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Abstract

This thesis introduces the notion of using stability analysis in terms of two measures for
impulsive switched systems. Impulsive switched systems are defined in the context of
hybrid system theory and the motivation for the study of these systems is presented. The
motivation for studying stability in two measures is also given, along with the definitions
of stability, uniform stability, and uniform asymptotic stability in one and two measures.

The results presented are a sets of sufficient stability criteria for linear and nonlinear
systems. For autonomous linear systems, there are criteria for stability and asymptotic
stability using a particular family of choices for the two measures. There is an additional
stronger set of criteria for asymptotic stability using one measure, for comparison. There
is also a proposed method for finding the asymptotic stability of a non-autonomous system
in one measure. The method for extending these criteria to linearized systems is also
presented, along with stability criteria for such systems. The criteria for nonlinear systems
cover stability, uniform stability, and uniform asymptotic stability, considering state-based
and time-based switching rules in different ways.

The sufficient stability criteria that were found were used to solve four instructive
examples. These examples show how the criteria are applied, how they compare, and what
the shortcomings are in certain situations. It was found that the method of using two
measures produced stricter stability requirements than a similar method for one measure.
It was still found to be a useful result that could be applied to the stability analysis of an
actual impulsive switched system.
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Chapter 1

Introduction

Stability theory is the foundation of control methodologies that we use to make a mechan-
ical or electrical system accomplish a desired task with a desired precision. The funda-
mentals of stability theory have been around for many years, and the field has grown to
the point where we can model almost any process as a dynamical system and develop an
algorithm to monitor and control that system’s behaviour in real time. This thesis adds
to our understanding of the stability of impulsive switched systems using two measures.

At the most basic level, stability theory deals with the question of whether the states
of an evolving dynamical system will stay within a given set of boundaries. Although
this seems limited, for many physical problems with complicated dynamics, the important
questions we need to answer are based on this requirement. Although it may seem desirable
to find explicit solutions to the evolution of a dynamical system, this is difficult in practice
and probably unnecessary. Consider a very simple problem, the design of the temperature
control of an oven. Depending on its intended use, the oven will need to maintain an
internal temperature within a given tolerance and may be required to increase or decrease
the temperature at a specific rate. A mathematical model of the oven, its heating elements,
its contents, and the influence of the outside world would be too complex to sove explicitly,
so solving for the exact time-varying internal temperature function would be effectively
impossible. It is also unnecessary. Instead of an exact solution to the control problem, we
make the desired solution a stable point of the system, such that once the temperature gets
close enough to the desired temperature, it will stay within a tolerated bound. A more
complex problem is the design of a robot arm for use in a manufacturing process. The
arm itself, along with its sensors and motors, compose a physical system that is modeled
as a dynamical system of equations. This model will never be a perfect representation
of the sum of the physical components, but it must be precise enough for the robot to
perform a desired function. This is essentially to be in a particular place and orientation
at a particular time. Solving the equations of motion for a robot arm would be difficult
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and ultimately futile, since they are never a perfect representation of the physical system.
It is better to arrange that the destination of the robot arm is an asymptotically stable
point of the system. In this case, we use the related concept of asymptotic stability so that
the state of the system will approach the desired state in a predictable way.

When formulating a dynamical system to describe a physical system, one of the many
considerations is whether to use continuous or discrete dynamics [38, 40]. The former
is a system is governed by a rule prescribing the instantaneous rate of change of the
states, while the latter is a system governed by a rule prescribing the states at the next
time step. In many cases, it is obvious which is the better choice; we pick the best
choice and modify the necessary parts of our model to fit. We may decide that discrete
dynamics are inappropriate because they require instantaneous events that are not possible
in the physical world (requiring, for example, infinite acceleration), or we may decide that
continuous processes can be effectively modeled by a discrete process with an arbitrarily
small time step (as in all computer simulations). We could, for example, approximate the
occasional step function with a steep ramp function or choose a small enough time step
so that a discrete variable appears to evolve continuously. In some situations, however,
trying to make the system fit into one of these two categories is not only mathematically
awkward, but it fundamentally changes the character of the system.

Hybrid systems are used when neither continuous nor discrete dynamics are appropriate,
and we wish to combine the two approaches. There are many different examples of hybrid
systems, which can be found in [40]. One good example is temperature control in an
oven. For a typical household oven, the temperature will be set by a simple thermostat.
The temperature of the oven’s interior is naturally modeled using a continuous system;
we can simplify it to the exponential decay of Newton’s law of cooling or we can use the
heat equation to keep track of the temperature in space as well as time. The thermostat,
however, is a simple switch that either turns the heating elements on or off, depending
on the temperature. This is fundamentally not a continuous function. Although, in this
simple case, we could just decide that the temperature is the most important state to
consider and remodel the state of the oven’s element to be a continuous variable taking
values between “on” and “off,” we can also use a hybrid system. In some situations, using a
hybrid system will be unavoidable. This is often the case with a supervisory control model,
as shown in [40] and used in [11]. If the control input for the system changes the system
abruptly in fundamental ways, we must accept this as a discrete change, even thought we
may want to use continuous variables for other states of the system.

It is often desirable to turn a system that could be modeled accurately as a continuous
system into a hybrid system. Usually we are motivated to do this by a control prob-
lem where we want to give occasional impulsive control inputs, but not apply continuous
control. When controlling a switched system, it is particularly useful practical to make
impulsive control inputs, as detailed in [12].
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Switched systems and impulsive switched systems are subcategories of hybrid systems,
which are further explained in Chapter 2. The purpose of studying these systems is to
extend the results of stability theory for continuous systems to systems that have switch-
ing and impulses. This will enable us to include models of systems where the equations
governing the system can change abruptly, and the values of the states can change as well.

Stability analyses using two measures were developed to unify several different stability
criteria. The mathematical definitions of stability involving two measures are provided in
Chapter 2. The essential idea is that by using one set of stability criteria, we can evaluate
the stability of a system in a traditional manner. A system is stable if all of the states
begin close enough to a desired state, and they remain close to that state; or a system is
partially stable if all the states begin close enough to a desired state, some of the states
will remain close.

In addition to the information on hybrid system theory, Chapter 2 also contains some
background on stability in terms of two measures. This area of stability theory, best
presented in [18], concerns unifying different characterizations of stability. Rather than
considering the value of the states themselves to determine stability, we create two measures
based on the states and consider stability with respect to these. This way, by defining the
measures the right way, we can consider the stability of other aspects of the system besides
just the states. This makes it easier to determine the stability of anything other than a
point, such as a periodic cycle or an invariant set. We can also consider partial stability,
where we only look at the stability behaviour of a subset of the states. By formulating
stability results for impulsive switched systems in two measures, it will be easier to make
these types of dynamical system models adhere to more exotic stability requirements.

The results in Chapter 3 are sufficient conditions for stability and asymptotic stability of
linear impulsive switched systems. Since linear systems are common simple models to use,
and their stability is easy to verify, the results are worked out based on specific properties of
the equations governing the systems, from which it is possible to make quadratic Lyapunov
functions. In Chapter 4, we cover nonlinear systems, which have more general requirements
based on finding Lyapunov functions, rather than the governing equations themselves. In
both cases, we consider multiple Lyapunov functions, where each subsystem of the switched
system has its own independent Lyapunov function. This method makes it easier to use
existing methods for finding Lyapunov functions and applying them to impulsive switched
systems.

Chapter 5 contains examples pertaining to the stability criteria in Chapters 3 and 4.
With these examples, we illustrate the potential utility of the results, based on how easy
it is to demonstrate the stability of a particular system, and whether the stability criteria
are overly restrictive and fail to be satisfied by many systems which are, in fact, stable.
Although this work does not constitute anything close to a complete characterization of sta-
bility of impulsive switched systems in two measures, it does present useful and applicable
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results that can be extended in many ways.
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Chapter 2

Background

2.1 Dynamical Systems

2.1.1 Definitions and Terminology

Dynamical systems are the broad category of mathematical objects we are studying. In
general, a dynamical system consists of a number of states with a rule that defines how
those states will change a short time in the future (see [16, 32] and references therein
for details). As such, many dynamical systems consist of ordinary differential equations
(ODEs) such as

ẋ = f(t, x), t ∈ [0,∞) (2.1)

or a difference equation such as

x(k + 1) = f(k, x(k)), k ∈ {0, 1, . . .}. (2.2)

In these two cases, the new state of the system depends only on the current state, unlike
systems with time delay, which we will not study here. A trajectory of the system is a
(multivalued) function returning the value of each of the states at a given time. In most
cases, these trajectories are distinguished by initial values, where the state vector x(t) or
xk is defined for a specific t or k (often 0). In some simple cases it is possible, using only
the dynamical system along with this information, to explicitly write an expression for the
system trajectory. Take, for example, the following ODE,

ẋ = Ax, (2.3)

where A is a constant real valued matrix. It is classified as linear because f(t, x) = Ax is
linear in x and autonomous because f(t, x) = Ax does not depend directly on t. Starting
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with any initial condition x(t0) = x0, we can explicitly write the solution as

x(t) = eA(t−t0)x0 (2.4)

using the matrix exponential [39].

Linear Systems

In the simplest form there is no dependence on time, so the system is autonomous. We
can examine the stability of the system by explicitly finding the solution to

x(t) = eA(t−t0)x0, (2.5)

where x(t0) = x0. Since the eigenvalues of the matrix exponential are exactly the same as
the exponentials of the eigenvalues of the matrix A, we can determine stability entirely by
examining the eigenvalues of A.

A slightly more complicated example is the non-autonomous linear system given by

ẋ = A(t)x (2.6)

In this case, it is not alway possible to write the solution in an explicit closed form. It is
also not immediately clear whether the eigenvalues of A(t) will provide a complete picture.
In fact, it can be shown by a simple counterexample that, even with eigenvalues that always
have negative real part, the solution will not necessarily be stable. The key is to construct
an example with constant eigenvalues but time varying eigenvectors. Certain trajectories
will be able to grow without limit.

Example 1. [10] Consider the system given by{
ẋ1 = (−1 + 1.5 cos2 t)x1 + (1− 1.5 sin t cos t)x2

ẋ2 = (−1− 1.5 sin t cos t)x1 + (−1 + 1.5 sin2 t)x2
(2.7)

We can calculate the eigenvalues and see that they are actually constant valued at

λ1 = −1

4
+

√
7

4
i, λ2 = −1

4
−
√

7

4
i (2.8)

However, we can see that there is a solution

x(t) =

(
et/2 cos t
−et/2 sin t

)
(2.9)

that is, nevertheless, unstable.
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Figure 2.1: Possible trajectories of a stable system

Existence/Uniqueness of the Solution of Dynamical Systems

If all dynamical systems based on ODEs could be explicitly solved as easily as (2.3), they
would not comprise an interesting field of study. Before we can study the trajectories of
the general system (2.1), we must consider the existence and uniqueness of these solutions
using the following theorem.

Theorem 1. [Existence and Uniqueness][39] Let D be an open set in Rn+1. If f : D 7→ Rn

is locally Lipschitz on D, then, given any (t0, x0) ∈ D, there exists a δ > 0 such that
(2.1) along with the initial value x(t0) = x0 has a unique solution x(t, t0, x0) defined on
[t0 − δ, t0 + δ].

Stability of Dynamical Systems

We are primarily concerned with the stability of dynamical systems. There are several
different ways to characterize stability. Before we look at that, however, we must note that a
system is only stable with respect to a certain trajectory. Usually, the trajectory of interest
is the solution x(t) = 0. If we wish to consider a particular solution x∗(t), we can simply
reformulate the problem using a change of variables so that y(t) = x(t) − x∗(t); hence, 0
is a solution. With this in mind, the simplest form of stability is that the trajectories will
remain within a certain bound, provided they begin close enough to the zero solution. In
addition to the mathematical definitions, Figure 2.1 illustrates how trajectories stay within
an arbitrary bound ε, provided they start within a stricter bound δ.

Definition 2. [Stability,S1] x = 0 is stable if for any ε > 0 and t0 ∈ R+, there exists a
δ = δ(t0, ε) > 0 such that for any solution x(t) = x(t, t0, x0), of (2.1), where x(t0) = x0,
‖x0‖ < δ implies ‖x(t)‖ < ε for all t ≥ t0.

Definition 3. [Asymptotic Stability,S2] x = 0 is asymptotically stable if it is stable and
there exists a σ > 0 such that ‖x0‖ < σ implies x(t)→ 0 as t→∞.
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Figure 2.2: A trajectory of an asymptotically stable system.

Figure 2.3: Relations of stability definitions S1–S4

See Figure 2.1.1.

Definition 4. [Uniform Stability,S3] x = 0 is uniformly stable if it is stable for a δ
independent of t0.

Definition 5. [Uniform Asymptotic Stability,S4] x = 0 is uniformly asymptotically stable
if it is uniformly stable and there exists σ > 0 such that ‖x0‖ < σ implies for any η > 0,
there is a T = T (η) > 0 such that ‖x(t)‖ < η if t ≥ t0 + T for any initial time t0.

See Figure 2.1.1, which shows how these definitions relate to one another.

Definition 6. x = 0 is unstable if it does not satisfy the definition of stability.

There are many other forms of stability that we will be unable to cover. For instance,
one may specify robustness for any stability condition, which requires that the system be
stable even if there is some parameter uncertainty or disturbance present.

Lyapunov Functions

The primary tool we will use in stability analysis is the Lyapunov function. This general
concept applies to most dynamical systems, and it is a familiar approach to take. We begin
with a few definitions.
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Suppose that the function W (x) ∈ C[D,R+], W (0) = 0; V (t, x) ∈ C[R+ ×D,R+] and
V (t, 0) ≡ 0 where D ⊆ Rn.

Definition 7. The function W (x) is said to be positive definite if

W (x)

{
> 0 for x ∈ D, x 6= 0,

= 0 for x = 0.

W (x) is said to be positive semi-definite if W (x) ≥ 0 for x ∈ D.

W (x) is said to be negative semi-definite, if W (x) ≤ 0 for x ∈ D.

Definition 8. The function V (t, x) is said to be positive definite, if there exists a positive
definite function W (x) such that V (t, x) ≥ W (x) and V (t, 0) ≡ 0. The functioin V (t, x) is
said to be negative definite, if −V (t, x) is positive definite.

Theorem 9 ([31]). The necessary and sufficient condition for the zero solution of system
being stable is that there exists a positive definite function V (t, x) ∈ C[R+ ×GH , R

+] such
that along the solution of (2.1)

dV

dt

∣∣∣∣
(2.1)

=
∂V

∂t
+

n∑
i=1

∂V

∂xi
fi(t, x) ≤ 0

holds, where GH = {(t, x), t ≥ t0, ‖x‖ < H = constant}.

For more about the Lyapunov functions, one can see [20] and references therein.

