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Abstract

Short substrings of genomic data that are responsible for biological processes, such as
gene expression, are referred to as motifs. Motifs with the same function may not entirely
match, due to mutation events at a few of the motif positions. Allowing for non-exact
occurrences significantly complicates their discovery. Given a number of DNA strings, the
motif recognition problem is the task of detecting motif instances in every given sequence
without knowledge of the position of the instances or the pattern shared by these substrings.

We describe a novel approach to motif recognition, and provide theoretical and exper-
imental results that demonstrate its efficiency and accuracy. Our algorithm, MCL-WMR,
builds an edge-weighted graph model of the given motif recognition problem and uses
a graph clustering algorithm to quickly determine important subgraphs that need to be
searched further for valid motifs. By considering a weighted graph model, we narrow the
search dramatically to smaller problems that can be solved with significantly less compu-
tation.

The CLOSEST STRING problem is a subproblem of motif recognition, and it is NP-hard.
We give a linear-time algorithm for a restricted version of the CLOSEST STRING problem,
and an efficient polynomial-time heuristic that solves the general problem with high proba-
bility. We initiate the study of the smoothed complexity of the CLOSEST STRING problem,
which in turn explains our empirical results that demonstrate the great capability of our
probabilistic heuristic. Important to this analysis is the introduction of a perturbation
model of the CLOSEST STRING instances within which we provide a probabilistic anal-
ysis of our algorithm. The smoothed analysis suggests reasons why a well-known fixed
parameter tractable algorithm solves CLOSEST STRING instances extremely efficiently in
practice.

Although the CLOSEST STRING model is robust to the oversampling of strings in the
input, it is severely affected by the existence of outliers. We propose a refined model, the
CLOSEST STRING WITH OUTLIERS problem, to overcome this limitation. A systematic pa-
rameterized complexity analysis accompanies the introduction of this problem, providing a
surprising insight into the sensitivity of this problem to slightly different parameterizations.

Through the application of probabilistic and combinatorial insights into the CLOSEST
STRING problem, we develop sMCL-WMR, a program that is much faster than its pre-
decessor MCL-WMR. We apply and adapt sMCL-WMR and MCL-WMR to analyze the
promoter regions of the canola seed-coat. Our results identify important regions of the
canola genome that are responsible for specific biological activities. This knowledge may
be used in the long-term aim of developing crop varieties with specific biological charac-
teristics, such as being disease-resistant.
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Chapter 1

Introduction

In 1977 Sanger et al. [97] published their results describing the usage of dideoxynucleotide
termination DNA sequencing technology and, thus, formed formed the basis for DNA
sequencing. Since this initial development there have been countless improvements in
sequencing technology by drawing on advancements in molecular biology, chemistry, and
computer science. With the development of high-throughput next generation sequencing
technologies has arisen large amounts of genomic data, and an increased need for novel
ways to analyze this data. The growing amount of data makes it impossible to analyze
DNA sequences manually.

This revolution in DNA sequencing technologies has led to many new challenging prob-
lems in bioinformatics. For example, the human genome contains over three billion building
blocks called nucleotides, which are represented by the symbols A, C, G, and T. Due to the
immense size of this dataset, it is infeasible to analyze this data manually and biologists
must use computational methods to find novel, functional regions. In order to begin to
answer some of these problems in bioinformatics, we need to abstractly and realistically
model these problems as discrete objects. This thesis will focus on one such model, the
development of efficient algorithms for that model, and the application of these algorithms
to analysis of genomic data.

Short substrings of genomic data that are responsible for biological processes, such as
gene expression, are referred to as motifs. Motifs with the same function may not entirely
match, due to mutation events at a few of the motif positions. Given a number of DNA
strings, the motif-recognition problem is the task of discovering motif instances in every
given string without knowledge of the position of the instances or the pattern shared by
these substrings. Motif recognition is a NP-complete problem, and therefore it is unlikely
that there exists a polynomial-time algorithm for this problem. Since finding motif in-
stances using laboratory methods is an extremely costly and lengthy process, it is vital
to create accurate and efficient computational methods to assist in finding possible motif



instances. The aim is to develop an application that will find possible motif instances;
the user then must decide whether these instances warrant further biological investigation
based on their statistical significance. Numerous algorithms and programs have been de-
veloped to find motifs in DNA sequences but many have limited accuracy or computational
tractability [24], F].

In Chapter [3] we describe a novel approach to motif recognition, and provide theoretical
and experimental results that demonstrate its efficiency and accuracy. Our algorithm,
MCL-WMR, builds a weighted graph model of the given motif-recognition problem and
uses a graph clustering algorithm to quickly determine important subgraphs that need
to be searched further for valid motifs [16]. Previous algorithms and programs search
exhaustively or probabilistically on an unweighted graph or sequence model of the input
data, but due to the lack of information contained in these models, the required search is
extremely broad and requires considerable computation time. By considering a weighted
graph model, we narrow the search dramatically to smaller problems that can be solved
with significantly less computation. An empirical comparison to previous work illustrates
that MCL-WMR is a leading method with respect to its running time and accuracy. This
chapter is based on joint work with Daniel G. Brown and Paul Church [16].

The CLOSEST STRING problem is a NP-complete problem related to the motif-recognition
problem. In Chapter {4 we study combinatorial and probabilistic algorithms for this prob-
lem, and consider two subgroups of the problem instances: where the number of strings is
small, and where the number of strings is relatively large. We give a linear-time algorithm
for the restricted version of CLOSEST STRING where the number of strings is small, a
result which resolves an open problem described by Gramm et al. [57]. Next, we present
a polynomial-time heuristic for the CLOSEST STRING problem, and give an analysis that
proves the algorithm is extremely efficient when the number of strings is relatively large.
The key to obtaining this latter result is the application of smoothed analysis, an interme-
diate measure between average case analysis and worst case analysis; whereas average-case
analysis studies the average behaviour of an algorithm over all instances of a problem,
smoothed analysis studies the average behaviour of the algorithm on each “local region”
of the instance space [103]. Section of Chapter (4] is based on joint work with Stephane
Durocher and Daniel G. Brown [15]. Section is based on part of the joint work with
Kathleen Wilkie [20].

In Chapter 4| we also consider the O(nf + nd - d*)-time algorithm by Gramm et al. [57],
an algorithm that has been shown to work very efficiently in practice. We explain this good
performance through smoothed analysis. Imperative to our analysis is the introduction of
a perturbation model of the CLOSEST STRING model and the probabilistic analysis of the
O(nl + nd - d?)-time algorithm by Gramm et al. [57]. We show for any given CLOSEST
STRING instance, the average running time of this algorithm on a small perturbation of
the instance is O(nl + nd - d*7°).



In Chapter [p] we investigate a slight augmentation of the CLOSEST STRING problem that
is a more realistic model of several biological problems. We give a systematic parameterized
complexity analysis of this new model by considering several parameterizations of this
problem. We give a negative complexity result by showing that the problem is W[1]-hard
for unbounded alphabet size and every combination of a subset of the problem parameters.
We also show that when the alphabet is unbounded, there exists a fixed parameter tractable
algorithm with respect to two of the problem parameters. This chapter is based on joint
work with Bin Ma [18].

In Chapter [6] we describe the application and implementation of the combinatorial and
probabilistic insights described in the previous chapter to motif recognition. Applying these
methods — as well as other insights — we develop sMCL-WMR, a program that is capable of
detecting weak motifs in large datasets and is much faster than its predecessor MCL-WMR.
Further, we show the capability of this program in detecting transcription factor binding
sites in real biological data. In addition, we include work concerning canola genomics
that was completed in collaboration with researchers at the University of Alberta and
the Alberta Research Council. Canola exhibits several desirable nutritional and economic
factors and therefore, is an important target for genomic research in Canada. By developing
and employing genomic tools, which include sMCL-WMR and MCL-WMR, we are capable
of identifying important regions of the canola genome that are responsible for specific
biological activities. This knowledge may be used in the long-term aim of developing
crop varieties with specific biological characteristics, such as being disease-resistant. The
importance of these results is two-fold; it illustrates the capability of MCL-WMR and
sMCL-WMR, and contributes to the study of crop genomics. This chapter is partly based
on joint work with James King [17], and joint work with Limin Wu and Saleh Shah.

Finally, in Chapter [7] we conclude this thesis by outlining some related areas for future
research. The areas extend from extensive and well-researched fields (such as the CLOSEST
STRING problem, and combinatorial methods for counting and sampling) to more inter-
disciplinary fields that require a careful search through diverse literature (such as finding
biological applications to a variant of the CLOSEST STRING problem).

In this rest of this chapter, we define the motif-recognition problem and several distin-
guishing string selection problems more formally, and motivate our study by giving several
biological applications of these problems; one of these applications will be thoroughly ex-
plored in this chapter and Chapter [6]



1.1 From Transcription Factors to Pattern Recogni-
tion

From a high level, motif recognition can simply be described as classifying patterns (a.k.a.
motifs) based on a priori knowledge or statistical information extracted from the data. Mo-
tif recognition is an important problem in biology; it and its variants have several important
applications in bioinformatics. Before describing motif recognition from a computational
perspective, we give an example motivating the investigation of this problem.

A gene is a region of DNA that codes for a type of protein or a RNA chain that has a
function in the organism. Regulation genes, first discovered in 1961 by Jacob and Monod
[62], are a type of gene that provides the instructions for creating proteins which help
control the expression of other structural genes. Hence, we can think of a sequence of
DNA coding for a particular protein that, due to the chemical properties of the amino
acids it is made from, folds in a particular manner and so performs a particular function
(i.e. enzymes, structural, regulatory). The protein encoding genes are regulated in the
following three levels:

Transcription control level: determines if the transcription can begin.

Post-transcription control level: occurs after the DNA is transcribed and mRNA.
Regulates how much the mRNA is translated into proteins by capping, splicing,
and poly-adenylation. These processes occur in eukaryotes but not in prokaryotes.
This modulation is a result of a protein or transcript which in turn is regulated and
may have an affinity for certain sequences.

Post-translation control level: control on the protein level.

We adopt the convention that a DNA molecule is represented as a sequence whose sym-
bols come from the four different nucleotides A, C, G, and T, and a protein is represented
as a sequence whose symbols come from the 20 different amino acids.

All the above controls occur during distinct stages described in the central dogma of
molecular biology, the axiom that genetic information flows from DNA to RNA to protein
and and cannot flow in the reverse direction [33]. Figure illustrates this process. The
conversion from DNA to RNA is known as transcription, whereas, the decoding of a mes-
senger RNA (mRNA) sequence into an amino acid sequence is referred to as translation.
We will focus on transcription control.

A typical genome contains protein coding genes, non-coding RNAs, regulatory se-
quences, which we refer to as promoters, and regions that have no known function or
are yet to be classified. In this section, we will restrict interest to the promoter regions,
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DNA:

Transcription occurs with factor bound to DNA

RNA transcript: serves directly as mRNA in prokaryotes; processed to become
mRNA in eukaryotes

Translation

Polypetide: — — — — — —

————— intergenic
g |:| Enhancer DNA
/1 intron
- Gene

Transcription Factor

Figure 1.1: An illustration of the flow of genetic information from DNA to RNA to protein.

which are DNA sequences near the beginning of genes that signal RNA polymerase where
to begin transcription.

The transcription process for a particular gene often requires that one or more tran-
scription factors be bound to several specific regions, referred to as binding sites, that are
located in the regulatory region of the gene. A single transcription factor can be bound to
multiple binding sites; however they must have similar length and nucleotide pattern. This



specific nucleotide sequence will compromise the regions of interest and will encompass a
motif in the context of motif recognition. Typically, a binding site is between five to twelve
nucleotides (nt) in length but could be as large as 30 nt [I2]. Note that nucleotide se-
quences are virtually synonymous with a sequence of base pairs (bp). Figure illustrates
a binding site with a bound transcription factor.

T

ACGTTTTACCATATA s CACAAACCCAAAACATATTATAATA

binding site

Figure 1.2: Depiction of a transcription factor binding site with bound transcription factor.

The discovery of motifs allows biologists to understand the complex mechanisms that
regulate gene expression. A single transcription factor is often not sufficient for the regu-
lation of transcription, and typically, there exists a set of transcription factors for a single
gene. The binding sites usually occur as a recurring pattern in the sequence of nucleotides,
however, due to the possibility of genetic mutation, a specific binding site in a nucleotide
sequence will sometimes mismatch with the identified nucleotide pattern at a number of
positions. Therefore, subsequences of a set of nucleotide data corresponding to the same
binding site will likely not all match exactly, making the identification of these subsequences
by computational means considerably more difficult.

The process of determining transcription factor binding sites can be described by the
following steps:

1. Determine a set of promoters that contain the same binding site. This will be the
input for the next step.

2. Identify reoccurring subsequences in the data that are likely are to be of biological
interest using computational methods.

3. Experimentally evaluate the biological function of the subsequences identified in the
previous step. Biological experiments to verify regulatory sites are tedious and time-
consuming. One approach is to mutate different combinations of nucleotides until
the functionality of the sequence changes.



We will briefly describe one method for the first of the steps in this process that uses
co-expressed genes (genes that are expressed together). They are likely regulated by the
same transcription factors and can be identified through clustering of microarray data. A
microarray works by exploiting the ability of a given mRNA molecule to bind specifically
to, or hybridize to, the DNA template from which it originated. An array containing many
DNA samples can be used to determine (in a single experiment) the expression levels of
hundreds or thousands of genes within a cell by measuring the amount of mRNA bound to
each site on the array. With the aid of computational experiments, the amount of mRNA
bound to the spots on the microarray is precisely measured, generating a profile of gene
expression in the cell. Hence, using the microarray data we can find genes that are expected
to be regulated by the same transcription factor, by measuring the level of transcription
of mRNA based on presence or absence binding factors.

The second step listed above will be the main focus of this thesis. Identifying tran-
scription factor binding sites is one specific example that will motivate our study of motif
recognition. We will return to this specific biological problem later in this chapter, and in
Chapter [, but next we will more thoroughly describe motif recognition from a computa-
tional perspective.

1.2 The Motif-Recognition Problem

The bioinformatics literature uses disparate terminology and notation to define and de-
scribe the problem of identifying binding sites in regulatory regions. To facilitate our
discussion, we begin with general definitions, then make these statements more formal
when deemed necessary.

Given a number of biological sequences, motif recognition is the task of discovering
meaningful patterns from the data without any prior knowledge. Consider a set of se-
quences S = {Si,...,S,}. The aim is to use a computational algorithm to search for
the common patterns in S, referred to as motifs, which are substrings of length ¢, any
two of which have at most d mismatches. It follows from this definition that a motif is a
contiguous sequence that may or may not occur exactly in the input sequences due to the
allowed degeneration. We will often use the term (¢, d)-motif to refer to a motif-recognition
problem where the motif of interest has length ¢ and the degeneracy parameter is d. We
will denote the length of s as |s| and the jth letter of s as s(j).

A motif is commonly described in one of two ways: by a center string, or by a position
weight matriz (PWMJI| Given a number of length-¢ sequences S = {si,...,s,} and a
parameter d, a center string is a length-¢ string that has Hamming distance at most d

! Also called position-specific weight matrix (PSWM) or position-specific scoring matrix (PSSM) [11}38]



from each sequence in S. Throughout this work, we will denote the Hamming distance
between two strings s; and s; as d(s;, s;), and denote the alphabet as ¥. We note that a
center string is not necessarily unique for S. For example, if S contains n copies of a single
length-¢ string then there are Z?:o (2) (2] — 1)" distinct center strings.

A PWM is a matrix of score values that gives a weighted match to any given substring
of fixed length. It has one row for each symbol of the alphabet, and one column for each
position in the pattern. The score assigned by a PWM to a substring 5 = 5(1)35(2)...35(¢)
is defined as Z§:1 ms(j),j, Where j represents position in the substring, 5(;) is the symbol
at position j in the substring, and m, ; is the score in row «, column j of the matrix. In
other words, a PWM score is the sum of position-specific scores for each symbol in the
substring.

A PWM assumes independence between positions in the input sequences, as it scores
at each of the positions independently from the symbols at other positions. The score of a
substring aligned with a PWM can be interpreted as the log-likelihood of the substring un-
der a product multinomial distribution. Since each column defines log-likelihoods for each
of the different symbols, where the sum of likelihoods in a column equals one, the PWM
corresponds to a multinomial distribution. A PWM score is the sum of log-likelihoods,
which corresponds to the product of likelihoods, meaning that the score of a PWM is then
a product-multinomial distribution.

For example, given the following set of five strings (length 6, degeneracy parameter 1):

Sy CACAGG
Sy CACAGG
Ss  CACAGG
Sy CCCAGG
Ss  AACAGG

the string CACAG clearly has Hamming distance at most 1 from each of these strings and
thus is a center string. The position weight matrix for this set of strings is as follows:

String position
1 2 3 4 5 6
Al1/5 4/5 0 1 0 0
cl4/5 1/5 1 0 0 0
G| 0 0 0 0 1 1
T| 0O 0O 0 0 0 O




The focus of our work will be on the following combinatorial formulation that was first
introduced in 2000 by Pevzner and Sze [8§]:

Definition (The Motif-Recognition Problemf) Let S = {Si,...,S,} be a set of
sequences each of length m over the alphabet ¥, and s* be the center string, a fixed and
unknown sequence of length ¢ over the alphabet Y. Suppose that s* is contained in each S;
but is corrupted with at most d substitutions, so the Hamming distance of the occurrences
from M is at most d. The aim is to determine s* and the location of the motif instance in
each sequence.

We note that this combinatorial definition restricts interest to a center sequence repre-
sentation of a motif and hence, we will limit our focus to this motif representation. There
exist several other variants of this problem definition [2, 48], 81l 92, ©96]. For example,
the EDITED MOTIF SEARCH problem [2, 02, 06] considers a database DB of sequences
S1,82,...,5,, and integers ¢, d, and ¢q. A solution to this problem consists of all the
patterns in the DB such that each pattern is of length ¢ and occurs in at least ¢ of the
n sequences. A pattern U is considered an occurrence of another pattern V if the edit
distance between U and V is at most d.

Throughout this thesis, we will also consider the optimization version of this problem.
Where there exists ambiguity, we will explicitly indicate whether we are considering the
optimization or decision version of the motif-recognition problem.

Definition (The Motif-Recognition Optimization Problem) Let S = {S;,...,S,}
be a set of sequences, each of length m over the alphabet ¥, and M be the center string, a
fixed and unknown sequence of length ¢ over the alphabet ¥. The aim is to find a length
¢ substring s; in each string of S; and string s of length ¢ over > minimizing d., where

d(s,s;) <d..

1.3 String Selection Problems

String selection and comparison problems belong to the more general class of problems in
bioinformatics where a finite set of strings is given and the aim is to determine their center
string. The idea of the center string can be related to several different objectives, including
the following;:

2This problem is also referred to as the CLOSEST SUBSTRING problem [67, [75] and as the COMMON
APPROXIMATE SUBSTRING problem [102]



e the objective of the problem is to determine the center string that minimizes the
maximum distance from each input string (CLOSEST STRING problem);

e the objective of the problem is to determine the center string that maximizes the
minimum distance from each input string (FARTHEST STRING problem).

1.3.1 The CLOSEST STRING Problem

Due to its relation to motif recognition and other topics in biology, the CLOSEST STRING
problem and its variants have been studied extensively in bioinformatics and computational
biology [22], 23, 57, [67, [70} 77, [78, T09]. According to Gramm et al. the CLOSEST STRING
problem “is one of the core problems in the field of consensus word analysis with particular
importance for computational biology” [57].

Definition (The Closest String Problem) Given a set S = {s1,5s,...,5,} of se-
quences, each of length-¢ and over an alphabet ¥, and a parameter d, find a string s of
length ¢ over ¥ such that for every string s; € S d(s, s;) < d.

We refer to s in the previous definition as a center string.

CLOSEST STRING is NP-complete, even for binary sequences; this was first shown by
Frances and Litman [49] by considering an equivalent problem in coding theory. Therefore,
no polynomial-time solution is possible unless P = N P.

st ACCCTACACTG st ACCCTACACTG
s2 CACCTACACTG s2 CACCTACACTG
s3 CCCCTACACTG s3 CCCCTACACTG
s4 AACCTACACTG s4 ACCCTACACTG
s5 AACCTACACTG s5 ACCCTACACTG
s6 CCCCTACACTG s6 CCCCTACACTG

ACCCTACACTG

Figure 1.3: An example showing two different CLOSEST STRING instances; one that is a
motif set (right) and one that is a decoy set (left).

3or equivalently, the CONSENSUS STRING problem or the CENTER STRING problem
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Clearly, for a set S to have at least one center string corresponding to the degeneracy
parameter d, the Hamming distance between any pair of strings in S must not exceed 2d.
We refer to such a set of strings as being pairwise bounded. Determining whether a set
of strings is pairwise bounded can be trivially decided in polynomial time and therefore,
since the CLOSEST STRING problem is NP-complete, there must exist sets of strings that
are pairwise bounded but do not contain a center string, unless P = NP. In figure there
exist two sets of strings that are pairwise bounded when d = 1, however, the set on the left
does not contain a length-¢ string that has distance at most d from each string in the set
and the string on the right has such a string (i.e. the string in bold). Thus, the CLOSEST
STRING problem essentially reduces to discerning between pairwise bounded sets that have
a center string (and if so, finding one such string) and those sets that do not. A set of
strings S is a motif set if there exists a center string and is a decoy set if S is pairwise
bounded but does not have a center string.

Also of considerable importance is the optimization version of the CLOSEST STRING
problem. Throughout this work, we will explicitly indicate when there exists ambiguity
whether we are considering the optimization or decision version of the CLOSEST STRING
problem.

Definition (The Closest String Optimization Problem) Given aset S = {s1,$2,...,S,}
of sequences, each of length ¢ and over an alphabet X, find a string s of length ¢ over X
minimizing d. such that, for every string s; € S, d(s, s;) < d..

We refer to the string s in the context of the optimization version on the problem as
the center string.

1.3.2 The FARTHEST STRING Problem

The FARTHEST STRING problem was first introduced by Lanctot et al. [66]. Whereas, the
CLOSEST STRING problem abstractly defines the problem of finding a pattern that, with
some error, occurs in one set of strings, the FARTHEST STRING problem defines the problem
where the pattern does not occur in a set of strings. Both of these string selection problems
have application to the analysis of genomic data. The FARTHEST STRING problem has been
proved NP-complete even when the alphabet is binary [66], and therefore, it is unlikely
to have an exact polynomial-time solution, unless P = NP. This problem can be more
formally defined as follows:

Definition (The Farthest String Problem) Given a set S of strings of length at
least ¢ over an alphabet ¥ and a non-negative parameter dy, the objective is to determine
if there exists a string s over the alphabet 3 such that for any s; € Sy, d(s, s;) > dy.
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Although the FARTHEST STRING problem is not as well-studied as the CLOSEST
STRING problem, it will be of both theoretical and practical interest in this thesis.

1.4 Biological Applications

We introduced motif recognition by demonstrating its applicability to detecting transcrip-
tion factor binding sites; however, there exist many other biological and non-biological
applications for this problem. For example, motif recognition is applicable in the fields
of coding theory [32, 49] and data compression [53]. There exist many other biological
applications in addition to the ones discussed in this section, including finding an unbi-
ased consensus of a protein family [10], function prediction [58, 102], and modelling and
predicting splice sites [§].

Designing Diagnostic Probes

Creating diagnostic probes for bacterial infection has been one of the core applications to
the theoretical study of string selection and comparison problems [10} 67, [79]. Currently,
oligonucleotide microarrays are being used in gene expression analysis, as well as for di-
agnostic purposes (i.e. the identification of micro-organisms in clinical and environmental
samples). The key task is to efficiently determine suitable sets of oligonucleotide probes
that can reliably detect and differentiate the target sequences. Determining efficient algo-
rithms that achieve this are of utmost importance since the datasets may be significantly
large. There exist algorithms to produce adequate probes when there exists a high amount
of variability within the target sequences [64, [65]; however, when the sequence database
contains homologous genes, the problem still remains largely unsolved. In the case where
it is impossible to determine specific probes due to the high similarity, it is advantageous
to design probes that are specific for groups of closely related sequences, and that detect
target sequences as well as some non-target sequences (referred to as negative probes).
Hence, given a set of DNA sequences from a group of closely related pathogenic bacteria
and a host, the task is to find a sequence that occurs in each of the bacterial sequences
without occurring in the host sequence.

Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a well-established technique in molecular biology to
amplify a single or few copies of a DNA segment, referred to as a template, across several
orders of magnitude, generating thousands to millions of copies of a particular DNA se-
quence. Primers are short DNA fragments that contain sequences complementary to the
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target region along with a DNA polymerase. Hence, they are key components which enable
selective and repeated amplification. The DNA generated is itself used as a template for
replication during the PCR by setting a chain reaction in which the DNA template is expo-
nentially amplified. PCR can be modified to perform a wide array of genetic manipulations
[91].

Creating universal PCR primers that are able to recognize multiple segments has been
a problem well-investigated by the bioinformatics community [39, 61, [67, [74, OT]. The
specificity of the primer hybridization directly affects the specificity of the amplification
by PCR. Designing well-constructed primers comes down to a sequence problem where
one attempts to determine the maximum number of mismatches that can be allowed for
hybridization.

Drug Design

Drug design is another biological application [34, 36 67]. Given a set of sequences of
orthologous genes from a group of closely related pathogens, and a host, the goal is to find
a subsequence that is highly conserved in all of the pathogen sequences but not conserved
in the sequence of the host. This subsequence can in turn, be used to create a novel drug
that harms several pathogens with minimal effect on the host.

1.5 Summary

This thesis is focused on the development of combinatorial and probabilistic algorithms for
problems arising from the analysis of genomic data. In particular, we will examine several
traditional problems in bioinformatics, including motif recognition, CLOSEST STRING, and
other string selection problems. In this chapter we introduced each of these problems and
motivated them by illustrating their application in biology. Next, we will survey some
of the important results through the literature pertinent to motif recognition, CLOSEST
STRING, and its variants.
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Chapter 2

Related Work

The contributions of this thesis lie at the cusp between discrete mathematics and bioinfor-
matics. This work involves constructing predictive models to identify important compo-
nents of genetic sequence data. Modelling biological problems as graphs and other abstract
mathematical objects can lead to theoretical results concerning computational complexity
and, thus, the ability to find an approximate solution efficiently. In Chapter [1| we in-
troduced the central topic of this thesis, motif recognition, gave biological motivation for
the study of this problem, and defined several string selection problems peripheral to this
investigation.

In this chapter, we begin by surveying the theoretical results related to motif-recognition,
the CLOSEST STRING problem and variants of the CLOSEST STRING problem. Each of
these problems that we consider is NP-complete and, thus, unlikely to have a polynomial-
time algorithm. Two natural approaches to dealing with the intrinsic computational hard-
ness of these sequence problems are: to consider their parameterized complexity, and to
determine if they can be approximated to a reasonable factor in polynomial time. Prior
to this survey, we introduce and define terms from theoretical computer science that will
arise in this work, namely those central to the topics of parameterized complexity and
approximability.

In addition to our survey on the important theoretical results related to our study
of motif recognition, we give an overview of a short list of programs that detect motifs
in synthetic and biological data. The programs we choose to survey are the ones most
well-used or well-studied; the work is either well-cited or frequently used by biologists or
bioinformaticians.
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2.1 Preliminaries

We provide an overview of the terms and definitions used in this thesis, and a detailed
review of parameterized complexity and the theory of approximation algorithms.

2.1.1 Notation

Let s be a string over the alphabet . Denote the length of s by |s|, and the jth letter of
s by s(j). Hence, s = s(1)s(2)...s(|s]).

Given functions f and g of a natural number variable n, the notation f < g (n — 00)
is used to express that
lim @ =1
n—o0 g(n)
and f is an asymptotic estimation of g (for relatively large values of n). Throughout this
work, we will often refer to a short nucleotide sequence of a specific length k as a k-mer.

