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Abstract

Enabling cooperation among nodes of a wireless network can significantly reduce the re-

quired transmit power as well as the induced intra-network interference. Due to the prac-

tical half-duplexity constraint of the cooperating nodes, they are prohibited to simultane-

ously transmit and receive data at the same time-frequency resource. The purpose of this

dissertation is to illustrate the value of cooperation in such an environment. To understand

how to cooperate efficiently, information theory is employed as a useful tool, which not only

determines the fundamental limits of communication (i.e., capacity) over the considered

network, but also provides insights into the design of a proper transmission scheme for that

network.

In this thesis, two simple but yet important types of wireless networks, namely Relay

Channel, and Interference Channel are studied. In fact, these models constitute building

blocks for larger networks. The first considered channel is a diamond-shaped relay channel

consisting of a source, a destination, and two parallel relays. The second analyzed channel

is an interference channel composed of two transmitter-receiver pairs with out-of-band

transmitter cooperation, also referred to as conferencing encoders. While characterizing

the capacity of these channels are difficult, a simpler and a more common approach is to

find an achievable scheme for each channel that ensures a small gap from the capacity for

all channel parameters.

In chapter 2, the diamond relay channel is investigated in detail. Because of the half-

duplex nature of the relays, each relay is either in transmit or receive mode, making

four modes possible for the two-relay combination, specifically, 1) broadcast mode (both

relays receive) 2,3) routing modes (one relay transmits, another receives) 4) multiple-access

mode (both relays transmit). An appropriate scheduling ( i.e., timing over the modes) and

transmission scheme based on the decode-and-forward strategy are proposed and shown

to be able to achieve either the capacity for certain channel conditions or at most 3.6
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bits below the capacity for general channel conditions. Particularly, by assuming each

transmitter has a constant power constraint over all modes, a parameter ∆ is defined,

which captures some important features of the channel. It is proven that for ∆ = 0 the

capacity of the channel can be attained by successive relaying, i.e., using modes 2 and 3

defined above in a successive manner. This strategy may have an infinite gap from the

capacity of the channel when ∆ 6=0. To achieve rates as close as 0.71 bits to the capacity,

it is shown that the cases of ∆ > 0 and ∆ < 0 should be treated differently. Using new

upper bounds based on the dual problem of the linear program associated with the cut-

set bounds, it is proven that the successive relaying strategy needs to be enhanced by an

additional broadcast mode (mode 1), or multiple access mode (mode 4), for the cases of

∆ < 0 and ∆ > 0, respectively. Furthermore, it is established that under average power

constraints the aforementioned strategies achieve rates as close as 3.6 bits to the capacity

of the channel.

In chapter 3, a two-user Gaussian Interference Channel (GIC) is considered, in which

encoders are connected through noiseless links with finite capacities. The setup can be

motivated by downlink cellular systems, where base stations are connected via infrastruc-

ture backhaul networks. In this setting, prior to each transmission block the encoders

communicate with each other over the cooperative links. The capacity region and the

sum-capacity of the channel are characterized within some constant number of bits for

some special classes of symmetric and Z interference channels. It is also established that

properly sharing the total limited cooperation capacity between the cooperative links may

enhance the achievable region, even when compared to the case of unidirectional transmit-

ter cooperation with infinite cooperation capacity. To obtain the results, genie-aided upper

bounds on the sum-capacity and cut-set bounds on the individual rates are compared with

the achievable rate region. The achievable scheme enjoys a simple type of Han-Kobayashi

signaling, together with the zero-forcing, and basic relaying techniques.
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Chapter 1

Introduction

Wireless networks play an increasingly indispensable role in modern people’s lives. Ad-

dressing the high data-rate demand of the network subscribers requires an understanding

of the ultimate limits of achievable rates, described by the information-theoretic capacity,

in that network. In addition, knowing the important features of a close-to-optimum achiev-

able scheme is essential to fulfill high data-rate requirements. In a network, substantial

capacity improvements can be attained by forming a distributed Multi-Input Multi-Output

(MIMO) system through enabling cooperation among the users.

Cooperative communication can be implemented either by utilizing additional signal

paths that share the medium with the direct transmitter-receiver links or by exploiting the

(possibly) available orthogonal resources. In the former case, the broadcast nature of the

wireless communication, wherein some intermediate nodes can overhear the signal intended

for a receiver, is the key ingredient that makes cooperation possible. However, due to the

dynamic range of incoming and outgoing signals and the bulk of ferroelectric components

like circulators, nodes are assumed to operate in the half-duplex mode, i.e., transmit and

receive in different time-frequency resources [12]. Depending on which nodes are in the

transmit and which are in the receive modes, different network operating modes are present

which need to be properly scheduled for an efficient communication. The diamond relay

channel, containing a source, a destination, and two parallel relays, is a simple example of

such a network that is considered in this thesis. For the latter scenario, some dedicated

resources are present for cooperation. In downlink cellular systems for example, base

stations are connected via infrastructure backhaul networks [49]. The configuration can be

modeled as an interference channel with encoders connected to each other with noise-free
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finite-capacity links. This type of cooperation is referred to as conference [34]. To obtain

some insights into the proper achievable scheme for such a network, a two-user interference

channel with conferencing encoders is considered in this thesis.

Characterizing the capacity of an information theoretic channel may be difficult. In

fact, the capacity is known for only a few number of channels, including the multiple-access

and the broadcast channels. A simpler, yet important approach is to find an achievable

scheme that ensures a small gap from the capacity of the channel. Recently, Etkin et

al. characterized the capacity region of the interference channel to within one bit [26].

This new capacity analysis perspective has been used afterwards to reveal the essential

ingredients of a proper achievable scheme for different networks (cf. [17, 46–50]).

Motivated by the above considerations, this thesis aims to characterize the capacity of

the considered channels, that can serve as the building blocks of larger networks, to within

a few number of bits for all ranges of parameters.

1.1 Diamond Relay Channel

1.1.1 Motivation

Relay-aided wireless systems, also called multi-hop systems, are implemented to increase

the coverage and the throughput of communication systems [1]. These systems are becom-

ing important parts of developing wireless communication standards, such as IEEE 802.16j

(also known as WiMAX) [2].

From information theoretical point of view, the capacity becomes larger when more

relays are added to the system. However, designing optimum strategies, especially in half-

duplex systems, is challenging because subtle scheduling, i.e. timing among transmission

modes is required to achieve rates near the capacity of such systems.1 During the last

decade, the main stream of research carried out by several researchers dealt with single relay

communication systems (cf. [3] and references therein). A simple model for investigating

the potential benefits of a system with multiple relays is a dual-hop configuration with two

parallel half-duplex relays (see Fig. 1.1). This configuration does not cover all two-relay

systems because there are no source-destination and relay-relay links. However, it captures

the basic difficulty in finding the best strategy in the system. As will be shown in this

1In this thesis, the terms ’transmission modes’ and ’network operating modes’ are used interchangeably.
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Relay 1

Relay 2

DestinationSource

C01

C02 C23

C13

∆ , C01C02 − C13C23

Figure 1.1: The diamond channel with its fundamental parameter ∆.

thesis, a single strategy falls short of achieving rates near the capacity of the system for

all channel realizations.

1.1.2 Prior Works

The single relay channel in which the relay facilitates a point-to-point communication was

first studied in [4]. Two important coding techniques, decode-and-forward and compress-

and-forward, were proposed in [5]. In the decode-and-forward scheme, the relay decodes

the received message. In the compress-and-forward scheme, the relay sends the compressed

(quantized) version of the received data to the destination. Following [5], generalizations

to multi-relay networks were investigated by several researchers. A comprehensive survey

of the progress in this area can be found in [3].

A simple model for understanding some aspects of the multi-relay networks is a network

with two parallel relays, as introduced in [6, 7], and Fig. 1.1. It is assumed that there are

no direct links from the source to the destination and also between the relays. This channel

is studied in [8–17], and referred to as the diamond relay channel in [12].

For full-duplex relays, Schein and Gallager, in [6] and [7], provided upper and lower

bounds on the capacity of the diamond channel. In particular, they considered the amplify-

and-forward, and the decode-and-forward schemes, as well as a hybrid of them based on

the time-sharing principle. Kochman, et al. proposed a rematch-and-forward scheme when

different fractions of bandwidth can be allotted to the first and second hops [8]. Rezaei,

et al. suggested a combined amplify-and-decode-forward strategy and proved that their

scheme always performs better than the rematch-and-forward scheme [9]. In addition,
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they showed that the time-sharing between the combined amplify-and-decode-forward and

decode-and-forward schemes provides a better achievable rate when compared to the time-

sharing between the amplify-and-forward and decode-and-forward, and also between the

rematch-and-forward and decode-and-forward, considered in [7], and [8], respectively. Kang

and Ulukus employed a combination of the decode-and-forward and compress-and-forward

schemes to obtain the capacity of a special class of the diamond channel with a noiseless

relay [10]. Ghabeli and Aref in [11] proposed a new achievable rate based on the generalized

block Markov encoding [23]. They also showed that their scheme achieves the capacity of

a class of deterministic relay networks.

Half-duplex relays are studied in [12–20]. Xue and Sandhu in [12] proposed several

schemes including the multi-hop with spatial reuse, scale-forward, broadcast-multiaccess

with common message, compress-and-forward, and hybrid methods. These authors demon-

strated that the multi-hop with spatial reuse protocol can achieve the channel capacity if

the parallel links have the same capacity. Unlike [6–10, 12, 17], which assumed no direct

link exists between the relays, [13–15] considered such a link. More specifically, Chang,

et al. proposed a combined dirty paper coding and block Markov encoding scheme [14].

Using numerical examples, they showed that the gap between their proposed strategy and

the upper bound is relatively small in most cases. Rezaei, et al. considered two scheduling

algorithms, namely successive and simultaneous relaying [15]. They derived asymptotic

capacity results for the successive relaying and also proposed an achievable rate for the

simultaneous relaying using a combination of the amplify-and-forward and decode-and-

forward schemes. Avestimehr et al. proposed a deterministic model to better analyze the

general single-source single-destination and the single-source multi-destination Gaussian

networks [16, 17]. Their quantize-and-map achievablity scheme is guaranteed to provide a

rate that is within a constant number of bits (determined by the graph topology of the

network) from the cut-set upper bound. Other related works can be found in [18–21].

1.1.3 Summary of Contributions and Relation to Previous Works

In this thesis, for the diamond relay channel, the setup and assumptions used in [12], with

no link between the relays, are followed. In [12], the multi-hop with spatial reuse scheme

proved to achieve the capacity of the diamond channel if the capacities of the parallel

links in Fig. 1.1 are equal. The scheme is called the Multi-hopping Decode-and-Forward

(MDF) scheme in this thesis. In the MDF scheme, relays successively forward their decoded
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messages to the destination. By introducing a fundamental parameter of the channel ∆

(see Fig. 1.1), we generalize the optimality condition of the MDF scheme. In particular, we

show that whenever ∆ = 0, the cut-set upper bound can be achieved. We also show that

the MDF scheme cannot have a small gap from the cut-set upper bound for all channel

realizations because the optimum strategy is highly related to the value of ∆.

In [17], the aim has been to establish the constant gap argument for the general relay

networks with a single source and not to obtain a small gap optimized for a specific channel,

such as the diamond channel. For the half-duplex diamond channel, the expression for the

gap derived in [17] results in a 30-bit gap. In this thesis, however, we focus on the diamond

channel and obtain a smaller gap using our proposed achievablity scheme. In addition,

we provide closed-form expressions for the time intervals associated with the transmission

modes in the proposed scheduling. Specifically, we show that the expressions are different

from those of the cut-set upper bound. This is in contrast to [17], where the constant gap

between the cut-set bound and the quantize-and-map scheme was assured for every fixed

scheduling, including the optimum scheduling associated with the cut-set upper bound.

In [17], using a different approach (named partial decode-and-forward scheme) than

the quantize-and-map scheme, Avestimehr et al. showed that the capacity of the full-

duplex diamond channel can be characterized within 1 bit, regardless of the values of the

channel gains. However, applying this scheme to the half-duplex diamond channel does not

guarantee a constant gap from the channel capacity. We take one further step by providing

an achievable scheme that ensures a small gap from the upper bounds for the half-duplex

diamond channel. In particular, we show that the gap is smaller than .71 bits, assuming

all transmitters have constant power constraints.2 We also prove that when transmitters

have average power constraints instead, the gap is less than 3.6 bits.

1.2 Interference Channel with Conferencing Encoders

Interference limits the throughput of a network consisting of multiple non-cooperative

transmitters intending to convey independent messages to their corresponding receivers

through a common bandwidth. The way interference is usually dealt with is by either

treating it as noise or preventing it by associating different orthogonal dimensions, e.g. time

or frequency division, to different users. Since interference has structure, it is possible for a

2The constant power constraint will be precisely defined in Chapter 2.
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receiver to decode some part of the interference and remove it from the received signal. This

is indeed the coding scheme proposed by Han-Kobayashi (HK) for the two-user Gaussian

Interference Channel (GIC) [30]. The two-user GIC provides a simple example showing

that a single strategy against interference is not optimal. In fact, one needs to adjust

the strategy according to the channel parameters [31–33]. However, a single suboptimal

strategy can be proposed to achieve up to 1 bit per user of the capacity region of the

two-user GIC [26].

If the senders can cooperate, interference management can be done more effectively

through cooperation. Cooperative links can be either orthogonal or non-orthogonal to

the shared medium. Orthogonal cooperation is considered for the interference channel

studied in this thesis. In addition, in order to understand some fundamental aspects of the

optimal coding scheme (in the sense of having a constant gap to the capacity region), two

special cases of the two-user interference channel with conferencing encoders, namely the

symmetric GIC and the GZIC in which one transmitter-receiver pair is interference-free

are investigated.

1.2.1 Prior Works

Transmitter coordination over orthogonal links is studied for different scenarios with two

transmitters (cf. [34–40, 46, 47]). The capacity region of the Multiple Access Channel

(MAC) with cooperating encoders is derived in [34], where cooperation is referred to as

conference. Several achievable rate regions are proposed for the GIC with bidirectional

transmitter and receiver cooperation [35]. In the transmit cooperation, the entire message

of each transmitter is decoded by the other cooperating transmitter, which apparently

limits the performance of the scheme to the capacity of the involved cooperative link. The

capacity regions of the compound MAC with conferencing encoders and the GIC with

degraded message set, under certain strong interference conditions, are obtained in [36].

The GIC with degraded message set is also termed Gaussian Cognitive Radio (GCR) in

the literature [37]. The GCR can be considered as an GIC with unidirectional orthogonal

cooperation, in which the capacity of the cooperative link is infinity.3 The capacity region

of the GCR is established for the weak interference regime in [38,39]. Recently, the capacity

region of the GCR is characterized within 1.87 bits for all ranges of the channel parameters

3Technically, the capacity of the cooperative link needs to be equal to the message rate of the user
sending data via the cooperative link [34].
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[40]. Very recently, in a parallel and independent work, the capacity region of the GIC

with bidirectional cooperation is characterized within 6.5 bits [49].4 For non-orthogonal

cooperative links, an achievable rate region is proposed in [42], and the sum-capacity of

the GIC is determined up to 18 bits [43].

1.2.2 Summary of Contributions and Relation to Previous Works

Simple achievable schemes based on HK, relaying and zero-forcing techniques are shown to

achieve the sum-capacity of the symmetric IC, and the capacity region of the GZIC within

2.13, and 1.71 bits per user, respectively for all channel parameters. In this thesis, some

important features of the problem are explored one-by-one, and appropriate achievable

schemes are proposed accordingly. First, the symmetric IC, with possibly different coop-

eration link capacities, is studied. In the proposed achievable scheme, each transmitter

sends a private and a common message, and zero-forces the part of the other transmitter’s

private message, communicated over the conference between the encoders. The General-

ized Degrees of Freedom (GDOF) of the channel which shows the high SNR behavior of

the sum-rate is also characterized. In the second step, the GZIC with unidirectional coop-

eration is considered. It is demonstrated that the HK scheme together with zero-forcing

or relaying can achieve the capacity region up to 1.5 bits per user. Then, based on the

observations made in the unidirectional case, the capacity region of the GZIC with bidi-

rectional cooperation is determined up to 1.71 bits per user. Our step-by-step approach

to solve the problem is in contrast to the universal strategy of [49], in which the same

signaling is used for all channel parameters. Applying the scheme of [49] to the GZIC, five

signals should be jointly decoded at each receiver, whereas three signals are required to be

jointly decoded in our thesis, which simplifies the transmission scheme. Appropriate com-

pression and sequential decoding techniques are utilized to facilitate such a low complexity

decoding. In the achievable schemes, proper power allocation over the employed codewords

plays an essential role to achieve the result. Linear Deterministic Model (LDM) proposed

in [17] is incorporated to attain such a power allocation. It is illustrated that for some

channel parameters, no cooperation or unidirectional cooperation is sufficient to obtain the

results. It is also argued that a suitable distribution of total cooperation capacity between

the cooperative links can enhance the rate region. In particular, it is demonstrated that

4An earlier version of our work containing most of the results is reported in Library and Archives
Canada Technical Report UW-ECE 2010-04, Feb. 2010 [45].
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the achievable region of the GZIC with limited bidirectional cooperation may outperform

the capacity region of the GZIC with infinite unidirectional cooperation, known as the

cognitive Z channel. When the noise is the performance-limiting factor instead of the in-

terference, it is shown that treating interference as noise, and not using the cooperative

links achieve within 1 bit of the capacity region of the channel for all channel parameters.

The rest of the thesis is structured as follows. Chapter 2 analyzes the capacity of the

diamond channel. Chapter 3 studies the interference channel with conferencing encoders.

Finally, chapter 4 outlines a summary of the thesis contributions and discusses possible

future research directions.

It is remarked that the results of this dissertation have been published/submitted in

[29, 46–48].
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Chapter 2

Diamond Relay Channel

In this chapter, a dual-hop communication system composed of a source S and a destination

D connected through two non-interfering half-duplex relays, R1 and R2, is considered. In

the literature of Information Theory, this configuration is known as the diamond channel.

In this setup, four transmission modes are present, namely: 1) S transmits, and R1 and

R2 listen (broadcast mode), 2) S transmits, R1 listens, and simultaneously, R2 transmits

and D listens. 3) S transmits, R2 listens, and simultaneously, R1 transmits and D listens.

4) R1, R2 transmit, and D listens (multiple-access mode). Assuming a constant power

constraint for all transmitters, a parameter ∆ is defined, which captures some important

features of the channel. It is proven that for ∆ = 0 the capacity of the channel can be

attained by successive relaying, i.e., using modes 2 and 3 defined above in a successive

manner. This strategy may have an infinite gap from the capacity of the channel when

∆ 6= 0. To achieve rates as close as 0.71 bits to the capacity, it is shown that the cases

of ∆ > 0 and ∆ < 0 should be treated differently. Using new upper bounds based on the

dual problem of the linear program associated with the cut-set bounds, it is proven that

the successive relaying strategy needs to be enhanced by an additional broadcast mode

(mode 1), or multiple access mode (mode 4), for the cases of ∆<0 and ∆>0, respectively.

Furthermore, it is established that under average power constraints the aforementioned

strategies achieve rates as close as 3.6 bits to the capacity of the channel.
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∆ = C01C02 − C13C23
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Relay 1: R1

Relay 2: R2

Destination: D

Figure 2.1: The diamond channel with its fundamental parameter ∆.