2.2 Hybrid Systems

The terms “hybrid system” and “switched system” are used to describe dynamical systems
with continuous and discrete components. An example would be a system of the following
form: {

ẋ = f(t, x, α)
∆α = g(t, x, α)

. (2.10)

Here, x represents a vector of continuous states, and α represents a vector of discrete
states. The functions f and g can take on many different forms, but it is important to note
that the evolution of the continuous and discrete states are not independent of each other.
These systems are highly generalized, so it is common to only study particular classes.
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2.2.1 Switched Systems

Switched systems are a subset of hybrid dynamical systems consisting of a finite number of
continuous subsystems, see [21] and references therein. Each subsystem is itself a dynamical
system based on an ordinary differential equation as follows:

ẋ = f(t, x). (2.11)

The one discrete state variable is a switching rule that is used to change the governing dy-
namics. Hence, if we have a set of equations of the form ẋ = fα(t, x), for α ∈ {1, 2, . . . ,m},
the switched system becomes

ẋ = f(σ(t, x(t)))(t, x) (2.12)

Here, the switching rule, σ : R+×Rn → {1, 2, . . . ,m} depends on both the state and time.
There are other possibilities: the switching signal may depend on time or state alone, the
switching signal may additionally depend on its own previous values, and the switching
signal may have a delay (σ(t − r, x(t − r)). In all the cases where the switching does not
depend solely on time, the signal may be either synchronous or asynchronous [38]. An
asynchronous signal may change in value at any time, according to the arguments. A syn-
chronous switching signal may only change value at certain predetermined times, tk, with
tk− tk−1 > ∆tmin > 0 and limk→∞ tk =∞. It is not, however, required that the subsystem
switches every tk. Hence, the switching rule may depend on the value of its arguments for
an entire interval or only a certain time within that interval. Synchronous switching rules
tend to be better behaved because having pre-determined switching times enforces a min-
imum activation time, ∆tmin, which prevents chatter or infinitely fast switching. Chatter
is a problem because it can lead to instability, and this behavior cannot be implemented
in a real system. Here, we will be concerned with time-based switching rules as well as
synchronous and asynchronous switching rules based on the state and time, although some
results will be generally applicable. It is also possible to consider switching rules that
involve memory of past states. When there is a memory of past time, this is usually con-
sidered time delay, such as studied in [30] and [41]. However, we can also require that the
system remembers past state values [23].

2.2.2 Switched Systems with Impulses

An impulsive switched system is a more general type of hybrid system, the major difference
being that hybrid systems have impulses that occur at the switching times. A general
example is as follows:

ẋ = fσ(t,x(t))(t, x), t 6= tk
∆x = Iσ(tk,x(tk))(tk, x(tk)), t = tk

(2.13)
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Note that here, although we mention tk, σ may be an asynchronous signal meaning that
the times, tk, are simply not known a priori. The equation, as written is also ambiguous
in terms of whether the impulse for subsystem α is applied at the end of an interval where
the continuous portion of subsystem α was activated or at the beginning. Arguments may
be made for both cases, and it is even possible to make the impulse depend on both the
previous and next active subsystem. For our purposes, we will define

∆x = x(t+k )− x(tk) (2.14)

In this case, if there arem continuous subsystems, one can simply create a hybrid system
with m2 subsystems of which there are only m different continuous portions, but each has
a different impulse. Rather than deal with these different situations, we will consider the
case where a subsystem α, with the continuous portion active on the interval (tk−1, tk] has
the impulse applied at tk such that x(t+k )−x(tk) = Iα(tk, x(tk)). Here, x(t+k ) = limt→t+k

x(t).

Hybrid systems are useful because they provide great flexibility for modeling and control
problems. The impulses may represent actual disturbances as a result of switching the
dynamics of the system, or they may simply be control impulses meant to stabilize the
system. A system with the same continuous dynamics and periodically applied impulses
is still a hybrid system. For more about the systems with impulses one can see [17, 19, 15,
42, 44, 1] and references therein.

2.2.3 Stability of Switched Systems

Even without involving impulses, stability results for switched systems require more care
than systems based on ODEs. It is possible to take several subsystems that would be
stable at the origin on their own and devise a switching rule that renders them unstable
as a switched system. A good example found in [26] has been modified and included in
Chapter 5. By running this same situation in the reverse time direction, it is possible to
stabilize several otherwise unstable subsystems through careful switching. In general, to
get around this problem, we introduce dwell time conditions. These conditions are worth
some detailed study [34], but their main purpose is to allow subsystems to be activated
for a long enough period of time that they can stabilize the system. In fact, rather than
looking at which subsystems are stable and unstable, it is just as informative to look at how
long the stable subsystems are active and how quickly we switch away from an unstable
system.

Because of the basic problem of switching causing instability, the Lyapunov function
approach has some problems. In the example where instability occurs, the subsystems are
both stable, but not using the same Lyapunov function. This is crucial because, finding a
global Lyapunov function for a switched system – a function that works for all the different
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subsystems – can lead to stability conditions for arbitrary switching rules, such as the one
listed in [23]. Even if we directly try to solve a linear switched system, we end up with a
trajectory given by the product of an arbitrary number of matrix exponentials (for each
switching mode that occurred). As shown by [5], however, this is not a trivial problem.
The only time we have a hope of doing anything with the expression is if we have a periodic
switching rule, in which case we can collapse each matrix multiplier in a single period to a
single matrix, and the system essentially becomes a matrix to an arbitrary power. We can
then, and only then, glean some information on stability from the eigenvalues.

The problem with global Lyapunov functions is that they are hard to find. There are
already some existing techniques for finding Lyapunov functions for standard systems, so
it would be helpful if we could simply use a different one for each subsystem. Of course,
the major problem is that the level sets of the Lyapunov functions cross each other, so,
under certain switching rules, the system state can switch to higher and higher level sets.
Usually it is not possible to consider arbitrary switching signals, but we need to impose
rules such as dwell time conditions. There is also a question of how to keep track of the
magnitude of the state variable when there are several different functions being used. This
task is addressed different ways, for example, by [29] and [13].

2.3 Stability with multiple measures

There are different types of stability in addition to the ones covered already. In some
situations, we do not need to know if all the states of the system are stable. There are a
number of other options including partial stability, stability of invariant and conditionally
invariant sets, and orbital stability. The way these differ from standard stability results is
simply in the measure that is used in the stability definition. Instead of using ‖x‖, we can
use d(x,A), the distance of x to an invariant set A, for example. We can then generalize the
concept so that all these types of stability can be described by first defining two measures,
h(t, x), and h0(t, x), see [18, 28].

2.3.1 Definitions

In most stability results, we need to make some form of comparison with functions satisfying
particular properties. The most useful classes are as follows:

K = {a ∈ C[R+,R+] : a(u) is strictly increasing in u and a(0) = 0}, (2.15)

K0 = {d ∈ C[R+,R+] : d(u) > 0 for u > 0 and d(0) = 0}, (2.16)
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CK = {a ∈ C[R+ × R+,R+] : a(t, ·) ∈ K and a(·, u) is continuous., (2.17)

PCK = {a ∈ C[R+ × R+,R+] : a(t, ·) ∈ K and a(·, u) is piecewise continuous., (2.18)

and

Γ = {h : R+ × Rn → R+, h(·, x) is piecewise continuous, h(t, ·) is continuous, and
infx h(t, x) = 0 for each t ∈ R+}.

(2.19)

Finally, for h0 and h, there is always an order of precedence in the stability definitions.
Therefore, to assure we are using the correct measures in the correct position, we require
that h0 is finer that h according to the following definitions.

Definition 10. h0 is finer than h if there is a constant σ > 0 and a function ϕ ∈ PCK
such that h0(t, x) < σ implies h(t, x) ≤ ϕ(t, h0(t, x))

Definition 11. h0 is uniformly finer than h if there is a constant σ > 0 and a function
ϕ ∈ K such that h0(t, x) < σ implies h(t, x) ≤ ϕ(h0(t, x))

An example of this relationship can be found in the case of partial stability.

The following definitions can be found in [18, 28]. For nonlinear systems, the basic
definitions for stability are as follows:

Definition 12. [(h0, h)-stable] A system is (h0, h)-stable if, for any ε > 0, and trajectory
x(t) = x(t, t0, x0), such that x(t0) = x0, we can find δ = δ(t0, ε) > 0 such that h0(t0, x0) < δ
implies h(t, x(t)) < ε for t ≥ t0.

Definition 13. A system is (h0, h)-uniformly stable if it is (h0, h)-stable and δ is indepen-
dent of t0.

Definition 14. A system is (h0, h)-uniformly asymptotically stable if it is (h0, h)-uniformly
stable and for each ε > 0, there are constants δ0 and T such that h0(t0, x0) < δ0 implies
h(t, x(t)) < ε for t ≥ t0 + T . These constants are also independent of t0.

There are equivalent definitions corresponding to other types of stability that are not
required here.

Definition 15. A system is partially stable if for any ε > 0, there is a δ = δ(t0, ε) > 0
such that ‖x0‖ < ε implies ‖x(t)‖s < δ for all future time t ≥ t0. The truncated norm is
given by ‖x‖s =

√
x2

1 + x2
2 + · · ·+ x2

s, where s < n.
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In this case, ‖x‖s takes on the role of h and ‖x‖ takes on the role of h0.

In order to use these measures, we also need to define some common mathematical
properties of functions given in terms of functions measures h0, h ∈ Γ.

Definition 16. V is h-positive definite if there is a ρ > 0 and a b ∈ K such that h(t, x) < ρ
implies b(h(t, x)) ≤ V (t, x).

Definition 17. V is weakly h-decrescent if there is a δ > 0 and an a ∈ PCK such that
h(t, x) < δ implies a(t, h(t, x)) ≤ V (t, x).

Definition 18. V is h-decrescent if there is a δ > 0 and an a ∈ K such that h(t, x) < δ
implies a(h(t, x)) ≤ V (t, x).

Definition 19. We say (t, x) ∈ S(h, ρ) when (t, x) satisfy h(t, x) < ρ.

2.3.2 (h0, h)-Stability Results for Non-Hybrid Systems

Basic Results

Consider (2.1) as a basic nonlinear system. The basic stability results using two measures
can be found as follows.

Theorem 20 ([28]). Assume V ∈ C[R+ × Rn,R+] and h, h0 ∈ Γ satisfy the following
conditions:

1. h0 is finer than h;

2. V (t, x) is locally Lipschitzian in x and h-positive definite;

3. D+V (t, x) ≤ 0, (t, x) ∈ S(h, ρ);

4. V (t, x) is h0-weakly decrescent.

Then the system is (h0, h)-stable.

First, we find a function a ∈ CK (continuous in t and strictly increasing in x), so that

V (t0, x0) ≤ a(t0, h0(t0, x0)), if h0(t0, x0) < δ0, (2.20)

which is guaranteed by V being weakly h0-decrescent. Since V is also h-positive definite,

b(h(t, x)) ≤ V (t, x), if h(t, x) ≤ ρ0, (2.21)
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where b ∈ K. Since h0 is finer than h, we can find δ1 sufficiently small so that h0(t0, x0) < δ1
implies

h(t0, x0) ≤ ϕ(t0, h0(t0, x0)) (2.22)

and ϕ(t0, δ1) < ρ0. Therefore we have bounds placed on h0(t0, x0) such that the solution is
initially contained in the region where the required assumptions are true. Now, let ε > 0
and t0 ∈ R+, assuming ε < ρ0 without loss of generality. We find δ2 such that a(t0, δ2) <
b(ε). If we let δ = min{δ0, δ1, δ2}, then when h0(t0, x0) < δ, we have b(h(t0, x0)) < V (t0, x0)
from δ1, V (t0, x0) < a(t0, h0(t0, x0)) from δ0, and a(t0, h0(t0, x0)) < b(ε) from δ2, so
h(t0, x0) < ε at the start. Assume that there exists a solution x(t) = x(t, t0, x0) and
t1 > t0 such that h(t1, x(t1)) = ε, but h(t, x(t)) < ε for t ∈ [t0, t). The assumptions on
V imply that V (t, x(t)) ≤ 0 for [t0, t1]. This implies V is nonincreasing on the interval,
leading to the contradiction that

b(ε) = b(h(t1, x(t1))) ≤ V (t1, x(t1)) ≤ V (t0, x(t0)) < b(ε) (2.23)

So no such t1 can exist and the system is stable.

Theorem 21 ([18]). Assume V ∈ C[R+ × Rn,R+] and h, h0 ∈ Γ satisfy the following
conditions:

1. h0 is uniformly finer than h;

2. V (t, x) is locally Lipschitzian in x, h-positive definite, and h0-decrescent;

3. D+V (t, x) ≤ 0, (t, x) ∈ S(h, ρ), C ∈ K;

Then the system is (h0, h)-uniformly stable.

The criteria for uniform asymptotic stability are simpler than the criteria for asymptotic
stability alone.

Theorem 22 ([18]). Assume V ∈ C[R+ × Rn,R+] and h, h0 ∈ Γ satisfy the following
conditions:

1. h0 is uniformly finer than h;

2. V (t, x) is locally Lipschitzian in x, h-positive definite, and h0-decrescent;

3. D+V (t, x) ≤ C(h0(t, x)), (t, x) ∈ S(h, ρ), C ∈ K;

Then the system is (h0, h)-uniformly asymptotically stable.
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As is the case in standard stability analysis, for asymptotic stability alone, there are
some additional requirements.

Theorem 23 ([28]). If

1. h0, h ∈ Γ and h0 is finer than h;

2. V (t, x) is locally Lipschitzian in x, h-positive definite, h0-weakly decrescent and

D+V (t, x) ≤ −C(h(t, x)) (2.24)

in a local region, with C ∈ K;

3. h ∈ C1[R+ × Rn,R+] and the magnitude of the derivative of h along a trajectory,
|h′(t, x)| = |ht(t, x) + hx(t, x) · f(t, x), is bounded in the region

Then the system is (h0, h)-asymptotically stable.

2.3.3 Stability Analysis of Switched Systems

When dealing with hybrid systems, traditional stability theorems do not directly apply.
This is similar to the situation where a linear, non-autonomous system’s stability does
not depend on its eigenvalues alone. Although A(t) may be a stable matrix for all t, it
can rotate in such a way so that a trajectory can constantly be in a position where it is
increasing.

In addition, there are several more categories of stability analysis that are not present
in the standard theory. The most obvious stability problem is determining the stability
properties of a hybrid system, given all the subsystems and a specific switching rule. This
is essentially the same problem as a continuous dynamical system, and we must determine
the stability for different initial data. Quite often, however, a hybrid model is designed
precisely because the switching rule is either something unpredictable, but falling within
certain parameters, or something that is designed to achieve the desired stability properties.
We may even want stability under all possible switching rules.

Stability Under all Switching Rules

Stability under all possible switching rules necessitates the most strict stability require-
ments, but many can be deduced immediately: the continuous portion of all subsystems
must form a stable system, and the impulsive portions; taken as discrete dynamical sys-
tems, must also be stable. These are not the only requirements, but they already limit
the possibilities. The best method to deal with this problem is to use a global Lyapunov
function approach, as described later.
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Stability Under Constrained Switching Rules

Stability under constrained switching allows for more flexibility in the types of subsystems
used. The goal with this approach is to allow some unstable elements in the continuous
and discrete dynamics, that will be compensated for by a selection of requirements on the
switching rule. Two important criteria commonly used for this analysis are the average
dwell time and the ergodicity. The average dwell time, τ , is defined in terms of the number
of discontinuities (switch operations), Nσ(t0, t), for the switching signal σ between the
times t0 and t:

N−0 +
(t− t0)

τ
≤ Nσ(t0, t) ≤ N+

0

(t− t0)
τ

. (2.25)

The ergodicity criteria are that for all subsystems, α and for all t0, the set

{t|σ(t) = α}
⋂

[t0, t0 + T ] (2.26)

is non-empty. This ensures that a minimum number of switches occur and also that no
subsystem is over used or under used. A finite average dwell time ensures that infinitely fast
switching cannot occur. This is an important condition to eliminate chattering, where the
subsystems start to switch infinitely quickly, which would not occur in any real system.
These conditions can also be made more complex, so that certain subsystems must be
activated for a given portion of the total elapsed time. These types of rules may be useful
in situations where the switching rule is unknown, but it satisfies these sorts of properties
due to the properties of the real system being modeled.

Stability Using Supervisory Control

When we are attempting to design a switching rule that will stabilize a hybrid system,
there is often a supervisory control problem, where we have a control “supervisor” that
chooses the correct subsystem at any particular time. This is a similar problem to the
previous one, only now we are looking to actually design a specific switching rule, rather
than come up with some general constraints on the switching that might be satisfied even if
we do not have total control over what the switching rule will be. Generally, the switching
rules obtained will be state-based, since the system presumably does not have dynamics
that can be calculated trivially, and the switching signal must rely on information in the
emergent behaviour.

