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Abstract

Chaos theory is well known as one of three revolutions in physical sciences in 20th-century,

as one physicist called it: ”Relativity eliminated the Newtonian illusion of absolute space

and time; quantum theory eliminated the Newtonian dream of a controllable measurable

process; and chaos eliminates the Laplacian fantasy of deterministic predictability”. Spe-

cially, when chaos synchronization was found in 1991, chaos theory becomes more and

more attractive. Chaos has been widely applied to many scientific disciplines: mathematics,

programming, microbiology, biology, computer science, economics, engineering, finance,

philosophy, physics, politics, population dynamics, psychology, and robotics. One of most

important engineering applications is secure communication because of the properties of

random behaviours and sensitivity to initial conditions of chaos systems. Noise-like dynam-

ical behaviours can be used to mask the original information in symmetric cryptography.

Sensitivity to initial conditions and unpredictability make chaotic systems very suitable to

construct one-way function in public-key cryptography. In chaos-based secure communica-

tion schemes, information signals are masked or modulated (encrypted) by chaotic signals

at the transmitter and the resulting encrypted signals are sent to the corresponding receiver

across a public channel (unsafe channel). Perfect chaos synchronization is usually expected

to recover the original information signals. In other words, the recovery of the information

signals requires the receiver’s own copy of the chaotic signals which are synchronized with

the transmitter ones. Thus, chaos synchronization is the key technique throughout this whole

process.

Due to the difficulties of generating and synchronizing chaotic systems and the limit of

digital computer precision, there exist many challenges in chaos-based secure communica-
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tion. In this thesis, we try to solve chaos generation and chaos synchronization problems.

Starting from designing chaotic and hyperchaotic system by first-order delay differential

equation, we present a family of novel cell attractors with multiple positive Lyapunov ex-

ponents. Compared with previously reported hyperchaos systems with complex mathematic

structure (more than 3 dimensions), our system is relatively simple while its dynamical be-

haviours are very complicated. We present a systemic parameter control method to adjust the

number of positive Lyapunov exponents, which is an index of chaos degree. Furthermore,

we develop a delay feedback controller and apply it to Chen system to generate multi-scroll

attractors. It can be generalized to Chua system, Lorenz system, Jerk equation, etc.

Since chaos synchronization is the critical technique in chaos-based secure communi-

cation, we present corresponding impulsive synchronization criteria to guarantee that the

receiver can generate the same chaotic signals at the receiver when time delay and uncer-

tainty emerge in the transmission process. Aiming at the weakness of general impulsive syn-

chronization scheme, i.e., there always exists an upper boundary to limit impulsive intervals

during the synchronization process, we design a novel synchronization scheme, intermittent

impulsive synchronization scheme (IISS). IISS can not only be flexibly applied to the sce-

nario where the control window is restricted but also improve the security of chaos-based

secure communication via reducing the control window width and decreasing the redun-

dancy of synchronization signals. Finally, we propose chaos-based public-key cryptography

algorithms which can be used to encrypt synchronization signals and guarantee their security

across the public channel.
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Chapter 1

Introduction

1.1 Chaotic System

Henri Poincaré was the first discoverer of chaos. In 1890, while studying the three-body

problem, he found that there existed some orbits which are non-periodic, and yet not forever

increasing nor approaching a fixed point [1]. The main catalyst for the development of chaos

theory is the electronic computer. Computers allow one to solve the nonlinear differential

equations numerically that was impossible before. Computer graphics provides an easy way

to visualize the behaviors of nonlinear systems.

In 1961, Edward Lorenz, the MIT meteorologist, whose interest in chaos came acciden-

tally from his work on weather prediction, used a simple digital computer, a Royal McBee

LGP-30, to run his weather simulation. He wanted to see a sequence of data again and to

save time he started the simulation in the middle of his course. He was able to do this by

entering a printout of the data corresponding to conditions in the middle of his simulation

which he had calculated last time. To his surprise the weather that the machine began to

predict was completely different from the weather calculated before. Lorenz tracked this

down to the computer printout. The computer worked with 6-digit precision, but the printout

rounded variables off to a 3-digit number, so a value like 0.506127 was printed as 0.506.

1



This difference is tiny and the consensus at the time would have been that it should have had

practically no effect. However, Lorenz had discovered that small changes in initial conditions

produced large changes in the long-term outcome. Lorenz’s discovery, which gave its name

to Lorenz attractors, proved that meteorology could not reasonably predict weather beyond a

weekly period. The Lorenz equation [2], which was derived from the simplified equations of

convection rolls arising in the equations of the atmosphere by Edward Lorenz, is a nonlinear

autonomous deterministic three-dimensional system as follows.




ẋ = a(y − x)

ẏ = rx− xz − y

ż = xy − bz

(1.1)

where a is called the Prandtl number and r is called the Rayleigh number. All a, b, r > 0,

but usually a = 10, b = 8/3 and r is varied. Fig. 1.1(a)-(b) show the phase portraits x − z

for the same period of time t = 30, respectively starting at (15.00000, 15.00000, 30.00000)

and (15.00001, 15.00000, 30.00000). Fig. 1.1(c)-(d) show the trajectory of state variable z,

starting at two initial points that differ only by 10−5 in the x-coordinate. Initially, the two

trajectories seem coincident, as indicated by the small difference between the z coordinate

of the blue and magenta trajectories, but for t > 15 the difference is as large as the value of

the trajectory. This phenomenon is called as butterfly effect. ”Predictability: does the flap of

a butterfly’s wings in Brazil set off a tornado in Texas?” was presented by Edward Lorenz in

1972. The butterfly effect is a phrase that encapsulates the more technical notion of sensitive

dependence on initial conditions in chaos theory. Small variations of the initial condition of

a dynamical system may produce large variations in the long term behavior of the system.

So this is sometimes presented as esoteric behavior.

It is a milestone in the development of chaos theory that Lorenz attractor was presented.

Since then, chaos research has become a very hot issue. Numerous chaos analysis methods

were achieved such as Lyapunov exponents, bifurcation analysis, boundedness, equilibrium

points analysis, etc. Specially, to control chaos to stable periodic orbits attracted lots of in-
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Figure 1.1: (a)-(b): The phase portrait x − z of the Lorenz attractor, respectively starting at

(15.00000, 15.00000, 30.00000) and (15.00001, 15.00000, 30.00000); (c)-(d): The trajectory

portrait of state variables z1, z2 and z2 − z1, starting at two initial points that differ only by

10−5 in the x-coordinate.
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terest of researchers and expects. Several techniques have been devised for chaos control,

but most are developments of two basic approaches: the OGY (Ott, Grebogi and Yorke)

method [3] and Pyragas continuous control [4]. Both methods require a previous determina-

tion of the unstable periodic orbits of the chaotic system before the control algorithm can be

designed.

In 1990, Pecora and Carroll reported that two autonomous chaotic systems can be syn-

chronized [5]. It is another milestone in chaos research. Subsequently, many synchronization

methods were presented such as state feedback synchronization [6–12], impulsive synchro-

nization [13–20]. Chaos theory was applied to many engineering areas. Specially, secure

communication based chaos rapidly developed [21–39]. In 1993, Cuomo and Oppenheim

presented the first scheme of a communications device made by two identical Lorenz oscilla-

tors [22]. In 1997, Kolumban, Kennedy and Chua realized digital communications based on

chaos synchronization [24, 25]. After that, symmetric cryptography based on chaos grew up

fast. In 2003, Kocarev and Tasev presented a public-key cryptography based on Chebyshev

chaotic maps [37]. It rapidly became a new direction of chaos communications and attracted

lots of attentions.

Chaos is used to describe the behavior of certain dynamical systems, i.e., systems whose

state variables evolve with time, which may exhibit dynamics that are highly sensitive to

initial conditions. As a result of this sensitivity, which manifests itself as an exponential

growth of perturbations in the initial conditions, the behavior of chaotic systems appears to be

random. This happens even though these systems are deterministic, meaning that their future

dynamics are fully defined by their initial conditions, with no random elements involved.

This behavior is known as deterministic chaos. For a dynamical system to be classified as

chaotic, it must have the following properties:

1. it is sensitive to initial conditions;

2. it is topologically mixing;

3. its periodic orbits are dense.
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Chaos has become 20th-century’s third great revolution in physical sciences [40]. Like

the first two revolutions, the relativity theory of Albert Einstein, which introduced the rela-

tivity of space and time, the quantum theory of Max Planck, which introduced the indeter-

minism to the description of nature, chaos cuts away the tenets of Newton’s physics. As one

physicist called it: ”Relativity eliminates the Newtonian illusion of absolute space and time;

quantum theory eliminates the Newtonian dream of a controllable measurable process; and

chaos eliminates the Laplacian fantasy of deterministic predictability.”

1.2 Secure Communication

Cryptography is the practice and study of hiding information. The modern field of cryp-

tography can be divided into two areas of study, symmetric cryptography and public-key

cryptography.

Symmetric cryptography refers to encryption methods in which both the sender and re-

ceiver share the same key (or, less commonly, in which their keys are different, but related in

an easily computable way).

The modern study of symmetric ciphers relates mainly to the study of block ciphers and

stream ciphers and to their applications. A block cipher is, in a sense, a modern embodiment

of Alberti’s polyalphabetic cipher: block ciphers take a block of plain-text and a key as input,

and output a block of cipher-text of the same size. Since messages are almost always longer

than a single block, some method of knitting together successive blocks is required. Several

have been developed, some with better security in one aspect or another than others. They

are the mode of operations and must be carefully considered when using a block cipher in a

cryptosystem.

The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are

block cipher designs which have been designated cryptography standards by the US govern-

ment (though DES’s designation was finally withdrawn after the AES was adopted). Despite
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its deprecation as an official standard, DES (especially its still-approved and much more se-

cure triple-DES variant) remains quite popular; it is used across a wide range of applications,

from ATM encryption to email privacy and secure remote access. Many other block ciphers

have been designed and released, with considerable variation in quality. Many have been

thoroughly broken.

Stream ciphers, in contrast to the ’block’ type, create an arbitrarily long stream of key

material, which is combined with the plain-text bit-by-bit or character-by-character, some-

what like the one-time pad. In a stream cipher, the output stream is created based on an

internal state which changes as the cipher operates. That state change is controlled by the

key and, in some stream ciphers, by the plain-text stream as well. RC4 is an example of a

well-known and widely used stream cipher.

Symmetric cryptosystems use the same key for encryption and decryption of a message,

though a message or group of messages may have a different key than others. A significant

disadvantage of symmetric ciphers is the key management necessary to use them securely.

Each distinct pair of communicating parties must, ideally, share a different key, and perhaps

each cipher-text exchanged as well. The number of keys required increases as the square

of the number of network members, which very quickly requires complex key management

schemes to keep them all straight and secret. The difficulty of securely establishing a se-

cret key between two communicating parties, when a secure channel doesn’t already exist

between them, also presents a chicken-and-egg problem which is a considerable practical

obstacle for cryptography users in the real world.

In a ground-breaking 1976 paper [41], Whitfield Diffie and Martin Hellman proposed the

notion of public-key (also, more generally, called asymmetric key) cryptography in which

two different but mathematically related keys are used as a public key and a private key. A

public key system is so constructed that calculation of one key (the private key) is computa-

tionally infeasible from the other (the public key), even though they are necessarily related.

Instead, both keys are generated secretly, as an interrelated pair. The historian David Kahn
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described public-key cryptography as ”the most revolutionary new concept in the field since

polyalphabetic substitution emerged in the Renaissance”.

In public-key cryptosystems, the public key may be freely distributed, while its paired

private key must remain secret. The public key is typically used for encryption, while the

private or secret key is used for decryption. Diffie and Hellman showed that public-key

cryptography was possible by presenting the Diffie-Hellman key exchange protocol [42].

In 1978, Ronald Rivest, Adi Shamir, and Len Adleman invented RSA, another public-key

system [43]. In 1997, it finally became publicly known that asymmetric key cryptography had

been invented by James H. Ellis at GCHQ, a British intelligence organization, and that, in the

early 1970s, both the Diffie-Hellman and RSA algorithms had been previously developed (by

Malcolm J. Williamson and Clifford Cocks, respectively) [44]. The Diffie-Hellman and RSA

algorithms, in addition to being the first publicly known examples of high quality public-

key algorithms, have been among the most widely used. Others include the Cramer-Shoup

cryptosystem, ElGamal encryption, and various elliptic curve techniques.

1.3 Motivation

It is well known that deterministic chaos systems have random behaviors which look like

noise. In symmetric chaos-based secure communication schemes, two chaotic oscillators are

required as a transmitter (or master) and receiver (or slave). One can use chaotic signals to

mask the plain-text at the transmitter and then the cipher-text is sent to the receiver across

public channels. Because of the property of noise-like dynamics, it is very difficult for the

eavesdropper to distinguish the cipher-text from noise. At the receiver, by chaos synchro-

nization, one can achieve almost identical chaotic signals. Then, using this chaotic signals,

one can easy recover the plain-text from cipher-text.

Chaos systems have another important property: sensitivity to initial conditions. It is

natural for public-key cryptography. In chaos-based public-key cryptography, one can use
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chaotic systems to construct one-way function. In term of the non-prediction, it is almost

impossible to inversely computer the private key from the public key. In addition, theoreti-

cally, the trajectory of autonomous chaos is not intersected forever, thus there does not exist

collision for attackers. In chaos-based secure communication schemes, we need chaos-based

public-key cryptography to guarantee the security of synchronization signals across public

channel.

There still exist some problems in chaos-based secure communication. Firstly, due to the

non-perfect of chaos theory and the limit of the methods of generating chaos, sometimes the

attackers can find out the chaos system used in encryption by state reconstruction. Secondly,

due to the time delay in transmission and sample process, chaos synchronization is hard to

be achieved. Finally, due to the limit of digital computer precision, computer chaotic maps

are always periodic: all trajectories are eventually periodic. Therefore, there exist collisions

for attackers to break down the chaos-based public-key cryptography. Based on the above

three existing challenges, our research goals are:

1. to design more complex chaotic and hyperchaotic systems to avoid chaos carriers to be

reconstructed;

2. to achieve new synchronization criteria to overcome the impact of time delay and uncer-

tainty in chaos synchronization and network synchronization; and

3. to apply suitable public-key algorithms to chaos-based secure communication schemes to

guarantee the security of synchronization signals across the public channel.

1.4 Research Contributions

This research focuses on studying two most critical problems in chaos-based secure com-

munication: generation of chaos and chaos synchronization. In addition, we introduce the

development of chaos-based public-key algorithms, which can be used to encrypt the syn-

chronization signals across the public channel. Specifically, the main contributions of this
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thesis are:

(1) A family of chaos and hyperchaos attractors from first-order delay differential equa-

tion are presented. With adjusting some system parameters, the system can exhibit a set of

very interesting dynamical behaviors such as Hopf bifurcation and chaos. Furthermore, we

introduce this kind of delay feedback control to well-known Chen system and then multi-

scroll chaotic attractors are achieved.

(2) In chaos-based secure communication scheme, chaos synchronization is the critical is-

sue. Aiming at the time delay in transmission and sample process, we present corresponding

impulsive synchronization criteria and generalize them to dynamical networks. Specifically,

some adaptive network synchronization criteria are achieved subject to different network

nodes and uncertain system parameters. In the end, one new synchronization scheme, in-

termittent impulsive synchronization scheme, is presented to overcome the limit of general

impulsive synchronization scheme, which is that there always exists an upper boundary to

limit impulsive intervals.

(3) In chaos-based secure communication scheme, another important problem is how to

guarantee the security of synchronization signals across the public channel. Chaos-based

public-key cryptography plays a key role in this process. We introduce some proposed algo-

rithms and their weaknesses. To construct new chaotic maps and to design new algorithms

to improve the security of chaos-based public-key cryptography will have a promising per-

spective.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In chapter 2, we introduce some back-

ground knowledge and related works on chaos-based secure communication scheme. In

chapter 3, we present two systemical methods to construct multi-scroll chaotic and hyper-

chaotic systems. In chapter 4, we study impulsive synchronization criteria of two identical
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chaos with delay and generalize them to chaotic dynamical networks. In chapter 5, we study

adaptive network synchronization subject to different network nodes and uncertain system

parameters. In chapter 6, a novel synchronization scheme, called intermittent impulsive syn-

chronization scheme, is presented. In chapter 7, chaos-based public-key cryptography is

proposed to guarantee the security of synchronization signals across public channel. Conclu-

sions and future work are followed in chapter 8.
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Chapter 2

Related Work

2.1 Existing Chaotic Systems

Since the Lorenz attractor was found in 1963, chaos research attracted lots of attentions of

scholars and experts. Many kind of new chaotic and hyperchaotic systems were presented

subsequently. In term of different mathematic models and properties, chaotic systems can be

classed as continuous chaos, discrete chaotic maps, switched chaos, delay chaos, hyperchaos

and so on. Some representative systems are introduced as follows.

1. Continuous chaos. Besides the Lorenz system [2] referred before, the well-known

Rösslor chaos [45], Chen attractor [46] and Jerk function [47] also are continuous chaotic

systems.

(a) Lorenz system. The mathematic equation is given as follows




ẋ1 = a(x2 − x1)

ẋ2 = bx1 − x2 − x1x3

ẋ3 = −cx3 + x1x2

(2.1)

and the portrait of state vectors is shown in Fig. 2.1.
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Figure 2.1: The portrait of the Lorenz attractor with a = 10, b = 28 and c = 8/3.

(b) Rössler system. The mathematic equation is given as follows




ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = x1x3 − bx3 + c

(2.2)

and the portrait of state vectors is shown in Fig. 2.2.

(c) Chen system. The mathematic equation is given as follows




ẋ1 = a(x2 − x1)

ẋ2 = (c− a)x1 − x1x3 + cx2

ẋ3 = −bx3 + x1x2

(2.3)

and the portrait of state vectors is shown in Fig. 2.3.

(d) Jerk equation (time derivative of acceleration). The mathematic equation is given as

follows

x′′′ = J(x′′, x′, x) (2.4)

and the portrait of state vectors is shown in Fig. 2.4.
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Figure 2.2: The portrait of the Rössler attractor with a = 0.2, b = 5.7 and c = 0.2.
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Figure 2.4: The portrait of the Jerk system J = −ax′′ − ax′ + a sin(2πbx) with a = 0.3 and

b = 0.25.

2. Discrete chaos. The most famous discrete chaotic system is the logistic map, which

is one of Chebyshev maps. Also there exist many other discrete chaotic maps such as Tent

map, Gaussian map, Hénon map and so on.

(a) Logistic map. The mathematic equation is given as follows

xn+1 = Axn(1− xn), x0 ∈ [0, 1]. (2.5)

and the trajectory is shown in Fig. 2.5.

(b) Tent map. The mathematic equation is given as follows

xn+1 = r(1− 2|xn − 1/2|), x0 ∈ [0, 1]. (2.6)

and the trajectory is shown in Fig. 2.6.

(c) Gaussian map. The mathematic equation is given as follows

xn+1 = e−bx2
n + c, x0 ∈ [0, 1]. (2.7)

and the trajectory is shown in Fig. 2.7.
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Figure 2.5: The trajectory of the Logistic map with A = 4 starting from X(0) = 0.73.
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Figure 2.6: The trajectory of the Tent map with r = 0.9 starting from X(0) = 0.75.
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Figure 2.7: The trajectory of the Gaussian map with b = 7.5 and c = −0.3 starting from

X(0) = 0.75.

(d) Hénon map. The mathematic equation is given as follows




xn+1 = 1− ax2
n + yn

yn+1 = bxn

(2.8)

and the portrait of state vectors is shown in Fig. 2.8.

3. Switched chaos. The Chua system is the first chaos realized by simple circuits,

which is one of switched systems. By switching two linear 3-dimensional systems, we also

presented a method to generate new chaotic systems.

(a) Chua circuit. The mathematic equation is given as follows




ẋ1 = a1(x2 − h(x1))

ẋ2 = x1 − x2 + x3

ẋ3 = −a2x2

(2.9)

where h(x1) = m1x1 + 0.5(m0 −m1)(|x1 + a3| − |x1 − a3|), a1 = 9, a2 = 14.286, a3 = 1,

m0 = −1/7 and m1 = 1.5/7. The portrait of state vectors is shown in Fig. 2.9.
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(b) Linear switched chaos. The mathematic equation is given as follows

ẋ = A1x + b1 (2.10)

ẋ = A2x + b2 (2.11)

where x is an n-dimensional state vector, A1, A2 are n × n constant matrices, and b1, b2 are

n-dimensional constant vectors. The portrait of state vectors is shown in Fig. 2.10.

Assume that system (2.10) has an unstable equilibrium x∗1, and system (2.11) has a stable

equilibrium x∗2. Let

x∗0 = 1/2(x∗1 + x∗2), andl = 1/2‖x∗1 − x∗2‖.

Define the following three regions:

Σ1 = {x|‖x− x∗0‖ ≤ k},
Σ2 = {x|k < ‖x− x∗0‖ < k},

Σ3 = {x|‖x− x∗0‖ ≥ m}.

where k and m are such that l < k < m < +∞.

Switching rule: When system (2.10) is active, it will switch to system (2.11) at time t1 if

X(t1) ∈ Σ3. Similarly, when system (2.11) is active, it will switch to system (2.10) at time

t2 if X(t2) ∈ Σ1.

With this switching rule, the switched system will generate chaos or chaos-like behavior

if the system parameters are properly chosen. For example, choose A1 =




a b 0

−b a 0

0 0 c


,

A2 =




f 0 0

0 g h

0 −h g


, b1 =




0

0

d


, b2 =




0

0

0


 with a = 0.9, b = 11.5, c = 0.5,

d = 1.0, f = −0.5, g = −1, h = 20, k = 3 and m = 10.

18



−10
−5

0
5

10

−10

−5

0

5

10
−10

−5

0

5

10

Figure 2.10: The portrait of the chaotic attractor by switching two linear systems starting

from (10, 0, 0).

4. Delay chaos. Mackey-Glass system is the first delay chaos found in 1977, which is

a physiological model. Another one is Ikeda Equation which is obtained as a model of a

passive optical resonator system.

(a) Mackey-Glass system. The mathematic equation is given as follows

ẋ(t) = −x(t) +
2x(t− τ)

1 + x(t− τ)10
(2.12)

and the portrait is shown in Fig. 2.11.

(b) Ikeda equation [48]. The mathematic equation is given as follows

ẋ(t) = −x(t) + µ sin(x(t− τ)) (2.13)

and the portrait is shown in Fig. 2.12.
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2.2 Related Mathematical Background

In this subsection, some basic concepts, definitions and mathematical background are intro-

duced, which will be used in the following chapters.

Consider the systems of ordinary differential equations (ODEs) having the following

form,

ẋ(t) = f(x(t)), x(0) = x0,

where x(t) = (x1(t), ..., xn(t))T , f : D → Rn, f(x(t)) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)),

D is an open and connected subset of Rn, and f is a locally Lipschitz function mapping D

into Rn.

Equilibrium Points: A point x̄ ∈ Rn is said to be an equilibrium point of the system

ẋ(t) = f(x(t)),

if f(x̄) = 0. Clearly x̄ is an equilibrium point iff x(t) = x̄ is a constant solution of the

system.

Linearization system: The idea is to consider the linear approximation of f at an equilib-

rium point. Assume that f has continuous partial derivatives with respect to x. The deriva-

tives of f is an n× n matrix Df defined by

Df =

(
∂fi

∂xj

)
, i, j = 1, 2, ..., n.

Let x be close to the equilibrium point x̄. Then by Taylor’s theorem we have

f(x) = f(x̄) + Df(x̄)(x− x̄) + R(x̄, x)

= Df(x̄)(x− x̄) + R(x̄, x),

where limx→x̄
R(x̄,x)
‖x−x̄‖ = 0.

The linear system:

ẏ = Df(x̄)y, where y = x− x̄
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is called the linearization of the system ẋ(t) = f(x(t)).

Remark: Any non-zero equilibrium point can be transformed into a zero equilibrium

point by making the change of variable y = x − x̄. Thus we often assume that x̄ = 0 is an

equilibrium point of the system ẋ(t) = f(x(t)).

Lyapunov Stability: The equilibrium point x̄ = 0 is said to be

• stable if for any ε > 0, there exists a δ = δ(ε) > 0 such that ‖ x0 ‖< δ implies

‖ x(t) ‖< ε, ∀t > 0;

• asymptotically stable if it is stable and there exists a constant δ > 0 such that ‖ x0 ‖< δ

implies limt→∞ ‖ x(t) ‖= 0;

• unstable if it is not stable.

The First Method of Lyapunov: Consider the following system

ẋ(t) = f(x(t)) with f(0) = 0.

If the linearization of this system exists, its stability determines the local stability of the

original nonlinear equation.

Positive Definite Function: Let D be an open subset of Rn containing the origin. A function

V : D → R is said to be positive definite (positive semi-definite, negative definite, negative

semi-definite) on D if it satisfies the following inequality

(i) V (0) = 0;

(ii) V (x) > (≥, <,≤)0, ∀x ∈ D − {0}.

A positive definite function V defined on Rn is said to be radially unbounded if the

following condition holds:

lim
‖x‖→∞

V (x) →∞.

The Second Method of Lyapunov: Let x̄ = 0 be the equilibrium point of nonlinear system

ẋ(t) = f(x(t)) where f : D → R. If there exists a continuously differentially function
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V : D → R such that

(i) V (0) = 0,

(ii) V (x) > 0, ∀x ∈ D − {0},

(iii) V̇ ≤ 0, ∀x ∈ D − {0},

then the equilibrium point x̄ = 0 is stable.

If condition (iii) is replaced by

(iii) V̇ < 0, ∀x ∈ D − {0},

then x̄ = 0 is asymptotically stable. Moreover, if D = Rn and V is radially unbounded, then

x̄ = 0 is globally asymptotically stable.

