the after burner are

ṅH2O,28 = ṅH2,27 + ṅH2O,27

ṅCO2,28 = ṅCO,27 + ṅCO2,27

ṅH2O,28 + 2 · ṅCO2,28 + 2 · ṅO2,28 = ṅCO,27 + 2 · ṅCO2,27 + ṅH2O,27 + 2 · ṅO2,19

ṅN2,28 = ṅN2,19

ṅ28 = ṅCO2,28 + ṅH2O,28 + ṅN2,28 + ṅO2,28

The energy balance equation of the after burner is

Ḣp = Ḣr

where Ḣp and Ḣr are the product and reaction enthalpy, respectively. Hp is defined as

Ḣp = ṅH2O,28 · h̄H2O,28 + ṅCO2,28 · h̄CO2,28 + ṅO2,28 · h̄O2,28 + ṅN2,28 · h̄N2,28

and Ḣr is defined as

Ḣr = ṅH2,27 · h̄H2,27 + ṅCO,27 · h̄CO,27 + ṅCO2,27 · h̄CO2,27 + ṅH2O,27 · h̄H2O,27+

ṅN2,19 · h̄N2,19 + ṅO2,19 · h̄O2,19

The exergy balance equation of the after burner is

Ėxd,afterburner = Ex27,CH + Ex19,CH − Ex28
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Boiler

The molar rate balance equations are

ṅH2O,32 = 0.72 · ṅCO2,32

ṅN2,32 = 3.76 · λ · ṅCO2,32

ṅ32 = ṅCO2,32 + ṅH2O,32 + ṅN2,32

The energy balance equation is

Ḣ33 = Ḣ29 + Q̇boiler

where

Q̇boiler = ṅCO2,32 · h̄CO2,32 + ṅH2O,32 · h̄H2O,32 + ṅN2,32 · h̄N2,32

and

Ḣ33 = ṅH2O,28 · h̄H2O,33 + ṅCO2,28 · h̄CO2,33 + ṅO2,28 · h̄O2,33 + ṅN2,28 · h̄N2,33

The exergy balance equation is

Ėxd,boiler = Ėx29 − Ėx32 + Ėx
ch

wood − Ėx33

The equations analyzed in this section are used to carry out the thermodynamic model-

ing of the trigeneration system that is based on SOFC and ORC.

4.5.4 Overall Analysis of the SOFC-Trigeneration System

The equations used to assess the performance of the trigeneration system, using SOFC and

ORC, are presented in this subsection. The input energy to the plant is defined as

Q̇in = NFC · ṅCH4,26 · LHVCH4 +NFC · Q̇boiler (4.24)
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The electrical generator power is defined as

Ẇg = ηg · Ẇot (4.25)

The stack power of the fuel cell is defined as

ẆFC,stack,ac = ηinverter · ẆFC,stack (4.26)

The net power of the cycle is defined as

Ẇnet = ẆFC,stack,ac + Ẇg − Ẇop − Ẇsp − Ẇb1 − Ẇb2 − Ẇwp (4.27)

The net electrical efficiency of the cycle is defined as

ηel = Ẇnet/Q̇in (4.28)

The efficiency of the heating cogeneration is defined as

ηcog,h =
Ẇnet + Q̇h

Q̇in

(4.29)

where Q̇h is the heating power and the subscript cog, h indicates the heating cogeneration.

The heating power is defined as

Q̇h = ṁhp · (hhp,2 − hhp,1) (4.30)

where ṁhp is the mass flow rate of the heating process, and hhp,1 and hhp,2 are the specific

enthalpy of the water at the inlet and exit of the heating-process heat exchanger, respec-

tively. The efficiency of the cooling cogeneration is defined as

ηcog,c =
Ẇnet + Q̇ev

Q̇in

(4.31)

where the subscripts cog, c and ev indicate the cooling cogeneration and cooling energy

produced by the system through the evaporator, respectively. The cooling power of the

evaporator is defined as

Q̇ev = ṁ8 · (h9 − h8) = ṁev · (hev,1 − hev,2) (4.32)
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where hev,1 and hev,2 are the specific enthalpy of the water at the inlet and exit of the cooling

evaporator, respectively. The efficiency of the trigeneration is defined as

ηtri =
Ẇnet + Q̇ev + Q̇h

Q̇in

(4.33)

The SOFC efficiency is defined as

ηFC =
ẆFC,stack,ac

Q̇in

(4.34)

The ORC efficiency is defined as

ηORC =
Ẇot − Ẇop

Q̇in

(4.35)

The electrical to heating ratio is defined as

rel,h = Ẇnet/Q̇h (4.36)

The electrical to cooling ratio is defined as

rel,c = Ẇnet/Q̇ev (4.37)

The exergy of the fuel entering the SOFC is defined as

Ėxf,CH4 = NFC · Ėx
ch

CH4,26 (4.38)

The exergy of the fuel entering the boiler is defined as

Ėxf,wood = NFC · Ėx
ch

wood (4.39)

The total exergy is defined as

Ėxf,total = Ėxf,CH4 + Ėxf,wood (4.40)

The exergetic efficiency of the SOFC subsystem is defined as

ηex,FC =
ẆFC,stack,ac − Ẇb1 − Ẇb2 − Ẇwp

Ėxf,total
(4.41)
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The exergetic efficiency of the ORC is defined as

ηex,ORC =
ẆORC − Ẇop

Ėxf,total
(4.42)

The exergetic efficiency of net electrical power is defined as

ηex,el = Ẇnet/Ėxf,total (4.43)

The exergetic efficiency of the heating cogeneration is defined as

ηex,cog,h =
Ẇnet + ṁhp · (exhp,1 − exhp,2)

Ėxf,total
(4.44)

The exergetic efficiency of the cooling cogeneration is defined as

ηex,cog,c =
Ẇnet + ṁev · (exev,1 − exev,2)

Ėxf,total
(4.45)

The exergetic efficiency of the trigeneration is defined as

ηex,tri =
Ẇnet + ṁhp · (exhp,1 − exhp,2) + ṁev · (exev,1 − exev,2)

Ėxf,total
(4.46)

TheCO2 emissions in kg per kWh produced for electrical and trigeneration productions

are calculated respectively as

EmiCO2,20,el = ṁCO2,20/Ẇnet · 3600 (4.47)

EmiCO2,20,tri =
ṁCO2,20

Ẇnet + Q̇ev + Q̇h

· 3600 (4.48)

where ṁCO2,20 is the mass flow rate of CO2 at the exhaust, state 20, and defined as

ṁCO2,20 = MWCO2 · ṅCO2,20 (4.49)

where MWCO2 is the molecular weight of CO2.

Input Data to the SOFC-trigeneration system

The input data used to carry out the thermodynamic modeling of the SOFC subsystem are

given Table 4.5.
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Table 4.5 Input data for the SOFC-trigeneration system

dc–ac converter efficiency 95%
Fuel utilization factor 0.85
Active surface area 100 cm2

Base current density 0.75 A/cm2

Exchange current density of anode 0.65 A/cm2

Exchange current density of cathode 0.25 A/cm2

Effective gaseous diffusivity through the anode 0.2 cm2/s
Effective gaseous diffusivity through the cathode 0.05 cm2/s
Thickness of the anode 0.05 cm
Thickness of the cathode 0.005 cm
Thickness of the electrolyte 0.001 cm
Thickness of the interconnect 0.3 cm
Pressure of the cell 101. 3kPa
Base inlet temperature to the SOFC 1000 K
Temperature difference between the inlet and the
exit of the SOFC

100 K

Source: [146]

4.6 Case Study II: Thermodynamic Modeling of the Biomass

Combustor

4.6.1 Introduction

One of the renewable energy resources is biomass waste, such as pine sawdust. Biomass

waste can be used as a fuel for a biomass combustor. In this study, the biomass combustor

consists of two inlets and two exits. One inlet has a biomass waste conveyor and the other

inlet has an air suction blower. On the other hand, one exit of the combustor is at the bottom

of the combustor where the ash can be removed. The other exit is for the heated air. This

second exit has a cyclone to filter out the solid particles and clean the exhaust gases.

One of the most common waste wood products is pine sawdust. Pine trees grow widely

throughout the world and, thus, they are widely used for wood-based products. Pine saw-
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Table 4.6 Biomass fuel characteristics

Type of biomass fuel Pine sawdust

Moisture content in biomass (%wt) 10%

Ultimate analysis (%wt dry basis)

ZC 50.54%

ZH 7.08%

ZO 41.11%

ZS 0.57%

Source: [151]

dust is produced as a result of pine wood processing. This wasted sawdust is commonly

used for biomass combustion. In this study, the biomass fuel selected is pine sawdust. The

chemical compound of a biomass fuel is CZCHZHOZOSZS . The elements C, H, O, and

S refer to carbon, hydrogen, oxygen, and sulphur, respectively. The subscripts of these

components represent the percentage of these elements in the fuel compound. For the pine

sawdust considered, the values of these percentages are listed in Table 4.6. The percentage

of the sulphur in the pine sawdust compound is very small and, therefore, can be neglected.

The energy and exergy analyses of the biomass combustor are presented below. The anal-

yses is based on Figure 4.2.
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Biomass combustor

The chemical equation of the biomass combustion with air assuming complete combustion

is

CZCHZHOZO+ω(H2O)16+γ(O2+79/21N2)17 −→ α1(CO2)18+α2(H2O)18+α3(N2)18

(4.50)

where ω is the moisture content in the biomass fuel. ω can be shown to be equal to

ω =
MC ·MCHO

1−MC ·MH2O

(4.51)

The molar flow rate of the biomass is defined as

ṅCHO = ṁbiomass/MCHO · 1000 (mole/second) (4.52)

To find the coefficients of the right hand side of Equation 4.50, elements balances are

carried out as shown below.

α1 = ZC

α2 =
ZH + 2ω

2

α3 = 79/21 · λ

γ =
2 · α1 + α2 − ω − ZO

2

To find the flame temperature of the combustor, we need to carry out the enthalpy

balance between the combustor inlets and exit. The enthalpy balance equation is

h̄CHO,16+ω·h̄H2O,16+γ·h̄O2,17+79/21·γ·h̄N2,17 = α1·h̄CO2,18+α2·h̄H2O,18+79/21·γ·h̄N2,18

(4.53)

Here h̄CHO,16 is unknown. It can be found from this equation

h̄CHO,16 = ZC · H̄CO2,16 + ZH/2 · h̄H2O,16,l +HHV biomass ·MCHO (4.54)
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Here HHVbiomass is unknown. It can be found using Dulong and Perit equation [152]

HHV biomass = 338.3 · ZC + 1443 · (ZH − ZO/8) + 94.2 · ZS (4.55)

On the other hand, the LHV can be found using this equation [153]

LHV biomass = HHV biomass − 226.04 · ZH − 25.82 · ω (4.56)

Since the combustor involves chemical reaction, we need to calculate both the physical and

chemical exergies at the inlets and exit of the combustor. The physical exergy at the inlets

of the combustor is zero since the fuel and air enter at surrounding conditions. The physical

exergies at the exit of the combustor are

ēxCO2,18 = h̄CO2,18 − h̄CO2,0 − T0 · (s̄CO2,18 −R · ln (xCO2,18)− s̄CO2,0)

ēxH2O,18 = h̄H2O,18 − h̄H2O,0 − T0 · (s̄H2O,18 −R · ln (xH2O,18)− s̄H2O,0)

ēxN2,18 = h̄N2,18 − h̄N2,0 − T0 · (s̄N2,18 −R · ln (xN2,18)− s̄N2,0)

To find the chemical exergy of the species at the inlets and exit of the combustor, we

need to know the standard chemical exergies of these species. The standard chemical ex-

ergies of the species at the inlets and exit, except for the biomass fuel, are shown in Table

4.7. The standard chemical exergy of the biomass fuel is defined as

ēxbiomass = β · LHV biomass (4.57)

where β for solid hydrocarbons fuel (for O/C < 2) is defined as [154]

β =
1.044 + 0.016 · (ZH/ZC)− 0.3493 · (ZO/ZC) · (1 + 0.0531 · ZH/ZC)

1− 0.4124 · ZO/ZC
(4.58)

Now, the chemical exergy of the fuel at the combustor inlet in kW can be calculated from

Ėx
ch

biomass,16 = ṅCHO · β · LHVbiomass ·MCHO/1000 (4.59)
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Table 4.7 Standard chemical exergy

ēxCH
H2O 9.5 kJ/mol

ēxCH
O2 3.97 kJ/mol

ēxCH
N2

0.72 kJ/mol

ēxCH
CO2

19.87 kJ/mol

Source: [154]

The total enthalpy at state 19 can be found from this equation

Ḣ19 = ṅCO2,19 · h̄CO2,19 + ṅH2O,19 · h̄H2O,19 + ṅN2,19 · h̄N2,19 (4.60)

Similarly, the total enthalpy at state 20 can be found from this equation

Ḣ20 = ṅCO2,19 · h̄CO2,20 + ṅH2O,19 · h̄H2O,20 + ṅN2,19 · h̄N2,20 (4.61)

The physical exergies at states 19 and 20 can be calculated similarly as state 18.

4.6.2 Overall Analysis of the Biomass-Trigeneration System

The equations used to analyze the trigeneration system based on the ORC and biomass

combustor are presented in this section. The input energy to the system in kW is defined as

Q̇in = ṅCHO · LHV biomass ·MCHO/1000 (4.62)

The net electrical power is defined as

Ẇnet = Ẇg − Ẇop/ηmotor − Ẇsp/ηmotor (4.63)

The energy and exergy efficiencies of electrical, cooling-cogeneration, heating- cogen-

eration, and trigeneration for this system are defined similarly as for the SOFC-trigeneration
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system, as discussed in the previous section. Also, the definition of the electrical to heating

and cooling ratios, as well as the CO2 emissions for electrical and trigeneration are defined

similarly as in the previous section.

4.7 Case Study III: Thermodynamic Modeling of the So-

lar Subsystem

4.7.1 Introduction

There is a considerable increase in power plants operated partially or completely by solar

energy. The solar energy can be used directly to obtain electrical power through photo-

voltaic solar cells or to obtain thermal heat and then generate electrical power through a

power cycle. In solar thermal system applications, there are several devices that can be

used, such as parabolic-trough solar collectors (PTSC), solar dishes, and a solar tower.

Solar parabolic trough collectors are the most established technology among the thermal

solar technologies for power production and have been used in large power plants since the

1980s. Currently, several thermal solar power plants are under constructions and most of

them are based on PTSC. Therefore, PTSC is selected for the solar trigeneration system

considered in this study.

PTSC consists of a reflecting mirror in a parabolic shape and a pipe (receiver) at the

focus of the parabolic mirror. This receiver could be enclosed by a cover to reduce the

heat losses and, thus, improve the collector efficiency, which is considered in this study.

A set of a mirror, receiver, and receiver cover is called a collector. The collector works

as follows: the mirror receives the solar radiation. Then, the radiation is reflected from

the mirror to the receiver. The pipe receives high intense-focus radiation and, therefore,

the temperature of the fluid in the pipe increases. The temperature of the fluid at the pipe
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exit increases considerably. Higher fluid temperatures can be achieved by placing a set of

collectors in a series. The fluid in the receiver could be a commercial oil. Therminol-66

oil is the selected oil in this study. It is a commercial oil that could be used in both thermal

solar systems and thermal storage tanks [155]. This oil has an operating temperature ranges

from 0 to 345oC [156]. Furthermore, this oil has a low relative pressure and its pressure is

not sensitive to the increase in the temperature. In this study, the solar subsystem consists

of two thermal storage tanks. One tank is used to store the hot oil. And when the hot oil is

used to provide the heat input to the ORC, it cools down and is stored in the second storage

tank, a cold storage tank.

Since there is a change in the solar radiation in 24 hours of operation, the solar -

trigeneration system considered in this study is assumed to operate in three modes. These

three modes are selected based on the change in solar radiation intensities, as presented

in [157]. The first mode is from 6 am to 8 am and from 4 pm to 6 pm. In this mode,

only the solar collectors are working and there is no energy storage. That is, all the energy

collected from the solar energy is used to operate the trigeneration system. This mode is

called the solar mode. The second mode is from 8 am to 4 pm. In this mode, part of the

solar energy is used to operate the trigeneration system and the other part of the solar en-

ergy is stored in the hot storage tank. This mode is called the solar and storage mode. The

third mode is from 6 pm to 6 am. In this mode, only the storage system is working. In this

mode, the input energy into the trigeneration system is from the energy stored in the hot

tank storage. This mode is called the storage mode.

4.7.2 Solar Collectors

In this subsection, the energy and exergy analyses of the PTSC are presented. The energy

formulations of the PTSC in this section are based on the equations presented in [157,

158]. These energy formulations are validated with these two references and with the
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experimental study by Dudley et al. [159]. The validation with [159] is presented at the

end of this section. The useful power from the collector is defined as

Q̇u = ṁr ·
(
Cpr,o · Tr,o − Cpr,i · Tr,i

)
(4.64)

where Q̇u is the useful power and ṁr is the mass flow rate of the oil in the receiver (pipe).

The subscripts r, i, and o indicate receiver, inlet, and outlet, respectively. Also, this power

can be calculated from

Q̇u = Aap · FR · (S − Ar/Aap · UL · (Tr,i − T0)) (4.65)

where Aap is the collector aperture area, FR is the heat removal factor, S is the absorbed

radiation by the receiver, Ar is the receiver area, and UL is the solar collector overall heat

loss coefficient. The aperture area is defined as

Aap = (w −Dc,o) · L (4.66)

where w is the collector width, Dc,o is the cover outer diameter, and L is the collector

length. The absorbed radiation by the receiver is defined as

S = Gb · ηr (4.67)

where Gb is the solar radiation in W/m2 and ηr is the receiver efficiency. The heat removal

factor is defined as

FR =
ṁr · Cpr
Ar · UL

·
(

1− exp

(
−Ar · UL · F1

ṁr · Cpr

))
(4.68)

where Cpr is the specific heat of the oil in the receiver and F1 is the collector efficiency

factor and defined as

F1 = Uo/UL (4.69)
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The solar collector heat loss coefficient between the ambient and receiver is defined as

UL =

(
Ar

(hc,ca + hr,ca) · Ac

+ 1/hr,cr

)−1

(4.70)

where hc,ca is the convection heat transfer coefficient between the cover and the ambient

and it is defined as

hc,ca = (Nus · kair/Dc,o) (4.71)

where Nus, kair, and Dc,o are Nusselt number, thermal conductivity of the air, and outer

diameter of the cover, respectively. The radiation heat transfer coefficient is defined as

hr,ca =
(
εcv · σ · (Tc + Ta) ·

(
T 2
c + T 2

a

))
(4.72)

where T ,εcv, and σ are the temperature, emittance, and Stefan-Boltzmann constant, respec-

tively. The subscripts c and a indicate the cover and ambient, respectively. The radiation

heat transfer coefficient between the cover and receiver is

hr,cr =

(
σ · (Tc + Tr,av) ·

(
T 2
c + T 2

r,av

)
1/εr + Ar/Ac · (1/εcv − 1)

)
(4.73)

The overall heat transfer coefficient is defined as

Uo =

(
1/UL +

Dr,o

hc,r,in ·Dr,i

+

(
Dr,o

2 · kr
· ln (Dr,o/Dr,i)

))−1

(4.74)

where hc,r,in is defined as

hc,r,in =
Nusr · kr
Dr,i

(4.75)

where the subscripts r indicates the receiver. The cover average temperature can be calcu-

lated using this equation

Tc =
hr,cr · Tr,av + Ac/Ar · (hc,ca + hr,ca) · T0

hr,cr + Ac/Ar · (hc,ca + hr,ca)
(4.76)
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The amount of the solar radiation that falls on the collector is calculated using this equation

Q̇solar = Aap · FR · S · Colr (4.77)

where Colr is the total number of the solar collectors rows. The exergy of a solar collector

is defined as [160]

Ėxcoll = Aap,t ·Gb ·
(
1 + (1/3) · (T0/Ts)4 − (4/3) · (T0/Ts)

)
(4.78)

where Ts is the sun temperature and equals to 6000 K [160]. The exergy destruction of the

solar collectors is

Ėxd,coll,solar = (Ėx22 − Ėx16 + Ėxcoll)(∆th,solar)/24[hr] (4.79)

where ∆th,solar is the total time in hour where the solar collectors are working and equals

to

∆thsolar = 24 [hr]−∆thchst −∆thdhst (4.80)

where ∆thdhst is the total time where there is a discharge from the hot storage tank and

∆thchst is the total time where there is charging to the hot storage tank.