Difficulties with Autonomous Linear Systems

For autonomous systems, the only types of stability to consider are Lyapunov stability and
asymptotic stability, which is equivalent to exponential stability for these systems. We can

17



also consider all of these in the context of h0, h-stability, although only certain interpreta-
tions apply. Since particular Lyapunov functions are often used for linear systems, rather
than using a general V (x), we will use standard quadratic Lyapunov functions, xTPx, but
also consider the difference when it satisfies different properties.

The simplest type of hybrid system uses linear equations for both the continuous and
impulsive portions as follows: {

x′ = Ai(t,x)x, t 6= tk
∆x = Bi(t,x)x, t = tk.

(2.27)

The switching signal may be time and state dependent, so i : R+×Rn → I = {1, 2, . . . ,m}.
Although the system may be asynchronous, tk represents the right boundary of the kth
switching interval, (tk−1, tk]. For ease of notation, we also use ik to represent the active
subsystem in this interval.

Since the equations are linear, we are in a position to explicitly solve the equations.
Each subsystem, α has a solution x(t) = eAαx0(t−t0)x0. Therefore, we can write the full
solution to an initial value problem as follows:

x(t) = eAi1 (t−t0)x0, t ∈ (t0, t1] (2.28)

x(t) = eAi2 (t−t1)(Bi1 + I)eAi1 (t−t0)x0, t ∈ (t1, t2] (2.29)

x(t) = eAik (t−tk−1)(Bik−1
+ I)eAik−1

(tk−2−tk−1) · · · (Bi1 + I)eAi1 (t−t0)x0, (2.30)

t ∈ (tk−1, tk]

The stability problem essentially becomes one of an infinite matrix product. There are
a few conclusions we can come to immediately. Firstly, if we want stability under arbitrary
switching it is necessary for each linear subsystem to be stable since an unstable subsystem
may be run for an arbitrary amount of time. Secondly, the matrices for the impulses must
satisfy λmin{Bα+I} ≤ 1. Otherwise, consider a subsystem α such that x∗ is an eigenvector
of Bα with eigenvalue λ, |λ| > 1. Starting in any subsystem α, let x(0) = x∗. If we switch
at time t1 a short time later, x(t1) = x∗+xε, where |xε| may be arbitrarily small. Therefore,
x(t+1 ) = (I+Bα)x(t1) = λx∗+(I+Bα)xε. By switching immediately to another subsystem
and then back to subsystem α fast enough, the system will be unstable. Note also the
situation when I + Bα is singular: if the impulse is applied at exactly the right time, the
state may be moved immediately to the equilibrium point. Other than these conclusions,
there are no other obvious criteria for stability under arbitrary switching rules revealed by
looking at (2.30).

Directly using (2.30) can be helpful in very specific special cases. Ideally, the switching
signal would be periodic. If this is the case, the times ∆tk = tk− tk−1 are all known ahead
of time. In addition, x(t) becomes equivalent to the infinite product of a single matrix,
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which itself is the product of all matrices Mk = (Bik + I)eAik (tk−1−tk) that make up a single
period. The eigenvalues of this matrix must lie strictly inside the unit circle for asymptotic
stability and on, or inside, the unit circle for stability.

If we generalize this case only a little to the case where the dwell time for each subsystem
is constant, but the order of the subsystems in arbitrary, this problem is much harder.
Interestingly, Blondel and Tsitsiklis showed that the boundedness of an infinite arbitrary
product of only two different matrices was undecidable [5]. For aperiodic switching signals,
this approach is not practical.

2.3.4 Lyapunov Functions

Lyapunov functions are also a common method of finding stability results for hybrid sys-
tems, but they need to be used in different ways.

Global Lyapunov Functions

A global Lyapunov function behaves in a similar way to a Lyapunov function for standard
dynamical systems, since is must be positive definite, and the derivative along trajectories
of all subsystems must be less than or equal to 0. It is particularly useful because the
switching signal becomes irrelevant under a global Lyapunov function. Even with a hybrid
system with impulses, we only need to make sure that the impulses are bounded and that
they do not occur too frequently, and we can conclude stability or asymptotic stability in
a similar way.

An example of where we can get sufficient conditions is in the case of the following
switched linear system with an asynchronous state-based switching rule:

ẋ = Ax(t) +Bu(t) (2.31)

u1(t) = L1x(t)

u2(t) = L2x(t)
...

um(t) = Lmx(t) (2.32)

(2.33)

In this case, we attempt to find a switching rule to stabilize the system. The necessary
and sufficient conditions for such a rule to exist can be found using a Lyapunov function
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that works on each subsystem for some values of x. The problem of stabilizing the system
is shown to be equivalent to finding a matrix P such that the matrices

Z1 = (A+BL1)
TP + P (A+BL1)

Z2 = (A+BL2)
TP + P (A+BL2)

...

Zn = (A+BLm)TP + P (A+BLm) (2.34)

(2.35)

form a set such that for any x 6= 0, xTZαx < 0 for some Zα. Hence, it is possible to use
a single Lyapunov function that does not work for each subsystem for all values of x, but
still stabilizes the system for a particular switching rule.

This form of global Lyapunov function is less strict, but it is difficult to find and verify.
Usually, another condition will have to be satisfied that is sufficient to show that the set
of matrices satisfies the desired properties. Another issue is with applying impulses to
the system. Certainly impulses can be accommodated if they adhere to requirements on
maximum absolute size and frequency, but it is difficult to integrate them seamlessly into
this method so that impulses may act as a desired property of the controller and stabilize
the system.

Multiple Lyapunov Functions

It is sometimes difficult to find a global Lyapunov function for a particular system, so it
would be useful to use standard methods to find multiple Lyapunov functions for each
of the subsystems involved. With this method, we must be much more careful about
what properties the switching signal satisfies. We can use Lyapunov theory to determine
whether each subsystem is stable or unstable, but, as we know, this alone is not sufficient
to determine stability. We can see how multiple Lyapunov functions work in Chapter 3
and 4.

2.3.5 Special Cases

Periodic switching signals are common for many different models, and they have enough
useful properties to be considered separately. For an autonomous system, in particular, we
can consider the trajectory over each period. In the case of linear systems, we can evaluate
this and actually apply the time period as a mapping, effectively converting the hybrid
dynamical system into a discrete dynamical system.
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2.3.6 Necessary and Sufficient Conditions

There are necessary and sufficient conditions that have been developed for switched au-
tonomous linear systems with no impulses [23]. This is based on the problem of robust
asymptotic stability for polytopic uncertain linear time-variant systems. These systems
are of the form:

xk+1 = A(k)xk, (2.36)

where A(k) ∈ Conv{A1, A2, . . . , Am}. Conv{·} is the convex combination. Hence, A(k)
can be made from any convex combination of subsystem state matrices. The result is that
system (2.36) is robustly asymptotically stable if and only if there exists an integer l such
that

‖Ai1Ai2 · · ·Ain‖ < 1 (2.37)

For all l-tuples of Aij ∈ {A1, A2, . . . , AN}. The ∞ norm for matrices is used.

This problem is equivalent to the stability of a discrete switched linear system:

xk+1 = Aσ(k)xk (2.38)

This can also be extended to the continuous case we are interested in, where the following
are equivalent:

1. The switched linear system
ẋ(t) = Aσ(t)x(t) (2.39)

with Aσ(t) ∈ {A1, . . . , Am} is asymptotically stable under arbitrary switching;

2. the linear time-variant system

ẋ(t) = A(t)x(t) (2.40)

with A(t) ∈ Conv{A1, . . . , Am}, is robustly asymptotically stable; and

3. there exist a full column rank matrix L ∈ Rm×n, m ≥ n, and a family of matrices
{Ãi ∈ Rm×n : i ∈ I} (the set of subsystems) with strictly negative row dominating
diagonal, i.e., for each Ãi, i ∈ I its elements satisfying

âkk +
∑
k 6=l

|âkl| < 0, k = 1, . . . ,m (2.41)

such that LAi = ÃiL for all i.

These conditions are directly from [23].
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Chapter 3

Stability of Linear Impulsive
Switched Systems

3.1 Problem Formulation

In this chapter we will study the stability of autonomous linear systems in the following
form:

ẋ = Aσ(t,x)x, t 6= tk
∆x = Bσ(t,x)x, t = tk,

(3.1)

where the switching signal σ takes on values α ∈ {1, 2, . . . ,m} = L, and Aα and Bα are
constant real matrices for all α ∈ L.

The method used is an adaptation of the method in [28], which formulates sufficient
stability conditions for nonlinear impulsive systems (with a single continuous mode, not
hybrid systems) in two measures. We will begin by presenting the stability conditions using
the standard single measure definitions of stability, however. The reasons for the choice
are, firstly, to better introduce the material, and, secondly, because, for a linear system, we
expect to be able to characterize the stability based on the properties of the matrices that
make up the subsystem, and not based on a general Lyapunov function. For two measure
stability, the Lyapunov functions are closely linked to the measures h0 and h, so we need to
choose these together. In the section on stability in terms of two measures, we will discuss
this issue further.

Since we are using ordinary one measure stability, we will use quadratic Lyapunov
functions to determine stability. We use multiple Lyapunov functions, which means we
can use standard methods to find the functions, but we require extra conditions to ensure
stability. Recall that, to choose a quadratic Lyapunov function for a continuous linear
system, we solve an equation of the form ATP +PA = Q for an unknown positive definite
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symmetric matrix P . We choose P such that ATP + PA = ±Q, where Q is positive
definite. The sign of Q depends on whether A is a stable matrix, meaning the eigenvalues
are entirely in the left half complex plane. If A is stable, we use the negative sign, and,
if A is unstable (with eigenvalues entirely in the right half complex plane), we use the
positive sign. If A has eigenvalues with real part zero or of mixed sign, we choose to
add cI, a multiple of the identity, such that A + cI has eigenvalues of positive real part.
Hence, (AT + cI)P + P (A + cI) = Q, so ATP + PA = Q− 2cP , and we use the P found
in this equation. These are all linear equations, and solving them provides a clear and
unambiguous method for finding Lyapunov functions. From now on, when we refer to Pα
and Qα associated with subsystem α, we mean the solution to the appropriate equation
involving Aα and any Qα > 0:

Pα > 0 such that


ATαPα + PαAα = Qα, Aα is unstable;
ATαPα + PαAα = −Qα, Aα is stable;
ATαPα + PαAα = Qα − 2cPα, Aα is neither stable nor unstable,

but Aα + cI is unstable.
(3.2)

In the following sections, for a matrix A, we will use λ(A) to denote all the eigenvalues;
λmax(A), the maximum eigenvalue; and λmin(A), the minimum eigenvalue.

3.2 Stability Criteria in One Measure

For the special case where h = h0 = ‖x‖, we will start with the criteria for stability. Because
we are dealing with linear non-autonomous systems, the stability will automatically be
global uniform stability. We do not make any explicit assumptions about the switching
rule, but the criteria implicitly require it to satisfy certain properties. We can achieve these
using either a time- or space-based switching rule. The difference between using different
switching rules is also covered in Chapter 4, with nonlinear systems.

Before we present the stability results, we need the following lemma.

Lemma: For a symmetric Q and positive definite P , xTQx ≤ λmax(P−1Q)xTPx.

This follows by taking xTQx = xTP−1QPx ≤ xTλmax(P−1Q)Px. We get equality if
and only if x or Px is an eigenvector of eigenvalue λmax(P−1Q) for P−1Q. We can show
this by decomposing either x or Px into a linear combination of eigenvectors of P−1Q.

Theorem 1. Assume that

1. there exist positive definite matrices Pα for each α ∈ L;
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2. there exist µα ≥ ∆tαλmax(P−1
α (ATαPα+PαAα)) and να,β ≥ λmax(P−1

α (BT
αPβ+BT

αPβBα+
PβBα +Pβ−Pα)) with ∆tα a conservative estimate of the activation time of the sub-
system for every α, β ∈ L such that

µα + να,β ≤ 0; and

3. there exists γα ≥ 0 for every α, β ∈ L such that

µα + ln(1 + να,β) ≤ −γα. (3.3)

Then the zero solution of system 3.1 is uniformly stable.

Before proceeding with the proof, note that there are two aspects of condition 2 that
relate to the switching rule. The conservative estimate of the activation time of the sub-
system should be taken to mean that ∆tα is the maximum activation time of a subsystem
if µα ≥ 0 and that ∆tα is the minimum activation time of a subsystem if µα < 0. If the
switching rule is a known function of time, these can be changed to specific values for
specific intervals. See Chapter 4 for details. The conditions required for all ordered pairs
α, β only need to be verified if it is possible, based on the switching rule, for a switch from
subsystem α to subsystem β to occur.

Proof. Let Vα(x(t)) = x(t)TPαx(t), Qα = ATαPα+PαAα, α ∈ L and V (t, x) = Vσ(t,x(t))(x(t)).
If the subsystem α is activated at time t, we have

V̇ (x(t)) = V̇α(x)

= xT (ATαPα + PαAα)x (3.4)

≤ xTQαx ≤ λmax(P−1
α Q)Vα(x)

≤ µα
∆tα

Vα(x). (3.5)

If the system is switching from subsystem α to β, we have

V (x(t+))− V (x(t)) = ∆Vα,β(x)

= Vβ(x+)− Vα(x) (3.6)

= x+TPβx
+ − xTPαx (3.7)

= xT ((I +Bα)TPβ(I +B[23]α))x− xTPαx
≤ να,βVα(x). (3.8)

Let ε > 0 be given. Choose σ1 such that σ1 = e−1b(ε) with b(ε) = λ2
PMε

2 where
λPM = maxα∈L{

√
λ(Pα)}. Using the condition on the sum of µα and να,β, we know that
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µα ≤ 1, since otherwise, να,β must be less than −1, which is contradicted by condition 2
in the theorem.

Note that the choice of σ1 implies that when V (x) < σ1, ‖x(t)‖ < ε.

There exists a σ2 = σ2(ε) > 0 such that

σ2 + νσ2 < σ1,

where ν = maxα,β∈L{να,β}.

Choose σ0 = min{σ1e
−1, σ2}. There exists a δ = δ(ε) > 0 such that

Vq(x0) < σ0 if |x0| < δ

where q is the first active subsystem after the initial condition. This notation avoids any
potential problems with having to choose the time intervals based on the initial condition.
We assume the initial condition is x(τ+

0 ) = x0, where τ0 may or may not be a switching
time (using τ+

0 eliminates any ambiguity).

Let x(t) = x(t, τ0, x0) be a solution of (3.1) with ‖x0‖ < δ. Then ‖x0‖ < ε, assume
that, for all t, ‖x(t)‖ < ε. If not, there will be some t̃ > τ0 such that ‖x(t̃+)‖ ≥ ε. Set
j = max{k|tk ≤ t̃}. If j > q, for any k = q + 1, . . . , j, suppose subsystem α is active in
(tk−1, tk], we have ∫ Vα(x(tk))

Vα(x(t+k−1))

ds

s
≤ µα

Therefore,

ln

(
Vα(x(tk))

Vα(x(t+k−1))

)
≤ µα

A similar integration from tk to t+k with system switching from system α to β leads to

ln

(
Vβ(x(t+k ))

Vα(x(tk))

)
≤ ln

(
Vα(x(tk))(1 + να,β)

Vα(x(tk))

)
By (3.3) we know

ln

(
Vβ(x(t+k ))

Vα(x(t+k−1))

)
= ln

(
Vα(x(tk))

Vα(x(t+k−1))

)
+ ln

(
Vα(x(tk))(1 + να,β)

Vα(x(tk))

)
≤ −γα < 0

Hence, Vβ(x(t+k )) ≤ Vα(x(t+k−1)) ≤ Vq(t
+
q , x). We now claim that

V (t+q , x) < σ1
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In this first time interval, we assume that the qth subsystem is activated. There are two
possibilities. The first is that µq ≤ 0. In this case, the condition on the derivatives along
trajectories implies V (x(tq)) ≤ V (x0) < σ0. Because of our choice of σ0, we have that

V (x(t+q )) ≤ σ0 + νσ0 < σ1 (3.9)

The other case is that µq > 0, we must have νq,σ(x(t+q )) < 0 by condition 2, which implies

V (x(t+q )) ≤ V (x(tq)), and∫ Vq(x(tq))

σ0

ds

s
≤
∫ Vq(x(tq))

Vq(x0)

ds

s
≤ µq

tq − τ0
∆tq

< µq.

