
 

 

 

 

 
Robust Distributed Model Predictive Control Strategies 

of Chemical Processes 

 
 
 
 
 

by 
 

Walid  Al-Gherwi 
 
 

 
 
 
 
 
 

A thesis  
presented to the University of Waterloo  

in fulfillment of the  
thesis requirement for the degree of  

Doctor of Philosophy 
in  

Chemical Engineering 
 
 
 
 
 
 
 
 
 
 
 
 

Waterloo, Ontario, Canada, 2010 
 

� 2010 Walid Al-Gherwi 



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 
including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



ABSTRACT 
 
 

 This work focuses on the robustness issues related to distributed model predictive 

control (DMPC) strategies in the presence of model uncertainty. The robustness of 

DMPC with respect to model uncertainty has been identified by researchers as a key 

factor in the successful application of DMPC. 

A first task towards the formulation of robust DMPC strategy was to propose a 

new systematic methodology for the selection of a control structure in the context of 

DMPC. The methodology is based on the trade-off between performance and simplicity 

of structure (e.g., a centralized versus decentralized structure) and is formulated as a 

multi-objective mixed-integer nonlinear program (MINLP). The multi-objective function 

is composed of the contribution of two indices: 1) closed-loop performance index 

computed as an upper bound on the variability of the closed-loop system due to the effect 

on the output error of either set-point or disturbance input, and 2) a connectivity index 

used as a measure of the simplicity of the control structure. The parametric uncertainty in 

the models of the process is also considered in the methodology and it is described by a 

polytopic representation whereby the actual process’s states are assumed to evolve within 

a polytope whose vertices are defined by linear models that can be obtained from either 

linearizing a nonlinear model or from their identification in the neighborhood of different 

operating conditions. The system’s closed-loop performance and stability are formulated 

as Linear Matrix Inequalities (LMI) problems so that efficient interior-point methods can 

be exploited. To solve the MINLP a multi-start approach is adopted in which many 

starting points are generated in an attempt to obtain global optima. The efficiency of the 
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proposed methodology is shown through its application to benchmark simulation 

examples. The simulation results are consistent with the conclusions obtained from the 

analysis. The proposed methodology can be applied at the design stage to select the best 

control configuration in the presence of model errors.  

A second goal accomplished in this research was the development of a novel 

online algorithm for robust DMPC that explicitly accounts for parametric uncertainty in 

the model. This algorithm requires the decomposition of the entire system’s model into N 

subsystems and the solution of N convex corresponding optimization problems in 

parallel. The objective of this parallel optimizations is to minimize an upper bound on a 

robust performance objective by using a time-varying state-feedback controller for each 

subsystem. Model uncertainty is explicitly considered through the use of polytopic 

description of the model. The algorithm employs an LMI approach, in which the 

solutions are convex and obtained in polynomial time. An observer is designed and 

embedded within each controller to perform state estimations and the stability of the 

observer integrated with the controller is tested online via LMI conditions. An iterative 

design method is also proposed for computing the observer gain. This algorithm has 

many practical advantages, the first of which is the fact that it can be implemented in 

real-time control applications and thus has the benefit of enabling the use of a 

decentralized structure while maintaining overall stability and improving the performance 

of the system. It has been shown that the proposed algorithm can achieve the theoretical 

performance of centralized control. Furthermore, the proposed algorithm can be 

formulated using a variety of objectives, such as Nash equilibrium, involving interacting 

processing units with local objective functions or fully decentralized control in the case 
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of communication failure. Such cases are commonly encountered in the process industry. 

Simulations examples are considered to illustrate the application of the proposed method. 

Finally, a third goal was the formulation of a new algorithm to improve the online 

computational efficiency of DMPC algorithms. The closed-loop dual-mode paradigm was 

employed in order to perform most of the heavy computations offline using convex 

optimization to enlarge invariant sets thus rendering the iterative online solution more 

efficient. The solution requires the satisfaction of only relatively simple constraints and 

the solution of problems each involving a small number of decision variables. The 

algorithm requires solving N convex LMI problems in parallel when cooperative scheme 

is implemented. The option of using Nash scheme formulation is also available for this 

algorithm. A relaxation method was incorporated with the algorithm to satisfy initial 

feasibility by introducing slack variables that converge to zero quickly after a small 

number of early iterations. Simulation case studies have illustrated the applicability of 

this approach and have demonstrated that significant improvement can be achieved with 

respect to computation times.  

Extensions of the current work in the future should address issues of 

communication loss, delays and actuator failure and their impact on the robustness of 

DMPC algorithms. In addition, integration of the proposed DMPC algorithms with other 

layers in automation hierarchy can be an interesting topic for future work. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

 Model predictive control MPC is a widely accepted technology for the control of 

multivariable processes in the process industry (Camacho and Bordons, 2003; Qin and 

Badgwell, 2003). The term MPC generally includes a class of algorithms that employs a 

dynamic model to predict the future behavior of the process, and explicitly handles 

process constraints and variable interactions.  At each control interval, a cost function is 

minimized based on future response predictions, in order to obtain an optimal control 

trajectory.  The control input corresponding to the first control interval is implemented, 

and the calculation procedure is repeated in the next interval to account for feedback from 

the process measurements.  In addition, MPC can account for time delays, constraints and 

process interactions.  

 

Since the advent of MPC, process industry has witnessed a transition from 

conventional multi-loop PI control systems to centralized MPC. The use of one 

centralized MPC configuration is often considered impractical due to several factors such 

as large computational effort required to complete the calculations in real time when 

many inputs and outputs are involved, sensitivity towards model errors, and low 

resilience in the face of equipment failures and partial shutdowns.  Therefore, most 

industrial applications implement a decentralized MPC structure in which each MPC of 



 2 

smaller dimensions than the overall process, in terms of inputs and outputs, is applied to a 

unit in the plant and works independently from the other controllers by optimizing local 

objectives and by neglecting, within the optimization, the interactions among the units.  

However, when the interactions are significant, this implementation leads to deterioration 

in overall performance and optimality of the plant, and may also jeopardize the stability 

of the entire system (Skogestad 2000; Rawlings and Stewart 2008). To overcome this 

problem, researchers have proposed Distributed MPC (DMPC) where the benefits from 

using the decentralized structure are preserved while the plant-wide performance and 

stability is improved via coordination among the smaller-dimensional controllers. 

Recognizing the importance of this topic, the European Commission is currently funding 

a 3-year project on hierarchical and DMPC with collaboration of several major European 

universities (http://www.ict-hd-mpc.eu/).   

 

  Chemical plants are composed of a network of interconnected units. These units 

interact with each other due to the exchange of material and energy streams. The degree 

of interaction depends on the dynamic behavior of the process and the geographical 

layout of the plant. In order to account for these interactions and to improve the 

performance of distributed MPC strategies researchers the use of some form of 

coordination between the MPC controllers for the different subsystems have been 

proposed (Rawlings and Stewart 2008; Scattolini 2009). In the literature, there are two 

types of distributed MPC strategies that take into account the interactions between the 

subsystems. The first type coordinates the controllers by means of a communication 

network through which all the MPC agents share and exchange their prediction 
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trajectories and local solutions and the overall solution is based on Nash optimality 

concepts (Due et al., 2001; Li et al., 2005). The iterative solution in this type of strategy 

reaches a Nash equilibrium point provided that some convergence condition is satisfied. 

However, the solution is not necessary equal to the centralized optimal solution because 

MPC problems with local rather than one global objective function are solved. 

 

The second type of DMPC strategy is referred to as either a feasible cooperative 

strategy (Venkat, 2006) or networked MPC with neighborhood optimization (Zhang and 

Li, 2007). For this type of strategy a global objective function which consists of the 

convex sum of the local cost functions of all the subsystems is used. The solution can 

achieve the global optimal control decision similar to that obtained by centralized MPC if 

convergence is satisfied. 

 

 Common to the aforementioned coordination strategies is that they require exact 

knowledge of the process models to provide the designed optimal or near optimal closed 

loop performance and they do not address robustness in the presence of model 

uncertainties. Since in most industrial MPC applications linear models are used for 

predictions, these   are never accurate due to nonlinearity or inaccurate identification. 

One alternative to mitigate this problem is to use nonlinear models for prediction but with 

such models it is very difficult to theoretically prove stability and performance. Thus, the 

robustness of distributed control strategies to model error has been identified as one of 

the major factors for the successful application of distributed MPC strategies (Rawlings 

and Stewart, 2008). In regards to the coordination problem, the frameworks proposed in 



 4 

the literature rely on feedback only to account for plant-model mismatch and do not 

explicitly consider the robustness issues. Therefore developing new online algorithms 

that explicitly consider model errors is of great importance from the theoretical and 

practical viewpoints.  

 

 Another major challenge for the application of DMPC is the selection of the 

control structure to be used in the distributed strategy. This involves the selection of 

which manipulated variables, controlled variables and states are assigned to each 

subsystem for which an MPC controller is to be applied. Despite the fact that a significant 

number of publications have appeared in the literature dealing with distributed MPC there 

is no systematic methodology to select the best control structure (Scattolini 2009). The 

problem is generally decomposed in an ad hoc fashion and based on engineering insights. 

Mercangöz and Doyle (2007) extended a heuristic procedure of partitioning reported by 

Vadigepalli and Doyle (2003) to distributed MPC.  It should also be recognized that the 

selection of the control structure will also be related to the presence of model errors as 

shown later in the thesis. Therefore, there is a need for developing systematic tools to 

select the best control structure in the context of DMPC to balance performance in the 

presence of model errors against simplicity (Scattolini 2009). 

 

Following the above, in the current research work two problems related to 

distributed MPC strategies are considered: the selection of the control structure and the 

coordination problem in the presence of model errors. The following section summarizes 

the objectives of the current research. 
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1.2 Objectives of the Research 

 

 The following are the main objectives that were accomplished during the course 

of the current research: 

 

• Development of a systematic methodology based on robust control tools to select 

the best control structure for distributed MPC strategy and at the same time to 

provide a performance assessment for different  coordination strategies in the 

presence of model uncertainty. Both set-point tracking and disturbance rejection 

problems were considered. 

• Investigation of robustness issues related to the current distributed MPC in the 

presence of uncertainties. 

• Development of new online algorithms for robust DMPC that account for 

parametric model uncertainty. 

 

1.3 Contributions of the Current Research 

The robustness of DMPC strategies with respect to model uncertainty has been 

identified by researchers as a key factor in the successful application of DMPC. Despite 

the significant research available, only limited work related to the coordination of DMPC 

in the presence of model errors is reported in the literature. The contribution of the 

current research is to address robustness issues as per the research objectives listed in the 

previous subsection.  
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The thesis is organized as follows. Chapter 3 presents a new systematic 

methodology for the selection of a control structure in the context of DMPC. The 

methodology seeks for an optimal trade-off between performance and simplicity of 

structure (e.g., a centralized versus decentralized structure) and is formulated as a multi-

objective mixed-integer nonlinear program. The multi-objective function is composed of 

the contribution of two indices: 1) a closed-loop performance index computed as an 

upper bound on the variability of the closed-loop system due to the effect of changes in 

set-point or disturbance on the outputs, and 2) a connectivity index used as a measure of 

the simplicity of the control structure. The parametric uncertainty in the models is 

explicitly considered in the methodology. The efficiency of the proposed methodology is 

shown through its application on several benchmark simulation examples. 

 

 In chapter 4, a novel algorithm for robust DMPC that explicitly accounts for 

parametric uncertainty in the model was developed. The algorithm requires the 

decomposition of the model of the entire system into N subsystems’ models and the 

solution of corresponding N convex simultaneous optimization problems. The objective 

of these optimizations is to minimize an upper bound on a robust performance objective 

by using a time-varying state-feedback controller for each subsystem. Model uncertainty 

is explicitly considered through the use of a polytopic model. Based on this polytopic 

representation the algorithm employs a linear matrix inequality (LMI) approach, in which 

the solution is obtained in polynomial time. Therefore, the algorithm can be implemented 

in real-time control applications and thus has the benefit of enabling the use of a 

decentralized structure while maintaining overall robust stability and robust performance. 
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It is shown that the proposed algorithm can achieve in the limit the theoretical 

performance of centralized control. Furthermore, the proposed algorithm can be 

formulated for a variety of optimization objectives, such as Nash equilibrium objective. 

Nash equilibrium is of practical value since it may address the situation where different 

interconnected units are operated by different owners with their own optimization goals. 

 

In chapter 5, the main goal is to improve the online computational efficiency of 

robust MPC. To achieve this objective, a dual-mode control approach is proposed in 

which the control action is composed of the contribution of state feedback and a set of 

additional degrees of freedom. The state feedback calculations that are more time 

demanding are solved off line whereas the additional degrees of freedom are solved on 

line through a quick LMI calculation thus rendering the online solution more efficient.  A 

relaxation method was incorporated within this algorithm to satisfy an initial feasibility 

constraint by introducing slack variables that converge quickly to zero. Simulated case 

studies have illustrated the applicability of this approach and have demonstrated the 

significant improvement in computation time that can be achieved with this algorithm as 

compared to the algorithm proposed in chapter 4.  

 

 Different results of this research have been presented in some publications as 

well as several oral presentations at conferences and meetings as follows: 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Model Predictive Control 

  

Model predictive control (MPC) is a widely accepted technology for the control 

of multivariable processes in the chemical industry. There are many successful 

applications that have been reported in the literature (Qin and Badgwell, 2003). 

Nowadays, applications of MPC are also reported for other processes ranging from robots 

and automotive to power plants (Camacho and Bordons, 2003).     

 

MPC refers to a family of control algorithms that utilize an explicit dynamic 

model of the process to predict its future behavior and solve for optimal control moves by 

minimizing an objective function based on an output prediction. Since the prediction is 

based on a model, the latter is the cornerstone of MPC and therefore the type of MPC 

algorithm to be used depends on the type of model chosen. Step response, impulse 

response, transfer function, and state-space models are various types of linear models 

used in MPC algorithms. MPC algorithms can also employ nonlinear models but such 

nonlinear predictive algorithms will not be considered in the current work since they are 

less common in industrial practice and are more difficult to analyze for stability and 

performance. The objective function chosen for MPC can be either linear or quadratic but 

in most MPC algorithms the latter is widely used since it provides better error averaging 

properties and an explicit analytical solution can be easily obtained for the special case of 
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control without constraints whereas quadratic programming can be used to solve the 

constrained case.  

 

Figure 2.1 illustrates the general methodology of all classes of MPC. At each 

control interval, the output behavior of the plant is predicted over the prediction horizon 

using the process model. Then the set of control actions over a predefined control horizon 

is obtained by minimizing an objective function. The changes in control actions are 

assumed to be zero beyond the control horizon. Only the first value in the set of 

calculated control actions is implemented in the process and the entire calculation is 

repeated again at the next control interval to account for process feedback.  
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Actual outputs (past) Model prediction (future)

Current state

k k+1 k+2 ……

Prediction horizon

control horizon

Past control moves

Implemented control action
Set-point

Actual outputs (past) Model prediction (future)

Current state

k k+1 k+2 ……

Prediction horizon

control horizon

Past control moves

Implemented control action
Set-point

 



 12 

Although the advent of MPC technology is originated by the pioneering work of 

Richalet et al. (1978) and Cutler and Ramaker (1979), some consider the early work of 

Kalman (1960) to be the precursor of MPC regarding the concept of output prediction. 

 

Richalet et al. (1978) employed a linear impulse response model to represent the 

process whereas Cutler and Ramaker (1979) used linear step response models. In both 

formulations, an unconstrained quadratic objective function was considered. The optimal 

inputs were obtained by a heuristic iterative algorithm in the former formulation whereas 

in the latter formulation the inputs were obtained from the solution of a least-squares 

problem. The MPC formulation proposed by Cutler and Ramaker (1979), which is known 

in the literature as Dynamic Matrix Control (DMC), was extended to handle constrains on 

process variables. The constrained algorithm is usually referred to as Quadratic Dynamic 

Matrix Control (QDMC) to indicate the use of a quadratic objective function (Cutler et 

al., 1983); (Garcia and Morshedi, 1986). If the constraints are linear then the resulting 

optimization problem solved for QDMC is convex. 

 

Generally, the step response and impulse response models require an excessive 

number of coefficients (typically between 30 to 50) in order for the MPC to achieve  

good performance (Lunstrom et al., 1995) and this large number of coefficients is 

typically related to the settling time of the process to be controlled. This is considered as 

a limitation for both DMC and QDMC algorithms since many multivariable processes 

require a large number of coefficients resulting in intensive calculations needed for the 

optimization. To circumvent this limitation, researchers have proposed the use of state-
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space models that can potentially save memory compared to the input-output models 

mentioned above. In addition, a rich theory is available for linear state-space models that 

can be used to simplify the numerical solutions, and for testing the controllability, 

observability, and stability of the system (Aplevich, 2000). Li et al. (1989) presented a 

state-space based MPC form based on step response models to implement a DMC 

algorithm. Prett and Garcia (1988) replaced the step response model with a general 

discrete state-space model and therefore the effect of truncation errors caused by using 

step coefficients was removed. Muske and Rawlings (1993) developed a linear MPC 

based on sate-space models to control stable and unstable systems. They showed that the 

proposed algorithm can be made equivalent to an infinite horizon regulator by 

incorporating a terminal cost term within the cost function to be optimized. A 

comprehensive MPC formulation based on discrete state-space models is reported by 

Maciejowski (2002).  

 

2.3 Distributed Model Predictive Control (DMPC) 

 

Centralization often means accessing an entire operation (or production line) by 

one person or a small group of people from a single point. Such complete 

surrender to one or a few pieces of hardware can be considered putting all your 

eggs in one basket. If that is your choice, you’d better watch that basket! (Mark 

Twain summarized that wisdom). 

(Scheiber, 2004) 
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Since the advent of MPC technology, process industry has witnessed a shift from 

conventional multi-loop decentralized PI control strategies to centralized multivariable 

MPC strategies. The ability of MPC to handle process constraints and its direct 

application to multivariable systems attracted practitioners to implement MPC 

technology. However, centralized multivariable control is often considered impractical 

due to drawbacks such as the high computational effort required when dealing with 

processes with relatively large number of inputs and outputs, the need to obtain an 

expensive multivariable dynamic model to represent the entire process or plant to be 

controlled, sensitivity to model errors and to changes in operating conditions, and its low 

resilience with respect to partial equipment failure or partial plant shutdown (Skogestad, 

2004; Venkat, 2006). This led to the idea of partitioning the original process into smaller 

units or subsystems and the application of MPC controllers to each one of these 

subsystems. The operations of several MPC controllers in such fashion have been 

referred to as decentralized MPC. On the other hand, although decentralized MPC 

applications could result in less computations, when the individual MPC controllers for 

the different subsystems are operated in a completely decentralized fashion closed loop 

performance may be significantly hampered since some or all of the interactions are 

ignored and the controllers may become unstable if these interactions are strong. As a 

remedy to this problem, researchers have proposed the use of some form of coordination 

between the MPC controllers for the different subsystems by allowing the controllers to 

exchange information via a devoted communication network. Coordination strategies 

based on Nash equilibrium (Li et al., 2005) or cooperative schemes based on weighted 

cost functions (Venkat, 2006) have been reported. These strategies have different 
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information structure which describes the way of transferring information among the 

subsystems and their assigned controllers (Lunze, 1992). Figure 3.1 illustrates a general 

structure and the mode of information transfer in different MPC strategies; viz., 

centralized, fully decentralized, and coordination-based. Centralized MPC requires a 

centralized dynamic model to represent the entire process and the availability of complete 

sensor information. The optimal control moves are obtained by minimizing a cost 

function (objective function) that includes all the controlled variables. Since the 

centralized control takes into account the interactions within the system, it is theoretically 

expected to result in the best achievable performance provided that the model is perfect. 

In contrast, for distributed MPC (DMPC), either fully decentralized or coordinated, each 

control agent only uses a local dynamic model and has access to local measurements. In 

fully decentralized MPC, the interactions between the subsystems are totally ignored and 

each MPC has access to local measurements and solves a local cost function that includes 

only the controlled variables assigned to the specific subsystem without considering the 

solutions of the other controllers. On the other hand, in coordinated MPC the controllers 

have knowledge about the interactions through the use of interactive models (local + 

interaction terms) and by sharing information and combining the solutions to the local 

minimization problems to achieve a global objective. DMPC therefore has the flexibility 

related to its decentralized structure while keeping the ability to achieve performance that 

can be close to that of centralized control by accounting for process interactions. Further 

details on computational issues related to the three strategies are discussed later in this 

chapter.  
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 In light of the previous introduction, two questions are posed; Firstly, what is the 

best control structure that will provide an optimal trade-off between closed-loop 

performance and simplicity? Secondly, how is it possible to address model uncertainty 

and the robustness of DMPC strategies in the presence of plant-model mismatch?  

 

During the development of this research work two comprehensive survey papers 

related to DMPC have been already published where the two questions posed above were  

put forward as key open issues in DMPC research. Rawlings and Stewart (2008) in their 

discussion of challenges in DMPC technology emphasized the importance of addressing 

robustness issues and the need to develop robust DMPC strategies in the presence of 

model errors. Scattolini (2009) has recently provided a comprehensive review on DMPC 

strategies and urged for the development of analysis tools to reach an optimal trade-off 

between performance and structure simplicity. The objective of the following sections is 

to provide a review of DMPC strategies previously proposed as a preamble to the 

research conducted in this thesis. 

 

2.3.1 Distributed MPC Structure  

  

The main goal of system decomposition is to partition the original problem into 

smaller subsystems of manageable size (Lunze, 1992) and to find the control structure 

that interconnects these subsystems (Skogestad, 2000). Skogestad (2000) reported that 

the controller structure decompositions can be classified as either; decentralized (or 

horizontal) decomposition, or hierarchical decomposition. The decentralized 
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decomposition is mainly based on the process units and therefore on the physical 

structure whereas the hierarchical decomposition is based on process structure, control 

objectives, and time scale. The decentralized decomposition consists of breaking the 

original system down into smaller subsystems that are independent of each other due to 

either weak interaction (coupling) among them or simply because the interactions are 

ignored for control design (Skogestad, 2000; Negenborn et al., 2004). However, chemical 

processes are often composed of networks of interconnected units that interact with each 

other due to exchange of material and energy streams and completely neglecting these 

interactions may often lead to loss in control performance. On the other hand, the 

hierarchical decomposition considers that the subsystems depend on each other and takes 

into account the interactions (Skogestad, 2000; Negenborn et al., 2004; Venkat, 2006). 

Although there is a significant research that has focused on DMPC in the recent years, a 

very clear gap in the literature regarding the decomposition problem can be noticed. 

Negenborn et al. (2004) indicated in their survey that there is no reported generic method 

to obtain such structure. In general, the available methods for control structure in the 

context of DMPC assume that a centralized model of the system is available and that this 

model can then be partitioned or decomposed into several subsystems using either 

engineering insights or structural properties of the mathematical model (Vadigepalli and 

Doyle, 2003; Mercangöz and Doyle, 2007).  

 

 Motee and Sayyar-Rodsari (2003) proposed an algorithm for optimal partitioning 

in distributed MPC. An open loop performance metric is weighted against the closed loop 

cost of the control action for the system in order to obtain optimal grouping of the 
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system. An unconstrained distributed MPC framework was used and then a weighting 

matrix was defined to convert the distributed system to a directed graph. However, the 

effect of model errors (plant-model mismatch) on the decomposition was not explicitly 

considered in the algorithm. Furthermore, they did not consider the problem of 

simplifying the communication structure which is one of the sought objectives when 

applying DMPC.   

 

 Vadigepalli and Doyle (2003) reported a semi-automatic approach to decompose 

the overall system model into interacting subsystems for distributed estimation and 

control. A heuristic procedure was provided to guide the decomposition based on analysis 

of the mathematical model and the information about the plant topology (flowsheet). The 

basic idea behind this decomposition method is that some slow variables can be 

expressed as a function of some faster variables and in that way the faster variables can 

be eliminated from certain state equations. The procedure is summarized as follows: the 

first step is to use the plant flowsheet to identify the process units and therefore to 

consider each unit as a subsystem after this the plant model is discretized based on a 

chosen sampling time. The next step is to identify the overlapping in the states resulting 

from the discretization step and this overlapping indicates how the subsystems are 

connected and provides information about the communication required. These steps are 

repeated in a trial-and-error manner in order to minimize the communication and 

accordingly the computational effort by changing the sampling time and by successively 

repeating the procedure. Further partitioning and/or combining of subsystems can be 

required. However, the effect of the resulting decomposition on the closed-loop 
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performance is not considered explicitly. Two chemical engineering examples were 

considered to illustrate the method. The same approach was extended to DMPC in the 

work of Mercangöz and Doyle (2007). The procedure did not consider uncertainties in 

the model parameters. 

 

 A plant decomposition iterative algorithm was proposed by Zhu and Henson 

(2002) based on the earlier work of Zhu et al. (2000). The basic idea is to partition the 

plant into linear and nonlinear subsystems according to the nonlinear properties of the 

corresponding subsystems and applied MPC to each subsystem. They used heuristics and 

a priori process knowledge to determine the relative nonlinearity of a subsystem. A 

styrene plant was used as a case study. The approach is out of the scope of this work 

since the emphasis is on the process nonlinearity and accordingly it uses nonlinear MPC 

technology whereas the current work considers linear MPC only. 

 

 Considering model-based control techniques, Samyudia and co-workers (1994; 

1995) presented a systematic methodology for the control and design of multi-unit 

processing plants. The main focus of the work was to establish an approach for selecting 

the best decomposition for decentralized control design. The model of the whole plant, 

usually represented by a linear state-space model, is decomposed based on either physical 

unit operations that are interconnected together or across the units by considering the 

dynamics of the controlled variables even if these variables belong to different unit 

operations. This results in many alternative decomposition candidates for the same input-

output pairings. The method utilizes the gap metric and normalized coprime factorization 
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concepts of robust control theory. These indicators are used to determine the best system 

decomposition strategy so that the overall stability and achievable performance can be 

examined by observing the indicators. It is concluded that individual controller 

complexity is less important than the plant decomposition strategy and that 

decomposition based on the physical unit operations does not always produce better 

performance than model-based decomposition. The methodology searches for one best 

plant decomposition at a specific operating point. As an extension to this work, Lee et al. 

(2000) obtained the best decomposition subregions in an operating space and these 

subregions are represented by a grid of linear models obtained from linearizations around 

the operating conditions that correspond to each point on the grid. The decomposition and 

controller design are carried out in two different steps and consequently, open-loop 

information is used in the selection of best decomposition. The related research work 

presented several case studies from the chemical process industry. The types of model 

decomposition suggested are considered in the next chapter.  

 

 Relevant results related to the computational aspects and coordination schemes in 

DMPC from the literature are reviewed. As it has been mentioned earlier, surveys that 

define the new opportunities and challenges associated with coordinating DMPC agents 

can be found in (Negenborn et al., 2004; Rawlings and Stewart, 2008; Scattolini 2009). 

The information structure of the system is basically the most important element that 

determines which type of coordination should be used for a particular application 

(Camponogara et al. 2002). Referring back to Figure 3.1, classifying DMPC strategies 

with coordination into two categories referred to as; communication-based (Nash-based) 
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and feasible-cooperative control (Venkat, 2006; Rawlings and Stewart, 2008), there are a 

total of four possible types of MPC schemes that can be considered. Table 2.1 

summarizes the main computational requirements and model structure for each type. 

 

Table 2.1 MPC Coordination Choices 

Type Model Objective Function Result 

Centralized centralized model of the 

entire process 

One overall objective 

for the system 

Optimal nominal 

performance is achieved  

Fully 

Decentralized 

Independent local model 

for each subsystem 

(interactions are 

ignored) 

Independent local 

objective for each 

subsystem 

Loss in optimal 

performance is expected 

and could be significant 

Communication 

or Nash - based 

Interaction models are 

considered along with 

local models. 

Local objective for each 

subsystem. Cooperative 

scheme via 

communication. 

The entire system will 

arrive at Nash 

equilibrium if 

convergent condition is 

satisfied 

Feasible-

cooperative  

Interaction models are 

considered along with 

local models. 

Local objective for each 

subsystem is composed 

of the sum of all other 

objectives. 

Can achieve the 

centralized performance 

when the convergence is 

reached. 

 

 Most of distributed MPC approaches available in the literature adopt the 

communication-based coordination which results in Nash optimality. For numerical 

convenience or if there are constraints the solution is achieved iteratively where at each 
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iteration step the interaction information is shared among the subsystems and their local 

objectives are solved until convergence is achieved provided that a feasible solution 

exists. The equilibrium poit thus achieved is referred to as a Nash equilibrium which is, 

in the case of DMPC, the intersection of the control actions of all MPC controllers in the 

system (Negenborn et al., 2004; Venkat, 2006; Rawlings and Stewart, 2007). However, a 

loss in performance is expected since Nash-based solution is not necessary equal to the 

centralized solution since the corresponding objective functions of these two strategies 

are different. Venkat et al. (2006) argued that, when wrong (-bad) input-output pairings 

are selected, communication only cannot guarantee either optimality or the stability of the 

system and following these arguments he developed the feasible-cooperative approach 

that achieves the centralized MPC solution when convergence is reached. Bad pairings 

are referred to those ones that, if selected for control, will exhibit poor closed loop 

performance based on RGA (Relative Gain Array) considerations (Bristol, 1966). 

Additional details regarding RGA and input-output pairings are given in section (2.4) of 

this chapter. Zhang and Li (2007) showed that for unconstrained distributed MPC the 

performance is equal to the centralized solution. The following paragraphs are a review 

of literature coordination methods presented in chronological order.      

 

 Xu and coworkers (1988) discussed an algorithm for decentralized predictive 

control based on Nash-based approach. A step-response model is used for modeling. An 

analysis of the stability and performance of the system is presented. Robustness of the 

algorithm in face of model errors was not addressed.  
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Charos and Arkun (1993) showed how the QDMC problem can be decomposed 

into smaller and less computationally demanding sub-problems which can be solved in a 

decentralized manner. Simulation examples and CPU time requirements were presented 

for comparison purposes.  

 

Katebi and Johnson (1997) proposed a decomposition-coordination scheme for 

generalized predictive control. A high level coordinator was used to iteratively find an 

optimal solution. Perfect models were assumed in their study thus robustness to model 

error was not considered. 

 

Applying neural networks based predictive control, Wang and Soh (2000) 

proposed an adaptive neural model-based decentralized predictive control for general 

multivariable non-linear processes. The proposed method was applied to a distillation 

column control problem. They noticed that a loss in performance can occur when the 

interactions are strong. Large training data sets were also required for the proposed 

technique to get acceptable results. 

 

Jia and Krogh (2001) explored a distributed MPC strategy in which the controllers 

exchange their predictions by communication to incorporate this information in their 

local policies. In another work, Jia and Krogh (2002) proposed a min-max distributed 

MPC method that treats the interactions as bounded uncertainties.  
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Based on Nash optimality, Du et al. (2001) presented an algorithm for DMPC 

based on step-response models. A closed form solution was developed for the 

unconstrained case and the existence of the solution was analyzed. The solution 

formulation reported in that work is extended to state-space models in the current 

research work and it is explained in details in the next chapter.    

 

 Camponogara et al. (2002) discussed the distributed MPC problem and reported 

an algorithm for cooperative iteration. In addition, heuristics for handling asynchronous 

communication problems were provided and the stability of distributed MPC was studied.  

A power system application was presented as a case study. 

 

 In an application to multi-vehicle system, Dunbar (2005) reported distributed-

cooperative formulation for dynamically coupled nonlinear systems. One drawback in 

this theoretical formulation is the requirement that at least ten agents have to be 

considered to guarantee stability.  

 

 In a continuation of the previous work of Du et al. (2001), Li et al. (2005) applied 

the Nash-based algorithm to the shell benchmark problem. Also, they extended the 

analysis of stability and the condition for convergence to the Nash equilibrium. In 

addition, the stability and performance for a single-step horizon under conditions of 

communication failure are examined. Similar to their previous work, robustness issues 

related to their algorithm have not been addressed.  
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 Venkat et al. (2006) developed a new distributed MPC strategy that differs from 

previously reported Nash equilibrium-based methods. He showed that modeling the 

interactions between subsystems and communicating the local predictions does not 

guarantee closed-loop stability. The feasible-cooperative strategy proposed in their study 

modifies the local objective functions by using a weighted sum of all objectives. If the 

iterative algorithm reached convergence the solution becomes equal to the centralized 

case. However, this might require several iterations and therefore an intermediate 

termination of the algorithm may be necessary to save computations. Several chemical 

engineering examples were examined to illustrate the advantages of the methodology. 

However, Venkat has not addressed robustness issues. 

 

 Magni and Scattolini (2006) proposed a fully decentralized MPC methodology for 

nonlinear systems. No exchange of information between local controllers is assumed in 

this study. In order to ensure stability, a conservative contraction mapping constraint is 

used in the formulation which might be difficult to satisfy in practice leading to very 

conservative controllers. 

 

   Mercangöz and Doyle (2007) proposed a distributed model predictive estimation 

and control framework. The heuristic approach reported in Vadigepalli and Doyle (2003) 

was extended for DMPC strategy. They reported that the communication among agents 

during estimation and control improves the performance over the fully decentralized 

MPC strategy and approaches the performance of centralized strategy at the nominal 

operating conditions. On the other hand, only one iteration was performed during each 
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sampling period since performing all the iterations until convergence was found to 

increase computational cost dramatically. An experimental four-tank system was 

investigated and the results showed that the computation effort was lower as compared to 

the computational effort required for the centralized strategy.   

 

 Two networked MPC schemes based on neighborhood optimization for serially 

connected systems are presented in Zhang and Li (2007). The scheme is very similar to 

the methodology presented in Venkat (2006) and they showed that the solution of the 

unconstrained version is equal to that of the centralized strategy. The analysis of 

convergence and stability was also presented. 

 

 Based on the Dantzig-Wolfe decomposition and a price-driven approach, a 

DMPC framework for steady-state target calculations was proposed by Cheng et al. 

(2007 & 2008). Recently, the approach has been extended for directly coordinating 

DMPC agents. Step response models were used to avoid designing state estimators and 

bias terms were used to account for model uncertainty (Marcos et al. 2009). 

 

 Sun and El-Farra (2008) proposed a methodology to integrate control and 

communication and developed a quasi-decentralized control framework in which an 

observer model of the entire system was used in each subsystem to provide predictions in 

case of any communication delay or failure. The assumption in their framework is that 

interactions are through the state variables and that the inputs are decoupled and therefore 

no iterations are required.  



 27 

 

 A coordination strategy based on a networked decentralized MPC was proposed 

by Vaccarini and coworkers (2009). Performance was improved by including the 

solutions from previous control interval which will decrease computations as well. 

Conditions for stability were also provided for the unconstrained case. 

 

 Xu and Bao (2009) addressed the plantwide control problem from a network 

perspective. The model used integrates the physical mass and energy links with 

information links resulting in a two-port linear time-invariant system. They applied the 

dissipativity theory to address stability and performance. A reactor distillation system 

was considered as a case study.  

 

 It should be emphasized again that all the previous formulations do not address 

the robustness with respect to model errors explicitly and rely on feedback to account for 

any mismatch. Handling uncertainty in the controller model has been identified as one of 

the major factors for the successful application of DMPC strategies (Rawlings and 

Stewart, 2008). Also, the optimal selection of the system into smaller subsystems, i.e. the 

decomposition problem, in face of model errors has not been addressed. In summary, the 

state-of-the-art DMPC strategies lack algorithms that explicitly consider model errors. 
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2.4 Interaction Measures 

 

 It has been mentioned previously how the decentralized control structure is 

desirable due to its practical advantages compared to its centralized counterpart. If the 

process to be controlled is a 2 × 2 system and represented by the transfer matrix  

G(s) = gij(s); (i,j = 1,2) then the fully decentralized control system requires identifying the 

dominant transfer functions in G(s) and therefore ignoring either its diagonal or off-

diagonal elements. In this case, two alternatives can be used as an approximation to the 

full system according to the following expressions: 
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where ( )sG� is an approximation of G(s). 

The key for a successful decentralized control strategy is to choose the best 

approximation or in other words the best pairings between manipulated and controlled 

variables that yield little or no loss in performance. The number of alternatives increases 

with the size of the process to be controlled and therefore a metric or measure is required 

to systematically compare the alternatives. The idea is to measure the interactions with 

these metrics in order to ignore the weak channels.  A key goal of an interaction measure 

is to provide a selection criterion for the best pairings (Grosdidier and Morari, 1986; 

Skogestad and Postlethwaite 2005). The most widely used interaction measures or indices 

are briefly presented in the following paragraphs.   
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 A simple but rather efficient measure is the relative gain array RGA developed by 

Bristol (1966) for the analysis of multivariable systems. This measure requires only 

steady-state information to measure the process interactions and provide a guideline of 

choosing the best input-output pairings. For square plants of size n, the relative gain array 

ΛΛΛΛ is given by: 
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where yi and ui are the controlled variables and manipulated variables; respectively. The 

entries λij are the dimensionless relative gains between yi and uj and they are defined by: 
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The name “relative gain” is due to the ratio between the gains defined in the above 

expression. This quantity is defined as a useful measure of interactions (Skogestad and 

Postlethwaite, 2005). The following are some of its main properties (Seborg et al., 2004): 

 

1. The sum of the elements in each row or column is equal to one which makes it 

normalized. 
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2. Scaling and choice of units do not affect the relative gains since they are 

dimensionless. 

3. The RGA is a measure of sensitivity in the gain matrix towards element 

uncertainty. 

 

The best pairings are selected based on RGA elements and as a recommendation good 

pairings correspond to RGA values close to one that indicate low interaction effects. On 

the other hand, negative RGA values indicate large interactions and possible closed loop 

instability is expected when inputs and outputs are paired according to these negative 

RGA elements pairings. 

 

A major disadvantage of the RGA approach is that it ignores process dynamics that 

could be crucial in the selection of best parings. This led many researchers to extend the 

standard approach to consider process dynamics and develop the dynamic RGA 

(Grosdidier and Morary, 1986 and Skogestad and Postlethwaite, 2005). However, the 

dynamic RGA is not as easy to use and interpret as the standard steady–state based RGA. 

Regarding uncertainty in the model parameters, little attention was given to their effect 

on RGA. However, Chen and Seborg (2002) developed analytical expressions for RGA 

uncertainty bounds. 

 

Manousiouthakis et al. (1986) generalized the steady-state RGA concepts to the block 

relative gain array BRGA. It is used in the block pairings of inputs and outputs where 

each block may have several inputs and outputs. A methodology was proposed for 
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screening alternative decentralized control structures. The development was based on the 

assumption of perfect control. Arkun (1987) proposed a dynamic version of BRGA. 

