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Abstract 

 Steroid sulfatase (STS) is considered to be one of the key enzymes contributing to 

the development of breast cancer.  It catalyzes the hydrolysis of inactive sulfated steroids such as 

estrone sulfate (ES) to inorganic sulfate active steroids such as estrone (E1), a precursor to 

estradiol (E2), a key stimulator for breast cancer development.  Inhibitors of STS are currently 

being pursued in both academia and industry as potential drugs for treating breast cancer.   

 A series of 4-substituted estrone and estradiol derivatives were examined as inhibitors of 

STS. Inhibition of STS with 4-FE1, an irreversible inhibitor of STS previously studied in the 

Taylor group, can be enhanced by introducing a hydrophobic benzyl group at the 17-positon of 

4-FE1.  As with 4-FE1, the inhibition was concentration and time-dependent.  Only 14% of the 

activity could be recovered after extensive dialysis.  Introducing substituents at the 2-position of 

4-formyl estrogen derivatives resulted in loss of concentration and time-dependent inhibition and 

a considerable decrease in inhibitor affinity.  Studies with estrogen derivatives substituted at the 

4-position with groups other than a formyl revealed that a relatively good reversible inhibitor can 

be obtained simply by introducing an electron withdrawing group at this position.  These types of 

inhibitors are non-competitive inhibitors suggesting an alternative steroid binding site.  

 A series of estrone derivatives were examined as photoaffinity labels of STS.  4-

azidoestrone suflate and 4-azidoestrone phosphate exhibited properties that are suitable for 

photoaffinity labeling studies with STS.  These labels may be useful for ascertaining pathways of 

substrate entry into the STS active site.  16-diazoestrone phosphate was not a photoaffinity label 

of STS.  2- and 4-azido estrone and 16-diazoestrone all acted as photoaffinity labels of STS.  

These compounds may be useful for ascertaining pathways of product release from the STS 

active site. 
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Chapter 1 – Steroid Sulfatase: Function, Structure, Inhibitors, and 

Substrate Inhibition 

 
1.1 Introduction 

1.1.1 Estrogen Dependent Breast cancer 

 Despite recent advances in medical breakthroughs, breast cancer still remains one of the 

most prevalent forms of cancer in women, claiming over forty thousand lives a year in the 

United States alone (Briest and Stearn, 2009).  Approximately 30-50% of breast cancers depend 

on the bioavailability of active estrogens, in particular estradiol (E2) for development.  In normal 

cells, E2 is a key regulator in processes involving bone formation, fat metabolism, heart health, 

menstrual cycle, and breast growth.  However, E2 when not under physiological check, can over 

stimulate enzymes and proteins involved in nucleic acid synthesis, as well as activating 

oncogenes leading to cancer development (Clemons and Goss, 2001).    

 It has been well established that blocking E2 from interacting with its receptor results in 

the inhibition of cancer cell growth (Pasqualini et al., 1992).  For decades, this finding has been 

exploited by the drugs such as tamoxifen, an antagonist of the estrogen receptor (ER), to treat 

estrogen dependent breast cancers.  While tamoxifen and its derivatives remains the gold 

standard for the endocrine treatment of breast cancers, their efficacy and safety varies greatly 

between individuals (Briest and Stearn, 2009).  Consequently, alternative treatment options have 

been explored in the past decade.  This led to an increase interest in the key enzymes responsible 

for estrogen biosynthesis as potential therapeutic targets for breast cancer (Pasqualini et al., 

1992). 
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1.1.2 Estrogen Biosynthesis  

 The inhibition of estrogen biosynthesis to block the cancerization effect of estrogen 

provides a rational alternative to tamoxifen.  E2 binds the estrogen receptor, forming a complex 

which enters the nucleus and regulates gene transcription.  Consequently, enzymes synthesizing 

E2 precursors are prime candidates for inhibition.  These enzymes include aromatase, 17-β 

hydroxysteroid dehydrogenases, estrone sulfotransferase, and steroid sulfatase (Figure 1.1) 

(Pasqualini et al., 1992). 

O
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Figure 1.1  Biosynthesis of estradiol from dehydroepiandrosterone (Clemons and Goss, 2001; 
Pasqualini et al., 1992; Suzuki et al., 2009). 
 
 

1.1.3 Aromatase 

 Aromatase is responsible for the aromatization of the androgens androestenedione (AE) 

and testosterone (T) into E1 and E2 respectively, a key step in estrogen biosynthesis (Clemons 

and Goss, 2001).  Without aromatase, virtually no estrogen can be biosynthesized.  In post 
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menopausal women, aromatase becomes the primary source for serum estrogen.  It has been 

reported that the levels of aromatase mRNA levels in tumour tissues increase with progressing 

clinical stages of breast cancer (Suzuki et al., 2009).  While this does not necessarily translate 

directly into increased aromatase activity, it does provide evidence for the importance of 

aromatase in the development of breast cancers.  It is not surprising that this enzyme has 

unprecedented popularity as a therapeutic target. 

 Aromatase inhibitors (AIs) such as anastrozole and letrozole are effective inhibitors for 

estrogen dependent breast cancers.  In fact, some studies report higher efficacy with AI treatment 

than with tamoxifen (Gnant et al., 2009).  Unfortunately, despite the effectiveness of AI 

treatment, some women still experience cancer progression and reoccurrence when under 

treatment with AI and tamoxifen (Foster et al., 2008). So while aromatase is a very good target 

for breast cancer, it is clear that other therapeutic targets also need to be explored.  

1.1.4 17β-Hydroxysteroid Dehydrogenase 

17β-Hydroxysteroid dehydrogenases (17β-HSDs) catalyze the reduction of the 17-

ketone moiety on several steroids to their corresponding alcohol derivative utilizing NADH or 

NADPH as cofactors.  17β-HSDs is known to exists as several isoforms, but only 17β-HSD1 and 

17β-HSD2 are known to catalyze the final step of estrogen synthesis, the interconversion of E1 

and E2.   Both isoforms favour the forward conversion from E1 to E2 by 240 fold more than the 

backward conversion from E2 to E1.   Since 17β-HSDs are key regulators of E2 concentrations 

in gonadal and peripheral tissues, they are an attractive target for breast cancer therapeutics.  

However, the similarities between the various isoforms of 17β-HSDs present an obvious problem 

in designing specific inhibitors targeting only 17β-HSD1 and 17β-HSD2 (Jin et al., 1999). 
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1.1.5 Estrone sulfotransferase 

Estrone sulfotransferase (EST) is responsible for sulfating E1 into estrone sulfate (ES).  

It is widely accepted that sulfated steroids are biologically inactive, and serve mainly as a 

reservoir for their activated counterparts. ES is accepted as the most important source of E1, and 

consequently E2. Stimulating the activity of EST would hence decrease the serum concentrations 

of E1 and E2, both of which are crucial for cancer development (Clemons and Goss, 2001; 

Suzuki et al., 2003). There has been considerable evidence showing that levels of EST mRNA 

and ES are elevated in progressing clinical stages of cancer, suggesting that EST plays a key role 

in regulating the progression of breast cancers (Suzuki et al., 2003; Suzuki et al., 2009). 

However, EST lacks popularity amongst other enzyme targets, partly due to the fact that 

designing drugs to stimulate the activity of EST would be incredibly difficult.  

1.1.6 Steroid Sulfatase 

Steroid sulfatase (STS), one of fifteen known human sulfatases, catalyzes the 

desulfation reaction of sulfated steroids, such as DHEAS into DHEA, and more importantly ES 

into E1 (Hanon et al., 2004). ES has several fold better solubility and half life than its non-

sulfated counterpart.  This allows ES to act as steroid storage pool, with concentrations of ES 

reaching up to ten times E1 in tissues (Hankinson et al., 1995; Utsumi et al., 2000). Due partly to 

this rich substrate pool, STS can produce up to ten times more E1 than aromatase in both normal 

and cancerous tissues (Foster et al., 2008).  In fact, studies suggests that the estrogen formed in 

breast tumours is the result of STS activity and not aromatase (Santner et al., 1984; Masamura et 

al.,1996). Much like other key estrogen biosynthesis enzymes, STS mRNA also increases with 

progressing clinical stages of cancers.  For the most part, higher STS mRNA expression results 

in poorer prognosis and recovery, suggesting STS’ pivotal role in breast tumours (Suzuki et al., 
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2009). These convincing lines of evidence suggest that STS could be an excellent therapeutic 

breast cancer target.  

1.2 Steroid sulfatase 

1.2.1 STS Expression and Location 

 Human steroid sulfatase (E.C.3.1.6.2) is found ubiquitously in virtually all mammalian 

tissues, but localized primarily in skin, fallopian tubes, testis, ovary, adrenal glands, brain, fetal 

lung, endometrium, aorta, kidney, bone, placenta, and breasts (Miki et al., 2002; Foster et al., 

2008).  STS is expressed as a 63-73kDA monomeric protein consisting of 583 amino acid 

residues.   The variation in molecular weight is due to the variation in glycosylation states at four 

possible N-glycosylation sites on the enzyme (Stein et al., 1989).  Mutation studies at two of the 

glycosylation sites, Asn47 (N47Q) and Asn259 (N259Q), resulted in a significantly decline in 

STS activity (Stengel et al., 2008), suggesting the glycosylation states have a critical impact on 

the overall tertiary structure of STS.   

Unlike the other two aryl sulfatases, STS is an integral membrane protein found in the 

rough endoplasmic reticulum, but can also be found in trace amounts in the Golgi, cell surfaces, 

multivesicular endosomes and lysosomes (Stein et al., 1989).  Its property as a membrane bound 

enzyme made it initially difficult to obtain a crystal structure, as well as to work with.  

Fortunately, in 2003 Ghosh et al. were able to resolve the crystal structure of STS at a 2.60 Å 

resolution (Figure 1.2) (Hernadez-Guzman et al., 2003).  
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1.2.2 Crystal Structure of STS 

 

Figure 1.2. STS crystal structure revealing the tertiary mushroom-shape structure (Hernadez-
Guzman et al., 2003) 

 

STS assumes an overall tertiary shape resembling the shape of a mushroom, consisting 

of a polar globular domain and a hydrophobic stem domain.  It is suggested that the enzyme 

anchors into the endoplasmic reticulum (ERit) membrane via the stem or transmembrane 

domain, consisting of two antiparallel hydrophobic α-helices (helices 8 and 9). In addition to 

these two helices, there are two other hydrophobic regions on the globular polar domain that is 

thought to also interact or bind to the ERit membrane (Hernandez-Guzman et al., 2003). The 

polar domain contains several disulfide bonds that would be reduced in the cytoplasmic 

environment; so it has been suggested that it faces the lumen of the ERit.  The four possible 

glysosylation sites on STS are also present on the polar domain (Hernadez-Guzman et al., 2003).   
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The active site lies in a cavity situated at the base of the polar domain, just at the top of 

the two hydrophobic α-helices.  Not surprisingly, the structure of the polar functional domain is 

similar to the other two soluble human aryl sulfatases, arylsulfatase A (ARSA) and arylsulfatase 

B(ARSB).  The location of the active site, which is inside a cavity within STS, has raised several 

speculations on how the substrate may enter or leave the active site (Hernadez-Guzman et al., 

2003).  

1.2.3 Substrate Movement 

 

The two antiparallel hydrophobic α-helices, consisting of 25-30 amino acid residues, 

forms a tunnel 40 Å long that could potentially allow the sulfated substrate to pass from the 

cytosol directly into the active site (Figure 1.3).  The tunnel is comprised mainly of aromatic and 

hydrophobic residues, which could aid the movement of the hydrophobic steroid backbone into 

the active site.  Alternatively, the tunnel could also serve as an exit for the product (Hernadez-

Guzman et al., 2003).   

 

Figure 1.3.  Structure depicting the electrostatic potential of STS and its association with the 
RER.  The black arrows indicate regions of STS-membrane interactions.  The red arrow shows a 
potential tunnel pathway that could allows substrate to enter or product to leave the active site 

(Hernadez-Guzman et al., 2003) 
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Figure 1.4.  Structure of STS showing the three flexible loops in red which may allow substrates 
to enter and leave the active site (Hernadez-Guzman et al., 2003) 
 

An alternative mode of entry to the active site is for the substrate to enter from the 

lumen side via three flexible loops surrounding the active site (Figure 1.4).  In order for this to 

occur, the sulfated substrate first be transported through the ERit membrane via a specific 

transporter into the lumen of the ERit.  The three flexible loops are situated at the top of the two 

α-helices.  The first loop, also known as the “front swing door” is formed by residues Thr470 to 

Thr495 and is located directly in front of the active site.  The second loop, called the “right swing 

door”, is formed from Glu348 to Gly358, and is located just to the right of the first loop.  The 

second loop is proposed to have possible interactions with the ERit.  The third loop or the “left 

swing door” is located to the left of the first loop, and consists of res94-100.  Amongst the 

residues constituting to the third loop, of particular importance is Arg98 and Thr99 which may 

have possible interaction with the 17-hydroxyl or ketone group on the steroid (Hernadez-

Guzman et al., 2003).  The second loop, from Glu348 to Gly358, forms the right swing door, and 

may have association with the endoplasmic reticulum surface.  The third loop is found between 
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residues Ala94 and Gly100, which includes Arg98 and Thr99, forms the left swing door to the 

active site.  Arg98 and Thr99 have been thought to interact with the 17-hydroxyl or ketone group 

of the steroid.  The same mode of entry of the substrate could also serve as the mode of exit for 

the hydrolyzed product.  In this case, the hydrolyzed hydrophobic product could be released into 

the lumen or into the membrane of the ERit through one of the swings doors (Hernadez-Guzman 

et al., 2003).    

 While the most energetically favourable route for substrate entry would likely be via 

the tunnel, and product release exit via one of the flexible loops, there is no evidence to suggest 

this is the case.  These uncertainties shrouding the transport mechanisms within STS could 

present difficulties when designing inhibitors for the enzyme.   

1.2.4 Post-Translational Modification of Aryl Sulfatases 

All aryl sulfatases, including STS, become active only after undergoing an essential 

post-translational modification (Figure 1.5).  In eukaryotes, a conserved cysteine residue is 

converted into a formylglycine by the formyl glycine modifying enzyme.  A similar reaction 

occurs within prokaryotes with the exception that either a conserved serine or cysteine is 

converted (Schmidt et al, 1995).  The formyl group resulting from this reaction becomes 

hydrated and forms an α-formyl glycine (FGly) hydrate, the active catalytic residue of STS.  The 

inability to undergo this post translational modification results in multiple sulfatase deficiency 

(MSD), a lysosmal storage disorder, which is characterized by a significant decrease in activity 

of all sulfatases (Schmidt et al., 1995). 