Validation of the solar collectors model

The validation of the solar collectors model is shown in Figure 4.7. The model is examined

by considering the design data for the black chrome receiver material case for a vacuum

space between the receiver and its cover, as in Dudley et al. [159]. This case is selected

since Dudley et al. believed that the measurement of this case is more accurate as compared

to the other case presented in their report. That is, the technique used in the experiment to

measure the heat loss would produce more accurate results for the black chrome receiver

material case as compared to a cermet receiver material case. In this study, the baseline

simulation of the solar-trigeneration system has an absorber fluid temperature of less than
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Figure 4.7 Validation of the solar collectors model; heat losses versus average
temperature above the ambient of the fluid inside the absorber as compare with
Dudley et al. [159].

200 oC above ambient temperature. Therefore, the model is in good agreement with the

experimental results, as shown in this figure.

4.7.3 Thermal Storage Tanks

There are commonly two thermal storage configurations in thermal solar energy applica-

tions: thermocline tank and two tanks. The fluid heated by the solar energy can be stored

in a single tank and, in this case, it is called thermocline thermal storage tank. This tank

would require using advanced technology to separate the hot fluid from the cold fluid in the

tank, Herrmann and Kearney [161]. The other option is to use two thermal storage tanks.

In this study, the two thermal storage tanks option is selected. The two tanks option is
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widely used in parabolic trough solar collector [161–166]. For parabolic trough solar col-

lectors, two tanks thermal storage is more cost-effective in the near term option based on

the field experience and technical confident as compared with the single tank option [161].

The modeling of the thermal storage tanks is presented below. The modeling considers

charging, storing, and discharging the fluid from both tanks.

Hot fluid tank: charging

The rate in which the heat enters the storage tank is

Q̇hst = Q̇23 − Q̇l,hst

where the subscripts hst and l, hst indicate hot storage tank and lost heat from the heat

storage tank, respectively. The lost heat from the storage tank is

Q̇l,hst = UAh · (Thst − T0)

where U is the overall heat transfer coefficient. The total heat lost from the hot storage tank

is ∑
Qhst = Q̇hst ·∆th

where ∆th is the total time of charging. The temperature in the storage tank can be found

from

Thst =

∑
Qhst

Cphst ·Mhst

where Mhst is the total oil mass in the hot storage tank.

Hot fluid tank: storing

The change in the temperature of the tank with time can be calculated using

Thst
+ = Thst +

∆th
Mhst · Cphst

· (−UAh · (Thst − T0))
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The total heat lost during storage is

Qhst,tlost = (Mhst · Cphst ·∆T hst)

where ∆T hst is the change in the temperature during storing in the hot tank and equals to

∆T hst = Thst − Thst+

The exergy destruction in the tank is

Exd,hst =
∆thchst
24 [hr]

· Ex23 −
∆thdhst
24 [hr]

· Ex24 − (1− T0/Tct,outer) · Q̇l,hst

Hot fluid tank: discharging

The total heat at discharging is

Q24 =
∑

Qhst −Qhst,tlost

Cold fluid tank: storing

The total amount of heat storing in the cold tank is

Qcst,tlost = (Mcst · Cpcst ·∆T cst)

where the subscript cst indicates cold storage tank. ∆T cst is the change of the temperature

in the cold storage tank and equals to

∆T cst = Tcst − Tcst+

where Tcst+ is equal to

Tcst
+ = Tcst +

∆tc
Mcst · Cpcst

· (−UAcv · (Tcst − T0))
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Cold fluid tank: discharging

The heat rate discharged from the cold tank is

Q28 =
∑

Qcst −Qcst,tlost

4.7.4 Overall Analysis of the Solar-Trigeneration System

The equations used to analyze the trigeneration system based on the solar subsystem are

presented in this subsection. The input energy to the plant is defined as

Q̇in = Q̇solar

where Q̇solar is the total heat collected by the solar collectors. The net electrical power is

defined as

Ẇnet = ηg ·Ẇot−Ẇop/ηmotor−Ẇsp/ηmotor−Ẇsol,p/ηmotor−Ẇst1,p/ηmotor−Ẇst2,p/ηmotor

The energy and exergy efficiencies of electrical, cooling-cogeneration, heating- cogen-

eration, and trigeneration for the solar trigeneration system are defined similarly as for

SOFC, presented above. Also, the definitions of the electrical to heating and cooling ratios

are defined similarly as presented above for the SOFC analysis. The input data to the solar

trigeneration system is listed in Table 4.8.

4.8 Thermoeconomic Optimization of the Trigeneration

Systems

In this section, the thermoeconomic modeling and thermoeconomic optimization of the

three trigeneration systems considered are presented. The thermoeconomic modeling is

based on the SPECO method. The optimization method is based on Powell’s direct research

method. The descriptions of these two methods are presented in Chapter 3.
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Table 4.8 Input data for the solar trigeneration sys-
tem

w 5.76 m [167]
L 12.27 m [167]
ηr 0.765 [167]
Gb

a 0.5 kW/m2 [157]
Gb

b 0.85 kW/m2

[157]
εr 0.92 [168]
Coln

c 50
Colr

c 7
ṁc

r 8 kg/s
Dr,i

c 0.045 m

a: During low sun radiation
b: During high sun radiation
c: Based on the thermoeconomic optimization results

4.8.1 Thermoeconomic Modeling of the SOFC-Trigeneration System

In this subsection, the thermoeconomic modeling of the SOFC-trigeneration system is pre-

sented. The first step in thermoeconomic modeling is finding the capital investment and

maintenance costs of the SOFC-trigeneration system considered. These costs are shown in

Table 4.9. In this table, PEC refers to purchase equipment cost and Zt is the total levelized

cost assuming the plant has a lifetime of 20 years. The thermoeconomic modeling of the

components of the SOFC-trigeneration system is presented next.

ORC pump

For a control volume around the ORC pump, the cost-rate equation is

Ċ2 = Ċ1 + Ċop + Żop
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Table 4.9 Purchase equipment costs and levelized costs of the SOFC-
trigeneration system

PEC (US$) Zt(US$/h)
ORC pump 14000 0.1254
ORC turbine 100000 0.8959
Heat process heat Ex 20000 0.1792
Evaporator 25000 0.224
Single-effect Abs. Ch. 22000 0.1971
SOFC 400/kW (SOFC) 1.52
Inverter 33/kW(SOFC) 0.1254
After burner 180000 1.613
Biomass boiler 57000 0.5106
Air-heat exchanger 180000 1.613
Methane-heat exchanger 90000 0.8063
Water-heat exchanger 70000 0.6271
Air blower 120000 1.075
Methane blower 30000 0.2688
Water pump 12000 0.1075
Electrical generator 120000 1.075
Methane fuel 0.000012 $/kJ 80.14
Biomass wood cost 0.01 $/kWh (LHV) 30.99

Sources: [169–173]

ORC turbine

For a control volume around the ORC turbine, the cost-rate equation is

Ċ4 + Ċot = Ċ3 + Żot

where

c4 = c3 (F rule)
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ORC heat exchanger

For a control volume around the ORC heat exchanger, the cost-rate equation is

Ċ5 + Ċhp,2 = Ċ4 + Ċhp,1 + Żo,HEx

where

c5 = c4 (F rule)

and

Ċhp,1 = 0

Here Chp,1 is assumed to be zero since the cost of the stream enters the heating-heat ex-

changer for heating is not part of the trigeneration system considered.

Single-effect absorption chiller

For a control volume around the single-effect absorption chiller, the cost-rate equation is

Ċ1 + Ċchiller,2 = Ċ5 + Ċchiller,1 + Żchiller

where

Ċchiller,1 = 0

and

c1 = c5 (F rule)

Here Chp,1 is assumed to be zero since the cost of the stream entering the absorption chiller

is not part of the trigeneration system considered.
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ORC evaporator

For a control volume around the ORC evaporator, the cost-rate equation is

Ċ3 + Ċ29 = Ċ2 + Ċ28 + Żoe

where

c29 = c28 (F rule)

Blower-1 (air blower)

For a control volume around the air blower, the cost-rate equation is

Ċ17 = Ċ16 + Ċb1 + Żb1

where

Ċ16 = 0

Here C16 is assumed to be zero since the air enters at zero cost.

Air heat exchanger

For a control volume around the air heat exchanger, the cost-rate equation is

Ċ18 + Ċ34 = Ċ17 + Ċ33 + ŻHEx,air

where

c34 = c33 (F rule)

Blower-2 (methane blower)

For a control volume around the methane blower, the cost-rate equation is

Ċ21 = Ċ20 + Ċb2 + Żb2

where

Ċ20 = ŻCH4
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Methane heat exchanger

For a control volume around the methane heat exchanger, the cost-rate equation is

Ċ22 + Ċ35 = Ċ21 + Ċ34 + ŻHEx,CH4

where

c35 = c34 (F rule)

Water pump

For a control volume around the water pump, the cost-rate equation is

Ċ24 = Ċ23 + Ċwp + Żwp

where

Ċ23 = 0

Here C23 is assumed to be zero since the cost of the stream entering the water pump is not

part of the trigeneration system considered.

Water heat exchanger

For a control volume around the water heat exchanger, the cost-rate equation is

Ċ25 + Ċ36 = Ċ24 + Ċ35 + ŻHEx,H2O

where

c36 = c35 (F rule)

SOFC

For a control volume around the SOFC, the cost-rate equation is

Ċ27 + Ċ19 + Ċinverter = Ċ18 + Ċ22 + Ċ25 + ŻSOFC
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where

Ċ19/Ėx19 = Ċinverter/ẆFC,stack (P rule)

and

Ċ27/Ėx27 = Ċinverter/ẆFC,stack (P rule)

After burner

For a control volume around the after burner, the cost-rate equation is

Ċ28 = Ċ19 + Ċ27 + ŻAfterBurner

Biomass boiler

For a control volume around the biomass boiler, the cost-rate equation is

Ċ33 + Ċ32 = Ċ29 + Ċ30 + Ċ31 + Żboiler

where

Ċ30 = Żwood

Ċ31 = 0

and

c32 = 0 [136]

C31 equals zero since it does not cost any money and also it is not part of the SOFC-

trigeneration system considered.

To solve the above thermoeconomic equations, further auxiliary equations are needed.

These equations can be obtained by considering a control volume around the electrical

generator [174–176]. Apply the cost-rate equation around this control volume to obtain

Ċnet + Ċop + Ċb1 + Ċb2 + Ċwp = Ċgen + Ċinverter + Żgen + Żinverter (4.81)
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Table 4.10 Purchase equipment costs and levelized costs of the
biomass-trigeneration system

PEC (US$) Zt(US$/h)
ORC pump 25000 0.224
ORC turbine 200000 1.792
Heat process heat Ex 40000 0.3583
Evaporator 70000 0.6271
Single-effect Abs. Ch. 22000 0.1971
Biomass boiler 300000 2.688
Electrical generator 400000 3.583
Biomass wood fuel 0.01 $/kWh (LHV) [173] 66.92

Sources: [169, 170]

Now, use the P rule to solve the cost rate of the pumps and blowers. These cost-rate

equations are shown below

Ċop/Ẇop = Ċnet/Ẇnet

Ċb1/Ẇb1 = Ċnet/Ẇnet

Ċb2/Ẇb2 = Ċnet/Ẇnet

Ċwp/Ẇwp = Ċnet/Ẇnet

4.8.2 Thermoeconomic Modeling of the Biomass-Trigeneration

System

In this subsection, the thermoeconomic modeling of the biomass-trigeneration system is

presented. The purchase equipment costs and the levelized cost assuming 20 years of the

plant’s life operation are presented in Table 4.10. The thermoeconomic modeling of the

biomass-trigeneration system components are presented next.
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ORC pump

For a control volume around the ORC pump, the cost-rate equation is

Ċ2 = Ċ1 + Ċop + Żop

ORC Turbine

For a control volume around the ORC turbine, the cost-rate equation is

Ċ4 + Ċot = Ċ3 + Żot

where

c4 = c3 (F rule)

ORC heat exchanger

For a control volume around the ORC heat exchanger, the cost-rate equation is

Ċ5 + Ċhp,2 = Ċ4 + Ċhp,1 + Żo,HEx

where

Ċhp,1 = 0

and

c5 = c4 (F rule)

SEAC

For a control volume around the single-effect absorption chiller, the cost rate-equation is

Ċ1 + Ċchiller,2 = Ċ5 + Ċchiller,1 + Żchiller
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where

Ċchiller,1 = 0

and

c1 = c5 (F rule)

ORC evaporator

For a control volume around the ORC evaporator, the cost-rate equation is

Ċ3 + Ċ20 = Ċ2 + Ċ19 + Żoe

where

c20 = c19 (F rule)

Biomass wood boiler

For a control volume around the biomass boiler, the cost-rate equation is

Ċ18 = Ċ16 + Ċ17 + Żboiler

where

Ċ16 = Żwood

and

Ċ17 = 0

A further auxiliary equation is needed to solve the above equations in this subsection.

This equation can be obtained by applying a control volume around the electrical generator

[174–176], using the P rule. Apply a control volume around the electrical generator to

obtain
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Table 4.11 Purchase equipment costs and levelized costs of
the solar-trigeneration system

PEC (US$) Zt(US$/h)
ORC pump 25000 0.2162
ORC turbine 200000 1.729
Heat process heat Ex 40000 0.3459
Evaporator-a 45000 0.7782
Evaporator-b 45000 0.7782
Single-effect Abs. Ch. 22000 0.1902
Solar collectors 5500000 74.82
Solar-storage Heat Ex 45000 1.167
Hot storage Tank 145000 3.761
Cold storage Tank 145000 2.508
Solar pump 20000 0.3459
Storage pump I 20000 0.3459
Storage pump II 20000 0.5188
Electrical generator 400000 3.459

Sources: [170, 177, 178]

Ċop/Ẇop = Ċnet/Ẇnet (4.82)

4.8.3 Thermoeconomic Modeling of the Solar-Trigeneration System

In this subsection, the thermoeconomic modeling of the solar-trigeneration system is pre-

sented. The purchase equipment cost and the levelized cost assuming 20 years of the system

life operation is presented in Table 4.11. The thermoeconomic equations of the equipments

in the trigeneration system considered are presented next.
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ORC pump

For a control volume around the ORC pump, the cost-rate equation is

Ċ2a = Ċ1 + Ċop + Żop

ORC evaporator-a

For a control volume around ORC evaporator-a when the solar collectors are operating, the

cost per exergy equations are

c2a = c2b

and

c27 = c26 = 0

When the solar collectors are not working and there is only discharging from the hot storage

tank, the cost-balance equation becomes

Ċ2b + Ċ27 = Ċ2a + Ċ26 + Żoev,a

where

c27 = c26 (F rule)

ORC evaporator-b

For a control volume around ORC evaporator-b when solar collectors are operating, the

cost-rate equation is

Ċ3 + Ċ18 = Ċ2a + Ċ17 + Żoev,b

where

c18 = c17 (F rule)
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When the solar collectors are not working and there is only discharging from the hot storage

tank, the cost-balance equation becomes

c3 = c2b

ORC turbine

For a control volume around the ORC turbine, the cost-rate equation is

Ċ4 + Ċot = Ċ3 + Żot

where

c4 = c3 (F rule)

ORC heat exchanger

For a control volume around the ORC heat exchanger, the cost-rate equation is

Ċ5 + Ċhp,2 = Ċ4 + Ċhp,1 + Żo,HEx

where

c5 = c4 (F rule)

and

Ċhp,1 = 0

Here, Chp,1 is assumed to be zero since the cost of the stream enters the heating-heat ex-

changer for heating is not part from the trigeneration system considered.

Single-effect absorption chiller

For a control volume around the single-effect absorbtion chiller, the cost-rate equation is

Ċ1 + Ċchiller,2 = Ċ5 + Ċchiller,1 + Żchiller
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where

c1 = c5 (F rule)

and

Ċchiller,1 = 0

HereCchiller,1 is assumed to be zero since the cost of the stream enters the chiller for cooling

is not part of the trigeneration system considered.

Solar collectors

For a control volume around the solar collectors, the cost-rate equation is

Ċ16 = Ċ22 + ĊPSC + ŻPSC

where

ĊPSC = 0

Hot storage tank

For a control volume around the hot storage tank, the cost-rate equation is

Ċ24 = Ċ23 + ĊQ,lhst + Żhst

where

clhst = ĊQ,lhst/Ėxlhst

and

clhst = c23 [136]

Cold storage tank

For a control volume around the cold storage tank, the cost-rate equation is

Ċ28 = Ċ27 + ĊQ,lcst + Żcst
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where

clcst = ĊQ,lcst/Ėxlcst

and

clcst = c27 [136]

Solar heat exchanger

For a control volume around the solar heat exchanger, the cost-rate equation is

Ċ21 + Ċ23 = Ċ20 + Ċ30 + ŻStHEx

where

c21 = c20 (F rule)

Solar pump

For a control volume around the solar pump, the cost-rate equation is

Ċ19 = Ċ18 + Ċp,sol + Żp,sol

Storage pump I

For a control volume around the storage pump I, the cost-rate equation is

Ċ26 = Ċ25 + Ċp,st1 + Żp,st1

Storage pump II

For a control volume around the storage pump II, the cost-rate equation is

Ċ30 = Ċ29 + Ċp,st2 + Żp,st2

118



Valve I

For a control volume around the valve I, neglecting the valve price, the cost per exergy unit

equations are

c17 = c16

and

c20 = c16

Valve II

For a control volume around the valve II, neglecting the valve price, the cost-rate equation

is

Ċ22 = Ċ19 + Ċ21

Valve (24-25)

For a control volume around the valve 28-29, neglecting the valve price, the cost per exergy

unit equation is

c25 = c24

Valve (28-29)

For a control volume around the valve 28-29, neglecting the valve price, the cost per exergy

unit equation is

c29 = c28

To solve the above thermoeconomic equations, further auxiliaries equations are needed.

This can be obtained by considering a control volume around the electrical generator [174–

176]. Apply the cost-rate equation around this control volume to obtain

Ċnet + Ċop + Ċp,st1 + Ċp,st2 + Ċp,sol = Ċot + Żgen (4.83)
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From the P rule around this control volume, we obtain

Ċop/Ẇop = Ċp,sol/Ẇp,sol = Ċp,st1/Ẇp,st1 = Ċp,st2/Ẇp,st2 = Ċnet/Ẇnet (4.84)

4.8.4 Cost Per Unit Exergy of Power, Cooling Cogeneration, Heating

Cogeneration, and Trigeneration

The main objective of a thermoeconomic modeling of a trigeneration system is to find

the cost per exergy unit of the trigeneration powers. These costs are defined below. The

cost per unit exergy of the net electrical, cooling cogeneration, heating cogeneration, and

trigeneration, respectively, are

cnet = Ċnet/Ẇnet (4.85)

ccooling = Ċchiller,2/Q̇ev (4.86)

cheating = Ċhp,2/Q̇h (4.87)

ctri = cnet + Ċchiller,2/Q̇ev + Ċhp,2/Q̇h (4.88)

4.8.5 Thermoeconomic Optimization

The optimization method in this study is based on Powell’s method as presented in the

previous chapter. An important objective in thermoeconomic optimization is to minimize

the product cost per exergy unit [136]. The objective of the optimization of the three tri-

generation systems considered is to minimize the cost per exergy unit of the trigeneration

(power, cooling, and heating) products. To the best knowledge of the author, there is no

study that considered minimizing the product cost per exergy unit of a trigeneration system

and, therefore, this analysis can be considered original. The objective equation is
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min[ctri] = min[cnet + ccooling + cheating] (4.89)

The sequence of the optimization process can be explained as follows. First, the code

finds a general solution for the objective function. Then, the direction of the optimum func-

tion is determined through Powell’s method. Next, the solution of the optimum function

is found through Brent’s method. The last two steps are repeated until the code finds the

optimum solution for the objective function. The optimization variables of the three sys-

tems considered are presented next. These variables are selected from the components of

the energy source inputs to the ORC. The energy source inputs are the SOFC subsystem,

biomass subsystem, and solar subsystem. The ranges of the constraints are selected to have

a converged solution; and each system would be able to produce a net electrical power of

500 kW within the selected operating parameters. The constraints and their ranges are pre-

sented next. Their optimization values are given in Table 4.12. For the SOFC-trigeneration

system the constraints are

0.75 ≤ j ≤ 0.85 (4.90)

10000 ≤ NFC ≤ 11000 (4.91)

950 ≤ T FC,in ≤ 1000 (4.92)

2 ≤ H2O/CH4 ≤ 2.5 (4.93)

For the biomass-trigeneration system the constraint is

0.05 ≤MC ≤ 0.4 (4.94)

For the solar-trigeneration system the constraints are

35 ≤ Coln ≤ 50 (4.95)
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Table 4.12 Optimum values of the constraints

SOFC subsystem
j 0.85 A/cm2

NFC 11000
TFC,in 1000 K
H2O/CH4 2

Biomass combustor MC 10.1%

Solar subsystem Coln 50
Colr 7
Dr,i 0.045 m
mr 8 kg/s

6 ≤ Colr ≤ 7 (4.96)

0.45 ≤ Dr,i ≤ 0.65 (4.97)

6 ≤ ṁr ≤ 8 (4.98)
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Chapter 5

Results and Discussion

5.1 Introduction

The degree of improvement of a trigeneration system is sensitive to the performance of

each unit and the approach used to integrate these units into the system ; it is also sensitive

to the operating parameters. Therefore, energy, exergy, and environmental modeling of any

proposed system are important to assess the system performance and to examine possible

degree of improvement in the system. The exergy modeling includes exergy destruction

rate analysis, which helps in identifying and quantifying the sources of the irreversibilities

in the system that are associated with each component. The environmental impact analysis

shows how much reduction in CO2 emissions when the trigeneration system is used, as

compared to a simple electrical power system.