Kariwala et al. (2003) studied the BRGA, presented new properties and established its 

relation with closed-loop stability and interactions. They showed that systems with strong 

interactions can have BRGA that is close to the identity matrix and this result 

contradicted some of the previous results of Manousiouthakis et al. (1986). 

 

A new interaction measure (µ) in the context of structured singular value SSV was 

developed in (Grosdidier and Morari, 1986; Grosdidier and Morari, 1987). This measure 

is defined for multivariable systems under feedback with diagonal or block diagonal 

controllers. The Structured Singular Value (SSV) analysis or µ analysis considers a plant 

model that is subject to unstructured or structured uncertainty.  It also considers that there 

is an interconnection between the model and the uncertainty by means of a Linear 

Fractional Transformation LFT as shown in Figure 2.4. 

 

Figure 2.4 General M-∆∆∆∆ LFT connection 
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In the framework shown in figure 2.4, the linear time-invariant LTI system M ∈ Cn×n 

represents the controller, the nominal models of the system, sensors, and actuators. The 

input vector d includes all external inputs to the system such as disturbances and set-point 

signals whereas the vector e represents all the output signals generated by the system. M 

can be partitioned as follows: 
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= � �� � � �
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11 12

21 22

M Me d
M My u

                                               (2.4) 

 

The relationship between e and d is given by: 

 

                                e = Fu (M, �) d = (M22 +M21 � (I −M11�)−1M12) d                     (2.5) 

 

where Fu (M, �) is the upper LFT operator. Further definitions and theorems for robust 

stability and performance can be found in Doyle and Packard (1987).  

 SSV can be used to predict the stability and measure the performance loss of the 

decentralized control structure. In Braatz et al. (1996), screening tools were developed 

based on µ for measuring the performance in the presence of general structured model 

uncertainty.   

In summary, RGA and BRGA are simple and useful tools for measuring interactions 

and screening control structure alternatives. However, they can not be easily used to test 

the stability and performance of the closed-loop system. On the one hand steady state 

RGA measures do not consider the system properties under dynamic conditions and on 

the other hand the dynamic RGA are made of frequency dependent vectors of gains that 
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are difficult to interpret and apply to practical situations. The µ-measures on the other 

hand result in very conservative designs when applied to state space models to be used as 

the basis of MPC algorithms. Furthermore, some of these measures require complex 

algebraic manipulation that could become more difficult when extended to the 

complicated structure of distributed MPC involving many manipulated and controlled 

variables.  

 

2.5 Linear Matrix Inequalities (LMIs) and Robust Control 

 

 Most MPC’s under operation in the chemical industry are designed based on 

linear models of the system. However, linear models are never accurate due to 

nonlinearity or inaccurate identification. Although nonlinear MPC can partially mitigate 

this problem, its application is more limited since it is more difficult to design for 

stability and performance. Therefore, nonlinear MPC is beyond the scope of the current 

review. Feedback control has to be designed to provide good performance in the presence 

of both disturbances and model errors. Robust control design refers to design 

methodologies that explicitly account for the plant-model mismatch in the design. Most 

of robust control approaches assume that there is a set or family of plants to represent the 

possible sources of uncertainties (Morari and Zafiriou, 1989; Camacho and Bordons, 

2003). Although a significant research has been published for the design and analysis of 

robust MPC systems, robustness of distributed MPC strategies has not been explicitly 

addressed. It is worth to mention that MPC is sensitive towards model uncertainty. To 

illustrate such sensitivity let us consider the following multivariable control problem with 
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3 manipulated variables and 3 controlled variables given by the following transfer 

function matrix: 

                                  ( )

-6 -6 -6

-4 -2 -2

-4 -4

4.05e 1.77e 5.88e
50 +1 60 +1 50 +1

5.39e 5.72e 6.90e
50 +1 60 +1 40 +1

4.30e 4.42e 7.20
33 +1 44 +1 19 +1

s s s

s s s

s s

s s s

s
s s s

s s s

� �
� �
� �
� �= � �
� �
� �
� �� �

G                                         (2.6) 

 

The constraints on manipulated variables are given by |ui(k+n)| ≤ 10, n≥ 0, 

 i = 1,2,3. MPC is designed to control this process assuming there is no plant-model 

mismatch (i.e the model used by MPC is that of the process). The simulation results for 

set-point tracking in the controlled variables of [3,3,-3] for y1,y2,and y3; are shown 

respectively in Figures 2.5 and 2.6. 
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Figure 2.5 Dynamic response (no plant-model mismatch) 
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Figure 2.6 Control actions (no plant-model mismatch) 

 

From the figures, MPC successfully tracked the given set-points providing smooth 

closed-loop response with feasible control actions. Now let us consider that the actual 

process model is given by Gprocess = 0.4Gmodel which represents model errors in terms of 

steady-state gains. The simulation results are given in Figures 2.7 and 2.8. Now there is a 

significant offset in the responses since MPC first control action u1 saturates immediately 

when the set-points start to change due to plant-model mismatch. Tuning the controllers 

input weights could not provide any improvement. This example will be revisited later on 

in chapters 4 and 5 where robust DMPC algorithms are proposed. 
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Figure 2.7 Dynamic response (with plant-model mismatch) 
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Figure 2.8 Control actions (with plant-model mismatch) 
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Linear Matrix Inequalities (LMI) are widely used in the design of MPC that are robust to 

model errors (Kothare et al., 1996; Camacho and Bordons, 2003, Bars et al. 2006). 

Another attractive feature of LMIs is that they employ the efficient interior-point methods 

that can be solved in polynomial time. The LMI solvers are available in software such as 

MATLAB® which can also be integrated with YALMIP (lofberg, 2004) to formulate 

many convex LMI problems.  A comprehensive introduction to LMIs is given by 

VanAntwerp and Braatz (2000). Also Boyd et al. (1994) have provided a comprehensive 

introduction to LMI’s concepts and applications. In the remaining of this section a brief 

review on the application of LMI’s for control design and synthesis is provided. 

 

 A linear matrix inequality can be expressed according to the following form: 

 

         
m

i i
i 1

( x ) x
=

= +�oF F F  > 0                                                   (2.7)   

 

where Fi are symmetrical real n × n matrices, xi are variables and F(x) > 0 is positive 

definite. Three main problems that can be solved by LMI’s are: the feasibility problem; 

the linear programming problem, and the generalized eigenvalue minimization problem. 

In addition to its ability to deal explicitly with plant model uncertainty, LMI formulation 

is an attractive choice for the solution of complex problems due to the availability of 

efficient numerical convex optimization algorithms. One of the most widely used 

algebraic manipulations for the formulation of LMI’s is the Schur complement lemma. 

This lemma plays a major role in the current work and therefore it is reviewed below. 

Considering the following convex nonlinear inequalities: 
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                                        ( ) ( ) ( ) ( ) ( ) 
1 T

R x 0, Q x S x R x S x 0
−> − >                               (2.8) 

 

Where ( ) ( ) ( ) ( ) ( ) and 
T T

Q x Q x ,R x R x , S x= =  depend affinely on x. The Schur 

complement lemma converts (2.8) into the following equivalent LMI: 

 

                                                          
( ) ( )

( ) ( )T

Q x S x
0

S x R x

� �
>� �

� �� �
                                             (2.9) 

 

The proof of Schur complement can be found in the VanAntwerp and Braatz tutorial 

(2000). 

 

Kothare et al. (1996) proposed a formal theoretical approach for robust MPC 

synthesis via an online robust MPC algorithm based on LMI concepts. The algorithm 

guarantees robust stability as well as compliance with process constraints. The algorithm 

can be applied to both norm-bounded structured uncertainty descriptions and to polytopic 

descriptions. The latter is used in the current work and presented in the next chapters. The 

basic idea of their approach is that the quadratic optimization problem is converted to an 

LMI optimization problem that can be solved with computationally efficient interior-

point algorithms (Boyd et al. 1994). These algorithms are very fast and can be used for 

online computations. LMI solvers are available in the MATLAB® Robust Control 

Toolbox. The following section shows typical LMIs formulations used to achieve certain 

design objectives. 
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2.5.1 stability 

 

 Considering the dynamical system: 

 

        ηηηη(k+1) = Aηηηη(k); ηηηη(0) = ηηηη0                                               (2.10) 

 

If A is assumed to vary within a polytope of set {A1,…,Ak} then a sufficient condition for 

the asymptotic stability of this system from Lyapunov-stability theory is the feasibility of 

a set of LMIs as follows: 

 

     Find P > 0, P = PT such that Ai
TPAi – P < 0, i = 1, … , k               (2.11) 

 

2.5.2 Closed-Loop Robust Performance and the RMS Gain 

 

 For a stable state-space closed-loop system of the following form: 

 

   
( ) ( )

( )
kk 1
k( k )

� �� �+ � �
= � �� � � �
� �� � � �

�A B�

vC De
                                                (2.12) 

 

where e(k) is the output error of the system and v(k) is the input of the system (in 

practical applications, this can be either a set-point signal or external disturbance). The 

random-mean-squares (RMS) gain is the largest input/output gain γ, 
2

e < γ 
2

v , over all 

bounded inputs. This gain is the global minimum of the following minimization problem: 
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T0 ,

min
=P P P�

γ2            (2.13) 

Subject to 

T T T

T T 2 Tγ
� �−
� �−� �
� �−� �

A PA P A PB C
B PA B PB I D

C D I
< 0                       

 

The optimization problem in (2.13) will play a major role in Chapter 3 since the index γ 

is used in the current research to select the best control structure in the context of 

distributed MPC. 

 

2.6 Explicit Linear Model Predictive Control 

 

 In general, one of the major drawbacks of MPC is that it is computationally 

expensive for online implementation especially when constraints are considered in the 

optimization problem. These computational requirements grow exponentially as the 

problem size increases. Consequently, reducing online computational burdens is of key 

importance for real time implementation. To reduce computations a multiparametric 

programming approach has been proposed where an explicit control law solution is used 

thus convert all or most of online computations into offline ones (Pistikopoulos et al. 

2007). The explicit solution is then used in an MPC online implementation. The control 

moves become an affine function of the state variables so the online implementation 

requires searching through a look-up table. The offline framework is composed of three 

steps: (1) solving the optimization problem offline using multiparametric programming 
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approach, (2) partitioning the state space, and (3) obtaining the optimal control moves 

online.  

 

In the last few years a significant number of papers have been published dealing 

with the development of multiparametric or explicit MPC algorithms. A brief review is 

presented in the next paragraphs. 

 

 Bemporad et al. (2002) developed an algorithm for explicit linear MPC based on 

a multiparametric programming approach. The state-feedback solution was obtained for 

nominal MPC. The original online MPC problem was converted to a multiparametric 

quadratic programming (mp-QP) that can be solved offline and the optimal inputs were 

obtained as affine functions of the states. Partitioning the state space into a number of 

convex polyhedral regions was also described. This number depends on many parameters 

such as the dimension of the state vector, the number of control moves, and the number 

of constraints. The algorithm assumed perfect model and therefore uncertainty in the 

model was not accounted for.  

 

 Wan and Kothare (2003) used the concept of an asymptotically stable invariant 

ellipsoid to develop an explicit robust MPC algorithm that provides a sequence of explicit 

solutions obtained offline. The algorithm was based on the original framework reported 

in Kothare et al. (1996). 
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 In (Chu 2006; Chu et al. 2006) an algorithm was developed to obtain robust MPC 

explicit solutions for constrained multivariable problems with internal and external 

uncertainties.   

 

 In general, all the explicit MPC techniques suffer from a common problem which 

is the computational complexity that grows dramatically with the problem size 

(Pistikopoulos et al. 2007). However, attempts are in progress to overcome this problem.   

 

2.7 Main Assumptions 

The key assumptions made throughout this work are summarized as follows: 

1) The system is controllable and observable. 

2)  The system can be decomposed into smaller subsystems that are controllable and 

observable. 

3) The model uncertainty can be represented by a set of linear state-space models.   

4) The performance metric is given as a quadratic objective function that can be 

decomposed. 

5) Reliable communication network is available to exchange information. 

6) The entire vector of states measurements or estimates is made available to all 

controllers to guarantee overall system’s stability. 

7) Control intervals are the same in all controllers. 
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CHAPTER 3 

Selection of Control Structure for Distributed Model Predictive Control in the 

Presence of Model Errors 

Adapted from Al-Gherwi et al. (2010)  

 
3.1 Overview 

This chapter presents a new methodology for selecting control structure in the 

context of distributed model predictive control. An index was developed to quantify the 

performance of distributed MPC strategies in the presence of model errors. This index 

was used for two purposes: to solve the decomposition problem whereby the process is 

decomposed into parts and to compare distributed MPC strategies with different degrees 

of coordination. Then, a multi-objective Mixed Integer Nonlinear Programming MINLP 

formulation is proposed to achieve an optimal tradeoff between performance and 

structure simplicity. 

 

Four examples are considered to illustrate the methodology. The simulation 

results are consistent with the conclusions obtained from the analysis. The proposed 

methodology can be applied at the design stage to select the best control configuration in 

the presence of model errors.   

  

3.2 Introduction 

Since the advent of model predictive control (MPC) technology, the process 

industry has witnessed a gradual shift from the conventional multi-loop decentralized 

PID control strategies to centralized multivariable MPC control. The ability of MPC to 
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handle process constraints and interactions among process units attracted the practitioners 

to implement MPC (Qin and Badgwell 2003). However, using one centralized MPC 

strategy has some drawbacks related to high computational demand especially in 

processes with relatively large number of inputs and outputs, to sensitivity to model 

errors and to low resilience with respect to operational changes (Skogestad 2004; 

Skogestad and Postlethwaite 2005). This led to the idea of partitioning the original 

process into smaller units or subsystems and applying MPC controllers to each one of 

these subsystems. The simultaneous operation of several MPC controllers in such fashion 

has been referred to in the literature as Distributed MPC. When the individual MPC 

controllers for the different subsystems are operated in a completely decentralized 

fashion, closed loop performance may be significantly hampered since some or all of the 

interactions are ignored and also the controllers may become unstable if these interactions 

are strong. As a remedy to this problem, researchers have proposed the use of some form 

of coordination between the MPC controllers for the different subsystems. The main idea 

is to decompose the centralized dynamic model of the system into local models for each 

subsystem while interaction models are used to filter the communication of relevant 

information between the subsystems (Rawlings and Stewart 2008). While all the reported 

methods share the same idea of communication to account for interaction, the major 

difference is in the type of local objective function to be solved by every controller and in 

the way that their operation is coordinated in order to achieve global objectives. On one 

hand, when the local objective of each controller does not account for the goals of other 

controllers then two types of strategies arise: a decentralized strategy results if the 

interactions are ignored or a Nash-equilibrium based strategy results if the interactions 
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are accounted for (Li et al. 2005; Mercangöz and Doyle 2007). On the other hand, when 

each local objective is modified to take into account the goals of other controllers, 

strategies referred to as feasible-cooperative were proposed that seek to optimize a 

combination of all related objectives (Venkat 2006; Zhang et al. 2007). Figure 3.1 

illustrates the general structure and information exchange for different possible MPC 

strategies: centralized, fully decentralized, and coordination-based. The later include both 

Nash equilibrium based strategies as well as cooperative strategies that minimize an 

overall objective function.  

In centralized MPC the optimal control moves are obtained by minimizing a cost 

function that takes into account the overall objective of the entire system. Since the 

centralized control considers the interactions within the system, optimal nominal 

performance is expected. In contrast, for distributed MPC, either fully decentralized or 

coordinated, the cost functions are local and the interactions are either completely 

ignored or they are accounted for in a partial manner. Thus, distributed MPC strategies 

have a simpler control structure but their performance is expected to be generally poorer 

as compared to centralized MPC strategies. Thus there is a trade-off between the best 

achievable closed-loop performance and the simplicity of the controller structure. In a 

recent review on distributed MPC literature Scattolini has identified the importance of 

addressing and developing tools to search for such a trade-off (Scattolini 2009).  

Beyond the controller structure selection problem that involves assigning the 

inputs and outputs to the different subsystems, the application of the special case of fully 

decentralized MPC also requires assigning parts of the states’ vector to the subsystems. 

This has been referred to in the literature as the decomposition problem but it has not 
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been systematically solved in the context of distributed MPC problem. Decomposition 

can be obtained based on open-loop information but this may lead to conservative 

stability results (Samyudia et al. 1994) However, the particular question addressed in the 

current study is on the level of performance that can be specifically achieved with 

decentralized MPC by changing tuning parameters. 

 

  In addition it has been recognized that the performance of multivariable 

controllers is highly dependent on their robustness to model errors. Most distributed MPC 

formulations reported in the literature use linear models and rely on feedback to account 

for uncertainty. However, in reality linear models are never accurate due to nonlinearity 

or inaccurate identification. Although the study of robustness has been identified as a key 

factor for the successful application of distributed MPC, this problem has not been 

systematically analyzed in the context of distributed MPC other than by simulations 

(Rawlings and Stewart 2008).  

Following the above, the current work will address the following goals: 

i- An index will be developed to quantify the performance of distributed MPC strategies 

in the presence of model errors. This index will be used for two purposes: to solve the 

decomposition problem and to compare distributed MPC strategies with different degrees 

of coordination.  

ii- A multi-objective Mixed Integer Nonlinear Programming MINLP formulation is 

proposed for seeking an optimal tradeoff between performance and structure simplicity. 

The later is quantified by an index that is proportional to the number of interactions 

included in the control strategy. 
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Figure 3.1 Information structure: (a) Centralized MPC, (b) Fully decentralized MPC, and 

(c) Coordinated MPCs. 
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This chapter is organized as follows. In section 3.3 basic definitions and the 

methodology are shown. Then the application of the methodology to four case studies is 

shown in section 3.4. Conclusions are presented in Section 3.5.  

 

3.3 Definitions and Methodology 

3.3.1 Models 

 The nominal model of the process used by the MPC is given by the following 

discrete linear time-invariant (LTI) state-space model: 

 

                                                   x(k + 1) = Ax(k) + Bu(k)                        (3.1) 

                                                   y(k) = Cx(k)                         (3.2) 

 

where x(k) ∈ ℜnx
 is an nx-dimensional state vector; u(k) ∈ ℜ

nu
 is an nu-dimensional 

input vector; y(k) ∈ ℜ
ny

 is an ny-dimensional output vector; A ∈ ℜnx×nx is the state 

matrix, B ∈ ℜ
nx×nu

 is the input matrix, and C ∈ ℜ
ny×nx

 is the measurement matrix; k is the 

time interval. It is assumed that the sets (A,B) and (A,C) are controllable and observable; 

respectively. 

 

  It is assumed that the actual process to be controlled is represented by the 

following linear time-varying (LTV) model: 

 

                            xp(k + 1) = Ap(k)xp(k) + Bpu(k)u(k) + Bpw(k)w(k)                         (3.3) 

                            yp(k) = Cpxp(k)                                                            (3.4) 
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where w(k) ∈ ℜ
nw

 is an nw-dimensional exogenous input disturbance vector. In both 

models (3.1)-(3.2) and (3.3)-(3.4) it is assumed that the number of states is the same, 

however, the parameters are not necessary the same. For the set-point tracking problem 

nw is set to 0. The disturbance model is assumed to be given by the following equation: 

 

                                            w(k+1) = αww(k) + (1 - αw)d(k)                 (3.5) 

 

where d(k) is an unmeasured white noise  entering the system and, 1 ≤ αw ≤ 0 is a first 

order filter constant necessary to limit the bandwidth of this disturbance for performance 

analysis purposes. Due to the presence of model errors, the plant model given in (3.3)-

(3.4) is represented by a convex set ππππ of linear plants with L vertices defined as (Boyd et 

al. 1994): 

 

( ) ( ) ( )=[  ] [  ]
L L

p pu pw i pi pui pwi i i
i 1 i 1

k k k ; 0, 1ξ ξ ξ
= =

= ∀ ≥ =� �� A B B A B B                     (3.6) 

  

Accordingly, it is assumed that the actual plant model lies within a polytope of matrices 

as defined above. The vertices of this polytope correspond to the extreme values of a 

family of linear models obtained from the linearization of the nonlinear system model or 

alternatively from identification around different operating points. It is assumed that all 

the plants have the same number of states to satisfy the above definition.  
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3.3.2  MPC Strategies 

Three MPC strategies are considered: a centralized control strategy and two 

distributed MPC strategies, one designed as Nash-based distributed MPC and another 

designed as a fully decentralized MPC. The feasible-cooperative type strategy mentioned 

in the introduction section has not been considered in this study since it is expected to 

perform similarly to centralized MPC provided that convergence is reached (Venkat 

2006; Zhang et al. 2007). A description of the structure of the used strategies follows in 

order. 

 

In the present study, the centralized MPC is based on the formulation given in 

(Maciejowski 2002). The cost function is defined as: 

                                  
( ) ( ) ( ) ( )2 2

min J k k k k k k= − +
Q ��U

Y � �U                    (3.7) 

 

where Y(k�k) = [y(k+1�k)T,…,y(k+Hp�k)T]T is the vector of predicted outputs; Hp is the 

prediction horizon; T(k) = [R(k+1)T,…,R(k+Hp)T]T is the vector of set-points; ∆∆∆∆U(k�k) = 

[∆∆∆∆u(k�k)T,…,∆∆∆∆u(k+Hu-1�k)T]T; Hu is the control horizon; ∆∆∆∆u(k�k) = u(k�k)-u(k-1�k-1); 

Q = block-diag(Q1,…,QHp) and ΛΛΛΛ = block-diag(λλλλ1,…,λλλλHu) are the output weights matrix 

and the input weights matrix; respectively. The weighted vector norms are defined 

as 2 T=
A

v v Av . The set-point signal R(k) is obtained by filtering the original set-point 

signal r(k) = [r1(k),…,rny(k)]T according to the following first order exponential filter: 

 

                                                 R(k+1) = αR(k) + (1-α)r(k)             (3.8) 
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where 1≤ α ≤ 0 is the filter parameter that is specified by the user based on the desired 

set-point bandwidth and r is assumed to be white noise.  This filter is equivalent to the 

robustness filter used in internal model control (IMC) in order to shape the response of 

the closed-loop system (Ricker 1990). The set-point r(k) is set to 0 in the disturbance 

rejection problem. 

From the nominal model (3.1)-(3.2), the predicted output vector is obtained as 

follows: 

( )
( )
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( )
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( ) ( )
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                                                                                                                                  (3.9)       

 

where the term ( k k )�  accounts for unmeasured disturbances and/or model errors due to 

the difference between the nominal model in (3.1)-(3.2) and the plant model in (3.3)-

(3.4). Following the assumption commonly used in the classical dynamic matrix control 

DMC algorithms (Cutler and Ramaker 1979), the elements in ( k k )� are assumed to 

remain constant along the horizon of Hp time intervals. Thus, ( k k )�  is defined as 

follows: 
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( ) ( )p( k k ) c k k k 1� �= − −� �� L y y                           (3.10)                                          

    

T

ny ny ny Hp
c , ,

×
� �= � �L � �� , where Iny is the identity matrix. 

 

The prediction expression given in (3.9) can be rewritten in the following compact form: 

 

                     ( ) ( ) ( ) ( ) ( )k k k k 1 k k k= + − + +Y �x �u 	�U �                             (3.11) 

The tracking error vector of the free-response ( )k k
  is defined as: 

 

                               ( ) ( ) ( ) ( ) ( )k k k k k 1 k k= − − − −
 � �x �u �                        (3.12) 

 

The optimal moves at the current step (k), *( k k )�u , are obtained by solving (3.7) 

subject to (3.9) in the absence of constraints and given as: 

 

                                       ( ) ( )*
MPCk k k k=�u K 
       (3.13)                                        

               MPCK  = [Inu,0nu,…,0nu]nu×Hu (ΘΘΘΘTQΘΘΘΘ+ΛΛΛΛ)-1ΘΘΘΘTQ      

       

At this point, the closed-loop system for every model included in the set ππππ defined 

in (3.6) with the centralized MPC can be easily obtained for both set-point tracking and 

disturbance rejection problems. To simplify the notations, it is assumed without loss of 
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generality that u(k) = u(k|k) and u(k-1) = u(k-1�k-1). The resulting closed-loop system 

for both problems is given below. 

 

Set-point tracking problem 

 

( ) ( ) { }
1 L

r rCL CL
CL CL CL

r CL CL

( k 1) ( k )k
; k Co ,

( k ) ( k )

+ � �� � � �
= ∀ ∈� �� � � �

� �� � � �

� �A B
A A A

e rC D
�                      (3.14) 

 

where ηηηηr(k) = [xp(k)T,x(k)T,u(k-1)T,R(k)T]T; the vertex
iCLA in the above convex hull with 

the rest of  closed-loop matrices are given as follows:  
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; CL ny ny×� �= � �D 0        (3.15)         

 

and the output error signal is defined as er(k) = R(k) – yp(k). 
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Disturbance rejection problem 

 
( ) ( ) { }

1 L

d rCL CL
CL CL CL

d CL CL

( k 1) ( k )k
; k Co ,

( k ) ( k )

+ � �� � � �
= ∀ ∈� �� � � �

� �� � � �

� �A B
A A A

e dC D
�                    (3.16) 

where ηηηηd(k) = [xp(k)T,x(k)T,u(k-1)T,w(k)T]T; the vertex
iCLA in the above convex hull with 

the rest of  closed-loop matrices are given as follows:  
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; CL ny nw×� �= � �D 0        (3.17)    

      

and the output error signal is defined as ed(k) = – yp(k). 

 

For distributed MPC, the centralized nominal model given in (3.1)-(3.2) is 

decomposed into N subsystems where the model of subsystem { }N,......,1i ∈  can be written 

as: 

 

                                       

N

i i i ii i ij ij j
j 1
j i

( k 1 ) ( k ) ( k ) δ
=
≠

+ = + +�x A x B u B u      (3.18)                          

                 i i i( k ) ( k )=y C x                                    (3.19) 
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where inx
i( k )∈ℜx  is an nxi-dimensional augmented state vector of the subsystem i 

defined as 
TT T T T

i 11 ii NN, , , ,= � �� �x x x x� � with states xii that are measured locally within 

subsystem i and the other states xij that are affecting subsystem i are measured within  the 

jth subsystem and can be exchanged via communication; inu
i ∈ℜu is an nui-dimensional 

input vector estimated by the ith MPC assigned to subsystem i; jnu
j ∈ ℜu is an nuj-

dimensional input vector estimated by the jth MPC assigned to subsystem j and affects 

subsystem i; iny
i ∈ℜy is an nyi-dimensional output vector; δij is a switching variable, 

either 0 or 1, and is used in the proposed methodology to either neglect or include the 

corresponding interaction term as explained later. Ai, Bii, Bij, and Ci are matrices of 

appropriate dimensions and the matrix Ai is given as follows: 

                               

i1 11 i1 1i i1 1N

i i1 i1 ii iN iN

iN N 1 iN Ni iN NN

δ δ δ

δ δ

δ δ δ

� �
� �
� �
� �=
� �
� �
� �� �

A A A

A A A A

A A A

� �

� � � � �

� �

� � � � �

� �

                               (3.20) 

 

From the above definitions, the model in (3.18)-(3.19) can also be used to represent the 

special case of a fully decentralized system where all the interaction terms are ignored 

and this is obtained by simply setting all the corresponding δij’s to 0 and keeping only 

local states and inputs of each subsystem, i.e. Ai = Aii and the effects of all uj’s, for j not 

equal i, are neglected. For analysis purposes, all equations for the individual subsystems 

are grouped together to formulate an overall model as follows: 
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                                                   o o( k 1 ) ( k ) ( k )+ = +x A x B u           (3.21) 

                                                   o( k ) ( k )=y C x                                   (3.22) 

 

where  

Ao = block-diag (A1,…,AN); Bo = 
11 1N 1N

1N N 1 NN

δ

δ

� �
� �
� �
� �� �

B B

B B

�

� � �

�

; Co = block-diag (C1,…,CN)                        

                                                                                                                                (3.23)   

 

The state vector x and the input vector u are obtained by appending all the state vectors 

and the input vectors of the ith subsystems; respectively. Accordingly, the model given in 

(3.21)-(3.22) is a non-minimal realization of the system. To formulate the closed-loop 

systems of distributed MPC, the matrices A, B, and C  in (3.14)-(3.15) and (3.16)-(3.17) 

are replaced by Ao, Bo, and Co; respectively. 

The formulation of the Nash-based distributed MPC strategy is based on the work 

reported in (Li et al. 2005). However, since the formulation in that study was based on 

input/output models which are not suitable for the robustness analysis to be conducted in 

the current work, a formulation of the Nash-equilibrium strategy based on state-space 

models is presented instead. In the Nash-based MPC, the �Ui manipulated variable action 

is calculated by minimizing the local cost function of the ith subsystem as follows: 

 

                                   
( ) ( ) ( ) ( )

i ii

2 2

i i i imin J k k k k k k= − +
Q ��U

Y � �U                    (3.24) 
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The predicted output vector of subsystem i is easily obtained by solving (3.18)-

(3.19) recursively and given as: 
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Where 
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                                                                                                                                (3.26) 

 

The tracking-error vector Ei(k|k) and the optimal solution of (3.24) *
i ( k k )�U  for 

subsystem i are given by the following equations:    

 

                           
                        

i i i i ii i

ij j ij j i
j i j i
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                           ( )*
i ii i ij j

j i
( k k ) k k ( k k )

≠

� �= −� �
� �

��U K  	 �U                              (3.28) 

 

with ( ) 1T T
ii i i i i i i

−
= +K 	 Q	 � 	 Q  and i( k k ) contains all the right hand side terms in 

(3.27) except for the term ij j
j i

( k k )
≠
�	 �U . 

 

For numerical convenience, equation (3.28) is generally solved for large systems 

by iterations. In the current work a closed form solution derived from (3.28) is used as 

follows: 

 

                                            ( ) 1
0 1( k ) ( k k )

−= −�U I K K �                                     (3.29) 

 

where      
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K 0
K

0 K
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By inspection, K1 is a function of the local subsystems gains whereas K0 depends on the 

gains describing the interactions among the subsystems.  

 

In equation (3.29), the term ( )k k�  is similar to ( )k k
  in (3.12) with: 
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[ ]T
1 N( k ) ( k ),..., ( k )=� � � ;  [ ]1 Nblock diag , ,= −� � �� ; 
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p 1 p 1

p N p N

H ny 1 H ny N 1

C

H ny N 1 H ny 1

× × −

× − ×

� �
� �

= � �
� �
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1 0

L
0 1
� �               (3.31) 

 

Then the current control moves are calculated as follows: 

 

                                              ( )MPC( k ) k=�u K �                                                    (3.32) 

 

with ( ) 1
MPC 0 1

−= −K L I K K , where L = block-diag(L1,…,LN); [ ]  i
i 1 ( nu Hu )

1,0, ,0
×

=L � . 

 

It should be pointed out here that the nominal stability of the above algorithm 

requires that the spectral radius of K0 has to be less than 1, i.e. ( )0ρ K < 1 where ρ is the 

spectral radius (Li et al. 2005) 

The aforementioned formulation for Nash-based distributed MPC strategy can 

also be used to analyze the specific case of fully decentralized MPC where all the 

interactions are ignored, i.e. all the terms corresponding to the interaction between the 

subsystems are eliminated in (3.18)-(3.19), i.e., K0 in (3.32) is omitted.  Finally, closed-

loop system representations can be obtained for either a Nash-based MPC, a fully 

decentralized MPC, or a partially decentralized MPC by substituting the control gain 

KMPC given in equation (3.32) into the state space models presented in (3.14)-(3.15) for 
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set-point tracking and (3.16)-(3.17) for disturbance rejection. Based on the resulting 

closed-loop system equations, a performance index can be calculated as will be shown in 

the next section. 

  

3.3.3 Robust stability and performance 

In this subsection we present the definitions and theorems that are required to 

formulate the proposed methodology. A sufficient condition for robust stability and a 

measure for robust performance of closed-loop systems are summarized hereafter. In the 

closed-loop formulations given in (3.14) and (3.16) for set-point and disturbance inputs; 

respectively,ηηηη is defined as the state of the system (either ηηηηr or ηηηηd), e as the output error 

(er or ed), and νννν as the input, i.e. set-point or disturbance(r or w).  

 

Definition 1 (Quadratic Lyapunov Stability QLS) (Boyd et al. 1994; Doyle et al. 1991) A 

sufficient condition for asymptotic stability is the existence of P > 0, P = PT and a 

positive-definite quadratic Lyapunov function V(k) = ηηηη(k)TPηηηη(k) such that: 

 

                                                    V(k+1) – V(k) < 0                                  (3.33) 

       

for all admissible ( ) { }1 LCL CL CLk Co ,∈A A A�  and for all initial conditions. 

 

Definition 2 (Quadratic Lyapunov H∞ performance QLP) (Doyle 1991; Gahinet and 

Apkarian 1994) for closed-loop systems with zero initial state satisfy the above QLS and  
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( ) ( )

2 2l l
k kγ<e v                         (3.34) 

 

for all l2-bounded input νννν if there exists P > 0, P = PT and a positive-definite quadratic 

Lyapunov function V(k) = ηηηη(k)TPηηηη(k) such that  

 

                                        ( ) ( )1 T 2 TV k V k γ+ − + −e e �� < 0                       (3.35) 

 

for all admissible ( ) { }1 LCL CL CLk Co ,∈A A A�  and for all initial conditions. 

 

The bound γ can be therefore considered as a robust performance index and interpreted as 

an upper bound on the variability of the closed-loop system due to the effect of either set-

point or disturbance input on the output error according to inequality (3.34).   

Definition1 can be posed as an LMI problem according to the following theorem: 

 

Theorem 1 The closed-loop system ηηηη(k + 1) = ACL(k)ηηηη(k), ηηηη(0) = ηηηη0 , and ACL(k) 

depends affinely on the vertices { } CLi
i 1, ,L∀ ∈A � , satisfies QLS if there exists a 

solution to the following system of LMIs: 

                                                 { } T
CL CLi

i 1, ,L− < ∀ ∈A PA P 0 �  

                                                 P > 0, P = PT              (3.36) 

 

A bound on γ is obtained by solving an LMI optimization problem as described in the 

following theorem: 
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Theorem 2 Consider the time-varying closed-loop system given in (3.14) or (3.16), 

where ACL(k) is described above. A sufficient condition for QLP of this system is the 

existence of P > 0, P = PT such that 

 

i i i

i

T T T
CL CL CL CL CL

T T 2 T
CL CL CL CL CL

CL CL

γ

� �−
� �

−� �
� �−� �

A PA P A PB C

B PA B PB I D

C D I

<0 { }i 1, ,L∀ ∈ �                                      (3.37) 

 

then minimizing the bound on (3.34) is equivalent to solving: 

2 2
min minγ γ=

P
 

s.t.  

  
i i i

i

T T T
CL CL CL CL CL

T T 2 T
CL CL CL CL CL

CL CL

γ

� �−
� �

−� �
� �−� �

A PA P A PB C

B PA B PB I D

C D I

<0 { }i 1, ,L∀ ∈ �                                    (3.38) 

 

The proofs of theorems 1 and 2 can be found in (Gao and Budman 2005) and the 

references therein. 

 

It should be pointed out that the inequality (3.35) can be readily modified to 

include a penalty term on manipulated variables move such as done in the objective 

function of the MPC (equation 3.7). Such a modification will lead to a larger LMI than 

(3.37) since an additional quadratic term corresponding to the manipulated variable cost 
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would be considered. Also, the addition will result in a more conservative controller since 

the controller has already been detuned for robustness through proper selection of the 

weight � as shown in the simulations in section 3.4. Therefore, a penalty term on 

manipulated variables was not considered in the infinite horizon cost given by equation 

(3.34). 

 

3.3.4 Proposed Methodology 

The LMI problems given in (3.36) and (3.38) can be solved in MATLAB® using 

MATLAB® LMI solvers available in the Robust Control Toolbox. Problem (3.36) can be 

solved as a feasibility problem via the function feasp whereas problem (3.38) is solved 

using the mincx function. 

 

A controller can be sought that optimizes performance by minimizing the bound γ 

in (3.38). This controller will ensure that ( )
2l

kv  will have the least effect on ( )
2l

ke . To 

find this controller, the input weights (�) are optimized to produce the MPC controller 

that provides the best closed loop performance as follows: 

 

                                                          
min 2 2

opt minγ γ
≥

=
� 0

                                  (3.39) 

 

where γmin is the solution of the LMI problem (3.38).  

All other tuning parameters, such as the prediction and control horizons and the output 

weights are fixed a priori for simplicity. A smaller value of γopt implies a better closed 

loop performance following definition (3.34). Different model structures used by the 
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distributed MPC strategy are expected to affect the closed-loop performance defined by 

γopt. For instance, a decentralized control strategy where the interaction is neglected may 

result in poor closed-loop performance. Therefore, in order to improve the performance, 

interaction information has to be considered. On the other hand, decentralized control 

structures are more favored due to their simplicity, low communication load, and 

robustness to model uncertainty. In addition to the input weights used as tuning 

parameters, the binary variables δij’s in the decomposed model (3.18)-(3.19) are used to 

vary the control structure by considering or ignoring interaction terms leading to the 

entire spectrum of possibilities ranging from a fully decentralized to a fully connected 

distributed strategy. For N subsystems, the total possible number of theses logic variables 

nδ is bounded as 0 ≤ nδ ≤ N(N -1). The least possible number of 0 corresponds to a 

physically decoupled process whereas the maximum possible number of N(N -1) 

corresponds to a fully interactive system. The user can set some of the binary variables to 

0 or 1 a priori and to combine some of them to reduce their number nδ between the two 

possible limits. To measure the entire system connectivity that can be also viewed as a 

measure of control structure simplicity, the following variable is used: 

 

Connectivity, C = 
N N

ij
i 1 j 1

j i

1
nδ

δ
= =

≠

�� ;  δij∈{0,1}                                                              (3.40) 

 

Depending on the values of δij, the connectivity C ranges from 0 for a fully decentralized 

structure to 1 for a fully connected distributed structure. Using this connectivity measure, 
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a trade-off between performance and structure connectivity can be found by solving the 

following multi-objective MINLP formulation: 

 

                                           
( )min  

i ij
opt,

1 C
δ

βγ β+ −
�

  

                                            λλλλi ≥ 0, δij∈{0,1}, ∀ i,j ∈ {1,…,N}          (3.41) 

 

where β is a weighting coefficient β∈[0,1] specified by the user to emphasize the 

contribution of either performance or connectivity. It should be noticed that when 

communication is not penalized (β = 1) the optimization does not lead necessarily to fully 

connected control structure since decentralized control maybe better in the presence of 

large uncertainty as shown in sections 3.3.2 and 3.3.3. On the other hand when β = 0 

corresponding to the case where the performance is not penalized, the decentralized 

structure is the preferred one. The optimization problem given above is coded in 

MATLAB® and solved using a branch and bound approach with modified version of the 

fmincon function from the MATLAB® Optimization Toolbox in which binary variables 

are considered. Since the algorithm used in fmincon, which is a variant of the Sequential 

Quadratic Programming (SQP) algorithm, obtains only local solutions, a multi-start 

approach is adopted in which many starting points are generated in an attempt to obtain 

better solutions close to global optima (Edgar and Himmelblau 2001). The proposed 

formulation (3.41) searches for the optimal distributed MPC structure to satisfy robust 

stability and performance constraints that are implicitly considered in the computations of 

γopt and at the same time seeks for a simple control structure. The methodology for 

solving problem (3.41) is summarized as follows: 
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Step1: Identify the nominal model (3.1)-(3.2) as well as the set of linear models (3.3)-

(3.4) that describes the actual process. In this work it is assumed that these models are 

available. Select and fix the controllers parameters except the input weights λλλλi. To 

decompose the nominal model into N subsystems the number nδ and the fixed δij if there 

is any, can be chosen as explained above. The coefficient β is also selected based on the 

importance of each cost in problem (3.41).  

