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Abstract 

Since McClelland and Rumelhart (1981) introduced the concept of interactive 

activation (IA) to the field of visual word recognition, IA has been adopted by all of the major 

theoretical models of reading aloud. This widespread adoption of IA has not been met with a 

close examination of the need for the principle features of this processing approach. In 

particular, IA assumes feedback from later processing modules to earlier processing modules. 

Though there exist data that can be explained by such feedback mechanisms, and indeed IA 

may be an intuitive approach to complex tasks like reading, little effort has been made to 

explain these same phenomena without feedback. In the present study I apply Occam’s razor to 

the most successful model of reading aloud (CDP+; Perry, Ziegler, & Zorzi, 2007) and test 

whether feedback is needed to simulate any of the benchmark phenomena identified by Perry 

et al. (2007) and Coltheart, Rastle, Perry, Langdon and Ziegler (2001). I find that the data 

currently do not require any feedback mechanisms in reading aloud, and thus conclude that 

modelers in reading aloud have been too quick to adopt the principles of IA. 
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Overview 

Theorizing about language processing has a history extending well over a century 

(Lichtheim, 1885). In contrast, computational modeling of visual word recognition is 

necessarily younger, but the last 30 years has seen rapid development of increasingly 

complicated models. In a very influential pair of articles, McClelland and Rumelhart (1981; 

Rumelhart and McClelland, 1982) set out the principles of a processing approach they called 

“interactive activation” (IA). In IA models, special purpose processing modules exchange 

information back and forth in a continuous fashion. Since its introduction, IA has heavily 

influenced research in psychology: these seminal articles have more than 1,400 citations 

combined and more than 2,200 records in PsycInfo include the phrase “interactive activation”. 

In particular, IA is ubiquitous in theories of visual word recognition and reading aloud, and has 

had considerable success there: computational versions of these theories can simulate a wide 

range of experimental data (Coltheart, Rastle, Perry, Langdon & Ziegler, 2001; Perry, Ziegler, 

& Zorzi, 2007; Seidenberg & McClelland, 1989; Plaut, McClelland, Seidenberg, & Patterson, 

1996; Plaut & Booth, 2000, 2006; Harm & Seidenberg, 1999, 2004; Woollams, Lambon 

Ralph, Plaut, & Patterson, 2007). Curiously, this success has not been associated with any 

examination of which properties of IA are strictly necessary for the simulation of human 

performance (but see Besner, 2006; Reynolds & Besner, 2002, 2004; O’Malley & Besner, 

2008; and Norris, McQueen, and Cutler, 2000, who examine the role of feedback in the context 

of models of speech recognition). This study directly challenges the need for one (possibly the 

key) feature of IA in arguably the most successful of these models to date (CDP+, Perry et al., 

2007). Specifically, it addresses the question of whether or not feedback is ever needed in 

CDP+ and if so, where in the reading system is it necessary? 
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The study will begin with a review of the history of computational modeling. Coltheart 

et al. (2001) have already provided an extensive overview of both the pre-computational and 

computational history of computational modeling, so I will provide a summary of the history 

that emphasizes only those aspects of the development directly relevant to the present research. 

Next I will turn my attention to evaluating the role that feedback plays in reading aloud, first 

by examining general performance measures such as accuracy in reading aloud words and non-

words and the amount of variability in human performance that is captured by these models. 

The bulk of the study, however, will be concerned with examining the role that feedback plays 

in CDP+’s ability to simulate a broad range of phenomena identified as benchmarks by Perry 

et al. (2007) and Coltheart et al. (2001). 

Processing in the Reading System 

There is little doubt that processing in the reading system is modular in the sense that it 

consists of a set of interconnected components, each specialized to handle one aspect of visual 

word recognition (feature detection, letter identification, word identification, semantics). 

Though the internal structure of these modules and their arrangement is still hotly debated (see 

the section entitled “Current Models” for the two dominant theories), the idea of modularity 

itself has been adopted by most researchers and is well-supported by data from patients with 

brain trauma who have been found to have a wide range of highly specific deficits (for 

example, phonological dyslexics who have difficulty reading aloud unfamiliar letter strings 

like FRANE, with little or no difficulty reading aloud known words; Derouesné & Beauvois, 

1985; Funnell, 1983; but see Dunn & Kirsner, 1988, for a caution in interpreting such 

dissociations). What is less clear is how information is communicated between the special 

purpose modules. Three general approaches have been proposed. 
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Discrete Stages 

One possibility is that reading is accomplished in a series of discrete stages. In a staged 

processing approach, each module completely processes its input and then passes the results of 

that processing on to subsequent modules. Sternberg (1969; 1998; 2001; see also Roberts & 

Sternberg, 1993) demonstrated that stages as a general framework could provide a simple and 

clear interpretation of a broad range of experimental data.  Stages of processing approaches 

also enjoy considerable flexibility in terms of the internal operation of each stage. As far as 

internal processing dynamics go, each stage is a black box that accomplishes its task however 

the theorist sees fit. The connections between stages are only relevant for input and output. I 

know of no currently implemented model of visual word recognition or reading aloud that 

includes any staged processing.1 

Cascaded Processing 

McClelland (1979) introduced the notion of cascaded processing to visual word 

recognition (and cognitive psychology more broadly). In cascaded processing, processing is no 

longer discrete. Rather, activation from each module is continuously passed on to subsequent 

modules in much the same way that water would flow down a flight of stairs. The internal 

structure of modules is also more rigidly defined: McClelland formalized the mathematics of 

nodes that accumulate activation based on the connections between them. It is this activation 

that “cascades” from one module to another. Though in the earliest moments of processing, the 

modules may provide weak or ambiguous activation output, the information passed from each 

module to the next becomes stronger and less ambiguous as processing progresses. McClelland 

(1979) demonstrated that, like the discrete staged approach, cascaded models could produce 

the overadditive and additive data patterns observed in many human experiments and provided 
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guidance in interpreting these results (though he did not address underadditive patterns, such as 

those observed in Besner, O’Malley, & Robidoux, 2010). 

Interactive Activation 

Shortly after McClelland (1979) introduced cascaded processing, McClelland and 

Rumelhart (1981; Rumelhart & McClelland, 1982) introduced the Interactive Activation Model 

(abbreviated to IAM). In their words, the IAM assumes “that ‘top-down’ or ‘conceptually 

driven’ processing works simultaneously and in conjunction with ‘bottom-up’ or ‘data driven’ 

processing to provide a sort of multiplicity of constraints that jointly determine what we 

perceive.” (McClelland & Rumelhart, 1981, p. 378)  Simply described, IA models engage in 

bidirectional cascaded processing between modules through the addition of feedback 

connections (see Figure 1). In this way, later modules simultaneously receive activation from, 

and reinforce processing in, earlier modules (IA also includes within-level inhibitory 

connections, though these will not be considered further). Though McClelland and Rumelhart 

(1981) developed their IAM to account for a specific phenomenon (the word superiority effect 

– more on this later), McClelland (1987) proposed that the IA processing approach is a useful 

general account of language processing because it allows later stages of processing to assist 

earlier stages of processing in resolving ambiguities. McClelland and Rumelhart (1981) had a 

tremendous impact on the field, and IA is now a fundamental component of the most 

influential models of visual word recognition (Coltheart et al., 2001; Perry, Ziegler, & Zorzi, 

2007; Seidenberg & McClelland, 1989; Plaut, McClelland, Seidenberg, & Patterson, 1996; 

Plaut & Booth, 2000, 2006; Harm & Seidenberg, 2004). 
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Figure 1. Interactive Activation Model of early visual word recognition processes. (Adapted 
from McClelland & Rumelhart, 1981) 
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Whereas McClelland (1987) has since argued that the framework has broader utility, 

the IAM’s promise was initially demonstrated by its ability to simulate a specific phenomenon: 

the Word Superiority Effect (WSE). I turn now to a consideration of this effect, and the various 

computational models that account for it. 

Accounts of the Word Superiority Effect 

Reicher (1969) demonstrated that identification of which of two letters appeared in a 

brief masked display (e.g., D vs. K) was more accurate when the letter appeared as part of a 

known word (e.g., WORD) than when it appeared in other contexts [D alone, a display with two 

letters (G  D), or in a scrambled word (OWRD)]. After Reicher’s initial demonstration, this 

effect was closely scrutinized in a number of articles (e.g., Wheeler, 1970; Adams, 1979; 

McClelland, 1976; Massaro & Klitzke, 1979; Aderman & Smith, 1971; Johnston, 1978) and 

the effect came to be known as the WSE. As with many phenomena, the details of the WSE 

became more complex as researchers examined it more closely, but the key finding remained: 

letters were more easily identified when embedded in words, than when presented in isolation 

or embedded in nonwords (though see Aderman & Smith, 1971, for evidence of an advantage 

for letters embedded in pronounceable nonwords over other types of nonword strings). A 

number of different computational models have been proposed that account for this effect. A 

closer look at these models follows; with particular emphasis on the role feedback plays in 

their accounts. 

Interactive Activation Model. 

In McClelland and Rumelhart’s (1981) IAM, the decision about which letter was 

presented is made based on activation in the letter level. The advantage for letters presented as 

part of a word arises because the word-level entry for the word is activated, which in turns 



 
 

7 

feeds reinforcing activation back to the letter level. When a letter is presented in isolation (or as 

part of a nonsense letter string) there is little reinforcing feedback from the word level. This 

results in the letter level entry accumulating activation more rapidly in the word condition than 

in the other conditions. This increase in the amount of activation coming into the letter level 

reduces the ambiguity and results in the WSE: more accurate responses when the letters are 

embedded in words than when they are presented in isolation or in other nonword letter strings. 

In the IAM, identification of which letter is present in the Reicher-Wheeler display 

relies exclusively on information from the letter level. The WSE is the direct result of feedback 

from the word level to the relevant letters in the letter level. Thus, under the assumptions of the 

IAM, feedback is necessary to produce the WSE. However, there are other accounts of the 

WSE that do not rely on feedback. 

Activation-Verification Model 

In Paap, Newsome, McDonald, and Schvaneveldt’s (1982) Activation-Verification 

Model (AVM), information flows from the input to the letter-level then on to the word-level 

just as in the IAM. However, the AVM differs from the IAM in two very important ways: first, 

the AVM does not directly calculate activations of units. Rather, it relies on a matrix of the 

probability of confusing any two letters. These probabilities are assumed to be a proxy for the 

activations of the relevant representations. Second, there is no feedback mechanism in AVM, 

so that information about which word is present does not directly influence letter processing. 

The WSE arises because the decision about which letter was present is based on either the 

alphabetum (letter-level) or the lexicon (word-level) on each trial (but not both). The likelihood 

of a correct response is thus based on the conditional probabilities of a correct response from 

each level. The probability of a correct response based on letter-level information does not 
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change with the context (though it might with the specific stimulus), however, the probability 

of a correct response based on word-level information will be very low if no word is presented, 

and relatively high if the letter is embedded in a word. This increased accuracy on word trials 

in which the subject relies on word-level information results in the WSE.2 

Dual (Multiple) Read-Out Model 

Grainger and Jacobs’ (1994) Dual Read-Out Model (DROM; updated to the Multiple 

Read-Out Model, MROM; Grainger & Jacobs, 1996) is based on McClelland and Rumelhart’s 

(1981) IAM, but with a different decision-making process. Instead of relying exclusively on 

the letter-level for identifying letters, the DROM uses an approach analogous to the one 

proposed by Paap et al.’s (1982) AVM. Critically, Grainger and Jacobs (1994) reported 

simulations of their approach both with feedback enabled (as in the original IAM) and with the 

feedback disabled. Both models were successful at producing a WSE. This result is particularly 

relevant to the question of interest here: though the IAM was initially designed to simulate the 

WSE, the Grainger and Jacobs result provides an existence proof that feedback is not necessary 

to achieving this goal even within the IAM. Indeed, McClelland and Rumelhart (1981, p. 404) 

considered the option of a decision that relied on more than just letter-level information, but 

argued that a complicated decision making process wasn’t necessary due to the feedback in the 

IAM (they did not consider a model with no feedback). In a sense, the DROM and IAM 

approaches represent two alternatives to applying Occam’s Razor: McClelland and 

Rumelhart’s (1981) IAM opted for a simpler decision-making process at the cost of requiring 

feedback, whereas Grainger and Jacobs’ (1994) DROM showed that feedback can be 

eliminated at the cost of a more elaborate decision-making process. 
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Fuzzy Logic Model of Perception 

Massaro (1979) and Massaro and Cohen (1991) showed that the Fuzzy Logic Model of 

Perception (FLMP; Oden & Massaro, 1978), when applied to visual word recognition, can also 

produce a word superiority effect without need for a feedback mechanism. In the FLMP, 

pattern recognition (perception) is accomplished by three sequential processes: feature 

evaluation, feature integration, and decision. During feature evaluation, evidence for features is 

accumulated and features are deemed to be present to the extent that there is evidence for them 

(contrasted with the all or nothing view of feature detection in the IAM, AVM, and DROM). In 

feature integration, the “fuzzy” feature pattern is matched to prototypes to determine which 

stimuli are likely to be present, and finally, a decision process determines which of the 

potential items is present. Critical to the present discussion, the FLMP does not include a 

mechanism for feature integration to influence feature evaluation in the way that feedback 

allows the word level to influence letter level processing in the IAM. When applied to visual 

word recognition, the FLMP produces a WSE because the decision process makes use of 

information from the both the feature evaluation and feature integration processes to determine 

a response (in the same way that the AVM and DROM rely on multiple sources of 

information). When the letter is part of a word, the feature integration process provides a better 

match to the relevant word, and thus responses are more accurate when compared to a 

nonword, or letter-alone context. 

Elementary Perceiver and Memorizer 

Richman and Simon (1989) proposed a model of a very different sort. In the 

Elementary Perceiver and Memorizer (EPAM) decisions are made on the basis of a branching 

tree of choices that eventually terminates in a leaf that makes the response clear. When a 
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response cannot be made unambiguously, EPAM creates a new discriminating branch that 

eliminates the ambiguity. Over time, it learns how to accomplish the task it has been given. An 

EPAM network trained on letter discrimination can be designed to use both word and letter 

information to accurately make decisions. Though the structures diverge dramatically, this 

feature of EPAM is analogous to the approaches to letter identification used by the AVM, 

DROM, and FLMP. As with the other models, by using both word and letter information, 

EPAM is able to produce a robust WSE. Critically, EPAM does not rely on constructs such as 

“feed-forward” or “feed-back” in its design. 

I have described four very different computational models that are all capable of 

producing the WSE without the need for feedback (the AVM, the DROM, the FLMP, and the 

EPAM). What they all share in common is that the decision making process makes use of 

information from more than one source (i.e., from both feature/letter, and whole-word level 

information).  This contrasts with the IAM, where the assumption is that the decision process 

relies only on the letter-level, thus requiring feedback to produce the WSE. This is an 

important distinction in assumptions, but with no particular evidence to favor one view or the 

other, I am left to conclude that although the IAM provided one account of the WSE, and IA 

has since found its way into every theory of visual word recognition and reading aloud, 

feedback is not necessary to explain the WSE. This leaves open the question of whether or not 

feedback is necessary to explain any phenomena in reading aloud or visual word recognition, 

or if the current theories would do just as well without any feedback. This question is the focus 

of the remainder of this dissertation. 
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Figure 2. General structure of the dual-route class of models. The semantic system is denoted 
by dotted lines because no computational dual-route model implements it. 
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Figure 3. General structure of the Triangle class of models. 
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Current Models 

Currently the field of reading aloud is dominated by two classes of models: dual-route 

models such as the Dual Route Cascaded model (DRC; Coltheart et al. 2001) and the 

Connectionist Dual Process model (CDP+; Perry et al., 2007), and models based on the 

Triangle assumption (Seidenberg & McClelland, 1989; Plaut et al., 1996; Harm & Seidenberg, 

1999; Plaut & Booth, 2000; Woollams et al., 2007). These classes of models differ 

dramatically in both structure (or arrangement of modules; see Figure 2 for a depiction of dual-

route architectures, and Figure 3 for the Triangle class of modules) and in how knowledge is 

represented. 

Though the debate between these classes of models continues to rage (see for example 

the exchange between Patterson & Plaut, 2009; 2010; and Coltheart, 2010), the Triangle Model 

lags the dual-route models in terms of computational development, in that it does not simulate 

the same range of effects. In fact, there is no single implementation of the Triangle Model that 

incorporates all three modules fully inter-connected as the theory proposes (though the 

implementation by Harm & Seidenberg, 2004, comes close, lacking only the feedback from the 

phonological and semantic systems to the orthographic system). Consequently, it does not lend 

itself to further examination here. A second obstacle to testing the Triangle models is their 

availability: only Woollams et al. (2007) have made their model available on the Internet and it 

does not include a feedback component. 

Dual-Route Models 

The DRC and CDP+ models share much in common. Both models begin with a letter 

identification process (the letter level), which takes features as input and identifies each letter 
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in the presented letter string in parallel. The letter level consists of a set of units that encode the 

features from one letter position in the string. At this point the, the letter level feeds activation 

forward in two directions. This “forking” of the processing follows in the steps of Morton’s 

(1980) logogen model, where Morton argued that two independent routes are necessary to 

account for a double dissociation in acquired dyslexia: that some patients are able to read aloud 

words, but are impaired at reading aloud nonwords (phonological dyslexia), whereas others are 

able to read aloud nonwords but are impaired at reading exception words such as PINT 

(surface dyslexia). This dissociation is taken as evidence that there were at least two 

independent processes: one that could handle unfamiliar letter strings like FRANE, and another 

that could handle familiar letter strings such as PINT (but see Dunn & Kirsner, 1988). Both the 

DRC and CDP+ models trace their ancestry back to Morton’s model, and propose two 

independent routes for converting letter strings into phonology. 

Along the “lexical” route, the letter level activates an Orthographic Input Lexicon 

(OIL) which contains a single node storing the spelling of each word known to the network 

(e.g., F in the first letter position would activate OIL entries for FROG, FAST, FEAR, etc… and 

inhibit all other words). These OIL entries in turn feed activation back to the letter level 

(engaging in IA; e.g., FROG would activate F, R, O, and G in the first, second, third, and fourth 

letter positions respectively), and forward to the Phonological Output Lexicon (POL), which 

includes a single node for the pronunciation of each word known to the network. Here again, 

the model is engaged in IA with the POL feeding activation back to the OIL (e.g., FROG in the 

OIL would activate the /fɹɔg/3 entry in the POL and vice-versa). Finally, the POL feeds 

activation to a Phoneme Buffer where pronunciations are stored until the model is ready to 

respond. The Phoneme Buffer in turn feeds activation back to the POL, providing the third 
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(and final) locus of IA. This route is capable of reading aloud any letter string that is known to 

the network (e.g., FROG), but is unable to read aloud unfamiliar letter strings (such as FROP) 

as such letter strings do not have entries in the OIL. Both the DRC and CDP+ models include a 

semantic system in theory (see Figure 2), but neither implements semantics in their 

computational versions. 

