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Abstract

Many applications in robotics require faithfully following a prescribed path. Tracking
controllers may not be appropriate for such a task, as there is no guarantee that the robot
will stay on the path. The objective of this thesis is to develop a control design method
which makes the “output” of a robot get to, and move along the prescribed path without
leaving the path. We consider the class of mechanical systems, which encompasses robotics.

Various techniques exist for designing path following controllers. We base our approach
on a technique called “transverse feedback linearization”. Using this technique, if feasible,
we decompose the dynamics of a mechanical system into a transversal subsystem and a
tangential subsystem using a coordinate and feedback transformation. The transversal
subsystem is linear, time-invariant and decoupled from the tangential subsystem. Stabiliz-
ing the origin of the transversal subsystem is equivalent to stabilizing a set corresponding
to the output of the mechanical system being on the desired path, thereby partly achieving
the control objective. Given a mechanical system and a path, we provide conditions under
which this is possible.

The tangential subsystem describes all of the motions of the mechanical system, when
the output is on the path. Some tangential dynamics may move the output along the path,
and thereby meet the design objective. In order to move the output of the mechanical
system along the path, we further decompose the tangential subsystem into a subsystem
which moves the output along the path, and a subsystem which does not, if feasible, using
partial feedback linearization. The subsystem which governs output motions along the
path is linear, time-invariant and decoupled. The remaining tangential dynamics have
no special structure. We provide conditions under which such a decomposition of the
tangential dynamics is possible.

We show that a five-bar robotic manipulator has dynamics which may be transversely
feedback linearized, and the tangential dynamics may be partially linearized. Given a
circular path, we experimentally implement our path following design, and observe that
our control objective is indeed met. Inherent advantages of path following over trajectory
tracking are illustrated.

Standard feedback linearization of a five-bar robotic manipulator with a flexible link
has been shown to fail. We show that this system is transversely feedback linearizable, and
its tangential dynamics may be partially linearized, under mild restrictions. Simulations
illustrate path following applied to this complex system.
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Chapter 1

Introduction

Suppose that you’re driving to the corner store because you ran out of milk, and all of a
sudden a child runs out onto the street. Naturally, you slam on the breaks and wait for
the child to get off the road (hopefully realizing their mistake) before proceeding. Now
when you proceed, you drive at a reasonable pace, likely similar to your pace before the
child ran onto the road. It would be quite odd to want to “catch up” to where you would
have been had the child not momentarily stopped you, especially since getting milk at the
corner store is not particularly time-sensitive. Although eventually getting to the corner
store is important, your first priority is not to hit any kids, parked cars, etc.

This toy example loosely illustrates a concept called “path following”. Path following,
as the name implies, means we are primarily concerned with following the path, which
corresponds to staying on the road in our example. In a sense, getting to our destination,
the corner store, is a secondary concern. Since it is secondary (at least relative to the
staying on the road), it is not appropriate to strictly enforce a “time schedule” for the trip.
Distinguishing between the primary concern of staying on the path, and the secondary
concern of motion along the path, the essence of path following is to follow the path “at
all costs”, while not demanding a strict “time schedule” along the path.

To further help define the idea of path following, we contrast it with a fundamentally
different idea, which for now we loosely refer to as “trajectory tracking”. To illustrate
trajectory tracking, let us tweak our toy example. Suppose your destination is not the
corner store, but rather an important meeting with your punctual boss. Once the child
has cleared the road, you might speed up to make up lost time. In fact, you might even
cut through a gas station to avoid a red light. In this new example, staying on your path
is important, but it is equally important to stay on schedule to avoid a late arrival. As a
result, cutting across a parking lot to save time is, in some sense, appropriate.
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1.1 Motivation

We have illustrated the main idea of path following, and have linked this idea to intuitive
behaviour of the driver of an automobile. We wish to apply this idea to control systems.
Path following control design problems can be formulated for a large class of systems and
can be solved using various techniques. In this thesis, we seek to achieve path following for
mechanical control systems. The class of mechanical control systems is incredibly broad
and diverse, largely due to the fact that humans have always used mechanical systems to
perform tasks they were unwilling or unable to perform themselves.

Trajectory tracking

To provide a point of contrast with path following, we introduce the notion of trajectory
tracking. Standard training in control theory includes the tracking problem (often in-
troduced in the frequency domain framework). This is a quite natural place to start; it
addresses the problem, “how do we get the output of this system to follow the input?”.
In trajectory tracking schemes, we have a reference signal, r(t), parameterized by time,
which the output, y(t), ought to follow closely, subject to design trade-offs, performance
limitations, etc. Applied to a robotic system, we have the block diagram of a standard
tracking scheme in Figure 1.1.

 
Robot DynamicsTracking

Controller

Figure 1.1: A block diagram showing a typical tracking control system

Tracking controllers can be designed using various control techniques, such as feedback
linearization, sliding mode, adaptive, and robust control. Even considering the wealth of
literature and experience using tracking controllers for mechanical systems, there are many
situations in which tracking simply isn’t appropriate.

Path following control

Suppose we have a path γ ∈ Rp, as shown in Figure 1.2. In path following control, the
objective is use feedback control to

1. make the output, y, of the system go to the path γ.

2



Figure 1.2: The output of a control system with a given path

2. ensure that if y ∈ γ is properly initialized, it will remain on the path γ for all time,
a property called “output invariance”.

3. achieve desired motion along the path (if possible). Usual requirements of the mo-
tion along the path include speed/position and direction of traversal, along with
boundedness of the internal dynamics.

Path following via set stabilization

There are various ways to implement a path following controller, many of which will be
subsequently discussed in Section 1.2. We treat path following control as an instance of set
stabilization. Using set stabilization, we may achieve invariance of the output with respect
to the path. This means that once “properly” initialized on the path, the output, y, will
remain on the path, γ, for all time. The precise definition of output invariance is found in
Definition 3.1.2. In other words, we are stabilizing a family of trajectories, whose outputs
correspond to being “on the path” (where a trajectory tracking scheme would only stabilize
one particular trajectory). This collection of trajectories is a manifold in the state-space,
which we call the path following manifold, denoted by Γ⋆. The set stabilization problem is
presented in [38].

Applications

There are a plethora of applications for which path following via set stabilization is the
appropriate approach for controlling mechanical systems. Consider, for example, a robotic
manipulator which has the task of painting shapes on a canvas. Applying a trajectory
tracking approach may cause the robot to deviate from the intended shape at difficult
locations. However, a path following approach will guarantee the shape is faithfully painted.

There are many more examples where a path following controller, as opposed to a
trajectory tracking controller, is appropriate for mechanical or robotic systems. Some
examples found in the literature include

3



• robotic deburring [32]

• walking robots [41]

• exercise and rehabilitation machines [32], [61]

• teleoperation [31]

• obstacle avoidance [17]

• human robot interaction [4], [53]

1.2 Literature Review

We are able to group the pertinent literature to this thesis by the underlying themes of
each contribution. An attempt has been made to present the literature in a chronological
order, so that each idea we present provides a context for the subsequent idea, with a few
exceptions. In some ways, the converse is also true; some earlier and seemingly unrelated
contributions find their relevance to this thesis through later contributions1. Finally, the
goal of this literature review is to frame this thesis in the context of the existing body of
literature. Therefore, we acknowledge trading off detailed technical accuracy for brevity
and clarity.

Path-constrained trajectory planning

Path-constrained trajectory planning represents the largest body of work aimed at achieving
path following for robotic manipulators, and was heavily researched in the 1980’s. The
main idea of this literature is to take the system dynamics and actuator constraints into
account when generating trajectories where following a path is important. For example,
one can imagine that a bulky robot would have to slow down when taking a sharp turn,
otherwise the motors would not be able to exert enough control effort to stay on the path.
This approach relies on parameterizing the path, and lends itself naturally to satisfying
actuator constraints. For an overview of this idea, see [30, Section 14.3.6].

One of the seminal contributions to this area was by Hollerbach [23]. Here, the author
takes an offline trajectory, and suitably re-scales the time parameterization such that ac-
tuator constraints are satisfied based on the inverse dynamics. Extensions of this idea are
found in a paper by Antonelli et al.[2] (and corresponding experiments in [3]), where the

1For example, ideas found in Bobrow et al. [9] are used in a more relevant contribution by Mettin et

al. [34], published 24 years later
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time scaling occurs online. Related seminal contributors were by Bobrow, Dubowsky and
Gibson [8], [9], as well as by Shin and Mckay [43], who independently proposed similar
ideas. These works involve generating time-optimal trajectories such that the endpoint
of a manipulator is able to traverse a path in output space without violating actuator
constraints. A computational improvement on this theme was published by Slotine and
Yang [48].

Path-constrained trajectory planning has affinity to the contributions of this thesis
primarily in that the goal of this technique is having the output of a robot follow a path
faithfully. This idea differs from our approach in that

• only fully actuated manipulators are considered

• they are planning procedures; these techniques are mute on control

• ultimately time-parameterized trajectories must be implemented for control, so al-
though a given path is feasible according to the manipulator dynamics and actuator
constraints, disturbances or improper initialization may cause a departure from the
path

Integrated Planning and Control

Having recognized deficiencies in path-constrained trajectory planning, namely that time-
parameterized trajectory tracking must be implemented, researchers investigated integrated
planning and control. In the context of performing a task (i.e. following a path), this idea
is motivated by the practical consideration of having a manipulator modify its base plan
in the presence of unexpected events.

Tarn, Xi, and Bejczy [54] propose a path-based integrated planning and control scheme
for robots based on an inner control loop and an outer loop planner, running at the same
rate as the controller. The planner generates motion commands based on a path param-
eterization (the orthogonal projection of the robot output onto the path). Therefore, the
parameterization along the path may be viewed as an input to the equivalent system.
Similar work is published by Song, Tarn, and Xi [49].

This hierarchical approach to integrating planning and control has a strong affinity to
the contribution of this thesis, in that motion along the path is not parameterized by time
at all. However, this idea differs from our approach in that

• two control loops are required: a low-level inner loop control and an outer loop
planner

• this approach, and others like it, do not render the path invariant

5



• responding to unexpected events is done by the planner based on sensor information,
and therefore undetected events cannot be handled

Contour Following

The term contour following is ambiguous in the literature. In one instance, contour follow-
ing is essentially equivalent to path following, as found in work by Li and Horowitz [32].
They address, among other things, the hierarchical, sensor-dependent formulation of path-
based integrated planning and control. Their main idea is called “Passive Velocity Field
Control”, and solves the path following problem for manipulators by encoding a desired
velocity field, while preserving a passive relationship between the manipulator output and
the environment.

In an earlier work by Huang and McClamroch [24], contour following is presented in the
context of manipulators in contact with a surface. Hence, contact forces and changes in
dynamics are important features of this work. As such, this particular instance of contour
following has little relevance to our contribution.

Contour following perhaps is most prevalent in the control of machine tools. One of
the seminal works in this area was by Koren [29], who introduced the idea of a “cross
coupling” controller. Extending this idea, Chiu and Tomizuka [12] published interesting
work, quite related to the contribution of this thesis. They showed that the tracking errors
of a machine tool control system can be decomposed to “normal” and “tangential” errors
with respect to a desired contour (path), and they accordingly designed tracking controllers
(for example, they suggest more control effort in the normal direction, to make sure the
contour is closely followed). Recently Sencer and Altintas [42] applied a sliding-mode based
contour following controller to a 5-axis CNC machine. Though this approach is similar to
ours in that it decomposes the system dynamics into tangential and normal subsystems,
it possesses all of the drawbacks of trajectory tracking. Another difference is that in our
approach, we can measure the “contour error” by virtue of a priori knowledge of the path,
whereas the contour error must be estimated for use in contour following, see for instance
Chen and Lee [11] or Erkorkmaz and Altintas [16].

Path parameterization as a reference signal

Parameterizing the path of interest is a common and well-established idea. One approach
to designing path following controllers is to use the parameterization as a reference signal
just as one would in trajectory tracking. Unlike trajectory tracking however, the velocity of
the reference point is treated as an extra control input thus allowing the parameterization
of the desired motion along the path be altered. Work by Hauser and Hindman [22] was
influential in establishing this method.
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Skjetne, Fossen and Kokotović [47] used this idea to solve the path following problem
(which they refer to as the output maneuvering problem), in which a backstepping approach
is used to design a robust controller. The authors provide an example using the motion
of a cutting tool, whose model falls into the class of mechanical systems studied in this
thesis. Also relevant to this thesis is work done by Aguiar, Hespanha and Kokotović [1],
where the authors show that a path following formulation removes performance limitations
inherent with trajectory tracking of non-minimum phase systems. In Chapter 5, we study
the application of our path following controller to a flexible link robot, which is a non-
minimum phase system.

This approach differs from our contribution mainly in that

• it does not guarantee invariance of the closed loop system.

• it is not well-suited to some systems where the dynamic task of controlling the motion
along the path may be impossible.

Virtual Holonomic Constraints

A virtual holonomic constraint is a relation imposed on the generalized coordinates of a
control system. It is virtual because it is preserved by some control action. The virtual
holonomic constraints define the path, meaning that satisfying the constraints implies that
the system output lies on the path. This has a strong affinity to this thesis, as the objective
of satisfying the constraints entails stabilizing a set in the state-space.

In [44], Shiriaev, Perram and Canudas-de-Wit consider systems with degree of under-
actuation equal to one (such as the inverted pendulum on a cart). They show that the set
corresponding to satisfying the virtual holonomic constraints may be stabilized through
feedback control. The dynamics along the path, called the virtual limit system, are uncon-
trolled, and the authors provide a procedure to stabilize every feasible periodic motion of
this reduced-order system. These ideas were extended by Shiriaev, Freidovich and Gusev
[45] to consider mechanical systems with several degrees of underactuation. Interestingly,
while for general nonlinear control systems the key difficulty is explicitly finding transverse
coordinates, the authors remark that this may be done for mechanical systems. Though
this thesis takes a fundamentally different approach, the main results of Chapter 3 also
reveal a systematic way of choosing transverse coordinates for mechanical systems.

Mettin, La Hera, Morales, Shiriaev, Freidovich and Westerburg [34] tied together vari-
ous ideas, including that of virtual holonomic constraints and path-constrained trajectory
planning, and applied them to the control of a forestry crane. This literature has a very
strong affinity to this thesis. Simulated and experimental results of the manipulator fol-
lowing a circular path are provided. However, this contribution is restricted to a partic-
ular manipulator which is kinematically redundant, whereas this thesis considers a much
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broader class of systems. Furthermore, virtual holonomic constraints are defined in the
configuration space, but the path is defined in the output space of a manipulator. There-
fore the path must be composed with the inverse kinematics to get the virtual holonomic
constraints. Since the inverse kinematic map does not uniquely map the manipulator’s
output to its configuration, some additional restrictions must be imposed. Conversely, in
this thesis the path following methodology has the advantage of being able to express the
path in terms of constraints in the output space of a mechanical system.

1.3 Organization and Contribution

The organization of this thesis, highlighting the contributions, is presented in Figure 1.3.

Section 3.2.1

Section 3.3
Theorem 3.3.1
Corollary 3.3.3

Section 3.3.4
Theorem 3.3.5
Corollary 3.3.6

Section 4.1

Section 4.2

Section 4.3.4 Section 4.3.5

Section 5.1 [58] Wang &
Vidyasagar

Section 5.3

Section 5.4

Figure 1.3: A flow chart describing the organization and contributions of this thesis
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Chapter 2

Math Preliminaries

This chapter reviews the fundamental mathematical concepts which are heavily relied upon
throughout this thesis, drawn from [60], [37], [19], [21], [25] and [27]. First, notation used
in this thesis is presented. Next, relevant theory is presented, in particular relating to prop-
erties of maps, basics of differential geometry, relevant matrix properties, and derivatives
along vector fields. We then introduce some fundamentals of control systems necessary
to discuss feedback linearization. Input-output feedback linearization is presented, along
with an introduction to the zero dynamics. This is followed by a qualitative discussion on
full-state linearization.

2.1 Notation

In this thesis, N denotes the set of natural numbers, Z denotes the set of integers, R

denotes the set of real numbers. If k is a positive integer, k denotes the set of integers
{1, . . . , k}. The symbol := means equal by definition. The k-dimensional Euclidean space
is denoted Rk. If x ∈ Rk, we denote by xi the ith component of x. We let col(x1, . . . , xk) :=
[x1 · · · xk]

⊤. Let a and b be two column vectors, define col(a, b) := [a⊤ b⊤]⊤. Unless
otherwise indicated, the norm ‖x‖ of a k-dimensional vector denotes the Euclidean norm,
that is,

‖x‖ :=

(

k
∑

i=1

x2
i

)

1

2

.

We use 〈x, y〉 to denote the Euclidean inner product of the vectors x, y ∈ Rn, that is,
〈x, y〉 := xT y. Given a non-empty set A ⊂ Rn, and a point x ∈ Rn, the point-to-set
distance is defined as

‖x‖A := inf
a∈A

‖x − a‖.
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Let f be a map from domain U ⊆ Rn to co-domain V ⊆ Rm, i.e. f : U ⊆ Rn → V ⊆ Rm.
The notation f(·) indicates the element of the co-domain corresponding to its argument,
which belongs to the domain. A scalar-valued function f : U ⊆ R

n → R is k times
continuously differentiable at u ∈ U if it possesses continuous partial derivatives of all
orders less than or equal to k. Such a function is of differentiability class Ck on U . If f
is Ck for all k, then f is C∞, or smooth. A map f : U → V , x 7→ f(x) is Ck if each of
its component scalar functions is Ck. Given the map f and a point p ∈ Rn, we denote
dfp := (∂f/∂x) (p). The matrix representation of dfp is the Jacobian of f evaluated at p.
We denote Im×m as the m × m identity matrix, and 0n×m as the n × m matrix of zeros.

2.2 Elementary Theory

2.2.1 Properties of Maps

A map, or function, is an operator taking elements of its domain, and generating elements
in its co-domain. Surjectivity and injectivity are both fundamental properties of maps, on
which we rely heavily in the main results of this thesis.

Definition 2.2.1. A map f : U ⊆ Rn → V ⊆ Rm is surjective or onto if for each y ∈ V
there exists at least one x ∈ U such that f(x) = y.

Definition 2.2.2. A map f : U ⊆ Rn → V ⊆ Rm is injective or one-to-one if, given
x1, x2 ∈ U , f(x1) = f(x2) implies x1 = x2.

Definition 2.2.3. A map f : U ⊆ Rn → V ⊆ Rm is bijective (or is a bijection) if it is
both surjective and injective.

Bijective maps are very powerful, and are the key ingredient in discussing coordinate
transformations used in various forms of feedback linearization. However, loosely speaking,
when transforming coordinates, we also are interested in somehow preserving smoothness.
This leads to a important operator called a diffeomorphism.

Definition 2.2.4. A map f : U ⊆ Rn → V ⊆ Rm is a diffeomorphism if it is a smooth
bijection, and if the inverse map f−1 : V → U is also smooth. If a diffeomorphism exists
between U and V , they are said to be diffeomorphic, written U ≃ V .

Notice that if U ≃ V , this implies that U and V have the same dimension. This notation
is used in the main results of this thesis. The concept of a diffeomorphism is central to
feedback linearization. According to the previous definition, it is somewhat cumbersome to
determine whether a mapping is locally a diffeomorphism. The Inverse Function Theorem
enables a remarkable, and less cumbersome method of determining whether a map is locally
a diffeomorphism.
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Theorem 2.2.1. (Inverse Function Theorem [25]) Let X be an open set of Rn and f :
X → Rn, a C∞ mapping. If dfx0

is nonsingular at some x0 in X, then there exists an open
neighbourhood U of x0 in X such that V = f(U) is open in R

n and f |U is a diffeomorphism
onto V .

2.2.2 Differential Geometry Basics

In many textbooks, manifolds are drawn as smooth “blobs” living in a 3-dimensional
Euclidean space. In a sense, a manifold is indeed a generalization of smooth surface in R3,
with the key element that around each point on the manifold the space “looks” Euclidean.
For example, the earth is (more or less) a sphere, however to us it looks like a flat surface,
which can be parameterized by two orthogonal coordinates. The surface of the earth is like
a 2-dimensional manifold, however, manifolds may be of higher dimensions. The following
two definitions are adapted from [21].

Definition 2.2.5. The set U ⊂ R
n is a k-dimensional manifold if it is locally diffeomorphic

to Rk.

Definition 2.2.6. The manifold V ⊂ Rn is a submanifold of the manifold U ⊂ Rn if
V ⊂ U .

The idea of a submanifold is straightforward; it is essentially a manifold “inside” a
larger manifold. This leads to the definition of an embedding, critical to the main results
of this thesis.

Definition 2.2.7. An embedding f : U → V maps U diffeomorphically onto a submanifold
of V .

Notice that in the previous definition, U and V are not diffeomorphic, since the dimen-
sion of V is higher than the dimension of U . This thesis focuses on path following, and we
consider only embedded paths.

2.2.3 Matrix Properties

Though it is likely that the reader of this thesis is well-acquainted with properties of
matrices, we review some of the commonly used ideas. Matrices are linear operators which
take vectors in their domain, and generate vectors in their co-domain.

Definition 2.2.8. Given a linear operator A : Rn → Rm, or equivalently a matrix A ∈
Rm×n, the image of A is given by

Im(A) := {y ∈ R
m : Ax = y, for some x ∈ R

n} .
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Definition 2.2.9. Given a linear operator A : Rn → Rm the rank of A is the dimension
of Im(A).

Theorem 2.2.2. (Adapted from [19]) The rank of a real-valued matrix A is equal to

• the number of linearly independent columns of A.