 



 

Figure 1.5.  The post-translational modification found in all aryl sulfatases (
1995). 
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translational modification found in all aryl sulfatases (

Proposed mechanism for Aryl Sulfatases 

The functional domain of STS shows considerable similarity to ARSA and ARSB.  

Nine out of the ten residues that are believed to be important for catalysis in ARSA are found in 

the active site of STS and ARSB (Bond et al., 1997; Lukatela et al., 1998). Hence, it has been 

suggested that the catalytic mechanism for STS, and likely all other ARS, are similar to that 

Von Figura and coworkers proposed a general mechanism ARS’s based on the crystal 

structure of ARSA and kinetic studies involving ARSA and other common ARS’s.  The 

important steps are highlighted in Scheme 1.  The first step of the mechanism involves the 

activation of one of the oxygens on the formylglycine hydrate by an aspartate residue acting as a 

erforms a nucleophilic attack on the sulphur atom of the substrate, 

which consequently releases the desulfated product as well as forming a sulfated hydrate 

intermediate.  A histidine residue acting as a general acid aids the displacement of the desulfated

product.  The sulfated hydrate then undergoes a general-base catalyzed elimination reaction to 

release inorganic sulfate and forming formylglycine, which is then rehydrated 

initial formylglycine hydrate.  A Mg++ in ARSA, or a Ca++ in ARSB and STS, in addition to a 

positively charged lysine aid in stabilization of the substrate during catalysis (Boltes et al., 2001)

 
translational modification found in all aryl sulfatases (Schmidt et al., 
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Scheme 1.  Proposed general mechanism for arylsulfatases based on ARSA (Boltes et al., 2001) 

 

Figure 1.6.  The active site of steroid sulfatase showing a sulfated formylglycine hydrate 
residue.  The sulphur atom is shown in yellow (Hernadez-Guzman et al., 2003). 

The first step in the mechanism proposed for ARSA depicts the hydrate as being 

unsulfated consistent with the crystal structure of ASA showing the formyl glycine hydrate to be 
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unsulfated (Boltes et al., 2001). However, ARSB and STS crystallize with the hydrate sulfated 

(for example see Figure 1.6).  It is thought that the sulfated hydrate is the resting state of the 

enzyme, or the first step of the mechanism for STS and ARSB.  If this is indeed the case, then 

the initial proposed mechanism for ARSA need to be revised for ARSB and STS.  It could 

simply be that the binding of the substrate to these enzymes somehow induces a conformational 

change that results in the desulfation of the hydrate and initiates the first step of the reaction 

cycle.  Another possibility is that STS and ARSB might simply just crystallize better with the 

hydrate sulfated in the crystallization conditions, which does have sulfate present (Hernadez-

Guzman et al., 2003).     

1.2.6 STS is specific for sulfate esters   

According to recent crystallographic studies, arylsulfatases show structural similarity to 

alkaline phosphatases, which catalyze the hydrolysis of phosphate esters.  The possible 

evolutionary linkage between these two distinct families of enzymes might suggest that they 

could also partially hydrolyze each other’s substrate.  After all, phosphate-esters and sulfate 

esters differ only by one atom and, depending on pH, a single negative charge.  A purified 

alkaline phosphatase from E. coli was found to catalyze the hydrolysis of p-nitrophenyl sulfate 

(PNPS) (O’Brien and Herschlag, 1998).  While the catalytic efficiency was much lower as 

expected than compared to its phosphate substrate, the rate was nonetheless higher than 

compared to non-enzymatic hydrolysis by a water molecule (O’Brien and Herschlag, 1998).  The 

presence of sulfatase activity in alkaline phosphatase prompted the question of whether 

arylsulfatases, such as STS, could also have phosphatase activity.  A substrate analogue of ES, 

estrone phosphate (EP) was the rational candidate to test this question.  Indeed, STS could not 

differentiate between the two compounds in terms of binding.  In fact, the binding of monoanion 
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of EP (Ki=0.17µM, pH 6.0) was significantly better than the natural substrate ES (Ki =1.5µM pH 

6.0), but no explanation is available to as why this is this case.  However, the inhibitory potential 

of EP decreased with increasing pH, at pH 7.0 the Ki of EP is at 0.4 µM compared to that of ES 

at 0.9 µM (Li et al., 1995; Anderson et al., 1995).  The dianion of EP did not bind as well as ES; 

this could be simply because the natural substrate is a monoanion.  However, STS could 

differentiate between ES and EP in terms of catalysis, and only specifically hydrolyzed the 

sulfated ester (Anderson et al., 1995).  The reasons to as why STS can only hydrolyze sulfate 

esters and not also phosphate esters are still unclear.  

1.3 STS Inhibitors 

1.3.1 Reversible inhibitors 

There have been few reversible inhibitors of STS reported.  The first were vanadate and 

sulfite which showed decent micromolar potency (Dibbelt and Kuss, 1991) (Figure 1.7).  Sulfate 

itself however is not a good inhibitor, suggesting that the hydrolysis of the sulfate ester bond 

proceeds via a trigonal pyramidal transition state, of which sulfate doesn’t readily assume.   
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Figure 1.7.  Vanadate, sulfite, and sulfate as initial inhibitors of STS 

Not surprisingly, the first designs of reversible inhibitors of STS were substrate analogs 

of ES by replacement of the 3-O-sulfate ester.  Many of them, as listed in Table 1.1, were not 

very effective inhibitors, with the exception of the phosphate replacement such as that found in 

EP, which showed promising inhibition with Ki in the submicromolar range at pH’s less than 7 

(Li et al., 1995).  Other potent substrate analog inhibitors include 17α-phenyl and benzyl 

substituted estradiol derivatives exhibiting Ki in the low nanomolar range as shown in Table 1.2 
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(Poirier and Boivin, 1998; Boivin et al., 2000). Increase in potency was also observed with the 

introduction of alkyl chains at the 17-position of estradiol up to octyl length (Boivin et al., 2000).  

It is likely that the increased inhibition of these compounds is due to their hydrophobic 

interaction with the hydrophobic transmembrane helices.   

Table 1.1.  Estrone-3-sulfate mimics as reversible inhibitors of STS   

O

R  

Compound R group Inhibition Reference 

1.4 SO2Cl 92% at 300µM Li et al., 1993 

1.5 SO3
-K+ 40% at 300µM Li et al., 1993 

1.6 SO2NH2 45% at 300µM Li et al., 1993 

1.7 SO2F 44% at 300µM Li et al., 1993 

1.8 SO2CH3 36% at 300µM Li et al., 1993 

1.9 NHSO2CH3 IC50 = 10.20 µM Selcer et al., 1996 

1.10 NHCOCF3 IC50 = 8.7 µM Selcer et al., 1996 

1.11 CH2SO3
- Ki = 140 µM Li et al., 1995 

1.12 OP3
2- Ki = 0.4 µM Li et al., 1995 

 

Table 1.2. 17-substituted analogs as reversible inhibitors of STS (Poirier and Boivin, 1998; 
Boivin et al., 2000)   

OH

R

R

 

Compound R group IC50 (nM) 

1.13 (CH2)2CH3 5640 

1.14 (CH2)3CH3 3490 
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1.15 (CH2)4CH3 1980 

1.16 (CH2)5CH3 930 

1.17 (CH2)6CH3 780 

1.18 (CH2)7CH3 440 

1.19 (CH2)7CH3 1000 

1.20 CH2Ph-3’-Br 24 

1.21 CH2Ph-4’-t-Bu 28 

 

 In addition to substrate analogue inhibitors, there are 3 classes of very potent non-

steroidal STS inhibitors worth mentioning: madurahydroxylacetone thiosemicarbazones, aryl 

piperizines and arylsulfonylureas.  The general structures for these compounds are shown in 

Figure 1.8.  Compound 1.22, a madurahydroxylacetone thiosemicarbazones derivative, has an 

IC50 of 460nM and Ki of 350nM with purified STS (Jutten et al., 2002).  Two potent piperizine 

derivatives include compound 1.23 and 1.24, which have IC50s of 47 and 78 nM respectively 

(Hejaz et al., 2004).  An arylsulfonylurea derivative, compound 1.25, was shown to be a 

competitive inhibitor of STS with Ki of 890 nM.       
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Figure 1.8.  General structures for madurahydroxylacetone thiosemicarbazones, aryl piperizines 
and arylsulfonylureas. 
1.3.2 Irreversible inhibitors 

The majority of inhibitors developed for STS are irreversible inhibitors and the 

majority of these irreversible inhibitors are aryl sulfamates (ArO-SO2NH2).  The literature on this 

class of inhibitors is vast and so only key examples will be discussed.  Two original inhibitors of 

this class of this class are EMATE and 667 COUMATE (STX64), shown in Figure 1.9 

(Bojarova and Williams, 2009). EMATE was one of the first potent inhibitor for STS with IC50 

value of 100 nM and Ki of 670 nM with STS in placental microsomes (Purohit et al., 1995). 

There have been several mechanisms suggested for the inhibition of STS by aryl sulfamates 

(Schemes 1.2 A-D). The first mechanism A suggests that the sulfamate inhibitor first forms a 

Schiff base with the active site residue.  The intermediate complex is then hydrolyzed to release 

the phenolic product while the sulfamate moiety remains and inhibits the enzyme (Woo et al., 

2000). However, non hydrolysable N-sulfamate and S-sulfamates did not exhibit irreversible 

inhibition, suggesting that the hydrolysis of the ArO-S bond is essential for inhibition to occur 

(Bojarova et al, 2008). Bojarova et al. suggested a second mechanism B beginning with a SN2 

attack by the hydrated FGly on the sulfur atom, which consequently displaces the steroid portion 

of the inhibitor.  The reformation of the FGly generates a free sulfamate, which then can react by 

the mechanism proposed in A.  However, incubation of STS with sulfamic acid did not result in 

inhibition.  A third mechanism C involves an active site base catalyzed reaction, releasing the 

product and forming HNSO2.  HNSO2 is a highly reactive electrophile which can react both 

specifically and non-specifically with proximal nucleophiles. This mechanism is highly 

supported as multiple labeling of STS by aryl sulfamates is observed. (Bojarova et al, 2008). A 

fourth possible mechanism D involves a nucleophilic attack on the sulfur atom of the inhibitor by 
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a nucleophile other than the FGly hydrate.  This reaction forms a covalent adduct with the active 

site nucleophile and displaces the phenolic product.  However, N,N-dialkyl sulfamates which 

react solely by SN2 mechanism are not inhibitors of STS early reference .  One explanation to 

account for this observation is the sterics of N,N-dialkyl sulfamates could prevent the SN2 attack 

from occurring (Bojarova et al., 2008). 
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Figure 1.9.  Structures of two potent STS inhibitors: EMATE and 667 COUMATE (Bojarova 
and Williams, 2009) 
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Scheme 1.2.  Possible mechanism for the inhibition of STS by aryl sulfamates (Bojarova et al., 
2008). 
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However, the hydrolysis of EMATE by STS yields E1, which is highly undesirable for 

a cancer inhibitor.  In fact, oral administration of EMATE in rats results in higher observed 

estrogenic activity than oral administration of E1 (Elger et al., 1995).  Studies later report that 

this enhanced activity is due to the sulfamates ability to bind to red blood cells (RBCs), 

consequently allowing them to bypass first pass metabolism in the liver (Elger et al., 2001). To 

overcome this problem, the estrogenic backbone was replaced with a coumarin core.  The result 

was STX64, also known as 667 COUMATE, a potent non-estrogenic inhibitor of STS (Ahmed et 

al., 2001).  In 2005 STX64 passed Phase I clinical trials, but unfortunately no further clinical 

studies have been reported with this or any other sulfamate based STS inhibitors (Stanway et al., 

2007).  

Two reasons for the sulfamate’s incomplete success are partly due to their instability and 

non-selectivity.  Sulfamate based inhibitors decompose in solution into their corresponding 

phenols (Nussbaumer and Billich, 2004).  In addition, they are also very potent competitive 

inhibitors of carbonic anhydrase (CA), commonly found in RBCs, with IC50 at 25nM (Ho et al., 

2003).  CAs catalyze the interconversion between CO2 to bicarbonate ions, and serves as an 

important regulator of respiration, pH, CO2 homeostasis, and electrolyte secretion.  Due to 

potential side effects associated with sulfamate based inhibitors, other classes of inhibitors for 

STS are currently being explored (Nussbaumer and Billich, 2004) 

 

1.4 Substrate Inhibition 

1.4.1 4-DFMES unique irreversible inhibitor 

During the course of our studies on the development of irreversible inhibitors of STS, 

we developed 4-difluoromethylestrone sulfate (1.26) as a suicide inhibitor for STS (Ahmed et al., 
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2009). The mode of inhibition of 1.26 is unique in that it exhibits multiple pathways for 

irreversible STS inhibition (Scheme 1.3).  The compound undergoes hydrolysis by the enzyme 

to produce inorganic sulfate and 4-difluromethylestrone (1.27).  1.27 then undergoes a 

spontaneous elimination of HF to produce quinine methide species 1.28.  This species can react 

with active site residues causing irreversible STS inhibition or it can diffuse out of the active site 

where it reacts with water to eventually give 4-formyl estrone (1.29). 1.29 then enters the active 

site and can also irreversibly inhibit STS.  How 1.29 irreversibly inhibits STS is not known, 

however, it is likely that it is forming a Schiff base with an active site lysine of arginine residue.    
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Scheme 1.3.  Mechanism for the inhibition of STS with 4-DFMES  
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2  

Figure 1.10.  Time- and concentration-dependent inactivation of STS with 4-DFMES at 
concentrations 10 µM or less: 0 µM (◊); 1 µM □; 2.5 µM (○); 5 µM (■);7.5 µM (▲); 10 µM (●) 
(Ahmed et al., 2009).  

 

Figure 1.11.  Time- and concentration-dependent inactivation of STS with 4-DFMES at 
concentrations of 10 µM and greater: 0 µM (◊); 10 µM (□);20 µM (○); 40 µM (■); 80 µM (▲) 
(Chau, Ahmed and Taylor, unpublished results).  
 