The lexical routes of both dual-route models (DRC and CDP+) are identical in structure 

and processing dynamics (though the values of the parameters differ; see Table 1). Where the 

models diverge significantly is in the operation of the sublexical route. In both the DRC and 

CDP+ models, the sublexical route takes an input string and converts the string serially into 

phonology, passing the results on to the Phoneme Buffer (where it is combined with the results 

from the lexical route to produce a final pronunciation). 

The sublexical mechanism through which print is converted into sound differs 

dramatically between the two models. The DRC uses a set of modeler-specified rules to 

serially convert the string into phonological codes (e.g., a P in the first position activates /p/ in 

the first position in the Phoneme Buffer. If it is then followed by an H to produce PH, the sub-

lexical route stops supporting the activation of /p/ in the first position, and begins to activate /f/ 

instead).  In contrast to DRC’s codified set of rules, CDP+ uses a neural network that has been 

trained on a combination of rules and the corpus of words in the network, instead of a set of 

codified rules. Through the learning process, the network discovers the relationships between 

letter combinations and pronunciations.  

In both the DRC and CDP+, the sublexical route is capable of (indeed, necessary for) 

reading unfamiliar letter strings (e.g., FRAWG or FRAM). It is also capable of reading known 

words that match the expectations of the sublexical route (either the rules, or the learned 
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associations, as appropriate) (e.g., MINT). Where the sublexical route has difficulty is in 

pronouncing known words that violate the rules (e.g., PINT). The sublexical route in DRC 

virtually never reads these “irregular” words aloud correctly, whereas CDP+’s sublexical route 

has some success with these words due to its experience with them during the training process. 

However, reading these words aloud correctly generally relies on the participation of the 

lexical routes in both models. 

In Figure 2, IA is indicated by the double-headed arrows between the letter level and 

the OIL; the OIL and the POL; and the Phoneme Buffer and the POL. As indicated by the 

single-headed arrows, the sublexical route is engaged in feed-forward processing only, with no 

feedback connections from the sublexical route to the letter level, or from the Phoneme Buffer 

to the sublexical route. Though not clear from the figure, the neural network that underlies 

CDP+’s sublexical system also consists of only feed-forward processing (i.e., the simplified 

schematics do not mask any underlying feedback mechanisms). 
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Table 1. Parameters used by the default version of CDP+ [CDP+ (F), from Perry et al., 2007], 
the version of CDP+ with no feedback [CDP+ (NF)], and their equivalents in DRC 1.0 (from 
Coltheart et al., 2001). Bold values are those that differ from the default CDP+ (F) values. 
Parameter CDP+ (F) CDP+ (NF) DRC 1.0 
Lexical Route    
Feature Level    
Feature-to-letter excitation 0.005 0.005 0.005 
Feature-to-letter inhibition -0.150 -0.150 -0.150 

Letter Level    
Letter-to-letter inhibition 0.000 0.000 0.000 
Letter-to-orthography excitation 0.075 0.075 0.070 
Letter-to-orthography inhibition -0.550 -0.550 -0.435 

Orthographic Lexicon    
Orthography-to-orthography inhibition -0.060 -0.060 -0.060 
Orthography-to-phonology excitation 1.400 1.400 0.200 
Orthography-to-letter excitation 0.300 0.000 0.300 

Phonological Lexicon    
Phonology-to-phonology inhibition -0.160 -0.160 -0.070 
Phonology-to-phoneme excitation 0.128 0.128 0.140 
Phonology-to-phoneme inhibition -0.010 -0.010 0.000 
Phonology-to-orthography excitation 1.100 0.000 0.200 

Phonological Output Buffer    
Phoneme-to-phoneme inhibition -0.040 -0.040 -0.150 
Phoneme-to-phonology excitation 0.098 0.000 0.040 
Phoneme-to-phonology inhibition -0.060 0.000 -0.160 

General Parameters    
Activation rate 0.200 0.200 0.200 
Frequency scale 0.400 0.400 0.050 
Phoneme naming activation criterion 0.670 0.670 0.430 

Sublexical Parameters    
Cycles before route begins 0 0 10 
Cycles before next letter accessed 15 15 17 
Sublexical to phoneme activation 0.085 0.085 0.055 
Letter level threshold for processing 0.210 0.210 n/a 
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Model Choice for Evaluation 

The Triangle class of models is not suitable for assessing the utility of feedback for two 

reasons: most importantly, there is no single computational model that fully implements the 

theoretical account. Second, the only version of the model that includes feedback connections 

from the phonological system to the orthographic system (Plaut et al., 1996), is not available in 

a form that would allow removing feedback (see also the section entitled “Disabling Feedback” 

in the “General Discussion” for more on the challenges in conducting a similar study with the 

Triangle Model).  

The original DRC model was published in 2001 (Coltheart et al., 2001), and has 

demonstrated a remarkable ability to simulate a wide range of experimental results. Since that 

initial version, DRC has undergone considerable assessment and revision, and version 1.0 is no 

longer readily available. It has been supplanted by two versions (DRC 1.1.4, and DRC 1.2), 

neither of which has been tested as extensively as DRC 1.0 in a peer-reviewed journal. 

Furthermore, it is unlikely that testing of these models is forthcoming, as Coltheart and 

colleagues are currently developing yet another version (DRC 2.0) that will have a very 

different sublexical process (M. Coltheart, personal communication, July 27, 2010).  

Like the DRC, CDP+  (Perry et al., 2007) also simulates a wide range of experimental 

phenomena. Importantly, CDP+ is capable of simulating consistency effects (which DRC 

version 1.0 could not simulate), and it captures up to four times as much variance as DRC in 

large-scale item-level databases (Perry et al., 2007, Table 2). CDP+ is also readily available 

from the web (http://ccnl.psy.unipd.it/CDP.html) with an agreed upon default parameter set 

that has been subjected to peer review.4 Though the two models (DRC and CDP+) continue to 



 
 

19 

have a strong impact on research in reading aloud, because of CDP+’s availability, its 

performance at the item level, its ability to simulate some phenomena that DRC cannot, and 

DRC’s ongoing development, this study will focus on CDP+ (see Figure 4). 

A Simulation Approach 

To examine the role that feedback plays in a computational model of reading aloud, I 

will compare the results from two different versions of CDP+. First, I will confirm the results 

reported in Perry et al. (2007) using the default parameter sets described in their article. For the 

most part, Perry et al. (2007) used the parameter settings from Table 1 [see the values for 

CDP+ (F)], though for a few simulations the parameters were adjusted to reflect special 

circumstance (e.g., simulating acquired dyslexia). These adjustments (along with any other 

deviations from the default parameters) will be clearly described in the text where relevant. 

The second version of the model will have the feedback parameters set to 0 (zero). The 

changes are indicated in bold in Table 1 [see the values for CDP+ (NF)]. The study will largely 

be concerned with comparing the performance of CDP+ with feedback (F) to its performance 

without feedback (NF). 
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Figure 4. CDP+ model (adapted from Perry et al., 2007) 
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Nomenclature. 

Though it is tempting to refer to the models as being either cascaded or IA versions of 

CDP+, this is not strictly accurate. Cascaded models can be considered a special case of all of 

the possible IA models in the following way: cascaded models are IA models in which the 

feedback and within-level inhibitory connections have been set to zero. The two model 

specifications that I will be comparing in this dissertation differ only in the presence or absence 

of feedback, and thus neither are consistent with the cascaded framework proposed by 

McClelland (1979; because they both preserve the within-level competitive connections that 

are not included in the seminal work).5 Rather than confuse the issue by discussing the models 

in terms of cascaded vs. IA processing, I will describe the models with reference to the key 

distinction between them and use the terms CDP+ (F) for the default configuration that 

includes feedback, and CDP+ (NF) for the version in which the feedback has been disabled. 

This convention will emphasize that the key manipulation is the presence or absence of the 

feedback component of the default configuration. 

Feedback’s Contribution to Reading Aloud 

The goal of this study is to evaluate the role that feedback plays in a model of reading 

aloud. Of principal concern is whether CDP+ will be as successful with no feedback present at 

all, or if there are any currently agreed upon benchmark performance measures that require 

feedback in the model. There are two reasons this issue deserves attention: the first has to do 

with the explanatory power of the models. There exists a large body of empirical results in 

which two experimental factors produce additive effects on reaction time (see Besner, 2006 for 

a brief summary of these results, and Besner, O’Malley, & Robidoux, 2010, O’Malley & 
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Besner, 2008, Besner & O’Malley, 2009, for more recent demonstrations of additivity). To 

date, no IA model has shown reliably additive effects of any two factors, and there is thus far 

no reason to believe that this is possible (Plaut & Booth, 2000, 2006, claimed to simulate 

additive effects of word frequency and stimulus quality, but see Besner, Wartak, & Robidoux, 

2008, for a critique).  On the other hand, cascade models, which do not include feedback or 

within-level inhibitory connections, have been shown to be mathematically capable of additive 

effects on mean reaction times, provided certain conditions are met (McClelland, 1979; Ashby, 

1982; Roberts & Sternberg, 1993). Thus if there is no demonstrable need for feedback, 

removing it from activation based models increases the likelihood that they will eventually be 

successful at simulating additive effects of factors (though there remains the question of 

within-level inhibition). A second reason for limiting the role of feedback is that it reduces the 

complexity of the models. Eliminating feedback, entirely or in part, reduces the number of 

parameters that can be manipulated by researchers. 

A Comment On Speed 

In general, removing feedback slows the network somewhat. Because there is no a 

priori method of determining how fast the model should be, this general slowing is of no 

concern. If one wished to argue that under some circumstances feedback is disabled, and in 

other contexts it was enabled, then this generally slower performance without feedback would 

be important: it would imply that in conditions where there is no feedback, people should be 

slower than in conditions where feedback is operating. In the case of this study, I am not 

concerned with identifying conditions that require feedback vs. conditions that do not, but 

rather whether a model without feedback will be able to perform as well as a model with 

feedback. In such a comparison, the raw values are irrelevant: I need only show that the 
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qualitative patterns match (I will also consider correlations that are insensitive to simple 

scaling and range effects). 

Accuracy 

The first, and most obvious benchmark for any model of reading aloud is simply its 

ability to read aloud the words it knows. Because the goal of this dissertation is to determine 

whether or not feedback is required in reading aloud, the first test is to confirm whether or not 

the model can read aloud accurately without feedback. To test the models’ accuracy, I 

submitted the 7,383 unique words that are included in CDP+’s lexicon to both versions of the 

model [CDP+ (F) and CDP+ (NF)]. With feedback enabled [CDP+ (F)] the model correctly 

read aloud 7,280 of the 7,383 words (98.60% accurate6). With feedback removed 

[CDP+ (NF)], it read aloud 7,259 words accurately (98.32% accurate). Thus, with or without 

feedback, the model reads words aloud with a very high degree of accuracy. It should also be 

noted that the correlation in the cycle times from the two models was extremely high (r = .982, 

N = 7,2577), suggesting at the outset that feedback’s role in reading words aloud is limited. 

Skilled readers are also adept at reading aloud letter strings they have never seen before 

(e.g., nonwords such as FRANE). To test the model’s ability to read nonwords, Perry et al. 

(2007) presented CDP+ with the 590 (misstated as 592) nonwords from Seidenberg, Plaut, 

Petersen, McClelland, and McRae (1994). Of the 590 items in the corpus, 11 are in fact words 

known to CDP+. For the 579 remaining nonwords, Perry et al. (2007) reported that CDP+ (F) 

made 37 errors. Determining accuracy when reading aloud nonwords is heavily influenced by 

the judgment of the person evaluating the model’s pronunciations. These evaluations can be 

influenced by the evaluator’s own vocabulary, and especially by his or her dialect and other 

linguistic influences.8  As a result, rather than trying to match Perry et al.’s (2007) evaluations 
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on all 579 relevant items, I will examine only those items that resulted in different 

pronunciations when feedback is removed from CDP+. Those items are summarized in Table 

2. 

Table 2 makes clear that CDP+’s performance improves for nonwords when feedback 

is removed. Of the 19 items that differed, 16 were errors in CDP+ (F), but only 4 were errors in 

CDP+ (NF). Thus CDP+ (NF) makes 12 fewer errors (25 errors, or 4.3%) than CDP+ (F) (37 

errors, or 6.4%). In particular, CDP+ (NF) corrected a number of CDP+ (F)’s lexicalizations. 

This result suggests that removing feedback reduces the lexical system’s influence in reading 

aloud of nonwords. Whatever the cause, there is little question that accuracy in nonword 

reading favors the model with no feedback over the one with feedback. As with words, the 

correlation between the cycle times of CDP+ (F) and CDP+ (NF) was very high (r = .952, 

N = 579). 

 



 
 

25 

 

Table 2. Seidenberg et al. (1994) items that CDP+ read aloud differently as a function of the 
presence (F) or absence (NF) of feedback. 
Item CDP+ (F) CDP+ (F) Result CDP+ (NF) CDP+ (NF) Result 
dront dɹant Correct dɹɔnt Correct 
smalse smoːls Correct smæls Correct 
smead smed Correct smiːd Correct 
fiek fiːkt Error fiːk Correct 
freamt fɹɔmt Error fɹiːmt Correct 
grend gɹendz Error gɹend Correct 
moax məʉkst Error məʉks Correct 
silm stɪlm Error sɪlm Correct 
glebt gleb Error gle Error 
bimpse blɪmps Lexicalized (Error) bɪmps Correct 
foun fæɔnd Lexicalized (Error) fæɔn Correct 
fren fɹendz Lexicalized (Error) fɹen Correct 
poin poɪnt Lexicalized (Error) poɪn Correct 
thout ðæt Lexicalized (Error) ðæɔt Correct 
glarc glaːs Lexicalized (Error) glaː Error 
larf laːfs Lexicalized (Error) laːf Lexicalized (Correct) 
toal təʉld Lexicalized (Error) təʉl Lexicalized (Correct) 
fache fækt Lexicalized (Error) fæɪ Lexicalized (Error) 
rould ɹæɔnd Lexicalized (Error) ɹæɔd Lexicalized (Error) 
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Item-Level Variance 

Perry et al. (2007) made much of the proportion of variance in human reading aloud 

times that is capture by the CDP+ model: 

The data showed that CDP+ was far superior to all of its competitors in predicting item-

level variance... We consider this to be a major advancement in the area of 

computational modeling of reading aloud. (p. 292) 

To determine the proportion of variance captured by CDP+, Perry et al. (2007) 

correlated model cycle times with the human reading aloud reaction times (RTs) collected in 

studies involving large corpora of words. The higher the correlation, the more of the variance 

in human reading aloud RTs the model is able to explain, ignoring item-specific characteristics 

or other experimental manipulations. To provide a thorough examination of this benchmark, 

Perry et al. (2007) compared CDP+’s performance to those of human subjects in four large 

scale databases: Spieler and Balota (1997), Balota and Spieler (1998), Seidenberg and Waters 

(1989), and Treiman, Mullennix, Bijeljac-Babic, and Richmond-Welty (1995). In addition to 

these four databases, I compare CDP+’s performance to the human latencies recorded in the 

English Lexicon Project (ELP; Balota et al., 2007). The ELP contains a much larger set of 

items than the other databases used by Perry et al. (2007), and includes reaction time data from 

hundreds of subjects at six different universities. Thus, ELP should provide the most robust test 

of item-level benchmarks. Table 3 summarizes the results. For four of the five corpora, 

removing feedback reduced the proportion of variance explained by a small amount (never 

more than 1.28 percentage points). In the case of Spieler and Balota (1997), CDP+ (NF) 

captured slightly more variability than CDP+ (F). 
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Table 3. Proportion of item-level variance explained in corpora from several large-scale 
reading aloud studies. 
Database Corpus sizea CDP+ (F) CDP+ (NF) 
Spieler and Balota (1997) 2,803 17.27% 17.46% 
Balota and Spieler (1998) 2,803 21.59% 20.79% 
Seidenberg and Waters (1989) 1,278 9.72% 8.60% 
Treiman et al. (1995) 1,276 15.61% 15.27% 
ELP (Balota et al., 2007) 5,554 21.60% 20.32% 
a. Corpus size here refers to the number of words in the corpus that are also in CDP+’s lexicon. 
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Limitations of Item-Level Variance as a Benchmark 

Perry et al. (2007) argued strongly that the item-level variance benchmark is key for 

comparing the performance of models of reading aloud: “Setting aside the (often small) 

discrepancies among models in accounting for specific experimental findings, we agree with 

Spieler and Balota (1997) that the issue of item variance is the most critical challenge faced by 

computational models of reading aloud.” (p. 292) There is also little doubt that CDP+ 

outperformed its competitors on this metric. Compared to DRC (Coltheart et al., 2001), the 

Triangle model (Plaut et al., 1996), and CDP (Zorzi, Houghton, & Butterworth, 1998), CDP+ 

explained three to four times as much item-level variance. However, there are two reasons to 

exercise caution in relying on item-level variance in comparing models. 

The first concern is clearly evident in the corpora employed here. The Seidenberg and 

Waters (1989) and Treiman et al. (1995) studies are based on the same set of items (other than 

two items not used by Treiman et al., 1995) but resulted in very different estimates of the 

variance explained by CDP+ (with a 5.9% difference between the two samples). This suggests 

that there is considerable variance between reported samples9, and indeed the two human 

samples are not strongly correlated (r = .394, N = 1,276). Similarly, the Spieler and Balota 

(1997) and Balota and Spieler (1998) studies used identical item sets, in the same lab, using the 

same technology, but still produced quite different estimates of the variance explained by 

CDP+ (with a difference of 4.32% between the samples; correlation between the two samples 

of human RTs: r = .653, N = 2,819). Though large improvements in the proportion of variance 

explained by the models is unlikely to be the result of simple inter-sample variance, smaller 
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changes such as the differences in performance between CDP+ (F) and CDP+ (NF) should not 

be weighted too heavily in comparing models.  