• the largest r for which at least one r× r submatrix of A has a non-zero determinant.

The rank of a matrix is one way to tell whether a matrix is surjective or not, which
relates to our main results. Another important property of matrix operators is which
vectors in the domain map to zero in the co-domain. This notion is important in discussing
the feedback transformation in Section 3.1.

Definition 2.2.10. The kernel or null space of a linear operator A : Rn → Rm, is the set
{x ∈ Rn ∈ U : Ax = 0}. In this thesis, the kernel of A is denoted ker(A).

With scalars, the concept of being “positive” (i.e. > 0) is straightforward. With
matrices, the equivalent concept is that of being “positive definite”. In the context of this
thesis, we appeal to the positive definiteness of generalized mass matrices in Section 3.2.

Definition 2.2.11. A matrix A ∈ Rn×n is positive definite if, given a vector x ∈ Rn, x 6= 0,
xT Ax > 0. It is positive semi-definite if xT Ax ≥ 0.

Positive definite matrices are invertible. The proof of this fact is in Appendix A.

2.2.4 Vector Fields

In the study of nonlinear systems, we often encounter models of the form

ẋ = f(x), x ∈ U ⊆ R
n, (2.1)

where f is a smooth mapping assigning a vector to each point in the state-space (i.e. each
x ∈ U). For this reason, f is commonly referred to as a vector field.

In this thesis we often need the derivative of a function along a particular vector field.
Consider the vector field of (2.1), and a real-valued function λ : U ⊆ Rn → R. The
derivative of λ along f is a function Lfλ : U → R, and is equal to the inner product

Lfλ(x) := 〈dλ(x), f(x)〉 =
∂λ

∂x
f(x)

which is called the Lie or directional derivative of λ along f .
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It is possible to group such operations together, for example, taking the Lie derivative
of λ first with respect to the vector field f , then with respect to the vector field g would
yield

LgLfλ(x) =
∂Lfλ

∂x
g(x).

Furthermore, this operation can be recursively defined, such that taking k derivatives of λ
along f would be denoted Lk

fλ(x) where

Lk
fλ(x) =

∂Lk−1
f λ

∂x
f(x), with L0

fλ(x) = λ(x).

2.2.5 Control Systems

In this thesis, we study control systems of the form

ẋ = f(x) +

m
∑

i=1

gi(x)ui =: f(x) + g(x)u, (2.2)

where x ∈ Rn is the state, u := col(u1, . . . , um) ∈ Rm is the control input and the vector
fields f, g1, . . . gm are smooth. Furthermore, consider a function

y = h(x) =







h1(x)
...

hp(x)






, y ∈ R

p, (2.3)

which is the output of the system. The idea of relative degree is key in allowing us to
change the coordinates of (2.2) into a particularly convenient form.

Definition 2.2.12. System (2.2) with u ∈ R, and with output y = h(x), y ∈ R has relative
degree r at a point x0 if

1. LgL
k
fh(x) = 0 for all x in a neighbourhood of x0 and all k < r − 1

2. LgL
r−1
f h(x0) 6= 0

In other words, the relative degree of a single-input single-output (SISO) control system
is the number of times the output must be differentiated before the input explicitly appears.
In the multi-input multi-output (MIMO) setting, the equivalent concept is the vector
relative degree for square1 systems.

1“Square” systems indicate that the number of inputs is equal to the number of outputs, i.e. p = m
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Definition 2.2.13. System (2.2) with u ∈ Rm, and with output (2.3) y ∈ Rm (i.e. a
square MIMO system) has vector relative degree {r1, . . . , rm} at a point x0 if

1. Lgj
Lk

fhi(x) = 0 for all 1 ≤ j ≤ m, for all k < ri − 1, for all 1 ≤ i ≤ m and all x in a
neighbourhood of x0.

2. The m × m matrix










Lg1
Lr1−1

f h1(x) . . . Lgm
Lr1−1

f h1(x)

Lg1
Lr2−1

f h2(x) . . . Lgm
Lr2−1

f h2(x)
...

...
Lg1

Lrm−1
f hm(x) . . . Lgm

Lrm−1
f hm(x)











is nonsingular at x = x0.

2.2.6 Input-Output Feedback Linearization

We continue to refer to the square system (2.2) with output (2.3) , y ∈ Rm, in this section.
We remind the reader that, in the interest of brevity, we emphasize main ideas, rather than
mathematical rigor. For a rigorous treatment, the interested reader is referred to [25].

SISO input-output feedback linearization

A system whose output yields a well-defined (vector) relative degree can be transformed
into a system with a linear input-output map via a coordinate and feedback transformation.
Consider the SISO case (i.e. when m = 1), and apply the local change of coordinates

T :U → T (U)

x 7→ (η, ξ)

such that

T :=















ϕ(x)
h(x)

Lfh(x)
...

Lr−1
f h(x)















where η := ϕ(x) = col(ϕ1(x), . . . , ϕn−r(x)) and ξ := col(h(x), . . . , Lr−1
f h(x)). The functions

ϕ1(x), . . . , ϕn−r(x) are chosen such that locally, T is a diffeomorphism [25]. The state-space

14



description in new coordinates is

η̇ =
dϕ(x(t))

dt

=
∂ϕ(x)

∂x
ẋ

=
∂ϕ(x)

∂x
(f(x) + g(x)u)

∣

∣

∣

∣

x=T−1(η,ξ)

=
∂ϕ(x)

∂x
f(x)

∣

∣

∣

∣

x=T−1(η,ξ)

+
∂ϕ(x)

∂x
g(x)u

∣

∣

∣

∣

x=T−1(η,ξ)

= p(η, ξ) +
m
∑

i=1

qi(η, ξ)ui

=: p(η, ξ) + q(η, ξ)u,

for the η dynamics, whereas for the ξ dynamics we have

ξ̇1 = ξ2

· · · · · ·

ξ̇r−1 = ξr

ξ̇r = Lr
fh(x)

∣

∣

x=T−1(η,ξ)
+ LgL

r−1
f h(x)u

∣

∣

x=T−1(η,ξ)

:= b(η, ξ) + a(η, ξ)u.

It can be shown that T−1 exists, and moreover that, in the SISO case, ϕ1(x), . . . , ϕn−r(x)
can be chosen such that T is a diffeomorphism and that q(η, ξ) ≡ 0 [25, Proposition 4.1.3].
In this representation, it is clear that with a well-defined relative degree, the regular static
feedback

u =
1

a(η, ξ)
(−b(η, ξ) + v)

will yield the system with linear input-output map

η̇ = p(η, ξ)

ξ̇1 = ξ2

· · · · · ·

ξ̇r−1 = ξr

ξ̇r = v.

The advantage of a system in this form is that standard linear control techniques may be
used to design controllers, assuming that the uncontrollable η dynamics are stable.
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MIMO input-output feedback linearization

In the MIMO setting, the concept of vector relative degree is analogous to the SISO case and
can be used to establish a linear input-output map, through a coordinate transformation
and feedback transformation. Considering the MIMO case, we may apply the local change
of local coordinates

T :=





































ϕ(x)
h1(x)

Lfh1(x)
· · · · · ·

Lr1−1
f h1(x)

h2(x)
Lfh2(x)
· · · · · ·

Lr2−1
f h2(x)
· · · · · ·

Lrm−1
f hm(x)





































where {r1, . . . rm} is the vector relative degree of the system, and r1 + · · · + rm ≤ n. We
define

η := ϕ(x) = col

(

ϕ1(x), . . . , ϕ
n−

m
∑

i=1

ri

(x)

)

and
ξ := col(h1(x), . . . , Lr1−1

f h1(x), . . . , hm(x), . . . , Lrm−1
f hm(x)).

In our notation for the ξ-coordinates, ξi
j denotes the jth derivative of the ith output. The

development of the η dynamics for the MIMO case is similar to the SISO case. Therefore
we may express the η dynamics as

η̇ =: p(η, ξ) + q(η, ξ)u,

where in general, it may not be possible to choose T such that q(η, ξ) ≡ 0 [25]. The
ξ dynamics in the MIMO case have a similar form to their SISO counterpart, with the
intuitive extension that multiple outputs must be considered. The ξ dynamics are

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

· · · · · ·

ξ̇i
ri−1 = ξi

ri

ξ̇i
ri

= bi(η, ξ) +
m
∑

k=1

aik(η, ξ)uk
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with i ∈ {1, . . . , m} and where

aik(η, ξ) := Lgk
Lri−1

f hi(x)
∣

∣

x=T−1(η,ξ)
k ∈ {1, . . . , m},

bi(η, ξ) := Lri

f hi(x)
∣

∣

x=T−1(η,ξ),

where gk denotes the kth column of g. The function ϕ(x) can be chosen such that T is a
diffeomorphism onto its image [25, Proposition 5.1.2, Lemma 5.1.1]. We define β̄(η, ξ) :=
col (−b1(η, ξ), . . . ,−bm(η, ξ)) and

ᾱ(η, ξ) :=











a11(η, ξ) a12(η, ξ) · · · a1m(η, ξ)
a21(η, ξ) a22(η, ξ) · · · a2m(η, ξ)

...
...

. . .

am1(η, ξ) am2(η, ξ) · · · amm(η, ξ)











−1

,

in order to arrive at the feedback transformation

u = ᾱ(η, ξ)
(

β̄(η, ξ) + v
)

where v = col(v1, . . . , vm). This leads to the system with linear input-output map

η̇ = p(η, ξ) + q(η, ξ)v

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

· · · · · ·

ξ̇i
ri−1 = ξi

ri

ξ̇i
ri

= vi

for i ∈ {1, . . . , m}. Once again, the advantage of a system in this form is that standard
linear control techniques may be used design controllers, assuming that the uncontrollable
η dynamics are stable.

Zero dynamics

The zero dynamics of a system are the dynamics of the system under the constraint y(t) = 0
for all t. Recall our output (2.3), and that ξi

1 := hi(x). It is straightforward to show that

(∀ t ≥ 0) h(x(t)) = 0 ⇔ ξ(t) = 0.

Since ξ = 0, the remaining dynamics are governed by the differential equation

η̇ = p(η, 0) + q(η, 0)v
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for an arbitrary initial condition η(0) = η0. Of course, in order to satisfy the constraint
y(t) = 0, as with any linear system, the control input, v(ξ), must be chosen such that

v(0) = 0.

If the zero dynamics are asymptotically stable with respect to an equilibrium point in the
domain of interest, the system is said to be minimum phase. Otherwise, the system is said
to be non-minimum phase. This idea is relevant to Chapter 5 of this thesis, in which a
model of a flexible link has oscillatory, and hence non-minimum phase, zero dynamics.

2.2.7 Full-state Linearization

So far we have seen that given system (2.2) with output (2.3), it may be locally possible to
convert the dynamics (through a coordinate and corresponding feedback transformation)
such that the input-output map is linear, with some remaining nonlinear internal dynamics.
Suppose the remaining nonlinear η dynamics are undesirable. Is it somehow possible to
eliminate the η coordinates altogether? From the discussion on input-output feedback
linearization, it is evident that systems with r = n (or r1 + · · · + rm = n in the MIMO
case) do not have η coordinates. Therefore we would like to change the (vector) relative
degree of the system, which is unfortunately is dependent on the given system output, (2.3).
However, nothing is stopping us from using another function, λ(x), as an “output”, which
does not correspond to y, but may change the relative degree such that η dynamics do not
exist.

Informally stated, the State-space Exact Linearization Problem (or simply “full-state
linearization”) entails finding a suitable function λ : Rn → Rl such that r = r1 + r2 + · · ·+
rl = n, the dimension of the state-space. We refer the reader to [25, Theorem 5.2.3], which
provides conditions under which the State-space Exact Linearization Problem is solvable.
The relevance of full-state linearization to this thesis lies in Chapter 5, where we discuss
the results of a related publication in which the authors attempted full-state linearization
on a robotic manipulator with a flexible link.
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Chapter 3

Path Following for Mechanical

Control Systems

We seek to solve the path following control problem for mechanical control systems. The
approach taken in this thesis is to formulate the path following control problem as an
instance of set stabilization, where stabilizing an appropriate set in the state space of
the mechanical system causes the output of the system to lie on the desired path. In
order to stabilize the set of interest, transverse feedback linearization is used. Transverse
feedback linearization is a coordinate and feedback transformation that puts a system into
a normal form that is particularly convenient for stabilizing sets in the system’s state space.
Transverse feedback linearization involves finding, if possible, a suitable “virtual” output
and then performing partial feedback linearization with the virtual output. In the context
of path following, regulating the virtual output is equivalent to driving the real output
of the system to the desired path. In this chapter we show that for mechanical control
systems, under mild regularity assumptions, there always exists a suitable virtual output
so that transverse feedback linearization can be used to design path following controllers.

The transverse feedback linearization normal form ensures that the dynamics transverse
to the set to be stabilized are linear, time-invariant (LTI) and controllable. For path
following, this ensures that the problem of making the system’s output approach the desired
path is equivalent to stabilizing the LTI transverse dynamics. In general however transverse
feedback linearization does not impose any special structure on the dynamics that govern
the motion on the set, i.e., the path. In this chapter we show that, for mechanical systems
with sufficient actuation and under mild regularity assumptions, the dynamics along the set
can be further transformed into a normal form that facilitates control design for achieving
desired motions along the path.
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3.1 Summary of Path Following via Transverse Feed-

back Linearization

Recently there has been significant research applying transverse feedback linearization to
achieve path following control. We base our approach primarily on the work of Nielsen and
Maggiore [36]. In this section, we present a summary of these results. Before proceeding,
we emphasize that transverse feedback linearization, as a tool to stabilize sets, has a natural
application to path following. One may discuss both path following and transverse feedback
linearization separately; however, our approach in this chapter is to present transverse
feedback linearization in the context of path following. For a separate treatment, the
interested reader is referred to [36], [38].

Consider a control-affine system with m inputs and p outputs,

ẋ = f(x) +
m
∑

i=1

gi(x)ui =: f(x) + g(x)u

y = h(x)
(3.1)

where x ∈ Rn is the state, u = (u1, . . . , um) is the input and y ∈ Rp (p ≥ 2) is the output.
We are given a smooth parameterized curve to follow σ : D → R

p, where D is either R,
when the curve is not closed, or D = S1, when the curve is closed1. We impose geometric
restrictions on the class of curves, σ(·), considered.

Assumption 1. The curve σ : D → Rp enjoys the following properties:

(i) σ is continuously differentiable (Cr, r ≥ 1).

(ii) σ is regular, i.e., ‖σ′‖ 6= 0.

(iii) σ : D → σ(D ) is injective. Note that when D = S1 this assumption requires that σ(D )
be a Jordan curve.

(iv) σ is proper, i.e., for any compact set K ⊂ Rp, σ−1(K) is compact. Note that this
assumption is automatically satisfied when D = S1.

Assumption 1 guarantees that σ(D ) is an embedded submanifold of Rp with dimen-
sion 1.

Assumption 2. There exists a continuously differentiable map s : R
p → R

p−1 such that 0
is a regular value of s and σ(D ) = s−1(0). Moreover the lift of s−1(0) to Rn

Γ := (s ◦ h)−1 (0) = {x ∈ R
n : s(h(x)) = 0}

is a submanifold of Rn.

1The notation S means R mod 2π, the real numbers modulo 2π. On the set S1 two different real numbers
x and x + 2π are considered to be the same point. Thus S1 has the geometric structure of a circle.
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By Assumption 1, the path σ, given as a parameterized curve, is a submanifold of Rp

and hence the first part of Assumption 2 is always satisfied locally. Assumption 2 requires
that the entire path can be represented as the zero level set of the function s in the output
space of system (3.1)

{y ∈ R
p : s(y) = 0} = σ(D ).

If we let γ := s−1(0), then Assumption 2 is equivalent to requiring that one can choose
s : Rp → Rp−1 so that its Jacobian has full rank p− 1 at each point of γ. With regards to
the second part of Assumption 2, a sufficient condition for

Γ = {x : s1(h(x)) = · · · = sp−1(h(x)) = 0}

to be a submanifold of Rn is that the map h : Rn → Rp be transversal to the submanifold
s−1(0) [21]. By Assumption 2 the dimension of Γ is n − p + 1. Intuitively, we see that
making x → Γ is equivalent to making y → γ.

Our objective is to design a smooth feedback which makes the output of the system (3.1)
approach the path γ, and traverse it with a desired speed and direction. Additionally, we
seek to render γ output invariant. Intuitively, output invariance ensures that if the state
x of the closed-loop system is properly initialized with y(0) = h(x(0)) ∈ γ, then output
signal y(t) will remain on the path γ for all future time.

A natural question to ask is whether the path σ(D ) is feasible for (3.1). This is equiv-
alent to asking if there is a subset of Γ that can be stabilized. In general one may only be
able to stabilize a subset Γ by suitable choice of the control input. Accordingly, for path
following we seek to stabilize the largest controlled invariant submanifold of Γ, denoted
by Γ⋆. Intuitively Γ⋆ is the collection of all motions of system (3.1) whose outputs can be
made to lie in γ for all time given a suitable control input.

Assumption 3. The maximal controlled-invariant subset of Γ = {x ∈ Rn : s(h(x)) = 0},
Γ⋆, is a non-empty, closed embedded submanifold of the state space. Let the dimension of
Γ⋆ be denoted n⋆

Assumption 3 is a basic feasibility requirement needed to solve the path following
problem for system (3.1) using transverse feedback linearization. If this assumption does
not hold then there does not exist a smooth feedback that makes the output of system (3.1)
stay on the path γ for all time. With this assumption, Γ⋆ is precisely the zero dynamics
manifold of the control system ẋ = f(x) + g(x)u with output ŷ = s(h(x)). Since the set
Γ⋆ plays such an important role in the subsequent development, we formally define it.

Definition 3.1.1. The path following manifold, Γ⋆, of γ with respect to (3.1) is the maximal
controlled-invariant submanifold contained in (s ◦ h)−1(0).
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We now give a precise definition of what it means for a path to be output invariant for
a control system.

Definition 3.1.2. Let ū(x) be a smooth feedback and let Γ⋆ be the path following manifold
of γ with respect to (3.1). The path γ is output invariant under the closed loop vector
field f̄ := f + gū if Γ⋆ is invariant under f̄ .

The following example illustrates the above concepts.

Example 3.1.1. Consider a magnetized puck of mass M on a frictionless plane as shown
in Figure 3.1. In this fictitious system, we assume that two electromagnets may attract
and/or repel the magnetized puck by directly applying the orthogonal forces2 τ1 and τ2.

Figure 3.1: A simple mechanical control system

2The electrical dynamics are neglected for simplicity, and we treat the control inputs directly as forces
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We take the state x = col(x1, x2, x3, x4) of this system to be the positions and velocities
of the puck mass in the y1 and y2 directions. The model of this linear system is

ẋ1 = x3

ẋ2 = x4

ẋ3 = 1
M

τ1

ẋ4 = 1
M

τ2.

We choose our output y = col(y1, y2) as the position of the mass in the plane, such that

y1 = x1

y2 = x2.

Our path in output space is the unit circle, i.e. γ = {y ∈ R2 : s(y) = y2
1 + y2

2 − 1 = 0}.

In this example, Γ = {x ∈ R4 : x2
1 + x2

2 − 1 = 0}, which is a cylinder in 4-dimensional
space. To illustrate the relationship between Γ and Γ⋆ for this system, in reference to
Figure 3.1, consider an initial condition x0 = col(1, 0, α, β) ∈ Γ, α, β ∈ R. We see that
Γ is not an invariant set, as any velocity α 6= 0 , which is in the y1 direction, will cause x
to leave Γ. For this example, intuitively Γ⋆ must be the largest subset of Γ for which the
puck velocities are tangent to γ.

△

Now we state the path following problem (PFP), based on [38], which entails finding a
smooth feedback such that the following objectives are met:

P1 For each initial condition in an open neighbourhood of Γ⋆, the corresponding solution
x(t) of (3.1) is defined for all t ≥ 0 and ‖h(x(t))‖γ → 0 as t → +∞

P2 The set γ is output invariant for the closed-loop system

P3 The motion on γ meets additional application specific requirements such as direction
and speed of traversal of the path, and boundedness of the internal dynamics.

The approach we take in solving the PFP (see [38]) is summarized below.

Step 1 Find the path following manifold Γ⋆.

Step 2 Find, if possible, a coordinate transformation T : x 7→ (η, ξ), defined in a neigh-
bourhood U of Γ⋆, and a regular feedback transformation u = α(x) + β(x)v, (β
non-singular on U) such that T (Γ⋆) = {(η, ξ) : ξ = 0} and, in new coordinates,

η̇ = f 0(η, ξ) + g⋔(η, ξ)v⋔ + g‖(η, ξ)v‖

ξ̇ = Aξ + Bv⋔
(3.2)
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with v := col(v⋔, v‖) ∈ Rm and (A, B) a controllable pair. The ξ-subsystem is
referred to as the transversal subsystem. On the other hand, the system η̇ = f 0(η, 0)+
g‖(η, 0)v‖ is the tangential subsystem.

Step 3 Design a transversal feedback v⋔(ξ) stabilizing the origin of the transversal sub-
system. Note that stabilizing the origin of the transversal subsystem is equivalent to
stabilizing Γ⋆, which corresponds to getting the output of (3.1) onto the path.3

Step 4 Design a tangential feedback v‖(η, ξ) such that, when ξ = 0, the tangential sub-
system meets the applications-specific goals in P3, and moreover, the closed-loop
system has no finite escape times [27].