However, because µq ≤ 1, we know that∫ σ1

σ0

ds

s
= ln

(
σ1

σ0

)
≥ 1 ≥ µq

Therefore, V (x(tq)) < σ1, which implies V (t+q , x) < σ1, since the impulse is stabilizing in
this case.

We have now established that the Lyapunov functions decrease on the endpoints of
the intervals. We now assume that there is a time t̃ where ‖x‖ ≥ ε. This occurs in some
interval j, and t̃ ∈ (t̂, tj+1), where t̂ = max{τ0, tj}. Suppose the αth subsystem is activated
in this interval. If t̃ = t̂ or if t̃ > t̂ and µα ≤ 0, then we have

V (x(t̃+)) ≤ V (x(t̂+)) < σ1,

which leads to the following contradiction

b(ε) ≤ b(‖x(t̃+)‖) ≤ V (x(t̃+)) < σ1 ≤ b(ε).

The other contradiction is when µα > 0, in which case we do the same integration as above∫ Vα(x(t̃))

Vα(x(t̂+))

ds

s
≤ µα.

The contradiction arrives because this integral should be larger than integrating from σ1

to eσ1. By the original choice of σ1, if ‖x‖ ≥ ε, the Lyapunov function will have to be
greater than eσ1. But, once again, since there is a factor of e between the two values, this
integral will be greater than or equal to µj+1

µα ≥
∫ Vα(x(t̃))

Vα(x(t̂+))

ds

s
>

∫ eσ1

σ1

ds

s
= 1 ≥ µα.

Thus we must have ‖x‖ < ε and therefore system (3.1) is uniformly stable.
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Although the notation was very cumbersome in the above proof, it will be useful for
the results in two measures because we need to generalize what Vα(t, x) means. This proof,
in fact, is very similar to the corresponding one that will follow in the section on two
measure stability. For this reason, rather than including the extension to these criteria
that will satisfy asymptotic stability, we will look at a different set of criteria, using a
slightly different approach, that will be sufficient to show asymptotic stability. This result
is included later in this chapter.

3.3 Stability Criteria in Two Measures

3.3.1 Quadratic Lyapunov Functions in Two Measures

Partial stability and the stability of invariant sets are two relevant considerations for linear
systems, so it is necessary to consider stability using two measures. In order to continue
using the quadratic Lyapunov functions, we need to take care how these measures are
defined. We have a quadratic version with some symmetric P , which is of the form:

V (x) = xTPx

Positive definite means V (x) > a(h(x)). Decrescent means V (x) < b(h0(x)). The functions
a and b can be any suitable functions in K. The upper bound is relatively simple, and it
can be achieved for any quadratic Lyapunov function based on a symmetric matrix. The
other major condition on V is that

V̇ (x) = xT (ATP + PA)x ≤ λV (x).

For a linear system, we will generally be concerned with stability results related to
measures involving different subspaces of Rn. For partial stability, we will use h0(x) = ‖x‖
and h(x) = ‖x‖s =

√
x2

1 + x2
2 + · · ·+ x2

s. The second measure is the norm on a subspace
of Rn. Similarly with invariant sets, we will be interested in the null space of the matrices
Aα. Because we are dealing with switched systems, there are other possibilities, including
stable orbits or different types of invariant sets, but, in order to have some structure on
the measures and Lyapunov functions, we must make some assumptions. If we are only
dealing with subspaces, we can essentially use the same quadratic Lyapunov functions. We
simply take the subspace we wish to use for h(x) and find a basis for Rn that separates the
subspace from its complement. It is then only necessary to express the Lyapunov function
in terms of the lower dimensional system. Since the Lyapunov functions will be essentially
the same, we do not need to adjust the stability conditions very much.
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3.3.2 Stability Criteria

For h0, h-stability of a linear hybrid system, we can make many simplifications. Stability
is automatically global, since we are dealing with a linear system and uniform, since it is
autonomous. We present the theorem in a more general form that will help with

Theorem 2. If the following criteria are satisfied, the hybrid autonomous linear system
will be (h0, h)-stable.

1. h0, h ∈ Γ and h0 is finer than h;

2. there exist functions a ∈ PCK, b ∈ K and constants δ0, α0 > 0 such that for all
α ∈ L

λPM‖x‖ ≤ a(h0(t, x)) if (t, x) ∈ S(h0, δ0),

and
λPm‖x‖ ≥ b(h(t, x)) if h(t, x) < α0,

where λPM = maxk∈L{λ(Pk)}, λPm = mink∈L{λ(Pk)};

3. there exists µα ≥ ∆tαλmax(P−1
α (ATαPα + PαAα)) and να,β ≥ λmax(P−1

α (BT
αPβ +

BT
αPβBα + PβBα + Pβ − Pα)) with ∆tα a conservative estimate of the activation

time of the subsystem for every α, β ∈ L such that

µα + να,β ≤ 0.

4. there exists γα ≥ 0 for each α ∈ L

µα + ln(1 + να,β) ≤ −γα.

Proof. Let Vα(x) = xTPαx, Qα = ATαPα + PαAα, α ∈ L and V (x(t)) = Vσ(t,x)(x). If the
αth subsystem is activated at time t, we have

V̇ (x(t)) = V̇α(x)

= xT (ATαPα + PαAα)x

≤ xTQαx

≤ λmax(P−1
α Qα)Vα(x)

≤ µα
∆tα

Vα(x)

If the system is switching from the subsystem α to β, we have
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By condition 1, there exists ϕ ∈ PCK and δ1 > 0 such that

h(t, x) ≤ ϕ(t, h0(t, x)) < α0 whenever h0(t, x) < δ1.

Let ρ0 = ρ
λB

with λB = maxk∈L{
√
λ(I +Bk)}. Then (tk, x) ∈ s(h, ρ0) implies (tk, x +

B(tk, x)) ∈ s(h, ρ), k = 1, 2, . . . ;

Let ε > 0 with 0 < ε < ρ∗ = min{ρ0, α0}. Choose σ1 = e−1b(ε). Using the condition on
the sum of µα and να,β, we know that µα ≤ 1, since otherwise, να,β must be less than −1,
which is contradicted by the condition on ∆V .

Note that the choice of σ1 implies that when V (x) < σ1, h(t, x) < ε.

There exists a σ2 = σ2(ε) > 0 such that

σ2 + νσ2 < σ1,

where ν = maxα,β∈L{να,β}.
Choose σ0 = min{σ1e

−1, σ2}. There exists a δ = δ(ε) > 0 such that

V (x0) < σ0 if ‖h0(t0, x0)‖ < δ.

Let x(t) = x(t, τ0, x0) be a solution of (3.1) with h0(t0, x0) < δ. Then h(t0, x0) < ε.
Assume that, for all t, h(t, x(t)) < ε. If not, there will be some t̃ > τ0 such that h(t, x(t̃+) ≥
ε. Set j = max{k|tk ≤ t̃}. If j > q, then for k = q+1, . . . , j, suppose subsystem α is active
in (tk−1, tk], we have ∫ Vα(x(tk))

Vα(x(t+k−1))

ds

s
≤
∫ Vα(x(tk))

Vα(x(t+k−1))

ds

s
≤ µα.

Therefore,

ln

(
Vα(x(tk))

Vα(x(t+k−1))

)
≤ µα.

A similar integration from tk to t+k leads to

ln

(
Vβ(x(t+k ))

Vα(x(tk))

)
≤ ln

(
Vα(x(t+k ))(1 + να,β)

Vα(x(tk))

)
.

This means we know

ln

(
Vβ(x(t+k ))

Vα(x(t+k−1))

)
≤ 0.

Hence, Vβ(x(t+k )) ≤ Vα(x(t+k−1)) ≤ Vq(x(t+q )). We now claim that

V (x(t+q )) < σ1.
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In this first time interval, we assume that the qth subsystem is activated. There are two
possibilities. The first is that µq ≤ 0. In this case, the condition on the derivatives along
trajectories implies V (x(tq)) ≤ V (x0) < σ0. Because of our choice of σ0, we have

V (x(t+q )) ≤ σ0 + νσ0 < σ1 (3.10)

The other case is that µq > 0, in which case we quantify the difference between Vq(x0) and
Vq(x(tq)) by integrating:∫ Vq(x(tq))

σ0

ds

s
≤
∫ Vq(x(tq))

Vq(x0)

ds

s
≤ µq

tq − τ0
∆tq

< µq

However, because µq ≤ 1, we know that∫ σ1

σ0

ds

s
= ln

(
σ1

σ0

)
≥ 1 ≥ µq

Therefore, Vq(x(tq)) < σ1, which implies Vq(x(t+q )) < σ1, since the impulse is stabilizing in
this case. Thus our claim is true.

We have now established that the Lyapunov functions decrease on the endpoints of
the intervals. We now assume that there is a time t̃ where ‖x‖ ≥ ε. This occurs in some
interval j, and t̃ ∈ (t̂, tj+1), where t̂ = max{τ0, tj}. Suppose the αth subsystem is activated
in this interval. If t̃ = t̂ or if t̃ > t̂ and µj+1 ≤ 0, then we have V (x(t̃)) < σ1, but this is
only possible if ‖x‖ < ε. The other contradiction is when µj+1 > 0, in which case we do
the same integration as above: ∫ Vα(x(t̃))

Vα(x(t̂+))

ds

s
≤ µα

The contradiction arrives because this integral should be larger than integrating from σ1

to eσ1. By the original choice of σ1, if ‖x‖ ≥ ε, the Lyapunov function will have to be
greater than eσ1. But, once again, since there is a factor of e between the two values, this
integral will be greater than or equal to µj+1

µα ≥
∫ Vα(x(t̃))

Vα(x(t̂+))

ds

s
>

∫ eσ1

σ1

ds

s
≥ µα (3.11)

which is a contradiction. Thus we must have ‖x‖ < ε and therefore system (3.1) is (h0, h)
stable.

Remark 1. Since δ1 is independent of t, so we can also get the uniform stability of the
system.
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To show how this theorem would be used to show a stability result, we present a
corollary showing the conditions for partial stability.

Corollary 1. If the following criteria are satisfied, the hybrid autonomous linear system
will be partially stable with respect to ‖x‖s.

1. There exists µα ≥ ∆tαλmax(P−1
α (ATαPα + PαAα)) and να,β ≥ λmax(P−1

α (BT
αPβ +

BT
αPβBα + PβBα + Pβ − Pα)) with ∆tα a conservative estimate of the activation

time of the subsystem for every α, β ∈ L such that

µα + να,β ≤ 0, and

2. there exists γα ≥ 0 for each α ∈ L

µα + ln(1 + να,β) ≤ −γα.

Proof. Denote h0 = ‖x‖, h = ‖x‖s. It can be seen that h0, h ∈ Γ and h0 is finer than h, V
is h-positive definite and weakly h0-decrescent. Then all the conditions of Theorem 2 are
satisfied. This completes the proof.

The next result is on (h0, h)-asymptotic stability.

Theorem 3. Assume all the requirements for stability are satisfied and

1. ∆tk is bounded and there exist d ∈ K and α1 > 0 such that

λPM‖x‖ ≤ d(h(t, x)) if h(t, x) < α1.

2. for every β,M > 0, there is a positive integer N such that

q+N∑
k=q+1

βmin
k∈L
{γk} > M, ∀q ≥ 0.

Then system (3.1) is (h0, h)-asymptotically stable.

Proof. By Theorem 2 the system is (h0, h)-uniformly stable. Thus for ρ̃ = min{ρ∗, σ1}
there exists a δ̃ = δ̃(ρ̃) > 0 such that h0(τ0, x0) < δ̃ implies h(t, x(t)) < ρ̃, t ≥ τ0 , where
x(t) = x(t, τ0, x0) is any solution of (3.1) with h0(τ0, x0) < δ̃. It is easy to see, in view
of condition 1, that system (3.1) is also (h, h)-uniform stable. Let ε ∈ (0, ρ̃) be given and
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define δ = δ(ε) as in the definition of (h, h)-uniform stability. From conditons (ii) there
exists N > 0 such that

q+N∑
k=q+1

γσ(tk)bσ(tk)(δ) > d(ρ̃) (3.12)

Note that this is not immediately guaranteed by our assumption, which uses a constant
β and M , but, given a finite number of subsystems, we can choose β to be the smallest
value of bσ(tk)(δ). Let ∆tk < ∆t for all k = 1, 2, . . . , and choose T = (N + 1)∆t. Then

for any t0 ∈ R+ let x(t) = x(t, τ0, x0) be a solution of (3.1) with h0(τ0, x0) < δ̃. It is
sufficient to show that there exists t∗ ∈ [τ0, τ0 + T ] such that h(t∗, x(t∗)) < δ. For the
sake of contradiction, assume h(x) ≥ δ for the entire interval [τ0, τ0 + T ]. This means that
integrating between any endpoints of a switching interval∫ Vσ(tk+1)(x(t

+
k ))

Vσ(tk)(x(t
+
k−1))

ds

s
≤ −γσ(tk)

yields
Vσ(tk)(x(t+k−1)) ≤ Vσ(tk+1)(x(t+k ))− γσ(tk)bσ(tk)(δ).

Let q = min{k : tk ≥ τ0}. Then by the choice of T , tq+N ∈ [τ, τ0 + T ]. Then by (3.12) we
obtain

Vσ(tq+N+1)(x(t+q+N)) ≤ d(ρ̃)−
q+N∑
k=q+1

γσ(tk)bσ(tk)(δ)

which leads to the contradiction

Vσ(tq+N+1)(x(t+q+N)) < 0.

Thus we must have h(t∗, x(t∗)) < δ for some t∗ ∈ [τ0, τ0 + T ] and hence h(t, x(t)) < ε for
t ≥ τ0 + T . So the system (3.1) is (h0, h)-asymptotically stable.

3.4 Other Results

Although these results are sufficient to cover basic stability properties of linear systems,
there are a couple of other results we should at least consider.

3.4.1 Asymptotic Stability in One Measure

These criteria are based on [13], but we will also consider the stabilizing effect impulses
have on the overall system. Because we are not concerned with using consistent notation
with a similar result in two measures, the notation will be different here.
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We define the average dwell time, by stating that the number of discontinuities, Nσ(t0, t)
must satisfy

N−0 +
(t− t0)
τa

≤ Nσ(t0, t) ≤ N+
0 +

(t− t0)
τa

, (3.13)

where τa is the average dwell time.

We categorize the subsystems α into two classes:

1. S− = {α|λατa + ln(ρ(1 + να)) < 0} and

2. S+ = {α|λατa + ln(ρ(1 + να)) ≥ 0}.

Here, ρ = max
(
λmax(Pα)
λmin(Pα)

)
. The total time a subsystem α is used between time t0 and time

t is given by Tα(t0, t). We define T−(t0, t) and T+(t0, t), respectively as the total times of
activation of the subsystems in the two classes. We also define

1. for α ∈ S−, we let lLambda− denote the maxα(λατa + ln(ρ(1 + να)) and

2. for α ∈ S+, we let Λ+ denote the maxα(λατa + ln(ρ(1 + να)).

