
The Completeness Problem of

Ordered Relational Databases

by

Wei Jiang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Wei Jiang 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Support of order in query processing is a crucial component in relational database

systems, not only because the output of a query is often required to be sorted in a

specific order, but also because employing order properties can significantly reduce

the query execution cost. Therefore, finding an effective approach to answer queries

over ordered data is important to the efficiency of query processing in relational

databases.

In this dissertation, an ordered relational database model is proposed, which

captures both data tuples of relations and tuple ordering in relations. Based on this

conceptual model, ordered relational queries are formally defined in a two-sorted

(x-sort for data attributes and t-sort for tuple identifiers) first-order calculus FO�,

which serves as a yardstick to evaluate expressive power of other ordered query

representations.

The primary purpose of this dissertation is to investigate the expressive power

of different ordered query representations. Particularly, the completeness problem

of ordered relational algebras is studied with respect to the first-order calculus

FO�: does there exist an ordered algebra such that any FO� ordered relational

query can be expressed by a finite sequence of ordered operations? The significance

of studying the completeness problem of ordered relational algebras is in that the

completeness of ordered relational algebras leads to the possibility of implementing

a finite set of ordered operators to express all first-order expressible ordered queries

in relational databases.

The dissertation then focuses on the completeness problem of ordered conjunc-

tive queries. This investigation is performed in an incremental manner: first, the

ordered conjunctive queries with data-decided (or x-decided) order, CQX
� , is consid-

ered; then, the ordered conjunctive queries with t-decided order, CQT
�, is studied;

finally, the completeness problem for the general ordered conjunctive queries, CQ�,

is explored. The completeness theorem of ordered algebras is proven for all three

classes of ordered conjunctive queries.

Although this ordered relational database model is only conceptual, and ordered

operators are not implemented in this dissertation, we do prove that a complete

set of ordered operators exists to retrieve all first order expressible ordered queries

in the three classes of ordered conjunctive queries. This research sheds light on

the possibility of implementing a complete set of ordered operators in relational

databases to solve the performance problem of order-relevant queries.

iii

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Dr.

David Toman, for his guidance and support during my PhD program. His keen

insight and profound knowledge of database theories have been the constant source

for my research. This dissertation would have not been possible without his help.

I also want to gratefully acknowledge constructive suggestions from my com-

mittee members, Grant Weddell, Tamer Özsu, Leopoldo Bertossi, and Paul Ward.

Particularly, I want to express my appreciation to Dr. Weddell, who not only pro-

vided insightful suggestions to my work, but also served as my substitute supervisor

for several terms. I would like to extend a special thanks to Dr. Özsu for his critical

advice on progress schedule of this dissertation.

I would like to thank my friends and colleagues in the Database Group for

interesting discussions and warm friendship over the years. Thanks are also due to

friends and staff at the School of Computer Science for supporting me during my

study.

Finally, and most of all, I am deeply indebted to my parents for their endless love

and continued support. My husband Weizhen is always there beside me whenever

I need him. I thank him for his love, understanding, and support throughout

this journey. This dissertation is dedicated to my dear daughter Audrey and son

Andrew, who are the most precious gifts of my life.

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Ordered Relational Databases . 7

1.3 Related Work . 8

1.3.1 Order Optimization . 8

1.3.2 Ordered Representations of Relations 10

1.3.3 Query Rewriting . 11

1.3.4 Integrity Constraints Involving Order 13

1.3.5 Partial Order Databases . 13

1.3.6 Temporal Databases . 14

1.3.7 Preference and Skyline Queries 15

1.3.8 XML Queries . 16

1.3.9 Top-k Queries . 17

1.4 Organization of Dissertation . 18

2 The Ordered Relational Model 19

2.1 Ordered Relational Databases . 19

2.1.1 Ordered Relational Databases 20

2.1.2 Ordered Relational Databases vs. Temporal Relational Databases 25

v

2.2 Ordered Relational Queries . 31

2.2.1 FO� Ordered Relational Queries 31

2.2.2 FO� Ordered Relational Queries vs. 2FOL Temporal Rela-

tional Queries . 35

2.3 Ordered Relational Algebras . 42

2.3.1 Ordered Relational Algebras 42

2.3.2 The Completeness Problem of Ordered Relational Algebras . 45

3 Ordered Conjunctive Queries with Data-Decided Order CQX
� 48

3.1 Ordered Conjunctive Queries CQX
� 49

3.2 An Ordered Conjunctive Algebra CAX
� 52

3.2.1 Overview of Ordered Algebra CAX
� 52

3.2.2 Order-preserving Selection 53

3.2.3 Order-preserving Projection 55

3.2.4 Left Nested-loop Products 57

3.2.5 Order Concatenation . 60

3.2.6 Order Reduction . 62

3.2.7 Order Identity . 64

3.2.8 Order Reverse . 65

3.3 Transformation Rules . 66

3.4 Completeness of CAX
� . 77

4 Ordered Conjunctive Queries with t-Decided Order CQT
� 96

4.1 Ordered Conjunctive Queries CQT
� 96

4.2 An Ordered Conjunctive Algebra CAT
� 99

4.2.1 Overview of Ordered Algebra CAT
� 99

4.2.2 Order Intersection . 100

4.2.3 Top Operation . 102

4.2.4 Derived Operations . 104

4.3 Transformation Rules . 105

4.4 Completeness of CAT
� . 109

vi

5 Ordered Conjunctive Queries CQ� 128

5.1 Ordered Conjunctive Queries CQ� 128

5.2 An Ordered Conjunctive Algebra CA� 132

5.2.1 Overview of Ordered Algebra CA� 132

5.2.2 Until Operation . 133

5.2.3 Derived Operations . 136

5.3 Transformation Rules . 137

5.4 Completeness of CA� . 138

6 Conclusion and Future Work 157

6.1 Summary of Results . 157

6.2 Future Work . 160

References 161

vii

List of Tables

2.1 The data relation EMP . 23

2.2 The order relation �EMP . 23

2.3 The ordered relation 〈EMP,�EMP〉 24

2.4 An example of temporal relations 28

2.5 One ordered relation corresponding to the temporal relation Class 29

2.6 Another ordered relation corresponding to the temporal relation Class

. 29

2.7 The ordered relation 〈EMP,�EMP〉 33

2.8 The ordered relation 〈EMP,�EMP〉 34

5.1 The construction of Eβ by induction 146

viii

List of Figures

1.1 An execution plan for the example query 3

1.2 XML trees labelled with intervals 4

1.3 DB2 plan for roots . 5

1.4 A more efficient algorithm for roots 6

2.1 Reduction of a temporal query to an ordered query 36

5.1 An illustration of the conjunct β 146

ix

Chapter 1

Introduction

This dissertation investigates supporting order in query processing in relational

database systems. In particular, we propose an ordered relational database model

which is independent of data types and specific domains, and we study the expres-

sive power of different query representations over this ordered database structure.

This chapter introduces work that will be addressed in this dissertation. Section

1.1 provides the motivations of the proposed research in order support in relational

database systems. In Section 1.2 we explain why the physical order is chosen as

the order representation in the proposed investigation, and propose a novel ordered

relational database model. In Section 1.3 a brief survey is conducted on the related

work in order support in database systems. Section 1.4 outlines the organization

of the remainder of the dissertation.

1.1 Motivation

Order is a critical characteristic of data and has been studied for decades in database

query processing areas. Inherently, ordering exists among data in all database

applications. For example, in scientific databases, each experimental observation

might be ordered by observation date. In bank databases, banking transactions

might be sorted by transaction time and account number. In stock databases,

stock price history might be recorded according to date. The interest in studying

data order in databases naturally stems from these database applications.

One of the reasons to consider order in query processing is that the query is

required to output the result in a specific order. A financial analyst, for example,

1

might want a list of stocks in descending order of trade volume for a given day.

A scientist might be interested in generating the experimental data in a specific

order so that the experimental data could be the input to data analysis software.

Efficient order support techniques will directly benefit these queries with ordered

output.

Another key reason to consider order in query processing comes from query

optimization. Some sort-based operations, such as join and duplicate elimination,

can be implemented more efficiently if the query processor takes advantage of the

ordering of data. It is well-known that sorting is one of most expensive operations

in query processing. If the query processor keeps track of the order in the interme-

diate result, sort operations can be avoided when the order required for sort-based

operations matches the existing order. Even when a sort cannot be avoided, a more

efficient plan can be formed by deciding when and how to sort. Therefore, taking

advantage of order properties during query processing results in more efficient query

execution plans.

Recently, exploiting the order of data has gained new interest and prominence

in the database community. The rapid growth of the Internet industry is one of

the driving forces behind this trend. Fast and selective results are more desirable

for web queries, rather than more accurate and complete results desirable for tra-

ditional database queries. One of the applications for order treatment in Internet

information retrieval is exemplified by top-k queries, in which the user receives the

first k relevant answers to his query in an order that satisfies his or her specific cri-

teria. From the users’ perspective, top-k queries enable users to acquire the most

important query answers promptly. Alternatively, search engines can retrieve the

most relevant answers more efficiently and effectively.

The following example illustrates how crucial the order is during query pro-

cessing in relational databases and what the existing database systems lack in

supporting order.

Example 1.1 We consider a database containing one relation EMP, which stores

information about a company’s employees: Employee Id, Name, Age, and Salary.

This relation has a relation schema EMP (EmpId, Name, Age, Salary, Department)

with EmpId as the primary key. Suppose that an end user desires to retrieve all

employees in the department “Sales” in a descending order of salary. Under the

circumstances that no index was built on this relation, the user could answer this

question by generating an SQL query as follows:

2

SELECT Name

FROM EMP

WHERE Department = ′Sales′

ORDER BY Salary DESC

A typical execution plan for this query in relational database processors is shown

in Figure 1.1.

Figure 1.1: An execution plan for the example query

In Figure 1.1, the query processor first scans the relation EMP to take tuples into

the memory. Then, a selection is applied on all tuples based on a data predicate

Department = “Sales”. Next, the selected tuples are sorted in a descending order

of Salary. Finally, “Return” returns the selected tuples in the desired order.

This query plan typically takes O(n log n) to obtain the result, which comes

mainly from the sorting operation. However, if the tuples in EMP are already in a

descending order of Salary, the sorting operation can be omitted. The query plan

then has an execution cost of O(n). The execution cost changes from O(n log n)

to O(n) if the query processor can detect whether the order of a relation already

matches the desired order in the plan.

One solution to using orders in query processing is to record tuples with their

order and to provide algebraic operators in an ordered fashion. In Example 1.1,

assume that tuples in EMP are sorted in a descending order of Salary. If the

selection operator is order-preserving, which means the ouput of selection is kept

in the same order as in the input EMP, we know that the selected tuples are in

the descending order of . Therefore, the sorting operation can be avoided, and the

execution cost changes from O(n log n) to O(n) in this case.

3

This example indicates that order support during query processing and opti-

mization is evidently in demand with regard to the efficiency of query processing.

However, most conventional relational databases have set or multi-set based data

models, which make it difficult to manipulate orders during query processing. Cur-

rently, commercial database systems do support orders in their query processing;

however, their order support is not in the core of the query engine at all, but is some

add-on features on top of traditional query optimization. For example, most exist-

ing SQL query optimizers in commercial databases provide a “WINDOW” function

to use the data ordering. Unfortunately, this order-relevant feature, although ex-

pressive, results in complex formulations for even simple queries [57]. Furthermore,

the complex formulation is difficult to optimize in later query processing. How-

ever, almost every database query execution nowadays contains sorting and other

order-relevant operations. The lack of systematic order support built into the query

processor leads to the inefficiency of processing order-relevant queries in relational

databases, as illustrated in the following example.

Example 1.2 The Extensible Makeup Language (XML), as a standard format of

exchanging data on the Internet, composes documents as ordered and labelled trees.

The XML documents can be translated into relations, for example, using interval

encoding [33]: an XML document is modelled as an ordered forest of rooted, node-

labelled, and ordered trees. In an XML forest, each node is labelled with its left

and right endpoints (l, r). The interval of a parent must contain the intervals of all

its children, that is, the left endpoints of children must be greater than those of the

parent, and the right endpoints of children must be less than those of the parent.

Examples of XML trees labelled with intervals are illustrated in Figure 1.2.

Figure 1.2: XML trees labelled with intervals

In an XML forest, the nodes without parents are called roots. Typically, we use

roots as starting points to retrieve and update the nodes in the forest. The tem-

plate for the roots operator is defined as follows:

4

CREATE VIEW roots(T) AS

SELECT u.s AS s, u.l AS l, u.r AS r

FROM T u

WHERE NOT EXISTS(

SELECT *

FROM T v

WHERE v.l < u.l AND u.r < v.r)

Conventional relational optimizers, such as DB2, generate the plan in Figure 1.3. In

this plan, the joins right after table scans are outer-joins because they are performed

with inequality predicates; the intermediate results after the outer-joins are joined

together with a merge-join. Therefore, the total cost of this plan is O(n2logn2),

which is not efficient.

Figure 1.3: DB2 plan for roots

More efficient methods exist to solve this problem. One possible approach is to

scan the table only once and make use of the order property that the interval of

a parent must contain the intervals of all its children. We first scan the table and

sort it by left endpoints l, and now we know that the first tuple must be one of the

roots, and all child tuples must follow after their parent. Then, we iterate over the

table and compare right endpoints of the following tuples with the right endpoint

of this root, until we find a tuple with the right endpoint greater than the right

5

endpoint of this root, which is another root. Repeating the procedure, we will find

all roots in a given XML forest. This algorithm is depicted in Figure 1.4:

Figure 1.4: A more efficient algorithm for roots

With this algorithm, sorting left endpoints takes O(n log n) and comparing right

endpoints takes O(n). Thus, this algorithm takes only O(n log n) to compute all

roots of an XML forest. Furthermore, if the relation is already ordered by left

endpoints, the time cost is linear, O(n). Considering the large scale of current

database applications, and considering how frequently queries of roots occur in

XML databases, the query performance with this algorithm is improved consider-

ably over the performance of the previous query plan.

However, current databases do not support such an algorithm because no opera-

tors can express it in query engines. A natural solution to this situation is to add an

operator of roots to the current database systems. Thus, the cost of query process-

ing in XML databases will be significantly reduced by an efficient implementation

of the operator of roots.

This example demonstrates that those queries which rely heavily on order prop-

erties of databases can be processed more efficiently if a suitable set of operators are

supplied in XML database systems. Similarly, a set of ordered operators might exist

in general relational database systems to efficiently process order-relevant queries.

In general, we are interested in finding a complete set of ordered operators, which

are independent of database applications and are able to express all potential orders

occurring during query processing in relational databases.

Furthermore, this example motivates the study of the completeness problem in

6

ordered relational databases: whether there exists an ordered relational algebra,

equipped with a complete set of ordered operators, to answer all first-order ex-

pressible ordered queries. To do this, an ordered database model must be proposed,

which is independent of data types and specific domains, and contains a collection

of general ordered operators to manipulate the ordered data structure. By consid-

ering order properties from the beginning of query processing and optimization, the

query processing cost should be reduced significantly for order-relevant queries.

1.2 Ordered Relational Databases

In this dissertation, we provide an ordered relational database model in which

relational queries are processed in an ordered fashion. An ordered database is a

collection of ordered relations which are composed of data tuples and the ordering

among data tuples. An ordered query specifies not only resulting data tuples, but

also the ordering of those tuples based on its input. To capture data ordering in

this ordered relational database model, we make use of the “physical order” of

data, which is the order the iterator retrieve data from a relation. The reasons for

choosing the physical order as the order representation in this dissertation are that:

• The physical order is independent of data domains. We can employ the

physical order with any data types in any database applications.

• The physical order is more general than the attribute orders. A physical

order can always be generated by iterators in a relation; however, a relation

may not have any attribute order in it. Furthermore, the physical order

can be affiliated with attribute orders by integrity constraints, such as order

dependencies [41] [42].

To represent the physical order of a relation, a virtual tuple identifier is attached

to each data tuple in the relation. Then, the order of the relation is represented by

a binary relation, which indicates orders between all pairs of tuple identifiers and

hence forms a linear total order over the relation. This binary relation is called

an order relation. An ordered relation contains a regular relation and its order

relation. The operators in this ordered database model accept ordered relations as

their input and generate an ordered relation as their output.

7

Based on this ordered database model, ordered relational queries are formally

defined in the first-order predicate calculus. The expressive powers of other or-

dered query representation languages will be studied, such as ordered relational

algebras, with respect to the first-order logics. We are particularly interested in the

completeness problem of ordered relational algebras: does there exist a complete

algebra for all first-order expressible ordered relational queries?

The completeness problem is essential in ordered relational databases because

the incompleteness of ordered relational algebras causes serious problems when im-

plementing ordered operators in relational databases. Typical implementations in

the conventional databases are based on essentially the equivalence of relational

algebra and first-order calculus [5] [40] [27]. Analogously, the completeness of or-

dered relational algebras decides whether ordered relational algebras possibly could

be implemented in which all first-order expressible ordered queries can be answered.

1.3 Related Work

Considerable effort has been made for supporting order in query processing and

optimization since the 1970’s. In this section, an overview is provided on the

research that has been done in the relevant areas, such as query optimization,

ordered data representations, and integrity constraints, etc.

1.3.1 Order Optimization

The first study of ordering in query processing was closely interwoven with query

optimization. Selinger et al. introduced the “interesting order” in their seminal

work of access path selection in System R [69]. Interesting order is an order that is

generated by an operator, such as the sort operator, or demanded by an operator,

such as the ORDER BY or GROUP BY, or is beneficial to exploit and use for

operators, such as the merge-join operator. When a query is issued, the optimizer

examines all possible execution plans. For each execution plan, both the predicted

cost and the relation order are computed. The system chooses the least expensive

execution plan among the plans with interesting orders and the plans that produce

unordered results. If there is no interesting order in the query, the system chooses

the least expensive unordered plan; if there is an interesting order, then it compares

8

the lease expensive plan with interesting order and the least expensive unordered

plan plus the cost of sorting in optimization.

In another relational optimizer, Starburst [47], a SQL query is represented using

the Query Graph Model (QGM). In QGM, a query is represented as a series of

algebraic operations on relations, including SELECT, UNION, INTERSECTION,

GROUP BY, etc. Query optimization consists of two phases of processing: query

rewrite and plan optimization. In the phase of query rewrite [66], transformation

rules are used to rewrite a QGM query into equivalent queries. In the phase of

plan optimization [60], the optimizer selects the least costly execution plan of the

QGM query among a variety of execution plans. A high-level algebraic operation is

realized by a derivation of physical plans, which are associated with their estimated

costs and physical properties, such as ordering. Order properties are propagated

through physical operations in execution plans and are considered when the system

generates the execution plans.

Taking advantage of interesting order allows, in many cases, to avoid storage

and sorting of intermediate query results, and raises the interest in the research

sub-area of order optimization in query processing. Order optimization is the pro-

cess in which the optimizer detects when interesting orders are generated, whether

interesting orders are satisfied, where and how to sort when a sort is unavoidable.

Simmen et al. have presented techniques and overall architecture for order

optimization in IBM’s DB2 [74], a descendent of the Starburst optimizer. In DB2,

an order specification is denoted as a list of columns in major to minor order

(o1, o2, · · · , on). In order optimization, an order specification (an order property

or interesting order) is first reduced to its canonical form by using predicates,

keys and functional dependencies to remove redundant columns from the order

specification. Then, algorithms are used to test whether an interesting order is

satisfied, whether two interesting orders can be combined into one, and how to push

down an interesting order in a query plan. In particular, this work describes how

properties of input relations (order, predicates, keys, and functional dependencies)

can be maintained through operators.

More recently, several papers have been published along this line of order opti-

mization [30] [64] [85] [7]. Wang and Cherniack integrate reasoning about grouping

and ordering into one framework [85]. Groupings are closely related to orderings in

query processing, and can be treated similarly during plan generation. With this

approach, keys, order properties, and functional dependencies are associated with

each node (operator) in the execution plan, and order properties of intermediate

9

query results are inferred by using transformation rules. By checking whether a re-

quired ordering or grouping is satisfied by the execution plan, unnecessary sorting

and grouping are removed from the plan. Essentially, this approach on the order

inference part is an extension of Simmen’s algorithm.

Inspired by this work, Neumann and Moerkotte propose a combined framework

for grouping and order optimization [64] [65]. In this work, a finite state machine

(FSM) is used as a tool to track the available orderings and groupings. They

focus on including efficient grouping optimization into the same framework of order

optimization. They apply Simmen’s strategy of order inference in their work.

Both these two approaches adopt Simmen’s framework and use functional de-

pendencies to infer the ordering and grouping properties that the query results

satisfy.

However, in these approaches with order optimization, interesting orders are

represented by attribute orders, and therefore cannot be used to express arbitrary

first-order expressible orders occurring in intermediate and final results in query

processing. As a result, these methods cannot solve the problems in the motivating

examples in Section 1.1.

1.3.2 Ordered Representations of Relations

It is well known that conventional relational algebras use sets or multi-sets as data

models. This makes it hard to capture the order properties of data in these data

models. Many researchers thus turned to representing data with ordered data

structures, such as lists, sequences, or arrays.

Slivinskas et al. [75] distinguish three types of relation: list, multi-set and

set. Correspondingly, all transformation rules are classified into three categories:

list equivalence, multi-set equivalence, and set equivalence. Two relations are list

equivalent if they are identical; multi-set equivalent if they are identical as multi-

sets, taking into account duplicates, but not order; and set equivalent if they are

identical as sets, ignoring duplicates and order. The operations include not only the

conventional relational algebraic operations, such as selection, projection, union-all,

cartesian product and difference, but also duplicate elimination, sorting, top-n and

aggregation. During query plan generation, the system first decides the type of

the root for the query tree, list, multi-set or set. Then, the required equivalence of

each operation is derived at each level based on whether the operation is duplicate

10

and order relevant. The required equivalence of operations constrains the types of

transformation rules that can be applied at each step of query enumeration.

Lerner et al. [57] extend SQL with order-related assuming order clauses to

AQuery, which addresses order-dependent queries, i.e., those queries whose results

(viewed as multi-sets) change if the order of the input tuples is changed. In their

data model, an arrable is defined as a finite, unbounded array of elements. Each

element in an arrable is associated with an index or position. An arrable may be

ordered by a subset of its attributes. A set of order-preserving operators are defined

over arrables. In addition to sort elimination and move-around techniques [74] [75],

Lerner et al. introduce edge built-in functions, such as first and last, which allow

other aggressive order-related optimization. When an AQuery query is issued by

a user, the optimizer matches the query’s order with the input existing order, and

decides whether, and when, further sorting is necessary. Optimization techniques

for order-dependent queries are also addressed in this work. However, they define

the operators by algorithms in a general-propose language, in which it is difficult to

infer orderings and decide computability. In the proposed approach, the operators

are defined using formulas, and therefore, the problems with algorithms can be

avoided.

A number of approaches treat order by using sequences to represent relations

[61] [70] [71] [67]. Seshadri et al. propose a data model of sequences in [70]. Tuples

in a relation are ordered by their positions. They define a set of query operators on

sequences. Certain specific operators, such as positional offset and value offset, are

applied on input sequences to manipulate sequences. Seshadri et al. also develop

optimization techniques, which are particular to sequences, to perform global and

local query optimization.

In general, these approaches with ordered representations of data lack facilities

of changing data orderings. Furthermore, none of these approaches has proposed a

complete set of algebraic operators to express queries with any first-order expressible

order.

1.3.3 Query Rewriting

In many database systems, transformation rules are used to rewrite a query into an

equivalent query. Query rewriting is essential in query optimization, because the

performance of equivalent queries can vary widely. The most important aspect of

11

query rewriting is that the resulting query can be executed more efficiently than the

original query. This optimization technique has been extensively explored in the

literature [45] [66] [22] [21], and widely applied in many systems. For example, query

rewriting is used to flatten nested queries and quantifiers, and to avoid expensive

nested-loop evaluations [56] [32].

Standard procedure of query rewriting consists of four steps:

1. A given query in SQL or other query language is mapped to an algebraic

expression;

2. Conditions of the query are checked to match transformation rules from a set

of rules;

3. If a rule is applicable to the query, the transformation rule is applied to obtain

a new algebraic expression;

4. The optimal query is chosen among all alternative algebraic expressions, based

on their execution cost.

In query rewriting, the resulting alternative algebraic expressions must be equiv-

alent to the initial query. Even though query equivalence (or containment) is un-

decidable for relational queries in general [20] [51], the equivalence of queries is

decidable for fragments of relational queries.

In ordered context, query equivalence is evaluated not only by the output data

for general inputs, but also by the output order. In other words, two ordered alge-

braic expressions are equivalent if they generate the results with the same data set

and order properties for any arbitrary input. For example, in [76] [75], transfor-

mation rules were studied for operations on ordered data representations and the

conditions under which the transformation rules are applied are also illustrated.

In this dissertation, we offer transformation rules for ordered operations in the

proposed ordered algebras. These transformation rules keep query equivalence in

the way that both data and order equivalence are preserved. Query rewriting with

these transformation rules of ordered operations provides an important means to

optimize ordered query processing in ordered database systems.

12

1.3.4 Integrity Constraints Involving Order

Integrity constraints are knowledge about database instances [43], such as the

database schema, the domain knowledge, the relationships between data, etc. They

are used to define the semantics of the database, and are useful in many database

applications, such as database consistency maintenance, view updates, and seman-

tic query optimization [5] [17] [86].

Integrity constraints are used in semantic query optimization to improve the

efficiency of query processing [17]. In semantic query optimization, new integrity

constraints are inferred from integrity constraints that the relations hold originally.

The new constraints convey all the semantic information from the original con-

straints, and are used later to generate equivalent, but more efficient, queries.

Order, as prevalent semantic information, has been exploited to enhance the

query evaluation and optimization [41] [42] [34] [82]. Ginsburg and Hull [41] intro-

duce a new integrity constraint, called order dependency, to incorporate semantic

information involving orderings of a relation. Generally, order dependency exists

between two attributes where one attribute has a specified order, and the other

attribute will also have a specified order. Ginsburg and Hull provide a sound and

complete set of inference rules for order dependencies, and demonstrate that the

implication problem is co-NP complete.

Ginsburg and Hull also introduce the notion of sort set in [42]. A sort set

is a subset of a relation’s attributes that have total orders. They show that a

relation has a sort set if and only if functional dependencies exist between any pair

of attributes in this sort set. They also define a new integrity constraint sort-set

dependency (SSD). Given that X is a subset of attributes, such that each attribute

in X has a total order, a relation satisfies a sort set dependency s(X) if X is a sort

set of this relation. Ginsburg and Hull prove that deciding logical implication for

sort-set dependencies requires polynomial time, but if functional dependencies are

included, this problem becomes co-NP-complete.

1.3.5 Partial Order Databases

Raymond proposed a partial order data model to manipulate ordered sets of ele-

ments in [68]. A partial order is a pair of a finite base set and an order relation.

A set of elements in the partial order are structured according to the order rela-

tionship. The types and sizes of elements are immaterial because the elements can

13

be treated as atomic when the order relationship is concerned. Operators can be

classified into three categories: those that modify the base set and order relation

of a partial order, those that extract suborders, and those that combine partial

orders. Raymond also proposed realizers as a representation of the partial order

model. A linear extension of a partial order is a total order that embeds the partial

order. A realizer of a partial order is a set of linear extensions whose intersection is

exactly the set of comparability and incomparability defined by the partial order.

The realizers and linear extensions of partial orders are designed to hold partial

orders. Corresponding operations are defined for individual linear extensions and

the realizers.

The goal of this approach is closely relevant to our approach in that it endeavors

to provide a systematic treatment for manipulating the ordered data. However, it

is distinct from our approach in two essential ways: first, it models the ordering of

data with a partial order, rather than a total order as in our approach; second, it

represents partial orders with realizers, and denotes individual linear extensions of

a partial order with array notations and individual elements of a linear extension

with matrix notations. In our approach, the tuple identifiers are virtual, and used

as a conceptual tool to express the order of data. The total order of tuples in a

relation is captured with a binary order relation, and the order relation is changed

along with the data relation when an ordered operation is performed on ordered

relations.

1.3.6 Temporal Databases

Temporal relational databases are closely related to ordered relational databases

in that both databases are based on ordered relational data models. The tuples in

a temporal relation are sorted according to time; the tuples in an ordered relation

are ordered in a physical order. Therefore, the temporal logic serves as a primary

research foundation for our ordered database theory in this work.

The expressive power of different temporal languages has been one of important

research areas in temporal logic. Various temporal languages were proposed on

different temporal data models [29] [11] [27]. The choice of time domains is varying

in temporal data models. The time representation could be linear or branching,

discrete or dense, bounded or unbounded, points or intervals.

It has been proven that for the monadic first-order logic over linear orders,

there is an expressively equivalent propositional temporal logic with an expressively

14

complete set of temporal operators [52] [38] [50]. However, this result cannot be

generalized to the two-sorted first-order logic.

The two-sorted first-order language is strictly more expressive than the first-

order temporal logic with connectives since and until for dense and linearly or-

dered time [53] [4]. Abiteboul et al. in [4] showed that this result holds for any

finite discrete linear temporal domains. Generally, any first-order temporal calculus

with an arbitrary finite set of temporal connectives is strictly less expressive than

the two-sorted first-order calculus over linear temporal domains [81] [10] [80]. The

separation of first-order temporal calculi from the two-sorted first-order calculus

causes the failure of attempts to develop expressively complete temporal relational

algebras that are subquery-closed [29] [11].

There have been several temporal algebras proposed in the literature, which

are based on different temporal data models. One of representative examples of

temporal algebras is introduced in [83]. In this work, Tuzhilin et al. proposed a

temporal relational algebra by extending the standard relational algebra with extra

temporal operators. However, this algebra is not a complete algebra when being

compared to the two-sorted first order calculus. In general, none of temporal query

languages satisfies both expressive completeness and subquery closure requirements

at the same time.

1.3.7 Preference and Skyline Queries

Another related area to the proposed research is preference and skyline queries. In

database systems, a user’s preference, such as priority or relevance, is usually cap-

tured with preference relations. A preference relation is a binary relation between

two query answers, and can be defined using preference constructors [54] [55] or

logical formulas [24] [25]. To select the most preferred tuples from input relations

according to a given preference relation, a special relational operator is typically

added to existing relational query languages. This operator has been called winnow

[24] [25] or Best-Matches-Only (BMO) operator [54] [55]. Preference can often be

viewed as a partial order; therefore, the algebra of preference queries can adopt the

partial order algebraic model.

Skyline queries are closely related to preference queries. The skyline operation

filters a set of interesting (dominating) points from a large search space by weighting

the user’s preferences [12] [26]. A point dominates another point if it is as good

15

or better in all dimensions (such as price, distance) and better in at least one

dimension. A point is interesting if it is not dominated by any other point. As

the interesting points is decided by the combination of dominance relations, such

as maximum, minimum, and difference, on all dimensions, a user’s preference can

be found among these interesting points. In other words, the skyline must contain

any user’s preference.

Order plays an important role in evaluating both preference queries and skyline

queries. Preference and skyline queries are essentially relational queries that heavily

rely on order properties in data relations. They are motivating our research in

ordered relational databases, and our study will in turn benefit to the applications

in these two areas.

1.3.8 XML Queries

Query optimization in XML database systems is closely related to order treatment

in many aspects. The documents in XML themselves can be viewed as ordered

trees (forests) with respect to the document order [3]. The query language XQuery,

as the proposed standard query language for XML, returns results in a well-defined

order. A path expression, which locates nodes by identifying their locations in

the hierarchy of an XML document tree, also returns results in document order.

Furthermore, the result of a FLOWR expression (with the constructs FOR, LET,

ORDER BY, WHERE, and RETURN) reflects both the order imposed by ORDER

BY clause and by the expressions in FOR subclauses [1] [2]. Considerable effort

has been conducted on treatment of XML data order, for example, by storing and

retrieving ordered XML data using relational database technique [79] [84] [33], and

by efficiently answering XML queries with ordered results [36] [87] [73].

Typically, an XML database is represented as a forest of ordered, rooted, and

labelled trees, with each node corresponding to an element and the edges to element-

subelement relationships. The tree structure of XML documents is frequently en-

coded with numbering schemes [33] [88] [79]. Many numbering schemes have been

developed to encode XML data, and one important approach is interval encoding

and its variants. In interval encoding, a unique interval is assigned to each node, and

the interval of a parent contains the intervals of all its children. Checking structural

relationships between nodes, such as ancestor-descendant and parent-child relation-

ships, corresponds to checking containment and direct containment relationships,

respectively. Determining containment relationships amounts to checking certain

16

inequality conditions held between endpoints of intervals, which is basically related

to the ordering of endpoints.

Queries in XML query languages, such as XQuery, retrieve data both by XML

document structure and the values of document elements. When XML documents

are encoded with a numbering scheme, evaluating path expression queries requires

checking the structural relationships. Many approaches determine the structural

relations by computing structural joins [6] [23] [14]. With structural joins, two

lists of potential ancestors and potential descendants are joined using their interval

containments as the join conditions. The output is a list of pairs of nodes with the

required structural relationships.

Order-preserving algebras have been applied to XML databases for many pur-

poses. Many approaches use order-preserving operations to facilitate the XQuery

plan generation. For example, order-preserving operations are used to unnest nested

queries in the XQuery language [62], or to model XML databases with Order-

preserving algebras [9].

1.3.9 Top-k Queries

Another research direction involving orderings is the top-k query evaluation. Top-k

queries return the first k results based on the value of a given score function. The

eligible results are sorted by the score values before returning the first results. Top-k

queries are extensively applied in many research areas, such as multi-attribute top-

k queries over multimedia repositories [37] [63] [46], or top-k queries over relational

databases [16] [19] [48]. Recently, rapid development of Internet boosts the growth

of interest in Top-k queries [13].

Many algorithms were proposed to evaluate top-k queries using the scoring

functions. In the cases that the top-k queries involve several independent scoring

factors, a total score is computed using various aggregate algorithms [37] [63] [46].

However, a naive solution to evaluating top-k queries is prohibitively expensive

because it requires producing and sorting all results before returning the k desired

results. To date, little work has been done regarding the efficient sorting of tuples.

Ilyas et al. proposed rank-aware query optimization to evaluate top-k queries

[49] [58] [77]. In this approach, they have extended the relational algebra and de-

fined a rank-relation. A rank relation has its tuples ordered by a score function.

Ilyas et al. also extended relational algebra by adding a new rank operator and

17

modifying the existing relational operators to be “rank-aware.” For each tuple in

an input relation, they compute the maximal possible score with respect to given

scoring functions and predicates. Tuple streams pass through operators in the or-

der of maximal possible scores, and new rank-relations are generated incrementally.

When k results are produced or no more results are available, the execution ter-

minates. The method avoids the high cost of sorting the entire relation used in

previous approaches by incremental execution of queries.

In summary, approaches that solve top-k queries focus on efficiently fetching

the first k results in terms of ranking predicates. They do not address the issues

stemming from the total order of relations. Therefore, those approaches cannot

solve the problems shown in the motivating examples in the previous section.

1.4 Organization of Dissertation

This chapter provides the motivation to the proposed research in ordered relational

databases. The related work in relevant research areas is also briefly reviewed,

such as order optimization, ordered representation of data structures, integrity

constraints, and potential application areas of ordered relational databases.

The remainder of this dissertation is organized as follows. In Chapter 2 an

ordered database model and a two-sorted first order calculus FO� are proposed

to formally define the ordered relational queries. A comparison between ordered

relational queries and temporal relational queries is conducted. The last section of

Chapter 2 formally defines the completeness problem for general ordered relational

queries. Chapter 3 investigates the completeness problems for ordered conjunctive

queries with x-decided order, CQX
� . In Chapter 4 the completeness problem is

studied for ordered conjunctive queries with t-decided order, CQT
�. Chapter 5

explores the completeness problem for general ordered conjunctive queries, CQ�.

The dissertation concludes in Chapter 6 with a summary of results and future work.

18

Chapter 2

The Ordered Relational Model

The most mature and widely used database model today is the relational data

model. While other data models are gaining acceptance and popularity, we believe

that the relational data model is still important in database theory. The study of

order in the relational data model is fundamental to understanding order properties

in more elaborate database models. The order support techniques that are devel-

oped for relational databases capture the essence of order support in other database

models. Therefore, we begin with the relational data model to investigate ordered

data models.

This chapter lays a theoretic foundation for discussing the completeness prob-

lem of ordered relational databases. The remainder of this chapter will proceed as

follows. In Section 2.1 the ordered relational model is introduced and ordered rela-

tional databases are compared with temporal relational databases, which serve as

a research foundation for ordered relational databases. In Section 2.2 the ordered

relational queries are formally defined in a two-sorted first-order calculus FO�; a

reduction is shown from 2FOL temporal relational queries (see Definition 2.17 to

FO� ordered relational queries. In Section 2.3 a general definition of ordered rela-

tional algebras is provided; the completeness problem of ordered relational algebras

is proposed.

2.1 Ordered Relational Databases

Conventional relational databases are set or multi-set based, no order exists among

tuples in a relation. However, ordering always exists in data if we view data as data

19

streams flowing through the query processor in relational databases. We can the

order in which an iterator retrieve data as the physical order of data. The physical

order provides a means to capture ordering in data, which is independent of data

models. In this dissertation, advantage of the physical order of data is taken to

capture and manipulate ordering of data in the ordered relational data model.

2.1.1 Ordered Relational Databases

First, a data model must be specified to represent the physical order of tuples in

a relation. The order in this data model must be a total order on all tuples in

a relation. In addition, the order should be associated with different properties.

For example, this order can be linear or branchy, discrete or dense, bounded or

unbounded, among others.

A linear, discrete, and bounded representation is proposed to indicate the order

of a relation for the following reasons. First, a relation is a set of tuples; naturally,

the order of tuples can be viewed as a discrete order. Second, we consider only finite

relation instances; therefore, the order of relation is finite and bounded. Finally, it

is simple and natural to treat orders as linear (total) orders in the output of each

operator while implementing the query.

To realize the linear order of a relation, the concept of tuple identifiers is in-

troduced, which plays an enormous role in our investigation. The tuple identifier,

denoted by T, is a virtual attribute, which is only used to represent ordering in re-

lational databases. To capture the data ordering, a value of attribute T is assigned

to each tuple in the relation and is called a tuple identifier t. The tuple identifier

does not exist physically, and it is only a conceptual representation such that we

can use it to indicate order at the algebraic level.

Let S(X1, · · · ,Xn) be a relation schema in a conventional relational database. In

our ordered relational model, a unique tuple identifier is attached to each tuple in

the relation, and hence the relation schema is extended to S(T,X1, · · · ,Xn), which

we call the extended relation schema. Formally, the extended relation schema is

defined in the ordered context as follows:

Definition 2.1 (Extended Relation Schema)

An extended relation schema is a pair S = ((T,X), (DomT,DomX)), where T is

the tuple identifier attribute and X is a finite set of attributes {X1, · · · ,Xn}. DomT

is the domain of tuple identifiers T, and DomX =
⋃
i=1,...,n Dom(Xi).

20

An order variable or t-variable is a variable over the domain DomT, denoted by t,

possibly with subscripts. A data variable or x-variable is a variable over the domain

DomX, denoted by x, possibly with subscripts.

To simplify the notation, an extended relation schema is often abbreviated as

S(T,X1, · · · ,Xn) in ordered relational databases.

Definition 2.2 (Ordered Relation Schema and Database Schema)

An ordered relation schema is a pair 〈S,�S〉, where S is an extended relation

schema, and �S is a relation schema (T,T′). Here, T and T′ are tuple identi-

fier attributes over DomT. We call �S the order schema.