As expected of most suicide inhibitors, the rate of inhibition of STS with 4-DFMES 

increases with increasing inhibitor concentrations (Figure 1.10).  Strangely enough, at 

concentrations greater than 10 µM, the rate of inhibition begins to decrease (Figure 1.11).  There 

are two possible explanations for this. One is that at higher 4-DFMES concentrations it takes 

longer for 4-FE1 to accumulate and compete with 4-DFMES for the active site.  The other 
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possible explanation is that there is substrate inhibition taking place as it has been reported that at 

substrate concentrations greater than 10 µM, STS begins to experience substrate inhibition (Prost 

et al., 1984; Dibbelt et al., 1994)   

 

1.4.2 Substrate Inhibition 

Enzyme kinetics for most part follow the Michaelis-Menten curve such that as substrate 

concentration increases, the rate of catalysis also increases until it begins to plateau nearing a 

threshold Vmax.  In some enzymes however, reaching a particular threshold concentration of 

substrate causes the rate to decrease; a phenomenon known as substrate inhibition (shown in 

Figure 1.12).  This phenomenon presents potential problems in data interpretation and 

extrapolation of enzyme kinetics, but at the same time can be exploited for inhibitor design (Lin 

et al., 2001). 

 

Figure 1.12.   The kinetics associated with substrate inhibition are slightly different than that of 
normal Michaelis-Menten kinetics (Lin et al., 2001). 
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The phenomenon is not entirely uncommon as several different classes of enzymes 

exhibit substrate inhibition to some extent.  For example, some cytochrome P450 enzymes, 

responsible for catalyzing numerous endogenous substrates and xenobiotic, experience a 

reduction in activity from 39% up to 97% as a result of substrate inhibition (Lin et al., 2001). An 

important sulfotransferase enzyme, SULT1A1, which is involved in the sulfate conjugation of 

numerous endogenous compounds is also substrate inhibited by its xenobiotic substrates 

(Gamage et al., 2003).  Another example of an enzyme subject to substrate inhibition is 

adenosine 5’-phosphosulfate (APS) kinase, which catalyzes APS to 3’-phosphoadenosine 5’-

phosphosulfate (PAPS) (Sekulic et al., 2007). 

 

1.4.3 Substrate Inhibition in STS 

The kinetics observed with 4-DFMES suggest that STS may indeed be substrate 

inhibited.  In 1984, Prost et al. showed that concentrations of ES above approximately 7 µM 

resulted in substrate inhibition in STS (Prost et al., 1984). This same phenomenon was also later 

reported by Dibbelt et al. in 1994 who stated that STS is inhibited by its substrates such as ES 

(Km = 2-4 µM) at concentrations greater than 10 µM (Dibbelt et al., 1994) though no data was 

presented to support Dibbelt claim.  However, 4-methylumbelliferyl sulfate (4-MUS), a 

compound that is commonly used to assay STS activity, does not exhibit substrate inhibition.  

One argument to account for this exception is the structure of 4-MUS is very different than that 

of the natural substrate ES.   Hence, it may behave and bind differently than ES as suggested by 

its Km at 180 µM (Ahmed, 2009) which is substantially higher than that of ES.  Since Dibbelt et 

al., no studies have been done to validate the existence of this phenomenon or investigate the 

mechanism by which substrate inhibition within STS could occur.  In any case, the possibility of 
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substrate inhibition suggests additional binding sites which could potentially  be utilized for 

future inhibitor design.  Inextricably linked to the phenomenon of substrate inhibition in STS is 

the question of how STS substrates enter and leave the active site.  However, as discussed above, 

it is not known exactly how STS substrates and products enter and leave the active site   

 

1.5 Research Objectives 

The possibility that STS is subject to substrate inhibition suggests that it has multiple 

substrate binding sites.  The uncovering of non-active site binding sites for substrates and ligands 

could lead to the development of novel inhibitors that utilize these alternative sites.  The global 

objective of the work described in this thesis is to learn more about the presence of alternative 

substrate/ligand binding sites in STS.  In Chapter 2, we discuss the purification of STS and 

examine whether 2-nitroestrone sulfate can be use as chromogenic substrates for STS.  Such a 

chromogenic assay could potentially be used to readily study substrate inhibition in STS and 

would be a convenient alternative to the cumbersome radioassays used by Prost et al., and 

Dibbelt et al employing tritiated substrates.  In Chapter 3, we examine the inhibition of STS with 

various 4-substituted estrogen derivatives anticipating that these studies may indirectly reveal the 

existence of a secondary binding site.  Finally in Chapter 4, we determine whether a series of 

azido and diazo ES and EP derivatives can act as photoaffinity labels of STS.  Photoaffinity 

labels of STS could have potential for studying pathways of substrate entry and product release 

in STS.   
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Chapter 2 – Purification and Assaying of Steroid Sulfatase  

2.1 Introduction 

 In order to assay STS accurately a pure form of the enzyme is required.  Impurities such 

as contaminating enzymes can yield unreliable results.  In addition, in some cases it is useful to 

know the exact concentration of STS such as in photoaffinity labeling studies.  There are only a 

few cases where researchers have used purified STS in their studies (Li et al., 1995; Dibbelt et 

al., 1994; Nussbaumer et al. 2002; Selcer et al., 1997).  While there have been efforts in the past 

to overexpress STS in E.coli, so far only limited success has been reported using 293-EBNA 

cells from human embryonic kidney cells (Stengel et al., 2008).  Hence, pure STS has 

traditionally been obtained by purifying it from human placenta, which is a good source of the 

enzyme.  Human placenta is readily available and no specialized equipment is required for STS 

extraction and purification.  There is a considerable number of published procedures on the 

purification of STS from human placenta, although the purification results in regards to 

enzymatic properties varies greatly amongst them (van der Loos et al., 1983; Noel et al., 1983; 

Burns et al., 1983; Dibbelt et al., 1986; Vaccaro et al., 1987;  Shakaran et al., 1991; Suzuki et al., 

1992; Purohit et al., 1998; Hernandez-Guzmen et al., 2003). Despite their differences, the initial 

steps in the process share common elements.  The first step always involves homogenization of 

the placenta followed by centrifugation of the homogenate which yields crude STS in the 

microsomal fraction.  The second process is the solubilization of the enzyme in the microsomal 

fraction using a detergent, such as Triton X-100.  The third involves the use of an anion 

exchange column to separate STS from other aryl sulfatases.  After this step, a wide variety of 

chromatographic media and techniques have been used to obtain the pure enzyme.  The objective 

of the work described in this chapter is to purify STS using a procedure developed by researchers 
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at Novartis and modified in the Taylor group (Ahmed et al., 2005). In addition we examine an 

alternative approach to assaying STS using a chromogenic substrate based on a natural steroidal 

substrate.   

 

2.2 Results and Discussion 

2.2.1 Placental Purification of STS 

STS was extracted from human placental based on procedures provided by (Hernandez-

Guzman et al., 2001) and purified using the procedure developed at Novartis and in the Taylor 

group (Ahmed et al., 2005).  Briefly, fresh placenta was homogenized and the resulting 

homogenate centrifuged to obtain the microsomal fractions which contained STS.  The fractions 

were solubilized in buffer containing Triton X-100, applied to a DEAE ion exchange column, 

and then eluted using a salt gradient.  Those fractions with STS activity, as determined by the 4-

MUS assay (as discussed in section 2.2.2 below) were pooled and dialyzed into buffer containing 

20 mM HEPES 1% Triton X-100 pH 7.4.  This sample was then applied to an immunoaffinity 

column containing a covalently bound anti-STS antibody that binds specifically to STS.  The 

column was washed with buffer to remove any residual protein that may bind non-specifically.  

Buffer containing 50mM citric acid, 140mM NaCl, 0.01% Triton X-100 at pH 2.7 is used to 

elute STS from the column, and fractions containing STS are pooled, dialyzed into 20 mM Tris-

HCl buffer, pH 7.0 containing 0.1% Triton X-100, and stored at -80 oC.  This procedure yields 

STS in high purity; two bands on the SDS page correspond to the two main glycosylation states 

of the enzyme (Figure 2.3).  The molecular mass of purified STS is approximately 63 kDA 

(Hernadez-Guzman et al., 2003; Stein et al., 1989; Sugawara et al., 2006).   The protein 

concentration was determined using a DC Protein Assay kit from BioRad Laboratories. The 
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specific activity of purified STS varied between purifications, from 0.5 to 1.25 µmol 4-

MUS/min/mg enzyme.  

 

 

Figure 2.1. Elution profile of STS activity by DEAE chromotography 

 

 

Figure 2.2. Elution profile of STS activity by anti-STS immunoaffinity chromatography 
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Figure 2.3.  SDS PAGE of purified STS.  The gel was stained in Fermentas PageBlue Protein 
staining solution.  Lane 1 contains Fermentas PageRulerTM Prestained Protein Ladder.  Lane 2 
contains purified STS. 
 
2.2.2 2-Nitroestrone sulfate as a potential chromogenic substrate for STS 

STS is commonly assayed using the synthetic substrate 4-methylumbelliferyl sulfate (4-

MUS) between pH 7.0-8.0 (Scheme 1).  4-MUS is hydrolyzed by STS to give 4-

methylumbelliferone (MU), which in its ionized form, is fluorescent and can be measured by 

fluorescence spectroscopy by excitation at 360 nm and emission detection at 460nm.   

CH3

SO

O
-

O

OO O

STS

HOSO3
-

MUS

CH3

OHO O

CH3

O
-
O O

fluorescent

pKa = 7.8

 

Scheme 2.1.  The 4-methylumbelliferyl sulfate (4-MUS) assay for STS. 

As stated in Chapter 1, 4-MUS does not exhibit any apparent form of substrate 

inhibition, and one argument is because it does not resemble the natural substrate.  They exhibit 

significantly differences in Km’s: The Km for 4-MUS is 180 µM while that for ES is about 2-4 

µM (Ahmed, 2009).  For this reason, we believe that it is essential to use steroidal substrates 

which are structurally similar to ES, in order to study substrate inhibition in STS.  Unfortunately, 

the only method developed so far to assay STS using steroidal substrate involves the use of  



28 

 

radiolabelled steroidal substrates, such as tritiated estrone sulfate, combined with scintillation 

counting.  These types of assays were used by Prost et al., and Dibbelt et al. to report substrate 

inhibition in STS (Dibbelt et al., 1994; Prost et al., 1984). However, they are very expensive, 

time consuming and tedious to perform. 

One possible solution to assaying STS using steroidal substrates without resulting to 

radioassays is to use chromogenic steroidal substrates, and then using absorbance 

spectrophotometry to assay STS activity.  Nitrated compounds are commonly used to assay 

various enzymes by spectrophotometry, such as p-nitrophenylphosphate in assaying phosphatase 

activity (Tabatabai and Bremner, 1969) and 2-nitrophenol in assaying nitrophenol oxygenase in 

Pseudomonas putida B2, which converts 2-nitrophenol to catechol (Folsom, 1997).   

OPHO

O

OH

NO2

O2N

HO

2-nitro phenolp-nitrophenyl phosphate  

Figure 2.4.   Structures of p-nitrophenyl phosphate and 2-nitrophenol (Folsom, 1997; Tabatabai 
and Bremner, 1969). 
 

From our previous studies, we noted that STS is able to accommodate small groups at 

the 2-position of the A-ring (Ahmed et al., 2009).  This suggests to us that 2-nitroestrone sulfate  

(2-NES) (Scheme 2) might act as a substrate for STS.  If 2-NES is a substrate for STS the S-O 

bond on 2-NES will be hydrolyzed to produce 2-nitroestrone (2-NE1, Scheme 2) and so it might 

be possible to follow the reaction by monitoring the production of 2-NE1.   
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Scheme 2.2.  Reaction of STS with 2-NES. 

2.2.2  Determination of the extinction coefficient of 2-NE1 and 2-NES 

Nourescu et al. have reported that in ethanol-water at pH 3.5, 2-NE1 has an λmax at 297 

nm with a corresponding molar extinction coefficient (ε) of 7940 M-1 cm-1, and an λmax at 425 

nm with an ε value of 5337 M-1 cm-1 at pH 13 (Nourescu et al., 1998). 2-nitrophenol has an ε of 

3470 M-1 cm-1 at pH 7.5 in phosphate buffer (Zeyer, 1986).  Although spectral data for 2-NE1 at 

pH 3.5 and 13 have been reported before, we decided reexamine this and to also to determine the 

molar extinction coefficients of 2-NE1 at pH’s more relevant to STS (pH 7-8).  2-NE1 and 2-

NES were prepared by Christine Nicholas in the Taylor Group.  The spectra data are summarized 

in Table 2.1. At pH 1.5 we noted an absorbance maximum at 300 nm.  At pH’s 7.5, 8.0 and 12.0 

two maxima were found at about 300 and 430 nm.  The extinction coefficient at pH 7.5 and pH 

8.0, pH’s at which STS is commonly assayed, at about 430 nm was 3200 M-1 cm-1 while at 299 

nm it was 7100 (pH 7.5) and 5200 M-1 cm-1 (pH 8.0).  2-NES exhibits an absorbance maximum 

at 281 nm with an extinction coefficient of 4200 M-1 cm-1, absorbs relatively strongly at 299 nm 

and does not absorb at 430 nm (Table 2).  So we decided to examine 2-NES as a substrate for 

STS at pH 8.0 monitoring the increase in absorbance at 433 nm even though the extinction 

coefficient of 2-NE1 at this wavelength was only 3200 cm-1.  If we use 50 µM 2-NES in the STS 

assay at pH 8.0 and if only 10% of the substrate were hydrolyzed we would only expect an OD 

change of 0.0235 when monitoring its production at 433 nm.  This is not a very large OD 
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change. Indeed, when we incubated 9 nM STS with 50 µM 2-NES, we could not detect the 

production of 2-NE1 at 433 nm in buffer containing 10% ethanol, 0.01% Triton X-100 and 0.1 

M Tris-HCl at pH 8.0 in a 10 mm cuvette.  Hence, we expect that amount of 2-NE1 produced by 

STS may be too small to be reliably detected or 2-NES is not a substrate for STS.  

Table 2.1.  Spectra of 2-NE1 at various pH. Concentrations of 2-NE1 beginning 
at the bottom curve are 10, 40, 80, 120, 160, and 200 µM respectively for all pH 
except 7.5.  At pH 7.5, concentrations of 2-NE1 beginning at the bottom curve are 
4, 8, 12, 16, and 20 µM.  
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8.0 

 

299, 433 5100(299nm), 

3200(434nm) 

 

 

 

Figure 2.5. Replots of 2-NE1 spectra at pH 12 at wavelength 299nm (�) and 434 nm (�) 

 

 

Figure 2.6. Replots of 2-NE1 spectra at pH 1.5 at wavelength 300 nm (�)  
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Figure 2.7.  Replots of 2-NE1 spectra at pH 7.5 at wavelength 299 nm (�) and 431 nm (�)  

 

 

Figure 2.8. Replots of 2-NE1 spectra at pH 8.0 at wavelength 299 nm (�) and 433 nm (�) 
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Table 2.2  Spectra of 2-NES at pH 8.  Concentrations of 2-NES beginning at 
the bottom curve are 20, 40, 60, 80, and 100µM.  
pH Spectra λλλλmaxima 

(nm) 

Molar Extinction 

Coefficient (ε) ε) ε) ε)  M
-1
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-1
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Figure 2.9.  Replots of 2-NES spectra at pH 8.0 at wavelength 232 nm (�) and 281 nm (�)  
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product, 2-NE1 is not a strong enough chromophore to allow 2-NES to be used as a chromogenic 

substrate for STS.   

