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Abstract

It is not hard to see that the number of equiangular lines in a com-
plex space of dimension d is at most d?. A set of d? equiangular lines in a
d-dimensional complex space is of significant importance in Quantum Com-
puting as it corresponds to a measurement for which its statistics determine
completely the quantum state on which the measurement is carried out. The
existence of d? equiangular lines in a d-dimensional complex space is only
known for a few values of d, although physicists conjecture that they do
exist for any value of d.

The main results in this thesis are:
1. Abelian covers of complete graphs that have certain parameters can be
used to construct sets of d? equiangular lines in d-dimensional space;

2. we exhibit infinitely many parameter sets that satisfy all the known
necessary conditions for the existence of such a cover; and

3. we find the decompose of the space into irreducible modules over the
Terwilliger algebra of covers of complete graphs.

A few techniques are known for constructing covers of complete graphs,
none of which can be used to construct covers that lead to sets of d? equian-
gular lines in d-dimensional complex spaces. The third main result is devel-
oped in the hope of assisting such construction.
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Chapter 1

Introduction

A set of unit vectors in a d-dimensional space (complex or real) is said to
be equiangular if the angle between any two of them is constant. Here
the angle is defined as the absolute value of the usual inner product in
the d-dimensional space. Gerzon (Theorem 3.5 in [16]) proved that there
cannot be more than (d'gl) equiangular lines in d-dimensional real space.
With a similar proof, there cannot be more than d? equiangular lines in
d-dimensional complex space. These are called absolute bounds and are

presented in Section 2.2.

Finding d? equiangular lines in complex space of dimension d is of major
interest in Quantum Computing as it corresponds to measurement where its
statistics determine completely the quantum state on which the measure-
ment is carried out (see for example D’Ariano et. al. [5] or Busch [4]). Sets
of d? equiangular lines in dimension d are only known to exist for

de{2,---,15,19,24,35,48}.

It is proved for d = 2,3 by Delsarte et. al. [7], for d = 4,5 by Zauner [25],
for d = 6 by Grassl [12], for d = 7,19 by Appleby [1], for d = 8, ...,13,15 by
Grassl [13], and recently for d = 14,24, 35,48 by Grassl [20]. The problem
is open for any other value of d. Renes et. al. [19] gave numerical solutions
for any d < 45 and conjectured that a set of d? equiangular lines in d-
dimensional complex space exists for any value of d. Recently a computer
study by Grassl [20] found numerical solutions for any d < 67.

Lemmens and Seidel [16, p. 495] observed that a set of n equiangular
lines in dimension d is equivalent to a Hermitian matrix with zero diagonal
entries and all off diagonal entries of norm one, such that the multiplicity of
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1. INTRODUCTION

the least eigenvalue is n — d. They call any matrix with these properties, a
Seidel matrix. Lemmens and Seidel [16] were the first to study the problem
of finding the maximum number of equiangular lines in a given dimension.
We introduce the Seidel matrix and the absolute bounds in Chapter 2. If
the absolute bound is tight, then the Seidel matrix of the lines have only
two eigenvalues (Godsil and Royle [11, p. 252]). Therefore, to find sets of
equiangular lines of maximum size, we need to find n x n Seidel matrices
with 4/n as the multiplicity of the least eigenvalue. In Chapter 7, we see
that from antipodal distance regular graphs of diameter three with certain
parameters, we can construct such Seidel matrices.

A graph is called distance regular if, given any triple of non-negative
integers (i,7,k), any two vertices of the graph u and v at distance i, the
number of vertices at distance j from w and k£ from v only depends on
(1,7,k) and not our choice of vertices. A distance regular graph is called
antipodal if “being at maximum distance” is a transitive relation on the
vertices of the graph.

For a graph of diameter d, and any 0 < k < d, define A to be a 01
square matrix with its rows and columns indexed by the vertices of the
graph, such that, the (i,j)-entry of Ay is 1 if and only if the i-th vertex
and the j-th vertex are at distance k. The matrices Ag, - - - Ay are called the
distance matrices of the graph. The distance matrices of a distance regular
graph form a basis for the algebra generated by the adjacency matrix of the
graph, over the field of real numbers. This algebra is called the Bose-Mesner
algebra of the graph. We see an introduction to distance regular graphs in
Chapter 3.

Each antipodal distance regular graph of diameter three is a cover of
some complete graph. If a graph Y is an r-fold cover of another graph X,
then there is a partition of the vertices of Y into sets of size r, which are
called fibres of the cover. Each fibre corresponds to a vertex in X. Two
fibres corresponding to two adjacent vertices in X have a 1-factor between
them. Two fibres corresponding to two non-adjacent vertices in X have no

edge between them. An introduction to covering graphs is given in Chapter
4.

In Chapter 5, we focus specifically on antipodal distance regular graphs
of diameter three. We present the common parameters associated to antipo-
dal distance regular graphs of diameter three, and the necessary conditions



these parameters must satisfy. Then, in Chapter 6, we present some known
techniques to construct antipodal distance regular graphs of diameter three.

In Chapter 7, we see that from antipodal distance regular graphs of
diameter three with certain parameters, we can construct d’ equiangular
lines in d-dimensional complex space. We find parameters that not only
give us d? equiangular lines in d-dimensional complex space, but also satisfy
the necessary conditions in Chapter 5.

The antipodal distance regular graphs of diameter three constructed in
Chapter 6 do not give us d? equiangular lines in d-dimensional complex
space. In the hope of assisting us to construct antipodal distance regu-
lar graphs of diameter three which do give us d? equiangular lines in d-
dimensional complex space, we study the Terwilliger algebra of antipodal
distance regular graphs of diameter three in Chapter 8.

The Bose-Mesner algebra is the most common algebra associated to a
distance regular graph. We can get information on the feasibility of the pa-
rameters of a distance regular graph by studying its Bose-Mesner algebra.
Terwilliger [23] introduced a new algebra which, apart from the adjacency
matrix, also includes the diagonal matrices with the first column of distance
matrices as the diagonal. We find the decomposition of the space into irre-
ducible modules over the Terwilliger algebra of antipodal distance regular
graphs of diameter three in Chapter 8. We will use it to get information on
the parameters of the graph. Finally, in Chapter 9, we see some possible
directions for future research.

I should emphasize that Chapters 2 to 6 are mainly review. Chapters
7 and 8 contain the new material. Let G be an antipodal distance regular
graph of diameter three. Then G is a cover of K, for some n. Let r be
the size of each fibre of the cover, and let ¢y be the number of common
neighbours of two vertices at distance two in G. In Chapter 7, we prove
that, if for some positive integer t,

n = (t2—1)2, reg = (t— 122+t —1),

then we can find (#2 — 1)? equiangular lines in (#> — 1)-dimensional complex
space.

In Chapter 8, we prove the following theorem using Terwilliger algebra:

3



1. INTRODUCTION

1.0.1 Theorem. Let G be an antipodal distance regular graph of diameter
three with parameters n,r, co and eigenvalues n —1, —1, 0, 7 with multiplici-
ties 1,n —1,mg,m,. If n > mg —r + 3, then W is an eigenvalue of the
first neighbourhood, and hence r divides T+ 1 if T is an integer. Analogously,
ifn > m; —r+ 3, then % is an eigenvalue of the first neighbourhood,

and hence r divides 6 + 1 if 8 is an integer.



Chapter 2

Equiangular Lines

Any line in d-dimensional complex space can be represented by a unit vector.
A set of unit vectors {x1,---,x,} in d-dimensional complex space is said
to be equiangular if the inner product of any two of them has the same
absolute value, and by absolute value we mean the Euclidean distance from
the origin in the complex plane. Here the inner product of x; and xz; is
defined canonically, i.e. zfx;, where z} is the conjugate transpose of z;. We
can define a set of real equiangular lines in the same fashion. None of the
results in this chapter is new.

In this chapter, we investigate the problem of finding upper bounds for
the number of equiangular lines in a space of given dimension. Gerzon
(Theorem 3.5 in [16]) proved that the number of equiangular lines in d-
dimensional real space cannot be more than (dgl). Similar proof implies that
there cannot be more than d? equiangular lines in d-dimensional complex
space. These bounds are called the absolute bounds and are presented in

Section 2.2.

Sets of equiangular lines of maximum size were first studied by Lemmens
and Seidel [16], and subsequently by many others. The complex case is of
special interest In Quantum Computing, where a set of d? equiangular lines
in d-dimensional complex space is called a Symmetric Informationally Com-
plete Positive Operator Valued Measure, and corresponds to a measurement
where its statistics determine completely the quantum state on which the
measurement is carried out (see for example D’Ariano et. al. [5] or Busch

[4])-

It is proved that a set of d? equiangular lines in d-dimensional complex
space exists for d = 2,3 by Delsarte et. al. [7], for d = 4,5 by Zauner [25],
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2. EQUIANGULAR LINES

for d = 6 by Grassl [12], for d = 7,19 by Appleby [1], for d = 8, ...,13,15 by
Grassl [13], and recently for d = 14,24, 35,48 by Grassl [20]. The problem
is open for any other value of d. Renes et. al. [19] gave numerical solutions
for any d < 45 and conjectured that a set of d? equiangular lines in d-
dimensional complex space exists for any value of d. Recently a computer
study by Grassl [20] found numerical solutions for any d < 67.

Terminology: In this chapter, whenever we say “a d-dimensional space”,
we mean the space could be either R? or C?. If we want to specify which one
we mean, we will say “d-dimensional real space” or “d-dimensional complex
space” .

2.1 Seidel Matrices

A square matrix with complex entries is called a Seidel matrix [11, p. 250]
if

(a) S is Hermitian;

(b) all diagonal entries of S are zero; and

(c) all off-diagonal entries of S lie on the unit circle in the complex plane.

Some sources [14] call Seidel matrices, signature matrices.

In this section, we see that a set of n equiangular lines in dimension d is
equivalent to a Seidel matrix with the least eigenvalue of multiplicity n — d.
The results in this section are due to Seidel [16, p. 495]. Although Seidel’s
arguments were for the real case, the exact same arguments apply to the
complex case as well.

Let {z1,---,x,} be a set of equiangular lines in a d-dimensional space.
Then for all 4 and 7, 1 < 4,7 < n, and for some v € R we have

® 12 _ Y if Z?é],
] _{1 it i=j.

Note that, by the Cauchy-Schwarz inequality, we get
2 20 .12
v = Kai,zpl” < lail” |57 = 1,

and if v = 1, then z; is a multiple of x;. But all 2;’s are unit vectors. So if
v = 1, then all z;’s are equal. This case is not interesting, since if all x;’s
are equal, we can make n as large as we want. So we always assume

v < 1.
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2.1. SEIDEL MATRICES

We define the Gram matrix [11, p. 250] of {z1,---,z,} as the matrix with
xfx; as its (i, j)-entry. Therefore all diagonal entries of G are 1 and all off-
diagonal entries of G have absolute value /7. Also G is clearly Hermitian,
i.e. G* = G. Therefore we can write G as

G=1+,/5,

where S is a Seidel matrix. We call S the Seidel matrix of z1,--- ,z,. We
also call the above properties the Seidel properties. Now we show that this
procedure is reversible. This observation is due to Lemmens and Seidel [16,
p. 495].

2.1.1 Theorem. Any square matrix that satisfies the Seidel properties is
the Seidel matrix for some set of equiangular lines. More explicitly, if we
have an n x n matrix satisfying the Seidel properties, and with m as the
multiplicity of its least eigenvalue, then it is a Seidel matrix for a set of n
equiangular lines in dimension n — m.

Proof. . Let S be an n x n matrix that satisfies the Seidel properties. Since
S is Hermitian, all the eigenvalues of S are real. Let 7 be the smallest
eigenvalue of S. We show that G defined as

1
G=I1--S (2.1.1)
T
is the Gram matrix for some set of equiangular lines. To do this, first, we

show that G is positive semidefinite.

Since S is Hermitian, so is G. So to prove that G is positive semidefinite,
it is enough to show that all its eigenvalues are non-negative. But from
Equation 2.1.1, each eigenvalue of G is of the form

1
1— =),
T

where A is an eigenvalue of S.

Now we show that 7 is negative. Since S satisfies the Seidel properties,
all of its diagonal entries must be zero, and so its trace must be zero. So the
sum of the eigenvalues of S must be zero. Therefore the least eigenvalue, T,
must be negative.

Hence, 1 — A\/7 = 0; and equality occurs if and only if A is equal to 7.
Therefore GG is positive semidefinite with rank

d=n—m,

7



2. EQUIANGULAR LINES

where m is the multiplicity of 7 as an eigenvalue of S. Thus by linear algebra,
there exist a d x n matrix U such that

G =U"U.

Let z1,- -+, 2y, be the columns of U. Then the (i, j)-entry of G is zfx;. On
the other hand, by Equation 2.1.1, and since S satisfies the Seidel properties,
we get all diagonal entries of G are one and all off-diagonal entries of G have
absolute value —1/7. So {z1,--- ,x,} is a set of equiangular lines with G as
its Gram matrix, and with S as its Seidel matrix. O

2.2 Absolute Bound

In this section we see that the number of equiangular lines in a d-dimensional

complex space cannot exceed d?, whereas in a d-dimensional real space it

cannot exceed (dérl). These bounds are called absolute bounds; and were

proved originally by Gerzon (Theorem 3.5 in Lemmens and Seidel [16]).
Here, we follow the proof of Godsil and Royle [11, p. 251], which has the
following lemma as the main part of the proof.

2.2.1 Lemma. Let {x1,--- ,x,} be a set of equiangular lines in a d-dimensional
space, and, for each i, 1 < ¢ < n, let X; denote the projection operator, z;z;,

onto x;. Then {Xy,---,X,} is linearly independent over R.

Proof. Let the real numbers cq,--- , ¢, be such that

n

2 CiXi = 0.

i=1
Multiply both sides by X; from left to get

n
Z CinXi = 0.
i=1

Now by taking the trace of both sides, we get

n
Z C; tr(Xin) =0.

i=1



2.2. ABSOLUTE BOUND

But we have

tr(X;X;) = tr(zjajee))

= tr(zjzr]z;)

= (272)) (z} ;)

_ ®, .12
= |ziz;|”.
Now since {x1,---,z,} is equiangular, for some v we have
|lzkz;|® = 7o Z 7 ‘]:’
v 1 if =7

Thus we get

i=1

(2 C; Cj> Y+ C
i=1

n
(I —=7)c; + 72 Ci.
i—1

0 = ZCitT(Xin)

Now, since the left hand side does not depend on j, and since 1 — 7 is
nonzero, we get all ¢;’s are equal. Let ¢ be their common value. Then we

get
n
Z CXZ‘ =0.
i=1

If ¢ is non-zero, we get
n
dXi=0.
i=1

But this is a contradiction, since for any 7 we have

tr (X;) = tr(@z)) = ofw; =1, (2.2.1)
and therefore,
n
tr (Z XZ) =n.
i=1
So ¢ must be zero, which means that {X1,---, X, } is an independent set. O

9



2. EQUIANGULAR LINES

The following proof is due to Godsil and Royle [11, p. 251]. Although
they proved it for the real case, similar argument gives the result in the
complex case.

2.2.2 Theorem. The number of equiangular lines in C¢ is at most d* and
in R? is at most (dgl).

Proof. Let {x1,---,zn} be a set of equiangular lines in a d-dimensional
space (complex or real). As before, for each i, 1 < i < n, we denote the
projection onto x; by X;. Then by Lemma 2.2.1, we get {Xi,---,X,} is
linearly independent over R. So n cannot be larger than the dimension of the
vector space of all d x d Hermitian matrices over R. To find this dimension,
note that each Hermitian matrix is determined by its diagonal entries and
half of its off-diagonal entries. In the complex case, we have two degrees of
freedom for each of the (d? — d)/2 off-diagonal entries, whereas we have just
one degree of freedom for each of the d diagonal entries, since the diagonal
entries of Hermitian matrices are real. Therefore we get the dimension as

2 _
2<d 5 d>+d=d2.

But clearly, in the real case, we have just one degree of freedom everywhere.
So the dimension in the real case is
d?> —d _d2+d_<d+1>

d
2 * 2 2

This completes the proof. O

2.3 Relative Bound

The absolute bound gives us an upper bound on the number of equiangular
lines in terms of the dimension of the space. In this section, we find an
upper bound on the number of lines which also depends on the common
angle between the lines. The new bound is called the relative bound, and
is the same for the real and complex case, unlike the absolute bound. In
the end of his section, we also see that if the relative bound is tight, then
the Seidel matrix of the lines has only two eigenvalues. The relative bound
is stated in Theorem 2.3.2. It follows from Theorem 2.3.1 and Theorem
2.3.2 that the relative bound is tight if the absolute bound is tight. All the
results in this section can be found in Godsil and Royle [11] (Sections 11.3
and 11.4).

10



2.3. RELATIVE BOUND

As in the previous section, we always assume {z1,---,z,} is a set of
equiangular lines in a d-dimensional space (complex or real), and for each 1,
1 € ¢ € n, we denote the projection onto x; by X;. We also assume 7 is the
constant such that for any distinct ¢ and 7,

ata;? = .

2.3.1 Theorem. If the absolute bound is tight, then
M Xi="1 (2.3.1)
i=1 d

Proof. First note that, by Lemma 2.2.1, {X1,---, X,,} is linearly indepen-
dent. On the other hand, since the absolute bound is tight, by the proof of
Theorem 2.2.2, n must be equal to the dimension of the vector space of all

d x d Hermitian matrices over R. So {Xi,---, X, } must be a basis for this
vector space. Therefore, we must be able to find real numbers {c1,--- ,c,}
such that .
I = Z CiXZ'.
i=1

Following exactly the proof of Lemma 2.2.1, we get all ¢;’s must be equal.
Let ¢ be their common value. So we get

n
I= cz X;.
=1

To find ¢, we take the trace of both sides. By Equation 2.2.1, we know that
the trace of each X; is one. So we get

3 A

This completes the proof. O

We present the relative bound in the next theorem, which is proved in
Godsil and Royle [11, p. 253]. It follows from the next theorem and Theorem
2.3.1 that the relative bound is in a sense weaker than the absolute bound.
To be more explicit, the relative bound is tight if the absolute bound is tight.

2.3.2 Theorem. If dy < 1, then

d—dy
1—dy’

n <

11



2. EQUIANGULAR LINES

Furthermore, the bound is tight if and only if

n
n
Zzlxi =1

Proof. First note that, for any matrix M, we have M ™M is positive semidef-
inite, and so its trace is non-negative. For any real number «, let

M(a) = ol - ) X;.
=1
Then, since M («) is Hermitian, we get
tr (M(e)*M(e)) = od — 20 ) tr (X;) + D tr (X7) +2 > tr (X, X))

i=1 i=1 i#j

But as we saw in the proof of Lemma 2.2.1, we have tr(X;) is one, and

" if 7 # 3,
() = lataif = { ] 0T

So we get
tr (M(a)*M(a)) = o®d — 2an + n + (n? —n)y.

By setting the derivative of the right hand side to zero, we find that it is
minimum when « is 7. Since the above expression must be non-negative for
any value of o, we get

0< <g>2d—2(%)n+n+(n2—n)7=%(—n+d+d7(n—1))7

which implies
n(l—dy) <d-—dy.