A second limitation to the use of item-level databases is the numerous demonstrations 

in the literature of context influencing reading aloud times in humans. For example, Lupker, 

Brown, and Colombo (1997) compared blocked and mixed designs and demonstrated that 

when an experiment intermixes items that differ in their typical response times (e.g., high and 

low frequency items), the slower items get faster and the faster items get slower when 

compared to those same items in blocked designs. Thus, the response time to any given item is 

influenced by the other items that are used in the experimental block. More dramatically, 

context can also produce qualitative changes in the pattern of RTs. For example, O’Malley and 

Besner (2008) demonstrated that when only words are present in an experiment, word 

frequency and stimulus quality produce an interaction so that the word frequency effect is 

larger for dim stimuli than for bright stimuli. However, when nonwords are introduced to the 

experiment, the interaction disappears for those same word items, so that both bright and dim 

stimuli show the same magnitude of word frequency effect. Similarly, Besner et al. (2010) 

demonstrated an influence of the presence of nonwords on the interaction between stimulus 

quality and regularity (the two factors were additive when nonwords were present, but 

underadditive so that dim words showed a smaller regularity effect than bright words when 

only words were present), and Ferguson, Robidoux, and Besner (2009) demonstrated that 

relatedness proportion influences the interaction between stimulus quality and semantic 

priming so that when related proportion is .5 the two factors are overadditive in reading aloud, 

but when the proportion is only .25 they are additive (see Stolz & Neely, 1995, for a 

demonstration of the same pattern in lexical decision). Thus far stimulus quality effects have 
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not been treated as benchmarks by any modeler of reading aloud (but see the exchange 

between Ziegler, Perry, & Zorzi, 2009 and Besner & O’Malley, 2009; and the “General 

Discussion” section of this study), but Perry et al. (2007) do specify that base word frequency 

effects in pseudohomophone reading should represent a benchmark, and researchers have 

found the presence or absence of these effects to be contextually-dependent (see the section 

entitled “Pseudohomophones and base word frequency.”). Assessments of item-level variance 

based on large-scale corpora like those examined here will not capture these effects until the 

corpora themselves include the relevant manipulations. 

The Role of Feedback and Parameter Selection 

Regardless of the general limitations of item-level databases, it cannot be denied that 

removing feedback reduced the amount of variance captured by CDP+ in four of the five 

corpora. There are two reasons I do not believe this provides compelling evidence in favor of 

the need for feedback. The first is simply that the largest decrease (1.28% in the ELP corpus) is 

considerably smaller than the between-sample variance observed with both the Spieler and 

Balota (1997) item set (4.32% difference between Spieler & Balota, 1997 and Balota & 

Spieler, 1998), and the Seidenberg and Waters (1989) items (5.89% difference between 

Seidenberg & Waters, 1989, and Treiman et al., 1995). This suggests that CDP+ (NF)’s 

performance is subsumed within the expected error variance of any given corpus. 

A second reason for disregarding the small performance cost of removing feedback is 

that the parameters in the model are inter-dependent, meaning that dramatic adjustments to one 

or more parameters can be expected to necessitate compensatory adjustments to other 

parameters in order to maintain identical performance levels. Removing feedback is a dramatic 

adjustment to the model; one that likely alters the lexical route’s influence in reading. It seems 
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likely, then, that restoring the balance of sublexical and lexical contributions to reading aloud 

would necessitate changing other parameters in the model (see the later section titled 

“Pseudohomophone advantage.” for further evidence that such an adjustment may be 

necessary). No such corrections were made in the present analysis of item-level variance, and 

thus the extremely small changes in the amount of variance explained by the model seem to me 

to be of little consequence. I now turn to the experimental benchmarks identified by Perry et al. 

(2007). 

The Benchmark Phenomena 

Perry et al. (2007) proposed a list of benchmark phenomena that successful models of 

reading aloud must be able to simulate (see Table 4). These benchmarks are a combination of 

benchmarks taken from Coltheart et al.’s (2001) simulations with DRC and some new 

phenomena that CDP+ is capable of simulating. These phenomena will form the basis of the 

present investigation into the need for feedback in reading aloud. 

Data Trimming 

In all of the simulations involving RT, errors were removed from the analysis. For 

experiments involving words, items that were unknown to CDP+ were removed prior to 

analysis because they are effectively nonwords to the model. Similarly, for experiments 

involving nonwords, any items that appeared as words in CDP+’s lexicon were removed. After 

error and “nonword/word” removal, the data were subjected to an outlier trimming procedure 

that removed any items producing cycle times more than three standard deviations away from 

the cell means. The results of this trimming procedure are not discussed except where they 

produced different data sets for the two model versions [CDP+ (F) vs. CDP+ (NF)]. 

Correlations between individual model latencies and human reading aloud RTs considered all 
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items included in the analysis for that model. Correlations between the latencies of the two 

model versions considered only items that were present in the analyses of both models. 
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Table 4. Benchmark phenomena in reading aloud (adapted from Perry et al., 2007). Datasets 
that are simulated are indicated in parentheses. 
Effect Pattern 
Frequency High frequency words are read aloud faster than low frequency words. 

(See later sections) 
Lexicality Words are read aloud faster than nonwords. Pseudohomophones are 

read aloud faster than other nonwords. (See later sections) 
Frequency by 
regularity 

Low frequency regular words are faster than low frequency irregular 
words. There is no regularity effect for high frequency words. (Paap & 
Noel, 1991; Jared, 2002) 

Word consistency Words with many consistent neighbors are read aloud faster than words 
with few consistent neighbors if the summed frequency of the 
consistent neighbors (friends) is larger than the summed frequency of 
the inconsistent neighbors (enemies). (Jared, 2002) 

Regularity by 
position 

The regularity effect only applies for words where the irregularity is 
early in the letter string. (Coltheart & Rastle, 1994; Roberts, Rastle, 
Coltheart & Besner, 2003) 

Nonword 
consistency 

Nonwords that have regular word-neighbors are more likely to be 
regularized than nonwords that have no regular word-neighbors. 
(Andrews & Scarratt, 1998) 

Length by lexicality Nonwords show effects of letter length so that longer nonwords are 
slower to read aloud. Words do not show this effect. (Weekes, 1997; 
Ziegler, Perry, Jacobs, & Braun, 2001) 

Body neighborhood Larger body neighborhoods speed response times in reading aloud for 
both words and nonwords. (Ziegler et al., 2001) 

Pseudohomophone 
advantage 

Pseudohomophones are faster to read aloud than nonword controls 
when all items are intermixed. (McCann & Besner, 1987) 

Pseudohomophone 
base word frequency 

The presence/absence of a base word frequency effect depends on the 
context in which the pseudohomophones are read. (McCann & Besner, 
1987) 

Masked priming Significant effects of both onset priming (LEG-LOW) and rhyme 
priming (TOE-LOW) relative to unrelated primes (RUN-LOW). 
(Forster & Davis, 1991) 

Surface dyslexia Patients MP & KT show impairment when reading irregular words 
with more enemies than friends (but not regular words or nonwords). 
(Patterson & Behrmann, 1997; Taraban & McClelland, 1987) 

Phonological 
dyslexia 

Patient LB is impaired at reading nonwords but not words. The 
impairment is weaker for pseudohomophones. (Derouesné & Beauvois, 
1985) 

Orthographic N & 
Phonological N 

Words and nonwords with many orthographic neighbors are read aloud 
faster. For words this is actually a phonological N effect. (Andrews, 
1989; 1992; Mulatti, Reynolds, & Besner, 2006) 

Whammies Nonwords with multi-letter graphemes (e.g., PH) are slower to read 
aloud than controls. (Rastle & Coltheart, 1998) 
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Evaluating the Benchmarks 

The structure for evaluating each of the benchmarks will be as follows: First, I replicate 

the result reported in Perry et al. (2007) where the feedback is left intact [CDP+ (F) 

simulations], and comment on any discrepancies. Second, I reproduce the simulations after 

disabling the feedback processes [CDP+ (NF) simulations]. To disable the feedback processes, 

I simply set the strength of the feedback connections (from Phoneme Buffer to POL, POL to 

OIL, and OIL to letter level) to 0, eliminating their influence on the model (see Table 1). All 

other parameters were left unchanged from the defaults, unless otherwise specified. 

In the case of reaction time studies, analysis will emphasize both the underlying 

qualitative data patterns (significance, non-significance), and the correlation between the cycle 

times of CDP+ (F) and CDP+ (NF). Very high correlations between the two versions of the 

model suggest that the influence of feedback on model cycle times is negligible after simple 

scaling. In most of the simulations, the correlation between the cycle times of the two versions 

of the model exceeded .99 (exact values are reported for each simulation). 

In studies considering accuracy or the proportion of responses of different types as the 

dependent variable, analysis will focus on changes in pronunciation between the two models. If 

removing feedback has little effect on the model’s ultimate pronunciations, then there is little 

reason to prefer the feedback version (F) to the no-feedback version (NF). If removing 

feedback results in many pronunciation differences, it requires a closer look at the patterns to 

determine which model best described the data (it turns out this is not the case with any of the 

benchmarks examined here). To preview the results, all of the benchmarks can be simulated by 
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the model whether there is feedback present or not, though the pseudohomophone advantage 

required some further adjustments to the model’s other parameters. 

Word frequency. 

Perry et al. (2007) did not evaluate CDP+’s ability to produce a word frequency effect 

in isolation. Rather they demonstrated a word frequency effect as part of simulating other 

phenomena. Simply described, subjects are faster and more accurate at reading aloud words 

that occur frequently in print (high-frequency words) compared to words that occur 

infrequently (low-frequency words). I refer the reader to the sections entitled “Frequency and 

frequency by regularity.”, “Frequency, regularity, and consistency.”, and “Lexicality by letter 

length (by frequency).” for demonstrations that both CDP+ (F) and CDP+ (NF) produce robust 

word frequency effects. Thus, the word frequency benchmark does not require feedback in 

order to be simulated. 

Regularity. 

As with frequency, regularity too was a factor in other simulations. Briefly, it is well 

established that words that are irregular or exceptional (i.e., that do not follow the typical rules 

of pronunciation; e.g., PINT) are read aloud more slowly than regular words (e.g., MINT). 

This effect is generally only observed for words that are low in printed frequency. I refer the 

reader to the sections entitled “Frequency and frequency by regularity.”, “Frequency, 

regularity, and consistency.”, and “Regularity by position.” for demonstrations that the 

regularity effect does not require feedback in order to be simulated. 

Frequency and frequency by regularity. 

It is well known that word frequency and regularity each influence response latencies in 

reading aloud such that responses to high frequency words are faster (and often more accurate) 
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than to low frequency words, and regular words (such as MINT) enjoy a similar advantage over 

words with unusual pronunciations (e.g., PINT). Paap and Noel (1991) reported that the 

regularity effect is modulated by the frequency of the words. Low frequency words yield an 

effect of regularity, whereas high frequency words do not. Perry et al. (2007) submitted the 

Paap and Noel (1991) stimuli to the CDP+ model to test its ability to simulate these effects. 

CDP+ (F). 

CDP+ (F) simulated the Paap and Noel (1991) result perfectly (see Table 5). It 

produced significant effects of word frequency (F(1, 72) = 124.583, MSE = 80.7, p < .001) and 

regularity (F(1, 72) = 18.351, MSE = 80.7, p < .001). Most importantly, it produced a 

significant interaction of frequency and regularity (F(1, 72) = 11.022, MSE = 80.7, p < .01). 

Tests of the simple effects revealed that the regularity effect was significant for low frequency 

words (t(34) = 5.135, p < .001), but not for high frequency words (t < 1). 

CDP+ (NF). 

With feedback removed, CDP+ (NF) also produced the correct pattern (see Table 5). 

There were significant effects of word frequency (F(1, 72) = 143.264, MSE = 83.7, p < .001) 

and regularity (F(1, 72) = 21.571, MSE = 83.7, p < .001). Most importantly, there was a 

significant interaction of frequency and regularity (F(1, 72) = 10.367, MSE = 83.7, p < .01). As 

with CDP+ (F), tests of the simple effects revealed that the regularity effect was significant for 

low frequency words (t(34) = 5.627, p < .001), but not for high frequency words 

(t(38) = 1.141). 
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Table 5. Mean cycles to response (percentage errors) to the Paap and Noel (1991) items for 
CDP+ (F) and CDP+ (NF), as a function of regularity and word frequency. 
 Regular Exception 
Word Frequency Cycles %E Cycles %E 
CDP+ (F)     

Low Frequency 97.57 (0%) 113.65 (0%) 
High Frequency 80.95 (0%) 83.30 (0%) 
Difference 16.62 (0%) 30.35 (0%) 

     
CDP+ (NF)     

Low Frequency 103.63 (0%) 120.53 (0%) 
High Frequency 84.60 (0%) 87.95 (0%) 
Difference 9.03 (0%) 32.58 (0%) 
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Model comparison. 

Removing the feedback had no effect on errors or outliers, nor on CDP+’s ability to 

simulate the Paap and Noel (1991) data pattern. Indeed, the correlation between the cycle times 

produced by CDP+ (F) and CDP+ (NF) was extremely high (r = .992, N = 76). 

Frequency, regularity, and consistency. 

The debate about whether or not the observed regularity effect is the result of regularity 

(the violation of pronunciation rules) or consistency (whether or not a word’s body is 

pronounced the same way in all of its neighbors) has raged for over 30 years (see Glushko, 

1979). It is a difficult problem to disentangle, because all exception words (PINT) are, by 

definition, inconsistent. However, some regular words are consistent and others are not (HUNT 

vs. HINT). To delineate consistency from regularity, Jared (2002) constructed lists of test items 

and control words (such as BLOWN [inconsistent exception] vs. BARGE [consistent regular], 

and BROOD [inconsistent regular] vs. BRIBE [consistent regular]) that allowed disentangling 

the two closely related concepts. She argued that the regularity effect is, in fact, a consistency 

effect (a word like HUNT is consistent, because all –UNT words share the same body 

pronunciation, whereas HINT is not consistent, because at least one of its neighbors, PINT, 

does not share its body pronunciation). Furthermore, she found that this consistency effect is 

modulated by the ratio of the summed frequency of the “friends” (word neighbors that share the 

word-body pronunciation of the target) to the summed frequency of the “enemies” (word 

neighbors that have alternate word-body pronunciations).10 For example, BEAK has higher 

frequency friends (BLEAK, CREAK, FREAK, LEAK, PEAK, SNEAK, SPEAK, STREAK, TEAK, 

WEAK, WREAK) than enemies (BREAK, STEAK), whereas BEAD has higher frequency enemies 
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(BREAD, DEAD, DREAD, HEAD, LEAD, READ, SPREAD, STEAD, THREAD, TREAD) than 

friends (KNEAD, MEAD, LEAD, PLEAD, READ). 

In a pair of experiments manipulating frequency, regularity, consistency, and the ratio 

of friends to enemies (F-E ratio: higher summed frequency of friends than enemies vs. lower 

summed frequency of the friends than enemies), Jared (2002) reported the following: a 

significant consistency effect, so that words that have only consistent body-pronunciation 

neighbors are responded to faster to than words that have neighbors that do not share the 

pronunciation; there is little evidence of an additional regularity effect when this consistency is 

controlled for; the consistency effect is modulated by the F-E ratio so that words with a higher 

summed frequency of friends than enemies do not show consistency effects, whereas words 

with a lower summed frequency of friends than enemies do show the consistency effect; and 

finally, that the regularity by frequency interaction (see previous discussion of Paap and Noel, 

1991) is itself modulated by the F-E ratio so that only low frequency words with lower 

summed frequency friends than enemies show a regularity effect. 

CDP+ (F) – Jared (2002) experiment 1. 

In her first experiment, Jared (2002) reported significant effects of consistency and F-E 

ratio, and also a significant interaction between consistency and F-E ratio, but no influence of 

regularity. CDP+ correctly simulated this pattern, producing significant effects of consistency 

(F(1, 147) = 17.480, MSE = 72.1, p < .001), F-E ratio (F(1, 147) = 9.986, MSE = 72.1, 

p < .01), and a significant consistency x F-E ratio interaction (F(1, 147) = 5.109, MSE = 72.1, 

p < .05). Type of inconsistency (regular inconsistent vs. irregular) was not significant, nor did 

it interact with other effects. 
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T-tests revealed a complicated interplay between the various factors. For inconsistent 

exception words, items with lower summed frequency friends than enemies were slower than 

matched controls (t(35) = 3.080, p < .01), whereas items with higher summed frequency friends 

than enemies were not significantly slower than matched controls (t(37) = 1.742, p = .09). A 

similar pattern for inconsistent regular words emerged: items with lower frequency friends 

than enemies were slower than matched controls (t(38) = 2.890, p < .01), whereas items with 

higher frequency friends than enemies were not significantly slower than matched controls 

(t < 1, ns). These patterns matched the human data reported by Jared (2002) nearly perfectly. 

CDP+ (NF) – Jared (2002) experiment 1. 

Removing feedback produced one additional error (PINT regularized to rhyme with 

MINT). Other than this minor difference, the qualitative pattern matched the results from 

CDP+ (F), producing significant effects of consistency (F(1, 146) = 17.480, MSE = 72.1, 

p < .001), F-E ratio (F(1, 146) = 9.986, MSE = 72.1, p < .01), and a significant consistency x 

F-E ratio interaction (F(1, 146) = 5.109, MSE = 72.1, p < .05). Type of inconsistency (regular 

inconsistent vs. irregular) was not significant, nor did it interact with other effects. 

The pattern of simple effects also matched that of CDP+ (F). For inconsistent exception 

words, items with lower summed frequency friends than enemies were slower than matched 

controls (t(34) = 3.122, p < .01), whereas items with higher summed frequency friends than 

enemies were not significantly slower than matched controls (t(37) = 1.691, p = .10). A similar 

pattern for inconsistent regular words emerged: items with lower summed frequency friends 

than enemies were slower than matched controls (t(38) = 3.075, p < .01), whereas items with 

higher summed frequency friends than enemies were not significantly slower than matched 

controls (t < 1, ns). 
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Model comparison. 