Further improvement of a thermal system can be obtained by conducting thermoeco-

nomic optimization (Bejan et al.) [136]. Therefore, the three trigeneration systems con-

sidered are examined further, using thermoeconomic optimization. The thermoeconomic

optimization includes the effect of varying some operating parameters on the cost per ex-

ergy unit and cost rate. According to the author’s best knowledge, there is no study that
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had considered the effect of varying an operating parameter on the thermoeconomic perfor-

mance of a trigeneration plant under thermoeconomic optimization conditions. Therefore,

this type of analysis is considered new.

In this chapter, different output key parameters are investigated. These parameters are

energy and exergy efficiencies, electrical power, electrical to heating and cooling ratios,

exergy destruction rate, and emissions of CO2. For the thermoeconomic optimization,

further two parameters are considered: cost per exergy unit and cost rate. This chapter dis-

cusses the results as follows: thermodynamic analysis of the SOFC-trigeneration system,

thermodynamic analysis of the biomass-trigeneration system, thermodynamic analysis of

the solar-trigeneration system, and, finally, the comparison of the thermodynamic and ther-

moeconomic analyses of the three systems under thermodynamic optimization conditions.

5.2 Energy, Exergy, and GHG Emissions Results of the

SOFC-Trigeneration System

This section presents the effect of varying different variables on the performance of the

SOFC-trigeneration system considered. These variables are the effect of current density

of the SOFC, inlet flow temperature of the SOFC, inlet pressure of the turbine, and inlet

temperature of the ORC pump. The examined output parameters are efficiency, net electri-

cal power, electrical to heating and cooling ratios, exergy efficiency, GHG emissions, and

exergy destruction rate.

5.2.1 Effect of Current Density

The effect of the current density of the SOFC on the efficiency, voltage, power, methane

inlet flow rate, electrical to heating and cooling ratios, exergy efficiency, exergy destruction
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rate, and CO2 emissions is shown in Figures 5.1-5.8, respectively, under a constant SOFC

inlet flow temperature of 1000 K. In these figures, the current density from 0.6 to 0.9 A/cm2

is examined. This range is within the operating range that is found in the literature; and

for the considered SOFC-trigeneration system this range produces a net output electrical

power of around 500 kW.

Figure 5.1 shows that the efficiency of the SOFC decreases as the current density in-

creases. The drop in the efficiency is attributed to the decrease in the cell voltage, Vc, as

the current density increases, as shown in Figure 5.2. As illustrated in this figure, the total

voltage loss, Vloss, increases as the current density increases. The total voltage loss consists

of three types of losses. These losses are ohmic, activation, and concentration polarization

voltages. In this figure, it can be observed that the voltage losses are mainly due to the

activation polarization voltage loss. However, at a high current density the concentration

voltage increases steeply, and it has a higher value than the activation polarization voltage.

This steep increase in the voltage loss causes an abrupt drop in the efficiency of the SOFC.

As the efficiency of the SOFC decreases with the increase of the current density, the

waste heat from the SOFC increases. Therefore, more energy is available to operate the

ORC. However, the net electrical efficiency decreases with the increase in the current den-

sity. The highest net electrical cycle efficiency, 46%, is obtained with a current density

of 0.6 A/cm2. The efficiency of the cooling cogeneration (integration of the power cycle,

SOFC, and ORC, with the cooling cycle) has, on average, a 7% gain in efficiency. The

maximum cooling cogeneration efficiency is 57% while the minimum efficiency is 17%.

On the other hand, the highest efficiency of the heating cogeneration (integration of the

power cycle with the heating process) is 69% whereas the lowest efficiency is 59%. Figure

5.1 shows that the minimum trigeneration efficiency of the cycle is 70% at 0.6 A/cm2 while

the maximum efficiency is 72% at 0.9 A/cm2. It can be observed in Figure 5.1 that the

minimum gain in the efficiency of the trigeneration cycle, compared with the net electrical
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Figure 5.1 Effect of the current density on efficiency at TFC,in = 1000 K, P3=1600
kPa.

efficiency is 22%, showing a significant gain.

Figure 5.3 shows the effect of the current density on the power produced by SOFC-

AC and electrical generator, and the power consumed by blowers and pumps, and the net

power. The SOFC-AC power increases with the increase in the current density although the

efficiency decreases. The increase in the SOFC power is associated with the linear increase

of the fuel inlet molar rate as the current density increases, as shown in Figure 5.4 and

in Equations 4.22 and 4.23. This behavior explains why there is an increase in the power

produced by the SOFC although there is a drop in the efficiency of the SOFC as the current

density increases. The increase in the current density raises the power produced from the

ORC, as shown in Figure 5.3. This increase in ORC power is associated with the increase

in the waste heat from the SOFC, as discussed above. Consequently, the net electrical

power increases as the current density increases. However, at high current density there is

a drop in the net power because of the sudden increase in the voltage loss, Vloss. Figure 5.3
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Figure 5.2 Effect of the current density on voltages at TFC,in = 1000 K, P3=1600
kPa.

shows that the net power at low current density is lower than the SOFC power because of

the power consumed by the pumps and blowers in the system. The net electrical power of

the system varies from almost 400 kW to 540 kW.

The influence of the current density on the electrical to heating and cooling ratios is

shown in Figure 5.5. This figure shows that the electrical to cooling ratio changes from 4

to 5.5 as the current density increases. On the other hand, the electrical to heating ratio

changes from almost 3 at 0.6 A/cm2 to 0.25 at 0.9 A/cm2.

The effect of the current density of the SOFC on the exergy efficiency is shown in Fig-

ure 5.6. This figure shows that the net electrical exergy efficiency decreases as the current

density increases. This reduction in the exergy efficiency is because of the decrease in the

cell voltage as the current density increases and, thus, less power output from the SOFC, as

discussed above. The highest net electrical exergy efficiency is 43% at a current density of

0.6 A/cm2 and the lowest exergy efficiency is 11% at 0.9 A/cm2. The cooling cogeneration
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Figure 5.3 Effect of the current density on power at TFC,in = 1000 K, P3=1600
kPa.
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Figure 5.5 Effect of the current density on electrical to heating and cooling ratios
at TFC,in = 1000 K, P3=1600 kPa.

exergy efficiency is 1% or less higher than the net electrical exergy efficiency. This small

difference in the efficiency gained is because of the small amount of the cooling energy to

the electrical energy in the cycle, which is around 20% of the electrical energy. The heating

cogeneration exergy efficiency decreases as the current density increases. The highest heat-

ing cogeneration exergy efficiency is 45% at a current density of 0.6 A/cm2 and the lowest

exergy efficiency is 34.5% at 0.9 A/cm2. The trigeneration exergy efficiency is around 1%

higher than the heating cogeneration exergy efficiency. This small difference in the effi-

ciency is because of the small gain of the cooling cogeneration exergy efficiency compared

with the net electrical exergy efficiency where trigeneration is defined as combined cooling,

heating, and power.

The effect of the current density on the exergy destruction rate of different components

of the system is shown in Figure 5.7. Only the components of the system that show a sig-

nificant amount of exergy destruction rates are shown in this figure. It can be observed that
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Figure 5.6 Effect of the current density on exergy efficiency at TFC,in = 1000 K,
P3=1600 kPa.

all the exergy destruction rates of the components increase as the current density increases.

The study reveals that the exergy destruction rates of blower 1 (air blower) and the after

burner increase slightly as the current density increases. The amount of the increase in

the exergy destruction rate is less than 50 kW. On the other hand, the change in the ex-

ergy destruction rate with current density is considerably higher for the other components.

This study shows that most of the exergy destructions occur at the ORC evaporator and

air heat exchanger. However, at a high current density, the exergy destruction rate of the

heat exchanger of the heating process is very high and reaches 580kW at 0.9 A/cm2. This

significant increase in the exergy destruction rate of the heat exchanger of the heating pro-

cess is because of the increase in the amount of the available waste heat for heating where

the net electrical exegetic efficiency drops abruptly. The parametric study on the effect of

the current density on the exergy destruction rate suggests that further design improvement

and optimization are needed to reduce the exergy destruction rate of the air heat exchanger,
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Figure 5.7 Effect of the current density on exergy destruction at TFC,in = 1000 K,
P3=1600 kPa.

ORC evaporator, and heat exchanger of the heating process.

Figure 5.8 shows that there is a strong coupling between the efficiency of the SOFC and

the CO2 emissions. This coupling is explained as follows. The system shown in Figure

4.1 consists of a biomass boiler. This boiler provides the heat needed to heat the inlet flow

to the SOFC. When the efficiency of the SOFC decreases, more heat, in addition to the

exit heat at state 29, is needed to heat the inlet flow to the SOFC. In this figure, it can

be observed that at a high current density there is an abrupt increase in CO2 emissions

for the electrical power at state 32. This abrupt increase in CO2 emissions is because of

the abrupt drops in the SOFC efficiency. This figure shows that the total emissions of the

CO2 for net electrical power are very sensitive to the current density change. At the lowest

current density, 0.6 A/cm2, the total emissions of the CO2 for the net electrical power are

470 kg/MWh and increase drastically with the increase in the current density to reach 2300

kg/MWh at 0.9 A/cm2. On the other hand, the total CO2 emissions for trigeneration are
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Figure 5.8 Effect of the current density on CO2 emissions at TFC,in = 1000 K,
P3=1600 kPa.

significantly lower than that of the total emissions of the CO2 for net electrical power. The

total CO2 emissions for trigeneration are between 290 and 440 kg/MWh.

5.2.2 Effect of the Inlet Flow Temperature of the SOFC

The variation in the inlet flow temperature of the fuel cell has a different effect on the

performance of the trigeneration plant as compared with the change in the current density,

as shown in Figures 5.9-5.15. The effect of varying SOFC inlet flow temperature is studied

under a constant current density of 0.8 A/cm2. This value is chosen since the system is

closed to its highest efficiency and produces a net electrical power of approximately 500

kW.

The trend of the efficiency of the SOFC, ηFC , as shown in Figure 5.9, is similar to the

trend of the cell voltage, as shown in Figure 5.10. In this figure, the highest cell voltage is
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Figure 5.9 Effect of the SOFC inlet flow temperature on efficiency at j = 0.8
A/cm2, P3=1600 kPa.

obtained at 890 K, which is the point where the SOFC has the highest efficiency. On the

other hand, the study reveals that there is on average a gain in the efficiency of the cooling

cogeneration of about 7% for the case shown in Figure 5.9. The maximum efficiency of the

cooling cogeneration is 51% while the minimum efficiency is 20%. On the other hand, the

maximum efficiency of the heating cogeneration is 71% while the minimum efficiency is

55%. The trigeneration efficiency has a similar trend to the heating cogeneration efficiency.

The maximum efficiency is 74% while the minimum trigeneration efficiency is 63%.

As the inlet temperature increases, the SOFC-AC power increases and reaches its max-

imum at 890 K, as shown in Figure 5.11. Beyond this temperature, 890 K, the power

produced by the SOFC decreases while the power produced by the ORC increases. The

reason why these two power components behave like that is similar to what was discussed

above on the effect of the current density on the cell voltage. The net electrical power of

the system varies from 450 to 520 kW.
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Figure 5.10 Effect of the SOFC inlet flow temperature on voltage at j = 0.8 A/cm2,
P3=1600 kPa.
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Figure 5.11 Effect of the SOFC inlet flow temperature on power at j = 0.8 A/cm2,
P3=1600 kPa.
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Figure 5.12 Effect of the SOFC inlet flow temperature on electrical to heating and
cooling ratios at j = 0.8 A/cm2, P3=1600 kPa.

Figure 5.12 shows the effect of the inlet flow temperature of the SOFC on the electrical

to heating and cooling ratios. The heating ratio is highest at the lowest electrical power of

the organic turbine with a value of 2.8. On the other hand, the electrical to cooling ratio is

around 5. This ratio has behavior similar to the electrical power. This similarity is owing

to the constant value of the cooling power during the change of the current density where

both the inlet and exit temperature and pressure of the desorber are constant. Therefore,

this ratio is controlled only by the variation of the electrical power.

The effect of the inlet flow temperature of the SOFC on the exergy efficiency is shown

in Figure 5.13. This figure shows that the change in the exergy efficiency as the inlet flow

temperature change is different from that of the current density. The reason for this differ-

ence is because the cell voltage changes differently with the inlet flow temperature of the

SOFC compared with the current density of the SOFC. The study reveals that the temper-

ature where the net electrical efficiency is the highest is the same temperature where the
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Figure 5.13 Effect of the SOFC inlet flow temperature on exergy efficiency at j =
0.8 A/cm2, P3=1600 kPa.

cooling cogeneration, heating cogeneration, and trigeneration efficiencies are the highest.

The reason for having the same temperature, where the highest efficiency is obtained, is

because all of these four efficiencies are defined based on the chemical exergy of the fuel.

Therefore, the highest efficiency is obtained at the same point where the most efficient

combustion occurs. The physical exergy of the incoming fuel is zero since it enters into

the system at atmospheric conditions. The maximum exergy efficiencies for the electrical

power is 39%, for the cooling cogeneration is 40%, for the heating cogeneration is 41%,

and the for trigeneration is 42%.

Figure 5.14 shows the effect of the inlet flow temperature of the SOFC on the exergy

destruction rate of different components of the system. This figure shows that the exergy

destruction rates of the air blower and after burner are almost constant. Also, it can be

noticed that the highest exergy destruction rate occurs at the air heat exchanger and ORC

evaporator. Nevertheless, at a high inlet flow temperature the exergy destruction rate of the
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Figure 5.14 Effect of the SOFC inlet flow temperature on exergy destruction at j
= 0.8 A/cm2, P3=1600 kPa.

heat exchanger of the heating process is considerable. This abrupt increase in the exergy

destruction rate of the heat exchanger of the heating process as the inlet flow temperature

increases is associated with the increase in the amount of the waste heat as the net electri-

cal efficiency drops. This figure shows that as this temperature increases, the exergy that

is destructed by the air-heat exchanger increases from almost 200 kW at 800 K to 280 kW

1100 K. The exergy destructed in the ORC evaporator increases from 180 kW at 800 K

to 410 kW at 1100 K. On the other hand, the exergies destructed by the heating-process

heat exchanger and boiler are very low at a low SOFC inlet temperature. However, as

this temperature increases roughly to 950 K and beyond, these destructed exergies increase

drastically to reach 240 kW for the boiler and to 470 kW for the heat-exchanger heating

process at 1100 K. This abrupt increase is attributed to the abrupt drop in the exergy effi-

ciency.

Figure 5.15 shows the effect of the inlet flow temperature of the SOFC on the CO2
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Figure 5.15 Effect of the SOFC inlet flow temperature on CO2 emissions at j =
0.8 A/cm2, P3=1600 kPa.

emissions per MWh. The emissions of CO2 are defined per MWh of the net electricity

of the system and per MWh of the trigeneration. The study reveals that there are signifi-

cant reductions in the CO2 emissions per MWh of the trigeneration compared to the CO2

emissions per net electricity. It can be observed from Figure 5.15 that there is at least a

reduction of 200 kg/MWh of CO2 emissions when trigeneration is used. Also, it can be

observed that the lowest CO2 emissions occur at a temperature of 870 K, which is the same

temperature where the highest net electricity is obtained. This figure reveals that operating

the SOFC at high inlet temperature would result in high CO2 emissions when there is only

electrical power production.
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5.2.3 Effect of the Inlet Pressure of the Turbine

In this subsection, the effect of the turbine inlet pressure is examined. The study shows

that the change in the inlet pressure of the turbine has a minimal effect on the efficiency, as

shown in Figure 5.16. It was found that the variation of the efficiency of the ORC is within

5%, which is similar to what was found by [179, 180] for the examined range of the inlet

turbine pressure in this study. The efficiency of the SOFC is constant since the performance

of the SOFC is independent of the turbine inlet pressure. The power of the ORC changes

within 50 kW, as shown in Figure 5.17. The trends of the electrical to heating and cooling

ratios with the change in the inlet pressure of the turbine, as shown in Figure 5.18, are

unlike the previous two cases shown in Figures 5.5 and 5.12. Figure 5.18 shows that the

electrical to heating ratio is almost constant, 0.9, since the ORC power is almost constant

with the change in inlet pressure of the turbine. Similarly, the electrical to cooling ratio is

almost constant, 5.5.

The effect of the inlet pressure of the turbine on the exergy efficiency is shown in Figure

5.19. It can be observed that the effect of the inlet pressure of the turbine on the exergy effi-

ciencies of the net electricity, cooling cogeneration, heating cogeneration, and trigeneration

is insignificant. The net electrical and cooling cogeneration exergy efficiencies increases

3% as the turbine inlet pressure increases, and the heating cogeneration and trigeneration

efficiencies increase by 1%. On the other hand, the exergy efficiency of the ORC increases

from 15% at 500 kPa to 22% at 5000 kPa. The exergy efficiency of the SOFC system

is constant since it is independent of the change in the turbine inlet pressure. This figure

shows that as compared with the exergy efficiency of the power cycle there is on average a

gain in exergy efficiency of 0.5% for cooling cogeneration, 10% for heating cogeneration,

and 11% for trigeneration.

Figure 5.20 shows that only the exergy destruction rate of the ORC evaporator and heat

exchanger of the heating process varies with the change in the inlet pressure of the turbine.
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Figure 5.16 Effect of the turbine inlet pressure on efficiency at j = 0.8 A/cm2,
TFC,in = 1000 K.
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Figure 5.17 Effect of the turbine inlet pressure on power at j = 0.8 A/cm2, TFC,in

= 1000 K.
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Figure 5.18 Effect of the turbine inlet pressure on electrical to heating and cooling
ratios at j = 0.8 A/cm2, TFC,in = 1000 K.
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Figure 5.19 Effect of the turbine inlet pressure on exergy efficiency at j = 0.8
A/cm2, TFC,in = 1000 K.
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Figure 5.20 Effect of the turbine inlet pressure on exergy destruction rate at j =
0.8 A/cm2, TFC,in = 1000 K.

Conversely, the other components of the system are constants since they are independent of

the change in the turbine inlet pressure. The exergy destruction rate of the ORC evaporator

decreases from 320kW at 500 kPa to 280 kW at 5000 kPa while the exergy destruction rate

of the heat exchanger of the heating process decreases from 120 kW at 500 kPa to 100kW

at 5000 kPa.

Figure 5.21 illustrates the emissions of CO2 in kg of CO2 per MWh produced versus

the turbine inlet pressure. This figure shows that the effect of pressure on the emissions

is insignificant. This insignificant effect is because the pressure variation has a negligible

effect on the emissions ofCO2 where the emissions are a function of the SOFC and biomass

boiler flue exits. This figure shows that the emissions of CO2 is around 900 kg/MWh

for electrical power production while, when trigeneration is used, the emissions reduce

considerably to around 400 kg/MWh.
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Figure 5.21 Effect of the turbine inlet pressure on CO2 emissions at j = 0.8
A/cm2, TFC,in = 1000 K.

5.2.4 Effect of the Inlet Temperature of the ORC Pump

The effect of the ORC pump inlet temperature on the performance of the systems consid-

ered in this section is presented in Figures 5.22-5.27. Figure 5.22 illustrates the efficiency

compared with the ORC pump inlet temperature. This figure shows that there is only a

small effect from changing the temperature on the electrical efficiency. This small effect

is attributed to the relatively small portion of the electrical power that is produced by the

ORC as compared to the SOFC. This electrical efficiency is around 30%. Alternatively,

when cooling cogeneration is used the efficiency increases by at least 5%. The cooling

cogeneration efficiency increases from 35% at 345 K to 42% at 380 K. Nevertheless, when

heating cogeneration is used, the heating cogeneration efficiency increases further to at

least 57%. The heating cogeneration efficiency decreases from 66% at 345 K to 57% at

380 K. This drop in efficiency is attributed to the decrease in the temperature difference
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Figure 5.22 Effect of the ORC pump inlet temperature on efficiency at j = 0.8
A/cm2, TFC,in = 1000 K and P2 = 1600 kPa.

between the maximum temperature in the ORC and minimum temperature in the ORC.