Thus, if dy < 1, we get
- d—dv

NS o et
Also note that equality holds if and only if

(2 () 2 (3)) =

and this happens only if M (%) is the zero matrix. This completes the
proof. O

12



2.3. RELATIVE BOUND

By Theorem 2.1.1, to find a set of equiangular lines, all we need is a
square matrix that satisfies the Seidel properties. The next theorem in
Godsil and Royle [11, p. 252] shows that if we want the relative bound to
be tight, then the matrix we are looking for must have only two eigenvalues.

2.3.3 Theorem. Let {x1,x2,---x,} be a set of equiangular lines in a d-
dimensional space, with v as the square of the angle between the lines. If
the relative bound is tight, then the eigenvalues of the Seidel matrix are

1 on-d
VIt Al
with multiplicities n — d and d, respectively.

Proof. Let U be a d x n matrix with xq,--- ,x, as its columns. Then the
(i,7)-entry of U*U is xfz;. So U*U is the Gram matrix, G, of the lines. On
the other hand we have

UU* = xy2f + -+ apzy = X1+ -+ X,
But since the relative bound is tight, by Corollary 2.3.2, we get

uu* =—1.

al3

Thus, we have

G? = U*UU*U = gU*U - gG.

Since G is Hermitian, we get that the minimal polynomial of G is

z? — %x
Therefore, the eigenvalues of G are 0 and 7. Since UU* = 714, then U and
I; have the same rank. Since U*U = G, then G and U have the same rank.
So G has rank d, and thus the null space of G has rank n — d. Therefore,
0 has multiplicity n — d and % has multiplicity d as eigenvalues of G'. Now
note that by the definition of the Seidel matrix,

1
S = ﬁ(G_I)a

and the result follows. O
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Chapter 3

Algebra of Distance Regular
Graphs

It is always nice to be able to apply Algebra in Graph Theory. It provides
us with powerful algebraic techniques in dealing with our graph theoretical
problems. One type of graphs that the algebraic techniques can be effectively
applied to is distance regular graphs, which were defined in Chapter 1.

The adjacency matrix of a graph is defined to be a 0l-matrix with its
rows and columns indexed by the vertices of the graph, where the (7, j)-entry
is 1 if and only if the i-th vertex and the j-th vertex are adjacent. In other
words, the (7, j)-entry is 1 if and only if the distance between the i-th vertex
and the j-th vertex is 1. So we denote the adjacency matrix by A, and
we define Ay for other values of k similarly, i.e. the (i, j)-entry of Ay is 1
if and only if the distance between the i-th vertex and the j-th vertex is k.
If d is the diameter of the graph, the matrices Ay, 41, -+, Ag are called the
distance matrices of the graph.

In Section 3.3, we see that the combinatorial definition of the distance
regular graphs given in Chapter 1, has a purely algebraic interpretation in
terms of the distance matrices of the graph. More explicitly, we see that a
graph of diameter d is distance regular is and only if the algebra generated
by its distance matrices has dimension d + 1.

The set of distance matrices of a distance regular graph is an important
example of an Association Scheme. The algebra generated by the matrices
of an association scheme is called the Bose-Mesner Algebra of the scheme.

15



3. ALGEBRA OF DISTANCE REGULAR GRAPHS

3.1 Distance Regular Graphs

The line graph of the Petersen graph is illustrated in Figure 3.1. Choose
an ordered triple of non-negative integers, for example (2,1,2). Let u and v
be two vertices at distance 2 as illustrated in Figure 3.1. Now, we see that
there are exactly two vertices at distance 1 from u and at distance 2 from
v. Such vertices are denoted by = and y in Figure 3.1. Now, if we choose
any two other vertices at distance 2, and we count the number of vertices at
distance 1 from u and at distance 2 from v, we see that the answer is again
two.

Figure 3.1: line graph of the Petersen graph

By the definition of distance regular graphs in Chapter 1, for any ordered
triple of non-negative integers (7,7, k), and any two vertices u and v at
distance k from each other, the number of vertices at distance ¢ from u and

16



3.2. DISTANCE PARTITION

j from v only depends on (i, j, k). So if a graph is distance regular, for each
triple of non-negative integers (i, j, k), we have a constant associated to it,
which we denote by p; (k). So in the line graph of the Petersen graph,
we have ps1(2) is equal to 2. Note that we only need to consider the case
where i, j, and k are all less than or equal to the diameter of the graph,
since otherwise, p; j(k) is equal to zero. The constants p; j(k) are called the
intersection numbers of the distance regular graph.

3.2 Distance Partition

The line graph of the Petersen graph is illustrated again in Figure 3.2. The
vertices are partitioned according to their distance from the vertex on the
left. This is called the distance partition of the graph with respect to that
vertex. Given any ordered pair of sets in the partition, for each vertex in the
first set, the number of its neighbors in the second set is a constant. Any
partition of the vertices of a graph with that property is called an equitable
partition. Let
B={Vp,- Vg

be the distance partition of a regular graph G with respect to vertex v of
G, where Vj is the set of vertices at distance ¢ from v. So

Vo = {v}.
If B is an equitable partition, then there are 2d integers by, - - - ,bg_1, and,
c1,+ -+ ,¢q such that, for each vertex of V;, the number of its neighbors in

Vi_1 and V;,1 are ¢; and b;, respectively. Note that, since B is a distance
partition, there are no edges between V; and Vj if |i — j| > 1. The sequence

{bo, -+ ,bg_1;¢1,-*+ ,ca}

is called the intersection array of G with respect to v. Note that, since we
assumed G is regular, we get the graph induced on each V; is regular with
valency

a; = k— C; — bl‘,

where k is the valency of G. Some authors [2, p. 157] include a;’s in the
intersection array. We did not add them since they can be determined from
¢;’s and b;’s.

Note that if G is distance regular, then b; is just the intersection number
pit1,1(2) we defined for distance regular graphs in Section 3.1. Similarly, ¢;
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3. ALGEBRA OF DISTANCE REGULAR GRAPHS

Figure 3.2: Distance partition

is pi—1,1(i) and a; is p;1(i). Also since the maximum distance from v is d,
we must have pg ¢(0) is nonzero, and, py+; q4+i(0) = 0 for any positive integer
i. Therefore, the distance partition with respect to any vertex must have
d+ 1 cells.

Above arguments imply that the distance partition of a distance regular
graph with respect to any of its vertices is equitable with the same intersec-
tion array. Actually the converse holds as well, by Proposition 20.8 in Biggs
[2, p. 160]. So we have the following theorem.

3.2.1 Theorem. A graph is distance regular if and only if the distance
partition of the graph with respect to any of its vertices is equitable with
the same intersection array.
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Note that we defined the intersection array of a distance regular graph
using just the intersection numbers p;;1,1(4) and p;—1,1(7). So for a distance
regular graph of diameter d, while we can have up to (d + 1) intersection
numbers, we only have 2d of them in the intersection array. By Proposition
20.8 in Biggs [2, p. 160], all intersection numbers can be determined from
the intersection array.

3.3 Distance Matrices

The adjacency matrix of a graph is defined to be a 01-matrix with its rows
and columns indexed by the vertices of the graph, where the (i, j)-entry is 1
if and only if the i-th vertex and the j-th vertex are adjacent. The adjacency
matrix of the graph in Figure 3.3 is as follows.

0

O = = O OO

OO O == O
OO = OO =
O =R OO O
— o O = OO

_ o O O =

Two vertices are adjacent if and only if they are at distance one from

Figure 3.3: cycle of length six

each other. So we represent the adjacency matrix by A;, and we define
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3. ALGEBRA OF DISTANCE REGULAR GRAPHS

Ay analogously for other non-negative inetegers. More explicitly, Ay is a
01-matrix with its rows and columns indexed by the vertices of the graph,
where the (i, j)-entry is 1 if and only if the distance between the i-th vertex
and the j-th vertex is k. So for the graph in Figure 3.3, we have

000110 000O0O0 1
001001 000O0T10
010001 00100 0
A2_100010’A3_000100
100100 01000 0
| 001100 0 | 1000 0 0

Since the cycle of length 6 has diameter three, for any k larger than 3, we
have Ay is the zero matrix. For a general graph, if k is larger than the diam-
eter of the graph, then Ay is the zero matrix. Also, Ay is always the identity
matrix. If d is the diameter of the graph, the matrices Ag, Ay, -+, Ag are
called the distance matrices of the graph.

Let A and B be two matrices of the same size. Define the Schur product
Ao B of A and B to be a matrix with the same size as A and B with its
(1, 7)-entry obtained by multiplying the (i, j)-entries of A and B.

Let G be a graph of diameter d, with distance matrices Ag, A1, -+, Aqg.
Then, for any (i, j), exactly one of the distance matrices has 1 in its (i, j)
position. This implies that, for any distinct ¢ and j,

AjoA; =0,

and
A0+A1+"'+Ad=J

where J denotes the all ones matrix.

Since the Schur multiplication is distributive over addition, we can prove
that Ag, A1, , Ag are linearly independent. So the dimension of the alge-
bra generated by Ag, Ay, -+, Ag is at least d+1. The following is a standard
fact on distance regular graphs (see for example Biggs [2, p. 160]).

3.3.1 Theorem. A graph of diameter d is distance regular if and only if
the dimension of the algebra generated by its distance matrices is equal to
d+ 1.
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Proof. Let Ag, A1, -+, Aq denote the distance matrices of the graph. Since
the set of distance matrices is a linearly independent set of size d + 1, the
algebra generated by the distance matrices has dimension d + 1 if and only
if any matrix in the algebra can be written as a linear combination of the
distance matrices. But all matrices in the algebra can be written as a linear
combination of the distance matrices if and only if for any ¢ and j, we can
write A;A; as a linear combination of the distance matrices. In other words,
there exist constants p; j(t) such that

d
A A =" pij(t) A

t=0
But the (r, s)-entry of the left hand side is the number of vertices at distance
1 from the r-th vertex and at distance j from the s-th vertex, while if the
distance between the r-th vertex and the s-th vertex is k then the (r,s)-
entry of the right hand side is p; j(k), which is a constant independent of r
and s. But this is exactly the definition of distance regular graphs. O

3.4 Bose-Mesner Algebra

Let G be a distance regular graph of diameter d, with Ay, Ay,---, Ag as
its distance matrices. Then, by Theorem 3.3.1, there exist constants p; ;(k)
such that

d
AZ'AJ' = sz7j(k)Ak (341)
t=0
Note that by the proof of Theorem 3.3.1, the constants p; (k) are just the
intersection numbers that we defined in Section 3.1. So we could define
the intersection numbers of a distance regular graph alternatively, as the
constants p; j(k) that satisfy Equation 3.4.1.

Since all the distance matrices are symmetric, the right hand side of
Equation 3.4.1 is always symmetric. So, for any 7 and j, we have A4;A; is a
symmetric matrix. But if X and Y are two symmetric matrices, then

XV =vTxT =vX.

So X and Y commute if and only if XY is symmetric. So the distance
matrices of a distance regular graph commute. Consequently, the algebra
generated by the distance matrices of a distance regular graph is a commu-
tative algebra.
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3. ALGEBRA OF DISTANCE REGULAR GRAPHS

Let A denote the set of distance matrices, {4, A1, - -+, Ag}, of a distance
regular graph. Then we have

e Ay =1.

° 2?:0 Ai=J.

o AT € A for each i.

o AZAJ = AJA»L € span(A).

Any set of 01-matrices satisfying the above four conditions is called an
Association Scheme. The algebra generated by the matrices of an association
scheme is called the Bose-Mesner Algebra of the scheme.

Not every association scheme comes from a distance regular graph (see
Zhdan-Pushkin and Ustimenko [26, p. 697]). An association scheme con-
sisting of distance matrices of a distance regular graph is called a metric
association scheme (see for example Godsil [9, p. 13]). An important prop-
erty exclusive to metric association schemes is that each A; can be written
as a polynomial of degree i in A; (Lemma 20.6 in Biggs [2]). To make our
arguments simpler, we only deal with metric association schemes in this
chapter, although most of what we say holds for any association scheme.

3.5 Eigenvalues

For real symmetric matrices, the minimal polynomial (monic polynomial of
minimum degree that annihilates the matrix), does not have repeated roots.
So the number of distinct eigenvalues is equal to the degree of the minimal
polynomial, which in turn is equal to the dimension of the algebra generated
by the matrix.

On the other hand, in a distance regular graph, since each distance
matrix is a polynomial in terms of the adjacency matrix, we get that the
algebra generated by the distance matrices is just the algebra generated
by the adjacency matrix. So, in a distance regular graph the number of
distinct eigenvalues is equal to the dimension of the algebra generated by
the distance matrices. Therefore by Theorem 3.3.1, any distance regular
graph of diameter d has d 4+ 1 distinct eigenvalues.

It is a very useful fact that the distance matrices in a distance regular
graph are polynomials in terms of the adjacency matrix of the graph, in
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3.5. EIGENVALUES

Eigenvalues
Ap 1 1 1 - 1
Ay Ao A1 Ao e Ad
Az | p2(Mo) | p2(A\1) | p2(A2) | -+ | p2(Aa)
Az | p3(Ao) | p3(A1) | p3s(N2) | --- | p3s(Na)
Ad | pa(Ao) | pa(A1) | pa(A2) | -+ | pa(Aa)

Table 3.1: eigenvalues of the distance matrices

particular in finding the eigenvalues of the distance matrices. Suppose that
A is an eigenvalue of a square matrix A, with corresponding eigenvector .
So we have

Ax = Ax.

Then for any polynomial p, we get

and so x is also an eigenvector of p(A), but corresponding to eigenvalue p(\).

Let G be a distance regular graph of diameter d with Ag,--- , Aq as its
distance matrices. Then A; has d + 1 distinct eigenvalues say Ag, - - - Ag. For
each i, 0 < ¢ < d, let p; be a polynomial of degree ¢ such that

A; = pi(Ay).

Then, for any 0 < i, j < d, any eigenvector of A; corresponding to eigenvalue
A;j is also an eigenvector of A;, but corresponding to eigenvalue p;(A;). The
table of eigenvalues of the distance matrices is given in Table 3.1. Note that

When i # 1, then p;(Ao),pi(A1),- - ,pi(Ag) are not necessarily distinct.
We have A; has at most d + 1 distinct eigenvalues with its eigenspaces
generated by (one or more) eigenspace(s) of A;. For simplicity, we denote

pi(N;) by pi(j). Let
5 — 0 if i#7,
N | if i=j,
denote the Kronecker delta.
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3. ALGEBRA OF DISTANCE REGULAR GRAPHS

3.5.1 Lemma. Let G be an n vertex distance regular graph of diameter d,
with Ey, E1,--- , B4 as projections onto its eigenspaces. Then, for any i and
7, we have

(a) EZ'EJ' = (5ijEz'; and

d .

(b) Ai = Z]':() pi(])Ej'

Proof. Any projection is an idempotent, and so for any ¢, we have
E? = E;.

On the other hand, since A; is symmetric, eigenvectors corresponding to
distinct eigenvalues of A; are orthogonal, and so for any distinct ¢ and j, we
get
E;E; = 0.
Since A; is symmetric, its eigenspaces span R™. Therefore, for any x in R",
we get
Foxr + Fix + -+ Bgx = .

Hence,
Eo+E1+---Eg=1.

So for any i, we get
AZ'EQ + AZ'El + - A,‘Ed = Ai.

Since, for any j, each column of Ej; is an eigenvector of A; corresponding to
eigenvalue p;(j), we have
AiE; = pi(5)Ej,

and therefore,
pi(0)Eg + pi(1)Ey + ---pi(d)Eq = A;.

This completes the proof. O
Let GG be a distance regular graph of diameter d. Let Wy, W1, --- , Wy be
the eigenspaces of G corresponding to its eigenvalues. For each i, 0 < ¢ < d,

define U; to be a matrix with its columns forming an orthonormal basis for
W;. Then, if E; denotes the projection onto W;, we have

E; = UUL.

This explicit formulation for the projection matrices can be used to give
another proof for Lemma 3.5.1.
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3.6 Krein Parameters

Let G be a distance regular graph of diameter d with v vertices. Let A denote
the algebra generated by the distance matrices of G, and let Ey, E1,--- Ey4
be the projections onto the eigenspaces of G. By Lemma 3.5.1, all of the
distance matrices can be written in terms of the projection matrices. But the
set of distance matrices has the same size as the set of projection matrices,
and therefore it forms a basis for A. So the set of projection matrices must
also be a basis for A. So all of the projection matrices can be written as
linear combinations of the distance matrices.

On the other hand, since
Az’ ¢} Aj = (L-in,

and since the set of distance matrices forms a basis for A, we get that A is
closed under the Schur product. In particular, we get that F; o F; is in A,
and hence, can be written as a linear combination of projection matrices.
Therefore, we can find constants ¢; j(k) such that

Recall that v is the number of vertices of the graph. The constants ¢; ;(k) are
called the Krein parameters of the Bose-Mesner Algebra. Following Delsarte
[6], we have a scaling factor of 1/v in our definition. This is more common,
although some may follow the definition by Seidel [22] which is without the
scaling factor.

The following makes clear the duality between distance matrices and
projection matrices. Note that the all ones matrix, which we denote by J,
is the identity matrix with respect to the Schur product.

Az’ O Aj = (Siin, EzEJ = 5ijEia
Ao+ -+ Ag=J, Eo+--+E5=1,
d d
AiAj = Y _opij(k)Ax,  EioEj =335 o4,(k)Ey.
So the Krein parameters for projection matrices are analogues of intersection
numbers for distance matrices. The following result in Brouwer, Cohen, and

Neumaier [3, p. 132] gives the Krein parameters in terms of the eigenvalues
of the distance matrices.
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3. ALGEBRA OF DISTANCE REGULAR GRAPHS

3.6.1 Theorem. Let GG be a distance regular graph with v vertices. Let the

eigenvalues of G be \g, A1, -+, \q with multiplicities mg, m1,--- ,mq. Then
we have ;
mgm; ps(1)ps(j)ps(k)
i (k) = J : (3.6.1)
J v S;) ps(0)?
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Chapter 4

Covering Graphs

Consider the graphs X and Y in the picture below. Above each vertex in X
there are three vertices in Y, and above each edge there is a 1-factor. We
say that Y is a 3-fold cover of X.

Figure 4.1: Y is a 3-fold cover of X

In general, let X and Y be two graphs with a surjective map ¢ from the
vertex set of Y to the vertex set of X, such that the pre-image of each vertex
in X is an independent set of size r in Y. Then Y together with ¢ is called
an r-fold cover of X if, for any two adjacent vertices X, there is a 1-factor
between their pre-images in Y, and for any two non-adjacent vertices in X,
there is no edge between their pre-images. If ¢ is clear from the context, we
just say that Y is an r-fold cover of X. The pre-image of each vertex in X
is called a fibre of the cover. So fibres partition the vertex set of the cover
into sets of size r.
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4. COVERING GRAPHS

4.0.2 Example. Cg is a 2-fold cover of C5 as illustrated in Figure 4.2.

Figure 4.2: Cy as a 3-fold cover of C3

Remark. Covering spaces defined in topology are closely related to graph
coverings that we deal with here. For a short introduction on covering spaces
see Jost [15] (Section 1.3). In fact if a graph Y is a cover of another graph X
then, regarding V' (X) and V(Y") as discrete topological spaces, we have V(Y)
together with the map that sends each fibre in Y to the corresponding vertex
in X is a covering space of V(X). On occasion, when we introduce a new
concept about graph coverings we point out the connection to its analogue
in topological covering spaces. Nevertheless, no knowledge of topological
covering spaces is needed in reading this thesis as we never take advantage
of these connections.