Definition (closest string) Given a set of strings S = {s1, ..., s, }, each string of length
(, then a string s is a closest string for S if and only if there is no string s’ such that
maX;=1i,..n d(s',s;) < maX;=1,..n d(s, si).

Similarly, if s is a closest string for S then we define the optimal closest distance d is equal
to max;—1,., d(s, s;).

Definition (majority vote string) We refer to a majority vote string for S as a length-¢
string containing a letter that occurs most often at each position. A majority vote string
— which we sometimes refer to as the majority string — is not necessarily unique.

There can be up to |X| unique majority symbols at each position, and up to || distinct
majority strings. When we refer to a randomly selected majority vote string we refer to a
string that has the majority symbol at each position with ties broken arbitrarily.

2.1.2 A Brief Introduction to Parameterized Complexity

Any NP-hard problem & is unlikely to be solved in polynomial time. Most likely there will
be only exponential-time algorithms for ®. Fortunately, an exponential-time algorithm can
still be efficient if the exponential component of the running time is restricted to parameters
that are likely small in practice and the running time is polynomial in all other parameters.
The goal of parameterized complexity is to attempt to restrict the exponential increase of
the running time to as few parameters of the instance as possible.
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Definition A parameterized problem is a language L contained in ¥* x N | where ¥ is a
finite alphabet. The second component is called the parameter of the problem.

A parameterized problem is specified by three pieces of information: the input, the
problem, and the parameters that are designated as fixed. In classical complexity, tractable
problems are defined as those problems solvable by a polynomial-time algorithm. The
analogous concept in parameterized complexity is an algorithm with running time bounded
by a function that is polynomial in the size of the input but is allowed to be superpolynomial
in the value of the fixed parameters.

Definition A problem ¢ is said to be fixed parameter tractable with respect to parameter
k if there exists an algorithm that solves ¢ in f(k) - n®®" time, where f is a function of k
that is independent of n.

For example, given a graph G = (V, E) with vertex set V', edge set F, and positive
integer k, the VERTEX COVER problem aims to discern where there is a subset of vertices
Ve C V with k or fewer vertices such that each edge in E has at least one of its endpoints
in V. The VERTEX COVER problem is NP-complete [51] but is fixed parameter tractable
since there exist algorithmic solutions that have running time O(kn +1.3%) [40]. There are
several general, sophisticated techniques developed for the design of efficient parameterized
algorithms, including the bounded search tree method, reduction to the problem kernel,
and perfect hashing [40]. A problem that is fixed parameter tractable is said to reside in
the parameterized corresponding complexity class FPT.

Not all problems in NP are believed to be in FPT. For example, consider the NP-
complete CLIQUE problem: given an undirected graph G = (V| F) and a positive integer
k. the aim is to determine whether there is a subset of vertices C' C V of size at least k
where each pair of vertices in C' are connected by an edge. CLIQUE is believed to be fized
parameter intractable since it is not known whether it can be solved in time f(k) - n®W),
where f might be an arbitrarily fast growing function only depending on k. The best
known algorithms for solving clique runs in time O(n°*)) [40].

In order to characterize those problems that do not seem to admit a fixed parameter
efficient algorithm, Downey and Fellows [40] defined a fized parameter reduction. Let
L,L* C 3" xN be two parameterized languages. L reduces to L’ if there are functions
k — k' and k — k” from N to N and a function (z, k) — 2’ from > xN to > such that:

1. (x,k) — 2 is computable in time £”|z|¢, for some constant ¢ and

2. (z,k) € Lif and only if (2/, k") € L'
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We note that if L reduces to L' and L’ is FPT, then L is FPT.

The goal of parameterized complexity is to determine a finer distinction between prob-
lems lying in NP and organize them according to some hierarchy of classes. The central
problem used to provide a model for parameterized non-deterministic computation is the
WEIGHTED CIRCUIT SATISFIABILITY problem. The parameterized version of this problem
defines an infinite hierarchy of parameterized complexity classes inside NP.

Definition A Boolean circuit «, with input x = x125--- 2, of length n is a directed
acyclic graph. The nodes of fan-in 0 are called input nodes and are labelled from the set
{0,1, 21,71, 22, T3, . . ., Xn, Tp}. The nodes of fan-in greater than 0 are called gates and are
labelled either AND, OR, NOT. A special node is designated the output node. The size
is the number of nodes and the depth is the maximum distance from an input node to the
output node.

Definition A gate is said to be large if the number of inputs to that gate exceeds some
specified bound. The weft of a decision circuit is the maximum number of large gates on
any path from the input variables to the output.

Definition Given a weft ¢ depth h decision circuit C' and a parameter k, the WEIGHTED
WEFT ¢t DEPTH h CIRCUIT SATISFIABILITY (WCS, ;) problem aims to determine whether
C has a weight k satisfying assignment.

The set of problems reducible under parameterized reductions to WCS; ;, for any A,
forms the class called W[t]. The W hierarchy is a collection of computational complexity
classes used in the theory of parameterized complexity, classifying computational problems
according to their apparent intractability in terms of a parameter other than input size.

In this thesis we will mainly be interested in the W/[1] class, which is considered the
lowest intractable class of parameterized complexity. From a practical perspective, W|[1]-
hardness gives a concrete indication that a parameterized problem with parameter k is
unlikely to have an algorithm that has running time of the form f(k) - n°®. XP is the
class of all problems solvable in O(nf(®)), where n is the size of the input, k a parameter,
and f is a computable function independent of n.

The parameterized complexity classes are related to P and NP as follows:
PCFPTCW[I|CW[2]C---CW[P]C.--CXPCNP.

Parameterized complexity is based on the assumption that FPT # W][1|, which is very
much analogous to the conjecture that P#NP [40].
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2.1.3 A Brief Introduction to Approximability

Approximation algorithms are used to find approximate solutions to optimization problems
and are often associated with NP-hard problems. Since it is unlikely that there can be an ef-
ficient, polynomial-time algorithm for solving a NP-hard problem exactly, it is useful to find
a reasonable — though sub-optimal — solution in polynomial time. Approximation theory
was first introduced by Johnson [63] and since this time and has become a widely-accepted
manner to deal with the tractability of hard problems. When discussing approximability,
the efficiency of the algorithm, the correctness of the solution, and the quality of the ap-
proximation are all important concerns. Various measures of approximation quality have
been proposed, however, the performance ratio will be our focus throughout this thesis.

Definition Let z be an instance of an optimization problem 7 having an optimal solution
opt(z). Let A be an algorithm for solving 7, and A(z) the value of the solution produced
by A when applied to x. The performance ratio of A with respect to z is

A(z) opt(x)
i) Alw)

Many results prove the approximation is optimal up to a small constant factor. For
example, a p-approximation algorithm A for any input z will return a solution whose
value will be within a factor p times the optimal solution. For example, the following
polynomial-time algorithm is a 2-approximation algorithm for the vertex cover problem:
find an uncovered edge and add both endpoints to the vertex cover, until no uncovered
edge remains. It is clear that the resulting set of vertices is a vertex cover and is at most
twice as large as the optimal one.

Different optimization problems have different approximation properties relating to the
types of approximation algorithms for solving them. In a p-approximation algorithm, the
value of p may be be a function of |z|, some other parameter to the problem, or a constant.
A polynomial-time approximation scheme (PTAS) is an algorithm which takes an instance
of an optimization problem and a parameter ¢ > 0 and, in polynomial time, produces a
solution that is within a factor € of being optimal. Hence, the existence of a PTAS implies
that the problem can be approximated within an arbitrarily small factor in polynomial-
time. Not all problems exhibit a PTAS; in fact, any problem hard for the class known
as APX does not have a PTAS, unless P=NP [113]. We note that the running time of a
PTAS is required to be polynomial in the size of the problem instance for every fixed € but
can differ for various values of e.

An efficient PTAS (EPTAS) is an approximation scheme that produces a (1 + ¢)-
approximation in f(e) - n¢ time for some constant c. For example, if f(e) is 2//¢ then such
an approximation scheme can be practical even for ¢ = 0.1 and large n. A consequence of
W/[1]-hardness is that there is no EPTAS for the optimization version of the problem [26].
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2.1.4 A Brief Introduction to Smoothed Analysis

Smoothed analysis was introduced as an intermediate measure between worst-case and
average-case analysis, and is used to explain how many algorithms that are deemed in-
efficient by worst-case analysis can efficiently find good solutions in practice. It works
by showing that the worst-case instances are fragile to small change; slightly perturbing
a worst-case instance destroys the property of it being worst-case. Spielman and Teng
[T03] analytically showed that the smoothed complexity of the simplex algorithm (with
the shadow-vertex pivot rule) for linear programming is a polynomial-time algorithm in
practice. Linear programming is a continuous problem. The input is a sequence of real
numbers: a cost vector and linear constraints. The smoothing operation adds Gaussian
noise with parameter ¢ to each number in the input. The expected running time of the
simplex algorithm for such a perturbed instance is polynomial in 1/0 and the number of
input variables.

Several other papers discuss the smoothed complexity of continuous and discrete prob-
lems [13] [7, [76]. Banderier et al. [7] investigated the concept of smoothed analysis with
respect to ordering problems. They presented and used a partial permutations perturbation
model, where each element of the sequence is independently selected with a given probabil-
ity p and then a random permutation on the selected elements is performed. Among other
results, Banderier et al. [7] proved that the expected running time of quicksort on a partial

p-logn
analysis of binary search trees and prove tight lower and upper bounds of roughly ©(y/n)
for the expected height of a binary search tree.

permutation of n elements is O . Manthey and Reischuk investigated the smoothed

The smoothed complexity of other string and sequence problems has been considered
by Andoni and Krauthgamer [5], Manthey and Reischuk [80], and Ma [76]. Andoni and
Krauthgamer [5] studied the smoothed complexity of sequence alignment by the use of
a novel model of edit distance. Their results demonstrate the efficiency of several tools
used for sequence alignment, most notably PatternHunter [78]. Manthey and Reischuk
gave several results considering the smoothed analysis of binary search trees [80]. Ma
demonstrated that a simple greedy algorithm runs efficiently in practice for SHORTEST
COMMON SUPERSTRING [76], a problem that has application to string compression and
DNA sequence assembly.

2.2 Past Work on Motif Recognition

We have previously introduced the problem of motif recognition and showed the appli-
cability to finding transcription factor binding sites. An obvious method to detect motif
instances of length /¢ is to generate all possible sequences of length ¢ and examine each of
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these sequences to see if there exists a subsequence in the input that has distance at most
d from it. There are |2|* possible center sequences and each of these sequences can be
checked in time O(mnf) time. This is essentially one of the first motif-recognition algo-
rithms given by Waterman et al. [I16]. Although this exhaustive algorithm is guaranteed
to find a motif set if there exists one, the running time of the algorithm is exorbitantly
large and, hence, impractical for even reasonably small motifs. Nonetheless, due to the
applicability of the problem to important problems in biology, it is imperative that effi-
cient algorithms be developed for it. Numerous algorithms have been developed to solve
specific instances of the problem, including PROJECTION [24], Winnower [8§], pattern
driven approaches [107], MITRA [43], PSM1 [92], PMSprune [35], the Voting algorithm
[30], MEME [6], VAS [31], RISOTTO [89], Weeder [87] and several others. We will discuss
several of these algorithms in more detail in this section.

2.2.1 Theoretical Results

A crucial first step in the study of the complexity of motif recognition is the determina-
tion of whether the problem lies within the complexity class NP. The Verify Algorithm
demonstrates that the problem can be solved in non-deterministic polynomial time. The
algorithm aligns the supposed center string with all possible length-¢ substrings in the set
of the input sequences, counts the number of matching positions, and returns whether or
not it is a valid center string. Hence, the complexity of the algorithm is ©(nmf).

Algorithm 1 Verify Algorithm

Input: A set S = {S1,5,,...,S5,} of n length m sequences, a string s € X and
parameter d.
Output: A boolean value indicating whether there is a length ¢ substring in each
sequence in S with distance at most d from s.
Let a «+— true.
Fori:i=1,...,m:

Let a; < false.

For each length ¢ substring s; of S;:

If d(s;,s) < d then «; = true.

If «; is false then o = false.

Return a.

After the verification that the problem is in NP, the next aim is to determine whether
it is in P or NP-complete. Unfortunately, the problem is known to be NP-complete, and
unlikely to be solved in polynomial-time, unless P = NP [49]. There are two natural
approaches to investigate the computational intractability of this problem: consider the
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fixed parameter tractability with respect to the problem parameters (i.e. ¢, n, or d),
and consider the ease with which it can be approximated with reasonable accuracy and
efficiency.

In [44] and [45] it is shown that the problem is W[1]-hard even if all three of n, d and
¢ are fixed and the alphabet is unbounded. Smith demonstrated the problem is W|[1]-hard
when m and ¢ are parameters and || is unbounded [102]. On the other hand, if |¥| and
¢ are both parameters, then the problem becomes fixed-parameter tractable since we can
enumerate and check all the |X|* possible center strings.

If the strings are long, which is often the case in practical applications, then it makes
more sense to assume that the number of sequences n or the degeneracy d are parameters.
In [45] it is shown that the problem is W[1]-hard with parameter n, even if the alphabet is
binary. Recently, Marx [82] demonstrated that motif recognition is W[1]-hard with respect
to the parameter d or with the combined parameters d and n, even if the alphabet is
binary. Table summarizes these results. Further, Marx [82] presented two algorithms
that aim to be efficient for small fixed values of d and n: for some functions f and ¢ and
size of the input &, the algorithms have running times f(d)- k184 and f(d,n)-kOUosloen),
respectively. The second algorithm is based on connections with extremal combinatorics
of hypergraphs.

Lastly, Ma and Sun [77] gave a new algorithm with improved time complexity O((16[%])?-
ml°8d1+1) " Smith gave some results considering membership in the W-Hierarchy beyond
the W[1] parameterized complexity class [102]; however, we will restrict interest to the
W]1]-hardness throughout this thesis. In addition, he presented the first fixed parameter
tractable variant not parameterized with the alphabet size [102].

Parameter(s) |¥| is constant |X| is a parameter |X| is unbounded

d W][l]-hard [45]  W/[1]-hard [45]  W[1]-hard [44], [45]
d,n Wil]-hard [45] ~ W]l]-hard [45] = W[1]-hard [44], 45]
n W(l]-hard [45] ~ W]l]-hard [45]  W[1]-hard [44] 45]
14 FPT (trivial) FPT (trivial) W(1]-hard [44], 45]
l,d,n FPT (trivial) FPT (trivial) W(1]-hard [44], 45]
l,m FPT (trivial) FPT (trivial) W(1]-hard [102]

Table 2.1: Complexity of motif recognition with different parameterizations

There is a straightforward 2-approximation algorithm for the optimization version of
the motif-recognition problem. Li et al. [70] presented a polynomial-time algorithm that
achieves a 2 — 2/(2|X| + 1)-approximation guarantee for this problem. Lanctot et al. [67]
improved upon this result by giving an algorithm that achieves a (4/3 + €)-approximation
guarantee in polynomial time, for any small constant e > 0. Ma [75] presented a PTAS for
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the problem. For a given value of r, this PTAS considers all choices of r substrings of length
¢ from the n strings and for each collection of substrings chooses a majority string as the
center string. After all n"(m — ¢+ 1)" possible collections of substrings are considered, the
collection with the smallest maximum (Hamming) distance between the center string and
any string in the collection. Smith [102] gave a PTAS for the optimization version of the
motif-recognition problem where there are no restrictions on the alphabet size, and gave an
improvement to the result of Ma [75] for the case where the alphabet is binary. Andoni et

al. [4] presented a PTAS that achieves a much better time complexity of O (mno(e_2 log 5) :
Lastly, Ma and Sun [77] combined their fixed parameter tractability results to provide a
simpler PTAS with time complexity O (mno(€_2)>. As suggested by Ma and Sun [77], an

important problem that remains open is to find a more efficient approximation algorithm
for logn < d < logn/ée>.

In addition, Smith [102] presented the idea that the motif recognition optimization
problem can be optimized with respect to different objectives, rather than just minimizing
d. The different objectives they described are:

e Maximize ¢ — d, which described the similarity between the strings (MAX CLOSEST
SUBSTRING);

e Maximize ¢ while keeping d constant (LONGEST COMMON APPROXIMATE SUB-
STRING);

e Maximize n, the number of strings (MAXIMUM COVERAGE APPROXIMATE SUB-
STRING).

Smith proved that MAX CLOSEST SUBSTRING is not approximable within logn/4 in
polynomial time (unless P=NP) through a gap preserving reduction the SET COVER prob-
lem. He also proved MAXIMUM COVERAGE APPROXIMATE SUBSTRING is APX-hard, and
finally, that LONGEST COMMON APPROXIMATE SUBSTRING cannot be approximated in
polynomial time with performance ratio better than 2 — ¢, for any ¢ > 0 unless P=NP
[102]. He gave a 2-approximation algorithm for LONGEST COMMON APPROXIMATE SUB-
STRING and a |¥|%-approximation algorithm for MAXIMUM COVERAGE APPROXIMATE
SUBSTRING.

Deng et al. [30] considered a related string problem, referred to as the DISTINGUISHING
(SUB)STRING SELECTION problem. Given two sets of strings, S, (bad genes) and S, (good
genes), and two integers d;, and d, (dy < d,), the aim of the DISTINGUISHING (SUB)STRING
SELECTION problem is to find a (distinguishing) substring s of length ¢ that distinguishes
the bad strings from good strings — that is, for each string S; € S, there exists a length-¢
substring s; of S; with d(s,s;) < d, (close to bad strings) and for every substring ¢; of
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length-¢ of every string T; € Sy, d(s,t;) > d, (far from good strings). Deng et al. [306]
presented a PTAS for this problem. Gramm et al. [54, 55] showed the decision version of
this problem is W[1]-hard with respect to all combinations of the parameters as given in
the problem definition, and gave a fixed parameter algorithm for a very restricted version
of the DISTINGUISHING (SUB)STRING SELECTION problem.

2.2.2 Statistical Methods

We discuss two popular statistical methods for detecting motifs: Multiple EM for Motif
Elicitation (MEME) [6] and Gibbs sampling [68]. Other notable statistical methods include
CONSENSUS [60], the Yeast Motif Detection (YMF) approach [101] and Motif Discovery
Scan (MDscan) [73]. Unless otherwise stated, we assume the input to a motif-recognition

program is a set of n sequences of length m denoted as {5, Ss,...,S,} and the aim is to
return is to return a set of length-¢ sequences {s1, s, ..., s, }, where s; is a subsequence of
Si.

MEME

An Ezpectation Mazimization (EM) algorithm is a method for finding maximum likelihood
estimates of parameters in statistical models, where the model depends on unobserved
latent variables. It is an iterative algorithm that alternates between performing an ez-
pectation step, which computes the expectation of the log-likelihood evaluated using the
current estimate for the latent variables, and a maximization step, which computes pa-
rameters maximizing the expected log-likelihood found on the expectation step. These
estimates of the parameters are used to determine the distribution of the latent variables
in the next expectation step [37].

EM can be used to simultaneously optimize the PWM description of a motif [37]. The
weight matrix for the motif is initialized with a subsequence of length ¢, plus a small
amount of background nucleotide frequencies, for each subsequence of length ¢ in the
target sequences the probability that it was generated by the motif is calculated (rather
than by the background sequence distribution). EM takes a weighted average across these
probabilities to generate a more refined motif model. The algorithm iterates between
calculating the probability of each site based on the current motif model, and calculating a
new motif model based on the probabilities. It can be shown that this procedure performs
a gradient descent, converging to a maximum of the log likelihood of the resulting model.

Developed in 1995 by Bailey and Elkan, MEME [6] is one of the most popular motif-
recognition applications. The idea is to find an initial motif, then repeat the expectation
and maximization steps to improve the motif until it cannot be improved beyond a certain
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threshold, or the maximum number of iterations has been reached. MEME uses the PWM
motif representation.

The algorithm has a parameter v that denotes the probability that a sequence is a
motif, a motif model # that is used to represent the motif, and a background model 6,
that is used to represent the distribution of the sequences involved. Both the motif model
and the background model are represented by a PWM. The expectation step computes the
probability of finding the site at every position in every sequence based on the given PWM,
and in the maximization step, we refine the PWM of the motif given the probabilities for
every position and every sequence. We refine the PWM for 6 by letting the PWM be equal
to the probability that a subsequence has a specific nucleotide at a given position. These
probabilities are then normalized so that the entries for a column of the PWM sum to one.
Further, with the probability we get from the expectation step, we update the value of ~.

For example, suppose we are given the sequence s = TGATATAACGATC, and the
following PWMs for 6 and 6,:

1 2 3 4 )
02]08(01]0.7]08
0 101(02| 0 |0.1
01(01]01]0.2|0.1
071 0 106{01] 0

1 2 3 4 )
0.2510.25]0.25 ] 0.25 | 0.25
0.2510.25]0.25 ] 0.25 | 0.25
0.2510.25]0.25 ] 0.25 | 0.25
0.2510.25]0.25]0.25 | 0.25

HIQ Q=
H| Q| Q| =P

As in the expectation step, we consider the subsequence at each possible position of
s. Let p; be the probability that of finding the given subsequence of length 5 at the given
position. Hence, there are 9 possible subsequences and probabilities to consider.

TGATATAACGATC
TGATA n
GATAT Do
ATATA s
TATAA s
ATAAC s
AACGA Dy

Considering the first segment TGAT A, we calculate the probability p; as follows:

- Pr(TGATA|)
Pr = PTGATA|G)y + Pr(TGATAG)(1 — )
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With the probabilities that we get from the expectation set, we calculate v to be equal to
> v pi/9 and refine the PWM 6. e.g. the entry for the nucleotide 7" at position 1 of the
refined PWM 6 is equal to:

P1+ Pa+ Do

> vi Di .

The MEME algorithm has several drawbacks, including the following: erased input data
each time a new motif is discovered since it assumes the new motif is correct, limitation
to the two-component case, and extreme pessimism about alignment (which might lead to
missed signals). The most significant drawback of the algorithm is its high time complexity.

Gibbs Sampler

In 1993 Lawerence et al. [68] presented GibbsDNA, a motif-recognition program that uses
a randomized approach to iteratively improve a motif. Gibbs sampling can be viewed as a
stochastic implementation of EM. Whereas the latter takes a weighted average across all
subsequences (weighted with the current estimate of the probability that they belong to
the motif), Gibbs sampling takes a weighted sample from these subsequences. Initially, a
motif, represented by a PWM, is selected by choosing one length-¢ subsequence uniformly
at random from each of the input sequences. Let 6 be the motif model, and 6, as the
distribution of the sequences. Figure [2.1]illustrates this initial step of Gibbs sampling.

At each iteration, the algorithm probabilistically decides whether to add a new site
and/or remove an old site from the motif model, weighted by the binding probability for
those sites. The resulting motif model is then updated, and the binding probabilities
recalculated. Given sufficient iterations, the algorithm will efficiently sample the joint
probability distribution of motif models and sites assigned to the motif, focusing in on
the best-fitting combinations. The algorithm repeatedly performs the following steps to
iteratively improve the motif:

1. It selects a sequence S; at random from the set of input sequences and deletes its
length-¢ subsequence.

2. Next, it defines the PWM 6 based on the remaining length-¢ sequences (i.e. the
subsequences in bold in Figure, and the PWM 6, based on the non-motif regions.

3. For each length-¢ subsequence s;; from sequence S; and starting at position j, it
Pr(s;;|0)
Pr(si;]60)

calculates , which is denoted as score;.

4. The algorithm then lets arg max; score; be equal to j.
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Input:

ACGTTTTACCATATACACAGGCACACACAAACCCAAAACATATTATAATAC
ACGAGGTGTGAGTGAGAGATGGAGACACCGGATTGAGAAGCCCCAAC
CACGGGCTGTGAGTGAGAGATGGAGATTTTTAGTTGATATAATATACAAC
ACGTCTCTCATATACACACACACACACCACAGCAACAAGTGCTTATAATA

Output of initial step:

ACGTTTTACCATATACACAGGCACACACAAACCCAAAACATATTATAATAC
ACGAGGTGTGAGTGAGAGATGGAGACACCGGATTGAGAAGCCCCAAC
CACGGGCTGTGAGTGAGAGATGGAGATTTTTAGTTGATATAATATACAAC
ACGTCTCTCATATACACACACACACACCACAGCAACAAGTGCTTATAATA

Figure 2.1: An example showing the initialization step in Gibbs sampling. The initial
step of the Gibbs sampling algorithm chooses a subsequence of a given length from the
input sequences uniformly at random. The subsequences shown in bold are the selected
subsequences from this step.

ACGTTTTACCATATACACAGGCACACACAAACCCAAAACATATTATAATAC
ACGAGGTGTGAGXXXXXXATGGAGACACCGGATTGAGAAGCCCCAAC
CACGGGCTGTGAGTGAGAGATGGAGATTTTTAGTTGATATAATATACAAC
ACGTCTCTCATATACACACACACACACCACAGCAACAAGTGCTTATAATA

Figure 2.2: Illustration of step 1 of Gibbs sampling. In step 1 one of the subsequences is
chosen randomly and the ¢-length subsequence is deleted.

It follows that at each iteration of the algorithm, one of the motif instances is replaced
with an improved instance. When using the Gibbs sampler, a different set of initially
selected subsequences will result in a different final set and therefore, to obtain results that
are close optimal, the algorithm has to be ran a number of times and the motif instance with
the maximum score is returned. There are several algorithms that use Gibbs sampling as
a subroutine. For example, AlignACE (Aligns Nucleic Acid Conserved Elements) [95] and
BioProspector [72] are motif-recognition programs that employ a Gibbs sampling strategy.
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ACGTTTTACCATATACACAGGCACACACAAACCCAAAACATATTATAATAC
ACGAGGTGTGAGTCAGAGATGGAGACACCGGATTGAGAAGCCCCAAC
CACGGGCTGTGAGTGAGAGATGGAGATTTTTAGTTGATATAATATACAAC
ACGTCTCTCATATACACACACACACACCACAGCAACAAGTGCTTATAATA

Figure 2.3: Illustration of step 4 of Gibbs sampling. After the score of each ¢-length in
sequence S; is calculated the subsequence that has the maximum score is added, replacing
the deleted subsequence in Step 1.

BioProspector

BioProspector uses Gibbs sampling to search a list of sequences for potential regulatory
motifs [72]. Gibbs sampling first initializes the motif matrix using length-¢ subsequences
that are randomly selected from the input; then, it samples from all length-¢ subsequences
in the input sequences to update the PWM. The probability of selecting a length-¢ sub-
sequence is proportional to the likelihood of generating it from the current motif matrix
over the likelihood of generating it from the non-motif background. The motif matrix
is updated until convergence, or until a certain number of sampling iterations has been
reached. BioProspector has several significant improvements compared to GibbsDNA. It
uses a Markov model estimated from all promoter sequences in the genome to model ad-
jacent nucleotide dependency and improve motif specificity. It also adopts two thresholds
to allow each input sequence to contain zero or multiple copies of the motif [72].

MDScan

MDScan [73] is a motif-discovery program that combines two widely adopted motif search
strategies: word enumeration |25 10T} 11T} 1T4] and position-specific weight matrix up-
dating [0, 59, [72]. Tt has been shown to detect longer motifs with a greater number of
degenerate positions, however, it is unable to detect (15,4)-motifs with adequate accuracy

73].

CONSENSUS

CONSENSUS is a greedy algorithm that is based on a matrix consensus of overrepresented
motifs in a set of sequences, coupled with a phylogenetic assessment of the statistical
robustness of this motif [60].
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The YMF Approach

The Yeast Motif Detection (YMF) approach calculates the z-score for each oligomer oc-
curring in the data set and has been shown to successfully detect motifs in yeast genomes.
The success of YMF in detecting transcription factor binding sites in the yeast genome is
due to the simplicity of the problem: the short motif length and small number of degener-
ate positions. Unfortunately, YMF is not suitable for detecting motifs where the length is
large and the number of degenerate positions is significant.