Consider a general delay differential equation, described by

ẋ(t) = f(t, xt)

with the initial condition xt0 = φ(t) for t ∈ [t0−τ, t0], where x(t) = x(t0, t, φ) is its solution,

xt = x(t + θ) for θ ∈ [−τ, 0], and τ is a positive scalar. Define ‖φ‖τ = sup−τ≤θ≤0 ‖φ(θ)‖
with ‖ · ‖ is the Euclidean norm on Rn.

Lyapunov-Razumikhin Theorem: For the above delay differential equation, the equilib-

rium point x̄ = 0 is stable if there exists a positive definite function V (x) satisfies

V̇ ≤ 0

whenever V (x) ≥ V (xt(θ)), for all θ ∈ [−τ, 0).

It is said to be asymptotically stable if there exist a function α, with α(s) > 0 for s > 0,

such that

V̇ ≤ −α(|x|)

whenever β(V (x)) ≥ V (xt(θ)), for all θ ∈ [−τ, 0), where the continuous nondecreasing

function β : R+ → R+ satisfies β(s) > s for all s > 0.

It is said to be globally asymptotically stable if it is asymptotically stable and V is a

radially unbounded function.
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Attractor [49]: A compact invariant subset of the state space A ⊂ M is called an attractor

if

(a) its basin of attraction, or stable set B(A) = {x ∈ M |ω(x) ⊂ A}, has strictly positive

Lebesgue measure;

(b) there is no strictly smaller closed set A′ ⊂ A so that B(A′) coincides with B(A) up to a

set of Lebesgue measure zero.

An attractor is a set towards which a dynamical system evolves over time. Any trajectory

of the dynamical system in the attractor will remain on the attractor. An attractor can be

a point, a curve, a manifold, or even a complicated set with a fractal structure known as a

strange attractor. Describing the attractors of chaotic dynamical systems has been one of the

achievements of chaos theory.

Chaotic Attractor [50]: An invariant A set is called a chaotic attractor provided it is an at-

tractor and the dynamical system has sensitive dependence on initial conditions on A (some-

times people require the system has a positive Lyapunov exponent on A instead of sensitive

dependence).

Bifurcation: Bifurcation theory is the mathematical study of changes in the qualitative or

topological structure of a given dynamical system such as the solutions of a family of dif-

ferential equations, the solutions of chaotic maps, etc. A bifurcation occurs when a small

change made to the parameter values (the bifurcation parameters) of a system causes a sud-

den qualitative or topological change in its dynamical behavior. Bifurcations occur in both

continuous dynamical systems (described by ODEs, DDEs or PDEs) and discrete systems

(described by maps). In dynamical systems, a bifurcation diagram shows the possible long-

term values (equilibrium points or periodic orbits) of a system as a function of a bifurcation

parameter in the dynamical systems.

Hopf Bifurcation [49]: Consider a one-parameter family of differential equations

ẋ = f(x; µ), x ∈ U, µ ∈ R,
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where U is an open subset of Rn and µ is a real scalar parameter varying in some open

interval I ⊆ R. Assume that x̄ = x̄(µ) is an equilibrium point and the Jacobian matrix of f

with respect to x, evaluated at (x̄(µ); µ), has a pair of simple complex conjugate eigenvalues

λ1,2(µ) such that, at a critical value µc of the parameter, we have

Reλ1,2(µc) = 0, Imλ1,2(µc) 6= 0,
d

dµ
λ1,2(µc) 6= 0,

while Reρ(µc) < 0 for any other eigenvalue ρ. This is called Hopf bifurcation.

Hopf bifurcation is a local bifurcation in which a fixed point of a dynamical system loses

its stability as a pair of complex conjugate eigenvalues of the linearization around the fixed

point cross the imaginary axis of the complex plane.

Lyapunov Exponent [50]: Let f : R → R be a C1 function. For each point x0, define the

Lyapunov (characteristic) exponent of x0, λ(x0), as follows:

λ(x0) = lim
n→∞

sup
1

n
log(|(fn)′(x0)|)

lim
n→∞

sup
1

n

n−1∑
j=0

log(|f ′(xj)|)

where xj = f j(x0).

Lyapunov exponent of a dynamical system is a measure of exponential divergence of

orbits, which characterizes the rate of separation of very close trajectories. For example, two

trajectories in phase space with initial separation Z1 diverge to Z2 after time ∆t = t2 − t1

(shown in Fig. 2.13). Thus,

|Z2| ≈ eλ∆t|Z1|,

where λ is the Lyapunov exponent.

Lyapunov Spectrum: The Lyapunov exponents describe the behavior of vectors in the tan-

gent space of the phase space and are defined from the Jacobian matrix,

J(x0) =
df(x)

dx
|x0

,
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Figure 2.13: Two trajectories in phase space with initial separation Z1.

for dynamical system ẋ(t) = f(x). The rate of separation can be different for different orien-

tations of the initial separation vector. Thus, there is a spectrum of Lyapunov exponents the

number of which equals to the dimensionality of the phase space, denoted by {λ1, λ2, ..., λn}
in decreasing order. One of the most used and effective numerical techniques to calculate the

Lyapunov spectrum for a smooth dynamical system is the periodic Gram-Schmidt orthonor-

malization of the Lyapunov vectors.

Lyapunov Dimension: Lyapunov Dimension is also called Kaplan-Yorke dimension, which

gives an estimate of the rate of entropy production and of the fractal dimension of the con-

sidered dynamical system, defined by

D = k +

∑k
i=1 λi

|λk+1| ,

where k satisfies
∑k

i=1 λi ≥ 0 and
∑k+1

i=1 λi < 0.
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2.3 Chaos-Based Secure Communication Scheme

In 1990, Louis M. Pecora and Thomas L. Carroll firstly found synchronization phenomenon

of two identical chaotic systems. We know that deterministic chaos can generate random

dynamical behaviors. therefore, chaotic signals are very suitable for masked carriers. In

1993, Cuomo and Oppenheim presented the first scheme of a communication device made

by two identical Lorenz oscillators [22]. In 1997, Kolumban, Kennedy and Chua realized

digital communications based on synchronization of two identical Chua circuits [24, 25].

After that, chaos field attracted tremendous interests of scholars from various different areas

and several symmetric chaos-based secure communication schemes were presented. The

principle diagram of symmetric chaos-based secure communication schemes is shown in

Fig. 2.14.

Figure 2.14: The principle diagram of chaos-based secure communication.

Principle: Information is masked by chaotic signals at the transmitter, and then sent to

the receiver by the public channel. Finally the encrypted signals are decrypted at the receiver.

In this scheme, the key issue is that the two identical chaos generators in the transmitter end

and the receiver end need to be synchronized. That is, x = y.

Synchronization of chaos: Synchronization of chaotic systems is the key issue in sym-

metric chaos-based secure communication schemes. It is a phenomenon that may occur

when two, or more, chaotic oscillators are coupled, or when a chaotic oscillator drives an-

other chaotic oscillator. Because of the butterfly effect, which causes the exponential di-
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vergence of the trajectories of two identical chaotic systems starting with the nearly same

initial conditions, having two chaotic system evolving in synchrony might appear quite sur-

prising. However, synchronization of coupled or driven chaotic oscillators is a phenomenon

well established experimentally and reasonably understood theoretically.

The main synchronization methods of chaotic systems are state feedback control syn-

chronization and impulsive control synchronization. We’ll introduce them respectively.

(a) State feedback control synchronization. The most representative example of this

synchronization is Peroca-Carroll scheme. The basic idea is that a chaotic system is self-

synchronizing if it can be decomposed into subsystems: a drive system and a stable response

subsystem that synchronize when coupled with a common drive signal. They showed numer-

ically that synchronization occurs if all of the Lyapunov exponents for the response subsys-

tems are negative.

The principle diagram is shown in Fig. 2.15. The master chaotic system and slave chaotic

system are identical. We use the state variable z of the master system to drive the slave system

such that the error system converges to zero. Information is encrypted at transmitter end by

(x1, y1, z), and then the ciphertexts U(t) is sent to receiver end by public channel.

Figure 2.15: The principle diagram of state feedback control synchronization.
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The mathematic model is followed as Eq. 2.14:

M :





ẋ1 = F1(x1, y1, z)

ẏ1 = F2(x1, y1, z)

ż = F3(x1, y1, z)

S :





ẋ2 = F1(x2, y2, z)

ẏ2 = F2(x2, y2, z)

ż = F3(x1, y1, z)

(2.14)

where M is the master system and S is the slave system. Let e1 = x1− x2 and e2 = y1− y2.

We obtain the error system E followed as Eq. 2.15.

E :





ė1 = F1(x1, y1, z)− F1(x2, y2, z)

ė2 = F2(x1, y1, z)− F2(x2, y2, z)
(2.15)

If the error system is stable and converges to zero, we have (x1, y1) = (x2, y2). Then we

can decrypt the cipher-texts using (x2, y2, z) and recover the plain-texts. The stable condi-

tions of the error system can be obtained by Lyapunov stability theory.

(b) Impulsive control synchronization.

Impulsive control means that at some select moments, the system states are changed

suddenly. The principle diagram of impulsive control synchronization is shown in Fig. 2.16.

The mathematic model is followed as Eq. 2.16:

M : Ẋ = F (X)

S :





Ẏ = F (Y ), t 6= tk

∆Y = B(X − Y ), t = tk
(2.16)

E :





ė = F (X)− F (Y ), t 6= tk

∆e = −Be, t = tk

where e = X − Y . tk (k = 1, 2, ...) are the impulsive control points. If the error system E

is stable and converges to zero, the two chaos systems are said to be synchronous. Here the
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Figure 2.16: The principle diagram of impulsive control synchronization.

error system E is an impulsive differential equation [51]. Its stable conditions can be derived

from the following Theorem 2.1.

A general form of impulsive differential equation with fixed time instants of impulsive

effect can be expressed in the following form.




ẋ = f(t, x), t 6= τk,

∆x = Ik(x), t = τk,

x(t0) = x0, k = 1, 2, ...

where f : R+ × Ω → Rd; Ik : Ω → Rd; Ω is a domain in Rd; τk, k = 1, 2, ..., are time

instants of impulsive effects and satisfy 0 < τ1 < τ2 < ..., τk → +∞ as k → +∞.

We define

K0 : = {g ∈ C[R+, R+] : g(s) > 0ifs > 0 and g(0) = 0};
K : = {g ∈ K0 : g(s) is strictly increasing in s};

PC : = {p : R+ → R+ : P is continuous on (τk, τk+1] and p(τ+
k ) exit for k = 1, 2, ...};

v0 : = {V : R+ × Ω → R+ : V (t, x) is continuous on (τk, τk+1]× Ω, locally Lipschitzian

in xandV (τ+
k , x) exit for k = 1, 2, ...}.

For V ∈ v0, (t, x) ∈ R+ × Ω and t 6= τk, we define D+V (t, x) by

D+V (t, x) = lim
δ→0

sup[V (t + δ, x + δf(t, x))− V (t, x)].
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Theorem 2.1 [52]: Assume that

(i) there exists ρ and ρ0, with 0 < ρ0 < ρ, such that x ∈ s(ρ0) implies that x + Ik(x) ∈ s(ρ)

for all k = 1, 2, ...;

(ii) V ∈ v0, V (t, x) is positive definite and decrescent, and there exists ψk ∈ K0 such that

V (τ+
k , x + Ik(x)) ≤ ψk(V (τk, x)), k = 1, 2, ...;

(iii) there exist c ∈ K and p ∈ PC such that

D+V (t, x) ≤ p(t)c(V (t, x)), x ∈ s(ρ), t 6= τk;

(iv) there exists a constant σ > 0 such that for all z ∈ (0, σ)

∫ τk+1

τk

p(s)ds +

∫ ψk(z)

z

ds

c(s)
≤ −γk,

for some constants γk and k = 1, 2, ...;

(v)
∑∞

k=1 γk = ∞.

Then any solution of the system, x(t, t0, x0), converges to 0, i.e., limt→∞ ‖x(t, t0, x0)‖ = 0.

2.4 Chaos-Based Public-Key Cryptography

In 2003, Ljupco Kocarev and Zarko Tasev presented a kind of new public-key cryptography

based on discrete chaotic map. Subsequently, a lot of algorithms based on discrete chaotic

maps were presented. Also, some researchers used chaotic systems to construct Hash func-

tions. Here, we will simply introduce a public-key cryptography system based on Chebyshev

map.

Chebyshev polynomial of degree p is defined recurrently,

Tp+1(x) = 2xTp(x)− Tp−1(x), (2.17)

31



where p = 1, 2, 3, ..., T0 = 1, T1 = x and x ∈ [−1, 1]. We know that when p > 1, Chebyshev

polynomial Tp is a chaotic map with positive Lyapunov exponent LE = ln(p). One of the

most remarkable properties of the Chebyshev polynomials is the semi-group property:

Tr(Ts(x)) = Trs(x). (2.18)

Now we describe the algorithm. In a public key encryption system, an entity Alice has

a public key e and a private key d. The public key defines an encryption transformation Ee,

while the private key defines the associated decryption transform Dd, An entity Bob wishing

to send a message M to Alice obtains an authentic copy of Alice’s public key e, uses the

encryption transform to obtain the cipher-text c = Ee(M), and transmits c to Alice. To

decrypt c, Alice applies the decryption transformation to obtain the plain-text M = Dd(c).

Key Generation Algorithm:

Alice, in order to generate the keys, does the following:

1. Generates a large integer s;

2. selects a random number x ∈ [−1, 1] and computes Ts(x);

3. sets her public key to (x, Ts(x)) and her private key to s.

Encryption Algorithm:

Bob, in order to encrypt a message, does the following:

1. Obtains Alice’s authentic public key (x, Ts(x));

2. Represents the message as a number M ∈ [−1, 1].

3. Generates a large integer r;

4. Computes Tr(x), Trs(x) = Tr(Ts(x)) and X = MTrs(x);

5. Sends the cipher-text C = (Tr(x), X) to Alice.

Decryption Algorithm:

Alice, to recover the plain-text M from the cipher-text C, does the following:

1. Uses her private key s to compute Tsr(x) = Ts(Tr(x));

2. Recovers M by computing M = X/Tsr(x).
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Chapter 3

Generating New Chaos and Hyperchaos

3.1 Generating New Chaos and Hyperchaos from Delay Dif-

ferential Equation

In this section, we construct a new chaotic attractor generated by a delay differential equation

and its dynamical behavior is analyzed. Specially, the Lyapunov spectrum and Lyapunov

dimension are calculated, the bifurcation diagram is shown and the boundedness is studied.

Then, by changing the parameters to increase the number of equilibrium points, we obtain

a set of more complex hyperchaotic attractors. Furthermore, we present a general form of

this family of chaos, and simulate different chaotic phase portraits of these systems. Finally,

some remarks and conclusions are given.

3.1.1 Background

Over the past two decades, generation of chaotic or hyperchaotic systems and their applica-

tions have attracted a great deal of attention [5, 21, 22, 46, 53–57]. Recently, multi-scroll at-

tractors and hyperchaos systems have been presented [58–66]. In addition, a nonautonomous

technique to generate multi-scroll attractors and hyperchaos has been introduced [67, 68].
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Using switching systems some new chaotic attractors have been achieved [66, 69–71]. Some

fractional differential systems have been presented to generate chaos [62, 72–74]. simulta-

neously, some simple circuits have been developed to realize chaos [64, 66, 75–77].

Most recently, delayed differential equation generating chaos has received considerable

attention. Since Mackey-Glass system which is a physiological model was found to have

chaotic behavior, several modified chaotic systems have been reported [78–81]. some ex-

perimental observation of multi-scroll attractors have been confirmed [80–82]. motivated by

this, we present a family of delayed chaotic attractors by sine function. and a set of new

complex attractors have been found by choosing suitable parameters and time delay.

3.1.2 New Chaotic Attractor

Consider the following delay differential equation:

˙x(t) = a[−bx(t− τ) + c sin(dx(t− τ))]. (3.1)

where a = 0.8, b = 0.2, c = 0.5, d = 1.8, and τ = 4.8. Fig. 3.1 shows the portrait of vector

x(t) and the phase of x(t)− x(t− τ) is shown in Fig. 3.2.

When different delayed times are chosen, Fig. 3.3 shows the phase portraits of x(t) −
x(t− τ).

3.1.2.1 Dynamical Analysis

The system (3.1) has three equilibrium points: -1.4119, 0, 1.4119. At the equilibrium point

x∗, the characteristic equation of the system is

λ + abe−λτ − acd cos(dx∗)e−λτ = 0. (3.2)

At the equilibrium points x∗ = ±1.4119, the system has the same characteristic equation

λ + 1.5083e−λτ = 0. (3.3)
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Figure 3.1: The trajectory portrait of vector x(t), when a = 0.8, b = 0.2, c = 0.5, d = 1.8,

and τ = 4.8.
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Figure 3.2: The phase of x(t − τ) − x(t), when a = 0.8, b = 0.2, c = 0.5, d = 1.8, and

τ = 4.8.

35



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x(t−5)

x(
t)

( b )

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x(t−5.5)

x(
t)

( c )

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x(t−6)

x(
t)

( d )

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x(t−8)

x(
t)

( e )

Figure 3.3: The phase of x(t − τ) − x(t), when (a): τ = 5, (b): τ = 5.5, (c): τ = 6, (d):

τ = 8.
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At the equilibrium point x∗ = 0, the characteristic equation is

λ− 1.1200e−λτ = 0. (3.4)

The roots of characteristic equation at the equilibrium points x∗ = ±1.4119 and x∗ = 0 are

shown in Fig. 3.4(a) and Fig. 3.4(b), respectively. It is clear that Hopf bifurcation occurs at

x∗ = ±1.4119 when suitable parameters are chosen. Furthermore, we calculate the maximal
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Figure 3.4: The roots of the characteristic equations of system (3.1) at the equilibrium points

(a) x∗ = 0 and (b) x∗ = ±1.4119.

Lyapunov exponent λmax = 0.0211 and Lyapunov dimension d = 2.2718 using the method

in [83] and the Matlab LET toolbox. The Lyapunov spectrum is shown in Fig. 3.5. The

bifurcation diagrams vs the parameters c and τ are respectively shown in Fig. 3.6 and Fig.

3.7. We find that there exist some strange bifurcations nearby τ = 6 and c = 0.8.

3.1.2.2 Boundedness Analysis

Consider the following general delay differential equation:

ẋ(t) = Ax(t) + Bx(t− r) + f(x(t), x(t− r)), (3.5)
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Figure 3.5: The Lyapunov spectrum of system (3.1) with parameters N = 100 and initial

condition x0 = rand(100).

Figure 3.6: The bifurcation diagram for the responding discretized system of (3.1) vs the

parameter c with a = 0.8, b = 0.2, d = 1.8 and τ = 4.8.
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Figure 3.7: The bifurcation diagram for the responding discretized system of (3.1) vs the

delayed time τ with a = 0.8, b = 0.2, c = 0.5 and d = 1.8.

where A, B and r are constants with r > 0. f is a nonlinear perturbation and x is scalar.

Without the perturbation, (3.5) reduces to the linear homogeneous DDE,

ẋ(t) = Ax(t) + Bx(t− r). (3.6)

Lemma 3.1: The solution x = x(φ) of Equation (3.5) with initial data φ on [−r, 0] is

given by

x(t) = y(t) +

∫ t

0

X(t− s)f(x(s), x(s− r))ds, (3.7)

where y = y(φ) is the solution of the homogeneous equation (3.6) with initial data φ on

[−r, 0] and X is the fundamental solution of (3.6), i.e. the solution of (3.6) with initial data

ψ(t) =





0, −r ≤ t < 0,

1, t = 0.

Proof: It is easy to check that x(t) given by (3.7) satisfies the initial data φ on [−r, 0]. By

uniqueness, it suffices to show that x(t) given by (3.7) satisfies Equation (3.5). Actually, by
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(3.7), we have

ẋ(t) = ẏ(t) + f(x(t), x(t− r)) +

∫ t

0

Ẋ(t− s)f(x(s), x(s− r))ds

= Ay(t) + By(t− r) + f(x(t), x(t− r))

+

∫ t

0

[AX(t− s) + BX(t− s− r)]f(x(s), x(s− r))ds

= A[y(t) +

∫ t

0

X(t− s)f(x(s), x(s− r))ds]

+B[y(t− r) +

∫ t−r

0

X(t− s− r)f(x(s), x(s− r))ds]

= Ax(t) + Bx(t− r) + f(x(t), x(t− r)),

where the fact that X(t− s− r) ≡ 0 for s ∈ (t− r, t] is used. The proof completes.

Define the characteristic equation of system (3.6) as follows,

h(λ)
def
= λ− A−Be−λr. (3.8)

Let Re(λ) designate the real part of λ.

Lemma 3.2: For the homogeneous equation (3.6), if ε0 = max{Re(λ) : h(λ) = 0},

then, for any ε1 > ε0, there is a constant k1 = k1(ε1) such that the fundamental solution

X(t) satisfies the inequality

|X(t)| ≤ k1e
ε1t, t ≥ 0. (3.9)

The detailed proof can be seen in Theorem 5.2 in Chapter 1 of [84].

Lemma 3.3: Suppose ε0 = max{Re(λ) : h(λ) = 0} and x(φ) is the solution of the

homogeneous equation (3.6), which coincides with φ on the [−r, 0]. Then, for any ε2 > ε0,

there is a constant k2 = k2(ε2, φ) such that

|x(φ)| ≤ k2e
ε2t, t ≥ 0.

The detailed proof can be seen in Theorem 6.2 in Chapter 1 of [84].
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Lemma 3.4: All roots of the equation (z + a)ez + b = 0, where a and b are real, have

negative real parts if and only if

a > −1

a + b > 0

b < ζ sin ζ − a cos ζ

where ζ is the root of ζ = −a tan ζ , 0 < ζ < π, if a 6= 0 and ζ = π/2 if a = 0.

The detailed proof can be seen in Theorem A.5 in Appendix of [84].

Theorem 3.1: For system (3.5), if the nonlinear perturbation is bounded, that is |f | ≤
M(M > 0), and the following inequalities are satisfied, then the solutions of system (3.5)

are bounded.

Ar < 1, (3.10)

A + B < 0, (3.11)

−Br < ζ sin ζ + Ar cos ζ. (3.12)

where ζ is the root of ζ = Ar tan ζ , 0 < ζ < π, if A 6= 0 and ζ = π/2 if A = 0.

Proof: By inequalities (3.10), (3.11), (3.12) and Lemma 3.4, we have that all roots of the

characteristic equation λ − A − Be−λr = 0 have negative real parts. So the conditions of

Lemma 3.2 and 3.3 are satisfied. By Lemma 3.2 and 3.3, we have

|y(t)| ≤ k1e
ε1t, |X(t)| ≤ k2e

ε2t, t ≥ 0. (3.13)

where k1 and k2 are positive constants, ε1 and ε2 are negative constants, y(t) is the solution

of (3.6) with the initial data φ and X(t) is the fundamental solution of (3.6).
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Let x(t) be the solution of (3.5). By Lemma 3.1, one obtains

|x(t)| ≤ |y(t)|+ M

∫ t

0

|X(t− s)|ds

≤ k1 + M

∫ t

0

eε2(t−s)ds

≤ k1 +
Mk2

−ε2

(1− eε2t)

≤ k1 − Mk2

ε2

, t ≥ 0.

The proof completes.

Theorem 3.2: The solutions of system (3.1) are bounded, for arbitrary c and d, provided

that

0 < abτ < π/2. (3.14)

proof: It follows from Theorem 3.1 by letting A = 0, B = −ab and r = τ .

3.1.2.3 Generalized Hyperchaotic Attractors

By increasing the number of Hopf bifurcation points, we can generalize system (3.1) to

complex hyperchaotic attractors.

When a = 0.8, b = 0.2, c = 1, d = 1.8, system (3.1) has seven equilibrium points (0,

±1.5681, ±4.0071, ±4.5899). Hopf bifurcation occurs at points (±1.5681, ±4.5899). Fig.

3.8 shows that system (3.1) can achieve more complex cell chaos when τ increases. When

τ = 4.0, the system has only one positive Lyapunov exponent λ = 0.0493 and Lyapunov

dimension d = 3.1035. When τ = 8.0, system (3.1) has two positive Lyapunov exponents

λ1 = 0.0718, λ2 = 0.0189 and Lyapunov dimension d = 5.0807. It becomes a hyperchaos

system.

When a = 0.8, b = 0.2, c = 2, d = 1.8, system (3.1) has eleven equilibrium points

(0, ±1.6531, ±3.7013, ±4.9484, ±7.4481, ±8.1932). Hopf bifurcation occurs at points

(±1.6531, ±4.9484, ±8.1932). The phase of x(t) − x(t − τ) is shown in Fig. 3.9. When
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Figure 3.8: The phase of x(t− τ)− x(t), when (a): τ = 4, (b): τ = 8.

τ = 2.5, the system has only one positive Lyapunov exponent λ = 0.0627 and Lyapunov

dimension d = 3.5655. When τ = 4.0, the system has two positive Lyapunov exponents

λ1 = 0.0795, λ2 = 0.0319 and Lyapunov dimension d = 5.4147. When τ = 6.0, the

system has three positive Lyapunov exponents λ1 = 0.0912, λ2 = 0.0630, λ3 = 0.0156 and

Lyapunov dimension d = 7.8406. When τ = 8.0, the system has four positive Lyapunov

exponents λ1 = 0.1061, λ2 = 0.0705, λ3 = 0.0339, λ4 = 0.0078 and Lyapunov dimension

d = 10.0316. With τ increasing it also turns into a hyperchaos.