2.1 Problem Statement and Main Results

In this work, a dual-hop communication system, depicted in Fig. 2.1, is considered. The

model consists of a source (S), two parallel half-duplex relays (R1, R2), and a destination

(D), respectively, indexed by 0, 1, 2, and 3 as shown in Fig. 2.1. No link is assumed

between Source and Destination, as well as between the relays. The channel gain between

node a and b is assumed to be constant, known to all nodes, and is represented by hab with

magnitude
√

gab.

Due to the half-duplex constraint, four transmission modes exist in the diamond channel

where, in every mode, each relay either transmits data to Destination or receives data from

Source (see Fig. 2.2). In the figure, X
(i)
a and Y

(i)
a represent the transmitting and receiving

signals at node a corresponding to mode i, respectively. The total transmission time

is normalized to one and partitioned into four time intervals (t1, t2, t3, t4) corresponding

to modes 1, 2, 3, and 4, with the constraint
∑4

i=1 ti = 1. The discrete-time baseband

representation of the received signals at Relay 1, Relay 2, and Destination are respectively

given by:

Y1 = h01X0 + N1,

Y2 = h02X0 + N2,

Y3 = h13X1 + h23X2 + N3,

where Na is the Gaussian noise at node a with unit variance.
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(3)
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The second relay and the destination receive
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(3)
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(3)
3 , respectively.

The destination receives y
(4)
3 .

and x
(4)
2 .

The relays transmit the vectors x
(4)
1

The source transmits the vector x
(1)
0 .

and y
(1)
2 , respectively.

d) Mode 4 with duration t4:
c) Mode 3 with duration t3:

a) Mode 1 with duration t1:

The first and second relay receive y
(1)
1

Figure 2.2: Transmission modes for the diamond channel.
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Let us assume Source, Relay 1, and Relay 2 consume, respectively, P
(i)
S , P

(i)
R1

, and P
(i)
R2

amount of power in mode i, i.e.,

1

ti

∑

ti period

|X0 |2 ≤ P
(i)
S ,

1

ti

∑

ti period

|X1 |2 ≤ P
(i)
R1

,

1

ti

∑

ti period

|X2 |2 ≤ P
(i)
R2

.

The total power constraints for Source, Relay 1, and Relay 2 are PS , PR1
, and PR2

,

respectively, and are related to the amount of power spent in each mode as follows:

4∑

i=1

tiP
(i)
S ≤ PS ,

4∑

i=1

tiP
(i)
R1

≤ PR1
,

4∑

i=1

tiP
(i)
R2

≤ PR2
.

Due to some practical considerations on the power constraints [12], we mainly consider

constant power constraints for transmitters, i.e., for i ∈ {1, · · · , 4},

P
(i)
S = PS ,

P
(i)
R1

= PR1
, (2.1)

P
(i)
R2

= PR2
.

Without loss of generality, a unit power constraint is considered for all nodes, i.e., PS =

PR1
= PR2

= 1. We define the parameters C01, C02, C13, C23 as C(g01), C(g02), C(g13), C(g23),

respectively. Moreover, C012 and C123 are defined as:

C012 , C(g01 + g02),

C123 , C
(
(
√

g13 +
√

g23)
2
)
.

(2.2)
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The case in which transmitters have average power constraints instead of constant power

constraints is addressed in section 2.6.

In this work, we are interested in finding communication protocols that operate close

to the channel capacity. We introduce an important parameter of the channel ∆ as:

∆ , C01C02 − C13C23. (2.3)

We categorize all realizations of the diamond channel into three groups based on the sign

of ∆ (i.e., ∆<0, ∆=0, and ∆>0). As will be shown in the sequel, the sign of ∆ plays an

important role in designing the optimum scheduling for the channel.

In this setup, the cut-set bounds can be stated in the form of a Linear Program (LP) due

to the assumption of constant power constraints for all transmitters. By analyzing the dual

program we provide fairly tight upper bounds expressed as single equations corresponding

to different channel conditions. Using the dual problem, we prove that when ∆ = 0, the

MDF scheme achieves the capacity of the diamond channel. Note that ∆=0 (i.e., C01C02 =

C13C23) includes the previous optimality condition presented in [12] (i.e., C01 = C23 and

C02 =C13) as a special case. To realize how close the MDF scheme performs to the capacity

of the channel when ∆ 6= 0, we calculate the gap from the upper bounds. We show that

the MDF scheme provides the gap of less than 1.21 bits when applied in the symmetric or

some classes of asymmetric diamond channels. More importantly, we explain that the gap

can be arbitrarily large for certain ranges of parameters.

By employing new scheduling algorithms we shrink the gap to .71 bits for all channel

conditions. In particular, for ∆<0 we add Broadcast (BC) Mode (shown in Fig. 2.2) to the

MDF scheme to provide the relays with more reception time. In this three-mode scheme,

referred to as Multi-hopping Decode-and-Forward with Broadcast (MDF-BC ) scheme, the

relays decode what they have received from Source and forward the re-encoded information

to Destination in Forward Modes I and II. When ∆ > 0, Multiple-Access (MAC) mode

(shown in Fig. 2.2) in which the relays transmit independent information to Destination

is added to the MDF scheme. We call this protocol Multi-hopping Decode-and-Forward

with Multiple-Access (MDF-MAC ) scheme.

The mentioned contributions are associated with the case wherein the transmitters are

operating under constant power constraints (2.1). However, for a more general setting

in which the transmitters are subject to average power constraints (2.41), it is shown in

section 2.6 that the cut-set upper bounds are increased by at most 2.89 bits. Therefore,
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the proposed achievable schemes guarantee the maximum gap of 3.6 bits from the cut-set

upper bounds in the general average power constraint setting.

2.1.1 Coding Scheme

The proposed achievable scheme may employ all four transmission modes as follows:

1. Broadcast Mode: In t1 fraction of the transmission time, Source broadcasts inde-

pendent information to Relays 1 and 2 using the superposition coding technique.

2. Forward Mode I : In t2 fraction of the transmission time, Source transmits new

information to Relay 1. At the same time, Relay 2 sends the re-encoded version of

part of the data received during Broadcast Mode and/or Forward Mode II of the

previous block to Destination.

3. Forward Mode II : In t3 fraction of the transmission time, Source transmits new

information to Relay 2. At the same time, Relay 1 sends the re-encoded version of

part of what it has received during Broadcast Mode and/or Forward Mode I of the

previous block to Destination.

4. Multiple-Access Mode: In the remaining t4 fraction of the transmission time,

Relays 1 and 2 simultaneously transmit the residual information (corresponding to

the previous block) to Destination where, joint decoding is performed to decode the

received data.

In Broadcast Mode, superposition coding, which is known to be the optimal transmis-

sion scheme for the degraded broadcast channel [28], is used to transmit independent data

to the relays. The resulting data-rates u and v, respectively associated with Relay 1 and

Relay 2 are:

u(η) =

{
C(ηg01) if g02 ≤ g01

C01 − C(ηg01) if g01 < g02,
(2.4)

v(η) =

{
C02 − C(ηg02) if g02 ≤ g01

C(ηg02) if g01 < g02.
(2.5)

The power allocation parameter η determines the amount of Source power used to transmit

information to the relay with better channel quality in Broadcast Mode.
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In Multiple-Access Mode, a multiple-access channel exists in which the users (relays)

have independent messages for Destination. For this channel, joint decoding is optimum,

which provides the following rate region [28]:

R1 ≤ t4C13,

R2 ≤ t4C23,

R1 + R2 ≤ t4CMAC,

(2.6)

where R1, R2 are the rates that Relay 1 and Relay 2 provide to Destination in Multiple-

Access Mode, respectively, and CMAC is defined as:

CMAC , C(g13 + g23). (2.7)

According to the protocol, Relay 1 can receive up to t1u + t2C01 bits per channel use

during Broadcast Mode and Forward Mode I. Then the relay has the opportunity to send

its received information to Destination in Forward Mode II and Multiple-Access Mode,

with the rate t3C13 + R1. Similarly, Relay 2 can receive and forward messages with the

rates t1v + t3C02, and t2C23 + R2, respectively. Therefore, the maximum achievable rate of

the scheme, R, is:

R = max∑
4

i=1
ti=1,ti≥0

{
min{t1u + t2C01, t3C13 + R1} + min{t1v + t3C02, t2C23 + R2}

}
. (2.8)

Sections 2.2-2.4 show that employing Forward Modes I and II for ∆=0, the first three

transmission modes for ∆<0, and the last three transmission modes for ∆>0 are sufficient

to achieve a small gap from the derived upper bounds.

2.1.2 Cut-set Upper Bound and the Dual Program

For general half-duplex networks with K relays, Khojastepour et al. proposed a cut-set

type upper bound by doing the following steps:

1. Fix the input distribution and scheduling, i.e., p(X0, X1, X2), and t1, t2, t3, t4 such

that
∑4

i=1 ti = 1.

2. Find the rate Ri,j associated with the cut j for each transmission mode i where

i, j ∈ {1, · · · , 2K}.
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3. Multiply Ri,j by the corresponding time interval ti.

4. Compute
∑2K

i=1 tiRi,j and minimize it over all cuts.

5. Take the supremum over all input distributions and schedulings.

The preceding procedure can be directly applied to the diamond channel, whose trans-

mission modes are shown in Fig. 2.2. The best input distribution and scheduling lead

to:

CDC ≤ t1I(X
(1)
0 ; Y

(1)
1 , Y

(1)
2 ) + t2I(X

(2)
0 ; Y

(2)
1 |X(2)

2 ) + t3I(X
(3)
0 ; Y

(3)
2 |X(3)

1 ) + t4.0,

CDC ≤ t1I(X
(1)
0 ; Y

(1)
1 ) + t2

(
I(X

(2)
0 ; Y

(2)
1 ) + I(X

(2)
2 ; Y

(2)
3 )
)

+ t3.0 + t4I(X
(4)
2 ; Y

(4)
3 |X(4)

1 ),

CDC ≤ t1I(X
(1)
0 ; Y

(1)
2 ) + t2.0 + t3

(
I(X

(3)
0 ; Y

(3)
2 ) + I(X

(3)
1 ; Y

(3)
3 )
)

+ t4I(X
(4)
1 ; Y

(4)
3 |X(4)

2 ),

CDC ≤ t1.0 + t2I(X
(2)
2 ; Y

(2)
3 ) + t3I(X

(3)
1 ; Y

(3)
3 ) + t4I(X

(4)
1 , X

(4)
2 ; Y

(4)
3 ),

where CDC denotes the capacity of the diamond channel. The above bounds do not decrease

if each mutual information term is replaced by its maximum value. This substitution

simplifies the computation of the upper bound, called Rup, by providing the following

LP [12]:

maximize Rup

subject to: Rup ≤ t1C012 + t2C01 + t3C02 + t4.0

Rup ≤ t1C01 + t2(C01 + C23) + t3.0 + t4C23

Rup ≤ t1C02 + t2.0 + t3(C02 + C13) + t4C13

Rup ≤ t1.0 + t2C23 + t3C13 + t4C123∑4
i=1 ti = 1, ti ≥ 0.

(2.9)

To obtain appropriate single-equation upper bounds on the capacity, we rely on the fact

that every feasible point in the dual program provides an upper bound on the primal.

Hence, we develop the desired upper bounds by looking at the dual program. In the

sequel, we derive the dual program for the LP (2.9).

We start with writing the LP in the standard form as:

maximize cTx

subject to: Ax ≤ b

x ≥ 0,
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where the unknown vector x = [t1, t2, t3, t4, Rup]
T , the vectors of coefficients b = c =

[0, 0, 0, 0, 1]T , and the matrix of coefficients A is:

A =




−C012 −C01 −C02 0 1

−C01 −(C01 + C23) 0 −C23 1

−C02 0 −(C02 + C13) −C13 1

0 −C23 −C13 −C123 1

1 1 1 1 0




.

Since A = AT , it is easy to verify that the primal and dual programs share the same form,

i.e.,

minimize Rup

subject to: Rup ≥ τ1C012 + τ2C01 + τ3C02 + τ4.0

Rup ≥ τ1C01 + τ2(C01 + C23) + τ3.0 + τ4C23

Rup ≥ τ1C02 + τ2.0 + τ3(C02 + C13) + τ4C13

Rup ≥ τ1.0 + τ2C23 + τ3C13 + τ4C123∑4
i=1 τi = 1, τi ≥ 0.

(2.10)

In the dual program (2.10), τi, for i ∈ {1, · · · , 4} corresponds to the ith rate constraint

in the primal LP (2.9). Clearly, the LP (2.9) is feasible. Hence, the duality of linear

programming ensures that there is no gap between the primal and the dual solutions [27].

However, the benefit of using the dual problem here is that any feasible choice of the vector

τ provides an upper bound to the rate obtained by solving the original LP. This property

is known as the weak duality property of LP [27]. Appropriate vectors (i.e., τ ’s) in the

dual program (2.10) are selected to obtain fairly tight upper bounds. In fact, employing

such vectors instead of solving the primal LP (2.9) simplifies the gap analysis. In sections

2.3 and 2.4, these vectors are provided for ∆ < 0 and ∆ > 0 cases, respectively. In the

following sections, we employ the proposed achievable schemes together with the derived

upper bounds to characterize the capacity of the diamond channel up to 0.71 bits.
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2.2 MDF Scheme and Achieving the Capacity for ∆ =

0

In this section, the MDF scheme is described and then proved to be capacity-achieving

when ∆=0.

2.2.1 MDF Scheme

The MDF scheduling algorithm uses two transmission modes: Forward Modes I and II

shown in Fig. 2.2 along with the decode-and-forward strategy and can be described as

follows:

1. In λ fraction of the transmission time, Source and Relay 2 transmit to Relay 1 and

Destination, respectively.

2. In the remaining λ̄ fraction of the transmission time, Source and Relay 1 transmit to

Relay 2 and Destination, respectively.

The achievable rate of the MDF scheme is the summation of the rates of the first

and second parallel paths (branches) from Source to Destination, which can be expressed

as [12]:

RMDF = max
0≤λ≤1

{
min{λC01, λ̄C13} + min{λ̄C02, λC23}

}
.

The above LP can be re-written as:

maximize R1 + R2

subject to: R1 ≤ λC01

R1 ≤ λ̄C13

R2 ≤ λ̄C02

R2 ≤ λC23

0 ≤ λ ≤ 1,

where R1 and R2 denote the rate of the upper and the lower branches, respectively. This

LP has three unknowns (R1, R2, λ) and six inequalities. The solution turns three out of six

inequalities to equality. The optimum time interval λ∗ can not be equal to 0 or 1, as both

solutions give a zero rate. Hence, three out of the first four inequalities should become
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equality, which leads to the following achievable rates for different channel conditions:

RMDF =






R1
MDF =

C01(C02 + C13)
C01 + C13

if ∆≤0, C02≤C01

R2
MDF =

C02(C01 + C23)
C02 + C23

if ∆≤0, C02 >C01

R3
MDF =

C13(C01 + C23)
C01 + C13

if ∆>0, C23≤C13

R4
MDF =

C23(C02 + C13)
C02 + C23

if ∆>0, C23 >C13.

(2.11)

In particular, the achievable rate for the symmetric diamond channel, in which C01 = C02

and C13 = C23, is:

R
sym
MDF = min{C01, C13}.

The optimum time interval λ∗ is either equal to λ∗
1 or λ∗

2 defined below:

λ∗ =





C13

C01+C13
, λ∗

1,

or
C02

C02+C23
, λ∗

2.

Note that if λ∗ = λ∗
1, then λ∗

1C01 = λ̄∗
1C13. Similarly, λ∗ = λ∗

2 leads to λ̄∗
2C02 = λ∗

2C23. In

other words, λ∗
i for i ∈ {1, 2} makes the maximum amount of data that can be received by

Relay i equal to the maximum amount of data that can be forwarded by Relay i. In this

case, branch i (composed of 0⇒ i⇒3 links) is said to be fully utilized.

It is interesting to consider that the case fully utilizing branch 1 or branch 2 leads to

the same data-rate. This case occurs when one of the following happens:






∆ = 0,

C01 = C02 if ∆ < 0,

C13 = C23 if ∆ > 0.

(2.12)

In these situations, one can use either λ∗
1 or λ∗

2 fraction of the transmission time for Forward

Mode I and the remaining fraction for Forward Mode II and achieve the same data-rate. It

will be shown later that the MDF scheme achieves the capacity of the diamond channel if

∆=0 and is at most 1.21 bits less than the capacity for the other two cases. It is remarked

that ∆=0 makes both branches fully utilized and all four rates in Eq. (2.11) equal.
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2.2.2 MDF is Optimal for ∆=0

Here, it is explained that R∗
up, found by solving the dual-program (2.10), is the same as

the MDF rate given in Eq. (2.11) for ∆=0. It is easy to observe that

τ
∗ =

[
0,

C13

C01 + C13

,
C23

C02 + C23

, 0

]
(2.13)

makes all four rate constraints in the dual-program (2.10) equal to the rate obtained in

Eq. (2.11) and satisfies
∑4

i=1 τi = 1. Therefore, the upper bound provided by vector τ is

indeed the capacity of the channel and equals to:

CDC =
C01C13

C01 + C13
+

C02C23

C02 + C23
. (2.14)

The result is valid for the Gaussian multiple antenna as well as discrete memoryless chan-

nels, and therefore ∆ = 0 ensures the optimality of the MDF scheme for those channels

too.

2.2.3 MDF Gap Analysis

To investigate how close the MDF scheme performs to the capacity of the diamond channel

when ∆ 6=0, the appropriate upper bounds are required, which will be derived in sections

2.3 and 2.4. Therefore, the detailed gap analysis for the MDF scheme is deferred to section

2.7, where it is shown that although a small gap is achievable for some channel conditions,

the gap can be large in general. In the following sections, Broadcast and Multiple-Access

Modes are added to the MDF algorithm to achieve 0.71 bits of the capacity for ∆>0 and

∆<0 cases, respectively.

2.3 MDF-BC Scheme and Achieving within 0.71 Bits

of the Capacity for ∆ < 0

In the MDF scheme, since both branches cannot be fully utilized when ∆ < 0 simultane-

ously, there exists some unused capacity in the second hop. To efficiently make use of the

available resources, Broadcast Mode is added to the MDF scheme. This mode provides

the relays with an additional reception time.
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2.3.1 Achievable Scheme

The modified protocol uses Broadcast Mode together with Forward Modes I and II. There-

fore, by setting t4 = 0 in Eq. (2.8) the maximum achievable rate of the scheme as a

function of the power allocation parameter η used in superposition coding is:

RBC(η) = max∑
3

i=1
ti=1,ti≥0

{
min{t1u(η) + t2C01, t3C13} + min{t1v(η) + t3C02, t2C23}

}
.

Recall that u, and v, defined respectively in Eqs. (2.4) and (2.5), are the rates associated

with Relays 1 and 2 in Broadcast Mode. First, the optimal schedule is obtained, assuming

a fixed η, and later an appropriate value for η will be selected. The achievable rate can be

written as the following LP:

maximize RBC

subject to: RBC ≤ t1(u + v) + t2C01 + t3C02 (2.15)

RBC ≤ t1u + t2(C01 + C23) + t3.0 (2.16)

RBC ≤ t1v + t2.0 + t3(C02 + C13) (2.17)

RBC ≤ t2C23 + t3C13 (2.18)
∑3

i=1 ti = 1 (2.19)

ti ≥ 0. (2.20)

For a feasible LP, the solution is at one of the extreme points of the constraint set. One

of the extreme points can be obtained by solving a set of linear equations containing Eq.