4.1 Preliminaries

Note that if Y is an r-fold cover of X, then, by contracting each fibre in Y,
we get X with each edge replaced by r multiple edges. That might justify
the name of “cover”. But is that property enough to characterize covers?
With a little thought you can see the answer is “No”. That property just
guarantees that there are r edges between any two fibres. However we need
the extra condition that the r edges between any two fibres form a 1-factor.

As each 1-factor can be viewed as a permutation, we can describe any
cover with a so-called symmetric arc function. We define the arc set of a
graph X to be the set of ordered pairs (u,v) such that wv is an edge in X.
A symmetric arc function of index r is a function f from the arc set of X
to Sy, the symmetric group on r elements, such that f(u,v) = f(v,u)™!, for
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4.1. PRELIMINARIES

each uv € E(X). This condition is to guarantee that the cover defined by
f is a simple graph. For instance, in Figure 4.3 the value of symmetric arc

3 o————03

2@ —e?

ld ol
@ @ @
u v W

Figure 4.3: representing 1-factors by permutations

function on (u,v) is (132), while the value of the symmetric arc function on
(v,u) is (123) which is the inverse of (132).

Observe that in Figure 4.3, if we apply the permutation (132) to the fibre
corresponding to u and change the value of the symmetric arc function on
(u,v) and (v, u) to the identity permutation, then the covering graph remains
unchanged. In general, given a graph, X, and an r-fold cover of it, Y, if we
permute the vertices in each fibre, then we can change the symmetric arc
function so that the covering graph, Y, remains the same. More explicitly,
if for each u € X we apply permutation 7, to the fibre corresponding to u,
then to get the same covering graph Y all we need to do is to re-define the
symmetric arc function on arc (u,v) as

7o f (u0)7,

As we saw above, in Figure 4.3, we are able to apply a permutation to
u such that the symmetric arc function defining the covering graph is the
identity permutation on arc (u,v). In general, by an easy induction, we can
see that given any cover Y of another graph X and any spanning forest Z
of X we can always apply permutations to each fibre so that the symmetric
arc function associated with the cover is the identity on all the arcs of Z.
We call a symmetric arc function normalized, if it is the identity on every
arc of some spanning forest in X.

Now we want to see how we can get information about the structure of
the cover from the symmetric arc function defining it. More on this will be
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presented in the next section. Let the graph Y be an r-fold cover of another
graph X with normalized symmetric arc function f. Define (f) to be the
subgroup of S, generated by the image of f. Then it is not hard to see that
Y is connected if and only if (f) is transitive. We state this as a lemma
here, a proof of which can be found in Godsil and Hensel [10] (Lemma 7.1).

4.1.1 Lemma. Let Y be an r-fold cover of the connected graph X with
normalized symmetric arc function f. Then Y is connected if and only if
(f) is transitive.

Remark. Let the graph Y be a cover of another graph X. When X or
Y is not connected nothing interesting happens, as explained below. If X
is not connected, then Y is just a disjoint union of covers of the connected
components of X. Now suppose that X is connected but Y is not connected.
Let H be a connected component of Y. Then for any two adjacent vertices in
X, there must be a 1-factor between the restrictions of their corresponding
fibres to H. So H is a cover of X itself. Thus Y is just a disjoint union
of covers of X. We always assume that X and Y are both connected, and
hence by Lemma 4.1.1, we always assume {f) is transitive.

4.2 Regular Covers

In this section we consider the covers that have the “maximum symmetry”
that we can hope for, and then we see some interesting properties of these
covers that are more relevant here. First we need to say what we mean by
“maximum symmetry”. For the algebraic prerequisites of this section and
the following sections of this chapter the reader is referred to Drozd and
Kirichenko [8].

In topology an automorphism of a covering space is defined to be a
homeomorphism that fixes each fibre. It turns out that for graph coverings
also the group of automorphisms that fix each fibre is more relevant than the
whole group of automorphisms. If Y is a cover of X, we denote the group
of automorphisms of Y that fix each fibre by Autx(Y). In this section we
see how this group is related to the structure of the graph.

4.2.1 Lemma. Let the connected graph Y be an r-fold cover of the graph
X. Then the group of automorphisms of Y that fix each fibre, Autx(Y),
acts semi-regularly on each fibre.

Proof. Let g € Autx(Y) fix some u € V(Y). Then g must map the set of
neighbours of u to itself. But u has at most one neighbour in each fibre.
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So since g fixes each fibre it must fix each neighbour of u. By repeating
this argument we conclude that g has to fix all the vertices of Y, since Y is
connected. Thus g must be the identity permutation.

Now if 4 and v are two vertices of Y, and ¢g; and go are two members of
Autx(Y) that both map u to v then gflgg is an element of g that maps u to
itself and so as we proved g; ! go must be the identity of Aut x(Y). Therefore
g1 = g2. This proves that Autx(Y') acts semi-regularly on each fibre. O

Let X, Y and Autx(Y) be as defined in the lemma. Let u be a vertex
in Y. There are only r possibilities for the image of v under any element of
Autx(Y'). Since Autx(Y) acts semi-regularly on each fibre, by the pigeon-
hole principle we get

|Autx (Y)| < 7.

If equality holds, then u can be mapped to any other vertex in its fibre by
elements of Autx(Y), which means that Autx(Y) acts regularly on each
fibre. This also shows that if Autx(Y') acts regularly on one fibre, then
it acts regularly on all fibres. So Autx(Y) acts regularly on each fibre if
and only if it has size r. We say that Y is a regular cover if Autx(Y') acts
regularly on each fibre. Note that regular covering spaces are defined the
same way in topology.

The following lemma shows that symmetric arc functions are closely
related to the group of automorphisms of the cover that fix each fibre. A
proof of the following lemma can be found in Godsil and Hensel [10].

4.2.2 Lemma. Let the connected graph Y be an r-fold cover of the graph
X with normalized symmetric arc function f. Then the group of automor-
phisms of Y that fix each fibre, Autx(Y), is regular if and only if (f) is
regular. Moreover, if {f) is regular then it is isomorphic to Autx (Y).

4.3 Abelian Covers

A regular cover is called an Abelian cover if the group of automorphisms
of the cover that fix each fibre is an Abelian group. Let Y be an Abelian
cover of X with normalized symmetric arc function f. Then by Lemma
4.2.2, {f) is Abelian of size r. A representation of a finite Abelian group
is a group homomorphism from the group to the multiplicative group of
complex numbers. A representation is called a trivial representation if it
maps everything to 1.
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Let ¢ be a non-trivial representation of (f). Define A(X)?/) to be the
matrix with its rows and columns indexed by the vertices of X, and with the
(u,v)-entry equal to ¢(f(u,v)) if uv € E(X) and equal to zero otherwise.
Note that since (f) has size r, and since ¢ is a homomorphism, everything
in the image of ¢ must be an r-th root of unity.

In Section 2.1, we saw that a set of equiangular lines is equivalent to a
Seidel matrix. As we defined there, a Seidel matrix is a Hermitian matrix
with off-diagonal entries of norm one, and zero diagonal entries. The next
lemma says we can find such matrices from Abelian covers.

4.3.1 Lemma. Let Y be an Abelian cover of a complete graph, X , with nor-
malized symmetric arc function f, and let ¢ be a non-trivial representation
of {f). Then A(X)?Y) satisfies the Seidel properties.

Proof. First note that since X has no loops, all diagonal entries of A(X)?(/)
are zero. Also, each non-zero entry of A(X)?() is a root of unity and hence
has norm one. But all off-diagonal entries of A(X)?/) are non-zero since
X is the complete graph. So it just remains to prove that A(X )¢(f ) is
Hermitian. For any edge uv of X we always have

f(u>v) = f(va u)_la

and since ¢ is a homomorphism, we get

¢(f(u,v)) = &(f(v,u) ™

But since everything in the image of ¢ has norm one, we get

¢(f (u, ) = ¢(f (v, u)).

So A(X)?() is Hermitian. 0

By Theorem 2.3.3, if we want a set of equiangular lines of maximum size,
the Seidel matrix must have exactly two eigenvalues. By Godsil and Hensel
[10] (Lemma 8.2.), if X is a complete graph and the cover Y is distance
regular, then A(X )¢(f ) has only two eigenvalues. Any antipodal distance
regular graph of diameter three is a cover of some complete graph. The
next chapter is devoted to such covers.
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Chapter 5

Antipodal Distance Regular
Covers of Diameter Three

The graph in Figure 5.1 is the line graph of the Petersen graph. As we saw
in Section 3.1, the line graph of the Petersen graph is distance regular, and
we can check that it has diameter three. We labelled the vertices of the
line graph of the Petersen graph in Figure 5.1 so that two vertices are at
distance three if and only if they have the same label.

A distance regular graph G of diameter d is called antipodal if we can
partition the vertices of G so that two distinct vertices are at distance d
if and only if they lie in the same cell of the partition. In other words, a
distance regular graph G is antipodal if and only if being at distance 0 or d
is an equivalence relation on V' (G). So the line graph of the Petersen graph
is an antipodal distance regular graph of diameter three.

On the other hand, in Figure 5.1 if we consider all vertices of the same
label to be a fibre, then we have five fibres, and there is a 1-factor between
any two fibres. Therefore the line graph of the Petersen graph is a 3-fold
cover of K.

In the line graph of the Petersen graph, two vertices are at distance
three if and only if they lie in the same fibre. Therefore, two vertices are at
distance two if and only if they are non-adjacent, and they lie in different
fibres. So the number of common neighbors of two non-adjacent vertices in
different fibres is just cy in the intersection array of the graph.

We will see in Theorem 5.1.1 that being a cover of a complete graph with
the property that the number of common neighbors of two non-adjacent
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vertices in different fibres is a constant, is equivalent to being an antipodal
distance regular graph of diameter three.

Figure 5.1: A 3-fold cover of K5

For covers of complete graphs which are antipodal distance regular of
diameter three, all the numbers in the intersection array can be expressed
in terms of three parameters: the size of the complete graph, the size of each
fibre, and the number of common neighbors of two non-adjacent vertices in
different fibres. In Section 5.3, we see conditions on the parameters that are
necessary for the existence of antipodal distance regular graphs of diameter
three. All of the results in this chapter can be found in Godsil and Hensel
[10].
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5.1 Covers of Complete Graphs

By Theorem 3.2.1, we can prove that a regular graph is distance regular,
by proving the numbers in the intersection array are well defined. By the
following lemma, if we have a cover of a complete graph where any two
non-adjacent vertices in different fibres are at distance two from each other,
then to prove that it is distance regular, we just need to show that cs is well
defined. A short proof of the following lemma is given in Godsil and Hensel
[10, p.208]. We give a more detailed and explanatory proof here.

Before proving the lemma, recall that in a distance regular graph, ¢;,
a;, and b; are defined to be the number of neighbours of each vertex in
V; that lie in V;_1, V;, and V;;1 respectively. Also note that, if G is an
antipodal distance regular graph of diameter d = 3 with distance partition
{Vo,---,Vy}, then all the vertices in Vj; are at distance d from each other.
This implies that
ba—1 =1,

since if bg_1 = 2 then two vertices in V; are at distance two from each other
and if b;_; = 0 then G is disconnected.

5.1.1 Lemma. A graph is antipodal distance regular of diameter three if
and only if it is a cover of a complete graph with the property that the
number of common neighbours of two non-adjacent vertices in different fibres
is a non-zero constant.

Proof. Suppose that G is an antipodal distance regular graph of diameter
three. Then in the intersection array of G we must have by = 1 as indicated
above. Let B = {Vi,---V,} be the partition of the vertices of G with two
distinct vertices being in the same set of the partition if and only if they are
at distance three from each other. First we show that G is a cover of K,
with B being the partition of its vertices into fibres. Note that each V; is an
independent set, since any two vertices in V; are at distance three from each
other.

Now we just need to show there is a 1-factor between V; and V; for any
distinct ¢ and j. Let x € V;. If y; and y2 are two neighbours of = in Vj,
then there is a path of length two, namely y;xy2, between y; and yo. But
this contradicts that all the vertices in V are at distance three from each
other. So z has at most one neighbour in V;. Thus, we can find a vertex
y € V; that is not adjacent to x. Therefore, the distance between x and y is
two. Also note that V;\{y} is the set of vertices at distance three from y. So
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if we consider the distance partition with respect to y then the number of
neighbours of x in Vj is equal to by which is one. We proved each vertex in
Vi has exactly one neighbour in V;. Similarly each vertex in V; has exactly
one neighbour in V;. Therefore there is a 1-factor between V; and V;. Now
note that any two non-adjacent vertices in different fibres are at distance
two from each other, and so they have ¢ common neighbours. This proves
one direction of the lemma.

Conversely, suppose that G is a cover of some complete graph K,, with
each fibre of size r with the property that there is a constant say « such that
any two non-adjacent vertices in different fibres have o common neighbours.
To show that G is distance regular, we need to be able to find the intersection
array of G for a distance partition of V(G) with respect to some arbitrary
vertex v. Let {Vp,---, Vz} be the distance partition with respect to v. First
note that since G is a cover of K,, then G is regular of valency n — 1.
Therefore,

bp=n—1,

and so |V1| = n — 1. Also clearly,
c1 = 1.

On the other hand, by the definition of «, then cs is defined and
c2 = o

By the assumption of the theorem, the number of common neighbours of any
two non-adjacent vertices in different fibres is non-zero. This implies that
any two non-adjacent vertices in different fibres are at distance two from
each other. Let u and w be two vertices in some fibre B of G. Since B is an
independent set, d(u,w) = 2. Also since there is just a 1-factor between B
and any other fibre of G, then v and w cannot have common neighbours. So
d(u,w) = 3. Let B’ be another fibre of G. Let v’ be the unique neighbour of
u in B’. Now w and u are two non-adjacent vertices in different fibres, and
so d(w,u') = 2. But w and «’ are adjacent which implies that d(u,w) = 3.

So far, we proved that two vertices in different fibres are at distance
one or two from each other and two distinct vertices in the same fibre are at
distance three from each other. This implies |V2| = (r—1)n and |V3| = r—1.
Since V3 is an independent set and G is regular of valency n — 1, then c3 is

defined, and
Cc3 =N — 1.
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Let vy € Va. Since {v} u V3 is a fibre of G, then v is adjacent to exactly one
vertex in {v} U V3. But v; € Vo means that v; is at distance two from v.
Therefore v; is adjacent to exactly one vertex of V3. Thus b is defined, and

by = 1.

It just remains to prove that by is defined. Let x and y be two adjacent
vertices of G. Let A and B be the fibres of G which contain z and y
respectively. Note that other than z, each neighbour of y lies outside A and
so is adjacent to exactly one of the vertices in A. Thus we get

N\a} = [J(N() 0 N(2)),

z€A
where by the dot on U we mean this is a disjoint union. Therefore

IN(y) " N(z)| =n—2— Z IN(y) n N(z)| =n—2—(r—1)ca.
zeA\x

The last equality holds since for any z € A\x we have d(z,z) = 2 and so
IN(y) n N(2)| = ca.

So we proved that any vertex v € Vj has n — 2 — (r — 1)cy neighbours in
V1, or equivalently
ap=n—2—(r—1)cy,

and since u has valency n — 1 and is adjacent to v, then the number of
neighbours of u in V3 is

n—1-1—-(n—-2—(r—1)c) = (r—1)ca.
Therefore by is defined, and
bl = (7’ — 1)02.

Therefore G is distance regular of diameter three. Since we already saw that
two vertices are at distant three if and only if they are in the same fibre, G
is antipodal as well. O

From now on, we mostly focus on antipodal distance regular covers of
diameter three. By Lemma 5.1.1 there is a nice characterization of them.
Since we defined being antipodal only for distance regular graphs, we refer
to them as diameter three antipodal covers.
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5.2 Parameters

Let G be a diameter three antipodal cover of the complete graph K, with
each fibre of size r. Also suppose that any two vertices in different fibres
have co common neighbours. By Lemma 5.1.1, G is an antipodal distance
regular graph of diameter three. As can be seen in the proof of Lemma 5.1.1
the intersection array of G is

{n—1,(r —1ea,1;1,c0,n — 1}.

So all the numbers in the intersection array of G can be written in terms
of n, r and cp. All the other usual parameters of a distance regular graph
can be written in terms of its intersection array, and hence in the case of
diameter three antipodal covers they can be written in terms of n, » and cs.
We call

n,r,C2

the parameters of G. We define new parameters,
S=a1—ca=n—rc3—2, A=06>+4(n-1), (5.2.1)

that appear a lot in our computations. It turns out that § and A are the
sum and the difference of two of the eigenvalues of G.

5.2.1 Theorem. Let G be a diameter three antipodal cover with parameters
n,r,co. Then the eigenvalues of G are

n-1, -1, §=-—"2Y= =2 Y2 (5.2.2)

with multiplicities

n(r— 1)1 _n(r—1)0
T—0 Mr = 0—1

My 1=1, m_1=n—-1, my= (5.2.3)
Proof. We use the well-known fact that for any graph with an equitable
partition, if we contract all the vertices in the same set of the partition,
then the characteristic polynomial of the resulting multigraph divides the
characteristic polynomial of the original graph (see Godsil and Royle [11, p.
197]).

Since G is distance regular, the distance partition with respect to any
vertex is equitable. If we contract all the vertices in the same set of the
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partition, then we get a multigraph on four vertices with adjacency matrix

ag b() 0 0
Cc1 ai b1 0
0 Coy Qo bg
0 0 C3 as

The eigenvalues of this matrix are

§+V/A §— VA
n—1, -l f="—g=, r=

So G has at least four distinct eigenvalues. But as we saw in the beginning of
Section 3.5, a distance regular graph of diameter d has exactly d+ 1 distinct
eigenvalues. Therefore G has exactly four distinct eigenvalues.

Now we need to find the multiplicity of each eigenvalue. For each A, let
m) denote the multiplicity of A as an eigenvalue of G. First note that, since
G is a connected (n — 1)-regular graph, then n — 1 is a simple eigenvalue,
and hence

mp—1 = 1.

Now we get three equations in terms of m_1, mg and m,. We get these
equations by using the following standard facts in linear algebra.

e The eigenvalues of the k" power of any matrix are k** powers of the
eigenvalues of the matrix.

e For any k > 0, in the k*" power of the adjacency matrix of a graph,
the (7, j)-entry counts the number of walks of length k from vertex i
to vertex j.

Now, we get our three equations by applying the above facts for k =0, k = 1
and k = 2. For any vertex in any simple graph, the number of closed walks
of length 0 is one, the number of closed walks of length 1 is zero, and the
number of closed walks of length 2 is the degree of that vertex. Therefore
we get the following three equations. Note that since G is an r-fold cover of
K,, it has rn vertices.

e l+m 1+ mg+ms=rn.
e (1)(n—1)+m_1(—1) + myd + m.7 = 0.

e ((n—1)24+m_1(—1)% + mpf? + m,72 = rn(n — 1).
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Solving for m_1, mg and m, we get

n(r—1)7 n(r — 1)0.

m_1=n—1, mg= > m, = g

and we are done. |

5.3 Necessary Conditions

In the previous section we introduced a set of parameters for antipodal
covers of diameter three. The following theorem lists necessary conditions
for the existence of antipodal covers of diameter three in terms of those
parameters. None of these conditions are new. Note that these are just
necessary conditions, which means that, satisfaction of those conditions by
a set of parameters does not guarantee the existence of a diameter three
antipodal cover with those parameters. The proof of this theorem is given
in the following sections of this chapter.