2.2.3 Combinatorial Methods

Combinatorial approaches to motif-recognition use the motif model given in Definition
[1.2 The aim of these methods is to solve progressively weaker and more computationally
challenging problems with superior accuracy and efficiency. For example, WINNOWER,
which was developed in 2000, was capable of solving of solving the (15,4)-motif problem
with 20 sequences, each of which had length at most 700 bp [88], whereas PSM1, which was
developed in 2005, was able to solve the (18,6)-motif problem with 20 sequences, each of
which has length at most 1000 bp, with increased accuracy. We will describe the following
three combinatorial approaches to motif recognition in detail: SP-STAR, WINNOWER
[88], and PROJECTION [24].

SP-STAR

SP-STAR, developed by Pevzner and Sze [88], does an enumerative search but only over
a restricted search space defined by the data instead of the entire space. First, a set of
subsequences is chosen as the initial motif, and then the best possible motif is obtained
by employing a local improvement heuristic that uses scoring function that evaluates the
strength of the motif. Given a set of length-¢ sequences {1, xs, ..., z,}, we define SPscore
as ), ;i d(x;,z;). We summarize SP-STAR in the following steps:

1. Let X be the set of all length-¢ subsequences in the n input sequences {Si,...,S,}.
2. For any length-¢ sequence x € X chosen uniformly at random, do the following:

(a) Find the set of n length-¢ sequences {si, ..., s,} such that s; is contained in S;
for all 4, and d(z, s;) is minimized.

(b) Let x be a sequence that contains the alphabet symbol that occurs most fre-
quently at each position and with ties broken arbitrarily.
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(c) Repeat steps [2al and [2b| until SPscore of {si,...,s,} cannot be further im-
proved.

The algorithm is rerun a number of times and the set of sequences that minimizes
SPscore is returned. Further, the authors suggest that the local improvement steps “may
take a long time” [88] and therefore, should only be performed on a fraction of the best ini-
tial sets of sequences. Nonetheless, the number of sequences to be searched is approximately
(2) 3¢, SP-STAR was successful in finding (15, 4)-motif instances in data sets containing 20
sequences, each of which has maximum length 700 but failed to have reasonable accuracy
when the sequence length exceeded 700 [92].

WINNOWER

WINNOWER is a simple graph-theoretic approach that represents a motif instance as
a cliqudf’] WINNOWER first constructs a graph G(V, E) by creating a vertex for every
subsequence of length ¢ occurring in the input and adding an edge between all pairs of
vertices corresponding to subsequences that are distance 2d apart and occurring in different
input sequences. Now the problem of finding a (¢, d)-motif corresponds to finding a clique of
size n. However, clique finding is NP-complete [51] and therefore, WINNOWER proposes
a method to detect and delete spurious edges to reveal sets of vertices whose corresponding
subsequences are possible motif instances [8§]. We note that G is a n-partite graphﬂ.

We define a vertex to be a neighbour of a clique C' if it is connected to every vertex in
C, and a clique to be extendable if it has at least one neighbour in each of the n partitions
of G. The algorithm is based on the observation that every edge in a maximal n-clique
belongs to at least (Z:;) extendable cliques of size k. An edge is referred to as spurious if
it does not belong to any extendable clique of size k. WINNOWER then iteratively deletes

spurious edges for increasing values of k£ with the idea that only extendable cliques remain.

When k£ = 1, a vertex u is a neighbour of a vertex v if (u,v) € E. Every vertex that
does not contain at least n — 1 neighbours is deleted (since it certainly cannot be in a
clique of size n). For k = 2, a vertex u is a neighbour of an edge v, w if v, w, and u form a
triangle. Therefore, any edge that does not have n — 2 neighbours that are from different
partitions is deleted from G. For k > 2, WINNOWER relies on the observation that for
any clique of size n, there are (Z) extendable cliques with k vertices and thus, every edge
on a n-clique must belong to at least (Z:g) extendable cliques of size k. Any edge that is
not contained in the required number of extendable cliques is deleted.

LA clique is a graph in which every pair of vertices is joined by an edge.
2A n-partite graph is a graph where the vertices can be partitioned into n disjoint sets and there are
no edges between vertices in the same set.
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ACGTTTTACCATATAAAAAAGCACACACAAACCCAAAA
ACGTCTCTC CACALCA ACAAAGAACAA

ICAAAAGEIGTGAGTGAGAGA GAG)m/ TTTAGTTGAT
CTGTGAGTTTTTTGATGGAGNCCAAAG| [TTTAGTTGA

Figure 2.4: An example showing a clique, which does not correspond to a motif set, in the
graphical representation of the input used by WINNOWER. Let ¢ =6, d = 2, and n = 4.
In this example, we have set of sequences where each pair of sequences has distance at
most 2d but there does not exist a length-¢ sequence that has distance at most d from each
of the sequences in the set.

One of the pitfalls of WINNOWER is that it does not actually report any motifs; it is
only concerned with identifying cliques containing n vertices. Not all cliques correspond
to valid motifs (according to the definition of Pevzner and Sze [88]) and therefore, further
analysis is required to distinguish cliques corresponding to valid motifs from those that are
not. See Figure for an example of a set of sequences that corresponds to a clique but
not a motif.

The running time of the algorithm is O(N??*1), where N = nm, and m is length of the
input sequences. The algorithm performs better than SP-STAR with the same data sets.
However, due to the large number of spurious edges, the running time is prohibitively large
and grows very rapidly as the motif strength weakens or subsequence length or number
increases [71].

There have been many motif-recognition programs that have extended WINNOWER
since its initial development. In 2003, Liang et al. [7T1] presented cWINNOWER, which is
essentially the WINNOWER algorithm with added constraints on the graph construction
whose purpose is to reduce the number of spurious edges in the initial graph. Sze et al.
[107] extended the graph formation of WINNOWER [88]; they formulate the motif-finding
problem as the problem of finding large cliques in k-partite graphs, with the additional
requirement that there exists a string s that is close to every motif instance. Yang and
Rajapakse [118] adopted a graph formulation similar to Pevzner and Sze [88], then use a
dynamic-programming approach to search for each clique of size n. The motif instances
and center strings are then derived during the clique finding. Finally, a rescanning of the
data set is done with the center string or the motif in order to find motif instances with
Hamming distance less than or equal to d from the center string. Lastly, PRUNER [9§]
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again uses the same graph formulation as Pevzner and Sze [88] but deciphers between the
cliques corresponding to a motif by further restricting the criteria for deleting an edge. All
of these algorithms — cWINNOWER, the work of Sze et al. [107], the work of Yang and
Rajapakse [118], and PRUNER — suffer from the limitation that an exorbitant amount of
time and space is needed to obtain decent results [71], 08, 107, 11§].

Random Projection

In 2002, Buhler and Tompa developed PROJECTION, an algorithm based on random
projections [24]. Assume that we have an (¢, d)-motif problem, and s,, denotes the motif
that we are interested in detecting. PROJECTION considers all length-¢ subsequences in
the input set, and projects each of these subsequences along k£ randomly chosen positions,
where k is some appropriately chosen value. Hence, for every subsequence in S, generate a
k-mer u' that is a subsequence of u corresponding to the & random positions chosen. Note
that the random positions are the same for all the length-¢ subsequences. Hence, each
length-k subsequence is thought of as an integer. We group the length-%£ subsequences
according to their integer values (i.e. all the length-¢ subsequences are hashed using the
length-k subsequences of any length-¢ subsequence as its hash value).

If a hashed group has at least a threshold number « of length-¢ subsequence in it then
there is a good chance that s,, will have its length-k subsequence equal to the length-k
subsequence of this group. Hence, choosing appropriate parameters is vital to the accuracy
and efficiency of PROJECTION. There are n(m — ¢+ 1) length-¢ subsequences in the input
and there are 4 possible length-k subsequences. Therefore, the expected number of length-
¢ subsequences that hash into the same bucket is n(m — £ + 1)/4*. The threshold value o
is chosen to be twice this expected value. The value of k£ has to be chosen small enough so
that a significant number of motif instances are grouped together under the projection but
large enough so that non-motif instances are not grouped together with motif instances;
i.e. k is chosen such that n(m—£+1) < 4% so that the expected number of random length-/
subsequences that hashed into the same bucket is less than one.

The process of random hashing is repeated r times to ensure that that a bucket size of
at least « is observed at least more than once. The value of r is defined with respect to
several other values which we now define. The probability p that a given motif instance
hashes to the planted bucket is equal to (Egd) (f;), and it follows that the probability that

fewer than o hash into a bucket is p’ = Zf‘:_f (") p'(1 — p)*~*. Thus, the probability that

fewer than « hash into a bucket in each of the ;" trials is equal to p't, which we denote as
P. The value of r is equal to igg ::,1. In the original paper of Buhler and Tompa, a value of
0.05 is used for P [24]. In the final step of the algorithm, the sets of length-¢ subsequences
that pass the threshold are collected and processed to obtain the motif sequences that are

returned.
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The Voting Algorithm

In 2005, Leung and Chin [30] described two algorithms: the Voting algorithm and the Vot-
ing algorithm with projection. The latter is capable of solving challenging motif problems
(i.e. the (9,2), (11,3) and (15,5) problems), as well as detecting motifs where ¢ and d are
“large” (i.e. the (20,7) and (30, 11) problems). However, the Voting algorithm (by itself)
cannot solve any motif problem when ¢ > 15 due to heavy time and space requirements
[30]. The Voting algorithm with projection uses a similar algorithm as a preprocessing step,
then the Voting algorithm is used to recover the motif instances from the set of sequences
hashed into the same bucket by projection.

We give a brief description of the Voting algorithm. We define a length-¢ sequence
s’ to be a d-variant of another length-¢ sequence s if the Hamming distance between s’
and s is at most d. We denote all the d-variants of a sequence s as N(s,d). Note that if
Sm is a motif then s,,, along with all the instances are contained in N(s,,,d). Then for
each length-¢ subsequence s; in the input sequences gives a vote to each of the sequences in
N(s;,d). Further, each length-¢ sequence can get at most one vote from each of the n input
sequences, which ensures that a motif s, gets exactly n votes. Although the basic Voting
algorithm performs better than the basic enumeration algorithm, the required amount of

space grows exponentially with d, rendering it impractical for reasonable sized values of ¢
and d.

Pattern Branching

Pattern Branching is a local search algorithm that begins from subsequences that appear
in the set of input sequences and systematically alters these initial sequences by changing
one letter at a time in order to search for the center sequence [94]. If s is any length-¢
sequence then there are (fz) 3¢ length-¢ sequences that have Hamming distance d from s'.
We refer to this set of sequences at the neighbourhood of s’. One solution to the (¢,d)-
motif problem is to consider the neighbourhood of each of the f-mers in the set of input
sequences, score each of the sequences appropriately, and then return the sequence with
the highest score. Since there could be at most (2) 3%(n(m — £ + 1)) sequences, the space
and time requirements of this basic algorithm are prohibitively large. Nonetheless, there
are several algorithms that use this approach [50, [116].

Rather than considering all length-¢ sequences in the neighbourhood of all occurring
subsequences in S, Pattern Branching only examines a selected subset of neighbours.
Again, we denote N (s, d) to be all d-variants of s. For any input sequence S; let d,nin (s, S;)
denote the minimum Hamming distance between s and any length-¢ subsequence of S;.
Lastly, denote d,,;, (s, S) to be Z?Zl dmin(s,S;). For any (-mer s;; in the input sequence S
let BestNeighbour(s) be equal to the sequence in N(s;;,d) whose distance d,in(s;;,S) is

32



minimum from all other sequences in N(s;;,d). Pattern Branching starts from a sequence
sij, identifies sj; = BestNeighbour(s;;), then identifies SZ-’LI = BestNeighbour(s};) for all
1 <k <d-1. The best sfj among all possible length-¢ subsequences of the input S is
output.

Profile Branching

Profile Branching [90] is similar to Pattern Branching; the main difference between the
two algorithms is that in the latter, the search space is of motif profiles, rather than motif
sequences. Given an length-¢ sequence s = s(1),s(2),...,s(n), we define the profile of s to
be a 4 x £ matrix X (s) where each column is defined as follows:

:L‘ioc:{

For example, suppose s = ACC A then the motif profile for s is:

if s(i) = a,
otherwise

DO =

HoQ Qe

O D [0 || =
OO N = - DN
DO [N = [ QO
OO =D =N |

The algorithm proceeds identically to Pattern Branching but now the sequences in are
ranked according to a new score function, which is referred to as the entropy score. The
Pattern Branching algorithm outperforms the Profile Branching algorithm; however, the
latter does not obtain acceptable accuracy when the degeneracy d is large relative to the
sequence length ¢ [90].

2.2.4 Challenge Problems

Pevzner and Sze defined the weak motif-recognition problem more concretely by illustrating
the limitations of most motif-recognition programs; their results illustrate that although
most methods at the time were capable of finding motifs of length 6 with no degeneration,
most failed to detect motif instances of length 15 with 4 degenerate positions in a random
sample containing 20 sequences, each of which has length 600 bp [88]. Since this problem
was defined, many approaches have been developed with the intention of detecting motifs
that have a relatively large number of degenerate positions. Pevzner and Sze coined the
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phrase “challenge problems” to denote problems where the motif degeneracy (i.e. parame-
ter d) is relatively large with respect to the motif length (i.e. the parameter ¢). Since then
the phrase has been commonly used and pertains to problems such as the (12,3), (15,4),
and (18, 6) motif problems as well as many others.

2.2.5 Exact Verses Approximate Algorithms

Algorithms that are exact are referred to as exhaustive enumeration algorithms in the
literature. Many exact motif-recognition algorithms are known (e.g. [21], 50} 8T} 92, 100,
104], 108, [112], however, the running times of these algorithms are prohibitively large for
any of the challenge problems [24]. Exact algorithms are guaranteed to determine the
motif and motif instances, whereas, the solution determined by an approximate algorithm
is likely to mismatch with the correct motif and motif instances at a number of positions.
We define the success rate of a given program using the performance coefficient used by
Pevzner and Sze [88], Buhler and Tompa [24], and others [30, 31].

Definition (performance coefficient) Let K denote the set of t¢ base positions in the ¢
occurrences of the planted motif, and let P denote the corresponding set of base positions
in the t occurrences predicted by an algorithm. The algorithm’s success rate is defined as
|KNP|/|KUP].

A performance coefficient of 0.75 or greater is acceptable for algorithms not guaranteeing
exact accuracy. The success rate of a program will arise when evaluating motif recognition
programs.

Approximate algorithms, such as CONSENSUS [60], Gibbs [68], MEME [6], and Pro-
fileBranching [90] take significantly less time but perform poorly on finding weak motifs;
for example (15,4)-motifs are almost completely undetectable using these programs [59].
More recently, there have been a number of programs that are approximate but have decent
performance coefficients (over 75%), including PROJECTION [24], the Voting algorithm
[30], PSM1 [92] and PMSprune [35]. Unfortunately, most programs failed to achieve de-
cent performance coefficients in practical running time for all (¢, d)-motifs we tested. The
details of these experiments will be discussed in depth in later chapters.

2.3 Past Work on the String Selection Problems

The CLOSEST STRING problem has not only generated a significant amount of research
interest in itself, but is also an important subproblem of motif recognition. We will discuss
some past results concerning this problem, and later in this thesis, we develop and apply
some efficient heuristics for this problem.
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2.3.1 The CLOSEST STRING Problem

Stojanovic et al. [105] provided a linear-time algorithm for the case d = 1. There exists a
trivial fixed parameter tractability algorithm when ¢ remains fixed: simply try all possible
|¢] strings. Gramm et al. [57] demonstrated that the CLOSEST STRING problem is in FPT
when the number of strings n remains fixed. This parameterized tractability result is based
on an integer linear programming formulation with a constant number of variables, and
the application of the result of Lenstra [69], which states that integer linear programming
is polynomial-time solvable when the number of variables remains fixed. Unfortunately,
such an integer linear programming formulation is only of theoretical interest since the
corresponding algorithms lead to very large running times even when the number of strings
is small. When d is fixed, the problem can be solved in O(nl + nd(d + 1)¢) time [57].
Ma and Sun gave an O(n|X|?@) algorithm, which is a polynomial-time algorithm when
d = O(logn) and ¥ has constant size [77]. Most-recently, Wang and Zhu designed an
O(fn + nd|X|?23%54) time fixed parameter algorithm for the CLOSEST STRING problem
[115]. Chen et al. [28] and Zhao and Zhang [119] also improved upon the fixed parameter
tractable result of Ma and Sun [77].

Ben-Dor et al. [10] used a standard linear programming and randomized rounding tech-
nique to develop a near-optimal algorithm for large d (i.e. when d is super-logarithmic in the
number of strings). Lanctot et al. [66] gave an approximation algorithm for the CLOSEST
STRING problem that achieves a worst case performance ratio of 2. It is a simple algorithm
that constructs an approximate feasible solution in a pure random fashion. Starting from
an empty solution, the algorithm selects at random the next element to be added to the so-
lution under construction. In subsequent work, Lanctot et al. [67] gave a polynomial-time
algorithm that achieves a % + o(1) approximation guarantee. Independently, Gasieniec et
al. [52] gave a %—approximation algorithm that uses a similar technique. This improved
algorithm is based on a linear programming relaxation of an integer programming model of
the CLOSEST STRING problem. The basic idea consists of solving the linear programming
relaxationrf] and using the result of the relaxed problem to define an approximate solution
to the original problem. More specifically, Lanctot et al. [67] used randomized rounding
for obtaining an integer 0-1 solution from the continuous solution of the relaxed problem;
this technique works by letting a Boolean variable x in the linear program be equal to one
with probability y, where y is the value of the continuous variable corresponding to x in
the relaxation of the original integer program.

Using randomized rounding again, Li et al. [70] proved the existence of a PTAS for
this problem. Unfortunately, the high degree in the polynomial complexity of the PTAS

3The linear programming relaxation of an integer program is the problem that arises by replacing the
constraint that each variable must be an integer in the set {0,1,...,k} by a weaker constraint, that each
variable belong to the interval [0, k].
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algorithm renders this result only of theoretical interest. For a given value of r, all choices
of r subsequences of length [ are considered from the n sequences. The algorithm runs in
O(l(nm)™*1)-time, which is polynomial for any constant r. In 2005, Brejova et al. [22]
proved the existence of sharper upper and lower bounds for the PTAS on a slight variant of
the CLOSEST STRING problem (which they refer to as the CONSENSUS PATTERN problem)
and in 2006, Brejova et al. [23] improved upon the analysis of the PTAS for various
random binary motif models by showing that there are known “weak” instances for which
the approximation ratio is 1 + ©(1/4/r) [22], and “strong” instances for which the PTAS
will be guaranteed to determine the correct answer in efficient time. Andoni et al. [4] gave
a novel PTAS that has improved time complexity, and most recently, Ma and Sun [77]
presented a PTAS with time complexity O(ne(”ﬂ)), which is currently the best known.

2.3.2 The FARTHEST STRING Problem

Lanctot et al. proved the existence of a PTAS for this problem, though the high degree in
the polynomial complexity of the PTAS algorithm renders this result only of theoretical
interest [67]. The algorithm is based on the randomized rounding of the relaxed solution
of an integer programming formulation. There have been no improvements on the running
time of this PTAS.

In 2004, Cheng et al. [29] gave a O((|X|(¢—dy))(¢—dy)) fixed parameter algorithm for the
FARTHEST STRING problem. This fixed parameter tractability algorithm is nearly identical
to the algorithm of Gramm et al. [57] for the CLOSEST STRING problem. Most recently,
Wang and Zhu gave a O(fn + nd2*%%) fixed parameter algorithm for the FARTHEST
STRING problem when the input strings are binary strings [115].

2.4 Summary

In this chapter, we surveyed some of the important results in motif recognition, the CLOS-
EST STRING problem, and its variants. We described two motif-recognition models, in-
cluding the combinatorial model that was formally introduced by Pevzner and Sze [88].
Since the combinatorial version of this problem was initially described, there has been a
plethora of research in developing motif-recognition programs that are efficient and capa-
ble of solving computational challenging instances of this problem. We continue this area
of research by developing an efficient motif-recognition program that is based on a novel
weighted graph model, and illustrating how combinatorial and probabilistic insights can be
applied to gain even more efficiency and capability in solving computationally challenging
instances of motif recognition.
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Chapter 3

MCL-WMR: a Comprehensive
Motif-Recognition Algorithm

In Chapter [2] we described the motif-recognition problem in detail, and described several
other motif-recognition programs. Pevzner and Sze defined the weak motif-recognition
problem more concretely by illustrating the limitations of most motif-recognition programs;
their results illustrate that although most methods at the time were capable of finding
motifs of length 6 with no degeneration, most failed to detect motif instances of length
15 with 4 degenerate positions in a random sample containing 20 sequences that were 600
nucleotides long [88]. Since these challenge problems were defined, many approaches were
developed with the intention of detecting motifs that have a relatively large number of
degenerate positions. In this chapter we describe a new approach for this problem, and
provide theoretical and experimental results that support our approach.

Our algorithm, MCL-WMR, builds a weighted graph model of the input data and
uses a graph clustering algorithm to quickly determine important subgraphs that need
to be searched further for valid motifs. We compare the results of MCL-WMR to that of
previously developed approaches; testing on synthetic data has shown that MCL-WMR has
competitive running time capabilities and accuracy. An added advantage of MCL-WMR
is the ability to detect multiple motif instances.

As previous described, the CLOSEST STRING problem asks, given a parameter d and a
set S = {s1,...,8,} of n strings, each of length ¢, whether there exists a string that has
Hamming distance at most d from each of the strings in S. The following definition will
be useful in this and later chapters:

Definition (weight of a set of sequences) Given a set S = {s1,59,...,5,} of n se-
quences, each of length ¢, we define the weight of the set S to be >, Z;L:Z 0 —d(s;, 8;5)-
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For a given parameter d we say S is a motif set if there exists a center string s* at
distance at most d from any string in S; we say a set S of strings is pairwise bounded if
the distance between any pair of strings in S is at most 2d. Every motif set is pairwise
bounded; if a pairwise bounded set is not a motif set we say it is a decoy set. For example,
for d = 1 the set {000,001, 010,100} is a motif set because 000 is a center string for this
set. In contrast, the set {000,011,101,110} is a decoy set because it is pairwise bounded
(since any two of the strings are at Hamming distance at most two) but no center string
exists. We introduce the exploration of using the weight of a set as an indicator of whether
a CLOSEST STRING instance is a motif set or a decoy set.

3.1 System and Methods

MCL-WMR involves three stages: graph construction, clique finding using graph cluster-
ing, and recovering the motif instances and their center strings. An overview of MCL-WMR
is shown as follows:

Algorithm 2 An overview of MCL-WMR
% build the graph from the given data
for each of the subgraphs do
cluster subgraph using MCL
for each cluster do
if the weight of the current cluster is above threshold then
search that cluster to see if it contains a motif
if we find a motif, we are done.

The MCL-WMR algorithm first chooses a reference sequence from the data set, denoted
as S, building the entire graph from all the input data (including S,), and for each
vertex v,y representing the length-¢ subsequence from S, starting at position . We
then use the Markov Cluster Algorithm (MCL) [110] to generate subgraphs which contain
vertices that are highly inter-related. From these clusters of vertices we will generate
the positions of the possible motif instances and their corresponding center string. The
algorithm terminates when a motif is found. In order to increase the probability that a
motif is found, we minimize searching subgraphs with low probability of containing a motif;
hence, the adjacency subgraphs are not clustered and searched in a sequential manner.

3.1.1 Graph Construction

In our graphical representation of the data set, each subsequence of length ¢ is represented
by a vertex and the construction of our graph ensures that the motif instances represented
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by vertices in the graph are connected to each other and form a clique of size n (though
the converse need not hold). Thus, the weak motif-recognition problem is converted to
finding cliques with size n in our constructed graph G which is defined as follows:

1. The vertex set contains a vertex v; ; representing the /-length subsequence in sequence
i starting at position j, for each i and j = 1,2,...,m — ¢+ 1. There are n(m —{+1)
vertices.

2. Each pair of vertices v; ; and vy j, for i # ¢’ is joined by an edge when the Hamming
distance between the two represented subsequences is at most 2d.

3. An edge between vertices having distance k has weight ¢ — k for d < k < 2d, or
10(¢ — k) for k < d. This emphasizes subsequences at small distances.

This graph is represented by a symmetric adjacency matrix, where each entry is 0 for a
non-edge, or a positive weight for an edge. This representation takes O((n(m — £ + 1)?))
space and is constructed in O(n*(m —{¢)(m+¢)) time. Since the graph is n-partite, a clique
of size n contains exactly one vertex from each sequence.

We reduce the size of the instance being passed to MCL by considering subgraphs
{Go,G1,...,Gp_1}, where G; is the subgraph induced by the vertex corresponding to
the reference sequence (denoted as vg;), and its neighbours (for some arbitrary choice of
reference sequence R) instead of searching all of G at once. Therefore, we have reduced
the problem of finding weak motifs in the input data set S to finding cliques of size n in
the G, though, some cliques may not correspond to valid motifs. Figure illustrates
this weighted graph construction of the input sequences.

3.1.2 Using Clustering to Find Motifs

A clustering of graph is a decomposition of the vertex set into subsets of vertices that are
highly intra-connected and, hence, induce dense subgraphs. A good clustering of a graph is
an approximation of a partitioning of the graph into cliques. A clique corresponding to a
motif will exist in one of the subgraphs of G since each motif instance appears as a vertex in
a clique of size n. We use MCL [110] to cluster the sets of vertices to determine subgraphs
that are highly intra-connected with high-weight edges, and sparsely inter-connected and
thus likely to correspond to a motif instance. We chose MCL because it is able to handle
weighted graphs, and because it efficiently handles large undirected graphs. The idea
underlying the MCL algorithm is that dense subgraphs correspond to regions where the
number of length k paths is relatively large, for small k. Random walks of length k& have
higher probability for paths beginning and ending in the same dense region than for other
paths.
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Figure 3.1: An example showing the weighted graph representation of the input data used
by MCL-WMR. The three input sequences are shown at the bottom-left corner of the
figure. We have n =3, m=8,(=06,d = 1.



The MCL process consists of the alternation of two operations, namely expansion and
inflation. The image of a stochastic matrix under expansion is just some finite power of
the matrix. The image of a (column) stochastic matrix under inflation is formed by raising
each entry of the matrix to the same positive power, followed by a rescaling of the columns
such that the result is stochastic again. An MCL process is defined by a column stochastic
input matrix 77 and two rows of exponents e;), r;), resulting in a row of stochastic matrices
M;), defined by:

TQZ‘ = expei(Tgi_l), 1= ]_, N

Toiy1 =%, (Toi), 1 =1,...,n

where exp,,(T) is T and e; € N and r; € R, r > 0. The image under the inflation
operator 3, of a nonnegative matrix M € R¥** having no zero columns is defined as:

(3, M)pq = (Myg)" Z(Miq)r-

i=1

The largest transition probabilities will generally correspond with nodes lying in the same
natural cluster; this effect is boosted in the MCL process via the inflation operator. By
expansion, transition probabilities corresponding with random walks of higher length are
computed. The inflation operator promotes larger transition probabilities at the cost of
small probabilities and thus, promotes random walks between nodes lying in the same
cluster and demotes random walks between nodes lying in different clusters.