(2.19) and inequalities (2.15)-(2.17) considered as equalities. The solution becomes:

t1 =
−∆

(C01 + C13)v + (C02 + C23)u − ∆
,

t2 =
C13v + C02u

(C01 + C13)v + (C02 + C23)u − ∆
,

t3 =
C01v + C23u

(C01 + C13)v + (C02 + C23)u − ∆
,

RBC(η) =
C13(C01 + C23)v(η) + C23(C02 + C13)u(η)

(C01 + C13)v(η) + (C02 + C23)u(η) − ∆
. (2.21)

It is easy to verify that ∆=0 makes t1 =0, and hence leads to the MDF algorithm. Note
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that in addition to inequalities (2.15)-(2.17), the above extreme point also turns inequality

(2.18) into equality. Now, this extreme point is proven to be the solution to the above LP.

If one of the elements of vector t is increased, at least one of the conditions (2.15)-(2.17)

provides a smaller rate, compared to the rate obtained by the extreme point. For instance,

if t1 in Eq. (2.21) is increased, then, because of Eq. (2.19), at least one of t2 and t3

should be decreased, which in turn reduces the rate associated with the inequality (2.18).

This confirms that the extreme point is the optimal solution to the LP with constraints

(2.15)-(2.20).

In the following, instead of searching for η∗, which maximizes RBC(η), an appropriate

value for η is found that not only provides a small gap from the upper bounds, but also

simplifies the gap analysis of section 2.3.3. The power allocation parameter η is selected to

be either η1 , 1
g01+1

, or η2 , 1
g02+1

for C02 ≥ C01 and C01 ≥ C02 conditions, respectively. As

it will be shown in section 2.5, the chosen η produces the same GDOF as the corresponding

upper bound, which is a necessary condition in obtaining a small gap. The corresponding

u and v for η1 are:

u(η1) = C01 − ζ1,

v(η1) = C012 − C01, (2.22)

and for η2 are:

u(η2) = C012 − C02,

v(η2) = C02 − ζ2. (2.23)

In the above,

ζ1 , C(
g01

g01 + 1
) ≤ 1

2
, (2.24)

ζ2 , C(
g02

g02 + 1
) ≤ 1

2
. (2.25)

The selected η divides the source power between u and v (considered as the rates of two

virtual users in the broadcast channel consisting of S ⇒R1 and S ⇒R2 links) in such a

way that:

1. the sum data-rate (i.e., u + v) in the broadcast channel is close to the sum-capacity
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of the broadcast channel (i.e., max{C01, C02}),

2. the weaker user’s rate is close to its capacity. For instance, if C01 ≤ C02, then u ≈ C01.

Substituting u and v from Eqs. (2.22) and (2.23) into (2.21) leads to the following achiev-

able rates R1
MDF-BC and R2

MDF-BC corresponding to η1 and η2:

R1
MDF-BC =

C13(C01 + C23)C012 − C2
01C13 + C01C02C23 − ζ1C23(C02 + C13)

(C01 + C13)(C012 − C01 + C23) − ζ1(C02 + C23)
,

R2
MDF-BC =

C23(C02 + C13)C012 − C2
02C23 + C01C02C13 − ζ2C13(C01 + C23)

(C02 + C23)(C012 − C02 + C13) − ζ2(C01 + C13)
. (2.26)

2.3.2 Upper Bound

Following the discussion in section 2.1.2, we select one of the extreme points of the con-

straint set (2.10) to obtain a fairly tight upper bound. Below, some insights on how to find

an appropriate extreme point are given.

First, Forward Modes I and II play an important role in data transfer from Source to

Destination. These two modes let both Source and Destination be simultaneously active,

which is important for efficient communication. This implies that generally t∗2 and t∗3 are

not zero in the original LP (2.9). In addition, ∆ < 0 roughly means that the second hop

is better than the first hop. In this case, Broadcast Mode helps the relays to collect more

data which will be sent to Destination using Forward Modes I and II later. Therefore,

Multiple-Access Mode is less important when ∆ < 0 and consequently t4 can be set to

zero. Using the complementary slackness theorem of linear programming (cf. [27]), having

non-zero t1, t2, and t3 in the original LP translates into having the first three inequalities in

the dual program satisfied with equality. Now looking at the dual problem (2.10) with the

same structure as the original LP, in order to achieve a smaller objective function, we set

τ2 or τ3 to zero. This is in contrast to the claim for having both of t2 and t3 non-zero in the

original LP with the maximization objective. Therefore, the vector τ with the following

properties is selected:

1. Either τ2 or τ3 is zero.

2. The first three inequalities are satisfied with equality.

To have a valid τ , we need to make sure that all the elements of vector τ are non-negative

and that τ satisfies the last condition.
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As mentioned earlier, either τ2 or τ3 can be set to zero in the dual program (2.10). For

instance, setting τ2 =0 in the dual-program gives the following LP:

minimize R̃

subject to: R̃ ≥ τ1C012 + τ3C02 + τ4.0

R̃ ≥ τ1C01 + τ3.0 + τ4C23

R̃ ≥ τ1C02 + τ3(C02 + C13) + τ4C13

R̃ ≥ τ1.0 + τ3C13 + τ4C123∑4
i=1,i6=2 τi = 1, τi ≥ 0.

(2.27)

Setting the first three inequalities to equalities gives:

τ ∗
1 =

C13

C012 − C02 + C13
,

τ ∗
3 =

C23(C012 − C02) − C13(C012 − C01)

(C02 + C23)(C012 − C02 + C13)
,

τ ∗
4 =

C13(C012 − C01) + C02(C012 − C02)

(C02 + C23)(C012 − C02 + C13)
,

R̃∗ =
(C02 + C13)C23

C02 + C23
+

C13(C01C02 − C13C23)

(C02 + C23)(C012 − C02 + C13)
. (2.28)

For obtaining a valid result, the following conditions have to be ensured:

1. τ ∗
3 ≥ 0.

Since C02≤C012, the denominator of τ ∗
3 is non-negative, therefore, the non-negativity

of the nominator has to be guaranteed. This imposes the constraint Γ ≥ 0 on the

values of channel parameters, where Γ is defined as:

Γ , C23[C012 − C02] − C13[C012 − C01]. (2.29)

2. R̃∗ ≥ τ ∗
3 C13 + τ ∗

4 C123.

To satisfy the following condition:

R̃∗ = τ ∗
1 C02 + τ ∗

3 (C02 + C13) + τ ∗
4 C13 ≥ τ ∗

3 C13 + τ ∗
4 C123,
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it is sufficient to show:

(τ ∗
1 + τ ∗

3 )C02 ≥ τ ∗
4 (C123 − C13),

which can be equivalently represented as:

C02

C123 − C13 + C02
≥ τ ∗

4 .

The following lemma proves the preceding inequality.

Lemma 2.1. τ ∗
4 ≤ C02

C123−C13+C02

for C123 ≤ C13 + C23.

Proof. See section 2.9.1 .

Lemma 2.1 requires C123 ≤ C13 + C23, which is not true for g13g23 ≤ 4. To be able to use

Lemma 2.1 for the case of g13g23 ≤ 4, we replace either C13 by Ĉ13 , C13 + δ or C23 by

Ĉ23 = C23 + δ with δ defined as:

δ , max{C123 − (C13 + C23), 0}. (2.30)

This change provides the desired inequality (i.e., C123 ≤ Ĉ13 + C23 or C123 ≤ C13 + Ĉ23) at

the expense of increasing the upper bound. However, we will show in Lemma 2.2 that this

increase is always less than δ. We will prove that δ itself is bounded in Lemma 2.3.

Continuing the derivation of the upper bound from the LP (2.27), if C123≥C13 + C23,

then C23 is replaced by Ĉ23. In this case, the dual program (2.27) remains unchanged

except for C23. Hence, the set of solutions (2.28) can be used by replacing C23 with Ĉ23

and thus the upper bound becomes:

ˆ̃
R

∗

=
(C23 + δ)(C02 + C13)

C02 + C23 + δ
+

C13

(
C01C02 − C13(C23 + δ)

)

(C02 + C23 + δ)(C012 − C02 + C13)
. (2.31)

Note that the inequality τ̂ ∗
3 ≥0 holds because Γ̂≥0 simply follows from Γ≥01. According

to Lemma 2.1, since C123 =C13+Ĉ23, the condition
ˆ̃
R

∗

≥ τ̂ ∗
3 C13+τ̂ ∗

4 C123 is satisfied. Lemma

2.2 shows that the enlarged upper bound
ˆ̃
R

∗

(Eq. (2.31)) is at most δ bits greater than

the upper bound of (2.28).

1The superscript ˆ is used to indicate parameters associated with Ĉ23. For instance, Γ̂ has the same
formula as Γ in Eq. (2.29), with C23 replaced by Ĉ23.
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Lemma 2.2. If C123 ≥ C13 + C23, then
ˆ̃
R

∗

− R̃∗ ≤ δ.

Proof. See section 2.9.2.

Therefore, the proposed upper bound for ∆ ≤ 0 and Γ > 0 is:

R2
up =

C23(C02 + C13)

C02 + C23

+
C13∆

(C012 − C02 + C13)(C02 + C23)
+ δ.

Similarly, when ∆≤0 and Γ≤0, τ3 is set to zero and again the first three inequalities

are assumed to be satisfied with equality in the dual-program (2.10). Following the same

procedure, the subsequent results are achieved:

τ ∗
1 =

C23

C012 − C01 + C23

,

τ ∗
2 =

C13(C012 − C01) − C23(C012 − C02)

(C01 + C13)(C012 − C01 + C23)
,

τ ∗
4 =

C23(C012 − C02) + C01(C012 − C01)

(C01 + C13)(C012 − C01 + C23)
,

R̃∗ =
(C01 + C23)C13

C01 + C13
+

C23(C01C02 − C13C23)

(C01 + C13)(C012 − C01 + C23)
,

R1
up =

C13(C01 + C23)

C01 + C13
+

C23∆

(C012 − C01 + C23)(C01 + C13)
+ δ. (2.32)

In this case, when C123 ≥ C13 + C23, Ĉ13 is replaced by C13 + δ, it is easy to see that the

preceding results can be obtained by exchanging the roles of C01 ↔ C02, C13 ↔ C23, and

τ2 ↔ τ3 in the results derived for the case of ∆ ≤ 0 and Γ > 0.

In order to be able to achieve a small gap from the upper bounds, δ should be bounded.

Lemma 2.3 proves that δ is smaller than 0.21 bits.

Lemma 2.3. δ ≤ 1
2
log(4

3
).

Proof. See section 2.9.3.

2.3.3 Gap Analysis

The MDF-BC scheme is proposed for the following regions:

1. ∆ < 0, Γ ≤ 0, C02 ≥ C01, and C01 ≥ 1
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2. ∆ < 0, Γ ≥ 0, C01 ≥ C02, and C02 ≥ 1

For ∆ < 0, section 2.7 shows that the MDF scheme provides a small gap from the upper

bounds for the remaining regions. Here, the first case is considered. The gap κ1
MDF-BC

between the achievable rate R1
MDF-BC and the upper bound R1

up is:

κ1
MDF-BC =

−ζ1

(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
∆

(C01 + C13)(C012 − C01 + C23)

(
(C01 + C13)(C012 − C01 + C23) − ζ1(C02 + C23)

)+δ.

In the following lemma, the gap κ1
MDF-BC is proved to be smaller than 1

2
+ δ bits.

Lemma 2.4. κ1
MDF-BC ≤ 1

2
+ δ.

Proof. See section 2.9.4.

By exchanging the roles of g01 ↔ g02 and g13 ↔ g23, the gap for the second case can be

easily derived and shown to be less than 1
2

+ δ bits.

2.4 MDF-MAC Scheme and Achieving within 0.71

Bits of the Capacity for ∆ > 0

Similar to section 2.3, a third mode is added to the MDF scheme when ∆>0 to effectively

utilize the unused capacity of the first hop.

2.4.1 Achievable Scheme

Here, Multiple-Access Mode is added to the MDF scheme with independent messages

sent from the relays to Destination. This mode provides the relays with an increased

transmission time. The modified protocol uses three transmission modes, i.e., Multiple-

Access Mode and Forward Modes I and II. Therefore, by setting t1 = 0 in Eq. (2.8) the

maximum achievable rate of the scheme, RMAC is:

RMAC = max∑
4

i=2
ti=1,ti≥0

{
min{t2C01, t3C13 + R1} + min{t3C02, t2C23 + R2}

}
, (2.33)
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where R1 and R2 are the rates that Relays 1 and 2 provide to Destination in Multiple-

Access Mode, respectively. These rates satisfy the multiple-access constraints in (2.6).

Lemma 2.5 presents achievable rates, which will be shown to be smaller than the capacity,

by at most .71 bits, in section 2.4.3.

Lemma 2.5. The achievable rates for ∆> 0 together with their corresponding scheduling

are as follows:

R1
MDF-MAC =

C01(C02 + C13)

C01 + C13

− C02∆

(C01 + C13)(CMAC − C13 + C02)
for ∆ > 0, Γ′ ≤ 0,

R2
MDF-MAC =

C02(C01 + C23)

C02 + C23
− C01∆

(C02 + C23)(CMAC − C23 + C01)
for ∆ > 0, Γ′ > 0,

(2.34)

Γ′ ≤ 0 Γ′ > 0

t2 = C13

C01+C13

,

t3 = C01(CMAC−C13)+C13C23

(C01+C13)(CMAC−C13+C02)
,

t4 = ∆
(C01+C13)(CMAC−C13+C02)

,

t2 = C02(CMAC−C23)+C13C23

(C02+C23)(CMAC−C23+C01)
,

t3 = C23

C02+C23
,

t4 = ∆
(C02+C23)(CMAC−C23+C01)

,

where

Γ′ , C02[C123 − C23] − C01[C123 − C13]. (2.35)

Proof. See section 2.9.5.

It is noted that if ∆ = 0, t4 becomes zero and the scheme is converted to the MDF

scheme.

2.4.2 Upper Bound

Following the same procedure as section 2.3.2, the upper bound for the case of ∆ ≥ 0,

Γ′≥0 is attained from (2.28) by exchanging the roles of C01 ↔ C13, C02 ↔ C23, τ2 ↔ τ3,

and τ1 ↔ τ4. Similarly, when ∆ ≥ 0 and Γ′ ≤ 0, swapping the positions of C01 ↔ C23,
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C02 ↔ C13, and τ1 ↔ τ4 in (2.28) provides the upper bound. Therefore:

R3
up =

C01(C02 + C13)

C01 + C13
+

−C02∆

(C123 − C13 + C02)(C01 + C13)
+ δ for Γ′ ≤ 0,

R4
up =

C02(C01 + C23)

C02 + C23

+
−C01∆

(C123 − C23 + C01)(C02 + C23)
+ δ for Γ′ > 0. (2.36)

2.4.3 Gap Analysis

By comparing the achievable rates (2.34) and the upper bounds (2.36), the gaps κ1
MAC and

κ2
MAC are respectively calculated for Γ′≤0 and Γ′>0 cases as:

κ1
MAC , R3

up − R1
MDF-MAC =

C02(C123−CMAC)∆

(C01+C13)(CMAC−C13+C02)(C123−C13+C02)
+δ,

κ2
MAC , R4

up − R2
MDF-MAC =

C01(C123−CMAC)∆

(C02+C23)(CMAC−C23+C01)(C123−C23+C01)
+δ.

To show that the above gaps are small, Lemma 2.6 is employed.

Lemma 2.6. C123−CMAC≤ 1
2
.

Proof. See section 2.9.6.

Considering Lemma 2.6, it is straightforward to show that the gap is at most 1
2
+δ bits.

Therefore, adding Multiple-Access Mode, with independent messages sent from the relays

to Destination, to the MDF scheme ensures the gap of less than .71 bits from the upper

bounds for ∆ > 0.

2.5 Generalized Degrees of Freedom Characterization

It is interesting to consider the asymptotic capacity of the diamond channel in the high

SNR regime. A useful parameter in studying this capacity is the GDOF (cf. [17,26]) defined

as:

GDOF(α) , lim
P→∞

R

log P
,
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where R is the data-rate, P is a channel parameter (can be considered as SNR), and

α = {α01, α02, α13, α23} with

αij , lim
P→∞

log(gij)

log P
for i ∈ {0, 1, 2}, and j ∈ {1, 2, 3}.

The vector α shows how channel gains scale with P . Based on the above definition,

the following approximations are valid:

Cij =
1

2
log(1 + gij) ≈

1

2
αij log P,

C012 =
1

2
log(1 + g01 + g02) ≈

1

2
max{α01, α02} log P,

C123 =
1

2
log
(
1 + (

√
g13 +

√
g23)

2
)
≈ 1

2
max{α13, α23} log P,

CMAC =
1

2
log(1 + g13 + g23) ≈

1

2
max{α13, α23} log P,

Γ ≈
{

α23(max{α01, α02} − α02) − α13(max{α01, α02} − α01)
}

(log P )2 + σ log(P ),

Γ′ ≈
{

α02(max{α13, α23} − α23) − α01(max{α13, α23} − α13)
}

(log P )2 + σ′ log(P ),

where σ and σ′ are positive constants. In the following analysis, it is assumed that (log P )2

terms are dominant, i.e., the coefficients of (log P )2 for Γ and Γ′ are not zero. If this as-

sumption is not valid, MDF scheme achieves the optimum GDOF of the channel. According

to the above approximations, it is easy to infer:





Γ ≤ 0, if α01 ≤ α02;

Γ > 0, if α01 > α02;

Γ′ ≤ 0, if α13 ≤ α23;

Γ′ > 0, if α13 > α23.
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Therefore, the GDOF associated with the upper bounds is:

GDOF1
up =

α13(α01 + α23)

α01 + α13
+

α23(α01α02 − α13α23)

(α01 + α13)(α02 − α01 + α23)
,

GDOF2
up =

α23(α02 + α13)

α02 + α23
+

α13(α01α02 − α13α23)

(α02 + α23)(α01 − α02 + α13)
,

GDOF3
up =

α01(α02 + α13)

α01 + α13

+
−α02(α01α02 − α13α23)

(α01 + α13)(α23 − α13 + α02)
,

GDOF4
up =

α02(α01 + α23)

α02 + α23
+

−α01(α01α02 − α13α23)

(α02 + α23)(α13 − α23 + α01)
. (2.37)

The GDOF for different achievablity schemes is as follows:

MDF:

GDOF1
MDF =

α01(α02 + α13)
α01 + α13

,

GDOF2
MDF =

α02(α01 + α23)
α02 + α23

,

GDOF3
MDF =

α13(α01 + α23)
α01 + α13

,

GDOF4
MDF =

α23(α02 + α13)
α02 + α23

.

(2.38)

MDF-BC:

GDOF1
MDF-BC =

α02α13(α01 + α23) − α2
01α13 + α01α02α23

(α01 + α13)(α02 − α01 + α23)
,

GDOF2
MDF-BC =

α01α23(α02 + α13) − α2
02α23 + α01α02α13

(α02 + α23)(α01 − α02 + α13)
. (2.39)

MDF-MAC:

GDOF1
MDF-MAC =

α01(α02 + α13)

α01 + α13

− α02(α01α02 − α13α23)

(α01 + α13)(α23 − α13 + α02)
,

GDOF2
MDF-MAC =

α02(α01 + α23)

α02 + α23
− α01(α01α02 − α13α23)

(α02 + α23)(α13 − α23 + α01)
. (2.40)

By comparing the upper bounds on the GDOF and the achievable GDOFs, it is easy

to see that MDF-BC and MDF-MAC achieve the optimum GDOF of the channel, while

the MDF cannot achieve it for all channel parameters.
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2.6 Diamond Channel with Average Power Constraints

In this section, it is shown that if the transmitting nodes are subject to average power

constraints, each of the cut-set bounds in Eq. (2.9) is increased at most by 2
ln 2

bits.2 This

analysis confirms that the achievable schemes proposed in this chapter with constant power

constraints are still valid. In other words, they provide a gap of at most .71 + 2
ln 2

≤ 3.6

bits from the cut-set bounds.