An ordered database schema is a set of ordered relation schemas, denoted by

{〈S1,�S1〉, . . . , 〈Sm,�Sm〉}. Here, m is the number of ordered relation schemas.

In the definition of an ordered relation schema, the order schema �S defines a

binary relation between tuple identifiers T in the extended relation schema S. An

order schema is abbreviated as �S (T,T′) in the following development. Since all

ordered relations have the same order schema, we omit the order schema and refer

to the ordered relation schema as the extended relation schema when the meaning

can be revealed from the context.

We now define the instance of an ordered relation schema, which is abbreviated

as ordered relation, when there is no confusion with other aspects of an ordered

relation such as its schema.

Definition 2.3 (Ordered Relation)

Let S(T,X1, · · · ,Xn) be an extended relation schema, and 〈S,�S〉 be the corre-

sponding ordered relation schema. An ordered relation 〈R,�R〉 is an instance of

the ordered relation schema 〈S,�S〉, where R is called the data relation, a standard

relation conforming to the relation schema S(T,X1, · · · ,Xn); and �R is called the

order relation, a binary relation conforming to the order schema �S (T,T′).

An ordered relation 〈R,�R〉 satisfies the following conditions:

(a) the data relation R and order relation �R are inclusively dependant on each

other, ı.e., R and �R satisfy the following inclusion dependencies:

(1) R[T] ⊆ �R [T] ∪ �R [T′];

(2) �R [T] ⊆ R[T];

(3) �R [T′] ⊆ R[T],

21

where R[T] and R[T′] are the projection of R on T, and �R [T] is the projec-

tion of �R on T.

(b) the order relation �R is a linear order, i.e., �R satisfies

(1) ∀ t1, t2, t3 ∈ R[T]. (t1, t2) ∈ �R ∧ (t2, t3) ∈ �R → (t1, t3) ∈ �R;

(2) ∀ t1, t2 ∈ R[T]. (t1, t2) ∈ �R ∧ (t2, t1) ∈ �R → t1 = t2;

(3) ∀ t1, t2 ∈ R[T]. (t1, t2) ∈ �R ∨ (t2, t1) ∈ �R,

where R[T] is the projection of R on T.

Intuitively, �R is a preceder-successor relation between each pair of tuple iden-

tifiers in the data relation R. If (t1, t2) ∈ �R, we say that t1 is prior to t2 in

the ordered relation 〈R,�R〉. Sometimes, we say t1 �R t2 when (t1, t2) ∈�R. We

omit the subscript R in �R if it is not needed for understanding the expression.

Sometimes, we abbreviate an ordered relation 〈R,�R〉 as R.

The definition of ordered relations specifies two semantic conditions that an

ordered relation should satisfy: (a), saying that the data relation R and order

relation �R are inclusively dependent on each other, guarantees that the order

relation �R defines ordering for any pair of tuples in R, and only pairs of tuples in

R; (b) ensures that the order defined by the order relation �R must be a linear and

total order over the data relation R.

We have defined ordered structures and ordered relations, and are now in a

position to give a formal definition to ordered relational databases.

Definition 2.4 (Ordered Relational Databases) Let DomT be the domain of

tuple identifiers T, and “=” be an equality predicate over DomT; DomX be the

domain of data attributes X, and “=” be an equality predicate over DomX. Assume

that {〈S1,�S1〉, . . . , 〈Sm,�Sm〉} is an ordered database schema defined on DomT

and DomX.

An ordered relational database is a structure 〈DomT,=; DomX,=; R1, . . . ,Rm〉,
where R1, . . . ,Rm are ordered relations conforming to ordered relation schemas

{〈S1,�S1〉, . . . , 〈Sm,�Sm〉}, respectively.

An example of ordered relational databases is described next.

Example 2.5 Consider a relational database which stores the information of em-

ployees in a company. Let emp (EmpId, Name, Department, Salary) be the only

22

relation schema in this database, with EmpId as the primary key attribute. Thus,

the corresponding extended relation schema is as follows:

S(T, EmpId, Name, Department, Salary).

The ordered relation 〈EMP,�EMP〉 is an instance of the ordered relation schema

〈S,�S〉. It contains two components: the data relation EMP and the order relation

�EMP, which are shown in Tables 2.1 and 2.2, respectively.

Table 2.1: The data relation EMP

T EmpId Name Department Salary

12 5134 Eric Cook Development 80,000

23 5086 Emily Smith Sales 65,000

8 5002 Kavin Stone Sales 55,000

15 5258 Jack Anderson Sales 48,000

...

Table 2.2: The order relation �EMP

T T′

... ...

8 8

8 12

8 15

8 23

12 12

12 15

12 23

23 23

23 15

15 15

... ...

In this example instance, the domain of tuple identifiers T is the set of natural

numbers N . The data relation EMP is a conventional relation under the extended

schema S(T, EmpId, Name, Department, Salary), which is a set of tuples without

23

ordering. Each tuple in EMP is associated with a unique tuple identifier from N .

The order relation �EMP is a binary relation over all pairs of tuple identifiers in EMP,

defining a linear order on EMP. The conceptual ordered relation 〈EMP,�EMP〉 is shown

in Table 2.3.

Table 2.3: The ordered relation 〈EMP,�EMP〉

T EmpId Name Department Salary

...

8 5002 Kavin Stone Sales 55,000

...

12 5134 Eric Cook Development 80,000

...

23 5086 Emily Smith Sales 65,000

...

15 5258 Jack Anderson Sales 48,000

...

The above example illustrates properties of an ordered relation. Next, we will

define equivalence for ordered relations. In ordered relational databases, two or-

dered relations are equivalent if they have the same tuples regarding to data at-

tributes, and the same ordering among tuples. They may have different tuple

identifiers for corresponding data tuples because tuple identifiers are conceptual,

only used to indicate orderings among data tuples.

Definition 2.6 (Equivalent Ordered Relations) Let 〈R1,�R1〉 and 〈R2,�R2〉
be two ordered relations with the same extended schema. 〈R1,�R1〉 and 〈R2,�R2〉
are equivalent if there exists a bijection f such that for each tuple t2 in R2, there is

exactly one tuple t1 in R1 such that

f(t1) = t2,

and t1 and t2 have the same values on data attributes.

24

2.1.2 Ordered Relational Databases vs. Temporal Rela-

tional Databases

In this dissertation, temporal database theory serves as a research foundation to

investigate ordered relational databases and query languages. To make the disser-

tation self-contained, we conduct a brief review of basic notions and notations of

temporal databases.

The precise notion of a temporal database is defined as a temporal structure,

which consists of three components: the temporal domain, the data domain, and a

set of temporal relations [81]. In the following chapters, we tailor the notions to the

one-dimension temporal context, and consider only the timestamp temporal data

model.

Definition 2.7 (Temporal Databases) Let 〈T,≤〉 be a temporal domain with

the inequality predicate ≤, defining a linear order on T; 〈D,=〉 be the data do-

main with the equality predicate =; 〈s1, . . . , sm〉 be a database schema with relation

schemas si(T,X1, ..., Xvi) (for i = 1, ...,m).

A temporal database is a two-sorted structure

〈T,≤; D,=; r1, . . . , rm〉,

where ri is a temporal relation conforming to the relation schema si, and the set of

tuples (x1, . . . , xvi) that satisfy si(t, x1, . . . , xvi) are finite for every t ∈ T.

Certain differences exist between temporal and ordered relational databases:

1. In temporal relations, values of the temporal attribute T are time instants.

There may be more than one tuple for each time instant t; in ordered relations,

values of the T attribute are tuple identifiers. The tuple identifier t is unique

to each tuple.

2. In temporal relations, the order of tuples is a partial order, i.e., an order always

exists between tuples with different time instants t; however, no order exists

among tuples with the same time instant t; in ordered relations, the order of

tuples is a linear and total order, i.e., each pair of tuples are comparable, and

all tuples must be in a linear order.

3. In temporal databases, the order of time instants is universal, i.e., time instants

from different temporal relations can be compared; in ordered databases, only

25

tuple identifiers from the same ordered relations are in order. There is no way

to compare tuple identifiers from different ordered relations.

Given the differences between temporal and ordered relational databases, the

following lemma shows that any temporal database can be mapped to an ordered

relational database in such a way that the mapping ordered relations retain the

order properties of the original temporal relations.

Without lost of generality, we make an assumption for the rest of this section

that there is only one temporal relation in the temporal database involved, and we

have only one input temporal relation for temporal queries in the following proofs.

The reason for this is that multiple temporal relations can be encoded into one

relation.

Lemma 2.8 Let 〈T,≤; D,=; r1, ..., rn〉 be an arbitrary temporal database, where T

is a discrete, linear and bounded temporal domain, D is the union of domains of

data attributes, and r1, ..., rn are temporal relations.

There exists a one-to-many correspondence ρ from the set of temporal relations

to the set of ordered relations such that for an arbitrary temporal relation r, there

is a set of ordered relations {〈R,�R〉} and

ρ(r) = {〈R,�R〉}.

Proof: Let DomT and DomX be the domains of tuple identifiers and data

attributes of an ordered database, respectively. We define DomT as the set of

natural numbers N and combinations of natural numbers, and DomX = D. The

equality predicates on the two domains follow the standard meaning.

In temporal relations, tuples can be ordered by time instants, and multiple

tuples may have the same time instant t; in ordered relations, each tuple has a

unique tuple identifier t. This difference suggests that one temporal relation r

is corresponding to multiple ordered relations which have the same data set, and

retain the order of time instants.

We are now ready to construct a set of ordered relations {〈R,�R〉} that are

corresponding to the temporal relation r and have the same data relation R. To

uniquely identify the tuples in the temporal relation r, from now on, we use (t, i)

to refer to the particular tuple which is the i-th tuple in the physical order at the

time instant t.

26

First, we need to construct the data relation R which is uniquely mapping to

the temporal relation r. We define a function F : T × N → DomT, where N is

the set of natural numbers, such that the i-th tuple with value (t, x1, . . . , xn) in

the temporal relation r, is uniquely mapped to a data tuple (F (t, i), x1, . . . , xn) in

the data relation R. In this way, we construct the data relation R that is uniquely

mapping to the temporal relation r.

To distinguish tuples at different time instants and, hence, capture the order of

time instants in the mapping ordered relations {〈R,�R〉}, we insert a special tuple

for each time instant t in the data relation R, which we call a separation tuple.

These separation tuples are constructed in the following way: first, we extend the

domain of data attributes with a special value a0 (a0 /∈ DomX), i.e., DomX∪{a0};
then, we add a separation tuple (F (t, 0), a0, . . . , a0) to R for each time instant t

in the temporal relation r. The tuples corresponding to the same time instant

(including the separation tuple) are called a cluster.

Thus, the data relation R is constructed for the ordered relation 〈R,�R〉, which

is uniquely mapping to the temporal relation r and includes a separation tuple for

each time instant.

Then, we define all possible order relations �R for the corresponding ordered

relations 〈R,�R〉. Recall that the tuples in the temporal relation r are in a partial

order such that tuples at different time instants are sorted in order of time; tuples

at the same time instant are not in order at all. We desire that the corresponding

ordered relations 〈R,�R〉 keep the same order of time instants as in the temporal

relation r.

The order relations �R are defined in the following way: for any two tuples

F (t1, i) and F (t2, j) in the data relation R (i ≥ 0 and j ≥ 0),

(1) if t1 < t2, then (F (t1, i), F (t2, j)) ∈�R;

(2) if t1 = t2 and i = 0, then (F (t1, i), F (t2, j)) ∈�R;

(3) if t1 = t2 and j = 0, then (F (t2, j), F (t1, i)) ∈�R;

(4) if t1 = t2, i 6= 0, and j 6= 0, F (t1, i) and F (t2, j) are arbitrarily ordered such

that �R is a linear order of R.

Thus, the temporal relation r is corresponding to a set of ordered relations {〈R,�R

〉} that have the same data relation and order of clusters, but have different orders

inside clusters.

27

We have now constructed a set of ordered relations {〈R,�R〉} corresponding to

the temporal relation r; i.e., there is a one-to-many correspondence ρ such that

for any temporal relation r, there exists a set of ordered relations {〈R,�R〉} and

ρ(r) = {〈R,�R〉}. This concludes the proof.

2

Example 2.9 The temporal relation in Table 2.4 shows a fragment of class calen-

dar at the department of computer science. The relation has a schema

Class(Time,Room,Class). The attribute Time in this instance is the temporal

attribute, and Room and Class are data attributes.

Table 2.4: An example of temporal relations

Time Room Class

2010-05-08 9:00 DC1302 Advanced Algorithms

2010-05-08 9:00 DC1304 Database Systems

2010-05-08 10:00 DC1302 Programming Principles

2010-05-08 11:00 DC1302 Data Structures

2010-05-08 11:00 DC1304 Computation Theory

...

This temporal relation can be mapped to a set of ordered relations using the

technique in our proof. Two of the corresponding ordered relations are shown in

Tables 2.5 and 2.6.

In both ordered relations, a separation tuple occurs in front of tuples at the

same time instant; the tuples at different time instants are sorted according to the

order of time instants. The two ordered relations have the same set of data tuples,

however they differ at that the tuples at the time instant “2010-05-08 9:00” have

different orders.

This example indicates that the corresponding ordered relations of a temporal

relation r have the same data relation R, which is uniquely decided by r. The

tuples at the same time instant t are mapping to a group of tuples in R, with a

separation tuple F (t, 0) in front. The tuples at different time instants t are sorted

according to the order of time instants.

28

Table 2.5: One ordered relation corresponding to the temporal relation Class

T Room Class

201005080900000 AAAAAA AAAAAAAAAAAAAAAA

201005080900001 DC1302 Advanced Algorithms

201005080900002 DC1304 Database Systems

201005081000000 AAAAAA AAAAAAAAAAAAAAAA

201005081000001 DC1302 Programming Principles

201005081100000 AAAAAA AAAAAAAAAAAAAAAA

201005081100001 DC1302 Data Structures

201005081100002 DC1304 Computation Theory

...

Table 2.6: Another ordered relation corresponding to the temporal relation Class

T Room Class

201005080900000 AAAAAA AAAAAAAAAAAAAAAA

201005080900002 DC1304 Database Systems

201005080900001 DC1302 Advanced Algorithms

201005081000000 AAAAAA AAAAAAAAAAAAAAAA

201005081000001 DC1302 Programming Principles

201005081100000 AAAAAA AAAAAAAAAAAAAAAA

201005081100001 DC1302 Data Structures

201005081100002 DC1304 Computation Theory

...

29

By the construction in the proof of Lemma 2.8, all tuples in the corresponding

ordered relation are grouped according to the time instant t. The group of tuples

mapping to the same time instant (including the separation tuple) is called a tuple

cluster, or a cluster for abbreviation. The clusters are sorted in the order of time

instants and the tuples inside each cluster are sorted in an arbitrary order with the

separation tuple in front of the cluster. Separation tuples indicate where clusters

begin. Such an ordered relation is called a clustered ordered relation. Clustered

ordered relations have a two-level structure: clusters of tuples and tuples inside

clusters (including separation tuples). We give formal definitions for clusters and

the order of clusters as follows:

Definition 2.10 (Clusters) A cluster K in a clustered ordered relation 〈R,�R〉
is a set of tuples, including a separation tuple.

Definition 2.11 (The Order of Clusters) Let K1, . . . , Kn be the set of clusters

in a clustered ordered relation 〈R,�R〉, we say Ki �R Kj (i, j = 1, . . . , n) if for any

two tuples t1 ∈ Ki and t2 ∈ Kj, t1 �R t2.

The order of clusters is the order among clusters K1, . . . , Kn in the ordered

relation 〈R,�R〉, denoted as �KR .

Originally, the order of clusters �KR , in a clustered ordered relation, is decided

by the order of time instants in the original temporal relation. The order of tuples

inside a cluster is arbitrary and differs in different clustered ordered relations that

are mapping to the same temporal relation; however, separation tuples are always

in front of clusters in the clustered ordered relation.

In ??, for time instants t1 and t2 satisfying t1 < t2 in the temporal relation r, the

cluster mapping to t1 is always prior to the cluster mapping to t2 in the mapping

ordered relations {〈R,�R〉, . . . , 〈R,�′R〉}. The order inside a cluster is arbitrary

and differs in different mapping ordered relations.

In summary, a temporal relation is corresponding to a set of clustered ordered

relations with the same data relation and the same order of clusters, but with

different orders inside clusters. We define such a set of clustered ordered relations

as cluster-equivalent ordered relations.

Definition 2.12 (Cluster-equivalent Ordered Relations) Let 〈R1,�R1〉 and

〈R2,�R2〉 be two clustered ordered relations, and {K11, . . . , K1n} and {K21, . . . , K2m}
be the sets of clusters in them, respectively. Ordered relations 〈R1,�R1〉 and 〈R2,�R2

30

〉 are cluster-equivalent if R1 = R2, n = m, K11 = K21, . . . , K1n = K2n, and

�KR1
=�KR2

.

In this definition, cluster-equivalent ordered relations have the same order of

clusters; however, they have different orders inside the clusters corresponding to

the same time instant. In Figure ??, ordered relations 〈R,�R〉 and 〈R,�′R〉 are

cluster-equivalent.

2.2 Ordered Relational Queries

In this dissertation, we limit our scope to one of the most important classes of

ordered relational queries, the first-order expressible ordered relational queries.

Analogously to conventional relational database theory, first-order logic serves as a

yardstick to measure the expressive powers of other ordered query languages.

This section introduces the two-sorted first order calculus, FO� and ordered

relational queries in FO�. Furthermore, ordered relational queries in FO� are

compared with temporal relational queries in 2FOL, and a reduction is conducted

from temporal relational queries in 2FOL to ordered relational queries in FO�.

2.2.1 FO� Ordered Relational Queries

The first-order calculus that is applied to represent ordered relational queries con-

tains two sorts of variables: t-variables and x-variables. This two-sorted first-order

calculus on ordered relational databases is denoted by FO�. The formal definitions

of the two-sorted first-order calculus FO� and of the ordered relational queries in

FO� are given as follows.

Definition 2.13 (Ordered Relational Queries in FO�)

FO� is a two-sorted first-order calculus over an ordered relation schema

〈S(T,X1, . . . ,Xn), S′(T,T′)〉. A first-order formula F in FO� is defined by a BNF

rule:

31

F ::= R(t, x1, . . . , xn)

| t = (ti, tj)

| t1 �R t2
| xi = xj

| F ∧ F
| ¬F
| ∃t.F
| ∃x.F,

where t, t1, t2 are t-variables and x1, . . . , xn, xi, xj are x-variables. An FO� ordered

relational query 〈ϕ, ψ〉 is of the form

〈 {(t, x1, . . . , xn) | ϕ(t, x1, . . . , xn)}, {(t1, t2) | ψ(t1, t2)} 〉,

where ϕ is the data query, which is a first-order formula in FO� with only one free

t-variable; and ψ is the order query, which is a first-order formula in FO� with

exactly two t-variables as the only free variables.

In this definition, t = (ti, tj) is a tuple identifier constructor, which is one way to

generate a new tuple identifier from inputs. This constructor combines tuple identi-

fiers from two ordered relations into one tuple identifier. More generally, in the case

that the output tuple identifiers are combinations of n tuple identifiers from n input

relations respectively, we simplify the output tuple identifiers ((...(t1, t2), ...), tn) as

(t1, t2, ..., tn).

As indicated by our definition of ordered relational queries, the restriction of

one free t-variable in the data query ϕ ensures that the data query always generates

a data relation; the restriction of two t-variables in the order query ψ guarantees

that the output of the order query ψ is always an order relation. Thus, for any

input ordered relations, an FO� ordered relational query 〈ϕ, ψ〉 produces an ordered

relation as its output. Therefore, the set of FO� ordered relational queries over the

universe of ordered relations is closed.

However, the restriction of two t-variables as the only free variables in the order

query applies only to the whole formulas of ordered queries, not to subformulas of

ordered queries. This restriction is imposed because the FO� ordered relational

queries are not subquery-closed; that is, a subformula of an FO� ordered relational

query may not be an FO� ordered relational query. This situation will lead to

difficulties in the search for complete algebras for ordered relational queries, as we

shall see later.

32

Regarding query equivalence, both data and order queries of ordered relational

queries have to be taken into account. For equivalent input ordered relations, which

means that the input relations have identical values on data attributes and identical

ordering among tuples, equivalent ordered queries should output equivalent ordered

relations. The formal definition of equivalent ordered queries is given as follows:

Definition 2.14 (Equivalent Ordered Queries) Two ordered relational queries

are equivalent if and only if for equivalent input ordered relations, they output equiv-

alent ordered relations.

Meanwhile, Definition 2.13 is only a syntactic definition of an ordered relational

query. Semantically, the order query ψ must specify a total (linear) order on the

data relation ϕ. Therefore, a valid ordered relational query must satisfy both syn-

tactic and semantic restrictions on it as shown in the following definition.

Definition 2.15 (Valid Ordered Relational Query)

An ordered relational query is valid if it always outputs an ordered relation for any

input ordered relations.

Example 2.16 Consider an ordered relational database containing two ordered

relations 〈EMP,�EMP〉 and 〈DEPT,�DEPT〉. The extended schema of 〈EMP,�EMP〉 is EMP

(T, EmpId, Name, DeptId, Salary), and the extended schema of 〈DEPT,�DEPT〉 is DEPT

(T, DeptId, Department). The conceptual ordered relations 〈EMP,�EMP〉 and 〈DEPT
,�DEPT〉 are shown in Tables 2.7 and 2.8 respectively.

Table 2.7: The ordered relation 〈EMP,�EMP〉

T EmpId Name DeptId Salary

...

8 5002 Kavin Stone 001 55,000

...

12 5134 Eric Cook 002 80,000

...

23 5086 Emily Smith 001 65,000

...

15 5258 Jack Anderson 001 48,000

...

33

Table 2.8: The ordered relation 〈EMP,�EMP〉

T DeptId Department

1 001 Sales

2 002 Development

...

The following are examples of ordered relational queries over this ordered rela-

tional, which are formulated in FO�.

• The query to output all employees in the department Sales in the input order

can be formulated in FO� as follows:

〈{(t, x2)| ∃x1, x3, x4. EMP (t, x1, x2, x3, x4)

∧∃t1, x5, x6. DEPT (t1, x5, x6) ∧ x3 = x5 ∧ x6 = “Sales”},
{(t, t′)| ∃t1, t2. t = (t1, t2) ∧ ∃x1, x2, x3, x4. EMP (t1, x1, x2, x3, x4)

∧∃t2, x5, x6. DEPT (t2, x5, x6) ∧ x3 = x5 ∧ x6 = “Sales”

∧ ∃t′1, t′2. t′ = (t′1, t
′
2) ∧ ∃x′1, x′2, x′3, x′4. EMP (t′1, x

′
1, x
′
2, x
′
3, x
′
4)

∧∃t′2, x′5, x′6. DEPT (t′2, x
′
5, x
′
6) ∧ x′3 = x′5 ∧ x′6 = “Sales”

∧ t �EMP t
′}〉.

Please note that the output of the order query is a set of tuple identifiers

{(t, t′)}, where t and t′ are combinations of tuple identifiers t = (t1, t2) and

t′ = (t′1, t
′
2), constructed by the tuple identifier constructor.

• The query to generate a list of all employees whose salary is $55,000 per year

in the reverse order to the input order can be constructed in FO� using the

following formula:

〈{(t, x2)| ∃x1, x3, x4. EMP (t, x1, x2, x3, x4) ∧ x4 = 55, 000},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14) ∧ x14 = 55, 000

∧ ∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24) ∧ x24 = 55, 000

∧ ¬(t1 �EMP t2)}〉.

34

2.2.2 FO� Ordered Relational Queries vs. 2FOL Temporal

Relational Queries

Various first-order representations of temporal relational queries have been pro-

posed in temporal database communities. To compare with the FO� ordered re-

lational query, we choose one temporal language which represents the temporal

variables explicitly. The formal definition of the two-sorted first-order calculus,

2FOL, is taken from [81].

Definition 2.17 (Temporal Relational Queries in 2FOL) The two-sorted first-

order calculus 2FOL over a temporal database 〈T,≤; D,=; r1, . . . , rm〉 is defined by

the following BNF rule:

M ::= r(ti, x1, . . . , xk)

| ti < tj

| xi = xj

| M ∧M

| ¬M

| ∃ti.M
| ∃xi.M,

where ti is called a temporal variable and xi a data variable. A 2FOL temporal

query is an M formula with exactly one free temporal variable.

The database schema in the temporal structure is monadic with respect to the

temporal sort T. In other words, the predicate symbols in the database schema

always have exactly one temporal argument. Therefore, a valid temporal query

has to be restricted to have exactly one free temporal variable so that the closure

of the query language is preserved, and the result of the query can be stored in

the same temporal database. Alternatively, the restriction of one free temporal

variable in any temporal query raises the problem that the 2FOL query language is

not subquery-closed. Thus, we cannot define all 2FOL queries by combining simpler

queries defined in the same query language.

Next, we compare ordered relational queries with temporal relational queries,

and show that any 2FOL temporal query can be reduced to an FO� ordered query.

More precisely, we want to prove that there exists a one-to-one mapping function θ,

which maps any temporal query φ on r to an ordered relational query 〈ϕ, ψ〉 such

35

that for any ordered relation 〈R,�R〉 ∈ ρ(r),

〈ϕ, ψ〉〈R,�R〉 ∈ ρ(φ(r)).

This is illustrated in Figure 2.1.

Figure 2.1: Reduction of a temporal query to an ordered query

The intuition of the proof is that we construct the mapping ordered relational

query 〈ϕ, ψ〉 for each temporal query φ such that for any input temporal relation

r,

• each t-variable in φ corresponds to a separation tuple;

• the order among separation tuples is exactly the order of time instants in φ;

• the individual tuple (t, x) corresponds the data tuple x in r;

• for cluster-equivalent input ordered relations, the outputs should also be

cluster-equivalent.

Before proving the following lemma, we must make assumptions on the orders

inside clusters for both input and output ordered relations.

Assumption 2.18 (1) In the case that a temporal operation has only one argu-

ment, and (t1, i) and (t2, j) are two tuples in the result, we assume that the

tuple F (t1, i) is prior to the tuple F (t2, j) if t1 = t2 and i < j hold in the

argument temporal relation.

(2) In the case that a temporal operation has more than one argument, and (t1, i)

and (t2, j) are two tuples in the result which are from different inputs, we

assume that the order inside clusters in the result is identical to the order

inside clusters in the universal temporal relation. All temporal relations can

be encoded into one universal temporal relation by lexicographical order of

time instant and the physical order of tuples.

36

Lemma 2.19 Let r be an arbitrary temporal relation, and {〈R,�R〉} be a set of

ordered relations. Assume that these exists a one-to-many correspondence ρ from

temporal relations to ordered relations such that ρ(r) = {〈R,�R〉}.

Then, there exists a one-to-one mapping function θ from 2FOL temporal queries

to FO� ordered queries, such that for an arbitrary 2FOL temporal query φ over the

temporal database 〈T,≤; D,=; r〉, there exists an ordered relational query θ(φ) such

that

θ(φ)〈R,�R〉 ∈ ρ(φ(r)),

for any ordered relation 〈R,�R〉 ∈ ρ(r).

Proof: Let φ be any temporal query in 2FOL, and r be any temporal relation.

Without lost of generality, we assume that the temporal relation r has only one

temporal attribute and one date attribute. Let 〈ϕ, ψ〉 be the ordered relational

query such that 〈ϕ, ψ〉 = θ(φ). We need to prove that for any ordered relation

〈R,�R〉 ∈ ρ(r),

〈ϕ, ψ〉〈R,�R〉 ∈ ρ(φ(r)).

By Definition 2.17, φ is a first-order formula with exactly one free temporal

variable, defined by the BNF rule:

φ ::= r(t, x1, . . . , xn) | t1 < t2 | xi = xj | φ ∧ φ | ¬φ | ∃ti.φ | ∃xi.φ.

We construct the mapping ordered relational query 〈ϕ, ψ〉 = θ(φ) on 〈R,�R〉
by induction on the structure of the temporal query φ.

First, we construct the data query ϕ of the mapping ordered query 〈ϕ, ψ〉. There

are two steps for the construction of ϕ(t, x).

Step 1: We need to construct a function ϕ̄(t0, t, x) according to φ(t, x), such that

ϕ̄(t0, t, x) satisfies the following condition: φ(t, x) implies ϕ̄(t0, t, x), where t0 is the

seperation tuple of t.

Let φ′ be any subformula of φ, and in the case that φ′ has the form of

Base case:

(1) φ′ = r(t, x):

The mapping data subformula ϕ′ is constructed as

ϕ′ = R(t, x).

37

(2) φ′ = t1 = t2:

The mapping data subformula is constructed as

ϕ′ = R(t01, a
0) ∧ t01 �R t1

∧ ¬ ∃ t11.R(t11, a
0) ∧ t01 �R t

1
1 ∧ t11 �R t1

∧ R(t02, a
0) ∧ t02 �R t2

∧ ¬ ∃ t12.R(t12, a
0) ∧ t02 �R t

1
2 ∧ t12 �R t2

∧ t01 = t02.

(3) φ′ = t1 < t2:

The mapping data subformula is constructed as

ϕ′ = R(t01, a
0) ∧ t01 �R t1

∧ ¬ ∃ t11.R(t11, a
0) ∧ t01 �R t

1
1 ∧ t11 �R t1

∧ R(t02, a
0) ∧ t02 �R t2

∧ ¬ ∃ t12.R(t12, a
0) ∧ t02 �R t

1
2 ∧ t12 �R t2

∧ t01 �R t
0
2 ∧ ¬t01 = t02.

(4) φ′ = x1 = x2:

The mapping data subformula ϕ′ is constructed as

ϕ′ = x1 = x2 ∨ x1 = a0.

Induction Step: Suppose that for simpler subformulas φ1 and φ2, the mapping data

subformulas are ϕ1 and ϕ2, respectively.

(1) φ′ = φ1 ∧ φ2:

The mapping data subformula ϕ′ is constructed as

ϕ′ = ϕ1 ∧ ϕ2.

(2) φ′ = ¬φ1:

The mapping data subformula ϕ′ is constructed as

ϕ′ = ¬ϕ1.

(3) φ′ = ∃xi. φ1:

The mapping data subformula ϕ′ is constructed as

ϕ′ = ∃xi. ϕ1.

38

(4) φ′ = ∃t1. φ1:

The mapping data subformula ϕ′ is constructed as

ϕ′ = ∃t0.R(t01, a
0) ∧ ∃t1.t01 �R t1

∧ ¬ ∃ t11.R(t11, a
0) ∧ t01 �R t

1
1 ∧ t11 �R t1

∧ ϕ1.

Step 2: Construct the data query ϕ(t, x) from ϕ̄(t0, t, x),

ϕ(t, x) = ∃t′.ϕ̄(t′, t, x) ∨ ∃t′.ϕ̄(t, t′, x).

We now construct the order query ψ of the mapping ordered query 〈ϕ, ψ〉.

ψ(t1, t2) = (∃ t′1, x1.ϕ̄(t1, t
′
1, x1) ∧ ∃ t′2, x2.ϕ̄(t2, t

′
2, x2) ∧ t1 �R t2)

∨
(∃ x.ϕ̄(t1, t2, x))

∨
(∃ t0.(∃ x1.ϕ̄(t0, t1, x1) ∧ ∃ x2.ϕ̄(t0, t2, x2)) ∧ t1 �R t2)

∨
(∃ t01, x1.ϕ̄(t01, t1, x1) ∧ ∃ t02, x2.ϕ̄(t02, t2, x2)) ∧ t01 �R t

0
2).

In the construction of the order query ψ, if the temporal query φ has only one

argument r, then �R is the order of the corresponding ordered relation of r; if

the temporal query φ has more than one argument, then �R is the order of the

corresponding ordered relation of the universal temporal relation.

For an arbitrary temporal query φ, we have constructed an ordered query 〈ϕ, ψ〉
such that θ(φ) = 〈ϕ, ψ〉. Next, we need to prove that for the temporal relation r,

and each 〈R,�R〉 ∈ ρ(r), 〈ϕ, ψ〉〈R,�R〉 ∈ ρ(φ(r)).

First, we prove that the data relation of θ(φ)〈R,�R〉 is exactly mapping to the

data tuples in the result of φ(r). This is proved by induction on the structure of

the temporal query φ. For any subformula of φ, φ′, in case of

Base case:

(1) φ′ = r(t, x):

By the construction rule of ϕ′, ϕ̄(t0, t, x) returns all (t, x)s satisfying R(t, x),

along with their separation tuples. And ϕ(t, x) returns exactly all tuples in

R, including separation tuples. We see that (t, x) satisfies ϕ(t, x) if and only

if (t, x) satisfies φ′.

39

(2) φ′ = t1 = t2:

By the construction of ϕ′, ϕ′ produces any pair of tuples, t1 and t2, which

have the same separation tuples. Therefore, the tuples that satisfy ϕ′ are

exactly the same as the mapping tuples of the result of φ′.

(3) φ′ = t1 < t2:

By the construction of 〈ϕ′, ψ′〉, ϕ′ produces any pair of tuples, t1 and t2, whose

separation tuples t01 and t02 satisfy t01 �R t
0
2 and t01 6= t02. Therefore, the tuples

satisfying ϕ′ are exactly the same as the mapping tuples of the result of φ′.

(4) φ′ = xi = xj:

By the construction of 〈ϕ′, ψ′〉, ϕ′ selects both the tuples satisfying xi = xj

and their separation tuple. Then, the tuples satisfying ϕ′ are exactly the same

as the mapping data relation to the result of φ′.

Induction Step: We suppose that for simpler 2FOL formulas φ1 and φ2 in the

temporal query φ, the data tuples of the mapping ordered queries 〈ϕ1, ψ1〉 and

〈ϕ2, ψ2〉 are exactly the same as the mapping of outputs of φ1 and φ2. In case that

φ′ has the form of:

(1) φ′ = φ1 ∧ φ2:

By the induction hypothesis, the results of ϕ1 and ϕ2 are the mapping data

relations of φ1 and φ2, respectively. A tuple is in the result of ϕi if and only

if the mapping tuple is in the result of φi. Therefore, a tuple is in the result

of φ1 ∧ φ2 if and only if the mapped tuple is in the result of ϕ1 ∧ ϕ2. That

is, the result of ϕ1 ∧ ϕ2 is exactly the same as the mapping data relation of

φ1 ∧ φ2.

(2) φ′ = ¬φ1:

If t satisfies φ′ in the temporal relation r, by the construction rule of ϕ′, ϕ′

generates the tuples whom ϕ1 does not hold on any tuple in the same cluster.

By the induction hypothesis, tuples satisfying ϕ1 are exactly the same as the

mapping tuples of the result of φ1. Hence, the tuples in R′ satisfying ϕ′ are

exactly the same as the mapping of the result of φ′(r).

(3) φ′ = ∃xi. φ1:

If t satisfies φ′ in the temporal relation r, by the construction rule of ϕ′,

ϕ′ generates the projection of the tuples satisfying ϕ1. By the induction

hypothesis, tuples satisfying ϕ1 are exactly the same as the mapping tuples

40

of the result of φ1. Hence, the tuples in R′ satisfying ϕ′ are exactly the

mapping of the result of φ′(r).

(4) φ′ = ∃t′. φ1:

If t satisfies φ′ in the temporal relation r, by the construction rule of ϕ′, ϕ′

generates the tuples so that there is at least one cluster such that those tuples

satisfy ϕ1. By the induction hypothesis, tuples satisfying ϕ1 are exactly the

same as the mapping tuples of the result of φ1. Hence, the tuples in R′

satisfying ϕ′ are exactly the same as the mapping of the result of φ′(r).

Then, we prove that the order relation of θ(φ) is exactly mapping to the order

generated by φ. By the construction of ψ, t1 is prior to t2 in the output if and only

if they are in the output data relations and satisfy one of the following conditions:

(1) both t1 and t2 are separation tuples, and satisfy t1 �R t2;

(2) t1 is the separation tuple of t2 in the output;

(3) t1 and t2 are in the same cluster in the input, and satisfy t1 �R t2;

(4) t1 and t2 are in different clusters in the input, and satisfy t01 �R t
0
2.

Particularly, (1) corresponds to the case that the order of time instants is not

changed by the temporal query. Therefore, the construction of ψ defines the order

among clusters exactly as the order of time instants; (2) reflects that the separation

tuple of a cluster is prior to tuples of cluster in the output; (3) shows that the orders

inside clusters keep their original orders from the input; (4) states that the order

between any tuples, from different clusters, is decided by the order of their clusters.

Therefore, the constructed order query ψ is exactly the mapping order to the

order of time instants in the result of φ. This finishes the proof.

2

In the proof of Lemma 2.19, the mapping ordered relational query contains the

clause t1 �R t2 only in two cases: (1) when both t1 and t2 are separation tuples;

(2) when t1 is a separation tuple and t2 is a regular tuple in the same cluster.

Intuitively, in case (1), t1 �R t2 is used to represent the order between the clusters

with t1 and t2 as separation tuples, and this order between clusters exactly reflects

the order between time instants in the mapped temporal query; in case (2), t1 �R t2

is used to restrict the regular tuple t2 to the cluster with the separation tuple t1.

41

Furthermore, all t-quantifiers in the temporal query are mapped to quantifiers

on variables of separation tuples while x-quantifiers in a temporal query are mapped

to quantifiers on variables of regular tuples (t, x) in the ordered relational query.

All together, the mapping ordered query is a FO� ordered query whose order

of clusters (represented by separation tuples) is identical to the order of time in-

stants in the temporal query, and the orders inside clusters remain in the original

order from the temporal query. Such a set of ordered relational queries is a sub-

set of ordered relational queries; therefore, 2FOL temporal relational queries can

be reduced to a subset of FO� ordered relational queries. This reduction from

2FOL temporal relational queries to FO� ordered relational queries leads to the

conjecture of incompleteness of ordered relational algebras in the following section.

2.3 Ordered Relational Algebras

The use of algebraic operators provides a distinctly different perspective on rela-

tional queries. This section first provides a formal definition of ordered relational

algebra and then discusses the expressive power of ordered relational algebras. Par-

ticularly, it focuses on the completeness problem of ordered relational algebras.

2.3.1 Ordered Relational Algebras

There are many alternative ways of defining an ordered relational algebra. A proper

ordered relational algebra should have certain desirable properties:

(1) To take advantage of the well-studied theories of relational algebra, ordered

relational algebra should be a natural extension to the conventional relational

algebra. Thus, all relational queries in algebraic expressions in the conven-

tional relational algebra can be expressed by algebraic operators in the ordered

relational algebra.

(2) The set of operators should be minimal, i.e., the function of each operator

should be orthogonal, such that there is no redundancy in terms of operator

functions.

42

The formal definition of an ordered relational algebra is given as follows.

Definition 2.20 (Ordered Algebraic Operators)

An ordered algebraic operator is a valid ordered relational query in FO�.

Definition 2.21 (Ordered Relational Algebra)

An ordered relational algebra is a finite set of ordered algebraic operators.

Many potential sets of ordered operators can be defined over ordered relations.

A set of ordered operators should include those operators that are taken from the

conventional relational algebra and adapted to the ordered databases. The typi-

cal set of those ordered operators are: order-preserving selection, order-preserving

projection, nested-loop Cartesian products, set difference, and union.

The following example lists several of the ordered operators derived from con-

ventional relational algebras. This is only one possible way, among many, to define

these operators, and there are many alternatives to define them based on different

data and order specifications.