 

F 

Figure 2.10. HPLC chromatograms for A) 2-NES; B) 2-NE1 and,  C) a solution containing 9 
nM STS, 50 µM 2-NES after 25 min.  A solutions were prepared in buffer containing 0.1 M Tris-
HCl, 0.01 % Triton X-100, 10% ethanol at pH 8.0.  The detector was set to 281 nm.  
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Figure 2.11.  HPLC chromatograms for A) 2-NES; B) 2-NE1 and,  C) a solution containing 9 
nM STS, 50 µM 2-NES in buffer containing 0.1 M Tris-HCl, 0.01 % Triton X-100, 10% ethanol 
at pH 8.0 after 25 minutes. The detector was set to 299 nm. 

2.3 Conclusion and Future Work 

The purification of STS is an important first step for accurate kinetic analysis of STS 

activity.  In the Taylor lab, we have developed a reliable method for the purification of STS 

which yields the enzyme in very high purity.  While 2-NES is a substrate for STS, 2-NE is a not 

a sensitive enough chromophore to be used for the continuous assaying of STS. It looks like 

future studies on substrate inhibition in STS will have to be done using radiolabeled substrates. 
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2.4 Experimental 

2.4.1 Materials  

 The biochemical reagents and buffers were purchased from Sigma-Aldrich (St. Louis, 

Missouri).  Fresh human placenta was provided by Credit Valley Hospital (Mississauga, 

Ontario).  The placenta is transported on dry ice and stored at -80oC for no longer than two days 

before its purification.  DEAE cellulose was purchased from Whatman (Maidstone, England).   

The STS immunoaffinity column was prepared by Vanessa Ahmed, a graduate student in the 

Taylor group, by coupling an anti-STS monoclonal antibody, obtained as a gift from Novartis 

(Austria), to cyanogen bromide-activated Sepharose 4B obtained from Pharmacia at a density of 

10mg/ml resin.  The procedure for purification of STS by immunoaffinity chromatography was 

provided by Dr. Andreas Billich at Novartis (Austria).  The DC Protein Assay kit was purchased 

from BioRad Laboratories (Richmond, California).  Gel staining was achieved by PageBlueTM 

Protein staining solution from Fermentas Life Science (Vilnius, Lithuania).  STS activity was 

determined, using the 4-MUS assay described above, on a SpectraMax Gemini XS plate reader 

from Molecular Devices (Sunnyvale, California) and analyzed with SOFTMAX Pro Version 

3.1.1 and Microsoft Excel 2007.  UV Spectra were obtained using an Agilent 8453 

Spectrophotometer (Santa Clara, California) in a 10 mm quartz cuvette from Hellma (Germany).  

2.4.2 STS purification 

 The homogenization and centrifugation of human placenta were done according to 

procedures developed by Hernadez-Guzman and coworkers (Hernandez-Guzman et al., 2003).  

After removal of the membrane and umbilical cord, the full-term human placenta was cut into 

small pieces. 200 g of the chopped up placenta was homogenized using a Brinkman polytron in 

50mM Tris-HCl pH 7.5, 0.25 sucrose, 1 g protease inhibitor cocktail (Sigma-Aldrich).  The 
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resulting homogenate, approximately 400 mL, was centrifuged at 20 000g for 30 min at 4oC.  

The supernatant was discarded, and the pellet resuspended in the same buffer, and subjected to 

another centrifugation at 20,000 g for 30 min at 4oC.  The supernatant was discarded again, and 

the pellet resuspended in 300 mL of extraction buffer consisting of 20 mM Tris-HCl, pH 7.4, 0.3 

% Triton X-100.  This sample is allowed to equilibrate for two hours before being subjected to 

ultracentrifugation at 100,000 g for 70 min at 4oC.  The time the supernatant was collected, and 

the pellet was resuspended in 200 mL of the extraction buffer and subjected to another 

ultracentrifugation.  The resulting supernatant was pooled with the previously collected 

supernatant, and the pellets were discarded.  This microsomal sample, approximately 400 mL, 

was dialyzed into buffer containing 20 mM Tris-HCl, pH 7.4, 0.1% Triton X-100 (3 x 4 L) over 

24 hours.  The dialysate was loaded onto a DEAE column (radius = 2.5 cm, height  = 16.5 cm), 

washed with 1500 mL of buffer containing 20 mM Tris-HCl, pH 7.4, 0.1% Triton X-100, and 

eluted off with a salt gradient reaching 1 M of NaCl in buffer 20 mM Tris-HCl, pH 7.4, 0.1% 

Triton X-100 over 1000 mL.  Pooled fractions containing STS (250 mL) were dialyzed into 20 

mM Hepes buffer pH 7.4 1% Triton X-100 (3 x 2 L) over 24 hours.  This material was applied to 

an anti-STS immunoaffinity column (2.5 mL) that had been pre-equilibrated with 25 mL of the 

Hepes dialysis buffer. The column was washed with 40 mL of the same buffer, and STS fractions 

are eluted off with 40 mL of 50 mM citric acid, 140 mM NaCl, 0.1% Triton X-100.  The 

fractions are pooled and dialyzed into storage buffer containing 20 mM Tris-HCl, pH 7.4, 0.1% 

Triton X-100 (3 x 4 L) over 24 hours and flash frozen with liquid nitrogen and stored at -80oC. \ 
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2.4.3  STS activity in Purification 

STS activity in the fractions obtained at the various stages of the purification procedure 

was determined as follows.  20 µL sample was added into the wells of a 96-well black microtiter 

plate containing 180 µL of 222 µM 4-MUS in 0.1 M Tris-HCl, pH 7.0 such that the final 

concentration of STS was 10 fold diluted in buffer containing 200 µM 4-MUS 0.1 M Tris-HCl, 

pH 7.0 0.01% Triton X-100.  The production of fluorescent 4-MU was monitored for 5 minutes 

(λext = 360nm, λem = 460 nm) using a SpectraMax Gemini XS plate reader.  The enzyme activity 

was reported as relative fluorescent units per second (RFUs/second).   

2.4.4  Protein determination 

The protein concentration was determined according to DC Biorad Laboratories 

(Richmond, CA) protein concentration determination kit instructions using bovine serum 

albumin (BSA) as a standard.  This colorimetric assay is for the determination of protein 

concentration following solubilization with a detergent such as Triton X-100. The assay is based 

on the reaction of protein with an alkaline copper tartrate solution and Folin reagent (Bradford, 

1976). 

2.4.5  Spectral data 

 2 mM solutions of 2-NE1 and 2-NES were prepared in ethanol.  These solutions were 

diluted in buffer containing 0.11 M Tris-HCl, 0.011% Triton X-100 that was pH’d to the desired 

value (1.5, 7.5, 8.0 and 12).  Serial dilutions of these two stock solutions in the same buffer at the 

appropriate pH were performed to obtain the solutions that were used for spectral determinations.  

1 mL of these solutions was added to a 10 mm Helma cuvette and the spectra obtained using an 

Agilent 8453 spectrophotometer.  Solutions containing 0.1 M Tris-HCl, 10% ethanol, 0.01% 

Triton X-100 were used as blanks.  The extinction coefficients were determined by taking the 
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slopes of plots of OD versus concentration and fitting the data using linear regression analysis 

with Excel 2007.  

2.4.6  HPLC studies 

A solution of 9 nM STS and 50 µM 2-NES in buffer containing 0.1 M Tris-HCl, 0.01 

% Triton X-100, 10% ethanol, pH 8.0 was prepared and left standing at room temperature for 25 

min.  A 20 µL aliquot was withdrawn and injected on to a Phenomex Jupiter analytical reversed-

phase C-18 column (Torrance, CA, USA) attached to a Waters 600 HPLC system (Milford, MA, 

USA).  The Waters 2487 dual wavelength detector was set to 299 nm and 281 nm.  The 

compounds were eluted using 52% acetonitrile/48% water containing 0.1% trifluoroacetic acid.  

The retention times of 2-NES and 2-NE1 were determined by injecting 20 µL samples of 50 µM 

solutions of 2-NES and 2-NE1 in the same buffer in the absence of STS.   
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Chapter 3 – 4-Substituted Estrogens as Reversible and Irreversible 

Inhibitors of STS 
 

3.1 Introduction 

 In Chapter 1 we mentioned that 4-formyl estrone (1.29, Figure 3.1) was an irreversible 

inhibitor of STS (Ahmed et al., 2009).   Kitz-Wilson analysis yielded a KI of 1.5 µM and a kinact 

of 0.13 min-1 (kinact/KI = 1 x 105 M-1 min-1).  With just 5 µM of 4-FE1, STS is almost completely 

inactivated within 60 minutes.  Only 2 % of STS activity could be recovered after extensive 

dialysis.  We proposed that the compound forms a Schiff base with active site amine-bearing 

residues though this has yet to be proven.  What was also interesting was that 2-formyl estrone 

(2-FE1, 3.1) and estra-1,3,5(10)-triene-17-one-3-carbaldehyde (3.2) did not exhibit any 

inhibition at concentrations up to 10 µM indicating that the inhibition is specific for the formyl 

group at the 4-position.  

HO

O

O H

1.29 (4-FE1)

HO

O

O

H

3.1 (2-FE1)

O

3.2
O

H

 

Figure 3.1.  Structures of 4- (1.29) and 2-formyl estrone (3.1) and estra-1,3,5(10)-triene-17-one-
3-carbaldehyde (3.2).   
 

 There have been almost no reports in the literature of STS inhibitors, reversible or 

irreversible, bearing substituents at the 4-position of E1 or E2.  The objective of the work 

described in this chapter is to examine estrogen derivatives bearing functional groups at the 4-

position as inhibitors of STS.  
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3.2 Results and Discussion 

3.2.1 Inhibition of STS with 17-αααα-benzyl-4-formyl estradiol 

 We wished to determine if we could improve upon the potency of 4-FE1 by modifying 

the steroid skeleton  As mentioned in Chapter 1, Poirier and coworkers have reported that 

estradiol modified at the 17-position with hydrophobic phenyl, benzyl or alkyl groups yields 

compounds that are highly potent reversible inhibitors of STS (see Table 1.2).  (Poirier et al. 

1998, Ciobanu and Poirier, 2006).  One example of such an inhibitor is compound 3.3 which has 

an IC50 value of 299 nM with purified STS (Ahmed et al., 2006) (Figure 3.2).  Based on 

Poirier’s work on 17-modified estradiol derivatives we decided to determine if the potency of 4-

FE1 could be improved by modifying 4-FE1 at the 17-position.  Towards this end, compound 3.4 

(prepared by Byoungmoo Kim in the Taylor group) was examined as an inhibitor of STS.   

HO

OH

HO

OH

O

3.43.3  

Figure 3.2.  Structures of compounds 3.3-3.4.   

 Incubation of STS with 3.4 resulted in time- and concentration-dependent inhibition as 

illustrated in Figure 3.3.  From the Kitz-Wilson plot (inset, Figure 3.3) a Ki of 107 nM and kinact 

of 0.025 min-1 were obtained indicating that this compound is considerably more potent than 4-

FE1 in terms of its affinity for STS but its rate of inactivation is less than that of 4-FE1.  

However, kinact/KI for 3.4 is 2.3 x 105 M-1 min-1 which is superiour to 4-FE1.  There are several 

other differences between compound 3.4 and 4-FE1.  When STS is incubated with low 

concentrations (< 1 µM) of 4-FE1 the inactivation plateaus after about 40 minutes while at 

higher concentrations (≥ 1 µM) pseudo-first order behaviour was observed throughout (Figure 
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3.4).  This behaviour may be due to multiple labelling events that are both productive and 

unproductive towards inactivation.  This behaviour was not seen with 3.4 as more or less pseudo-

first order behaviour was exhibited at all of the concentrations examined (Figure 3.3).  Also, 

after inactivation of STS with compound 3.4, about 14% of the activity was recovered after 

extensively dialyzing for 24 h (Figure 3.5).  This is in contrast to 4-FE1 where almost no activity 

could be recovered after inactivation.  Consequently, it is possible that these two inhibitors are 

targeting different residues.   

 

 

Figure 3.3.  Time- and concentration-dependent inhibition of STS with compound 3.4.  
Reactions were conducted in 0.1 M Tris-HCl 5 % DMSO 0.01 % Triton X-100 at pH 7.0 using 
310 nM STS.  STS activity was determined by adding 4-MUS to the reaction mixture such that 
the final concentration of 4-MUS was 4 mM and then the production of 4-MU followed using 

fluorimetry.  [3.4] = � 0, � 25, ♦50, �100, △200,  400 nM.   
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Figure 3.4.  Time- and concentration-dependent inhibition of STS with 4-FE1 (Ahmed et al., 
2009). 
 

 

Figure 3.5.   Dialysis experiment with 1µM 3.4 incubated with 277 nM STS in buffer containing 
0.1 M Tris-HCl, 5% DMSO, 0.1% Triton X-100  pH 7.0 in a 200 µL volume.  Samples are 
diluted 50-fold into a solution of the same buffer containing 4 mM 4-MUS at 0, 60, 540, 1200, 
and 1500 min.  The sample is dialyzed into a 1L buffer containing 0.1% Triton X-100 0.1 M 
Tris-HCl pH 7.0 every 8 h over a 24 h period beginning at time 60 min.    

 To determine whether compound 3.4 was labeling residues in the active site, a 

protection experiment was carried out with STS incubated with 2.5, 5, and 25 µM of EP in 0.1M 

Tris-HCl 5% DMSO pH 7.0.  The presence of EP, a competitive inhibitor of STS, protected the 

enzyme from inactivation by compound 3.4.  This protective effect increases with increasing 

A

1

10

100

0 20 40 60

Time (minutes)

%
 A

c
ti
v
ity

 R
e

m
a

in
in

g 5 µM

1 µM

0.5 µM

0.25 µM

0 µM

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

%
 A

c
ti
vi

ty

Time (min)



44 

 

concentration of EP, suggesting that 3.4 must inactivate STS by reacting with an active site 

residue. 