Let P
(i)∗
S , P

(i)∗
R1

, and P
(i)∗
R2

, for i ∈ {1, · · · , 4} be the optimum power allocated to Source,

Relay 1, and Relay 2 in transmission mode i with the corresponding time interval t∗i leading

to the cut-set bound R0. The following constraints are in effect3:

4∑

i=1

t∗i P
(i)∗
S ≤ PS ,

4∑

i=1

t∗i P
(i)∗
R1

≤ PR1
, (2.41)

4∑

i=1

t∗i P
(i)∗
R2

≤ PR2
.

Therefore, the cut-set upper bound R0 satisfies the following constraints:

R0 ≤ t∗1C
(
(g01 + g02)P

(1)∗
S

)
+ t∗2C(g01P

(2)∗
S ) + t∗3C(g02P

(3)∗
S ),

R0 ≤ t∗1C(g01P
(1)∗
S ) + t∗2

(
C(g01P

(2)∗
S ) + C(g23P

(2)∗
R2

)
)

+ t∗4C(g23P
(4)∗
R2

),

R0 ≤ t∗1C(g02P
(1)∗
S ) + t∗3

(
C(g02P

(3)∗
S ) + C(g13P

(3)∗
R1

)
)

+ t∗4C(g13P
(4)∗
R1

),

R0 ≤ t∗2C(g23P
(2)∗
R2

) + t∗3C(g13P
(3)∗
R1

) + t∗4C
((√

g13P
(4)∗
R1

+

√
g23P

(4)∗
R2

)2)
. (2.42)

Suppose that the vector t′ is the solution to the LP (2.9) leading to the rate R1. If the

vector t∗ is used instead of t′ in the LP (2.9), the resulting rate that satisfies the conditions

of the LP, called R2, becomes smaller than R1. It is clear that the increase in the cut-set

bound due to the average instead of the constant power constraints (compare Eq. (2.1) to

Eq. (2.41)), i.e., R0 − R1 is smaller than R0 − R2. Here, it is proved that R0 − R2 ≤ 2
ln 2

.

Consider each component term in the form of t∗iC(.) present in the inequality set (2.42).

2Helpful discussions with Mr. Oveis Gharan on the proof of this section are acknowledged.
3For the purpose of clarity, here the average powers are not set to unity.
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For instance, consider Rc,0 , t∗1C(g02P
(1)∗
S ). The corresponding term in constructing R2 is

Rc,2 , t∗1C(g02PS). Because of the power constraints (2.41), Rc,0 ≤ t∗1C(g02
PS

t∗
1

). Therefore,

it is easy to show:

Rc,0 − Rc,2 ≤ t∗1C
(g02PS(1 − t∗1)

(1 + g02PS)t∗1

)

(a)

≤ g02PS(1 − t∗1)

2(1 + g02PS) ln 2

≤ 1

2 ln 2
,

where (a) is due to the fact that C(x) ≤ x
2 ln 2

for any x ≥ 0. Similar analysis applies to

each component term. It is observed that the first and fourth cut-set bounds in inequality

set (2.42) have three component terms and the second and third cut-set bounds have four

component terms. Therefore, R0 − R2 ≤ 2
ln 2

.

2.7 MDF Gap Analysis

We investigate how close the MDF scheme performs to the upper bounds when ∆ 6= 0.

First, the gap between the MDF scheme and the upper bound is calculated for regions

specified in Table I. Then, two special cases are considered.

General Case. We calculate the difference, named κ, between the upper bounds and

the rate offered by the MDF scheme from Eq. (2.11) for the cases shown in Table I (see

section 2.10):
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κ1 =
−(C012 − C01)∆

(C01 + C13)(C012 − C01 + C23)
+ δ,

κ2 =
−(C012 − C02)∆

(C02 + C23)(C012 − C02 + C13)
+ δ,

κ3 =
(C123 − C13)∆

(C01 + C13)(C123 − C13 + C02)
+ δ,

κ4 =
(C123 − C23)∆

(C02 + C23)(C123 − C23 + C01)
+ δ,

κ5 =
−∆

C01 + C13

(C01 + C23

C02 + C23

− C23

C012 − C01 + C23

)
+ δ,

κ6 =
−∆

C02 + C23

(C02 + C13

C01 + C13

− C13

C012 − C02 + C13

)
+ δ,

κ7 =
∆

C01 + C13

(C02 + C13

C02 + C23

− C02

C123 − C13 + C02

)
,

κ8 =
∆

C02 + C23

(C01 + C23

C01 + C13

− C01

C123 − C23 + C01

)
.

Note that for the regions associated with κ7 and κ8 specified in Table I, C123 ≤ C13 + C23

and hence, δ = 0.

To prove that κi for i ∈ {1, · · · , 4} are small, the following lemma is needed:

Lemma 2.7.

C012 − max{C01, C02} ≤ 1

2
,

C123 − max{C13, C23} ≤ 1.

Proof. See section 2.9.7.
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For instance, following κ1 ≤ 1
2

+ δ is proved:

κ1 =
(C13C23 − C01C02)(C012 − C01)

(C01 + C13)(C012 − C01 + C23)
+ δ

(a)

≤ C13C23(C012 − C01)

(C01 + C13)(C012 − C01 + C23)
+ δ

(b)

≤ 1

2

C13C23

(C01 + C13)(C012 − C01 + C23)
+ δ

=
1

2

C13

C01 + C13
× C23

C012 − C01 + C23
+ δ

≤ 1

2
+ δ,

where (a) comes from the fact that ∆ > 0 for this case. According to the corresponding

region shown in Table I, C02≤C01 and therefore (b) is true based on Lemma 2.7.

Lemmas 2.8 and 2.9 prove that κ5≤ 1
2
+δ and κ7≤1, respectively. The proof techniques

can be easily adopted to correspondingly show that κ6≤ 1
2
+δ, and κ8≤1.

Lemma 2.8. κ5 ≤ 1
2

+ δ.

Proof. See section 2.9.8.

Lemma 2.9. κ7 ≤ 1.

Proof. See section 2.9.9.

Two special cases are also considered:

Symmetric Case. When C01 =C02 and C13 =C23, Γ=Γ′=0 and it can be seen from

Table I that the MDF scheme offers a data-rate that is, at most, 1 + δ bits less than the

corresponding upper bound.

Partially Symmetric Case. When either C01 = C02 with ∆ < 0, or C13 = C23 with

∆>0 occurs, it was seen in section 2.2.1 that fully utilizing branch 1 or branch 2 gives the

same achievable rate. Table I shows that in such cases, the gap is less than 1 + δ bits.

Discussion. Multiplexing Gain (MG) of a scheme is defined in [24, 25] as:

MG , lim
SNR→∞

R

0.5 log(SNR)
,
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where R is the achievable rate of the scheme. Using Eq. (2.11), it can be shown that the

MDF scheme achieves the multiplexing gain of 1. Avestimehr, et.al proposed a broadcast

multiple-access scheme for the full-duplex diamond channel and proved that the scheme is

within one bit from the cut-set bound [17]. In the half-duplex case, the multiplexing gain

of 1 is lost if this approach is followed, leading to an infinite gap between the achievable

rate and the upper bound.

It is easy to show that, for the remaining cases (shown in Table I), the gap can be large.

For instance, suppose C02 = x, C13 = C23 = αx and C01 = βx, with α > β > 1. In this case

∆<0, and Γ>0 and therefore, the gap κ is:

κ =
−∆

C02 + C23

(C02 + C13

C01 + C13

− C13

C012 − C02 + C13

)
+ δ

=
−∆

C02 + C23

(C02(C012 − C02) + C13(C012 − C01)

(C01 + C13)(C012 − C02 + C13)

)
+ δ

(a)

≥ −∆

C02 + C23

( C02(C012 − C02)

(C01 + C13)(C012 − C02 + C13)

)
+ δ

(b)

≥ −∆

C02 + C23

( C02(C01 − C02)

(C01 + C13)(C012 − C02 + C13)

)
+ δ

(c)

≥ −∆

C02 + C23

(C02(C01 − C02)

(C01 + C13)2

)
+ δ

(d)
=

(α2 − β)(β − 1)

(α + β)2(α + 1)
x + δ,

where in (a) the nominator is decreased by C13(C012 − C01). To obtain (b), C012 in the

nominator is replaced by the smaller quantity C01. For (c), C012 is substituted by the larger

term C01 + C02 in the denominator. In (d), the assumed values of the capacities in terms

of x are substituted. It is clear that the gap increases as x becomes large. GDOF analysis

of section 2.5 also confirms that the MDF scheme can have a large gap from the upper

bound.

2.8 Summary

In this work, we considered a dual-hop network with two parallel relays in which each

transmitting node has a constant power constraint. We categorized the network into three

classes based on the fundamental parameter of the network ∆, defined in this chapter. We
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derived explicit upper bounds for the different classes using the cut-set bound. Based on

the upper bounds, we proved that the MDF scheme, which employs two transmission modes

(Forward Modes I and II), achieves the capacity of the channel when ∆=0. Furthermore,

we analyzed the gap between the achievable rate of the MDF scheme and the upper bounds,

showing that the gap can be large in some ranges of parameters when ∆ 6=0. To guarantee

the gap of at most 0.71 bits from the bounds, we added an extra broadcast or multiple-

access mode to the baseline MDF scheme for the cases of ∆<0 and ∆>0, respectively. In

addition, we provided the asymptotic capacity analysis in the high SNR regime. Finally,

we argued that when the transmitting nodes operate under average power constraints, the

gap between the achievable scheme and the cut-set upper bound is at most 3.6 bits.

2.9 Proofs for Chapter 2

In this section, the proofs of the lemmas used in this chapter are provided.

2.9.1 Proof of Lemma 2.1

We start with the fact that C01 +C02≥C012. Rearranging the terms, and multiplying both

sides of the inequality by C13 give:

C13C02 ≥ C13(C012 − C01).

By adding C02(C012 − C02) to both sides and then dividing both sides by C012− C02+C13,

we obtain:

C02 ≥
C13(C012 − C01) + C02(C012 − C02)

C012 − C02 + C13

.

Assuming C123 ≤ C13 + C23, we divide the Right Hand Side (RHS) by C02 + C23 and the

Left Hand Side (LHS) by the smaller quantity C123 − C13 + C02 to achieve:

C02

C123 − C13 + C02
≥ C13(C012 − C01) + C02(C012 − C02)

(C012 − C02 + C13)(C02 + C23)
= τ ∗

4 .

This completes the proof.
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2.9.2 Proof of Lemma 2.2

ˆ̃
R

∗

− R̃∗ =
δC02

(
(C02 + C13)(C012 − C02 + C13) − C13(C01 + C13)

)

(C02 + C23)(C02 + C23 + δ)(C012 − C02 + C13)
(a)

≤ δC2
02

(C02 + C23)2

≤ δ,

where in (a), the nominator is increased by replacing C012 − C02 with C01, using the fact

that C012 − C02 ≤ C01 (see Eq. (2.2)). In addition, the denominator is decreased by

removing δ.

2.9.3 Proof of Lemma 2.3

δ = C123 − (C13 + C23)

=
1

2
log

(
1 + g13 + g23 + 2

√
g13g23

1 + g13 + g23 + g13g23

)

(a)

≤ 1

2
log

(
1 +

2
√

g13g23 − g13g23

1 + 2
√

g13g23 + g13g23

)

(b)

≤ 1

2
log(

4

3
),

where in (a) the denominator is decreased by replacing g13 + g23 with the smaller term

2
√

g13g23. Defining x ,
√

g13g23, it is easy to show that the maximum of log(1 + 2x−x2

1+2x+x2 ),

for 0≤x≤2, is x∗ = 1
2
, i.e., g∗

13g
∗
23 = 1

4
, which proves (b).

2.9.4 Proof of Lemma 2.4

It is known that C01, C02 ≤ C012, which proves 0 ≤ C23(C012−C02) and 0 ≤ C01(C012−C01).

Since both terms are positive, the sum of them is also positive, i.e., 0 ≤ C23(C012 −C02) +

C01(C012 −C01). By adding and subtracting (C012 −C01 +C23)C13 +C01C13, the inequality
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can be rearranged to:

0 ≤ (C012 − C01 + C23)(C01 + C13) + (C012 − C01)(C23 − C13) − C23(C02 + C13).

As mentioned earlier, Broadcast Mode is used for ∆ ≤ 0, i.e., C01C02 ≤ C13C23. Therefore,

both sides are multiplied by the positive term −∆ to acquire:

0 ≤ (C13C23−C01C02)
(
(C012−C01+C23)(C01+C13)+(C012−C01)(C23−C13)−C23(C02+C13)

)
.

Now, the positive term (C012 − C01 + C23)(C012 − C01)(C01 + C13)
2 can be added to the

RHS of the inequality to achieve:

0 ≤ (C13C23 − C01C02)
(
(C012 − C01 + C23)(C01 + C13) + (C012 − C01)(C23 − C13)

−C23(C02 + C13)
)

+ (C012 − C01 + C23)(C012 − C01)(C01 + C13)
2.

The above inequality can be equivalently stated as:

(C13C23 − C01C02)
(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
+

C01(C02 + C23)(C01 + C13)(C012 − C01 + C23) ≤ (C012 − C01 + C23)
2(C01 + C13)

2.

Since 1 ≤ C01, the LHS becomes smaller if C01(C02 + C23) is replaced by (C02 + C23),

leading to:

(C13C23 − C01C02)
(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
+

(C02 + C23)(C01 + C13)(C012 − C01 + C23) ≤ (C012 − C01 + C23)
2(C01 + C13)

2.

Now as ζ1 ≤ 1
2

(see Eq. (2.25)), the following inequality is also true:

ζ1

{
2 × (C13C23 − C01C02)

(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
+

(C02 + C23)(C01 + C13)(C012 − C01 + C23)

}
≤ (C012 − C01 + C23)

2(C01 + C13)
2.
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By rearranging the preceding inequality

ζ1(C13C23 − C01C02)
(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)

(C01 + C13)(C012 − C01 + C23)
(
(C01 + C13)(C012 − C01 + C23) − ζ1(C02 + C23)

) ≤ 1

2
,

which completes the proof.

2.9.5 Proof of Lemma 2.5

The optimization (2.33) is an LP and together with the multiple-access constraints (2.6)

can be written as follows:

maximize RMAC

subject to: RMAC ≤ t2C01 + t3C02

RMAC − R1 ≤ t3(C02 + C13)

RMAC − R2 ≤ t2(C01 + C23)

RMAC − (R1 + R2) ≤ t2C23 + t3C13

R1 ≤ t4C13

R2 ≤ t4C23

R1 + R2 ≤ t4CMAC
∑4

i=2 ti = 1, ti ≥ 0.

40



Using Fourier-Motzkin elimination [27], the LP can be equivalently stated as:

maximize RMAC

subject to: RMAC ≤ t2C01 + t3C02 (2.43)

RMAC ≤ t3(C02 + C13) + t4C13 (2.44)

RMAC ≤ t2(C01 + C23) + t4C23 (2.45)

RMAC ≤ t2C23 + t3C13 + t4CMAC (2.46)

RMAC ≤ t2C23 + t3C13 + t4(C13 + C23) (2.47)

2RMAC ≤ t2(C01 + C23) + t3(C02 + C13) + t4CMAC (2.48)

2RMAC ≤ t2C23 + t3(C02 + 2C13) + t4(C13 + CMAC) (2.49)
4∑

i=2

ti = 1, ti ≥ 0. (2.50)

Now, it is shown that inequalities (2.47)-(2.49) are redundant. First, since CMAC ≤
(C13 + C23), the RHS of inequality (2.47) is greater than the RHS of inequality (2.46).

Therefore, inequality (2.47) is redundant. Second, inequalities (2.48) and (2.49) are simply

obtained by adding inequalities (2.43, 2.46) and (2.44, 2.46), respectively. Therefore, the

following LP gives the maximum achievable rate of this scheme:

maximize RMAC

subject to: RMAC ≤ t2C01 + t3C02 (2.51)

RMAC ≤ t3(C02 + C13) + t4C13 (2.52)

RMAC ≤ t2(C01 + C23) + t4C23 (2.53)

RMAC ≤ t2C23 + t3C13 + t4CMAC (2.54)
4∑

i=2

ti = 1, ti ≥ 0. (2.55)

Instead of solving the above LP, a feasible solution that satisfies all the constraints is

found. This solution is not necessarily optimum, however it provides us with an achievable
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rate. For Γ′≤0 inequalities (2.51), (2.52), and (2.54) are set to equalities, leading to:

t2 =
C13

C01 + C13
,

t3 =
C01(CMAC − C13) + C13C23

(C01 + C13)(CMAC − C13 + C02)
,

t4 =
∆

(C01 + C13)(CMAC − C13 + C02)
,

R1
MDF-MAC =

C01(C02 + C13)

C01 + C13
− C02∆

(C01 + C13)(CMAC − C13 + C02)
. (2.56)

To ensure that the above results are valid, the inequality (2.53) has to be satisfied.

Considering inequalities (2.51) and (2.53), it is sufficient to show that t3C02 ≤ t̄3C23.

Using the values obtained in Eq. (2.56), this is equivalent to prove:

C02

(
C01(CMAC − C13) + C13C23

)
≤ C23

(
∆ + C13(CMAC − C13 + C02)

)
.

By re-ordering the terms and using the definition of ∆, the above inequality can be alter-

natively written as:

CMAC∆ ≤ (C13 + C23)∆,

which is true since ∆>0, and CMAC = C(g13 + g23).

For Γ′ > 0, inequalities (2.51), (2.53), and (2.54) are set to equality. In this case, the

time intervals and the achievable rate become:

t2 =
C02(CMAC − C23) + C13C23

(C02 + C23)(CMAC − C23 + C01)
,

t3 =
C23

C02 + C23
,

t4 =
∆

(C02 + C23)(CMAC − C23 + C01)
,

R2
MDF-MAC =

C02(C01 + C23)

C02 + C23

− C01∆

(C02 + C23)(CMAC − C23 + C01)
. (2.57)
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2.9.6 Proof of Lemma 2.6

C123 − CMAC =
1

2
log
(1 + (

√
g13 +

√
g23)

2

1 + g13 + g23

)

=
1

2
log
(
1 +

2
√

g13 g23

1 + g13 + g23

)

≤ 1

2
log
(
1 +

g13 + g23

1 + g13 + g23

)

≤ 1

2
.