 

Step2: At iteration p = 0 , initialize the solver with initial guess ( 0 ) ( 0 )
i ij,δ� . 

 

Step3: Solve problem (3.41). The closed-loop matrices for either set-point tracking or 

disturbance rejection problem are updated at each iteration using the formulation 

presented in (3.14)-(3.17). The stability constraint (3.36) is solved as a feasibility 

problem. If problem (3.36) is feasible then solve problem (3.38) and obtain γopt as 

explained earlier. Obtain the current connectivity C from (3.40) and compute the 

objective function as weighted sum of γopt and C with β as weight.  

 

Step4: Stop if convergence criterion is satisfied, otherwise set p → p + 1; solver selects 

the next ( p ) ( p )
i ij,δ�  and repeats Step3. 

 

As explained earlier, it is expected that finding a global solution of problem (3.41) is not 

guaranteed thus steps 2-4 may be repeated for different initial guesses to seek for a global 

solution. The methodology can also be applied to compare different coordination 

strategies or model decompositions by considering problem (3.39) only for predefined 



 
 

 

 

67 

structures. This is achieved by optimizing each strategy or decomposition outlined in the 

previous section with respect to the input weights and selecting the one with minimum 

performance index γopt.  One important issue for future research is the addition of 

constraints to the problem. To that purpose, since the current analysis requires an explicit 

solution of the control law, the multi-parametric approach of Bemporad et al. (2002) 

could be used but this could potentially result in computationally expensive problems. In 

the next section, the methodology is illustrated by its application to three case studies. 

 

3.4 Application of Methodology and Results 

3.4.1 Case 1: Model decomposition for decentralized control of a multi-unit process 

This first case study involves applying the proposed methodology to solve the 

model decomposition problem. This problem consists in finding the best decomposition 

of the state space model into subsystems for the design of a fully decentralized control 

strategy. Thus, for this first case study, centralized control or other type of coordination 

are not considered. In (Samyudia et al. 1994) it was reported that for decentralized 

control of multiple units there are different model decompositions that can be done while 

maintaining the same input-output pairings. They defined two methods for 

decomposition; namely, physical decomposition which is based on the physical unit 

operations and mathematical decomposition which is based on the nature of the balance 

equations and it can be performed across the units. The use of these different 

decompositions for the design of a decentralized MPC strategy is expected to result in 

different closed-loop performance. Since both decomposition methods result in a 

predefined structure, in this case fully decentralized structures, the comparison of their 
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closed loop performance can be done by solving problem (3.39). A multi-unit process 

composed of two CSTRs connected in series with a perfect separator is considered 

(Samyudia et al. 1994). The unreacted material is recycled and fed-back to the first 

reactor. Figure 3.2 shows a simplified flow sheet of the process. The real process is 

represented by a polytopic model defined by the following two vertices:   
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and 
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where C1 is the concentration in the first reactor, C2 is the concentration in the 

second reactor, T1 is the temperature in the first reactor, FR is the recycle flow rate, Ps is 

the steam pressure and the time is in seconds. The objective is to control C2 and T1 by 

manipulating FR and PS. To assign equal importance to errors in C2 and T1, the errors in 

T1 were scaled through division by 100.  

 



 
 

 

 

69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Two CSTRs connected in series with a perfect separator (Samyudia et al. 

1994). 

 
 

The model given in (3.42) was also used as the nominal model for designing the 

MPC controllers. The above models were discretized using a sample time of 1 sec. By 

examining the model, C2 should be paired with FR and T1 should be paired with Ps. In 

(Samyudia et al. 1994) two plant decompositions for decentralized control were 

proposed; namely, a physical decomposition based on material and energy balances 

around each reactor, and a mathematical decomposition in which each decomposed 

subsystem is composed from either the material balances or energy balances of the two 

units. After ignoring the interactions between the two subsystems the resulting two 

decompositions are as follows:  
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1) Physical decomposition: 

Subsystem 1: 

[ ]

1.1002 0 0
11.7337 0.0214 0.0026

0 1

1 1
s

1 1

1
1

1

dC / dt C
P

dT / dt T

C
T

T

−� � � �� � � �
= +� � � �� � � �− −� � � �� � � �

� �
= � �

� �

 

Subsystem 2: 

1.1369 0.05522 2 RdC / dt C F= − +  

 
2) Mathematical decomposition: 

Subsystem 1: 

[ ]

1.1002 0.4463 -0.0368
0.6695 1 1369 0.0552

0 1

1 1
R

2 2

1
2

2

dC / dt C
F

dC / dt C.

C
C

C

−� � � �� � � �
= +� � � �� � � �−� � � �� � � �

� �
= � �

� �

 

Subsystem 2: 

10 0214 0.00261 SdT / dt . T P= − −  

The index γopt was calculated according to (3.39) for each decomposition to 

compare their closed-loop performance. Following the calculation of the γopt numerical 

simulations were performed with the input weights calculated from problem (3.39) in 

order to verify the validity of the analysis. To quantify the performance in simulations, an 

index γsim was calculated following definition (3.34) as the ratio of the sum of square 

errors and the sum of squared input changes. The computed values of γopt and γsim  are 

summarized in Table 3.1 for step-changes in C2. The following parameters were used 

Hp=300, Hu=100, α = 0.6 and Qi = I2. Equations (3.14)-(3.15) were used to formulate 
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the closed-loop systems for the set-point tracking problem. Since the analysis produces 

the worst case scenario, a worst signal for set-point tracking was sought for the purpose 

of simulation and comparison to the analysis. There is no systematic method to find the 

signal that will result in the worst γsim and therefore the search was done by trial and 

error. Two successive square pulses in set-point of magnitude 1 and -1 respectively and 5 

minutes duration were simulated since these signals were found to give large values of 

γsim. To approach the actual process behavior, the model representing the actual process 

was varied in time within the uncertainty values assumed in the analysis. Calculations 

were done with (γopt, uncer) and without uncertainty (γopt, nom). Figures 3.3-3.4 show the 

controlled output response and Figures 3.5-3.6 show the manipulated variables for the 

case with uncertainty. Although the analysis is conservative, the simulation results are 

consistent with the analysis, i.e. the physical decomposition is consistently better than the 

mathematical decomposition.  The conservatism of the analytical results versus the 

simulation results is due to the fact that the analysis predicts a bound on the worst error 

whereas the simulations may not necessarily correspond to the worst case scenario which 

cannot be found in a systematic fashion.  While the analysis concludes that both 

decompositions may have a comparable closed-loop performance when there is no model 

error the difference in performance becomes clear when uncertainty is introduced. By 

comparing (γopt, nom) and (γopt, uncer) for the two decompositions, when there is a plant-

model mismatch it is clear that uncertainty has more effect on the performance of 

mathematical decomposition.  The same conclusion is obtained in simulations by 

examining γsim for both decompositions. Figure 3.3 shows that the mathematical 

decomposition results in a more sluggish concentration response compared to the 
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physical decomposition. In addition, as seen in Figure 3.4, the control based on 

mathematical decomposition results in large overshoots in the temperature whereas the 

control based on physical decomposition results in smaller overshoots.  

 
Figure 3.3 Dynamic response of C2: set-point (dotted line), mathematical decomposition 

(solid line), physical decomposition (dash-dotted line).  

 
Figure 3.4 Dynamic response of T1: set-point (dotted line), mathematical decomposition 

(solid line), physical decomposition (dash-dotted line).  
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Figure 3.5 Controller output FR: mathematical decomposition (solid line), physical 

decomposition (dash-dotted line).  

 
Figure 3.6 Controller output Ps: mathematical decomposition (solid line), physical 

decomposition (dash-dotted line).  

 
The conclusion that the physical decomposition is better is highly dependent on 

the magnitude and structure of the uncertainty. For example, it was shown in that for a 

different uncertainty description the mathematical decomposition is better (Al-Gherwi et 

al. 2008). 
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Table 3.1 Results of analysis and simulation 

 Mathematical decomposition Physical Decomposition 

γopt, nom 0.48 0.47 

γsim 0.21 0.28 

λλλλopt -2

0.54 0
0 3.4×10

� �
� �
� �

 
-4

-2

6.6×10 0
0 1.9×10

� �
� �
� �

 

γopt, unce 1.26 1.07 

γsim 0.62 0.21 

λλλλopt -2

2.1 0
0 4.7×10

� �
� �
� �

 -4

0.25 0
0 2.8×10

� �
� �
� �

 

 

 

3.4.2 Case 2: Comparison of strategies with different degrees of coordination for a 

high-purity distillation column 

To illustrate the use of the proposed methodology for solving the control structure 

selection problem the example of high-purity column studied in (Skogestad and Morari 

1988) is considered. The example is challenging due to the high condition number of the 

process and its sensitivity to model error. The following nominal state-space continuous-

time model is considered:          

                               

 
-0.0133 0 0.0117 0.0115

0 -0.0133 0.0144 0.0146
1 1 1

2 2 2

x x u

x x u
� � � � � �� � � �

= +� � � � � �� � � �
� � � �� � � � � �

=y x

�

�                                      (3.44) 

 

where y1 and y2 are the top and bottom product compositions and  u1 and u2 are the reflux 

flow-rate and the boil-up. The time is in minutes and the above model is discretized with 
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a sampling time of 1 minute. To assess the effect of uncertainty, two cases were 

considered to represent the actual behavior of the process:  case i. a change of ± 20 % on 

the steady-state gains in (3.44) such that u1=1.2u1,model  ;  u2=0.8u2,model , case ii. a 

change of  ± 80 % on the steady-state gains in (3.44) such that u1=1.8u1,model  ;  

u2=0.2u2,model.  First a series of predefined control structures was compared by solving 

problem (3.39).  Accordingly, the closed-loop performance, given in terms of γopt, was 

calculated for each one of the three MPC strategies: centralized, fully decentralized and 

Nash-based distributed MPC. The following parameters were assumed for the three 

controllers as follows: Hp = 20, Hu = 5, α = 0.99 and Qi = I2. The nominal model in 

(3.44) can be decomposed into two subsystems using the interactive model (3.18-3.19) as 

follows: 

 

Subsystem 1: 

-0.0133 0.0117 0.01151 1 1 12 2

1 1

x x u u

y x

δ= + +
=

�
 

Subsystem2:  

-0.0133 0.0146 0.01442 2 2 21 1

2 2

x x u u

y x

δ= + +
=

�

 

 

For fully decentralized MPC δ12 = δ21 = 0 whereas for Nash-based distributed MPC δ12 = 

δ21 = 1. By inspecting the two subsystems one can see that the interaction occurs through 

the inputs only but not through the states. The set-point tracking problem was considered 

and therefore the closed-loop formulation given in (3.14)-(3.15) was used. The analytical 
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and simulation results for γopt and γsim are summarized in Table 3.2 and the dynamic 

responses of the system to series of unit set-point changes in y1 for cases i and ii are 

shown in figures 3.7-3.10. 

 

Table 3.2 Results of analysis and simulation for different MPC strategies 

  Centralized Decentralized Nash-Based 

γopt, nom 0.01 0.33 0.01 

γsim ≈ 0 0.12 ≈ 0 

λλλλopt 
-7

-7

1.003×10 0
0 1.05×10

� �
� �
� �

 
-5

-5

2.5×10 0
0 2.5×10

� �
� �
� �

 
-5

-5

1.02×10 0
0 1.02×10

� �
� �
� �

 

γopt, unce, i 0.22 0.38 0.19 

γsim 0.10 0.14 0.064 

λλλλopt 
-6

-5

3.01×10 0
0 7.91×10

� �
� �
� �

 
-4

-5

4.13×10 0
0 2.99×10

� �
� �
� �

-3

-7

8.93×10 0
0 4.57×10

� �
� �
� �

γopt, unce, ii 1.99 0.72 2.37 

γsim 0.66 0.36 0.70 

λλλλopt 
-5

-3

9.69×10 0
0 1.57×10

� �
� �
� �

 
-21.68×10 0

0 0

� �
� �
� �

 
-5

-5

1.48×10 0
0 3.54×10

� �
� �
� �

 

 

Similar to the previous example, the results of analysis, even though more 

conservative, are consistent with the results of the simulation. The results are showing 

high sensitivity of centralized and Nash-based strategies to model uncertainty (γopt, uncer). 

Accordingly, there is a significant increase of errors for the two cases with the 

uncertainty specified above as compared to the nominal case (γopt, nom), i.e. the case 

without uncertainty. In contrast, although the fully decentralized MPC at nominal case 
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shows poor performance since the interaction information is ignored, the performance did 

not change by much when the uncertainty is considered (case i). Moreover, for case ii for 

which a larger uncertainty is considered, the fully decentralized MPC performs better 

than the other two strategies showing more robustness to model errors. In conclusion, in 

the presence of model error, especially when this uncertainty is present in the interaction 

terms, both centralized and Nash-based strategies are more sensitive to model errors than 

the fully decentralized strategy. Simulation results for case i given in Figures 3.7 and 3.8 

show that the performance of both centralized and Nash-based is almost identical and 

slightly better than fully decentralized performance. Similarly, the simulation results for 

case ii, shown in Figures 3.9 and 3.10, indicate that the fully decentralized MPC 

controller outperforms both the centralized and the Nash-based strategies exhibiting 

smaller overshoots in both y1 and y2.  

 

 

Figure 3.7 Dynamic response of y1 and y2 for case i (± 20 % errors): Centralized (solid 

line), fully decentralized (dashed line), Nash-based (dash-dotted line).  
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Figure 3.8 Inputs u1 and u2 for case i (± 20 % errors): Centralized (solid line), fully 

decentralized (dashed line), Nash-based (dash-dotted line). 

 

 

Figure 3.9 Dynamic response of y1 and y2 for case ii (± 80 % errors): Centralized (solid 

line), fully decentralized (dashed line), Nash-based (dash-dotted line).  
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Figure 3.10 Inputs u1 and u2 for case ii (± 80 % errors): Centralized (solid line), fully 

decentralized (dashed line), Nash-based (dash-dotted line).  

 

3.4.3 Case 3: Controller structure selection for a high-purity distillation column 

The results obtained from the two previous case studies motivate the need for a 

methodology that selects the best distributed MPC structure. The methodology outlined 

in problem (3.41) is used to search for the optimal trade-off between robust closed-loop 

performance and controller structure complexity. The methodology was applied to the 

high-purity distillation column of example 2 for the two uncertainty scenarios described 

in the previous subsection. For the current case study, the variables to be optimized are in 

addition to the manipulated variables weights λλλλopt, the two binary variables δ12 and δ21 

that determined the interactions considered in the controller. The results are summarized 

in tables 3.3 and 3.4 for the two cases of model errors. Different values of β were used to 

solve the MINLP in (3.41) in order to see the effect of this weight on the solution. Table 

3.3 shows that for the first case  the performance index γopt dominates the solution 
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resulting in nonzero values for the binary variables up to a weight of β = 0.75. For  β 

≤ 0.75, the contribution of the connectivity term C becomes more important leading to 

the selection of the fully decentralized MPC over the Nash-based or centralized strategies 

that require full communication. In table 3.4 it is shown that the fully decentralized MPC 

has already better performance at this level of uncertainty as also found earlier and 

therefore there is no need to optimize any further by considering the contribution of C.           

 

Table 3.3 Results for case i with ± 20 % errors 

β λλλλopt δδδδij γopt C Total cost 

1.0 -3

-7

8.93×10 0
0 4.57×10

� �
� �
� �

 
[1 1] 0.19 1 0.19 

0.9 -3

-7

8.93×10 0
0 4.57×10

� �
� �
� �

 
[1 1] 0.19 1 0.27 

0.75 -4

-5

4.13×10 0
0 2.99×10

� �
� �
� �

 
[0 0] 0.38 0.0 0.28 

     

Table 3.4 Results for case ii with ± 80 % errors 

β λλλλopt δδδδij γopt C Total cost 

1.0 -21.68×10 0
0 0

� �
� �
� �

 
[0 0] 0.72 0.0 0.72 

 

3.4.4 Case 4: Selection of Control Structure for a reactor/separator system 

In this study a reactor/separator process is considered that consists of four main unit 

operations; reactor with preheater, extractor, flash drum, and distillation column (Lee et 

al. 2000). A schematic of the process is depicted in Figure 3.11. The process has five 

outputs controlled by five manipulated inputs and two input disturbances. Table 3.5 
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summarizes these inputs and outputs. A dynamic model of the process with 19 state 

variables was obtained from first principles. Steady-state information can be found in 

(Lee et al. 2000).  

 

 

 

 

Figure 3.11 Reactor/separator system (Lee et al. 2000). 

 

 

Table 3.5  Inputs and outputs of the reactor/separator process 

Controlled outputs Manipulated inputs Input disturbances 

y1, reactor temperature 

y2, raffinate composition 

y3, product composition 

y4, bottoms composition 

y5, flash-drum pressure 

u1, steam flow rate 

u2, make-up flowrate 

u3, reflux flowrate 

u4, boil-up rate 

u5, purge-flowrate 

d1, flowrate to the reactor 

d2, bottom flowrate 
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It is assumed that the two disturbances are unmeasured but they are known to vary 

between 10 to 20 kmol/hr with a nominal value of 15 kmol/hr. Thus the nominal model, 

as per the structure  defined in (3.1)-(3.2), is obtained by linearizing the nonlinear 

differential equations around the disturbances nominal flow rates and four other models 

representing the actual process are also obtained via linearizations around the operating 

conditions [d1,d2] = {[10,10],[10,20],[20,10],[20,20]} which describe the vertices in (3.6). 

The models are scaled using the steady-state values of the states, inputs, and outputs (Lee 

et al. 2000) The linearized nominal model of the entire process is then decomposed into 

five subsystems based on the main unit operations. The distillation column is 

decomposed further into two subsystems one for the rectifying section and one for the 

stripping section that also includes the feed tray. Table 3.6 shows these subsystems and 

their local and interaction information. As seen in Table 3.6 the subsystems are not fully 

interacting and by inspection it can be concluded that there are eight binary variables δij. 

Although subsystem 2 is affected by subsystems 1 and 4, for simplicity the binary 

variables relating subsystem 2 to subsystems 1 and 4 were merged together reducing the 

total number of binary variables to 7, i.e. {δ14, δ21, δ32, δ34, δ42, δ43, δ52} where δ21=δ24. 

The following parameters were set for the analysis Hp = 10, Hu = 2, αw = 0.99 and Qi = 

I5. The closed-loop systems were formulated for the disturbance rejection problem 

according to equations (3.16)-(3.17). It should be pointed out that the MATLAB® 

balanced realization routines balreal and modred for model reduction were employed to 

reduce the size of the resulting closed-loop system since the original size is not minimal 

and this was found to affect the numerical accuracy of the LMI computations. The 

outputs obtained from the reduced model were found in good match to those obtained 
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from the full model with average error of (< 1%) between the full model and reduced 

models.  

The methodology explained earlier was applied for β = 0.9 and the results are 

summarized in Table 3.7. The results show that all the interactions can be ignored except 

for δ34 and δ43 that represent the interactions in the distillation column unit. The 

methodology indicated that ignoring the interaction information in the column system 

resulted in the violation of the stability constraint (3.36) for any selection of input 

weights. This conclusion was confirmed by simulation. To simulate the process, d1 and d2 

are changed as shown in Figure 3.12. The nonlinear differential equations representing 

the process were simulated using the Euler method with a sampling time of 0.001 hr. The 

performance of the distributed MPC structure that resulted from the application of the 

methodology is compared with a centralized MPC in terms of γopt and found to be 0.58 

and 0.55; respectively. Similarly, the performance obtained from simulation γsim for both 

distributed MPC and centralized MPC is found to be 0.27 and 0.26; respectively. The 

analysis indicates that centralized MPC may result in slightly better performance over the 

distributed MPC with the structure obtained above. The simulation results show, similar 

to the analysis, a very small difference in performance which justifies the simple structure 

used in the proposed distributed MPC strategy. The responses of the controlled outputs 

y1-y4 are almost identical for both strategies except y5 where centralized MPC shows a 

slightly better performance as shown in Figure 3.13. Thus, it can be concluded that the 

proposed methodology provides a solution that achieves a trade-off between performance 

and structure complexity. 
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Table 3.6 Subsystems information (# refers to the state number in the dynamic model) 

Subsystem Local states 
xii 

Effect of states from 
other subsystems xij 

Local inputs 
ui 

Effect of inputs from 
other subsystems uj 

1. reactor+preheater x11=#1-4,19 
(y1 = #3) 

x14=#16 
 

u1 
 

u4 

2.extractor x22=#5,6 
(y2 = #5) 

x21 = #1,2  
x24=#16 

u2  

3. distillation (rectifying 
section) 

x33=#7-11 
(y3 = #7) 

x32 = #5  
x34=#12,16 

u3 u2, u4 

4. distillation (stripping 
section including feed tray) 

x44=#12-16 
(y4 = #16) 

x42 = #5,6  
x43=#11 

u4 u2, u3 

5. flash-drum x55=#17,18 
(y5 = #18) 

x52 = #5 u5 u2 

 

 

Table 3.7 Results of a reactor/separator system 

β λλλλopt δδδδij γopt C Total cost 

0.9 [0.12 2.02 4.10 3.72 0.4] I5 [0 0 0 1 0 1 0] 0.58 0.29 0.55 

 

 

Figure 3.12 Input disturbances used in simulation. 
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Figure 3.13 Dynamic response of y5: Centralized (solid line), Distributed MPC (dotted 

line) 

 

3.5 Conclusion 

In this chapter a new methodology has been proposed for comparing distributed MPC 

strategies with different degrees of coordination in the presence of model error. The 

technique is based on the quantification of the robust performance based on a variability 

index that can be calculated by a system of LMI’s. This index was also used within an 

MINLP formulation to search for an optimal tradeoff between robust performance and 

controller structure complexity. A simple connectivity index was used within the MINLP 

formulation to represent the cost of interactions considered within the distributed MPC 

strategy. Four case studies were considered to illustrate the methodology and the 

simulation results were consistent with the conclusions obtained from the analysis.  
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CHAPTER 4 

A Robust Distributed Model Predictive Control Algorithm 

Adapted from Al-Gherwi et al. (2009) and parts of this chapter were submitted to Industrial & Engineering Chemistry Research  

 
4.1 Overview 

Distributed Model Predictive Control (DMPC) has received significant attention 

in the literature. However, the robustness of DMPC with respect to model errors has not 

been explicitly addressed. In this chapter, a novel online algorithm that deals explicitly 

with model errors for DMPC is proposed. The algorithm requires decomposing the entire 

system into N subsystems and solving N convex optimization problems to minimize an 

upper bound on a robust performance objective by using a time-varying state-feedback 

controller for each subsystem. Simulations examples are considered to illustrate the 

application of the proposed method. 

 

4.2 Introduction 

Distributed model predictive control (DMPC) has received significant attention in 

the literature in recent years. The key potential advantages of DMPC are: i) it can provide 

better performance than fully decentralized control especially when the interactions 

ignored in the latter approach are strong, and ii) it can maintain flexibility with respect to 

equipment failure and partial plant shutdowns that may jeopardize the successful 

operation of centralized MPC. The basic idea of DMPC is to partition the total system of 

states, controlled and manipulated variables into smaller subsystems and to assign an 

MPC controller to each subsystem. The design of all the reported DMPC strategies is 

composed of three parts: (1) Modeling: each controller has access to a local dynamic 
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model of the corresponding subsystem along with an interaction dynamic model that 

represents the influence of the other subsystems. These models can be obtained by 

directly decomposing a centralized model of the process (Rawlings et al. 2008). (2) 

Optimization: each MPC solves a local optimization problem. Some reported strategies 

use modified objective functions that take into account the goals of other controllers to 

achieve full coordination (Venkat 2006; Zhang and Li 2007) whereas some others use 

strictly local objectives (Li et al. 2005), e.g. a Nash-equilibrium objective. (3) 

Communication: at every control time interval all the controllers exchange their 

respective solutions. These three steps are executed at each time interval in an iterative 

manner until convergence among the controllers is reached. Venkat (2006) showed that 

increasing the iterations allows the DMPC strategy to reach the optimal centralized 

solution while the termination at any intermediate iteration maintains system-wide 

feasibility. Zhang and Li (2007) analyzed the optimality of the iterative DMPC scheme 

and derived the closed-form solution for an unconstrained DMPC and showed that it is 

identical to the centralized MPC solution. Several related strategies appear in the 

literature. Motee and Sayyar-Rodsari (2003) proposed an algorithm for optimal 

partitioning of the process model into subsystems to be used with distributed MPC. In 

that work an unconstrained distributed MPC framework was used and then a weighting 

matrix was defined to convert the distributed system into a directed graph. Al-Gherwi et 

al. (2010) proposed a methodology for selecting the control structure in the context of 

distributed model predictive control that achieves a trade-off between closed-loop 

performance in the presence of model uncertainty and structure simplicity by solving a 

mixed integer nonlinear program (MINLP). Aiming at reducing the computationally 
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demanding quadratic dynamic matrix control (QDMC), a decentralized QDMC algorithm 

was proposed by Charos and Arkun (1993). In this algorithm, it was assumed that the 

effect of other subsystems on a particular local controller is kept unchanged from the 

previous sampling time so iterations were not required leading to a significant reduction 

in computations but with loss in performance. Katebi and Johnson (1997) proposed a 

decomposition-coordination scheme for generalized predictive control. Jia and Krogh 

(2001) explored a distributed MPC strategy in which the controllers exchange their 

predictions and incorporate this information in their local policies. Camponogara et al. 

(2002) discussed the distributed MPC problem and reported an algorithm for cooperative 

iteration. In addition, the authors proposed heuristics for handling asynchronous 

communication problems and studied the stability characteristics of distributed MPC. 

Mercangöz and Doyle (2007) proposed a distributed model predictive estimation and 

control framework. Liu et al. (2009) proposed a distributed MPC scheme for nonlinear 

systems by designing two Lyapunov-based MPC controllers one to guarantee stability 

and the other one to enhance the performance. The proposed scheme requires the 

controllers to communicate only once in a sequential manner at each sampling interval. 

Based on the Dantzig-Wolfe decomposition and a price-driven approach, a distributed 

MPC framework for steady-state target calculations was proposed by Cheng et al. (2007 

& 2008). A comprehensive review on distributed MPC has been recently presented by 

Scattolini (2009).   

 

The common feature of the reported strategies is that they employ a nominal 

model of the plant and rely on feedback to compensate for plant-model mismatch. 
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However, plant–model mismatch may have a significant impact on stability and 

performance. Thus, the robustness of DMPC strategies to model errors has been 

identified as a key factor for the successful application of DMPC (Rawlings et al. 2008). 

To the authors’ knowledge, the robust DMPC literature is very limited although there is a 

significant work focused on robust MPC in centralized architecture. Kothare et al. (1996) 

proposed a methodology for robust centralized constrained MPC design that maintains 

robust stability and minimizes a bound on performance in the presence of model errors. 

The problem is formulated as a convex optimization problem with linear matrix 

inequalities (LMI) that is solved efficiently using available algorithms (Boyd et al. 1994) 

and can be used for on-line implementations. This method has been recognized as a 

potential candidate for use in process industry to handle the issue of plant-model 

mismatch (Qin and Badgwell 2003).  

 

The aim of this chapter is to present an iterative online algorithm for Robust 

DMPC to be referred thereafter as RDMPC that explicitly deals with model errors. An 

LMI-based predictive control formulation (Kothare et al. 1996) has been modified into an 

on-line iterative algorithm for RDMPC. It will be shown that the proposed iterative 

algorithm can be formulated so as to provide stability and to achieve different control 

objectives. The control objectives considered in the current work correspond to the 

objectives used for cooperative control, decentralized control and Nash equilibrium. At 

convergence the cost function value of cooperative control is equal to the cost function of 

centralized control. When an overall objective is used the iterative algorithm is shown to 

converge to the centralized controller following iterations. The chapter will also discuss 
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the computational effort involved in the proposed iterative RDMPC scheme that can be 

computationally demanding when a large number of iterations have to be conducted until 

convergence. However, it will be shown that the use of a relatively smaller number of 

iterations may still offer performance improvement while resulting in acceptable 

computational effort.  This chapter is organized as follows. In section 4.3 the proposed 

algorithm is presented. The convergence property and feasibility and robust stability are 

also discussed in this section. The application of the algorithm is illustrated using three 

case studies in section 4.4. Conclusions are presented in Section 4.5. 

 

4.3 Definitions and Methodology  

4.3.1 Models 

In this work, it is assumed that the process model is given by a linear time-varying 

(LTV) model of the form:  

 

                                       ( ) ( ) ( ) ( ) ( )k 1 k k k k+ = +x A x B u                                    (4.1) 

 

where    n m;∈ℜ ∈ℜx u  are the process states and inputs; respectively. The actual plant 

can be represented by a family of models which can be mathematically described by a 

polytopic model as follows: 

 

                          ( ) ( )[ ] [ ]  
L L

( l ) ( l )
l l l

l 1 l 1
k k ; 1; 0β β β

= =
= = ≥� �A B A B                        (4.2) 
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Each vertex l corresponds to a linear model obtained from linearizing a nonlinear model 

or identification of a linear model in the neighborhood of a particular operating point. It is 

assumed that the states are available either through direct measurement or through 

estimation to all subsystems. The states and manipulated variables in model (4.1) can be 

decomposed into N subsystems as follows: 
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                 (4.3)  

            

where  { }   ii in m
ii ii 1, ,N ; ;∈ ∈ℜ ∈ℜx u� . For example, in model (4.3) the ith controller for 

the ith subsystem is to be designed based on the following model: 

 

                   ( ) ( ) ( ) ( ) ( ) ( ) ( )
N

i i i i i j j
j 1
j i

k 1 k k k k k k
=
≠

+ = + +�x A x B u B u                       (4.4)  

 

and using the concept of a polytopic model  given in (4.2) it is assumed that the ith 

subsystem (4.4) can be represented as follows: 
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( ) ( ) ( )[ .. ..] [ .. ..] { }
L

( l ) ( l ) ( l )
i i j l i i j

l 1
k k k j 1,...,N , j iβ

=
= ∀ ∈ ≠�A B B A B B        (4.5) 

 

where i 11 ii NN, , , , ′′ ′ ′ ′� �= � �x x x x�� �� is the vector of states of subsystem i containing 

states xii that can be measured locally augmented with states xjj that are measured in the 

other subsystems and are communicated among the subsystems. Therefore the matrix 

( )i kA contains all the elements of the matrix ( )kA . Model (4.4) also includes the effect 

of local controller ui and the other controllers uj with corresponding matrices defined as: 

 

                         
( ) ( ) ( )

( ) ( ) ( ) { }

i 1i Ni

j 1 j Nj

k k , , k

k k , , k j 1,...,N , j i

′� �′ ′ ′=
� �

′� �′ ′ ′= ∀ ∈ ≠
� �

B B B

B B B

��

��

                    (4.6) 

 

The general model in (4.4) can be used to represent special limiting cases such as the 

decentralized case where all the interactions are ignored, e.g. [ ] { }'
j j 1,...,N , j i= ∀ ∈ ≠B 0 . 

 

4.3.2 Robust Performance Objective  

A formulation for a centralized problem whereby an upper bound on a robust 

performance objective is minimized was reported by Kothare et al. (1996). In the current 

work a similar formulation is used but the minimization is simultaneously done for every 

subsystem i defined by (4.4) for which the following min-max problem is solved: 
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( ) ( ) ( ) ( )

( )

( )

[   ]
  

              

i i ji
ik n k n k n ,n 0k n k

max
i i

min max J k

s.t.

k n k , n 0

+ + + ≥+

+ ≤ ≥

A B Bu

u u

                                        (4.7) 

 

A local objective Ji(k) can be defined as follows: 

 

      
( ) ( ) ( ) ( ) ( )

( ) ( )
[

                                                          ]

i i i i i i i
n 0

N

j j j
i 1
i j

J k k n k k n k k n k k n k

k n k k n k

∞

=
• •

=
≠

′ ′= + + + + +

′+ + +

�

�

x S x u R u

u R u
              (4.8) 

 

where iS > 0, Ri > 0, Rj > 0. The above objective takes into account the goals of the other 

controllers, third summation in the RHS, in order to achieve the global objective of the 

entire system. The superscript “•” indicates that the solution was obtained in a previous 

iteration and remains fixed in the current iteration as will be explained later. In this work 

the cooperative control problem objective in (4.8) is modified to solve two additional 

control objectives:  Nash equilibrium and decentralized control. Both of these strategies 

are based on minimizing local objectives of the subsystems. The difference is that for 

Nash the interaction information is shared among the subsystems while for decentralized 

control the interaction information is ignored. Accordingly, for both Nash and 

decentralized control the weights iS and Ri in (4.8) should be modified. Accordingly, iS  

becomes a diagonal matrix where all the diagonal elements are set to zero except the one 

corresponding to the states of subsystem i and all Rj in the summation term in (4.8) are 

set to zero except Ri.  
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In practical situations, a decentralized architecture may become a viable option to 

address communication failures if it can provide stability. On the other hand, for cases 

where interacting units belong to different companies that agree to exchange information 

while pursuing local objectives, a Nash equilibrium based strategy may be the scheme of 

choice.  

 

Since the objective in (4.8) has an infinite time horizon, the problem of finding 

infinite ui is computationally intractable. Instead, a state-feedback law is sought for each 

subsystem i as follows: 

 

                  ( ) ( ) ( ) ( )
N

i ii ii ij ij i i
j 1
j i

k n k k n k k n k k n k
=
≠

+ = + + + = +�u F x F x F x           (4.9) 

similarly, 

                 ( ) ( ) ( ) ( )
N

j jj jj ji ji j i
i 1
i j

k n k k n k k n k k n k• • • •

=
≠

+ = + + + = +�u F x F x F x       (4.10) 

 

Substituting these state-feedback laws in (4.4) leads to the following closed loop model: 

 

                               ( ) ( ) ( ) ( )( ) ( )i i i i ik 1 k k k k+ = +x A B F x�                                  (4.11) 

 

( ) ( ) ( ) ( )where   
N

i i j j
j 1
j i

A k A k B k F k•

=
≠

= +��  
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It is assumed that there exists a quadratic function ( ) ( ) ( )  i i i i iV k k k ,′= x P x P > 0, so that, 

for any plant in (6), this function satisfies the following stability constraint: 

   
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
[

                                                                 ]

i i i i i i i i
N

j j j
i 1
i j

V k n 1 k V k n k k n k k n k k n k k n k

k n k k n k• •

=
≠

′ ′+ + − + ≤ − + + + + +

′+ + +�

x S x u R u

u R u  

                                              n 0≥                                                                          (4.12) 

 

Substituting (4.11), the robust stability constraint in (4.12) becomes: 

 

( ) ( )
( ) ( ) ( ) ( )                         [ ]

i i

i i i i i i

V k n 1 k V k n k

k n k k n k k n k k n k

+ + − + ≤
′ ′− + + + + +x S x u R u�

           (4.13) 

 

where ( ) ( )
N

i i j j j
i 1
i j

k n k k n k• •

=
≠

′= + + +�S S F R F�               

which, for all n 0≥ , is given by: 

                 ( ) ( ) ( ) ( )i i i i i i i i i i i ik n k n k n k n 0′� � � � ′+ + + + + + − + + ≤� � � �A B F P A B F P F R F S� � �     

(4.14) 

 

By defining an upper bound, γi i.e.  

                                                    

                                       ( ) ( ) ( ) ( )i i i i i iJ k k k V k γ′≤ = ≤x P x                                   (4.15) 
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and substituting the parameterization 1
i i i

−′=F Y Q , 1
i i iγ −=Q P , followed by a Schur 

complement decomposition on (4.14) and (4.15), and using the input constraints given in 

(4.7) it can be shown that the minimization of ( )iJ k can be replaced by the minimization 

of its upper bound iγ   as in the following linear minimization problem with LMI 

constraints (Kothare et al. 1996): 

                           

( )
( )

                        

                 

                                           {

i i i
i, ,

i

i i

( l ) ( l ) 1/ 2 1/ 2
i i i i i i i i i

i

i

i

min

s.t.
1 k

0
k

*
0

* *

* * *
l 1,...,L

γ
γ

γ
γ

′� �
≥� �

� �
� �′ ′ ′ ′+
� �
� �≥
� �
� �
� �� �

∀ ∈

Q Y

x
x Q

Q Q A Y B Q S Y R
Q 0 0

I 0
I

� �

( )
}

                 
2max

i i

i i

0
� �

≥� �
′� �� �

u I Y

Y Q

                                (4.16) 

 

The key difference between the centralized control algorithm proposed by 

Kothare et al. (1996) and the distributed strategy proposed in this work is that every 

controller in the set { }i 1, ,N∈ � solves a local problem as in (4.16) and then the solutions 

are exchanged in an iterative scheme as will be explained in more details in the next 

subsection. It should be remembered that one of the reasons to use distributed MPC 

strategies is to address real time computation issues when dealing with large-scale 

processes (Li et al. 2005). Although the iterations in the proposed scheme may increase 

the computational time, the problem defined in (16) is numerically advantageous as 

compared to solving the same problem for the whole system (centralized control). The 
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reason is that the state feedback controller for each subsystem i is obviously of smaller 

dimensions than a state feedback controller of the centralized MPC strategy. For instance, 

iY  for subsystem i is of dimension (n × mi) instead of (n × m) for centralized system 

where m is the total number of manipulated variables of the entire process. As shown in 

the case studies presented later in the manuscript, even with the presence tof the iterative 

nature of the proposed algorithm implementation can still be performed in real time for 

many applications.  

 

4.3.3 Robust DMPC Algorithm 

This section presents the main result of the current work where an on-line 

algorithm for RDMPC is proposed. We consider the case where controllers can freely 

communicate and exchange information. . The algorithm proceeds according to the 

Jacobi iteration method used for the solution of systems of algebraic equations. The 

procedure is summarized in Algorithm 4.1 below. 

