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Abstract

An isogeny between elliptic curves is an algebraic morphism which is a group homo-
morphism. Many applications in cryptography require evaluating large degree isogenies
between elliptic curves efficiently. For ordinary curves of the same endomorphism ring, the
previous fastest algorithm known has a worst case running time which is exponential in
the length of the input. In this thesis we solve this problem in subexponential time under
reasonable heuristics. We give two versions of our algorithm, a slower version assuming
GRH and a faster version assuming stronger heuristics. Our approach is based on factoring
the ideal corresponding to the kernel of the isogeny, modulo principal ideals, into a product
of smaller prime ideals for which the isogenies can be computed directly. Combined with
previous work of Bostan et al., our algorithm yields equations for large degree isogenies in
quasi-optimal time given only the starting curve and the kernel.
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4 The Bröker-Charles-Lauter Algorithm 36

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 The Method of Galbraith, Hess, and Smart . . . . . . . . . . . . . . . . . . 37
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Chapter 1

Introduction

An isogeny between a pair of elliptic curves is an algebraic morphism that maps the identity
point of the first curve to the identity point of the second curve. The degree of the isogeny is
its degree as an algebraic map. A well known theorem of Tate [Tat66] states that two elliptic
curves defined over the same finite field Fq are isogenous (i.e. admit an isogeny between
them) if and only if they have the same number of points over Fq. Using fast point counting
algorithms such as Schoof’s algorithm and others [CFA+06, Sch95], it is very easy to check
whether this condition holds, and thus whether or not the curves are isogenous. However,
Tate’s theorem is non-constructive, and constructing the actual isogeny itself is believed
to be a hard problem. Indeed, given an ordinary curve E/Fq and a degree n, the fastest
previously known algorithm for constructing an isogeny of degree n has a running time of
O(n3+ε), except in a certain very small number of special cases [BCL08, Gal99, GHS02].
In this thesis, we present a new probabilistic algorithm for evaluating such isogenies, which
in the vast majority of cases runs (heuristically) in subexponential time. Specifically, we
show that for ordinary curves, one can evaluate isogenies of degree n between curves of
nearly equal endomorphism ring over Fq in time less than Lq(

1
2
,
√

3
2

) log(n), provided n has
no large prime divisors in common with the endomorphism ring discriminant. Although
this running time is not polynomial in the input length, our algorithm is still much faster
than the (exponential) previous fastest algorithm known, and in practice allows for the
evaluation of isogenies of cryptographically sized degrees, some examples of which we
present here.

Isogenies have a great number of applications in cryptography. To give some context for
our work, we present a few of these applications here. Some of the examples of applications
that we describe include the use of isogenies in counting the number of points on a given
elliptic curve defined over some finite field, and the use of isogenies to transfer the discrete
logarithm problem in cryptography.

We then provide a summary of previous techniques for evaluating large degree isogenies.

1



Most of these techniques make use of Vélu’s formulas. Vélu’s formulas are used to obtain
the explicit isogeny and the image curve given the original curve and the kernel of the
isogeny. One of the previous fastest known techniques for evaluating large degree isogenies
is the so-called Elkies-Atkin technique. It uses modular polynomials and j-invariants of
the curves. However, in order to evaluate an isogeny of degree n, the technique requires
modular polynomials of level n, which take O(n3+ε) time to compute. Although these
methods have exponential running time, our subexponential algorithm is based on these
techniques, and hence we present them in some detail.

The Bröker-Charles-Lauter algorithm [BCL08] is a more efficient algorithm for con-
structing isogenies when the discriminant of the endomorphism ring is small. We describe
their algorithm in Chapter 4. The major idea is to factor the large prime degree isogeny
into a product of small prime degree isogenies and a scalar isogeny. The factorization is
obtained for ideals, but for efficiency the factorization is computed in the ideal class group
of the endomorphism ring of the given input curve E. Once the factorization is obtained,
one can use old techniques recursively to evaluate the isogenies corresponding to each of
the elements in the factorization to evaluate the isogeny.

Our algorithm uses the same approach as the Bröker-Charles-Lauter algorithm, but
we speed up the process of obtaining the factorization of the ideal that corresponds to
the isogeny. In order to achieve that, we use the ideas of Haffner and McCurley’s index
calculus algorithm [HM89], originally used for computing the structure of the class group of
the imaginary quadratic order. We assume a few reasonable heuristics, which include the
Generalized Riemann Hypothesis. Our heuristic assumptions are a subset of the heuristic
assumptions that were used by Bisson and Sutherland [BS09] in their independent work
where they use similar techniques to compute the endomorphism ring of an elliptic curve.
We also provide a number of examples to show how our algorithm performs.

Our algorithm has a running time of complexity of L|∆|(
1
2
,
√

3
2

) log(n), where n is the
degree of the isogeny and ∆ is the discriminant of the quadratic order isomorphic to
the endomorphism ring of E. That is, it is polynomial in the degree of the isogeny and
subexponential in the magnitude of the discriminant of the endomorphism ring. If we let
q be the size of the finite field over which the elliptic curve E is defined, then we can also
express the running time as Lq(

1
2
,
√

3
2

) log(n). Our algorithm in combination with the work
by Bostan et al. [BMSS08] yields a quasi-optimal (in the degree of the isogeny) algorithm
for finding the explicit equation of the isogeny between the given pair of isogenous curves
defined over the same finite field. More details can be found at the end of Chapter 5.

We also describe a variant of our algorithm in Chapter 6. The major difference is
that the variant algorithm only requires the GRH assumption. Although that algorithm is
slower in practice, the differences can be absorbed into the implied constants, and hence
its asymptotic running time is no different than algorithm presented in Chapter 5.
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Chapter 2

Isogenies and Applications to
Cryptography

In this chapter we present isogenies in depth. We start with background material and
definitions. Then, we provide some examples of major applications of isogenies to cryp-
tography, including counting points on elliptic curves over a finite field and the transfer of
discrete logarithms.

2.1 Algebraic Curves

The goal in this section to briefly present the material needed to be able to define the
notion of isogenies between elliptic curves. The material in this section and the following
two sections is contained in [Sil92] (in particular, the first 3 chapters). However our pre-
sentation will be more brief and simplified in many respects. In many cases, definitions
and propositions, theorems, etc. will be used and the proofs omitted. The reader who is
interested in more detail and proofs may refer to that book.

We let K be a perfect field, K̄ a fixed algebraic closure of K and GK̄/K the Galois
group of K̄/K.

We first begin with background on affine varieties.

Definition 2.1.1. Affine n-space (over K) is the set of n-tuples

An = An(K̄) = {P = (x1, . . . , xn) : xi ∈ K̄}.

Also, the set of K-rational points in An is defined by

An(K) = {P = (x1, . . . , xn) : xi ∈ K}.

3



Note that in this work we will mainly focus on A2 and A3.

Let I ⊂ K̄[X1, . . . , Xn] be an ideal. Then we associate to I the following subset of An:

VI = {P ∈ An : f(P ) = 0 for all f ∈ I}.

We thus obtain the following definitions:

Definition 2.1.2. An (affine) algebraic set is any set of the form VI . Also, if V is an
algebraic set, the ideal of V is given by

I(V ) = {f ∈ K̄[X1, . . . , Xn] : f(P ) = 0 for all P ∈ V }.

We say that V is defined over K, denoted by V/K, if I(V ) can be generated by polynomials
in K[X1, . . . , Xn]. If V is defined over K, the set of K-rational points of V is the set

V (K) = V ∩ An(K)

We also define I(V/K) = I(V )∩K[X1, . . . , Xn]. If we refer to Hilbert’s basis theorem,
we see that all such ideals are finitely generated. In this work we will mainly be concerned
with the case where I(V ) is principal (i.e. generated by one polynomial). Also, note that
if f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] and P ∈ An, then for any σ ∈ GK̄/K , f(P σ) = f(P )σ.

Definition 2.1.3. V is called an (affine) variety if it is an affine algebraic set such that
I(V ) is a prime ideal in K̄[X1, . . . , Xn]. If V/K is a variety, then the affine coordinate ring
of V/K is defined by

K[V ] =
K[X1, . . . , Xn]

I(V/K)

Observe that K[V ] is an integral domain, and its quotient field, denoted by K(V ), is called
the function field of V/K. (We define K̄[V ] and K̄(V ) in a similar manner by replacing K
with K̄.)

We need a few more definitions related to the dimension of V .

Definition 2.1.4. Let V be a variety. The dimension of V , denoted by dim(V ), is the
transcendence degree of K̄(V ) over K.

We will deal primarily with varieties V ⊂ An given by a single non-constant polynomial;
in this case dim(V ) = n− 1.

Definition 2.1.5. Let V be a variety, P ∈ V , and f1, . . . , fm ∈ K̄[X1, . . . , Xn] a set of
generators for I(V ). Then we say that V is non-singular (or smooth) at P if the m × n
matrix

(∂fi/∂Xj(P ))1≤i≤m,1≤j≤n

has rank n−dim(V ). If V is non-singular at every point, then we say that V is non-singular
(or smooth).
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When m = 1, a point P ∈ V is a singular point if and only if

∂f/∂X1(P ) = · · · = ∂f/∂Xn(P ) = 0.

We now move to discussing projective varieties. Projective spaces arose through the
process of adding “points at infinity” to affine spaces.

Definition 2.1.6. Projective n-space (over K), denoted Pn or Pn(K̄), is the set of all
(n+1)-tuples

(x0, . . . , xn) ∈ An+1

such that at least one xi is non-zero, modulo the equivalence relation given by

(x0, . . . , xn) ∼ (y0, . . . , yn)

if there exists a λ ∈ K̄∗ with xi = λyi for all i. We denote the equivalence class
{(λx0, . . . , λxn) : λ ∈ K̄∗} by [x0, x1, . . . , xn], and we call x0, . . . , xn homogeneous coor-
dinates for the corresponding point in Pn. As usual, the set of K-rational points in Pn is
given by

Pn(K) = {[x0, x1, . . . , xn] ∈ Pn : all xi ∈ K}.

Notice that if P = [x0, . . . , xn] ∈ Pn(K), it does not mean that each xi ∈ K; however,
it does mean that choosing some i so that xi 6= 0, we get that each xj/xi ∈ K.

Definition 2.1.7. A polynomial f ∈ K[X1, . . . , Xn] is homogeneous of degree d if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn)

for all λ ∈ K̄. An ideal I ⊂ K̄[X1, . . . , Xn] is homogeneous if it is generated by homoge-
neous polynomials.

Given a homogeneous ideal I, we associate a subset of Pn,

VI = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I}.

Definition 2.1.8. A (projective) algebraic set is any set of the form VI . If V is a projective
algebraic set, the (homogeneous) ideal of V , denoted by I(V ), is the ideal in K̄[X1, . . . , Xn]
generated by

{f ∈ K̄[X1, . . . , Xn] : f is homogeneous and f(P ) = 0 for all P ∈ V }.

We say that such a V is defined over K, denoted by V/K, if its ideal I(V ) can be generated
by homogeneous polynomials in K[X1, . . . , Xn]. As usual, if V is defined over K, the set
of K-rational points of V is the set V (K) = V ∩ Pn(K).
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Definition 2.1.9. A projective algebraic set V is called a (projective) variety if its homo-
geneous ideal I(V ) is a prime ideal in K̄[X1, . . . , Xn].

Note that Pn contains many copies of An. For each 0 ≤ i ≤ n, we have an inclusion

φi : An → Pn

(y1, . . . , yn)→ [y1, y2, . . . , yi−1, 1, yi, . . . , yn].

We define:
Ui = {P = [x0, . . . , xn] ∈ Pn : xi 6= 0}

(Notice that U0, . . . , Un cover all of Pn.) Hence, we get a natural bijection

φ−1
i : Ui → An

[x0, . . . , xn]→ (x0/xi, x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi).

Thus, fixing i, we will identify An with the set Ui in Pn via φi. So, given a projective
algebraic set V with homogeneous ideal I(V ) ⊂ K̄[X1, . . . , Xn], we will write V ∩ An to
denote φ−1

i (V ∩ Ui), which is the affine algebraic set with ideal I(V ∩An) ⊂ K̄[Y1, . . . , Yn]
given by

I(V ∩ An) = {f(Y1, . . . , Yi−1, 1, Yi, . . . , Yn) : f(X0, . . . , Xn) ∈ I(V )}.

This process of replacing f(X0, . . . , Xn) by f(Y1, . . . , Yi−1, 1, Yi, . . . , Yn) is called deho-
mogenization with respect to Xi. We can also reverse the process—namely, given f(Y1, . . . , Yn) ∈
K̄[Y1, . . . , Yn], let

f ∗(X0, . . . , Xn) = Xd
i f(X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi)

where d = deg(f) is the smallest integer for which f ∗ is a polynomial. (We call f ∗ the
homogenization of f with respect to Xi.)

Definition 2.1.10. Let V be an affine algebraic set with ideal I(V ), and consider V as a
subset of Pn via the map

V ⊂ An φi→ Pn.

The projective closure of V , denoted by V̄ , is the algebraic set whose homogeneous ideal
I(V̄ ) is generated by

{f ∗(X1, . . . , Xn) : f ∈ I(V )}.
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In this way, each affine variety can be identified with a unique projective variety. Since
notationally it is easier to deal with affine coordinates, often, we will write down a non-
homogeneous equation for a projective variety V , with the understanding that V is the
projective closure of the given affine variety W . The points V −W are called points at
infinity on V .

Example 2.1.11. Define V to be the projective variety given by the equation

V : Y 2 = X3 + 17.

In this case we really mean the variety in P2 given by homogeneous equation

Ȳ 2Z̄ = X̄3 + 17Z̄3.

This variety has one point at infinity, [0, 1, 0] (we obtain it by setting Z̄ = 0).

Certain properties of a projective variety V are defined in terms of the affine (sub)variety
V ∩ An.

Definition 2.1.12. Let V/K be a projective variety. Choose An ⊂ Pn so that V ∩An 6= ∅.
The dimension of V is the dimension of V ∩ An. The function field of V , denoted K(V ),
is the function field of V ∩ An; similarly for K̄(V ).

Definition 2.1.13. Let V be a projective variety with P ∈ V . Choose An ⊂ Pn so that
P ∈ An. Then V is non-singular (or smooth) at P if V ∩ An is non-singular at P .

We now move on to algebraic maps between projective varieties, which are the maps
defined by rational functions.

Definition 2.1.14. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from V1

to V2 is a map of the form
φ : V1 → V2

φ = [f0, . . . , fn],

where all fi ∈ K̄(V1) have the property that for every point P ∈ V1 at which fi’s are all
defined,

φ(P ) = [f0(P ), . . . , fn(P )] ∈ V2.

If V1 and V2 are defined over K, then GK̄/K acts on φ in the following way:

φσ(P ) = [fσ0 (P ), . . . , fσn (P )].

If there is some λ ∈ K̄∗ so that λf0, . . . , λfn ∈ K(V1), then φ is said to be defined over K.

7



Definition 2.1.15. A rational map

φ = [f0, . . . , fn] : V1 → V2

is regular (or defined) at P ∈ V1 if there is a function g ∈ K̄(V1) such that each gfi is
regular at P and for some i, (gfi)(P ) 6= 0. If such g exists, we set

φ(P ) = [(gf0)(P ), . . . , (gfn)(P )].

A rational map which is regular at every point is called a morphism.

