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Abstract

The shallow subsurface controls the partitioning of available energy between sensible and
latent heat of the land surface, and the partitioning of available water among evaporation,
infiltration, and runoff. It is a key component of both the hydrometeorological system and
the terrestrial water cycle. A critical part of any hydrological or hydrometeorological fore-
cast model is therefore the algorithms used to represent the shallow soil processes, which
include infiltration, evaporation, runoff, and interflow. For climate models, coupled algo-
rithms called “Land Surface Schemes”(LSSs) are developed to represent the lower boundary
conditions that deal with the land-to-atmosphere energy and moisture fluxes. Similar al-
gorithms are implemented in regional watershed models and day-to-day operational water
resources forecasting models. It is the primary objective of this thesis to provide improved
methods for simulating coupled land surface processes, which can be used as components
of LSSs or within existing operational hydrology models. These new methods address a
number of specific issues inadequately handled by current models, including the presence
of shallow boundary conditions, heterogeneity in infiltration, and infiltration and interflow
coupling processes.

The main objective of the proposed research is to provide consistent physically-based
approach for simulating near surface soil moisture processes, so as to complete the pa-
rameterization of the interflow/infiltration algorithm in a Hydrology-Land-Surface scheme
MESH. The work mainly focuses on the investigation and development of more physically-
based infiltration and interflow algorithms. The hope is to determine appropriate relation-
ships between internal state variables (specifically bulk soil moisture) and system bound-
ary fluxes, while simultaneously reducing the number of nonphysical or unknown model
parameters. Fewer parameters lead to reduced calibration requirements for distributed
hydrological models and consequently accelerate the transfer of such models to engineering
practice.

Multiple approaches were taken to provide improved relationships between infiltration
and lateral drainage, fluxes and storage. These algorithms were tested by a specialized
Richards’ equation for sloping soils and Monte Carlo simulations. These tests demonstrated
reasonable accuracy and improved representation for the hydrological processes.
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Chapter 1

Introduction

The shallow subsurface controls the partitioning of available energy between sensible and
latent heat of the land surface, and the partitioning of available water among evapora-
tion, infiltration, and runoff [109]. It is a key component of both the hydrometeorological
system and the terrestrial water cycle. A critical part of any hydrological or hydrome-
teorological forecast model is therefore the algorithms used to represent the shallow soil
processes, which include infiltration, evaporation, runoff, and interflow. For climate mod-
els, coupled algorithms called “Land Surface Schemes”(LSSs) are developed to represent
the lower boundary conditions to deal with the land-to-atmosphere energy and moisture
fluxes. Similar algorithms are implemented in regional watershed models and day-to-day
operational forecasting water resources models. It is the primary objective of this thesis
to develop and test improved physically-based algorithms for simulating near surface soil
moisture processes, which can be used as components of LSSs or within existing opera-
tional hydrology models. These new methods address a number of specific inadequacies
in current models, including existence of shallow boundary conditions, heterogeneity in
infiltration, and recharge coupling processes.

1.1 Motivation

Water is constantly cycled between the atmosphere, oceans, and land. Figure 1.1 represents
a schematic of the entire water cycle. Precipitation moves water from the atmosphere to
the Earth. Water infiltrates into the soil to generate subsurface runoff or flows over land as
surface runoff into streams and oceans. Water evaporates from land, streams, and oceans.
This water vapor rises into the atmosphere and again becomes the source of precipitation.
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Because the soil plays a key part in the water circle, climatologists, hydrologists, and
hydrogeologists have each developed their own means of simulating moisture redistribution
in the shallow subsurface. Each discipline’s models contain subroutines to simulate the
boundary processes but often do not consider the interaction between them.

Figure 1.1: Schematic of simplified water cycle (P=Precipitation, E=Evaporation,
R=Runoff, I=Infiltration, and B=Baseflow; M1=Climate models, M2=Land surface
schemes, M3=Hydrological models, and M4=Groundwater models)

Recent efforts have been made to couple these models so that they can communicate
with each other to improve model accuracy and/or reduce the simulation costs. The LSSs
developed by climate models are focused on the vertical water and energy budgets, and typ-
ically have a well-developed evapotranspiration scheme whereas hydrological models focus
on horizontal flow routing and contain more advanced baseflow, interflow, and infiltration
schemes. By coupling a LSS with a hydrological model, the vertical water routines in the
hydrological model can be replaced by that of the LSSs. The coupled system captures the
best of each model and provides a comprehensive and systematic modeling scheme that
avoids the delineation of the earth and atmosphere boundary.

Soil moisture is a crucial factor in any hydrological model. Infiltration, evapotranspi-
ration, surface runoff, and drainage are functions of soil moisture. Evapotranspiration is
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particularly sensitive to near surface soil moisture. A small change in soil moisture can
result in a large change in the actual evapotranspiration, and further affect the large scale
global water balance. Ideally, simulation of soil moisture must be simple, fast and robust
[123]. To meet this goal, each discipline has taken a different approach. Numerous meth-
ods have been used to simulate soil moisture processes in large hydrological models. Early
LSSs for atmospheric models use the Manabe bucket model [88], which is a simple and
fast model that simulated all of the soil moisture processes simultaneously. However, the
Manabe bucket model tends to over simplify the hydrologic processes: a single homoge-
neous soil layer is used to represent the soil structure and the water balance is represented
as a simple exponential function of storage. The Manabe model can often match observed
annual flows but fails to produce within-year details. More advanced modern LSSs adopt
more complex soil reservoirs than that of the Bucket models, but they still use a smooth
earth scheme with poor representation of lateral flow. At the other extreme, discretized
numerical hydrological models based on Richards’ equation (HYDRUS [118], WEPP [103],
and SHE [1]) are able to represent physical process and are very powerful for solving the
complex non-linear soil moisture simulation problem. However, such numerical models are
computationally prohibitive and require detailed soil data that are usually unavailable.

Several compromises have evolved between the simple Bucket model and complicated
numerical models, as shown in Figure 1.2. The Bucket model [88] contains only the vertical
drainage process. In hillslope hydrology, saturated lateral subsurface flow has been included
[71]. LSSs address the drainage between soil layers but most often use a flat surface and
ignore lateral subsurface flow [141]. TOPMODEL ([10] [12]) predicts the spatial variability
of the catchment response using a topographic index, which contains vertical flow in an
unsaturated layer and lateral flow in a saturated layer. However, the infiltration and
recharge are calculated independently and in a non-iterative manner.

As shown in Figure 1.2, interflow, defined as near surface lateral flow, is often neglected
in the unsaturated zone. Drainage is calculated either by Darcy’s law [141] or by empirical
power functions [10], [71], which often match drainage characteristic curves but fail to
provide a physical meaning of the parameters. A consistent relationship between internal
state variables and the boundary flux has not been found. Regional soil heterogeneity is
typically not accounted for and hillslope physics are often improperly handled. Also, in
reality, infiltration, interflow, and recharge are simultaneous processes but haven’t been
properly coupled in many existing models, which typically treat processes independently.

This thesis aims to address many of these issues, in part, through further development
of WATDRAIN. WATDRAIN is an independent subroutine to simulate the unsaturated
zone lateral flow by relying on a solution to a simplified version of the Richards’ equation.
It can be incorporated into any hydrological model to represent the boundary flux and the
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Figure 1.2: Evaluation of the soil mositure parameterization: From a purely empirical
Bucket model to a physically-based, multi-layers land surface model and topographic based
TOPMODEL; WATDRAINs in this study combines the vertical process of CLASS and
lateral process of TOPMODEL, representing lateral process in unsaturated zone, to provide
improved soil moisture simulation processes

distribution of the internal state variables. Currently, the WATDRAIN interflow algorithm
has been incorporated into Modelisation Environmental Communitaire (MEC) [130] and
the MEC Simulator for Hydrology (MESH, previously called WATCLASS, which is built
from three existing models: a hydrological model WATFLOOD, a Canadian Land Surface
Scheme (CLASS), and the subroutine WATDRAIN) modeling. The MESH model may
be coupled to the Canadian Meteorological Center (CMC) operational numerical weather
prediction system. The current implementation of soil processes in MESH is insufficient.
For example, the infiltration process in CLASS is represented by a Green-Ampt sharp
wetting front, which is a piston-like front of saturation parallel to the land surface that
disappears after one time step. However, in reality, infiltration varies due to the non-
uniform soil moisture distribution and the wetting front persists for many hours. There are
similar shortcomings in the other vertical processes, namely parameterizations of between
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layer transfers and recharge.

This research, based on preliminary results from the Mackenzie GEWEX study [129],
continues the development of improved vertical infiltration, drainage, and lateral soil water
simulation algorithms. This work firstly focuses on improving the simulation of vertical
processes, mainly the infiltration calculation. The next step is incorporating an updated
interflow algorithm into a stand-alone soil model. Third, methods are investigated for
combining the vertical and lateral processes to provide an improved soil moisture model for
Hydrology-Land-Surface Schemes (HLSSs). In the end, this research study intends to yield
an improved algorithmic representation of the hydrologic soil processes. These collective
improvements reduce the calibration requirements for distributed hydrologic models and
consequently accelerate the transfer of such models to engineering practice.

1.2 Objectives

The essence of soil moisture modeling at the watershed or hillslope scale is to develop a
relationship between boundary fluxes (e.g., infiltration or recharge) and the control volume
storage. In this thesis, multiple approaches are taken to derive improved relationships
between infiltration and lateral drainage, fluxes and storage so as to provide novel, robust,
and efficient physically-based soil simulation processes. Though Beven [13] mentioned that
it is very difficult to develop a functional representation of fluxes in terms of internal states,
multiple useful parameterized flux relations are found in the current research.

To develop improved methods for more appropriately and accurately simulating near
surface soil moisture processes, thereby improving the utility and robustness of the MESH
land surface scheme. The work mainly focuses on the investigation and development of
more physically-based infiltration and interflow algorithms. The hope is to determine
appropriate non-empirical relationships between internal state variables (specifically bulk
soil moisture) and the boundary fluxes, and thereby reduce the number of nonphysical or
unknown model parameters. Fewer parameters lead to reduced calibration requirements
for distributed hydrological models and consequently accelerate the transfer of such models
to engineering practice.

To meet the primary objective of this thesis, a number of activities were undertaken:

• Vertical infiltration algorithm amendments were investigated. Infiltration
can be significantly affected by the presence of shallow boundaries. Such shallow
boundaries have not been considered in existing distributed infiltration models. The
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limiting conditions under which the standard Green-Ampt infiltration model is ap-
propriate and how lower boundary conditions affect the validity of the model are
addressed. Modifications to the infiltration model under shallow boundary condi-
tions are presented and tested via rigorous comparison with the numerical solution
to the Richards’ equation for a wide range of soil textures and model parameters.

• An upscaled infiltration equation was developed. Heterogeneity in soil mois-
ture and soil properties is an important driver of net infiltration, one which has not
been properly accounted for by most infiltration models. Here an upscaled infiltra-
tion equation for calculating regional-averaged infiltration rates into heterogeneous
soils are developed. The upscaled solution is capable of addressing the variability in
initial conditions, porosity, and the wetting front matric potential. It was compared
to results of a Monte Carlo model with wide range of heterogeneity level and shows
consistent results.

• An analytical interflow algorithm was defined and tested. Two versions
of an analytical interflow algorithm were developed in this study. One is suitable
for regions with wet soils and the other one is for regions that are dry for a long
period. Both algorithms were compared against numerical solutions to the Richards’
equation and are shown capable of replicating the correct physical behavior under
the conditions they are intended.

• A stand-alone soil model was implemented, tested, and refined. The soil
model was partitioned from a hydrology-land-surface model MESH for testing the
improved analytical interflow algorithm. Unlike the original MESH, the interflow
and infiltration were coupled in this model by a dynamic saturated surface area to
provide a closer approximation of the physical processes observed.

• A specialized finite difference code for unsaturated flow in sloping soils
was developed. It provides robust guidance for development of improved interflow
and infiltration algorithms.

1.3 Outline of the Thesis

The remainder of the thesis consists of four chapters. Chapter 2 provides background on the
pertinent subjects, including a literature review of subsurface hydrology, drainage/baseflow
models, infiltration models, and hydrological similarity. Chapter 3 describes the develop-
ment of the improved infiltration algorithms as well as a number of preliminary test results.
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Chapter 4 discusses an improved interflow algorithm and its application in a Hydrological-
Land-surface model for lateral and vertical flow coupling process. Also in Chapter 4, this
interflow algorithm is coupled to an infiltration algorithm. The final chapter includes
conclusions and provides recommendations for further research.

7



Chapter 2

Background

Chapter 2 provides a literature review of pertinent studies that have been done up to the
present time in the areas of hydrological modeling of the shallow subsurface. Subsurface
flow plays an important role in the global hydrological cycle. It has therefore received
considerable attention in journals and publications. Drainage/baseflow models are reviewed
beginning with a review of subsurface hydrology. Two types of popular infiltration models
are reviewed: empirical models and physically-based Richards’ equation models. One of
the most widely used infiltration models, the Green-Ampt model, is described in detail
to support later investigation of upscaling and applicability. At the end of chapter 2, the
concept of hydrological similarity is briefly reviewed.

2.1 Subsurface Hydrology

Subsurface water movement can be described by a mass continuity equation with appro-
priate boundary conditions. The resulting equation, Richards’ equation, is considered the
most appropriate mathematical description of the subsurface physical process. To solve
this partial differential equation, soil hydraulic characteristics functions and boundary con-
ditions are needed. All these subjects will be discussed below.

2.1.1 Governing Equations

Darcy established the fundamental relationship for soil-water movement as [41]:

q = −k∇h (2.1)
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where q is the flow velocity [LT−1], k is the hydraulic conductivity [LT−1], ∇ is the gradient
operator, and h is the total hydraulic head [L], equal to the sum of the water pressure head
ψ [L] and the elevation head z [L].

Richards extended Darcy’s law to the unsaturated zone, assuming the soil-water pres-
sure, ψ, and the hydraulic conductivity, k, are functions of soil water content, θ. Combining
Darcy’s law with the mass continuity equation, a general form of Richards’ equation is ex-
pressed as [111] :

Ss
θ

θs

∂ψ

∂t
+
∂θ

∂t
= ∇k(∇ψ + î) (2.2)

where Ss is the specific storage of soil [L−1], θs is the saturated water content [-], t is time
[T ], and î is a unit vector downward.

Equation 2.2 is the governing equation for subsurface water movement. It is a non-
linear partial differential equation and has been widely used in subsurface water modeling.
Physical models of the full 3D Richards’ equation are considered the most realistic means
of shallow subsurface flow simulation.

Equation 2.2 is called the mixed form of Richards’ equation [111]. There are two depen-
dent variables: the water content, θ, and the water pressure head, ψ. Relations to describe
the interdependence among water content, soil pressure, and hydraulic conductivity are
required to solve equation 2.2. One of the dependent variables, θ, can be eliminated by
adopting a specific moisture capacity, which is defined by taking a derivative of the soil
water retention curve, dθ

dψ
, to generate a pressure-head form of Richards’ equation as:

Ss
θ

θs

∂ψ

∂t
+
dθ

dψ

∂ψ

∂t
= ∇k(∇ψ + î) (2.3)

It is this version of Richards’ equation is solved within this thesis.

2.1.2 Soil Hydraulic Characteristics

The term soil hydraulic characteristics is used to refer to the relations among the capillary
pressure ψ, the water content θ, and the hydraulic conductivity k. They provide the
connection between the soil properties and states, and are therefore required to solve
Richards’ equation. There is no one straightforward functional or mathematical equation
to describe the hydraulic characteristics. Normally, the simple and single-valued functions
are used to find expressions that can be fit to the results of hydraulic measurements.
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Gardner [53] introduced the earliest and most widely used exponential relationship for
analytical solutions to flow problems. However, the applicability of Gardner functions is
limited as empirical relative permeability data used to calibrate the model are not rou-
tinely available [55]. More physically-based mathematical expressions for soil hydraulic
characteristics are those proposed by Brooks and Corey [24], which are more suited for
flows in sandstone than soils and have been shown to be more appropriate for very uni-
form materials [121]. Van Genuchten [138] had proposed the most rigorous representation
functions between hydrological variables and water content. Both Brooks-Corey and Van-
Genuchten functions similarly have five parameters that define the shape of functions.
They have been compared using identical values of parameters and results show that the
Van-Genuchten functions have advantages for water content close to saturation and in-
dicates a more realistic representation of soil wetting and drying characteristics [16]. A
variant on the Brooks-Corey relationships has been addressed by Clapp and Hornberger
[34] to smooth the characteristic curves at the air entry pressure.

Based on the analysis of a large collection of field data, assembled by the United States
Department of Agriculture (USDA), the Van Genuchten functions are the most rigorous
one among all existing soil hydraulic characteristics models[16]. The Gardner functions are
useful for analytical solutions. The Brooks and Corey functions are intuitively attractive
due to their simplicity. The Clapp and Hornberger functions are the same as the Brooks
and Corey functions, except that the Brooks and Corey functions include the residual water
content (θr). In distributed surface water modeling, the Clapp and Hornberger functions
are employed because of their simplicity, as is done in this study. Table 2.1 shows the
hydraulic characteristics functions for each model.
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2.2 Overview of Drainage and Baseflow Models

Numerous methods have been used to simulate soil moisture processes in larger hydrolog-
ical models and LSSs. Early LSSs for atmospheric models used the Manabe bucket model
[88], which is a simple and fast model that was used to simulate all of the soil moisture
processes simultaneously. More advanced LSSs adopt more complex soil reservoirs than
that of the Bucket models, but still use a flat earth scheme with poor representation of
lateral flow. At the other extreme, discretized numerical hydrological models based on
Richards’ equation (e.g., HYDRUS [118], WEPP [103], and SHE [1]) represent accurate
physical process and are very powerful in solving a complex non-linear soil moisture sim-
ulation problem. However, numerical models are computationally prohibitive and require
detailed soil data that are usually unavailable. The TOPography based hydrological model
(TOPMODEL) [17] and Variable Infiltration Capacity model (VIC) [132] [79] have been
developed as a compromise between computation efficiency and accurate representation of
hillslope physics. TOPMODEL incorporates topographic information and the VIC model
accounts for the spatial heterogeneity on the soil surface. They keep the basic physics of
the soil and use relatively simple drainage and baseflow simulation scheme. However, the
coupling of infiltration and drainage in these models is non-iterative and non physically-
based.

2.2.1 Bucket and Power Approximations

The Manabe bucket model [88] is the first conceptual model to attempt to parameterize
land surface processes in general circulation models. In this model, the soil is treated as
a single water reservoir, with its storage, θ, changing with the incoming water, defined as
the difference between precipitation (P ) and evaporation (E). Notice that no infiltration
process is included in early bucket models. A maximum capacity, θs, is defined as the max-
imum amount of water that can be stored in the bucket. Surface runoff is generated when
the reservoir exceeds its maximum capacity (θ > θs) and subsurface runoff is generated
when the storage exceeds the field capacity.

Figure 2.1 is a schematic representation for the single soil reservoir. The storage-
subsurface runoff relation in bucket models has been represented by a simple linear model:

q =

{
(θ−θfc)D

∆t
for θ > θfc

0 for θ ≤ θfc
(2.4)
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Figure 2.1: Schematic representation of the single soil reservoir: P-Precipitation; E-
Evaporation; q-Subsurface Runoff

or more complex nonlinear power model:

q =


[

(θ−θfc)D
a∆t

] 1
b

for θ > θfc

0 for θ ≤ θfc

(2.5)

where q represents the subsurface runoff, θfc is the soil water storage at field capacity, D
is the bucket depth, and a and b are empirical parameters.

The Manabe bucket provides a simple and fast runoff modeling process but it is best
used as an annual rainfall-runoff model and fails to represent within-year details. Hydro-
logical processes are simulated simultaneously and are not physically-based. Parameters
used in the bucket model are poorly related to physics and have to be determined by
calibration.

2.2.2 Hillslope/Boussinesq Models

Hillslope subsurface drainage is one of the key contributions to the peak of the stream
hydrograph. It includes combined saturated and unsaturated water movement, which are
best described by Richards’ equation (equation 2.2). However, application of the Richards’
equation is limited due to the fact that resulting solutions cannot be easily parameterized in
practical terms for incorporation in catchment models [27], especially the high non-linearity
in the unsaturated zone. Various approximations have been made for solving the Richards’
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equation. Dupuit had made assumptions of a constant total head in the vertical direction
to describe steady saturated flow of unconfined groundwater in horizontal aquifers, which
led to:

∂

∂X

(
kXh

∂h

∂X

)
= Sy

∂h

∂t
(2.6)

where Sy is the specific yield, defined as “the quantity of water per unit area draining
from the unsaturated soil for a unit drop in water-table height”[150]. For homogeneous
hillslope, equation 2.6 becomes:

∂

∂X

(
h
∂h

∂X

)
=
Sy
kX

∂h

∂t
(2.7)

Equation 2.7 is called the second approximation of the Boussinesq equation [21]. A more
general case of unconfined flow in a sloping aquifer is derived as [22]:

q = −kXh
(
∂h

∂X
cosα + sinα

)
(2.8)

where q is the flow rate in X direction and α is the slope angle. Inserting equation 2.8 into
the continuity equation results in:

− cos(α)
∂

∂X

(
h
∂h

∂X

)
− sin(α)

∂h

∂X
=
Sy
kX

∂h

∂t
(2.9)

which is usually referred to as the first approximation of the Boussinesq equation and has
been widely used in hillsope hydrology modeling. It is a nonlinear equation and general
solutions have not been obtained. Despite the simplified form applications of such hillslope
models are still limited due to data availability and intensive computation.

2.2.3 TOPMODEL

Another popular mixed infiltration/lateral flow model is TOPMODEL, which does a bet-
ter job than other models by including physics. The three fundamental assumptions in
TOPMODEL are [17]:

• There is a saturated zone in equilibrium with a steady recharge rate over an upslope
contribution area.

• The water table is almost parallel to the ground surface such that the effective hy-
draulic gradient is equal to the local surface slope, tan β.
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• The transmissivity profile may be described by an exponential function of storage
deficit, with a value of T0.

Figure 2.2: Schematic representation of a valley and the formation of runoff according to
TOPMODEL: AC-contributing area to the surface runoff; qi-interflow corresponding to an
area drained per unit contour length (Figure from [51])

Figure 2.2 shows the schematic representation of a valley and the formation of runoff
according to TOPMODEL. Notice that the lateral flow only occurs under the water table
and the surface runoff is generated on a variable contribution area AC , which is related to
a topographic index, ln(a/ tan β), of the basin and the water deficit zi. Here a is the area
of the hillslope per unit contour length. The soil profile at location i is represented by a
set of stores, as shown in Figure 2.3. The upper one is the Root Zone (RZ) storage, where
rainfall infiltrates until the field capacity is reached. Once the field capacity is exceeded, a
second store starts filling until the water content reaches saturation. The gravity drainage
store links the unsaturated (UZ) and the saturated zones (SZ).

TOPMODEL adopts a linear dynamic stores for the Unsaturated Zone (UZ) and a non-
linear exponential representation for the Saturated Zone store (SZ); both are functions of
the soil water storage deficit or water table depth, zi. Beven [9] suggested an exponential
form of unsaturated zone flux based on the basis of the Darcian flux for incorporating into
the TOPMODEL soil moisture process. A decay factor in Beven’s formulation has to be
determined by observed data.

TOPMODEL performs better when the study site’s characteristics meet the assump-
tions. However, TOPMODEL is not a fixed modeling scheme. Assumptions can be relaxed
according to the nature of catchment, such as adopting a linear transmissivity function([2]
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Figure 2.3: Soil structure in TOPMODEL

and [3]) or a power law transmissivity function ([46] and [69]). However, the steady state
assumption is often unrealistic, especially during precipitation events [101]. Interflow in
the unsaturated zone is not being taken into account and infiltration and drainage are
non-iteratively treated.

2.2.4 VIC Model

VIC model was proposed by Stamm et al. [132] for representing a point land surface
hydrological process as a single soil layer and then this was extended to multiple layers
along other features by Liang et al. [79]. One of the most important merits of the VIC
model is that it accounts for spatial variability of the infiltration capacity.

Figure 2.4 is a schematic representation of the three-layer structure of VIC. It shows
that there is no lateral flow in the top two layers. Water movement between soil layers is
represented by one-dimensional Richards’ equation. The soil surface is characterized by a
variable infiltration capacity as [80]:

f = fm
[
1− (1− A)1/bi

]
(2.10)

where
fm = (1 + bi)θsz

where f and fm are the infiltration capacity and maximum infiltration capacity respec-
tively, A is the fraction of the area for which the infiltration capacity is less than i, bi is
an empirical infiltration shape parameter.
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Figure 2.4: Schematic representation of the three-layer structure of VIC: D1 and D2 rep-
resent diffusions between soil layers, and K1 and K2 represent the drainage between soil
layers, Qb represents the baseflow.

Subsurface runoff is generated only in the lower layer and is represented by either
a linear or nonlinear recession dependent on a threshold of maximum water storage in
this layer, which is site dependent and has to be obtained by calibration. The nonlinear
drainage is required to represent situations under which the substantial subsurface storm
flow occurs [80]. Although the spatial heterogeneity in infiltration is explicitly considered,
how infiltration and drainage are coupled on the surface is not addressed by the VIC model.

2.2.5 Overview of LSS Models

LSSs are designed to simulate the fluxes of surface water and energy between the atmo-
sphere and the land surface. Those exchanges are complex functions of physical, chemical
and biological processes. Based on various simplifications, LSSs exhibit a wide range of
complexity, from simple regression models to complex physically-based models. As pre-
viously stated, the simplest one is the Manabe BUCKET model [88]. Soil moisture in
more sophisticated LSSs is often simulated by using the finite difference form of Richards’
equation in vertical. Baseflow parameterization in the LSSs can be classified into three
categories: empirical functions, free drainage, and proportional approach. The Manabe
bucket model [88] does not take into account the subsurface flow. A revised bucket model
[67] adopts linear or non-linear empirical functions for the subsurface runoff. The Biosphere
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Atmosphere Transfer Scheme (BATS) [43], the Schematisation des EChanges Hydriques
Interface Biosphere Atmosphere (SECHIBA) (Ducoudre et al., 1993), and the Variable In-
filtration Capacity scheme (VIC) [79] employs empirical exponential decay functions. The
CLASS [141] and the Meteorological Office Surface Exchange Scheme (MOSES) [48] per-
mit free drainage. Drainage in the Interactions Soil-Biosphere-Atmosphere (ISBA) scheme
[102] and the Simplified Simple Biosphere Model (SSiB) [149] is proportional to the water
amount exceeding field capacity or to the wetness of the third soil layer.