Example 2.22 Given ordered relations 〈R,�R〉, 〈R1,�R1〉 and 〈R2,�R2〉 with

schemas (T, X1, · · · , Xn), (T, X1
1 , · · · , X1

n), and (T, X2
1 , · · · , X2

m), respectively.

(i) Order-preserving selection.

σp〈R,�R〉 = 〈 {(t, x1, · · · , xn) | R(t, x1, · · · , xn) ∧ p(t, x1, · · · , xn)},
{(t1, t2) |∃x11, ..., x1n.R(t1, x11, ..., x1n) ∧ p(t1, x11, ..., x1n)

∧ ∃x21, ..., x2n.R(t2, x21, ..., x2n)∧
p(t2, x21, ..., x2n) ∧ t1 �R t2} 〉,

where p may be in form of Xk = x or Xk = Xl.

(ii) Order-preserving projection.

π
X′1,··· ,X

′
k

〈R,�R〉 = 〈 {(t, x1, · · · , xk) | ∃ xk+1, · · · , xn.R(t, x1, · · · , xn)},
{(t1, t2) | t1 �R t2} 〉.

where {X ′1, · · · , X ′k} ⊆ {X1, · · · , Xn}. Without loss of generality, we as-

sume that {X ′1, · · · , X ′k} are first k attributes in {X1, · · · , Xn}.

43

(iii) Nested-loop cross product.

〈R1,�R1〉 × 〈R2,�R2〉 = 〈{(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2)∧
R1(t1, x̄1) ∧ R2(t2, x̄2)},

{(t1, t2) | ∃t11, t12.t1 = (t11, t12)

∧∃t21, t22.t2 = (t21, t22)

∧∃x̄11.R1(t11, x̄11)

∧∃x̄12.R2(t12, x̄12)

∧∃x̄21.R1(t21, x̄21)

∧∃x̄22.R2(t22, x̄22)

∧(t11 �R t21
∨(t11 = t21 ∧ t12 �R t22))}〉.

Note that in this example, the definition of an ordered operation also defines

the way that new tuple identifiers in the output are generated. For example, the

order-preserving selection and projection keep the original tuple identifiers of the

input as the output tuple identifiers; the nested-loop product operation specifies

output tuple identifiers as combinations of input tuple identifiers.

To achieve our purpose of capturing any potential order within query plans,

we must define more operators which are exclusive to ordered relational algebras.

Several of such ordered operations are described in the following example:

Example 2.23 (i) The top operator, which retrieves the first tuple from 〈R,�R〉.

Top(〈R,�R〉) = 〈 {(t, x1, · · · , xn) | R(t, x1, · · · , xn)

∧ ¬ ∃ t1. t1 �R t ∧ ¬t1 = t},
{(t′, t′′) | ∃x̄′.R(t′, x̄′) ∧ ∃x̄′′.R(t′′, x̄′′)

∧ ¬ ∃ t′1. t′1 �R t′ ∧ t′1 6= t′

∧ ¬ ∃ t′′1. t′′1 �R t′′ ∧ t′′1 6= t′′

∧ �R (t′, t′′)} 〉.

(ii) The reverse operator, which reverses the order of 〈R,�R〉.

Revs〈R,�R〉 = 〈 {(t, x1, · · · , xn) | R(t, x1, · · · , xn)},
{(t1, t2) | ∃x11, ..., x1n.R(t1, x11, ..., x1n)

∧ ∃x21, ..., x2n.R(t2, x21, ..., x2n) ∧ ¬ t1 �R t2}〉.

Note that in this example, “Reverse” is now a first-order expressible algebraic

operator. However, it is not definable in conventional relational algebras as it does

not change the input relation as a set.

44

The following example demonstrates how to compose the algebraic expressions

for FO� ordered relational queries.

Example 2.24 By using the ordered operators in the above examples, we can

express the two ordered relational queries in Example 2.16. The first query can be

formulated as

σDepartment=“Sales”〈EMP,�EMP〉.

The second query can be rewritten as

Revs(σSalary=55,000〈EMP,�EMP〉).

2.3.2 The Completeness Problem of Ordered Relational Al-

gebras

The expressive power of various query languages is one of the topics in database

theory that have been most deeply explored. In conventional relational databases,

relational calculus is used as the standard to evaluate the expressive power of query

languages [31]. A query language which has the same expressive power as relational

calculus is called relationally complete.

Analogously, in ordered database theory, we use the two-sorted first-order logic

FO� as a metric in evaluating the expressive power of other ordered relational

query languages. From the expressibility perspective, we are most interested in

the completeness problem of ordered relational algebras. Given a domain of tuple

identifiers, the completeness problem poses the following question:

Does there exist an ordered relational algebra equipped with a finite set

of ordered operations such that, given an arbitrary ordered relational

query in FO�, there is an equivalent query expressed by a finite sequence

of ordered operations from the algebra?

We say that an ordered relational algebra is FO� complete if any FO� expressible

ordered relational query can be expressed by a finite sequence of ordered operations

in this ordered algebra.

The completeness problem is essential to ordered relational databases because

the incompleteness of ordered relational algebras causes serious problems when

45

implementing ordered query processing. Typical implementations in conventional

databases are based on the equivalence of relational algebra and first-order calculus

[5] [40] [27].

Before discussing the completeness of the class of ordered relational algebras

with respect to the two-sorted first-order logic FO�, we review the existing results

of the completeness of temporal relational algebras in temporal database theory.

It is well known that for monadic first-order logic over linear orders, there is an

expressively equivalent propositional temporal logic with an expressively complete

set of temporal operators [52, 38, 50]. However, this result cannot be generalized

to two-sorted first-order logic.

In [53], it was proved that the two-sorted first-order language 2FOL is strictly

more expressive than the first-order temporal logic with the connectives since and

until for dense linearly ordered time. Abiteboul et al. in [4] show that this result

holds for any finite linear temporal domains. A more general result is shown in

[81], [10], and [80] that any first-order temporal calculus with an arbitrary finite

set of temporal connectives is strictly less expressive than the two-sorted first-order

calculus 2FOL over linear temporal domains.

The separation of first-order temporal calculi from two-sorted first-order calculus

causes a failure of attempts to develop expressively complete temporal relational

algebras that are subquery-closed [29, 11]. Various temporal algebras have been

proposed [83]; however, none of them satisfies both expressive completeness and

subquery closure requirements simultaneously.

With regard to the completeness problem of ordered relational algebra, the an-

swer is most likely to be negative. By Lemma 2.19, 2FOL temporal relational

queries can be reduced to a subset of FO� ordered relational queries. If we as-

sume that there is a complete ordered relational algebra for FO� ordered relational

queries, then there is also a finite set of operators to express all possible 2FOL

temporal relational queries. However, this is a contradiction to the incompleteness

of temporal relational algebras. The conjecture of the incompleteness of ordered

relational algebras is as follows:

There does not exist an ordered relational algebra equipped with a finite

set of ordered operations such that, given an arbitrary ordered relational

query in FO�, there is an equivalent query expressed by a finite sequence

of ordered operations from the algebra.

46

The possible incompleteness of general ordered relational algebras motivates us

to investigate the following question:

For any sub-class of first-order ordered relational queries, does there

exist an ordered algebra such that any ordered queries in this sub-class

can be rewritten with a finite sequence of algebraic operations?

We explore this perspective in the following chapters.

In this chapter, we formally defined ordered relational queries using both two-

sorted first-order logic FO� and ordered relational algebra. These two paradigms

shares common properties as query representations. First, they both are set-based

in the sense that they identify and manipulate sets of tuples once at a time, rather

than identifying and manipulating individual tuples. Second, they are both abstract

so that they are independent from the physical implementation of operations and

data storage.

However, the two paradigms are distinguished from each other by their essential

differences. The two-sorted first-order logic is conceptually declarative, i.e., the

output ordered relation is specified by properties that the data and order relations

satisfy respectively; the ordered relational algebra is conceptually procedural, as

ordered queries are represented by a sequence of ordered operations that constructs

the answer to the query.

In comparison to 2FOL temporal relational queries, FO� ordered relational

queries are expected to lack complete relational algebras. Therefore, beginning

with the next chapter, we explore the completeness problem of ordered conjunctive

queries, which is the most important class of ordered relational queries.

47

Chapter 3

Ordered Conjunctive Queries with

Data-Decided Order CQX
�

This and the following chapters focus on exploring conjunctive queries in ordered

context. In general, ordered conjunctive queries are those ordered relational queries

whose data queries are conjunctive queries. As in conventional relational databases,

conjunctive queries are the most common class of relational queries in ordered

databases.

We study the ordered conjunctive query CQ� in a gradual way: first, we begin

with the ordered conjunctive query with data-decided (or x-decided) order, CQX
� ;

then, we examine the ordered conjunctive query with t-decided order, CQT
�; finally,

we investigate the general ordered conjunctive query, CQ�. The goal is to study the

expressive powers of various query representation languages for ordered conjunctive

queries. In particular, we are interested in the completeness problem of ordered

conjunctive query: do there exist complete algebras for the three classes of ordered

conjunctive queries?

Temporal relational algebras fail in completeness because quantifiers on x-

variables and t-variables are allowed to be interleaved in 2FOL specifications of

temporal relational queries; to develop potentially complete algebras for CQX
� , we

have to impose a restriction on CQ� to avoid this situation.

Definition 3.1 (Bounded x-variables) An x-variable xi is bounded in a first-

order formula ψ if each occurrence of xi in ψ is only in forms of ∃ xi.R(t, x̄) or

∃ xi.R(t, x̄)∧ ψ′ at the leaf level of ψ, where ψ′ is a boolean combination of predicates

on x-variables.

48

Example 3.2 Consider an ordered database 〈DomT,=; DomX,=; R〉 with one

relation R(T,X). A FO� formula ∃t1,∃x1.R(t1, x1) ∧ t �R t1 ∧ ¬t = t1 generates

a set of tuples t which could be any tuple in R except the last tuple. The variable

x1 is bounded because it appears in the form of ∃x1.R(t1, x1).

Please not that, by Definition 3.1, no quantifier on t-variables or quantifier

on x-variables exists in the scope of the bounded x-variable, which ensures that

quantifiers on x-variables and t-variables are not interleaved in the formula ψ; there

is exactly one t-variable in the scope of the bounded x-variable, and thus the x-

variable can only be used to restrict the behavior of a particular t-variable. Hence,

putting this restriction on the order specification of ordered conjuctive queries yields

the possibility of the existence of a complete algebra for ordered conjunctive queries.

In this chapter, we limit our scope of investigation to ordered conjunctive queries

with x-decided order, CQX
� . Section 3.1 formally defines CQX

� in a two-sorted first-

order calculus FO�. An ordered algebra CAX
� is proposed for CQX

� in Section 3.2,

and transformation rules are provided and proven for ordered operations in CAX
�

in Section 3.3. Section 3.4 proves that CAX
� is a complete algebra of CQX

� .

3.1 Ordered Conjunctive Queries CQX
�

The ordered conjunctive query CQX
� is a subset of the general ordered conjunctive

query CQ�; quantifiers on t-variables are forbidden in order specification (subfor-

mula ψ′) of a CQ� ordered conjunctive query. A formal definition of the ordered

conjunctive query CQX
� follows.

Definition 3.3 (Ordered Conjunctive Query CQX
�)

A CQX
� query 〈ϕ, ψ〉 on ordered relations R1, ...,Rn is constructed as follows:

(i) The data query ϕ is a conjunctive query and defined by the following BNF rule:

ϕ ::= Ri(ti, x1, . . . , xn)

| t = (ti, tj)

| xi = xj

| ϕ ∧ ϕ
| ∃xi.ϕ
| ∃ti.ϕ

49

(ii) The order query ψ is a first-order formula in the form of

ψ ::= Ri(ti, x1, . . . , xn)

| t = (ti, tj)

| xi = xj

| ψ ∧ ψ
| ∃xi.ψ
| ∃ti.ψ
| ψ ∧ ψ′

where ψ′ is called order specification, defined by the BNF rule

ψ′ ::= ti �R tj
| xi = xj

| ψ′ ∧ ψ′

| ¬ψ′
where the order query ψ has exactly two t-variables as the only free variables,

and the order specification ψ′ has all x-variables bounded.

In the definitions of ϕ and ψ, the clause t = (ti, tj) is a constructor of tuple

identifiers. This constructor is used to form the output tuple identifiers when the

output tuple identifiers are composed from multiple input tuple identifiers. In

the case that the output tuple identifers are constructed from k input ordered

relations, the combinations of tuple identifiers (...(ti1 , ti2), ..., tik) are abbreviated as

(ti1 , ti2 , ..., tik) in later development.

Intuitively, a CQX
� query on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉 has the

following form:

〈{(t, x̄) | ∃t1, . . . , tn. t = (t1, . . . , tn) ∧ ϕ(t1, . . . , tn, x̄)},
{(t1, t2) | ∃t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . x̄2n.

t1 = (t11, . . . , t1n) ∧ t2 = (t21, . . . , t2n)

∧ ϕ(t11, . . . , t1n, x̄11, . . . , x̄1n) ∧ ϕ(t21, . . . , t2n, x̄21, . . . , x̄2n)

∧ ψ′(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)} 〉,

where ψ′ is constructed by the BNF rule

ψ′ ::= ti �R tj | xi = xj | ψ′ ∧ ψ′ | ¬ψ′,

and t1 and t2 are the only two free variables in the order specification ψ. Since

there is no quantifier on t-variables in the order specification ψ′, t1 and t2 are also

50

the only two t-variables in the order specification ψ′. Hence, the order specification

ψ′ must have all x-variable bounded.

Note that ψ has a two-level structure in the definition of CQX
� ordered conjunc-

tive query:

(1) The first level of ψ has the same construction rule as ϕ. This ensures that ψ

defines an order for any pair of tuples t1 and t2 that satisfies the data query

ϕ.

(2) The second level of ψ is the subformula ψ′, which defines real ordering among

the resulting tuples. Since there are no quantifiers on t-variables in ψ′, all

t-variables in ψ′ appear only in atomic forms t1i � t2i or ¬t1i � t2i, where

t1i and t2i are originally from the same input ordered relation 〈Ri,�Ri
〉, but

are components of different tuples in the output. The construction rule at

the second level indicates that the output order is mainly determined by

data predicates xi = xj, which is why we name the ordered specification in

Definition 3.3 as CQX
� . The superscript X suggests that the order is decided

by predicates on x-variables.

However, an ordered query specification which satisfies the syntax definition in

Definition 3.3 may not be a valid ordered conjunctive query, unless it meets the

semantic restriction of valid ordered relational query defined in Definition 2.15.

In general, for any input ordered relations, the order query ψ of a valid ordered

conjunctive query in CQ� always defines a total linear order on the tuples which

satisfy ϕ.

Definition 3.4 (Valid Ordered Conjunctive Queries in CQ�) An ordered con-

junctive query in CQ� is valid if it is a valid ordered relational query.

The ordered conjunctive query CQX
� is restricted in its expressive power when

being compared with the general ordered conjunctive query CQ�; however, it is

still powerful enough to express a class of ordered conjunctive queries whose order

depends on the attribute values, as illustrated by the example below:

Example 3.5 Consider the ordered relation 〈EMP,�EMP〉 in Example 2.5, which

conforms to an extended relation schema S(T, EmpId, Name, Department, Salary).

We show here two queries that can be expressed in CQX
� .

51

(1) Find all employees whose salary is $65,000 per year, and output the names

and departments in the original order. This query can be formulated in CQX
� as

follows:

〈{(t, x2, x3)| ∃x1, x4. EMP (t, x1, x2, x3, x4) ∧ x4 = 65000},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14) ∧ x14 = 65000

∧∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24) ∧ x24 = 65000

∧t1 �EMP t2}〉.

(2) Return a list of all employees in EMP in such an order that the employees in

the department Sales are listed in the reverse order, and are moved to the bottom

of the list; the rest of the employees are kept in the original order. This query also

can be formulated in CQX
� :

〈{(t, x1, x2, x3, x4)| EMP (t, x1, x2, x3, x4)},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14)

∧∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24)

∧ ((x13 = “Sales” ∧ x23 = “Sales” ∧ ¬t1 �EMP t2)

∨ (¬x13 = “Sales” ∧ x23 = “Sales”)

∨ (¬x13 = “Sales” ∧ ¬x23 = “Sales” ∧ t1 �EMP t2))}〉.

3.2 An Ordered Conjunctive Algebra CAX
�

In the previous section, we formally defined ordered conjunctive queries CQX
� . In

this section, we propose an ordered algebra CAX
� for ordered conjunctive queries

CQX
� , and then study properties and transformation rules of primitive and derived

ordered operations in CAX
� .

3.2.1 Overview of Ordered Algebra CAX
�

The use of algebra operators provides a distinctly different perspective on ordered

conjunctive query representation. In general, a proper ordered algebra for ordered

relational queries should meet several essential requirements. First, the proposed

algebra should be closed; each ordered operator takes one or more ordered relations

52

as arguments, and produces an ordered relation as a result. Second, it is easy to

perform query transformation on ordered queries. Third, it is convenient to trace

and manipulate orders through operators. We develop an ordered algebra CAX
� for

the ordered conjunctive query CQX
� , which satisfies these general requirements for

ordered algebras.

In the ordered conjunctive algebra CAX
� , certain ordered operators derive from

the conventional relational operators, which are extended to the ordered context

by adding order specifications. These operators include order-preserving selection,

order-preserving projection, and left nested-loop product. Others are specifically

developed for ordered relations, such as order concatenation, order reduction, order

identity, and order reverse.

Both data and order specifications of an ordered operator are defined in the

two-sorted first-order calculus FO�. Essentially, each ordered operator in CAX
� is

a valid ordered relational query in CQ�. However, some of ordered operators in

CAX
� are not defined in CQX

� because they use negations in their data queries.

The reason is that we have to include negations in the order specification of CQX
�

query; otherwise, CQX
� will have a very limited expressible power to be able to

express interesting orders. When negations are included in the order specifications,

the data queries of ordered operations must have negations in order to obtain a

complete set of ordered operators for CQX
� .

In addition, construction rules of tuple identifier are specified in the definition

of each ordered operator. In the following development, we abbreviate {x1, . . . , xn}
as x̄ to simplify the notations. Similarly, {xi1, . . . ,xin} is abbreviated as x̄i.

3.2.2 Order-preserving Selection

The order-preserving selection operator σp : R� → R� in CAX
� is a counterpart of

the well-known selection operator in conventional relational algebras. The subscript

p is a selection predicate p on x-variables. The schema of the resulting ordered

relation is the same as that of the argument ordered relation. The formal definition

of order-preserving selection follows:

σp(R) = 〈{(t, x̄)| R(t, x̄) ∧ p(t, x̄)},
{(t1, t2)| ∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R t2}〉.

53

In this definition, the operator takes as an argument an ordered relation, and

returns as a result tuples that satisfy the predicate p. The resulting order is the

same as the original order in the argument. The tuple identifiers in the resulting

ordered relation are identical to those in the argument relation. The definition of

the order-preserving operator leads to the following lemma:

Lemma 3.6 An order-preserving selection is a valid ordered relational query.

Proof: Let σp(R) = 〈R′,�R′〉, where R = 〈R,�R〉. Clearly, R′ and �R′ are

inclusively dependant on each other by the definition of the order-preserving selec-

tion. We need to prove that �R′ is a linear order of R′. This can be accomplished

by proving the three conditions in (b) of Definition 2.3.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ (∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R t2)
∧(∃x̄2.R(t1, x̄2) ∧ p(t2, x̄2)

∧∃x̄3.R(t3, x̄3) ∧ p(t3, x̄3) ∧ t2 �R t3)
=⇒ ∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄3.R(t3, x̄3) ∧ p(t3, x̄3) ∧ t1 �R t3
=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ (∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R t2)
∧(∃x̄′2.R(t2, x̄

′
2) ∧ p(t2, x̄

′
2)

∧∃x̄′1.R(t1, x̄
′
1) ∧ p(t1, x̄

′
1) ∧ t2 �R t1)

=⇒ x̄1 = x̄′1 ∧ x̄2 = x̄′2 ∧ t1 �R t2 ∧ t2 �R t1
=⇒ t1 = t2

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of the order-preserving

selection,

54

t1, t2 ∈ R′[T]

=⇒ ∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2)

=⇒ ∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2)

∧(t1 �R t2 ∨ t2 �R t1)

=⇒ (∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R t2)

∨(∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t2 �R t1)

=⇒ t1 �R′ t2 ∨ t2 �R′ t1

Thus, we have proved that the order-preserving selection is a valid ordered

relational query. 2

By definition, the data query of an order-preserving selection is a conjunctive

query. Therefore, it is also a valid ordered conjunctive query in CQX
� .

3.2.3 Order-preserving Projection

The order-preserving projection operator πA : R� → R� corresponds to its coun-

terpart in conventional relational algebras. The subscript A is a list of projection

attributes, X1, . . . ,Xk (repeats not permitted). The schema of the resulting rela-

tion, (T,X1, . . . ,Xk), is a subset of the schema of the argument relation. The formal

definition of the order-preserving projection is shown as follows:

πA(R) = 〈{(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x1, . . . , xn)},�R〉.

The order-preserving projection operator takes as an argument an ordered re-

lation, and returns an ordered relation projected on given attributes. The output

order is the same as the original order in the argument. The tuple identifiers in the

resulting ordered relation are identical to those in the argument relation.

The order-preserving projection operator is different from the conventional pro-

jection operator in that duplicate tuples (on data attributes) are retained in the

resulting relation because each tuple has a unique tuple identifier. We do not in-

clude duplicate elimination in the algebra CAX
� because it is not definable in CQX

� .

Hence, the duplicate elimination operation is not related to the completeness of

CAX
� .

55

Lemma 3.7 An order-preserving projection is a valid ordered relational query.

Proof: Let πA(R) = 〈R′,�R′〉, where R = 〈R,�R〉. By definition of the order-

preserving projection, R′ and �R′ are inclusively dependant on each other. We now

prove that �R′ is a linear order of R′.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ (∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t1 �R t2)
∧(∃x̄2.R(t1, x̄2) ∧ ∃x̄3.R(t3, x̄3) ∧ t2 �R t3)

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄3.R(t3, x̄3) ∧ t1 �R t3
=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ (∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t1 �R t2)
∧(∃x̄′2.R(t2, x̄

′
2) ∧ ∃x̄′1.R(t1, x̄

′
1) ∧ t2 �R t1)

=⇒ x̄1 = x̄′1 ∧ x̄2 = x̄′2 ∧ t1 �R t2 ∧ t2 �R t1
=⇒ t1 = t2

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of the order-preserving

projection,

t1, t2 ∈ R′[T]

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

∧(t1 �R t2 ∨ t2 �R t1)

=⇒ (∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t1 �R t2)

∨(∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t2 �R t1)

=⇒ t1 �R′ t2 ∨ t2 �R′ t1

This finishes the proof that the order-preserving projection is a valid ordered

relational query. 2

By definition, the data query of an order-preserving projection is a conjunctive

query. Therefore, it is also a valid ordered conjunctive query in CQX
� .

56

3.2.4 Left Nested-loop Products

The left nested-loop product n : R�× R� → R� is an ordered counterpart to the

Cartesian product. The schema of the resulting ordered relation is the extended

schema of concatenation of the schemas of two argument relations. The formal

definition of the left nested-loop product is shown as follows:

R1 n R2 = 〈{(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2)},
{(t1, t2) | ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧(t11 �R1 t21 ∨ (t11 = t21 ∧ t12 �R2 t22))}〉.

In this definition, the left nested-loop product takes two ordered relations as

arguments, and returns the Cartesian product of two argument data relations in the

lexicographic order. The tuple identifiers in the result are constructed by combining

tuple identifiers of two arguments. This definition leads to the following lemma on

the left nested-loop product:

Lemma 3.8 A left nested-loop product operation is a valid ordered relational query.

Proof: Let R1 n R2 = 〈R′,�R′〉, where R1 = 〈R1,�R1〉 and R2 = 〈R2,�R2〉.
Note that R′ and �R′ are inclusively dependant on each other by definition of the

left nested-loop product. We need to prove that �R′ is a linear order of R′.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ (∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧(t11 �R1 t21 ∨ (t11 = t21 ∧ t12 �R2 t22)))

∧(∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧∃t31, t32, x̄31, x̄32.t3 = (t31, t32)

∧R1(t31, x̄31) ∧ R2(t32, x̄32)

∧(t21 �R1 t31 ∨ (t21 = t31 ∧ t22 �R2 t32)))

57

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧∃t31, t32, x̄31, x̄32.t3 = (t31, t32)

∧R1(t31, x̄31) ∧ R2(t32, x̄32)

∧(t11 �R1 t21 ∨ (t11 = t21 ∧ t12 �R2 t22))

∧(t21 �R1 t31 ∨ (t21 = t31 ∧ t22 �R2 t32))

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧∃t31, t32, x̄31, x̄32.t3 = (t31, t32)

∧R1(t31, x̄31) ∧ R2(t32, x̄32)

∧((t11 �R1 t21 ∧ t21 �R1 t31) ∨ (t11 = t21 ∧ t12 �R2 t22 ∧ t21 �R1 t31)

∨(t11 �R1 t21 ∧ t21 = t31 ∧ t22 �R2 t32)

∨(t11 = t21 ∧ t12 �R2 t22 ∧ t21 = t31 ∧ t22 �R2 t32))

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t31, t32, x̄31, x̄32.t3 = (t31, t32)

∧R1(t31, x̄31) ∧ R2(t32, x̄32)

∧(t11 �R1 t31 ∨ (t11 = t31 ∧ t12 �R2 t32))

=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ (∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧(t11 �R1 t21 ∨ (t11 = t21 ∧ t12 �R2 t22)))

∧(∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧(t21 �R1 t11 ∨ (t21 = t11 ∧ t22 �R2 t12)))

58

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧(t11 �R1 t21 ∨ (t11 = t21 ∧ t12 �R2 t22))

∧(t21 �R1 t11 ∨ (t21 = t11 ∧ t22 �R2 t12))

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧((t11 �R1 t21 ∧ t21 �R1 t11) ∨ (t11 = t21 ∧ t12 �R2 t22 ∧ t21 �R1 t11)

∨(t11 �R1 t21 ∧ t21 = t11 ∧ t22 �R2 t12)

∨(t11 = t21 ∧ t12 �R2 t22 ∧ t21 = t11 ∧ t22 �R2 t12))

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧((t11 = t21) ∨ (t11 = t21 ∧ t12 �R2 t22 ∧ t21 �R1 t11)

∨(t11 �R1 t21 ∧ t21 = t11 ∧ t22 �R2 t12) ∨ (t11 = t21 ∧ t12 = t22))

=⇒ t11 = t21 ∧ t12 = t22

=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′,

t1, t2 ∈ R′[T]

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

=⇒ (∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22))

∧((t11 �R1 t21 ∨ t21 �R1 t11) ∨ (t11 = t21 ∧ t12 �R2 t22 ∧ t21 �R1 t11)

∨(t11 �R1 t21 ∧ t21 = t11 ∧ t22 �R2 t12)

∨(t11 = t21 ∧ t12 �R2 t22 ∧ t21 = t11 ∧ t22 �R2 t12))

59

=⇒ ∃t11, t12, x̄11, x̄12.t1 = (t11, t12)

∧R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22)

∧R1(t21, x̄21) ∧ R2(t22, x̄22)

∧((t11 �R1 t21 ∨ (t11 = t21 ∧ t12 �R2 t22))

∨(t21 �R1 t11 ∨ (t21 = t11 ∧ t22 �R2 t12)))

=⇒ t1 �R′ t2 ∨ t2 �R′ t1.

Thus, we have proved that the left nested-loop product is a valid ordered rela-

tional query. 2

By definition, the data query of a left nested-loop product is a conjunctive query.

Therefore, it is also a valid ordered conjunctive query in CQX
� .

3.2.5 Order Concatenation

The ordered concatenation operator ∪ : R × R → R is different from the union

operator in conventional relational algebras. It is exclusive to ordered algebra and

is used to manipulate orders within a single ordered relation. The schemas of both

argument relations and the resulting relation are the same. The formal definition

of the order concatenation operator is given as follows:

R1 ∪ R2 = 〈{(t, x̄)| R1(t, x̄)) ∨ R2(t, x̄))},
{(t1, t2)| (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2)}〉.

By this definition, the order concatenation operator appends the second argu-

ment ordered relation at the end of the first argument. Hence, tuples from the

same argument remain in the same order as in the argument; tuples from the first

argument are prior to tuples from the second argument. Furthermore, tuples with

duplicate data values are retained in the result because they have different tuple

identifiers.

Since the order concatenation operator can only be used to manipulate orders

within a single ordered relation, the argument relations of the operation are origi-

nally different fragments from the same ordered relation. Thus, it is impossible that

60

tuples from different fragments of the same relation have the same tuple identifier.

This makes it possible that tuple identifiers of the resulting tuples are identical to

the original tuple identifiers in arguments.

Lemma 3.9 An order concatenation operation is a valid ordered relational query.

Proof: Let R1 ∪ R2 = 〈R′,�R′〉, where R1 = 〈R1,�R1〉 and R2 = 〈R2,�R2〉.
The data relation R′ and the order relation �R′ are inclusively dependant on each

other by definition of order concatenation. We need to prove that �R′ is a linear

order of R′.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2))

∧((∃x̄2.R1(t2, x̄2) ∧ ∃x̄3.R2(t3, x̄3))

∨(∃x̄2.R1(t2, x̄2) ∧ ∃x̄3.R1(t3, x̄3) ∧ t2 �R1 t3)

∨(∃x̄2.R2(t2, x̄2) ∧ ∃x̄3.R2(t3, x̄3) ∧ t2 �R2 t3))

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ ∃x̄3.R2(t3, x̄3) ∧ t2 �R2 t3)

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ ∃x̄3.R2(t3, x̄3) ∧ t1 �R1 t2)

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ ∃x̄3.R1(t3, x̄3) ∧ t1 �R1 t2 ∧ t2 �R1 t3)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ ∃x̄3.R2(t3, x̄3) ∧ t1 �R2 t2 ∧ t2 �R2 t3)

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄3.R2(t3, x̄3))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄3.R1(t3, x̄3) ∧ t1 �R1 t3)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄3.R2(t3, x̄3) ∧ t1 �R2 t3)

=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2))

∧((∃x̄2.R1(t2, x̄2) ∧ ∃x̄1.R2(t1, x̄1))

∨(∃x̄2.R1(t2, x̄2) ∧ ∃x̄1.R1(t1, x̄1) ∧ t2 �R1 t1)

∨(∃x̄2.R2(t2, x̄2) ∧ ∃x̄1.R2(t1, x̄1) ∧ t2 �R2 t1))

61

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2)

∧t1 �R1 t2 ∧ t2 �R1 t1)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2)

∧t1 �R2 t2 ∧ t2 �R2 t1)

=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of order concatenation,

t1, t2 ∈ R′[T]

=⇒ (∃x̄1.R1(t1, x̄1) ∨ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∨ R2(t2, x̄2))

=⇒ ((∃x̄1.R1(t1, x̄1) ∨ ∃x̄1.R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∨ ∃x̄2.R2(t2, x̄2))

∧(t1 �R1 t2 ∨ t2 �R1 t1)

∧(t1 �R2 t2 ∨ t2 �R2 t1)

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t2 �R1 t1)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t2 �R2 t1)

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2))

=⇒ t1 �R′ t2 ∨ t2 �R′ t1.

Hence, we have proved that the order concatenation is a valid ordered relational

query. 2

3.2.6 Order Reduction

The order reduction operator − : R ×R→ R is exclusive to the ordered algebra.

It is also used to manipulate orders within a single ordered relation by separating

the input ordered relation into multiple segments. The schemas of both argument

relations and the resulting relation are the same. A formal definition of the order

reduction operator is proposed as follows:

R1 − R2 = 〈{(t, x̄) | R1(t, x̄) ∧ ¬ R2(t, x̄)},
{(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧ t1 �R1 t2}〉.

62

In this definition, the order reduction operator returns all tuples of the first

argument that do not have duplicate tuples in the second argument. The resulting

tuples remain in the same order as in the first argument. Here, “duplicate” tuples

are those tuples with both identical tuple identifiers and identical data values. The

tuple identifiers of the result are the same as those in the first argument.

Since the ordered conjunctive queries do not involve negation in the data query,

this order reduction operator is not definable in CQX
� . This operator is necessary

in CAX
� because it is used to handle the negations in the order specification of a

CQX
� query. In addition, the order reduction operator is only used to manipulate

the order within a single relation, and therefore is not the counterpart of the set

difference operator in conventional relational algebras. Furthermore, the definition

of order reduction leads to the following lemma:

Lemma 3.10 An order reduction operation is a valid ordered relational query.

Proof: Let R1 − R2 = 〈R′,�R′〉, where R1 = 〈R1,�R1〉 and R2 = 〈R2,�R2〉.
The data relation R′ and order relation �R′ are inclusively dependant on each other

by definition of the order reduction. We now need to prove that �R′ is a linear

order of R′.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧ t1 �R1 t2)

∧((∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧(∃x̄3.R1(t3, x̄3) ∧ ¬ R2(t3, x̄3))

∧ t2 �R1 t3)

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄3.R1(t3, x̄3) ∧ ¬ R2(t3, x̄3)) ∧ t1 �R1 t3

=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

63

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧ t1 �R1 t2)

∧((∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧(∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧ t2 �R1 t1)

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧(t1 �R1 t2 ∧ t2 �R1 t1)

=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of order reduction,

t1, t2 ∈ R′[T]

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

=⇒ (∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2))

∧(t1 �R1 t2 ∨ t2 �R1 t1)

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2)) ∧ t1 �R1 t2)

∨((∃x̄1.R1(t1, x̄1) ∧ ¬ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ R2(t2, x̄2)) ∧ t2 �R1 t1)

=⇒ t1 �R′ t2 ∨ t2 �R′ t1

Hence, we have proved that the order reduction is a valid ordered relational

query. 2

3.2.7 Order Identity

The order identity operator µ : R→ R is exclusively proposed in ordered context.

The argument and resulting ordered relations share the same schema. The formal

definition of the order identity operator is given as follows:

µ(R) = 〈{(t, x̄) | R(t, x̄)},
{(t1, t2) | t1 �R t2}〉.

64

In this definition, the order identity operator takes an ordered relation as the

argument and returns the argument relation as the result. The tuple identifier of

each data tuple in the resulting ordered relation is identical to the tuple identifier

of the same data tuple in the argument relation.

Lemma 3.11 An order identity operation is a valid ordered relational query.

Proof:

By definition, the resulting ordered relation of an order identity operation has

identical data and identical order relations to the argument. Since the input ordered

relation is valid, the output ordered relation is also valid. Hence, the order identity

operation is a valid ordered relational query. 2

The order identity operator is included in the algebra CAX
� because we need it

to generate a generalized ordered algebraic expression for any CQX
� query.

3.2.8 Order Reverse

The order reverse operator ν : R → R is specific to the ordered algebra as well.

The argument and resulting ordered relations share the same schema. The formal

definition of the order reverse operator is given as follows:

ν(R) = 〈{(t, x̄)| R(t, x̄)},
{(t1, t2)| t2 �R t1}〉.

In this definition, the order reverse operator takes an ordered relation as its

argument and returns as its result the ordered relation with the same data relation;

however, it is in the reverse order to the argument. The tuple identifier of each

data tuple in the resulting ordered relation is identical to the tuple identifier of the

same data tuple in the argument relation. The following lemma holds for the order

reverse operator:

Lemma 3.12 An order reverse operation is a valid ordered relational query.

Proof: Let ν(R) = 〈R′,�R′〉, where R = 〈R,�R〉. Note that R′ and �R′ are

inclusively dependant on each other by definition of the order reverse operation.

We now need to prove that �R′ is a linear order of R′.

65

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ (t2 �R t1) ∧ (t3 �R t2)
=⇒ t3 �R t1
=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ t2 �R t1 ∧ t1 �R t2
=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of the order reverse

operation,

t1, t2 ∈ R′[T]

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

∧(t2 �R t1 ∨ t1 �R t2)

=⇒ (∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t2 �R t1)

∨(∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t1 �R t2)

=⇒ t1 �R′ t2 ∨ t2 �R′ t1.

Thus, we have proved that the order reverse operator is a valid ordered relational

query. 2

3.3 Transformation Rules

In this section, we provide a set of transformation rules for the ordered conjunctive

algebra CAX
� . First, we describe transformation rules that are taken from conven-

tional relational algebras and are tailored to the ordered context. Then, we discuss

transformation rules for the order operators that are specifically developed for the

ordered conjunctive algebra.

In ordered relational databases, two ordered queries are equivalent if they have

both equivalent data queries and equivalent order queries. The following transfor-

mation rules guarantee both the equivalence of data queries and the equivalence of

order queries for the ordered queries on both sides. In addition, the transforma-

tion rules are given in the algebraic equations which represent both the left-to-right

66

equivalence and the right-to-left equivalence. In these equations, each argument

can be either an ordered relation or an expression of ordered operations.

Proposition 3.13 Let Att(R) be the set of data attributes in the ordered relation

R, and Att(p) be the set of data attributes the selection predicate p. The following

transformation rules hold in CAX
� :

(R1) σp(σp′(R)) = σp∧p′(R)

(R2) πA1(πA2(R)) = πA1(R) if A1 ⊆ A2

(R3) σp(πA(R)) = πA(σp(R)) if Att(p) ⊆ A

(R4) σp(R1 n R2) = σp(R1) n R2 if Att(p) ⊆ Att(R1)

(R5) σp(R1 n R2) = R1 n σp(R2) if Att(p) ⊆ Att(R2)

(R6) πA(R1 n R2) = πA1(R1) n πA2(R2)

if A1 ⊆ Att(R1) ∧ A2 ⊆ Att(R2) ∧ A1 ∪ A2 = A ∧ A1 ∩ A2 = ∅

(R7) (R1 n R2) n R3 = R1 n (R2 n R3)

(R8) σp(R1 −R2) = σp(R1)−R2

(R9) σp(R1 −R2) = σp(R1)− σp(R2)

(R10) σp(R1 ∪R2) = σp(R1) ∪ σp(R2)

(R11) πA(R1 ∪R2) = πA(R1) ∪ πA(R2)

(R12) (R1 ∪R2) ∪R3 = R1 ∪ (R2 ∪R3)

(R13) σp(ν(R)) = ν(σp(R))

(R14) πA(ν(R)) = ν(πA(R))

(R15) ν(R1 n R2) = ν(R1) n ν(R2)

Proof:

Assume that the ordered relation R = 〈R,�R〉 has a schema R(T, X1, . . . , Xn),

and the ordered relation Ri = 〈Ri,�Ri
〉 has a schema Ri(T, Xi1, . . . , Xini

), for

i = 1, 2, 3.

67

(R1) Let 〈R′,�R′〉 = σp′〈R,�R〉. By definition of the order-preserving selection,

R′ = {(t, x̄) | R(t, x̄) ∧ p′(t, x̄)}

�R′ = {(t1, t2) | ∃x̄1.R(t1, x̄1) ∧ p′(t1, x̄1)

∧ ∃x̄2.R(t2, x̄2) ∧ p′(t2, x̄2)

∧ t1 �R t2}.

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

R′′ = {(t, x̄) | R′(t, x̄) ∧ p(t, x̄)}
= {(t, x̄) | R(t, x̄) ∧ p(t, x̄) ∧ p′(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R′(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R′ t2}
= {(t1, t2) | ∃x̄1.R(t1, x̄1) ∧ p′(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R(t2, x̄2) ∧ p′(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R t2}.