We now move on to curves, which are projective varieties of dimension 1. We will
mostly focus on smooth curves.

Proposition 2.1.16. Let C be a curve, V ⊂ PN a variety, P ∈ C a smooth point, and
φ : C → V a rational map. Then φ is regular at P . In particular, if C is smooth, then φ
is a morphism.

Proof. [Sil92, II.2.1].

Theorem 2.1.17. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant or
surjective.

Proof. [Sil92, II.2.3].

We remark that by definition of Pn (Definition 2.1.6), the surjectivity of φ in Theorem
2.1.17 refers to points over K̄, not over K.

Let C1 and C2 be curves defined over a field K and let φ : C1 → C2 be a non-constant
rational map defined over K. The composition with φ induces an injection of function
fields that fixes K:

φ∗ : K(C2)→ K(C1)

φ∗(f) = f ◦ φ.

We are now ready to define the degree of φ.

Definition 2.1.18. Let φ : C1 → C2 be a map of curves defined over K. If φ is constant,
we define the degree of φ to be 0. Otherwise, we say that φ is finite, and define its degree
by

deg φ = [K(C1) : φ∗(K(C2))].

We say that φ is separable (inseparable) if the extension K(C1)/φ∗(K(C2)) is separable
(inseparable).

8



It is a known fact that if φ is a non-constant map from curve C1 to curve C2 defined
over K, then [K(C1) : φ∗(K(C2))] is finite [Sil92, II.2.4(a)]; hence the definition makes
sense.

Now we need to define the notion of differentials.

Definition 2.1.19. Let C be a curve. The space of (meromorphic) differential forms on C,
denoted ΩC , is the K̄(C)-vector space generated by symbols of the form dx for x ∈ K̄(C),
subject to the usual relations:

• d(x+ y) = dx+ dy for all x, y ∈ K̄(C);

• d(xy) = xdy + ydx for all x, y ∈ K̄(C);

• da = 0 for all a ∈ K̄.

Once again, if we let φ : C1 → C2 be a non-constant map of curves, then the map
φ∗ : K̄(C2)→ K̄(C1) induces a map on differentials

φ∗ : ΩC2 → ΩC1

φ∗(
∑

fidxi) =
∑

(φ∗fi)d(φ∗xi).

2.2 Elliptic Curves

An elliptic curve is a curve given by a Weierstrass equation over some field F (as shown
below). An elliptic curve admits an addition operation, which we will define shortly,
making the set of points on the curve into an abelian group. We focus on the case where
the characteristic of the field is different from 2 and 3; the general case may be found
in [Sil92, App. A].

We define the Weierstrass equation to be the locus in P2 of the curve

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where a1, . . . , a6 ∈ K̄. For ease of notation, we use non-homogeneous coordinates to express
the Weierstrass equation in the following way:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We must remember that there is one point at infinity, [0, 1, 0], which we will denote by ∞.
If C is the curve represented by the above equation and a1, . . . , a6 ∈ K, then we say that

9



C is defined over K. If we assume that char(K) 6= 2, 3, then using a change of variables,
we can simplify the equation to

y2 = x3 + ax+ b.

There are a few associated values with this curve:

• discriminant ∆ = −16(4a3 + 27b2).

• j-invariant j = −1728(4a)3/∆.

• invariant differential ω = dx/(2y) = dy/(3x2 + b).

The curve represented by the above equation is smooth if and only if ∆ 6= 0.

Definition 2.2.1. Let F be a field such that charF 6= 2, 3. Let a, b ∈ F . An elliptic curve
E, defined over the field F , is a set

{(x, y) ∈ F × F : y2 = x3 + ax+ b} ∪ {∞}

where 4a3 + 27b2 6= 0.

We will usually denote the elliptic curve by E(F ), E : y2 = x3 + ax + b, or simply by
E when the field and equation are known.

As already mentioned, E forms an abelian group under the group law, where the point
at infinity, ∞, is the identity of the group. We define the group law here. Let P =
(x1, y1), Q = (x2, y2) ∈ E. Then we define:

• P +∞ =∞+ P = P

• −P = (x1,−y1) (assuming P 6=∞)

• P + (−P ) =∞

• P +Q = R = (x3, y3) =(
x4

1 − 2ax2
1 − 8bx1 + a2

4(x3
1 + ax1 + b)

,
(x6

1 + 5ax4
1 + 20bx3

1 − 5a2x2
1 − 4abx1 − 8b− a)y1

8(x3
1 + ax1 + b)2

)
,

if P = Q and P 6=∞

• P +Q = R = (x3, y3) =(
y2

1 − 2y1y2 + y2
2 − x3

1 + x2
1x2 + x1x

2
2 − x3

2

x2
1 − 2x1x2 + x2

2

,
x1y2 − x2y1 + x3y1 − x3y2

x2 − x1

)
,

if P 6= Q and P,Q 6=∞

10



The group law admits a geometric interpretation [Sil92, III.2], but we do not give that
here since our emphasis is on the algebra.

When charF is 2 or 3, then the Weierstrass equation simplifies to different forms, with
the discriminant, j-invariant, invariant differential, and the group law modified accordingly.
For details see [Sil92, III.1, III.2, A].

2.3 Isogenies

We are now ready to define an isogeny. We give the definition of isogenies and examine
some of their properties. We then present some examples of families of isogenies.

Definition 2.3.1. Let E and E ′ be elliptic curves defined over some field F . An isogeny
φ : E → E ′ is an algebraic morphism of the form

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
,

satisfying φ(∞) =∞ (where f ′is and g′is are polynomials in x and y). We say that E1 and
E2 are isogenous if there is an isogeny either from E1 to E2 or E2 to E1.

One can show that every isogeny is in fact a group homomorphism [Sil92, III.4.8].

There is only one constant isogeny, namely φ(P ) = ∞ for all P ∈ E1. This constant
isogeny is usually denoted by [0], and by convention we let deg[0] = 0. All other isogenies
are non-constant, hence surjective (Theorem 2.1.17), that is φ(E1) = E2. For all such
non-constant isogenies, we define the degree to be the degree as an algebraic map (i.e.
[F (E1) : φ∗(F (E2))]); and we classify the isogeny to be separable (inseparable) if the
extension F (E1)/φ∗(F (E2)) is separable (inseparable).

Let φ : E1 → E2 be a non-constant isogeny. We define kerφ = φ−1(∞). It is known
that kerφ is a finite subgroup of E1 [Sil92, III.4.9].

Theorem 2.3.2. Let E1, E2 be elliptic curves defined over field F . Let φ : E1 → E2 be a
non-constant separable isogeny. Then # kerφ = deg φ.

Proof. [Sil92, III.4.10(c)].

Proposition 2.3.3. Let E be an elliptic curve over some field F . Let Φ be a finite subgroup
of E defined over F . Then there exists a unique elliptic curve E ′ (over F ) and a separable
isogeny

φ : E → E ′

such that
kerφ = Φ.

11



Proof. [Sil92, III.4.12].

We now look at a few examples of isogenies.

Example 2.3.4. Scalar multiplication

Let F be a field of characteristic different from 2 and 3 and E(F ) : y2 = x3 + ax + b
be an elliptic curve. For n ∈ Z, define [n] : E → E by [n](P ) = nP (we usually call
this multiplication by n-map). Then [n] is a separable isogeny. We can give an explicit
algebraic morphism for each such n by using the group law for elliptic curves; for instance
when n = 2,

[2](x, y) =

(
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
,

(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b− a)y

8(x3 + ax+ b)2

)
The degree of [n] is n2. One can show this by constructing the appropriate field extension
and computing the degree of the extension, but this computation is tedious and we do not
give it here. The cardinality of ker([n]) is also n2. Note that # ker([n]) = deg[n], which
agrees with Theorem 2.3.2.

Example 2.3.5. Frobenius map

Let F = Fq be a finite field of size q (where q is a prime power). Let E be an elliptic
curve defined over Fq. Define π : E → E by

π(x, y) = (xq, yq).

Then π is an algebraic map and a group homomorphism, hence an isogeny. In fact, π
is an inseparable isogeny. Observe that deg(π) = q, but # ker(π) = 1. In this case
deg(π) 6= # ker(π) because π is inseparable.

Example 2.3.6. Complex multiplication Let F be a field such that i =
√
−1 ∈ F . Let

E : y2 = x3 − x be defined over F . Define

φ(x, y) = (−x, iy).

Then φ ◦ φ = [−1]. This isogeny can be viewed as an extension of scalar multiplication
isogenies to complex numbers.

Notice that in the definition of isogeny, we stated that elliptic curves are isogenous if
there exists an isogeny from E1 to E2 or from E2 to E1. In fact, these two conditions are
equivalent, as the following result shows.

12



Theorem 2.3.7. Let E1, E2 be elliptic curves and φ : E1 → E2 be an isogeny defined over
field F . Let m = deg φ. Then there exists a unique isogeny

φ̂ : E2 → E1

which satisfies
φ̂ ◦ φ = [m] (on E1) and φ ◦ φ̂ = [m] (on E2).

Proof. [Sil92, III.6.1(a) and III.6.2(a)].

Definition 2.3.8. Let E1, E2 be elliptic curves and φ : E1 → E2 be an isogeny defined
over field F . The dual isogeny to φ is the isogeny

φ̂ : E2 → E1

given by 2.3.7. (Note that here we assume that φ 6= [0]. If φ = [0], then we set φ̂ = [0].)

It follows that the relation of being isogenous is an equivalence relation.

We need a few more facts about dual isogenies, which are summarized in the following
theorem.

Theorem 2.3.9. Let E1, E2, E3 be elliptic curves and let φ : E1 → E2, ϕ : E1 → E2, and
ψ : E2 → E3 be isogenies defined over field F . Then:

• ψ̂ ◦ φ = φ̂ ◦ ψ̂.

• φ̂+ ϕ = φ̂+ ϕ̂.

• For all m ∈ Z, [̂m] = [m] and deg[m] = m2.

• deg φ̂ = deg φ.

• ˆ̂
φ = φ.

Proof. [Sil92, III.6.2].

Example 2.3.10. Dual isogenies

• Let F = F109.

• Let E1 : y2 = x3 + 2x + 2 and E2 : y2 = x3 + 34x + 45. An isogeny φ : E1 → E2 (of
degree 3) is given by

φ(x, y) =

(
x3 + 20x2 + 50x+ 6

x2 + 20x+ 100
,
(x3 + 30x2 + 23x+ 52)y

x3 + 30x2 + 82x+ 19

)
.

13



• There exists an isogeny φ̂ : E2 → E1, given by

φ̂(x, y) =

(
x3 + 49x2 + 46x+ 104

9x2 + 5x+ 34
,

(x3 + 19x2 + 66x+ 47)y

27x3 + 77x2 + 88x+ 101

)
,

satisfying φ ◦ φ̂ = [3] and φ̂ ◦ φ = [3].

• φ̂ is the dual isogeny of φ and vice-versa.

• Note that this implies that deg(φ ◦ φ̂) = deg(φ̂ ◦ φ) = 32 = 9.

There is a very useful theorem by Tate which provides us with an efficient method for
determining whether two curves are isogenous or not.

Theorem 2.3.11. For any two curves E1 and E2 defined over Fq, there exists an isogeny
from E1 to E2 over Fq if and only if #E1(Fq) = #E2(Fq).

Proof. [Tat66, §3].

Note that using techniques of Schoof in [Sch95], we can compute the number of points
on a given elliptic curve in polynomial time. Hence, we obtain an efficient way to check
whether two curves are isogenous or not. However, Tate’s theorem does not tell us what
that isogeny is or how to compute it.

2.4 The Endomorphism Ring of an Elliptic Curve

We now define and give some of the properties of the endomorphism ring of an elliptic
curve E. Given elliptic curves E1 and E2 defined over some field F , we set

Hom(E1, E2) = {φ : φ : E1 → E2 is an isogeny over F̄}.

Definition 2.4.1. Let E be an elliptic curve defined over a field F . Then the endomor-
phism ring of E is

End(E) = Hom(E,E).

Notice how in the definition, we have used the term ring. Besides being the set of all
isogenies that map from E(F̄ ) to itself, End(E) is a ring under pointwise addition (i.e. if
P ∈ E(F̄ ) and φ1, φ2 ∈ End(E), then (φ1+φ2)(P ) = φ1(P )+φ2(P )) with the multiplication
operation being composition of isogenies (i.e. (φ1φ2)(P ) = (φ1 ◦ φ2)(P ) = φ1(φ2(P ))).

We now specialize to the case of elliptic curves defined over finite fields.
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Theorem 2.4.2. Let E be an elliptic curve defined over a finite field. As a Z-module,
dimZ End(E) is equal to either 2 or 4.

Proof. [Sil92, V.3.1].

We formulate a definition to distinguish between the two cases.

Definition 2.4.3. An elliptic curve E over a finite field is supersingular if dimZ End(E) =
4, and ordinary if dimZ End(E) = 2.

Two isogenous elliptic curves E1 and E2 are either both ordinary, or both supersingular.
Thus, there will never be an isogeny between an ordinary and a supersingular elliptic curve.
In cryptography, it is more common to work with ordinary curves as they are more secure.
The reason is that Menezes et al. [MOV91] have shown that the discrete logarithm problem
on a supersingular elliptic curve can be reduced to a discrete logarithm problem in a finite
field; this reduction is referred to as the “MOV reduction.” One of the main applications
of isogenies is discrete logarithm reductions between elliptic curves (Section 2.6). Hence
for the rest of this thesis we will only consider ordinary elliptic curves.

Before continuing our discussion of endomorphism rings, we need to briefly discuss the
topic of orders in quadratic fields. This material appears in [Cox89, p. 133].

Definition 2.4.4. Let K be a quadratic field (that is, a number field of degree 2). An
order O in K is a subset O ⊂ K such that:

• O is a subring of K (containing 1).

• O is a finitely generated Z-module.

• O contains a Q-basis of K.

Note that it follows from the definition that O is a free Z-module of rank 2.

When K is a quadratic field, let OK be the ring of integers of K. Then OK is an order
in K. Moreover, if we let O be any order of K, then O ⊂ OK . The order OK is called the
maximal order of K.

We can describe these orders more explicitly. Let ∆K be the discriminant of K and let

wK =
∆K +

√
∆K

2
.

Then
OK = Z[wK ].

We can also give a more explicit description of an arbitrary order O in K.
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Lemma 2.4.5. Let O be an order in a quadratic field K of discriminant ∆K. Then O has
finite index in OK. Letting c = [OK : O], we have

O = Z + cOK = Z[cwK ],

where wK is defined as above.

Proof. [Cox89, §7].

Note: The index value c in Lemma 2.4.5 is called the conductor of O. Also note that
if we are given an order O of discriminant ∆, then the discriminant of the maximal order
OK is the largest square-free part of ∆, i.e. ∆ = c2∆K , where ∆K is the discriminant of
OK and c is a conductor. We say that O is an imaginary quadratic order if ∆ < 0, and a
real quadratic order otherwise.

We now return to the description of the endomorphism ring.

Theorem 2.4.6. Let E be an ordinary elliptic curve defined over the finite field Fq. Then

End(E) ∼= O∆,

where ∆ < 0. That is, the endomorphism ring of E is isomorphic to an imaginary quadratic
order of discriminant ∆.

Proof. [Sil92, V.3.1].

(Note: This ∆ is unrelated to the ∆ that we defined previously as the discriminant
of the elliptic curve. From now on, we will use ∆ to refer only to the discriminant of an
imaginary quadratic order.)