 

 

Figure 3.6.  Time- and concentration-dependent inhibition of STS with 500 nM 3.4 in the 
presence varying amounts of EP at 0 (�), 2.5 (�), 5(�), 25 (�) µM.  A control was conducted 
in the absence of 3.4 and EP (�).  Reactions were conducted in 0.1 M Tris-HCl, 5% DMSO 0.1 
% Triton X-100? at pH 7.0 using 310 nM STS.  STS activity was determined by adding 4-MUS 
to the reaction mixture such that the final concentration of 4-MUS was 4 mM and then the 
production of 4-MU followed using fluorimetry.   

 To determine if the inhibition was specific for the 4-position we examined compound 

3.5 (Figure 3.6, prepared by Byoungmoo Kim in the Taylor group) for STS inhibition.  This 

compound exhibited very little time- and concentration-dependent inhibition even at 10 µM 

(Figure 3.7).  The IC50 for this compound was not determined due to solubility issues greater 

than 10  µM.    
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Figure 3.7.  Structure of compound 3.5. 
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Figure 3.8.  Determination of time and concentration dependent inhibition of STS with 
compound 3.5.  Reactions were conducted as described in Figure 3.3.  [inhibitor]=0.1(�), 1.0 
(�), 10 µM (�), control (�).   
 
 
 
 

 We also examined several other 4-formyl estrogen derivatives for STS inhibition that 

had previously been prepared by Yong Liu in the Taylor group.  These 4-FE1 derivatives 

contained substituents at the 2-position and include the dialdehydes 3.8 and 3.9.  They were 

initially screened for time and concentration-dependent inhibition at 50 µM.  Surprisingly, none 

of these compounds exhibited time and concentration-dependent inhibition.  The IC50‘s were 

determined for compounds 3.7-3.9 (compounds 3.6 and 3.10 were poorly soluble in the assay 

buffer at concentrations greater than 50 µM) and found to be much greater than the KI of 4-FE1 

and compound 3.4.  Although this study is somewhat limited in scope, it suggests that 

substituents at the 2-position of 4-formyl estrogen derivatives have a detrimental effect on the 

binding of the inhibitor and the ability of the 2-formyl group to interact with a residue that results 

in time- and concentration dependent inhibition.  
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Table 3.1.  Inhibition of STS with 2-substituted 4-
FE1 Derivatives 

Compound IC50 (µM) 

HO

O

I

CHO  
3.6 

 
 

ND 

HO

O

CHO

Br

 
3.7 

 
 

145 ± 11 

HO

O

CHO

HOC

 
3.8 

 
 

224 ± 7 

HO

OH

CHO

HOC

 
3.9 

 
 

157 ± 9 

HO

O

CHO

N+

O

-O

 
3.10 

 
 

ND 

 

3.2.2  Reversible Inhibition of STS with 4-substituted estrogen derivatives 

 In addition to 4-formyl substituted estrogens, we also examined other 4-substituted 

estrogen derivatives as STS inhibitors which had been prepared in the Taylor group by Yong 

Liu.  These compounds and the results consisting of their percent inhibition (at 50 µM) and/or 

their IC50’s are shown in Table 3.2.  We reasoned that if a residue was forming a Schiff base 

with the aldehyde group of 4-FE1 then it might form a salt bridge with a carboxyl group at the 4-

position and a potent reversible inhibitor might result.  However, 4-carboxy estrone (3.11), was a 

very poor inhibitor.  The 4-hydroxymethyl, 4-aminomethyl and 4-amino derivatives (3.12-3.14) 

were also poor inhibitors as was the 4-vinyl derivative (3.15).  However, when we substituted the 
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4-position with a non-ionizable electron withdrawing group (compounds 3.16-3.20) the potency 

of these compounds increased considerably especially for the E1 derivatives.  The 4-NO2 E1 

derivative (3.19) exhibited the lowest IC50 (2.4 µM) from amongst this group of compounds.  4-

NO2-E2 (3.20) exhibited a similar IC50.  The 2-nitro (3.21), 2,4-dinitro (3.22) and the 4-nitro-2-

bromo derivatives (3.23) were all less potent than 3.19. The 2,4-dibromo derivative 3.24 was a 

surprisingly good inhibitor and almost as good as compound 3.19.   

 Table 3.2.  Inhibition of STS with 4-substituted estrogen derivatives. 

X

HO

R1

R
2

 

 
compound 

 
R1 

 
R2 

 
X 

% inhibition  
at 50 µM 

 
IC50 (µM) 

E1 H H C=O ND 51 ± 8 

E2 H H CHOH ND 11 ± 1 

3.11 CO2H H C=O 35 286 ± 13 

3.12 CH2OH H C=O 46 ND 

3.13 CH2NH2 H CHOH 4 ND 

3.14 NH2 H CHOH 43 ND 

3.15 CH=CH2 H C=O 45 ND 

3.16 Br H C=O 84 4.8 ± 0.4 

3.17 F H C=O 84 3.3 ± 0.2 

3.18 CN H C=O 71 6.7 ± 0.3 

3.19 NO2 H C=O 98 2.4 ± 0.1 

3.20 NO2 H CHOH ND 2.8 ± 0.2 

3.21 H NO2 C=O ND 17 ± 1 

3.22 NO2 NO2 C=O ND 26 ± 1 

3.23 NO2 Br C=O ND 9.5 ± 0.9 

3.24 Br Br C=O 85 3.0  ± 0.1 
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 Studying the mode of reversible inhibition can help reveal secondary binding sites 

which may elicit inhibitory effects.  Here we briefly describe the modes of inhibition related to 

our project objectives.  The first is competitive inhibition, in which the inhibitor binds directly 

the active site.  As such, competitive inhibitors have the effect of diminishing the initial velocity 

of the catalytic reaction, and consequently increasing Km in the presence of the inhibitor.  The 

same Vmax however can still be achieved in the presence of excess substrates.  Non-competitive 

inhibitors have identical affinity to the free enzyme and the enzyme-substrate complex, and bind 

at a secondary site.  For this reason, they inhibit the enzyme by alternative mechanisms, and 

cannot be displaced by high substrate concentrations.  Non-competitive inhibitors consequently 

reduces the overall Vmax but Km  remains unchanged. In addition to these two types of inhibitors 

are mixed inhibitors, which can bind to both the active site and the secondary binding site 

(Copeland, 1996).  

 One way to study the modes of inhibition is by analyzing data using a Lineweaver-Burk 

Plot.  While there are other graphical determination methods available, the Lineweaver Burk 

Plot, or double-reciprocal plot of the Michaelis-Menten equation, is one of the commonly used 

transformation to analyze modes of inhibition.  In this plot, the y-axis represents 1/velocity and 

the x-axis corresponds to the 1/[substrate].  The y-intercept of these lines corresponds to the 

observed 1/Vmax and the x-intercept corresponds to -1/Km.  Typically, several experiments are 

conducted with various concentrations of substrate in the presence of different concentration of 

inhibitors.  The results are usually several lines which intersect at a particular point which reflect 

a particular inhibitor type.  Depending on the mode of inhibition, the observed Vmax and Km are 

replotted accordingly on a Dixon Plot to obtain a Ki value for the inhibitor (Copeland, 1996).    
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Figure 3.9.   Lineweaver-Burk plot for competitive (A), non-competitive (B), and mixed 
inhibition (C) (Adapted from Copeland, 1996) 
 

 We investigated the mode of inhibition for compounds 3.19 (4-NO2E1), 3.16 (4-BrE1), 

and 3.20 (4-NO2E2) which were among the most potent ones listed in Table 3.2.  All three 

compounds showed almost exclusively non-competitive inhibition (Figures 3.9-3.11).  Replots 

of these graph to the corresponding Dixon-plot yielded non-competitive Ki for these compounds, 

and is displayed in Table 3.3.  So it appears that these compounds inhibit STS by binding at a 

secondary site and inhibit via a different mechanism than regular competitive inhibitors.  This is 

strong evidence suggesting the presence of a secondary binding site available to analogues of 

estrone, and estradiol, and potentially ES and EP.   
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Figure 3.10.  Lineweaver-Burk plot for 3.19 � 0µM � 0.5 µM � 1 µM � 2 µM 	 4 µM 

 

Figure 3.11.  Lineweaver-Burk plot for 3.20 � 0µM � 0.5 µM � 1 µM � 2 µM 	 4 µM 
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Figure 3.12.  Lineweaver-Burk plot for 3.16 � 0µM � 0.6125 µM � 1.25 µM �2.5 µM 	 5 
µM   
 

Table 3.3.  Ki’s for compounds 3.19, 3.20 and 
3.24 

Compound Ki (µM) 

3.19 1.4 

3.20 1.8 

3.16 2.5 
  

 If the above compounds are binding at a secondary site then the question remains as to 

where this second site is.  The detergent β-n-octyl-D-glucopyranoside (BOG, 3.25, Figure 3.12) 

is present during the crystallization of STS to help solubilize the enzyme (Hernandez-Guzman et 

al., 2001).  It co-crystallizes with STS.  It crystallizes in the tunnel formed by two 

transmembrane α-helices, and on a secondary site on the surface of the enzyme (Figure 3.13).  

The hydrophobic chain of BOG inserts itself in the hydrophobic tunnel towards the active site, 

suggesting a possible orientation for the substrate as it enters the active site or the product as it 

exits STS.  In vitro, the substrate may have access to this secondary binding site, which may be 

inhibitory, and result in the observed substrate inhibition at high concentration of substrate. It is 

also possible that inhibitors such as 3.19 also bind at this site.   
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HO OH

O

OH

3.25

HO

 

Figure 3.13.  Structure of BOG 

 

Figure 3.14.  Crystal structure of STS showing the location of bound BOG (Hernadez-Guzman 
et al., 2003). 
 

3.3 Conclusion and Future Work 

 We have shown that the inhibition of STS with 4-formyl estrogen derivatives can be 

enhanced, in terms of binding affinity, by introducing a hydrophobic benzyl group at the 17-

positon of 4-FE1.  As with 4-FE1, the inhibition is still concentration and time-dependent.  

Future studies with these compounds will include determining if 4-FE1 and 3.4 are inhibiting 

STS by forming a Schiff base with a lysine or arginine residue.  These studies will involve 
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subjecting the inactivated enzyme to a reducing agent such as NaCNBH3 to reduce the imine (if 

formed) to a stable amine, followed by deglycosylation of the enzyme, enzymatic digestion and 

MS analysis of the resulting fragments. 

 Preliminary studies suggest that introducing substituents at the 2-position of 4-formyl 

estrogen derivatives results in loss of concentration and time-dependent inhibition and a 

considerable decrease in inhibitor affinity.  Studies with estrogen derivatives substituted at the 4-

position with groups other than a formyl revealed that a good reversible inhibitor can be obtained 

simply by introducing an electron withdrawing group at this position (such as 4-nitroestrone).  

However, these types of inhibitors are non-competitive inhibitors suggesting an alternative 

steroid binding site.  These compounds will be used as lead compounds for the design of future 

inhibitors for STS.  Preparing estrogens bearing substituents at both the 17- and 4-positions 

could lead to highly potent inhibitors.  

3.4 Experimental 

3.4.1  Materials 

 Materials were the same as described in section 2.4.1 chapter 2.   

3.4.2 IC50 determinations 

 20 µL of the inhibitor solutions of various concentrations of inhibitor in (1:1) 

DMSO/0.1 M Tris-HCl pH 7.0 were added to the wells of a 96-well microtiter plate containing 

160 µL of a 2 mM 4-MUS solution in 0.1 M Tris-HCl, pH 7.0.  The reaction is initiated by the 

addition of 20 µL of 80 nM STS in 20 mM Tris-HCl, pH 7.4, 0.1% Triton X-100 into to the well, 

yielding a final concentration of 8 nM STS, 200 µM 4-MUS in 0.1M Tris-HCl, pH 7.0, 0.01% 

Triton X-100, and 5% DMSO.  STS activity was measured by monitoring the production of 4-

MU by fluorescence for 10 minutes as described in section 2.4.3 in chapter 2.  The activity of 
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STS in the presence of inhibitor was compared to the activity of STS in the absence of inhibitor, 

and a percent activity was calculated.  This percent activity was plotted on a semi log graph 

against the log concentration of the inhibitor, and fitted in Grafit from Erithacus Software 

(Surrey, U.K.) using the equation: Vi = Vo/[1+([I]/IC50)S] + B where Vi = initial rate of reaction 

at inhibitor concentration [I]; Vo = velocity in the absence of inhibitor; B = background activity; 

s = slope factor.  All reactions were performed in triplicate. 

3.4.3 Ki determination  

Various solutions of inhibitors 3.19, 3.20, and 3.24 were prepared in DMSO/0.1M Tris-

HCl pH 7.0 (1:1).  20 µL of these solutions were added to the wells of a black 96-well microtiter 

containing 160 µL of varying concentrations of 4-MUS ranging from 0-222.2 µM.  The reaction 

is initiated by the addition of 20 µL of 80 nM STS in buffer containing 20 mM Tris-HCl 0.1% 

Triton X-100 pH 7.0. STS activity was monitored as described previously.  A positive control 

was done in a similar manner, with the exception of adding STS and replacing the volume with 

20 µL of 20mM Tris-HCl, 0.1% Triton X-100, pH 7.0.  The initial rates of the reaction obtained 

as relative fluorescent units over time (RFU/sec) for each 4-MUS concentration are plotted as a 

Lineweaver-Burk graph using Excel 2007.  The slopes and intercepts of the Lineweaver-Burk 

plots are replotted based on the equations for mixed or competitive inhibition to obtain the 

desired Ki values. All reactions were performed in triplicate. 

3.4.4 Determination of time and concentration dependent inhibition of STS with 3.4. 

 Stock solutions of compound 3.4 were prepared in DMSO/0.1M Tris-HCl pH 7.0 (1:1).  

20 µL of these samples were added to an Eppendorf tube containing 160 µL of 0.1M Tris-HCl 

pH 7.0 and 20 µL of 3.1 µM STS in 20 mM Tris-HCl, 0.1% Triton X-100 pH 7.4.  4 µL aliquots 

were withdrawn every 10 minutes and added to a well containing 196 µL of 4 mM 4-MUS in 0.1 
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M Tris-HCl pH 7.0.  This was repeated in triplicate.  STS activity was determined as described 

above.  A similar procedure was carried out for a control which contained 20 µL of DMSO/0.1 

M Tris-HCl pH 7.0 (1:1) in place of the inhibitor solutions.  The production of 4-MU was followed 

as described above.  The percent activity remaining as a function of time was plotted as a semilog graph.  

The slopes of these plots, which represent the pseudo-first order rate constants (kobs), were used to 

generate a Kitz-Wilson double reciprocal plot.  A linear regression model was used to calculate the 

inhibition constant, KI (-1/x-intercept) and kinact (1/y-intercept).  