Therefore,

〈R′′,�R′′〉 = σp∧p′〈R,�R〉.

(R2) Let 〈R′,�R′〉 = πA2〈R,�R〉. Without loss of generality, we assume that

A2 = {X1, . . . , Xk}. By definition of the order-preserving projection,

R′ = {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x1, . . . , xn)}

�R′ = {(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧∃x21, . . . , x2n.R(t2, x21, . . . , x2n) ∧ t1 �R t2}.

Let 〈R′′,�R′′〉 = πA1〈R′,�R′〉. Since A1 ⊆ A2 holds, without loss of gen-

erality, we assume that A1 = {X1, . . . , Xl}, and l ≤ k. Then,

R′′ = {(t, x1, . . . , xl) | ∃xl+1, . . . , xk.R
′(t, x1, . . . , xk)}

= {(t, x1, . . . , xl) | ∃xl+1, . . . , xk.(∃xk+1, . . . , xn.R(t, x1, . . . , xn))}
= {(t, x1, . . . , xl) | ∃xl+1, . . . , xk, xk+1, . . . , xn.R(t, x1, . . . , xn))}

�R′′ = {(t1, t2) | ∃x11, . . . , x1k.R′(t1, x11, . . . , x1k)
∧∃x21, . . . , x2k.R′(t2, x21, . . . , x2k) ∧ t1 �R′ t2}

= {(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧∃x21, . . . , x2n.R(t2, x21, . . . , x2n) ∧ t1 �R t2}.

68

As a consequence,

〈R′′,�R′′〉 = πA1〈R,�R〉.

(R3) Without loss of generality, we assume that A = {X1, . . . , Xk}. By definition

of the order-preserving projection,

πA〈R,�R〉 = 〈{(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x1, . . . , xn)},
{(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧∃x21, . . . , x2n.R(t2, x21, . . . , x2n) ∧ t1 �R t2}〉.

Then,

σp(πA〈R,�R〉) = 〈{(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x1, . . . , xn)

∧p(t, x1, . . . , xn)},
{(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n) ∧ p(t1, x11, . . . , x1n)

∧ ∃x21, . . . , x2n.R(t2, x21, . . . , x2n) ∧ p(t1, x21, . . . , x2n)

∧ t1 �R t2}〉
= πA(σp(R)).

(R4) Let 〈R′,�R′〉 = R1 n R2. By definition of left nested-loop product,

R′ = {(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2)}

�R′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉,

where x̄1 = (x11, . . . , x1n), and x̄11 = (x111, . . . , x11n).

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

R′′ = {(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2) ∧ p(t1, x̄1)}

�R′′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12) ∧ p(t11, x̄11)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22) ∧ p(t21, x̄21)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉.

Therefore,

〈R′′,�R′′〉 = σp(〈R1,�R1〉) n 〈R2,�R2〉.

69

(R5) Let 〈R′,�R′〉 = R1 n R2. By definition of left nested-loop product,

R′ = {(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2)}

�R′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉,

where x̄1 = (x11, . . . , x1n), and x̄11 = (x111, . . . , x11n).

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

R′′ = {(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2) ∧ p(t2, x̄2)}

�R′′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12) ∧ p(t12, x̄12)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22) ∧ p(t22, x̄22)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉.

Thus,

〈R′′,�R′′〉 = 〈R1,�R1〉n σp(〈R2,�R2〉).

(R6) Assume that 〈R′,�R′〉 = R1 nR2, A1 = (X11, . . . ,X1k), A2 = (X21, . . . ,X2l),

A1 ∪A2 = A, and A1 ∩A2 = ∅. By definition of the left nested-loop product,

R′ = {(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2)}

�R′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉,

where x̄1 = (x11, . . . , x1n), and x̄11 = (x111, . . . , x11n).

Let 〈R′′,�R′′〉 = πA〈R′,�R′〉. Then,

70

R′′ = {(t, x11, . . . , x1k, x21, . . . , x2l) |∃t1, t2.t = (t1, t2)

∧∃x1,k+1, . . . , x1n.R1(t1, x̄1)

∧∃x2,l+1, . . . , x2m.R2(t2, x̄2)}

�R′′ = {(t1, t2) |∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉.

Therefore,

〈R′′,�R′′〉 = πA(〈R1,�R1〉) n 〈R2,�R2〉.

(R7) Let 〈R′,�R′〉 = R1 n R2. By definition of the left nested-loop product,

R′ = {(t, x̄1, x̄2) | ∃t1, t2.t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2)}

�R′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧ t1 = (t11, t12) ∧ t2 = (t21, t22)

∧ (t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉,

where x̄1 = (x11, . . . , x1n) and x̄11 = (x111, . . . , x11n).

Let 〈R′′,�R′′〉 = 〈R′,�R′〉n 〈R3,�R3〉. Then,

R′′ = {(t, x̄1, x̄2, x̄3) | ∃t1, t2, t3.t = ((t1, t2), t3)

∧R1(t1, x̄1) ∧ R2(t2, x̄2) ∧ R3(t3, x̄3)}
�R′′ = {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t13, x̄13.R3(t13, x̄13)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧∃t23, x̄23.R3(t23, x̄23)

∧ t1 = ((t11, t12), t13) ∧ t2 = ((t21, t22), t23)

∧ ((t11 �1 Rt21 ∨ (t11 = t21 ∧ t12 �R2 t22))

∨(t11 = t21 ∧ t12 = t22 ∧ t13 �R3 t23))}〉.

71

= {(t1, t2) | ∃t11, x̄11.R1(t11, x̄11) ∧ ∃t12, x̄12.R2(t12, x̄12)

∧∃t13, x̄13.R3(t13, x̄13)

∧∃t21, x̄21.R1(t21, x̄21) ∧ ∃t22, x̄22.R2(t22, x̄22)

∧∃t23, x̄23.R3(t23, x̄23)

∧ t1 = (t11, (t12, t13)) ∧ t2 = (t21, (t22, t23))

∧ (t11 �1 Rt21 ∨ (t11 = t21

∧ (t12 �R2 t22 ∨ (t12 = t22 ∧ t13 �R3 t23))))}〉.

Consequently,

〈R′′,�R′′〉 = 〈R1,�R1〉n (〈R2,�R2〉n 〈R3,�R3〉).

(R8) Let 〈R′,�R′〉 = R1 −R2. By the definition of set difference,

R′ = {(t, x̄) | R1(t, x̄) ∧ ¬ ∃t′.R2(t
′, x̄)}

�R′ = {(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ ¬ ∃ t′1R2(t
′
1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ ∃ t′2R2(t
′
2, x̄2))

∧ t1 �R1 t2}

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

R′′ = {(t, x̄) | R1(t, x̄) ∧ ¬ ∃t′.R2(t
′, x̄) ∧ p(t, x̄)}

�R′′ = {(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ ¬ ∃ t′1R2(t
′
1, x̄1) ∧ p(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ ¬ ∃ t′2R2(t
′
2, x̄2) ∧ p(t2, x̄2))

∧ t1 �R1 t2}.

Hence,

〈R′′,�R′′〉 = σp(〈R1,�R1〉)− 〈R2,�R2〉.

(R9)

σp(R1 −R2) = 〈{(t, x̄) | R1(t, x̄) ∧ ¬R2(t, x̄) ∧ p(t, x̄)},
{(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ ¬R2(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R1(t2, x̄2) ∧ ¬R2(t2, x̄2) ∧ p(t2, x̄2)

∧ t1 �R1 t2}〉.
Simultaneously,

72

σp(R1)− σp(R2) = 〈{(t, x̄) | R1(t, x̄) ∧ p(t, x̄) ∧ ¬(R2(t, x̄) ∧ p(t, x̄))},
{(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ p(t1, x̄1) ∧ ¬(R2(t1, x̄1) ∧ p(t1, x̄1))

∧∃x̄2.R1(t2, x̄2) ∧ p(t2, x̄2) ∧ ¬(R2(t2, x̄2) ∧ p(t2, x̄2))

∧t1 �R1 t2}〉
= 〈{(t, x̄) | R1(t, x̄) ∧ p(t, x̄) ∧ (¬R2(t, x̄) ∨ ¬p(t, x̄))},
{(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ p(t1, x̄1) ∧ (¬R2(t1, x̄1) ∨ ¬p(t1, x̄1))

∧∃x̄2.R1(t2, x̄2) ∧ p(t2, x̄2) ∧ (¬R2(t2, x̄2) ∨ ¬p(t2, x̄2))

∧t1 �R1 t2}〉
= 〈{(t, x̄) | (R1(t, x̄) ∧ p(t, x̄) ∧ ¬R2(t, x̄))

∨(R1(t, x̄) ∧ p(t, x̄) ∧ ¬p(t, x̄))},
{(t1, t2) | ∃x̄1.(R1(t1, x̄1) ∧ p(t1, x̄1) ∧ ¬R2(t1, x̄1))

∨(R1(t1, x̄1) ∧ p(t1, x̄1) ∧ ¬p(t1, x̄1))

∧∃x̄2.(R1(t2, x̄2) ∧ p(t2, x̄2) ∧ ¬R2(t2, x̄2))

∨(R1(t2, x̄2) ∧ p(t2, x̄2) ∧ ¬p(t2, x̄2))

∧t1 �R1 t2}〉
= 〈{(t, x̄) | (R1(t, x̄) ∧ p(t, x̄) ∧ ¬R2(t, x̄))},
{(t1, t2) | ∃x̄1.(R1(t1, x̄1) ∧ p(t1, x̄1) ∧ ¬R2(t1, x̄1))

∧∃x̄2.(R1(t2, x̄2) ∧ p(t2, x̄2) ∧ ¬R2(t2, x̄2))

∧t1 �R1 t2}〉.
Hence,

σp(R1 −R2) = σp(R1)− σp(R2).

(R10) Assume that R1 and R2 share the same schema (T, X1, . . . ,Xn). Let

〈R′,�R′〉 = R1 ∪R2. By definition of order concatenation,

R′ = {(t, x̄) | R1(t, x̄) ∨ R2(t, x̄)}

�R′ = {(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2)

∧ t1 �R1 t2)

∨ (∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2)

∧ t1 �R2 t2)},

where x̄1 = (x11, . . . , x1n).

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

73

R′′ = {(t, x̄) | R′(t, x̄) ∧ p(t, x̄)}
= {(t, x̄) | (R1(t, x̄) ∨ R2(t, x̄)) ∧ p(t, x̄)}
= {(t, x̄) | (R1(t, x̄) ∧ p(t, x̄) ∨ (R2(t, x̄) ∧ p(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R′(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R′ t2}
= ((∃x̄1.R1(t1, x̄1) ∧ p(t1, x̄1))

∧ (∃x̄2.R2(t2, x̄2) ∧ p(t2, x̄2)))

∨ (∃x̄1.R1(t1, x̄1) ∧ p(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ p(t2, x̄2)

∧ t1 �R1 t2)

∨ (∃x̄1.R2(t1, x̄1) ∧ p(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ p(t2, x̄2)

∧ t1 �R2 t2)}.

Therefore,

〈R′′,�R′′〉 = σp(〈R1,�R1〉) ∪ σp(〈R2,�R2〉).

(R11) Without loss of generality, we assume that R1 and R2 share the same

schema (T, X1, . . . ,Xn), and A = (T, X1, . . . ,Xk), where k ≤ n. Let 〈R′,�R′

〉 = R1 ∪R2. By definition of order concatenation,

R′ = {(t, x̄) | R1(t, x̄) ∨ R2(t, x̄)}

�R′ = {(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2)},

where x̄1 = (x11, . . . , x1n).

Let 〈R′′,�R′′〉 = πA〈R′,�R′〉. Then,

R′′ = {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R
′(t, x̄)}

= {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R1(t, x̄) ∨ R2(t, x̄)}
= {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R1(t, x̄) ∨ ∃xk+1, . . . , xn.R2(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1) ∧ ∃x̄2.R′(t2, x̄2) ∧ t1 �R′ t2}
= {(t1, t2) | (∃x̄1.R1(t1, x̄1)

∧∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2)}.

74

Thus,

〈R′′,�R′′〉 = πA(〈R1,�R1〉) ∪ πA(〈R2,�R2〉).

(R12) Assume that R1, R2, and R3 share the same schema (T, X1, . . . ,Xn). Let

〈R′,�R′〉 = R1 ∪R2. By definition of order concatenation,

R′ = {(t, x̄) | R1(t, x̄) ∨ R2(t, x̄)}

�R′ = {(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2)},

where x̄1 = (x11, . . . , x1n).

Let 〈R′′,�R′′〉 = 〈R′,�R′〉 ∪R3. Then,

R′′ = {(t, x̄) | R′(t, x̄) ∨ R3(t, x̄)}
= {(t, x̄) | R1(t, x̄) ∨ R2(t, x̄) ∨ R3(t, x̄)}

= {(t, x̄) | R1(t, x̄) ∨ (R2(t, x̄) ∨ R3(t, x̄))}
�R′′ = (∃x̄1.R′(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2))

∨(∃x̄1.R′(t1, x̄1) ∧ ∃x̄2.R′(t2, x̄2) ∧ t1 �R′ t2)
∨(∃x̄1.R3(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2) ∧ t1 �R3 t2)}

= ((∃x̄1.R1(t1, x̄1) ∨ R2(t1, x̄1)) ∧ ∃x̄2.R3(t2, x̄2))

∨ ((∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨(∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨(∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2))

∨ (∃x̄1.R3(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2) ∧ t1 �R3 t2)}
= (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2))

∨ (∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2))

∨ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2))

∨ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2)

∨ (∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2))

∨ (∃x̄1.R3(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2) ∧ t1 �R3 t2)}
= (∃x̄1.R1(t1, x̄1) ∧ (∃x̄2.R2(t2, x̄2) ∨ ∃x̄2.R3(t2, x̄2)))

∨ (∃x̄1.R1(t1, x̄1) ∧ ∃x̄2.R1(t2, x̄2) ∧ t1 �R1 t2))

∨ ((∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2))

∨ (∃x̄1.R2(t1, x̄1) ∧ ∃x̄2.R2(t2, x̄2) ∧ t1 �R2 t2))

∨ (∃x̄1.R3(t1, x̄1) ∧ ∃x̄2.R3(t2, x̄2) ∧ t1 �R3 t2))}.

75

Therefore,

〈R′′,�R′′〉 = 〈R1,�R1〉 ∪ (〈R2,�R2〉 ∪ 〈R3,�R3〉).

This completes the proof of the transformation rule (R12).

(R13) Let 〈R′,�R′〉 = ν〈R,�R〉. By definition of the order reverse operation,

R′ = {(t, x̄)|R(t, x̄)}
�R′ = {(t1, t2)|∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t2 �R t1}.

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

R′′ = {(t, x̄) | R′(t, x̄) ∧ p(t, x̄)}
= {(t, x̄) | R(t, x̄) ∧ p(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R′(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R′ t2}
= {(t1, t2) | ∃x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t2 �R t1}.

Hence,

〈R′′,�R′′〉 = ν(σp〈R,�R〉).

(R14) Let 〈R′,�R′〉 = ν〈R,�R〉. By definition of the order reverse operation,

R′ = {(t, x̄)|R(t, x̄)}

�R′ = {(t1, t2)|∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ t2 �R t1}.

Let 〈R′′,�R′′〉 = πA〈R′,�R′〉. Then,

R′′ = {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R
′(t, x̄)}

= {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1)
∧ ∃x̄2.R′(t2, x̄2) ∧ t1 �R′ t2}

= {(t1, t2) | ∃x̄1.R(t1, x̄1)

∧ ∃x̄2.R(t2, x̄2) ∧ p(t2, x̄2) ∧ t2 �R t1}.

Hence,

〈R′′,�R′′〉 = ν(piA〈R,�R〉).

76

(R15) Let 〈R′,�R′〉 = R1 n R2. By definition of the left nested-loop product,

R′ = {(t, x̄1, x̄2) | t = (t1, t2) ∧ R1(t1, x̄1) ∧ R2(t2, x̄2)}

�R′ = {(t1, t2) | ∃t11, t12, x̄11, x̄12.t1 = (t11, t12) ∧ R1(t11, x̄11) ∧ R2(t12, x̄12)

∧∃t21, t22, x̄21, x̄22.t2 = (t21, t22) ∧ R1(t21, x̄21) ∧ R2(t22, x̄22)

∧(t11 �R t21 ∨ (t11 = t21 ∧ t12 �R t22))}〉.

Let 〈R′′,�R′′〉 = ν〈R′,�R′〉. Then,

R′′ = {((t1, t2), x̄1, x̄2) | R1(t1, x̄1) ∧ R2(t2, x̄2)}

�R′′ = {((t11, t12), (t21, t22)) | ∃x̄11.R1(t11, x̄11) ∧ ∃x̄12.R2(t12, x̄12)

∧∃x̄21.R1(t21, x̄21) ∧ ∃x̄22.R2(t22, x̄22)

∧(t21 �R t11 ∨ (t11 = t21 ∧ t22 �R t12))}〉.
Thus,

〈R′′,�R′′〉 = ν(〈R1,�R1〉) n ν(〈R2,�R2〉).

2

3.4 Completeness of CAX
�

This section examines the expressive power of the ordered conjunctive algebra CAX
� .

As in the conventional relational databases, the expressive power of CAX
� is evalu-

ated with respect to the first-order calculus. We will prove that CAX
� is complete:

any ordered conjunctive query in CQX
� can be expressed by a finite sequence of

ordered operations from CAX
� .

First, a number of definitions and notations are provided, which will be used

in proofs later. Let 〈R,�R〉 be an arbitrary ordered relation and p be an arbitrary

data predicate in form of xi = a. The data predicate p separates the ordered

relation 〈R,�R〉 into two partitions: the set of tuples satisfying p and the set of

tuples satisfying ¬p. Furthermore, let {p1, . . . , pk} be the only k data predicates

in the order query ψ of an ordered query 〈ϕ, ψ〉 on 〈R,�R〉. Then, data predicates

{p1, . . . , pk} separate 〈R,�R〉 into 2k partitions {Pj | j = 1, ..., 2k}; each partition Pj

is a set of tuples satisfying a unique conjunction of data predicates ε(p1)∧. . .∧ε(pk).

77

Here, ε(pi) is either pi or ¬pi for i = 1, . . . , k. We say that the partitions {Pj} are

specified by predicates p1, . . . , pk, or specified by the formula ψ.

The partitions {Pj} of an ordered relation 〈R,�R〉, specified by data predicates

{p1, . . . , pk}, possess the following properties:

(1) The union of all partitions {Pj} is exactly the data relation R:⋃
j=1,...,2k

Pj = R.

(2) The partitions {Pj} are pairwise disjoint, i.e., the intersection of any two

partitions is an empty set:

Pi ∩ Pj = ∅,

for i, j = 1, ..., 2k and i 6= j.

Definition 3.14 (Minimal Partitions) Let {Pj} be the set of partitions in an

ordered relation 〈R,�R〉, specified by predicates {p1, . . . , pk} in a formula ψ. The

partitions {Pj} are minimal partitions specified by ψ if there does not exist a pred-

icate pk+1 in ψ such that pk+1 6= pi for i = 1, ..., k.

By this definition, minimal partitions determined by ψ cannot be separated into

smaller partitions because there is no extra predicate in ψ. Minimal partitions will

play an important role in the proof of Completeness Theorem later. Next, we define

combinations of partitions for multiple ordered relations.

Definition 3.15 (Combinations of Partitions) Let 〈R1,�R1〉, . . . , 〈Rn,�Rn〉 be

n ordered relations, and Pi be an arbitrary partition of 〈Ri,�Ri
〉 for i = 1, ..., n.

A combination of partitions (P1, . . . , Pn) is a set of the tuples, each of which is a

combination of tuples from P1, . . . , Pn, respectively.

Suppose that (ti, x̄i) is an arbitrary tuple in the partition Pi of the ordered relation

〈R1,�R1〉, a combination of (ti, x̄i) for i = 1, ..., n has the following form:

((t1, ..., tn), x̄1, ..., x̄n).

Essentially, a combination of partitions (P1, . . . , Pn) from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉
is a partition of R1× . . .×Rn. We now define the order of partitions in an ordered

relation.

Definition 3.16 (The Order of Partitions) Let P1 and P2 be two partitions of

〈R,�R〉. We say P1 �R P2 if t1 �R t2, for all tuples t1 ∈ P1 and t2 ∈ P2.

78

Then, we prove a lemma for a special case of CQX
� , the ω queries in CQX

� . An

ω query in CQX
� generates an ordered relation whose data relation is identical to

the data relation of the input. We first define the general ω queries as a subset of

ordered relational queries.

Definition 3.17 (ω Queries) An ordered relational query 〈ϕ, ψ〉 is an ω query if

it has only one argument ordered relation 〈R,�R〉, and the data query ϕ is also

an identity function ω, i.e., ω(R) = R. We denote the set of all ω queries on the

ordered relation 〈R,�R〉 by ω(〈R,�R〉).

Intuitively, ω(〈R,�R〉) represents all first-order definable permutations on the

ordered relation 〈R,�R〉. In the proof of the following lemma and the rest of this

dissertation, the form
∨
k ψ

k (k is a natural number) is used to indicate a disjunction

of a finite number of formulas.

Lemma 3.18 Any ω query in CQX
� is equivalent to an ordered query expressed by

a finite sequence of ordered operations from CAX
� .

Proof:

Let 〈ϕ, ψ〉, a CQX
� query on 〈R,�R〉, be an ω query, and 〈R′,�R′〉 be the output

ordered relation.

By definition of the ω query, 〈ϕ, ψ〉 has the form of

〈ϕ, ψ〉(〈R,�R〉) = 〈{(t, x̄)|R(t, x̄)}, {(t1, t2)|ψ(t1, t2)}〉,

and

ψ = ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ ψ′(t1, x̄1, t2, x̄2).

By the definition of CQX
� , ψ′ is a first-order formula defined by the BNF rule

ψ′ = t1 �R t2 | xi = xj | ¬ψ′ | ψ′ ∧ ψ′.

We can transform ψ′ into an equivalent query in disjunctive normal form

ψ′ =
∨
k

ψk(t1, x̄1, t2, x̄2)

Since there is no existential quantifier on t-variables in ψ′, t1 and t2 are the

only two t-variables in ψ′, occurring only in forms t1 �R t2 and t2 �R t1. As a

consequence, we can separate ψ′ into two parts

ψ′ =
∨
i

αi(x̄1, x̄2) ∨
∨
j

ψj(t1, x̄1, t2, x̄2),

79

where, αis and ψjs are conjunctions of atoms or negations of atoms. Order predi-

cates t1 �R t2 and t2 �R t1 appear only in ψjs and not at all in αis. It follows that

αis are conjunctions of data predicates in form of xi = xj, and ψjs are conjunctions

of data predicates xi = xj, and also of order predicates t1 �R t2 and t2 �R t1.

First, we look at the first part of ψ′, which is
∨
i α

i(x̄1, x̄2). Since
∨
i α

i does not

contain t-variables, each αi is a conjunction of data predicates. Let p1, . . . , pk be k

data predicates in ψ′, and ε(pj) is either pj or ¬pj for j = 1, . . . , k. We will show

that
∨
i α

i is equivalent to a normal form,
∨
j α
′j, and

α′j(x̄1, x̄2) = (ε(p1) ∧ . . . ∧ ε(pk))(x̄1) ∧ (ε′(p1) ∧ . . . ∧ ε′(pk))(x̄2),

where ε(pi) and ε′(pi) are either pi or ¬pi for i = 1, . . . , k.

This is done by splitting each conjunction αi(x̄1, x̄2) further if possible. Suppose

that

αi(x̄1, x̄2) = αi1(x̄1) ∧ αi2(x̄2).

Let p ∈ {p1, ..., pk} be a data predicate in ψ′. If neither p(x̄1) nor ¬p(x̄1) is in

αi1(x̄1), then

αi(x̄1, x̄2) = ((αi1 ∧ p)(x̄1) ∧ αi2(x̄2))

∨ ((αi1 ∧ ¬p)(x̄1) ∧ αi2(x̄2)).

If neither p(x̄2) nor ¬p(x̄2) is in αi2(x̄1), then

αi(x̄1, x̄2) = (αi1(x̄1) ∧ (αi2 ∧ p)(x̄2))
∨ (αi1(x̄1) ∧ (αi2 ∧ ¬p)(x̄2)).

For each p ∈ {p1, ..., pk} not in αi1 or αi2, we repeat the above separation procedure,

until we achieve the normal form of
∨
j α
′j with each α′j in form of

(ε(p1) ∧ . . . ∧ ε(pk))(x̄1) ∧ (ε′(p1) ∧ . . . ∧ ε′(pk))(x̄2).

Let {P1, ..., P2k} be the partitions specified by these data predicates {p1, ..., pk}
in α′j. Each partition Pi is specified by a conjunction of data predicates ε(p1) ∧
. . . ∧ ε(pk). In addition to {p1, ..., pk}, no other predicates exist in ψ′. Therefore,

the partition specified by data predicates in each conjunct α′j is minimal.

Since x̄1 and x̄2 are the corresponding data attributes of t1 and t2 respectively, if

x̄1 and x̄2 satisfy any conjunct α′j, then (t1, t2) will be in the resulting order relation

�R′ , i.e., t1 �R′ t2. Let P1 and P2 be the two partitions whose tuples satisfy data

predicates in α′j respectively. By Definition 3.16, P1 �R′ P2. We declare that α′j

decides the order between P1 and P2.

80

Next, we show that
∨
j α
′j defines a linear order of the partitions {P1, ..., P2k}.

This is proved by contradiction. Suppose that
∨
j α
′j does not define a linear order

among the partitions {P1, ..., P2k}, there are two cases.

In the first case, assume that there exist two partitions, P1 and P2, such that

both P1 �R′ P2 and P2 �R′ P1 hold at the same time. If t1 ∈ P1 ∧ t2 ∈ P2, then

by assumption (t1, t2) ∈�R′ and (t2, t1) ∈�R′ hold at the same time. This is a

contradiction to the fact that the output order �R′ is a linear order. Hence, the

assumption in Case 1 does not hold.

In the second case, assume that there exist two partitions, P1 and P2, such that

neither P1 �R′ P2 nor P2 �R′ P1 holds, that is, their order in output is not specified

by
∨
j α
′j.

By this assumption, for any pair of tuples t1 and t2 such that t1 ∈ P1 ∧ t2 ∈ P2,

their order in the output is not defined by
∨
j α
′j. Because the output order is a

linear order on all tuples, the order of t1 and t2 must be decided by ψ′. Suppose

that ψ′ decides t1 �R′ t2. Since P1 and P2 are minimal, i.e., they are the smallest

partitions that data predicates in ψ′ can specify, all pairs of tuples from P1 and P2

respectively must have the same order if they have any order at all. Then, for any

pair of tuples t1 and t2, and t1 ∈ P1 ∧ t2 ∈ P2, we have t1 �R′ t2. This follows that

P1 �R′ P2, which is a contradiction to the assumption.

We have proven that the first part of ψ′,
∨
i α

i, in the normal form of ψ′ defines

a linear order of minimal partitions {P1, ..., P2k}, which are specified by the set of

data predicates {p1, ..., pk} in ψ′.

We now consider the second part in the normal form of ψ′, which is∨
j ψ

j(t1, x̄1, t2, x̄2). Since ψ′ defines a linear order on all tuples in 〈R,�R〉, for

any pair of tuples t1 and t2 from each partition P ′i , there must exist a m such that

the conjunction ψm(t1, x̄1, t2, x̄2) is true.

Recall that the only t-variables in ψ′ are t1 and t2, and that they occur only in

forms t1 �R t2 and t2 �R t1 in each conjunction ψj(t1, x̄1, t2, x̄2). If ψm contains

t1 �R t2, then the tuples in P ′i keep the original order; if ψm contains t2 �R t1, then

the tuples in P ′i reverse the original order.

Since ψ′ is a first-order formula defined by the BNF rule

ψ′ = t1 �R t2 | xi = xj | ¬ψ′ | ψ′ ∧ ψ′,

81

we know that in
∨
j ψ

j(t1, x̄1, t2, x̄2), each conjunction ψj(t1, x̄1, t2, x̄2) must have a

form

α1(x̄1) ∧ α2(x̄2) ∧ ε(t1 �R t2),

where α1 and α2 are conjunctions of data predicates on x̄1 and x̄2 respectively, and

ε(t1 �R t2) is either t1 �R t2 or t2 �R t1.

Next, we will show that α1 = α2 in each conjunction ψj(t1, x̄1, t2, x̄2). Assume

that α1 and α2 are different conjunctions of data predicates. We consider the case

that ε(t1 �R t2) is t1 �R t2 in an arbitrary conjunction ψj(t1, x̄1, t2, x̄2). For any two

tuples t1 and t2 that satisfy α1 and α2, and also t2 �R t1, they satisfy α1(x1)∧α2(x2),

which means that t1 �R′ t2. Meanwhile, t2 �R t1 implies that t2 �R′ t1. This is a

contradiction. We can prove that this assumption also leads to a contradiction in

the case that ε(t1 �R t2) is t2 �R t1. Therefore, the assumption does not hold, and

α1 = α2 in each conjunction ψj(t1, x̄1, t2, x̄2).

Thus, each conjunction ψj(t1, x̄1, t2, x̄2) must have a form

α(x̄1) ∧ α(x̄2) ∧ ε(t1 �R t2),

where α is a conjunction of data predicates on x1 and x2 both, and ε(t1 �R t2) is

either t1 �R t2 or t2 �R t1.

Let p1, . . . , pk be the k data predicates in ψ′, ε(pj) be either pj or ¬pj for

j = 1, . . . , n. We show that
∨
j ψ

j(t1, x̄1, t2, x̄2) is equivalent to∨
i

ψi(t1, x̄1, t2, x̄2),

where ψi(t1, x̄1, t2, x̄2) has a normal form

(ε(p1) ∧ . . . ∧ ε(pk))(x̄1) ∧ (ε(p1) ∧ . . . ∧ ε(pk))(x̄2) ∧ ε(t1 �R t2).

As shown above that in
∨
j ψ

j(t1, x̄1, t2, x̄2), any conjunction ψj(t1, x̄1, t2, x̄2) has

a form of

ψj(t1, x̄1, t2, x̄2) = α(x̄1) ∧ α(x̄2) ∧ ε(t1 �R t2).

Suppose that α = ε(p′1) ∧ ε(p′2) ∧ . . . ∧ ε(p′m) and {p′1, . . . , p′m} ⊂ {p1, . . . , pk}. As-

sume that pi ∈ {p1, . . . , pk}; however, pi /∈ {p′1, . . . , p′m}. Then,

ψj(t1, x̄1, t2, x̄2) = α(x̄1) ∧ α(x̄2) ∧ ε(t1 �R t2)

= (ε(p′1) ∧ . . . ∧ ε(p′m))(x̄1)

∧ (ε(p′1) ∧ . . . ∧ ε(p′m))(x̄2)

∧ ε(t1 �R t2)

82

= (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ (pi ∨ ¬pi))(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ (pi ∨ ¬pi))(x̄2)
∧ ε(t1 �R t2)

= ((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)
∨ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi))(x̄1)
∧ ((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)
∨ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi))(x̄2)
∧ ε(t1 �R t2)

= ((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)(x̄2)
∧ ε(t1 �R t2))

∨
((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi)(x̄2)
∧ ε(t1 �R t2))

∨
((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi)(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)(x̄2)
∧ ε(t1 �R t2))

∨
((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi)(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi)(x̄2)
∧ ε(t1 �R t2)).

As we proved earlier, for any conjunction ψj(t1, x̄1, t2, x̄2) = α1(x̄1) ∧ α2(x̄2) ∧
ε(t1 �R t2), α1 6= α2; otherwise, this conjunction is false. Therefore, in the equation

above, the conjunctions (ε(p′1)∧. . .∧ε(p′m)∧pi)(x̄1)∧ (ε(p′1)∧. . .∧ε(p′m)∧¬pi)(x̄2)∧
ε(t1 �R t2) and (ε(p′1)∧. . .∧ε(p′m)∧¬pi)(x̄1)∧ (ε(p′1)∧. . .∧ε(p′m)∧pi)(x̄2)∧ ε(t1 �R t2)

are always false.

Thus,

ψj(t1, x̄1, t2, x̄2) = ((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ pi)(x̄2)
∧ ε(t1 �R t2))

∨
((ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi)(x̄1)
∧ (ε(p′1) ∧ . . . ∧ ε(p′m) ∧ ¬pi)(x̄2)
∧ ε(t1 �R t2)).

83

In this way, we separate each conjunct ψj into two conjunctions with an extra

data predicate pi. We repeat this procedure until each conjunct contains all data

predicates p1, . . . , pk.

Now, we have
∨
j ψ

j(t1, x̄1, t2, x̄2) equivalent to∨
i

ψi(t1, x̄1, t2, x̄2),

where each conjunction ψi(t1, x̄1, t2, x̄2) has a normal form

(ε(p1) ∧ . . . ∧ ε(pk))(x̄1) ∧ (ε(p1) ∧ . . . ∧ ε(pk))(x̄2) ∧ ε(t1 �R t2).

Since any conjunction of data predicates in form of ε(p1) ∧ . . . ∧ ε(pk) specifies

a minimal partition on the input, the part ψi(t1, x̄1, t2, x̄2) defines a linear order

inside a minimal partition as either identical or reverse to the input order.

Let Pi be an ordered minimal partition defined by a conjunction

(ε(p1) ∧ . . . ∧ ε(pk))(x̄1) ∧ (ε(p1) ∧ . . . ∧ ε(pk))(x̄2) ∧ ε(t1 �R t2).

Thus, the ordered minimal partition Pi can be expressed by an ordered algebraic

expression Ei in CAX
� as follows:

(1) If Pi is specified by a conjunction of positive data predicates p1∧ . . .∧ pk, then

Ei = β(σp1∧...∧pk〈R,�R〉).

(2) If Pi is specified by a conjunction of negative data predicates ¬p1 ∧ . . . ∧ ¬pk,
then

Ei = β(〈R,�R〉 − σp1〈R,�R〉 − . . .− σpk〈R,�R〉).

(3) If Pi is specified by a conjunction of positive and negative data predicates,

without lost of generality, we assume that the conjunction has the form of

p1 ∧ . . . ∧ pi ∧ ¬pi+1 ∧ . . . ∧ ¬pk, then

Ei = β(σp1∧...∧pi〈R,�R〉 − σpi+1
〈R,�R〉 − . . .− σpk〈R,�R〉),

where σ is the order-preserving selection, − the order reduction operation, and β

is either the order identity operation µ or the order reverse operation ν in CAX
� .

Let P1, . . . , P2k be the sequence of minimal partitions in the output linear order,

specified by
∨
j α
′j. The linear order of P1, . . . , P2k can be expressed by an order

concatenation operation on ordered partitions P1, . . . , P2k .

84

All together, the ordered query 〈φ, ψ〉 can be expressed by an ordered algebraic

expression in CAX
� ⋃

i=1,...,2k

Ei,

where
⋃

is an order concatenation operation, and Ei is the algebraic expression of

Pi, defined as above.

This ends the proof.

2

Note that in the special case n = 1,
∨
i α

i =⊥, and there is only one mini-

mal partition P1 = R. The ordered query 〈φ, ψ〉 can be expressed by an ordered

algebraic expression in CAX
� :

β(〈R,�R〉),

where β is an ordered operator µ or ν.

An example of ω queries is shown below. As indicated in the proof above, this

ω query in CQX
� can be expressed with an ordered algebraic expression in CAX

� .

Example 3.19 The second query in Example 3.5 is an ω query because the data

relation in the output is the same as in the input; the output ordered relation is

a permutation of the input ordered relation 〈EMP,�EMP〉. We can formulate this ω

query with ordered operations in CAX
� :

(〈EMP,�EMP〉 − σDepartment=“Sales”〈EMP,�EMP〉)
∪
ν(σDepartment=“Sales”〈EMP,�EMP)

We have shown that the ω queries in CQX
� are expressible by CAX

� . We are

now ready for the main result of the investigation in this chapter, which is the

completeness theorem for the ordered conjunctive queries CQX
� . Before proving the

completeness of CAX
� , we need to make an assumption. We need this assumption

because we need to assume the order in a combination of minimal partitions from

all inputs to be a lexicographic order so that we can use ordered operations to

express it.

85

Assumption 3.20 Let 〈ϕ, ψ〉 be an ordered relational query in FO� on ordered

relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, where n > 1.

If its data query ϕ is a Cartesian product of R1, ...,Rn, and its order query ψ is

constructed by a BNF rule

ψ = Ri(t) | t �Ri
t′ | ¬ψ | ψ ∧ ψ,

then we assume that the output order is a lexicographic order on

〈Ri1 ,�Ri1
〉, . . . , 〈Rin ,�Rin

〉, where i1, ..., in is an arbitrary permutation of 1, ..., n.

Theorem 3.21 Any CQX
� query is equivalent to an ordered query expressed by a

finite sequence of ordered operations from CAX
� .

Proof:

Let 〈φ, ψ〉 be an ordered query in CQX
� on ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

Case 1: n = 1.

In this case, the ordered query 〈φ, ψ〉 has only one argument 〈R1,�R1〉, hence it

has the form

〈φ, ψ〉(〈R1,�R1〉) = 〈{(t, x̄) | φ(t, x̄)}, {(t1, t2) | ψ(t1, t2)}〉.

Here, φ(t, x̄) is a standard conjunctive query, and has the normal form

πA(σp(R)),

and

ψ = ∃x̄1.φ(t1, x̄1) ∧ ∃x̄2.φ(t2, x̄2) ∧ ψ′(t1, x̄1, t2, x̄2).

By the definition of CQX
� , ψ′ is a first-order formula defined by the BNF rules

ψ′ = t1 �R t2 | xi = xj | ¬ψ′ | ψ′ ∧ ψ′.

Suppose that p1 ∧ . . . ∧ pk are the only data predicates in ψ′. By Lemma 3.18,

there exists an algebraic expression to express the ordered query 〈ω, ψ′〉 in CAX
�⋃

i=1,...,2k

Ei,

where ∪ is an order concatenation operation; Ei is the algebraic expression of

partition Pi, and is defined as follows:

86

(1) If Pi is specified by a conjunction of positive data predicates p1∧ . . .∧ pk, then

Ei = β(σp1∧...∧pk〈R,�R〉).

(2) If Pi is specified by a conjunction of negative data predicates ¬p1 ∧ . . . ∧ ¬pk,
then

Ei = β(〈R,�R〉 − σp1〈R,�R〉 − . . .− σpk〈R,�R〉).

(3) If Pi is specified by a conjunction of positive and negative data predicates,

without lost of generality, we assume that the conjunction has the form of

p1 ∧ . . . ∧ pi ∧ ¬pi+1 ∧ . . . ∧ ¬pk, then

Ei = β(σp1∧...∧pi〈R,�R〉 − σpi+1
〈R,�R〉 − . . .− σpk〈R,�R〉),

where β is either the order identity operation µ or the order reverse operation ν.

To express the selections and projections on the data relation R in the normal

form of φ, order-preserving selections and order-preserving projections are applied

respectively to the above expression without changing the order. The reason is that

order-preserving selections and projections can propagate through order identity,

order reverse, and order concatenation operators.

Finally, the ordered CQX
� query 〈φ, ψ〉 is equivalent to the algebraic expression

in CAX
� :

πA(σp(
⋃
i

Ei)).

Case 2: n > 1.