When a = 0.8, b = 0.2, c = 3, d = 1.8, system (3.1) has fourteen equilibrium points (0,

±1.6786, ±3.6366, ±5.0317, ±7.2854, ±8.3706, ±10.9723, ±11.6698). Hopf bifurcation

occurs at points (±1.6786, ±5.0317, ±8.3706, ±11.6698). The phase of x(t) − x(t − τ) is

shown in Fig. 3.10. When τ = 1.5, the system has only one positive Lyapunov exponent

λ = 0.0577 and Lyapunov dimension d = 3.2522. When τ = 3.0, the system has two

positive Lyapunov exponents λ1 = 0.0807, λ2 = 0.0422 and Lyapunov dimension d =

6.0047. When τ = 4.0, the system has three positive Lyapunov exponents λ1 = 0.0925,

λ2 = 0.0593, λ3 = 0.0259 and Lyapunov dimension d = 7.8487. When τ = 5.0, the system

has four positive Lyapunov exponents λ1 = 0.1042, λ2 = 0.0685, λ3 = 0.0151, λ4 = 0.0685

and Lyapunov dimension d = 9.6047. When τ = 6.0, the system has five positive Lyapunov

exponents λ0.1086, λ2 = 0.0786, λ3 = 0.0498, λ4 = 0.0262, λ5 = 0.0046 and Lyapunov
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Figure 3.9: The phase of x(t − τ) − x(t), when (a): τ = 2.5, (b): τ = 4, (c): τ = 6, (d):

τ = 8.
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dimension d = 11.4108. When τ = 8.0, the system has six positive Lyapunov exponents

λ1 = 0.1210, λ2 = 0.0927, λ3 = 0.0634, λ4 = 0.0410, λ5 = 0.0191, λ6 = 0.0067 and

Lyapunov dimension d = 14.8941. With τ increasing, it also turns into a hyperchaos.

Furthermore, by increasing c, we can increase the number of equilibrium points and

the one of Hopf bifurcation points of system (3.1). With the number of positive Lyapunov

exponents and Lyapunov dimension increasing, the system can turn into more complex hy-

perchaotic attractors by choosing suitable delayed time. Fig. 3.11 shows the maximal ten

lyapunov exponents change as c ranges in [0.5 3] with fixed parameters a = 0.8, b = 0.2,

d = 1.8 and τ = 8.0.

3.1.3 General Form of DDE Generating Chaos

Consider the following general form of delay differential equation:

˙x(t) = a[b0x(t) + b1x(t− τ1) + c sin(dx(t− τ2))]. (3.15)

Theorem 3.3: The solutions of system (3.15) are bounded, for arbitrary c, d and τ2,

provided that

ab0τ1 < 1, (3.16)

ab0 + ab1 < 0, (3.17)

−ab1τ1 < ζ sin ζ + ab0τ1 cos ζ. (3.18)

where ζ is the root of ζ = ab0τ1 tan ζ , 0 < ζ < π, if ab0 6= 0 and ζ = π/2 if ab0 = 0. Proof:

It follows from Theorem 3.1 by letting A = ab0, B = ab1 and r = τ1.

Corollary 1: If b1 = 0, the solutions of system (3.16) which turns into some like the

famous Ikeda Equation [48] are bounded, for arbitrary c and d, provided that

ab0 < 0. (3.19)

Proof: It follows from Theorem 3.3 with b1 = 0. Actually, condition (3.19) implies con-

ditions (3.16) and (3.17) when b1 = 0. Moreover, ab0 < 0 implies ζ ∈ (π
2
, π), and then
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Figure 3.10: The phase of x(t− τ)− x(t) with c = 3.0, when (a): τ = 1.5, (b): τ = 3, (c):

τ = 4, (d): τ = 5, (e): τ = 6, (f): τ = 8.
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Figure 3.11: The first six Lyapunov exponents vs parameter c in [0.5 3] with a = 0.8,

b = 0.2, d = 1.8 and τ = 8.0.

condition (3.18) is always satisfied as

ζ sin ζ + ab0τ1 cos ζ =
ab0τ1 sin2 ζ + ab0τ1 cos2 ζ

cos ζ
=

ab0τ1

cos ζ
> 0, ζ ∈ (

π

2
, π). (3.20)

3.1.3.1 Special Case I: Ikeda Equation

When we choose a = 0.8, b0 = −0.4, b1 = 0, c = 1, d = 1.8, system (3.15) transforms to

the Ikeda equation. Fig. 3.12 shows the phase portraits of x(t)-x(t − τ2) when τ2 chooses

different values. The phase portraits are similar with the figures in [80].

3.1.3.2 Special Case II

We choose a = 0.8, b0 = 0, b1 = −0.2, c = 0.5, d = 1.8, τ1 = 4, τ2 = 6. System (3.15) still

generates chaotic attractor. Fig. 3.13 shows the phase of x(t)-x(t− τ1)-x(t− τ2).
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−4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.13: The phase of x(t)-x(t− τ1)-x(t− τ2), when τ1 = 4,τ2 = 6.
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3.1.3.3 Special Case III

We choose a = 0.8, b1 = −0.1, b2 = −0.1, c = 0.5, d = 1.8. System (3.15) still generates

chaotic attractor. Fig. 3.14 shows the phase of x(t)-x(t−τ1)-x(t−τ2) when suitable delayed

times are chosen.
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Figure 3.14: The phase of x(t)-x(t− τ1)-x(t− τ2), when τ1 = 4,τ2 = 8.

3.1.3.4 Special Case IV

We choose a = 0.8, b1 = −0.4, b2 = 0.2, c = 0.5, d = 1.8. System (3.15) still generates

chaotic attractor. Fig. 3.15 shows the phase of x(t)-x(t−τ1)-x(t−τ2) when suitable delayed

times are chosen.
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Figure 3.15: The phase of x(t)-x(t− τ1)-x(t− τ2), when τ1 = 1,τ2 = 10.
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3.1.3.5 Special Case V

We choose a = 0.8, b1 = 0.4, b2 = −0.8, c = 0.5, d = 1.8. System (3.15) still generates

chaotic attractor. Fig. 3.16 shows the phase of x(t)-x(t−τ1)-x(t−τ2) when suitable delayed

times are chosen.
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Figure 3.16: The phase of x(t− τ2)− x(t− τ1)− x(t), when τ1 = 2,τ2 = 4.

Remark: Because of choosing the different signs of parameter values b0 and b1, special

cases I-V have different dynamical behaviors. And all these special cases can generate more

complex chaotic attractors by increasing the number of Hopf bifurcation points of system

(3.15).
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3.1.4 Summary

This section has presented a family of new chaos from delayed differential equations with

sine function. And the chaotic behavior and the boundedness of the system have been an-

alyzed. A method to generalize the system to more complex chaotic attractors has been

presented. Furthermore, a general form of DDE has been discussed and various chaotic be-

haviors have been simulated on different parameter conditions. We conclude that the general

form of DDE can be generalized to more complex hyperchaotic attractors by increasing the

number of Hopf bifurcations.

3.2 Generating Multi-Scroll Chaos and Hyperchaos from

Chen System

3.2.1 System Statement

Chen system was presented in 1999, when he studied in controlling Lorenz system. It has

been proved that Chen system is not topologically equivalent to the Lorenz system. The

mathematic model is followed.





ẋ = a(y − x)

ẏ = (c− a)x− xz + cy

ż = xy − bz

(3.21)

where a = 35, b = 3 and c = 28 (see Fig. 3.17).

We consider the following feedback control system,




ẋ = a(y − x)

ẏ = (c− a)x− xu + cy

ż = xy − bz

(3.22)
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Figure 3.17: Chen chaotic attractor with a = 35, b = 3 and c = 28, starting from [1, 1, 1].

where control function u(t) = d1z(t)− d2sin(z(t)) with a = 35, b = 3, c = 28, d1 = 1 and

d2 = 8. Fig.3.18 shows the phase portraits of state variables of the controlled Chen system,

which is a 6-scroll attractor.

3.2.2 Dynamical Analysis

System (3.22) has 11 equilibrium points (0, 0, 0), (±6.9995,±6.9995, 16.3311), (±7.4572,

±7.4572, 18.5365), (±8.1020,±8.1020, 21.8808), (±8.7929,±8.7929, 25.7719) and (±9.0592,

±9.0592, 27.3561). At the equilibrium point (x∗, y∗, z∗), the characteristic equation of the

linearized system is
∣∣∣∣∣∣∣∣

−a− λ a 0

c− a− (d1z
∗ − d2sinz∗) c− λ −d1x

∗ + d2x
∗cosz∗

y x −b− λ

∣∣∣∣∣∣∣∣
= 0 (3.23)

All equilibrium points and responding roots are shown in Table 3.1.

Therefore, all these equilibrium points are unstable. Fig. 3.19 shows the responding

eigenvalues of points (±6.9995,±6.9995, 16.3311). A pair of complex conjugate eigenval-
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Figure 3.18: The phase portraits of controlled Chen system. (a) z-x-y; (b) x-y; (c) x-z; (d)

y-z.
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Table 3.1: List of equilibrium points and responding roots of characteristic equations.

No. Equilibrium Point Roots of Characteristic Equation

1 (0, 0, 0)

λ1 = −30.8359

λ2 = −3.0000

λ3 = 23.8359

2 (-6.9995, -6.9995, 16.3311)

λ1 = −28.3291

λ2 = 9.1646 + 28.6971i

λ3 = 9.1646− 28.6971i

3 (6.9995, 6.9995, 16.3311)

λ1 = −28.3291

λ2 = 9.1646 + 28.6971i

λ3 = 9.1646− 28.6971i

4 (-7.4572, -7.4572, 18.5365)

λ1 = −20.0227 + 21.3456i

λ2 = −20.0227− 21.3456i

λ3 = 30.0454

5 (7.4572, 7.4572, 18.5365)

λ1 = −20.0227 + 21.3456i

λ2 = −20.0227− 21.3456i

λ3 = 30.0454

6 (-8.1020, -8.1020, 21.8808)

λ1 = −31.7110

λ2 = 10.8555 + 34.3397i

λ3 = 10.8555− 34.3397i

7 (8.1020, 8.1020, 21.8808)

λ1 = −31.7110

λ2 = 10.8555 + 34.3397i

λ3 = 10.8555− 34.3397i

8 (-8.7929, -8.7929, 25.7719)

λ1 = −20.8583 + 22.1342i

λ2 = −20.8583− 22.1342i

λ3 = 31.7166

9 (8.7929, 8.7929, 25.7719)

λ1 = −20.8583 + 22.1342i

λ2 = −20.8583− 22.1342i

λ3 = 31.7166

10 (-9.0592, -9.0592, 27.3561)

λ1 = −30.2290

λ2 = 10.1145 + 31.7952i

λ3 = 10.1145− 31.7952i

11 (9.0592, 9.0592, 27.3561)

λ1 = −30.2290

λ2 = 10.1145 + 31.7952i

λ3 = 10.1145− 31.7952i
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ues of the linearization around these equilibrium points cross the imaginary axis of the com-

plex plane. It is clear that Hopf bifurcation will occur when suitable parameters are chosen.

Similarly, at points (±8.1020,±8.1020, 21.8808) and (±9.0592,±9.0592, 27.3561), there

exist Hopf bifurcations when suitable parameters are chosen.
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Figure 3.19: The roots of the characteristic equations of system (3.22) responding to equilib-

rium points (±6.9995,±6.9995, 16.3311).

Furthermore, we calculate the maximal Lyapunov exponent LEmax = 4.7859 and Lya-

punov dimension d = 2.3236 using the Matlab LET toolbox. The Lyapunov spectrum is

shown in Fig. 3.20.

3.2.3 Generalized More-Scroll Chaos

From Fig. 3.18, we know the above new chaos is a 6-scroll Chen attractor. Furthermore, by

choosing different values of parameter d2, we can control the number of equilibrium points

of system (3.22). Subsequently, by controlling the number of Hopf bifurcation points, we

will design complex chaotic systems with different topological structures.
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Figure 3.20: The Lyapunov spectrum of system (3.22) with parameters t = 1000, starting

from (1, 1, 30).

When d2 = 5, system (3.22) has 7 equilibrium points (0, 0, 0), (±7.0847, ±7.0847,

16.7311), (±7.4039,±7.4039, 18.2726) and (±8.0917,±8.0917, 21.8253). At points (±7.0847,

±7.0847, 16.7311) and (±8.0917, ±8.0917, 21.8253), there exist Hopf bifurcations when

suitable parameters are chosen. Fig. 3.21 shows the phase portraits of state variables of sys-

tem (3.22) with d2 = 5, which is a 4-scroll attractor. The maximal Lyapunov exponent is

LEmax = 0.4015 and Lyapunov dimension d = 2.0316.

When d2 = 14, system (3.22) has 19 equilibrium points (0, 0, 0), (±5.5575,±5.5575,

10.2952), (±5.9635,±5.9635, 11.8545), (±6.9429,±6.9429, 16.0680), (±7.4867,±7.4867,

18.6833), (±8.1102,±8.1102, 21.9250), (±8.7390,±8.7390, 25.4567), (±9.1274,±9.1274,

27.7696), (±9.8534,±9.8534, 32.3629) and (±10.0190,±10.0190, 33.4602). At points (±5.5575,

±5.5575, 10.2952), (±6.9429,±6.9429, 16.0680), (±8.1102,±8.1102, 21.9250), (±9.1274,

±9.1274, 27.7696) and (±10.0190,±10.0190, 33.4602), there exist Hopf bifurcations when

suitable parameters are chosen. Fig. 3.22 shows the phase portraits of state variables of sys-

tem (3.22) with d2 = 10, which is a 8-scroll attractor. The maximal Lyapunov exponent is
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Figure 3.21: The phase portraits of system (3.22) with d2 = 5, starting from (1, 1, 30). (a)

z-x-y; (b) x-y; (c) x-z; (d) y-z.
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LEmax = 7.0722 and Lyapunov dimension d = 2.4142.
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Figure 3.22: The phase portraits of system (3.22) with d2 = 14, starting from (1, 1, 30). (a)

z-x-y; (b) x-y; (c) x-z; (d) y-z.

When d2 = 22, system (3.22) has 27 equilibrium points (0, 0, 0), (±3.4741,±3.4741,

4.0231), (±4.0626,±4.0626, 5.5015), (±5.4638,±5.4638, 9.9510), (±6.0380,±6.0380, 12.1525),

(±6.9152,±6.9152, 15.9400), (±7.4994,±7.4994, 18.7470), (±8.1144,±8.1144, 21.9480),

(±8.7174,±8.7174, 25.3309), (±9.1574,±9.1574, 27.9528), (±9.7882,±9.7882, 31.9362),

(±10.0890,±10.0890, 33.9293), (±10.7650,±10.7650, 38.6286) and (±10.9291,±10.9291,

39.8147). At points (±3.4741,±3.4741, 4.0231), (±5.4638, ±5.4638, 9.9510), (±6.9152,

±6.9152, 15.9400), (±8.1144,±8.1144, 21.9480), (±9.1574,±9.1574, 27.9528), (±10.0890,

±10.0890, 33.9293) and (±10.9291,±10.9291, 39.8147), there exist Hopf bifurcations when
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suitable parameters are chosen. Fig. 3.23 shows the phase portraits of state variables of sys-

tem (3.22) with d2 = 22, which is a 14-scroll attractor. The maximal Lyapunov exponent is

LEmax = 8.6318 and Lyapunov dimension d = 2.4632.
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Figure 3.23: The phase portraits of system (3.22) with d2 = 22, starting from (1, 1, 30). (a)

z-x-y; (b) x-y; (c) x-z; (d) y-z.

When d2 = 28, system (3.22) has 31 equilibrium points (0, 0, 0), (±3.3777,±3.3777,

3.8029), (±4.1371,±4.1371, 5.7053), (±5.4318,±5.4318, 9.8349), (±6.0618,±6.0618, 12.2485),

(±6.9047,±6.9047, 15.8914), (±7.5040,±7.5040, 18.7698), (±8.1161,±8.1161, 21.9570),

(±8.7097,±8.7097, 25.2864), (±9.1686,±9.1686, 28.0209),(±9.7692,±9.7692, 31.8124),

(±10.1102,±10.1102, 34.0718), (±10.7287,±10.7287, 38.3682), (±10.9668,±10.9668, 40.0905),

(±11.6206,±11.6206, 45.0129) and (±11.7497,±11.7497, 46.0188). At points (±3.3777,
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±3.3777, 3.8029), (±5.4318,±5.4318, 9.8349), (±6.9047,±6.9047, 15.8914), (±8.1161,

±8.1161, 21.9570), (±9.1686,±9.1686, 28.0209), (±10.1102,±10.1102, 34.0718), (±10.9668,

±10.9668, 40.0905) and (±11.7497,±11.7497, 46.0188), there exist Hopf bifurcations when

suitable parameters are chosen. Fig. 3.24 shows the phase portraits of state variables of sys-

tem (3.22) with d2 = 28, which is a 16-scroll attractor. The maximal Lyapunov exponent is

LEmax = 8.7869 and Lyapunov dimension d = 2.4677.
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Figure 3.24: The phase portraits of system (3.22) with d2 = 28, starting from (1, 1, 30). (a)

z-x-y; (b) x-y; (c) x-z; (d) y-z.

Fig. 3.25 shows all three Lyapunov exponents change as d2 ranges in [5 25] with fixed

parameters a = 35, b = 3, c = 28 and d1 = 1.

Remark 1: when parameter d2 increases, the number of equilibrium points increases cor-
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Figure 3.25: All Lyapunov exponents vs parameter d2 in [5 25] with a = 35, b = 3, c = 28

and d1 = 1.
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respondingly. With Hopf bifurcation occurring over and over again, system (3.22) generates

new attractors with more scrolls.

3.2.4 Generalized More Complex Chaos and Hyperchaos

We know one order delay differential equation can generate hyperchaotic dynamic behavior.

In order to generalize system (3.22) to more complex chaos and hyperchaos, we introduce

delay to control function, u(t) = d0z(t) + d1z(t − τ) − d2sin(z(t − τ)), system (3.22)

transforms to the following.





ẋ = a(y − x)

ẏ = (c− a)x− x(d0z(t) + d1z(t− τ)− d2sin(z(t− τ))) + cy

ż = xy − bz

(3.24)

where d0, d1, d2 are constants and τ is delay time. When suitable parameters are chosen,

system (3.24) can generate different chaotic and hyperchaotic attractors as follows.

3.2.4.1 Special Case I: d0 = d1

When d0 = 1, d1 = 1, d2 = 5 and τ = 0.1, system (3.24) generates different chaotic dynamic

behaviors. The phase portraits are shown in Fig. 3.26.

When d0 = 1, d1 = 1, d2 = 5 and τ = 0.8, system (3.24) generates different chaotic

dynamic behaviors. The phase portraits are shown in Fig. 3.27.

When d0 = 1, d1 = 1, d2 = 30 and τ = 0.05, system (3.24) generates hyperchaotic

dynamic behaviors. The phase portraits are shown in Fig. 3.28.

When d0 = 1, d1 = 1, d2 = 30 and τ = 0.8, system (3.24) generates hyperchaotic

dynamic behaviors. The phase portraits are shown in Fig. 3.29.
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Figure 3.26: The phase portraits of system (3.24) with d0 = 1, d1 = 1, d2 = 5 and τ = 0.1.
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Figure 3.27: The phase portraits of system (3.24) with d0 = 1, d1 = 1, d2 = 5 and τ = 0.8.
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Figure 3.28: The phase portraits of system (3.24) with d0 = 1, d1 = 1, d2 = 30 and τ = 0.05.
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Figure 3.29: The phase portraits of system (3.24) with d0 = 1, d1 = 1, d2 = 30 and τ = 0.8.
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3.2.4.2 Special Case II: d0 6= d1

When d0 = 0.2, d1 = 2, d2 = 5 and τ = 5, system (3.24) generates different hyperchaotic

dynamic behavior. The phase portraits are shown in Fig. 3.30.
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Figure 3.30: The phase portraits of system (3.24) with d0 = 0.2, d1 = 2, d2 = 5 and τ = 5.

When d0 = 0.2, d1 = 2, d2 = 40 and τ = 5, system (3.24) generates different hyper-

chaotic dynamic behavior. The phase portraits are shown in Fig. 3.31.

When d0 = 1, d1 = −0.2, d2 = 20 and τ = 5, system (3.24) generates different

hyperchaotic dynamic behavior. The phase portraits are shown in Fig. 3.32.

When d0 = 1, d1 = −0.8, d2 = 5 and τ = 5, system (3.24) generates different hyper-

chaotic dynamic behavior. The phase portraits are shown in Fig. 3.33.
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Figure 3.31: The phase portraits of system (3.24) with d0 = 0.2, d1 = 2, d2 = 40 and τ = 5.
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Figure 3.32: The phase portraits of system (3.24) with d0 = 1, d1 = −0.2, d2 = 20 and

τ = 5.
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Figure 3.33: The phase portraits of system (3.24) with d0 = 1, d1 = −0.8, d2 = 5 and τ = 5.
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3.2.5 Summary

This section has presented a feedback control function to generate multi-scroll attractors from

Chen system. we have analyzed the dynamical behavior of this new attractor. By controlling

the control parameters, we have achieved a set of new attractors with different scrolls. After

that, we introduced time delay to control function u(t) to generalize the multi-scroll attractors

to more complex chaos and hyperchaos. This kind of control method can also be used to other

chaotic system, such as Lorenz system, Jerk equation and so on.
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Chapter 4

Impulsive Synchronization of Chaotic

Systems with Delay

4.1 Synchronization of Two Chaotic Systems with Delay

In this section, we consider the impulsive synchronization of chaotic Lur’e systems with out-

put feedback. The presence of transmission delay and sampling delay in the output feedback

and impulsive control is studied. Based on LMI method, four sufficient condition for global

asymptotic synchronization are derived. Finally, a numerical example is given to illuminate

the validity of main results.

4.1.1 Background

Over the past decade, synchronization of chaotic or hyperchaotic systems and its applica-

tions to security communication have attracted a great deal of attention. In communication

security schemes, information signals are masked by chaotic signal and then recovered in

the receiver end. The recovery of the information signals requires that the receiver’s chaotic

signal is synchronized with the transmitter’s one. There are two kind of methods to achieve

synchronization which are state feedback and impulsive control. Firstly, synchronization is
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done through driving the system at the receiver end by one of the state variables of the system

at the transmitter end [5, 21, 22]. Furthermore, a linear combination of the state variables

of the system at the transmitter end is applied [61, 85]. The hyperchaos synchronization

between higher dimensional chaotic systems, possessing more than one positive Lyapunov

exponent has been studied [61, 85]. Impulsive synchronization allows synchronization of

chaotic systems using only small impulses generated by samples of the state variables of

the driving system at discrete time instances. It has been developed [86, 87] and applied to

a number of chaos-based communication systems which exhibit good performance for the

synchronization purposes and for security purposes [18, 53].

Recently, the transmission and sampling delays in communication security systems be-

come a hot issue which is a very challenging problem in both theory and application. Some

results have been achieved [54–56]. Motivated by the above comments, we further study

the chaos synchronization by both output feedback and impulsive control with delay in this

paper. In particular, we analyze how much delay such systems can endure by a numerical ex-

ample which reflect the robustness of impulsive synchronization and the ability to overcome

the delay problem.

4.1.2 System Statement and Synchronization Scheme

Consider the following master-slave synchronization scheme:

M :





ẋ(t) = Ax(t) + Bσ(Dx(t))

p(t) = Cx(t)

S :





ż(t) = Az(t) + Bσ(Dz(t)) + u, t 6= τi

q(t) = Cz(t)
(4.1)

C : 4z(t) = K3(p(t)− q(t)) + K4(p(t− γi)− q(t− γi)), t = τi

which consists of master system M , slave system S, output feedback u = K1(p(t)− q(t)) +

K2(p(t − γ̃) − q(t − γ̃)), γ̃ ≤ γ, γi ≤ γ, γ ≤ ∆i = τi+1 − τi and impulsive control C.

74



M and S are identical Lur’e chaotic system with state vectors x(t), z(t) ∈ Rn and matrices

A ∈ Rn×n, B ∈ Rn×nh , D ∈ Rnh×n. The diagonal nonlinearity σ(.) : Rnh 7−→ Rnh

is assumed to belong to sector[0, k]. The output vectors of M and S are p(t), q(t) ∈ Rl

with l ≤ n and matrix C ∈ Rl×n. For the impulsive control law C, a set of discrete time

instants τi is considered where 0 < τ1 < τ2 < ... < τi < ... with τi → ∞ as i → ∞.

K1, K3 are the matrices of output feedback and impulsive control respectively. K2, K4 are

the delay perturbation matrices of output feedback and impulsive control respectively. γ̃ is

the output feedback delay due to the presence of transmission delay in the process, and γi is

the impulsive delay due to sample the impulses in the receiver end.

At the time instants τi, jumps in the state variable z(t) are imposed

4z(t)|t=τi
= z(τ+

i )− z(τ−i ). (4.2)

Let e(t) = x(t) − z(t). From the synchronization scheme (4.1), the error dynamics e(t)

is given by

E :





ė(t) = (A−K1C)e(t) + Bη(De(t); z(t))−K2Ce(t− γ̃), t 6= τi

4e(t) = −K3Ce(t)−K4Ce(t− γi), t = τi

(4.3)

where η(De(t); z(t)) = σ(De(t) + Dz(t)) − σ(Dz(t)) and 4e(t) = 4x(t) − 4z(t) with

4x(t) = 0. Assume that the nonlinearity η(De(t); z(t)) belongs to sector [0, k]:

0 ≤ ηi(d
T
i e(t); z(t))

dT
i e(t)

=
σi(d

T
i e(t) + dT

i z(t))− σi(d
T
i z(t))

dT
i e(t)

≤ k,

∀e(t), z(t); i = 1, 2, ..., nh(d
T
i e(t) 6= 0), (4.4)

where dT
i denotes the ith row vector of D.

Then, the following inequality holds:

ηi(d
T
i e(t); z(t))[ηi(d

T
i e(t); z(t))− kdT

i e(t)] ≤ 0,

∀e(t), z(t); i = 1, 2, ..., nh. (4.5)
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4.1.3 Main Results

In this subsection, we shall obtain some criteria for global asymptotical synchronization of

system (4.1). Lemma 4.1 firstly is introduced which will be used in the proof of the theorems.

Lemma 4.1 [13]: Let γ > 0 and m ∈ C1[J,R+], where J = [a− γ, b), 0 < b− a ≤ ∆i.