In summary, our goal is to solve the PFP, and we set out to do so by stabilizing a set in
the state space called the path following manifold denoted Γ⋆. On the path following man-
ifold, the output of the system lies on the path. We use transverse feedback linearization
to stabilize this set. There are other approaches to stabilizing Γ⋆, but transverse feedback
linearization has particularly attractive features, among them

• As the name implies, and as indicated in (3.2), the dynamics of the transversal
subsystem are linear, time-invariant and controllable which simplifies control design
in order to accomplish goal P2.

• Objectives P1 and P2 are decoupled from objective P3, meaning controllers for the
transversal and tangential subsystems may be independently designed.

Theorem 3.1.1 below states that transverse feedback linearization essentially amounts to
partial feedback linearization with the additional requirement that the linear subsystem be
representative of the dynamics of the system transversal to the target set Γ⋆. Furthermore,
notice that the dynamics of the η-subsystem of (3.2) are left in a general form. Transverse
feedback linearization imposes no structure on the η-subsystem, so that, in general, meeting
P3 may be difficult or impossible. According to Step 4, the objective is to somehow control
the tangential dynamics of the transversely feedback linearized system. We will show that,
for mechanical systems, the η dynamics can be given more structure that will help design
controllers for Step 4. This is the subject of Section 3.3.2.

We now proceed in applying Steps 1-4 to solve the PFP. In Step 1 we must find
Γ⋆, the path following manifold. This may be done using the zero dynamics algorithm
described in [25].

3Set stabilization is not a coordinate invariant property. In particular, stabilizing x to Γ⋆ is equivalent
to stabilizing (η, ξ) to T (Γ⋆) if the trajectory x(t) is bounded. If x(t) is unbounded, say because the path
itself is unbounded, then additional design constraints must be imposed.
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Step 2 involves finding a coordinate transformation and a regular feedback transfor-
mation such that our system (3.1) is decomposed into a linear transversal subsystem, and
a remaining tangential subsystem. We appeal to the following theorem, adapted from [36].

Theorem 3.1.1. System (3.1) is locally transversely feedback linearizable at a point x⋆ ∈ Γ⋆

if and only if there exist l smooth functions λ1(x), λ2(x), . . . , λl(x), 1 ≤ l ≤ m, with the
following properties:

(a) Γ⋆ ⊂ {x : λ1(x) = · · · = λl(x) = 0}.

(b) The “virtual output” ŷ := λ(x) = col(λ1(x), . . . , λl(x)) yields a uniform vector relative
degree {k1, . . . , kl} at x⋆ ∈ Γ⋆, and the indices ki are such that k1 + · · ·+ kl = n−n⋆.

In general, finding the virtual output may be a difficult task. The existence of such
an output can be determined using Theorem 3.2 in [36], where checkable necessary and
sufficient conditions are presented. However, a good first guess is to try ŷ = s(h(x)),
since it already satisfies property (a) above. This will be our approach in Section 3.3.
We will provide necessary and sufficient conditions for this choice of virtual output with a
mechanical system to satisfy Theorem 3.1.1.

Suppose that we have found a suitable virtual output λ(x) that satisfies Theorem 3.1.1.
We now show how we can use this virtual output to put system (3.1) into the normal
form (3.2). By [25, Proposition 5.1.1], the n − n⋆ functions

λ1(x), . . . , Lk1−1
f λ1(x), . . . , λl(x), . . . , Lkl−1

f λl(x)

have linearly independent differentials at x⋆. By [25, Proposition 5.1.2] it is possible to
find an additional n⋆ real-valued functions ϕi(x), i ∈ {1, . . . , n⋆} whose differentials are
linearly independent at x⋆ so that, by the inverse function theorem, Theorem 2.2.1, there
exists a neighbourhood U of x⋆ such that the mapping

T :U → T (U)

x 7→ T (x) =

col
(

ϕ1(x), . . . , ϕn⋆(x), λ1(x), . . . , Lk1−1
f λ1(x), . . . , λl(x), . . . , Lkl−1

f λl(x)
)

(3.3)

is a local diffeomorphism at x⋆. Set

η = ϕ(x) = col (ϕ1(x), . . . , ϕn⋆(x)),

ξi = col (ξi
1, . . . , ξ

i
ki

) = col (λi(x), . . . , Lki−1
f λ(x))
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for i ∈ {1, . . . , l}, and let ξ = col (ξ1, . . . , ξl). Then in (η, ξ) coordinates the η dynamics are
given by

η̇ =
dϕ(x(t))

dt

=
∂ϕ(x)

∂x
ẋ

=
∂ϕ(x)

∂x
(f(x) + g(x)u)

∣

∣

∣

∣

x=T−1(η,ξ)

=
∂ϕ(x)

∂x
f(x)

∣

∣

∣

∣

x=T−1(η,ξ)

+
∂ϕ(x)

∂x
g(x)u

∣

∣

∣

∣

x=T−1(η,ξ)

= p(η, ξ) +
m
∑

i=1

qi(η, ξ)ui

=: p(η, ξ) + q(η, ξ)u.

On the other hand the ξ dynamics are given by

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

· · · · · ·

ξ̇i
ki−1 = ξi

ki

ξ̇i
ki

= bi(η, ξ) +
m
∑

j=1

aij(η, ξ)uj

with i ∈ {1, . . . , l} and where

aij(η, ξ) := Lgj
Lki−1

f λi(x)
∣

∣

x=T−1(η,ξ)

bi(η, ξ) := Lki

f λi(x)
∣

∣

x=T−1(η,ξ),
j ∈ {1, . . . , m}.

Therefore the coefficient multiplying the control input uj in the equation for ξ̇i
ki

is the
(i, j)th entry of the so-called decoupling matrix

D(x) :=











LgL
k1−1
f λ1

LgL
k2−1
f λ2

...

LgL
kl−1
f λl











=











Lg1
Lk1−1

f λ1 · · · Lgm
Lk1−1

f λ1

Lg1
Lk2−1

f λ2 · · · Lgm
Lk2−1

f λ2

...

Lg1
Lkl−1

f λl · · · Lgm
Lkl−1

f λl











. (3.4)

Let (η⋆, ξ⋆) = T (x⋆) and recall that by Theorem 3.1.1, D(x)|x=T−1(η,ξ) is full rank at (η⋆, ξ⋆)
which means that it is full rank in a neighbourhood of (η⋆, ξ⋆). In general, the decoupling
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matrix (3.4) is not square4, but has dimensions l ×m. This suggests the following regular
feedback transformation. Let β(x) = [M(x)N(x)] where M(x) := D(x)T (D(x)D(x)T )−1 is
a right inverse of D(x) and where N(x) is an m × (m − l) smooth matrix-valued function
whose columns span the kernel of D(x) for all x near x⋆. Notice that β(x) is just defined
is non-singular near x⋆. Finally, let

α(x) := −β(x) col(Lk1

f λ1(x), . . . , Lkl

f λl(x), 0(m−l)×1).

so that our regular feedback transformation is

u = α(x) + β(x)v, (3.5)

where v = col(v⋔, v‖) with v⋔ ∈ Rl and v‖ ∈ Rm−l. After applying this feedback transfor-
mation, the η dynamics are given by

η̇ = p(η, ξ) + q(η, ξ) (α(x) + β(x)v)x=T−1(η,ξ)

= p(η, ξ) + q(η, ξ)α(x) + q(η, ξ)β(x)

[

v⋔

v‖

]
∣

∣

∣

∣

x=T−1(η,ξ)

=: f 0(η, ξ) + g⋔(η, ξ)v⋔ + g‖(η, ξ)v‖.

The ξ dynamics are given by
ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

· · · · · ·

ξ̇i
ki−1 = ξi

ki

ξ̇i
ki

= v⋔

i

for i ∈ {1, . . . , l}. If we let ξ = col (ξ1, . . . , ξl) then the ξ dynamics can be written compactly
as

ξ̇ = Aξ + Bv⋔

where the pair (A, B) are in Brunovský normal form. In conclusion, using the functions
λ(x) that satisfy the conditions of Theorem 3.1.1, we generate the coordinate transfor-
mation (3.3) and the feedback transformation (3.5) to obtain a system with the desired
form.

Step 3 involves stabilizing the origin of the ξ-subsystem. One may appeal to standard
linear feedback control design techniques to accomplish this. Finally, Step 4 involves
controlling the tangential dynamics, if possible. There are no guarantees on the structure
of the η dynamics. However, in some systems it may be possible to impose further structure
on these dynamics by appropriate choice of the functions ϕ(x) and the input v‖.

4In contrast, when performing input-output feedback linearization for systems where p = m, the corre-
sponding decoupling matrix is square, and, given a well-defined relative degree at a point, invertible.
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3.2 Mechanical Control Systems

3.2.1 Modeling

A standard method of deriving the equations of motion for mechanical control systems is
via the Euler-Lagrange equations. For a simple mechanical control system with internal
dissipation (i.e. friction) the Euler-Lagrange equations are

d

dt

(

∂L

∂q̇
(q, q̇)

)

−
∂L

∂q
(q, q̇) +

∂R

∂q̇
= τ̃ (3.6)

where q = col (q1, . . . , qN) are generalized configuration coordinates and τ̃ ∈ RN is the
vector of generalized forces acting on the system [50]. We refer to τ̃ as the inputs to
mechanical control system.

Definition 3.2.1. A mechanical system (3.6) has N degrees of freedom (DOF) if N gen-
eralized configuration coordinates q are necessary to model the system [50].

Definition 3.2.2. The configuration space of a mechanical system is an N -dimensional
manifold which is the collection of all possible system configurations.

The main results in this chapter are local and so we will assume, without loss of gen-
erality, that the configuration manifold is RN . The Lagrangian function

L(q, q̇) = K(q, q̇) − V (q) (3.7)

equals the difference between kinetic energy K and potential energy V . In standard me-
chanical systems the kinetic energy K is of the form K(q, q̇) = 1

2
q̇⊤M(q)q̇, where the N×N

inertia (generalized mass) matrix M(q) is symmetric and positive definite for all q. The
function R(q̇) is a Rayleigh dissipation function that satisfies [57]

q̇T ∂R

∂q̇
≥ 0.

The Euler-Lagrange in coordinates are commonly expressed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ̃ , (3.8)

where matrix C(q, q̇) represents the velocity-dependent Coriolis, centripetal and dissipation
terms. The function G(q) represents the mapping to generalized forces from the system
configuration, which typically includes terms describing the effect of gravity, and other
configuration-dependent forces.

28



Since M(q) is positive definite, M−1(q) exists for every q (see Appendix A for proof).
Physically this is because mechanical bodies must have positive masses and rotational
inertias. Thus we may multiply both sides of (3.8) by M−1(q) to get

q̈ = −M−1C(q, q̇)q̇ − M−1G(q) + M−1τ̃ . (3.9)

To facilitate the subsequent discussion we will convert the equations of motion, (3.9),
into state space form and distinguish between configuration and velocity states by defining

xc := q

xv := q̇,

and
x :=(xc, xv)

= col (xc1 , . . . xcN
, xv1

, . . . , xvN
)

= col (q1, . . . , qN , q̇1, . . . q̇N ) .

Setting n = 2N , the state x is an element of Rn. Since τ̃ ∈ RN has only 0 ≤ m ≤ N
independent applied forces, we set gv(xc)τ := M−1(xc)τ̃ , where gv(xc) ∈ RN×m and τ ∈ Rm.
We also set fv(x) := −M−1(xc)C(xc, xv)xv − M−1(xc)G(xc), where fv(x) ∈ RN×1. The
equations of motion, (3.9), in state space form are now concisely expressed as

ẋ = f(x) + g(x)τ

:=

[

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

τ,
(3.10)

where f(x) has dimension n×1 and g(x) has dimension n×m. Mechanical control systems
are often classified based on the number of independent control inputs they have relative
to their degrees of freedom.

Definition 3.2.3. A mechanical system with m inputs and N degrees of freedom is said
to be

(a) fully actuated if m = N or

(b) underactuated if m < N .

The output equation of a control system is typically used to model the variable we are
interested in controlling and/or the information available for feedback. In this chapter we
take the former view and treat the output of a mechanical system as the variable we are
interested in controlling. A typical example is the forward kinematics of a robot, i.e., the
configuration of the end-effector given the relative configurations of each pair of adjacent
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links of the robot. We restrict the class of output functions to be solely functions of the
configuration variables xc = q. Hence we take as the output equation of system (3.10) an
equation of the form

y = h(xc), y ∈ R
p (3.11)

where h is smooth. We will call the function h(xc) the forward kinematic map, or simply
the forward kinematics of the mechanical system, which maps from system configuration
to the output space. We will assume throughout this chapter that m ≥ p − 1.

Definition 3.2.4. A mechanical system is said to be kinematically redundant if N > p [46].

For example, a 3-link planar elbow manipulator is kinematically redundant if the ob-
jective is specifying endpoint location (N = 3, p = 2). It is not kinematically redundant if
the objective is specifying endpoint location and orientation (N = 3, p = 3).

We are interested in designing controllers that solve the path following problem for
mechanical systems, using the approach in Section 3.1. Thus we restrict the dimension of
the output be greater than one. For the problem considered in this thesis, a 1-dimensional
output is not particularly useful because any curve that satisfies Assumption 1 with p = 1
will necessarily satisfy σ(D ) = R. Thus the problem considered here reduces to the trivial
problem of making y stay on the real line.

3.3 Path Following for Mechanical Systems

We now solve the path following control problem for the class of simple mechanical systems
using transverse feedback linearization. To this end, we constrain the theory presented in
Section 3.1 to the class of systems presented in Section 3.2.1, whose model we restate as

ẋ = f(x) + g(x)τ. (3.12)

Including the forward kinematics, and imposing the structure associated with simple me-
chanical systems, the structured model is given by

ẋc = xv

ẋv = fv(x) + gv(xc)τ
y = h(xc),

(3.13)

where xc ∈ RN , xv ∈ RN , τ ∈ Rm, n = 2N , y ∈ Rp and m ≥ p − 1. We now present the
main result.
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Main result

Theorem 3.3.1. Given a simple mechanical control system (3.13) and a smooth embedded
path γ in output space satisfying Assumptions 1 and 2, let x⋆ = col(x⋆

c , x
⋆
v) ∈ Rn satisfy

h(x⋆
c) ∈ γ. The system

ẋc = xv

ẋv = fv(x) + gv(xc)τ
ŷ = s ◦ h(xc)

(3.14)

yields a well-defined vector relative degree of {2, . . . , 2} at x⋆ if and only if

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

+ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

)

≃ R
p. (3.15)

Proof. Let x⋆ = (x⋆
c , x

⋆
v) ∈ Rn be any point that satisfies h(x⋆

c) ∈ γ. Assume that (3.15)
holds at x⋆. We first show that the virtual output

ŷ = λ(xc) := s ◦ h(xc) (3.16)

yields a well-defined relative degree at x⋆ by showing that the decoupling matrix is full
rank at x⋆. Taking derivatives of ŷ, simple calculations reveal

dŷ

dt
=

∂λ

∂x
(f(x) + g(x)τ)

=
[

∂λ
∂xc

∂λ
∂xv

]

([

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

τ,

)

=
[

∂λ
∂xc

0
]

([

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

τ,

)

=
∂λ

∂xc

xv.

Since the term multiplying the control input is identically zero, we take a second derivative.

d2ŷ

dt2
=

∂ ∂λ
∂xc

xv

∂x
(f(x) + g(x)τ)

=
[

∂ ∂λ
∂xc

xv

∂xc

∂λ
∂xc

]

([

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

τ,

)

=
∂ ∂λ

∂xc
xv

∂xc

xv +
∂λ

∂xc

fv(x) +
∂λ

∂xc

gv(xc)τ

= L2
fλ(x) +

∂λ

∂xc

gv(xc)τ.
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We now show that (3.15) implies that the p − 1 × m matrix valued function multiplying
the control input τ is full rank at x⋆ and hence that λ yields a well-defined vector relative
degree of {2, . . . , 2}. By the chain rule

∂λ

∂xc

gv(xc) =
∂s

∂y

∣

∣

∣

∣

y=h(xc)

∂h

∂xc

gv(xc).

Since m ≥ p − 1, the best we can hope for is that this matrix is surjective, or onto (full
row rank). By Assumptions 1 and 2, the p − 1 × p matrix ∂s

∂y
is full rank (onto) at each

point on the path, in particular, at y = h(x⋆
c). Condition (3.15) implies that any vector in

the pre-image of the map ∂s
∂y

∣

∣

∣

y=h(x⋆
c)

is in the image of the map ∂h
∂x⋆

c
gv(x

⋆
c). Putting these

facts together we get that

Im

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

= Im

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

)

= R
p−1,

which shows that the decoupling matrix is full rank at each x⋆ with h(x⋆
c) ∈ γ.

Now assume that the virtual output (3.16) yields a well-defined vector relative degree
of {2, . . . , 2} at x⋆ ∈ Rn. By definition this means that the p − 1 × m matrix

LgLfλ(x) =
∂s

∂y

∂h

∂xc

gv(xc)

is full rank at x⋆. Let A := ∂s
∂y

∣

∣

∣

y=h(x⋆
c)

and let B := ∂h
∂xc

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c). Let R := ker A and

let S be any independent subspace5 so that Rp = R ⊕ S . Then any vector v in Rp can
be written uniquely as v = r + s with r ∈ R and s ∈ S .

Since the decoupling matrix AB is full rank (onto) at x⋆, it follows that for any vector
w ∈ R

p−1, there exists a u ∈ R
m such that w = ABu. The vector Bu ∈ R

p can be written
uniquely as Bu = r + s so that w = ABu = A(r + s) = Ar + As = As. Note that the
vector r is in the image of B. Since w is arbitrary, we have shown that any vector in Rp

can be written as a linear combination of a vector in the image of B and a vector in the
kernel of A. This is precisely condition (3.15) which is what we wanted to show.

Corollary 3.3.2. Under the hypothesis of Theorem 3.3.1, if condition (3.15) holds at some
x⋆ = col(x⋆

c , x
⋆
v) ∈ Rn with h(x⋆

c) ∈ γ then, there exists a neighbourhood U of x⋆ such that
in U the connected component of the path following manifold containing x⋆ is given by

Γ⋆ ∩ U = {x ∈ U : λ(xc) = Lfλ(x) = 0} (3.17)

where λ(xc) = s ◦ h.

5Two vector subspaces R and S are independent if R ∩ S = {0}.
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Proof. We will find a set Γ⋆ that satisfies Definition 3.1.1. By Theorem 3.3.1, λ = s ◦ h
yields a well-defined vector relative degree of {2, . . . , 2}. In particular we have

˙̂y = Lfλ(x)

¨̂y = L2
fλ(x) + LgLfλ(x)τ.

where the (p − 1) × m decoupling matrix LgLfλ(x) is full rank at x⋆. This implies that
LgLfλ(x) has some p−1×p−1 minor with a non-zero determinant at x⋆. Since the deter-
minant is a continuous function of the entries of LgLfλ(x), it follows that this determinant
is non-zero in a neighbourhood U of x⋆.

This implies that the equation

0 = L2
fλ(x) + LgLfλ(x)τ

is solvable in U for some smooth state feedback τ ⋆(x). Therefore the the set
{

x ∈ U : ŷ = ˙̂y = 0
}

= {x ∈ U : λ(xc) = Lfλ(x) = 0}

can be made controlled invariant, i.e., if we chose an initial condition on this set and apply
the control τ ⋆, the mechanical system will remain on this set. Thus we have a controlled-
invariant set contained in the lift of the path. Furthermore, since there is no control input
appearing in the ˙̂y equation, this set is maximal.

Combining the above results we reach our main conclusion.

Corollary 3.3.3. Given a mechanical system (3.13) and a path γ in the output space
satisfying Assumptions 1 and 2. The system is locally transversely feedback linearizable
with respect to the path following manifold (3.17) if there exists a point x⋆

c ∈ R
N such that

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

+ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

)

≃ R
p.

Under the conditions of the above corollary, the functions λ1(xc) = s1(h(xc)), . . . , λp−1(xc) =
sp−1(h(xc)) satisfy the hypothesis of Theorem 3.1.1.

The condition (3.15) may be intuitively explained as follows. The 1-dimensional path

exists in Rp. The matrix ∂h
∂xc

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c) maps controls to Rp. Motions tangent to the

path lie in the kernel of ∂s
∂y

∣

∣

∣

y=h(x⋆
c)

. Such motions are not transversal to the path following

manifold, Γ⋆. Hence, any control mapped into ker

(

∂s
∂y

∣

∣

∣

y=h(x⋆
c)

)

will cause a motion tan-

gential to the path following manifold. Therefore, to ensure enough transverse control will
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“appear” in the output space, it is necessary that ∂h
∂xc

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c) maps controls to Rp,

not including ker

(

∂s
∂y

∣

∣

∣

y=h(x⋆
c)

)

, which is equivalent to (3.15). As an aid to visualize the

condition (3.15), Figure 3.2 illustrates the relationships of the various linear mappings.

Figure 3.2: Relationship of compositions used to visualize proof of Theorem 3.3.1

The main result is notable as it suggests a systematic approach to applying transverse
feedback linearization to solve the path following problem for mechanical systems. Using
the constraint function, λ(xc) = s(h(xc)), by Corollary 3.3.3, checking whether transverse
feedback linearization is possible boils down to checking the rank of a matrix, namely
checking whether

[

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

∣

∣

∣

∣

∣

κ(x⋆
c)

]

has rank p, where κ(x⋆
c) spans ker

(

∂s
∂y

∣

∣

∣

y=h(x⋆
c)

)

.