Let E be an elliptic curve defined over Fq, let πq be the Frobenius map, and let t =
Trace(πq) be the trace of πq as an element of End(E). The integer t is called the trace of
E. We have a relation t = q + 1−#E(Fq) [Sil92, p. 142] and π2

q − tπq + q = 0.

Let K denote the imaginary quadratic field containing End(E), with maximal order
OK . The field K is called the CM field of E. We write cE for the conductor of End(E)
and cπ for the conductor of Z[πq]. It follows from Lemma 2.4.5 and [Cox89, §7] that
End(E) ∼= Z + cEOK and ∆ = c2

E∆K , where ∆ (respectively, ∆K) is the discriminant of
the imaginary quadratic order End(E) (respectively, OK). Furthermore, the characteristic
polynomial x2 − tx + q of πq has discriminant ∆π = t2 − 4q = disc(Z[πq]) = c2

π∆K , with
cπ = cE · [End(E) : Z[πq]].

Following [FM02] and [Gal99], we say that an isogeny φ : E → E ′ of prime degree `
defined over Fq is “down” if [End(E) : End(E ′)] = ` (note that this means that End(E ′) ⊂
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End(E)), “up” if [End(E ′) : End(E)] = ` (note that this means that End(E) ⊂ End(E ′)),
and “horizontal” if End(E) = End(E ′). Two curves in an isogeny class are said to “have the
same level” if their endomorphism rings are equal. Within each isogeny class, the property
of having the same level is an equivalence relation. A horizontal isogeny always goes
between two curves of the same level; likewise, an up isogeny enlarges the endomorphism
ring and a down isogeny reduces it. Since there are fewer elliptic curves at higher levels
than at lower levels, the collection of elliptic curves in an isogeny class visually resembles
a “pyramid” or a “volcano” [FM02], with up isogenies ascending the structure and down
isogenies descending. If we restrict to the graph of `-isogenies for a single `, then in
general the `-isogeny graph is disconnected, having one `-volcano for each intermediate
order Z[πq] ⊂ O ⊂ OK such that O is maximal at ` (meaning ` - [OK : O]). The “top
level” of the class consists of curves E with End(E) = OK , and the “bottom level” consists
of curves with End(E) = Z[πq].

The structure of an isogeny volcano is illustrated in Figure 2.1.

Figure 2.1: Isogeny volcano

We also have the following theorem that states the number of `-isogenies of each type.

Theorem 2.4.7. Let E be an ordinary elliptic curve over Fq, having endomorphism ring
End(E) of discriminant ∆. Let ` be a prime different from the characteristic of Fq.

• Assume ` - cE. Then there are exactly 1 +
(

∆
`

)
horizontal isogenies φ : E → E ′ of

degree `.

– If ` - cπ, there are no other isogenies E → E ′ of degree ` over Fq.
– If ` | cπ, there are `−

(
∆
`

)
down isogenies of degree `.
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• Assume ` | cE. Then there is one up isogeny E → E ′ of degree `.

– If ` - cπ
cE

, there are no other isogenies E → E ′ of degree ` over Fq.
– If ` | cπ

cE
, there are ` down isogenies of degree `.

Proof. [Koh96, §4.2], [FM02, §2.1] or [Gal99, §11.5].

In light of Theorem 2.4.7, we say that ` is an Elkies prime if
(

∆
`

)
= 1 (implying ` - cE),

or equivalently if and only if E admits exactly two horizontal isogenies of degree `. (Some
authors also allow

(
∆
`

)
= 0, but we do not need this case.)

For the rest of this thesis we will only work with horizontal isogenies over finite fields.
That is, unless otherwise stated all definitions and theorems are restricted in scope to
horizontal isogenies.

Definition 2.4.8. Let E1, E2, E3 be elliptic curves over Fq. Let φ : E1 → E2, and
φ′ : E1 → E3 be isogenies over Fq. We say that φ and φ′ are isomorphic if there exists an
isomorphism η : E2 → E3 such that

η ◦ φ = φ′.

By the theory of complex multiplication [Cox89], every elliptic curve over C corresponds
to a complex lattice, and every ordinary elliptic curve arises from the reduction of a complex
elliptic curve modulo a prime ideal. The correspondence is as follows: for every E there
exists a corresponding lattice LE ⊂ C and an isomorphism E ∼= C/LE. We can use
this correspondence to represent kernels of isogenies as fractional ideals, as shown in the
following theorems.

Theorem 2.4.9. Let L be a lattice. Then for a number α ∈ C\Z, the following statements
are equivalent:

(a) αL ⊂ L.

(b) There is an order O in an imaginary quadratic field K such that α ∈ O and L = βI
for some β ∈ C and some proper fractional O-ideal I.

Proof. [Cox89, Theorem 10.14].

Theorem 2.4.10. Let φ : E → E ′ be a (horizontal) isogeny. Then the points in kerφ
correspond to a fractional ideal of End(E) under the isomorphism E ∼= C/LE.
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Proof. The proof follows from Theorem 2.4.9. Specifically, let End(E) = OD, α = D+
√
D

2
,

and Φ = kerφ. Observe that Φ lifts to LE′ under the isomorphism E ∼= C/LE. We will
identify kerφ with LE′ via this transformation. Theorem 2.4.9(b) implies that kerφ = βI,
where I is a (proper) fractional ideal of some order O, such that End(E) ⊂ O. To show
that kerφ is itself a fractional O-ideal, it is enough to show that kerφ ⊂ 1

n
End(E) for

some integer n. But this relationship clearly holds for n = deg φ.

We now show that O ⊂ End(E). We assume the opposite and proceed by contradic-
tion. Choose α′ ∈ O \ End(E). In that case, Theorem 2.4.9(b) holds for α′, and thus
Theorem 2.4.9(a) implies that α′Φ = Φ, or that O ⊂ End(E ′), which contradicts the fact
that End(E ′) = End(E).

Theorem 2.4.11. Let φ : E → E ′ be an isogeny. Then, up to isomorphism, the ideal kerφ
uniquely determines φ.

Proof. [Sil92, III.4.12].

The above two theorems are very useful in the sense that it is impractical to express
isogenies algebraically. Rather than expressing the isogeny φ directly, we can represent it
using its kernel kerφ.

We also have the following useful theorem:

Theorem 2.4.12. Let E be a given elliptic curve. There is a natural 1-1 correspondence
between proper ideals a, b ⊂ End(E) and horizontal isogenies φa and φb (up to isomorphism
of isogenies) between the corresponding curves. As a result, we also have:

• φab = φa ◦ φb.

• deg φa equals the norm of a.

Proof. For the case when End(E) is a maximal order see [Sil94, II.1.2]. For more general
cases see [Lan87].

This theorem shows that using ideals to represent isogenies does not affect the main
arithmetic properties of isogenies.
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2.5 Application: Point Counting

In this section we look at one of the applications of isogenies — counting the number
of points on an elliptic curve over a finite field. The results in this section are from
Schoof [Sch95].

We let E : y2 = x3 + ax+ b be an elliptic curve defined over the finite field Fp where p
is a prime (this can be done over some field of size q, where q is a power of a prime, but to
make the material easier to read and to follow [Sch95], we work over Fp).

Observe that for a given x ∈ Fp, there are either 0, 1 or 2 elements of E of the form
(x, y), depending on whether x3 + ax+ b is a square modulo p. Thus we can say that the
number of points of the form (x, y) for a fixed x is

1 +

(
x3 + ax+ b

p

)
,

where the parentheses denote the Legendre symbol. We also have one point at infinity.
Thus,

#E(Fp) = 1 + p+
∑
x∈Fp

(
x3 + ax+ b

p

)
.

Therefore computing #E(Fp) is equivalent to computing

∑
x∈Fp

(
x3 + ax+ b

p

)
.

When p is relatively small, this can be done directly. However when p is large then this
approach is very inefficient. Hence, we must look for a different approach.

Recall that, when we let t = Trace(πp) (i.e. t is the trace of E), then

#E(Fp) = p+ 1− t.

Thus, we can see that computing #E(Fp) is equivalent to computing t. We have a theorem
that gives an upper and lower bound on t and #E(Fp):

Theorem 2.5.1. Let E be an elliptic curve defined over the field Fp. Then

|#E(Fp)− p− 1| ≤ 2
√
p

Proof. [Sil92, V.1.1].
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The way the algorithm works is that we want to compute the value of t modulo a set of
small primes ` and then use the Chinese Remainder Theorem to obtain t. Using Theorem
2.5.1 it suffices to perform this computation using primes of size at most O(log p).

We can easily do this for ` = 2. Indeed, E contains a point of order 2 if and only if
2 | #E(Fp). Any point of order two is of the form (x, 0). Finding such points is equivalent
to checking whether x3 + ax+ b has zeros in Fp (it does not matter how many zeros there
are, only whether there are zeros), which is equivalent to checking

gcd(xp − x, x3 + ax+ b) 6= 1 ∈ Fp[x].

This can be done efficiently by evaluating xp modulo x3 + ax+ b using repeated squaring.
Now we want to compute t modulo other small primes ` = 3, 5, 7, . . .. We have that [Sil92,
III.6.4]

E[`] = {P ∈ E(F̄p) : `P =∞} ∼= Z` × Z`,

and that πp satisfies the equation

π2
p − tπp + p = 0.

We also have the so-called division polynomials

Ψ`(x) ∈ Fp[x],

that vanish precisely in the `-torsion points. The degree of such a polynomial is (`2−1)/2.
The division polynomials can be constructed via an explicit recurrence formula [Sil92, p.
105] at a cost of O(`2) multiplications.

The way the algorithm proceeds is that we check for which value of t′ ∈ {0, 1, . . . , `−1}
the equation

π2
p − t′πp + p = 0

holds on the group E[`]. Once that t′ is found, then we know that t′ ≡ t mod `. We can
do this efficiently by expressing the relationship in terms of polynomials. We have that

π2
p(x, y) + p(x, y) = t′π(x, y) for all (x, y) ∈ E[`]

if and only if

(xp
2

, yp
2

) + p′(x, y) ≡ t′(xp, yp) mod (Ψ`(x), y2 − x3 − ax− b),

where p′ is an integer congruent to p mod ` satisfying 0 ≤ p′ < `. Note that by ‘+’, we
mean the group addition; similarly for multiplication by an integer. Such an approach
gives the algorithm a total running time of

O((log p)8).
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Although this running time is polynomial, in practice the algorithm performs poorly
due to the large degrees of division polynomials. We now describe a practical improvement
to the algorithm using isogenies, due to Elkies.

We view the Frobenius map πp as a 2×2 matrix. For primes ` that split in Q(
√
t2 − 4p),

the Frobenius map acts on E[`] and has eigenvalues in F`. In this case, there exists an
eigenspace H such that #H = `, and H is Galois invariant. Note that H corresponds to
an ideal in End(E) of norm `. Now, let f(x) ∈ Fp[x] be a polynomial of degree (` − 1)/2
whose zeros are the distinct x-coordinates of points in H. We compute the eigenvalue λ
that corresponds to H. Note that the product of eigenvalues is equal to p mod `. Thus we
obtain

t ≡ λ+ p/λ mod `.

To compute λ, we use the fact that it satisfies

πp(x, y) = (xp, yp) = λ · (x, y) mod f(x) (in E).

We simply try this equation for all values λ′ = 1, 2, . . . , `− 1, and see which value satisfies
the equation.

In order to implement the above approach, we must compute the coefficients of f(x).
This computation is done using standard Elkies-Atkin techniques (see Section 3.2). This
approach heuristically lowers the cost of calculating t mod ` by a factor of O((log p)2), for
an overall cost of O((log p)6) bit operations.

2.6 Application: Transfer of Discrete Logarithms

In this section we show how isogenies can be used to transfer the discrete logarithm problem
from one elliptic curve to another. Although our work does not directly yield improved
transfer algorithms, we include this material to indicate some past applications of isogenies
and to lay the groundwork for discussing possible future applications. Before we can discuss
transfer, we need some background material on the discrete logarithm problem.

Definition 2.6.1. Let G be a group. Let g ∈ G be an element of order r and x ∈ Zr.
Define h = gx. Then Discrete Logarithm (or DLOG) Problem is defined as follows:

Given g, h ∈ G, find x ∈ [0, r − 1] such that h = gx.

Typically, in applications we choose an element g such that ord(g) ≈ #G. We also
assume from now on that G is abelian.

Example 2.6.2. Diffie-Hellman Key Exchange Protocol
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• Let G be a group.

• Select an element g ∈ G of order r. Note: G, g and r are public knowledge.

• Alice selects private key a ∈ Zr and computes her public key A = ga. Alice sends A
to Bob.

• Bob selects private key b ∈ Zr and computes his public key B = gb. Bob sends B to
Alice.

• Alice computes key gab = Ba.

• Bob computes key gab = Ab.

• Alice and Bob have established the secure communication key gab.

• This protocol can be summarized in the following figure:

Figure 2.2: Diffie-Hellman Key Exchange Protocol

Using the above example as motivation, we obtain the following definition:

Definition 2.6.3. Let G be a group. Let g ∈ G be an element of order r and x, y ∈ Zr.
Define h1 = gx, h2 = gy. Then Diffie-Hellman Problem (DHP) is defined as follows:

Given g, h1 = gx, h2 = gy ∈ G, compute h = gxy.
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Observe that if one solves the DHP, then the Diffie-Hellman Key Exchange Protocol is
broken. Also note that DHP reduces to DLOG problem in polynomial time; that is if we
are able to solve DLOG problem then we can easily solve DHP:

• Solve DLOG problem for g, h1 ∈ G, to obtain x.

• Compute hx2 = (gy)x = gxy.

Many applications in cryptography are based on the hardness of solving the DLOG
problem in a given group. One question that arises frequently in cryptography is the
question of how vulnerable a given group is to DLOG. In some cases, one can relate the
DLOG problems on different groups. For example, assume that we have two groups G and
G′. Let ϕ : G→ G′ be an injective homomorphism. If ϕ is efficiently computable, then we
can transfer the DLOG problem on G to DLOG problem on G′, in the following sense:

• Let g, h = gx ∈ G be given. We wish to compute x.

• Evaluate ϕ(g), ϕ(h) ∈ G′. Observe that ϕ(h) = ϕ(gx) = ϕ(g)x.

• Solve DLOG problem in G′ for ϕ(g), ϕ(h). The result is x.

Thus if we want to solve DLOG problem in G, and we can efficiently find an easy to
evaluate (injective) homomorphism from G to some other group G′, where DLOG problem
is easier to solve, then we can transfer the problem to G′. Hence the DLOG problem on
G is no harder than on G′. It is not strictly necessary for the homomorphism ϕ to be
injective. If g /∈ kerϕ, then we still gain a lot of information that could aid us in solving
DLOG problem in G.

The best known solution to DLOG problem for a general group G with element g ∈ G
of order r is known as Pollard’s rho method. This method requires O(

√
πr/2) operations

(details can be found in [Pol78]). We consider a group G to be secure if no faster algorithm
is known for solving DLOG problem.