 

Algorithm 4.1 (RDMPC) 

Step 0 (initialization): at control interval k=0 set Fi=0. 

Step 1 (updating) at the beginning of control interval (k) all the controllers exchange 

their local states measurements and initial estimates Fi’s via communication, set 

iteration t = 0 and ( 0 )
i i=F F . 

Step 2 (iterations)  

while t ≤ tmax 
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Solve all N LMI problems (4.16) in parallel to obtain the minimizers ( ) ( )t t
i i,Y Q  to estimate 

the feedback solutions ( ) ( ) ( )t t 1 t

i i i

−′=F Y Q . If problem is infeasible set ( ) ( )t t 1
i i

−=F F . Check the 

convergence for a specified error tolerance iε  for all the controllers 

    if ( ) ( ) { }  1t t 1
i i i i ,...,Nε−− ≤ ∀ ∈F F  

          break 

    end if    

Exchange the solutions Fi’s  and set t = t + 1 

end while 

Step3 (implementation) apply the control actions ui = Fixi to the corresponding 

subsystems, increase the control interval k = k + 1, return to step1 and repeat the 

procedure. 

 

Algorithm 4.1 is implemented in MATLAB® and problem (4.16) is solved via 

MATLAB® LMI solver using the function mincx. It should be pointed out that Algorithm 

4.1 computes state-feedback laws for every subsystem therefore full state measurement is 

assumed. When this assumption is not valid, the design of a state observer is required as 

will be discussed in a later section. In Step 1 at control interval k, the feedback solutions 

obtained in the previous interval k-1 are used as initial estimates ( 0 )
iF  to start the 

iterations. Convergence of Algorithm 4.1 and its stability properties are discussed in the 

following subsection. 
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4.3.4  Convergence and Robust Stability Analysis of RDMPC Algorithm 

Lemma 1. (Rawlings et al. 2008) When a cooperative control objective is used each one 

of the N convex problems defined in Algorithm 4.1 will converge to the same solution 

which is the solution of the centralized problem, i.e.  1 i Nγ γ γ γ= = = = =� �  where γ  

is the performance upper bound of centralized MPC.  

 

Proof. For N subsystems: 

for Subsystem i ( ) ( ) ( ) ( )t t 1 t t 1
i i 1 i N( , , , )γ γ − −= F F F� �  

                                
( )

( ) ( ) ( ) { } 
t

i

t 1 t 1 t 1
i 1 i Nmin ( , , , ) i 1, ,Nγ − − −= ∈

F
F F F� � �  

similarly for Subsystem j ( ) ( ) ( ) ( )t t 1 t t 1
j j 1 j N( , , , )γ γ − −= F F F� �  

                                                
( )

( ) ( ) ( ) { } 
t

j

t 1 t 1 t 1
j 1 j Nmin ( , , , ) j 1, ,N , j iγ − − −= ∀ ∈ ≠

F
F F F� � �  

 

   Then from the convexity of problem (4.16) and for any i and j pair of subsystems,   

 

( ) ( )t t 1
i jγ γ −≤  and ( ) ( )t t 1

j iγ γ −≤  

 

and the reason being that both sides of these two inequalities are using the same value of 

( )t 1
j j

−=F F  and ( )t 1
i i

−=F F ; respectively. Thus, the �i’s continue to decrease from 

iteration to iteration until both inequalities become equalities. Since the minimizations are 

convex and each is leading to a global optimum, this occurs only when 

( ) ( )t t 1
i i

−=F F and ( ) ( )t t 1
j j

−=F F and consequently ( ) ( )   t t
i jγ γ γ= = { }i, j 1,...,N ,i j∀ ∈ ≠ , i.e. 
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the minimization with respect to both Fi and Fj gives the same solution which must be, 

following convexity of problem (4.16), equal to the global optimum of the centralized 

control problem that has an identical formulation to (4.16).  

To prove the robust stability of the proposed algorithm the following definitions 

are first given: 

 

Definition 1 (Invariant Set for Quadratic Stability, Boyd et al. 1994) The set 

{ }n 1 1ε −′= ∈ℜ ≤x x Q x  is said to be an invariant set for ( ) ( ) ( )�k 1 k k+ =x x  

where ( ) ( ) ( ) ( ) ( ) �
N

t
i i

i 1
k k k k

=

� 	= +
 �
� 

�A B F  if and only if 1−Q  

satisfies { }� �  1 ( l ) 1 ( l ) 0, l 1, ,L− −′− ≥ ∈Q Q � . As a result if ( )x k ε∈  then ( )x k 1 ε+ ∈ . 

 

Definition 2 (Intersection of Invariant sets, Boyd et al. 1994). If the 

sets { }n 1
i i 1ε −′= ∈ℜ ≤x x Q x , { }i 1, ,N∀ ∈ �  exist then there is a set

N

i
i 1

ε ε
=

=�  defined 

as { }n 1 1ε −′= ∈ℜ ≤x x Q x  where 
N

1 1
i i

i 1
0 τ− −

=
< ≤�Q Q , 

N

i
i 1

1τ
=

=� , i0 1τ≤ < .  

 

Then, the robust stability of Algorithm1 is given in Theorem 1. 

 

Theorem 1.  At sampling time k and any iteration t > 0, the state feedback 

solutions ( ) ( ) ( ) ( ) ( ) ( )t t 1 t

i i ik k k−′=F Y Q ,  { }i 1, ,N∈ � , obtained from Algorithm 1, robustly 
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asymptotically stabilize the closed loop system ( ) ( ) ( )�k 1 k k+ =x x  where ( )kA  and 

( )i kB belong to the polytopic description defined in (4.5) . 

 

Proof.  At time interval k the same set of measured or estimated states ( )kx  is available 

to all the controllers and at iteration t > 0, if the problem posed in (16) is feasible for all 

subsystems then the condition of definition 2 is satisfied. Accordingly, inequality (14) is 

satisfied at the intersection and can be written as: 

 

                                     
                                                                             

N N N
( l ) ( l ) ( t ) ( l ) ( l ) ( t ) ( t ) ( t )

i i i i i i i i
i 1 i 1 i 1

,
= = =

′� � � � � �′+ + − ≤ − +� � � � � �� � � � � �
� � �A B F P A B F P S F R F

{ }                                      
                                                                                                          
                                              

i 1,...,N∀ ∈
{ }                                                                     l 1,...,L∀ ∈

   

where 
N

1
i i

i 1
0 τ −

=
< ≤�P P , 

N

i
i 1

1τ
=

=� , i0 1τ≤ < . 

since iS > 0, Ri > 0, and 1γ −=P Q we have 

� �  1 ( l ) 1 ( l ) 0, l 1,...,N ,− −′− ≥ =Q Q which satisfies definition 1 and thus x(k+n), n > 0 

belong to the invariant set { }n 1 1ε −′= ∈ℜ ≤x x Q x  and ( ) 0∞ →x  �  

 

The solution of problem (4.16) at time k and iteration t if initially feasible then it 

is also feasible at all future sampling intervals (k + n), n > 0. This is because the only 

constraint that depends on the states is the first constraint in (4.16), i.e. 

( ) ( )1k n k n 1,n 0−′+ + ≤ >x Q x  and the states are given by 
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( ) ( ) ( ) ( )
N

( t )
i i

i 1
k n k k k n 1 ,n 0

=

� 	+ = + + − >
 �
� 

�x A B F x . This constraint can be shown 

feasible by using definition 1 for invariant set that is satisfied at time k following the 

same treatment as in Kothare et al. (1996). 

 

Remark 1 It should be pointed out that at convergence 1 1 1 1
1 N centralized

− − − −= = = =Q Q Q Q� . 

This does not hold for the case of Nash since 1−Q ≠ 1
centralized
−Q and therefore a loss of 

performance is expected. The reason is that in the Nash scheme each subsystem satisfies 

its own objective function. A simple example illustrating this point is presented in 

example1. 

  

Remark 2 Although theoretical convergence of the Jacobi iteration was proven, it was 

found that numerical noise may exist due to inaccuracies of the LMI solvers in obtaining 

the solution of problem (4.16). Consequently, to speed up convergence in the presence of 

this numerical noise when Algorithm 4.1 is implemented, the successive Relaxation (SR) 

method is employed (Hageman and Young 1981). The SR method is applied to the 

solution obtained from (4.16) for each subsystem to estimate a weighted average between 

the current and previous iterate solutions. The method is given by the following 

recurrence formula: 

 

       ( ) ( ) ( ) ( )t 1 t 1 t

i i i1α α+ += + −F F F                                          (4.17) 
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where α  is a parameter to be specified by the user in order to accelerate convergence. 

( )t 1

i

+F  denotes the solution obtained at the current iteration from (4.16) whereas ( )t 1

i

+F  is 

the estimate to be used in the next iteration. Typically, α can be chosen from values 

between 0 and 2 and when it is set to 1 the original Jacobi iterative scheme is retrieved. 

Since there is no systematic way to select a value for α  in advance, simulations with 

different values of α were performed to find a suitable value.  

 

4.3.5 RDMPC Algorithm with Output Feedback 

It is very common in industrial practice that the states of the system cannot be 

fully measured due to lack of sensors or because they have no physical meaning as a 

result of transformation from transfer-matrix description to state-space models. Therefore 

a state observer is necessary to estimate the states. In this work, Algorithm1 can still be 

used but the states ( )kx  are substituted by their estimates denoted as ( )ˆ kx . The observer 

is designed based on a nominal model of the system [A,B,C] that corresponds to the state 

space model parameters at the center of the polytopic description given in (4.2). Then, an 

observer based on the centralized model is embedded with each subsystem that receives 

all the output measurements and control actions from the other subsystems at interval k in 

order to perform state estimation. The reason behind using a centralized model is to 

satisfy the condition in Definition 2 that the controllers receive the same state estimates. 

This estimation is conducted according to the following observer equation: 

 

    ( ) ( ) ( ) ( ) ( )( )
N

t
i i

i 1

ˆ ˆ ˆk 1 k k k
=

� 	+ = + + −
 �
� 

�x A B F x K y Cx                 (4.18)   
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where ( )t
iF is the solutions received and implemented at sampling instant k (t corresponds 

to either convergence or an intermediate iteration), C is the measurement matrix. The 

observer gain K is designed such that (A-KC) is stable. As reported by Wan and Kothare 

(2002) this can be done by finding K and P0 > 0 such that 

( ) ( )2
0 0 ' 0ρ − − − ≥P A KC P A KC  is satisfied where ρ is the minimum decay rate  (0 < ρ 

< 1) that can be used as design parameter. 

 

In this work, the stability of observer (4.18) and the controllers obtained from 

Algorithm 1 is checked in the simulation using the following closed-loop system that 

augments the estimated states and the states of the polytopic model (1) (Wan and Kothare 

2002): 

 

                       ( ) ( ) ( )CLk 1 k k+ =� A �                   (4.19) 

 

where ( ) ( )
( ) ( )

( ) ( ) ( )

( )

N
t

i i
i 1

CL N
t

i i
i 1

k k
k

k , k
ˆ k

=

=

� �
� �� �

= = � �� �
� �� � + −
� �� �

�

�

A B Fx
� A

x KC A B F KC
. 

 

Then the stability of (4.19) is checked at the vertices of model (4.1) by solving the 

following feasibility problem (Boyd et al. 1994): 

 

          Find W > 0, ′=W W  such that ( ) ( )l l
CL CL 0′− >W A WA  { }l 1,...,L∀ ∈            (4.20) 
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where ( )

( ) ( ) ( )

( )

N
l l t

i i
i 1l

CL N
t

i i
i 1

=

=

� �
� �

= � �
� �+ −
� �� �

�

�

A B F
A

KC A B F KC
. 

 

Problem (4.20) is solved as a feasibility problem using the MATLAB® routine feasp. In 

the next section, the application of the proposed iterative algorithm is illustrated using 

three simulation examples. Although condition (4.20) was always satisfied in the 

simulation examples considered in the next section observer redesign is necessary if 

(4.20) is not satisfied and this can be achieved by changing the parameter ρ. 

  

4.4 Case Studies  

4.4.1 Example 1 

To illustrate remark 1 for the two different schemes, the following system that has 2 

states, 2 inputs, and 2 outputs with two vertices is considered (skogestad and Morari 

1988): 

( ) ( ) ( ) ( )0.9481 0 0.0456 0.0449 0.0547 0.0090
0 0.9481 0.0562 0.0569 0.0674 0.0114

1 2 1 2; ;
� � � � � �

= = = =� � � � � �
� � � � � �

A A B B  

 For the purpose of distributed MPC implementation the system is decomposed into two 

subsystems. The result of applying Algorithm 4.1 using RDMPC and Nash schemes at an 

instant k with x(k) = [-1,0] are shown in Figure 4.1a and 4.1b respectively. The algorithm 

in both cases converges after three iterations thus illustrating the convergence property 

proven in Section (4.3.4). Also, as shown in Figure 4.1(a) the two subsystems in RDMPC 

scheme cooperate and their invariant sets converge to that of centralized MPC whereas in 

Figure 4.1(b) the two subsystems, controlled by a Nash–equilibrium based scheme 
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produce an intersection of their corresponding invariant sets which is a subset of the 

centralized MPC. Thus, a performance loss is expected for the Nash based strategy since 

the size of the intersection region is correlated to the worst cost as per equation (4.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Behavior of RDMPC scheme versus Nash; (a) RDMPC (b) Nash 
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4.4.2 Example 2 

A distillation column control problem (Venkat 2006) is considered with 

uncertainties in the steady-state gains of the model are added to illustrate the robustness 

of the proposed algorithm. Accordingly, the real process model is assumed to lie within a 

polytope defined within two vertices defined by the following transfer matrices: 

 

( ) ( )( ) ( )( )

( )( ) ( )( )

( ) ( )

32.63 -33.89
99.6 1 0.35 1 98.02 1 0.42 1

 10
34.84 -18.85

110.5 1 0.03 1 75.43 1 0.3 1

1 2 1

s s s s
s ; s * s

s s s s

� �
� �+ + + +
� �= =
� �
� �+ + + +� �

G G G   (4.21) 

 

The corresponding state-space models with 8 states, not shown for brevity, are obtained 

from a canonical realization of G1 and G2 in (4.21) and included in the appendix. The 

sampling time used in the simulation is 1 minute. To demonstrate the effectiveness of the 

proposed method the “bad” pairings, according to the Relative Gain Array RGA (Bristol 

1966), are selected, i.e. the RGA element �11 is -1.0874 and accordingly the “bad” 

pairings are u1-y1 (subsystem1) and u2-y2 (subsystem2).  The physical constraints on 

manipulated variables are given by: 

 

                                 ( ) ( )  1 2u k n 1.5; u k n 2; n 0+ ≤ + ≤ ≥                                  (4.22) 

 

For the purpose of performance comparison between different cases, a cost function is 

defined as follows: 
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                        ( ) ( ) ( ) ( ) ( )( )
Ns

cos t
k 0

J 1 / 2Ns k k k k
=

′ ′= +� x Sx u Ru                           (4.23) 

where Ns is the simulation time, ( ) ( )i idiag ; diag= =S S R R . The following parameters 

are used for the two controllers: y1S = y 2S = 50 so that iS  = i
′C yiS Ci +10-6I where Ci is 

the measurement matrix such that yi=Cixi; R1=R2=1; α=0.95. The value of α is selected, 

as mentioned above, based on trial and error to speed convergence of the Jacobi iteration. 

The number of iterations that was required to satisfy the convergence criteria of 

Algorithm 4.1 for different values of α  is given in Table 4.1. α = 0.95 resulted in the 

fastest convergence. 

 

Table 4.1  Effect of α  on convergence with ε1 = ε2 =10-3 

α # iterations 

1.05 46 

1.00 32 

0.95 23 

0.90 24 

0.70 32 

  

Four cases are considered for the application of Algorithm 4.1; fully 

decentralized, RDMPC with one iteration, RDMPC with 10 iterations, and Nash with 10 

iterations. We recall from section 2 that the cost � decreases monotonically with the 

number of iterations.  Thus, even after one iteration, a performance improvement is 

expected. The motivation for using a small number of iterations, as mentioned earlier, is 
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to reduce the amount of computation of the iterative scheme that will be especially 

critical when dealing with large scale processes.  The decentralized strategy used in this 

example is obtained, as explained in Section 4.3.2, with Algorithm 4.1 by ignoring 

interactions in equation (4.4). The performance of Algorithm 4.1 with these 4 different 

schemes was compared to the centralized strategy in Figure 4.2. The simulations 

correspond to simultaneous changes in set-points of both controlled variables y1 and y2 by 

-1 and 1; respectively. A centralized observer was used to perform state estimation as 

explained in section 4.3.5 and the stability of the augmented closed-loop system (4.19) is 

verified via the satisfaction of condition (4.20).  

In comparison with the centralized scheme, the performance of RDMPC 

approaches that of the centralized scheme as the number of iterations is increased. The 

fully decentralized case resulted as expected in the worst performance. A comparison of 

the cost in (4.23) for the different schemes is given in Table 4.2. This table illustrates that 

Algorithm 4.1 can be used, depending on the chosen number of iterations, to obtain a 

performance that varies between two extremes corresponding to the fully decentralized 

and the centralized strategies; respectively. It is also clear, from Figures 4.2(c) and 4.2(d), 

that the constraints given in (4.22) are satisfied. Although the iterative nature of RDMPC 

results in performance improvement it also leads to an increase in CPU time requirements 

per control interval. However, since the intermediate iterations were shown to provide 

acceptable levels of performance then the Algorithm can be potentially terminated at any 

intermediate iteration before convergence if computation time is an issue. Table 4.3 

shows the maximum CPU times per control interval of RDMPC with one and ten 

iterations. All the simulations were carried out on a Core 2 CPU 1.66 GHz computer. The 
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CPU time of centralized MPC is in between the two cases. This illustrates the fact that 

RDMPC can outperform centralized MPC in terms of the CPU time when terminated 

after a few iterations with small performance loss. It can be also noticed that RDMPC 

with 10 iterations required 4 seconds of CPU time which is still very reasonable provided 

that the sampling time is 1 minute so it can still be implemented in real-time.  
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Figure 4.2 Dynamic response of controlled and manipulated variables a) y1, b) y2, c) u1, 
d) u2 
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Table 4.2  Cost for different strategies 

Strategy Cost (4.23) 

Centralized 0.92 

RDMPC (10 iteration) 0.93 

RDMPC (1 iteration) 2.43 

Nash (10 iterations) 2.93 

Fully decentralized 35.9 

 

Table 4.3 CPU time requirements for RDMPC and Centralized MPC 

Iterations Maximum CPU time, s 

1 0.8 

10 4.0 

Centralized 1.5 

 

 

4.4.3.  Example 3 

Here a process with 3 inputs and 3 outputs is considered. The real process model is 

assumed to vary between the following two models: 

 

( ) ( ) ( )

-6 -6 -6

-4 -2 -2

-4 -4

4.05e 1.77e 5.88e
50 +1 60 +1 50 +1

5.39e 5.72e 6.90e
  0.4

50 +1 60 +1 40 +1
4.30e 4.42e 7.20
33 +1 44 +1 19 +1

s s s

s s s

1 2 1

s s

s s s

s ; s s
s s s

s s s

� �
� �
� �
� �= =� �
� �
� �
� �� �

G G G                                  (4.24) 
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State-space models of 21 states are obtained based on a canonical realization of equation 

(4.24) and not shown for brevity. The constraints on manipulated variables are given by 

|ui(k+n)| ≤ 10, n≥ 0, i = 1,2,3. The system given above was decomposed into three 

subsystems; viz., y1-u1 (subsystem1), y2-u2 (subsystem2), and y3-u3 (subsystem3). The 

controllers parameters used in simulation are; 1S = 2S = 3S =1, R1= R2= R3=1, α=1, 

ε1=ε2=ε3=10-2. A sampling time of 2 minutes was used. 

In the application of Algorithm 4.1, both RDMPC and Nash schemes were 

considered. RDMPC was simulated for two different situations: i- the algorithm is 

terminated after one iteration and ii- the algorithm was left to reach convergence.  For the 

Nash based cost the algorithm was terminated after the convergence criterion was 

satisfied. Figure 4.3 depicts the performance of Algorithm 4.1 in terms of output response 

compared with centralized MPC for the set-point change [y1 = 3; y2 = 3; y3 = -3] and it 

illustrates that following convergence the RDMPC algorithm results in an identical 

response to the centralized MPC. Figure 4.4 shows that the constraints on manipulated 

variables are satisfied. For this example, the RDMPC algorithm converges very quickly 

in about three iterations after which the error tolerances specified above (ε1=ε2=10-2) are 

met. The Nash cost based simulations also showed convergence after three iterations but 

with an apparent loss in performance even when compared to the RDMPC that uses one 

iteration only. This is, as explained earlier, due to the fact that the invariant set achieved 

by Nash when it is converged is always smaller than the invariant set corresponding to 

the Centralized scheme. Figure 4.5 shows the convergent behaviour of the RDMPC 

algorithm obtained in the first sampling interval. The upper bounds  and 1 2 3, ,γ γ γ  for 

subsystems 1,2, and 3; respectively, obtained by solving (4.16) in parallel and by 
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applying Algorithm1, converge to the same value after about 3 iterations and this value is 

identical to that obtained for centralized MPC. The cost, defined by equation (4.23), for 

Centralized, RDMPC (1 iteration), RDMPC (3 iterations), and Nash (3 iterations) were: 

0.63, 0.67, 0.63, and 1.60; respectively. Thus RDMPC even when terminated after one 

iteration it maintains very similar performance to that obtained with Centralized MPC.  In 

addition, the maximum CPU times in seconds for Centralized, RDMPC (1 iteration), 

RDMPC (3 iterations) were 35 sec, 23 sec, and 60 sec; respectively. Accordingly, 

RDMPC with one iteration required less CPU time than the centralized scheme whereas 

the performance was very close to the centralized case. The case of RDMPC with 3 

iterations which were found to result in convergence is also reasonable since the 

sampling time is 2 minutes and therefore the real-time implementation is feasible. It 

should also be remembered that the simulations were carried out using MATLAB® and a 

further reduction in CPU time is expected when the algorithm is implemented in a more 

efficient computing platform. 
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Figure 4.3 Dynamic response of controlled variables a) y1, b) y2, c) y3 
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Figure 4.4 Dynamic response of manipulated variables a) u1, b) u2, c) u3 

 
 

 
Figure 4.5 Convergence characteristics of Algorithm 4.1 at the first sampling interval. 

 
 

4.4.4. Example 4 

In this simulation example a reactor/separator system (Lee et al. 2000) that 

consists of four unit operations is considered and illustrated in Figure 4.6. The process 
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has 19 states five of which are controlled variables, five manipulated variables, and two 

unmeasured disturbances. The summary of the system’s inputs and outputs is given in 

Table 4.4. A nonlinear dynamic model of the process can be found in Lee et al. (2000) as 

well as steady-state information. In the simulation it is assumed that the disturbances are 

unknown but both are known to vary in the interval [13,17] where their nominal value is 

15 kmol/h. Thus to obtain the vertices in (1)-(2) the model is linearized around the points 

[d1,d2]={[13,13],[17,17],[17,13],[13,17]} resulting in 4 linear models which are used to 

formulate the polytopic model description. Also a nominal model is obtained at the 

nominal operating point and used in the state estimation as to be explained below. For 

RDMPC, the system is decomposed into 4 subsystems based on the unit operations. A 

central observer is used for estimation. In addition to the states, this observer is also used 

for estimating the disturbance, thus the states’ vector in the observer (4.18) is augmented 

with disturbance states corresponding to the five measured variables that are also 

controlled variables in this example. Therefore the predicted states are obtained from the 

following equations: 

 

                        
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

N

i i x
i 1

d

ˆˆ ˆ ˆk 1 k k k k k

ˆ ˆ ˆˆk 1 k k k k
=

+ = + + − −

+ = + − −

�x Ax B u K y Cx d

d d K y Cx d
         (4.25)   

 

  where ( )ˆ kd  is the estimated disturbance states, Kx and Kd are the observer gains for the 

state and disturbance; respectively. To remove steady-state offsets, the inputs are 

calculated form the following equation: 
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                                                 ( ) ( ) ( ) ( )t ss
i i iˆk k k= +u F x u                                  (4.26) 

 

where ss
iu is computed by solving the nominal steady-state equation at time instant k 

using the estimated disturbance ( )ˆ kd  to ensure offset-free control (Muske and Rawlings 

1993). Both state estimation and steady-state computations are performed within the 

estimator and the results are supplied to the different subsystems. The process is then 

simulated with the input disturbances shown in Figure 4.7. The sampling time is 0.01 

hour and the controllers parameters used in simulation are; 1S =1 2S =1000, 3S =1000I2, 

and 4S = 1, R1= R2= R3= R4=1,. Only one iteration is performed for RDMPC algorithm 

since it provides a very close cost to centralized counterpart. The nonlinear plant was 

integrated using MATLAB® routine ode45 and the simulations were performed for 

Centralized and RDMPC (1 iteration). The responses of the outputs y1-y5 are identical in 

both cases. The costs of centralized and RDMPC (1 iteration) were 0.2727, 0.2729; 

respectively. Figure 8 shows the response of y5. The maximum CPU times in seconds for 

Centralized and RDMPC (1 iteration) were 33.4 and 22; respectively. Thus RDMPC in 

this case can be advantageous since it provides a very similar performance with lesser 

computation time.   
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Figure 4.6 Reactor/separator system (Lee et al. 2000) 
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Figure 4.7 Simulated disturbances d1 and d2. 

 
 
 
 

 
Figure 4.8 Dynamic response of y5: Centralized (solid line), RDMPC (circles). 
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Table 4.4 Inputs and outputs of the process 

Controlled outputs Manipulated inputs Input disturbances 

y1, reactor temperature 

y2, raffinate composition 

y3, product composition 

y4, bottoms composition 

y5, flash-drum pressure 

u1, steam flow rate 

u2, make-up flowrate 

u3, reflux flowrate 

u4, boil-up rate 

u5, purge-flowrate 

d1, flowrate to the reactor 

d2, bottom flowrate 

 

 

4.5 Conclusions 

The main goal of this work was to propose an on-line algorithm for RDMPC 

strategy that explicitly considers model errors. The key idea of the proposed method is to 

decompose the model of the whole system into N subsystems and then obtain a local state 

feedback controller by minimizing an upper bound on a robust performance objective for 

each subsystem. The subsystem performance takes into account the objectives of the 

other subsystems in order to achieve the goal of the entire system. The method was also 

suitable for pursuing other control objectives such as Nash equilibrium or decentralized 

control. The problem was converted into N convex problems with linear matrix 

inequalities and solved iteratively by using the Jacobi iteration method with successive 

relaxation (SR). Although convergence of the iterative solution was proven, the SR 

feature was helpful for filtering numerical noise in the LMI solutions resulting in faster 

convergence. When convergence was reached, the algorithm led to the same solution of 

the centralized MPC problem. In addition, the algorithm was extended for output 

feedback by including an observer. It was also proven that if the algorithm is terminated 
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at any feasible intermediate iteration the robust stability is still maintained. The examples 

showed that RDMPC can achieve, after a sufficient number of iterations, similar 

performance to centralized control. Moreover, the examples illustrated that improvements 

in RDMPC performance as compared to decentralized and Nash control can be achieved 

with a relatively small number of iterations. The RDMPC algorithm was also shown that 

when it is terminated before reaching convergence it can provide lower computation time 

compared to Centralized MPC especially while the loss in performance is not significant.  
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CHAPTER 5 

A Closed-Loop Dual-Mode Approach for Robust Distributed Model Predictive 

Control 

 

5.1 Overview 

 

This chapter proposes a new robust distributed model predictive control 

framework that uses a closed-loop dual-mode approach to reduce the demanding 

computations required to satisfy robust constraints. The proposed algorithm requires 

solving N convex optimization problems in parallel by allowing exchange of information 

among the controllers. A relaxation technique is also developed to overcome the problem 

of feasibility for the initial iteration. Two simulation examples are used to illustrate the 

new method and for comparison with a previously developed technique in terms of 

performance and maximum CPU time per control interval. The simulation results showed 

that the new algorithm provides a significant reduction in online computations.   

 

5.2 Introduction 

 

Model predictive control (MPC) has been successfully applied in the process 

industry for the last 2 decades (Qin and Badgwell 2003). The success of MPC stems from 

its ability to control multivariable process systems and to explicitly handling constraints 

on process variables. Recently, distributed MPC (DMPC) architectures have received 

great attention motivated by their advantage for providing similar performance to 
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centralized MPC while maintaining flexibility against failures and partial shut-downs due 

to its decentralized nature. The main idea in DMPC is to allow the different MPCs to 

communicate and be coordinated so as to achieve full cooperation by considering the 

overall system objective in each controller (Rawlings et al. 2008, Zhang and Li 2007). 

The special case of Nash-equilibrium may take place when each controller has either a 

strict local objective or in addition to the local objective the other objectives are 

considered with less priority (Li et al. 2005). Rawlings et al. (2008) and Scattolini (2009) 

presented recent reviews and further insights on DMPC.  

The coordination strategies reported in the literature employ linear models to 

predict the future behavior of the process in order to achieve the optimal or sub-optimal 

closed-loop performance and they rely on feedback to correct for any model uncertainty. 

However, in reality, linear models are never accurate due to nonlinearity or inaccurate 

identification and when model errors are severe feedback-based corrections may not be 

enough. The robustness of distributed control strategies to plant-model mismatch has 

been identified as one of the major factors for the successful application of DMPC 

strategies (Rawlings et al. 2008). Methods for design of DMPC algorithms that are robust 

with respect to model errors received little attention in the literature regardless of the rich 

theory in robust centralized MPC. In a recent work, Al-Gherwi et al. (2009, 2010) 

proposed a new algorithm for robust DMPC, referred heretofore as RDMPC1, which 

deals explicitly with plant-model mismatch. In this method the LMI-based robust MPC 

formulation proposed by Kothare et al. (1996) has been modified into an iterative 

algorithm for RDMPC. The algorithm requires decomposing the entire system into N 

subsystems and solving N convex optimization problems to minimize an upper bound on 
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a robust performance objective by using a time-varying state-feedback controller for each 

subsystem. The algorithm has been shown to provide stability and its performance 

becomes progressively similar to centralized MPC as the iterative algorithm reaches full 

convergence. However, the iterative nature of the algorithm and the requirement to 

consider large robust stability constraints has been found to increase the online 

computations. Therefore the main goal of this work is to present a new methodology to 

overcome the online computational problems.  

Kouvaritakis et al. (2000) developed a closed-loop dual-mode paradigm in which 

the control law is parameterized with a fixed state feedback computed offline and 

additional degrees of freedom that appear in the first Nc control moves to be computed 

online. The function of the additional degree of freedom is to steer the states when the 

constraints are active into an invariant set corresponding to an unconstrained state 

feedback that is computed offline. Therefore, most of the heavy computations can be 

handled offline in which invariance and feasibility constraints are satisfied rendering 

online computations more efficient since it requires satisfying smaller constraints. The 

methodology presented in the current work extends upon the result of Kouvaritakis et al. 

(2000) providing a new framework for RDMPC. This proposed method will be referred 

heretofore as RDMPC2. The method consists in decomposing the centralized MPC 

control problem into N subproblems where each subproblem solves an MPC controller 

for a particular subsystem. Then, the controllers are coordinated among themselves 

online via exchange of information in order to ensure feasibility. Since RDMPC2 is 

iterative and the invariant set is computed offline then a feasible initial guess is essential 

for the algorithm to start and satisfy constraints. It is proposed in the current method to 
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introduce slack variables and develop a relaxation method to guarantee a feasible initial 

start. While the use of slack variables allow for slight constraints violation at the initial 

iteration, these variables approach zero values in the next iterations and the constraints 

are respected afterwards. The proposed method is shown to guarantee robust stability and 

feasibility. An additional feature of the proposed methodology is that it allows for 

different control objectives to be optimized. For example, the formulations are shown for 

a Nash optimization objective is presented. Finally the proposed algorithm is compared 

with the RDMPC1 algorithm presented in a previous chapter.  This work is organized as 

follows: In section 5.3 the previous RDMPC1 algorithm is reviewed after then the new 

proposed algorithm is introduced in section 5.4. Application examples and comparisons 

are given in section 5.5. Section 5.6 concludes the chapter. 

 

5.3 Review of RDMPC1 Algorithm 

  

In this section the algorithm proposed by Al-Gherwi et al. (2009) is reviewed. 

The objective is to control the following linear time varying system: 

                                       ( ) ( ) ( ) ( ) ( )k 1 k k k k+ = +x A x B u                                          (5.1) 

                          ( ) ( )[ ] [ ]  
L L

( l ) ( l )
l l l

l 1 l 1
k k ; 1; 0β β β

= =
= = ≥� �A B A B                              (5.2) 

where    n m;∈ℜ ∈ℜx u  are the process states and inputs; respectively. The actual plant is 

represented by the polytopic description given in (5.2). Then (5.1) and (5.2) can be 

decomposed into N subsystems as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
N

i i i i i j j
j 1
j i

k 1 k k k k k k
=
≠

+ = + +�x A x B u B u                            (5.3)                           

( ) ( ) ( )[ .. ..] [ .. ..] { }
L

( l ) ( l ) ( l )
i i j l i i j

l 1
k k k i 1,...,N , j iβ

=
= ∀ ∈ ≠�A B B A B B             (5.4) 

 

where i 11 ii NN, , , , ′′ ′ ′ ′� �= � �x x x x�� �� is the vector of states of subsystem i containing 

states xii that can be measured or estimated locally augmented with states xjj that are 

measured or estimated by the other subsystems and are exchanged via communication. 

The ( )i kA contains all the elements of the matrix ( )kA  in (5.1). Then every subsystem i 

solves the following min-max problem: 

 

                                   
( ) ( ) ( ) ( )

( )

( )

[   ]
  

              

i i ji
ik n k n k n ,n 0k n k

max
i i

min max J k

s.t.

k n k , n 0

+ + + ≥+

+ ≤ ≥

A B Bu

u u

                                        (5.5) 

 

The local objective Ji(k) is defined as: 

 

      
( ) ( ) ( ) ( ) ( )

( ) ( )
[

                                                          ]

i i i i i i i
n 0

N

j j j
i 1
i j

J k k n k k n k k n k k n k

k n k k n k

∞

=
• •

=
≠

′ ′= + + + + +

′+ + +

�

�

x S x u R u

u R u
              (5.6) 

 

where iS > 0, Ri > 0, Rj > 0. The local objective given in (5.6) takes into account the 

goals of the other controllers, third summation in the RHS, in order to achieve the global 
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objective of the entire system. The superscript “•” indicates that the solution was 

obtained in a previous iteration and remains fixed in the current iteration. The objective 

given in (5.6) can take different formulations; namely; cooperative and Nash. In the 

latter, strictly local objectives are used where only local states and inputs are considered. 

Instead of solving the min-max problem (5.5), it is replaced by solving the following 

convex problem where an upper bound iγ on ( )iJ k is minimized: 
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Where 1
i i i

−′=F Y Q , 1
i i iγ −=Q P , ( ) ( ) ( ) ( )

N

i i j j
j 1
j i

A k A k B k F k•

=
≠

= +�� , and 

 ( ) ( )
N

i i j j j
i 1
i j

k n k k n k• •

=
≠

′= + + +�S S F R F� . 

 

Then RDMPC1 algorithm can be implemented online as illustrated below: 
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RDMPC1 algorithm 

Step0 (initialization): at control interval k=0 set Fi=0. 

Step1 (updating) at the beginning of control interval (k) all the controllers exchange 

their local states measurements and initial estimates Fi’s via communication, set 

iteration t = 0 and ( 0 )
i i=F F . 

Step2 (iterations)  

while t ≤ tmax 

Solve all N LMI problems (5.7) in parallel to obtain the minimizers ( ) ( )t t
i i,Y Q  to estimate 

the feedback solutions ( ) ( ) ( )t t 1 t

i i i

−′=F Y Q . If problem is infeasible set ( ) ( )t t 1
i i

−=F F . Check the 

convergence for a specified error tolerance iε  for all the controllers 

    if ( ) ( ) { }  1t t 1
i i i i ,...,Nε−− ≤ ∀ ∈F F  

          break 

    end if    

Exchange the solutions Fi’s  and set t = t + 1 

end while 

Step3 (implementation) apply the control actions ui = Fixi to the corresponding 

subsystems, increase the control interval k = k + 1, return to step1 and repeat the 

procedure. 

 

Theorem 1.  At sampling time k and any iteration t > 0, the state feedback 

solutions ( ) ( ) ( ) ( ) ( ) ( )t t 1 t

i i ik k k−′=F Y Q ,  { }i 1, ,N∈ � , obtained from Algorithm 1, robustly 
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asymptotically stabilize the closed loop system ( ) ( ) ( ) ( ) ( ) ( )
N

t
i i

i 1
k 1 k k k k

=

� 	+ = +
 �
� 

�x A B F x  

where ( )kA  and ( )i kB belong to the polytopic description defined in (5.4) . 

 

Proof.  The proof is given in Chapter 4.         

 

It should be pointed out here that RDMPC1 algorithm can achieve the robust centralized 

performance when the cooperative scheme is considered. This is not the case when Nash-

based objective is used since local objectives are considered. It has also been shown that 

robust stability can be satisfied even when the algorithm is terminated before 

convergence if all the N problems given by (5.7) are feasible.  In the previous chapter it 

has been reported that increasing iterations can improve performance and become close 

to that of centralized. However, this could also increase the computation time 

requirements since problem (5.7) contains robust stability and feasibility constraints that 

must be satisfied online. Therefore reducing the computation time is essential in order to 

facilitate the application of the algorithm in real-time applications. In order to achieve 

this goal, a new framework is proposed in the next section. 

 

5.4 New RDMPC framework (RDMPC2 Algorithm) 

 In the RDMPC1 algorithm proposed in the previous chapter, the controllers 

compute their Fi(k) iteratively at each control interval by minimizing an upper bound on 

the objective function while satisfying constraints. It has been shown that choosing to 

terminate the algorithm at any iteration still ensures robust stability. However, because of 

the iterative nature of the algorithm where problem (5.7) is solved repeatedly with 
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possibly large number of constraints the online computations can become very expensive. 