Theorem 4. Assume we have a system of the form (2) and we can find positive definite
matrices Pα and the functions ϕα and ψj,α, j = 1, 2, 3 associated with them in a local
region. Assume also that all of the definitions above. If

Λ− + qΛ+ < 0 (3.14)

for some q ≥ 0 and if
T+(t0, t) ≤ qT−(t0, t) (3.15)

then the trivial solution will be exponentially stable.

Proof. Find a switched Lyapunov function of the form

Vik(x(t)) = xTPikx, ik ∈ {1, 2, . . . ,m}, (3.16)

where each Pik > 0.

We take the derivative along trajectories:

V̇ik(x(t)) = xT (ATikPik + PikAik)x

≤ xTQikx

≤ λmax(P−1
ik
Qik)Vik(x)

≤ λikVik(x(t)) (3.17)
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Therefore,
Vik(x(t)) ≤ Vik(x(t+k−1))e

λik (t−tk−1), t ∈ (tk−1, tk]. (3.18)

Considering the impulses, we see that

∆Vik(x(tk)) = ∆Vik(x) (3.19)

= Vik(x
+)− Vik(x) (3.20)

= x+TPikx
+ − xTPikx (3.21)

= xT ((I +Bik)
TPik + (I +Bik))x− xTPikx (3.22)

≤ νikVik(x(tk)) (3.23)

Therefore,
Vik(t

+
k ) ≤ (1 + νik)Vik(t

+
k−1)e

λik (t−tk−1). (3.24)

We can further simplify the equation using w(t) = xT(t)x(t) and ρ, obtaining

w(t+k ) ≤ ρ(t+ νik)w(t+k−1)e
λik (t−tk−1). (3.25)

As a result, we find the solution on the first interval satisfies

w(t) ≤ w(t+0 )ρeλi1 (t−t0), t ∈ (t0, t1]. (3.26)

The kth interval satisfies

w(t) ≤ w(t+0 )ρk(k−1+νi1 +νi2 + · · ·+νik) exp[λi1(t1− t0)+λi1(t2− t1)+ · · ·+λi1(t− tk−1)],
(3.27)

for t ∈ (tk−1, tk]. Note that we multiply by a factor of ρ each time we switch to a different
subsystem.

Now we collect the contributions of each subsystem:

w(t) ≤ w(t+0 )ρ exp

[
T1(t0, t)

(
λ1 + ln(ρ(1 + ν1))

(
1

τa
+

N1

T1(t0, t)

))
(3.28)

+ · · ·+ Tm(t0, t)

(
λm + ln(ρ(1 + νm))

(
1

τa
+

Nm

Tm(t0, t)

))]
, (3.29)

where Nα = N+
0 or N−0 as appropriate to maintain the inequality. Since we are only

interested in the asymptotics, and the terms with Nα do not depend on t, we can take
them out of the exponential as the constant C1. We also collect the subsystems of the two
different types together, obtaining:

w(t) ≤ w(t+0 )ρC1 exp
[
T−(t0, t)Λ

− + T+(t0, t)Λ
+
]

≤ w(t+0 )ρC1 exp
[
T−(t0, t)(Λ

− + qΛ+)
]

≤ w(t+0 )ρC1 exp

[
1

1 + q
(Λ− + qΛ+)(t− t0)

]
. (3.30)

With this inequality, we see that exponential stability is satisfied.
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For this result, we used a different approach, where we did not consider each possible
switch from one subsystem to another. This meant we needed the parameter ρ as a “worst
case.” It would also be possible to do this in a similar way to the other criteria. The major
aspect that cannot easily be reconciled, however, is the fact that this proof requires very
explicit upper bounds on the growth of the system during each interval. This is difficult to
estimate when we are using two arbitrary measures, which is why it is easier to make sure
the Lyapunov functions do not increase on each interval. For standard stability results,
however, this method allows more interesting cases.

3.4.2 Non-Autonomous Systems

Since we have only covered autonomous systems, it is natural to ask about non-autonomous
systems. As mentioned in Chapter 2, these systems present certain difficulties, even when
they are not also impulsive switched systems.

The systems of interest are described as follows:

ẋ = Aσ(t,x(t))(t)x(t), t 6= tk
∆x = Bσ(t,x(t))(tk)x(tk), t = tk

(3.31)

with the same assumptions on the switching signal σ.

In this case, the Lyapunov functions, V (t, x), depend on time. If we also need to
incorporate measures h(t, x) and h0(t, x) in a meaningful way. We will again want to
restrict the possibilities for h and h0, in order to be able to specify Lyapunov functions
more exactly, but, in this case, we must remember that sets invariant under A(t) are
dependent on time. This will require a different approach from simply making a change
of variables to isolate two subspaces in which we are interested. It might be possible
to incorporate a time varying change of variable matrix in order to have the Lyapunov
function constantly expressed in a basis that separates the invariant set. In order to deal
with partial stability, we could attempt the same approach as before.

First, we recall the conditions for exponential stability of a standard non-autonomous
system

ẋ = A(t)x(t).

We require a continuously differentiable positive definite matrix P (t) such that

1. c1‖x‖2 ≤ xTP (t)x ≤ c2‖x‖2 and

2. −P ′(t) = AT (t)P (t) + P (t)A(t) +Q(t), Q(t) > 0.
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Let P (t) be a C1 positive definite matrix such that

−Ṗ (t) = AT (t)P (t) + P (t)A(t) +Q(t)

Q(t) is normally required to be positive definite, and, in addition, constants are required
so that c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2.

3.4.3 Stability Criteria

We propose the following stability criteria without proof, but as template for what is likely
to be found possible.

1. h0, h ∈ Γ and h0 is finer than h;

2. there are λB ∈ R such that λB ≤ λmax{Bα(t)} for all α ∈ {1, 2, . . .m} and t ∈ R+;

3. there exists constant 0 < ρ0 < ρ such that (tk, x) ∈ s(h, ρ0) implies (tk, x+I(tk, x)) ∈
s(h, ρ), k = 1, 2, . . . ;

4. there exist functions a ∈ PCK, b ∈ K and constants δ0, α0 > 0 such that for all
i ∈ {1, 2, . . . ,m}

λPM(t)‖x‖2 ≤ a(t, h0(t, x)) if h0 < δ0,

and
λPm(t)‖x‖2 ≥ b(h(t, x)) if h(t, x) < α0

where λPM(t) = maxk∈L λ(Pk(t)) and λPm(t) = mink∈L λ(Pk(t))

5. for each α ∈ L, there exists Pα(t) such that

−Ṗα(t) = ATα(t)Pα(t) + Pα(t)Aα(t) +Qα(t)

for a symmetric matrix Qα;

6. Qα above satisfies properties such that the eigenvalues of P−1
α (t)Qα(t) are bounded

for all time and
−xTQα(t)x ≤ µα

∆tα
xTPα(t)x;

7. there exists να,β ≥ λmax(P−1
α (t)(BT

αPβ(t) +BT
αPβ(t)Bα +Pβ(t)Bα +Pβ(t)−Pα(t)) for

α, β ∈ L; and

8. there exists γα ≥ 0, such that

µα + ln(1 + να,β) ≤ −γα.
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Then the zero solution of system (3.31) is (h0, h)-stable.

Remark 2. Note that for time-dependent switching, we can find νk and µk more easily
because we do not require the global convergence of the eigenvalues, but only need to look
at them for one interval.

Although we do not have a complete proof, we can still look through the steps of the
previous results and see that things do not change too much.

Vβ(t+k , x(t+k ))− Vα(tk, x(tk)) = x+TPβ(tk)x
+ − xTPα(tk)x

= xT ((I +Bα(tk))
TPβ(tk) + (I +Bα(tk)))x− xTPα(tk)x

≤ να,βVα(tk, x) (3.32)

We chose Vα(t, x) to be h-positive definite and h0-decrescent. Therefore,

Vα(t, x) ≥ bα(h(x)) (3.33)

We use this bound to find an estimate for δ based on ε

For one measure, we simply used an explicit formula for σ1 that satisfied our require-
ments. In this slightly more complicated case, we must use the inverse of b such that
σ1 = e−1b−1(ε). Here, we choose from the finite list of bα to minimize σ1. Using the condi-
tion on the sum of µ and ν, we know that µα ≤ 1, since otherwise, να,β must be less than
−1, which is contradicted by the condition on ∆V .

The only other major difference when using two measures is that we have to choose δ
with respect to h0, which requires the decrescentness of Vα

Note that the choice of σ1 implies that when V (x) < σ1, h(x) < ε. We have to make a
further refinements with σ1 < σ0(1 + |ν|) and σ1 > eσ0, where ν is chosen from να,β such
that this is true of all subsystems. We choose δ such that V (x) < σ0 when h0(x) < δ. We
now let h0(x0) < δ.

Since h(x0) < ε, assume that, for all t, h(x(t)) < ε. If not, there will be some t̃ > τ0
such that h(x(t̃+) ≥ ε. Set j = max{k|tk ≤ t̃}. If j > q,∫ Vα(x(tk)

Vα(x(t+k−1)

ds

s
≤ µα. (3.34)

Therefore,

ln

(
Vα(x(tk))

Vα(x(t+k−1))

)
≤ µα. (3.35)

A similar integration from tk to t+k leads to

ln

(
Vα(x(t+k ))

Vα(x(tk))

)
≤ ln

(
Vα(x(t+k ))(1 + να,β)

Vα(x(tk))

)
. (3.36)
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This means we know

ln

(
Vα(x(t+k ))

Vα(x(t+k−1))

)
≤ 0. (3.37)

Hence, V (x(t+k )) ≤ V (x(t+k−1)) ≤ V (x(t+q )). We now claim that

Vq(x(t+q )) < σ1. (3.38)

In this first time interval, there are two possibilities. The first is that µq ≤ 0. In this case,
the condition on the derivatives along trajectories implies V (x(tq)) ≤ V (x0) < σ0. Because
of our choice of σ0, we have that

V (x(t+q )) ≤ σ0 + |νq|σ0 < σ1 (3.39)

The other case is that µq > 0, in which case we quantify the difference between Vq(x0) and
Vq(x(t1)) by integrating:∫ Vq(x(tq))

σ0

ds

s
≤
∫ Vq(x(tq))

Vq(x0)

ds

s
≤ µq

tq − τ0
∆tq

< µq (3.40)

However, because µq ≤ 1, we know that∫ σ1

σ0

ds

s
= ln

(
σ1

σ0

)
≥ 1 ≥ µq (3.41)

Therefore, Vq(x(tq)) < σ1, which implies Vq(x(t+q )) < σ1.

We have now established that the Lyapunov functions decrease on the endpoints of
the intervals. We now assume that there is a time t̃ where ‖x‖ ≥ ε. This occurs in some
interval j, and t̃ ∈ (t̂, tj+1), where t̂ = max{τ0, tj}. If t̃ = t̂ or if t̃ > t̂ and µj+1 ≤ 0, then
we have V (x(t̃) < σ1, but this is only possible if ‖x‖ < ε. The other contradiction is when
µj+1 > 0, in which case we do the same integration as above:∫ Vj(x(t̃))

Vj(x(t̂+))

ds

s
≤ µj+1 (3.42)

The contradiction arrives because this integral should be larger than integrating from σ1

to eσ1. By the original choice of σ1, if ‖x‖ ≥ ε, the Lyapunov function will have to be
greater than eσ1. But, once again, since there is a factor of e between the two values, this
integral will be greater than or equal to µj+1

µj+1 ≥
∫ Vj(x(t̃))

Vj(x(t̂+))

ds

s
>

∫ eσ1

σ1

ds

s
≥ µj+1 (3.43)

Remark 3. Note that for time-dependent switching, we can find νk and µk more easily
because we do not require the global convergence of the eigenvalues, but only need to look
at them for one interval.
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3.4.4 Two Measures

Dealing with non-autonomous linear systems in two measures is a little more difficult
because we must accept the possibilities that the measures will be time dependent and
take on many forms. For example, we could consider stability with respect to the time
varying subspace given by the kernel of Aα(t) in one of the subsystems. Rather than get
into the detail of choosing the correct versions of h0 and h, we will move on to more general
nonlinear non-autonomous systems in the next chapter.

3.5 Linearization

Before looking at stability results for general nonlinear systems, we will see how the linear
approach can also apply. In many cases, it is sufficient to use quadratic Lyapunov functions
for each of the subsystems. The method of linearization used here is similar to the one
used for switched systems in [13]

Assume we can express the nonlinear system as a system with autonomous linear parts,
so that subsystem α takes the form{

x′ = Aαx+ gα(t, x), t 6= tk
∆x = Bαx+ Jα(t, x), t = tk

, (3.44)

where Aα and Bα are real matrices. We have an autonomous linear impulsive switched
system with nonlinear disturbances.

Let Vα(t, x) = xTPαx for positive definite matrices Pα for each subsystem. We compute
the derivative along trajectories:

V̇α(t, x) = xT(PαAα + AT
αPα)x+ 2xTPαgα(t, x) (3.45)

We will need the non-linear part to be insignificant. It is, therefore, useful if we can find
conditions that create a bound based on the quadratic Lyapunov function we are using.
We use the assumptions in the following lemma.

Lemma 24. If the nonlinear part gα(t, x) satisfies

lim
‖x‖→0

‖gα(t, x)‖
‖x‖

= 0 (3.46)

then there exists a function ϕα(t) such that xTPαgα(t, x) ≤ ϕα(t)xTPαx in a local region
about the origin.
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If we make the assumption (3.46), we let ε > 0 and find δ such that ‖x‖ ≤ δ implies

‖gα(t, x)‖ ≤ ε‖x‖. Therefore, xTPαgα(t, x) ≤ ελmax(Pα)
λmin(Pα)

xTPαx. Another way to reach the

same conclusion is to assume that gα is Lipschitz, so ‖gα(t, x)‖ ≤ L(t)‖x‖.

During impulses, we can make a similar calculation

∆Vα,β(tk, x) = xT(PβBα +BT
αPβBα +BT

αPβ)x+ xT(Pβ − Pα)x+ 2xTPβJα(t+k , x)
+2xTBT

αPβJα(t+k , x) + Jα(t+k , x)TPβJα(t+k , x).
(3.47)

For the nonlinear terms, we can assume there are functions ψi(tk), for i = 1, 2, 3 such that
the following are true locally:

xTPαJα(t+k , x) ≤ ψ1(tk)x
TPαx; (3.48)

xTBT
αPαJα(t+k , x) ≤ ψ2(tk)x

TPαx; (3.49)

Jα(t+k , x)TPαJα(t+k , x) ≤ ψ3(tk)x
TPαx. (3.50)

Similar constraints on Jα to those found for gα will ensure that these functions can be
found.

3.5.1 Stability Criteria

We will use some definitions to help clarify the stability criteria. For the continuous
portions of the trajectories, we let Q1,α = (PαAα + AT

αPα)

V̇α(t, x) = xT(PαAα + AT
αPα)x+ 2xTPαgα(t, x) (3.51)

Assume xTPαgα(t, x) ≤ ϕ(t)xTPαx, and then find λα(t) such that

λmax(P−1
α Q1,α) + 2ϕα(t) ≤ λα(t). (3.52)

Since t only affects the nonlinear parts, assume also that there exists λα such that λα(t) ≤
λα.

For the discrete portion, let PβBα +BT
αPβBα +BT

αPβ + Pβ − Pα = Q2,αβ. We find ναβ
such that

λmax(P−1
α Q2,αβ) + 2ψ1,α(tk) + 2ψ2,α(tk) + ψ3,α(tk) ≤ να(tk). (3.53)

Since t only affects the nonlinear parts, assume we can find να ≥ να(tk) for all tk.