We now return to elliptic curves over finite fields. There are some elliptic curves for
which the DLOG problem can be solved significantly faster than Pollard’s rho method
due to the fact that it can be transfered to the Jacobian of a hyperelliptic curve of a
certain genus (see [CFA+06, Section 22.3] for details); this is known as a Weil descent
attack. However, there are elliptic curves which are not vulnerable to that attack. The
interesting fact is that there are pairs of isogenous curves such that one is directly vulnerable
to the above attack and the other is not. Using this idea, E. Teske has introduced a
trapdoor discrete logarithm system [Tes06]. We now present this scheme as an application
of isogenies.
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Before we continue, we need to describe the idea of key escrow. The basic idea is that
users use their keys for secure communication, and sometimes some officials (possibly gov-
ernment) want to listen to their communication. However, without any extra information,
this is impossible. To support this capability, there exists an escrow agency to which the
users submit some extra information. When the escrow agency gets an official request from
officials to disclose information about a certain user, they provide that information. Once
the officials have that information, they can use it to decrypt encrypted messages sent by
the user(s).

The idea of this application is to construct a cryptosystem such that the information
submitted to the escrow agencies is sufficient to recover the user’s private key; however it
would still take a considerable, although feasible, amount of computational effort to do so.

The scheme is based on elliptic curves defined over the field F = F2161 . Although
the construction works in general over a large class of fields, this field is the only field
whose computational requirements are well matched to current technology. Note that
since charF = 2, we need to use the following form of Weierstrass equation:

Ea,b : y2 + xy = x3 + ax2 + b.

Here, a, b ∈ F2161 ; and for the purposes of the current application we also restrict b 6= 0.

We also need the notion of magic number. Given b ∈ F2N , where N is composite,
N = nf , we let q = 2f . We also let bi = bq

i
. Then we define the magic number to be:

m = mn(b) = dimF2(Span{(1, b1/2
0 ), . . . , (1, b

1/2
n−1)}).

In our case, N = 161, n = 7, f = 23. This yields that for b ∈ F∗2161 , m7(b) ∈ {1, 4, 7}.
For approximately 293 values of b ∈ F∗2161 , m7(b) = 4. For approximately 223 values of
b ∈ F∗2161 , m7(b) = 1. Hence for the overwhelming majority of b ∈ F∗2161 we have that
m7(b) = 7.

For a given elliptic curve Ea,b, if m7(b) = 4, then the Weil descent attack applies; if
m7(b) = 7, the Weil descent attack gives us an even less efficient solution to the DLOG
problem than Pollard’s rho method.

We define the following set:

I4 = {Ea,b/F2161 : a ∈ {0, 1},m7(b) = 4}

to be the set of representatives of isomorphism classes of elliptic curves with magic num-
ber 4. It is a fact that the magic number is invariant under isomorphisms and scalar
multiplication isogenies; however, in general the magic number changes under isogenies.
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For an elliptic curve to be cryptographically interesting, we want #E(F2161) = 2·p or 4·p
(where p is a prime). The reason is that we want a selected point P ∈ E(F2161) to have a
large order (≈ #E(F2161)).

Hence, the idea is that we need to choose a pair of isogenous (via horizontal isogeny)
elliptic curves (Esecret, Epublic), such that Esecret has magic number equal to 4, while Epublic

has magic number equal to 7.

We need a few more restrictions on the endomorphism ring of (Esecret and Epublic)
(note that they have the same endomorphism ring, which we denote by O∆), to make
certain computations appropriately feasible (for details on reasons for these restrictions
see [Tes06]):

• ∆ is squarefree.

• |∆| > 2157.

• 276 ≤ # Cl(O∆) < 283, where Cl(O∆) denotes the ideal class group of O∆.

• The odd, cyclic part of Cl(O∆) has cardinality ≥ 268.

Once the curve Esecret is found, then we need to find the isogenous curve Epublic. Note
that we should involve randomness in this process in order to avoid attacks and at the same
time knowing enough information, it should be feasible to transfer the DLOG problem from
Epublic to Esecret. In order to do that, a set of possible horizontal isogenies is selected and
lengths of chains of isogenies are randomly chosen.

The entire process is implemented using Algorithm 1.

After running this algorithm the user submits Esecret and the set C to the escrow agency
and uses Epublic for ECC. In case the officials need to listen in to the user’s communication,
they can transfer DLOG from Epublic to Esecret via the sequence of isogenies that they
compute iterating through C, and then use the Weil descent attack on Esecret to obtain
the user’s private key. Note that there is a variant of this scheme, which provides greater
security for the user. The only thing that changes in the variant is that the user only
submits Esecret to the escrow agency. In case the officials need to obtain the user’s private
key, it would take them longer to recover it, but they can still do so in a feasible number
of steps.
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Algorithm 1 Trapdoor curves

Input: Field F = F2161 and the set I4.
Output: A pair of isogenous elliptic curves (Esecret, Epublic) over F2161 , where magic number

of Esecret is 4 and magic number of Epublic is 7.
1: Randomly choose E ∈ I4 such that #E(F2161) = 2 · p or 4 · p for some prime p.
2: Calculate the discriminant of E, ∆ = t2 − 4 · 2161, where t = 2161 + 1 − #E(F2161) is

the trace of E.
3: Check that ∆ is squarefree, if not go to STEP 1.
4: Check that |∆| > 2157, if not go to STEP 1.
5: Check that 276 ≤ # Cl(O∆) < 283, if not go to STEP 1.
6: Check that the odd, cyclic part of Cl(O∆) has cardinality ≥ 268, if not go to STEP 1.
7: Denote Esecret = E.
8: Obtain F = {l : l is prime, 3 ≤ l ≤ 300, l splits in O∆}.
9: Enumerate F = {l1, l2, . . . , l#F}.

10: Let E = Esecret.
11: Let C = ∅.
12: for i=1, . . . ,#F do
13: Randomly choose n1 ∈ {0, 1, . . . 11}.
14: Construct a chain of length ni of li-isogenous curves starting from E.
15: Add the resulting curve to C.
16: Denote the resulting curve by E.
17: end for
18: Check that the magic number for E is 7, if not go to STEP 12.
19: Let Epublic = E
20: Output (Esecret, Epublic) and C.
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Chapter 3

Previous Methods for Evaluating
Isogenies

In this chapter we examine previous methods used to evaluate isogenies. The problem
of computing isogenies between elliptic curves over finite fields reduces to the problem of
computing prime degree isogenies. This reduction proceeds as follows: given an isogeny,
factor the kernel of the isogeny into a composition series with prime order quotient groups
and apply Prop. 2.3.3 to each composition factor. The resulting sequence of prime degree
isogenies, when composed together, yields the original isogeny. For this reason, we will
only consider prime degree isogenies.

As usual, given an elliptic curve E over the finite field Fq, we wish to find an isogeny
φ` : E → E ′ of given degree `, and to evaluate φ`(P ) for points P ∈ E.

We first examine Vélu’s formulas for computing the isogeny and the isogenous curve,
given the kernel of φ` as a subgroup. Then we discuss Elkies-Atkin techniques, which are
based on modular polynomials.

3.1 Vélu’s Formulas

The material in this section comes from [Vél71].

Let ` be a given prime. Let E be an elliptic curve defined over Fq. To maintain consis-
tency with Vélu, we use the general Weierstrass equation for E, valid in all characteristics:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let H be a subgroup of E, with #H = `. We wish to obtain the algebraic form of φ` and
the equation for E ′, where φ` : E → E ′ is the unique (up to isomorphism) separable isogeny
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having kernel H. Vélu obtains these formulas using the theory of elliptic functions. The
derivation of these formulas is beyond the scope of this thesis, but we provide the results
here for reference.

Let H2 denote the set of points of order 2 in H \ {∞}. Now let R be any subset of
(H \ {∞}) \H2 such that

(H \ {∞}) \H2 = R ∪ (−R) and R ∩ (−R) = ∅

(where by −R we denote −R = {−P : P ∈ R}). Finally, we let S = H2 ∪R.

Given a point Q = (xQ, yQ), we calculate the following values:

gxQ = 3x2
Q + 2a2xQ + a4 − a1yQ,

gyQ = −2yQ − a1xQ − a3,

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

tQ =

{
gxQ if Q ∈ H2,

2gxQ − a1g
y
Q = 6x2

Q + b2xQ + b4 if Q /∈ H2,

uQ = (gyQ)2 = 4x3
Q + b2x

2
Q + 2b4xQ + b6.

So, we get the explicit equation of the isogeny,

φ`(x, y) = (X, Y ),

where

X = x+
∑
Q∈S

(
tQ

x− xQ
+

uQ
(x− xQ)2

)
,

Y = y −
∑
Q∈S

(
uQ

2y + a1x+ a3

(x− xQ)3
+ tQ

a1(x− xQ) + y − yQ
(x− xQ)2

+
a1uQ − gxQg

y
Q

(x− xQ)2

)
.

Now, to obtain the equation of E ′, we calculate

t =
∑
Q∈S

tQ,

and
w =

∑
Q∈S

(uQ + xQtQ).
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We also have

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5t, A6 = a6 − b2t− 7w.

The equation of E ′ is:

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6.

The computational cost of evaluating Vélu’s formulas is O(`2 log `) multiplications in
Fq [IJ, Section 5.1].

3.2 Elkies-Atkin Techniques

The Elkies-Atkin technique for computing isogenies is based on modular polynomials. It
is the fastest known algorithm for direct computation. In this section we follow [Sch95,
Sections 6,7,8] and [BCL08, Section 3.1]. We let

E : y2 = x3 + ax+ b

be an elliptic curve defined over a finite field Fq. Let ` be the degree of the isogeny that
we wish to evaluate. Denote that isogeny by φ` : E → E ′. Here we assume that ` is the
Elkies prime, that is, it splits in End(E). Hence, we have the factorization

(`) = LL̄

in End(E). Without loss of generality, we assume kerφ` corresponds to L. For simplicity,
we assume that charFq > ` ≥ 3, and also that End(E) is not equal to Z[i] nor Z[e2πi/3].

We now define the classical modular polynomial of level `. We give only a brief defi-
nition here; the full definition can be found in [Cox89, p. 230]. The modular polynomial
Φ`(X, Y ) ∈ Z[X, Y ] is defined to be the unique polynomial satisfying

Φ`(X, j(τ)) =

[SL2(Z):Γ0(`)]∏
i=1

(X − j(`γiτ))

for all τ ∈ C with positive imaginary part, where {γi} forms a set of right coset rep-
resentatives for [SL2(Z) : Γ0(`)]. Here j(τ) denotes the j-invariant of the elliptic curve
corresponding to the lattice generated by 1 and τ . The polynomial Φ`(X, Y ) ∈ Z[X, Y ]
is symmetric in X and Y , and has terms X`+1 − X`Y ` + Y `+1 + . . . plus terms of the
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form X iY j such that 0 ≤ i, j ≤ ` and i + j < 2`. It has the property that the zeros of
Φ(j(E), Y ) = 0 are precisely the set of j-invariants of curves `-isogenous to E. Over Fq,
when ` is an Elkies prime, it will have 2 roots, where one corresponds to the j-invariant
of the codomain of φ` and the other one corresponds to the j-invariant of the codomain of
the other isogeny of degree `.

Example 3.2.1. Classical modular polynomial of level 3

Φ3(X, Y ) = X4 −X3Y 3 + 2232X3Y 2 − 1069956X3Y + 36864000X3 + 2232X2Y 3

+ 2587918086X2Y 2 + 8900222976000X2Y + 452984832000000X2

− 1069956XY 3 + 8900222976000XY 2 − 770845966336000000XY

+ 1855425871872000000000X + Y 4 + 36864000Y 3

+ 452984832000000Y 2 + 1855425871872000000000Y

Now, we solve in Fq the equation

Φ`(j(E), Y ) = 0

for Y . Let h be a solution (in Fq). Note that there are two possible solutions. At this
point we don’t know which one to take, so we pick one randomly and then check at the
end whether our choice is correct by testing whether fC = fL (see below) — if it turns out
to be the wrong one, we then redo the process from this point with the other solution. We
set

s = −18b

`a

∂Φ
∂X

(j(E), h)
∂Φ
∂Y

(j(E), h)
j(E) ∈ Fq

a′ = − 1

48

s2

h(h− 1728)
∈ Fq

b′ = − 1

864

s3

h2(h− 1728)
∈ Fq

Then there exists an `-isogeny φh : E → Eh where the equation of the isogenous curve
Eh is

Eh : y2 = x3 + a′x+ b′.

Now, we need to figure out which of the two ideals L or L̄ corresponds to the root
h. Let C = kerφh. We define fC(x) to be the polynomial whose zeros are the distinct
x-coordinates of points in C. We define fL(x) to be the polynomial whose zeros are the
distinct x-coordinates of points in E[L], where

E[L] = {P ∈ E : φ(P ) =∞ for all φ ∈ L}.
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fL̄ is defined in the similar manner. So, the goal is to figure out whether fC = fL or
fL̄. The Frobenius map πq acts on the points in E[L] as multiplication by −c/d, where

c, d ∈ Z satisfy L = (`, c+ dπq). We test whether (xq, yq)
?
= (−c/d)(x, y) holds in C. If so,

then fC = fL, if not, then the j-invariant of the isogenous curve must be the other root
of Φ`(j(E), Y ) in Fq. Once we know fC , we can compute the explicit equation for φ` and
evaluate φ`(P ) using Vélu’s formulas.

To compute the equation for φ`, we need to compute the coefficients of fC(x). We will
sketch this computation in the case that E is defined over Fp. For more details see [Sch95,
Section 7,8] and [BMSS08].

Let p1 be the sum of the roots of fC(x). The value of p1 can be obtained using
power series manipulations [Sch95, Section 7]. We define the values of ci as follows (all
computations take place in Fp):

c1 = −a
5
,

c2 = − b
7
,

ck =
3

(k − 2)(2k + 3)

k−2∑
j=1

cjck−1−j, for k ≥ 3.

We also define:

c′1 = −1

5

a′

`4
,

c′2 = −1

7

b′

`6
,

c′k =
3

(k − 2)(2k + 3)

k−2∑
j=1

c′jc
′
k−1−j, for k ≥ 3.

Using these we can compute the coefficients ai of fC(x) = x(`−1)/2+a `−3
2
x(`−3)/2+. . .+a0.

We have that [Sch95, 8.3]

z`−1f(℘(z)) = exp

(
−1

2
p1z

2 −
∞∑
k=1

c′k − `ck
(2k + 1)(2k + 2)

z2k+2

)
,

where z is a variable and

℘(z) =
1

z2
+
∞∑
k=1

ckz
2k.
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We match coefficients to obtain the coefficients of fC(x):

a `−3
2

= −p1

2
,

a `−5
2

=
1

8
p2

1 −
c′1 − `c1

12
− `− 1

2
c1,

a `−7
2

= − 1

48
p3

1 −
c′2 − `c2

30
+ p1

c′1 − `c1

24
− `− 1

2
c2 +

`− 3

4
c1p1,

...

Finally, use Vélu’s formulas to obtain the explicit form of φ`, and evaluate it. This ap-
proach for evaluating prime degree isogenies has a running time complexity ofO(`3(log `)4+ε).

3.2.1 Small Characteristic Case

Note that for the previous method we had a restriction

charFq > ` ≥ 3.

This might cause difficulties when we work with elliptic curves defined over fields of small
characteristic. This issue is resolved in [LS08] and [def], where an algorithm is given for
evaluating isogenies over small characteristic fields, having the same running time com-
plexity as in the large characteristic case. From [LS08], we obtain the following theorem.