Though the pattern described by Jared (2002) is complicated, the key question here is 

how feedback influences CDP+’s performance. The results of the simulations indicate that 

feedback had no influence on CDP+’s performance with this benchmark. The default model 

[CDP+ (F)] produced two errors (DOUGH and TRAIT) and one outlier (HASTE). The model 

with feedback removed [CDP+ (NF)] produced one additional error (PINT). However, this 

new error had no effect on CDP+’s ability to simulate Jared’s (2002) Experiment 1. As with 

the simulations of Paap and Noel (1991), the correlation between the cycle times for CDP+ (F) 

and CDP+ (NF) was extremely high (r = .993, N = 154). Table 6 summarizes the simulation 

results for Jared’s experiment 1. 
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Table 6. Mean cycles to response (percentage errors) to the Jared (2002) Experiment 1 items 
for CDP+ (F) and CDP+ (NF). 
 Exception/Inconsistent Control 
Condition Cycles %E Cycles %E 
CDP+ (F)     

Exception (F < E) 112.83 (5.2%) 102.42 (0.0%) 
Exception (F > E) 105.05 (0.0%) 100.47 (5.0%) 
Regular Inconsistent (F > E) 108.55 (0.0%) 101.25 (0.0%) 
Regular Inconsistent (F < E) 101.42 (0.0%) 100.60 (0.0%) 

     
CDP+ (NF)     

Exception (F < E) 120.24 (10.5%) 108.47 (0.0%) 
Exception (F > E) 111.65 (0.0%) 106.84 (5.0%) 
Regular Inconsistent (F > E) 116.20 (0.0%) 107.40 (0.0%) 
Regular Inconsistent (F < E) 107.74 (0.0%) 106.65 (0.0%) 
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CDP+ (F) – Jared (2002) experiment 2. 

In her second experiment, Jared (2002) extended the Paap and Noel (1991) results to 

examine the role of F-E ratio. This experiment added high frequency words (not present in 

Experiment 1) and manipulated frequency, regularity, and F-E ratio. She reported a significant 

regularity effect; only a marginal regularity x frequency interaction; and a marginal three-way 

interaction between regularity, frequency, and F-E ratio. Though Jared (2002) did not report 

the statistics, visual inspection of her Figure 2 (p. 733) strongly suggests a significant effect of 

frequency. In a series of planned tests, Jared reported that items that had lower frequency 

friends than enemies showed a regularity effect, and that this was true of both high and low 

frequency words. She also reported a regularity effect for high frequency words with higher 

frequency friends than enemies, and a marginal regularity effect for low frequency words with 

lower frequency friends than enemies. 

CDP+ matched Jared’s (2002) human data in that it produced significant effects of 

regularity (F(1,145) = 19.5, MSE = 73.6, p < .001) and frequency (F(1,145) = 146.8, 

MSE = 73.6, p < .001), and no interaction between regularity and frequency [F<1; in Jared’s 

Experiment 2, this interaction was marginal whereas CDP+ (F) did not produce even a hint of 

it]. It differed from Jared’s data, however, in that it produced a marginal effect of F-E ratio 

(F(1,145) = 3.6, MSE = 73.6, p = .06), and a significant regularity by F-E ratio interaction 

(F(1,145) = 5.2, MSE = 73.6, p < .05). These data are summarized in Table 7. 

The key test of CDP+’s ability to simulate this pattern rested in the planned tests, where 

it closely matched the results reported by Jared (2002). CDP+ produced significant regularity 

effects for all words with lower frequency friends than enemies (high frequency words: 
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t(37) = 2.748, p < .01; low frequency words: t(35) = 3.080, p < .01), and a marginal regularity 

effect for low frequency words with higher frequency friends than enemies (t(37) = 1.742, 

p < .10). It failed, however, to produce the significant regularity effect for high frequency 

words with higher frequency friends than enemies that Jared reported (t(37) = 1.151, p > .25). 

CDP+ (NF) – Jared (2002) experiment 2. 

CDP+’s ability to simulate Jared’s (2002) experiment 2 was unaffected by the removal 

of feedback. As with experiment 1, CDP+ (NF) produced one additional error (PINT). It 

produced significant effects of regularity (F(1,144) = 21.5, MSE = 89.1, p < .001) and 

frequency (F(1,144) = 147.6,  MSE = 89.1, p < .001), and no interaction between regularity 

and frequency (F<1). As with CDP+ (F), CDP+ (NF) differed from Jared (2002) in that it 

produced a marginal effect of F-E ratio (F(1,144) = 3.55, MSE = 89.1, p = .06), and a 

significant regularity by F-E ratio interaction (F(1,144) = 5.76, MSE = 89.1, p < .05). 

The planned tests also corresponded perfectly to those of CDP+ (F). CDP+ (NF) 

produced significant regularity effects for all words with lower frequency friends than enemies 

(high frequency words: t(37) = 3.060, p < .01; low frequency words: t(34) = 3.122, p < .01), 

and a marginal regularity effect for low frequency words with higher frequency friends than 

enemies (t(37) = 1.691, p < .10). It too failed to produce the significant regularity effect for 

high frequency words with higher frequency friends than enemies (t(37) = 1.478, p > .14). 

Model comparison. 

The default model produced two errors (DOUGH and TRAIT) and one outlier 

(BREADTH). As with experiment 1, CDP+ (NF) produced one additional error (PINT). 

Critically, this error had little influence on the model’s ability to simulate Jared (2002)’s 
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Experiment 2. The correlation between the response latencies of the two models was extremely 

high (r = .992, N = 152). 
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Table 7. Mean cycles to response (percentage errors) to the Jared (2002) Experiment 2 items 
for CDP+ (F) and CDP+ (NF). 
 Exception Control 
Word Frequency Cycles %E Cycles %E 
CDP+ (F)     

Low Frequency (F < E) 112.83 (5.2%) 102.42 (0.0%) 
Low Frequency (F > E) 105.05 (0.0%) 100.47 (5.0%) 
High Frequency (F > E) 92.58 (0.0%) 84.50 (0.0%) 
High Frequency (F < E) 88.74 (0.0%) 87.37 (0.0%) 
     

CDP+ (NF)     
Low Frequency (F < E) 120.24 (10.5%) 108.47 (0.0%) 
Low Frequency (F > E) 111.65 (0.0%) 106.84 (5.0%) 
High Frequency (F > E) 98.53 (0.0%) 88.40 (0.0%) 
High Frequency (F < E) 93.79 (0.0%) 91.42 (0.0%) 
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Regularity by position. 

Coltheart and Rastle (1994), Rastle and Coltheart (1999), and Roberts, Rastle, 

Coltheart, and Besner (2003) have all demonstrated that not all irregularities are equal. The 

regularity effect is generally attributed to competition between the lexical and sublexical 

routes; for irregular words like PINT, the two routes arrive at different pronunciations that 

must be reconciled before a response can be produced (see Robidoux & Besner, 2010, for a 

more thorough examination of this view). This process of resolving conflict leads to a slower 

response time. However, in order for competition to arise, the sublexical route must encounter 

the irregularity before the lexical route is able to complete processing. Because the sublexical 

route generates phonology serially from left-to-right, irregularities at the beginning of words 

are more likely to be encountered before the lexical route has produced the correct 

pronunciation. Later irregularities are unlikely to be encountered soon enough to produce the 

competition necessary for the regularity effect. This view has been confirmed in several 

experiments (Coltheart & Rastle, 1994; Rastle & Coltheart, 1999; and Roberts et al., 2003). In 

the most carefully controlled of these experiments, Roberts et al. (2003) tested words with 

irregularities in the 2nd phonemic position (e.g., CHAFF) to words with irregularities in the 3rd 

position (e.g., PLAID) and found that only 2nd position irregularities produced a response time 

cost when compared to matched controls. Roberts et al. (2003)11 partially simulated this effect 

with the DRC model: after controlling for letter length and neighborhood size, they reported a 

significant regularity by position interaction so that the regularity effect was weaker for late 

irregularities than for early irregularities. However, the effect was still significant for late 

irregularities, which is inconsistent with the human data. They also found that the CDP model 
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(a precursor to CDP+ that did not include any serial processing; Zorzi et al., 1998) could not 

correctly simulate this effect. 

CDP+ (F). 

CDP+ (F) produced one error (DOUCHE) and no outliers.12 It produced a robust effect 

of regularity (F(1, 97) = 39.629, MSE = 81.7, p < .001), no effect of position (F < 1), and no 

evidence for the regularity x position interaction (F(1, 97) = 1.134, MSE  = 81.7, p > .20). 

Despite the lack of a significant interaction, there was a trend towards a weaker effect for the 

late irregularity items (see Table 8). Planned t-tests found significant regularity effects for both 

the 2nd position items (F(1, 63) = 31.872, p < .001) and 3rd position items ( F(1, 32) = 8.440, 

p < .01). 

CDP+ (NF). 

With feedback removed, CDP+ also produced one error (DOUCHE) and no outliers. 

CDP+ (NF) produced a pattern identical to the one produced by CDP+ (F) (see Table 8): a 

robust regularity effect (F(1, 97) = 39.975, MSE  = 107.4, p < .001), no effect of position 

(F < 1), and no evidence of a regularity by position interaction (F < 1). As with CDP+ (F), 

planned t-tests revealed regularity effects for 2nd position items (F(1, 63) = 32.576, p < .001) 

and 3rd position items (F(1, 32) = 8.243, p < .01), and the same trend toward weaker effects for 

3rd position items produced by CDP+ (F). 
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Table 8. Mean cycles to response (percentage errors) to the Roberts et al. (2003) items as a 
function of regularity and position of the irregularity, for CDP+ (F), CDP+ (NF), and DRC 
both with and without feedback. 
 Position of the Irregularity 
 Position 2 Position 3 
Regularity Cycles %E Cycles %E 
CDP+ (F)     

Exception 118.73 (2.9%) 113.89 (0.0%) 
Regular control 105.26 (0.0%) 106.83 (0.0%) 
Difference 13.47 (2.9%) 7.06 (0.0%) 
     

CDP+ (NF)     
Exception 126.88 (2.9%) 123.00 (0.0%) 
Regular control 111.82 (0.0%) 114.06 (0.0%) 
Difference 15.06 (2.9%) 8.94 (0.0%) 
     

DRC (default)     
Exception 90.32 (0.0%) 79.72 (0.0%) 
Regular control 78.26 (0.0%) 77.56 (0.0%) 
Difference 12.06 (0.0%) 2.16 (0.0%) 
     

DRC (feedback disabled)     
Exception 94.50 (0.0%) 88.00 (0.0%) 
Regular control 85.21 (0.0%) 85.67 (0.0%) 
Difference 9.29 (0.0%) 2.33 (0.0%) 
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Model comparison. 

Though CDP+ (F) underperforms DRC slightly, in that it does not produce significant 

interactions of regularity and position, it does show the correct trend for the interaction and 

matches DRC’s performance otherwise. The main concern here, though, is whether or not the 

presence or absence of feedback influences CDP+’s performance. CDP+ (NF) performed 

nearly identically to CDP+ (F). Unsurprisingly, the correlation between the latencies in the two 

models was again extremely high (r = .993, N = 103) for this dataset.  

DRC with feedback and without. 

Because DRC 1.0 more accurately captured this effect (Coltheart et al., 2001), showing 

a significant regularity by position interaction (though it too shows a significant effect for 3rd 

position irregular items), here I examine whether DRC 1.0’s ability to simulate the pattern is 

influenced by the presence of feedback. As with CDP+, I presented the Roberts et al. (2003) 

items to DRC version 1.0 with the default parameter set, and then again with the feedback 

parameters set to 0 (see Table 1). There were no errors or outliers in either version. Both 

versions of DRC produced robust effects of regularity (Feedback: F(1, 98) = 124.009, 

MSE = 15.63, p < .001; No Feedback: F(1, 98) = 119.087, MSE = 10.35, p < .001), position 

(Feedback: F(1, 98) = 48.158, MSE = 15.63, p < .001; No Feedback: F(1, 98) = 20.740, 

MSE = 10.35, p < .001), and a robust interaction between regularity and position (Feedback: 

F(1, 98) = 38.531, MSE = 15.63, p < .001; No Feedback: F(1, 98) = 27.923, MSE = 10.35, 

p < .001). Planned comparisons found that both models produced significant effects of 

regularity for both the 2nd (Feedback: F(1, 64) = 110.764, MSE = 22.32, p < .001; 

No Feedback: F(1, 64) = 105.630, MSE = 13.90, p < .001) and 3rd (Feedback: 
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F(1, 32) = 13.544, MSE = 3.119, p < .001; F(1, 32) = 13.249, MSE = 3.698, p < .001) position 

irregularities. Thus, simulating this effect in DRC does not rely on the presence of feedback. 

Nonword consistency effects. 

Andrews and Scarratt (1998) were interested in whether nonwords would be read aloud 

according to spelling-sound rules, or by analogy to known words. In particular, they examined 

whether the likelihood of irregular pronunciations (pronunciations that violated the spelling-

sound rules) would be influenced by the consistency of a nonword’s word neighbors. In a first 

experiment, they found that nonwords that had regular body neighbors (such as BIVE which 

has HIVE as a neighbor) were much more likely to be read according to spelling-sound 

conversion rules than were nonwords that had no regular body-neighbors (such as VALK, 

which has WALK, TALK, CHALK, etc… as neighbors, none of which have an audible /l/ as 

spelling-sound rules would require). In a second experiment they found that nonwords with no 

regular analogies but many body neighbors (such as VALK above) were also much less likely 

to be read according to conversion rules than words with no regular analogies, but few or no 

body neighbors (such as REALT or JOURT). 

CDP+ (F) & CDP+ (NF) – Andrews and Scarratt (1998) experiment 1. 

As can be seen in Table 9, CDP+ (F) and CDP+ (NF) produced virtually identical 

patterns of regularization. In fact, the models produced different pronunciations to only six 

items, three of which resulted in errors from both models (see Table 10). 
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Table 9. Percentage (%) of items pronounced according to regularization rules for Andrews 
and Scarratt (1998) Experiment 1. 
Conditiona A & S (1998)b CDP+ (F)13 CDP+ (NF) 
CV/body analogs 92.2 100.0 100.0 
CV/no body analogs 86.8 85.7 85.7 
No CV/body analogs 94.0 100.0 100.0 
No CV/no body analogs 86.9 90.9 91.1 
Few regular analogs 32.3 25.0 25.0 
a. CV refers to items that share initial consonant cluster-vowel structures with regular words. 
“body” refers to items that share a body (ignoring initial consonant cluster) with regular words. 
b. As reported in Andrews and Scarratt (1998). 
 
Table 10. Pronunciations that differed between CDP+ (F) and CDP+ (NF) for Andrews and 
Scarratt (1998) Experiment 1. 
Item Condition CDP+ (F)  CDP+ (NF)  
goop CV/body analogs gɹʉːps Error gʉːp Regular 
vack CV/body analogs vækt Error væk Regular 
wose No CV/no body analogs wɔz Error wəʉz Regular 
beart Few regular analogs bat Error biːt Error 
kneart Few regular analogs nɔt Error nɜːt Outlier 
searn Few regular analogs sens Error sɜːn Outlier 
 
Table 11. Percentage (%) of items pronounced according to regularization rules in Andrews 
and Scarratt (1998) Experiment 2. 
Conditiona A & S (1998)b CDP+ (F)14 CDP+ (NF) 
Consistent 92.5 82.9 83.3 
Inconsistent 87.4 70.3 70.3 
No regular analogs (many bodies) 19.4 10.5 10.5 
No regular analogs (few bodies) 41.2 52.1 52.1 
a. Consistent/Inconsistent refers to whether an item’s word neighbors were consistently 
regular, or if the word had a mix of regular and irregular body neighbors. 
b. As reported in Andrews and Scarratt (1998). 
 
Table 12. Pronunciations that differed between CDP+ (F) and CDP+ (NF) for Andrews and 
Scarratt (1998) Experiment 2. 
Item Condition CDP+ (F) CDP+ (NF) 
welf No regular analogs (many bodies) wel Error wæɪ Error 
vack Consistent vækt Error væk Regular 

 



 
 

53 

 

CDP+ (F) & CDP+ (NF) – Andrews and Scarratt (1998) experiment 2. 

In simulating the items from Andrews and Scarratt’s (1998) experiment 2, feedback 

status influenced only two items. Table 11 summarizes the results and Table 12 summarizes 

the pronunciation differences. 

Model comparison. 

CDP+ (F) and CDP+ (NF) produced identical pronunciations to nearly every item in 

Andrews and Scarratt’s (1998) experiment 2. There is thus no evidence that nonword 

consistency effects rely on the presence of feedback. Though not directly relevant, because this 

benchmark uses proportion of regularizations as the dependent variable, the correlation in cycle 

times between the two models was very high (r = .930, N = 191). 

Lexicality by letter length (by frequency). 

Weekes (1997) reported a study of the effects of letter length (using strings consisting 

of 3, 4, 5, and 6 letters) on reading aloud times. He examined the influence of letter length on 

both words and nonwords, and on words of differing frequencies (high vs. low). Weekes found 

that RT increased as letter length increased, and that this effect was larger for nonwords than 

for words. Though he argued that low-frequency words showed a stronger letter length effect 

than high frequency words, subsequent reanalysis of the Weekes data found that this 

interaction is not reliable (Coltheart et al., 2001). Perry et al. (2007) set out to simulate the 

following pattern: a significant effect of letter length, a significant letter length by lexicality 

interaction, but no frequency by letter length interaction in the word data. Data from the 

simulations can be found in Table 13. 
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Table 13. Mean cycles to response (percentage errors) to the Weekes (1997) items for 
CDP+ (F) and CDP+ (NF). 
 High Frequency Low Frequency Nonword 
Length Cycles %E Cycles %E Cycles %E 
CDP+ (F)       

3 77.80 (0.0%) 94.17 (0.0%) 120.00 (8.0%) 
4 86.96 (0.0%) 100.92 (0.0%) 131.14 (12.0%) 
5 91.08 (0.0%) 106.08 (4.0%) 150.45 (12.0%) 
6 98.26 (0.0%) 110.63 (4.0%) 160.88 (0.0%) 

       
CDP+ (NF)       

3 81.84 (0.0%) 100.29 (0.0%) 120.78 (4.0%) 
4 91.72 (0.0%) 107.72 (0.0%) 132.52 (12.0%) 
5 95.79 (0.0%) 112.92 (4.0%) 153.64 (0.0%) 
6 102.96 (0.0%) 117.58 (4.0%) 161.88 (0.0%) 
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CDP+ (F). 