We are now ready to present a theorem. In order to achieve uniform asymptotic sta-
bility, we simply use the criteria for the linear system, but replace µα and να from those
theorems with the appropriate values.
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Theorem 5. If the following criteria are satisfied, the impulsive switched nonlinear system
will be (h0, h)-stable.

1. h0, h ∈ Γ and h0 is finer than h;

2. there exist functions a ∈ PCK, b ∈ K and constants δ0, α0 > 0 such that for all
α ∈ L

λPM‖x‖ ≤ a(h0(t, x)) if h0(t, x) < δ0,

and
λPm‖x‖ ≥ b(h(t, x)) if h(t, x) < α0,

where λPM = maxk∈L{λ(Pk)}, λPm = mink∈L{λ(Pk)};

3. the system is linearizable in such a way that there exists λα as an upper bound to
λα(t) defined in (3.52)and να as an upper bound to να(t) defined in (3.53);

4. let µα = λα∆tα, where ∆tα a conservative estimate of the activation time of the
subsystem for every α, β ∈ L such that

µα + να,β ≤ 0; and

5. there exists γα ≥ 0 for each α ∈ L

µα + ln(1 + να,β) ≤ −γα.

Proof. As we have already included the effects of the nonlinear parts within the parameters
required for stability, the proof proceeds in the same manner as the other linear system
results.

3.6 Conclusion

In this chapter, stability criteria for both autonomous and non-autonomous systems with
impulse have been obtained. Criteria of partial stability for these systems have also been
established.
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Chapter 4

Stability of Impulsive Non-Linear
Switched Systems in Two Measures

4.1 Problem Formulation

Consider a system given by{
x′ = fi(k)(t, x), t ∈ (tk−1, tk]
∆x = Ii(k)(t, x), t = tk

. (4.1)

The switching signal i : N→ L = {1, 2, . . . ,m} indicates which subsystem is active in the
time interval (tk, tk+1]. To begin with, we use a predictable switching rule: one that is a
function of time only. For stability, we say that (4.1) is (h0, h)-stable if given ε > 0 and
τ0 ∈ R+, there exists a δ = δ(τ0, ε) > 0 such that h0(τ0, x0) < δ implies h(t, x(t)) < ε, t ≥ τ0,
where x(t) = x(t, τ0, x0) is a solution with x(τ0) = x0.

Since we are dealing with multiple Lyapunov functions, we are not interested in the
change of a particular Vα after an impulse, but instead interested in the change from Vα
to Vβ, where α is the initial switching mode and β is the new mode. Therefore, we define
∆Vα,β as

∆Vα,β(tk, x) = Vβ(t+k , x+ Iα(t+k , x))− Vα(tk, x).

With this one change, the stability criteria for system (4.1) are almost identical to those
for a common Lyapunov function.
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4.2 Stability Criteria for Non-Linear Systems Based

on Time-Dependent Switching

Theorem 6. If the following conditions hold, system (4.1) will be (h0, h)-stable. If there
is a set of Lyapunov functions Vα(t, x) that are piecewise continuous in t and locally Lips-
chitzian in x such that

1. h, h0 ∈ Γ and h0 is finer than h;

2. there exist constants 0 < ρ0 < ρ such that (t, x) ∈ s(h, ρ0) implies (tk, x+I(tk, x(tk))) ∈
S(h, ρ), k ∈ L;

3. Vα ∈ ν0 is h-positive definite and weakly h0-decrescent for all subsystems α;

4. the switching signal i is either time-based, or the active subsystem in each time in-
terval can be predicted in advance.

5. there exists a constant M and, for every switching time, k, there exists a constant
µk ≤M and a function Ck ∈ K0 such that

D+Vi(k)(t, x) ≤ µk
∆tk

Ck(Vi(k)(t, x)), (t, x) ∈ s(h, ρ), (4.2)

where ∆tk = tk − tk−1 and i(k) ∈ L is the subsystem activated during the interval
(tk−1, tk];

6. for every k, there is a constant νk and a function dk ∈ K0 such that

∆Vi(k),i(k+1)(tk, x) ≤ νkdk(Vi(k)(tk, x), (tk, x)) ∈ s(h, ρ); (4.3)

7. the constants µk and νk both satisfy

µk + νk ≤ 0 (4.4)

for all k ∈ L;

8. there exists a constant l such that, for every k, there exists a constant lk ≥ l > 0
such that

lk > µk sup
σ∈(0,lk]

{Ck(σ)}; and (4.5)

43



9. there exist constants γk ≥ 0 such that

µk +

∫ σ+νkdk(σ)

σ

ds

Ck(s)
≤ −γk, ∀σ ∈ (0, lk) (4.6)

and
νkCk(σ) + µkdk(σ) ≤ 0, ∀σ ∈ (0, lk). (4.7)

Proof. Since V (t, x) = Vi(k)(t, x) with t ∈ (tk−1, tk] is h-positive definite and weakly h0-
decrescent for all subsystems, thus for any α ∈ L, there exist functions aα ∈ PCK, bα ∈ K,
and constants δ0,α and ξα such that

Vα(t, x) ≤ aα(t, h0(t, x)) if h0(t, x) < δ0,α

and
Vα(t, x) ≥ bα(h(t, x)) if h(t, x) < ξα (4.8)

With a finite number of subsystems, we can then define ξ = min{ξα} and δ0 = min{δα,0}.
Using condition 1, we define δ1 according to the fact that

h(t, x) ≤ ϕ(t, h0(t, x)) < ξ whenever h0(t, x) < δ1

Let ε > 0 be given and assume, without loss of generality, that 0 < ε < ρ∗ = min{ρ0, ξ, b
−1(l)},

where b−1
α (lα) = ε0 such that bα(ε0) < lα for all α ∈ L. It is for this reason that lα

must have a lower bound. Define σ1,α = bα(ε0)e
−pα . With (4.5), we choose pα such that

µα sup
σ∈(0,lk]

{Cα(σ)}+ σ1,α < lα (again, this is possible provided a lower bound on lα). Let

the initial time τ0 also be given. From (4.3) and (4.4), for any k ∈ N, we derive

−Vi(k)(tk, x) ≤ ∆Vi(k),i(k+1)

≤ νkdk(Vi(k)(tk, x))

≤ −µkdk(Vi(k)(tk, x)) if h(tk, x) < ρ.

Divide through the inequality by −Vi(k)(tk, x)dk(Vi(k)(tk, x)) (a negative quantity) and in-
tegrate with respect to Vi(k)(tk, x) represented by the variable s:∫ bi(k)(ε)

σ1,i(k)

ds

dk(s)
≥ µk

∫ bi(k)(ε)

σ1,i(k)

ds

s
= µk ln

(
bi(k)(ε)

σ1,i(k)

)
≥ µk, k = 1, 2, . . . . (4.9)

Using the same integration with σ2,i(k) = σ1,i(k)e
−1, we conclude∫ σ1,i(k)

σ2,i(k)

ds

dk(s)
≥ µk, k = 1, 2, . . . . (4.10)
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Define σ1 = minα∈L{σ1,α} and σ2 = minα∈L{σ2,α}. Let q be the first switching time after
the initial time, τ0, so q = min{k : tk ≥ τ0}. For ease of notation, we will also use q to
index other constants associated with the interval, such as Cq and µq. Since dk ∈ K0 (i.e.,
continuous, dk(0) = 0, and dk(s) 6= 0 if s 6= 0), there exists a σ3,q = σ3,q(τ0, ε) > 0 such
that

σ3,q + |νq|dq(σ3,q) < σ1. (4.11)

Define σ0 = min{σ2, σ3,q}, noting σ2 < σ1 by definition. Using the decrescence of the
multiple Lyapunov function, there exists a δ2 = δ2(τ0, ε) > 0 such that

Vi(q)(τ
+
0 , x0) < σ0 if h0(τ0, x0) < δ2. (4.12)

Let δ = min{δ0,q, δ1,q, δ2} and consider a solution to (4.1), x(t) = x(t, τ0, x0) with switching
signal i. Then the choice of δ implies h(τ0, x0) < ε since Vq(τ

+
0 , x0) < σ0 ≤ σ1,q =

bq(ε)e
−pq < bq(ε). Vi(q) is h-positive definite, and bq ∈ K, so h(τ0, x0) < ε. Now suppose

that h(t, x(t)) eventually exceeds ε. Hence, there is a t̃ such that h(t̃+, x(t̃+)) ≥ ε and
h(t, x(t)) < ε for t ∈ [τ0, t̃). This covers the cases when h(t, x(t)) exceeds ε on a continuous
trajectory and when it does so immediately following an impulse. Now, set j = max{k :
tk ≤ t̃}. First, consider the time immediately after the first tq, the first switch on or after
the initial time. We claim that

Vi(q+1)(t
+
q , x(t+q )) < σ1.

If tq = τ0, this is true by the definition of σ0, which is smaller than σ1. Therefore, we
assume, tq−1 < τ0 < tq. If, on the one hand, µq ≤ 0, then (4.2) implies Vi(q) is decreasing, so
Vi(q)(tq, x(tq)) ≤ Vi(q)(τ

+
0 , x(τ+

0 )) < σ0 < σ1. Using (4.11) and (4.3) leads to the conclusion
that

Vi(q+1)(t
+
q , x(t+q )) ≤ Vi(q)(tq, x(tq)) + νqdq(Vi(q)(tq, x(tq)))

≤ σ0 + |νq|dq(σ0) < σ1.

On the other hand, if µq > 0, then (4.4) implies νq < 0, so Vi(q+1)(t
+
q , x(t+q )) ≤ Vi(q)(tq, x(tq)).

Using (4.2) and integrating as before, we have∫ Vi(q)(tq ,x(tq))

σ0

ds

Cq(s)
≤
∫ Vi(q)(tq ,x(tq))

Vi(q)(τ
+
0 ,x(τ

+
0 ))

ds

Cq(s)
≤ µq

tq − τ0
∆tq

< µq. (4.13)

With (4.7) and (4.4), we can rearrange and integrate to obtain∫ σ1

σ0

ds

Cq(s)
≥ −νq

µq

∫ σ1

σ0

ds

dq(s)
≥
∫ σ1

σ0

ds

dq(s)
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since both σ0 and σ1 are less than lq. This, in combination with (4.10), indicates that∫ σ1

σ0

ds

Cq(s)
≥ µq.

Therefore, (4.13) tells us that Vi(q)(tq, x(tq)) < σ1; thus, Vi(q+1)(t
+
q , x(t+q )) < σ1.

Assume for k = q + 1, . . . , j,

Vi(k)(t
+
k−1, x(t+k−1)) < σ1. (4.14)

Since we have not reached t̃, h(t, x(t)) < ε < ρ, so we can use (4.2). Hence,∫ Vi(k)(tk,x(tk))

Vi(k)(t
+
k−1,x(t

+
k−1)

ds

Ck(s)
≤ µk. (4.15)

Using (4.3) and the fact that Ck ∈ K0,∫ Vi(k+1)(t
+
k ,x(t

+
k ))

Vi(k)(tk,x(tk)

ds

Ck(s)
≤
∫ Vi(k)(tk,x(tk))+νkdk(Vi(k)(tk,x(tk))

Vi(k)(tk,x(tk)

ds

Ck(s)
.

We claim that Vi(k)(tk, x(tk)) < lk. If not, there exists a t∗ such that tk−1 < t∗ ≤ tk,
Vi(k)(t

∗, x(t∗)) = lk ≤ Vi(k)(tk, x(tk)) and Vi(k)(t, x(t)) < lk for all tk−1 < t < t∗. Using our
assumption (4.14), (4.5), and (4.15), note that

(Vi(k)(t
∗, x(t∗))− σ1)

1

sups∈(0,l]{Ck(s)}

< (Vi(k)(t
∗, x(t∗))− Vi(k)(t+k−1, x(t+k−1)))

1

sups∈(0,l]{Ck(s)}

≤
∫ Vi(k)(t

∗,x(t∗))

Vi(k)(t
+
k−1,x(t

+
k−1)

ds

Ck(s)

≤ µk

So
Vi(k)(t

∗, x(t∗)) < µk sup
s∈(0,l]

{Ck(s)}+ σ1 < lk,

which is a contradiction.

Hence, Vi(k)(tk, x(tk)) < lk, and we can apply (4.6) to show that∫ Vi(k+1)(t
+
k ,x(t

+
k ))

Vi(k)(t
+
k−1,x(t

+
k−1))

ds

Ck(s)
≤ 0.
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Hence,
Vi(k+1)(t

+
k , x(t+k )) ≤ Vi(k)(t

+
k−1, x(t+k−1)).

Since Vi(q+1)(t
+
q , x(t+q )) < σ1, this justifies (4.14). Hence, we have shown that

Vi(j+1)(t
+
j , x(t+j )) ≤ Vi(q+1)(t

+
q , x(t+q )).

Now set t̂ = max{τ0, tj}, and we have determined that

Vi(j+1)(t̂
+, x(t̂+)) < σ1, (4.16)

where i(j + 1) is the subsystem that applies, since t̃ ∈ [t̂, tj+1). If t̃ = t̂ or if t̃ > t̂ and
µj+1 ≤ 0, then

Vi(j+1)(t̃
+, x(t̃+)) ≤ Vi(j+1)(t̂

+, x(t̂+)) < σ1,

From (4.2) and (4.16). Therefore,

bi(j+1)(ε) ≤ bi(j+1)(h(t̃+, x(t̃+))) ≤ Vi(j+1)(t̃
+, x(t̃+)) < σ1 ≤ bi(j+1)(ε), ∀α,

which is a contradiction. Focusing instead on t̃ > t̂ and µj+1 > 0, then by (4.2), (4.7), and
(4.9),

µj+1 ≥
∫ Vi(j+1)(t̃,x(t̃))

Vi(j+1)(t̂
+,x(t̂+))

ds

Cj+1(s)
>

∫ bi(j+1)(ε)

σ1

ds

Cj+1(s)
≥
∫ bi(j+1)(ε)

σ1

ds

dj+1(s)
≥ µj+1,

which is a contradiction. Therefore, time t̃ cannot exist, so the trajectory is stable.

By the similar methods in Section 3, we get the following criteria for partial stability
of the trivial solution of (4.1).

Corollary 2. If the following conditions hold, system (4.1) will be partially stable with
respect to xs.

1. The switching signal i is either time-based, or the active subsystem in each time
interval can be predicted in advance.

2. There exists a constant M and, for every switching time, k, there exists a constant
µk ≤M and a function Ck ∈ K0 such that

D+Vi(k)(t, x) ≤ µk
∆tk

Ck(Vi(k)(t, x)), (t, x) ∈ s(h, ρ),

where ∆tk = tk − tk−1 and i(k) ∈ I is the subsystem activated during the interval
(tk−1, tk];

47



3. For every k, there is a constant νk and a function dk ∈ K0 such that

∆Vi(k),i(k+1)(tk, x) ≤ νkdk(Vi(k)(tk, x), (tk, x)) ∈ s(h, ρ);

4. The constants µk and νk both satisfy

µk + νk ≤ 0

for all k ∈ L;

5. There exists a constant l such that, for every k, there exists a constant lk ≥ l > 0
such that

lk > µk sup
σ∈(0,lk]

{Ck(σ)};

6. There exist constants γk such that

µk +

∫ σ+νkdk(σ)

σ

ds

Ck(s)
≤ −γk, ∀σ ∈ (0, lk)

and
νkCk(σ) + µkdk(σ) ≤ 0, ∀σ ∈ (0, lk).

4.3 Stability Criteria for Non-Linear Systems Based

on Space-Dependent Switching

The previous result only works for a time-based switching rule, or one in which a lot is
known about the switching signal in advance. However, we can modify the list of conditions
to include different switching schemes. These modifications will also lead to a stricter set
of requirements for the system to satisfy. In such a case, the switching times will not be
predetermined. To avoid the stability problems that will result from chatter, we also need
to have some basic conditions on the activation times of subsystems. Instead of looking at
the interval k as the basic unit of analysis, we look at the active subsystem.