Theorem 3.2.2. Let E be an elliptic curve defined over the finite field Fq. Assume that
charFq ≥ 5. Let ` be an Elkies prime, distinct from the characteristic of Fq. Then there ex-
ists an algorithm that computes the polynomial fL(x) at cost O(`(max(`, log q))2 log2(`(max(`, log q))2)).

Proof. [LS08]

Lercier and Sirvent also mention that this theorem can easily be extended to the cases
where the characteristic of the field is 2 or 3. De Feo in [def] presents the algorithms for
computing isogenies over fields of characteristic 2 or 3.

3.3 Overview and Remarks on Evaluating Isogenies

In this section, we discuss the evaluation of isogenies of large degree. By ‘large’ we mean
cryptographic size, i.e. ` ' 2160. For such degrees, prior algorithms are infeasible since the
running time is exponential in log `. For example, using the Elkies-Atkin technique one
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must compute Φ`(X, Y ), which has a theoretical complexity of O(`3+ε). To illustrate that
difficulty, recall that in Example 3.2.1 we gave Φ3(X, Y ). The next modular polynomial,
Φ5(X, Y ) is as follows:

Example 3.3.1. Classical modular polynomial of level 5

Φ5(X, Y ) = X6 −X5Y 5 + 3720X5Y 4 − 4550940X5Y 3 + 2028551200X5Y 2

− 246683410950X5Y + 1963211489280X5 + 3720X4Y 5

+ 1665999364600X4Y 4 + 107878928185336800X4Y 3

+ 383083609779811215375X4Y 2 + 128541798906828816384000X4Y

+ 1284733132841424456253440X4 − 4550940X3Y 5

+ 107878928185336800X3Y 4 − 441206965512914835246100X3Y 3

+ 26898488858380731577417728000X3Y 2

− 192457934618928299655108231168000X3Y

+ 280244777828439527804321565297868800X3 + 2028551200X2Y 5

+ 383083609779811215375X2Y 4 + 26898488858380731577417728000X2Y 3

+ 5110941777552418083110765199360000X2Y 2

+ 36554736583949629295706472332656640000X2Y

+ 6692500042627997708487149415015068467200X2 − 246683410950XY 5

+ 128541798906828816384000XY 4

− 192457934618928299655108231168000XY 3

+ 36554736583949629295706472332656640000XY 2

− 264073457076620596259715790247978782949376XY

+ 53274330803424425450420160273356509151232000X

+ Y 6 + 1963211489280Y 5 + 1284733132841424456253440Y 4

+ 280244777828439527804321565297868800Y 3

+ 6692500042627997708487149415015068467200Y 2

+ 53274330803424425450420160273356509151232000Y

+ 141359947154721358697753474691071362751004672000

It is clear that for large ` it is infeasible to compute Φ`(X, Y ). The world record for
computing the classical modular polynomial over the integers is ` ≈ 5000 (` ≈ 20000 over
integers modulo a prime). Note that there do exist modular polynomials which are more
efficient for computation; however asymptotically the overall algorithm still has the same
time complexity for any choice of modular polynomial.

Certain large degree isogenies are easy to evaluate in any case. For example, consider
isogenies of the form [n] : E → E (multiplication by n-map). These isogenies are easy to
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evaluate using the double-and-add method. In this case, we do not use the algebraic form
of the multiplication by n-map, but rather just compute its effects on points.

As another example, if we consider inseparable isogenies, the inseparable part is equal
to a power of the Frobenius map [Sil92, II.2.12], and Frobenius maps are also easy to
evaluate. We simply need to compute xq and yq in the finite field Fq. To do this, we use
the well known method of square-and-multiply.

Other types of easy to evaluate isogenies include complex multiplication by a small
discriminant and small degree isogenies. In addition, linear combinations and compositions
of easy to evaluate isogenies are easy to evaluate. However, all other large degree isogenies
are infeasible to evaluate using any of the obvious algorithms. In the following chapters, we
will describe a new method for evaluating general large degree isogenies in subexponential
time.
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Chapter 4

The Bröker-Charles-Lauter
Algorithm

In this chapter we describe the algorithm of Bröker, Charles, and Lauter [BCL08]. This
algorithm represents a large improvement in the evaluation of large degree (horizontal)
isogenies between elliptic curves when the endomorphism ring has small discriminant. The
idea is to factor the large prime degree isogeny into a product of small prime degree
isogenies and an isogeny corresponding to a principal fractional ideal. To accomplish this
factorization, they work in the ideal class group of End(E). Their algorithm provides the
basis for our algorithm, which we will present in the next chapter. In this chapter, we
summarize the results of [BCL08].

4.1 Preliminaries

Recall that for an ordinary elliptic curve E defined over a finite field Fq, we have End(E) ∼=
O∆. We identify End(E) with O∆ via the unique isomorphism ι satisfying ι∗(x)ω = xω
for all invariant differentials ω and all x ∈ O∆. Also, for split primes `, recall that every
horizontal separable isogeny φ` on E of prime degree ` corresponds (up to isomorphism)
to a unique prime ideal L ⊂ O∆ of norm ` for some Elkies prime `. We denote the kernel
of such an isogeny by

E[L] = {P ∈ E(F̄q) : α(P ) =∞ for all α ∈ L}.

Note that, for simplicity, we require ` to be an Elkies prime, which is equivalent to saying
that ` - [End(E) : Z[πq]]. Also note that we can write L explicitly as

L = (`, c+ dπq).
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Observe that the image curve can be expressed as

E ′ = E/E[L].

However this gives us E ′ only up to isomorphism. Any two distinct isomorphic horizontal
isogenies induce different maps on the space of differentials of E, and a separable isogeny
is uniquely determined by the combination of its kernel and the induced map on the space
of differentials. A normalized isogeny is an isogeny φ : E → E ′ for which φ∗(ωE′) = ωE
where ωE denotes the invariant differential of E and ωE′ of E ′. With this notation, our
goal becomes to evaluate normalized horizontal prime degree isogenies.

4.2 The Method of Galbraith, Hess, and Smart

Galbraith, Hess, and Smart in [GHS02] present a method for evaluating (horizontal) iso-
genies. Their method is based on working with the ideals corresponding to these isogenies.
The main idea of their method is to factor the given ideal into a product of prime ideals of
small norm modulo a principal fractional ideal. In other words, they obtain a factorization
of the form

[L] = [I1]e1 · [I2]e2 · · · [Ik]ek ,

where square brackets denote ideal classes, and the ideal classes [Ij] are reduced. Then they
recursively compute the isogenies corresponding to the ideals Ij using direct techniques.

This approach still has an exponential running time in the bitlength of the absolute
value of the discriminant of the corresponding imaginary quadratic order. As mentioned in
the previous section, we only obtain E ′ up to isomorphism and thus the isogeny obtained in
this way is not normalized. This is acceptable for many applications, but for our purposes
we wish to obtain the normalized isogeny.

4.3 Description of the Bröker-Charles-Lauter Algo-

rithm

In the Bröker, Charles, and Lauter algorithm, the isogeny φ` is evaluated using a factor-
ization of the kernel ideal of the form

L = Ie11 I
e2
2 · · · I

ek
k · (α),

where each ideal Ij corresponds to an ideal of prime norm, where the norm is bounded (i.e.
small enough to make computations feasible), and (α) is a principal fractional ideal. This
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factorization is identical to that of Galbraith, Hess, and Smart, except that the principal
fractional ideal (α) appears explicitly.

The fact that we obtain a factorization of ideals allows us to evaluate normalized iso-
genies, since the (α) factor determines the normalization. One restriction on the norms of
Ij’s is that they all must be Elkies primes. The isogeny that corresponds to (α) is easy to
evaluate due to the fact that multiplication by scalars is easy to evaluate.

Obtaining a factorization of this form is difficult when working directly with ideals.
Instead, Bröker, Charles, and Lauter (BCL) use the same technique as Galbraith, Hess,
and Smart, except that they also obtain (α) and hence evaluate the normalized isogeny.
The BCL algorithm begins by finding a factorization in Cl(O∆) of the following form:

[L] = [I1]e1 · [I2]e2 · · · [Ik]ek .

Once this factorization is obtained, the value of α is computed as follows:

• Compute
LĪ1

e1 Ī2
e2 · · · Īk

ek .

• This is equal to
I1
e1 Ī1

e1I2
e2 Ī2

e2 · · · Ikek Īk
ek · (α).

• Which is equal to the principal ideal

m(α), where m = Norm(I1)e1 · Norm(I2)e2 · · ·Norm(Ik)
ek .

• Thus using using Cornacchia’s Algorithm [HMW90], we obtain the generator of β of

LĪ1
e1 Ī2

e2 · · · Īk
ek .

• Hence α = β/m.

Once we have the full factorization, we compute the isogenies corresponding to Ij recur-
sively. Let φp1 be the isogeny corresponding to I1:

φp1 : E → E1 = E/E[I1].

Now let φp2 be the isogeny starting from E1 corresponding to I2:

φp2 : E1 → E2 = E1/E1[I2] ∼= E/E[I1I2].

Thus we continue recursively in the same manner to obtain the isogeny corresponding to
Ie11 I

e2
2 · · · I

ek
k :

φc : E → Ec = E/E[Ie11 I
e2
2 · · · I

ek
k ].
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At each step, since the norm of each ideal Ij is small, we can use direct methods to evaluate
the individual isogenies. Next, note that Ec ∼= E/E[L] = E ′ since (α) is a principal ideal.
Express α in the following way:

α =
u+ vπq
mz

,

where z is an integer such that z - [End(E) : Z[πq]].

In order to find E ′, we first need to obtain the invariant differential ωE′ of E ′. We use
the relationship

ωE′ = (u/(mz))ωEc .

Using this equation, we can explicitly find the isomorphism

η : Ec → E ′ with η∗(ωE′) = (u/(mz))ωEc .

We can then find E ′ as follows:

• Assume that Ec is given by y2 = x3 + a′x+ b′.

• Use the fact that for λ ∈ F∗q, the isomorphism given by (x, y)→ (λ2x, λ3y), multiplies
ωEc by 1/λ.

• Hence E ′ is given by y2 = x3 + (u/(mz))4a′x+ (u/(mz))6b′.

Now we need to find the image φ`(P ) ∈ E ′ of the given point P ∈ E. We again
recursively obtain φc(P ) ∈ Ec. Then we apply η to obtain η(φc(P )) ∈ E ′. Finally we must
compute the action of (α) on η(φc(P )) ∈ E ′:

R = α · η(φc(P )) = ((zm)−1(u+ vπq))(η(φc(P ))) ∈ E ′(Fq).

This procedure only determines φ`(P ) up to automorphisms of E ′. Hence we only obtain
the x-coordinate of R (or the square or cube of the x-coordinate, respectively, if ∆ = −4
or −3) as output. The steps of the algorithm are summarized in Algorithm 2.

4.4 The Bröker-Charles-Lauter Algorithm and Main

Theorem

The proof of correctness and running time analysis for the Bröker-Charles-Lauter algorithm
are given in the following theorem.
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Algorithm 2 The Bröker-Charles-Lauter algorithm

Input: A discriminant ∆, an elliptic curve E/Fq with End(E) = O∆ and a point P ∈
E(Fqn) such that [End(E) : Z[πq]] and #E(Fqn) are coprime, and an End(E)-ideal
L = (`, c+ dπq) of prime norm ` 6= char(Fq) not dividing the index [End(E) : Z[πq]].

Output: The unique elliptic curve E ′ admitting a normalized isogeny φ : E → E ′ with
kernel E[L], and the x-coordinate of φ(P ) for ∆ 6= −3,−4 and the square (resp. cube)
of the x-coordinate otherwise.

1: Compute the direct sum decomposition Cl(O∆) =
⊗
〈[Ii]〉 of Cl(O∆) into cyclic groups

generated by the degree 1 prime ideals Ii of smallest norm that are coprime to the
product p ·#E(Fqn) · [End(E) : Z[πq]].

2: Using brute force1, find e1, e2, . . . , ek such that [L] = [Ie11 ] · [Ie22 ] · · · [Iekk ].
3: Find α (using Cornacchia’s algorithm) and express L = Ie11 · Ie22 · · · I

ek
k · (α).

4: Compute a sequence of isogenies (φ1, . . . , φs) such that the composition φc : E → Ec
has kernel E[Ie11 · Ie22 · · · I

ek
k ] using the method of [BCL08, § 3] or equivalently methods

described in Chapter 3.
5: Evaluate φc(P ) ∈ Ec(Fqn).
6: Write α = (u + vπq)/(zm). Compute the isomorphism η : Ec

∼→ E ′ with η∗(ωE′) =
(u/zm)ωEc . Compute Q = η(φc(P )).

7: Compute (zm)−1 mod #E(Fqn), and compute R = ((zm)−1(u+ vπq))(Q).
8: Put r = x(R)|O

∗
∆|/2 and return (E ′, r).

Theorem 4.4.1. Let E/Fq be an ordinary elliptic curve with Frobenius πq, given by a
Weierstrass equation, and let P ∈ E(Fqn) be a point on E. Let ∆ = disc(End(E)) be
given. Assume that [End(E) : Z[πq]] and #E(Fqn) are coprime, and let L = (`, c + dπq)
be an End(E)-ideal of prime norm ` 6= char(Fq) not dividing the index [End(E) : Z[πq]].
Algorithm 2 computes the unique elliptic curve E ′ such that there exists a normalized
isogeny φ : E → E ′ with kernel E[L]. Furthermore, it computes the x-coordinate of φ(P ) if
End(E) does not equal Z[i] or Z[ζ3] and the square, respectively cube, of the x-coordinate
of φ(P ) otherwise. The running time of the algorithm is polynomial in log(`), log(q), n
and |∆|.

Proof. [BCL08, Section 4]

1Bröker, Charles, and Lauter mention that this computation can be done in “various ways” [BCL08,
p. 107], but the only explicit method given in [BCL08] is brute force. The use of brute force limits the
algorithm to elliptic curves for which |∆| is small, such as pairing-friendly curves.
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4.5 Remarks on the Bröker-Charles-Lauter Algorithm

The Bröker-Charles-Lauter algorithm does in fact greatly improve the running time for
evaluating isogenies when ` is large, since its running time is polynomial in log `. However,
Bröker, Charles, and Lauter do not provide any cost analysis for the ideal factorization
step of their algorithm (step 2 of Algorithm 2), other than to state that it is polynomial
in |∆|. In the examples that they provide, the factorization is obtained by brute force,
which does in fact take exponential running time in log |∆|. This limits the practicality
of their algorithm, since for elliptic curves with endomorphism rings with large |∆|, the
algorithm is impractical to run. Some elliptic curves, such as pairing-friendly curves, have
endomorphism rings of small discriminants (in absolute value). However, for a randomly
chosen curve, we expect |∆| = 4q − t2 ≈ q. For cryptographic purposes, q is usually very
large, and thus the Bröker-Charles-Lauter algorithm is of limited utility in such cases.
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Chapter 5

Our Subexponential Algorithm

5.1 Introduction

In this chapter we present and describe in detail our algorithm for evaluating large prime
degree isogenies which has subexponential running time in the size of the magnitude of the
discriminant of the endomorphism ring of the elliptic curve and polynomial in the degree
of the isogeny. The algorithm given in this chapter was published in ANTS-IX [JS10].