Therefore, when the temperature difference decreases as T1 increases, smaller amount of

heat is available for the heating cogeneration and, therefore, the heating cogeneration ef-

ficiency decreases. On the other hand, when trigeneration is used, the maximum trigener-

ation efficiency in the system reaches 72%. The trigeneration efficiency is insensitive to

the change in the temperature. This insensitivity in the efficiency is because the cooling

efficiency increases as the temperature increases while the heating efficiency decreases as

the temperature increases. Therefore, the trigeneration efficiency, which is a combination

of electrical, cooling, and heating powers, is insensitive to the temperature change.

Figure 5.23 presents the effect of the ORC pump inlet temperature on the electrical

power. This figure shows that the net electrical power produced by the SOFC is insignif-

icant to the change in the ORC pump inlet temperature since the SOFC is not part of the

ORC. The net electrical power produced by the SOFC is around 450 kW. This figure shows
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Figure 5.23 Effect of the ORC pump inlet temperature on power at j = 0.8 A/cm2,
TFC,in = 1000 K and P2 = 1600 kPa.

that the electrical power produced by the electrical generator decreases from 118 kW at 345

K to 110 kW at 380 K. This small drop is attributed to the small electrical efficiency drop,

as discussed above. The maximum total net electrical power produced by the system is 510

kW. The net power decreases from 510 kW at 345 K to 500 kW at 380 K. This decrease

is due to the drop in the electrical power produced by the electrical generator, as discussed

above.

Figure 5.24 presents the effect of the ORC pump inlet temperature on the electrical to

heating and cooling ratios. This figure shows that when this temperature increases from 345

K to 380 K, the electrical to heating ratio increases from 0.9 to 1.1. This increase is owing

to the decrease in the heating cogeneration efficiency. On the other hand, the electrical to

cooling ratio decreases from almost 5.5 to around 2.5 as this temperature increases. This

decrease is attributed to the increase in the cooling cogeneration efficiency.

The effect of the ORC pump inlet flow temperature on the exergy efficiency is shown in
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Figure 5.24 Effect of the ORC pump inlet temperature on electrical to heating and
cooling ratios at j = 0.8 A/cm2, TFC,in = 1000 K, and P2 = 1600 kPa.

Figure 5.25. This figure shows that the change in the inlet temperature has an insignificant

effect on the exergy efficiencies of the power, cooling cogeneration, heating cogeneration,

and trigeneration. The exergy efficiency of the net electrical efficiency is around 25%.

Using cooling cogeneration, the exegetic efficiency increases to 26%. The reason for this

small increase in the efficiency is the small size of the cooling power as compared to the

electrical power (1:5). On the other hand, the exergy efficiency of heating cogeneration is

around 35% and the exergy efficiency of trigeneration is around 36%.

Figure 5.26 shows the variation of the exergy destruction rates of the ORC evaporator,

boiler, and heat exchanger of the heating process with the ORC pump inlet flow temper-

ature. As the temperature increases, the exergy destruction rate of the ORC evaporator

decreases. It decreases from 300 kW at 345K to 240 kW at 380 K. This reduction in ex-

ergy destruction rate is attributed to the lower exergy difference available between the inlets

and exits of the evaporator. Also, the study shows that there is an insignificant change in
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Figure 5.25 Effect of the ORC pump inlet temperature on exergy efficiency at j =
0.8 A/cm2, TFC,in = 1000 K and P2 = 1600 kPa.

the exergy destruction rates of the boiler and heat exchanger of the heating process as the

temperature increases.

Figure 5.27 illustrates the effect of the ORC pump inlet temperature on the CO2 emis-

sions. It can be noticed that the effect of changing this temperature on the emissions is

negligible since this temperature is not part of the SOFC system where the CO2 is emit-

ted to atmosphere. This figure shows that the emissions based on the electrical production

are around 900 kg of CO2 per MWh of electrical power production. Alternatively, when

trigeneration is used the emissions drop significantly to around 400 kg per MWh of trigen-

eration. This drop demonstrates again one major significant benefit of trigeneration where

lower emissions per MWh can be obtained.
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Figure 5.26 Effect of the ORC pump inlet temperature on exergy destruction at j
= 0.8 A/cm2, TFC,in = 1000 K and P2 = 1600 kPa.
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Figure 5.27 Effect of the ORC pump inlet temperature on electrical to heating and
cooling ratios at j = 0.8 A/cm2, TFC,in = 1000 K and P2 = 1600 kPa.
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Figure 5.28 Exergy destruction in kW and in percentage of the total exergy de-
structed for different SOFC-trigeneration plant components at j = 0.8 A/cm2,
TFC,in = 1000 K and P2 = 1600 kPa.

5.2.5 Overall Exergy Destruction

The distribution of the exergy destruction of different components of the system at the

baseline input data is shown in Figure 5.28. The exergy destruction percentage that is

shown in this figure is the percentage of the exergy destructed and not the available exergy

in the system. The exergy destruction analysis shows that 30% of the exergy destruction

takes place in the ORC evaporator and 21% in the air heat exchanger at the inlet of the

SOFC. The other components of the system that have high exergy destruction are the SOFC

(13%), the after burner (11%), the heating-process heat exchanger (10%), the biomass

boiler (8%), and the air blower (4%). Therefore, further improvement to the performance

of these components is needed, especially the ORC evaporator and the air heat exchanger.

149



5.2.6 Summary

Energy, exergy, and environmental analyses of the SOFC-trigeneration system are con-

ducted. The plant’s performance is studied under the variation of the current density of the

SOFC, inlet flow temperature of the SOFC, inlet pressure of the turbine, and inlet temper-

ature of the ORC pump. The main findings in this study are:

• The energy analysis of the trigeneration plant shows that there is at least a 22% gain

in efficiency compared with the electrical power case (net electrical efficiency).

• The maximum efficiencies of trigeneration is 74%, heating cogeneration is 71%,

cooling cogeneration is 57%, and net electricity is 46%.

• The efficiency of the SOFC decreases as the current density increases. At a cur-

rent density higher than 0.88 A/cm2, the SOFC and electrical cycle efficiencies drop

abruptly because of the abrupt decrease in the cell voltage.

• All the examined efficiencies vary with the change in the inlet fuel cell temperature,

as being different from the change in the current density, due to the dissimilar behav-

iors of the voltage loss components (especially the ohmic loss component) in the two

cases.

• As the SOFC inlet flow temperature increases, the trigeneration efficiency increases.

Conversely, the change in the current density of the SOFC has a negligible effect on

the trigeneration efficiency.

• The electrical to cooling ratio is more sensitive to the ORC pump inlet temperature

change as compared to the SOFC current density, SOFC inlet temperature, or turbine

inlet pressure.
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• The change in the inlet pressure of the turbine has a negligible effect on the efficien-

cies. Therefore, it is recommended to operate the turbine with low pressure since this

requires a lower pumping ratio and, thus, cost saving.

• The exergy analysis of the trigeneration plant shows that the gain in the exergy effi-

ciency when trigeneration is used, as compared with only the power cycle is from 3

to 25%, depending on the operating condition.

• The exergy efficiencies of the electrical power, cooling cogeneration, heating cogen-

eration, and trigeneration are insensitive to the change of the turbine inlet pressure

and ORC pump inlet temperature.

• The most significant sources of exergy destruction rates are the ORC evaporator, air

heat exchanger at the SOFC inlet, and heating-process heat exchanger. Therefore,

further improvements in designing these three components are needed.

• There is a significant reduction of CO2 emissions (kg/MWh) when trigeneration is

used, as compared to utilizing only electrical power. This reduction is more than 200

kg of CO2 /MWh.

5.3 Energy, Exergy, and GHG Emissions Results of the

Biomass-Trigeneration System

The performance of the trigeneration system based on the biomass combustor and ORC is

examined under the variation of some variables. These variables are the ORC evaporator

pinch point temperature, pump inlet temperature and turbine inlet pressure. The ranges

of the ORC evaporator pinch point temperature [181], pump inlet temperature [141, 145]

and turbine inlet pressure [179, 180, 182, 183] that are considered here are taken from the
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literature.

5.3.1 Thermodynamic properties of the stations

The thermodynamic properties of the states in the biomass-trigeneration system under op-

timum conditions are listed in Table 5.1 below.

5.3.2 Effect of the Pinch Point Temperature of the ORC Evaporator

Designing an ORC evaporator with a low pinch point temperature improves the evaporator

effectiveness; however, it increases its cost and design requirements. On the other hand, this

study shows that the exergy destruction of the ORC evaporator is significant. Therefore,

studying the effect of the pinch point temperature of the ORC evaporator is important to

assess its effect on the trigeneration system considered. The effect of the pinch point tem-

perature of the ORC evaporator is examined under the baseline pump inlet temperature,

365 K, and baseline turbine inlet pressure, 2000 kPa. The effect of pinch point temperature

variation is examined in Figures 5.29-5.34. The pinch point temperature of the evaporator

is defined as [181]

Tpp = T20 − T2 (5.1)

Figure 5.29 presents the effect of the pinch point temperature on the energy efficien-

cies. This figure shows the efficiencies of electrical power, cooling-cogeneration, heating-

cogeneration, and trigeneration cases. This figure demonstrates that as the pinch point

temperature increases, the efficiencies of the electrical, heating-cogeneration, and trigen-

eration cases decrease; however, the efficiency of the cooling-cogeneration is almost con-

stant. These results are explained as follows. As the pinch point temperature increases,

the amount of the heat input to the ORC evaporator decreases. Therefore, T3 decreases.
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Table 5.1 Thermodynamic properties of the stations

state m (kg/s) T (K) P (kPa) h (kJ/kg) ex (kJ/kg)

1 7 365 35.7 157.5 15.6

2 7 365.9 2000 161.3 18.8

3 7 549 2000 708.4 209.2

4 7 432.85 35.7 625 111.2

5 7 365 35.7 186 20.8

6 0.067 336.46 5.4 2618 78.27

7 0.067 307.52 5.4 144 0.508

8 0.067 278.16 0.87 144 -6

9 0.067 278.15 0.87 2510 -176

10 0.34 303.4 0.87 67.3 11.1

11 0.34 303.41 5.4 67.3 11.1

12 0.34 332.21 5.4 128.3 71.81

13 0.273 365 5.4 244.5 117.3

14 0.273 321.88 5.4 168.5 41.64

15 0.273 329 0.87 168.5 41.6

16 259.2 298.15 101.3 -9442 18.43

17 1472 298.15 101.3 0 0.003

18 1730 2077.51 101.3 -65.4 1.433

19 1730 2077.51 101.3 -65.4 1.433

20 1730 405 101.3 -203.5 -0.051
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As T3 decreases, the electrical power produced through the use of the turbine decreases

and, thus, the electrical efficiency decreases. In addition, as T3 decreases, the amount of

the total heat available at state 4 decreases and, hence, the heating-cogeneration efficiency

decreases. Also, depending on the operating condition of the turbine, the pressure changes.

What controls the cooling power is the values of the properties of the fluid at states 5 and 1.

The only possible change for state 5 at the current condition is the pressure. Note that state

5 always has the same temperature, pressure, and mass flow rate as state 1, but state 5 is

saturated vapor and state 1 is saturated liquid. Therefore, what controls the cooling power

as the pinch point temperature varies is the pressure change at state 5. Since the change in

the pressure is small under this condition, the change in the cooling-cogeneration efficiency

is almost constant. It can be observed that when trigeneration is used, the energy efficiency

increases significantly. It increases from around 12% for electrical power to around 89%

when trigeneration is used. In addition, this figure shows that the efficiencies of the trigen-

eration and heating cogeneration drop 5% as the pinch point temperature increases from 20

to 60 K while the electrical efficiency is less sensitive to the pinch temperature. Its elec-

trical efficiency drops by about 3% as the pinch point temperature increases. In contrast,

for cooling cogeneration the efficiency is insensitive to the pinch point temperature change

and its efficiency is around 16%.

Figure 5.30 illustrates the net electrical power variation with the pinch point tempera-

ture of the ORC evaporator. It can be observed that as the pinch point temperature of the

ORC evaporator increases, the net electrical power decreases. It decreases from 600 kW at

20 K to almost 450 kW at 60 K. This decrease is attributed to the decrease in the amount

of heat input to the ORC evaporator as the pinch point temperature of the ORC evaporator

increases.

Figure 5.31 presents the electrical to heating ratio and electrical to cooling ratio varia-

tion with the change in the pinch point temperature of the ORC evaporator. It can be noticed
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Figure 5.29 Effect of the ORC evaporator pinch point temperature on the effi-
ciency at P3=2,000 kPa, T1=365 K.
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Figure 5.30 Effect of the ORC evaporator pinch point temperature on the electri-
cal power at P3=2,000 kPa, T1=365 K.
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Figure 5.31 Effect of the ORC evaporator pinch point temperature on the electri-
cal to heating and cooling ratios at P3=2,000 kPa, T1=365 K.

that the electrical to cooling ratio is sensitive to the change in the ORC evaporator pinch

point temperature. This sensitivity is attributed to the size of the single-effect absorption

chiller, which has smaller cooling power capacity compared to the electrical power. This

ratio decreases from 5.0 at 20 K to 2.3 at 60 K. The electrical to heating ratio is insensitive

to the change in the ORC evaporator pinch point temperature. The main reason is the large

size of the heating power as compared with the electrical power produced by the system.

Figure 5.32 shows the exergy efficiency variation with the change in the pinch point

temperature of the ORC evaporator. This figure reveals that the exergy efficiencies of all

four cases decrease as the pinch point temperature increases. This behavior is explained

as follows. The numerators of the exergy efficiencies of all four efficiencies are a function

of the electrical power. Therefore, the reduction of the electrical power as the pinch point

temperature increases reduces the exergy efficiencies. The heating-cogeneration exergy ef-
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ficiency is a function of the heat power and the heat exchanger temperature of the heating

process. The increase in the pinch point temperature results in a reduction in T3 and, thus,

T4. Therefore, both the heating power and the temperature of the heat exchanger of the

heating process decreases. Hence, the heating-cogeneration exergy efficiency decreases.

Similarly, as the pinch point temperature increases, the cooling power decreases and, thus,

the cooling-cogeneration efficiency drops. It can be noticed that the exergy efficiency in-

creases significantly when the trigeneration is used, as compared with the electrical-power

case. The exergy efficiency increases from around 11% for the electrical-power case to 27%

for the trigeneration case. In addition, it can be observed that the electrical and cooling-

cogeneration exergy efficiencies are more sensitive to the change in the pinch point tem-

perature as compared with trigeneration and heating-cogeneration exergy efficiencies. The

electrical exergy efficiency decreases from 12% at 20 K to 10% at 60 K. Conversely, the

trigeneration and heating-cogeneration exergy efficiencies remain almost constant at 28%

and 27%, respectively.

Figure 5.33 shows the exergy destruction rate versus the ORC pinch point temperature.

This figure shows the exergy destruction rates of the biomass combustor, heating-process

heat exchanger, ORC evaporator, turbine, and desorber. It shows that the biomass combus-

tor and ORC evaporator contributes significantly to the exergy destructed by the system.

The destructed exergy by these two components decreases as the pinch point temperature

increases. This decrease is mainly due to the decrease in the temperature difference be-

tween states 19 and 20, as well as to the decrease in the fuel mass flow rate as the pinch

point temperature increases. The exergy destruction of the biomass combustor decreases

from 2200 kW at 20 K to 2000 kW at 60 K, and the exergy destruction rate of the ORC

evaporator decreases from 1500 kW at 20 K to 1300 kW at 60 K. The other components

of the system contribute significantly less to the total exergy destruction rate. The exergy

destruction rate of the heating process increases from nearly zero at 20 K to 160 kW at 60
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Figure 5.32 Effect of the ORC evaporator pinch point temperature on the exergy
efficiency at P3=2,000 kPa, T1=365 K.

K while the exergy destruction rate of the turbine decreases from 120 kW at 20 K to 70

kW at 60 K. The exergy destruction rate of the desorber increases from 7 kW at 20 K to 40

kW at 60 K. The exergy destruction rates of the remaining components of the system are

considerably lower and, therefore, they can be considered negligible.

Figure 5.34 illustrates CO2 emissions in kg/MWh versus the pinch point temperature

of the ORC evaporator. This figure shows the emissions of CO2 when the electrical power

case is used and the emissions of CO2 when trigeneration is used. This figure reveals

that the CO2 emissions rates increase as the pinch point temperature increases. These

increments are owing to the decrease in the efficiency of the system as the pinch point

temperature increases. It can be noticed that CO2 emissions decrease considerably when

the trigeneration is used, as compared with only electrical power production. In other

words, when an ORC system that is based on a biomass combustor is used for power
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Figure 5.33 Effect of the ORC evaporator pinch point temperature on the exergy
destruction at P3=2,000 kPa, T1=365 K.

production, this configuration will result in high CO2 emissions rate, which is in the order

of 3000 kg/MWh, as shown in this figure. Conversely, when trigeneration is used, CO2

emissions decrease significantly to around 400 kg/MWh. Although the CO2 emissions are

high when electrical power is considered, the environmental impact is considered low. This

low impact is attributed to the carbon cycle for biomass combustion.

5.3.3 Effect of the Inlet Temperature of the ORC Pump

Each single-effect absorption chiller is designed for a specific range of heat input. There-

fore, it is important to identify the best operating temperature range for the best desired

output(s). In this study, the pump inlet temperature is examined from 345 to 380 K, which

represents the operating temperature of an ideal single-effect absorption chiller from the

industry. This temperature range is selected based on what is available in the literature, as
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Figure 5.34 Effect of the ORC evaporator pinch point temperature on the CO2

emissions at P3=2,000 kPa, T1=365 K.

mentioned above, to match the operating temperature of the desorber of the single-effect

absorption chiller. The effect of pump inlet temperature is examined under the baseline tur-

bine inlet pressure, 2,000 kPa, and baseline pinch point temperature of the ORC evaporator,

40 K.

Figure 5.35 shows the electrical efficiency, cooling-cogeneration efficiency, heating-

cogeneration efficiency, and trigeneration efficiency versus pump inlet temperature. It can

be observed that the electrical efficiency decreases from 14% at 345 K to 11% at 380 K.

On the other hand, with the use of cooling cogeneration, the efficiency increases from 16%

at 345 K to 17% at 380 K. This small gain in cooling-cogeneration efficiency, as compared

with electrical efficiency, is associated with the size of the single effect-absorption chiller

that was selected based on what is available in the industry [145] for cooling-cogeneration

applications. On the other hand, since only a small portion of the waste heat was used for
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Figure 5.35 effect of the ORC pump inlet temperature on the efficiency at
P3=2,000 kPa, Tpp=40 K.

cooling, the gain in the heating-cogeneration efficiency is high. The heating-cogeneration

efficiency decreases from 87% at 345 K to reach 80% at 380 K. Alternatively, the trigener-

ation efficiency decreases from 89% at 345 K to 87% at 380 K.

Figure 5.36 shows the effect of the pump inlet temperature on electrical power. It can

be observed that electrical power decreases from 510 kW at 345 K to 350 kW at 380 K.

The decrease in the power with the increase in the pump inlet temperature is attributed

to the decrease in the temperature difference between the maximum temperature in the

ORC, T3, and minimum temperature in the ORC, T1. The reduction in the temperature

difference results in a reduction in the electrical efficiency and, therefore, the electrical

power decreases.

Figure 5.37 illustrates the effect of the electrical to heating and cooling ratios. It can

be noticed that the electrical to cooling ratio is sensitive to the change in the pump inlet
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Figure 5.36 effect of the ORC pump inlet temperature on the electrical power at
P3=2,000 kPa, Tpp=40 K.

temperature. This sensitivity is attributed to the size of the single-effect absorption chiller,

which has smaller cooling power capacity compared with the electrical power. This ratio

decreases from 5.3 at 345 K to 1.8 at 380 K. Therefore, when further cooling energy is

needed, the recommendation is to run the system at a higher pump inlet temperature. The

electrical to heating ratio is insensitive to the variation in the pump inlet temperature. The

main reason for this is the large amount of the heating power as compared to the electrical

power produced by the system. The electrical to heating ratio decreases from 0.2 at 345 K

to 0.15 at 380 K.