Differences among soil model structures in these LSSs are mainly related to the number
of soil layers included and the thickness of those layers. Tables 2.2, 2.3, 2.4, and 2.5 are
a summary of widely recognized LSSs. The nonlinear soil water functions vary widely
between models but most are primarily empirical and will therefore require calibration.
LSSs have a high level of vertical resolution and structure, but a low level of horizontal
resolution. A “flattened Earth”is used to represent the land surface in most of the LSSs.
However, soil moisture dynamics, runoff production, and surface energy fluxed can be
significantly affected by the topography. In addition, the spatial variability of soil properties
is not taken into account.
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2.3 Infiltration Models

Infiltration is the process of water entering the soil from the ground surface (Figure 2.5).
The rate of this process determines how much water will enter the unsaturated soil zone,
and how much runoff will be generated [64]. Recharge from infiltration is the main source
of water entry into the subsurface and is the ultimate source of base flow. Therefore,
simulating the infiltration rate accurately is important in subsurface runoff parameteriza-
tion. Due to the difficulty of direct measurement of infiltration, both empirical and the
physically based models have been developed to evaluate the infiltration rate.

Figure 2.5: The infiltration process depending on soil type and flow [96]

These models ignore the effect of air flow. Air flow may be important in ponded
infiltration, but can be ignored for most natural infiltration events [150].

2.3.1 Empirical Models

Empirical infiltration models usually take the form of simple equations, generated from a
comparison with data. The parameters of the equations must be obtained by means of
curve-fitting, and typically lack direct physical interpretation. However, their simplicities
are appreciated by many users. The empirical models listed in table 2.6 are commonly
used in simulating the infiltration process.
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2.3.2 Richards’ Equation-Based Infiltration Models

Since flow in the unsaturated zone is often primarily vertical [32], infiltration can often be
represented by using a one-dimensional form of Richards’ equation in most hydrological
models.

∂θ

∂t
= − ∂

∂z

(
k
∂ψ

∂z

)
− ∂k

∂z
(2.11)

The concern of the infiltration theory is to solve the boundary value problems involv-
ing the nonlinear Richards’ equation [121]. General analytical solutions to equation 2.11
have not been obtained: however, considerable simplifications can be made such that the
Richards’ equation can be solved analytically or numerically. The following inputs are
required to obtain soil water flux for solving the Richards equation for infiltration:

• A surface boundary condition

For ψ|z=0,t ≥ ψp:
ψ|z=0,t = ψp (2.12)

For 0 < ψ|z=0,t < ψp:

∂ψ

∂t

∣∣∣∣
z=0,t

= w + k

(
∂ψ

∂z
− 1

)∣∣∣∣
z=0,t

(2.13)

For ψ|z=0,t ≤ 0,

w = k

(
∂ψ

∂z
− 1

)∣∣∣∣
z=0,t

(2.14)

where ψp is the ponding depth [L] and w is the rainfall rate [LT−1].

• An initial condition
θ|z,t=0 = θi (2.15)

• Soil hydraulic parameters

Many simple infiltration equations are solutions to the Richards equation under highly
ideal conditions (e.g., sharp wetting front, constant diffusivity, linear soil characteristics,
ponded surface, homogenous soil, and/or uniform initial moisture distribution, etc.). Table
2.2 lists several such infiltration equations [134].

In reality, these ideal conditions may not hold true. Therefore, these conditions in
the models need to be relaxed, such that more physically-based infiltration models can be
obtained.
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Table 2.7: Richards’ equation-based infiltration models (T = k2
st
S2 , S represents sorptivity)

Developer Cumulative infiltration F

Philip [107] F = T 1/2 + λT , λ is a fitting parameter

Knight [72] F = T + π
4

ln
[
1 + erf

(
4T
π

)1/2
]

Parlange [104] F = T + 1
2

[
1− e−2T 1/2

]
Brutsaert [26] F = T +

(
T 1/2

1+mT 1/2

)
, m=2/3 or 1

Collis-George [36] F = T + 1
N

(tanN2T )
1/2

, N varies between 1 and 4

Swartzendruber-Clague [134] F = T + 1
n

[
1− e−nT 1/2

]
, n is a constant

2.3.3 The Green-Ampt Model (GA)

Green and Ampt [60] presented the first physically-based equation for describing the infil-
tration of water into soil. The Green-Ampt model (GA) is based on fundamental physics
and also gives results that match with empirical observations. Barry et al. [6] found an
exact solution for the Richards equation by assuming a specific functional form for mois-
ture content. The cumulative infiltration model derived from the solution was in the form
of the GA infiltration model.

The GA model assumes a constant hydraulic conductivity, homogeneous soil, a constant
wetting front tension, and a piston-type water content profile with a well-defined wetting
front, as shown in Figure 2.6.

Applying Darcy’s law, the infiltration rate, f , can be written as

f = ks
∂H

∂z
|z=0 = ks

(|ψf |+ zf )− h0

zf
(2.16)

where ψf is the suction at the wetting front [L], zf is the wetting front depth [L], and h0

is the ponding depth [L].

Note that if h0 = −D (ponding depth effect), equation 2.16 becomes

f = ks
|ψf |+ zf +D

zf
(2.17)
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Figure 2.6: Assumptions in the Green-Ampt model

The depth of the wetting front can be related to the cumulative amount of infiltrated
water as:

F = zf (θs − θi) (2.18)

where θi is the initial water content.

Substituting equation 2.18 into equation 2.17 leads to:

f =

w for t ≤ tp

ks

(
1 +

(|ψf |+D)(θs−θi)
F

)
for t ≥ tp

(2.19)

where tp, time to ponding, is given by:

tp =
(|ψf |+D)(θs − θi)ks

w(w − ks)
(2.20)

Note that since the cumulative infiltration F is a function of infiltration rate f , the
solution is implicit.

The implicit solution of the Green-Ampt equation

In the original Green-Ampt formulation, the ponded water of negligible depth covers the
soil surface. Equation 2.19 becomes

f =

{
w for t ≤ tp

ks

(
1 +

α

F

)
for t > tp

(2.21)
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where α = |ψf | (θs − θi).

Integrating equation 2.21 from t = tp to t, it transforms into an implicit relationship
between F and t as:

t =

{
tp + 1

ks

[
F − Fp + α ln

(
α+Fp
α+F

)]
for t > tp

F
w

for t < tp
(2.22)

While usually expressed in implicit form, a numerical iteration procedure (usually Newton-
Raphson) is required to determine the solution.

The explicit solutions of the Green-Ampt equation

Diverse approximation techniques developed some explicit solutions [83], [113], [115], and
[116]. Barry et al. [5, 6] have used Lambert W function in order to develop a family
of robust numerical approximates to the explicit Green-Ampt solution. The Lambert W
function is defined by solutions to

W (x)eW (x) = x

Barry’s approximation is highly accurate and simple to implement, and has a maximum
relative error of 5e−5%. This error is several orders of magnitude lower than any existing
analytical approximation. Therefore, this function is recommended for use in standard
Green-Ampt infiltration modeling schemes in this study.

Extended applications of the Green-Ampt model (GA)

The GA model has been the subject of considerable developments in applied soil physics
and hydrology owing to its simplicity and satisfactory performance for a great variety
of hydrological problems [110]. In order to address situations beyond the scope of the
original GA model, numerous modifications have been suggested in the literature. These
modifications primarily focus on accounting for layered soil heterogeneity, unsteady rainfall,
and/or ponding at the soil surface. Childs and Bybordi [31] were the first to study the
impact of the soil profile heterogeneity. They divided the soil column into a succession of
n layers with decreasing conductivity and developed a specified infiltration law according
to the conductivity profile. Beven [8] extended the GA infiltration model to a class of
non-uniform soils in which saturated hydraulic conductivity decreases as an exponential
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function of depth, with a satisfactory comparison to the Childs and Bybordi solution for
a layered sand profile ([8]). For implementation in more complex watershed models, these
analytical models needed to be extended to the case of unsteady rainfall. Chu [33] was
the first to extend the GA approach to compute infiltration into a homogeneous soil due
to an unsteady rainfall event. Jia and Tamai [70] extended the GA model for infiltration
into a multi-layered soil during an unsteady rain and verified the model against numerical
solutions to the Richards’ equation (RE), which was later extended by Liu et al. [84]
to additionally account for non-uniform initial water content. Other researchers have
investigated more specific situations in which the GA model is not wholly appropriate.
Wang et al. [144] investigated a modified GA model taking account of surface deposition
during muddy water infiltration. Chen and Young [28] explained the direct effect of the
surface slope on infiltration and runoff generation by extending the GA equation onto
sloping surfaces, and found that cumulative infiltration is increased with an increase of the
slope angle. Gavin and Xue [54] proposed a modification to the traditional GA model by
considering the slope, assuming a linearly distributed suction profile in the wetted zone.
Although most of the GA modifications provide satisfactory results for amended conditions
and extended the applicability of the GA model, no previous research has investigated the
impact of individual assumptions upon the quality of the standard GA solution.
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2.4 Hydrological Similarity

The spatial variability of geology, soil, land cover, and topography in a catchment all affect
the relationship between rainfall and runoff. Detailed representation of these variabilities
is impossible due to data availability and intensive computational demand. Hydrological
similarity is used to identify points or units in a watershed to assess their similar hydro-
logical response for a rainfall event. Such points or units have locally uniform hydrological
response to meteorological input so that they can be represented as a group to increase
the efficiency of hydrological models. Any catchment may be considered as an assembly of
sub-elements. As the spatial scale of the element increases, the rainfall-runoff relationship
becomes less sensitive to the spatial variations of the catchment characteristics. Further,
a smaller scale is needed for capturing the heterogeneity of the catchment. Thus, a certain
scale must be found such that the concept of homogeneity and the averaging of hydro-
logical processes can be used. The spatiality is captured by using small subcatchment
elements which can be called Hydrological Response Units (HRUs) [78] or Representative
Elementary Areas (REAs) [148].

2.4.1 Hydrological Response Units (HRUs)

The main difficulty in dividing the catchment into HRUs is defining what constitutes a hy-
drologically homogeneous area [75]. The development of Geographical Information System
(GIS) and remote sensing provides one method for addressing the problem. Maps of soil,
geology, digital elevation, and vegetation can be stored in GIS. By overlaying the different
layers of information, classification of catchment landscape for hydrological response can
be performed. One HRU can be represented as one pixel in this concept and each HRU will
be the subject of a unique water balance computation. By collecting many HRUs together,
an entire catchment can be represented. However, the number of HRUs used is constrained
by both data availability and computational limitations. Thus, the HRU approach is only
appropriate for small catchments and grids since it is computationally expensive.

2.4.2 Grouped Response Units (GRUs)

To represent the inherent heterogeneity of a catchment without sacrificing computational
simplicity, a more suitable approach for large catchments, the Grouped Response Units
(GRUs) approach, has been developed [75]. A GRU is a collection of similar HRUs within
a catchment, which is treated as a single representative computational unit. Using remotely
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sensed land cover data, pixels are classified to a number of land cover classes and the ratio
of each land cover in each computation grid are then determined to compute the GRUs
[74]. A computational element consisting of multiple GRUs receives the same hydrological
input data, but different land covers/GRUs will respond in their own characteristic manner.
Hydrological responses from different groups of GRUs are then summed together and routed
to the stream system.

Figure 2.7: The Grouped response unit concept

Figure 2.7 shows the concept of GRUs. In Figure 2.7, there are twenty-five pixels in a
grid, in which eight pixels are classified as belonging to land-cover class A, eleven pixels to
class B, two pixels to class C, and four pixels for class D. For example, the total runoff for
a grid is calculated as:

R = (RAPA +RBPB +RCPC +RDPD)A (2.23)

where Ri is the unit runoff generated from land-cover class i; Piis the fraction of the land-
cover class i; A is the area for grid. Ri can be applied to other grids if the similar land
cover class is contained. The location of HRUs in a GRU is assumed not to affect the
hydrological response. The GRU method was used in the original MESH hydrological land
surface model.
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2.4.3 TIlted Landscape Elements (TILE)

The TILE approach was developed to connect the micro-scale and the meso-scale physics
by combining features of the LSSs, the topographic approach of TOPMODEL [11], and
the group response unit approach from a hydrological model WATFLOOD [74]. This
representation is used to drive many of the algorithms developed in this thesis. Any
catchment can be treated as an assembly of TILEs, each with a connection to the drainage
system. Figure 2.8 shows the schematic of the topography of a typical model grid element.

Figure 2.8: Schematic of the topography of a grid element in a watershed: Ls is the average
distance between the divide and the stream, Li is the length of the stream

A critical parameter for operation of the TILE framework is drainage density, defined as
the total length of streams L in a hydrological unit divided by the hydrological unit area A.
Drainage density, DD, is landform-dependent and typically ranges from 2/km to 100/km
[45]. Other useful parameters include LS, the average distance between the divide and the
micro-drainage system stream channel and Λ, the typical valley slope which provides the
topographic gradient for the flow from the soil blocks. Runoff parameterization in a TILE
may include:
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• Surface runoff: Manning’s equation

• Drainage: Darcy’s law

• Subsurface runoff: adjusted Richards’ equation

One limitation for the TILE approach is that each block requires a stream element.
Therefore, TILEs are required to be large enough to produce inter-element flow to the
stream channel. This study incorporates the TILEs approach into the GRUs approach to
provide a more rigorous hydrological similarity method.
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Chapter 3

Improvements to the Infiltration
Process

Recharge from infiltration is the main source of water into soils and is the ultimate source
of interflow and baseflow. Simulating infiltration accurately is very important in subsurface
runoff parameterizations. However, current algorithms do not sufficiently address issues
such as shallow boundary conditions and spatial heterogeneity. Infiltration can be signifi-
cantly affected by the presence of shallow boundaries, which have not been considered in
existing infiltration models. The heterogeneity in soil moisture and soil properties is an
important driver of net infiltration, one which also has not been properly accounted for by
most infiltration models.

The infiltration process in this study is represented by the classical Green-Ampt model.
The Green-Ampt model was developed for soils with infinite depth and does not account
for the heterogeneity at the subbasin scale. In regional scale applications, these idealized
conditions will often not be met. Revisions to the Green-Ampt infiltration model are
suggested under such conditions. A specialized finite difference code to the Richards’
equation for sloping soils and Monte Carlo simulations are used for testing these revisions.
Results show that revisions are capable of addressing the effects they are intended to
accommodate and can be incorporated into hydrology-land-surface schemes.
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3.1 Numerical Solution of the Richards’ Equation

Numerical solutions of the Richards’ equation provide a basic understanding of water move-
ment in porous media, and are here used as a benchmark for evaluating computationally
efficient analytical solutions. A specialized finite difference scheme for sloping soils is
described in this section, including the mathematical derivation and implementation of
various boundary conditions. The solution has been verified by published results, where
possible, and show to be capable of simulating a variety of soil systems.

3.1.1 Governing Equation and Finite Difference Scheme

Richards’ equation governs the water flow in variable saturated soil and solutions to
Richards’ equation help provide a basic understanding of water movement in a soil layer.
For a grid aligned with the arbitrary-oriented hillslope, equation 2.3 can be rewritten as:

(
Ss
θ

θs
+
dθ

dψ

)
∂ψ

∂t
=

∂

∂X
kX

(
∂ψ

∂X
− Λ√

1 + Λ2

)
+

∂

∂z
kZ

(
∂ψ

∂z
+

1√
1 + Λ2

)
(3.1)

where Λ indicates the land surface slope [-], kX is the lateral hydraulic conductivity [LT−1],
kZ is the vertical hydraulic conductivity [LT−1], and ∆X, ∆Z, and ∆t are spatial and
temporal discretizations. A general Θ-weighted finite difference scheme is used to solve
equation 3.1 and is derived below. The discretization involved for each finite difference
approximation is show in Figure 3.1. The numerical discretization of equation 3.1 by the
finite difference method leads to a nonlinear set of equations as:

[A]m[Ψ]m+1 = [B]m

where [A], [Ψ], and [B] represent the coefficient vector, the unknown variable vector, and
the constant vector, respectively. The superscript m refers to the mth iteration level. This
equation is solved by a standard Picard iterative method. The initial value of the dependent
variables [Ψ] at time t+∆t and m = 1 are computed by the known values of the dependent
variables at time t. This value is successively substituted into the nonlinear equation until
a pre-determined convergence, e.g., [Ψ]m+1 is close enough to [Ψ]m. A tolerance value of
1.0e− 4 is used in this study.

A general Θ-weighted finite difference approximation of the left hand side (LHS) of
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Figure 3.1: Number of grid blocks involved for each finite difference approximation: i, j-
node location, n-nth discrete time level, ∆X,∆Z,∆t-spatial and temporal discretizations

equation 3.1 is:

LHS =

{
Θ

[
Ss

θn+1,m
i,j

φ
+
(
dθ
dψ

)n+1,m

i,j

]
+ (1−Θ)

[
Ss

θni,j
φ

+
(
dθ
dψ

)n
i,j

]}
ψn+1,m+1
i,j −ψni,j

∆t

=

[
Θ

(
Ss

θn+1,m
i,j

φ
+ cn+1,m

i,j

)
+ (1−Θ)

(
Ss

θni,j
φ

+ cni,j

)]
ψn+1,m+1
i,j −ψni,j

∆t

=

[
Θ

(
Ss

θn+1,m
i,j

φ
+ cn+1,m

i,j

)
+ (1−Θ)

(
Ss

θni,j
φ

+ cni,j

)]
ψn+1,m+1
i,j

∆t
−[

Θ

(
Ss

θn+1,m
i,j

φ
+ cn+1,m

i,j

)
+ (1−Θ)

(
Ss

θni,j
φ

+ cni,j

)]
ψni,j
∆t

(3.2)
where cn,mi,j is the specific water capacity of the soil, a function of the pressure head, n
represents the nth time level, and Θ is a weighting factor. According to the Clapp and
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Hornberger soil hydraulic functions [34], one can get:

c =
dθ

dψ
= − θs

bψae

(
ψ

ψae

)− 1
b
−1

(3.3)

The Θ-weighted finite difference approximation of the spatial terms of the right hand
side of equation 3.1 is:

RHS = Θ

[
kn+1,m

i+1
2 ,j

∆X2 ψ
n+1,m+1
i+1,j +

kn+1,m

i− 1
2 ,j

∆X2 ψ
n+1,m+1
i−1,j +

kn+1,m

i,j− 1
2

∆Z2 ψn+1,m+1
i,j−1 +

kn+1,m

i,j+1
2

∆Z2 ψn+1,m+1
i,j+1

−

(
kn+1,m

i+1
2 ,j

∆X2 +
kn+1,m

i− 1
2 ,j

∆X2 +
kn+1,m

i,j− 1
2

∆Z2 +
kn+1,m

i,j+1
2

∆Z2

)
ψn+1,m+1
i,j

− Λ√
1+Λ2

kn+1,m

i+1
2 ,j
−kn+1,m

i− 1
2 ,j

∆X
+ 1√

1+Λ2

kn+1,m

i,j+1
2

−kn+1,m

i,j− 1
2

∆Z

]
+(1−Θ)

[
kn
i+1

2 ,j

∆X2 ψ
n
i+1,j +

kn
i− 1

2 ,j

∆X2 ψ
n
i−1,j +

kn
i,j− 1

2

∆Z2 ψ
n
i,j−1 +

kn
i,j+1

2

∆Z2 ψ
n
i,j+1

−
(
kn
i+1

2 ,j

∆X2 +
kn
i− 1

2 ,j

∆X2 +
kn
i,j− 1

2

∆Z2 +
kn
i,j+1

2

∆Z2

)
ψni,j

− Λ√
1+Λ2

kn
i+1

2 ,j
−kn

i− 1
2 ,j

∆X
+ 1√

1+Λ2

kn
i,j+1

2

−kn
i,j− 1

2

∆Z

]
(3.4)

Define RSH ′ as:

RSH ′ = (1−Θ)

[
kn
i+1

2 ,j

∆X2 ψ
n
i+1,j +

kn
i− 1

2 ,j

∆X2 ψ
n
i−1,j +

kn
i,j− 1

2

∆Z2 ψ
n
i,j−1 +

kn
i,j+1

2

∆Z2 ψ
n
i,j+1

−
(
kn
i+1

2 ,j

∆X2 +
kn
i− 1

2 ,j

∆X2 +
kn
i,j− 1

2

∆Z2 +
kn
i,j+1

2

∆Z2

)
ψni,j

− Λ√
1+Λ2

kn
i+1

2 ,j
−kn

i− 1
2 ,j

∆X
+ 1√

1+Λ2

kn
i,j+1

2

−kn
i,j− 1

2

∆Z

] (3.5)

37



Therefore, 3.4 becomes

RHS = Θ

[
kn+1,m

i+1
2 ,j

∆X2 ψ
n+1,m+1
i+1,j +

kn+1,m

i− 1
2 ,j
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(
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i− 1
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2 ,j
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2
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2

∆Z

]
+RHS ′

(3.6)
where ki± 1

2
,j and ki,j± 1

2
represent the mean hydraulic conductivity between two adjacent

cells. They can be calculated by an arithmetic mean, a harmonic mean, or a geometric
mean. Since this study focuses on investigating a homogeneous soil, the arithmetic mean
is used due to its simplicity.

According to LHS = RHS, one can get[
Θ

(
Ss

θn+1,m
i,j

φ
+ cn+1,m

i,j

)
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(3.7)

38



Rearranging equation 3.7:

−
[
Θ

(
Ss

θn+1,m
i,j

φ
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i,j

)
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(3.8)

Discrimination finally yields the system of nonlinear equations:

bn+1,m+1
i,j = an+1,m+1

i+1,j ψn+1,m+1
i+1,j + an+1,m+1

i−1,j ψn+1,m+1
i−1,j + an+1,m+1

i,j ψn+1,m+1
i,j

+an+1,m+1
i,j−1 ψn+1,m+1

i,j−1 + an+1,m+1
i,j+1 ψn+1,m+1

i,j+1 , i = 1..NX , j = 1..NZ
(3.9)

where, NX and NZ are the number of blocks, and
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and
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(3.10)

3.1.2 Initial and Boundary Conditions

Since the 2D Richards’ equation discussed above is a transient second order partial differ-
ential equation, one initial condition and four boundary conditions are needed to determine
a unique solution. The initial condition represents the initial state of the system as:

θ = θi(X,Z, t = 0.0)

or
ψ = ψi(X,Z, t = 0.0)

A general form for boundary conditions is [135]:

α(X,Z, t)ψ(X,Z, t) + β(X,Z, t)
∂ψ

∂i
(X,Z, t) = γ(X,Z, t)

where α(X,Z, t), β(X,Z, t), and γ(X,Z, t) are known functions and i is the unit vector.
The boundary condition is called a Dirichlet boundary condition if the value of ψ is specified
(β(X,Z, t) = 0), a Neumann boundary condition if the normal derivative of ψ is specified
(α(X,Z, t) = 0), or a Robin boundary condition if α(X,Z, t) 6= 0 and β(X,Z, t) 6= 0. Since
the research conducted here is interested in infiltration hereafter the boundary flux is the
main concern. The Neumann boundary condition was derived here. Assuming that flux at
the top, bottom, right, and left boundaries are qtop, qbot, qright, and qleft, respectively. The
boundary elements of the system of equation 3.9 are revised.

Left boundary:

qleft = −kX
∂(ψ + Z)

∂X
= −kX

(
ψn+1

2,j − ψn+1
1,j

∆X
2
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)
Rearranging,

∆X

2

(
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+
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1 + Λ

)
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1,j , j = 1..NZ (3.11)
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Right boundary:
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∂(ψ + Z)

∂X
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)
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Top boundary:

qtop = −kZ
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∂z
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)
Rearranging,
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Bottom boundary:
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)
Rearranging,
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)
= ψn+1

i,2 − ψn+1
i,1 , i = 1..NX (3.14)

Note that for the top Neumann boundary condition, equation 3.13 is only for a situation
that rainfall w is less than the hydraulic conductivity ks. For the case that w > ks, a
dynamic top boundary condition is:

qtop = −kZ
∂(ψ + Z)

∂z
, ψu < 0

ψu = 0, ψu ≥ 0

where ψu is the up boundary pressure.

As mentioned, a Picard iteration was used for solving the nonlinear equation. The
method is simple to code and computationally inexpensive. The computer program is
written in FORTRAN 90 and can be found in appendix A.

41



3.1.3 Numerical Discretization

Spatial and temporal discretization can significantly affect the efficiency and convergence
of the finite difference scheme. The finer the discretization, the less efficient of the scheme
whereas the more accurate the solution. Although using a coarser discretization can sig-
nificantly improve the efficiency of a given model, it may lead to a convergence problem
(i.e., the model may become unstable) or merely an accuracy problem (i.e., the model is
insufficiently resolved to meet the solution at the correct precision). A trade-off must be
determined between the efficiency and the accuracy for each specified problem. In this
study, a fine discretization was used since an accurate numerical benchmark is required.
Numerical discretization for each experiment base case can be found in an appendix E.

3.1.4 Verification of the Numerical Solution

The numerical scheme has been extensively validated against Gottardi and Venutelli’s
simulation results [58]. It successfully reproduces moisture profiles with the boundary
conditions of both constant pressure head and constant flux at the top of soil column, as
shown in Figure 3.2 and Figure 3.3.

Infiltration is mainly a vertical percolation process, and the one-dimensional Richards’
equation is often sufficient for the infiltration problem [58]. To test the validity of the
model developed here, a simulation is performed with Berino soil with depth D = 150cm;
the corresponding parameters are obtained from [58]. The soil is initially in an equilibrium
state, as shown in Figure 3.4 (t = 0s). A rainfall rate is then applied with a value of one
half ks, lasting for one hour. Initial and boundary conditions may be written as:

h(z, t = 0) = z − 150

w =

{
1
2
ks for t ≤ 1h

0.0 for t > 1h

h(z = 150, t) = 0.0

Here, the test case is used as both a verification of the numerical code and as an
illustration of the infiltration process, useful for understanding later work. Soil profiles
at different times during the test case are shown in Figures 3.4, 3.5, 3.6, and 3.7. At the
initial condition, the soil layer is in an equilibrium state. Beginning at t = 0, rainfall begins
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Figure 3.2: Homogenous case with constant pressure at the top of column: Top-Gottardi
and Venutelli’s (symbols represent different numerical schemes)[58]; bottom-specialized
finite difference scheme

arriving at the surface at a specific rate, which is only one half of the saturated hydraulic
conductivity, ks. Because the rainfall rate is less than the infiltration capacity, all water will
enter into the soil. The first stage, as shown in Figure 3.4, is a purely percolating process.
Notice that at the very beginning, the pressure head increases rapidly: at t = 600s, the
head increased from -150cm to -20cm. The increasing velocity of the pressure head slows
down afterward. From time 1200s to time 1800s, the increase in pressure head is less than
5cm; from time 1800s to time 3600s, the increase is less than 2 cm. The water is percolating
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Figure 3.3: Homogenous case with constant flux at the top of column: Top-Gottardi and
Venutelli’s (symbols represent different numerical schemes)[58]; bottom-specialized finite
difference scheme

into the deep soil; meanwhile the pressure head and water content continues to increase,
as shown in Figure 3.4.