3.1.3 Recovering Motifs

MCL produces sets of vertices that produce dense regions of the subgraph G;; we filter
the subgraphs obtained from MCL to subgraphs that have high probability of containing
a motif. A clique in G that represents a motif instance must have size n and have weight
greater than or equal to (¢ — 2d)(}) since each pair of vertices are adjacent. We filter out
clusters that do not meet these criteria. Clusters that pass this test may contain multiple
cliques formed by choosing different subsets of n cluster vertices, or possibly no cliques at
all. We identify all ways of forming a clique from the cluster vertices by using the n-partite
nature of the graph to explore all possible cliques with the following depth-first search

algorithm. The dynamic-programming algorithm we use is as follows:

1. Let the sets C = C,,Cs,...,C, represent the subsets of vertices in a cluster that
need to be considered. Hence, C, = {v.o}, Co = {varr,v20,...,V9cop }s -, Cn =
{Vn17,Vn2rs . .., Unic, 1 }- Note that C, contains only one vertex since it is the reference
sequence.
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2. Lists L, for i =r and j' =0 and ¢ = 2,...,n and j' = 1,...,|C;| are created as
follows:

(a) Set L,, = 0.
(b) Set Lojs = {v,x} for vertex vy € Co.
(c) fori=3,...,n
Set Ly = 0 for v € S,
for each vertex v;_1p € Ci1, k' = 1,...,|Ci|
o if d(vj,vi_11r) < 2d then let L;; be equal to L0 U {vi_1x} U Li_1pr

3. If a clique with size n exists then there must exist a list £, for vertices v, € C,
that contains vertices from each set C; for i =1,...,n — 1.

For each such clique found using the above dynamic-programming algorithm, we test
if it represents a motif instance by attempting to find a string that has distance at most
d to every vertex. We do this by building up a list of possible center strings and the
number of mismatches to each vertex for each possibility, one character at a time. Once a
candidate string has d + 1 mismatches to some vertex, it is discarded. Although the space
of 4 possible center strings is very large, in practice the list is pruned very rapidly on the
d + 1st character, i.e. after reaching size 4%.

We use a heuristic to determine a center string which tries all possible length ¢ DNA
sequences that have high probability of having distance at most d from each string in the
set S and thus, determines whether the subsequences are (¢,d)-motifs. In practice this
dynamic-programming algorithm is quite efficient because the size of the clusters returned
by MCL is small. After obtaining the possible motif instances from s, the corresponding
likely center string is found by alignment of the n sequences and lastly, in order to determine
if the set of subsequences found are motif instances it is checked that each subsequence
is of distance at most d from the center string. As the sequences become longer or d
becomes large relative to ¢, the number of spurious cliques found will increase; this final
step guarantees that the found subsequences are proper motif instances.

3.2 Analysis of Graph-Theoretic Model

To validate our approach of using edge weights to assist in the search of valid motifs we
show the existence of a separation between the weight of a set of sequences corresponding
to a motif set and that of a set of sequences that does not correspond to a motif set.
We prove that the weight of an arbitrary set of subsequences corresponding to a motif
set deviates from the mean with low probability. Empirical results support the analytical

42



description of the distribution and show that for a typical motif-recognition problem (i.e.
when ¢ = 15 and d = 4) there exists a separation between the distribution of the weights
of the motif sets and those of the decoy sets.

3.2.1 Analysis of the Weight of a Clique Containing a Motif

Consider a clique C' that contains a set of subsequences corresponding to a motif set. Let
W be the random variable for the sum of each of the (Z) edge weights in C'. Let vy, v, ... v,
be the set of n vertices in C' corresponding to sequences si,...,S,. We seek the mean of
W and a tail bound for large deviations from the mean. Let W; be the expected value of
the random variable W given that the first ¢ subsequences in C' are known.

We prove several results concerning random (¢, d)-motif sets. A standard method used
to generate a random (¢, d)-motif set is to choose an ¢-length sequence uniformly at random
from all possible || sequences to be the center string, and then form a motif set by select-
ing n sequences at random with replacement from the set of all sequences with Hamming
distance at most d from this center string [24]. This samples motif sets with probability
proportional to the number of distinct center strings it has and thus, corresponds to how
synthetic problem data sets are constructed and how we expect meaningful motif sets arise
in nature. For example, synthetic problem instances are traditionally generated as follows:
a random center string of length ¢ is chosen, n occurrences of the motif are generated by
randomly mutating at most d positions, and each of the n motif instances is embedded
at a random location into a different background string of length m. We note that other
non-uniform distributions have also been used to generate motif sets [8§].

Theorem 3.2.1 The expected weight of a clique in G, which models a random (I, d)-motif
problem containing n sequences, is

o= (3) (- 55 () (0 (o0 5))

where 3 =30 (53

Proof Given an (¢, d) motif set S, we aim to compute the expected value of the weight of
the set S (i.e. B[} L, >0, (€—d(si,s))]. Let pe be E[d(s;, s;)] for any pair of sequences
s; and s;, where the corresponding vertices v; v; are joined by an edge in the clique that
contains S.

EW=5| 3 (-des)| = (4 )

MURIRAY ]
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We choose the n sequences uniformly from the g = Zf:o (f) 3¢ possible choices. Let s
be a center string for the a; denote the Hamming distance between s; and the center string
s. The expected weight of an edge will depend on the distance of the two sequences from
the center string, so we break the expectation into pieces, as follows:

pe = Soo o Prld(s,s;) = ai|Eld(s;, 5;)|d(s, s:) = o
= Yo Prld(s,s) = ai] - 300 _o Prld(s, s;) = o]

= 3 ()3 yd (D‘Zj)gajE[d(sA s)|d(s, s5) = i, d(s, s;) = a;]
a;=0 8 ajzo 6] 1y 9] ) 91 19 )y 97 i

The remaining problem is to compute the expected Hamming distance between s; and
sj, knowing that the sequences consist of copies of S with a and b positions mutated,
respectively. If a position was mutated in neither string it is a match; if a position was
mutated in one sequence but not the other it is a mismatch; if a position was mutated in
both sequences, it is a match with probability %

If s; is fixed, s; consists of b mutations that each either hit one of the @ mutated positions
in s; or one of the other ¢ — a positions, sampled without replacement. The number that
hit the a mutated positions in s; follows a hypergeometric distribution with mean 1’7“ If
the number of hits to mutated positions is ¢, the expected total number of mismatches
is: b — ¢ positions that hit among the ¢ — a non-mutated positions in s;, a — ¢ positions
among the a mutated positions of s; that were not hit, and %c mismatches from the hits
among the mutated positions, for a total of (b —c¢) + (a — ¢) + 2¢ = a+ b — gc. Therefore,
E(d(s;, s;)|d(s,s:) = a,d(s,s;) =b) =a+b— 22

Therefore, . is equal to £ — [7’_12 ZZ:O (ﬁ) 3¢ ZZ:O (5) 3b (a +b— %’), the expected weight
of a single edge.
BV = (3) (£ Xm0 ()3 00 0)3% (it oy = 55 )
= () (0= B (D) ()3t (i + g - )

|

We are able to bound the probability of W deviating from its mean by first demonstrat-
ing that Wy, Wy, ..., W, is a martingale sequence and next, applying Azuma’s inequality
[83] to determine the probability of a specific deviation.
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Theorem 3.2.2 Consider the (¢,d)-motif problem containing n sequences. Let W be the
sum of the (Z) edge weights in an arbitrary clique in Gpour that corresponds to a motif set
and let py be the expected weight of the motif set, then for any A > 0,

)\2
Pr|W — | > N < 2exp [ ——2
W = pwl = A < eXp( 2d2(n+1))

Proof Recall that W; is the expected value of the random variable W given that the first ¢
sequences in C' are known and hence, the distances between the center string s and the first
1 vertices are known. Without loss of generality we choose a center string s and let F; be
the o-field generated by the random choice of the sequence s; from the set of all sequences
at most distance d from s. It follows that, W; = [W|F,] since W; denotes the conditional
expectation of W knowing the first ¢ subsequences and therefore, Wy, Wy,... W, is a
martingale sequence [83], with Wy = E[W] and W,, = W.

We now focus on the value W; — W,_;. Let A, . be the change in the random variable
representing the weight of an edge e from knowing the first i — 1 sequences to knowing the
first ¢ sequences. The value of A.; is non-zero for edges where the sequence corresponding
to one of the endpoints of that edge was previously not known and is now known. Each
vertex in the clique is adjacent to n — 1 vertices; ¢ — 1 of these vertices have corresponding
sequences that were known and n — ¢ of these vertices have corresponding sequences that
were unknown; all other (g) —n + 1 remaining edges in the clique have no change in the
expected value. In both cases, the expectation of the weight of the edge can change by at
most d. Again, p. is the expected value when neither sequences s; or s; corresponding to

the endpoints of the edge e = (s;, s;) are known and therefore, we have the following:

|Wz - Wi_1| S A@e(n - 1) = d(n — 1)

We have shown that the random variables Wy, Wy, ..., W, form a martingale with Wy =
E[W] and W,, = W and that |W; —W,_1| < d(n—1) and therefore, we can invoke Azuma’s
inequality [83] to give us the following for any A > 0:

A2 A
_ > < - =) = — ] .
Pr|W — pw| > A] < 2exp < 257 2 ) 2exp ( 2d%(n + 1)>

|

We can compare this theoretical tail bound with the distribution of the values obtained
from MCL-WMR. Figure demonstrates that as the value of n increases, the deviation
of the weight of cliques corresponding to motifs will occur with less probability, and the
weight of the cliques will become more centralized around the mean. Similar experimental
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tests were completed to demonstrate the relationship between the weight of spurious cliques
when n = 15 and when n = 50, specifically, we ran MCL-WMR 100 times with m = 800,
¢ =15, and d = 4 and determined cliques that did not correspond to valid motifs. We
found no spurious cliques in the data sets when n = 50, agreeing with our intuition that
very few spurious cliques occur randomly in the data set when n becomes large.

We note our confidence in MCL-WMR being able to detect cliques — both spurious
and those corresponding to motifs — this is due to the accuracy in detecting the embedded
motifs (see Section details concerning these experimental tests). These results also
suggest that when n is relatively large we can be more certain that any cliques found
correspond to valid motifs (an attribute that will be further explored in this thesis).

3.2.2 Discussion of Complexity

A few interesting observations can be made regarding the complexity of the algorithm and
the quality of its solutions. Finding cliques of maximum size in a given input graph is NP-
complete and thus, unlikely to be solved in polynomial-time [5I]. Further, the results from
Chen et al. [27] show that unless unlikely consequences occur in parameterized complexity
theory, the problem of finding maximum - size cliques cannot be solved in n°*) time.
Thus, of finding cliques of size k is not likely to be computationally feasible for graphs of
significant size. The best known algorithm for finding cliques of size k in a given input
graph runs in time O(n*/3), where c is the exponent on the time bound for multiplying
two integer n x n matrices; the best known value for is ¢ is 2.38 [84].

The running time for the straightforward algorithm that checks all size k subsets is
O(n**2) and is the one to be most likely to be implemented in practice. The running
time of the algorithm of Yang and Rajapakse [I18], a dynamic programming clique finding
algorithm, is O(n(mA? + A™~1p?™=) where A =n 3200 (9)(3/4)'(1/4)*~, n is the length
of each sequence and m is the number of sequences. This running time reflects the steep
computational expense required to find cliques of a given size for an input graph. Simi-
larly, the estimated running time of the WINNOWER algorithm is O((nD)*), where D is
approximately 30 for the challenge problem [88].

The time required by MCL-WMR to find a solution is not affected directly by the
length of the motif that is to be discovered, as is true of many other methods. Rather,
it is the weakness of the motif — that is, the probability of the pairwise motif similarity
occurring randomly — that has the most impact on the complexity of the algorithm; the
increased probability of a clique of high weight affects the running time of MCL-WMR
since the exponential-time algorithm required to determine in a high cluster or subgraph
contains a motif instance.

We can compare the computational complexity of these programs by considering the
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required running time of MCL-WMR of the three sequential steps—that is, the computa-
tional time required to construct the graph, finds all cliques of size n, and determine the
motifs and center string. Other graphical methods of motif finding rely on an enumeration
method to find dense subgraphs, including WINNOWER that requires each edge to be
checked, and the algorithm of Yang and Rajapakse that uses dynamic programming on
the complete graph. MCL-WMR omits this computational intensive work by employing
MCL, which runs in time O(N?), where N is the number of vertices of the input graph
[T10]. Hence, the most computationally expensive step is the clique-finding function, whose
computation time increases with the number of vertices.

3.3 Experimental Results

We tested MCL-WMR on synthetic problem instances generated according to the embed-
ded (¢, d)-motif model. We produce problem instances as follows: first we choose a random
string of length ¢, and pick m occurrences of the motif by randomly choosing d positions
per occurrence and randomly mutating the base at each. Lastly, we construct m back-
ground sequences of length n and insert the generated motifs into a random position in
the sequence. For each of the (¢,d) combinations, 100 randomly generated sets of input
sequences (n = 20, m = 600) were generated. An entry “-” indicates that the program
was unable to solve the specific problem in a reasonable amount of time.

Our program found the exact location of a motif instance every single time and there-
fore, the performance coefficient is 1. Other programs we tested did not achieve a perfor-
mance coefficient of 1 and thus, returned approximate solutions to the embedded motif.
The computation time of previous programs that find the exact solution becomes unac-
ceptable as the motifs become degraded beyond the (15,4) problem [106]. For example,
in 2004 Styczyski et al. [L06] solved the (17,5) problem exactly but took greater than 3
weeks to do so and similarly, solving the (14,4) took longer than 3 months (when n = 20
and m = 600). The main advantage to our tool is the ability to solve the extremely dif-
ficult challenge problems (see Table [3.1). See Subsection for description of the term

“challenge problem”.

The performance coefficient, which are shown for the various programs tested in Tables
B.1] 3.2l and [3.3] describe the fraction of correctly solved instances and is described pre-
viously Subsection [2.2.5] The performance coefficient of MCL-WMR is greater than that
of the previous algorithms in every line of Table [3.1 MCL-WMR correctly solved planted
(11,2), (13,3), (15,4), (17,5) and (18,6) on all data sets — in these cases, the planted motif
and motif occurrences at least as strong as planted motifs. WINNOWER, PROJECTION,
and SP-STAR achieve acceptable performance on the (11,2), (13,3) and (15,4) problem
instances when the sequence length is less than or equal to 600 and the number of se-
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(¢,d) | Gibbs | PROJECTION | SP-STAR | WINNOWER | MCL-WMR
(10, 2) | 0.150 0.80 0.56 0.78 1.00
(11,2) | 0.68 0.94 0.84 0.90 1.00
(12, 3) | 0.03 0.77 0.33 0.78 1.00
(13,3) | 0.60 0.94 0.92 0.92 1.00
(14,4) | 0.02 0.71 0.02 0.02 1.00
(15, 4) | 0.19 0.93 0.73 0.92 1.00
(17, 5) | 0.158 0.93 0.69 0.03 1.00
(18,6) | - - - - 1.00

Table 3.1: Comparison of the performance on a range of (¢, d)-motif problems with syn-
thetic data. Data from other algorithms are from Buhler and Tompa [24]. MCL-WMR,
GibbsDNA, WINNOWER, and SP-STAR are averaged over eight random instances, while
PROJECTION is averaged over 100 random instances. In all these examples, n = 20 and
m = 600.

m | PROJECTION | MCL-WMR
600 | 2410 / 102 2208 / 34
800 | 2662 /121 2802 / 42
1000 | 2819 / 131 3223 / 89
1200 | 3404 /139 | 3823 / 102
1400 | 3808 / 154 | 4038 / 150
1600 | 4310 /159 | 5037 / 167
1800 | 4861 / 167 | 4502 / 182
2000 | 5012 /182 | 5001 / 201

Table 3.2: Comparison of the time required by MCL-WMR and PROJECTION to solve
the (15, 4)-motif problem with 20 sequences and m varying between 600 to 2000. The mean
and standard deviation of the running time in CPU seconds is given. The success rate for
PROJECTION was between 0.80 and 0.88.

quences is less than or equal to 20. However, all fail on the (18,6) and (19,6) problem,
and WINNOWER and SP-STAR fail on the (16,5) and (17,5) problem instances. The
performance of MCL-WMR is best on the more difficult planted (14, 4), (16,5), (17,5) and
(18,6) motif problems when compared to results from previous algorithms. WINNOWER
and SP-STAR typically failed to find the planted motifs and PROJECTION often failed to
have acceptable performance on the more difficult cases of the challenge problem [24] and
hence, MCL-WMR’s performance substantially exceeded that of previously algorithms.

We evaluated the performance of MCL-WMR on problem instances with longer back-
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ground sequences — that is, problems where m varies from values greater than 600. As
the length of the sequences increase, the number of randomly occurring ¢-mers increases;
specifically, the increase in m increases the probability of cliques of high-weight occurring.
MCL-WMR will recover more computation time since the graph size will increase with the
size of m. Our results demonstrate that the computation time is comparable to that of
PROJECTION, however, MCL-WMR is significantly more accurate than PROJECTION.
See Table for an illustration of these results. Considering the (15,4) motif problem
and fixing the number of sequences to be 8, CONSENSUS, GibsDNA, and MEME have
an unacceptable performance rate (i.e. below 0.7) when the sequence length increases to
300 or 400, the performance of WINNOWER breaks at length 700, and SP-STAR breaks
when the length is 800 to 900.

(¢,d) | PROJECTION | MCL-WMR
)| 400 /38 (0.98) | 687 /32
)| 670 /43 (0.98) | 1023 / 34
) | 1020 / 83 (0.87) | 1442 / 52
)
)
)

1521 / 95 (0.88) | 1623 / 78
5242 /132 (0.78) | 3023 / 103
- 5132 / 120

Table 3.3: Comparson of the running time of MCL-WMR to PROJECTION on various
motif challenge problems. In all these examples, n = 20 and m = 600. The mean and
standard deviation of the running time in CPU seconds is given. The success rate for
PROJECTION is included in brackets.

3.4 Summary and Open Problems

We proposed an efficient algorithm for motif-recognition, whose specific purpose is to solve
instances where there exists a large amount of degeneration with respect to the motif length.
We demonstrated promising results on synthetic data. Specifically, we showed promising
running time and accuracy for all challenge problems, with most-impressive improvement
on the (14,4), (17,5) and (18, 6) problems. Previous algorithms lack accuracy and efficiency
in solving all challenge problems.

Most importantly, we gave a novel model and framework for solving motif recognition
instances that we will consider and study further in this thesis. By changing the graphical
model to incorporate edge weights, we can exploit theoretical results demonstrating the
existence of a separation between the weights of cliques corresponding to valid motifs and
the weights of those that do not, and obtain improved search techniques. Our theoretical
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work and empirical data show a large percentage of the cliques corresponding to valid
motifs have total weight in a narrow range. This helps us distinguish cliques containing
valid motifs and spurious cliques.

The largest area for further improvement of MCL-WMR is the recovery of the mo-
tifs. The dynamic-programming algorithm that explores the dense subgraphs to determine
which subgraphs correspond to motif sets, and which correspond to decoy sets requires
exponential time. Note that this deciphering of subgraphs essentially reduces to solving
instances of the CLOSEST STRING problem. Next, we aim to create, analyze, and employ
efficient algorithms for the CLOSEST STRING problem.
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Figure 3.2: Data illustrating the distribution of the mean weight of an edge in a clique
that corresponds to a valid motif set of size 15 (shown in black) and 50 (shown in white).
The data is given for the (15, 4)-motif problem with m = 600.
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Chapter 4

Algorithms and Analysis for the
CLOSEST STRING Problem

In the previous chapter we described MCL-WMR, a motif-recognition program that builds
a weighted graph model of the input data, efficiently clusters the data to determine smaller
subproblems that are likely to contain a motif, and recovers motifs by the use of a dynamic-
programming algorithm. The last step involves solving the CLOSEST STRING problem a
significantly large number of times. As described in the previous chapter, we refer to a set
of strings S as pairwise bounded if for all strings a,b € S, d(a,b) < 2d. Thus, the CLOSEST
STRING problem reduces to discerning between pairwise bounded sets that have a center
string, and if so, finding one such string s*, and those sets that do not. The dynamic-
programming algorithm used by MCL-WMR to solve the CLOSEST STRING problem has
exponential running time and in practice is the most computational intensive step of MCL-
WDMR. Hence, this algorithm becomes a significant bottleneck in solving motif-recognition
instances — especially where d is large relative to . To improve upon the capability of
MCL-WMR, we develop efficient heuristics to solve the CLOSEST STRING problem.

In this chapter we study the CLOSEST STRING problem in more detail. Smith showed
several results indicating the “alphabet size does significantly influence many pattern find-
ing problems” [102, p. 51]. Similarly, we give strong evidence to demonstrate that the
number of strings has a significant affect on the cost of solving the CLOSEST STRING prob-
lem and therefore, influences how we should attempt to solve the problem. We investigate
different methods for efficiently discerning between motif sets and decoy sets; to accom-
plish this task we will divide the problem into studying instances with a small number of
strings, and instances with a large number of strings.

Following the path of previous authors [56, [107], we first focus on efficiently solving
restricted instances of the CLOSEST STRING problem. Gramm et al. [56] and Sze et al. [107]
gave direct, combinatorial algorithms for solving the CLOSEST STRING problem exactly
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for three strings. The algorithm of the former authors considers the possible combinations
of alphabet symbols that can occur for three strings, then specifies conditions for which
a center string can be constructed [56]. Sze et al. [I07] gave a counting argument to
demonstrate a condition for which a set of three strings has a center string and when it
does not. Gramm et al. stated that the problem of finding an efficient polynomial-time
algorithm for solving the CLOSEST STRING problem on a set of four strings remains open
“due to the enormous combinatorial complexity [of the integer linear programming based
solution]” [57, p. 13]. We resolve this open problem for binary strings; specifically, we give
an exact combinatorial algorithm for four binary strings.

We also prove that CLOSEST STRING instances can be solved efficiently when the
instances have a large number of strings. Evidence for the efficiency is provided in a two-
fold manner. First, we introduce and investigate a randomized algorithm for the CLOSEST
STRING problems, which we refer to as CSP-Greedy. We prove that this randomized
algorithm computes, with high probability, the CLOSEST STRING on smoothed instances
up to a constant factor approximation. Using smoothed analysis, we show the algorithm
runs in O(¢3), where ¢ is the string length, and achieves a (1 + f(e,n,¢)) approximation
guarantee, where ¢ > 0 is any small value, n is the number of strings, and f(e,n,¢) = O(6™)
for some § < 1.

Next, we examine the O(nf + nd - d%)-time algorithm by Gramm et al. [57], which
has been shown to work very efficiently on practical instances. We explain this good
performance through smoothed analysis. Essential to our analysis is the introduction of a
new perturbation model of the CLOSEST STRING model and the analysis of the Gramm et
al. [57] algorithm in this model. We prove for any given CLOSEST STRING instance I, the
average running time of this algorithm on a small perturbation of I is O(nf + nd - d*=°).

We refer to the cardinality of a CLOSEST STRING instance as the number of strings
in the set. We note that the results in this chapter are complementary; the first part of
this chapter will demonstrate that small, very restricted instances can be solved efficiently
and the second part will show that instances that contain a large number of strings can be
solved efficiently.

We conclude this section by showing the applicability of this analysis to motif recog-
nition. We extend MCL-WMR to incorporate CSP-Greedy and obtain pMCL-WMR, a
program that is able to detect motifs in sets of large cardinality (i.e. instances that have
30 or more sequences) and find regulatory sequences in genomic data. Our data shows
that detecting motifs in large data sets is easier in comparison to when the number of
sequences is relatively small — a fact that gives surprising insight into this central problem
in bioinformatics.
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The main contributions in this chapter are as follows:

e We give a linear-time algorithm for solving small CLOSEST STRING instances (Section

1),

e We describe our algorithm, CSP-Greedy, prove it achieves a 2-approximation guaran-
tee, and give a bound on the probability that C'SP-Greedy returns an optimal solution
to the CLOSEST STRING instance. Using smoothed analysis we show CSP-Greedy
achieves an 1+ f(e, n, {)-approximation guarantee in time O(£3), where ¢ > 0 is any
small value and f(e,n, ) approaches zero in time that is exponential in n, and the
expected running time of the algorithm of Gramm et al. [57] is O(nl + nd - d**°)

(Section [4.2)).

e We show the applicability of the algorithms for solving CLOSEST STRING instances
in speeding up motif detection (Section .

4.1 A Linear-Time Algorithm for Solving Small
CLOSEST STRING Instances

In this section, we provide empirical evidence suggesting that the majority of decoy sets
have a subset of cardinality four that is a decoy, and describe a linear-time algorithm for
determining whether a set of four strings is a decoy, addressing an open problem of Gramm
et al. [57]. Our empirical results together with our algorithm suggest that the majority of
instances of the CLOSEST STRING problem can be solved in polynomial time.

We begin with some definitions concerning general string analysis. Let ¢, d, and n be
positive integers with d < ¢. Let o; be a function that returns the ¢th symbol in a string.
For any symbol 3 € ¥ let 3° denote the length ¢ string of all 3 symbols. Given a set of
strings S = {s1,...,8n}, each of which has length ¢, the ith column refers to the column
vector ¢; = [03(s1), ..., 0i(s,)]T in the n x £ matrix representation of S.

We will be interested in the cardinality of a decoy set, that is, the number of strings
contained in the set. We say set S C .5 is a decoy of minimal cardinality it S is a decoy set
such that for all 8" C S, if |[S’| < |S|, then S’ has a center string.

Gramm et al. [56] refer to the process of permuting the columns of S such that these
are grouped by column type as normalization. A normalized instance can be derived from
the input set of strings by a simple linear-time algorithm. Given a CLOSEST STRING for
the normalized set of strings, the inverse of this same permutation returns a center string
for the original input [56].

o4



Group Four Three Two
# of columns. )\ﬁgﬁ )\agg )\gag )\ﬂﬁa )\aaa )\gaa )\aga )\aag
$1 15} « I} 15} « 15} Q@ «
S9 16} I} « 16} « « 16} o
S3 16} I} 16} « « Q « 15}
54 5 B B B B s B B
maj; B B B B o - - -

Table 4.1: Defining the different types of columns for a set of strings with cardinality four.
The values Ay3s through A.np denote the number of columns of each type in groups three
and two. The symbol “-” implies that the value is undefined at these columns.

4.1.1 Definitions Specific to Sets of Cardinality Four

Given a binary alphabet ¥ = {a, 8} and a set of strings S = {s1,...,s4}, the symbols in
each column have either two, three, or four matching symbols. Sixteen types of columns
are possible in general. We say a column belongs to group ¢ if it has exactly ¢ matching
symbols. To reduce the number of possible types to eight, suppose without loss of generality
that s, = 3‘. Equivalently, create a new set S’ by performing a logical exclusive-or of each
string in S with s4 (say « corresponds to boolean true). A center string for S is found
by performing another exclusive-or on a center string for S’. Let A4, denote the number
of instances of column (a,b,c, 3)T, where a,b,c € {a,3}. See Table . Note that
only columns of groups three and two need to be considered, since any center string will
correspond to the majority at each column of group four. A pair of columns are considered
to be identical if a pair of strings in one column mismatch if and only if the same strings
mismatch in the second column. For example the column [aa33]" is identical to [38aa]?,
but neither is identical to [a88a]”.

Let maj, denote the majority of the four symbols in column i. That is, maj, = «a if
symbol « occurs three or more times in column ¢ and maj, = [ if symbol 3 occurs three
or more times; maj; is undefined if o and 3 each occur twice. Assuming that s, = 3¢, only
the columns associated with \,., are such that maj, = a.

4.1.2 Ubiquitousness or Rarity of Bounded Decoy Sets

We consider the relative frequency, or infrequency, of decoy sets that do not have a proper
subset that is also a decoy. Our empirical results demonstrate that the relative frequency
of such decoy sets is minimal, and that the majority of decoy sets contain a decoy subset of
cardinality four. Still, the results of Gramm et al. [57] imply that we cannot characterize
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all decoy sets of arbitrary size n as having a proper subset that is a decoy. We refer to
a set ) of decoys, each of cardinality n, as having decoys of bounded cardinality if every
decoy in @) has a proper subset that is a decoy.