2.9.7 Proof of Lemma 2.7

C012 − max{C01, C02} =
1

2
log

(
1 + g01 + g02

1 + max{g01, g02}

)

=
1

2
log

(
1 +

min{g01, g02}
1 + max{g01, g02}

)

≤ 1

2
log

(
1 +

max{g01, g02}
1 + max{g01, g02}

)

≤ 1

2
,

C123 − max{C13, C23} =
1

2
log

(
1 + (

√
g13 +

√
g23)

2

1 + max{g13, g23}

)

=
1

2
log

(
1 +

min{g13, g23} + 2
√

g13g23

1 + max{g13, g23}

)

≤ 1

2
log

(
1 +

3
√

g13g23

1 + max{g13, g23}

)

≤ 1

2
log

(
1 +

3
√

g13g23

1 +
√

g13g23

)

≤ 1.
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2.9.8 Proof of Lemma 2.8

In this region, C01 ≤ 1 and C01 ≤ C02, therefore, 0 ≤ C13C23(C02 − C01)(1 − C01). It is

easy to verify that the following inequality is valid:

2C13C23

(
C01(C02−C01)+0.5(C01+C23)

)
≤ (C01+C13)(C02+C23)

(
C23+.5+C01(C02−C01)

)
.

(2.58)

Replacing C13C23 by the smaller quantity (C13C23 − C01C02) in the LHS of the above

inequality results in:

2(C13C23 − C01C02)
(
C01(C02 − C01) + 0.5(C01 + C23)

)
≤

(C01 + C13)(C02 + C23)
(
C23 + .5 + C01(C02 − C01)

)
. (2.59)

Since C01 ≤ 1 in the RHS, C01(C02−C01) can be substituted by the larger term (C02−C01).

Hence, the following inequality is true:

−2∆
(
C01(C02−C01)+0.5(C01+C23)

)
≤ (C01+C13)(C02+C23)

(
C23+.5+(C02−C01)

)
. (2.60)

Rearranging the terms leads to:

−∆

C01 + C13

(C01 + C23

C02 + C23
− C23

C02 + 0.5 − C01 + C23

)
≤ 1

2
. (2.61)

The gap can be further increased by replacing C02+0.5 with the smaller term C012 according

to Lemma 2.7. Therefore:

−∆

C01 + C13

(C01 + C23

C02 + C23
− C23

C012 − C01 + C23

)
≤ 1

2
, (2.62)

which completes the proof.
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2.9.9 Proof of Lemma 2.9

κ7 =
∆

C01 + C13

(C02 + C13

C02 + C23
− C02

C123 − C13 + C02

)

(a)

≤ ∆

C01 + C13
× C13

C02 + C23
+ δ

(b)

≤ ∆

(C01 + C13)(C02 + C23)
+ δ

(c)

≤ C01

C01 + C13

× C02

C02 + C23

+ δ

≤ 1 + δ.

As C123 ≤ C13 + C23 in this region, C123 − C13 is replaced by the larger quantity C23 to

obtain (a). (b) is valid since C13 ≤ 1 for this scenario. In (c), ∆ is substituted by the larger

term C01C02.

2.10 Gap Analysis Summary

The results related to gap analysis are compactly shown in Table I. For each region specified

by some conditions on the link capacities, the corresponding symbols for the upper bound,

the achievable rate, and the gap, (i.e., the difference between the upper bound and the

achievable rate) are shown 4. In addition, an upper bound on the value of the gap is given.

For instance, for the region specified by ∆ ≤ 0, Γ ≤ 0, and C02 ≤ C01 conditions, the upper

bound, the achievable rate, and the gap are respectively represented by R1
up, R1

MDF, and

κ1. Using the achievable scheme that leads to R1
MDF, the gap from the upper bound R1

up

is less than 1
2

+ δ. Our results, summarized in Table I, indicate that sending independent

information during each mode together with the decode-and-forward scheme are sufficient

to operate close to the capacity of the channel.

4The characterizing equation for each symbol used in the table is given in the body of the chapter.
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Table 2.1: Summary of the Results: Gap Analysis for Different Regions

Region Achievable Rate Gap
Upper Bound Upper Bound
on the Gap on the Capacity

∆ ≤ 0 Γ ≤ 0
C02 ≤ C01 R1

MDF κ1
1
2

+ δ R1
upC02 ≥ C01

C01 ≤ 1 R2
MDF κ5

C01 ≥ 1 R1
MDF-BC κ1

MDF-BC

∆ ≤ 0 Γ > 0
C01 ≤ C02 R2

MDF κ2
1
2

+ δ R2
upC01 ≥ C02

C02 ≤ 1 R1
MDF κ6

C02 ≥ 1 R2
MDF-BC κ2

MDF-BC

∆ > 0 Γ′ ≤ 0

C23 ≤ C13
R3

MDF κ3 1 + δ

R3
up

R1
MDF-MAC κ1

MDF-MAC
1
2

+ δ

C23 ≥ C13

C13 ≤ 1, C123 ≤ C13 + C23
R4

MDF κ7 1

R1
MDF-MAC κ1

MDF-MAC

1
2

C13 ≤ 1, C123 ≥ C13 + C23 1
2

+ δ
C13 ≥ 1

∆ > 0 Γ′ > 0

C13 ≤ C23
R4

MDF κ4 1 + δ

R4
up

R2
MDF-MAC κ2

MDF-MAC
1
2

+ δ

C13 ≥ C23

C23 ≤ 1, C123 ≤ C13 + C23
R3

MDF κ8 1

R2
MDF-MAC κ2

MDF-MAC

1
2

C23 ≤ 1, C123 ≥ C13 + C23 1
2

+ δ
C23 ≥ 1
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Chapter 3

Interference Channel with

Conferencing Encoders

In this chapter, a two-user single-antenna Gaussian Interference Channel (GIC) is consid-

ered in which encoders are connected through noiseless links with finite capacities. In this

setting, prior to each transmission block, the encoders communicate with each other over

the cooperative links. New genie-aided upper bounds on the sum-capacity are presented

which incorporate the capacities of the cooperative links. Achievable schemes using a sim-

ple type of Han-Kobayashi signaling, together with the zero-forcing, and basic relaying

techniques are developed for two special classes of the interference channels, namely the

symmetric and Z interference channels. Depending on the channel conditions, the com-

munication system is operating under either interference-limited or noise-limited regime.

In this chapter, the former regime is mainly investigated. For the symmetric interference

channel with possibly different cooperation capacities, sum-capacity is achieved within 2.13

bits for all channel parameters . In the case of unidirectional cooperation, it is shown that

by decoding the known part of the interference instead of canceling it, the sum-capacity

can be attained within two bits. For the Gaussian Z-IC, the capacity region and the sum-

capacity of the channel are characterized within 1.71 bits per user, and 2 bits in total,

respectively. It is also established that properly sharing the total limited cooperation ca-

pacity between the cooperative links may enhance the achievable region, even compared

to the case of unidirectional transmitter cooperation with infinite cooperation capacity.

For the noise-limited regime, it is shown that treating interference as noise achieves the

capacity region up to one bit per user for the general interference channel with conferencing
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encoders.

3.1 System Model and Preliminaries

In this work, a two-user GIC with partial transmit cooperation, as depicted in Fig. 3.1, is

considered. The model consists of two transmitter-receiver pairs, in which each transmitter

wishes to convey its own data to its corresponding receiver. There exist two noiseless

cooperative links with capacities C12 and C21, respectively from Encoder 1 to Encoder 2

and vice versa. It is assumed that all nodes are equipped with a single antenna. The

input-output relationship for this channel in standard form is expressed as [51]:

Y1 = X1 + bX2 + N1,

Y2 = aX1 + X2 + N2,
(3.1)

where a, b ≥ 0, and for i ∈ {1, 2}, Ni ∼ N (0, 1), i.e., is the Gaussian noise with zero

mean and unit variance. The average power constraint of the transmitters are respectively

P1 and P2. The full channel state information is assumed to be available at both the

transmitters and the receivers. For a given block length n, Encoder i ∈ {1, 2} sends its

own (random) message index mi from the index set Mi ={1, 2, ..., Mi =2nRi} with rate Ri

[bits/channel use]. Each pair (m1, m2) occurs with the same probability 1
M1M2

. The result

of the conference between the two encoders is two codewords qn
12, q

n
21, where for j∈{1, 2},

i 6=j, and each time index t∈{1, · · · , n}, qij [t] is only a function of (mi, qji[1], · · · qji[t−1]).

The encoding function fi maps the message index mi and qn
ji into a codeword Xn

i chosen

from codebook Ci. Therefore:
Xn

1 = f1(m1, q
n
21),

Xn
2 = f2(m2, q

n
12).

(3.2)

The codewords in each codebook must satisfy the average power constraint 1
n

n∑
t=1

|Xi[t]|2≤
Pi. Each decoder uses a decoding function gi(Y

n
i ) to decode its desired message index

mi based on its received sequence. Let m̂i be the output of the decoder. The average

probability of error for each decoder is Pei
=Pr(m̂i 6=mi). A rate pair (R1, R2) is said to

be achievable when there exists an (M1, M2, n, Pe1
, Pe2

)-code for the GIC consisting of two

encoding functions {f1, f2} and two decoding functions {g1, g2} such that for sufficiently
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Figure 3.1: The Interference Channel with Conferencing Encoders. The cooperation links
are orthogonal to each other and to the communication medium as shown with differ-
ent colors in the figure. In the proposed achievable schemes, the cooperative links with
capacities C12, and C21 are used for zero-forcing, and relaying purposes, respectively.

large n:

R1 ≤ 1
n

log(M1),

R2 ≤ 1
n

log(M2),

Pe ≤ ǫ.

In the above, Pe = max(Pe1
, Pe2

) and ǫ > 0 is a constant that can be chosen arbitrarily

small. The capacity region of the GIC with conferencing encoders is the closure of the

set of achievable rate pairs. The boundary of the achievable region R is said to be within

(∆1, ∆2) of the boundary of the upper bound region Rup if for any pair (Rup
1 , R

up
2 ) on the

boundary of the outer bound, there exists a pair (R1, R2) on the achievable region such

that R
up
1 − R1 ≤ ∆1, and R

up
2 − R2 ≤ ∆2. In this case, the achievable scheme leading to

the region R is referred to as R(∆1, ∆2) achievable.

If the regions associated with Rup and R(∆1, ∆2) are polytopes, each facet of the

achievable region is compared to its corresponding facet in the upper bound region. Defin-

ing δR1
, R

up
1 − R1, we have δR1

≤ ∆1. Similarly, for the facet related to iR1+jR2, for

any i, j ∈ {1, 2, · · · }, we have δiR1+jR2
≤ i∆1 + j∆2.

In this work, the interference-limited regime is mainly investigated, i.e., a2P1, b
2P2≥1,
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since otherwise the system is noise limited and is not of much interest. The noise-limited

regime will be briefly considered in section 3.5.3.

3.2 Upper Bounds

Theorem 3.1. The following region is an upper bound on the capacity region of the GIC

with conferencing encoders:

R
up
1 ≤ C(P1) + min

{
C12, C

(
b2P2 + 2b

√
P1P2

1 + P1

)}
(3.3)

R
up
2 ≤ C(P2) + min

{
C21, C

(
a2P1 + 2a

√
P1P2

1 + P2

)}
(3.4)

R
up
1 + R

up
2 ≤ C

(
b2P2 +

P1 + 2b
√

P1P2

1 + a2P1

)
+ C

(
a2P1 +

P2 + 2a
√

P1P2

1 + b2P2

)
+ C12 + C21

(3.5)

R
up
1 + R

up
2 ≤ C(

max{1 − a2, 0}P1

a2P1 + 1
) + C

(
(
√

a2P1 +
√

P2)
2
)

+ C12 (3.6)

R
up
1 + R

up
2 ≤ C(

max{1 − b2, 0}P2

b2P2 + 1
) + C

(
(
√

b2P2 +
√

P1)
2
)

+ C21 (3.7)

R
up
1 + R

up
2 ≤ C

(
P1P2(1 − ab)2 + (

√
a2P1 +

√
P2)

2 + (
√

b2P2 +
√

P1)
2
)

(3.8)

2Rup
1 + R

up
2 ≤ C(

max{1 − a2, 0}P1

a2P1 + 1
) + C(a2P1 +

P2 + 2a
√

P1P2

b2P2 + 1
) + C

(
(
√

b2P2 +
√

P1)
2
)

+ C12 + C21 (3.9)

R
up
1 + 2Rup

2 ≤ C(
max{1 − b2, 0}P2

b2P2 + 1
) + C(b2P2 +

P1 + 2b
√

P1P2

a2P1 + 1
) + C

(
(
√

a2P1 +
√

P2)
2
)

+ C12 + C21 (3.10)

Proof. The first two bounds are simple applications of cut-set bounds at Transmitter/Receiver
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1, and 2, respectively. The rest of the upper bounds are based on the techniques used

in [34, 41]. The bounds are similar to the bounds proposed for the GIC with conferencing

decoders in [50] with additional terms accounting for the correlation between the transmit

signals. Section 3.7.1 provides the detailed proof.

3.3 Achievable Schemes

The ingredients of a general achievable scheme for the GIC of Fig. 3.1 are composed

of the tools used in the IC without conference, i.e., Han-Kobayashi signaling, and the

ones associated with the cooperative communications. Cooperation can be helpful in two

directions:

1. Canceling the known interference caused by the other party

2. Relaying information for the other party

To operate close to the fundamental limits of the communication, the above ingredients

should be properly combined. In the following, some achievable schemes based on a simple

type of Han-Kobayashi signaling, zero-forcing, and basic relaying techniques are devel-

oped for two special classes of the interference channels, i.e., symmetric and Z interference

channels. 1

3.4 Symmetric Interference Channel

We call an interference channel, symmetric, when

a = b

P1 = P2.

In this section, the sum-capacity of the symmetric IC is analyzed. The signaling at each

transmitter constitutes a private and a common signal corresponding to the HK scheme and

private signals that simultaneously provide interference cancellation and relaying benefits.

1It is remarked that the binning technique [44] can be used at each encoder to precode its own message
against the known interference. This, in general, could enlarge the achievable rate region. However, it is
shown that one can achieve close to the capacity without using the binning technique.
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In particular, Encoder i ∈ {1, 2} has four Gaussian codebooks, namely private-n codebook

Cu
i , private-z codebooks Cvi

i and C
vj

i , and common codebook Cw
i , with corresponding

codewords ui, vi, vj , and wi, where j ∈ {1, 2}, j 6= i.2 We use the same power allocation

policy for both transmitters. The input to the channel can be written as:

X1 =
√

Puu1 +
√

Pww1 +
√

Pvp
v1 −

√
Pvz

v2

X2 =
√

Puu2 +
√

Pww2 +
√

Pvp
v2 −

√
Pvz

v1,

where the codewords are assumed to have unit power, and

Pu =

{
1
a2 if a ≤ 1

0 if 1 < a,

Pu + Pw + Pvp
+ Pvz

≤ P

We zero-force v2 at Receiver 1 and v1 at Receiver 2, which require Pvz
= a2Pvp

. The power

is distributed amongst the codewords such that the GDOF of the channel, given in Eq.

(3.17), can be achieved by the proposed scheme (cf. section 3.4.1). The received signals

after zero-forcing are:

Y1 =
√

Pw(w1 + aw2) +
√

ηPvp
v1 +

√
Pu(u1 + au2) + z1

Y2 =
√

Pw(w2 + aw1) +
√

ηPvp
v2 +

√
Pu(u2 + au1) + z2,

where

η , (1 − a2)2. (3.11)

We provide the same power to the common codeword and codewords involved in zero-

forcing, i.e., Pw = (1 + a2)Pvp
.

At Receiver i, first wi, wj, vi are jointly decoded and then ui is decoded. Therefore,

2Through out the chapter, it is assumed that all of the employed codebooks are Gaussian and indepen-
dent of each other.
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each receiver forms a MAC.3 Defining

γ , (1 + a2), (3.12)

P ′ ,
P − Pu

2
(
Pu(1 + a2) + 1

)
(1 + a2)

, (3.13)

ζ , min{a2, 1}, (3.14)

the MAC constraints after removing the redundant inequalities are:

Rw1
≤ C(ζγP ′)

Rw2
≤ C(ζγP ′)

Rv1
≤ min{C12, C (ηP ′)}

Rv2
≤ min{C21, C (ηP ′)}

Rw1
+ Rw2

≤ C
(
γ2P ′

)

Rw1
+ Rv1

≤ C ((η + γ)P ′)

Rw2
+ Rv2

≤ C ((η + γ)P ′)

Rw1
+ Rv2

≤ C
(
(η + a2γ)P ′

)

Rw2
+ Rv1

≤ C
(
(η + a2γ)P ′

)

Rw1
+ Rw2

+ Rv1
≤ C

(
(η + γ2)P ′

)

Rw1
+ Rw2

+ Rv2
≤ C

(
(η + γ2)P ′

)

We define the sum-rate as RSum = R′ + Ru1
+ Ru2

with R′ , Rw1
+ Rw2

+ Rv1
+ Rv2

.

Applying Fourier-Motzkin Elimination (FME) to obtain rate constraints on the sum-rate

3It is remarked that in for 1 < a, decoding vi instead of zero-forcing it at receiver j , for i, j ∈ {1, 2}, i 6=
j, may enhance the sum-rate at the expense of increasing decoding complexity. See [46] for more details.
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leads to R′ ≤ min
l∈{1,··· ,5}

{R′
l}, where

R′
1 = C(ζγP ′) + C ((η + ζγ)P ′) + min{C12, C21, C (ηP ′)}

R′
2 = C

(
(η + γ2)P ′

)
+ min{C12, C21, C (ηP ′)}

R′
3 = 2C ((η + ζγ)P ′)

R′
4 = 2C (ζγP ′) + min{C12, C (ηP ′)} + min{C21, C (ηP ′)}

R′
5 = C

(
γ2P ′

)
+ min{C12, C (ηP ′)} + min{C21, C (ηP ′)}

Theorem 3.2. The achievable sum-rate is within 2.13, and 1.6 bits of the sum-capacity

for a ≤ 1, and 1 < a cases, respectively.

Proof. See section 3.7.2.

3.4.1 GDOF Analysis

In this section, the sum-capacity behavior is considered in the high SNR regime by char-

acterizing the GDOF of the channel. It is known that the interference can reduce the

available degrees of freedom for data communication [26]. To understand this effect, we

define the GDOF by slightly modifying the definition of [46] to account for C21:

d(α, β1, β2) = lim
SNR→∞

Rsum(SNR, α, β1, β2)

C(SNR)
, (3.15)

where SNR , P , β1, β2 ≥ 0 are the multiplexing gains of the cooperative links, i.e.,

C12 = β1C(P ) and C21 = β2C(P ), and

α ,
log(INR)

log(SNR)
, (3.16)

with INR , a2P . Defining β+ , β1 + β2 and β− , min(β1, β2), we have the following

lemma:

Lemma 3.3. The GDOF of the channel is:

dα<1 = min{2, 2 max(α, 1 − α) + β+, 2 − α + β−},
dα>1 = min{2α, α + β−, 2 + min(β1, α − 1) + min(β2, α − 1)}. (3.17)
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Figure 3.2: The effect of partial cooperation on the GDOF.

Proof. It is straightforward to show that both the lower and the upper bounds provide the

GDOF given in Eq. (3.17).

Fig. 2 shows the GDOF as a function of α, β1, and β2.
4 The GDOF associated with

GIC and MIMO Broadcast Channel (MIMO-BC) respectively serve as lower and upper

bounds on the GDOF for any β1 and β2. An interesting observation is unidirectional

cooperation never achieves any part of the MIMO-BC curve for α > 0. One can easily

infer that symmetric bidirectional cooperation outperforms unidirectional cooperation with

twice the cooperation capacity.

4The GDOF for α = 1 is 1 since the MIMO matrix is ill-conditioned, and therefore, it is omitted from
the figure.
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3.5 Z-Interference Channel

Now, another special class of the GIC shown in Fig. 3.1 is considered in which one

transmitter-receiver pair is interference-free, i.e., b = 0 in Fig. 3.1.