Rainfall stops at the beginning of the second stage (t = 3600s). However, the water
that continues to percolate into the deep layer results in a drying process begin from the
surface as shown in Figure 3.5. The pressure head and the water content begin to decrease
as shown in Figure 3.5. A soil drying process starts at t = 7200s as shown in Figure 3.6.
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Figure 3.4: Pressure head and water content distribution of the first stage (with flux at
the top)

The pressure change in the drying process is similar to that in the percolating process, in
which the pressure head changes rapidly at the very beginning and slows down afterward.
The pressure head asymptotically approaches an equilibrium state as time approaches
semi-infinite (t = 61200s) as shown in Figure 3.7.
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Figure 3.5: Pressure head and water content distribution of the second stage (without flux
at the top)
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Figure 3.6: Pressure head and water content distribution of the third stage (without flux
at the top)
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Figure 3.7: Pressure head and water content distribution after the third stage (without
flux at the top)

The finite difference scheme provides an appropriate solution to the Richards’ equation
and performs well in simulating the percolating process, the water redistributing process,
and the soil drying process for a rainfall event.
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3.2 Applicability of the Green-Ampt Model

Note: Much of the material below appears in Liu et al. [81](in review).

The Green-Ampt model is an approximate analytical solution to Richards’ equation
that is commonly used to simulate infiltration processes in hydrological models and land
surface schemes. The Green-Ampt model assumes that neither a water table nor an im-
permeable layer (e.g., bedrock or a frost table) exist near the soil surface. In regional scale
applications, these idealized conditions will often not be met, and it is presently unclear
what implications this has for regional water resource models. This section investigates
the limiting conditions under which the Green-Ampt model is appropriate and how in-
dividual assumptions about lower boundary conditions affect the validity of the model.
Guided by the comparison between the Green-Ampt model and numerical solutions to
the Richards’ equation, various simple revisions to the Green-Ampt model are suggested.
Results demonstrate that even when the traditional assumptions are relaxed, the Green-
Ampt model often still provides reasonable results for regional-scale analysis and can be
amended to account for conditions for which it was not intended.

3.2.1 Introduction

Green and Ampt [60] presented the first physically-based equation for describing the infil-
tration of water into soil. It is based on the fundamental physics of infiltration and provides
results that often match well with empirical observations [110]. The Green-Ampt model
(GA) (as revised by Mein and Larsen [89] to account for onset of saturation) has been
widely used in applied soil physics and hydrology owing to its simplicity, computational
expediency, and satisfactory performance for a variety of hydrological applications. It is a
key component of many hydrologic models (e.g., CLASS [141], WEPP [103], HSPF [20],
and SWAT [99]). While found to be an excellent approximate solution to the Richards’
equation (RE) under many parameter combinations ([107], [89],and [6]), the GA model
estimates cumulative infiltration by assuming water flow into a vertical homogeneous soil
that is infinite in depth. No shallow water table, capillary fringe, or shallow impermeable
base is considered. In regional scale applications these idealized conditions will often not
be met, and it is presently unclear what implications this has for regional water resource
models that use some form of the GA model.

Specifically, the author had not found any studies on the impact of using the GA
approximation for flow in a finite soil bounded below by a shallow water table, frost table, or
impermeable base. This section investigates under which of these conditions the standard
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GA model is appropriate and how individual assumptions affect the applicability of the
model.

Here, “true”infiltration behavior is assumed to be represented by the solutions to the
one-dimensional RE for vertical unsaturated flow, obtained using the methods described
in section 3.1. To test the applicability of the GA model under conditions for which it
was not intended, the GA model is here compared to the numerical solutions to the RE.
Two special conditions are addressed: the presence of a shallow water table at depth, and
the presence of an impermeable surface (representing either a low-permeability soil layer
or frost table). Based upon the results of this investigation, a number of simple revisions
to the GA model are proposed that lead to improved results under a wider variety of
conditions. These revisions are easily implemented in any surface water hydrology model
that currently uses the GA infiltration model.

While the implicit form of the GA equation is often solved numerically using a standard
Newton-Raphson approach ([56] and [84]), here the iterative analytical solution presented
by Barry et al. [5] (equation 29) is used. The results are presented in terms of dimensionless
variables, ks/w, and a dimensionless time parameter, X, varies from X = 0 at t = 0 to
X = 1 at t =∞, and is defined as [38]:

X =
(

1 +
α

wt

)−1

(3.15)

This dimensionless framework provides a new means of examining Green-Ampt infiltra-
tion over a wide range of parameter space: all parameter variability is simplified into two
dimensionless variables: ks/w and X, rather than the original 4 (ks, w, α, and t), signif-
icantly improving our ability to visualize and analyze the problem for the entire range of
plausible parameters.

Using this dimensionless formulation, equation 2.21 may be written as:

f(t)

w
=

1 for X ≤ Xp

ks
w

(
1 +

1

−1−W−1(x)

)
for X > Xp

(3.16)

where Xp = ks
w

is the dimensionless ponding time, W−1(x) is the lower branch of the
Lambert W function, defined as [5]:

W−1(x)exp[W−1(x)] = x

and x is a function of X:

x = − 1

1−Xp

exp

[
− 1

1−Xp

−Xp

(
X

1− x
− Xp

1−Xp

)]
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3.2.2 Testing Green-Ampt Method Applicability

The presence of a water table, impermeable base, and vertical heterogeneity were individ-
ually investigated using the RE numerical model. To confirm the appropriateness of the
error quantification used here, simulations were initially conducted on loamy sand, sandy
loam, and silt loam (using parameters chosen from Clapp and Hornberger [34]). A constant
α was used for all simulations to ensure identical GA simulation results.

With the intent to generalize the performance of the GA model so that the conclusions
drawn here are not constrained to any specific soil texture, dimensionless parameters are
used to communicate simulation results. To ensure the generality of results, all simula-
tions were run under a wide range of dimensionless time, X, and dimensionless hydraulic
conductivities, ks/w. For the analytical GA solution, sampling only these two parameters
is sufficient to fully characterize all possible infiltration scenarios. However, this is not
the case for the RE solution, which is additionally sensitive to the form of the character-
istic curves, specific storage, and rainfall rate. Hence, the numerical model was initially
perturbed to test for the influence of these parameters beyond that which could be encap-
sulated in the dimensionless parameters alone. The parameters X and ks/w were found to
encompass most of the variability in the numerical solution behavior and performance. In
order to investigate soil property effects on the simulation results, the most important soil
property, dimensionless conductivity, ks/w, is set to fall within the range from 0.5 to 1.0.
For all tests in the paper, the rainfall intensity is 2ks (3.52e-2 cm/s for sand base case). To
test a complete range of times, the simulation duration was set to 60 times the ponding
time (e.g., SD = 60tp).

Numerical simulation sets

To approximate the infinite depth boundary condition of the GA analytical solution, an
appropriate semi-infinite depth for numerical modeling was first identified, requiring that
the domain is long enough that the wetting front location is not affected by the bottom
boundary before the end of the simulation. This required depth is determined by the rainfall
rate, soil properties, and the simulation duration. Here, numerical experiments conducted
for the four soils show that the wetting front depth at 120tp(i.e., F (120tp)/(θs − θ0)) is a
reasonable surrogate for a semi-infinite depth, denoted as D∗ here. This length is treated
here as a characteristic length, used to define a dimensionless distance, z∗D = D/D∗, where
D is the physical depth.

The simulation parameters for the initial soil tests, used to determine the semi-infinite
depth, are listed in table 3.1. Note that in table 3.1, the dimensionless ponding time,
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dimensionless simulation duration, and dimensionless semi-infinite depth are fixed for all
soils tested here, and will therefore provide identical dimensionless results for the standard
GA model without amendments. Based upon the dimensionless formulation here, these
results may be considered representative of results for all soils. Indeed, this was verified
via comparisons (not shown) with results for all 4 soil parameterizations in table 3.1.

Table 3.1: Summarization of the simulation parameter sets

Soil texture Sand Loamy sand Sandy loam Silt loam

ks[cm/s] 1.76e-2 1.56e-2 3.47e-3 7.20e-4

θs[-] 0.395 0.410 0.435 0.485

θ0[-] 0.250 0.272 0.384 0.446

ψae[cm] -12.1 -9.0 -21.8 -78.6

b[-] 4.05 4.38 4.90 5.3

Ss[1/cm] 1.0e-6 1.0e-6 1.0e-6 1.0e-6

ψf [cm] -13.35 -14.10 -22.36 -50.03

α[cm] 1.94 1.94 1.94 1.94

tp[s] 54.99 62.05 278.90 1344.17

SD[s] 3299.41 3722.73 16734.06 80650.52

D∗[cm] 854.13 896.26 1430.56 3201.08

X(tp)[-] 0.499 0.499 0.499 0.499

X(SD)[-] 0.984 0.984 0.984 0.984

z∗D[-] 1.0 1.0 1.0 1.0

Note that two means of calculating the wetting front suction, ψf ,were used for testing.
First used is the wetting front suction, as determined by Verseghy [141]:

ψf = −b(ψk − ψaeks)
ks/2(b+ 3)

(3.17)

Verseghy’s formula is based upon the proposal of Bouwer [23] that the conductivity
behind the wetting front can be estimated as ks/2, which is less than ks due to the air
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entrapped during the infiltration process. Equation 3.17 is obtained by substituting the
Clapp-Hornberger soil characteristic functions into Neuman’s equation [100].

As an alternative approach, Clapp and Hornberger [34] proposed that the wetting front
suction can be determined by neglecting the parabolic section of the suction curve when
integrating Neuman’s equation [100], which results in:

ψf = −2b+ 3

b+ 3
ψae (3.18)

Maximum relative errors between the GA and RE when using equation 3.17 and equa-
tion 3.18 are roughly 3 percent. The difference is that GA underestimates infiltration when
equation 3.17 is used and overestimates infiltration otherwise. Recognizing that the impact
of this choice is relatively minor, equation 3.17 is exclusively used here.

Initial tests were used to directly compare the dimensionless results of the RE and
GA under the conditions for which it was intended, i.e., a system with infinite depth.
Relative errors for the infiltration rate (Ef ) and the cumulative infiltration (EF ) between
the analytical GA solution and the numerical RE solution with semi-infinite depth are
depicted in Figure 3.8. It shows that the maximum value for Ef is less than 8 percent and
for EF is less than 3 percent, occurring only after the analytical ponding time (X = 0.5) has
been reached. Errors first increase, then decrease with time and decrease with increasing
ks/w after the ponding time. The reason for this is discussed in what follows.

Dimensionless infiltration rate as a function of dimensionless time for the GA model
and the base case RE model is depicted in Figure 3.9. It shows that the ponding time
calculated from the GA model is always less than that of the RE. However, the difference
between them, δtp, decreases with increasing ks/w value. Both GA and RE dimensionless
infiltration rates converge to the same dimensionless hydraulic conductivity ks/w at the end
of simulation duration. This implies that the simulation duration of 60tp is long enough to
characterize the complete GA infiltration process, during which the infiltration rate varies
from the rainfall rate to the saturated hydraulic conductivity. Figure 3.9 clearly shows
that the maximum difference between the GA and the RE occurs at the RE ponding
time. Starting at the GA ponding time, for each individual ks/w value, the difference
increases until the RE ponding time is reached and decreases from then on. These results
are consistent with the numerical/analytical comparisons of Mein and Larson [89].

Shallow Water Table

Water table depth varies due to changes in climate, land cover, or topography, but in
many cases is known to be present at a shallow depth. In these cases, it is necessary to
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Figure 3.8: Relative error between GA and RE with a semi-infinite depth: (a) dimensionless
infiltration rate; (b) dimensionless cumulative infiltration

Figure 3.9: Dimensionless infiltration rate, f/w (0.5-0.9), as a function of dimensionless
time, X, for variable dimensionless hydraulic conductivity ks/w : dash-GA; solid-RE

consider the effect of a water table upon the infiltration process. When a water table is
present, the wetting front will progress downwards until the entire soil column is saturated,
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at which point, the infiltration rate will decelerate to the saturated conductivity of the soil.
Since this influence is ignored in the traditional GA model, a corresponding modification
is necessary.

The validity of the traditional GA model with the existence of a shallow water table
at dimensionless depths of z∗D =1/40, 1/30, 1/20, 1/10, and 1/5 were investigated, with
results depicted in Figure 3.10. Here, the GA model was deemed appropriate if the relative
error between the numerically-evaluated infiltration rate with and without the water table
is less than 5 percent. If the error exceeds 5%, the GA model was deemed inapplicable, i.e.,
the water table is too close to the surface to be ignored in infiltration calculations. Figure
3.10 depicts the applicability of the standard GA model for the range of dimensionless
water table depths.

Figure 3.10: Applicability of GA model with variable dimensionless water table depth (Left
to right: 1/40, 1/30, 1/20, 1/10, and 1/5): Light-applicable; Dark-non-applicable

Figure 3.10 indicates that the general applicability of the GA model is limited by
the existence of a water table. Not surprisingly, the applicability of the GA model clearly
increases with increasing water table depth. The point at which the traditional GA solution
should no longer be used occurs when the wetting front approaches the water table. The
larger the dimensionless hydraulic conductivity is, the faster the wetting front progresses
downwards. As a consequence, the separation occurs earlier, and sandy soils are more
likely to require amendment for water table conditions. Notice that there are small regions
at the end of the simulation at which the solution again becomes applicable. This is due to
both RE solutions converging to the same dimensionless hydraulic conductivity (i.e., the
steady-state solutions are the same with or without a water table). Figure 3.11 depicts the
infiltration process for selected conductivities for dimensionless water table depths of z∗D
= 1/40, 1/20 , 1/10, and 1/5, demonstrating precisely what is occurring to the infiltration
curve as water table depth varies. In all cases, the transition from GA-type infiltration to
infiltration in fully-saturated soil is quite abrupt and relatively insensitive to conductivity.
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Figure 3.11: Dimensionless infiltration rate, f/w, as a function of dimensionless time, X,
for variable dimensionless conductivity ks/w (0.5-0.9): solid-RE with dimensionless water
table depth at 1.0; dash-RE with dimensionless water table depth at a): 1/40; b): 1/20;
c): 1/10; d): 1/5

Once the range of applicability was ascertained, a simple algorithm modification was
identified that may be used to account for a water table. This modification is described
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and assessed below. Considering that the GA model is not valid from the moment that
the wetting front merges with the water table, a modified GA solution which accounts for
the existence of the water table was developed as:

f(t)

w
=


1 for X ≤ Xp

ks
w

(
1 +

1

−1−W−1(x)

)
for Xp < X < XC

ks
w

for X ≥ XC

(3.19)

Xc is the critical dimensionless time at which the soil column is fully saturated, and is
related to the initial water content, soil properties, rainfall rate, and the simulation dura-
tion. This revised model is physically consistent with the piston-like flow approximation of
the original GA. It is very important to note that Xc is not the same as the dimensionless
time, Xw, at which the traditional GA wetting front reaches the water table. Instead,
the presence of a capillary fringe and vertically non-uniform saturation lead to the piston
flow approximation being a poor one as the wetting front will accelerate as water table is
approached and consequently cause Xc to be shorter. Therefore it is inadequate to simply
use a model whereby the infiltration is set to ks when the wetting front reaches the water
table depth. Rather, to account for this, guided by comparison between the GA model
and numerical solutions to the RE, Xc is here empirically determined as:

XC = m

(
ks
w

)2

+ n
ks
w

+ l

where m, n, and l are fitting coefficients related to the dimensionless depth, zD∗ , as:

m = 73.85z3
D∗ − 46.58z2

D∗ + 7.26zD∗ − 0.06

n = 33.25z2
D∗ − 7.59zD∗ − 0.03

l = 290.09z3
D∗ − 132.39z2

D∗ + 19.39zD∗ − 0.13

Of course, it is important to discern just what happens if one assumes that the infil-
tration rate may be set to ks when the wetting front reaches the water table. Table 3.2
is the comparison between the critical times Xc and Xw for wide range of dimensionless
hydraulic conductivity ks/w and dimensionless time, X.

It is clear that Xc occurs much earlier than Xw in all cases, indicating that the simplest
approach based upon pure piston flow would lead to overestimates of infiltration. In
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Table 3.2: Comparison between the critical times Xc, when the wetting front actually
intersects the water table and Xw, based upon the piston flow assumption of the traditional
GA, for a range of dimensionless depths

ks
w

z∗D = 1/40 z∗D = 1/30 z∗D = 1/20 z∗D = 1/10 z∗D = 1/5

Xc Xw Xc Xw Xc Xw Xc Xw Xc Xw

0.5 0.457 0.941 0.547 0.957 0.687 0.972 0.872 - 0.950 -

0.6 0.448 0.931 0.537 0.949 0.676 0.967 0.857 - 0.942 -

0.7 0.440 0.922 0.530 0.942 0.669 0.962 0.847 0.982 0.936 -

0.8 0.435 0.914 0.526 0.936 0.666 0.957 0.843 0.979 0.932 -

0.9 0.431 0.910 0.524 0.931 0.666 0.954 0.843 0.977 0.931 -

addition, it can be seen from examining Figure 3.11 that the maximum relative errors in
point infiltration occur in this range.

Equation 3.19 indicates that the infiltration rate remains constant when the soil domain
is fully saturated, at which point the wetting front merges to the dynamic water table. For
very shallow water table cases, Xc can be less than Xp, e.g., soil column is saturated before
the ponding time. Equation 3.19 is rewritten as:

f(t)

w
=

{
1 for X ≤ XC

ks
w

for X > XC

Relative errors between the modified GA model and the RE for four dimensionless
depths for sand with an initial water content of 0.258 (e.g., θ0/θs = 0.65) are shown in
Figure 3.12.

Figure 3.12 indicates that the maximum relative error of the cumulative infiltration
(EF ) for all tested water table depths is less than 3 percent. These tests were repeated for
four additional soils over a range of initial water contents, as summarized in table 3.3. It
shows that the revised solution is capable of accommodating the effect of the water table
and the maximum relative error is consistent with that of the traditional GA model (i.e.
the differences here are on par with the standard GA and numerical solution to RE). Notice
that the shallower the water table is, the smaller the error in cumulative flux, EF , is, which
indicates that equation 3.19 is suitable for shallow water table boundary conditions.
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Figure 3.12: Relative error for the modified GA cumulative infiltration for the existence of
a water table at dimensionless depth of: a) 1/40; b) 1/20; c) 1/10; d) 1/5
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Table 3.3: Maximum relative error (EF ) for modified/original GA with shallow water table

zD∗
θ0
θs

Sand Loamy sand Sandy loam Silt loam

1/40

0.6

0.7

0.8

0.9

0.027/0.241

0.028/0.244

0.059/0.251

0.303/0.329

0.024/0.241

0.029/0.244

0.055/0.258

0.253/0.361

0.020/0.240

0.021/0.241

0.034/0.243

0.256/0.350

0.018/0.239

0.019/0.241

0.027/0.244

0.144/0.281

1/20

0.6

0.7

0.8

0.9

0.030/0.134

0.038/0.132

0.061/0.131

0.071/0.154

0.025/0.130

0.033/0.132

0.057/0.133

0.097/0.159

0.019/0.132

0.026/0.132

0.054/0.127

0.055/0.148

0.017/0.132

0.020/0.129

0.036/0.130

0.063/0.137

1/10

0.6

0.7

0.8

0.9

0.033/0.065

0.042/0.062

0.078/0.078

0.137/0.137

0.027/0.065

0.035/0.064

0.066/0.066

0.129/0.129

0.020/0.065

0.028/0.064

0.060/0.061

0.116/0.116

0.017/0.065

0.021/0.063

0.040/0.061

0.113/0.113

1/5

0.6

0.7

0.8

0.9

0.032/0.032

0.042/0.042

0.075/0.075

0.135/0.135

0.027/0.030

0.036/0.036

0.066/0.066

0.128/0.128

0.020/0.029

0.026/0.029

0.053/0.053

0.117/0.117

0.017/0.030

0.020/0.029

0.040/0.041

0.111/0.111

Impermeable Base

Many shallow soils sit upon a relatively impermeable base, such as a frost table, bedrock, or
a low permeability soil layer. This depth can vary in both space and time (e.g. due to vari-
ations in temperature with the frost table or bedrock topography). When an impermeable
base is present, the wetting front progresses downwards until it reaches the bottom of the
soil column, at which point, infiltration is forced to cease. This threshold can drastically
decrease the percentage of rainfall infiltrating, and is ignored in the traditional GA. There-
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fore, neglecting the effect of the impermeable base is detrimental to appropriate runoff
separation in hydrological models that use the traditional GA model.

The appropriateness of the standard GA model was assessed for the presence of an
impermeable base at dimensionless depths of z∗D =1/40, 1/30, 1/20, 1/10,and 1/5. Results
are shown in Figure 3.13. Here, the applicability of the GA model is defined in the same
manner as in the previous section.

Figure 3.13: Applicability of the GA model with variable dimensionless impermeable
base depth (Left to right: 1/40,1/30,1/20, 1/10, and 1/5): Light-applicable; Dark non-
applicable

Figure 3.13 indicates that, as with the presence of a water table, the validity of the
GA model is limited by the presence of an impermeable base. The separation between the
applicable and inapplicable regions is roughly at the moment at which the wetting front
location approaches the impermeable base. As expected, the GA validity increases with
increasing impermeable base depth. Figure 3.14 depicts the infiltration rate behavior for
selected dimensionless conductivities for an impermeable base located at the dimensionless
depths of 1/40, 1/20 , 1/10, and 1/5. It is clear that the dimensionless infiltration rate
abruptly approaches zero when the wetting front reaches the impermeable base.

Similar to the approach used with the water table case, a modified GA solution which
accounts for the existence of the impermeable base is here developed as:

f(t)

w
=


1 for F < (θs − θ0)z and X ≤ Xp

ks
w

(
1 +

1

−1−W−1(x)

)
for F < (θs − θ0)z and X > Xp

0 for F ≥ (θs − θ0)z and X > Xp

(3.20)

Equation 3.20 indicates that infiltration ceases when the wetting front reaches the
impermeable base. Note that z denotes the impermeable base depth, and, unlike the case
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Figure 3.14: Dimensionless infiltration rate, f/w, as a function of dimensionless time,
X, for variable dimensionless conductivity ks/w (0.5-0.9): solid-RE with dimensionless
impermeable base depth at 1.0; dash-RE with dimensionless impermeable base depth at:
a): 1/40; b): 1/20; c): 1/10; d): 1/5

of a water table, no corrections are needed to deal with boundary effects that accelerate
the wetting front. For a very shallow impermeable base, F can be larger than (θs − θ0)z
at the ponding time, e.g., the wetting front approaches the impermeable base before the
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ponding time is reached. Equation 3.20 is then rewritten as:

f(t)

w
=

{
1 for F ≥ (θs − θ0)z and X ≤ Xp

0 for F ≥ (θs − θ0)z and X > Xp

Relative errors of this modified GA model, as compared to the RE model, are shown
in Figure 3.15.

Figure 3.15 shows that the revised GA solution is capable of capturing the behavior
of the numerical model with an impermeable base and the maximum relative error is
consistent with that of the traditional GA model. Maximum relative errors (assessed over
the complete spectrum of times and dimensionless rainfall rates) for all four soils with
multiple initial water contents are depicted in table 3.4. It is clear that the EF decreases
with a decreasing impermeable base depth, indicating that the approximation actually
improves as the shallow impermeable boundary condition approaches the ground surface.
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Figure 3.15: Relative error for the modified GA cumulative infiltration for the existence of
an impermeable base at dimensionless depth of: a) 1/40; b) 1/20; c) 1/10; d) 1/5
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Table 3.4: Maximum relative error (EF ) for modified/original GA with impermeable base

zD∗
θ0
θs

Sand Loamy sand Sandy loam Silt loam

1/40

0.6

0.7

0.8

0.9

0.027/0.951

0.033/0.961

0.046/0.963

0.181/0.976

0.023/0.972

0.027/0.972

0.062/0.974

0.199/0.979

0.018/0.972

0.030/0.972

0.067/0.973

0.199/0.977

0.018/0.972

0.019/0.972

0.044/0.973

0.197/0.978

1/20

0.6

0.7

0.8

0.9

0.033/0.910

0.033/0.919

0.067/0.922

0.128/0.951

0.028/0.945

0.035/0.946

0.068/0.949

0.181/0.955

0.020/0.945

0.031/0.945

0.060/0.947

0.199/0.957

0.017/0.945

0.021/0.945

0.048/0.946

0.139/0.953

1/10

0.6

0.7

0.8

0.9

0.033/0.827

0.041/0.836

0.067/0.839

0.140/0.899

0.028/0.891

0.035/0.892

0.066/0.894

0.135/0.908

0.020/0.891

0.029/0.891

0.060/0.893

0.116/0.904

0.017/0.891

0.021/0.891

0.047/0.893

0.113/0.902

1/5

0.6

0.7

0.8

0.9

0.033/0.670

0.041/0.785

0.066/0.787

0.142/0.793

0.028/0.783

0.034/0.785

0.058/0.785

0.128/0.803

0.020/0.783

0.029/0.783

0.053/0.784

0.117/0.799

0.017/0.782

0.021/0.783

0.041/0.784

0.111/0.791

Heterogeneity Variation

Soil heterogeneity is very important in hydrologic processes, especially in determining
surface and subsurface runoff separation. The most important source of heterogeneity for
the infiltration process is the saturated hydraulic conductivity, which is often considered
well-represented as a random variable with a lognormal distribution ([59]and [151]). Here,
the impact of vertical heterogeneity in saturated conductivity was investigated with regard
to how it may impact the appropriateness of GA.
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A Monte Carlo approach was used to sample the dimensionless hydraulic conductivity
for each pair of a given mean, k̄, and variance, σ. The mean is the dimensionless conduc-
tivity with a wide range of 0.5 to 1.0. The variance was set to 0.1, 0.2, 0.3, 0.4, and 0.5.
For each individual mean/variance pair, 20 realizations of Monte Carlo are used to obtain
the average behaviors of the RE solution. Figure 3.16 shows the appropriateness of GA
for five different variances. It shows that the GA applicability decreases with increasing
vertical heterogeneity, expressed in terms of the standard deviation, σ, of the vertical av-
eraged saturated conductivity. The separation is worst around the ponding time since the
maximum relative error occurs there.

Figure 3.16: Applicability of GA model with variable variance for the vertical heterogeneity
in saturated conductivity (Left to right: σ=0.1, 0.2, 0.3, 0.4, and 0.5): Light-applicable;
Dark-non-applicable

Notice that in Figure 3.16, for σ = 0.4, there are portions applicable after the distin-
guished separation between the applicable and inapplicable regions. This is due to the
difference between the RE with and without heterogeneity decreases with the dimension-
less time X. It decreases into GA applicable range after the ponding time, which can be
seen in Figure 3.17 for a dimensionless hydraulic conductivity of 0.5 with σ = 0.4. Figure
3.17 is the comparison of dimensionless infiltration rate for different variances. It shows
the infiltration curves for the heterogeneous vertical hydraulic conductivity are relatively
smooth compared to the existence of a water table and impermeable base, i.e. no obvious
turning point occurs.