Proposition 4.1.1 Let 3 denote an alphabet of arbitrary fized size. If P # NP, then for
any ng there exists a decoy set S such that every subset of S of cardinality ng has a center
string.

Proof Suppose otherwise. That is, there exists an ng such that every decoy S of size
n > ng has a subset of size ny that is a decoy. By Gramm et al. [57], for any fixed ny,
there exists an algorithm that decides whether a set of ng strings is a decoy in f (¢, d) time,
where f(¢,d) is polynomial in ¢ and d. Consequently, for any set of n > ng strings S, we
can check each of the (:O) subsets of S of size ng to determine whether any is a decoy in
time O(n™ f(l,d))). That is, we can determine in polynomial time whether S is a decoy.
Since the CLOSEST STRING problem is NP-complete, this is possible only if P = NP. O

It should be noted that Proposition does not preclude that there may exist val-
ues of n such that all decoys of cardinality n have a minimal decoy set of cardinality n.
Proposition 4.1.1] implies that there does not exist a threshold ng such that every decoy
set contains a minimal decoy set of cardinality at most ng, if P # N P. Although Proposi-
tion implies that no fixed ng exists, we conjecture that most decoys have a subset of
size four that is a decoy. We provide evidence toward this property with an empirical study
on random sets of binary strings which we now describe. In turn, these results motivate
the need for an efficient algorithm for determining whether a set of four strings has a center
string; we describe such an algorithm in Section [£.1.3]

We empirically investigate the rarity of the occurrence of decoy sets of cardinality n for
which the cardinality of a minimal decoy set is large relative to n. We sampled without
replacement 1000 times from the set of all possible pairwise-bounded sets of binary, length-
¢ strings; each set sampled has exactly n strings taken from the binary alphabet. We
varied the values for n, £ and d. For each sample set, we determined whether the set is a
decoy or a valid motif, with respect to the value of d, and determined the cardinality of the
minimum decoy set. We repeated this experiment ten times and calculated the mean values
obtained. Table outlines this data. One significant empirical trend demonstrates that
as the number of strings increased, the number of decoys that do not contain a minimal
decoy of cardinality four became exponentially smaller; when n was ten and twelve the
number of minimal decoys of size larger than four was zero. The only value of n for which
decoys of size n were seen was six. Further, the total number of decoys in 900,000 sets of
strings sampled was approximately 1,500. In summary, the empirical results suggest that
a large percentage of binary decoys can be characterized by containing a minimal decoy set
of size four, the smallest size possible, further motivating the main results in the following
subsection.
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Number of {=8,d=3 £=10,d=3 {=15,d=4
strings nzﬁ‘nzl()‘n:lQ n:6‘n:10‘n:12 nzﬁ‘nzl()‘n:m‘
No. of valid || 443.4 4.6 88.7 394.4 9.3 3.6 101.4 3.5 2.6
motif
4 542.2 | 9954 991.3 605.6 | 990.7 996.4 898.6 | 996.5 997.4
5 12.4 0 0 7 0 0 4.1 0 0
6 2 0 0 0.2 0 0 0.8 0 0
7 - 0 0 - 0 0 - 0 0
8 - 0 0 - 0 0 - 0 0
9 - 0 0 - 0 0 - 0 0
10 - 0 0 - 0 0 - 0 0
11 - - 0 - - 0 - - 0
12 - - 0 - - 0 - - 0

Table 4.2: Experimental data illustrating the ubiquitousness of decoy sets of cardinality
four. Data obtained from calculating the average of 10 experiments that obtain a random
sample, without replacement, of 1000 sets of strings and determining the size of the minimal
decoy contained in each set decoy obtained in the sample. The first column is the cardinality
of the minimum decoy set.

4.1.3 Finding a Center String for a Set of Four Strings

The only previous polynomial-time solution for finding a center string of a set of four strings
was intended more to demonstrate the fixed-parameterized tractability of the problem
rather than to provide an efficient solution [57]. As acknowledged by its authors, the
corresponding description (for which many details are omitted) results in an algorithm
with extremely high (although theoretically linear) run time and, furthermore, does not
lend itself well to simple or practical implementation. We present a simple linear-time
algorithm for finding a center string of a set of four binary strings or determining that
the set is a decoy. After describing the algorithm, we prove its correctness and show its
worst-case run time is O(¢) for any arbitrary d.

Given a set of binary strings S = {s1,...,s4}, algorithm BINARYCLOSESTSTRING4
identifies a center string s* for S if one exists. Again, to simplify the algorithm’s description,
suppose s4 = 3*. The algorithm greedily assigns symbols to s*, one symbol at a time. Each
column ¢; is initially considered to be free; that is, no symbol has been assigned to o;(s*).
Once it is assigned a symbol, we say column ¢; is fized and its value is not modified again.
The algorithm has three phases in which columns of groups four, three, and two are fixed,
respectively.

Phase One. Fix symbols of s* in all columns of group four such that these agree with
the symbol of the corresponding column.
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Phase Two. The symbols of s* in columns of group three are fixed sequentially. Say
the first i — 1 columns of group three have been fixed and consider the ith such column. Let
s; denote the string in S that disagrees with the remaining three strings in this column.
Let s™ denote the string given by the symbols of s* in the fixed columns and the symbols
of s; in the free columns. If s is a center string for S, then let s* = s* and return s*.
Otherwise, fix the current column of s* to agree with the majority and continue to the
next column of group three.

Phase Three. If phase three is reached, then only columns of group two remain,
of which at most three types may be present. The free columns are fixed by selecting
the number of columns of each type that will be assigned symbol « versus (3. That is,
a solution for columns of group two corresponds to a triple of integers (z,y,z), where
z € [0, Agaa) denotes the number of columns of type Aga, that will be assigned the symbol
a and Agao — @ represents the number that will be assigned the symbol 3. The variables y
and z are defined analogously. See Table . We denote the corresponding string by s}, , ..
Therefore, the problem reduces to identifying an integer triple (x,y, z) selected from the
region R = [0, Agaa) X [0, Aaga) X [0, Aaas] that minimizes

f(xa Y, Z) = Isrllgg,( d(sia Saj,y7z)7 (41)
where
d(s1,8") = Aapp + T+ Aapa — Y + Aaas — 2, (4.2a)
d(s2,5") = Agap + Mgaa — T+ Y + Aaap — 2, (4.2b)
d(s3,5") = Agga + Agaa — T+ Aapga — Y + 2, (4.2¢)
d(s4,8") = daaa + T+ Yy + 2. (4.2d)

The string s , ., does not actually need to be constructed since the corresponding value of
(4.1)) is obtained in constant time upon fixing values for x, y, and z.

Instead of evaluating all integer combinations for (z,y,2) (requiring O(¢3) time), we
identify a set T'C Q3 N R containing a constant number of triples such that the optimal
(possibly non-integer) solution to is a triple in 7. Interpreted geometrically, (4.2a))
through correspond to four respective hyperplanes in R* whose maximum, f(z,y, z),
defines a surface. Let

1
Ty = Z (_)\aﬁﬂ + Aﬂaﬁ + )\ﬁ,@a - )\aaa + 2)\ﬁaoc) y
1
Yo = Z ()\aﬁ,@ - Aﬁaﬂ + /\ﬂﬂa - /\aaa + 2/\04604) )
1
20 = Z ()\aﬁﬁ + )\gag — )\gga — Ao + 2)\aa5) . (43)
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Column Group | Four Three Two
Algorithm Phase 1 2 3

Number of Columns | Aggg | Aaps  Agag Ad8a  Aaca | ABaa  AaBa  Aaag

S1 B o 16 I} Q 16} a a

s g B o B ol e! 5} !

tS o188 8 a ala a 8

54 B B B B s p p s

Center string  s* I} I3 I} I} Q x Y z

Table 4.3: The center string found by algorithm BINARYCLOSESTSTRING4 (if one exists) is
displayed in the last row. The center string is denoted as s*. The values Aggs through A,z
denote the number of columns of each type and functions x, y, and z denote the number
of occurrences of symbol « in the corresponding column as derived by the algorithm.

If (zo,v0,20) € R, then let T = {(z0,y0,20)}. Otherwise, let T" denote the set of triples
that correspond to z-, y-, and z-coordinates of vertices of the intersection of the surface
defined by with the boundary of R. If this intersection is empty, then it follows that
no center string exists.

For each triple (z,y,z) € T, evaluate the integer triples within unit L., distance of
(z,y,z) in region R. That is, for every (x,y,z) € T, consider the integer triples in
max(0,z— 1), min(x +1, Agaa )] X [max(0,y — 1), min(y+ 1, Aaga)] X [max(0, z — 1), min(z +
1, Maap)], of which there are at most eight. Compute for each such integer triple

. . . X %
(z,y, z) and store the corresponding minimizing string Spy. Lt s =38, .

Termination. Consider the maximum distance between s* and a string in S, i.e., the

minimum (integer) value of (4.1]). If this value is at most d, then s* is returned as a center
string for S. Otherwise, S is a decoy set and no center string exists.

We now demonstrate that algorithm BINARYCONSENSUS4 correctly returns a center
string s* for every set S that is a valid motif set. Furthermore, this is achieved in O(¢)
time, independent of d. The proof of Theorem refers to Lemmas|4.1.3[and [4.1.4) which
follow.

Theorem 4.1.2 Given any d € Z*, any { € Z*, and any set S of four binary strings
of length ¢, algorithm BINARYCONSENSUS4 returns a center string for S with degeneracy
parameter d if one exists or returns that S is a decoy in O({) time.

Proof The correctness of Phase One is straightforward. The correctness of Phase Two
follows by induction on ¢ using Lemma [£.1.3] Consequently, if S has a center string, then
either one has been found by the end of Phase Two (i.e., s* = sT), or there exists a center
string s* such that 0,(s*) = maj, for all columns of groups three and four. The optimal
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solution for the remaining free columns is found in Phase Three. The correctness of Phase
Three follows by Lemma [4.1.4, Therefore, algorithm BINARYCLOSESTSTRING4 returns a
center string s* if one exists, and returns that no center string exists otherwise.

Each phase requires a single pass through the columns of S. Phase One simply requires
counting the number of columns of each type. Phase Two also requires maintaining the
twelve distances d(s;,s;) for each {i,j} C {1,...,4}, where s; denotes s* for which
the free columns are defined according to s; (as described in Phase Two of algorithm
BINARYCONSENSUS4). Every time a column of group three is fixed, each of these twelve
values can be updated in constant time. Phase Three simply requires counting the number
of columns of each type. Since is defined by the maximum of four hyperplanes
and region R is bounded by three pairs of parallel planes, the number of triples in T is
constant and, furthermore, the coordinates of these triples are straightforward to compute
in constant time. Finally, since any point in R? has at most eight integer points within
unit L., distance from it, the set of integer triples evaluated is also computed in constant
time and space. Therefore, algorithm BINARYCONSENSUS4 terminates in O(¢) time. O

Majority-Rule Property We say property P(i) holds for a set S of four binary strings
if and only if either

1. S is a decoy, or
2. there exists a center string for S for which the first ¢ columns of group three have

value mayj;.

Lemma 4.1.3 Let S = {s1,...,s4} denote a set of four binary strings that has m columns
of group three. If P(i) holds for some i € {0,...,m — 1} and s; € S denotes the string
that mismatches in the (i + 1)st column of group three, then either

1. P(i+1) holds for S, or

2. st is a center string for S,

where 0,(sT) = maj, in the first i columns of group three and o,(s™) = o0,(s;) in the
remaining columns.

Proof If sT is a center string for S then the claim holds. Similarly, if S is a decoy then
P(i + 1) is true and the claim holds. Therefore, suppose S is not a decoy and s* is not a
center string for S. By P(7), S has a center string s* for which the first i columns of group
three have value maj,. Let k£ denote the index of the (i 4+ 1)st column of group three.
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Case 1. Suppose o (s*) = maj,. Therefore, P(i + 1) is true, and the claim holds.

Case 2. Suppose oy(s*) # maj,. That is, ox(s*) = o4(s;). Since s* is not a center
string, s* and s™ must differ in at least one column; let ¥’ denote the index of such a
column. Let s™ denote a string of length ¢ such that o,(s**) # 0.(s*) for = € {k,k'}
and o,(s*) = 0,(s*) otherwise. That is, 04(s™) = maj,. Thus, d(s;, s*) = d(s;, s*) and,
furthermore,

Ve e {1,...,4}, d(sz, s™) < d(s., s").

Therefore, s** is a center string for S, P(i + 1) is true, and the claim holds. O

Lemma 4.1.4 There exists an integer triple (x,y, z) € [0, Agaa) X [0, Aaga) X [0, Aaag] that
Minimizes and is within unit Lo, distance from a triple in T, where set T contains
either or the set of triples that correspond to vertices of the intersection of the surface
defined by with the boundary of R.

Proof Since no two of the hyperplanes induced by through are parallel,
f(x,y,z) is a convex function whose surface includes a unique simplicial vertex located
at the point of intersection of these four hyperplanes. Furthermore, this point minimizes
f(z,y,2) since f is increasing as it tends to infinity in any direction. Thus, f(z,y, z) is
minimized at a unique (possibly non-integer) point found by solving for z, y, and z in

d(s1,s") = d(sqe,s") =d(ss,s") = d(s4,s"). (4.4)

The constraints of (4.4)) corresponds to a system of three linear equations with the unique
solution (4.3)).

Since the coefficients of x in through are all £1, function f(x,y,z) has
slope 1 along the z-axis for any fixed y and z. The same holds for any fixed x and y
or any fixed z and z. Consequently, since f(x,y, z) is convex, a minimum integer solution
to lies within unit L., distance of its non-integer solution. The set T contains either
the unique minimum (4.3)) (if it lies within region R) or the set of triples that correspond
to vertices of the intersection of the surface defined by f(z,y, z) with the boundary of R,
one of which must minimize f(x,y, z) over R. Therefore, the claim holds. O

We have obtained a linear-time algorithm for solving the CLOSEST STRING decision
problem for four binary strings, and considered the relative frequency of decoy sets that
do not have a proper subset that is also a decoy. Our results generalize previous work and
answer some open problems proposed in [56]. Further, our empirical results demonstrate
that the majority of decoy sets contain a decoy subset of cardinality four, suggesting that
majority of decoy sets can be characterized as having a decoy set of cardinality four. Such
a characterization would allow the CLOSEST STRING problem to be solved efficiently with
high probability.
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4.2 Smoothed Analysis of CLOSEST STRING Instances

Up to this point in this chapter, we have restricted interest to CLOSEST STRING instances
where the cardinality of the instances are small. Now we consider the opposing problem:
solving instances that have a large number of strings. Using smoothed analysis, we demon-
strate that CLOSEST STRING instances can be efficiently solved in practice. To the best
of our knowledge, this is the first analysis of a natural random model of the CLOSEST
STRING problem. In this section, we give two smoothed analysis results.

Several other papers discuss the smoothed complexity of continuous problems [13] [42]
and of discrete problems [7, [76]. The smoothed complexity of other string and sequence
problems has been considered by Andoni and Krauthgamer [5], Manthey and Reischuk [80],
and Ma [76]. Andoni and Krauthgamer [5] study the smoothed complexity of sequence
alignment by the use of a novel model of edit distance; their results demonstrate the
efficiency of several tools used for sequence alignment, most notably PatternHunter [78].
Manthey and Reischuk gave several results considering the smoothed analysis of binary
search trees [80]. Ma demonstrated that a simple greedy algorithm runs efficiently in
practice for SHORTEST COMMON SUPERSTRING [70].

We use smoothed analysis to prove that the CLOSEST STRING problem can be efficiently
and accurately solved in practice by two different algorirthms, when the number of strings
is significantly large. We present two perturbation models, and analyze the expected
approximation for CSP-Greedy and the expected running time for a well-known, fixed
parameter tractability algorithm.

First, we describe our algorithm, C'SP-Greedy, prove it achieves a 2-approximation guar-
antee, and give a bound on the probability that CSP-Greedy returns an optimal solution
to the CLOSEST STRING instance. We show that CSP-Greedy achieves an 1 + f(e,n,()-
approximation guarantee in time O(£3), where ¢ > 0 is any small value and f(e,n, ()
approaches zero in time that is exponential in n.

Next, we explain the good performance of the O(nf+nd-d?)-time algorithm by Gramm
et al. [57] through smoothed analysis. The algorithm is based on an efficient breadth-first
search of all possible solutions; their original analysis showed the size of the breadth-
first search is bounded by (d + 1), however, the empirical analysis suggested that the
expected size of the search tree is on the order of 3d. We give an analytical explanation
of these results. Imperative to our analysis is the introduction of a perturbation model
of the CLOSEST STRING model and the probabilistic analysis of the O(nf + nd - d%) time
algorithm by Gramm et al. [57]. We show for any given CLOSEST STRING instance I, the
average running time of this algorithm on a small perturbation of I is O(nf + nd - d*~°).
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4.2.1 A Randomized Algorithm for CLOSEST STRING

Our randomized algorithm, which we refer to as C'SP-greedy, begins with a majority string
s, then successively updates s to make it closer to at least one string in S that does not have
s as a center string. We do a maximum number of ¢ cumulative updates to s. After this
point, if a center string is not determined, then the process is repeated. If a set of strings S
does not have a center string with respect to some value of d, then “not found” will always
be returned but if it is a motif set, then with some probability a center string is returned.
This probability depends on the number of times we repeat the search. We prove that
CSP-Greedy achieves a 2-approximation guarantee, and give a bound on the probability
that CSP-Greedy returns an optimal solution to the CLOSEST STRING instance.

In [99], Schéning considers the following simple probabilistic algorithm for solving the
NP-complete problem of k-SAT: randomly choose a starting assignment and subsequently
augment this initial assignment until a satisfying one is obtained. Papadimitriou introduced
this random paradigm in the context of 2-SAT and obtained an expected quadratic time
bound [85]. These type of algorithms are referred to as Monte Carlo algorithms with one-
sided error; a useful property of such algorithm is that the error probability can be made
arbitrarily small with repeated independent random repetitions of the search process. We
analyze a similar probabilistic approach for the CLOSEST STRING problem.

CSP-Greedy begins with a string s,,q;0 randomly selected from all majority strings and
iteratively augments the string so that it is closer to one of the strings in S. We let s,,4;
be spqj0 after it has been updated ¢ times. At iteration ¢+ 1, we obtain the string s,,q;+1
by augmenting s,,4;,; so that it has smaller Hamming distance to at least one string s; in
S where d(sk, Smqji) > Ad. This process is repeated ¢ times at which point the process is
restarted if there is at least one string sj, in S where d(sg, Smaje) > Ad.

Let ¢ be the number of times a random majority string is chosen and augmented /¢
times. Later in the section we define ¢ in terms of the parameters ¢, n, and d. In order to
determine a center string corresponding to the optimal closest distance, this search process
is repeated from Ad = 0 to £.

We give worst-case bounds on the approximation guarantee of CSP-Greedy. Also, we
present examples of inputs for which the algorithm performs poorly and hence, give lower
bounds on the approximation guarantee.

Proposition 4.2.1 The approximation ratio of the CSP-Greedy algorithm is at most 2 for
any alphabet size |X.

Proof Since CSP-Greedy begins with a randomly selected majority string, it is sufficient
to show that for any set of strings S the maximum distance from any majority string to

63



Algorithm 3 Procedure augment

Input: A set S of n (-length strings, parameter d.

Output: A /-length string s or “not found”

Let S be the set of all /-length majority strings

Select 8,450 randomly from S.

Fori=0,...,¢
If d(smaji, sj) < d for all s; € S then return s and terminate.
Else P = {j 185 € S and d(Sj, Smaj,i) > d}
Choose a p at random from P, and 1 < k < ¢ such that s,(k) # Spmaj.i(k)
Set Smajit1 to be equal to s, at position k and equal to s,,4;, at all other
positions

Return “not found”

Algorithm 4 CSP-Greedy Algorithm
Input: A set S of n f-length binary strings.
Output: A /l-length string s
For Ad each from 0 — /¢
Repeat augment t times with parameter Ad

any string in .S is twice the optimal closest distance. Let S be a set of strings with optimal
closest distance equal to d,,;. Without loss of generality assume 0 is a closest string for
S and hence the maximum number of non-zero positions in each string s; € S is at most
dope. By the pigeonhole principle, the maximum number of positions containing greater
than n/2 non-zero positions in a given column is at most 2d,,. Therefore, any majority
string can have at most 2d,,; non-zero positions and is at distance at most 2d,,, from each
string in .S. |

The following example shows the 2-approximation guarantee is tight: S = {10000001111,
01000001111,11111111111,11111111111}, where the majority string is ¢f = 11111111111
and the optimal closest distance is £/4. On the first iteration the majority string could
be altered to ¢ = 01111111111. On the second iteration we could choose to alter this
sequence back to cj. It is possible to alternate between ¢} and ¢} and end up returning cj,
with closest distance £/2 or twice the optimal.

Probabilistic Analysis of CSP-Greedy
The process of augmenting a randomly selected majority string ¢ times or until a closest

string is found can be viewed as a Markov chain. This abstraction will be useful in achieving
an upper bound on the probability that CSP-Greedy returns an optimal solution.
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Let a set S be uniquely satisfiable if there exists exactly one string s* where d(s;, s*) < d
for all s; € S. If S is an instance that does not have a string s such that d(s, s;) < d* for
all s; € S, then procedure augment will return “not found”. So we assume otherwise, that
the set S is uniquely satisfiable and denote the probability of obtaining s* when Ad = d*
as ps. If Spq i is not equal to s* then there is at least one letter of s,,,;, that can be
changed so that d(saj,i,s*) decreases by one; the probability of this occurring is at least
1/¢. Denote X; € {0,1,...,¢} (i =0,1,...) as the random variable that is equal to the
Hamming distance between s,,4;,; and s*, where 7 is the number of iterations of the augment
procedure. Each time a position is selected and the value of that position is augmented,
either the Hamming distance is increased or decreased by one.

The process X, X1, Xo,... is a Markov chain with a barrier at state ¢ and contains
varying time and state dependent transfer probabilities. This process is overly complicated
and we instead choose to analyze the following process: Yy, Y1, Ys, ..., where Y; is the
random variable which is equal to the state number after ¢ steps and there exist infinitely
many states. Initially, this Markov chain is started like the stochastic process above (i.e.
Yo = Xo). Aslong as the inner loop is iterating, we let Y;,1 = X; —1 if the process decreases
the Hamming distance between s,,,;; and s* by one; and Y;1; = X; + 1 otherwise. After
the loop exits, we continue with the same transfer probabilities. By induction on i, it is
clear that for each i, X; <Y, and it follows that p; is at least Pr[3t < £:Y; = 0].

We made the assumption that the set was uniquely satisfiable, however, this assumption
is not needed — the random walk may find another center string while not in the terminating
state but this possibility only increases the probability the algorithm terminates.

The following asymptotic estimation is used in the proof of the next theorem.

Fact 1 Fori > 0 and 7 > 0 the following asymptotic estimation holds:

S () () »

Proof We set i = ¢j and estimate the summand
20+ 5\ (¢—1\" [1\
1 l l
1120\ (1420 f0—1\* (1))
0] 1+¢ 14 l ’

this holds due to Stirling’s formula n! < (n/e)”, giving us:
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And hence, we get

@—m(H%.H%.E—l-l)(1+2¢)¢(1+2¢>1+¢<u)¢(1)1+¢
do o6  1+¢ L L ¢ 1+0¢ i ] '

Finding the extreme points by setting Z—Z equal to zero gives:

o (LT20 1420 (-1 1) (1+2¢ 1420\ L0 —1\? 1\
- (SR (50 () () ()

Since In () = 0 when = = 1, we get:
=@l —-1)=2)* + (4l —1) =)+ (L —1).

Using the quadratic formula we obtain ¢ = 1/(¢ — 2). Hence, the left side of Equation

is at least equal to (5)” . O

N—

Theorem 4.2.2 Let S be a set of strings and d be the optimal closest distance. Then the
probability of procedure “augment” obtaining a center string for S is at least e - 27 for
sufficiently large €.

Proof Suppose s* is a center string for S and let £ be the Hamming distance between
Smajo and s*. Denote Pr[Y; 1 = j — 1|Y; = j] by ¢;. Given that the Markov chain starts in
some state j, it can reach a halting state in at least j steps by making transitions through
the states 7 — 1, j — 2, ..., 1,0. The probability of this happening is at least ZLO q;. For
1 =20,1,2,... the halting state can be reached after 2¢ + j steps, where ¢ steps are “bad”
and j 4 ¢ steps are “good”. The probability of this happening is:
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Pr[YgHj:Oand Yk>0, Vk<22+]|}/0:]],

which is at least ¢/ (1 — ¢;)* times the number of ways of arranging i bad steps and i + j
good steps such that the sequence starts in state j, ends in state 0, and does not reach
0 before the last step. Using the Ballot theorem we know there are (21;”) 2iij possible
arrangements of these ¢ and ¢ + j steps. Therefore, the above probability is at least:

%+ 7\ i y
( . ) (1—q)ig™.

1 21+ 7

This expression is not defined in the case i = j = 0. In this case, the probability is
equal to 1. Thus, we have:

i24(§> 22;@@ <2@j‘j) Qiij (4_71>l @)m
2DERICIION

vV

vV

Using Fact [T} we have:

Pr[YQHj:Oand Yk>0 Vk<2l+]|}/0 — ]]

X

c S () ()

¢
= (2(£ 1)> [by the Binomial theorem]

l
(-1

(
o
O
&
A/~

> [by Taylor’s theorem)]
For sufficiently large ¢ we have the probability is at least e - 27¢. O

The following corollary, an immediate consequence of the previous lemma, bounds the
probability of error.

Corollary 4.2.3 Ift = { and ( is sufficiently large, CSP-Greedy has time complezity O(£3)
and one-sided error probability of no more than (1 —e- Q’Z)Z.
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Smoothed Analysis of CSP-Greedy

We use smoothed analysis to show that the expected approximation ratio of CSP-Greedy

¢
is (1 + 6(62—;1)> . This result explains why this algorithm performs well in practice on

instances with significantly large cardinality.

A perturbed instance S is defined to be S’ = {s}, s, ..., 5]}, where each s, has length
¢ and each s is obtained by mutating uniformly at random each letter of s; with a small
probability p > 0. In more general terms, an adversary chooses n length-¢ strings from the
binary alphabet, and every symbol is perturbed independently with a small probability p.
Next, let S be a CLOSEST STRING instance, S’ be the corresponding perturbed instance,

and g be Pr[s;(j) = 1]. We have

Pr[si(j) =0] = Pr[s;(j) = 1] Pr[s;(j) was permuted] +
Pr[s;(j) = 0] Pr[s;(j) was not permuted]
= gp+ (1 —-q)(1—-p)
Assuming € > 0 is a small number, and the perturbation probability satisfies eloi(fn) <
p < %, we obtain the following:

Pr[si(j)=0] = 1—qg—p+2gp (4.6)

> 1—qg—p+q sincep <1/2 (4.7)

elog(fn)
S 48
z — (4.8)

The next theorem, our main result, demonstrates that for significantly large ¢, as n (and
to a lesser extent /) increases the approximation ratio approaches 1. This result explains
our experimental results analytically.

Theorem 4.2.4 (CSP-Greedy under limited randomness) For any given small € >

elog(4n)

0, for perturbation probability —; = < p < % and significantly large €, the expected ratio

of ‘CSP-Greedy’ on the perturbed instances is (1 + 5—,‘;)@.

Proof Given a CLOSEST STRING instance S, we define the instance as good if each ma-
jority string of S is also a center string for S; otherwise, we define the instance as bad.
Since each iteration of procedure augment begins by selecting a random majority string and
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determining whether it has distance at most d from each string in S, it follows that CSP-
Greedy will return a center string when S is a good instance. Let py.q be the probability
that the perturbed instance is bad.