5.3.1 Theorem. Let G be a diameter three antipodal cover with parameters
n,T,co, where n, r and cy are integers such that n = 3, r = 2 and co > 1.
Let 0, T, my, m; and § be as defined in Equations 5.2.2 and 5.2.3. Then the
following are necessary conditions.

~

. [10, p. 210] (r —1)ca <n —2.

o

. [10, p. 210] The following numbers must be integers:

n(r — )T n(r —1)0
T—60 ' 0—1

3. [10, Lemma 3.2] If 6 # 0, then 6 and 7 are integers.
4. [10, Lemma 3.2] If § = 0, then § = —7 = 4/n — 1.
5. [10, p. 210] If n is even, then cg is even.

6. [10, Theorem 3.4] If ¢ = 1 then

o« (n—1) | (n—1),
e (n—r)(n—r+1)|rn(n-1),
2

e (n—r)*<n-—1

7. [3, Theorem 4.2.16] n < ca(2r — 1).
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8. [21] If r > 2, then
0 >n—1.

9. [18] Let the q; ;(k)’s be the Krein parameters defined in Section 3.6,
and suppose that

0#£1, 7#—-1, B #n-1.

Then, for r > 2, we have

1 1
rn < §m9(m9 +1), rn < §m7(mT +1);

and, for r = 2, we have

1 1
n < §m9(m9+1), n < imT(mT—i-l).

10. [10, p. 230] Let r > 2 and 3 € {6, 7} be an integer. If
n>mg—r+3,

then
,3 + 1 ‘ Co.

11. IfG is an Abelian cover, then any odd prime that divides r must divide
n as well.

We should emphasize that except Condition 11, all the conditions in
Theorem 5.3.1 are known. We prove Condition 11 in Section 5.6.

Note that
@+D)(r+1)=0r+6+1=(1-n)+(n—2—rc2) +1=—rco.

Therefore in Condition 10 of Theorem 5.3.1, 8 + 1 | c¢o is equivalent to
r|7+1,and 7+ 1 | ¢g is equivalent to r | 6 + 1.

Now, we see a proof of Conditions 1 and 7 of Theorem 5.3.1. Condition
6 of Theorem 5.3.1 is proved in Godsil and Hensel [10, p. 210]. A proof of
Condition 10 of Theorem 5.3.1 can be found in Godsil and Hensel [10, p.
230]. It also follows from a more general result that we prove in Theorem
8.10.6. We present proofs of Conditions 2, 3, 4 and 5 of Theorem 5.3.1 in
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Section 5.4, proofs of Conditions 8 and 9 of Theorem 5.3.1 in Section 5.5,
and proof of the last condition of Theorem 5.3.1 in Section 5.6.

For Condition 1 of Theorem 5.3.1, note that all numbers in the inter-
section array must be non-negative. As we showed in the end of proof of
Lemma 5.1.1, we have a; = n —2 — (r — 1)ca. Now a; being non-negative
gives us the first condition in Theorem 5.3.1.

The seventh condition of Theorem 5.3.1 follows from Theorem 4.2.16
in Brouwer, Cohen and Neumaier [3] which states that, for any k-regular
distance regular graph we have k = 2a; + 3 — co. Therefore, in the case of
a diameter three antipodal cover, we get

n—1=22(n—(r—1)cg —2) +3 — co,

and so
n < co(2r —1).

5.4 Integrality Conditions

In this section, we see proofs for Conditions 2, 3, 4, and 5, of Theorem 5.3.1,
following their proofs in Godsil and Hensel [10, p. 210]. By Theorem 5.2.1,
the numbers in the second condition of Theorem 5.3.1 are just mg and m.,
the multiplicities of the eigenvalues 6§ and 7, and hence must be integers.
Although we got this condition for free, it serves as an important factor in
ruling out many parameter sets as infeasible.

Now we prove the third condition of Theorem 5.3.1, following the proof
given in Godsil and Hensel [10, p. 210].

5.4.1 Lemma. If § # 0, then 6 and T are integers.

Proof. By Theorem 5.2.1,

0=0+r, (5.4.1)
and so
n(r—1)4
My —My = ———.
0—T1

So if & # 0 then # — 7 must be a rational number. But again from Theorem

5.2.1,
0—1=+A,
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and, since

A=6+4(n—1)

is an integer, we conclude that if § # 0 then /A must be an integer. Also
the definition of A implies that § and /A have the same parity, and so

0=(+VA)2, 1=(—VA)2

are integers. 0

The fourth condition of Theorem 5.3.1 follows from 5.4.1 and
0r =1—n. (5.4.2)

Now note that if § # 0 and n is even then by 5.4.2, we get 6 and 7 are both
odd, and therefore by 5.4.1, § is even. Also if § = 0, then ¢ is clearly even.
So we always have: if n is even, then ¢ is even. On the other hand, the first
neighbourhood in the distance partition is ai-regular of size n — 1, and so if
n is even, then a; is even. Now the fifth condition of Theorem 5.3.1 follows,
since by definition

0 =ai — co.

5.5 Conditions from Krein Parameters

Conditions 8 and 9 of Theorem 5.3.1 come from the theory of association
schemes. As we mentioned in Section 3.4, the distance matrices of any
distance regular graph form an association scheme. Let the g; ;(k)’s be the
Krein parameters of a distance regular graph, defined in Section 3.6, and
let m; denote the multiplicity of the i-th eigenvalue of the graph. Then the
following bound, proved by Neumaier [18], is called the absolute bound.

m;mg; 1 # ]
my < . : 5.5.1
i -(Zk;;éo * { smi(m; +1), i=j. ( )
(V)

—_

To be able to apply this bound for antipodal distance regular graphs of
diameter three, we need to see which Krein parameters are zero.

5.5.1 Lemma. For an antipodal distance regular graph of diameter three
with parameters n,r,co and eigenvalues

p1(0)=n—-1, p1(1)=-1, pi(2) =60, p3) =,

we have a Krein parameter g; ;(k) is equal to zero if and only if
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(a)
{i,5,k} € {{0,0,1},{0,0,2},{0,0,3}, {0, 1,2},
{0,1,3},{0,2,3},{1,1,2},{1,1,3}}.
(b) {i,j, k} ={1,2,2}, and 7 = —1.
(¢) {i,5,k} = {1,3,3}, and 0 = 1.
(d) {i, 5.k} = {2,2,2}, and r = 2.
(e) {i,,k} = {3,3,3}, and (r =2 or 0® = — 1).
(£) {i,j,k} = {2,2,3}, and (r =2 or 7 = —1).
(g) {i,j,k} = {2,3,3}, and r = 2.

Proof. By Equation 3.6.1, we have

(k) = T 3 PP Oph),

7 L — ps(0)?

Let {Ao, A1, Az, A3} be the distance matrices of the graph. Note that ps(7)
is just the i-th eigenvalue of A;. So to use the above equation, we need to
find the eigenvalues of the distance matrices. But Ag is just the identity
matrix. The eigenvalues of Ay are given, and Aj is an adjacency matrix for
n copies of K,.. Now we can find the eigenvalues of As, since

Ay = J— Ay — Ay — As.

So we get the eigenvalues of the distance matrices as in Table 5.1. The first
column in the table corresponds to the all ones eigenvector, and hence the
first column must add up to rn, while in any other column the corresponding
eigenvector sums to zero, and hence the column must add up to zero.

Note that ¢; j(k) is zero if and only if

d ps(i)ps(j)ps(k)
;0 S0 (5.5.2)

is zero. But 5.5.2 is symmetric in 4, j, and k. Therefore, the order of 4, j, k
does not matter in determining whether g¢; j(k) is zero. Now, by comput-
ing 5.5.2 for each multi-set {7, j, k}, we get the result. As an example, we
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Eigenvalues
Ag 1 1 1 1
A1 n—1 —1 0 T
Ao | (n=1)(r=1) |1 =71 | =0 | —7
Asg r—1 r—1]—-1] -1

Table 5.1: eigenvalues of distance matrices

compute 5.5.2 when {7, j, k} = {1,2,2}:

Lo (ps@ps2) 1) (DB (1=r)(=0)? | (r—1)(=1)?
2 p (02 T 12 o ooz T o1
62 62 1

(-tw) ()

Since r > 2, and 6 is always positive, g1 2,2 is zero only if § = n — 1. Since
01 =1—mn, then 8 =n — 1 is equivalent to 7 = —1. O

Now we are ready to prove Condition 9 of Theorem 5.3.1. Actually, what
we prove is that when we apply Inequality 5.5.1 to antipodal distance regular
graphs of diameter three with @ # 1, 7 # —1, and 63 # n — 1, then what we
get is exactly Condition 9 of Theorem 5.3.1. To be able to apply Inequality
5.5.1, we need to know which Krein parameters are zero. By Lemma 5.5.1,
this depends on whether r = 2 or r > 2.

First, suppose that » > 2. Then by Lemma 5.5.1, we have ¢; j = 0 if
and only if

{i,j,k} € {{0,0,1},{0,0,2},{0,0,3},{0,1,2},{0,1, 3},
{0,2,3},{1,1,2},{1,1,3},{1,2,2}, {1, 3,3}}.

Let C; ; denote Inequality 5.5.1 applied for the pair (¢,j), when r > 2. By
Lemma 5.5.1,

)

1
e Cpo:mp < imo(m() +1).
® 0071 :myp < momy.

e Cpo: mg < moma.
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° 0073 . ms < moms.
° 0171 tmg +m1 < %ml(ml + 1).

o C12:mg+m3g < mima.

o (13:mg+m3g < mims.

o Cyo:mp+my+mg+m3 < %mg(mg +1).
o (3 :my + mg+ m3g < mams.

° C373 tmg+mip +mo +mg < %mg(mg + 1).
Now note that since

mo=1, mi=n-1, ma=my, m3zg=ms,

Co,0,C0,1,Co,2,Co3 and Cy 1 are trivially satisfied. Also Cy9 and (33 give
Condition 9 of Theorem 5.3.1 for r > 2.

Now we show that the other Cj ;’s give no restriction on the parameters
of the cover. (2 is equivalent to

m.
1+ —"<my.

me
But since
—7mn(r — 1) On(r — 1)
me = 3 T = y
0—r1 0—r1
we have
m; 0
my  —T
Therefore (' 2 is equivalent to
0
—<n-—2.
-7

On the other hand, 67 = 1 — n implies

So we get
62 < (n—2)(n—1). (5.5.3)
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If § =0, then 8 = v/n — 1, and so 5.5.3 is satisfied. If § # 0, then 0 and 7
are integers, and since by our assumption —7 # 1, we get 6 < n — 2, and
hence 5.5.3 is satisfied again.

Similarly, C 3 is equivalent to
< (n—2)(n-1),
which is satisfied since 6 # 1.
The only thing remaining to be checked is C3 3. It is equivalent to
rn—1 < mgm..

First note that my # 1, since otherwise, we get

1—€:n(r—1).
T

If § =0, then § = —7, and so we get a contradiction. If § # 0, then 6 and
7 are integers, and so the left hand side in the above equation is at most
1+(n—2)/2, which is a contradiction. Similarly, we have m, # 1. Now note
that mg and m, always add up to n(r —1). So mgm, is minimum when one
of them is 2 and the other one is nr —n — 2. Thus we get

mem: =2(nr—n—2)=nr—1+(nr—2n—-3) =2 nr — 1,
since r and n are both at least three.

Now suppose that r = 2. Let D; ; denote Inequality 5.5.1 applied for the
pair (i,7), when r = 2. By Lemma 5.5.1, when r = 2, beside from the Krein
parameters that are zero when r > 2, we also have ¢; j, = 0 for

{i,7,k} € {{2,2,2},{3,3,3},{2,2,3},{2,3,3}} .
This implies that D; ; and C; ; are the same, except when
{i,5} € {{2,2},{2,3},{3,3}} .
We have
o Dyo:mgy+my < %mg(mg +1);
e D3 :my < mams; and

e D33:mp+my < %mg(mg +1).
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D55 and D3 3 give Condition 9 of Theorem 5.3.1 for r = 2.
Also, Do 3 is equivalent to
n—1< mgm;.

As before neither mg nor m, can be 1, and, since they add up to n, mgm.
is minimum when one of them is 2 and the other one is n — 2. So we get

mem; =22(n—2)=2n—14+(n—-3)=>n—1.
Therefore, Dj 3 gives no further restriction on the parameters of the cover.

Condition 8 of Theorem 5.3.1 comes from the Krein conditions discovered
by Scott [21] that the Krein parameters of any association scheme must be
non-negative. When we compute the Krein parameters in Lemma 5.5.1, we
see that when 7 > 2, ¢33(3) is non-negative if and only if 6% > n — 1. For
any other value of i, j, and k, ¢; j(k) is trivially non-negative, and hence we
do not get any new restriction on the parameters.

5.6 Quotienting

In this section, we see that from each Abelian antipodal cover of a complete
graph, we can derive other Abelian antipodal covers of the same complete
graph but with smaller fibre sizes. The following theorem is of central impor-
tance when we study the connection between covers and equiangular lines
in Chapter 7. We also use this theorem to prove Condition 11 of Theorem
5.3.1 at the end of this section. The following theorem follows from Theorem
6.2 in Godsil and Hensel [10, p. 218].

5.6.1 Theorem. Let Y be an Abelian antipodal distance regular cover of
diameter three with parameters n,r,co. Let G be the group of automor-
phisms of Y fixing its fibres and let H be a subgroup of G of size t. Let 7
be the partition of the vertices of Y with its cells as the orbits of H on the
fibres. Then Y /7 is an Abelian antipodal distance regular cover of diameter
three with parameters

r
n, E,tCQ.

Now to prove Condition 11 of Theorem 5.3.1, we also need the following
theorem in Godsil and Hensel [10, p. 228]. A regular cover is called cyclic
if the group of automorphisms of the cover which fix each fibre is a cyclic

group.
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5.6.2 Theorem. Let G be a cyclic r-fold cover of K,,, with r > 2. Then r
divides n.

Condition 11 of Theorem 5.3.1 is stated in the following theorem.

5.6.3 Theorem. Let Y be an Abelian antipodal distance regular cover of
diameter three with parameters n,r,co. Then any odd prime that divides r
must divide n as well.

Proof. Let G be the group of automorphisms of Y fixing its fibres. Since Y
is an Abelian cover, G is Abelian of size r. Let p be a prime that divides r.
Then we can find a subgroup H of G such that

[G: H] =p.

So by Theorem 5.6.1, we can find an Abelian antipodal distance regular
cover of K, with each fibre of size p. Thus, the group of automorphisms of
this cover which fix each fibre has size p, and hence is cyclic. Therefore, by
Theorem 5.6.2, if p > 2 then p divides n. O
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Chapter 6

Basic Constructions

In this chapter, some constructions of diameter three antipodal covers will
be presented. None of these constructions are new. The notation we use for
the parameters of a diameter three antipodal cover are the ones introduced
in Section 5.2. We start with the following theorem in Godsil and Hensel
[10, Section 4].

6.0.4 Theorem. For fixed values of r and § there are only finitely many
covers with those parameters unless ¢ € {—2,0,2}.

In this chapter, we construct an infinite family of covers for fixed values
of r and 0 when § is equal to —2, 0 or 2. The constructions make use of
symplectic forms.

6.1 Symplectic Forms
Let V' be a vector space over the field F. A bilinear function
B:VxV-o>TF
is called a symplectic form on V if for all v in V' we have
B(u,u) = 0.
Note that if B is a symplectic form on V, then, for any u,v in V, we have
0=B(u+v,u+v)= B(u,v) + B(v,u),

and so
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A symplectic form, B, is called non-degenerate if, for any v in V', B(u,x) = 0
for all  in V', implies v = 0. Note that if B is a symplectic form over V,
then, for each v in V', we can define a linear function, f,, from V to F by

fu(w) = B(u,v).

Since the image is at most 1-dimensional, f, has to be either onto, or the
zero function. We say B is non-degenerate if and only if f, is onto for all
uw in V\{0}. So if B is non-degenerate, then, for each u in V\{0}, the null
space of f, is a hyperplane and, for each a in F, the solutions to f,(z) = a
is just a coset of that hyperplane. Therefore if V' is d-dimensional, then the
number of solutions to

fulx) =a

is |F|?~! regardless of choices of u and a. We make use of this fact in Section
6.3.

As an example of bilinear forms, let F be a field. If V = F¢ and A
is an arbitrary d x (d — 2) matrix over F, we can define B(u,v) to be the
determinant of the matrix obtained by adding u and v to A as its last two
columns. Then by properties of the determinant function, B is a symplectic
form. However, clearly B is non-degenerate if and only if d is equal to 2.

As another example, let F be a field, V = F? and A be a d x d anti-
symmetric matrix over I, i.e.

AT = —A.
For any u and v in V, define
B(u,v) = ul Av.
Then clearly B is bilinear. Also note that since B(u,v) € T,
B(u,v) = (B(u,v))T = (ul Av)T = 0T ATu = —vT Au = —B(v, u).

In particular,
B(u,u) = —B(u,u).

So if the characteristic of I is not equal to 2, then B(u,u) = 0 and so B is
a symplectic form.
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If the characteristic of F is equal to 2 and A is anti-symmetric (which is
the same thing as being symmetric when F has characteristic 2) with zero
diagonal we get

ul Ay = Zuiaijuj = 2 ugaii + 2 2u;a;;uj = 0.
i

.3 1<y

So again we get B is a symplectic form. Note that, regardless of the char-
acteristic of the field, B is non-degenerate if and only if A is invertible.

6.2 Covers with § =0

Mathon [17] constructs a diameter three antipodal cover for any feasible
parameter set with § = 0 and n — 1 a prime power. The following theorem
is an alternative construction due to Brouwer, Cohen and Neumaier [3].

6.2.1 Theorem. Let {n,r,co} be a feasible parameter set for an antipodal
distance regular cover of diameter three, and let § = n — rco — 2. Suppose
that 6 = 0 and g = n — 1 is a prime power. Let F be the field of order q and
let F* be the multiplicative group of F. So

F*|=¢—1=n—-2=0+rca =rca.

Let K be a subgroup of F* of order co. Let V' be a vector space of dimen-
sion two over F, and B be a non-degenerate symplectic form on V. Then
the graph G defined as follows is a diameter three antipodal cover with
parameters {n,r,co}:

V(G) = {Ku | ue VA{0}},
Ku ~ Kv < B(u,v) € K.

Proof. We give the proof in three steps. First, we prove that the adjacency
relation on the vertices of GG is well-defined. Then we prove that G is a
cover of K,,, and finally we prove that the number of common neighbours of
two non-adjacent vertices in different fibres is a constant, which by Theorem
5.1.1 guarantees that G is a diameter three antipodal cover.

To prove that the adjacency relation on the vertices of G is well-defined,
we need to prove that B(u,v) € K if and only if B(v,u) € K for any u,v € V.
Since B(v,u) = —B(v,u) it suffices to prove that —1 € K. If ¢ is even then
—1 =1¢€ K. So suppose that g is odd. Then n = ¢+ 1 is even and so by
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the fifth feasibility condition in Theorem 5.3.1, then cp = |K| is even. Since
K is cyclic it has a generator, say «. Then /2 is a non-trivial element of
order two in K, so it is —1.