Our objective is to evaluate the unique horizontal normalized isogeny on a given elliptic
curve E/Fq whose kernel ideal is given as L = (`, c + dπq), at a given point P ∈ E(Fqn),
where ` is an Elkies prime. As in [BCL08], we must also impose the additional restriction
that ` - [End(E) : Z[πq]]; for Elkies primes, an equivalent restriction is that ` - [OK : Z[πq]],
but we retain the original formulation for consistency with [BCL08].

In practice, one is typically given ` instead of L, but since it is easy to calculate the list
of (at most two) possible primes L lying over ` (cf. [BV07]), these two interpretations are
for all practical purposes equivalent, and we switch freely between them when convenient.
When ` is small, one can use modular polynomial based techniques [BCL08, §3.1] (as
described in Chapter 3), which have running time O(`3 log(`)4+ε) [Eng09]. However, for
isogeny degrees of cryptographic size (e.g. 2160), this approach is impractical. The Bröker-
Charles-Lauter algorithm sidesteps this problem, by using an alternative factorization of
L. However, the running time of Bröker-Charles-Lauter is polynomial in |∆|, and therefore
only works for small values of |∆|. In this chapter we present a modified version of the
Bröker-Charles-Lauter algorithm which is suitable for large values of |∆|.

We begin by giving an overview of our approach. In order to handle large values of
|∆|, there are two main problems to overcome. One problem is that we need a fast way to
produce a factorization

L = Ie11 I
e2
2 · · · I

ek
k · (α) (5.1)
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Algorithm 3 Computing a factor base

Input: A discriminant ∆, a bound N .
Output: The set I consisting of split prime ideals of norm less than N , together with the

corresponding set F of quadratic forms.
1: Set F ← ∅.
2: Set I ← ∅.
3: Find all primes p < N such that (∆

p
) = 1. Call this set P . Let k = |P |.

4: For each prime pi ∈ P , find an ideal pi of norm pi (using Cornacchia’s algorithm).
5: For each i, find a quadratic form fi = [(pi, bi, ci)] corresponding to pi in Cl(O∆), using

the technique of [Sey87, §3].
6: Output I = {p1, p2, . . . , pk} and F = {f1, f2, . . . , fk}.

as in lines 2 and 3 of the BCL algorithm (Algorithm 2). The other problem is that the
exponents ei in Equation (5.1) need to be kept small, since the running times of lines 3
and 4 of Algorithm 2 are proportional to

∑
i |ei|Norm(Ii)

2. The first problem, that of
finding a factorization of L, can be solved in subexponential time using the index calculus
algorithm of Hafner and McCurley [HM89] (see also [BV07, Chapter 11]). To resolve the
second problem, we turn to the following idea of Galbraith, Hess, and Smart [GHS02], and
recently further refined by Bisson and Sutherland [BS09]. The idea is that, in the process
of sieving for smooth norms, one can arbitrarily restrict the input exponent vectors to
sparse vectors (e1, e2, ..., ek) such that

∑
i |ei|N(Ii)

2 is kept small.

5.2 Finding the Factor Base

Let Cl(O∆) denote the ideal class group of O∆. Algorithm 3 produces a factor base
consisting of split primes in O∆ of norm less than some bound N . The optimal value of
N will be determined in Section 5.6. The elements of our factor base are represented as
reduced quadratic forms. To find the forms we use the technique of [Sey87, §3]: given
∆ and a prime p such that (∆

p
) = 1, define b = min{d ∈ N : d2 = ∆ mod 4p}, and

c = (b2 − ∆)/(4a). Then the quadratic form corresponding to an ideal of norm p is
[(p, b, c)].

5.3 “Factoring” Large Prime Degree Ideals

Algorithm 4, based on the algorithm of Hafner and McCurley, takes as input a discriminant
∆, a curve E, a prime ideal L of prime norm ` in O∆, a smoothness bound N , and an
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extension degree n. It outputs a factorization

L = Ie11 I
e2
2 · · · I

ek
k · (α)

as in Equation 5.1, where the Ii’s are as in Algorithm 2, the exponents ei are positive,
sparse, and small (i.e., polynomial in N), and the ideal (α) is a principal fractional ideal
generated by α.

Algorithm 4 uses Theorem 3.1 of [Sey87]. For convenience we state the full result here.

Theorem 5.3.1. Let F be the factor base computed in Algorithm 3. Let fiandbi be as in
Algorithm 3. Let [(a, b, c)] be a quadratic form in Cl(O∆). Let a =

∏k
i=1 p

ei
i , ei ∈ Z, pi

prime, be the prime factorization of a. Then:

• (∆
pi

) = 1, b ≡ ±bi mod 2pi for all pi, i = 1, . . . , k.

• [(a, b, c)] =
∏k

i=1 f
±ei
i , where the plus sign in the exponent ei holds if and only if b ≡ bi

mod 2pi.

Proof. [Sey87]

(Note that the relationship between the ideal classes [I] and [Ī] is [Ī] = [I]−1.)

5.4 Algorithm for Evaluating Prime Degree Isogenies

The overall algorithm for evaluating prime degree isogenies is given in Algorithm 5. This
algorithm is identical to Algorithm 2, except that the factorization of L is performed using
Algorithm 4. To maintain consistency with [BCL08], we have included the quantities ∆ and
End(E) as part of the input to the algorithm. However, we remark that these quantities

can be computed from E/Fq in Lq(
1
2
,
√

3
2

) operations using the algorithm of Bisson and
Sutherland [BS09], even if they are not provided as input, although additional heuristics
are required for this running time bound to hold.

5.5 Heuristic Assumptions

Our algorithm shares many elements in common with Bisson and Sutherland’s algorithm
to compute the endomorphism ring of an elliptic curve [BS09]. Although the initial version
of our main result was obtained independently, we subsequently incorporated their ideas
into our algorithm in several places, resulting in a simpler presentation as well as a large
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Algorithm 4 “Factoring” a prime ideal

Input: A discriminant ∆, an elliptic curve E/Fq with End(E) = O∆, a smoothness bound
N , a prime ideal L of norm ` in O∆, an extension degree n.

Output: Relation of the form L = (α) ·
∏k

i=1 I
ei
i , where (α) is a fractional ideal, Ii are as

in Algorithm 2, and ei > 0 are small and sparse.
1: Run Algorithm 3 on input ∆ and N to obtain I = {p1, p2, . . . , pk} and F =
{f1, f2, . . . , fk}. Discard any primes dividing p ·#E(Fqn) · [End(E) : Z[πq]].

2: Set pi ← Norm(pi). (These values are also calculated in Algorithm 3.)
3: Obtain the reduced quadratic form [L] corresponding to the ideal class of L.
4: repeat
5: for i = 1, . . . , k do
6: Pick exponents xi in the range [0, (N/pi)

2] such that at most k0 are nonzero, where
k0 is a global absolute constant (in practice, k0 = 3 suffices).

7: end for
8: Compute the reduced quadratic form a = (a, b, c) for which the ideal class [a] is

equivalent to [L] ·
∏k

i=1 f
xi
i .

9: until The integer a factors completely into the primes pi, and the relation derived from
[a] = [L] ·

∏k
i=1 f

xi
i contains fewer than

√
log(|∆|/3)/z nonzero exponents.

10: Write a =
∏k

i=1 p
ui
i .

11: for i=1, . . . , k do
12: Using the technique of Seysen (Theorem 5.3.1), determine the signs of the exponents

yi = ±ui for which a =
∏k

i=1 f
yi
i .

13: Let ei = yi − xi. (These exponents satisfy [L] =
∏k

i=1 f
ei
i .)

14: if ei ≥ 0 then
15: Set Ii ← p̄i
16: else
17: Set Ii ← pi
18: end if
19: end for
20: Compute the principal ideal I = L ·

∏k
i=1 I

|ei|
i .

21: Using Cornacchia’s algorithm, find a generator β ∈ O∆ of I.
22: Set m←

∏k
i=1 p

|ei|
i and α← β

m
.

23: Output L = (α) · Ī |e1|1 · Ī |e2|2 · · · Ī |ek|k .

speedup compared to the original version of our work. Consequently, our algorithm relies
on a number of heuristic assumptions, all inherited from [BS09]. Namely we assume the
following three heuristics to be true (which are a subset of heuristics Bisson and Sutherland
in [BS09] assume to be true):
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Algorithm 5 Evaluating prime degree isogenies

Input: A discriminant ∆, an elliptic curve E/Fq with End(E) = O∆ and a point P ∈
E(Fqn) such that [End(E) : Z[πq]] and #E(Fqn) are coprime, and an End(E)-ideal
L = (`, c+ dπq) of prime norm ` 6= char(Fq) not dividing the index [End(E) : Z[πq]].

Output: The unique elliptic curve E ′ admitting a normalized isogeny φ : E → E ′ with
kernel E[L], and the x-coordinate of φ(P ) for ∆ 6= −3,−4 and the square (resp. cube)
of the x-coordinate otherwise.

1: Choose a smoothness bound N (see Section 5.6).
2: Using Algorithm 4 on input (∆, E,N,L, n), obtain a factorization of the form L =
Ie11 · Ie22 · · · I

ek
k · (α).

3: Compute a sequence of isogenies (φ1, . . . , φs) such that the composition φc : E → Ec
has kernel E[Ie11 · Ie22 · · · I

ek
k ] using the method of [BCL08, § 3].

4: Evaluate φc(P ) ∈ Ec(Fqn).
5: Write α = (u + vπq)/(zm). Compute the isomorphism η : Ec

∼→ E ′ with η∗(ωE′) =
(u/zm)ωEc . Compute Q = η(φc(P )).

6: Compute (zm)−1 mod #E(Fqn), and compute R = ((zm)−1(u+ vπq))(Q).
7: Put r = x(R)|O

∗
∆|/2 and return (E ′, r).

1. We assume the Generalized Riemann Hypothesis (GRH).

2. The limitations imposed in line 6 of Algorithm 4 do not affect the probability distri-
bution of the output ideal class [a].

3. We assume that the ECM [Len87] technique for factoring integers using elliptic curves
finds the prime factor p of an integer n in Lp(

1
2
, 2) · (log n)2 time.

5.6 Running Time Analysis

In this section, we determine the theoretical running time of Algorithm 5, as well as the
optimal value of the smoothness bound N to use in line 1 of the algorithm. As is typical for
subexponential time factorization algorithms involving a factor base, these two quantities
depend on each other, and hence both are calculated simultaneously.

As in [CFA+06], we define1 Ln(α, c) by

Ln(α, c) = O(exp((c+ o(1))(log(n))α(log(log(n)))1−α)).

1The definition of Ln(α, c) in [BV07] differs from that of [CFA+06] in the o(1) term. In places where
we cite [BV07], we account for this discrepancy in our text.
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The quantity Ln(α, c) interpolates between polynomial and exponential size in log n as
α ranges from 0 to 1. We set N = L|∆|(

1
2
, z) for an unspecified value of z, and in the

following paragraphs we determine the optimal value of z which minimizes the running
time of Algorithm 5. (The fact that α = 1

2
is optimal is clear from the analysis below, as

well as from prior experience with integer factorization algorithms.) For convenience, we
will abbreviate L|∆|(α, c) to L(α, c) throughout.

Line 2 of Algorithm 5 involves running Algorithm 4, which in turn calls Algorithm 3.
Thus we analyze the running times of these algorithms.

Theorem 5.6.1. Algorithm 3 has a running time bounded above by

L(1
2
, z).

Proof. Algorithm 3 is almost the same as Algorithm 11.1 from [BV07], which requires
L(1

2
, z) time, as shown in [BV07]. The only difference is that we add an additional step

where we obtain the quadratic form corresponding to each prime ideal in the factor base.
This extra step requires O(log(Norm(I))1+ε) time for a prime ideal I, using Cornacchia’s
Algorithm [HMW90]. Thus, the overall running time for Algorithm 3 is bounded above by

L(1
2
, z) · log(L(1

2
, z))1+ε = L(1

2
, z).

Theorem 5.6.2. Algorithm 4 has a (heuristic) running time bounded above by

L(1
2
, 1

4z
) + (log `+ L(1

2
, 2z))1+ε.

Proof. Line 1 of Algorithm 4 runs Algorithm 3, which has a running time L(1
2
, z). Line 2

of Algorithm 4 takes log(`) time using standard algorithms [Cox89]. The loop in lines 4–9
of Algorithm 4 is very similar to the FindRelation algorithm in [BS09], except that we
only use one discriminant, and we omit the requirement that #R/D1 > #R/D2 (which in
any case is meaningless when there is only one discriminant). Needless to say, this change
can only speed up the algorithm. Taking µ =

√
2z in [BS09, Prop. 6], we find that the

(heuristic) expected running time of the loop in lines 4–9 of Algorithm 4 is L(1
2
, 1

4z
).

The next step in Algorithm 4 having nontrivial running time is the computation of the
ideal product in line 20. To exponentiate an element of an arbitrary semigroup to a power
e requires O(log e) semigroup multiplication operations [Coh93, §1.2] with square-and-
multiply. To multiply two ideals I and J in an imaginary quadratic order (via composition
of quadratic forms) requires O(max(log(Norm(I)), log(Norm(J)))1+ε) bit operations using
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fast multiplication [Sch91, §6]. Each of the expressions |Ii||ei| therefore requires O(log |ei|)
ideal multiplication operations to compute, with each individual multiplication requiring

O((|ei| log(Norm(Ii)))
1+ε) = O

((N
pi

)2

log(pi)

)1+ε
 = O(N2+ε)

bit operations, for a total running time of (log ei)O(N2+ε) = L(1
2
, 2z) for each i. This

calculation must be performed once for each nonzero exponent ei. By line 9, the number
of nonzero exponents appearing in the relation is at most

√
log(|∆|/3)/z, so the amount of

time required to compute all of the |Ii||ei| for all i is (
√

log(|∆|/3)/z)L(1
2
, 2z) = L(1

2
, 2z).

Afterward, the values |Ii||ei| must all be multiplied together, a calculation which entails at
most

√
log(|∆|/3)/z ideal multiplications where the log-norms of the input multiplicands

are bounded above by

log Norm(I
|ei|
i ) = |ei| log Norm(Ii) ≤

(
N

pi

)2

log pi ≤ N2 = L(1
2
, 2z),

and thus each of the (at most)
√

log(|∆|/3)/z multiplications in the ensuing product can

be completed in time at most (
√

log(|∆|/3)/z)L(1
2
, 2z) = L(1

2
, 2z). Finally, we must

multiply this end result by L, an operation which requires O(max(log `, L(1
2
, 2z))1+ε)

time. All together, the running time of step 20 is L(1
2
, 2z) + O(max(log `, L(1

2
, 2z))1+ε) ≤

max((log `), L(1
2
, 2z))1+ε, and the norm of the resulting ideal I is bounded above by ` ·

exp(L(1
2
, 2z)).

Obtaining the generator β of I in line 21 of Algorithm 4 using Cornacchia’s algorithm
requires

O(log(Norm(I))1+ε) = (log `+ L(1
2
, 2z))1+ε

time. We remark that finding β given I is substantially easier than the usual Cornacchia’s
algorithm, which entails finding β given only Norm(I). The usual algorithm requires
finding all the square roots of ∆ modulo Norm(I), which is very slow when Norm(I) has a
large number of prime divisors. This time-consuming step is unnecessary when the ideal I
itself is given, since the embedding of the ideal I in End(E) already provides (up to sign)
the correct square root of ∆ mod I. A detailed description of this portion of Cornacchia’s
algorithm in the context of the full algorithm, together with running time figures specific
to each sub-step, is given by Hardy et al. [HMW90]; for our purposes, the running time of
a single iteration of Step 6 in [HMW90, §4] is the relevant figure.
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The total running time of Algorithm 4 is:

L(1
2
, z) (algorithm 3 or line 1 of algorithm 4)

+ L(1
2
, 1

4z
) (lines 4–9, algorithm 4)

+ max((log `), L(1
2
, 2z))1+ε (line 20, algorithm 4)

+ (log `+ L(1
2
, 2z))1+ε (line 21, algorithm 4)

= L(1
2
, 1

4z
) + (log `+ L(1

2
, 2z))1+ε.