3.4.5 Time and concentration-dependent inhibition of STS in the presence of estrone 

phosphate (EP) (protection experiments) 

Protection experiments with EP were carried out in the same procedures as above for 

time and concentration-dependent inhibition of compounds 3.4, with the exception of varying 

concentration of EP (2.5, 5, and 25µM).  The concentration of 3.4 was 500 nM.  

3.4.6 Dialysis Experiment  

 A 200 µL solution containing 1 µM of 3.4 and 277 nM STS in 0.1M Tris-HCl, 5% 

DMSO, 0.1 % Triton X-100, pH 7.0 was incubated for 60 minutes at room temperature. 4 µL 

aliquots were withdrawn at t = 0 and t = 60 min and added to the wells of a 96-well microtiter 

plate containing 196 µL of 4 mM 4-MUS. STS activity is monitored as described previously.  

This was performed in triplicate.  The remaining 176 µL was transferred to a dialysis bag and 

dialyzed against 1 L buffer containing 0.1 M Tris-HCl pH 7.0, 0.1% Triton X-100.  4 µL aliquots 

were withdrawn at 540, 1020, and 1500 min and STS activity was determined as described 

above.  After withdrawing aliquots at 540 and 1020 minutes the dialysis buffer was changed.  A 

control was performed in an identical manner except no inhibitor was present.   

 



56 

 

Chapter 4 – Photoaffinity Labeling to Reveal Mode of Substrate and 

Product Transport in STS 

 

4.1 Introduction 

4.1.1 Photoaffinity labeling  

In Chapter 1 we mentioned that it is not yet known how STS substrates enter the active 

site (see section 1.2.3).  The substrate could enter via a tunnel between the two antiparallel 

hydrophobic α-helices.  Alternatively, the tunnel could also serve as an exit for the product.  An 

alternative mode of entry to the active site is for the substrate to enter from the lumen side via 

three flexible loops surrounding the active site.  In order for this to occur, the sulfated substrate 

must first be transported through the ERit membrane via a specific transporter into the lumen of 

the ERit.  One technique that may allow us to learn more about substrate entry and product 

release in STS is photoaffinity labeling.   

Photoaffinity labeling (PAL) is a labeling procedure which can be used to gain insight 

on ligand-protein interaction, such as drug-protein or substrate-protein interactions, otherwise not 

possible with regular protein identification and characterization techniques.  In brief, PAL 

involves a ligand containing a photosensitive group which is able to form a non-covalent 

interaction with its receptor.  As such, majority of photoaffinity labels are derivatives of natural 

substrates.  When activated by UV irradiation, the ligand breaks down to form a reactive 

intermediate which reacts to form a covalent bond with residues near the binding site.  The 

covalently linked ligand-receptor complex formed by PAL allows for vigorous downstream 

applications such SDS-PAGE, protein digests, HPLC, and mass spectrometry (Robinette et al., 

2006) (Figure 4.1).  These techniques, in particular mass spectrometry, when combined with 

PAL can reveal secondary binding sites and mode of substrate-protein interactions.  Amongst 
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other cross linking methods, PAL remains attractive due to its formation of highly reactive 

intermediates, capable of virtually reacting with any residues in proximity (Robinette et al., 

2006). In addition, PAL has been successful in the past to label various binding sites on proteins, 

including the estrogen receptor (Payne et al., 1980).  

A. Photoaffinity
ligand binding
to receptor 
non-covalently

B. Ligand covalently
bound to receptor

UV Protein Digest

C. Fragments with
bound label

LC-MS characterization

 

Figure 4.1.  The photolabelled ligand is covalently linked by UV irradiation to the binding site 
on the enzyme.  The digestion of the labeled protein followed by MS allows for the identification 
of the labeled amino acids (Robinette et al., 2006) 
 

4.1.2 Photoaffinity Probes 

 The choice of a photoaffinity probe depends on the compatibility with the ligand and 

receptor in question.  Ideally, the photo label should have a lifespan under UV irradiation that is 

short enough so the covalent linkage can occur before the dissociation of the ligand-protein 

complex, but also long enough so that sufficiently covalent bonding is able to occur.  In addition, 

it should be able to attack C-H and X-H bonds at wavelengths that do not cause extensive 

photolytic damage to the protein.  The three main types of photoactivating groups commonly 

used in PAL are the benzophenone groups, diazirines, and azido.  Photolysis of these groups 

generally produces highly reactive carbenes and nitrenes.  A general reaction scheme for an 

azido group is shown in scheme 4.1.  These intermediates are highly reactive electrophiles 

capable of reacting with double bonds and heteroatoms with lone pairs such as nitrogen, oxygen, 

and sulfur.  However, their star role in PAL is due to their ability to attack inert aliphatic C-H 
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bonds, allowing them to react with almost all functional groups found in proteins (Robinette et 

al., 2006). 

N3 N

X X

-N2

HN

X

light

a nitrene

ProtCH
ProtNH2
ProtOH

CProt

HNProt
Oprot....

 

Scheme 4.1.  General mechanism for photoaffinity labeling of proteins with aryl azides 

 The objective of the work described in this chapter is to evaluate compounds 4.1-4.5 

(Figure 4.2) as photoaffinity labels of STS.  Should any of these compounds prove to be 

photoaffinity labels of STS then, by identifying which residues are being modified by these 

labels, we will be able to learn more about substrate entry and product release in STS.  
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Figure 4.2.  Proposed PAL’s for STS.   
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4.2 Results and Discussion 

4.2.1 Studies with compounds 4.1 and 4.2 

 We initially focused our attention on phenyl azides 4.1 and 4.2 which were synthesized 

by Christine Nicolas in the Taylor group.   We initially chose these compounds since it is known 

that phenylazides can be photolyzed under mild conditions (wavelengths between 300-350 nm 

are often employed [Payne et al., 1980]).  However, we did not know what affect irradiating STS 

at wavelengths between 300-350 nm would have on its activity.   To determine this a solution of 

STS in 0.1M Tris-HCl, 0.01% Triton X-100, 5% DMSO, pH 7.0 was irradiated at room lighting 

(control), 300 nm and 350 nm over 25 minutes (Figure 4.3) using a Rayonet Photochemical 

Reactor (Southern New England Ultraviolet).  At 300 nm irradiation, almost 45% of enzyme 

activity is lost over 25 minutes which is considerable.  The loss of activity at 350 nm was about 

15%, which is reasonably acceptable and thus selected as the irradiation wavelength for the PAL 

experiments.  

 

Figure 4.3.  Effect of irradiation at 300 or 350 nm on the activity of STS.  300 nm (�)350 nm 
(�) and no irradiation (�) 
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 The next step was to determine if 4.1 and 4.2 breakdown within a reasonable amount of 

time (30 min) upon irradiation at 350 nm. Thus, estrone sulfate (ES), 4.1 and 4.2 were irradiated 

at 350 nm and their absorbance spectrum was obtained every 5 minutes over a 20 minute period 

(Figure 4.4-4.6).  4.1 and 4.2 exhibit absorbance maxima at around 250-260 nm (Figures 4.4 

and 4.5).  Although neither of these compounds absorb at 350 nm there was a significant change 

in their absorbance spectrum upon irradiation at 350 nm over the 20 minute time period 

suggesting that breakdown of the azide was occurring.   The spectrum of ES did not change upon 

irradiation at 350 nm (Figure 4.5).  

 

Figure 4.4.  Absorbance spectra of a 30 µM solution of 4.1 in 0.1M Tris-HCl, 0.01% Triton X-
100, 5% DMSO, pH 7.0 at 350 nm for 0, 5, 10, 15, 20 and 25 min. 
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Figure 4.5.  Absorbance spectra of a 30 µM solution of 4.2 in 0.1M Tris-HCl, 0.01% Triton X-
100, 5% DMSO, pH 7.0 at 350 nm for 0, 5, 10, 15, 20 and 25 min. 
 

 

Figure 4.6.  Absorbance spectra of 50µM ES in 0.1 M Tris-HCl, 0.01% Triton X-100, 5% 
DMSO, pH 7.0   
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azidoestrone (4.7) which could also act as photolabels of STS (Figure 4.7).  Indeed, compound 

4.7 has been used by Payne et al as a PAL for the estrogen receptor (Payne et al., 1980).   
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Figure 4.7.   Products (4.6 and 4.7) resulting from the STS-catalyzed hydrolysis of 4.1, and 4.2.  

 Compounds 4.6 and 4.7 were prepared in the Taylor lab by Christine Nicolas.  

Compound 4.6 was readily soluble in our assay buffer. Its absorbance spectrum was obtained and 

one of its absorption maxima is at 299 nm (Figure 4.8).  We also found that its spectrum 

undergoes considerable changes upon irradiation at 350 nm (Figure 4.8).  Compound 4.7 did not 

dissolve at all in our assay buffer and we had to obtain its spectrum in pure ethanol.  

Nevertheless, 4.7 appears to also absorb strongly at around 295 nm and there was an observable 

change in the spectrum upon irradiation at 350 nm (Figure 4.9).  
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Figure 4.8.  Absorbance spectra of a 50 µM solution of 4.6 in 0.1M Tris-HCl, 0.01% Triton X-
100, 5% DMSO, pH 7.0 after irradiation at 350 nm for 0, 5, 10, 15, 20 and 25 min. 

 

Figure 4.9.  Absorbance spectra of a 50 µM solution of 4.7 in ethanol after irradiation at 350 nm 
for 0, 5, 10, 15, 20 and 25 min 

 

To find out if 4.1 and 4.2 were substrates for STS, we incubated 50 µM 4.1 and 4.2 with 

55 nM of STS in buffer containing 0.1 M Tris-HCl, 0.01 % Triton X-100, 5% DMSO at pH 7.0.  

Controls were also carried out for 4.1, 4.2, 4.3, and 4.4 in the absence of STS in the same buffer.  
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After 25 minutes, 20 µL of each sample were injected into HPLC and their HPLC 

chromatograms obtained (Figures 4.10 and 4.11).  The samples were monitored at 255 nm, 

corresponding to the λmax of 4.1 and 4.2, (Figure 4.10) and 299 nm corresponding to the λmax of 

4.6 and one of the peaks of 4.7 (Figure 4.11).  After 25 minutes, almost all of 4.1 was consumed.  

In contrast, almost none of 4.2 was consumed.  So it appears that 4.1 is a substrate for STS while 

4.2 is not.   

 

Figure 4.10.  HPLC chromatograms for A) 50 µM 4.1 (left) or 4.2 (right) B) 50 µM 4.6 (left) or 
4.7 (right) C) 55 nM STS with 50 µM 4.1 (left) or 4.2 (right) after 25 minutes.  All solutions 
consisted of compound in 0.1 M Tris-HCl, 0.01 % Triton X-100, 5% DMSO, pH 7.0 prior to 
injection into the HPLC.  Chromatograms were recorded at 255 nm. 
 



65 

 

 

Figure 4.11.  HPLC chromatograms for A) 50 µM 4.1 (left) or 4.2 (right) B) 50 µM 4.6 (left) or 
4.7 (right) C) 55 nM STS with 50 µM 4.1 (left) or 4.2 (right) after 25 minutes.  All solutions 
consisted of compound in 0.1 M Tris-HCl, 0.01 % Triton X-100, 5% DMSO, pH 7.0 prior to 
injection into the HPLC.  Chromatograms were recorded at 299 nm. 
 

 Although compound 4.2 is not an STS substrate, we did find that it is a good STS 

inhibitor exhibiting an IC50 of 7.4 ± 0.4 µM.  A more detailed analysis revealed that this 

compound exhibits mixed non-competitive inhibition (Figure 4.12) with a Ki of 8.3 µM and αKi 

of 19.5µM.  So this compound binds to STS but is not a substrate.  It is not surprising that this 

compound exhibits mixed non-competitive inhibition since we demonstrated in Chapter 3 that 

estrogen derivatives bearing substituents at the 4-position were noncompetitive STS inhibitors.  

We also found that the IC50 for compound 4.1 (IC50= 8.3 ± 0.2 µM) is very similar to that of 

compound 4.2.  Compound 4.1 exhibits mainly competitive inhibition with a Ki of approximately 

5.5 µM (Figure 4.13) which is consistent with it being a good STS substrate.  However, the fact 

that it is a substrate for STS means that the IC50 and Ki values that we have reported for 4.1 must 
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be regarded with caution since its concentration would be changing (due to STS-catalyzed 

hydrolysis) during the course of the inhibition experiments.  

 

Figure 4.12. Lineweaver-Burk plot for 4.2 � 0µM � 5 µM � 10 µM � 20 µM  

 

Figure 4.13.  Lineweaver-Burk plot for 4.1.  0µM (�), 2.5 µM (�), � 5 µM � 10 µM  

 Before examining 4.1 and 4.2, as well as 4.6 and 4.7 as PAL’s, we determined whether 
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350 nm.  10 µM (compound 4.7) or 50 µM (compounds 4.1, 4.2 and 4.6) of these compounds 

was incubated with STS in buffer containing 0.1M Tris-HCl 5% DMSO pH 7.0, aliquots were 

removed at various time intervals and added to a 2mM solution of 4-MUS in the same buffer and 

the activity of the enzyme determined. We did not observe any time-dependent inhibition over 

25 minutes as shown in Figure 4.14. 

 

Figure 4.14.  Percent STS activity recovered versus time upon a ten-fold dilution of a solution of 
STS containing no photoaffinity label (�), 50 µM 4.1 (�), 50 µM 4.2 (�), 50 µM 4.6 (
) or 10 
µM 4.7 (�) into a solution of 2 mM 4-MUS.  All solutions contained 0.1 M Tris-HCl, 5% 
DMSO at pH 7.0. 
 
 Preliminary photoaffinity labeling experiments were carried out using varying 

concentrations of 4.1 and 4.2 ranging from 0-100 µM over 20 minutes with 30 nm STS to 

determine an ideal concentration of photoaffinity label to use.  The compounds were incubated 

with STS in buffer and the solution irradiated at 350 nm.  An aliquot was withdrawn every 5 

minutes and transferred to a solution containing 2 mM of 4-MUS and STS activity was 

determined in the usual manner.  Both compounds exhibited time- and concentration-dependent 

inhibition when irradiated at 350nm (Figure 4.15 and 4.16).  In both cases, we observe that 50 

µM of photoaffinity label is sufficient for our desired PAL experiments.  
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Figure 4.15.  Percent STS activity remaining versus time in the absence of 4.1 with no 
irradiation (�) and upon irradiation at 350 nm in the presence of 5(�), 10(�), 25 (�), 50 (�) 
and 100 (�) µM 4.1 in 0.1M Tris-HCl, 2% DMSO, pH 7.0.  STS activity was determined by 
diluting the mixtures ten-fold into a solution containing 2 mM 4-MUS and following the 
production of MU as described in the experimental section.  Activity loss due to the effect of 350 
nM radiation on STS alone (see Figure 4.3) has been subtracted from the data.    
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Figure 4.16.  Percent STS activity remaining versus time in the absence of 4.2 with no 
irradiation (�) and upon irradiation at 350 nm in the presence of 5(�), 10(�), 25 (�), 50 (�) 
and 100 (�) µM 4.2 in 0.1M Tris-HCl, 2% DMSO, pH 7.0.  STS activity was determined by 
diluting the mixtures ten-fold into a solution containing 2 mM 4-MUS and following the 
production of MU as described in the experimental section.  Activity loss due to the effect of 350 
nM radiation on STS alone (see Figure 4.3) has been subtracted from the data.    
 