Let 〈ϕ, ψ〉 be a CQX
� query on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, where

n > 1. The data query ϕ is a conjunctive query, and hence has the normal form

∃x1, . . . , xm.(R1(u1) ∧ · · · ∧ Rn(un)),

where ui’s are tuples containing both variables t, x1, . . . , xn and constants for data

attributes. Since the tuple id is unique to each tuple, no duplicate tuples exist in

ordered relations. We do not need to consider duplicate elimination in the ordered

algebra CAX
� .

The order query ψ has the form

{(t1, t2) | ∃t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . x̄2n.
t1 = (t11, . . . , t1n) ∧ t2 = (t21, . . . , t2n)

∧ ϕ(t11, . . . , t1n, x̄11, . . . , x̄1n) ∧ ϕ(t21, . . . , t2n, x̄21, . . . , x̄2n)

∧ ψ′(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)}.

87

Intuitively, both t1 and t2 must satisfy the order query ϕ. The order between t1

and t2 is decided by the formula ψ′.

Since there is no quantifier on t-variables in ψ′, no quantifier on x-variables

occurs in ψ′ as well. By the definition of CQX
� , ψ′ is a first-order formula defined

by the BNF rules

ψ′ = t �Ri
t′ | xi = xj | ¬ψ′ | ψ′ ∧ ψ′,

and ψ′ defines a linear order on the Cartesian product of R1 × · · · × Rn.

We can transform ψ′ into an equivalent formula in the disjunctive normal form

ψ′ =
∨
k

ψk0(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)

Since there is no existential quantifier on t-variables, t11, . . . , t1n, t21, . . . , t2n are the

only t-variables in ψ′, occurring only in forms of t1i �Ri
t2i and t2i �Ri

t1i for

i = 1, . . . , n.

Consequently, we can separate ψ′ into two parts

ψ′ =
∨
i α

i(x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)

∨
∨
j ψ

j(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n),

where αi’s and ψj’s are conjunctions of atoms or negation of atoms, and predicates

on t-variables occur only in formulas ψj.

First, we consider the first part of ψ′,
∨
i α

i(x̄11, . . . , x̄1n, x̄21, . . . , x̄2n). Since∨
i α

i does not contain t-variables, each αi is a conjunction of data predicates.

Let pi1, . . . , piki be the ki data predicates in ψ′ over the order relation 〈Ri,�Ri
〉,

for i = 1, . . . , n. As in Lemma 3.18, we can transform
∨
i α

i into
∨
j α
′j, and each

conjunction α′j is in the form

α′j(x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)

= (ε(p11) ∧ . . . ∧ ε(p1k1))(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧
(ε′(p11) ∧ . . . ∧ ε′(p1k1))(x̄21) ∧ . . . ∧ (ε′(pn1) ∧ . . . ∧ ε′(pnkn))(x̄2n),

where ε(p) and ε′(p) are either p or ¬p.

Let P1i and P2i be two partitions of 〈Ri,�Ri
〉 (i = 1, . . . , n), whose tuples satisfy

data predicates on x̄1i and x̄2i in α′j, respectively. Since they are specified by a

conjunction in form of ε(pi1)∧ . . .∧ ε(piki), P1i and P2i are minimal partitions, and

therefore cannot be separated into smaller partitions by data predicates.

88

Let (P11, . . . , P1n) and (P21, . . . , P2n) be the two combinations of minimal parti-

tion from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, and be specified by α′j. Let t1 = (t11, . . . , t1n)

and t2 = (t21, . . . , t2n) be any pair of tuples from (P11, . . . , P1n) and (P21, . . . , P2n)

respectively, and x̄11, . . . , x̄1n, x̄21, . . . , x̄2n be the data attributes of t11, . . . , t1n,

t21 . . . , t2n respectively. Since x̄11, . . . , x̄1n, x̄21, . . . , x̄2n satisfy α′j, the pair

((t11, . . . , t1n), (t21, . . . , t2n)) will be in the resulting order relation �R′ , i.e., t1 �R′
t2. Thus, t1 �R′ t2 for any pair of t1 and t2 from (P11, . . . , P1n) and (P21, . . . , P2n);

hence, (P11, . . . , P1n) �R′ (P21, . . . , P2n).

This follows that any conjunction α′j defines the order between a pair of com-

binations of minimal partitions from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉. Using the same

technique in Lemma 3.18, we claim that
∨
j α

j defines a linear order among all

combinations of minimal partitions (P1i1 , . . . , Pnin) from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉.
We prove this claim by contradiction as follows.

Suppose that
∨
j α
′j does not define a linear order among all combinations of

minimal partitions (Pi11, . . . , Pinn) from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉. There are two

cases:

Case 1: Assume that there exist two combinations of partitions, say (P11, . . . , P1n)

and (P21, . . . , P2n) , such that both (P11, . . . , P1n) �R′ (P21, . . . , P2n) and

(P21, . . . , P2n) �R′ (P11, . . . , P1n) hold at the same time. For any t1 ∈ (P11, . . . , P1n)

and t2 ∈ (P21, . . . , P2n), by the assumption, (t1, t2) ∈�R′ and (t2, t1) ∈�R′ hold at

the same time. This is a contradiction to the fact that the output order �R′ is a

linear order. Hence the assumption in Case 1 does not hold.

Case 2: Assume that there exist two combinations of partitions, say (P11, . . . , P1n)

and (P21, . . . , P2n) , such that neither (P11, . . . , P1n) �R′ (P21, . . . , P2n) nor

(P21, . . . , P2n) �R′ (P11, . . . , P1n) holds, that is, their order in output is not specified

by
∨
j α
′j.

For any pair of tuples t1 ∈ (P11, . . . , P1n) and t2 ∈ (P21, . . . , P2n), by this as-

sumption, their order in the output is not defined by
∨
j α
′j. Because the output

order is a linear order on all combinations of tuples from n ordered relations, the

order of t1 and t2 must be decided by ψ′. Suppose that ψ′ decides t1 �R′ t2.
Since (P11, . . . , P1n) and (P21, . . . , P2n) are combinations of minimal partitions, all

pairs of tuples from (P11, . . . , P1n) and (P21, . . . , P2n) must have the same order if

they have any order at all. Then, for any pair of tuples t1 ∈ (P11, . . . , P1n) and

t2 ∈ (P21, . . . , P2n), we have t1 �R′ t2. It follows (P11, . . . , P1n) �R′ (P21, . . . , P2n),

which is a contradiction to the assumption.

89

We have prove that the first part of ψ′ defines a linear order of combinations of

partitions (Pi11, . . . , Pinn), which are specified by the set of data predicates in ψ′.

Now, we consider the second part of ψ′,∨
j

ψj(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n).

To impose a linear order on the Cartesian product of data relations R1, . . . , Rn,

the order between each pair of tuples from the same combination of partitions must

be decided by the order formula ψ′. This order inside a combination of partitions

must be decided by the second part of ψ′,
∨
j ψ

j. For any pair of tuples (t11, . . . , t1n)

and (t21, . . . , t2n) from the same combination of minimal partitions (Pi11, . . . , Pinn),

we always find a j such that ψj decides the order of this pair in the result.

Since there is no existential quantifier on t-variables in ψ′, t11, . . . , t1n, t21, . . . , t2n

are the only t-variables in
∨
j ψ

j, occurring only in forms of t1i �Ri
t2i and t2i �Ri

t1i for i = 1, . . . , n. By definition, ψ′ is a first-order formula defined by the BNF

rule

ψ′ = t1 �R t2 | xi = xj | ¬ψ′ | ψ′ ∧ ψ′,

therefore, in
∨
j ψ

j, each conjunction

ψj(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)

must have a form

α11(x̄11) ∧ . . . ∧ α1n(x̄1n) ∧ α21(x̄21) ∧ . . . ∧ α2n(x̄2n)

∧ψj0(t11, . . . , t1n, t21, . . . , t2n),

where α1i and α2j are conjunctions of data predicates on x̄1i and x̄2j respectively,

for i, j = 1, . . . , n; the formula ψj0(t11, . . . , t1n, t21, . . . , t2n) is a logical combination

of forms t1k �Rk
t2k and t2k �Rk

t1k for k = 1, . . . , n.)

Next, we will show that α1i = α2i in each conjunction ψj, for i = 1, . . . , n.

Assume that α1i and α2i are different conjunctions of data predicates on x̄1i and

x̄2i respectively. For any two tuples (t11, . . . , t1n) and (t21, . . . , t2n) that satisfy ψj,

they satisfy α11(x̄11)∧ . . .∧α1n(x̄1n) and α21(x̄21)∧ . . .∧α2n(x̄2n), which means that

(t11, . . . , t1n) �R′ (t21, . . . , t2n) in the output. They also satisfy

ψj0(t11, . . . , t1n, t21, . . . , t2n), which may lead to (t21, . . . , t2n) �R′ (t11, . . . , t1n) in

the output depending on whether ψj0 defines the same order as the conjunctions of

data predicates. This is a contradiction. Therefore, the assumption does not hold,

and α1i = α2i in each conjunction ψj for i = 1, . . . , n.

90

Similarly to the proof of Lemma 3.18, we can show that each conjunction ψj

has the normal form

ψj(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)

= (ε(p11) ∧ . . . ∧ ε(p1k1))(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p11) ∧ . . . ∧ ε(p1k1))(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n),

where ε(p) is either p or ¬p, ki is the number of data predicates over 〈Ri,�Ri
〉, and

ψj0(t11, . . . , t1n, t21, . . . , t2n) decides the real order in the combination of minimal

partitions and is defined by the BNF rule

ψj0 = t1i �R t2i | ¬ψj0 | ψ
j
0 ∧ ψj0.

Let pi1, . . . , piki be the ki data predicates on 〈Ri,�Ri
〉, for i = 1, . . . , n. Without

lost of generality, we suppose that α11 = ε(p′11) ∧ . . . ∧ ε(p′1m) and {p′11, . . . , p′1m} ⊂
{p11, . . . , p1k1}. Assume that p ∈ {p11, . . . , p1k1}, however p /∈ {p′11, . . . , p′1m}. Thus,

ψj(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)

= (ε(p′11) ∧ . . . ∧ ε(p′1m))(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧
(ε(p′11) ∧ . . . ∧ ε(p′1m))(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧
ψj0(t11, . . . , t1n, t21, . . . , t2n)

= (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ (p ∨ ¬p))(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧
(ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ (p ∨ ¬p))(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧
ψj0(t11, . . . , t1n, t21, . . . , t2n)

= ((ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p) ∨ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p))(x̄11)
∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧
((ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p) ∨ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p))(x̄21)
∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧
ψj0(t11, . . . , t1n, t21, . . . , t2n)

91

= ((ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p)(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p)(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n))

∨
(ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p)(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p)(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n))

∨
(ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p)(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p)(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n))

∨
(ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p)(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p)(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n))

= ((ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p)(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ p)(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n))

∨
(ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p)(x̄11) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n)

∧ (ε(p′11) ∧ . . . ∧ ε(p′1m) ∧ ¬p)(x̄21) ∧ . . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄2n)

∧ ψj0(t11, . . . , t1n, t21, . . . , t2n))

In this way, we separate each conjunction ψj into two conjunctions by including

an extra data predicates p in α11. We repeat this procedure until we have each

conjunction containing all data predicates pi1, . . . , piki , for i = 1, . . . , n. This finishes

the proof of the normal form of ψj.

Intuitively, each conjunction ψj defines a linear order in a combination of mini-

mal partitions which is decided by the data conjunction (ε(p11)∧ . . .∧ε(p1k1))(x̄11)∧
. . . ∧ (ε(pn1) ∧ . . . ∧ ε(pnkn))(x̄1n); the real ordering in the combination of minimal

partitions is decided by ψj0(t11, . . . , t1n, t21, . . . , t2n)).

We then consider ψj0, which defines the real ordering inside each combination of

minimal partitions in the output. The formula ψj0 is defined by the BNF rule

ψj0 = t1 �R t2 | ¬ψj0 | ψ
j
0 ∧ ψj0.

92

We do not have data predicates and quantifiers of t-variables in ψj0. Thus, the

formula ψj0 is a boolean combination of order predicates t11 �R t21, . . . , t1n �R t2n.

For each input ordered relation 〈Ri,�Ri
〉, we have only t1i �R t2i or t2i �R t1i

to express its order in the minimal partitions, which is either identical or reverse to

the input order. And ψj0 is a linear order in a combination of minimal partitions.

Therefore, lexicographical orders are the only possible linear orders inside a combi-

nation of minimal partitions that is defined by ψj0. We state this more generally. Let

Pijkj (j = 1, ..., n) be the ij-th partition in the input ordered relation 〈Rkj ,�Rkj
〉.

Since the order inside each combination of minimal partitions (Pi1k1 , . . . , Pinkn) is

a lexicographical order, which is decided by ψj0. Any lexicographical order that is

decided by each ψj0 is equivalent to a normal form

ψj0(t11, . . . , t1n, t21, . . . , t2n)

= ε(t1k1 �R t2k1) ∨ (t1k1 = t2k1 ∧ ε(t1k2 �R t2k2)) ∨ . . .

∨ (t1k1 = t2k1 ∧ . . . ∧ t1kn−1 = t2kn−1 ∧ ε(t1kn �R t2kn)),

where ε(t1kn �R t2kn) is either t1kn �R t2kn or t2kn �R t1kn . (k1, . . . , kn) is a permuta-

tion of (1, . . . , n), which decides the major to minor order that

〈Rk1 ,�Rk1
〉, . . . , 〈Rkn ,�Rkn

〉 serve in the output order.

Intuitively, ψj0 defines a lexicographical order on (Pi1k1 , . . . , Pinkn), and each min-

imal partition has an order identical or reverse to the original input order. There-

fore, each combination of minimal partitions (Pi1k1 , . . . , Pinkn) can be expressed by

an algebraic expression in the ordered conjunctive algebra CAX
� as follows,

β(Ei1k1) n . . .n β(Einkn),

where β is either µ or ν, Ei1k1 is the ordered algebraic expression for Pi1k1 , defined

as follows:

(1) If Pi1k1 is specified by a conjunction of positive data predicates p1 ∧ . . . ∧ pj,
then

Ei1k1 = σp1∧...∧pjRk1 .

(2) If Pi1k1 is specified by a conjunction of negative data predicates ¬p1∧ . . .∧¬pj,
then

Ei1k1 = Rk1 − σp1jRj − . . .− σpkjjRk1 .

(3) If Pi1k1 is specified by a conjunction of positive and negative data predicates,

w.l.o.g., we assume that the conjunction has the form of p1∧. . .∧pm∧¬pm+1∧
. . . ∧ ¬pj, then

Ei1k1 = σp1∧...∧pmRk1 − σpm+1Rk1 − . . .− σpjRk1 .

93

Please note that the sequence (k1, . . . , kn) is a permutation of (1, . . . , n), which

indicates the order in which the left-nested-loop product operations are applied to

the partitions of 〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

All together, the ordered query 〈φ′, ψ′〉 (where the expression of φ′ is R1× · · ·×
Rn) can be expressed by⋃

(β(Ei1k1) n . . . n β(Einkn)),

where β is either µ or ν, and
⋃

is an order concatenation operator. And (k1, . . . , kn)

is a permutation of (1, . . . , n), different in different combinations of partition

(Pi1k1 , . . . , Pinkn).

Back to the data query φ, if there are selections and projections in the normal

form of φ, we add order-preserving selections and order-preserving projections on

the above algebraic expression correspondingly as order-preserving selections and

projections can pass through left nested-loop product while keeping equivalence.

Therefore, any CQX
� query 〈φ, ψ〉 on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉

is equivalent to an ordered query expressed in CAX
� :

πA(σp(
⋃

(β(Ei1k1) n . . . n β(Einkn)))).

2

Intuitively, for an ω query in CQX
� , its output order is a linear order of minimal

partitions specified by the order query. Minimal partitions can be expressed by

order-preserving selections and order reduction operations; a linear order of minimal

partitions can be expressed by order concatenations; the order inside a minimal

partition can be expressed by the order identity or the order reverse because the

only possible orders of a minimal partition is either identical to or reverse of the

input order.

For an ordered conjunctive query in CQX
� with only one input, the output

order can be obtained by attaching order-preserving selections and order-preserving

projections to the algebraic expression of the corresponding ω query. For an ordered

conjunctive query in CQX
� with more than one input, the output order is a linear

order of combinations of minimal partitions from each input ordered relation. The

combination of minimal partitions can be expressed with left nested-loop products;

the rest of the order query can be expressed with ordered operations with similar

techniques for the ω query.

94

The following examples demonstrate how to express CQX
� queries with order

algebraic expressions CAX
� .

Example 3.22 Consider the queries in Example 3.5. These CQX
� queries can be

expressed with ordered operators in CAX
� .

(1) The first query is an ordered query in CQX
� , changing on both the data relation

and order relation in the output. We can formulate this ordered query with ordered

operations in CAX
� :

πName,Department(σSalary=65000〈EMP,�EMP〉).

(2) For the second query, we first formulate “the employees in the department

Sales in the reverse order” as:

σDepartment=“Sales”(ν(〈EMP,�EMP〉)).

Next, “the rest of employees except those in the department Sales” is expressed as:

E2 = 〈EMP,�EMP〉 − σDepartment=“Sales”〈EMP,�EMP〉.

Finally, the second query is represented with an ordered algebraic expression in

CAX
� as follows:

E2 ∪ E1.

This chapter investigated the first class of ordered conjunctive queries CQX
�

and proved that the ordered algebra CAX
� is complete in the sense that it can

express the set of ordered conjunctive queries in CQX
� under certain constraints.

The following chapters will explore two other classes of ordered conjunctive queries,

CQT
� and CQ�.

95

Chapter 4

Ordered Conjunctive Queries with

t-Decided Order CQT
�

The previous chapter has investigated ordered conjunctive queries with data-decided

order, CQX
� . This chapter focuses on the second class of ordered conjunctive queries,

ordered conjunctive queries with t-decided order, CQT
�. In particular, it explores

whether a complete ordered algebra exists for the ordered conjunctive queries CQT
�.

Section 4.1 formally defines ordered conjunctive queries CQT
� in the first-order

logic FO� and describes the representative examples in CQT
�. Section 4.2 proposes

an ordered algebra CAT
� for CQT

�, which contains a set of primitive ordered oper-

ators and derived operators. Section 4.3 provides transformation rules for ordered

operations in CAT
�. Section 4.4 presents the completeness theorem for CQT

�, which

shows that CAT
� is a complete algebra for CQT

�.

4.1 Ordered Conjunctive Queries CQT
�

Analogously to CQX
� , CQT

� is another subset of the general ordered conjunctive

query CQ�. It forbids data predicates in order specification of an ordered conjunc-

tive query; the output order is decided by t-variables in the order specification.

The formal definition of the ordered conjunctive query CQT
� follows.

Definition 4.1 (Ordered Conjunctive Query CQT
�)

A CQT
� ordered query 〈ϕ, ψ〉 on ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉 is constructed as follows:

96

(a) The data query ϕ is a conjunctive query and defined by the following BNF rule:

ϕ ::= R(ti, x1, . . . , xn)

| t = (t1, t2)

| ti �R tj
| xi = xj

| ϕ ∧ ϕ
| ∃xi.ϕ
| ∃ti.ϕ.

(b) The order query ψ is a first-order formula in the form of

ψ ::= R(ti, x1, . . . , xn)

| t = (t1, t2)

| xi = xj

| ψ ∧ ψ
| ∃xi.ψ
| ∃ti.ψ
| ψ ∧ ψ′,

where the order specification ψ′ is defined by the BNF rule:

ψ′ ::= R(ti, x1, . . . , xn)

| ti �R tj
| ψ′ ∧ ψ′

| ¬ψ′

| ∃xi.ψ′

| ∃ti.ψ′,

where ψ has exactly two t-variables as the only free variables, and the or-

der specification ψ′ has all x-variables bounded.

In this definition, there is a two-level construction in the definition of ψ. The

first level of ψ has the same construction rules as ϕ, ensuring that ψ defines orders

for any pair of tuples t1 and t2 that satisfy the data query ϕ. The second level of ψ

is the sub-formula ψ′, which defines real ordering among the resulting tuples. Since

there are no quantifiers on t-variables in ψ′, all t-variables in ψ′ appear only in

atomic forms t1i �R t2i or t2i �R t1i, where t1i and t2i are originally from the same

input ordered relation 〈Ri,�Ri
〉, but are components of different output tuples. In

CQT
�, there is no data predicate xi = xj in the BNF rule of ψ′, which means that

97

the resulting order is decided by ordering among tuple identifiers (corresponding

to t-variables). Thus, the ordered conjunctive query defined in Definition 4.1 is

named CQT
�. The superscript T indicates that the order is decided by predicates

on t-variables.

Similar to CQX
� , a CQT

� query on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉 has

the following form:

〈{(t, x̄) | ϕ(t, x̄)},
{(t1, t2) | ∃t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . x̄2n.

t1 = (t11, . . . , t1n) ∧ t2 = (t21, . . . , t2n)

∧ ϕ(t11, . . . , t1n, x̄11, . . . , x̄1n) ∧ ϕ(t21, . . . , t2n, x̄21, . . . , x̄2n)

∧ ψ′(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)} 〉,

where ψ′ is constructed by the BNF rule

ψ′ ::= R(ti, x1, . . . , xn) | ti �R tj | ψ′ ∧ ψ′ | ¬ψ′ | ∃xi.ψ′ | ∃ti.ψ′,

and t1 and t2 are the only two free variables in the order specification ψ.

The CQT
� query is a class of ordered conjunctive queries whose output ordering

is solely decided by the order of tuple identifiers, as illustrated by the example

below.

Example 4.2 Consider the ordered relation 〈EMP,�EMP〉 in Example 2.5. The fol-

lowing are two examples of CQT
� queries:

(1) Output a list of employees in an order in which the first employee moves to

the end of the list, while the rest of employees remain in the original order.

This query can be formulated in CQT
�:

〈{(t, x1, x2, x3, x4)| EMP (t, x1, x2, x3, x4)},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14)

∧∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24)

∧ (((∃t3, x31, x32, x33, x34. EMP (t3, x31, x32, x33, x34) ∧ t3 �R t1)

∧ (¬∃t3, x31, x32, x33, x34. EMP (t3, x31, x32, x33, x34) ∧ t3 �R t2))

∨ ((¬∃t3, x31, x32, x33, x34. EMP (t3, x31, x32, x33, x34) ∧ t3 �R t1)

∧ (¬∃t3, x31, x32, x33, x34. EMP (t3, x31, x32, x33, x34) ∧ t3 �R t2)

∧ t1 �R t2))}〉.

(2) Return a list of employees in the department Sales in an order that is the

reverse of the input order. This query can be formulated in CQT
� as follows:

98

〈{(t, x1, x2, x4)| ∃x3. EMP (t, x1, x2, x3, x4) ∧ x3 = “sales”},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14) ∧ x13 = “Sales”

∧∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24) ∧ x23 = “Sales”

∧¬ t1 �EMP t2}〉.

4.2 An Ordered Conjunctive Algebra CAT
�

The algebraic paradigm for CAT
� ordered conjunctive queries is based on a family of

unary and binary operators on ordered relations, as for CAX
� ordered conjunctive

queries. This section proposes an ordered conjunctive algebra CAT
� for ordered

conjunctive queries CQT
� and defines a set of derived ordered operators which can

be composed by ordered operators in CAT
�.

4.2.1 Overview of Ordered Algebra CAT
�

In the ordered conjunctive algebra CAT
�, a set of ordered operators are offered to

express CQT
� expressible ordered conjunctive queries. Several ordered operators

are preserved from CAX
� , and others are exclusively developed for CAT

�. Both data

and order specifications of an ordered operator are defined in the two-sorted first-

order calculus FO�. Essentially, each ordered operator in this algebra is a valid

FO� ordered relational query. Similar to CAX
� , some ordered operators in CAT

�

are not definable in CQT
� because non-conjunctive operators are needed to handle

the negations in the order query of a CQT
� ordered conjunctive query.

The ordered algebra CAT
� consists of a set of ordered operators:

(i) Order-preserving selection operator σ : R� × P → R�;

(ii) Order-preserving projection operator π : R� × A → R�;

(iii) Left nested-loop product n : R� × R� → R�;

(iv) Ordered concatenation operator ∪ : R ×R→ R;

(v) Order reduction operator − : R ×R→ R;

99

(vi) Order intersection operator ∩ : R ×R→ R;

(vii) Order identity operator µ : R→ R;

(viii) Order reverse operator ν : R→ R;

(ix) Top operator τ : R→ R.

The ordered operators in CAT
� are defined in the same way as in CAX

� , except

the order intersection and top operators. The following subsections formally define

these two operators.

4.2.2 Order Intersection

The order intersection operator ∩ : R × R → R is exclusive to CAT
�. It is not

the ordered counterpart of the set intersection operator in relational algebras, and

is used only to extract the common segment of two input ordered relations. The

schemas of both the argument relations and the resulting relation are the same.

The formal definition of the order intersection operator is given as follows:

R1 ∩ R2 = 〈{(t, x̄) | R1(t, x̄) ∧ R2(t, x̄)},
{(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧ t1 �R1 t2}〉.

The order intersection operator takes as its input two ordered relations, which

originally come from the same ordered relation, and returns all tuples of the first

argument that have duplicate tuples in the second argument. The output order

is identical to the original order in the first argument. Here, “duplicate” tuples

are those tuples that are identical on both tuple identifiers and data attributes.

Therefore, tuple identifiers of the result are the same as those in the first and

second arguments.

Analogous to the order concatenation operator and order reduction operator,

the order intersection operator is used only to manipulate the order within a sin-

gle ordered relation in CAT
�. Thus, this is not a counterpart of conventional set

intersection operation as in relational algebras.

Lemma 4.3 An order intersection operation is a valid ordered relational query.

100

Proof: Let R1 ∩ R2 = 〈R′,�R′〉, where R1 = 〈R1,�R1〉 and R2 = 〈R2,�R2〉.

Clearly, the data relation R′ and the order relation�R′ are inclusively dependant

on each other by definition of order intersection. A proof is needed that �R′ is a

linear order of R′.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧ t1 �R1 t2)

∧((∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧(∃x̄3.R1(t3, x̄3) ∧ R2(t3, x̄3))

∧ t2 �R1 t3)

=⇒ (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄3.R1(t3, x̄3) ∧ R2(t3, x̄3)) ∧ t1 �R1 t3

=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧ t1 �R1 t2)

∧((∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧(∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧ t2 �R1 t1)

=⇒ (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧(t1 �R1 t2 ∧ t2 �R1 t1)

=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of the order inter-

section operator,

t1, t2 ∈ R′[T]

=⇒ (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

=⇒ (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧(t1 �R1 t2 ∨ t2 �R1 t1)

101

=⇒ ((∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2)) ∧ t1 �R1 t2)

∨((∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1))

∧(∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2)) ∧ t2 �R1 t1)

=⇒ t1 �R′ t2 ∨ t2 �R′ t1

It is thus proved that the order intersection is a valid ordered relational query.

2

By definition, the data query of an order intersection operator is a conjunctive

query. Therefore, it is also a valid ordered conjunctive query in CQT
�.

4.2.3 Top Operation

The top operator τ : R→ R is an operator exclusive to CAT
�. It takes an ordered

relation as its input and returns the first tuple in the input relation. The input

and resulting ordered relations share the same schema. The tuple identifiers in the

resulting ordered relation are identical to those in the input relation.

The top operator is not definable in CQT
� because it has negations in its data

definition. The formal definition of the top operator is given as follows:

τ(〈R,�R〉) = 〈{(t, x̄)| R(t, x̄) ∧ ¬∃t1, x̄1.R(t1, x̄1) ∧ t1 �R t},
{(t1, t2)| ∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t1 �R t2}〉.

Lemma 4.4 The top operation is a valid ordered relational query.

Proof:

Let τ(R) = 〈R′,�R′〉, where R = 〈R,�R〉. By definition of the top operation,

R′ and �R′ are inclusively dependant on each other. There follows proof that �R′

is a linear order of R′.

102

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ (∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11)∧ �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t1 �R t2)
∧(∃x̄2, x̄3.R(t2, x̄2) ∧ R(t3, x̄3)

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧¬∃t31, x̄31.R(t31, x̄31) ∧ t31 �R t3

∧t2 �R t3)
=⇒ (∃x̄1, x̄3.R(t1, x̄1) ∧ R(t3, x̄3)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t31, x̄31.R(t31, x̄31) ∧ t31 �R t3

∧t1 �R t3)
=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ (∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t1 �R t2)

∧(∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t2 �R t1)
=⇒ ∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t1 �R t2 ∧ t2 �R t1
=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of the top operation,

t1, t2 ∈ R′[T]

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

103

=⇒ ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧(t1 �R t2 ∨ t2 �R t1)

=⇒ (∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t1 �R t2)

∨(∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧t2 �R t1)

=⇒ t1 �R′ t2 ∨ t2 �R′ t1.

This concludes the proof that the τ operation is a valid ordered relational query.

2

4.2.4 Derived Operations

The previous subsection defined a set of primitive ordered operations for CAT
�.

The following section proves that CAT
� is a complete algebra for ordered conjunc-

tive queries in CQT
�. However, for some queries in CQT

�, the equivalent algebraic

expression can be simplified significantly with the introduction of certain new opera-

tors derived from the primitive operations in CAT
�. We list several derived operators

here, which will be used frequently later. However, there are many possibilities for

the choices of derived operators.

(1) The first operator firstk: R → R is derived from the top operator. It takes

an ordered relation as its input and returns as its result the ordered relation

containing the first k tuples in the original order.

first1 (R) = τ(R)

firstk (R) = firstk−1 (R) ∪ τ(R− firstk−1 (R))

(2) The last operator lastk: R → R is derived from the first operator. It takes

an ordered relation as its input and returns as a result the ordered relation

104

containing the last k tuples in the original order.

lastk (R) = ν firstk (νR).

It is noteworthy that, for any input ordered relation and a given number k,

firstk (R) and lastk (R) can be expressed with a fixed sequence of ordered

operations from CAT
�.

Lemma 4.5 The derived operations firstk (R) and lastk (R) can be expressed

with a fixed sequence of ordered operations from CAT
�.

Proof: We first prove that firstk (R) can be expressed with a fixed sequence

of ordered operations from CAT
�. This can be proven by induction on k.

Base case: k = 1. By definition of first operator,

first1 (R) = τ(R).

Therefore, first1 can be expressed by one ordered operation from CAT
�.

Induction step: Assume that firstk−1 can be expressed by a fixed number of

operations from CAT
�. We want to prove that this holds for the case k.

By definition of first operator,

firstk (R) =firstk−1 (R) ∪ τ(R− firstk−1 (R)).

Hence, firstk can be expressed by a fixed number of ordered operations from CAT
�.

Then, we prove that lastk can be expressed by a fixed number of ordered

operations from CAT
�.

By definition of last operator,

lastk (R) = ν firstk (νR). Since firstk can be expressed by a fixed number

of ordered operations from CAT
�, lastk can also be expressed by a fixed number of

ordered operations from CAT
�.

This concludes the proof. 2

4.3 Transformation Rules

This section provides a set of transformation rules for the ordered conjunctive

algebra CAT
�. Many of them are the same as those in CAX

� , and the others are

developed exclusively for CAT
�.

105

In ordered relational databases, two ordered queries are equivalent if they have

both equivalent data queries and equivalent order queries. The following transfor-

mation rules guarantee both the equivalence of data queries and the equivalence of

order queries for the ordered queries on both sides. In addition, the transforma-

tion rules are given in the algebraic equations which represent both the left-to-right

equivalence and the right-to-left equivalence. In these equations, each argument

can be either an ordered relation or an expression of ordered operations.

Proposition 4.6 In addition to the transformation rules in 3.13, the following

transformation rules hold in CAT
�:

(R16) σp(R1 ∩R2) = σp(R1) ∩ σp(R2)

(R17) πA(R1 ∩R2) = πA(R1) ∩ πA(R2)

(R18) (R1 ∩R2) ∩R3 = R1 ∩ (R2 ∩R3)

(R19) τ(πA(R)) = πA(τ(R))

Proof:

The proof for the rest of transformation rules can be found in the proof of Proposi-

tion 3.13. Transformation rules (R16), (R17), (R18), and (R19) will be proved as

follows:

(R16) Suppose that R1 and R2 share the same schema (T, X1, . . . ,Xn). Let

〈R′,�R′〉 = R1 ∩R2. By definition of order intersection,

R′ = {(t, x̄) | R1(t, x̄) ∧ R2(t, x̄)}

�R′ = {(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1)

∧ ∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2)

∧ t1 �R1 t2)}.

Let 〈R′′,�R′′〉 = σp〈R′,�R′〉. Then,

106

R′′ = {(t, x̄) | R′(t, x̄) ∧ p(t, x̄)}
= {(t, x̄) | (R1(t, x̄) ∧ R2(t, x̄)) ∧ p(t, x̄)}
= {(t, x̄) | (R1(t, x̄) ∧ p(t, x̄) ∧ (R2(t, x̄) ∧ p(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R′(t2, x̄2) ∧ p(t2, x̄2) ∧ t1 �R′ t2}
= {(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ p(t1, x̄1) ∧ R2(t1, x̄1) ∧ p(t1, x̄1)

∧ ∃x̄2.R1(t2, x̄2) ∧ p(t2, x̄2) ∧ R2(t2, x̄2) ∧ p(t2, x̄2)

∧ t1 �R2 t2}.

Therefore,

〈R′′,�R′′〉 = σp(〈R1,�R1〉) ∩ σp(〈R2,�R2〉).

This ends the proof of the transformation rule (R16).

(R17) Suppose that R1 and R2 share the same schema (T, X1, . . . ,Xn). Without

lost of generality, we assume that A = (T, X1, . . . ,Xk), where k ≤ n. Let

〈R′,�R′〉 = R1 ∩R2. By definition of order intersection,

R′ = {(t, x̄) | R1(t, x̄) ∧ R2(t, x̄)}

�R′ = {(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1)

∧ ∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2)

∧ t1 �R1 t2)}.

Let 〈R′′,�R′′〉 = πA〈R′,�R′〉. Then,

R′′ = {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R
′(t, x̄)}

= {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R1(t, x̄) ∧ R2(t, x̄)}
= {(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R1(t, x̄) ∧ ∃xk+1, . . . , xn.R2(t, x̄)}

�R′′ = {(t1, t2) | ∃x̄1.R′(t1, x̄1) ∧ ∃x̄2.R′(t2, x̄2) ∧ t1 �R′ t2}
= {(t1, t2) | (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1)

∧∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2))

∧t1 �R1 t2)}.

Consequently,

〈R′′,�R′′〉 = πA(〈R1,�R1〉) ∩ πA(〈R2,�R2〉).

107

This completes the proof of the transformation rule (R17).

(R18) Suppose that R1, R2 and R3 share the same schema (T, X1, . . . ,Xn). Let

〈R′,�R′〉 = R1 ∩R2. By definition of order intersection,

R′ = {(t, x̄) | R1(t, x̄) ∧ R2(t, x̄)}

�R′ = {(t1, t2) | ∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1)

∧ ∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2)

∧ t1 �R1 t2)}.

Let 〈R′′,�R′′〉 = 〈R′,�R′〉 ∩R3. Then,

R′′ = {(t, x̄) | R′(t, x̄) ∧ R3(t, x̄)}
= {(t, x̄) | R1(t, x̄) ∧ R2(t, x̄) ∧ R3(t, x̄)}
= {(t, x̄) | R1(t, x̄) ∧ (R2(t, x̄) ∧ R3(t, x̄))}

�R′′ = (∃x̄1.R′(t1, x̄1) ∧ R3(t1, x̄1) ∧ ∃x̄2.R′(t2, x̄2) ∧ R3(t2, x̄2))

∧t1 �R′ t2)
= (∃x̄1.R1(t1, x̄1) ∧ R2(t1, x̄1) ∧ R3(t1, x̄1))

∧∃x̄2.R1(t2, x̄2) ∧ R2(t2, x̄2) ∧ R3(t2, x̄2))

∧t1 �R1 t2)

= ∃x̄1.R1(t1, x̄1) ∧ (R2(t1, x̄1) ∧ R3(t1, x̄1))

∧∃x̄2.R1(t2, x̄2) ∧ (R2(t2, x̄2) ∧ R3(t2, x̄2))

∧t1 �R1 t2).

Thus,

〈R′′,�R′′〉 = 〈R1,�R1〉 ∩ (〈R2,�R2〉 ∩ 〈R3,�R3〉).

This concludes the proof of the transformation rule (R18).

(S19) Without loss of generality, we assume that A = {X1, . . . , Xm}. By defini-

tion of order-preserving projection,

πA〈R,�R〉 = 〈{(t, x1, . . . , xm) | ∃xm+1, . . . , xn.R(t, x1, . . . , xn)},
{(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧∃x21, . . . , x2n.R(t2, x21, . . . , x2n) ∧ t1 �R t2}.

108

Then,

τ(πA〈R,�R〉) = 〈{(t, x1, . . . , xm) | ∃xm+1, . . . , xn.R(t, x1, . . . , xn)

∧¬∃t1, x̄1.R(t1, x̄1) ∧ t1 �R t},
{(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧ ∃x21, . . . , x2n.R(t2, x21, . . . , x2n)

∧¬∃t11, x̄11.R(t11, x̄11) ∧ t11 �R t1

∧¬∃t21, x̄21.R(t21, x̄21) ∧ t21 �R t2

∧ t1 �R t2}〉
= πA(τ(R)).

2

4.4 Completeness of CAT
�

This section examines the expressive power of the ordered conjunctive algebra CAT
�.

The completeness of CAT
� are verified with respect to the first-order calculus and

proven such that CAT
� is complete in that any ordered conjunctive query in CQT

�

can be expressed by a finite sequence of ordered operations from CAT
�. We first

present a number of notations that we use later.

Definition 4.7 (Subsequences of Ordered Relations) Let 〈R,�R〉 be an or-

dered relation, and ψ be a first-order formula defined by the BNF rule:

ψ = R(t, x̄) | t �R t′ | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃t.ψ.

A subsequence S of the ordered relation 〈R,�R〉 is a set of tuples which satisfy

a subformula of ψ, ψ′, with one t-variable as the only free variable. We say the

subsequence S is specified by the subformula ψ′.

Definition 4.8 (Combinations of Subsequences) Let 〈R1,�R1〉, . . . , 〈Rn,�Rn

〉 be n ordered relations, and ψ be a first-order formula defined by the BNF rule:

ψ = R(t, x̄) | t �R t′ | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃t.ψ.

Let Sji be an arbitrary subsequence of 〈Ri,�Ri
〉 specified by a subformula of ψ,

for i = 1, ..., n. A combination of subsequences (Sj1 , . . . , Sjn) is a set of the tuples,

each of which is a combination of tuples from Sj1 , . . . , Sjn, respectively.

109

Definition 4.9 (Minimal Subsequences) Let 〈R,�R〉 be an ordered relation,

and ψ be a first-order formula defined by the BNF rule:

ψ = R(t, x̄) | t �R t′ | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃t.ψ.

A subsequence S of an ordered relation 〈R,�R〉, specified by a subformula of ψ,

is a minimal subsequence if there is no subsequence S ′ in 〈R,�R〉 which is specified

by a subformula of ψ and satisfies S ′ ⊂ S.

Then, a lemma is proved for a special case of CQT
�, the ω queries. An ω query in

CQT
� is an ordered conjunctive query in CQT

� which has an identity data query. The

output of an ω query has an identical data relation as the input ordered relation;

however, it might have a different order relation.

Lemma 4.10 Any ω query in CQT
� is equivalent to an ordered query expressed by

a finite sequence of ordered operations from CAT
�.