Figure 3.18 is the relative error between the GA solution and the RE solution with
variable variances. An interesting phenomena seen here is that, although the heterogeneity
was not considered in the traditional GA model, the model is capable of reproducing the
RE with vertical heterogeneous behavior of the RE. The relative error between GA and RE
increases with an increasing standard deviation. The maximum Ef is kept to be 8 percent
when σ is less than 0.5 and is 12 percent with a 0.5 variance. Therefore, modifications to

66



Figure 3.17: Dimensionless infiltration rate, f/w, as a function of dimensionless time,
X, for variable dimensionless conductivity ks/w: solid-RE with homogenous hydraulic
conductivity; dash-RE with vertical hydraulic conductivity variance of: a): 0.2; b): 0.3;
c): 0.4; d): 0.5

the GA model are deemed unnecessary if the standard deviation of the vertical hydraulic
conductivity is less than 0.5.
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Figure 3.18: Relative error for the infiltration rate between the GA and the RE at: a)
σ = 0.2; b) σ = 0.3; c) σ = 0.4; d) σ = 0.5

3.2.3 Discussion

Three assumptions limiting the applicability of the traditional GA model have been ad-
dressed and discussed here. Corresponding revisions were proposed. Results show that
ignoring shallow boundary conditions in the traditional GA will lead to an overestimation
of the amount of infiltrated water. As a result, hydrological models that rely upon the
traditional GA infiltration model may improperly estimate runoff. For such hydrological
models, modifications to the GA model are necessary in order to obtain an accurate water
budget in domains with shallow overburden or a shallow water table. ’Effective’ hydraulic
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conductivities estimated using manual or automatic calibration may be compensating for
this effect, leading to smaller-than-expected hydraulic conductivity estimates. If these
conductivities are used elsewhere in the model (e.g., for baseflow or interflow calculation),
accurate estimates of other hydrological fluxes may potentially be compromised.

Although the simple modifications recommended here provide satisfactory results for a
wide range of soil types and parameters, further verification with experiments and observa-
tions is likely needed. For example, the water table depth is dynamic during the infiltration
process, and GA initial conditions are not truly consistent with the presence of a capillary
fringe. The effect of this phenomenon on infiltration is worthy of further investigation.
Only vertical heterogeneity in saturated conductivity is considered here, and the variance
is constrained within 0.5. Heterogeneity in initial water content or other soil parameters
could also lead to inadequacy of the GA model. All these effects can be investigated in
future work.
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3.3 Runoff-infiltration Partitioning Using an Upscaled

Green-Ampt Solution

Note: Much of this section appears in Craig et al. [38].

Of critical importance in hydrological modeling is the determination of infiltration rates
into saturated and unsaturated soils. The quantity of infiltration determines the amount
of water available for runoff, evaporation, root uptake, and recharge to the groundwater
beneath. In the previous section, it was seen that vertical heterogeneity is important
but horizontal is too. In detailed physically-based models (e.g., SHE [1]), heterogeneous
infiltration processes may be simulated to a high degree of precision by numerically solving
Richards equation. For regional-scale lumped models and land surface schemes, however,
computational expediency and lack of detailed soil data demands that researchers use
a more approximate parameterization of the runoff-infiltration partitioning relationship.
Many existing models (e.g., CLASS [141], WEPP [103], HSPF [20], or SWAT [99]) use the
Green-Ampt equation [60] for these purposes. Because the Green-Ampt (GA) infiltration
equation is an analytical solution to Richards equation, the physical meaning of model
parameters ostensibly correspond to soil properties that are measurable in the field. A
critical drawback of the approach is that it does not explicitly account for the inevitable
heterogeneity at the subbasin (or computational) scale, which has been shown to have a
significant impact upon the response of a watershed soils to a rainfall event ([117]; [42]).

Recognizing that heterogeneity of saturated hydraulic conductivity is a significant driver
of net basin infiltration, researchers have attempted to develop general upscaled expressions
for infiltration based upon direct upscaling of point-scale governing equations [29] or of
point-scale infiltration solutions ([87]; [40]; [119]; [120]; [59]). These expressions were of
varying complexity, with later extensions addressing complex lateral relationships such as
run-on [37], spatial correlation [59], and rainfall variation [93]. While all are theoretically
sound within the bounds of their assumptions, these solutions individually suffer from an
inability to closely match computational (i.e., Monte Carlo) solutions for the complete
range of soil textures, as demonstrated by Corradini et al. [37]. This, in part, is due
to lower-order approximations used for the Green-Ampt equation at the point scale (e.g.,
that of [107]) or empirical approximations that have not been tested under the full range
of parameters ([120]; [59]). Most of the approaches additionally require some form of series
expansion, Monte Carlo simulation, numerical integration, or Latin Hypercube sampling in
order to generate the expected value of infiltration rates ([40]; [59]; [37]), and may perhaps
be considered too complex to include in many land surface schemes.

Here, an alternative direct method for upscaling the Green-Ampt solution for laterally
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heterogeneous soils is presented, one based upon a new and accurate approximation of
the explicit GA solution. The author has developed expressions for variable α, which
can be used to represent variation in initial saturation, porosity, and/or wetting front
matric potential. This supplements similar algorithms developed by Dr. Craig (personal
communication). Results are compared to Monte Carlo simulations of spatially random
infiltration without run-on.

3.3.1 Upscaling Green-Ampt Infiltration Model

Craig et al. [38] developed a new set of formulae for calculating regional-averaged infil-
tration rates into heterogeneous soils with heterogeneous initial conditions. The solutions
are based upon an upscaled approximation of the explicit Green-Ampt infiltration solu-
tion, and requires specification of the saturated hydraulic conductivity distribution and/or
initial soil water deficit distribution in the subbasin. The portion of this paper developed
by the author addressed the variability of initial conditions. The resultant closed-form
averaged infiltration equations are easily integrated into existing distributed surface water
schemes, and can also be used to calculate saturated soil surface area.

While most discussions of the Green-Ampt solution focus on the evolution of infiltration
rates over time, it is revealing to plot infiltration rates as a function of conductivity,
as shown in Figure 3.19. Here, the dimensionless time parameter [38], X, is used as
independent variable.

The curves in this Figure are snapshots in time: for a given conductivity, the infiltration
rate decreases with increasing X from f(0) = w to f(1) = ks. The objectives of this section
are to first identify appropriate (integrable) approximations for these curves, then to use
these approximates in order to develop closed-form explicit expressions for mean infiltration
rate subject to a known distribution of saturated conductivity and/or a known distribution
of α.

Once a reasonable approximation for the infiltration rate as a function of conductivity
is found (i.e., a simple approximation of the curves in Figure 3.19 is obtained), the mean
infiltration rate for heterogeneous media and/or heterogeneous initial conditions may be
obtained by application of simple statistical laws. For example, in the case of heterogeneous
conductivity only, the mean infiltration rate, f̄ , may be calculated as:

f̄(t) =

∫ ∞
0

f(t, ks) · fk(ks)dks (3.21)
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Figure 3.19: Dimensionless Green-Ampt infiltration rate as a function of dimensionless
conductivity. Individual curves correspond to snapshots of dimensionless time, X, which
progresses from X = 0 at t = 0 to X = 1 at t = ∞. These curves are independent of the
α parameter, which is wholly encapsulated in the dimensionless time parameter, X.

where fk is the frequency distribution of saturated hydraulic conductivity within the mod-
eled domain, represented here using a standard lognormal distribution:

fk(ks) =
1

ksσY
√

2π
exp

(
−(ln(ks)− µY )2

2σ2
Y

)
(3.22)

where µY and σY are the mean and standard deviation of log hydraulic conductivity. A
more general expression is available for the case of general variability in both conductivity,
initial moisture deficit, and/or wetting front matric potential:

f̄(t) =

∫ ∞
0

∫ ∞
0

f(X(t, α), ks) · fkα(ks, α)dαdks (3.23)

where fkα is the joint probability distribution of saturated conductivity and α. It is assumed
here that there is no lateral relationship between vertical soil columns, either statistically
(in the form of spatial correlation) or physically (in the form of run-on processes). The
implications of these assumptions are addressed elsewhere ([37]; [93]).
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3.3.2 Approximations to the f-ks Curves

While usually expressed in implicit form, the Green-Ampt solution may be expressed ex-
plicitly in terms of the Lambert W−1(x) function, as described in chapter 2, section 3.

Barry et al. [5](amongst others) have used this in order to develop a family of robust
numerical approximants to the explicit Green-Ampt solution. While the approximations
developed by Barry et al. are highly accurate and simple to implement (and therefore
recommended for use in standard Green-Ampt modeling schemes), they cannot be used to
calculate mean infiltration rates in the fashion presented here. The primary issue is the
complexity of these approximations with respect to ks or α, which precludes the availability
of closed-form expressions for mean infiltration rates using equation 3.21 and 3.23.

Here, the author in conjunction with her supervisor Dr. Craig, has identified an alter-
native approximation to equation 2.21 that are more amenable to closed-form integration
with respect to both ks and α. It is clear from Figure 3.19 that a first-order approximation
of infiltration rate may be given by the linear approximation:

f(t) = min

(
w,
ks
X

)
+ ε(ks, X) (3.24)

where ε(ks, X) is the deviation of the exact solution from the linear approximation, plotted
in Figure 3.20. The linear approximation of equation 3.24, which corresponds to W−1(x) ≈
−w

t
− 1, is exact at the endpoints (ks = 0 and ks ≥ X), and diminishes in quality for

reduced ratios of conductivity to rainfall rate. As apparent in Figure 3.20, an error of up
to ≈ 13.5% is possible for small conductivities at early times. Equation 3.24 will be used
as the starting point for the approximation used here, and an attempt is made to identify
viable (and integrable) approximations to ε(X, ks).

Upon substitution of equations 3.22 and 3.24 into equation 3.21, the first-order contri-
bution to the mean infiltration rate may be directly evaluated using basic calculus, leading
to the following first approximation for average infiltration (Craig, personal communica-
tion):

f̄(t) =
w

2
erfc

(
ln(wX)− µY

σY
√

2

)
+

1

2X
exp

(
µY +

σ2
Y

2

)
erfc

(
σY√

2
− ln(wX)− µY

σY
√

2

)
+ w

∫ X(t)

0

ε(X(t), ks) · fk(ks)dks (3.25)
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Figure 3.20: Dimensionless epsilon (linear approximation error) as a function of dimen-
sionless conductivity, stretched over the dimensionless ponding time, X. The error is at a
maximum at early times, diminishing to zero. The curve labeled 0.0∗ is the limit of ε as
X approaches zero.

where erfc(x) is the complementary error function, expressed in terms of the error function
erf(x) as:

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

et
2

dt

and the remaining epsilon term still must be evaluated numerically. The ε function was
here approximated using curve fitting techniques. The “true”surface used for fitting was
generated using the iterative approximation of [5]. The best approximation found was
given by:

ε ≈ 0.3632 · (1−X)0.484

(
1− ks

wX

)1.74(
ks
wX

)0.38

(3.26)

resulting in a maximum error of 0.006w (0.6% error), acceptable for nearly all modeling
applications, especially considering the errors from ignoring heterogeneity are significantly
larger. With this approximation, the remaining integral in equation 3.25 can be evaluated
quite effectively with simple single-interval 2-point Gauss quadrature.

Figure 3.21 depicts the difference in behavior between the standard GA model and the
upscaled version used here for a number of different mean dimensionless conductivities
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Figure 3.21: Evolution of dimensionless infiltration rate over time for standard (solid) and
upscaled (dashed) Green-Ampt solutions. Three different ratios (0.2,0.5,0.8) of average
conductivity to rainfall are depicted. The coefficient of variation (k̄s/σk) for all three
upscaled models was kept fixed at 0.5.

with the same coefficient of variation. Notably, the upscaling process smooths out the
threshold behavior of the basin, as the ponding time is no longer a fixed point in time.
Rather, different locations in space reach saturation at different points in time. Regardless
of the degree of heterogeneity, the cumulative infiltration (which is linked with the total
volume under the curve) is less than that predicted with the point scale solution. A
detailed discussion for the spatial variability in hydraulic conductivity and its effect on the
hydrological models can be found in [38]. The primary contribution of the author to the
investigation of the heterogeneity was developed using upscaled expressions for variability
in soil moisture/wetting front suction, as discussed in what follows.

3.3.3 Variable Initial Soil Moisture /Wetting Front Suction

Unlike conductivity, which is known to be well-represented using a log-normal distribution,
spatial variation of the aggregate parameter α = ψf |θs − θ0| is not well-characterized in
the literature. The wetting front matric potential, ψf , is a function of soil texture and
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the form of the characteristic soil curves [100], and is therefore correlated to conductivity.
It varies roughly linearly with log conductivity, ranging from about 10cm for sands up
to 100cm for clays, and can be reasonably well characterized with a normal distribution.
Presumably, the initial saturation deficit, Sd = |θs − θ0| can also be represented using a
normal distribution [106], but due to the presence of fixed upper and lower bounds is likely
better represented using a Beta or uniform distribution ([62]; [139]). Multiple field studies
of soil moisture distributions have discovered wildly varying distributional characteristics,
depending upon characteristics as varied as soil texture, storm duration, vegetation, soil
organic content and season ([117]; [90]; [92]; [49]; [77]). Due to the large variation in
infiltration behavior from site to site, and the significant number of unknown correlations
between variables, it is likely impossible in this case to choose one correct distribution
of α. Instead, we will assume here for the purpose of mathematical simplicity that α
is appropriately represented with a normal distribution characterized by a mean µα and
standard deviation σα. To avoid non-negativity, it is recognized that the negative portion
of the distribution corresponds to a finite probability of α being equal to zero (i.e., the
area under the negative portion of the normal distribution corresponds to the percentage of
soil is initially saturated). It is assumed that these distribution parameters may be either
calibrated or estimated from known or approximated distributions of ψf , θi, and θs. Under
these conditions, the function 1/X also satisfies a normal distribution, and we are able to
once again obtain a simple formula for f(t) subject to a distribution of soil properties, in
this case variability in initial moisture content and/or wetting front potential subject to a
fixed hydraulic conductivity:

f̄(t) =
w

2
+
w

2
erfc(A) + ks (1− erf(B))

+ ks

(
1 +

µα
wt

) 1

2
[erf(B)− erf(A)]

+
ks
wt

σα√
2π

[
exp(−B2)− exp(−A2)

]
+ w

∫ ( w
ks
−1)wt

0

ε(X(α, t), ks)fα(α)dα (3.27)

where A = (µα− (w/ks− 1)wt)/(
√

2σα) and B = µα/(
√

2σα). The limit of this expression
as σα → 0 is the original expression from equation 3.24.

Both solutions (equations 3.25 and 3.27) are unique when compared to previous solu-
tions proffered in the literature. First, they are valid over the entire range of parameters
and times. They correctly converge upon the standard GA solution in the limit as σY
and σα go to zero, a feat unattainable by the empirical approximations of Smith and
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Goodrich[120] or Govindaraju et al.[59]. Lastly, because the solutions are cast in terms of
the chosen dimensionless quantities, numerical integration of the ε integral is not sensitive
to the particular set of parameters; any scheme that works appropriately in dimensionless
space is appropriate for all possible model configurations. This, along with the relative
simplicity of the solution, encourages inclusion in existing hydrological models.

3.3.4 Testing

To test the validity of the above derivations and demonstrate some of the interesting
byproducts of the approach, the solution has been directly compared to the results of a
Monte Carlo model. For the first test case, spatial heterogeneity in saturated hydraulic
conductivity, results are shown in Figure 3.22 and discussion can be found in [38]. Here,
the testing for spatial variability in initial soil moisture/wetting front suction, contributed
by the author, are described only.

Figure 3.22: Analytical (solid line) and Monte Carlo (circles) dimensionless infiltration
curves for a heterogeneous domain with an average conductivity of k̄s = 1.6cm/hr.
Variability in conductivity is quantified using the normalized standard deviation of log-
conductivity, σY , which is here varied from 0 (homogeneous) to 3 (highly heterogeneous).

A heterogeneous domain was generated using 25000 parcels with aggregate parame-
ter α that satisfy the normal frequency distribution with standard deviations of σY =
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0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, and mean of ᾱ = 3.0cm. Since only vertical processes are
considered here, spatial correlation is ignored. For the Monte Carlo simulation, the di-
mensionless saturated hydraulic conductivity was specified as 0.4. A dimensionless rainfall
of was applied to the domain, and the average and cumulative infiltration to the het-
erogeneous soil were calculated using both the Monte Carlo approach and equation 3.27.
Results are depicted in Figure 3.23. It is clear that the analytical upscaling is a very good
approximation to the Monte Carlo simulations: maximum errors were on the order of 3%,
and are entirely due to the approximation of the ε term, which was integrated using a
single interval modified 2-point Gauss-Legendre quadrature. For all practical purposes,
the analytical and Monte Carlo solutions may be considered identical in output.

Figure 3.23: Analytical (solid line) and Monte Carlo (circle) dimensionless infiltration
curves for a homogeneous domain with spatially variable initial conditions.

Here, the 2-point Gauss quadrature integration had to be modified in order to accu-
rately calculate the integral in equation 3.27 to a sufficient degree of accuracy. The most
computationally efficient and reasonably accurate means of calculating the integral in equa-
tion 3.27 was found to be a combination of two-point Gauss quadrature (for earlier times,
where the impacts of scaling are dominant) and the non-upscaled Lambert approximation
[5] (for later times, where upscaling has little or no effect but two-point quadrature can
lead to numerical instabilities). Defining Xc as the critical X for the combination, the
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modified two-point Gauss quadratic integration is defined as:

f(t) =

{
f2p for X ≤ Xc

fLambert for X > Xc

(3.28)

where f2p is the solution for single-interval two-point Gauss quadrature, fLambert is the
solution of the Lambert approximation, and Xc is defined as:

Xc =

{
0.45 for σ ≤ 1

3
µα

fLambert for σ > 1
3
µα

(3.29)

An interesting byproduct of the upscaling formulation derived is that the evolution of
saturated area, As, during a storm event may be determined as the total area of the basin,
A, multiplied by the percentage of saturated ground at any point in time [38]:

A(t) = A

∫ ( w
ks
−1)wt

0

∫ wX

0

fkα(α,K)dksdα (3.30)

Which, for a normal α distribution and fixed ks/w leads to:

A(t) =
A

2

erf

(
µY√
2σα

)
− erf

µα −
(
w
ks
− 1
)
wt

√
2σα

 (3.31)

The impact of α heterogeneity upon the saturation progress is depicted in Figure 3.24,
for ks = 0.4w and ᾱ = 3. It illustrates the differences in the transient evolution of surface
saturation for varying degrees of heterogeneity in α. Instead of the abrupt switch from
unsaturated to saturated surface predicted by the classic GA model, the upscaled version
appropriately depicts a gradual transition, with some of the soil surface saturating well
before the mean ponding time, and some (the soil with high lower soil moisture) staying
perpetually dry. The evolution of this process spreads out as heterogeneity increases.
Increased heterogeneity results in a more gradual saturation response. However, here the
maximum saturation is reached after a finite time period, and the majority of saturation
progress occurs after the average ponding time.

While the solution is only shown here for uniform steady rainfall, the approach of
Chu [33] may still be used to extend both formulae to unsteady rainfall, as the upscal-
ing approaches have been applied to the infiltration (rather than cumulative infiltration)
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Figure 3.24: Evolution of basin surface saturation for various degrees of heterogeneity in α

function. A notable corollary is that, for the variably saturated case, the spatially hetero-
geneous moisture deficit is a state-variable and changes with time (as would its variance).
The change in this variance over time is neglected. Because of this, temporal discrimi-
nation has an impact upon the validity of the upscaling approximation. Of course, the
homogeneous Green-Ampt model suffers from the same drawbacks, that while an analyti-
cal formula is available for infiltration, temporal discretization and time variability in soil
moisture will lead to results that do not directly conform to the original analytical formula.

3.3.5 Discussion

As is apparent from results of Figures 3.22 and 3.23, the impact of spatial variability on
Green-Ampt infiltration is both analytically calculable and significantly influential upon
rainfall-runoff calculations. The implications of this heterogeneity have been addressed, in
part, by previous authors. This discussion addressed the implications upon the calibration
of existing homogeneous models.

As can be seen from comparing Figures 3.22 and 3.23, heterogeneity in ks has an effect
upon the asymptotic solution as time approaches infinity, while variation in α is short-
lived, only directly influencing the solution prior to and shortly after the effective (mean)
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ponding time. This is an indicator that (1) heterogeneity in soil type is of much greater
import than heterogeneity in initial conditions and (2) variation in initial conditions will
be of greater importance for short duration storms or during dry antecedent conditions.

3.4 Chapter Summary

Multiple improvements to the modeling of infiltration processes have been investigated
in this chapter, including accounting for shallow boundary conditions and both vertical
and lateral heterogeneity in soil properties and initial conditions/wetting front suction.
The improved algorithms have been tested using a specialized unsaturated finite difference
code to the Richards’ equation for sloping soils and Monte Carlo simulation. Results show
that the improved algorithms are capable of addressing the effects they are intended to
accommodate.

Applicability of the standard Green-Ampt infiltration model under the non-ideal con-
ditions where a shallow water table or impermeable base is present was investigated using
a novel dimensionless formulation. Results show, as one would expect, that the applica-
bility of the GA model increases with increasing depth of the soil layer overlying a water
table or impermeable base. Ignoring these shallow boundary conditions leads to inaccu-
rate distribution of runoff. Modifications to the traditional GA model were presented and
tested via rigorous comparison with the numerical solution to the RE for a wide range of
soil textures and model parameters. The impacts of initial moisture deficit are wholly en-
capsulated within a special dimensionless parameter X, testing the full range of X means
that the full range of both times and moisture deficit/initial saturation have been tested.
Results demonstrate that even when the assumptions are relaxed, the GA model often still
provides reasonable results and can be easily amended to account for a variety of condi-
tions. These amendments can be easily incorporated into existing distributed hydrological
models. Once water table or impermeable base corrections are included, the maximum
relative errors in cumulative infiltration are consistent with those between the original GA
model and numerical (Richards’ equation) solutions, and are reasonable for most practical
applications.

In section 3.3, explicit approximations of the upscaled Green and Ampt infiltration
equation have been derived, which consider lateral heterogeneity in wetting front matric
potential, porosity, and/or initial soil moisture (equation 3.27). The approximations have
been evaluated against Monte Carlo simulations and shown to produce results accurate
to 3% of the computationally-intensive exact cases, at a computational cost similar to the
original Green-Ampt formula without upscaling. The integrals obtained from the upscaling
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process may be evaluated analytically or with single-interval low-order quadrature, and are
therefore quite suitable for inclusion in land surface schemes and other surface water models
where computational speed is a significant issue. A critical result here is that the upscaled
form of the Green-Ampt equation is behaviorally different than the point-scale solution with
upscaled parameters, indicating that calibration alone is insufficient to correctly replicate
the infiltration process in heterogeneous media.
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Chapter 4

Improved Interflow and Infiltration
Algorithms for Hydrological
Modelling

As discussed in chapter 2, most land surface schemes adopt a flat earth approximation,
which does not allow near-surface lateral flow to occur. With this approximation, after
a heavy rain, the land surface remains wet for a longer time than in reality. Thus the
evaporation can be overestimated, whereas the infiltration can be underestimated. In re-
ality, the earth is scarcely flat. Incorporating topographic characteristics into near surface
flow modeling is very important for understanding the near surface hydrological processes.
Although lateral flow has been considered in the hillslope hydrology literature, research
has been primarily focused on lateral flow in the saturated zone and vertical flow in the
unsaturated zone. However, for soils with macro pores and/or high anisotropy, lateral
flow in unsaturated zone can play a significant role in near surface runoff processes. The
interflow algorithm developed in this chapter is designed to account for lateral flow in both
the saturated and unsaturated zones and to provide an improved recharge algorithm for
hydrology-land surface schemes. It is physically-based and incorporates both soil hydraulic
properties and topographic parameters. The improved interflow algorithm is used to cal-
culate a dynamic saturated area that may then be used for calculation of more accurate
partitioning between overland flow and infiltration. The algorithm was incorporated into
the Environment Canada hydrology-land-surface model MESH and shown to successfully
model a more realistic soil moisture simulation process.
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4.1 Improvement to the Interflow Algorithm

The interflow algorithm used here as a basis for saturated area calculation was derived from
a semi-analytical solution to the Richards’ equation. The original semi-analytical solution,
the one used as basis for the WATDRAIN1 algorithm, was developed by ignoring the
suction gradient term in the Richards’ equation. The flow generated is therefore gravity-
dominated. Such a gravity-dominated solution works well for regions with wet soils but
not suitable for regions that are dry for long periods. To compensate for this drawback, an
updated interflow algorithm, WATDRAIN2, has been developed, which is a combination
of the gravity dominated solution and the suction dominated steady state solution. Both
interflow algorithms have been tested against numerical solutions to the Richards’ equation,
described in section 3.1. Results show an excellent match between analytical and numerical
solutions under the conditions for which they are intended. The algorithm has therefore
been deemed suitable for incorporation into hydrological models and land surface schemes.

4.1.1 WATDRAIN1 Development

The analytical interflow algorithm currently used in MESH focuses on laterally variable
flow in shallow sloping soils. The sloping soil horizon is assumed to be homogeneous and
subject only to lateral drainage through a downhill seepage face, as depicted in Figure 4.1.

Figure 4.1: The conceptual model of a sloping soil horizon: initially at saturation and
allowed to drain to field capacity [124]

The algorithm is based on several assumptions: The initial soil suction is equal to the
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air entry pressure for a shallow sloping aquifer; Vertical variation in hydraulic conductivity
can be described by an exponential function (following TOPMODEL [18]); Lastly, the
suction gradient is assumed to be negligible, which results in an revised one-dimensional
Richards’ equation as:

θs
∂s

∂t
=

Λ√
1 + Λ2

∂k

∂X
(4.1)

where Λ denotes the slope of the aquifer and s is saturation. Substituting the Clapp and
Hornberger functions [34] gives:

∂s

∂t
= − ksΛ

θs
√

1 + Λ2
csc−1 ∂s

∂X
(4.2)

Equation 4.2 can be solved by using separation of variables approach, as shown in an
appendix C, giving:

s = min

1,

(
θs
√

1 + Λ2

cksΛ

X

t

) 1
c−1

 (4.3)

Defining ks = ks0e
−λz, where ks0 is the saturated hydraulic conductivity at the surface

and λ is a decay coefficient for hydraulic conductivity given by:

λ =
− ln kref/ks0

zref

where kref is the horizontal hydraulic conductivity at the depth zref and zref is a reference
depth.

Applying this solution to the amended Richards’ equation, the soil drainage process
can be divided into three stages dependent on the saturation at the outflow level: a highly
saturated stage (0 ≤ t ≤ tc); an intermediate stage (tc < t < tb); and a dry stage (t ≥ tb).
Note that tc and tb are critical times used to distinguish the saturation stages and will be
discussed in what follows.