Now we prove that G is a cover of K,,. For this, first we need to introduce
the fibres. To make our arguments easier, we represent V(G) as a set of
equivalence classes on V\{0} with the equivalence relation defined as

u=1v<v=%ku

for some k € K. So if w denotes the equivalence class containing u then we
represent the vertices of V(G) as

V(G)={u|ueV}.
Note that, by this definition of V(G), it immediately follows that

V(G)| = |V|>g|)}| Stk S UV 1 S M,
(6] C2

Now we claim that the set of equivalence classes of the following equivalence
relation on V(G) is a set of fibres of G as a cover of K,:
U=y T < T = av,

for some o € F*. Note that by our definition, each fibre has size [F* : K| = r.
We must prove that each vertex in one fibre has exactly one neighbour in any
other fibre. Let @ and T belong to two different fibres. The set of neighbours
of @ in the fibre containing v is

{av | a € F*, B(u,av) € K}.
But we have
B(u,aw) € K & o = kB(u,v)™! <= av = B(u,v) v,
Therefore, the set of neighbours of @ in the fibre containing v is exactly one.

Let {di,---,d,} be a complete set of representatives for F*/K. Now
{B(dyv1,dive) | 1 < i < r} = {didiB(v1,v2) | 1 < ¢ < r} is a complete
set of representatives for F*/K since we are just multiplying each element
of another set of representatives, namely {dy,--- ,d,}, by an element of F*,
namely djB(vi,v2). Therefore exactly one value in the set belongs to K,
and that is exactly what we wanted to prove.

54



6.2. COVERS WITH § =0

So far, we have shown that G is an r-fold cover of K,,. To prove G is
a diameter three antipodal cover with parameters n,r,co, the only thing
remaining to be proved is that any two non-adjacent vertices in different
fibres have exactly co common neighbours. Let d;v1 and djvs be two non-
adjacent vertices in different fibres. We have already proved that each vertex
in a fibre has exactly one neighbour in any other fibre. Let dyvy be the
neighbour of d;v; in As. Also let djv; be the neighbour of d;jvz in A;. So
by the definition of adjacency we have

B(dﬂ}l,di/’vg) e K and B(dj’l}z, dj/vl) e K.
Now for any k, k' € K we have

B(dwl, k‘dj/vl + k‘/dilvg) = k‘didj/B(Ul, U1) + k‘,B(diUl, d/L'/UQ)
= k"B(dﬂ)l, di"U2) € K.

Similarly we get
B(deQ, kdj/vl + k'diwg) e K.

Therefore all elements of the set
S = {k‘djfvl + k,dl’/UQ | k, K e K}

are common neighbours of d;v1 and djvs. However they do not give rise to
distinct vertices in G. Two elements of the set give rise to the same vertex
if and only if we can get from one to the other by multiplying an element of
K. So we can always multiply by &’ ! to make the coefficient of vy vanish.
Now it is easy to see that

{kdj/'l}l + d;yvo | ke K}

gives |K| = ¢y distinct vertices of G. Therefore djv1 and djvs have cy
common neighbours. To prove that they have exactly co common neighbours
we show that any other common neighbour of them must be in S. Let v be
a common neighbour of d;v; and d;ve. Then

B(dvi,v) e K and B(djv,v) € K.
But since B(d;v1,dyv2) € K we can find k1 € K such that
B(d;vi,v) = k1 B(d;v1, dyva).
Similarly, we can find k3 € K such that

B(deQ, U) = k‘gB(deg, dj/vl).
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By the bilinear property of B we get
B(divl, U) = B(dﬂ}l, kldi/U2)7

and so
B(di’Ul, v — /ﬁdi/vg) =0.

Similarly,
B(djvg, v — ]{Igdjfvl) =0.

Therefore, we get
B(divl, U—kldilvg—kgdj/’ul) = B(dﬂ)l,U—kldilvg)—kgdidj/B(vl, ?)1) =0-0=0.

Similarly,
B(djvg, v — kldi/UQ - dej’Ul) = 0.

But V is 2-dimensional, which means that any u € V can be written as a
linear combination of d;v1 and d;va. So we get B(u, v—kid;va —dej/vl) =0
for all w e V. Since B is non-degenerate we get

v — kldirvg — k‘gdjrvl = O,

so v € S as desired.

6.3 Covers with § = —2

Let F be a field of order ¢ where g is a prime power. Let V be a 2j-
dimensional vector space over F and B be a non-degenerate symplectic form
on V. Define the graph G as follows:

V(G) = {(a,u) |aeF,ue V},

with (o, u) adjacent to (3,v) if and only if u # v and B(u,v) = a— (. G is
undirected since B(v,u) = —B(u,v) = # — a.. For each u € V define

Ay, = {(a,u) | a« € F}.

First note that, by the definition of adjacency, each A, is an independent
set. We prove that G is a cover of K »; with the sets A,’s as its fibres. To
prove this, we just need to show that if u and v are distinct elements of V'
and a € F, then («,u) has exactly one neighbour in A,. But this is obvious
since (o, u) is adjacent to (3, v) if and only if 8 = o — B(u,v).
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Now to prove that G is a diameter three antipodal cover, we just need to
prove that the number of common neighbours of two non-adjacent vertices
in different fibres is a constant. Let (o, u) and (3,v) be two non-adjacent
vertices in different fibres. The set of common neighbours is

A={(y,w)eFxV]w#u Bu,w) =a—-yw#v,Buvw) =05-7}
Now define
B={weV |w#uw+#v,Bu—uv,w) =aoa—/F}

Note that there is a canonical one to one correspondence between A and B
in the sense that if (v, w) € A then w € B and conversely if w € B then there
is a unique v € F such that (y,w) € A. Now to find |B| note that neither
u nor v can be a solution to B(u — v,w) = a — 3, since if B(u — v,u) =
a— (3 or B(u—v,v) = a — 3 then in both cases we get B(u,v) = a — 3
which contradicts that (a,u) and (3, v) are two non-adjacent vertices of G.
Therefore |B| is just the number of solutions to B(u — v, w) = a — # which,
as we mentioned in Section 6.1, is ¢*~!. Therefore G is a diameter three
antipodal cover with parameters (¢%/,q, ¢ ~1).

6.4 Covers from Strongly Regular Graphs

Let G be a diameter three antipodal cover with parameters n,r, co. Then G
is distance-regular and any two vertices are at distance at most two from each
other unless they lie in the same fibre. Therefore if we join any two vertices
in the same fibre by an edge the resulting graph has diameter two. The
natural question that arises is whether this new graph, H, is still distance-
regular. Distance-regular graphs of diameter two are called strongly regular
graphs and have been extensively studied (see for example Godsil and Royle

11)).

Note that if H is to be strongly regular, the number of common neigh-
bours of two adjacent vertices must be a constant. If two adjacent vertices
lie in different fibres then since there is a 1-factor between any two fibres no
new common neighbour is added in H. So as we established in Chapter 5 the
number of common neighbours is a; = n—ca(r —1) —2. On the other hand,
if two adjacent vertices lie in the same fibre then the common neighbours
are exactly all the other vertices in that fibre, hence there are » — 2 of them.
Therefore for H to be strongly regular we must have n—co(r—1)—2 = r—2,
or equivalently

n=co(r—1)+r. (6.4.1)
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We see shortly that this obvious necessary condition is indeed sufficient as
well. More importantly, we see that the converse holds as well, that is, any
strongly regular graph with the appropriate parameters and a partition of
its vertices into cliques of an appropriate fixed size gives rise to an antipodal
cover of diameter three.

To prove that Condition 6.4.1 is sufficient for H to be strongly regular it
suffices to show that the number of common neighbours of two non-adjacent
vertices, say u and v, in H is a constant. Let C, and C, be the fibres
containing u and v respectively. Since u has exactly one neighbour in C,
and v has exactly one neighbour in C, and since the subgraphs of H induced
on C, and C, are cliques we get exactly two common neighbours for u and
v in addition to ¢ common neighbours they already had in G. Therefore
u and v have exactly co + 2 common neighbours in H. This proves H is a
strongly regular graph.

The degree of each vertex in H is (n — 1) + (r —1) = n +r — 2. The
intersection array of H as a distance-regular graph is

n+r—2,(n+r—2)—1—(r—2);1,co+2} ={n+r—2,n—1;1,c0 + 2}.

For reasons that we explain later we parametrize the covers that satisfy
6.4.1 as follows: r = s + 1 and ¢o = t — 1 which implies n = st + 1. The
intersection array then becomes {1,t+1; s(t+1), st}. So we have just proved
that any cover with parameters (n,r,c2) = (st +1,s + 1,¢ — 1) gives rise to
a strongly regular graph with intersection array {1,¢ + 1;s(t + 1), st} which
has the additional structure of having its vertices partitioned into cliques of
size s + 1. Now we prove the converse, i.e. for any such strongly regular
graph by deleting all the edges inside each clique in the partition we get an
antipodal cover of diameter three with former cliques as its fibres and with
parameters (n,r,co) = (st+1,s +1,t —1).

Let H be a strongly regular graph with intersection array {1,¢+ 1;s(t +
1), st} where its vertices partition into cliques of size s + 1. From the inter-
section array it follows |V(H)| = (s + 1)(st 4+ 1) and therefore the number
of cliques in the partition is st + 1. Let G be the graph obtained from H
by deleting all the edges inside each clique of the partition. To prove that
G is a diameter three antipodal cover with the former cliques as its fibres,
first we need to show there is a 1-factor between any two fibres. Let C and
C5 be two fibres of G and v € C7. If u has two neighbours in Cs, say v
and vo then w is a common neighbour of v; and vs. But all the vertices in
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Co\{v1,v2} are also common neighbours of v; and ve in H. Therefore the
number of common neighbours of v; and v9 in H is greater than s — 1. But
from the intersection array of H the number of common neighbours of two
adjacent vertices in H is s(t +1) — st —1 = s — 1. This is a contradiction.
Therefore v has at most one neighbour in any fibre of G. On the other hand,
since u has valency s(¢ +1) in H and it has s neighbours in Cj it must have
exactly one neighbour in any of the st fibres other than Cy. This proves
there is a 1-factor between any two fibres.

Now let u € C'y and v € (3 be non-adjacent. Since there is a 1-factor
between C and C we have u and v have exactly two common neighbours in
C7 u (5 as vertices of H. Since in total they have t + 1 common neighbours
in H they must have t — 1 common neighbours in G. Thus G is an antipodal
distance regular cover of diameter three, with parameters (n,r,c2) = (st +
1,s+1,t—1).

For (n,r,co) = (st +1,s +1,t — 1), we get
d=n—2—rco=st+1—-2—(s+1)(t—1)=s—t.

For any power of 2, say ¢, if s = ¢+ 1 and £t = ¢ — 1, then there exists a
strongly regular graph with intersection array {1,¢ + 1;s(t + 1), st} where
its vertices partition into cliques of size s + 1 (see Godsil and Hensel [10]).
Therefore, there exist an infinite family of antipodal covers with

d=s—t=q+1—(¢—1)=2.
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Chapter 7

Equiangular Lines from
Covers

As we mentioned in Section 2.1, each set of equiangular lines corresponds to
a Seidel matrix. By Lemma 4.3.1, for each Abelian cover Y of a complete
graph K, with symmetric arc function f, and any non-trivial representation
of the the group generated by the image of f, A(X)?(/) is a Seidel matrix.

Now the question is whether we can find covers which give us sets of
equiangular lines of maximum size, in the sense that the absolute bound
is tight. In this chapter, we find the parameters of an antipodal distance
regular graph of diameter three which give us sets of equiangular lines of
maximum size.

If the absolute bound is tight, so is the relative bound. So by Theorem
2.3.2, if A(X)?() is a Seidel matrix for a set of equiangular lines of maximum
size, then it must have only two eigenvalues. The following theorem in Godsil
and Hensel [10, p. 225] (Lemma 8.2) guarantees this.

7.0.1 Theorem. Let G be an Abelian cover of K, which is antipodal of
diameter three with eigenvalues —1, n — 1, 8 and 7. Let f be a normalized
symmetric arc function defining G and ¢ be a non-trivial representation
of {f>. Then A(K,)?!) has only two eigenvalues, namely, § and T, with
multiplicities

m:
0 r_0
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7.0.2 Remark. IfY is an r-fold cover of K,,, then all we can say about the
off-diagonal entries of A(X)?Y) is that they are r-th roots of unity. So in
general, we cannot guarantee that they are real unless r is equal to two.

7.1 New Feasibility Condition for Abelian Covers

As we saw in the beginning of this chapter, antipodal distance regular covers
of diameter three which are Abelian covers can be used to construct equian-
gular lines. So the absolute bound for equiangular lines gives us a feasibility
condition on the parameters of the cover. This has been made explicit in
the next theorem.

7.1.1 Theorem. Let G be an Abelian cover of K, which is antipodal of
diameter three with eigenvalues —1, n — 1, # and 7. Then we have

T < —/a/n+ 1.

Furthermore, if equality occurs then there is a set of equiangular lines of
size mg in dimension .

Proof. Let f be a normalized symmetric arc function defining G and ¢ be
a non-trivial representation of {f). By Lemma 4.3.1 and Theorem 2.1.1,
A(K,)?Y) is a Seidel matrix for a set of n equiangular lines in dimension
n — m, where m is the multiplicity of the least eigenvalue of A(K,,)?(/).

By Theorem 7.0.1, A(K,,)*/) has only two eigenvalues, 6 and 7. There-
fore n —m is just the multiplicity of the larger eigenvalue of A(K,)?), i.e.
0. So we get n equiangular lines in dimension 7y. Now we can apply the
absolute bound. Note that since in general, the lines are complex, we have
to use the absolute bound for complex equiangular lines. So we must have

n < mg,
or equivalently
My = /n.
Now since 07 is equal to 1 — n, we get
nr n n

m: = = .
A T =

Since Ty is strictly increasing as a function of |7|, and is equal to 4/n when
|7] is equal to

vn+1,
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we must have

17| = /v +1,
2

and if equality happens then we get a set of equiangular lines of size mj in
dimension 7. O

Note that by the proof of Theorem 7.1.1, My is monotonic in |7| and to
get an equiangular set of lines with size of order the square of the dimension
we need |7| to be of order n'/4.

7.2 Parameters

Let G be an Abelian antipodal cover of diameter three, with parameters
n,r,co, and eigenvalues —1, n—1, § and 7. Theorem 7.1.1 gives the value of
7 in terms of n that leads to a set of complex equiangular lines of maximum
size. Since n,r,co are all integers, we get the following theorem. In the
following theorem, rco can be determined in terms of ¢, but not r or co
separately.

7.2.1 Theorem. For an Abelian distance regular cover of K,, with param-
eters n, r, co, and eigenvalues —1, n — 1, § and 7, we obtain a set of complex
equiangular lines of maximum size if and only if

n = (t* —1)?, T = —t;

where t can be any positive integer larger than one. If the above holds the
other parameters of the cover are

0=tt?—2), 6= (t>-3)t
me=t>—1, m,=(t>-2)(t>-1)

Proof. First note that

Since

we get
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But we also have
d=n—2—rcy.

So ¢ is an integer. On the other hand, since we have a set of complex
equiangular lines of maximum size, we must have my = 4/n. So 4/n must
be an integer. This together with the fact that

d=(vn-2)(y/vn+1)
is an integer, implies the 4/4/n + 1 is an integer. Set

t=4/+/n+1.

So we get
n=@t-1)72  r=—t

The rest of the parameters can be computed according to their definitions. O

7.3 Feasible Parameters

Now the question is: for what values of ¢, do the parameters defined in
Theorem 7.2.1, satisfy all the feasibility conditions given in Theorem 5.3.1.

7.3.1 Theorem. Let G be an Abelian cover with parameters n,r, co, such
that for some positive integer t, we have

n=(t*—-1)% reg = (t—1)2(* +t —1).

Then
r|t—1.

Proof. By Theorem 7.2.1, 6 is an integer. By Condition 10 in Theorem 5.3.1,
if n is larger than my — r + 3, then 6 + 1 divides c2. Now by substituting
(t> — 1)? for n and

me(r — 1) = (t* — 1)(r — 1)

for mg, and some straightforward computation, n > mgy — r + 3 reduces to

2 .
r<t®+ 5
and since 7 is an integer, we get

r <2
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On the other hand, we have
O+1=tt>—2)+1=t3—2+1=(t—-1D)(>+t—1).

Thus, Condition 10 in Theorem 5.3.1 becomes: if r < t2, then (t—1)(t2+t—1)
divides c3. But from

reg = (t— 122+t — 1),
we get: if r < ¢2, then r | t — 1.

Now we prove that  must always be less than or equal to t2, and hence,
we are done. We show that r always divides (t — 1)2, which implies r < #2.
Since

reg = (t— 122+t —1),

to prove that r divides (¢ — 1)2, it suffices to prove that r and t* +¢ — 1 are
co-prime. Suppose on the contrary that p is a prime that divides both r and
t2 +t— 1. Since t? +t — 1 is always odd, p must be odd. So by Theorem
5.6.3, since p divides r, then p divides n. Thus we have

plt?—-1, pltE+t-1,
which implies p | {(#? +t — 1) — (#* — 1)}. Therefore, p | t, so p | t* and

consequently p | 1, a contradiction. O

Now we show that apart from some lower bounds on ¢, r and co, the
condition r | ¢ — 1 is all we need to guarantee that all feasibility conditions
stated in Theorem 5.3.1 are satisfied.

7.3.2 Theorem. A parameter set (n,r,cg) satisfies all the conditions in
Theorem 5.3.1, and a cover with the corresponding parameters gives a set of
complex equiangular lines of maximum size if and only if there is a positive
integer t such that

n= (t2—1)2, reg = (t— 122+t — 1),
wheret = 3, r = 4, co = 2, and
r|t—1.
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Proof. We need to check that when
n = (t2—1)2, reg = (t— 122+t — 1),

the conditions in Theorem 5.3.1 give no restrictions on the parameters of the
cover, except the ones given in the theorem. The first feasibility condition in
Theorem 5.3.1, states that (r—1)cy < n—2 which is equivalent to § +co = 0.
Since § = (t? — 3)t and ¢y are always positive this condition always holds.
Also Conditions 2, 3 and 4 are trivially always satisfied and so we get no
restriction on t. Condition 5 states that if n is even then ¢y is even. So if ¢
is odd then ¢y is even. But since

reg = (t— 122+t — 1),
and
r|t—1,

we get
t—1 ‘ C2,

and hence if ¢ is odd, then ¢y is even.

In Condition 6 we have if ¢ = 1 then (n —r)? <n — 1. Now we prove
that (n —7)2 >n —1 and so c3 # 1. We have

(n—7r)%=(n-1) (n—reg)® — (n—1)
(=1 = (t =122+t —1)° = (2 -1)>—1)

(t — 1)t +2)? — (t2 — 2)t?

A\

which is greater than zero if t = 2. If t > 3 we get

(n—r)>—=(n-1) (t— D4t +2)% — (1* — 2)¢?
2 ((t—-1)* = (£* - 2))

(=3t + 1) —t+1)+2),

=
=

which is greater than zero since (t> —3t+1) and (¢t —t+1) are both positive
for any t > 3. So we always get (n —r)? > n — 1. Thus by condition 6 we
must have co # 1 and therefore ¢y = 2. Note that co = 2 implies that ¢ > 3,
since for t = 2 we get reg = (t —1)2(t? +t—1)=5andsocy =5 and r = 1
which is a contradiction.