Corollary 3.3.3 provides easily checkable sufficient conditions given a particular choice
λ(xc) = s ◦ h(xc) to satisfy Theorem 3.1.1. We emphasize that Theorem 3.3.1 is a local
result; it is valid only in a neighbourhood of a point on the path following manifold.
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Remark 3.3.1. Notice that the matrix

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

has dimensions p×m, and recall that m ≥ p−1. In the case where m > p−1, this matrix
may have full rank p along the path, in which case the condition (3.15) is satisfied for any
embedded path. Intuitively, this describes the situation where the control can induce a
motion in any direction in the output space. Therefore a sufficient condition for (3.15)

to hold, is for rank

(

∂h
∂xc

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

= p. The remaining case is when m = p − 1. In

this case, it is impossible for the rank of ∂h
∂xc

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c) to be p, which means that (3.15)

depends on the shape of the embedded path. Intuitively speaking, for this condition to hold,
all of the control must be able to drive the state transversally toward the path following
manifold (which implies that there is no control that can drive the output tangentially
along the path).

Remark 3.3.2. Theorem 3.3.1 provides necessary and sufficient conditions for a mechani-
cal system with a virtual output to yield a well-defined vector relative degree of {2, . . . , 2}.
Relative degree is how many times one particular output must be differentiated before the
control input, τ , appears non-singularly. It makes intuitive sense for systems governed by
Newton’s laws of motion to have a vector relative degree of {2, . . . , 2}, since the virtual out-
put is a function of generalized position, and τ is a generalized force, affecting acceleration.
Naturally differentiating position twice yields acceleration.

Remark 3.3.3. One of our underlying assumptions has been that the path, γ ∈ R
p, is

a 1-dimensional set. The results of this section can be naturally extended to consider
higher dimensional “paths” (though to avoid confusing terminology, we will call the higher
dimensional paths “output sets”). Suppose we have an output set with dimension c̄ > 1.
Generalizing our main results requires modification to the theorems and corollaries. For
example

• Assumptions 1 and 2 must be modified such that the output set γ is an embedded
submanifold of Rp and can be written as the zero level set of some function s : Rp →
Rp−c̄ so that γ = {y ∈ Rp : s(y) = 0}.

• We conjecture that condition (3.15) of Theorem 3.3.1 will provide necessary and
sufficient conditions for the mechanical system with virtual output to yield a well-
defined vector relative degree of {2, . . . , 2} for such higher dimensional output sets.

• We must generalize the notion of a path following manifold to the maximal controlled-
invariant subset of Γ (this is more of an issue of terminology than anything else)
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• The basic feasibility requirement generalizes to m ≥ p − c̄

We omit mathematical rigour in extending the dimension of the set in output space as it
is outside the scope of the subsequent chapters. However, we comment that this natural
extension, given Theorem 3.3.1 and Corollaries 3.3.2 and 3.3.3, is a good candidate for
future research, as suggested in Chapter 6.

Remark 3.3.4. In Theorem 3.3.1 the only restriction on the degree of underactuation of
the mechanical control system is that m ≥ p − 1. Therefore we allow for underactuated
systems. When m > p − 1 we will show in Section 3.3.2 that these “extra” controls may
be effectively used to simplify path following control design.

Remark 3.3.5. In Section 3.1, Steps 1-4 are used to solve the path following problem
for more general systems. Step 1 is finding the path following manifold, Γ⋆, so that in
Step 2 we may find l functions λ such that Γ⋆ ⊂ {x : λ1(x) = · · · = λl(x) = 0} (Condition
(a) of Theorem 3.1.1), which may be difficult. In our approach, Step 1 and condition
(a) of Theorem 3.1.1 are obtained “for free”, as our choice of virtual output satisfies
Γ⋆ ⊂ {x : s ◦ h(xc) = 0} by definition. Therefore, Corollary 3.3.3 is analogous to condition
(b) in Theorem 3.1.1. Step 3 entails stabilizing an LTI system, and Step 4 is the topic
of Section 3.3.2.

3.3.1 Illustrative Examples

We return to the fictitious simple mechanical system of Example 3.1.1 to illustrate the
main results of this thesis. Three successive examples are provided, with the objective of
associating intuition with the theoretical results.

Example 3.3.1. Recall the magnetized puck of mass M on a frictionless plane, shown in
Figure 3.3. Again assume the electromagnets may apply the orthogonal forces τ1 and τ2.

The state of this system consists of the positions and velocities of the puck in each
orthogonal direction so that x = col(xc1 , xc2, xv1

, xv2
). The system equations are

ẋc = xv

ẋv = fv(x) + gv(xc)τ

which belongs to the class of systems, (3.10), where fv(x) = 02×1, gv(xc) = 1
M

[

1 0
0 1

]

, and

τ = col(τ1, τ2). Our output, y = col(y1, y2) = h(xc), is the position of the mass in the
plane, such that

y1 = x1

y2 = x2.
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Figure 3.3: A simple mechanical control system revisited

Suppose the path in output space is the unit circle, i.e. γ = {y ∈ R2 : s(y) = y2
1 + y2

2 − 1 =
0}. Checking condition (3.15) is equivalent to checking if the rank of the matrix

[

∂h

∂xc

gv(xc)

∣

∣

∣

∣

κ(xc)

]

= p

along the path, where κ(xc) spans the kernel of ∂s
∂y
|y=h(xc). However, we find that

∂h

∂xc

gv(xc) =
1

M

[

1 0
0 1

]

, M > 0,

which obviously has rank p = 2. Therefore, this system is transversely feedback linearizable
for any path satisfying Assumptions 1 and 2, which intuitively results from the fact that
the controls induce orthogonal motions in the output space.

△
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We now consider a hypothetical situation: one of the electromagnets is broken. Our
system still possesses the minimum number of controls, i.e. m ≥ p − 1, where p = 2, and
m = 1. We will stick with the circular path and see what happens...

Example 3.3.2. Reconsider the puck of mass M on a frictionless surface from Exam-
ple 3.3.1. Suppose that the electromagnet associated with τ2 in the previous example is
no longer operational, as illustrated in Figure 3.4. The state of this underactuated system

Figure 3.4: An illustrative underactuated mechanical system

remains x = col(xc1, xc2 , xv1
, xv2

). The system equations are

ẋc = xv

ẋv = fv(x) + gv(xc)τ1,

where fv(x) = 02×1 and gv(xc) = 1
M

[

1
0

]

. The output remains the position y = col(y1, y2) =

h(xc) = col(xc1 , xc2), with the circular path γ = {y ∈ R
2 : s(y) = y2

1 + y2
2 − 1 = 0}, whose

Jacobian is ∂s
∂y

= [2y1 2y2]. The kernel of ∂s
∂y

is spanned by [y2 − y1]
T .

Checking condition (3.15) is equivalent to checking if the rank of the matrix

[

∂h

∂xc

gv(xc)

∣

∣

∣

∣

κ(xc)

]

= p
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along the path, where κ(xc) spans the kernel of ∂s
∂y
|y=h(xc). In this case,

∂h

∂xc

gv(xc) =
1

M

[

1
0

]

, M > 0

cannot have rank p. This means, intuitively speaking, that the shape of the path will
determine whether this underactuated system is transversely feedback linearizable. This
is true in general of systems where m = p − 1. The rank of

[

∂h

∂xc

gv(xc)

∣

∣

∣

∣

κ(xc)

]

=

[

1
M

xc2

0 −xc1

]

along the circular path is equal to 2 except where xc1 = 0. Therefore, at the point on
the unit circle, (0, 1), as shown in Figure 3.4, our control becomes tangential, rather than
transversal, and cannot drive y onto γ (which is also true for the point (0,−1)).

Therefore we can locally transversely feedback linearize the mechanical system given
the circular output at any point along the path except the “poles”.

△

In the previous example, Example 3.3.2, we have shown that when m = p−1, the shape
of the embedded path necessarily determines whether or not a simple mechanical system
is transversely feedback linearizable. We have also linked the failure of condition (3.15)
to the intuitive scenario where locally no control is able to drive the state transversally
toward the path following manifold. In the next example, we keep the same underactuated
system, but change the path, and see what happens...

Example 3.3.3. Reconsider the system and output of Example 3.3.2. Suppose that the
path is no longer circular, but linear, as illustrated in Figure 3.4. The path is the line
γ = {y ∈ R2 : s(y) = y1 − y2 = 0}, whose Jacobian is ∂s

∂y
= [1 − 1]. The kernel of ∂s

∂y
is

spanned by [1 1]T .

Checking condition (3.15) is equivalent to checking if the rank of the matrix
[

∂h

∂xc

gv(xc)

∣

∣

∣

∣

κ(xc)

]

= p

along the path, where κ(xc) spans the kernel of ∂s
∂y
|y=h(xc). The rank of

[

∂h

∂xc

gv(xc)

∣

∣

∣

∣

κ(xc)

]

=

[

1
M

1
0 1

]

along the linear path is equal to 2. Therefore, this underactuated system is transversely
feedback linearizable given the particular path.
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Figure 3.5: Another illustrative underactuated mechanical system

△

In Example 3.3.1 we considered a system with m = p, and showed that that particular
system was transversely feedback linearizable for any path6 satisfying Assumptions 1 and
2. In Example 3.3.2, losing an actuator so that m = p−1, we showed that condition (3.15)
fails at some points on the circular path, since the only control becomes “tangential” at
those points. By changing the path to a line, Example 3.3.3 reveals that condition (3.15)
does indeed hold everywhere along the path.

3.3.2 Partial Feedback Linearization of Tangential Dynamics

We have presented conditions for partially feedback linearizing the dynamics of a mechan-
ical system that are transverse to the path following manifold. Stabilizing the transverse
dynamics will cause the output of the system to approach the desired path. Suppose that
in doing this, we have not “used up” all of the available control. That is, suppose that m
is strictly greater than p − 1. We will show that a tangential control, v‖, may be used to
achieve desired motions of the output along the path.

The objective of this section is to leverage the structure of simple mechanical systems
in order to find a coordinate and feedback transformation such that the η-subsystem is

6For practical purposes, many mechanical systems satisfy m = p. It is the author’s conjecture that
most often when m = p, the practical mechanical system is transversely feedback linearizable independent
of the embedded path.
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partially linear, time-invariant, and controllable (in addition to transverse feedback lin-
earization). Recall that the η, or tangential7, dynamics govern motions of the output
which are not transverse to the path. We seek to further decompose the tangential sub-
system by identifying that part of the tangential dynamics that governs motion along the
path in the output space. In this section we show that it is possible to feedback linearize
that portion of the tangential dynamics that corresponds to motion in the output space.

Recall the normal form of the tangential dynamics from Section 3.1,

η̇ = f 0(η, ξ) + g⋔(η, ξ)v⋔ + g‖(η, ξ)v‖.

We seek to further decompose these dynamics so that they appear as

η̇1 = f 0(η1, η2, ξ) + g⋔(η1, η2, ξ)v
⋔ + g

‖
1(η1, η2, ξ)v

‖
1 + g

‖
2(η1, η2, ξ)v

‖
2

η̇2 = A‖η2 + B‖v
‖
2,

(3.18)

where dim (η1) = n⋆ − 2, dim (η2) = 2, the pair (A‖, B‖) is controllable and v‖ = (v
‖
1, v

‖
2) ∈

Rm−p × R. Therefore, our objective is to obtain the overall normal form

η̇1 = f 0(η1, η2, ξ) + g⋔(η1, η2, ξ)v
⋔ + g

‖
1(η1, η2, ξ)v

‖
1 + g

‖
2(η1, η2, ξ)v

‖
2

η̇2 = A‖η2 + B‖v
‖
2

ξ̇ = Aξ + Bv⋔,

A basic feasibility requirement to obtain (3.18) is that m > p − 1. We will show that
physically, the η1-subsystem represents the dynamics on the path following manifold that
are redundant in the following sense. While changes to the η1 states cannot cause the
system to leave the path following manifold, and thereby leave the desired path, they also do
not help to propel the system along the path in the output space. Uncontrollable tangential
dynamics will also appear in the η1 dynamics8. On the other hand η2 represents the output
position on the path. In other words, changes in the state η2 will cause observable motion
along the path in the output space.

To help understand the relationship between the number of controls, m, the dimension
of the output space, p, and the tangential normal form (3.18), consider Figure 3.6. Suppose
we have a fully actuated 3-link planar manipulator (i.e. p = 2, m = 3), such as the
excavator in Figure (3.6a), and we want the tip of the excavator bucket to trace a given
path. In this case p − 1 = 1 and if we are able to put the system into the normal
form (3.2) we will have v = col(v⋔, v‖) ∈ R1 × R2. There are 2 tangential controls, such

that v‖ := col(v
‖
1 , v

‖
2). However, since the path is one dimensional, there is only one degree

7We refer to η dynamics as “tangential”; however, this is not to be confused with the tangential

subsystem, which is defined in Section 3.1 as the η dynamics constrained to the path following manifold.
8The reader may skip ahead to Example 3.3.5 where these notions are illustrated.
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of freedom required to move the tip of the bucket along the path. Thus, in reference
to (3.18), v

‖
2 will create observable motions of the tip of the excavator along the path, and

v
‖
1 will create unobservable tangential motions associated with the joint configurations of

this kinematically redundant system.

Conversely, suppose we have a 2-link planar pendulum with only the base joint actuated
(p = 2, m = 1), as shown in Figure 3.6b so that m = p − 1. In this case, according to
Corollary 3.3.3, all of the control must go toward stabilizing the transversal dynamics,
leaving no control inputs left to affect any of the tangential dynamics. This demonstrates
a violation of the basic feasibility of m > p − 1.

(a) Excavator (b) Underactuated double pen-
dulum

Figure 3.6: Interesting examples of kinematically redundant and underactuated mechanical
systems

Remark 3.3.6. In this thesis we focus on paths, i.e., 1-dimensional sets in the output
space. However, it is a natural extension to consider higher dimensional sets in the output
space. Suppose we have a c̄ dimensional set in the output space (for example, c̄ = 2 for
a sphere). With respect to obtaining the normal form (3.18), the two basic feasibility
requirements are

• m > p − 1, if the goal is to partially linearize all of the tangential dynamics corre-
sponding to observable motions in the output space.

• m > p − c̄, if the goal is to partially linearize any of the tangential dynamics corre-
sponding to observable motions in the output space (i.e., dim(η2) > 0).

Assume that we are interested in partially linearizing as many of the tangential dynamics
corresponding to observable output motions as possible, though not necessarily all of them.
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The normal form (3.18) would change as follows. The ξ-subsystem would be 2(p − c̄)
dimensional, with dim

(

v⋔
)

= p − c̄. We must introduce the notion of “c”, the number
of tangential controls which may cause observable tangential output motions. The η2-

subsystem would be 2c dimensional, with dim
(

v
‖
2

)

= c, where

c ≤ min(m − p, 0) + c̄

represents the number of controls which may cause observable tangential output motions.
The number min(m − p, 0) + c̄ corresponds to the number of tangential controls which
may cause observable output motions. The number of tangential controls which do cause
observable output motions must be less than or equal to min(m − p, 0) + c̄, as not all
tangential controls cause observable output motions (see Example 3.3.5). Finally the η1-
subsystem would be n⋆ − 2c dimensional.

3.3.3 Path Parametrization and Tubular Neighbourhoods

Our ultimate goal is to show that if we use the arc length of the path as one of our tangential
states, we can partially feedback linearize the tangential dynamics. Let σ : D → Rp be a
curve that satisfies Assumptions 1 and 2. Since σ is regular by assumption, without loss
of generality we can assume that it has a unit speed parametrization, i.e.,

‖σ′(·)‖ = 1.

Under this assumption, the curve σ is parameterized by its arc length [39]. For closed-curves
with finite length L, this means that σ is L-periodic, i.e., for any θ ∈ D , σ(θ + L) = σ(θ).
Thus in the case of closed curves we will treat σ as a map

σ : [0, L] → R
p

θ 7→ σ(θ)

where σ([0, L]) = γ. Note that θ ∈ [0, L) uniquely determines a position on the path.

We need a similar representation in the case of non-closed curves σ : R → Rp. The
problem is that non-closed curves that satisfy Assumption 1 do not have finite length so we
will need to work with a piece of the curve. Once again we assume that σ is parameterized
by its arc length.

Let x⋆
c ∈ RN be such that h(x⋆

c) ∈ γ. Let V be a neighbourhood of h(x⋆
c) such that γ∩V

contains a single connected component of the path. Since γ is an embedded submanifold,
such a V is guaranteed to exist. Let V̄ be the closure of V . Then the portion of the path
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γ ∩ V̄ has finite length L and if we denote the boundary of V̄ by ∂V̄ , there exist two real
numbers θ1 < θ2 such that θ2 = θ1 + L and

∂V̄ ∩ γ = {σ(θ1), σ(θ2)}.

Using this fact we define a new map σ̃ : [0, L] → V̄ as

σ̃(θ) = σ(θ + θ1).

To ease notation, we will drop the ·̃ notation with the understanding that the above
construction has taken place. In conclusion, whether γ is closed or not we can find a map

σ : L → R
p

θ 7→ σ(θ)
(3.19)

with L = [0, L] and with σ(L) = γ in the case of closed-curves and σ(L) = V̄ ∩ γ in the
non-closed case.

Before stating the main result of this section, we first define a map that associates
to each point y in the output space of system (3.13) sufficiently close to the path γ (or
V̄ ∩ γ if the curve is unbounded) a number between [0, L]. To make this idea precise we
introduce the notion of a tubular neighbourhood of the curve γ. We denote the tubular
neighbourhood of γ as γǫ ⊂ Rp. Intuitively, the tubular neighbourhood of γ is an open
subset of Rp that contains γ. It has the property that if y ∈ γǫ then there exists a unique
y⋆ ∈ γ that is closest to y. By the tubular neighbourhood theorem [21, Chapter 2], we
know that such a neighbourhood exists.

3.3.4 Partial Feedback Linearization of Tangential Subsystem

Using the idea of tubular neighbourhoods we introduce the following projection operator
which maps y ∈ γǫ to a unique θ ∈ [0, L] such that the point σ(θ) ∈ γ is closest to y:

̟ :γǫ → L

̟(y) = arg min
θ∈L

‖y − σ(θ)‖.
(3.20)

Figure 3.7 illustrates the proposed projection and parametrization in the case of a closed
curve in the plane. The next lemma, based on [14, Lemma 3.2], gives some geometric
insight into the nature of the map ̟.
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Figure 3.7: Illustration of projection and parameterization of a point y⋆ in the output
space onto a closed 1-dimensional path

Lemma 3.3.4. For all y ∈ γ the vectors d̟y and dsy are orthogonal.

Proof. By the definition of ̟, for any θ ∈ D and any y ∈ ̟−1(θ), we have 〈σ′(θ), y − σ(θ)〉 =
0. Since σ′(θ) is the tangent vector to γ at σ(θ), this shows that the set {y ∈ γǫ : ̟(y) = θ}
is a straight line segment perpendicular to γ. Hence the normal vector to this segment at
σ(θ), d̟σ(θ), is tangent to γ. Hence for any θ ∈ D , (d̟σ(θ))

T = kσ′(θ) for some k ∈ R. In
other words, the gradient of the function ̟ is tangent to the path when evaluated on the
path. We now show that k 6= 0. Consider the identity ̟(σ(θ)) = θ. Differentiating this
identity respect to θ we get d̟σ(θ)σ

′(θ) = 1 which shows that k 6= 0.

Next we recall that on the set we have the identity s ◦ σ(θ) ≡ 0. Differentiating this
identity, we conclude that dsσ(θ)σ

′(θ) = 0. We can combine these facts to determine that

dsσ(θ)

(

d̟σ(θ)

)T
= 0.

Lemma 3.3.4 shows that the matrix
[

dsy d̟y

]T

y=σ(θ)
is orthogonal and therefore full

rank. We now present the main result of this section.

Theorem 3.3.5. Given a mechanical control system (3.13) with m > p − 1 and a path γ
in output space satisfying Assumptions 1 and 2, let x⋆ = (x⋆

c , x
⋆
v) ∈ Rn satisfy h(x⋆

c) ∈ γ.
The system

ẋc = xv

ẋv = fv(x) + gv(xc)τ

ŷ =

[

λ(xc)
π(xc)

]

=

[

s ◦ h(xc)
̟ ◦ h(xc)

]

,

(3.21)
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yields a well-defined vector relative degree of {2, . . . , 2} at x⋆ if and only if (3.15) holds
and

dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

∩ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

))

= 1. (3.22)

holds at x⋆.

In Theorem 3.3.1 we showed that the virtual output s ◦ h(xc) yields a well-defined
relative degree under the hypotheses (3.15). In Theorem 3.3.5 we augment the virtual
output with the projection operator

π : R
N → L

π(xc) = ̟ ◦ h(xc).
(3.23)

Theorem 3.3.5 states that if we have enough actuation, at least one control will appear in
the tangential dynamics, and that by satisfying condition (3.22), it is possible to choose the
output, π(xc), such that the tangential dynamics are partially feedback linearizable and the
tangential dynamics of the transformed system have the form (3.18) in a neighbourhood
of a point x⋆.

Proof. Let x⋆ = (x⋆
c , x

⋆
v) be any point that satisfies9 h(x⋆

c) ∈ γ. Assume that (3.15)
and (3.22) hold. We will show that the virtual output yields a well-defined vector relative
degree of {2, . . . , 2} at x⋆. This is true if and only if the p × m decoupling matrix

[

LgLfλ(x⋆)
LgLfπ(x⋆)

]

=

[

dsh(x⋆
c) ◦ dhx⋆

c
gv(x

⋆
c)

d̟h(x⋆
c) ◦ dhx⋆

c
gv(x

⋆
c)

]

=

[

dsh(x⋆
c)

d̟h(x⋆
c)

]

dhx⋆
c
gv(x

⋆
c) (3.24)

is full rank at x⋆. By Lemma 3.3.4 the matrix
[

(dsh(x⋆
c))

⊤(d̟h(x⋆
c))

⊤
]⊤

is non-singular.
Therefore the decoupling matrix will be full rank at x⋆ if the p × m matrix dhx⋆

c
gv(x

⋆
c) is

surjective, i.e., full rank.