After removing words unknown to the model (BLEST and BRUNCH), CDP+ made no 

word errors (of 198 words), and 8 errors to the 198 nonwords (THA, CAS, THUN, WILK, GEND, 

SPONT, GRITE, FRUND). Outlier identification resulted in two additional words (SPA, 

BRAWN), and three nonwords (TOB, COLM, SQUATE) being removed from analysis. When all 

three factors are included in the analysis, CDP+ (F) produced main effects of lexicality (F(1, 

271) = 1817.132, MSE  = 68, p < .001), letter length (F(3, 271) = 145.595, MSE  = 68, 

p < .001), and frequency (F(1, 271) = 146.918, MSE  = 68, p < .001), as well as a significant 

letter length by lexicality interaction (F(3, 271) = 27.021, MSE  = 68, p < .001). The interaction 

between letter length and frequency was not significant (F < 1). As nonwords do not have a 

frequency, the terms for Lexicality × Frequency and Length × Lexicality × Frequency are 

necessarily omitted from the ANOVA model. When considering only the word data, CDP+ 

again produced significant effects of letter length (F(3, 186) = 86.449, MSE = 34.9, p < .001) 

and frequency (F(1, 186) = 289.986, MSE = 34.9, p < .001), but no interaction between them 

(F < 1). 

Perry et al. (2007) also evaluated CDP+’s ability to account for variance in the item-

level human RTs. To do so, they considered both the human RTs provided by Weekes (1997), 

and the mean RTs reported in the English Lexicon Project (ELP; Balota et al., 2007). For 

words, CDP+ (F) explained 8.5% of the variance in the Weekes data, and 21.5% of the 

variance in the ELP RTs for these items. For nonwords, CDP+ (F) explained 30.8% of the 

variance in the Weekes RT data (the ELP does not contain values for nonwords). 
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CDP+ (NF). 

Words unknown to the model were removed once again (BLEST and BRUNCH). The 

CDP+ (NF) produced no word errors and only four nonword errors (CAS, THUN, WILK, and 

GEND). Thus CDP+ without feedback was once again more accurate at nonword reading than 

CDP+ with feedback. Outlier identification removed the same items as in the analysis for 

CDP+ (F) (words: SPA, BRAWN; nonwords: TOP, COLM, SQUATE). Including length, 

lexicality, and frequency in a single ANOVA analysis produced main effects of all three 

factors (length: F(3, 275) = 130.764, MSE = 81, p < .001; lexicality: F(1, 275) = 1302.134, 

MSE = 81, p < .001; frequency: F(1, 275) = 161.824, MSE = 81, p < .001), and a significant 

interaction between length and lexicality (F(3, 275) = 24.136, MSE = 81, p < .001). Once 

again, there was no evidence for a length by frequency interaction (F < 1). Considering only 

the word items, CDP+ (NF) again matched CDP+ (F)’s performance. There were main effects 

of length (F(3, 186) = 71.149, MSE = 46, p < .001) and frequency (F(1, 186) = 289.553, 

MSE = 46, p < .001), but no interaction between them (F < 1). 

As for item-level variance, CDP+ (NF) explained 8.2% of the variance in the word data 

for the Weekes human RTs, and 21.5% of the variance in the ELP RTs. For the nonwords, the 

CDP+ (NF) explained 24.8% of the variance in the Weekes human RTs. 

Model comparison. 

The CDP+ (F) and CDP+ (NF) models were both able to correctly simulate the 

qualitative pattern of results for this data set, and the latencies correlated very strongly (words: 

r = .996, N = 194; nonwords: r = .991, N = 89). At first glance, it appears that CDP+ (F) was 

more successful at explaining item-level variance in the nonword data. CDP+ (F) explained 

30.8% of the variance, whereas CDP+ (NF) explained only 24.8%. This is a significant drop in 
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the proportion of variance explained (a paired test of the underlying correlations using an inter-

correlation of .991 results in a t-value of 7.71, p < .001), however it can almost entirely be 

attributed to CDP+ (NF)’s increased accuracy in reading aloud nonwords. There are four items 

(THO, SPONT, GRITE, FRUND) that are included in the correlation for CDP+ (NF) but not for 

CDP+ (F) because the latter produced incorrect responses. When these items are removed from 

the correlation analysis for CDP+ (NF), the variance explained improves to 30.2%, which is no 

longer significantly different from CDP+ (F)’s 30.7% (t < 1). 

Body neighborhood. 

Body neighborhood is defined as the number of orthographic neighbors that share the 

same body as the target stimulus. For example, the homophone nonwords VEAP and VEEP 

have very different body neighborhoods. There are only 5 monosyllabic words ending in 

-EAP, but there are 13 that end in -EEP. Ziegler, Perry, Jacobs, and Braun (2001) manipulated 

lexicality (word vs. nonword), string length (3, 4, 5, or 6 letters)15, and body neighborhood 

(high vs. low). They reported that body neighborhood influenced reading aloud times for both 

words and nonwords, but did not interact with length. They also replicated the Weekes (1997) 

interaction between lexicality and length. This pattern is important because DRC (version 1.0) 

produced no body neighborhood effect (Perry et al., 2007). Simulation results are summarized 

in Table 14. 
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Table 14. Mean cycles to response (percentage errors) to the Ziegler et al. (2001) items for 
CDP+ (F) and CDP+ (NF). 
 Words Nonwords 
 Low Body N High Body N Low Body N High Body N 
Length Cycles %E Cycles %E Cycles %E Cycles %E 
CDP+ (F)         

3 82.90 (0.0%) 83.80 (0.0%) 125.22 (10.0%) 118.22 (10.0%) 
4 91.60 (0.0%) 86.70 (0.0%) 132.10 (0.0%) 127.10 (0.0%) 
5 93.40 (0.0%) 90.70 (0.0%) 156.80 (0.0%) 150.10 (0.0%) 
6 96.60 (0.0%) 96.10 (0.0%) 170.30 (0.0%) 175.33 (10.0%) 

         
CDP+ (NF)         

3 87.50 (0.0%) 88.70 (0.0%) 123.60 (0.0%) 118.90 (0.0%) 
4 97.10 (0.0%) 91.10 (0.0%) 132.60 (0.0%) 127.00 (0.0%) 
5 97.90 (0.0%) 95.20 (0.0%) 154.90 (0.0%) 152.10 (0.0%) 
6 101.10 (0.0%) 100.60 (0.0%) 170.00 (0.0%) 176.10 (0.0%) 
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CDP+ (F). 

CDP+ with feedback made three errors to nonwords (SIL, LAN, FRATCH) and 

produced one nonword outlier (SCRAST). With these items removed, there were main effects 

of lexicality (F(1, 140) = 880.33, MSE = 123,  p < .001), body neighborhood (F(1, 

140) = 5.46, MSE = 123,  p < .05), and length (F(3, 140) = 51.79, MSE = 123,  p < .001), as 

well as a significant lexicality by length interaction (F(1, 140) = 20.00, MSE = 123,  p < .001). 

This pattern matches the pattern reported for the human data in Ziegler et al. (2001). 

CDP+ (NF). 

Without feedback, CDP+ made no errors, and produced one nonword outlier 

(SCRAST). With only that item removed, there were main effects of lexicality (F(1, 

143) = 775.45, MSE = 118,  p < .001) and length (F(3, 143) = 52.65, MSE = 117,  p < .001); a 

marginal effect of body neighborhood (F(1, 143) = 3.51, MSE = 117,  p = .063); and a 

significant lexicality by length interaction (F(1, 143) = 23.01, MSE = 117,  p < .001). The 

difference in the effect of body neighborhood (significant in CDP+ (F), only marginal in 

CDP+ (NF)) is driven entirely by the reduction in errors when feedback is removed. If the 

three items that produced errors in CDP+ (F) are removed (SIL, LAN, FRATCH), CDP+ (NF) 

produces a significant effect of body neighborhood (F(1, 140) = 4.32, MSE = 117,  p < .05). 

Model comparison. 

On the surface, it appears that CDP+ (F) was slightly more successful at simulating the 

human data from Ziegler et al. (2001). In particular, CDP+ (F) produced a significant effect of 

body neighborhood (p = .02), where CDP+ (NF) produced only a marginal effect (p = .06). 

There are two reasons why I don’t consider this a strong case for the need to include feedback 
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in the model. First, p = .05 is a widely accepted, but still relatively arbitrary, cut off point for 

significance. Whereas CDP+ (NF) does not meet this criterion, it is not far from achieving it 

and a larger stimulus set would likely increase the power enough to achieve it. Second, closer 

examination revealed that this discrepancy is the result of changes in the error rates – whereas 

CDP+ (F) made three errors to nonword items, CDP+ (NF) read all nonwords aloud correctly. 

If the three items CDP+ (F) named incorrectly are removed from the analysis for CDP+ (NF), 

the body neighborhood effect is now significant. 

The correlation in latencies between the two models was very high (r = .994, N = 156). 

Even within lexical classes, the correlations remained very high (Words: r = .993, N=80; Non-

words: r = .981, N=76). Both versions were also equally capable of capturing item-level 

variance (CDP+ (F): 55.2%; CDP+ (NF): 56.0%). 

Pseudohomophone advantage. 

McCann & Besner (1987) reported that nonwords that can be pronounced to sound like 

words (e.g., BRANE) are read aloud faster than matched control nonwords (e.g., FRANE). They 

argued that this effect was the result of “the assembly process [making] contact with existing 

whole-word representations in the phonological lexicon.” (pp. 19-20)  In dual-route models, 

this point of contact would rely on the feedback connections from the Phoneme Buffer to the 

POL. Because this account relies on feedback from the Phoneme Buffer to the POL, it predicts 

that CDP+ (NF), which does not include those feedback connections, should not be able to 

produce a pseudohomophone advantage; prima-facie, this effect may be one that simply cannot 

be simulated without recourse to feedback.16 Results for the pseudohomophone advantage 

simulations can be found in Table 15. 
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Table 15. Mean cycles to response (percentage errors) to the McCann and Besner (1987) items 
for all versions of CDP+: (F), (NF), no lexical route, minimal feedback (from the Phoneme 
Buffer to the POL), and (NF) with lexical enhancement (LE). 
 Pseudohomophones Control Nonwords 
Model Cycles %E Cycles %E 
CDP+ (F) 137.65 (13.9%) 145.02 (8.5%) 
CDP+ (NF) 143.30 (11.1%) 147.14 (7.0%) 
CDP+ no lexical route 143.30 (11.1%) 147.14 (7.0%) 
CDP+ minimal feedback 137.95 (15.3%) 145.27 (9.9%) 
CDP+ (NF) with LE 138.02 (13.9%) 145.78 (9.9%) 
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Table 16. Parameters used to simulate the pseudohomophone advantage (1987) for CDP+ with 
minimal feedback, CDP+ with no lexical route, and CDP+ (NF) with lexical enhancement 
(LE). Only values that differ from the default CDP+ (F) values are indicated. 
Parameter CDP+ (F) minimal 

feedback 
no lexical 

route 
(NF) with 

LE 
Lexical Route     
Feature Level     
Feature-to-letter excitation 0.005    
Feature-to-letter inhibition -0.150    

Letter Level     
Letter-to-letter inhibition 0.000    
Letter-to-orthography excitation 0.075  0.000  
Letter-to-orthography inhibition -0.550  0.000 -0.316 

Orthographic Lexicon     
Orthography-to-orthography inhibition -0.060   0.000 
Orthography-to-phonology excitation 1.400    
Orthography-to-letter excitation* 0.300 0.000 0.000 0.000 

Phonological Lexicon     
Phonology-to-phonology inhibition -0.160   0.000 
Phonology-to-phoneme excitation 0.128  0.000  
Phonology-to-phoneme inhibition -0.010  0.000  
Phonology-to-orthography excitation* 1.100 0.000  0.000 

Phonological Output Buffer     
Phoneme-to-phoneme inhibition -0.040    
Phoneme-to-phonology excitation* 0.098  0.000 0.000 
Phoneme-to-phonology inhibition* -0.060  0.000 0.000 

General Parameters     
Activation rate 0.200    
Frequency scale 0.400    
Phoneme naming activation criterion 0.670    

Sublexical Parameters     
Cycles before route begins 0    
Cycles before next letter accessed 15    
Sublexical to phoneme activation 0.085    
Letter level threshold for processing 0.210    

* indicates parameters that are set to zero for CDP+ (NF) 
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CDP+ (F). 

Perry et al. (2007) used only 144 of the 160 items in the McCann and Besner (1987) 

corpus. It is not clear why some items were excluded from the simulation, however, to ensure 

comparability, the present simulations used the same 144 items originally reported in Perry et 

al. (2007). Of these 144 items, Perry et al. removed one nonword (VOLE) from the analysis 

because it is in fact a word (though it is unknown to the model). To match their analyses, I did 

the same here. With feedback present, CDP+ (F) produced errors to 16 items from the McCann 

and Besner (1987) stimuli. In addition, 3 items were identified as outliers. However, CDP+ (F) 

did produce significantly faster response times to pseudohomophones than to other nonwords 

(t(122) = 2.14, p < .05).17 

CDP+ (NF). 

As predicted by McCann and Besner’s (1987) account, CDP+ (NF) is unable to 

simulate this effect. Without feedback from the Phoneme Buffer to the lexical route, 

pseudohomophones are no longer significantly faster than other nonwords (t < 1, ns; 13 errors, 

2 outliers). 

Model comparison (CDP+ (F) vs. CDP+ (NF)). 

CDP+ (NF) was unable to simulate this effect, and that failure is reflected in the 

correlations between the cycle times. Compared to the other inter-model correlations reported 

here, the correlation in cycles between the CDP+ (F) and CDP+ (NF) was very low (r = .895, 

N = 124). This low correlation is seen for both the pseudohomophones (r = .906, N = 64) and 

nonwords (r = .888, N = 60). Curiously, despite CDP+ (NF)’s inability to simulate the basic 
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pseudohomophone advantage, the two versions performed equivalently at modeling item-level 

variance (CDP+ (F): 4.96%; CDP+ (NF): 5.15%; the difference is not significant). 

This is the first (and only) of the phenomena that could be simulated by CDP+ (F) but 

not by CDP+ (NF). On first glance this would seem to be because the pseudohomophone 

advantage requires that the non-lexical pronunciation find its way into the lexical system in 

order for its lexical status to influence reading aloud. In CDP+, this can only be accomplished 

by feedback from the Phoneme Buffer to the POL. There is another possibility that I will 

revisit shortly, but first, a closer look at this feedback account of CDP+ (NF)’s failure. 

CDP+ with minimal feedback. 

The failure of CDP+ (NF) to produce a significant pseudohomophone effect is 

consistent with the view that feedback plays a role in producing an advantage for reading aloud 

pseudohomophones in CDP+. However, this does not imply that feedback need appear 

everywhere that it exists in CDP+ (F). IA between the Phoneme Buffer and the POL should 

suffice, without a need for feedback along the rest of the lexical route. Indeed, with feedback 

from the Phoneme Buffer to the POL restored (without restoring any other feedback 

connections, see Table 16), the model once again produces a significant pseudohomophone 

advantage (t(120) = 2.10, p < .05; 18 errors, 3 outliers). 

Model comparison (CDP+ (F) vs. CDP+ with minimal feedback). 

A modified version of CDP+ (NF), in which only feedback from the Phoneme Buffer to 

the POL is intact, entirely restores the model’s ability to simulate the pseudohomophone 

advantage. CDP+ with minimal feedback also improves on the inter-model correlation, 

increasing it to .9996 (N = 122). This nearly perfect correlation suggests that the minimal 

feedback included here captures nearly all of the contribution of feedback to reading aloud the 
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McCann and Besner (1987) stimulus set. Here again, both models capture the same proportion 

of item-level variance (CDP+ (F): 4.96%; CDP+ minimal feedback: 5.03%; the difference is 

not significant). 

This result limits the role of feedback considerably. Because no other benchmark 

requires feedback at all, and the pseudohomophone advantage can be simulated with only a 

minimal amount of feedback, there is still no demonstrated need for feedback from the POL to 

the OIL, or from the OIL to the letter level. That said, it is too early to conclude that feedback 

is actually necessary: even with no feedback at all, there is a trend towards a 

pseudohomophone advantage with CDP+ (NF) (see Table 15). A closer look at that trend 

follows. 

CDP+ (NF) with lexical emphasis (LE). 

Though the pseudohomophone advantage can be observed with a minimal amount of 

feedback, it is informative that CDP+ (NF), with no feedback at all, still produces a trend 

towards a pseudohomophone advantage. This trend turns out to be driven entirely by the sub-

lexical processes: a simulation with a version of the model in which the lexical system has 

been completely severed produced exactly the same results (down to the cycle times and 

responses to individual items, see Table 15). This suggests a number of things. First, the 

residual advantage is in no way lexically mediated, which means that some of the 

pseudohomophone effect in CDP+ (F) is purely non-lexical in nature. Whatever this advantage 

represents, it is not a lexically based orthographic confound. Second, it suggests that feedback 

in CDP+ may not simply be the way the sub-lexical route makes contact with the lexically 

stored pronunciations. With the default parameters, feedback appears to be necessary in order 

for the lexical system to have any influence at all on reading these items aloud. In essence, 



 
 

66 

because removing feedback eliminated any lexical participation in reading these 

pseudohomophones aloud, it remains unclear whether it is the feedback per se that produces 

the pseudohomophone advantage, or whether it is lexical participation that produces the 

advantage. In CDP+ (F), lexical participation and feedback are confounded. To determine 

whether or not the pseudohomophone advantage could be attributed to lexical participation 

rather than feedback, I tested a third alternative model where feedback is eliminated but the 

lexical route is strengthened so that it still contributes to reading aloud. To enhance the lexical 

route’s contribution, I adopted Reynolds and Besner’s (2005) approach of reducing the amount 

of inhibition along the lexical route (the approach adopted here is similar to the GAS approach 

described in Reynolds and Besner, 2005; see Table 16), which has the effect of allowing the 

lexical route more influence in reading aloud. The result was a significant pseudohomophone 

advantage without the need for any feedback (t(122) = 2.25, p < .05; 17 errors, 2 outliers). 

Model comparison (CDP+ (F) vs. CDP+ (NF) with LE). 

Modifying CDP+ (NF) to allow an influence from the lexical route had the same effect 

as adding feedback. CDP+ (NF) with LE produced a robust pseudohomophone advantage. 

CDP+ (NF) with LE also improves on the inter-model correlation, increasing it to .976 

(N = 119) from .895. Importantly, CDP+ (NF) with LE outperforms CDP+ (F) in the 

proportion of item-level variance explained (CDP+ (F): 4.96%; CDP+ LE: 7.28%; 

t(117) = 2.52, p < .05).  