Assume that there exist constants l > 0 and β ∈ (0, 1) such that

m′(t) ≤ lm(t), whenever m(t) ≥ βm(t + s), s ∈ [−γ, 0]; (4.6)

and there exists a constant η > 0 such that m(s) ≤ η, s ∈ [a− γ, a), m(a) ≤ βη, and

l∆i + ln β < 0. (4.7)

Then there exists an d = d(η), 0 < d < η such that m(t) ≤ η − d, t ≥ a.

Theorem 4.1: For K2 6= 0, K4 6= 0, if there exist a diagonal positive definite matrix

Λ = diag{λi} ∈ Rnh×nh , a symmetric positive definite matrix P ∈ Rn×n, matrices K1, K3 ∈
Rn×l, F1 = −K1C, F2 = −K2C, G1 = −K3C, G2 = −K4C, and real constants α1, α2 > 0,

β1 > 0, β2 > 0, β1 + β2 ≤ β < 1 such that the following matrix inequalities



(A + F1)
T P + P (A + F1)− α1P PB + kDT Λ PF2

BT P + kΛD −2Λ 0

F T
2 P 0 −α2P


 ≤ 0, (4.8)


 (I + GT

1 )P (I + G1)− β1P (I + GT
1 )PG2

GT
2 P (I + G1) GT

2 PG2 − β2P


 ≤ 0, (4.9)

∆i

β
(βα1 + α2) + ln β < 0, i = 1, 2, ... (4.10)

are satisfied, then the origin of the synchronization error system (4.3) is globally asymptot-

ically stable. In other words, the master system M and the slave system S are of global

asymptotical synchronization.

Proof: Construct a Lyapunov function in the form of
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V (e(t)) = eT (t)Pe(t), (4.11)

where P is a symmetric positive definite matrix. Let V (t) =: V (e(t)).

When t ∈ (τi, τi+1), taking the time derivative of the Lyapunov function (4.11) along the

trajectories of (4.3) and using the inequalities (4.5), (4.8), one obtains

V̇ (t)

= ė(t)T Pe(t) + e(t)T P ė(t)

= e(t)T ((A + F1)
T P + P (A + F1))e(t) + ηT BT Pe(t) + e(t)T PBη + e(t− γ̃)T F T

2 Pe(t)

+e(t)T PF2e(t− γ̃)

≤ e(t)T ((A + F1)
T P + P (A + F1))e(t) + ηT BT Pe(t) + e(t)T PBη + e(t− γ̃)T F T

2 Pe(t)

+e(t)T PF2e(t− γ̃)−
∑

i

2λiηi(ηi − kdT
i e(t))

≤ ξT
1 Y1ξ1 + α1e(t)

T Pe(t) + α2e(t− γ̃)T Pe(t− γ̃)

≤ α1V (t) + α2V (t− γ̃). (4.12)

where ξ1 =




e(t)

η

e(t− γ̃)


, Y =




(A + F1)
T P + P (A + F1)− α1P PB + kDT Λ PF2

BT P + kΛD −2Λ 0

F T
2 P 0 −α2P


 .

(4.12) implies, if V (t) ≥ βm(t + s), s ∈ [−γ, 0],

˙V (t) ≤ 1

β
(βα1 + α2)V (t), t 6= τi. (4.13)

When t = τi, in terms of (4.9), we have

V (τi)

= ((I + G1)e(τ
−
i ) + G2e(τi − γi))

T P ((I + G1)e(τ
−
i ) + G2e(τi − γi))

= e(τ−i )T (I + G1)
T P (I + G1)e(τ

−
i ) + e(τi − γi)

T GT
2 P (I + G1)e(τ

−
i )

+e(τ−i )T (I + G1)
T PG2e(τi − γi) + e(τi − γi)

T GT
2 PG2e(τi − γi)

≤ ζT
1 Y S1ζ1 + β1e(τ

−
i )T Pe(τ−i ) + β2e(τi − γi)

T Pe(τi − γi)

≤ β1V (τ−i ) + β2V (τi − γi), i = 1, 2, .... (4.14)
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where ζ1 =


 e(τ−i )

e(τi − γi)


, Y =


 (I + GT

1 )P (I + G1)− β1P (I + GT
1 )PG2

GT
2 P (I + G1) GT

2 PG2 − β2P


.

Suppose that the original condition V (t0) ≤ η, t0 ∈ [τ1 − γ, τ1), by (14),we have

V (τ1) ≤ β1V (τ−1 ) + β2V (τ1 − γ1) ≤ βη, (4.15)

in view of (4.10), (4.13), (4.15) and lemma 4.1, one obtains

V (t) ≤ ρη, ρ ∈ (0, 1), t ∈ (τ1, τ2). (4.16)

Continuing this process, we get

V (τi) ≤ β1V (τ−i ) + β2V (τi − γi) ≤ βρi−1η, (4.17)

and

V (t) ≤ ρi−1η, ρ ∈ (0, 1), t ∈ (τi, τi+1). (4.18)

which yields V (t) 7→ 0, as i 7→ +∞. Thus, e(t) 7→ 0, as t 7→ +∞.

Therefore, the origin of the synchronization error system (4.3) is globally asymptotically

stable. In other words, the master system M and the slave system S are of global asymptotical

synchronization.

When K4 = 0, i.e., there exists no delay perturbation in the impulsive control, we have

the following theorem:

Theorem 4.2 [57]: For K2 6= 0, K4 = 0, For K2 6= 0, K4 6= 0, if there exist a diagonal

positive definite matrix Λ = diag{λi} ∈ Rnh×nh , a symmetric positive definite matrix P ∈
Rn×n, matrices K1, K3 ∈ Rn×l, F1 = −K1C, F2 = −K2C, G1 = −K3C, and real constants

α1, α2 > 0, 0 < β < 1 such that the following matrix inequalities




(A + F1)
T P + P (A + F1)− α1P PB + kDT Λ PF2

BT P + kΛD −2Λ 0

F T
2 P 0 −α2P


 ≤ 0, (4.19)
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
 −βP (I + G1)

T P

P (I + G1) −P


 ≤ 0, (4.20)

∆i

β
(βα1 + α2) + ln β < 0, i = 1, 2, ... (4.21)

are satisfied, then the origin of the synchronization error system (4.3) is globally asymptot-

ically stable. In other words, the master system M and the slave system S are of global

asymptotical synchronization.

The proof is similar to that of Theorem 4.1. and thus is omitted.

When K2 = 0, i.e., there exists no delay perturbation in feedback control, we get the

following theorem:

Theorem 4.3: For K2 = 0, K4 6= 0, if there exist a diagonal positive definite matrix

Λ = diag{λi} ∈ Rnh×nh , a symmetric positive definite matrix P ∈ Rn×n, matrices K1, K3 ∈
Rn×l, F1 = −K1C, G1 = −K3C, G2 = −K4C, and real constants α1, β1 > 0, β2 > 0,

β1 + β2 ≤ β < 1 such that the following matrix inequalities

 (A + F1)

T P + P (A + F1)− α1P PB + kDT Λ

BT P + kΛD −2Λ


 ≤ 0, (4.22)


 (I + GT

1 )P (I + G1)− β1P (I + GT
1 )PG2

GT
2 P (I + G1) GT

2 PG2 − β2P


 ≤ 0, (4.23)

∆iα1 + ln β < 0, i = 1, 2, ... (4.24)

are satisfied, then the origin of the synchronization error system (4.3) is globally asymptot-

ically stable. In other words, the master system M and the slave system S are of global

asymptotical synchronization.

The proof is similar to that of Theorem 4.1. and thus is omitted.

When K2 = K4 = 0, i.e., there exists no delay perturbation in both feedback control and

impulsive control, we get the following theorem:
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Theorem 4.4: For K2 = 0, K4 = 0, if there exist a diagonal positive definite matrix

Λ = diag{λi} ∈ Rnh×nh , a symmetric positive definite matrix P ∈ Rn×n, matrices K1, K3 ∈
Rn×l, F1 = −K1C, G1 = −K3C, and real constants α, 0 < β < 1 such that the following

matrix inequalities

 (A + F1)

T P + P (A + F1)− α1P PB + kDT Λ

BT P + kΛD −2Λ


 ≤ 0, (4.25)


 −βP (I + G1)

T P

P (I + G1) −P


 ≤ 0, (4.26)

∆iα1 + ln β < 0, i = 1, 2, ... (4.27)

are satisfied, then the origin of the synchronization error system (4.3) is globally asymptot-

ically stable. In other words, the master system M and the slave system S are of global

asymptotical synchronization.

The proof is similar to that of Theorem 4.1. and thus is omitted.

Remark 4.1: In Theorem 4.1, the constant α1 (if α1 > 0) measures the degree of insta-

bility of the error system with only feedback control and is determined by the eigenvalues of

the matrix A + F1. α2 is determined by the matrix F2. The positive constants β1, β2 measure

the amplitude of the control impulses, the smaller the β1, β2 are and the larger the amplitude.

If α1 < 0, i.e., the error system with only feedback control is stable, then a larger interval

length of consecutive impulses is allowed.

4.1.4 Numerical Example

In this subsection, we illustrate the synchronization based on two identical chua’s circuits.

We take the following representation for Chua’s cirsiut:
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



ẋ1 = a1[x2 − h(x1)]

ẋ2 = x1 − x2 + x3

ẋ3 = −a2x2

(4.28)

with nonlinear characteristic

h(x1) = m1x1 +
1

2
(m0 −m1)(|x1 + a3| − |x1 − a3|)

where a1 = 9, a2 = 14.286, a3 = 1, m0 = −1/7, m1 = 1.5/7 in order to obtain the double

scroll attractor shown in Fig. 4.1. The nonlinearity ψ(x1) = 1/2(|x1 + a3| − |x1 − a3|)
(linear characteristic with saturation) belongs to sector [0, 1]. Therefore, Chua’s circuit can

be interpreted as the Lur’e system ẋ = Ax + Bψ(Dx) where

A =



−a1m1 a1 0

1 −1 1

0 −a2 0


 , B =



−a1(m0 −m1)

0

0


 ,

D =
[

1 0 0
]
. (4.29)

We define the output matrix C = [1 0 0]. Firstly, suppose that there exists no delay

perturbation and choose the real constants α1 = 2, β = 0.3, Λ = 2, P = I by Theorem 4.4,

we obtain output feedback matrix and impulsive matrix as follows:

K1 = [1.5379 0.2841 − 0.3648]T , K3 = [0.5 0.5 0.5]T .

The impulsive intervals satisfy τi+1 − τi ≤ 0.3010. The simulation results of error system

e(t) are shown in Fig. 4.2. We can find that e(t) is asymptotically tending to zero. When

some delays in impulses occur γi = 0.05, the error system e(t) becomes unstable as shown

in Fig. 4.3.

If we suppose the transmission delay γ̃ = 0.04, γi = 0.02,K2 = [2 2 2]T , K4 =

[0.1 0.1 0.1]T and choose the real constants α = −0.2, β1 = 1.1, β2 = 0.4, Λ = 3I ,P =
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Figure 4.1: (x1, x2, x3) of the master system.
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Figure 4.2: e1 of the error system without delay.
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Figure 4.3: e1 of the error system with γi = 0.05.

Q = I By Theorem 4.1, we obtain the output feedback matrix and impulsive matrix as

follows:

K1 = [4.6911 1.5356 − 0.2775]T , K3 = [0.95 0.95 0.95]T ,

and the impulsive interval τi+1 − τi ≤ 0.12. The simulation results of error system e(t) are

shown in Fig.4. In this condition, let γ̃ = 0, γi = 0, the error system e(t) still converge to

zero. It is shown in Fig.5.

4.1.5 Summary

We investigated the synchronization of two identic Lur’e chaotic systems by impulsive con-

trol and output feedback control. Some sufficient conditions for global asymptotical synchro-

nization have been achieved. By comparison, we find out the delay in impulses is terrible. A

numerical example has been given to show the effectiveness of the main results.
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Figure 4.4: e1 of the error system with γ̃ = 0.04, γi = 0.02.
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Figure 4.5: e1 of the error system without delay.
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4.2 Synchronization of Chaotic Dynamical Networks with

Delay

In this section, we consider the impulsive synchronization of uncertain dynamical networks.

The presence of coupling delay and impulsive delay in the network coupling and impulsive

control is studied. Based on LMI method, several criteria for global impulsive synchroniza-

tion are derived for complex dynamical networks. Finally, a numerical example is given to

illuminate the validity of main results.

4.2.1 Background

Recently, synchronization of dynamical networks has become a hot issue [88–92]. A dy-

namical network is made up of coupled nodes, which may be chaotic systems such as Chua’s

circuit, Chen’s system and so on. The network coupling functions which could be linear or

nonlinear may be unknown, but they are bounded. It is noticed that the network coupling may

affect heavily on the synchronization scheme when some synchronization techniques [88, 89]

are applied. Although adaptive synchronization [91] is relatively relatively efficient method

for uncertain dynamical networks, it is very complex to design the controller. Impulsive

synchronization [18, 54–57, 87, 92], which allows synchronization of chaotic systems using

only small impulses generated by samples of the state variables of the driving system at the

discrete time instances, has been proved to be a very effective method in chaos synchroniza-

tion. It can induce the information redundancy in the transmitted signal and increase the

robustness against the disturbances. It has been applied to network synchronization without

delay [92]. However, coupling delay and impulsive delay always occur in the synchroniza-

tion process and sometime cause catastrophic results. It is a very challenging problem in

both theory and application.

In this section, motivated by the above comments, we further study the network syn-

chronization with coupling delay and impulsive delay. some criteria for global impulsive
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synchronization are derived for complex dynamical networks. In particular, we analyze how

much delay such systems can endure by a numerical example which reflect the robustness of

impulsive synchronization and the ability to overcome the delay problem.

4.2.2 Preliminaries and Problem Formulation

Consider the following dynamical network consisting of N identical nodes, which are n-

dimensional dynamical systems, with uncertain coupling :

Ẋi(t) = AXi(t) + ϕ(t,Xi(t)) + Gi(X1(t), X2(t), ..., XN(t))

+Hi(X1(t− γ̃), X2(t− γ̃), ..., XN(t− γ̃)), i = 1, 2, ..., N.
(4.30)

where Xi(t) = (xi1(t), xi2(t), ..., xin(t))T ∈ Rn, represents the state vector of the ith node,

A ∈ Rn×n, ϕ : R+ × Rn → Rn is a smooth nonlinear vector functions, Gi, Hi : Rm → Rn

are smooth but unknown coupling functions, where m = nN . It is assumed that when the

network achieves synchronization, namely, when X1(t) = X2(t) = ... = XN(t) as t → ∞,

the coupling terms should vanish, ie., Gi(X1(t), X2(t), ..., XN(t)) = 0, Hi(X1(t−γ̃), X2(t−
γ̃), ..., XN(t− γ̃)) = 0, i = 1, 2, ..., N . γ̃ is the coupling delay.

Let Y (t) be a solution of the isolate node of the network, i.e.,

Ẏ (t) = AY (t) + ϕ(t, Y (t)) (4.31)

existing for all t ∈ R+. Here, Y (t) may be an equilibrium point, a periodic orbit or even a

chaotic orbit.

An impulsive control law of system (4.30) is given by a sequence {τk, Uik} such that the

state of network (4.30) synchronizes with the state of node (4.31). The controlled network

(4.30) satisfies the following system:




Ẋi(t) = AXi(t) + ϕ(t,Xi(t)) + Gi(X1(t), X2(t), ..., XN(t))

+Hi(X1(t− γ̃), X2(t− γ̃), ..., XN(t− γ̃)), t 6= τk

∆Xik = Uik, t = τk, k = 1, 2, ...

(4.32)
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where i = 1, 2, ..., N , ∆Xik = Xi(τ
+
k ) − Xi(τ

−
k ), where Xi(τ

+
k ) is the right limit of Xik

at t = τk, Xik = Xi(τ
+
k ) and Xi(τ

−
k ) is the left limit. Uik = Bik(Xi(τ

−
k ) − Y (τk)) +

Dik(Xi(τ
−
k − γk) − Y (τk − γk)), where Bik, Dik are the impulsive control matrices and γk

is the impulsive delay. The sequence {τi} satisfies 0 < τ1 < τ2 < ... < τk < ..., τk →∞ as

k →∞. max{γ̃, γk−1} ≤ min{τk+1 − τk}.

Let ei(t) = Xi(t)− Y (t), we obtain the error system:





ėi(t) = Aei(t) + ϕ̃(t,Xi(t), Y (t)) + G̃i(X(t), Y (t))

+H̃i(X(t− γ̃), Y (t− γ̃)), t 6= τk

∆eik = Bikei(τ
−
k ) + Dikei(τk − γk), t = τk, k = 1, 2, ...

(4.33)

where ϕ̃(t,Xi(t), Y (t)) = ϕ(t,Xi(t))− ϕ(t, Y (t)), G̃i(X(t), Y (t)) =

Gi(X1(t), X2(t), ..., XN(t))−Gi(Y (t), Y (t), ..., Y (t)), and H̃i(X(t−γ̃), Y (t−γ̃)) = Gi(X1(t−
γ̃), X2(t− γ̃), ..., XN(t− γ̃))−Gi(Y (t− γ̃), Y (t− γ̃), ..., Y (t− γ̃)). Clearly, network (4.30)

synchronizes with node (4.31) by impulsive control {τk, Uik} if and only if the error system

(4.33) is globally asymptotically stable about zero.

Assumption 4.1: There exist positive constants µij, νij , i, j = 1, 2, ..., N , such that

||Gi(X1(t), X2(t), ..., XN(t))−Gi(Y (t), Y (t), ..., Y (t))|| ≤ ΣN
j=1µij||ej(t)|| (4.34)

||Hi(X1(t), X2(t), ..., XN(t))−Hi(Y (t), Y (t), ..., Y (t))|| ≤ ΣN
j=1νij||ej(t)||. (4.35)

Assumption 4.2: There exist positive constants Li such that for any t ∈ [τk, τk+1),

||ϕ(t,Xi(t))− ϕ(t, Y (t))|| ≤ Li||Xi(t)− Y (t)||,
i = 1, 2, ..., N ; k = 1, 2, ... (4.36)

4.2.3 Main Results

In this subsection, we shall obtain some criteria for global asymptotical stability of error

system (4.33).
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Theorem 4.5: For error system (4.33), let Assumption 4.1, 4.2 hold. Assume that for an

impulsive control law {τk, Uik}
(i) there exist positive definite matrices Pi and constants α1, α2 > 0, θi1 > 0, θi2 > 0 such

that

Q1 =


 AT Pi + PiA + Ci1I − α1Pi 0

0 Ci2I − α2Pi


 ≤ 0; (4.37)

where Ci1 = 2Liλmax(Pi)+θi1λmax(Pi)Σ
N
j=1µij+θi2λmax(Pi)Σ

N
j=1νij+

1
θi1

ΣN
j=1λmax(Pj)µji,

Ci2 = 1
θi2

ΣN
j=1λmax(Pj)νji, λmax(.) represents the maximum eigenvalue.

(ii) there exist real numbers βi1 > 0, βi2 > 0, βi1 + βi2 ≤ β < 1 such that for i =

1, 2, ..., N ,

Q2 =


 (I + Bik)

T Pi(I + Bik)− β1Pi (I + Bik)
T PiDik

DT
ikPi(I + Bik) DT

ikPiDik − β2Pi


 ≤ 0, (4.38)

(iii) there exist a positive τ such that τk − τk−1 ≤ τ , k = 1, 2, ..., and

τ

β
(βα1 + α2) + ln β < 0. (4.39)

Then the error system (4.33) is globally asymptotically stable about zero. In other words,

network (4.30) synchronizes with node (4.31) by impulsive control {τk, Uik}.

Proof: Construct a Lyapunov function in the form of

V (t) = ΣN
i=1e

T
i (t)Piei, (4.40)

When t ∈ [τk, τk+1), taking the time derivative of the Lyapunov function (4.40) along the

trajectories of (4.33) and using the inequality (4.37), one obtains
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V̇ (t)

= ΣN
i=1

[
ėi(t)

T Piei(t) + ei(t)
T Piėi(t)

]

= ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + ei(t)
T Pi(ϕ̃i + G̃i + H̃i)

+(ϕ̃i + G̃i + H̃i)
T Piei(t)

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + ||ei(t)
T Pi||(||ϕ̃i||+ ||G̃i||+ ||H̃i||)

+(||ϕ̃i||+ ||G̃i||+ ||H̃i||)||Piei(t)|| ]
≤ ΣN

i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+2||ei(t)
T Pi||ΣN

j=1(µij||ej(t)||) + 2||ei(t)
T Pi||ΣN

j=1(νij||ej(t− γ̃)||)]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+2λmax(Pi)Σ
N
j=1(µij||ei(t)||||ej(t)||) + 2λmax(Pi)Σ

N
j=1(νij||ei(t)||||ej(t− γ̃)||)]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+λmax(Pi)Σ
N
j=1µij(θi1ei(t)

T ei(t) +
1

θi1

ej(t)
T ej(t))

+ λmax(Pi)Σ
N
j=1νij(θi2ei(t)

T ei(t) +
1

θi2

ej(t− γ̃)T ej(t− γ̃))

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+θi1λmax(Pi)Σ
N
j=1µijei(t)

T ei(t) + θi2λmax(Pi)Σ
N
j=1νijei(t)

T ei(t)

+
1

θi1

ΣN
j=1λmax(Pj)µjiei(t)

T ei(t) +
1

θi2

ΣN
j=1λmax(Pj)µjiei(t− γ̃)T ei(t− γ̃)

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA + C1I − α1Pi)ei(t) + ei(t− γ̃)T (C2I − α2Pi)ei(t− γ̃)
]

= ΣN
i=1

[
ξT
1 Q1xi1 + α1ei(t)

T Piei(t) + α2ei(t− γ̃)T Piei(t− γ̃)
]

≤ α1V (t) + α2V (t− γ̃). (4.41)

where ϕi = ϕ(t,Xi(t), Y (t)), G̃i = G̃i(Xi(t), Y (t)), and H̃i = H̃i(Xi(t), Y (t)), ξ1 =
 ei(t)

ei(t− γ̃)


.
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(4.41) implies, if V (t) ≥ βV (t + s), s ∈ [−γ̃, 0],

˙V (t) ≤ 1

β
(βα1 + α2)V (t), t 6= τk. (4.42)

When t = τk, in terms of (4.38), we have

V (τk)

= ΣN
i=1

[
((I + Bik)e(τ

−
k ) + Dike(τk − γk))

T Pi((I + Bik)e(τ
−
k ) + Dike(τk − γk))

]

= ΣN
i=1

[
e(τ−k )T (I + Bik)

T Pi(I + Bik)e(τ
−
k ) + e(τk − γk)

T DT
ikPi(I + Bik)e(τ

−
k )

+e(τ−k )T (I + Bik)
T PiDike(τk − γk) + e(τk − γk)

T DT
ikPiDike(τk − γk)

]

= ΣN
i=1

[
ξT
2 Q2ξ1 + βi1e(τ

−
k )T Pie(τ

−
k ) + βi2e(τk − γk)

T Pie(τk − γk)
]

≤ βi1V (τ−k ) + βi2V (τk − γk), i = 1, 2, .... (4.43)

where ξ2 =


 e(τ−k )

e(τk − γk)


.

Suppose that the initial condition V (t0) ≤ η, t0 ∈ [τ1 − γ0, τ1), by (4.43),we have

V (τ1) ≤ βi1V (τ−1 ) + βi2V (τ1 − γ1) ≤ βη, (4.44)

in view of (4.39), (4.42), (4.44) and lemma 4.1, one obtains

V (t) < η ≤ ρη, ρ ∈ (0, 1), t ∈ [τ1, τ2). (4.45)

Continuing this process, we get

V (τk) ≤ βi1V (τ−k ) + βi2V (τk − γk) ≤ βρk−1η, (4.46)

and

V (t) ≤ ρkη, ρ ∈ (0, 1), t ∈ ([τk, τk+1). (4.47)

which yields V (t) 7→ 0, as k 7→ +∞. Thus, e(t) 7→ 0, as t 7→ +∞.

Therefore, the error system (4.33) is globally asymptotically stable about zero. In other

words, network (4.30) synchronizes with node (4.31) by impulsive control {τk, Uik}. The

proof is hence completed.

90



Remark 4.2: By Theorem 4.5, the maximum interval of impulses for globally synchro-

nization can be estimated as

τ = − βlnβ

βα1 + α2

. (4.48)

When Hi ≡ 0, i.e., there exists no coupling delay in the dynamical network, we have the

following theorem:

Theorem 4.6: For error system (4.33), let Assumption 4.1, 4.2 hold. Assume that for an

impulsive control law {τk, Uik}
(i) there exist positive definite matrices Pi and constants α1, θi1 > 0 such that

Q1 = AT Pi + PiA + Ci1I − α1Pi ≤ 0; (4.49)

where Ci1 = 2Liλmax(Pi) + θi1λmax(Pi)Σ
N
j=1µij + 1

θi1
ΣN

j=1λmax(Pj)µji, λmax(.) represents

the maximum eigenvalue.

(ii) there exist real numbers βi1 > 0, βi2 > 0, βi1 + βi2 ≤ β < 1 such that for i =

1, 2, ..., N ,

Q2 =


 (I + Bik)

T Pi(I + Bik)− β1Pi (I + Bik)
T PiDik

DT
ikPi(I + Bik) DT

ikPiDik − β2Pi


 ≤ 0, (4.50)

(iii) there exist a positive τ such that τk − τk−1 ≤ τ , k = 1, 2, ..., and

τα1 + ln β < 0. (4.51)

Then the error system (4.33) is globally asymptotically stable about zero. In other words,

network (4.30) synchronizes with node (4.31) by impulsive control {τk, Uik}.