This concludes our analysis of Algorithm 4.

Theorem 5.6.3. The optimal value for z in Algorithm 5 is

z =
1

2
√

3
.

With this value, Algorithm 5 has a running time bounded above by

(log(`) + L(1
2
, 1√

3
))1+ε + L(1

2
,
√

3
2

) + L(1
2
, 1√

3
)(log qn)1+ε.

Proof. We find that (as in [BCL08]) the computation of the individual isogenies φi in line
3 of Algorithm 5 is limited by the time required to compute the modular polynomials
Φn(x, y). Using the Chinese remainder theorem-based method of Bröker et al. [BLS10],
these polynomials can be computed mod q in time O(n3 log3+ε(n)), and the resulting poly-
nomials require O(n2(log2 n + log q)) space. For each ideal Ii, the corresponding modular
polynomial of level pi only needs to be computed once, but the polynomial once com-
puted must be evaluated, differentiated, and otherwise manipulated ei times, at a cost of
O(p2+ε

i ) field operations in Fq per manipulation, or O(p2+ε
i )(log q)1+ε bit operations using

fast multiplication. The total running time of line 3 is therefore

O(p3+ε
i ) +

∑
i

|ei|p2+ε
i (log q)1+ε ≤ O(N3+ε) +

∑
i

((
N

pi

)2
)
p2+ε
i (log q)1+ε

≤ O(N3+ε) +

√
log(|∆|/3)

z
N2+ε(log q)1+ε = L(1

2
, 3z) + L(1

2
, 2z)(log q)1+ε.

Similarly, the evaluation of φc in line 4 requires∑
i

|ei|p2+ε
i = L(1

2
, 2z)
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field operations in Fqn , which corresponds to L(1
2
, 2z)(log qn)1+ε bit operations using fast

multiplication.

Combining all the above quantities, we obtain a total running time of

L(1
2
, 1

4z
) + (log `+ L(1

2
, 2z))1+ε (line 2, from Theorem 5.6.2)

+ L(1
2
, 3z) + L(1

2
, 2z)(log q)1+ε (line 3, algorithm 5)

+ L(1
2
, 2z)(log qn)1+ε (line 4, algorithm 5)

= L(1
2
, 1

4z
) + (log `+ L(1

2
, 2z))1+ε + L(1

2
, 3z) + L(1

2
, 2z)(log qn)1+ε.

When |∆| is large, we may impose the reasonable assumption that log(`) � L(1
2
, z)

and log(qn)� L(1
2
, z). In this case, the running time of Algorithm 5 is dominated by the

expression L(1
2
, 1

4z
) + L(1

2
, 3z) = L(1

2
,max( 1

4z
, 3z)), which attains a minimum at z = 1

2
√

3
.

Taking this value of z, we find that the running time of Algorithm 5 is equal to L|∆|(
1
2
,
√

3
2

).
Since the maximum value of |∆| ≤ |∆π| = 4q − t2 is 4q, we can alternatively express this

running time as simply Lq(
1
2
,
√

3
2

).

In the general case, log(`) and log(qn) might be non-negligible compared to L(1
2
, z).

This can happen in one of two ways: either |∆| is small, or (less likely) ` is very large
and/or n is large. When this happens, we can still bound the running time of Algorithm 5
by taking z = 1

2
√

3
in the foregoing calculation, although such a choice may fail to be

optimal. We then find that the running time of Algorithm 5 is bounded above by

(log(`) + L(1
2
, 1√

3
))1+ε + L(1

2
,
√

3
2

) + L(1
2
, 1√

3
)(log qn)1+ε.

5.7 The Main Theorem

We summarize our results in the following theorem:

Theorem 5.7.1. Let E/Fq be an ordinary elliptic curve with Frobenius πq, given by a
Weierstrass equation, and let P ∈ E(Fqn) be a point on E. Let ∆ = disc(End(E)) be
given. Assume that [End(E) : Z[πq]] and #E(Fqn) are coprime, and let L = (`, c + dπq)
be an End(E)-ideal of prime norm ` 6= char(Fq) not dividing the index [End(E) : Z[πq]].
Under the heuristics stated in Section 5.5, Algorithm 5 computes the unique elliptic curve
E ′ such that there exists a normalized isogeny φ : E → E ′ with kernel E[L]. Furthermore,
it computes the x-coordinate of φ(P ) if End(E) does not equal Z[i] or Z[ζ3] and the square,
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respectively cube, of the x-coordinate of φ(P ) otherwise. The running time of the algorithm
is bounded above by

(log(`) + L(1
2
, 1√

3
))1+ε + L(1

2
,
√

3
2

) + L(1
2
, 1√

3
)(log qn)1+ε.

The running time of the algorithm is subexponential in log |∆|, and polynomial in log(`),
log(q), and n.

5.8 Examples

In this section we provide a few examples of how our algorithm works.

5.8.1 Small example

Let p = 1010 + 19 and let E/Fp be the curve y2 = x3 + 15x + 129. Then E(Fp) has
cardinality 10000036491 = 3 · 3333345497 and trace t = −36471. To avoid any bias in the
selection of the prime `, we set ` to be the smallest Elkies prime of E larger than p/2,
namely ` = 5000000029. We will evaluate the x-coordinate of φ(P ), where φ is an isogeny
of degree `, and P is chosen arbitrarily to be the point (5940782169, 2162385016) ∈ E(Fp).
We remark that, although this example is designed to be artificially small for illustration
purposes, the evaluation of this isogeny would already be infeasible if we were using prior
techniques based on modular functions of level `.

The discriminant ∆ of E is ∆ = t2− 4p = −38669866235. Set w = 1+
√

∆
2

and O = O∆.
The quadratic form (5000000029,−2326859861, 270713841) represents a prime ideal L of
norm `, and we show how to calculate the isogeny φ having kernel corresponding to E[L].
Using an implementation of Algorithm 4 in MAGMA [mag], we find in under one second the
relation L = ( β

m
) ·p19 ·p24

31 where β = 588048307603210005w−235788727470005542279904,
m = 19 · 3124, p19 = (19, 2w + 7), and p31 = (31, 2w + 5). Using this factorization, we
can then evaluate φ : E → E ′ using the latter portion of Algorithm 5. We find that
E ′ is the curve with Weierstrass equation y2 = x3 + 3565469415x + 7170659769, and
φ(P ) = (7889337683,±3662693258). We omit the details of these steps, since this portion
of the algorithm is identical to the algorithm of Bröker, Charles and Lauter, and the
necessary steps are already extensively detailed in their article [BCL08].

We can check our computations for consistency by performing a second computa-
tion, starting from the curve E ′ : y2 = x3 + 3565469415x + 7170659769, the point P ′ =
(7889337683, 3662693258) ∈ E ′(Fp), and the conjugate ideal L̄, which is represented by the
quadratic form (5000000029, 2326859861, 270713841). Let φ̄ : E ′ → E ′′ denote the unique
normalized isogeny with kernel E ′[L̄]. Up to a normalization isomorphism ι : E → E ′′, the
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isogeny φ̄ should equal the dual isogeny φ̂ of φ, and the composition φ̄(φ(P )) should yield
ι(`P ). Indeed, upon performing the computation, we find that E ′′ has equation

y2 = x3 + (15/`4)x+ (129/`6),

which is isomorphic to E via the isomorphism ι : E → E ′′ defined by ι(x, y) = (x/`2, y/`3),
and

φ̄(φ(P )) = (3163843645, 8210361642) = (5551543736/`2, 6305164567/`3),

in agreement with the value of `P , which is (5551543736, 6305164567).

5.8.2 Medium example

Let E be the ECCp-109 curve [cerb] from the Certicom ECC Challenge [cera], with equation
y2 = x3 + ax+ b over Fp where

p = 564538252084441556247016902735257

a = 321094768129147601892514872825668

b = 430782315140218274262276694323197

As before, to avoid any bias in the choice of `, we set ` to be the least Elkies prime greater

than p/2, and we define w = 1+
√

∆
2

where ∆ = disc(End(E)). Let L be the prime ideal
of norm ` in End(E) corresponding to the reduced quadratic form (`, b, c) of discriminant
∆, where b = −105137660734123120905310489472471. For each Elkies prime p, let pp
denote the unique prime ideal corresponding to the reduced quadratic form (p, b, c) where
b ≥ 0. Our smoothness bound in this case is N = L(1

2
, 1

2
√

3
) ≈ 200. Using Sutherland’s

smoothrelation package [Sut], which implements the FindRelation algorithm of [BS09],
one finds in a few seconds (using an initial seed of 0) the relation L =

(
β
m

)
I, where

I = p̄72
7 p̄100

13 p̄14
23p̄

2
47p̄

2
73p̄103p179p191

m = 772131002314472732103117911911

and

β = 3383947601020121267815309931891893555677440374614137047492987151\
2226041731462264847144426019711849448354422205800884837

− 1713152334033312180094376774440754045496152167352278262491589014\
097167238827239427644476075704890979685 · w
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We find that the codomain E ′ of the normalized isogeny φ : E → E ′ of kernel E[L] has
equation y2 = x3 + a′x+ b′ where

a′ = 84081262962164770032033494307976

b′ = 506928585427238387307510041944828

and that the base point

P = (97339010987059066523156133908935, 149670372846169285760682371978898)

of E given in the Certicom ECC challenge has image

(450689656718652268803536868496211,±345608697871189839292674734567941).

under φ. As with the first example, we checked the computation for consistency by using
the conjugate ideal.

5.8.3 Large example

Let E be the ECCp-239 curve [cerb] from the Certicom ECC Challenge [cera]. Then E
has equation y2 = x3 + ax+ b over Fp where

p=862591559561497151050143615844796924047865589835498401307522524859467869

a=820125117492400602839381236756362453725976037283079104527317913759073622

b=545482459632327583111433582031095022426858572446976004219654298705912499

Let L be the prime ideal whose norm is the least Elkies prime greater than p/2 and
whose ideal class is represented by the quadratic form (`, b, c) with b ≥ 0. We have
N = L(1

2
, 1

2
√

3
) ≈ 5000, and one finds in a few hours using smoothrelation [Sut] that L is

equivalent to

I = p̄2
7p11p19p

2
37p̄

2
71p̄131p211p̄389p̄433p̄467p̄

18
859p863p̄1019p̄1151p̄1597p̄

6
2143p̄

5
2207p̄3359

where each ideal pp is represented by the reduced quadratic form (p, b, c) having b ≥ 0
(this computation can be reconstructed with [Sut] using the seed 7). The quotient L/I is
generated by β/m where m = Norm(I) and β is

−923525986803059652225406070265439117913488592374741428959120914067053307\
4585317− 917552768623818156695534742084359293432646189962935478129227909w.

Given this relation, evaluating isogenies of degree ` is a tedious but routine computation
using Elkies-Atkin techniques, described in Chapter 3. Although we do not complete it
here, the computation is well within the reach of present technology; indeed, Bröker et
al. [BLS10] have computed classical modular polynomials mod p of level up to 20000, well
beyond the largest prime of 3389 appearing in our relation.
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5.9 Finding Equations in Quasi-Optimal Time

Given two elliptic curves E and E ′ over Fq admitting a normalized isogeny φ : E → E ′

of degree `, the equation of φ as a rational function contains O(`) coefficients. Bostan
et al. [BMSS08] have published an algorithm which produces this equation, given E, E ′,
and `. Their algorithm has running time O(`1+ε), which is quasi-optimal given the size
of the output. Using our algorithm, it is possible to compute E ′ from E and ` in time
log(`)L|∆|(

1
2
,
√

3
2

) for large `. Hence the combination of the two algorithms can produce the
equation of φ within a quasi-optimal running time of O(`1+ε) for `� q, given only E and
` (or E and L), without the need to provide E ′ in the input.
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Chapter 6

A Subexponential Algorithm
Assuming Only GRH

In this chapter we present a variant of the algorithm from the previous chapter. Our
variant improves on the original algorithm in the sense that we remove all heuristic as-
sumptions except GRH. In practice the new algorithm is slower, although asymptotically it
has the same running time as before, with the same constants in the exponents. The main
difference is that the exponent bounds in the new algorithm (Step 4 of Algorithm 7) are
optimized for provability rather than performance. Portions of this chapter are included
in a preprint [CJS10] which represents joint work with Andrew Childs and David Jao.

6.1 Isogeny Graphs Under GRH

Our runtime analysis in Section 6.2 relies on the following result which states, roughly, that
random short products of small primes in Cl(O∆) yield nearly uniformly random elements
of Cl(O∆), under GRH.

Theorem 6.1.1. Let O∆ be an imaginary quadratic order of discriminant ∆ < 0 and
conductor c. Set G = Cl(O∆). Let B and x be real numbers satisfying B > 2 and
x ≥ (ln |∆|)B. Let Sx be the multiset A ∪ A−1 where

A = {[p] ∈ G : gcd(c, p) = 1 and Norm(p) ≤ x is prime}.

Then, assuming GRH, there exists a positive absolute constant C > 1, depending only on
B, such that for all ∆, a random walk of length

t ≥ C
ln |G|

ln ln |∆|
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in the Cayley graph Cay(G,Sx) from any starting vertex lands in any fixed subset S ⊂ G

with probability at least 1
2
|S|
|G| .

Proof. Apply Corollary 1.3 of [JMV09] with the parameters

• K = the field of fractions of O∆

• G = Cl(O∆)

• q = |∆|.

Observe that by Remark 1.2(a) of [JMV09], Corollary 1.3 of [JMV09] applies to the
ring class group G = Cl(O∆), since ring class groups are quotients of narrow ray class
groups [Cox89, p. 160]. By Corollary 1.3 of [JMV09], Theorem 6.1.1 holds for all suffi-
ciently large values of |∆|, i.e., for all but finitely many |∆|. To prove the theorem for all
|∆|, simply take a larger (but still finite) value of C.

Corollary 6.1.2. Theorem 6.1.1 holds even if the definition of the set A is changed to

A = {[p] ∈ G : gcd(m∆, p) = 1 and Norm(p) ≤ x is prime}

where m is any integer having at most O(x1/2−ε log |∆|) prime divisors.

Proof. The alternative definition of the set A differs from the original definition by no
more than O(x1/2−ε log |∆|) primes. As indicated in [JMV09, p. 1497], the contribution of
these primes can be absorbed into the error term O(x1/2 log(x) log(xq)), and hence does
not affect the conclusion of the theorem.

6.2 Evaluating Isogenies Under GRH

In this section, we describe a new algorithm to evaluate the horizontal isogeny correspond-
ing to a given kernel. In contrast with the algorithm of Chapter 5, this algorithm relies
on no heuristic assumptions other than GRH. In terms of performance, this algorithm is
slightly slower, although its running time is still Lq(

1
2
,
√

3
2

). The algorithm takes as input
a discriminant ∆, an elliptic curve E, a point P , and a kernel ideal L, and outputs φ(P ),
where φ : E → E ′ is the normalized horizontal isogeny corresponding to L.