Proof: Let 〈ϕ, ψ〉, a CQT
� query on 〈R,�R〉, be an ω query, and 〈R′,�R′〉 be the

output ordered relation. By definition of the ω query, 〈ϕ, ψ〉 hence has the form

〈ϕ, ψ〉(〈R,�R〉) = 〈{(t, x̄)|R(t, x̄)}, {(t1, t2)|ψ(t1, t2)}〉,

and

ψ = ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ ψ′(t1, t2).

By definition of CQT
�, ψ′ is a first-order formula defined by the BNF rule

ψ′ = R(t, x̄) | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ | ∃x.ψ′ | ∃t.ψ′.

Since there is no data predicates in ψ′, x-variables appear only in form of

∃x.R(t, x) in the scope of each t-quantifiers ∃t. Therefore, to simplify the form

of ψ′, we omit x-variables in ψ′ by replacing ∃x.R(t, x) with R(t). In this way, we

only consider ψ′ as a first-order formula defined by the BNF rule

ψ′ = R(t) | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ |∃t.ψ′.

By the BNF rule, ψ′ is a boolean combination of existentially quantified formulas

with only t1 and t2 free, we rearrange the top level boolean connectives, and rewrite

ψ′ in a disjunction of conjunctions in the form∨
i

(αi1(t1) ∧ αi2(t2)) ∨
∨
j

βj(t1, t2),

110

where αi1(t1) and αi2(t2) are existentially quantified formulas with only t1 free and

existentially quantified formulas with only t2 free, respectively; and βj(t1, t2) is an

existentially quantified formula with both t1 and t2 free. If t1 and t2 satisfy one of

the disjuncts αi1(t1) ∧ αi2(t2) or βj(t1, t2), then t1 �R′ t2.

We first consider the first part of ψ′, which is
∨
i(α

i
1(t1)∧αi2(t2)). We will prove

that
∨
i(α

i
1(t1) ∧ αi2(t2)) is equivalent to a disjunction of the conjunctions of the

form ∨
i

(αi<t1(t1) ∧ R(t1) ∧ αi>t1(t1)) ∧ (αi<t2(t2) ∧ R(t2) ∧ αi>t2(t2)),

where

• the conjunct αi<tj(tj) (j = 1, 2) is an existentially quantified formula with only

tj free. In αi<tj(tj), all quantifiers are relativized to < tj, which means that

the scopes of all quantifiers are restricted to before tj.

• αi>tj(tj) (j = 1, 2) is an existentially quantified formula with only tj free. In

αi<>tj(tj), all quantifiers are relativized to > tj, which means that the scopes

of all quantifiers are restricted to after tj.

By the Separation Property (ref. Corollary 9.3.3. [39]), the conjunct αi1(t1) is

equivalent to a disjunction of the conjunctions of the form∨
i

(αi<t1(t1) ∧ R(t1) ∧ αi>t1(t1)),

and αi2(t2) is equivalent to a disjunction of the conjunctions of the form∨
j

(αj<t2(t2) ∧ R(t2) ∧ αj>t2(t2)).

Thus, each conjunction αi1(t1) ∧ αi2(t2) is equivalent to∨
i,j

(αi<t1(t1) ∧ R(t1) ∧ αi>t1(t1)) ∧ (αj<t2(t2) ∧ R(t2) ∧ αj>t2(t2)).

Consequently, the first part of ψ′,
∨
i(α

i
1(t1)∧αi2(t2)), is equivalent to a disjunction

of conjunctions in the form∨
i

(αi<t1(t1) ∧ R(t1) ∧ αi>t1(t1)) ∧ (αi<t2(t2) ∧ R(t2) ∧ αi>t2(t2)).

Then, we need to prove that the conjunct αi<t1(t1) is equivalent to a normal

form

111

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ s1 �R ... �R si1 �R t1

∧
¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ s1 �R ... �R si2 �R t1.

This can be proven by induction on the depth of quantifiers n in αi<t1(t1). Recall

that αi<t1(t1) is defined by the BNF rule

ψ′ = R(t) | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ |∃t.ψ′.

Base case: In the case of n = 0, t1 is the only t-variable in αi<t1(t1), so αi<t1(t1) is

empty in this case.

In the case of n = 1, by construction rule, αi<t1(t1) is either ∃s1.R(s1)∧ s1 �R t1

or ¬∃s1.R(s1) ∧ s1 �R t1. It is already in the normal form.

Inductive step: Assume that the conjunct αi<t1(t1) is equivalent to a formula in the

normal form in the case n− 1. We want to show that this hypothesis holds in the

case n.

Let ϕ(t1) be an arbitrary existentially quantified formula with only t1 free, and

all quantifiers are relativized to < t1. By the induction hypothesis, the formula

ϕ(t1) is equivalent to a normal form

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ s1 �R ... �R si1 �R t1

∧¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ s1 �R ... �R si2 �R t1,

where i1, i2 ≤ n− 1. It is sufficient to treat the cases

αi<t1(t1) = ∃s.R(s) ∧ ϕ(t1) ∧ ϕ′(s, s1, ..., si1 , t1),

and

¬∃s.R(s) ∧ ϕ(t1) ∧ ϕ′(s, s1, ..., si2 , t1),

where ϕ′ is a conjunction of predicates of the form ti �R tj.

First, we consider the case αi<t1(t1) = ∃s.ϕ(t1)∧R(s)∧ϕ′(s, s1, ..., si1 , t1). Since

all quantifiers are relativized to < t1 in the formula αi<t1(t1), and we already have

s1 �R ... �R si1 �R t1, then ϕ′(s, s1, ..., si1 , t1) has one of the following forms:

1. s = sj (j = 1, ..., i1),

2. s �R s1,

3. sj �R s �R sj+1 (j = 1, ..., i1 − 1),

112

4. si1 �R s �R t1.

In the first case, s is one of sj for j = 1, ..., i1. Thus, the conjunct αi<t1(t1) is equiv-

alent to ϕ, and hence is equivalent to a normal form by the induction hypothesis.

In the last three cases, αi<t1(t1) is equivalent to

∃s′1, ..., s′i1 , s
′
i1+1.R(s′1) ∧ . . . ∧ R(s′i1) ∧ R(s′i1+1) ∧ s′1 �R ... �R s

′
i1
�R s

′
i1+1 �R t1

∧
¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ s1 �R ... �R si2 �R t1,

where s′1, ..., s
′
i1
, s′i1+1 is a rearranged sequence of s and s1, ..., si1 , and s is placed

accordingly for the different cases of ϕ′.

Then, we consider the case αi<t1(t1) = ¬∃s.ϕ(t1)∧R(s)∧ϕ′(s, s1, ..., si2 , t1). Since

all quantifiers are relativized to < t1 in the formula αi<t1(t1), and we already have

¬∃s1, ..., si2 .R(s1)∧ . . .∧R(si2)∧ s1 �R ... �R si2 �R t1, then ϕ′(s, s1, ..., si2 , t1) has

one of the following forms:

1. s = sj (j = 1, ..., i2),

2. s �R s1,

3. sj �R s �R sj+1 (j = 1, ..., i2 − 1),

4. si1 �R s �R t1.

In the first case, s is one of sj for j = 1, ..., i2. Thus, αi<t1(t1) is equivalent to ϕ,

and hence is equivalent to a normal form by the induction hypothesis. In the last

three cases, αi<t1(t1) is equivalent to

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ s1 �R ... �R si1 �R t1

∧
¬∃s′1, ..., s′i1 , s

′
i2+1.R(s′1) ∧ . . . ∧ R(s′i2) ∧ R(s′i2+1) ∧ s′1 �R ... �R s

′
i2
�R s

′
i2+1 �R t1,

where s′1, ..., s
′
i2
, s′i2+1 is a rearranged sequence of s and s1, ..., si2 , and s is placed

accordingly for the different cases of ϕ′.

We have shown that αi<t1(t1) is equivalent to a formula in the normal form

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ s1 �R ... �R si1 �R t1

∧
¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ s1 �R ... �R si2 �R t1.

113

Analogously, we can prove that αi>t1(t1) is equivalent to a normal form

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ t1 �R s1 �R ... �R si1
∧
¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ t1 �R s1 �R ... �R si2 .

By the definitions of ordered operations in CAT
�, the conjunct in the normal

form of αi<t1(t1),

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ s1 �R ... �R si1 �R t1,

can be expressed with an ordered algebraic expression in CAT
�,

〈R,�R〉− firsti1 (〈R,�R〉).

Similarly, the conjunct

¬(∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ s1 �R ... �R si2 �R t1)

can be expressed with an ordered algebraic expression in CAT
�,

firsti1 (〈R,�R〉).

In analogy, the conjunct in the normal form of αi>t1(t1), which is

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ t1 �R s1 �R ... �R si1 ,

can be expressed with an ordered algebraic expression in CAT
�,

〈R,�R〉− lasti1 (〈R,�R〉).

The conjunct

¬(∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ t1 �R s1 �R ... �R si2)

can be expressed with an ordered algebraic expression in CAT
�,

lasti1 (〈R,�R〉).

In general, we can express the conjunction αi<t1(t1) ∧ R(t1) ∧ αi>t1(t1) with an

ordered algebraic expression in CAT
�,

E1 ∩ ... ∩ Ek,

where Ei (i = 1, ...k) could be one of the following forms:

114

1. firsti (〈R,�R〉);

2. 〈R,�R〉− firsti (〈R,�R〉);

3. lasti (〈R,�R〉);

4. 〈R,�R〉− lasti (〈R,�R〉).

Intuitively, αi<t1(t1) ∧ R(t1) ∧ αi>t1(t1) represents a subsequence S of the ordered

relation 〈R,�R〉.

Analogously, we can show that αi<t2(t2)∧R(t2)∧αi>t2(t2) can be expressed with

an ordered algebraic expression in CAT
�. Intuitively, αi<t2(t2) ∧ R(t2) ∧ αi>t2(t2)

represents a subsequence S of the ordered relation 〈R,�R〉.

We have proved that the conjuncts αi1(t1) and αi2(t2) can be expressed with a

sequence of ordered operations in CAT
�. Suppose that subsequences S1 and S2 are

specified by αi1(t1) and αi2(t2), respectively. If any pair of tuples t1 and t2 satisfies

αi1(t1)∧αi2(t2), then t1 ∈ S1 and t2 ∈ S2 hold, and therefore S1 is prior to S2 in the

output order �R′ .

Let S1, . . . , Sn be subsequences specified by
∨
i α

i
1(t1) ∧ αi2(t2). Without lost

of generality, we assume that S1, . . . , Sn is a set of pairwise disjoint minimal sub-

sequences, and
⋃
i=1,...,n Si = 〈R,�R〉. (If subsequences are not disjoint or not

minimal, we can always separate them into minimal subsequences.) We want to

show that
∨
i(α

i
1(t1) ∧ αi2(t2)) defines a linear order on subsequences S1, . . . , Sn.

This is proved by contradiction. Suppose that
∨
i(α

i
1(t1)∧αi2(t2)) does not define

a linear order among the subsequences S1, . . . , Sn. There are two cases:

Case 1: Assume that there exist two subsequences, say S1 and S2, such that both

S1 �R′ S2 and S2 �R′ S1 hold. If t1 ∈ S1 ∧ t2 ∈ S2, then by the assumption

(t1, t2) ∈�R′ and (t2, t1) ∈�R′ hold at the same time. This is a contradiction to the

fact that the output order �R′ is a linear order. Hence, the assumption in Case 1

does not hold.

Case 2: Assume that there exist two subsequences, say S1 and S2, such that neither

S1 �R′ S2 nor S2 �R′ S1 holds; their order in output is not specified by
∨
i α

i. By

this assumption, for any pair of tuples t1 ∈ P1 land t2 ∈ P2, their order in the

output is not defined by
∨
i α

i
1(t1) ∧ αi2(t2). Because the output order is a linear

order on all tuples, the order of t1 and t2 must be decided by ψ′. Suppose that ψ′

decides t1 �R′ t2. Since S1 and S2 are minimal, all pairs of tuples from S1 and S2

respectively must have the same order if they have any order at all. Then, for any

115

pair of tuples t1 and t2, and t1 ∈ S1 ∧ t2 ∈ S2, t1 �R′ t2 holds. It follows S1 �R′ S2,

which is a contradiction to the assumption.

We now consider the second part of ψ′,
∨
j β

j(t1, t2), which is an existentially

quantified formula with both t1 and t2 free. Each conjunct βj(t1, t2) can be rewritten

into

βj<t1(t1) ∧ R(t1) ∧ βj(t1,t2)(t1, t2) ∧ R(t2) ∧ βj>t2(t2),

or

βj<t2(t2) ∧ R(t2) ∧ βj(t2,t1)(t1, t2) ∧ R(t1) ∧ βj>t1(t1),

where βj<t1(t1) is an existentially quantified formula with only t1 free, in which all

quantifiers relativized to < t1; β
j
>t2(t2) is an existentially quantified formula with

only t2 free, in which all quantifiers relativized to > t2; and βj(t1,t2)(t1, t2) is an

existentially quantified formula with both t1 and t2 free, in which all quantifiers

relativized to between t1 and t2. The conjuncts βj<t2(t2), β
j
(t2,t1)

(t1, t2) and βj>t1(t1)

are defined analogously.

As we proved earlier, the conjunct βj<t1(t1) is equivalent to a normal form

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ s1 �R ... �R si1 �R t1

∧ ¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ s1 �R ... �R si2 �R t1.

And the conjunct βj>t2(t2) is equivalent to a normal form

∃s1, ..., si1 .R(s1) ∧ . . . ∧ R(si1) ∧ t1 �R s1 �R ... �R si1
∧ ¬∃s1, ..., si2 .R(s1) ∧ . . . ∧ R(si2) ∧ t1 �R s1 �R ... �R si2 .

We now want to prove that the conjunct βj(t1,t2)(t1, t2) is equivalent to a normal

form

∃s1, ..., si3 .R(s1) ∧ . . . ∧ R(si3) ∧ t1 �R s1 �R ... �R si3 �R t2

∧ ¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2.

This can be proven by induction on the depth of quantifiers n in βj(t1,t2)(t1, t2).

Base case: In the case of n = 0, t1 and t2 are the only t-variables in βj(t1,t2)(t1, t2),

hence βj(t1,t2)(t1, t2) could only be t1 �R t2 or ¬t1 �R t2 in this case.

In the case of n = 1, by the construction rule, βj(t1,t2)(t1, t2) is either

∃s.R(s) ∧ t1 �R s ∧ s �R t2 or ¬∃s.R(s) ∧ t1 �R s ∧ s �R t2. It is already in

the normal form.

116

Inductive step: Assume that the conjunct βj(t1,t2)(t1, t2) is equivalent to a formula

in the normal form in the case n− 1. We want to show that this hypothesis holds

in the case n.

Let ϕ(t1, t2) be an arbitrary existentially quantified formula with only t1 and t2

free, in which all quantifiers are relativized to between t1 and t2. By the induction

hypothesis, ϕ(t1, t2) is equivalent to a normal form

∃s1, ..., si3 .R(s1) ∧ . . . ∧ R(si3) ∧ t1 �R s1 �R ... �R si3 �R t2

∧ ¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2,

where i3, i4 ≤ n− 1. It is sufficient to treat the cases

βj(t1,t2)(t1, t2) = ∃s.R(s) ∧ ϕ(t1, t2) ∧ ϕ′(s, s1, ..., si3 , t1, t2),

and

βj(t1,t2)(t1, t2) = ¬∃s.R(s) ∧ ϕ(t1, t2) ∧ ϕ′(s, s1, ..., si3 , t1, t2),

where ϕ′ is a conjunction of predicates in form of ti �R tj.

First, we consider the case of

βj(t1,t2)(t1, t2) = ∃s.R(s) ∧ ϕ(t1, t2) ∧ ϕ′(s, s1, ..., si3 , t1).

Since all quantifiers are relativized to between t1 and t2 in βj(t1,t2)(t1, t2), by the

induction hypothesis, ϕ(t1, t2) is equivalent to a normal form

∃s1, ..., si3 .R(s1) ∧ . . . ∧ R(si3) ∧ t1 �R s1 �R ... �R si3 �R t2

∧ ¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2.

Thus, the conjunct ϕ′(s, s1, ..., si3 , t1, t2) has one of the following forms:

1. s = sj (j = 1, ..., i3),

2. t1 �R s �R s1,

3. sj �R s �R sj+1 (j = 1, ..., i3 − 1),

4. si3 �R s �R t2.

In the first case, s is one of sj for j = 1, ..., i3. Thus, the conjunct βj(t1,t2)(t1, t2)

is equivalent to ϕ, and therefore is equivalent to a normal form by the induction

hypothesis,

∃s1, ..., si3 .R(s1) ∧ . . . ∧ R(si3) ∧ t1 �R s1 �R ... �R si3 �R t2

∧ ¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2.

117

In the last three cases, the conjunct βj(t1,t2)(t1, t2) is equivalent to

∃s′1, ..., s′i1 , s
′
i3+1.R(s′1) ∧ . . . ∧ R(s′i3) ∧ R(s′i3+1)

∧t1 �R s
′
1 �R ... �R s

′
i3
�R s

′
i3+1 �R t2

∧
¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2,

where s′1, ..., s
′
i3
, s′i3+1 is a rearranged sequence of s and s1, ..., si3 , and s is placed

accordingly for the different cases of ϕ′. Therefore, βj(t1,t2)(t1, t2) is equivalent to a

normal form in the last three cases.

Analogously, we can prove that in the case of

βj(t1,t2)(t1, t2) = ¬∃s.R(s) ∧ ϕ(t1, t2) ∧ ϕ′(s, s1, ..., si3 , t1),

the conjunct βj(t1,t2)(t1, t2) is equivalent to a normal form. Until now, we have proven

that βj(t1,t2)(t1, t2) is equivalent to a normal form

∃s1, ..., si3 .R(s1) ∧ . . . ∧ R(si3) ∧ t1 �R s1 �R ... �R si3 �R t2

∧ ¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2.

We now need to prove that in each conjunct βj(t1, t2), the conjunct βj(t1,t2)(t1, t2)

has the depth of quantifiers at most 0. We prove this by contradiction. Assume

that we have a conjunct βj(t1, t2) in the form

βj<t1(t1) ∧ R(t1) ∧ βj(t1,t2)(t1, t2) ∧ R(t2) ∧ βj>t2(t2),

where βj(t1,t2)(t1, t2) is in the normal form

∃s1, ..., si3 .R(s1) ∧ . . . ∧ R(si3) ∧ t1 �R s1 �R ... �R si3 �R t2

∧ ¬∃s1, ..., si4 .R(s1) ∧ . . . ∧ R(si4) ∧ t1 �R s1 �R ... �R si4 �R t2.

This means that for any pair of t1 and t2 satisfying βj<t1(t1) and βj>t2(t2), if there

are at least i3 tuples in the input and at most i4− 1 tuples between t1 and t2, then

the pair of t1 and t2 keeps the original order in the output.

Since the output order is a total and linear order among all input tuples, there

must exist other conjuncts in
∨
j β

j(t1, t2), which define the order for the rest of

pairs of t1 and t2. The rest of pairs of t1 and t2 must satisfy βj<t1(t1) and βj>t2(t2),

and have no at least i3 tuples in the input and at most i4− 1 tuples between t1 and

t2. There exist two cases for the rest of pairs of t1 and t2:

118

Case 1: All of the rest of pairs t1 and t2 also keep the original order, which means

that all pairs of t1 and t2 satisfying βj<t1(t1) and βj>t2(t2) keep the original order. In

other words, there exists another conjunct βj
′
(t1, t2) which is equivalent to

βj
′

<t1(t1) ∧ R(t1) ∧ βj
′

(t1,t2)
(t1, t2) ∧ R(t2) ∧ βj

′

>t2(t2),

where

βj
′

<t1 = βj<t1 ,

βj
′

>t2 = βj>t2 ,

βj
′

(t1,t2)
= ¬βj(t1,t2).

Therefore,

βj
′
(t1, t2) ∨ βj(t1, t2)

= (βj<t1(t1) ∧ R(t1) ∧ βj(t1,t2)(t1, t2) ∧ R(t2) ∧ βj>t2(t2))
∨(βj

′

<t1(t1) ∧ R(t1) ∧ βj
′

(t1,t2)
(t1, t2) ∧ R(t2) ∧ βj

′

>t2(t2))

= βj<t1(t1) ∧ R(t1) ∧ R(t2) ∧ βj>t2(t2).

Thus, the formula βj
′
(t1, t2) ∨ βj(t1, t2) has no quantifiers on both t1 and t2, and

therefore is a conjunction in
∨
i α

i, the first part of ψ′.

Case 2: At least a part of the rest pairs of t1 and t2 satisfying βj<t1(t1) and βj>t2(t2)

has the reverse order in the output. In other words, there exists at least a conjunct

βj
′
(t2, t1) which is equivalent to

βj
′

<t2(t2) ∧ R(t2) ∧ βj
′

(t2,t1)
(t1, t2) ∧ R(t1) ∧ βj

′

>t1(t1),

where

βj
′

<t2 = βj<t1 ,

βj
′

>t1 = βj>t2 ,

βj
′

(t2,t1)
= (¬βj(t1,t2)) ∧ ϕ(t1, t2),

and ϕ(t1, t2) is an arbitrary formula on t1 and t2.

Since βj
′

(t2,t1)
is a quantified formula with both t1 and t2 free, it is equivalent to

a normal form

∃s1, ..., sm.R(s1) ∧ . . . ∧ R(sm) ∧ t2 �R s1 �R ... �R sm �R t1

∧ ¬∃s1, ..., sn.R(s1) ∧ . . . ∧ R(sn) ∧ t2 �R s1 �R ... �R sn �R t1.

119

Since any pair of t1 and t2 satisfying βj
′
(t2, t1) is in the output order, a pair

of t1 and t2, satisfying βj
′

<t2 , β
j′

>t1 and βj
′

(t2,t1)
, has the reverse order in the output.

Then, the pair of t1 and t2, which satisfies βj
′

<t2 and βj
′

>t1 , and has at least m and at

most n tuples between them, has the reverse order in the output. This is impossible

because one tuple cannot exchange with more than one tuple simultaneously while

keeping the output order as a total linear order for any input. The only possibility

is that βj
′

(t2,t1)
is either t1 �R t2 or ¬t1 �R t2. As a consequence, the conjunct βj

′

(t2,t1)

has the quantifier depth 0.

We have proven that in the second part of ψ′, which is
∨
j β

j(t1, t2), each con-

junct βj(t1, t2) is equivalent to a normal form

βj<t1(t1) ∧ R(t1) ∧ βj(t1,t2)(t1, t2) ∧ R(t2) ∧ βj>t2(t2),

or

βj<t2(t2) ∧ R(t2) ∧ βj(t2,t1)(t1, t2) ∧ R(t1) ∧ βj>t1(t1),

where βj(t1,t2) and βj(t2,t1) are either t1 �R t2 or ¬t1 �R t2.

As we proved earlier, βj1(t1) and βj2(t2) specify subsequences of input, and can

be expressed by a sequence of ordered operations in CAT
�. Furthermore, βj1(t1) and

βj2(t2) must specify the same subsequences; otherwise, the conjunction βj(t1, t2)

defines a partial order for t1 and t2 satisfying this conjunction, and it is impossible

to define a total linear order for t1 and t2 satisfying βj1(t1) and βj2(t2). Therefore,

each conjunct βj(t1, t2) defines an order for pairs of tuples from the same subset S,

and the only possible orders in S are identical or reverse to the original order.

In conclusion, the linear order decided by ψ′ can be expressed by a sequence of

ordered operators in CAT
�, ⋃

i

β(Ei1 ∩ ... ∩ Eiik),

where β is either the order identity operation µ or the order reverse operation ν,

and expressions Ei1, ...Eiik can be one of the following forms:

1. firstk (〈R,�R〉);

2. 〈R,�R〉− firstk (〈R,�R〉);

3. lastk (〈R,�R〉);

4. 〈R,�R〉− lastk (〈R,�R〉).

120

2

We have shown that the ω queries in CQT
� are completely expressible in the

ordered conjunctive algebra CAT
�. We are now ready for the main result of this

chapter, the completeness theorem of ordered conjunctive queries CQT
�.

Theorem 4.11 Any CQT
� query is equivalent to an ordered query expressed by a

finite sequence of ordered operations from CAT
�.

Proof:

Let 〈φ, ψ〉 be an ordered conjunctive query in CQT
� on ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

Case 1: n = 1.

In this case, the ordered query 〈φ, ψ〉 has only one input 〈R,�R〉, it hence has

the form

〈φ, ψ〉(〈R,�R〉) = 〈{(t, x̄) | φ(t, x̄)}, {(t1, t2) | ψ(t1, t2)}〉,

where φ(t, x̄) is a conjunctive query and has the normal form

πA(σp(R)),

and

ψ = ∃x̄1.φ(t1, x̄1) ∧ ∃x̄2.φ(t2, x̄2) ∧ ψ′(t1, x̄1, t2, x̄2).

By definition of CQT
�, ψ′ is a first-order formula defined by the BNF rule

ψ′ = R(t, x̄) | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ | ∃x.ψ′ | ∃t.ψ′.

Since no data predicates exist in ψ′, x-variables appear only in form of ∃x.R(t, x)

in scope of each quantifiers of t-variables. To simplify the form of ψ′, we omit

x-variables in ψ′ by replacing ∃x.R(t, x) with R(t). Therefore, we consider ψ′ only

as a first-order formula defined by the BNF rule

ψ′ = R(t) | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ |∃t.ψ′.

By Lemma 4.10, there exists an algebraic expression in CAT
� to express the

ordered query 〈ω, ψ′〉: ⋃
i

ikβ(Ei1 ∩ ... ∩ Eiik)

where β is either the order identity operation µ or the order reverse operation ν,

and each of Ei1, ...Eiik is in one of the following forms:

121

1. firstk (〈R,�R〉);

2. 〈R,�R〉− firstk (〈R,�R〉);

3. lastk (〈R,�R〉);

4. 〈R,�R〉− lastk (〈R,�R〉).

By Proposition 4.6, order-preserving selections and projections can propagate

through order identity, reverse, and concatenation operators. To express the se-

lections and projections on the data relation R in the normal form of φ, order-

preserving selections and order-preserving projections are applied respectively to

the above expression without changing the order.

In conclusion, the ordered CQT
� query 〈φ, ψ〉 is equivalent to the algebraic ex-

pression in CAT
�,

πA(σp
⋃
k

β(Ei1 ∩ ... ∩ Eik(〈R,�R〉))),

where β is either the order identity operation µ or the order reverse operation ν in

CAT
�, and algebraic expressions Ei1, ..., Eiik are defined as above.

Case 2: n > 1.

Let 〈ϕ, ψ〉 be a CQT
� query on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, where

n > 1. The data query ϕ is a conjunctive query, and hence has the normal form

∃x1, . . . , xm.(R1(u1) ∧ · · · ∧ Rn(un)),

where ui’s are tuples containing both variables t, x1, . . . , xn and constants for data

attributes. The order query ψ has the form

{(t1, t2) | ∃t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . x̄2n.
t1 = (t11, . . . , t1n) ∧ t2 = (t21, . . . , t2n)

∧ ϕ(t11, . . . , t1n, x̄11, . . . , x̄1n) ∧ ϕ(t21, . . . , t2n, x̄21, . . . , x̄2n)

∧ ψ′(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)}.

By definition of CQT
�, ψ′ is a first-order formula defined by the BNF rule

ψ′ = Ri(t) | t �Ri
t′ |¬ψ′ | ψ′ ∧ ψ′ | ∃t.ψ′,

and ψ′ defines a linear order on the Cartesian product of R1 × · · · × Rn.

By the BNF rule, ψ′ is a boolean combination of existentially quantified formulas

with only one t-variable free, which could be t11, . . . , t1n, t21, . . . , or t2n. Thus, we

122

can rearrange the top level boolean connectives and rewrite ψ′ in a disjunction of

conjunctions in the form ∨
i α

i(t11, . . . , t1n, t21, . . . , t2n)

∨
∨
j β

j(t11, . . . , t1n, t21, . . . , t2n),

where each αi(t11, . . . , t1n, t21, . . . , t2n) is of form

(αi11(t11) ∧ . . . ∧ αi1n(t1n) ∧ αi21(t21) ∧ . . . ∧ αi2n(t2n)),

and αi1k(t1k) and αi2k(t2k) are existentially quantified formulas with only t1k free

and existentially quantified formulas with only t2k free, respectively. Each formula

βj(t11, . . . , t1n, t21, . . . , t2n) is in the form

(βj1(t11, t21) ∧ . . . ∧ βjn(t1n, t2n)),

where at least one of βjk(t1k, t2k) is an existentially quantified formula with both t1k

and t2k free, for k = 1, . . . , n.

We now consider the first part of ψ′, which is
∨
i α

i. The conjuncts αi1k(t1k) and

αi2k(t2k) are existentially quantified formulas with only t1k free and existentially

quantified formulas with only t2k free respectively, for k = 1, . . . , n. By the proof

of Lemma 4.10, they can be expressed by an ordered algebraic expression in CAT
�,⋃

i

β(Ei1 ∩ ... ∩ Eiik),

where β is either the order identity operation µ or the order reverse operation ν,

and expressions Ei1, ...Eiik could be one of the following forms

1. firsti (〈R,�R〉);

2. 〈R,�R〉− firsti (〈R,�R〉);

3. lasti (〈R,�R〉);

4. 〈R,�R〉− lasti (〈R,�R〉).

Let (S11, . . . , S1n) and (S21, . . . , S2n) be the two combinations of minimal sub-

sequences from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, specified by

αi = (αi11(t11) ∧ . . . ∧ αi1n(t1n) ∧ αi21(t21) ∧ . . . ∧ αi2n(t2n)).

Let t1 = (t11, . . . , t1n) and t2 = (t21, . . . , t2n) be a pair of tuples from (S11, . . . , S1n)

and (S21, . . . , S2n), respectively. Since ((t11, . . . , t1n), (t21, . . . , t2n)) satisfy αi, they

123

will be in the resulting order relation �R′ , i.e., t1 �R′ t2. It follows t1 �R′ t2
for any pair of tuples t1 and t2 from (S11, . . . , S1n) and (S21, . . . , S2n), and hence

(S11, . . . , S1n) �R′ (S21, . . . , S2n). In other words, any conjunction αi in the first

part
∨
i α

i decides the order between a pair of combinations of minimal subsequences

(S11, . . . , S1n) and (S21, . . . , S2n) from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

Using the same technique in the proof of Lemma 4.10, we can prove that
∨
i α

i

defines a linear order among all combinations of minimal subsequences (S1i1 , . . . , Snin)

from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉. Suppose that
∨
i α

i does not define a linear or-

der among all combinations of minimal subsequence (S1i1 , . . . , Snin) from 〈R1,�R1

〉, . . . , 〈Rn,�Rn〉. There are two cases:

Case 1: Assume that there exist two combinations of subsequence, say (S11, . . . , S1n)

and (S21, . . . , S2n), such that both (S11, . . . , S1n) �R′ (S21, . . . , S2n) and

(S21, . . . , S2n) �R′ (S11, . . . , S1n) hold. For any t1 ∈ (S11, . . . , S1n) and

t2 ∈ (S21, . . . , S2n), by this assumption, (t1, t2) ∈�R′ and (t2, t1) ∈�R′ hold at

the same time. This is a contradiction to the fact that the output order �R′ is a

linear order. Hence, the assumption in Case 1 does not hold.

Case 2: Assume that there exist two combinations of subsequence, say (S11, . . . , S1n)

and (S21, . . . , S2n), such that neither (S11, . . . , S1n) �R′ (S21, . . . , S2n) nor

(S21, . . . , S2n) �R′ (S11, . . . , S1n) holds; their order in output is not specified by∨
i α

i. By this assumption, for any pair of tuples t1 ∈ (S11, . . . , S1n) and t2 ∈
(S21, . . . , S2n), their order in the output is not defined by

∨
i α

i. Because the out-

put order is a linear order on all combinations of tuples from n ordered relations,

the order of t1 and t2 must be decided by ψ′. Suppose that ψ′ decides t1 �R′ t2.
Since (S11, . . . , S1n) and (S21, . . . , S2n) are combinations of minimal subsequence,

all pairs of tuples from (S11, . . . , S1n) and (S21, . . . , S2n) must have the same or-

der if they have any order. Then, for any pair of tuples t1 ∈ (S11, . . . , S1n) and

t2 ∈ (S21, . . . , S2n), we have t1 �R′ t2. It follows (S11, . . . , S1n) �R′ (S21, . . . , S2n),

which is a contradiction to the assumption.

We have proven that
∨
i α

i defines a linear order among all combinations of min-

imal subsequences (S1i1 , . . . , Snin), which are specified by all conjuncts αi. Assume

that each subsequence Skik (k = 1, ..., n) keeps the original order from the input,

and can be expressed by ordered operation

Ekik〈Rk,�Rk
〉,

where Ekik is of the form

Ekik = E1
kik
∩ ... ∩ Ej

kik
,

124

and E1
kik
, ..., Ej

kik
could be one of the following forms:

1. firsti (〈R,�R〉);

2. 〈R,�R〉− firsti (〈R,�R〉);

3. lasti (〈R,�R〉);

4. 〈R,�R〉− lasti (〈R,�R〉).

Next, we consider the second part of ψ,∨
j

βj(t11, . . . , t1n, t21, . . . , t2n).

To compose a linear order on the Cartesian product of data relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉, the order between each pair of tuples from the same com-

bination of subsequences has to be decided by the order formula ψ′. This order

inside a combination of subsequences is decided by the second part of ψ,∨
j

βj(t11, . . . , t1n, t21, . . . , t2n).

Let (Si11, . . . , Sinn) be a combination of minimal subsequences specified by

αj1(t11), ..., α
j
n(t1n) on 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, respectively. For any pair of tuples

(t11, . . . , t1n) and (t21, . . . , t2n) from the same combination of minimal subsequences

(Si11, . . . , Sinn), we always can find a j such that βj decides the order of this pair

in the result because the output order is a total order on all combinations of tuples

from input relations.

Thus, the conjunction βj is equivalent to

(αj1(t11) ∧ . . . ∧ αjn(t1n) ∧ αj1(t21) ∧ . . . ∧ αjn(t2n))

∧ ψj(t11, . . . , t1n, t21, . . . , t2n),

where the conjunctαj1(t1i) defines a minimal subsequence Sji over 〈Ri,�Ri
〉; and

ψj(t11, . . . , t1n, t21, . . . , t2n) decides the real order in the combination of minimal

subsequences and is defined by the BNF rule

ψj = t �Ri
t′ | ¬ψj | ψj ∧ ψj.

The conjunct ψj has this form because t1k, . . . , t2k, t2k, . . . , t1k are only t-variables

in minimal subsequence Sji, and appear only in forms t1k �Rk
t2k and t2k �Rk

t1k,

for k = 1, . . . , n.

125

Let Sijkj (j = 1, ..., n) be the ij-th subsequence in the input ordered relation

〈Rkj ,�Rkj
〉. Since ψj defines the lexicographic order inside the combination of

minimal subsequence (Si1k1 , . . . , Sinkn), it is equivalent to a normal form

ε(t1k1 �R t2k1) ∨ (t1k1 = t2k1 ∧ ε(t1k2 �R t2k2)) ∨ . . .

∨ (t1k1 = t2k1 ∧ . . . ∧ t1kn−1 = t2kn−1 ∧ ε(t1kn �R t2kn)),

where ε(t1kn �R t2kn) is either t1kn �R t2kn or t2kn �R t1kn . The combination

(k1, . . . , kn) is a permutation of (1, . . . , n), which decides the major to minor order

in which 〈Rk1 ,�Rk1
〉, . . . , 〈Rkn ,�Rkn

〉 serve in the output order.

Intuitively, ψj defines a lexicographical order on (Si1k1 , . . . , Sinkn), and each

minimal subsequence has an order identical or reverse to the original input or-

der. Therefore, each combination of minimal subsequence (Si1k1 , . . . , Sinkn) can be

expressed by an algebraic expression in the ordered conjunctive algebra CAT
� as

follows:

β(Ei1,j1(〈Rk1 ,�Rk1
〉)) n . . .n β(Ein,jn(〈Rkn ,�Rkn

〉)),

where the sequence (k1, . . . , kn) is a permutation of (1, . . . , n), which indicates the

order in which the left-nested-loop product operations are applied to the subse-

quences of 〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

In conclusion, the ordered query 〈φ′, ψ′〉 (where φ′ can be expressed by R1 ×
· · · × Rn) can be expressed by a CAT

� expression,⋃
(β(Ei1,j1(〈Rk1 ,�Rk1

〉)) n . . . n β(Ein,jn(〈Rkn ,�Rkn
〉))).

We now consider the data query φ. If there are selections and projections in the

normal form of φ, order-preserving selections and order-preserving projections are

applied to the above algebraic expression correspondingly because order-preserving

selections and projections can propagate through left nested-loop products.

Therefore, any CQT
� query 〈φ, ψ〉 on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉

is equivalent to an ordered query expressed in CAT
�,

πA(σp(
⋃

(β(Ei1,j1(〈Rk1 ,�Rk1
〉)) n . . . n β(Ein,jn(〈Rkn ,�Rkn

〉))))),

where β is either µ or ν, and
⋃

is an order concatenation operator. The combination

(k1, . . . , kn) is a permutation of (1, . . . , n), different in different combinations of

subsequence (Si1k1 , . . . , Sinkn). The expression Eik,jk is of the form

Eik,jk = Eik ∩ Ejk ,

for k = 1, ..., n, and Eik and Ejk could be one of the following forms:

126

1. firsti (〈R,�R〉);

2. 〈R,�R〉− firsti (〈R,�R〉);

3. lasti (〈R,�R〉);

4. 〈R,�R〉− lasti (〈R,�R〉).

2

The completeness proof for CAT
� is similar to that for CAX

� . The only difference

is that the output order of an ω query in CQT
� is a linear order of minimal sub-

sequences; each minimal subsequence can be expressed with top operations, order

reverse and order reduction operations. A conjunction of two existentially quan-

tified formulas on t-variables can be expressed with an order intersection on their

ordered algebraic expressions. The following examples demonstrate how to express

CQT
� queries with order algebraic expressions CAT

�.

Example 4.12 Consider the queries in Example 4.2. These CQT
� queries can be

expressed with ordered operators in CAT
�.

(1) For the first query, we first formulate “the first employee” as:

E1 = τ〈EMP,�EMP〉.

Next, “the rest of employees except the first two” is expressed as:

E2 = 〈EMP,�EMP〉 − E1.

Finally, the first query is represented with an ordered algebraic expression in

CAT
� as follows:

E2 ∪ E1.

(2) The second query can be formulated with an ordered algebraic expression in

CAT
� as follows:

σDepartment=“Sales”(ν(〈EMP,�EMP〉)).

This chapter focuses on the second class of ordered conjunctive queries CQT
�,

and proves that the ordered algebra CAT
� is complete in the sense that it can express

the set of CQT
� under certain constraints. The following chapter will explore the

more general class of ordered conjunctive queries, CQ�.

127

Chapter 5

Ordered Conjunctive Queries

CQ�

In the previous two chapters two classes of ordered conjunctive queries, CQX
� and

CQT
�, are explored in terms of their completeness problems. In this chapter, we

investigate the general class of ordered conjunctive queries, CQ�, whose output

orders are decided by both t-variables and x-variables.

The remainder of this chapter will proceed as follows. In Section 5.1, general

ordered conjunctive queries CQ� are formally defined in the first-order logic FO�,

and then an ordered algebra, CA�, is proposed for CQ� in Section 5.2. Transforma-

tion rules are introduced and proven for primitive and derived ordered operations

in CA� in Section 5.3. Finally, the Completeness Theorem of ordered conjunctive

queries CQ� is proven in Section 5.4.