3.5.1 Upper Bounds

It is convenient to evaluate the upper bounds for the case of GZIC.

Lemma 3.4. The following region is an upper bound on the capacity region of the GZIC

shown in Fig. 3.1:

R
upz
1 ≤ C(P1) (3.18)

R
upz
2 ≤ C(P2) + C21 (3.19)

R
upz
2 ≤ C

(
2a2P1 + 2P2

)
(3.20)

R
upz
1 +R

upz
2 ≤ C(

max{1−a2, 0}P1

1+a2P1

)+C(2a2P1+2P2)+C12 (3.21)

R
upz
1 + R

upz
2 ≤ C

(
P1P2 + P1(1 + 2a2) + 2P2

)
. (3.22)

Proof. By setting b = 0 in the bounds introduced in section 3.2, removing redundant

inequalities, and replacing the term (
√

a2P1 +
√

P2)
2 by the larger term 2a2P1 + 2P2 in

(3.20), (3.21), and (3.22), we can get the above bounds.5

3.5.2 Unidirectional Cooperation

To gain some insight into the essential ingredients of an appropriate achievable scheme,

first, it is assumed that one of the cooperative links has zero capacity. Depending on which

capacity is zero, two scenarios can occur (see also Fig. 3.3):

1. C21 = 0 termed as zero-forcing scenario.

2. C12 = 0 termed as relaying scenario.

5The replacement is done to simplify the gap analysis.
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Figure 3.3: Unidirectional Cooperation: (a) Zero-Forcing Scenario, (b) Relaying Scenario.
The blue color represents the route of zero-forcing/ relaying.

3.5.2.1 Zero-Forcing Scenario (C21 = 0)

In this scenario, Transmitter 2 utilizes C12 to cancel the known part of the interference

(Fig. 3.3 (a)). The rest of the signaling is similar to the one proposed for the conventional

GIC [26]. In other words, Encoder 1 makes use of three independent codebooks, namely

private codebooks C
p
1 and Cz

1 , and common codebook Cc
1, with corresponding codewords

X1p, X1z, and X1c. Encoder 2 uses two private codebooks C
p
2 and Cz

1 . X1z is available at

both transmitters via the cooperative link and zero-forced at the second receiver. Since

Transmitter 2 does not cause any interference on Receiver 1, there is no need to include a

common codebook for User 2. The transmit signals are represented as follows:

X1 = X1p + X1c + X1z,

X2 = X2p − aX1z.
(3.23)

Decoders decide on the codeword indices i, j, k, and l according to:

• Decoder 1: (X1p(i), X1z(j), X1c(k), Y1) ∈ A
(n)
ǫ ,

• Decoder 2: (X1c(k), X2p(l), Y2) ∈ A
(n)
ǫ .

Section 3.7.3 shows the rate region described by (3.24)-(3.26) is achievable:

R1≤min{C(P1), C(P1p+P1c)+C12} (3.24)

R2≤C(
P2p

d
) (3.25)

R1 + R2≤min{C(P1p+P1z), C(P1p)+C12}+C(
a2P1c+P2p

d
), (3.26)
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where

d , 1 + a2P1p. (3.27)

The following observations are utilized to attain a suitable power allocation for different

codewords:

• Since X1p is treated as noise at Receiver 2, we set P1p = 1
a2 in order to receive X1p at

the level of the Gaussian noise at Receiver 2 [26].

• To make R2 close to R
upz
2 , i.e., C(P2), we impose the constraint P2

2
≤P2p.

• To make R1 in (3.24) close to R
upz
1 , i.e., C(P1), we enforce

P1−P1p

2
≤P1c. This require-

ment is more pronounced when C12 = 0.

For the last two items, the factor 2 in the denominators ensures a maximum loss of 0.5

bit compared to the case of P2p = P2, and P1c = P1 − P1p. Therefore, to satisfy the above

constraints, we select P1z according to:

P1z = min

(
P1 − P1p

2
,

P2

2a2

)
. (3.28)

Lemma 3.5. The preceding achievable scheme is R(0.5, 1) achievable.

Proof. See section 3.7.3.

3.5.2.2 Relaying Scenario (C12 = 0)

Here, it is assumed that C12 =0. In this scenario, C21 is employed to help Encoder 1 relay

some information for User 2 (Fig. 3.3 (b)). Based on the relaying capability (the relay

power a2P1 and the relay to destination channel gain a), three cases are recognized in this

setup and for each case, a different achievable scheme is proposed:

• Non Cooperative Case: a2P1 ≤ P2 + 1,

• Common Cooperative Case: P2 + 1 < a2P1, a2 ≤ P2 + 1,

• Private-Common Cooperative Case: P2 + 1 < a2P1, P2 + 1 < a2.

Before we continue to describe the achievable schemes, we stress that, throughout the

chapter, we aim to keep the achievable schemes simple, at the expense of a slight increase

in the gap from the upper bound.
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3.5.2.2.1 Non Cooperative Case: a2P1 ≤ P2 + 1: In this case, the cooperative link

is not used because it can at most enhance R2 by one bit. The signaling is similar to the

HK signaling developed for the GIC:

X1 = X1p + X1c,

X2 = X2p.
(3.29)

We set P1c = P1 − P1p with P1p = 1
a2 for a ≤ 1, and P1p = 0 for 1 < a. The decoding rules

are:

• Decoder 1: (X1p(i), X1c(j), Y1) ∈ A
(n)
ǫ ,

• Decoder 2: (X1c(j), X2p(k), Y2) ∈ A
(n)
ǫ ,

which lead to the R(0, 1.5) achievable region below:

R1 ≤ C(P1) (3.30)

R2 ≤ C(
P2

d
) (3.31)

R1 + R2 ≤ C(P1p) + C(
a2(P1 − P1p) + P2

d
). (3.32)

See section 3.7.4.1 for details.

3.5.2.3 Common Cooperative Case: P2 + 1 < a2P1, a
2 ≤ P2 + 1

For this case, in addition to the signals transmitted in the non cooperative case, User 1

relays some data communicated over the cooperative link for User 2. The signaling is as

follows:

X1 = X1p + X1c + X2r,

X2 = X2p,
(3.33)

where all signals are independent of each other. To find out how to treat X2r at Receiver

1 and how to allocate the Transmitter 1’s power between X1c and X2r, the deterministic

model shown in Fig. 3.4, is used. The model demonstrates the power level interaction of

the interfering signals according to the channel parameters. Since, X1p is received below

the noise level of Decoder 2, it is considered as noise at that receiver. When two signals
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1 < aa ≤ 1

X1c, X2r

shared between

b b bbbb noise level

X1c

X1p

X2p

b b b
b b bbbbb b b b b bbbbb b b

b b bbbbb b b

b b bbbbb b b

DEC 1

DEC 2

DEC 1

DEC 2

ENC 1

ENC 2

1

a

1

ENC 1

ENC 2

1

a

1

Figure 3.4: LDM for GZIC with C12 = 0: Common Cooperative Case. The received power
level at each receiver is shown for a ≤ 1, and 1 < a situations. Different colors represent
different signals. The signals with the same power level should be decoded jointly.
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are at the same power level at a decoder, they need to be decoded jointly at that receiver.

It is clear that there is not much benefit in having two signals with the same power level

intended for the same receiver.6 Having said that, it is noticed that the relayed signal has

to share its power level with the common signal of User 1 to not limit the User 1’s rate by

P2 (see power levels at Dec 2 in Fig. 3.4). Therefore, the relayed signal is considered as a

common signal, and consequently decoded at both receivers. The decoding rules are:

• Decoder 1: (X1p(i), X1c(j), X2r(k), Y1) ∈ A
(n)
ǫ ,

• Decoder 2: (X1c(j), X2r(k), X2p(l), Y2) ∈ A
(n)
ǫ .

For allocating power among the codebooks, the LDM suggests X2r and X1c to have the

same power level. Hence, we set P2p =P2, P2r =P1c =
P1−P1p

2
, where P1p = 1

a2 for a≤1, and

P1p =0 otherwise.

Lemma 3.6. The following region is R(0.5, 1.5), and R(0.5, 0.5) achievable for a≤1, and

1<a cases, respectively:7

R1 ≤ C(
P1 + P1p

2
) (3.34)

R2 ≤ C(
P2p

d
) + C21 (3.35)

R2 ≤ C(
a2(P1 − P1p) + 2P2p

2d
) (3.36)

R1 + R2 ≤ C(P1p) + C(
a2(P1 − P1p) + P2p

d
) − 1

2
, (3.37)

where d is defined in (3.27).

Proof. See section 3.7.4.2.

3.5.2.4 Private-Common Cooperative Case: P2+1<a2P1, P2+1<a2

For this case, the corresponding LDM shown in Fig. 3.5 illustrates that since a is quite

large, Transmitter 1 can spend a small amount of power (i.e., less than 1 unit) to relay the

6One can infer that in the non cooperative case, the relayed signal is not required (in the constant gap
sense). This is because in the corresponding LDM (not shown in the chapter), X2p and X2r would share
the same power level.

7For 1 < a the second condition for R2 is redundant.
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Figure 3.5: LDM for GZIC with C12 = 0: Private-Common Cooperative Case.

signal X2rp
for User 2 without a decoding requirement at Receiver 1. This technique can

be considered as the counterpart of the transmission at the noise level originally proposed

for the conventional GIC, and used in this chapter for a ≤ 1 configurations. This model

also suggests that a common signal, named X2rc
, needs to be relayed for User 2, similar to

the a2 ≤ P2 + 1 case. Therefore, the following signaling is used:

X1 = X1c + X2rp
+ X2rc

,

X2 = X2p,
(3.38)

where X1c, X2rc
are common signals and X2p, X2rp

are private signals for User 2. The

decoding rules are:

• Decoder 1: (X1c(i), X2r(j), Y1) ∈ A
(n)
ǫ ,

• Decoder 2:
(
X1c(i), X2r(j), X2rp

(k), X2p(l), Y2

)
∈ A

(n)
ǫ .

To avoid the complexity of jointly decoding four signals at Receiver 2, first X1c, X2rc
, X2rp

are jointly decoded assuming X2p as noise and then X2p is decoded. To appropriately

allocate the power of Transmitter 1 to different codebooks, the LDM suggests to provide

min{1, P1} amount of power for X2rp
transmission. Since this signal is received below
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the noise level of Receiver 1, there is no much cost associated with its transmission, and

therefore, it can be considered as the first signal to get its share of power. The rest of

the power is equally distributed between X1c and X2rc
as the case for a2 ≤ P2 + 1. One

question to answer is how to divide the capacity C21 between X2rp
and X2rc

? Again, we

give the priority to X2rp
, and name its share of the cooperative capacity, C ′. Below, P1≤1,

and 1<P1 cases are considered, respectively.

If P1≤1, we set P2rp
=P1, P1c =P2rc

=0, and C ′ = C21. It is easy to show (0, min{C(P2)+

C21, C(a2P1+P2)}) is achievable. Comparing this rate pair with the upper bounds (3.18)-

(3.20) proves that R(0.5, 0.5) is achievable.

Now, it is assumed that 1 < P1. We set P2rp
= 1, P1c = P2rc

= P1−1
2

, and P2p = P2. The

decoding error analysis of section 3.7.4.3 states that R2rp
≤ C( a2

P2+1
), and therefore, we set

C ′ = min{C( a2

P2+1
), C21}.

Lemma 3.7. The following region is R(1, 0.5) achievable:

R1 ≤ C(
P1 − 1

4
)

R2 ≤ C(P2) + C21

R1 + R2 ≤ C(a2P1 + P2) −
1

2
.

(3.39)

Proof. See section 3.7.4.3.

3.5.3 Bidirectional Cooperation

Now, it is assumed that both of C12 and C21 can be non-zero. C12 and C21 are respec-

tively used for the zero-forcing and relaying purposes as suggested by investigation of the

unidirectional case. Based on the observations obtained in the unidirectional cooperation

case, achievable schemes are proposed to characterize the capacity region of the GZIC with

bidirectional cooperation up to 1.71 bits per user. Five scenarios are possible:

A. a2P1≤1: It is explained that treating interference as noise makes R(0, 1) achievable.

See section 3.7.5.1 for details.

B. 1 ≤ a2P1 ≤P2+1: In this case, since relaying can increase User 2’s rate by one bit,

C21 is not used in this regime (similar to section 3.5.2.2.1). Section 3.7.5.2 shows the

zero-forcing technique utilized in section 3.5.2.1 is sufficient to achieve R(0.5, 1.5).
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C. P2 + 1 ≤ a2P1, a
2 ≤ 1: Both relaying and zero-forcing techniques are used to show

R(0.5, 1.71) is achievable. To avoid the complexity of decoding four signals at Re-

ceiver 1, a compressed version of User 1’s private signal is zero-forced at Receiver

2.

D. P2 + 1 ≤ a2P1, 1 ≤ a2 ≤ P2 + 1: In this regime, a simple combination of zero-

forcing and relaying techniques proposed for the unidirectional case is used to prove

R(1, 1.21) is achievable.

E. P2+1≤ a2P1, P2+1≤ a2: In this case, because Receiver 2 gets a very strong signal

from Transmitter 1, there is not much benefit in using C12. In fact, the same scheme

employed for C12 =0 makes R(1, 0.5) achievable. The gap analysis of section 3.7.4.3

is also valid for the case of C12 > 0.

It can be seen that for scenarios A, B, and E, the sum-capacity is approximated within 2

bits. In the following, scenarios C and D are further elucidated. Appendices 3.7.5.3, and

3.7.5.4 argue the same gap holds for scenarios C and D, which assures the maximum gap

of 2 bits on the sum-capacity for all regimes.

3.5.3.1 P2 + 1 ≤ a2P1, a ≤ 1

A natural generalization of the schemes proposed for the unidirectional cooperation case,

is to consider the following signaling:

X1 = X1p + X1c + X1z + X2r,

X2 = X2p − aX1z,

where X2r is decoded at both receivers. To avoid the complexity of jointly decoding of

four signals at Receiver 1, User 1’s private signal is compressed and sent to the other

transmitter via the cooperative link with capacity C12.
8 Then, Transmitter 2 zero-forces

the compressed version of the signal. In particular, the following signaling is used:

X1 = X1p + X1c + X2r,

X2 = X2p − X̂1p,
(3.40)

8Instead of the compression, one might sequentially decode (X1c, X1z, X2r) and X1p, similar to the
approach of section 3.5.2.4.
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where aX1p is compressed with distortion 1, i.e., aX1p = X̂1p+Z, with Z∼N (0, 1). The

compression, imposes the constraint C(a2P1p−1) ≤ C12. For the power allocation, it is

recalled from the unidirectional cooperation case that at most half of Transmitter 2’s

power is allocated for zero-forcing to not harm its own maximum rate by more than half

a bit. Therefore, the following power allocation is considered:

P1p =
min{22C12 , P2

2
+ 1}

a2
,

P1c = P2r =
P1 − P1p

2
,

P2p = P2 − (a2P1p − 1).

(3.41)

The term containing C12 is due to the compression rate constraint.

Lemma 3.8. The region given in (3.34)-(3.37) is R(0.5, 1.71) achievable.

Proof. See section 3.7.5.3.

3.5.3.2 P2 + 1 ≤ a2P1, 1 ≤ a2 ≤ P2 + 1

In this regime, the zero-forcing technique used for C21 =0, and the relaying technique used

for C12 =0 are simply combined, i.e.,

X1 = X1z + X1c + X2r,

X2 = X2p − aX1z.
(3.42)

Similar to the unidirectional case, the following power allocation is used:

P1z =
P2

2a2
,

P1c = P2r =
P1 − P1z

2
,

P2p =
P2

2
.
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Lemma 3.9. The following region is R(1, 1.21) achievable:

R1 ≤ C(
P1 + P2

2a2

2
) (3.43)

R1 ≤ C(
P1 − P2

2a2

2
) + C12 (3.44)

R2 ≤ C(
P2

2
) + C21 (3.45)

R2 ≤ C(
2a2P1 + P2

4
) (3.46)

R1 + R2 ≤ C(a2P1) + C12 −
1

2
(3.47)

R1 + R2 ≤ C(a2P1) + C(
P2

2a2
) − 1

2
(3.48)

R1 + R2 ≤ C(P1) + C(
P2

2
) − 1

2
. (3.49)

Proof. See section 3.7.5.4.

3.5.4 Bidirectional v.s. Unidirectional Cooperation: A Numeri-

cal Analysis View

In the previous section, it has been observed that unidirectional cooperation is opti-

mum in the constant gap sense for the following two cases: 1 ≤ a2P1 ≤ P2 +1, and

P2+1≤min{a2P1, a
2}. In this section, however, various numerical results are presented to

demonstrate that bidirectional cooperation between the transmitters may provide better

rate pairs compared to the unidirectional cooperation with a relatively larger total coop-

eration capacity. To achieve this goal, it is assumed that the total cooperation capacity

C , C12 + C21 is fixed and can be arbitrarily distributed between the cooperative links.

The achievable region optimized over such distribution is compared to the capacity region

or the outer bound region corresponding to the extreme case of unidirectional cooperation

, i.e., the Cognitive Radio Z Channel (CRZC).9

9In the cognitive setup, the cognitive transmitter knows the whole message of the primary user [36].
This property can be modeled as having a GIC with unidirectional transmitter cooperation. In such a
configuration, the capacity of the cooperative link suffices to be equal to the message rate of the primary
user. This fact is described for the MAC with conferencing encoders in [34]. In this section, it is shown that
sharing that required capacity, or even smaller than that amount, between the bidirectional cooperative
links can provide better rate pairs depending on the channel parameters.
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The CRZC can be either in the form of Fig. 3.3 (a) or Fig. 3.3 (b). The former and

the latter forms, respectively called type I and II, serve as the baseline for comparison in

Figs. 3.6 and 3.7, respectively. The capacity regions of the type I CRZC (for all a values),

and type II CRZC (for a ≤ 1) are expressed by:

R
up
1 ≤ C(P1)

R
up
2 ≤ C(P2),

and the union of the regions over 0 ≤ ρ ≤ 1

R
up
1 ≤ C(ρP1)

R
up
2 ≤ C

(
(
√

a2(1 − ρ)P1 +
√

P2)
2

1 + a2ρP1

)
,

respectively [38]. For type II CRZC with 1 < a, the upper bound region described by

(3.18)-(3.22) with C12 =0, and C21 =∞ is used.

Figs. 3.6 and 3.7 evaluate the achievable rates for different values of the channel pa-

rameters.10 Looking at Fig. 3.6, it is seen that sharing the cooperative capacity can

significantly increase the maximum of R2, with respect to the type I CRZC, as a gets

larger. In contrast, Fig. 3.7 shows bidirectional cooperation with relatively smaller to-

tal cooperation capacity can substantially enhance the sum-rate compared to the type II

CRZC.

3.6 Summary

The sum-capacity of the symmetric IC has been characterized within 2.13 bits. It has been

shown that for GZIC with bidirectional cooperation, R(1, 1.71) is achievable. As another

outcome of the gap analysis, the sum-capacity of the channel has been determined up to

2 bits. To obtain the results, basic communication techniques including Han-Kobayashi,

zero-forcing, simple relaying, and transmission at the noise level schemes are employed. In

addition, with the aid of signal compression or sequential decoding methods, the decoding

complexity of the utilized schemes is limited to jointly decoding of at most three inde-

10To make figures more readable, C1, and C2 are used instead of C12, and C21, respectively.
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Figure 3.6: Sharing the cooperative capacity between bidirectional cooperative links can
enhance the maximum of R2 compared to the type I CRZC. For P2 + 1 ≤ a2 (not shown
in this figure), the sum-rate can also be increased.
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Figure 3.7: Sharing the cooperative capacity between bidirectional cooperative links can
improve the sum-rate compared to the type II CRZC.
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pendent signals at each receiver. It has been observed that for GZIC, unidirectional and

bidirectional cooperation almost similarly perform (in the promised constant gap sense) in

two scenarios:

1) C21 is not required when the relaying power is smaller than the direct transmission

power, i.e., a2P1 ≤ P2 + 1.