To show that dhx⋆
c
gv(x

⋆
c) is surjective, we note that by (3.15)

p = dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

+ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

))

which implies

dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

))

= p − dim

(

ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

))

+

dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

∩ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

))

.

9Note that if σ is not closed we require that h(x⋆

c
) ∈ γ ∩ V where V is described in Section 3.3.3
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By Assumption 2, the (p − 1) × p matrix ∂s
∂y

is full rank on γ and hence

dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

))

= p − 1 + dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

∩ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

))

.

However, since (3.22) holds, we conclude that

dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

))

= p

and we have shown that dhx⋆
c
gv(x

⋆
c) is surjective as required.

Conversely, suppose that output function of (3.21) yields a well-defined vector relative
degree of {2, . . . , 2} at some x⋆ = (x⋆

c , x
⋆
v) ∈ Rn with h(x⋆

c) ∈ γ. This means that the
decoupling matrix (3.24) is full rank at x⋆. By Lemma 3.3.4 this implies that dhx⋆

c
gv(x

⋆
c)

is full rank (surjective). Thus conditions (3.15) and (3.22) hold trivially.

In reference to Figure 3.2, motions in the output space along the path (i.e., tangent
to the path) lie in the kernel of ∂s

∂y
. Intuitively, condition (3.22) means that, in a given

configuration, control must be mapped into this kernel so that motions along the curve
are feedback linearizable. Recall that for transverse feedback linearization, Theorem 3.3.1

required control to be mapped into all of R
p, with the exception of the kernel of ∂s

∂y

∣

∣

∣

y=h(xc)
,

where Theorem 3.3.5 requires that the conditions of Theorem 3.3.1 hold and that control
is mapped into

ker

(

∂s

∂y

∣

∣

∣

∣

y=h(xc)

)

.

These facts lead to the following corollary.

Corollary 3.3.6. Given a mechanical system (3.13), and a path γ satisfying Assumptions 1
and 2, the system is locally transversely feedback linearizable with respect to (3.17), and the
tangential dynamics are partially feedback linearizable, yielding the normal form

η̇1 = f 0(η1, η2, ξ) + g⋔(η1, η2, ξ)v
⋔ + g

‖
1(η1, η2, ξ)v

‖
1 + g

‖
2(η1, η2, ξ)v

‖
2

η̇2 = A‖η2 + B‖v
‖
2

ξ̇ = Aξ + Bv⋔.

(3.25)

at a point x⋆ = col(x⋆
c , x

⋆
v) ∈ R

n if

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

≃ R
p. (3.26)
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Given a system of the form (3.13), and a path satisfying Corollary 3.3.6, we partially
define our coordinate transformation as η2 = (π(xc), Lfπ(x)) and ξ in the usual way. After
completing the coordinate transformation with n⋆ − 2 additional functions

η1 := ϕ(x) = col(ϕ1(x), . . . , ϕn⋆−2(x)),

we define a feedback transformation in a similar manner to (3.5) to get (3.25).

Since the state η2 corresponds to the arc length of the target path, and since the pair
(A‖, B‖) is controllable, we can effectively design v

‖
2 in order to accomplish the design spec-

ifications on the path and hence complete Step 4 of the path following design procedure
introduced in Section 3.1.

Remark 3.3.7. If a system satisfies Corollary 3.3.6 and has m = p = N (i.e. the system is
fully actuated, and the number of degrees of freedom equals the dimension of the output),
then our procedure yields a fully linear system. In this case, the η1-subsystem does not
exist.

Remark 3.3.8. We conjecture that it is possible to generalize Theorem 3.3.5 and Corollary
3.3.6 to consider c̄-dimensional output sets, where c̄ ≥ 1, as follows. First, at a point on the
output set, we find c, the dimension of the tangential control which may cause observable
motions of the output along the path, where

c = dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

)

∩ ker

(

∂s

∂y

∣

∣

∣

∣

y=h(x⋆
c)

))

.

If c̄ > c > 0, this means we may partially feedback linearize some, but not all, of the
tangential dynamics which cause observable output motions along the output set. If c = c̄,
this means that we may partially feedback linearize all of these dynamics. Since the output
set is an embedded submanifold, c cannot be greater than c̄.

Our main results rely on augmenting the virtual output with a function π(xc) = ̟ ◦
h(xc), such that the system yields a well-defined vector relative degree. Coming up with
such a function for c̄ > 1 requires more care than in the 1-dimensional case, and will require
substantial generalizations of the development in Sections 3.3.3 and 3.3.4.

Example 3.3.4. Recall Example 3.3.1, where a magnetized puck of mass M is on a
frictionless flat surface with two orthogonally positioned actuators which apply forces on
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the puck, whose model is
ẋc1 = xv1

ẋc2 = xv2

ẋv1
=

1

M
τ1

ẋv2
=

1

M
τ2,

with output y = h(xc) = col(xc1 , xc2). In this example, we have seen that

∂h

∂xc

gv(xc) =
1

M

[

1 0
0 1

]

, M > 0,

has full rank along the path. Therefore by Corollary 3.3.6, this system is transversely feed-
back linearizable, and the η-subsystem is linearizable for any path satisfying Assumptions
1 and 2. The path

σ(θ) =

[

cos θ

sin θ

]

satisfies these assumptions, and may be expressed as γ = {y ∈ Rp : s(y) = y2
1 + y2

2 − 1 = 0}.
We use the augmented virtual output

ŷ =

[

λ(xc)
π(xc)

]

=

[

s ◦ h(xc)
̟ ◦ h(xc)

]

,

where λ(xc) = s ◦h(xc) and π(xc) = ̟ ◦h(xc). The function ̟(y) describes the arc length
of the output projected onto the path. Since the path is a unit circle, we may use the angle
of the output with respect to the origin,

̟(y) = arg(y1 + iy2).

Therefore, our augmented virtual output is

ŷ =

[

λ(xc)
π(xc)

]

=

[

s ◦ h(xc)
̟ ◦ h(xc)

]

=

[

x2
c1

+ x2
c2
− 1

arg(xc1 + ixc2)

]

According to our procedure, the coordinate transformation is T : x 7→ (η, ξ) where

T (x) = col(π(xc), Lfπ(x), λ(xc), Lfλ(x)),

and the feedback transformation is

[

τ1

τ2

]

=

[

LgLfπ(x)
LgLfλ(x)

]−1

x=T−1(η,ξ)

(

[

−L2
fπ(x)

−L2
fλ(x)

]−1

x=T−1(η,ξ)

+

[

v
‖
2

v⋔

]

)
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Since m = N = p, the coordinate and corresponding feedback transformation yield the
fully linear system, with (η, ξ) := col(η2

1, η
2
2, ξ1, ξ2), such that

η̇2
1 = η2

2

η̇2
2 = v

‖
2

ξ̇1 = ξ2

ξ̇2 = v⋔.

Therefore, the objective of feedback linearizing the transverse dynamics, and partially lin-
earizing the tangential dynamics corresponding to observable output motions, is achieved.
This system is exceptional because the functions λ(xc) and π(xc) are valid over the entire
path, which is generally not the case.

△

The previous example illustrates transverse feedback linearization, including imposing
more structure on the η-subsystem, which ends up as an exact linearization of the simple
mechanical system given the path. Notice that the puck’s dynamics were already linear;
however, they are now linear with respect to a nonlinear path. Recall that a basic feasibility
requirement is that m > p − 1. Therefore, even though Example 3.3.3 revealed that the
mechanical system was transversely feedback linearizable, imposing more structure on the
η-subsystem is impossible, since m = p − 1. This is intuitively obvious by inspecting
Figure 3.5. We now illustrate a similar idea via example.

Example 3.3.5. Recall Example 3.3.3, and suppose that one additional control, τ2 is
added which affects the orientation of the puck, whose mass is M with unit rotational
inertia. Now m = p = 2, which means we satisfy the basic feasibility requirement for
Corollary 3.3.6. This system, along with a linear path, is shown in Figure 3.8. The model
of this system is

ẋc1 = xv1

ẋc2 = xv2

ẋc3 = xv3

ẋv1
=

1

M
τ1

ẋv2
= 0

ẋv3
= τ2,

where y = h(xc) = col(xc1, xc2) is the position of the puck, and xc3 is the puck’s orien-
tation, which is affected by τ2. The parameterized path is σ(θ) = col(θ, θ), and satisfies
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Figure 3.8: Puck with position and rotation on a flat surface

Assumptions 1 and 2, so that it may be expressed as γ = {y ∈ R2 : s(y) = y1 − y2 = 0}.
Intuitively, τ2 cannot cause any observable tangential motions along this path. We find

∂h

∂xc

gv(xc) =
1

M

[

1 0
0 0

]

, M > 0,

whose rank is 1 < p, which means that condition (3.26) fails, and the we cannot impose
further structure on the η-subsystem, even though transverse feedback linearization is
possible. Therefore, to perform transverse feedback linearization, we use the coordinate
transformation T : x 7→ (η, ξ) such that

T (x) = col(ϕ1(x), . . . , ϕ4(x), λ(xc), Lfλ(x)),

where λ(xc) = s ◦ h(xc) and ϕ(x) = col(ϕ1(x), . . . , ϕ4(x)) is chosen such that T is a
diffeomorphism. After performing transverse feedback linearization, our system, with co-
ordinates (η, ξ) := col(η1, ξ) = col(η1

1, η
1
2, η

1
3, η

1
4, ξ1, ξ2), is expressed as

η̇1 = f 0(η1, ξ) + g⋔(η1, ξ)v
⋔ + g‖(η1, ξ)v

‖
1

ξ̇1 = ξ2

ξ̇2 = v⋔,

where dim (η1) = 4, dim
(

v⋔
)

= 1 and dim
(

v
‖
1

)

= 1. This example shows that some

tangential controls are not capable of driving the output along the path.

△
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Practical Considerations

Certain practical considerations are important to discuss in reference to the results of
Theorem 3.3.5, and the related ideas. For example, we require that the output of the
system be in a tubular neighbourhood of the path, and this may seem impractical. However,
suppose our output lies outside of the tubular neighbourhood of the path, at which point
we must be careful to “turn off” our tangential feedback transformation, since the virtual
output augmented with π(xc) may not yield a well-defined vector relative degree. Our
transversal control system will drive the output into the tubular neighbourhood in finite
time, at which point we may “turn on” our coordinate and feedback transformation used to
impose the additional structure on the η-subsystem, as well as implement the corresponding
feedback control law.

Another practical consideration is how to choose the beginning and end of a path. For
a closed curve, such as the curve of Figure 3.7, the endpoint and start point of the curve
coincide with the same point. In the case of a non-closed curve, more care is required.
Consider the 1-dimensional path in the plane in Figure 3.9. A start and end point of
the curve must be defined along the embedded path, which in practice will be dependent
on the particular task being executed by the mechanical system. Any non-closed path
will always be a connected subset of an embedded curve. We discuss three distinct cases,
corresponding to outputs ya, yb and yc respectively, in this figure.

• Output ya lies within the tubular neighbourhood of the path, and hence the projection
and parameterization are defined, and Theorem 3.3.5 is applicable. This represents
the ideal scenario.

• Output yb does not lie within the tubular neighbourhood of the path, as its orthogonal
projection maps to multiple points on the path. However, it is clear that as yb

approaches the path (through the transverse closed-loop dynamics), it will eventually
enter the tubular neighbourhood and Theorem 3.3.5 will be applicable.

• Output yc presents a more challenging situation. Transversal control will not drive
this output into the tubular neighbourhood of the path. Rather, the transversal
controller will drive yc toward the curve of which the path is a subset (i.e. toward
the nearest dashed line in Figure 3.9).

There are many different ways to deal with the scenario corresponding to the output
yc in Figure 3.9. Solving this problem is objective-dependent, and is more of a practical
implementation issue than a theoretical issue. As such, much literature is mute on this
topic (see [54], [32], [34] among others). Some suggestions for avoiding this problem are
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Figure 3.9: A 1-dimensional non-closed curve in the output space illustrating cases where
the projection function does not work

• Have the path start and end near boundaries of the feasible workspace. That way the
system physically cannot have an output equivalent to that of yc in Figure 3.9. This
suggestion has two main drawbacks: perhaps the desired path does not start/end
near the boundaries of the workspace, and being near these boundaries typically
corresponds to manipulator singularities

• Extend the path such that the projection and parameterization are valid before the
start point and after the end point. Using this approach, one may suitably design the
tangential speed profile to accommodate the fact that ystart and yend are, practically
speaking, the start and end points of the path.

• To perform some a priori initialization, such as using a tracking controller to move
the output into the tubular neighbourhood of the path.

53



Chapter 4

Application to a Planar Five-bar

Manipulator

In order to demonstrate the theoretical contribution of Chapter 3, we use a simple mechan-
ical system known as a “five-bar linkage robot”. Five-bar linkage robots in a parallelogram
configuration [50] have been studied in robotics for decades [5], [26], [28]. In this chapter
we use the term “manipulator” and “robot” interchangeably, we may refer to this mechan-
ical system as the “five-bar robot”, or simply “five-bar”. Such a configuration potentially
has dynamic and structural advantages over serial manipulator configurations; however,
we emphasize that the application of our main results do not rely on these advantages.

4.1 Dynamic Model

For simplicity we consider a fully actuated planar five-bar linkage robot, that is, with two-
degrees-of-freedom (2-DOF) as illustrated in Figure 4.1. The full derivation of this model
is well documented (we refer the interested reader to [33] , [50]); therefore we will provide
a concise overview of the derivation that will serve as the basis for control design.

As discussed in Section 3.2.1, the standard method of deriving the equations of motion
for mechanical systems is via the Euler-Lagrange equations. In order to come up with the
Lagrangian function (3.7), the kinetic energy, K(q, q̇), the potential energy, V (q), and the
dissipation function, R(q̇), are required.

Finding the kinetic energy of a system entails finding the generalized mass matrix, since
K(q, q̇) = 1

2
q̇⊤M(q)q̇. In the case of the five-bar linkage robot in consideration, the mass
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Figure 4.1: Two degree-of-freedom five-bar linkage robot. In this chapter the robot is
constrained to move within the plane of the page.

matrix has the form [50, Section 6.4.1]

M(q) =

[

M11(q) M12(q)
M21(q) M22(q)

]

,

where
M11(q) = m1ℓ

2
c1

+ m3ℓ
2
c3

+ m4ℓ
2
1 + I1 + I3

M12(q) = M21(q) = (m3ℓ2ℓc3 − m4ℓ1ℓc4) cos (q2 − q1)

M22(q) = m2ℓ
2
c2

+ m3ℓ
2
2 + m4ℓ

2
c4

+ I2 + I4,

(4.1)

where {mi, Ii, ℓci
}, i ∈ 4 denote the mass, inertia and distances to the centre of mass for

the link i, as shown in Figure 4.1. The variables ℓ1, ℓ2 are the lengths of the sides of the
parallelogram in Figure 4.1. From the expressions (4.1) we see that if

m3ℓ2ℓc3 = m4ℓ1ℓc4, (4.2)

then the matrix

M(q) =

[

M11(q) M12(q)
M21(q) M22(q)

]

=

[

M11 0
0 M22

]

,

is diagonal and constant. A five-bar linkage robot that satisfies this constraint is said to
be dynamically decoupled.
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In order to obtain the Lagrangian function, we require the potential energy function,
which is composed of the configuration-dependent gravitational potential energies of each
link. Summing up these energies, we obtain

V = g sin q1(m1ℓc1 + m3ℓc3 + m4ℓ1) + g sin q2(m2ℓc2 + m3ℓ2 − m4ℓc4). (4.3)

If the links of the robot are designed such that

m1ℓc1 + m3ℓc3 + m4ℓ1 = 0

m2ℓc2 + m3ℓ2 − m4ℓc4 = 0
(4.4)

then the potential energy function (4.3) is identically equal to zero and the robot is said
to be gravity balanced. The advantage of mechanically designing the robot to be both
dynamically decoupled and gravity balanced is that the dynamic model is greatly simplified.
The Lagrangian function becomes

L(q, q̇) =
1

2
q̇T Mq̇.

The internal dissipation of the robot is modeled using the simplest possible Rayleigh
dissipation function

R(q̇) =
1

2

2
∑

i=1

biq̇
2
i (4.5)

where bi ≥ 0, i ∈ 2 are real and constant. This friction model describes any friction linearly
dependent on velocity in the system, such as friction in the bearings.

Working out the Euler-Lagrange equations,

d

dt

(

∂L

∂q̇
(q, q̇)

)

−
∂L

∂q
(q, q̇) +

∂R

∂q̇
= τ,

in detail for the dynamically decoupled and gravity balanced robot, the equations of motion
simplify to

M11q̈1 + b1q̇1 = τ1

M22q̈2 + b2q̇2 = τ2,
(4.6)

where τ := col (τ1, τ2) are the applied torques acting on the system. We define our gen-
eralized coordinates as xc = col(xc1 , xc2) := col(q1, q2) with velocities xv = col(xv1

, xv2
) :=

col(q̇1, q̇2). By representing these two, second order, ordinary differential equations in
state-space form with state x = col(xc, xv), we obtain the linear time-invariant control
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system
ẋc1 = xv1

ẋc2 = xv2

ẋv1
= −

b1

M11
xv1

+
1

M11
τ1

ẋv2
= −

b2

M22
xv2

+
1

M22
τ2,

(4.7)

which may be expressed in the form of Section 3.3 as

ẋ =

[

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

τ,

=









0 0 1 0
0 0 0 1
0 0 − b1

M11
0

0 0 0 − b2
M22









[

xc

xv

]

+









0 0
0 0
1

M11
0

0 1
M22









[

τ1

τ2

]

=: Fx + Gτ

(4.8)

with fv(x) :=
[

− b1
M11

xv1
− b2

M22
xv2

]T

and gv(xc) =

[ 1
M11

0

0 1
M22

]

. Since the states xc are joint

angles, and xv are velocities, the state space of this system is X := S1 × S1 × R2 where S1

is the unit circle, i.e., S1 = R mod2π.

4.2 Manipulator Path Following

In Section 3.2.1, we take the system output, (3.11), as the variable we are interested in
controlling. Let the output of (4.8), y = col (y1, y2) ∈ R2, denote the position of the
end-point of the robot. In terms of the states xc, the variable y can be expressed as

y = h(xc) :=

[

ℓ1 cos xc1 − ℓ4 cos xc2 − ℓ4

ℓ1 sin xc1 − ℓ4 sin xc2 − ℓ1

]

, (4.9)

where the origin of the output space corresponds to the joint configuration xc1 = π
2
, xc2 = π.

Model (4.8) with output (4.9) belong to the class of systems with the form (3.13).

The control objective is to make the output y approach and traverse a circular path of
radius r, centered at the origin of the output space, given by

σ(θ) =









r cos

(

θ

r

)

r sin

(

θ

r

)









. (4.10)
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This path satisfies Assumptions 1 and 2, and furthermore, it is a unit speed parameter-
ization, which means that σ is parameterized by its arc length (see Section 3.3.3). The
circular path may be written as

γ :=
{

(y1, y2) ∈ R
2 : s(y) := y2

1 + y2
2 − r2 = 0

}

. (4.11)

Figure 4.2 illustrates the five-bar linkage robot with the output y and the path γ. This
simple path is chosen in order to clearly demonstrate the application of the main theoretical
results of Chapter 3.

Figure 4.2: Two degree-of-freedom five-bar linkage robot showing the output and path

Before proceeding with our approach, we remind the reader that our system model is
already linear and time-invariant. It may seem bizarre to feedback linearize the dynamics
of an already linear system; however, this reinforces a key aspect of path following via
transverse feedback linearization. Regardless of the original system dynamics, we seek to
use coordinates describing these dynamics with respect to a set1. For a general path, the
path following manifold, Γ⋆, may not be a subspace, which implies that the transverse and
tangential coordinates may not be linear in general, even if the system dynamics are linear.

One exception is the case where both the system dynamics, as well as the path in
output space, are linear, in which case, Γ⋆ is indeed a subspace. Linear coordinate and
feedback transformations, [19], are sufficient to obtain the normal form (3.2). In this thesis
we consider more general paths, and refer the interested reader to [38, Section 3.3] for a
more detailed discussion on the LTI case.

1The path following manifold, which is the maximal controlled-invariant subset of the lift of the path
from output space to state-space.
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Application of main results

Our objective is to transversely feedback linearize the five-bar linkage robot (4.7) with out-
put (4.9) and path (4.11), and to control the motion of the output along the set by partially
feedback linearizing the tangential dynamics. Since we are interested in feedback lineariz-
ing both the transverse and tangential dynamics, we appeal to Corollary 3.3.6, whose basic
feasibility requirement, m > p − 1, is satisfied. In the system under consideration

∂h

∂xc

=

[

−ℓ1 sin xc1 ℓ4 sin xc2

ℓ1 cos xc1 −ℓ4 cos xc2

]

,

and

gv(xc) =

[ 1
M11

0

0 1
M22

]

,

where
∂h

∂xc

gv(xc) =

[

− ℓ1
M11

sin xc1
ℓ4

M22
sin xc2

ℓ1
M11

cos xc1 − ℓ4
M22

cos xc2

]

,

whose determinant is ℓ1ℓ4
M11M22

sin (xc1 − xc2). Clearly ∂h
∂xc

gv(xc) is non-singular, and therefore
has rank p = 2, if and only if the configuration corresponding to

xc1 − xc2 = kπ, k ∈ Z (4.12)

is avoided. Condition (4.12) corresponds to the physical situation where the parallelogram
in Figure 4.1 collapses and all the links are collinear. As long as the radius r of the circle
γ is chosen sufficiently small, this condition will not occur on the path following manifold.
Since Corollary 3.3.6 is satisfied, we choose our augmented virtual output as

ŷ =

[

λ(xc)
π(xc)

]

,

where

λ(xc) = s ◦ h(xc)

= (ℓ1 cos xc1 − ℓ4 cos xc2 − ℓ4)
2 + (ℓ1 sin xc1 − ℓ4 sin xc2 − ℓ1)

2 − r2.