5.1 Ordered Conjunctive Queries CQ�

The ordered conjunctive query CQ� is a generalization of the ordered conjunctive

queries CQX
� and CQT

�. The order specification of a CQ� query combines both

data predicates and quantifiers on t-variables; however, a CQ� query must satisfy

a restriction, which we call the Separation Property.

Definition 5.1 (Separation Property) Let 〈ϕ, ψ〉 be an FO� ordered query on

an ordered relation 〈R,�R〉. The order specification ψ(t1, t2) is separable in FO�,

128

if and only if there exists an equivalent formula in FO�, which is a boolean combi-

nation of existentially quantified formulas with only t1 free, existentially quantified

formulas with only t2 free, and atomic formulas in the form t1 � t2 or t2 � t1.

Intuitively, an FO� order query ψ(t1, t2), satisfying this Separation Property,

can be rewritten into a normal form∨
ψ1(t1) ∧ ψ2(t2) ∧ ψ3(t1, t2),

where ψ1(t1) and ψ2(t2) are existentially quantified formulas with only t1 free and

existentially quantified formulas with only t2 free respectively, and where ψ3(t1, t2)

is an atomic formula in the form t1 � t2 or t2 � t1. Note that there is no existentially

quantified formula with both t1 and t2 free in this normal form, so free t-variables,

t1 and t2, always appear in existentially quantified formulas separately.

We need the Separation Property in the definition of general ordered conjunc-

tive queries CQ� because restricting CQ� to those with the Separation Property

ensures that the proposed algebra CA� is complete for CQ�. We now give a

formal definition to general ordered conjunctive queries, CQ�, which satisfies the

Separation Property.

Definition 5.2 (Ordered Conjunctive Queries CQ�)

A CQ� ordered query 〈ϕ, ψ〉 on ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉 is constructed as follows:

ϕ ::= R(ti, x1, . . . , xn)

| t = (t1, t2)

| xi = xj

| ϕ ∧ ϕ
| ∃xi.ϕ
| ∃ti.ϕ.

And, the order query ψ is a first-order formula in the form of:

ψ ::= R(ti, x1, . . . , xn)

| t = (t1, t2)

| xi = xj

| ψ ∧ ψ
| ∃xi.ψ
| ∃ti.ψ
| ψ ∧ ψ′,

where the order specification ψ′ is defined by the BNF rule:

129

ψ′ ::= R(ti, x1, . . . , xn)

| ti �R tj
| xi = xj

| ψ′ ∧ ψ′

| ¬ψ′

| ∃xi.ψ
| ∃ti.ψ,

where ψ has exactly two t-variables, t1 and t2, as the only free variables and ψ satis-

fies the Separation Property; the order specification ψ′ has all x-variables bounded.

Again, there is a two-level structure in the definition of the order query ψ. In a

valid ordered conjunctive query in CQ�, the first level of ψ ensures that ψ defines

an order for any pair of tuples that satisfies the data query ϕ. The second level of

ψ is the subformula ψ′, which defines real ordering among the resulting tuples.

In this definition, the construction rule of the order query ψ′ contains both

data predicates on x-variables and quantifiers on t-variables, which combines the

previous two languages CQX
� and CQT

�. Furthermore, the order query ψ′ satisfies

the Separation Property (see Definition 5.1), which leads to the possibility that

there is a complete ordered algebra for the generalized CQ�.

The language CQ� expresses a class of ordered conjunctive queries whose output

ordering is decided by both x-variables and t-variables, as illustrated by the example

below.

Example 5.3 Consider the ordered relation 〈EMP,�EMP〉 in Example 2.5. Here are

some examples of CQ� queries:

(1) Return all employees in EMP in an order such that tuples before the first

employee, whose salary is $60000, move to the end of the relation. This query

can be formulated in CQ�:

〈{(t, x1, x2, x3, x4)| EMP (t, x1, x2, x3, x4)},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14)

∧∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24)

∧ (((∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′14 = 60000 ∧ t′1 �EMP t1)

∧ (¬∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′14 = 60000 ∧ t′1 �EMP t2))

∨

130

((∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′14 = 60000 ∧ t′1 �EMP t1)

∧ (∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′14 = 60000 ∧ t′1 �EMP t2)

∧ t1 �EMP t2)

∨
((¬∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x

′
11, x

′
12, x

′
13, x

′
14)

∧x′14 = 60000 ∧ t′1 �EMP t1)

∧ (¬∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′14 = 60000 ∧ t′1 �EMP t2)

∧ t1 �EMP t2)}〉.

(2) Output all employees in an order which reverses the employees between the

first and second employees in the department Sales, while keeping the rest in

the original order. This query can be formulated in CQ�:

〈{(t, x1, x2, x3, x4)| EMP (t, x1, x2, x3, x4)},
{(t1, t2)| ∃x11, x12, x13, x14. EMP (t1, x11, x12, x13, x14)

∧∃x21, x22, x23, x24. EMP (t2, x21, x22, x23, x24)

∧ (((¬∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′13 = “Sales” ∧ t′1 �EMP t1)

∧ (¬∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′13 = “Sales” ∧ t′1 �EMP t2)

∧t1 �EMP t2)

∨
((∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x

′
11, x

′
12, x

′
13, x

′
14)

∧x′13 = “Sales” ∧ t′1 �EMP t1

∧ ¬∃t′2, x′21, x′22, x′23, x′24, t′3, x′31, x′32, x′33, x′34.
EMP (t′2, x

′
21, x

′
22, x

′
23, x

′
24) ∧ x′23 = “Sales”

∧ EMP (t′3, x
′
31, x

′
32, x

′
33, x

′
34) ∧ x′33 = “Sales”

∧ t′3 �EMP t
′
2 ∧ t′2 �EMP t1)

∧ (∃t′1, x′11, x′12, x′13, x′14. EMP (t′1, x
′
11, x

′
12, x

′
13, x

′
14)

∧x′13 = “Sales” ∧ t′1 �EMP t2

131

∧ (¬∃t′2, x′21, x′22, x′23, x′24, t′3, x′31, x′32, x′33, x′34.
EMP (t′2, x

′
21, x

′
22, x

′
23, x

′
24) ∧ x′23 = “Sales”

∧ EMP (t′3, x
′
31, x

′
32, x

′
33, x

′
34) ∧ x′33 = “Sales”

∧ t′3 �EMP t
′
2 ∧ t′2 �EMP t2))

∧¬t1 �EMP t2)

∨
((∃t′1, x′11, x′12, x′13, x′14, t′2, x′21, x′22, x′23, x′24.
EMP (t′1, x

′
11, x

′
12, x

′
13, x

′
14) ∧ x′13 = “Sales”

∧ EMP (t′2, x
′
21, x

′
22, x

′
23, x

′
24) ∧ x′23 = “Sales”

∧ t′1 �EMP t
′
2 ∧ t′2 �EMP t1)

∧ (∃t′1, x′11, x′12, x′13, x′14, t′2, x′21, x′22, x′23, x′24.
EMP (t′1, x

′
11, x

′
12, x

′
13, x

′
14) ∧ x′13 = “Sales”

∧ EMP (t′2, x
′
21, x

′
22, x

′
23, x

′
24) ∧ x′23 = “Sales”

∧ t′1 �EMP t
′
2 ∧ t′2 �EMP t2)

∧ t1 �EMP t2))}〉.

5.2 An Ordered Conjunctive Algebra CA�

In the previous section general ordered conjunctive queries CQ� was formally de-

fined. In this section an ordered conjunctive algebra CA� is proposed for general

ordered conjunctive queries CQ�, and then transformation rules are studied for

primitive and derived ordered operations in CA�.

5.2.1 Overview of Ordered Algebra CA�

In the ordered conjunctive algebra CA�, a set of ordered operators are proposed to

express all CQ� expressible ordered conjunctive queries. Certain ordered operators

are preserved from CAX
� and CAT

� and others are exclusively developed for CA�.

Next, formal definitions are provided for ordered operations in CA�. Both data

and order specifications of an ordered operator are defined in the two-sorted first-

order calculus FO�. Essentially, each ordered operator in this algebra is a valid

CQ� ordered relational query. The ordered algebra CA� consists of a set of ordered

operators:

132

(i) Order-preserving selection operator σ : R� × P → R�;

(ii) Order-preserving projection operator π : R� × A → R�;

(iii) Left nested-loop product n : R� × R� → R�;

(iv) Ordered concatenation operator ∪ : R ×R→ R;

(v) Order reduction operator − : R ×R→ R;

(vi) Order intersection operator ∩ : R ×R→ R;

(vii) Order identity operator µ : R→ R;

(viii) Order reverse operator ν : R→ R;

(ix) Top operator τ : R→ R;

(x) Until operator untilp: R → R.

The ordered operators in CA� are defined in analogy to those in CAT
�, with

the exception of the until operator. In the following subsections, the until operator

and derived operators are formally defined.

5.2.2 Until Operation

The until operator untilp: R → R is an operator exclusive to the ordered con-

junctive algebra CA�. The subscript p is a predicate on x-variables. The argument

and resulting ordered relations share the same schema. The formal definition of

the until operator is given as follows:

untilp (〈R,�R〉) = 〈{(t, x̄)| R(t, x̄) ∧ ∃t1, x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧ t �R t1 ∧ ¬t = t1

∧¬∃t2, x̄2.R(t2, x̄2) ∧ p(t2, x̄2)

∧ t2 �R t1 ∧ ¬t2 = t1},
{(t1, t2)| ∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

∧¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧ t1 �R t2}〉.

In this definition, the operator takes an ordered relation as its argument and

returns, as its result, the tuples before the first tuple satisfying the predicate. The

133

tuples in the result are kept in the original order of the argument. The tuple

identifiers in the resulting ordered relation are identical to those in the argument

relation. Please note that the until operation is not definable in CQ� because it

has negations in its data query.

Lemma 5.4 An until operation is a valid ordered relational query.

Proof: Let untilp (R) = 〈R′,�R′〉, where R = 〈R,�R〉. By definition of the

until operation, R′ and �R′ are inclusively dependant on each other. We now prove

that �R′ is a linear order of R′.

(1) Let t1, t2, t3 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t3) ∈�R′

=⇒ (∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧ t1 �R t2)
∧(∃x̄2, x̄3.R(t2, x̄2) ∧ R(t3, x̄3)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t2 �R t
′
1 ∧ t3 �R t

′
1 ∧ ¬t2 = t′1 ∧ ¬t3 = t′1

∧ t2 �R t3)
=⇒ (∃x̄1, x̄3.R(t1, x̄1) ∧ R(t3, x̄3)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t3 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t3 = t′1

∧ t1 �R t3)
=⇒ (t1, t3) ∈�R′ .

(2) Let t1, t2 ∈ R′[T],

(t1, t2) ∈�R′ ∧ (t2, t1) ∈�R′

=⇒ (∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

134

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧ t1 �R t2)
∧(∃x̄2, x̄1.R(t2, x̄2) ∧ R(t1, x̄1)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t2 �R t
′
1 ∧ t1 �R t

′
1 ∧ ¬t2 = t′1 ∧ ¬t1 = t′1

∧ t2 �R t1)

=⇒ ∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧t1 �R t2 ∧ t2 �R t1
=⇒ t1 = t2.

(3) Let t1 and t2 be two arbitrary tuples in R′. By definition of the order-preserving

projection,

t1, t2 ∈ R′[T]

=⇒ ∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

=⇒ ∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧(t1 �R t2 ∨ t2 �R t1)

=⇒ (∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧ t1 �R t2)

135

∨(∃x̄1, x̄2.R(t1, x̄1) ∧ R(t2, x̄2)

∧ ∃t′1, x̄′.R(t′, x̄′) ∧ p(t′, x̄′1)

¬∃t′2, x̄′2.R(t′2, x̄
′
2) ∧ p(t′2, x̄

′
2)

∧ t′2 �R t
′
1 ∧ ¬t′2 = t′1

∧ t1 �R t
′
1 ∧ t2 �R t

′
1 ∧ ¬t1 = t′1 ∧ ¬t2 = t′1

∧ t2 �R t1)
=⇒ t1 �R′ t2 ∨ t2 �R′ t1.

This finishes the proof that the until operation is a valid ordered relational

query. 2

5.2.3 Derived Operations

The previous section has defined all ordered operations in the ordered conjunctive

algebra CA�. Before the completeness theorem is proven for the general ordered

conjunctive queries in CA� in the following section, a number of derived operations

are introduced, which are defined by ordered operations in CA�. These derived

operations are used to simplify the notations when it is applied in the following

development.

(1) The first operator firstk: R→ R. Its definition is analogous to that in CAT
�.

(2) The last operator lastk: R → R. Its definition is also analogous to that in

CAT
�.

(3) The since operator sincep: R → R is derived from the until operator. The

subscript p is also a predicate on x-variables. A formal definition of the since

operator is given as follows:

sincep (R) = ν(untilp (ν(R))),

where p is a predicate on x-variables.

The since operator takes an ordered relation as its argument and returns, as

its result, the tuples after the first tuple satisfying the predicate. The tuples in

the result are kept in the original order of the argument. The tuple identifiers

in the resulting ordered relation are identical to those in the argument relation.

136

5.3 Transformation Rules

In this section, we provide a set of transformation rules for the ordered conjunctive

algebra CA�. Many of them are identical to those in CAX
� and CAT

�; they are

related to those ordered operators that are also included in CAX
� and CAT

�. The

other transformation rules are developed exclusively to CA�; they are related to

those ordered operators that exclusive to the ordered conjunctive algebra CA�.

In ordered relational databases, two ordered queries are equivalent if they have

both equivalent data queries and equivalent order queries. In the following trans-

formation rules, each argument can be either an ordered relation or an expression

of ordered operations.

Proposition 5.5 In addition to the transformation rules in Propositions 3.13 and

4.6, the following transformation rule holds in CA�:

(R20) untilp (πA(R)) = πA(untilp (R)) if Att(p) ⊆ A

Proof:

(R20) Without loss of generality, we assume that A = {X1, . . . , Xk}, and k ≤ n.

By definition of the order-preserving projection,

πA〈R,�R〉 = 〈{(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x1, . . . , xn)},
{(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧∃x21, . . . , x2n.R(t2, x21, . . . , x2n) ∧ t1 �R t2}〉.

Then,

untilp (πA〈R,�R〉) = 〈{(t, x1, . . . , xk) | ∃xk+1, . . . , xn.R(t, x1, . . . , xn)

∧∃t1, x̄1.R(t1, x̄1) ∧ p(t1, x̄1)

∧ t �R t1 ∧ ¬t = t1},
{(t1, t2) | ∃x11, . . . , x1n.R(t1, x11, . . . , x1n)

∧∃t′, x̄′.R(t′, x̄′) ∧ p(t′, x̄′)

∧ t1 �R t
′ ∧ ¬t′ = t1

∧∃x21, . . . , x2n.R(t2, x21, . . . , x2n)

∧∃t′, x̄′.R(t′, x̄′) ∧ p(t′, x̄′)

∧ t2 �R t
′ ∧ ¬t′ = t2

∧t1 �R t2}〉
= πA(untilp (R)).

137

2

5.4 Completeness of CA�

In this section, the expressive power of the general ordered conjunctive algebra

CA� is examined by being compared with the first-order query language CQ�.

Especially, the ordered conjunctive algebra CA� is proven to be complete in that

any ordered conjunctive query in CQ� can be expressed by a finite sequence of

ordered operations from CA�. To prove the completeness of CA�, a number of

notations need to be defined, which will be used in proofs later.

Definition 5.6 (Subsets of Ordered Relations) Let 〈R,�R〉 be an ordered re-

lation, and ψ be a first-order formula defined by the BNF rule:

ψ = R(t, x̄) | xi = xj | t �R t′ | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃t.ψ.

A subset S of an ordered relation 〈R,�R〉 is a set of tuples which satisfy a

subformula of ψ, ψ′, with one t-variable as the only free variable. We say the

subset S is specified by the subformula ψ′.

Definition 5.7 (Combinations of Subsets) Let 〈R1,�R1〉, . . . , 〈Rn,�Rn〉 be n

ordered relations, and ψ be a first-order formula defined by the BNF rule:

ψ = R(t, x̄) | xi = xj | t �R t′ | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃t.ψ.

Let Sji be an arbitrary subset of 〈Ri,�Ri
〉, specified by a subformula of ψ, for

i = 1, ..., n. A combination of subsets (Sj1 , . . . , Sjn) is a set of the tuples, each of

which is a combination of tuples from Sj1 , . . . , Sjn, respectively.

Note that a subset S is a partition when S is specified by a conjunction of data

predicates on x-variables; a subset S is a subsequence when S is specified by a

boolean combination of predicates on t-variables. Furthermore, a combination of

subsets (Sj1 , . . . , Sjn) is a subset of R1 × . . .× Rn.

138

Definition 5.8 (Minimal Subsets) Let 〈R,�R〉 be an ordered relation, and ψ be

a first-order formula defined by the BNF rule:

ψ = R(t, x̄) | xi = xj | t �R t′ | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃t.ψ.

A subset S of an ordered relation 〈R,�R〉, specified by a subformula of ψ, is a

minimal subset if there is no subset S ′ in 〈R,�R〉 which is specified by a subformula

of ψ and satisfies S ′ ⊂ S.

We first prove a lemma for a special case of CQ�, which is the ω queries. The

output of an ω query has the same data relation as the input ordered relation. An

ω query in CQ� is an ordered conjunctive query in CQ� with an identity data

query.

Lemma 5.9 Any ω query in CQ� is equivalent to an ordered query expressed by

a finite sequence of ordered operations from CA�.

Proof: Let a CQ� query 〈ϕ, ψ〉 be an ω query on 〈R,�R〉, and let 〈R′,�R′〉 be

the output ordered relation.

By definition of the ω query, the query 〈ϕ, ψ〉 has the form of

〈ϕ, ψ〉(〈R,�R〉) = 〈{(t, x̄)|R(t, x̄)}, {(t1, t2)|ψ(t1, t2)}〉,

and

ψ = ∃x̄1.R(t1, x̄1) ∧ ∃x̄2.R(t2, x̄2) ∧ ψ′(t1, t2).

By definition of CQ�, ψ′ is a first-order formula defined by the BNF rule

ψ′ = R(t, x̄) | t �R t′ | xi = xj | ¬ψ′ | ψ′ ∧ ψ′ | ∃x.ψ′ | ∃t.ψ′,

and ψ′ has the Separation Property.

Let t1 and t2 be the two free t-variables in ψ′. If t1 and t2 satisfy ψ′(t1, t2), then

t1 �R′ t2. By definition, ψ′ is a boolean combination of existentially quantified

formulas with only t1 free, with existentially quantified formulas with only t2 free,

and with atomic formulas t1 � t2 or t2 � t1. Thus, the top level boolean connectives

can be rearranged and ψ′ can be rewritten as a disjunction of conjunctions in the

form ∨
i

(αi1(t1) ∧ αi2(t2)) ∨
∨
j

βj(t1, t2),

139

where αi1(t1) is an existentially quantified formula with only t1 free, and αi2(t2) is

an existentially quantified formula with only t2 free, and βj(t1, t2) is a conjunction

of existentially quantified formulas with only t1 free, with existentially quantified

formulas with only t2 free, and with atomic formulas t1 � t2 or t2 � t1. Therefore,

if t1 and t2 satisfy one of αi1(t1) ∧ αi2(t2) or βj(t1, t2), then t1 �R′ t2.

Next, we consider the first part of the order formula ψ′, which is
∨
i(α

i
1(t1) ∧

αi2(t2)). It will be proven that
∨
i(α

i
1(t1) ∧ αi2(t2)) is equivalent to a disjunction of

conjunction of the form∨
i

(αi<t1(t1) ∧ α
i
t1

(t1) ∧ αi>t1(t1)) ∧ (αi<t2(t2) ∧ α
i
t2

(t2) ∧ αi>t2(t2)),

where

• αi<tj (j = 1, 2) is an existentially quantified formula on tj, and all quantifiers

are relativized to < tj.

• αitj (j = 1, 2) is an atomic formula on tj.

• αi>tj (j = 1, 2) is an existentially quantified formula on tj, and all quantifiers

are relativized to > tj.

Since ψ′ has the Separation Property, and all x-variables are bounded, all data

predicates can be viewed as predicates on t-variables. Thus, ψ′ can be viewed

as a formula without data predicates, i.e., a formula with only t-variables and

predicates on t-variables. Hence, by the Separation Theorem [39], the formula

αi1(t1) is equivalent to a disjunction of the conjunctions of the form∨
i

(αi<t1(t1) ∧ α
i
t1

(t1) ∧ αi>t1(t1)),

and αi1(t2) is equivalent to a disjunction of the conjunctions of the form∨
j

(αj<t2(t2) ∧ α
j
t2(t2) ∧ α

j
>t2(t2)).

Then, each conjunct αi1(t1) ∧ αi2(t2) is equivalent to∨
i,j

(αi<t1(t1) ∧ α
i
t1

(t1) ∧ αi>t1(t1)) ∧ (αj<t2(t2) ∧ α
j
t2(t2) ∧ α

j
>t2(t2)).

Consequently,
∨
i(α

i
1(t1) ∧ αi2(t2)) is equivalent to a disjunction of conjunctions∨

i

(αi<t1(t1) ∧ α
i
t1

(t1) ∧ αi>t1(t1)) ∧ (αi<t2(t2) ∧ α
i
t2

(t2) ∧ αi>t2(t2)).

We now need to prove that αi<t1 is equivalent to a normal form of a conjunction

of the form (or a negation of the form)

140

∃s1, x1, ..., sn, xn.α1(s1, x1) ∧ . . . ∧ αn(sn, xn) ∧ s1 �R ... �R sn �R t1,

where αj (j = 1, ..., n) is a conjunction of atoms in forms of R(s, x̄) or R(s, x̄)∧xi =

xj.

This can be proven by induction on the depth of quantifiers n in αi<t1 . Recall

that αi<t1 is defined by the BNF rule

ψ′ = R(t) | t �R t′ |xi = xj | ¬ψ′ | ψ′ ∧ ψ′ |∃t.ψ′.

Base case: in the case that n = 0, t1 is the only possible t-variable in αi<t1 . Hence,

αi<t1 is empty in this case.

In the case that n = 1, by the construction rule, αi<t1 may have the form

∃s1, x1.αi(s1, x1) ∧ s1 �R t1 or ¬∃s1, x1.αi(s1, x1)s1 �R t1. This is already in the

normal form.

Inductive step: Assume that αi<t1 has the normal form in the case n. It needs to

show that this hypothesis holds in the case n+ 1.

Let ϕ be an arbitrary existentially quantified formula on t1 and all quantifiers

are relativized to < t1. By the induction hypothesis, ϕ has the normal form of a

conjunction of the form (or a negation of the form)

∃s1, x1, ..., sn, xn.α1(s1, x1) ∧ . . . ∧ αn(sn, xn) ∧ s1 �R ... �R sn �R t1.

For the case of n+ 1, it is sufficient to treat the cases

∃s, x.ϕ(t1) ∧ α(s, x) ∧ ϕ′(s, s1, x1, ..., sn, t1),

and

¬∃s, x.ϕ(t1) ∧ α(s, x) ∧ ϕ′(s, s1, x1, ..., sn, t1),

where ϕ has the quantifier depth n, the part α(s, x) is a conjunction of forms R(s, x)

and p(x), and ϕ′ is a conjunction of forms ti �R tj.

First, the case ∃s, x.ϕ(t1)∧α(s, x)∧ϕ′(s, s1, x1, ..., sn, t1) is considered. Suppose

that s is related to one of conjuncts in ϕ in the above form. Since all quantifiers are

relativized to < t1, and s1 �R ... �R sn �R t1, so ϕ′ must be in one of the following

forms:

1. s = sj (j = 1, ..., n),

141

2. s �R s1,

3. sj �R s �R sj+1 (j = 1, ..., n− 1),

4. sn �R s �R t1.

In the first case, s is one of sj, for j = 1, ..., n. Thus, ∃s, x.ϕ(t1) ∧ α(s, x) ∧
ϕ′(s, s1, x1, ..., sn, t1) is equivalent to ϕ∧α(s, x), and hence is equivalent to a normal

form by the induction hypothesis.

In the last three cases, the formula ∃s, x.ϕ(t1)∧α(s, x)∧ϕ′(s, s1, x1, ..., sn, t1) is

equivalent to a normal form such that each conjunct is the same as its counterpart

in the normal form of ϕ, except that the conjunct which is related to s changes to

the following form

∃s′1, ..., s′n, s′n+1.α
′
1(s
′
1) ∧ . . . ∧ α′n(s′n)

∧α′n+1(s
′
n+1) ∧ s′1 �R ... �R s′n �R s′n+1 �R t1,

where s′1, ..., s
′
n, s
′
n+1 is a rearranged sequence of s and s1, ..., si1 with s placed ac-

cordingly to the different cases. The subformulas α′1, ..., α
′
n, α

′
n+1 are corresponding

to s′1, ..., s
′
n, s
′
n+1 respectively.

Then, the case of ¬∃s, x.ϕ(t1) ∧ α(s, x) ∧ ϕ′(s, s1, x1, ..., sn, t1) is considered.

Suppose that s is related to one of the conjuncts of ϕ in the above form. Since all

quantifiers are relativized to < t1, and s1 �R ... �R sn �R t1, the formula ϕ′ must

be in one of the following forms:

1. s = sj (j = 1, ..., n),

2. s �R s1,

3. sj �R s �R sj+1 (j = 1, ..., n− 1),

4. sn �R s �R t1.

In the first case, s is one of sj, for j = 1, ..., n. Thus, the formula ¬∃s, x.ϕ(t1)∧
α(s, x) ∧ ϕ′(s, s1, x1, ..., sn, t1) is equivalent to ϕ ∧ α(s, x), and hence is equivalent

to a normal form by the induction hypothesis.

In the last three cases, ¬∃s, x.ϕ(t1)∧α(s, x)∧ϕ′(s, s1, x1, ..., sn, t1) is equivalent

to a normal form such that each conjunct is the same as its counterpart in the

normal form of ϕ, except that the conjunct which is related to s changes to the

following form

¬∃s′1, ..., s′n, s′n+1.α
′
1(s
′
1) ∧ . . . ∧ α′n(s′n) ∧ α′n+1(s

′
n+1)

∧s′1 �R ... �R s′n �R s′n+1 �R t1,

142

where s′1, ..., s
′
n, s
′
n+1 is a rearranged sequence of s and s1, ..., si1 with s placed ac-

cordingly to the different cases. The subformulas α′1, ..., α
′
n, α

′
n+1 are corresponding

to s′1, ..., s
′
n, s
′
n+1, respectively.

This completes the proof that αi<t1 is equivalent to a formula in the normal form

of a conjunction of the form (or a negation of the form)

∃s1, x1, ..., sn, xn.α1(s1, x1) ∧ . . . ∧ αn(sn, xn) ∧ s1 �R ... �R sn �R t1,

where αij (j = 1, ..., i1) is a conjunction of predicates in the form R(s, x) or

R(s, x) ∧ p(x).

Analogously, it can be proven that αi>t1 is equivalent to a formula in the normal

form of a conjunction of the form (or a negation of the form)

∃s1, x1, ..., sn, xn.α1(s1, x1) ∧ . . . ∧ αn(sn, xn) ∧ t1 �R s1 �R ... �R sn,

where αij (j = 1, ..., i1) is a conjunction of predicates in the form R(s, x) or R(s, x)∧
p(x). Analogously, αi<t2 , and αi>t2 are also equivalent to formulas in the normal

form.

In conclusion,
∨
i(α

i
1(t1) ∧ αi2(t2)) is equivalent to a disjunction of conjunctions∨

i

(αi<t1 ∧ α
i
t1
∧ αi>t1) ∧ (αi<t2 ∧ α

i
t2
∧ αi>t2),

where αi<t1 , α
i
>t1

, αi<t2 , and αi>t2 are conjunctive formulas in the normal form.

Next, it needs to be proven that each positive conjunct β in the normal form of

αi<t1 , which is

∃s1, x1, ..., sn, xn.α1(s1, x1) ∧ . . . ∧ αn(sn, xn) ∧ s1 �R ... �R sn �R t1,

can be expressed with a finite sequence of ordered operations from CA�. This can

be proven by induction on the quantifier depth n of the conjunct β.

Base case: In the case n = 0, t1 is the only possible t-variable, so the conjunct β is

always empty.

In the case n = 1, the conjunct β has the form ∃s1, x1.α1(s1, x1) ∧ s1 �R t1.

Thus, in the case that α1(s1, x1) = R(s1, x1), the conjunct β can be expressed with

ordered operations

R− τ(R);

143

in the case that α1(s1, x1) = R(s1, x1) ∧ p(x1), the conjunct β can be expressed

with ordered operations

R− untilp (R).

Induction Step: Assume that the conjunct with the quantifier depth n can be

expressed by an ordered algebraic expression in CA�. We want to prove that the

conjunct β with the quantifier depth n + 1 can also be expressed by an ordered

algebraic expression in CA�.

Without lost of generality, we assume that β is in the normal form

∃s1, x1, ..., sn, xn, sn+1, xn+1.α1(s1, x1) ∧ . . . ∧ αn(sn, xn)

∧αn+1(sn+1, xn+1) ∧ s1 �R ... �R sn �R sn+1 �R t1.

By induction hypothesis, the formula

∃s2, x2, ..., sn, xn, sn+1, xn+1.α
i
2(s2, x2) ∧ . . . ∧ αin(sn, xn)

∧αin(sn+1, xn+1) ∧ s2 �R ... �R sn �R sn+1 �R t1,

can be expressed by an ordered algebraic expression E(R) in CA�, then

(i) in the case that αi1(s1, x1) = R(s1, x1), the conjunct β can be expressed by

E(R− τ(R));

(ii) in the case that αi1(s1, x1) = R(s1, x1)∧p(x1), the conjunct β can be expressed

by

E(R− untilp (R)).

Heretofore, it has been proven that β in the positive conjunct form can be

expressed by a finite sequence of ordered operations from CA�. Consequently, we

can express ¬β,

¬∃s1, x1, ..., sn, xn, sn+1, xn+1.α1(s1, x1) ∧ . . . ∧ αn(sn, xn)

∧αn+1(sn+1, xn+1) ∧ s1 �R ... �R sn �R sn+1 �R t1,

by an ordered algebraic expression in CA�,

R− E(R),

where E(R) is the ordered algebraic expression of β.

144

Analogously, it can be proven that each positive conjunct β in the normal form

of αi>t1 ,

∃s1, ..., sn.R(s1) ∧ . . . ∧ R(sn) ∧ t1 � s1 �R ... �R sn,

can be expressed with ordered operations in CA�. This is also proven by induction

on the quantifier depth n of the conjunct β.

Base case: In the case n = 0, t1 is the only possible t-variable, so the conjunct β is

always empty.

In the case n = 1, the conjunct β could be a positive conjunct ∃s1, x1.α1(s1, x1)∧
t1 �R s1. Thus,

(i) in the case that αi1(s1, x1) = R(s1, x1), the conjunct β can be expressed with

ordered operations

Eβ = R− last1 (R);

(ii) in the case that αi1(s1, x1) = R(s1, x1)∧p(x1), the conjunct β can be expressed

with ordered operations

Eβ = R− sincep (R).

Induction Step: The conjunct with the quantifier depth n can be expressed by an

ordered algebraic expression in CA�. It needs to prove that the conjunct β with

the quantifier depth n+ 1 also can be expressed by an ordered algebraic expression

in CA�.

Without lost of generality, we assume that β is in the normal form

∃s1, x1, ..., sn, xn, sn+1, xn+1.α1(s1, x1) ∧ . . . ∧ αn(sn, xn)

∧αn+1(sn+1, xn+1) ∧ t1 �R s1 �R ... �R sn �R sn+1.

By induction hypothesis, the subformula

∃s1, x1, ..., sn, xn.α2(s1, x1) ∧ . . . ∧ αn(sn, xn)

∧t1 �R s1 �R ... �R sn,

can be expressed by an ordered algebraic expression E(R) in CA�, then

(i) in the case that αi1(s1, x1) = R(s1, x1), the conjunct β can be expressed by

Eβ = E(R− last1 (R));

145

Figure 5.1: An illustration of the conjunct β

β Eβ

∃s3, x3.R(s3, x3) ∧ p2(x3) ∧ s3 �R t1 R− untilp2 (R)

∃s2, x2, s3, x3.R(s2, x2) ∧ R(s3, x3) ∧ p2(x3) (R− τ(R))

∧s2 �R s3 ∧ s3 �R t1 − untilp2 (R− τ(R))

∃s1, x1, s2, x2, s3, x3.R(t1, x1) ∧ p1(x1) (R′ − τ(R′))

∧R(t2, x2) ∧ R(t3, x3) ∧ p2(x3) − untilp2 (R′ − τ(R′)),

∧s1 �R s2 ∧ s2 �R s3 ∧ s3 �R t1 where R′ = R− untilp1 (R)

Table 5.1: The construction of Eβ by induction

(ii) in the case that αi1(s1, x1) = R(s1, x1)∧p(x1), the conjunct β can be expressed

by

Eβ = E(R− sincep (R)).

In Figure 5.1, an example of conjunct β is illustrated. The conjunct β is in the

normal form
β = ∃s1, x1, s2, x2, s3, x3.R(t1, x1) ∧ p1(x1)

∧R(t2, x2) ∧ R(t3, x3) ∧ p2(x3)

∧s1 �R s2 ∧ s2 �R s3 ∧ s3 �R t1.

The algebraic expression of β in CA�, Eβ, is constructed by induction, as shown

in Table 5.1.

Consequently, we can express the conjunct ¬β,

¬∃s1, x1, ..., sn, xn, sn+1, xn+1.α1(s1, x1) ∧ . . . ∧ αn(sn, xn)

∧αn+1(sn+1, xn+1) ∧ t1 �R s1 �R ... �R sn �R sn+1,

by the ordered algebraic expression in CA�,

R− Eβ(R),

146

where Eβ(R) is the ordered algebraic expression of β in CA�.

Last, we consider αit1 in ψ′. Since there is no quantifier in αit1 , and it is a

conjunction of predicates R(t, x) and p(x), it can be expressed by the order identity

operation or by ordered selection operations in CA�.

In general, the conjunction αi<t1 ∧ α
i
t1
∧ αi>t1 can be expressed with ordered

operations

E1 ∩ E2 ∩ . . . ∩ Ek,

where each Ei (i = 1, ..., k) is an ordered algebraic expression, which is composed of

ordered operations in CA�: top operation τ , first operation firsti, last operation

lasti, until operation untilp, since operation sincep, ordered selection σ, and set

difference operation −. Intuitively, the conjunction αi<t1 ∧ α
i
t1
∧ αi>t1 represents

a subset S1 of 〈R,�R〉, which is decided by data predicates, by order of tuple

identifers, or by both data predicates and order of tuple identifers in this conjunct.

Analogously, it can be proven that αi<t2∧α
i
t2
∧αi>t2 can be expressed with ordered

operations in CA�. Intuitively, the conjunction αi<t2∧α
i
t2
∧αi>t2 represents a subset

S2 of 〈R,�R〉, which is decided by data predicates, by order of tuple identifiers, or

by both data predicates and order of tuple identifers in this conjunct.

It has been proven that we can express αi1(t1) and αi2(t2) with a sequence of

ordered operations in CA�. Suppose that S1 and S2 are specified by αi1(t1) and

αi2(t2) respectively. If any pair of tuples, t1 and t2, satisfies αi1(t1) ∧ αi2(t2), then

t1 ∈ S1 and t2 ∈ S2 hold. It follows that S1 is prior to S2 in the output order �R′ .

Let S1, . . . , Sn be subsets specified by
∨
i α

i
1(t1)∧αi2(t2). Without lost of general-

ity, we assume that S1, . . . , Sn is a set of disjoint minimal subsets, and
⋃
i=1,...,n Si =

〈R,�R〉. (If subsets are not disjoint or not minimal, we can always separate them

into minimal subsets.) It needs to be shown that
∨
i(α

i
1(t1)∧αi2(t2)) defines a linear

order on subsets S1, . . . , Sn.

This can be proven by contradiction. Suppose that
∨
i(α

i
1(t1)∧αi2(t2)) does not

define a linear order among the subsets S1, . . . , Sn. There are two cases:

In the first case, assume that there exist two subsets, say S1 and S2, such that

both S1 �R′ S2 and S2 �R′ S1 hold at the same time. If t1 ∈ S1 ∧ t2 ∈ S2, then

by the assumption (t1, t2) ∈�R′ and (t2, t1) ∈�R′ hold at the same time. This is

a contradiction to the fact that the output order �R′ is a linear order. Hence, the

assumption in Case 1 does not hold.

147

In the second case, assume that there exist two subsets, say S1 and S2, such

that neither S1 �R′ S2 nor S2 �R′ S1 holds; their order in output is not specified

by
∨
i α

i.

By this assumption, for any pair of tuples t1 ∈ S1 and t2 ∈ S2, their order in

the output is not defined by
∨
i α

i
1(t1)∧αi2(t2). Because the output order is a linear

and total order on all tuples, the order of t1 and t2 must be decided by ψ′. Suppose

that ψ′ decides t1 �R′ t2. Since S1 and S2 are minimal, all pairs of tuples from S1

and S2 respectively must have the same order if they have any order at all. Thus,

for any pair of tuples t1 and t2, if t1 ∈ S1 ∧ t2 ∈ S2, then t1 �R′ t2. It follows

S1 �R′ S2, which is a contradiction to the assumption.

Since ψ′ defines a linear order on all tuples in the input 〈R,�R〉, the order inside

each subset Si has to be decided by the second part of ψ′, which is
∨
j β

j(t1, t2). By

definition of CQ�, ψ′ satisfies the Separation Property, and therefore is equivalent

to a normal form ∨
j

(βj1(t1) ∧ β
j
2(t2) ∧ β

j
3(t1, t2)),

where βj1(t1) and βj2(t2) are existentially quantified formulas with only t1 free and

with only t2 free respectively, and βj3(t1, t2) is either t1 �R t2 or t2 �R t1.

As we proved earlier, βj1(t1) and βj2(t2) specify subsets of the input, and can be

expressed by a sequence of ordered operations in CA�. Furthermore, βj1(t1) and

βj2(t2) must specify the same subsets; otherwise, βj1(t1) ∧ β
j
2(t2) ∧ β

j
3(t1, t2) defines

a partial order for t1 and t2 satisfying this conjunct, and it is impossible to define

a total linear order for t1 and t2 which satisfy βj1(t1) and βj2(t2). Therefore, each

conjunct βj1(t1)∧β
j
2(t2)∧β

j
3(t1, t2) defines an order for pairs of tuples from the same

subset Si, and the only possible orders in Si are identical or reverse to the original

order.

In summary, the linear order decided by ψ′ can be expressed by a sequence of

ordered operators, ⋃
i

β(Ei1(〈R,�R〉) ∩ ... ∩ Eiki(〈R,�R〉)),

where β is either the order identity operation µ or the order reverse operation ν,

and Ei1, ..., Eiki are ordered algebraic expressions constructed by induction as above,

each of which is composed of ordered operations in CA�: the top operation τ , first

operation firsti, last operation lasti, until operation untilp, since operation

sincep, ordered selection σ, and set difference operation −.

148

2

We have shown that the ω queries in CQ� are completely expressible by CA�.

We are now ready for the main result of the investigation in this chapter, which is

the completeness theorem for the general ordered conjunctive queries CQ�.