Figure 5.38 shows the exergy efficiency versus the ORC pump inlet temperature. This

figure shows that the exergy efficiency of the electrical case decreases as this temperature

increases. This decrement is attributed to the decrease in electrical power as this temper-

ature increases. Also, the exergy efficiency of the cooling-cogeneration case decreases
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Figure 5.37 effect of the ORC pump inlet temperature on the electrical to heating
and cooling ratios at P3=2,000 kPa, Tpp=40 K.

as this temperature increases. The cause of this decrement is explained in the following

text. The numerator of the cooling-cogeneration exergy efficiency consists of both electri-

cal power and cooling power. The electrical power decreases as this temperature increases,

as previously discussed, while the cooling power increases. Since the electrical power is

larger than cooling power, which is shown in Figure 5.37, the exergy efficiency of the cool-

ing cogeneration decreases as this temperature increases. The electrical exergy efficiency

is 13% at 345 K, and it decreases as the turbine inlet temperature increases to reach 10%

at 380 K. When cooling cogeneration is used, the exergy efficiency increases by 0.5%. Al-

ternatively, when heating cogeneration or trigeneration is used, the heating-cogeneration

exergy efficiency and trigeneration-exergy efficiency increase considerably by around 27%

and 28%, respectively.

Figure 5.39 illustrates the exergy destruction rate versus the pump inlet temperature.
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Figure 5.38 effect of the ORC pump inlet temperature on the exergy efficiency at
P3=2,000 kPa, Tpp=40 K.

This figure shows that the exergy destruction rate of the biomass combustor and the ORC

evaporator destroy significantly more exergy than the other components. It is observed that

the exergy destruction rate of the biomass combustor decreases from 1750 kW at 345 K

to around 1550 kW at 380 K. This decrement is attributed to the decrease in the biomass

flow rate as this temperature increases. Hence, the exergy difference between the biomass

combustor inlets and exit is lower. Therefore, the destructed exergy decreases. The exergy

destruction rate of the ORC evaporator decreases from approximately 1200 kW at 345

K to 1000 kW at 380 K. This decrement is due to the reduction in the heat input to the

ORC evaporator. Moreover, this decrement is owing to the increase in T2 and, thus, T20

where Tpp is constant. As T20 increases, the exergy at state 20 increases and, hence, the

exergy difference (Ex19 − Ex20) decreases. Therefore, the exergy destructed by the ORC

evaporator decreases. The other components of the system destroy significantly less exergy,
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Figure 5.39 effect of the ORC pump inlet temperature on the exergy destruction
at P3=2,000 kPa, Tpp=40 K.

as shown in this figure.

Figure 5.40 illustrates CO2 emissions in kg/MWh versus pump inlet temperature. It

can be observed that the emissions of CO2 are reduced considerably when trigeneration

is used as compared with electrical power. The emissions of CO2 for electrical power are

2600 kg/MWh at 345 K and increases to 3400 kg/MWh at 380 K. This increase is attributed

to the decrease in the energy efficiency of the electrical power. On the other hand, when

trigeneration is used the emissions decrease significantly to around 400 kg/MWh.

5.3.4 Effect of the Inlet Pressure of the Turbine

Figures 5.41-5.46 show the effect of the turbine inlet pressure on the performance of the

trigeneration system. The baseline pump inlet temperature is 365 K and the baseline pinch

point temperature of the ORC evaporator is 40 K. It can be observed that the effect of the
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Figure 5.40 effect of the ORC pump inlet temperature on the CO2 emissions at
P3=2,000 kPa, Tpp=40 K.

pressure change is insignificant on the performance of the system. This result is important

since it indicates that the ORC can be operated under low pressure, and this results in cost

savings.

Figure 5.41 presents the effect of the turbine inlet pressure on the efficiency. This figure

shows that, as the pressure increases, the efficiencies of all the cases decrease by less than

0.5%. The small decrement is attributed to the range of the pressure that was selected, a

selection that was based on the literature [179,180,182,183]. This figure illustrates that the

electrical efficiency is 12.5% at 2,000 kPa and, as the pressure increases, it reaches 12%

at 7,000 kPa. Alternatively, when cooling cogeneration is used, the cooling-cogeneration

efficiency increases, on average, by 4% compared with the electrical power efficiency. On

the other hand, when heating cogeneration is used, the heating-cogeneration efficiency

increases to around 84%. Alternatively, when trigeneration is used, the efficiency increases
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Figure 5.41 Effect of the turbine inlet pressure on the efficiency at T1=365 K,
Tpp=40 K.

to around 88%.

Figure 5.42 presents the net electrical power versus the turbine inlet pressure. The net

power decreases from 530 kW at 2,000 kPa to 480 kW at 7,000 kPa. It can be observed

that there is only a small drop in the power with the increase in the turbine inlet pressure.

This small drop is attributed to the small drop in the efficiency as this pressure increases.

Figure 5.43 shows the electrical to heating and cooling ratios versus the turbine inlet

pressure. It can be observed that the turbine inlet pressure is less sensitive to the electrical

to cooling ratio as compared with the change in the ORC pump inlet temperature. This ratio

is less sensitive since the electrical power and cooling power are less sensitive to the change

in the pressure as compared to the ORC pump inlet temperature changes. The electrical to

cooling ratio is 3.3 at 2,000 kPa and decreases as the pressure increases to reach 3 at 7,000

kPa. On the other hand, the electrical to heating ratio is around 0.2.
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cooling ratios at T1=365 K, Tpp=40 K.
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Figure 5.44 Effect of the turbine inlet pressure on the exergy efficiency at T1=365
K, Tpp=40 K.

Figure 5.44 illustrates the exergy efficiency versus turbine inlet pressure. This figure

reveals that the exergy efficiency decreases marginally as the pressure increases. This figure

also shows that the electrical exergy efficiency decreases from 11% at 2,000 kPa to 10%

at 7,000 kPa. As an alternative, when cooling cogeneration is used, the cooling exergy

efficiency increases by 0.5%. Alternatively, when heating cogeneration or trigeneration is

used, the exergy efficiency increases to 26% or 27%, respectively.

Figure 5.45 presents the exergy destruction rate versus the turbine inlet pressure. The

figure presents the exergy destruction rate of the biomass combustor, heating-process heat

exchanger, ORC evaporator, turbine, and desorber. The figure illustrates that the change

in turbine inlet pressure has an insignificant effect on the exergy destruction rate. This

result is attributed to the small change of the values of the exergy streams in the system as

this pressure changes. It can be observed that the significant sources of exergy destruction
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Figure 5.45 Effect of the turbine inlet pressure on the exergy destruction at
T1=365 K, Tpp=40 K.

rate are the biomass combustor and ORC evaporator. The exergy destruction rates of the

biomass combustor and the ORC evaporator are around 2000 and 1400 kW, respectively.

Figure 5.46 illustrates the emissions of CO2 in kg/MWh versus the turbine inlet pres-

sure. It can be noticed that the emissions for only electrical power production are consid-

erably high, around 3000 kg/MWh. The emissions increases marginally as this pressure

increases since the electrical efficiency decreases marginally as this pressure increases. On

the other hand, when trigeneration is used, the emissions are reduced considerably to 400

kg/MWh. This observation suggests that an ORC based on a biomass combustor for elec-

trical power production only should not be used; and further utilization of the waste heat is

recommended, such as using trigeneration.
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Figure 5.46 Effect of the turbine inlet pressure on the CO2 emissions at T1=365
K, Tpp=40 K.

5.3.5 Overall Exergy Destruction

Figure 5.47 illustrates the overall exergy destruction rate and its percentage for the biomass-

trigeneration system under the baseline values. The baseline values considered here are 40

K for the ORC evaporator pinch point temperature, 365 K for the pump inlet temperature,

and 2,000 kPa for the turbine inlet pressure. It should be noticed that each sector in this

figure shows the exergy destruction rate percentage of the total exergy destructed and not

the available exergy in the system. This figure illustrates that the significant sources of

exergy destruction are the biomass combustor and the ORC evaporator. This figure shows

that 55% (1642 kW) of the destructed exergy is destroyed in the biomass combustor and

38% (1117 kW) of the exergy destructed is destroyed in the ORC evaporator. On the other

hand, 3% (86 kW) of the total destructed exergy is destroyed by the turbine and 3% (80 kW)

of the total destructed exergy is destroyed by the heat exchanger of the heating process. The
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Figure 5.47 Overall exergy destruction rates and percentages (P3=2000 K,
T1=365 K, and Tpp=40 K).

remaining components of the trigeneration system, in total, contribute to 1% (39 kW) of the

total destructed exergy. This figure suggests having careful consideration to the design of

the biomass combustor and the ORC evaporator is needed to reduce the exergy destroyed

by them.

5.3.6 Summary

Energy, exergy, and environmental analyses of a trigeneration system based on an ORC and

a biomass combustor are conducted. The performance of the system is examined under the

variation of the ORC evaporator pinch point temperature, pump inlet temperature, and

turbine inlet pressure. Moreover, exergy destruction analysis is conducted under selected

baseline performance values. The main findings of this study are:

• The energy analysis of the system shows that when trigeneration is used as com-
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pared with only electrical power, the efficiency of the system will increase from

around 13% to around 88%. That is, there is, on average, a 75% gain in efficiency

when trigeneration is used. In addition, the energy analysis shows that the maximum

electrical power efficiency is 14%, the maximum cooling-cogeneration efficiency is

17%, the maximum heating-cogeneration efficiency is 87%, and the maximum tri-

generation efficiency is 89%.

• The electrical-power and cooling-cogeneration exergy efficiencies decrease as the

ORC evaporator pinch point temperature or pump inlet temperature increases. On

the other hand, the heating-cogeneration and trigeneration exergy efficiencies are

insensitive to these two variables.

• The performance of the trigeneration system is insensitive to the variation of the

turbine inlet pressure. Therefore, it is recommended that the ORC be operated on

low pressure since this will result in cost savings.

• The electrical to cooling ratio is sensitive to the variation of the ORC evaporator

pinch point temperature and pump inlet temperature. Therefore, when further cool-

ing energy is needed, it is recommended that the system be run at a higher ORC

evaporator pinch point temperature and/or higher pump inlet temperature.

• The exergy analysis of the system shows that there is, on average, a 17% gain in ex-

ergy efficiency when trigeneration is used as compared with electrical-power exergy

efficiency. The maximum electrical-exergy efficiency is 13%, the maximum cooling-

cogeneration exergy efficiency is 13.5%, the maximum heating-cogeneration exergy

efficiency is 27%, and the maximum trigeneration-exergy efficiency is 28%.

• The two main sources of the exergy destruction are the biomass combustor (55%)

and the ORC evaporator (38%). Therefore, when designing a similar trigeneration
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system as in this study, the most important components that need considerable care

in their design and selection are the biomass combustor and ORC evaporator.

• The emission rates of CO2 in kg/MWh are considerably high for the electrical-power

case while, when trigeneration is used, the emissions are reduced to a relatively low

rate.

5.4 Energy and Exergy Results of the Solar-Trigeneration

System

In this section, the energy and exergy analyses of the trigeneration plant using solar energy

are presented. Unlike the previous two systems discussed above, the solar-trigeneration

system is a dynamic system where the energy input varies with time. After the sunrise, the

solar radiation increases from zero until it reaches its maximum at noon and then decreases

until it reaches zero at sunset. To have a continuously operating solar plant, another auxil-

iary subsystem is needed. A common subsystem that is combined with a solar system, is a

thermal storage energy subsystem. The thermal storage subsystem stores the access solar

energy during the day time and, thus, ensures running the system at night time. Therefore,

to have a full picture of a thermal solar system performance, it needs to be designed con-

sidering a thermal storage subsystem. Indeed, considering a thermal storage subsystem is

important when there is a need to have energy during night time, for example. The solar

trigeneration plant operating modes are described next.

In this study, three modes of operation are considered: solar, solar and storage, and

storage modes. During the early time of the day, after the sunrise, and later, before the

sunset, all the solar energy collected by the solar collectors is used to run the trigeneration

system. This mode is called the solar mode. At the other time of the day (high solar
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radiation time), part of the solar energy collected by the solar collectors is used to run the

trigeneration system. The remaining part of the solar energy is stored in the thermal storage

tank. This mode is called the solar and storage mode. At night time, the trigeneration

system runs using the energy stored in the thermal storage. This mode is called the storage

mode. A representative diagram that shows these three modes of operation is shown in

Figure 5.48. Also, this diagram shows the change of the solar radiation density during the

day time. The solar radiation variation density in this study is taken from Kalogirou [157].

The selected data from [157] is for full tracking of solar collectors to sun radiation at

Athens, Greece.

In this study, the analysis of the solar trigeneration system is based on these three modes

(solar only, solar and storage, and storage only). The discussion of the results in this section

is organized as follow. For example, when discussing the energy efficiency, the solar mode

is described first, then, the solar and storage mode, and, finally, the storage mode. In this

study, the effects of the ORC evaporator pinch point temperature, pump inlet temperature,

and turbine inlet pressure are examined. The range of the ORC evaporator pinch point

temperature [181] and pump inlet temperature [141, 145] considered here are taken from

the literature.

5.4.1 Effect of the ORC Evaporator Pinch Point Temperature

The effect of the pinch point temperature on the performance of the solar trigeneration sys-

tem is examined in Figures 5.49-5.61. Figures 5.49-5.51 show the effect of the pinch point

temperature of the ORC evaporator on the efficiency of the solar trigeneration system. Fig-

ure 5.49 presents the efficiency variation for the solar mode. This figure shows that the net

electrical efficiency at Tpp =10 K is around 13% and, as the pinch point temperature in-

creases, the efficiency drops to 12.5% at Tpp =60 K. The electrical efficiency drops because

the amount of the heat input to ORC decreases as this temperature increases. Using cooling
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Figure 5.48 Solar radiation density variation versus time, Kalogirou [157].

cogeneration, the cooling-generation efficiency increases to around 16%. In contrast, using

heating cogeneration, the heating-cogeneration efficiency increases considerably to 91%.

As the pinch point temperature increases, the heating-cogeneration efficiency decreases.

This efficiency decreases from 91% at Tpp =10 K to 86% at Tpp =60 K. This decrease

again is attributed to the decrease in the amount of heat input into the ORC as the pinch

point temperature increases. Alternatively, when trigeneration is used, the trigeneration

efficiency increases to 94%.

Now, consider the solar and storage mode. Figure 5.50 presents the efficiency variation

for this mode. It can be seen that the net electrical efficiency is around 7%. The drop in

this efficiency, as compared to the electrical efficiency for the solar mode, is explained as

follows. During this mode where high solar radiation is received by the solar collectors,

70% of the solar energy is stored in the thermal hot storage tank. This percentage of the

stored energy is selected based on an initial assessment that was conducted for the solar
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trigeneration system to obtain high efficiency. Since most of the received solar energy is

stored, the electrical efficiency decreases to 7%. Using cooling cogeneration, the cooling-

cogeneration efficiency increases to 9%. Alternatively, the heating-cogeneration efficiency

increases to 45% and the trigeneration efficiency increases to 47%. It can be noticed in

this figure that the efficiency increases as the pinch point temperature increases, unlike

the case shown in the previous figure. This dissimilarity is explained as follows. As the

pinch point temperature increases, the amount of the heat input into the ORC decreases.

The exit stream of the ORC evaporator, state 18, is reused and mixes with the stream from

state 21, where this mixture represents the input stream to the solar collectors. Therefore,

as the temperature of this mixture increases, the temperature at the exit of the collector

increases. That is, the pinch point temperature has an effect on the temperature at the

inlet and exit by the solar collectors, as well as the amount of the heat input into the ORC

evaporator. Therefore, depending on the operating condition, the increase in the pinch point

temperature may help in increasing or decreasing the efficiency.

Now, consider the storage mode shown in Figure 5.51. This figure shows that the net

electrical efficiency is around 6%. Using cooling cogeneration, its efficiency increases to

8%. Alternatively, using heating cogeneration or trigeneration, the efficiency increases to

40% or 42%, respectively. This figure shows that, as compared to the previous two figures,

there is a drop in the efficiencies of the four cases. This is attributed to the amount of the

thermal energy stored in the hot storage tank. If more energy is stored, these efficiencies

will increase; and, vice versa, if less energy is stored, these efficiencies will decrease.

The effect of the pinch point temperature on the net electrical power is shown in Figure

5.52. This figure shows that as the pinch point temperature increases, the net electrical

power decreases. The decrease in the power is attributed to the decrease in the amount of

the heat input to the ORC as this temperature increases. This figure shows that for the solar

mode, the net electrical power decreases from 750 kW at 10 K to 670 kW at 60 K. For the
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Figure 5.49 Effect of the ORC evaporator pinch point temperature on the effi-
ciency at P3=2,000 kPa, T1=365 K, for solar mode.
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Figure 5.50 Effect of the ORC evaporator pinch point temperature on the effi-
ciency at P3=2,000 kPa, T1=365 K, for solar and storage mode.
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Figure 5.51 Effect of the ORC evaporator pinch point temperature on the effi-
ciency at P3=2,000 kPa, T1=365 K, for storage mode.

solar and storage mode, the power decreases from 590 kW at 10 K to 560 kW at 60 K. For

the storage mode, the power decreases from 540 kW at 10K to 440 kW at 60 K. It can be

observed that net electrical power produced during the solar mode is the highest while for

the storage mode it is the lowest. The variation of the amount of the net electrical power

produced for each mode is owing to the amount of heat input into the ORC under each

mode. The distribution of these heat amounts was discussed above.

The effect of the pinch point temperature on the electrical to heating and cooling ratios

is shown in Figures 5.53-5.55. Figure 5.53 presents the solar mode. It can be noticed that,

as the pinch point temperature increases, the electrical to cooling ratio decreases. This

decrease is attributed to the increase in the cooling-cogeneration efficiency. The electrical

to cooling ratios decreases from 4.8 at 10 K to 4.2 at 60 K. On the other hand, the electrical

to heating ratio is almost constant and around 0.18. Figure 5.54 shows the solar and storage
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Figure 5.52 Effect of the ORC evaporator pinch point temperature on the net
electrical power at P3=2,000 kPa, T1=365 K.

mode. This figure illustrates that the electrical to cooling ratio value is lower than the case

for the solar mode. This decrease is attributed to the further decrease in the net electrical

power for the solar and storage mode, as compared to the solar mode only. This ratio

decreases from 3.7 at 10 K to 3.5 at 60 K. In contrast, the electrical to heating ratio is

almost constant and around 0.2. Figure 5.55 presents the storage mode. It can be observed

that the electrical to cooling ratio decreases more as compared to the previous two modes.

This decrease is attributed again to the decrease in the net electrical power, as compared to

the previous two modes. The electrical to cooling ratio decreases from 3.5 at 10 K to 2.8 at

60 K. Conversely, the electrical to heating ratio is almost constant and around 0.2.

The effect of the ORC evaporator pinch point variation on the exergy efficiency is shown

in Figures 5.56-5.58. These figures show that the exergy efficiency is considerably less than

the energy efficiency. As reported in the literature, the exergy efficiency of a solar system
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Figure 5.53 Effect of the ORC evaporator pinch point temperature on the electri-
cal to heating and cooling ratios at P3=2,000 kPa, T1=365 K, for solar mode.
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Figure 5.54 Effect of the ORC evaporator pinch point temperature on the electri-
cal to heating and cooling ratios at P3=2,000 kPa, T1=365 K, for solar and storage
mode.
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Figure 5.55 Effect of the ORC evaporator pinch point temperature on the electri-
cal to heating and cooling ratios at P3=2,000 kPa, T1=365 K, for storage mode.

is considerably less than the energy efficiency [160]. Figure 5.58 shows that the electrical-

exergy efficiency is around 6% and the cooling-cogeneration exergy efficiency is around

7%. This small improvement in efficiency is attributed to the small size of the single-effect

absorption chiller as compared to the electrical system. This chiller was selected from the

industry [145]. On the other hand, the heating-cogeneration exergy efficiency decreases

from around 19% at 10 K to 15% at 60 K. Similarly, the trigeneration-exergy efficiency

decreases from almost 20% at 10 K to 16.5% at 60 K. This decrease is due to the decrease

in the amount of the heat input to the ORC as the pinch point temperature increases. Now,

consider the solar and storage mode, as shown in Figure 5.57. This figure illustrates that the

electrical and cooling-cogeneration efficiencies are around 3% and 3.5%, respectively. Al-

ternatively, using heating cogeneration or trigeneration, this efficiency increases to around

7.5% or 8%, respectively. Figure 5.58 presents the exergy efficiency for the storage mode.
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Figure 5.56 Effect of the ORC evaporator pinch point temperature on the exergy
efficiency at P3=2,000 kPa, T1=365 K, for solar mode.

It can be observed that for this mode the exergy efficiencies decrease further more. This

decrement is because there is less energy input from the storage tank, as compared to the

energy inputs from the other two modes. The electrical and cooling-cogeneration exergy

efficiencies are around 2.5% and the heating-cogeneration and trigeneration exergy effi-

ciencies are around 6%.