We partially define the coordinate transformation and represent the transversal coordinates
as

ξ := col (λ, LFxλ) .

The function π(xc) is chosen according to method in Section 3.3.4 as

π(xc) = ̟ ◦ h(xc),
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where ̟(y) = arg minθ∈L ‖y − σ(θ)‖ is the projection of the output onto the path, and
L = [0, 2πr]. In the case of a circle, we may use the scaled angle of the output along the
path, i.e.

̟(y) = r arg(y1 + iy2).

This projection describes the arc length of the output along the path. It is true that
this projection is not defined when the endpoint is exactly at the origin of the output space.
However, we point out that the results of Chapter 3 are local in nature; in a neighbourhood
of the path, this projection is well-defined, where in this case, due to the circular path,
the projection is well defined on all of R

2 except the origin. The projection is illustrated
in Figure 4.3. Since m = N = p, we choose ϕ(x) := col(π(xc), LFxπ(x)). Consider the

R2

ξ1 = 0

η2
1 = ̟(y1, y2)

y2

y1

ξ1 = k1

ξ1 = k2

(y1, y2)

Figure 4.3: The level set {(η, ξ) : ξ1 = 0} corresponds to the desired path while the
sets ξ1 = ki, ki constant, foliate a neighbourhood of the target path. The coordinate η2

1

represents the projection of (y1, y2) onto the desired path.

coordinate transformation

T :U ⊆ X → T (U) ⊆ S
1 × R

3

x 7→ (η, ξ) = (η2, ξ) = (η2
1, η

2
2, ξ1, ξ2)
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where









η2
1

η2
2

ξ1

ξ2









=



















π(xc)

∂π(xc)

∂xc

xv

λ(xc)

∂λ(xc)

∂xc

xv



















. (4.13)

From Section 3.3.2 we know that locally (4.13) is a diffeomorphism, i.e., when the system
output is in a neighbourhood of the path. However, we point out that this example is
exceptional, as, although our results are local, we are able to find a single coordinate
transformation, (4.13), to get the normal form (3.2) over the entire path. In general, this
is not always possible. In (η, ξ)-coordinates the system takes the form

η̇2
1 = η2

2

η̇2
2 = L2

Fxπ(x)|x=T−1(η,ξ) + LGLFxπ(x)|x=T−1(η,ξ)τ

ξ̇1 = ξ2

ξ̇2 = L2
Fxλ(x)|x=T−1(η,ξ) + LGLFxλ(x)|x=T−1(η,ξ)τ.

By Theorems 3.3.1 and 3.3.5, our augmented virtual output yields a well defined relative
degree with (4.8), and therefore, we take our feedback transformation as

[

τ1

τ2

]

=

[

LGLFxπ(x)
LGLFxλ(x)

]−1

x=T−1(η,ξ)

(

[

−L2
Fxπ(x)

−L2
Fxλ(x)

]−1

x=T−1(η,ξ)

+

[

v
‖
2

v⋔

]

)

(4.14)

where (v
‖
2 , v

⋔) ∈ R2 are new control inputs. The closed-loop system in (η2, ξ)-coordinates
after the feedback (4.14) has the form

η̇2
1 = η2

2

η̇2
2 = v

‖
2

ξ̇1 = ξ2

ξ̇2 = v⋔.

(4.15)

Notice that (4.15) is fully linear, and because of that, the η1-subsystem of (3.18) does not
appear in the transformed coordinates. In (4.15), we find that the ξ dynamics are a double
integrator, and govern output motions transverse to the path, whereas the η dynamics are
also a double integrator, and govern output motions tangential to the path.
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4.2.1 Transversal and Tangential Control Design

We stabilize the origin of the transversal subsystem in (4.15), thereby solving part (i) of
PFP, by means of a PID compensator,

v⋔(ξ) = −K1ξ1 − K2ξ2 − K3

∫ t

0

ξ1(τ)dτ, (4.16)

with positive gains Ki, i ∈ 3. Since v⋔(0) = 0, ξ = 0 is an equilibrium point of the closed-
loop transversal subsystem. Physically this means that if the robot’s end-point has an
initial condition on the circle with initial velocity tangent to the circle, then it will remain
on the circle for all future time. This property is referred to as path invariance [35].

Achieving the desired motion along the path is equivalent to making sure that either
the angular velocity η2

2(t) approaches a desired reference profile η2ref
2 (t) or that η2

1 approach
a desired position η2ref

1 ∈ S1. These goals can be achieved using the tangential control
input by means of a simple proportional feedback with feedforward action

v‖ = −K4

(

η2
1 − η2ref

1

)

+ η̇2ref
2 (t) − K5

(

η2
2 − η2ref

2 (t)
)

. (4.17)

When tracking a velocity profile we set K4 = 0. When stabilizing a particular position on
the path we set η2ref

2 (t) = 0. In summary, to implement the overall closed loop controller we
must implement the coordinate transformation (4.13), the feedback transformation (4.14)
and the transversal and tangential control laws (4.16), (4.17).

4.2.2 Observer Design

The underlying assumption in our development up to this point is that the entire state of
system (4.7) is available for feedback. In the experimental apparatus this is not the case,
as only states xc are available for feedback. Let ym denote the measured output, then
ym = Cx where

C =

[

1 0 0 0
0 1 0 0

]

.

We use an observer to obtain estimates x̂ := col (x̂c1, x̂c2 , x̂v1
, x̂v2

) for the states x. The
observer dynamics are

˙̂x = F x̂ + Gτ + LC(x − x̂). (4.18)

where

L :=









Lc1 0
0 Lc2

Lv1
0

0 Lv2









∈ R
4×2
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is chosen so that the matrix F + LC is Hurwitz. This is possible because the pair (F, C)
is observable. Re-writing the dynamics (4.18) in terms of estimation error, e := x − x̂, we
obtain the dynamics

ė = (F + LC)e;

therefore F +LC being Hurwitz ensures x̂ approaches x exponentially. Although the error
dynamics decay exponentially, the separation principle does not apply, since there is no
guarantee that a state estimate error, e, will not make our state leave a neighbourhood of
the path following manifold, under the closed loop control law. However, we assume that
our initial state estimate is sufficiently close to the actual state. Practically speaking, if
the robot is starting from rest, knowing the initial state requires knowing the initial joint
angles, which are measurable.

A block diagram of the overall system is provided in Figure 4.4. The state estimate x̂
is used to implement the control law (4.14), (4.16), (4.17).

Five−bar Robot 
Dynamics

Observer

Diffeomorphism

Feedback
Transformation

Transversal 
Control

Tangential
Control

(4.18)

(4.17)

(4.16)

(4.14) (4.7)

(4.13)

Figure 4.4: Block diagram of five-bar linkage robot feedback control system with equation
references

4.3 Experimental Study

4.3.1 Experimental Setup

The experimental platform includes a five-bar linkage robot designed and fabricated at the
University of Waterloo [33]. This robot is equipped with counterbalances so that it may
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be gravity balanced and dynamically decoupled, as described in Section 4.1. The five-bar
linkage robot is actuated by direct drive brushed DC motors with optical encoders. Pho-
tographs of this robot are found in Figure 4.5. A Simulink real-time target data acquisition
card produces the analog control signals to control the motors via PWM amplifiers, and
reads the optical encoder outputs. The sample time is 2 milliseconds.

Figure 4.5: Photographs of a gravity-balanced and dynamically decoupled five-bar linkage
robot at the University of Waterloo

In the control design we do not take actuator limitations into account, and must be
careful not to saturate the DC motors. We appeal to simulation to verify that the control
effort is reasonable.

4.3.2 Parameter Identification

The model parameters b1, b2, M11 and M22 of (4.7), were found using the system identifi-
cation procedure in [33], which is based on measuring characteristics of the step response
of second order LTI systems. Table 4.1 presents the results of this procedure along with
the lengths ℓ1 and ℓ4.
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Parameter Units Value

b1
kg m

s
0.25

b2
kg m

s
0.12

M11 kg m2 0.32
M22 kg m2 0.05
ℓ1 m 0.3
ℓ4 m 0.593

Table 4.1: Five-bar manipulator model parameters

4.3.3 Gain Selection

We use a Linear Quadratic Regulator (LQR) to determine the gains of (4.16) and (4.17).
For the transversal controller our gains are calculated using the weight matrices Q⋔ :=
diag(q11, q22, q33) and r⋔, where q11 > 0 penalizes non-zero values of ξ1, q22 > 0 penalizes
non-zero values of ξ2, and q33 > 0 penalizes non-zero values of the integral term in (4.16).
The scalar r⋔ > 0 penalizes the transversal control effort, v⋔. Since the control objective is
to faithfully follow the prescribed path, we choose the relative weighting q11 > q33 > q22 >
r⋔ so that ξ1 is driven to zero quickly at the expense of possibly higher control effort. We
arrive at the tangential controller gains using the weight matrices Q‖ and r‖, where r‖ > 0
is a scalar. The diagonal matrix with positive entries, Q‖, has dimension 2 × 2 when the
tangential control objective is stabilizing a particular position on the path. In the case of
tracking a velocity profile, Q‖ > 0 is a scalar. We select r‖ > r⋔ to allow more control
effort to regulate the transversal dynamics than to stabilize the tangential dynamics.

In order to ensure that our observer estimates x̂ converge quickly to x we ideally choose
high gains on our observer. However due to noise we are unable to make the observer gains
arbitrarily high.

4.3.4 Simulation Results

Simulation results for the closed-loop system in Figure 4.4 are now presented to better
illustrate path following for the five-bar linkage robot using transverse feedback lineariza-
tion. Consider a desired velocity profile for the motion of the end-point along the circular
path γ given by the reference signal2

η2ref
2 (t) =

{

1.5π rad/s 0 ≤ t < 3s
−1.5π rad/s t ≥ 3s.

2Although we defined our projection to map to the arc length along the path, we will scale the projection
such that it is representative of the angle of the output with respect to the center of the circular path; this
is a more appropriate projection given that the path is circular.
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To allow a fair comparison between simulation and subsequent experimental results, we
choose the model parameters of the five-bar linkage robot according to the physical param-
eters identified in Section 4.3.2. Typical simulation results are shown in Figure 4.6. The
simulations illustrate that ‖ξ‖ → 0 and hence y(t) → γ, or in other words, that our output
asymptotically (in fact exponentially) approaches the path. They also show the end-point
y(t) moving along the path with the desired speed profile because |η2

2(t) − η2ref
2 (t)| → 0.

The third chart in Figure 4.6 shows the required control effort, i.e., required motor torque,
which is feasible given the actuators.
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Figure 4.6: Simulation of five-bar linkage robot end-point path following with velocity
tracking on a circle of radius 0.05m in the output space

4.3.5 Experimental Results

Three experiments are considered to test the proposed path following control strategy with
a circular path γ of radius 0.05 m.

Experiment 1: In the first experiment we stabilize the circle γ and simultaneously
stabilize a particular position η2ref

1 = π
2

on γ. Figure 4.7 shows the robot end-point position
and the circle γ in output space. Note that the end-point does not cut across the circle
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in order to reach the desired position, but rather follows the circular path. The initial
condition is chosen so that it is within the domain of definition of the diffeomorphism (4.13)
and the feedback transformation (4.14). Figure 4.8 plots ξ, η and u versus time.
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Figure 4.7: End-point trajectory in output space for stabilizing desired position on the
circle
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Figure 4.8: Transformed states and control effort for end-point position control

Experiment 2: The second experiment performed demonstrates tracking a velocity
profile along the circle. The velocity profile, η2ref

2 (t), used in this experiment contains a
step change which causes the robot end-point to reverse its direction of traversal. Figure 4.9
plots ξ, η2 and u versus time. This figure does not show the initial transients as it is meant
only to demonstrate tracking a velocity profile. Notice that after the transient behaviour
has decayed, the end-point does not leave the circle since ‖ξ‖ remains small.
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Figure 4.9: Transformed states and control effort for end-point velocity profile tracking

Experiment 3: This experiment demonstrates one of the key advantages of path fol-
lowing over trajectory tracking as discussed in the introduction. Here the five-bar linkage
robot end-point tracks a desired velocity profile as in Experiment 2. We then temporarily
constrain the end-point from moving in the tangential direction of traversal by physically
obstructing the path. The end-point is free to move in any other direction. The results
shown in Figure 4.10 clearly demonstrate an important feature of path following control,
as the end-point remains on the path throughout. Tracking of the desired velocity profile
resumes after the obstruction is removed without ever deviating from the path.
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Figure 4.10: Demonstration of path following control by showing transformed states and
control effort with temporarily obstructed output

4.3.6 Discussion

The results of Experiment 1 illustrate important aspects of path following. In Figure 4.7,
the end-point position in output space approaches the circle quickly (due to our gain
selection), and proceeds to track the desired angular position while traversing the circle.
Transverse feedback linearization allows us to accomplish the path following objectives
using two linear PID compensators in (η2, ξ) coordinates.

We attribute unmodeled friction as contributing to discrepancies between experimental
and simulation results. Figure 4.9 shows oscillatory behaviour in η2 and ξ, suggesting an
unmodeled coulomb friction. Also, consider ξ2 in Figure 4.8, where there appears to be
a steady state error even in the presence of integral control. We attribute this to the
disturbance caused by friction in the state estimation of x̂. Since we do not measure xv,
their estimates are susceptible to biases by unmodeled disturbances.

Figure 4.10 captures a main feature of path following control. Notice that while the
path is blocked, the end-point remains on the path. Also notice that while blocked, the
motor torques are constant, due to the fact that the control system is not tracking a
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changing trajectory. Once the path becomes clear again, the robot end-point continues
along the path as before. Contrast this to trajectory tracking, in which case the motor
torques would be changing when the end-point is mechanically constrained as the control
system attempts to track a point in the output space. When releasing the obstruction using
a trajectory tracking controller, we would expect large torques to allow the end-point to
“catch up”, and as a result, end-point could leave the path, precisely the behaviour we are
motivated to avoid.
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Chapter 5

Application to a Five-bar

Manipulator with a Flexible Link

In Chapter 4 a linear, fully actuated mechanical system was studied in the context of the
results presented in Chapter 3. In this chapter a more challenging system is studied, that
is, a five-bar linkage robot whose last link is a flexible beam with a 3-dimensional output.
The increase in complexity is largely due the fact that a flexible beam is modeled by a
partial differential equation, and that a flexible beam control system is non-minimum phase
and underactuated.

Controlling flexible structures has drawn the attention of engineers and researchers for
decades. In robotics, some of the pioneering research was done attempting to control the
endpoint position of a single flexible link. Early work on modeling and control was done
by Cannon and Schmitz [10]. Challenges in the research included modeling and inherent
difficulties controlling non-minimum phase systems. Many of these challenges were cleverly
overcome by redefining the system output, as in Wang and Vidyasagar [59], Chodavarapu
and Spong [13], and others. Since then, much progress has been made in modeling and
control multi-link flexible manipulators, a summary of which may be found in [7]. It is
worthwhile to mention the four control objectives identified by the authors of this survey,
ordered from least to most challenging in terms of control:

• Regulating the endpoint position of the flexible manipulator

• Rest to rest motion of the flexible manipulator endpoint in a fixed time

• Joint space trajectory tracking while minimizing link oscillations

• Tracking a desired flexible manipulator endpoint (most challenging)
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In this chapter we aim to undertake the fourth bullet, and have the tip of the flexible
manipulator follow a desired path.

The reason this chapter focuses on the five-bar linkage robot is because it is a parallel
drive manipulator, and has all three motors located near the base. This means that
the inertias seen by each joint are lower than in conventional serial link manipulators.
Hence, the five-bar linkage robot is a natural candidate for light-weight and high speed
applications, which also coincide with applications well suited toward thin, light-weight,
and therefore flexible, links.

5.1 Dynamic Model

This chapter considers a five-bar linkage robot with its last link flexible in the horizontal
direction only. This control system model has been presented in Wang and Vidyasagar [58].
In this section we first present the modeling of a flexible beam, then proceed to incorporate
the flexible beam model with the dynamics of the manipulator.

5.1.1 Modeling Flexible Beam

The simplest example of transverse vibrations in a structure is a beam flexible in only
one direction. For the flexible beam of length ℓ, assuming small deflections, we obtain the
classic Euler-Bernoulli model,

∂2w(a, t)

∂t2
+ EI

∂4w(a, t)

∂a4
= 0, (5.1)

where the deflection, w : [0, ℓ] × R → R, is a function of two independent variables, the
location on the link, a, and time, and EI is a constant representing a mechanical property
known as the flexural rigidity of the beam [20]. The Euler-Bernoulli model is standard
for modeling flexible beams, and has been used in the literature for decades [10], [6], [59],
[58], [7], [15]. We point out that the model (5.1) omits damping. Figure 5.1 graphically
illustrates the deflection of the flexible beam.

The Euler-Bernoulli beam is modeled by a partial differential equation (PDE), and is
referred to as an infinite-dimensional system. Researchers often convert this PDE into
a set of ordinary differential equations (ODE’s) for analysis and control. The reason is
because systems described by ODE’s are finite dimensional. The difference between finite
and infinite-dimensional systems may be intuitively explained as follows. With an ODE,
we must keep track of a finite number of states to characterize the behaviour of a system,
for example, the positions and velocities of rigid bodies in a mechanical system. Whereas
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Figure 5.1: Illustration of flexible beam deflection in the plane with particular coordinates.

for a PDE, we must keep track of an infinite number of states, for example, the position
and velocity of every infinitesimally small point along a flexible beam. Converting a PDE
into a set of ODE’s in some sense corresponds to a discretization of the original PDE.
For discretization of (5.1), two main approaches have been presented in the literature; the
assumed modes method and Finite Element Method (FEM). A comparison of these methods
is found in [18] and [55]. Some key features of FEM versus assumed modes include:

• Assumed modes provides some physical insights into the system, for example the
notion of natural frequencies, where FEM does not

• FEM allows for physically meaningful generalized coordinates, namely displacements
and rotations of each node, whereas the generalized coordinates associated with each
mode in the assumed modes method do not have clear physical meanings

• Fewer mathematical computations are required in calculating the beam inertia matrix
using FEM, whereas typically assumed modes requires fewer differential equations

In this thesis, we exclusively consider the assumed modes approach due to the advantages
in having fewer differential equations, a clear notion of natural frequencies, and because
the motivating literature in Section 5.2 uses this approach.

The assumed modes approach describes the vibration as a summation of deflections
corresponding to a particular frequency mode, and is given by

w(a, t) =
Ñ
∑

j=1

qj(t)φj(a), Ñ → ∞ (5.2)

where qj(t) is the “weight” of the jth mode, which is the generalized coordinate of that
particular vibratory degree-of-freedom. Each mode has an associated frequency, which
increases with j. The function φj(a) defines the shape of the jth mode, and is called an
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eigenfunction. We simply regard the eigenfunctions as describing a particular mode shape,
and omit the associated technical background, for which the interested reader may consult
[51]. The functions φj(a) are dependent on the boundary conditions used to model the
beam. In this thesis, we consider clamped free boundary conditions, meaning that one
end of the beam is constrained in terms of position and orientation (Belleza et al. [6]
provide a more extensive discussion on eigenfunctions for the Euler-Bernoulli beam). The
clamped-free eigenfunctions are given by

φj(a) = cj

[

(sin kja − sinh kja) −
sin kjℓ + sinh kjℓ

cos kjℓ + cosh kjℓ
(cos kja − cosh kja)

]

, (5.3)

where the constants kj are solutions to

cos kjℓ cosh kjℓ + 1 = 0.

and cj is a normalizing constant so that

ℓ
∫

0

φj(a)2da = 1

Figure 5.1 describes the link deflection in coordinates corresponding to the clamped-free
boundary conditions. As mentioned, we are interested in obtaining a finite number of
ODE’s as our system model, which is possible by truncating the summation of (5.2).
Luckily, the influence of a particular mode on the beam deflection decreases with higher
frequencies. Therefore, we assume

w(a, t) ≈

Ñ
∑

j=1

qj(t)φj(a),

for some sufficiently large integer Ñ . In [56], Ñ = 3 was experimentally determined to
provide a sufficiently accurate model on five-bar linkage robot with a final flexible link.

5.1.2 Dynamic Model of Five-bar Manipulator with a Flexible

Link

General model

In [58], a model for a class of manipulators is presented. This class of systems consists of
3-DOF fully actuated rigid manipulators, with the addition of a final link, flexible in the
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horizontal direction only (i.e., in no configurations does gravity affect the vibrations). The
class includes elbow, spherical, cylindrical and five-bar linkage robot manipulators [50],
each with a final flexible link. Each manipulator in this class has a rotational base joint.
This joint is not affected by the generalized masses seen by the other joints. That is, the
3×3 block of the inertia matrix corresponding to the rigid body manipulator has the form





M11(q) M12(q) 0
M21(q) M22(q) 0

0 0 M33(q)



 .