In order to bound py.q, We calculate the probability that a majority string does not
match the center string at a particular position. Without loss of generality assume that 0°
is a center string; we know there exists at least one such string. We calculate the probability
that 0% is a majority string. Let X;; be a binary random variable representing the symbol
of s; at the j-th position. For a given j, let the number of ones be X; = > X ;.

n

P02 = 30 ()(Prls) = 1/ Pris) = 1)
i=|n/2)+1
> 11— (1= Prls(j) = 1))

Let « =1 — (1 — Pr[si(j) = 1])". We give a lower bound for the probability that the
instance is good.

1 —ppaa = 1—Pr[Scontains at least one bad column]
¢

= 1-y <f> PrX; > n/2]'

=1

~ (1
> 11— '
- % ()
> 1—a' [by Binomial Theorem)]

Therefore, it follows that ppeq is at most (1 — (1 — Pr[s)(5) = 1])")* and hence, we get:

P < (1= (1= Pafs ) = 1) < (1= 5

In Theorem the greedy algorithm was proved to have a worst-case approximation
ratio of 2. Therefore, by Theorem and Corollary we obtain the following:

Y4 l
Elratio] < 2 (1 - 2%) (1 . %) by Corollary .2.3]
€e e €\*
<2t gy o)



For significantly large values of n and ¢, we have:
1 ee e €\ < 1 1 e ¢
(tgm—zm) < (l+3)

¢
Elratio] < (1 + ;—i) .

and therefore,

|

We note that our perturbation is very small compared to the size of the instance. With
perturbation probability p = %, each set of n strings of length /¢ is expected to change
by log (¢n) letters.

4.2.2 Bounded Search Tree Algorithm

In addition to worst-case theoretical analysis, Gramm et al. [57] gave experimental results
that suggest the O(nf+ nd-d?)-time algorithm is more efficient in practice than the worst-
case running time. The worst-case analysis relies on showing that the size of the binary
search tree is at most (d+1)¢, whereas, the experiment results demonstrate that the search
trees are by far smaller than this bound predicts (i.e. in the range of size d). Although,
the empirical results are compelling and suggest the practicality of this algorithm, there
currently does not exist an analytical reason for the efficiency of the algorithm.

We consider a slight modification of this algorithm by Gramm et al. [57]. Rather
than beginning with a random string (as in the original algorithm) we will assume that
the algorithm begins with a majority string. Our main contribution demonstrates that for
sufficiently large values of n and ¢, the modified algorithm builds a search tree with expected
size d*T¢, where € is a small value greater than zero. We introduce a new perturbation
model for the CLOSEST STRING instances, and prove that the average running time of
the algorithm of Gramm et al. [57] is O(nf + nd - d**) for any given perturbed instance.
This analysis involves investigating typical properties of a smoothed instance, including
providing a bound for the probability that any string that contains the majority alphabet
symbol at each position is a center string. From a practical perspective, these results
explain why this fixed parameter algorithm for the CLOSEST STRING problem performs
well in practice.

Gramm et al. [57] applied a well-known bounded search tree paradigm, and showed
the CLOSEST STRING problem can be solved in linear time for constant d. The original
algorithm of Gramm et al. [57] begins by initializing a parameter Ad to d and candidate
string s to s;. Every recursive call decreases Ad by one. The algorithm halts when Ad < 0.
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Therefore, the algorithm builds a search tree of height at most d. At each iteration level
of the recursion, a string s; is chosen from the set of strings that do not have s as a center
string, and all d + 1 of the positions where s and s; disagree are considered (there are at
most 2d positions). For each of these positions s is set equal to s;. This yields an upper
bound of (d + 1) on the search tree size.

Algorithm 5 CSP Bounded Search Algorithm
Input: A CLOSEST STRING instance I, a candidate string s, and a parameter Ad.
Output: A center string s if it exists, and “not found” otherwise.
If Ad < 0, then return “Not found”
Choose i € {1,...,n} such that d(s,s;) > d.
P = {plslp] # silp]};
Choose any P’ C P with |P'| =d + 1.
For each position p € P’
Let s(p) = si(p)
sret = CSP Bounded Search Algorithm (s, Ad — 1)
If st # “not found 7, then return s,
Return “not found”

The algorithm we consider initializes the candidate string to be a random, majority
vote string (rather than s;). For any “yes” instance of the CLOSEST STRING problem the
majority vote string s has distance at most 2d from each string in S. It follows that the
proof of the running time and correctness of the original algorithm continues to hold for
our modified algorithm and therefore, the following theorem holds for our modification.

Theorem 4.2.5 [57] “CSP Bounded Search Algorithm” solves the CLOSEST STRING prob-
lem in time O(nf + nd - d%).

Smoothed Height of the Search Tree

We show CSP Bounded Search Algorithm has expected running time O(nf+nd-d?), a result
that gives substantial improvement to the worst-case analysis of Gramm et al. [57]. Our
proof relies on considering the smoothed height of the binary search tree that is obtained
by randomly perturbing a given (adversarial) instance, then taking the expected height of
the search tree generated by this instance.

We define a new perturbation model for the CLOSEST STRING problem. We need
a perturbation model that will conserve the ‘yes’ instances; if I = (5,d) is a CLOSEST
STRING instance that contains at least one center string, then after perturbing S and d
the resulting instance must also have at least one center string. Let I = (S, d) be a CLOSEST
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STRING instance that has at least one center string and without loss of generality, assume
0 € ¥ and 0 is a center string for S. A perturbed instance of I is defined to be I’ = (S',d'),
where d = d + p(¢ — 2d) and each string s is obtained by mutating s; with a small
probability p > 0 as follows:

e For each j such that s,(j) # 0, we let si(j) = 0 with probability p > 0. Let
pi ={Jlsi(j) # 0 and si(j) = 0}.

e Select n; € (0,d" — (d(s;,0°) — p;)) and choose 7; positions uniformly at random from
the set of positions where s; is equal to 0. For each letter j € n;, we select uniformly
at random a symbol in ¥/{0} to be equal to s(j).

We note that if 0° is a center string for S with respect to the parameter d then it is a
center string for S’ with respect to the parameter d’. For the remainder of this section —
unless stated otherwise — without loss of generality, if I = (.5, d) contains a center string,
then 0 € ¥ and 0f is a center string.

We define a perturbed instance I’ = (S, d’) as simple if all strings in S’ have Hamming
distance at most d from each of the majority strings for S’. This definition is used in
our final smoothed analysis and is crucial for obtaining a tight bound on the number of
instances in which the algorithm performs poorly. Instances that are simple have the
property that the algorithm immediately halts with a correct solution and, therefore, we
are assured that the running time of the algorithm is efficient. We refer to a column as good
if it contains more zeros than nonzeros and, thus, guarantees that the majority symbol is
equal to the center string at that position; all other columns are bad.

Lemma 4.2.6 Let I' = (S’,d’) be a perturbed instance with probability 0 < p < % Then
the probability that I' is not simple is at most 1 — (1 - 2%)6

Proof We first calculate the probability that a column is good. Let X;; be a binary
random variable that is equal to 1 if s; is equal to the value of the center string (i.e. equal
to 0) at the j-th position. For a given j, let the number of ones be X; = > X ;.

PeX, s n/2 = Y (”) (Pefst(j) = 0))° (1 — Prls(j) = 0))""

i=n/2
= (1—Pr[si(j) = 1])”;:; (ZL) (1 _Prlii[s];)(gzi] 1]>Z
— (1 = Pr[si(5) = 1])”7?; (?) (1 frlgsg[sé)(g:i] 1])2



It follows from this last equation that:

1 — Pr[sj(j) # 0" < Pr[X; > n/2] <1 - Pr[sj(j) # 0]"/**". (4.9)

To determine the probability that I’ is not simple we calculate the probability 0 is a
majority string and hence, that I’ contains at least one bad column.

Pr[I’ is not simple] = 1—Pr[X; >n/2|j€[0,/]]
< 1—(1—"Pr[s(j) # 0])" by Equation

()
)

We now prove an upper bound for the expected height of the bounded search tree
produced by CSP Bounded Search Algorithm under the perturbation model we defined
previously in this subsection. Before giving this result we prove an important property for
estimating the smoothed height of the search. More specifically, we give an upper bound
for the probability that the size of the search tree exceeds a specific value.

IA

IN

|

There are O(d?) possible paths in the search tree 7 corresponding to CSP Bounded
Search Algorithm. Let P; be the random indicator variable describing whether the ¢th path
in 7 is does or does not result in a center string, i.e. let P; = 1 if the ¢th path results in
a center string and P; = 0 otherwise. The algorithm halts when P, = 1. Let P be the
number of paths considered until P; = 1.

Lemma 4.2.7 Let € > 0 be a small number and 0 < p < % Let I' = (S',d’) be a CLOSEST
STRING instance that is not simple, then when ¢ is significantly large

1
Pr[P > ddpc] < gt for any constant ¢ > 0.

Proof If I' = (5’,d’) is a “no” CLOSEST STRING instance then the result of each recursive
iteration of CSP Bounded Search Algorithm will always return false. If S’ contains a center
string, with some probability, we have P, = 1. Clearly, the expected number of paths in
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7T that need to be considered before encountering a path that leads to a center string is
1/ Pr[P; = 1]. We now calculate Pr[P;, = 1]. Suppose I’ = (S’,d’) contains a center string
and from our previous assumption, we have that 0 € ¥ and 0 is a center string.

If the candidate string s in CSP Bounded Search Algorithm is not equal to 0° then
there is at least one letter of s that can be changed so that d(s, 0°) decreases by one; the
probability of this occurring is at least 1/¢. Denote Y, € {0,1,...,d'} (k =0,1,...) as
the random variable that is equal to the Hamming distance between s and 0°, where k is
the number of recursive iterations. Each time a position is selected and the value of that
position is augmented, either the Hamming distance is increased or decreased by one.

The process Yy, Y1, Ys, ... is a Markov chain with a barrier at state d’ and contains
varying time and state dependent transfer probabilities. This process is overly complicated
and we instead choose to analyze the following process: Zy, Z1, Zs, ..., where Zj is the
random variable which is equal to the state number after k recursive steps and there exist
infinitely many states. Initially, this Markov chain is started like the stochastic process
above (i.e. Zy = Yp). As long as the inner loop is iterating, we let Z;,1 = Yy — 1 if the
process decreases the Hamming distance between s and 0° by one, and Z,1, = Y) + 1
otherwise. After the algorithm halts, we continue with the same transfer probabilities. By
induction on k, it is clear that for each k, Y, < Zj, and it follows that Pr[P; = 1] is at least
Pr[3t <d:Z;=0].

We made the assumption that S’ contains only one center string; however, this as-
sumption is not needed — the random walk may find another center string while not in the
terminating state but this possibility only increases the probability that the the algorithm
terminates.

Given that the Markov chain starts in some state k, it can reach a halting state in at
least k steps by making transitions through the states k—1, k—2, ..., 1, 0. The probability
of this happening is (1/£)%. Also, for j = 1,2,3, ... the state can be reached in 2j + k steps
where there are j steps which increase the state number and k + j steps which decrease
the state number. Let ¢(j, k) be the probability that Zs;., = 0, such that the state 0 is
not reached in any earlier step, under the condition that the Markov chain started in state
k. More formally,

q(j, k) = Pr[Yajox =0, and Z, > 0Va < 2j+ k| Zy = k].

Clearly, ¢(0, k) = (1/¢)*, In the general case, q(j, k) is ((€—1)/€)7(1/£)7** times the number
of ways of arranging j bad steps and j + k good steps such that the sequence starts in state
k, ends in state 0 and does not reach 0 before the last step.

2j+k> j

Using the ballot theorem [I] we know there are ( ;)3 possible arrangements of
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these 7 and j + k steps. Therefore, the above probability is at least

2 +k\ j  [l—1\ 1
i )24k \ £ ) pitE

This expression is not defined in the case j = k = 0. In this case, the probability is equal
to 1.

The following fact, which is easily proved, is used in the next theorem.

Fact 2 Let I = (S,d) be a CLOSEST STRING instance and Spmq; be any magority string for
S then d(s*, Smaj) < 2d for any a center string s* for S.

Proof We assume n is even. Suppose otherwise that there exists an instance I = (5, d)
where one of the majority strings s,,,; has distance 2d + 1 from the center string s*.
Without loss of generality we assume 0,1 € ¥, 0° is the center string, and 12¢+10¢=24-1 ig
Smaj- Thus, there exist at least n/2 strings equal to 1 at the first 2d positions, implying
each string in S has d positions equal to 1. Since each string has distance at most d from
0¢ this contradicts the fact that d(s*, s,,4;) > 2d. An identical proof can be given for the
case when n is odd. |

To calculate Pr[P; = 1] we need to calculate the probability that & bad columns exist,
for k = 1,...,2d. We let X;,q be the total number of columns that are bad in S’. It
follows, from Equation and the linearity of expectation, that the expected number of
bad columns is ¢(1 — Pr[s; = 0]"). Therefore we get the following:

2d 7
PrP = 1]>Y Pr[Xpa =4 qli.j)
j=1 i=0

2d J
> (Pr[Xpaq < 2d+ 1] = Pr(Xpa = 0) Y (i, ))

j=1 =0

24 j
= (1 —Pr[Xpqa =€ —2d — 1] — Pr[I' is simple]) Z Zq(i,j)

j=1 i=0

It follows from Markov’s inequality that:

Pr[P, =1] > (1 _ & _gP_r[;;d(jj 1: o) _ Pr[l'is simple])

2d

> qlij).

j=1 i=0
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By Lemma [4.2.6], we get:

(1 — Pr[si(j) = 0" 1\ oo~
. — > _ [ _ =
Prif=1] > |1 Ty - ;;q@,y)
/ 1 l 2d o
> 1—m—(1—2—n> ZQ(%J)
=0
/ 1 £\ 2d-1 1 i+1
> - _ -
S v (1 2n> - (1 e) [Fact [l
2d+1
S U S PR B O T el ()
= (—2d—1 on - L

Hence, for sufficiently large ¢ we have Pr[P; =1]=1— (1 — i)z and it follows that:
B 1
(g

and by Markov’s inequality we have that for any ¢ > 0

ElP]

1
Pr[P > d%] < ~
air (1 (1= 7))
Hence, Pr[P > d%*] is equal to i for significantly large n. O

The following is our main theorem which provides an upper bound on E[P], the ex-
pected size of the search tree. An important aspect of this result is the small perturbation
probability required in comparison to the instance size. For a string of length ¢, the ex-
pected number of positions to change is approximately O(logn).

Theorem 4.2.8 For any small 0 < e < d— 2 — 3logd and perturbation probability
3 2
€ log d Spﬁi log d 7
o d Q@ d
d—2—¢

where o > Flogd’ the expected running time of “CSP Bounded Search Algorithm” on the
perturbed instances is O(nl + nd - d**€) for sufficiently large £ and n.
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Proof There are O(d?) possible paths in the search tree corresponding to CSP Bounded
Search Algorithm [57]. The size of the bounded search tree is equal to zero for simple
instances and therefore, we are only required to consider the non-simple instances in which
Lemma holds and ones in which it does not. For the former instances we will use
Lemma [4.2.7| with ¢ = a - d to bound the expected size of the search tree and for the latter
instances we use Lemma Lemma [4.2.6| states that the probability that an instance

is not simple is at most 1 — (1 — 2%)6 Hence, we have the following bound

E[P] < d*®P.Pr[I'is not simple] + d* - Pr[P > d%]
1\*
< ot (1 _ (1 _ 2_n> > +d% - Pr[P > d*"] by Lemma [£.2.6
: 1\
< et (1 — (1 - 2_n> ) + d¥%? by Lemma [£.2.7]
«a-2logd
S d 2ne + dd—dcp

We consider the first term of the last equation. We have d*2'°¢4 < 27 if and only if

ﬁ <5< (f_'—gi. Therefore, for sufficiently large ¢ and n we have:

E[P] < o(1) 4+ d®="8).

Next, we show the exponent of the second term is at most 2 + € as follows:

1_% < 2+¢€

d — d

d—e-3logd-a < 2+4c¢

d—e 3logd - T227¢ < 94

_6- O - —_—— E
& €-3logd —

Therefore, we have E[search tree size] < o(1) +d*>™¢. The analysis of Gramm et al. [57]
demonstrated that each recursive step takes time O(nd) and the preprocessing time takes
O(nf) and therefore, we obtain an overall running time of O(nf + nd - d**°). O

We note that we require € to be at most d — 2 — 3logd in order to have p € [0, 1] and

<. (1°§d)3 <s (1°§d)2. Also, as shown in the previous chapter and by Gramm et al. [50],
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there exists an efficient solution for the CLOSEST STRING problem when at least one of n,
¢ or d is reasonably small and therefore, the constraint that n and ¢ are sufficiently large
is a reasonable assumption.

4.3 Experimental Results

We performed tests on a PC with a 64-bit 2600 MHz processor and 1 GB of RAM running
Ubuntu. For all experiments in this section, we generated synthetic motif sets as follows: a
string s is selected at random from the set of all 4° possible strings, then n motif instances
are chosen at random from the set of all strings of distance at most d from s.

4.3.1 Empirical Difference Between a Random String and a
Majority String

First, we give empirical evidence for the concept that beginning with a majority string
rather than a random string improves upon the efficiency of CSP-Greedy. We fixed ¢ to
be 15, d to be 4, and varied the value of n from 12 to 36. We generated 100 motif sets
for each set of values of £,d and n. For each motif set procedure augment of CSP-Greedy
was run twice — once with s,,,; 0 initialized to be equal to a majority string, and a second
time with s,,,4;0 initialized to be equal to a random string — and in both cases, we counted
the number of augmentations required to obtain a center string. Figure illustrates the
mean number of augmentations for 100 motif sets.

Figure demonstrates that the number of augmentations required to obtain a center
string is significantly larger if s,,q;0 is initialized to be a random string, rather than a
majority string. Further, as the value of n increases the disparity between the number of
required number of augmentations of a majority string to obtain a center string and the
required number of augmentations of a random string to obtain a center string increases
substantially. In particular, when n is equal to 24 the number of augmentations required
of the majority string is equal to 0 (as seen in Figure — illustrating that the majority
string is a center string for all motif sets considered. We observe that this fact cannot be
extended to be true for random strings.

Next, we considered the change in the Hamming distance as the values n, ¢, and d
varied. We considered three different value of ¢ and d, varied the value of n from 5 to
25, generated 100 random motif instances, and determined the mean Hamming distance
between a majority string and a center string. Figure illustrates this data and demon-
strates a drastic decrease in the Hamming distance between the majority string and the
center string as n increases, for all the (¢, d)-motif problems considered. When the value
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Figure 4.1: A comparison between the number of augmentations required to obtain a
center string when procedure augment begins with a random string (shown in black), and
that required when procedure augment begins with a majority string (shown in white), for
various values of n. In all experiments, we have ¢ and d equal to 15 and 4, respectively.

of n is significantly large, the distance between the majority string and the center string
is equal to zero — implying the majority string is a center string.

Hence, the experimental results in this subsection illustrate the following trend: re-
gardless of the value of ¢ and d considered, for significantly large values of n the majority
string is likely to be a center string.
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Figure 4.2: An illustration of the decrease in the mean distance between a majority and
center string as n increase, for various values of ¢ and d. Each line represents the mean
Hamming distance for differing values of n.

4.3.2 Empirical Evaluation of CSP-Greedy

CSP-Greedy begins with a string chosen at random from all majority strings, s, and
iteratively augments s,,4;0 S0 each time it is closer to at least one of the strings in S. We
consider how the number of augmentations of s,,q;0 required to obtain a center string is
affected if s,,4;0 is initialized to a majority string, rather than a random string.
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n | Mean accuracy | Mean number of | n | Mean accuracy | Mean number of
augmentations augmentations

4 57 416 16 99 256

6 86 540 18 100 0

8 87 832 20 100 0

10 92 800 22 100 0

12 98 288 24 100 0

14 98 392 26 100 0

Table 4.4: Data illustrating the change in the accuracy and efficiency of CSP-Greedy as
the value of n increases. We varied the value of n, and fixed ¢ and d to be 10 and 3,
respectively. We generated 1000 motif sets for each value of n, determined the number of
augmentations of procedure augment to obtain a center string from a majority string, and
calculated the mean of these 1000 values.

Number of Input Strings

The number of strings has a substantial effect on the running time of CSP-Greedy. Table
outlines the relationship between the value of n and the accuracy and efficiency of
CSP-Greedy. The mean accuracy of the algorithm is the percentage of motif sets where
CSP-Greedy finds a center string. We varied the value of n, and fixed ¢ and d to be 10 and
3, respectively. We generated 1000 motif sets for each value of n, determined the number
of augmentations of procedure augment to obtain a center string from a majority string,
and calculated the mean of these 1000 values. For this set of experiments we increased the
maximum of augmentations to 1000. Table shows that when n becomes significantly
large (i.e. n is equal to 18) the majority string is a center string.

Figure illustrates the change in the running time of algorithm as n increases. Even
for significantly large value of ¢ and d (i.e. when ¢ was equal to 29 and d was equal to 10),
the algorithm ran extremely efficiently. For each set of values of n, ¢, and d, 1000 motif
sets were generated, CSP-Greedy was ran on each set, and the mean running time was
recorded. The running time decreases significantly as n increased for all values of ¢ and d
considered. Out of all the motif sets we considered, a center string was not obtained for
21 of these sets.

Length/Degeneracy Ratio
We consider the change in the accuracy as ¢ and d increase. Again, we generated 1000

random motif sets, and obtained the mean accuracy and number of augmentations from
running Procedure augment (with the number of augmentations increased to 1000). Table
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Figure 4.3: An illustration of the time required by CSP-Greedy to obtain a center string
as n increases, for various values of ¢ and d.

illustrates the data from these experiments and shows that when n = 20 the mean
number of augmentations was equal to zero for majority of values of ¢ and d, implying that
the majority string was a center string.
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n=2>y
¢ d || Mean accuracy \ Mean number of augmentations
6 1 97 270
8 2 83 272
10 3 67 825
12 3 86 504
14 4 63 813
15 4 69 744
18 6 61 920
21 7 62 912

n =15
6 1 100 0
8 2 100 0
10 3 99 225
12 3 100 0
14 4 99 440
15 4 99 506
18 6 96 916
21 7 93 945

n =20
6 1 100 0
8 2 100 0
10 3 100 0
12 3 100 0
14 4 100 0
15 4 100 0
18 6 96 183
21 7 97 291

Table 4.5: Data illustrating the change in the accuracy and efficiency of CSP-Greedy as
¢ and d increase.The mean accuracy and number of augmentations represents the results
obtained for 1000 randomly generated motif sets.

Figure illustrates the change in the running time of CSP-Greedy as ¢ and d vary,
and n is fixed at 20. When the ¢/d ratio became significantly large the running time was
infinitesimal. Again, for each set of values of n, ¢, and d, 1000 motif sets were generated,
CSP-Greedy was run on each set, and the mean running time was recorded. Out of the
24,000 sets considered, a center string was not obtained for 42 of the sets.
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Figure 4.4: An illustration of the time required by CSP-Greedy to obtain a center string
as ¢/d ratio increases, for various values of d. In these experiments, n is equal to 20.

4.3.3 Application to Motif Recognition

MCL-WMR was developed specifically for the problem of detecting weak motifs in genetic
data and works by first building a weighted graph model of the given motif-recognition
problem and then using a graph clustering algorithm to quickly determine important sub-
graphs that need to be searched further for valid motifs. These smaller subproblems are
then solved optimality using a dynamic-programming algorithm for finding motifs in dense
subgraphs. We extend MCL-WMR to incorporate CSP-Greedy. This new algorithm,
pMCL-WMR, detects motifs in data sets with a large number of strings. More specifically,
pMCL-WMR efficiently discovers motifs in data sets that have 30 or more strings, and
finds regulatory strings in genomic data.
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4.3.4 Performance of pMCL-WMR on Synthetic Data

We produced problem instances as follows: we chose a random center string of length ¢,
and picked m occurrences of the motif by randomly choosing d positions per occurrence
and randomly mutating the base at each. We constructed m background strings of length
n and inserted the generated motifs into a random position in the string. For each of the
(¢,d) combinations, 100 random sets of input strings (n = 20, m = 1000) were generated.
The running time is given in CPU seconds.

Table [4.6| shows the comparison between the running time of MCL-WMR and that of
pMCL-WMR. Two significant trends are witnessed in the data: pMCL-WMR is capable
of solving hard instances of motif recognition (i.e. when ¢ = 25 and d = 7) and pMCL-
WMR gives a dramatic improvement over MCL-WMR with respect to the running time
for all values of ¢ and d. The main advantage to our tool is the time required to solve
the extremely difficult challenge problems — from the (18,6) to the (25,7) problem — in
substantially better running time and with 100% accuracy.

The computational results in Subsection inspire the investigation of instances with
a significantly large number of sequences — that is, instances where n varies from values
greater than 20. Table shows the evaluation of the performance of pMCL-WMR on a
range of problems with an increasing number of sequences. The efficiency on these sets of
problems is noteworthy ranging from 781 (when n = 18) to 2781 (n = 30). As far as we
are aware, these are the first computational experiments where n is larger than 20.

W

An entry indicates that the program was unable to solve the specific problem in
a reasonable amount of time. The mean running time is given, followed by the standard
deviation.

(¢,d) | MCL-WMR | pMCL-WMR
10, 2) | 1003 / 32 518 / 11
15,4) | 3232/ 92 788 / 22
16,5) | 4200 /103 | 1529 / 31
18, 6)

7)

8905 / 150 | 1723 / 47
- 2923 / 45

Table 4.6: Comparison between the performance of MCL-WMR and that of pMCL-WMR
on synthetic data. In all experiments, m = 1000, n = 20, and ¢ and d are varied. The
mean and standard deviation of the running time in CPU seconds is given.
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n | MCL-WMR | pMCL-WMR
18| 1981 /65 781 / 23
20 | 3233 /82 931 / 45
24 - 1721 / 72
28 - 1200 / 87
30 - 2781 / 91

Table 4.7: Comparison between the performance of MCL-WMR and that of pMCL-WMR
on synthetic data as n increases. In all experiments, ¢ = 15, d = 4 and m = 1000. The
mean and standard deviation of the running time in CPU seconds is given.

4.3.5 Using pMCL-WMR to Find Regulatory Elements

An important biological challenge is to determine regulatory elements in DNA — specifically,
binding sites for transcription factors. In this section, we demonstrate the use of pMCL-
WMR in discovering these DNA sequence “motifs” in data sets with a large number of
DNA sequences. Tompa et al. [109] extensively assess 13 motif-recognition tools using test
sets that make use of transcription factor binding sites. The binding sites were obtained
from the TRANSFAC database [117] and contain eukaryotic transcription factors. The
TRANSFAC database is extremely comprehensive, containing data from a large variety
of species (i.e. species include yeast, mus, oryctolagus cuniculus, and homo sapiens) [117].
For more details concerning the data set, including the selection process for transcription
factors and binding sites from TRANSFAC, see Tompa et al. [109].