In order to overcome this problem in this section it is proposed to use the closed-loop 

dual-mode paradigm (Kouvaritakis et al. 2000) to tackle the distributed MPC problem. In 

this approach the control law is parameterized by including an additional degree of 

freedom as follows: 

     

( ) ( ) ( )
( )

i i i
i

i i

k k k 0,...,Nc
k

k k Nc

� + =�= � ≥��

F x c
u

F x
                                   (5.8) 

 

where Fi is now a fixed gain to be computed offline, ci(k) are the additional degrees of 

freedom to be computed online, and Nc is the control horizon. To obtain the closed-loop 

system, the control law (5.8) is used together with  the uncertainty description (5.3) and 

(5.4) and after some straightforward algebraic manipulations the state-space closed-loop 

model is obtained as follows: 
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, nx is the number of 

total states, nui is the number of inputs of subsystem i, i =1,…,N. 

 

The closed-loop given above is slightly different from the original formulation by 

(Kouvaritakis et al. 2000) in that the system is rearranged in such away to allow 

distributed computations as to be explained later.  

 

5.4.1 Offline computations 

 

The idea is to design unconstrained gains Fi and perform offline optimization to 

enlarge the feasible region defined by the invariant set { }n 1 1ε −′= ∈ℜ ≤z zz z Q z . The 

problem of maximizing the invariant set can be formulated as the following convex 

optimization problem (Boyd et al. 1994): 
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i i
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−
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s.t. 
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l

l
0, l 1,...,L

Q

� �′
� �≥ ∀ ∈
� �� �

z z

z z

Q Q�

� Q
 

                      ( ) ( ) ( )i ii i i i

2max
i i nu i nunu , Nc 1 nu nu , Nc 1 nu

0− −

′� � � �− ≥� � � �� �� � � �zu F I 0 Q F I 0  

 

The first and second constraints represent invariance and feasibility; respectively. The 

invariance constraint forces the states to evolve within an invariant set. Problem (5.10) 

can be solved using YALMIP interface (Lofberg 2004) integrated with MATLAB® LMI 

solvers.  

 

At this point the offline computations are explained. In this work two distributed 

schemes are considered: cooperative and Nash-based objective. In the cooperative 

scheme every local objective takes into account the optimization objective of the entire 

system which is identical to the objective used for centralized MPC thus the algorithm 

can achieve centralized performance following convergence. On the other hand, in the 

Nash-based scheme every subsystem considers strictly local objective. The gains Fi in the 

cooperative scheme are obtained by partitioning an unconstrained centralized gain F. The 

following centralized problem is solved offline to obtain 1−′=F Y Q : 
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The Fi in the case of Nash are solved by solving the following problem iteratively: 
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                           (5.12) 

The formulation of the Nash equilibrium based scheme is similar to that reported 

previously in chapter 4. 

The summary of offline computations are as follows: 

1) Obtain the unconstrained gains Fi for either cooperative or Nash schemes using 

equations (5.11) or (5.12); respectively. 

2) Choose the control horizon Nc and enlarge the invariant set by solving problem 

(5.10).  

 

5.4.2 Online computations 

 Since the gains Fi are obtained offline either from (5.11) or (5.12) by minimizing 

an upper bound on the objective function then the online optimization consists in 

minimizing the additional degrees of freedom fi(k) which are treated as an external 
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perturbations to the corresponding subsystems (Kouvaritakis et al. 2000). Therefore, the 

online optimization problem for subsystem i, i = 1,…,N, when the cooperative scheme is 

implemented is as follows: 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
1 i N

i i

t 1 t 1 t t t 1 t 1 t 2
1 f 1 i f i N f N i
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ωλ− − − −′ ′ ′+ + + + +

f
f W f f W f f W f� �

 

s.t. 

                                      ( ) ( ) ( ) ( ) ( )t t t1
i i ik k 1 λ−′ ≤ +zz Q z                                                    (5.13) 

where t is the iteration number, 
ifW is a weighting matrix, iλ is a scalar slack variable, ω 

is a penalty factor, and 
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z f f

f
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�

�

. 

The vector of states x(k) contains the local estimated or measured states augmented with 

the states received via communication from the other subsystems at the beginning of 

control interval. The invariance constraint is obtained offline and because of the iterative 

nature of the proposed method a feasible solution may not be easily obtained initially. 

One possible way is to search for a feasible initial guess that satisfy the constraint but that 

may not be practical to be implemented online since it has been found to be a time 

consuming step. Therefore, a slack variable iλ  is introduced in each subsystem’s problem 

to allow for an initial small violation of the constraint whereas this variable is penalized 
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so as to force it to decrease very rapidly. Since the problem is convex then the slack 

variables approach zero immediately at early iterations. By applying the Schur 

complement to the objective function and the constraint and by dropping the sample time 

(k) for ease of notation, problem (5.13) can be transformed into the following LMI 

problem: 
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where 
i i i jxx f x f f f, , ,Q Q Q Q  result from appropriate partitioning of the original matrix zQ  

that is computed offline. 
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In the case of Nash-based scheme, the online problem is slightly different. The objective 

function that would be minimized online is now ( ) ( ) ( ) ( ) ( )
i

t t t 2
i f i ik k ωλ′ +f W f  and the 

corresponding LMI problem is given by: 
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It should be pointed out that the zQ  in Nash-based is different than that of the cooperative 

scheme since the latter is equivalent to the feasible region obtained by centralized control. 

Problems (5.14) and (5.15) are solved using the function mincx in MATLAB® robust 

control toolbox. The algorithm RDMPC2 is summarized below: 
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RDMPC2 algorithm 

Step0 (initialization): at control interval k=0 set fi=0(Nc-1)nui,1. 

Step1 (updating) at the beginning of control interval (k) all the controllers exchange 

their local states measurements and initial estimates fi’s via communication, set iteration 

t = 0 and ( 0 )
i i=f f . 

Step2 (iterations)  

while t ≤ tmax 

Solve all N LMI problems either (5.14) or (5.15) in parallel to obtain the minimizers 

( ) ( ) ( )t t t
i i i, ,α λf . Check the convergence for a specified error tolerance iε  for all the 

controllers 

    if ( ) ( ) { }  1t t 1
i i i i ,...,Nε−− ≤ ∀ ∈f f  

          break 

    end if    

Exchange the solutions fi’s  and set t = t + 1 

end while 

Step3 (implementation) apply the control actions ui(k) = Fixi(k) + fi(k) to the 

corresponding subsystems, increase the control interval k = k + 1, return to step1 and 

repeat the procedure. 

 

In the RDMPC2 algorithm the solutions can be filtered to dampen out any numerical 

noise and improve convergence as follows: 
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     ( ) ( ) ( ) ( )t 1 t 1 t

i i i1α α+ += + −f f f                                          (5.16) 

where α  is a parameter to be specified by the user. 

 

Remark 1 In the case of the cooperative scheme, the RDMPC2 algorithm employs N 

identical convex problems given by (5.14) which, at convergence, are equivalent to the 

centralized MPC problem. The slack variables iλ  allow for an initial constraint violation. 

Then because of the convex feature of the problem all iλ  are decreasing and approach 

zero at the solution which is equivalent to centralized structure. Therefore, if the 

centralized solution is initially feasible then RDMPC2 is also feasible when the iλ ’s 

approach zero. However, this is not guaranteed when the Nash scheme is implemented 

since the corresponding problem is no longer convex because the N problems given by 

(5.15) are not identical. Therefore, convergence in this case does depend on the existence 

of a Nash solution. 

Assuming that RDMPC2 is feasible at initial time (k) the following theorem is stated for 

robust stability: 

Theorem 2.  At sampling time k and iλ  → 0, the corresponding control actions  

ui(k) = Fixi(k) + fi(k),  { }i 1, , N∈ � , obtained from RDMPC2, robustly asymptotically 

stabilize the closed loop system ( ) ( ) ( )k 1 k k+ =z � z ). 

 

Proof. If there is a feasible solution at time (k) then the evolution of the solutions fi(k) in 

time converge to zero from fi(k+1) = Mifi(k) and stability is ensured following the 
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satisfaction of constraint and the fact that the fi(k) keep the states within the 

corresponding invariant set which is equivalent to stability.  

 

5.4.3 RDMPC2 Algorithm with Output Feedback 

In the previous chapter an observer design was proposed for RDMPC1. Similarly,  

in this section a method for RDMPC2 output feedback is proposed.  The states ( )kx  in 

RDMPC2 are replaced by their estimates denoted as ( )ˆ kx . The observer is designed 

based on a nominal model of the system that corresponds to the state space model 

parameters at the center of the polytopic description given in (4.2). Then, an observer is 

defined for each subsystem that receives all the output measurements and control actions 

from the other subsystems at interval k in order to perform state estimation. This 

estimation is conducted according to the following observer equation: 

 

( ) ( ) ( ) ( )( ) ( )
N N

i i i i
i 1 i 1

ˆ ˆ ˆk 1 k k k k
= =

� 	+ = + + − +
 �
� 

� �x A B F x K y Cx B f                 (5.17)   

 

The observer gain K is chosen such that (A-KC) is stable and it is designed by a similar 

procedure explained in Chapter 4. Contrary to RDMPC1 where the stability of observer 

and controller has to be checked online, in RDMPC2 the stability can be checked offline 

assuming a feasible online solution does exist due to the fact that Fi were computed 

offline and fi(k) are vanishing with time. 
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5.5 Case Studies 

5.5.1 Example 1 

Example 2 of chapter 4 is used to illustrate the method and for comparing the 

performance of RDMPC1 proposed in the previous chapter with the RDMPC2 presented 

in the current one. The specifications of RDMPC1 cooperative scheme used in the 

previous chapter are also used in this case study. For RDMPC2 cooperative scheme the 

following parameters are used: The unconstrained gains Fi are designed offline using 

equation (5.11) with y1S = y 2S = 50, R1=R2=15 and the invariant set is maximized using 

Nc = 20. Here the unconstrained controllers had to be detuned to reduce the control 

horizon. For the online computations the penalty factor ω = 1e8, and filter factor of 

equation (5.16)α = 0.7 are used. For RDMPC2 with Nash scheme the unconstrained 

gains have to be detuned further to satisfy online feasibility and the weights R1=R2=20 

are used whereas the remaining parameters are the same as the ones used in the 

cooperative scheme. The further detuning required for the Nash based controller  is due 

to the strong interactions posed when the bad pairings are chosen. Such detuning was not 

required in RDMPC1 since the gain of the controller is tuned online.. Figures 5.1 and 5.2 

show the dynamic response of the outputs for a set point change of y1s= -1 and y2s = 1 

using cooperative schemes in both algorithms. The corresponding control actions are 

shown in Figures 5.2 and 5.3. The response using both algorithms is comparable with 

slightly sluggish response in RDMPC2 because of the detuning. 
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 Figure 5.1 Dynamic response of y1. 
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Figure 5.2 Dynamic response of y2. 
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Figure 5.3 control action u1. 
 

 

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

Time

u2

 

 

RDMPC2
RDMPC1

 

 

Figure 5.4 control action u2. 
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Figures 5.5 and 5.6 show the response when Nash scheme is implemented in RDMPC2 

which results in a very sluggish response since the controllers had to be detuned to 

maintain feasibility. To show the convergence behavior of the RDMPC2 algorithm with 

cooperative scheme 100 random initial solutions were generated using a Gaussian 

distribution N(0,.01). All the initial guesses converged to the centralized solution with 

maximum CPU time of 4 seconds and the iλ  converged to zero immediately in the 

second iterations. Figure (5.7) shows one of these cases when the algorithm converged to 

centralized scheme after 9 iterations. Therefore initial feasibility can be maintained using 

the relaxation technique adopted in RDMPC2 algorithm. 
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Figure 5.5 Dynamic response of y1 when Nash scheme is used. 
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Figure 5.6 Dynamic response of y2 when Nash scheme is used. 
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Figure 5.7 Initial feasibility using the relaxation method. 
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Table (5.1) summarizes the performance comparison between the two algorithms in terms 

of the resulting sum of squares of errors and corresponding control actions. RDMPC1 

cooperative scheme is slightly better than RDMPC2 since the latter was detuned as 

explained above thus resulting in smaller control actions as can be seen by comparing 

( ) ( )
Ns

k 1
k k

=

′� u u  terms. RDMPC2 Nash scheme performed very poorly by providing a very 

conservative control action that resulted in a sluggish response. The comparison in terms 

of the maximum CPU time per control interval indicated that both algorithms required 

the same time of 4 seconds. It should be remembered that in the RDMPC1 the algorithm 

was terminated after 10 iterations before convergence. However, as the problem size 

increases the difference in CPU time between the algorithms becomes significant as 

shown in the next example. 

 

 

Table 5.1 Performance comparison between the two algorithms 

Algorithm ( ) ( )
Ns

k 1
k k

=

′� e e  ( ) ( )
Ns

k 1
k k

=

′� u u  

RDMPC1:   

Cooperative 3.50 6.42 

Nash 12.60 1.50 

RDMPC2:   

Cooperative 4.05 9.18 

Nash 1.11e03 7.28 
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5.5.2 Example 2 

 

Example 3 from chapter 4 is used. The RDMPC2 algorithm with the cooperative and 

Nash schemes is applied and compared with RDMPC1. The cooperative scheme 

parameters are as follows: The unconstrained gains Fi are designed offline using equation 

(5.11) with 1S = 2S = 3S =1, R1= R2= R3=1, and the invariant set is maximized using Nc 

= 12. For the online computations the penalty factor ω = 1e2, and a filter factor for 

equation (5.16) of α = 0.95 are used. For RDMPC2 the unconstrained gains are designed 

iteratively using the same weights and same parameters as the ones used for online 

computations. Figures (5.8) through (5.13) show the dynamic response and control 

actions when RDMPC2 is implemented for both cooperative and Nash schemes and 

compared with centralized control. The response is comparable to the one obtained with  

RDMPC1 as can be shown by comparing with the corresponding figures in the previous 

chapter. The comparison in terms of performance and maximum CPU time per control 

interval are summarized in Tables (5.2) and (5.3); respectively. 
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Figure 5.8 Dynamic response of y1 using RDMPC2. 
 

0 20 40 60 80 100 120 140 160
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

y2

 

 

Centralized
RDMPC2
RDMPC2-Nash

 

Figure 5.9 Dynamic response of y2 using RDMPC2. 
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Figure 5.10 Dynamic response of y3 using RDMPC2. 
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Figure 5.11 Control action u1 using RDMPC2. 
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Figure 5.12 Control action u2 using RDMPC2. 
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Figure 5.13 Control action u3 using RDMPC2. 
 

 



     152 

Table 5.2 Performance comparison between the two algorithms 

Algorithm ( ) ( )
Ns

k 1
k k

=

′� e e  ( ) ( )
Ns

k 1
k k

=

′� u u  

RDMPC1:   

Cooperative 121.67 30.21 

Nash 376.93 9.16 

RDMPC2:   

Cooperative 114.49 37.80 

Nash 382.58 12.95 

 

Table 5.3 CPU time per control interval 

Algorithm CPU time, sec 

RDMPC1  60 

RDMPC2 10 

 

From Table (5.2) RDMPC2 achieved slightly better performance than RDMPC1 but 

overall both are comparable. In terms of CPU time per control interval RDMPC2 is six 

times faster than RDMPC1 indicating significant computation efficiency favoring 

RDMPC2. Therefore it is possible to conclude that for the examples shown above 

RDMPC2 algorithm can reduce online computations with comparable performance to 

RDMPC1 while satisfying robust stability and feasibility constraints. 
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5.6 Conclusions 

In this work a new framework for robust DMPC is proposed to reduce online 

computations while maintaining robust stability and feasibility. The closed-loop dual-

mode paradigm was employed in order to perform most of the CPU intensive 

computations offline using convex optimization to obtain the largest possible invariant 

sets. The RDMPC2 algorithm requires solving N convex problems in parallel when the 

cooperative scheme is implemented. On the other hand, it is also possible to use the 

strategy to satisfy a Nash equilibrium objective function. A relaxation method was 

incorporated with the algorithm to satisfy initial feasibility by introducing slack variables 

that converge to zero immediately at early iterations. Two simulation case studies are 

used to illustrate the algorithm and to compare it with an RDMPC1 algorithm proposed in 

the previous chapter.  It has been shown that the new proposed method (RDMPC2) 

significantly reduces online computations while providing similar performance as 

compared to the previous technique (RDMPC1). 
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CHAPTER 6 

Conclusions and Future Remarks 

 

DMPC strategies are used to capitalize on the benefits from using the 

decentralized structure while achieving improved plant-wide performance and stability 

via coordination. This work considers the robustness issues related to DMPC strategies in 

the presence of model uncertainty. The robustness of DMPC with respect to model 

uncertainty has been identified by researchers as a key factor in the successful application 

of DMPC. Two main objectives were considered in this work: 1) the development of a 

systematic methodology for the selection of a DMPC control structure in the presence of 

model error; 2) the development of novel online algorithms for robust DMPC that 

explicitly account for model errors. Conclusions drawn from this research are provided 

below, followed by a summary of future work. 

 

6.1 Conclusions 

A new systematic methodology for the selection of a control structure in the 

context of DMPC was developed. The methodology seeks for a trade-off between 

performance and simplicity of structure (e.g., a centralized versus decentralized structure) 

and it is formulated as a multi-objective mixed-integer nonlinear program (MINLP). The 

multi-objective function is composed of the contribution of two indices: 1) closed-loop 

performance index computed as an upper bound on the variability of the closed-loop 

system due to the effect on the output error of either set-point or disturbance input, and 2) 

a connectivity index used as a measure of the simplicity of the control structure. The 
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parametric uncertainty in the models is also considered in the methodology through the 

use of a polytopic model. In polytopic representations the actual process is assumed to 

behave inside a polytope whose vertices are defined by linear models that can be obtained 

from either linearizing a nonlinear model or identification around different operating 

conditions. The system closed-loop performance and stability are formulated as LMI 

problems so that the efficient interior-point methods can be exploited. To solve the 

MINLP a multi-start approach is adopted in which many starting points are generated in 

an attempt to obtain better solutions close to global optima. The efficiency of the 

proposed methodology is shown through its application to benchmark simulation 

examples. The simulation results are consistent with the conclusions obtained from the 

analysis. The proposed methodology can be applied at the design stage to select the best 

control configuration in the presence of model errors. The analysis results were found to 

be somewhat conservative since the performance index is computed based on a worst 

case scenario that can be difficult to obtain using simulation. Furthermore, the proposed 

method did not consider constraints.  

 

In chapter 4, a novel algorithm for robust DMPC was developed that explicitly 

accounts for parametric uncertainty in the model. The algorithm requires the 

decomposition of the entire system into N subsystems and the solution of N convex 

optimization problems in parallel in order to minimize an upper bound on a robust 

performance objective by using a time-varying state-feedback controller for each 

subsystem. Model uncertainty is explicitly considered through the use of a polytopic 

model. The algorithm employs a method that has been proven efficient: the LMI 
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approach, in which the solutions are convex and obtained in polynomial time. An 

observer is designed and embedded within each controller to perform state estimations 

and the stability of the observer is checked online via LMI conditions. An iterative design 

method is also proposed for computing the observer gain. Due to the use of LMI’s the 

algorithm is fast making it attractive for real time implementationIt has been shown that 

upon convergence the proposed algorithm can achieve the theoretical performance of 

centralized control. Furthermore, the proposed algorithm can be formulated using a 

variety of objectives, such as Nash equilibrium, that suits the situation when the 

interacting processing units are operated by independent agents each trying to satisfy its 

own independent optimal objective, and for fully decentralized control in the case of 

communication failure. Such cases are commonly encountered in the process industry. 

Simulations examples are considered to illustrate the application of the proposed method. 

However, it was found that as the problem size increases the iterative nature of the 

proposed scheme becomes computationally demanding which required the need for more 

efficient strategies as proposed in Chapter 5. Furthermore, the main assumption in this 

thesis is that there is a reliable communication network thus communication failures and 

delays were not considered. One possibility is to use the decentralized structure once the 

failure takes place and switch back to the original scheme when the communication is 

established again. Potential solutions are discussed in the future remarks section. 

 

In Chapter 5, a new algorithm was developed to improve the online computational 

efficiency. A dual-mode controller was employed in order to perform most of the heavy 

computations offline using convex optimization to obtain the largest possible invariant 
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sets thus rendering the following iterative online solution less conservative. The solution 

requires satisfying relatively simple constraints and the solution of subproblems each 

with a small number of decision variables. The algorithm requires solving N convex LMI 

problems in parallel when a cooperative scheme was chosen. The option of using Nash 

scheme formulation is also available.  A relaxation method was incorporated within the 

algorithm to satisfy initial feasibility by introducing slack variables that converge to zero 

after a few iterations. Simulated case studies have illustrated the applicability of this 

approach and have demonstrated that significant improvement can be achieved with 

respect to computation times as compared to the online method proposed in Chapter 4. 

However, a possible limitation to this algorithm as compared to the one in Chapter 4 is 

that although the offline computations of invariant sets reduce the computation time there 

is no systematic way to choose the length of the control horizon Nc to ensure initial 

feasibility other than via several simulations. Consequently, detuning of the controller 

may become necessary to avoid using large control horizons as it became obvious in the 

case of the Nash-equilibrium based scheme. 

 

6.2 Future Remarks 

 In this section a summary of future work some of which can be seen as extension 

to the current work is provided in the next paragraphs. 

The existing DMPC algorithms are still lacking capabilities such as robustness 

with respect to actuator failures and/or measurement loss. Also, the performance of the 

current strategies depends on reliable communication networks. Developing new 

alternative stand-by algorithms that can be used when such failures occur with a 
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framework that switches back to the normal operation is of great importance. The recent 

developments in fault-tolerant control can be extended to DMPC strategies to cope up 

with failures (Mhaskar 2006; Gandi and Mhaskar 2009). Regarding communication 

failures or delay, the solutions that have to be exchanged via communication can be 

approximated with either simple linear models or, if necessary, nonlinear predictors such 

as artificial neural networks. These nonlinear models could then be embedded within 

each controller and triggered whenever the corresponding controller losses contact with 

some of or all the other controllers to provide estimates for their actions. The selection of 

training and validating data will become difficult with the problem size and number of 

subsystems.   

The current DMPC methods employ conventional optimization algorithms 

originally developed for centralized MPC (Scattolini 2009).  Consequently, developing 

new algorithms tailored specifically for DMPC can improve the online computations and 

thus widen the spectrum of applications where this technology can be applied.  Recent 

developments in online optimization can be utilized to formulate new customized 

algorithms to exploit the structure in DMPC problems such as the approach proposed 

recently by Wang and Boyd (2008). In the current work a methodology for the selection 

of control structure for DMPC was proposed.  However, the interaction between process 

design and control was not considered in this methodology.  In the context of 

simultaneous design and control,   the centralized MPC strategies have been considered 

by solving as a single-level mathematical program with complementarily constraints 

(Baker and Swartz (2008). This approach may be extended to DMPC strategies to seek 

for optimal integration of control and design of process systems. By the proper choice of 
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a cost term, to be incorporated in an economic cost function that penalizes the complexity 

of DMPC structure and by introducing binary variables that change the DMPC structure 

between fully decentralized to fully connected, the resulting mixed-integer nonlinear 

programming problem may find an optimal trade-off between structure simplicity, 

closed-loop robust performance and a plant design economic optimum.  This problem can 

also be readily expanded to consider reconfigurable hierarchical structures to cope with 

time-varying performance and constraints that are widely encountered in the control and 

operation of complex industrial systems as occurring during start-ups and shut-downs of 

industrial processes.   

To achieve optimal economic operation and plant-wide control, the integration of 

different layers of the process automation hierarchy, e.g., supply-chain/planning, real 

time optimization (RTO), two-stage MPC, and plant layers, is of paramount importance 

(Tatjewski 2008; Scattolini 2009). It has been reported that poor performance in the two-

stage MPC layer is not uncommon due to the effects of feedback from the plant layer 

(Nikandrov and Swartz 2009). A challenging problem, therefore, is to improve the 

performance of the overall system through the use of designs that account for the 

uncertainties in models and demands and that can achieve integration across the layers 

mentioned above. The results to be obtained from this research are expected to have a 

significant impact on the process industry by improving economic performance under 

conditions that include economic and model uncertainties.  
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APPENDIX: Basic MATLAB Codes 

 

Key MATLAB codes used in Chapter 3 

function gamma=Glmidmpc(lambda) 
  
if any(lambda)<0|any(lambda)>1 
  
    gamma=1e6; 
    return; 
end 
  
  
alfa=0.99; 
Ts=1; 
dt1=lambda(3); 
dt2=lambda(4); 
% dt1=1; 
% dt2=1; 
A1=[-1/75 0;0 -1/75];B1=[.878/75 .864/75;1.082/75 1.096/75];C1=eye(2);D1=zeros(2); 
Plant1=ss(A1,B1,C1,D1); 
[Ap{1},Bp{1},Cp{1},Dp{1}]=ssdata(c2d(Plant1,Ts)); 
  
A2=[-1/75 0;0 -1/75];B2=[.878*1.8/75 .864*.2/75;1.082*1.8/75 
1.096*.2/75];C2=eye(2);D2=zeros(2); 
Plant2=ss(A2,B2,C2,D2); 
[Ap{2},Bp{2},Cp{2},Dp{2}]=ssdata(c2d(Plant2,Ts)); 
  
  
A1=[-1/75 0;0 -1/75];B1=[.878/75 .864*dt1/75;1.082/75*dt2 
1.096/75];C1=eye(2);D1=zeros(2); 
Plant1=ss(A1,B1,C1,D1); 
[A,B,C,D]=ssdata(c2d(Plant1,Ts)); 
  
  
Interval=2; 
  
%[Am,Bm,Cm,Dm]=ssdata(Plant_ss); %state-space matrices 
%models for subsystems 
%subsystem 1 
A1=A(1,1);A2=A(2,2); 
B11=B(1,1);B12=B(1,2);B21=B(2,1);B22=B(2,2); 
C1=C(1,1);C2=C(2,2); 
ywt=[1 1]; 
Gs=[]; 
Glmi=[]; 
  
uwt=[lambda(1) lambda(2)]; 
%uwt=[]; 
ywt1=1;ywt2=1; 
%uwt1=1.4203e-003;uwt2=3.1250e-006; 
uwt1=uwt(1);uwt2=uwt(2); 
p1=20;p2=20;m1=5;m2=5; 
  
nu1=1;ny1=1;nu2=1;ny2=1; 
%create the input and output weighting matrices 
wu1=[]; 
wu2=[]; 
wy1=[]; 
wy2=[]; 
for i=1:m1*ny1 
    wu1=[wu1 uwt1]; 
end 
for i=1:m2*ny2 
    wu2=[wu2 uwt2]; 
end 
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for i=1:p1*ny1 
    wy1=[wy1 ywt1]; 
end 
for i=1:p2*ny2 
    wy2=[wy2 ywt2]; 
end 
Wu1=diag(wu1); 
Wu2=diag(wu2); 
Wy1=diag(wy1); 
Wy2=diag(wy2); 
  
EY01=eye(ny1);EY1=EY01; 
for i=1:p1-1 
    EY1=[EY1 EY01]; 
end 
  
N1=EY1'; 
  
EY02=eye(ny2);EY2=EY02; 
for i=1:p2-1 
    EY2=[EY2 EY02]; 
end 
  
N2=EY2'; 
  
%create the controller's paramater and Kmpcs 
%controller1 
[nx1,nx1]=size(A1); 
[nx2,nx2]=size(A2); 
Epsi1=zeros(ny1*p1,nx1); 
  
for i=1:p1 
    Epsi1((i-1)*ny1+1:i*ny1,:)=C1*A1^i; 
end 
  
%Epsi12=zeros(ny1*p1,nx2); 
  
%for i=1:p1 
 %   Epsi12((i-1)*ny1+1:i*ny1,:)=C12*A2^i; 
%end 
  
Temp1=C1*B11; 
GA1=Temp1; 
for i=1:p1-1 
    for j=1:i 
        Temp1=Temp1+C1*A1^j*B11; 
    end 
    GA1=[GA1;Temp1]; 
    Temp1=C1*B11; 
end 
  
Temp12=C1*B12; 
GA12=Temp12; 
for i=1:p1-1 
    for j=1:i 
        Temp12=Temp12+C1*A1^j*B12; 
    end 
    GA12=[GA12;Temp12]; 
    Temp12=C1*B12; 
end 
  
Theta1 = zeros(ny1*p1,nu1*m1); 
Theta1(1:p1*ny1,1:nu1)=GA1; 
  
for i =2:m1 
    Theta1((i-1)*ny1+1:p1*ny1,(i-1)*nu1+1:i*nu1)=Theta1(1:(p1-(i-1))*ny1,1:nu1); 
end 
Theta12 = zeros(ny1*p1,nu2*m1); 
Theta12(1:p1*ny1,1:nu2)=GA12; 
  
for i =2:m1 
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    Theta12((i-1)*ny1+1:p1*ny1,(i-1)*nu2+1:i*nu2)=Theta12(1:(p1-(i-1))*ny1,1:nu2); 
end 
  
Kfull1=inv(Theta1'*Wy1'*Wy1*Theta1+Wu1'*Wu1)*Theta1'*Wy1'*Wy1; 
Kmpc1=Kfull1(1:nu1,:); 
  
%create the controller's paramater and Kmpcs 
%Controller 2 
[nx2,nx2]=size(A2); 
  
Epsi2=zeros(ny2*p2,nx2); 
  
for i=1:p2 
    Epsi2((i-1)*ny2+1:i*ny2,:)=C2*A2^i; 
end 
  
%Epsi21=zeros(ny2*p2,nx1); 
  
%for i=1:p2 
%    Epsi21((i-1)*ny2+1:i*ny2,:)=C21*A1^i; 
%end 
  
Temp2=C2*B22; 
GA2=Temp2; 
for i=1:p2-1 
    for j=1:i 
        Temp2=Temp2+C2*A2^j*B22; 
    end 
    GA2=[GA2;Temp2]; 
    Temp2=C2*B22; 
end 
  
Temp21=C2*B21; 
GA21=Temp21; 
for i=1:p2-1 
    for j=1:i 
        Temp21=Temp21+C2*A2^j*B21; 
    end 
    GA21=[GA21;Temp21]; 
    Temp21=C2*B21; 
end 
  
Theta2 = zeros(ny2*p2,nu2*m2); 
Theta2(1:p2*ny2,1:nu2)=GA2; 
  
for i =2:m2 
    Theta2((i-1)*ny2+1:p2*ny2,(i-1)*nu2+1:i*nu2)=Theta2(1:(p2-(i-1))*ny2,1:nu2); 
end 
  
Theta21 = zeros(ny2*p2,nu1*m2); 
Theta21(1:p2*ny2,1:nu2)=GA21; 
  
for i =2:m2 
    Theta21((i-1)*ny2+1:p2*ny2,(i-1)*nu1+1:i*nu1)=Theta21(1:(p2-(i-1))*ny2,1:nu1); 
end 
  
Kfull2=inv(Theta2'*Wy2'*Wy2*Theta2+Wu2'*Wu2)*Theta2'*Wy2'*Wy2; 
Kmpc2=Kfull2(1:nu2,:); 
D1=[Kfull1 0*Kfull1;0*Kfull2 Kfull2]; 
D0=[0*Kfull1*Theta12 -Kfull1*Theta12;-Kfull2*Theta21 0*Kfull2*Theta21]; 
  
K=inv(eye(size(D0))-D0)*D1; 
Kmpc=[K(1,:);K(m1+1,:)]; 
Epsi=[Epsi1 0*Epsi1;0*Epsi2 Epsi2];GA=[GA1 GA12;GA21 GA2]; 
  
nu=2;ny=2;p=p1;m=m1;nx=nx1+nx2; 
Matrix1=[1 0]; 
for i=1:p-1 
    Matrix1=[Matrix1;[1 0]]; 
end 
Matrix2=[0 1]; 
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for i=1:p-1 
    Matrix2=[Matrix2;[0 1]]; 
end 
Matrix=[Matrix1;Matrix2]; 
N2=Matrix; 
for i=1:Interval 
  
%Xk+1 
A11=Ap{i}-Bp{i}*Kmpc*N2*Cp{i}; 
A12=Bp{i}*Kmpc*(N2*C-Epsi); 
A13=Bp{i}-Bp{i}*Kmpc*GA; 
A14=Bp{i}*Kmpc*Matrix; 
  
  
%Xck+1 
A21=-B*Kmpc*N2*Cp{i}; 
A22=A+B*Kmpc*(N2*C-Epsi); 
A23=B-B*Kmpc*GA; 
A24=B*Kmpc*Matrix; 
  
%Uk 
A31=-Kmpc*N2*Cp{i}; 
A32=Kmpc*(N2*C-Epsi); 
A33=eye(nu,nu)-Kmpc*GA; 
A34=Kmpc*Matrix; 
  
%Rk+1 
A41=zeros(ny,nx); 
A42=zeros(ny,nx); 
A43=zeros(ny,nu); 
A44=(alfa)*[1 0;0 0]; 
%aa=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
%AA=[A11 zeros(2,2) A12 A13;zeros(2,2) A11 A12 A13;.5*A21 .5*A21 A22 A23;A31 A31 A32 
A33]; 
  
Asys{i}=[A11 A12 A13 A14;A21 A22 A23 A24;A31 A32 A33 A34;A41 A42 A43 A44]; 
%Asys{i}=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
  
%Asys=AA; 
B1=zeros(nx,ny); 
B2=zeros(nx,ny); 
B3=zeros(nu,ny); 
B4=(1-alfa)*[1 0;0 0]; 
%bb=[B1;B2;B3]; 
Bsys=[B1;B2;B3;B4]; 
  
%Csys=[-Cp*(Ap-Bp*Kmpc*N2*Cp),-Cp*(Bp*Kmpc*(N2*C-Epsi)),-Cp*(Bp-
Bp*Kmpc*GA),alfa*eye(ny,ny)-Cp*Bp*Kmpc*alfa*Matrix]; 
%Csys=[-Cp*(Ap-Bp*(Kmpc*N2*Cp)),-Cp*(Bp*Kmpc*(N2*C-Epsi)),-Cp*(Bp-Bp*Kmpc*GA)]; 
  
Csys{i}=[-Cp{i},zeros(ny,nx),zeros(ny,nu),eye(ny,ny)]; 
%Dsys=(1-alfa)*eye(ny,ny)-Cp*Bp*Kmpc*(1-alfa)*Matrix; 
%Dsys=(1-alfa)*eye(ny,ny); 
Dsys{i}=[0 0;0 0];%zeros(ny,ny); 
MPCsys{i}=ss(Asys{i},Bsys,Csys{i},Dsys{i},Ts); 
%Poles=pole(MPCsys); 
  
end 
  
A1=Asys{1}; 
A2=Asys{2}; 
B1=Bsys; 
B2=Bsys; 
C1=Csys{1}; 
C2=Csys{2}; 
D1=Dsys{1}; 
D2=Dsys{2}; 
  
  
[ns,ns]=size(Asys{1}); 
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setlmis([]); 
Po=lmivar(1,[ns 1]);%Po is symmetric block diagonal 
Gamm=lmivar(1,[1 1]);% 
  
%LMI#1 
lmiterm([1 1 1 Po],A1',A1);%A'*Po*A 
lmiterm([1 1 1 Po],-1,1);%-Po 
lmiterm([1 1 2 Po],A1',B1);%A'*Po*B 
lmiterm([1 1 3 0],C1');%C' 
lmiterm([1 2 2 Po],B1',B1);%B'*Po*B 
lmiterm([1 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([1 2 3 0],D1');%D' 
lmiterm([1 3 3 0],-1);%1 
  
%LMI#2 
lmiterm([2 1 1 Po],A2',A2);%A'*Po*A 
lmiterm([2 1 1 Po],-1,1);%-Po 
lmiterm([2 1 2 Po],A2',B2);%A'*Po*B 
lmiterm([2 1 3 0],C2');%C' 
lmiterm([2 2 2 Po],B2',B2);%B'*Po*B 
lmiterm([2 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([2 2 3 0],D2');%D' 
lmiterm([2 3 3 0],-1);%1 
  
%LMI#3 
lmiterm([3 1 1 Po],-1,1); 
try 
  
  
LMIsys=getlmis; 
CC=mat2dec(LMIsys,zeros(ns),1); 
[gam,xopt]=mincx(LMIsys,CC,[1.0*exp(-6) 100 1e9 500 1]); 
Qm = dec2mat(LMIsys,xopt,Gamm); 
catch 
  gam=100; 
end 
  
%P = sdpvar(ns,ns); 
%t = sdpvar(1); 
%objective = t; 
%L1=[A1'*P*A1-P A1'*P*B1 C1';B1'*P*A1 B1'*P*B1-t*eye(size(2)) D1';C1 D1 -eye(2)]; 
%L2=[A2'*P*A2-P A2'*P*B2 C2';B2'*P*A2 B2'*P*B2-t*eye(size(2)) D2';C2 D2 -eye(2)]; 
%F = set(P>0) + set(L1<0)+ set(L2<0); 
%options = sdpsettings('solver','sedumi','verbose',0); 
%options = sdpsettings('solver','sedumi'); 
%solvesdp(F,objective,options); 
%double(P); 
%gammasedume = sqrt(double(t)) 
  
  
gamma=sqrt(gam); 
  
if dt1==0 
    Index1=0; 
else 
    Index1=1; 
end 
if dt2==0 
    Index2=0; 
else 
    Index2=1; 
end 
Index=(Index1+Index2)/2.0; 
  
gamma = 1*gamma + 0.*Index; 
 
 
alfa=0.99; 
Ts=1; 
dt=1; 
A1=[-1/75 0;0 -1/75];B1=[.878/75 .864/75;1.082/75 1.096/75];C1=eye(2);D1=zeros(2); 
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Plant1=ss(A1,B1,C1,D1); 
[Ap{1},Bp{1},Cp{1},Dp{1}]=ssdata(c2d(Plant1,Ts)); 
  
A2=[-1/75 0;0 -1/75];B2=[.878*1./75 .864*1/75;1.082*1./75 
1.096*1/75];C2=eye(2);D2=zeros(2); 
Plant2=ss(A2,B2,C2,D2); 
[Ap{2},Bp{2},Cp{2},Dp{2}]=ssdata(c2d(Plant2,Ts)); 
  
A=Ap{1};B=Bp{1};C=Cp{1};D=Dp{1}; 
  