The effect of the ORC evaporator pinch point on the exergy destruction is shown in Fig-

ures 5.59-5.61. Only the components that have high exergy destruction rates are presented.

Figure 5.59 illustrates the exergy destruction rate of the heating-process heat exchanger,

solar collectors, turbine, and evaporator-b for the solar mode. This figure reveals that most

of the destructed exergy is destroyed by the solar collectors. The exergy destructed by this

component is around 1400 kW. This figure shows that the exergy destructed by the solar

collectors increases marginally as the pinch point temperature increases. This increment
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Figure 5.57 Effect of the ORC evaporator pinch point temperature on the exergy
efficiency at P3=2,000 kPa, T1=365 K, for solar and storage mode.
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Figure 5.58 Effect of the ORC evaporator pinch point temperature on the exergy
efficiency at P3=2,000 kPa, T1=365 K, for storage mode.
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is because of the increase in the exergy difference between the inlet and exit of the solar

collectors as the pinch point temperature increases. Similarly, the destructed exergy by

evaporator-b increases as the pinch point temperature increases. It increases from 450 kW

at 10 K to 550 kW at 60 K. This increase in the destructed exergy is owing to the increase

in exergy difference between the inlets and exits of evaporator-b. Also, this figure illus-

trates that the destructed exergy by the heating-process heat exchanger decreases as the

pinch point temperature increases. It decreases from 350 kW at 10 K to 200 kW at 60

K. This decrement is due to the decrease in the available exergy in the ORC as the pinch

point increases and, thus, less exergy is available for the heating process. In addition, this

figure shows that as the pinch point temperature increases, the destructed exergy by the

turbine decreases. This destructed exergy decreases from 120 kW at 10 K to 115 kW at

60 K. Again, this decrease in the destructed exergy by the turbine is due to the decrease in

the available exergy in the ORC as the pinch point temperature increases, as well as to the

decrease in the turbine power output. Figure 5.60 illustrates the solar and storage mode.

This figure shows that the destructed exergy of the solar collectors increases significantly

as compared to the solar mode. This increase is mainly due to the increase in the solar ra-

diation during this mode. The definition of the exergy of the solar collectors indicates that

it increases linearly as the solar radiation increases. The destructed exergy by the solar col-

lectors is around 4700 kW. On the other hand, the other components destroy considerably

less exergy. The destructed exergy by evaporator-b is around 500 kW. Figure 5.61 shows

the storage mode case. It can be observed that the significant source of the destructed ex-

ergy is evaporator-a. The destructed exergy by this component is around 600 kW. One the

other hand, the destructed exergies by the turbine, heating-process heat exchanger, and hot

storage tank are around 100 kW, 70 kW, and 30 kW, respectively.
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Figure 5.59 Effect of the ORC evaporator pinch point temperature on the exergy
destruction rate at P3=2,000 kPa, T1=365 K, for solar mode.
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Figure 5.60 Effect of the ORC evaporator pinch point temperature on the exergy
destruction rate at P3=2,000 kPa, T1=365 K, for solar and storage mode.
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Figure 5.61 Effect of the ORC evaporator pinch point temperature on the exergy
destruction rate at P3=2,000 kPa, T1=365 K, for storage mode.

5.4.2 Effect of the ORC Pump Inlet Temperature

The effect of the ORC pump inlet temperature variation on the plant’s performance is pre-

sented in Figures 5.62-5.74. Figures 5.62-5.64 illustrate the effect of the ORC pump inlet

temperature on the efficiency. Figure 5.62 presents the solar mode. This figure illustrates

that as the pump inlet temperature increases, the efficiencies decrease. This decrease is

attributed to the decrease in the temperature difference between the minimum and maxi-

mum temperatures in the ORC. The electrical efficiency decreases from 14% at 345 K to

11% at 380 K. Alternatively, the cooling-cogeneration efficiency decreases from 16% at

345 K to 15% at 380 K. On the other hand, using the heating cogeneration and trigener-

ation, their efficiencies increase considerably to 91% and 93%, respectively. Figure 5.63

illustrates the solar and storage mode. This figure shows that there is a considerable de-

crease in efficiency for this mode, as compared to the solar mode. This decrease is owing
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Figure 5.62 Effect of the ORC pump inlet temperature on the efficiency at
P3=2,000 kPa, Tpp=40 K, for solar mode.

to the relatively large amount of stored energy, as mentioned above. This figure shows that

there is a marginal change in the efficiencies as the temperature changes. The electrical,

cooling-cogeneration, heating-cogeneration, and trigeneration efficiencies are around 7%,

8%, 44%, and 46%, respectively. Figure 5.64 presents the storage mode. This figure shows

that the efficiencies are less for this mode as compared to the solar mode, for the reasons

discussed above. This figure illustrates that there is a marginal drop in the efficiencies as

the temperature increases. The electrical efficiency drops from 6.5% at 345 K to 5% at 380

K. For cooling cogeneration, the efficiency is around 7.5%. For heating cogeneration, the

efficiency drops from 41% at 345 K to 38% at 380 K. Alternatively, for trigeneration, the

efficiency drops from 42% at 345 K to 40% at 380 K.

The effect of the ORC pump inlet temperature on the net electrical power is presented

in Figure 5.65. This figure shows that the variation of the ORC pump inlet temperature
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Figure 5.63 Effect of the ORC pump inlet temperature on the efficiency at
P3=2,000 kPa, Tpp=40 K, for solar and storage mode.
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Figure 5.64 Effect of the ORC pump inlet temperature on the efficiency at
P3=2,000 kPa, Tpp=40 K, for storage mode.
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Figure 5.65 Effect of the ORC pump inlet temperature on the net electrical power
at P3=2,000 kPa, Tpp=40 K.

has a more significant effect on the power than the evaporator pinch point temperature

variation. This is because the ORC pump inlet temperature is part of the ORC and, thus,

has a direct effect on the electrical power produced. It can be noticed from this figure that as

the temperature increases, the electrical power decreases. This decrease is attributed to the

decrease in the temperature difference between the maximum and minimum temperatures

in the ORC. This figure shows that the electrical power for the solar mode varies from 840

kW at 345 K to 600 kW at 380 K. For the solar and storage mode, the electrical power

varies from 650 kW at 340 K to 510 kW at 380 K. For the storage mode, the power varies

from 570 kW at 345 k to 420 kW at 380 K. It can be observed from this figure that the

overall electrical power for the solar mode is the highest while for the storage mode it is

the lowest. This variation in the electrical power is because of the change in the available

heat input to the ORC for each mode, as discussed above.
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The effect of the ORC pump inlet temperature on the electrical to heating and cooling

ratios is presented in Figures 5.66-5.68. Figure 5.66 illustrates the solar mode. This figure

reveals that the electrical to cooling ratio decreases from almost 9 at 345 K to 3 at 380

K. This significant drop is owing to the significant drop in the net electrical power as this

temperature increases. In addition to that, the cooling power is small as compared to the

electrical power. However, the electrical to heating ratio is around 0.2 with a marginal

decrease in its value as the temperature increases. The drop is marginal since the size of

the heating power is large as compared to the electrical power. Figure 5.67 presents the

solar and storage mode. This figure shows that the electrical to cooling ratio decreases

from almost 7 at 345 K to 2.5 at 380 K. Nevertheless, the electrical to heating ratio drops

from 0.19 to 0.16 as the temperature increases. Figure 5.68 presents the storage mode. It

can be observed that the electrical to cooling ratio drops from 6 at 340 K to 2.2 at 380 K.

On the other hand, the electrical to heating ratio drops from 0.18 to 0.15 as the temperature

increases. It can be noticed that the overall electrical to cooling ratio is high for the solar

mode while for the other two modes it is lower. This difference is attributed to the available

electrical power for each mode, where for the solar mode it is the highest.

The effect of the ORC pump inlet temperature on the exergy efficiency is presented in

Figures 5.69-5.71. Figure 5.69 illustrates the solar mode. This figure shows that as this tem-

perature increases, the electrical-exergy efficiency drops from 7% at 345 K to 5% at 380

K. This drop is due to the decrease in the electrical power as this temperature increases.

Using cooling cogeneration, the exergy efficiency improves by less than 0.5%. However,

using heating cogeneration or trigeneration, the exergy efficiency improves significantly to

18% or 18.5%, respectively. Figure 5.70 presents the solar and storage mode. This figure

shows that the electrical, cooling-cogeneration, heating-cogeneration, and trigeneration ef-

ficiencies are around 3%, 3.5%, 7%, and 7.5%, respectively. Figure 5.71 shows the storage

mode. This figure shows that the electrical, cooling-cogeneration, heating-cogeneration,
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Figure 5.66 Effect of the ORC pump inlet temperature on the electrical to heating
and cooling ratios at P3=2,000 kPa, Tpp=40 K, for solar mode.
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Figure 5.67 Effect of the ORC pump inlet temperature on the electrical to heating
and cooling ratios at P3=2,000 kPa, Tpp=40 K, for solar and storage mode.
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Figure 5.68 Effect of the ORC pump inlet temperature on the electrical to heating
and cooling ratios at P3=2,000 kPa, Tpp=40 K, for storage mode.

and trigeneration efficiencies are around 2.5%, 3%, 6%, and 6.5%, respectively. It can be

noticed from the above three figures that the exergy efficiencies for the solar mode are the

highest while for the storage mode are the lowest. This difference is because there is more

energy input to the ORC for the solar mode and less for the storage mode, as discussed

above.

The effect of the ORC pump inlet temperature on the exergy destruction rate is pre-

sented in Figures 5.72-5.74. These figures present only the components that have high

exergy destruction rates. Figure 5.72 presents the solar mode. This figure shows the exergy

destruction rate of the solar collectors, heating-process, turbine, and evaporator-b. It can

be noticed that the solar collectors have the highest exergy destruction rate, around 1400

kW. The exergy destruction rate of the solar collectors increases marginally as the ORC

pump inlet temperature increases. This increase is attributed to the increase in the temper-
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Figure 5.69 Effect of the ORC pump inlet temperature on the exergy efficiency at
P3=2,000 kPa, Tpp=40 K, for solar mode.
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Figure 5.70 Effect of the ORC pump inlet temperature on the exergy efficiency at
P3=2,000 kPa, Tpp=40 K, for solar and storage mode.
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Figure 5.71 Effect of the ORC pump inlet temperature on the exergy efficiency at
P3=2,000 kPa, Tpp=40 K, for storage mode.

ature at the exit of evaporator-b, T18, as the ORC pump inlet temperature increases. That

is, the pinch point temperature is a function of the ORC pump inlet temperature, T1, and

T18. Therefore, as T1 increases, T18 increases and, thus, the inlet temperature to the solar

collectors increases. This figure shows that as T1 increases, the exergy destruction rate of

evaporator-b decreases marginally. This decrease is due to the decrease in the available ex-

ergy in evaporator-b as T1 increases. The exergy destruction rate of evaporator-b is around

550 kW. The exergy destructed by the heating-process heat exchanger increases as T1 in-

creases. This increase is owing to the increase in the available heat energy and the decrease

in the heating-cogeneration exergy efficiency. The exergy destruction rate increases from

100 kW at 345 K to 360 kW at 380 K. The exergy destruction rate of the turbine is around

120 kW. The exergy destruction rate of the turbine decreases as T1 increases. This decre-

ment is owing to the decrease in the power produced by the turbine as this temperature
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increases. Figure 5.73 presents the solar and storage mode. This figure reveals that the

destructed exergy by the solar collectors for this mode are significantly high, around 4800

kW. The reason for this was discussed above. This figure shows that as the ORC pump inlet

temperature increases, the destructed exergy by the solar collectors increases. It increases

from 4700 kW at 348 K to 4800 kW at 380 K. The exergy destruction rate of evaporator-b

decreases from 530 kW to 490 as this temperature increases. The exergy destruction rate

of the turbine decreases from 125 kW to 90 kW as this temperature increases. The ex-

ergy destruction rate of the heating-process heat exchanger increases from almost zero to

220 kW as this temperature increases. The exergy destruction rate of the hot storage tank

decreases from 22 kW to 20 kW as this temperature increases. Figure 5.74 presents the

storage mode. This figure illustrates that as the ORC pump inlet temperature increases, the

exergy destruction rate by evaporator-a decreases. It decreases from 650 kW at 345 K to

550 kW at 380 K. The exergy destruction rate by the turbine decreases from 120 kW to 80

kW as this temperature increases. The exergy destruction rate by the heating-process heat

exchanger increases from almost zero to 150 kW as this temperature increases. The exergy

destruction rate of the hot storage tank is almost constant and around 30 kW.

5.4.3 Effect of the Turbine Inlet Pressure

The effect of the turbine inlet pressure variation on the plant’s performance is presented

in Figures 5.75-5.87. The effect of the turbine inlet pressure variation on the efficiency

is shown in Figures 5.75-5.77. Figure 5.75 illustrates the solar mode. It can be noticed

that the variation of the turbine inlet pressure has an insignificant effect on efficiency. This

small variation is owing to the selected range of the pressure variation. The variations

of the efficiencies as this pressure increases are within 0.5%. This is an important result

since it suggests that running the ORC at low pressure, which will result in cost savings.

The electrical, cooling-cogeneration, heating-cogeneration, and trigeneration efficiencies

196



T
1

(K)

C
o

s
t

ra
te

($
/h

)

340 350 360 370 380

0

20

40

60

80

100

.
C

el.
C

cog, c.
C

cog, h.
C

tri

T
1

(K)

C
o

s
t

p
e

r
u

n
it

o
f

e
x
e

rg
y

($
/G

J
)

340 350 360 370 380

10

15

20

25

30

c
el

c
cog, c

c
cog, h

c
tri

E
x
e

rg
y

e
ff

ic
ie

n
c
y

(%
)

(η
e

x
)

0

5

10

15

20

25

30

η
ex,el

η
ex,cog,h

η
ex,cog,c

η
ex,tri

T
1

(K)

E
le

c
tr

ic
a

l
to

c
o

o
li
n

g
ra

ti
o

E
le

c
tr

ic
a

l
to

h
e

a
ti
n

g
ra

ti
o

345 350 355 360 365 370 375 380

2

3

4

5

6

7

8

9

0.1

0.12

0.14

0.16

0.18

0.2

r
el,h

r
el,c

T
1

(K)

E
x
e

rg
y

e
ff

ic
ie

n
c
y

(%
)

345 350 355 360 365 370 375 380

0

5

10

15

20

η
ex,el

η
ex,cog,h

η
ex,cog,c

η
ex,tri

T
1

(K)

. W
n

e
t
(k

W
)

340 350 360 370 380

400

450

500

550

600

650

700

750

800

850

900

T
1

(K)

E
ff

ic
ie

n
c
y

(%
)

345 350 355 360 365 370 375 380

0

20

40

60

80

100

η
el

η
cog,c

η
cog,h

η
tri

T
1

(K)

E
x
e

rg
y

d
e

s
tr

u
c
ti
o

n
ra

te
(k

W
)

345 350 355 360 365 370 375 380

0

200

400

600

800

1000

1200

1400

.
Ex

d, coll, solar.
Ex

d, hp.
Ex

d, ot.
Ex

d, ev, b

Figure 5.72 Effect of the ORC pump inlet temperature on the exergy destruction
rate at P3=2,000 kPa, Tpp=40 K, for solar mode.

Figure 5.73 Effect of the ORC pump inlet temperature on the exergy destruction
rate at P3=2,000 kPa, Tpp=40 K, for solar and storage mode.
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Figure 5.74 Effect of the ORC pump inlet temperature on the exergy destruction
rate at P3=2,000 kPa, Tpp=40 K, for storage mode.

are around 13%, 16%, 88%, and 91%, respectively. Figure 5.76 presents the solar and

storage mode. The electrical, cooling-cogeneration, heating-cogeneration, and trigenera-

tion efficiencies are around 6.5%, 8%, 44%, and 46%, respectively. Figure 5.77 shows the

storage mode. The electrical, cooling-cogeneration, heating-cogeneration and trigenera-

tion efficiencies are around 5.5%, 7.5%, 39% and 41%, respectively. It can be noticed that

the efficiencies for the solar mode are considerably higher than the other two modes. The

reason for that was discussed above.

The effect of the turbine inlet pressure on the net electrical power is shown in Figure

5.78. This figure shows that there is a small variation in net electrical power as the pressure

changes. This variation in the power is within 30 kW. This small variation is owing to the

small variation of the electrical efficiency. It is shown that the net electrical power for the

solar mode is around 710 kW, for the solar and storage mode is around 665 kW, and for the
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Figure 5.75 Effect of the turbine inlet pressure on the efficiency at T1=365 K,
Tpp=40 K, for solar mode.
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Figure 5.76 Effect of the turbine inlet pressure on the efficiency at T1=365 K,
Tpp=40 K, for solar and storage mode.
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Figure 5.77 Effect of the turbine inlet pressure on the efficiency at T1=365 K,
Tpp=40 K, for storage mode.

storage mode is around 480 kW.

The effect of the turbine inlet pressure on the electrical to heating and cooling ratios

is presented in Figures 5.79-5.81. These figures show that there is an insignificant change

in the electrical to heating and cooling ratios as the turbine inlet pressure increases. This

insignificant change in the ratios is attributed to the marginally change in the efficiencies

as this pressure increases. The electrical to cooling ratio for the solar mode is around 4.5,

for the solar and storage mode it is around 3.6, and for the storage mode it is around 3. The

electrical to heating ratio for the three modes is around 0.18.

The effect of the turbine inlet pressure on the exergy efficiency is illustrated in Figures

5.82-5.84. It can be observed that the effect of this pressure is insignificant on the exergy

efficiency. This insignificant change is attributed to the insignificant change in the pow-

ers and temperatures as this pressure changes. Figure 5.82 presents the solar mode. The

200



P
3

. W
n

e
t
(k

W
)

2000 3000 4000 5000 6000 7000

400

450

500

550

600

650

700

750

800

Solar

Solar and storage
Storage

Figure 5.78 Effect of the turbine inlet pressure on the net electrical power at
T1=365 K, Tpp=40 K.
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Figure 5.79 Effect of the turbine inlet pressure on the electrical to heating and
cooling ratios at T1=365 K, Tpp=40 K, for solar mode.
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Figure 5.80 Effect of the turbine inlet pressure on the electrical to heating and
cooling ratios at T1=365 K, Tpp=40 K, for solar and storage mode.
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Figure 5.81 Effect of the turbine inlet pressure on the electrical to heating and
cooling ratios at T1=365 K, Tpp=40 K, for storage mode.
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Figure 5.82 Effect of the turbine inlet pressure on the exergy efficiency at T1=365
K, Tpp=40 K, for solar mode.

exergy efficiencies for the electrical, cooling cogeneration, heating cogeneration, and tri-

generation are around 6%, 6.5%, 17.5%, and 18%, respectively. Figure 5.83 presents the

solar and storage mode. The exergy efficiencies for the electrical, cooling cogeneration,

heating cogeneration, and trigeneration are around 3%, 3.5%, 7%, and 7.5%, respectively.

Figure 5.84 shows the storage mode. The exergy efficiencies for the electrical, cooling

cogeneration, heating cogeneration, and trigeneration are around 2.5%, 3%, 6%, and 6.5%,

respectively. It can be observed that the efficiencies for the solar mode are higher than in

the other two modes. The reason for that was discussed above.

The effect of the turbine inlet pressure on the exergy destruction rate is shown in Figures

5.85-5.87. Figure 5.85 presents the solar mode. It can be noticed that effect of varying

this pressure on the exergy destruction ratio is insignificant since the change in the exergy

streams is negligible. The variation in the exergy destruction rate with the change in this
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Figure 5.83 Effect of the turbine inlet pressure on the exergy efficiency at T1=365
K, Tpp=40 K, for solar and storage mode.
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Figure 5.84 Effect of the turbine inlet pressure on the exergy efficiency at T1=365
K, Tpp=40 K, for storage mode.
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Figure 5.85 Effect of the turbine inlet pressure on the exergy destruction rate at
T1=365 K, Tpp=40 K, for solar mode.

pressure is within 30 kW. The destructed exergy rates of the solar collectors, evaporator-

b, heating-process heat exchanger, and turbine are around 1400 kW, 520 kW, 260 kW,

and 130 kW, respectively. Figure 5.86 illustrates the solar and storage mode. This figure

shows that there is a considerable increase in the exergy destructed by the solar collectors

for this mode, as compared to the solar mode. This increase is owing to the increase

in the solar energy radiation during this mode, as mentioned above. The variation of the

exergy destruction rate is within 15 kW. The exergy destruction rates of the solar collectors,

evaporator-b, heating-process heat exchanger, turbine, and hot storage tank are around 4800

kW, 500 kW, 115 kW, 110 kW, and 21 kW, respectively. Figure 5.87 presents the storage

mode. This figure illustrates that the change in the exergy destruction rate is within 15 kW.