The time tc is defined as the instant at which the seepage face ceases to be fully saturated
as shown in Figure 4.2a. Time tc, may be found by applying equation 4.3 with s = 1 at
the top right corner, X = L and Z = H, and solving:

tc =
θsL
√

1 + Λ2

cks0Λ
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Figure 4.2: Definition of the critical time: (a) tc; (b) tb

The other critical time tb is the moment after which fully unsaturated conditions occur
along the entire seepage face, as shown in Figure 4.2b.

A substituting saturation of 1 at the lower right corner X = L and Z = H into equation
4.3 and solving for tb:

tb =
θsL
√

1 + Λ2

cks0Λ
eλH

For any time, the aquifer bulk saturation (the average volume saturation), s̄, can be
determined as:

s̄ =
1

HL

∫∫
s(X,Z)dX dZ (4.4)

where s(X,Z) is given by equation 4.3.
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By analytically evaluating this integral, bulk saturation for three stages may be calcu-
lated as:

s̄ =


1− c−1

λcH
t
tc

(
1− e−λH

)
for 0 ≤ t ≤ tc

(c−1)2

λcH

[
1−

(
tc
t

) 1
c−1

]
+ 1− 1

λH
ln t

tc
− 1

λcH

(
1− t

tc
e−λH

)
for tc < t < tb

(c−1)2

λcH

(
tc
t

) 1
c−1

(
e
λH
c−1 − 1

)
for t ≥ tb

(4.5)

Equation 4.5 is only valid for λ > 0. If there is no decay in the hydraulic conductivity, e.g.,
soil is vertically homogenous, then λ = 0. In this case, the water table will be perpendicular
to the hillslope bottom as it approaches the downslope seepage face. Soil experiences two
stages under such a condition (λ = 0) instead of three since time tc and time tb are equal.
The intermediate stage disappears for homogenous soils. The limit of equation 4.5 as λ
approaches 0 is:

s̄ =

{
1− c−1

c
t
tc

for 0 ≤ t ≤ tc
c−1
c

(
tc
t

) 1
c−1 for t ≥ tc

(4.6)

Note that equations 4.5 and 4.6 are developed for a soil that is initially fully saturated.
However, this expression is needed to evaluate the change in bulk saturation over a single
time step, where conditions at the beginning of the time step are s < 1. Therefore, for soils
that are not initially saturated, the time t in equations 4.5 and 4.6 is rather a surrogate
time instead of the time since the element was fully saturated. Given the initial bulk
saturation at a real time t, the surrogate time t∗ is firstly calculated by the inverse form of
equation 4.5 or equation 4.6, e.g., t∗ = F (s̄). Substituting the surrogate time for the next
time step into equation 4.5 or equation 4.6, the bulk saturation for time step t∗ + ∆t can
be obtained. The storage change, ∆u, in the time interval, ∆t, is then calculated as:

∆u = θs[s̄(t
∗ + ∆t)− s̄(t∗)]HL

4.1.2 WATDRAIN1 Testing

As discussed in section 3.1, Richards’ equation is the governing equation for variably sat-
urated subsurface flow. Here, the WATDRAIN1 algorithm, described in section 4.1.1,
has been tested against the numerical solution to Richards’ equation (equation 4.1). The
WATDRAIN1 interflow algorithm is derived from a simplified form of Richards’ equation,
which is the limiting case of the full 1D Richards’ equation of equation 4.7 with ε = 0.

θs
∂s

∂t
=

∂

∂X

[
k

(
ε
∂ψ

∂X
− Λ√

1 + Λ2

)]
(4.7)
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where ε is an suction gradient index. Equation 4.7 is the full Richards’ equation with ε = 1
whereas it is called the adjusted Richards’ equation with ε < 1 in this study. Note that
in the numerical methods used here, ε can not be equal to zero, because finite difference
methods cannot solve fully hyperbolic problems. Therefore, a very small value 1.0e− 6 is
used instead.

Figure 4.3: Initial and boundary conditions used for the numerical method: The aquifer is
initially saturated. There is no flow at X = 0 and free flow at X = L.

Equation 4.7 was solved numerically by applying the one-dimensional finite difference
numerical scheme, in which a no flow boundary condition and a free flow boundary con-
dition are used. The free flow boundary condition is implemented by using a saturated
boundary condition at a sufficient distance such that the downstream boundary condition
has negligible effect at L, thus to approximate a boundary condition at infinity length.
Figure 4.3 shows both initial and boundary conditions. Tests have been conducted on
three homogeneous sloping aquifers (Λ = 0.01) with lengths of 15 meters, 150 meters, and
1500 meters, respectively. Soil parameters are consistent with Dingman’s sand[45].

Multiple simulations were run and compared against equation 4.3, with λ = 0. Figure
4.4 demonstrates bulk saturation against time with hillslope length of 15m, 150m, and
150m. It shows that the WATDRAIN1 analytical solutions are able to match the numerical
solutions of the adjusted Richards’ equation (ε ≈ 0) for all three aquifers, i.e. both the
numerical and analytical solutions are correct and consistent. However, it is apparent that
the WATDRAIN1 analytical solution is a poor match to the full Richards’ equation when
the hillslope length is short (L = 15m). The analytical solution performs well for aquifers
with a length of the magnitude of hundred meters and thousand meters.

Figure 4.5 shows the drainage characteristic curves for three hillslope lengths. Not
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Figure 4.4: Bulk saturation curves: (a)L = 15m; (b) L = 150m; (c) L = 1500m

surprisingly, the flux calculated from the analytical scheme is always greater than that
of the exact numerical scheme due to the absence of a suction gradient in the analyt-
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Figure 4.5: Drainage characteristic curves: (a)L = 15m; (b) L = 150m; (c) L = 1500m
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ical scheme. Therefore, the WATDRAIN1 interflow algorithm will result in inaccurate
partitioning between surface and subsurface runoff, by increasing surface runoff while con-
sequently decreasing subsurface runoff.

Figure 4.6: Correction of the soil saturation curve at transects Z1 and Z2:a) a computa-
tional unit; b) WATDRAIN1 saturation curves at Z1 and Z2; c) realistic saturation curves
at Z1 and Z2

It is clear that, while useful, the WATDRAIN1 solution is not perfect. For example,
in the current WATDRAIN1 application, for any depth (Figure 4.6a shows two arbitrary
positions Z1 and Z2), the soil saturation is equal to zero at X = 0 as shown in Figure 4.6b.
In natural conditions the soil saturation never can be equal to zero. One of the assumptions
is that the suction effect is so small that the suction gradient can be ignored. However, as
seen from Richards’ equation simulations, the suction gradient increases during the drying
process. When this process is considered, the soil saturation curve is rather like the curve as
shown in Figure 4.6c. Note that Xfc is the position behind which flow is essentially zero.
To avoid issues caused by the no suction assumption in WATDRAIN1, a new interflow
algorithm, WATDRAIN2, has been developed and is discussed in following sections.
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4.1.3 WATDRAIN2 Development

To compensate for WATDRAIN1 defects discussed in section 4.1.2, a revised solution,
one which can better approximate Richards’ equation, is desirable. Here a new algorithm
(WATDRAIN2) has been obtained by intelligently merging a gravity-dominated solution
similar to that of WATDRAIN1 with the other extreme endpoint, the steady state solution.
The derivation of this solution was initially proposed by Dr. E. D. Soulis. The refined
representation here was a collaborative effort. In particular, all formal testing and analysis
here are conducted by the author.

Here, it is assumed that the soil horizon experiences three states: an initial state, in
which the aquifer is fully saturated; a transition state, in which the hillslope is partially
saturated; and a steady state, in which the hillslope average water content equals its field
capacity. The concept is depicted in Figure 4.7. Note that the boundary condition at
X = L is s = 1, e.g., the seepage face is constantly saturated.

Here, the initial condition and the uphill boundary condition are consistent with WATD-
RAIN1. The seepage face boundary condition is assumed to be saturated constantly. Un-
like in WATDRAIN1, hydraulic properties (saturation and suction) in WATDRAIN2 de-
pend only on the location along hillslope length and are not vertically variable. The suction
head is assumed to be a weighted average of a flowing portion, given by a gravity-dominated
solution (ψg), and the non-flowing portion, given by the steady state suction-dominated
solution(ψf ).

By analogy with equation 4.3, the gravity-dominated solution is assumed to be in the
form of a power expression similar to that of equation 4.3, except an additional term, τ(t),
is used :

sg =

(
X + τ(t)

Xs + τ(t)

)α
(4.8)

where Xs represents the location of the interface between the saturated and unsaturated
soil surface, and α is defined as:

α =

(
1

c− 1

)(
1− X

Xs

)2

Note that the first term 1
c−1

is identical to the WATDRAIN1 solution. The second term
here, determined empirically, is used to adjust the difference between the analytical solution
and the numerical solution.

According to the Clapp-Hornberger soil hydraulic characteristic functions [34], the suc-
tion may be determined from:

ψg = ψaes
−b
g (4.9)
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Figure 4.7: WATDRAIN2 conceptual model (Xs represents the location of the interface be-
tween the saturated and unsaturated soil surface): (a) Initial state (Xs = 0); (b) Transition
state (Xs < L); ; (c) Steady state (Xs = L)

where ψae is the air entry pressure.

Flow from the hillslope is initially at a constant rate, ks, until a critical time t∗c , at which
time capillary forces begin to have an effect. When this occurs, Xs equals the length of the

aquifer, L. Before the time t∗c , the total water lost from the hillslope is θs

∫ L

0

(1− sg) dX.

Water lost through the seepage face is ksΛt
∗
c . Applying mass balance to the hillslope, t∗c is

therefore calculated as:

t∗c =
θs
ksΛ

∫ L

0

(1− sg) dX

Applying the no flow boundary condition at time t∗c , the unknown τ at time t∗c , denoted
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as τc, can be obtained by:
∂ψg
∂X

∣∣∣∣
X=0

= Λ (4.10)

Now, with a known critical time t∗c , the aquifer drainage process is divided into three
stages: a purely gravity-dominated stage (0 < t < t∗c); a transition stage (t∗c < t < tmax);
and a purely suction-dominated stage (t > tmax). Note that tmax is a semi-infinite time
defined by users. These three states are going to be discussed respectively in what follows.

Guided by the exact solution to Richards’ equation at steady state, the suction, ψf ,
and the saturation, sf , can be expressed as:

ψf = ψae − Λ(L−X) (4.11)

sf =

(
ψf
ψae

)− 1
b

(4.12)

i.e., at steady state (t → ∞), the matric potential is linear. This is used as one of the
endpoint solutions.

During the transition state, the flow is a weighted average of a gravity-dominated flow
and a suction-dominated flow. For the purely gravity-dominated case (t < t∗c), the seepage
face is totally saturated. The corresponding hydraulic variables, suction ψg and saturation
sg, are determined by equations 4.8 and 4.9. The only unknown in these two equations
is the term τ(t), which can be calculated by applying the no-flow boundary condition at
X = 0.0 as expressed in equation 4.10.

When t∗c < t < tmax, the flow is assumed to be a weighted combination of a gravity-
dominated and a suction- dominated flow solution. The suction during this state has been
developed by using the conservation of energy analogy as:

1

ψ2
=

w

ψ2
g

+
(1− w)

ψ2
f

(4.13)

where the weighting factor, w(X, t), is found to have the following form:

w = sa(t) + (1− sa(t))θs
(
X

L

)3(
tc
t

)(1− tc
t )

4

(4.14)

where sa(t) represents the saturation at X = 0.
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After substituting equations 4.9, 4.11, and 4.14 into equation 4.13, there are two un-
knowns, τ(t) and sa(t), in the resulting equation. Both of these unknown functions are
highly nonlinear with respect to time and can not be solved analytically. Rigorous numer-
ical solutions have been obtained by using a software library for solving nonlinear systems
of equations (http://www.netlib.org/). A detailed description about how to solve for sa(t)
and τ(t) is found in appendix D. The discussion that follows depicts steps that determine
both relationships between sa(t) and τ , and τ(t) and t.

Taking the derivative of equation 4.13 with respect to X gives:

1

ψ3

∂ψ

∂X
=

w

ψ3
g

∂ψg
∂X

+
1− w
ψ3
f

∂ψf
∂X
−

(
1

2ψ2
g

+
1

2ψ2
f

)
∂w

∂X
(4.15)

Rearranging both equations 4.13 and 4.15:(
ψf
ψ

)2

= w

(
ψf
ψg

)2

+ (1− w) (4.16)

(
ψf
ψ

)3
∂ψ

∂X
= w

(
ψf
ψg

)3
∂ψg
∂X

+ (1− w)
∂ψf
∂X
− ψf

2

[(
ψf
ψg

)2

− 1

]
∂w

∂X
(4.17)

At the no flow boundary (X = 0), equations 4.16 and 4.17 become:(
ψf0

ψ0

)2

= w

(
ψf0

ψg0

)2

+ (1− w) (4.18)

(
ψf0

ψ0

)3

=
w

Λ

(
ψf0

ψg0

)3
∂ψg
∂X

∣∣∣∣
X=0

+ (1− w) (4.19)

where subscript 0 represents values at the no flow boundary (X = 0). Raising equation
4.18 to the power of 3 and equation 4.19 to the power of 2, the left hand sides are identical
to result in: [

w

(
ψf0

ψg0

)2

+ (1− w)

]3

=

[
w

Λ

(
ψf0

ψg0

)3
∂ψg
∂X

∣∣∣∣
X=0

+ (1− w)

]2

(4.20)

By substituting equation 4.14 into equation 4.20, an implicit relationship between sa and
τ(t) is determined. Since τ(t) is only a function of t, the relationship between them may
be written as:

t =

∫ τmax

τc

∂t

∂τ(t)
dτ (4.21)
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where τmax is the value of τ(t) at the steady state. Once ∂t/∂τ is known, the relationship
between τ and t can be determined. Richards’ equation at the no-flow boundary may be
written in a simplified form:

θs
∂s

∂τ(t)

∂τ(t)

∂t
= k

∂2ψ

∂X2

∣∣∣∣
X=0

Therefore, the ∂t/∂τ(t) is expressed as:

∂t

∂τ(t)
=
θs

∂s
∂τ(t)

k ∂
2ψ

∂X2

|X=0 (4.22)

Substituting equation 4.22 into equation 4.21, an implicit relationship between t and
τ(t) can be obtained through numerically integration. Further to determine the implicit
relationship between sa(t) and τ(t), use equation 4.20.

With known functions for τ(t) and sa(t), the WATDRAIN2 analytical solution is finally
assembled as:

ψ =


ψae

(
X+τ(t)
Xs+τ(t)

)−( b
2b+2)(1− X

Xs
)
2

for 0 ≤ t ≤ tc(
w
ψ2
g

+ 1−w
ψ2
f

)− 1
2

for tc < t < tmax

ψae − Λ(L−X) for t ≥ tmax

(4.23)

where ψg and ψf are given by equations 4.9 and 4.11.

4.1.4 WATDRAIN2 Testing

Richards’ equation (equation 2.2)is here used as numerical “truth” with which the interflow
algorithm is compared. The analytical algorithm was first tested on a 400 meter long
hillslope with a slope of 0.01, which is here called the base parameter set. The hillslope
is initially saturated with a uphill no flow boundary condition and a downhill saturated
boundary condition. Figures 4.8 and 4.9 depict the saturation and suction distribution for
sand and silt loam soil textures, with parameters derived from [45].

It can be seen from the Figures 4.8 and 4.9 that the analytical solution matches the
numerical solution well for both the gravity-dominated and transition stages for sand and
silt loam. It is clear from these comparisons that the approximate analytical solution to
the Richards’ equation is in a reasonable range and accurate enough for most practical
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Figure 4.8: Sand saturation and suction curves at mutiple time (From top: t = 4× 10nd,
8×10nd, and 20×10nd (n = 1..4)) with L = 400m and Λ = 0.01: solid-numerical solution;
dashed-WATDRAIN2 analytical solution
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Figure 4.9: Silt loam saturation and suction curves at mutiple time (From top: t = 4×10nd,
8×10nd, and 20×10nd (n = 1..4)) with L = 400m and Λ = 0.01: solid-numerical solution;
dashed-WATDRAIN2 analytical solution
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Figure 4.10: Silt loam saturation and suction curves at mutiple time (From top: t =
2× 10nd, 4× 10nd, and 10× 10nd (n = 1..4)) with L = 400m and Λ = 0.1: solid-numerical
solution; dashed-WATDRAIN2 analytical solution
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Figure 4.11: Silt loam saturation and suction curves at mutiple time (From top: t =
0.05 × 10nd, 0.1 × 10nd, and 0.25 × 10nd (n = 1..4)) with L = 400m and Λ = 1.0: solid-
numerical solution; dashed-WATDRAIN2 analytical solution
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applications. To verify the robustness of the WATDRAIN2 analytical solution, more tests
were conducted on silt loam with different hillslope lengths and a wide range of slopes.

Figure 4.10 shows the saturation and suction curves for a slope of 0.1 and Figure 4.11
shows the saturation and suction curves for a slope of 1.0, other parameters are consistent
with the silt loam base testing case. It is clear that WATDRAIN2 analytical solution
matches the numerical solution well for the slope of 0.1 and decreases in accuracy for the
slope of 1.0. However, for the latter case, the maximum error increases with increasing
time and for a large time of 200000d, the maximum error is less than 5%. The accuracy is
still reasonable for practical applications.

Figures 4.12 and 4.13 are the saturation and suction curves for lengths of 40m and
4000m. The WATDRAIN2 analytical solutions match with the numerical solutions well
for all lengths. However, the accuracy of the WATDRAIN2 analytical solution increases
with increasing hillslope length. It also can be seen that the shorter the hillslope, the faster
the hillslope approaches the steady state.

All testing results in this section show that the WATDRAIN2 analytical solution
matches the numerical solution perfectly for the gravity-dominated stage (t < tc) and
relatively less accurately for the transition stage but the difference between the analytical
and numerical solutions is in a reasonable range. Both the analytical solution and the
numerical solution will approach the same steady state at a very large time. However, this
’large time’ is different dependent on hillslope length and slope.

The weighting function approach has been shown to successfully reproduce the transient
soil moisture for dry sandy and silt loam soil textures, as compared to numerical solutions
to Richards’ equation. However, the choice of weighting function used here is non-unique
and therefore not the only way to predict soil moisture profiles: more efforts are needed to
identify a robust interpolate between the extreme states of gravity-dominated and suction-
dominated flow for all soil textures.

4.1.5 Bulk Saturation Curves

The Clapp-Hornberger saturation, as derived from equation 4.13 is:

s2b = ws2b
g + (1− w)s2b

f (4.24)

As discussed in section 4.1.3, WATDRAIN2 hydraulic properties depend only on the loca-
tion along hillslope. Therefore, hillslope bulk saturation can be determined as:

s̄ =
1

L

∫
sdX (4.25)
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Figure 4.12: Silt loam saturation and suction curves at mutiple time (From top: t =
4× 10nd, 8× 10nd, and 20× 10nd (n = 1..4)) with L = 40m and Λ = 0.01: solid-numerical
solution; dashed-WATDRAIN2 analytical solution
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Figure 4.13: Silt loam saturation and suction curves at mutiple time (From top: t =
4 × 10nd, 8 × 10nd, and 20 × 10nd (n = 1..4)) with L = 4000m and Λ = 0.01: solid-
numerical solution; dashed-WATDRAIN2 analytical solution
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Ideally, if an explicit function of s̄ = f(t) and its inverse t = f−1(s̄) can be derived, the
boundary flux, q, can be calculated as:

q =
∆s̄L

∆t

Unlike the WATDRAIN1 analytical solution (equation 4.3), in which an explicit func-
tion for bulk saturation (s̄) is available (equations 4.5 and 4.6), it is difficult to obtain an ex-
plicit bulk saturation function for the WATDRAIN2 analytical solution. The WATDRAIN2
saturation function (equation 4.24) is a highly nonlinear function with respect to time and
it is computationally expensive to perform the direct integration required by equation 4.25.
In order to reduce the computational cost, a lookup table approach is taken, where the
saturation curve is precalculated. Figure 4.14 is an example bulk saturation curve obtained
from the interflow algorithm for a silt loam texture [45]. The lookup process is described
below.

Figure 4.14: Silt loam bulk saturation profile

For a shallow sloping aquifer, if the initial bulk saturation is known, the corresponding
time, t, can be numerically determined from equation 4.25. For the next time step, the
bulk saturation s̄(t+ ∆t) is numerically calculated from the t+ ∆t.
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To obtain s̄1 from s̄0, the process is:

• Step1: Calculate t0 from the given s̄0 using the inverse form of bulk saturation
equation 4.25.

• Step2: Determine next time step t1 = t0 + ∆t.

• Step3: Compute s̄1 at the given t1 using the bulk saturation equation 4.25.

The bulk saturation curves consist of a discrete set of known data points, therefore
interpolation has to be used. Here, a simple linear interpolation method was used since
the saturation change in one time step is not large and can be approximated by a straight
line.
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4.2 Improved Coupling of Infiltration and Interflow

Processes

The improved interflow algorithm described in section 4.1 provides a robust and efficient
explicit relation between the boundary flux and the soil internal variables. It also produces
useful information for dynamically calculating a runoff contribution area, and is here used
to inform the calculation of infiltration and overland runoff. The improved infiltration-
interflow algorithm is suitable to incorporate into any hydrological model or land surface
scheme.

In this study, the improved infiltration-interflow algorithm has been incorporated into
a hydrology-land-surface scheme MESH, which is an integrated system that combines the
distributed hydrological model WATFLOOD [76] and the land surface scheme CLASS [141]
[142]. This integrated system is designed to be linked with atmospheric models. CLASS
is typical of many Land Surface Schemes (LSSs) that exist today. CLASS is primarily
designed to calculate the vertical water and energy budget and has an appropriate interface
for atmospheric models. It focuses on soil moisture and thermal energy estimation but relies
upon the standard ”flat earth” methods for interflow and infiltration.

The original MESH soil model simulates both energy and water flux. It is difficult
to show how much contribution the improved interflow from section 4.1 has on the soil
moisture simulation process due to interactions between many hydrological processes near
the surface. Here, a stand-alone CLASS-based soil model was used instead, which is
a simple single soil model excluding the effects from other hydrological processes. The
improved infiltration-interflow algorithm was implemented in this single soil model and
compared against results from the standard uncoupled model algorithms, because it is
easier to interpret the various features of this simple model’s hydrograph and understand
the cause-and-effect relationships in the model output.

A stand alone CLASS-based soil model is first discussed in this section and then, guided
by the comparison with the numerical solution to the Richards’ equation, modifications to
the CLASS-based soil model are suggested. Results show that by coupling the infiltration
and interflow processes, a more realistic manner of hydrograph can be obtained. Results
also show that the behavior of the interflow algorithm can be significantly affected by
topography and soil properties.
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4.2.1 A Stand Alone CLASS-based Soil Model

Here, to simplify the model development and analysis process, a stand alone soil model
has been built by modifying the CLASS source code. This model excludes all energy flux,
temperature, and evaporation processes, available in the full version of CLASS. Three soil
layers are used to discretize the soil column. Infiltration is simulated by a traditional
implicit Green-Ampt model. Flow between soil layers is calculated by a finite difference
form of Richards’ equation. Hydraulic head gradient at the soil bottom is assumed to be
1. Therefore, baseflow is calculated based on the hydraulic conductivity of the third layer.

The stand alone soil model is composed of the main simulation driver (from the CLASS
source code file CLASSW.f90) and 10 subroutines. The function of each subroutine is
described here. All files names and function are consistent with Verseghy’s [140]:

• CLASSW (CLASSW.f90): Calls subroutines to perform surface water budget calcu-
lations.

• grinfl (grinfl.f90): Quantifies movement of liquid water between soil layers under
conditions of infiltration.

• wfill (wfill.f90): Evaluates infiltration of water into soil under unsaturated conditions.

• wflow (wflow.f90): Evaluates infiltration of water into soil under saturated conditions
using the Green-Ampt model.

• wend (wend.f90): Recalculates liquid water content of soil layers after infiltration,
and calculates baseflow.

• grdran (grdran.f90): Quantifies movement of liquid water between soil layers under
non-infiltrating conditions, in response to gravity and tension forces using a finite
difference approximation for the Richards’ equation.

• watrof (watrof.f90): Calculates overland flow and interflow components of the surface
runoff.

• watdrain (watdrain.f90): Calculates interflow by using storage change.

• tmcalc (tmcalc.f90): Calculates overland flow using Manning’s formula and pond
water depth. Adjust water stores accordingly.

• chkwat (chkwat.f90): Checks for closure of the surface water budget, and for unphys-
ical values of certain variables.
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• xit (xit.f90): Prints the name of the subroutine and an error code when an error
condition is encountered.

Figure 4.15: CLASS-based soil model flow chart: T=true; F=false

Figure 4.15 shows the flow chart for the stand alone soil model. At the start of a rainfall
event, it is assumed that the soil is unsaturated. Unsaturated infiltration occurs first and
then the unsaturated assumption is checked for validity for each layer. If there is ponded
water on the surface or the first layer wetting front hydraulic conductivity is nearly zero,
saturated infiltration occurs immediately. If the wetting front depth at the ponding time is
deeper than the first soil layer, depth of the wetting front will be calculated for successive
layers until the wetting front is located. If the soil layer properties vary, the actual wetting
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front depth will be adjusted according to the depth calculated by the property of using
individual soil layers. Flow between soil layers is calculated by using the average water
content from the previous time step and then the water content is updated. After that
the overflow is calculated at the end of current time step. Since the lateral and vertical
processes have been treated separately, these two processes are individually discussed and
then will be coupled using the new infiltration-interflow algorithm, which is discussed in
section 4.2.3.

4.2.2 Uncoupled Soil Model

Vertical flow and lateral flow are calculated separately and independently in the MESH
soil model, as done in many other hydrological models. For each time step, the average
water content calculated from the vertical process is used as the initial water content for
the lateral process. After deducting the amount of water lost due to interflow, the updated
water content is used as the initial water content for the vertical process in the next time
step. There are no other physical connections between these two processes, which may
result in wrong simulation of the hydrological process and provide unrealistic hydrographs.

Problems with the Current MESH Baseflow Simulation Algorithm

The CLASS-based soil model has been tested by using hypothetical rainfall distributions
in all experiments. Since the main objective of this work is to investigate more physically-
based infiltration and interflow processes, the test mainly focuses on the case where the
rainfall rate is larger than the saturated hydraulic conductivity, during which the infiltra-
tion rate is controlled by the infiltration capacity. Soil parameters here are consistent with
silt loam [45]. The simulation duration is set to 10 days, and each rainfall event lasts at
least for one day. Figure 4.16 shows the the uncoupled soil model hydrograph and the
rainfall hyetograph.