Proof: Construct a Lyapunov function in the form of

V (t) = ΣN
i=1e

T
i (t)Piei, (4.52)

When t ∈ [τk, τk+1), taking the time derivative of the Lyapunov function (4.52) along the

trajectories of (4.33) and using the inequality (4.49), one obtains
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V̇ (t)

= ΣN
i=1

[
ėi(t)

T Piei(t) + ei(t)
T Piėi(t)

]

= ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + ei(t)
T Pi(ϕ̃i + G̃i)

+(ϕ̃i + G̃i)
T Piei(t)

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + ||ei(t)
T Pi||(||ϕ̃i||+ ||G̃i||)

+(||ϕ̃i||+ ||G̃i||)||Piei(t)|| ]
≤ ΣN

i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+2||ei(t)
T Pi||ΣN

j=1(µij||ej(t)||)
]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+λmax(Pi)Σ
N
j=1µij(θi1ei(t)

T ei(t) +
1

θi1

ej(t)
T ej(t))

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA + C1I − α1Pi)ei(t)
]

≤ α1V (t). (4.53)

where ϕi = ϕ(t,Xi(t), Y (t)), G̃i = G̃i(Xi(t), Y (t)).

(4.53) implies, if V (t) ≥ βV (t + s), s ∈ [−γ̃, 0],

˙V (t) ≤ α1V (t), t 6= τk. (4.54)

The rest of the proof is similar to that of Theorem 4.5 and thus is omitted.

When Dik ≡ 0, i.e., there exists no impulsive delay in the impulsive control, we have the

following theorem:

Theorem 4.7: For error system (4.33), let Assumption 4.1, 4.2 hold. Assume that for an

impulsive control law {τk, Uik}
(i) there exist positive definite matrices Pi and constants α1, α2 > 0, θi1 > 0, θi2 > 0 such

that

Q1 =


 AT Pi + PiA + Ci1I − α1Pi 0

0 Ci2I − α2Pi


 ≤ 0; (4.55)
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where Ci1 = 2Liλmax(Pi)+θi1λmax(Pi)Σ
N
j=1µij+θi2λmax(Pi)Σ

N
j=1νij+

1
θi1

ΣN
j=1λmax(Pj)µji,

Ci2 = 1
θi2

ΣN
j=1λmax(Pj)νji, λmax(.) represents the maximum eigenvalue.

(ii) there exist real numbers 0 < β < 1 such that for i = 1, 2, ..., N ,

Q2 = (I + Bik)
T Pi(I + Bik)− βPi ≤ 0, (4.56)

(iii) there exist a positive τ such that τk − τk−1 ≤ τ , k = 1, 2, ..., and

τ

β
(βα1 + α2) + ln β < 0. (4.57)

Then the error system (4.33) is globally asymptotically stable about zero. In other words,

network (4.30) synchronizes with node (4.31) by impulsive control {τk, Uik}.

Proof: Construct a Lyapunov function in the form of

V (t) = ΣN
i=1e

T
i (t)Piei, (4.58)

When t = τk, in terms of (4.56), we have

V (τk)

= ΣN
i=1

[
((I + Bik)e(τ

−
k ))T Pi((I + Bik)e(τ

−
k ))

]

= ΣN
i=1

[
e(τ−k )T (I + Bik)

T Pi(I + Bik)e(τ
−
k )

]

≤ βV (τ−k ), i = 1, 2, .... (4.59)

The rest of the proof is similar to that of Theorem 4.5 and thus is omitted.

When Hi ≡ 0 and Dik ≡ 0, i.e., there exists no impulsive delay in the impulsive control,

we have the following theorem:

Theorem 4.8: For error system (4.33), let Assumption 4.1, 4.2 hold. Assume that for an

impulsive control law {τk, Uik}
(i) there exist positive definite matrices Pi and constants α1, θi1 > 0 such that

Q1 = AT Pi + PiA + Ci1I − α1Pi ≤ 0; (4.60)
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where Ci1 = 2Liλmax(Pi) + θi1λmax(Pi)Σ
N
j=1µij + 1

θi1
ΣN

j=1λmax(Pj)µji, λmax(.) represents

the maximum eigenvalue.

(ii) there exist real numbers 0 < β < 1 such that for i = 1, 2, ..., N ,

Q2 = (I + Bik)
T Pi(I + Bik)− βPi ≤ 0, (4.61)

(iii) there exist a positive τ such that τk − τk−1 ≤ τ , k = 1, 2, ..., and

τα1 + ln β < 0. (4.62)

Then the error system (4.33) is globally asymptotically stable about zero. In other words,

network (4.30) synchronizes with node (4.31) by impulsive control {τk, Uik}.

Proof: Construct a Lyapunov function in the form of

V (t) = ΣN
i=1e

T
i (t)Piei, (4.63)

When t ∈ [τk, τk+1), taking the time derivative of the Lyapunov function (4.63) along the

trajectories of (4.33) and using the inequality (4.60), one obtains
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V̇ (t)

= ΣN
i=1

[
ėi(t)

T Piei(t) + ei(t)
T Piėi(t)

]

= ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + ei(t)
T Pi(ϕ̃i + G̃i)

+(ϕ̃i + G̃i)
T Piei(t)

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + ||ei(t)
T Pi||(||ϕ̃i||+ ||G̃i||)

+(||ϕ̃i||+ ||G̃i||)||Piei(t)|| ]
≤ ΣN

i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+2||ei(t)
T Pi||ΣN

j=1(µij||ej(t)||)
]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA)ei(t) + 2Liλmax(Pi)ei(t)
T ei(t)

+λmax(Pi)Σ
N
j=1µij(θi1ei(t)

T ei(t) +
1

θi1

ej(t)
T ej(t))

]

≤ ΣN
i=1

[
ei(t)

T (AT Pi + PiA + C1I − α1Pi)ei(t)
]

≤ α1V (t). (4.64)

where ϕi = ϕ(t,Xi(t), Y (t)), G̃i = G̃i(Xi(t), Y (t)).

(4.66) implies, if V (t) ≥ βV (t + s), s ∈ [−γ̃, 0],

˙V (t) ≤ α1V (t), t 6= τk. (4.65)

When t = τk, in terms of (4.61), we have

V (τk)

= ΣN
i=1

[
((I + Bik)e(τ

−
k ))T Pi((I + Bik)e(τ

−
k ))

]

= ΣN
i=1

[
e(τ−k )T (I + Bik)

T Pi(I + Bik)e(τ
−
k )

]

≤ βV (τ−k ), i = 1, 2, .... (4.66)

The rest of the proof is similar to that of Theorem 4.5 and thus is omitted.
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4.2.4 Numerical Example

In this subsection, we illustrate the synchronization based on there identical chua’s circuits.

We take the following representation for Chua’s circuit:





ẋ1 = a1[x2 − h(x1)]

ẋ2 = x1 − x2 + x3

ẋ3 = −a2x2

(4.67)

with nonlinear characteristic

h(x1) = m1x1 +
1

2
(m0 −m1)(|x1 + a3| − |x1 − a3|)

where a1 = 9, a2 = 14.286, a3 = 1, m0 = −1/7, m1 = 1.5/7 in order to obtain the double

scroll attractor as shown in Fig 4.6. Chua’s circuit can be interpreted as ẏ = Ay+ϕ(y) where

A =




0 a1 0

1 −1 1

0 −a2 0


 , ϕ =



−a1h(y1)

0

0


 .

The functions Gi, Hi satisfy

G1 =



−x11 + 2x21 − x31

0

0


 , H1 =



−x11(t− γ̃) + 2x21(t− γ̃)− x31(t− γ̃)

0

0


 ;

G2 =



−x21 + 2x31 − x11

0

0


 , H2 =



−x21(t− γ̃) + 2x31(t− γ̃)− x11(t− γ̃)

0

0


 ;

G3 =



−x31 + 2x11 − x21

0

0


 , H3 =



−x31(t− γ̃) + 2x11(t− γ̃)− x21(t− γ̃)

0

0


 .

where γ̃ = 0.2s.
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Figure 4.6: (x1, x2, x3) of the isolate node of Chua’s circuit starting from (1, 1, 2).

Impulsive control matrices are followed,

Bik = −0.9I, Dik = 0.1I, γk = 0.08s.

Let P = I, θi1 = θi2 = 1, N = 3. By Theorem 4.5, we obtain τ = 0.53s. The trajectories of

error system (4.33) is shown in Fig.4.7-4.9.

Remark 4.3: By the theorem 4.5, we obtain the maximum impulsive interval τ = 0.53s.

In fact, when τ ≤ 0.80s, the error system (4.33) always is globally asymptotically stable

about zero. Hence the main results, in some sence, are conservative.

4.2.5 Summary

We have investigated the synchronization of dynamical network by impulsive control. Con-

sidering the effect of coupling delay and impulsive delay, we have achieved some sufficient

conditions for global asymptotical synchronization. A numerical example has been given to

show the effectiveness of the main results.
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Figure 4.7: the portrait of (e11, e21, e31) of the error system.
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Figure 4.8: the portrait of (e12, e22, e23) of the error system.
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Figure 4.9: the portrait of (e13, e23, e33) of the error system.
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Chapter 5

Adaptive Network Synchronization

Subject to Different Network Nodes

5.1 Introduction

Over the past decade, complex dynamical networks have attracted a lot of attention and

been intensively studied in various areas. A complex dynamical network consists of a large

set of network nodes, which can be convergent systems, periodic systems, aperiodic sys-

tems, chaotic oscillators, etc. Among these nodes, there exist some uncertain connections,

called diffusive couplings, which may be linear or nonlinear, and may be unknown some-

times. An interesting and significant phenomenon in studying complex dynamical networks

is network synchronization, i.e., all network nodes are synchronized with a desired isolated

oscillator. Network synchronization has been widely utilized in biological science, chemical

reaction, secret communication and cryptography, nonlinear oscillation synchronization and

many other fields [93–95].

Since the introduction of synchronizing two identical chaotic systems with different ini-

tial condition by Pecora and Carroll [5], synchronization techniques have been rapidly im-

proved. Chaotic synchronization includes master-slave synchronization and network syn-
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chronization. For the master-slave pattern, a number of active and nonlinear control ap-

proaches have been proposed to synchronize two identical oscillators, such as active con-

trol between two Lorenz systems [96], a backstepping approach between two Genesio sys-

tems [97, 98], an adaptive control between two uncertain Liu systems [99], impulsive syn-

chronization [18, 55–57, 92], delay feedback synchronization [100], a variable structure

method [101] and a sliding model control [102]. On the other hand, synchronization between

two different chaotic systems using nonlinear control schemes has been studied [103–106].

Specially, [107] studies the adaptive synchronization of two different chaotic systems with

unknown constant parameters. And [108] studies the adaptive synchronization of two differ-

ent chaotic system with unknown time varying parameters.

For network synchronization, due to the complexity and characteristics of dynamical

networks, most of the existing works only consider dynamical networks including identical

nodes. However, in reality, the network nodes are usually different and uncertain. How to

realize network synchronization subjected to different nodes with unknown parameters be-

comes a challenging and significant open issue. To the best of our knowledge, there is no

existing work deriving network synchronization based on this kind of complex dynamical

network. In this paper, we consider a complex dynamical network with three features: (1) all

network nodes and the desired isolated oscillator can have different structures; (2) the diffu-

sive couplings among network nodes are uncertain and bounded; and (3) some parameters in

network nodes and the isolated oscillator are unknown, which can be constant, time varying

but bounded, or bounded in the rate of their variations. Several adaptive controllers and up-

grade laws are presented and synchronization criteria based on Lyapunov stability theorem

are derived to guarantee network synchronization under different kind of unknown system

parameters. Compared with [109–111], our network model is more general and uncertain,

and our adaptive controllers and synchronization criteria hold for different node networks.

For networks subjected to unknown system parameters, our results will be very useful for

practical engineering applications.
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5.2 Preliminaries

In this section, we introduce a complex dynamical network model and an adaptive synchro-

nization scheme. Some preliminary definition and hypothesis are given.

Consider a complex dynamical system consisting of N different nonlinear network nodes

with unknown parameters. In addition, among these nodes, there exist some uncertain non-

linear diffusive couplings. The mathematical model can be described by

ẋi = fi(t, xi) + Fi(t, xi)θi + hi(x1, x2, ..., xN) + ui, t ≥ 0 (5.1)

where i = 1, 2, ..., N , xi = (xi1, xi1, ..., xin) ∈ <n is the state vector of the ith node, θi ∈ <m

is the system parameter vector of the ith node, which is unknown, ui ∈ <n is the control

input, fi ∈ C1(<+×<n,<n), Fi ∈ C1(<+×<n,<n×mi) and hi ∈ C1(<n×...×<n,<n). The

functions fi and Fi are known, which are not necessarily the same for all i, i.e., the structures

of nodes could be different. hi is the uncertain nonlinear diffusive coupling function and

satisfies hi(x1, x2, ..., xN) = 0 as x1 = x2 =, ..., = xN .

The isolated oscillator is described by

ṡ = g(t, s) + G(t, s)ξ, t ≥ 0 (5.2)

where s ∈ <n is the state vector of the isolated node, ξ ∈ <l is the unknown system parame-

ter, g ∈ C1(<+ ×<n,<n) and G ∈ C1(<+ ×<n,<n×l).

Network Synchronization: Let xi(t; t0, x0) and s(t; t0, s0) be the solutions of the com-

plex dynamical network (5.1) and the isolated oscillator (5.2), respectively, where x0 =

(x0
1, x

0
2, ..., x

0
N) and s0 are the initial conditions. If there exists some control input ui such

that

lim
t→∞

‖xi(t; t0, x0)− s(t; t0, s0)‖ = 0, i = 1, 2, ..., N,

then all network nodes of dynamical network (5.1) are said to realize synchronization with
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isolated oscillator (5.2), where ‖ · ‖ is the Euclidean norm of vectors and matrices, i.e.,

X = [x1 x2 ... xn]T , ‖X‖ =

(
n∑

i=1

x2
i

)1/2

;

A = [aij]n×m, ‖A‖ =

(∑
i,j

a2
ij

)1/2

.

Denote xi(t) =: xi(t; t0, x0), s(t) = s(t; t0, s0). Let ei(t) = xi(t)− s(t), i=1,2,...,N. We

obtain the following error system

ėi = fi(t, xi)− g(t, s) + Fi(t, xi)θi −G(t, s)ξ + Hi(x1, x2, ..., xN , s) + ui, (5.3)

where Hi(x1, x2, ..., xN , s) = hi(x1, x2, ..., xN)− hi(s, s, ..., s).

From the definition of network synchronization, if there exist adaptive controllers ui such

that

lim
t→+∞

‖ei(t)‖ = 0, i = 1, 2, ..., N,

then network synchronization is achieved.

Hypothesis 5.1: Assume that there exist non-negative constants γij (1 ≤ i, j ≤ N ) such

that

Hi(x1, x2, ..., xN , s) ≤
N∑

j=1

γij‖ej‖, for1 ≤ i ≤ N.

5.3 Adaptive Controller Design for Network Synchroniza-

tion

It is assumed that all states of the network nodes and the isolated oscillator are measurable or

available. If the system parameters θi and ξ are unknown constants, we have the following

synchronization criterion.

Theorem 5.1: Consider complex dynamical network (5.1) and isolated oscillator (5.2).

Suppose that system parameters θi and ξ are unknown constants and the nonlinear diffusive
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coupling functions hi satisfy Hypothesis 5.1. Then the following adaptive controllers and

updating laws will synchronize all network nodes of complex dynamical network (5.1) with

isolated oscillator (5.2),

ui = −fi(t, xi) + g(t, s)− Fi(t, xi)αi + G(t, s)β − kiei, (5.4)

α̇i = P−1
i Fi(t, xi)

T ei, (5.5)

β̇ = −Q−1G(t, s)T

N∑
i=1

ei, (5.6)

where αi and β are estimates of θi and ξ, respectively, ki (1 ≤ i ≤ N ) are suitable positive

constants to be determined, and Pi, Q are positive definite matrices.

Proof: Define a Lyapunov function as

V =
1

2

N∑
i=1

eT
i ei +

1

2

N∑
i=1

(αi − θi)
T Pi(αi − θi) +

1

2
(β − ξ)T Q(β − ξ). (5.7)

Taking derivative of V with respect to t, we get

V̇ =
N∑

i=1

eT
i ėi +

N∑
i=1

α̇T
i Pi(αi − θi) + β̇T Q(β − ξ). (5.8)

Substituting Eqs. (5.3), (5.4), (5.5) and (5.6) into (5.8), we have
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V̇ =
N∑

i=1

eT
i [f(t, xi)− g(t, s) + Fi(t, xi)θi −G(t, s)ξ

+Hi(x1, x2, ..., xN , s) + ui]

+
N∑

i=1

α̇T
i Pi(αi − θi) + β̇T Q(β − ξ)

=
N∑

i=1

eT
i [Fi(t, xi)(θi − αi)−G(t, s)(ξ − β)

+Hi(x1, x2, ..., xN , s)− kiei]

+
N∑

i=1

[P−1
i Fi(t, xi)

T ei]
T Pi(αi − θi)

+[−Q−1G(t, s)T

N∑
i=1

ei]
T Q(β − ξ)

=
N∑

i=1

eT
i [Hi(x1, x2, ..., xN , s)− kiei]

≤
N∑

i=1

‖ei‖
N∑

j=1

(γij‖ej‖)− ki

N∑
i=1

‖ei‖2 (5.9)

Define η = [‖e1‖ ‖e2‖ ... ‖eN‖]T , Γ = [γij]N×N , we obtain

V̇ ≤ ηT (Γ− diag{k1, k2, ..., kN})η. (5.10)

Since Γ is a constant matrix, we can select suitable positive constants ki such that Γ −
diag{k1, k2, ..., kN} is a negative definite matrix. Thus, V is positive definite and V̇ is nega-

tive definite along the trajectories of error systems, which implies lim
t→∞

ei = 0. In other words,

all network nodes of dynamical network (5.1) are synchronized with isolated oscillator (5.2)

using adaptive controllers (5.4)-(5.6).

The proof is complete.

Remark 5.1: It is not true that, under adaptive controllers (5.4)-(5.6), the estimates αi and

β will converge to unknown parameters θi and ξ, respectively. However, from Theorem 5.1,
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the state vectors xi(t) of network nodes will converge to the state vector s(t) of the isolated

oscillator.

If the unknown system parameters θi and ξ are not constants, but time varying and

bounded by known bounds, i.e.,

‖θi − θ̃i‖ < Θi, ‖ξ − ξ̃‖ < Ψ, (5.11)

we have the following synchronization criterion.

Theorem 5.2: Consider complex dynamical network (5.1) and isolated oscillator (5.2).

Suppose that system parameters θi and ξ are time varying and bounded, satisfying (5.11)

and the nonlinear diffusive coupling functions hi satisfy Hypothesis 5.1. Then the follow-

ing adaptive controllers and updating laws will synchronize all network nodes of complex

dynamical network (5.1) with isolated oscillator (5.2),

ui = −fi(t, xi) + g(t, s)− Fi(t, xi)αi + G(t, s)β − kiei,

−‖Fi(t, xi)‖Θisign(ei)− ‖G(t, s)‖Ψsign(ei), (5.12)

α̇i = P−1
i Fi(t, xi)

T ei, (5.13)

β̇ = −Q−1G(t, s)T

N∑
i=1

ei, (5.14)

where αi and β are estimates of θi and ξ, respectively, ki (1 ≤ i ≤ N ) are suitable positive

constants to be determined, Pi, Q are positive definite matrices, and Θi and Ψ are the bounds

of system parameters θi and ξ, respectively.

Proof : Define a Lyapunov function as

V =
1

2

N∑
i=1

eT
i ei +

1

2

N∑
i=1

(αi − θ̃i)
T Pi(αi − θ̃i) +

1

2
(β − ξ̃)T Q(β − ξ̃). (5.15)
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Differentiating the Lyapunov function (5.15) with respect to t, we get

V̇ =
N∑

i=1

eT
i ėi +

N∑
i=1

α̇T
i Pi(αi − θ̃i) + β̇T Q(β − ξ̃)

=
N∑

i=1

eT
i [fi(t, xi)− g(t, s) + Fi(t, xi)θi −G(t, s)ξ

+Hi(x1, x2, ..., xN , s) + ui]

+
N∑

i=1

α̇T
i Pi(αi − θ̃i) + β̇T Q(β − ξ̃)

=
N∑

i=1

eT
i [Fi(t, xi)((θi − θ̃i)− (αi − θ̃i))

−G(t, s)((ξ − ξ̃)− (β − ξ̃))

−‖Fi(t, xi)‖Θisign(ei)− ‖G(t, s)‖Ψsign(ei)

+Hi(x1, x2, ..., xN , s)− kiei]

+
N∑

i=1

[P−1
i Fi(t, xi)

T ei]
T Pi(αi − θ̃i)

+[−Q−1G(t, s)T

N∑
i=1

ei]
T Q(β − ξ̃)

=
N∑

i=1

eT
i [Fi(t, xi)(θi − θ̃i)−G(t, s)(ξ − ξ̃)

−‖Fi(t, xi)‖Θisign(ei)− ‖G(t, s)‖Ψsign(ei)

+Hi(x1, x2, ..., xN , s)− kiei]. (5.16)

Since

‖ei‖ =

(
n∑

j=1

e2
ij

)1/2

≤
n∑

j=1

|eij|,
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we have

‖eT
i Fi(t, xi)(θi − θ̃i)‖ ≤ ‖ei‖‖Fi(t, xi)‖Θi

≤ (
n∑

j=1

|eij|)‖Fi(t, xi)‖Θi

= eT
i ‖Fi(t, xi)‖Θisign(ei). (5.17)

Similarly,

‖eT
i G(t, s)(ξ − ξ̃)‖ ≤ eT

i ‖G(t, s)‖Ψsign(ei). (5.18)

Substituting Eqs. (5.17) and (5.18) into Eq. (5.16), we have

V̇ ≤
N∑

i=1

[‖eT
i Fi(t, xi)(θi − θ̃i)‖+ ‖eT

i G(t, s)(ξ − ξ̃)‖

−eT
i ‖Fi(t, xi)‖Θisign(ei)− eT

i ‖G(t, s)‖Ψsign(ei)

+eT
i Hi(x1, x2, ..., xN , s)− eT

i kiei]

≤
N∑

i=1

[eT
i Hi(x1, x2, ..., xN , s)− eT

i kiei]

≤ ηT (Γ− diag{k1, k2..., kN})η, (5.19)

where η = [‖e1‖ ‖e2‖ ... ‖eN‖]T , Γ = [γij]N×N .

We can select suitable positive constants ki (i = 1, 2, ..., N) such that Γ−diag{k1, k2..., kN}
is a negative matrix. It implies lim

t→∞
ei = 0. In other words, all network nodes of dynami-

cal network (5.1) are synchronized with isolated oscillator (5.2) using adaptive controllers

(5.12)-(5.14).

The proof is complete.

Remark 5.2: Theorem 5.2 is an extension of Theorem 5.1. Let Θi = 0 and Ψ = 0, then

the adaptive controllers (5.12)-(5.14) in Theorem 5.2 become (5.4)-(5.6) in Theorem 5.1. In

addition, when the network synchronization is completely achieved, the estimates αi and β

are not necessary to converge to θi and ξ.
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If system parameters θi and ξ are time varying and unknown, but the rates of their varia-

tions are bounded, i.e.,

|θ̇i| ≤ Θ̃i, |ξ̇| ≤ Ψ̃, (5.20)

we have the following criterion to guarantee network synchronization.

Theorem 5.3: Consider dynamical network (5.1) and isolated oscillator (5.2). Suppose

that the system parameters are time varying and unknown, but the rates of their variations are

bounded, satisfying condition (5.20) and the nonlinear diffusive coupling functions hi satisfy

Hypothesis 5.1. Then the following adaptive controllers and updating laws will synchronize

all network nodes of complex dynamical network (5.1) with isolated oscillator (5.2),

ui = −fi(t, xi) + g(t, s)− Fi(t, xi)αi + G(t, s)β − kiei,

−‖Fi(t, xi)‖sign(ei)Θ̃i(t− t0)

−‖G(t, s)‖sign(ei)Ψ̃(t− t0), t ≥ t0, (5.21)

α̇i = P−1
i Fi(t, xi)

T ei, (5.22)

β̇ = −Q−1G(t, s)T

N∑
i=1

ei, (5.23)

where αi and β are estimates of θi and ξ, respectively, ki (1 ≤ i ≤ N ) are suitable positive

constants to be determined, Pi, Q are positive definite matrices, and Θ̃i and Ψ̃ are the bounds

of θ̇i and ξ̇, respectively.

Proof : Denote the initial conditions θi(t0) and ξ(t0) as θ0
i and ξ0, which are unknown.

We construct a Lyapunov function in the form of

V =
1

2

N∑
i=1

eT
i ei +

1

2

N∑
i=1

(αi − θ0
i )

T Pi(αi − θ0
i )

+
1

2
(β − ξ0)T Q(β − ξ0). (5.24)
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Differentiating (5.24) with respect to t, we get

V̇ =
N∑

i=1

eT
i [Fi(t, xi)(θi − θ0

i )− ‖Fi(t, xi)‖sign(ei)Θ̃i(t− t0)

−G(t, s)(ξ − ξ0)− ‖G(t, s)‖sign(ei)Ψ̃(t− t0)

+Hi(x1, x2, ..., xN , s)− kiei]. (5.25)

Since

‖eT
i Fi(t, xi)(θi − θ0

i )‖
≤ ‖ei‖‖Fi(t, xi)‖‖θ̇i(t− t0)‖

≤ (
n∑

j=1

|eij|)‖Fi(t, xi)‖Θ̃i(t− t0)

= eT
i ‖Fi(t, xi)‖sign(ei)Θ̃i(t− t0) (5.26)

and

‖eT
i G(t, s)(ξ − ξ0)‖ ≤ eT

i ‖G(t, s)‖sign(ei)Ψ̃(t− t0), (5.27)

substituting Eqs. (5.26) and (5.27) into Eq. (5.25), we have

V̇ ≤
N∑

i=1

[eT
i Hi(x1, x2, ..., xN , s)− eT

i kiei]

≤ ηT (Γ− diag{k1, k2..., kN})η, (5.28)

where η = [‖e1‖ ‖e2‖ ... ‖eN‖]T , Γ = [γij]N×N .