2) C12 is not necessary when the relaying power and the relay gain are sufficiently large,

i.e., P2 + 1 ≤ a2P1, and P2 + 1 ≤ a2.

Furthermore, it has been shown that properly sharing the total cooperative capacity be-

tween the bidirectional links can enhance the achievable rate pairs in some scenarios.

3.7 Proofs for Chapter 3

3.7.1 Proof of Theorem 3.1

In the proofs of different upper bounds, the following statements, respectively denoted by

(a)-(i), will be repeatedly used:

• (a): qn , (qn
12, q

n
21) is a function of the messages m1 and m2.

• (b): Removing condition does not decrease the entropy

• (c): Fano’s inequality

• (d): Xn
1 , Xn

2 are functions of (m1, q
n), (m2, q

n) pairs, respectively.

• (e): m1 → (qn, Xn
1 ) → Y n

1 and m2 → (qn, Xn
2 ) → Y n

2 are Markov chains.

• (f): S1 , aX1 + N2, S2 , bX2 + N1, and S ′
1 , aX1 + N ′.

• (g): X1 ↔ q ↔ X2 is Markov chain, and the fact that X1, N1 are independent and

also X2, N2 are independent. In addition, the channel is additive.

• (h): Conditional version of the maximum entropy theorem. G stands for Gaussian.

• (i): Refer to [41].

• (j): m1 and m2 are independent.
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• (k): Chain rule of mutual information.

We also define Rup
sum , n(R1 + R2 − ǫn).

3.7.1.1 Proof for the Bound (3.5) on R1 + R2

Rup
sum = h(m1, m2) − nǫn

(a)
= h (m1, m2, q

n(m1, m2)) − nǫn

= h(m1, m2|qn) + h(qn) − nǫn

= h(m1|qn) + h(m2|qn, m1) + h(qn) − nǫn

(b)

≤ h(m1|qn) + h(m2|qn) + h(qn) − nǫn

≤ h(m1|qn) + h(m2|qn) + n(C12 + C21) − nǫn

(c)

≤ I(m1; Y
n
1 |qn) + I(m2; Y

n
2 |qn) + n(C12 + C21)

(d)
= h(Y n

1 |qn) − h(Y n
1 |qn, m1, X

n
1 ) + h(Y n

2 |qn) − h(Y n
2 |qn, m2, X

n
2 ) + n(C12 + C21)

(e)
= h(Y n

1 |qn) − h (Y n
1 |qn, Xn

1 ) + h(Y n
2 |qn) − h (Y n

2 |qn, Xn
2 ) + n(C12 + C21)

(f)

≤ h(Y n
1 , Sn

1 |qn) − h (Y n
1 , Sn

1 |qn, Xn
1 ) + nC12 + h(Y n

2 , Sn
2 |qn) − h (Y n

2 , Sn
2 |qn, Xn

2 ) + nC21

= h(Y n
1 , Sn

1 |qn) − h (Sn
2 , Nn

2 |qn, Xn
1 ) + nC12 + h(Y n

2 , Sn
2 |qn) − h (sn

1 , N
n
1 |qn, Xn

2 ) + nC21

(g)
= h(Y n

1 , Sn
1 |qn) − h (Sn

2 , Nn
2 |qn) + h(Y n

2 , Sn
2 |qn) − h (sn

1 , N
n
1 |qn) + n(C12 + C21)

= h(Y n
1 |Sn

1 , qn) − h (Nn
2 ) + h(Y n

2 |Sn
2 , qn) − h (Nn

1 ) + n(C12 + C21)

(h,b)

≤ h(Y n
1 |Sn

1G) − h (Nn
2 ) + h(Y n

2 |Sn
2G) − h (Nn

1 ) + n(C12 + C21)

(i)

≤ n

{
C
(

b2P2 +
P1 + 2b

√
P1P2

1 + a2P1

)
+ C

(
a2P1 +

P2 + 2a
√

P1P2

1 + b2P2

)
+ C12 + C21

}
,
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3.7.1.2 Proof for the Bounds (3.6) and (3.7) on R1 + R2

Here, we provide the proof for (3.6). We can simply adapt the proof for the bound (3.7).

Rup
sum = h(m1) + h(m2) − nǫn

= h(m1|m2) + h(m2) − nǫn

(c)

≤ I(m1; Y
n
1 |m2) + I(m2; Y

n
2 )

≤ I(m1; Y
n
1 , qn

12|m2) + I(m2; Y
n
2 )

(k)
= I(m1; Y

n
1 |m2, q

n
12) + I(m1; q

n
12|m2) + I(m2; Y

n
2 )

(d)
= I(m1; Y

n
1 |m2, q

n
12, X

n
2 ) + I(m1; q

n
12|m2) + I(m2; Y

n
2 )

(f)

≤ I(m1; Y
n
1 , S

′n
1 |m2, q

n
12, X

n
2 ) + I(m1; q

n
12|m2) + I(m2; Y

n
2 )

≤ I(m1; Y
n
1 , S

′n
1 |m2, q

n
12, X

n
2 ) + h(qn

12) + I(m2; Y
n
2 )

≤ I(m1; Y
n
1 , S

′n
1 |m2, q

n
12, X

n
2 ) + nC12 + I(m2; Y

n
2 )

= h(Xn
1 + Nn

1 , S
′n
1 |m2, q

n
12, X

n
2 ) − h(Nn

1 , Nn
2 ) + nC12 + I(m2; Y

n
2 )

(b)

≤ h(Xn
1 + Nn

1 |m2, q
n
12, X

n
2 , S

′n
1 ) + h(S

′n
1 |m2, q

n
12) − h(Nn

1 , Nn
2 ) + nC12 + h(Y n

2 ) − h(Y n
2 |m2)

(b)

≤ h(Xn
1 + Nn

1 |m2, q
n
12, X

n
2 , S

′n
1 ) + h(S

′n
1 |m2, q

n
12) − h(Nn

1 , Nn
2 ) + nC12 + h(Y n

2 ) − h(Y n
2 |m2, q

n
12)

(b,f)

≤ h(Xn
1 + Nn

1 |S
′n
1 ) − h(Nn

1 , Nn
2 ) + nC12 + h(Y n

2 )

≤ n

{
C(

max{1 − a2, 0}P1

a2P1 + 1
) + C

(
(
√

a2P1 +
√

P2)
2
)

+ C12

}
,

where, N ′, N2 are correlated. The bound is optimized over the correlation coefficient to

obtain (3.6) (cf. [41]).
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3.7.1.3 Proof for the Bound (3.8) on R1 + R2

This bound is obtained by allowing full cooperation at both transmitter and receiver sides.

Rup
sum = h(m1, m2) − ǫn

≤ I(m1, m2; Y
n
1 , Y n

2 )

≤ h(Y n
1 , Y n

2 ) − h(Nn
1 , Nn

2 )

≤ n log |A|
(l)

≤ n
{
C
(
P1P2(1 − ab)2 + (

√
a2P1 +

√
P2)

2 + (
√

b2P2 +
√

P1)
2
)}

,

where A =

(
P1 + b2P2 + 2bρ′ + 1 aP1 + (1 + ab)ρ′ + bP2

aP1 + (1 + ab)ρ′ + bP2 a2P1 + P2 + 2aρ′ + 1

)
, with ρ′ , E[x1x2], which

accounts for the correlation between the channel inputs. In (l) each term containing ρ′ is

maximized separately.
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3.7.1.4 Proof for the Bound (3.9) on 2R1 + R2

n(2R1 + R2 − ǫn) = h(m1, m2) + h(m1) − nǫn

(a)
= h (m1, m2, q

n(m1, m2)) + h(m1) − nǫn

≤ h(m1|m2, q
n) + h(m2|qn) + h(m1) + n(C12 + C21) − nǫn

(c)

≤ I(m1; Y
n
1 |m2, q

n) + I(m2; Y
n
2 |qn) + I(m1; Y

n
1 ) + n(C12 + C21)

(d)
= I(m1; Y

n
1 |m2, q

n, Xn
2 ) + I(m2; Y

n
2 |qn) + I(m1; Y

n
1 ) + n(C12 + C21)

≤ I(m1; Y
n
1 , Sn

1 |m2, q
n, Xn

2 ) + I(m2; Y
n
2 , Sn

2 |qn) + I(m1; Y
n
1 ) + n(C12 + C21)

(e)
= I(m1; Y

n
1 , Sn

1 |qn, Xn
2 ) + I(m2; Y

n
2 , Sn

2 |qn) + I(m1; Y
n
1 ) + n(C12 + C21)

(d)
= h(Xn

1 + Nn
1 , Sn

1 |qn, Xn
2 ) − h(Nn

1 , Nn
2 ) + I(m2; Y

n
2 , Sn

2 |qn) + I(m1; Y
n
1 )+

+ n(C12 + C21)

= h(Xn
1 + Nn

1 , Sn
1 |qn, Xn

2 ) − h(Nn
1 , Nn

2 ) + h(Y n
2 , Sn

2 |qn) − h(Y n
2 , Sn

2 |m2, q
n)+

+ I(m1; Y
n
1 ) + n(C12 + C21)

(d)
= h(Xn

1 + Nn
1 , Sn

1 |qn, Xn
2 ) − h(Nn

1 , Nn
2 ) + h(Y n

2 |Sn
2 , qn) + h(Sn

2 |qn)−
− h(Sn

1 , Nn
1 |m2, q

n, Xn
2 ) + I(m1; Y

n
1 ) + n(C12 + C21)

(e)
= h(Xn

1 + Nn
1 |Sn

1 , qn, Xn
2 ) − h(Nn

1 , Nn
2 ) + h(Y n

2 |Sn
2 , qn) + h(Sn

2 |qn)−
− h(Nn

1 |Xn
2 , qn, m2) + h(Y n

1 ) − h(Y n
1 |m1, q

n) + n(C12 + C21)

(d,e)
= h(Xn

1 + Nn
1 |Sn

1 , qn, Xn
2 ) − h(Nn

1 , Nn
2 ) + h(Y n

2 |Sn
2 , qn) + h(Sn

2 |qn)−
− h(Nn

1 ) + h(Y n
1 ) − h(Sn

2 |X1, q
n) + n(C12 + C21)

= h(Xn
1 + Nn

1 |Sn
1 , qn, Xn

2 ) − h(Nn
1 , Nn

2 ) + h(Y n
2 |Sn

2 , qn) − h(Nn
1 ) + h(Y n

1 )+

+ n(C12 + C21)

≤ h(Xn
1 + Nn

1 |Sn
1 ) − h(Nn

1 , Nn
2 ) + h(Y n

2 |Sn
2 ) − h(Nn

1 ) + h(Y n
1 ) + n(C12 + C21)

≤ n
{
C(

max{1 − a2, 0}P1

a2P1 + 1
) + C(a2P1 +

P2 + 2a
√

P1P2

b2P2 + 1
) + C

(
(
√

b2P2 +
√

P1)
2
)

+ C12 + C21

}

Similarly (3.10) can be proved.
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3.7.2 Proof of Theorem 3.2

To prove a constant gap, it is sufficient to compare each rate constraint in the achievablity

scheme to the upper bound with the same GDOF (cf. section 3.4.1). The key steps of the

proof are as follows:

3.7.2.1 a ≤ 1

1) R2 − min{R1, R5} ≤ 1
2

2) R5
up − R3 ≤ C(18.15)

3) For C(ηP ′) ≤ min{C12, C21},

R5
up − min

l∈{1,2,4,5}
{Rl} ≤ C(18.15)

4) For C12 ≤ C(ηP ′) ≤ C21,

R3
up − min

l∈{1,2,4,5}
{Rl} ≤ C(14)

5) For C21 ≤ C(ηP ′) ≤ C12,

R4
up − min

l∈{1,2,4,5}
{Rl} ≤ C(14)

6) For C12, C21 ≤ C(ηP ′),

R2
up − R4 ≤ 2

min{R3
up, R

4
up} − min

l∈{1,2,5}
{Rl} ≤ C(14)

where Rk
up for k ∈ {2, · · · , 5} correspond to the sum-rate upper bounds given in (3.5)-(3.8),

and for l ∈ {1, · · · , 5}, Rl , R′
l + 2Ru.

3.7.2.2 1 < a

1) R2 − min{R1, R5} ≤ 1
2
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2) R5
up − R3 ≤ C(8.02)

3) For C(ηP ′) ≤ min{C12, C21},

R5
up − min

l∈{1,2,4,5}
{Rl} ≤ C(8.02)

4) For C12 ≤ C(ηP ′) ≤ C21,

R3
up − min

l∈{1,2,4,5}
{Rl} ≤ C(4.05)

5) For C21 ≤ C(ηP ′) ≤ C12,

R4
up − min

l∈{1,2,4,5}
{Rl} ≤ C(4.05)

6) For C12, C21 ≤ C(ηP ′),

R1
up − R4 ≤ 1

min{R3
up, R

4
up} − min

l∈{1,2,5}
{Rl} ≤ C(4.05)

where R1
up , 2C(P ) + C12 + C21.

The gaps are calculated using the following inequality:

d1 + d2P + d3P
2

d4 + d5P + d6P 2
≤ max{d1

d4
,
d2

d5
,
d3

d6
} for 0 < di∈{1,··· ,6}.

Note that for both cases, the worst-case gap is obtained by comparing the achievable rate

with R5
up, which can be tightened by considering correlation between N1, N2 in Fig. 3.1.

3.7.3 Proof of Achievable Rate and Gap Analysis for Zero-Forcing

Scenario

The resulting rate constraints from error analysis at Decoder 1 are:
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R1p ≤ C(P1p)

R1z ≤ min {C(P1z), C12}
R1c ≤ C(P1c)

R1p + R1z ≤ C (P1p + P1z)

R1p + R1c ≤ C(P1p + P1c)

R1z + R1c ≤ C(P1z + P1c)

R1p + R1z + R1c ≤ C(P1),

and the constraints for Decoder 2 are:

R2p ≤ C(
P2p

d
)

R2p + R1c ≤ C(
a2P1c + P2p

d
),

where d is defined in (3.27). Note that there is no individual rate constraint on R1c at

Decoder 2 because the joint typical decoder does not declare an error in the case that

only X1c is wrongly decoded [52]. FME is applied to obtain the constraints in terms of

R1 , R1p +R1z +R1c, and R2 , R2p. Removing the redundant inequalities due to the

polymatroid structure of the rate constraints at each decoder, leads to the region (3.24)-

(3.26). To simplify the gap analysis, it is noted that the subsequent region is also achievable:

R1 ≤ C(
P1

2
) (3.50)

R2 ≤ C(
P2

4
) (3.51)

R1 + R2 ≤ C(
1

a2
) + C(

a2P1 − 1 + P2

4
) + C12 (3.52)

R1 + R2 ≤ C(
min{a2P1 − 1, P2} + 2

2a2
) + C(

max{a2P1 − 1, P2}
4

). (3.53)

It is clear that the preceding region is smaller than that of (3.24)-(3.26). To obtain

this region, we use (3.28) and set P1c =
P1−

1

a2

2
and P2p = P2

2
in the achievable region

(3.24)-(3.26). In addition, in getting (3.50) and (3.53) we notice P1

2
≤ P1p + P1c and

max{a2P1c, P2p} ≤ a2P1c + P2p. In the following, the region is compared to the upper
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bound to show that R(0.5, 1) is achievable:

(3.18) − (3.50) ≤ 0.5

(3.19) − (3.51) ≤ 1

(3.21) − (3.52)
(a)

≤ 1.5

(3.18) + (3.19) − (3.53) ≤ 1.5.

By (i) ± (j), we mean the sum/difference of the right hand side of Eqs. (i) and (j). To

attain (a), the fact that C(max{1−a2,0}P1

1+a2P1

)≤C( 1
a2 ) is used. It is remarked that R1p <1 for the

case of 1<a. Therefore, we can set P1p =0, i.e., we do not use X1p in order to simplify the

scheme. It can be shown that R(0.5, 0.5) is achievable in this case.

3.7.4 Proof of Achievable Rate and Gap Analysis for Relaying

Scenario

In this section, the achievable rate and gap analysis corresponding to the three scenarios

identified in section 3.5.2.2 are derived in detail.

3.7.4.1 Non-Cooperative Case

The decoding rules lead to the following rate constraints at Decoder 1 and Decoder 2:

Decoder 1:

R1p ≤ C(P1p)

R1c ≤ C(P1c)

R1p + R1c ≤ C(P1),

Decoder 2:

R2p ≤ C(
P2

2
)

R2p + R1c ≤ C(
P2 + a2P1c

2
).

Noting that a2P1−1 ≤ P2, it is straightforward to prove the region (3.30)-(3.32), which
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is obtained by applying FME, is R(0, 1.5) achievable.

To find the worst case gap, (3.30), (3.31), and (3.32) are respectively compared to the

upper bounds (3.18), (3.20), and (3.21). As in the conventional GIC for 1<a, the private

signal is not needed, and therefore, R(0, 1) is achievable.

3.7.4.2 Common Cooperative Case (Proof of Lemma 3.6)

The decoding rules impose the following constraints:

Decoder 1:

R1p ≤ C(P1p) (3.54)

R1c ≤ C(P1c) (3.55)

R1p + R1c ≤ C(P1p + P1c) (3.56)

R1p + R2r ≤ C(P1p + P2r) (3.57)

R1c + R2r ≤ C(P1c + P2r) (3.58)

R1p + R1c + R2r ≤ C(P1), (3.59)

Decoder 2:

R2p ≤ C(
P2p

d
) (3.60)

R2r ≤ min{C21, C(
a2P2r

d
)} (3.61)

R2p + R2r ≤ C(
a2P2r + P2p

d
) (3.62)

R2p + R1c ≤ C(
P2p + a2P1c

d
) (3.63)

R2r + R1c ≤ C(
a2(P2r + P1c)

d
) (3.64)

R2p + R2r + R1c ≤ C(
P2p + a2(P2r + P1c)

d
), (3.65)

where d is defined in (3.27).

Defining R1 , R1p + R1c and R2 , R2p +R2r, applying FME, and removing redundant
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inequalities, lead to the following rate constraints:

R1 ≤ C(P1p + P1c) (3.66)

R1 ≤ C(P1p) + C(
a2(P2r + P1c)

d
) (3.67)

R2 ≤ C(
P2p

d
) + C21 (3.68)

R2 ≤ C(
a2P2r + P2p

d
) (3.69)

R1 + R2 ≤ C(P1) + C(
P2p

d
) (3.70)

R1 + R2 ≤ C(
P2p + a2P1c

d
) + C(P1p + P2r) (3.71)

R1 + R2 ≤ C(
P2p + a2(P2r + P1c)

d
) + C(P1p) (3.72)

R1 + R2 ≤ C(
P2p + a2P1c

d
) + C(P1p) + C21 (3.73)

2R1 + R2 ≤ C(
P2p + a2P1c

d
) + C(

a2(P2r + P1c)

d
) + 2C(P1p) (3.74)

2R1 + R2 ≤ C(
P2p + a2P1c

d
) + C(P1p) + C(P1) (3.75)

R1 + 2R2 ≤ C(
P2p

d
) + C(

P2p + a2(P2r + P1c)

d
) + C(P1p + P2r) (3.76)

R1 + 2R2 ≤ 2C(
P2p

d
) + C(P2r + P1c) + C(P1p + P2r). (3.77)

It is noted that (3.77) is redundant since (3.76) ≤ (3.77) as verified below for two cases of
a ≤ 1, and 1 < a:

(3.77) − (3.76) = (3.60) + (3.58) − (3.65)

≥ (3.60) + (3.64) − (3.65) ≥ 0 for a ≤ 1

= C(P2)+C(P1)−C(P2+a2P1)
(⋆)

≥ 0 for 1 < a,

where to prove (⋆), a2 is replaced by its maximum value, i.e., P2 + 1.