For convenience, we denote Lmax{|∆|,q}(
1
2
, c) by L(1

2
, c).

In this section, we describe the steps in our algorithm. In Section 6.3 we show that,
under GRH, our algorithm has a running time of Lq(

1
2
,
√

3
2

), which is subexponential in the
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Algorithm 6 Computing a factor base

Input: An imaginary quadratic discriminant ∆ < 0 and a parameter z
Output: A factor base F , or nil

1: Set L← dL(1
2
, z)e, k ← dlnLe, F ← ∅

2: for all primes p < L do
3: if kronecker(∆, p) = 1 then
4: i← 0
5: repeat
6: i← i+ 1
7: g ← primeForm(∆, p)
8: until i > 2k or g 6= nil

9: if g 6= nil then
10: F ← F ∪ {g, gσ}
11: else
12: Return nil

13: end if
14: end if
15: end for
16: Return F

input size. We stress that although similar algorithms have appeared in several previous
works, our algorithm is the first to achieve provably subexponential running time without
appealing to any conditional hypotheses other than GRH.

We present our algorithm in several stages.

Computing a factor base. Algorithm 6 computes a factor base for Cl(O∆) consisting
of all split primes up to L(1

2
, z). The optimal value of the parameter z is determined in

Section 6.3. The algorithm is based on, and indeed almost identical to, Algorithm 11.1
in [BV07]. The subroutine primeForm [BV07, §3.4] calculates a quadratic form correspond-
ing to a prime ideal of norm p, and the subroutine kronecker [BV07, §3.4.3] calculates the
Kronecker symbol. The map σ denotes complex conjugation.

Computing a relation. Given a factor base F = {p1, . . . , pf} and an ideal class [b] ∈
Cl(O∆), Algorithm 7 produces a relation vector z = (z1, . . . , zf ) ∈ Zf for [b] satisfying
[b] = Fz := pz11 · · · p

zf
f , with the additional property that the L∞-norm |z|∞ of z is less

than O(ln |∆|) for some absolute implied constant (cf. Proposition 6.3.5). It is similar to
Algorithm 11.2 in [BV07], except that we impose a constraint on |v|∞ in line 1 in order
to keep |z|∞ small, and (for performance reasons) we use Bernstein’s algorithm instead of
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Algorithm 7 Computing a relation

Input: A discriminant ∆ < 0, a parameter z, a factor base F of size f , an ideal class
[b] ∈ Cl(O∆), and an integer t satisfying C ln |Cl(O∆)|

ln ln |∆| ≤ t ≤ C ln |∆| where C is the

constant of Theorem 6.1.1/Corollary 6.1.2
Output: A relation vector z ∈ Zf such that [b] = [Fz], or nil

1: Set S ← ∅, P ← {Norm(p) : p ∈ F}
2: Set `← L(1

2
, 1

4z
)

3: for i = 0 to ` do
4: Select v ∈ Zf0..|∆|−1 uniformly at random subject to the condition that |v|∞ = t

5: Calculate the reduced ideal av in the ideal class [b] · [Fv]
6: Set S ← S ∪ Norm(av)
7: end for
8: Using Bernstein’s algorithm [Ber], find a P-smooth element Norm(av) ∈ S (if there

exists one), or else return nil

9: Find the prime factorization of the integer Norm(av)
10: Using Seysen’s algorithm [Sey87, Thm. 3.1] on the prime factorization of Norm(av),

factor the ideal av over F to obtain av = Fa for some a ∈ Zf
11: Return z = a− v

trial division to find smooth elements.

We remark that Corollary 9.3.12 of [BV07] together with the restriction C > 1 in
Theorem 6.1.1 implies that there exists a value of t satisfying the inequality in Algorithm 7.

Computing φ(P ). Algorithm 8 evaluates φ(P ), where φ : E → E ′ is the normalized
isogeny corresponding to the kernel ideal L.

6.3 Running Time Analysis

Here we determine the theoretical running time of Algorithm 8, as well as the optimal
value of the parameter z in Algorithm 6. As before, these two quantities depend on each
other, and hence both are calculated simultaneously.

Proposition 6.3.1. Algorithm 6 takes time L(1
2
, z) and succeeds with probability at least

1/4.

Proof. Since Algorithm 6 is identical to Algorithm 11.1 in [BV07], the proposition follows
from Lemmas 11.3.1 and 11.3.2 of [BV07].
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Algorithm 8 Evaluating prime degree isogenies

Input: A discriminant ∆ < 0, an elliptic curve E/Fq with End(E) = O∆, a point P ∈
E(Fq) such that [End(E) : Z[Frobq]] and #E(Fq) are coprime, and an End(E)-ideal
L = (`, c + dFrobq) of prime norm ` 6= char(Fq) not dividing the index [End(E) :
Z[Frobq]].

Output: The unique elliptic curve E ′ admitting a normalized isogeny φ : E → E ′ with
kernel E[L], and the x-coordinate of φ(P ) for ∆ 6= −3,−4 or the square (resp. cube)
of the x-coordinate otherwise.

1: Using Algorithm 6, compute a factor base; discard any primes dividing qn to obtain a
new factor base F = {p1, p2, . . . , pf}

2: Using Algorithm 7 with any valid choice of t, compute a relation z ∈ Zf such that
[L] = [Fz] = [pz11 pz22 · · · p

zf
f ]

3: Compute a sequence of isogenies (φ1, . . . , φs) such that the composition φc : E → Ec
of the sequence has kernel E[pz11 pz22 · · · p

zf
f ], using the method of [BCL08, §3]

4: Using Cornacchia’s algorithm, find a generator α ∈ O∆ of the fractional ideal
L/(pz11 pz22 · · · p

zf
f )

5: Evaluate φc(P ) ∈ Ec(Fq)
6: Write α = (u + v Frobq)/z, compute the isomorphism η : Ec

∼→ E ′ with η∗(ωE′) =
(u/z)ωEc , and compute Q = η(φc(P ))

7: Compute z−1 mod #E(Fqn) and R = (z−1(u+ v Frobq))(Q)
8: Put r = x(R)|O

∗
∆|/2 and return (E ′, r)

Proposition 6.3.2. The running time of Algorithm 7 is at most L(1
2
, z) + L(1

2
, 1

4z
), as-

suming GRH.

Proof. Line 1 of the algorithm requires L(1
2
, z) norm computations. Line 2 is negligi-

ble. Line 5 requires C ln |∆| multiplications in the class group, each of which requires
O((ln |∆|)1+ε) bit operations [Sch91]. Hence the for loop in lines 3–7 has running time
L(1

2
, 1

4z
). Bernstein’s algorithm [Ber] in line 8 has a running time of b(log2 b)

2+ε where
b = L(1

2
, z) + L(1

2
, 1

4z
) is the combined size of S and P . Finding the prime factorization

in line 9 costs L(1
2
, z) using trial division, and Seysen’s algorithm [Sey87, Thm. 3.1] in line

10 has negligible cost under ERH (and hence GRH). Accordingly, we find that the running
time is

L(1
2
, z) +O((ln |∆|)2+ε) · L(1

2
, 1

4z
) + b(log2 b)

2+ε + L(1
2
, z) = L(1

2
, z) + L(1

2
, 1

4z
),

as desired.

Proposition 6.3.3. Under GRH, the probability that a single iteration of the for loop of
Algorithm 7 produces an F-smooth ideal av is at least L(1

2
,− 1

4z
).
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Proof. We adopt the notation used in Theorem 6.1.1 and Corollary 6.1.2. Apply Corol-
lary 6.1.2 with the values m = qn, B = 3, and x = f = L(1

2
, z)� (ln |∆|)B. The ideal class

[b] · [Fv] is equal to the ideal class obtained by taking the walk of length t in the Cayley
graph Cay(G,Sx), having initial vertex [b], and whose edges correspond to the nonzero
coordinates of the vector v. Hence a random choice of vector v under the constraints
of Algorithm 7 yields the same probability distribution as a random walk in Cay(G,Sx)
starting from [b].

Let S be the set of reduced ideals in G with L(1
2
, z)-smooth norm. By [BV07, Lemma

11.4.4], |S| ≥
√
|∆|L(1

2
,− 1

4z
). Hence, by Corollary 6.1.2, the probability that av lies in S

is at least
1

2

|S|
|G|

=
1

2
·
√
|∆|
|G|

· L(1
2
,− 1

4z
).

Finally, Theorem 9.3.11 of [BV07] states that

√
|∆|
|G| ≥

1
ln |∆| . Hence the probability that av

is F -smooth is at least
1

2
· 1

ln |∆|
· L(1

2
,− 1

4z
) = L(1

2
,− 1

4z
).

The result follows.

Corollary 6.3.4. Under GRH, the probability that Algorithm 7 succeeds is at least 1− 1
e
.

Proof. Algorithm 7 loops through ` = L(1
2
, 1

4z
) vectors v, and by Proposition 6.3.3, each

such choice of v has an independent 1/` chance of producing a smooth ideal av. Therefore
the probability of success is at least

1−
(

1− 1

`

)`
> 1− 1

e
,

as desired.

The following proposition shows that the relation vector z produced by Algorithm 7 is
guaranteed to have small coefficients.

Proposition 6.3.5. Any vector z output by Algorithm 7 satisfies |z|∞ < (C + 1) ln |∆|.

Proof. Since z = a− v, we have |z|∞ ≤ |a|∞+ |v|∞. But |v|∞ ≤ C ln |∆| by construction,
and the norm of av is less than

√
|∆|/3 [BV07, Prop. 9.1.7], which implies

|a|∞ < log2

√
|∆|/3 < log2

√
|∆| < ln |∆|.

This completes the proof.
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Finally, we analyze the running time of Algorithm 8.

Theorem 6.3.6. Under GRH, Algorithm 8 succeeds with probability at least 1
4
(1− 1

e
) and

runs in time at most

L(1
2
, 1

4z
) + max{L(1

2
, 3z), L(1

2
, z)(ln q)3+ε}.

Proof. We have shown that Algorithm 6 has running time L(1
2
, z) and success probability

at least 1/4, and Algorithm 7 has running time L(1
2
, z)+L(1

2
, 1

4z
) and success probability at

least 1− 1
e
. Assuming that both these algorithms succeed, the computation of the individual

isogenies φi in line 3 of Algorithm 8 proceeds in one of two ways, depending on whether the
characteristic of Fq is large [BCL08, §3.1] or small [BCL08, §3.2]. The large characteristic
algorithm fails when the characteristic is small, whereas the small characteristic algorithm
succeeds in all situations, but is slightly slower in large characteristic. For simplicity, we
consider only the more general algorithm.

The general algorithm proceeds in two steps. In the first step, we compute the kernel
polynomial of the isogeny. The time to perform one such calculation is
O((`(ln q) max(`, ln q)2)1+ε) in all cases ([LS08, Thm. 1] for characteristic ≥ 5 and [def,
Thm. 1] for characteristic 2 or 3). In the second step, we evaluate the isogeny using Vélu’s
formulae [Vél71]. This second step has a running time of O(`2+ε(ln q)1+ε) [IJ, p. 214].
Hence the running time of line 3 is at most

|z|∞(O((`(ln q) max(`, ln q)2)1+ε) +O(`2+ε(ln q)1+ε)).

By Proposition 6.3.5, this expression is at most

(C + 1)(ln |∆|)(max{L(1
2
, 3z), L(1

2
, z)(ln q)3+ε}+ L(1

2
, 2z)(ln q)1+ε)

= max{L(1
2
, 3z), L(1

2
, z)(ln q)3+ε}.

Since the running time of all other lines in Algorithm 8 is bounded by that of line 3, the
theorem follows.

Corollary 6.3.7. Under GRH, Algorithm 8 has a worst-case running time of at most
Lq(

1
2
,
√

3
2

).

Proof. Using the inequality |∆| ≤ 4q, we may rewrite Theorem 6.3.6 in terms of q. We
obtain

L(1
2
, 1

4z
) + max{L(1

2
, 3z), L(1

2
, z)(ln q)3+ε} ≤ Lq(

1
2
, 1

4z
+ 3z).

The optimal choice of z = 1
2
√

3
yields the running time bound of Lq(

1
2
,
√

3
2

).
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Chapter 7

Future Work

There are a number of directions in which further research in this area can proceed. The
fundamental problem is to be able to efficiently evaluate isogenies between elliptic curves.
There are different instances of this problem, which depend on the input information. One
type of input is two isogenous elliptic curves, and we want to efficiently evaluate an isogeny
between them. The second type is the one we consider in this thesis: given the starting
elliptic curve and the degree of the isogeny, we want to find the image curve and evaluate
the isogeny.

By the term efficiently, we usually mean polynomial time; however in some cases it
seems that achieving polynomial running time may not be possible using a classical com-
puter, although we are not aware of any evidence (such as reductions from other hard
problems) that this is the case. Currently most of these problems have exponential run-
ning times, and improving this by lowering the exponent or achieving subexponential time
represents significant progress.

Thus as one of our future goals, we can try to speed up the presented algorithm even
further. We believe that a polynomial algorithm is not possible for this problem in the
classical setting. However, using quantum algorithms, it could be possible to design a
polynomial time quantum algorithm for computing isogenies. This may be hard, since few
computational problems admit exponential quantum speedups, but we believe it may be
possible. The basic approach is to replace the random walks in this work with quantum
walks. Childs et al. [CCD+03] have shown that random quantum walks in certain types of
graphs can exponentially speed up classical algorithms based on random walks.

Another problem to consider for further research is to try finding a subexponential al-
gorithm for evaluating isogenies, when the input is two isogenous elliptic curves. Currently
the best known algorithm for this is exponential in running time, although subexponential
time quantum algorithms have been developed based on this work [CJS10]. This problem

62



has been analyzed already (for example in [JMV05]), but previous analyses were limited
to low degree isogenies. This problem can be reanalyzed in view of the new algorithm pre-
sented in this thesis. In addition, we can also attempt to find a polynomial time quantum
algorithm that solves this problem.

Notice how we considered only horizontal isogenies. For future work vertical isogenies
can be explored. At present this would only be of theoretical interest since no exam-
ples of pairs of such curves are known. The current fastest algorithm known for solving
this problem has a running time complexity of O(n3/2) (where n is the degree of the
isogeny) [GHS02, Gal99]. To start with, it would be a good idea to explore the possibility
of using new isogeny constructions to construct examples of such curves. We do not believe
that a subexponential algorithm is possible; however, improving this even to o(n1/2) would
imply that a non-generic DLOG attack on some curve extends to all curves isogenous to
it.

One more direction for future work would be to consider supersingular curves. Although
supersingular curves are impractical for many cryptographic applications, there do exist
applications of isogenies where supersingular curves can be used. Thus it would be worth
trying to develop a similar algorithm to the one presented in this thesis in the context
of supersingular curves. The class group of an ordinary curve is abelian and acts on the
corresponding elliptic curves. For supersingular curves, the corresponding class group is
non-abelian and has a quaternion algebra structure. Similar techniques can be applied as
in the presented algorithm, adjusting them to work with non-abelian structures.

Thus, in this area there is still a great amount of possible research that can be per-
formed. Solving the above problems should give a rise to a number of cryptographic
applications, and improve our understanding of isogenies.
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