Each transcription factor gives rise to one set of sequences. The number of sequences
varied from 34 to 6 and the sequence length (parameter m) varied from 700bp to 2000bp.
The transcription factor binding sites vary in length and thus, in order to assess pMCL-
WMR, we ran the program on varied values ¢ and d. The lengths of the motifs were same
as those of the published motifs and d varied. Experimental results are shown in Table 4.8
pMCL-WMR was capable of discovered all of the motifs sets reported by Tompa et. al.
[109], as well as some undetected motifs. The motifs discovered only by pMCL-WMR and
not by any of the motif-recognition programs assessed by Tompa et. al. [I09] are shown in
Table [4.8]

4.4 Summary and Open Problems

In this chapter, we gave a linear-time algorithm for solving CLOSEST STRING problem with
four binary strings, proved lower and upper bounds for the approximation guarantees for
a simple probabilistic algorithm for the general problem, and showed the existence of an
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Data set | (¢,d) | n | Motif pattern discovered
hmo6 | (7,1) |9 TttTecC
hmO6 | (8,1) |9 GGACTGCT
hm10 (8,3) | 6 TTTcgCGC
hm13 | (10,2) | 6 aaAATTatTC
hm13 | (11,1) | 6 tccCcCACAaa
hm19 | (11,2) | 5 tccCcCACAaa

Table 4.8: Illustration of the regulatory strings found by pMCL-WMR. Data are collected
from SCPD. For each set of data, we determined motifs of the same length using pMCL-
WMR, and gave the motif published by Tompa et. al. [I09] for the same data set.

Data set | (¢,d) | n | Time
hm06 | (7,1) | 9| 80
hm06 | (8,1) | 9| 102
hml0 | (8,3) | 6| 210
hml13 | (10,2) | 6 | 178
hm13 (11, 1) | 6 | 220
hm19 | (11,2) |5 | 321

Table 4.9: CPU time required by pMCL-WMR to detect the regulatory sequence patterns
shown in Table .8

algorithm with running time O(£?) that achieves a (1 — (%y)—approximation, for some

small ¢ > 0 and significantly large values of n. Our smoothed analysis of CSP-Greedy
gives reasons as to why this algorithm and the O(nf + nd - d%)-time algorithm of Gramm
et al. [57] is efficient in practice for CLOSEST STRING instances with a large number of
strings. This analysis gives an analytical reason to why this — and perhaps other similar
CLOSEST STRING algorithms — perform well in practice. Lastly, we gave empirical results
that demonstrate the majority string is likely to be a center string when the number of
sequences is moderately large.

There exist numerous open problems that warrant further investigation, including the
following:

e Since the publication of the linear-time algorithm presented in this chapter, these
results have been extended by Amir et al. [3] to a variant of the CLOSEST STRING
problem. Determining how these results could be generalized to larger alphabets
or to instances containing more than four strings remains open. Such a generaliza-
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tion would invite many open problems in motif recognition to be revisited, as their
tractability might be determined more concretely.

In smoothed analysis one often analyzes how fragile worst case instances are. Man-
they and Reischuk [80] suggest examining the dual property of how robust the best
(or good) instances are. Lastly, we propose continuing this form of analysis and de-
termining how stable the best-case instances of the closest string problem are under
perturbations. This would involve considering instances where CSP-Greedy performs
efficiently and showing that even large perturbations of these instances yield problems
that can be solved in efficient time.

There exist several open problems related to the smoothed complexity of string se-
lection problems that warrant investigation. Analyzing the smoothed complexity of
the PTAS of Li et al. [70] for the CLOSEST STRING problem requires further study.
The running time of this PTAS is detrimentally large, thus reducing the algorithm
to only theoretical importance. However, there have been several papers attempting
to prove that the algorithm performs significantly better in practice [22, 23]; the
smoothed analysis of the algorithm would potentially complete this area of study.
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Chapter 5

CLOSEST STRING WITH OUTLIERS

Finding similar regions in multiple DNA, RNA, or protein sequences plays an important
role in many applications, including universal PCR primer design [39, 67, [74, O1], genetic
probe design [67], antisense drug design [30], [67], finding transcription-factor binding sites in
genomic data [109], determining an unbiased consensus of a protein family [10], and motif
recognition [67], 80, 88]. Up to this point, we have formulated these problems with respect
to the CLOSEST STRING problem, which was first introduced and studied in the context
bioinformatics by Lanctot et al. [67]. Since its introduction, the investigation of efficient
polynomial time approximation algorithms and exact exponential time algorithms for the
CLOSEST STRING problem has been thoroughly considered [45, [46l 57, [67, [70) [75] [77].
However, in many contexts the CLOSEST STRING problem can be too restrictive. In this
chapter we consider the computational tractability and intractability of a less-restrictive
version of this problem, and in the following one, we illustrate the applicability of this
version.

The CLOSEST STRING problem requires that the Hamming distance constraint be
satisfied for each of the input strings and therefore, is robust to the overrepresentation
of the input strings; regardless of the number of occurrences of a distinct string, the
Hamming distance constract must be still satisfied. For this reason it is frequently used
to model many of the aforementioned applications. However, this property also causes
a severe problem: if the input includes a string that is significantly different from the
other input strings, which we refer to as an “outlier”, then it will have the effect that a
centre string for the complete set of input strings will not exist; d will have to be increased
dramatically to account for this string and obtain a center string. This is a significant
limitation for applications such as the design of universal primers where a small d is crucial
for the effectiveness of the primers. In this and many other applications, it would be
preferable to determine a “good” center string (i.e. one that is reasonably close to each of
the strings) for a large portion of the input strings rather than trying to find a center string
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for the complete set and in doing so finding one that is a large distance from many or all
of the strings. Hence, we aim to model the task of finding a center string that is within
(reasonably small) distance d of most of the input strings, not necessarily all. Another
compelling consequence of the modification of the model is that in situations where a more
satisfying solution can be found by regarding a few strings as outliers, the initial decision
of including them requires re-examination.

We formally model this problem as follows:

CLOSEST STRING WITH OUTLIERS (CSWO)

INPUT: A set of n length-¢ strings S = {s1,...,s,} over a finite alphabet ¥ and nonnega-
tive integers k and d.

QUESTION: Find a center string s and a subset of S* C S, such that |[S*| = n — k and
d(s,t) <d fort e S*.

We denote n — k as n*, and the symbol at position p of string s; to be s;(p).

There exists a simple reduction from the CLOSEST STRING problem to CSWO that
demonstrates it is NP-complete even in the special case where the alphabet is binary
and k = 0, implying it is unlikely to be solved exactly by a polynomial-time algorithm,
unless P=NP. One approach to investigating the computational intractability of CSWO
is to consider its parameterized complexity, which aims to classify computationally hard
problems according to their inherent difficulty with respect to multiple parameters of the
input. If it is solvable by an algorithm that is polynomial in the input size and exponential
in parameters that are typically small then it can still be considered tractable in some
practical sense.

Smith [102] introduced a related optimization problem. Given a set S = {S1,...,S,}
of m-length sequences over the alphabet > and integers d and ¢, the aim of the MAXIMUM
COVERAGE APPROXIMATE SUBSTRING problem is to maximize |5'|, S” C S, such that for
some s € X¢ and for all S; € S, where there exists a substring s; € S; such that d(s,s;) <
d. Smith demonstrated that this problem is APX-hard, and gives a |%|?-approximation
algorithm for this problem.

For unbounded alphabet size, we show that CSWO is W[1]-hard for every combination
of the parameters ¢, d, and n* and thus, is fixed parameter intractable when parameterized
by any subset of these parameters, unless FPT = WJ[1]. We also show that when the
alphabet is unbounded, there exists a fixed-parameter tractable algorithm for CSWO
with respect to the parameters d and k. In the case of a constant-size alphabet CSWO
is fixed parameter tractable for the parameter n but intractable for the parameter k. The
complexity of the problem remains open when parameterized by d and the alphabet is of
constant size, and when parameterized by n* and k.
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5.1 CLOSEST STRING WITH OUTLIERS: Tractability
Results

We first consider ¥ as a parameter. In computational biology applications the biological
sequences of interest are typically DNA or protein sequences and hence the number of
different symbols is a small constant (i.e. 4 or 20 in the case of DNA or protein sequences,
respectively). Restricting ¥ only does not make CSWO tractable since it is NP-hard
even when the alphabet is binary. However, if 3 and ¢ are both parameters then it is
fixed-parameter tractable; we can enumerate and check all the || possible center strings.
We show in this section that the problem is fixed parameter tractable with respect to the
parameters X, £, d and n. We will prove in a later section that it is imperative that X be
a parameter in order to obtain this tractability.

Algorithm 6 CSWO Algorithm
Input: A CSWO instance with a set of S n strings of length ¢, parameters Ad, d and
k, and a candidate string x.
Output: A string s* if there exists a set S of at least n* strings where each string in S
has distance at most d from s*, and “Not found” otherwise.

If Ad < 0 or k < 0 then return “Not found”
Choose i € {1,...,n} such that d(z,s;) > d. If no such i exists return x.
Sret = CSWO Algorithm (S'\ {s;}, Ad, k — 1, x)
If 5,4 = “not found ” then
P =A{plz(p) # si(p)};
Choose any P’ from P with |P'| = d + 1.
For each position p € P’
Let x be equal to s; at position p
Sret = CSWO Algorithm (S, Ad — 1, k, z)
If spe¢ # “not found 7, then return s,
Return “not found”

The fixed parameter algorithm that we present is very similar to the algorithm presented
by Gramm et al. [57], where it is proved that CLOSEST STRING is fixed parameter tractable
with respect to the parameter d. In the algorithm by Gramm et al. [57] at each recursive
step a string s is selected that has Hamming distance at least d 4+ 1 away from the current
candidate center string x if one exists; otherwise x is returned since it is a center string.
Then for any d+ 1 positions where z and s disagree, there is at least one position at which
s is equal to the final solution. The algorithm tries each of the d + 1 positions, changes x
to s at one of the d + 1 positions, reduces Ad by one, and calls itself recursively. Since the
recursion stops after at most d steps, the size of the search tree is bounded by O((d+ 1)%).
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Our algorithm begins with s; as the candidate center string. If s; is a center string
with respect to S then we are done; otherwise there exists a string s; that has distance at
least d + 1 from s;. We determine whether s; belongs in the set of outliers by trying both
possibilities: s; belonging in the set of outliers and s; not belonging in the set of outliers.
If it is an outlier then we remove it from S and recurs on the smaller set with k£ — 1. If it
is not an outlier then we use s; to move the candidate string = closer to toward s;, which
can be done by applying the methodology of Gramm et al. [57]. This will increase the size
of the search tree.

Proposition 5.1.1 The CSWO Algorithm solves the CSWO problem in time O(nf+nd -
dd 5 2k+d) ]

Proof We first consider the running time of the algorithm and then subsequently, give
proof of the algorithm’s correctness.

Running time. Each recursion of the algorithm reduces either k or d by 1. Thus,
there are at most k + d guesses of whether a particular string belongs in the set of outliers.
Thus, the search tree size is increased by a multiplicative factor of at most 2¥*¢ and the
search tree size is bounded above by O(2"¢. (d + 1)?). The analysis of Gramm et al. [57]
demonstrated that each recursive step takes time O(nd) and the preprocessing time takes
O(nf) and therefore, we obtain an overall running time of O(nf + nd - d? - 2k+%).

Correctness We show the correctness of our algorithm by showing the correctness of
the first recursive step and then the correctness of the algorithm follows by inductively
applying the following argument. Clearly, if S does not contain a subset S* of n* strings,
such that there exists a center string s* for S* then “not found” will be returned and
therefore, we assume otherwise.

If s; is a center string for S then the algorithm immediately halts so we assume there
exists a string s; in .S that does not have s; as a center string. When considering s;, there
are two subcases: one where s; is in the set of outliers, and another where s; is not. Suppose
s; is in the set of outliers; then the first case will successfully remove s; from the set and
recurse on S\ {s;}. Otherwise, if s; is not in the set of outliers, then eventually the second
case will be reached. We refer to the set of positions as correct if {p| s1(p) # s*(p) = s(p)}.
It follows from Gramm et al. [57] that one of the d 4 1 chosen positions p will be a correct
one. Thus, we have shown that either one of the subcases will lead to a smaller subcase
containing the solution for S. O

The previous result demonstrates the fixed-parameter tractability with respect to d and
k. We note that a similar modification of the O(n|X|°@) algorithm of Ma and Sun [77]
also gives a fixed parameter algorithm with respect to the parameters ¥, d and k. In the
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modified algorithm, for any string s with distance greater than d to the current candidate
center string x, we again try the subcases where s is an outlier, and is not an outlier. In
the former case, we remove s from the set of input strings S and recurs on S and k — 1,
and in the latter case, we use the same technique as in the algorithm of Ma and Sun [77]
to reduce the distance between x and the final solution. This modification that accounts
for the outliers results an extra multiplicative factor of O(28+1°84) to the running time of
the original algorithm. Although this algorithm improves upon the running time of the
previous result, it requires that X is also a parameter. Further, we note that some of the
recent improvements [28] [IT5] [119] to the algorithm of Ma and Sun can be modified in a
similar manner to obtain fixed parameter algorithms for CSWO with respect to parameters
>, d and k.

Proposition 5.1.2 CSWO s fized parameter tractable for parameters ¥ and n.

Proof Gramm et al. [57] gave a fixed-parameter tractable algorithm for CLOSEST STRING
with respect to the number of strings and ¥, which we refer to this algorithm as ILP-
procedure(S), where S is the set of input strings. Our algorithm enumerates all size-n*
subsets of S, and calls ILP-procedure on each subset. O

The algorithm proposed in the proof of Proposition[5.1.2has O ((n - f(¢,n,d))"™) running
time, where f(¢,n,d) is the time required for the fixed parameter tractable algorithm. The
algorithm of Gramm et al. [57] models the problem as an integer linear program with n™*!
variables and constraints and then applies the famous result by Lenstra [69], which states
that an integer linear program can be solved in polynomial time with a constant number
of variables. Specially, the result is as follows:

Theorem 5.1.3 [69] The integer programming feasibility problem can be solved in O(p°/?-
L) time, where p is the number of variables and L is the number of bits in the input.

Proposition [5.1.2] as well as the original result of Gramm et al. [57], is only or theoretical
use since the combinatorial explosition in n in the running time of the corresponding
algorithms is huge, thus rendering these algorithms impractical.

5.2 CLOSEST STRING WITH OUTLIERS: Intractability
Results

We derive the W[1]-hardness result by a series of intermediate steps, aiming at a reduction
from CLIQUE to CLOSEST STRING WITH OUTLIERS. This shows that CLOSEST STRING
WITH OUTLIERS is W[1]-hard for the combination of ¢, d, and n*, when the alphabet is
unbounded.

93



5.2.1 Reduction from CLIQUE

As previously described, we let the CLIQUE instance be given by an undirected graph
G = (V,E) with aset V = {vy,vs,...,0,} of n vertices, a set E of m edges, and a positive
integer ¢ denoting the size of the desired clique. We describe how to generate a set S of
')|E| strings such that G has a clique of size ¢ if and only if there is a subset of S of size
%), denoted as S*, where there exists a string = such that d(s;,z) < d for all s; € S*. We

2
let £ =t and d =t — 2. We assume that t > 2 since ¢ < 1 produces trivial cases.

We begin by describing the alphabet. We assume || can be unbounded, however, for
any given instance obtained by our reduction from CLIQUE, || is finite. We define ¥ to
be equal to the union of the following sets of symbols:

1. {v;] for all i = 1,...,|V|}. There exists one symbol representing each vertex in G.

2. Let m = |E| then {¢;jml|i = 1,...,t; j = 1,...,t}. There exists an unique symbol
for each of the (2) - |E| strings produced for our reduction.

Hence, we have a total of [V| + (}) - |E| symbols.

Next, we generate a set of (;) |E| strings S = {S11,1,- -, S1,1,|E[s S1,2,1, - - » S12,[E| - - - » St—1,4,|E| }-
Every string has length ¢ and will encode one edge of the input graph. For string s; ;., we
encode edge e, = (v, vs), where 1 < r < s < |V, but by letting position i equal to v, and
position j equal to v, and the remaining positions equal to ¢; ;. Hence, a string is given

by

i—1 j—i—1 m—j
]

Sijm = [Ci,j,m Ur [Ci,j,m] Vs [Ci,j,m]

Clearly, this reduction runs in time O(|V| + (3) - | E|)

To clarify our reduction, we give an example. Let G = (V| E) be an undirected graph
with V' = vy, vg, v3, v4 and edges E = {(vy, v2), (v1, v3), (v1,v4), (va,v3) } and let our CLIQUE
instance have GG and t = 3. Figure illustrates the reduction. Using G, we exhibit the
above construction of (;) - |E| = 12 strings, which we denote as S. We claim that there
exists a clique of size 3 if and only if there exists a string s* of length ¢ = ¢ = 3 and subset
S* of S of size 3 where d(s,s;) < d for all s; € S*. In this example, the center string s
is equal to vyvov3 and each string in the set {v1v9ci91, V1C13203, Cagqvov3} is such that each
string in S* has Hamming distance at most 1 from s.

5.2.2 Correctness of the Reduction

The following two lemmas establish the correctness of the reduction.
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S121. V1VaC121

S122; V1V3Ci122

S123. V1VaCi123
V1 el V2 S124. V2V3C124
S131. V1C131V2
S132: V1C132V3
S133. V1C133V4
S134. V2C134V3
S231. C231V1V2
S232. C232V1V3
S233. C233V1V4
S234. C234V2V3

es

e4

S*: ViVaV3

Figure 5.1: An example of the parameterized reduction from a CLIQUE instance G with
t = 3 to an instance of CSWO with 12 strings with { =t =3, d =t —2 = 1, and
n* = (3) = 3. In bold we have the set of strings S* = {s121, S132, S234} that corresponds to
the clique containing the vertices {v1,ve,v3}. We note that S* is the only set of size 3 of
strings with Hamming distance at most d from the center string s*.

Lemma 5.2.1 For a graph with a t-clique, the construction in Subsection produces
a CSWO instance with a set S* and a string s of length ¢ such that for every s; € S*
d(s;,s) <d.

Proof Let the input graph have a clique of size t. Let vq,,Va,, ..., v, be the vertices in
the clique C' of size t and without loss of generality, assume a1 < as < ... < a;. Then
we claim that there exists a subset of (é) vertices that have distance at most ¢t — 2 from
the string s = v4,Vq, - - - Va,. Consider the first edge of the clique (v,,,va,). The string
S11r = Vg Vay |C11,]772, Where edge r has endpoints v, va,, is contained in the set of strings
{s111, 5112, - - ., 511 }- Clearly, H(s11,,5) =t — 2. For each edge in C' we have we have a
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string in S that has distance at most ¢t — 2 from s, as required. O

For the reverse direction, we need to prove that the existence of a subset S* of (;) and
a string s where d(s,s;) <t — 2 for all s; € S* implies the existence of a clique in G with
t vertices.

Lemma 5.2.2 If (S,¢,d,n,k) is a ‘YES’ instance of the CSWO problem then (G,t) is a
‘YES’ instance of the CLIQUE problem.

Proof Hence, we are required to show that the ¢t symbols of the center string correspond
to the t vertices of clique in the input graph. Let S* be the subset of S of size (;) such
that s has distance t — 2 from each string in S*. Since { =t, n* =t, d =t — 2 and for each
symbol ¢; ; ., there exists only a single stringi =1,...,¢, j=1,...,tand m=1,... |E|it
follows from the Pigeonhole principle that the center string s only contains symbols from
{v;| for all i =1,...,|V|}. Without loss of generality assume s is equal to V4, Vg, - . . Vs, for
Qyy s Qg - -+, 0 € {1,...,|V]}. Consider any pair o, o; for 1 <1 < j <t and consider the
set of strings S;; = {sij1,Sijz2: -5 6 - Recall that S; ; contains a string corresponding
to each edge e = (r,s) in E which has v, at the ith position and v, at the jth position
and ¢; j,, at all remaining positions. Therefore, we can only find a string in 5; ; that has
distance at most ¢ — 2 from s if v,, is at the ith position and v,; is at the jth position;
and such a string exists if and only if there is an edge in G' connecting v,, to v,;. Hence,
the center string s implies there exists an edge between any pair of vertices in G in the set
{VayVay - - - Vo, } and by definition the vertices form a clique. O

Our main theorem follows directly from Lemma [5.2.1} and Lemma [5.2.2] We note that
the hardness for the combination of all three parameters also implies the hardness for each
subset of the three.

Theorem 5.2.3 CSWO with unbounded alphabet is W[1]-hard with respect to the param-
eters £, d, and n*.

Since there exists a trivial reduction from the CLOSEST STRING problem to CSWO
(i.e. simply set £ = 0 in CSWO), there cannot exist a fixed parameter tractable algorithm
for CSWO with k as a parameter, unless P = NP; such an algorithm would contradict the
NP-hardness of CLOSEST STRING.

Fact 3 CSWO is W/[1]-hard with respect to the parameter k, for any fived || > 2.
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Parameter(s) |X| is a parameter  |X| is unbounded

l,d,n* FPT (trivial) W][1]-hard (*)

14 FPT (trivial) W]1]-hard (*)
d,n* Open W][1]-hard (*)
d, k FPT (*) FPT (*)

n* k FPT Open

k W(1]-hard (trivial) ~W][1]-hard (trivial)

Table 5.1: An overview of the fixed parameter tractability and intractability of the CSWO.
Asterisk denotes the new results discussed in this chapter.

5.3 Summary and Open Problems

We introduced the CSWO problem, and proved that with unbounded alphabet size and
parameterized by ¢, d and n* it is W[1]-hard. We also gave fixed parameter algorithms for
the problem when parameterized by d and k, and with unbounded alphabet size. In the case
of a fixed alphabet size, we showed CSWO is fixed parameter tractable when parameterized
by n = n*+k. Table5.3|summarizes these tractability and intractability results. Currently,
the fixed parameter tractability of the CSWO problem when parameterized by d, n* and
¥, and by n* and k, remains open (see Table .

In addition, the existence of efficient, non-trivial approximation algorithms for this
problem warrants further investigation. Smith [102] proved MAXIMUM COVERAGE AP-
PROXIMATION SUBSTRING is APX-hard, however, the reduction does not directly extend
to the specific case where m = ¢ (i.e. CSWO). Therefore, it currently remains open as to
whether CSWO is APX-hard. He also proved that the |3|-approximation algorithm for
MAXIMUM COVERAGE APPROXIMATION SUBSTRING provides a (d + 1)-relaxed decision
procedure for CSWO. A p-decision procedure is an optimization algorithm that finds a
solution with performance ratio p, or correctly concludes that no exact solution exists.

There are many open problems concerning the approximability of CSWO and MAX-
IMUM COVERAGE APPROXIMATION SUBSTRING. As mentioned by Smith “MAXIMUM
COVERAGE APPROXIMATION SUBSTRING has a large margin for improvement in the com-
plexity bounds” [102, page 80]. Among the problems outlined in this chapter, one of the
key open problems is the development of a polynomial algorithm that gives a constant
approximation guarantee, even for alphabets of constant size.
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Chapter 6

Fast Motif Recognition via Statistical
Thresholds

MCL-WMR uses graph clustering to determine pairwise bounded sets that might be valid
motifs. The major impediment to the efficiency of MCL-WMR was the exponential-time
refinement algorithm used to determine which “candidate motif sets” (i.e. pairwise bounded
sets) have a center string; this step becomes a bottleneck for solving challenging weak motif
instances, such as (18,6), when the number of such candidate sets increases dramatically
[24]. In Chapter [, we give a probabilistic heuristic for solving the CLOSEST STRING
problem, which filters candidate sets based on a majority vote string, that has acceptable
accuracy when n is significantly large (i.e. when n > 20). In this chapter, we propose a
probabilistic algorithm that eliminates the need for a strong bound on n; our algorithm
uses the weight of the set to determine quickly and with a small probability of error whether
the set is a decoy set or a motif set.

We defined the weight of a set of strings S as the sum of the pairwise Hamming dis-
tances, i.e. Zl§i<j§n H(s;, s;). If the weight of a set, which can be calculated in polynomial
time, can be used to indicate whether it is a motif set or a decoy set then the CLOSEST
STRING string can be solved extremely efficiently and accurately in practice — simply calcu-
late the weight of the pairwise bounded set and decide whether the set has a center string
based on this value. For this heuristic to work we need to know how the respective weights
of a random motif set and a random decoy set are distributed. Further, the distributions
need to be adequately separated so that the weight of a set leaves little ambiguity as to
whether the set is a motif set or a decoy set.

There exists an algorithm to sample from the set of all motif sets: simply choose
any length-¢ string as the center string and sample with replacement from the set of all
strings that are at distance at most d from that sequence. This sampling algorithm and its
appropriateness was discussed in Chapter |3l Unfortunately we do not know an analogous
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sampling algorithm, either exact or approximate, for decoy sets. If we could sample pairwise
bounded sets uniformly at random, then we could learn the probability distribution of the
weight of a random decoy set.

We give a method to generate pairwise bounded sets uniformly, use this method to
determine the probability distribution of the weight of a random decoy set, and show the
existence of a separation between this distribution and the probability distribution of the
weight of a random motif set. Thus, we solve CLOSEST STRING instances accurately and
efficiently using the simple heuristic of using the weight as an indicator as to whether a
pairwise bounded set is a motif set or a decoy set. The separation of the distributions
becomes increasingly more prevalent as the number of strings in the set (i.e. the parameter
n) increases, so the accuracy of our method increases as the number of strings increases.

We significantly extend our earlier motif-recognition program, MCL-WMR, by incor-
porating the heuristic for the CLOSEST STRING problem described in this chapter. This
new algorithm, sMCL-WMR, detects motifs in data sets with a large number of strings
(i.e. 30 or more strings). sSMCL-WMR represents the input data as a weighted graph and
uses graph clustering to narrow the search to smaller problems that can be solved with
significantly less computation. An efficient refinement algorithm that distinguishes valid
motif sets from decoy sets allows sMCL-WMR to detect motifs in very large data sets in
significantly less computational time than MCL-WMR.

Finally, we illustrate the applicability of sMCL-WMR and another variant, MCL-FSP,
in analyzing the genomic data of canola. Using these programs, we identify more than 40
motifs in promoters conjectured to be responsible for seed coat-specificity. Based on these
motifs, a promoter DNA sequence of approximately 700 bp was synthesized and introduced
into canola with the aim of obtaining its biological expression.

6.1 Sampling Pairwise Bounded Sets

We discuss uniform sampling, or generation, of pairwise bounded sets. A standard method
used to generate a random motif set is to choose an length-¢ string uniformly at random
from all possible 4¢ strings to be the center string, and then form a motif set by selecting
n strings at random with replacement from the set of all strings with Hamming distance
at most d from this center string [16], 24]. This method samples a motif set uniformly
at random, and further corresponds to how synthetic problem data sets are constructed.
For example, synthetic problem instances are traditionally generated as follows: a random
center string of length ¢ is chosen, n occurrences of the motif are generated by randomly
mutating at most d positions, and each of the n motif instances is embedded at a random
location into a different background string of length m. We note that other non-uniform
distributions have also been used to generate motif sets [8§].
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When sampling uniformly from a poorly understood sample set, rejection sampling is
a naive but useful technique. If we can find a superset of the target set that is easy to
sample from uniformly, we can sample from this superset and simply throw away (reject)
any sampled element that is not in the target set. To sample uniformly at random from all
pairwise bounded sets using rejection sampling in the most naive way, we would generate
n random length-¢ strings and accept the set if it is pairwise bounded, and reject and
repeat otherwise. However, since it is unlikely that such a randomly generated set would
be pairwise bounded, this method is extremely inefficient. We introduce a heuristic to
generate random sets that are more likely to be pairwise bounded, thus speeding up the
rejection sampling process enough to be practical.

We generate the first string, s;, uniformly at random from the set of all length-¢ strings
then generate each of ss,...,s, in turn uniformly at random from the set of all strings at
distance at most 2d from s;. This gives us a set of strings generated uniformly at random
from the set of all strings that have s; as the first string and each other string at distance
at most 2d from s;. If the set is pairwise bounded we keep it; if it is not we reject it and
start over. The fact that this method generates pairwise bounded sequences uniformly at
random can be verified by induction on n.

The number of times a set of n strings is considered and rejected until a pairwise
bounded set is generated follows a geometric distribution and therefore, the efficiency of
this method is determined by the probability that a set is rejected. Though this method is
fast enough to work in practice for values of n we are interested in, the expected running
time when generating a single pairwise bounded set grows exponentially with n.