It is assumed that the hub inertias of each link (i.e., the constant rotational inertia on
the motors themselves) are included in the M11(q), M22(q) and M33(q) terms. The Euler-
Lagrange equations for this class of manipulators are

M11(q)q̈1 + M21(q)q̈2 −
1
2

∂M33(q)
∂q1

q̇2
3 + b1q̇1 −

N
∑

j=4

ρ
ℓ
∫

0

φj(a)∂xℓ(a,q)
∂q1

daq̇j q̇3

+1
2

∂M11(q)
∂q1

q̇2
1 + q̇2q̇1

∂M11(q)
∂q2

+ q̇2
2

(

∂M12(q)
∂q2

− 1
2

∂M22(q)
∂q1

)

+ ∂V
∂q1

= τ1

(5.4)

M22(q)q̈2 + M21(q)q̈1 −
1
2

∂M33(q)
∂q2

q̇2
3 + b2q̇2 −

N
∑

j=4

ρ
ℓ
∫

0

φj(a)∂xℓ(a,q)
∂q2

daq̇j q̇3

+1
2

∂M22(q)
∂q2

q̇2
2 + q̇2q̇1

∂M22(q)
∂q1

+ q̇2
1

(

∂M21(q)
∂q1

− 1
2

∂M11(q)
∂q2

)

+ ∂V
∂q2

= τ2

(5.5)

M33(q)q̈3 + ∂M33(q)
∂q1

q̇1q̇3 + ∂M33(q)
∂q2

q̇2q̇3 + b0q̇3 +
N
∑

j=4

ρ
ℓ
∫

0

φj(a)xℓ(a, q)daq̈j

+
N
∑

j=4

ρ
ℓ
∫

0

φj(a)∂xℓ(a,q)
∂q1

daq̇j q̇1 +
N
∑

j=4

ρ
ℓ
∫

0

φj(a)∂xℓ(a,q)
∂q2

daq̇j q̇2 = τ3

(5.6)

ρ
ℓ
∫

0

φj(a)xℓ(a, q)daq̈3 + q̈j +
ℓ
∫

0

φj(a)∂xℓ(a,q)
∂q1

daq̇3q̇1 +
ℓ
∫

0

φj(a)∂xℓ(a,q)
∂q2

daq̇3q̇2

+qjω
2
j = 0.

(5.7)

In these equations, j ∈ {4 . . .N} denotes the index of the modes of vibration, and φj(a) are
the clamped-free eigenfunctions corresponding to each mode of vibration of the beam of
length ℓ. The term xℓ(a, q) is the shortest distance from point a on the flexible link to the
axis of rotation of the base joint, denoted y3. The term xℓ(a, q) is graphically illustrated
in Figure 5.2.
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Figure 5.2: Illustration of the term xℓ(a, q) for a class of manipulators with a horizontal
flexibility in the last link.

Model of dynamically decoupled and gravity balanced five-bar linkage robot

The general model for a class of manipulators, which includes the five-bar manipulator
with horizontal flexibility in the last link is presented in (5.4), (5.5), (5.6) and (5.7).
For a dynamically decoupled ((4.2) must be satisfied) and gravity balanced ((4.4) must
be satisfied) five-bar manipulator, these equations of motion may be greatly simplified.
Consider the five-bar linkage robot in Figure 5.3. If this robot is dynamically decoupled
and gravity balanced1, the 3×3 block of the inertia matrix corresponding to the rigid body
manipulator has the form





M11 0 0
0 M22 0
0 0 M33(q)



 ,

1Notice that the center of mass of link 1, m1, extends below the link in Figure 5.3, a necessity for
gravity balancing.
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Figure 5.3: A five-bar manipulator with horizontal flexibility in the last link

where
M11 = m1ℓ

2
c1

+ m3ℓ
2
c3

+ m4ℓ
2
1 + I1 + I3

M22 = m2ℓ
2
c2

+ m3ℓ
2
2 + m4ℓ

2
c4

+ I2 + I4

M33(q) = M11 cos2 q1 + M22 cos2 q2 + I0

and {mi, Ii, ℓci
}, i ∈ 4 denote the mass, inertia and distances to the center of mass for

the link i, I0 denotes the hub inertia of the base joint. A 3-DOF gravity balanced and
dynamically decoupled five-bar linkage robot does not have linear dynamics, as was the
case with the 2-DOF manipulator. Since the manipulator is gravity balanced, the potential
energy of the mechanical system does not contain any gravitation terms. However, potential
energy corresponding to flexible link deflection [59] is

V =
1

2

ℓ
∫

0

EI

(

∂2w

∂a2

)2

da.

For the five-bar linkage robot

xℓ(a, q) = ℓ1 cos q1 − a cos q2.
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In order to simplify notation let

ci := cos qi

si := sin qi, i ∈ 3,

unless ci appears in a subscript, where it denotes the center of mass of a link. Also, we
define

Φj :=
ℓ
∫

0

φj(a)da

Φja
:=

ℓ
∫

0

φj(a)ada

Ψj(q) :=
ℓ
∫

0

φj(a)(ℓ1c1 − ac2)da = ℓ1Φjc1 − Φja
c2.

(5.8)

The equations of motion (5.4), (5.5), (5.6) and (5.7), in the instance of a gravity bal-
anced and dynamically decoupled five-bar linkage robot simplify to

M11q̈1 + M11 cos q1 sin q1q̇
2
3 + b1q̇1 + ρℓ1

N
∑

j=4

Φj q̇j sin q1 q̇3 = τ1 (5.9)

M22q̈2 + M22 cos q2 sin q2q̇
2
3 + b2q̇2 − ρ

N
∑

j=4

Φja
q̇j sin q2 q̇3 = τ2 (5.10)

M33(q)q̈3 − 2(M11 cos q1 sin q1q̇1 + M22 cos q2 sin q2q̇2) q̇3 + b0q̇3

+ρ
N
∑

j=4

Ψj q̈j − ρℓ1

N
∑

j=4

Φj sin q1 q̇1q̇j + ρ
N
∑

j=4

Φja
sin q2 q̇2q̇j = τ3

(5.11)

ρΨj q̈3 + q̈j − ℓ1Φj sin q1 q̇3q̇1 + Φja
sin q2 q̇3q̇2 + qjω

2
j = 0, (5.12)

where j ∈ {4 . . .N} denotes the index of the generalized coordinates of the modes of
vibration. Since these equations are still quite complex, we apply a preliminary feedback
cancellation to eliminate many of the coriolis and centripetal terms2. The preliminary

2Canceling stable dynamics will simplify the model equations; however, the key features of this system
cannot be canceled, and therefore this cancellation in no way trivializes the problem.
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feedback is

τ1 = u1 + b1q̇1 + M11 cos q1 sin q1q̇
2
3 + ρℓ1

N
∑

j=4

Φj q̇j sin q1 q̇3

τ2 = u2 + b2q̇2 + M22 cos q2 sin q2q̇
2
3 − ρ

N
∑

j=4

Φja
q̇j sin q2 q̇3

τ3 = u3 + b0q̇3 − 2(M11 cos q1 sin q1q̇1 + M22 cos q2 sin q2q̇2) q̇3

−ρℓ1

N
∑

j=4

Φj sin q1 q̇1q̇j + ρ
N
∑

j=4

Φja
sin q2 q̇2q̇j ,

(5.13)

where u1, u2, and u3 are the new control inputs. After the preliminary feedback cancellation
(5.13), with the approximate model of the deflection of the flexible beam, the remaining
system model is still nonlinear, and can be expressed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = u

where

M(q) =























M11 0 0 0 0 . . . 0
0 M22 0 0 0 . . . 0
0 0 M33(q) ρΨ4(q) ρΨ5(q) . . . ρΨN(q)
0 0 ρΨ4(q) 1 0 . . . 0
0 0 ρΨ5(q) 0 1 . . . 0
...

...
...

...
. . .

0 0 ρΨN(q) 0 1























,

C(q, q̇) =























0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0

−ℓ1Φ4s1q̇3 Φ4a
s2q̇3 0 . . . 0

−ℓ1Φ5s1q̇3 Φ5a
s2q̇3 0 . . . 0

...
...

...
−ℓ1ΦNs1q̇3 ΦNa

s2q̇3 0 . . . 0























,

G(q) =























0 0 0 0 0 . . . 0
0 0 0 0 0
0 0 0 0 0
0 0 0 ω2

4 0
0 0 0 0 ω2

5
...

. . .

0 ω2
N























,
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u =



















u1

u2

u3

0
...
0



















.

and M(q) is invertible (see Section 3.2.1). In order to invert M(q), we define

M ′ := −ρ2

n
∑

i=4

Ψi(q)
2 + M33(q),

which is the determinant of the (N − 2) × (N − 2) minor of M(q) obtained by removing
the first two rows and columns. We appeal to the following useful matrix identity in order
to invert M(q):

A−1 =















a b c d · · ·
b 1 0 0 · · ·
c 0 1 0 · · ·
d 0 0 1 · · ·
...

. . .















−1

=
1

det A















1 −b −c −d · · ·
−b −c2 − d2 · · ·+ a bc bd · · ·
−c bc −b2 − d2 · · · + a cd · · ·
−d bd cd −b2 − c2 · · ·+ a · · ·
...

. . .















where
det A = a − b2 − c2 − d2 . . . .

Taking the inverse of M(q) we get the following symmetric matrix:

M−1(q) =

1

M ′























M ′

M11
0 0 · · ·

M ′

M22
0 · · ·

1 −ρΨ4(q) −ρΨ5(q) · · · −ρΨN (q)
M ′ + ρ2Ψ4(q)

2 ρ2Ψ4(q)Ψ5(q) · · · ρ2Ψ4(q)ΨN(q)
M ′ + ρ2Ψ5(q)

2 · · · ρ2Ψ5(q)ΨN(q)
. . .

M ′ + ρ2ΨN (q)2























81



Dropping the argument of the functions Ψj(q) for space considerations, and solving for
q̈ we obtain

q̈ =

−1

M ′









































0 0 0 . . . 0
0 0 0 . . . 0

ρℓ1s1q̇3

N
∑

j=4

ΨjΦj −ρs2q̇3

N
∑

j=4

ΨjΦja
0 . . . 0

−ℓ1Φ4s1q̇3M
′ − ρ2ℓ1Ψ4s1q̇3

N
∑

j=4

ΨjΦj Φ4a
s2q̇3M

′ + ρ2Ψ4s2q̇3

N
∑

j=4

ΨjΦja
0 . . . 0

−ℓ1Φ5s1q̇3M
′ − ρ2ℓ1Ψ5s1q̇3

N
∑

j=4

ΨjΦj Φ5a
s2q̇3M

′ + ρ2Ψ5s2q̇3

N
∑

j=4

ΨjΦja
0 . . . 0

...
...

...

−ℓ1ΦNs1q̇3M
′ − ρ2ℓ1ΨNs1q̇3

N
∑

j=4

ΨjΦj ΦNa
s2q̇3M

′ + ρ2ΨNs2q̇3

N
∑

j=4

ΨjΦja
0 . . . 0









































q̇

−
1

M ′









































0
0

−ρ
N
∑

j=4

Ψjω
2
j qi

M ′ω2
4q4 + ρ2Ψ4

N
∑

j=4

Ψjω
2
j qj

M ′ω2
5q5 + ρ2Ψ5

N
∑

j=4

Ψjω
2
j qj

...

M ′ω2
NqN + ρ2ΨN

N
∑

j=4

Ψjω
2
j qj









































+









































1
M11

u1

1
M22

u2

1
M ′

u3

−ρΨ4

M ′
u3

−ρΨ5

M ′
u3

...

−ρΨN

M ′
u3









































.

In order to make the equations of motion more manageable, we further define the following:

Ωj(q, q̇) := −ρℓ1s1Φj q̇3q̇1 + ρs2Φja
q̇3q̇2 + ρω2

j qj .

82



The equations of motion can be written in the form

q̈1 = 1
M11

u1

q̈2 = 1
M22

u2

q̈3 = 1
M ′

N
∑

j=4

Ψj(q)Ωj(q, q̇) + 1
M ′

u3

q̈4 = −1
M ′

ρΨ4(q)
N
∑

j=4

Ψj(q)Ωj(q, q̇) −
Ω4(q,q̇)

ρ
− 1

M ′
ρΨ4(q)u3

...

q̈N = −1
M ′

ρΨN(q)
N
∑

j=4

Ψj(q)Ωj(q, q̇) −
ΩN (q,q̇)

ρ
− 1

M ′
ρΨN(q)u3.

(5.14)

In order to represent (5.14) in the structured form (3.10), let x := (xc, xv) with xc := q
and xv := q̇ such that

col(xc1 , . . . , xcN
) := col(q1, . . . , qN)

col(xv1
, . . . , xvN

) := col(q̇1, . . . , q̇N).

Then

ẋ = f(x) + g(x)u =

[

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

u,

where xc ∈ RN , xv ∈ RN , u ∈ R3,

fv(x) =

































0
0

1
M ′

N
∑

j=4

Ψj(xc)Ωj(x)

−ρ

M ′
Ψ4(xc)

N
∑

j=4

Ψj(xc)Ωj(x) − Ω4(x)
ρ

...

−ρ

M ′
ΨN(xc)

N
∑

j=4

Ψj(xc)Ωj(x) − ΩN (x)
ρ

































(5.15)

and

gv(xc)u =























1
M11

0 0

0 1
M22

0

0 0 1
M ′

0 0 −ρ

M ′
Ψ4(xc)

0 0 −ρ

M ′
Ψ5(xc)

...
...

...
0 0 −ρ

M ′
ΨN (xc)



























u1

u2

u3



 . (5.16)
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We are interested in controlling the position of the tip of the flexible link on the five-bar
manipulator. Therefore, as the output, we choose the Cartesian position of the flexible link
endpoint in the output space:

y =





y1

y2

y3



 = h(xc) =





(ℓ1 cos xc1 − ℓ cos xc2) cos xc3 − w(xc) sin xc3

(ℓ1 cos xc1 − ℓ cosxc2) sin xc3 + w(xc) cos xc3

ℓ1 sin xc1 − ℓ sin xc2 − ℓ1



 , (5.17)

where w(xc) ≈
N
∑

j=4

φj(ℓ)xcj
is an approximation of the tip deflection (see Section 5.1.1).

A further approximation, valid for small deflections, is that the tip of the beam always
lies along a perpendicular line passing through the undeflected tip position. The output is
illustrated in Figure 5.4.

Figure 5.4: Model of link flexibility

5.2 Background and Motivation

Much literature has considered the control of a five-bar linkage robot with its last link
flexible (for example Trautman [56], Subrahmanyan and Seshu [52] and Rossi, Zuo and
Wang [40]), since it is a non-minimum phase system, and inherently difficult to control.
The most relevant contribution to this thesis is a negative result published by Wang and
Vidyasagar [58], revealing that feedback linearization is not an appropriate control strategy
for a class of manipulators, including the five-bar. This negative result serves to motivate
investigating our approach to path following applied to the five-bar with a flexible last
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link. We are further motivated by literature suggesting path following may remove perfor-
mance limitations inherent when a tracking approach is taken with non-minimum phase
systems [1]. Why the focus on the five-bar linkage robot and not another manipulator?
The 3-DOF five-bar is a parallel drive manipulator, and has all three motors located near
the base, meaning that the inertias seen by each joint are lower than in serial manipulators.
Hence, the motor actuators see a substantially lower inertia, especially in combination with
a flexible beam, than in traditional robots.

Summary

In [58], Wang and Vidyasagar investigate applying both input-output and full-state feed-
back linearization to a class of manipulators with a flexible last link, whose model was
presented in this thesis in Section 5.1. The authors first consider input-output feedback
linearization. As an output, they choose

y = h(xc) =





h1(xc)
h2(xc)
h3(xc)



 =





xc1

xc2

ℓxc3 − w(xc)



 , (5.18)

where w(xc) is the deflection given by (5.2), ℓ is the length of the flexible link, and xc1, xc2 ,
and xc3 are the joint angles. This unusual output consists of the reflected tip position,
shown in Figure 5.5, and the two remaining configuration states. The motivation behind
using the reflected tip position, rather than the actual tip position, is to preserve a well-
defined relative degree of the output h3 with respect to the manipulator dynamics, as well
as other advantages, discussed in detail by Wang and Vidyasagar in [59]. Although using
the reflected tip output is effective in mitigating vibrations, this output complicates the
output tracking problem.

Figure 5.5: Illustration of the reflected tip position

Applying input-output feedback linearization to a manipulator with equations of motion
(5.4)-(5.7) with output (5.18), relies on the approximation

LgLfh3 ≈
ℓ + xℓ(ℓ)

M̄ ′

85



being non-zero, where M̄ ′ := −ρ2
N
∑

j=4

(

ℓ
∫

0

φjxℓda

)2

+ M33(q). Otherwise the vector relative

degree is not well-defined. Physically, the situation where xℓ(ℓ) ≈ −ℓ corresponds to the
tip of the flexible link “flipping back” and lying at a distance ℓ from the base joint axis,
y3 (see Figure 5.2). The result is that no feedback transformation exists for a feasible
subset of the configuration space for the given output. Wang and Vidyasagar point out
that this condition, which relies on the tip of the flexible link “flipping back”, may be
avoided. Indeed this condition may not even be feasible for certain manipulators, such as
the single flexible link, or the five-bar linkage robot (depending on the joint angle limits).
Under the assumption that the configuration where LgLfh3 = 0 is avoided, Wang and
Vidyasagar analyze the zero dynamics of the class of manipulators with the given output.
They conclude that the zero dynamics are oscillatory, making the system inherently difficult
to control.

Considering the configurations where the feedback transformation fails, as well as the
non-minimum phase nature of the input-output feedback linearized system, Wang and
Vidyasagar set out to examine full-state feedback linearizability. Applying Theorem 5.2.3 in
[25] reveals that this class of manipulators is not full-state feedback linearizable. Intuitively,
there will always exist dynamics which are uncancellable due to the underactuation of the
system.

In conclusion, Wang and Vidyasagar proposed two approaches for the linearization of
a class of manipulators with a flexible last link: input-output and full-state linearization.
For input-output linearization, the authors resorted to using a fictitious output to preserve
relative degree, and found that the linearization is possible given caveats that certain
configurations cause failure, and the resulting system is non-minimum phase. Furthermore,
they found that full-state linearization fails.

5.3 Flexible Manipulator Path Following

We investigate whether path following is applicable for the five-bar manipulator with a
last flexible link using transverse feedback linearization. Furthermore, as in Chapter 4, our
objective is to partially linearize the tangential dynamics. We have chosen the following
output, which corresponds to the Cartesian coordinates of the tip of the flexible link, not
a fictitious output commonly used in the literature (see [59], [58], [40], [13]),

y =





y1

y2

y3



 = h(xc) =





(ℓ1 cos xc1 − ℓ cos xc2) cos xc3 − w(xc) sin xc3

(ℓ1 cos xc1 − ℓ cosxc2) sin xc3 + w(xc) cos xc3

ℓ1 sin xc1 − ℓ sin xc2 − ℓ1



 , (5.19)
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where w(xc) ≈
N
∑

j=4

φj(ℓ)xcj
. We would like this output to approach and traverse a parame-

terized path in the output space, σ : D → R3, satisfying Assumptions 1 and 2. This implies
that we can express the path as

γ := σ(D) =
{

y ∈ R
3 : s(y) = 0

}

,

for some smooth function s : R3 → R2. We are interested in solving the path follow-
ing problem by feedback linearizing the transverse dynamics, and also partially feedback
linearizing the tangential dynamics. Since m = p, we satisfy the basic feasibility require-
ment to do this. We check if this is possible using Corollary 3.3.6. For the system under
consideration, we have

∂h

∂xc

=




−ℓ1s1c3 ℓs2c3 −(ℓ1c1 − ℓc2)s3 − φ4(ℓ)xc4c3 −φ4(ℓ)s3 . . . −φN (ℓ)s3

−ℓ1s1s3 ℓs2s3 (ℓ1c1 − ℓc2)c3 − φ4(ℓ)xc4s3 φ4(ℓ)c3 . . . φN(ℓ)c3

ℓ1c1 −ℓc2 0 0 . . . 0



 ,

and

gv(xc) =























1
M11

0 0

0 1
M22

0

0 0 1
M ′

0 0 −ρ

M ′
Ψ4(xc)

0 0 −ρ

M ′
Ψ5(xc)

...
...

...
0 0 −ρ

M ′
ΨN(xc)























so that

∂h

∂xc

gv(xc) =














− ℓ1
M11

s1c3
ℓ

M22

s2c3 − 1
M ′

(ℓ1c1 − ℓc2)s3 −
φ4(ℓ)
M ′

xc4c3 + ρ

M ′
s3

N
∑

j=4

Ψj(xc)φj(ℓ)

− ℓ1
M11

s1s3
ℓ

M22
s2s3

1
M ′

(ℓ1c1 − ℓc2)c3 −
φ4(ℓ)
M ′

xc4s3 −
ρ

M ′
c3

N
∑

j=4

Ψj(xc)φj(ℓ)

ℓ1
M11

c1 − ℓ
M22

c2 0















,

whose determinant is equal to

ℓℓ1

M11M22M ′
sin(xc1 − xc2)

(

ℓ1 cos xc1 − ℓ cos xc2 − ρ

N
∑

j=4

Ψj(xc)φj(ℓ)

)

(5.20)
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which equals zero if
sin(xc1 − xc2) = 0.

or

ℓ1 cos xc1 − ℓ cos xc2 − ρ
N
∑

j=4

Ψj(xc)φj(ℓ) = 0. (5.21)

Physically, the first condition, sin(xc1−xc2) = 0 when the parallelogram making up the five-
bar linkage robot collapses, and each link is collinear (we encountered this same singular
configuration in Chapter 4, equation (4.12)). The second condition is not as intuitive. The
term ℓ1 cos xc1 − ℓ cos xc2 is the distance from the y3 axis (the axis of rotation of the base
joint) to the tip of the last link assuming there is no deflection. In the case of the rigid body
manipulator Jacobian, ℓ1 cos xc1 = ℓ cos xc2 corresponds to the singular configuration where
the tip of the last link is directly along the axis of rotation of the base motor. However, in
the flexible link case we have the additional term,

−ρ
N
∑

j=4

Ψj(xc)φj(ℓ),

which is from the model of the vibrating beam. Physically, it is difficult to provide concrete
reasoning as to why (5.21) must be avoided. Before simulating path following for this
system, we numerically check for which configurations (5.21) is encountered.