The exergy destruction rates of evaporator-a, heating-process heat exchanger, turbine, and

hot storage tank are around 585 kW, 70 kW, 100 kW, and 30 kW, respectively.
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Figure 5.86 Effect of the turbine inlet pressure on the exergy destruction rate at
T1=365 K, Tpp=40 K, for solar and storage mode.
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Figure 5.87 Effect of the turbine inlet pressure on the exergy destruction rate at
T1=365 K, Tpp=40 K, for storage mode.
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5.4.4 Overall Exergy Destruction

The overall exergy destruction rate and its percentage for the solar trigeneration system is

shown in Figures 5.88-5.90. The baseline values considered here are 40 K for the ORC

evaporator pinch point temperature, 365 K for the pump inlet temperature, and 2,000 kPa

for the turbine inlet pressure. It should be noticed that each sector in these three figures

presents the exergy destruction rate value and its percentage of the total exergy destruc-

ted. Figure 5.88 illustrates the solar mode. This figure shows that the major sources of the

exergy destruction are the solar collectors and evaporator-b. The solar collectors destroy

1400 kW of exergy (59%) and evaporator-b destroys 530 kW of exergy (23%). In contrast,

the destructed exergy by the heating-process heat exchanger and turbine are lower. The

exergy destructed exergy by the heating-process heat exchanger is 260 kW (11%) and the

exergy destructed by the turbine is 115 kW (5%). The other components of the system

destroy 38 kW of exergy (2%). Figure 5.89 illustrates the solar and storage mode. This

figure demonstrates that most of the destructed exergy is destroyed by the solar collectors,

which is around 4750 kW (86%). Conversely, the other components have less destruction

of exergy. The exergy destructed by evaporator-b, turbine, heating process, and hot stor-

age tank are 510 kW (9%), 110 kW (2%), 115 kW (2%), and 21 kW, respectively. The

other components of the system destroy 42 kW (1%). Figure 5.90 illustrates the storage

mode. This figure shows that during this mode the significant source of exergy destruction

is evaporator-a, which destroys 590 kW of exergy (71%). The other components that have

a relatively high destruction rate of exergy are the turbine (96 kW, 12%), heating process

(70 kW, 8%), and hot storage tank (30 kW, 4%). The remaining components of the sys-

tem destroy 42 kW (5%). The above three figures demonstrate that the most significant

components that have high destruction rates are the solar collectors and the evaporators.

Therefore, in designing a solar-trigeneration system, the most significant components that

require careful design and selection are the solar collectors and evaporators.
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Evaporator-b

Figure 5.88 Overall exergy destruction rates and percentages for the solar mode
(P3=2000 K, T1=365 K, and Tpp=40 K).
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Turbine

42 kW (1%) 

Other components
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Heating process

510 kW (9%) 

Evaporator-b

Figure 5.89 Overall exergy destruction rates and percentages for the solar and
storage mode (P3=2000 K, T1=365 K, and Tpp=40 K).
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Figure 5.90 Overall exergy destruction rates and percentages for the storage mode
(P3=2000 K, T1=365 K, and Tpp=40 K).

5.4.5 Summary

In this study, the thermodynamic modeling of the solar-trigeneration system considers three

modes of operation: solar, solar and storage, and storage modes. The thermodynamic mod-

eling of this system is examined by varying the ORC evaporator pinch point temperature,

ORC pump inlet temperature, and turbine inlet pressure. Moreover, exergy destruction

modeling is conducted under the selected baseline operating values that are taken from

literature. The main findings in this study are summarized below.

• The thermodynamic analysis reveals that the solar mode has the highest energy and

exergy efficiencies, and net electrical power. The solar and storage mode has lower

energy and exergy efficiencies, and lower electrical power although the solar radia-

tion is higher for this mode as compared to the solar mode. The main reason for this

is that major part of the solar energy collected in the solar and storage mode is stored
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in the thermal storage tank. On the other hand, the storage mode has marginally

lower efficiencies and electrical power as compared to the solar and storage mode.

Further increments in the efficiencies and electrical power during the solar and stor-

age mode can be obtained by decreasing the portion of the stored energy during this

mode. However, this possible reduction in this portion would result in efficiencies

and electrical power reduction during the storage mode. The optimum portion of the

stored energy can be obtained based on the energy demand variation during the 24

hours of operation.

• This study reveals that the maximum electrical efficiency for the solar mode is 15%,

for the solar and storage mode is 7%, and for the storage mode is 6.5%. Alternatively,

when trigeneration is used, the efficiency increases significantly. The maximum tri-

generation efficiency for the solar mode is 94%, for the solar and storage mode is

47%, and for the storage mode is 42%.

• This study shows that the electrical to cooling ratio is sensitive to the change in the

ORC pump inlet temperature. Therefore, the variation in this temperature could be

used as a good control for the amount of the cooling power needed.

• The variation of turbine inlet pressure has an insignificant effect on the performance.

That is, the ORC could be run on low pressure, which will result in cost savings.

• It is shown that the maximum electrical-exergy efficiency for the solar mode is 7%,

for the solar and storage mode is 3.5%, and for the storage mode is 3%. In contrast,

when trigeneration is used, the exergy efficiency increases noticeably. The maximum

trigeneration-exergy efficiency for the solar mode is 20%, for solar and storage mode

is 8%, and for the storage mode is 7%.

• The main sources of exergy destruction rate are the solar collectors and ORC evapo-
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rators. Therefore, careful selection and design of these two components are essential

to reduce the exergy destructed by them and, thus, increase the exergy efficiency in

the system.

5.5 Thermodynamic and Thermoeconomic Comparisons

of the Three Trigeneration Systems, Under Thermoe-

conomic Optimization

This section discusses the thermodynamic and thermoeconomic comparisons of the three

trigeneration plants considered. The results of this comparison are for the thermoeconomic

optimized cases.

5.5.1 Effect of the ORC Pump Inlet Temperature

The effect of the ORC pump inlet temperature variation on the efficiency, electrical power,

electrical to cooling ratio, electrical to heating ratio, exergy efficiency, cost rate, and cost

per exergy unit is examined in Figures 5.91-5.102. The subscripts of the parameters used

in these figures are explained next. The subscript SOFC indicates the trigeneration system

based on the solid oxide fuel cells. The subscript BM refers to the trigeneration system

based on the biomass combustor. The subscript So indicates the trigeneration system based

on the solar subsystem. The subscripts so, so-st, and st refer to the solar, solar and storage,

and storage modes for the solar-trigeneration system, respectively. The subscripts el and tri

indicate electrical and trigeneration, respectively.

Figure 5.91 presents the electrical efficiencies of the three systems considered. This

figure demonstrates that as the ORC pump inlet temperature increases, the electrical effi-

ciency decreases. This decrement is owing to the decrease in the temperature difference
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between the maximum and minimum temperatures in the ORC. This figure illustrates that

the electrical efficiency of the SOFC-trigeneration system is the highest because it has an-

other subsystem that has high efficiency, i.e. the SOFC subsystem. The efficiency of this

system drops from almost 19% at 345 K to 17% at 380 K. In contrast, the electrical ef-

ficiency of the biomass-trigeneration system drops from almost 15% at 345 K to around

11% at 380 K. On the other hand, the electrical efficiency of the solar-trigeneration system

for the solar mode is close to the electrical efficiency of the biomass-trigeneration system.

However, the electrical efficiencies of the solar and storage, and storage modes of the solar-

trigeneration system are noticeably lower. This drop is owing to the decrease in the amount

of the heat input to the ORC during these two modes. As mentioned above, during the solar

and storage mode a major portion of the collected energy from the solar collectors is stored

in the storage tank. Therefore, during this mode the efficiency is lower as compared to the

solar mode. The electrical efficiency of the solar and storage mode drops from 7% at 345

K to 6% at 380 K. The efficiency of the storage mode drops from 6% at 345 K to 5% at

380 K.

The trigeneration efficiency is presented in Figure 5.92. This figure demonstrates that

the efficiency improves significantly when trigeneration is used. This figure also shows that

the biomass-trigeneration and solar mode of the solar-trigeneration system have the highest

trigeneration efficiency, which is around 90%, whereas the SOFC-trigeneration system has

a lower trigeneration efficiency, 76%. The reason why the SOFC-trigeneration system has a

lower efficiency for trigeneration, while it has the highest electrical efficiency, is explained

next. The SOFC-trigeneration system has two devices that produce electrical power, the

SOFC and the electrical generator, where most of the electricity is produced by the SOFC;

because of this, less energy is needed for the ORC to produce the remaining portion of the

electricity as compared to the other two systems. Thus, the amount of the heat that enters

the ORC is lower. As a result of the lower heat, lower waste heat is available for heating
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Figure 5.91 Effect of the ORC pump inlet temperature on the electrical efficiency.

and cooling. Thus the trigeneration efficiency of the SOFC is lower than the other two

systems. The trigeneration efficiencies of the solar and storage, and storage modes of the

solar-trigeneration system are less than that of the solar mode, since less energy is available

for these two modes. The trigeneration efficiency of the solar and storage mode is around

45% and for the storage mode is around 41%.

Figure 5.93 illustrates the variation of the net electrical power as the ORC inlet tem-

perature changes. The electrical power decreases as this temperature increases because the

operating temperature range of the ORC is reduced and, thus, less power can be obtained

from the turbine. It can be observed that the electrical power during the solar mode for

the solar-trigeneration system is the highest. This power can be reduced by storing part of

the collected energy during the operation of this mode. The electrical power in this mode

changes from 830 kW at 345 K to 600 kW at 380 K. The electrical power during the solar

and storage mode is 645 kW at 345 K and it decreases to 510 kW at 380 K. The electrical
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Figure 5.92 Effect of the ORC pump inlet temperature on the trigeneration effi-
ciency.

power of the storage mode decreases from 575 kW at 345 kW to 420 kW at 380 K. Alter-

natively, the electrical power of the biomass-trigeneration system decreases from 640 kW

at 345 kW to 440 kW at 380 K. It can be noticed that the electrical power of the SOFC-

trigeneration system is less sensitive to the change in this temperature as compared to the

other two systems. The reason of this reduced sensitivity is because the major part of the

electrical power is produced from the SOFC subsystem. Hence, less power is produced by

the ORC where the change in this temperature has a direct effect on the electrical power

produced.

Figure 5.94 presents the electrical to cooling ratio of the three systems considered.

This figure shows that the electrical to cooling ratio is sensitive to the change in the ORC

pump inlet temperature for the three systems. The degree of sensitivity is related mainly to

the sensitivity of the electrical power produced by these three systems as this temperature
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Figure 5.93 Effect of the ORC pump inlet temperature on the net electrical power.

varies. The electrical to cooling ratio of the solar mode of the solar-trigeneration system

is the highest while the electrical to cooling ratio of the SOFC-trigeneration system is the

lowest. For the SOFC-trigeneration system, this ratio varies from 6.3 at 345 K to 2.7 at

380 K. However, for the biomass-trigeneration system, this ratio varies from 6.7 at 345 K

to 2.2 at 380 K. Alternatively, for the solar-trigeneration system, this ratio varies from 8.7

at 345 k to 3.1 at 380 for the solar mode, from 6.7 at 345 K to 2.6 at 380 K for the solar

and storage mode, and from 6 at 345 K to 2.1 at 380 K for the storage mode.

Figure 5.95 shows the electrical to heating ratio of the three systems considered. This

figure illustrates that as the ORC pump inlet temperature increases, this ratio decreases.

This decrement is attributed to the decrease in electrical power as this temperature in-

creases. This figure shows that this ratio is the highest for the SOFC-trigeneration system.

This high ratio is obtained since most of the electrical power is produced from the SOFC

subsystem for this trigeneration system. Thus, less electrical power is produced by the
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Figure 5.94 Effect of the ORC pump inlet temperature on the electrical to cooling
ratio.

ORC and, hence, less heating energy is available from this system. Therefore, this ratio is

the highest for the SOFC-trigeneration system. This ratio varies from 0.34 at 345 K to 0.33

at 380 K for the SOFC-trigeneration system. On the other hand, for the other cases this

ratio varies from around 0.19 at 345 K to 0.16 at 380 K.

Figure 5.96 demonstrates the emissions of CO2 in kg per MWh of electrical and trigen-

eration powers. This figure presents the emissions for the SOFC trigeneration and biomass

trigeneration systems. This figure shows that the emissions per MWh of electrical power

are significantly high. Alternatively, when trigeneration is used, the emissions per MWh of

trigeneration drop significantly. This figure reveals that the emissions of CO2 per MWh of

electrical power for both systems increase as the ORC pump inlet temperature increases.

This increase is attributed to the drop in the electrical efficiencies of these two systems

as this temperature increases. The CO2 emissions per MWh of electrical power from the
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Figure 5.95 Effect of the ORC pump inlet temperature on the electrical to heating
ratio.

biomass-trigeneration system increases from 2500 kg/MWh at 345 K to 3200 kg/MWh at

380 K. In contrast, the emissions for the SOFC-trigeneration system increase from 1750

kg/MWh at 345 K to 1900 kg/MWh at 380 K for the electrical power production. Alterna-

tively, when trigeneration is used, the emissions drop significantly to around 400 kg/MWh

for these two systems.

Figure 5.97 presents the electrical-exergy efficiency variation as the ORC pump in-

let temperature changes. This figure illustrates that the electrical-exergy efficiency of the

SOFC-system is the highest. This result is attributed to the high efficiency of the SOFC

subsystem that has a contribution to the electrical power produced; unlike the other two

systems where all the electrical power is produced by the electrical generator. The exergy-

efficiency of the SOFC-trigeneration system varies from almost 15% at 345 K to 13.7%

at 380 K. In contrast, this efficiency varies from 13% at 345 K to 10% at 380 K for the
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Figure 5.96 Effect of the ORC pump inlet temperature on the CO2 emissions.

biomass-trigeneration system. Nevertheless, the electrical exergy efficiency of the solar-

trigeneration system is considerably less for the solar-trigeneration system. This decrease

is attributed to the large temperature difference between the sun temperature and fluid in

the collectors [160]. For the solar-trigeneration system, the electrical-exergy efficiency of

the solar mode decreases from 7.5 at 345 K to 5% at 380 K; the electrical-exergy effi-

ciency of the solar and storage mode decreases from 3.5% at 345 K to 3% at 380 K; the

electrical-exergy efficiency of the storage mode decreases from 3% 345 K to 2% at 380 K.

Figure 5.98 presents the trigeneration-exergy efficiency of the three systems considered.

This figure shows that SOFC-trigeneration system has the highest trigeneration-exergy ef-

ficiency. This result is owing to the SOFC subsystem that has a high electrical-exergy

efficiency. The trigeneration exergy efficiency of this system is around 38%. Conversely,

the exergy efficiency of the biomass-trigeneration system is around 28%. For the solar-

trigeneration system, the trigeneration-exergy efficiency is noticeably lower for the reason
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Figure 5.97 Effect of the ORC pump inlet temperature on the electrical-exergy
efficiency.

mentioned above. This efficiency is around 18% for the solar mode, 8% for the solar and

storage mode, and 6% for the storage mode.

Figure 5.99 presents the cost rate for the electrical production. It can be observed that

the cost rates of the electrical power of all the three systems considered decrease as this

temperature increases. Considering that the cost rate of the electrical product is a direct

function of the electrical power produced. Consequently, as the electrical power decreases,

the cost rate of the electrical product decreases. This figure shows that the cost rate of the

SOFC is slightly higher than the other two systems. The reason for that is the high capital

cost of the SOFC, as well as the cost of the methane and biomass wood fuels for the SOFC-

trigeneration system. The cost rate of the SOFC-trigeneration system decreases from 45 $/h

at 345 K to 39 $/h at 380 K. Conversely, the cost rate of the biomass-trigeneration system

decreases from 45 $/h at 345 K to 30 $/h at 380 K. The cost rate of the solar-trigeneration
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Figure 5.98 Effect of the ORC pump inlet temperature on the trigeneration-exergy
efficiency.

system varies depending on the operation mode. The cost rate of the solar mode is the

highest among the three modes of the solar-trigeneration system. This result is owing to

the low solar radiation during this mode and, hence, the solar subsystem is operating at a

lower capacity of its design capacity where it is designed to work in a higher solar radiation.

The cost rate of the solar and storage mode is the lowest since the solar radiation is high

and, thus, the solar subsystem is utilized more efficiently. The cost rate of the solar mode

is 45 $/h at 345 k and decreases to 35 $/h at 380 K. The cost rate of the solar and storage

mode is 26 $/h at 345 k and decreases to 22 $/h at 380 K. The cost rate of the storage mode

is 36 $/h at 345 k and decreases to 27 $/h at 380 K.

Figure 5.100 illustrates the cost rate of the trigeneration. It can be observed that the cost

rate of the trigeneration is less sensitive to the temperature change as compared to the cost

rate of the electrical power. This lower sensitivity is owing to the definition of the cost rate
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Figure 5.99 Effect of the ORC pump inlet temperature on the cost rate of the
electrical power production.

which is a direct function of the products. Since the drop in the electrical power and, thus,

the efficiency as this temperature increases is reflected in an increase in the waste heat, the

trigeneration power is not sensitive to the change of this temperature. Therefore, the cost

rate is not sensitive to the variation of this temperature. This figure reveals that the cost

rate of the SOFC-trigeneration system is the highest while the cost rate of the solar mode

of the solar-trigeneration system is the lowest. The reason for this behavior was discussed

above. The cost rate of the SOFC-trigeneration system is around 110 $/h whereas for the

biomass-trigeneration system it is around 70 $/h. The cost rates of the solar-trigeneration

system are around 82 $/h for the solar mode, 44 $/h for the solar and storage mode, and 57

$/h for the storage mode.

Figure 5.101 presents the cost per exergy unit of the electrical power. It can be noticed

that the electrical-product costs per exergy unit for the biomass and solar-trigeneration
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Figure 5.100 Effect of the ORC pump inlet temperature on the cost rate of the
trigeneration production.

systems decrease as this temperature increases. This decrease is attributed to the decrease

in the exergy efficiency. The cost per exergy unit of the biomass-trigeneration system is

around 19 $/GJ. Alternatively, the costs per exergy unit of the solar-trigeneration system

are around 15.5 $/GJ for the solar mode, 11.5 $/GJ for the solar and storage mode, and 17.5

$/GJ for the storage mode. Nevertheless, the cost per exergy unit of the SOFC-trigeneration

system decreases marginally as this temperature increases. This decrease is owing to the

design of the SOFC-trigeneration system where the major portion of the electrical power

is produced by the SOFC, which is not part of the ORC. The cost per exergy unit of the

SOFC-trigeneration system is around 20.5 $/GJ.

Figure 5.102 presents the trigeneration cost per exergy unit. It can be observed that the

cost of the SOFC-trigeneration system is the highest while the solar-trigeneration system is

the lowest. The SOFC-trigeneration system costs more since the capital cost of the SOFC
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Figure 5.101 Effect of the ORC pump inlet temperature on the cost per exergy
unit of the electrical power production.

subsystem is expensive, as well as the operation of this system requires both methane and

biomass wood as fuel sources. Similarly, the cost of the biomass-trigeneration system is

higher than the solar-trigeneration system since it requires the biomass wood fuel. It can

be observed that the trigeneration costs per exergy unit of the three systems increase as the

ORC inlet temperature increases. This increase is attributed to the decrease in the exergy

efficiency and the trigeneration energy as this temperature increases. This figure shows

that the trigeneration cost per exergy unit of the SOFC increases from 35 $/GJ at 345 K

to 38 $/GJ at 380 K while the cost of the biomass-trigeneration system increases from 24

$/GJ at 345 K to 27 $/GJ at 380 K. The trigeneration cost of the solar-trigeneration system

increases from 19 $/GJ at 345 K to 22 $/GJ at 380 K for the solar mode, from 14 $/GJ at

345 K to 16 $/GJ at 380 K for solar and storage mode, and from 22 $/GJ at 345 to 24 $/GJ

at 380 K for the storage mode.
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Figure 5.102 Effect of the ORC pump inlet temperature on the cost per exergy
unit of the trigeneration production.

5.5.2 Effect of the Turbine Inlet Pressure

The effect of the turbine inlet pressure variation on the performance of the three systems

considered is shown in Figures 5.103-5.114. Figure 5.103 presents the effect of the pressure

variation on the electrical efficiency. It can be noticed that the effect of pressure variation is

insignificant except for the SOFC-trigeneration system. The SOFC-trigeneration system is

sensitive to the pressure variation since the size of the ORC where the power produced by

the turbine and mass flow rate of the working fluid is smaller than the other two systems.