One can select suitable positive constants ki (i = 1, 2, ..., N) such that Γ−diag{k1, k2..., kN}
is a negative matrix. It implies lim

t→∞
ei = 0. In other words, all network nodes of dynami-

cal network (5.1) are synchronized with isolated oscillator (5.2) using adaptive controllers

(5.21)-(5.23).

The proof is complete.
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5.4 Numerical Examples

In this section, several examples are presented to verify the correctness of the above synchro-

nization criteria.

Consider a complex dynamical network consisting of 30 different nodes, where nodes

(1)-(10) are identical Lorenz systems [2], nodes (11)-(20) are identical Chen systems [46]

and nodes (21)-(30) are identical Rössler systems [45]. The isolated oscillator is a modified

Chua’s circuit [112].

Nodes (1)-(10) are described by




ẋi1 = θi1(xi2 − xi1)

ẋi2 = θi2xi1 − xi1xi3 − xi2

ẋi3 = xi1xi2 − θi3xi3

, (5.29)

where i = 1, 2, ..., 10, θi1, θi2 and θi3 are unknown system parameters.

Firstly, we rewrite (5.29) in the standard form as follows,

ẋi = fi(t, xi) + Fi(t, xi)θi, (5.30)

where

f(t, xi) =




0

−xi1xi3 − xi2

xi1xi2


 , xi =




xi1

xi2

xi3


 ,

F (t, xi) =




xi2 − xi1 0 0

0 xi1 0

0 0 −xi3


 , θi =




θi1

θi2

θi3


 .

Nodes (11)-(20) are described by




ẋi1 = θi1(xi2 − xi1)

ẋi2 = (θi2 − θi1)xi1 − xi1xi3 + θi2xi2

ẋi3 = xi1xi2 − θi3xi3

, (5.31)
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where i = 11, 12, ..., 20, θi1, θi2 and θi3 are unknown system parameters.

Also, we rewrite (5.31) in the standard form (5.30), where

f(t, xi) =




0

−xi1xi3

xi1xi2


 , xi =




xi1

xi2

xi3


 ,

F (t, xi) =




xi2 − xi1 0 0

−xi1 xi1 + xi2 0

0 0 −xi3


 , θi =




θi1

θi2

θi3


 .

Nodes (21)-(30) are described by




ẋi1 = −(xi2 + xi3)

ẋi2 = xi1 + θi1xi2

ẋi3 = θi2 + xi3(xi1 − θi3)

, (5.32)

where i = 21, 12, ..., 30, θi1, θi2 and θi3 are unknown system parameters.

Also, we rewrite (5.32) in the standard form (5.30), where

f(t, xi) =



−xi2 − xi3

xi1

xi1xi3


 , xi =




xi1

xi2

xi3


 ,

F (t, xi) =




0 0 0

xi2 0 0

0 1 −xi3


 , θi =




θi1

θi2

θi3


 .

The diffusive coupling functions are given,

hi(x1, x2, ..., xN) =



−w1(xi−1) + 2w1(xi)− w1(xi+1)

−w2(xi−1) + 2w2(xi)− w2(xi+1)

−w3(xi−1) + 2w3(xi)− w3(xi+1)


 , (5.33)

where w1(xi) = xi2 − xi1, w2(xi) = 0, w3(xi) = xi1xi2 − xi2xi3, x0 = x30, x31 = x1 and

1 ≤ i ≤ 30.
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Since it is confined that Lorenz system, Chen system and Rössler system all are bounded,

there exists a constant M such that xij, sj ≤ M for 1 ≤ i ≤ 30 and j = 1, 2, 3. We have

‖Hi(x1, x2, ..., xN , s)‖ ≤ 3
√

2(1 + 4M2)(‖ei−1‖+ ‖ei‖+ ‖ei+1‖).

Therefore, Hypothesis 5.1 is satisfied.

The desired isolated oscillator is a modified Chua’s circuit, described by




ṡ1 = ξ1(s2 − 2s3
1−s1

7
)

ṡ2 = s1 − s2 + s3

ṡ3 = −ξ2s2

, (5.34)

where ξ1 and ξ2 are unknown system parameters.

Represent (5.34) in the standard form as follows,

ṡ = g(t, s) + G(t, s)ξ, (5.35)

where

g(t, s) =




0

s1 − s2 + s3

0


 , s =




s1

s2

s3


 ,

G(t, s) =




s2 − 2s3
1−s1

7
0

0 0

0 −s2


 , ξ =


 ξ1

ξ2


 .

System Parameters θi and ξ are Unknown Constants

Comsider that system parameters θi, ξ are unknown constants,

θi =





(10, 28, 8/3)T , 1 ≤ i ≤ 10;

(35, 28, 3)T , 11 ≤ i ≤ 20;

(0.2, 0.2, 5.7)T , 21 ≤ i ≤ 30.
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ξ = (10, 100/7)T .

According to Theorem 5.1, we choose the initial values as follows: ki = 10, αi = [3, 3, 3]T ,

β = [4, 4]T , xi = [−8 + 0.5i,−5 + 0.3i, 4 − 0.2i]T and s = [1, 1, 1]T . The synchronous

errors ei are shown in Fig. 5.1. The system parameters and their estimates are in Fig. 5.2.

Obviously, by the adaptive controllers (5.4)-(5.6), the network nodes such as Lorenz systems,

Chen systems and Rössler systems all are synchronized with the desired modified Chua’s

circuit.

System Parameters θi and ξ are Unknown, Time Varying and Bounded

Consider that system parameters θi and ξ are time varying and bounded. Θi = 0.5, and

Ψ = 1.

θi =





(10 + 0.5 sin(t), 28, 8/3)T , 1 ≤ i ≤ 10;

(35 + 0.5 sin(t), 28, 3)T , 11 ≤ i ≤ 20;

(0.2 + 0.5 sin(t), 0.2, 5.7)T , 21 ≤ i ≤ 30.

and

ξ = (10 + sin(t), 100/7)T .

According to Theorem 5.2, we choose the initial conditions as follows: ki = 10, αi =

[3, 3, 3]T , β = [4, 4]T , xi = [−8 + 0.5i,−5 + 0.3i, 4 − 0.2i]T and s = [1, 1, 1]T . The

synchronous errors ei are shown in Fig. 5.3. The system parameters and their estimates are

shown in Fig. 5.4. Obviously, by the adaptive controllers (5.12)-(5.14), the network nodes

such as Lorenz systems, Chen systems and Rössler systems all are synchronized with the

desired modified Chua’s circuit.
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Figure 5.1: Synchronization errors, (a) ei1, (b) ei2, (c) ei3 for unknown constant parameters.
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Figure 5.2: System parameters and their estimates: (a) nodes (1)−(10), (b) nodes (11)−(20),

(c) nodes (21)− (30), and (d) the isolated oscillator, for unknown constant parameters.
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Figure 5.3: Synchronization errors, (a) ei1, (b) ei2, (c) ei3 for unknown bounded parameters

with Θi = 0.5 and Ψ = 1.
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Figure 5.4: System parameters and their estimates: (a) nodes (1)−(10), (b) nodes (11)−(20),

(c) nodes (21)− (30), and (d) the isolated oscillator, for unknown bounded parameters with

Θi = 0.5 and Ψ = 1.
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System Parameters θi and ξ are Unknown, and θ̇i and ξ̇ are Bounded

Consider that system parameters θi, ξ are unknown, but θ̇i, ξ̇ are bounded.

θi =





(10 + 0.01t, 28, 8/3)T , 1 ≤ i ≤ 10;

(35 + 0.01t, 28, 3)T , 11 ≤ i ≤ 20;

(0.2 + 0.01t, 0.2, 5.7)T , 21 ≤ i ≤ 30.

and

ξ = (10 + 0.1t, 100/7)T .

Thus, Θ̇i = 0.01 and Ψ̇ = 0.1. According to Theorem 5.3, we choose the initial conditions

as follows: ki = 10, αi = [3, 3, 3]T , β = [4, 4]T , xi = [−8 + 0.5i,−5 + 0.3i, 4 − 0.2i]T

and s = [1, 1, 1]T . The synchronous errors ei are shown in Fig. 5.5. The system parameters

and their estimates are shown in Fig. 5.6. Obviously, by the adaptive controllers (5.21)-

(5.23), the network nodes such as Lorenz systems, Chen systems and Rössler systems all are

synchronized with the desired modified Chua’s circuit.

5.5 Summary

We have investigated adaptive network synchronization subjected to different network nodes.

Several adaptive controllers and updating laws have been designed to realize network syn-

chronization respectively under different kind of system parameters. Numerical examples

have verified the correctness of our synchronization criteria. It has been shown that the pa-

rameter estimates αi and β are not necessary to converge to system parameters θi and ξ,

i.e., our adaptive control approaches can guarantee network synchronization well without

accurately tracking the unknown system parameters. How to track the unknown system pa-

rameters is our future research work.
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Figure 5.5: Synchronization errors, (a) ei1, (b) ei2, (c) ei3 for Θ̃i = 0.01 and Ψ̃ = 0.1.
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Figure 5.6: System parameters and their estimates: (a) nodes (1)−(10), (b) nodes (11)−(20),

(c) nodes (21)− (30), and (d) the isolated oscillator, for Θ̃i = 0.01 and Ψ̃ = 0.1.
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Chapter 6

A Novel Synchronization Approach:

Intermittent Impulsive Synchronization

6.1 Intermittent Impulsive Synchronization of Two Chaotic

Systems with Delay

6.1.1 Introduction

Impulsive synchronization becomes a new trend in chaos-based secure communication. How-

ever, there always exists an upper boundary on the time intervals between the impulses (im-

pulsive intervals) during the synchronization process [13, 20]. Usually, impulsive intervals

are small, i.e., the controller in the slaver system needs to be activated frequently. But in

some situations such as the orbital transfer of satellite, control of money supply in a financial

market, etc., the control windows (the time periods the controller can work) are restricted.

If the free windows (the time periods the controller can not be activated) are larger than the

bound of the impulsive intervals, the general impulsive synchronization approach will fail.

On the other hand, to reduce the control windows and to decrease the redundancy of synchro-

nization signals is a new way to improve the security of chaos-based secure communication.
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Therefore, in this section, we present intermittent impulsive synchronization, i.e., in our syn-

chronization scheme, the impulsive control only acts in the control windows, not during the

whole time. To the best of our knowledge, there is no existing work studying this challenging

problem. Our synchronization criteria based on Lyapunov-Razumikhin theory can be used

as a guideline for engineering applications.

6.1.2 Preliminaries

In this section, we introduce the intermittent impulsive synchronization scheme. Some pre-

liminary lemmas and hypotheses are given.

Let R denote the set of real numbers, R+ the set of nonnegative real numbers and Rn the

n-dimensional Euclidean linear space equipped with the Euclidean norm ‖ · ‖. Throughout

this paper, P > 0 (< 0, ≤ 0, ≥ 0) denotes a symmetrical positive (negative, semi-negative,

semi-positive) definite matrix P , P T the transpose of P and λM(m)(P ) the maximum (mini-

mum) eigenvalue of P . Let ϕ(t+) = lim
s→t+

ϕ(s) and ϕ(t−) = lim
s→t−

ϕ(s).

Definition 6.1:

PC([a, b], Rn) = {ϕ : [a, b] → S|ϕ(t+) = ϕ(t),∀t ∈ [a, b);

ϕ(t−) exists in S, ∀t ∈ (a, b] and ϕ(t−) = ϕ(t)

for all but at most a finite number of points t ∈ (a, b]}.

where a, b ∈ R with a < b and S ⊂ Rn.

We equip the linear space PC([−τ, 0], Rn) with the norm ‖ · ‖τ defined by ‖ϕ‖τ =

sup−τ<≤s≤0 ‖ϕ(s)‖.

Consider a class of general chaotic systems with delay. In our synchronization scheme,

the master system is given in the following form:





dx(t)
dt

= Ax(t) + Bf(x(t)) + Cg(x(t− τ)), t > 0,

x(t) = φ, −τ ≤ t ≤ 0,
(6.1)
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where x(t) ∈ Rn is the state variable, A, B and C are n×n constant matrices, f : Rn → Rn

and g : Rn → Rn both are continuous nonlinear functions satisfying f(0) = 0 and g(0) = 0,

τ is the time delay, and φ ∈ PC([−τ, 0], Rn) is the initial condition.

Define free windows [kω, kω + δ] and control windows [kω + δ, (k + 1)ω] where k =

0, 1, ... and 0 < δ < ω < ∞. Different from general impulsive control, intermittent impul-

sive control only works in control windows. The corresponding slave system is designed as

follows.

When t ∈ [kω, kω + δ],

dy(t)

dt
= Ay(t) + Bf(y(t)) + Cg(y(t− τ)); (6.2)

When t ∈ [kω + δ, (k + 1)ω],




dy(t)
dt

= Ay(t) + Bf(y(t)) + Cg(y(t− τ)), t 6= Tk,i,

∆y(t) = Uk,i(x(t), y(t)), t = Tk,i,
(6.3)

where k = 0, 1, ..., i = 1, 2, ..., Mk, Mk is a positive integer related to k, Tk,i denotes the i-th

impulsive instant in the k-th control window, kω+δ = Tk,1 < Tk,2 < ... < Tk,Mk
≤ (k+1)ω,

Uk,i(x(t), y(t)) = Bk,i(x(t) − y(t)) is the impulsive control. Let Tk,Mk+1 = (k + 1)ω and

define ∆k,i = Tk,i+1 − Tk,i.

The initial condition for slaver system (6.2)-(6.3) is given by

y(t) = ψ, −τ ≤ t ≤ 0,

where ψ ∈ PC([−τ, 0], Rn).

Let e(t) = x(t)− y(t). We obtain the following error system.

When t ∈ [kω, kω + δ], we have

de(t)

dt
= Ae(t) + Bf̃(t) + Cg̃(t− τ). (6.4)

When t ∈ [kω + δ, (k + 1)ω], we have




de(t)
dt

= Ae(t) + Bf̃(t) + Cg̃(t− τ), t 6= Tk,i,

∆e(t) = −Bk,ie(t), t = Tk,i,
(6.5)
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where f̃(t) = f(x(t))− f(y(t)) and g̃(t) = g(x(t))− g(y(t)).

In this paper, we assume that f and g are Lipschitz continuous functions, i.e.,

Hypothesis 6.1: there exist positive constants Lf and Lg such that, for all x, y ∈ Rn,

‖f(x)− f(y)‖ ≤ Lf‖x− y‖, ‖g(x)− g(y)‖ ≤ Lg‖x− y‖. (6.6)

Definition 6.2: Given a function V (t, e(t)) : R+ × Rn → R+, the upper right hand

derivative of V with respect to the error system (6.4)-(6.5) is defined by

D+V (t, e(t)) = lim
h→0+

sup
1

h
[V (t + h, e(t + h))− V (t, e(t))],

for all t 6= Tk,i in R+.

To prove the criteria of synchronization in the next section, we need the following lem-

mas.

Lemma 6.1 [113]: For any vectors x, y ∈ Rn and positive constant ξ, the following

matrix inequality holds:

2xT y ≤ ξxT x +
1

ξ
yT y.

Lemma 6.2 [114]: Suppose that function y(t) is non-negative when t ∈ (−τ,∞) and

satisfies the following:

dy(t)

dt
≤ k1y(t) + k2y(t− τ), t ≥ 0,

where k1 and k2 are positive constants. We then have the following inequality:

y(t) ≤ ‖y(0)‖τe
(k1+k2)t, t ≥ 0.

Lemma 6.3 [57]: Let γ > 0 and m ∈ C1[J,R+], where J = [a− γ, b), 0 < b− a ≤ ∆.

Assume that there exist constants l > 0 and β ∈ (0, 1) such that

D+m(t) ≤ lm(t), whenever m(t) ≥ βm(t + s), s ∈ [−γ, 0];

and there exists a constant η > 0 such that m(s) ≤ η, s ∈ [a− γ, a), m(a) ≤ βη, and

l∆ + ln β < 0.
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Then m(t) < η, t ≥ a.

Lemma 6.4: Let γ > 0 and m ∈ C1[J,R+], where J = [a − γ, b), 0 < b − a ≤ ∆.

Assume that there exist constants l > 0 and β ∈ (0, 1) such that

D+m(t) ≤ lm(t), whenever m(t) ≥ βm(t + s), s ∈ [−γ, 0]; (6.7)

and there exist constants η > 0 and d (β < d < 1) such that m(s) ≤ η, s ∈ [a − γ, a),

m(a) ≤ βη, and

l∆ + ln β < ln d. (6.8)

Then m(t) < dη, t ≥ a.

Proof: Suppose that, for the sake of contradiction, there exists a t∗ > a such that

m(t∗) = dη and m(t) < dη, t ∈ [a, t∗).

Let t1 = sup{t ∈ [a, t∗], m(t) ≤ βη}. Then t1 ∈ [a, t∗), m(t1) = βη and βη ≤ m(t) ≤
dη, t ∈ [t1, t∗]. Thus for t ∈ [t1, t∗], we have

βm(t + s) ≤ βη ≤ m(t), s ∈ [−γ, 0],

which implies

D+m(t) ≤ lm(t), t ∈ [t1, t∗].

Integrating from t1 to t∗ gives

ln(m(t∗))− ln(m(t1)) ≤ l(t∗ − t1) ≤ l∆.

But

ln(m(t∗))− ln(m(t1)) = ln(dη)− ln(βη) > l∆,

which is a contradiction. The proof completes.
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6.1.3 Synchronization Criteria

In this section, based on Lyapunov-Razumikhin theorem and LMI approach, we derive some

synchronization criteria via intermittent impulsive control.

Theorem 6.1: Assume that for an intermittent impulsive control law {Tk,i, Uk,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

PA + AT P + ξ1PBBT P + ξ2PCCT P +
1

ξ1

L2
fI − α1P ≤ 0; (6.9)

and
1

ξ2

L2
gI − α2P ≤ 0; (6.10)

(ii) there exist real numbers βk,i ∈ (0, 1) such that

(I −BT
k,i)P (I −Bk,i)− βk,iP ≤ 0; (6.11)

(iii) there exists a real number d(βk,i < d < 1) such that for each k, i,

∆k,i

βk,i

(βk,iα1 + α2) + ln βk,i ≤ ln d, (6.12)

where ∆k,i = Tk,i+1 − Tk,i and Tk,Mk+1 = (k + 1)ω.

(iv) the time delay τ satisfies ∆ ≤ τ ≤ ω − δ and

de(α1+α2)δ < 1, (6.13)

where ∆ = max
k,i
{∆k,i}.

Then the trivial solution of error system (6.4)-(6.5) is asymptotically stable. It implies that

slaver system (6.2)-(6.3) is synchronized with master system (6.1) by intermittent impulsive

control {Tk,i, Uk,i}.
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Proof: Define V (t) = e(t)T Pe(t). When t ∈ [kω, kω + δ], the error system runs on

subsystem (6.4). Thus, we have

D+V (t) = ė(t)T Pe(t) + e(t)T P ė(t)

= e(t)T (AT P + PAT )e(t) + 2e(t)T PBf̃(t)

+2e(t)T PCg̃(t− τ)

(6.14)

By Lemma 6.1 and condition (6.6), we obtain

D+V (t) ≤ e(t)T (AT P + PAT )e(t) + ξ1e(t)
T PBBT Pe(t)

+ 1
ξ1
‖f̃(t)‖2 + ξ2e(t)

T PCCT Pe(t) + 1
ξ2
‖g̃(t− τ)‖2

≤ e(t)T (AT P + PAT + ξ1PBBT P + ξ2PCCT P

+ 1
ξ1

L2
fI)e(t) + 1

ξ2
L2

ge(t− τ)T e(t− τ)

(6.15)

By condition (i), we have

D+V (t) ≤ α1V (t) + α2V (t− τ). (6.16)

In term of Lemma 6.2, we have

V (t) ≤ ‖V (kω)‖τe
(α1+α2)(t−kω), t ∈ [kω, kω + δ]. (6.17)

Thus,

V (kω + δ) ≤ ‖V (kω)‖τe
(α1+α2)δ.

When t ∈ [kω + δ, (k + 1)ω], the error system runs on subsystem (6.5). Thus the

impulsive control works.

When t ∈ (Tk,1, Tk,2), we have

D+V (t) ≤ α1V (t) + α2V (t− τ),

which implies, if V (t) ≥ βk,iV (t + s), s ∈ [−τ, 0],

D+V (t) ≤ 1

βk,i

(βk,iα1 + α2)V (t). (6.18)
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When t = Tk,1, we get by condition (ii)

V (Tk,1) = eT (T−
k,1)(I −Bk,1)

T P (I −Bk,1)e(T
−
k,1)

≤ βk,ie
T (T−

k,1)Pe(T−
k,1)

= βk,iV (T−
k,1)

≤ βk,i‖V (Tk,1)‖τ .

(6.19)

By (6.18), (6.19), condition (iii) and Lemma 6.4, we have

V (t) < d‖V (Tk,1)‖τ , t ∈ [Tk,1, Tk,2). (6.20)

Similarly, we have

V (t) < d‖V (Tk,i)‖τ , t ∈ [Tk,i, Tk,i+1), for i = 2, 3, ..., Mk, (6.21)

where Tk,Mk+1 = (k + 1)ω.

Since d < 1, we have

‖V (Tk,i+1)‖τ ≤ ‖V (Tk,i)‖τ for i = 1, 2, ..., Mk − 1.

Thus,

V (t) < d‖V (Tk,1)‖τ , t ∈ [kω + δ, (k + 1)ω]. (6.22)

When k = 0, by (6.17) and (6.22), we have

V (t) ≤ ‖V (0)‖τe
(α1+α2)δ, t ∈ [0, δ],

and

V (t) < d‖V (δ)‖τ , t ∈ [δ, ω].

Since ‖V (δ)‖τ ≤ ‖V (0)‖τe
(α1+α2)δ, by condition (iv), we have

V (t) < d‖V (0)‖τe
(α1+α2)δ ≤ ρ‖V (0)‖τ , t ∈ [δ, ω],

where 0 < ρ = de(α1+α2)δ < 1.
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Similarly, when k = 1, we have

V (t) ≤



‖V (ω)‖τe

(α1+α2)δ, t ∈ [ω, ω + δ];

ρ‖V (ω)‖τ , t ∈ [ω + δ, 2ω].

When t ∈ [kω, (k + 1)ω], we have

V (t) ≤



‖V (kω)‖τe

(α1+α2)δ, t ∈ [kω, kω + δ];

ρ‖V (kω)‖τ , t ∈ [kω + δ, (k + 1)ω].

Since τ ≤ ω − δ in condition (iv), we have

‖V ((k + 1)ω)‖τ ≤ ‖V ((k + 1)ω)‖ω−δ ≤ ρV (kω)‖τ .

Furthermore,

V (t) ≤




ρk‖V (0)‖τe
(α1+α2)δ, t ∈ [kω, kω + δ];

ρk+1‖V (0)‖τ , t ∈ [kω + δ, (k + 1)ω].

Thus,

lim
t→∞

V (t) = 0.

Since V (t) = eT (t)Pe(t), we have

V (t)

λM(P )
≤ ‖e(t)‖2 ≤ V (t)

λm(P )
.

For any ε > 0, choose σ = σ(ε) > 0 such that σ <
√

λM (P )
λm(P )

e−(α1+α2)δε. When e(0) < σ, we

have
‖e(t)‖ ≤

√
V (t)

λm(P )
≤

√
‖V (0)‖τ e(α1+α2)δ

λm(P )

≤
√

λM (P )e(α1+α2)δ‖e(0)‖2
λm(P )

< ε.

(6.23)

Also,

lim
t→∞

‖e(t)‖ ≤ lim
t→∞

V (t)

λm(P )
= 0. (6.24)
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Therefore, the trivial solution e(t) of error system (6.4)-(6.5) is asymptotically stable. It

implies that slaver system (6.2)-(6.3) is synchronized with master system (6.1) by intermittent

impulsive control {Tk,i, Uk,i}.

Define ∆0 = min
k,i
{∆k,i} and M0 = min

k
{Mk}. If the time delay τ is small and satisfies

τ < ∆0, then we have the following synchronization criterion.

Theorem 6.2: Assume that for an intermittent impulsive control law {Tk,i, Uk,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

PA + AT P + ξ1PBBT P + ξ2PCCT P +
1

ξ1

L2
fI − α1P ≤ 0; (6.25)

and
1

ξ2

L2
gI − α2P ≤ 0; (6.26)

(ii) there exist real numbers βk,i ∈ (0, 1) such that

(I −BT
k,i)P (I −Bk,i)− βk,iP ≤ 0; (6.27)

(iii) there exists a real number d(βk,i < d < 1) such that for each k, i,

∆k,i

βk,i

(βk,iα1 + α2) + ln βk,i ≤ ln d, (6.28)

where ∆k,i = Tk,i+1 − Tk,i and Tk,Mk+1 = (k + 1)ω.

(iv) the time delay τ satisfies τ ≤ ∆0 and

dM0e(α1+α2)δ < 1, (6.29)

where ∆ = max
k,i
{∆k,i}.

Then the trivial solution of error system (6.4)-(6.5) is asymptotically stable. It implies that

slaver system (6.2)-(6.3) is synchronized with master system (6.1) by intermittent impulsive

control {Tk,i, Uk,i}.
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Proof: Because conditions (i)-(iii) are same with that of Theorem 6.1, V (t) still satisfies

(6.21). We have

V (t) < d‖V (Tk,i)‖τ , t ∈ [Tk,i, Tk,i+1), for i = 2, 3, ..., Mk,

where Tk,Mk+1 = (k + 1)ω.

Since τ ≤ ∆0, we have

‖V (Tk,i+1)‖τ ≤ ‖V (Tk,i+1)‖∆k,i
< d‖V (Tk,i)‖τ ,

for i = 1, 2, ..., Mk − 1. Thus,

V (t) < di‖V (Tk,1)‖τ , t ∈ [Tk,i, Tk,i+1), for i = 2, 3, ..., Mk, (6.30)

where Tk,Mk+1 = (k + 1)ω.

When k = 0, by (6.17) and (6.30), we have

V (t) ≤ ‖V (0)‖τe
(α1+α2)δ, t ∈ [0, δ],

and

V (t) < di‖V (0)‖τe
(α1+α2)δ, t ∈ [T1,i, T1,i+1).