There are several odd artefacts that can be observed in the hydrograph of Figure 4.16.
These occur either at the moment that the wetting front approaches the bottom of the third
layer (points A,B and C) or during the rainfall event in which the rainfall intensity is less
than the saturated hydraulic conductivity ks (between D and E). The former issue exists
due to a model strategy MESH uses: baseflow in MESH is calculated in different ways
depending on the bottom layer saturation level. If the bottom layer is fully saturated, the
baseflow will be supplied by the incoming water otherwise the baseflow will be supplied
by the bottom layer. The bottom layer can be fully saturated when the wetting front
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Figure 4.16: Problems in CLASS-based soil model hydrograph: no baseflow at A, B and
C; baseflow equals rainfall intensity between D and E

across the bottom of the third layer. MESH will recalculate the wetting front depth if the
wetting front depth calculated in the current time step is below the bottom of the current
soil layer for considering the soil heterogeneity between two successive layers. The amount
of time required for the wetting front to reach the bottom of the current soil layer is then
recalculated. At the end of this specific amount of time, all incoming water has been used
for satisfying the fully saturated condition of the current layer and no water is left for
drainage/baseflow. Therefore, baseflow from the bottom layer at the these moments (A,
B, and C) abruptly (and unphysically) drop to zero.

The latter case, between D and E, is relatively complex. As mentioned earlier, baseflow
in MESH is simulated in different ways according to the third soil layer saturation level. If
the wetting front approaches the bottom of the third layer, which indicates the soil is fully
saturated, baseflow is controlled by the incoming water. Such a scheme works well if the
incoming water is greater than the bottom Darcy’s flux (w > ks) while it does not work
for situations if the incoming water is less than the Darcy’s flux (w ≤ ks), e.g., when the
amount of incoming water is less than the amount of water out of the bottom layer. Soil
in this case should gradually become unsaturated under such conditions instead of staying
saturated as MESH indicates in Figure 4.17.
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Figure 4.17: Soil bulk saturation for the hydrograph of Figure 4.16: Baseflow equals rainfall
intensity start at D, causing MESH to underestimate the baseflow rate and overestimate
saturation start at D

Since the suction gradient at the third layer bottom is always assumed to be zero in
MESH [141], the baseflow should be equal to the saturated hydraulic conductivity at time
D. However, Figure 4.16 shows that the modeled base flow is forced to equal the rainfall
rate, which is less than hydraulic conductivity. In reality, the base flow should be governed
by the bottom layer saturation level, which means that the base flow for such a situation
(w < ks) should be greater than the rainfall intensity. In order to confirm the intuitive
conclusion drawn here, numerical solutions to the 2D Richards’ equation with the same
parameter sets, rainfall events, and initial and boundary conditions are shown in Figures
4.18 and 4.19.

Figure 4.18 shows a gradually decreasing baseflow in the period between D and E instead
of an abrupt drop from ks to w as shown in Figure 4.16. Figure 4.19 shows that the bulk
saturation is decreasing at time D instead of staying saturated as shown in Figure 4.17.
All these conflicts indicate that a modification to the MESH soil model for the conditions
of w < ks is necessary.

Problems occurred either at the moment that the wetting front approached the bottom

111



Figure 4.18: Richards’ equation hydrograph

of the third layer (cases A,B and C) or during a rainfall event where the rainfall inten-
sity was less than the saturated hydraulic conductivity (between D and E). Two simple
modifications are suggested under such conditions. The baseflow under the first situation
should be obtained by comparing the incoming water and the Darcy’s flux. Whichever
is bigger should be used for determining the baseflow rate. The water under such situa-
tions is supplied by the water in the bottom layer. For the second situation, the baseflow
should be controlled by the Darcy’s flux instead of the incoming water. Revisions to the
wend.f90 source code have been made to compensate for these defects, in which the base
flow occurs due to gravity and water is supplied by the bottom layer. Figures 4.20 and
4.21 demonstrate the hydrograph and soil profiles for the modified soil model.
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Figure 4.19: Richards’ equation soil bulk saturation

Figure 4.20: MESH soil model hydrograph, after repairs
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Figure 4.21: MESH soil model bulk saturation, after repairs

In comparing the modified soil model results (4.20 and 4.21) with the Richards’ equation
results (4.18 and 4.19), it is clear that the modified soil model is capable of replicating the
Richards’ equation hydrograph except for a lower response to the first rainfall event and
underestimation of the overland flow. The lateral process has not been coupled and it
is believed that the improved interflow algorithm is able to compensate the drawback by
using a coupling soil moisture simulation process as follows.

4.2.3 Saturated Hillslope Coupling Method

As discussed in section 4.2.2, the uncoupled model underestimates overland flow when
compared to the Richards’ equation. This may be partly because MESH soil model tracks
only the bulk saturation. The infiltration rate, i, is calculated based on this bulk saturation
and typically controlled by the infiltration capacity for intense rainfall events. Such an
approach is not unreasonable for infiltration on flat ground. However, on a hillslope, the
downhill area often is observed to be saturated. In this area, overland flow can be generated
during rainfall events, even if the average hillslope bulk saturation is less than 1. The
infiltration into this saturated downslope area is constrained by the saturated hydraulic
conductivity, e.g., f = ks. This physical process has been observed in the field but has not
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been addressed by the MESH soil model and is still imperfectly represented in many other
hydrologic algorithms (e.g., TOPMODEL). In this lateral interflow study, a new algorithm
is proposed to link vertical processes through physical connections on this saturated area
to provide a more accurate physically-based soil moisture simulation process. Figure 4.22
shows the distinction between the uncoupled and coupled infiltration-interflow algorithms
and the infiltration and interflow coupling process.

Figure 4.22: Evolution of the coupling process: (a) uncoupled: infiltration is a function
of bulk saturation (f = f(s̄)); (b)coupled: infiltration is a function of bulk saturation
for X < Xs (f1 = f(s̄)) and is equal to saturated hydraulic conductivity for X > Xs

(f2 = ks)(dashed line represents a water table)

As discussed in section 4.1, Xs in Figure 4.22 represents the location of the interface
between the saturated and unsaturated soil surface. This location is determined using the
interflow solution of section 4.1. For the area uphill of Xs, infiltration is calculated using
the standard Green-Ampt model while for the area downhill (located at X > Xs), the
infiltration rate is limited by the saturated hydraulic conductivity. The mean infiltration
rate can be determined by:

f = f2 + (f1 − f2)
Xs

L
(4.26)

Since more overland flow will be generated on the saturated area, the use of this ap-
proach will always result in less water infiltrating into the soil.

Various experiments are used here to investigate the effect of the coupled model on
the soil moisture simulation process. Since the coupling process is aimed at the case
where a dynamic saturated area exists, higher intensive rainfall events (w > ks) have been
used for all tests. For the case of w < Ks, all water from rainfall will infiltrate into the
soil and no coupling process is required. In addition, the impact of soil anisotropy and
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topography effects have also been assessed during the experiments. The base experiment
was conducted on a sloping isotropic aquifer with a length of 400 meters and a slope of
0.01. Soil parameters for the base case are consistent with silt loam (using parameters
from [45]) and the soil is initially dry with a saturation of 0.5.

Figure 4.23 compares the net contribution of each flow process to surface water for the
uncoupled soil model and the coupled soil model. It demonstrates that for an isotropic soil,
the interflow effect is very small. The coupled model replicates the amount of total runoff
but causes a redistribution between the contributing processes. The overland flow increases
and the baseflow consequently decreases, which implies that the use of the uncoupled model
will result in an overestimated hydraulic conductivity when calibrated to the field measured
data.

Figure 4.23: Flow components comparison for an isotropic soil: OF-Overland flow; BF-
Baseflow; IF-Interflow; DS- Change in storage

Figure 4.24 depicts the hydrographs for both soil models. It demonstrates that the
coupled soil model is capable of replicating the runoff peak except for the first rainfall
event. Notice that the sloping aquifer is initially dry (with a saturation of 0.5). In such
cases, the coupled soil model generates overland flow before the soil is fully saturated. The
coupled model shows a delayed runoff peak as compared to the uncoupled soil model.

Figure 4.25 shows the bulk saturation for both soil models. Notice that at the end of
the first rainfall event, the uncoupled model shows the soil is fully saturated. More water
is entering into the soil and the bulk saturation for the coupled soil is unsaturated since
most of rain becomes the overland flow. This also can be seen from rainfall events 2,3 and
4, in which the soil modeled by the coupled model becomes saturated later than that of
the uncoupled model since less water being infiltrated during each rainfall event.
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Figure 4.24: MESH soil model hydrograph

Figure 4.23 indicates that the amount of interflow is very small. To investigate what
conditions are suitable for the improved interflow algorithm and how these conditions

117



Figure 4.25: MESH soil model bulk saturation: Dot-uncoupled soil model; Solid line-
coupled soil model

affect the algorithm behavior, experiments have been designed for anisotropic soils. Freeze
and Cherry [52] addressed that in the field, the regional anisotropy values (kx : ky) are
commonly on the order of 100:1 or even larger. Here, the values of 100:1, 1000:1, and an
extreme case 10000:1 are investigated. Figure 4.26 depicts the effect of anisotropy on the
contributing processes. Not surprisingly, the interflow increases with increasing anisotropy
and becomes extremely significant for high anisotropic soils, which indicates that for high
anisotropic soils, the interflow is a crucial flow component and must be accounted for.

A topographic parameter, surface slope Λ, is being accounted for in the improved
interflow algorithm. Tests were conducted on an anisotropic soil (kx : ky=100:1) with
various slopes from 0.01 to 0.5 to investigate the topographic effect on the soil moisture
simulation process and implications for engineering practice. The results are shown in
Figure 4.27. It can be seen that increasing slope increases interflow and decreases baseflow.
Variation topographic parameters causes redistribution among the interflow, baseflow and
overland flow.
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Figure 4.26: Anisotropy effect on flow components: OF-Overland flow; BS- Baseflow; IF-
Interflow; DS- Change in storage

4.2.4 Impact of Soil Model Choice on Calibration

Most hydrologic models are a simplified representation of physical processes in the real
world [145]. When the model conceptualization and the process of the real world are similar,
the model parameters may be obtained by direct measurement of the real system [61].
However, at the current stage our knowledge of the land surface physics is unable to describe
the real system perfectly. Hence, the concordance between the conceptual model and the
real world is rarely acquired [61]. Moreover, the parameters in our models, such as that of
soil hydraulic conductivity, do not necessarily correspond to physical parameters because
of the heterogeneity of process response and unknown scale-dependence of parameters [15].
Consequently, some model parameters must be determined through calibration process
to minimize the uncertainty [143]. Using different models will therefore lead to different
parameter estimates.
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Figure 4.27: Topography effect on flow components for a anisotropic soil: OF-Overland
flow; BF- Baseflow; IF-Interflow; DS- Change in storage

In this study, calibrating the stand alone soil model using the measured data is difficult
since there is no data available. Here, the data from the coupled soil model was used
as a benchmark to test the parameter accuracy of the uncoupled soil model. A heuristic
optimization algorithm, Dynamically Dimensioned Search (DDS) algorithm [136], is used
for calibrating the uncoupled soil model parameters to the output of the coupled soil model.
The DDS algorithm ”is a novel and simple stochastic single-solution based heuristic global
search algorithm that was developed for the purpose of finding good global solutions (as
opposed to globally optimal solutions) within a specified maximum objective function (or
model) evaluation limit” [137].

The DDS algorithm automatically samples the parameters’ values within the parameter
boundaries. A subroutine code is written to read these values and puts them into the soil
model input files. The DDS has been revised and can link all of these elements together
and prompt the simulation process. The process is shown in Figure 4.28.
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Figure 4.28: Representation of the calibration process

The objective function used here is the NASH-Sutcliffe coefficient, R2
NS [45]:

R2
NS = 1−

N∑
i=1

(
Qi − Q̂i

)2

N∑
i=1

(Qi −mQ)2

where i is the ith time series, Qi is measured values (coupled soil model overland flow here),
Q̂i is simulated values (uncoupled soil model overland flow here), and mQ is the average
value of Q for the period being simulated.

Saturated hydraulic conductivity, ks, is selected as the optimization algorithm decision
variable. The decision variable range was set to be [1/4ks, 2ks]. Figure 4.29 shows the flow
components comparison for uncoupled/coupled soil model and calibrated uncoupled soil
model. The calibrated hydraulic conductivity is 0.85ks, e.g., presuming the coupled soil
model is more physically accurate, the uncoupled soil model overestimates the hydraulic
conductivity. The overland flow percentage increases and the baseflow decreases after
calibration, which is closer to the physically-based coupled soil model results.

Figure 4.30 is the hydrograph for uncoupled/coupled soil model and calibrated un-
coupled soil model. Note that calibrated uncoupled soil model hydrograph is still off the
coupled soil model hydrography, especially for the first rainfall event.
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Figure 4.29: Flow components comparison for uncoupled/coupled soil model and one pa-
rameter calibrated uncoupled soil model: OF-Overland flow; BF- Baseflow; IF-Interflow;
DS- Change in storage

A second calibration was conducted, varying three parameters: hydraulic conductivity,
ks, porosity, θs, and air entry pressure, ψ0. Figures 4.31 and 4.32 are the flow components
comparisons and hydrgraphs. They show that with three parameters being calibrated, the
uncoupled model is capable of replicating the coupled soil model results only by decreasing
the hydraulic conductivity (0.88ks), increasing the porosity (1.05θs), and decreasing air
entry pressure (0.26ψ0).
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Figure 4.30: Hydrograph comparison, with only ks being calibrated
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Figure 4.31: Flow components comparison for uncoupled/coupled soil model and three pa-
rameters calibrated uncoupled soil model: OF-Overland flow; BF- Baseflow; IF-Interflow;
DS- Change in storage
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Figure 4.32: Hydrograph comparison, with three parameters, ks, θs, and ψ0, being cali-
brated
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4.3 Chapter Summary

An improved interflow algorithm and coupled infiltration-interflow algorithm were derived
and tested in this chapter. The interflow algorithm was based upon an existing semi-
analytical solution to the Richards’ equation for wet soils and has been extended to dry
soils using the conservation of energy analog to merge a semi-analytical gravity solution
and a steady state solution. Both versions of the algorithms were evaluated against the
numerical solution of Richards’ equation and have been shown capable of reproducing the
saturation and suction distributions under a wide range of conditions.

The updated interflow algorithm can be used to determine a dynamic saturated area at
the surface (i.e., the contributing area for overland flow), allowing infiltration and interflow
to be coupled, providing a more physically-based soil moisture simulation process. The al-
gorithm has been incorporated into a stand alone hydrology-land surface scheme MESH
soil model. The coupled model replicated the total amount of runoff of the uncoupled
soil model, but caused redistribution among the contributing processes. As expected, the
overland flow increased and the base flow decreased due to more overland flow generated
on the saturated area. The results indicate that the MESH effective hydraulic conductivity
will be always smaller than the field measurements in order to compensate for an underes-
timated overland flow. This was verified through a number of calibration tests in section
4.2.4.

The improved interflow algorithm was developed and tested against rigorous numerical
solutions and is capable of representing the boundary flux as a function of soil internal
states. It couples the infiltration and interflow processes to provide a more realistic manner
of hydrograph and is suitable for incorporation into distributed hydrological models and
land surface schemes.
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Chapter 5

Conclusions

The primary contribution of this thesis is a set of efficient physically-based algorithms for
near surface flow simulation. Multiple approaches were taken to provide improved rela-
tionships for infiltration and lateral drainage, fluxes and storage. These algorithms were
tested against a specialized Richards’ equation for sloping soils and Monte Carlo simula-
tions and demonstrated both reasonable accuracy and improved physical representation of
hydrological processes observed in the field.

5.1 A Summary of Major Findings

5.1.1 Applicability of the Green-Ampt (GA) Infiltration Model

Applicability of the GA infiltration models is limited when shallow boundary conditions
are present. Neglecting shallow boundary conditions in the traditional GA leads to an
overestimation in the amount of infiltrated water. As a result, hydrological models that
rely upon the traditional GA infiltration model may improperly estimate runoff. For such
hydrological models, modifications to the GA model are necessary in order to obtain an
accurate water budget in domains with shallow overburden or a shallow water table. ‘Ef-
fective’ hydraulic conductivities estimated using manual or automatic calibration may be
compensating for this effect, leading to smaller-than-expected hydraulic conductivity esti-
mates. If these conductivities are used elsewhere in the model (e.g., for baseflow or interflow
calculation), accurate estimates of other hydrological fluxes may potentially be compro-
mised. The impact of vertical heterogeneity in saturated conductivity was also investigated
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with regard to how it may impact the appropriateness of the GA infiltration model. It
was found that the GA applicability decreases with increasing vertical heterogeneity. An
interesting phenomena found in this study is that, although the heterogeneity was not
considered in the traditional GA model, the model is capable of reproducing the RE with
vertical heterogeneous behavior of the RE within a reasonable deviation (σ ≤ 0.5).

Guided by the comparison between the GA infiltration model and numerical solutions to
the Richards’ equation, various simple revisions to the GA infiltration model with shallow
boundary conditions were suggested. Results demonstrated that even when the traditional
assumptions were relaxed, the GA model often still provides reasonable results for regional-
scale analysis and could be amended to account for conditions for which it was not intended.

5.1.2 Regional Heterogeneity in Infiltration

Regional heterogeneity is very important in hydrologic processes, especially in determin-
ing surface and subsurface runoff separation. What is found in this study is that when
estimated from automatic or manual calibration to appropriate field data, the calculated
hydraulic conductivity will not correspond to the average conductivity in the domain, but
rather underestimates the conductivity by a factor proportional to the degree of spatial
variability, i.e., with a high degree of heterogeneity, the upscaled solution generates more
surface runoff and less infiltration than the ”equivalent” point scale solution.

A new set of formulae for calculating regionally-averaged infiltration rates into het-
erogeneous soils with heterogeneous initial conditions was presented. The solutions were
based upon an upscaled approximation of the explicit Green-Ampt infiltration solution,
and required specification of the spatial distribution of saturated hydraulic conductivity
and/or initial soil water deficit in the subbasin. The approximations have been evalu-
ated against Monte Carlo simulations and shown to produce results accurate to 3% of
the computationally-intensive exact cases, at a computational cost similar to the original
Green-Ampt formula without upscaling. A critical result here is that the upscaled form
of the Green-Ampt equation is behaviorally different than the point-scale solution with
upscaled parameters, indicating that calibration alone is insufficient to correctly replicate
the infiltration process in heterogeneous media.

5.1.3 Coupling interflow and infiltration processes

Soil lateral flow has been recognized to be an important subsurface runoff component but
the most appropriate means of calculating lateral unsaturated flow form hillslopes has yet
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to be identified. An analytical interflow algorithm for variably saturated hillslopes was
developed, rigorously tested against numerical solutions, and updated in this study. The
updated interflow algorithm can be used to determine a dynamic saturated area at the
surface (i.e., the contributing area for overland flow), allowing infiltration and interflow
to be coupled, providing a more physically-based soil moisture simulation process. The
algorithm has been incorporated into a stand alone hydrology-land surface scheme MESH
soil model. The coupled model replicated the total amount of runoff of the uncoupled
soil model, but causes redistribution among the contributing processes. As expected, the
overland flow increased and the base flow decreased due to more overland flow generated
on the saturated area. The results indicate that the MESH effective hydraulic conduc-
tivity will be always smaller than the field measurements in order to compensate for an
underestimated overland flow. This was verified through a number of calibration tests.

It was also found that isotropy and topography have significant effects on the soil
moisture simulation process. High anisotropy will result in an increasing subsurface runoff
while decreasing surface runoff. The amount of interflow increases with increasing slope.
The improved algorithm couples the infiltration and interflow processes on the dynamic
saturated area to provide a better understanding of hydrograph components and is suitable
for incorporation into distributed hydrological models and land surface schemes.
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Appendix A

FORTRAN Code for Numerical
Solution to Richards’ Equation

do kkk=1,maxit ! Begin of the Picard iteration

piccrit=0.0

phip=phi

do kk=1,itmax ! Begin of the SOR

crit=0.0

do i=1,ncols-1

cleft=1.0

cright=1.0

if (i==2) then

cleft=8.0/3.0

cright=4.0/3.0

end if

if (i==ncols-1) then

cleft=4.0/3.0

cright=8.0/3.0

end if

!

do j=1,nrows

cup=1.0

cdown=1.0

if (j==2) then

cup=4.0/3.0
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cdown=8.0/3.0

end if

if (j==nrows-1) then

cup=8.0/3.0

cdown=4.0/3.0

end if

icr=ip(i)+j

phiold=phi(icr)

if (i==1) then ! left boundary

b(icr)=(2.0*leftflux/(k(icr)+k(icr+nrows))-v)*delx/2.0

phi(icr)=(1.0-w)*phi(icr)+w*(b(icr)-(-1.0*phi(icr+nrows)))/1.0

elseif (i==ncols) then ! right boundary

b(icr)=(2.0*rightflux/(k(icr)+k(icr-nrows))-v)*delx/2.0

phi(icr)=(1.0-w)*phi(icr)+w*(b(icr)-1.0*phi(icr-nrows))/(-1.0)

elseif (j==1) then ! bottom boundary

b(icr)=(2.0*botflux/(k(icr)+k(icr+1))+1.0)*dely/2.0

phi(icr)=(1.0-w)*phi(icr)+w*(b(icr)-(-1.0*phi(icr+1)))/1.0

elseif (j==nrows) then ! top boundary

b(icr)=(2.0*topflux/(k(icr)+k(icr-1))+1.0)*dely/2.0

phi(icr)=(1.0-w)*phi(icr)+w*(b(icr)-1.0*phi(icr-1))/(-1.0)

else

!******************** RHL’ (A) and LHS (b) ************************

if (kind==1) then ! Arithematic mean

kinileft=(kini(icr)+kini(icr-nrows))/2.0

kiniup=(kini(icr)+kini(icr+1))/2.0

kinidown=(kini(icr)+kini(icr-1))/2.0

kiniright=(kini(icr)+kini(icr+nrows))/2.0

!

kleft=(k(icr)+k(icr-nrows))/2.0

kup=(k(icr)+k(icr+1))/2.0

kdown=(k(icr)+k(icr-1))/2.0

kright=(k(icr)+k(icr+nrows))/2.0

elseif (kind==2) then ! Harmonic mean

kinileft=2.0*kini(icr)*kini(icr-nrows)/(kini(icr)+kini(icr-nrows))

kiniup=2.0*kini(icr)*kini(icr+1)/(kini(icr)+kini(icr+1))

kinidown=2.0*kini(icr)*kini(icr-1)/(kini(icr)+kini(icr-1))

kiniright=2.0*kini(icr)*kini(icr+nrows)/(kini(icr)+kini(icr+nrows))

!
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kleft=2.0*k(icr)*k(icr-nrows)/(k(icr)+k(icr-nrows))

kup=2.0*k(icr)*k(icr+1)/(k(icr)+k(icr+1))

kdown=2.0*k(icr)*k(icr-1)/(k(icr)+k(icr-1))

kright=2.0*k(icr)*k(icr+nrows)/(k(icr)+k(icr+nrows))

elseif (kind==3) then ! Geometric mean

kinileft=(kini(icr)*kini(icr-nrows))**0.5

kiniup=(kini(icr)*kini(icr+1))**0.5

kinidown=(kini(icr)*kini(icr-1))**0.5

kiniright=(kini(icr)*kini(icr+nrows))**0.5

!

kleft=(k(icr)*k(icr-nrows))**0.5

kup=(k(icr)*k(icr+1))**0.5

kdown=(k(icr)*k(icr-1))**0.5

kright=(k(icr)*k(icr+nrows))**0.5

endif

A=(1.0-lambda)*(cright*kiniright/delx**2.0*phiini(icr+nrows)+ &

& cleft*kinileft/delx**2.0*phiini(icr-nrows)+ &

& cup*kiniup/dely**2.0*phiini(icr+1)+ &

& cdown*kinidown/dely**2.0*phiini(icr-1)- &

& (cright*kiniright/delx**2.0+ &

& cleft*kinileft/delx**2.0+ &

& cup*kiniup/dely**2.0+ &

& cdown*kinidown/dely**2.0)*phiini(icr)- &

& v*(kiniright-kinileft)/delx+ &

& (kiniup-kinidown)/dely)

b(icr)=-(lambda*(Ss*theta(icr)/thetas+c(icr))+ &

& (1.0-lambda)*(Ss*thetaini(icr)/thetas+cini(icr)))*phiini(icr)/delt- &

& lambda*(-v*(kright-kleft)/delx+(kup-kdown)/dely)-A

if (i==2 .or. i==ncols-1) then

A=(1.0-lambda)*(cright*kiniright/delx**2.0*phiini(icr+nrows)+&

& cleft*kinileft/delx**2.0*phiini(icr-nrows)+ &

& cup*kiniup/dely**2.0*phiini(icr+1)+ &

& cdown*kinidown/dely**2.0*phiini(icr-1)- &

& (cright*kiniright/delx**2.0+ &

& cleft*kinileft/delx**2.0+ &

& cup*kiniup/dely**2.0+ &

& cdown*kinidown/dely**2.0)*phiini(icr)- &

& 4.0/3.0*v*(kiniright-kinileft)/delx+ &
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& (kiniup-kinidown)/dely)

b(icr)=-(lambda*(Ss*theta(icr)/thetas+c(icr))+ &

& (1.0-lambda)*(Ss*thetaini(icr)/thetas+cini(icr)))*phiini(icr)/delt-&

& lambda*(-4.0/3.0*v*(kright-kleft)/delx+(kup-kdown)/dely)-A

endif

if (j==2 .or. j==nrows-1) then

A=(1.0-lambda)*(cright*kiniright/delx**2.0*phiini(icr+nrows)+ &

& cleft*kinileft/delx**2.0*phiini(icr-nrows)+ &

& cup*kiniup/dely**2.0*phiini(icr+1)+ &

& cdown*kinidown/dely**2.0*phiini(icr-1)- &

& (cright*kiniright/delx**2.0+ &

& cleft*kinileft/delx**2.0+ &

& cup*kiniup/dely**2.0+ &

& cdown*kinidown/dely**2.0)*phiini(icr)- &

& v*(kiniright-kinileft)/delx+ &

& 4.0/3.0*(kiniup-kinidown)/dely)

b(icr)=-(lambda*(Ss*theta(icr)/thetas+c(icr))+ &

& (1.0-lambda)*(Ss*thetaini(icr)/thetas+cini(icr)))*phiini(icr)/delt- &

& lambda*(-v*(kright-kleft)/delx+4.0/3.0*(kup-kdown)/dely)-A

endif

!******************** End of RHL’ and LHS*********************

! SOR

phi(icr)=(1.0-w)*phi(icr)+ &

& w*(b(icr)- &

& lambda*(cleft*kleft/delx**2.0*phi(icr-nrows)+ &

& cdown*kdown/dely**2.0*phi(icr-1)+ &

& cup*kup/dely**2.0*phi(icr+1)+ &

& cright*kright/delx**2.0*phi(icr+nrows)))/&

& (-lambda*(cleft*kleft/delx**2.0+ &

& cdown*kdown/dely**2.0+ &

& cup*kup/dely**2.0+ &

& cright*kright/delx**2.0)- &

& (1.0-lambda)*(Ss*thetaini(icr)/thetas+cini(icr))/delt)

endif

! if (phi(icr)>=phiini(icr)) phi(icr)=phiini(icr)

diff=dabs(phi(icr)-phiold)

if (diff>crit) crit=diff

enddo
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enddo

if (crit<tol) exit

enddo ! End of SOR

! update the material properties for next Picard iteration

do i=1,ncols

do j=1,nrows

icr=ip(i)+j

call soil(icr,phi,theta,c,k,scind,stind,thetas,ks,s,cc)

if (j==2 .and. i>=2 .and. i<=ncols-1) th_accu=th_accu+theta(icr)*delx

enddo

enddo

piccrit=maxval(dabs(phip(1:nrows*ncols)-phi(1:nrows*ncols)))

if (piccrit<tol) exit

enddo ! end of the Picard iteration
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Appendix B