Interval=2; 
A1=[-1/75 0;0 -1/75];B1=[.878/75 .864*dt/75;1.082*dt/75 1.096/75];C1=eye(2);D1=zeros(2); 
%B1=[.864/75 .878/75;1.096/75 1.082/75]; 
Plant1=ss(A1,B1,C1,D1); 
[A,B,C,D]=ssdata(c2d(Plant1,Ts)); 
%Aps=A;Bps=B;Cps=C;Dps=D; 
Aps=Ap{2};Bps=Bp{2};Cps=Cp{2}; 
%models for subsystems 
%subsystem 1 
A1=A(1,1);A2=A(2,2); 
B11=B(1,1);B12=B(1,2);B22=B(2,2);B21=B(2,1); 
C1=C(1,1);C2=C(2,2); 
ywt=[1 1]; 
Gs=[]; 
Glmi=[]; 
  
uwt=[1.7986e-006  8.2675e-005]; 
uwt=[0 0]; 
uwt=[8.9908e-003  1.8289e-006];%20% 
uwt=[1.8919e-005  1.0463e-002];%80% 
%uwt=[1.6925e-002  5.7856e-010]; 
uwt=[6.7427e-004 0]; 
uwt=[1.02e-5 1.02e-5] 
ywt1=1;ywt2=1; 
%uwt1=1.4203e-003;uwt2=3.1250e-006; 
uwt1=uwt(1);uwt2=uwt(2); 
p1=20;p2=20;m1=5;m2=5; 
Qy=eye(2); 
Qu=[uwt(1) 0;0 uwt(2)]; 
nu1=1;ny1=1;nu2=1;ny2=1; 
%create the input and output weighting matrices 
wu1=[]; 
wu2=[]; 
wy1=[]; 
wy2=[]; 
for i=1:m1*ny1 
    wu1=[wu1 uwt1]; 
end 
for i=1:m2*ny2 
    wu2=[wu2 uwt2]; 
end 
for i=1:p1*ny1 
    wy1=[wy1 ywt1]; 
end 
for i=1:p2*ny2 
    wy2=[wy2 ywt2]; 
end 
Wu1=diag(wu1); 
Wu2=diag(wu2); 
Wy1=diag(wy1); 
Wy2=diag(wy2); 
  
EY01=eye(ny1);EY1=EY01; 
for i=1:p1-1 
    EY1=[EY1 EY01]; 
end 
  
N1=EY1'; 
  
EY02=eye(ny2);EY2=EY02; 
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for i=1:p2-1 
    EY2=[EY2 EY02]; 
end 
  
N2=EY2'; 
  
%create the controller's paramater and Kmpcs 
%controller1 
nx1=size(A1,1); 
nx2=size(A2,1); 
Epsi1=zeros(ny1*p1,nx1); 
  
for i=1:p1 
    Epsi1((i-1)*ny1+1:i*ny1,:)=C1*A1^i; 
end 
  
%Epsi12=zeros(ny1*p1,nx2); 
%for i=1:p1 
%   Epsi12((i-1)*ny1+1:i*ny1,:)=C12*A2^i; 
%end 
  
Temp1=C1*B11; 
GA1=Temp1; 
for i=1:p1-1 
    for j=1:i 
        Temp1=Temp1+C1*A1^j*B11; 
    end 
    GA1=[GA1;Temp1]; 
    Temp1=C1*B11; 
end 
  
Temp12=C1*B12; 
GA12=Temp12; 
for i=1:p1-1 
    for j=1:i 
        Temp12=Temp12+C1*A1^j*B12; 
    end 
    GA12=[GA12;Temp12]; 
    Temp12=C1*B12; 
end 
  
Theta1 = zeros(ny1*p1,nu1*m1); 
Theta1(1:p1*ny1,1:nu1)=GA1; 
  
for i =2:m1 
    Theta1((i-1)*ny1+1:p1*ny1,(i-1)*nu1+1:i*nu1)=Theta1(1:(p1-(i-1))*ny1,1:nu1); 
end 
Theta12 = zeros(ny1*p1,nu2*m1); 
Theta12(1:p1*ny1,1:nu2)=GA12; 
  
for i =2:m1 
    Theta12((i-1)*ny1+1:p1*ny1,(i-1)*nu2+1:i*nu2)=Theta12(1:(p1-(i-1))*ny1,1:nu2); 
end 
  
Kfull1=inv(Theta1'*Wy1'*Wy1*Theta1+Wu1'*Wu1)*Theta1'*Wy1'*Wy1; 
Kmpc1=Kfull1(1:nu1,:); 
  
%create the controller's paramater and Kmpcs 
%Controller 2 
nx2=size(A2,1); 
  
Epsi2=zeros(ny2*p2,nx2); 
  
for i=1:p2 
    Epsi2((i-1)*ny2+1:i*ny2,:)=C2*A2^i; 
end 
  
%Epsi21=zeros(ny2*p2,nx1); 
  
%for i=1:p2 
 %   Epsi21((i-1)*ny2+1:i*ny2,:)=C21*A1^i; 
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%end 
  
Temp2=C2*B22; 
GA2=Temp2; 
for i=1:p2-1 
    for j=1:i 
        Temp2=Temp2+C2*A2^j*B22; 
    end 
    GA2=[GA2;Temp2]; 
    Temp2=C2*B22; 
end 
  
Temp21=C2*B21; 
GA21=Temp21; 
for i=1:p2-1 
    for j=1:i 
        Temp21=Temp21+C2*A2^j*B21; 
    end 
    GA21=[GA21;Temp21]; 
    Temp21=C2*B21; 
end 
  
Theta2 = zeros(ny2*p2,nu2*m2); 
Theta2(1:p2*ny2,1:nu2)=GA2; 
  
for i =2:m2 
    Theta2((i-1)*ny2+1:p2*ny2,(i-1)*nu2+1:i*nu2)=Theta2(1:(p2-(i-1))*ny2,1:nu2); 
end 
  
Theta21 = zeros(ny2*p2,nu1*m2); 
Theta21(1:p2*ny2,1:nu2)=GA21; 
  
for i =2:m2 
    Theta21((i-1)*ny2+1:p2*ny2,(i-1)*nu1+1:i*nu1)=Theta21(1:(p2-(i-1))*ny2,1:nu1); 
end 
  
Kfull2=inv(Theta2'*Wy2'*Wy2*Theta2+Wu2'*Wu2)*Theta2'*Wy2'*Wy2; 
Kmpc2=Kfull2(1:nu2,:); 
D1=[Kfull1 0*Kfull1;0*Kfull2 Kfull2]; 
D0=[0*Kfull1*Theta12 -Kfull1*Theta12;-Kfull2*Theta21 0*Kfull2*Theta21]; 
  
K=inv(eye(size(D0))-D0)*D1; 
Kmpc=[K(1,:);K(m1+1,:)]; 
Epsi=[Epsi1 0*Epsi1;0*Epsi2 Epsi2];GA=[GA1 GA12;GA21 GA2]; 
  
nu=2;ny=2;p=p1;m=m1;nx=nx1+nx2; 
Matrix1=[1 0]; 
for i=1:p-1 
    Matrix1=[Matrix1;[1 0]]; 
end 
Matrix2=[0 1]; 
for i=1:p-1 
    Matrix2=[Matrix2;[0 1]]; 
end 
Matrix=[Matrix1;Matrix2]; 
N2=Matrix; 
  
J=0; 
Tstop=8000; 
[nx1,nx1]=size(A); 
[nx2,nx2]=size(A); 
x0=zeros(nx1,1); 
xx=zeros(nx2,1); 
x=x0; 
for i=1:p 
        r1((i-1)*ny1+1:i*ny1,1)=[1]; 
end 
for i=1:p 
        r2((i-1)*ny2+1:i*ny2,1)=[0]; 
end 
r=[r1;r2]; 
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u_old=zeros(nu,1); 
YY=[];XX=[];X=[]; 
UU=[]; 
DD=[]; 
RR=[]; 
%alfa=.9; 
R0=zeros(p*ny,1); 
R=R0; 
Rs=[]; 
dumax=0; 
  
for t=0:round(Tstop/Ts)-1 
    if t==1500 
        for i=1:p 
        r1((i-1)*ny1+1:i*ny1,1)=[-1]; 
        end 
        for i=1:p 
        r2((i-1)*ny2+1:i*ny2,1)=[0]; 
        end 
        r=[r1;r2]; 
    
    end 
    if t==3000 
        for i=1:p 
        r1((i-1)*ny1+1:i*ny1,1)=[1]; 
        end 
        for i=1:p 
        r2((i-1)*ny2+1:i*ny2,1)=[0]; 
        end 
        r=[r1;r2]; 
    
    end 
    if t==6000 
        for i=1:p 
        r1((i-1)*ny1+1:i*ny1,1)=[0]; 
        end 
        for i=1:p 
        r2((i-1)*ny2+1:i*ny2,1)=[0]; 
        end 
        r=[r1;r2]; 
    
    end 
   
   
   
     
    RR=[RR,R]; 
    R=alfa*R+(1-alfa)*r; 
     
    %Rs=r; 
    Rs=[Rs,r]; 
    XX=[XX,xx]; 
    y=Cps*xx; 
    YY=[YY,y]; 
    W=N2*(y-[C1 0*C1;0*C2 C2]*x); 
    du=Kmpc*(R-Epsi*x-GA*u_old-W); 
    J=J+(y-[R(1);R(21)])'*Qy*(y-[R(1);R(21)])+du'*Qu*du; 
    if abs(du)>dumax 
        dumax=abs(du); 
    end 
    u=u_old+du; 
    UU=[UU,u]; 
    u_old=u; 
    x=[A1,0*A1;0*A2 A2]*x+[B11 B12;B21 B22]*u; 
    xx=Aps*xx+Bps*u; 
end 
dumax 
Time=0:Ts:Tstop-Ts; 
%pause 
    mm=length(R); 
err1=(YY(1,:)-RR(1,:)); 
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err2=(YY(2,:)-RR(p+1,:)); 
ref1=Rs(1,:); 
ref2=Rs(p+1,:); 
  
Time=0:Ts:Tstop-Ts; 
plot(Time,RR(1,:),'k--',Time,RR(2,:),'r--',Time,YY(1,:),Time,YY(2,:)); 
legend('R1','R2','y1','y2'); 
  
if dt==1 
YYnash=YY;UUnash=UU; 
save Nash20 YYnash UUnash RR 
end 
  
if dt==0 
YYdec=YY;UUdec=UU; 
save Dec20 YYdec UUdec RR 
end 
  
pause 
  
plot(Time,UU(1,:),Time,UU(2,:)); 
legend('u1','u2'); 
%legend('R1','R2','e1','e2'); 
  
%ref1=Rstate(1,:); 
gamma=sqrt((err1*err1'+err2*err2')/(ref1*ref1'+ref2*ref2')) 
J 
%Gs=[Gs;gammasim]; 
 
clear 
clc 
  
alfa=0.9; 
Ts=.1; 
dt=1; 
  
A=[-1.1002 .4463 0;0.6695 -1.1369 0;11.7337 0 -0.0214];B=[-.0368 0;0.0552 0;0 -.0026]; 
C=[0 1 0;0 0 1];D=zeros(2); 
  
  
%models for subsystems 
%subsystem 1 
A1=A;A2=A; 
B11=[B(:,1)];B12=[B(:,2)];B22=B12;B21=B11; 
C1=[C(1,:)];C2=[C(2,:)]; 
  
A=[-1.1002 .4463 0;0.6695 -1.1369 0;11.7337 0 -0.0214];B=[-.0368 0;0.0552*1.005 0;0 -
.0026]; 
C=[0 1 0;0 0 1];D=zeros(2); 
  
Aps=A;Bps=B;Cps=C;Dps=D; 
  
  
ywt=[1 1]; 
Gs=[]; 
Glmi=[]; 
  
uwt=[0. 0.]; 
%uwt=[]; 
ywt1=1;ywt2=1; 
%uwt1=1.4203e-003;uwt2=3.1250e-006; 
uwt1=uwt(1);uwt2=uwt(2); 
p1=10;p2=10;m1=2;m2=2; 
  
nu1=1;ny1=1;nu2=1;ny2=1; 
%create the input and output weighting matrices 
wu1=[]; 
wu2=[]; 
wy1=[]; 
wy2=[]; 
for i=1:m1*ny1 



 181 

    wu1=[wu1 uwt1]; 
end 
for i=1:m2*ny2 
    wu2=[wu2 uwt2]; 
end 
for i=1:p1*ny1 
    wy1=[wy1 ywt1]; 
end 
for i=1:p2*ny2 
    wy2=[wy2 ywt2]; 
end 
Wu1=diag(wu1); 
Wu2=diag(wu2); 
Wy1=diag(wy1); 
Wy2=diag(wy2); 
  
EY01=eye(ny1);EY1=EY01; 
for i=1:p1-1 
    EY1=[EY1 EY01]; 
end 
  
N1=EY1'; 
  
EY02=eye(ny2);EY2=EY02; 
for i=1:p2-1 
    EY2=[EY2 EY02]; 
end 
  
N2=EY2'; 
  
%create the controller's paramater and Kmpcs 
%controller1 
nx1=size(A1,1); 
nx2=size(A2,1); 
Epsi1=zeros(ny1*p1,nx1); 
  
for i=1:p1 
    Epsi1((i-1)*ny1+1:i*ny1,:)=C1*A1^i; 
end 
  
%Epsi12=zeros(ny1*p1,nx2); 
%for i=1:p1 
%   Epsi12((i-1)*ny1+1:i*ny1,:)=C12*A2^i; 
%end 
  
Temp1=C1*B11; 
GA1=Temp1; 
for i=1:p1-1 
    for j=1:i 
        Temp1=Temp1+C1*A1^j*B11; 
    end 
    GA1=[GA1;Temp1]; 
    Temp1=C1*B11; 
end 
  
Temp12=C1*B12; 
GA12=Temp12; 
for i=1:p1-1 
    for j=1:i 
        Temp12=Temp12+C1*A1^j*B12; 
    end 
    GA12=[GA12;Temp12]; 
    Temp12=C1*B12; 
end 
  
Theta1 = zeros(ny1*p1,nu1*m1); 
Theta1(1:p1*ny1,1:nu1)=GA1; 
  
for i =2:m1 
    Theta1((i-1)*ny1+1:p1*ny1,(i-1)*nu1+1:i*nu1)=Theta1(1:(p1-(i-1))*ny1,1:nu1); 
end 
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Theta12 = zeros(ny1*p1,nu2*m1); 
Theta12(1:p1*ny1,1:nu2)=GA12; 
  
for i =2:m1 
    Theta12((i-1)*ny1+1:p1*ny1,(i-1)*nu2+1:i*nu2)=Theta12(1:(p1-(i-1))*ny1,1:nu2); 
end 
  
Kfull1=inv(Theta1'*Wy1'*Wy1*Theta1+Wu1'*Wu1)*Theta1'*Wy1'*Wy1; 
Kmpc1=Kfull1(1:nu1,:); 
  
%create the controller's paramater and Kmpcs 
%Controller 2 
nx2=size(A2,1); 
  
Epsi2=zeros(ny2*p2,nx2); 
  
for i=1:p2 
    Epsi2((i-1)*ny2+1:i*ny2,:)=C2*A2^i; 
end 
  
%Epsi21=zeros(ny2*p2,nx1); 
  
%for i=1:p2 
 %   Epsi21((i-1)*ny2+1:i*ny2,:)=C21*A1^i; 
%end 
  
Temp2=C2*B22; 
GA2=Temp2; 
for i=1:p2-1 
    for j=1:i 
        Temp2=Temp2+C2*A2^j*B22; 
    end 
    GA2=[GA2;Temp2]; 
    Temp2=C2*B22; 
end 
  
Temp21=C2*B21; 
GA21=Temp21; 
for i=1:p2-1 
    for j=1:i 
        Temp21=Temp21+C2*A2^j*B21; 
    end 
    GA21=[GA21;Temp21]; 
    Temp21=C2*B21; 
end 
  
Theta2 = zeros(ny2*p2,nu2*m2); 
Theta2(1:p2*ny2,1:nu2)=GA2; 
  
for i =2:m2 
    Theta2((i-1)*ny2+1:p2*ny2,(i-1)*nu2+1:i*nu2)=Theta2(1:(p2-(i-1))*ny2,1:nu2); 
end 
  
Theta21 = zeros(ny2*p2,nu1*m2); 
Theta21(1:p2*ny2,1:nu2)=GA21; 
  
for i =2:m2 
    Theta21((i-1)*ny2+1:p2*ny2,(i-1)*nu1+1:i*nu1)=Theta21(1:(p2-(i-1))*ny2,1:nu1); 
end 
  
Kfull2=inv(Theta2'*Wy2'*Wy2*Theta2+Wu2'*Wu2)*Theta2'*Wy2'*Wy2; 
Kmpc2=Kfull2(1:nu2,:); 
D1=[Kfull1 0*Kfull1;0*Kfull2 Kfull2]; 
D0=[0*Kfull1*Theta12 -Kfull1*Theta12;-Kfull2*Theta21 0*Kfull2*Theta21]; 
  
K=inv(eye(size(D0))-D0)*D1; 
Kmpc=[K(1,:);K(m1+1,:)]; 
Epsi=[Epsi1 0*Epsi1;0*Epsi2 Epsi2];GA=[GA1 GA12;GA21 GA2]; 
  
nu=2;ny=2;p=p1;m=m1;nx=nx1+nx2; 
Matrix1=[1 0]; 
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for i=1:p-1 
    Matrix1=[Matrix1;[1 0]]; 
end 
Matrix2=[0 1]; 
for i=1:p-1 
    Matrix2=[Matrix2;[0 1]]; 
end 
Matrix=[Matrix1;Matrix2]; 
N2=Matrix; 
  
  
Tstop=10; 
[nx1,nx1]=size(A); 
[nx2,nx2]=size(A); 
x0=zeros(2*nx1,1); 
xx=zeros(nx2,1); 
x=x0; 
for i=1:p1 
        r1((i-1)*ny1+1:i*ny1,1)=[1]; 
end 
for i=1:p2 
        r2((i-1)*ny2+1:i*ny2,1)=[0]; 
end 
r=[r1;r2]; 
u_old=zeros(nu,1); 
YY=[];XX=[];X=[]; 
UU=[]; 
DD=[]; 
RR=[]; 
%alfa=.9; 
R0=zeros(p*ny,1); 
R=R0; 
Rs=[]; 
  
for t=0:round(Tstop/Ts)-1 
    if t==40 
        for i=1:p 
        r1((i-1)*ny1+1:i*ny1,1)=[1]; 
        end 
        for i=1:p 
        r2((i-1)*ny2+1:i*ny2,1)=[0]; 
        end 
        r=[r1;r2]; 
    
    end 
   
   
   
     
    RR=[RR,R]; 
    R=alfa*R+(1-alfa)*r; 
     
    %Rs=r; 
    Rs=[Rs,r]; 
    XX=[XX,xx]; 
    y=Cps*xx; 
    YY=[YY,y]; 
    W=N2*(y-[C1 0*C1;0*C2 C2]*x); 
    du=Kmpc*(R-Epsi*x-GA*u_old-W); 
    u=u_old+du; 
    UU=[UU,u]; 
    u_old=u; 
    x=[A1,0*A1;0*A2 A2]*x+[B11 B12;B21 B22]*u; 
    xx=Aps*xx+Bps*u; 
end 
  
Time=0:Ts:Tstop-Ts; 
%pause 
    mm=length(R); 
err1=(YY(1,:)-RR(1,:)); 
err2=(YY(2,:)-RR(p+1,:)); 
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ref1=Rs(1,:); 
ref2=Rs(p+1,:); 
  
Time=0:Ts:Tstop-Ts; 
plot(Time,RR(1,:),'k--',Time,RR(2,:),'r--',Time,YY(1,:),Time,YY(2,:)); 
legend('R1','R2','y1','y2'); 
  
pause 
  
plot(Time,UU(1,:),Time,UU(2,:)); 
legend('u1','u2'); 
%legend('R1','R2','e1','e2'); 
  
%ref1=Rstate(1,:); 
gamma=sqrt((err1*err1'+err2*err2')/(ref1*ref1'+ref2*ref2')) 
  
%Gs=[Gs;gammasim]; 
 
clear 
clc 
  
alfa=0; 
Ts=.1; 
dt=1; 
  
A=[-1.1002 0 0.4463;11.7337 -0.0214 0;.6695 0 -1.1369];B=[-.0368 0;0 -.0026;0.0552 0]; 
C=[0 1 0;0 0 1];D=zeros(2); 
  
  
%models for subsystems 
%subsystem 1 
A1=A;A2=A; 
B11=[B(:,1)];B12=[B(:,2)];B22=B12;B21=B11; 
C1=[C(1,:)];C2=[C(2,:)]; 
  
%A=[-1.1002 0 0.4463;11.7337 -0.0214 0;.6695 0 -1.1369];B=[-.0368 0;0 -.0026;0.0552 0]; 
%C=[0 0 1;0 1 0];D=zeros(2); 
  
  
Aps=A;Bps=B;Cps=C;Dps=D; 
  
  
ywt=[1 1]; 
Gs=[]; 
Glmi=[]; 
  
uwt=[0 0]; 
%uwt=[]; 
ywt1=1;ywt2=1; 
%uwt1=1.4203e-003;uwt2=3.1250e-006; 
uwt1=uwt(1);uwt2=uwt(2); 
p1=10;p2=10;m1=2;m2=2; 
  
nu1=1;ny1=1;nu2=1;ny2=1; 
%create the input and output weighting matrices 
wu1=[]; 
wu2=[]; 
wy1=[]; 
wy2=[]; 
for i=1:m1*ny1 
    wu1=[wu1 uwt1]; 
end 
for i=1:m2*ny2 
    wu2=[wu2 uwt2]; 
end 
for i=1:p1*ny1 
    wy1=[wy1 ywt1]; 
end 
for i=1:p2*ny2 
    wy2=[wy2 ywt2]; 
end 
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Wu1=diag(wu1); 
Wu2=diag(wu2); 
Wy1=diag(wy1); 
Wy2=diag(wy2); 
  
EY01=eye(ny1);EY1=EY01; 
for i=1:p1-1 
    EY1=[EY1 EY01]; 
end 
  
N1=EY1'; 
  
EY02=eye(ny2);EY2=EY02; 
for i=1:p2-1 
    EY2=[EY2 EY02]; 
end 
  
N2=EY2'; 
  
%create the controller's paramater and Kmpcs 
%controller1 
nx1=size(A1,1); 
nx2=size(A2,1); 
Epsi1=zeros(ny1*p1,nx1); 
  
for i=1:p1 
    Epsi1((i-1)*ny1+1:i*ny1,:)=C1*A1^i; 
end 
  
%Epsi12=zeros(ny1*p1,nx2); 
%for i=1:p1 
%   Epsi12((i-1)*ny1+1:i*ny1,:)=C12*A2^i; 
%end 
  
Temp1=C1*B11; 
GA1=Temp1; 
for i=1:p1-1 
    for j=1:i 
        Temp1=Temp1+C1*A1^j*B11; 
    end 
    GA1=[GA1;Temp1]; 
    Temp1=C1*B11; 
end 
  
Temp12=C1*B12; 
GA12=Temp12; 
for i=1:p1-1 
    for j=1:i 
        Temp12=Temp12+C1*A1^j*B12; 
    end 
    GA12=[GA12;Temp12]; 
    Temp12=C1*B12; 
end 
  
Theta1 = zeros(ny1*p1,nu1*m1); 
Theta1(1:p1*ny1,1:nu1)=GA1; 
  
for i =2:m1 
    Theta1((i-1)*ny1+1:p1*ny1,(i-1)*nu1+1:i*nu1)=Theta1(1:(p1-(i-1))*ny1,1:nu1); 
end 
Theta12 = zeros(ny1*p1,nu2*m1); 
Theta12(1:p1*ny1,1:nu2)=GA12; 
  
for i =2:m1 
    Theta12((i-1)*ny1+1:p1*ny1,(i-1)*nu2+1:i*nu2)=Theta12(1:(p1-(i-1))*ny1,1:nu2); 
end 
  
Kfull1=inv(Theta1'*Wy1'*Wy1*Theta1+Wu1'*Wu1)*Theta1'*Wy1'*Wy1; 
Kmpc1=Kfull1(1:nu1,:); 
  
%create the controller's paramater and Kmpcs 



 186 

%Controller 2 
nx2=size(A2,1); 
  
Epsi2=zeros(ny2*p2,nx2); 
  
for i=1:p2 
    Epsi2((i-1)*ny2+1:i*ny2,:)=C2*A2^i; 
end 
  
%Epsi21=zeros(ny2*p2,nx1); 
  
%for i=1:p2 
 %   Epsi21((i-1)*ny2+1:i*ny2,:)=C21*A1^i; 
%end 
  
Temp2=C2*B22; 
GA2=Temp2; 
for i=1:p2-1 
    for j=1:i 
        Temp2=Temp2+C2*A2^j*B22; 
    end 
    GA2=[GA2;Temp2]; 
    Temp2=C2*B22; 
end 
  
Temp21=C2*B21; 
GA21=Temp21; 
for i=1:p2-1 
    for j=1:i 
        Temp21=Temp21+C2*A2^j*B21; 
    end 
    GA21=[GA21;Temp21]; 
    Temp21=C2*B21; 
end 
  
Theta2 = zeros(ny2*p2,nu2*m2); 
Theta2(1:p2*ny2,1:nu2)=GA2; 
  
for i =2:m2 
    Theta2((i-1)*ny2+1:p2*ny2,(i-1)*nu2+1:i*nu2)=Theta2(1:(p2-(i-1))*ny2,1:nu2); 
end 
  
Theta21 = zeros(ny2*p2,nu1*m2); 
Theta21(1:p2*ny2,1:nu2)=GA21; 
  
for i =2:m2 
    Theta21((i-1)*ny2+1:p2*ny2,(i-1)*nu1+1:i*nu1)=Theta21(1:(p2-(i-1))*ny2,1:nu1); 
end 
  
Kfull2=inv(Theta2'*Wy2'*Wy2*Theta2+Wu2'*Wu2)*Theta2'*Wy2'*Wy2; 
Kmpc2=Kfull2(1:nu2,:); 
D1=[Kfull1 0*Kfull1;0*Kfull2 Kfull2]; 
D0=[0*Kfull1*Theta12 -Kfull1*Theta12;-Kfull2*Theta21 0*Kfull2*Theta21]; 
  
K=inv(eye(size(D0))-D0)*D1; 
Kmpc=[K(1,:);K(m1+1,:)]; 
Epsi=[Epsi1 0*Epsi1;0*Epsi2 Epsi2];GA=[GA1 GA12;GA21 GA2]; 
  
nu=2;ny=2;p=p1;m=m1;nx=nx1+nx2; 
Matrix1=[1 0]; 
for i=1:p-1 
    Matrix1=[Matrix1;[1 0]]; 
end 
Matrix2=[0 1]; 
for i=1:p-1 
    Matrix2=[Matrix2;[0 1]]; 
end 
Matrix=[Matrix1;Matrix2]; 
N2=Matrix; 
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Tstop=100; 
[nx1,nx1]=size(A); 
[nx2,nx2]=size(A); 
x0=zeros(2*nx1,1); 
xx=zeros(nx2,1); 
x=x0; 
for i=1:p1 
        r1((i-1)*ny1+1:i*ny1,1)=[0]; 
end 
for i=1:p2 
        r2((i-1)*ny2+1:i*ny2,1)=[1]; 
end 
r=[r1;r2]; 
u_old=zeros(nu,1); 
YY=[];XX=[];X=[]; 
UU=[]; 
DD=[]; 
RR=[]; 
%alfa=.9; 
R0=zeros(p*ny,1); 
R=R0; 
Rs=[]; 
  
for t=0:round(Tstop/Ts)-1 
    if t==40 
        for i=1:p 
        r1((i-1)*ny1+1:i*ny1,1)=[0]; 
        end 
        for i=1:p 
        r2((i-1)*ny2+1:i*ny2,1)=[1]; 
        end 
        r=[r1;r2]; 
    
    end 
   
   
   
     
    RR=[RR,R]; 
    R=alfa*R+(1-alfa)*r; 
     
    %Rs=r; 
    Rs=[Rs,r]; 
    XX=[XX,xx]; 
    y=Cps*xx; 
    YY=[YY,y]; 
    W=N2*(y-[C1 0*C1;0*C2 C2]*x); 
    du=Kmpc*(R-Epsi*x-GA*u_old-W); 
    u=u_old+du; 
    UU=[UU,u]; 
    u_old=u; 
    x=[A1,0*A1;0*A2 A2]*x+[B11 B12;B21 B22]*u; 
    xx=Aps*xx+Bps*u; 
end 
  
Time=0:Ts:Tstop-Ts; 
%pause 
    mm=length(R); 
err1=(YY(1,:)-RR(1,:)); 
err2=(YY(2,:)-RR(p+1,:)); 
ref1=Rs(1,:); 
ref2=Rs(p+1,:); 
  
Time=0:Ts:Tstop-Ts; 
plot(Time,RR(1,:),'k--',Time,RR(2,:),'r--',Time,YY(1,:),Time,YY(2,:)); 
legend('R1','R2','y1','y2'); 
  
pause 
  
plot(Time,UU(1,:),Time,UU(2,:)); 
legend('u1','u2'); 
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%legend('R1','R2','e1','e2'); 
  
%ref1=Rstate(1,:); 
gamma=sqrt((err1*err1'+err2*err2')/(ref1*ref1'+ref2*ref2')) 
  
%Gs=[Gs;gammasim]; 
 
function [tmin]=CheckStability(A1,A2,A3,A4) 
  
[ns,ns]=size(A1); 
[ns,ns]=size(A1); 
setlmis([]) 
Po=lmivar(1,[ns 1]);%Po is symmetric block diagonal 
Gamm=lmivar(1,[1 1]);% 
  
%LMI#1 
lmiterm([1 1 1 Po],A1',A1);%A'*Po*A 
lmiterm([1 1 1 Po],-1,1);%-Po 
  
%LMI#2 
lmiterm([2 1 1 Po],A2',A2);%A'*Po*A 
lmiterm([2 1 1 Po],-1,1);%-Po 
  
%LMI#3 
lmiterm([3 1 1 Po],A3',A3);%A'*Po*A 
lmiterm([3 1 1 Po],-1,1);%-Po 
  
%LMI#4 
lmiterm([4 1 1 Po],A4',A4);%A'*Po*A 
lmiterm([4 1 1 Po],-1,1);%-Po 
  
%LMI#5 
lmiterm([5 1 1 Po],-1,1); 
  
LMIsys=getlmis; 
  
[tmin,xfeas]=feasp(LMIsys,[1.0*exp(-4) 100 1e5 40 1]); 
 
function gamma=Glmi(lambda) 
%if lambda(1)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(2)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(3)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(4)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(5)<0 
%    gamma=1e6; 
%    return; 
%end 
  
alfa=0.99; 
  
Ts=.1; 
  
us=[4654.2;8;570;600;282.82;15;15]; 
xs=[2.0518e-001 
  1.9460e-001 
  3.1250e+002 
  4.3721e+002 
  4.9515e-001 
  2.5910e-001 
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  3.7454e-001 
  1.9175e-001 
  1.0492e-001 
  6.3679e-002 
  4.4089e-002 
  3.4784e-002 
  1.8210e-002 
  9.5183e-003 
  4.9598e-003 
  2.5691e-003 
  2.6439e-002 
  2.2451e+002 
  3.6117e+002]'; 
tx=diag(xs); 
tu=diag(us); 
%plant vertices 
load point1010; 
  
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
Plant=ss(A,B,C,zeros(5,7)); 
  
[Ap{1},BB,Cp{1},D]=ssdata(c2d(Plant,Ts)); 
Bp{1}=BB(:,1:5);Bd{1}=BB(:,6:7); 
  
  
  
load point1020; 
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
  
Plant=ss(A,B,C,zeros(5,7)); 
[Ap{2},BB,Cp{2},D]=ssdata(c2d(Plant,Ts)); 
Bp{2}=BB(:,1:5);Bd{2}=BB(:,6:7); 
  
load point2010; 
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
  
Plant=ss(A,B,C,zeros(5,7)); 
[Ap{3},BB,Cp{3},D]=ssdata(c2d(Plant,Ts)); 
Bp{3}=BB(:,1:5);Bd{3}=BB(:,6:7); 
  
  
load point2020; 
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
  
Plant=ss(A,B,C,zeros(5,7)); 
[Ap{4},BB,Cp{4},D]=ssdata(c2d(Plant,Ts)); 
Bp{4}=BB(:,1:5);Bd{4}=BB(:,6:7); 
  
  
us=[4654.2;8;570;600;282.82]; 
tu=diag(us); 
  
%nominal point 
load nominal; 
dt=0; 
index=1; 
if index==1 
% unit based 
% unit based 
%A=[A(1:4,1:4) dt*A(1:4,5:18) A(1:4,19);dt*A(5:6,1:4) A(5:6,5:6) dt*A(5:6,7:19);... 
%   dt*A(7:11,1:6) A(7:11,7:11) dt*A(7:11,12:19);... 
%   dt*A(12:16,1:11) A(12:16,12:16) dt*A(12:16,17:19);... 
%   dt*A(17:18,1:16) A(17:18,17:18) dt*A(17:18,19);... 
%   dt*A(19,1:18) A(19,19)]; 
%B(1:19,1)=[B(1:4,1);dt*B(5:19,1)]; 
%B(1:19,2)=[dt*B(1:4,2);B(5:6,2);dt*B(7:19,2)]; 
%B(1:19,3)=[dt*B(1:6,3);B(7:11,3);dt*B(12:19,3)]; 
%B(1:19,4)=[dt*B(1:11,4);B(12:16,4);dt*B(17:19,4)]; 
%B(1:19,5)=[dt*B(1:16,5);B(17:18,5);dt*B(19,5)]; 
% A=[A(1:4,1:4) dt*A(1:4,5:18) A(1:4,19);dt*A(5:6,1:4) b5:6,5:6) dt*A(5:6,7:19);... 
%    dt*A(7:16,1:6) A(7:16,7:16) dt*A(7:16,17:19);... 
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%    dt*A(17:18,1:16) A(17:18,17:18) dt*A(17:18,19);... 
%    dt*A(19,1:18) A(19,19)]; 
% B(1:19,1)=[B(1:4,1);dt*B(5:19,1)]; 
% B(1:19,2)=[dt*B(1:4,2);B(5:6,2);dt*B(7:19,2)]; 
% B(1:19,3)=[dt*B(1:6,3);B(7:16,3);dt*B(17:19,3)]; 
% B(1:19,4)=[dt*B(1:6,4);B(7:16,4);dt*B(17:19,4)]; 
% B(1:19,5)=[dt*B(1:16,5);B(17:18,5);dt*B(19,5)]; 
end 
  
if index==2 
%dau7 
A=[A(1:4,1:4) zeros(4,2) A(1:4,7:16) zeros(4,2) A(1:4,19); zeros(2,4) A(5:6,5:6) 
zeros(2,10) A(5:6,17:18) zeros(2,1); A(7:16,1:4) zeros(10,2) A(7:16,7:16) zeros(10,2) 
A(7:16,19); zeros(2,4) A(17:18,5:6) zeros(2,10) A(17:18,17:18) zeros(2,1); A(19,1:4) 
zeros(1,2) A(19,7:16) zeros(1,2) A(19,19)]; 
B=[B(1:4,1) zeros(4,1) B(1:4,3:4) zeros(4,1); zeros(2,1) B(5:6,2) zeros(2,2) B(5:6,5); 
B(7:16,1) zeros(10,1) B(7:16,3:4) zeros(10,1); zeros(2,1) B(17:18,2) zeros(2,2) 
B(17:18,5); B(19,1) zeros(1,1) B(19,3:4) zeros(1,1)]; 
end 
  
if index==3 
%dau8 
A=[A(1:4,1:4) zeros(4,14) A(1:4,19); zeros(14,4) A(5:18,5:18) zeros(14,1); A(19,1:4) 
zeros(1,14) A(19,19)]; 
B=[B(1:4,1) zeros(4,4); zeros(14,1) B(5:18,2:5); zeros(1,5)]; 
end 
  
A=inv(tx)*A*tx;B=inv(tx)*B*tu;C=C*tx; 
%B=B(:,[1 2 3 5 4]); 
Plant=ss(A,B,C,zeros(5,5)); 
[A,B,C,D]=ssdata(c2d(Plant,Ts)); 
A=[A(1:4,1:4) dt*A(1:4,5:18) A(1:4,19);dt*A(5:6,1:4) A(5:6,5:6) dt*A(5:6,7:19);... 
    dt*A(7:16,1:6) A(7:16,7:16) dt*A(7:16,17:19);... 
    dt*A(17:18,1:16) A(17:18,17:18) dt*A(17:18,19);... 
    dt*A(19,1:18) A(19,19)]; 
B(1:19,1)=[B(1:4,1);dt*B(5:19,1)]; 
B(1:19,2)=[dt*B(1:4,2);B(5:6,2);dt*B(7:19,2)]; 
B(1:19,3)=[dt*B(1:6,3);B(7:16,3);dt*B(17:19,3)]; 
B(1:19,4)=[dt*B(1:6,4);B(7:16,4);dt*B(17:19,4)]; 
B(1:19,5)=[dt*B(1:16,5);B(17:18,5);dt*B(19,5)]; 
  
  
  
Interval=4; 
  
ywt=[1 1 1 1 1]; 
  
%uwt=10*[0.0002    0.3711    0.5999    0.2408    0.1783]; 
%uwt=[0 .4 .6 .2 .2]; 
uwt=[lambda(1) lambda(2) lambda(3) lambda(4) lambda(5)] 
  
p=10; 
m=2; 
  
nu=5;ny=5;nd=2; 
  
weiu=uwt; 
weiy=ywt; 
  
EU0=eye(nu);EU=EU0; 
for i=1:m-1 
    EU=[EU EU0]; 
end 
Wu=spdiags([weiu*EU]',[0],m*nu,m*nu); 
  
%Wy pny*pny 
EY0=eye(ny);EY=EY0; 
for i=1:p-1 
    EY=[EY EY0]; 
end 
Wy=spdiags([weiy*EY]',[0],p*ny,p*ny); 



 191 

  
N2=EY'; 
  
[nx,nx]=size(A); 
  
Epsi=zeros(ny*p,nx); 
  
for i=1:p 
    Epsi((i-1)*ny+1:i*ny,:)=C*A^i; 
end 
  
Temp=C*B; 
GA=Temp; 
for i=1:p-1 
    for j=1:i 
        Temp=Temp+C*A^j*B; 
    end 
    GA=[GA;Temp]; 
    Temp=C*B; 
end 
  
Theta = zeros(ny*p,nu*m); 
Theta(1:p*ny,1:nu)=GA; 
  
for i =2:m 
    Theta((i-1)*ny+1:p*ny,(i-1)*nu+1:i*nu)=Theta(1:(p-(i-1))*ny,1:nu); 
end 
  
Kfull=inv(Theta'*Wy'*Wy*Theta+Wu'*Wu)*Theta'*Wy'*Wy; 
Kmpc=Kfull(1:nu,:); 
  
%kk=0.001*ones(nx,ny); 
%NN=C*kk; 
%for i=1:p-1 
%    NN=[NN;C*A^i*kk]; 
%end 
%N2=NN; 
  
for i=1:Interval 
  
%process Xk+1 
A11=Ap{i}-Bp{i}*Kmpc*N2*Cp{i}; 
A12=Bp{i}*Kmpc*(N2*C-Epsi); 
A13=Bp{i}-Bp{i}*Kmpc*GA; 
A14=Bd{i}; 
  