Similarly, when k = 1, we have

V (t) ≤



‖V (ω)‖τe

(α1+α2)δ, t ∈ [ω, ω + δ];

di‖V (ω)‖τe
(α1+α2)δ, t ∈ [T2,i, T2,i+1).

When t ∈ [kω, (k + 1)ω], we have

V (t) ≤



‖V (kω)‖τe

(α1+α2)δ, t ∈ [kω, kω + δ];

di‖V (kω)‖τe
(α1+α2)δ, t ∈ [Tk,i, Tk,i+1).

Since τ ≤ ∆0 in condition (iv), we have

‖V ((k + 1)ω)‖τ ≤ ‖V ((k + 1)ω)‖∆0 ≤ dMk‖V (kω)‖τe
(α1+α2)δ.
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In terms of condition (iv), we have

‖V ((k + 1)ω)‖τ ≤ dM0‖V (kω)‖τe
(α1+α2)δ ≤ θ‖V (kω)‖τ ,

where θ = dM0e(α1+α2)δ < 1.

Furthermore,

V (t) ≤




θk‖V (0)‖τe
(α1+α2)δ, t ∈ [kω, kω + δ];

θkdi‖V (0)‖τ , t ∈ [[Tk,i, Tk,i+1).

Thus,

lim
t→∞

V (t) = 0.

Similarly, for any ε > 0, choose σ = σ(ε) > 0 such that σ <
√

λM (P )
λm(P )

e−(α1+α2)δε. When

e(0) < σ, we have

‖e(t)‖ < ε. (6.31)

Also,

lim
t→∞

‖e(t)‖ = 0. (6.32)

Therefore, the trivial solution e(t) of error system (6.4)-(6.5) is asymptotically stable. It

implies that slaver system (6.2)-(6.3) is synchronized with master system (6.1) by intermittent

impulsive control {Tk,i, Uk,i}.

If the impulsive laws {Tk,i, Uk,i} (k = 1, 2, ...) are same in every control window, ∆k,i =

∆1 and Bk,i = B, then we have the following corollaries.

Corollary 6.1: Assume that for an intermittent impulsive control law {Tk,i, Uk,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

PA + AT P + ξ1PBBT P + ξ2PCCT P +
1

ξ1

L2
fI − α1P ≤ 0; (6.33)

and
1

ξ2

L2
gI − α2P ≤ 0; (6.34)
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(ii) there exists a real number β ∈ (0, 1) such that

(I −BT )P (I −B)− βP ≤ 0; (6.35)

(iii) there exists a real number d(β < d < 1) such that for each k, i,

∆1

β
(βα1 + α2) + ln β ≤ ln d. (6.36)

(iv) the time delay τ satisfies ∆1 ≤ τ ≤ ω − δ and

de(α1+α2)δ < 1. (6.37)

Then slaver system (6.2)-(6.3) is synchronized with master system (6.1) by intermittent im-

pulsive control {Tk,i, Uk,i}.

Corollary 6.2: Assume that for an intermittent impulsive control law {Tk,i, Uk,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

PA + AT P + ξ1PBBT P + ξ2PCCT P +
1

ξ1

L2
fI − α1P ≤ 0; (6.38)

and
1

ξ2

L2
gI − α2P ≤ 0; (6.39)

(ii) there exists a real number β ∈ (0, 1) such that

(I −BT )P (I −B)− βP ≤ 0; (6.40)

(iii) there exists a real number d(β < d < 1) such that for each k, i,

∆1

β1

(β1α1 + α2) + ln β ≤ ln d. (6.41)
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(iv) the time delay τ satisfies τ ≤ ∆1 and

dM1e(α1+α2)δ < 1, (6.42)

where M1 = bω−δ
∆1
c+ 1 and bac denotes the nearest integers less than or equal to a.

Then slaver system (6.2)-(6.3) is synchronized with master system (6.1) by intermittent im-

pulsive control {Tk,i, Uk,i}.

6.1.4 Numeral Examples

In this section, two numeral examples are given to show the effectiveness of the main result.

Example 6.1: Consider the following hyperchaotic attractor as the master system:

dx(t)

dt
= a[−bx(t− τ) + c sin(dx(t− τ))], (6.43)

where a = 0.8, b = 0.2, c = 3, d = 1.8 and τ = 5. This hyperchaotic system possesses four

positive Lyapunov exponents λ1 = 0.1042, λ2 = 0, 0685, λ3 = 0.0151 and λ4 = 0.0685 as

shown in Fig. 6.1.

Assume that ω = 10 and δ = 5, then the free windows are [10k, 10k + 5] and the control

windows are [10k + 5, 10k + 10]. We design the impulsive laws are same in each control

window with ∆k,i = 0.1 and Bk,i = 0.95I . Then the corresponding slave system is of the

form:

When t ∈ [10k, 10k + 5],

dy(t)

dt
= −ay(t) + b sin(y(t− τ)), (6.44)

When t ∈ [10k + 5, 10k + 10],




dy(t)
dt

= −ay(t) + b sin(y(t− τ)), t 6= Tk,i,

∆y(t) = 0.95(x(t)− y(t)), t = Tk,i.
(6.45)

Let e(t) = x(t)− y(t), we have the error system as follows,
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Figure 6.1: Phase portrait x(t− 5)− x(t) of the hyperchaotic system with a = 0.8, b = 0.2,

c = 3, d = 1.8 and τ = 5.

When t ∈ [10k, 10k + 5],

de(t)

dt
= −ae(t) + bg̃(t− τ),

When t ∈ [10k + 5, 10k + 10],




de(t)
dt

= −ae(t) + bg̃(t− τ), t 6= Tk,i,

∆e(t) = −0.95e(t), t = Tk,i,

where g̃(t) = sin(x(t))− sin(y(t)).

Note that A = 0, B = 0, C = 8, Lf = 0 and Lg = ab + ac = 2.56. Let P = I .

Thus, conditions (6.33)-(6.37) are satisfied. By Corollary 1, we know that slaver system

(6.44)-(6.45) is synchronized with master system (6.43) by intermittent impulsive control

with ∆k,i = 0.1 and Bk,i = 0.95I . The trajectory of synchronization error is shown in

Fig. 6.2. Our simulation results show that when impulsive intervals satisfy ∆k,i <= 0.16

the synchronization can be always achieved. If we choose δ = 6, then τ > ω − δ breaks
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condition (6.37). The synchronization error is shown in Fig. 6.3, which implies that the

synchronization can not be achieved.

0 50 100 150 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t

e(
t)

Figure 6.2: Synchronization error e(t) with τ ≤ ω − δ, starting from initial conditions φ =

rand and ψ = 2 ∗ rand.

Example 6.2: Consider a 2-dimentional Lu oscillator, described by,

dx(t)

dt
= −Ax(t) + f(x(t)) + g(x(t− τ)), (6.46)

where τ = 1,

A =


 1 0

0 1


 , f(x) =


 3.0 5.0

0.1 2.0





 tanh(x1)

tanh(x2)


 ,

and

g(x) =


 −2.5 0.2

0.1 −1.5





 tanh(x1)

tanh(x2)


 .

The phase portrait of Lu oscillator is shown in Fig. 6.4. Assume that ω = 10 and δ = 5,

then the free windows are [10k, 10k+5] and the control windows are [10k+5, 10k+10]. We

design the impulsive laws are same in each control window with ∆k,i = 1.0 and Bk,i = 0.95I .
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Figure 6.3: Synchronization error e(t) with τ > ω − δ, starting from initial conditions φ =

rand and ψ = 2 ∗ rand.

Let P = I . Thus, conditions (6.38)-(6.42) are satisfied. By Corollary 2, we know that

the corresponding slaver system is synchronized with master system (6.46) by intermittent

impulsive control with ∆k,i = 1.0 and Bk,i = 0.95I . The synchronization error is shown in

Fig. 6.5. Our simulation results show that when impulsive intervals satisfy ∆k,i <= 1.2 the

synchronization can be always achieved. When ∆k,i = 1.3, the trajectory of synchronization

error is shown in Fig. 6.6. It implies that the synchronization can not be achieved.

Remark 6.1: In both examples, the control window width ω − δ is only a half of the

whole period width ω. General impulsive synchronization approach is not suitable for these

Scenarios because the free window width δ is greater than the upper bound of the impulsive

intervals.

6.1.5 Summary

In this section, we have investigated intermittent impulsive synchronization of two chaotic

systems with delay. In our synchronization scheme, the impulsive controller is only acti-
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Figure 6.4: Phase portrait x1(t) − x2(t) of Lu oscillator with system parameters a = 0.8,

b = 0.2, c = 3, d = 1.8 and τ = 5.

vated in the control windows, not during the whole time. Aiming for two different situations

τ ≤ ∆k,i and ∆k,i < τ ≤ ω − δ, we have presented corresponding synchronization criteria

respectively. Compared with general impulsive synchronization, intermittent impulsive syn-

chronization breaks through the limit of the upper bound of impulsive intervals. It can be

flexibly applied to the scenario where the control window is restricted. On the other hand,

by reducing the control window width and decreasing the redundancy of the synchronization

signals, we can further improve the security of chaos-based secure communication. Thus,

intermittent impulsive synchronization will have a great application and perspective.
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Figure 6.5: Synchronization errors (a) e1(t) and (b) e2(t) with ∆k,i = 1.0 and Bk,i = 0.95I .
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6.2 Intermittent Impulsive Synchronization of Delayed Chaotic

Neural Networks

6.2.1 Introduction

Delayed neural networks (DNNs) are concerned with stimulus-driven responses, internally

generated in the brain. The neurons of the brain can generate complex patterns of activity

with an extraordinarily rich spatial and temporal structure, and they remain highly sensitive

to sensory input. Most related literature has mainly been devoted to the stability analysis

and periodic oscillations of networks. However, it has been shown that such networks can

exhibit chaotic behaviors [115–117]. Recently, chaos synchronization of coupled neural net-

works has attracted lots of attentions of scholars [118–122]. In this section, we generalize

intermittent impulsive synchronization scheme to delayed chaotic neural networks.

6.2.2 Preliminaries

Some preliminary lemmas and hypotheses are given. Let R denote the set of real numbers,

R+ the set of nonnegative real numbers and Rn the n-dimensional Euclidean linear space

equipped with the Euclidean norm ‖ · ‖. Throughout this paper, P > 0 (< 0, ≤ 0, ≥
0) denotes a symmetrical positive (negative, semi-negative, semi-positive) definite matrix

P , P T the transpose of P and λM(m)(P ) the maximum (minimum) eigenvalue of P . Let

ϕ(t+) = lim
s→t+

ϕ(s) and ϕ(t−) = lim
s→t−

ϕ(s).

Definition 6.3:

PC([a, b], Rn) = {ϕ : [a, b] → S|ϕ(t+) = ϕ(t),∀t ∈ [a, b);

ϕ(t−) exists in S, ∀t ∈ (a, b] and ϕ(t−) = ϕ(t)

for all but at most a finite number of points t ∈ (a, b]}.

where a, b ∈ R with a < b and S ⊂ Rn.
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We equip the linear space PC([−τ, 0], Rn) with the norm ‖ · ‖τ defined by ‖ϕ‖τ =

sup−τ≤s≤0 ‖ϕ(s)‖.

Consider a class of general delayed chaotic neural networks. In our synchronization

scheme, the master system is given in the following form:

dxi(t)
dt

= −cixi(t) +
∑n

j=1 aijfj(xj(t))

+
∑n

j=1 bijfj(xj(t− τ(t))) + Ji, t > 0,
(6.47)

where i = 1, 2, ..., n, xi(t) is the state vector associated with the i-th neuron, fi denotes the

activation function, by which the neurons respond to each other, ci > 0, A = (aij)n×n and

B = (bij)n×n are the connection weight matrix and the delayed connection weight matrix,

respectively, which indicate the strengths of the neuron interconnections within the network,

Ji is a constant external input to set the desired equilibrium point, τ(t) is the time-varying

delay, satisfying r = max
t∈R+

{τ(t)} and the initial condition of (6.47) is given by xi(t) = φi ∈
PC([−r, 0], R).

General Impulsive Synchronization Scheme (GISS):

The corresponding slave system is designed by




dyi(t)
dt

= −ciyi(t) +
∑n

j=1 aijfj(yj(t))

+
∑n

j=1 bijfj(yj(t− τ(t))) + Ji, t 6= Tk,

∆yi(t) = Uk,i(xi(t), yi(t)), t = Tk,

(6.48)

where k = 0, 1, ..., Tk is the k-th impulsive instant, Uk,i(xi(t), yi(t)) = Bk,i(xi(t)− yi(t)) is

the impulsive control of i-th neuron at the k-th impulsive instant and {Tk, Uk,i} is called the

impulsive law.

The initial condition for slaver system (6.48) is given by

yi(t) = ψ(t), −r ≤ t ≤ 0,

where ψ ∈ PC([−r, 0], R).

143



Let ei(t) = xi(t)− yi(t). We obtain the following error system:





dei(t)
dt

= −ciei(t) +
∑n

j=1 aij f̃j(ej(t))

+
∑n

j=1 bij f̃j(ej(t− τ(t))), t 6= Tk,

∆ei(t) = −Bk,iei(t), t = Tk,

(6.49)

where f̃i(ei(t)) = fi(xi(t))− fi(yi(t)).

In our intermittent impulsive synchronization scheme, impulsive control only occurs in

control windows, not during the whole time. firstly define free windows [mω, mω + δ] and

control windows [mω + δ, (m + 1)ω] where m = 0, 1, ... and 0 < δ < ω < ∞.

Intermittent Impulsive Synchronization Scheme (IISS):

The corresponding slave system is designed as follows:




dyi(t)
dt

= −ciyi(t) +
∑n

j=1 aijfj(yj(t))

+
∑n

j=1 bijfj(yj(t− τ(t))) + Ji,

t ∈ [mω, mω + δ],



dyi(t)
dt

= −ciyi(t) +
∑n

j=1 aijfj(yj(t))

+
∑n

j=1 bijfj(yj(t− τ(t))) + Ji, t 6= Tm,l,

∆yi(t) = Um,l,i(xi(t), yi(t)), t = Tm,l,

t ∈ [mω + δ, (m + 1)ω],

(6.50)

where m = 0, 1, ..., l = 1, 2, ..., Mm, Mm is a positive integer related to m, Tm,l denotes

the l-th impulsive instant in the m-th control window, mω + δ = Tm,1 < Tm,2 < ... <

Tm,Mm ≤ (k + 1)ω, Um,l,i(xi(t), yi(t)) = Bm,l,i(xi(t) − yi(t)) is the impulsive control. Let

Tk,Mk+1 = (k + 1)ω and define ∆k,i = Tk,i+1 − Tk,i.
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Let ei(t) = xi(t)− yi(t). Also, we obtain the following error system:




dei(t)
dt

= −ciei(t) +
∑n

j=1 aij f̃j(ej(t))

+
∑n

j=1 bij f̃j(ej(t− τ(t))),

t ∈ [mω, mω + δ],



dei(t)
dt

= −ciei(t) +
∑n

j=1 aij f̃j(ej(t))

+
∑n

j=1 bij f̃j(ej(t− τ(t))), t 6= Tm,l,

∆ei(t) = −Bm,l,iei(t), t = Tm,l,

t ∈ [mω + δ, (m + 1)ω],

(6.51)

where f̃i(ei(t)) = fi(xi(t))− fi(yi(t)).

Throughout this paper, we assume that fi, (i = 1, 2, ..., n) is bounded and satisfies the

Lipschitz condition, i.e.,

H1: Each activation function fi (i = 1, 2, ..., n) is bounded and there exists a positive

constant Li such that, for all x, y ∈ R,

‖fi(x)− fi(y)‖ ≤ Li‖x− y‖. (6.52)

Definition 6.4: Given a function V (t, e(t)) : R+ × Rn → R+, the upper right hand

derivative of V with respect to the error system (6.50)-(6.51) is defined by

D+V (t, e(t)) = lim
h→0+

sup
1

h
[V (t + h, e(t + h))− V (t, e(t))],

for all t 6= Tk,i in R+.

6.2.3 Synchronization Criteria

In this section, based on Lyapunov-Razumikhin theorem and LMI approach, we derive some

synchronization criteria via general impulsive control and intermittent impulsive control, re-

spectively. Firstly, consider GISS, we have the following general impulsive synchronization

criterion.
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General Impulsive Synchronization Criterion

In GISS, error system (6.49) can be rewritten in the following compact form:





de(t)
dt

= −Ce(t) + Af̃(e(t)) + Bf̃(e(t− τ(t))), t 6= Tk,

∆e(t) = −Bke(t), t = Tk,
(6.53)

where e(t) = [e1(t), ..., en(t)]T , C = diag{c1, ..., cn}, A = (aij)n×n, B = (bij)n×n,

f̃(e(t)) = [f̃1(e1(t)), ..., f̃n(en(t))] and Bk = diag{Bk,1, ..., Bk,n}.

Theorem 6.3: In GISS, assume that for an impulsive control law {Tk, Uk,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

−2PC + ξ1PAAT P + ξ2PBBT P +
1

ξ1

Lf − α1P ≤ 0, (6.54)

and
1

ξ2

Lf − α2P ≤ 0, (6.55)

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.

(ii) there exist a real number β ∈ (0, 1) such that

(I −BT
k )P (I −Bk)− βP ≤ 0. (6.56)

(iii) there exists a positive number ∆, (∆ ≥ ∆k) such that

∆

β
(βα1 + α2) + ln β ≤ 0, (6.57)

where ∆k = Tk+1 − Tk.

Then the trivial solution of error system (6.53) is asymptotically stable. It implies that slaver

system (6.48) is synchronized with master system (6.47) by impulsive control {Tk, Uk,i}.
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Proof: Define V (t) = e(t)T Pe(t). When t ∈ (Tk, Tk+1), we have

D+V (t) = ė(t)T Pe(t) + e(t)T P ė(t)

= −2e(t)T PCe(t) + 2e(t)T PAf̃(e(t))

+2e(t)T PBf̃(e(t− τ(t)))

(6.58)

By Lemma 6.1 and condition (6.52), we obtain

D+V (t) ≤ −2e(t)T PCe(t) + ξ1e(t)
T PAAT Pe(t)

+ 1
ξ1
‖f̃(e(t))‖2 + ξ2e(t)

T PBBT Pe(t)

+ 1
ξ2
‖f̃(e(t− τ(t)))‖2

≤ e(t)T (−2PC + ξ1PAAT P + ξ2PBBT P

+ 1
ξ1

Lf )e(t) + 1
ξ2

Lfe(t− τ(t))T e(t− τ(t))

(6.59)

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.

By condition (i), we have

D+V (t) ≤ α1V (t) + α2V (t− τ). (6.60)

which implies, if V (t) ≥ βV (t + s), s ∈ [−r, 0],

D+V (t) ≤ 1

β
(βα1 + α2)V (t). (6.61)

When t = Tk, we get by condition (ii)

V (Tk) = eT (T−
k )(I −Bk)

T P (I −Bk)e(T
−
k )

≤ βeT (T−
k )Pe(T−

k )

= βV (T−
k )

≤ β‖V (Tk)‖r.

(6.62)

By (6.61), (6.62), condition (iii) and Lemma 6.3, we have

V (t) < ‖V (Tk)‖r ≤ ρ‖V (Tk)‖r, t ∈ (Tk, Tk+1), (6.63)

where β ≤ ρ < 1.
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From (6.62) and (6.63), we have

V (t) ≤ ρk‖V (0)‖r, t ∈ [Tk, Tk+1]. (6.64)

For any ε > 0, choose σ = σ(ε) > 0 such that σ <
√

λm(P )
λM (P )ρ

ε. When ‖e(0)‖r < σ, we

have
‖e(t)‖ ≤

√
V (t)

λm(P )
≤

√
‖V (0)‖rρ
λm(P )

≤
√

λM (P )ρ‖e(0)‖2r
λm(P )

< ε.

(6.65)

Also,

lim
t→∞

‖e(t)‖ ≤ lim
t→∞

V (t)

λm(P )
= 0. (6.66)

Therefore, the trivial solution e(t) of error system (6.53) is asymptotically stable. It

implies that slaver system (6.48) is synchronized with master system (6.47) by impulsive

control {Tk, Uk,i}.

Remark 6.2: Conditions (6.54)-(6.56) of Theorem 6.3 are related to impulsive con-

trollers Uk,i and condition (6.57) is about impulsive intervals ∆k. If the controllers are strong

enough (i.e., Bk ≈ I) and the impulsive intervals are small enough (i.e., ∆k ≈ 0), then all

conditions of Theorem 6.3 are always satisfied. It implies that we can always realize chaos

synchronization by GISS.

If the impulsive laws {Tk, Uk,i} (k = 1, 2, ...) are same, ∆k = ∆1 and Bk = Bs, then we

have the following corollary.

Corollary 6.3: In GISS, assume that for an impulsive control law {Tk, Uk,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

−2PC + ξ1PAAT P + ξ2PBBT P +
1

ξ1

Lf − α1P ≤ 0,

and
1

ξ2

Lf − α2P ≤ 0,

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.
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(ii) there exist a real number β ∈ (0, 1) such that

(I −BT
s )P (I −Bs)− βP ≤ 0;

(iii) the impulsive interval ∆1 satisfies

∆1

β
(βα1 + α2) + ln β ≤ 0.

Then slaver system (6.48) is synchronized with master system (6.47) by impulsive control

{Tk, Uk,i}.

Intermittent Impulsive Synchronization Criterion

In IISS, error system (6.51) can be rewritten in the following compact form:




de(t)
dt

= −Ce(t) + Af̃(e(t)) + Bf̃(e(t− τ(t))),

t ∈ [mω, mω + δ],



de(t)
dt

= −Ce(t) + Af̃(e(t))

+Bf̃(e(t− τ(t))), t 6= Tm,l,

∆e(t) = −Bm,le(t), t = Tm,l,

t ∈ [mω + δ, (m + 1)ω],

(6.67)

where e(t) = [e1(t), ..., en(t)]T , C = diag{c1, ..., cn}, A = (aij)n×n, B = (bij)n×n,

f̃(e(t)) = [f̃1(e1(t)), ..., f̃n(en(t))] and Bm,l = diag{Bm,l,1, ..., Bm,l,n}.

Theorem 6.4: In IISS, assume that for an intermittent impulsive control law {Tm,l, Um,l,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

−2PC + ξ1PAAT P + ξ2PBBT P +
1

ξ1

Lf − α1P ≤ 0, (6.68)

and
1

ξ2

Lf − α2P ≤ 0, (6.69)

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.
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(ii) there exist real numbers βm,l ∈ (0, 1) such that

(I −BT
m,l)P (I −Bm,l)− βm,lP ≤ 0. (6.70)

(iii) there exists a real number d(βm,l < d < 1) such that for each m, l,

∆m,l

βm,l

(βm,lα1 + α2) + ln βm,l ≤ ln d, (6.71)

where ∆m,l = Tm,l+1 − Tm,l and Tm,Mm+1 = (m + 1)ω.

(iv) the upper bound r of time delay satisfies ∆ ≤ r ≤ ω − δ and

de(α1+α2)δ < 1, (6.72)

where ∆ = max
m,l

{∆m,l}.

Then the trivial solution of error system (6.67) is asymptotically stable. It implies that slaver

system (6.50) is synchronized with master system (6.47) by intermittent impulsive control

{Tm,l, Um,l,i}.

Proof: Define V (t) = e(t)T Pe(t). When t ∈ [mω, mω + δ], the slave system runs in

free windows and the impulsive control does not work. Then we have

D+V (t) ≤ α1V (t) + α2V (t− τ). (6.73)

In term of Lemma 6.2, we have

V (t) ≤ ‖V (mω)‖re
(α1+α2)(t−mω), t ∈ [mω, mω + δ]. (6.74)

Thus,

V (mω + δ) ≤ ‖V (mω)‖re
(α1+α2)δ.

When t ∈ [mω + δ, (m + 1)ω], the slave system runs in control windows. Thus the

impulsive control works.

150



When t ∈ (Tm,1, Tm,2), we have

D+V (t) ≤ α1V (t) + α2V (t− τ),

which implies, if V (t) ≥ βm,lV (t + s), s ∈ [−r, 0],

D+V (t) ≤ 1

βm,l

(βm,lα1 + α2)V (t). (6.75)

When t = Tm,1, we get by condition (ii)

V (Tm,1) = eT (T−
m,1)(I −Bm,1)

T P (I −Bm,1)e(T
−
m,1)

≤ βm,le
T (T−

m,1)Pe(T−
m,1)

= βm,lV (T−
m,1)

≤ βm,l‖V (Tm,1)‖τ .

(6.76)

By (6.75), (6.76), condition (iii) and Lemma 6.4, we have

V (t) < d‖V (Tm,1)‖r, t ∈ [Tm,1, Tm,2). (6.77)

Similarly, we have

V (t) < d‖V (Tm,l)‖r, t ∈ [Tm,l, Tm,l+1), for i = 2, 3, ..., Mm, (6.78)

where Tm,Mm+1 = (m + 1)ω.

Since d < 1, we have

‖V (Tm,l+1)‖r ≤ ‖V (Tm,l)‖r for i = 1, 2, ..., Mm − 1.

Thus,

V (t) < d‖V (Tm,1)‖r, t ∈ [mω + δ, (m + 1)ω]. (6.79)

When m = 0, by (6.74) and (6.79), we have

V (t) ≤ ‖V (0)‖re
(α1+α2)δ, t ∈ [0, δ],
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and

V (t) < d‖V (δ)‖r, t ∈ [δ, ω].

Since ‖V (δ)‖r ≤ ‖V (0)‖re
(α1+α2)δ, by condition (iv), we have

V (t) < d‖V (0)‖re
(α1+α2)δ ≤ ρ‖V (0)‖r, t ∈ [δ, ω],

where 0 < ρ = de(α1+α2)δ < 1.