Upscaled Green-Ampt Model for
Spatial Variability in Initial
Condition

B.1 Upscaled Solution Derivation

Recall the linear approximation for the GA infiltration rate

f(t) = min

(
w,
ks
X

)
+ ε(ks, X)

and the upscaled GA solution for homogenous conductivity and heterogenous initial con-
dition:

f̄(t) =

∫ ∞
0

f(X(t, α)) · fα(α)dα

Soil initial condition is here assumed to be a random variable represented by using a
standard normal distribution:

fα(α) =
1

σα
√

2π
e
− (α−µα)2

2σ2
α

Therefore,

f̄(t) =

∫ ∞
0

f(X(t, α)) · fα(α)dα

=

∫ α0

0

ks

(
1 +

α

wt

) 1

σα
√

2π
e
− (α−µα)2

2σ2
α dα +

∫ ∞
α0

w
1

σα
√

2π
e
− (α−µα)2

2σ2
α dα (B.1)
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where α0 is determined by:

w = ks

(
1 +

α0

wt

)
=⇒ α0 =

(
w

ks
− 1

)
wt

Now, equation B.1 can be written as:

f̄(t) =

∫ ( w
ks
−1)wt

0

ks

(
1 +

α

wt

) 1

σα
√

2π
e
− (α−µα)2

2σ2
α dα +

∫ ∞
( w
ks
−1)wt

w
1

σα
√

2π
e
− (α−µα)2

2σ2
α dα

= − ks

2
√

2πwt

[
2σαe

− (µα−α)2

2σ2 +
√

2π(µα + wt)erf

(
µα − α√

2σ

)]∣∣∣∣( w
ks
−1)wt

0

−w
2
erf

(
µα − α√

2σ

)∣∣∣∣∞
( w
ks
−1)wt

=
ks

2
√

2πwt

2σαe
− µ2

α
2σ2 +

√
2π(µα + wt)erf

(
µα√
2σ

)
− 2σαe

−
[µα−( w

ks
−1)wt]

2

2σ2
α −

√
2π(µα + wt)erf

u−
(
w
ks
− 1
)
wt

√
2σα

− w

2

−1− erf

µα −
(
w
ks
− 1
)
wt

√
2σα


=

ksσαe
− µ2

α
2σ2
α

√
2πwt

+
ks(µα + wt)erf

(
µα√
2σα

)
2wt

− ksσαe
−

[µα−( w
ks

−1)wt]
2

2σ2
α

√
2πwt

−

ks(µα + wt)erf

[
u−( w

ks
−1)wt√

2σα

]
2wt

+
w

2
+
w

2
erf

µα −
(
w
ks
− 1
)
wt

√
2σα


=

w

2
+
w

2
erf(A) +

ksσα√
2πwt

(
e−B

2 − e−A2
)

+
ks(µα + wt)

2wt
[erf(B)− erf(A)] (B.2)

where

A =
µα −

(
w
ks
− 1
)
wt

√
2σα

B =
µα√
2σα
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Note that the limitation of equation B.2 as σα approaches 0 is,

f̄(t) =

w µα ≤
(
w
ks
− 1
)

ks
(
µα
wt

+ 1
)

µα >
(
w
ks
− 1
) (B.3)

which is the linear approximation to the GA infiltration rate.

The evaluation of the saturated area, As, is:

As(t) = A

∫ w
ks
−1

0

fα(α)dα

= A

∫ w
ks
−1

0

1

σα
√

2π
e
− (α−µα)2

2σ2
α dα

= −A
2
erf

(
µα − α√

2σα

)∣∣∣∣ wks−1

0

= −A
2
erf

µα −
(
w
ks
− 1
)

√
2σα

+
A

2
erf

(
µα√
2σ

)
(B.4)

B.2 C++ Code for Upscaled Green-Ampt Model

#include <math.h>

#include <iostream>

#include <iomanip>

#include <fstream>

#include <string>

using namespace std;

const double PI=3.141592653589793238;

inline void lowerswap(double &u,const double v){if (v<u){u=v;}}

inline void upperswap(double &u,const double v){if (v>u){u=v;}}

double CalcPondingTime(const double &alpha, const double &Ks,const double &w);

/*-------------------------------------------------------------

Calculate X

---------------------------------------------------------------
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returns dimensionless time, X from dimensionless time t* =w*t/alpha

-------------------------------------------------------------*/

double CalcX(const double &tstar)

{

if (tstar==0.0){return 0.0;}

return 1.0/(1.0/tstar+1.0);

}

/*-------------------------------------------------------------

Calculate t*

---------------------------------------------------------------

returns dimensionless time, t* =w*t/alpha from dimensionless time X

-------------------------------------------------------------*/

double CalcTstar(const double &X)

{

if (X==0.0){return 0.0;}

if (X==1.0){return 1e10;}

return 1.0/(1.0/X-1.0);

}

/*-------------------------------------------------------------

erfc(x)

---------------------------------------------------------------

complementary error function

-------------------------------------------------------------*/

double erfc(const double &x)

{

//From Charbeneau, Groundwater Hydraulics and Pollutant Transport, 2000

double tmp(fabs(x)); //take abs so that we are always in positive quadrant.

static double fun;

static double f1;

static double tmp2;

static double tmp3;

if(tmp > 3.0){

f1 = (1.0 - 1.0/(2.0 * tmp * tmp)

+ 3.0/(4.0 * pow(tmp,4))

- 5.0/(6.0 * pow(tmp,6)));

fun = f1 * exp(-tmp * tmp) / (tmp * sqrt(PI));

}
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else{

tmp2 = 1.0 / (1.0 + (0.3275911 * tmp));

tmp3 = 0.254829592 * tmp2 //5th order polynomial interpolation

- (0.284496736 * tmp2 * tmp2)

+ (1.421413741 * pow(tmp2,3))

- (1.453152027 * pow(tmp2,4))

+ (1.061405429 * pow(tmp2,5));

fun = tmp3 * exp(-tmp * tmp);

}

if (tmp == x) {return fun;}

else{return (2-fun);}

}

/*-------------------------------------------------------------

erf(x)

---------------------------------------------------------------

error function

-------------------------------------------------------------*/

double erf(const double &x)

{

return 1-erfc(x);

}

/*-------------------------------------------------------------

falpha(k;mu,sig)

---------------------------------------------------------------

normal probability distribution of alpha given mean and std dev

(mu_Y and sig_Y) of distribution

-------------------------------------------------------------*/

double falpha(const double &alpha, const double &mu_Y, const double &sig_Y)

{

return 1.0/sig_Y/sqrt(2.0*PI)*exp(-(pow(alpha-mu_Y,2)/sig_Y/sig_Y/2.0));

}

/*-------------------------------------------------------------

Smooth GA

---------------------------------------------------------------

analytical / semi-analytical upscaling of GA infiltration with

spatially variable alpha

if eps_in=0, then only linear approximation (eqn 10 from Craig et al)

=1, then use dirac approx of epsilon integral
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=2, then use 2pt gauss integration of epsilon integral

=3, then numerically integrate epsilon integral

=4, then numerically integrate everything

-------------------------------------------------------------*/

double Smooth_GA_alpha( const double &t,

const double &Ks,

const double &mu_Y,

const double &sig_Y,

const double &w,

int eps_in)

{

//eqn 10 from text

double sum =0.0;

//upper limit (wX) in normalized Y space

double A =(mu_Y-(w/Ks-1.0)*w*t)/sig_Y/sqrt(2.0);

double B =mu_Y/sig_Y/sqrt(2.0);

if (sig_Y==0 && mu_Y>=(w/Ks-1.0)*w*t){A=1e99;}

if (sig_Y==0 && mu_Y<(w/Ks-1.0)*w*t){A=-1e99;}

if (sig_Y==0) {B=1e99;}

if (eps_in==0)

{

sum+=0.5*(erf(B)-erf(A));

}

else if (eps_in==1)

{

//numerically integrated (working):

double maxalp=(mu_Y-(w/Ks-1)*w*t)/sig_Y/sqrt(2.0);

double minalp=mu_Y-4*sig_Y;

double dalp=(maxalp-minalp)/25000;//needs really high resolution!

double integ(0.0),alpi;

for (double alp=minalp;alp<maxalp;alp+=dalp)

{

alpi=(alp+0.5*dalp);

integ+=falpha(alpi,mu_Y,sig_Y)*dalp;

}

sum=integ;//overwrites linear approximation

}
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return sum;

}

void main()

{

//double kow;

double X;

double t;

double w=4.0;

double Ks=0.4*w;

ofstream OUT;

OUT.open("GASmoothing.csv");

//plot results of MC versus smoothing

//Header

double alphabar=3.0;// 3.12

double mu_Y;

int num_real=25000;

OUT<<"Ks="<<Ks<<endl;

OUT<<"alphabar="<<alphabar<<endl;

OUT<<"w="<<w<<endl;

OUT<<"t,X,";

for (double sig=0.0;sig<=3.0+0.0001;sig+=0.5)

{

OUT<<"sigma="<<sig<<",";

//OUT<<"sig="<<sig<<"(NUM),";

}

OUT<<endl;

//data:

for (X=0.00001;X<=1.0001;X+=0.01)

{

t=CalcTstar(X)*alphabar/w;

OUT<<t<<","<<X<<",";

for (double sig=0.0;sig<=3.0+0.0001;sig+=0.5)

{

mu_Y=alphabar;

OUT<<Smooth_GA_alpha(t,Ks,mu_Y,sig,w,0)<<",";

//OUT<<Smooth_GA_alpha(t,Ks,mu_Y,sig,w,1)<<",";

}
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OUT<<endl;

}

cout<<"Completed"<<endl;

}
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Appendix C

WATDRAIN1 Interflow Algorithm

C.1 A Semi-analytical Solution to the Amended Richards’

Equation

One dimensional Richards’ equation for a slopping aquifer can be expressed as:

θs
∂s

∂t
=

∂

∂X

(
k
∂ψ

∂X
+ k

Λ√
1 + Λ2

)
(C.1)

The suction gradient, ∂ψ
∂X

, can be neglected to result in:

θs
∂s

∂t
=

Λ√
1 + Λ2

∂k

∂X
(C.2)

Substituting Clapp-Hornberger functions into equation C.2:

θs
∂s

∂t
=
ksΛcs

c−1

√
1 + Λ2

∂s

∂X
(C.3)

Solving equation C.3 by separation of variables. Assuming s = AXBtD:

∂s

∂X
= ABxB−1tD =

B

x
s

∂s

∂t
= ADxBtD−1 =

D

t
s
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Back substitute above equations into equation C.3:

θs
D

t
s =

ksΛcs
c−1

√
1 + Λ2

B

X
s

θs
D

t
=

ksΛc√
1 + Λ2

Ac−1BXB(c−1)−1tD(c−1)

One can get: 
B(c− 1)− 1 = 0

D(c− 1) = −1
ksΛc√
1+Λ2 = θsD

(C.4)

Therefore, 
B = 1

c−1

D = − 1
c−1

A =
(
θs
√

1+Λ2

ksΛc

) 1
c−1

(C.5)

Final solution can be written as:

s =

(
θs
√

1 + Λ2

ksΛ
· x
t

) 1
c−1

C.2 Bulk Saturation Derivation

As discussed in Chapter 4, section 4.1, soil drainage process can be divided into three stages
dependent on the saturation at the outflow level: a high saturated stage (0 ≤ t ≤ tc); an
intermediate stage (tc < t < tb); and a dry stage (t ≥ tb). Bulk saturation for each stage
is going to discussed in what follows.

s =

(
tc

te−λh
· X
L

) 1
c−1

For 0 ≤ t ≤ tc, the soil domain was divided into two parts and do the integral separately.

s̄ =
1

HL
(s̄1 + s̄2)
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Figure C.1: High saturated stage (0 ≤ t ≤ tc)
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(C.6)

For tc < t < tb, the soil domain was divided into three parts and do the integral
separately.

s̄ =
1

HL
(s̄1 + s̄2 + s̄3)
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Figure C.2: Intermediate stage (tc < t < tb)
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s̄2 =
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Therefore, the overall bulk saturation is:
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(C.7)

For t > tb,

Figure C.3: Dry stage (t ≥ tb)

s̄ =
1

HL

∫ H

0

∫ L

0

(
tc

te−λh
· X
L

) 1
c−1

dXdZ

=
1

HL

(
tc
tL

) 1
c−1
∫ H

0

e
λh
c−1

∫ L

0

X
1
c−1dXdZ

=
1

HL

(
tc
tL

) 1
c−1
∫ H

0

e
λh
c−1

c− 1

c
X

c−1
c

∣∣∣L
0
dZ

=
1

HL

(
tc
tL

) 1
c−1 c− 1

c
L
c−1
c

∫ H

0

e
λh
c−1dZ

=
c− 1

c

(
tc
t

) 1
c−1 c− 1

λH

(
e
λH
c−1 − 1

)
=

(c− 1)2

λcH

(
tc
t

) 1
c−1 (

e
λH
c−1 − 1

)
(C.8)

149



Appendix D

WATDRAIN2 Interflow Algorithm

D.1 Parameter Calculation

Function SolNonLinear(xx,vcase) is a function that solves the SYSTEMS of nonlinear equa-
tion, by ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE. The author
keep the essential algorithm and made changes to it for solving the specific WATDRAIN2
interflow algorithm.

• vcase=1 - solving for Xc (Function 2)

• vcase=2 - solving for Xs and τ for t < tc (Function 1)

• vcase=3 - solving for Xs and τ for t > tc (Function 3)

• vcase=4 - solving for τmax (Function 4)

Function 1: Solving for Xs and τ for t < tc{
∂ψg
∂X
|X=0 = Λ

ksΛt =
∫ Xs

0
θs(1− sg) dX

(D.1)
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Recalling the gravity-dominated solution (equation 4.9) and taking derivative:

ψg = ψae

(
X + τ

Xs + τ

)− b
2b+2(1− X

Xs
)
2

(D.2)

∂ψg
∂X

= ψg
b

2b+ 2

(
1− X

Xs

)[
2

Xs

ln
X + τ

Xs + τ
−
(

1− X

Xs

)
1

X + τ

]
(D.3)

Therefore, systems of equations D.1 becomes:ψae
(

τ
Xs+τ

)− b
2b+2 b

2b+2

(
2
Xs

ln τ
Xs+τ

− 1
τ

)
= Λ

ksΛt =
∫ Xs

0
θs(1− sg) dX

(D.4)

Function 2: Solving for Xbtc (τ at time tc):

Since Xs = L at time tc, there is only one unknown variable in systems of equations
D.1. The first one can be used for deterging Xbtc .

ψae

(
τ

L+ τ

)− b
2b+2 b

2b+ 2

(
2

L
ln

τ

L+ τ
− 1

τ

)
= Λ (D.5)

Function 3: Solving for sa and τ for t > tc

Instead of setting up systems of equations for solving sa and τ , here τ was numerically
calculated and then to determine the value of sa by a quadratic equation in one variable
related to τ later. τ is a function of time t as expressed in equation 4.21. ∂t

∂xb
is calculated

based on the continuity equation at X = 0. No flow boundary condition at X = 0 results
in a continuity equation as:

θs
∂s

∂τ

∂τ

∂t
= k

∂2ψ

∂X2

therefore,
∂t

∂τ
=

θs
∂s
∂τ

k ∂
2ψ

∂X2

where
∂s

∂τ
=

1

2b

s2b
g

s2b−1

∂w

∂τ
+ w

(sg
s

)2b−1 ∂sg
∂τ
− 1

2b

s2b
f

s2b−1

∂w

∂τ
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and

∂2ψ
∂X2 = ∂w

∂X

[(
ψ
ψg

)3
∂ψg
∂X
−
(
ψ
ψf

)3
∂ψf
∂X

]
+

[
3w
(
ψ
ψg

)2
∂ψg
∂X
− ψ2

ψg
∂w
∂X

]
ψg

∂ψ
∂X
−ψ ∂ψg

∂X

ψ2
g

+ w
(
ψ
ψg

)3
∂2ψg
∂X2

+ 1
2
∂w
∂X

∂ψ
∂X

[
−
(
ψ
ψg

)2

+
(
ψ
ψf

)2
]

+

[
3(1− w)

(
ψ
ψf

)2
∂ψf
∂X

+ ψ2

ψf

∂w
∂X

]
ψf

∂ψ
∂X
−ψ

∂ψf
∂X

ψ2
f

(D.6)

Starting with equation 4.20 at x = 0, the left hand side (lhs) and the right hand side
(rhs) are divided by sa:

lhs

sa
=

[(
ψf0

ψg0

)6

+

(
ψf0

ψg0

)2

−
(
ψf0

ψg0

)4

− 1

]
s2
a

+

[(
ψf0

ψg0

)4

− 4

(
ψf0

ψg0

)2

+ 3

]
sa + 3

(
ψf0

ψg0

)2

+
1

sa
− 3

rhs

sa
=

[(
ψf0

ψg0

)6(
∂ψg
∂X

)2
1

Λ2
− 2

(
ψf0

ψg0

)2
∂ψg
∂X

1

Λ
+ 1

]
sa

+
1

sa
+ 2 + 2

(
ψf0

ψg0

)2
∂ψg
∂X

1

Λ

It is clear that lhs
sa
− rhs

sa
= 0 leads to:[

m6 − 1 + 3m2 − 3m4
]

Λ2s2
a

+
[
−6m2Λ2 + 3m4Λ2 −m6n2 + 2Λ2 + 2m3nΛ

]
sa

+
[
−Λ2 + 3m2Λ2 − 2m3nΛ

]
= 0 (D.7)

where m =
ψf0
ψg0

and n = ∂ψg
∂X
|X=0. Equation D.7 is a quadratic equation in one variable

respect to sa.

sa =
−B +

√
B2 − 4AC

2A

where

A = m6 − 1 + 3m2 − 3m4

B = −6m2Λ2 + 3m4Λ2 −m6n2 + 2Λ2 + 2m3nΛ

C = −Λ2 + 3m2Λ2 − 2m3nΛ
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Function 4: Solving for τmax.

τmax is defined as the τ at the infinite time, e.g., at the steady state. Flow is purely
suction dominated at the steady state and sa = 0. As can be seen in equation D.7,

−Λ2 + 3m2Λ2 − 2m3nΛ = 0
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D.2 Useful Derivatives

∂ψf
∂X

= Λ

∂2ψf
∂X2

= 0

∂ψg
∂X

=
bψg

2b+ 2

(
1− X

Xs

)[
2

Xs

ln
X + τ

Xs + τ
−
(

1− X

Xs

)
1

X + τ

]
∂2ψg
∂X2

=
1

ψg

(
∂ψg
∂X

)2

− 1

Xs −X
∂ψg
∂X

+
bψg

2b+ 2

(
1− X

Xs

)[
3

Xs(X + τ)
+

(
1− X

Xs

1

(X + τ)2

)]
∂w

∂X
= 3(1− sa)

θs
Xs

(
X

Xs

)2(
tc
t

)(1− tc
t )

4

∂ψ

∂X
= w

(
ψ

ψg

)3
∂ψg
∂X
− ψ

2

(
ψ

ψg

)2
∂w

∂X
+ (1− w)

(
ψ

ψf

)3
∂ψf
∂X

+
ψ

2

(
ψ

ψf

)2
∂w

∂X

∂2ψ

∂X2
=

∂w

∂X

[(
ψ

ψg

)3
∂ψg
∂X
−
(
ψ

ψf

)3
∂ψf
∂X

]
+

[
3w

(
ψ

ψg

)2
∂ψg
∂X
− ψ2

ψg

∂w

∂X

]
ψg

∂ψ
∂X
− ψ ∂ψg

∂X

ψ2
g

+ w

(
ψ

ψg

)3
∂2ψg
∂X2

+
1

2

∂w

∂X

∂ψ

∂X

[
−
(
ψ

ψg

)2

+

(
ψ

ψf

)2
]

+

[
3(1− w)

(
ψ

ψf

)2
∂ψf
∂X

+
ψ2

ψf

∂w

∂X

]
ψf

∂ψ
∂X
− ψ ∂ψf

∂X

ψ2
f

∂m

∂τ
= −ψf

ψ2
g

ψg
∂τ

∂A

∂τ
= 6mΛ2

(
m4 − 2m2 + 1

) ∂m
∂τ

∂B

∂τ
= 6m

[
−2Λ2 + 2m2Λ2 −m4

(
∂ψg
∂X

)2

+mΛ
∂ψg
∂X

]
∂m

∂τ
+ 2m3

(
−m3∂ψg

∂X
+ Λ

)
∂

∂τ

(
∂ψg
∂X

)
∂C

∂τ
= 6mΛ

(
Λ−m∂ψg

∂X

)
∂m

∂τ
− 2m3Λ

∂

∂τ

(
∂ψg
∂X

)
∂sa
∂τ

=

[
1
2
(B2 − 4AC)−

1
2

(
2B ∂B

∂τ
− 4C ∂A

∂τ
− 4A∂C

∂τ

)
− ∂B

∂τ

]
2A− 2

(√
B2 − 4AC −B

)
∂A
∂τ

4A2
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∂

∂τ

(
∂ψg
∂X

)
=

1

ψg

∂ψg
∂X

∂ψg
∂τ

+
bψg

2b+ 2

(
1− X

Xs

)[
2(Xs −X)

(Xs + τ)(X + τ)
+

(
1− X

Xs

)
1

(X + τ)2

]
ψg
∂τ

= − bψg
2b+ 2

(
1− X

Xs

)2
Xs −X

(X + τ)(Xs + τ)

∂w

∂τ
=

1− θsX

Xs

(
tc
t

)(1− tc
t )

4
 ∂sa
∂τ

∂sg
∂τ

=
sg

2b+ 2

(
1− X

Xs

)2
Xs −X

(X + τ)(Xs + τ)

∂s

∂τ
=

1

2b

s2b
g

s2b−1

∂w

∂τ
+ w

(sg
s

)2b−1 ∂sg
∂τ
− 1

2b

s2b
f

s2b−1

∂w

∂τ

D.3 FORTRAN Code for Determining WATDRAIN2

Parameters

Note there are many temporary variables in this FORTRAN file. They are corresponding
to:

temp1=
ψf0
ψg0

temp2=A

temp3=B

temp4=C

temp5=
ψf0
ψg0

∂ψg
∂τ

temp6= ∂2ψ
∂X2

temp7=∂A
∂τ

temp8=∂B
∂τ

temp9=∂C
∂τ

temp10=∂sa
∂τ

The code is in what follows:
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! **********

! Modified by Lucy Liu on Feb. 2010, 4 functions (FCN):

! Function 1: solving for xst and xbb for t<tc

! Function 2: solving for xbbtc

! Function 3: solving for xaa and xbb for t>tc

! Function 4: solving for xbbmax

C **********

C

C THIS PROGRAM TESTS CODES FOR THE SOLUTION OF N NONLINEAR

C EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER AND AN

C INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA, CALLS THE

C NONLINEAR EQUATION SOLVER, AND FINALLY PRINTS OUT INFORMATION

C ON THE PERFORMANCE OF THE SOLVER. THIS IS ONLY A SAMPLE DRIVER,

C MANY OTHER DRIVERS ARE POSSIBLE. THE INTERFACE SUBROUTINE FCN

C IS NECESSARY TO TAKE INTO ACCOUNT THE FORMS OF CALLING

C SEQUENCES USED BY THE FUNCTION SUBROUTINES IN THE VARIOUS

C NONLINEAR EQUATION SOLVERS.

C

C SUBPROGRAMS CALLED

C

C USER-SUPPLIED ...... FCN

C

C MINPACK-SUPPLIED ... DPMPAR,ENORM,HYBRD1,INITPT,VECFCN

C

C FORTRAN-SUPPLIED ... DSQRT

C

C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C

C **********

subroutine SolNonLinear(x,vcase)

implicit none

INTEGER I,IC,INFO,K,LWA,N,NFEV,NPROB,NREAD,NTRIES,NWRITE,vcase

INTEGER NA(60),NF(60),NP(60),NX(60)

DOUBLE PRECISION FACTOR,FNORM1,FNORM2,ONE,TEN,TOL

DOUBLE PRECISION FNM(60),FVEC(40),WA(2660),X(40)

DOUBLE PRECISION DPMPAR,ENORM

EXTERNAL FCN
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DOUBLE PRECISION t,tc

DOUBLE PRECISION ks,phi,psi0,b

DOUBLE PRECISION L,slope

COMMON /REFNUM/ NPROB,NFEV

common /time/ t,tc

common /soil/ ks,phi,psi0,b

common /length/ L,slope

C

C LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.