We set P2r = P1c = P1−P1p

d
. This power allocation policy not only does not decrease the

maximum rates of both users by more than 0.5 bit, but also can simplify the achievable
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region by making some inequalities redundant. In particular, if we decrease (3.72) by 0.5

bit, then the region described by (3.34)-(3.37) is achievable. This is due to:

(3.66) ≤ (3.67)

(3.72) − 0.5
(a)

≤ (3.70)

(3.72) − 0.5 ≤ min{(3.71), (3.73)}
(3.67) + (3.72) − 0.5 ≤ (3.74)

(3.66) + (3.72) − 0.5 ≤ (3.75)

(3.69) + (3.72) − 0.5
(b)

≤ (3.76).

To establish (a) and (b), we use the fact that P2 + 1 ≤ a2P1. The following steps are

proceeded to prove the region is R(0.5, 1.5) achievable for a ≤ 1:

(3.18) − (3.34) ≤ 0.5

(3.19) − (3.35) ≤ 0.5

(3.20) − (3.36) ≤ 1.5

(3.21) − (3.37) ≤ 1.5,

and R(0.5, 0.5) achievable for 1 < a:

(3.18) − (3.34) ≤ 0.5

(3.19) − (3.35) = 0

(3.21) − (3.37) ≤ 1.

It is seen that the worst gap for this case, which is due to (3.36) or (3.37), can be further

reduced by sending X2r from both transmitters. To achieve the smaller gap goal, the term

2a2P1 +2P2 in the upper bounds (3.20) and (3.21) can also be tightened to (a
√

P1 +
√

P2)
2.

3.7.4.3 Private-Common Cooperative Case (Proof of Lemma 3.7)

The decoding rules enforce the following rate constraints:
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Decoder 1:

R1c ≤ C(
P1c

2
)

R1c + R2rc
≤ C(

P1 − 1

2
).

The factor 2 in the denominators is because of treating X2rp
as noise.

Decoder 2:

R2rp
≤ C ′

R2rc
≤ min{C21 − C ′, C(

a2P2rc

P2 + 1
)}

R2rp
+ R2rc

≤ C(
a2(P2rc

+ 1)

P2 + 1
)

R2rp
+ R1c ≤ C(

a2(P1c + 1)

P2 + 1
)

R2rc
+ R1c ≤ C(

a2(P1 − 1)

P2 + 1
)

R2rp
+ R2rc

+ R1c ≤ C(
a2P1

P2 + 1
)

R2p ≤ C(P2),

where C ′ = min{C( a2

P2+1
), C21}. The expression P2 + 1 in denominators comes from the

sequential decoding of (X2rp
, X2rc

, X1c), and X2p. The constraint on R2p is obtained due

to the assumption that X2p is decoded after (X2rp
, X2rc

, X1c) are decoded and their effect

is subtracted from the received signal. FME is used to rewrite the constraints in terms of

R1 , R1c, and R2 , R2p + R2rp
+ R2rc

. After removing inactive inequalities according to
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the operating regime, i.e., P2 + 1 ≤ a2, we attain:

R1 ≤ C(
P1c

2
)

R2 ≤ C(P2) + C21

R2 ≤ C
(
a2(P2rc

+ 1) + P2

)

R1 + R2 ≤ C(
P1 − 1

2
) + C ′ + C(P2)

R1 + R2 ≤ C(a2P1 + P2)

R1 + R2 ≤ C
(
a2(P1c + 1) + P2

)
+ C21 − C ′

R1 + R2 ≤ C
(
a2(P1c + 1) + P2

)
+ C(

a2P2rc

P2 + 1
)

2R1 + R2 ≤ C
(
a2(P1c + 1) + P2

)
+ C(

P1 − 1

2
).

Substituting the allocated powers provides:

R1 ≤ C(
P1 − 1

4
) (3.78)

R2 ≤ C(P2) + C21 (3.79)

R2 ≤ C(
a2(P1 + 1)

2
+ P2) (3.80)

R1 + R2 ≤ C(
P1 − 1

2
) + C ′ + C(P2) (3.81)

R1 + R2 ≤ C(a2P1 + P2) (3.82)

R1 + R2 ≤ C(
a2(P1 + 1)

2
+ P2) + C21 − C ′ (3.83)

R1 + R2 ≤ C(
a2(P1 + 1)

2
+ P2) + C(

a2P1 − 1

2(P2 + 1)
) (3.84)

2R1 + R2 ≤ C(
a2(P1 + 1)

2
+ P2) + C(

P1 − 1

2
). (3.85)
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If we deduct 0.5 bit from (3.82), some of the inequalities become redundant, since:

(3.82) − 0.5 ≤ (3.80), (3.83), (3.84),

min{(3.78) + (3.79), (3.82) − 0.5} ≤ (3.81),

(3.78) + (3.82) − 0.5 ≤ (3.85),

leading to the achievable region (3.39). Now, the simplified region (3.39) is compared to

the upper bounds to show it is R(1, 0.5) achievable:

δR1
≤ 1

δR2
= 0

δR1+R2
≤ C(5).

Because P2+1 ≤ a2 in this regime, the upper bound (3.22) is enlarged to C(3a2P1+P1+2P2)

to be used in proving the gap on the sum-rate.

3.7.5 Gap Analysis for Bidirectional Cooperation

Most of the detailed gap analysis for the bidirectional cooperation case is provided below.

3.7.5.1 a2P1 ≤ 1

Treating interference as noise and not using the cooperative links lead to the following

R(0, 1) achievable region:

R1 ≤ C(P1) (3.86)

R2 ≤ C(
P2

a2P1 + 1
). (3.87)

To prove the gap, we note that

(3.18) − (3.86) = 0

(3.20) − (3.87) ≤ C(2a2P1 + 2P2) − C(
a2P1 + P2 − 1

2
) ≤ 1.
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It is easy to show that for the general case of GCI shown in Fig. 3.1, when a2P1, b
2P2 ≤ 1,

the capacity region is achievable within one bit per user. Upper bounds (3.3) and (3.4) are

used for comparison purposes.

3.7.5.2 1 ≤ a2P1≤P2+1

In this regime, the achievable scheme based on the zero-forcing technique, used for unidirec-

tional case, is shown to be R(0.5, 1.5) achievable for the bidirectional case. In section 3.7.3,

the region (3.50)-(3.53) is proposed to simplify the gap analysis, and also to prove R(0.5, 1)

is achievable for the case of C21 = 0. When 0 < C21, we modify the achievable region as

well as the gap analysis to show R(0.5, 1.5) is achievable. It can be readily shown that

the region is still achievable if we replace R2 ≤ C(P2

2
) in (3.51) by R2 ≤ C(P2 − a2P1−1

2
).

We remark that both regions considered in this section and section 3.7.3 are inside the

achievable region given in (3.24)-(3.26). We compare the upper bound to the modified

region to show R(0.5, 1.5) is achievable:

(3.18) − (3.50) ≤ 0.5

(3.20) − C(P2 −
a2P1 − 1

2
)

(a)

≤ 1.5

(3.21) − (3.52) ≤ 1.5

(3.22) − (3.53) ≤ C(P1P2 + P1 + 4P2 + 2) − (3.53) ≤ 2.

Here, we provide the proof for (a). First we define some parameters:

x , a2P1 − 1

v ,
2x + 2P2 + 3

−x
2

+ P2 + 1

u , C(2a2P1 + 2P2) − C(P2 −
a2P1 − 1

2
)

=
1

2
log(v).

It is easy to see that the derivative of v with respect to x is always positive. Therefore,

the maximum value of x provides the maximum value of v, and consequently u. Hence, it

85



is straightforward to show

max
0≤x≤P2

{v} =
4P2 + 3
P2

2
+ 1

≤ 8,

which proves (a).

3.7.5.3 P2 + 1 ≤ a2P1, a ≤ 1

The received signals for this signaling are:

Y1 = X1p + X1c + X2r + N1,

Y2 = X2p + aX1c + aX2r + Z + N2,

where N1, N2, and Z (the compression noise) ∼ N (0, 1). The decoding rules impose the

same constraints as (3.54)-(3.65) with P2p = P2−(a2P1p−1) instead of P2p = P2 (due to

zero-forcing). Therefore, FME provides the rate region given in (3.66)-(3.76). Here, it is

shown that the region (3.34)-(3.37) is achievable. First, it is noted that similar to section

3.7.4.2, (3.71), and (3.73)-(3.75) are redundant. In addition, the power allocation policy

(3.41) makes

(3.66)
(a)

≤ (3.67)

(3.72) − 0.5
(b)

≤ (3.70)

(3.69) + (3.72) − 0.5
(c)

≤ (3.76),

since

(a).

C(P1p) + C(
a2(P1 − P1p)

2
)

(◦)

≥ C(P1p +
a2(P1 − P1p)

2
+

P1 − P1p

2
)

≥ C(
P1 + P1p

2
),
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(b).

(3.69) + (3.72) − 0.5
(⋆)

≤ C(
P2p + a2(P1 − P1p)

2
+ P1p +

P1pP2p

2
+

(P2

2
+ 1)(P1 − P1p)

2
) − 0.5

≤ C(P1 +
P2p

2
+

P1P2

4
)

(⋄)

≤ (3.70),

(c).

C(P1p) + C(
a2P2r + P2p

2
)

(⋆)

≤ C(P1p +
a2P2r + P2p

2
+

P2

2
+ 1

2
P2r +

P1pP2p

2
)

(⋄)

≤ C(P1p +
P2r + P2p

2
+

P2p + 1

2
P2r +

P1pP2p

2
)

≤ 0.5 + C(
P2p

2
) + C(P1p + P2r),

where (◦), (⋆), and (⋄) are correct due to 1 ≤ a2P1p, a2P1p ≤ P2

2
+ 1, and P2

2
≤ P2p,

respectively. It is remarked that the above proofs are also valid for the case of a ≤ 1

in section 3.7.4.2.

To analyze the gap, we note that P2

2
≤ P2p assures

(3.18) − (3.34) ≤ 0.5

(3.19) − (3.35) ≤ 1

(3.20) − (3.36)
(⋆)

≤ C(
29

3
),

where (⋆) is true since P2 ≤ a2P1 − 1.

Now, if P1p = 2C12

a2 , then adding both sides of the next three inequalities verifies that

(3.21) − (3.37) ≤ 1.5.

C(
(1 − a2)P1

a2P1 + 1
) + C12 − C(

2C12

a2
) ≤ 0

C(a2P1) − C(
P2p + a2(P1 − P1p)

2
) ≤ 0.5

C(2a2P1 + 2P2) − C(a2P1) ≤ 1.
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If P1p = P2+2
2a2 , we have P2p = P2

2
, and consequently,

P2p + a2(P1 − P1p)

2
=

a2P1 − 1

2
, and

(3.22) − (3.37) =
1

2
log

(
1 + P1P2 + P1(1 + 2a2) + 2P2

(1 + P2+2
2a2 )(a2P1+1

2
)

)

≤ 1.5.

Therefore, R(0.5, 1.71) is achievable. It is also observed that (3.37) ≤ (3.34) + (3.36),

which guarantees that the sum-rate is within 2 bits of the sum-capacity in this regime.

3.7.5.4 P2 + 1 ≤ a2P1, 1 ≤ a2 ≤ P2 + 1

The decoding rules impose similar constraints as (3.54)-(3.65) with R1p ≤ C(P1p) replaced

by R1z ≤ min{C12, C(P1z)}. FME is applied to write the constraints in the format of

R1 , R1z + R1c, and R2 , R2p + R2r:

R1 ≤ C(P1z + P1c) (3.88)

R1 ≤ C(P1c) + C12 (3.89)

R2 ≤ C(P2p) + C21 (3.90)

R2 ≤ C(P2p + a2P2r) (3.91)

R2 ≤ C(P1c + P2r) + C(P2p) (3.92)

R1 + R2 ≤ C(P1) + C(P2p) (3.93)

R1 + R2 ≤ C(P1z + P2r) + C(P2p + a2P1c) (3.94)

R1 + R2 ≤ C12 + C(P1c + P2r) + C(P2p) (3.95)

R1 + R2 ≤ min{C12, C(P1z)} + C(P2p + a2(P1c + P2r)) (3.96)

R1 + R2 ≤ min{C12, C(P1z)} + C(P2p + a2P1c) + C21 (3.97)

2R1 + R2 ≤ min{C12, C(P1z)} + C(P2p + a2P1c) + C12 + C(P1c + P2r) (3.98)

2R1 + R2 ≤ min{C12, C(P1z)} + C(P2p + a2P1c) + C(P1) (3.99)

R1 + 2R2 ≤ C(P1z + P2r) + 2C(P2p) + C(P1c + P2r) (3.100)

R1 + 2R2 ≤ C(P1z + P2r) + C(P2p) + C(P2p + a2(P1c + P2r)). (3.101)
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Again, the employed power allocation can help us to simplify the achievable region to the

region described by (3.43)-(3.49). This is because

(3.92) ≥ (3.93) − 0.5

(3.94) = (3.88) + (3.91)

(3.95) ≥ (3.93) − 0.5

(3.97) ≥ (3.96) − 0.5

(3.98) ≥ (3.89) + (3.96) − 0.5

(3.99) ≥ (3.88) + (3.96) − 0.5

(3.100) ≥ (3.92) + (3.93) − 0.5

(3.101) ≥ (3.91) + (3.93) − 0.5.

To obtain the preceding inequalities, we use the fact that P2 + 1 ≤ a2P1.

The achievable rate is compared below with the upper bound to prove R(1, C(13
3
)) is

achievable:

(3.18) − (3.43) ≤ 0.5

(3.18) − (3.44) ≤ 1

(3.19) − (3.45) ≤ 0.5

(3.20) − (3.46) ≤ C(
13

3
)

(3.21) − (3.47) ≤ 1.5

(3.22) − (3.48)
(⋆)

≤ C(9)

(3.22) − (3.49)
(⋄)

≤ C(11).

To achieve (⋆), and (⋄), the upper bound (3.22) is enlarged to C(2P1P2 +2P1 +2P2 +a2P1),

and C(3P1P2 + 3P1 + 2P2), respectively, as a consequence of a2 ≤ P2 + 1. It is seen that

the sum-capacity is determined up to 2 bits in this scenario since (3.47) ≤ (3.44) + (3.46).

89



Chapter 4

Conclusion

In this final chapter, we summarize our contributions and point out several interesting

problems for further research.

4.1 Contributions

In this dissertation, we studied cooperative communications for two simple but important

models of diamond relay channel and interference channel with conferencing encoders.

4.1.1 Diamond Relay Channel

Diamond relay channel was studied in detail in chapter 2. In particular, the capacity of the

channel was characterized for a special class of ∆ = 0, and for general channel parameters,

it was approximated by at most 3.6 bits. To achieve the results, the decode-and-forward

technique together with a proper schedule over the network operating modes were used.

The proposed schedule reveals the minimum number of required operating modes in order

to guarantee a finite gap from the capacity for all channel parameters. Specifically, the

fundamental parameter ∆ determines which modes should be included in the schedule.

A key step towards the results was the proposed upper bound obtained using the weak

duality theorem of linear programming.
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4.1.2 Interference Channel with Conferencing Encoders

The two-user GIC was considered in chapter 3, in which encoders are connected through

noiseless links with finite capacities. In this setting, prior to each transmission block

the encoders communicate with each other over the cooperative links. New genie-aided

upper bounds on the sum-capacity were developed which incorporate the capacities of the

cooperative links. Two special classes of the GIC was analyzed. First, for the symmetric

GIC, with possibly different cooperation link capacities, the sum-capacity was characterized

within 2.13 bits gap for all values of the channel parameters. Second, for the GZIC, the

capacity region and the sum-capacity of the channel were approximated up to 1.71 bits per

user and 2 bits in total, respectively. It was also established that properly sharing the total

limited cooperation capacity between the cooperative links may enhance the achievable

region, even when compared to the case of unidirectional transmitter cooperation with

infinite cooperation capacity. The achievable schemes are based on a simple type of Han-

Kobayashi signaling, together with the zero-forcing, and basic relaying techniques.

4.2 Future Directions

Cooperative communications has become a very hot research topic in the communication

theory community. In the following, some relevant problems to the setups considered in

this thesis are listed.

4.2.1 Signaling over Scheduling

During this thesis, it was assumed that the state sequence and the time-sharing parameters

are known to all nodes before transmission. However, the listen-transmit schedule of the

relays can carry information by making it dependent on the message to be sent. The

references [53, 54] are related to this topic.1

4.2.2 Parallel Relay Channel with More than Two Relays

For a parallel relay network, we considered the simplest case of two relays. When more

than two relays exist in the system, an important question is: what is a good achievable

1Thanks to Professor Wei Yu for directing to reference [54].
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scheme? To answer this question, the following observations may be useful. Amplify-and-

forward is known to be asymptotically optimum when the number of relays is large [21]. In

this thesis, as well as in [17], schemes based on the decode-and-forward strategy have been

demonstrated to be close-to-optimum for the two-relay case. Reference [17] also shows a

variant of the compress-and-forward scheme can achieve the capacity within a constant

gap for a network with any number of relays. Unfortunately, the gap is quite large.

4.2.3 Diamond Channel with Conferencing Relays

The concept of conferencing, used in chapter 3, can also be studied for the relays of the

diamond channel as well. To achieve close to the capacity of this channel, combining

the decode-and-forward scheme with the schemes used in the MAC with conferencing

encoders [34] or in the BC with conferencing decoders [55] may be a good starting point.

4.2.4 Interference Channel with In-band Transmitter Coopera-

tion

The cooperation used in the two-user GIC, considered in chapter 3, was enabled via or-

thogonal links. If such resources are not available in the system, the broadcast nature of

the wireless communication can be used to provide cooperation benefits. However, this

requires appropriate scheduling and transmission schemes, which are nice problems to be

explored. Reference [43] which analyzed the setup when nodes are full-duplex is a valuable

resource.

4.2.5 MIMO-BC without Dirty Paper Coding

The capacity region of the MIMO-BC channel with independent messages, is known to

be achieved by Dirty-Paper Coding (DPC) [56]. However, implementing DPC is not an

easy task. In [57], the ideas introduced in chapter 3 has been adapted to approximate

the capacity region of the two-user broadcast channel, with two transmit and one receive

antennae, within one bit, which is attractive since DPC is not required. One interesting

research direction is to see if the capacity region of the MIMO-BC can be approximated

within some constants without using DPC. The reference [57] also shows that the result

is also valid for the case of the two-user broadcast channel with an additional common
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message for both users. The capacity region of the MIMO-BC with common message is

unknown to date. The employed achievable schemes of this thesis may shed some light on

this problem.
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