Therefore, the electrical efficiency of the SOFC-trigeneration system is more sensitive to

the pressure variation as compared to the other two systems. The electrical efficiency of the

SOFC-trigeneration system increases from 18 % at 345 K to 19.5% at 380 K. Alternatively,

the electrical efficiency of the biomass-trigeneration system is around 12.5%. On the other

hand, the electrical efficiency of the solar-trigeneration system is around 13% for the solar
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Figure 5.103 Effect of the turbine inlet pressure on the electrical efficiency.

mode, 6.5% for the solar and storage mode, and 5.5% for the storage mode.

Figure 5.104 presents the effect of the turbine inlet pressure on the trigeneration effi-

ciency of the systems considered. It can be noticed that the effect of varying this pressure

is negligible on the trigeneration efficiencies of all three systems. Therefore, these systems

could be operated at low pressure, since this will result in cost savings. It is observed that

the trigeneration efficiency of the SOFC-trigeneration system is lower than the biomass

and solar (solar mode) systems; unlike the electrical efficiency of the SOFC which was

the highest. The reason for that was discussed above. The trigeneration efficiency of the

biomass-trigeneration system is approximately 90% while this efficiency is around 76%

for the SOFC-trigeneration system. The trigeneration efficiencies of the solar-trigeneration

system are around 90% for the solar mode, 46% for the solar and storage mode, and 41%

for the storage mode.

Figure 5.105 illustrates the effect of the turbine inlet pressure variation on the net elec-
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Figure 5.104 Effect of the turbine inlet pressure on the trigeneration efficiency.

trical power. This figure shows that as the pressure increases, the electrical power of the

SOFC-trigeneration system increases. It increases from 560 kW at 2000 kPa to 610 kW at

7000 kPa. Nevertheless, the electrical power of the biomass-trigeneration system decreases

from 530 kW at 345 kPa to 480 kW at 7000 kPa. Alternatively, the electrical power of the

solar-trigeneration system increases from 700 kW at 2000 kPa to 730 kW at 7000 kPa for

the solar mode. The electrical power of the solar and storage mode is around 520 kW,

whereas it is around 470 kW for the storage mode.

Figure 5.106 illustrates the electrical to cooling ratio variation as the pressure varies.

This figure reveals that the effect of the pressure variation on this ratio is insignificant. This

electrical to cooling ratio is around 3.7 for the SOFC-trigeneration system and 3.1 for the

biomass-trigeneration system. Regarding the solar-trigeneration system, this ratio is around

4.5 for the solar mode, 3.5 for the solar and storage mode, and 3 for the storage mode.

Figure 5.107 presents the effect of pressure on the electrical to heating ratio. This figure
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Figure 5.105 Effect of the turbine inlet pressure on the net electrical power.
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Figure 5.106 Effect of the turbine inlet pressure on the electrical to cooling ratio.
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Figure 5.107 Effect of the turbine inlet pressure on the electrical to heating ratio.

shows that as the pressure increases this ratio increases noticeably only for the SOFC-

trigeneration system. This increase is attributed to the relative small size of the ORC and

the mass flow rate of the working fluid in the ORC, as mentioned above. This ratio increases

from 0.33 at 2000 kPa to 0.38 at 7000 kPa. The electrical to heating ratio for the other two

systems is around 0.18.

Figure 5.108 illustrates the effect of pressure variation on the emissions of CO2 in

kg/MWh. This figure reveals that the emission of CO2 is insignificant to the pressure

changes. This figure also shows that the emissions, when there is only electrical power

production, are significantly high. However, when trigeneration is used, the emissions

drop significantly. The emissions of the biomass-trigeneration system increase from 2900

kg/MWh at 2000 kPa to 3050 kg/MWh at 7000 kPa for the electrical power production.

Conversely, when trigeneration is used, the emissions drop considerably to around 400 kg

per MWh of trigeneration power. In contrast, the emissions for the SOFC-trigeneration
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Figure 5.108 Effect of the turbine inlet pressure on the CO2 emissions.

system are around 1700 kg/MWh while, when trigeneration is used, the emissions drop

significantly to around 400 kg/MWh. Note that the emissions of the SOFC-trigeneration

system are relatively high since it has an auxiliary biomass boiler to heat up the inlet fluids

of the SOFC subsystem.

Figure 5.109 presents the effect of pressure variation on the electrical-exergy efficiency.

This figure shows that the electrical-exergy efficiency of the SOFC-trigeneration system is

the highest while for the solar-trigeneration system it is the lowest, for the reasons men-

tioned above. This efficiency increases as the pressure increases for the SOFC-trigeneration

system. It increases from 14 % at 2000 kPa to 15.5% at 7000 kPa. In contrast, this effi-

ciency is around 11 % for the biomass-trigeneration system. On the other hand, for the

solar-trigeneration system this efficiency is approximately 6.5% for the solar mode, 3% for

the solar and storage mode, and 2.5% for the storage mode.

Figure 5.110 illustrates the trigeneration-exergy efficiency variation as the turbine inlet
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Figure 5.109 Effect of the turbine inlet pressure on the electrical-exergy effi-
ciency.

pressure changes. This figure shows that the pressure variation has an insignificant effect

on the trigeneration-exergy efficiency. The trigeneration efficiency for SOFC-trigeneration

system is around 37% whereas it is around 28% for the biomass-trigeneration system. The

trigeneration exergy efficiency for the solar-trigeneration system is considerably lower for

the solar-trigeneration system for the reason mentioned above. This efficiency is around

17% for the solar mode, 7% for the solar and storage mode, and 6% for the storage mode.

Figure 5.111 demonstrates the effect of the turbine inlet pressure variation on the electrical-

product cost rate of the three systems considered. This figure shows that the cost rates of

the SOFC-trigeneration system and solar mode of the solar-trigeneration system increase

as this pressure increases. This is attributed to the definition of the electrical-product cost

rate where it is a direct function of the net electrical power produced. Considering that the

electrical power of the SOFC-trigeneration system and the solar-trigeneration system (solar
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Figure 5.110 Effect of the turbine inlet pressure on the trigeneration-exergy effi-
ciency.

mode) increase as the pressure increases, as shown in Figure 5.105, therefore, the cost rates

of these two cases increase. The electrical-product cost rate of the SOFC-trigeneration sys-

tem increases from 42 $/h at 2000 kPa to 46 $/h at 7000 kPa, and the electrical-product

cost rate for the solar-trigeneration system (solar mode) increases from 39 $/h at 2000 kPa

to 40 $/h at 7000 kPa. On the other hand, the cost rate of the electrical product of the

solar-trigeneration system is almost constant for the solar and storage mode, and storage

mode. It is around 24 $/h for the solar and storage mode, and around 30 $/h for the storage

mode. Alternatively, the cost rate of the biomass-trigeneration system decreases from 36

$/h to 34 $/h as the pressure increases.

Figure 5.112 illustrates the trigeneration cost rate variation as the pressure changes. It

is observed that the variation in the cost rate is insignificant. The trigeneration cost rate for

the SOFC-trigeneration system is approximately 111 $/h and for the biomass-trigeneration
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Figure 5.111 Effect of the turbine inlet pressure on the cost rate of the electrical
power production.

system the cost rate is around 69 $/h. The trigeneration cost rate of the solar-trigeneration

system is around 81 $/h for the solar mode, 44 $/h for the solar and storage mode, and 55

$/h for the storage mode.

Figure 5.113 shows the electrical-product cost per exergy unit variation as the pres-

sure varies. This figure shows that the cost per exergy unit is insignificant to the pressure

variation. This insensitively is attributed to the negligible effect of the pressure change on

the performance of the system, as explained above. The electrical-product cost per exergy

unit is around 20.5 $/GJ for the SOFC-trigeneration system and 19.5 $/GJ for the biomass-

trigeneration system. Alternatively, for the solar-trigeneration system this cost is around

15.5 $/GJ for the solar mode, 11.5 $/GJ for the solar and storage mode, and 17.5 $/GJ for

the storage mode.

Figure 5.114 presents the effect of pressure on the trigeneration cost per exergy unit of
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Figure 5.112 Effect of the turbine inlet pressure on the cost rate of the trigener-
ation production.

the three systems considered. This figure shows that the pressure variation has an insignifi-

cant effect on the trigeneration cost per exergy unit. This insignificant effect is attributed to

the negligible variation of the trigeneration-exergy efficiency as this pressure varies. This

figure reveals that this cost is around 37 $/GJ for the SOFC and 26 $/GJ for the biomass-

trigeneration system. In contrast, for the solar-trigeneration system this cost is around 21

$/GJ for the solar mode, 15 $/GJ for the solar and storage mode, and 23 $/GJ for the storage

mode.

5.5.3 Overall Exergy Rate

The total available exergy rate from the exergy source and the total overall exergy destruc-

tion rate of each system under the baseline conditions are presented in Figure 5.115. This

figure reveals that the solar-trigeneration system has noticeably more available exergy rate
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as compared to the other two systems. This high available exergy rate is owing to the high

available exergy rate from the solar radiation that falls down on the solar collectors. The

total available exergy rate for the solar and storage mode is almost 19300 kW, while for the

solar mode it is around 11300 kW and for the storage mode is around 4500 kW. In contrast,

the available exergy rate for the SOFC-trigeneration and biomass-trigeneration systems are

around 4000 kW and 4700 kW, respectively. Moreover, this figure illustrates that the solar

and storage mode of the solar-trigeneration system has the highest total exergy destruction

rate. This high exergy destruction rate is attributed to the exergy destructed by the solar

collectors. In this study, the net available exergy rate is defined as the total available exergy

rate minus the total exergy destruction rate. In terms of the net available exergy rate, the

solar-trigeneration system has the highest net available exergy rate as compared to the other

two systems. Alternatively, the biomass-trigeneration system has the lowest net available

exergy rate.

5.5.4 Summary

In this section, the thermodynamic and thermoeconomic results of the optimum thermoe-

conomic modeling of the three systems considered are presented and discussed. The three

systems are SOFC, biomass, and solar-trigeneration systems. The main findings from this

comparison are summarized below.

• The SOFC-trigeneration system has the highest electrical efficiency among the three

systems. However, the trigeneration efficiencies of the biomass-trigeneration system

and solar mode of the solar-trigeneration system are higher than the trigeneration

efficiency of the SOFC-trigeneration system.

• The maximum electrical efficiency for the SOFC-trigeneration system is 19% and

for the biomass-trigeneration system it is 15%. On the other hand, the maximum
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electrical efficiency for the solar-trigeneration system is around 15% for the solar

mode, 7% for the storage and solar mode, and 6% for the storage mode.

• The efficiency increases considerably when trigeneration is used. The maximum

trigeneration efficiency of the SOFC-trigeneration system is around 76% and it is

around 90% for the biomass-trigeneration system. The maximum trigeneration effi-

ciencies of the solar-trigeneration system is around 90% for the solar mode, 45% for

storage and storage mode, and 41% for the storage mode.

• The electrical to cooling ratio is sensitive to the variation of the ORC pump inlet

temperature. Therefore, when it is needed to increase or decrease the cooling power,

it can be controlled through the variation of this temperature. This ratio is the highest

and most sensitive for the solar mode, where it could vary from 8.8 to 3.1. For the
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other two modes and two trigeneration systems, this ratio varies from approximately

6.5 to 2.5 as this temperature increases.

• The solar-trigeneration system has zero CO2 emissions. Alternatively, the other two

systems have significant CO2 emissions per MWh of electrical power. When trigen-

eration is used, the emissions per MWh of these two systems drop significantly. The

emissions per MWh of trigeneration for these two systems are reasonable, around

400 kg/MWh of trigeneration power. Regarding the SOFC-trigeneration system, the

emissions are high per MWh of electricity since the hot streams at the exit of SOFC

subsystem are partially used to heat the ORC. Therefore, more heat (biomass fuel)

is needed from the auxiliary biomass boiler to heat the stream inlets of the SOFC

and, thus, there are considerable emissions per MWh of electricity for the SOFC-

trigeneration system.

• The electrical-exergy efficiency of the SOFC is the highest among the three trigen-

eration systems. Conversely, the electrical exergy of the solar-trigeneration system

is the lowest for all of the three operating modes. Similarly, the trigeneration-exergy

efficiency of the SOFC is the highest while this efficiency is the lowest for the solar-

trigeneration system. The reason why the solar-trigeneration system has low exergy

efficiency was discussed above. The maximum electrical-exergy efficiency for the

SOFC-trigeneration system is around 15%, for the biomass-trigeneration system is

approximately 13%, and for the solar-trigeneration system is around 7.5%. The max-

imum trigeneration-exergy efficiency for the SOFC is approximately 38%, for the

biomass-trigeneration system is around 28%, and for the solar-trigeneration system

is around 18%.

• The cost rate of the SOFC-trigeneration system is the highest among the three sys-

tems. The main reasons for that is the high capital cost of the SOFC subsystem, as
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well as the cost of the fuel of this system.

• The cost per exergy unit of the SOFC-trigeneration system is the highest while this

cost is the lowest for the solar-trigeneration system. The maximum electrical cost

per exergy for the SOFC-trigeneration system is around 21 $/GJ, for the biomass-

trigeneration system is approximately 19 $/GJ, and for the solar-trigeneration system

is around 17.5 $/GJ. Considering the trigeneration, these costs increase. The max-

imum costs per exergy unit for the SOFC-trigeneration system is approximately 38

$/GJ, for the biomass-trigeneration system is 26 $/GJ, and for the solar-trigeneration

system is 24 $/GJ.

• This study shows that the solar-trigeneration system has the highest net available

exergy as compared to the other two systems. Hence, it has the highest potential to

have the highest exergy if the solar collectors performance improve.

• It can be concluded from this study that the solar-trigeneration system is the best

among the three systems. The solar-trigeneration system has the lowest cost per

exergy unit and zero CO2 emissions, as well as it is a free renewable energy source.
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Chapter 6

Conclusions and Recommendations

In the present study, comprehensive thermodynamic modeling is conducted on each system.

Then, a thermoeconomic optimization is carried out on each system. The results of the

thermoeconomic optimization are used to compare the three systems, using thermodynamic

and thermoeconomic analyses. The main objective of the current study is to assess the

performance of the trigeneration systems considered. To have a better understanding, these

assessments are extended to include electrical-power, cooling-cogeneration, and heating-

cogeneration cases. The thermodynamic modeling includes the study of energy efficiency,

exergy efficiency, net electrical power, electrical to heating ratio, and electrical to cooling

ratio in the four cases. Moreover, the exergy destruction modeling is carried out to identify

and quantify the sources of the irreversibilities that are associated with each component

in the systems considered. In addition, this study quantifies the environmental impact of

the systems considered. Furthermore, thermoeconomic optimization is carried out on each

system. The optimization objective is to minimize the cost per exergy unit for trigeneration

production. The main findings from this study are summarized below.
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6.1 Conclusions

• This study reveals that the SOFC-trigeneration system has the highest electrical ef-

ficiency among the three systems. Nevertheless, the trigeneration efficiencies of the

biomass-trigeneration system and solar mode of the solar-trigeneration system are

higher than the trigeneration efficiency of the SOFC-trigeneration system. The cur-

rent study shows that the maximum electrical efficiency for the SOFC-trigeneration

system is 19% and for the biomass-trigeneration system is 15%. On the other hand,

the maximum electrical efficiency for the solar-trigeneration system is around 15%

for the solar mode, 7% for the storage and solar mode, and 6% for the storage mode.

Alternatively, the efficiency increases considerably when trigeneration is used. The

maximum trigeneration efficiency of the SOFC-trigeneration system is around 76%,

and it is around 90% for the biomass-trigeneration system. The maximum trigener-

ation efficiency of the solar-trigeneration system is around 90% for the solar mode,

45% for the storage and storage mode, and 41% for the storage mode.

• It was found that the electrical to cooling ratio is sensitive to the variation of the

ORC pump inlet temperature. Therefore, when the cooling power must be increased

or decreased, it can be controlled through the variation of this temperature. This ratio

is the highest and most sensitive during the solar mode operation where it could vary

from 8.8 to 3.1. For the other two solar modes and two trigeneration systems, this

ratio varies from approximately 6.5 to 2.5 as this temperature increases from 345 K

to 380 K.

• The solar-trigeneration system has zero CO2 emissions. On the other hand, the other

two systems have significant CO2 emissions per MWh of electrical power. When

trigeneration is used, the emissions per MWh of these two systems significantly

drop. The emissions per MWh of trigeneration for these two systems are reason-
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able, around 400 kg per MWh of trigeneration power. Nevertheless, the biomass-

trigeneration system is not recommended for electrical production only. Regarding

the SOFC-trigeneration system, the emissions are high per MWh of electricity since

the hot streams at the exit of the SOFC subsystem are partially used to heat the ORC.

Hence, more heat (biomass fuel) is needed from the auxiliary biomass burner to heat

the stream inlets of the SOFC and, thus, there are noticeable emissions per MWh of

electricity for the SOFC-trigeneration system.

• The electrical-exergy efficiency of the SOFC-trigeneration system is the highest among

the three trigeneration systems. In contrast, the electrical exergy of the solar- tri-

generation system is the lowest for all the three operating modes. Similarly, the

trigeneration-exergy efficiency of the SOFC is the highest while this efficiency is the

lowest for the solar-trigeneration system. The reason why the solar-trigeneration sys-

tem has low exergy efficiency was discussed in section 5.4. The maximum electrical-

exergy efficiency for the SOFC-trigeneration system is around 15%, for the biomass-

trigeneration system is around 13%, and for the solar-trigeneration system is around

7.5%. The maximum trigeneration-exergy efficiency for the SOFC is approximately

38%, for the biomass-trigeneration system is around 28% and for the solar- trigener-

ation system is around 18%.

• The cost rate of the SOFC-trigeneration system is the highest among the three sys-

tems. The main reasons for that are the high capital cost of the SOFC subsystem, as

well as the cost of the fuel for this system. The maximum cost rate of the SOFC-

trigeneration system is 45 $/h for electrical power production while it is 110 $/h for

trigeneration production. For the biomass system, the maximum cost rate is 45 $/h

for electrical production and it increases to 70 $/h for trigeneration production. For

the solar-trigeneration system, the maximum cost rates of electrical production are
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45 $/h for the solar mode, 26 $/h for the solar and storage mode, and 36 $/h for the

storage mode.

• The cost per exergy unit of the SOFC-trigeneration system is the highest while this

cost is the lowest for the solar-trigeneration system. The maximum electrical cost

per exergy unit for the SOFC-trigeneration system is around 21 $/GJ, while for

the biomass-trigeneration system it is approximately 19 $/GJ, and for the solar-

trigeneration system around 17.5 $/GJ. Considering trigeneration, these costs in-

crease. The maximum costs per exergy unit for the SOFC-trigeneration system is

approximately 38 $/GJ, for the biomass-trigeneration system is 26 $/GJ, and for the

solar-trigeneration system is 24 $/GJ.

• This study shows that the solar-trigeneration system has the highest net available

exergy as compared to the other two systems. Hence, it has the highest potential to

have the highest exergy if the solar collectors performance improve.

It can be concluded from this study that the solar-trigeneration system is the best among

the three systems. This is because the solar-trigeneration system has the lowest cost per

exergy unit and has zeroCO2 emissions; additionally, it is based on a free renewable energy

source and does not require any fuel to buy, as compared to the other two systems.

6.2 Recommendations

The recommendations for future research are given below.

• The results of this study show that in the systems studied, the ORC evaporators al-

ways have high exergy destruction rates. Therefore, it is important to examine the

exergetic performance of different ORC evaporators on the aim of finding a more
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suitable ORC evaporator for each system, which is characterized by a relatively low

exergy destruction rate.

• The working fluid considered in this study is n-octane. It is characterized by rel-

atively high efficiency as compared to the other organic working fluids. While this

characteristic is the main reason for selecting this working fluid, it is recommended to

examine other organic fluids to explore higher efficiency operation. It is also possible

to examine binary organic fluids.

• In this study, a specific pressure range was selected based on some references from

the literature. The study reveals that the pressure change has an insignificant effect

on the performance. However, widening the pressure range by decreasing the mini-

mum pressure that is already considered may show a more significant effect on the

performance.

• The emissions of the SOFC-trigeneration system can be reduced by, for example,

using a more efficient boiler or switch the biomass fuel of the boiler to natural

gas. However, by considering the carbon natural cycle, the CO2 emissions from

the biomass fuel could be considered having lesser environmental impact.

• The absorption chiller selected is a single-effect absorption chiller. Further increase

in the cooling power could be achieved by using a double-effect absorption chiller.

However, using a double-effect absorption chiller will reduce the heat power from

the trigeneration system.
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