66



7.3. FEASIBLE PARAMETERS

Now we prove that Condition 7 is always satisfied and hence it gives no
restrictions on the parameters. Condition 7 states that n < c2(2r — 1) or
equivalently 2rco — n = co. But we have

oreg —n =20t — 12+t —1)— (t? —1)2 = (t — 1)3(t* - 3).

Now since rcy = (t—1)2(t2 +t — 1), we have (t — 1)2(¢? — 3) = ¢, if and only
if

2+t—1
- o2-3
But
2+t—1 t+2
7:1_’_7
t2 -3 2 -3

is less than 2 when ¢ = 3; and, is decreasing for any ¢ > 3. Therefore, for
any t = 3,
t2+t—1
— <
2 -3

But the size of each fibre, r, is at least 2, and so for any ¢ > 3,

2.

2+t—1
rea—
t2—3

as desired.

Condition 8 states that #2 > n—1. Substituting the parameters in terms
of t we get
(t? —2)33 > t2(t* — 2),
which is equivalent to
(t? —2)% > 1,

and this is clearly satisfied.

Now using Condition 9, we prove that r > 4. First note that r # 2, since
otherwise, by Remark 7.0.2, we have n real equiangular lines in dimension
4/n which contradicts the absolute bound for real equiangular lines. Noting
that my = my(r — 1) and My = 4/n, by Feasibility Condition 9 in Theorem
5.3.1, we must have

™™

N

%mg (mg+ 1)
= SVl = (Wl — 1) +1).
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Simplify this to get

(r =1+ S(r — DV

N

rm <

Note that if r > 4 then r < 3(r — 1)? and so the condition is satisfied.
However, if » = 3, the condition is reduced to n < 4/n which is never satis-
fied. Therefore r > 4. It also follows that the other condition in Feasibility

Condition 9, i.e.

rn < oM (ms +1)

is satisfied for any r > 4, since m. is larger than my.

Condition 10 says that if n is larger than mg — r + 3, then 6 + 1 divides
c9, but this has already been considered in Theorem 7.3.1. Condition 10
also says that if n is larger than m, —r + 3, then 7+ 1 divides c. First note
that
my =m(r —1).

Also since
mg = \/ﬁa
and
e + My = n,
we get

Now since r > 4 we have

m;—r+3—-n = m(r—1)—r+3—-n
(n—a/n)(r—1)—r+3—-n
r(n—+n—1)—(2n —+/n—3)
An —/n—1) — (2n — y/n — 3)
o — 3y/n — 1,

which is greater than zero for any n = 4. But as we showed above ¢ > 3 and
since n = (2 — 1) we get n > 64. Therefore, we always have

A\ ||

n<m;—r+3,

and so we do not get any more restriction from condition 10. O
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A/n n r ca 0 T me my

35 1225 b 205 204 —6 140 4760
63 3969 7 497 496 -8 378 23436
120 | 14400 5 2620 | 1309 | —11 | 480 57120
143 | 20449 | 11 | 1705 | 1704 | —12 | 1430 | 203060
195 | 38025 | 13 | 2717 | 2716 | —14 | 2340 | 453960
224 | 50176 7 6692 | 3345 | —15 | 1344 | 299712
255 | 65025 | 5 | 12195 | 4064 | —16 | 1020 | 259080
288 | 82944 | 17 | 5797 | 5796 | —18 | 4608 | 1322496
399 | 159201 | 19 | 7961 | 7960 | —20 | 7182 | 2858436

Table 7.1: feasible parameters for ¢ < 20

Unfortunately, the following result eliminates the possibility of covers
with small fibre sizes.

7.3.3 Theorem. Let G be an Abelian cover with parameters n,r, cs, such
that for some positive integer t, we have

n=0t =12 re=t-1)*E+t-1).
Then r is not divisible by 2 or 3.

Proof. Let p be a prime that divides r. Let H be a subgroup of index p of
the group of automorphisms of G fixing its fibres. Let m be the partition
of the vertices of G with its cells as the orbits of H on the fibres. Then
by Theorem 5.6.1, G/m is an Abelian antipodal distance regular cover of
diameter three with parameters

r
n,p, —Ca.
p

Now note that 0, 7, Ty and ™, are all defined in terms of rcy and n. But
rcg and n remain unchanged in the new cover. So the feasibility conditions
we found in Theorem 7.3.2 apply here. In particular, we must have the fibre
size, p, is at least 4. O

A list of feasible parameters for ¢t < 20 is given in Table 7.1.

7.4 Real Case

In this section, we see that, for Abelian antipodal covers of complete graphs,
if the fibre size is even, then we can find sets of real equiangular lines, and
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7. EQUIANGULAR LINES FROM COVERS

hence, we can apply the absolute bound given in Theorem 2.2.2 for real
equiangular lines, which gives us a stronger feasibility condition than the
one given in Theorem 7.1.1.

7.4.1 Theorem. Let G be an Abelian cover of K, that is antipodal of
diameter three with parameters n,r,cy and eigenvalues —1, n — 1, 6 and .
Suppose that r is even. Then we have

vV14+8n+3

T — 5

Furthermore, if equality occurs, then there is a set of real equiangular lines
my+1

of size ( ) ) in dimension M.

Proof. Let H be a subgroup of index 2 of the group of automorphisms of
G fixing its fibres. Let 7 be the partition of the vertices of G with its cells
as the orbits of H on the fibres. Then by Theorem 5.6.1, G/7 is an Abelian
antipodal distance regular cover of diameter three with parameters

r
n,2, 562.

Now note that 0, 7, my and m, are all defined in terms of rco and n. But
rcg and n remain unchanged in the new cover. So as we saw in the proof
of Theorem 7.1.1, we get n equiangular lines in dimension my. Since we are
working with 2-fold covers, by Remark 7.0.2, we get real equiangular lines.
So by applying the absolute bound for real equiangular lines we get

n < (’mg—i-l)’
2

_ >—1+\/1+8n

me B

or equivalently,

Now since 07 is equal to 1 — n, we get

__ nTt n n
ma: = = — .

T

Since Ty is strictly increasing as a function of |7|, and is equal to =liyitsn V21+8”

when |7] is equal to
v1+8n+3
2 )
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7.4. REAL CASE

we must have

V14+8n+3
7| = 5
and if equality happens then we get a set of real equiangular lines of size

(m92+1) in dimension Tg. 0

Now similar to Theorem 7.2.1, we get the following theorem.

7.4.2 Theorem. For an Abelian distance regular cover of K, with param-
eters n,r,co, and eigenvalues —1, n — 1, 6 and 7, we obtain a set of real
equiangular lines of maximum size if and only if r is even, and
t2—2)(t* -1
Gt (et R

2

where t can be any positive integer larger than one. If the above holds the
other parameters of the cover are

9 — t(t2-3) 5= t(t2—5)

7 % et
g = 12 -2, m, = L8

Considering all the feasibility conditions in Theorem 5.3.1, we get the
following analogue of Theorem 7.3.2.

7.4.3 Theorem. Let n,r,co be the parameters of an Abelian distance reg-
ular cover of K,. Suppose that r is even, and for some positive integer
t,

t?2-2)t* -1)

1
n = 5 , reg = i(t—l)?’(t—i-Q).

Then, {n,r,ca} satisfies all the feasibility conditions of Theorem 5.3.1 if and
only if

(a) co =2 andt > 3;
(b) if t is odd then cy is even;
(c) ifr < tzT“ thenr | t —1; and

(d) any odd prime that divides r must divide t — 1 as well.
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Chapter 8

Terwilliger Algebra of Covers
of Complete Graphs

We defined the Bose-Mesner algebra of an association scheme to be the
algebra generated by its distance matrices. Fix a vertex u of a distance
regular graph of diameter d. For each i, 0 < ¢ < d, we call the vertices
at distance ¢ from wu, the i-th neighbourhood of u. Let F; be a diagonal
matrix with the characteristic vector of the i-th neighbourhood of u as its
diagonal. The Terwilliger algebra of the distance regular graph with respect
to u is defined to be the algebra generated by the distance matrices and the
diagonal matrices Fy, F1,--- , F4. Since F;’s have the characteristic vectors
of the neighbourhoods of u as their diagonals, the Terwilliger algebra would
be useful to get information on the neighbourhoods. We can have different
Terwilliger algebras based on the choice of the vertex of origin. However,
in this chapter, our vertex of origin is arbitrary. So all the materials in this
chapter apply to any Terwilliger algebra with respect to any vertex.

Note that, any matrix in the Bose-Mesner algebra of a distance regular
graph is a polynomial in terms of the adjacency matrix of the graph. So a
basis of eigenvectors for the adjacency matrix is also a basis of eigenvectors
for the Bose-Mesner algebra. Therefore, if v is the number of vertices of the
graph, we can write R” as a direct sum of one dimensional spaces invariant
under the Bose-Mesner Algebra. A subspace invariant under the algebra is
called a module over that algebra. A module is called irreducible if it does
not contain a proper non-zero submodule. Let T be a Terwilliger algebra of
a distance regular graph. By a T-module, we mean a module over T.

A useful way to study an algebra is to find the decomposition of the space
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8. TERWILLIGER ALGEBRA OF COVERS OF COMPLETE GRAPHS

into irreducible modules over the algebra. For the Bose-Mesner algebra,
this decomposition is just a decomposition into one dimensional subspaces.
For a Terwilliger algebra, although this decomposition is still possible, it is
more complex. In general, the modules in the decomposition are not one
dimensional.

In this chapter, we find the decomposition of R™ into irreducible T-
modules, where T is a Terwilliger algebra of an antipodal cover of diameter
three with parameters n,r, cy. Such a decomposition has been found for
distance regular graphs of diameter two, that is, strongly regular graphs, by
Tomiyama and Yamazaki [24].

We can also use a Terwilliger algebra to get restrictions on the parame-
ters of a distance regular graph. Feasibility Condition 10 in Theorem 5.3.1
follows from Theorem 8.10.6 that we prove in this chapter using a Terwilliger
algebra.

8.1 Distance Partition

Suppose X is a distance regular cover of a compete graph with parameters
n, r, ca. Let {Vo, V1, Va2, V3} be the distance partition of X with respect
to some vertex, illustrated in Figure 8.1. We usually refer to V; as the i-
th neighbourhood. The rows and columns of the distance matrices of X
are indexed by the vertices of X, so the ordering of the vertices affects the
distance matrices. In this section, we order the vertices of X so that the
distance matrices have a simple form. It will be very useful in the remaining
sections of this chapter, since distance matrices are involved extensively in
our computations.

We have
Vol=1, Wi|=n—-1, [W|=n-1)(r—-1), |[B3|=r—-1
We can check that
Vol + Va| + [Va| + [V3] = rn = [V (X))

We represent the second neighbourhood by a rectangle consisting of n — 1
rows and r — 1 columns. We place the vertices in the second neighbourhood

74



8.1. DISTANCE PARTITION

Figure 8.1: distance partition of an antipodal cover

such that for any 7, 1 < i < n —1, the i-th vertex in the first neighbourhood
together with the ¢-th row of the second neighbourhood form a fibre of
the cover. Then, we move the vertices in each row such that for any j,
1 < j € r—1, the j-th column of V5 is the neighbourhood of the j-th vertex
of V3.

Let 7 be a partition of a finite set S. The characteristic matrix of 7 is
defined to be the matrix whose columns are the characteristic vectors of the
cells of 7. So it is a |S| x |7| matrix with 0,1 entries whose columns sum
to the all ones vector. The column space of the characteristic matrix is the
space of vectors defined on S which are constant on the cells of w. Also,
the null space of the transpose of the characteristic matrix is the space of
vectors defined on .S which sum to zero on the cells of w. The space of the
vectors defined on S can be written as the direct sum of the vectors constant
on each cell of m and the vectors summing to zero on the cells of 7.
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8. TERWILLIGER ALGEBRA OF COVERS OF COMPLETE GRAPHS

Remark. The reason we represent V5 by a rectangle is that the two
partitions associated with it, the row partition and the column partition,
come up naturally when we study the T-modules of R™. Define R and C
be the characteristic matrices of the row partition and the column partition,
respectively.

From the way we arranged the vertices of X, we get the adjacency matrix
of X given below. Here B; and By are the adjacency matrices of the graphs
induced on the first and second neighbourhood, respectively. Also N is the
matrix recording the adjacency between the second and first neighbourhood.

o 1, 0 0
| ..+ B NT 0
A= 0 N B, C (8.1.1)
0 o CcT o
Also we get
0 0 0 1’
0 0 RT 0
A=1 0 R RRT-1 0 (8.1.2)
I, 1 0 0 J—1TI
Since

Ag=J—T—A— As,

we can find the block decomposition of Ay as well.

We always partition any vector w € R™ according to the distance parti-
tion. In other words, we represent w as

w = , w; € V;.

for all 7, 0 < i < 3. When we say w sums to zero on V;, we mean that the
sum of entries of w; is zero, i.e. 1Tw; = 0.

8.2 Summary of the Decomposition

Since a Terwilliger Algebra is semi-simple, we can decompose R™ as the
direct sum of T-modules. In this section we see what the T-modules in that
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8.2. SUMMARY OF THE DECOMPOSITION

dimension multiplicity parametrized by

eigenvectors of Bs summing to
1 (n —2)(r —3) +m | zero on the cells of both the row
and the column partitions

eigenvectors of Bs which sum to

2 r=2 zero and are constant on
the cells of the column partition
eigenvectors of Bs which sum to
2 m zero and are constant on

the cells of the row partition
eigenvectors of By which sum

3 .
n—2-m to zero and the corresponding
eigenvalues are not py or pr
4 1 the all ones vector

Table 8.1: T-module decomposition of R™

decomposition look like, what their dimensions are, and how many times a
T-module of a certain dimension appears in that decomposition. We also
analyze each T-module and we will see how they are related to each other.
We will leave the proofs of the results in this section for the remaining
sections of this chapter.

In computing the T-module decomposition of R, two numbers turn
out to be special. To refer to them more easily in the future, we give them

names here.
(r—=1)0-1 (r—1)7-1

_r-Hv-- =T 8.2.1
Lo . , 1 . (8.2.1)

Table 8.1 gives a summary of the T-module decomposition of R™™. For
now, assume m is just a parameter. We will see shortly what m explicitly
is.

We refer to each T-module by its dimension. The only problem that
arises is for T-modules of dimension two, since there are two types of them
in Table 8.1. To distinguish them, we call T-modules of dimension two
either row type or column type according to whether they are parametrized
by vectors constant on the cells of the row partition or the column partition.

The following theorem makes clear the connection between row type T-
modules of dimension two and T-modules of dimension three. The first part
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8. TERWILLIGER ALGEBRA OF COVERS OF COMPLETE GRAPHS

of the following theorem is proved in Theorem 8.10.5, and, the second part,
in Corollary 8.7.2.

8.2.1 Theorem. For any non-trivial eigenvalue i of By, we have

o < U< fhr

Moreover, if u is a non-zero vector which sums to zero, and, is defined on the
first neighbourhood, then u is an eigenvector of By with the corresponding
eigenvalue pg or u, if and only if Ru is an eigenvector of Bs.

Note that, by Theorem 8.2.1, each non-trivial eigenvector u of By gives
rise to an irreducible T-module in the decomposition of R™™. If the corre-
sponding eigenvalue is one of py and pr, then u gives rise to a row type
T-module of dimension two; but if the corresponding eigenvalue is anything
else, then u gives rise to a T-module of dimension three. Since Bj is of order
n — 1 we get the multiplicity of T-modules of dimension three as n —2 —m,
as presented in Table 8.1. We also get

0<m<n—2.

In Section 8.10, we will discuss the cases where the above lower bound or
upper bound on m is tight.

The following theorem, proved in Theorem 8.9.3, completely character-
izes the column type T-modules of dimension two. Recall that by Theorem
5.2.1, 6 which was defined in Equation 5.2.1, is the sum of two eigenvalues,
f and 7, of the cover.

8.2.2 Theorem. Let v be a vector defined on the second neighbourhood.
If v sums to zero and is constant on the cells of the column partition, then
v Is an eigenvector of By corresponding to the eigenvalue §.

Note that since the second neighbourhood has r — 1 columns, it auto-
matically follows from Theorem 8.2.2 that the multiplicity of the column
type T-modules of dimension two is r — 2, as presented in Table 8.1.

By Table 8.1, we see that any T-module of dimension one or two is
parametrized by an eigenvector of By. By Theorem 8.2.2 the corresponding
eigenvalue in the case of column type T-modules of dimension two is 4.
We will prove that the corresponding eigenvalues in the case of T-modules
of dimension one are # and 7. The following theorem, proved in Section
8.7, tells us what the corresponding eigenvalues are in the case of row type
T-modules of dimension two.
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8.2.3 Theorem. For any non-trivial eigenvector of By that is constant on
the cells of the row partition, the corresponding eigenvalue must be one the
following:
f+1 1 T+1
r ’ r

1.

8.3 Local Properties

To compute the T-modules of A, we need to know how the matrices in the
block decompositions of A;’s, given in 8.1.1 and 8.1.2, are related to each
other. Since these blocks record the adjacency in subgraphs of X, we call
the relations between them local properties. Some local properties are given
in Lemma 8.3.1, and Theorem 8.3.2. Note that, for i = 1,2, B; is just the
adjacency matrix of the i-th neighbourhood. Also N is the matrix that
records the adjacency between the second and the first neighbourhood.

Our main tool in finding these relations is the following special case of
Equation 3.4.1 that holds for any distance regular graph.

AA; = a;A;+ b, 1A 1 +ci1Aig. (831)

For each i, by considering the corresponding blocks in two sides of 8.3.1, we
get several equalities involving block parts of A. Two of them which are
going to be frequently used in this chapter are stated here as a lemma.

8.3.1 Lemma. We have
RN =J—-1- B,
BaR=J—-N—-R.
Proof. Rewriting Equation 8.3.1 for i = 3 we get
AAs =a3As +bsAy = Ay =J—1—A— As.
By comparing the (2,2)-entry of both sides we get
N'R=J-I-DB;
By comparing the (3,2)-entry of both sides we get
BoR=J—-N—-R.

This completes the proof. 0
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The following corollary is of central importance in finding the relation
between the T-modules of dimension three and row type T-modules of di-
mension two which were introduced in Section 8.2.

8.3.2 Corollary. Let u be a non-zero vector defined on the first neighbour-
hood. Suppose that, u sums to zero. Then the following are equivalent:

(a) {Nu, Ru} is a linearly dependent set;
(b) for some real number u, Byu = pu, and Nu + %Ru = 0; and
(c) Ru is an eigenvector of Bs.

Proof. First to prove that (a) implies (b), note that since u is non-zero and
R has full column rank, then, Ru is non-zero. So {Nu, Ru} is a linearly
dependent set if and only if Nu is a scalar multiple of Ru. Thus for some
scalar o we have

Nu = aRu.
Multiplying both sides by R from the left we get

R'Nu = aR" Ru.
Since columns of R are mutually orthogonal and each sum to r — 1, we get
RTR = (r — 1),

and so
RTNu = a(r — 1)u.