Definition (Neighbourhood) For a string s € 3¢, the (£, k)-neighbourhood of s, denoted
as Ny, is the set
{si|s; € ©F, d(s;,5) < k}.

We note that |Nx| = S0 (D)(1%] - 1)

Proposition 6.1.1 The probability that a set generated using the above method is pairwise
bounded decreases at least exponentially fast as a function of n.

Proof For1l <i < nletS; bethe subset of S containing the first s randomly chosen strings,
with S, = S. Let A; be the event that .S; is pairwise bounded. Any subset of a pairwise
bounded set is pairwise bounded, so A; implies A;_; for 2 < ¢ < n. Therefore by Bayes’
law we have Pr(A4;) = Pr(A;|A;_1) Pr(A;_1). To prove that Pr(A,) decays exponentially
with n we need only show that Pr(A;|A;_1) is non-increasing in i, since it can easily be
verified to be strictly less than 1 for ¢ = 3. Let K; be the set of strings such that S; U{s} is
pairwise bounded if and only if s € K, noting that K; = () if S; is not pairwise bounded.
We have K; C K; for any 1 <i < j <n. Since Pr(4;|4;_1) = %, the result holds. O
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n—1
Further, the probability that the set is not rejected is equal to <%> . To empirically

evaluate the efficiency of our rejection sampling method, we determined the portion of sets
that will be rejected when generating a sample (of specified size) of pairwise bounded sets.
We performed experiments with varying values of n, ¢, and d, generated 10000 pairwise
bounded sets in each experiment, and considered the average number of sets rejected before
the pairwise bounded set was obtained. The default values for (n, ¢, d) are (20, 15,4).

n=20,¢=15 n=20,d=4 5 {=15,d=4
1600 L] L] L] L] L] L] L] 1000 L] L] L] L] L] 10 J L] L] L] L] L] L]
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Figure 6.1: Data illustrating the mean number of sets rejected by our rejection sampling
heuristic in order to generate a pairwise bounded set. Each plot shows the affect of varying
one of the three parameters n, ¢, and d. Data points are connected with cubic splines. Note
the logarithmic scale used in the right plot.

The results of the empirical tests are shown in Figure [6.1] Each of the three plots
shows how the average number of rejected sets changes when one of the three parameters
is varied and the other two are fixed at their default values. The left plot shows what
happens when d varies between 1 to 7. For values of d that are either greater than |¢/2]
or equal to 0, any set we generate is pairwise bounded and hence, we did not plot data
for d = 0 or d > 8. The average number of rejected sets is largest when d is equal to
2 and decreases dramatically as d increases. This trend is expected since a large portion
of non-pairwise bounded sets would be rejected when d is moderately large. The middle
plot shows what happens when ¢ is varied between 9 and 55. The number of rejected sets
increases steadily when ¢ varies within the range [9, 20], then plateaus when £ is above 20.
It can be easily shown analytically that increasing ¢ above 2dn will have no effect, however,
we see empirically that the effect of ¢ is minimal for values of ¢ greater than 20. The right
plot shows the effect of varying n between 3 and 31. Noting that a logarithmic scale is
used, the average number of rejected sets exhibits growth that is clearly exponential in n.
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6.1.1 A Separation of Weight Distributions

One of the key motivations for the development of methods to generate pairwise bounded
sets from an appropriate distribution is that it can be used to determine whether there is
a separation between the probability distribution of the weight of a random valid motif set
and that of a random decoy set. We use the sampling method just described to generate
1000 random motif sets and 1000 random decoy sets for varying values of ¢, d, and n.
We ran the sampling algorithm described above to generate a pairwise bounded set then
determined whether it is a motif set or a decoy set by using the dynamic programming
algorithm described in Chapter [3] We continued generating pairwise bounded sets until
we obtained 1000 decoy sets and 1000 motif sets. For each random motif and decoy set
witnessed we calculated the weight of the set. Figure depicts, for values considered
for ¢, d, and n, the distribution of the weight of the 1000 random motif sets and that
of the 1000 random decoy sets. The data illustrate an adequate separation between the
distributions.

As the value of n increases, the separation between the distributions becomes more
prevalent since the probability distributions become more concentrated around their means
and the means themselves diverge. Further, the dichotomy is again more evident when
(¢,d) is increased from (15,4) to (18,6). When n is even moderately large we can use
the weight to determine accurately whether the set is a motif set or a decoy set and as n
increases this method of using the weight as an indicator will likely increase in accuracy.
Similar conclusions can be made when ¢ and d increase. These results suggest that the
simple heuristic of using the weight to determine whether a pairwise bounded set is a valid
motif set or a decoy set will enable computationally challenging instances of the CLOSEST
STRING problem (e.g. when n > 20 or (¢,d) is equal to (18,6)) to be solved efficiently with
minimal probability of error.

These empirical trends illustrate the analytical results proved in Chapter [3| that demon-
strate that the distribution of the weight of a random motif set is tightly concentrated
around its mean. It is currently an open problem to prove an analogous result to Theorem
in Section for an arbitrary decoy set. This is a considerably more challenging

problem due to the lack of a combinatorial characterization of a decoy set.

6.2 An Overview of sMCL-WMR

sMCL-WMR considers a weighted graph representation of the input data (as MCL-WMR
does), and then uses MCL) [I10] to cluster the resulting graph. The construction of our
graph G ensures that the motif instances represented by vertices in the graph are connected
to each other and form a clique of size n, though the converse need not hold. Thus, the
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Figure 6.2: Data showing the distribution of the weight of a random motif set, and that
of a random decoy set. Normal distributions fitted to the data are shown to indicate that
the weight distributions are approximately normal.

problem of finding pairwise bounded sets in the data reduces to finding cliques of size n
in the graph G. Next, we filter out the clusters produced by MCL that do not meet the
criteria of having at least n vertices or the minimum weight threshold. See Section [3.1| for
the details of the construction of the graph and the graph clustering algorithm.

Figure [6.2] illustrates that both the weight of a random motif set and that of a random
decoy set are approximately normally distributed, and shows a separation between these
distributions. Using the rejection sampling method described earlier we calculate the mean
and standard deviation of the weight of a random motif set and the weight of a random
decoy set. We use N(u,0?) to denote a normal distribution with mean p and variance
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0%, Let random variables W,, and W, denote the weight of a random motif set and the

weight of a random decoy set, respectively. Let 1, and o2, respectively denote the mean
and variance of the distribution of W,,, and similarly, let ;4 and ¢ respectively denote the
mean and variance of Wy. Assuming that W, ~ N(ji,,02) and Wy ~ N(ug,03), we can
determine the values «,,, and a4 such that:

Pr(W,, < a,;) = .99 and Pr(W; > ay) = .99 .

If o, < g then we can use the weight of a pairwise bounded set of strings to determine
whether the set is a decoy or a motif as follows: calculate the weight w of the set and, if
w < a,, or w > ag then return that the set is a motif or a decoy, respectively; otherwise,
use the dynamic-programming algorithm to classify the set. Hence, if a,,, < g then more
than 99% of pairwise bounded sets will be classified correctly by considering the weight of
the set. Typically the gap between a,,, and ay is large enough to guarantee that this rate
is far higher than 99%. In theory it is possible that a set could be misclassified (e.g. if a
motif set has weight greater than ay) though in practice the probability of this happening
is negligible and does not affect the performance of the algorithm.

() | pn | pa [om | 0q | om | 0a |

) | 794 | 1439 | 84 | 84 | 989 | 1243
) | 850 | 1651 | 86 | 102 | 1050 | 1413
) | 899 | 2204 | 89 | 140 | 1106 | 1878
)
)

954 | 2670 | 111 | 175 | 1212 | 2262
1024 | 3230 | 152 | 199 | 1378 | 2767
(30, 11) | 1069 | 3882 | 169 | 245 | 1462 | 3312

Table 6.1: Data illustrating the mean and standard deviation of the weight of a random
motif set and the weight of a random decoy set for various (¢, d)-motif problems. The
number of strings is fixed at 20.

To increase the efficiency of sMCL-WMR, we include a pre-calculated table storing p,,,
ta, o2, and o3 for common values of ¢, d, and n (for examples see Table and . We
varied n to be between 10 and 50, ¢ to be between 15 and 30, and d to be between |¢/5|
and [£/2]. Values with weaker motifs or with small data sets (i.e. when n < 10) are not
considered since it was shown that MCL-WMR performs efficiently for these instances.
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’ n ‘ Hm ‘ Hd ‘ UrQn ‘ 0-2 ‘ 077 ‘ Qg ‘
15| 432 | 980 | 52 | 60 | 552 | 840
20| 794 | 1439 | 84 | 84 | 989 | 1243
25 | 1529 | 2250 | 129 | 110 | 1829 | 1994
30 | 1845 | 3263 | 196 | 169 | 2300 | 2869
35 | 2240 | 4523 | 246 | 213 | 2812 | 4027

40 | 3709 | 6110 | 389 | 275 | 4613 | 5460

Table 6.2: Data illustrating the mean and standard deviation of the weight of a random
motif set and the weight of a random decoy set for various values of n. The values ¢ and
d are fixed at 15 and 4, respectively.

6.3 An Overview of MCL-FSP

In many practical applications — including the analysis of the genetic data in this chapter
— we are not only interested in identifying strings whose maximum distance from each the
given strings is minimized but also in identifying strings whose minimum distance from
each of the given strings is maximized. Given a set S of strings of length at least ¢ over
an alphabet ¥ and a non-negative parameter dy, the objective of the FARTHEST STRING
problem is to determine if there exists a string s over the alphabet ¥ such that for any
s; € Sy, d(s,s;) > dy. We refer to the subsequences occurring in the input sequences as
non-motifs.

We describe a program, MCL-FSP, that given n length-m sequences over the alphabet
Y) and parameters ¢ and d, finds substrings of length ¢ in the input data and a length-¢
string s where the goal of the FARTHEST STRING problem is satisfied with respect to the
parameters ¢ and d. MCL-FSP can be summarized by the following three steps: graph
construction, graph clustering, and recovering the instances and their farthest string. The
graph construction and clustering is similar to MCL-WMR and sMCL-WMR. However,
the recovering of the substrings of interest is dramatically different. The graph constructed
for MCL-FSP builds the same set of vertices but joins each pair of vertices by an edge if the
Hamming distance between the strings corresponding to the pair of vertices is less than
or equal to d. The weight on each edge is ¢ minus the Hamming distance between the
corresponding strings of the endpoints of the edge. There exists no additional weighting
on the edges.

The clustering of the graph will yield dense clusters in the graph. These dense subgraphs
will likely contain a set of n substrings that are “close” — meaning the pairwise Hamming
distances are small — and hence, are likely to have a string s, which satisfies the FARTHEST
STRING problem together with the set of n substrings.
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To recover sets on substrings that satisfy the FARTHEST STRING problem we first filter
out clusters that do not have a substring from each of the input and clusters whose weight
is less than d - (g) Clusters that pass this test may contain multiple cliques formed by
choosing different subsets of n cluster vertices, or possibly no cliques at all. We identify
all ways of forming a clique from the cluster vertices by using the n-partite nature of the
graph to explore all possible cliques with a depth-first search. For each such clique, we
use Algorithm [7] to determine whether the substrings in the clique correspond to a valid
FARTHEST STRING solution.

Algorithm 7 FSP Recovery Algorithm
Input: A set of S n strings of length ¢, parameters Ad and d, and a candidate string
x.
Output: A string s* with the minimum distance to any string in S at least d if it exists
and “Not found” otherwise.
If Ad < 0 then return “Not found”
Choose i € {1,...,n} such that d(z,s;) < d. If no such i exists return x.
P = {p|xlp] = silpl};
Choose any P’ from P with |P'| = ¢ —d+ 1.
For each position p € P’
Let x not be equal to s; at position p
Sret = FSP Recovery Algorithm (S, Ad — 1, x)
If s.¢t # “not found 7, then return s,
Return “not found”

As mentioned previously, the FARTHEST STRING problem is NP-complete and therefore,
unlikely to be solved in polynomial time. Algorithm [7]is based on the bounded search tree
algorithm of Gramm et al. [57] for the CLOSEST STRING problem, and has been previously
studied by Cheng et al. [29]. Cheng et al. [29] proved Algorithm [7]has a worst-case running
time of O((||(¢ — d)*~¢) and is guaranteed to solve FARTHEST STRING instances exactly.

6.4 Experimental Results on Synthetic Data

We tested sSMCL-WMR and MCL-FSP on synthetic problem instances generated according
to the embedded (¢, d)-motif model, and on real genetic data. The implementations of
sMCL-WMR and MCL-FSP are coded in C++, and all experimental tests were performed
on a Linux machine with a 64-bit 2600 MHz processor and 1 Gbyte of RAM running
Ubuntu. The running time is given in CPU seconds.

We follow the experimental methods of Pevzner and Sze [88], and Buhler and Tompa
[24] by considering the performance of sMCL-WMR and MCL-FSP in comparison to other
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contemporary and well-known motif-recognition programs on synthetic data. We fix n to
be equal to 20, m to be 600, and consider varied values of ¢ and d. To produce random
motif-recognition instances, we generate a random center string of length ¢, then generate
n occurrences of the motif, each generated from the center string by randomly choosing d
positions and for each of the d positions choosing a random replacement base from the four
possible bases (A, C, G, T). We construct n background strings of length m and insert the
generated motifs into a random position in the string. For each of the (¢, d) combinations,
100 randomly generated sets of input strings were generated.

We compared the performance of sMCL-WMR and MCL-FSP with that of the following
motif-recognition programs: PROJECTION [24], MCL-WMR, PMSprune [35], and Voting
[30]. All programs were run on the same Linux machine with the same data sets. These
motif-recognition programs were chosen for their availability, performance, and widespread
use; they are appropriate for comparison with sMCL-WMR because of the previously
described capability in solving weak motif instances and because of their availability to
be run on the described machine. The results of Voting, PMSprune, and PROJECTION
are similar to the ones reported by Davila et al. [35], and to Chin and Leung [31], both of
whose testing was completed on a machine with a slightly slower processor and the same
core memory size.

(¢,d) | sMCL-WMR | MCL-FSP | MCL-WMR | PROJECTION | Voting | PMSprune
(10, 2) 122 1131 1020 560 (0.98) 30 42
(12, 3) 134 3019 2780 1921 (0.85) 124 130
(14, 4) 492 3325 3120 3058 (0.88) 562 556
(16, 5) 677 4502 4101 6132 (0.80) | 2600 13121
(18, 6) 1521 8950 9202 - 8023 | 29012
(20, 7) 2845 - - - 24600 -

(25, 8) 4111 . . : ; :

Table 6.3: Comparison of the performance of sSMCL-WMR, MCL-FSP, and other motif-
recognition programs on synthetic data for various values of ¢ and d. All programs except
PROJECTION had a success rate of 1.0 and for this reason, the success rate was for
PROJECTION is included in brackets in the table. In all experiments, m = 1000 and
n = 20.

Tables [6.3] and [6.4] illustrate the comparison between the running time of sMCL-WMR
and that of the other programs. Our aim was to test the selected programs on their
capability to solve challenging motif instances (i.e. when d is significantly large with respect
to £). The symbol “” implies that the program was not capable of solving the motif
instance on the described machine in a reasonable amount of time, which we define to
be at most 20 hours, or with reasonable accuracy, which we define to be at least 75%.
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n | sMCL-WMR | MCL-FSP | MCL-WMR | PROJECTION | Voting | PMSprune
18 547 5559 5320 5230 (0.85) 3930 37020
20 679 8823 8912 - 5201 45030
24 1221 - - - 10211 -

28 2019 - - - - -

30 2431 - - - - -

40 5201 - - - - -

Table 6.4: Comparison of the performance of sSMCL-WMR, MCL-FSP, and other motif-
recognition programs on synthetic data for various values of n. All programs except PRO-
JECTION had a success rate of 1.0 and for this reason, the success rate was for PROJEC-
TION is included in brackets in the table.In all experiments, ¢ = 18, d = 6 and m = 1000.

Two significant trends are witnessed in the data: sMCL-WMR is capable of solving very
hard instances of motif recognition (i.e. when ¢ = 25 and d = 8) and gives a dramatic
improvement over the existing programs for instances where ¢ > 16 (for instances where
¢ <12 sMCL-WMR had comparable or better performance to the other programs). MCL-
FSP had a slightly higher running time than MCL-WMR and failed on the same instances
as MCL-WMR.

6.5 Development of a Seed Coat-Specific Promoter
for Canola

Canola (Brassica napus L.) was originally bred from rapeseed in Canada in the 1970s
[41]. Presently, the canola industry generates more than $11 billion of yearly income
to the Canadian economy. One of the major exports of the canola industry is canola
meal, which is most widely used in animal feeds. However, one of the major problems
with canola meal is the dark polyphenolic pigments that accumulate in the seed coat; the
dark pigment interferes with the protein utilization, causing the quality of the meal to be
lowered. Hence, altering the seed coat is an important biological challenge that has the
possibility of reducing the indigestible fiber and enhancing the usability of canola meal.
One first step in tackling this problem is to develop seed coat-specific promoters which are
capable of regulating the genes involved in seed coat development and metabolism.

One approach to finding seed coat-specific promoters for canola is to isolate the promot-
ers of proved seed coat-specific genes from other species, and then validate their expression
in canola. Since genes are conserved among species, this is a reasonable approach. Pre-
liminary results identified that several promoters express in the outer integument of seed
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coat in canola, and a single promoter expresses in the inner integument. The subsequent
challenge is to synthetically develop a promoter sequence that expresses both these two
biological characteristics. This synthetic promoter can then be artificially inserted into the
genomes of the canola seeds and be tested for their expression. Table gives an overview
of the relevant data concerning the promoter sequences analyzed.

Promoter bp Composition
A C G T

AtLAC15 1528 | 33% 19% 16% 33%
Arabidopsis BAN 236 | 33% 18% 14% 34%
VPE 2067 | 34% 16% 17% 32%
GILT 2889 | 36% 13% 14% 3%
Arabidopsis TT12 1704 | 36% 16% 17% 31%
Arabidopsis TT2 3813 | 38% 14% 14% 34%
Barley Germin B gene | 846 | 35% 15% 15% 35%
Tobacco Cryptic 2553 | 33% 18% 14% 34%
SCS1 7235 | 37% 12% 12% 39%
SCB1 5329 | 38% 12% 15% 35

Table 6.5: Description of promoters analyzed to develop a coat-specific promoter.

In order to use sSMCL-WMR to find motifs in the genetic data we need to ensure that
there exists a separation between the weight of the motif sets and decoy sets found in
the data. We have previously shown such a separation exists for synthetic data. For a
subset of the values of n, ¢ and d that are to be used in the analysis, we ran MCL-WMR
and calculated the weight of the motif sets and decoy sets found. Figure illustrates
this data. For all values of n, ¢, and d tested, there exists a clear separation between the
distributions and we were able to use the precalculated tail values determined in Section
6.2

The conserved motifs were identified through the use of sSMCL-WMR and MCL-FSP.
Table gives a subset of the motifs detected by sMCL-WMR and the CPU time in
seconds for their detection. In addition, it was of interest to identify furthest strings that
were contained in one of the input sequences. Table contains a sample of the furthest
strings and which of the input sequences it occurs in; for the remaining sequences the
specified string is a furthest string with respect to the parameters ¢ and d. In particular,
detecting furthest strings that occurred in one of the following three promoters was of
interest: the AtLAC15, Arabidopsis BAN and Arabidopsis T'T2 promoters.

Each of these promoters has a specific biological role in the development of one of the
different layers of seed coat. sMCL-WMR was used to determine the nucleotide patterns
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Figure 6.3: An Illustration of the distribution of the weight of a random motif set found in

the promoter data (shown in white), and that of a random decoy set found in the promoter
data (shown in black).

common to each of the promoters and hence, maybe responsible for having biological
activity concerning the seed-coat. MCL-FSP was used to detect nucleotide patterns that
were distinct to particular promoters that were responsible for the outer integument and
inner integument of the seed coat — in hope of identifying biological sequence patterns
responsible for each specific seed-coat integument. We identified more than 40 motifs and
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non-motifs in the promoter data that may be responsible for the seed coat-specificity.

Based on these motifs and non-motifs, a promoter DNA sequence of approximately 700
bp was synthesized and introduced into canola. Presently laboratory tests are being used
to obtain the complete expression results.

| (¢,d) | n | Center String | CPU time |
(6,1) | 10 ACActc 58
(6,2) | 10 tGgtCA 63
9,1) | 9 | taTCTtTT 08
9,2) | 7| TTgtTAGgt 96
(10,2) | 8 | TTTTtTattT 112
(12,3) | 10 | tcTCTTtttCta 198
(14,4) | 7 | AgtTctATTtttTT | 253

Table 6.6: Subset of motifs detected using sSMCL-WMR. The CPU time is in seconds.

’ (¢,d) ‘ Occurrence ‘ Furthest String ‘ CPU time ‘
(10,4) AtLAC15 ACCACTCCAG 1025
(18,8) AtLAC15 GATTTCCAAGCCTATCAC 1128
(19,9) AtLAC15 CCAAGAATCGATGAGCGGG 2591
(15,6) | Arabidopsis BAN GATCTACTGTTGTAC 1891
(17,7) | Arabidopsis BAN |  ATCACGTGCTTACCTTC 2139
(15,7) | Arabidopsis TT2 CCGACGGGTTTGGCT 1811
(18,9) | Arabidopsis TT2 | CAGCGAAAAGGCCGACGG 2350

Table 6.7: Subset of motifs detected using MCL-FSP. The CPU time is in seconds.

6.6 Summary and Open Problems

We investigated the relationship between the weight of a decoy set and the weight of a motif
set by means of random sampling. We discussed a rejection sampling strategy, and pro-
posed a means to make this uniform sampling method more efficient. Using this algorithm
that generates pairwise bounded sets uniformly at random, we studied the probability dis-
tributions of the respective weights of a random motif set and a random decoy set. We
concluded that the weight of a pairwise bounded set can accurately predict whether the set
is a valid motif set. We illustrated how to exploit this dichotomy to create a more efficient
motif-recognition program.
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Developing a more efficient method to generate pairwise bounded sets uniformly at
random is an important algorithmic challenge that would give insight into the motif-
recognition problem. Studying the possibility of the use of Markov chain Monte Carlo
(MCMC) sampling algorithms to sample pairwise bounded sets warrants further inves-
tigation; such methods have led to efficient sampling algorithms for other combinatorial
problems; see Randall [93] for a survey of MCMC methods and their applications. Further,
an analytical explanation for the empirical results, showing that almost all decoy sets with
degeneracy parameter d have center strings when the degeneracy allowed is increased to
d+ 2, would lead to a more efficient sampling method and would be interesting in its own
right.

In addition, we developed and applied an efficient algorithm for the FURTHEST STRING
problem. This problem is significantly less investigated than its partner problem, the
CLOSEST STRING problem, and as such, it warrants more in-depth study.
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Chapter 7

Conclusion

This work focused on several fundamental problems of genomic sequence analysis: motif
recognition, the CLOSEST STRING problem, and other distinguishing string problems. We
constructed predictive models for tasks in pattern recognition, and identified and applied
many combinatorial and probabilistic insights to our problems of interest. Modelling bio-
logical problems as graphs and other abstract mathematical objects can lead to theoretical
results concerning the computational complexity and thus, the ability to find an approx-
imate solution efficiency. From a practical perspective, this area of research can lead to
powerful new tools for identifying genes and possible mutations.

We described several original contributions — both theoretical and applied. Our main
contributions are summarized below:

e We developed a new approach for motif recognition, and provided theoretical and
experimental results that support our novel model and algorithm [16]. Our algo-
rithm, MCL-WMR, builds a weighted graph model of the input data and uses a
graph clustering algorithm to quickly determine important subgraphs that need to
be searched further for valid motifs. Our experimental results show that MCL-WMR
has competitive running time capabilities and accuracy.

o We gave a linear-time algorithm for solving CLOSEST STRING instances with a small
number of strings; which addressed an open problem of Gramm et al. [57]. We
also considered the dual problem — instances with a large number of strings — and
provided empirical results that demonstrate that these “large” instances can be solved
efficiently. Our analytical explanation, as to why CLOSEST STRING instances with a
large number of strings are easily solved in practice, involved initiating the study of
the smoothed complexity of the CLOSEST STRING problem.
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e We proposed a refined closest string model, the CLOSEST STRING WITH OUTLIERS
(CSWO) problem, which asks for a center string s that is within Hamming distance
d to at least n — k of the n input strings, where k is a parameter describing the
maximum number of outliers. A CSWO solution not only provides the center string
as a representative for the set of strings but also reveals the outliers of the set.
We gave fixed parameter algorithms for CSWO when d and k are parameters, for
both bounded and unbounded alphabets. We also proved that when the alphabet is
unbounded the problem is W[1]-hard with respect to n — k, ¢, and d.

e Lastly, we applied the probabilistic heuristics and combinatorial insights for the
CLOSEST STRING problem to motif recognition. This program, referred to as sMCL-
WMR, is used to uncover similarities in the promoter region of the genomic data
of canola. We identified more than 40 motifs in the three promoters that might be
responsible for certain biological activities concerning the seed coat, and syntheti-
cally developed a promoter that is conjectured to express all biological activities of
interest. This synthetic promoter DNA sequence is currently being introduced into
canola and tested for its expression.

Throughout this thesis we have suggested open problems that warrant further investi-
gation. We conclude by giving further details on some of these suggested open problems,
as well as proposing some future research directions.

Solving Small Motif Instances

In Chapter [l we described a simple, linear-time algorithm for solving the CLOSEST STRING
problem. Since the development of this algorithm, these results have been extended by
Amir et al. [3] to a variant of the optimization version of the CLOSEST STRING problem
that minimizes both the maximum Hamming distance but also the sum of (Hamming)
distances from the strings to the center string. It is an open problem as to if there exists
an efficient, polynomial-time algorithm for the CLOSEST STRING problem restricted to four
strings and an alphabet larger than the binary one, or for the CLOSEST STRING problem
restricted to a constant number of strings greater than four. In addition, extending the
results of Amir et al. [3] to larger alphabets or sets of strings is currently open.

Smoothed Analysis
Numerous open problems still remain in the area of studying smoothed analysis and dis-

tinguishing string selection problems. Studying how robust the best (or good) instances
rather than how fragile worst-case instances are warrants further consideration, as well as
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studying the smoothed analysis of the PTAS of Li et al. [70]. The smoothed complexity of
other distinguishing string selection problems remains open, these include the FARTHEST
STRING problem and other variants of the CLOSEST STRING problem. Reconciling the
complexity of these problems would further conclude about the ability to solve practical
instances of variants to the CLOSEST STRING problem.

Practical Algorithmic Solutions for Solving CSWO

We gave several fixed parameter tractability algorithms for CSWO in Chapter f| The
practicality of these algorithms has not been investigated, and the worst-case analysis
implies that they may be impractical for solving relatively large instances of this problem.
Since there exist practical applications to this problem, it is imperative that algorithms for
CSWO that are efficient and accurate in practice be developed.

Sampling and Counting Center Strings

In Chapter [6] we showed the applicability of sampling and counting center strings to motif
recognition. There presently remain many open problems concerning this topic. Boucher
and Omar gave results concerning the computational difficulty of sampling and count-
ing center strings [19]. Developing efficient methods to sample and count center strings
presently remains open. The development of a rapidly mixing Markov chain Monte Carlo
(MCMC) algorithm could show the existence of an algorithm for uniform at random gener-
ation of pairwise bounded sets and should be further explored. MCMC methods have been
successful in producing a sampling method for some combinatorial sampling problems.
Extending Barvinok’s algorithm [9], which counts the number of points in a polytope, to
a weighted polytope would also give the desired result by combining it with the integer
linear programming formulation of Boucher and Omar [19].
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