Most importantly, it is clear that the pseudohomophone advantage can be simulated 

without recourse to any feedback. In CDP+, feedback is a mechanism that allows the lexical 

system to influence reading of non-words, but it is this lexical participation that is responsible 
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for the pseudohomophone advantage, and not the feedback per se. Reducing inhibition offers 

an alternative, feedback-free approach to enhancing the lexical participation. 

Pseudohomophones and base word frequency. 

McCann and Besner (1987) also found that reading aloud of pseudohomophones (e.g., 

BRANE) was not influenced by the frequency of the base words (e.g., BRAIN), despite the base 

words themselves showing robust frequency effects. The absence of a base word frequency 

influence on reading aloud of pseudohomophones places an important constraint on 

computational modelers. However, subsequent research (Borowsky, Owen, & Masson, 2002; 

Borowsky, Phillips, & Owen, 2003; Grainger, Spinelli, & Ferrand, 2000; Reynolds & Besner, 

2005) has found the base word frequency effect is very context dependent. There is no base 

word frequency effect when pseudohomophones and nonwords are intermixed within a block 

of trials, but when the pseudohomophones are presented on their own, a base word frequency 

influence emerges (see Reynolds and Besner, 2005, for a thorough review of this literature). To 

further complicate the situation, both Borowsky et al. (2003) and Reynolds and Besner (2005) 

found an effect of the order of presentation of the nonwords and pseudohomophones, so that 

when the pseudohomophones were read aloud first there was a large base word frequency 

effect, but when the nonwords preceded the pseudohomophones, the base word frequency 

effect was absent. Importantly, when nonwords and pseudohomophones are read aloud in 

separate blocks, the pseudohomophone advantage observed in typical mixed-list experiments 

becomes a pseudohomophone disadvantage under blocked conditions.  

Clearly, then, the influence of base word frequency on reading aloud 

pseudohomophones is sensitive to context. Currently, computational models of reading aloud 

do not track contextual information. The general strategy employed by computational modelers 
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faced with this conundrum is to demonstrate that the different data patterns that are found 

under different contexts can be simulated by assuming that the context influences the 

configuration of the system in some plausible way (see Reynolds & Besner, 2005). In this way 

modelers provide an existence proof that the network could simulate all of the necessary 

patterns, and lacks only a mechanism for detecting the context and making the necessary 

adjustments. 

In the case of pseudohomophony and base word frequency, models must accommodate 

the fact that one context produces a pseudohomophone advantage with no base word frequency 

effect (mixed lists), another context produces a pseudohomophone disadvantage with a base 

word frequency effect (pseudohomophones read aloud first in a pure list followed by a pure list 

of nonwords), and finally another context produces a pseudohomophone disadvantage in 

conjunction with the absence of a base word frequency effect (nonwords followed by 

pseudohomophones in pure lists). 

A comment on word frequencies. 

McCann and Besner (1987) used the Kucera and Francis (1967) word frequency norms 

in their analysis of the influence of base word frequency on human RTs. These frequency 

norms are a proxy for what is thought to be “typical” experience of subjects. In the case of 

CDP+, the exact frequencies are clearly specified by the modeler in the lexicon file. Thus, 

Perry et al. (2007) used the frequencies that were embedded in the CDP+ orthographic system, 

with a few exceptions. Items GANE (GAIN), WAIJE (WAGE), and WEAD (WEED) were 

associated with frequencies 6,342, 5,911, and 5,634 respectively in the correlations. However, 

within the CDP+ lexicon (and thus during training of the non-lexical system) the frequencies 

for the base words were 861, 445, and 167 respectively. It is not clear where the erroneous 
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values were obtained (C. Perry, personal communication).18 The present analysis corrects this 

discrepancy, with very important consequences for CDP+ (F)’s ability to simulate the base 

word frequency phenomenon. 

CDP+ (F). 

To demonstrate the different patterns of base word frequency effects and 

pseudohomophone advantages/disadvantages, Perry et al. (2007) proposed that subjects adjust 

their response criterion depending on the context. They implemented this mechanism in the 

CDP+ model by varying the Minimum Naming Activation Criterion (MNAC), to show that as 

subjects become more conservative in responding, the base word frequency effect increases so 

that at low values of the MNAC, there is no frequency effect, whereas at higher values the 

effect emerges. By default, the MNAC is set to .67, which has already been shown to produce a 

pseudohomophone advantage (see previous section). Perry et al. reported that the default 

model also produced a significant base word frequency effect (using log transformed word 

frequencies), and indeed the present simulation supports that claim (r = -.334, N = 60, p < .01). 

Thus, by default the model produces both a significant pseudohomophone advantage, and a 

significant base word frequency effect – a pattern not yet observed in humans under any 

condition. 

According to Perry et al. (2007), subjects lower their response criterion in order to 

reduce the influence of the lexical route with the result that base word frequencies do not 

influence latencies (but see Reynolds & Besner, 2010, for an argument against this view). In 

CDP+, the challenge is to reduce the MNAC enough to eliminate the influence of base word 

frequency while preserving the pseudohomophone advantage (to simulate the mixed-list 

conditions). Though Perry et al. (2007) reported that setting the MNAC to .64 achieved this 
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aim, their success relied on the use of the three incorrect word frequencies described earlier. 

Correcting those frequencies produced only a marginal pseudohomophone effect (Cycles: 

133.26 vs. 139.50; t(123) = 1.78, p = .077; 16 errors, 2 outliers), but continued to produce a 

robust base word frequency effect (r = -.305, N = 61, p < .05). Although reducing the MNAC 

did reduce the influence of base word frequency, the pseudohomophone advantage was lost 

before the base word frequency effect was eliminated. It is difficult to see how only 

manipulating the MNAC can rectify this problem. Simply manipulating the response criterion 

is not enough to simulate the complicated relationship between context, pseudohomophony, 

and base word frequency. 

Reynolds and Besner’s (2005) inhibition account. 

Reynolds and Besner (2005) proposed an alternate method of simulating the 

complicated data pattern. They argued that subjects modulate how they used lexical 

information depending on the context. Generally speaking, the lexical route will produce many 

candidate responses to a given stimulus, and the breadth of the lexical activation is modulated 

by competitive inhibition of the weaker candidates by the stronger candidates. Reynolds and 

Besner (2005) argued that when pseudohomophones are presented within a nonword context 

(either mixed with nonwords, or when a list of nonwords precedes the pseudohomophone list), 

subjects allow activation of a broader range of candidates (which they termed the General 

Activation Strategy, or GAS). When the pseudohomophones are presented without the non-

word context (i.e., in a pure-list before being exposed to any nonwords), subjects rely more on 

specific word knowledge (which they termed the Specific Activation Strategy, or SAS). When 

pseudohomophones are presented after a list of nonwords, the options become broader (see 

Reynolds and Besner, 2005 for a complete treatment) but from a simulation perspective they 
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adopted an intermediate level of inhibition (which they named the Intermediate Activation 

Strategy, or IAS). They further argued that when nonword controls were read aloud alone or in 

a mixed-list with pseudohomophones, subjects adopted the GAS. 

Broadly speaking, Reynolds and Besner (2005) adjusted the strength of the competitive 

inhibition in DRC along the lexical route and found that when inhibitory connections are 

weakened (allowing a larger set of activated lexical entries), the base word frequency effect 

was diminished. Strengthening the inhibitory connections from the letter level to the OIL (and 

thus giving the model the ability to hone in more accurately on the most relevant lexical entry) 

increased the base word frequency effect. Though Reynolds and Besner (2005) demonstrated 

the success of this strategy in the context of the DRC model, the similar structures of the two 

models suggest a similar approach might be successful in CDP+. 

To test the Reynolds and Besner (2005) account with CDP+, I first applied their 

parameter changes proportionately to the analogous parameters in CDP+ (see Table 17). With 

the GAS parameter set (meant to simulate mixed-list conditions), CDP+ failed to produce a 

significant pseudohomophone advantage (Cycles: 141.66 vs. 143.89; t < 1, n.s.; 14 errors, 2 

outliers), but still produced a significant base word frequency effect (r = -.255, N = 64, 

p < .05). When the nonwords are read using the GAS parameter set, but the 

pseudohomophones are read using the SAS parameter set (meant to simulate the conditions of 

a pure-list of pseudohomophones read aloud before the nonwords), CDP+ failed to produce the 

pseudohomophone disadvantage (Cycles: 142.33 vs. 143.89; t < 1, n.s.; 14 errors, 2 outliers), 

and no longer produced a base word frequency effect (r = -.199, N = 63, p = .117). With the 

IAS parameter set (meant to simulate a pure-list of pseudohomophones read aloud after a list 

of nonwords), the results are similar to those for the SAS set (Cycles: 142.30 vs. 143.89; t < 1, 
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n.s.; 14 errors, 2 outliers; r = -.203, N = 63, p = .111). Thus this approach, successful in DRC, 

fails with CDP+. 

CDP+ relies more heavily on the non-lexical route in reading aloud than does the DRC 

(Robidoux & Besner, 2010). Reynolds and Besner (2005) vastly reduced the lexical route’s 

influence on naming in DRC by reducing the output from the POL to the phonemic buffer by 

90%. They did this to avoid lexical capture when competitive inhibition is reduced (where non-

words are read aloud as words that share similar orthographies). It’s possible that this is not 

necessary in CDP+ due to the weaker influence of the lexical route. To test this possibility, I 

conducted the same series of simulations described above (GAS, SAS, and IAS) but with the 

POL to Phoneme Buffer connection strengths left unchanged from the defaults – the results 

were a resounding failure. All three strategies (GAS, SAS, IAS) produced robust 

pseudohomophone advantages but also robust base word frequency effects. 

In summary, it appears that Perry et al.’s (2007) success at simulating the base word 

frequency effect relied on errors in their base word frequency values. When these erroneous 

frequencies are corrected, CDP+ can no longer simulate the complicated pattern of 

pseudohomophone and base word frequency effects. 
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Table 17. CDP+ parameters used to mimic Reynolds and Besner’s (2005) General Activation 
Strategy (GAS), Specific Activation Strategy (SAS), and Intermediate Activation Strategy 
(IAS). (Only parameters that differ from the default CDP+ (F) values are indicated). 
Parameter CDP+ (F) GAS SAS IAS 
Lexical Route     
Feature Level     
Feature-to-letter excitation 0.005    
Feature-to-letter inhibition -0.150    

Letter Level     
Letter-to-letter inhibition 0.000    
Letter-to-orthography excitation 0.075    
Letter-to-orthography inhibition -0.550 -0.316 -0.550 -0.487 

Orthographic Lexicon     
Orthography-to-orthography inhibition -0.060 0.000 0.000 0.000 
Orthography-to-phonology excitation 1.400    
Orthography-to-letter excitation* 0.300    

Phonological Lexicon     
Phonology-to-phonology inhibition -0.160 0.000 0.000 0.000 
Phonology-to-phoneme excitation 0.128 0.0128 0.0128 0.0128 
Phonology-to-phoneme inhibition -0.010    
Phonology-to-orthography excitation* 1.100    

Phonological Output Buffer     
Phoneme-to-phoneme inhibition -0.040    
Phoneme-to-phonology excitation* 0.098    
Phoneme-to-phonology inhibition* -0.060    

General Parameters     
Activation rate 0.200    
Frequency scale 0.400    
Phoneme naming activation criterion 0.670    

Sublexical Parameters     
Cycles before route begins 0    
Cycles before next letter accessed 15    
Sublexical to phoneme activation 0.085    
Letter level threshold for processing 0.210    

* indicates parameters that are set to zero for CDP+ (NF) 
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CDP+ with minimal feedback. 

Because CDP+ (NF) did not produce a significant pseudohomophone advantage, there 

is little point to assessing its ability to simulate the base word frequency effects. However, 

adding a minimal amount of feedback (between the Phoneme Buffer and the POL) entirely 

restored the pseudohomophone advantage. As with CDP+ (F), CDP+ with minimal feedback 

produced a significant effect of base word frequency (r = -.302, N = 59, p < .05). Setting 

MNAC to .64 the pseudohomophone advantage weakens somewhat (Cycles: 133.42 vs. 

140.55; t(122) = 1.934, p = .055; 16 errors, 3 outliers), but the base word frequency effect 

remains significant (r = -.284, N = 60, p < .05). Thus the pseudohomophone advantage is lost 

before the base-word frequency effect with this version of the model as well. In short, CDP+ 

with minimal feedback also fails to produce the appropriate pattern of pseudohomophone and 

base word frequency effects. 

CDP+ (NF) with lexical emphasis (LE). 

It is possible to simulate a pseudohomophone advantage with CDP+ (NF), provided the 

lexical route is given more influence in reading aloud than it has by default. However, as with 

the other two models that produced pseudohomophone advantages, CDP+ (NF) with LE also 

produced a robust base word frequency effect (r = -.265, N = 60, p < .05). With the MNAC set 

to .64, the pseudohomophone advantage is only marginally significant (Cycles: 133.43 vs. 

137.72; t(119) = 1.74, p = .085; 18 errors, 4 outlier), but the base word frequency effect 

remains marginally significant as well (r = -.234, N = 60, p = .073). To make the 

pseudohomophone effect significant required an MNAC of .66 (which is close to the default of 

.67). With MNAC set to .66, the pseudohomophone advantage is significant (Cycles: 136.13 
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vs. 142.84; t(121) = 1.74, p = .0432; 17 errors, 3 outlier), but the base-word frequency is very 

nearly significant (r = -.249, N = 60, p = .055). Certainly, this is not the sort of result that 

would lead a researcher to conclude that base word frequency is no longer influencing CDP+’s 

response times. 

It seems that, with or without feedback, CDP+ is unable to simulate the conjunction of 

pseudohomophone advantages/disadvantages and base word frequency effects that are 

simulated by DRC. It remains to be seen whether future versions of CDP+ will be able to 

produce all of the necessary patterns (a pseudohomophone advantage with no base word 

frequency effect, a pseudohomophone disadvantage and a base word frequency effect, and a 

pseudohomophone disadvantage with no base word frequency effect). 

Masked priming. 

In a masked priming experiment (where subjects are assumed to be subjectively 

unaware of the primes) Forster and Davis (1991) reported significant advantages for words 

when they were preceded by other words that shared the same onset (e.g., LEG-LOW), but not 

when they were preceded by words with the same rhyme (TOE-LOW) relative to when they are 

preceded by unrelated primes (RUN-LOW). Later, Montant and Ziegler (2001) found that 

rhyme priming can be obtained if the onset of the prime is masked with a # symbol (e.g., #AKE 

primed MAKE even though FAKE does not), so it appears that both onset and rhyme primes 

facilitate reading aloud even when the primes are masked. Perry et al. (2007) simulated this 

pattern with CDP+ using the Forster and Davis (1991) stimuli.19 

CDP+ (F). 

Among the targets in Forster and Davis’ (1991) stimuli, the word CLUE does not 

appear in CDP+’s lexicon, and was removed from analysis. One of the primes (YUK, used as 
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the onset prime for YOU) is also a nonword in CDP+. To ensure a balanced design, all trials 

containing YOU as a target were removed. In the case where the models made errors, or 

responses were identified as outliers, all occurrences of those targets were removed from 

analysis (i.e., if CDP+ incorrectly pronounced an item in any of the prime conditions, it was 

removed from all conditions before analysis). 

CDP+ (F) produced no outliers, but made two errors on unrelated trials (OAR, HUE), 

three errors in the onset-priming condition (BOW, KNEE, and OAR), and three in the rhyme-

priming condition (BOW, LOW, and HUE). Thus, in addition to YOU and CLUE, the items OAR, 

HUE, BOW, KNEE, and LOW were removed. With the remaining items, there was a significant 

advantage of onset priming relative to unrelated primes (t(18) = 11.40, p < .001), and a 

significant advantage of rhyme priming relative to unrelated primes  (t(18) = 4.24, p < .001). 

CDP+ (NF). 

Without feedback, CDP+ made no errors, and produced no outliers, so only CLUE and 

YOU were removed from analysis. As with CDP+ (F), CDP+ (NF) produced a significant 

advantage of onset priming relative to unrelated primes (t(23) = 4.84, p < .001), and a 

significant advantage of rhyme priming relative to unrelated primes  (t(23) = 4.16, p < .001). 

Model comparison. 

CDP+ (NF) matched CDP+ (F)’s performance on this benchmark (see Table 18). It was 

successful with Forster and Davis’ (1991) stimuli. For the Forster and Davis (1991) items, the 

correlation in latencies between the two models was very high (r = .998, N = 57). Within 

priming conditions, the correlations remained very high (Unrelated: r = .999, N = 19; Onset 

Prime: r = .999, N = 19; Rhyme prime: r = .998, N = 19). 
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Table 18. Mean cycles to response (percentage errors) to the Forster and Davis (1991) items 
for  CDP+ (F) and CDP+ (NF). 
 Unrelated prime Onset prime Rhyme prime 
Model Cycles %E Cycles %E Cycles %E 
CDP+ (F) 82.21 (8.0%) 79.89 (12.5%) 80.37 (12.0%) 
CDP+ (NF) 87.38 (0.0%) 85.54 (0.0%) 85.92 (0.0%) 
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Surface dyslexia. 

Patterson and Behrmann (1997) tested a surface dyslexic subject (MP) who tends to 

provide regularized pronunciations to exception words (e.g., MP would be more likely to 

pronounce PINT to rhyme with MINT than would a non-dyslexic reader). Patterson and 

Behrmann (1997) reported that MP was not only more likely to regularize exception words, but 

this tendency towards regularization was influenced by the consistency of the word so that MP 

produced more regularizations to words that were inconsistent than to words that were 

consistent. They operationalized consistency as the ratio of regular words to exception (or 

irregular) words and found that if an exception word had many more regular neighbors than 

exception neighbors; MP was more likely to provide a regularized pronunciation. This 

operationalization is similar to the F-E ratio employed by Jared (2002) in examining 

consistency effects in skilled readers. 