But by Lemma 8.3.1, we have
R'N=J-1-0B.
Applying both sides of the above equality to u we get
RT'Nu = —u — Bju.

Therefore
a(r — )u = —u — Biu,

so u is an eigenvector of Bj. Let
Biu = pu.
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Then we get
a__1+u
=1
Thus 14
Nu = — 'uRu.
r—1

Now we prove that (b) implies (c¢). From Lemma 8.3.1 we have
BsRu = —Nu — Ru.

Since Nu is a scalar multiple of Ru it immediately follows that Ru is an
eigenvector of Bs.

Finally to prove that (c) implies (a), we use Lemma 8.3.1 again to get
BsRu = —Nu — Ru.

Since BaRu is a scalar multiple of Ru it immediately follows that Nu is a
scalar multiple of Ru. O

8.4 Eigenspaces of the Cover

Since each T-module can be written as a direct sum of one-dimensional
spaces generated by eigenvectors of A, it would be useful to get more infor-
mation about the eigenspaces of A. By Theorem 5.2.1, the eigenvalues of A
aren—1, —1, 0 and 7. n—1 is the trivial eigenvalue with its eigenspace gen-
erated by the all ones vector. The following lemma specifies the eigenspace
corresponding to —1.

8.4.1 Lemma. The eigenspace of A corresponding to the eigenvalue —1 is
exactly the space of vectors which sum to zero, and are constant on every
fibre of the cover.

Proof. Let
(251

Uz

Un—1

be a vector defined on the first neighbourhood. Then Ru is defined on
the second neighbourhood. Since R is the characteristic vector of the row
partition, then for each i, Ru has the constant value of u; on the i-th row of
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the second neighbourhood. On the other hand, as we mentioned in Section
8.1, for any 7, 1 €< ¢ < n — 1, the i-th vertex in the first neighbourhood
together with the i-th row of the second neighbourhood form a fibre of the
cover. This implies that, the space of vectors which are constant on every
fibre of the cover is the following set:

a
U . n—1
I caeR,uelR
al

Thus, the space of vectors which sum to zero, and are constant on every
fibre of the cover is the following set:

a
S = R“u caeRueR" L 1Tu+a=0
al

By Theorem 5.2.1, the multiplicity of —1, as an eigenvalue of A, is n — 1.
It is not hard to see that S is a vector space of dimension n — 1 as well.
Therefore, all we need to prove is that, any vector in S is an eigenvector of
A corresponding to the eigenvalue —1. Using Lemma 8.3.1, we get

a 0 1T, 0 0 a
A u _ ]]-n—l Bl NT 0 u
Ru 0 N By C Ru
al | 0 0 cT o al
[ 17y

al + Biu + NTRu
Nu+ ByRu + aC1

| CT Ru
[ 174
B al + Ju —u
B Ju— Ru+al
| Ju
Now since
17 = —a,
we get

Ju=11"y = —al.
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Therefore
17y a
al +Ju —u _ U
Ju—Ru+al |~ | Ru |’
Ju al
and we are done. O

Since A is a real symmetric matrix, the eigenspaces corresponding to dis-
tinct eigenvalues are orthogonal, and the subspace generated by the union of
all eigenspaces is R™ itself. So by Lemma 8.4.1, the union of the eigenspaces
corresponding to the eigenvalues 6 and 7 is the space of all vectors which
sum to zero on every fibre.

8.5 T-Modules of Dimension One

Starting in this section, we compute the T-module decomposition of R™.
Let W be an irreducible T-module. We consider all the possibilities for W
according to its support, or equivalently, for which values of i, 0 < ¢ < 3,
F;W is zero. For different cases, we get T-modules of different dimensions.
For some cases we do not get any T-module at all. This section and the
following two sections cover all the possible cases. In this section we just
consider the cases where the support of W is contained in just one neigh-
bourhood.

It is not hard to check that the algebra generated by the all ones vector
is an irreducible T-module. It is called the trivial module. It has dimension
4, and

o O O
OQ\.)=\O
OI{=\\'OO
idO\'OO

is a basis.

We assume W is not the trivial module and so it lies in the orthogonal
complement to the trivial module. In particular,

oW =0,
which means the first entry of any vector in W is zero.
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We will use the basis {I, A4, J, A3} for the algebra generated by A. It is
a basis since
Ay = J—([+A+A3).

Now we start going through the different cases.

Case 1: If the support of W is contained in the third neighbourhood,
then if z € W, for some w defined on the third neighbourhood we have

0
v 0
| o
w
Since W is a T-module, we get
0
0
Az = Cw eWw.
0
So we must have
Cw = 0.

But since C' is the characteristic matrix of the column partition, it has full
column rank. Hence, we must have

w =0,
and so

xz =0.
Therefore

W =0,

and so there is no irreducible T-module in this case.

Case 2: If the support of W is contained in the first neighbourhood,
then if x € W, for some u defined on the first neighbourhood we have

o o O

84



8.5. T-MODULES OF DIMENSION ONE

Since W is a T-module, we get

0

0
Agr = Ru e W.

0

So we must have

Ru = 0.

But since R is the characteristic matrix of the row partition, it has full
column rank. Hence, we must have

u =0,
and so

x = 0.
Therefore

W =0,

and so there is no irreducible T-module in this case.

Case 3: If the support of W is contained in the second neighbourhood,
then if x € W, for some v defined on the second neighbourhood we have

0
0
€Tr =
v
0
Since W is a T-module, we get
0
NTy
Ax = B e W.
CTy

So we must have

Then we get
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and so for any non-negative integer k, we get

0
0
Bkv
0

Ak = e W.

Since B is symmetric and since the span of the vectors
{B’gv |k =0,1,2, }
is Bs-invariant, the span must contain an eigenvector of Bs.

So we can choose a non-zero vector v, defined on the second neighbour-
hood, such that

e W, Bov = v, NTy =0, cTv =0.

oc O O

Then
Ax = Az,

and so = spans a one-dimensional T-module.

Also note that, since

0
Ry
A = (RRT = I)v €W,
0
we must have
RTy =0.
Now we show that the condition
NTy=0

follows from the conditions
Bov = Av, RTv =o0.

86



8.6. COLUMN TYPE T-MODULES OF DIMENSION TWO

By Lemma 8.3.1, we have
R'By=J—N"—R".
Applying both sides of the above equality to v we get
ARTy = =NTy — RTw,
which, because RTv = 0, implies

NTy =o0.

To sum up, W is a T-module in Case 3 if and only if it is spanned by
a vector whose restriction on the second neighbourhood is an eigenvector of
By which satisfies

Bov = \v, cTv =0, RTv = 0.

8.6 Column Type T-Modules of Dimension Two

In the previous section, we explored all the cases where the support of a
T-module is contained in just one neighbourhood. We start exploring the
cases where the support is contained in the union of two neighbourhoods in
this section. We will consider only one case in this section, which will give
us a T-module of dimension two.

Case 4: Suppose that the support of W is contained in the union of
the second and the third neighbourhood. Then if x € W, for some v and w
defined on the second and third neighbourhood, respectively, we have

0
0
€Tr =
v
w
Since W is a T-module, we get
0 0
T
ARz =a| = | VY lew
v Bov
0 CTv
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So we must have

NTy =0.
On the other hand, we have
0
0
FQAFQ%’ = € W,
BQU
0
and for any non-negative integer k, we get
0
k.. _
(FQAFQ) T = BSU e W.
0

Since Bs is symmetric and since the span of the vectors
Biv |k =
2U| —071,2,...
is Bog-invariant, the span must contain an eigenvector of Bs.

Thus we can choose a non-zero vector v defined on the second neigh-
bourhood such that

0
T = 2 e W, Bov = Ao, Ny =0.
0
Then we have
0
0
Ax = o ,
cTy
and
0
RTy
Ae =1 (rrT 1)y | €W
0
So we must have
RTy = 0,
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which implies
(RRT —I)v = —v,

and therefore we get

Asx = —zx.
Thus

0 0

0 0

v |’ 0

0 Ty

span a T-invariant subspace. This T-module is 2-dimensional since by our
assumption W is non-zero on the second and the third neighbourhood.

This T-module is irreducible, since otherwise it contains a 1-dimensional
T-invariant subspace W' generated by

0
0
av

BCTwy

for some real numbers o and 3. If « is non-zero, then as we showed above
W' must contain

0
0
0

o< OO

cTy

and so W' is equal to W. If « is zero, then the support of W’ is only on the
third neighbourhood, but we have seen already in Case 1 that this is not
possible.

To sum up, W is an irreducible T-module of Case 4 if and only if it is
generated by

0
0
0

o< O O

Ty

where v satisfies

Bov = Av, RTv =0, CcTv #0.
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As we saw at the end of Case 3, the condition
NTv =0,
follows from the above conditions.

Now we prove that in Case 4,
A=,

and
cCTy = (n—1)v.

First note that, since A is symmetric and W is invariant under A, it must
contain an eigenvector for A. Let v be the corresponding eigenvalue. Thus
there exist real numbers a and (3, not simultaneously zero, such that

0 0 0
o |_, o |_ 0
v av N av “ | Xav+pCcCcTy
BCTwy BCTw aCTv

By Theorem 5.2.1,
ve{n—1,—-1,0,1},

and so v is non-zero. If « is zero, then B3CCTv is zero. Also if « is zero,
then 3 is non-zero, and so CCTv is zero, which implies CTv is zero, which
contradicts our hypothesis. Therefore « is non-zero, and so we can assume
« is equal to one. Hence,

(v — Nv = BCCTw,
v3CTy = CTv,

which implies

and
CCTy = y(y = M.

Thus v is an eigenvector of CCT. It is not hard to see that
CCT = Jn—-1 ®Ir717
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where ® denotes the Kronecker product. Thus, the only eigenvalues of CCT
are 0 and n — 1. Since CTv is non-zero, we get

CcCTv = (n—1)w.
Therefore
Yy —A) =n—1 (8.6.1)
On the other hand, since « is an eigenvalue of A, then by Theorem 5.2.1,
ve{-1,n—1,0,7}.

If v is equal to —1 or n — 1, then by Equation 8.6.1, A is equal to n — 2. So
n — 2 must be an eigenvalue of By. But By is an ag-regular graph where

ao=n—1—by—co=n—2—co.

This is a contradiction, since no eigenvalue of By can exceed as. Therefore
~ is either @ or 7. But when + is equal to 6 or 7, Equation 8.6.1 implies

A=0+T17=0.

8.7 T-Modules of Dimension Two and Three

In this section, we continue exploring the cases where the support of W is
on the union of two neighbourhoods. In the previous section, we considered
Case 4, where the support of a T-module is contained in the union of the
second and the third neighbourhood. In this section, we consider the case
where the support of a T-module is contained in the union of the first and
the third neighbourhood (Case 5), and the case where the support of a T-
module is contained in the union of the first and the second neighbourhood
(Case 6). We will show that Case 5 never happens. However, we will find
T-modules of dimension two and three in Case 6. At the end of this section,
we also consider the case where the support of a T-module is not zero on any
neighbourhood (Case 7), and we will prove in this case that no T-module
can be irreducible.

Case 5: Suppose that the support of W is contained in the union of the
first and the third neighbourhood. If x € W, then, for some u defined on
the first neighbourhood and some w defined on the third neighbourhood we
have

€Tr =

0
u
0
w
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Since W is a T-module, we get

0 0
AsFw=As| “ 1= ¥ |ew
sfir =43 o | = | pu .
0 0
Thus we must have
Ru =0,
which, as in Case 2, implies
W =0.

Therefore, there is no irreducible T-module in this case.

Case 6: Now suppose the support of W is on the union of the first and
the second neighbourhood. This is the most complex case. We will work
on it until the end of Theorem 8.7.1. If x € W, then, for some u defined on
the first neighbourhood and some v defined on the second neighbourhood
we have

0
u
€r =
v
| 0
Since W is a T-module, we get
0 17y
B U Biu
AF1:E =A 0 = Nu e W.
0 | 0
Thus we must have
1Tu =0
On the other hand, we have
0
P AFz = BS“ e W,
0
and for any non-negative integer k, we get
0
k
(FlAFl)k.%’ = B(l)u e W.
0
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Since Bj is symmetric and since the span of the vectors
{Bfu 1k=0,1,2, }
is Bp-invariant, it must contain an eigenvector of Bj.

So we can choose a non-zero vector u defined on the first neighbourhood
such that

0
u T
z=1 e W, Biu = pu, 1" u = 0.
0
We must also have
17 0 0
| Biu | Au B 0
Az = Nu | = | Nu e W, Asx = Ry e W.
0 0 0

Also note that

17y =0
implies
Jr=0
Thus
0 0 0
u 0 0
0’ Nu |’| Ru
0 0 0

span a T-invariant subspace of R™". Hence W is the subspace of R spanned
by the above vectors. Since u is non-zero and since R has full column rank,
we have Ru is non-zero, and so the dimension of W is at least two. Now
the dimension of W is either two or three depending on whether {Nu, Ru}
is linearly dependent or linearly independent. By Corollary 8.3.2, there is
a one-to-one correspondence between T-modules of dimension two and the
set of eigenvectors of By in col(R).
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8.7.1 Theorem. Let u be a non-trivial eigenvector of By with corresponding
eigenvalue u. Let W be the irreducible T-module in the decomposition of
R™, which is generated by

0 0 0
U 0 0
0 [’ Nu || Ru
0 0 0

Then W has dimension two if and only if 1 is equal to pg or pir.

Proof. Note that u is equal to pg or p, if and only if

1 1
M(1+r—1)+r—1€{9’T}'

First suppose that W has dimension two. Then by Corollary 8.3.2 we have

1
Nu = — i 'IiLRu. (8.7.1)
r —

We show that

—(r—1u
Ru
0

is an eigenvector of A corresponding to the eigenvalue

LI P
H r—1 r—1°

Then since, by Theorem 5.2.1, the only eigenvalues of A are n — 1, —1, 6,
and 7, we get

1 1
<1+T_1> +T_1 e{n—1,-1,0,7}.
But
—(r—1u
Ru
0
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is not a multiple of the all ones vector; and by Lemma 8.4.1 is not an
eigenvector of A corresponding to the eigenvalue —1 either. So

1 1
<1+r_1>+r_1€{(9,7},

and we are done.

We have
0 0
A —(r—Lu | | =(r—1)Biu+ NTRu
Ru B —(r—1)Nu + BaRu
0 CTRu

By Lemma 8.3.1, we have
NTRu = Ju—u— Byu = —(1 + p)u,

and
BoRu=Ju— Nu— Ru=—Nu— Ru.

So by 8.7.1 we get
1
—(r—1)Nu+ BsRu = —rNu — Ru = u-l—ﬂ Ru.
r—1

Also since W is zero on the third neighbourhood, CT Ru = 0. Therefore

0 0
—(r—1u | _ 1 1 —(r—1u
A Ru - M 1+r—1 +7“—1 Ru ’
0 0

and we are done.

To prove the converse, suppose that

1 1
1 0,7}. R.7.2
u(1+-25)+ e (872
Define )
v=Nu-+ +'uRu.
r—1
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We prove that if v is non-zero, then

o< O O

is an eigenvector of A, and hence it spans a 1-dimensional T-submodule of
W. So we can decompose W as a sum of this 1-dimensional submodule
and other submodule(s). So W must contain an irreducible submodule of
dimension at most two which is not zero on Vi, but is zero on V3. But
in the previous cases, we saw that such a module does not exist except in
Case 6 where we need v to be zero. So v must be zero, and hence W is a
2-dimensional T-module.

Suppose 8.7.2 is satisfied. By Case 3, to prove x spans a 1-dimensional
T-module, we just need to show that v is an eigenvector of By which sums
to zero on the cells of the row partition as well as the cells of the column
partition. First note that

0 0
0 NTNu
A Nu | 7| Bovu |EW
0 CTNu
and so we must have
CTNu =0.

On the other hand, note that the (i, j)-entry of CT R is just the size of the in-
tersection of the i-th column and the j-th row of the second neighbourhood.

So we get
CTR =1,

and so
CTRu=Ju=11Tu=0.

Therefore 14
CTy=CTNu + %CTRu = 0.
r —

So v sums to zero on the cells of the column partition.

On the other hand, we have
1
RTv=R'Nut " ’1‘ R” Ru.
r—
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But by Lemma 8.3.1 we have
R'Nu=(J—1-B))u=—(1+ p)u.

Thus

+'11L(r—1)u=0,

1
RTvz—(l—i-,u)u—i-T_

and so v sums to zero on the cells of the row partition.

Now the only thing remaining to be checked is that v is an eigenvector
of By. To compute Bov we need to compute BoNu and B Ru. By Lemma
8.3.1 we have

BsRu = (J—N — R)ju=—Nu— Ru.

To compute BoNu, we find an expression for Bo N first. Note that by setting
7 to be 1 in 8.3.1 we get

A% = a1 A + bgAg + co Ao (873)
A+ (n—1DI+c(J—1—-A— A3) (8.7.4)
= J0A+ (n - 1)] + ¢y (J —I— Ag) (875)

By comparing the (3,2)-entry of both sides we get
NBy + ByN =0N +coJ —esR.

Therefore,
ByNu = (6 — p)Nu — caRu.

Now we have
1
Bov = ByNu+ LTBQRU
r —

1
= (6 —pu)Nu—coRu — %(Nu—i— Ru)

1 1
= - 7+M+,u—5 Nu — 7—‘_“4-02 Ru.
r—1 r—1

By a straightforward computation, we can see that 8.7.2 is equivalent to

. l+pfl+p
2_1“—1 r—1

—i—u—é—l),
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and so we get

1+ 1+ 1+
By = — ’u—i—,u—d Nu — = J—l—u—é Ru
r—1 r—1\r—1
1
—( +u+,u—6>v.
r—1
Thus v is an eigenvector of By and we are done. O

8.7.2 Corollary. Let u be a non-zero vector which sums to zero, and, is
defined on the first neighbourhood. Then, u is an eigenvector of B; with
the corresponding eigenvalue g or . if and only if Ru is an eigenvector of
Bs.

Proof. Let u be a non-zero vector which sums to zero, and, is defined on the
first neighbourhood. By Corollary 8.3.2, Ru is an eigenvector of By if and
only if u is an eigenvector of By such that {Ru, Nu} is a linearly dependent
set. On the other hand, by Theorem 8.7.1, w is an eigenvector of B; such
that {Ru, Nu} is a linearly dependent set if and only if u is an eigenvector
of By with corresponding eigenvalue pg or pr. O

Proof of Theorem 8.2.3. Let v be a non-trivial eigenvector of By that
is constant on the cells of the row partition. Then, v = Ru for some non-
zero vector u defined on the first neighbourhood. Since v sums to zero, and
RTR = (r —1)I, we get that u sums to zero. By Corollary 8.7.2, Byu = puu,
where p is either pug or pr. On the other hand, by Corollary 8.3.2,

1
Nu = — +'uRu.
r—1

Now by Lemma 8.3.1,

1 1
_&RuzJu—Nu—Ru=+?Ru—Ru=( +?—1>Rw
T — T —

So Ru is an eigenvector of Bs corresponding to eigenvalue

1
ey
r—1
But ) 9.1
tpe 0+ _1
r—1 T
and,
1—1—,117_1:7—}—1_1'
r—1 T
This completes the proof. O
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Case 7: Now suppose that the support of W is non-zero on every neigh-
bourhood. Then there exists a non-zero vector u € RVl such that

0
geW.
0

Then following the same arguments in the beginning of Case 6, we see that W
must contain a submodule of Case 6. So W cannot be irreducible. Therefore
no irreducible T-module exists in this case.