Let an admissible pair of subsystems be defined as follows: (α, β) ∈ A, the set of
admissible subsystems pairs if, according to the switching rule, it is possible for subsystem
α to be active immediately before subsystem β. In general, we have to look at the transition
between all m2 possible pairs of subsystems, but it may be possible to ignore certain
possibilities in a case where the order of the subsystems is predetermined, but the activation
times are not.

Theorem 7. If the following conditions hold, system (4.1) will be (h0, h)-stable.
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1. h, h0 ∈ Γ and h0 is finer than h

2. There exist constants 0 < ρ0 < ρ such that (t, x) ∈ s(h, ρ0) implies (t, x + I(x)) ∈
s(h, ρ);

3. Vα ∈ ν0 is h-positive definite and h0-decrescent for all α ∈ L;

4. For every α ∈ L, there exists a constant µα and a function Cα ∈ K0 such that

D+Vα(t, x) ≤ µα
∆tα

Cα(Vα(t, x)), (t, x) ∈ s(h, ρ), (4.17)

where ∆tα is a conservative estimate of the dwell time for the subsystem: if µα < 0,
∆tα is the minimum activation time of subsystem α; if µα > 0, ∆tα is the maximum
activation time of the subsystem.

5. For every α, β ∈ L, there is a constant ναβ and a function dαβ ∈ K0 such that

∆Vβ(t, x) ≤ να,βdα,β(Vα(t, x), (t, x)) ∈ s(h, ρ). (4.18)

Note that t is used since the precise switching times cannot be defined in advance.

6. For all pairs α, β as defined above, the constants µα and ναβ both satisfy

µα + να,β ≤ 0; (4.19)

7. For every α ∈ L, there exists a constant lα > 0 such that

lα > sup
σ∈(0,lα]

{Cα(σ)µα}; (4.20)

8. There exist constants γα and l > 0 such that

µα +

∫ σ+να,βdα,β(σ)

σ

ds

Cα(s)
≤ −γα, ∀σ ∈ (0, lα) (4.21)

and
ναCα(σ) + µα,βdα,β(σ) ≤ 0, ∀σ ∈ (0, lα) (4.22)

for all α, β ∈ L.

Proof. Since Vα(t, x) is h-positive definite and weakly h0-decrescent for all subsystems, α,
there exist functions aα ∈ PCK, bα ∈ K, and constants δ0,α and ξα such that

Vα(t, x) ≤ aα(t, h0(t, x)) if h0(t, x) < δ0,α
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and
Vα(t, x) ≥ bα(h(t, x)) if h(t, x) < ξα (4.23)

With a finite number of subsystems, we can then define ξ = min{ξα} and δ0 = min{δα,0}.
Using condition 1, we define δ1 according to the fact that

h(t, x) ≤ ϕ(t, h0(t, x)) < ξ whenever h0(t, x) < δ1.

Let ε > 0 be given and assume, without loss of generality, that 0 < ε < ρ∗ = min{ρ0, ξ, b
−1(l)},

where b−1(l) = ε0 such that bα(ε0) < lα for all α. Define σ1,α = bαe
−pα . With (4.20), we

choose pα such that sup
σ∈(0,lα]

{Cα(σ)µα}+ σ1,α < lα for all α. Let the initial time τ0 also be

given. From (4.18) and (4.19), we derive

−Vα(t, x) ≤ ∆Vα,β

≤ να,βdα,β(Vα(t, x))

≤ −µαdα,β(Vα(t, x)) if h(t, x) < ρ.

Divide through the inequality by −Vα(t, x)dα,β(Vα(t, x)) (a negative quantity) and integrate
with respect to Vα(t, x) represented by the variable s:∫ bα(ε)

σ1,α

ds

dα,β(s)
≥ µα

∫ bα(ε)

σ1,α

ds

s
= µα ln

(
bα(ε)

σ1,α

)
= µα. (4.24)

Using the same integration with σ2,α = σ1,αe
−1, we conclude∫ σ1,α

σ2,α

ds

dα,β(s)
≥ µα. (4.25)

Define σ1 = minα{σ1,α} and σ2 = minα{σ2,α}. Let tq be the first switching time after the
initial time, τ0. Although the switching times are not known in advance, they are still
well defined from the dynamics. Unlike in the time-based case where most indexes were
the time intervals, we use q as an index to represent the active subsystem active in the
time interval (tq−1, tq] and q′ to represent the subsystem active in the interval (tq, tq+1].
In addition, define all associated quantities Cq, µq, νq,q′ , dq,q′ , . . . for the first subsystems.
Since dα,β ∈ K0 (i.e., continuous, dα,β(0) = 0, and dα,β(s) 6= 0 if s 6= 0), there exists a
σ3,q = σ3,q(τ0, ε) > 0 such that

σ3,q + |νq,q′ |dq,q′(σ3,q) < σ1,q. (4.26)

Define σ0 = min{σ2, σ3,q}, noting σ2 < σ1 by definition. Using the decrescence of the
multiple Lyapunov function, there exists a δ2 = δ2(τ0, ε) > 0 such that

Vq(τ
+
0 , x0) < σ0 if h0(τ0, x0) < δ2.
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Let δ = min{δ0,i(q), δ1,i(q), δ2} and consider a solution to (4.1), x(t) = x(t, τ0, x0) with
switching signal i. Then the choice of δ implies h(τ0, x0) < ε since Vq(τ

+
0 , x0) < σ0 ≤

σ1,q = bq(ε)e
−1 < bq(ε). Vq is h-positive definite, and bq ∈ K, so h(τ0, x0) < ε. Now

suppose that h(t, x(t)) eventually exceeds ε. Hence, there is a t̃ such that h(t̃+, x(t̃+)) ≥ ε
and h(t, x(t)) < ε for t ∈ [τ0, t̃). This covers the cases when h(t, x(t)) exceeds ε on a
continuous trajectory and when it does so immediately following an impulse. Now, set
j = max{k : tk ≤ t̃}, which we may do if the switching times are well defined as a result of
the switching rule. First, consider the time immediately after the first tq, the first switch
on or after the initial time. We claim that

Vi(q+1)(t
+
q , x(t+q )) < σ1.

If tq = τ0, this is true by the definition of σ0, which is smaller than σ1. Therefore, we
assume tq−1 < τ0 < tq. If, on the one hand, µq ≤ 0, then (4.17) implies Vq is decreasing,
so Vq(tq, x(tq)) ≤ Vq(τ

+
0 , x(τ+

0 )) < σ0 < σ1. Using (4.26) and (4.18) leads to the conclusion
that

Vq+1(t
+
q , x(t+q )) ≤ Vq(tq, x(tq)) + νq,q′dq,q′(Vi(q)(tq, x(tq)))

≤ σ0 + |νq,q′ |dq,q′(σ0) < σ1.

On the other hand, if µq > 0, then (4.19) implies νq,q′ < 0, so Vq′(t
+
q , x(t+q )) ≤ Vq(tq, x(tq)).

Using (4.17) and integrating as before, we have∫ Vq(tq ,x(tq))

σ0

ds

Cq(s)
≤
∫ Vq(tq ,x(tq))

Vq(τ
+
0 ,x(τ

+
0 ))

ds

Cq(s)
≤ µq

tq − τ0
∆tq

< µq. (4.27)

With (4.22) and (4.19), we can rearrange and integrate to obtain∫ σ1

σ0

ds

Cq(s)
≥ −νq,q

′

µq

∫ σ1

σ0

ds

dq,q′(s)
≥
∫ σ1

σ0

ds

dq,q′(s)

since both σ0 and σ1 are less than lq. This, in combination with (4.25), indicates that∫ σ1

σ0

ds

Cq(s)
≥ µq.

Therefore, (4.27) tells us that Vq(tq, x(tq)) < σ1 and thus Vq′(t
+
q , x(t+q )) < σ1. Assume for

all k = q + 1, . . . , j,
Vi(k)(t

+
k−1, x(t+k−1)) < σ1. (4.28)

Since we have not reached t̃, h(t, x(t)) < ε < ρ, we can use (4.17). Hence,∫ Vi(k)(tk,x(tk))

Vi(k)(t
+
k−1,x(t

+
k−1)

ds

Ck(s)
≤ tk − tk−1

∆ti(k)
µi(k) ≤ µi(k). (4.29)
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This slight difference is the result of defining conservative activation time estimates. Using
(4.18) and the fact that Ci(k) ∈ K0,∫ Vi(k+1)(t

+
k ,x(t

+
k ))

Vi(k)(tk,x(tk)

ds

Ci(k)(s)
≤
∫ Vi(k)(tk,x(tk))+νi(k),i(k+1)di(k),i(k+1)(Vi(k)(tk,x(tk)))

Vi(k)(tk,x(tk)

ds

Ci(k)(s)
.

We claim that Vi(k)(tk, x(tk)) < li(k). If not, there exists a t∗ such that tk−1 < t∗ ≤ tk,
Vi(k)(t

∗, x(t∗)) = li(k) ≤ Vi(k)(tk, x(tk)) and Vi(k)(t, x(t)) < li(k) for all tk−1 < t < t∗. Using
our assumption (4.28), (4.20), and (4.29), note that

(Vi(k)(t
∗, x(t∗))− σ1)

1

sups∈(0,l]{Ci(k)(s)}

< (Vi(k)(t
∗, x(t∗))− Vi(k)(t+k−1, x(t+k−1)))

1

sups∈(0,l]{Ci(k)(s)}

≤
∫ Vi(k)(t

∗,x(t∗))

Vi(k)(t
+
k−1,x(t

+
k−1)

ds

Ci(k)(s)

≤ µi(k)

So
Vi(k)(t

∗, x(t∗)) < µi(k) sup
s∈(0,l]

{Ci(k)(s)}+ σ1 < li(k),

which is a contradiction. Hence, Vi(k)(tk, x(tk)) < li(k), and we can apply (4.21) to show
that ∫ Vi(k+1)(t

+
k ,x(t

+
k ))

Vi(k)(t
+
k−1,x(t

+
k−1))

ds

Ci(k)(s)
≤ 0.

Hence,
Vi(k+1)(t

+
k , x(t+k )) ≤ Vi(k)(t

+
k−1, x(t+k−1)).

Since Vi(q+1)(t
+
q , x(t+q )) < σ1, this justifies (4.28). Hence, we have shown that

Vi(j+1)(t
+
j , x(t+j )) ≤ Vi(q+1)(t

+
q , x(t+q )).

Now set t̂ = max{τ0, tj}, and we have determined that

Vi(j+1)(t̂
+, x(t̂+)) < σ1, (4.30)

where i(j + 1) is the subsystem that applies, since t̃ ∈ [t̂, tj+1). If t̃ = t̂ or if t̃ > t̂ and
µi(j+1) ≤ 0, then

Vi(j+1)(t̃
+, x(t̃+)) ≤ Vi(j+1)(t̂

+, x(t̂+)) < σ1,

From (4.17) and (4.30). Therefore,

bi(j+1)(ε) ≤ bi(j+1)(h(t̃+, x(t̃+))) ≤ Vi(j+1)(t̃
+, x(t̃+)) < σ1 ≤ bα(ε), ∀α,
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which is a contradiction. Focusing instead on t̃ > t̂ and µi(j+1) > 0, then by (4.17), (4.22),
and (4.24),

µi(k) ≥
∫ Vi(j+1)(t̃,x(t̃))

Vi(j+1)(t̂
+,x(t̂+))

ds

Ci(j+1)(s)
>

∫ bi(j+1)(ε)

σ1

ds

Ci(j+1)(s)
≥
∫ bi(j+1)(ε)

σ1

ds

di(j+1),i(j+2)(s)
≥ µi(j+1),

which is a contradiction. Therefore, time t̃ cannot exist, so the trajectory is stable.

By the similar methods in Section 3, we get the following criteria for partial stability
of the trivial solution of (4.1) with state-dependent switching.

Corollary 3. If the following conditions hold, system (4.1) will be partially stable with
respect to xs.

1. For every α ∈ L, there exists a constant µα and a function Cα ∈ K0 such that

D+Vα(t, x) ≤ µα
∆tα

Cα(Vα(t, x)), (t, x) ∈ s(h, ρ),

where ∆tα is a conservative estimate of the dwell time for the subsystem: if µα < 0,
∆tα is the minimum activation time of subsystem α; if µα > 0, ∆tα is the maximum
activation time of the subsystem.

2. For every αβ ∈ L, there is a constant ναβ and a function dαβ ∈ K0 such that

∆Vβ(t, x) ≤ να,βdα,β(Vα(t, x), (t, x)) ∈ s(h, ρ).

Note that t is used since the precise switching times cannot be defined in advance.

3. For every α, β ∈ L , the constants µα and ναβ both satisfy

µα + να,β ≤ 0;

4. For every α ∈ L, there exists a constant lα > 0 such that

lα > sup
σ∈(0,lα]

{Cα(σ)µα};

5. There exist constants γα and l > 0 such that

µα +

∫ σ+να,βdα,β(σ)

σ

ds

Cα(s)
≤ −γα, ∀σ ∈ (0, lα)

and
ναCα(σ) + µα,βdα,β(σ) ≤ 0, ∀σ ∈ (0, lα)

for every α, β ∈ L.
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4.3.1 Uniform Stability Criteria for Non-Linear Systems

Theorem 8. If we are looking for (h, h0)-uniform stability, we need to adjust the conditions
to avoid time dependence. We have the following conditions as before:

1. h, h0 ∈ Γ and h0 is finer than h;

2. There exist constants 0 < ρ0 < ρ such that (t, x) ∈ s(h, ρ0) implies (tk, x+I(tk, x(tk))) ∈
s(h, ρ), k=1,2,. . . ;

3. Vα ∈ ν0 is h-positive definite and h0-decrescent for all subsystems α;

4. The switching signal i is either time-based, or the active subsystem in each time
interval can be predicted in advance;

5. There exists a constant M and, for every switching time, k, there exists a constant
µk ≤M and a function Ck ∈ K0 such that

D+Vi(k)(t, x) ≤ µk
∆tk

Ck(Vi(k)(t, x)), (t, x) ∈ s(h, ρ),

where ∆tk = tk − tk−1 and i(k) ∈ I is the subsystem activated during the interval
(tk−1, tk];

6. For every k ∈ L, there is a constant νk and a function dk ∈ K0 such that

∆Vi(k),i(k+1)(tk, x) ≤ νkdk(Vi(k)(tk, x), (tk, x)) ∈ s(h, ρ),

where for any η there exists α > 0 such that dk(σ) < η for all σ ∈ [0, α].

7. The constants µk and νk both satisfy

µk + νk ≤ 0

for all k ∈ L;

8. There exists a constant l such that, for every k ∈ L, there exists a constant lk ≥ l > 0
such that

lk > sup
σ∈(0,lk]

{Ck(σ)uk};

9. There exist constants γk with k ∈ L such that

µk +

∫ σ+νkdk(σ)

σ

ds

Ck(s)
≤ −γk, ∀σ ∈ (0, lk)

and
νkCk(σ) + µkdk(σ) ≤ 0, ∀σ ∈ (0, lk).
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Proof. We begin the proof the same way as for the non-uniform stability result. This time,
we use the fact that

Vα(t, x) ≤ aα(h0(t, x)) if h0(t, x) < δ0,α

δ1 can be determined the same way as before, since the calculations to find σ1 and σ2 do
not have any time dependence. When choosing σ0, however, we need to take into account
that the initial subsystem could be any possibility:

σ3 + |να|dα(σ3) < σ1

Given that there are a limited number of possibilities for να and dα, we can satisfy this
condition easily. Hence, we can choose σ0 and δ in such a way that it is not dependent on
τ0, which is the requirement for uniform stability.