Similarly, when k = 1, we have

V (t) ≤



‖V (ω)‖re

(α1+α2)δ, t ∈ [ω, ω + δ];

ρ‖V (ω)‖r, t ∈ [ω + δ, 2ω].

When t ∈ [mω, (m + 1)ω], we have

V (t) ≤



‖V (mω)‖re

(α1+α2)δ, t ∈ [mω, mω + δ];

ρ‖V (mω)‖r, t ∈ [mω + δ, (m + 1)ω].

Since r ≤ ω − δ in condition (iv), we have

‖V ((m + 1)ω)‖r ≤ ‖V ((m + 1)ω)‖ω−δ ≤ ρV (mω)‖r.

Furthermore,

V (t) ≤




ρm‖V (0)‖re
(α1+α2)δ, t ∈ [mω, mω + δ];

ρm+1‖V (0)‖r, t ∈ [mω + δ, (m + 1)ω].

Thus,

lim
t→∞

V (t) = 0.

Since V (t) = eT (t)Pe(t), we have

V (t)

λM(P )
≤ ‖e(t)‖2 ≤ V (t)

λm(P )
.
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For any ε > 0, choose σ = σ(ε) > 0 such that σ <
√

λm(P )
λM (P )

e−(α1+α2)δε. When ‖e(0)‖r < σ,

we have
‖e(t)‖ ≤

√
V (t)

λm(P )
≤

√
‖V (0)‖re(α1+α2)δ

λm(P )

≤
√

λM (P )e(α1+α2)δ‖e(0)‖2r
λm(P )

< ε.

(6.80)

Also,

lim
t→∞

‖e(t)‖ ≤ lim
t→∞

V (t)

λm(P )
= 0. (6.81)

Therefore, the trivial solution e(t) of error system (6.67) is asymptotically stable. It

implies that slaver system (6.50) is synchronized with master system (6.47) by intermittent

impulsive control {Tm,l, Um,l,i}.

Remark 6.3: In the proof of Theorem 6.4, V (t) converges exponentially to zero along the

trajectory of error system (6.51). Also, synchronization error e(t) converges exponentially to

zero. It implies that chaos synchronization becomes better and better with synchronization

time passing.

Define ∆0 = min
m,l
{∆m,l} and M0 = min

m
{Mm}. If the time delay τ(t) is small and

satisfies τ(t) ≤ r < ∆0, then we have the following synchronization criterion.

Theorem 6.5: Assume that for an intermittent impulsive control law {Tm,l, Um,l,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

−2PC + ξ1PAAT P + ξ2PBBT P +
1

ξ1

Lf − α1P ≤ 0, (6.82)

and
1

ξ2

Lf − α2P ≤ 0, (6.83)

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.

(ii) there exist real numbers βm,l ∈ (0, 1) such that

(I −BT
m,l)P (I −Bm,l)− βm,lP ≤ 0. (6.84)
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(iii) there exists a real number d(βm,l < d < 1) such that for each m, l,

∆m,l

βm,l

(βm,lα1 + α2) + ln βm,l ≤ ln d, (6.85)

where ∆m,l = Tm,l+1 − Tm,l and Tm,Mm+1 = (m + 1)ω.

(iv) the time delay τ(t) satisfies τ(t) ≤ r ≤ ∆0 and

dM0e(α1+α2)δ < 1, (6.86)

where ∆ = max
m,l

{∆m,l}, ∆0 = min
m,l
{∆m,l} and M0 = min

m
{Mm}.

Then the trivial solution of error system (6.67) is asymptotically stable. It implies that slaver

system (6.50) is synchronized with master system (6.47) by intermittent impulsive control

{Tm,l, Um,l,i}.

Proof: Because conditions (i)-(iii) are same with that of Theorem 6.4, V (t) still satisfies

(6.78). We have

V (t) < d‖V (Tm,l)‖r, t ∈ [Tm,l, Tm,l+1), for l = 2, 3, ..., Mm,

where Tm,Mm+1 = (m + 1)ω.

Since r ≤ ∆0 in condition (iv), we have

‖V (Tm,l+1)‖r ≤ ‖V (Tm,l+1)‖∆m,l
< d‖V (Tm,l)‖r,

for l = 1, 2, ..., Mm − 1. Thus,

V (t) < dl‖V (Tm,1)‖r, t ∈ [Tm,l, Tm,l+1), for l = 2, 3, ..., Mm, (6.87)

where Tm,Mm+1 = (m + 1)ω.

When m = 0, by (6.74) and (6.77), we have

V (t) ≤ ‖V (0)‖re
(α1+α2)δ, t ∈ [0, δ),
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and

V (t) < dl‖V (0)‖re
(α1+α2)δ, t ∈ [T0,l, T0,l+1).

Similarly, when m = 1, we have

V (t) ≤



‖V (ω)‖re

(α1+α2)δ, t ∈ [ω, ω + δ);

dl‖V (ω)‖re
(α1+α2)δ, t ∈ [T1,l, T1,l+1).

When t ∈ [mω, (m + 1)ω], we have

V (t) ≤



‖V (mω)‖re

(α1+α2)δ, t ∈ [mω, mω + δ);

dl‖V (mω)‖re
(α1+α2)δ, t ∈ [Tm,l, Tm,l+1).

Since τ(t) ≤ r ≤ ∆0 in condition (iv), we have

‖V ((m + 1)ω)‖r ≤ ‖V ((m + 1)ω)‖∆0 ≤ dMm‖V (mω)‖re
(α1+α2)δ.

In terms of condition (iv), we have

‖V ((m + 1)ω)‖r ≤ dM0‖V (mω)‖re
(α1+α2)δ ≤ θ‖V (mω)‖r,

where θ = dM0e(α1+α2)δ < 1.

Furthermore,

V (t) ≤




θm‖V (0)‖re
(α1+α2)δ, t ∈ [mω, mω + δ];

θmdl‖V (0)‖r, t ∈ [[Tm,l, Tm,l+1).

Thus,

lim
t→∞

V (t) = 0.

Similarly, for any ε > 0, choose σ = σ(ε) > 0 such that σ <
√

λm(P )
λM (P )

e−(α1+α2)δε. When

‖e(0)‖r < σ, we have

‖e(t)‖ < ε. (6.88)

Also,

lim
t→∞

‖e(t)‖ = 0. (6.89)
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Therefore, the trivial solution e(t) of error system (6.67) is asymptotically stable. It

implies that slaver system (6.50) is synchronized with master system (6.47) by intermittent

impulsive control {Tm,l, Um,l,i}.

If the impulsive laws {Tm,l, Um,l,i} (m = 0, 1, ...) are same in all control windows,

∆m,l = ∆1 and Bm,l = Bs, then we have the following corollaries.

Corollary 6.4: In IISS, assume that for an intermittent impulsive control law {Tm,l, Um,l,i}

(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

−2PC + ξ1PAAT P + ξ2PBBT P +
1

ξ1

Lf − α1P ≤ 0,

and
1

ξ2

Lf − α2P ≤ 0,

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.

(ii) there exists a real number β ∈ (0, 1) such that

(I −BT
s )P (I −Bs)− βP ≤ 0.

(iii) there exists a real number d(β < d < 1) such that

∆1

β
(βα1 + α2) + ln β ≤ ln d.

(iv) the time delay upper bound r satisfies ∆1 ≤ r ≤ ω − δ and

de(α1+α2)δ < 1.

Then slaver system (6.50) is synchronized with master system (6.47) by intermittent impul-

sive control {Tm,l, Um,l,i}.

Corollary 6.5: Assume that for an intermittent impulsive control law {Tm,l, Um,l,i}
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(i) there exist a positive definite matrix P and constants α1 > 0, α2 > 0, ξ1 > 0 and

ξ2 > 0 such that

−2PC + ξ1PAAT P + ξ2PBBT P +
1

ξ1

L2
fI − α1P ≤ 0,

and
1

ξ2

L2
fI − α2P ≤ 0,

where Lf = diag{L2
1, L

2
2, ..., L

2
n}.

(ii) there exists a real number β ∈ (0, 1) such that

(I −BT
s )P (I −Bs)− βP ≤ 0.

(iii) there exists a real number d(β < d < 1) such that

∆1

β
(βα1 + α2) + ln β ≤ ln d.

(iv) the time delay τ(t) satisfies τ(t) ≤ r ≤ ∆1 and

dM1e(α1+α2)δ < 1,

where M1 = bω−δ
∆1
c+ 1 and bac denotes the nearest integers less than or equal to a.

Then slaver system (6.50) is synchronized with master system (6.47) by intermittent impul-

sive control {Tm,l, Um,l,i}.

6.2.4 Numeral Example

In this section, a numeral example is given to show the effectiveness of the main result.

Consider a typical Hopfield neural network as the master system, described by

dx(t)

dt
= −Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + J, (6.90)
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where

C =


 1 0

0 1


 , A =


 2.0 −0.1

−5.0 2.8


 , B =


 −1.6 −0.1

−0.3 −2.5




f(x(t)) =


 tanh x1

tanh x2


 , τ(t) = 1, J =


 0

0


 .

The chaotic behavior of system (6.90) is shown in Fig. 6.7. Firstly considering GISS, we

choose impulsive control parameters: ∆k = 1.1 and Bk = 0.90I . Let P = I . Thus,

conditions (6.54)-(6.57) are satisfied. By Theorem 6.3, we know that the corresponding

slaver system is synchronized with master system (6.90) by general impulsive control with

∆k = 1.1 and Bk = 0.90I . The state trajectories of master and slave systems are shown in

Fig. 6.8. The synchronization errors are shown in Fig. 6.9. Our simulation results show that

when impulsive intervals satisfy ∆k <= 1.44 the synchronization can be always achieved.
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Figure 6.7: Phase portrait x1(t) − x2(t) of DNNs (6.90) with system parameters ∆k,i = 1.1

and Bk = 0.90I .

Assume that ω = 10 and δ = 5, then the free windows are [10m, 10m+5] and the control

windows are [10m + 5, 10m + 10]. Since the free window width is greater than the impul-
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Figure 6.8: State trajectories of the master system (left) and the slave system in GISS.
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Figure 6.9: Synchronization errors in GISS: (a) e1(t) and (b) e2(t) with ∆k,i = 1.1 and

Bk = 0.90I .
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sive interval, GISS fails in this scenario. Now, considering IISS, choose control parameters

∆m,l = 1.1 and Bm,l = 0.90I . Let P = I . By Corollary 6.5, we know that the corresponding

slaver system is synchronized with master system (6.90). The state trajectories of master and

slave systems and synchronization errors are shown in Fig. 6.10-6.11. Simulation results

show that when impulsive intervals satisfy ∆k <= 1.22, the synchronization can be always

achieved.
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Figure 6.10: State trajectories of the master system (left) and the slave system in IISS.

Remark 6.4: In the above example, the control window width ω − δ is a half of the

whole period width ω. General impulsive synchronization approach is not applicable for this

Scenario because the free window width δ is greater than the impulsive interval.

Next, fixing the control parameter Bm,l = 0.90I , we try to find out the relationship

between the impulsive interval and the free window width to guarantee synchronization.
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Figure 6.11: Synchronization errors in IISS: (a) e1(t) and (b) e2(t) with ∆k,i = 1.1 and

Bk = 0.90I .

Simulation results are shown in Fig. 6.12.

Remark 6.5: Fig. 6.12 shows that the upper bound of the free window width will decrease

with the impulsive interval increasing. In other words, to guarantee synchronization, if one

wants to reduce the control window width, he needs to pay more frequent control in the

control windows.

6.2.5 Summary

In this section, we have investigated intermittent impulsive synchronization of two delayed

chaotic neural networks. We have presented a novel intermittent impulsive synchronization

scheme to break through the limitation of the general impulsive synchronization scheme. In

our synchronization scheme, the impulsive controller is only activated in the control win-

dows, not in free windows. Several criteria to guarantee chaos synchronization of two cou-

pled neural networks, based on Lyapunov-Razumikhin theory and LMI. One numeral exam-

ple is given to shown how IISS breaks through the limit of the upper bound of impulsive

intervals, different from GISS. IISS can be flexibly applied to the scenario where the con-

trol window is restricted. On the other hand, via reducing the control window width and

decreasing the redundancy of the synchronization signals, one can further improve the secu-
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Figure 6.12: The relationship between the impulsive interval and the free window width to

guarantee synchronization.

rity of chaos-based secure communication. Thus, IISS should have a great application and

perspective.
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Chapter 7

Chaos-Based Public-Key Cryptography

For chaos-based secure communication scheme, public-key cryptography is needed to en-

crypt synchronization signals and guarantee their security when synchronization signals are

sent to the receiver across a public channel (unsafe channel). The whole framework is shown

in Fig. 7.1. Issues 1 and 2 have been studied in detail in previous chapters. Issue 3, which is

about encryption of synchronization signals, will be introduced in this chapter. Conventional

public-key algorithms such as RSA, EIGamal and Elliptic Curve Cryptography are suitable

for this encryption. Furthermore, we propose chaos-based public-key algorithms, which can

be applied to our symmetric chaos-based secure communication to encrypt synchronization

signals, and to analyze related security. Chaos-based public-key cryptography is becoming

an active topic in public-key cryptography technology.

7.1 Kocarev’s Algorithm

As mentioned before, Ljupco Kocarev and Zarko Tasev presented a public-key algorithm

based on Chebyshev polynomials in 2003 [37], which is a milestone in chaos-based public-

key cryptography research. The details are as follows.
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Figure 7.1: The framework diagram of symmetric chaos-based secure communication

scheme.

Chebyshev maps: Chebyshev polynomial maps Tp : R → R with degree p is defined by

Tp+1(x) = 2xTp(x) + Tp−1(x),

with p = 1, 2, ..., T0 = 1 and T1 = x. Its domain is the interval x ∈ [−1, 1]. When p > 1,

Chebyshev map is chaotic with positive Lyapunov exponent λ = ln(p).

Semi-group property:

Tr(Ts(x)) = Trs(x).

An immediate consequence of this property is that Chebyshev polynomials commute under

composition,

Tr(Ts(x)) = Ts(Tr(x)).

Kocarev’s chaos-based public-key algorithm consists of three parts: key generation algo-

rithm, encryption algorithm and decryption algorithm. The detail is followed. Key Genera-

tion Algorithm:

Alice, in order to generate the keys, does the following:
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1. Generates a large integer s;

2. Selects a random number x ∈ [−1, 1] and computes Ts(x);

3. Sets her public key to (x, Ts(x)) and her private key to s.

Encryption Algorithm:

Bob, in order to encrypt a message, does the following:

1. Obtains Alice’s authentic public key (x, Ts(x));

2. Represents the message as a number m ∈ [−1, 1].

3. Generates a large integer r;

4. Computes Tr(x), Trs(x) = Tr(Ts(x)) and X = mTrs(x);

5. Sends the cipher-text C = (Tr(x), X) to Alice.

Decryption Algorithm:

Alice, to recover the plain-text m from the cipher-text C, does the following:

1. Uses her private key s to compute Tsr(x) = Ts(Tr(x));

2. Recovers m by computing m = X/Tsr(x).

7.2 Bergamo’s Attack

Kocarev’s chaos-based public-key algorithm looks perfect, which uses the semi-group prop-

erty of Chebyshev maps to accomplish encryption and decryption by different keys. Spe-

cially, it is incomputable to derive the private key s from the public key (x, Ts(x)) because

of the sensitivity of chaotic maps to initial conditions and system parameters. However,

Chebyshev polynomials can be alternatively defined as follows,

Tp(x) = cos(p · arccos(x)).

If an eavesdropper can find out an integer r̄ such that Tr̄(x) = Tr(x), he can recover m

without secret key as follows.

Bergamo’s Attack Algorithm [123]:

1. Computer an r̄ such that Tr̄(x) = Tr(x);
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2. Evaluate Tr̄s(x) = Tr̄(Ts(x));

3. Recover m = X/Tsr(x).

Let Z be the set of integers and N the set of natural numbers. Define

P =

{±arccos(Tr(x)) + 2kπ

arccos(x)
| k ∈ Z

}
.

Thus, r̄ ∈ P ∩N .

7.3 Chaos-Based Public-Key Cryptography with Modified

Chebyshev Polynomials

Bergamo’s attack is built on the periodic property of Chebychev polynomials, where cosine

function is periodic. To avoid this kind of attack, Professor Kocarev extended his algorithms

to modular arithmetic as follows.

Modified Chebyshev polynomials: Let Tp: {0, 1, ..., N − 1} → {0, 1, ..., N − 1} defined

as

y = Tp(x)(mod N),

where x and N are integers.

Theorem 7.1 [124]: Modified Chebyshev polynomials commute under composition, i.e.,

Tp(Tq(x)(mod N))(mod N) = Tpq(x)(mod N).

Theorem 7.2 [124]: Let N be an odd prime and let x ∈ Z such that 0 ≤ x < N . Then

the period of the sequence Tn(x)(mod N), for n = 0, 1, ..., is a divisor of N2 − 1.

7.3.1 ElGamal Encryption with Modified Chebyshev Polynomials

The ElGamal encryption is an asymmetric key encryption algorithm which can be viewed as a

Diffie-Hellman key agreement in key transfer mode. Its security is based on the intractability
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of the discrete logarithm problem. In the ElGamal encryption scheme, Alice generates a large

random prime N and a generator x of the multiplicative group Z∗
N of integers modulo N . She

also generates a random integer s ≤ N−1 and computes A = xs(mod N). Alice’s pubic key

is (x,N, A); Alice’s private key is s. To encrypt a message m, Bob selects a random integer

r ≤ N − 1, computes B = xr(mod N) and X = mAr(mod N), and sends the cipher-text

c = (B, X) to Alice. To recover the original message m from c, Alice uses the private key

s to recover m by computing m = B−sX(mod N). This decryption allows recovery of the

original message because of B−smAr ≡ x−rsmxrs ≡ m(mod N).

ElGamal encryption with modified Chebyshev polynomials [124]:

Algorithm for key generation.

Alice does the following:

1. Generates a large random prime N and an initial integer x such that x < N ;

2. Generates a random integer s < N and compute A = Ts(x)(mod N);

3. Alice’s pubic key is (x,N, A); Alice’s private key is s.

Algorithm for ElGamal encryption.

To encrypt a message m, Bob does the following:

(a) Obtains Alice’s public key (x,N, A);

(b) Represents the message as an integer m in the range 0, 1, ..., N − 1;

(c) Selects a random integer r < N ;

(d) Computes B = Tr(x)(mod N) and X = mTr(A)(mod N);

(e) Sends the cipher-text c = (B, X) to Alice.

Algorithm for ElGamal decryption.

To recover the message m from c, Alice does the following:

(a) Uses the private key s to compute C = Ts(B)(mod N);

(b) Recovers m by computing m = XC−1(mod N).

The proof of this algorithm follows from Theorem 7.1.
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7.3.2 RSA Public-Key Encryption with Modified Chebyshev Polynomi-

als

The RSA cryptosystem, named after its inventors, R. Rivest, A. Shamir, and L. Adleman, is

the most widely used public-key cryptosystem. Its security is based on the intractability of

the integer factorization problem. In the RSA algorithm, let N = pq and φ = (p− 1)(q− 1),

where p and q are two large random (and distinct) primes p and q. Alice selects a random

integer e (1 < e < φ) such that gcd(e, φ) = 1 and computes the unique integer d (1 <

d < φ) such that ed ≡ 1(mod φ). Alice’s public key is (N, e); Alice’s private key is d.

To encrypt a message m, Bob computes c = me(mod N) and sends to Alice. To recover

the message m from c, Alice should use the private key d to recover m = cd(mod N). Let

πp(x) = xp(mod N). The decryption in the RSA algorithm works because the functions

πe, πd commute under composition and p is a periodic point of the function πed for each

m : med ≡ m(mod N). The last follows from the following observation. Since ed ≡
1(mod φ), there exists an integer k such that ed = 1 + kφ. Now, if gcd(m, p) = 1, then

by Fermat’s little theorem mp−1 ≡ 1(mod p). Raising both sides of this congruence to the

power of k(q − 1) and then multiplying both sides by m yields med ≡ m(mod p). By the

same argument med ≡ m(mod q). Finally, since p and q are distinct primes, it follows that

med ≡ m(mod N) by Chinese remainder theorem.

RSA encryption with modified Chebyshev polynomials [125]:

Algorithm for key generation.

Alice does the following:

1. Generates two large distinct primes p and q, each roughly the same size;

2. Computes N = pq and φ = (p2 − 1)(q2 − 1);

3. Selects a random integer e (1 < e < φ) such that gcd(e, φ) = 1;

4. Computes the unique integer d (1 < d < φ) such that ed ≡ 1(modφ);

5. Alice’s public key is (N, e); Alice’s private key is d.

Algorithm for encryption.
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To encrypt a message m, Bob does the following:

(a) Obtains Alice’s public key (N, e);

(b) Represents the message as an integer in the interval [1, N − 1];

(c) Computes c = Te(m)(mod N) and send to Alice.

Algorithm for decryption.

To recover the message m from c, Alice does the following:

(a) Uses the private key d to recover m = Td(c)(mod N).

The proof of this algorithm follows from Theorem 7.1 and 7.2,

Td(Te(x)) ≡ Tde(x) ≡ T1+kφ(x) ≡ T1(x) ≡ x(mod p).

7.3.3 An Example

In our chaos-based public-key secure communication system, suppose that the transmitter

needs to send a synchronization signal m = 11.223344 with 6-digit precision (impulsive

signal) to the receiver across a public channel. The following shows how the system works

by RSA encryption with modified Chebyshev polynomials.

Firstly, the receiver selects two primes p = 21787 and q = 3793. Thus, N = 82638091

and φ = 6829053595064064. Then he selects e = 65537, coprime with φ, and computes

d = 2150406320724737. He publishes his public key (N = 82638091, e = 65537) and

keeps his private key d = 2150406320724737 secret.

To encrypt the synchronization signal m, the transmitter firstly maps m to integer set by

M = 106m. Then computes c = T65537(M)(mod N) = 12355612 and send c to the receiver.

To decrypt this cipher c, the receiver computes M = T2150406320724737(c)(mod N) =

11223344 and then recovers the original synchronization signal m = 11.223344 by the in-

verse map m = 10−6M .
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7.4 Summary

The two proposed chaos-based public-key algorithms with modified Chebyshev polynomi-

als, ElGamal encryption with Chebyshev polynomials and RSA encryption with Chebyshev

polynomials, possess the resistance to Bergamo’s attack, which are both secure and practical

and can be used to encrypt synchronization signals across the public channel in chaos-based

secure communication.
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Chapter 8

Conclusions and Future Work

In this chapter, the main contributions of this thesis are summarized, and followed by the

future work.

8.1 Contributions

This thesis focus on studying chaos-based secure communication. The major contribution

is to solve chaos synchronization. In addition, generation of chaotic and hyperchaotic sys-

tems is included and chaos-based public-key cryptography is introduced. The details can be

summarized as follows:

• Firstly, we design a family of chaos and hyperchaos by first-order delay differential

equation and present a systematical method to control this system to the cell attractors

with desired number of positive Lyapunov exponents. By adjusting the correspond-

ing system parameters, this system can generate complex chaotic behaviors. Further-

more, we introduce this kind of delay feedback control to well-known Chen system

and generate multi-scroll Chen attractors. Also, this kind of control approach can be

generalized to Chua system, Lorenz system, Jerk equation, etc.
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• Secondly, aiming at the challenging problem, time delay in transmission and sam-

ple process, based on Lyapunov-Razumikhin technic, we achieve global asymptotical

synchronization criteria by impulsive control. Furthermore, we generalize them to

chaotic dynamical networks to realize network synchronization with delay. For gen-

eral networks subject to different network nodes with uncertain system parameters, an

adaptive synchronization approach is presented to guarantee network synchronization.

Finally, to overcome the weakness of general impulsive synchronization scheme, i.e.,

there always exists an upper boundary to limit impulsive intervals during synchroniza-

tion process, a novel synchronization scheme, intermittent impulsive synchronization

scheme, is designed, which can not only be flexibly applied to the scenario where the

control window is restricted and also improve the security of chaos-based secure com-

munication, via reducing the control window width and decreasing the redundancy of

the synchronization signals.

• Thirdly, chaos-based public-key cryptography is introduced to guarantee the security of

synchronization signals across the public channel. Although the existing algorithms are

not secure enough, compared to classic public-key algorithms such as RSA, ECC, etc,

chaos-based public-key cryptography provides a new direction in modern cryptography

technology. Thus, further research on new chaotic maps and new algorithms is required

urgently.

8.2 Future Work

Our research has made a notable progress on chaos-based secure communication. Yet, there

still exist some challenges between theoretical study and engineering application. This re-

search is still a very wide-open field, and there are several new research directions to be

explored to complement our efforts.
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8.2.1 Synchronization Error Problem

In this thesis, we utilize Lyapunov method to prove chaos synchronization. i.e., synchroniza-

tion errors converge to zero as time t goes to infinity. However, in reality, one usually requires

that synchronization errors can decline to a desired level in a short time. In other words, the

decreasing velocity of synchronization errors is a very important index in engineering appli-

cation. Thus, exponential chaos synchronization, which implies that synchronization errors

converge to zero at a constant exponential rate, becomes a very useful issue. In addition,

there always exists stochastic disturbance in communication process. So stochastic synchro-

nization is also a significant research topic.

8.2.2 Computer Realization of Chaos-Based Algorithms

In this thesis, we have introduced some chaos-based public-key cryptography algorithms and

their drawbacks. However, the most challenging problem is that all chaotic maps represented

on computer turn into periodic maps due to the limit of computer precision. Thus, how

to design suitable chaotic maps with large enough period on computer to avoid collision

is an important research issue. Without doubt, chaos-based public-key cryptography is a

potential direction in future. However, up to now, there does not exist a perfect algorithm

which can bear comparison with conventional public-key cryptography algorithms such as

RSA, ElGamal, Elliptic Curve Cryptography, etc. There is much work on designing chaos-

based public-key algorithms needed to be done. In addition, we will consider other latest

research progresses such as chaos-based hash function, chaos-based pseudo-random number

generator, chaos-based key agreement protocol and related security issues.
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