We will choose our path to avoid the configurations where det
(

∂h
∂xc

gv(xc)
)

= 0, trans-

versely feedback linearize this system, and also partially linearize all of the tangential
dynamics which cause observable output motions along the path. Satisfying the conditions
of Corollary 3.3.6 for the flexible five-bar manipulator, a coordinate and feedback trans-
formation will put our system in the normal form (3.2), and furthermore, the tangential
dynamics will have additional structure of the form (3.18). In new coordinates, our system
becomes

η̇1 = f 0(η1, η2, ξ) + g⋔(η1, η2, ξ)v
⋔ + g

‖
2(η1, η2, ξ)v

‖
2

η̇2 = A‖η2 + B‖v
‖
2

ξ̇ = Aξ + Bv⋔,

(5.22)

with ξ ∈ R4, η2 ∈ R2, η1 ∈ R2(N−3), and

A =









0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0









, B =









0 0
1 0
0 0
0 1









, A‖ =

[

0 1
0 0

]

, B‖ =

[

0
1

]

.

When performing a simulation, we work out these equations in detail for a given path.
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System (5.22) has interesting features not captured in the rigid planar five-bar manip-
ulator of Chapter 4. For instance, p = 3, and therefore the dimension of the ξ-subsystem
is 2(p−1) = 4. Also, the existence of an η1-subsystem indicates that not all tangential dy-
namics cause observable motions of the output y. Notice that the dimension of η1 depends
on the number of modes of vibration used in the model; this subsystem can have quite a
high dimension. Since m = p, no controls, v

‖
1, appear in the η1 dynamics. The differential

equation
η̇1 = f 0(η1, 0, 0)

describes the zero dynamics of the system given an augmented virtual output. Intuitively,
the zero dynamics correspond to uncontrollable vibrations of the flexible link while the link
tip is along the path, and at the desired location on the path (i.e. η2 = 0).

5.4 Simulation Results

In this simulation, we will restrict the number of modes of vibration to the lowest three
modes. In [56], choosing the lowest three modes is justified according to the desired con-
trol bandwidth; higher frequencies contain low-amplitude modes among substantial noise.
Thus, the desired control bandwidth excludes higher modes as a result of avoiding noisy
frequencies. Our structured model is

ẋc = xv

ẋv =



































0
0

1
M ′

N
∑

j=4

Ψj(xc)Ωj(x)

−ρ

M ′
Ψ4(xc)

N
∑

j=4

Ψj(xc)Ωj(x) − Ω4(x)
ρ

−ρ

M ′
Ψ5(xc)

N
∑

j=4

Ψj(xc)Ωj(x) − Ω5(x)
ρ

−ρ

M ′
Ψ6(xc)

N
∑

j=4

Ψj(xc)Ωj(x) − Ω6(x)
ρ



































+

















1
M11

0 0

0 1
M22

0

0 0 1
M ′

0 0 −ρ

M ′
Ψ4(xc)

0 0 −ρ

M ′
Ψ5(xc)

0 0 −ρ

M ′
Ψ6(xc)





















u1

u2

u3





with output

y =





y1

y2

y3



 = h(xc) =





(ℓ1 cos xc1 − ℓ cos xc2) cos xc3 − w(xc) sin xc3

(ℓ1 cos xc1 − ℓ cos xc2) sin xc3 + w(xc) cos xc3

ℓ1 sin xc1 − ℓ sinxc2 − ℓ1



 ,
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where3 w(xc) =
6
∑

j=4

φj(ℓ)xcj
. In order to demonstrate path following via transverse feedback

linearization for the five-bar linkage robot with a flexible last link, we present a simulation
using a 1-dimensional path in the output space. We also partially linearize the tangential
dynamics.

Path and corresponding output

We choose an ellipse as the embedded path in the 3-dimensional output space. We express
the ellipse as the intersection of an infinitely long cylinder of radius r, with a plane whose
slope and offset are given by parameters b and d respectively. Therefore our path is

γ :=
{

(y1, y2, y3) ∈ R
3 : s(y) = 0

}

,

where

s(y) =

[

y2
2 + (y3 − ℓ1)

2 − r2

y1 − by2 − d

]

. (5.23)

An illustration of this path is found in Figure 5.6. Given this path, according to Theo-

Figure 5.6: Path used for five-bar linkage robot with a flexible link

rem 3.3.1, our virtual output is

ŷ = λ(xc) = s ◦ h(xc),

3Technically w(xc) refers to the exact deflection of the tip; however, to avoid notational confusion, we
take w(xc) to refer to the approximate tip deflection.
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where h(xc) is given in (5.17). In order to impose more structure on the η dynamics, as
in (5.22), we augment the virtual output with a function which describes the flexible tip
position along the ellipse. According the procedure in Chapter 3, we use the projection
̟(y) = arg minθ∈L ‖y−σ(θ)‖, where L = [0, 2π]4. We use angle of the output with respect
to the center of the cylinder,

̟(y) = arg(y2 + (y3 − ℓ1)i).

Intuitively this is a suitable projection: given an angle with respect to the cylinder, one
can uniquely identify the endpoint position along the ellipse. Therefore we augment the
virtual output with

π(xc) = ̟ ◦ h(xc).

Recalling, from Section 3.1, that in order to find the coordinate transformation, we require
two maps: ϕ(x) which is 2(N−p+1) dimensional, and col(λ(xc), Lfλ(x)), which is 2(p−1)
dimensional. The function π(xc) provides 2 of the 2(N − p+1) functions comprising ϕ(x).
Fortunately, finding the remaining 2(N − p) functions is not necessary; these functions
govern uncontrollable and unobservable dynamics related to the “internal” vibrations of
the system.

Model and simulation parameters

In order to quickly access and manipulate signals, SimulinkR© is used to implement the
continuous time simulation. The simulation uses a fixed-step Dormand-Prince ODE solver
with a 2ms sample period. In order to optimize the speed of the simulation, embedded
MATLAB blocks are used to where possible. Table 5.1 provides the model parameters
used in this simulation. Kinematically, the model is the same as the rigid five-bar linkage
robot of Chapter 4. The remaining parameters are chosen so that they loosely correspond
to physically realistic values presented in [56].

4Chapter 3 assumes that σ is a unit speed parameterization; however, this is not necessary. In Chapter 4
we used a unit speed parameterization, but in this case, we do not.
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Parameter Units Value

M11 kg m2 1
M22 kg m2 0.5
ℓ1 m 0.3
ℓ m 0.593
ρ kg/m 0.1
ω4 rad/s 50
ω5 rad/s 110
ω6 rad/s 250
r m 0.05
d m 0.4
b − 0.1

Table 5.1: Simulation model parameters

Also, in Table 5.2, the derived constant parameters are provided. The calculations to
obtain these derived parameters rely on the actual model parameters, and are given by
equations (5.3) and (5.8).

Parameter Value

φ4(ℓ) 2.253494824644334
φ5(ℓ) 3.749225463985054
φ6(ℓ) 1.873501229335111
Φ4 0.623815551929889
Φ5 0.358157464285832
Φ6 0.547338825746055
Φ4a

0.261775453410670
Φ5a

0.183762806307797
Φ6a

0.134584564095619

Table 5.2: Calculated values based on model parameters for beam flexibility

Although it may seem absurd to present parameters with 15 decimals of precision, recall
that the Euler-Bernoulli beam model omits damping, and therefore the model will have
oscillatory zero-dynamics. Slight numerical inaccuracies in the mathematical model may
cause the zero dynamics to become unstable.
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Verifying that Corollary 3.3.6 is satisfied along path

Earlier in this section we commented that we must avoid configurations where the deter-
minant (5.20) is equal to zero. When considering only 3 modes of vibration in the model,
this determinant becomes

ℓℓ1

M11M22M ′
sin(xc1 − xc2)

(

ℓ1 cos xc1 − ℓ cos xc2 − ρ
6
∑

j=4

Ψj(xc)φj(ℓ)

)

.

This determinant goes to zero when either the manipulator links are collinear, or when

ℓ1 cos xc1 − ℓ cos xc2 − ρ
6
∑

j=4

Ψj(xc)φj(ℓ) = 0. (5.24)

Recall that by definition

Ψj(xc) =

ℓ
∫

0

φj(a)(ℓ1 cos xc1 − a cos xc2)da

= ℓ1Φj cos xc1 − Φja
cos xc2.

Since Ψj(xc) is a function of xc1 and xc2 only, we numerically plot when condition (5.24)
occurs in Figure 5.7. In this plot, for interest’s sake, we vary the length of the link ℓ1

and notice its effect on the singular configurations. Keep in mind that for our simulation,
ℓ1 = 0.3m.
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Figure 5.7: Five-bar manipulator joint configurations causing the condition (3.26) to fail

In the output space, these unacceptable regions are shown in Figure 5.8, along with the
five-bar manipulator to scale.
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Figure 5.8: Configurations in the output space causing the condition (3.26) to fail, where
the dotted line indicates the maximum reach of the manipulator

From Figure 5.8 is clear that unacceptable configurations lie toward the extremities of
the feasible workspace. Therefore we have confirmed that these configurations are avoid-
able, and that our elliptic path does not contain any unacceptable configurations. We may
now proceed with simulating this system. Three simulations are presented, in order to
illustrate path following via transverse feedback linearization for the five-bar linkage robot
with a last flexible link.

Simulation 1

The control objective of the first simulation is to track a step position reference in the
tangential subsystem. Implicit in all of the simulations is the objective to stabilize the
path following manifold, which is equivalent to stabilizing the origin of the ξ-subsystem.
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In reference to (5.22), we use as the control law a PID compensator of the form

v⋔

1 = −Kp1
ξ1 − Kd1

ξ2 − Ki1

t
∫

0

ξ1(τ)dτ

v⋔

2 = −Kp2
ξ3 − Kd2

ξ4 − Ki2

t
∫

0

ξ3(τ)dτ,

where v⋔ = col(v⋔
1 , v⋔

2 ) ∈ R2 and Kpj
, Kdj

, Kij , j ∈ 2 are positive gains. Furthermore, we
design the tangential control law as a PD compensator of the form

v‖ = −Kp3

(

η2
1 − η2ref

1

)

− Kd3
η2

2,

where η2ref
1 corresponds to the position on the ellipse we wish to stabilize. In this experi-

ment, η2ref
1 = π/3 rad. Table 5.3 contains all of the controller gains, chosen such that the

closed loop dynamics of (5.22) are exponentially stable.

Parameter Value

Kp1
10000

Kd1
1000

Ki1 100
Kp2

10000
Kd2

1000
Ki2 100
Kp3

5
Kd3

5

Table 5.3: Controller gains for flexible manipulator simulation

Figure 5.9 shows the Cartesian position of the flexible tip in output space tracking a
step reference in the η2-subsystem. In Figure 5.10, the corresponding transformed states
are presented. Notice that due to the relative weighting of controller gains, the transversal
dynamics are much faster than the tangential dynamics, as expected. Finally, Figure 5.11
shows the control effort of each manipulator motor, along with the generalized coordinates
(or “weights”) of the deflection modes. Notice that due to the fact that only horizontal
vibrations are permitted, the vibrations only affect the base joint, as is evident by inspecting
the control effort plot.
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Figure 5.9: Flexible tip in output space
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Figure 5.10: Transversal and tangential states for simulation 1
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Figure 5.11: Control effort and deflection weights for simulation 1

Simulation 2

The control objective of the second simulation is to track a velocity profile in the tangential
subsystem. For this simulation, in reference to (5.22), we use the same PID compensator as
in the previous simulation for the transversal subsystem. We design the tangential control
law as a compensator of the form

v‖ = −Kd3

(

η2
2 − η2ref

2

)

,

where we choose Kd3
= 5 and η2ref

2 is the speed profile along the ellipse we wish to track.
In this experiment,

η2ref
2 =

{

2 rad/s 0 ≤ t < 3s
−2 rad/s t ≥ 3s.

Figure 5.12 shows the Cartesian position of the flexible tip in output space tracking the
desired speed profile. In Figure 5.13, the corresponding transformed states are presented.
Clearly the transversal states are quickly regulated to zero, while the tangential states
represent the angle and angular velocity about the cylinder in output space. Finally,
Figure 5.14 shows the control effort of each manipulator motor, along with the generalized
coordinates (or “weights”) of the deflection modes.
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Figure 5.12: Flexible tip in output space - tracking speed profile
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Figure 5.13: Transversal and tangential states for simulation 2
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Figure 5.14: Control effort and deflection weights for simulation 2

Simulation 3

The objective of the third simulation is to demonstrate inherent advantages of path follow-
ing by imposing an unmodeled disturbance and observing the behaviour of the closed-loop
system. For this simulation, in reference to (5.22), we use the same PID compensator as
in the previous simulation for the transversal subsystem. As before, we use the tangential
control law

v‖ = −Kd3

(

η2
2 − η2ref

2

)

,

where we choose Kd3
= 5 and η2ref

2 is the speed profile along the ellipse we wish to track. In
this experiment η2ref

2 = 2 rad/s. The unmodeled disturbance prevents any vertical motion
of the final link of the manipulator. This is done in simulation by temporarily constraining
the non-base joint motors q1 and q2. This disturbance acts from 3s < t < 5s. The base
joint remains unaffected by the disturbance, and therefore horizontal manipulator motion
remains possible.

The output space trajectory is shown in Figure 5.15, along with the location of the dis-
turbance. Figure 5.16 shows the transformed states. Since the disturbance discontinuously
changes the system dynamics, the resulting “impact” (not physically feasible, since the
joint velocities change instantaneously) induces vibrations causing the endpoint to briefly
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leave the path. Since the base joint is unaffected by the disturbance, the transversal sub-
system is quickly regulated after “impact”. Recovering from the impact is also apparent
in the tangential dynamics. Finally, Figure 5.17 shows the control effort of each manipula-
tor motor, along with the generalized coordinates (or “weights”) of the deflection modes.
Interestingly, the controls τ1 and τ2 are attempting to help regulate the transversal subsys-
tem; however, due to the nature of the disturbance, their efforts “fall on deaf ears” (i.e., it
is as if motors 1 and 2 are jammed).

0.395

0.4

0.405

0.41

0.415

−0.05

0

0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

 

y
1
 (m)

Trajectory of Flexible Tip in Output Space

y
2
 (m)

 

y 3 −
 l 1 (

m
)

Endpoint position
Initial condition
Circle γ

Disturbance
applied here

Figure 5.15: Flexible tip in output space - tracking speed profile with unmodeled distur-
bance
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Figure 5.16: Transversal and tangential states for simulation 3
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5.5 Discussion

In this chapter we have presented a model for a five-bar linkage robot with its last link
flexible in the horizontal direction. The five-bar robot is well-suited to applications with
flexible links since both have the advantage of low inertias, and therefore the capability of
fast movement, or motion with low control effort. Previously in the literature, it has been
shown that input-state feedback linearization is not possible for this model. Input-output
feedback linearization is possible, although singular configurations exist which divide the
manipulator workspace. As well, the output must be chosen to be the reflection of the tip
position to preserve a well-defined relative degree.

The control of this flexible manipulator fits into the path following formulation under
mild restrictions, as Corollary 3.3.6 is satisfied everywhere in the manipulator workspace
with the exception of some of its extremities (as shown in Figure 5.8). The output, (5.17),
corresponds to the actual tip position, not a reflected tip position, and any number of
modes may be incorporated into the deflection model, while preserving a well-defined vector
relative degree. It is also remarkable that the degree of underactuation, which equals the
number of modes of vibration, does not restrict the application of path following to this
system.

Three simulations have been presented to demonstrate path following for the endpoint
of a five-bar linkage robot with a flexible last link on an elliptic path. Enough tangential
control exists to partially feedback linearize the tangential dynamics. Simulation 1 demon-
strates the simple objective of getting onto the path, and tracking a desired location on the
path. Since they are linear, both the closed-loop η2 and ξ-subsystems exhibit exponential
convergence (Figure 5.10), while the base motor cancels the vibrations of the flexible link
(Figure 5.11).

In addition to stabilizing points on the path, path following is useful for tracking desired
speeds along the path. Simulation 2 demonstrates tracking a velocity profile. The velocity
reference is a constant velocity, which instantaneously switches directions. As expected,
the transversal states are quickly regulated, due to relatively high controller gains, and the
η2 states track the desired reference velocity exponentially (Figure 5.13). Notice that the
sudden change in direction induces deflections with higher amplitudes, which makes sense
intuitively (Figure 5.14), though the output remains on the path as required.

There are advantages simply by formulating our model and selecting our outputs in
the context of path following, as opposed to input-output feedback linearization, as have
been previously discussed. In addition to these advantages are the advantages inherent
to path following, as opposed to trajectory tracking. Simulation 3 demonstrates one such
advantage. In this simulation, a constant velocity along the path is tracked, until suddenly,
an unmodeled disturbance locks joints q1 and q2 (see Figure 5.3). Vibrations are induced
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during the sudden locking of the joints (see Figure 5.17). During this time, the transver-
sal controller successfully mitigates these vibrations sufficiently, such that the flexible tip
settles on the path. The tangential controller is not able to drive the endpoint along the
path. After 2 seconds, the joints become unlocked once again, and the tangential controller
begins once more to drive the link tip along the path, picking up where it left off (see Fig-
ure 5.16). As has been extensively discussed to this point, this is in stark contrast to the
behaviour of a tracking controller under the same disturbance.
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Chapter 6

Conclusions and Future Work

Path following is a natural approach for controlling mechanical systems for a variety of
applications. Using set stabilization to implement path following has the main advantage
of guaranteeing invariance of the path.

In this thesis, we consider a broad class of nonlinear mechanical control systems, of the
form (3.13). Our main results provide easily checkable conditions under which the path
following problem can be solved as an instance of set stabilization. It is the structure of
the class of mechanical systems which makes the conditions of our main results easy to
check.

Transverse feedback linearization is a method of converting the dynamics of a mechan-
ical system into a transversal subsystem and a tangential subsystem, with respect to the
set we wish to stabilize. The transversal subsystem is decoupled from the tangential sub-
system, and is LTI. Stabilizing the origin of the transversal subsystem is equivalent to
stabilizing a set which corresponds to the mechanical system output being along a desired
path. Given a mechanical system subject to certain assumptions and conditions, we pro-
vide necessary and sufficient conditions for the system, along with a “virtual output”, to
yield a well-defined vector relative degree, in Theorem 3.3.1. A system which satisfies these
conditions is transversely feedback linearizable.

It is possible to impose structure on the tangential dynamics using partial feedback
linearization. Imposing this structure ultimately allows the motion along the path to be
governed by an LTI, controllable subsystem. Necessary and sufficient conditions for obtain-
ing a structured tangential subsystem are described in Theorem 3.3.5. An easily checkable
condition in Corollary 3.3.6 reveals whether the mechanical system can be transversely
feedback linearized while partially linearizing the tangential dynamics.

The main results been experimentally applied to the planar five-bar manipulator suc-
cessfully. Next, the main results were applied to a five-bar manipulator whose last link is
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flexible. Under mild conditions, Corollary 3.3.6 holds for this manipulator, for which simu-
lations were presented. This is notable, as previous literature shows standard input-output
or full state linearization does not work on this robot.

Future Work

The future theoretical contributions stemming from this thesis will include generalizing
certain results. For instance, an obvious extension to the contribution of Chapter 3 would
be to generalize the concept of a 1-dimensional path in the output space, to a higher
dimensional set. Another theoretical contribution will be further analysis of the results
presented in this thesis. For example, quantifying the closed-loop system’s performance in
the presence of disturbances, parametric uncertainty, etc. Finally, we believe it is worth
investigating whether or not a vector relative degree of {2, . . . , 2} for a mechanical system
with virtual output, (3.14), is the only possible vector relative degree. If this is proved,
then the conditions of Corollaries 3.3.3 and 3.3.6 become necessary and sufficient.

Further experimental work will support the theory presented in this thesis. For example,
presenting experimental results on controlling the five-bar manipulator with a flexible link
would be an impressive contribution. In this thesis, we thoroughly investigated two robotic
systems, both of which were sufficiently actuated in such a way that the tangential dynamics
were partially feedback linearizable. Looking at systems where this is not the case would
be an interesting future contribution. Also, investigating more interesting paths would be
useful from a practical perspective. We have only considered lines, circles and ellipses in
this thesis for simplicity. However, more complex paths will yield much rich discussion
from a practical perspective. Future work on expanding on this thesis surely promises to
be interesting and exciting.
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Appendix A

Positive Definite Matrices are

Invertible

A positive definite matrix1 A ∈ Rn×n is invertible

Proof. We use contradiction.

A is not invertible

⇒ det(A) = 0

⇒ ker(A) 6= {0}

⇒ ∃x ∈ R
n 6= 0 such that Ax = 0

⇒ ∃x ∈ R
n 6= 0 such that xT Ax = 0

This is a contradiction. Therefore A is invertible if it is positive definite.

1see Definition 2.2.11
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