%nominal model Xk+1 
A21=-B*Kmpc*N2*Cp{i}; 
A22=A+B*Kmpc*(N2*C-Epsi); 
A23=B-B*Kmpc*GA; 
A24=zeros(nx,nd); 
  
%Uk 
A31=-Kmpc*N2*Cp{i}; 
A32=Kmpc*(N2*C-Epsi); 
A33=eye(nu,nu)-Kmpc*GA; 
A34=zeros(nu,nd); 
  
%dk+1 
A41=zeros(nd,nx); 
A42=zeros(nd,nx); 
A43=zeros(nd,nu); 
A44=(alfa)*[1 0;0 1]; 
%aa=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
%AA=[A11 zeros(2,2) A12 A13;zeros(2,2) A11 A12 A13;.5*A21 .5*A21 A22 A23;A31 A31 A32 
A33]; 
  
Asys{i}=[A11 A12 A13 A14;A21 A22 A23 A24;A31 A32 A33 A34;A41 A42 A43 A44]; 
%Asys{i}=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
  
%Asys=AA; 
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B1=zeros(nx,nd); 
B2=zeros(nx,nd); 
B3=zeros(nu,nd); 
B4=(1-alfa)*[1 0;0 1]; 
%bb=[B1;B2;B3]; 
Bsys{i}=[B1;B2;B3;B4]; 
  
%Csys=[-Cp*(Ap-Bp*Kmpc*N2*Cp),-Cp*(Bp*Kmpc*(N2*C-Epsi)),-Cp*(Bp-
Bp*Kmpc*GA),alfa*eye(ny,ny)-Cp*Bp*Kmpc*alfa*Matrix]; 
%Csys=[-Cp*(Ap-Bp*(Kmpc*N2*Cp)),-Cp*(Bp*Kmpc*(N2*C-Epsi)),-Cp*(Bp-Bp*Kmpc*GA)]; 
  
Csys{i}=[-Cp{i},zeros(ny,nx),zeros(ny,nu),zeros(ny,nd)]; 
%Dsys=(1-alfa)*eye(ny,ny)-Cp*Bp*Kmpc*(1-alfa)*Matrix; 
%Dsys=(1-alfa)*eye(ny,ny); 
Dsys=zeros(ny,nd); 
MPCsys{i}=ss(Asys{i},Bsys{i},Csys{i},Dsys,Ts); 
Poles{i}=pole(MPCsys{i}); 
%eig(Asys{i}) 
  
end 
  
[sys,g,t,ti] = balreal(MPCsys{1});  % Compute balanced realization 
elim = (g<1e-6);         % Small entries of g are negligible states 
rsys1 = modred(sys,elim); 
  
[sys,g] = balreal(MPCsys{2});  % Compute balanced realization 
rsys2 = modred(sys,elim); 
  
[sys,g] = balreal(MPCsys{3});  % Compute balanced realization 
rsys3 = modred(sys,elim); 
  
[sys,g] = balreal(MPCsys{4});  % Compute balanced realization 
rsys4 = modred(sys,elim); 
  
  
A1=rsys1.a; 
A2=rsys2.a; 
A3=rsys3.a; 
A4=rsys4.a; 
B1=rsys1.b; 
B2=rsys2.b; 
B3=rsys3.b; 
B4=rsys4.b; 
C1=rsys1.c; 
C2=rsys2.c; 
C3=rsys3.c; 
C4=rsys4.c; 
D1=rsys1.d; 
D2=rsys2.d; 
D3=rsys3.d; 
D4=rsys4.d; 
  
[tmin]=CheckStability(A1,A2,A3,A4) 
if tmin>0 
    gamma=1e12 
    return 
end 
%tic; 
[ns,ns]=size(A1); 
setlmis([]) 
Po=lmivar(1,[ns 1]);%Po is symmetric block diagonal 
Gamm=lmivar(1,[1 1]);% 
  
%LMI#1 
lmiterm([1 1 1 Po],A1',A1);%A'*Po*A 
lmiterm([1 1 1 Po],-1,1);%-Po 
lmiterm([1 1 2 Po],A1',B1);%A'*Po*B 
lmiterm([1 1 3 0],C1');%C' 
lmiterm([1 2 2 Po],B1',B1);%B'*Po*B 
lmiterm([1 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([1 2 3 0],D1');%D' 
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lmiterm([1 3 3 0],-1);%1 
  
%LMI#2 
lmiterm([2 1 1 Po],A2',A2);%A'*Po*A 
lmiterm([2 1 1 Po],-1,1);%-Po 
lmiterm([2 1 2 Po],A2',B2);%A'*Po*B 
lmiterm([2 1 3 0],C2');%C' 
lmiterm([2 2 2 Po],B2',B2);%B'*Po*B 
lmiterm([2 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([2 2 3 0],D2');%D' 
lmiterm([2 3 3 0],-1);%1 
  
%LMI#3 
lmiterm([3 1 1 Po],A3',A3);%A'*Po*A 
lmiterm([3 1 1 Po],-1,1);%-Po 
lmiterm([3 1 2 Po],A3',B3);%A'*Po*B 
lmiterm([3 1 3 0],C3');%C' 
lmiterm([3 2 2 Po],B3',B3);%B'*Po*B 
lmiterm([3 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([3 2 3 0],D3');%D' 
lmiterm([3 3 3 0],-1);%1 
  
%LMI#4 
lmiterm([4 1 1 Po],A4',A4);%A'*Po*A 
lmiterm([4 1 1 Po],-1,1);%-Po 
lmiterm([4 1 2 Po],A4',B4);%A'*Po*B 
lmiterm([4 1 3 0],C4');%C' 
lmiterm([4 2 2 Po],B4',B4);%B'*Po*B 
lmiterm([4 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([4 2 3 0],D4');%D' 
lmiterm([4 3 3 0],-1);%1 
  
%LMI#5 
lmiterm([5 1 1 Po],-1,1); 
  
LMIsys=getlmis; 
CC=mat2dec(LMIsys,zeros(ns),1); 
%CC' 
%CC=zeros(1,947);CC(1)=1; 
[gam,xopt]=mincx(LMIsys,CC,[1.0*exp(-4) 100 1e5 40 1]); 
%Qm = dec2mat(LMIsys,xopt,Gamm) 
gamma=sqrt(gam) 
%toc; 
%t=toc; 
  
 
function gamma=Glmi(lambda) 
%if lambda(1)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(2)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(3)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(4)<0 
%    gamma=1e6; 
%    return; 
%end 
%if lambda(5)<0 
%    gamma=1e6; 
%    return; 
%end 
  
alfa=0.99; 
  
Ts=.1; 
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us=[4654.2;8;570;600;282.82;15;15]; 
xs=[2.0518e-001 
  1.9460e-001 
  3.1250e+002 
  4.3721e+002 
  4.9515e-001 
  2.5910e-001 
  3.7454e-001 
  1.9175e-001 
  1.0492e-001 
  6.3679e-002 
  4.4089e-002 
  3.4784e-002 
  1.8210e-002 
  9.5183e-003 
  4.9598e-003 
  2.5691e-003 
  2.6439e-002 
  2.2451e+002 
  3.6117e+002]'; 
tx=diag(xs); 
tu=diag(us); 
%plant vertices 
load point1010; 
  
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
Plant=ss(A,B,C,zeros(5,7)); 
  
[Ap{1},BB,Cp{1},D]=ssdata(c2d(Plant,Ts)); 
Bp{1}=BB(:,1:5);Bd{1}=BB(:,6:7); 
  
  
  
load point1020; 
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
  
Plant=ss(A,B,C,zeros(5,7)); 
[Ap{2},BB,Cp{2},D]=ssdata(c2d(Plant,Ts)); 
Bp{2}=BB(:,1:5);Bd{2}=BB(:,6:7); 
  
load point2010; 
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
  
Plant=ss(A,B,C,zeros(5,7)); 
[Ap{3},BB,Cp{3},D]=ssdata(c2d(Plant,Ts)); 
Bp{3}=BB(:,1:5);Bd{3}=BB(:,6:7); 
  
  
load point2020; 
A=inv(tx)*A*tx;B=inv(tx)*[B BD]*tu;C=C*tx; 
  
Plant=ss(A,B,C,zeros(5,7)); 
[Ap{4},BB,Cp{4},D]=ssdata(c2d(Plant,Ts)); 
Bp{4}=BB(:,1:5);Bd{4}=BB(:,6:7); 
  
  
us=[4654.2;8;570;600;282.82]; 
tu=diag(us); 
  
%nominal point 
load nominal; 
dt=0; 
index=1; 
if index==1 
% unit based 
% unit based 
%A=[A(1:4,1:4) dt*A(1:4,5:18) A(1:4,19);dt*A(5:6,1:4) A(5:6,5:6) dt*A(5:6,7:19);... 
%   dt*A(7:11,1:6) A(7:11,7:11) dt*A(7:11,12:19);... 
%   dt*A(12:16,1:11) A(12:16,12:16) dt*A(12:16,17:19);... 
%   dt*A(17:18,1:16) A(17:18,17:18) dt*A(17:18,19);... 
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%   dt*A(19,1:18) A(19,19)]; 
%B(1:19,1)=[B(1:4,1);dt*B(5:19,1)]; 
%B(1:19,2)=[dt*B(1:4,2);B(5:6,2);dt*B(7:19,2)]; 
%B(1:19,3)=[dt*B(1:6,3);B(7:11,3);dt*B(12:19,3)]; 
%B(1:19,4)=[dt*B(1:11,4);B(12:16,4);dt*B(17:19,4)]; 
%B(1:19,5)=[dt*B(1:16,5);B(17:18,5);dt*B(19,5)]; 
% A=[A(1:4,1:4) dt*A(1:4,5:18) A(1:4,19);dt*A(5:6,1:4) b5:6,5:6) dt*A(5:6,7:19);... 
%    dt*A(7:16,1:6) A(7:16,7:16) dt*A(7:16,17:19);... 
%    dt*A(17:18,1:16) A(17:18,17:18) dt*A(17:18,19);... 
%    dt*A(19,1:18) A(19,19)]; 
% B(1:19,1)=[B(1:4,1);dt*B(5:19,1)]; 
% B(1:19,2)=[dt*B(1:4,2);B(5:6,2);dt*B(7:19,2)]; 
% B(1:19,3)=[dt*B(1:6,3);B(7:16,3);dt*B(17:19,3)]; 
% B(1:19,4)=[dt*B(1:6,4);B(7:16,4);dt*B(17:19,4)]; 
% B(1:19,5)=[dt*B(1:16,5);B(17:18,5);dt*B(19,5)]; 
end 
  
if index==2 
%dau7 
A=[A(1:4,1:4) zeros(4,2) A(1:4,7:16) zeros(4,2) A(1:4,19); zeros(2,4) A(5:6,5:6) 
zeros(2,10) A(5:6,17:18) zeros(2,1); A(7:16,1:4) zeros(10,2) A(7:16,7:16) zeros(10,2) 
A(7:16,19); zeros(2,4) A(17:18,5:6) zeros(2,10) A(17:18,17:18) zeros(2,1); A(19,1:4) 
zeros(1,2) A(19,7:16) zeros(1,2) A(19,19)]; 
B=[B(1:4,1) zeros(4,1) B(1:4,3:4) zeros(4,1); zeros(2,1) B(5:6,2) zeros(2,2) B(5:6,5); 
B(7:16,1) zeros(10,1) B(7:16,3:4) zeros(10,1); zeros(2,1) B(17:18,2) zeros(2,2) 
B(17:18,5); B(19,1) zeros(1,1) B(19,3:4) zeros(1,1)]; 
end 
  
if index==3 
%dau8 
A=[A(1:4,1:4) zeros(4,14) A(1:4,19); zeros(14,4) A(5:18,5:18) zeros(14,1); A(19,1:4) 
zeros(1,14) A(19,19)]; 
B=[B(1:4,1) zeros(4,4); zeros(14,1) B(5:18,2:5); zeros(1,5)]; 
end 
  
A=inv(tx)*A*tx;B=inv(tx)*B*tu;C=C*tx; 
%B=B(:,[1 2 3 5 4]); 
Plant=ss(A,B,C,zeros(5,5)); 
[A,B,C,D]=ssdata(c2d(Plant,Ts)); 
A=[A(1:4,1:4) dt*A(1:4,5:18) A(1:4,19);dt*A(5:6,1:4) A(5:6,5:6) dt*A(5:6,7:19);... 
    dt*A(7:16,1:6) A(7:16,7:16) dt*A(7:16,17:19);... 
    dt*A(17:18,1:16) A(17:18,17:18) dt*A(17:18,19);... 
    dt*A(19,1:18) A(19,19)]; 
B(1:19,1)=[B(1:4,1);dt*B(5:19,1)]; 
B(1:19,2)=[dt*B(1:4,2);B(5:6,2);dt*B(7:19,2)]; 
B(1:19,3)=[dt*B(1:6,3);B(7:16,3);dt*B(17:19,3)]; 
B(1:19,4)=[dt*B(1:6,4);B(7:16,4);dt*B(17:19,4)]; 
B(1:19,5)=[dt*B(1:16,5);B(17:18,5);dt*B(19,5)]; 
  
  
  
Interval=4; 
  
ywt=[1 1 1 1 1]; 
  
%uwt=10*[0.0002    0.3711    0.5999    0.2408    0.1783]; 
%uwt=[0 .4 .6 .2 .2]; 
uwt=[lambda(1) lambda(2) lambda(3) lambda(4) lambda(5)] 
  
p=10; 
m=2; 
  
nu=5;ny=5;nd=2; 
  
weiu=uwt; 
weiy=ywt; 
  
EU0=eye(nu);EU=EU0; 
for i=1:m-1 
    EU=[EU EU0]; 
end 
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Wu=spdiags([weiu*EU]',[0],m*nu,m*nu); 
  
%Wy pny*pny 
EY0=eye(ny);EY=EY0; 
for i=1:p-1 
    EY=[EY EY0]; 
end 
Wy=spdiags([weiy*EY]',[0],p*ny,p*ny); 
  
N2=EY'; 
  
[nx,nx]=size(A); 
  
Epsi=zeros(ny*p,nx); 
  
for i=1:p 
    Epsi((i-1)*ny+1:i*ny,:)=C*A^i; 
end 
  
Temp=C*B; 
GA=Temp; 
for i=1:p-1 
    for j=1:i 
        Temp=Temp+C*A^j*B; 
    end 
    GA=[GA;Temp]; 
    Temp=C*B; 
end 
  
Theta = zeros(ny*p,nu*m); 
Theta(1:p*ny,1:nu)=GA; 
  
for i =2:m 
    Theta((i-1)*ny+1:p*ny,(i-1)*nu+1:i*nu)=Theta(1:(p-(i-1))*ny,1:nu); 
end 
  
Kfull=inv(Theta'*Wy'*Wy*Theta+Wu'*Wu)*Theta'*Wy'*Wy; 
Kmpc=Kfull(1:nu,:); 
  
%kk=0.001*ones(nx,ny); 
%NN=C*kk; 
%for i=1:p-1 
%    NN=[NN;C*A^i*kk]; 
%end 
%N2=NN; 
  
for i=1:Interval 
  
%process Xk+1 
A11=Ap{i}-Bp{i}*Kmpc*N2*Cp{i}; 
A12=Bp{i}*Kmpc*(N2*C-Epsi); 
A13=Bp{i}-Bp{i}*Kmpc*GA; 
A14=Bd{i}; 
  
%nominal model Xk+1 
A21=-B*Kmpc*N2*Cp{i}; 
A22=A+B*Kmpc*(N2*C-Epsi); 
A23=B-B*Kmpc*GA; 
A24=zeros(nx,nd); 
  
%Uk 
A31=-Kmpc*N2*Cp{i}; 
A32=Kmpc*(N2*C-Epsi); 
A33=eye(nu,nu)-Kmpc*GA; 
A34=zeros(nu,nd); 
  
%dk+1 
A41=zeros(nd,nx); 
A42=zeros(nd,nx); 
A43=zeros(nd,nu); 
A44=(alfa)*[1 0;0 1]; 
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%aa=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
%AA=[A11 zeros(2,2) A12 A13;zeros(2,2) A11 A12 A13;.5*A21 .5*A21 A22 A23;A31 A31 A32 
A33]; 
  
Asys{i}=[A11 A12 A13 A14;A21 A22 A23 A24;A31 A32 A33 A34;A41 A42 A43 A44]; 
%Asys{i}=[A11 A12 A13;A21 A22 A23;A31 A32 A33]; 
  
%Asys=AA; 
B1=zeros(nx,nd); 
B2=zeros(nx,nd); 
B3=zeros(nu,nd); 
B4=(1-alfa)*[1 0;0 1]; 
%bb=[B1;B2;B3]; 
Bsys{i}=[B1;B2;B3;B4]; 
  
%Csys=[-Cp*(Ap-Bp*Kmpc*N2*Cp),-Cp*(Bp*Kmpc*(N2*C-Epsi)),-Cp*(Bp-
Bp*Kmpc*GA),alfa*eye(ny,ny)-Cp*Bp*Kmpc*alfa*Matrix]; 
%Csys=[-Cp*(Ap-Bp*(Kmpc*N2*Cp)),-Cp*(Bp*Kmpc*(N2*C-Epsi)),-Cp*(Bp-Bp*Kmpc*GA)]; 
  
Csys{i}=[-Cp{i},zeros(ny,nx),zeros(ny,nu),zeros(ny,nd)]; 
%Dsys=(1-alfa)*eye(ny,ny)-Cp*Bp*Kmpc*(1-alfa)*Matrix; 
%Dsys=(1-alfa)*eye(ny,ny); 
Dsys=zeros(ny,nd); 
MPCsys{i}=ss(Asys{i},Bsys{i},Csys{i},Dsys,Ts); 
Poles{i}=pole(MPCsys{i}); 
%eig(Asys{i}) 
  
end 
  
[sys,g,t,ti] = balreal(MPCsys{1});  % Compute balanced realization 
elim = (g<1e-6);         % Small entries of g are negligible states 
rsys1 = modred(sys,elim); 
  
[sys,g] = balreal(MPCsys{2});  % Compute balanced realization 
rsys2 = modred(sys,elim); 
  
[sys,g] = balreal(MPCsys{3});  % Compute balanced realization 
rsys3 = modred(sys,elim); 
  
[sys,g] = balreal(MPCsys{4});  % Compute balanced realization 
rsys4 = modred(sys,elim); 
  
  
A1=rsys1.a; 
A2=rsys2.a; 
A3=rsys3.a; 
A4=rsys4.a; 
B1=rsys1.b; 
B2=rsys2.b; 
B3=rsys3.b; 
B4=rsys4.b; 
C1=rsys1.c; 
C2=rsys2.c; 
C3=rsys3.c; 
C4=rsys4.c; 
D1=rsys1.d; 
D2=rsys2.d; 
D3=rsys3.d; 
D4=rsys4.d; 
  
[tmin]=CheckStability(A1,A2,A3,A4) 
if tmin>0 
    gamma=1e12 
    return 
end 
%tic; 
[ns,ns]=size(A1); 
setlmis([]) 
Po=lmivar(1,[ns 1]);%Po is symmetric block diagonal 
Gamm=lmivar(1,[1 1]);% 
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%LMI#1 
lmiterm([1 1 1 Po],A1',A1);%A'*Po*A 
lmiterm([1 1 1 Po],-1,1);%-Po 
lmiterm([1 1 2 Po],A1',B1);%A'*Po*B 
lmiterm([1 1 3 0],C1');%C' 
lmiterm([1 2 2 Po],B1',B1);%B'*Po*B 
lmiterm([1 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([1 2 3 0],D1');%D' 
lmiterm([1 3 3 0],-1);%1 
  
%LMI#2 
lmiterm([2 1 1 Po],A2',A2);%A'*Po*A 
lmiterm([2 1 1 Po],-1,1);%-Po 
lmiterm([2 1 2 Po],A2',B2);%A'*Po*B 
lmiterm([2 1 3 0],C2');%C' 
lmiterm([2 2 2 Po],B2',B2);%B'*Po*B 
lmiterm([2 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([2 2 3 0],D2');%D' 
lmiterm([2 3 3 0],-1);%1 
  
%LMI#3 
lmiterm([3 1 1 Po],A3',A3);%A'*Po*A 
lmiterm([3 1 1 Po],-1,1);%-Po 
lmiterm([3 1 2 Po],A3',B3);%A'*Po*B 
lmiterm([3 1 3 0],C3');%C' 
lmiterm([3 2 2 Po],B3',B3);%B'*Po*B 
lmiterm([3 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([3 2 3 0],D3');%D' 
lmiterm([3 3 3 0],-1);%1 
  
%LMI#4 
lmiterm([4 1 1 Po],A4',A4);%A'*Po*A 
lmiterm([4 1 1 Po],-1,1);%-Po 
lmiterm([4 1 2 Po],A4',B4);%A'*Po*B 
lmiterm([4 1 3 0],C4');%C' 
lmiterm([4 2 2 Po],B4',B4);%B'*Po*B 
lmiterm([4 2 2 Gamm],-1,1);%-gamma2I 
lmiterm([4 2 3 0],D4');%D' 
lmiterm([4 3 3 0],-1);%1 
  
%LMI#5 
lmiterm([5 1 1 Po],-1,1); 
  
LMIsys=getlmis; 
CC=mat2dec(LMIsys,zeros(ns),1); 
%CC' 
%CC=zeros(1,947);CC(1)=1; 
[gam,xopt]=mincx(LMIsys,CC,[1.0*exp(-4) 100 1e5 40 1]); 
%Qm = dec2mat(LMIsys,xopt,Gamm) 
gamma=sqrt(gam) 
%toc; 
%t=toc; 
  

Key MATLAB codes used in Chapter 4 

  
k11=32.63;tau11=(99.6*.35);theta11=(99.6+.35); 
k12=-33.89;tau12=(98.02*.42);theta12=(98.02+.42); 
k21=34.84;tau21=(110.5*.03);theta21=110.5+.03; 
k22=-18.85;tau22=75.43*.3;theta22=75.43+.3; 
  
Ac=[0 1 0 0 0 0 0 0 
    -1/tau11 -theta11/tau11 0 0 0 0 0 0 
    0 0 0 1 0 0 0 0 
    0 0 -1/tau12 -theta12/tau12 0 0 0 0 
    0 0 0 0 0 1 0 0 
    0 0 0 0 -1/tau21 -theta21/tau21 0 0 
    0 0 0 0 0 0 0 1 
    0 0 0 0 0 0 -1/tau22 -theta22/tau22]; 
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Bc=[0 0 
    k11/tau11 0 
    0 0 
    0 k12/tau12 
    0 0 
    k21/tau21 0 
    0 0 
    0 k22/tau22]; 
  
C=[1 0 1 0 0 0 0 0;0 0 0 0 1 0 1 0]; 
D=[0 0;0 0]; 
plant2=(c2d(ss(Ac,Bc,C,D),Ts)); 
Pv1=plant2; 
[A1,B1,C,D]=ssdata(plant2); %state-space matrices 
  
  
  
k11=10*32.63;tau11=(99.6*.35);theta11=(99.6+.35); 
k12=10*-33.89;tau12=(98.02*.42);theta12=(98.02+.42); 
k21=10*34.84;tau21=(110.5*.03);theta21=110.5+.03; 
k22=10*-18.85;tau22=75.43*.3;theta22=75.43+.3; 
  
Ac=[0 1 0 0 0 0 0 0 
    -1/tau11 -theta11/tau11 0 0 0 0 0 0 
    0 0 0 1 0 0 0 0 
    0 0 -1/tau12 -theta12/tau12 0 0 0 0 
    0 0 0 0 0 1 0 0 
    0 0 0 0 -1/tau21 -theta21/tau21 0 0 
    0 0 0 0 0 0 0 1 
    0 0 0 0 0 0 -1/tau22 -theta22/tau22]; 
  
Bc=[0 0 
    k11/tau11 0 
    0 0 
    0 k12/tau12 
    0 0 
    k21/tau21 0 
    0 0 
    0 k22/tau22]; 
  
C=[1 0 1 0 0 0 0 0;0 0 0 0 1 0 1 0]; 
D=[0 0;0 0]; 
plant2=(c2d(ss(Ac,Bc,C,D),Ts)); 
Pv2=plant2; 
  
[A2,B2,C,D]=ssdata(plant2); %state-space matrices 
  
  
  
k11=5*32.63;tau11=(99.6*.35);theta11=(99.6+.35); 
k12=5*-33.89;tau12=(98.02*.42);theta12=(98.02+.42); 
k21=5*34.84;tau21=(110.5*.03);theta21=110.5+.03; 
k22=5*-18.85;tau22=75.43*.3;theta22=75.43+.3; 
  
Ac=[0 1 0 0 0 0 0 0 
    -1/tau11 -theta11/tau11 0 0 0 0 0 0 
    0 0 0 1 0 0 0 0 
    0 0 -1/tau12 -theta12/tau12 0 0 0 0 
    0 0 0 0 0 1 0 0 
    0 0 0 0 -1/tau21 -theta21/tau21 0 0 
    0 0 0 0 0 0 0 1 
    0 0 0 0 0 0 -1/tau22 -theta22/tau22]; 
  
Bc=[0 0 
    k11/tau11 0 
    0 0 
    0 k12/tau12 
    0 0 
    k21/tau21 0 
    0 0 
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    0 k22/tau22]; 
  
C=[1 0 1 0 0 0 0 0;0 0 0 0 1 0 1 0]; 
D=[0 0;0 0]; 
plant2=(c2d(ss(Ac,Bc,C,D),Ts)); 
Pv3=plant2; 
  
[Ap,Bp,C,D]=ssdata(plant2); %state-space matrices 
clc 
clear all 
  
Models 
Ap=A2;Bp=B2; 
 
xs=[3.0423e+000;-3.2205e-015;-4.0423e+000;3.9590e-016;3.2484e+000;1.1481e-015;-
2.2484e+000;-7.0955e-016]; 
us=[9.3238e-002;1.1928e-001]; 
%xs=[.5;0;.5;0;-.5;0;-.5;0]; 
  
um1 = 1.5-us(1); um2 = 2-us(2);% input constraint 
  
Xm1=um1^2; Xm2=um2^2; 
  
  
% state weights 
Qs1=50*[1 0;0 1]; Qs2=50*[1 0;0 1]; 
Qs1=C'*Qs1*C+1e-6*eye(8); Qs2=C'*Qs2*C+1e-6*eye(8); 
Q1 = 50*eye(2); % state weights 
Q1=C'*Q1*C+1e-6*eye(8); 
% input weights 
R1=1; R2=1; 
R = eye(2); % input weight 
  
  
% no. of sampling time 
m=100; 
  
xk = 0*[0;0;0;0;0;0;0;0]; 
xkhat=xk-xs; 
xek=(xk-xs); 
yk=C*xkhat; 
gdata = zeros(1,m); 
tdata = zeros(1,m+1); tdata(1) = 0; 
xdata=zeros(8,m+1); xdata(:,1)=xk;  
xekdata = zeros(8,m+1); xekdata(:,1) = xek; 
FFdata=zeros(2,2,m); 
udata=zeros(2,m); 
onclock = zeros(1,m); 
J=xek'*Qs1*xek; 
Jcost=J; 
Jnash=xkhat'*Qs1*xkhat; 
J3=0; 
ydata=zeros(2,m+1); ydata(:,1)=C*xdata(:,1); 
ErrTol=1e-2; 
MaxIteration=10; 
Gdata=zeros(MaxIteration,MaxIteration,m); 
  
F1_old=0*[2.4368e-001  9.6118e-002  2.4342e-001  1.1554e-001 -7.5902e-001 -1.9334e-002 -
7.4396e-001 -1.8754e-001];  
F2_old=0*[  8.9819e-001  2.4213e-001  8.9802e-001  2.8776e-001 -3.3902e-001 -1.0614e-002 
-3.2376e-001 -1.0193e-001]; 
  
x1k_old=xek; x2k_old=xek; 
D=[1;0]; 
dt=1; 
alfa=.96; 
  
DD1=[]; 
DD2=[]; 
FF=[]; 
flag=0; 
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invQ1=zeros(8,8,25); 
invQ2=zeros(8,8,25); 
ttime=0; 
for k=1:1:m 
    tic 
   for iterations=1:MaxIteration 
       F1_2old=F1_old; 
       F2_2old=F2_old; 
       [F1,g1,QQ1,YY1]=mpc1fc(A1,A2,B1,B2,R1,Qs1,x1k_old,F2_old,Xm1); 
       [F2,g2,QQ2,YY2]=mpc2fc(A1,A2,B1,B2,R2,Qs2,x2k_old,F1_old,Xm2); 
%        xk=xkhat; 
%         xk'*(A1+B1*[F1;F2])'*inv(QQ1)*(A1+B1*[F1;F2])*xk-xk'*inv(QQ1)*xk 
%        xk'*(A2+B2*[F1;F2])'*inv(QQ1)*(A2+B2*[F1;F2])*xk-xk'*inv(QQ1)*xk 
%        xk'*(A1+B1*[F1;F2])'*inv(QQ2)*(A1+B1*[F1;F2])*xk-xk'*inv(QQ2)*xk 
%        xk'*(A2+B2*[F1;F2])'*inv(QQ2)*(A2+B2*[F1;F2])*xk-xk'*inv(QQ2)*xk 
       g1; 
       g2; 
       flag=1; 
       %if k==60 
       %    F1 
       %    F2 
       %    pause 
       %end 
     %if iterations == MaxIteration 
     %      k 
     %      F1 
     %      F1_old 
     %      F2 
     %      F2_old 
    value=norm([F1;F2]-[F1_old;F2_old]); 
    iterations; 
    invQ1(1:8,1:8,iterations)=inv(QQ1); 
    invQ2(1:8,1:8,iterations)=inv(QQ2); 
  
    %QQ2 
    v1(iterations)=QQ1(1,1); 
    v2(iterations)=QQ2(1,1); 
    %pause 
    %   end 
    FF=[FF norm([F1;F2])]; 
   if norm([F1;F2]-[F1_old;F2_old]) <= ErrTol 
     %  [F1;F2]; 
     %  k;iterations; value=norm([F1;F2]-[F1_old;F2_old]); 
       break; 
   end 
    
   F1_old=alfa*F1+(1-alfa)*F1_2old; 
   F2_old=alfa*F2+(1-alfa)*F2_2old; 
   DD1=[DD1 g1]; 
      DD2=[DD2 g2]; 
  
   end 
  
   %F1_old=0*F1_2old; 
   %F2_old=0*F2_2old; 
   disp('========') 
   %YY1  
   %YY2 
   g1; 
   g2; 
   QQ1; 
   QQ2; 
   iterations 
 toc 
ttime=ttime+toc;  
   %if iterations == MaxIteration 
   %    break; 
   %end 
   F=[F1;F2]; FFdata(1:2,1:8,k)=F; 
   u=F*xkhat 
   AC1=A1+B1*F; 
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AC2=A2+B2*F; 
   setlmis([]); 
   P=lmivar(1,[8 1]); 
    
   lmiterm([-1 1 1 P],-AC1',AC1); 
   lmiterm([-1 1 1 P],1,1); 
    
   lmiterm([-2 1 1 P],-AC2',AC2); 
   lmiterm([-2 1 1 P],1,1); 
   lmis3=getlmis; 
   options=[0,0,-1,0,1]; 
   [tmin,xfeas]=feasp(lmis3,options); 
   tmin 
    
   if tmin>0 
       disp('hohohoho') 
       pause; 
   end 
  
   xkhat'*inv(.5*QQ1+.5*QQ2)*xkhat 
   xkhat=Ap*xkhat+Bp*u; %xkhat=xk-xs; 
    
   xdata(:,k+1)=xkhat; 
   ydata(:,k+1)=C*xkhat+[-1;1];% or C*xk 
   x1k_old=xkhat; x2k_old=xkhat ; 
   tdata(k+1)=k;  
  
end 
break 
ttime 
J=.5*J/m 
%J=(1/m)*.5*J 
plot(tdata,ydata) 
pause 
%hold on 
udata=[[0;0] udata]; 
plot(tdata,udata(1,:),tdata,udata(2,:)) 
  
ynash=ydata; 
unash=udata; 
break 
save nash ynash unash; 
  
 
  
break 
if MaxIteration==1 
yFC1=ydata; 
uFC1=udata; 
save FCvenkat1 yFC1 uFC1; 
end 
  
if MaxIteration==10 
yFC10=ydata; 
uFC10=udata; 
save FCvenkat10 yFC10 uFC10; 
end 
if MaxIteration==60 
yFC60=ydata; 
uFC60=udata; 
save FCvenkat60 yFC60 uFC60; 
end 
  
%J = 
ddd=1; 
if ddd==1 
    ynash=ydata; 
unash=udata; 
save venkatnash ynash unash; 
end 
 % 3.4429e+002 
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%J = 
  
%  1.7215e+000 
  
function [F1,g1,QQ,YY]=mpc1fc(A1,A2,Bm1,Bm2,R,Q1,xk,F2,Xm1) 
A1=A1+Bm1(:,2)*F2; A2=A2+Bm2(:,2)*F2; 
  
B1=Bm1(:,1); B2=Bm2(:,1); 
Q1=Q1+F2'*R*F2; 
  
%Define LMIs 
   setlmis([]); 
   gama=lmivar(1,[1 0]); 
   Q=lmivar(1,[8 1]); 
   Y=lmivar(2,[1 8]); 
   %Y2=lmivar(2,[1 1]); 
  
   lmiterm([-1 1 1 0],1); 
   lmiterm([-1 2 1 0],xk); 
   lmiterm([-1 2 2 Q],1 ,1); 
%     
   %A1=A+Bijv1*F2; 
   lmiterm([-2 1 1 Q],1,1); 
   lmiterm([-2 2 1 Q],A1,1); 
   lmiterm([-2 2 1 Y],B1,1); 
   lmiterm([-2 2 2 Q],1,1); 
   lmiterm([-2 3 1 Q],real(Q1^0.5),1); 
   lmiterm([-2 3 3 gama],1,1); 
   lmiterm([-2 4 1 Y],R^0.5,1); 
   lmiterm([-2 4 4 gama],1,1); 
  
   %A2=A+Bijv2*F2; 
   lmiterm([-3 1 1 Q],1,1); 
   lmiterm([-3 2 1 Q],A2,1); 
   lmiterm([-3 2 1 Y],B2,1); 
   lmiterm([-3 2 2 Q],1,1); 
   lmiterm([-3 3 1 Q],real(Q1^0.5),1); 
   lmiterm([-3 3 3 gama],1,1); 
   lmiterm([-3 4 1 Y],R^0.5,1); 
   lmiterm([-3 4 4 gama],1,1); 
    
    
   %lmiterm([-4 1 1 0],0); 
   %lmiterm([-4 2 1 0],Bijv1*F2); 
   %lmiterm([-4 2 1 Y2],B1,1); 
   %lmiterm([-4 2 2 Q],1,1); 
   %lmiterm([-4 3 1 Y2],R^0.5,1); 
   %lmiterm([-4 3 3 gama],1,1); 
    
    
   %lmiterm([-5 1 1 0],0); 
   %lmiterm([-5 2 1 0],Bijv2*F2); 
   %lmiterm([-5 2 1 Y2],B2,1); 
   %lmiterm([-5 2 2 Q],1,1); 
   %lmiterm([-5 3 1 Y2],R^0.5,1); 
   %lmiterm([-5 3 3 gama],1,1); 
    
   lmiterm([-4 1 1 0],Xm1); 
   lmiterm([-4 2 1 -Y],1,1); 
   lmiterm([-4 2 2 Q],1 ,1); 
%     
   %if flag==1 
   %    lmiterm([-4 1 1 0],QQ2+1e-1*ones(8,8)); 
   %    lmiterm([-4 1 1 Q],1,-1); 
   %end 
    %if flag ==1 
    %    lmiterm([-4 1 1 0],Xm2); 
    %    lmiterm([-4 2 1 0],-YY2'); 
    %    lmiterm([-4 2 2 Q],1 ,1); 
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    %end 
    
   %lmiterm([-4 1 1 0],1e-1); 
   %lmiterm([-4 2 1 Q],1,1); 
   %lmiterm([-4 2 1 0],-QQ2); 
   %lmiterm([-4 2 2 0],1); 
   %end 
    
    
    
   LMIs=getlmis; 
   
  c=zeros(1,45); c(1)=1; 
  options=[1e-5,100,0,20,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
   g1=dec2mat(LMIs,xopt,gama); %gdata(1,k)=log(gg); 
   QQ=dec2mat(LMIs,xopt,Q); 
   YY=dec2mat(LMIs,xopt,Y); 
   %YY2=dec2mat(LMIs,xopt,Y2); 
   F1=YY*QQ^(-1); 
   %F1(2)=YY2*QQ^(-1); 
function [F2,g2,QQ,YY]=mpc2fc(A1,A2,Bm1,Bm2,R,Q1,xk,F1,Xm2) 
A1=A1+Bm1(:,1)*F1; A2=A2+Bm2(:,1)*F1; 
  
B1=Bm1(:,2); B2=Bm2(:,2); 
Q1=Q1+F1'*R*F1; 
%Define LMIs 
   setlmis([]); 
   gama=lmivar(1,[1 0]); 
   Q=lmivar(1,[8 1]); 
   Y=lmivar(2,[1 8]); 
   %Y2=lmivar(2,[1 1]); 
  
   lmiterm([-1 1 1 0],1); 
   lmiterm([-1 2 1 0],xk); 
   lmiterm([-1 2 2 Q],1 ,1); 
    
   %A1=A+Bijv1*F2; 
   lmiterm([-2 1 1 Q],1,1); 
   lmiterm([-2 2 1 Q],A1,1); 
   lmiterm([-2 2 1 Y],B1,1); 
   lmiterm([-2 2 2 Q],1,1); 
   lmiterm([-2 3 1 Q],real(Q1^0.5),1); 
   lmiterm([-2 3 3 gama],1,1); 
   lmiterm([-2 4 1 Y],R^0.5,1); 
   lmiterm([-2 4 4 gama],1,1); 
  
   %A2=A+Bijv2*F2; 
   lmiterm([-3 1 1 Q],1,1); 
   lmiterm([-3 2 1 Q],A2,1); 
   lmiterm([-3 2 1 Y],B2,1); 
   lmiterm([-3 2 2 Q],1,1); 
   lmiterm([-3 3 1 Q],real(Q1^0.5),1); 
   lmiterm([-3 3 3 gama],1,1); 
   lmiterm([-3 4 1 Y],R^0.5,1); 
   lmiterm([-3 4 4 gama],1,1); 
    