Photoaffinity of 4.1 and 4.2 with the above procedures produced very desirable results.  

We observe that for both compounds, the inhibition generally plateaus after 20 minutes. This is 

likely due to the complete breakdown of the photoaffinity label in solution.   We also note that 

4.1 exhibits a sharper decline in activity compared to that of 4.2, which exhibits an initial lag 

phase.  Overall, both 4.1 and 4.2 appear to be effective photoaffinity labels, with 4.1 only being 

slightly better.  We also examined the effect of DMSO on their ability to label STS by repeating 

the above experiments using 5% instead of 2% DMSO.  Increasing the DMSO from 2 to 5% had 

little or no effect on the ability of these compounds to label STS (Figure 4.17).    

 

 

Figure 4.17.  Percent STS activity remaining versus time in the absence of 4.1 and 4.2 with no 

irradiation (■), and in the presence of 50 µM (♦) 4.1 or 50 µM 4.2 (▲) in 0.1M Tris-HCl, 5% 
DMSO, pH 7.0.  STS activity was determined by diluting the mixtures ten-fold into a solution 
containing 2 mM 4-MUS and following the production of MU as described in the experimental 
section.  Activity loss due to the effect of 350 nM radiation on STS alone (see Figure 4.3) has 
been subtracted from the data.  

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

%
 A

c
ti
vi

ty
 R

e
m

a
in

in
g

Time (min)



70 

 

 
 One complicating issue when using 4.1 and 4.2 as photoaffinity labels is that the STS 

hydrolysis products 4.6 and 4.7 can also potentially act as photoaffinity labels.  This is not a 

major problem with 4.2 since it does not appear to be a good substrate.  However, 4.1 is a good 

substrate and is certainly being hydrolyzed under the conditions of the PAL experiment.  

Therefore we checked whether 4.6 and 4.7 could act as photoaffinity labels of STS.  While we 

were able to solubilize 4.6 at 50 µM, we were unable to do so for 4.7 at concentrations greater 

than 10 µM.  The data in Figure 4.18 reveal that 4.6 is a good photoaffinity label for STS.  

Compound 4.7 also appears (Figure 4.19) to be capable of labeling STS though the loss of 

activity is very small but this could be due to the fact that we are using a much lower 

concentration of label compared to what was used for our studies with 4.1, 4.2 and 4.6.  Thus 

using 4.1 as a photoaffinity label is not ideal since labeling by the desulfated product can also 

occur and it is very possible that the loss of activity we observe with 4.1 (Figure 4.16) may be 

completely due to labeling by 4.6.   However, since 4.3 labels STS fairly well and is not a good 

substrate it could be a promising photoaffinity label for STS.  One drawback of 4.3 is that it 

begins to experience solubility problems above 50µM, and hence can only be used as 

photoaffinity labels below this concentration.     
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Figure 4.18.  Percent STS activity remaining versus time in the absence of 4.6 and 4.7 with no 

irradiation (■) and upon irradiation at 350 nm and in the presence of 50 µM 4.6 (♦) or 10 µM 4.7 
(▲) in 0.1M Tris-HCl, 5% DMSO, pH 7.0.  STS activity was determined by diluting the 
mixtures ten-fold into a solution containing 2 mM 4-MUS and following the production of MU 
as described in the experimental section.  Activity loss due to the effect of 350 nM radiation on 
STS alone (see Figure 4.3) has been subtracted from the data obtained from radiated solutions.  
 
4.2.2 Studies with compounds 4.3-4.5 

 One way to avoid the problem of the STS-catalyzed hydrolysis of the photoaffinity labels 

is to use photoaffinity labels that are based on an STS inhibitor instead of an STS substrate.  

Estrone-3-phosphate (EP, the phosphate analog of the natural STS substrate, ES) is a well-known 

inhibitor of STS with a Ki of 0.4 µM at pH 7.0 (Li et al., 1995).;  Therefore we decided to 

examine compounds 4.3-4.5 as PAL’s for STS (Figure 4.2).  These compounds should bind 

(non-covalently) to STS at least as well as 4.1 and 4.2 and they should be more soluble in 

solution due to the phosphate group.  Unlike compounds 4.1-4.4, diazoketone 4.5 should 

inactivate STS by forming a reactive carbene (not a nitrene) upon irradiation.  Carbenes are 

highly reactive compounds that can insert into C-H bonds.  Compound 4.5 is very similar to 

compound 4.8 (Figure 4.19) which has been used for photoaffinity labeling of the estrogen 
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receptor (Payne et al., 1980).  Compounds 4.3-4.5 and 4.8 were prepared by Professor Scott 

Taylor. 

O

HO

4.8

N N+
-

 

Figure 4.19.  Structure of compound 4.8. 

 As with the first generation of photoaffinity labels, we carried out experiments to check 

whether EP and 4.3-4.5 break down upon irradiation at 350 nm (Figures 4.20-4.23).   

Compounds 4.3-4.5 exhibit significant changes in their absorbance spectra upon irradiation at 

350 nm suggesting that structural changes are indeed occurring upon irradiation (Figures 4.20-

4.22). The spectrum of EP did not change upon irradiation at 350 nm (Figure 4.23).  

 

Figure 4.20.  Absorbance spectra of a 50 µM solution of 4.3 in 0.1M Tris-HCl, 0.01% Triton X-
100, 5% DMSO, pH 7.0 after irradiation at 350 nm for 0, 5, 10, 15, 20 and 30 min.  
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Figure 4.21.  Absorbance spectra of a 50 µM solution of 4.4 in 0.1M Tris-HCl, 0.01% Triton X-
100, 5% DMSO, pH 7.0 after irradiation at 350 nm for 0, 5, 10, 15, 20 and 30 min. 
 

 

Figure 4.22.  Absorbance spectra of a 200 µM solution of 4.5 in 0.1M Tris-HCl, 0.01% Triton 
X-100, 5% DMSO, pH 7.0 after irradiation at 350 nm for 0, 5, 10, 15, 20 and 30 min.  
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Figure 4.23.  Absorbance spectra of 50 µM EP in 0.1M Tris-HCl, 0.01% Triton X-100, 5% 
DMSO, pH 7.0. 
 
 The change in the absorbance spectrum of compound 4.8 upon irradiation at 350 nm was 

also examined.  Surprisingly, the absorbance spectrum for compound 4.8 exhibited relatively 

minor changes upon irradiation at 350 nm (Figure 4.24).  The  λmax and λmin stayed more or less 
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-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

250 270 290 310 330 350

A
b
s
o
rb

a
n
c
e

Wavelength (nm)



75 

 

 

Figure 4.24.  Absorbance spectra of a 50 µM solution of 4.8 in 0.1M Tris-HCl, 0.01% Triton X-
100, 5% DMSO, pH 7.0 after irradiation at 350 nm for 0, 5, 10, 15, 20 and 25 min. 
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compounds. 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

245 295 345

A
b
s
o
rb

a
n
c
e

Wavelength (nm)

0 min

5 min

10 min

15 min

20 min

25 min



76 

 

 

Figure 4.25.  Percent STS activity recovered versus time upon a 1/10 dilution of a solution of 
STS containing no inhibitor (�), 50 µM 4.8 (�), 50 µM 4.3 (�), 50 µM 4.5 (�), or 50 µM 4.4 
() into a solution of 4 mM 4-MUS for compounds 4.3 and 4.5, and 2mM 4-MUS for 
compounds 4.4 and 4.8.  All solutions contained 0.1 M Tris-HCl, 5% DMSO at pH 7.0.  
 

 Compound 4.5 exhibited competitive inhibition with a Ki of 1.4 µM, which is very 

similar to that of EP (Figure 4.26).  Nonetheless, it was not a significantly better inhibitor than 

compounds 4.1 and 4.2 though these compounds exhibited, to varying extents, mixed inhibition.  
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0

20

40

60

80

100

0 5 10 15 20 25

%
 A

c
ti
vi

ty
 R

e
m

a
in

in
g

Time (min)



77 

 

Ki of 64 µM and an αKi of 127 µM.  As shown in Figure 4.24, STS activity was readily 

recovered upon dilution of a solution of STS containing 50 µM 4.4 into a solution of 2 mM 4-

MUS. 

 

 

Figure 4.26.  Lineweaver-Burk plot for 4.5.  0µM (�), 3.13 µM (�), 6.25 µM (�),12.5 µM 
(�), 25.0 µM (	). 
 

 

Figure 4.27.  Lineweaver-Burk plot for 4.3 � 0µM � 5.0 µM � 10.0 µM � 20.0 µM  
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Figure 4.28.  Effect of 4-MUS concentration on the recovery of STS activity after incubating 
STS with 10 µM EP(�)and  10 µM 4.5 (�).STS activity was determined by diluting the 
mixtures of STS and EP or STS and 4.5 ten-fold into a solution containing various 
concentrations of  4-MUS and following the production of MU as described in the experimental 
section.  Control without inhibitor (�). 
 

 

Figure 4.29.  Lineweaver-Burk plot for compound 4.4.  0 µM (�), 50 µM (�), 100 µM (�), 
200 µM (�).  
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the diazo group is indeed forming a carbene but the carbene is not reacting with a residue on the 

enzyme and the resulting product may still be a good inhibitor of STS since the phosphate group 

and much of the steroid skeleton should still be intact.   

 

Figure 4.30.  Percent STS activity remaining versus time in the absence of 4.5 with no 
irradiation (�) and upon irradiation at 350 nm and in the presence of 50 µM 4.5 (�) in 0.1M 
Tris-HCl, 5% DMSO, pH 7.0. STS activity was determined by diluting the mixture ten-fold into 
a solution containing 4 mM 4-MUS and following the production of MU as described in the 
experimental section.  Activity loss due to the effect of 350 nm radiation on STS alone (see 
Figure 4.3) has been subtracted from the data obtained from radiated solution.  
 

 Surprisingly, photoaffinity labeling experiments with 4.8 reveal that it is able to label 

STS moderately as shown in Figure 4.31.  This suggests that compounds 4.5 and 4.8 bind very 

differently to STS.  The phosphate group may bind in a way that prevents the diazo group from 

reacting with the residues important in the transport or catalysis of STS.  Compound 4.8 has an 

IC50 of 24 µM. We have not yet determined its mode of inhibition.   
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Figure 4.31.  Percent STS activity remaining versus time in the absence of 4.8 with no 
irradiation (�) and upon irradiation at 350 nm and in the presence of 50 µM 4.8 (�) in 0.1 M 
Tris-HCl, 5% DMSO, pH 7.0. STS activity was determined by diluting the mixture ten-fold into 
a solution containing 2 mM 4-MUS and following the production of MU as described in the 
experimental section.  Activity loss due to the effect of 350 nm radiation on STS alone (see 
Figure 4.3) has been subtracted from the data obtained from radiated solution.  
 

 Photoaffinity labeling experiments with 4.3 yielded results that were similar to 4.5 

(Figure 4.31).  Since 4.6 is a good photoaffinity label for STS, it suggests that the phosphate 

group may indeed be the culprit preventing labeling from occurring.  As shown earlier (Figure 

4.20), 4.3 breaks down upon irradiation at 350 nm.  The fact that activity is slowly being restored 

over time suggests that degradation of the label occurring.  A reaction might be occurring 

between the photo-generated nitrene and the phosphate group which is in very close proximity.  

This results in destruction of the phosphate groups and loss of inhibitory activity.  Compound 4.4 

is a good photoaffinity label of STS (Figure 4.32) with only 35 % STS activity remaining after 

being irradiated in the presence of 50 µM 4.4 for 25 minutes.  This was surprising considering 

that this compound exhibited the poorest affinity for STS amongst all of the compounds studied.  
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occurring at a secondary site (a site other than the active site) and this is somehow affecting 

enzymatic activity.  

We conducted a protection experiment to determine if compound 4.4 is reacting with 

active site residues.  The experiment was done similar to previous PAL experiments, with the 

addition of varying concentrations of estrone phosphate, a competitive inhibitor.  Estrone 

phosphate protects STS from inactivation by 4.4 when irradiated at 350 nm (Figure 4.34) 

indicating that at least some labeling is occurring at the active site.  A summary of our results 

with compounds 4.1-4.8 is given in Table 4.1.   

 

 

Figure 4.32.  Percent STS activity remaining versus time in the absence of 4.3 with no 
irradiation (�) and upon irradiation at 350 nm and in the presence of 50 µM 4.3 (�) in 0.1 M 
Tris-HCl, 5% DMSO, pH 7.0. STS activity was determined by diluting the mixture ten-fold into 
a solution containing 4 mM 4-MUS and following the production of MU as described in the 
experimental section.  Activity loss due to the effect of 350 nm radiation on STS alone (see 
Figure 4.3) has been subtracted from the data obtained from radiated solution.  
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Figure 4.33.  Percent STS activity remaining versus time in the absence of 4.4 with no 
irradiation (�) and upon irradiation at 350 nm and in the presence of 50 µM 4.4 (�) in 0.1 M 
Tris-HCl, 5% DMSO, pH 7.0. STS activity was determined by diluting the mixture ten-fold into 
a solution containing 2 mM 4-MUS and following the production of MU as described in the 
experimental section.  Activity loss due to the effect of 350 nm radiation on STS alone (see 
Figure 4.3) has been subtracted from the data obtained from radiated solution.  
 

 
Figure 4.34.  Percent STS activity remaining versus time in the absence of 4.4 with no 
irradiation (�) and upon irradiation at 350 nm and in the presence of 50 µM 4.4 and 0 µM EP 

(�), 2.5 µM EP (�), 5 µM EP (
), and 25 µM EP (�) in 0.1 M Tris-HCl, 5% DMSO, pH 7.0. 
STS activity was determined by diluting the mixture ten-fold into a solution containing 4 mM 4-
MUS and following the production of MU as described in the experimental section.  Activity 
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loss due to the effect of 350 nm radiation on STS alone (see Figure 4.2) has been subtracted 
from the data obtained from radiated solution. 
 