C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

C

DATA NREAD,NWRITE /5,6/

C

DATA ONE,TEN /1.0D0,1.0D1/

TOL = DSQRT(DPMPAR(1))

LWA = 2660

IC = 0

! Modified by Lucy on Feb, 2010

if (vcase==1) then

NPROB=2

N=1

NTRIES=1

elseif (vcase==2) then

NPROB=1

N=2

NTRIES=1

elseif (vcase==3) then

NPROB=3

N=1

NTRIES=1

elseif (vcase==4) then

NPROB=4

N=1

NTRIES=1

endif

! 10 CONTINUE

! READ (NREAD,50) NPROB,N,NTRIES

! write(*,*) NPROB,N,NTRIES
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! data NPROB,N,NTRIES / 1, 2, 1/

IF (NPROB .LE. 0) GO TO 30

FACTOR = ONE

DO 20 K = 1, NTRIES

IC = IC + 1

CALL INITPT(N,X,NPROB,FACTOR)

CALL VECFCN(N,X,FVEC,NPROB)

FNORM1 = ENORM(N,FVEC)

! WRITE (NWRITE,60) NPROB,N

NFEV = 0

CALL HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)

FNORM2 = ENORM(N,FVEC)

NP(IC) = NPROB

NA(IC) = N

NF(IC) = NFEV

NX(IC) = INFO

FNM(IC) = FNORM2

! WRITE (NWRITE,70) FNORM1,FNORM2,NFEV,INFO,(X(I), I = 1, N)

! write (NWRITE,*) IC

! write (NWRITE,*) "Lucy x(i)",(X(I), I = 1, N)

! write (NWRITE,*) "Lucy f(i)",(FVEC(i),i=1,N)

FACTOR = TEN*FACTOR

20 CONTINUE

! GO TO 10

30 CONTINUE

! WRITE (NWRITE,80) IC

! WRITE (NWRITE,90)

! DO 40 I = 1, IC

! WRITE (NWRITE,100) NP(I),NA(I),NF(I),NX(I),FNM(I)

! 40 CONTINUE

! STOP

50 FORMAT (3I5)

60 FORMAT ( //// 5X, 8H PROBLEM, I5, 5X, 10H DIMENSION, I5, 5X //)

70 FORMAT (5X, 33H INITIAL L2 NORM OF THE RESIDUALS, D15.7 // 5X,

* 33H FINAL L2 NORM OF THE RESIDUALS , D15.7 // 5X,

* 33H NUMBER OF FUNCTION EVALUATIONS , I10 // 5X,

* 15H EXIT PARAMETER, 18X, I10 // 5X,

* 27H FINAL APPROXIMATE SOLUTION // (5X, 5D15.7))
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80 FORMAT (12H1SUMMARY OF , I3, 16H CALLS TO HYBRD1 /)

90 FORMAT (39H NPROB N NFEV INFO FINAL L2 NORM /)

100 FORMAT (I4, I6, I7, I6, 1X, D15.7)

C

C LAST CARD OF DRIVER.

return

C

END

SUBROUTINE FCN(N,X,FVEC,IFLAG)

INTEGER N,IFLAG

DOUBLE PRECISION X(N),FVEC(N)

DOUBLE PRECISION t,tc

C **********

C

C THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE

C CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR

C EQUATION SOLVER. FCN SHOULD ONLY CALL THE TESTING FUNCTION

C SUBROUTINE VECFCN WITH THE APPROPRIATE VALUE OF PROBLEM

C NUMBER (NPROB).

C

C SUBPROGRAMS CALLED

C

C MINPACK-SUPPLIED ... VECFCN

C

C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C

C **********

INTEGER NPROB,NFEV

COMMON /REFNUM/ NPROB,NFEV

common /time/ t,tc

CALL VECFCN(N,X,FVEC,NPROB)

NFEV = NFEV + 1

RETURN

C

C LAST CARD OF INTERFACE SUBROUTINE FCN.

C

END
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SUBROUTINE VECFCN(N,X,FVEC,NPROB)

INTEGER N,NPROB

DOUBLE PRECISION X(N),FVEC(N)

DOUBLE PRECISION pftemp,pgtemp,dpgdxtemp,xaatemp0,ddpgdxdxbbtemp

DOUBLE PRECISION, external :: quasol

DOUBLE PRECISION, external :: sg,pg,dpgdx,pf,sf,w,p,s

DOUBLE PRECISION, external :: d2pgdx2,dwdx,dpdx,d2pdx2

DOUBLE PRECISION, external :: dpgdxbb,ddpgdxdxbb,dsgdxbb,dsdxbb

C **********

C

C SUBROUTINE VECFCN

C

C THIS SUBROUTINE DEFINES FOURTEEN TEST FUNCTIONS. THE FIRST

C FIVE TEST FUNCTIONS ARE OF DIMENSIONS 2,4,2,4,3, RESPECTIVELY,

C WHILE THE REMAINING TEST FUNCTIONS ARE OF VARIABLE DIMENSION

C N FOR ANY N GREATER THAN OR EQUAL TO 1 (PROBLEM 6 IS AN

C EXCEPTION TO THIS, SINCE IT DOES NOT ALLOW N = 1).

C

C THE SUBROUTINE STATEMENT IS

C

C SUBROUTINE VECFCN(N,X,FVEC,NPROB)

C

C WHERE

C

C N IS A POSITIVE INTEGER INPUT VARIABLE.

C

C X IS AN INPUT ARRAY OF LENGTH N.

C

C FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NPROB

C FUNCTION VECTOR EVALUATED AT X.

C

C NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE

C NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14.

C

C SUBPROGRAMS CALLED

C

C FORTRAN-SUPPLIED ... DATAN,DCOS,DEXP,DSIGN,DSIN,DSQRT,
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C MAX0,MIN0

C

C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C

C **********

integer ii

DOUBLE PRECISION hh,xx1,xx2,xx3,intf

INTEGER I,IEV,IVAR,J,K,K1,K2,KP1,ML,MU

DOUBLE PRECISION C1,C2,C3,C4,C5,C6,C7,C8,C9,EIGHT,FIVE,H,ONE,

* PROD,SUM,SUM1,SUM2,TEMP,TEMP1,TEMP2,TEN,THREE,

* TI,TJ,TK,TPI,TWO,ZERO,

* temp3,temp4,temp5,temp6,temp7,temp8,fxx,xbbtemp0,

* temp9,temp10,delxbb

! DOUBLE PRECISION DFLOAT

DOUBLE PRECISION t,tc

DOUBLE PRECISION ks,phi,psi0,b

DOUBLE PRECISION L,slope

DOUBLE PRECISION xbbtc,xbbmax

common /time/ t,tc

common /soil/ ks,phi,psi0,b

common /length/ L,slope

common /xbb/ xbbtc,xbbmax

common /temp/ xbbtemp0

c

c

DATA ZERO,ONE,TWO,THREE,FIVE,EIGHT,TEN

* /0.0D0,1.0D0,2.0D0,3.0D0,5.0D0,8.0D0,1.0D1/

DATA C1,C2,C3,C4,C5,C6,C7,C8,C9

* /1.0D4,1.0001D0,2.0D2,2.02D1,1.98D1,1.8D2,2.5D-1,5.0D-1,

* 2.9D1/

! DFLOAT(IVAR) = IVAR

C

C PROBLEM SELECTOR.

C

GO TO (10,20,30,40), NPROB

C
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C FUNCTION 1, solving for xst and xbb for t<tc.

C

10 CONTINUE

c ***********************************************************

if (x(1)<0.0) x(1)=1.0D0

if (x(1)>xbbmax) x(1)=xbbmax

if (x(2)<0.0) x(2)=1.0D0

if (x(2)>L) x(2)=L

fvec(1)=psi0*(x(1)/(x(1)+x(2)))**(-b/(2.0D0*b+2.0D0))*

+ b/(2.0D0*b+2.0D0)*(2.0D0/x(2)*

+ (log(x(1))-log(x(2)+x(1)))-1.0D0/x(1))-slope

intf=0.0D0

hh=x(2)/5000.0D0

do ii=1,5000

xx1=ii*hh-hh/2.0D0-hh/2.0D0/dsqrt(3.0D0)

xx2=ii*hh-hh/2.0D0+hh/2.0D0/dsqrt(3.0D0)

intf=intf+hh/2.0D0*phi*(1.0D0-sg(xx1,x(1),x(2)))

+ +hh/2.0D0*phi*(1.0D0-sg(xx2,x(1),x(2)))

enddo

fvec(2)=intf-ks*slope*t

c *********************************************************

GO TO 380

C

C FUNCTION 2, solving for xbbtc.

C

20 CONTINUE

c *********************************************************

if (x(1)<0.0) x(1)=1.0D0

fvec(1)=psi0*(x(1)/(x(1)+L))**(-b/(2.0D0*b+2.0D0))*

+ b/(2.0D0*b+2.0D0)*(2.0D0/L*

+ (log(x(1))-log(L+x(1)))-1.0/x(1))-slope

c *********************************************************

GO TO 380

C

C FUNCTION 3, ssolving for xaa and xbb for t>tc.

C

30 CONTINUE

c *********************************************************
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if (x(1)>1.0) x(1)=1.0D0

if (x(1)<0.0) x(1)=0.0D0

delxbb=10.0D0

xbbtemp0=xbbtc-delxbb/2.0D0

sum=tc

! do ii=1,5000

! if (xbbtemp0>xbbmax .or. sum>t) exit

do while (xbbtemp0<xbbmax .and. sum<t)

xbbtemp0=xbbtemp0+delxbb

pftemp=pf(0.0D0)

pgtemp=pg(0.0D0,xbbtemp0,L)

dpgdxtemp=dpgdx(0.0D0,xbbtemp0,L)

ddpgdxdxbbtemp=ddpgdxdxbb(0.0D0,xbbtemp0,L)

! m

temp1=pftemp/pgtemp

! temp2=A

temp2=(temp1**6.0D0-1.0D0+3.0D0*temp1**2.0D0-

+ 3.0D0*temp1**4.0D0)*slope**2.0

! temp3=B

temp3=-6.0D0*temp1**2.0D0*slope**2.0+

+ 3.0D0*temp1**4.0D0*slope**2.0-

+ temp1**6.0D0*dpgdxtemp**2.0D0+

+ 2.0D0*slope**2.0D0+

+ 2.0D0*temp1**3.0D0*dpgdxtemp*slope

! temp4=C

temp4=-slope**2.0D0+3.0D0*temp1**2.0D0*slope**2.0D0-

+ 2.0D0*temp1**3.0D0*dpgdxtemp*slope

xaatemp0=quasol(temp2,temp3,temp4)

temp5=-pftemp/pgtemp**2.0*dpgdxbb(0.0D0,xbbtemp0,L)

! d2pdx2

temp6=d2pdx2(0.0D0,xbbtemp0,L,xaatemp0) ! x,xbb,xs,xaa

!

! temp7=dAdxbb

temp7=6.0D0*temp1*temp5*(temp1**4.0D0+

+ 1.0D0-2.0D0*temp1**2.0D0)*slope**2.0D0

! temp8=dBdxbb

temp8=6.0D0*temp1*temp5*

+ (-2.0D0*slope**2.0D0+2.0D0*temp1**2.0D0*
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+ slope**2.0D0-temp1**4.0D0*dpgdxtemp**2.0+

+ temp1*dpgdxtemp*slope)+

+ 2.0D0*temp1**3.0D0*ddpgdxdxbbtemp*

+ (-temp1**3.0D0*dpgdxtemp+slope)

! temp9=dCdxbb

temp9=6.0D0*temp1*slope*temp5*

+ (slope-temp1*dpgdxtemp)-

+ 2.0D0*temp1**3.0D0*slope*ddpgdxdxbbtemp

! temp10=dxaadxbb

temp10=((0.5D0*(temp3**2.0D0-4.0D0*temp2*temp4)**(-0.5D0)*

+ (2.0D0*temp3*temp8-4.0D0*temp7*temp4-4.0D0*temp2*

+ temp9)-temp8)*2.0D0*temp2-2.0D0*temp7*

+ (DSQRT(temp3**2.0D0-4.0D0*temp2*temp4)-temp3))/

+ (4.0D0*temp2**2.0)

! test

if (temp6/=0.0D0) then

fxx=phi*dsdxbb(0.0D0,xbbtemp0,L,xaatemp0,temp10) /temp6/

+ (ks*s(0.0D0,xbbtemp0,L,xaatemp0)**(2.0D0*b+3.0D0))

if (fxx>0.0) sum=sum+fxx*delxbb

endif

enddo

if (xbbtemp0<xbbmax) xbbtemp0=xbbtemp0+delxbb/2.0D0

dpgdxtemp=dpgdx(0.0D0,xbbtemp0,L)

!m

temp1=pftemp/pgtemp

!A

temp2=(temp1**6.0D0-1.0D0+3.0D0*temp1**2.0D0-

+ 3.0D0*temp1**4.0D0)*slope**2.0

!B

temp3=-6.0D0*temp1**2.0D0*slope**2.0+

+ 3.0D0*temp1**4.0D0*slope**2.0-

+ temp1**6.0D0*dpgdxtemp**2.0D0+

+ 2.0D0*slope**2.0D0+

+ 2.0D0*temp1**3.0D0*dpgdxtemp*slope

!C

temp4=-slope**2.0D0+3.0D0*temp1**2.0D0*slope**2.0D0-

+ 2.0D0*temp1**3.0D0*dpgdxtemp*slope

fvec(1)=temp2*x(1)**2.0D0+temp3*x(1)+temp4
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c *********************************************************

GO TO 380

C

C FUNCTION 4, solving for xbbmax.

C

40 CONTINUE

c *********************************************************

if (x(1)<xbbtc) x(1)=xbbtc

if (x(1)>1000.0*L) x(1)=1000.0*L

pftemp=pf(0.0D0)

pgtemp=pg(0.0D0,x(1),L)

fvec(1)=3.0*pftemp**2.0*pgtemp**4.0*slope**2.0-

+ 2.0*pftemp**3.0*pgtemp**3.0*slope*

+ dpgdx(0.0D0,x(1),L)-pgtemp**6.0*slope**2.0

c *********************************************************

GO TO 380

C

380 CONTINUE

RETURN

C

C LAST CARD OF SUBROUTINE VECFCN.

C

END

SUBROUTINE INITPT(N,X,NPROB,FACTOR)

INTEGER N,NPROB

DOUBLE PRECISION FACTOR

DOUBLE PRECISION X(N)

C **********

C

C SUBROUTINE INITPT

C

C THIS SUBROUTINE SPECIFIES THE STANDARD STARTING POINTS FOR

C THE FUNCTIONS DEFINED BY SUBROUTINE VECFCN. THE SUBROUTINE

C RETURNS IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING

C POINT. FOR THE SIXTH FUNCTION THE STANDARD STARTING POINT IS

C ZERO, SO IN THIS CASE, IF FACTOR IS NOT UNITY, THEN THE

C SUBROUTINE RETURNS THE VECTOR X(J) = FACTOR, J=1,...,N.
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C

C THE SUBROUTINE STATEMENT IS

C

C SUBROUTINE INITPT(N,X,NPROB,FACTOR)

C

C WHERE

C

C N IS A POSITIVE INTEGER INPUT VARIABLE.

C

C X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE STANDARD

C STARTING POINT FOR PROBLEM NPROB MULTIPLIED BY FACTOR.

C

C NPROB IS A POSITIVE INTEGER INPUT VARIABLE WHICH DEFINES THE

C NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14.

C

C FACTOR IS AN INPUT VARIABLE WHICH SPECIFIES THE MULTIPLE OF

C THE STANDARD STARTING POINT. IF FACTOR IS UNITY, NO

C MULTIPLICATION IS PERFORMED.

C

C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C

C **********

INTEGER IVAR,J

DOUBLE PRECISION C1,H,HALF,ONE,THREE,TJ,ZERO

! DOUBLE PRECISION DFLOAT

DATA ZERO,HALF,ONE,THREE,C1 /0.0D0,5.0D-1,1.0D0,3.0D0,1.2D0/

! DFLOAT(IVAR) = IVAR

C

C SELECTION OF INITIAL POINT.

C

GO TO (10,20,30,40), NPROB

C

C FUNCTION 1, solving for xst and xbb for t<tc.

C

10 CONTINUE

x(1)=20.0D0

X(2) = 2000.0D0
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GO TO 200

C

C FUNCTION 1, solving for xbbtc.

C

20 CONTINUE

x(1)=100.0D0

GO TO 200

C

C FUNCTION 3, solving for xaa and xbb for t>tc.

C

30 CONTINUE

X(1) = 0.8D0

GO TO 200

C

C FUNCTION 4, solving for xbbmax.

C

40 CONTINUE

x(1)=30000.0D0

GO TO 200

C

200 CONTINUE

C

C COMPUTE MULTIPLE OF INITIAL POINT.

C

IF (FACTOR .EQ. ONE) GO TO 250

IF (NPROB .EQ. 6) GO TO 220

DO 210 J = 1, N

X(J) = FACTOR*X(J)

210 CONTINUE

GO TO 240

220 CONTINUE

DO 230 J = 1, N

X(J) = FACTOR

230 CONTINUE

240 CONTINUE

250 CONTINUE

RETURN
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C

C LAST CARD OF SUBROUTINE INITPT.

C

END

! *************quadratic equation of one variable*********

function quasol(x,x1,x2)

real (kind=8) :: x,x1,x2

quasol=(dsqrt(x1**2.0D0-4.0D0*x*x2)-x1)/(2.0D0*x)

return

end

!

! *************d2pgdx2************

function d2pgdx2(x,x1,x2)

real (kind=8) :: x,x1,x2,pgtemp

real (kind=8) :: ks,phi,psi0,b

common /soil/ ks,phi,psi0,b

pgtemp=pg(x,x1,x2)

d2pgdx2=b/(2.0D0*b+2.0D0)*

+ ((1.0D0-x/x2)*dpgdx(x,x1,x2)-pgtemp/x2)*

+ (2.0D0/x2*log((x+x1)/(x2+x1))-(1.0D0-x/x2)/(x+x1))+

+ b/(2.0D0*b+2.0D0)*(1.0D0-x/x2)*pgtemp/(x+x1)*

+ (3.0D0/x2+(1.0D0-x/x2)/(x+x1))

return

end

!

! *************dwdx************

function dwdx(x) ! xaa

real (kind=8) :: x

real (kind=8) :: L,slope

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: t,tc

common /soil/ ks,phi,psi0,b

common /length/ L,slope

common /time/ t,tc

dwdx=(1.0D0-x)*phi/L*(tc/t)**((1.0D0-tc/t)**(b/4.0D0))

return

end
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!

! *************dpdx************

function dpdx(x,x1,x2,x3) ! x,xbb,xs,xaa

real (kind=8) :: x,x1,x2,x3

real (kind=8) :: pgtemp,ptemp,pftemp

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: L,slope

common /soil/ ks,phi,psi0,b

common /length/ L,slope

pgtemp=pg(x,x1,x2)

ptemp=p(x,x1,x2,x3)

pftemp=pf(x)

dpdx=w(x,x3)*(ptemp/pgtemp)**3.0D0*

+ dpgdx(x,x1,x2)-ptemp/2.0D0*

+ (ptemp/pgtemp)**2.0D0*dwdx(x3)+

+ (1.0D0-w(x,x3))*(ptemp/pftemp)**3.0D0*

+ (slope)+ptemp/2.0D0*

+ (ptemp/pftemp)**2.0D0*dwdx(x3)

return

end

!

! *************d2pdx2************

function d2pdx2(x,x1,x2,x3) ! x,xbb,xs,xaa

real (kind=8) :: x,x1,x2,x3

real (kind=8) :: ptemp,pgtemp,pftemp,dpdxtemp

real (kind=8) :: dpgdxtemp,wtemp,dwdxtemp

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: L,slope

common /soil/ ks,phi,psi0,b

common /length/ L,slope

ptemp=p(x,x1,x2,x3)

pgtemp=pg(x,x1,x2)

pftemp=pf(x)

dpdxtemp=dpdx(x,x1,x2,x3)

dpgdxtemp=dpgdx(x,x1,x2)

wtemp=w(x,x3)

dwdxtemp=dwdx(x3)

d2pdx2=dwdxtemp*((ptemp/pgtemp)**3.0D0*
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+ dpgdxtemp-(ptemp/pftemp)**3.0D0*(slope))+

+ (3.0D0*wtemp*(ptemp/pgtemp)**2.0D0*

+ dpgdxtemp-ptemp**2.0D0/pgtemp*

+ dwdxtemp)*(pgtemp*dpdxtemp-

+ ptemp*dpgdxtemp)/pgtemp**2.0D0+

+ wtemp*(ptemp/pgtemp)**3.0D0*

+ d2pgdx2(x,x1,x2)+1.0D0/2.0D0*dwdxtemp*dpdxtemp*

+ (-(ptemp/pgtemp)**2.0D0+

+ (ptemp/pftemp)**2.0D0)+

+ (3.0D0*(1.0D0-wtemp)*(ptemp/pftemp)**2.0D0*

+ (slope)+ptemp**2.0D0/pftemp*dwdxtemp)*

+ (pftemp*dpdxtemp-ptemp*(slope))/

+ pftemp**2.0D0

return

end

!

! *************dpgdxbb**************

function dpgdxbb(x,x1,x2) ! x,xbb,xs

real (kind=8) :: x,x1,x2

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: L,slope

common /soil/ ks,phi,psi0,b

common /length/ L,slope

dpgdxbb=-b/(2.0D0*b+2.0D0)*(1.0D0-x/x2)**2.0D0*

+ (x2-x)/((x+x1)*(x2+x1))*pg(x,x1,x2)

return

end

!

! *************ddpgdxdxbb**************

function ddpgdxdxbb(x,x1,x2) ! x,xbb,xs

real (kind=8) :: x,x1,x2

real (kind=8) :: pgtemp

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: L,slope

common /soil/ ks,phi,psi0,b

common /length/ L,slope

pgtemp=pg(x,x1,x2)

ddpgdxdxbb=1.0D0/pgtemp*dpgdx(x,x1,x2)*
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+ dpgdxbb(x,x1,x2)+pgtemp*b/(2.0D0*b+2.0D0)*

+ (1.0D0-x/x2)*(2.0D0/x2*(x2-x)/((x+x1)*(x2+x1))+

+ (1.0D0-x/x2)/(x+x1)**2.0D0)

return

end

!

! ************dsgdxbb*****************

function dsgdxbb(x,x1,x2) ! x,xbb,xs

real (kind=8) :: x,x1,x2

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: L,slope

common /soil/ ks,phi,psi0,b

common /length/ L,slope

dsgdxbb=1.0D0/(2.0D0*b+2.0D0)*(1.0D0-x/x2)**2.0D0*

+ sg(x,x1,x2)*(x2-x)/((x+x1)*(x2+x1))

return

end

!

! *************dsdxbb*****************

function dsdxbb(x,x1,x2,x3,x4) ! x,xbb,xs,xaa,dwdxbb

real (kind=8) :: x,x1,x2,x3,x4

real (kind=8) :: sgtemp,stemp

real (kind=8) :: ks,phi,psi0,b

real (kind=8) :: L,slope

common /soil/ ks,phi,psi0,b

common /length/ L,slope

sgtemp=sg(x,x1,x2)

stemp=s(x,x1,x2,x3)

dsdxbb=sgtemp**(2.0D0*b)/

+ stemp**(2.0D0*b-1.0D0)/(2.0D0*b)*x4+

+ w(x,x3)*(sgtemp/stemp)**

+ (2.0D0*b-1.0D0)*dsgdxbb(x,x1,x2)-

+ sf(x)**(2.0D0*b)/stemp**

+ (2.0D0*b-1.0D0)/(2.0D0*b)*x4

return

end
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D.4 FORTRAN Code for Linear Interpolation

subroutine WAT_DRAIN2(klat,thpor,psi0,b,slope,dd,IL2,IG,i,j,asat_t0,asat_t1)

implicit none

integer i,j,IL2,IG,k,ifound

integer WATcount(IL2,IG)

real DELT,TFREZ

real klat,thpor,psi0,b,slope,dd

real var,asat_t0,asat_t1

real xs,t0,t1

real IntAlgit(IL2,IG,10000),IntAlgt(IL2,IG,10000)

real IntAlgdelt(IL2,IG,10000)

real IntAlgxst(IL2,IG,10000),IntAlgs(IL2,IG,10000)

COMMON /CLASS1/ DELT,TFREZ

ifound=0

WATcount(i,j)=WATcount(i,j)+1

if (WATcount(i,j)==1) then

write (*,*) ’Obtaining bulk saturation curve for layer’,j

! Bulk saturation

call BulkSat(klat,thpor,psi0,b,slope,dd)

open(88,file=’BulkSat.txt’)

do k=1,10000

read (88,"(i10,4e15.5)",iostat=var) IntAlgit(i,j,k), &

& IntAlgt(i,j,k),IntAlgdelt(i,j,k), &

& IntAlgxst(i,j,k),IntAlgs(i,j,k)

if (var<0) exit

enddo

close(88)

endif

do k=1,10000

if (IntAlgs(i,j,k)<1.0e-6) exit

if (asat_t0>=IntAlgs(i,j,k)) then

ifound=1

if (k>1) then

t0=IntAlgt(i,j,k)-(IntAlgs(i,j,k)-asat_t0)/(IntAlgs(i,j,k)- &

& IntAlgs(i,j,k-1))*(IntAlgt(i,j,k)-IntAlgt(i,j,k-1))

t1=t0+DELT
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if (t1<IntAlgt(i,j,k)) then

asat_t1=IntAlgs(i,j,k)-(IntAlgt(i,j,k)-t1)/(IntAlgt(i,j,k)-t0)* &

& (IntAlgs(i,j,k)-asat_t0)

if (asat_t1>asat_t0) asat_t1=asat_t0

if (asat_t1<IntAlgs(i,j,k)) asat_t1=IntAlgs(i,j,k)

!xs=IntAlgxst(i,j,k-1)+(t1-IntAlgt(i,j,k-1))/(IntAlgt(i,j,k)- &

& IntAlgt(i,j,k-1))*(IntAlgxst(i,j,k)-IntAlgxst(i,j,k-1))

else

asat_t1=IntAlgs(i,j,k+1)-(IntAlgt(i,j,k+1)-t1)/(IntAlgt(i,j,k+1)- &

& IntAlgt(i,j,k))*(IntAlgs(i,j,k+1)-IntAlgs(i,j,k))

if (asat_t1>IntAlgs(i,j,k)) asat_t1=IntAlgs(i,j,k)

if (asat_t1<IntAlgs(i,j,k+1)) asat_t1=IntAlgs(i,j,k+1)

!xs=IntAlgxst(i,j,k)+(t1-IntAlgt(i,j,k))/(IntAlgt(i,j,k+1)- &

& IntAlgt(i,j,k))*(IntAlgxst(i,j,k+1)-IntAlgxst(i,j,k))

endif

else

t0=IntAlgt(i,j,k)-(IntAlgs(i,j,k)-asat_t0)/(IntAlgs(i,j,k)-1.0)* &

& IntAlgt(i,j,k)

t1=t0+delt

if (t1<IntAlgt(i,j,k)) then

asat_t1=IntAlgs(i,j,k)-(IntAlgt(i,j,k)-t1)/(IntAlgt(i,j,k)-t0)* &

& (IntAlgs(i,j,k)-asat_t0)

!xs=t1/IntAlgt(i,j,k)*IntAlgxst(i,j,k)

else

asat_t1=IntAlgs(i,j,k+1)-(IntAlgt(i,j,k+1)-t1)/(IntAlgt(i,j,k+1)- &

& IntAlgt(i,j,k))*(IntAlgs(i,j,k+1)-IntAlgs(i,j,k))

!xs=IntAlgxst(i,j,k)+(t1-IntAlgt(i,j,k))/(IntAlgt(i,j,k+1)- &

& IntAlgt(i,j,k))*(IntAlgxst(i,j,k+1)-IntAlgxst(i,j,k))

endif

endif

endif

if (ifound==1) exit

enddo

if (ifound==0) asat_t1=asat_t0

return

end
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Appendix E

Numerical Discretization

Table E.1: Numerical Discretization for each experiment base case

− Sand Loamy sand Sandy loam Silt loam Remarks

∆z (cm)

∆t (s)

0.4

1.0

0.5

3.0

0.8

30

3.0

300.0
Green-Ampt model applicability

∆z (cm)

∆t (s)

1.0

3.0

-

-

-

-

1.0

300.0
Improved interflow/infiltration
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