In addition to the consistency effects, two separate studies on two separate patients 

have examined the effect of word frequency on regularizations in surface dyslexia. Behrmann 

and Bub (1992) tested patient MP (the same patient described in Patterson and Behrmann, 

1997), whereas McCarthy and Warrington (1986) tested patient KT. In both cases, the patients 

showed strong influence of frequency on regularizations of exception words, despite very high 

accuracy with regular words. This interaction between frequency and regularity was much 

stronger in KT than in MP. 
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Table 19. CDP+ parameters used to mimic MP and KT’s surface dyslexia. (Only parameters 
that differ from the default CDP+ (F) values are indicated). 
Parameter CDP+ (F) MP KT 
Lexical Route    
Feature Level    
Feature-to-letter excitation 0.005   
Feature-to-letter inhibition -0.150   

Letter Level    
Letter-to-letter inhibition 0.000   
Letter-to-orthography excitation 0.075   
Letter-to-orthography inhibition -0.550   

Orthographic Lexicon    
Orthography-to-orthography inhibition -0.060   
Orthography-to-phonology excitation 1.400   
Orthography-to-letter excitation* 0.300   

Phonological Lexicon    
Phonology-to-phonology inhibition -0.160   
Phonology-to-phoneme excitation 0.128 0.055 0.055 
Phonology-to-phoneme inhibition -0.010   
Phonology-to-orthography excitation* 1.100   

Phonological Output Buffer    
Phoneme-to-phoneme inhibition -0.040   
Phoneme-to-phonology excitation* 0.098 0.000 0.000 
Phoneme-to-phonology inhibition* -0.060   

General Parameters    
Activation rate 0.200   
Frequency scale 0.400 0.800 1.000 
Phoneme naming activation criterion 0.670   

Sublexical Parameters    
Cycles before route begins 0   
Cycles before next letter accessed 15   
Sublexical to phoneme activation 0.085   
Letter level threshold for processing 0.210   

* indicates parameters that are set to zero for CDP+ (NF) 
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To create a surface dyslexic version of CDP+, Perry et al. (1997) reduced the influence 

of the lexical system by eliminating excitatory feedback from the Phoneme Buffer to the POL, 

and reducing the excitation from the POL to the Phoneme Buffer to 0.055 from 0.128. The net 

result is that reading aloud relies more heavily on the sublexical route. They also followed 

Coltheart et al.’s (2001) strategy of increasing the influence of word frequency to reflect the 

sensitivity to frequency found in both MP and KT. In the case of MP, they increased the 

frequency parameter from 0.4 to 0.8, and to reflect the larger effect of frequency for KT they 

increased it from 0.4 to 1.0. These parameter settings are summarized in Table 19. 

Model comparison for patient MP (CDP+ (F) vs. CDP+ (NF)). 

As modeling of surface dyslexia relies on error rates, the principal concern is whether 

or not removing feedback from CDP+ will affect the pronunciations. MP has been tested 

extensively by a number of researchers. In particular, Patterson and Behrmann (1997) tested 

her using stimuli that manipulated consistency and regularity, and Behrmann and Bub (1992) 

tested her using stimuli that manipulated regularity and word frequency. Perry et al. (2007) 

presented CDP+ (F) with the two stimulus sets and found that CDP+ (F) matched MP’s 

performance. 

Removing feedback had little effect on the responses provided by CDP+ to the 

Patterson and Behrmann (1997) stimuli. For the low (24 regular, 24 irregular words) and 

medium consistency words (29 regular, 30 irregular words; SOUR is excluded from analysis 

because it does not appear in the lexicon), both models produced identical responses. In the 

case of high-consistency exception words (12 regular; 12 exception, all of which began with 

“WA” or “WO”) only one item’s pronunciation differed: when presented with WAR, CDP+ (F) 
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pronounced it correctly (/woː/, to rhyme with BORE), whereas CDP+ (NF) regularized it (/waː/ 

to rhyme with BAR). Thus, of 131 words presented, only one item’s pronunciation (<1%) was 

affected by the removal of feedback. 

For the Behrmann and Bub (1992) items, feedback had no effect on the pronunciations 

produced by the model. All 223 items known to CDP+ produced identical pronunciations 

whether there was feedback or not. Five items are not known to CDP+: CHOIR, SOUR, 

GAUGE, PLOW, and MIL. They have been removed from the analysis, though it wasn’t 

necessary: both models produced identical pronunciations to all five items. 

In summary, CDP+’s success at simulating MP’s performance is not dependent on the 

presence of feedback. Of the 307 unique items in the Behrmann and Bub (1992) and Patterson 

and Behrmann (1997) stimulus sets, only WAR’s pronunciation was influenced by feedback. 

Model comparison for patient KT (CDP+ (F) vs. CDP+ (NF)). 

KT was tested on a list that manipulated word frequency and regularity (McCarthy & 

Warrington, 1986). Perry et al. (2007) chose a similar list from Taraban and McClelland (1987) 

and presented it to CDP+ (F) using the parameters meant to simulate KT’s deficits. Of the 96 

items in this stimulus list, PLOW is unknown to CDP+. Of the remaining 95 items, CDP+ (F) 

and CDP+ (NF) produced identical pronunciations to 91 (95.8%). The remaining four are 

summarized in Table 20. Two of the four items are errors in both models. In the case of LOSE, 

CDP+ (F) produces a regularization, whereas CDP+ (NF) simply gets it wrong (pronouncing 

LOW instead). Both models mispronounce BUS (a regular word). Of the remaining two, one 

(ARE) is correctly read aloud by CDP+ (F), and regularized by CDP+ (NF), and the other 

(WAND) is regularized20 by CDP+ (F), and read correctly by CDP+ (NF). The net result is a 
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slight shift in the proportions of high frequency and low-frequency exception words read aloud 

correctly, but the pattern still closely matches that of KT. 



 
 

83 

 

Table 20. Pronunciation differences between CDP+ (F) and CDP+ (NF) to the Taraban and 
McClelland (1987) items, using parameters meant to simulate surface dyslexic patient KT. 
Item Condition CDP+ (F)  CDP+ (NF)  
are High Frequency, Exception eː Correct aː Regulara 

lose Low Frequency, Exception ləʉz Regular ləʉ Error 
wand Low Frequency, Exception wænd Error wɔnd Correct 
bus Low Frequency, Regular baz Error ba Error 
a. “Regular” indicates an exception word that was regularized. 
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Phonological dyslexia. 

Phonological dyslexia is characterized by selective impairment of nonword reading 

(e.g., FRANE) with preserved ability to read words (e.g., BRANE). Coltheart et al. (2001) 

provide a thorough review of phonological dyslexia, so I will provide only a brief review here. 

Derouesné and Beauvois (1985) tested a patient, LB, who showed the characteristic pattern of 

severely impaired nonword reading, with near-normal reading of words. However, LB found 

pseudohomophones (e.g., BRANE) easier to read aloud than other nonwords, particularly if the 

pseudohomophones were orthographically similar to their base word (e.g., SEAD is similar to 

SEED, whereas PHOCKS is not similar to FOX). Coltheart et al. (2001) directly attributed this 

effect to feedback in the DRC: “For [pseudohomophones], this abnormally weak excitation is 

boosted by top-down interactive activation from the entry in the phonological lexicon of the 

[pseudohomophone’s] parent word; that is the source of the [pseudohomophone] advantage in 

our simulation of phonological dyslexia.” (p. 243)21 

To simulate LB’s phonological dyslexia, Perry et al. (2007) reduced the contribution of 

the sub-lexical route by reducing the strength of activation from the sublexical route to the 

Phoneme Buffer, and reduced all inhibitory connections along the lexical route by 50%. 

Though they argued that this second set of changes served to “[increase] the amount of noise in 

the model because it allows competing representations to be activated that would otherwise 

have been suppressed by means of inhibition” (p. 295), the changes are similar to the ones I 

made that increased lexical contributions to reading aloud in simulating the pseudohomophone 

advantage in intact readers (see the section entitled “Pseudohomophone advantage.”). The 

parameter set used is summarized in Table 21.  
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Table 21. CDP+ parameters used to mimic LB’s phonological dyslexia. (Only parameters that 
differ from the default CDP+ (F) values are indicated). 
Parameter CDP+ (F) LB 
Lexical Route   
Feature Level   
Feature-to-letter excitation 0.005  
Feature-to-letter inhibition -0.150  

Letter Level   
Letter-to-letter inhibition 0.000  
Letter-to-orthography excitation 0.075  
Letter-to-orthography inhibition -0.550 -0.275 

Orthographic Lexicon   
Orthography-to-orthography inhibition -0.060 -0.030 
Orthography-to-phonology excitation 1.400  
Orthography-to-letter excitation* 0.300  

Phonological Lexicon   
Phonology-to-phonology inhibition -0.160 -0.080 
Phonology-to-phoneme excitation 0.128  
Phonology-to-phoneme inhibition -0.010 -0.005 
Phonology-to-orthography excitation* 1.100  

Phonological Output Buffer   
Phoneme-to-phoneme inhibition -0.040 -0.020 
Phoneme-to-phonology excitation* 0.098  
Phoneme-to-phonology inhibition* -0.060 -0.030 

General Parameters   
Activation rate 0.200  
Frequency scale 0.400  
Phoneme naming activation criterion 0.670  

Sublexical Parameters   
Cycles before route begins 0  
Cycles before next letter accessed 15  
Sublexical to phoneme activation 0.085 0.060 
Letter level threshold for processing 0.210  

* indicates parameters that are set to zero for CDP+ (NF) 
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Model comparison for patient LB (CDP+ (F) vs. CDP+ (NF)). 

As with most research on acquired dyslexia, assessing LB’s nonword naming 

emphasized accuracy in naming various word-types rather than speed. Perry et al. (2007) 

presented the network with 160 nonwords: 40 pseudohomophones that were visually similar to 

their base words (e.g., FORSE), 40 pseudohomophones that were visually distant from their 

base words (e.g., SHAIK), and 80 matched control nonwords. The question of interest here is 

whether feedback modifies the pronunciations that CDP+ produces to the stimulus set. Both 

the CDP+ (F) and CDP+ (NF) versions of the models produced identical pronunciations to 

every item. Feedback played no role in CDP+ (F)’s ability to simulate LB’s phonological 

dyslexia. Indeed, taken together with the results in simulating pseudohomophone effects in 

skilled readers, this result further supports the view that pseudohomophone advantages can be 

simulated without recourse to feedback, and that this is true whether we examine error rates in 

acquired dyslexics, or reaction time effects in skilled readers. It is particularly encouraging that 

both effects are simulated without feedback using similar approaches: reducing the inhibition 

along the lexical route, which I argue serves to increase the lexical influence on naming. 

Other Phenomena 

Perry et al. (2007) discussed several other phenomena that they argued were not clearly 

enough established to be considered benchmarks. These included results from orthographic and 

phonological neighborhood (where CDP+ either matched or outperformed DRC 1.0), and 

results related to whammies (where DRC outperforms CDP+). Perry et al. (2007) and Coltheart 

et al. (2001) differed in whether they considered these phenomena key for computational 

modelers to simulate. To be consistent with Perry et al. (2007), I separate them from the 
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discussion of the agreed upon benchmarks, but feel they are important enough to warrant 

examination nonetheless. 

Orthographic and phonological N. 

Whereas body neighborhood effects are included in Perry et al.’s (2007) list of 

benchmarks, there are other measures of neighborhood size (or N). The most widely used 

measure is orthographic N: the number of words that can be formed by changing only a single 

letter. Letter strings with more orthographic neighbors are read aloud faster (and often more 

accurately) than those with fewer neighbors, and this is true for both nonwords and words 

(Andrews, 1989; 1992; 1997). Importantly, Mulatti, Reynolds, and Besner (2006) showed that 

the orthographic N effect is confounded with phonological N – the number of words that can 

be formed by changing a single phoneme (e.g., PINT and MINT are orthographic, but not 

phonological neighbors; whereas PHONE and FOAM are phonological, but not orthographic 

neighbors). Mulatti et al. (2006) found that when phonological N is controlled for, there is no 

orthographic N effect. Conversely they found that a phonological N effect persisted even when 

orthographic N was controlled for – evidence that the N effect is in fact phonological, and not 

orthographic, in nature. Mulatti et al. found that no computational models were able to capture 

this phenomenon at the time. Evidence that the N effect is phonological has found more recent 

support in Adelman and Brown (2007) who found similar results in an examination of a series 

of mega-studies: the time to read aloud words is influenced by the number of phonological, but 

not orthographic, neighbors. 
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Table 22. Mean cycles to response (percentage errors) to the Mulatti et al. (2006) items for 
CDP+ (F) and CDP+ (NF). 
 Phonological N Orthographic N 
Neighborhood size Cycles %E Cycles %E 
CDP+ (F)     

Low N 102.00 (0.0%) 99.87 (0.0%) 
High N 96.77 (0.0%) 99.14 (0.0%) 
Difference 5.23 (0.0%) 0.73 (0.0%) 

     
CDP+ (NF)     

Low N 108.23 (0.0%) 106.43 (0.0%) 
High N 102.07 (0.0%) 105.75 (6.7%) 
Difference 6.16 (0.0%) 0.68 (-6.7%) 
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Perry et al. (2007) reported that CDP+, like DRC, was able to capture the orthographic 

N effect in a set of nonwords (taken from Coltheart et al., 2001) but failed to capture the effect 

in two sets of words (taken from Andrews, 1989; 1992). However, with Mulatti et al.’s (2006) 

carefully constructed items, CDP+ produced a significant phonological N effect, but no 

orthographic N effect (accurately simulating the human data). 

CDP+ (F). 

I found that with the default settings, CDP+ produced a marginal effect of N with 

Coltheart et al.’s (2001) set of nonwords (r = -.114, p = .091, N = 224).22 With respect to 

words, my simulations confirmed Perry et al.’s (2007) finding that CDP+ (F) does not produce 

a significant N effect with the Andrews items (1989 Items: F(1, 52) = 1.05, ns; 1992 Items: 

F(1, 92) = 2.63, MSE = 59.9, p > .10), though it does produce a significant word frequency 

effect (1989 Items: F(1, 52) = 36.06, MSE = 63.6, p < .001; 1992 Items: F(1, 92) = 120.18, 

MSE = 59.9, p < .001). There is also no evidence of a N by word frequency interaction (Fs < 1 

for both the 1989 and 1992 items). 

With Mulatti et al.’s (2006) set of carefully unconfounded items, CDP+ (F) produced a 

significant effect of phonological N (t(58) = 2.21, p < .05), but no effect of orthographic N 

(t < 1). See Table 22 for these results. 

CDP+ (NF). 

The no-feedback version of CDP+ produced a significant effect of N in Coltheart et 

al.’s (2001) corpus of nonwords (r = -.134, p < .05, N = 226). For the Andrews (1989) and 

(1992) items, CDP+ (NF) produced no N effect (1989 Items: F(1, 52)  = 1.01, ns; 1992 Items: 

F(1, 92) = 2.22, MSE = 70.9, p > .10), though it does produce a significant word frequency 
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effect (1989 Items: F(1, 52)  = 43.62, MSE = 74.7, p < .001; 1992 Items: F(1, 92) = 139.68, 

MSE = 70.9, p < .001). There is also no evidence of a neighborhood by word frequency 

interaction (Both Fs < 1). 

With Mulatti et al.’s (2006) set of carefully unconfounded items, CDP+ (NF) matched 

CDP+ (F)’s performance, producing a significant effect of phonological N (t(58) = 2.28, 

p < .05), but no effect of orthographic N (t < 1). 

Model comparison. 

CDP+ produced identical results in both forms (feedback vs. no-feedback) for the 

Coltheart et al. (2001) set of nonwords, the Andrews (1989; 1992) sets of words, and Mulatti et 

al.’s (2006) set of words. For Coltheart et al.’s (2001) corpus of nonwords, the models 

performed similarly, and the latencies from the two models were highly correlated (r = .947, 

p < .001, N = 224). For the Andrews (1989) and Andrews (1992) corpora, the model 

correlations were very high (1989: r = .990, p < .001, N = 58; 1992: r = .994, p < .001, N = 96; 

respectively). The model latencies were also very highly correlated for the Mulatti et al. (2006) 

items (r = .996, p < .001, N = 118). Feedback is clearly not necessary to CDP+’s ability to 

simulate orthographic and phonological N effects. 

Whammies. 

Rastle and Coltheart (1998) asked whether reading aloud of nonwords would be 

influenced by the length of the letter string (letter-length), or the number of graphemes 

embedded in the letter string (grapheme-length; a grapheme is a letter cluster that produces a 

single phoneme. e.g., PH is a single grapheme because it maps to /f/). To test this question they 

presented participants with letter strings that were identical in letter-length, but differed in the 

number of graphemes (e.g., BARCH vs. BREPS). They reasoned that if letter-length was 
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important, than there should be no difference between the two types of words, if grapheme-

length influenced reading aloud latencies then the items with fewer phonemes (BARCH) should 

be read aloud faster than those with more phonemes (BREPS). Their results were inconsistent 

with both of these predictions – nonwords like BARCH, which require converting two letters 

into a single phoneme, were read aloud more slowly than BREPS, which had no such 

competition. They hypothesized that this effect (which they called the whammy effect) was 

due to the serial processing of the letter string by the sublexical processes. When the sublexical 

process first encounters the “C” in BARCH, the phoneme /k/ is activated in the Phoneme Buffer. 

When the “H” is subsequently encountered, the correct phoneme /tʃ/ must overcome the 

activation of /k/ in order for the nonword to be read aloud correctly. This competitive process 

slows response latencies and results in the whammy effect. 

Perry et al. (2007) argued that because Rastle and Coltheart’s (1998) own data failed to 

produce a significant whammy effect in the item analysis, the existence of this effect remains 

in question. As such, they argued that it does not yet warrant being considered a benchmark. 

They did, nonetheless, attempt to simulate the pattern using Rastle and Coltheart’s (1998) 

items, but were unable to produce a whammy effect. Though this would seem to negate the 

need to test the role of feedback in producing the effect, it is possible that feedback is somehow 

hampering CDP+’s performance, and that removing feedback would allow CDP+ to simulate 

an effect it had been unable to produce by default. Consequently, I submitted Rastle and 

Coltheart’s items to both versions of CDP+. Neither CDP+ (F) nor CDP+ (NF) was able to 

simulate the whammy effect (t < 1 in both cases; See Table 23 for simulation results). 
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Table 23. Mean cycles to response (percentage errors) to the Rastle and Coltheart (1998) items 
for  CDP+ (F) and CDP+ (NF). 
 Whammies No Whammies 
Model Cycles %E Cycles %E 
CDP+ (F) 152.35 (0.0%) 153.52 (8.3%) 
CDP+ (NF) 152.09 (0.0%) 152.83 (4.2%) 
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General Discussion 

This study has examined the role that feedback plays in CDP+’s ability to simulate a 

wide range of phenomena in reading aloud. The ultimate result is that feedback is not needed to 

simulate any of the phenomena identified as benchmarks by Perry et al. (2007) and Coltheart et 

al. (2001). Even the pseudohomophone advantage, which on the surface would seem to require 

feedback, can be simulated without feedback by making small adjustments to other parameters 

to allow a stronger lexical influence. Based on the simulation results presented here, it would 

seem that the widespread adoption of IA is premature, and that the assumptions that underlie 

IA warrant closer scrutiny. It remains to be seen if any phenomenon in reading aloud will 

challenge this view. In this section I address a few other issues that bear further consideration. 