Table 4.1.  Summary of results with compounds 4.1-4.8 

 

 

Compound 

 

 

IC50 (µM) 

 

 

Ki(µM) 

 

% activity 

remaining
a
 

 

Mode of 

inhibition 

 

 

Substrate 

4.1 8.3 ± 0.2 5.5 55 Competitive Yes 

4.2 7.4 ± 0.4 8.3 

(αKi = 20) 

45 Mixed No 

4.3 8.3 ± 0.2 6.8 61d Competitive No 

4.4 129 ± 11 

 

64 

(αKi  = 127) 

35 Mixed No 

4.5 12.4 ± 0.4 1.4 47d Competitive No 

4.6 ND* NDc 58 ND No 

4.7 ND* NDc 87b ND No 

4.8 24 ± 3 ND 64 ND No 

aPercent activity remaining after irradiation of a solution of STS and 50 µM 
compound at 350 nm for 25 minutes followed by a 10-fold dilution into a 2 mM 
solution of 4-MUS for all compounds except 4.3 and 4.5 in which 4mM 4-MUS was 
used.  bOnly 10 µM of compound used due to limited solubility of the compound. 
cNot determined due to limited solubility. dTime-dependent inhibition was not 
observed upon irradiation. 

 
 Out of the five sulfated and phosphorylated compounds studied compounds 4.2 and 4.4 

are most promising.  While 4.1 appeared to photolabel STS it is very possible that this was due to 

labeling by its hydrolysis product 4.6. Compounds 4.3 and 4.5 did not exhibit time-dependent 

inhibition upon irradiation.  Compounds 4.6 and 4.7 also act as photolabels of STS and might be 

useful for examining product release pathways in STS.   

 

4.2.3  Deglycosylation of STS  
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 We would like to use mass spectrometry to determine which residues in STS are being 

modified by our photoaffinity labels.  This will require that the modified STS be deglycosylated 

before MS analysis.  STS is glycosylated at four Asn residues. Mortaud et al. report 

deglycosylation of STS by a N-glycosidase F (PNGase F) (Mortaud et al., 1995).  PNGase is an 

endoglycosidase that catalyzes the release of N-linked oligosaccharides from proteins (Tarentino 

et al., 1985).  We purchased PNGase F from New England Biolabs, and followed the procedure 

provided with the kit.  Mortaud et al. have shown that deglycosylated STS exhibits enhanced 

mobility on SDS PAGE compared to native STS and our results (Figure 4.35) are consistent 

with this observation.  PNGase usually appears on an SDS gel as 35.5 kDA (Tarentino et al., 

1985), but we did not observe any band in this region due to a low concentration of PNGase F 

used. 

 

Figure 4.35.  SDS PAGE of purified STS.  The gel was stained in Fermentas PageBlue Protein 
staining solution.  Lane 1 contains Fermentas PageRulerTM Prestained Protein Ladder.  Lane 2 
contains deglycosylated STS .  Lane 3 contains purified STS. 
 

4.3 Conclusion and Future Work 

A series of estrone derivatives were examined as photoaffinity labels of STS.  Of the 

sulfated and phosphorylated compounds examined, two of these compounds, 4.2 and 4.4 exhibit 

properties that are suitable for PAL studies with STS.  These labels may be useful for 
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ascertaining pathways of substrate entry into the STS active site.  All of the non-sulfated or non-

phosphorylated compounds 4.6-4.8, acted as photoaffinity labels to varying degrees.  These 

labels may be useful for ascertaining pathways of product release into the STS active site. Our 

future studies will involve identifying which residues are being modified using mass 

spectrometry.  We have shown, by SDS PAGE, that we can deglycosylate STS.  The band 

corresponding to the deglycosylated enzyme has been excised from the gel (Figure 4.35) and 

sent to The University of Guelph mass spectrometry facility where an in-gel tryptic digest has 

been performed and the resulting fragments sequenced by LC-MSMS.  The next step is to 

perform this type of analysis on the modified enzyme.   

4.4 Experimental 

4.4.1  Materials 

 Most materials were the same as described in section 2.4.1 chapter 2.  Photoaffinity 

labeling of STS is carried out in quartz test tubes using a Rayonet Photochemical  Reactor from 

Southern New England Ultraviolet (Branford, Connecticut).  PNGase F deglycosylation kit 

(glycerol free) was purchased from New England Biolabs (Ipswich, MA).   

4.4.2 Effect of 350 nm light on STS activity 

 30 nM of STS in buffer containing 0.1% Triton X-100, 0.1M Tris-HCl, pH 7.0 was 

exposed to irradiation at  300 or 350 nm over 25 minutes.  20 µL aliquots were withdrawn every 

5 min, beginning at t=0, and added to the wells of a microtiter plate containing 180 µL of 222.2 

µM 4-MUS in 0.1M Tris-HCl, pH 7.0.  STS activity was determined as described previously.  A 

control was performed where the enzyme was exposed to just room lighting.   
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4.4.3 Spectrophotometric studies with compounds 4.1-4.8 

 4.1-4.6 and 4.8 were dissolved in a solution of 5% DMSO, 0.1M Tris-HCl, pH 7.0 0.01 

% Triton X-100 to the desired concentration.  Compound 4.7 was insoluble in buffer and so 

solutions of this compound were prepared in pure ethanol.  1 mL of these solutions were added 

to a 10mm Helma quartz cuvette, and their spectra were obtained.  To determine the effect of 

350 nm light on their absorbance spectra, 6 mL of these solutions were placed in a quartz test 

tube, and irradiated at 350 nm.  1 mL of sample was withdrawn at various time intervals and 

their spectra determined as described above. Controls were performed where the compound 

solutions were not irradiated at 350 nm but instead just subjected to room light.   

4.4.4 Photoaffinity labeling procedure 

 Various solutions of 4.1, and 4.2 with 30 nM of STS in buffer containing 2% DMSO, 

0.1M Tris-HCl pH 7.0 in a 1 mL sample.  This sample is pipetted into a quartz test tube, and 

irradiated at 350 nm UV irradiation for 20 minutes in a Rayonet Photochemical Reactor 

(Southern New England Ultraviolet).  Simultaneously, a sample of STS in the same buffer is also 

pipetted into a quartz test tube.  Every 5 minute beginning at time 0, a 20 µL is withdrawn from 

each test tube and added to a well containing 180 µL of 2mM 4-MUS 0.1M Tris-HCl pH 7.0; 

this is repeated in triplicates.  The activity of STS determined as previously described above.  

The activity of STS in the presence of varying concentrations of photoaffinity label irradiated 

with UV light is compared to the activity of STS in the absence of photoaffinity label and UV 

irradiation.  The results are averaged, analyzed and plotted as percent Activity using Excel 2007.  

Similar conditions with the omission of UV irradiation were used to determine if the 

photoaffinity label reacted with STS in the absence of UV irradiation.    
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 1 mL solutions containing 50 µM 4.1-4.8 and 55 nM STS in buffer containing 5 % 

DMSO, 0.1M Tris-HCl, pH 7.0, 0.01 %Triton X-100 were irradiated at 350 nm UV irradiation 

for 25minutes. Every 5 min starting at t = 0 a 20 µL aliquot was withdrawn and added to a well 

of a 96-well microtiter plate containing 180 µL of 2 mM 4-MUS in 0.1 M Tris-HCl pH 7.0, with 

the exception of compounds 4.6 and 4.7 where 4 mM 4-MUS was used.  STS activity was 

determined as described previously.  The following controls were performed:  (A) the enzyme 

was incubated in the absence of compound and not irradiated at 350 nm; (B)  the enzyme was 

incubated with 50 µM of photoaffinity label but not irradiated at 350 nm; (C)  the enzyme 

irradiated at 350 nm in the absence of compound.  Any time-dependent inhibition over 25 

minutes by the compound in the absence of UV irradiation was calculated as (STS activity in 

control B)/( STS activity in control A)
 100%.  The % activity remaining as a result of specific 

photoaffinity labeling of STS by the compounds was determined by  [1- (STS activity in control 

C - STS incubated with 50 µM of compound irradiated at 350nm UV irradiation) / (STS activity 

in control A)] 
 100%.   

4.4.5  HPLC Studies with 4.1 and 4.2 

For standard studies of 4.1 and 4.2 elution off the HPLC, 20µL of 50 µM 4.1 or 4.2 in 

0.1 M Tris-HCl, 0.01 % Triton X-100 5% DMSO pH 7.0 are injected into a Phenomex Jupiter 

analytical reversed-phase C-18 column (Torrance, CA, USA) on a Waters 600 HPLC system 

(Milford, MA, USA). The Waters 2487 dual wavelength detector is set to 255 nm corresponding 

to the λλλλmaxima of these compounds.  The elution is set to an isocratic elution of acetonitrile/0.1% 

trifluoroacetic Acid (TFA) water (5:5) for 45minutes.  

For enzymatic studies with compounds 4.1 and 4.2, 55nM STS is incubated with either 

50 µM 4.1 or 4.2 in buffer A containing 0.1 M Tris-HCl, 0.01 % Triton X-100, containing 5% 
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DMSO at pH 7.0after 10 minutes. 20µL of this sample is injected into the HPLC and eluted off 

in the same conditions as stated above.    

4.4.6 IC50  and Ki determinations  

 IC50  and Ki determinations were performed as described in section 3.4.2 and 3.4.3  

4.4.7  Deglycosylation of STS 

 The deglycosylation of STS is followed according to the protocol provided by the 

PNGase F deglycosylation kit from New Negland Biolabs (Ipswich, MA).  The procedure 

provided is based on the deglycosylation of 1-20 µg glycoprotein, and we modified linearly it to 

accommodate a larger amount of protein.  137µg of STS, obtained by taking 0.9mL of the 

purified STS stock solution (0.152mg/ml) was added to 100µL of the provided 10X glycoprotein 

denaturing buffer.  This solution was incubated for 100oC for 10minutes.  To this solution, 

130µL of the provided 10X G7 reaction buffer, 130µL of 10% NP40, and 5µL of PNGase was 

added to make a total volume of 1265µL.  The sample was incubated for 12 hours (instead of the 

recommended 1h), and results in complete deglycosylation of 137µg of STS.   
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Appendix A.   

IC50 plots for compounds 3.3. 3.7-3.9, 3.11, 3.16-3.24, E1 and E2 and 

replots of the data in figures 3.10-3.12. 

 

 
Figure A.1 IC50 for compounds 3.3 = 299 ± 14 nM 

 
 

Figure A.2 IC50 for compounds 3.7 = 145 ± 11 µM 
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Figure A.3 IC50 for compounds 3.8 = 224 ± 7 µM 

 

Figure A.4 IC50 for compounds 3.9 = 157 ± 9 µM 
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Figure A.5 IC50 for compounds 3.11 = 286 ± 13 µM 

 

Figure A.6 IC50 for compounds 3.16 = 4.8 ± 0.4µM 

µM Inhibitor
10-1 1 101 102 103 104

%
 A

c
ti
v
it
y

0

20

40

60

80

100

µM Inhibitor

10-1 1 101 102 103 104

%
 A

c
ti
v
it
y

0

20

40

60

80

100



99 

 

 

Figure A.7 IC50 for compounds 3.17 = 3.3 ± 0.2µM 

 

Figure A.8 IC50 for compounds 3.18 = 6.7 ± 0.3µM 
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Figure A.9 IC50 for compounds 3.19 = 2.4 ± 0.1µM 
 
 

 
 

Figure A.10 IC50 for compounds 3.20 = 2.8 ± 0.2µM 
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Figure A.11 IC50 for compounds 3.21 = 17 ± 1 µM 

 

Figure A.12 IC50 for compounds 3.22 = 26 ± 1 µM 
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Figure A.13 IC50 for compounds 3.23 = 9.5 ± 0.9µM 
 

 

Figure A.14 IC50 for compounds 3.24 = 3.0 ± 0.1µM 
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Figure A.15 IC50 for compounds E1 = 51 ± 8 µM 

 
 

Figure A.16 IC50 for compounds E2 = 11 ± 1 µM 
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Figure A.17 Replot of the data from Figure 3.10 to determine Ki of inhibitor 3.19 

(1.4µM) 

 

Figure A.18 Replot of the data from Figure 3.11 to determine Ki of inhibitor 3.20 

(1.8µM) 
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Figure A.19 Replot of the data from Figure 3.12 to determine Ki of inhibitor 3.16 

(2.5µM) 

 

  

y = 0.0013x + 0.0023

R² = 0.9897

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 1 2 3 4

1
/V

m
a
x

Inhibitor (µM)



106 

 

Appendix B. 

 

IC50 plots for compounds 4.1-4.5. 4.8 and EP and replots of the data 

in figures 4.12, 4.13, 4.26, 4.27, 4.29 
 

6 

Figure B.1 IC50 for compounds 4.1 = 8.3 ± 0.2 µM 

 

Figure B.2 IC50 for compounds 4.2 = 7.4 ± 0.4 µM 
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Figure B.3 IC50 for compounds 4.3 = 8.3 ± 0.2 µM 

 

Figure B.4 IC50 for compounds 4.4 = 128.8 ± 10.6 µM 
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Figure B.5 IC50 for compounds 4.5 = 12.4 ± 0.3 µM 

 

 

Figure B.6 IC50 for compounds 4.8 = 24.2 ± 3.0 µM 

µM Inhibitor

%
 A

c
ti
v
it
y

10-1 1 101 102 103 104

µM Inhibitor

10-1 1 101 102 103 104

%
 A

c
ti
v
it
y

0

20

40

60

80

100

µM Inhibitor

%
 A

c
ti
v
it
y

10-1 1 101 102 103 104

µM Inhibitor

10-1 1 101 102 103 104

%
 A

c
ti
v
it
y

0

20

40

60

80

100



109 

 

2 

Figure B.7.  IC50 for compounds EP = 6.5 ± 0.2 µM 

 

 

 
Figure B.8 Replot of the data from Figure 4.13 to determine Ki of inhibitor 4.1 (5.5µM) 
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Figure B.9 Replot of the data from Figure 4.12 to determine αKi of inhibitor 4.2 (19.5µM) 

 

 

Figure B.10 Replot of the data from Figure 4.12 to determine Ki of inhibitor 4.2 (8.3µM) 
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Figure B.11 Replot of the data from Figure 4.26 to determine Ki of inhibitor 4.5 (1.4µM) 

 

 

 
Figure B.12 Replot of the data from Figure 4.27 to determine Ki of inhibitor 4.3 (6.8µM) 
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Figure B.13 Replot of the data from Figure 4.29 to determine αKi of inhibitor 4.4 (127 µM) 

 
Figure B.14 Replot of the data from Figure 4.29 to determine Ki of inhibitor 4.4 (63.9µM) 
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