Theorem 5.10 Any CQ� query is equivalent to an ordered query expressed by a

finite sequence of ordered operations from CA�.

Proof: Let 〈φ, ψ〉 be an ordered conjunctive query in CQ� on ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

Case 1: n = 1.

In this case, the ordered conjunctive query 〈φ, ψ〉 has only one argument 〈R,�R〉,
and hence has the form

〈φ, ψ〉(〈R,�R〉) = 〈{(t, x̄) | φ(t, x̄)}, {(t1, t2) | ψ(t1, t2)}〉,

where φ(t, x̄) is a conjunctive query and has the normal form

πA(σp(R)),

and

ψ = ∃x̄1.φ(t1, x̄1) ∧ ∃x̄2.φ(t2, x̄2) ∧ ψ′(t1, x̄1, t2, x̄2).

By definition of CQ�, ψ′ is a first-order formula defined by the BNF rule

ψ′ = R(t, x̄) | xi = xj | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ | ∃x.ψ′ | ∃t.ψ′,

and ψ′ has the Separation Property (see Definition 5.1).

By Lemma 5.9, there exists an algebraic expression in CA� to express the

ordered query 〈ω, ψ′〉,⋃
i

β(Ei1(〈R,�R〉) ∩ ... ∩ Eiki(〈R,�R〉)),

where β is either the order identity operation µ or the order reverse operation

ν, and Ei1, ..., Eiki are constructed by induction on the depth of quantifiers as in

the proof of Lemma 5.9. Each of expressions Ei1, ..., Eiki is composed of ordered

149

operations in CA�: top operation τ , first operation firsti, last operation lasti,

until operation untilp, since operation sincep, order-preserving selection σ, and

set difference operation −.

By Proposition 5.5, order-preserving selections and projections can propagate

through order identity, order reverse, and order concatenation operators. To express

the selections and projections on the data relation R in the normal form of φ, order-

preserving selections and order-preserving projections are applied respectively to

the above expression without changing the order.

Finally, the ordered CQ� query 〈φ, ψ〉 is equivalent to the algebraic expression

in CA�,

πA(σp
⋃
i

β(Ei1(〈R,�R〉) ∩ ... ∩ Eiki(〈R,�R〉))),

where β is either the order identity operation µ or the order reverse operation ν, and

expressions Ei1, ..., Eiki are constructed by induction on the depth of quantifiers as

in the proof of Lemma 5.9. Each of expressions Ei1, ..., Eiki is composed of ordered

operations in CA�: top operation τ , first operation firsti, last operation lasti,

until operation untilp, since operation sincep, order-preserving selection σ, and

set difference operation −.

Case 2: n > 1.

Let 〈ϕ, ψ〉 be a CQ� query on ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, where

n > 1. The data query ϕ is a conjunctive query and hence has the normal form

∃x1, . . . , xm.(R1(u1) ∧ · · · ∧ Rn(un)),

where the symbols ui are tuples containing both variables t, x1, . . . , xn and constants

for data attributes.

The order query ψ has the form

{(t1, t2) | ∃t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . x̄2n.
t1 = (t11, . . . , t1n) ∧ · · · ∧ tn = (t21, . . . , t2n)

∧ ϕ(t11, . . . , t1n, x̄11, . . . , x̄1n) ∧ ϕ(t21, . . . , t2n, x̄21, . . . , x̄2n)

∧ ψ′(t11, . . . , t1n, t21, . . . , t2n, x̄11, . . . , x̄1n, x̄21, . . . , x̄2n)}.

By definition of CQ�, ψ′ is a first-order formula defined by the BNF rule

ψ′ = R(t, x̄) | xi = xj | t �R t′ | ¬ψ′ | ψ′ ∧ ψ′ | ∃x.ψ′ | ∃t.ψ′,

and ψ′ has the Separation Property. Semantically, ψ′ defines a linear order on the

Cartesian product of R1 × · · · × Rn.

150

By the definition, ψ′ is a boolean combination of existentially quantified formulas

with only one t-variable free, which could be t11, . . . , t1n, t21, . . . , or t2n. Therefore,

we can rearrange the top level boolean connectives and rewrite ψ′ in a disjunction

of conjunctions in the form∨
i α

i(t11, . . . , t1n, t21, . . . , t2n) ∨
∨
j β

j(t11, . . . , t1n, t21, . . . , t2n),

where each αi(t11, . . . , t1n, t21, . . . , t2n) is of the form

(αi11(t11) ∧ . . . ∧ αi1n(t1n) ∧ αi21(t21) ∧ . . . ∧ αi2n(t2n)),

and each βj(t11, . . . , t1n, t21, . . . , t2n) is of the form

(βj1(t11, t21) ∧ . . . ∧ βjn(t1n, t2n)),

where αi1k(t1k) and αi2k(t2k) are existentially quantified formulas with only t1k free

and existentially quantified formulas with only t2k free, respectively; the conjunct

βjk(t1k, t2k) is a conjunction of existentially quantified formulas with only t1k free,

existentially quantified formulas with only t2k free, and atomic formulas t1k �Rk
t2k

or t2k �Rk
t1k, for k = 1, . . . , n.

First, we consider the first part
∨
i α

i of the order formula ψ′. For each

αi(t11, . . . , t1n, t21, . . . , t2n), the conjuncts αi1k(t1k) and αi2k(t2k) are existentially quan-

tified formulas with only t1k free and existentially quantified formulas with only t2k

free respectively, for k = 1, . . . , n. By Lemma 5.9, they can be expressed by an

ordered algebraic expression in CA�,⋃
i

β(Ei1〈Rk,�Rk
〉 ∩ ... ∩ Eiki〈Rk,�Rk

〉),

where β is either the order identity operation µ or the order reverse operation ν, and

expressions Ei1, ..., Eiki are constructed by induction on the depth of quantifiers as

in the proof of Lemma 5.9. Each of expressions Ei1, ..., Eiki is composed of ordered

operations in CA�: top operation τ , first operation firsti, last operation lasti,

until operation untilp, since operation sincep, order-preserving selection σ, and

set difference operation −.

Let (S11, . . . , S1n) and (S21, . . . , S2n) be the two combinations of minimal subsets

of ordered relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, specified by

αi = (αi11(t11) ∧ . . . ∧ αi1n(t1n) ∧ αi21(t21) ∧ . . . ∧ αi2n(t2n)).

Let t1 = (t11, . . . , t1n) and t2 = (t21, . . . , t2n) be a pair of tuples from (S11, . . . , S1n)

and (S21, . . . , S2n), respectively. Since the pair ((t11, . . . , t1n), (t21, . . . , t2n)) satisfies

151

αi, they will be in the resulting order relation �R′ , i.e., t1 �R′ t2. Thus, t1 �R′ t2
holds for any pair of tuples t1 and t2 from (S11, . . . , S1n) and (S21, . . . , S2n), which

leads to (S11, . . . , S1n) �R′ (S21, . . . , S2n). Therefore, any conjunction αi in the first

part
∨
i α

i decides the order between a pair of combinations of minimal subsets

(S11, . . . , S1n) and (S21, . . . , S2n) of input ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉.

Using the same technique in Lemma 5.9, we can prove that
∨
i α

i defines a

linear order among all combinations of minimal subsets (S1i1 , . . . , Snin) of ordered

relations 〈R1,�R1〉, . . . , 〈Rn,�Rn〉. Suppose that
∨
i α

i does not define a linear order

among all combinations of minimal subsets (S1i1 , . . . , Snin) from input relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉. There are two cases.

In the first case, we assume that there exist two combinations of subsets, say

(S11, . . . , S1n) and (S21, . . . , S2n), such that both (S11, . . . , S1n) �R′ (S21, . . . , S2n)

and (S21, . . . , S2n) �R′ (S11, . . . , S1n) hold at the same time. For any

t1 ∈ (S11, . . . , S1n) and t2 ∈ (S21, . . . , S2n), by the assumption, (t1, t2) ∈�R′ and

(t2, t1) ∈�R′ hold at the same time. This is a contradiction to the fact that the

output order �R′ is a linear order. Hence, the assumption in Case 1 does not hold.

In the second case, we assume that there exist two combinations of subsets, say

(S11, . . . , S1n) and (S21, . . . , S2n), such that neither (S11, . . . , S1n) �R′ (S21, . . . , S2n)

nor (S21, . . . , S2n) �R′ (S11, . . . , S1n) holds; their order in output is not specified by∨
i α

i.

By this assumption, for any pair of tuples t1 ∈ (S11, . . . , S1n) and

t2 ∈ (S21, . . . , S2n), their order in the output is not defined by
∨
i α

i. Because the

output order is a linear order on all combinations of tuples from n ordered relations,

the order of t1 and t2 must be decided by ψ′. Suppose that ψ′ decides t1 �R′ t2.
Since (S11, . . . , S1n) and (S21, . . . , S2n) are combinations of minimal subsets, all

pairs of tuples from (S11, . . . , S1n) and (S21, . . . , S2n) must have the same order if

they have any order at all. Then, for any pair of tuples t1 ∈ (S11, . . . , S1n) and

t2 ∈ (S21, . . . , S2n), it satisfies the condition t1 �R′ t2. It follows (S11, . . . , S1n) �R′
(S21, . . . , S2n), which is a contradiction to the assumption.

We have proven that
∨
i α

i defines a linear order among all combinations of

minimal subsets (S1i1 , . . . , Snin) from 〈R1,�R1〉, . . . , 〈Rn,�Rn〉. Assume that each

subset Skik (k = 1, ..., n) keeps the original order from the input and can be ex-

pressed by ordered operations

Ekik〈Rk,�Rk
〉,

152

where Ekik is of the form

Ekik = E1
kik
∩ ... ∩ Ej

kik
,

and E1
kik
, ..., Ej

kik
are constructed by induction on the depth of quantifiers as in the

proof of Lemma 5.9.

Next, we consider the second part of ψ′,∨
j

βj(t11, . . . , t1n, t21, . . . , t2n).

To compose a linear order on the Cartesian product of data relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉, the order between each pair of tuples from the same com-

bination of subsets has to be decided by the order formula ψ′. This order inside a

combination of subsequence is decided by the second part of ψ,∨
j

βj(t11, . . . , t1n, t21, . . . , t2n).

Let (Si11, . . . , Sinn) be a combination of minimal subsets specified by

αj1(t11), ..., α
j
n(t1n) on 〈R1,�R1〉, . . . , 〈Rn,�Rn〉, respectively. For any pair of tu-

ples (t11, . . . , t1n) and (t21, . . . , t2n) from the same combination of minimal subsets

(Si11, . . . , Sinn), there exists a j such that βj decides the order of this pair in the

result because the output order is a total order on all combinations of tuples from

each input. Thus, the conjunction βj is equivalent to

(αj1(t11) ∧ . . . ∧ αjn(t1n) ∧ αj1(t21) ∧ . . . ∧ αjn(t2n))

∧ ψj(t11, . . . , t1n, t21, . . . , t2n),

where αj1(t1i) defines a minimal subset Sji over 〈Ri,�Ri
〉, and the formula

ψj(t11, . . . , t1n, t21, . . . , t2n) decides the real order in the combination of minimal

subsets, and is defined by the BNF rule

ψj = t �Ri
t′ | ¬ψj | ψj ∧ ψj.

The conjunct ψj has this form because variables t1k, . . . , t2k, t2k, . . . , t1k are only

t-variables in the minimal subset Sji, and appear only in forms t1k �Rk
t2k and

t2k �Rk
t1k, for k = 1, . . . , n.

Since the lexicographical order is the only possible linear order inside a combina-

tion of minimum subsets, ψj specifies a lexicographical order inside the combination

153

of minimal subsets. Let Sijkj (j = 1, ..., n) be the ij-th subset in the input ordered

relation 〈Rkj ,�Rkj
〉. The conjunct ψj defines the lexicographic order inside the

combination of minimal subsets (Si1k1 , . . . , Sinkn), and is equivalent to a normal

form
ε(t1k1 �R t2k1) ∨ (t1k1 = t2k1 ∧ ε(t1k2 �R t2k2)) ∨ . . .

∨ (t1k1 = t2k1 ∧ . . . ∧ t1kn−1 = t2kn−1 ∧ ε(t1kn �R t2kn)),

where ε(t1kn �R t2kn) is either t1kn �R t2kn or t2kn �R t1kn . The sequence (k1, . . . , kn)

is a permutation of (1, . . . , n), which decides the major to minor order that ordered

relations 〈Rk1 ,�Rk1
〉, . . . , 〈Rkn ,�Rkn

〉 serve in the output order.

Intuitively, ψj defines a lexicographical order on (Si1k1 , . . . , Sinkn), and each

minimal subset has an order identical or reverse to the original input order. There-

fore, each combination of minimal subsets (Si1k1 , . . . , Sinkn) can be expressed by an

algebraic expression in the ordered conjunctive algebra CA� as follows:

β(Ei1,j1(〈Rk1 ,�Rk1
〉)) n . . .n β(Ein,jn(〈Rkn ,�Rkn

〉)).

In addition, the sequence (k1, . . . , kn) is a permutation of (1, . . . , n), which indi-

cates the order in which the left nested-loop product operations are applied to the

subsets of 〈R1,�R1〉, . . . , 〈Rn,�Rn〉. In general, the ordered query 〈φ′, ψ′〉 (where

the algebraic expression of φ′ is R1 × · · · × Rn) can be expressed by⋃
(β(Ei1,j1(〈Rk1 ,�Rk1

〉)) n . . . n β(Ein,jn(〈Rkn ,�Rkn
〉))).

Consider the data query φ of the CQ� query 〈φ, ψ〉. If there are selections and

projections in the normal form of φ, order-preserving selections and order-preserving

projections are applied to the above algebraic expression correspondingly because

order-preserving selections and order-preserving projections can propagate through

left nested-loop products while keeping equivalence.

In conclusion, any CQ� ordered conjunctive query 〈φ, ψ〉 on ordered relations

〈R1,�R1〉, . . . , 〈Rn,�Rn〉 is equivalent to an ordered query expressed in CA�:

πA(σp(
⋃

(β(Ei1,j1(〈Rk1 ,�Rk1
〉)) n . . . n β(Ein,jn(〈Rkn ,�Rkn

〉))))),

where β is either µ or ν, and
⋃

is an order concatenation operator, (k1, . . . , kn) is

a permutation of (1, . . . , n), and Eik,jk is an ordered algebraic expression composed

of ordered operations in CA�, constructed by induction as above.

2

154

We have proven the completeness of the ordered conjunctive algebra CA� under

some restrictions. We now show some examples of CQ� queries, which can be

expressed in the ordered conjunctive algebra CA�.

Example 5.11 Consider the CQ� queries in Example 5.3. We can express these

CQ� queries with ordered operators in CA�.

(1) The first query can be answered by the ordered algebraic expression in CA�

as follows:

(〈EMP,�EMP〉− untilSalary=60000 〈EMP,�EMP〉)
∪ (untilSalary=60000 〈EMP,�EMP〉).

(2) For the second query, we first express “all employees until the first one in the

department Sales” as

E1 = untilDepartment=“Sales” 〈EMP,�EMP〉.

Next, we express “employees between the first and second employees in the

department Sales, including the second one ” as

E2 = untilDepartment=“Sales” (〈EMP,�EMP〉 − E1)

− last (untilDepartment=“Sales” (〈EMP,�EMP〉 − E1)).

Then, we express “employees after the second employee in the department

Sales” as

E3 = 〈EMP,�EMP〉 − E1)− E2.

Finally, we express the second query with the ordered algebraic expression in

CA� as follows:

E1 ∪ ν(E2) ∪ E3.

This chapter has defined general ordered conjunctive queries in CQ�, which

are restricted to ordered conjunctive queries in FO� with the Separation Property.

To answer general ordered conjunctive queries in CQ�, an ordered algebra CA�

is proposed with a set of primitive ordered operators and derived operators. The

completeness theorem of the ordered conjunctive algebra CA� is then shown with

regard to general ordered conjunctive queries in CQ�. The chapter closes by pre-

senting examples of ordered conjunctive queries in CQ�, which are expressible or

inexpressible in CA�.

We have investigated the three classes of ordered conjunctive queries, CQX
� ,

CQT
�, and CQ�, and examined the expressive power of corresponding algebras

155

CAX
� , CAT

�, and CA�. In particular, the completeness problems are proven for the

three classes of ordered conjunctive queries. The next chapter will conclude this

dissertation with research contributions and future work of this investigation.

156

Chapter 6

Conclusion and Future Work

This chapter summarizes the main results of this dissertation and discuss several

research directions, in which this work can be extended.

6.1 Summary of Results

This dissertation provides a systematic approach to support order in query process-

ing in relational databases. Three important issues are studied for order support:

a novel ordered database model is proposed; various ordered query representation

languages are formally defined; and the expressive power of ordered query languages

are investigated.

An ordered relational database model

An ordered relational database model has been proposed to capture and manipulate

data orderings in relational databases. The novelties of this ordered relational

database model are as follows:

• Each tuple in a relation is associated with a virtual tuple identifier. The

ordered relation is composed of a data relation and such an order relation.

The order relation is a virtual binary relation over tuple identifiers, which is

separated from the data information of the relation. This binary order relation

contains any pairs of tuple identifiers in the data relation, which defines a total

linear order over tuples. An ordered relational database structure is formally

defined based on this model.

157

• In this ordered relational database model, relational queries are processed in

an ordered fashion. Both the data and order of the input are stored when a

relational query is issued to the query processor. The query processor traces

the order of an intermediate result at each phase of query processing and

produces the resulting relation with a specific order. Given ordered inputs,

each operator generates an ordered output.

• This ordered relational database structure is compared with the temporal rela-

tional structure; both differences and connections between the two structures

are studied. The lemma has been proven that any temporal database can

be mapped to an ordered relational database such that the mapped ordered

database retains all order properties in the original temporal database.

Ordered relational queries

Ordered relational queries are defined in various ordered query representation lan-

guages, based on the ordered relational database model. The completeness problem

of ordered relational algebras is also studied.

• A formal definition of ordered relational queries is provided in a two-sorted

first-order calculus FO�.

• Ordered relational queries in FO� are compared with temporal relational

queries in 2FOLand the lemma has been proven that any 2FOL temporal

relational query can be reduced to an FO� ordered relational query.

• The complete problem of ordered relational algebras is defined formally. Anal-

ogously to the completeness problem of temporal relational algebras, the com-

pleteness problem of the general ordered relational algebras is most likely to

have a negative answer.

Ordered conjunctive queries with data-decided order CQX
�

An ordered algebra was proposed for ordered conjunctive queries with data-decided

order and was proven to be complete with respect to the two-sorted first order logic.

• A formal definition of ordered conjunctive queries CQX
� is provided in a two-

sorted first-order calculus FO�.

• An ordered algebra CAX
� , equipped with a set of ordered operations, is pro-

posed for the ordered conjunctive query CQX
� ; transformation rules of ordered

operators are provided and proven.

158

• The completeness theorem is proven for ordered conjunctive queries CQX
� ,

which states that a complete algebra exists to express any CQX
� ordered con-

junctive queries in a finite sequence of ordered operators.

Ordered conjunctive queries with t-decided order CQT
�

An ordered algebra was proposed for ordered conjunctive queries with t-decided

order and was proven to be complete with respect to the two-sorted first order

logic.

• A formal definition of ordered conjunctive queries CQT
� is provided in a two-

sorted first-order calculus FO�.

• An ordered algebra CAT
�, equipped with a set of ordered operations, is pro-

posed for the ordered conjunctive query CQT
�; transformation rules of ordered

operators are provided and proven.

• The completeness theorem is proven for ordered conjunctive queries CQT
�,

which states that a complete algebra exists to express any CQT
� ordered con-

junctive queries in a finite sequence of ordered operators.

Ordered conjunctive queries CQ�

An ordered algebra was proposed for more general ordered conjunctive queries and

was proven to be complete with respect to the two-sorted first-order logic.

• A formal definition of ordered conjunctive queries CQ� is provided in a two-

sorted first-order calculus FO�, which restricts CQ� ordered conjunctive queries

to those satisfying the Separation Property.

• An ordered algebra CA�, equipped with a set of ordered operations, is pro-

posed for the ordered conjunctive query CQ�; transformation rules of ordered

operators are provided and proven.

• The completeness theorem is proven for the ordered conjunctive queries CQ�,

which states that a complete algebra exists to express any CQ� ordered con-

junctive queries in a finite sequence of ordered operators.

159

6.2 Future Work

The work in this dissertation can be extended in many directions. Some of them

are briefly mentioned here.

Ordered conjunctive queries without separation property

In the definition of the general ordered conjunctive query CQ�in Chapter 5, CQ�

order conjunctive queries are restricted to those satisfying the Separation Property.

Then, a complete algebra was proposed and the completeness theorem is proven

for this restricted ordered conjunctive queries. This work can be extended to the

general class of ordered conjunctive queries, which is the ordered conjunctive queries

with or without the Separation Property.

In particular, two questions need to be investigated for the general class of

ordered conjunctive queries. First, an interesting question is whether the complete-

ness theorem holds for the general class of ordered conjunctive queries: does there

exist a complete algebra, equipped with a finite set of ordered operators, to express

the general class of ordered conjunctive queries? Second, if such a complete ordered

algebra exists, then what operators should be in this algebra? This ordered algebra

should answer the query in Example ??.

Ordered relational algebras

The techniques is this dissertation cannot be extended to FO� ordered relational

queries in a straightforward manner because this technique cannot manage the

negation in the data specification of an ordered relational query. Although complete

algebras might not exist for the general FO� relational queries, many approaches

remain to further investigate FO� ordered relational queries.

In Chapter 2, we have a proposition that complete algebras do not exist for gen-

eral ordered relational queries. An interesting question is whether we can find any

subset of ordered relational queries which has an expressively equivalent algebra.

Implementation of an ordered relational database

The work in this dissertation focuses on the conceptual ordered relational database

model, and the query representation languages defined over it. However, this work

sheds light on the possibility of implementing an ordered query engine to solve the

order-relevant performance problem. Implementing such an ordered query engine

would be an interesting direction to extend this work.

160

Ideally, a group of general ordered operators are implemented efficiently in this

ordered query engine, which can express any first-order expressible ordered query.

For given input relations, each ordered operator generate a relation with a specific

order. Thus, sorting-based operations can be avoided at intermediate optimization

steps if the existing orders match the desirable order properties. Furthermore,

more optimization techniques can be developed to enhance the query processing

in this ordered query engine. This work provides a direction in which the general

query performance might be significantly improved by supporting relational query

processing in an ordered fashion.

161

References

[1] XML Path Language (XPath) Version 1.0, W3C Recommendation 16 Novem-

ber 1999. http://www.w3.org/TR/xpath.

[2] XQuery 1.0: An XML Query Language, W3C Recommendation 23 January

2007. http://www.w3.org/TR/xquery/.

[3] XQuery 1.0 and XPath 2.0 Data Model (XDM), W3C Recommendation 23

January 2007. http://www.w3.org/TR/xpath-datamodel/.

[4] Serge Abiteboul, Laurent Herr, and Jan Van Den Bussche. Temporal versus

First-Order Logic to Query Temporal Databases. In Proceedings of the 15th

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, pages 49–57, 1996.

[5] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison Wesley, 1995.

[6] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel, Divesh

Srivastava, and Yuqing Wu. Structural Joins: A Primitive for Efficient XML

Query Pattern Matching. In Proceedings of the 18th International Conference

on Data Engineering, pages 141–152, 2002.

[7] Mihnea Andrei, Xun Cheng, Sudipto Chowdhuri, Curtis Johnson, and Edwin

Seputis. Ordering, Distinctness, Aggregation, Partitioning and DQP Opti-

mization in Sybase ASE 15. In Proceedings of the 2009 ACM International

Conference on Management of Data, pages 917–924, 2009.

[8] Catriel Beeri and Tova Milo. Schemas for Integration and Translation of Struc-

tured and Semi-structured Data. In Proceedings of the 15th International Con-

ference on Data Engineering, pages 296–313, 1999.

[9] Catriel Beeri and Yariv Tzaban. SAL: An Algebra for Semistructured Data

and XML. In International Workshop on the Web and Databases, pages 37–42,

1999.

162

[10] Nicole Bidoit, Sandra De Amo, and Luc Segoufin. Order Independent Tempo-

ral Properties. Journal of Logic and Computation, 14(2):277–298, 2004.

[11] Michael H. Böhlen, Christian S. Jensen, and Richard Thomas Snodgrass.

Temporal Statement Modifiers. ACM Transactions On Database Systems,

25(4):407–456, 2000.

[12] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline Op-

erator. In Proceedings of the 17th International Conference on Data Engineer-

ing, pages 421–430, 2001.

[13] Nicolas Bruno, Luis Gravano, and Amelie Marian. Evaluating Top-k Queries

over Web-Accessible Databases. In Proceedings of the 18th International Con-

ference on Data Engineering, 2002.

[14] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig joins:

Optimal XML Pattern Matching. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, pages 310–321, 2002.

[15] Peter Buneman, Wenfei Fan, Jérôme Siméon, and Scott Weinstein. Constraints

for Semistructured Data and XML. ACM SIGMOD Record, 30(1):47–55, 2001.

[16] Michael J. Carey and Donald Kossmann. On Saying “Enough Already!” in

SQL. In Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data, pages 219–230, 1997.

[17] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-Based Approach

to Semantic Query Optimization. ACM Transactions on Database Systems

(TODS), 15(2):162–207, 1990.

[18] Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems.

In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 34–43, 1998.

[19] Surajit Chaudhuri and Luis Gravano. Evaluating Top-k Selection Queries. In

Proceedings of 25th International Conference on Very Large Data Bases, pages

397–410, 1999.

[20] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjuctive

Queries . In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, pages 59–70, 1993.

[21] Mitch Cherniack and Stan Zdonik. Changing the Rules: Transformations for

Rule-based Optimizers. In Proceedings of the 1998 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 61–72, 1998.

163

[22] Mitch Cherniack and Stanley B. Zdonik. Rule Languages and Internal Alge-

bras for Rule-based Optimizers. In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, pages 401–412, 1996.

[23] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and

Carlo Zaniolo. Efficient Structural Joins on Indexed XML Documents. In

Proceedings of 28th International Conference on Very Large Data Bases, pages

263–274, 2002.

[24] Jan Chomicki. Preference Formulas in Relational Queries. ACM Transactions

on Database Systems, 28(4):427–466, 2003.

[25] Jan Chomicki. Semantic Optimization of Preference Queries. CDB, pages

133–148, 2004.

[26] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline

with Presorting. In Proceedings of the 19th International Conference on Data

Engineering, pages 717–816, 2003.

[27] Jan Chomicki and David Toman. Temporal Databases. In Handbook of Tem-

poral Reasoning in Artificial Intelligence, pages 429–467. 2005.

[28] Jens Claussen, Alfons Kemper, and Donald Kossmann. Order-Preserving Hash

Joins: Sorting (Almost) For Free. Technical Report Technique Report MIP-

9810, Fakultät für Mathematik und Informatik, Universität Passau, 1998.

[29] James Clifford, Albert Croker, and Alexander Tuzhilin. On Completeness

of Historical Relational Query Languages. ACM Transactions on Database

Systems, 19(1):64–116, 1994.

[30] Neil Coburn and Grant Weddell. A Logic for Rule-Based Query Optimization

in Graph-Based Data Models. In Proceedings of the 3rd International Con-

ference on Deductive and Object-Oriented Databases (DOOD), volume 760 of

Lecture Notes in Computer Science, pages 120–145. Springer-Verlag, 1993.

[31] Edgar F. Codd. Relational Completeness of Database Sublanguages. In

R. Rustin, editor, Database Systems, pages 65–98. Prentice-Hall, 1972.

[32] Umeshwar Dayal. Of Nests and Trees: A Unified Approach to Processing

Queries that Contain Nested Subqueries, Aggregates, and Quantifiers. In Pro-

ceedings of 13th International Conference on Very Large Data Bases, pages

197–208, 1987.

[33] David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Özsu. A

Comprehensive XQuery to SQL Translation using Dynamic Interval Encod-

164

ing. In Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, pages 623–634, 2003.

[34] Jirun Dong and Richard Hull. Applying Approximate Order Dependency to

Reduce Indexing Space. In Proceedings of the 1982 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 119–127, 1982.

[35] A. Ehrenfeucht. An Application of Games to the Completeness Problem for

Formalized Theories. Fundamenta Mathematicae, 49:129–141, 1961.

[36] Maged El-Sayed, Katica Dimitrova, and Elke A. Rundensteiner. Efficiently

Supporting Order in XML Query Processing. In Proceedings of the 5th ACM

International Workshop on Web Information and Data Management, pages

147–154, 2003.

[37] Ronald Fagin. Combining Fuzzy Information from Multiple Systems. In Pro-

ceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems, pages 216–226, 1996.

[38] D. M. Gabbay. Expressive Functional Completeness in Tense Logic. In Aspects

of Philosophical Logic, pages 91–117. 1981.

[39] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal logic (vol.

1): Mathematical Foundations and Computational Aspects. Oxford University

Press, Inc., New York, NY, USA, 1994.

[40] Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom. Database System

Implementation. Prentice Hall, 2000.

[41] Seymour Ginsburg and Richard Hull. Order Dependency in the Relational

Model. Theoretical Computer Science, 26:149–195, 1983.

[42] Seymour Ginsburg and Richard Hull. Sort Sets in the Relational Model. In

Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems, pages 332–339, 1983.

[43] Parke Godfrey, John Grant, Jarek Gryz, and Jack Minker. Integrity Con-

straints: Semantics and Applications. In Logics for Databases and Information

Systems, pages 265–306, 1998.

[44] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Com-

puting Surveys, 25(2):73–170, 1993.

[45] Goetz Graefe and David J. DeWitt. The EXODUS Optimizer Generator. In

Proceedings of the 1987 ACM SIGMOD International Conference on Manage-

ment of Data, pages 160–172, 1987.

165

[46] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kiessling. Optimizing Multi-

Feature Queries for Image Databases. In Proceedings of 26th International

Conference on Very Large Data Bases, pages 419–428, 2000.

[47] Laura Haas, Johann Freytag, Guy Lohman, and Hamid Pirahesh. Extensible

Query Processing in Starburst. In Proceedings of the 1989 ACM SIGMOD

International Conference on Management of Data, pages 377–388, 1989.

[48] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A Survey of Top-k

Query Processing Techniques in Relational Database Systems. ACM Comput-

ing Surveys, 40(4), 2008.

[49] Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott Vitter, and Ahmed K.

Elmagarmid. Rank-Aware Query Optimization. In Proceedings of the 2004

ACM SIGMOD International Conference on Management of Data, pages 203–

214, 2004.

[50] Neil Immerman and Dexter Kozen. Definability with Bounded Number of

Bounded Variables. Information and Computation, 83:121–139, 1989.

[51] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of Conjunctive

Queries: Beyond Relations as Sets . ACM Transactions on Database Systems,

20(3):288–324, 1995.

[52] Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-

versity of California, Los Angeles, 1968.

[53] Hans Kamp. Formal Properties of ‘Now’. Theoria, 37:227–273, 1971.

[54] Werner Kie. Foundations of Preferences in Database Systems. In Proceedings

of 28th International Conference on Very Large Data Bases, pages 311 – 322,

2002.

[55] Werner Kieand Gerhard Köstler. Preference SQL - Design, Implementation,

Experiences. In Proceedings of 28th International Conference on Very Large

Data Bases, pages 990–1001, 2002.

[56] Won Kim. On Optimizing an SQL-like Nested Query. ACM Transactions on

Database Systems, 7(3):443–469, 1982.

[57] Alberto Lerner and Dennis Shasha. AQuery: Query Language for Ordered

Data, Optimization Techniques, and Experiments. In Proceedings of 29th In-

ternational Conference on Very Large Data Bases, pages 345–356, 2003.

[58] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song.

RankSQL: Query Algebra and Optimization for Relational Top-k Queries. In

166

Proceedings of the 2005 ACM SIGMOD International Conference on Manage-

ment of Data, pages 131–142, 2005.

[59] Leonid Libkin, Rona Machlin, and Limsoon Wong. A Query Language for Mul-

tidimensional Arrays: Design, Implementation, and Optimization Techniques.

In ACM SIGMOD Record, pages 228–239, 1996.

[60] Guy M. Lohman. Grammar-like Functional Rules for Representing Query

Optimization Alternatives. In Proceedings of the 1988 ACM SIGMOD Inter-

national Conference on Management of Data, pages 18–27, 1988.

[61] David Maier and Bennet Vance. A Call to Order. In Proceedings of the 12th

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, pages 1–16, 1993.

[62] Norman May, Sven Helmer, and Guido Moerkotte. Nested Queries and Quan-

tifiers in an Ordered Context. In Proceedings of 20th International Conference

on Data Engineering, pages 239–250, 2004.

[63] Surya Nepal and M.V. Ramakrishna. Query Processing Issues in Image (Mul-

timedia) Databases . In Proceedings of the 15th International Conference on

Data Engineering, pages 22–29, 1999.

[64] Thomas Neumann and Guido Moerkotte. A Combined Framework for Group-

ing and Order Optimization. In Proceedings of 30th International Conference

on Very Large Data Bases, pages 960–971, 2004.

[65] Thomas Neumann and Guido Moerkotte. An Efficient Framework for Order

Optimization. In Proceedings of 20th International Conference on Data Engi-

neering, pages 461–472, 2004.

[66] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible Rule

Based Query Rewrite Optimization in Starburst. In Proceedings of the 1992

ACM SIGMOD international conference on Management of data, pages 39–48,

1992.

[67] Raghu Ramakrishnan, Donko Donjerkovic, Arvind Ranganathan, Kevin S.

Beyer, and Muralidhar Krishnaprasad. SRQL: Sorted Relational Query Lan-

guage. In Proceedings of International Conference on Statistical and Scientific

Database Management, pages 84–95, 1998.

[68] Darrell Raymond. Partial Order Databases. PhD thesis, Department of Com-

puter Science, University of Waterloo, 1996.

[69] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.

Price. Access Path Selection in a Relational Database Management System.

167

In Proceedings of the 1979 ACM SIGMOD International Conference on Man-

agement of Data, pages 23–34, 1979.

[70] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence Query

Processing. In ACM SIGMOD Record, pages 430–441, 1994.

[71] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A Model for

Sequence Databases. In Proceedings of the 11th International Conference on

Data Engineering, pages 232–239, 1995.

[72] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J.

DeWitt, and Jeffrey F. Naughton. Relational Databases for Querying XML

Documents: Limitations and Opportunities. In Proceedings of 25th Interna-

tional Conference on Very Large Data Bases, pages 302–314, 1999.

[73] William M. Shui, Franky Lam, Damien K. Fisher, and Raymond K. Wong.

Querying and Maintaining Ordered XML Data Using Relational Databases.

In Proceedings of the 16th Australasian Database Conference, pages 85–94,

2005.

[74] David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. Fundamental

Techniques for Order Optimization. In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, pages 57–67, 1996.

[75] Giedrius Slivinskas, Christian S. Jensen, and Richard T. Snodgrass. Bringing

Order to Query Optimization. ACM SIGMOD Record, 31(2):5–14, 2002.

[76] Giedrius Slivinskas, Christian S. Jensen, and Richard Thomas Snodgrass. A

Foundation for Conventional and Temporal Query Optimization Addressing

Duplicates and Ordering. IEEE Transactions on Knowledge and Data Engi-

neering, 13(1):21–49, 2001.

[77] Mohamed A. Soliman and Ihab F. Ilyas. Ranking with Uncertain Scores. In

Proceedings of the 25th International Conference on Data Engineering, pages

317–328, 2009.

[78] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating

XML. In Proceedings of the 2001 ACM SIGMOD International Conference on

Management of Data, pages 413–424, 2001.

[79] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram,

Eugene J. Shekita, and Chun Zhang. Storing and Querying Ordered XML Us-

ing a Relational Database System. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, pages 204–215, 2002.

168

[80] David Toman. On Incompleteness of Multi-dimensional First-order Temporal

Logics. In IEEE International Symposium on Temporal Representation and

Reasoning and International Conference on Temporal Logic, pages 99–106,

2003.

[81] David Toman and Damian Niwinski. First-Order Queries over Temporal

Databases Inexpressible in Temporal Logic. In Proceedings of the 5th Inter-

national Conference on Extending Database Technology, volume 1057, pages

307–324, 1996.

[82] David Toman and Grant Weddell. On Attributes, Roles, and Dependencies

in Description Logics and the Ackermann Case of the Decision Problem. In

Working Notes of the 2001 International Description Logics Workshop, pages

76–85, 2001.

[83] Alexander Tuzhilin and James Clifford. A Temporal Relational Algebra as Ba-

sis for Temporal Relational Completeness. In Proceedings of 16th International

Conference on Very Large Data Bases, pages 13–23, 1990.

[84] Zografoula Vagena, Nick Koudas, Divesh Srivastava, and Vassilis J. Tsotras.

Answering Order-Based Queries Over XML Data. In WWW ’05: Special In-

terest Tracks and Posters of the 14th International Conference on World Wide

Web, pages 1162–1163, 2005.

[85] Xiaoyu Wang and Mitch Cherniack. Avoiding Sorting and Grouping in Pro-

cessing Queries. In Proceedings of 29th International Conference on Very Large

Data Bases, 2003.

[86] Grant E. Weddell. Reasoning about Functional Dependencies Generalized for

Semantic Data Models. ACM Transactions on Database Systems, 17(1):32–64,

1992.

[87] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke

Uemura. XRel: A Path-based Approach to Storage and Retrieval of XML

Documents Using Relational Databases. In ACM Transactions on Internet

Technology, volume 1, pages 110–141, 2001.

[88] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.

Lohman. On Supporting Containment Queries in Relational Database Man-

agement Systems. In Proceedings of the 2001 ACM SIGMOD International

Conference on Management of Data, pages 425–436, 2001.

169

	List of Tables
	List of Figures
	Introduction
	Motivation
	Ordered Relational Databases
	Related Work
	Order Optimization
	Ordered Representations of Relations
	Query Rewriting
	Integrity Constraints Involving Order
	Partial Order Databases
	Temporal Databases
	Preference and Skyline Queries
	XML Queries
	Top-k Queries

	Organization of Dissertation

	The Ordered Relational Model
	Ordered Relational Databases
	Ordered Relational Databases
	Ordered Relational Databases vs. Temporal Relational Databases

	Ordered Relational Queries
	FO Ordered Relational Queries
	FO Ordered Relational Queries vs. 2FOL Temporal Relational Queries

	Ordered Relational Algebras
	Ordered Relational Algebras
	The Completeness Problem of Ordered Relational Algebras

	Ordered Conjunctive Queries with Data-Decided Order CQX
	Ordered Conjunctive Queries CQX
	An Ordered Conjunctive Algebra CAX
	Overview of Ordered Algebra CAX
	Order-preserving Selection
	Order-preserving Projection
	Left Nested-loop Products
	Order Concatenation
	Order Reduction
	Order Identity
	Order Reverse

	Transformation Rules
	Completeness of CAX

	Ordered Conjunctive Queries with t-Decided Order CQT
	Ordered Conjunctive Queries CQT
	An Ordered Conjunctive Algebra CAT
	Overview of Ordered Algebra CAT
	Order Intersection
	Top Operation
	Derived Operations

	Transformation Rules
	Completeness of CAT

	Ordered Conjunctive Queries CQ
	Ordered Conjunctive Queries CQ
	An Ordered Conjunctive Algebra CA
	Overview of Ordered Algebra CA
	Until Operation
	Derived Operations

	Transformation Rules
	Completeness of CA

	Conclusion and Future Work
	Summary of Results
	Future Work

	References