Other Potential Benchmarks 

Coltheart et al. (2001) and Perry et al. (2007) identified a range of benchmarks that they 

felt were important for any computational model to simulate. Reviewing these phenomena, 

they generally meet the following three criteria: they are well-established, having been 

replicated in the literature, usually in multiple laboratories and studies; the computational 

models offer ways of testing the underlying theories (e.g., acquired dyslexia), or otherwise 

incorporate the effect into the model directly (e.g., word frequency); and the models are 

successful at simulating them, though in some cases one or other of the two models (DRC and 

CDP+) outperforms the other. Some phenomena that are within the purview of the theoretical 

models are not included because the computational models are not yet able to simulate them. 

For example, the theoretical dual-route models include a semantic system, but the 
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computational models have yet to implement one, thus although semantic priming and 

imageability effects are well established, they are not included in any of the benchmarks. 

Computational modelers are, understandably, biased towards selecting benchmarks that 

their models are capable of simulating. I believe that there are advantages to expanding the 

benchmarks to other phenomena where the models have yet to succeed. The first is that it will 

make researchers more aware of the limitations of the models. Authors necessarily focus on the 

strengths of their models, and it is our responsibility as colleagues to ensure that researchers 

making use of these models do not lose sight of their limitations. The second advantage is that 

by identifying a phenomenon as a benchmark before it is simulated, modelers are provided 

with an incentive to direct their efforts at the phenomena of most interest to the field at large. 

Here I propose a few phenomena that I believe are worthy of benchmark status. 

Stimulus quality and word frequency. 

Word frequency is already a benchmark that the models handle easily. Joint 

manipulation of word frequency and stimulus quality, however, has been ignored in compiling 

benchmarks. In lexical decision, this manipulation has a long history (beginning with Stanners, 

Jastrzembski, & Westbrook, 1975), where the two factors are found to be additive: word 

frequency effects are equivalent for low-quality stimuli and high-quality stimuli. In reading 

aloud, the history is shorter but more complex: using different stimulus quality manipulations, 

Yap and Balota (2007) and O’Malley, Reynolds, and Besner (2007) found that whereas word 

frequency and stimulus quality are additive in lexical decision, they are overadditive in reading 

aloud such that low-quality stimuli show a larger frequency effect than do high-quality stimuli. 

More recently, O’Malley and Besner (2008) demonstrated that the qualitative difference in the 

pattern is related to the context, and not the task. When nonwords are intermixed with the 
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words (as they must be in lexical decision, but usually are not in reading aloud), stimulus 

quality and word frequency are once again additive, even in reading aloud. It is this latter 

result that presents a particular challenge to computational modelers. We know of no 

demonstrations of additivity to date between stimulus quality and any other factor in a 

computational model of reading aloud (but see Ziegler et al., 2009; Besner & O’Malley, 2009). 

Stimulus quality and regularity. 

Besner et al. (2010) jointly manipulated stimulus quality and regularity, both in the 

presence of nonwords, and with only words present. The goal was to provide further support 

for the additive effects observed in O’Malley and Besner (2008) by demonstrating a similar 

pattern with a different lexical characteristic, and to strengthen the evidence for a contextual 

influence on the reading system. The additivity when nonwords are present was confirmed 

(when nonwords were present, stimulus quality and regularity were additive on both reaction 

times and errors, as was the case with word frequency), but with an additional surprise: when 

only words are present, regularity and stimulus quality are underadditive. Exception words 

were less affected by the stimulus quality manipulation than were regular words. Besner et al. 

(2010) provide both a demonstration of the underadditivity and a replication. These two 

patterns (additivity and underadditivity) present a significant challenge to computational 

modelers (but see Besner et al., 2010 for one way to simulate the underadditivity in CDP+). 

The question of additivity is one that seems likely to become more and more important 

in computational models. To date, modelers have ignored experiments that produce such 

patterns, but the evidence that additivity is real continues to accumulate (see Besner, 2006, for 

a summary of numerous demonstrations of additivity that precede those describe here). At 
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some point, modelers will be forced to accept these effects as benchmarks, and the sooner they 

address the issue, the better. 

Semantic priming and imageability. 

The benchmarks simulated in this study are based on dual-route models and selected by 

their proponents (Coltheart et al., 2001; Perry et al., 2007). Thus far, dual-route modelers have 

ignored semantic phenomena, likely because they have yet to implement a semantic system. 

Proponents of the Triangle model, on the other hand, have addressed the issue of the semantic 

system to some extent. Plaut and Booth (2000) implemented the orthographic and semantic 

systems in a model designed to simulate the lexical decision task. In reading aloud, Plaut et al. 

(1996) approximated the semantic system’s influence on phonology but without a true 

semantic system. In the most complete version of the Triangle model to date, Harm and 

Seidenberg (2004) implemented all three modules (orthographic, phonological, and semantic) 

but not all of their inter-connections: the semantic-phonological pathway was fully 

implemented, but the orthographic system acted only as an input to both the semantic and 

phonological systems; it did not receive connections from those modules (see Figure 5). 

Nevertheless, Harm and Seidenberg (2004) demonstrated that their model was sensitive to both 

imageability (Simulation 5: words high in imageability are named faster than words low in 

imageability), and semantic priming (Simulation 16: words are read aloud more rapidly when 

preceded by semantically related items, e.g., FROG-TOAD, than by unrelated items, e.g., 

NOSE-TOAD). 
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Figure 5. Structure of the implemented version of the Triangle model from Harm and 
Seidenberg (2004). Dotted arrows indicate activation flowing in only one direction, whereas the 
solid, double-headed arrows indicate interactive activation. 
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For the two classes of models (Triangle and dual-route) to be compared, the semantic 

system and its influence on reading aloud should, in all fairness, be included in any 

evaluations. Thus it is my view that, imageability and semantic priming should be included as 

benchmarks. 

Disabling Feedback 

The present work provides an existence proof for a set of parameters with no feedback 

in CDP+ that is capable of producing all of the identified benchmarks with as much success as 

the default model (with feedback). I am fortunate that arriving at that set of parameters 

required nothing more than simply setting the feedback parameters to 0 (with the exception of 

modeling the pseudohomophone advantage), however, this will not always be the case. The 

parameters in these complex models are inter-dependent, such that changes to one parameter 

will often necessitate changes to other parameters in order to compensate (e.g., see the 

simulations of the pseudohomophone advantage). Thus future models may require more effort 

to find a suitable parameter set with no feedback. 

In particular, it seems very unlikely that the simple approach employed here would 

work in a trained PDP network such as the Triangle Model. Network connection strengths in 

PDP models are learned through a complex and computationally intensive training process 

until the network’s “knowledge” is directly embedded in the pattern of connection weights. 

Simply removing all of the feedback in such a model would likely decimate any knowledge the 

model gained in training. In PDP models, carrying out a study such as the one reported here for 

CDP+ would require training a model with no feedback connections and comparing its 

performance to that of a network trained with feedback connections. The training process itself 
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is subject to several variables that can be manipulated which creates yet another challenge: it 

may be that a model with no feedback requires somewhat different training conditions in order 

to match the performance of a model with feedback. 

Woollams et al. (2007) do provide one example of a feed-forward only version of a 

Triangle model applied to surface dyslexia. They simulated surface dyslexia (in conjunction 

with semantic dementia) in a version of the Triangle model that included only an orthographic 

to phonology pathway (with an approximation of a semantic system influence on phonology). 

Though there is debate about its success (see Coltheart, Tree, & Saunders, 2010a, 2010b; 

Woollams, Lambon Ralph, Plaut, & Patterson, 2010a, 2010b), it is notable that the Woollams 

et al. (2007) model included no feedback connections, and thus they have demonstrated that 

feedback from phonology to orthography is unnecessary in the Triangle model for at least one 

benchmark. 

Conclusion 

Since McClelland and Rumelhart’s seminal work (1981; Rumelhart & McClelland, 

1982) introducing the concept of interactive activation, those principles have been incorporated 

into all of the major theoretical models of reading aloud. Despite its popularity, the 

assumptions built into the IA framework have yet to be closely examined. This study 

represents a first pass at evaluating one of the key assumptions underlying IA: the presence of 

feedback. Using CDP+ (Perry et al., 2007), I evaluated the role that feedback played in a set of 

benchmark phenomena that have been identified as key to evaluating computational models of 

reading aloud, first with the DRC (Coltheart et al., 2001) and then with CDP+. In every case, 

the data were equally well described by a model with no feedback, and, in the case of nonword 

reading, removing feedback actually improved performance. 
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The title of this paper is borrowed from Norris, McQueen, & Cutler (2000), so I will 

turn to them again to summarize my conclusions. In testing the role of feedback in speech 

recognition, Norris et al. (2000) stated that “…although the assumption of interaction fits with 

many people’s intuitions about the nature and complexity of the speech recognition process, it 

is certainly not forced by the data.” (p. 301) and “We cannot prove the null hypothesis that no 

interaction takes place. In our view, however, this remains one of the best arguments for 

adopting autonomous theories as the default option in this field: Occam’s razor dictates that we 

do so.” (p. 324) In the speech recognition literature, “autonomous” is the term used for models 

that do not include feedback. Consequently, these statements could just as well be made about 

processes in reading aloud. Modelers in reading aloud have been too quick to adopt the IA 

framework, and, for the moment at least, Norris et al.’s title applies just as well here: Feedback 

is never necessary. 
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Endnotes 

 

1 CDP+ (Perry et al., 2007) does have a modified form of staged processing between 

the letter level and the sublexical system (specifically, the grapheme parser). Letters are only 

made available to the grapheme parser once a given threshold of activation is attained. Once 

that level is reached, the relevant letter is “turned on” in the grapheme parser. In effect, this 

means that the letter level passes information on to the grapheme parser in a discrete way once 

it has identified a letter unambiguously. This activation threshold is not the only factor that 

determines the grapheme parser’s access to the letters, though. To mimic an attentional system 

that scans the letters from left to right, the grapheme parser can only see one letter for every 15 

cycles (i.e., only the first letter is initially available, subject to the activation threshold; after 15 

cycles, the first two letters are available, subject to the activation threshold; and so on). 

Sternberg (1969) did not consider this combination of an activation-based threshold and a time-

based threshold in his treatment of discrete stages. 

2 Paap et al. (1982) formalize the decision about which level of information to use as 

well, but that level of detail is not needed for our discussion. It suffices to note that on some 

trials the decision is made at the word level, whereas on others it is made at the letter-level. 

3 This notation is based on the International Phonetic Alphabet. The output from CDP+ 

is based on a customized notation system using only basic alphanumeric and punctuation 

characters. The mapping between the symbols used in the output of the models and those 

specified in the IPA are available in Appendix A. 
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4 There is a newer version (CDP++) that has been extended to disyllabic words (Perry, 

Ziegler, & Zorzi, 2010). This newest version is not yet available for public use, and is 

considerably slower to run than CDP+ (C. Perry, personal communication, May 22, 2010). 

5 In my view, Dual-Route Cascaded is a misnomer for the DRC model because it 

ignores that the model includes feedback connections and within-level inhibitory connections 

along the lexical route. To avoid ambiguity, this thesis will only use the term cascaded to 

describe processing that is consistent with the framework defined in the original work by 

McClelland (1979). 

6 Perry et al. (2007) reported 98.67% accuracy, suggesting that they found the model 

correctly named two items more than my replication suggests. I have no explanation for the 

discrepancy.  

7 This correlation considers only the items that were correctly named by both CDP+ (F) 

and CDP+ (NF). No effort has been made to remove outliers. 

8 To give a sense of the importance of this issue, CDP+’s lexicon is based on DRC’s, 

which was developed with an Australian dialect in mind. The authors of CDP+, however, have 

RP English, French (France), and Italian as their mother tongues. I have French (Canada) as 

my mother tongue, though English (Canada) is my primary language. 

9 There are likely many sources for the variance. In addition to simply variance between 

subjects and subject pools (which can’t be controlled for), the variance could also arise from 

other differences in experimental designs (e.g., timing of stimulus presentation, nature of 

fixation points, brightness of the display, etc…), or in differences in the equipment used to 
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make the reaction time measurements (e.g., relying on voice key triggers vs. analysis of wave 

recordings).  

10 The summed frequency of a set of neighbors is generally going to be confounded with 

the number of neighbors. See Jared, McRae, and Seidenberg (1990) for evidence that the 

former is the more influential of the two measures. 

11 Perry et al. (2007) also reported successful simulation of the regularity by position 

effect using the items from Rastle and Coltheart (1999). I omit the details of this simulation 

here because it is known that those items included a grapheme consistency confound. The 

Roberts et al. (2003) stimulus list controlled for this confound and thus provides a more 

stringent test for this benchmark. Briefly though, the presence or absence of feedback played 

no role in CDP+’s performance on the Rastle and Coltheart (1999) items. 

12 This does not agree with the values reported in Perry et al. (2007). I have been unable 

to resolve the discrepancy – however, the results do not differ in any significant way from 

those reported by Perry et al. (2007). 

13 There are minor discrepancies between the values here, and those reported in Perry et 

al. (2007). Those discrepancies can be attributed to Perry et al. mistakenly treating the 

pronunciations of POOK and DOOK to rhyme with TOOK as regular. According to the rules set 

out by Andrews and Scarratt (1998), the regular pronunciation would pronounce the OO as in 

BOOT, not TOOK.  

14 The discrepancies between the values reported here, and those reported in Perry et al. 

(2007) are larger than in the experiment 1 simulations. Though I do not have the Perry et al. 
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results for individual items, the discrepancy is not important because so few of the 

pronunciations differed between the two models. No matter how the model responses are 

evaluated, CDP+ (F) and CDP+ (NF) will produce nearly identical results. 

15 Perry et al. (2007) treated length as a categorical variable. Because the assumption is 

that cycle times would increase monotonically with increasing length, it might make more 

sense to treat this variable as continuous. I conducted the analysis using both specifications, 

and found that it made no difference to the conclusions. 

16 There are other accounts of the pseudohomophone advantage that do not rely on the 

same mechanisms. For example, Borowsky, Owen, & Masson, (2002) propose a form of 

lexical checking that could give rise to the effect even in the cascaded version of the model. No 

such mechanism is implemented in any computational model of visual word recognition, so I 

ignore this account for the present purposes. (See Reynolds and Besner, 2005, for other 

accounts of the pseudohomophone advantage). 

17 The cell means and degrees of freedom differ somewhat from those reported by Perry 

et al. (2007) because there were three differences in our assessments of accuracy. Perry et al. 

accepted as correct an alternate pronunciation of GOLPH (GOLF) that is not one stored in 

CDP+’s lexicon. Similarly, they identified GOOL as incorrect, when in fact CDP+ generates the 

pronunciation that matches its stored pronunciation for GHOUL. To remain consistent with 

CDP+’s dialect, I have identified GOLPH as an error, and accepted GOOL as correct. Also, 

whereas in some dialects of English BRUVE might be pronounced to rhyme with LOVE, in the 
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dialect known to CDP+, it should rhyme with PROVE. Consequently, only that pronunciation 

was accepted. 

18 I’d like to thank Conrad Perry for his providing the items for the various simulations, 

and for his help in clarifying the methods used in Perry et al. (2007) whenever needed. 

19 More recently, Mousikou, Coltheart, Finkbeiner, and Saunders (2010) have taken a 

closer look at the masked onset priming effect (or MOPE). In a first experiment, they found 

that two-letter overlap primes (SIF-SIB) provided a greater advantage than one-letter overlap 

primes (SUF-SIB). In a second experiment, they found the priming effects increased with 

prime duration. These results are likely to be important in evaluating and comparing models in 

the future. For the moment, CDP+ (F) fails to capture either the one- or two-letter overlap 

priming effects with these stimuli, so this data is not considered further. 

20 It’s worth noting that this item is subject to the “W” influence (Venezky, 1970) 

wherein words that begin with “WO” or “WA” typically violate the rules, in the sense that the 

vowel is frequently pronounced differently than it would be if preceded by another consonant 

cluster (e.g., WORM vs. FORM, DORM, NORM; or WARM vs. HARM, and FARM). 

21 Though the benchmarks describe some of the broader characteristics of phonological 

dyslexia (PD), PD is a well-studied disorder. Indeed there is an entire issue of Cognitive 

Neuropsychology devoted to the topic (volume 13, issue 6). It is also worth noting that whereas 

Coltheart’s account relies on feedback, there is another view promoted by Patterson, Suzuki, & 

Wydell (1996): that PD is the result of impairment, not in sublexical processes, but in the 

phonological system of the Triangle Model (but see Caccappolo-van Vliet, Miozzo, & Stern, 
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2004). In the dual-route models, this could be thought of as damage to the phonemic buffer 

itself, rather than in the sublexical processes. This view does not rely on IA. Unfortunately, 

CDP+ does not offer any useful parameter manipulations to test their theory. 

22 Perry et al. (2007) reported that the default version of CDP+ produced a significant 

correlation (r = -.13, p < .05, N = 224). The discrepancy between that result, and the one 

reported here for CDP+ (F) is likely due to the challenge of identifying errors with nonwords. 

It is likely that our final sets of accurate responses did not overlap perfectly. 
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Appendix A: Correspondence between CDP+ output symbols and the International Phonetic 

Alphabet 

 

CDP+ IPA Example CDP+ IPA Example 
_ or Z dʒ age j j yam 
{ æ can J tʃ birch 
# aː aft, art k k bark 
1 æɪ cane l l learn 
2 aɪ file m m mean 
3 ɜː firm n n name 
4 oɪ point N ŋ sing 
5 əʉ rope p p power 
6 æɔ found Q ɔ want 
7 ɪə beard r ɹ ring 
8 eː dare s s sun 
9 oː fall S ʃ rash 
b b bad t t ten 
d d raid T θ thought 
D ð that u ʉː boot 
E e bed U ʊ took 
f f fox v v vary 
g g game V a ssnub 
h h house w w wait 
i iː deem x x ugh 
I ɪ film z z zest 

 