For uniform stability of the system using a state-based switching rule, we have the same
general approach.

4.4 Conclusion

In this chapter, Stability criteria nonlinear switched systems with impulse in two measure
have been obtained. Criteria of partial stability for these systems have also been carried
out.
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Chapter 5

Evaluation, Examples, and Discussion

In the previous two chapters, we proved theorems concerning sufficient conditions for sta-
bility of impulsive switched systems. In order to show that these results have more than
a purely mathematical significance, we will use some examples to illustrate their potential
utility. Having established that the results are mathematically valid, it remains to show
that they are easily verifiable and not overly exclusive, in the sense that they are only
satisfied in special circumstances unlikely to actually arise. It is difficult to quantify such
vague statements, however, so we hope the examples will serve the goal of demonstrating
the utility of the results.

5.1 Autonomous Linear Systems

The simplest examples we can use are two-dimensional linear systems with periodic switch-
ing rules. Although such examples do not require elaborate theory to find stability criteria,
they serve to demonstrate the need for the criteria that have been developed. The first
instructive example has two different stable subsystems, one with a stabilizing impulse,
and one with a destabilizing impulse.

Example 2. Consider the switched impulsive linear system{
ẋ = Aix t 6= tk
∆x = Bix t = tk

(5.1)

with subsystems given as follows:

A1 =

(
−1 −4
5 −1

)
A2 =

(
−1 −5
4 −1

)
, and (5.2)
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B1 =

(
−3

4
0

0 −3
4

)
B2 =

(
1 0
0 1

)
. (5.3)

Will the system be stable under a periodic switching rule?

There are two issues that can arise related to the stability of this system. The first is
that the continuous subsystems, although stable, may create an unstable trajectory given
the appropriate switching rule. The second is that the unstable impulse will be used too
frequently.

Proceeding with our analysis, we first obtain the standard quadratic Lyapunov functions
associated with each subsystem by solving the linear equations ATi Pi+PiAi = −I. For the
small value of n = 2, this can be done by hand, but it is possible to make an algorithm to
solve for higher dimensions. We obtain xTP1x and xTP2x, where

P1 =

(
47
84

1
84

1
84

19
42

)
; P2 =

(
19
42

− 1
84

− 1
84

47
84

)
. (5.4)

By choosing Lyapunov functions this way, when we calculate λ1, we are calculating the
maximum eigenvalue of P−1

1 (P1A1−AT
1 P1) = −P−1

1 . We get eigenvalues of approximately
−1.783 and −2.553, and we choose λ1 = −1.783.

Now we calculate the νs. If we allow the possibility to switch from one subsystem to
the same subsystem (causing only an impulse to be applied), we will find four values. We
calculate P−1

α (PβBα +BT
αPβBα +BT

αPβ + Pβ − Pα), where α is the initial subsystem, and
β is the new subsystem. After some more calculation and choosing the largest eigenvalue
each time, we obtain

(ναβ) =

(
−15

16
−0.9222

3.973 3

)
. (5.5)

The first observation is that switching from the subsystem with the destabilizing impulse
leads to higher values (the values in the second row). More subtle is the observation that,
when switching to the same system again, the value is lower than when switching to a
different system (the diagonal elements are switches to the same system; the off diagonals
are switches to the other system). This is because the value of ν has to take into account
the worst case scenario of switching from one system to another, and the effect this has on
the Lyapunov function.

In order to satisfy the stability requirements, using the rules that we established in
Chapter 3, we should choose a switching rule such that µα + ναβ ≤ 0. This turns out
to be a very strict requirement and is somewhat over prescriptive for the simple example
that we are considering here. Using this requirement we would find that ∆t2 = 2.23 as
derived from ∆t2λ2 + ν21 = −0.003 < 0. Note that this is the solution to that equation
that is the worst case corresponding to the largest possible value for ναβ. The value of
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∆t1 can be anything, since it corresponds to the stable subsystem and impulse. The other
requirement, µα+ln(1+ναβ) < 0 is less strict than the first requirement above, and, hence,
is automatically satisfied for our chosen value of ∆t2.

The above requirements lead to a limiting value for ∆t2 = 2.23. However, if we perform
a simulation with this value of ∆t, the graphical result becomes effectively trivial, and it is
difficult to see the stabilizing behaviour of the system. To better illustrate the stabilizing
behaviour, we have chosen a value of ∆t1 = ∆t2 = 0.05, which is a much less strict dwell
time condition. Figure 5.1 shows the results of running the system through a number of
impulses, starting at xT0 = (0, 1). The system is clearly stable, with alternating stabilizing
and destabilizing impulses, and, moreover, it is clear that a dwell time of 2.23 is much
longer than is required.

For the example in Figure 5.1, we have set the ratio of stabilizing to destabilizing
impulses at q = 1. It is instructive to increase this ratio to see the unstable behaviour.
Figure 5.2 shows the same system with q = 2, which takes more time to spiral to the origin.
Figure 5.3 plots the behaviour of the same system with q = 3. In this case, the system is
not stable and spirals away from the origin, which is why the scales have been multiplied
by a factor of approximately 1000. This method of showing how stability is related to q is
also illustrated in the next example.

In fact, we can still get a stable solution for q = 2, but q = 3 fails.

Example 3. This is a classic example of a switched system with stable subsystems, but
switching modes that lead to instability. In this example, however, we will add an impulse
to make the system stable for all average dwell times and, hence, for arbitrary switching.{

ẋ = Aix t 6= tk
∆x = Bix t = tk

; (5.6)

A1 =

(
−1 −100
10 −1

)
A2 =

(
−1 −10
100 −1

)
(5.7)

B1 =

(
b 0
0 b

)
B2 =

(
b 0
0 b

)
(5.8)

We find P1 and P2 by solving the linear equations, obtaining:

P1 =

(
551
2002

− 45
2002

− 45
2002

5501
2002

)
P2 =

(
5501
2002

45
2002

45
2002

551
2002

)
(5.9)

By choosing Lyapunov functions this way, when we calculate λ1, we are calculating the
maximum eigenvalue of P−1(PA − ATP ) = −P−1. So, we get λ1 = λ2 ≈ − 1

2.748
. In both

cases, the eigenvalues of Pα are approximately 0.275 and 2.748. Hence, ρ ≈ 2.748
0.275
≈ 9.99.
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Figure 5.1: The system in Example 2 with q = 1.

Now we calculate the νs. We start by letting b = −2
3
. For system 1, we calculate

P−1
1 (P1B1 +BT

1 P1B1 +BT
1 P1) and obtain(

−8
9

0
0 −8

9

)
(5.10)

The answer is the same for system 2.

Therefore, ν1 = ν2 = −8
9
. Hence, ρ(1 + ν1) ≈ 1.11 > 1, but we are close. The impulse

size is not enough to satisfy the condition for stability under arbitrary switching. Using
b = −0.68, we get ν1 = ν2 ≈ 1.02, and using b = −0.7, we get ν1 = ν2 ≈ 0.90, which does
satisfy the condition.

Figure 5.4 shows the system evolution for b = −2/3, which is unstable as expected,
although the system oscillates rapidly. For the plots of this system, we plotted ‖x‖. Al-
though the large number of switches makes it impossible to distinguish the continuous
trajectory from the impulses, we can get an idea of the rate of divergence. For b = −0.7
we get stability, as expected, which is confirmed in Figure 5.5. We also checked b = −0.68,
which is predicted to be very close to the stability requirement. As shown in Figure 5.6,
this system is also stable, indicating that the stability requirement for this system is ac-
tually a little stricter than necessary. The reason for this behaviour is that we assume the
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Figure 5.2: The system in Example 2 with q = 2.

systems stabilize very slowly with respect to their Lyapunov functions, so that the right
switching will cause xTx to increase by a factor of ρ in each time interval. In reality, the
stable subsystems do not allow an increase this high.

Example 4. Consider one more linear example

ẋ = Aσ(t,x)x, t 6= tk
∆x = Bσ(t,x)x, t = tk,

(5.11)

A1 =

[
1
4
−1

1 1
4

]
, A2 =

[
−1

3
1

−1 −1
3

]
,

B1 = B2 =

[
−3

4
0

0 −3
4

]
.

It is easy to see that the underlying continuous system is an unstable focus. Take

P1 =

[
1
2

0
0 1

2

]
, P2 =

[
1
4

0
0 1

4

]
.
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Figure 5.3: The system in Example 2 with q = 3.

Then we have

P−1
1 (A′1P1 + P1A1) =

[
1
2

0
0 1

2

]

P−1
2 (A′2P2 + P2A2) =

[
−2

3
0

0 −2
3

]
P−1

1 (B′1P1 +B′1P1B1 + P1B1 + P1 − P1) =

[
−0.9375 0

0 −0.9375

]

P−1
1 (B′1P2 +B′1P2B1 + P2B1 + P2 − P1) =

[
−0.9688 0

0 −0.9688

]

P−1
2 (B′2P1 +B′2P1B2 + P1B2 + P1 − P2) =

[
−0.8750 0

0 −0.8750

]

P−1
2 (B′2P2 +B′2P2B2 + P2B2 + P2 − P2) =

[
−0.9375 0

0 −0.9375

]
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Figure 5.4: Example 3 with b = −2/3

If take ∆tα = 1, then we can choose µ1 = 0.5, µ2 = −0.6, ν1,1 = −0.93, ν1,2 = −0.96,
ν2,1 = −0.87, ν2,2 = −0.93, γ1 = γ2 = 2, then all the conditions of Theorem 1 in Section
3 are satisfied. Hence the zero solution of the system is stable. For this system, we have
plotted the subsystems separately. Figure 5.7 shows the unstable subsystem with two
curves for x1 and x2. Likewise, Figure 5.8 shows the stable subsystem. In this case, the
switched system without impulses is stable, as shown in Figure 5.9, but the impulsive
switches system converges more rapidly in Figure 5.10.

5.2 Nonlinear Systems

Example 5. Consider the following example

ẋ = Aσ(t,x)x+ fσ(t,x)(t, x), t 6= tk
∆x = Bσ(t,x)x, t = tk,

(5.12)

A1 =

[
1
4
−1

1 1
4

]
, A2 =

[
−1

3
1

−1 −1
3

]
,
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Figure 5.5: Example 3 with b = −0.7

f1 =

[
1
8
x1 sinx2

1
8
x2 cosx2

]
, f2 =

[
−1

6
x1 cosx2

−1
6
x2 sinx1

]
,

B1 = B2 =

[
−3

4
0

0 −3
4

]
.

It is easy to see that the underlying continuous system is an unstable focus. Let
V1(x) = 1

2
(x2

1 + x2
2), V2(x) = 1

4
(x2

1 + x2
2). Then

V ′1(x) = x1(
1

4
x1 − x2 +

1

8
x1 sinx2) + x2(x1 +

1

4
x2 +

1

8
x2 cosx2) ≤

3

4
V (x), t 6= tk;

V ′2(x) =
1

2
x1(−

1

3
x1 + x2 −

1

6
x1 cosx2) +

1

2
x2(−x1 −

1

3
x2 −

1

6
x2 sinx1) ≤ −

1

3
V (x), t 6= tk;

V1(x
+)− V1(x) =

1

2
[(x1 −

3

4
x1)

2 + (x2 −
3

4
x2)

2]− 1

2
(x2

1 + x2
2) = −15

16
V1(x)

V2(x
+)− V1(x) =

1

4
[(x1 −

3

4
x1)

2 + (x2 −
3

4
x2)

2]− 1

2
(x2

1 + x2
2) = −31

32
V1(x)

V1(x
+)− V2(x) =

1

2
[(x1 −

3

4
x1)

2 + (x2 −
3

4
x2)

2]− 1

4
(x2

1 + x2
2) = −7

8
V2(x)
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Figure 5.6: Example 3 with b = −0.68

V2(x
+)− V2(x) =

1

4
[(x1 −

3

4
x1)

2 + (x2 −
3

4
x2)

2]− 1

4
(x2

1 + x2
2) = −15

16
V2(x)

If take ∆tα = 1, then we can choose µ1 = 0.75, µ2 = −0.3, ν1,1 = −0.93, ν1,2 = −0.96,
ν2,1 = −0.87, ν2,2 = −0.93, C1(s) = C2(s) = d1(s) = d2(s) = s, ∀s ∈ R, l1 and l2 be any
positive real numbers, γ1 = 2, γ2 = 2.2 then all the conditions of Theorem 6 in Chapter
5 are satisfied. Hence the zero solution of the system is uniformly asymptotically stable.
The simulation result can be seen in Figure 5.11. The nonlinear system.

5.3 Evaluation of results

The above examples serve to illustrate some of the shortcomings of the sufficient conditions
that have been developed. Example 2 shows that the requirements are far too strict for
certain systems. The system we chose only had a destabilizing impulse. Although it would
be possible to destabilize the system through a choice of switching times, a dwell time
of 2.23 is far too strict. There is no need for a dwell time in such a system that would
require the trajectory to orbit the origin more than once. This occurred partly because the
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Figure 5.7: The trajectory of the first subsystem of Example 4

Figure 5.8: The trajectory of the second subsystem of Example 4
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Figure 5.9: The trajectory of the switched system in Example 4, with no impulses

Figure 5.10: Evolution of the states in Example 4 with impulses.
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Figure 5.11: Evolution of the states for Example 5.

example is not suited to stability criteria that require the Lyapunov function to decrease
for each interval, and partly because the criteria are simply stricter than they need to be.

Example 3 uses an alternative method that works much better for the linear system.
This method works because we can keep track of increases and decreases to ‖x‖ across
different intervals. The size of the impulse that was found was very nearly the smallest
that would lead to stability under the switching rule that destabilized the switched system
without impulses.

The last two examples show how the criteria can work a little better for a system with
a nonlinear subsystem as the destabilizing element. It is also a slightly nonlinear example,
although this does not change the graphical result much, as can be seem by comparing
Figures 5.10 and 5.11.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Having completed this project, we have found sufficient criteria for stability and asymptotic
stability of linear impulsive switched systems which work in the context of stability using
two measures. We have also found similar criteria that apply to nonlinear systems, covering
stability, uniform stability, and uniform asymptotic stability. Since these results both
use a multiple Lyapunov function approach, traditional methods for obtaining Lyapunov
functions still apply. Using illustrative examples, we showed that these results can be easily
verified, although a particular set of criteria may fail to be satisfied for certain systems
with stable dynamics.

6.2 Further Study

There are many different directions to take with this research, due to the wide variety of
results and techniques available for the study of either hybrid systems or (h0, h)-stability.
We could study hybrid systems with time delay, random variables, or different classes of
switching behaviour. Rather than name all the possibilities, we will just mention some of
the more immediate possible extensions to this work.

Different Stability Results

We only covered the most basic stability results for linear and nonlinear systems. In par-
ticular, we have not covered instability and non-uniform asymptotic stability for nonlinear
systems. We could also cover instability for linear systems. Since we have found sufficient
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conditions, it is important to compare what is sufficient for instability to the present re-
sults, to see how much leeway there is for systems whose stability properties cannot be
determined by these methods.

Robustness is also an important aspect of stability. There are several different ap-
proaches to consider, including linear quadratic inequalities, used in [25] as an extension
to the simple quadratic Lyapunov functions applied to a situation where uncertainty is
involved. We could also consider the work in [43], which looks at robust stability under
the constraint of a cost function as well.

LaSalle’s Invariance Principle

There has been some study of LaSalle’s invariance principle and how it applies to switched
systems in [7], [37], and [3]. These methods provide an extra tool in determining stability
because a Lyapunov function that does not strictly decrease can still be helpful in proving
asymptotic stability. It is also possible to use this tool when considering two measure
stability, as demonstrated in [27].
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