8.8 Thinness
Let W be a T-module. We say W is thin if for each i, we have
dim(F;W) < 1.

For each i, let E; be the projection onto the i-th eigenspace of G. We say
that W is dual thin if

dim(E;W) < 1.
In this section, we investigate the thinness and dual thinness of all the T-

modules of R™, that we found in the previous three sections.

8.8.1 Theorem. In the decomposition of R™ into irreducible T-modules,
the T-modules of dimension three are dual thin, but not thin. All the other
T-modules are both thin and dual thin.

Proof. First we investigate the thinness of the T-modules. If W is any T-
module other than the T-module of dimension three, then clearly for any ¢,
1 <1 < 3, we have

dim (F;W) < 1,

and so W is thin. If W is a T-module of dimension three, then by Corollary
8.3.2 we have Nu and Ru are not multiples of each other, and so we get

dim(FW) = 2.

Thus no T-module of dimension three is thin.

Now we prove that all the irreducible T-modules in the decomposition
of R™ are dual thin. We already know that the trivial module is dual thin.
Also any T-module of dimension one is clearly dual thin. Let W be any
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T-module of dimension two. Suppose that W is not dual thin. Then, since
W is the direct sum of EgW, E1W, EsW, and E3W, we must have for some
i,

dim (E;W) = 2,
and for any j not equal to i,
dim (E;W) = 0.
Thus
W =EW.

Therefore W is a subspace of some eigenspace of A. On the other hand, as we
saw in the sections corresponding to row type and column type T-modules
of dimension two, in both cases we can choose a non-zero w € W with its
support only a subset of V5. Then w spans a 1-dimensional submodule of
W which contradicts the irreducibility of W.

Now let W be a T-module of dimension three. Then as we saw in Section
8.7, W is generated by

0 0 0
U 0 0
0 [’ Nu |'| Ru
0 0 0

On the other hand,
A= (n — 1)E0 + (—1)E1 +0FEy + 7E;3.

By Lemma 8.4.1, the eigenspace of A corresponding to the eigenvalue —1 is
the set of vectors which sum to zero and are constant on every fibre of the
cover. So here E1W is the subspace generated by

0
U
Ru
0

Thus
dim (E4W) = 1.

Also since each vector in W is orthogonal to the all ones vector, we have

dim (E;W) = 0.
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So if W is not dual thin, we must have one of EsW and E3W is zero, and
the other one is 2-dimensional. Suppose that

dim (EQW) = 2, E3W = 0.
The case where dim(E3W) = 2 and E2W = 0 is similar. Define

14+ u
r—1

v=Nu-+ Ru.

Define = € R"™ to be v on V5 and zero everywhere else. We prove that z
is orthogonal to the eigenspace of A corresponding to the eigenvalue —1,
which we found in Lemma 8.4.1. A typical vector, y, in the eigensapce of A
corresponding to —1 must have the following form, for some u’ which sums
to zero, and, is defined on the first neighbourhood:

0
ul
Ru/
0
Then we get
1+
ylae = uW'TRT Nu + %u'TRTRu.
r —

But by Lemma 8.3.1 we have
R'Nu=(J—1-B))u=—(1+ p)u.

Also since the columns of R are the characteristic vectors of the row partition
and since each row has size r — 1 we get

RTR=(r—1)I.

Therefore we get

r —

1
ylo = u'’ (RTNU + —HfRTRu> = 0.

Thus x is orthogonal to the eigensapce of A corresponding to the eigenvalue
—1, or equivalently,
Elx =0.

So E;x is zero for any ¢ other than two, which implies that x is an eigenvec-
tor of A corresponding to the eigenvalue . Thus x spans a 1-dimensional
submodule of W which contradicts the irreducibility of W. O
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8.9 Multiplicities

In the previous sections of this chapter, we found all the T-modules that
appear in the decomposition of R™ into irreducible T-modules. In this
section, we find the number of times that a T-module of a certain type
appears in that decomposition, which we call the multiplicity of that T-
module.

Before finding the multiplicities, we go through the decomposition of
each T-module into 1-dimensional subspaces spanned by eigenvectors of A.
In each decomposition, we cannot have two eigenvectors belonging to the
same eigenspace of A, since each T-module is dual thin. Furthermore, the
1-dimensional eigenspace of A spanned by the all ones vector which corre-
sponds to the largest eigenvalue of A is contained in the trivial module. For
eigenvalue A\ of A, let W) denote the eigenspace of A corresponding to A.

The trivial module. Since it has dimension four, it must have one
eigenvector in each eigenspace of A.

Modules of dimension three. They contain one eigenvector in W_,
one in Wy and one in W.

Row type modules of dimension two. A T-module corresponding
to the eigenvector u of the first neighbourhood can be written as the direct
sum of 1-dimensional subspaces spanned by

0 0
wio— | U Wy — —(r—1u
! Ru |’ 2 Ru ’
0 0

where wy € W_1, and

1 1
AUJQZ 1% 1+ + w2,
r—1 r—1

where
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Column type modules of dimension two. They can be written as
the direct sum of 1-dimensional subspaces spanned by

0 0
w1 = 2 ) wa = 2 )
%CTW %CTU

where wy € Wy, and wy € W,

Modules of dimension one. They are 1-dimensional subspaces spanned
by eigenvectors of A corresponding to the eigenvalue 6 or 7.

Now we find the multiplicity of each T-module. The following is a stan-
dard lemma (see Godsil and Royle [11, p. 197]) that we are going to use
here.

8.9.1 Lemma. Let G be a graph with adjacency matrix A. Let P be a
characteristic matrix of a partition m of V(X). Then w is equitable if and
only if A and PPT commute.

8.9.2 Lemma. By and CCT commute.

Proof. First, we see a combinatorial proof, and then an algebraic one.
Combinatorial proof. By Lemma 8.9.1 we just need to show that
the column partition is equitable. Let ¢ and j be two columns of V5. First
assume that ¢ and j are not equal. Note that by our arrangement of vertices
in Section 8.1, the i-th and j-th columns of V5 are just the neighbourhoods
of the i-th and j-th vertices of V3. Since any vertex in the i-th column of
V5 is not in the same fibre as the j-th vertex of V3, their distance is two. So
any vertex in the i-th columns of V5 has ¢o neighbours in the j-th column

of V5.

Now assume that ¢ and j are equal. Then the subgraph induced on the
i-th column of V5 must be a;-regular, since the i-th column of V5 is just the
neighbourhood of the i-th vertex of V3.

Algebraic proof. As we saw in 8.7.5, we have
A2 =0A+(n—D)I+cy(J—1— A3).
Comparing the (4, 3) block of both sides, we get

CTBy = 6CT + co.
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Multiplying both sides by C' from the left we get
CCTBy = 6CCT + co.

Taking the transpose of both sides we get
B,CCT = 5CCT + ey

Thus By and CCT commute. O

For i equal to 1, 3 and 4, let m; denote the multiplicity of T-modules of
dimension ¢ in the decomposition of R™ into irreducible T-modules. Also
let mg, m), denote the multiplicities of column type T-modules of dimension
two and row type T-modules of dimension two. Then since a T-module of
dimension four is just the trivial module, we have

my = 1.
Now we prove that mg = r — 2.

8.9.3 Theorem. Any vector in col(C) n ker(17) is an eigenvector of B
corresponding to the eigenvalue 6. Therefore mo = r — 2.

Proof. By Lemma 8.9.2, we can partition the eigenvectors of By as the
ones in ker(CT) and the ones in col(C). Note that the all ones vector is an
eigenvector of By which lies in col(C). Thus there is a basis of size r — 2
for col(C') n ker(17) consisting of eigenvectors of By. Now as shown in
Section 8.6 when we studied column type T-modules of dimension two, any
eigenvector of By in col(C) n ker(17) must correspond to the eigenvalue §
of By. Therefore any vector in col(C) N ker(17) must be an eigenvector of
B» corresponding to the eigenvalue 9. m

As we saw in Section 8.7, any non-trivial eigenvector of B gives rise to

a row type T-module of dimension two or a T-module of dimension three.
So we must have

ms +mbh =n — 2. (8.9.1)

Also since the dimensions have to match, we get
dmy + 3ms + 2mg + 2m'2 +mq1 =rn,

and so
4+3m3+2(7°—2)+2(n—2—m3)+m1=7~n

104



8.10. APPLICATIONS

my | (n—=2)(r—3)+m
mo r—2

mb m

ms3 n—2—m
my 1

Table 8.2: multiplicity of T-modules

Thus
ms +mq = (r—2)(n—2). (8.9.2)

By Theorem 8.7.1, an eigenvector of B; gives rise to a row type T-module of
dimension two if and only if the corresponding eigenvalue is equal to ug or
pr. So mf is just the sum of the multiplicities of pg and u, as eigenvalues
of B1, which we denoted by m in Section 8.2. Now by Equations 8.9.1, and
8.9.2, we get the multiplicities of each T-module as below, which were also
presented in Table 8.1 where we gave a summary of the decomposition in
Section 8.2.

8.10 Applications

In the previous section we saw that, m, the sum of the multiplicities of ug
and pu, as eigenvalues of B determines the multiplicities in the T-algebra
decomposition. We always have

0<m<n—2.

In this section, we see that both the lower bound and upper bound are
achieved. We also investigate what happens when the bounds are tight. In
particular, in Corollary 8.10.2, we will see that, m = n — 2 if and only if
r=2.

8.10.1 Lemma. We have m = n — 2 or equivalently ms = 0 if and only if
By and RRT commute.

Proof. First suppose that By and RRT commute. Since both matrices are
symmetric, we can simultaneously diagonalize them. In particular, we can
partition the eigenvectors of By as the ones in ker(RR”) and the ones in
col(RRT), or equivalently, we can partition the eigenvectors of By as the
ones in ker(RT) and the ones in col(R). So we must be able to find an
orthonormal basis for col(R) consisting of eigenvectors of Bs. One of the
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elements in the basis is the all ones vector which corresponds to the trivial
eigenvalue of Bs. Since col(R) has dimension n — 1, we must have a basis of
size n — 2 for col(R) n ker(17") which consists of eigenvectors of By. But by
Corollary 8.3.2, any element of that basis gives rise to a row type T-module
of dimension two. Therefore m = n — 2.

For the converse, suppose that m = n—2. We prove that we can partition
the eigenvectors of B as the ones in ker(R”) and the ones in col(R). This
would be enough to conclude that we can simultaneously diagonalize By and
RRT. This is true since for any v € R* ! we have

RRTRu = R((n — 1)Iu = (n — 1) Ru,

and so any vector in col(R) is an eigenvector for RR? corresponding to the
eigenvalue n — 1.

Since m = n — 2, by Corollary 8.3.2, we can find a basis of size n — 2 for
col(R) n ker(17) which consists of eigenvectors of Bs. Adding the all ones
vector to that set, we can find a basis of size n — 1 for col(R) consisting of
eigenvectors of Bs.

Now to show that we can find a basis for ker(R”) consisting of eigenvec-
tors of By, we will prove that we can find a basis for each of

ker(RT) A ker(CT), ker(RT) n col(C),

consisting of eigenvectors of Bs. First note that by Theorem 8.9.3, we can
always find a basis for ker(R”?) n col(C) consisting of eigenvectors of By. On
the other hand,
m=mn—2
implies
my = (r—2)(n—2).

But as we saw in Section 8.5, each T-module of dimension one arises from
an eigenvector of By in ker(RT) n ker(CT). So we can find (r — 2)(n — 2)

linearly independent eigenvectors for By which all lie in ker(RT) n ker(CT).
Since ker(RT) n ker(CT) has dimension (r — 2)(n — 2) we are done. O

8.10.2 Corollary. We have m = n — 2 if and only if r = 2.

Proof. By Lemma 8.10.1, m = n — 2 if and only if By and RRT commute.
But by Lemma 8.9.1, By and RRT commute if and only if the row partition
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of the second neighbourhood is an equitable partition for the graph induced
on it. On the other hand, note that there is a perfect matching between row
1 and row j of the second neighbourhood if and only if vertex ¢ and vertex
j of the first neighbourhood are adjacent. Also if there is no edge between
vertex ¢ and vertex j of the first neighbourhood, then there is a matching
between row i and row j which is just one edge short of being a perfect
matching. Since each row has size r—1, for any r > 3, the row partition is an
equitable partition if and only if any two vertices in the first neighbourhood
are adjacent. But then G is disconnected, which is a contradiction. If r = 2,
then the row partition is trivially an equitable partition. O

8.10.3 Theorem. When r = 2, the first neighbourhood and the second
neighbourhood are isomorphic strongly regular graphs with eigenvalues pg,
ur and the valency, ay.

Proof. If r = 2, then R is just the identity matrix, and therefore by Lemma
8.3.1 we get

By = Bj.

As we saw in Section 8.7, any non-trivial eigenvector of By gives rise to a
T-module of dimension three or a row type T-module of dimension two. But
by Corollary 8.10.2, we get m = n — 2, and so any non-trivial eigenvector of
B gives rise to a row type T-module of dimension two. But as we saw in
Section 8.7, this means that any non-trivial eigenvalue of Bj is equal to uyg
or pr. This completes the proof. 0

In
0<m<n—2,

we completely characterized the case where the upper bound is tight. Now,
we try to investigate the case where the lower bound is tight. In Theorem
8.10.7, we prove that, m = 0 for triangle-free covers.

8.10.4 Lemma. If m and § are both non-zero, then either

r|0+1,

or
r|T+1,
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8. TERWILLIGER ALGEBRA OF COVERS OF COMPLETE GRAPHS

Proof. First note that m is equal to the sum of the multiplicities of uy and
ur as eigenvalues of By. If m is non-zero, then either g or p; must be an
eigenvalue of By. Also by Theorem 5.3.1, if § is non-zero, then 6 and 7 are

integers. Since

0+1 _7'+1

po=0-"——, =7 :
r r

the result follows. a

It is not hard to see that if g and p, are both eigenvalues of By, then

r | n, r| ca.

8.10.5 Theorem. Fach non-trivial eigenvalue mu of By satisfies
Hr S P S g
Proof. We have
(N +aR)T(N +aR) = N'N + aR'N + aNTR + (r — 1)a*I.
Simplifying this we get

(N +aR)T(N +aR) = (r—1)a®I +2a(J —I— By)
+(=B? + 0By + (ca — 1)J + (n— 1 — ex)I).

Since the left hand side is positive semi-definite for any value of «, all its
eigenvalues must be non-negative. If p is a non-trivial eigenvalue of Bj,
then the following is an eigenvalue of the right hand side, and hence must
be non-negative for any a:

(r—1)a* +2a(—=1—p) + (—p* +Sp+n—1—c2).

Thus the discriminant of the above quadratic equation must be non-positive.
But by computing the discriminant, we see that it turns out to be

(1 — po)(p — pir).

Hence
Hr < [0S o,

and we are done. O
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8.10. APPLICATIONS

Feasibility Condition 10 for antipodal covers that we stated in Theorem
5.3.1 is due to Godsil and Hensel [10]; but it also follows from the following
theorem.

8.10.6 Theorem. Let G be an antipodal distance regular graph of diameter
three with parameters n,r,co and eigenvalues n — 1, —1,60, 7 with multiplic-
ities 1,n — 1, mg, m.. If n > mg —r + 3, then . is an eigenvalue of the first
neighbourhood, and hence r divides T + 1 if T is an integer. Analogously,
if n > m, —r + 3, then ug is an eigenvalue of the first neighbourhood, and
hence r divides § + 1 if  is an integer.

Proof. Let W) denote the eigenspace of G corresponding to eigenvalue A.
As we saw in Section 8.9, each row type T-module of dimension two contains
one eigenvector in W_1 and one in Wy or W, depending on whether it comes
from an eigenvector of the first neighbourhood corresponding to g or p.
Suppose that p, is not an eigenvalue of the first neighbourhood. Then each
row type T-module of dimension two contains one eigenvector in W_; and
one in Wjy.

Also from Section 8.9, we saw that column type T-modules of dimension
two, T-modules of dimension three, as well as the trivial module each contain
exactly one eigenvector in Wy. Therefore,

mg=mh+met+mz+myg=m+(r—2)+(n—2-m)+1l=n+r-—3.
Similarly, if pg is not an eigenvalue of the first neighbourhood, then
mr;=2n+r—3.
This completes the proof. 0
We end this chapter by the following theorem on triangle-free covers.

8.10.7 Theorem. Let T be a Terwilliger Algebra of a triangle-free antipodal
cover of diameter three with parameters n,r,cs, where r is at least three.
Then, no row type T-module of dimension two appears in the decomposition
of R™ into irreducible T-modules.

Proof. As we saw in Section 8.7, the multiplicity of a row type T-module
of dimension two is equal to the sum of the multiplicities of ug and g,
as eigenvalues of By. So we just need to show that pg and p, cannot be
eigenvalues of B;. Suppose on the contrary that one of them is an eigenvalue
of By. But since the cover is triangle free, we have

By =0.
So one of g and p, must be zero, which implies either 6 or 7 is equal to
ﬁ. Thus ﬁ must be an integer, which implies that r is equal to two. O
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Chapter 9

Future Work

The possible directions for future work are presented in this chapter.

1. In Theorem 7.1.1, we found a new feasibility condition for Abelian

covers which are antipodal distance regular of diameter three. One
could ask if this bound holds for non-Abelian covers as well. 1 could
not find any counterexample.

. By Theorem 7.3.2, Abelian covers with certain parameters give a set
of equiangular lines of maximum size. We can investigate if we can
construct Abelian covers with these parameters.

. Another area of research would be to see whether any existing set
of equiangular lines of maximum size comes from an Abelian cover.
A Seidel matrix for a set of equiangular lines which comes from an
abeian cover is more specific than a Seidel matrix for a general set of
equiangular lines. To be more explicit, a Seidel matrix for a set of
equiangular lines which comes from an Abelian cover with parameters
n,r,co have r-th roots of unity as its off-diagonal entries, while the
off-diagonal entries of a Seidel matrix only need to be of norm one.
By Table 7.1, the smallest case where we get a set of equiangular lines
of maximum size is when (n,r,cz) = (1225, 5,205), where we get 352
equiangular lines in a 35-dimensional complex space. Recently, Grassl
[13] found a set of 352 equiangular lines in dimension 35. It would be
interesting to see whether Grassl’s lines come from an Abelian cover
with parameters 1225, 5, 205.

. In Theorem 8.10.5, we found a lower bound and an upper bound on
the non-trivial eigenvalues of the first neighbourhood of antipodal dis-
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9. FUTURE WORK

tance regular graphs of diameter three. What other information on
the neighbourhoods does follow from a Terwilliger algebra?

. In Theorem 8.10.6, we proved one of the known feasibility conditions
for antipodal distance regular covers of diameter three, using a Ter-
williger algebra. Is it possible to derive new feasibility conditions for
antipodal distance regular covers of diameter three, using a Terwilliger
algebra?

. Another possible area for future research is to work out a Terwilliger
algebra of other interesting graphs, such as covers of complete bipartite
graphs, or incidence graphs of symmetric designs.
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Association Scheme, 15, 22
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distance partition, 17
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distance regular graphs, 15
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Symmetric Informationally Complete
Positive Operator Valued Mea-
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