    
   %lmiterm([-4 1 1 0],0); 
   %lmiterm([-4 2 1 0],Bijv1*F2); 
   %lmiterm([-4 2 1 Y2],B1,1); 
   %lmiterm([-4 2 2 Q],1,1); 
   %lmiterm([-4 3 1 Y2],R^0.5,1); 
   %lmiterm([-4 3 3 gama],1,1); 
    
    
   %lmiterm([-5 1 1 0],0); 
   %lmiterm([-5 2 1 0],Bijv2*F2); 
   %lmiterm([-5 2 1 Y2],B2,1); 
   %lmiterm([-5 2 2 Q],1,1); 
   %lmiterm([-5 3 1 Y2],R^0.5,1); 
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   %lmiterm([-5 3 3 gama],1,1); 
%     
   lmiterm([-4 1 1 0],Xm2); 
   lmiterm([-4 2 1 -Y],1,1); 
   lmiterm([-4 2 2 Q],1 ,1); 
%     
   %if flag==1 
   %    lmiterm([-4 1 1 0],QQ1+1e-1*ones(8,8)); 
   %    lmiterm([-4 1 1 Q],1,-1); 
   %end 
    %if flag ==1 
    %    lmiterm([-4 1 1 0],Xm1); 
    %    lmiterm([-4 2 1 0],-YY1'); 
    %    lmiterm([-4 2 2 Q],1 ,1); 
    %end 
    
   %lmiterm([-4 1 1 0],1e-1); 
   %lmiterm([-4 2 1 Q],1,1); 
   %lmiterm([-4 2 1 0],-QQ1); 
   %lmiterm([-4 2 2 0],1); 
   %end    
   LMIs=getlmis; 
   
  c=zeros(1,45); c(1)=1; 
 options=[1e-5,100,0,20,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
   g2=dec2mat(LMIs,xopt,gama); %gdata(1,k)=log(gg); 
   QQ=dec2mat(LMIs,xopt,Q); 
   YY=dec2mat(LMIs,xopt,Y); 
   %YY2=dec2mat(LMIs,xopt,Y2); 
   F2=YY*QQ^(-1); 
   %F1(2)=YY2*QQ^(-1); 
clc 
clear all 
  
g11=tf(4.05,[50 1],'IODELAY',6); 
g12=tf(1.77,[60 1],'IODELAY',6); 
g13=tf(5.88,[50 1],'IODELAY',6); 
  
g21=tf(5.39,[50 1],'IODELAY',4); 
g22=tf(5.72,[60 1],'IODELAY',2); 
g23=tf(6.9,[40 1],'IODELAY',2); 
  
g31=tf(4.38,[33 1],'IODELAY',4); 
g32=tf(4.42,[44 1],'IODELAY',4); 
g33=tf(7.2,[19 1]); 
  
  
Plant=[g11 g12 g13;g21 g22 g23;g31 g32 g33]; % Transfer Matrix in Continous 
Ts=2; 
  
% Plantd=c2d(Plant,Ts); 
%  
% step(Plant,Plantd) 
  
%y1 
% Transfer function: 
%            0.1588 
% z^(-3) * ---------- 
%          z - 0.9608 
  
A11=[.9608 1 0 0;0 0 1 0;0 0 0 1;0 0 0 0]; 
B11=[0;0;0;.1588]; 
C11=[1 0 0 0]; 
D11=0; 
  
% Transfer function: 
%           0.05803 
% z^(-3) * ---------- 
%          z - 0.9672 
%   
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% Sampling time: 2 
A12=[.9672 1 0 0;0 0 1 0;0 0 0 1;0 0 0 0]; 
B12=[0;0;0;.05803]; 
C12=[1 0 0 0]; 
D12=0; 
  
% Transfer function: 
%            0.2306 
% z^(-3) * ---------- 
%          z - 0.9608 
%   
% Sampling time: 2 
  
A13=[.9608 1 0 0;0 0 1 0;0 0 0 1;0 0 0 0]; 
B13=[0;0;0;.2306]; 
C13=[1 0 0 0]; 
D13=0; 
  
A1=blkdiag(A11,A12,A13); 
B1=blkdiag(B11,B12,B13); 
C1=[C11 C12 C13]; 
D1=zeros(1,3); 
% model=[g11 g12 g13]; 
% step(model,ss(A1,B1,C1,D1,Ts)) 
  
 
 

Key MATLAB codes used in Chapter 5 

clc 
clear 
Ts=4; 
Ac=[-1/75 0;0 -1/75]; 
dt=1; 
Bc1=[.878/75 .864*dt/75;1.082*dt/75 1.096/75]*[1.8 0;0 0.2]; 
Bc2=[.878/75 .864*dt/75;1.082*dt/75 1.096/75]*[1. 0;0 1.]; 
B3=[.878/75 .864/75;1.082/75 1.096/75]*[1.5 0;0 0.5]; 
%B4=[.878/75 .864/75;1.082/75 1.096/75]*[0.8 0;0 1.2]; 
[A,B1,C,D]=ssdata(c2d(ss(Ac,Bc1,eye(2),zeros(2)),Ts)); 
[A,B2,C,D]=ssdata(c2d(ss(Ac,Bc2,eye(2),zeros(2)),Ts)); 
  
nc=6; 
nu=2; 
nu1=1; 
nu2=1; 
nx=2; 
  
K=[-7.1412e-002  9.5463e-003;-6.9765e-002  9.4318e-003]; 
K =[-1.2784e-001 -1.5752e-001;-5.5039e-002 -6.9872e-002]; 
  
M1=[zeros((nc-1)*nu1,nu1) eye((nc-1)*nu1);zeros(nu1,nu1) zeros(nu1,(nc-1)*nu1)]; 
  
M2=[zeros((nc-1)*nu1,nu2) eye((nc-1)*nu2);zeros(nu1,nu2) zeros(nu1,(nc-1)*nu2)]; 
  
T=[eye(nu) zeros(nu,nu*nc-2)]; 
T1=[eye(nu1) zeros(nu1,nu*nc-1)] 
T2=[zeros(nu2,nu2*nc) eye(nu2) zeros(nu2,nu2*nc-1)] 
  
epsi1=[(A+B1*K) [B1(:,1) zeros(nx,(nc-1)*nu1)] [B1(:,2) zeros(nx,(nc-
1)*nu2)];zeros(nu1*nc,nx) M1 0*M1;zeros(nu2*nc,nx) 0*M2 M2]; 
epsi2=[(A+B2*K) [B2(:,1) zeros(nx,(nc-1)*nu1)] [B2(:,2) zeros(nx,(nc-
1)*nu2)];zeros(nu1*nc,nx) M1 0*M1;zeros(nu2*nc,nx) 0*M2 M2]; 
  
Y = sdpvar(nu*nc+nx,nu*nc+nx); 
  
F = set( [Y Y*epsi1';epsi1*Y Y] >0); 
F = F + set( [Y Y*epsi2';epsi2*Y Y] >0); 
F = F + set([K(1,:) T1]*Y*[K(1,:) T1]' <1.0000e-002); 
F = F + set([K(2,:) T2]*Y*[K(2,:) T2]' <1.0000e-002); 
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%ops = sdpsettings('verbose',1,'sedumi.eps',1e-4); 
ops = sdpsettings('verbose',1,'sedumi.bigeps',1e-2); 
  
solution = solvesdp(F,-geomean([eye(nx) zeros(nx,nc*nu)]*Y*[eye(nx) 
zeros(nx,nc*nu)]'),ops); 
any_probelms=solution.problem 
Y = double(Y); 
  
Tx=[eye(nx) zeros(nx,nu*nc)]; 
  
Tf=[zeros(nx,nx+nu*nc);zeros(nu*nc,nx) eye(nu*nc)]; 
Qinv=Y 
Qxinv=Tx*(Y)*Tx' 
Qfinv1=Y(nx+1:nx+nc*nu1,nx+1:nx+nc*nu1)%Tf*inv(Y)*Tf' 
Qfinv2=Y(nx+nc*nu1+1:nx+nc*nu1+nc*nu2,nx+nc*nu1+1:nx+nc*nu1+nc*nu2) 
  
Qf1x=Y(nx+1:nx+nc*nu1,1:nx)%Tf*inv(Y)*Tx' 
Qf2x=Y(nx+nc*nu1+1:end,1:nx) 
  
Qf1f2=Y(nx+nc*nu2+1:end,nx+1:nx+nc*nu1) 
  
%plant 
B3=[.878/75 .864/75;1.082/75 1.096/75]*[1.5 0;0 0.5]; 
[Ap,Bp,C,D]=ssdata(c2d(ss(Ac,B3,eye(2),zeros(2)),Ts)); 
  
  
C = [1 0;0 1]; 
  
m=250; 
xk = [-1;0];  
udata=zeros(2,m); 
tdata = zeros(1,m+1); tdata(1) = 0; 
xdata=zeros(2,m+1); xdata(:,1)=xk+[1;0]; 
  
ErrTol=1e-3; 
MaxIteration=1000; 
f1_old=-.001*ones(1,nc*nu1); 
f2_old=-.001*ones(1,nc*nu2); 
fc =[-4.3735e-002 -1.8869e-002 -3.2630e-002 -1.3935e-002 -2.3657e-002 -9.9938e-003 -
1.6301e-002 -6.8079e-003 -1.0135e-002 -4.1831e-003 -4.8024e-003 -1.9581e-003]; 
fc=[-4.3833e-002 -3.2724e-002 -2.3741e-002 -1.6370e-002 -1.0187e-002 -4.8341e-003 -
1.8919e-002 -1.3985e-002 -1.0039e-002 -6.8446e-003 -4.2100e-003 -1.9742e-003]; 
%   f1_old=[fc(1) fc(3) fc(5) fc(7) fc(9) fc(11)]; 
%   f2_old=[fc(2) fc(4) fc(6) fc(8) fc(10) fc(12)]; 
f1_old=0*fc(1:nu1*nc); 
f2_old=0*fc(nu1*nc+1:nu*nc); 
  
x1k_old=xk; x2k_old=xk; 
ru=1e1; 
tic 
Lam1=[]; 
Lam2=[]; 
for k=1:1:1 
    tic 
   for iterations=1:MaxIteration 
       
[f1,alfa1,lamda1]=DMPC1(ru,nu1,nc,Qxinv,Qfinv1,Qfinv2,Qf1x,Qf2x,Qf1f2,x1k_old,f2_old); 
       
[f2,alfa2,lamda2]=DMPC2(ru,nu2,nc,Qxinv,Qfinv1,Qfinv2,Qf1x,Qf2x,Qf1f2,x2k_old,f1_old); 
  
    
     
   if norm(f1-f1_old) <= ErrTol && norm(f2-f2_old)<=ErrTol 
          break; 
   end 
   lamda1 
   lamda2 
   f1_old=f1; 
   f2_old=f2; 
   Lam1=[Lam1 lamda1]; 
   Lam2=[Lam2 lamda2]; 
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   end 
c1=[xk' f1 f2_old]*inv(Qinv)*[xk;f1';f2_old'] 
c2=[xk' f1_old f2]*inv(Qinv)*[xk;f1_old';f2'] 
  
   %F1_old=0*F1_2old; 
   %F2_old=0*F2_2old; 
   disp('========') 
   %YY1  
   %YY2 
   alfa1; 
   alfa2' 
   f1; 
   f2; 
   toc 
   iterations 
  
  
   %if iterations == MaxIteration 
   %    break; 
   %end 
   F=[f1(1);f2(1)]; %FFdata(1:2,1:8,k)=F; 
   u=K*xk+F; udata(1:2,k)=u; 
    
%     Ap = Ap + DA; 
%       Bp = Bp + DB; 
 xk=Ap*xk+Bp*u; 
 if k==150 
     xk=xk+[.5;.2]; 
 end 
 if k==151 
     pause; 
 end 
           xdata(:,k+1)=xk+[1;0]; 
    x1k_old=xk; x2k_old=xk; 
       
   tdata(k+1) = k; 
    
end 
toc 
x=1:12; 
fm=[f1 f2]; 
plot(x(1:6),fc(1:6),x(7:12),fc(7:12),x,fm,':') 
  
xdmpc=xdata; 
udmpc=udata; 
break 
save HP_DMPC xdmpc udmpc 
plot(tdata,xdata) 
pause 
%hold on 
plot(tdata(2:end),udata(1,:),tdata(2:end),udata(2,:)) 
 
function 
[f1,alfa1,lamda]=DMPC1(ru,nu1,nc,Qxinv,Qfinv1,Qfinv2,Qf1x,Qf2x,Qf1f2,x1k_old,f2_old); 
  
 setlmis([]); 
    a=lmivar(1,[1 0]); 
    lambda=lmivar(1,[1 0]); 
    ff=lmivar(2,[1 nu1*nc]); 
     
     
    lmiterm([-1 1 1 a],1,1); 
    %lmiterm([-1 1 1 lambda],1,ru); 
    lmiterm([-1 1 2 ff],1,1); 
    lmiterm([-1 1 3 0],f2_old); 
    lmiterm([-1 1 4 lambda],1,1); 
    lmiterm([-1 2 2 0],1); 
    lmiterm([-1 3 3 0],1); 
    lmiterm([-1 4 4 0],ru^(-1)); 
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    lmiterm([-2 1 1 lambda],1,1); 
    lmiterm([-2 1 1 0],1); 
    lmiterm([-2 1 2 0],x1k_old'); 
    lmiterm([-2 1 3 ff],1,1); 
    lmiterm([-2 1 4 0],f2_old); 
    lmiterm([-2 2 2 0],Qxinv); 
    lmiterm([-2 2 3 0],Qf1x'); 
    lmiterm([-2 2 4 0],Qf2x'); 
    lmiterm([-2 3 3 0],Qfinv1); 
    lmiterm([-2 3 4 0],Qf1f2'); 
    lmiterm([-2 4 4 0],Qfinv2); 
     
     LMIs=getlmis; 
   
  c=zeros(1,2+nc*nu1); c(1)=1; 
  options=[1e-3,1000,1e9,100,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
   alfa1=dec2mat(LMIs,xopt,a); 
   f1=dec2mat(LMIs,xopt,ff); 
    lamda=dec2mat(LMIs,xopt,lambda); 
function 
[f2,alfa2,lamda]=DMPC2(ru,nu2,nc,Qxinv,Qfinv1,Qfinv2,Qf1x,Qf2x,Qf1f2,x2k_old,f1_old); 
  
 setlmis([]); 
    a=lmivar(1,[1 0]); 
    lambda=lmivar(1,[1 0]); 
    ff=lmivar(2,[1 nu2*nc]); 
     
     
    lmiterm([-1 1 1 a],1,1); 
    %lmiterm([-1 1 1 lambda],1,ru); 
    lmiterm([-1 1 2 0],f1_old); 
    lmiterm([-1 1 3 ff],1,1); 
    lmiterm([-1 1 4 lambda],1,1); 
    lmiterm([-1 2 2 0],1); 
    lmiterm([-1 3 3 0],1); 
    lmiterm([-1 4 4 0],ru^(-1)); 
     
    lmiterm([-2 1 1 lambda],1,1); 
    lmiterm([-2 1 1 0],1); 
    lmiterm([-2 1 2 0],x2k_old'); 
    lmiterm([-2 1 3 0],f1_old); 
    lmiterm([-2 1 4 ff],1,1); 
    lmiterm([-2 2 2 0],Qxinv); 
    lmiterm([-2 2 3 0],Qf1x'); 
    lmiterm([-2 2 4 0],Qf2x'); 
    lmiterm([-2 3 3 0],Qfinv1); 
    lmiterm([-2 3 4 0],Qf1f2'); 
    lmiterm([-2 4 4 0],Qfinv2); 
     
     LMIs=getlmis; 
   
  c=zeros(1,2+nc*nu2); c(1)=1; 
  options=[1e-3,1000,1e9,100,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
   alfa2=dec2mat(LMIs,xopt,a); 
   f2=dec2mat(LMIs,xopt,ff); 
    lamda=dec2mat(LMIs,xopt,lambda); 
 

clc 
clear 
model1 
Am1=A;Bm1=B;Cm1=C;Dm1=D; 
  
model2 
Am2=A;Bm2=B;Cm2=C;Dm2=D; 
  
%nominal 
  
An=Am1;Bn=.5*Bm1+.5*Bm2; Cn=Cm1; 
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steady_states=inv([eye(21)-An -Bn;Cn zeros(3,3)])*[zeros(21,1);3;3;-3]; 
xs=steady_states(1:21); 
us=steady_states(22:end); 
  
nc=12; 
nu=3; 
nx=21; 
nu1=1; 
nu2=1; 
nu3=1; 
  
M1=[zeros((nc-1)*nu1,nu1) eye((nc-1)*nu1);zeros(nu1,nu1) zeros(nu1,(nc-1)*nu1)]; 
  
M2=[zeros((nc-1)*nu2,nu2) eye((nc-1)*nu2);zeros(nu2,nu2) zeros(nu2,(nc-1)*nu2)]; 
  
M3=[zeros((nc-1)*nu3,nu3) eye((nc-1)*nu3);zeros(nu3,nu3) zeros(nu3,(nc-1)*nu3)]; 
  
load uncgain 
  
%  K=[-2.2442e-001 -2.1832e-001 -2.0040e-001 -1.7054e-001 -2.2761e-001 -2.2017e-001 -
2.0099e-001 -1.7003e-001 -2.2442e-001 -2.1832e-001 -2.0039e-001 -1.7054e-001 -1.9227e-001 
-1.7914e-001 -1.9912e-001 -1.8324e-001  1.1160e-001  8.3292e-002  1.1439e-001  8.4962e-
002  1.0067e-001 
%    1.6290e-001  1.6908e-001  1.7538e-001  1.8243e-001  1.9021e-001  1.9619e-001  
2.0225e-001  2.0901e-001  1.6290e-001  1.6908e-001 1.7538e-001  1.8243e-001 -4.0610e-001 
-4.2027e-001 -4.2428e-001 -3.8187e-001 -5.9984e-002 -6.5663e-002 -7.2452e-002 -7.7721e-
002 -4.0862e-002 
%   -2.3734e-001 -2.4937e-001 -2.6257e-001 -2.7630e-001 -2.5710e-001 -2.6815e-001 -
2.8025e-001 -2.9275e-001 -2.3734e-001 -2.4937e-001 -2.6257e-001 -2.7630e-001 -2.5098e-001 
-2.6977e-001 -2.5532e-001 -2.4466e-001 -5.4042e-001 -5.6642e-001 -5.4574e-001 -5.6345e-
001 -5.1078e-001]; 
  
  
T=[eye(nu) zeros(nu,nu*nc-2)]; 
T1=[eye(nu1) zeros(nu1,nu1*(nc-1)) zeros(nu1,(nu-nu1)*nc)]; 
T2=[zeros(nu2,nu2*nc) eye(nu2) zeros(nu2,nu2*(nc-1)) zeros(nu2,nu2*nc)]; 
T3=[zeros(nu3,(nu-nu3)*nc) eye(nu3) zeros(nu3,nu3*(nc-1))]; 
  
epsi1=[(Am1+Bm1*K) [Bm1(:,1) zeros(nx,(nc-1)*nu1)] [Bm1(:,2) zeros(nx,(nc-1)*nu2)] 
[Bm1(:,3) zeros(nx,(nc-1)*nu3)];zeros(nu1*nc,nx) M1 0*M1 0*M1;zeros(nu2*nc,nx) 0*M2 M2 
0*M2;zeros(nu3*nc,nx) 0*M3 0*M3 M3]; 
epsi2=[(Am2+Bm2*K) [Bm2(:,1) zeros(nx,(nc-1)*nu1)] [Bm2(:,2) zeros(nx,(nc-1)*nu2)] 
[Bm2(:,3) zeros(nx,(nc-1)*nu3)];zeros(nu1*nc,nx) M1 0*M1 0*M1;zeros(nu2*nc,nx) 0*M2 M2 
0*M2;zeros(nu3*nc,nx) 0*M3 0*M3 M3]; 
  
% Y = sdpvar(nu*nc+nx,nu*nc+nx); 
%  
% F = set( [Y Y*epsi1';epsi1*Y Y] >0); 
% F = F + set( [Y Y*epsi2';epsi2*Y Y] >0); 
% F = F + set([K(1,:) T1]*Y*[K(1,:) T1]' <(10-us(1))^2); 
% F = F + set([K(2,:) T2]*Y*[K(2,:) T2]' <(10-us(2))^2); 
% F = F + set([K(3,:) T3]*Y*[K(3,:) T3]' <(10-us(3))^2); 
%  
% %ops = sdpsettings('verbose',1,'sedumi.eps',1e-4); 
% ops = sdpsettings('verbose',1,'solver','sdpt3'); 
%  
% solution = solvesdp(F,-geomean([eye(nx) zeros(nx,nc*nu)]*Y*[eye(nx) 
zeros(nx,nc*nu)]'),ops),sdpsettings('debug',1) 
% any_probelms=solution.problem 
% Y = double(Y); 
  
load ShahY; 
  
  
Tx=[eye(nx) zeros(nx,nu*nc)]; 
  
Tf=[zeros(nx,nx+nu*nc);zeros(nu*nc,nx) eye(nu*nc)]; 
Qinv=Y; 
Qxinv=Tx*(Y)*Tx'; 
Qfinv1=Y(nx+1:nx+nc*nu1,nx+1:nx+nc*nu1);%Tf*inv(Y)*Tf' 
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Qfinv2=Y(nx+nc*nu1+1:nx+nc*nu1+nc*nu2,nx+nc*nu1+1:nx+nc*nu1+nc*nu2); 
Qfinv3=Y(nx+nc*nu1+nc*nu2+1:nx+nc*nu1+nc*nu2+nc*nu3,nx+nc*nu1+nc*nu2+1:nx+nc*nu1+nc*nu2+n
c*nu3); 
  
Qf1x=Y(nx+1:nx+nc*nu1,1:nx);%Tf*inv(Y)*Tx' 
Qf2x=Y(nx+nc*nu1+1:nx+nc*nu1+nc*nu2,1:nx); 
Qf3x=Y(nx+nc*nu1++nc*nu2+1:end,1:nx); 
  
Qf1f2=Y(nx+nc*nu1+1:nx+nc*nu1+nc*nu2,nx+1:nx+nc*nu1); 
Qf1f3=Y(nx+nc*nu1+nc*nu2+1:end,nx+1:nx+nc*nu1); 
Qf2f3=Y(nx+nc*nu1+nc*nu2+1:end,nx+nc*nu1+1:nx+nc*nu1+nc*nu2); 
  
xk = 0*xs; 
xkhat=(xk-xs); 
Ap=Am1;Bp=Bm1; 
m=160; 
% Ap=A2; 
% Bp=B2; 
% DA=(A1-A2)/m; 
% DB = (B1-B2)/m; 
udata=zeros(3,m); 
tdata = zeros(1,m+1); tdata(1) = 0; 
xdata=zeros(nx,m+1); xdata(:,1)=xk;  
ydata=zeros(3,m+1); ydata(:,1)=Cn*xdata(:,1); 
ErrTol=1e-2; 
MaxIteration=40; 
fc =[-1.2156e+000 -8.1986e-001 -5.7332e-001 -4.0091e-001 -2.7185e-001 -1.7290e-001 -
9.6617e-002 -3.8178e-002  5.8883e-003 3.8256e-002  6.1060e-002  7.6027e-002  8.4565e-002  
8.7809e-002  8.6668e-002  8.1842e-002  7.3824e-002  6.2857e-002 4.9195e-002  3.0734e-002 
-1.9962e-003  4.8688e-003  6.6055e-003  6.1084e-003  4.6971e-003  2.9850e-003  1.2745e-
003 -2.9015e-004 -1.6491e-003 -2.7902e-003 -3.7298e-003 -4.5023e-003 -5.1561e-003 -
5.7534e-003 -6.3780e-003 -7.1520e-003 -8.2657e-003 -1.0058e-002 -1.2438e-002 -1.6468e-002  
1.1545e-001  8.4060e-002  5.5057e-002  3.0641e-002  1.1146e-002 -3.8538e-003 -1.4980e-002 
-2.2879e-002 -2.8145e-002 -3.1302e-002 -3.2797e-002 -3.3009e-002 -3.2268e-002 -3.0886e-
002 -2.9204e-002 -2.7685e-002 -2.7065e-002 -2.8650e-002 -3.4580e-002 -5.0834e-002]; 
%fc = [-2.4038e+000 -1.7873e+000 -1.3787e+000 -1.0769e+000 -8.3846e-001 -6.4483e-001 -
4.8582e-001 -3.5507e-001 -2.4810e-001 -1.6148e-001 -9.2400e-002 -3.8511e-002  2.1954e-003  
3.1443e-002  5.0702e-002  6.1202e-002  6.3929e-002  5.9607e-002 4.9206e-002  3.1150e-002 
-1.6853e-001 -8.6869e-002 -3.9279e-002 -1.0403e-002  7.3347e-003  1.7996e-002  2.3959e-
002 2.6693e-002  2.7147e-002  2.5948e-002  2.3511e-002  2.0105e-002  1.5887e-002  
1.0928e-002  5.2189e-003 -1.3273e-003 -8.8575e-003 -1.7617e-002 -2.5176e-002 -3.1807e-002  
1.9129e-001  1.8864e-001  1.5509e-001  1.1395e-001  7.4488e-002 4.0036e-002  1.1489e-002 
-1.1309e-002 -2.8946e-002 -4.2156e-002 -5.1691e-002 -5.8281e-002 -6.2647e-002 -6.5546e-
002 -6.7874e-002 -7.0829e-002 -7.6070e-002 -8.5806e-002 -1.0080e-001 -1.2517e-001]; 
fc=[-1.2668e+000 -9.1538e-001 -7.0035e-001 -5.4837e-001 -4.3056e-001 -3.3551e-001 -
2.5738e-001 -1.9280e-001 -1.3947e-001 -9.5671e-002 -5.9885e-002 -3.0231e-002  2.1346e-002  
2.1039e-002  1.8703e-002  1.5845e-002  1.3065e-002  1.0567e-002 8.4120e-003  6.6102e-003  
5.1753e-003  4.1714e-003  3.8768e-003  4.7859e-003  1.4762e-001  1.2251e-001  9.6519e-002 
7.2656e-002  5.1888e-002  3.4266e-002  1.9594e-002  7.6414e-003 -1.7349e-003 -8.4336e-003 
-1.1683e-002 -9.3704e-003]; 
f1_old=zeros(1,nc*nu1); 
f2_old=zeros(1,nc*nu2); 
f3_old=zeros(1,nc*nu3); 
  
f1_old=.2*randn(1,nc*nu1); 
f2_old=.2*randn(1,nc*nu2); 
f3_old=.2*randn(1,nc*nu3); 
  
  
%  
% f1_old=fc(1:nu1*nc); 
% f2_old=fc(nu1*nc+1:nu1*nc+nu2*nc); 
% f3_old=fc(nu1*nc+nu2*nc+1:end); 
  
x1k_old=xkhat; x2k_old=xkhat;x3k_old=xkhat; 
Lam1=[]; 
Lam2=[]; 
Lam3=[]; 
  
  
ru=1e2; 
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fg=.95; 
terminator=1; 
for k=1:1:1 
    tic 
   for iterations=1:MaxIteration 
       f1_2old=f1_old; 
       f2_2old=f2_old; 
       f3_2old=f3_old; 
       
[f1,alfa1,lamda1]=DMPC1(terminator,ru,nu1,nc,Qxinv,Qfinv1,Qfinv2,Qfinv3,Qf1x,Qf2x,Qf3x,Qf
1f2,Qf1f3,Qf2f3,x1k_old,f2_old,f3_old); 
       
[f2,alfa2,lamda2]=DMPC2(terminator,ru,nu2,nc,Qxinv,Qfinv1,Qfinv2,Qfinv3,Qf1x,Qf2x,Qf3x,Qf
1f2,Qf1f3,Qf2f3,x2k_old,f1_old,f3_old); 
       
[f3,alfa3,lamda3]=DMPC3(terminator,ru,nu3,nc,Qxinv,Qfinv1,Qfinv2,Qfinv3,Qf1x,Qf2x,Qf3x,Qf
1f2,Qf1f3,Qf2f3,x3k_old,f1_old,f2_old); 
  
   % terminator=exp(-.5*iterations); 
c1=[xkhat' f1 f2_old f3_old]*inv(Qinv)*[xkhat;f1';f2_old';f3_old'] 
c2=[xkhat' f1_old f2 f3_old]*inv(Qinv)*[xkhat;f1_old';f2';f3_old'] 
c3=[xkhat' f1_old f2_old f3]*inv(Qinv)*[xkhat;f1_old';f2_old';f3'] 
   Lam1=[Lam1 lamda1]; 
   Lam2=[Lam2 lamda2]; 
   Lam3=[Lam3 lamda3]; 
     
   if norm(f1-f1_old) <= ErrTol&&norm(f2-f2_old)<=ErrTol&&norm(f3-f3_old)<=ErrTol 
          break; 
   end 
%    lamda1 
% %    lamda2 
%     f1_old=f1 
%     f2_old=f2 
%     f3_old=f3 
     
   f1_old=fg*f1+(1-fg)*f1_2old; 
   f2_old=fg*f2+(1-fg)*f2_2old; 
   f3_old=fg*f3+(1-fg)*f3_2old; 
    
  
   end 
  
   %F1_old=0*F1_2old; 
   %F2_old=0*F2_2old; 
   disp('========') 
   %YY1  
   %YY2 
   
     
   iterations 
 toc 
  
   %if iterations == MaxIteration 
   %    break; 
   %end 
   F=[f1(1);f2(1);f3(1)]; %FFdata(1:2,1:8,k)=F; 
   u=K*xkhat+F; udata(1:3,k)=u; 
    
%     Ap = Ap + DA; 
%       Bp = Bp + DB; 
  xkhat=Ap*xkhat+Bp*u %xkhat=xk-xs; 
    yk=C*xkhat; 
    x1k_old=xkhat; x2k_old=xkhat;x3k_old=xkhat; 
      xdata(:,k+1)=xkhat; 
      ydata(:,k+1)=C*xkhat+[3;3;-3]; 
  
   tdata(k+1) = k; 
    
end 
x=1:nc*nu; 
fm=[f1 f2 f3]; 



 213 

plot(x,fc,x,fm,':') 
ydmpc=ydata; 
udmpc=udata; 
break 
save Shah_DMPC ydmpc udmpc 
  
 
function 
[f1,alfa1,lamda]=DMPC1(t,ru,nu1,nc,Qxinv,Qfinv1,Qfinv2,Qfinv3,Qf1x,Qf2x,Qf3x,Qf1f2,Qf1f3,
Qf2f3,x1k_old,f2_old,f3_old); 
  
 setlmis([]); 
    a=lmivar(1,[1 0]); 
    lambda=lmivar(1,[1 0]); 
    ff=lmivar(2,[1 nu1*nc]); 
     
    lmiterm([-1 1 1 a],1,1); 
    %lmiterm([-1 1 1 lambda],-ru,1); 
    lmiterm([-1 1 2 ff],1,1); 
    lmiterm([-1 1 3 0],f2_old); 
    lmiterm([-1 1 4 0],f3_old); 
    lmiterm([-1 1 5 lambda],t,1); 
    lmiterm([-1 2 2 0],1); 
    lmiterm([-1 3 3 0],1); 
    lmiterm([-1 4 4 0],1); 
    lmiterm([-1 5 5 0],ru^(-1)); 
     
    lmiterm([-2 1 1 lambda],t,1); 
    lmiterm([-2 1 1 0],1); 
    lmiterm([-2 1 2 0],x1k_old'); 
    lmiterm([-2 1 3 ff],1,1); 
    lmiterm([-2 1 4 0],f2_old); 
    lmiterm([-2 1 5 0],f3_old); 
    lmiterm([-2 2 2 0],Qxinv); 
    lmiterm([-2 2 3 0],Qf1x'); 
    lmiterm([-2 2 4 0],Qf2x'); 
    lmiterm([-2 2 5 0],Qf3x'); 
    lmiterm([-2 3 3 0],Qfinv1); 
    lmiterm([-2 3 4 0],Qf1f2'); 
    lmiterm([-2 3 5 0],Qf1f3'); 
    lmiterm([-2 4 4 0],Qfinv2); 
    lmiterm([-2 4 5 0],Qf2f3'); 
    lmiterm([-2 5 5 0],Qfinv3'); 
     
     LMIs=getlmis; 
  %ndec = decnbr(LMIs);  
  c=zeros(1,2+nc*nu1); c(1)=1; 
  options=[1e-2,1000,1e9,100,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
    
    
    alfa1=dec2mat(LMIs,xopt,a); 
   f1=dec2mat(LMIs,xopt,ff); 
   lamda=dec2mat(LMIs,xopt,lambda); 
    
%c1=x1k_old'*Qxinv*x1k_old+2*x1k_old'*Qf1x'*f1'+2*x1k_old'*Qf2x'*f2_old'+2*x1k_old'*Qf3x'
*f3_old'+f1*Qfinv1*f1'+2*f1*Qf1f2*f2_old'+2*f1*Qf1f3*f3_old'+f2_old*Qfinv2*f2_old'+2*f2_o
ld*Qf2f3*f3_old'+f3_old*Qfinv3*f3_old'; 
   
    
   
 
function 
[f2,alfa2,lamda]=DMPC2(t,ru,nu2,nc,Qxinv,Qfinv1,Qfinv2,Qfinv3,Qf1x,Qf2x,Qf3x,Qf1f2,Qf1f3,
Qf2f3,x2k_old,f1_old,f3_old); 
  
 setlmis([]); 
    a=lmivar(1,[1 0]); 
    lambda=lmivar(1,[1 0]); 
    ff=lmivar(2,[1 nu2*nc]); 
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    lmiterm([-1 1 1 a],1,1); 
    %lmiterm([-1 1 1 lambda],-ru,1); 
    lmiterm([-1 1 2 0],f1_old); 
    lmiterm([-1 1 3 ff],1,1); 
    lmiterm([-1 1 4 0],f3_old); 
    lmiterm([-1 1 5 lambda],t,1); 
    lmiterm([-1 2 2 0],1); 
    lmiterm([-1 3 3 0],1); 
    lmiterm([-1 4 4 0],1); 
    lmiterm([-1 5 5 0],ru^(-1)); 
     
    lmiterm([-2 1 1 lambda],t,1); 
    lmiterm([-2 1 1 0],1); 
    lmiterm([-2 1 2 0],x2k_old'); 
    lmiterm([-2 1 3 0],f1_old); 
    lmiterm([-2 1 4 ff],1,1); 
    lmiterm([-2 1 5 0],f3_old); 
    lmiterm([-2 2 2 0],Qxinv); 
    lmiterm([-2 2 3 0],Qf1x'); 
    lmiterm([-2 2 4 0],Qf2x'); 
    lmiterm([-2 2 5 0],Qf3x'); 
    lmiterm([-2 3 3 0],Qfinv1); 
    lmiterm([-2 3 4 0],Qf1f2'); 
    lmiterm([-2 3 5 0],Qf1f3'); 
    lmiterm([-2 4 4 0],Qfinv2); 
    lmiterm([-2 4 5 0],Qf2f3'); 
    lmiterm([-2 5 5 0],Qfinv3'); 
     
     LMIs=getlmis; 
   
  c=zeros(1,2+nc*nu2); c(1)=1; 
  options=[1e-2,1000,1e9,100,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
   alfa2=dec2mat(LMIs,xopt,a); 
   f2=dec2mat(LMIs,xopt,ff); 
   lamda=dec2mat(LMIs,xopt,lambda); 
   
%c2=x2k_old'*Qxinv*x2k_old+2*x2k_old'*Qf1x'*f1_old'+2*x2k_old'*Qf2x'*f2'+2*x2k_old'*Qf3x'
*f3_old'+f1_old*Qfinv1*f1_old'+2*f1_old*Qf1f2*f2'+2*f1_old*Qf1f3*f3_old'+f2*Qfinv2*f2'+2*
f2*Qf2f3*f3_old'+f3_old*Qfinv3*f3_old'; 
function 
[f3,alfa3,lamda]=DMPC3(t,ru,nu3,nc,Qxinv,Qfinv1,Qfinv2,Qfinv3,Qf1x,Qf2x,Qf3x,Qf1f2,Qf1f3,
Qf2f3,x3k_old,f1_old,f2_old); 
  
 setlmis([]); 
    a=lmivar(1,[1 0]); 
    lambda=lmivar(1,[1 0]); 
    ff=lmivar(2,[1 nu3*nc]); 
     
    lmiterm([-1 1 1 a],1,1); 
    %lmiterm([-1 1 1 lambda],-ru,1); 
    lmiterm([-1 1 2 0],f1_old); 
    lmiterm([-1 1 3 0],f2_old); 
    lmiterm([-1 1 4 ff],1,1); 
    lmiterm([-1 1 5 lambda],t,1); 
    lmiterm([-1 2 2 0],1); 
    lmiterm([-1 3 3 0],1); 
    lmiterm([-1 4 4 0],1); 
    lmiterm([-1 5 5 0],ru^(-1)); 
     
    lmiterm([-2 1 1 lambda],t,1); 
    lmiterm([-2 1 1 0],1); 
    lmiterm([-2 1 2 0],x3k_old'); 
    lmiterm([-2 1 3 0],f1_old); 
    lmiterm([-2 1 4 0],f2_old); 
    lmiterm([-2 1 5 ff],1,1); 
    lmiterm([-2 2 2 0],Qxinv); 
    lmiterm([-2 2 3 0],Qf1x'); 
    lmiterm([-2 2 4 0],Qf2x'); 
    lmiterm([-2 2 5 0],Qf3x'); 
    lmiterm([-2 3 3 0],Qfinv1); 
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    lmiterm([-2 3 4 0],Qf1f2'); 
    lmiterm([-2 3 5 0],Qf1f3'); 
    lmiterm([-2 4 4 0],Qfinv2); 
    lmiterm([-2 4 5 0],Qf2f3'); 
    lmiterm([-2 5 5 0],Qfinv3'); 
     
     LMIs=getlmis; 
   
  c=zeros(1,2+nc*nu3); c(1)=1; 
  options=[1e-2,1000,1e9,100,1]; 
   [copt,xopt]=mincx(LMIs,c,options); 
   alfa3=dec2mat(LMIs,xopt,a); 
   f3=dec2mat(LMIs,xopt,ff); 
   lamda=dec2mat(LMIs,xopt,lambda); 
 
%c3=x3k_old'*Qxinv*x3k_old+2*x3k_old'*Qf1x'*f1_old'+2*x3k_old'*Qf2x'*f2_old'+2*x3k_old'*Q
f3x'*f3'+f1_old*Qfinv1*f1_old'+2*f1_old*Qf1f2*f2_old'+2*f1_old*Qf1f3*f3'+f2_old*Qfinv2*f2
_old'+2*f2_old*Qf2f3*f3'+f3*Qfinv3*f3'; 
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